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Abstract

In this work we study a linear 2m-th order parabolic equation, subject to Dirichlet type
condition on the lateral boundary, where the right-hand side of the equation is taken in the
Lebesgue space Lp, defined on a time-varying domain of RN+1. The approach is based on
the use of the operators’ sum method in Banach spaces; we use Labbas-Terreni results on
the operators’ sum theory in the non-commutative case. We are especially interested in the
question of what sufficient conditions, as weak as possible, the dimension N , the exponent
p and the type of the domain must verify in order that our problem has a solution with
optimal regularity.

This thesis is divided into three chapters:
In the first chapter we recall some basic tools and concepts of elementary functional

analysis which are necessary in the operators’ sum theory.
In the second chapter we will refer to the essential of the operators’ sum method, that

we will use in the chapter three.
The third chapter is devoted to present our results.

Keywords: High order parabolic equation, non-cylindrical domains, anisotropic Sobolev
spaces, sum of linear operators, interpolation spaces.
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Résumé

Dans ce travail, nous étudions une équation parabolique linéaire d’ordre 2m, sous une
condition de type Dirichlet sur la frontière latérale. Le membre droit de l’équation est pris
dans l’espace de Lebesgue Lp. L’équation est définie dans un domaine de RN+1. L’approche
est basée sur l’utilisation de la méthode des somme d’opérateurs dans les espaces de Banach;
nous utilisons les résultats de Labbas-Terreni de la théorie des somme d’opérateurs dans le
cas non commutatif. Nous nous intéressons plus particulièrement à la question de savoir
quelles conditions suffisantes, aussi faibles que possible, la dimension N , l’exposant p et
le type du domaine doivent vérifier pour que notre problème ait une solution avec une
régularité optimale.

Cette thèse est divisée en trois chapitres :
Dans le premier chapitre nous rappelons quelques outils et concepts de base de l’analyse

fonctionnelle élémentaire dont nous aurons besoin dans la théorie des somme d’opérateurs.
Dans le deuxième chapitre nous ferons référence à l’essentiel de la méthode des somme

d’opérateurs, que nous utiliserons dans le chapitre trois.
Le troisième chapitre est consacré à la présentation des résultats obtenus dans l’article.

Mots clés: Équation parabolique d’ordre supérieur, domaines non cylindriques, espaces
de Sobolev anisotropes, somme d’opérateurs linéaires, espaces d’interpolation.
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General introduction

In science in general and in mathematics in particular one often encounters equations

of the form

Au+Bu = f, (1)

where f is a given element of a vector space X, A and B are two closed (unbounded)

linear operators in X with domains D(A) and D(B) respectively, and u ∈ D(A) ∩ D(B)

is the unknown (or the solution) to be determined. It is clear that if we have no or little

knowledge of the operators A and B, then little can be said about the existence and

regularity of solutions to the equation. Among the important general theories developed

for equations of the form (1), we can cite the operators’ sum method.

The operators’ sum method is developed by G. Da Prato and P. Grisvard in 1975 (see

[7]), then by G. Dore and A. Venni in 1987 (see [9]). It allows us to give a unified treatment

to problems to all appearances completely different in nature, like Cauchy and Dirichlet

problems. This method gives spectral properties of the sum operator L = A+B from those

of the linear operators A and B. It gives conditions under which the abstract equation (1)

can be solved. The original idea of Grisvard refers to parabolic and elliptic operators. So,

for parabolic problems, the following conditions will be imposed

(A− z)−1 and (B − z)−1 exist for z ∈ ΣA and z ∈ ΣB,where∑
A and ΣB are two sectors of the form {z ∈ C/| arg z| <

< π − ϕ} with ϕ = θA and ϕ = θB respectively and
θA + θB < π and

‖(A− z)−1‖L(X) = 0
(

1
|z|

)
and ‖(B − z)−1‖L(X) = 0

(
1
|z|

)
for z ∈ ΣA and ΣB respectively.

