République Algérienne Démocratique et Populaire
Ministère de l’Enseignement et de la Recherche Scientifique

UNIVERSITÉ ABDERRAHMANE MIRA DE BÉJAÏA
FACULTÉ DE TECHNOLOGIE

Département d’Automatique, de Télécommunication & d’Électronique

Mémoire de fin de cycle en vue de l’obtention du diplôme de Master en Électronique

Option : Automatique

THÈME :

Automatisation d’une ligne de préparation de jus à COJEK CEVITAL

Réalisé par :
M. Mourad BOUDAH

Encadré par :
- M. Arezki ADJATI
- M. Farid TAZRARETH

Soutenu devant un jury composé de :
- M. Ouahib GUENOUNOU
- M. Slimane HADJI
- M. Arezki ADJATI

Année universitaire : 2016 - 2017
Dédicaces

Ce modeste travail est dédié en premier lieu à mes très chers parents dont le sacrifice, la tendresse, l’amour, la patience, le soutien, l’aide et l’encouragement sont le secret de ma réussite, à mes chères sœurs Eliane et Emilie et à mon cher frère Yaris.

À ma très chère Milli.

À mes grands-parents, à mes oncles et à mes tantes et à tous mes cousins, à Amirouche et Mohamed et à toute la famille.

À tous mes amis sans exception.

À mes amis collègues et enseignants du primaire au niveau supérieur.

À toute la promotion Automatique 2017.

Je dédie enfin ce modeste travail à toute personne ayant contribué de près ou de loin à sa concrétisation.
Remerciements

Je remercie, avant tout, Dieu, pour la volonté, la force d’accomplir ce travail, la santé et la patience qu’il m’a données durant toutes ces longues années.

Je tiens à remercier, particulièrement, mes très chers parents et toute ma famille pour avoir fait de moi ce que je suis, pour m’avoir toujours soutenu et dans toutes les circonstances, pour m’avoir comblé de bravoure et de ténacité, pour tout ce qu’ils m’ont donné en m’accompagnant durant mon parcours : de la patience, du sacrifice, de la tendresse, de l’amour, des encouragements et de l’aide.

Je remercie, également, mes enseignants du Département Électronique, qui ont cru en mes capacités, qui ont contribué à ma formation en m’ayant constamment encouragé durant mon cursus universitaire. Du fond du cœur, je ne leur dois que du respect. En particulier, Mr. Adjati Arezki, pour ses judicieux conseils, sa disponibilité, pour les efforts, la confiance et la patience qu’il m’a accordés. Je remercie Mr. Tazrareth. Les mêmes expressions de reconnaissance vont également à l’endroit de mon Co-promoteur Mr. Bouzidi Mouhoub, qui m’a encouragé, conseillé, motivé, et surtout, pour sa disponibilité lors des différentes et multiples sollicitations.

Je remercie aussi toute l’équipe de Maintenance de COJEK pour l’accueil chaleureux, pour la collaboration, pour l’excellente et inoubliable ambiance qu’on y a fait régner et qu’on m’a fait vivre durant mon stage. Je leur témoigne toute ma gratitude pour leur immense compréhension et leur intarissable amabilité, pour leur bonté et pour toutes les relations humaines dont ils se caractérisent et qu’ils m’ont exprimées tout au long de cette courte période d’études pratiques.

Cet humble travail n’aurait pu se faire seul. Ce sont les compétences, la disponibilité, le dynamisme, la bonne humeur et la patience de tout un chacun qui m’a permis d’achever ce mémoire dans les meilleures conditions.

C’est pourquoi, je tiens à remercier chaleureusement toutes les personnes qui ont contribué, de près comme de loin, à la concrétisation et à l’achèvement de ce travail.

Mes remerciements s’adressent enfin à tous mes collègues et à tous mes amis.
Sommaire

Dédicaces ... I
Remerciements ... II
Sommaire ... III
Liste des abréviations ... IV
Liste des tableaux ... V
Liste des figures ... VI

Introduction générale ... 1

Chapitre I

Généralités sur les systèmes automatisés

I.1 Introduction .. 2
I.2 Systèmes automatisés ... 2
 I.2.1 Description d'un système automatisé ... 2
 I.2.2 Le but de l’automatisme ... 4
I.3 Les automates programmables industriels (API) ... 6
 I.3.1 Introduction ... 6
 I.3.2 Rôle de l’automate programmable .. 6
 I.3.3 Structure de l’automate programmable .. 7
 I.3.3.1 Aspect extérieur ... 7
 I.3.3.2 Structure interne .. 8
 a) L’unité centrale de l’automate (CPU) ... 8
 b) Bus de liaison .. 10
 c) Système d’entrée/sortie ... 10
 d) Périmétries de l’automate programmable .. 11
 I.3.4 Les types d’automates programmables industriels ... 12
 I.3.5 Les langages de programmation d’un API .. 12
 I.3.6 Choix d’un automate programmable ... 13
 I.3.7 Principaux constructeurs d’API ... 14
 I.3.8 Description de l’automate programmable S7 300 ... 14
 I.3.9 Description de l’automate Crouzet MRP800 ... 15
I.4 Conclusion ... 15
Chapitre II
Appareillage électrique

II.1 Introduction ... 17

II.2 Le débitmètre ... 17

II.2.1 Les différents types de débitmètre ... 18

II.2.1.1 Le débitmètre à turbine ... 18

II.2.1.2 Le débitmètre électromagnétique ... 18

II.2.1.3 Le débitmètre à ultrasons .. 19

II.2.1.4 Le débitmètre à effet vortex .. 21

II.2.1.5 Le débitmètre à effet Coriolis ... 21

II.2.1.6 Le débitmètre thermique ... 23

II.2.1.7 Mesure de débit par pression différentielle .. 23

II.2.2 Choix d’un débitmètre ... 24

II.3 Vanne de régulation .. 26

II.3.1 Eléments d’une vanne ... 26

II.3.2 Spécification d’une vanne de régulation ... 27

II.3.3 Choix d’une vanne .. 27

II.4 Pompe centrifuge ... 29

II.4.1 Principe de fonctionnement ... 30

II.4.2 Principale caractéristiques d’une pompe ... 30

II.4.2.1 Le triangle des vitesses ... 30

II.4.2.2 Energie hydraulique .. 31

II.4.2.3 Hauteur manométrique totale ... 31

II.4.2.4 Puissance .. 32

II.4.2.5 Rendement de la pompe ... 32

II.4.2.6 Pertes de charges .. 32

II.5 Variateur de vitesse ... 33

II.5.1 Variation de vitesse de la machine asynchrone ... 33

II.5.2 Fonctionnement d’un variateur de vitesse ... 34

II.5.3 Les différents variateurs de vitesse ... 35

II.5.4 Différentes fonctions des variateurs de vitesse ... 35

II.5.5 Avantage de l’utilisation du variateur de vitesse .. 36
Liste des abréviations

\textbf{PC} : Partie Commande.

\textbf{PO} : Partie Opérative.

\textbf{A.P.I} : Automate Programmable Industriel.

\textbf{PLC} : Programmable Logic Controller.

\textbf{CPU} : Central Processing Unit.

\textbf{UT} : Unité de Traitement.

\textbf{R.O.M} : Read Only Memory.

\textbf{R.A.M} : Random Access Memory.

\textbf{E.P.R.O.M} : Erasable Programmable Read Only Memory.

\textbf{E.E.P.R.O.M} : Electrical Erasable Programmable Read Only Memory.

\textbf{TOR} : Tout Ou Rien.

\textbf{C.A.N} : Convertisseur Analogique Numérique.

\textbf{C.N.A} : Convertisseur Numérique Analogique.

\textbf{TCAM} : Timer/Counter Access Module.

\textbf{L.D} : Ladder Diagram.

\textbf{F.B.D} : Function Block Diagram.

\textbf{I.L} : Instruction List.

\textbf{S.T} : Structured Text.

SFC : Sequential Function Chart.

DC : Direct Current.

FM : Function Module

DN : Diamètre Normalisé.

E.NA.JU.C : Entreprise NAtionale des JUs et des Conserves.

CO.J.EK : COnserves et Jus d'El-Kseur.

PET : Polyéthylène Téréphtalate.

TCO : Triple Concentré d'Orange.

PRD : Production.

CIP : Clean-In-Place.

MP : Mélange Pulpes.

SADT : Structured Analysis and Design Technique.

EE : Energie Electrique.

EP : Energie Pneumatique.

Dcy : Début de Cycle.

GS : Grefcet de Sécurité.

GPN : Grefcet de Production Normale.

GCT : Grefcet de Coordination des Tâches.

GCI : Grefcet d'Initiation et de Commande.
Liste des Tableaux

Chapitre II
Appareillage électrique

Tableau II.1 : Choix d’un débitmètre Selon les contraintes d’installations .. 24
Tableau II.2: Choix d’un débitmètre selon les performances métrologique et le prix............................. 25
Tableau II.3 : Choix d’un débitmètre selon la nature du fluide ... 25
Tableau II.4 : Choix d’une vanne .. 28

Chapitre III
Processus technologique de la ligne de préparation de jus

Tableau III.1 : Listing matériel constituant l’installation ... 43
Tableau III.2 : Les Brix des différents parfums .. 47

Chapitre IV
Automatisation et amélioration de la ligne de préparation de jus

Tableau IV.1 : Affectation des entrées physiques ... 64
Tableau IV.2 : Affectation des sorties physiques .. 64
Liste des figures

Chapitre I
Généralités sur les systèmes automatisés

Figure I.1: Structure d’un système automatisé ... 2
Figure I.2 : Exemples de Pré-actionneurs .. 3
Figure I.3 : Exemples d’Actionneurs .. 3
Figure I.4 : Exemples de Capteurs ... 4
Figure I.5 : API de type compact ... 7
Figure I.6 : API de type modulaire .. 7
Figure I.7 : Structure d’un automate programmable .. 8
Figure I.8 : Exemples de langages de programmation ... 13
Figure I.9: Automate programmable S7-300 ... 14
Figure I.10: Automate programmable Crouzet MRP800.. 15

Chapitre II
Appareillage électrique

Figure II.1 : aspect extérieur d’un débitmètre ... 17
Figure II.2 : Vanne pneumatique à papillon ... 26
Figure II.3 : Aspect extérieur d’une pompe centrifuge .. 29
Figure II.4 : Constitution d’une pompe centrifuge ... 29
Figure II.5 : principe de fonctionnement d’une pompe centrifuge 30
Figure II.6 : Triangle des vitesses .. 31
Figure II.7 : Structure d’un variateur de vitesse .. 34
Figure II.8 : Capteur de niveau .. 37
Chapitre III

Processus technologique de la ligne de préparation de jus

Figure III.1 : schéma synoptique de l’installation de la ligne PET .. 41

Figure III.2 : Schéma de l’installation (pris au niveau du pupitre de la supervision) 42

Figure III.3 : Schéma des deux bacs (bac de stockage sirop et le bac stérile) 42

Figure III.4 : Schéma de la préparation du mélange des pulpes .. 44

Figure III.5 : Schéma de la préparation du sirop fini .. 45

Chapitre IV

Automatisation et amélioration de la ligne de préparation de jus

Figure IV.1 : Représentation d’une fonction avec SADT .. 50

Figure IV.2 : SADT A0 ... 51

Figure IV.3 : Analyse fonctionnelle descendante SADT du système (A-0) 51

Figure IV.4 : Grafcet du système de préparation de jus .. 52

Figure IV.5 : GCT (Grafcet de coordination des tâches) .. 54

Figure IV.6 : Grafcet de tâche 1 ... 55

Figure IV.7 : Grafcet de tâche 2 ... 56

Figure IV.8 : Grafcet de tâche 3 ... 57

Figure IV.9 : Grafcet de tâche 4 ... 57

Figure IV.10 : Grafcet de tâche 5 ... 58

Figure IV.11 : Grafcet d’initiation de commande ... 59

Figure IV.12 : Grafcet de sécurité .. 59

Figure IV.13 : Choix du langage .. 60

Figure IV.14 : Mode de fonctionnement ... 61

Figure IV.15 : Choix de l’automate .. 61

Figure IV.16 : Choix de fonction .. 62
Figure IV.17 : Portes logiques .. 63
Figure IV.18 : Langage SFC .. 63
Figure IV.19 : Barre des entrées .. 63
Figure IV.20 : barre des sorties .. 64
Figure IV.21 : Grafcet langage automate ... 65
Figure IV.22 : Programme transcrit ... 66
Figure IV.23 : Résultat de compilation .. 72
Figure IV.24 : Branchement de l’automate ... 73
INTRODUCTION
GÉNÉRALE
INTRODUCTION GÉNÉRALE.

Actuellement, l’industrie se conjugue par une automatisation certaine qui s’est imposée au fil des années dans presque la totalité des chaînes de production.

Elle est conçue pour remplacer un système à logique câblée par un autre système à logique programmée, qui réalise des fonctions d’automatisme assurant la commande de pré-actionneurs et d’actionneurs, à partir d’informations logiques, analogiques ou numériques, ainsi que la surveillance des processus industriels.

Hormis les facteurs de sécurité des personnes intervenantes, l’automatisation se veut alors omniprésente dans tous les secteurs à risque de contamination agroalimentaire, pharmaceutique ou chimique, et encore dans les secteurs exigeant rapidité et précision.

Dans cette optique, l’unité COJEK, qui se trouve confrontée à la forte demande de ses produits, notamment les bouteilles PET TCHINA avec ses divers goûts, est contrainte à augmenter sa production, malgré son fonctionnement déjà en 3/8 (3 équipes / 24 heures).

La perspective à explorer reste alors le facteur temps qui, avec une bonne coordination de fonctionnement des équipements à mettre en place, se retrouve réduit de façon effective ; ce qui permet ainsi, et de façon certaine, d’augmenter la cadence de la production journalière.

Nous avons, par conséquent, départagé ce modeste travail en quatre (04) chapitres, traitant chacun d’un angle spécifique :

Le premier chapitre traite ainsi des généralités des systèmes automatisés, aborde les diverses techniques de concrétisation, que ce soit en technologie câblée ou en technologie programmée.

Le second chapitre renseigne, à plus d’un titre, sur le matériel utilisé dans une chaîne automatisée en mettant l’accent sur la façon d’en effectuer un choix.

Le troisième chapitre résume lapidairement le fonctionnement du processus technologique de la préparation du jus tel pratiqué actuellement.

Une problématique ainsi dégagée, les éventuelles insuffisances dans la conception de ce dit processus, ainsi que l’introduction d’une nouvelle réflexion par une automatisation en parallèle des diverses tâches, feront l’objet de notre dernier chapitre.

Une conclusion générale suivra alors pour couronner conséquemment notre travail.
CHAPITRE I
GÉNÉRALITÉS SUR
LES SYSTEMES
AUTOMATISES
Chapitre I

Généralités sur les systèmes automatisés

I.1 Introduction

L’automatisation consiste à rendre automatique les opérations qui exigeaient auparavant l’intervention humaine. Ce système est un sous-ensemble d’une machine, destinée à remplacer l’action de l’être humain dans des tâches, en générale simples et répétitives, réclamant précision et rigueur. On est passé d’un système dit manuel, à un système mécanisé, puis un système automatisé.

Simples ou complexes, les systèmes automatisés sont partout dans notre environnement quotidien et connaître leur fonctionnement nous permet aussi de mieux nous adapter.

I.2 Systèmes automatisés

Un système est dit " automatisé " s’il exécute toujours le même cycle de travail après avoir reçu les consignes d'un opérateur. Celui-ci se contente de donner des ordres de départ et si besoin d'arrêt. [1]

I.2.1 Description d'un système automatisé

Un système automatisé est composé d'une partie commande PC, d'une partie opérative PO et d’une partie dialogue.

![Structure d'un système automatisé](image)

Figure I.1: Structure d’un système automatisé.
I.2.1.1 La partie commande

Elle transmet les ordres aux actionneurs à partir des informations reçues par les capteurs, par des consignes données par l'opérateur ou du programme qu'elle contient.

