République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique Université Abderrahmane MIRA- Bejaia Faculté de technologie

Département de Génie Civil

Mémoire de fin d'études

En Vue d'Obtention du Diplôme Master2 en génie civil Option : structures

Thème:

Etude d'un bâtiment en béton armé(R+8) à usage d'habitation contreventé par un système mixte (Voiles – Portiques)

Présenté par : Encadreur :

Mr: DJENADI Oualid Mr: BEN YESSAD

Mr: MESSAOUDI Jughorta

Membre de jury:

Mr: L. GUECHARI

Melle: K. GUENOUNOU

Promotion 2017-2018

Remerciements

Nous tenons tout d'abord à remercier ALLAH tout puissant pour nous avoir guidés et aidés durant toute notre vie et durant ce travail.

Nous tenons aussi à remercier vivement notre promoteur Mr Ben yessaad pour son encadrement, ses conseils et sa disponibilité.

Nous remercions également tous les enseignants qui ont contribué à assurer notre formation durant tout notre cycle universitaire.

Nos remercîments aux membres de jury qui ont accepté de juger ce travail.

Enfin nous remercions tous la promotion de génie civil 2017/2018

Oualid et jughorta

Dédicaces

Je dédie ce modeste travail

A mes très chers parents qui ont tant donné pour me voir réussir.

A mes chers frères

A mes très chères Sœurs

A toute ma famille

A mon binôme et sa famille.

A mes amies: zakari-elyazid-hamza f-dady-fouad-ferhat-hamza k moussa-mohamed-zinou-ghanou-salah et hananne.

Dj_oualid

Dédicaces

Je dédie ce modeste travail

A mes très chers parents qui ont tant donné pour me voir réussir.

A mes chers frères

A toute ma famille

A mon binôme et sa famille.

A mes amies : zakari-elyazid-hamza -dady-fouad-ferhat-moussa ghanou-salah -linda et sa famille.

SOMMARE

Chapitre I : Généralités

I.1. Présentation du projet	2
I.2. Caractéristique architecturales de notre projet	2
I.3. Caractéristique de sol	2
I.4. Choix de contreventement	2
I.5. Répartition de surface	3
I.6. Règlements et normes utilisée	3
I.7. Définition des éléments de l'ouvrage	4
I.8. Caractéristiques mécaniques des matériaux	4
Chapitre II : Pré dimensionnement des éléments	
II.1. Introduction	7
II.2. Pré dimensionnement des éléments secondaires	7
II.3. Pré dimensionnement des éléments principaux	12
II.3.1. Pré- Pré-dimensionnement des poutres	12
I.3.2. Voiles	13
II.3.3. Évaluation des charges et surcharges	14
II.3.4. Pré dimensionnement des poteaux	16
II.3.5. Descente de charge	17
II.4. Conclusion.	24
Chapitre III : Calcul des éléments secondaires	
III.1. Introduction	26
III.2. Calcul des planchers	26
III.2.1. Plancher à corps creux	26
III.2.2. Plancher à dalle pleine	44
III.3. Etude de l'acrotère	51
III.4. Etude de l'ascenseur	56
III.5. Etude d'escaliers	63
III.6. Poutre de chainage	74

Chapitre IV : Etude dynamique

IV.1. Introduction	78
IV.2. Méthode de calcul	78
IV.3. Exigences du RPA99/2003 pour les systèmes mixtes	83
IV.4. Modalisation et résultats bloc A	83
IV.5. Modalisation et résultats bloc B	90
IV.6. Justification de la largeur de joint sismique	95
IV.7. Conclusion	95
Chapitre V : Etude des éléments principaux	
V.1. Etude des poutres	98
V.1.1. Introduction	98
V.1.2. Ferraillage	98
V.1.3. Dispositions constructive des portiques	100
V.1.4. Recommandation de BAEL	100
V.1.5. Calcul de ferraillage	100
V.1.6. vérification des armatures longitudinales	101
V.1.7. Les armatures transversales	101
V.1.8. Vérification à l'ELU	102
V.1.9. Vérification à l'ELS	103
V.1.10. Schéma de ferraillage des poutres	104
V.2. Etude des poteaux	104
V.2.1. Introduction	104
V.2.2. Recommandations du RPA (version 2003	105
V.2.3. Sollicitations de calcul	107
V.2.4. Calcul de ferraillage	107
V.2.5. Armatures transversales	109
V.2.6. Vérifications	109
V.3. Etudes des voiles	116
V.3.1. Introduction	116
V.3.2. Recommandations du PRA99	116
V.3.3. Ferraillage	118
V.3.4. Calcul du ferraillage de voile	118
V.3.5. Schéma de ferraillage	124
V.4. Conclusion	124

Chapitre VI : Etude infrastructure

VI.1. Introduction	126
VI.2. Différents type de fondations	126
VI.3. Choix de type de fondation	126
VI.4. Combinaisons d'action à considérer	126
VI.5. Etudes des fondations	126
VI.5.1. Semelle isolée	126
VI.5.2. Semelles filantes	127
VI.5.3. Radier général	128
VI.6. Ferraillage du radier	132
VI.7. Etude des nervures	135

Liste des figures

Chapitre II : Pré-dimensionnement des éléments

Figure. II.1. Coupe transversale d'un plancher à corps creux	7
Figure. II.2. Plan de disposition des poutrelles	9
Figure. II.3. Section d'une poutrelle	9
Figure.II.4. Schéma d'escaliers	11
Figure.II.5. Vue en plan d'escalier	12
Figure. II.4. Schéma de l'acrotère.	12
Figure. II.7. Surface afférente P1	17
Figure. II.8. Schéma statique de la descente de charge	18
Figure. II.9. Surface afférente P2	20
Chapitre III : Etudes des éléments secondaires	
Figure.III.1. Schéma statique de la poutrelle type 5	28
Figure.III.2. Schéma de ferraillage de la dalle de compression	44
Figure.III.3. Dalle sur 4 appuis (D1)	44
Figure.III.4. Schéma de ferraillage de la dalle sur 4 appuis (D1)	48
Figure.III.5. Dalle sur 3 appuis (D2)	48
Figure.III.6. Schéma de ferraillage de la dalle sur 3 appuis (D2)	51
Figure.III.7. Coupe d'un acrotère	51
Figure.III.8. Schéma de ferraillage de l'acrotère	56
Figure III.9. Cage d'ascenseur	56
Figure III.10. Schéma de ferraillage de la dalle machine	63
Figure.III.11. Schéma d'escalier	63
Figure.III.12. Les réactions d'appuis à l'ELU	64
Figure.III.13. Diagramme des moments à l'ELU	64
Figure.III.14. Diagramme des efforts tranchants	64
Figure.III.15. Les réactions d'appuis à l'ELS	66
Figure.III.16. Diagramme des moments à l'ELS	67
Figure.III.17. Diagramme des efforts tranchants	67
Figure.III.18. Schéma de ferraillage de l'escalier	69
Figure.III.19. Schéma de ferraillage de la Poutre palière	74
Figure.III.20. Schéma de ferraillage de la poutre chainage	76

Chapitre IV: Etudes dynamique

Figure.IV.1. Disposition des voiles et emplacement de joint sismique	84
Figure.IV.2. 1 ére mode (translation suivant Y)	85
Figure.IV.3 . 2 ^{éme} mode (translation suivant X)	86
Figure.IV.4. 3 ^{éme} mode (torsion autour de Z)	86
Figure.IV.5. 1 ^{ére} mode (translation suivant Y)	91
Figure.IV.6. 2 ^{éme} mode (translation suivant X)	91
Figure.IV.7. 3 ^{éme} mode (torsion autour de Z)	92
Chapitre V : Etudes des éléments structuraux	
Figure.V.1. Dispositions constructives des portiques	100
Figure.V.2. Zone nodale	106
Figure.V.3. Section d'un poteau	110
Figure.V.4. Réduction des sections des poteaux	115
Figure.V.5. Section du voile	120
Figure.V.6. Schéma de ferraillage du voile Vx2 au niveau du RDC et 1 ^{er} étage	125
Chapitre VI: Etudes infrastructures	
Figure.VI.1. Semelle isolée	127
Figure.VI.2. Semelle filante (SF)	127
Figure.VI.3. Schéma d'une dalle sur quatre appuis	132
Figure.VI.4. Schéma de ferraillage du radier	135
Figure.VI.5. Schéma de rupture du radier de dalle du radier	135
Figure.VI.6. Schéma des nervures dans le sens x-x	137
Figure.VI.7. Schéma des nervures dans le sens y-y	137
Figure.VI.8. Section à ferrailler	138
Figure.VI.9. Schéma de ferraillage de nervure	141

Liste des tableaux

Chapitre I : Généralités

Tableau.I.1. Surface de rez- de- chaussée	3
Tableau.I.2. Surface des étages courants	3
Tableau.I.3. Surface de 1 ^{ere} niveau duplex	3
Tableau.I.4. Surface de 2 ^{émé} niveau duplex	3
Chapitre II : Pré dimensionnement des éléments	
Tableau.II.1. Evaluation des charges plancher terrasse inaccessible	14
Tableau.II.2. Evaluation des charges plancher terrasse accessible	14
Tableau.II.3. Evaluation des charges plancher à corps creux	15
Tableau.II.4. Evaluation des charges revenant au plancher dalle pleine	15
Tableau.II.5. Evaluation des charges murs extérieurs	15
Tableau.II.6. Evaluation des charges sur les volées	16
Tableau.II.7. Evaluation des charges sur les paliers	16
Tableau.II.8. Descente de charge pour P1	18
Tableau.II.9. Descente de charge pour P2	20
Tableau.II.10. Vérification des poteaux au flambement	23
Chapitre III : Etude des éléments secondaires	
Tableau.III.1. Différents types des poutrelles plancher terrasse inaccessible	26
Tableau.III.2. Différents types des poutrelles plancher étage courant	27
Tableau.III.3. Evaluation des charges et surcharge sur poutrelles	28
Tableau.III.4. Résumé des sollicitations dans les différents types de poutrelles (plancher	
étage)	30
Tableau.III.5. Résumé des sollicitations dans les différents types de poutrelles (plancher	
terrasse)	31
Tableau.III.6. Vérification de la flèche	39
Tableau.III.7. Ferraillage de différents types des poutrelles (plancher étage)	39
Tableau.III.8. Ferraillage les différents types de poutrelles (plancher terrasse)	40
Tableau.III.9. Vérification des contraintes aux états limites (étage courant)	41
Tableau.III.10. Vérification des contraintes aux états limites (terrasse inaccessible)	41
Tableau.III.11. Vérification de la flèche	42
Tableau.III.12. Revérification de la flèche	42
Tableau.III.13. Schéma de ferraillage d'un exemple de poutrelles	43

Tableau.III.14. Ferraillage de la dalle (D1)	. 46
Tableau.III.15. Contrainte dans le béton de (D1)	. 47
Tableau.III.16. Ferraillage de la dalle D2	. 49
Tableau.III.17. Charge et surcharge de l'acrotère	. 52
Tableau.III.18. Combinaisons d'action	. 53
Tableau.III.19. Ferraillage de la dalle d'ascenseur	. 61
Tableau.III.20. Vérification des contraintes	. 62
Tableau.III.21. Charge et surcharge d'escalier	. 63
Tableau.III.22. Résultats de ferraillage du l'escalier	. 65
Tableau.III.23. Résultats de calcul des contraintes	. 67
Tableau.III.24. Résultat de la flèche	. 68
Tableau.III.25. Résultats de ferraillage de la poutre palière	. 71
Tableau.III.26. Ferraillage de la poutre de chainage	. 75
Chapitre IV : Etude dynamique	
Tableau.IV.1. Valeurs des pénalités P _q pour le bloc A	. 79
Tableau.IV.2. Valeurs des pénalités P _q pour le bloc B	. 79
Tableau.IV.3. Les valeurs de $\zeta(\%)$. 81
Tableau.IV.4. Les périodes statiques et facture d'amplification dynamique du bloc B	
Tableau.IV.5. Modes et périodes de vibration et taux de participation massiques	. 85
Tableau.IV.6. Vérification sous charges verticales	. 87
Tableau.IV.7. Vérification sous charges horizontales	. 87
Tableau.IV.8. Vérification de l'effort normal réduit	. 88
Tableau.IV.9. Vérification de la résultante des forces sismiques	. 88
Tableau.IV.10. Vérification des déplacements	. 89
Tableau.IV.11. Vérification de l'effet P-Δ	. 90
Tableau.IV.12Modes et périodes de vibration et taux de participation des masses	
du bloc B.	. 90
Tableau.IV.13. Vérification sous charges verticale du bloc B	. 93
Tableau.IV.14. Vérification sous charges horizontales du bloc B	. 93
Tableau.IV.15. Vérification de l'effort normal réduit	. 94
Tableau.IV.16. Vérification de la résultante des forces sismiques	. 94
Tableau.IV.17. Vérification des déplacements	. 94
Tableau.IV.18. Vérification de l'effet P-Δ	. 95

Chapitre V : Etude des éléments principaux

Tableau.V.1. Ferraillage des poutres principales et secondaires	101
Tableau.V.2. Vérification de la section minimale	102
Tableau.V.3. Vérification des contraintes tangentielles	103
Tableau.V.4. Vérification des armatures longitudinales au cisaillement	103
Tableau.V.5. Vérification de l'état limite de compression du béton	103
Tableau.V.6. Vérification de la flèche pour les poutres	104
Tableau.V.7. Schéma de ferraillage des pp et ps	104
Tableau.V.8. Armatures longitudinales minimales et maximales dans les poteaux	106
Tableau.V.9. Sollicitations dans les poteaux	107
Tableau.V.10. Ferraillage des poteaux	108
Tableau.V.11. Calcul des armatures transversales	109
Tableau.V.12. Vérification du flambement pour les poteaux	110
Tableau.V.13. Vérification des contraintes dans le béton	111
Tableau.V.14. Vérification aux sollicitations tangentes pour les poteaux	111
Tableau.V.15. Les moments résistants dans les poteaux	113
Tableau.V.16. Les moments résistants dans les poutres	113
Tableau.V.17. Vérification des zones nodales poutre principale	113
Tableau.V.18. Schéma de ferraillage des poteaux dans chaque niveau	116
Tableau.V.19. Les sollicitations dans les voiles dans le sens X-X	120
Tableau.V.20. Les sollicitations dans les voiles dans le sens Y-Y	120
Tableau.V.21. Ferraillage du voile V_{X1}	121
Tableau.V.22. Ferraillage du voile Vx2	122
Tableau.V.23. FerraillageduvoileV _{Y1}	123
Tableau.V.24. Ferraillage du voile V _{Y2}	123
Tableau.V.25. Ferraillage du voile V _{Y3}	124
Chapitre V : Etudes infrastructures	
Tableau.VI.1. Les sommes des efforts normaux sur les différentes files des semelles filantes	128
Tableau.VI.2. Résultat de ferraillage du radier	133
Tableau.VI.3. Résumé des résultats des contraintes	134
Tableau.VI.4. Section d'armateur du radier à l'ELS	134
Tableau.VI.5. Sollicitations dans la nervure dans le sens x-x à l'ELU	137
Tableau.VI.6. Sollicitations dans la nervure dans le sens x-x à l'ELS	138

Tableau.VI.7. Sollicitations dans la nervure dans le sens y-y à l'ELU	138
Tableau.VI.8. Sollicitations dans la nervure dans le sens y-y à l'ELS	138
Tableau.VI.9. Calcul des ferraillages	139
Tableau.VI.10. Vérification des contraintes à l'ELS	140
Tableau.VI.11. Calcul des armatures à l'ELS	140

SYMBOLES ET NOTATION

Ar: Aire d'une section d'acier de répartition

At: Aire d'une section d'acier transversal

As: Aire d'une section d'acier

B: la largeur (m).

Br: Section réduite du béton

Es: Module d'élasticité de l'acier

Evj: Module de déformation différée du béton à l'âge de j jour

Eij: Module de déformation instantanée du béton à l'âge de j jour

fcj: Résistance caractéristique de compression à j jour

f_{tj}: Résistance caractéristique de traction à j jour

fe: Limite d'élasticité de l'acier

G: Charges permanente

Q: Charges d'exploitation

E: Actions accidentelles

qu: Charges réparties ultime

qs: Charges réparties de service

I: Moment d'inertie

Mu: Moment de calcul ultime

Ms: Moment de calcul de service

Nu: Effort normal ultime

Ns: Effort normal de service.

V: Effort tranchant

S: Surface plane de la structure

d : Position des armatures tendues par rapport à la fibre la plus comprimée

e: Epaisseur

L: Longueur

Lr: Longueur de recouvrement

lf: Longueur de flambement

I: Rayon de giration

 Λ : Elancement

μ: Coefficient de frottement

µьи: Moment ultime réduit

v: Coefficient de poisson

σω: Contrainte du béton à la compression

σ_s: Contrainte de l'acier à la traction

Ot: Diamètre des armatures transversales

St: Espacement des armatures

ζ: Contrainte tangentielle de cisaillement

ζ_{se}: Contrainte d'adhérence

η: Coefficient de fissuration

ξω: Raccourcissement relatif du béton

 ξ_s : Allongement relatif de l'acier tendu

γь: Coefficient de sécurité de béton

ys: Coefficient de sécurité de l'acier

γ: Poids spécifique déjaugé

A : Coefficient d'accélération de zone

Cr: coefficient fonction du système de contreventement et du type de remplissage

Cu: La cohésion du sol (KN/m2).

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

Fs: Coefficient de sécurité = 1.5

Q: Facteur de qualité

R : coefficient de comportement global

P: Poids du radier (KN).

N: Charge concentrée appliquée (ELS ou ELU).

Sr: surface du radier (m₂).

Sbat: Surface totale du bâtiment (m2).

St: Espacement des armatures.

W: poids propre de la structure.

Wqi: Charges d'exploitation.

W_G: poids du aux charges permanentes et à celles d'équipement fixes éventuels.

f: Flèche

fe: Limite d'élasticité

ht: hauteur total du radier (m).

h *N*: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

σ : Contrainte normale.

φ: Angle de frottement interne du sol (degrés).

σadm: Contrainte admissible au niveau de la fondation (bars).

k: Coefficient de portance.

q: Contrainte effective verticale initiale au niveau de fondation (bars).

σ: Contrainte effective finale (bars).

τ: Valeur de cisaillement limite donné par le BAEL (MPa).

 τ_{v} : Contrainte de cisaillement (MPa).

η: Facteur d'amortissement.

β: Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

h₀: épaisseur de la dalle de radier (cm)

ht: hauteur de la nervure (cm)

Introduction générale

Ce projet présent une étude détaillée d'un bâtiment à usage d'habitation constitué d'un (R+8), implanté dans la wilaya de Bejaia.

La première entanne la description générale du projet avec une présentation de caractéristiques des matériaux, ensuite le pré dimensionnement de la structure et enfin la descente des charges.

En suit on passe à l'objectif d'étude des éléments secondaires (poutrelles, escaliers, acrotère, balcon, ascenseur, et dalle pleine).

Tout comme d'autres catastrophes naturelles, les séismes sont des phénomènes complexes et fortement endommageants, ils ont des manifestations spectaculaires et dévastatrices, doit-il faut tenir compte dans la conception et le calcul des structures.

L'action sismique subie par une structure est directement proportionnelles à l'accélération qui lui imposée par le sol et par sa propre masse. Soumise à une action sismique, la structure effectue une série d'oscillation forcée, puis des oscillations libres qui s'amortissent plus ou moins rapidement.

Dans l'analyse et le dimensionnement des structures, nous appliquons le règlement afin d'assurer le bon fonctionnement de l'ouvrage, le choix du système de contreventement dépend de certains considérations à savoir la catégorie du site, la hauteur et l'usage de la construction ainsi que les contraintes architecturales.

Le projet qui nous confié est un bâtiment en (R+8) à usage d'habitation, contreventé par un système mixte (voiles- portiques), structuré en six chapitres.

- Le premier chapitre : Présentation du projet et les principes de calcul.
- Le deuxième chapitre : Pré dimensionnement des éléments de la structure.
- Le troisième chapitre : Calcul des éléments secondaires.
- Le quatrième chapitre : L'étude dynamique.
- Le cinquième chapitre : Calcul des éléments structuraux de la structure.
- Le sixième chapitre : L'étude de l'infrastructure.
- Nous terminons le travail par une conclusion générale.

Chapitre I: Généralités

I.1. Présentation de projet :

Le projet qui fait l'objet de notre étude entre dans le cadre de réalisation d'une coopérative immobilier composé d'un RDC et de 8 étages situés à TAGHZOUITH dans wilaya de BEJAIA.

I.2. Caractéristiques architecturales de notre projet sont :

1. La surface du bâtiment : 358.24 m

2. La hauteur totale : 28.56 m (sans acrotère)

3. La hauteur du RDC: 4.08 m

4. La hauteur d'étage courant : 3.06 m

5. La longueur totale de bâtiment : 23 m

6. La largeur en plan est: 23.90 m

I.3. Caractéristiques de sol :

- ✓ Le sol est constitué essentiellement par des schistes argileux graveleux
- ✓ Le site situé sur un terrain plat
- ✓ Nous pouvons classer le sol en catégorie S3 selon sa nature géotechnique

A partir des résultats obtenus au laboratoire :

- ✓ Ancrage minimale à partir de $\mathbf{D} = \mathbf{1.4} \, \mathbf{m}$ de profondeur par rapport à la cote de terrain naturel (bas talus)
- ✓ Une contrainte admissible 6_{sol} = 1.2 bar

I.4. Choix de contreventement :

Afin de choisir le contreventement adéquat de notre structure, nous avons consulté le Règlement Parasismique Algérien (RPA)

Classification selon la zone sismique :

BEJAIA est classé en zone IIa (sismicité moyenne)

• Classification de l'ouvrage :

L'ouvrage est classé selon son importance en groupe 2

Bâtiment d'habitation dont la hauteur ne dépasse pas 48 m

En se référant au RPA 99 version 2003 qui exige que pour toutes structures dépassant une hauteur de 48 m en zone II, le type de contreventement sera mixte

I.5. Répartition de surface :

REZ-DE-CHAUSSEE	
Désignation	Surface (m ²)
 02 appartements F4 Vide accès vers cours intérieur 	• S1=96.05 • S2=96.18

Tableau. I. 1. surface rez-de-chaussée

ETAGE COURANTS 1-6	
Désignation	Surface (m ²)
• 03 appartements F4	 S1=96.05 S2=96.18 S3=88.77

Tableau. I. 2. surface des étages courants

ETAGE 7: 1ère NIVEAU DUPLEX	
Désignation	Surface (m ²)
 01 appartement F4 Duplex (Type A) Duplex (Type B) 	 S1=90.29 S2=120.97 S3=135.75

Tableau. I. 3.surface de 1^{er} niveau duplex

ETAGE 8 : 2 ^{ème} NIVEAU DUPLEX			
Désignation Surface (m ²)			
01 appartement F4	• S=90.29		
Terrasse accessible	• S=21.42		

Tableau. I.4.surface de 2^{éme} niveau duplex

I.6. Règlements et normes utilisés :

Notre étude sera faite conformément aux règlements suivants :

- ✓ DTR BC 2.48 : (Règles parasismique Algérienne RPA 99 / version 2003)
- ✓ DTR BC 2.41 : (Règles de conception et de calcul des structures en béton armé)
- ✓ DTR BC 2.2 : (Charges permanentes et charge d'exploitation)
- ✓ DTR BC 2.331 : (Règles de calcul des fondations superficielles)
- ✓ Béton aux états limites BAEL 91/ version 99

I.7. Définition des éléments de l'ouvrage :

I.7.1. Planchers : constitués de corps creux avec une dalle de compression qui forme un diaphragme horizontal rigide et assure la transmission des forces agissantes dans son plan aux éléments de contreventement.

I.7.2. L'escaliers : sont des éléments secondaires réalisés en béton armé coulés sur place Permettant le passage d'un niveau à un autre.

I.7.3. Maconneries:

- les murs extérieurs seront réalisés en doubles cloisons de briques creuses de 30 cm séparées par une âme d'air de 5cm.
- les murs de séparation intérieure seront en une seule paroi de brique de 10 cm.
- **I.7.4.** L'acrotère : c'est un élément en béton armé, contournant le bâtiment, encastré à sa base au plancher terrasse qui est inaccessible.

I.8. Caractéristiques mécaniques des matériaux :

! Le béton :

Le béton choisi est de classe C25, sa composition doit permettre d'obtenir les caractéristiques suivantes :

✓ Résistance caractéristique à la compression (Art A.2.1, 11 CBA93) :

La résistance caractéristique à la compression du béton utilisé à 28 jours est $f_{c28} = 25$ MPa.

✓ Résistance caractéristique à la traction :

La résistance caractéristique à la traction du béton à « j » jours, notée ft_j , est conventionnellement définie par les relations :

$$ft_i = 0.6 + 0.06fc_i$$

Pour j=28 jours et fc28 = $25MPA \Rightarrow ft28 = 2.1MPA$.

✓ Module de déformation longitudinale du béton :

On distingue deux modules de déformation longitudinale du béton ; le module de Young instantané Eij et différé Evj.

 E_{vj} = (1/3).Ei j (Art A.2.1.2.1 CBA93) E_{ij} = 11000(fc $_{ij}$) (Art A.2.1.2.2 CBA93)

* L'acier:

Dans notre projet on a utilisé des armatures rondes lisses de nuance Fe235 et $\,$ de haute adhérence F_eE400 dont la limite d'élasticité vaut 400MPa.

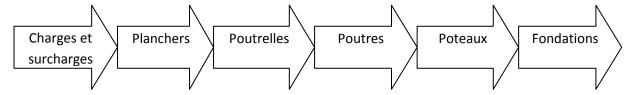
Combinaisons d'actions données par le RPA 99/version 2003 :

➤ Situation durables :{ELU : 1.35G+1.5Q

 $\{ELS:G+Q$

➤ Situation accidentelles :{G+Q±E

 $\{G+Q\pm 1.2\times E \text{ Pour les structures auto-stables.}$


 $\{0.8{ imes}G{\pm}E$

Chapitre II: Pré Dimensionnement des Eléments

II.1.Introduction:

Le but de ce chapitre est de déterminer les différentes dimensions de notre structure, avant d'étudier le projet. Pour déterminer ces dimensions on fait appel aux règlements en vigueur (RPA99 version 2003), BAEL 91, CBA 93.

La transmission des charges se fait comme suit :

II.2. Pré-dimensionnement des éléments secondaires :

II.2.1.Plancher à corps creux :

On appelle planchers l'ensemble des éléments horizontaux de la structure d'un bâtiment destiné à reprendre les charges d'exploitations ou autres charges permanentes (cloisons, chapes, revêtement, et à les transmettre sur des éléments porteurs verticaux (poteaux, voiles, murs).

Les planchers peuvent être constitués d'un ou de plusieurs éléments suivants :

- ✓ Dalle
- ✓ poutrelles
- ✓ Poutres

Ce type de plancher est très couramment utilisé dans la construction de bâtiment.

Il est constitué:

- ✓ De poutrelles préfabriquées en béton armé ou en précontraint, disposées parallèlement et espacées de 0,5 m à 0,7 m;
- ✓ D'entrevous de forme adaptée aux poutrelles (appelés corps creux) en béton, en terre cuite où en polystyrène,
- ✓ D'une dalle de compression supérieure en béton de 4 à 6 cm d'épaisseur, coulée sur l'ensemble des poutrelles-entrevous qui tient lieu de coffrage.

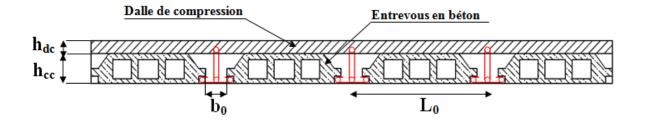


Figure.II.1.coupe transversale d'un plancher à corps creux

 \mathbf{h}_{dc} : hauteur de la dalle de compression.

 h_{cc} : hauteur du corps creux.

 b_0 : largeur de la nervure.

 L_0 : distance entre axe des poutrelles.

Le pré dimensionnement des planchers à corps creux se fait par satisfaction de la condition de flèche donnée par le CBA93 (art : 6.8.4.2.4).

$$h_t \ge \frac{L_{max}}{22.5}$$

L_{max}; longueur maximale entre nus d'appuis selon la disposition des poutrelles adoptées.

h_t: hauteur total du plancher.

$$L_{max} = 4.15 - 0.3 = 3.85 \text{ m}$$

$$h_t \ge \frac{385}{22.5}$$

 $h_t \ge 17.1 \text{ cm}.$

On prend: $h_t=20$ cm soit:

- -Hauteur de dalle de compression h_{dc} = 4 cm.
- -Hauteur de corps creux h_{cc} = 16 cm.

II.2.1.1.Disposition des poutrelles :

Le choix de la disposition des poutrelles se fait en satisfaisant l'un des deux critères suivants :

- -Le critère de la plus petite portée.
- -Le critère de continuité (le maximum d'appuis).

Concernant notre cas, nous avons opté pour le critère de la plus petite portée il permet de réduire les flèches.

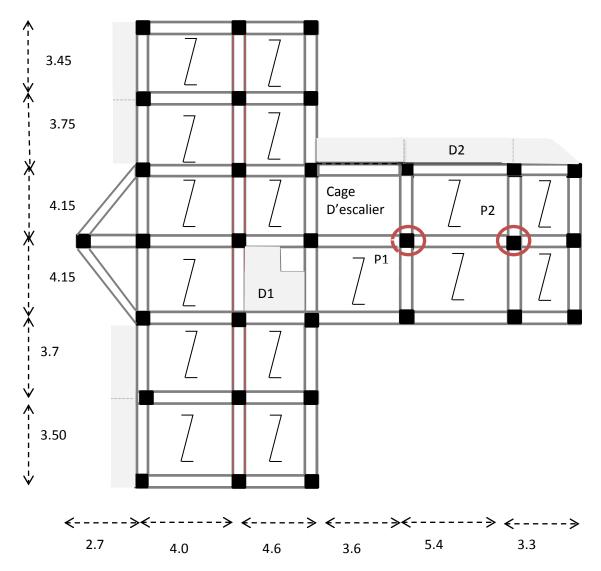


Figure.II.2.Plan de disposition des poutrelles

II.2.1.2.Pré-dimensionnement des poutrelles :

Les poutrelles sont des sections en T en béton armé servant à transmettre les charges réparties ou concentrées vers les poutres principales. Les poutrelles sont disposées parallèlement à la plus petite

portée. Dans le cas où les travées sont identiques, on prend le sens où on a plus d'appuis (critère de continuité).

b: Largeur efficace.

 $\mathbf{b_0}$: Largeur de la nervure, choisie forfaitairement entre 8 et 12 cm.

On prend $\mathbf{b_0} = 10$

h: Hauteur totale de la poutrelle (hauteur du plancher).

h₀: Hauteur de la dalle de compression

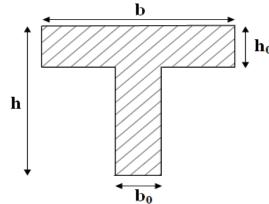


Figure.II.3.Section d'une poutrelle

$$\frac{b - b_0}{2} \le \min(\frac{L_x}{2}; \frac{L_y^{\min}}{10})$$

 L_x : Distance entre nus de deux poutrelles.

 L_v^{min} : Longueur minimale entre nus d'appuis dans le sens de la disposition des poutrelles.

Donc on a ce qui suit:

$$h_t = 20 \text{ cm}; h_0 = 4 \text{ cm}; b_0 = 10 \text{ cm}$$

$$L_x = 65 - 10 = 55 \text{ cm}$$

$$L_y^{\min} = 3.45 - 0.30 = 3.15 \text{ m}$$

$$\frac{b-10}{2} \le \min\left(\frac{55}{2}; \frac{315}{10}\right) \Longrightarrow \frac{b-10}{2} \le \min(27.5, 31.5)$$

 \implies b = 65 cm

II.2.2.Plancher à dalles pleines :

Ce type de planchers est constitué de dalle pleine en béton armé, reposant sur un ensemble d'appuis constitués de poutres ou voiles en béton armé, il est utilisé pour planchers à surcharge élevée généralement. Il est composé d'un ensemble de panneaux de dalles, chaque panneau se calcule indépendamment.

On appelle:

- lx : petite dimension du panneau.

- ly : grande dimension du panneau.

Avec:
$$\rho = \frac{lx}{ly}$$

Le pré dimensionnement des dalles pleines se fait en se basant sur les critères suivants :

✓ critère de résistance :

ete de resistance.
$$\begin{cases}
e \ge \frac{lx}{20} & \text{pour une dalle sur un ou deux appuis en parallèles.} \\
\frac{lx}{35} \le e \le \frac{lx}{30} & \text{pour une dalle sur quatre appuis avec } \rho < 0.4. \\
\frac{lx}{45} \le e \le \frac{lx}{40} & \text{pour une dalle sur trois appuis et une dalle sur 4 appuis avec } \rho \ge 0.4.
\end{cases}$$

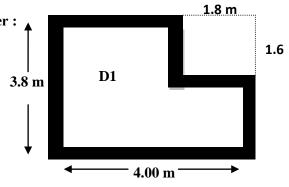
✓ Critère de résistance au feu :

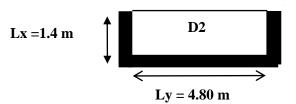
 $\left\{ \begin{array}{l} e \geq 7cm \;\; \mbox{pour une heure de coupe-feu.} \\ \\ e \geq 11cm \;\; \mbox{pour deux heures de coupe-feu.} \\ \\ e \geq 14cm \;\; \mbox{pour trois heures de coupe-feu.} \end{array} \right.$

✓ Dalle sur quatre appuis au niveau de la cage d'escalier :

D1: dalle pleine sur 4 appuis:

$$\rho = \frac{l_x}{l_y} = \frac{3.8}{4.0} = 0.95 \ge 0.4$$


$$\implies$$
 8.44 \le e \le 9.5


D2: Dalle pleine sur trois appuis:

$$\frac{lx}{45} \le e \le \frac{lx}{40}$$

$$\rho = \frac{l_x}{l_y} = 0.3 < 0.4$$

$$3.11 \le e \le 3.5 \text{ cm}$$

On voit bien que les dimensions des panneaux sont petites donc c'est le critère de coupe-feu qui est déterminant

L'épaisseur optée pour l'ensemble des dalles pleines est de 15 cm

II.2.3.Pré –dimensionnement des escaliers :

Les escaliers sont des éléments constitués d'une suite régulière de marches, permettant le passage d'un niveau à un autre, ils sont réalisés en béton armé, coulés sur place.

Dans notre projet on a un escalier à 3 volées qui se localise à tous les niveaux et une cage d'escalier au niveau de deux duplex en bois.

Pour déterminer les dimensions des marches et des contres marches on utilise la formule de Blondel qui est donnée par :

$$59 \le g + 2 \times h \le 64$$

H: la hauteur d'étage 3.06 m

n : nombre de contre marche

L : longueur de la volée

Le nombre de marche est (n-1) = 7 marches.

h: hauteur de la marche
$$\rightarrow$$
 $h = \frac{306}{18} = 17 \text{ cm}$

$$g = \frac{L}{(n-1)} = \frac{210}{7} = 30 \text{ cm}$$

$$59 \text{ cm} \le (2*17) + 30 \le 64$$

Donc la formule de BLONDEL est vérifiée

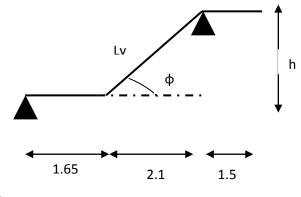


Figure.II.4.Schéma d'escaliers

h=17*8 =136 cm

$$tg\phi = \frac{136}{210} = 0.64$$

$$\phi = 32.92^{0}$$

Donc Lv = 1.76 m

$$L=Lp+Lv = 1.65+1.76= 3.41 \text{ m}$$

$$\frac{L}{30} \le e \le \frac{L}{20}$$
 $\frac{341}{30} \le e \le \frac{341}{20}$

$$11.36 \le e \le 17.05$$

On fixe e = 15 cm

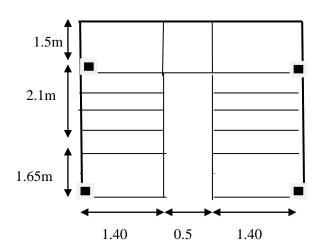


Figure.II.5.Vue en plan d'escalier

II.2.4.Acrotère:

L'acrotère est un élément placé à la périphérie du plancher terrasse cet élément est réalisé en béton armé, son rôle est la protection contre les infiltrations des eaux pluviales, Il sert à l'accrochage des matériels de travaux de l'entretien des bâtiments.

L'acrotère est considéré comme une console encastrée dans le plancher et soumise à son poids propre et une force horizontale

$$=S1+S2+S3=0.06425 \text{ m}^2$$

Poids proper :

$$G = \gamma_b \times S \times 1$$

$$G = 25 \times 0.064 \times 1$$

G=1.6 KN/ml

> Enduit de ciment :

$$G = \gamma_c \times e \times l = 0.4 \text{ KN/ml}$$

$$G_{total} = 1.6 + 0.4 = 2 \text{ KN/ml}$$

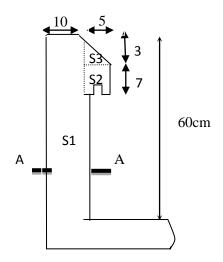


Figure.II.6.Schéma de l'acrotère

II.3.pré-dimensionnement des éléments principaux :

II.3.1.Pré- Pré-dimensionnement des poutres :

D'une manière générale on peut définir les poutres comme étant des éléments porteurs horizontaux, On a deux types de poutres :

A) Poutres principales:

Reçoivent les charges transmises par les solives (poutrelles) et les répartie aux poteaux sur lesquels ces poutres reposent.

On suppose des poteaux de (30×30) cm²

On a:
$$L = (5.4 - 0.3) = 5.1 \text{ m}$$

$$L = 510 \text{ cm}$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \longrightarrow \frac{510}{15} \le h \le \frac{510}{10}$$

 $34 \text{ cm} \le h \le 51 \text{ cm}$

On prend: h = 40 cm et b = 30 cm

Les dimensions des poutres doivent satisfaire à la condition du R.P.A 99 V2003.

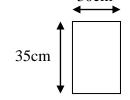
40cm 40cm

 $b = 30cm \ge 20cm$ Condition vérifiée.

 $h = 40cm \ge 35cm$Condition vérifiée.

h/b = 40/30 = 1.33 < 4Condition vérifiée.