(2)
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This parabolic problem (1)-(2) can be treated by the operators’ sum method in two separate

cases depending on whether A and B are resolvent commuting{
∀λ ∈ ρ(A),∀µ ∈ ρ(B)
(A− λI)−1(B − µI)−1 = (B − µI)−1(A− λI)−1,

or not. In both cases the operator Sλ

f ∈ X 7−→ Sλf = − 1

2iπ

∫
γλ

(A− λI − zI)−1(B + zI)−1fdz,

to be defined in the second chapter, will play a fundamental role in expressing and analyzing

solutions to the equation (1). The operator Sλ allows us to give a unique and explicit

solution to (1) for all f in an interpolation space DA(θ, p) between X and D(A), or in an

interpolation space DB(θ, p) between X and D(B). Here we assume that 0 < θ < 1 and

1 ≤ p ≤ +∞. The restrictions that we impose on A and B in order to achieve this are,

beside sectoriality,
(i)

∥∥(A+ λ0I) (A+ λI)−1 [(A+ λ0I)−1 ; (B + µI)−1]∥∥
L(E)

≤ C

|λ|1−τ |µ|1+ρ , ∀λ ∈ ρ (−A) ∀µ ∈ ρ (−B) ,

(ii) 0 ≤ τ < ρ ≤ 1,

in the non-commutative case. In addition to guaranteeing the existence of a unique solution

u for f in one of the above mentioned interpolation spaces, the restrictions also ensure

maximal regularity of the problem with respect to the interpolation spaces in question.

For example, if f ∈ DA(θ, p), then not only u belongs to D(A) ∩ D(B) ⊂ DA(θ, p), but

also Au and Bu belong to this interpolation space.

The operators’ sum method may be used to investigate solutions to a number of prob-

lems related to partial differential equations. In chapter 3 we will apply it, in non commu-

tative case, to 2m− th order parabolic equation:

∂tu+ (−1)m
m∑
k=1

∂2m
xk
u = f, (3)

subject to Dirichlet type condition ∂lνu = 0, l = 0, 1, ...,m − 1, on the lateral boundary,

where m is a positive integer. The right-hand side f of the equation is taken in the Lebesgue
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space Lp, 1 < p < +∞. The problem is set in a domain of the form

Ω = {(t, x1, x2, ..., xN) ∈ RN+1 : 0 ≤
√
x2

1 + x2
2 + ...+ x2

N < tα}, with α > 1/2m.

This thesis is made up of three chapters, and is organized as follows:

Chapter 1

It is devoted to the fundamental reminders as well as to the tools necessary for this

work. We will first present some functional spaces such as Lebesgue spaces and Sobolev

spaces. We will then make a section on some generalities on linear operators. We will

present a section dealing with semi-groups, in which we will present strongly continuous

semi-groups and then analytic semigroups. The last section is devoted to interpolation

spaces and their properties.

Chapter 2

This chapter will be devoted to the operators’ sum theory, especially in the parabolic

case. It is composed of two sections. In the first, we will expose the theory of sums in

commutative case, and in the last section we will deal with the non-commutative case.

Chapter 3

In this last chapter we will solve our problem in three Steps:

In Step1 we perform a change of variables conserving (modulo a weight) the spaces

Lp and H1,2m
p , and transforming Problem (3) into a degenerate parabolic problem in a

cylindrical domain.

Step 2 is concerned with the application of the sum of operators’ method to the trans-

formed problem. We can find in the Favini-Yagi book [10] an important study of abstract

problems of parabolic type with degenerated terms in the time derivative. They used the

notion of multi-valued linear operators and constructed fundamental solutions when the

right-hand side has a Hölder regularity with respect to the time. Our approach is based

on the direct use of operators’ sums in a weighted Lp-Sobolev space.

Finally, in Step 3 we give results concerning the transformed problem and we return to

our initial problem by using an inverse change of variables.

The thesis ends with a conclusion and prospects.



Chapter 1

Preliminaries

In this chapter, we recall some functional spaces, and some definitions and results on

linear operators, as well as semigroups and interpolation spaces.

1.1 Some functional spaces

1.1.1 Lp spaces

Let Ω be an open set of Rn, with n ∈ N∗.

Definition 1.1.1. Let p ∈ R with 1 ≤ p < +∞, we set

Lp(Ω) =
{
u : Ω→ R, u is measurable and

∫
Ω

|u(x)|pdx < +∞
}
,

with norm

‖u‖Lp(Ω) =

[ ∫
Ω

|u(x)|pdx
] 1
p

.