Elle est composée généralement de pré-actionneurs, et/ou actuellement d'ordinateurs, de mémoires et de programmes via un automate programmable industriel (A.P.I) qui n’est qu’un ordinateur spécialisé dans le pilotage de systèmes automatisés. [1]

Les pré-actionneurs les plus utilisés sont les contacteurs pour les moteurs électriques et les distributeurs pour les vérins pneumatiques …etc., ils ont pour fonction l’acheminement de l’énergie nécessaire, issue d’une source (réseau électrique, batteries, compresseur pneumatique ou hydraulique), adaptée aux actionneurs par un mouvement précis. [1][2]

Figure I.2 : Exemples de Pré-actionneurs

I.2.1.2 La partie opérative

Appelée aussi partie puissance d’un système automatisé, c’est la partie qui effectue et exécute les ordres reçus de la partie commande.

Elle consomme selon le type de technologie utilisé de l’énergie électrique, pneumatique ou hydraulique, elle comporte des capteurs et des actionneurs. [1]

a) Actionneurs

Figure I.3 : Exemples d’Actionneurs
Chapitre I : généralités sur les systèmes automatisés

Les actionneurs sont le plus souvent des moteurs, des électrovannes, des vérins, capable de produire un phénomène physique, tel qu’un déplacement linéaire ou rotatif, un dégagement de chaleur ou une émission de lumière à partir de l'énergie qu'ils reçoivent. [1]

b) Capteurs

Un capteur est un élément de la partie opérative qui permet de recueillir des informations et de les transmettre à la partie commande, il est capable de détecter avec ou sans contact un phénomène physique dans son environnement (présence ou déplacement d'un objet, chaleur, lumière). [1]

![Capteurs](image)

Figure I.4 : Exemples de Capteurs

I.2.1.3 La partie dialogue

Elle représente le pupitre de dialogue homme-machine équipé des organes de commande permettant la mise en/hors énergie de l’installation, la sélection des modes de marche, la commande manuelle des actionneurs, la mise en référence, le départ des cycles, l’arrêt d’urgence, etc…. et nous permet la visualisation de l’état du processus à tout instant. Elle doit être sous tension dans le cas d’une technologie câblée et en mode « RUN » du programme en cas d’une technologie programmée. [3]

I.2.2 Le but de l’automatisme

- Effectuer une production qualitative. (Pas d’erreur humaine : Zéro défaut.) ;
- Effectuer une production quantitative. (rapidité) ;
- Suppression des tâches ou actions physiques peu ou pas gratifiantes pour l’homme ;
- Pouvoir accéder à des milieux de travail hostiles. (chimique, nucléaires …) ou des sites inaccessibles à l’homme (mer, espace) ;
- Augmenter la sécurité ;
- Superviser les installations et les machines et les processus de production. [1]
Nous comptons quatre révolutions industrielles, la première au XVIIIe siècle avec la machine à vapeur puis l’arrivée de l’électricité à la fin du XIXe siècle, la troisième au XXe siècle avec les automates programmables et l’internet, la quatrième seraient surement fondée sur l’usine intelligente.

Tout au début, les parties commandes sont réalisées avec une technologie câblée basée sur l’utilisation de l’électronique, des relais électromagnétiques et de systèmes pneumatiques où ces différentes parties sont interconnectées par un câblage représentatif de la machine.

En rapport avec les contraintes technologiques d’un circuit câblé, ce type d’équipement présente des inconvénients tels qu’un manque de souplesse compliquant la mise au point du dispositif et rendant difficile toute modification.

Le câblage des séquenceurs est parfois très complexe et encombrant lorsque plusieurs coffrets ou armoires sont nécessaires pour la protection mécanique des châssis, ajouté à cela, la difficulté d’y intégrer des fonctions externes, à l’image de temporisateurs, de compteurs ou de multiplexeurs. La réalisation en logique câblée, représente une solution figée qui nécessite d’être reprise intégralement en cas de modification du cycle de fonctionnement du système automatisé.

L’avènement de la technologie programmée, notamment avec l’apparition des automates programmables, permet une meilleure fluidité vis-à-vis des modifications à effectuer, car il s’agit de remplacer seulement le programme à exécuter et contient aussi des fonctions internes à l’automate, à l’image de temporisateurs, compteurs décompteurs, fonctions logiques, etc…. [1][4]

En logique programmée le fonctionnement d’un équipement initialement représenté par un schéma électrique à contact, un logigramme ou un diagramme fonctionnel est traduit en équations booléennes et un programme d’instructions.

Dans la méthode générale de conception en logique programmée, l’algorithme et sa représentation graphique en algorigramme permet de bien définir la structure générale des différents programmes. L’évolution de la logique programmée est liée à l’évolution des opérateurs complexes en technologie intégrée. [4]
I.3 Les automates programmables industriels (API)

I.3.1 Introduction

Les premiers automates programmables (Programmable Controller, PC) ont été introduits en 1969 aux Etats unis pour satisfaire aux besoins de l’industrie automobile.

Le but recherché était de remplacer les armoires à relais utilisées pour l’automatisation des chaînes de fabrication par les équipements moins coûteux et surtout plus faciles à modifier.

Depuis leur apparition, les automates programmables se sont répandus très rapidement dans l’industrie, au point de représenter aujourd’hui plus de la moitié des équipements informatiques qui sont utilisés pour ce type d’application. Ce succès des automates programmables est dû en grande partie à leur faible coût, et à la facilité avec laquelle ils peuvent être mis en œuvre par du personnel non formé à l’informatique. [5]

L’automate programmable industriel (API) ou en anglais PLC (Programmable Logic Controller) est un système électronique destiné à automatiser les tâches d’une installation industrielle en utilisant les fonctions logiques, séquentielles ou numériques, il assure un enchainement automatique et continu des opérations arithmétiques et logiques relative au déroulement d’un cycle, il gère l’ensemble des algorithmes. [4]

L’API et ses périphériques associés sont conçus pour pouvoir facilement s’intégrer à un système d’automatisme industriel et être facilement utilisés dans toutes leurs fonctions prévues. C’est un automate, au sens d’automatisme, programmable, selon la terminologie informatique.

La programmation et l’exploitation sont simples par la structure de langage, souvent de type symbolique et de moyens de programmation accessible à l’électricien de maintenance. [5][6]

I.3.2 Rôle de l’automate programmable

Au début, l’automate programmable servait uniquement à réaliser les fonctions logiques et séquentielles et au contrôle de commande individuelle des machines – rôle de séquenceur électrique, pneumatique ou électronique.

Actuellement, en plus de ces fonctions logiques, il effectue le traitement numérique, la gestion de production, la localisation des pannes, l’échange des messages et le traitement de texte en clair pour renseigner les agents d’exploitation sur la conduite de la machine.

L’évolution technologique des microprocesseurs se caractérise par :

- L’augmentation des capacités de mémoire ;
L’accroissement des vitesses de traitements.

Elle permet une mise en œuvre plus souple et plus rapide des automatismes des lignes de production. [7]

I.3.3 Structure de l’automate programmable

I.3.3.1 Aspect extérieur

L’aspect des automates change d’un modèle à un autre, mais ils sont placés selon de type compact ou modulaire.

a) Automate de type compact

Les automates dis de type compact sont les micro-automates, ils intègrent le processeur, l’alimentation, les entrées et les sorties, ils peuvent réaliser certaines fonctions tel que le comptage rapide, le traitement analogique etc… et peuvent recevoir des extensions en nombre limité. Ces automates de fonctionnement simple sont généralement destinés à la commande de petits automatismes. [8]

Figure I.5 : API de type compact

b) Automate de type modulaire

Les automates dis de type modulaire comporte le processeur, l’alimentation et des interfaces d’entrées/sorties séparés dans des modules, des bus et des connecteurs. Ces automates sont intégrés dans les automatismes complexes où puissance, capacité de traitement et flexibilité sont nécessaires. [8]

Figure I.6 : API de type modulaire
I.3.3.2 Structure interne

De forme compacte ou modulaire, Les sous ensembles fondamentaux composant un automate programmable sont :

- L’unité centrale ou CPU qui traite les variables en fonction du traitement logique programmé en mémoire et élaboré les ordres de commande ;
- La tête de bac qui assure la liaison entre l’unité centrale et les interfaces ;
- Les interfaces d’entrée qui reçoivent les données machines provenant des capteurs ;
- Les interfaces de sortie qui appliquent les processus de commande. [7]

Figure I.7 : Structure d’un automate programmable [7]

a) L’unité centrale de l’automate (CPU)

L’unité centrale est le cœur de l’automate, et se compose fonctionnellement des éléments suivants :

- **Unité de traitement**

 Le processeur appelé unité de traitement (UT) ou unité arithmétique et logique, à un double rôle d’assurer le contrôle de l’ensemble de l’automate et effectuer les traitements demandés par les instructions d’un programme.

 Connecté aux mémoires et aux interfaces E/S par des liaisons de type bus parallèles, le processeur contient des registres qui sont des mémoires associées à des circuits logiques de manière à permettre l’exécution de certaines fonctions de traitement et de service. [7]
Chapitre I : généralités sur les systèmes automatisés

➢ Mémoire centrale

La mémoire est l’élément fonctionnel qui peut recevoir, conserver et restituer des informations. C’est un dispositif électronique qui sert à stocker des informations (issues des capteurs d’entrée ou générées par le processeur pour commander les sorties. [6][7]

Nous distinguons selon la possibilité ou non d’écrire et d’effacer ou de lire les différents types de mémoire qu’on peut trouver dans un API.

- **R.A.M.** (Random Access Memory) : C’est une mémoire vive qui doit être alimentée électriquement pour pouvoir conserver les informations. Avant son exécution, le programme est transféré dans cette mémoire qui permet d’atteindre des vitesses en lecture et écriture très rapides. [8]

- **R.O.M.** (Read Only Memory) : mémoire à lecture uniquement, appelée également mémoire morte, elle permet de stocker des informations indéfiniment sans aucune alimentation électrique. [8]

- **P.R.O.M.** (Programmable Read Only Memory) : mémoire de type ROM qu’on peut programmer une seule fois. [8]

- **E.P.R.O.M.** (Erasable Programmable Read Only Memory) : mémoire de type PROM mais que l’on peut effacer par exposition du circuit aux rayons ultra-violets. [8]

- **E.E.P.R.O.M.** (Electrical Erasable Programmable Read Only Memory) : mémoire de type PROM que l’on peut effacer électriquement en écrivant à nouveau sur le contenu de la mémoire. Ce type de mémoire par sa simplicité de mise en œuvre tend à remplacer de plus en plus la mémoire EPROM. [8]

Dans un API, la mémoire centrale est découpée en zones destinées à contenir les données, les programmes et le logiciel de base gérant le fonctionnement de l’automate.

➢ Zone de mémoire programme

Elle est de type RAM et permet le stockage des instructions à exécuter par l’automate, elle contient les instructions à exécuter par le processeur afin de déterminer les ordres à envoyer aux pré-actionneurs reliés à l’interface de sortie en fonction des informations recueillies par les capteurs reliés à l’interface d’entrée. [8]

➢ Zone de mémoire de données

Cette mémoire peut être de type ROM, PROM, EPROM, EEPROM, elle est divisée en trois sous-ensembles ayant chacun une fonction : [7]

- Recevoir les variables acquises par l’automate ;
- Mémoriser les variables intermédiaire, résultats de traitements ;
Chapitre I : généralités sur les systèmes automatisés

- Enregistrer les valeurs de sortie à transmettre aux actionneurs.

b) Bus de liaison

Les interfaces entre le procédé et la logique interne d’un automate sont assurés par des cartes électroniques appelées coupleurs.

Le bus est un chemin emprunté par les informations entre les cartes et avec l’extérieur. C’est un circuit imprimé situé au fond du boitier sur lequel sont connectés le processeur, la mémoire centrale et les coupleurs. [7]

c) Système d’entrée/sortie (E/S)

Les dispositifs E/S classiques permettent de connecter des procédés situés à de faible distance de l’automate et certains automates autorisent même le déport de distance du module E/S de 100 à 300 m et fonctionnent en mode synchrone et la transmission par modem (modulateur-démodulateur) permet la décentralisation du système E/S.

Le système d’entrées-sorties industrielles autonomes, doté d’un microprocesseur et d’une mémoire intermédiaire sur son coupleur, offre une possibilité de liaison parallèle locale (quelques mètres), de liaison parallèle à distance (une centaine de mètres) et une liaison de type série asynchrone. [7]

➢ Interface d’entrées

Ce sont des circuits spécialisés capables de recevoir en toute sécurité pour l’automate les signaux issus des capteurs ou de l’opérateur. Elles peuvent être soit, des cartes d’entrées de type Tout Ou Rien (TOR) qui acceptent même des composants fournissant une tension, tels que des boutons poussoirs, des interrupteurs, des roues codeuses, des capteurs de fin de course, etc. ou bien des cartes d’entrées de type analogique constituée d’un convertisseur analogique numérique (CAN) utilisée pour l’acquisition d’une tension ou d’un courant qui varient entre deux bornes sans discontinuité. Tous les capteurs analogiques (potentiomètre, débitmètre par exemple) peuvent y être câblés. La résolution est directement liée au nombre de bits du CAN. [1]

➢ Interface de sorties

Ce sont des circuits spécialisés capables de commander en toute sécurité pour l’automate les circuits extérieurs. Elles peuvent être des cartes de sorties de type Tout Ou Rien (TOR). Des composants, comme des contacteurs, des électrovannes, des voyants, peuvent être commandés par ces sorties ou bien de type analogique ou la carte de sortie est
Chapitre I : généralités sur les systèmes automatisés

constituée d’un convertisseur numérique analogique (CNA). La résolution de tension obtenue est dépendante du nombre de bits du CNA. [1]

d) Périméries de l’automate programmable

➢ Console de programmation

La console de programmation donne accès à la mémoire de l’API, son rôle consiste à traduire les instructions utilisateur du code mnémoniques en instruction machine exécutable par l’automate. [7]

➢ Boitier test

Un boitier test permet :
- L’affichage manuel de ligne de programme à contrôler ;
- La visualisation de l’instruction : code opératoire et adresse de l’opérande ;
- La visualisation du contenu de l’accumulateur logique, après exécution de l’instruction ; ceci permet, en pas à pas, de localiser l’endroit où l’équation cesse d’être satisfaite et donc de déterminer l’origine d’une panne éventuelle ;
- La visualisation de toutes entrées, sorties ou mémoires internes. [7]

➢ Unité de dialogue en ligne

L’unité de dialogue en ligne (UDEL) offre des possibilités supplémentaires au boitier test pour des interventions ponctuelles :
- Modification de constante ;
- Accès aux valeurs courantes des paramètres ;
- Suivi et réglage de temporisations et de comptages ;
- Chargement de programme de fabrication.

Une clé de sécurité détermine la personne autorisée à intervenir. Ce système est équivalent au système américain Timer/Counter Access Module (TCAM). Certains dispositifs par ligne contiennent des messages préenregistrés sur mémoire ROM ou PROM et peuvent les envoyer à des destinataires présélectionnés. [7]

➢ Imprimante parallèle

Il est possible d’éditer sur l’imprimante certains résultats (états de compteurs, de temporisations poids, mesures diverses) ou des messages d’erreurs. [7]
I.3.4 Les types d’automates programmables industriels

I.3.4.1 Les automates de petite gamme

Ces automates sont destinées pour de petite application. Le nombre d’entrées sorties ne dépasse pas 48. Ils se présentent dans les boîtiers compacts ou tous les modules (CPU, Alimentation, Module d’E/S, interface de communication) sont intégrés dans une mémoire boitier. Il ne dispose d’aucune possibilité d’extension. [9]

I.3.4.2 Les automates de moyenne gamme

Dans cette gamme le nombre d’E/S peut atteindre 400, ces automates ont une structure modulaire extensible. [9]

I.3.4.3 Les automates de haute gamme

Ce sont des automates super puissants dont les performances permettent de gérer jusqu'à 2024 E/S et plus. Il dispose d’une structure modulaire. [9]

I.3.5 Les langages de programmation d’un API

Les langages destinés à la programmation des automates programmables industriels ont pour objectifs d’être facilement mis en œuvre par tout technicien après une courte formation. L’écriture d’un programme consiste à créer une liste d’instructions permettant l’exécution des opérations nécessaires au fonctionnement du système. [9]

Actuellement les API disposent en tout ou partie des langages de programmation suivants :

I.3.5.1 Langage à Contact LD (Ladder Diagram)

Le langage LD est le plus utilisé, il ressemble aux schémas électriques à contacts, c’est un langage graphique avec une approche aisée et visuelle du problème dédié à la programmation d’´équations booléennes (true/false). [1][6]

I.3.5.2 Langage FBD (Function Bloc Diagram)

C’est un langage qui permet de programmer graphiquement à l’aide de blocs programmés ou programmables, reliés entre eux et réalisant tout type de fonctions. [1][6]

I.3.5.3 Langage List IL (Instruction List)

Le langage List est très proche de l’assembleur, il utilise la totalité des fonctions de l’API. Tous les réseaux de programmation, définis dans un autre langage, sont compilés dans ce langage. [1][6]
I.3.5.4 Langage littéral structuré ST (Structured Text)

Appelé aussi SCF (Structured Control Language), ressemble beaucoup au langage C. C’est un langage structuré qui convient bien pour les applications faisant appel à des calculs compliqués et au traitement des chaînes de caractère. Il permet la programmation de tout type d’algorithme plus ou moins complexe. [1][6]

I.3.5.5 Langage GRAFCET

GRAphe Fonctionnel de Commande des Etapes et Transitions ou Sequential Fonction Chart (SFC), est un outil graphique qui décrit les différents comportements de l’évolution d’un automatisme. C’est un mode de représentation et d’analyse d’un automatisme, particulièrement bien adapté aux systèmes à évolution séquentielle, c’est à dire décomposable en étapes. [6][10]

Figure I.8 : Exemples de langages de programmation

I.3.6 Choix d’un automate programmable

Le choix d’un automate programmable est en premier lieu le choix d’une société ou d’un groupe et les contacts commerciaux et des expériences vécues sont déjà un point de départ.