B) Poutres secondaires:


Reliant les portiques entre eux pour ne pas basculées. D'après les règles de CBA93 on a :

$$L = (4.45 - 0.3) = 4.15m$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$
 \longrightarrow $\frac{415}{15} \le h \le \frac{415}{10}$ \longrightarrow 27.66 cm $\le h \le 41.5$ cm

On prend: h = 35 cm et b = 30 cm

Les dimensions des poutres doivent satisfaire à la condition du R.P.A 99 V2003.

- b ≥ 20cmCondition vérifiée.
- $h = 35cm \ge 35cm$Condition vérifiée.
- h/b = 35/30 = 1.16 < 4Condition vérifiée.

Les conditions de RPA sont vérifiées donc on adopte pour la poutre principale (40* 30) et (35* 30) pour les poutres secondaires.

II.3.2. Voiles:

L'épaisseur du voile doit être déterminée en fonction de la hauteur libre d'étage et des conditions de rigidité aux extrémités.

Les dimensions du voile doivent satisfaire les conditions du RPA99 suivantes :

- $e \ge h_v / 20.....(2)$.
- L > 4 e.....(3).

2017/2018

Dans notre projet la hauteur libre de l'étage est 3.06 m et la hauteur de RDC est 4.08 m

Donc : Pour le RDC : he = 4.08 - 0.4 = 3.88 m.

Pour les autres étages : he = 3.06 - 0.4 = 2.86 m.

$$e \ge \frac{286}{20} = 13.3 \text{ cm}$$
, Pour RDC: $e \ge \frac{388}{20} = 19.3 \text{ cm}$ on prend: $e = 20 \text{ cm}$.

II.3.3.Évaluation des charges et surcharges :

Plancher terrasse inaccessible :

Couche	Poids volumique (KN/m³)	Épaisseur (m)	Poids (KN/m²)
Protection gravillons	20	0.04	0.8
Etanchéité multicouche	6	0.02	0.12
Isolation thermiques	18	0.015	0.27
Forme de ponte	22	0.1	2.2
Plancher corps creux		0.2	2.85
Enduit de ciment	0.2		
Charge permanent G			6.44
Q étage inaccessible			1

Tableau.II.1.Evaluation des charges Plancher terrasse inaccessible

> Plancher terrasse accessible :

Couche	Poids volumique (KN/m³)	Épaisseur (m)	Poids (KN/m²)
Revêtement en carrelage	20	0.02	0.4
Mortier de pose	20	0.02	0.4
Forme de ponte 10%	22	0.1	2.2
Plancher corps creux		0.2	2.85
Lit de sable	18	0.02	0.36
Enduit de ciment	0.27		
Charge permanent G			6.48
Q étage accessible			1.5

Tableau.II.2.Evaluation des charges plancher terrasse accessible

➤ Planchers à corps creux :

Couche	Poids volumique (KN/m³)	Épaisseur (m)	Poids (KN/m²)
Carrelage	22	0.02	0.44
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.02	0.36
Corps creux	/	16+4	2.85
Cloisons	10	10	1
Enduit de ciment	10	0.02	0.2
Charge permanent G			5.25
Q étages courant			1.5

Tableau.II.3.Evaluation des charges de planchers à corps creux

> Plancher dalle pleine :

Couche	Poids volumique (KN/m³)	Épaisseur (m)	Poids (KN/m²)
Carrelage	22	0.02	0.44
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.02	0.36
Dalle pleine	25	0.12	3.0
Enduit de plâtre	10	0.02	0.2
	4.4		
Q	1.5		
Q (balcon)			3.5

Tableau.II.4.Evaluation des charges revenant au plancher dalle pleine

Murs extérieurs (doubles parois en briques creuses) :

Couche	Épaisseur (m)	Poids (KN/m²)
Enduit de plâtre	0.015	0.15
Briques creuses	0.15	1.35
Lame d'air	0.05	0.00
Briques creuses	0.10	0.90
Enduit de ciment	0.015	0.27
Charge pe	2.67	

Tableau.II.5.Evaluation de charge murs extérieurs

> Evaluation des charges sur les volées :

Couch	e	Poids volumique (KN/m³)	Épaisseur (m)	Poids (KN/m²)
Carrelage	Horizontal	22	0.02	0.69
Carrerage	Vertical	25	0.02h/g	0.09
Montion do noso	Horizontal	20	0.02	0.62
Mortier de pose	Vertical	20	0.02h/g	0.62
Poids des marches		22	h/2	1.87
Paillasse		25	0.15	3.75
Enduit de plâtre 14 0.02			0.02	0.28
Charge permanent G_v			7.21	
Q escalier			2.5	

Tableau.II.6.Evaluation des charges sur les volées

> Evaluation des Charges sur les paliers :

Couche	Poids volumique (KN/m³)	Épaisseur (m)	Poids (KN/m²)
Revêtement	20	0.020	0.4
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.02	0.36
Dalle pleine	25	0.15	3.75
Enduit de plâtre	10	0.02	0.20
Charg	5.11		
Q escalier			2.5

Tableau.II.7.Evaluation des Charges sur les paliers

II.3.4.Pré dimensionnement des poteaux :

Le pré dimensionnement des poteaux se fait selon 3 critères :

- Critère de résistance.
- Critère de stabilité de forme (flambement).
- Conditions de RPA.

Le poteau qu'on va étudier est le poteau le plus sollicité, c'est-à-dire le poteau qui recevra l'effort de compression maximal qu'on va déterminer à partir de la descente de charge.

> Dimension préliminaires et poids des poteaux :

Poids des poteaux : $\rho *s*h_p$ avec : s : surface de poteau et h_p : hauteur d'étage.

RDC + 1^{er} étage : (45*45)......15.49 KN. 2 et 3^{éme} étages : (40*45)......13.77 KN.

4 et $5^{\text{\'eme}}$ étages : (40*40)12.24 KN.

6 et $7^{\text{\'eme}}$ étages : (35*40)......10.71 KN.

8^{éme} étages : (30*40)9.18 KN.

II.3.5. DESCENTE DE CHARGES:

Il s'agit de déterminer les actions mécaniques verticales (charges), s'exerçant sur les éléments porteurs d'une structure niveau par niveau à partir du haut.

La descente de charge va se faire pour les poteaux P_1 et P_2 car ce sont ceux qui représentent les configurations les plus défavorables.

A) P1: Poteau au niveau de la cage d'escalier:

 $S1 = 4.91 \text{ m}^2$

 $S2 = 3.17 \text{ m}^2$

 $S3 = 4.91 \text{ m}^2$

 $S_{cc} = 12.99 \text{m}^2$

 $S_{CE}=1.65*1.925=3.17$

Poids des éléments :

L_{pp}: longueur de la poutre principale 4.2m

L_{ps}: longueur de la poutre secondaire 3.85 m

$$G_{pp}$$
=25*0.4*0.3*4.2= 12.6 KN

$$G_{ps} = 25*0.35*0.3*3.85 = 10.1 \text{ KN}$$

$$\left\{ \begin{array}{l} G_{plancher} = \!\!\! G^* \; S_{aff} \!\!\! = \!\! 5.25^* 12.99 = 68.2 \; \mathrm{KN/m^2} \\ \\ Q_{plancher} \!\!\! = \!\! 1.5^* 12.99 \!\! = \!\! 19.48 \; \mathrm{KN/m^2} \end{array} \right.$$

$$\begin{cases} G_{terrasse} = 83.65 \text{ KN/m}^2 \\ Q_{terrasse} = 12.99 \text{ KN/m}^2 \end{cases}$$

$$\begin{cases} G_{CE} = 16.23 \text{ KN/m}^2 \\ Q_{CE} = 7.94 \text{ KN/m}^2 \end{cases}$$

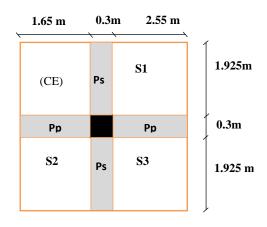


Figure.III.7.Surface afférente P1

Les surcharges d'exploitation reprisent par le poteau étudié seront calculées en respectant la loi de dégression définie par le DTR comme suit :

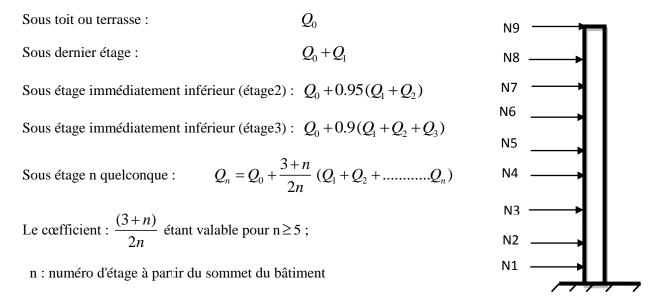


Figure.II.8. Schéma statique de la descente de charge

Niveau	Éléments	G (KN)	Q (KN)
N9	Plancher terrasse inaccessible $G_{pp}+G_{ps}$ Poteau (30x40) cm ²	83.65 22.7 9.18	12.99
	Total	115.53	12.99
	Venant de N9	115.53	12. 99
	Plancher cc $G_{pp}+G_{ps}$	68.2 22.7	19.48
N8	Poteau (35 x 40) cm ² Escalier	10.71 16.23	7.94
	Total	233.37	40.41
N7	Venant de N8 Plancher étage cc G_{pp} $^{+}G_{ps}$ Poteau (35x40) Escalier	233.37 68.2 22.7 10.71 16.23	50.01
	Total	351.2	50.01
N6	Venant de N7 Plancher $G_{pp}+G_{ps}$ Poteau (40 x 40) cm	351.2 68.2 22.7 12.24	65.58

	Escalier	16.23	
	Total	470.58	65.58
N5	Venant de N6 Plancher $G_{pp}^{}G_{ps}$ Poteau (40 x 40) cm ² Escalier	470.58 68.2 22.7 12.24 16.23	79.2
	Total	589.95	79.2
N4	Venant de N5 Plancher $G_{pp}^{+}G_{ps}$ Poteau (40x 45) cm ² Escalier	589.95 68.2 22.7 13.77 16.23	90.91
	Total	710.85	90.91
N3	Venant de N4 Plancher G _{pp} +G _{ps} Poteau (40 x 45) cm ² Escalier	710.85 68.2 22.7 13.77 16.23	100.65
	Total	831.75	100.65
N2	Venant de N3 Plancher $G_{pp}+G_{ps}$ Poteau (45 x 45) cm ² Escalier	831.75 68.2 22.7 15.49 16.23	109.8
	Total	954.37	109.8
N1	Venant de N2 Plancher $G_{pp}+G_{ps}$ Poteau (45 x 45) cm ² Escalier	954.37 68.2 22.7 15.49 16.23	118.9
	Total	1077	118.9

Tableau.II.8.Descente de charge pour P1

Soit : $N_u = 1.35N_G + 1.5N_Q$

 $N_u = 1632.3 \text{ KN}$

Le CBA préconise de majorer Nu de 10%.

 $P_u = 1795.53$ KN.

B) Pour le poteau P2:

Décent de charge pour le poteau 2

$$S = S1 + S2 + S3 + S4$$

$$S1=S3=4.90 m^2$$

 $S2=S4=2.88 m^2$
 $S1+S2+S3+S4=15.5m^2$

$$Lps=1.925+1.925=3.85 m$$

$$\begin{cases} G_{plancer} = G* S_{aff} = 5.25*15.5 = 81.37 \text{ KN/m}^2 \\ Q_{plancer} = 1.5*15.5 = 23.25 \text{ KN/m}^2 \end{cases}$$

$$\begin{cases} G_{terasse~acc} = 99.8 \text{ KN/m}^2 \\ Q_{terasse~acc} = 23.25 \text{ KN/m}^2 \end{cases}$$

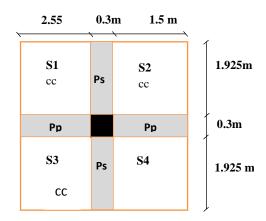


Figure.III.9. Surface afférente P2

Poids des éléments :

$$G_{pp}=25*0.4*0.3*4.05=12.15kN$$

$$G_{ps}$$
=25*0.35*0.3*3.85= 10.1 KN

$$G_{pp} + G_{ps} = 22.25 \text{ KN/m}^2$$

Niveau	Éléments	G(KN)	Q(KN)
N9	Plancher terrasse inacce $G_{pp}+G_{ps}$ Poteau (30x40) cm ²	99.8 22.25 9.18	15.5
	Total	131.23	15.5
N8	Venant de N9 Plancher étage cc $G_{pp}+G_{ps}$ Poteau (35 x 40) cm ²	131.23 81.37 22.25 10.71	38.75
	Total	245.56	38.75
N7	Venant de N8 Plancher étage cc G_{pp} $^+G_{ps}$ Poteau (35x40)	245.56 81.37 22.25 10.71	59.67
	Total	359.89	59.67

	Venant de N7	359.89	
	Plancher CC	81.37	
		22.25	
N6	$G_{pp}+G_{ps}$		70.00
	Poteau (40 x 40) cm	12.24	78.22
	Total	475.75	78.22
	Venant de N4	475.75	
	Plancher cc	81.37	
	$\mathrm{G_{pp}}^{^{+}}\!\mathrm{G}_{\mathrm{ps}}$	22.25	94.55
N5	Poteau (40 x 40) cm ²	12.24	
	Total	591.6	94.55
	Venant de N5	591.6	
	Plancher étage 2	81.37	
	$G_{pp}^{+}G_{ps}$	22.25	108.5
N4	Poteau (40x 45) cm ²	13.77	
	Total	709	108.5
	Venant de N6	709	
	Plancher étage 1	81.37	
	$G_{pp}+G_{ps}$	22.25	120.12
N3	Poteau $(40x 45) \text{ cm}^2$	13.77	
	Total	826.39	120.12
	Venant de N7	826.39	
	Plancher RDC	81.37	
	$G_{pp}+G_{ps}$	22.25	
N2	Poteau $(45 \times 45) \text{ cm}^2$	15.49	131.05
	1 00000 (10 11 10) 0111		101100
	Total	945.5	131.05
	Venant de N2	945.5	
	Plancher cc	81.37	
	$G_{pp}+G_{ps}$	22.25	
N1	Poteau $(45 \times 45) \text{ cm}^2$	15.49	141.98
	Total	1064.6	141.98

Tableau. II. 9.Descente de charge pour P2

Soit : $N_u = 1.35N_G + 1.5N_Q$

 $N_u = 1650.2 \text{KN}$

On majorer Nu de 10%

 P_u =1815.2 KN

Les calculs montrent que le poteau P2 est le plus sollicitée sous charge verticales.

II.3.5.1. Vérifications nécessaires :

✓ Vérification du poteau RDC :

• Vérification à la compression simple :

On doit vérifier la condition suivante

$$\sigma_{bc} = \frac{N_u}{B} \le \overline{\sigma_{bc}}$$

Avec B: section du béton et $\frac{}{\sigma_{bc}} = \frac{0.85 \times f}{c28} = 14.2 \text{MPa}$

$$B \ge \frac{N_u}{\sigma_{hc}} \Rightarrow B \ge \frac{1815.2 \times 10^{-3}}{14.2} = 0.127 \text{m}^2$$

On a: $B = 0.45 \times 0.45 = 0.202 \, m^2$.

 $B = 0.202 \text{m}^2 > 0.127 \text{cm}^2$. Condition vérifiée

• Vérification au flambement

$$N_{u} \le \alpha \times \left[\frac{B_{r} \times f_{c28}}{0.9 \times \gamma_{b}} + \frac{A_{s} \times f_{e}}{\gamma_{s}} \right]$$
 CBA 93 (Article B.8.2.1)

B_r: Section réduite du béton.

A_s: Section des armatures.

γ_b : coefficient de sécurité de béton.

γ_s: coefficient de sécurité des aciers.

 α : Coefficient en fonction de l'élancement λ .

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} \to 0 < \lambda \le 50. \\ 0.6 \times (\frac{50}{\lambda})^2 \to 50 < \lambda \le 70. \end{cases}$$

On calcule l'élancement $\lambda = \frac{l_f}{i}$.

l_f: Longueur de flambement.

 l_0 : Longueur du poteau.

$$i$$
: Rayon de giration : $i = \sqrt{\frac{I}{B}}$

I:Moment d'inertie :
$$I = \frac{h_1 \times b_1^3}{12}$$

$$l_f = 0.7 \times l_0 = 0.7 \times 2.86 = 2.0 \text{m}.$$

$$I = 3.41 \times 10^{-3}$$
 m^4

$$i = 0.130 \text{ m}$$

$$\lambda = \frac{2.0}{0.130} = 15.38 < 50$$

$$\alpha = \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} = 0.80$$

D'après le BAEL91 on doit vérifier :

 $As \ge 0.8\% \times Br \Longrightarrow on \ pend \ As = 1\% \times Br$

$$B_{r} \ge \frac{N_{u}}{\alpha \times \left[\frac{f_{c28}}{0.9 \times \gamma_{b}} + \frac{f_{e}}{100 \times \gamma_{s}}\right]} \longrightarrow Br \ge \frac{1815.2}{0.8 \times \left[\frac{25 * 10^{3}}{0.9 * 1.5} + \frac{400}{100 * 1.15}\right]}$$

Br $\geq 0.122 \ m^2$

Or nous avons:

$$B_r = (45-2) \times (55-2) \times 10^{-4} = 0.23 m^2$$

 $0.189 > 0.122 \Longrightarrow$ Donc le poteau ne risque pas de flambement.

• Vérification des poteaux au flambement :

Nivosuv	Niveaux Nu (KN) Sections (cm ²)		Condition	Br≥Br _{calculée}	Observation
Niveaux			Br (m ²)	Br calculée (m²)	
RDC et 1 ^{er} étage	1815.2	45x45	0.18	0.12	vérifiée
2eme et 3eme étage	1425.38	40x45	0.163	0.09	Vérifiée
4eme et 5eme étage	1034.53	40x40	0.144	0.069	Vérifiée
6 ^{eme} et 7 ^{eme} étage	632.89	35x40	0.125	0.042	Vérifiée
8eme étage	220	30x40	0.106	0.014	vérifiée

Tableau.II.10. Vérification des poteaux aux flambements

II.4.Conclusion:

Le pré dimensionnement se fait dans le but d'avoir une estimation des dimensions des éléments structuraux et non structuraux tout en satisfaisant les exigences des différents règlements

Ainsi ; nous avons procédé au pré dimensionnements des poutres en satisfaisant le critère de flèche ainsi que les minimums RPA. Les dimensions des poutres ont alors été fixées à :

-poutres principales : $(b*h) = (30*40) \text{ cm}^2$

-poutres secondaires : $(b*h) = (30*35) \text{ cm}^2$

Les dimensions des poteaux se fait à la compression selon les règles du BAEL, sont fixées à :

-poteaux du RDC et $1^{\text{\'er}}$ étage : (45*45) cm²

-Poteaux $2^{\text{\'eme}}$ et $3^{\text{\'eme}}$ étages :(40*45) cm²

- Poteaux $4^{\text{\'eme}}$ et $5^{\text{\'eme}}$ étages :(40*40) cm²

- Poteaux 6^{éme} et 7^{éme} étages :(35*40) cm²

- Poteaux $8^{\text{\'eme}}$ étages :(30*40) cm²

Chapitre III: Etude des Eléments Secondaires

III.1. Introduction:

Dans ce chapitre on s'intéressera uniquement à l'étude des éléments non structuraux qui ne font pas partie du système de contreventement (différents planchers, escalier, acrotère et l'ascenseur). Cette étude se fait en suivant le cheminement suivant :

Évaluation des charge sur l'élément considéré, calcul des sollicitations les plus défavorables, puis détermination de la section d'acier nécessaire pour reprendre les charges en question toutes on respectant la règlementation en vigueur, et on termine avec les vérifications nécessaires.

III.2. Calcul des planchers : Le choix du type de plancher dépend de son utilisation, il doit satisfaire les conditions suivantes

- -Résistance mécanique en supportant les sollicitations externes.
- Limitation des flèches pour éviter les désordres dans les cloisons et revêtements.
- -La résistance au feu.

III.2.1.Plancher à corps creux : Pour le plancher à corps creux le calcul ce fera pour les poutrelles et la dalle de compression

Différents types de poutrelles : la disposition des poutrelles est présentée dans la figure **(Figure.II.2),** cette dernière génère 03 types de poutrelles pour le plancher terrasse inaccessible **(Tableau .III.1)** et 04 types de poutrelles pour le plancher étage courant **(Tableau III.2)**.

Tablea	u.III.1. Difféi	rents types des poutrelles plancher terrasse inaccessible
Etages	Types	Schéma statique
Plancher terrasse inaccessible	2 3	3.5m 3.7 4.15m 4.15m

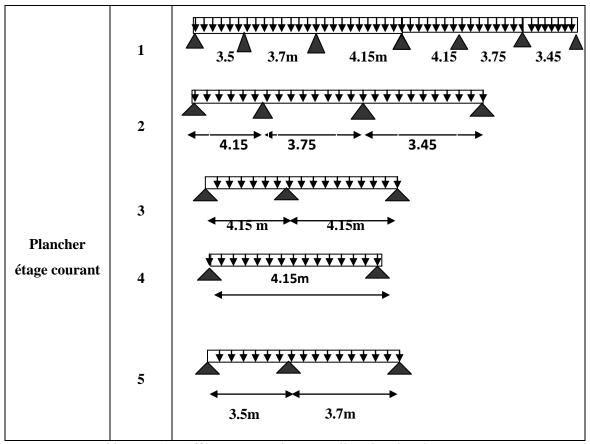


Tableau.III.2. Différents types des poutrelles plancher étage courant

Calcul des charges revenant aux poutrelles :

Les méthodes utilisées pour le calcul des poutres continues en béton armé sont :

- > Méthode forfaitaire
- Méthode de Caquot

III.2.1.1. Calcul des sollicitations :

-A L'ELU :
$$Q_U = 1.35G + 1.5Q$$

$$P_U = l_0 \times Q_U \quad \text{(En KN/m}^2). \label{eq:PU}$$

-A L'ELS :
$$Q_S = G + Q$$

$$P_S = l_0 \times Q_S \quad \text{(En KN/m}^2\text{)}.$$

Avec : l_0 est l'entre-axe des poutrelles : l_0 =65 cm

Nature	G (KN/m ²)	Q (KN/m ²)	l_0	p _u (KN/ml)	p _s (KN/ml)
Terrasse inaccessible	6.44	1.0	0.65	6.62	4.83
Terrasse accessible	6.48	1.5	0.65	7.15	5.18
Etage courant	5.25	1.5	0.65	6.07	4.38

Tableau.III.3.Evaluation des charges et surcharges sur poutrelles

Conditions d'application de la méthode forfaitaire : voir l'annexe (1).

Exemple de calcul d'une poutrelle du type (5) plancher étage courant :

- $G = 5.25 \text{ KN/m}^2$.
- $Q = 1.5 \text{ KN/m}^2$.
- $P_U = 6.07 \text{ KN/ml}.$

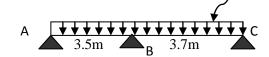


Figure.III.1.Schéma statique de la poutrelle type 5

- Vérification des conditions d'application de la méthode forfaitaire :
- Q=1.5 < min $(2*5,25;5) = 5 \text{ KN/m}^2 \dots \text{vérifiées}$
- 0.8 < 3.5/3.7 < 1.25vérifiées
- L'inertie est constante.vérifiées
- Fissuration peu nuisible.vérifiées

Les conditions sont vérifiées, alors la méthode forfaitaire est applicable

• Les moments isostatiques:

> A l'ELU:

 $Mo=Pu*L^2/8$

 $M_{0.AB}=6.07*(3.5)^2/8=9.25$ KN.m

 $M_{0BC}=6.07*(3.7)^2/8=10.38$ KN.m

> A l'ELS:

 $Mo=Ps*L^2/8$

 $M_{0.AB} = 4.38*(3.5)^2/8 = 6.70$ KN.m

 $M_{0 BC}=4.38*(3.7)^2/8=7.49$ KN.m

• Les moments en appuis :

➤ L'ELU:

-Appuis de rive : le moment est nul, mais le BAEL exige de mètre des aciers de fissuration

$$M_A=M_C=-0.15*max (M_{0 AB}, M_{0 BC})=-1.38 KN.m$$

-Appuis intermédiaire :

$$M_B = -0.6 \text{ max } (M_{0 \text{ AB}}, M_{0 \text{ BC}})$$

$$M_B$$
= -0.6 max (9.29; 10.38) = -6.23 KN.m

> L'ELS:

$$M_B = -0.6 \text{ max } (6.70; 7.49) = -4.49 \text{ KN.m}$$

• Les moments en travées :

Soit:
$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+5.25} \Rightarrow \alpha = 0.22$$

> L'ELU:

✓ Travée AB:

Mt=max (6.46 KN.m; 5.88 KN.m)

Donc: Mt=6.46 KN.m

✓ Travée BC:

$$Mt + \frac{6.23 + 0}{2} \ge 1.05 * 10.38 \dots 1 \longrightarrow Mt \ge 7.78 \text{ KN.m}$$

$$Mt \ge \frac{1.2 + 0.3\alpha}{2} * 10.38 \dots 2 \longrightarrow Mt \ge 6.57 \text{KN.m}$$

Mt=max (7.78 KN.m; 6.57 KN.m)

Donc: Mt=7.78 KN.m

Diagramme des moments fléchissant

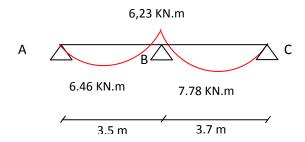


Diagramme des moments fléchissant de la poutrelle type 1 planché étage courant

• Évaluation des efforts tranchants :

✓ Travée AB :

$$\begin{cases} V_{A} = \frac{6.07(3.5)}{2} = 10.62KN \\ V_{B} - 1.15VA = -1.15(10.62) = -12.21KN \end{cases}$$

✓ Travée BC:

$$\begin{cases} V_{\text{B}} = 1.15 * \text{Vc} = 1.15 * (\frac{6.07 * (3.7)}{2}) = 12.91 \text{KN} \\ V_{\text{C}} = -\frac{6.07 * (3.7)}{2} = -11.23 \text{KN} \end{cases}$$

Donc: L'effort tranchant maximal:

Les résultats de calcul pour les autres types de poutrelles sont résumés dans les tableaux (**Tableau.III.4**) et (**Tableau.III.5**).

	3.5	3.7	4.15 4.15	3.75 3.45	
TYPE 1		ELU		E	LS
Æ 1	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$	$V^{\max}(KN)$	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(K\!N.m)$
	-5.33	8,7	12.59	-3.85	6.29
		4.15	4.15		
TYPE 2		ELU		E	LS
E 2	$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$	V ^{max} (KN)	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$
	-7,84	10.016	14.48	-5.68	7.24
		4.15	3.75	3.45	
TYPE 3		ELU	3.73	_	LS
E 3	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$	V ^{max} (KN)	$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$

	-6.53	10,66	13.85	-4.72	7.71
		***	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 4.15		
TYI		ELU		E	LS
TYPE 4	$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$	$V^{\max}(KN)$	$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{\max}(KN.m)$
	-1.96	13.06	12.59	-1.41	9.44
		3.5	3.7	**	
TYI		ELU		E	LS
TYPE 5	$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{ ext{max}}(KN.m) M_{trav\acute{e}e}^{ ext{max}}(KN.m)$		$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$
	-6.23	7.96	12.91	-4.50	5.75

Tableau.III.4.Résumé des sollicitations dans les différents types de poutrelles (plancher étage)

			3.5 3.7				
TYPE 1		ELU		E	LS		
E 1	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\max}(KN.m)$	$V^{\max}(KN)$	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{ ext{max}}(KN.m)$		
	-6.8	8.5	14.09	-4.96	6.2		
		4	1.15 4.15	****			
TYPE 2		ELU		E	LS		
E 2	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\max}(KN.m)$	$V^{\max}(KN)$	$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{\max}(KN.m)$		
	-8.56	10.7	15.81	-6.23	7.8		
TYPE 3			3.75 3.49	5			
3	ELU ELS						

$M_{appui}^{\mathrm{max}}(KN.m)$	$M_{trav\acute{e}e}^{ m max}(KN.m)$	$V^{\max}(KN)$	$M_{appui}^{\max}(KN.m)$	$M_{trav\acute{e}e}^{\mathrm{max}}(KN.m)$
-6.98	8.73	14.28	-5.1	6.37

Tableau.III.5.Résumé des sollicitations dans les différents types de poutrelles (plancher terrasse)

III.2.1.2.Ferraillage des poutrelles :

Exemple de calcul poutrelle étage courant (type 5)

$$M_t = 7.96 \text{ KN.m}$$
 $M_a = -6.23 \text{ KN.m}$
3.5

> En travée :

 $V^{\text{max}} = 12.91 KN$

Le calcul se fera pour une section en T soumise à la flexion simple.

$$M_{tu} = f_{bu} \times b \times h_0 (d - \frac{h_0}{2})$$

Si $M_u \le M_{tu}$ la table n'est pas entièrement comprimée, l'axe neutre est dans la table de compression.

On calcule une section rectangulaire ($b \times h$).

Si $M_u > M_{tu}$ On calcule une section en T.

$$M_{tu} = b \times h_0 \times f_{bu} \times (d - h_0/2) = 0.65 \times 0.04 \times 14.2 \times 10^3 \times (0.18 - 0.02)$$

 $M_{tu} = 59.07 \text{KN.m}$

Donc : $M_t < M_{tu} \Longrightarrow Le$ calcul sera mené pour une section rectangulaire (b×h)

$$\mu_{bu} = \frac{M^t}{b \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{7.96 \times 10^{-3}}{0.65 \times 0.18^2 \times 14.2} = 0.026 < \mu_l = 0.392$$

$$\mu_{bu} < 0.186 \Longrightarrow \text{Pivot A}: \quad \xi_{st} = 10\% \Longrightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.034$$

$$Z = d (1-0.4 \alpha) = 0.18 (1-0.4 \times 0.034) = 0.177 \text{ m}.$$

$$A_t = \frac{Mt}{Z \times f_{ct}} = 1.29 \text{ cm}^2$$

Amin= $(0.23 \times b \times d \times f_{t28}) / f_e \le A_{cal}$

Amin=0.23×0.65×0.18×2.1/400=1.41cm²

On ferraille avec A_{min} donc on opte pour 3HA10 avec A= 2.36cm.

En appuis :

La table de compression est tendue, un béton tendue n'intervient pas dans la résistance donc le calcul se ramène à une section rectangulaire $(b_0 \times h)$.

✓ Appuis intermédiaires :

 M^{a}_{inter} = -6.23 KN.m.

$$\mu_{bu} = \frac{M_U}{b_0 \times d^2 \times f_{bU}} = \frac{6.23 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.135$$

$$\mu_{bu} < 0.186 \implies \text{Pivot A: } \xi_{st} = 10\% \implies f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\mu_{bu} < \mu_{l} \Longrightarrow A' = 0$$

$$z = d \times (1 - 0.4 \times \alpha)$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0.135}) = 0.182$$

$$Z = 0.18 \times (1 - 0.4 \times 0.182) = 0.167 m$$

$$A_a = \frac{M_U}{Z \times f_{st}} = \frac{6.23 \times 10^{-3}}{0.167 \times 348} = 1.07 \text{ cm}^2$$

✓ Appuis de rives :

$$M_{rive}^a = -1.59 \text{ KN.m}$$

$$\mu_{bu} = \frac{M_U}{b_0 \times d^2 \times f_{bU}} = \frac{1.59 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.034$$

$$\mu_{bu} < 0.186 \Longrightarrow \text{Pivot A: } \xi_{st} = 10\% \Longrightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\mu_{bu} < \mu_{I} \Longrightarrow A' = 0$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0.034}) = 0.043$$

$$Z = 0.18 \times (1 - 0.4 \times 0.043) = 0.177 \, m$$

$$A_a = \frac{M_U}{Z \times f_{st}} = \frac{1.59 \times 10^{-3}}{0.177 \times 348} = 0.26 \text{ cm}^2$$

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 0.1 \times 0.18 \times \frac{2.1}{400} = 0.21 \text{cm}^2$$

 $A_a > A_{\min}$Condition vérifiée

On opte pour 1HA10 avec $A = 0.79 \text{ cm}^2$.

• Vérification au cisaillement :

On doit vérifier que :

$$\begin{split} &\tau_{_U} = \frac{V_{_U}}{b_{_0} \times d} \leq \overline{\tau_{_u}} \\ &\overline{\tau_{_u}} = \min\left[0.2 \frac{f_{_{c28}}}{\gamma_{_b}} ; \text{5MPa}\right] = 3.33 \text{ MPA} \end{split}$$

$$V^{\text{max}} = 12.91 KN$$

$$\tau_{U} = \frac{V_{U}}{b_{0} \times d} = \frac{12.91 \times 10^{-3}}{0.1 \times 0.18} = 0.71 Mpa$$

(Il n'y'a pas de risque de rupture par cisaillement).

• Ferraillage transversal:

Le diamètre Φ_t des armatures transversales est donne par :

$$\Phi_t \le \min \{h_t / 35, b_0 / 10, \Phi_L\}$$

 Φ_L : diamètre minimale des armatures longitudinale (Φ_L =8mm).

$$\Phi_t \le \min \{200/35, 12/10, 8\} = 5.71 \text{mm}$$

On adopte à un étrier Φ 6.

Donc la section d'armatures transversales sera : A_t =2 Φ 6=0.57cm²

• Espacement S_t :

L'espacement des cours successifs d'armatures transversales doit satisfaire les conditions suivantes:

1).St
$$\leq$$
 min (0.9d, 40cm) \Rightarrow St \leq 16.2cm

$$2).St \le A_t \frac{0.8 f_e(\sin\alpha + \cos\alpha)}{b_0(\tau_u - 0.3 f_{tj} K)}$$

Flexion simple

Fissuration peut nuisible \Rightarrow K=1

Pas de reprise de bétonnage

 $\alpha = 90^{\circ}$ (Armature droit).

$$St \le A_t \frac{0.8 \times f_e}{b_0 \times (\tau_u - 0.3 \times f_{t28})} \Rightarrow St = 0.57 \times \frac{0.8 \times 400}{10 \times (0.71 - 0.3 \times 2.1)} = 228cm$$

 $St \le 228 \text{ cm}$

3).St
$$\leq \frac{A_t \times f_e}{0.4 \times b_0} \Rightarrow \text{St} \leq \frac{0.57 \times 10^{-4} \times 400}{0.1 \times 0.4} = 0.57m = 57cm$$

St = min(1; 2; 3)

Soit: St = 15cm.

• Vérification des armatures longitudinales aux voisinages des appuis :

> Appuis de rive:

On doit vérifier que : $As \ge 1.15 \times V_u/f_e$

$$A_s$$
= 2.36+1.13= 3.49cm²

$$1.15 \times 12.91 \times 10^{-3} / 400 = 0.036 \text{cm}^2$$

 $A_s > 1.15 \times V_u / f_e$ Condition vérifiée.

> Appuis intermédiaires :

$$A_1 \ge \frac{1.15}{f_e} * \left[V_U + \frac{M_a}{0.9 * d} \right]$$

$$A \ge \frac{1.15}{f_e} * \left[12.91 - \frac{6.23}{0.9*0.18} \right] * 10^{-3} = -7.34 \text{ aucune v\'erification à faire.}$$

• Vérification de la contrainte de cisaillement à la jonction table –nervure:

On doit vérifier que :
$$\tau_u = \frac{b_1 \times V_u}{0.9 \times d \times b \times h_0} \le \overline{\tau_u}$$

$$\overline{\tau_u} = \min \left(0.2 \frac{f_{c28}}{\gamma_b}; 5 \right) MPa$$

Tel que:
$$b_1 = \frac{(b-b_0)}{2} = 0.275$$

$$\tau_u = \frac{0.275 \times 12.59 \times 10^{-3}}{0.9 \times 0.18 \times 0.65 \times 0.04} = 0.82 \le \frac{1}{\tau_u} = 3.33 \text{Mpa} \dots \text{Condition vérifiée.}$$

(Il n' y'a pas de risque de rupture par cisaillement).

• Vérifications à l'ELS :

> En travée

1) On doit vérifier que :

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 \text{ f}_{c28}$$

$$\sigma_{bc}^{-} = 0.6 \times f_{c28} = 15 \text{MPa}.$$

Position de l'axe neutre :

$$H = b\frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = 0.65 \times \frac{0.04^2}{2} - 15 \times 2.36 \times 10^{-4} \times (0.18 - 0.04) = 2.44 \times 10^{-5} \text{ m}$$

H>0 (alors l'axe neutre passe par la table de compression) \Rightarrow calcule comme une section rectangulaire b x h.

$$\frac{b}{2}y^2 + 15Ay - 15 \text{ Ad}$$

$$32.5y^2 + 35.4y - 637.2 = 0$$

Après les résolutions de l'équation y= 3.84 cm

Calcul de I:

$$I = \frac{b \times y^3}{3} + 15A_{sc} (y - d')^2 + 15A_{st} (d - y)^2$$

I=5867.3 cm⁴

$$\sigma_{bc} = \frac{5.75 \times 10^{-3}}{5867.3 \times 10^{-8}} \times 0.0327 = 3.2MPa$$

 σ_{bc} < 15MPa Condition vérifiée

> En appuis:

$$M_{ser}^{\text{max}} = -4.5 Kn.m$$

$$H = \frac{bh_0^2}{2} - 15A (d-h_0)$$

 $H=24.4 \text{ cm} > 0 \text{ section (b} \times \text{h)}$

$$\frac{b}{2}y^2 + 15Ay - 15 \text{ Ad}$$

$$32.5y^2 + 7.5y - 135$$

$$Y=7.15$$
 cm

$$I = \frac{b \times y^{3}}{3} + 15A_{sc} (y - d')^{2} + 15A_{st} (d - y)^{2}$$

 $I=3990.78 cm^4$

$$\sigma_{bc} = \frac{4.5 \times 10^{-3}}{3990.78 \times 10^{-8}} \times 0.0715 = 8.06 MPa < 15 \text{ MPa}$$

$$\sigma_{bc}$$
 < 15MPa

• Evaluation de la flèche : BAEL 91(Article B.6.5) et le CBA 93.

On prend comme un exemple de calcul la poutrelle isostatique (type 4) .Si l'une de ses conditions cidessous n'est pas satisfaite la vérification de la flèche devient nécessaire :

$$\bullet \quad \frac{h}{1} \ge \frac{1}{16}$$

h : Hauteur de la poutrelle.

L : Longueur de la travée.