We set

L∞(Ω) =
{
u : Ω→ R, u is measurable and |u(x)| ≤ C a.e. in Ω for some canstant C

}
,

with the norm

‖u‖L∞(Ω) = inf
{
C, |u(x)| ≤ C a.e. on Ω

}
.

We have the following properties:

1. Lp is a Banach space for any p, 1 ≤ p ≤ ∞.

12
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2. The dual of Lp is Lq, for any p, 1 < p < +∞, where q is the conjugate exponent of

p, i.e.
1

p
+

1

q
= 1. The dual of L1 is L∞. The dual of L∞ is strictly bigger than L1.

3. Hölder’s inequality:

Assume that u ∈ Lp and v ∈ Lq with 1 ≤ p, q ≤ +∞, 1

p
+

1

q
= 1. Then uv ∈ L1 and∫

Ω

∣∣u(x)v(x)
∣∣dx ≤ ‖u‖Lp‖v‖Lq .

4. L2 equipped with the scalar product

(u, v) =

∫
Ω

u(x)v(x)dx,

is the unique Hilbert space among all Lp spaces.

5. If u ∈ L∞ then we have

|u(x)| ≤ ‖u‖L∞ a.e. on Ω.

1.1.2 Sobolev spaces

Let Ω be an open set of Rn, and let p ∈ R with 1 ≤ p ≤ +∞.

The space Wm,p(Ω)

Let m ≥ 0 an integer.

Definition 1.1.2. The Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) =

{
u ∈ Lp(Ω) /∂αu ∈ Lp(Ω), ∀α ∈ Nn, |α| ≤ m

}
,

where α = (α1, · · · , αn), |α| = α1 + · · ·+ αn. We set Hm(Ω) = Wm,2(Ω).

The space Wm,p(Ω) is equipped with the norm

‖u‖Wm,p =

( m∑
|α|=0

‖∂αu‖pLp
) 1

p

for 1 ≤ p <∞,

and

‖u‖Wm,∞ = max
|α|≤m

‖∂αu‖L∞ .



CHAPTER 1. PRELIMINARIES 14

The space Hm(Ω) is equipped with the scalar product

(u, v)Hm =
m∑
|α|=0

(∂αu, ∂αv)L2 =
m∑
|α|=0

∫
Ω

∂αu.∂αv dx,

and with the associated norm

‖u‖Hm =

( m∑
|α|=0

‖∂αu‖2
L2

) 1
2

.

It is easy to show that

· · · ⊂ W 3,p ⊂ W 2,p ⊂ W 1,p ⊂ W 0,p = Lp.

Hereafter some properties of the Sobolev space Wm,p(Ω):

1. The space Wm,p is a Banach space for 1 ≤ p ≤ +∞.

2. Hm is the unique Hilbert space among all Wm,p spaces.

3. Sobolev inequality (Sobolev embedding): There exists a constant C such that

‖u‖Wm,∞(Ω) ≤ C‖u‖Wm,p(Ω), ∀u ∈ Wm,p(Ω), ∀ 1 ≤ p ≤ +∞.

In other words, Wm,p(Ω) ⊂ Wm,∞(Ω) with continuous injection for all 1 ≤ p ≤ +∞. We

also write Wm,p(Ω) ↪→ Wm,∞(Ω).

Remark 1.1.1. (Continuous embedding / Compact embedding)

Let X and Y be two normed vector spaces, with norms ‖ · ‖X and ‖ · ‖Y respectively, such

that X ⊆ Y.

I We say that X is continuously embedded in Y if the identity function

i : X −→ Y,
x 7−→ x,

is continuous, i.e. if there exists a constant C ≥ 0 such that

‖x‖Y ≤ C‖x‖X , ∀x ∈ X.
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I We say that X is compactly embedded in Y if

• X is continuously embedded in Y .

• The identity function i of X into Y is a compact operator, i.e., any bounded

subset in X is relatively compact subset in Y (or in other words for any bounded

sequence (xn) in X, there exists a subsequence (xnk) that converges in Y ).

The space Wm,p
0 (Ω)

Let 1 ≤ p < +∞, and let m ≥ 2 be an integer.

Definition 1.1.3. Wm,p
0 (Ω) is defined as the closure of C∞c (Ω) in Wm,p(Ω), i.e.,

C∞c (Ω)
Wm,p(Ω)

= Wm,p
0 (Ω) ⊆ Wm,p(Ω).