Le personnel de maintenance doit toutefois être formé sur ces matériels et une trop grande diversité des matériels peut avoir de graves répercussions. Un automate utilisant des langages de programmation de type GRAFCET est également préférable pour assurer les mises au point de dépannages dans les meilleures conditions.

La possession d’un logiciel de programmation est aussi source d’économies (achat du logiciel et formation du personnel). Des outils permettant une simulation des programmes sont également souhaitables.
Il faut ensuite quantifier les besoins :

- Nombre d’entrées/sorties : le nombre de cartes peut avoir une incidence sur le nombre de racks dès que le nombre d’entrées/sorties nécessaires devient élevé.
- Type de processeur : la taille mémoire, la vitesse de traitement et les fonctions spéciales offertes par le processeur permettront le choix dans la gamme souvent très étendue.
- Fonctions ou modules spéciaux : certaines cartes (commande d’axe, pesage …) permettront de soulager le processeur et devront offrir les caractéristiques souhaitées.
- Fonctions de communication : l’automate doit pouvoir communiquer avec les autres systèmes de commande (API, supervision …) et offrir des possibilités de communications avec des standards normalisé (Profibus). [2]

I.3.7 Principaux constructeurs d’API

Les principaux constructeurs d’API sont allemands, américain, français, japonais et suédois. A titre exemple: ABB, ALLEN BRADLEY, BOSH-REXROTH, FESTO, GEFANUC, HONEWELL, VIPA, OMRON, SCHNEIDER-ELECTRIC, SIEMENS, MITSUBISHI. [1]

I.3.8 Description de l’automate programmable S7 300

L’API S7-300 de Siemens est un automate de type modulaire, d’une gamme intermédiaire, et comme tous autres automates peut être configuré selon les besoins de l’utilisateur. Il fonctionne en 24V DC. [2]
Chapitre I : généralités sur les systèmes automatisés

Le châssis de S7-300 peut prendre huit modules de signaux de communication (TOR ou analogiques) et des modules de fonctions (FM) qui assurent un comptage, une régulation ou un positionnement, etc.). [2]

Des modules de communication (CP 340, 341 …) sont nécessaires pour établir une communication par transmission série et il est possible d’en faire une extension. Ils permettent d’établir également des liaisons avec des automates SIMATIC S7, SIMATIC S5, et d’autres automates d’autres constructeurs. [2]

I.3.9 Description de l’automate Crouzet MRP800

Le module logique MRP800 comprend un relais programmable MILLENIUM (Crouzet) avec des entrées de type numérique et analogique et des sorties de type relais. Il peut comporter également une extension extensible.

Figure I.10: Automate programmable Crouzet MRP800

Le Millenium 3 est la dernière génération dans la série Millenium, avec une capacité de 700 blocs fonction. Le contrôleur extensible avec 50 E/S dispose d'environ quatre fois la capacité de la mémoire avec une résolution d'entrée analogique de 10 bits et un affichage de 18 caractères.

Le contrôleur propose deux langages de programmation, un langage ladder (LD) ou langage à contacts et un langage FBD diagramme de blocs fonction qui permet une programmation graphique basée sur l'utilisation de blocs fonctionnels prédéfinis avec possibilité d'utiliser un bloc fonction spécialement conçu pour le langage Grafcet.

I.4 Conclusion

Le développement scientifique a laissé sa trace sur les systèmes de production donnant naissance aux systèmes automatisés de production et aux automates programmables.

L’automate est un produit, facile à programmer, à connecter, adapté aux conditions industrielles. L’expansion considérable de ses possibilités, et celle corrélative de son marché, le prouvent. Toutefois, il faut tenir compte de certains points essentiels pour une implantation réussie tels que :

- Une bonne analyse du problème à résoudre ;
- Le respect des règles d’installation ;
- Un léger surdimensionnement pour préserver des marges de modifications.

Pour conclure, les systèmes automatisés sont profitables parce que les conditions de travail sont améliorées avec une réduction de taux d’accidents de travail tout en ayant une augmentation de la quantité des pièces de meilleurs qualités et offre une installation évolutif facilement modifiable, un pilotage et un paramétrage facile de l’installation, via une supervision ou un terminal de dialogue, tout ça, au détriment d’une réduction certaine de main d’œuvre.

Durant le deuxième chapitre, on abordera l’instrumentation et l’appareillage électrique nécessaires pour une automatisation de système.
CHAPITRE II
APPAREILLAGE ELECTRIQUE
Chapitre II

Appareillage électrique

II.1 Introduction
Le choix du matériel est un élément primordial dans la conception des systèmes automatisés, d’où une description de fonctionnement de chaque élément devient importante pour bien effectuer ce choix.

Les débitmètres et les vannes de régulation sont détaillés dans ce chapitre ainsi une description sera présentée sur les diverses pompes, notamment la pompe centrifuge.

Nous verrons, enfin, le variateur de vitesse, son fonctionnement, ses différentes fonctions sur les moteurs et ses avantages.

II.2 Le débitmètre
Le débit d’un fluide est la quantité du fluide traversant la section transversale d’une conduite par unité de temps. Cette quantité s’exprime, soit en débit masse, soit en débit volume. Le débit est l’une des grandeurs de process les plus fréquemment mesurées dans l’industrie. L’eau, le gaz naturel, la vapeur, le pétrole, les produits chimiques, les eaux usées ne sont que quelques-uns des produits mesurés quotidiennement.

Un débitmètre est un appareil destiné à mesurer le débit massique ou volumique d’un fluide liquide ou gazeux.

Sécurité de l’installation, qualité constante des produits, optimisation des procédés, protection de l’environnement, voilà quelques aspects qui confirment que la mesure de débit occupe une place prépondérante dans l’industrie. [10][11]

Figure II.1 : aspect extérieur d’un débitmètre
II.2.1 Les différents types de débitmètres

On peut distinguer plusieurs types de débitmètres courants dans l’industrie :

II.2.1.1 Le débitmètre à turbine

Ce débitmètre est constitué d’un corps cylindrique dans lequel un rotor tourne librement sur des roulements. La vitesse du rotor augmente linéairement avec la vitesse du fluide dans la conduite. Cette vitesse de rotation est mesurée par un système magnétique actionnant un dispositif d’affichage mécanique local ou, plus couramment, un système de détection de proximité qui émet une impulsion à chaque passage d’une aube devant ce dispositif. Cette dernière possibilité utilise un ensemble électronique associé qui met en forme les impulsions avec transmission en fréquence. Il est possible de transformer les impulsions en signal 4-20 mA (transmission analogique). [10]

Ces débitmètres présentent une excellente précision (supérieure à ±0,3 % de la mesure sur liquide et ±1 % sur gaz)

Des capteurs mesurant les paramètres de correction du débit volume (pression, température) et de calcul du débit masse (masse volumique) sont associés au débitmètre à turbine, et toutes les mesures effectuées entrent dans un calculateur de comptage en volume ou en masse. [10]

II.2.1.2 Le débitmètre électromagnétique

En principe, on a, pour les débitmètres électromagnétiques, que tout ce qui peut être pompé peut également être mesuré.

D’après le principe d’induction, selon Faraday, une tension est induite dans un conducteur qui se déplace dans un champ magnétique. Dans le cas du principe électromagnétique, c’est le fluide en mouvement qui représente le conducteur.

Le fluide conducteur circulant dans une conduite de diamètre \(D\) traverse un champ magnétique d’intensité \(B\).

Le champ magnétique, avec une puissance constante, est généré par deux bobines magnétiques agencées des deux côtés du tube de mesure.

Une tension \(V\) directement proportionnelle à la vitesse moyenne d’écoulement et de ce fait au débit volumique \(q_v\). La tension \(U\) est induite dans le fluide selon la relation (loi de Laplace) :

\[
V = KB U D \Rightarrow U = \frac{V}{KBD} \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad (II.1)
\]

\(K\) : constante du compteur
Avec $q_v = U S$

U: vitesse débitante,

S: surface de passage (l’aire d’un cercle) où : $S = \frac{\pi D^2}{4}$

D’où : $q_v = \frac{V D \pi}{4 K B}$ … … … … … … … … … … … … (II.2)

Il suffit de mesurer V pour calculer q_v, les autres termes étant connus et constants.

Le signal de tension induite U est capté par deux électrodes de mesure en contact conductif avec le fluide (montées sur la paroi interne de la conduite). Afin que la tension ne soit pas court-circuitée par la paroi du tube, le tube de mesure est réalisé dans un matériau isolant électriquement ou équipé d’un revêtement interne isolant. Un convertisseur de mesure amplifie le signal et le transforme en un signal analogique (4-20 mA) et en un signal numérique. [10]

II.2.1.3 Le débitmètre à ultrasons

Pour produire et détecter les ultrasons, on utilise un procédé de transformation d’énergie électrique en énergie acoustique, et vice versa, grâce essentiellement aux phénomènes de piézoélectricité.

Avec les ultrasons, il est possible de mesurer le débit volumique de divers gaz et liquides de manière fiable, indépendamment de la conductivité, de la pression, de la température ou de la viscosité.

Les capteurs ultrasons garantissent une mesure flexible et économique de gaz et liquides jusqu’à un diamètre DN de 4000mm. [10][12]

Deux méthodes de mesures sont utilisées :

a) Mesure par effet Doppler

L’effet Doppler est un phénomène qui se produit lorsqu’une source de vibrations (sons ou ultrasons) de fréquence donnée f est en mouvement par rapport à un observateur et qui se traduit pour ce dernier par une modification de la fréquence perçue f'.

La différence de fréquence $\Delta f = f - f'$ est mesurée et elle est représentative de la vitesse moyenne d’écoulement U dans la conduite.

Cette méthode est exclusivement pour les liquides chargés de particules en suspension ou contenant des bulles de gaz jouant le rôle de réflecteurs des ultrasons.[10][12]
Chapitre II : Appareillage électrique

b) Mesure par différence de temps de transit

Cette méthode est plus précise que la précédente, à condition que le fluide soit propre ou qu’il contienne une faible concentration de particules et de bulles (maximum: de 8 à 10%).

Deux capteurs montés sur la conduite émettent et reçoivent simultanément les impulsions ultrasoniques émises, c’est-à-dire sans différence de temps de parcours.

Dans le cas d’un fluide en mouvement, les ultrasons nécessitent des temps de parcours différents (en fonction de l’écoulement) pour atteindre le récepteur.

Le temps de parcours d’une onde sonore qui se propage d’un point donné à un autre dans le sens d’écoulement du fluide à mesurer (parcours A-B) est inférieur à celui de l’onde se déplaçant en sens inverse (parcours B-A).

Du point A au point B, les ultrasons se propagent à la vitesse \(V_{AB} = C_0 + U \cos \varphi \), et inversement du point B au point A à la vitesse \(V_{BA} = C_0 - U \cos \varphi \).

Le temps de parcours entre A et B est :

\[
\tau_{AB} = \frac{L}{C_0 + U \cos \varphi} \quad \ldots \ldots \ldots (II.3)
\]

Le temps de parcours entre B et A est :

\[
\tau_{BA} = \frac{L}{C_0 - U \cos \varphi} \quad \ldots \ldots \ldots (II.4)
\]

On a donc : \(\tau_{AB} (C_0 + U \cos \varphi) = \tau_{BA} (C_0 - U \cos \varphi) \)

D’où l’on tire :

\[
U = G K \frac{\tau_{AB} - \tau_{BA}}{\tau_{AB} + \tau_{BA}} \quad \ldots \ldots \ldots \ldots \ldots (II.5)
\]

La différence du temps de parcours mesurée est directement proportionnelle à la vitesse d’écoulement \(U \), et de ce fait, au volume écoulé.

\(U \) est calculée en permanence à partir des mesures en continu de \(\tau_{AB} \) et \(\tau_{BA} \), ainsi que le débit volume selon la relation \(qv = U S \)

\(A \) : Sonde (émettrice et réceptrice d’ultrasons),

\(B \) : Sonde (émettrice et réceptrice d’ultrasons),

\(L \) : Distance entre les sondes à ultrasons,

\(U \) : Vitesse d’écoulement moyenne du fluide à mesurer,

\(\tau_{AB} (V_{AB}) \) : Temps de parcours des ondes sonores du point A au point B (vitesse de propagation),

\(\tau_{BA} (V_{BA}) \) : Temps de parcours des ondes sonores du point B au point A (vitesse de propagation),
Chapitre II : Appareillage électrique

C_O : Vitesse du son dans le fluide à mesurer (Exemples : $C_{eau}=1500$ m/s ; $C_{air}=330$ m/s),

G_K : Constante d’étalonnage,

φ : Angle formé par l’axe du tube et de la ligne de mesure. [10] [12]

II.2.1.4 Le débitmètre à effet vortex

Pour la mesure fiable du débit volumique de liquides, gaz et vapeurs jusqu’à 250 bar et 450°C.

Les débitmètres Vortex sont utilisés dans la chimie, la pétrochimie, le domaine de l’énergie et de la chaleur pour mesurer les produits les plus divers.

Ce débitmètre est basé sur le phénomène apparaissant lorsqu’un débit de fluide rencontre un obstacle sur son passage : il se produit localement en aval un phénomène périodique de tourbillons, dit effet vortex ou (effet Von Karman).

La fréquence de détachement de ces tourbillons des deux côtés du corps perturbateur est directement proportionnelle à la vitesse d’écoulement moyenne.

Ces tourbillons provoquent des variations de la pression statique dans la conduite, détectable selon différentes méthodes. Le nombre de tourbillons détectés est proportionnel au débit volume dans la conduite.

La réalisation utilise une détection par un capteur piézo-électrique mesurant les déplacements alternés d’une partie flexible du barreau qui vibre à la même fréquence que la formation des vortex. Un convertisseur de mesure amplifie le signal et le transforme en un signal analogique (4-20mA) et en un signal numérique.[9] [10]

II.2.1.5 Le débitmètre à effet Coriolis

Ce débitmètre, basé sur l’effet Coriolis, est le seul débitmètre capable de mesurer directement un débit masse avec une précision maximale.

Le débitmètre à effet Coriolis peut mesurer presque tous les produits, il peut également mesurer la masse volumique du liquide et la température.

Chaque système se compose d’un capteur et d’un transmetteur assurant le traitement des signaux. Le capteur comporte un tube de mesure protégé par une enceinte.

Selon les constructeurs, le tube de mesure peut prendre différentes formes : simple U, double U, droit, …etc., mais le principe de fonctionnement reste le même.

Si une masse en mouvement est mise en vibration perpendiculairement au sens d’écoulement, cela génère ces forces de Coriolis (en fonction du débit massique). Dans le
cas d’un débitmètre massique Coriolis, ce sont les tubes de mesure qui sont en vibration. Si un produit (masse) traverse ces tubes de mesure, cela génère des forces de Coriolis.