M_t: Moment en travée.

$$\bullet \quad \frac{h}{l} \ge \frac{M_t}{10 \times M_0}$$

M₀: Moment isostatique de cette travée.

$$\bullet \quad \frac{A}{b_0 \times d} \leq \frac{4.2}{f_e}$$

A : Section des armatures choisies.

On a : $\frac{h}{l} = \frac{20}{370} = 0.054 < \frac{1}{16} = 0.062$ non vérifié donc on doit faire une vérification de la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}$$

$$f_{adm} = (\frac{l}{500}) = \frac{370}{500} = 0.74cm$$

 f_{gv} et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 $f_{\it ji}$: Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 $f_{\it pi}\,$: Flèche due à l'ensemble des charges appliquées (G + Q).

✓ Evaluation des moments en travée :

 $q_{jser} = 0.65 \times G'$: La charge permanente qui revient à la poutrelle au moment de la mise en œuvre des cloisons.

 $q_{\it gser} = 0.65 \times G$: La charge permanente qui revient à la poutrelle.

 $q_{\it pser} = 0.65 \times (G+Q)$: La charge permanente et la surcharge d'exploitation.

$$I_0 = \frac{b \times h^3}{12} + 15 \times A_s \times (\frac{h}{2} - d'')^2 = 0.000186m^4$$

$$M_{jser} = \frac{q_{jser} \times l^2 \times (l^\circ)}{8} = 3.70 \text{ KN.m.}$$

$$M_{gser} = \frac{q_{gser} \times l^2 \times (l^\circ)}{8} = 6.82 \text{ KN.m.}$$

$$M_{pser} = \frac{q_{pser} \times l^2 \times (l^\circ)}{8} = 8.78 \text{ KN.m.}$$

✓ Contraintes
$$(\sigma_s)$$
:
$$\sigma_{sj} = 15 \times \frac{M_{Jser} \times (d-y)}{I} = 94.07 \text{ MPa}$$

$$\sigma_{sg} = 15 \times \frac{M_{gser} \times (d - y)}{I} = 173.30 \text{ MPa}$$

$$\sigma_{sp} = 15 \times \frac{M_{pser} \times (d - y)}{I} = 222.82 \text{ MPa}$$

✓ Inerties fictives (If):

Sous j:

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} = 8 \times 10^{-5} \quad m^4$$

$$If_{iv} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_j} = 12.5 \times 10^{-5} \quad m^4$$

Sous p:

$$Ifi = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} = 6.01 \times 10^{-5} \quad m^4$$

$$\begin{cases} \mu_j = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}} = 0.5 \\ \mu_g = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} = 0.68 \end{cases}$$

$$\mu_p = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}} = 0.75$$

sous g:

$$\begin{split} & \text{If}_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} = & 6.39 \times 10^{-5} \ \text{m}^4 \\ & \text{If}_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} = & 10.8 \times 10^{-5} \ \text{m}^4 \end{split}$$

If
$$v = \frac{1.1 \times I_0}{1 + \lambda v \times \mu_p} = 10.4 \times 10^{-5} \quad m^4$$

✓ Evaluation des flèches :

$$f_{ji} = \frac{M_{jser}.L^{2}}{10.E_{i}.If_{ij}} = 1.96 \text{ mm}$$

$$f_{gi} = \frac{M_{gser}.L^{2}}{10.E_{i}.If_{ig}} = 4.5 \text{ mm}$$

$$f_{pi} = \frac{M_{pser}.L^{2}}{10.E_{i}.If_{ip}} = 6.15 \text{ mm}$$

$$f_{gv} = \frac{M_{pser}.L^{2}}{10.E_{v}.If_{gv}} = 7.94 \text{ mm}$$

✓ La flèche totale Δf :

$$\Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi} = (7.94 - 1.96 + 6.15 - 4.5) = 7.63 mm$$

 $\Delta f = 7.63mm \ge f_{adm} = 7.4mm$ la flèche n'est pas vérifiée On doit augmenter la section de l'acier 3H12 = 3,39 cm

Les résultats de calcul sont résumés dans le tableau suivant :

Lableau.III.6. Verificatios de la fleche	

Y (m)	I (cm ⁴)	$I_0 (m^4)$	Ev (MPa)	Ei (MPa)	f_{gv} (mm)	f_{ji} (mm)	f_{pi} (mm)	f_{gi} (mm)
0.0458	0.0001123	0.00020	10818,8656	32456,5969	6.20	1.45	4.40	3.24

 $\Delta f = 5.902mm \le f_{adm} = 7.4mm.....$ la flèche est vérifiée

Pour les autres types de plancher étage courant on procède de la même manière pour le calcul du ferraillage à l'ELU et les vérifications à l'ELS. Les résultats sont présentés dans les tableaux (III.7) et (III.8) suivants :

Tableau.III.7. Ferraillage les différant types poutrelles étages courant

Poutrelle	$\mu_{ m bu}$	A	Z (m)	Acalculée	\mathbf{A}_{\min}	$A_{adopt\acute{e}}$ (cm ²)	Ferraillage
Type 1	₽bu	71	2 (m)	(cm ²)	(cm ²)	radopte (CIII)	transversal
Travée	0.029	0.036	0.177	1.40	1.41	2HA10=1.57	
Appui intermédiaire	0.115	0.154	0.168	0.9	0.22	1HA8+1HA10=1. 29	
Appui de rive	0.03	0.038	0.177	0.23	0.22	1HA8=0.5	
Poutrelle Type 2	$\mu_{ m bu}$	A	Z (m)	A _{calculée} (cm ²)	A _{min} (cm ²)	A _{adopté} (cm ²)	
Travée	0.033	0.042	0.177	1.63	1.41	2HA12=2.26	
Appui intermédiaire	0.170	0.253	0.163	1.38	0.22	2HA10=1.57	A
Appui de rive	0.042	0.054	0.176	0.32	0.22	1HA10=0.79	=1
Poutrelle Type 3	$\mu_{ m bu}$	A	Z(m)	A _{calculée} (cm ²)	A _{min} (cm ²)	$A_{adopt\acute{e}}$ (cm ²)	A=1 cm ² =2Ø8
Travée	0.0357	0.045	0.1768	1.73	1.41	2HA12= 2.26	
Appui intermédiaire	0.142	0.192	0.166	1.12	0.22	2HA10=1.57	
Appui de rive	0.042	0.054	0.176	0.32	0.22	1HA10=0.79	
Poutrelle Type 4	$\mu_{ m bu}$	A	Z (m)	A _{calculée} (cm ²)	A _{min} (cm ²)	A _{adopté} (cm ²)	
Travée	0.043	0.055	0.176	2.13	1.41	3HA10	
Appui de rive	0.042	0.054	0.176	0.32	0.22	1HA8	

Poutrelle			7 (m)	Acalculée	$\mathbf{A}_{\mathbf{min}}$	A _{adopté} (cm ²)	
Type 5	$\mu_{ m bu}$	A	Z (m)	(cm ²)	(cm ²)		
Travée	0,026	0,0338	0,177	1,28	1,41	3HA12=3.39	
Appui intermédiaire	0.135	0.182	0.167	1.07	0.22	2HA10=1.57	
Appui de rive	0.033	0.042	0.177	0.25	0.22	1HA10=0.79	

Tableau.III.8. Ferraillage les différent types poutrelles terrasse inaccessible

Poutrelle	μ _{bu}	α	Z (m)	A _{calculée}	A _{min}	A _{adopté} (cm ²)	Ferraillage
Type 1	, 54		,	(cm ²)	(cm ²)	adopte ()	transversal
Travée	0.028	0.036	0.177	1.377	1.41	2HA10=1.57	
Appui intermédiaire	0.148	0.2	0.165	1.17	0.22	2HA10=1.57	
Appui de rive	0.037	0.047	0.176	0.27	0.22	1HA10=0.79	
Poutrelle Type 2	$\mu_{ m bu}$	α	Z (m)	A _{calculée} (cm ²)	A _{min} (cm ²)	A _{adopté} (cm ²)	
Travée	0.036	0.045	0.176	1.74	1.41	2HA12=2.26	A=1
Appui intermédiaire	0.185	0.259	0.161	1.52	0.22	2HA10=1.57	A=1 cm2=2Ø8
Appui de rive	0.46	0.059	0.175	0.34	0.22	1HA10=0.79	2Ø8
Poutrelle Type 3	$\mu_{ m bu}$	α	Z (m)	A _{calculée} (cm ²)	A _{min} (cm ²)	A adopté (cm²)	
Travée	0.029	0.037	0.177	1.41	1.41	2HA10=1.57	
Appui intermédiaire	0.151	0.206	0.165	1.21	0.22	2HA10=1.57	
Appui de rive	0.038	0.048	0.176	0.28	0.22	1HA10=0.79	

• Résumé des vérifications nécessaires :

> A l'ELS:

Vérifications des contraintes : tel que : σ_{adm} =0.6 f_{c28} =15 MPa

Tableau.III.9. Vérification des contraintes aux états limites (étage)

Les types		Vérifi	cations des	contrainte	es pour éta	ge courant	
Etage courant	Position	M ^s (KN.m)	$A_s(cm^2)$	Y (cm)	I (cm ⁴)	Contraintes $\sigma_{bc} < \sigma_{adm}$	observation
Type 1	Travée	6.29	1.57	3.27	5867.3	3.5 < 15	vérifiée
	appui	-3.85	1.29	6.63	3472.95	7.35 <15	vérifiée
Type 2	Travée	7.24	2.26	3.84	8023.96	3.46 < 15	vérifiée
	appui	-5,68	1.57	7 ,15	3990.78	10.17<15	vérifiée
Type 3	Travée	7.71	2.26	3.84	8023.97	3.69 < 15	vérifiée
	appui	-4.72	1.57	7.15	3990.78	8.46 < 15	vérifiée
Type 4	Travée	9.44	2.36	3.91	8323.04	4.43 <15	vérifiée
	appui	-1.41	1.57	1.92	2092.6	1.29 <15	Vérifiée
Type 5	Travée	5.75	2.36	3.27	5867.3	3.2 < 15	vérifiée
	appui	-4.5	1.57	7.15	3990.78	8.06 < 15	Vérifiée

Tableau.III.10.Vérification des contraintes aux états limites (terrasse)

Les types		Vérifications des contraintes pour la terrasse							
Terrasse	Position	M ^s (KN.m)	$A_s(cm^2)$	Y (cm)	I (cm ⁴)	Contraintes	observation		
						$\sigma_{\rm bc} < \sigma_{\rm adm}$			
Type 1	Travée	6.2	1.57	3.27	5867.3	3.45 <15	vérifiée		
	appui	-4.96	1.57	7.15	3990.78	8.89 <15	vérifiée		
Type 2	Travée	7.8	2.26	3.84	8023.97	3.74 <15	vérifiée		
	appui	-6.23	1.57	7.15	3990.78	11.16 < 15	vérifiée		
Type 3	Travée	6.37	1.57	3.27	5867.3	3.55 < 15	vérifiée		
	appui	-5.1	1.57	7.15	3990.78	9.14 < 15	vérifiée		

• Vérification de la flèche :

D'après le CBA93 La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites :

$$\frac{h}{l} \ge \frac{1}{16}$$

$$\frac{h}{1} \ge \frac{M_t}{10 \times M_0}$$

Dans notre cas on va vérifier la flèche de la poutrelle type (2) terrasse inaccessible car c'est elle qui a la travée la plus grande (L=4.15 m).

$$\frac{h}{l} = \frac{20}{415} = 0.048 < \frac{1}{16} = 0.062$$
 La première condition n'est pas satisfaite donc on doit calculer la flèche

Les résultats de calcul sont résumés dans le (TableauIII.11) :

Tableau.III.11.Vérifications de la flèche

Y (m)	Icm ⁴	$I_0 (m^4)$	Ev (MPa)	Ei (MPa)	f_{gv} (mm)	f_{ji} (mm)	f_{pi} (mm)	f_{gi} (mm)
0.0384	0.0802	0.000183	10818,8656	32456,5969	10.185	1.844	6.98	5.819

 $\Delta f = 9.5 mm \ge f_{adm} = 8.3 mm$ la flèche n'est pas vérifiée

On doit augmenter la section de l'acier $2H12+1HA10 = 3,05 \text{ cm}^2$

Tableau.III.12.Reverifications de la flèche

Y (m)	Icm ⁴	$I_0(m^4)$	Ev(MPa)	Ei (MPa)	f_{gv} (mm)	f_{ji} (mm)	f_{pi} (mm)	f_{gi} (mm)
0.043	0.010307	0.000197	10818,8656	32456,5969	8.28	1.46	5.294	4.43

 $\Delta f = 7.68mm \le f_{adm} = 8.3mm$ La flèche est vérifiée

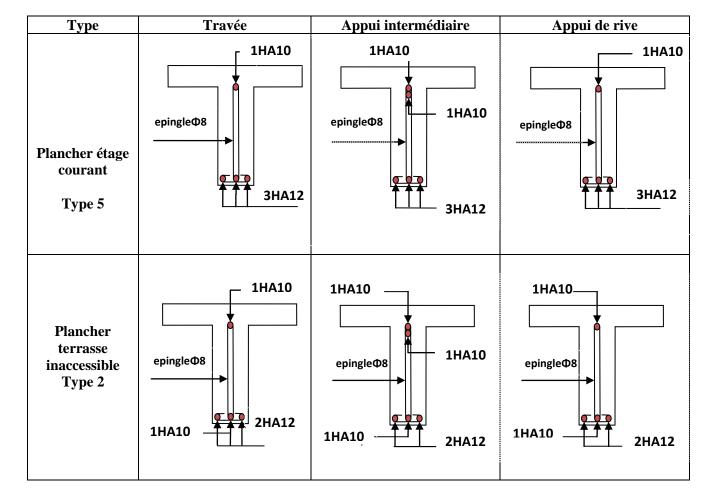


Tableau.III.13.Schémas de ferraillage d'un exemple de poutrelles

III.2.1.3. Ferraillage de la dalle de compression : CBA93 article(B.6.8.4.2.3)

> Barres perpendiculaire aux poutrelles :

50 cm \leq ente axe entre les poutrelles $l_0 =$ 65 cm \leq 80 cm, donc :

$$A_{\perp} = \frac{4l_0}{f_e}$$

 $l_0 = 65 \ cm$.

 $f_e = 235 \, MPa$. Car c'est du treillis soudés (Rond Lisse « RL »).

$$A_{\perp} = \frac{4*65}{235} = 1,106 \ cm^2/ml. \ avec S_t \le 20 \ cm$$

Barres parallèle aux poutrelles :

$$A_{\parallel} = \frac{A_{\perp}}{2}$$

$$A_{\parallel} = \frac{1,106}{2} = 0,553 \ cm^2/ml. \ avec S_t \le 33 \ cm$$

On opte pour 5TSΦ6/ml=1.41cm² perpendiculaires aux poutrelles

3TSΦ6/ml=0.85cm² parallèles aux poutrelles

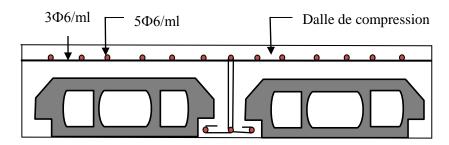
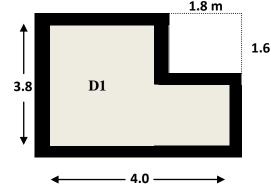


Figure.III.2. Schéma de ferraillage de la dalle de compression.

III.2.2.Plancher à dalle pleines :

Une dalle pleine est une plaque horizontale mince en béton, cette plaque peut être reposée sur 02 ou plusieurs appuis comme elle peut être assimilée à une console, et elle peut porter dans une ou deux directions.


Dans le cas de notre projet, les balcons sont réalisés en dalles pleines d'épaisseur 15 cm et qu'ils sont définis en :

- 1. Dalle sur 3 appuis.
- 2. Dalle sur 4 appuis.

On appelle:

Lx : la plus petite dimension du panneau.

Ly: la plus grande dimension du panneau

Figeur.III.3.Dalle sur 4 appuis

Page 44

1/-Dalle pleine sur quatre appuis au niveau de la cage d'escalier (D1)

$$G=4.4 \text{ KN/m}^2$$
, $Q=2.5 \text{ KN/m}^2$

Charges sur la dalle:

$$q_u = 9.7KN/ml$$

• **ELU**: $q_u = 1.35 G + 1.5 Q$

 $q_s = 6.9KN/ml$

- **ELS**: $q_s = G + Q$.
- $L_x = 3.8 \text{ m}.$
- $L_y = 4.0 \text{ m}.$

On a :
$$\rho = \frac{l_x}{l_v} = 0.95 > 0.4$$

Alors, la dalle travaille dans les deux sens (L_x) et (L_y) .

$$M_0^x = \mu_x q l_x^2$$

 $M_0^y = \mu_y M_0^x$

$$\textbf{ELU:} \begin{cases} \rho = 0.95 \\ \upsilon = 0 \end{cases} \Rightarrow d' aprés \ l'annexe \ 2 \ \begin{cases} \mu_x = 0.0410 \\ \mu_y = 0.8875 \end{cases}$$

ELS:
$$\begin{cases} \rho = 0.95 \\ \upsilon = 0.2 \end{cases} \Rightarrow d' a prés l'annexe 2 \begin{cases} \mu_x = 0.0483 \\ \mu_y = 0.9236 \end{cases}$$

ELU
$$\begin{cases} M_0^{x} = 0.0410 \times 9.7 \times 3.8^{2} = 5.73 \text{ KN. m} \\ M_0^{y} = 0.8875 \times 5.73 = 5.08 \text{ KN. m} \end{cases}$$

ELS
$$\begin{cases} M_0^x = 4.81 \text{ KN. m} \\ M_0^y = 4.44 \text{ KN. m} \end{cases}$$

> En travée :

$$panneau \ intermediaire \begin{cases} M_t^x = 0.85*M_0^x \\ M_t^y = 0.85*M_0^y \end{cases}$$

$$\begin{aligned} & \text{ELU:} \begin{cases} M_t^x = 4.87 \text{ KN. m} \\ M_t^y = 4.32 \text{ KN. m} \end{cases} &; \quad & \text{ELS:} \begin{cases} M_t^x = 4.08 \text{ KN. m} \\ M_t^y = 3.77 \text{ KN. m} \end{cases} \end{aligned}$$

Au niveau des appuis :

$$M_a^x = M_a^y = -0.5 M_0^x$$

> Appuis intermédiaires :

$$\begin{aligned} \textbf{ELU} : M_a^x &= -2.86 \text{ KN. m} \\ M_a^y &= -2.54 \text{ KN. m} \\ \textbf{ELS} : M_a^x &= M_a^y = -2.4 \text{ KN. m} \end{aligned}$$

• Ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1 ml. Le (**Tableau III.14**) suivant résume les résultats de calcul des armatures en travées et en appuis dans les deux sens

$$b = 100cm$$
, $h = 15cm$, $d = 12 cm$, $f_{bu} = 14.2 MPa$.

	Sens	Mu (KN.m)	μ_{bu}	α	Z(m)	A calculé (cm²)	A adopté (cm²)	St (cm)
tra	x-x	4.87	0.02	0.03	0.118	1.18	4HA8=2.01	25
travée	у-у	4.32	0.02	0.026	0.118	1.04	3HA8=1.51	33
appuis	x-x	2.86	0.01 4	0.017	0.119	0.69	4HA8=2.01	25
is	у-у	2.54	0.01	0.015	0.119	0.61	3HA8=1.51	33

Tableau.III.14.Ferraillage de la dalle D1

A) Vérification à l'ELU:

• Vérification de l'effort tranchant :

$$\rho = \frac{l_x}{l_y} = 0.95 > 0.4$$
. Donc

$$V^{\text{max}} = V_y = \frac{q_u * l_y}{2} * \frac{1}{1 + \frac{\rho}{2}} = 13.15 \text{ KN}$$

On doit vérifier que : $\tau_u = \frac{V_U}{h^* d} \le \tau_{adm} = 0.05 f_{c28} = 1.25 MPa$.

$$\tau_u = \frac{V_u}{b \times d} = \frac{13.15 \times 10^{-3}}{1 \times 0.12} = 0.109 \text{MPa} \le \tau_{adm} = 0.05 \times 25 = 1.25 \text{MPa}$$

• Condition de non fragilité :

$$e \ge 12cm \ et \ \rho \ge 0.4 \Longrightarrow \begin{cases} A_x^{\min} = \rho_0 \times \frac{(3-\rho)}{2} \times b \times e \\ A_y^{\min} = \rho_0 \times b \times e \end{cases}$$

Avec : ρ_0 =0.0008 Acier HA F_e 400 et : e=h=15cm

$$\begin{cases} A_x^{\min} = 1.23cm^2 \\ A_y^{\min} = 1.2cm^2 \end{cases}$$

$$\begin{cases} A_{t}^{x} = 2.01 \text{cm}^{2} > A_{x}^{\text{min}} = 1.23.....\text{vérifiée} \\ A_{t}^{y} = 1.51 \text{cm}^{2} > A_{y}^{\text{min}} = 1.2.....\text{vérifiée} \end{cases}$$

• Espacement (St):

Sens $x: S_t = 25cm \le \min(3.e; 33cm) = 33cm$ condition vérifiée

Sens y: $S_t = 33cm \le \min(4.e; 45cm) = 45cm$ condition vérifiée

B) Vérification à l'ELS:

• Contrainte de compression du béton :

Comme notre dalle se situe à l'intérieur (FPN), alors on ne vérifier que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_{bc}} = 0.6 \times f_{c28} = 15MPa$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A_s') \times y - 15 \times (d \times A_s + d' \times A_s') = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

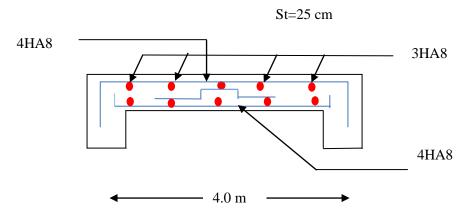
Le (Tableau .III.15) Suivant illustre les résultats de calcul :

Tableau.III.15. Contraintes dans le béton de D1

	M (KN.m)	Y (m)	I (m ⁴)	σ _{bc} (MPa)	σ _{adm} (MPa)	observation
Travée Selon x-x	4.09	0,02	2.35×10 ⁻⁵	3.54	15	Vérifier
Appui Selon x-x	-2.4	0.019	2.06×10 ⁻⁵	3.48	15	Vérifier

C) Etat limite de déformation :

• Vérification de la flèche :


On doit d'abord vérifier les conditions suivantes :

1)
$$e \ge max \left(\frac{3.Lx}{80}; \frac{Mt_x}{20.M0 \text{ x Lx}}\right) \Rightarrow 15\text{cm} > 11.18\text{cm} \dots$$
 Condition vérifié

2)
$$At_x \le \frac{2.b.d}{Fe} \Rightarrow 2.01 \text{cm}^2 \le 6 \text{ cm}^2$$
..... Condition vérifié

Donc la vérification à la flèche n'est pas nécessaire

Schéma de ferraillage :

Figeur.III.4. Schéma de ferraillage de la dalle sur 4 appuis (D1)

Pour un autre type de dalle on prend exemple de dalle sur 3 appuis

2/- Dalle pleine sur trois appuis :

Dalle sur 3 appuis, d'épaisseur 15 cm.

$$G = 4.4 \text{ KN/m}^2$$
, $Q = 1.5 \text{KN/m}^2$.

- **ELU**: $q_u = 1.35 G + 1.5 Q$. $q_u = 8.19KN/ml$
- **ELS**: $q_s = G + Q$. $q_s = 5.9 \text{ KN/ml}$

$$\rho = \frac{l_x}{l_v} = 0.30$$

On a : $l_x = 1.4 m < \frac{l_y}{2} = 2.32 m$.

$$\mathrm{Donc} \, \begin{cases} M_0^x = \frac{q \, l_x^2 \, l_y}{2} - \frac{2 \, q \, l_x^3}{3} \, . \\ M_0^y = \frac{q \, l_x^3}{6} \end{cases} .$$

ELU
$$\begin{cases} M_0^x = \frac{8.19 * 1.4^2 * 4.65}{2} - \frac{2 * 8.19 * 1.4^3}{3} = 22.33 \text{ KN. m} \\ M_0^y = \frac{8.19 * 1.4^3}{6} = 3.745 \text{ KN. m} \end{cases}$$

ELU
$$\begin{cases} M_t^x = 0.85 M_0^x = 18.98 \text{ KN. m} \\ M_t^y = 0.85 M_0^y = 3.183 \text{ KN. m} \end{cases}$$

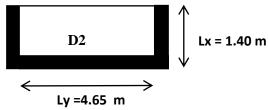


Figure.III.5.dalle sur 3 appuis

En appuis:

$$M_a^x = -0.5 M_0^x = -11.165 \text{ KN. } m$$

$$M_a^y = -0.5M_0^y = -1.1872 \text{ KN. m}$$

> Effort tranchant :

$$V_u = \frac{q_u * l_x}{2} \Rightarrow V_u = 5.733 \text{ KN}$$

Ferraillage : Le ferraillage se fait à la flexion simple pour une bande de 1 ml. Le **(Tableau III.16)** suivant résume les résultats :

Tableau.III.16.Ferraillage de la dalle D2

	sens	Mu (KN.m)	μ_{bu}	α	Z(m)	A calculé (cm²)	$\mathbf{A}_{ ext{min}}$	A adopté (cm²)	St (cm)
Tra	X-X	18.98	0.092	0.12	0.114	4.78	1.2	6HA12=6.79	20
Travée	у-у	3.183	0.015	0.0196	0.12	0.76	1.2	3HA8=1.51	33
Appuis	x-x	11.165	0.054	0.07	0.116	2.75	1.2	4HA12=4.52	20

A) Vérification à l'ELU:

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b*d} \le \bar{\tau}_u = \frac{0.07 f_{c28}}{\gamma_b}$$

$$\tau_u = \frac{5.733 \times 10^{-3}}{1 * 0.12} = 0.047 \, MPa$$

$$\bar{\tau}_u = \frac{0.07 \, f_{c28}}{\gamma_b} = 1.167$$

$$\tau_u = 0.047~MPa < \bar{\tau}_u = 1.167~MPa$$

Les armatures transversale n'est nécessaire dans les dalles.

• la condition de non fragilité :

$$e \ge 12cm \ et \ \rho < 0.4 \Longrightarrow \begin{cases} A_x^{\min} = \rho_0 \times \frac{(3-\rho)}{2} \times b \times e \\ A_y^{\min} = \rho_0 \times b \times e \end{cases}$$

Avec : $\rho_0 = 0.0008$ Acier HA F_e400 et e=h=15cm

$$\begin{cases} A^{min}_{x} = 1.62 \text{ cm}^2 \\ A^{min}_{y} = 1.2 \text{ cm}^2 \end{cases}$$

$$\begin{cases} A^{x}_{t}=6.79 \text{ cm}^{2}>A^{min}_{x}=1.62 \text{ cm}^{2}.....\text{vérifiée} \\ A^{y}_{t}=1.51 \text{ cm}^{2}>A^{min}_{y}=1.2 \text{ cm}^{2}.....\text{vérifiée} \end{cases}$$

B) Vérification à l'ELS:

• Contrainte de compression du béton :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

$$\frac{b}{2}y^2 + 15A_s y - 15A_s d = 0$$

Y=4.02 cm

$$I = \frac{b}{3}y^3 + 15A(d - y)^2$$

I=8651.33 cm⁴

$$\sigma_{bc} = \frac{M_{ser}}{I} y = 6.35 \text{ MPa} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ Mpa}...$$
condition vérifier

• La contrainte dans l'acier :

Fissuration très nuisible:

$$\sigma_s = \frac{15M_{ser}}{I}(d-y) \le \bar{\sigma}_s = \min(\frac{2}{3}fe; 110\sqrt{\eta} ft28) = 201.63 \text{ MPa}$$

$$\sigma_{\scriptscriptstyle S} = 189.13 MPa < \overline{\sigma}_{\scriptscriptstyle S}$$
.....condition vérifier

- C) Etat limite de déformation :
- Vérification de la flèche :

$$1)....\frac{h}{l} \ge \frac{1}{16}$$

$$2)....\frac{h}{l} \ge \frac{Mt}{10 \times M_0}$$

$$3)....\frac{A}{b_0 \times d} \ge \frac{4.2}{f_e} \times b_0$$

Donc:

1)
$$\frac{0.15}{1.4} = 0.107 \ge \frac{1}{16} = 0.062 \dots$$
 vérifier

2)
$$\frac{0.15}{1.4} = 0.107 \ge \frac{13.67}{10 \times 16.09} = 0.085...$$
 vérifier

3)
$$\frac{6.79 \times 10^{-4}}{1 \times 0.12} = 0.00056 \ge \frac{4.2}{400} \times 1 = 0.0105...$$
 vérifier

Donc la vérification à la flèche n'est pas nécessaire.

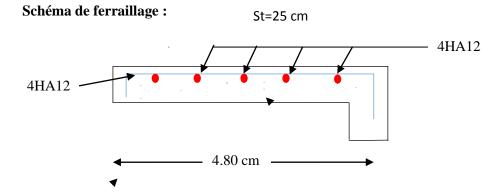


Figure.III.6. Schéma de ferraillage de la dalle sur 3 appuis (D2)

III.3.Étude de l'acrotère :

Hypothèses de calcul:

- L'acrotère est sollicité en flexion composée.
- La fissuration est considérée comme préjudiciable.

Le calcul se fera pour une bande de un mètre linéaire

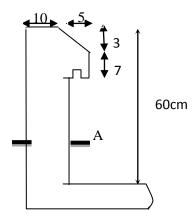


Figure.III.7.coupe d'un acrotère

III.3.1. Évaluation des charges et surcharges :

> Verticales:

		Tableau.III.17. Charges et surcharges d'acrotère					
surface (m ²)	Poids propre (KN/ml)	Epaisseur enduit ciment (cm)	Enduit ciment (KN)	G _{total} (KN/ml)	Q (KN/ml)		
0.064	25*S=1.606	1.5	0.2*1.5*0.6* 1 = 0.18	1.786	1		

> Horizontales : (dues au séisme).

$$F_{p} = 4 * A * C_{p} * W_{p}$$
 D'après le **RPA99** (article 6.2.3)

 $-F_p$: une force horizontale due au séisme

-A: Coefficient d'accélération de zone, obtenu dans le tableau (4-1) du RPA99 pour la zone et le groupe d'usages appropriés.

-C_P: Facteur de force horizontale variant entre 0.3 et 0.8 (Tab.6.1 du RPA99).

$$\begin{cases} A = 0.15. \\ C_P = 0.8. \\ W_P = 1.786 KN/ml. \end{cases}$$

$$F_P = 4*0.15*0.8*1.786 \Rightarrow F_P = 0.8574KN$$

III.3.2.Calcul des sollicitations :

A) Calcul du centre de pression :

$$x_{G} = \frac{\sum A_{i} * x_{i}}{\sum A_{i}} = 0.0548$$
$$y_{C} = \frac{\sum A_{i} * y_{i}}{\sum A_{i}} = 0.316$$

B) Moment engendré par les efforts normaux :

 $N_G = 1.786 \text{ KN}$

$$M_0=1 * 0.6 = 0.6 \text{ KN.m}$$

$$M_F = F_{P*} x_G = 0.27 \text{ KN.m}$$

Combinaison de calcul:

Tableau.III.18.combinaisons d'action									
Sollicitation combinaison N (KN) M (KN)									
RPA 99/2003	G + Q + E	1.786	0.870						
ELU	1.35G + 1.5Q	2.41	0.90						
ELS	G+Q	1.786	0.60						

III.3.3. Calcul de l'excentricité :

e₀: Excentricité, la combinaison considérer est 1.35G+1.5Q

$$e_0 = \frac{M_u}{N_u} = \frac{0.9}{2.41} = 0.37 \text{ m}$$

On a:
$$\frac{h}{6} = \frac{0.6}{6} = 0.1$$
m

 $e_0 > \frac{h}{6}$ Section partiellement comprimé

La section est soumise à un effort normal de compression, elle doit être justifié vis-à-vis de l'état limite ultime de stabilité de forme conformément à l'article A.4.4 du BAEL.91 en adoptant une excentricité totale de calcul $e=e_1+e_2$

e₁: Excentricité (dite du premier ordre), de la résultante des contraintes normales.

e₂: Excentricité due aux effets de second ordre, liés à la déformation de la structure.

e_a: Excentricité additionnelle traduisant les imperfections géométrique initiales (après exécution)

$$e_a = Max\left\{2cm \; ; \; \frac{l}{250}\right\} = Max\{2cm \; ; \; 0.24cm\} \;\; \Longrightarrow \; e_a = 2cm$$

$$e_1 = e_0 + e_1 = 0.37 + 0.02 = 0.39$$
m

$$e_2 = \frac{3l_f^2}{10000h}(2 + \alpha \Phi)$$

Avec:

Φ: le rapport de la déformation finale due au fluage à la déformation instantanée sous la charge considéré ; ce rapport est généralement pris égal à 2.

$$\alpha = \frac{M_G}{M_G + M_O} = 0$$
 (Par ce que $M_G = 0$)

 l_f : longeur de flambement $l_f = 2l_0 = 2 \times 0.60 = 1.2$

Donc : $e_2 = 0.0086m$

$$e = e_1 + e_2 = 0.398 \text{ m}$$

$$N_U = 2.41$$
 \longrightarrow $M_U = N_U * e = 0.96 \text{ KN.m}$

III.3.4.Ferraillage:

A l'ELU:
$$M_{uA} = M_{uG} + N_u * (d - \frac{h}{2})$$

$$\Rightarrow$$
 M_{uA} = 0.96 + 2.41*(0.08 - $\frac{0.1}{2}$) = 1.03KN.m

$$\mu_{_{bu}} = \frac{M_{_{uA}}}{b*d^{2}*f_{_{bu}}} = \frac{1.03*10^{^{-3}}}{1*0.08^{2}*14.2} = 0.0113 < \mu_{_{1}} = 0.392 \rightarrow (F_{_{e}}E400)$$

d'où : A's = 0

$$\alpha = \frac{1 - \sqrt{1 - 2 * \mu^{bu}}}{0.8} = 0.0142$$

$$z = d*(1-0.4*\alpha) = 0.0795$$

$$A_{s} = A_{Ls} - \frac{N_{u}}{\sigma} = 0.37 \text{cm}^{2}$$

III.3.5. Vérifications :

A) A L'ELU:

• Conditions non fragilité :

$$A_{min} = 0.23*b*d*\frac{f_{128}}{f_{228}} = 0.23*1*0.08*\frac{2.1}{400} = 0.966cm^{2}$$

 $A_{min} > A_s \Longrightarrow$ on adopte $A_s = 4T8 = 2.01 \text{ cm}^2/\text{ml}$.

• Armatures de répartition :

$$A_r = A_s / 4 = 2.01 / 4 = 0.5025 \text{ cm}^2 \Rightarrow A_r = 4 \text{ Ø6 (1.13 cm}^2/\text{ml)}.$$

• Espacement:

Armatures principale : $S_t \le 100/3 = 33 \text{ cm} \rightarrow \text{ on adopte } S_t = 30 \text{ cm}$.

Armatures de répartitions : $S_t \le 60/3 = 2$ cm \rightarrow on adopte $S_t = 15$ cm.

• Vérification au cisaillement :

L'acrotère est exposé aux intempéries (fissuration préjudiciable).

$$\Rightarrow \overline{\tau_u} \le \min(0.1 * f_{c28}, 3Mpa)$$

$$\overline{\tau_{\rm u}} \le \min(2.5;3 \text{ MPa})$$

$$\overline{\tau_{ij}} \leq 2.5 \text{Mpa}$$

$$V_u = 1.5*N_u = 1,5*2.41=3.615$$
 KN.

$$\tau_{u} = \frac{V_{u}}{b*d} = \frac{3*10^{-3}}{1*0.08} \Rightarrow \tau_{u} = 0.0375 \text{MPa} \dots \text{pas risque de cisaillement}$$

B) À l'ELS:

Vérification de l'adhérence : $\tau_{se} = \frac{V_u}{0.9*d*\Sigma\mu_i}$; $\Sigma\mu_i$: La somme des périmètres des barres.

$$\begin{split} \Sigma \mu_{_{i}} &= n * \pi * \phi = 4 * \pi * 0.8 = 10.0048 cm \\ \tau_{_{se}} &= \frac{3615}{0.9 * 0.08 * 10.048 * 10^{-2}} = 0.5 MPa \\ \overline{\tau}_{_{s}} &= 0.6 * \psi_{_{s}}^{_{2}} * f_{_{c28}} = 0.6 * 1.5^{_{2}} * 2.1 = 2.83 MPa \\ \Rightarrow \tau_{_{se}} &< \overline{\tau}_{_{se}} &\rightarrow \quad \text{Pas de risque par rapport à l'adhérence.} \end{split}$$

• Vérification des contraintes :

Position de l'axe neutre :

$$C = d - e_1$$

e₁: distance du centre de pression "c" à la fibre la plus comprimée de la section.

$$e_1 = M_{ser}/N_{ser} + (d - h/2) \implies e_1 = (0.6/178) + (0.08 - 0.10/2) \longrightarrow e_1 = 0.36 \text{ m}$$

 $e_1 > d \implies$ "c" à l'extérieur de section $\Rightarrow c = 0.08 - 0.36 \Rightarrow c = -0.28$ m.

$$y_{ser} = y_c + c$$

$$y_c^3 + p * y_c + q = 0$$

$$p = -3*c^2 + (d - c)* \frac{90*A_s}{b}.$$

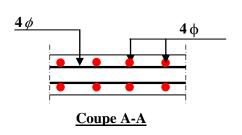
$$q = -2*c^3 - (d - c)^2 * \frac{90*A_s}{b}.$$

$$\left\{P = -3*(-0.28^2) + (0.08 - (-0.28))* \frac{90*2.01*10^{-4}}{1} = -0.228 \text{ m}^2\right\}$$

$$q = -2*(-0.28)^3 - \frac{90*2.01*10^{-4}}{1} * (0.08 + 0.28)^2 = 0.043 \text{m}^3$$

$$\Delta = q^2 + 4p^3/27$$
 $\Delta = 9.30*10^{-5} > 0$

$$t=0.5 (\Delta^{0.5}-q)=-0.0166$$


$$Z=t^{1}/_{3}=-0.255$$

$$Y_c = z - \frac{p}{3*z} = -0.553$$

$$Y_{ser} = 0.83$$

• Calcul des contraintes :

$$\begin{cases} \sigma_{bc} = \frac{N_{Ser}}{\mu_t} * y = 0.344 \text{ MPa} < \overline{\sigma}_{bc} = 15 \text{ MPa} \\ \sigma_S = \frac{15 * N_{Ser}}{\mu_t} * (d-y) = 0.069 \text{ MPa} < \overline{\sigma}_S = 201.64 \text{ MPa, FN} \end{cases}$$

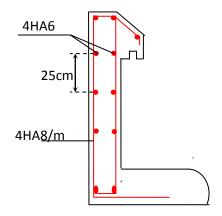


Figure III.8. Schéma de ferraillage de l'acrotère

III.4. Etude de l'ascenseur :

III.4.1. Définition:

C'est un appareil au moyen duquel on élève ou on descend des personnes aux différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique. Dans notre structure on utilise un ascenseur pour huit (08) personnes dont les caractéristiques sont les suivantes :

- L: Longueur de l'ascenseur = 1.6 m
- ➤ 1 : Largeur de l'ascenseur =1.8m
- ➤ H: Hauteur de l'ascenseur =220 cm
- ► la vitesse V=0.63 m/s

 $ightharpoonup F_c$: Charge due à la cuvette = 58KN.