We set Hm
0 (Ω) = Wm,2

0 (Ω).

Remark 1.1.2. We can also define Wm,p
0 (Ω) as follow

Wm,p
0 (Ω) =

{
u ∈ Wm,p(Ω) /∂αu = 0 on ∂Ω, |α| < m

}
.

Hereafter some properties of the spaces Wm,p
0 (Ω):

1. The space Wm,p
0 is a Banach space for 1 ≤ p < +∞.

2. Hm
0 is a Hilbert space.

1.2 Linear operators

Let E and F be Banach spaces over the same (real or complex) field K with the norms

denoted by ‖ · ‖E and ‖ · ‖F or just by ‖ · ‖.

1.2.1 Generalities

Definition 1.2.1. A mapping T : D(A) ⊂ E → F is said to be a linear operator if

T (ax + by) = aT (x) + bT (y) for all x, y in D(A) and for all a, b in K. If Y = K then

T is called a linear form. If T : D(A) ⊂ E → F is not a linear operator, then T is often

referred to as a nonlinear operator (or just a mapping).
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1. D(A) or just DA is said to be the domain of A. It is a vector subspace of E, and for

all x ∈ D(A) we can denote A(x) by Ax.

2. We use the notation (A,D(A)), to denote the operator A with domain D(A).

3. The set of linear operators from E to F is denoted by L(E,F ).

4. When F = E, A is said to be a linear operator in E, and we write A ∈ L(E) or

(A,D(A)) ∈ L(E) .

Definition 1.2.2. Let A : D(A) ⊂ E → F be a linear operator.

1. We define the graph of A by

G(A) := {(x, y) ∈ E × F/x ∈ D(A), y = Ax} = {(x,Ax) ∈ E × F/x ∈ D(A)},

which is a vector subspace (we also say a linear subspace) of E × F.

2. We define the image of A as a linear subspace of F, by

Im(A) := {y ∈ F/∃x ∈ D(A), y = Ax} = {Ax ∈ F/x ∈ D(A)},

which will be referred to as the range of the operator A.

3. We define the kernel of A by

ker(A) := {x ∈ D(A)/Ax = 0},

wich is a vector subspace of E.

4. We say that A has a dense domain if D(A) = E.

Definition 1.2.3. Let A and B be two linear operators in E. The operator AB is defined

by 
D(AB) = {x ∈ D(B) : Bx ∈ D(A)},

(AB)x = A(Bx) ∀x ∈ D(B).
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We define, An, n ∈ N, by
D(A0) = E and A0 = I,

D(A1) = D(A) and A1 = A,

∀n ≥ 2 D(An) = {x ∈ D(An−1) : An−1x ∈ D(A)} and An = AAn−1.

Definition 1.2.4. Let A and B be two linear operators from E to F . We say that B is

an extension of A and we denote A ⊂ B if

1. D(A) ⊂ D(B),

2. ∀x ∈ D(A), Ax = Bx.

Conversely we say that A is a restriction of B, and we write B|D(A) = A.

Proposition 1.2.1. Suppose that A,B ∈ L(X, Y ) satisfy: A ⊂ B,KerB = 0, and ImA =

Y. Then A = B.

Definition 1.2.5. Let A be a linear operator on E. If A is injective, we define the operator

A−1 by
A−1 : Im(A) −→ E

y 7−→ A−1y = x

where x ∈ D(A) is defined by Ax = y. Note that Im(A−1) = D(A).

1.2.2 Bounded linear operators

Definition 1.2.6. Let A be a linear operator from E to F. We say that A is bounded if

sup{‖Ax‖;x ∈ D(A), ‖x‖ ≤ 1} < +∞. Otherwise, the operator (A,D(A)) is said to be

unbounded.

The space of bounded linear operators from E to F is noted by L(E,F ). If E = F, we

pose L(E) := L(E,E).

Proposition 1.2.2. Let A be a linear operator from E to F. Then, the following properties

are equivalent:

1. A ∈ L(E,F ),
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2. ∀x0 ∈ E, lim
x→x0

‖Ax− Ax0‖F = 0,

3. lim
x→0
‖Ax‖F = 0,

4. ∃M ≥ 0, ∀x ∈ E, ‖Ax‖F ≤M‖x‖E.