Le tube de mesure est excité par un dispositif électromagnétique qui le fait vibrer en opposition de phase sur la fréquence de résonance (proportionnelle à la masse volumique du produit), comme un diapason. En règle générale, la vibration a une amplitude de moins de 1mm et une fréquence de 80 à 140 Hz, selon la taille du capteur.

Lorsqu’un fluide circule dans le tube vibrant, celui-ci lui communique sa quantité de mouvement verticale. Dans la première demi-période du cycle de vibration, durant le mouvement du tube vers le haut, la masse présente dans le tube résiste à la force ascendante et exerce une poussée vers le bas. A l’inverse, durant la seconde demi-période, la masse qui a reçu une quantité de mouvement vers le haut tend à résister et oppose au mouvement descendant du tube une poussée vers le haut. La force de réaction résultante F_c, engendrant une torsion du tube, est appelée « effet Coriolis » :

$$F_c = 2 m \omega v$$

m : masse du liquide dans la section du tube ;
ω : vitesse instantanée angulaire de rotation ;
v : vitesse du fluide dans le tube de mesure.

Le degré de torsion du tube est directement proportionnel au débit masse. Des capteurs électromagnétiques, situés de chaque côté du tube, induisent des ondes sinusoïdales permettant de mesurer les positions du tube en ces deux points.

La mesure du déphasage entre la branche « aval » et la branche « amont » par les détecteurs magnétiques de position permet d’accéder à l’amplitude de la torsion.

Ces signaux bruts sont envoyés sur un transmetteur pour traitement et conversion. Le signal de sortie obtenu est directement proportionnel au débit masse.

Une sonde de température placée contre la paroi extérieure du tube permet une compensation automatique des changements d’élasticité de celui-ci en fonction de la température (effets thermiques). La température mesurée (celle du produit) est disponible en signal de sortie pour des besoins externes. [9] [10] [12]

Un débitmètre à effet Coriolis peut donc disposer de trois signaux de sortie :

- Le débit masse q_m,
- La masse volumique $\rho = \frac{M}{V}$ (V le volume du tube, M la masse dans ce tube)

Précision annoncée : 0,0005 g/cm3.
- La température.
II.2.1.6 Le débitmètre thermique

Le principe de mesure thermique est déjà très répandu dans l’industrie et utilisé avec succès sur de nombreuses applications portant sur des gaz, et où une grande dynamique de mesure ou de faibles pertes de charge sont exigées, que ce soit en conduite de procédés, en contrôle de la consommation, en détection de fuite ou en surveillance de réseaux de distribution.

Le principe de mesure thermique repose sur le refroidissement d’une sonde de température chauffée sur laquelle on fait passer un produit. Le produit passe sur les deux sondes de température Pt 100 dans l’appareil de mesure.

L’une des sondes mesure la température de process comme référence. La seconde sonde sert d’élément chauffant ; en fonction du refroidissement, elle est amenée à une différence de température définie avec précision. Le refroidissement de la sonde de température et le courant de chauffage nécessaire pour le maintien de la différence de température sont d’autant plus importants que le débit massique passant sur la sonde de température chauffée est important. Le courant de chauffage mesuré est ainsi proportionnel au débit massique de gaz. [9] [12]

II.2.1.7 Mesure de débit par pression différentielle

La mesure de débit par pression différentielle reste l’un des principes de mesure les plus utilisés dans l’industrie. Grâce à l’expérience acquise, qui se traduit dans les nombreuses normes existantes, ce type de mesure est largement répandu et accepté. Le principal domaine d’application est aujourd’hui encore la mesure d’eau dans les circuits de chauffage et de refroidissement, ainsi que la mesure de vapeur et condensats à très haute température dans les circuits secondaires. [10]

Dans les conduites, il existe une relation directe entre la section et la vitesse d’un fluide en déplacement.

II.2.1.7.1 Diaphragme, Tuyère, tube Venturi

Pour ces appareils, le tube de mesure est muni d’une restriction. Dès que le produit traverse le tube, la pression augmente devant la restriction et diminue après cette dernière.

La différence de pression mesurée est directement proportionnelle à la quantité écoulée. [9] [10]
II.2.1.7.2 Sonde de Pitot

Ce principe utilise un capteur sous forme de tige. Sur ses faces avant et arrières se trouvent différentes prises de pression qui mesurent, en amont, la pression d’écoulement et la pression statique et, en aval, uniquement la pression statique. La différence de pression est directement proportionnelle à la vitesse de passage et à la quantité écoulée. [9] [10]

Il existe aussi d’autres types de débitmètres tels que le débitmètre à section variable (à flotteur), le débitmètre volumétrique (étanche/à roue ovale) …etc.[10]

II.2.2 Choix d’un débitmètre

Le choix d’un débitmètre n’est pas une chose simple. Pour faire un choix correct, il faut tenir compte d’une multitude de paramètres. Il est donc nécessaire, avant tout, de définir précisément ses propres exigences, les contraintes imposées par le fluide à mesurer et les caractéristiques de l’environnement. [9] [10] [13]

II.2.2.1 Selon les contraintes d’installations

<table>
<thead>
<tr>
<th>Type de débitmètre</th>
<th>Diamètre D disponible (mm)</th>
<th>Température (°C)</th>
<th>Pression maximale (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine</td>
<td>10 à 600 mm</td>
<td>-270 à +500 °C</td>
<td>650 bar</td>
</tr>
<tr>
<td>Electromagnétique</td>
<td>1,5 à 3000 mm</td>
<td>-30 à +180 °C</td>
<td>250 bar</td>
</tr>
<tr>
<td>Ultrason (Transit)</td>
<td>5 à 4000 mm</td>
<td>-200 à +400 °C</td>
<td>400 bar ou +</td>
</tr>
<tr>
<td>Vortex</td>
<td>15 à 500 mm</td>
<td>-200 à +450 °C</td>
<td>300 bar</td>
</tr>
<tr>
<td>Coriolis</td>
<td>1,5 à 150 mm</td>
<td>-240 à +200 °C</td>
<td>400 bar</td>
</tr>
<tr>
<td>Thermique</td>
<td>2 à 120 mm</td>
<td>-20 à +180 °C</td>
<td>400 bar</td>
</tr>
<tr>
<td>Diaphragme</td>
<td>50 à 1000 mm</td>
<td>-20 à +500 °C</td>
<td>420 bar</td>
</tr>
<tr>
<td>Tuyère, Venturi</td>
<td>50 à 500 mm</td>
<td>-200 à +500°C</td>
<td>300 bar</td>
</tr>
<tr>
<td>Pitot</td>
<td>10 à 4000 mm</td>
<td>-200 à +500°C</td>
<td>300 bar ou +</td>
</tr>
<tr>
<td>Section variable</td>
<td>2,5 à 250 mm</td>
<td>-260 à +400 °C</td>
<td>450 bar</td>
</tr>
<tr>
<td>Volumétrique</td>
<td>2,5 à 500 mm</td>
<td>-30 à 300 °C</td>
<td>650 bar</td>
</tr>
</tbody>
</table>

Tableau II.1 : Choix d’un débitmètre Selon les contraintes d’installations [9] [10] [13]
II.2.2.2 Selon les performances métrologiques et le prix

Tableau II.2: Choix d’un débitmètre selon les performances métrologiques et le prix [10] [13]

<table>
<thead>
<tr>
<th>Type de débitmètre</th>
<th>Précision</th>
<th>Dynamique</th>
<th>Pertes des charges</th>
<th>Prix (échelle de 1 à 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine</td>
<td>± 0,2 à 1 %</td>
<td>1 à 50</td>
<td><0,5 bar</td>
<td>2</td>
</tr>
<tr>
<td>Electromagnétique</td>
<td>± 0,3 à 3 %</td>
<td>1 à 100</td>
<td>Négligeable</td>
<td>2</td>
</tr>
<tr>
<td>Ultrason-Transit</td>
<td>± 0,1 à 2 %</td>
<td>1 à 200 ou +</td>
<td>Négligeable</td>
<td>3</td>
</tr>
<tr>
<td>Ultrason-Doppler</td>
<td>± 2 à 5 %</td>
<td>1 à 10</td>
<td>Négligeable</td>
<td>2</td>
</tr>
<tr>
<td>Vortex</td>
<td>± 1 %</td>
<td>1 à 20</td>
<td>50 à 90 % ΔPmes</td>
<td>2</td>
</tr>
<tr>
<td>Coriolis</td>
<td>0,2 à 0,5 %</td>
<td>1 à 100 ou +</td>
<td>0,004 à 2 bar</td>
<td>4</td>
</tr>
<tr>
<td>Thermique</td>
<td>± 1 %</td>
<td>1 à 50</td>
<td>Faible</td>
<td>2</td>
</tr>
<tr>
<td>Diaphragme</td>
<td>± 1 %</td>
<td>1-6</td>
<td>50 à 90 % ΔPmes</td>
<td>1</td>
</tr>
<tr>
<td>Tuyère, Venturi</td>
<td>± 0,5 à 1,5 %</td>
<td>1-10</td>
<td>10 à 20 % ΔPmes</td>
<td>3</td>
</tr>
<tr>
<td>Pitot</td>
<td>± 1 à 2 %</td>
<td>1-4</td>
<td>Négligeable</td>
<td>1</td>
</tr>
<tr>
<td>Section variable</td>
<td>± 3 à 10 %</td>
<td>1-10</td>
<td>0,0025 à 0,5 bar</td>
<td>1</td>
</tr>
<tr>
<td>Volumétrique</td>
<td>± 0,2 à 0,5 %</td>
<td>1-150 ou +</td>
<td>Très variable</td>
<td>3</td>
</tr>
</tbody>
</table>

II.2.2.3 Selon la nature du fluide

Tableau II.3 : Choix d’un débitmètre selon la nature du fluide [9] [10] [13]

<table>
<thead>
<tr>
<th>Type de débitmètre</th>
<th>Liquide</th>
<th>Gaz</th>
<th>Vapeur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Progrè</td>
<td>Chargé</td>
<td>Très chargé</td>
</tr>
<tr>
<td>Turbine</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Electromagnétique</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Ultrason-Transit</td>
<td>Oui</td>
<td>±</td>
<td>Non</td>
</tr>
<tr>
<td>Ultrason-Doppler</td>
<td>Non</td>
<td>Oui</td>
<td>±</td>
</tr>
<tr>
<td>Vortex</td>
<td>Oui</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Coriolis</td>
<td>Oui</td>
<td>Oui</td>
<td>Oui</td>
</tr>
<tr>
<td>Thermique</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Diaphragme</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Tuyère, Venturi</td>
<td>Oui</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Pitot</td>
<td>Oui</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Section variable</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Volumétrique</td>
<td>Oui</td>
<td>Oui</td>
<td>Non</td>
</tr>
</tbody>
</table>
II.2.2.4 Quelques constructeurs de débitmètres

II.3 Vanne de régulation

Une vanne de régulation est un dispositif actionné mécaniquement, qui modifie la valeur du débit ou la section de passage d’un fluide dans une conduite.

Ce dispositif est constitué d’une vanne, reliée à un actionneur capable d’en faire varier la position d’un organe de fermeture (dans ladite vanne), ou obturateur, en réponse à un signal du système de commande.

L’actionneur peut être mû par une énergie pneumatique, électrique, hydraulique ou toute combinaison de ces énergies. Le choix du type d’énergie est essentiellement lié à des problèmes de puissance, de temps de réponse, de disponibilité, de fiabilité et de coût. [10] [14]

II.3.1 Éléments d’une vanne

La vanne automatique comprend trois parties bien distinctes :

a) Le servomoteur : c’est l’organe qui, recevant le signal du régulateur ou de la commande à distance manuelle, le convertit en une force de valeur qui peut déplacer des charges d’une position définie à une autre position.

b) Le corps : c’est l’élément de la vanne automatique à l’intérieur duquel le fluide peut être arrêté ou, au contraire, circuler plus ou moins librement.

c) Le positionneur : c’est un relais intercalé dans le circuit d’air modulé du régulateur. Son rôle est de réaliser un positionnement du clapet correspondant exactement au signal émis par le régulateur, un positionnement rapide et fidèle. [10] [14]

Figure II.2 : Vanne pneumatique à papillon
On peut diviser les vannes de régulation en deux grandes familles :

- **Vannes rotatives** : L’ouverture/fermeture de la vanne se fait par un mouvement rotatif du clapet de 0 à 90 °.
- **Vannes linéaires** : L’ouverture/fermeture de la vanne se fait par un mouvement linéaire de la tige de bas en haut et de haut en bas. [14]

II.3.2 Spécification d’une vanne de régulation

Une vanne de régulation doit présenter des qualités à préciser ou à calculer. Ces spécifications sont les suivantes :

- Le coefficient de débit (C_v) caractérisant la capacité de débit de la vanne,
- La caractéristique de débit selon la relation entre la course du clapet et le débit correspondant,
- Le coefficient de réglage caractérisant la zone d’utilisation entre débit minimal et débit maximal à contrôler,
- Les vitesses d’entrée et de sortie compatibles avec la résistance mécanique de la vanne (vitesse d’entrée sur liquide) ou le bruit émis en sortie (vitesse de sortie sur gaz et vapeur),
- Le débit de fuite toléré,
- La perte de charge maximale déterminant les caractéristiques du servomoteur,
- La position, en cas de panne d’air (ouverture ou fermeture), assurant la sécurité de l’installation,
- Le bruit provoqué par l’écoulement du fluide dans la vanne. [10]

II.3.3 Choix d’une vanne

Pour choisir une vanne, il faut d’abord connaître le process sur lequel elle sera installée. Le facteur le plus important, en premier lieu, est la valeur de la pression différentielle (ΔP) que doit maintenir la vanne fermée (force sur le clapet = surface du clapet * pression). Ceci détermine ou élimine déjà certains types de vannes qui, suivant le diamètre, n’ont pas l’actionneur adéquat. Ensuite, il faut définir les caractéristiques de son process température, pression, pression différentielle, la nature du fluide à contrôler : liquide, gaz, vapeur, chargé ou non. Autre paramètre important : le coefficient de débit C_v (le C_v est proportionnel à la section de passage entre le siège et le clapet). Le choix du corps de la vanne dépend de l’application, mais aussi du savoir-faire du fabricant. Par ailleurs, d’autres critères d’utilisation, comme l’étanchéité, la précision du positionnement, font que certaines vannes seront plus ou moins adaptées aux besoins… [15]
a) Selon les applications

<table>
<thead>
<tr>
<th>Type de vanne</th>
<th>Applications/observations</th>
<th>Type de vanne</th>
<th>Applications/observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A segment sphérique (ou demi-sphère)</td>
<td>- Pour les fluides visqueux, fibres, pâteux qui se figent. La demi-sphère sectionne les fibres à la fermeture et garantit l'étanchéité.</td>
<td>- À siège simple (dit aussi vanne à clapet)</td>
<td>- Bonne étanchéité à la fermeture - la poussée du liquide exerce une force importante sur le clapet, ce qui nécessite un actionneur puissant, - Frottements importants au niveau du presse-étoupe, - Risque de bouchage par des particules en suspension.</td>
</tr>
<tr>
<td>- À obturateur excentré</td>
<td>L’obturateur n’est pas dans l’axe de rotation.</td>
<td>- Forts débits, - Bonne finesse de régulation, - Applications sur huiles, gaz…</td>
<td>- À double siège Constitué par deux clapets et par deux sièges vissés.</td>
</tr>
<tr>
<td>- À disque excentré (dites aussi vanne à papillon), plus usuellement employé pour les vanne (Tout-On-Rien).</td>
<td>Application gros diamètres et forts débits.</td>
<td>- À cage Comprend un obturateur et une cage. Le fluide arrive perpendiculairement à la cage et passe par un espace déterminé par la position de l’obturateur (sorte de piston) à l’intérieur de la cage. En position basse, les trous situés à la partie inférieure de la cage sont obturés et réalisent ainsi l’étanchéité de la vanne à la fermeture.</td>
<td>- Plus étudiée au fonctionnement avec de fortes ΔP, - Pour applications très difficiles à hautes températures et hautes pressions.</td>
</tr>
<tr>
<td>- À boule (dites aussi boisseau sphérique bien que ce terme soit plus usuellement employé pour les vanne Tout-On-Rien).</td>
<td>- Cas difficiles, fluides chargés avec fort phénomène de cavitation. Le fluide suit le corps de la vanne (le chemin permet une meilleure détente du fluide).</td>
<td>- À membrane La section de passage est obtenue entre une membrane déformable en caoutchouc synthétique généralement et la partie inférieure du corps de vanne.</td>
<td>- Elle est utilisée dans le cas de fluides très chargés de particules solides, ou très corrosifs, - Solution peu coûteuse, - Supprime les pressions étope, d’où le risque de fuites eventuelles. Bonne étanchéité à la fermeture, - Précision de réglage médiocre, - Caractéristique statique mal définie.</td>
</tr>
</tbody>
</table>

Tableau II.4 : Choix d’une vanne [15]
b) Quelques fabricants de vannes

Bermad; Bürkert; Emerson Process Management; Fisher; Samson; Flowserve. [15]

II.4 Pompe centrifuge

Une pompe centrifuge transforme la puissance mécanique du moteur électrique en énergie hydraulique fournie au fluide, et qui se traduit par des débits et des pressions. C’est le type de pompe industrielle le plus commun.[16]

Figure II.3 : Aspect extérieur d’une pompe centrifuge

Figure II.4 : Constitution d’une pompe centrifuge

Une pompe se compose d’un rotor et d’un stator :
- Le rotor ou bien la roue, produit de l’énergie,
- Le stator, ou le corps de la pompe, dirige l’eau vers la roue et l’éloigne à la sortie de la pompe,
- Tubulure d’aspiration,
- Tubulure de refoulement.