- ightharpoonup P_m: Charge due à l'ascenseur = 15KN.
- \triangleright D_m: Charge due à la salle des machines = 51KN.
- La charge nominale est de 630 kg.

Donc
$$g = D_m + P_m + P_{personnes} = 72.3KN$$

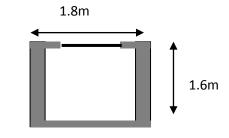


Figure III.9. Cage d'ascenseur

III.4.2. Etude de la dalle de l'ascenseur :

La dalle du local des machines doit être dimensionnée pour reprendre des charges importantes.

Annexe 6

On a $l_x = 1.60$ m et $l_y = 1.80$ m donc une surface $S = 1.6 \times 1.8 = 2.88$ m².

III.4.3. Evaluation des charges et surcharges :

$$G_1 = 25 \times 0.20 = 5 \text{KN/m}^2$$
 Poids de la dalle en béton armé.

$$G_2 = 20 \times 0.03 = 0.6 \text{KN/m}^2$$
 Poids du mortier de pose de 3cm.

 $G_3 = 0.1 \text{ KN/m}^2$ Poids de l'isolant thermique.

 $G_4 = 22 \times 0.02 = 0.44 \text{KN/m}^2$ Poids du revêtement dallage colle.

$$G' = 6.14 \text{ KN/m}^2$$
. Somme de G_1, G_2, \dots, G_4 .

$$G'' = \frac{F_c}{S} = \frac{58}{2.88} = 20.13 \text{KN/m}^2$$
. Poids de la machine.

$$G_{\text{totale}} = G' + G'' = 26.27 \text{KN/m}^2.$$

$$Q = 1KN/m^2$$
.

III.4.4. Cas d'une charge répartie :

• Calcul des sollicitations :

A l'ELU:

$$q_u = 1.35 \times G_{totale} + 1.5 \times Q = 36.96 \text{KN/m}^2$$
.

$$\rho = \frac{l_X}{l_y} = 0.88 > 0.4 \Longrightarrow La \ dalle \ travaille \ dans \ les \ deux \ sens.$$

$$\rho = 0.88 \Longrightarrow \begin{cases} \mu_X = 0.0476 \\ \mu_y = 0.7438 \end{cases} \qquad \text{Annexe 2}$$

Sens x-x':
$$M_0^x = \mu_x \times q_u \times l_x^2 \Rightarrow M_0^x = 4.5KNm$$

Sens y-y' :
$$M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = 3.35 KNm$$

III.4.4.1. Calcul des moments réels :

> En travée :

Sens x-x':
$$M_t^X = 0.85 \times M_0^X = 3.82 KNm$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 2.84 \text{KNm}$$

> En appui:

$$M_a^x = 0.3 \times M_0^x = 1.35 KNm$$

$$M_a^y = 0.3 \times M_0^y = 1.05 \, KNm$$

III.4.4.2. Calcul du ferraillage:

On fera le calcul de la dalle pour une bande de 1m de longueur et de 20cm d'épaisseur à la flexion simple

> En travée :

- Parallèle à l_x :

$$\mu_{bu} = \frac{M_t^x}{b \times d^2 \times f_{bu}} = 0.8 \times 10^{-2}.$$

2017/2018

$$\alpha = 1,25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.0104$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.179$$
m.

$$A_t^X = \frac{M_t^X}{z \times f_{st}} = 0.62 \, \text{cm}^2/\text{ml}.$$

-Parallèle à l_{y} :

$$\mu_{bu} = 0.62 \times 10^{-2}. \hspace{1cm} \alpha = 0.0077 \hspace{1cm} z = 0.179 \hspace{1cm} A_y = 0.46 \hspace{1cm} cm^2/ml$$

$$\alpha = 0.0077$$

$$z=0.179$$

$$A_v = 0.46 \text{ cm}^2/\text{m}^2$$

En appui :

Sens	M_a (KN.m)	μ_{bu} .	α	Z (m)	A(cm ²)
X-X	1.35	0.0029	0.0036	0.197	0.22
у-у	1.05	0.0022	0.0027	0.197	0.16

A) Vérification à l'ELU:

Condition de non fragilité:

On calcule A_{\min} :

$$\begin{vmatrix} h_0 > 12cm \\ \rho > 0.4 \end{vmatrix} \Rightarrow \begin{cases} A_{\min}^{x} = \rho_0 \times \frac{3-\rho}{2} \times b \times h_0 \\ A_{\min}^{y} = \rho_0 \times b \times h_0 \end{cases}$$

On a des HA
$$f_e E400 \Rightarrow \rho_0 = 0.0008$$

$$h_0 = e = 20cm$$

$$b = 100cm$$

$$\rho = 0.88$$

$$\begin{cases} A_{min}^{x} = 1.69cm^{2}/ml \\ A_{min}^{y} = 1.6cm^{2}/ml \end{cases}$$

On vérifie que
$$A_t^y > \frac{A_x^t}{4} \Rightarrow 1.6 \text{cm}^2 > 0.42 \text{cm}^2$$

On choisit suivant le:

Sens x-x', en travée et en appui:
$$A_t^X = 4HA10 = 3.14cm^2$$

Sens y-y', en travée et en appui:
$$A_t^y = 4T10 = 3.14cm^2$$

Calcul des espacements :

Sens x-x':
$$S_t \le \min(3e; 33cm) \Rightarrow S_t \le 33cm$$

on adopte
$$S_t = 25cm$$

Sens y-y':
$$S_t \le \min(4e;45cm) \Rightarrow S_t \le 45cm$$

on adopte
$$S_t = 35cm$$

Vérification de l'effort tranchant :

$$\tau_u = \frac{V_{max}}{b \times d} \le \frac{1}{\tau_u} = 0.05 \times f_{c28} = 1.25 MPa$$

 $\rho = 0.88 > 0.4 \Rightarrow$ Flexion simple dans les deux sens:

$$V_{X} = q_{U} \times \frac{l_{X}}{3} = 19.72KN$$

$$V_y = q_u \times \frac{l_x}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 23.04 \text{KN}$$

 $\tau_u = 0.12\,\text{MPa} < 1.25\,\text{MPa}$C'est vérifié.

B) Vérification à l'ELS:

$$q_{ser} = G_{totale} + Q = 27.27KN/m^2$$

Sens x-x':
$$M_0^x = \mu_x \times q_{ser} \times l_x^2 \Longrightarrow M_0^x = 3.81 KNm$$

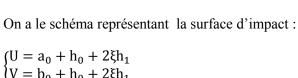
Sens y-y':
$$M_0^y = \mu_y \times M_0^x \implies M_0^y = 3.13 KNm$$

Sens x-x':
$$M_t^x = 0.85 \times M_0^x = 3.24 KNm$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 2.66 KNm$$

Vérification des contraintes :

Sens x-x':

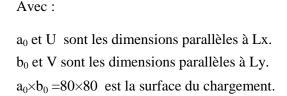

$$\sigma_{bc} = 0.73MPa < 15MPa$$
.

Sens y-y':

$$\sigma_{bc} = 0.78MPa < 15MPa$$
.

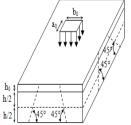
III.4.5. Cas d'une charge concentrée :

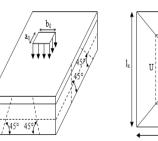
$$\begin{cases}
U = a_0 + h_0 + 2\xi h_1 \\
V = b_0 + h_0 + 2\xi h_1
\end{cases}$$



h₀ : est l'épaisseur de la dalle pleine.

h₁: est l'épaisseur du revêtement moins rigide.


Illustration de la surface impacte


$$\xi = 0.75$$
 $h_1 = 5$ cm

$$U = 80 + 15 + (2 \times 0.75 \times 5) = 102.5 \text{ cm}$$

$$V = 80 + 15 + (2 \times 0.75 \times 5) = 102.5 \text{ cm}$$

On aura donc:

À l'ELU:

On a:
$$g = 72.3 \text{ KN} \implies q_u = 1.35 \times g = 97.605 \text{ KN}$$

• Calcul des sollicitations :

On a selon le **BAEL** :
$$\begin{cases} M_x = P_u \times (M_1 + \nu M_2) \\ M_y = P_u \times (M_2 + \nu M_1) \end{cases}$$

Avec:

M₁ et M₂ sont des coefficients donnés par les abaques de PIGEAUD, en fonction de ρ.

Avec :
$$\alpha = \frac{U}{l_y}$$
, $\beta = \frac{V}{l_y}$

v : coefficient de poisson
$$\{v = 0 \Rightarrow ELU \\ v = 0.2 \Rightarrow ELS \}$$

Soit:

$$\rho = 0.88 \Longrightarrow \begin{cases} \alpha = 0.64 \\ \beta = 0.57 \end{cases} \Longrightarrow \begin{cases} M_1 = 0.085 \\ M_2 = 0.067 \end{cases}$$

• Evaluation des moments de M_{x1} et M_{y1} du système de levage :

$$\begin{cases} M_{x1} = P_u \times M_1 \\ M_{y1} = P_u \times M_2 \end{cases} \Longrightarrow \begin{cases} M_{x1} = 97.605 \times 0.085 = 8.296 \ KN. \ m \\ M_{y1} = 97.605 \times 0.067 = 6.54 \ KN. \ m \end{cases}$$

• Evaluation des moments dus au poids propre de la dalle à l'ELU :

$$\rho = \begin{cases} \mu_x = 0.0476 \\ \mu_y = 0.7438 \end{cases}$$

$$q_u = 1..35 \times 4.85 + 1.5 \times 1 = 8.05 \, KN/m$$

$$\begin{cases} M_{x2} = \mu_x \times q_u \times l_x^2 = 0.0476 \times 8.05 \times 1.6^2 = 0.98 \ KN. \ m \\ M_{y2} = \mu_y \times M_{x2} = 0.7438 \times 0.98 = 0.73 \ KN. \ m \end{cases}$$

• Superposition des moments :

Les moments agissant sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 8.296 + 0.98 = 9.276 \, KN. \, m \\ M_y = M_{y1} + M_y = 6.54 + 0.73 = 7.27 \, KN. \, m \end{cases}$$

Les moments corrigés :

$$\begin{cases} M_t^x = 0.75 \times 9.276 = 6.957 \text{ KN. m} \\ M_t^y = 0.75 \times 7.27 = 5.45 \text{ KN. m} \\ M_a^x = -0.5 \times 9.276 = -4.638 \text{ KN. m} \end{cases}$$

• Ferraillage:

Le calcul se fera pour une bande de 1m de longueur b= 1 m, d=0.13 m

2017/2018

Les résultats sont résumés dans le tableau qui suit :

Tableau.III.19. ferraillages de la dalle d'ascenseur

Endroit	Sens	M (KN.m)	μ_{bu}	α	Z(m)	A ^{cal} (cm ²)	$A_{min}(cm^2)$	choix	s_t (cm)
Twows	X-X	6.957	0.029	0.037	0.13	1.54	1.272	4HA8=2. 01	25
Travée	Y-Y	5.45	0.023	0.029	0.13	1.2	1.2	4HA8=2. 01	25
Appı	ıi	-4.638	0.019	0.024	0.13	1.03	1.272	4HA8=2. 01	25

A) Vérification à l'ELU:

• Vérification des espacements :

Pour un chargement concentré et FPN.

$$s_t \le \min(2e, 25cm) = 25 cm \dots \min(2e, 25cm)$$
 wérifiée

• Vérification au poinçonnement :

$$P_u \le 0.045 \times U_c \times h \times \frac{f_c}{\gamma_h}$$

 P_u : Charge de calcul à L'ELU.

h: Hauteur de la dalle.

$$U_c = 2 \times (u + v) \Rightarrow U_c = 2 \times (102.5 + 102.5) \Rightarrow U_c = 410 \text{ cm}; P_u = 97.605 \text{ KN}$$

 $P_u = 97.605 < 0.045 \times 410 \times 10^{-2} \times 0.15 \times \frac{25}{1.5} \times 10^3 = 461.25 \text{ KN}$

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_{max}}{h \times d} \le \overline{\tau_u} = 3.33 \, MPa$$

On a:

$$v=u \Rightarrow V_{max} = \frac{P_u}{3 \times v} = 31.74 \ KN \Rightarrow \tau_u = 0.244 \ MPa < \overline{\tau_u} = 3.33 \ MPa \dots vérifiée$$

A l'ELS:

• Les moments engendres par le système de levage : $q_{ser} = g = 72.3 \ KN$.

$$\begin{cases} M_{x1} = q_{ser} \times (M_1 + v \times M_2) = 72.3 \times (0.085 + 0.2 \times 0.067) = 7.11 \text{ KN. m} \\ M_{y1} = q_{ser} \times (M_2 + v \times M_1) = 72.3 \times (0.067 + 0.2 \times 0.085) = 6.07 \text{ KN. m} \end{cases}$$

• Les moments dus au poids de la dalle :

$$q_{ser} = 4.85 + 1 = 5.85 \, KN/m \Longrightarrow \begin{cases} M_{x2} = \mu_x \times q_{ser} \times l_x^2 = 0.0546 \times 5.85 \times 1.6^2 = 0.82 \, KN.m \\ M_{y2} = \mu_y \times M_{x2} = 0.8216 \times 0.82 = 0.67 \, KN.m \end{cases}$$

Superposition des moments:

$$\begin{cases} M_x = M_{x1} + M_{x2} = 7.11 + 0.82 = 7.93 \ KN. \ m \\ M_y = M_{y1} + M_{y2} = 6.07 \ + 0.67 = 6.74 \ KN. \ m \end{cases}$$

• Moments corrigé :

$$\begin{cases} M_t^x = 0.75 \times 7.93 = 5.95 \text{ KN. m} \\ M_t^y = 0.75 \times 6.74 = 5.055 \text{ KN. m} \\ M_a^x = -0.5 \times 7.93 = -3.965 \text{ KN. m} \end{cases}$$

Vérification des contraintes :

Sens	ns M (KN.m) Y (cm)		I (cm ⁴)	$\sigma_{bc} \leq \overline{\sigma_{bc}} $ (MPa)	Observations	
X-X	5.95	2.515	3844.81	3.892<15	vérifiée	
у-у	5.055	2.515	3844.81	3.307<15	vérifiée	
Appui	-3.965	2.515	3844.81	2.594<15	vérifiée	

Tableau.III.20. vérification des contraintes

Vérification de la flèche

$$\begin{cases} \frac{h}{l} = \max(\frac{M_{tx}}{20 \times M_{0x}}, \frac{3}{80}) \\ \frac{A}{bd} \le \frac{2}{f_e} \end{cases}$$

• Sens X-X : $\begin{cases} 0.094 > 0.038 \\ 0.0015 < 0.005 \end{cases}$ • Sens Y-Y : $\begin{cases} 0.083 < 0.0375 \\ 0.0015 < 0.005 \end{cases}$

Les conditions sont vérifiées dans les deux sens

Donc le calcul de la flèche n'est pas nessécaire.

Remarque : la dalle de la salle des machines est soumise à un chargement concentré donc les barres seront prolongée jusqu'aux appuis.

Schéma de ferraillage :

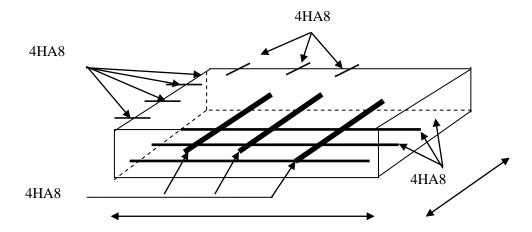


Figure.III.10.Schémas de ferraillage de la dalle machine

III.5.Etude d'escaliers:

Dans notre structure on a un seul type d'escalier et il est fait en béton armé $G_v = 7.21 KN/m^2$ $G_p = 5.11 \ KN/m^2$ $Q = 2.5 \ KN/m^2$ $P_{mur} = 2.67*3.06*0.5 = 4.08 KN/ML$ $\mathring{\mathbf{A}} \ \mathbf{l'ELU} : q = 1.35 \times G + 1.5 \times Q$ $1.65 \quad 2.1 \quad 1.5$

À l'ELS: q = G + Q

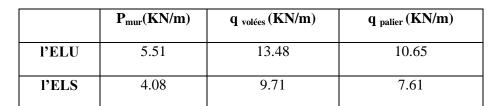


Figure.III.11.schéma d'escalier

Tableau.III.21.charge et surcharge d'escalier

- Les réactions d'appuis :

D'après la modélisation de notre escalier avec logiciel SAP 2000. On a exploité les résultats suivants :

 $R_{\text{\tiny B}}$

A l'ELU: $R_{A} = 16.23 \text{ KN}.$ $R_{B} = 51.13 \text{ KN}.$

 $R_{\boldsymbol{A}}$

Figure.III.12.Les réactions d'appuis à l'ELU

-Les moments :

Figure.III.13.Diagramme des moments à l'ELU

-L'effort tranchant :

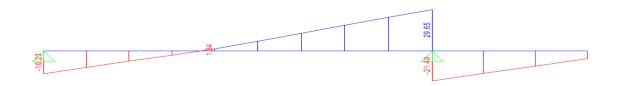


Figure.III.14. Diagramme des efforts tranchants

Moment en travée : Mt= 0.75*12.29 = 9.25 KN.m

Moment aux appuis : Ma= -0.5*12.29 =-6.16 KN.m

III.5.1.Ferraillage de l'escalier :

Le ferraillage se fait à la flexion simple pour une bande de 1 ml

Localisation	M (KN.m)	μ_{bu}	α	Z (m)	A calculée (cm ²)	A adoptée (cm²)
En travée	9.25	0.038	0.049	0.127	2.08	4HA10=3.14
En appui	6.16	0.025	0.032	0.128	1.38	4HA8 = 2.01

Tableau.III.22.Résumé des résultats de ferraillage d'escalier

• Les armatures de répartition :

-En appuis :
$$A_r^a = \frac{A}{4} = \frac{2.01}{4} = 0.5025 \text{ cm}^2$$

-En travée :
$$A_r^{\ t} = \frac{A}{4} = \frac{3.14}{4} = 0.785 \text{ cm}^2$$

Soit
$$A_r^a = 4\text{HA8/ml} = 2.01 \text{ cm}^2$$

$$A_r^t = 4HA8/mI = 2.01cm^2$$

A) Vérifications à l'ELU:

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{fe} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.57 \text{ cm}^2$$

• Vérification de l'effort tranchant :

L'escalier est à l'intérieur du bâtiment donc la fissuration est peu nuisible.

$$\overline{\tau_U} = \min(0.13 f_{c28}; 4MPa) = 3.25MPa$$

$$\text{Tel que}: \ \tau_{bu} = \frac{V_u}{b \times d} = \frac{29.68 \times 10^{-3}}{1 \times 0.13} = 0.228 \, \text{MPa} < \overline{\tau_{bu}} = \min \left(0.13 \times f_{c28}, 4 \, \text{MPa}\right) = 3.25 \, \text{MPa}$$

Pas de risque de cisaillement

• Vérification des armatures longitudinales à l'effort tranchant:

$$A_l \ge \frac{1.15 \times V_u}{f_e}$$

Avec

$$A_1 = A_t + A_a = 3.14 + 2.01 = 5.15 \text{cm}^2$$

$$A_l \!\!=\!\! 5.15 \ cm^2 \! > \frac{1.15 \! \times \! 29.68 \! \times \! 10^{-3}}{400} = 0.85 cm^2$$

Espacement des armatures :

-Armatures longitudinales:

$$S_t = 20cm \le min (3 h, 33cm) = 33cm$$

-Armatures transversales:

$$S_t = 25cm \le min (4 h, 45cm) = 45cm$$

- B) Vérification à l'ELS:
- État limite de compression du béton :

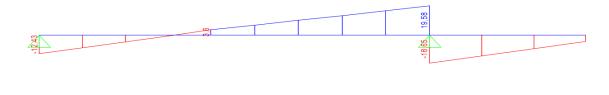
La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

-Les réactions d'appuis :

$$R_A = 12.43 KN$$
.

 $R_B = 38.22 \text{ KN}.$


Figure.III.15.Les réactions d'appuis à l'ELS

-Les moments :

Figure.III.16.Diagramme des moments à l'ELS

- L'effort tranchant :

 $V_{max} = 19.58 \text{ KN}$

Figure.III.17. Diagramme des efforts tranchants

Moment en travée : $M^{t} = 0.75*7.94 = 5.96KN.m$

Moment aux appuis : $M^a = -0.5*7.94 = -3.97$ KN.m

Calcul de
$$y : \frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d' \times A_s') = 0$$

Calcul de
$$I: I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Les résultats de calcul des contraintes sont résumés dans le (Tableau.III.23) suivant :

Localisation	M _{ser} (KN.m)	I (cm ⁴)	Y (cm)	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)
Appuis	3.97	3844.81	2.59	2.59	15
Travées	5.96	5608.73	3.06	3.25	15

Tableau.III.23.Résultats de calcul des contraintes

• État limite de déformation :

Vérification de la flèche : la vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3) \end{cases}$$

$$\frac{h}{L} = \frac{15}{375} = 0.04 < \frac{1}{16}. = 0.0625...$$
 condition non vérifié

La première condition n'est pas vérifiée, alors il faut calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{375}{500} = 0.75 \text{ cm}$

y = 3.06cm

I = 5608.73 cm 2

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

 $A_s=3.14cm$

Les résultats de la flèche est résumé dans le (Tableau.III.32.) suivant :

L(m)	b(m)	A _{st} (cm ²)	f _{gv} (cm)	f _{ji} (cm)	f _{pi} (cm)	f _{gi} (cm)	Δſ	$\mathbf{f}_{\mathrm{adm}}$
3.75	1.00	3.14	0.0334	0.0012	0.0074	0.0013	0.33	0.75

Tableau.III.24.Résultats de la flèche

Donc: la fleche est vérifier

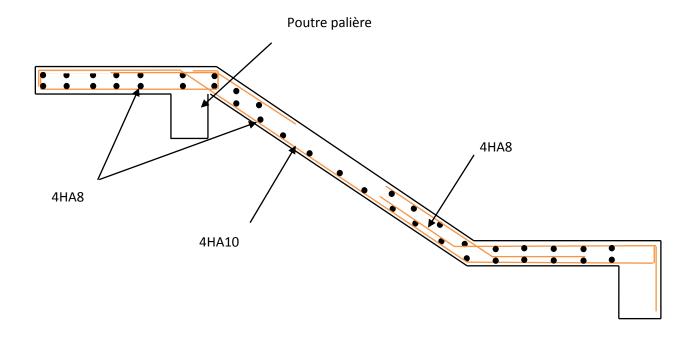


Figure.III.18.Schéma de ferraillage de l'escalier

III.5.2. Calcul de la poutre palière :

A) Pré dimensionnement :

$$1/15 \le h \le 1/10$$
 \Rightarrow $32cm \le h \le 48cm$.

√ Vérifications :

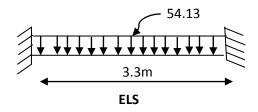
On doit vérifier les conditions suivantes :

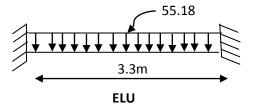
$$b \ge 20cm$$

 $h \ge 30cm$. \Rightarrow On adopte une section de $(30x40)$ cm².

B) Calcul de la poutre palière à la flexion simple :

Les charges revenant à la poutre :


- **Poids propre de la poutre** : Gp = 0.3*0.4*25 = 3 KN/ml
- **Réaction: L'ELU:** R_B = 51.13 KN/m.


L'ELS:
$$R_B = 38.84.26 \text{ KN/m}$$

Donc la charge reprises par la poutre palière est :

$$Q_u (ELU) = 51.13 + 1.35*3 = 55.18 \text{ KN/ml}$$

$$Q_u(ELS) = 51.13 + 3 = 54.13 \text{ KN/ml}$$

La poutre est supposée dans deux poteaux ; les sollicitations sont comme suite :

En travée :
$$M_{ut} = \frac{Q_u \times l^2}{24} = \frac{55.18 \times 3.3^2}{24} = 25.03 KN.m$$

$$M_{ser} = \frac{54.13 \times 3.3^2}{24} = 24.56KN.m$$

En appuis:
$$M_{ut} = \frac{Q_u \times l^2}{12} = \frac{55.18 \times 3.3^2}{12} = 50.04 KN.m$$

$$M_{ser} = \frac{54.13 \times 3.3^2}{12} = 49.12 KN.m$$

III.5.3.Ferraillage de la poutre palière :

$$M_a$$
=0.5*25.03=12.515 KN.m

	M _u (KN.m)	b(m)	d(m)	μ_{bu}	α	Z(m)	A (cm ²)
travée	21.27	0.30	0.38	0.034	0.043	0.373	1.63
appuis	26.73	0.30	0.38	0.020	0.025	0.376	0.96

Tableau.III.25.Résultats de ferraillage de la poutre palière

• Condition de non fragilité :

$$A_{\min} = 0.23 \frac{b \times d \times f_{t28}}{f_{c}} = \frac{0.23 \times 0.3 \times 0.38 \times 2.1}{400} = 1.38 cm^{2}$$

Donc la condition est vérifiée ($A_{adopt\'ee} \succ A_{min}$)

> Effort tranchant :

$$V_{u \max} = \frac{Q \times l}{2} = \frac{55.18 * 3.3}{2} = 91.04 KN$$

$$\tau_u = \frac{91.04 \times 10^{-3}}{0.3 \times 0.38} = 0.80 MPa$$

$$\overline{\tau_u} = \min(0.23 f_{c28}; 4MPa) = 5.75MPa \dots$$
 Donc c'est vérifié

• Armatures transversales :

On fixe $S_t = 10cm$

$$A_t = b_0 \times S_t \times (\tau_u - 0.3 f_{tj}) / 0.8 \times f_e = 0.3 \times 0.1 \times (0.80 - 0.3 \times 2.1) / 0.8 \times 400 = 0.59 cm^2$$

- Vérification de la contrainte dans le béton :
- ✓ En travée :

$$\gamma = \frac{M_u}{M_{ser}} = \frac{53.47}{52.46} = 1.02$$
$$\frac{\gamma - 1}{2} + \frac{f_{c28}}{100} = 0.26 > \alpha = 0.114$$

✓ En Appui:

$$\gamma = \frac{M_u}{M_{ser}} = \frac{106.94}{104.93} = 1.02$$
$$\frac{\gamma - 1}{2} + \frac{f_{c28}}{100} = 0.26 < \alpha = 0.241$$

• Vérification de la flèche :

D'après le BAEL, il n'est pas nécessaire de vérifier la flèche si l'une des trois conditions suivantes est vérifiée :

1-)
$$\frac{h}{1} \ge \frac{1}{16} \Rightarrow \frac{40}{330} = 0.12 \ge 0.0625$$
 vérifier

2-)
$$\frac{h}{1} \ge \frac{M_t}{10 \times M_0} \Longrightarrow 0.12 \ge \frac{0.85 M_0}{10 \times M_0} = 0.085 \text{ vérifier}$$

3-)
$$\frac{A_s}{b \times d} \le \frac{4.2}{f_a} \Rightarrow \text{v\'erifier}$$

Il ne sera pas donc nécessaire de vérifier la flèche.

Donc la vérification de la contrainte dans le béton n'est pas nécessaire.

III.5.3. Calcul de la poutre palière à la torsion

Le moment de torsion M_t est engendré par les charges ramenées par le palier et la volée, il est le moment à l'appui.

Donc $M_t = 18.15 KN.m$

• Contrainte de cisaillement ultime de torsion :

$$\tau_u = \frac{M_a}{2 \times \Omega \times e} = \frac{18.15 \times 10^{-3}}{2 \times 875 \times 10^{-4} \times 5 \times 10^{-2}} = 2.07 Mpa$$

Fissuration peu nuisible : $\bar{\tau} = \min(0.13f_{c28}; 4Mpa) = 3.25Mpa$

 $\tau_u \prec \overline{\tau}_u$ Donc c'est vérifié.

III.5.3.1.Ferraillage:

La section d'armature longitudinal et transversale est donnée par :

$$\frac{A_t \times f_e}{S_t \times \gamma_s} = \frac{A_L \times f_e}{\mu \times \gamma_s} = \frac{M_a}{2 \times \Omega}$$

• Armatures longitudinales :

$$A_L = \frac{M \times \mu \times \gamma_s}{2 \times f_e \times \Omega} = \frac{18.15 \times 10^{-3} \times 1.2 \times 1.15}{2 \times 348 \times 875 \times 10^{-4}} = 4.11 cm^2$$

Avec
$$\mu = 2 \times [(b-e)+(h-e)] = 120cm$$

• Armature transversale :

$$A_{t} = \frac{M_{t} \times S_{t} \times \gamma_{s}}{2 \times \Omega \times f_{e}} = \frac{18.15 \times 10^{-3} \times 0.2 \times 1.15}{2 \times 875 \times 10^{-4} \times 348} = 0.68cm^{2}$$

Pourcentage minimum d'armature en travée :

$$A_{t} \ge \frac{0.4 \times U \times b_{0}}{f_{e}} = \frac{0.4 \times 1.2 \times 0.005}{400} = 0.06cm^{2}....c'est/v\'{e}rifi\'{e}e$$

• Ferraillage final de la poutre palière :

a)-En travée : $A_t = 4.11*0.5+1.63=3.69$ cm² on choisit $A_t = 4$ HA12= 4.52 cm²

b)-En appui : $A_t = 4.11*0.5+0.96 = 3.01 \text{cm}^2$ on choisit $A_a = 3 \text{HA} 12 = 3.39 \text{ cm}^2$

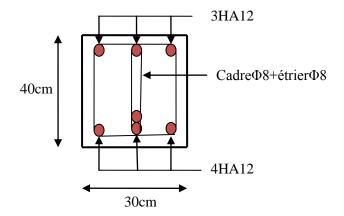


Figure.III.19. Schéma de ferraillage de la Poutre palière

III.6.Poutre de chainage :

Le chainage travaille comme une poutre horizontale ou verticale, il doit régner sur tout l'épaisseur du mur. Il a pour but :

- ✓ Liaison horizontale des murs et poteaux pour éviter :
 - Un effort de traction due à la dilatation de la terrasse.
 - Le mouvement d'un immeuble sous l'effet d'un tassement du sol ou charges appliquées.
- ✓ Rigidité longitudinale pour tenir compte des risques de fissurations
- A) Dimensionnement: (RPA 99/2003 article 9.3.3):

Les dimensions minimales préconisées pour le chainage sont :

- -Hauteur minimale $h \ge 15$ cm.
- -Largeur minimale $b \ge 2/3$ de l'épaisseur du mur.

On opte: $(b x h) = (30 x 35)cm^2$

A) Sollicitations:

Le chainage est conçu pour reprendre son poids propre ainsi que le poids des cloisons qu'il supporte. Il est calculé (comme une poutre simplement appuyée) en flexion simple, avec vérification de l'effort tranchant au niveau des appuis.

La poutre qui nous donne des sollicitations plus défavorables est celle de 7^{eme} niveau (1^{ere} duplexe)

- \checkmark G_{p.c} = 25 * 0.3 * 0.35 = 2.625 KN/ml.
- \checkmark G_{mur} = 2.67 (3.06 0.35) = 7.23 KN/ml.

$$\begin{aligned} &\textbf{ELU} \begin{cases} q_u = 1.35 \big(G_{p.c} + G_{mur} \big) + 1.5 \ Q = 15.55 \ \text{KN/ml.} \\ M_u = q_u * l^2 / 8 = 41.13 \text{KN. m} \\ V_u = q_u * l / 2 = 35.77 \text{KN} \end{aligned}$$

$$\begin{aligned} &\textbf{ELS} \begin{cases} q_s = G_{p.c} + G_{mur} + \ Q = 9.85 \ \text{KN/ml.} \\ M_s = q_s * l^2 / 8 = 26.05 \text{KN. m} \end{aligned}$$

Correction des moments :

$$Trav\acute{e} \begin{cases} M_T^u = 0.75 \; M_u = 30.8 \; \text{KN.} \, m \\ M_T^s = 0.75 \; M_s = 19.53 \; \text{KN.} \, m \end{cases}, \\ Appuis \begin{cases} M_a^u = -0.5 \; M_u = -20.56 \; \text{KN.} \, m \\ M_a^s = -0.5 \; M_s = -13.02 \; \text{KN.} \, m \end{cases}$$

B) Ferraillage:

Tel que : $A_{min}=0.23*b*d*f_{t28}/f_e=1.2$

		Tableau.III.26. Ferraillage de la poutre de chainage							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						$A_{\min}(cm^2)$		
Travée	30.8	0.066	0.086	0.32	2.77	3HA12 = 3.39	1.2		
Appuis	-20.56	0.044	0.057	0.32	1.85	3HA10 = 2.36	1.2		

• Vérification de l'effort tranchant :

$$\begin{split} \tau_u &= \frac{V_u}{bd} < \bar{\tau}_u = \text{min}(0.13f_{c28} \text{ ,4 MPa}) = 3.25 \text{ MPa , FN} \\ \tau_u &= \frac{35.77*10^{-3}}{0.3*0.33} = 0.36 < \bar{\tau}_u = 3.25 \text{ MPa*} \end{split}$$

• Calcul des armatures transversales :

On choisit un cadre et un étrier $4 \phi 8 \Rightarrow A_r = 2.01 \text{ cm}^2$

1
$$S_t \le \frac{A_t * f_e}{0.4 \text{ b}} = S_t \le \frac{2.01 \times 400}{0.4 \times 30} = 67 \text{ cm}$$

2
$$S_t \le min[0.9d, 40 \text{ cm}] = 0.297 \text{ m} = 29.7 \text{ cm}$$

$$3 S_t \leq \frac{0.8 f_e(\sin \alpha + \cos \alpha) A_t}{b(\tau_u - 0.3 * k * f_{t28})}; k = 1, car \begin{cases} FN \\ sans \ reprise \ de \ b\'etonnage. \end{cases}$$

$$\Rightarrow S_t = 25 \ cm$$

• Vérification des contraintes :

La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15$$

Calcul de
$$y: \frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

Y=9.02 cm

Calcul de
$$I: I = \frac{b \times y^3}{3} + 15 \times A \times (d - y)^2$$

$$I = 36579.51 \text{ cm}^4$$

$$\sigma_{bc} = \frac{19.53*9.02.10^{-3}}{36579.51} = 4.82 MPa \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 MPa$$

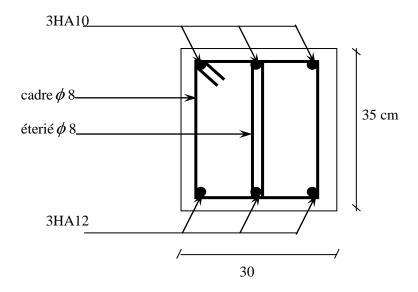


Figure.III.20.Schéma de ferraillage de la poutre chainage

Chapitre IV: Etude dynamique

IV.1. Introduction:

Le séisme est un phénomène voilent qui peut provoquer l'endommagement voir même l'effondrement dans bâtiment.

Les sollicitations provoquer par le séisme sont dangereuse car :

- Elles sont horizontales (déstabilisants).
- -Elles sont dynamiques.
- -Elles sont cyclique.

Pour résister à ce type de sollicitation, le bâtiment doit posséder un système de stabilisation latérale performant et bien dimensionné.

L'étude dynamique du bâtiment permet ainsi de prévoir son comportement, vis-à-vis d'un séisme en fonction du système de contreventement choisi et de son environnement.

Voyons que la forme de notre structure est en forme T, d'après plusieurs dispositions de voiles On n'a pas réussi à avoir un bon comportement. Devant cette problématique la solution optimale afin d'assurer la sécurité et l'économie est de subdiviser le bloc en T en deux sous bloc A et B en forme rectangulaire (voir vue en plan figure IV.1).

Cette séparation est assurée par un joint sismique au niveau de la cage d'escalier afin d'éviter que les deux blocs voisins ne se heurtent pas au cours de balancement.

Pour ce qui suit nous présentons le comportement des deux blocs A et B.

IV.2. Méthode de calcul:

Selon les règles parasismiques Algériennes (RPA99/version2003), le calcul des forces sismiques peut être mené suivant trois méthodes :

- 1. Par la méthode statique équivalente
- 2. Par la méthode d'analyse modale spectrale
- 3. Par la méthode d'analyse dynamique par accélérogramme.

IV.2.1. Méthode statique équivalente :

Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont similaires à ceux de l'action sismique.

> Calcul de la force sismique totale :

RPA99 (Article 4.2.3)

La force sismique V; appliquée à la base de la structure, doit être calculée successivement dans les deux directions horizontales et orthogonales selon la formule :

$$V_{st} = A \times D \times Q \times \frac{1}{R} \times W$$

• A : Coefficient d'accélération de la zone. **RPA99** (Tableau 4.1)

Le coefficient A représente l'accélération du sol et dépend de la zone sismique et de groupe d'usage de bâtiment.

Pour notre projet nous avons :

-Groupe d'usage : groupe 2

-Zone sismique : zone IIa $\Rightarrow A = 0.15$

-R: Coefficient de comportement global de la structure, il est fonction du système de contreventement.

Dans le cas de notre projet, on opte pour un système de contreventement mixte portiques-voiles avec justification de l'interaction, donc : $\mathbf{R} = \mathbf{5}$

- Q : Facteur de qualité.

La valeur de Q est déterminée par la formule :

$$Q = 1 + \sum_{I}^{6} Pq$$
 RPA99 (Formule 4.4)

Pq: est la pénalité à retenir selon que le critère de qualité q est satisfait ou non.