Definition 1.2.7. Let A ∈ L(E,F ). We define the norm of A as follows:

‖A‖L(E,F ) = inf{c > 0, ‖Ax‖F ≤ c‖x‖E,∀x ∈ E}.

Remark 1.2.1.

1. The space L(E,F ) equipped with the norm ‖.‖L(E,F ) is a Banach space.

2. An operator is bounded if and only if its norm is finite.

Definition 1.2.8. Two operators A,B ∈ L(E) are said to commute if AB = BA

It is not easy to extend this definition to unbounded operators due to the difficulties

with defining the domains of the composition. The extension is usually done to the case

when one of the operators is bounded. Thus, an operator A ∈ L(E) is said to commute with

B ∈ L(E) if BA ⊂ AB. This means that for any x ∈ D(A), Bx ∈ D(A) and BAx = ABx.

Definition 1.2.9. Let A : E → E, be a linear operator. We say that A is invertible if

there exists A′ ∈ L(E) such that

AA′ = A′A = I,

where I is the identity operator on E. This operator A′ if it exists is unique, it is called

the inverse of A, and we denote it by A−1.

We have the following useful conditions for invertibility of an operator.

Proposition 1.2.3. Let E and F be Banach spaces and A ∈ L(E,F ). The following

assertions are equivalent.

1. A is invertible,
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2. ImA = F and there exists m > 0 such that ‖Ax‖ ≥ m‖x‖ for all x ∈ D(A),

3. A is closed, ImA = F and there exists m > 0 such that ‖Ax‖ ≥ m‖x‖ for all

x ∈ D(A),

4. A is closed, ImA = F, and KerA = {0}.

Proposition 1.2.4. Let A ∈ L(E). If ‖A‖L(E) < 1, then

1. (I − A) is invertible in L(E), and

2. (I − A)−1 =
+∞∑
n=0

An.

Definition 1.2.10. Let A and B be two linear operators on E.

1. The resolvent set of A, denoted by ρ(A) or ρA, is defined by

ρ(A) := {λ ∈ C : (λI − A)−1 ∈ L(E)}.

2. If λ ∈ ρ(A), we define the resolvent R(λ,A) of A at point λ by

R(λ,A) := (λI − A)−1.

3. We define the resolvent commutator as follows

[(A− λI)−1, (B − µI)−1] = (A− λI)−1(B − µI)−1 − (B − µI)−1(A− λI)−1.

4. The spectrum A, noted σ(A) or σA, is defined by

σ(A) = C \ ρ(A).

Remark 1.2.2. In general, it is possible that either σ(A) or ρ(A) is empty. The spectrum

is usually subdivided into three subsets.

1. Point spectrum σp(A) is the set of λ ∈ σ(A) for which the operator λI − A is not

one-to-one (injective). In other words, σp(A) is the set of all eigenvalues of A.
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2. Continuous spectrum σc(A) is the set of λ ∈ σ(A) for which the operator λI − A is

one-to-one and its range is dense in E but not equal to E.

3. Residual spectrum σr(A) is the set of λ ∈ σ(A) for which the operator λI − A is

one-to-one and its range is not dense in E.

Proposition 1.2.5. Let A : D(A) ⊂ E → F be a linear operator. Then, for all λ, µ ∈

ρ(A), we have

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A).

1.2.3 Closed linear operators

Definition 1.2.11. Let A be a linear operator from E to F . We say that the operator A

is closed if his graph G(A) is closed in E×F. Note that bounded linear operator is a closed

linear operator. The space of closed linear operators from E to F is noted by F(E,F ).

The following proposition gives an equivalent definition for a closed linear operator.

Proposition 1.2.6. Let A : D(A) ⊂ E → F be a linear operator. A is said to be closed

if and only if for any sequence (xn)n≥0 of D(A) such that{
xn → x, in E,
Axn → y, in F,

one has x ∈ D(A) and Ax = y.

Remark 1.2.3. For any operator A, its domain D(A) is a normed space under the graph

norm

‖x‖D(A) := ‖x‖E + ‖Ax‖F .

The operator A : D(A)→ F is always bounded with respect to the graph norm, and A is

closed if and only if D(A) is a Banach space under the graph norm.