II.4.1 Principe de fonctionnement

La pompe centrifuge est une machine à passage radial. L’eau, aspirée dans une tubulure d’aspiration, entre dans la roue axialement et déviée à une direction radiale et rencontre les aubes ou ailettes.

Un espace annulaire est placé à la sortie périphérique de la roue, lequel espace annulaire, qui peut être un diffuseur lisse, un diffuseur à ailettes, un colimaçon ou une volute qui se termine par un cône divergeant, permet de transformer une partie de l’énergie cinétique en pression, en réduisant la vitesse absolue de sortie de la roue, puis le courant se rassemble dans la volute en forme d’escargot. La volute se comporte comme collecteur des filets fluides pour les ramener à une bride sortie constituant le raccordement à la tuyauterie de refoulement. [11] [17]

![Principe de fonctionnement d’une pompe centrifuge](image)

Figure II.5 : principe de fonctionnement d’une pompe centrifuge

II.4.2 Principales caractéristiques d’une pompe

II.4.2.1 Le triangle des vitesses

À chaque instant t, au rayon r, on a :

\[\vec{v} = \vec{u} + \vec{w} \](II.7)

Avec :

\[\vec{v} : \text{vitesse absolue par rapport à un référentiel immobile,} \]
\[\vec{u} : \text{vitesse d’entraînement, vitesse de la roue par rapport à un référentiel immobile,} \]
\[\vec{w} : \text{vitesse relative par rapport à un référentiel tournant avec la roue.} \]
Chapitre II : Appareillage électrique

On peut donc construire le triangle des vitesses au cours du mouvement d’une particule de fluide. [16]

![Figure II.6 : Triangle des vitesses](image)

II.4.2.2 Énergie hydraulique

L’énergie hydraulique par unité de volume d’un fluide s’écrit d’après l’équation de Bernoulli :

\[
E = \frac{1}{2} \rho v^2 + \rho g z + p \ldots \ldots \ldots \ldots \ldots \ldots \ldots (II.8)
\]

En divisant chaque terme de l’équation par le poids volumique \(\rho g \), elle s’écrit pour l’unité de poids.

On appelle la charge du fluide la quantité :

\[
H = \frac{1}{2g} v^2 + \frac{p}{\rho g} + z \ldots \ldots \ldots (II.9)
\]

\(p \) : est la pression en un point (en Pa ou N/m\(^2\)),
\(\rho \) : est la masse volumique en un point (en kg/m\(^3\)),
\(v \) : est la vitesse du fluide en un point (en m/s),
\(g \) : est l’accélération de la pesanteur (en N/kg ou m/s\(^2\)),
\(z \) : est l’altitude (en m). [16]

II.4.2.3 Hauteur manométrique totale

Pour véhiculer un liquide d’un endroit à un autre, la pompe doit fournir une certaine pression appelée hauteur manométrique totale, cela dépend des conditions d’aspiration et de refoulement.

La hauteur manométrique est la somme de la hauteur géométrique ou hauteur totale de refoulement située entre le point le plus haut et le point le plus bas du rabattement de la nappe et des pertes de charge dans le tube d’aspiration, la crépine, le clapet, la ou les vannes, …etc.
Chapitre II : Appareillage électrique

\[H_{th} = (H_a + H_r) + J_c + P_t \] ………………… (II.9)

H\(_{th}\)* : Hauteur manométrique totale,
H\(_a\)* : Hauteur d’aspiration,
H\(_r\)* : Hauteur de refoulement,
J\(_c\)* : Perte de charge,
P\(_t\)* : Pression résiduelle à la sortie du tube de refoulement.

À savoir que plus la hauteur manométrique totale est élevée, plus le débit fourni par la pompe est faible. [17]

II.4.2.4 Puissance

Puissance utile (Pu) : (puissance hydraulique fournie)

\[P = \rho g Q H_{th} \] ………... (II.10)

Avec Q représente le débit volume du fluide [m\(^3\)/s].

Puissance absorbée (Pa) :

\[Pa = C \cdot \omega = C \cdot n2\pi/ 60 \] ……………..(II.11)

Avec

* C : couple du moteur [N.m] ;
* \(\omega \) : vitesse de rotation (rad/s) ;
* \(n \) : vitesse de rotation [tr/min] [16] [17]

II.4.2.5 Rendement de la pompe

Le rendement global de la pompe \(\eta_g \) [16]:

\[\eta_g = \frac{Pu}{Pa} \] ………..(II.12)

II.4.2.6 Pertes de charges

Les pertes de charge sont dues aux frottements du liquide contre les parois, plus au moins lisses, de la tuyauterie, aux changements de diamètres, aux courbes, aux accessoires tels que les tés, les vannes, les coudes, … etc.

La formule de Darcy définit la perte de charge d’une canalisation.

\[J_c = \frac{\lambda V^2}{2gD} \] ……….. (II. 13)

Avec :

* \(J_c \) : Perte de charge en mètres de hauteur du fluide dans la conduite par mètre.
* \(\lambda \) : Coefficient de perte de charge,
* \(V \) : Vitesse moyenne du fluide,
* \(g \) : L'accélération de la pesanteur,
* \(D \) : Diamètre intérieur de la conduite. [17]
II.5 Variateur de vitesse

Durant ces dernières années, les entraînements à vitesse variable trouvent de plus en plus de larges domaines d’application dans les équipements industriels, comme les papeteries, les laminoirs, les pompes ou les machines-outils.

Parmi toutes les technologies existantes pour varier la vitesse des moteurs électriques, les variateurs de vitesse, dont le rôle consiste à moduler l’énergie électrique fournie au moteur. En effet, grâce à ces variateurs, il est possible de contrôler parfaitement les phases de mise en rotation et d’arrêt de l’application, mais aussi d’effectuer un contrôle indépendant de la vitesse et du couple. De plus, les variateurs de vitesse assurent toutes les fonctionnalités de protection du variateur et du moteur.

Un variateur de vitesse est donc un dispositif permettant de réaliser l’alimentation et la commande d’un moteur. [18]

II.5.1 Variation de vitesse de la machine asynchrone

La variation de la vitesse de la machine asynchrone peut être obtenue par :

II.5.1.1 Action sur le nombre de paires de pôles

Le réglage par variation du nombre de paires de pôles donne une variation non continue de la vitesse ; ce mode n’est donc pas envisagé pour un réglage fin du point de fonctionnement désiré. [14] [19]

II.5.1.2 Réglage par variation de tension

Le couple électromagnétique de la machine asynchrone est proportionnel au carré de la tension d’alimentation statorique. Il est donc possible d’envisager un ajustement de la vitesse au-dessous de la vitesse nominale en modifiant la tension d’alimentation statorique avec un gradateur triphasé. Cette solution est le plus souvent utilisée pour le démarrage de charges à caractéristique de couple quadratique ($Cr = k. \Omega^2$). [14] [19]

II.5.1.3 Action sur le glissement

L’utilisation de résistances rotorique permet un réglage de la vitesse au-dessous de la vitesse nominale, mais avec un rendement déplorable. On essaiera donc de récupérer cette énergie transmise au rotor : c’est la cascade hypo synchrone réservée à la très forte puissance pour des machines à rotor bobiné. [14] [19]
II.5.1.4 Réglage par variation de fréquence

L’alimentation à fréquence variable des machines asynchrones se fait à l’aide d’un convertisseur statique généralement continu/alternatif. La source d’entrée peut être du type source de courant ou du type source de tension.

En sortie du convertisseur, on contrôle l’amplitude des tensions ou des courants statoriques, ainsi que leur fréquence f_s proportionnelle à la vitesse de rotation de la machine.

Le procédé de réglage de la vitesse par fréquence variable est, certes, le plus efficace, il permet d’utiliser en mieux le moteur avec un couple de démarrage important. On dispose à tout instant d’un couple d’accélération élevé égal au couple de décrochage. On trouve tous les avantages des entraînements à courant continu. [14] [19]

II.5.2 Fonctionnement d’un variateur de vitesse

Un variateur de vitesse est constitué essentiellement par l’association d’un redresseur, un filtre de tension et un onduleur de tension qui alimente une machine asynchrone. Afin d’avoir des performances dynamiques élevées, la commande de l’onduleur est faite de manière à avoir le rapport E/ω_s constant : c’est la commande à flux constant. [14] [19]

![Figure II.7 : Structure d’un variateur de vitesse](image)

II.5.2.1 Le redresseur

Qui est connecté à une alimentation triphasée (le réseau), sa fonction est de transformer la tension triphasée alternative en tension continue monophasée, d’une tension moyenne réglable.

Le redresseur peut être commandé ou pas (diodes/thyristors). [14] [20]
II.5.2.2 Le circuit intermédiaire

Le circuit intermédiaire joue le rôle d’un circuit de transition entre la sortie du redresseur et l’entrée de l’onduleur, agissant principalement sur le « lissage » de la tension de sortie du redresseur. Le circuit intermédiaire peut aussi servir de dissipateur d’énergies lorsque le moteur devient générateur. [14] [20]

II.5.2.3 L’onduleur

L’onduleur est un convertisseur statique constitué généralement de cellules de commutation à transistors ou thyristors. C’est la dernière partie du variateur de vitesse et qui engendre le signal de puissance et/ou fréquence variable. [19] [20]

II.5.3 Les différents variateurs de vitesse

Il existe de nombreux variateurs de vitesse. On citera les plus couramment utilisés :

II.5.3.1 Redresseur contrôlé (pour moteur à courant continu)

Il fournit, à partir d’un réseau alternatif monophasé ou triphasé, un courant continu avec un contrôle de la valeur moyenne de la tension. La variation de cette tension est obtenue en modifiant l’angle de retard à l’amorçage des semi-conducteurs de puissance ; ce type de variateur alimente des moteurs à courant continu. [18]

II.5.3.2 Gradateur de tension (pour le démarrage des moteurs asynchrones)

Il fournit, à partir d’un réseau alternatif, un courant alternatif de fréquence fixe égale à celle du réseau avec un contrôle de la valeur efficace de la tension par modification de l’angle de retard à l’amorçage des semi-conducteurs de puissance. [18]

II.5.3.3 Convertisseur de fréquence (pour moteur asynchrone)

Le convertisseur de fréquence fournit, à partir d’un réseau alternatif à fréquence fixe, une tension alternative triphasée de valeur efficace et de fréquence variable en fonction des exigences de vitesse. [18]

II.5.4 Principales fonctions des variateurs de vitesse

Parmi la multitude de possibilités de fonctions qu’offrent les variateurs de vitesse actuels :

- L’accélération contrôlée ;
- La décélération contrôlée ;
- La variation et la régulation de vitesse ;
- L’inversion du sens de marche ;
Chapitre II : Appareillage électrique

- Le freinage d’arrêt ;
- Protections intégrées. [18]

II.5.5 Avantage de l’utilisation du variateur de vitesse

- Economiser l’énergie électrique ;
- Supprimer les surintensités de démarrage ;
- Prolonger la durée de vie du moteur ;
- Amélioration du facteur de puissance. [14] [19]

II.5.6 Choix d’un variateur de vitesse

Le choix d’un variateur de vitesse est intimement lié à la nature de la charge entraînée et aux performances visées. Toute définition et recherche d’un variateur de vitesse doivent passer par une analyse des exigences fonctionnelles de l’équipement, puis des performances requises pour le moteur lui-même. La documentation des fournisseurs de variateurs de vitesse fait également, abondamment, mention de couple constant, couple variable, puissance constante, contrôle vectoriel de flux, variateur réversible… Ces désignations caractérisent toutes les données nécessaires pour retenir le type de variateur le plus adapté. Un choix incorrect de variateur peut conduire à un fonctionnement décevant. De même, il faut tenir compte de la gamme de vitesse souhaitée pour choisir convenablement l’association moteur/variateur. [18]

II.5.7 Principaux fabricants de variateurs de vitesse

Schneider Electric, Heinzmann, Siemens, Matpi…

II.6 Mesure et détection de niveau

La conduite des opérations de transfert et de stockage de liquides dans des réservoirs requiert que puisse être apprécié l’état de leur remplissage, c'est-à-dire le niveau qu’atteint le produit présent. La saisie d’information relative au niveau peut être effectuée sous deux formes : la mesure continue et la détection de seuil.

En mesure continue, un capteur et son conditionneur délivrent un signal dont l’amplitude ou la fréquence traduisent la valeur du niveau de liquide dans le réservoir : à chaque instant, l’opérateur peut donc connaître le volume exact de produit présent ou le volume de stockage encore disponible.

En détection, le dispositif détecteur, constitué en fait d’un capteur, délivre une information binaire signalant qu’un niveau seuil déterminé est ou non atteint : la détection d’un niveau haut permet de stopper un remplissage, évitant le débordement ; la détection
d’un niveau bas arrête l’extraction du produit, assurant une réserve minimale dans la cuve et évitant la marche à vide des pompes ; l’association de deux détecteurs de seuil, haut et bas respectivement, permet d’automatiser les opérations de remplissage et d’extraction des cuves. [10] [12]

Le choix d’une méthode appropriée amène à prendre en compte :

- Les propriétés physiques et chimiques du liquide ainsi que leurs variations éventuelles : conductivité, constante diélectrique, masse volumique, viscosité, formation de mousse, caractère corrosif ;

- Les conditions de stockage : température, pression, présence d’un agitateur ;

- Les facilités d’implantation. [12]

II.6.1 Le capteur de niveau

Un capteur de niveau est conçu pour la détection de niveau de liquides de toutes natures, un capteur de niveau pour liquides est parfaitement fiable même en présence de dépôts, leur avantage est très vaste comme la protection contre la marche à vide des pompes.

Le principe de mesure est préconisé dans des conditions extrêmes où les autres principes de mesure ne conviennent pas ; il est équipé d’un détecteur synthétique souple pour la mesure continue de niveau ou la mesure d’interface sur des cuves rondes ou coniques. [11]

II.6.2 Principe de fonctionnement

Son principe de fonctionnement est très simple, une source faiblement radioactive émet des radiations qui sont atténuées par la paroi de la cuve et par le produit, le détecteur, fixé à l’opposé de l’émetteur, réceptionne des radiations dont la puissance est proportionnelle au niveau. [11]

La figure suivante nous montre le capteur de niveau :

Figure II.8 : Capteur de niveau
II.7 Capteurs

Ce sont les éléments placés sur les installations pour détecter les informations locales qui constituent les données de l’automatisation.