Les valeurs à retenir sont dans le tableau suivant :

Tableau.IV.1.Valeurs des pénalités Pq pour le bloc A

"Critère q	Observé	P _q /xx	Observé	P _q /yy
1- Conditions minimales sur les files de contreventement	Non	0.05	Oui	0
2- Redondance en plan	Non	0.05	Oui	0
3- Régularité en plan	Non	0.05	Non	0.05
4- Régularité en élévation	Non	0.05	Non	0.05
5- Contrôle de qualité des matériaux	Oui	0	Oui	0
6- Contrôles d'exécution	Non	0.1	Non	0.1

Donc: $Q_x = 1.3$ $Q_y = 1.2$

Tableau.IV.2.Valeurs des pénalités Pq pour le bloc B

"Critère q	Observé	P _q /xx	Observé	P _q /yy
1- Conditions minimales sur les files de contreventement	Non	0.05	Non	0.05
2- Redondance en plan	Non	0.05	Non	0.05
3- Régularité en plan	Non	0.05	Non	0.05
4- Régularité en élévation	Non	0.05	Non	0.05
5- Contrôle de qualité des matériaux	Oui	0	Oui	0
6- Contrôles d'exécution	Oui	0	Oui	0

Donc : $Q_x = Q_y = 1.2$

-W: Poids total de la structure.

La valeur de W comprend la totalité des charges permanentes pour les bâtiments d'habitation.

Il est égal à la somme des poids Wi; calculés à chaque niveau (i):

$$W = \sum_{i=1}^{n} Wi \qquad \text{avec} \quad W_i = W_{Gi} + \beta \times W_{Qi} \qquad \qquad \textbf{RPA99} \text{ (Formule 4.5)}$$

- W_{Gi} : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.
- - W_{Oi} : Charges d'exploitation.
- - β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation Concernant notre projet on a des appartements à usage d'habitation donc le coefficient de pondération $\beta = 0.20$.

Pour le bloc A : W=19767,57 KN. Pour le bloc B : W=13383.381 KN.

D: Facteur d'amplification dynamique moyen :

Le coefficient D est le facteur d'amplification dynamique moyen, il est fonction de la période fondamentale de la structure (T), de la nature du sol et du facteur de correction d'amortissement (η). On comprendra aisément qu'il devrait y avoir une infinité, mais pour simplifier on est amené à prendre des courbes enveloppes et à supprimer la partie descend ante de la courbe vers les valeurs faible de la période de la structure T (ceci pour tenir compte des formules forfaitaires de la période qui donnent des valeurs faible de T).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \binom{T_2}{T}^{2/3} & T_2 \le T \le 3.0 \text{ s} \\ 2.5\eta \binom{T_2}{3.0}^{2/3} (3.0/T)^{5/3} & T \ge 3.0 \text{ s} \end{cases}$$

$$RPA99 (Formule 4-2)$$

 T_2 : Période caractéristique, associée à la catégorie du site.

Selon le rapport de sol notre structure située dans un site meuble (S₃).

$$\Rightarrow \begin{cases} T_1 = 0.15 & s \\ T_2 = 0.5 & s \end{cases}$$
 RPA 99 (Tableau 4.7)

Calcul de la période fondamentale de la structure :

Le facteur de correction d'amortissement η est donné par :

$$\eta = \sqrt{7/(2+\zeta)} \ge 0.7$$
 RPA99 (Formule 4.3)

Où $\zeta(\%)$ est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Tableau donnant les valeurs de $\zeta(\%)$:

Tableau.	<i>IV.3</i> .	Les	valeurs	de	5	%)
----------	---------------	-----	---------	----	---	---	---

RPA 99	(Tableau	4.2)
--------	----------	------

Remplissage	Port	ique	Voiles ou murs
Kempiissage	Béton armé	acier	Béton armé / maçonnerie
léger	6	4	
Dense	7	5	10

On prend:
$$\zeta = \frac{7+10}{2} = 8.5\%$$

Donc
$$\eta = \sqrt{7/(2+\zeta)} = 0.81 > 0.7$$

$$T_c = C_T h_n^{3/4}$$

 \boldsymbol{h}_n : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

$$h_n = 28.56m$$

 C_T : Coefficient, fonction du système de contreventement du type de remplissage.

$$C_T = 0.050$$

$$T = 0.050 \times (28.56)^{3/4} = 0.617 \text{ s}$$

On peut également utiliser aussi la formule suivante :

$$T_{X,Y} = \frac{0.09 \times h_n}{\sqrt{L_{X,Y}}}$$
RPA99 (Formule 4-7)

L : Distance du bâtiment mesuré à la base dans les deux directions.

✓ Pour le bloc A :

$$L_x = 11.30m$$
, $L_y = 23.00m$

$$\Rightarrow \begin{cases} T_x = 0.764 \text{ s} \\ T_y = 0.535 \text{ s} \end{cases}$$

$$T_x = \min (T_x; T) = 0.617 s$$

$$T_{v} = \min (T_{v}; T) = 0.535 s$$

$$\Rightarrow$$
 D = 2.5 $\eta \left(\frac{T_2}{T}\right)^{2/3}$ Car $0.5 \le T \le 3.0 \text{ s}$

$$\begin{cases} D_x = 2.5 \times 0.81 \times \left(0.5 / 0.617\right)^{2/3} = 1.78 \\ D_y = 2.5 \times 0.81 \times \left(0.5 / 0.535\right)^{2/3} = 1.935 \end{cases}$$

Donc la période fondamentale statique majorée de 30 % est :

$$T_{st x} = 1.3 *0.617 = 0.8 s$$

$$T_{st y}=1.3*0.535=0.695 s$$

La force sismique totale à la base de la structure est :

$$V_{st} = \frac{A \times D \times Q}{R} \times W$$

$$V_{st_x} = \frac{0.15 \times 1.78 \times 1.3}{5} \times 19767.57 = 1372.26 KN$$

$$V_{st_y} = \frac{0.15 \times 1.935 \times 1.2}{5} \times 19767.57 = 1377.KN$$

Pour le bloc B : les résultats sont illustrés dans le tableau (IV.4.) suivant :

Tableau.IV.4.Les périodes statiques et facteurs d'amplification dynamique (bloc B)

L_{X}	$\mathbf{L}_{\mathbf{Y}}$	T	t_{x}	$t_{\rm y}$	$T_x=min(T;t_x)$	$T_y=min(T;t_y)$	$\mathbf{D}_{\mathbf{x}}$	$\mathbf{D}_{\mathbf{y}}$
12.3	13.4	0.617	0.732	0.702	0.617	0.617	1.78	1.78

Donc la période fondamentale statique majorée de 30 % est :

$$T_{st x} = T_{st y} = 1.3 *0.617 = 0.8 s$$

La force sismique totale à la base de la structure est :

$$V_{\text{st}x} = \frac{0.15 \times 1.78 \times 1.2}{5} \times 13383.381 = 857.60 \, \text{KN}$$

$$V_{\text{st }y} = \frac{0.15 \times 1.78 \times 1.2}{5} \times 13383.381 = 857.60 \, KN$$

IV.2.2. Méthode d'analyse modale spectrale :

L'analyse dynamique se prête probablement mieux à une interprétation réaliste du comportement d'un bâtiment soumis à des charges sismiques que le calcul statique prescrit par les codes. Elle servira surtout au calcul des structures dont la configuration est complexe ou non courante et pour lesquelles la méthode statique équivalente reste insuffisante ou inacceptable ou autre non- conforme aux conditions exigées par le **RPA 99/version2003** pour un calcul statique équivalent.

Pour les structures symétriques, il faut envisager l'effet des charges sismiques séparément suivant les deux axes de symétrie, pour les cas non symétriques l'étude doit être menée pour les deux axes principaux séparément.

Par cette méthode, il est recherché, pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques représentées par le spectre de réponse de calcul suivant :

$$\frac{S_a}{g} = \begin{cases}
1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5\eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\
2.5 \times \eta \times (1.25A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s}
\end{cases}$$
RPA99 (Formule 4-13)

Pour notre étude le spectre de réponse est donné par le logiciel (RPA 99 version 2003)

IV.2.3 Méthode d'analyse par accélérogramme :

Cette méthode peut être utilisée au cas par cas par un personnel qualifie, ayant justifié auparavant le choix des séismes de calcul et des lois de comportement utilisées ainsi que la méthode d'interpolation des résultats et des critères de sécurité à satisfaire.

IV.3. Exigences du RPA99 pour les systèmes mixtes :

- 1. D'après **l'article 3.4.4.a**, les voiles de contreventement doivent reprendre au plus 20% des sollicitations dues aux charges verticales.
- Les voiles et les portiques reprennent simultanément les charges horizontales proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.
- Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant de l'étage.
- 2. D'après **l'article 4.2.4**, les valeurs de T (périodes) calculées à partir du logiciel SAP2000 ne doivent pas dépasser celles estimées à partir des formules empiriques données par le RPA de plus de 30%.
- 3. D'après **l'article 4.3.4**, le nombre de modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :
 - la somme des masses modales effectives pour les modes retenus soit égale à 90% au moins de la masse totale de la structure ;
 - ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum des modes à retenir est de trois (03) dans chaque direction considérée

IV.4. Modalisation et résultats :

Le logiciel utilisé pour modéliser notre structure est le SAP 2000 version 14.

IV.4.1 Disposition des voiles de contreventement :

La présence du parking dans notre bâtiment a compliqué le choix de la disposition des voiles. Nous avons essayé plusieurs dispositions qui ont abouti soit à un mauvais comportement de la structure soit à la non vérification de l'interaction voiles-portiques .la disposition retenue est la suivante :

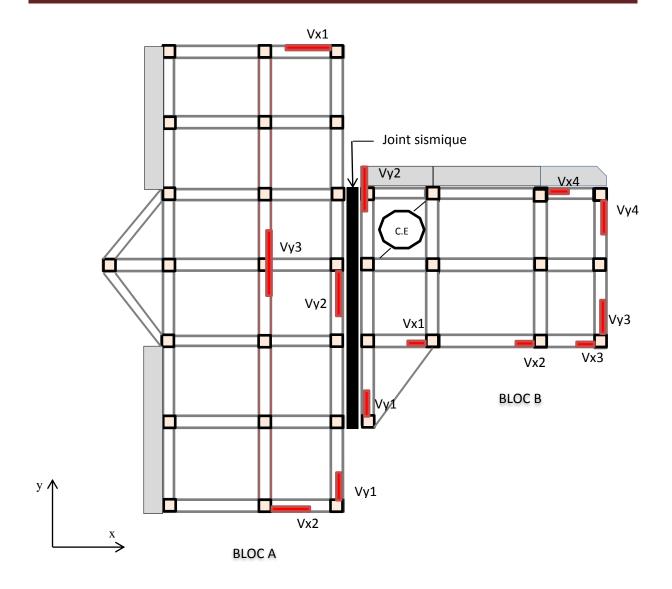


Figure.IV.1.Disposition des voiles et emplacement de joint sismique

Bloc A : Résultats obtenus :

a). Périodes de vibration et participation massique :

Tableau.IV.5.Modes et périodes de vibration et taux de participation des masses (bloc A)

	Périodes	Individ	uel mode	Cumulative sum (%)		
Modes	Sec	Ux	Uy	Ux	Uy	
Mode 1	0,6809	0,0058	0,70224	0,0058	0,70224	
Mode 2	0,5845	0,66077	0,00535	0,66657	0,70759	
Mode 3	0,4194	0,00522	0,0026	0,67178	0,71019	
Mode 4	0,2212	0,0007	0,14234	0,67247	0,8525	
Mode 5	0,1647	0,1880	0,00061	0,8605	0,8530	
Mode 6	0,1158	0,00264	0,00793	0,8630	0,8610	
Mode 7	0,1097	0,00012	0,05452	0,86328	0,91558	
Mode 8	0,0776	0,0613	0,00019	0,9246	0,91577	
Mode 9	0,0708	0,00283	0,0000274	0,92743	0,9158	
Mode 10	0,0703	0,0000	0,00036	0,9275	0,9185	
Mode 11	0,0689	0,00024	0,03021	0,9277	0,9462	
Mode 12	0,06422	0,0000884	0,00004635	0,92776	0,94642	

Pour avoir une somme modale effective de l'ordre de 90%, il nous a fallu prendre 7 modes de vibration selon Y et 8 modes selon X

D'après les résultats obtenus dans le tableau ci-dessus, On constate que les exigences du RPA sont vérifiées

Les modes de vibrations sont montrés sur les figures (IV.2, IV.3, IV.4)

Figure.IV.2.1^{ére} mode (translation suivant Y)

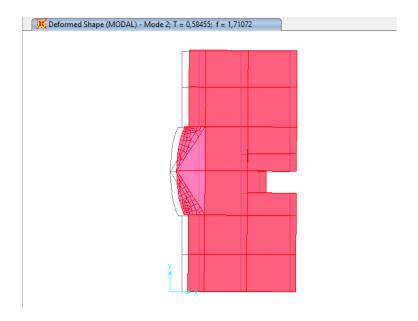


Figure.IV.3. 2^{éme} mode (translation suivant X)

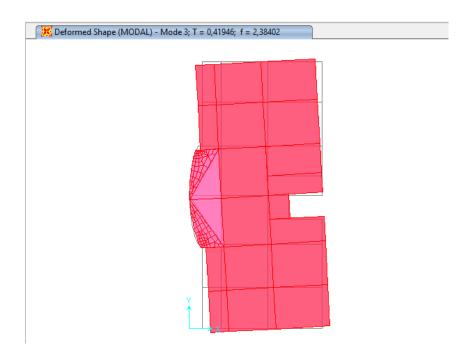


Figure.IV.4. 3^{éme} mode (torsion autour de Z)

b). Justification de l'interaction "Voiles-portiques" :

Les tableaux IV.6 et IV. 7 illustrent respectivement la justification de l'interaction sous charges verticales et horizontales.

Tableau IV.6. Vérification sous charges verticales (bloc A)

	Charges re	eprises (KN)	Pourcentage 1	repris (%)
NIVEAU	PORTIQUE	VOILE	PORTIQUE	VOILE
RDC	18787.214	2892.77	86.67	13.32
NIV 01	15352.538	3540.13	81.26	18.73
NIV 02	13765.364	3316.01	80.58	19.41
NIV 03	10435.703	2926.95	78.10	21.9
NIV 04	10435.703	2551.74	80.35	19.64
NIV 05	5939.242	2070.12	74.15	25.84
NIV 06	3893.538	1596.11	70.92	29.07
NIV 07	2436.105	1015.77	70.57	29.42
NIV 08	1286.833	542.045	70.36	29.63

• Analyse des résultats :

On remarque que l'interaction voile-portique sous charge verticale est vérifiée dans tous les niveaux sauf les quatre derniers niveaux à cause de la régularité en élévation de la structure.

Sous charges horizontales:

Tableau IV.7. Vérification sous charges horizontales (bloc A)

		Charges re	eprises (KN	1)	Pourcentage repris (%)				
NIVEAU	PORTIQUE		VOILE		PORT	TQUE	VOILE		
	X	Y	X	Y	X	Y	X	Y	
RDC	511.643	308.62	499.234	306.902	43.265	57.613	56.735	42.387	
NIV 01	497.36	325.258	484.965	323.207	27.858	49.367	72.141	50.632	
NIV 02	398.248	188.243	385.337	185.38	30.455	49.049	69.544	50.950	
NIV 03	305.23	108.632	292.274	104.128	37.402	56.411	62.597	43.589	
NIV 04	305.23	108.632	216.323	65.419	40.842	59.927	59.157	40.072	
NIV 05	159.242	60.861	147.804	56.758	43.450	67.064	56.549	32.935	
NIV 06	100.122	54.393	90.263	52.098	48.845	66.717	51.154	33.282	
NIV 07	61.092	51.373	54.345	50.567	41.458	63.752	58.541	36.247	
NIV 08	16.852	25.205	11.583	24.772	42.014	65.482	57.985	34.517	

• Analyse des résultats :

Les portiques reprennent au moins 25% de l'effort tranchant d'étage dans tous les niveaux dans la direction xx et yy. L'interaction horizontale est donc vérifiée dans les deux sens.

IV.4.2. Vérification de l'effort normal réduit :

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme. Le RPA99 (7.4.3.1) exige de vérifier l'effort normal de compression de calcul qui est limité par la condition suivante :

$$v = \frac{N_d}{B \times f_{c28}} \le 0.3$$

Où B est l'aire de la section transversale du poteau considéré.

N_d: l'effort normal maximal

 F_{c28} : Caractéristique de résistance a la compression.

Les résultats de calcul sont résumés dans le tableau IV.8

Tableau. IV.8. Vérification de l'effort normal réduit (bloc A)

Niveau	Type de poteau	B (cm ²)	N _d (KN)	v	Observation
RDC et 1er étage	55*60	3300	2363.325	0.28	vérifiée
2 ^{éme} et 3 ^{éme} étage	50*55	2750	1111.28	0.16	vérifiée
4 ^{éme} et 5 ^{éme} étage	45*50	2250	678.719	0.12	vérifiée
6 ^{émé} et 7 ^{émé} étage	40*45	1800	412.782	0.09	vérifiée
8 ^{éme} étage	35*40	1400	147.207	0.04	vérifiée

On remarque que l'effort normal réduit ne dépasse pas la valeur de 0.3.donc les sections des poteaux choisies sont suffisantes.

IV.4.3 Vérification de la résultante des forces sismiques :

Selon l'article **4.3.6** de l'**RPA99**, la résultante des forces sismiques à la base *Vdyn* obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente *Vs*

. Tableau. IV.9. Vérification de la résultante des forces sismiques (bloc A)

Résultante des forces sismiques	Vdyn (KN)	Vs t (KN)	Vdyn/Vst	Observation
Sens x-x	1334	1372.26	0.97	vérifiée
Sens y-y	1225.727	1377	0.89	vérifiée

Remarque: on voit bien que : $V_{dyn} > 0.8 V_{st}$

Donc les paramètres de la réponse calcules ne seront pas majorés.

IV.5.4 Justification vis à vis des déformations :

Selon le **RPA99** (**Art 5.10**), les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage. Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à :

$$\Delta K = \delta_K - \delta_{K-1}$$

Avec: $\delta_K = \mathbf{R} \times \delta e_K$

 $\delta_{\it K}$: déplacement horizontal à chaque niveau "k" de la structure donné par le RPA (Art4.43)

 δe_K : déplacement dû aux forces sismiques Fi (y compris l'effet de torsion)

R: coefficient de comportement (R=5).

Tous les résultats sont regroupés dans le tableau IV.10

Tableau.IV.10. Vérification des déplacements (bloc A)

		Sens x-x						Sens y-y			
Niveau	δeK	δK	δ <i>K</i> −1	ΔK	hK	$\Delta K/hK$	δeK	δ <i>K</i>	δ <i>K</i> -1	ΔK	$\Delta K/hK$
	(cm)	(cm)	(cm)	(cm)	(cm)	(%)	(cm)	(cm)	(cm)	(cm)	(%)
RDC	0.04713	0.2356	0	0.2356	408	0.05	0.0981	0.4905	0	0.4905	0.12
NIV 01	0.133	0.665	0.2356	0.4294	306	0.140	0.287	1.435	0.4905	0.9445	0.308
NIV 02	0.241	1.205	0.665	0.540	306	0.176	0.521	2.605	1.435	1.17	0.38
NIV 03	0.363	1.815	1.205	0.61	306	0.199	0.767	3.835	2.605	1.23	0.40
NIV 04	0.495	2.475	1.815	0.66	306	0.215	1.013	5.065	3.835	1.23	0.40
NIV 05	0.63	3.15	2.475	0.675	306	0.220	1.244	6.22	5.065	1.155	0.377
NIV 06	0.764	3.82	3.15	0.67	306	0.218	1.455	7.275	6.22	1.055	0.344
NIV 07	0.898	4.49	3.82	0.67	306	0.218	1.647	8.235	7.275	0.96	0.313
NIV 08	1.029	5.145	4.49	0.655	306	0.214	1.820	9.10	8.235	0.865	0.28

• Analyse des résultats :

On voit bien à travers ce tableau que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage.

IV.4.5 Justification vis à vis de l'effet P- Δ : [RPA (5.9)] :

Les effets du 2ième ordre (ou effet P-Δ) sont les effets dus aux charges verticales après déplacement. Ils peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_K \times \Delta_K}{V_K \times h_K} \le 0.10$$

 P_K : poids total de la structure et des charges d'exploitation associées au-dessus du niveau "k",

$$PK = \sum_{i=K} n (Wgi + \beta.Wqi)$$

 V_K : effort tranchant d'étage au niveau "k"

ΔK: déplacement relatif du niveau "k" par rapport au niveau "k-1",

 h_K : hauteur de l'étage "k".

- ✓ Si $0.1 \le \Theta_K \le 0.2$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculé au moyen d'une analyse élastique du 1 er ordre par le facteur 1 / (1-qK).
- ✓ Si $\Theta_K > 0.2$, la structure est potentiellement instable et doit être redimensionnée.

Les résultats sont regroupés dans le tableau IV.11.

Tableau .IV.11.Vérification de l'effet P-∆ (bloc A)

	$\mathbf{h}_{\mathbf{k}}$			Sens x-x			Sens y-y		
Niveau	(cm)	$P_k(KN)$	$\Delta_{\mathbf{k}}$	$V_k(KN)$	$\Theta_{\mathbf{k}}$	$\Delta_{\mathbf{k}}$	$V_k(KN)$	$\Theta_{\mathbf{k}}$	
RDC	408	19397,7	0.2356	1337,614	0.008	0.4905	1226,162	0.019	
NIV 01	306	16879,5	0.4294	1306,649	0.018	0.9445	1199,163	0.043	
NIV 02	306	14361,2	0.540	1232,552	0.02	1.17	1134,035	0.048	
NIV 03	306	11935,6	0.61	1130,795	0.021	1.23	1037,284	0.046	
NIV 04	306	11589,3	0.66	1035,548	0.024	1.23	1001,773	0.046	
NIV 05	306	7168,41	0.675	837,071	0.0188	1.155	756,752	0.035	
NIV 06	306	4938,76	0.67	650,896	0.016	1.055	580,422	0.029	
NIV 07	306	2773,02	0.67	437,162	0.0138	0.96	377,77	0.023	
NIV 08	306	1428,83	0.655	263,079	0.0116	0.865	252,688	0.016	

D'après les résultats obtenus dans le tableau IV.11.les effets P- Δ peuvent être négligés.

▶ Bloc B:

Résultats obtenus :

a). Périodes de vibration et participation massique :

Tableau.IV.12.Modes et périodes de vibration et taux de participation massiques (bloc B)

	Périodes	Individ	uel mode	Cumulative	e sum (%)	
Modes	Sec	Ux	Uy	Ux	Uy	
Mode 1	0.79547	0,72908	0,00002672	0,72908	0,00002672	
Mode 2	0.663306	0,00003664	0,68677	0,72912	0,6868	
Mode 3	0.571852	0,00216	0,000003341	0,73127	0,6868	
Mode 4	0,252894	0,12246	0,000001209	0,85373	0,6868	
Mode 5	0,191024	0,000006476	0,15474	0,85374	0,84154	
Mode 6	0,166456	0,000007895	0,00155	0,85375	0,84309	
Mode 7	0,134064	0,04931	0,00002171	0,90306	0,84311	
Mode 8	0,104087	0,000003824	0,00002714	0,90307	0,84314	
Mode 9	0,103243	8,68E-09	0,00004476	0,90307	0,84318	
Mode 10	0,10295	1,426E-08	0,00009372	0,90307	0,84328	
Mode 11	0,102777	1,422E-08	0,00018	0,90307	0,84346	
Mode 12	0,10266	1,089E-09	0,00009159	0,90307	0,84355	
Mode 13	0,10252	3,65E-08	0,00004527	0,90307	0,84359	
Mode 14	0,102434	6,475E-09	0,00001618	0,90307	0,84361	
Mode 15	0,102326	7,114E-08	0,00002283	0,90307	0,84363	
Mode 16	0,0991	0,000005256	0,00024	0,90307	0,84387	
Mode 17	0,091344	0,00022	0,05476	0,90329	0,89863	
Mode 18	0,084221	0,02871	0,00037	0,932	0,89901	
Mode 19	0,079165	0,00003147	0,00429	0,93203	0,90329	

D'après les résultats obtenus dans le tableau ci-dessus, On constate que les exigences du RPA sont

vérifiées

Les modes de vibrations sont montrés sur les figures (IV.5, IV.6, IV.7)

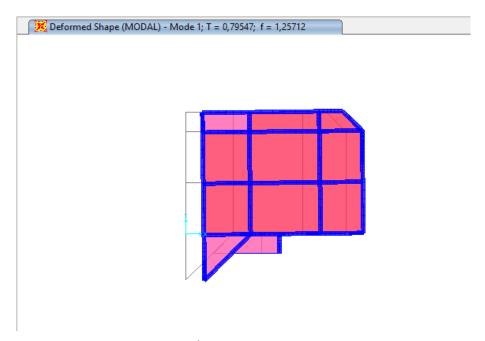


Figure. IV. 5. $1^{\acute{e}r}$ mode (translation suivant X)

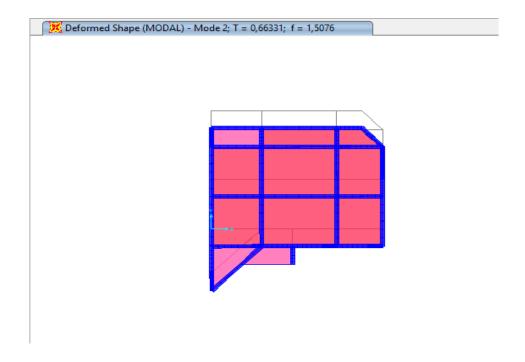


Figure.IV.6. 2^{éme} mode (translation suivant Y)

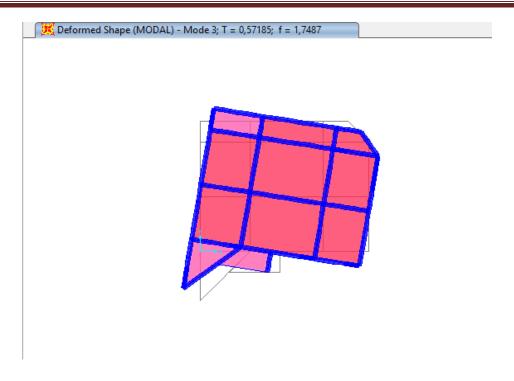


Figure. IV. 7. $3^{\ell me}$ mode (torsion autour de Z)

b). Justification de l'interaction "Voiles-portiques" :

Les tableaux IV.13 et IV. 14 illustrent respectivement la justification de l'interaction sous charges verticales et horizontales.

Tableau.IV.13.Vérification sous charges verticales (bloc B)

	Charges reprises (KN)		Pourcentage	repris (%)
NIVEAU	PORTIQUE	VOILE	PORTIQUE	VOILE
RDC	11811.653	2880.62	80.39364	19.6063604
NIV 01	9323.597	3626.28	71.99759	28.0024115
NIV 02	8901.307	3417.13	72.26001	27.7399876
NIV 03	6990.527	2895.25	70.71297	29.2870252
NIV 04	5206.184	2666.45	66.13014	33.8698586
NIV 05	4068.795	2182.18	65.09055	34.909455
NIV 06	2916.951	1713.43	62.99599	37.0040144
NIV 07	1982.07	1069.03	64.96254	35.0374636
NIV 08	923.917	587.122	61.14448	38.855516

Sous charges horizontales:

Tableau.IV.14.Vérification sous charges horizontales (bloc B)

		Charges re	eprises (KN	J)	Pourcentage repris (%)				
NIVEAU	PORT	TQUE	VC	VOILE		PORTIQUE		LE	
	X	Y	X	Y	X	Y	X	Y	
RDC	1490.093	247.477	1455.29	93.457	65.278	40.321	34.62	59.678	
NIV 01	1190.586	115.625	1135.72	310.23	56.654	45.366	43.345	54.633	
NIV 02	792.09	212.744	732.679	370.302	59.642	40.366	40.357	59.633	
NIV 03	491.976	227.091	437.977	358.421	65.055	52.981	34.944	47.018	
NIV 04	318.681	193.758	275.32	325.98	62.366	52.156	37.633	47.843	
NIV 05	180.138	151.453	158.768	274.028	68.673	63.744	31.32	36.255	
NIV 06	132.549	96.877	132.155	208.10	63.111	62.510	36.889	37.489	
NIV 07	161.744	125.889	171.96	121.861	66.340	67.540	33.659	32.459	
NIV 08	128.72	71.549	129.294	74.924	68.523	69.092	31.476	30.907	

• Analyse des résultats :

Les charges horizontales et verticales sont reprises conjointement par les voiles et les portiques proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.

Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant d'étage.

IV.5.1. Vérification de l'effort normal réduit :

Les résultats de calcul sont résumés dans le tableau IV.15

Tableau.IV.15.Vérification de l'effort normal réduit (bloc B)

Niveau	Type de poteau	B (cm ²)	N _d (KN)	v	Observation
RDC et 1er étage	55*60	3300	1956,336	0.23	vérifiée
2 ^{éme} et 3 ^{éme} étage	50*55	2750	1401,5	0.20	vérifiée
4 ^{éme} et 5 ^{éme} étage	45*50	2250	872,829	0.155	vérifiée
6 ^{émé} et 7 ^{émé} étage	40*45	1800	465,44	0.103	vérifiée
8 ^{éme} étage	35*40	1400	170,297	0.04	vérifiée

Remarque:

On remarque que l'effort normal réduit ne dépasse pas la valeur de 0.3.donc les sections des poteaux choisies sont suffisantes

IV.5.2 Vérification de la résultante des forces sismiques :

Tableau. IV.16. Vérification de la résultante des forces sismiques (bloc B)

Résultante des forces sismiques	Vdyn (KN)	Vs t (KN)	Vdyn/Vst	Observation
Sens x-x	740.025	857.6	0.86	vérifiée
Sens y-y	791.274	857.6	0.92	vérifiée

Remarque : on voit bien que :V_{dyn} > 0.8 V_{st}

IV.5.3. Justification vis à vis des déformations :

Tableau, IV.17, Vérification des déplacements (bloc B

	Tableau. IV.17. Vérification des déplacements (bloc B)											
		Sens x-x							Sens y-y			
Niveau	δeK	δK	δ <i>K</i> −1	ΔK	hK	$\Delta K/hK$	δeK	δK	δ <i>K</i> -1	ΔK	$\Delta K/hK$	
	(cm)	(cm)	(cm)	(cm)	(cm)	(%)	(cm)	(cm)	(cm)	(cm)	(%)	
RDC	0.0934	0.4671	0	0.4671	408	0.114	0.0215	0.1075	0	0.1075	0.026	
NIV 01	0.283	1.415	0.4671	0.9479	306	0.309	0.171	0.855	0.1075	0.7475	0.244	
NIV 02	0.513	2.565	1.415	1.15	306	0.375	0.318	1.59	0.855	0.735	0.240	
NIV 03	0.752	3.76	2.565	1.195	306	0.390	0.484	2.42	1.59	0.83	0.271	
NIV 04	0.984	4.92	3.76	1.16	306	0.379	0.658	3.29	2.42	0.87	0.284	
NIV 05	1.195	5.975	4.92	1.055	306	0.344	0.832	4.16	3.29	0.87	0.284	
NIV 06	1.380	6.9	5.975	0.925	306	0.302	1.0	5.0	4.16	0.84	0.274	
NIV 07	1.532	7.66	6.9	0.76	306	0.248	1.157	5.785	5.0	0.785	0.256	
NIV 08	1.657	8.285	7.66	0.625	306	0.204	1.305	6.525	5.785	0.74	0.241	

• Analyse des résultats :

On voit bien à travers ce tableau que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage.

IV.5.4. Justification vis à vis de l'effet P- Δ : [RPA (5.9)] :

Tableau .IV.18. Vérification de l'effet P-∆ (bloc B)

	$\mathbf{h}_{\mathbf{k}}$			Sens x-x			Sens y-y			
Niveau	(cm)	$P_k(KN)$	$\Delta_{\mathbf{k}}$	V _k (KN)	$\Theta_{\mathbf{k}}$	$\Delta_{\mathbf{k}}$	$V_k(KN)$	$\Theta_{\mathbf{k}}$		
RDC	408	13112.4	0.4671	565.783	0.026	0.1075	630.878	0.0050		
NIV 01	306	11559.9	0.9479	783.945	0.045	0.7475	783.735	0.036		
NIV 02	306	10014.8	1.15	614.018	0.061	0.735	583.128	0.041		
NIV 03	306	8525.29	1.195	556.042	0.059	0.83	541.951	0.042		
NIV 04	306	7036.52	1.16	496.986	0.053	0.87	477.11	0.041		
NIV 05	306	5597.89	1.055	429.385	0.045	0.87	407.424	0.039		
NIV 06	306	4159.9	0.925	348.635	0.036	0.84	318.915	0.035		
NIV 07	306	2763.51	0.76	254.959	0.027	0.785	238.016	0.029		
NIV 08	306	1402.17	0.625	169.004	0.017	0.74	216.323	0.015		

D'après les résultats obtenus dans le tableau IV.18.les effets P-Δ peuvent être négligés.

IV.6.Justification de la largeur de joint sismique :

Deux blocs voisins doivent être séparés par des joints sismiques dont la largeur minimale dmin satisfait la condition suivante :

$$d_{min}=15 \text{ mm}+(\Delta_1+\Delta_2)\geq 40 \text{ mm}...$$
 RPA [1]

 Δ_1 et Δ_2 : déplacement maximaux des deux blocs, calculé selon 4.43 au niveau du sommet du bloc le moins élevé incluant les composantes dues à la torsion et éventuellement celles dues à la rotation des fondations.

$$\Delta_1$$
=0.0489 m Δ_2 =0.047 m donnée par SAP

 d_{min} =15 mm+ (48.9+47) \geq 40 mm

 $d_{min} = 96 \text{ mm}$

On prend: d_{min} = 10 cm

IV.7. Conclusion:

Dans le but de satisfaite les différents conditions du RPA (vérification d'interaction horizontale et verticale). Nous étions dans l'obligation de modifier les sections des éléments principaux préalablement arrêtée dans le chapitre II comme suite :

Sections préalables	Nouvelles sections
Poteaux RDC et 1er étage (45*45) cm ²	$(55*60) \text{ cm}^2$
Poteaux 2 et 3 ^{éme} étage (40*45) cm ²	$(50*55) \text{ cm}^2$
Poteaux 4 et 5 ^{éme} étage (40*40) cm ²	$(45*50) \text{ cm}^2$
Poteaux 6 et 7 ^{éme} étage (35*40) cm ²	$(40*45) \text{ cm}^2$
Poteaux 8 ^{éme} étage (30*40) cm ²	$(35*40) \text{ cm}^2$

Poutres principales et secondaires (30*40) cm².

Nous avons opté pour la disposition des voiles qui nous à donner les meilleures résultats vis-à-vis de l'interaction voiles-portiques (horizontale et verticales).

Toutes les étapes de l'étude dynamique à savoir la vérification de la période, le comportement de la structure, l'interaction voiles-portiques, l'effort normal réduit, et elles découlent toutes de la disposition des voiles.

La satisfaction de toutes les exigences de l'étude dynamique n'est pas une chose aisée pour tout type de structures, car des contraintes architecturales peuvent entravée certaines étapes.

Dans notre cas, on a pu vérifier toutes les exigences de l'étude dynamique, selon le RPA99/2003.

Remarque : Il est apparu que la vérification de l'interaction entre les voiles et les portiques dans le **bloc B** n'est pas vérifiée à cause de l'élancement (H>>l) ainsi que les contraintes architecturales qui influent directement sur le bon comportement de ce bloc. Donc on procède à changer le système de contreventement (portiques contreventées par des voiles R=4)

Dans ce cas les voiles reprennent au plus 20% des sollicitations dues aux charges verticales et la totalité des sollicitations dues aux charges horizontales.

On considère que les portiques ne reprennent que les charges verticales. Toutefois, en zone sismique III, il y a lieu de vérifier les portiques sous un effort horizontal représentant 25% de l'effort horizontal global Avec ce système de contreventement les bâtiments sont limités en hauteur à 10 niveaux ou 33m au maximum.

Chapitre V: études des Eléments Principaux

Introduction:

La superstructure est la partie supérieure du bâtiment, située au-dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (Poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé, leur rôle est d'assuré la résistance et la stabilité de la structure avant et après le séisme, cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

Dans ce que suit de calcul on a étudié un seul bloc (bloc A).

V.1. Etude des poutres :

V.1.1 Introduction:

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (*M*, *N*, *T*) on procède au ferraillage en respectant les prescriptions données par le **RPA99 Version 2003** et celles données par le **BAEL91**.

Les poutres sont étudiées en tenant compte des efforts données par le logiciel SAP2000, combinés par les combinaisons les plus défavorables données par le **RPA99 Version 2003** suivantes :

- 1). 1.35*G*+1.5*Q*
- 2). *G*+*Q*
- 3). G+Q+E
- 4). *G*+*Q*-*E*
- 5). 0.8*G*+*E*
- 6). 0.8G-E

V.1.2. Ferraillage:

a). Armatures longitudinales: RPA 99/2003 (art 7.5.2.1)

- ➤ Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section total du béton, c'est-à-dire A_l^{min}=0.5*b*h
- Le pourcentage total maximum des aciers longitudinaux est de :
- 4% en zone courante,
- 6% en zone de recouvrement.

La longueur minimale de recouvrement est de 40Φ en zone IIa.

Avec : Φ max : le diamètre maximal d'armature dans la poutre.

- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué conformément à la **figure V.1**, avec des crochets à 90°. Cette même figure comporte les autres dispositions constructives et quantités minimales d'armatures.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U superposés formant un carré ou un rectangle (là où les circonstances s'y prêtent, des cadres traditionnels peuvent également être utilisés).
- Les directions de recouvrement de ces U doivent être alternées Néanmoins, il faudra veiller à ce qu'au moins un côté fermé des U d'un cadre soit disposé de sorte à s'opposer à la poussé au vide des crochets droits des armatures longitudinales des poutres.
- ➤ On doit avoir un espacement maximum de 10 cm entre deux cadres et un minimum de trois cadres par nœuds.

b). Armatures transversales: RPA 99/2003 (art 7.5.2.2)

La quantité d'armatures transversales minimale est donnée par :

$$A_t = 0.003 \times St \times b$$

St : espacement maximum entre les armatures transversales donné comme suit :

- St ≤ min (h/4;12 Φ ₁) en zone nodale,
- $-St \le h/2$ en dehors de la zone nodale.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.