II.7.1 Capteurs passifs : Ce sont tous les capteurs équivalents à un contact sec ouvert ou fermé libre de potentiel (fin de course, bouton poussoirs…) ou aux composants passifs (thermistance, potentiomètre…). [7]

II.7.2 Capteurs actifs : Ce sont tous les capteurs qui nécessitent une source de tension. Exemple : détecteur de proximité inductif ou capacitif, cellule de détection photoélectrique… [7]

II.8 Conclusion

À travers ce chapitre, une description de l’ensemble des appareils électriques et de mesure a été donc présentée. Lesquels appareils nous permettront d’améliorer la préparation des sirops de façon rentable, qualitative et compétitive. Nous l’expliquerons détaillée dans le chapitre suivant.

Le choix du matériel se repose sur des critères à respecter, ainsi nous avons résumé le choix à faire à travers des tableaux récapitulatif.
CHAPITRE III
PROCESSUS TECHNOLOGIQUE
DE LA LIGNE DE PREPARATION DE JUS
Chapitre III

Processus technologique de la ligne de préparation de jus

III.1 Introduction

Dans ce chapitre, nous allons présenter l’étude de la station actuelle, ses principes de fonctionnement et les étapes suivies pour la préparation des sirops, ainsi que tous les équipements utilisés jusque-là.

III.2 Présentation et activité de l’entreprise

Située dans la commune d’EL KSEUR, à 25Km du chef-lieu de Wilaya, à quelques mètres de la gare ferroviaire, elle est implantée dans une région à vocation agricole au sud de la route nationale N°26. Tous ces caractères lui confèrent un emplacement stratégique favorable facilitant les opérations d’approvisionnement et de distribution des produits.

L’activité de l’unité est la fabrication et la commercialisation de plusieurs produits, la transformation de la matière première en produit fini, à savoir les jus sous la marque Tchina bouteille en verre et Polyéthylène Téréphtalate (PET) et le triple concentré d’orange (TCO) et des conserves de fruits (Confiture d’abricot, Concentré et double concentré de tomate, conserve d’Harissa,…..).

Sa capacité de production est de 20 000 et 32 000 bouteilles/heure de jus, respectivement pour la bouteille verre 0,25l et PET 01l et 4 à 6 tonnes/heures pour les conserves.

L’entreprise comporte les différentes chaines suivantes :

- **L’écrasement** : qui permet le broiement de la matière première ou fruit (orange, citron, pomme, raisin, pêche) ;
- **Les produits pâteux** : qui permettent la fabrication de la confiture ;
- **La ligne de PET** : qui permet la fabrication des jus non gazeuse dans les bouteilles plastique 1 litre ;
Chapitre III : Processus technologique d’une ligne de préparation de jus

- **La ligne de RB** : qui permet la fabrication des jus non gazeuse dans les bouteilles en verre de 0,25 litres.

L’entreprise comporte des différents services dont un service maintenance chargé de la réparation, de l’installation des équipements, de la confection, de la commande de pièces de rechanges et du nettoyage d’équipements de fabrication, tuyauterie et bacs à chaque fin de série.

L’équipe d’intervention et celle de la prévention veillent au bon déroulement du processus technologique.

III.3 Elaboration d’un cahier de charges

III.3.1 Objectif

L’objectif principal dans notre projet, est de faire fonctionner la ligne de fabrication du sirop au niveau de la siroperie, destinée à la ligne de conditionnement du jus type PET, de manière à satisfaire la cadence présélectionnée afin d’alimenter le mixeur avec le sirop en continue sur la Combi, et d’autre part obtenir une qualité de sirop, en respectant les quantités de chaque composant constituant ce sirop pour éviter toutes fluctuations de Brix.

On a comme données essentiel :
- Capacité maximum de cadence de la combi est de 32000 bouteilles/h.
- Capacité maximum de flash Pasto est de 14000 litres/h.
- Capacité maximum de l’homogénéisateur est de 14000 litres/h.

Remarque : Combi est une partie de la ligne conditionnement « PET », c’est la combinaison des machines suivantes :
- Système de distribution de préforme,
- Le four,
- La souffleuse,
- La remplisseuse,
- La bouchonneuse.

III.3.2 Étude du processus de fabrication sirop (cas existant)

Notre processus de fabrication est constitué de ces éléments suivant :
- sept (07) bacs, chaque bac pratiquement associé à une pompe et un agitateur (pour voir plus de détails voir le tableau 1).
- Homogénéisateur de capacité maximum 14000 l/h (actuellement il est à 8000l/h).
Flash Pasto de capacité maximum 14000 l/h (actuellement sur une consigne de 8000 l/h).

Schéma synoptique d’installation de la ligne

Figure III.1 : schéma synoptique de l’installation de la ligne PET.
Chapitre III : Processus technologique d’une ligne de préparation de jus

- Schéma de l’installation (prise au niveau du pupitre de la supervision)

![Figure III.2 : Schéma de l’installation (prise au niveau du pupitre de la supervision)](image)

- Schéma des deux bacs (stockage sirop et bac stérile)

![Figure III.3 : Schéma des deux bacs (bac de stockage sirop et le bac stérile)](image)
Chapitre III : Processus technologique d’une ligne de préparation de jus

Listing matériel constituant l’installation (cas production)

<table>
<thead>
<tr>
<th>Nom de Bac</th>
<th>Désignation</th>
<th>Pompe</th>
<th>Agitateur</th>
<th>Vanne</th>
<th>Transmetteur de niveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bac dépotage</td>
<td>Bac désigné au premier stockage des produits pulpes et concentrés aspiré des fûts.</td>
<td>Pompe à lobe (PE) alimentant le bac C Q_{max} = 15 m³/h</td>
<td>agitation de (MP) et concentré (MIX) 1.5 KW 1400 tr/mn</td>
<td>* Une vanne pour la vidange manuelle * 2 vannes pneumatiques à papillon (V1-V2)</td>
<td>Un transmetteur de niveau des mélanges à chaque instant (TR1)</td>
</tr>
<tr>
<td>De volume « 3m³ »</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bac stockage de mélange pulpes</td>
<td>Bac de 3 m³ désigné au 2ème stockage des produits pulpes et concentrés alimenté par la pompe PE</td>
<td>Pompe à lobe de débit max 8m³/h qui alimente le bac P6E</td>
<td>agitation de (MP) mélange (MIX1) 1.5 KW 1400 tr/mn</td>
<td>* Vanne pour la vidange manuelle selon le besoin * 2 vannes pneumatiques à papillon (V3-V4)</td>
<td>Un transmetteur de niveau des mélanges à chaque instant (TR2)</td>
</tr>
<tr>
<td>« C »</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bac préparation mélange pectine &SL</td>
<td>Bac destiné à la dissolution de la pectine avec le sucre liquide</td>
<td>Pompe à stator (P20) qui alimente le bac (M2)</td>
<td>Désigner pour l’agitation de mélange pectine (MIX2) 0.45KW 1410 tr/mn</td>
<td>4 vannes manuelles</td>
<td></td>
</tr>
<tr>
<td>« M1 »</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bac de préparation mélange pectine</td>
<td>Bac destiné au stockage de la pectine avec le sucre liquide</td>
<td>Pompe à stator (P20) qui alimente le bac P2</td>
<td>Désigner pour l’agitation de mélange pectine (MIX3) 0.45KW 1410 tr/mn</td>
<td>4 vannes manuelles</td>
<td></td>
</tr>
<tr>
<td>« P2 »</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bac stockage sirop</td>
<td>Bac de 2m³ destiné pour la préparation de sirop</td>
<td>Pompe à lobe de 15 m³/h (P7)</td>
<td>Désigner pour l’agitation de sirop préparé (M14) 1440 tr/mn</td>
<td>* 03 vannes pneumatiques à papillon (VP1-P2, VP2-P2, VP3-P2) * 02 vannes manuelles</td>
<td>Un capteur de niveau bas (TR3) insérer coté aspiration de la pompe à stator</td>
</tr>
<tr>
<td>« P3 »</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bac stérile</td>
<td>Bac de 8m³ destiné pour le stockage de sirop</td>
<td>Pompe centrifuge de 15 m³/h (P9)</td>
<td>Agitation par retour</td>
<td>* Une vanne pneumatique (VP1-D2) * 3 vannes manuelles</td>
<td></td>
</tr>
<tr>
<td>« T2 »</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau III.1 : Listing matériel constituant l’installation
III.3.2.1 Principe de fonctionnement de l’installation (analyse fonctionnelle actuelle)

L’analyse fonctionnelle de processus est faite en prenant comme exemple la préparation de parfum d’orange.

III.3.2.1.1 Préparation des mélanges pulpes

Sélectionner sur le pupitre phase production (cliquer sur production)

Figure III.4 : Schéma de la préparation du mélange de pulpes

- Ouverture des vannes V1, V3 et fermeture des vannes V2, V4 en même temps.
- Aspiration des pulpes, concentré et émulsion dans les futs par une pompe péristaltique de débit 10 m³/h de la salle d’alimentation vers le bac dépotoage (P1) en passant par la vanne (V1)

Le mélange des pulpes (MP) est constitué de :
- Pulpes d’orange 7 futs (210 Kg)
- Concentré d’orange 4 futs (250 kg)
- Emulsion 02 bidons (2*20=40 kg)

- Démarrage de l’agitateur du bac dépotoage (MIX), extinction de celui-ci à la fin de la vidange (travail manuel).
Chapitre III : Processus technologique d’une ligne de préparation de jus

- Envoie de (MP) du bac dépotage (P1) vers le bac stockage (C) par la pompe (P6E) en passant par la vanne (V3)
- Démarrage de l’agitateur du bac stockage MP (MIX1), extinction de celui-ci à la fin de la vidange (travail manuel).

III.3.2.1.2 Préparation de la pectine

- Dissolution d’une quantité de pectine (9Kg cas de parfum d’orange) avec une quantité de sucre liquide dans le bac (M1) ou (M2).
- Démarrage de l’agitateur en manuel (MIX2) ou (MIX3) selon le bac de préparation utilisé.

III.3.2.1.3 Préparation de sirop fini

- Introduire la recette (parfum d’orange), et agiter une durée (t=2mn)

![Diagram of syrup preparation](image)

Figure III.5 : Schéma de la préparation du sirop fini.

- Envoie du mélange de la pectine avec sucre liquide vers le bac (P2) depuis le bac (M2) ou (M1) par la pompe à stator (P20) ;
- Jusqu’au niveau bas du bac (M2 ou M1) :
 - Arrêt de la pompe à stator P20
 - Ouverture de la vanne sucre liquide (VP1-P2) en appuyant sur le bouton

 ![Introduisez ingrédients](image)

 - Démarrage de la pompe sucre liquide (25 m3/h) (en manuelle).
Chapitre III : Processus technologique d’une ligne de préparation de jus

- **à 1511 Kg**
 - Fermeture de la vanne S.L (VP1-P2) (automatique).
 - Arrêt de la pompe S.L (en manuelle).
 - Ouverture de la vanne M.P (VP3-P2)
 - Démarrage de la pompe M.P (P6E) → En automatique

- **à 2012 Kg**
 - Fermeture de la vanne M.P (VP3-P2)
 - Arrêt de la pompe M.P (P6E)
 - Ouverture de la vanne Eau (VP2-P2)
 - Démarrage de la pompe eau mitigée (40 m3/h) (à partir de la salle de traitement des eaux).

- Introduction des ingrédients (17Kg cas de parfum d’orange) → En manuelle

- **à 2220 Kg**
 - Fermeture de la vanne à eau (VP2-VP2)
 - Démarrage de l’agitateur (M14)

- **à 2220 Kg et fin de la temporisation T=2mn**
 - Démarrage de la pompe bac préparation (P7) qui transfert le sirop fini vers le bac stockage (P3 de 8m³).

- **à 0 Kg**
 - Arrêt de l’agitateur (M14) et de la pompe (P7) → En automatique

- **Au niveau du bac stockage (P3)**
 - Démarrage de la pompe (P9) qui alimente le bac BP de flash Pasto si le niveau de celui-ci est inférieur à 25%.
 - Si le niveau du bac BP est à 40% :
 - Fermeture de la vanne d’alimentation du bac BP
 - La pompe (P9) reste toujours en fonctionnement et qui fait le retour vers le bac (P3) pour l’agitation du produit.

- **Au niveau du bac stérile (T2)**
 - Si le niveau du bac (T2) inférieure à 40% :
 - Ouverture de la vanne à deux (02) voies (V3123) coté bac stérile (T2) (remplissage du bac stérile avec le sirop pasteurisé par la pompe 110 de flash Pasto).
Chapitre III : Processus technologique d’une ligne de préparation de jus

- Si le niveau du bac (T2) est à 50% :
 - Ouverture de la vanne à deux(02) voies (V3123) côté flash Pasto (retour de cycle).
- Demande produit du Prémix et le niveau de bac stérile est supérieur à 5%
 - Démarrage de la pompe (P4) qui alimente le prémix avec le sirop pasteurisé.
- Fin de la demande (Arrêt de signal) ou le niveau de bac stérile est inférieure à 5%
 - Arrêt de la pompe (P4) et mise en attente de produit.

- Les Brix des différents parfums

<table>
<thead>
<tr>
<th>Parfum</th>
<th>Brix sirop</th>
<th>Brix PF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>54 Bx/2220 kg</td>
<td>12,7 Bx</td>
</tr>
<tr>
<td>Exotique</td>
<td>45 Bx/2220 kg</td>
<td>12,7 Bx</td>
</tr>
<tr>
<td>Orange pêche</td>
<td>44 Bx/2220 kg</td>
<td>12,7 Bx</td>
</tr>
<tr>
<td>Abricot</td>
<td>45 Bx/2200 kg</td>
<td>12,7 Bx</td>
</tr>
<tr>
<td>Agrume</td>
<td>42 Bx/2011 kg</td>
<td>11,5 Bx</td>
</tr>
<tr>
<td>Raisin</td>
<td>54 Bx/2080 kg</td>
<td>13,8 Bx</td>
</tr>
<tr>
<td>Mandarine</td>
<td>52 Bx/2220 kg</td>
<td>12,5 Bx</td>
</tr>
<tr>
<td>Citron</td>
<td>51 Bx/2162 kg</td>
<td>14 Bx</td>
</tr>
</tbody>
</table>

Tableau III.2 : Les Brix des différents parfums.

L'échelle de Brix sert à mesurer en degrés Brix (°B ou °Bx) la fraction de saccharose dans un liquide c'est-à-dire le pourcentage de matière sèche soluble.

L'appareil utilisé pour la mesure est un réfractomètre.

Le réfractomètre est un appareil de mesure qui détermine l’indice de réfraction de la lumière d’une matrice solide ou liquide. Cet indice s’observe par la déviation d’un faisceau lumineux suivant la nature du milieu dans lequel il se propage. L’angle du faisceau dévie en fonction du taux de matière sèche soluble dans le milieu, plus la concentration de matière sèche soluble est élevée, plus la réfraction est importante.
III.4 Conclusion

La présentation et le suivi du processus technologique actuellement existant dans l’unité, nous a permis la compréhension de toutes les étapes nécessaires pour la préparation du sirop utilisé dans la mise en bouteille PET du jus « TCHINA ».

Avec une cadence maximale de 32000 b/h, l’opérateur devra, quotidiennement, préparer pas moins de 36 cuves.

Les insuffisances constatées lors de l’élaboration dudit processus par les pionniers de cette chaîne de production peuvent être un handicap certain pour une éventuelle possibilité d’extension.

En effet l’utilisation d’un système de pesage par une balance unique sous le bac de préparation « P2 », nous contraint à suivre une préparation série, c’est-à-dire composant après composant ou le temps nécessaire pour une préparation « T » n’est que la somme des temps nécessaires pour le pesage et le mélange de chaque composant « \(T = T_1 + T_2 + T_3 + T_4 \) », ce qui nous provoque toujours une perte de temps et nous astreint à une faible cadence. Cependant, en industrie, dans un souci de rentabilité et de performance, le temps est un facteur de production dont l’optimisation est une préoccupation économique majeure.

À cela s’ajoute l’imprécision des vannes « tout ou rien » qui entraine des fausses mesures de la quantité et du dosage de chaque composant constituant le sirop au niveau du bac de préparation P2, desquelles résultent généralement des fluctuations de la qualité du sirop.

Dans le chapitre suivant, nous tenterons de proposer des solutions pour remédier aux problèmes rencontrés lors de la préparation.
CHAPITRE IV
AUTOMATISATION ET AMELIORATION DE LA LIGNE DE PREPARATION DE JUS
Chapitre IV

Automatisation et amélioration de la ligne de préparation de jus

IV.1 Introduction

Après avoir pris compte des insuffisances constatées lors du processus technologique existant, nous allons prendre une nouvelle approche du fonctionnement du système, en introduisant de nouveaux équipements, notamment, des débitmètres et des capteurs de niveau tout en maintenant le pesage par la balance existant.

IV.2 Cahier de charges

IV.2.1 But de l’automatisation

Le but de cette automatisation consiste à augmenter le nombre de cuves préparées de jus de différentes saveurs, avant de l’envoyer, après traitement, pour le conditionnement dans des bouteilles PET, en améliorant la qualité du produit par la suppression de toutes commandes manuelles et le remplacement des vannes tout ou rien par des vannes modulantes.

IV.2.2 Matières premières

Pour préparer le produit à conditionner, il nous faut cinq éléments essentiels entre autres :

- Mélange de pulpes : composé de pulpe d’orange, de concentré d’orange et d’émulsion.
- Mélange de pectine sucre liquide : une quantité de pectine est dissoute dans du sucre liquide.
- Sucre liquide : acheminé par une conduite en aluminium.
- Ingrédients : nécessaires pour aromatiser le produit.

IV.2.3 Description du processus

Tout en gardant les ingrédients du processus existant, nous allons introduire une nouvelle façon de préparer le sirop en optant pour un fonctionnement en parallèle des tâches au lieu de celui en série.

Le sirop n’est qu’un mélange qui doit être homogène, de sucre liquide, de pectine, d’émulsion, de pulpe, du concentré et d’eau mitigte, qui est traité par pasteurisation et stérilisation avant de l’envoyer pour la mise en bouteille.
IV.2.4 Exploitation

Trois éléments sont nécessaires pour assurer le bon fonctionnement de la ligne de préparation, un technicien qualifié et deux ouvriers de main d’œuvres.

IV.2.5 Sécurité

Selon les normes internationales de sécurité.

IV.3 Analyse fonctionnelle

IV.3.1 Définition du SADT

En anglais « StructuredAnalysis and Design Technique », connue aussi sous le label IDEF0 « IntegrationDefinition for FunctionModeling », est une méthode d’origine américaine, développée pour Softech par Doug Ross en 1977, puis introduite en Europe à partir de 1982 par Michel Galinier. Elle se répandit vers la fin des années 1980 comme l’un des standards de description graphique d’un système complexe par analyse fonctionnelle descendante, c'est-à-dire que l’analyse chemine du général (dit « niveau A-0 ») vers le particulier et le détaillé. SADT est une démarche systématique de modélisation d’un système complexe ou d’un processus opératoire.

![Figure IV.1 : Représentation d’une fonction avec SADT](image)

R : Réglage, en ce qui concerne généralement les temporisations, le comptage et la température à utiliser.
C : Configuration qui concerne toute éventuelle programmation du processus.
E : Exploitation ou toutes les consignes à suivre lors de la tâche.
IV.3.2 SADT du système étudié

Figure IV.2 : SADT A0

IV.3.3 Analyse fonctionnelle descendante SADT du système

Figure IV.3 : Analyse fonctionnelle descendante SADT du système (A-0)
IV.4 Analyse Chronologique

Pour cette analyse chronologique, nous pouvons utiliser deux méthodes de confection de Grafcet, soit en utilisant un Grafcet classique ou appelé direct, soit par un Grafcet évolué.

IV.4.1 Grafcet classique

Figure IV.4.a : Grafcet du système de préparation de jus.
Figure IV.4.b : Nomenclature du Grafcet.

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Description</th>
<th>Symbole</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dcy</td>
<td>Bouton de début de cycle</td>
<td>KVP2P2</td>
<td>Pré-actionneur de la vanne VP1P2</td>
</tr>
<tr>
<td>KPAP</td>
<td>Pré-actionneur de la pompe PA</td>
<td>DbP2P2</td>
<td>Signal su débitmètre</td>
</tr>
<tr>
<td>KV1</td>
<td>Pré-actionneur de la vanne V1</td>
<td>KP6E</td>
<td>Pré-actionneur de la pompe P6E</td>
</tr>
<tr>
<td>KMix</td>
<td>Pré-actionneur de l’agitateur Mix</td>
<td>KVP2P2</td>
<td>Pré-actionneur de la vanne VP1P2</td>
</tr>
<tr>
<td>TR1</td>
<td>Détecteur de niveau</td>
<td>Db2P2</td>
<td>Signal su débitmètre</td>
</tr>
<tr>
<td>KP6E</td>
<td>Pré-actionneur de la pompe P6E</td>
<td>mP</td>
<td>Bac P2 plein</td>
</tr>
<tr>
<td>KV3</td>
<td>Pré-actionneur de la vanne V3</td>
<td>KM14</td>
<td>Pré-actionneur de l’agitateur M14</td>
</tr>
<tr>
<td>KMix1</td>
<td>Pré-actionneur de l’agitateur Mix1</td>
<td>KP7</td>
<td>Pré-actionneur de la pompe P7</td>
</tr>
<tr>
<td>TR2</td>
<td>Détecteur de niveau</td>
<td>mV</td>
<td>Bac P2 vide</td>
</tr>
<tr>
<td>KVM1</td>
<td>Pré-actionneur de la vanne VM1</td>
<td>KP9</td>
<td>Pré-actionneur de la pompe P9</td>
</tr>
<tr>
<td>m</td>
<td>Bascule du bac M1</td>
<td>KEVP3T2</td>
<td>Pré-actionneur de la vanne EVP3T2</td>
</tr>
<tr>
<td>KMix2</td>
<td>Pré-actionneur de l’agitateur Mix2</td>
<td>TRH</td>
<td>Détecteur de niveau</td>
</tr>
<tr>
<td>KP20</td>
<td>Pré-actionneur de la pompe P20</td>
<td>TRB</td>
<td>Détecteur de niveau</td>
</tr>
<tr>
<td>TR3</td>
<td>Détecteur de niveau</td>
<td>KP110</td>
<td>Pré-actionneur de la pompe P110</td>
</tr>
<tr>
<td>KPH2O</td>
<td>Pré-actionneur de la pompe PH2O</td>
<td>KEV3123</td>
<td>Pré-actionneur de la vanne V3123</td>
</tr>
<tr>
<td>KVP2P2</td>
<td>Pré-actionneur de la vanne VP2P2</td>
<td>TRP3</td>
<td>Détecteur de niveau</td>
</tr>
<tr>
<td>Db2P2</td>
<td>Signal su débitmètre</td>
<td>TRBP</td>
<td>Détecteur de niveau</td>
</tr>
<tr>
<td>KPsl</td>
<td>Pré-actionneur de la pompe Psl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expression

- X_i : La tâche i, X_1 : tâche 1
- X_{ij} : L’étape $j+1$ de la tâche i, X_{i13} : l’étape 4 de la tâche 1
- X_{104} : Autorisation d’un fonctionnement automatique
- $t/4/10$s : 10s après l’activation de l’étape 4
- $t/7/2$min : 2min après l’activation de l’étape 7
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

La figure IV.4 résume les différentes étapes du grafcet du système de préparation de jus. Le cycle commence par le bouton début de cycle « Dcy » par une séquence linéaire, alors, de la salle d’alimentation, le bac de stockage de pulpes est rempli par le mélange pulpes.

Lorsque le bac C est rempli, débutent en simultanée 4 séquences qui consistent en approvisionnement en sucre liquide, en eau mitigée, en pectine et en mélange pulpes.

4 étapes d’attente clôturant les 4 séquences sont nécessaires pour assurer l’attente d’une séquence par rapport à une autre.

Une fois le poids des ingrédients se trouvant au niveau du bac de préparation P2 atteint, débute alors la dernière séquence avec retour pour pouvoir pasteuriser tous le contenu du bac en quantités limitées et mesurées, avant de l’envoyer pour la stérilisation.

Ce cycle se répète 10 fois pour pouvoir vider le bac de stockage mélange pulpes C afin de refaire l’opération une nouvelle fois.

IV.4.2 Grafcet évolué

Dans les cas où le grafcet transcrit est trop long pour être confectionné, une solution de découper ce grafcet en tâches a germé et a donné l’idée d’introduire un grafcet dit « évolué ».

Ce grafcet évolué comporte trois grafcets essentiels, à savoir le grafcet de coordination des tâches GCT, appelé aussi GPN (Grafcet de production normal), un grafcet d’initialisation et de commande GCI, et un grafcet de sécurité GS.

![Diagramme IV.5.a : Coordination de Grafcet](image)

F/GPN(10, 20, 30, 40, 50) : ordre de forçage issu du grafcet de sécurité à l’encontre du grafcet de production, qui consiste à activer les étapes initiales des différentes tâches 10, 20, 30, 40, 50 et désactiver toutes les autres étapes.

F/GCI(100) : ordre de forçage issu du grafcet de sécurité à l’encontre du grafcet d’initialisation et de commande, qui consiste à activer l’étape initiale X100 et désactiver toutes les autres étapes.
I/GPN(1) : ordre d’initialisation issu du grafcet d’initialisation et de commande à l’encontre du grafcet de production normale, qui consiste à activer son étape initiale et désactiver toutes les autres étapes.

IV.4.2.1 Grafcet de coordination des tâches « GCT »

C’est le grafcet pour lequel le système est conçu, il trace l’évolution des différentes tâches, ainsi que la coordination entre elles.

Un grafcet ou des grafcets dits de production normale « GPN1, GPN2,… » peuvent être donnés à la place du GCT.

Des étapes d’attente et d’autres, dites de transition, sont placées entre les différentes tâches du GCT.

Figure IV.5.b : GCT (Graf cet de coordination des tâches).
IV.4.2.2 Grafct de chaque tâche

Chaque tâche est représentée indépendamment, traçant son évolution chronologique, suivant un cahier de charges précis.

- **Tâche 1 : Préparation du mélange pulpes**

Cette tâche est représentée par un grafct linéaire où les différentes étapes s’exécutent une à une après que la réceptivité associée soit vérifiée.

![Grafct de tâche 1](image)

Figure IV.6 : Grafct de tâche 1
- **Tâche 2 :** Approvisionnement en eau mitigée et en mélange pectine

Cette tâche est réalisée par un grafcet en action simultanée, ou appelé en « et », où deux séquences indépendantes une par rapport à l’autre s’exécutent indépendamment, juste après une « divergence en ‘et’ ». Deux étapes d’attentes sont utiles pour passer après une « convergence en ‘et’ » et terminer avec les séquences simultanées.

Dans le cas où les étapes d’attentes ne sont pas utilisées, alors la réceptivité finale n’est que le produit logique des dernières réceptivités de chaque séquence.

Figure IV.7 : Grafcet de tâche 2.
- **Tâche 3 :** Approvisionnement en sucre liquide

La tâche d’Approvisionnement en sucre liquide est un cas de grafcet linéaire.

Figure IV.8 : Grafcet de tâche 3.

- **Tâche 4 :** Approvisionnement en mélange pulpes

Similaire au grafcet précédent, ce grafcet linéaire résume les étapes nécessaires pour approvisionner le bac P1 à partir du bac C.

Figure IV.9 : Grafcet de tâche 4.
- **Tâche 5 :** Préparation (mélange et traitement du sirop)

Dans ce cas, le grafcet possède une particularité de reprise de quelques étapes voulues pour pouvoir mesurer une quantité prédéterminée de sirop pour être traitée par pasteurisation.

![Diagramme Grafcet de tâche 5](image)

Figure IV.10 : Grafcet de tâche 5.
IV.4.2.3 Grafcet d’initialisation et de commande

Le grafcet d’initialisation et de commande nous offre deux possibilités de fonctionnement, soit en mode manuel, en optant pour la condition « C/C », soit en optant pour un fonctionnement automatique en choisissant la condition « Auto » après une initialisation du système.

Figure IV.11 : Grafcet d’initiation de commande.

IV.4.2.4 Grafcet de sécurité

Figure IV.12 : Grafcet de sécurité
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

Le grafcet de sécurité peut être présenté avec deux étapes où X201 représente l’étape de production normale, et en cas d’arrêt d’urgence, ou en cas de défaut d’au moins une des tâches, le grafcet évolue vers une étape X200 qui exécute des actions de forçage du grafcet de production normale aux étapes initiales et du grafcet d’initialisation et de commande à l’étape X100, en attendant un redémarrage de production après réparation ou dépannage de la panne survenue en actionnant un réarmement du système.

IV.5 Présentation de l’atelier de programmation

IV.5.1 Langage proposé

Le module logique propose 2 langages de programmation :

- **Langage LD** : c’est un langage graphique ou à contact. Il permet la transcription de schémas à relais, il est adapté au traitement combinatoire. Il offre les symboles graphiques de base « contacts, bobines, blocs ». L’exécution de calculs spécifiques est possible à l’intérieur de blocs opérations.

- **langage FBD** : diagramme de blocs fonction (Functional Block Diagram) permet une programmation graphique basée sur l’utilisation de blocs fonctionnels prédéfinis. Il offre une large gamme de fonctionnalités de base « timer, compteur, logique... ».

Diese IV.13 : Choix du langage.

Dans notre travail, nous avons opté pour le langage FBD

IV.5.2 mode de fonctionnement

Il existe plusieurs modes de fonctionnement pour l’atelier de programmation

- **Mode Edition** : Le mode Edition sert à construire les programmes en mode FBD, cela correspond au développement de l’application.
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

- **Mode Simulation** : En mode Simulation, le programme est exécuté en local, directement dans l’atelier de programmation (simulé sur le PC). Dans ce mode, chaque action sur le graphe, soit par un changement d’état d’une entrée et forçage d’une sortie, met à jour les fenêtres de simulation.

- **Mode Monitoring** : En mode Monitoring, le programme est exécuté sur le contrôleur, l’atelier de programmation est connecté au contrôleur (connexion PC & contrôleur). Les différentes fenêtres sont mises à jour cycliquement.

![Figure IV.14 : Mode de fonctionnement.](image)

Dans les modes de simulation et de monitoring, il est possible de visualiser l’état des sorties et des paramètres des blocs fonctions du programme correspondant à la feuille de câblage dans la fenêtre de supervision, et de forcer les entrées/sorties pour tester le comportement du programme dans des conditions particulières.

IV.5.3 Création ou modification de configuration d’une application

Cette phase est importante, car elle détermine la configuration future de l’environnement de travail.

Cette fonction affiche une suite d’écrans, dont le premier permet de choisir le type de contrôleur, le deuxième permet d’ajouter une extension, si nécessaire, et le troisième permet de choisir le langage de programmation, FBD ou LD (Le choix LD n’est pas proposé pour les extensions de type analogue).

![Figure IV.15 : Choix de l’automate.](image)
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

IV.6 Programmation du grafcet

IV.6.1 Le choix de l’automate Programmable

Après l’étude faite sur la nouvelle approche pour réaliser une préparation de jus, nous allons procéder à sa programmation par le logiciel Crouzet de la série Millenium 3.

Le contrôleur logique Millenium 3 est un concentré de fonctions des plus simples aux plus évoluées pour toutes les installations.

C’est un logiciel graphique où la programmation par blocs fonctions est ludique sous la forme proposée par l’atelier logiciel Millenium 3 avec des petites icônes en couleurs et un câblage virtuel.

Le choix se fait pour un contrôleur XD26 230VAC ayant 16 entrées et 10 sorties, puis une extension de type XR14 230VAC avec 8 entrées et 6 sorties, et une autre extension de type XE10 230VAC avec 6 entrées et 4 sorties. Donc, notre ensemble contient 30 entrées et 20 sorties.

Un choix de langage de programmation est proposé par l’icône du logiciel, et nous optons pour une programmation en mode Function Bloc Diagram « FBD » et en mode Grafcet Sequential Flow Chart « SFC », à noter que le langage Grafcet est intégré directement dans la bibliothèque de blocs fonctions.

IV.6.2 Ecriture du programme ou transcription du grafcet

Une fois le choix du langage fait, une page vierge jaune ou blanche apparaît avec une barre d’outils, offrant plusieurs barres de fonctions dont les essentielles sont comme suit:

- **Barre de fonctions des fonctions standards**

Un large choix nous est offert, du compteur, décompteur et bistable aux fonctions booléennes, pour ne citer que cela.