La valeur du diamètre ϕ_l des armatures longitudinales à prendre est le plus petit diamètre utilisé, et dans le cas d'une section en travée avec armatures comprimées. C'est le diamètre le plus petit des aciers comprimés.

Les premières armatures transversales doivent être disposées à 5cm au plus du nu d'appui ou de l'encastrement.

L'= 2h h'= Min (10%; 15cm) t <= Min (10%; 15cm) t <= 10 cm S<= Min (h/4; 10%); 30cm) t <= 15% t <= Min (b1/2; h1/2; 10%) A'1 A'>= Max (A'1/4; A'2/4; 3cm2) A1>= Max (A'1/2; A1/4; 3cm2) A2 A1>= Max (A'1/2; A1/4; 3cm2)

V.1.3. Dispositions constructives des portiques :

Figure.V.1.Dispositions constructives des portiques.

V.1.4.Recommandation de BAEL:

La section minimale des aciers longitudinaux est de :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$$
 (Condition de non fragilité) **BAEL91** (Art F.IV.2)

V.1.5. Calcul du ferraillage:

Méthode de calcul des armatures à l'ÉLU (flexion simple) :

Le ferraillage est calculé à partir des sollicitations déduites du notre modèle fait à base du logiciel SAP2000

Calcul du moment réduit ultime :

$$\mu_{bu} = \frac{M_u}{b \times d^2 \times f_{bu}}$$

$$f_{bu} = \frac{0.85 \times fc_{28}}{\gamma_b} = \begin{cases} 14.2MPa & situation \ courante \ (\gamma_b = 1.5) \\ 18.48MPa & situation \ accidentelle \ (\gamma_b = 1.15) \end{cases}$$

$$\rightarrow$$
 Si $\mu_{bu} \le \mu_{l} = 0.3916$ alors:

$$A_s' = 0$$
 et $A_s = \frac{M_u}{z \times \frac{f_e}{\gamma_s}}$

$$avec: \quad \gamma_s = \begin{cases} 1.15 & pour \, les \, situations \, courantes. \\ 1 & pour \, les \, situations \, accidentelles. \end{cases}$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}} \right) \rightarrow z = d \left(1 - 0.4\alpha \right)$$

$$\rightarrow Si \ \mu_{bu} > \mu_l = 0.3916 \ alors$$

$$A_s' = \frac{M_u - M_l}{(d - d') \times \frac{f_e}{\gamma_s}} \quad et \quad A_s = \frac{M_l}{z \times \frac{f_e}{\gamma_s}} + A_s'$$

$$Avec: M_l = \mu_l \times b \times d^2 \times f_{bu}$$

Le tableau suivant regroupe le calcul de ferraillage des différentes poutres.

Tableau V.1. Ferraillage des poutres principales et secondaires

Niveau	Type de poutre	Section	Localise	M (KN.m)	V (KN)	A calcul (cm ²)	A _{min} (cm ²	${ m A_{adopt\acute{e}}} \ (cm^2)$	N ^{bre} de barres
RDC	Poutre P	30*40	Appuis	125.29	185.18	11.25	6	12.06	3HA16+3HA16
jusqu'au 7 ^{éme} étage	Poutre S		Travée	116.71	175.93	10.16		12.06	3HA16+3HA16
8 ^{éme} étage	Poutre P	30*40	Appuis	66.56	68.45	5.46	6	6.63	2HA14+HA16
	Poutre S	30.40	Travée	29.17	63.12	2.33	6	3.39	3HA12

V.1.6. Vérification des armatures selon le RPA 99 :

- Pourcentage maximum des armatures longitudinales :
 - > Poutre principale et secondaire

En zone courante : $A_{max} = 4\%b \times h = 0.04 \times 30 \times 40 = 48 \text{ cm}^2 > Aadopté$

En zone de recouvrement: $A_{max} = 6\%b$. $h = 0.06 \times 30 \times 40 = 72$ cm² > Aadopté

• Les longueurs de recouvrement :

$$Lr > 40*_{\circ}$$
 en zone II $Lr > 40$

 $\phi = 16mm \Rightarrow Lr > 40*1.6 = 64cm$ on adopte Lr = 70cm

 $\phi = 14mm \Rightarrow Lr > 40*1.4 = 56cm$ on adopte Lr = 60 cm

 $\phi = 12cm \Rightarrow Lr > 40*1.2 = 48cm$ on adopte Lr = 50cm

V.1.7. Les armatures transversales :

$$\phi \le \min \left(\phi_{\min}; \frac{h}{35}; \frac{b}{10} \right)$$
 **BAEL91**

- Poutres principales et secondaire : $\varphi \le \min\left(1.6; \frac{40}{35}; \frac{30}{10}\right) = \min(1.6; 1.14; 3)$
- Donc on prend $\phi_t = 8mm \Rightarrow A_t = 4HA8 = 2.01cm^2$ (un cadre et un étrier)

Calcul des espacements des armatures transversales

Selon le RPA99/version 2003(art 7.5.2.2):

-Zone nodale :
$$S_t \le Min(\frac{h}{4}; 12\phi_{min}; 30 \text{ cm})$$
 ,

Poutres principales et secondaires : $S_t \le Min(10cm; 24cm, 30cm)$ Soit : $S_t = 10$ cm

-Zone courante :
$$S_t \le \frac{h}{2}$$

Poutres principales et secondaires : $S_t \le \frac{h}{2} \Rightarrow S_t \le \frac{40}{2} = 20 \Rightarrow S_t \le 20cm$; Soit : $S_t = 15cm$

$$A_t^{\text{min}} = 0.003 \times S_t \times b = 0.003 \times 15 \times 30 = 1.35 cm^2$$

$$A_t = 2.01cm^2 > A_t^{min} = 1.35cm^2$$
 Condition vérifiée

V.1.8. Vérifications à l'ELU:

a). Condition de non fragilité BAEL91 (Art F.IV.2)

$$A > A \min = 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$$

Tableau.V.2.Vérification de la section minimale

Poutres	A _{min} (cm ²)	A _{adop} (cm ²)	Observations
Principales et	1.35	2.01	Vérifiée
secondaires	1.55	2.01	Vermee

b).Contrainte tangentielle maximale

Vérification de l'effort tranchant : $au_{bu} < \overline{ au}_{bu}$

$$\tau_{bu} = \frac{V_u}{b_0 \times d}$$
 BAEL91 (Art H.III.2)

Fissuration peu nuisible : $\bar{\tau}_{bu} = \min(0.13 f_{c28}, 4 \text{ MPa}) = 3.25 \text{ MPa}$

Les résultats sont donnés dans le tableau suivant :

Tableau. V.3. Vérification des contraintes tangentielles

Poutres	Vu (KN)	$ au_{bu}$ (MPa)	- ^τ (MPa)	Observation
Principales et secondaires	185.18	1.67	3.25	Vérifiée

c). Vérification des armatures longitudinales au cisaillement

$$\checkmark$$
 Appuis de rives $A_l > \frac{V_u \times \gamma_s}{f_e}$(1). BAEL91 (Art H.IV.2)

$$\checkmark$$
 Appuis intermédiaires $A_l \ge \frac{\gamma_s}{f_e} \times (V_u - \frac{M_u}{0.9 \times d})$(2)

Les vérifications sont résumées dans le tableau ci-après :

Tableau. V.4. Vérification des armatures longitudinales au cisaillement

Poutres	A ₁ (cm ²)	V _u (KN)	M _a (KN.m)	A_1^{rive} (cm ²)	A_1^{int} (cm ²)	Observation
Principales et secondaires	12.06	185.18	125.29	5.32	1.62	Vérifiée

Commentaire : pas de risque de cisaillement et cela pour tout type de poutre.

V.1.9. Vérification à l'ELS:

a). Etat limite de compression du béton :

$$\frac{b}{2}y^{2} + 15A_{s}y - 15 dA_{s} = 0; \qquad \sigma_{bc} = \frac{M_{ser}}{I}y; \qquad \overline{\sigma}_{bc} = 0.6f_{c28} = 15MPa$$

$$I = \frac{b \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s}^{'} \times (y - d')^{2}\right]$$
BAEL91 (Art E.III.1)

Les vérifications sont résumées dans le tableau ci-après :

Tableau. V.5. Vérification de l'état limite de compression du béton

Poutres	Localisation	M _{ser} (KN.m)	I (cm ⁴)	Y (cm)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Observation
Principales	Appuis	18.15	43491	9.25	3.86	15	vérifiée
et secondaires	Travées	26.66	43491	9.25	5.67	15	vérifiée

b). Etat limite de déformation (évaluation de la flèche)

D'après le BAEL91 et le CBA93 la vérification à la flèche est inutile si :

42

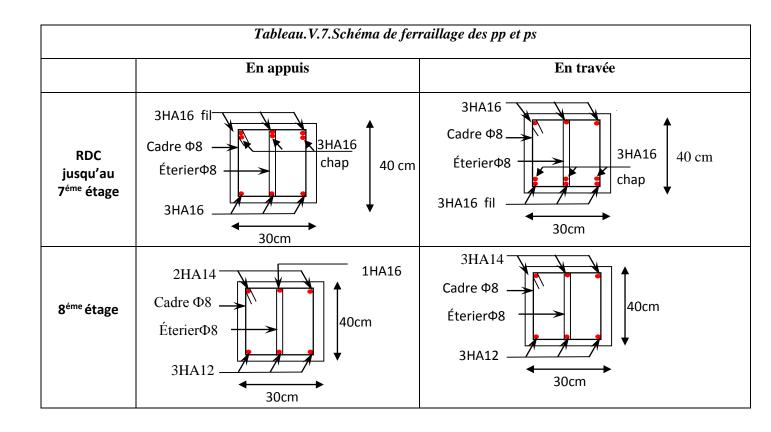

	h _t (cm)	b (cm)	Cm)	A _s (cm ²)	$\frac{h_{t}}{l}$	$\frac{7.2}{f_e}$	$\frac{h_{t}}{l} > \frac{1}{16}$	$\frac{h_t}{l} > \frac{M_t}{10M_0}$	$\frac{n_{s}}{b_{0} \times d} \le \frac{4.2}{f_{e}}$
Poutres	40	30	4.15	12.06	0.096	0.10	Vérifiée	Vérifiée	Vérifiée
Donc : La vérification de la flèche n'est pas nécessaire car toutes les conditions sont vérifiées									
.1.10. Schéma de ferraillage des Poutres :									

Tableau.V.6.Vérification de la flèche pour les poutres

4.2

V

Le ferraillage des poutres est donné dans le tableau ci-dessous :

V.2. Etude des poteaux :

V.2.1 Introduction:

Les poteaux sont des éléments verticaux qui ont le rôle de transmettre les charges apportées par les poutres aux fondations.

Le ferraillage des poteaux est calculé en flexion composée en fonction de l'effort normal (N) et du moment fléchissant (M) donnés par les combinaisons les plus défavorables, parmi celles introduites dans le fichier de données du SAP2000 :

- 1). 1.35*G*+1.5*Q*
- 2). *G*+*Q*
- 3). G+Q+E
- 4). G+Q-E
- 5). 0.8G+E
- 6). 0.8G-E

Il s'agit de ferrailler les poteaux là où il y a changement de section, selon les sollicitations suivantes :

- l'effort normal maximal et le moment correspondant.
- l'effort normal minimal et le moment correspondant.
- le moment maximum et l'effort normal correspondant.

V.2.2. Recommandations du RPA99 (version 2003):

a). Armatures longitudinales :

Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.

- $-A_{min} = 0.8\%$ de la section de béton (en zone IIa).
- $-A_{max} = 4\%$ de la section de béton (en zone courante).
- $-A_{min} = 6\%$ de la section de béton (en zone de recouvrement).
- $-\Phi_{min} = 12$ mm (diamètre minimal utilisé pour les barres longitudinales).
- La longueur minimale de recouvrement (L_{min}) est de 40Φ en zone IIa.
- La distance ou espacement (St) entre deux barres verticales dans une face de poteau ne doit pas dépasser 25cm (zone IIa).

Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (zone critique).

La zone nodale est définie par *l*'et *h* '.

$$l' = 2h$$

$$h' = \max\left(\frac{h_e}{6}, b_1, h_1, 60 \ cm\right)$$

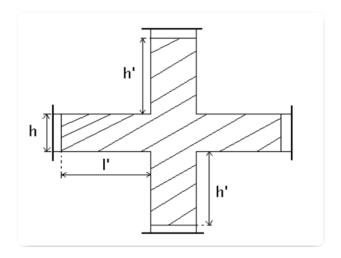


Figure.V.2. Zone nodale

Les valeurs numériques des armatures longitudinales relatives aux prescriptions du RPA99 sont Illustrées dans le tableau ci-dessous :

Tableau.V.8.Armatures longitudinales minimales et maximales dans les poteaux

Niveau	section des poteaux (cm²)	A_{min} (cm^2)	A _{max} (cm ²) Zone courante	$A_{max} (cm^2)$ zone de recouvrement
RDC et 1 ^{er} étage	55*60	26.4	132	198
2 et 3 ^{éme} étage	50*55	22	110	165
4 et 5 ^{éme} étage	45*50	18	90	135
6 et 7 ^{éme} étage	40*45	14.4	72	108
8 ^{éme} étage	35*40	11.2	56	84

b). Armatures transversales:

Les armatures transversales des poteaux sont calculées à l'aide de la formule :

$$\frac{A_{t}}{t} = \frac{\rho_{a} \times V_{u}}{h_{1} \times f_{e}} \qquad (I).$$

- -Vu: est l'effort tranchant de calcul.
- $-h_1$: hauteur totale de la section brute.
- -fe: contrainte limite élastique de l'acier d'armatures transversales.
- pa: est un coefficient correcteur qui tient compte du mode fragile de la rupture par effort tranchant; il est pris égale à :

2.5 Si
$$\lambda g \ge 5$$
 (λg : l'élancement géométrique),
3.75 Si $\lambda g < 5$.

Avec : $\lambda g = lf/a$ ou $\lambda g = lf/b$ (a et b sont les dimensions de la section droite du poteau dans la direction de déformation considérée), et lf longueur de flambement du poteau.

- -t: est l'espacement des armatures transversales dont la valeur est déterminée dans la formule (I); Par ailleurs la valeur maximum de cet espacement est fixée comme suit :
 - ✓ **Dans la zone nodale :** $t \le Min (10\Phi_L^{min}, 15cm)$ (en zones IIa).
 - ✓ **Dans la zone courante :** $t \le 15\Phi_L^{min}$ (en zones IIa).

La quantité d'armatures transversales minimale $\frac{At}{t*b1}$, en % est donnée comme suit :

Si $\lambda g \geq 5 : 0.3\%$

Si λg ≤ 3 : 0.8%

Si $3 < \lambda g \le 5$: interpoler entre les valeurs précédentes.

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\Phi_t$ (au minimum).

V.2.3 Sollicitations de calcul:

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du notre modèle fait à base de logiciel SAP2000, les résultats sont résumés dans les tableaux ci-après :

 $Nmax \rightarrow Mcor$ $Mmax \rightarrow Ncor$ $Nmin \rightarrow Mcor$ Niveau N(KN) M(KN.m)M(KN.m)N(KN) N(KN) M(KN.m)RDC et 1^{er} étage -2363.325 -82.0456 101.1382 564.661 826.04 56.8665 2 et 3^{éme} étage 96.2733 576.142 -1245.778 -5.97 32.712 45.3722 4 et 5^{éme} étage -854.908 -7.273 83.4089 64.639 309.582 40.4493 6 et 7^{éme} étage -501.727 -8.654 -56.3421 139.172 176.202 24.3467 8^{éme} étage -178.638 22.1395 48.7493 52.961 57.621 7.1256

Tableau.V.9.Sollicitations dans les poteaux

V .2.4 Calcul du ferraillage :

Hypothèse de calcul:

- Fissuration peu préjudiciable (e=5 cm)
- Calcul en flexion composée
- Calcul suivant BAEL 91.

Exemple de calcul:

Le calcul du ferraillage se fera pour un seul poteau comme exemple de calcul et les autres seront résumés dans des tableaux.

Données:

Soit à calculer le poteau le plus sollicité du RDC, avec les sollicitations suivantes :

Situation accidentelle : $V_b=1.15$ et $V_s=1$

 $-N_{\text{max}}$ = -2363.325 KN (compression) $\rightarrow M_{\text{cor}}$ =82.0456 KN.m (G+Q+E)

 $-\mathbf{M}_{\text{max}} = 101.1382 \text{ KN.m} \rightarrow \mathbf{N}_{\text{cor}} 564.661 = \text{KN} (G+Q+E)$

 $-N_{min} = 826.04 \text{ KN} \rightarrow M_{cor} 56.8665 = \text{KN.m} (0.8G+E)$

On utilisant le programme SOCOTEC en obtient des résultats suivants:

		A _{calculé} (cm ²)	A _{min} (cm ²)
$N_{max} \rightarrow M_{cor}$	-2363.325 → 82.0456	0.0	26.4
$M_{max} \rightarrow N_{cor}$	101.1382 -> 564.661	13.93	26.4
$N_{min} \rightarrow M_{cor}$	826.04 → 56.8665	15.14	26.4

On prend la valeur max: $A_s = max (A_1; A_2; A_3; A^{min}_{RPA}) = 15.4 \text{ cm}^2$

Le tableau (*V.10.*) résume le calcul des armatures pour les différents poteaux de différent niveaux:

ARPA Aadap Niveau sections Barres (cm^2) (cm^2) (cm²) RDC 31.96 4HA25+8HA14 55*60 26.4 30.28 et 1er étage 24.88 4HA20+8HA14 2 et 3^{éme} étage 22 50*55 24.52 4 et 5^{éme} étage 18 45*50 20.36 4HA16+8HA14 14.72 40*45 14.4 15.2 4HA14+8HA12 6 et 7^{éme} étage 12.68 12HA12 13.56 35*40 11.2 8^{éme} étage 10.00

Tableau.V.10.Ferraillage des poteaux

V.2.5. Armatures transversales :

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents poteaux des différents niveaux.

Sections (cm ²)	Φ_l^{min} (cm)	Vd (KN)	L _f (cm)	λg	t zone nodale	t zone courante	At (cm ²)	Amin (cm²)	A _t ^{adop} (cm ²)	barres
55*60	1.6	99.51	285.6	5.19	10	15	2.28	2.47	3.14	4HA10
50*55	1.4	74.89	214.2	4.28	10	15	3.44	1.72	4.71	6HA10
45*50	1.4	67.41	214.2	4.76	10	15	3.09	2.43	3.14	4HA10
40*45	1.4	55.40	214.2	5.35	10	15	1.70	1.80	3.02	6НА8
35*40	1.4	49.23	214.2	6.12	10	15	1.51	1.57	3.02	6HA8

Tableau.V.11.Calcul des armatures transversales

Conformément au RPA et au BAEL 91, le diamètre des armatures transversales est :

$$\phi_t \ge \frac{\phi_t^{\text{max}}}{3} \Rightarrow \phi_t \ge 6mm$$
Condition vérifiée.

V.2.6 . Vérifications :

a). Vérification au flambement :

Selon le **BAEL99** (**Art 4.4.1**), les éléments soumis à la flexion composée doivent être justifiés vis à vis de l'état limite ultime de stabilité de forme.

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

On doit vérifier que :

$$N_{d} \leq N_{u} = \alpha \times \left[\frac{Br \times fc_{28}}{0.9 \times \gamma_{b}} + \frac{As \times fe}{\gamma_{s}} \right]$$

- **As**: est la section d'acier comprimée prise en compte dans le calcul.
- **Br**: est la section réduite du poteau obtenue en déduisant de sa section réelle un centième d'épaisseur sur toute sa périphérie ;

$$\forall b = 1.5, \forall s = 1.15$$

- α : est un coefficient fonction de l'élancement mécanique λ qui prend les valeurs.

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \dots pour \lambda \le 50.$$

$$\alpha = 0.6 \left(\frac{\lambda}{50}\right)^2$$
pour $50 < \lambda \le 70$.

Si plus de la moitié des charges est appliquée avant 90 jours, alors on remplace α par α /1.10.

l'élancement mécanique est donné par :

$$\lambda = 3.46 \times l_f / b$$
 pour les sections rectangulaires.

$$\lambda = 4 \times l_f / f$$
 pour les sections circulaires.

- $\mathbf{L_f} = \mathbf{l_0}$ longueur de flambement.

La vérification se fait pour le poteau le plus sollicité à chaque niveau, et comme exemple de calcul on prendra le même exemple qu'on a pris pour le calcul du ferraillage.

$$Nd = 2363.325 KN$$

$$L_f = 285.6 \ cm \rightarrow \lambda = 17.96 < 50 \rightarrow \alpha = 0.807$$

Br =
$$(0.55-0.02) \times (0.60-0.02) = 0.3074 \text{ m}^2$$
.

$$N_{u=}0.807 \left[\frac{0.307 * 25}{0.9 * 1.5} + \frac{30.66 * 10^{3} * 400}{1.15} \right] = 8.6MN$$

Nd = 2.3633 MN < 12.22 MNpas de risque de flambement.

Tableau.V.12.Vérification du flambement pour les poteaux

Niveau	Section	l_f	λ	α	As	Br	Nu	Nd	Obs.
	(cm ²)	(cm)		(c	(cm ²)	(m^2)	(MN)	(MN)	
RDC et 1er étage	55*60	285.6	17.96	0.807	30.66	0.307	8.60	2.363	vérifiée
2 et 3 ^{éme} étage	50*55	214.2	14.08	0.820	24.63	0.254	6.91	1.245	vérifiée
4 et 5 ^{éme} étage	45*50	214.2	16.46	0.813	18.60	0.206	5.22	0.854	vérifiée
6 et 7 ^{éme} étage	40*45	214.2	18.52	0.804	15 .46	0.163	4.34	0.501	vérifiée
8 ^{éme} étage	35*40	214.2	21.17	0.792	12.32	0.125	3.45	0.178	vérifiée

b). Vérification des contraintes :

Comme la fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression dans le béton seulement, cette vérification sera faite pour le poteau le plus sollicité à chaque niveau.

$$\sigma_{bc} = \frac{N}{S} + \frac{M_{ser} \times v}{I_{gg}} \le \frac{-}{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$I_{gg} = \frac{b}{3} \times (v^3 + v^{'3}) + 15 \times A_s' \times (v - d')^2 + 15 \times A_s \times (d - v)^2$$

$$A' = 0 \Rightarrow I_{gg} = \frac{b}{3} \times (v^3 + v^{'3}) + 15 \times A_s \times (d - v)^2$$

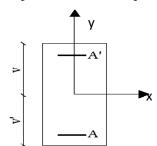


Figure.V.3.Section d'un poteau

$$v = \frac{1}{R} \times (\frac{b \times h^2}{2} + 15 \times A_s \times d)$$

$$v' = h - v$$
 et $d = 0.9 \times h$

$$B = b \times h + 15 \times A_{s}$$

Les résultats de calcul sont résumés dans le tableau suivant :

 I_{gg} N_{ser} M_{ser} Section As σ_{bc} σ_{bc} **Niveaux** (cm^2) (cm²) (cm) (cm) (MPa) (cm) (m^4) (KN) (KN.m) (MPa) RDC et 22.24 0.09656 55*60 54 30.66 32.52 1209.66 20.40 5.73 **15** 1^{éré} étage 2 et 3^{éme} 50*55 49.5 24.63 29.95 25.05 0.00841 907.366 22.08 4.08 **15** étage 4 et 5^{éme} 45*50 45 18.60 27.21 22.79 0.00567 622.67 31.17 4.26 15 étage 6 et 7^{éme} 40*45 40.5 15.46 24.55 0.00370 365.15 20.45 21.27 3.44 **15** étage 8^{éme} 35*40 12.32 21.86 0.00228 36 18.14 130.06 20.24 2.87 **15** étage

Tableau.V.13.Vérification des contraintes dans le béton

c). Vérification aux sollicitations tangentes :

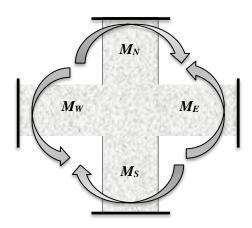
D'après le RPA99 version 2003 **article 7.4.3.2**, la contrainte de cisaillement conventionnelle de calcul dans le béton τ_{bu} sous combinaison sismique doit être inférieur ou égale à la valeur limite suivante :

$$\overline{\tau}_{bu} = \rho_d \times fc_{28}$$

avec:

$$\rho_d = \begin{cases} 0.075 & Si \quad \lambda_g \ge 5. \\ 0.040 & Si \quad \lambda_g < 5. \end{cases} ; \quad \tau_{bu} = \frac{V_d}{b \times d}$$

Les résultats de calcul sont représentés dans le tableau suivant :


Tableau.V.14.Vérification aux sollicitations tangentes pour les poteaux

Niveau	Sections (cm ²)	l _f (cm)	λ	ρ _d	d (cm)	V _d (KN)	τ _{bu} (MPa)	π _{bu} (MPa)	Obs.
RDC et 1 ^{er} étage	55*60	285.6	17.96	0.075	54	99.51	0.33	1.875	vérifiée
2 et 3 ^{éme} étage	50*55	214.2	14.08	0.075	49.5	74.89	0.30	1.875	vérifiée
4 et 5 ^{éme} étage	45*50	214.2	16.46	0.075	45	67.41	0.33	1.875	vérifiée
6 et 7 ^{éme} étage	40*45	214.2	18.52	0.075	40.5	55.40	0.34	1.875	vérifiée
8 ^{éme} étage	35*40	214.2	21.17	0.075	36	49.23	0.39	1.875	vérifiée

d). Vérification des zones nodales :

Dans le but de faire en sorte que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux, le **RPA99** (**Art 7.6.2**) exige de vérifier :

$$|M_N| + |M_S| \ge 1.25 \times (|M_W| + |M_E|)$$

d.1). Détermination du moment résistant dans les poteaux :

Le moment résistant (MR) d'une section de béton dépend essentiellement :

- > Des dimensions de la section du béton,
- > De la quantité d'armatures dans la section
- > De la contrainte limite élastique des aciers

$$M_R = z \times A_s \times \sigma_s$$

$$avec: z = 0.9 \times h$$
 et $\sigma_s = \frac{f_s}{\gamma_s} = 348MPa$.

Les résultats de calcul des moments résistants dans les poteaux sont donnés dans les tableaux suivants :

Tableau. V.15. Les moments résistants dans les poteaux

Niveau	Section (cm ²)	Z (cm)	As (cm ²)	M _R (KN.m)
RDC et 1er étage	55*60	54	30.66	576.16
2 et 3 ^{éme} étage	50*55	49.5	24.63	424.27
4 et 5 ^{éme} étage	45*50	45	18.60	291.27
6 et 7 ^{éme} étage	40*45	40.5	15.46	217.89
8 ^{émé} étage	35*40	36	12.32	154.34

Tableau.V.16. Moment résistant dans les poutres

Niveaux	Localisation	b (m)	h (m)	z (m ²)	As (m ²)	σ _s (MPa)	M_R (KN.m)
RDC	P.P	0.3	0.4	0.36	12.06	348	151.08
jusqu'au							-0-100
7 ^{éme} étage	P.S	0.3	0.4	0.36	12.06	348	151.08
8 ^{éme} étage	P.P	0.3	0.4	0.36	6.63	348	83.06
(terrasse)	P.S	0.3	0.4	0.36	3.39	348	42.47

Les résultats de la vérification concernant les zones nodales sont illustrés dans les tableaux suivant :

Tableau.V.17.Vérification des zones nodales poutres principales

				Poutres prin	cipales		
Niveaux	M _n (KN.m)	M _s (KN.m)	M _n +M _s (KN.m)	M _w (KN.m)	M _e (KN.m)	1,25(M _w +M _e) (KN.m)	Observation
RDC	576.16	576.16	1152.32	151.08	151.08	377.7	vérifiée
1	576.16	576.16	1152.32	151.08	151.08	377.7	vérifiée
2	424.27	424.27	848.54	151.08	151.08	377.7	vérifiée
3	424.27	424.27	848.54	151.08	151.08	377.7	vérifiée
4	291.27	291.27	582.54	151.08	151.08	377.7	vérifiée
5	291.27	291.27	582.54	151.08	151.08	377.7	vérifiée
6	217.89	217.89	435.78	151.08	151.08	377.7	vérifiée
7	217.89	217.89	435.78	151.08	151.08	377.7	vérifiée

Chapit	re V
Gnapiu	I C V

Etudes des éléments principaux

	15101	15101	200.50	92.06	42.47	15646	4 1014
8	154.34	154.34	308.68	83.06	42.47	156.46	vérifiée

• Conclusion : La vérification des zones nodales est justifiée ; donc les rotules plastiques se forment dans les poutres plutôt que dans les poteaux.

Figure.V.4.Réduction des sections de poteaux

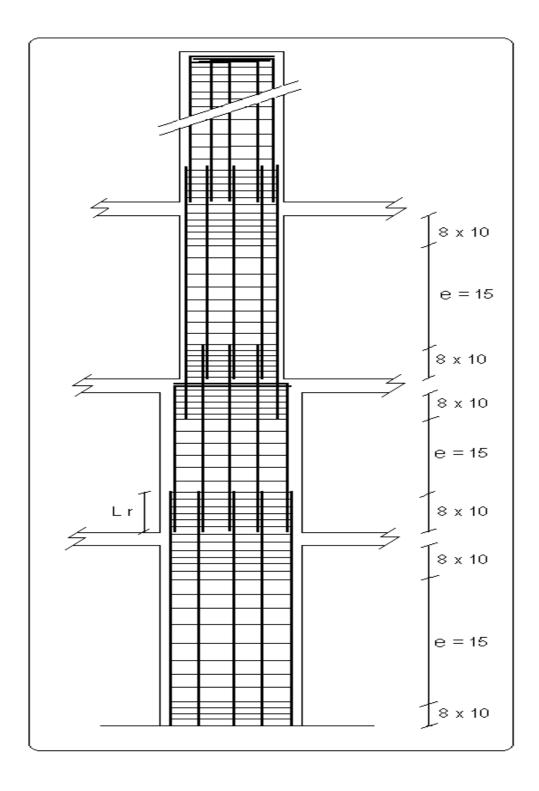
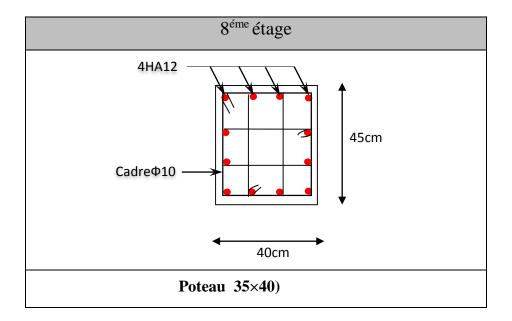



Tableau.V.18.Schéma de ferraillage des poteaux dans chaque niveau

RDC et 1 ^{er} étage	2 et 3 ^{éme} étage				
2HA25 СаdreФ10 2HA14	2HA20 CadreΦ10 2HA14 50cm				
Poteau (55×60)	Poteau (50×55)				
4 et 5 ^{éme} étage	6 et 7 ^{éme} étage				
2HA16 50cm 2HA14 45cm	2HA14 CadreΦ10 2HA12 45cm				
Poteau (45×50)	Poteau (40×45)				

V.3. Étude des voiles :

V.3.1. Introduction:

Le RPA99 version 2003 (3.4.A.1.a) exige de mettre des voiles de contreventement pour chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur dans la zone **IIa**.

Les voiles sont considérés comme des consoles encastrées à leur base, leurs modes de rupture sont:

- ✓ Rupture par flexion.
- ✓ Rupture en flexion par effort tranchant.
- ✓ Rupture par écrasement ou traction du béton.

D'où, les voiles seront calculés en flexion composée avec effort tranchant, avec les sollicitations issues des combinaisons suivantes :

- 1).1.35*G*+1.5*Q*
- 2). $G+Q\pm E$
- 3). $0.8G\pm E$

V.3.2. Recommandations du RPA99:

Les voiles comportent des :

a). Armatures verticales: [7.7.4.1]

Ils reprennent les efforts de flexion. Ils sont calculés en flexion composée, et disposés en deux nappes parallèles aux faces des voiles.

Le pourcentage minimum des armatures verticales sur toute la zone tendue sous l'action des forces verticales et horizontales pour reprendre l'effort de traction en totalité est :

Amin =
$$0.2\% \times lt \times e$$

Avec : l_t : longueur de la zone tendue,

e: épaisseur du voile.

Les barres verticales des zones extrêmes doivent être ligaturées avec des cadres horizontaux dont

l'espacement St < e.

A chaque extrémité du voile, l'espacement des barres doit être réduit de moitié sur 1/10 de la longueur du voile.

Les barres du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

b). Armatures horizontales: [7.7.4.2]

Ils sont destinés à reprendre les efforts tranchant, et maintenir les aciers verticaux, et les empêcher de flamber, donc il doivent être disposés en deux nappes vers l'extérieur des armatures verticales.

Les barres horizontales doivent être munies de crochets à 130° ayant une longueur de 10Φ.

c). Armatures transversales:

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement, elles sont en nombre de quatre épingles par un mètre carré au moins.

d). Règles communes :

Le pourcentage d'armatures verticales et horizontales des trumeaux et donné comme suit :

- Globalement dans la section du voile 0.15%.
- En zone courante (non tendue) 0.10%.

L'espacement des barres horizontales et verticales est : $S \le min$ (1.5e, 30cm).

Les deux nappes d'armatures doivent être reliées avec au moins (4) épingles au mètre carré.

Le diamètre des barres verticales et horizontales (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.

les longueurs de recouvrements doivent être égales à :

- -40Φ : pour les barres situées dans les zones où le renversement du signe des efforts est possible.
- -20Φ : pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.

e).Armatures de coutures :

Le long des joints de reprise de coulage, l'effort tranchant doit être repris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{vj} = 1.1 \frac{V}{f_c}$$
 avec: $V = 1.4Vu$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

V.3.3.Ferraillage:

a).les armatures verticales :

Le calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section $(b \times h)$.

b). Les armatures horizontales :

Elle doit respecter les conditions du RPA.

Les résultats de ferraillages seront récapitulés dans le tableau ci-après où :

 A_V^{\min} /_{voile}: Section d'armature verticale minimale dans le voile complet $(A_{\min} = 0.15 \% b \times l)$

 $A_V^{\text{calculée}}$ / $_{\text{face}}$: Section d'armature calculée pour une seule face de voile.

 $A_V^{\text{adoptée}}/_{\text{face}}$: Section d'armature adoptée pour une seule face de voile.

 S_t : Espacement.

 A_h^{\min} /_{voile}: Section d'armature horizontale minimale dans le voile

V.3.4 Calcul du ferraillage de voile :

Notre modèle qui nous avons fait à base du logiciel SAP 2000, nous donne les sollicitations (N, M et V) dans chaque voile.

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

Les résultats de calcul sont récapitulés dans les tableaux qui suivent :

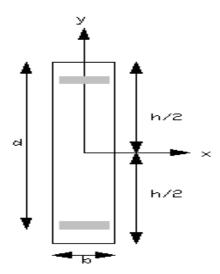


Figure.V.5.Section du voile

Tableau.V.19.Les sollicitations dans les voiles dans le sens X-X

Voile (v _{x1})	Nmax -	→Mcor	Mmax	→Ncor	Nmin -	→Mcor	V(KN)
RDC et1 ^{er} étage	1117.563	1707.29	1751.96	965.80	28.098	-2157.64	433.44
2 et 3 ^{éme} étage	1072.912	228.347	1530.26	871.46	427.98	-39.502	437.338
4 et 5 ^{éme} étage	845.38	171.439	856.82	687.62	350.56	-31.743	313.25
6 et 7 ^{éme} étage	537.70	158.21	459.56	470.55	228.83	-24.918	157.18
8 ^{émé} étage	187.72	138.14	203.61	174.73	62.12	-38.85	97.02
Voile (v _{x2})	Nmax -	→Mcor	Mmax →Ncor		Nmin →Mcor		V(KN)
RDC et1erétage	1201.72	2144.08	2144.08	1201.72	167.05	-1372.70	342.44
2 et 3 ^{éme} étage	1019.99	132.66	1171.245	993.549	275.29	-310.93	429.11
4 et 5 ^{éme} étage	803.84	118.53	672.43	699.95	250.04	-121.53	301.98
6 et 7 ^{éme} étage	518.97	92.62	328.48	478.09	177.64	217.49	176.63
8 ^{émé} étage	172.43	36.74	94.67	170.43	48.45	50.18	95.68

Tableau.V.20.Les sollicitations dans les voiles dans le sens Y-Y

Voile (V _{Y1})	Nmax -	→Mcor	Mmax	→Ncor	Nmin -	→Mcor	V(KN)
RDC et1 ^{er} étage	796.179	49.78	322.05	47747	-310.40	-58.67	106.99
2 et 3 ^{éme} étage	715.26	30.54	141.67	310.17	-272.53	-12.50	98.49
4 et 5 ^{éme} étage	421.62	36.49	87.95	260.84	-115.12	-8.73	85.10
6 et 7 ^{éme} étage	200.40	38.19	55.72	178.55	-30.34	-4.72	56.54
8 ^{émé} étage	69.26	27.52	36.27	49.02	-25.35	0.57	46.16
Voile (V _{Y 2})	Nmax -	→Mcor	Mmax	→Ncor	Nmin -	→Mcor	V(KN)

RDC et1 ^{er} étage	1222.49	1663.51	1663.51	1222.49	180.47	-1278.20	298.33
2 et 3 ^{éme} étage	1049.11	-64.93	701.77	645.66	444.12	-93.42	352.42
4 et 5 ^{éme} étage	823.52	-60.11	-326.79	474.14	305.65	-311.81	203.23
6 et 7 ^{éme} étage	537.52	-73.86	180.08	410.38	155.93	-251.08	87.60
8 ^{émé} étage	205.51	-84.70	113.69	160.55	54.71	-196.08	49.85
Valle (V	Nmax →Mcor		Mmax →Ncor				T/(T/NI)
Voile (V _{Y3})	Nmax -	→Mcor	Mmax	→Ncor	Nmin -	→Mcor	V(KN)
RDC et 1 ^{er} étage	Nmax - 1149.98	→Mcor 14.76	Mmax 567.47	→Ncor 865.82	Nmin - 555.80	→ Mcor -548.64	105.77
							` ′
RDC et 1 ^{er} étage	1149.98	14.76	567.47	865.82	555.80	-548.64	105.77
RDC et 1 ^{er} étage 2 et 3 ^{éme} étage	1149.98 1043.49	14.76 4.77	567.47 210.84	865.82 788.32	555.80 503.30	-548.64 -205.39	105.77 94.93

\triangleright Voile sens (xx):

Tableau. V.21. Ferraillage du voile V_{XI}

	Voile Vx1							
Section	RDC et 1 ^{ér} étage	2 et 3 ^{éme} étage	4 et 5 ^{éme} Etage	6 et 7 ^{éme} étage	8 ^{éme} étage			
l(m)	3.7	3.7	3.7	3.7	3.7			
e(m)	0.2	0.2	0.2	0.2	0.2			
N(KN)	1117.563	871.46	687.62	470.55	187.72			
M(KN.m)	1707.29	1530.26	856.82	459.56	138.14			
d (m)	3.65	3.65	3.65	3.65	3.65			
V(KN)	433.44	437.338	313.25	157.18	97.02			
τ (MPa)	0.83	0.84	0.6	0.3	0.19			
$\overline{\tau}$ (MPa)	5	5	5	5	5			
$A^{cal}(cm^2)$	27.87	21.52	14.55	9.07	3.8			
$A^{min}(cm^2)$	11.1	11.1	11.1	11.1	11.1			
$I(m^4)$	0.8442	0.8442	0.8442	0.8442	0.8442			
v(m)	1.85	1.85	1.85	1.85	1.85			
$\sigma_1 (MPa)$	5.25	4.53	2.81	1.64	0.56			
$\sigma_2(MPa)$	-2.23	-2.18	-0.95	-0.37	-0.05			
$l_t(m)$	3.7	3.7	3.7	3.7	3.7			
$l_c(m)$	0	0	0	0	0			
$A_{tendu}^{min} (cm^2)$	4.4	4.8	3.72	2.72	1.2			
$A_{\rm courant}^{\rm min} (cm^2)$	3	2.6	3.68	4.68	6.2			
$S_t(\mathbf{m})$	0.2	0.2	0.2	0.2	0.2			
A ^{adopt} é v/face	15HA12+6HA16	15HA12+6HA10	15HA10+6HA8	15HA8+6HA10	15HA8+6HA10			
S_t (m)	0.2	0.2	0.2	0.2	0.2			
$A_h^{cal}(cm^2)$	1.04	1.05	0.75	0.38	0.23			

$A_h^{min}(cm^2)$) 0.6	0.6	0.6	0.6	0.6
A _h adopté	2HA8	2HA8	2HA8	2HA8	2HA8

Tableau. V.22. Ferraillage du voile V_{X2}

		Voile	e Vx2		
Section	RDC et 1 ^{ér} étage	2 et 3 ^{éme} étage	4 et 5 ^{éme} Etage	6 et 7 ^{éme} étage	8 ^{éme} étage
l(m)	3.7	3.7	3.7	3.7	3.7
e(m)	0.2	0.2	0.2	0.2	0.2
N(KN)	1201.72	1019.99	699.95	177.64	170.43
M(KN.m)	2144.08	132.66	672.43	217.49	94.67
d (m)	3.65	3.65	3.65	3.65	3.65
V(KN)	342.44	429.10	301.98	176.63	95.68
τ (MPa)	0.66	0.82	0.58	0.34	0.18
τ̄ (MPa)	5	5	5	5	5
A ^{cal} (cm ²)	34.4	15.72	15,43	4.29	3.21
$A^{min}(cm^2)$	11.1	11.1	11.1	11.1	11.1
$I(m^4)$	0.844216667	0.844216667	0.844216667	0.844216667	0.844216667
v(m)	1.85	1.85	1.85	1.85	1.85
$\sigma_1 (MPa)$	6.32	1.67	2.42	0.72	0.71
$\sigma_2(MPa)$	-3.07	1.09	-0.53	-0.24	-0.25
$l_{t}\left(m\right)$	3.7	3.7	3.7	3.7	3.7
$l_c(m)$	0	0	0	0	0
$A_{tendu}^{min} (cm^2)$	4.84	5.84	2,64	3.68	3.84
$A_{\rm courant}^{\rm min} (cm^2)$	2.56	1.56	4.76	3.72	3.56
$S_t(\mathbf{m})$	0.2	0.2	0.2	0.2	0.2
A ^{adopt} é v/face	15HA12+6HA20	15HA10+6HA12	15HA10+6HA12	15HA8+6HA10	15HA8+6HA10
S_t (m)	0.2	0.2	0.2	0.2	0.2
$A_h^{cal}(cm^2)$	0.821	1.029	0.724	0.423	0.229
$A_h^{min}(cm^2)$	0.6	0.6	0.6	0.6	0.6
A _h adopté	2HA8	2HA10	2HA8	2HA8	2HA8

> Voile sens (yy):

Tableau. V.23. Ferraillage du voile V_{YI}

	Voile V _{Y1}							
Section	RDC et 1 ^{ér} étage	2 et 3 ^{éme} étage	4 et 5 ^{éme} étage	6 et 7 ^{éme} étage	8 ^{éme} étage			
l(m)	1.5	1.5	1.5	1.5	1.5			
e(m)	0.2	0.2	0.2	0.2	0.2			
N(KN)	796.18	715.26	421.62	200.4	-25,35			
M(KN.m)	49.78	30.54	36.49	38.19	0,57			
d (m)	1.45	1.45	1.45	1.45	1.45			

V(KN)	103.99	98.49	85.10	56.55	46.16
τ (MPa)	0.50	0.48	0.41	0.27	0.22
τ̄ (MPa)	5	5	5	5	5
A ^{cal} (cm ²)	12.47	10.91	6.81	3.67	0.33
$A^{min}(cm^2)$	4.5	4.5	4.5	4.5	4.5
$I(m^4)$	0.05625	0.05625	0.05625	0.05625	0.05625
<i>v</i> (<i>m</i>)	0.75	0.75	0.75	0.75	0.75
$\sigma_1 (MPa)$	3.32	2.79	1.89	1.18	-0.08
$\sigma_2(MPa)$	1.99	1.98	0.92	0.16	-0.09
$l_t(m)$	1.5	1.5	1.5	1.5	1.5
$l_c(m)$	0.00	0.00	0.00	0.00	0.00
$A_{tendu}^{min} (cm^2)$	2.24	-13.36	1.96	0.72	36.36
$A_{\rm courant}^{\rm min} (cm^2)$	0.76	16.36	1.04	2.28	-33.36
$S_t(\mathbf{m})$	0.2	0.2	0.2	0.2	0.2
$A_{v/face}^{adopt \epsilon}$	2HA14+5HA16	2HA16+5HA14	2HA10+5HA12	2HA8+5HA10	2HA8+5HA10
S_t (m)	0.2	0.2	0.2	0.2	0.2
$A_h^{cal}(cm^2)$	0.646	0.594	0.514	0.341	0.279
$A^{min}(cm^2)$ 2.8	0.6	0.6	0.6	0.6	0.6
$A_h^{adopt\acute{e}}$	2HA8	2HA8	2HA8	2HA8	2HA8

Tableau. V.24. Ferraillage du voile V_{Y2}

Voile V _{Y1}								
Section	RDC et 1 ^{ér} étage	2 et 3 ^{éme} étage	4 et 5 ^{éme} étage	6 et 7 ^{éme} étage	8 ^{éme} étage			
l(m)	2.8	2.8	2.8	2.8	2.8			
e(m)	0.2	0.2	0.2	0.2	0.2			
N(KN)	1222.49	1049.12	823.52	537.52	205.51			
M(KN.m)	1663.51	-64.93	-60.11	-73.8	-84.7			
d (m)	2.75	2.75	2.75	2.75	2.75			
V(KN)	298.33	352.42	203.23	87.60	49.85			
τ (MPa)	0.76	0.90	0.52	0.22	0.13			
τ̄ (MPa)	5	5	5	5	5			
A ^{cal} (cm ²)	37.27	15.77	12.48	8.51	3.86			
$A^{min}(cm^2)$	8.4	8.4	8.4	8.4	8.4			
$I(m^4)$	0.365867	0.365867	0.365867	0.365867	0.365867			
v(m)	1.4	1.4	1.4	1.4	1.4			
$\sigma_1 (MPa)$	8.55	1.62	1.24	0.68	0.04			
$\sigma_2(MPa)$	-4.18	2.12	1.7	1.25	0.69			
$l_t(m)$	0.92	1.59	1.62	1.81	2.64			
$l_c(m)$	0.96	-0.38	-0.44	-0.82	-2.48			
A_{tendu}^{min} (cm^2)	3.68	6.36	6.48	7.24	10.56			
$A_{\rm courant}^{\rm min} (cm^2)$	1.92	-0.76	-0.88	-1.64	-496			
$S_t(\mathbf{m})$	0.2	0.2	0.2	0.2	0.2			

A ^{adopté} v/face	10HA20+5HA	10HA12+5HA	10HA8+5HA	10HA8+5HA	10HA8+5HA
Av/face	14	14	14	10	10
S_t (m)	0.2	0.2	0.2	0.2	0.2
$A_h^{cal}(cm^2)$	0.95	1.12	0.65	0.28	0.16
$A_h^{min}(cm^2)$	0.6	0.6	0.6	0.6	0.6
$A_h^{adopt m \acute{e}}$	2HA8	2HA10	2HA8	2HA8	2HA8

Tableau. V.25. Ferraillage du voile V_{Y3}

	Voile V _{Y3}								
Section	RDC et 1 ^{ér} étage	2 et 3 ^{éme} étage	4 et 5 ^{éme} étage	6 et 7 ^{éme} étage	8 ^{éme} étage				
l(m)	1.8	1.8	1.8	1.8	1.8				
e(m)	0.2	0.2	0.2	0.2	0.2				
N(KN)	865.82	1043.49	775.78	454.73	137.42				
M(KN.m)	567.47	4.77	5.59	4.05	4.55				
d (m)	1.75	1.75	1.75	1.75	1.75				
V(KN)	105.772	94.938	84.067	59.577	40.713				
τ (MPa)	0.42	0.38	0.34	0,24	0,16				
₹ (MPa)	5	5	5	5	5				
$A^{cal}(cm^2)$	16.78	14.95	11.25	6.60	2.05				
$A^{min}(cm^2)$	5.4	5.4	5.4	5.4	5.4				
$I(m^4)$	0.0972	0.0972	0.0972	0.0972	0.0972				
v(m)	0.9	0.9	0.9	0.9	0.9				
$\sigma_1 (MPa)$	7.66	2.94	2.21	1.3	0.42				
$\sigma_2(MPa)$	-2.85	2.85	2.10	1.23	0.34				
$l_t(m)$	0.49	0.89	0.88	0.87	0.8				
$l_c(m)$	0.82	0,02	0.04	0.06	0.2				
$A_{tendu}^{min} (cm^2)$	1.96	3.56	3.52	3.48	3.2				
$A_{\rm courant}^{\rm min} (cm^2)$	1.64	0.04	0.08	0.12	0.4				
$S_t(\mathbf{m})$	0.2	0.2	0.2	0.2	0.2				
A adopté v/face	8HA14+4HA12	5HA14+7HA12	6HA10+6HA12	10HA8+2HA10	10HA8+2HA10				
S_t (m)	0.2	0.2	0.2	0,2	0.2				
$A_h^{cal}(cm^2)$	0.53	0.47	0.42	0.30	0.20				
$A_h^{min}(cm^2)$	0.6	0.6	0.6	0.6	0.6				
$A_h^{adopt\acute{ heta}}$	2HA8	2HA8	2HA8	2HA8	2HA8				

V.3.5.Schéma de ferraillage :

Pour le schéma de ferraillage, on fera celui du RDC et 1^{ére} étage (Vx2) comme exemple

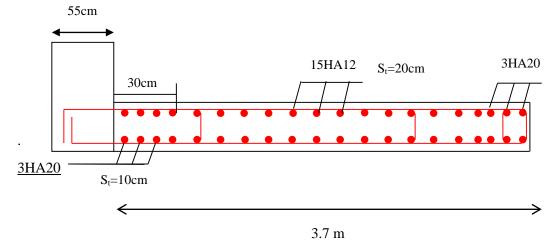


Figure.V.6 .Schéma de ferraillage du voile Vx2 au niveau du RDC et 1er étage

V.4.Conclusion:

Après l'étude des éléments porteurs on constate que :

- Ces éléments jouent un rôle prépondérant dans la résistance et la transmission des sollicitations,
- Ils sont ferraillés souvent par le minimum du RPA, cela est dû à l'interaction qui existe entre les voiles et les portiques,

Les exigences du **RPA** valorisent la sécurité par rapport à l'économie.

Chapitre VI: Etude D'infrastructure

VI.1.Introduction:

Les fondations sont des ouvrages de transition destinés à transmettre au sol dans de bonnes conditions les charges permanentes et les charges variables d'une construction. Elles doivent être stables, c'est-à-dire qu'elles ne doivent donner lieu à des tassements que si ceux-ci permettent la tenue de l'ouvrage. Il est nécessaire d'adapter le type et la structure des fondations à la nature du sol qui va supporter l'ouvrage car les fondations constituent une partie essentielle de l'ouvrage puisque de leur bonne conception et réalisation découlent sa bonne tenue.

VI.2. Différents types de fondations :

Il existe deux types de fondations:

Des fondations superficielles (semelle isolée, semelle filante, radier général) sont réalisées lorsque les couches de terrain susceptibles de supporter l'ouvrage sont à une faible profondeur. Lorsque ces couches sont à une grande profondeur, des fondations profondes et semi profondes (puits et pieux) devront être réalisées.

VI.3. Choix de type des fondations :

Le choix de type des fondations dépend essentiellement des facteurs suivants :

- ✓ La capacité portante du sol d'assise.
- ✓ L'importance de l'ouvrage.
- ✓ La distance entre axes des poteaux.
- ✓ La profondeur du bon sol.

Cependant une vérification dans l'ordre suivant est requise : les semelles isolées, les semelles filantes et enfin le radier général et on opte pour le choix qui convient.

VI.4. Combinaison d'action à considérer :

D'après le **RPA99** (Article 10.1.4.1) les fondations superficielles sont dimensionnées selon les combinaisons d'action suivantes :

$$\checkmark$$
 G + Q ± E

✓
$$0.8 * G ± E$$

VI.5. Etudes des fondations :

VI.5.1.Semelle isolée:

La vérification à faire est : $\frac{N}{S} \leq \overline{\sigma_{sol}}$

Pour cette vérification on prend la semelle la plus sollicitée.

N : l'effort normal agissant sur la semelle la plus sollicitée calculée selon les combinaisons : $G+Q\pm$

E ; $0.8 * G \pm E$; ELU et ELS obtenu d'après le modèle fait par logiciel SAP 2000.

S: surface d'appui de la semelle.

 $\overline{\sigma_{sol}}$: Contrainte admissible du sol.

 σ_{sol} = 1.2 bar (voir le rapport de sol, annexe 5)

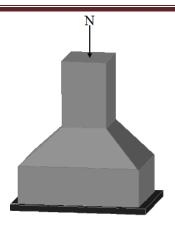


Figure.VI.1. semelle isolée

Le poteau le plus sollicité a une section carrée (a \times b), donc S = A \times B=A²

N = 1427.23 KN

$$\Rightarrow \frac{N}{S} \leq \overline{\sigma_{_{sol}}} \Rightarrow A^{2} \geq \frac{N}{\overline{\sigma_{_{sol}}}} \Rightarrow A = \sqrt{\frac{N}{\overline{\sigma_{_{sol}}}}} = \sqrt{\frac{1427.23*10^{-3}}{1.2*10^{-1}}} = 3.44 \text{m} \ \phi \ 2.7 \text{m}$$

On remarque qu'il y a chevauchement entre les semelles, on tenant compte des entres axes des poteaux dans les deux sens, donc le choix des semelles isolées dans notre cas ne convient pas.

VI.5.2.Semelles filantes:

Choisissons une semelle filante, de largeur B et de longueur L situé sous un portique formé de 8 poteaux. (Figure.VI.2) et (Figure.VI.5)

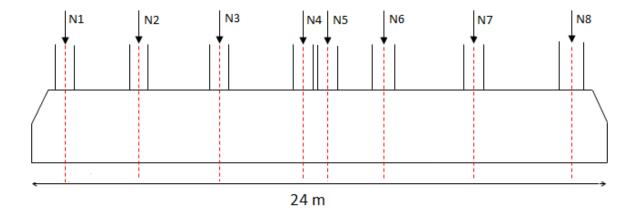


Figure.VI.2.Semelle filante (SF)

Pour cette vérification, on doit déterminer la semelle filante la plus sollicitée sous les différentes combinaisons en utilisant le modèle fait à base de logiciel **SAP 2000/V19**, pour tirer les efforts normaux situé sous la file de portique.

Les efforts normaux dans la semelle filante la plus sollicitée (figure.VI.5) sont présentés dans le tableau suivant :

Tableau.VI.1. Sommes des efforts normaux sur les différentes files des semelles filantes

N	(N1)	(N2)	(N3)	(N4)	(N5)	(N6)	(N7)	(N8)
	665.10	866.02	1402.18	1112.81	1355.35	1427.23	1208.43	979.84

D'après les résultats de tableau précédant on constate que la file numéro (4) est la plus sollicitée

$$\sum_{i=1}^{6} N_i = 9016.96 \text{ KN}$$

La surface totale des semelles se calcul par la formule suivante :

Données : L = 23.9 m ; N = 9016.96 KN ; σ_{sol} = 120 KPa

On a:

$$S_{Semelle} \ge \frac{N}{\sigma_{Sol}} \implies B \times L \ge \frac{N}{\sigma_{Sol}} \implies B \ge \frac{N}{\sigma_{Sol} \times L} \implies B \ge \frac{9016.96}{120 \times 23.9} \implies B \ge 3.14 \text{ m}$$

Vu que l'entraxe minimal des poteaux est de 2.7 m, on remarque qu'il y a chevauchement entre les semelles filantes, ce type de fondations ne convient pas aussi à notre cas.

Donc on opte pour un radier général.

VI.5.3. Radier général:

Le radier fonctionne comme un plancher renversé dont les appuis sont constitués par les murs et les piliers de l'ossature, soumis à la réaction du sol agissant du bas vers le haut d'une manière uniforme (radier supposé infiniment rigide).

VI.5.3.1.Dimensionnement:

> Condition de coffrage :

$$\begin{cases} h_r \ge \frac{L_{max}}{20} \\ h_t \ge \frac{L_{max}}{10} \end{cases}$$

Avec:

 $\mathbf{h_r}$: hauteur de la dalle.

 \mathbf{h}_{t} : hauteur des nervures.

 L_{max} : la plus grande portée entre deux éléments porteurs successifs ($L_{max} = 540$ cm).

Donc:

$$\begin{cases} h_r \ge \frac{540}{20} = 27 \text{ cm} \\ h_t \ge \frac{540}{10} = 54 \text{ cm} \end{cases}$$

On prend h_r=30 cm

> Condition de rigidité :

$$\frac{\pi}{4}$$
L_e $\geq L_{max}$

L_e: est la longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible).

$$L_e \ge \sqrt[4]{\frac{4 \times E \times I}{k \times b}}$$

Avec:

 L_e : est la longueur élastique, qui permet de déterminer la nature du radier.

b: La largeur de la semelle.

E: Module d'élasticité du béton, $E = 3.216 \cdot 10^7 \text{ KN/m}^2$.

K: Coefficient de réaction du sol, pour un sol moyen $K = 4 \cdot 10^4 \text{ KN/m}^3$

On a:

$$K = \begin{cases} 0.5 \text{ Kg/cm}^3 \text{ trés mauvais sol} \\ 4 \text{ Kg/cm}^3 \text{ sol moyen} \\ 12 \text{ Kg/cm}^3 \text{très bon sol} \end{cases}$$

I: Inertie de la section du radier.

Soit:

$$I = \frac{b \times h_t^3}{12}$$

Avec:

$$h_{t} \ge \sqrt[3]{\frac{48 L_{max}^{4} K}{\pi^{4} E}} = \sqrt[3]{\frac{48 \times (5.4)^{4} \times 4 \times 10^{4}}{\pi^{4} \times 3.216 \times 10^{7}}} = 80.5 \text{ cm}$$

D'où : $h_t = 85$ cm

$$L_e \ge \sqrt[4]{\frac{3.216 \times 10^7 \times (0.85)^3}{3 \times 4 \times 10^4}} = 3.58 \text{ m}$$

$$L_{max} = 5.4 \leq \frac{\pi}{2} \times 3.58 = 5.62 \; \text{m} \ldots \ldots \text{verifi\'ee}$$

VI.5.3.2. Calcul de la surface du radier :

On a : $N_{bloc A}$ + $N_{bloc B}$ = 22144.77+15009.546 = 37154.32 KN

N: effort normal à la base.

Soit

$$S_{\text{radier}} \ge \frac{N}{\overline{\sigma_{sol}}} \Longrightarrow S_{\text{radier}} \ge \frac{37154.32}{120} = 309.62 \ m^2$$

On prend: $S_{\text{radier}} = S_{\text{batimen}t} = 358.24 \, m^2$

Les dimensions du radier sont :

✓ Hauteur de la nervure : h_t=85 cm

✓ Hauteur de la table du radier h_r=30 cm

✓ Enrobage d'= 5

 \checkmark La surface de radier $S_{rad} = 358.24 \text{ cm}^2$

VI.5.3.3. Les Vérifications nécessaires :

A. Vérification au poinçonnement :

Il faut vérifier que :

$$Q_u \le 0.045 \times U_c \times ht \times \frac{f_{c28}}{\gamma_b}$$
 CBA93 (article A.5.2.4.2)

 Q_u : charge de calcul pour le poteau le plus sollicité.

 U_c : le périmètre du contour cisaillé projeté sur le plan moyen du radier.

$$U_c = 2 \times (A + B)$$

$$A = a + h = 0.55 + 0.85 = 1.40$$

$$B = b + h = 0.60 + 0.85 = 1.45$$

$$\Rightarrow U_c = 5.70m$$

Nous avons : $Q_u = 2363.32 \text{KN} \le 3633.75 \text{KN}.$ condition vérifiée

B. Vérification au cisaillement :

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(0.1 \times f_{c28}; 3MPa) = 2.5MPa.$$
 CBA 93 (A.5.1.2.1.1)

On concidère une bonde de 1m de largeur, et de 5.40 m de longueur, $d=0.9\times h_r=0.765m$ $N_u=N_{bloc\ A}+N_{bloc\ B}=37154.32\ KN$.

Nu: Effort normal du aux charge verticales obtenu par modéle fait à base de Sap 2000 V19.

$$V_{u} = \frac{N_{u} \times L_{\text{max}}}{2 \times S} \times b = \frac{37154.32 \times 5.4}{2 \times 358.24} \times 1 = 280.02 \, \text{KN}.$$

$$\tau_u = \frac{383.5 * 10^{-3}}{1 \times 0.765} = 0.50 MPa \le 2.5 MPa$$
.condition verifiée

C. Vérification des contraintes dans le sol :

Cette vérification consiste à satisfaire la condition suivante dans le sens longitudinal et transversal.

$$\sigma_{\text{moy}} = \frac{3 \sigma_{\text{max}} + \sigma_{\text{min}}}{4} \le \overline{\sigma}_{\text{sol}}$$

Avec: $\bar{\sigma}_{sol} = 0.12 MPa$

Les contraintes sous le radier sont données par :

$$\sigma = \frac{N}{S_{rad}} \pm \frac{M_x \times Y_G}{I_x} \quad (M_x, M_y : La \text{ somme des moments de deux blocs A et B}).$$

$$\sigma = \frac{N}{S_{rad}} \pm \frac{M_Y \times X_G}{I_Y}$$

2017/2018

En utilisant, le programme « GEOSEC », on a les caractéristiques suivantes :

$$\begin{cases} I_x = 19551.83 \text{ m}^4 \text{ et } X_g = 9.08 \text{ m} \\ I_y = 14154.24 \text{ m}^4 \text{ et } Y_g = 10.64 \text{ m} \end{cases}$$

σ: Contrainte dans les deux extrémités du radier.

N: Effort normal du aux charge verticales.

 M_X : Moment sismique à la base.

> Sens X-X:

 $M_v = 36962 \text{ KN.m}$ et $N_u = 37154.32 \text{ KN}$.

$$\sigma_{1} = \frac{N_{u}}{S_{vol}} + \frac{M_{y}}{I_{vol}} \times X_{g} = 127.42 \, \text{KN} / m^{2}$$

$$\sigma_2 = \frac{N_u}{S_{rad}} - \frac{M_y}{I_y} \times X_g = 80 \, \text{KN} / m^2$$

$$\sigma_{mov} = \frac{3 \times \sigma_{1} + \sigma_{2}}{4} = 115.56 \, KN / m^{2} = 0.115 Mpa < \sigma_{sol} = 0.12 Mpa$$

Donc : La contrainte est vérifiée dans le sens xx

\triangleright Sens Y-Y:

 M_x = 37704.4 KN.m et N_u = 37154.32 KN.

$$\sigma_{1,2} = \frac{N_u}{S_{rad}} \pm \frac{M_x}{I_x} \times Y_g = 124.23 \, KN / m^2; \quad 83.19 \, KN / m^2$$

$$\sigma_{mov} = \frac{3 \times \sigma_{_1} + \sigma_{_2}}{4} = KN/m^2 = 0.113Mpa < \sigma_{_{sol}} = 0.12Mpa$$

Donc : La contrainte est vérifiée dans le sens yy

D. Vérification de la stabilité au renversement :

Selon le RPA 99. On doit vérifier que :

$$e = \frac{M}{N} \le \frac{B}{4}$$
 (**RPA99** Art .10.1.5)

Sens xx :
$$e = \frac{37704.40}{37154.32} = 1.15m \le \frac{23.9}{4} = 5.97m$$
 condition vérifiée

Sens yy :
$$e = \frac{36962}{37154.32} = 1m \le \frac{23}{4} = 5.75m$$
 condition vérifiée

E. Vérification de la poussée hydrostatique :

$$N \ge F^*H^*S^*V$$

F: cœfficient de sécurité = 1.5

H: la hauteur d'ancrage du bâtiment = 1.40 m

S: surface totale du bâtiment = 358.24 m^2

$$\gamma = 10 \text{ KN/m}^3$$

 $N=37154.32~KN \ge 1.5*1.40*358.24*10=7523.04~KN~condition~vérifiée$

VI.6.Ferraillage du radier :

Le radier sera calculé comme une dalle pleine renversée, et sollicité à la flexion simple causée par la réaction du sol, il faut considérer le poids propre du radier comme une charge favorable. On calculera le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier.

VI.6.1. Calcul des sollicitations :

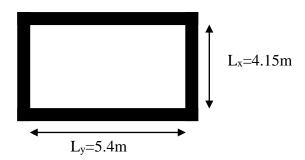


Figure VI.3.Schéma d'une dalle sur quatre appuis

Pour faciliter l'exécution et homogénéiser le ferraillage, il est préférable de calculer le panneau le plus sollicité.

$$\alpha = \frac{L_x}{L_y} = 0.77 \Rightarrow$$
 La dalle travaille dans les deux directions

VI.6.2.Ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1m.

$$q_u = \frac{N_u}{S_{rad}} + 1.35 * G_0 = \frac{37154.32}{358.24} + 1.35(25 * 0.3 + 19) = 139.20 KN / m^2.$$

G₀: Poids propre du radier et le remblai.

À l'ELU:
$$(\nu = 0)$$

$$\rho = 0.77 \Rightarrow \begin{cases} \mu_x = 0.0596 \\ \mu_y = 0.5440 \end{cases}$$
 (Annexe 02)

Sens x-x':
$$M_0^x = \mu_x \times q_u \times l_x^2 \Rightarrow M_0^x = 142.88 \text{KNm}$$

Sens y-y': $M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = 77.72 \text{KNm}$

• Moment en travées :

Sens x-x':
$$M_t^x = 0.75 \times M_0^x = 107.16 KNm$$

Sens y-y':
$$M_t^y = 0.75 \times M_0^y = 58.29 \, KNm$$

• Moment en appuis :

$$M_a^x = -0.5 \times M_0^x = -71.44 \text{ KNm}$$

 $M_a^y = -0.5 \times M_0^y = -38.86 \text{ KNm}$

Le ferraillage se fait pour une section $b \times h = (1 \times 0.3) \text{ m}^2$

VI.6.3. Vérification à l'ELU:

> Vérification de condition de non fragilité :

$$\begin{vmatrix} h_r > 12cm \\ \rho > 0.4 \end{vmatrix} \Rightarrow \begin{cases} A_{\min}^x = \rho_0 \times \frac{3-\rho}{2} \times b \times h_r \\ A_{\min}^y = \rho_0 \times b \times h_r \end{cases}$$

On a des HA $f_e E400 \Rightarrow \rho_0 = 0.0008$

$$\begin{cases} A_{\text{min}}^{x} = 2.67 \text{ cm}^{2}/\text{ml} \\ A_{\text{min}}^{y} = 2.4 \text{ cm}^{2}/\text{ml} \end{cases}$$

On vérifie que
$$A_t^y > \frac{A_x^t}{4} \Rightarrow 2.4 \text{cm}^2 > 0.67 \text{cm}^2$$

Les résultats du ferraillage sont résumés dans le tableau suivant :

Tableau. VI.2. Résultat de ferraillage du radier

Localisation	M _t (KN.m)	M _a (KN.m)	A _t calculée (cm²)	$\begin{array}{c} A_a \\ \text{calcul\'ee} \\ (\text{cm}^2) \end{array}$	A _t adoptée (cm²)	Amin (cm²)	A _a adoptée (cm ²)
Sens xx	107.16	71.44	11.59	7.11	8HA14=12.32	2.67	7HA12=7.92
Sens yy	58.29	38.86	6.15	3.92	7HA12=7.92	2.40	5HA12=5.65

Vérification de l'effort tranchant:

$$\begin{split} \tau_u = & \frac{V_u}{b \times d} \leq \bar{\tau} = 0.05 \times f_{c28} = 1.25 MPa. \\ V_y = & \frac{q_u \times l_x}{2} \times \frac{l_x^4}{l_x^4 + l_y^4} = 271.50 KN. \end{split}$$

$$V_x = \frac{q_u \times l_x}{2} * \frac{l_y^4}{l_x^4 + l_y^4} = 192.56 KN.$$

$$\tau_u = \frac{271.50}{1 \times 0.27} = 1.005 MPa < 1.25 MPa$$
. condition verifiée

Pas risque de cisaillement suivant les deux sens.

VI.6.4. Vérification à l'ELS:

On doit vérifier que :
$$\sigma_b = \frac{M_{ser}}{I} \times y \le \frac{-1}{\sigma_{adm}} = 0.6 \times f_{c28} = 15MPa$$
.

$$\sigma_s = 15 \times \frac{M_{ser}}{I} \times (d - y) \le \frac{1}{\sigma_s} = \min(\frac{2}{3} \times f_e; 150 \times \eta) = 240MPa.$$

Avec: $\eta=1.6$ (acier HA).

$$q_s = \frac{N_{ser}}{S_{rad}} + G_0 = \frac{37154.3}{358.24} + (25*0.3+19) = 130.21 KN/m^2.$$

À l'ELS : (
$$\nu = 0.2$$
)

$$\rho = 0.77 \Rightarrow \begin{cases} \mu_x = 0.0661 \\ \mu_y = 0.6710 \end{cases}$$

Sens x-x':
$$M_{_0}^x = \mu_x \times q_u \times l_x^2 \Rightarrow M_{_0}^x = 148.23 \text{KNm}$$

Sens y-y' :
$$M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = 99.46 \text{KNm}$$

• Moment en travées :

Sens x-x':
$$M_t^x = 0.75 \times M_0^x = 111.17 \, KNm$$

Sens y-y':
$$M_t^y = 0.75 \times M_0^y = 74.60 \, KNm$$

• Moment en appuis :

$$M_a^x = -0.5 \times M_0^x = -74.11 KNm$$

$$M_a^y = -0.5 \times M_0^y = -49.73 KNm$$

Les résultats sont résumés dans le tableau suivant:

Tableau. VI.3. Résumé des résultats des contraintes

Sens	Moments	Valeurs (KN.m)	$\sigma_{bc}(MPa)$	$\sigma_s(MPa)$	$\sigma_{bc}(MPa)$	$\sigma_s(MPa)$
	M_t	111.17	12.24	542.02	15	240
X-X	M_a	74.11	9.84	568.47	15	240
	M_t	74.60	10.95	722.50	15	240
y-y	M_a	49.73	7.30	481.60	15	240

On remarque que les contraintes de traction dans l'acier ne sont pas vérifiées, donc on doit recalculer les sections d'armatures à l'ELS

Tableau. VI.4. Section d'armateur du radier à l'ELS

Locali	isation	M _S (KN.m)	β (10 ⁻³)	α	Acal (cm²/ml)	Aadop (cm²/ml)	Nbre de barres
X-X	M_t	111.17	6.35	0.377	19.56	20.85	10HA16
	M_a	74.11	4.23	0.312	12.76	14.07	7HA16
y-y	M_t	74.60	4.26	0.313	12.85	14.07	7HA16
J J	M_a	49.73	2.84	0.262	8.41	9.05	8HA12

• Espacement des armatures

Conformément au RPA l'espacement doit vérifier la condition suivant:

 $S_t \le min (3h, 33 cm) = 33 cm$. Pour notre cas $S_t = 20cm$.

• Schéma de ferraillage du radier :

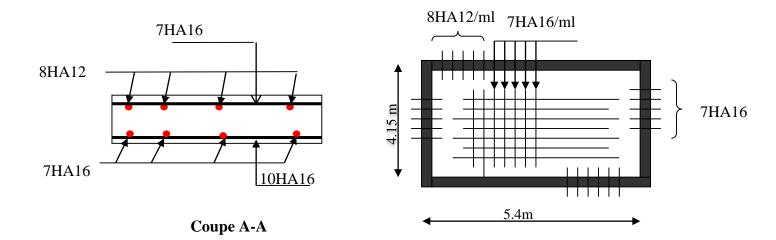


Figure.VI.4. Schéma de ferraillage du radier

VI.7.Etude des nervures :

Les nervures sont des sections en T renversé, servent d'appuis pour la dalle du radier et la transmission des charges s'effectue en fonction des lignes de ruptures comme indiqué sur la figure suivante :

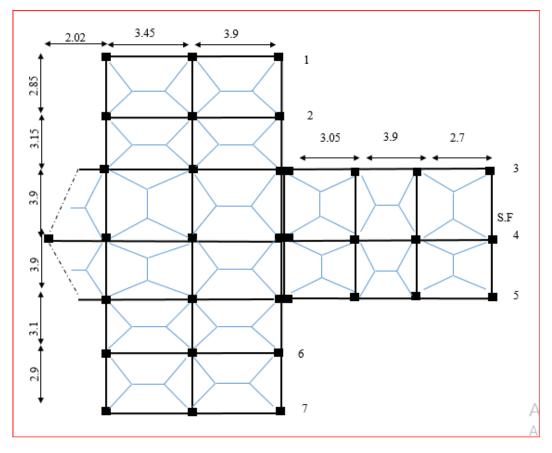


Figure.VI.5.Schéma de rupture de dalle de radier.

La transmission des charges est subdivisée en deux charges (trapézoïdales et triangulaires). Pour simplifier les calculs, ces charges peuvent être remplacées par des charges équivalentes uniformément réparties.

VI.7.1.Méthode de calcul:

✓ Charges triangulaires:

Cas de plusieurs charges triangulaires sur la même travée :

$$q_m = q_v = \frac{P}{2} \times \frac{\sum l_{xi}^2}{\sum l_{xi}}$$

Cas d'une seule charge triangulaire par travée :

$$\begin{cases} q_m = \frac{2}{3} \times p \times l_x \\ q_v = \frac{1}{2} \times p \times l_x \end{cases}$$

Remarque : Ces expressions sont élaborées pour des poutres supportant des charges triangulaires des deux côtés, donc pour les poutres recevant une charge triangulaire d'un seul côté, ces expressions sont à diviser par deux.

✓ Charges trapézoïdales :

$$\begin{cases} q_m = \frac{P}{2} \left[\left(1 - \frac{\rho_g^2}{3} \right) l_{xg} + \left(1 - \frac{\rho_d^2}{3} \right) l_{xd} \right] \\ q_v = \frac{P}{2} \left[\left(1 - \frac{\rho_g}{2} \right) l_{xg} + \left(1 - \frac{\rho_d}{2} \right) l_{xd} \right] \end{cases}$$

Avec

 $\mathbf{q_m}$: Charge équivalente qui donne le même moment maximal que la charge réelle.

 $\mathbf{q}_{\mathbf{v}}$: Charge équivalente qui donne le même effort tranchant maximal que la charge réelle.

P: Charge répartie sur la surface du radier (poids des nervures non compris).

VI.7.2. Calcul des sollicitations :

Le calcul se fera pour la nervure la plus défavorable dans chaque sens, puis on généralise l'étude sur toutes les nervures.