Figure IV.16 : Choix de fonction.
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

Une large bibliothèque comportant plus de 700 blocs fonctions nous permet de réaliser toutes les fonctions, y compris les blocs d’asservissement.

- **Barre de fonctions des fonctions logiques**

 En plus du bloc fonction booléenne qui se trouve au niveau des fonctions standards qui permet d’avoir un bloc représentant directement le logigramme à partir de la table de vérité, plusieurs portes logiques sont disponibles permettant la confection de logigramme.

 ![Figure IV.17 : Portes logiques.](image)

- **Barre de fonctions du Diagramme fonctionnel en séquence SFC**

 Il est possible de tracer tout modèle de grafcet, linéaire, action simultanée, choix de séquence, le saut d’étape, le retour ou la récupération d’étape voulue.

 ![Figure IV.18: Langage SFC.](image)

- **Affectation des entrées physiques**

 Plusieurs types d’entrée sont disponibles en tout ou rien ou analogique filtrée ou non, un quartz, 6 boutons auxiliaires sur le boitier de l’automate sont prêts à être programmés pour utilisation.

 ![Figure IV.19: Barredes entrées.](image)

 Le système étudié nécessite, entre les boutons de début de cycle et d’arrêt d’urgence, les différents détecteurs de niveau et ceux des débitmètres, 14 entrées utilisées en tout ou rien pour réaliser le fonctionnement.
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

Le tableau suivant résume toutes les entrées utilisées :

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Entrées</th>
<th>Observation</th>
<th>Désignation</th>
<th>Entrées</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Dcy</td>
<td>Début de cycle</td>
<td>IG</td>
<td>mP</td>
<td>Bac plein</td>
</tr>
<tr>
<td>I2</td>
<td>TR1</td>
<td>Détecteur de niveau</td>
<td>IH</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>I3</td>
<td>TR2</td>
<td>Détecteur de niveau</td>
<td>IJ</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>I4</td>
<td>Db3p2</td>
<td>Signal du débitmètre</td>
<td>IK</td>
<td>XE</td>
<td>mV Bac vide</td>
</tr>
<tr>
<td>I5</td>
<td>Db1p2</td>
<td>Signal du débitmètre</td>
<td>IL</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>I6</td>
<td>Db2p2</td>
<td>Signal du débitmètre</td>
<td>IN</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>I7</td>
<td>m</td>
<td>Bascule de pectine</td>
<td>IO</td>
<td>XE</td>
<td>TRH Détecteur de niveau</td>
</tr>
<tr>
<td>I8</td>
<td>_____</td>
<td>Non affectée</td>
<td>IP</td>
<td>XE</td>
<td>TRB Détecteur de niveau</td>
</tr>
<tr>
<td>I9</td>
<td>_____</td>
<td>Non affectée</td>
<td>IQ</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>IA</td>
<td>_____</td>
<td>Non affectée</td>
<td>IR</td>
<td>XE</td>
<td>TRP3 Détecteur de niveau</td>
</tr>
<tr>
<td>IB</td>
<td>TR3</td>
<td>Détecteur de niveau</td>
<td>IS</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>IC</td>
<td>_____</td>
<td>Non affectée</td>
<td>IT</td>
<td>XE</td>
<td>TRBP Détecteur de niveau</td>
</tr>
<tr>
<td>ID</td>
<td>_____</td>
<td>Non affectée</td>
<td>IU</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>IE</td>
<td>_____</td>
<td>Non affectée</td>
<td>IV</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
<tr>
<td>IF</td>
<td>_____</td>
<td>Non affectée</td>
<td>IY</td>
<td>XE</td>
<td>_____ Non affectée</td>
</tr>
</tbody>
</table>

Tableau IV.1 : Affectation des entrées physiques

- **Affectation des sorties physiques**

Plusieurs types de sortiessont disponibles en tout ou rien où 20 sorties sont utilisées pour réaliser ce système.

![Barre des sorties](image)

Figure IV.20 : barre des sorties.

Le tableau suivant résume toutes les sorties utilisées :

<table>
<thead>
<tr>
<th>O1</th>
<th>KPA</th>
<th>O6</th>
<th>KMix1</th>
<th>OB</th>
<th>XE</th>
<th>KVPH2O</th>
<th>OG</th>
<th>XE</th>
<th>KM14</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2</td>
<td>KV1</td>
<td>O7</td>
<td>KP6E</td>
<td>OC</td>
<td>XE</td>
<td>KVP2P2</td>
<td>OH</td>
<td>XE</td>
<td>KP7</td>
</tr>
<tr>
<td>O3</td>
<td>KMix</td>
<td>O8</td>
<td>KVP3P2</td>
<td>OD</td>
<td>XE</td>
<td>KVM1</td>
<td>OJ</td>
<td>XE</td>
<td>KEP3T2</td>
</tr>
<tr>
<td>O4</td>
<td>KPE</td>
<td>O9</td>
<td>KPSL</td>
<td>OE</td>
<td>XE</td>
<td>KMix2</td>
<td>OK</td>
<td>XE</td>
<td>KP9</td>
</tr>
<tr>
<td>O5</td>
<td>KV3</td>
<td>OA</td>
<td>KVP1P2</td>
<td>OF</td>
<td>XE</td>
<td>KP20</td>
<td>OL</td>
<td>XE</td>
<td>KP110+KV3123</td>
</tr>
</tbody>
</table>

Tableau IV.2 : Affectation des sorties physiques.
IV.6.3 Traduction du grafcet en langage automate programmable

Après affectation des entrées et sorties physiques, telles les entrées caractérisées par un signe « I » du mot anglais Input et les sorties par un signe « O » du mot anglais output.

À noter que la temporisation et le compteur sont deux fonctions intégrées dans l’automate.

Figure IV.21 : Grafcet langage automate.
IV.6.4 Transcription du programme sur la fenêtre du logiciel

Figure IV.22 : Programme transcrit.
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

Une fois le programme transcrit puis simulé, un rapport complet détaillant les entrées sorties ainsi que le schéma du programme et les fonctions paramétrables sont disponibles pour impression.

Des informations sur l’auteur et le matériel utilisé sont ainsi données.

- **Information de programme**

<table>
<thead>
<tr>
<th>Informations de programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auteur : BOUDAH MOURAD</td>
</tr>
<tr>
<td>Nom du Projet : Préparation de JUS</td>
</tr>
<tr>
<td>Version : 14.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contrôleur</th>
<th>Durée du cycle de base du contrôleur</th>
<th>Action du WATCHDOG</th>
<th>Accessoires restant au menu 'Paramètres' de la face avant du contrôleur</th>
<th>Format de la date</th>
<th>Changer la date d’été/hiver actif</th>
<th>Zone : Europe</th>
<th>Passage en heure d’été : Mars, dernier dimanche</th>
<th>Passage en heure d’hiver : Octobre, dernier dimanche</th>
</tr>
</thead>
<tbody>
<tr>
<td>XE : XE 18 230VAC</td>
<td>Pas de paramètres</td>
<td>Pas de paramètres</td>
<td>Pas de paramètres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XR : XR14 230VAC</td>
<td>Pas de paramètres</td>
<td>Pas de paramètres</td>
<td>Pas de paramètres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commentaires

Automatisation d’une ligne de préparation de jus
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

- Schéma du programme
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

- **Entrées physiques**

<table>
<thead>
<tr>
<th>Entrée</th>
<th>No</th>
<th>Symbole</th>
<th>Fonction</th>
<th>Paramètres</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>B12</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>DCY</td>
</tr>
<tr>
<td>12</td>
<td>B13</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TR1</td>
</tr>
<tr>
<td>13</td>
<td>B14</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TR2</td>
</tr>
<tr>
<td>14</td>
<td>B15</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>Db3P2</td>
</tr>
<tr>
<td>15</td>
<td>B16</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>Db1P2</td>
</tr>
<tr>
<td>16</td>
<td>B17</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>Db2P2</td>
</tr>
<tr>
<td>17</td>
<td>B18</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>m</td>
</tr>
<tr>
<td>18</td>
<td>B19</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TR3</td>
</tr>
<tr>
<td>19</td>
<td>B20</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>mP</td>
</tr>
<tr>
<td>20</td>
<td>B21</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>mN</td>
</tr>
<tr>
<td>21</td>
<td>B22</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TRH</td>
</tr>
<tr>
<td>22</td>
<td>B23</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TRB</td>
</tr>
<tr>
<td>23</td>
<td>B24</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TRP3</td>
</tr>
<tr>
<td>24</td>
<td>B25</td>
<td>Entrée TOR</td>
<td>—</td>
<td>Pas de paramètres</td>
<td>TRBP</td>
</tr>
</tbody>
</table>

- **Sorties physiques**

<table>
<thead>
<tr>
<th>Sortie</th>
<th>No</th>
<th>Symbole</th>
<th>Fonction</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>B09</td>
<td>Sortie TOR</td>
<td>KPA</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>B05</td>
<td>Sortie TOR</td>
<td>KV1</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>B06</td>
<td>Sortie TOR</td>
<td>Kmiz</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>B01</td>
<td>Sortie TOR</td>
<td>KPE</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>B02</td>
<td>Sortie TOR</td>
<td>KV3</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>B03</td>
<td>Sortie TOR</td>
<td>KUMX1</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>B04</td>
<td>Sortie TOR</td>
<td>KPEE</td>
<td></td>
</tr>
</tbody>
</table>
Fonctions paramétrables

<table>
<thead>
<tr>
<th>No</th>
<th>Symbole</th>
<th>Fonction</th>
<th>Modif</th>
<th>Sauvegarde sur coupure d'erreur</th>
<th>Paramètres</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>B19</td>
<td></td>
<td>Étape SFC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B23</td>
<td></td>
<td>Étape SFC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B24</td>
<td></td>
<td>Étape SFC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B25</td>
<td></td>
<td>Étape SFC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B26</td>
<td></td>
<td>Étape SFC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B33</td>
<td></td>
<td>Étape SFC</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

programme final pm3 - v14.9

<table>
<thead>
<tr>
<th>No</th>
<th>Symbole</th>
<th>Fonction</th>
<th>Modif</th>
<th>Sauvegarde sur coupure secteur</th>
<th>Paramètres</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>E34</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M24</td>
</tr>
<tr>
<td>E35</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M34</td>
</tr>
<tr>
<td>E41</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M07</td>
</tr>
<tr>
<td>E42</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M03</td>
</tr>
<tr>
<td>E43</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M09</td>
</tr>
<tr>
<td>E44</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M11</td>
</tr>
<tr>
<td>E51</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M04</td>
</tr>
<tr>
<td>E52</td>
<td></td>
<td>Etape SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M00</td>
</tr>
<tr>
<td>E57</td>
<td></td>
<td>Temporisateur A/C</td>
<td>Non</td>
<td>Non</td>
<td>Temps de marche : 0H 0M 10S</td>
<td>T=10s</td>
</tr>
<tr>
<td>E65</td>
<td></td>
<td>Divergence GU vers 2 branches, SFC</td>
<td></td>
<td></td>
<td>Pas de paramètres</td>
<td>M10</td>
</tr>
<tr>
<td>E66</td>
<td></td>
<td>Temporisateur A/C</td>
<td>Non</td>
<td>Non</td>
<td>Temps de marche : 0H 2M 0S</td>
<td>T=30s</td>
</tr>
<tr>
<td>E83</td>
<td></td>
<td>Compteur/décompteur & recalibration</td>
<td>Non</td>
<td>Non</td>
<td>Compte vers la présélection : 10 Cycle Unique</td>
<td>(N=10)</td>
</tr>
</tbody>
</table>
IV.7 Simulation du programme

Avant de charger un programme sur un contrôleur, il est possible de simuler son exécution en utilisant l’atelier de programmation.

En mode simulation, à chaque action de l’utilisateur correspond une simulation dont les résultats sont affichés dans les fenêtres Face Avant, Edition ou Supervision.

![Figure IV.23 : Résultat de compilation.](image)

IV.8 Communication entre l’atelier de programmation et le contrôleur

Il est possible d’utiliser une des liaisons série, port com., liaison Bluetooth, liaison USB et une liaison via modem uniquement pour les modules logiques auxquels a été adjointe l’interface de communication M3MOD.

Il est possible de tester les paramètres de connexion au niveau de la fenêtreConfigurer la connexion à l’aide du bouton Tester.

Dans ce cas, l’atelier de programmation tente de se connecter au contrôleur avec les paramètres courants, si la configuration de la connexion n’est pas bonne, un message d’erreur signifie que le périphérique ne réagit pas.

IV.9 Transfert du programme du PC vers le contrôleur

La fonction Ecrire vers le contrôleur traduit le programme en données chargeables et effectue le transfert du PC vers le contrôleur.

Cette commande ouvre la fenêtre « Résultats de compilation », si ce résultat de la compilation est : « Compilation réussie » alors l’application est transférée sur le contrôleur.

En cas d’échec, le numéro de l’erreur apparaît, il faut éditer le programme, corriger l’erreur et lancer la commande d’écriture à nouveau.
Chapitre IV : Automatisation et amélioration de la ligne de préparation de jus

Le transfert n’est possible que si le contrôleur n’est pas bloqué par l’envoi d’un mot de passe erroné. Le programme sera écrit sur le contrôleur uniquement dans les cas où il ne contient pas de programme ou contient un programme non protégé en lecture/écriture par un mot de passe, si toutes ces conditions sont réunies, la boîte de dialogue Options écriture apparaît.

Seul un programme FBD compilé sans erreur sera écrit dans le contrôleur, et il faut que le type du contrôleur déclaré dans le programme soit compatible avec le contrôleur connecté.

IV.10 Aperçu du branchement de l’automate

Figure IV.24 : Branchement de l’automate.

IV.11 Conclusion

Lors d’une automatisation, le choix de l’automate programmable est une étape primordiale à franchir, où il faut tenir compte de plusieurs facteurs.

Le choix du module logique MRP800 de la série Crouzet Millénium 3 nous offre cette possibilité de programmation avec un langage FBD proche du grafcet, ce qui nous facilite vraiment la tâche de concevoir le programme juste en traduisant le grafcet tracé sur une page blanche en accentuant sur le fait qu’il faut déterminer au préalable les diverses entrées qui représentent les réceptivités, ainsi que les sorties qui correspondent aux tâches associées.

La simplicité de la programmation, donc de dépannage en cas de panne ou de modification, ainsi que la possibilité d’extension, sont deux éléments à prendre en considération lors de ce choix et la possibilité de suivre l’évolution du système sur le mode monitoring, nous permet une supervision du processus.
CONCLUSION GÉNÉRALE
CONCLUSION GÉNÉRALE

Au cours de ce projet de fin d’études, nous avons pu concrétiser et faire aboutir notre idée, celle d’améliorer la ligne de préparation de jus de type PET, après avoir utilisé une nouvelle approche de fonctionnement du système et la suppression des tâches manuelles et le remplacement de quelques équipements par de nouveaux mieux adaptés à notre idée.

Nous avons réussi, par cela, à réduire de moitié le temps de préparation au niveau du bac p2 (dit aussi de préparation), qui était de 7 minutes jusqu’à 3min et 40 secondes; le temps total de la préparation se voit ainsi réduit, en supprimant les tâches manuelles.

Ce qui nous permettra de préparer le sirop en un temps record, d’en alimenter, en continu, la combi de conditionnement et d’atteindre la cadence maximale de production, qui est de 32000 bouteilles/h, de manière à satisfaire la forte demande enregistrée.

Avec une meilleure précision et un évitement de l’action manuelle, nous aurons, par conséquent, un sirop de bonne qualité, avec un Brix fixe, satisfaisant la clientèle.

Nous sommes arrivés à réaliser ce projet grâce aux connaissances théoriques que nous avons acquises au cours de notre formation académique d’une part, et d’autre part, grâce aux informations que nous avons apprises durant notre stage de fin d’études, qui s’est déroulé dans l’entreprise de production agroalimentaire COJEK de Cevital.

Ce projet nous a permis de nous former sur l’automatisme et le monde industriel, mais aussi de découvrir la programmation des automates. Nous avons beaucoup appris sur le fonctionnement des systèmes automatisés, ainsi que sur les API.

Pour finir, nous sommes très satisfaits de cette formation enrichissante et nous avons acquis les secrets du métier d’ingénieur et celui du secteur de l’automatisme et de l’informatique industrielle.
Bibliographie