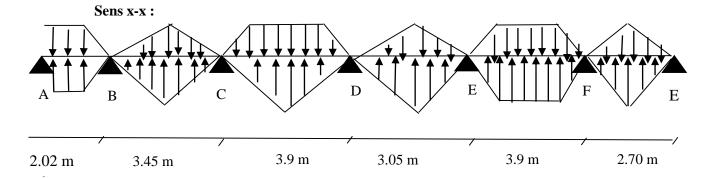


Figure.VI.6. Schéma des nervures dans le sens x-x

Sens y-y:

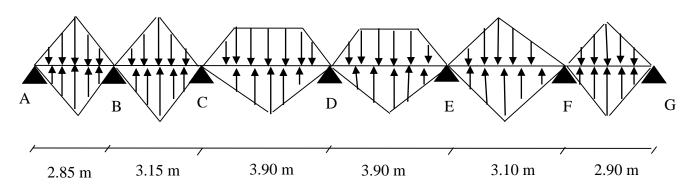


Figure.VI.7. Schéma des nervures dans le sens y-y

Les résultats des calculs sont récapitulés dans le tableau ci-dessous :

- **Sens x-x**:
- > L'ELU:

Tableau. VI.5. Sollicitations dans la nervure dans le sens x-x

Travée	$\mathbf{l_x}$	l' _x	$\mathbf{Q}_{\mathbf{U}}$	M_a (KN.m)	\mathbf{X}_{0}	$\mathbf{M_0}$	$\mathbf{M_t}$	$\mathbf{V_g}$	N/ (IZNI)
	(m)	(m)	(KN/m)	$\mathbf{M_g}$	$\mathbf{M_d}$	(m)	(KN.m)	(KN.m)	(KN)	V _d (KN)
A-B	2.02	2.02	256.8	0	-217.77	0.59	108.33	44.72	101.67	-317.29
В-С	3.45	2.76	320.16	-217.77	-363.23	1.59	473.55	188.62	198	-282.32
C-D	3.9	3.12	376.11	-363.23	-328.71	1.97	714.97	369.21	291.15	-273.45
D-E	3.05	2.44	283.04	-328.71	-361.45	1.48	328.92	15.75	201.55	-223.01
E-F	3.9	3.12	427.07	-361.45	-361.89	1.95	811.97	450.3	325.62	-325.84
F-G	2.70	2 .7	250.56	-361.89	0	1.88	192.6	83.36	321.79	-54.05

> L'ELS:

Tableau.VI.6. Sollicitations dans la nervure dans le sens x-x

Travée	$\mathbf{l_x}$	l' _x	Qs	M _a (M_a (KN.m)		\mathbf{M}_0	\mathbf{M}_{t}
	(m)	(m)	(KN/m)	M_{g}	M_d	(m)	(KN.m)	(KN.m)
A-B	2.02	2.02	239.77	0	-203.61	0.59	101.15	41.68
В-С	3.45	2.76	299.48	-203.61	-339.77	1.59	442.96	176.48
C-D	3.9	3.12	351.82	-339.77	-307.48	1.97	668.8	345.37
D-E	3.05	2.44	264.76	-307.48	-338.11	1.48	307.68	14.73
E-F	3.9	3.12	399.48	-338.11	-338.51	1.95	759.51	421.2
F-G	2.70	2 .7	234.38	-338.51	0	1.88	180.04	77.86

• Sens y-y:

> L'ELU:

Tableau VI.7. Sollicitations dans la nervure dans le sens y-y

Travée	$\mathbf{l_x}$	ľx	Qu	M _a (I	KN.m)	\mathbf{X}_{0}	$\mathbf{M_0}$	$M_{\rm t}$	V_{g}	V_d
	(m)	(m)	(KN/m)	$\mathbf{M}_{\mathbf{g}}$	M_d	(m)	(KN.m)	(KN.m	(KN)	(KN)
A-B	2.85	2.85	320.16	0	-284.38	1.11	309.35	197.67	355.81	-556.85
В-С	3.15	2.52	348	-284.38	-402.25	1.48	444.38	107.57	523.44	-591.44
C-D	3.90	3.12	406.84	-402.25	-465.92	1.88	825.79	381.69	821.07	-874.57
D-E	3.90	3.12	406.84	-465.92	-369.61	2.04	825.74	384.05	875.74	-819.90
E-F	3.10	2.48	343.36	-369.61	-227.77	1.70	414.66	112.72	591.22	-488.58
F-G	2.90	2.32	324.80	-227.77	0	1.69	332.92	237.22	551.76	-393.19

> L'ELS:

Tableau. VI.8. Sollicitations dans la nervure dans le sens y-y

Travée	$\mathbf{l_x}$	l'x	Qs	M _a (M _a (KN.m)		\mathbf{M}_0	\mathbf{M}_{t}
	(m)	(m)	(KN/m)	$\mathbf{M}_{\mathbf{g}}$	$\mathbf{M_d}$	(m)	(KN.m)	(KN.m)
A-B	2.85	2.85	247.40	0	-221.34	1.11	239	152.71
В-С	3.15	2.52	273.44	-221.34	-304.08	1.48	337.89	77.70
C-D	3.90	3.12	335.90	-304.08	-384.68	1.88	637.90	294.88
D-E	3.90	3.12	335.90	-384.68	-300.55	2.04	637.94	296.71
E-F	3.10	2.48	269.10	-300.55	-177.65	1.70	320.35	87.08
F-G	2.90	2.32	251.74	-177.65	0	1.69	257.21	183.27

VI.7.3.Ferraillage des nervures :

Le ferraillage des nervures se fera à la flexion simple.

✓ Détermination de la largeur b selon les deux sens

Donnés :
$$\begin{cases} h = 0.85 \text{ m} \text{ ; } h_0 = 0.3 \text{ m} \\ b_0 = 0.6 \text{ m} \text{ ; } d = 0.8 \text{ m} \end{cases}$$

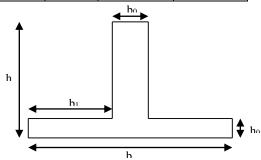


Figure.VI.8.Section à ferrailler

✓ Sens X-X:

On a:

$$\frac{b - b_0}{2} \le \min\left(\frac{L_x}{2}; \frac{L_y^{min}}{10}\right) \dots \dots \dots \dots CBA (Art 4.1.3)$$

$$\frac{b-0.6}{2} \leq min\left(\frac{4.85}{2}; \frac{2.85}{10}\right) \Rightarrow \frac{b-0.6}{2} \leq min(2.42; 0.28) = 0.28 \ m$$

Donc: b = 1.16 m = 116 cm.

 \checkmark Sens Y-Y:

$$\frac{b - 0.6}{2} \le min\left(\frac{3.6}{2}; \frac{2.7}{10}\right) \Longrightarrow \frac{b - 0.6}{2} \le min(1.8; 0.27) = 0.27 \ m$$

Donc: b = 1.14 m = 114 cm.

Les résultats de ferraillage sont regroupés dans le tableau ci-après :

Tableau.VI.9.Calcul des ferraillages

Local	isation	M _t (KN.m)	A _{cal} (cm ² /ml)	A _{min} (cm²/ml)	A _{adop} (cm²/ml)	Choix des barres
X-X	travée	450.03	17.35	11.20	19.72	5HA20+2HA16
A A	appui	-363.23	20.85	11.20	13.73	5HA14+3HA16
y-y	travée	384.05	14.63	11.01	15.74	5HA14+4HA16
J J	appui	-497.92	19.09	11.02	19.72	5HA20+2HA16

VI.7.4. Vérification nécessaires :

> Vérification des efforts tranchants à l'ELU :

On a:
$$\tau_u = \frac{V_u}{b \times d} \le \overline{\tau_u}$$

Avec :
$$\overline{\tau_u}$$
 < min(0.1 f_{c28}; 4 MPa) = 2.5 MPa F. N

$$\begin{cases} \mathbf{Sens}\,\mathbf{x} - \mathbf{x}: \ \tau_u = \frac{325.84 \times 10^{-3}}{1.16 \times 0.8} = 0.35 MPa \leq \bar{\tau}_u = 2.5 \ MPa \dots \dots \text{wérifiée} \\ \mathbf{Sens}\,\mathbf{y} - \mathbf{y}: \tau_u = \frac{875.74 \times 10^{-3}}{1.14 \times 0.8} = 0.96 \ MPa \leq \bar{\tau}_u = 2.5 \ MPa \dots \dots \text{wérifiée} \end{cases}$$

> Vérification de la jonction de table nervure

$$\tau_u = \frac{v_u(\frac{b - b_0}{2}) \times 10^{-3}}{0.9 \times d \times b \times h_0} \le \bar{\tau}_u$$

Sens:x-x

$$\tau_{\rm u} = \frac{325.84 \times \left(\frac{1.16 - 0.6}{2}\right) \times 10^{-3}}{0.9 \times 0.8 \times 1.16 \times 0.3} = 0.365 \le \bar{\tau}_{\rm u} = 2.5 \text{ MPa}$$

Sens: y-y

$$\tau_{u} = \frac{875.74 \times \left(\frac{1.14 - 0.6}{2}\right) \times 10^{-3}}{0.9 \times 0.8 \times 1.14 \times 0.3} = 0.96 \le \overline{\tau}_{u} = 2.5 \text{ MPa}$$

On remarque que les contraintes de cisaillement dans les nervures pour les deux sens sont vérifiées.

Vérification des contraintes à l'ELS :

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tableau.VI.10.Vérification des contraintes à l'ELS

Loca	llisation	M _s (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$ (MPa)	Obs	$\sigma_{st} \leq \overline{\sigma_{st}}$ (MPa)	Obs
	travée	345.37	17.81	1362473.08	4.58< 15	vérifiée	239.95> 201.63	N. vérifiée
X-X	appui	-339.77	18.59	1478197.64	5.27< 15	vérifiée	261.12> 201.63	N. vérifiée
	travée	294.88	16.12	1125411.43	4.22< 15	vérifiée	251.05> 201.63	N. vérifiée
y-y	appui	-384.68	17.81	1362473.08	5.02< 15	vérifiée	263.38> 201.63	N. vérifiée

La contrainte de traction n'est pas vérifiée, donc on doit calculer les armatures à l'ELS.

Tableau.VI.11.Calcul des armatures à l'ELS

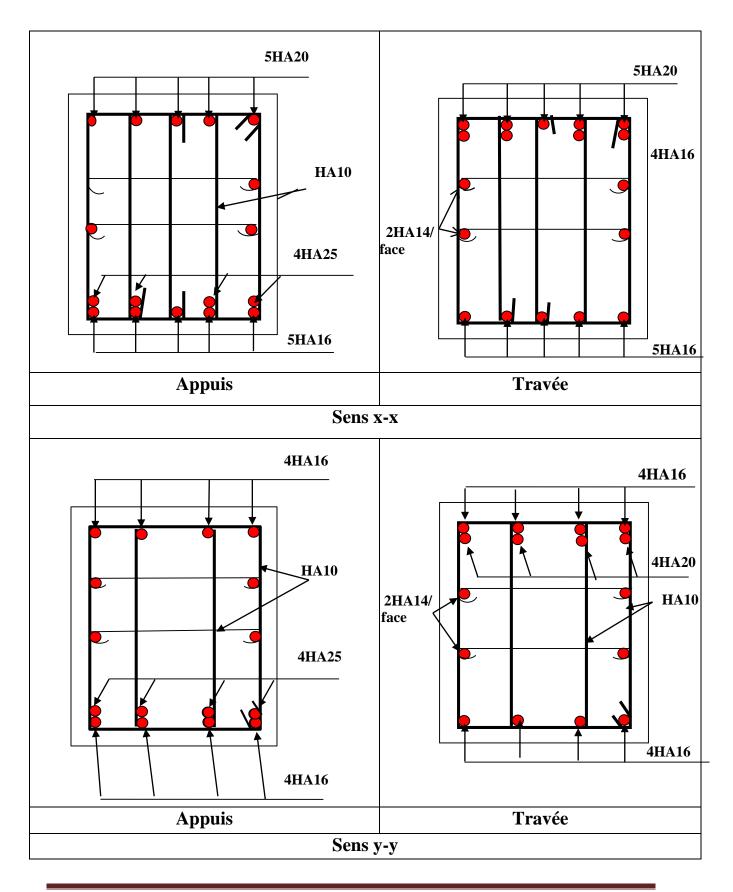
Locali	isation	M _s (KN.m)	β (10 ⁻³)	α	A _{cal} (cm²/ml)	A _{adop} (cm²/ml)	Nombre de barres
	travée	345.37	2.34	0.241	23.62	23.75	4HA16+5HA20
X-X	appui	-339.77	2.79	0.261	28.45	29.68	5HA16+4HA25
¥7_¥7	travée	294.88	2.00	0.225	19.76	20.61	4HA16+4HA20
y-y	appui	-384.68	2.61	0.253	26.04	27.67	4HA16+4HA25

Les armatures transversales :

$$\emptyset_t \leq \min[\frac{h_t}{35}; \frac{b_0}{10}; \emptyset_l^{max}] \leq 32 \text{ mm, alors }, \emptyset_t = 10$$

$$\begin{cases} 1). S_t \leq \min(0.9d; 40 \ cm) \Longrightarrow S_t \leq 40 \ cm \\ 2). S_t \leq \frac{A_t \times f_e}{0.4 \times b_0} \leq 65.73 \ cm \\ 3). S_t \leq \frac{0.8 \times A_t \times f_e}{b_0 \left[\tau_u - 0.3 \times f_{t28}\right]} \leq 21.48 \ cm \end{cases}$$

Soit: $S_t = 20 \text{ cm}$


> Armateurs de peaux :

La hauteur des nervures est h=85 cm, dans ce cas le CBA (art 7.3) préconise de mettre des armatures de peaux de section $A_p=3$ cm²/ ml de hauteur.

On a
$$A_p=3*0.85 = 2.55 \text{ cm}^2$$

On opte $2HA14 = 3.08 \text{ cm}^2/\text{face}$.

> Schéma de ferraillage de nervure :

Conclusion générale

L'étude de ce projet nous a permis, d'une part d'acquérir de nouvelles connaissances concernant le domaine du bâtiment et d'approfondir nos connaissances déjà acquises durant notre cursus sur la réglementation en vigueur.

Par ailleurs, cette étude nous a permis d'arriver à certaines conclusions qui sont :

- Mettre un joint sismique pour les formes irrégulières pour avoir un bon comportement, translation pour les modes prépondérant (1 et 2), rotation pour le mode (3)
- La disposition des voiles en respectant l'aspect architectural du bâtiment, est un obstacle majeur. Ces contraintes architecturales influent directement sur le bon comportement de la structure vis-à-vis des sollicitations extérieures, telles que les séismes. Grace à la grande rigidité des voiles vis-à-vis des forces horizontales, ils permettent de réduire considérablement les endommagent sismiques des éléments non structuraux.
- L'intensité des forces sismiques agissant sur un bâtiment lors d'un tremblement de terre est conditionnée non seulement par les caractéristiques du mouvement sismique, mais aussi par la rigidité de la structure sollicitée.
- Dans l'étude des éléments porteurs, on a constaté que ces éléments jouent un rôle prépondérant dans la résistance et la transmission des sollicitations,
- ➤ Il est apparu que la vérification de l'interaction entre les voiles et les portiques dans notre bâtiment vis-à-vis des charges verticales et horizontales est un véritable souci suite a l'élancement (h>> L) ce cas de figure est surtout remarquable dans le sous bloc B.
- ➤ Le choix du type de fondation s'est avéré important tout en respectant les mesures de prévention imposées pour la stabilité de la structure. Quoi que nous avons un sol qui a un taux de travaille de 1.2 bar à une profondeur de 1.4 m. On a vérifié que les semelles isolées, filantes ne peuvent être utilisées vue l'importance du poids de la structure. Cela nous a conduit a adopté pour un radier général qui peut assurer la stabilité de notre structure.
- ➤ Il est important de souligner la nécessité de garantir une meilleure qualité des matériaux, et leur mise en œuvre. Une construction peut s'effondrer suite à l'utilisation des matériaux de qualité médiocre.

Enfin, l'utilisation du SAP 2000 dans notre projet nous a permis de faire un calcul tridimensionnel et dynamique, dans le but de faciliter les calculs, d'avoir une meilleure approche de la réalité, et un gain de temps très important dans l'analyse de la structure.

Bibliographie

- ✓ Règles de conception et de calcul des structures en béton armé (CBA93).
- ✓ Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites (B. A. E. L 91).
- ✓ Règles parasismiques algériennes (RPA 99/ version 2003).
- ✓ Document technique réglementaire (D.T.R), charges et surcharges d'exploitations.
- ✓ DTR B.C.2.331 (Règle de calcul des fondations superficielles. édition 1992)

Autres documents consultés :

- Cahier de cours de cursus.
- Mémoires de fin d'études.

Méthode forfaitaire :

• Conditions d'application :

-Le plancher soit à surcharge modérée c'est-à-dire : Q ≤ min(2G,5 KN/m).....(1)

-Que le rapport
$$0.8 \le \frac{L_i}{L_{i+1}} \le 1.25$$
(3)

-Une fissuration est peu nuisible.....(4)

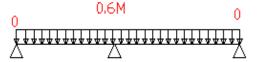
• Principe de méthode :

> Définition des grandeurs :

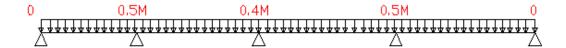
M₀: Moment isostatique de la travée considérée.

 \mathbf{M}_g et \mathbf{M}_d : Respectivement les valeurs absolues des moments sur appuis de gauche et de droite.

 $\mathbf{M_t}$: Moment maximal constaté qui est pris en compte dans le calcul de la travée considérée.


 $\alpha = \frac{Q}{Q+G}$: Coefficient qui définit le degré de surcharge du planche

Evaluation des moments :


Evaluation des moments au niveau des appuis :

Sur **les appuis de rive** les moments sont nuls cependant le **BAEL** exige de mettre les aciers de fissuration avec une quantité d'acier équilibrant un moment égale à $(-0.15*M_0)$

On calcul M_{0i} (moment isostatique) dans toutes les travées : $M_{0i} = pl^2/8$

- Poutrelles à deux travées :
- > Poutrelle à plus de trois travées :

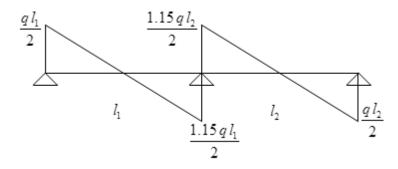
Moment en travées :

Les moments en travées sont déterminés à partir des deux conditions suivantes

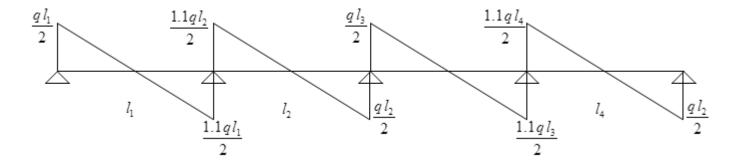
(1)
$$M_t + \frac{\left| M_g \right| + \left| M_d \right|}{2} \ge \max \begin{cases} (1 + 0.3 \times \alpha) \times M_0 \\ 1.05 \times M_0 \end{cases}$$

(2):
$$\begin{cases} M_{t} \ge \frac{1,2 + 0,3 \times \alpha) \times M_{0}}{2} \dots (a) \\ M_{t} \ge \frac{(1 + 0,3 \times \alpha) \times M_{0}}{2} \dots (.b) \end{cases}$$

(a) : une travée de rive.


(b) : une travée intermédiaire.

 \mathbf{M}_{t} : moment maximum entre (1) et (2)


Evaluation des efforts tranchants:

Forfaitairement en supposant la discontinuité entre les travées, dans ce cas l'effort tranchant hyperstatique est confondue avec l'effort tranchant isostatique, sauf pour le premier appui intermédiaire (voisin de rive) ou on tient compte des moments de continuité en majorant l'effort tranchant isostatique V_{0i} :

✓ 15 % s'il s'agit d'une poutre à deux travées

✓ 10 % s'il s'agit d'une poutre à plus de deux travées.

Evaluation des efforts tranchants.

ANNEXE 2Dalles rectangulaires uniformément chargées articulées sur leur contour

$\alpha = Lx/L_{y}$	ELU 1	v = 0	ELS V	= 0.2
$\alpha - Lx / L_y$	$\mu_{\scriptscriptstyle \! x}$	μ_{y}	$\mu_{\scriptscriptstyle x}$	$\mu_{\scriptscriptstyle m y}$
0.40	0.1101	0.2500	0.0121	0.2054
0.40	0.1101	0.2500	0.0121	0.2854
0.41	0.1088	0.2500	0.1110	0.2924
0.42	0.1075	0.2500	0.1098	0.3000
0.43	0.1062	0.2500	0.1087	0.3077
0.44	0.1049	0.2500	0.1075	0.3155
0.45	0.1036	0.2500	0.1063	0.3234
0.46	0.1022	0.2500	0.1051	0.3319
0.47	0.1008	0.2500	0.1038	0.3402
0.48	0.0994	0.2500	0.1026	0.3491
0.49	0.0980	0.2500	0.1013	0.3580
0.50	0.0966	0.2500	0.1013	0.3671
0.51	0.0951	0.2500	0.0987	0.3758
0.52	0.0937	0.2500	0.0974	0.3853
0.53	0.0922	0.2500	0.0961	0.3949
0.54	0.0908	0.2500	0.0948	0.4050
0.55	0.0894	0.2500	0.0936	0.4150
0.56	0.0880	0.2500	0.0923	0.4254
0.57	0.0865	0.2582	0.0910	0.4357
0.58	0.0851	0.2703	0.0897	0.4456
0.59	0.0836	0.2822	0.0884	0.4565
0.60	0.0830	0.2948	0.0870	0.4672
0.61	0.0808	0.3075	0.0857	0.4781
0.62	0.0794	0.3205	0.0844	0.4892
0.63	0.0779	0.3338	0.0831	0.5004
0.64	0.0765	0.3472	0.0819	0.5117
0.65	0.0751	0.3613	0.0805	0.5235
0.66	0.0737	0.3753	0.0792	0.5351
0.67	0.0723	0.3895	0.0780	0.5469
0.68	0.0710	0.4034	0.0767	0.5584
0.69	0.0697	0.4181	0.0755	0.5704
0.70	0.0684	0.4320	0.0743	0.5817
0.71	0.0671	0.4471	0.0731	0.5940
0.72	0.0658	0.4624	0.0719	0.6063
0.73	0.0646	0.4780	0.0708	0.6188
0.74		0.4938	0.0696	
0.75	0.0633 0.0621	0.4938	0.0684	0.6315 0.6447
0.76	0.0608	0.5274	0.0672	0.6580
0.77	0.0596	0.5440	0.0661	0.6710
0.78	0.0584	0.5608	0.0650	0.6841
0.79	0.0573	0.5786	0.0639	0.6978
0.80	0.0561	0.5959	0.0628	0.7111
0.81	0.0550	0.6135	0.0617	0.7246
0.82	0.0539	0.6313	0.0607	0.7381
0.83	0.0528	0.6494	0.0956	0.7518
0.84	0.0517	0.6678	0.0586	0.7655
0.84	0.0506	0.6864	0.0576	0.7794
0.86	0.0496	0.7052	0.0566	0.7932
0.87	0.0486	0.7244	0.0556	0.8074
0.88	0.0476	0.7438	0.0546	0.8216
0.89	0.0466	0.7635	0.0537	0.8358
0.90	0.0456	0.7834	0.0528	0.8502
0.91	0.0447	0.8036	0.0518	0.8646
0.92	0.0437	0.8251	0.0509	0.8799
0.93	0.0428	0.8450	0.0500	0.8939
0.94	0.0419	0.8661	0.0491	0.9087
0.95	0.0419	0.8875	0.0483	0.9236
0.96	0.0401	0.9092	0.0474	0.9385
0.97	0.0392	0.9322	0.4065	0.9543
0.98	0.0384	0.9545	0.0457	0.9694
0.00			0.0440	0.0047
0.99 1.00	0.0376 0.0368	0.9771 1.0000	0.0449 0.0441	0.9847 0.1000

Table de PIGEAU

M1 et M2 pour une charge concentrique P = 1 s'exerçant sur une surface réduite $u \times v$ au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension

 $Lx \times Ly$ Avec Lx < Ly. $\rho = 0.9$

_	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\rm Valeur\ de\ M_1$	0.0	/	0.254	0.187	0.154	0.131	0.115	0.102	0.090	0.081	0.073	0.067
	0.1	0.302	0.235	0.183	0.152	0.130	0.114	0.101	0.089	0.080	0.073	0.067
	0.2	0.260	0.214	0.175	0.148	0.128	0.112	0.099	0.088	0.079	0.072	0.066
	0.3	0.227	0.196	0.164	0.142	0.124	0.109	0.097	0.086	0.078	0.070	0.065
	0.4	0.202	0.178	0.153	0.134	0.118	0.105	0.093	0.083	0.075	0.068	0.063
	0.5	0.181	0.160	0.141	0.126	0.113	0.100	0.089	0.080	0.073	0.066	0.060
	0.6	0.161	0.146	0.130	0.118	0.106	0.095	0.085	0.077	0.069	0.063	0.057
	0.7	0.144	0.133	0.121	0.110	0.098	0.088	0.079	0.072	0.065	0.058	0.054
	0.8	0.132	0.123	0.113	0.102	0.092	0.083	0.074	0.067	0.061	0.055	0.049
	0.9	0.122	0.114	0.103	0.093	0.084	0.076	0.068	0.062	0.057	0.051	0.046
	1.0	0.112	0.102	0.093	0.084	0.075	0.068	0.062	0.057	0.051	0.046	0.042
Valeur de M ₂	0.0	/	0.310	0.200	0.167	0.149	0.134	0.122	0.110	0.098	0.088	0.081
	0.1	0.253	0.208	0.173	0.151	0.136	0.123	0.110	0.099	0.089	0.081	0.074
	0.2	0.202	0.175	0.152	0.137	0.123	0.110	0.100	0.089	0.082	0.074	0.067
	0.3	0.167	0.150	0.135	0.123	0.110	0.099	0.088	0.081	0.074	0.067	0.061
	0.4	0.143	0.132	0.122	0.110	0.098	0.088	0.081	0.074	0.067	0.061	0.056
	0.5	0.128	0.118	0.108	0.097	0.088	0.080	0.073	0.067	0.062	0.056	0.051
	0.6	0.114	0.106	0.096	0.087	0.079	0.073	0.067	0.062	0.056	0.052	0.047
	0.7	0.102	0.094	0.086	0.078	0.073	0.067	0.062	0.057	0.052	0.047	0.043
	0.8	0.09	0.083	0.077	0.072	0.066	0.062	0.056	0.052	0.047	0.043	0.038
	0.9	0.081	0.076	0.071	0.066	0.061	0.056	0.052	0.047	0.043	0.038	0.035
	1.0	0.073	0.069	0.065	0.060	0.055	0.050	0.047	0.043	0.038	0.035	0.032

Sections en (cm^2) de N armatures de diamètre ϕ en (mm)

Tableau des Armatures (en Cm²)

Ø	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
<i>3</i>	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
<i>5</i>	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.92	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.70	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

NAME OF PERSONS ASSESSED.	REXEMPLE : Wirescho de 7 riversox su-densus du hall de déport	ie 7 niversux su-dens	denses du	940 000	Sport.			as du tail de déport.
	Geoclasidique de l'incendés : population à portion en compte : Val persennes : population à portion en compte : 8 pais de départ + 7 montail despens infecent à perdé en tompté : 8 pais de départ + 7 montail despens infecent les dése révolus échiens censurés : 19 ED m.	udde: compthe: 140 p ide en compte un rivedant extr	B Palica Stress cess	dipperi +	7 reveau	- 4		
000000	1, Choix de l'intervate maximal probable : 1 = 80 seccedés.	rims probable.	1 = 80 sees	selles.	20.00			
Printingshirt	2. Equipment sentral of	A DESCRIPTION OF	of the same	1			- 3	-
DUPORTARES DESCRIPTION (SMIT)	A, WARRY CONTROL CARE IN THE WIRTH MARKET ON A CONTROL SPACE IN THE CASE OF CA	in Docume Smiles in DTU TES into plass do solecio	Applies many Merchanter Merchanter Principal	rate da l'	100 m/s	gå tö	20.00	1 1/2
	F 90 154 178	200	220 22	2000	958	273		082
	H M 810	- EE	101	int.	123	100		110
	Duckfluss, dams is couple de voleças P = 154 of 1 = 70, P od supjence à la population à papulas ancomptes all latifiées. À l'Atangle machinal probable, la soution ott patigliannés	o de valeurs P.	A 154 of 1 of 1 of 1 of 1 of 1	TB, P out	Augent Listor	4 h th p	9.8	Appen
	IL CANACTÉRISTIQUES ET CIMENSONS	ET COMENSO	ok .			An		
1000	Charge site		630 kg 60	00 6 per	4 personns	1.680 kg au 13 pentenns	8	80 00
	Courte man on m	contra	12	45	00	32	100	52
	Wheates an m/h	uth	0.03	1,00	1,00	0.83	-	1,80
	Palsance motaur on VM	W on W	91	6.9	18	979	-	11
		LOFE.A.		1,100				951
1	Collectores	Pred. B		1400				99,5
10000		Hert		3500			7	2300
		0 they		1660	Ì		m	1630
100 Care Care Care Care Care Care Care Care	The second second	P10f, D		2102				1500
A STERNASON	CONTRACTOR INC.	3 495 0	2720	3800	4800	3,000	-	3100
DEMONSTRA		Cavit	1480	1,920	1300	1400	-	1 500
TT CARLES	Paler	Delet		1500				118
		Herbi	553	88	88 88	2400	-	200
		Triol	3790	3780	3,900	4200	100	4200
	Machinella co. Co.	Surf rebt	-	91				12
		=	-	2000				2000
	NA COLO	thapse	26	956 1 066	2004 14.00			255 × 252
	576	Parts	L	300 s 2000	00		56	300 x 2000
		Sardale		- 63	8		2	
S225519652	Name of Street	Encavelta		100			20	

None and a second	11	7 8	- 54		- 34	2.87	18	1 50		
	-	the state of	122	1000	In the second	11:	Total Service Treesk	Second Second		
	Ouge		1 1 1 1 1	V 8 8	8 8 918	0 8 2 3	8	Cofficerisation		
	*	- FREER	ENERGETER	143.63	RESEARES	35/804	175-085 5-03	80		
The best top	\rightarrow	- 25528	PRESERVE	0.50	2000125200	19/20		- 5		
	-	- 12555F	PRENERRAL	E/2436.	BERREERS	18,0%	105351	100		
Hamber Land do rife	\rightarrow	- 90000	######################################	24.00m	20255888	66021 69221	95560	- 6		
	4	- 44557	B68469858	37,78530	ancustra:	1度支出		- 8		
do reference		* BERRA	PERSONNEL	2985	PRESENTA	100000	30(8.9 (3)(6))	1		
max dense		- 118999	大量工资产品的产品	95.00	pressable.	18980	ESCHARA .	- 6		
- 8	1	* BESSE	APRESENTS.	13876	PRESERVE	59,000	637307	. 5		
demenda	\rightarrow	- 88288	********	SPE	sessistan	13650	- ACCESSED	hoann?		
1 1 1	1 = 1	* FREER	EDSBASHER	E58182858	COLOR SELECTION OF THE OWNER, THE		RESERVEN	125449		
18	\vdash	- 88528	BUSELSERS BEFFEREES	599:00001	SPINSESSI SPONSESSI	ERSESSEE ERRESSEE	ATTREMENTS SCHOOLSTEE	202222		
y complex half	1.5	- 25522		\$811855EE			SCHRESSES.			
y complie half de dispert et juelan		•	RESERBEES	PRESERBER		FFRERERS	PERREARES			
de de		+	201001100	#SESSSES			SFREEEEEE			
100	1	4	SASCASSA	RANGED NAME	PPRESERVE		但现在区域的现在	222385		
of the	22	-	*18952860	\$27558BS7		RESERBED				
Sales Sales	P	4	200000000	FREEERRA		DEBBERBER				
4		+	201060000 021210103 201040000	0000000000	######################################	mastings:	EPERRECES GREETBERS	SERES.		
180	=		200325588	CARCESSA		TENTERS S				

Ta EXEMPLE: Immeuble de 7 niveaux au-dessus du hall de départ. Caractéristiques de l'immeuble: population à prendre en compte: 140 personnes; niveaux desservis à prendre en compte: 8 (hall de départ + 7 niveaux); distance séparant les deux niveaux extrêmes desservis: 19,60 m.	1. Choix de l'intervalle maximal probable : 1 = 80 secondes.	2 Équipement minimal : un ascenseur de charge nominale 1 000 kg.	6	D'ASCENSEURS O'ASCENSEURS A 1 a battira du tableau du DTI 75 1 donne pour un ascenseur 1 000 kg		154 178 2	78 90	Du fait que, dans le couple de valeurs P = 154 et I = 78, P est supérieur à la population à prendre en compte et l'inférieur à l'intervalle maximal probable, la solution est satisfaisante.	■ CARACTÉRISTIQUES ET DI	Charge utile	Course maxi en m	Vitesses en m/s	Puissance moteur en kW		Cabine en mm				ASCENSEURS A	ENTRAÎNEMENT PAR TREIII	ET CÂBLES Palier	SORFIEX			Machinerie en mm	1 m			Efforts alobaux	
veaux au-des te:140 perso τ compte:8 (eaux extrême	probable: 1 =	enseur de cha	une limite sup	75 1 donne r	le valeurs « P.	200 220	100 109	aleurs P = 15 à l'intervalle	ET DIMENSIONS				KW KW	Larg. A	Prof. B	Haut	Larg. C	Prof. D	S dalle Q	Cuv P	U mini	R mini		IUIW I	S m² mini	Н	Trappe	Porte	Sur dalle	En cuvette
issus du l' innes ; hall de d is desser	80 secon	rae nomi	érieure d	e un anou	-l » applic	239	117	4 et l = 78, maximal pro		630 kg o	35	0,63	5						3700	1 400		2200	002.6	00/0			950		7	
épart + 7 épart + 7 vis : 19,6	des.	nale 1 00	e 25 sec	Scenseur	suchiseur cables su			8, P est probable		630 kg ou 8 personnes	45	1,00	8,8	1100	1 400	2 200	1 600	2100	3800	1500	1 500	2 200	0026	2015	10	2 000	950 x 950	900 x 2 000	43	55
epart. niveaux 10 m.		00 kg.	ondes po	1 000 k	ivants:	256	125	P est supérieur à la population bable, la solution est satisfalsa		onnes	09	1,60	16						4 000	1700		2200	3500	4050			950 x 1450	0	20	
			our le rap u moins.	a 1.00	D	273	132	à la pop ion est si	An	1 000 kg	35	0,63	6,8						3700	1 400		2 400	4 200	1007			950			
			port	à 1.00 m/s, tous		290	138	oulation à atisfaisan		1000 kg ou 13 personnes	45	1,00	10	1 100	2100	2200	1 600	2600	3800	1 500	2100	2 400	4200	1 200	12	2 000	950 x 950	900 x 2000	09	55
						306	144	oj.		sonne	9	1,60	28,5						4 000	1 700		2 400	3 900	4300			950 x 1450	0	65	92

U PR	ABLISSEMENT- PROGRAMME ASCENSEURS (suite)	M DÉFINITION	NO I	DEL	No.	A CHARG	3GE, I	De la	A nive	LA VIT		m e	0 >	U NOMBRE compris hall	NOMBR mpris hal			ASCE	7 0	SEU	SEURS parkings	5	
988	Desserte	Charges	4	4	5		9		-		8		6		10		==		12	-	13		14
(\$/		minimales (kg)	۵	-	a	-	a	-	a	-		_	d	_	d		а.	_	d	-	d	-	d
23	Tous les niveaux desservis	630	188 226 260 293 322	82 82 87	164 225 225 250 277	73 82 89 96 101	148 176 200 224 246	91 100 100 100 14 2	136 160 183 183 1224 1	88 100 100 118 125 2	126 148 168 168 188 188 1	95 19 19 19 19 19 19 19 19	117 138 157 175 192	103 14 127 1- 137 1- 146 11	129 147 147 180 1180 1180 1180 1180 1180 1180 1180	110 124 136 146 156							
5	Tous les niveaux desservis	0001	211 250 286 320 354 354 414 440 463	57 70 75 75 79 83 83 95	190 222 253 253 263 308 360 360 404	63 67 72 72 72 73 73 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	176 205 230 230 255 277 277 277 321 321	68 87 87 87 101 101 112 112 112	162 190 213 225 1257 1276 1276 1313 1313 1313 1313	74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	154 178 200 1220 1220 1239 1256 1256 1250 1306	78 1 100 1 117 2 117 2 132 2 132 2 144 2	145 167 189 189 1224 1224 1224 1227 1227 1227 1227 1228	11 10 11 11 11 11 11 11 11 11 11 11 11 1	136 8 179 1 179 1 197 1 222 1 223 1 223 1 223 1 223 1 223 1 223 1 223 1 223 1	112 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	130 g 151 10 151 10 169 11 188 12 203 12 203 14 223 14 224 14 225 16 225	92 12 10 14 16 17 17 18 16 17 18 16 17 18 16 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	124 9 144 1 163 1 178 1 178 1 194 1 220 1 221 1 234 1 246 1	111234111111111111111111111111111111111	119 119 117 171 171 1185 1185 1225 1225 1225 1225 1225 122	101 116 116 1170 170 170 178 178 178 178 178 178 178 178 178 178	1132 132 149 164 178 192 205 205
3	1 niveau desservi sur 2	400 630	to the second	STATE OF THE STATE	1420,4	\$13×100	4.45.400		30,000		159.50		146 220 224 174 227 172 171 1315 1336	11 12 2 2 11 12 2 2 12 12 12 2 2 13 1 3 1	138 163 189 189 1189 1223 1225 14 1227 1314 1314	114 2 114 2	130 9 155 10 179 11 220 12 220 12 220 12 259 12 259 14	22 11 12 14 12 12 14 12 14 12 14 12 14 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	124 9 147 1147 1169 1 189 1 209 1 227 1 245 1 278 1				11134 1134 1173 1173 222 222 222 222 225 225 225 225 225 22
	Tous les niveaux desservis	400 630 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	245 286 323 358 394 427 482 506	25 27 27 27 27 27 27 27 27 27 27 27 27 27	222 258 258 250 320 350 376 400 449	25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	207 239 267 283 340 340 384 404	82 22 8 28 25 25 25 25 25 25 25 25 25 25 25 25 25	197 225 225 225 273 2295 3317 335 336 3354	101 2 101 101 101 101 101 101 101 101 10	2235 2235 2235 2258 2277 2277 2296 1316 333 1333 1333 1333 1333	65 1 75 2 85 2 85 2 101 2 108 2 120 3 120 3											146 168 187 187 203 223 2245 245 245 245
3	1 nivezu desservi sur 2	400 630 (1000)	在45%	13 18 P	in in its and	1929	心里 提供		\$2.50 to			3333555											146 172 172 223 223 225 225 225 225 225 225 225 22
5	Tous les niveaux desservis	0001	海線線線	1254年	13.023	nt,Sá	12/19/19	ISTAULKS:	建制线			24 C C C C C C C C C C C C C C C C C C C	200 228 228 220 220 220 307 333 333	24 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2219 2219 2219 3229 341	123 22 22 22 22 22 22 22 22 22 22 22 22 2			The state of the s				1774 69 195 82 215 93 221 104 228 113 226 123 226 123 226 123 2273 148
	1 niveau desservi sur 2	0:30	E11844	5/6/1	. Kakara	基加 的	233		100		. Balan	00000004	211 242 274 304 334 334 408	557 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	200 232 283 283 340 340 385 1385	669 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	194 6 225 7 225 7 225 7 226 8 301 9 323 9 323 9 346 10	52 T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	188 6 216 7 224 8 2267 9 2289 9 3311 10 3330 10 3311 11	103 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		113 32 22 21 113 32 22 23 21 113 32 23 23 23 23 23 23 23 23 23 23 23 23	223 79 223 88 2250 96 2250 96 104 2259 104 2259 1117 2288 1117 228 117 228