Proposition 1.2.7. Let A and B be two linear operators on E. One has

1. If B is bounded then B is closed.
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2. If A is closed and B is bounded, then A+B is closed.

3. If A is closed and B is bounded, then AB is closed.

Theorem 1.2.1. (Closed graph theorem)

Let E and F be two Banach spaces. Let A be a closed linear operator from E to F. If

D(A) = E, then A ∈ L(E,F ).

1.2.4 Compact linear operators

Definition 1.2.12. Let E and F be two Banach spaces and T ∈ L(E,F ), T is said to be

compact if for each sequence (xn)n≥1 ∈ E with ‖xn‖ = 1 for each n ∈ N?, the sequence

(Txn)n≥1 has a subsequence which converges in F. Equivalently, T is compact if for each

bounded sequence (xn)n≥1 ∈ E, the sequence (Txn)n≥1 has a subsequence which converges

in F.

We denote by K(E,F ) the space of all compact operators from E to F. And if E = F ,

we write K(E) the space of all compact operators on E.

Theorem 1.2.2.

1. K(E,F ) is closed in L(E,F ).

2. If T ∈ K(E,F ), R ∈ L(G,E) and S ∈ L(F,G), then S ◦ T ∈ K(E,G) and T ◦ R ∈

K(G,F ).

Theorem 1.2.3. Let T ∈ K(E), then

1. dimKer(I − T ) is finite.

2. Im(I − T ) is closed.

3. Ker(I − T ) = {0} ⇔ Im(I − T ) = E.
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1.2.5 Sectorial operators

It is important to clarify that there are many equivalent definitions for sectorial operators.

Here we will use the following definition:

Definition 1.2.13. Let E be a complex Banach space and A be a closed linear operator

in E. Then, A is said to be sectorial if

(i) D (A) and Im (A) are dense in E,

(ii) Ker (A)={0} ,

(iii) ]−∞, 0[ ⊂ ρ (A) (ρ (A) is the resolvent set of A) and there exists a constant K ≥ 1

such that ∀t > 0,
∥∥t (A+ tI)−1

∥∥
L(E)
≤ K.

Remark 1.2.4. We will see later that if A is sectorial, then ρ (−A) contains an open sector∑
ϕ = {z ∈ C : z 6= 0, |arg z| < ϕ} , with ϕ ∈ ]0, π[ .

We can also find the following definition:

Definition 1.2.14. Let 0 < ω ≤ π
2
. We define the following sector

Σω = {z ∈ C/{0} : | arg z| < ω}.

1) A closed linear operator A on E is said to be sectorial of angle ω if

σA ⊂ Σω,

and

∀ω′ ∈]ω, π[, sup
λ/∈Σω′

||λ(A− λI)−1|| < +∞.

2) We denote by Sect(ω) the set of linear operators on E which are sectorials of angle ω.

1.2.6 Some theorems of functional analysis

Banach-Steinhaus theorem

Theorem 1.2.4.

Let E and F be two Banach spaces. Let (Ai)i∈I be a family (not necessarily countable) of
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continuous linear operators from E to F. We suppose that

sup
i∈I
‖Aix‖ < +∞, ∀x ∈ E.

Then

sup
i∈I
‖Ai‖ < +∞.

Fubini’s theorem

Let M be a metric space, we denote by B(M) the Borel σ-algebra on M , that is the

collection that contains all open and closed sets, all countable unions and intersections of

closed or open sets, and so on. We write Bd instead of B(Rd).

Let A ∈ Bn, B ∈ Bm, and (x, y) ∈ A×B ⊆ Rn+m. It can be seen that A×B ∈ Bn×m.

Let f : A×B → [0,+∞]. We set

fy : A→ [0,+∞[, fy(x) = f(x, y) for each fixed y ∈ B,

fx : B → [0,+∞[, fx(y) = f(x, y) for each fixed x ∈ A.

These functions are measurable (for each fixed y ∈ B, resp. x ∈ A). Now we can state

Fubini’s theorem, which we will use later.

Theorem 1.2.5.

a) Let f : A× B → [0,+∞] be a measurable function. Then the functions F : A→ [0,∞]

and G : B → [0,∞], given by

F (x) =

∫
B

fx(y)dy for x ∈ A, G(y) =

∫
A

fy(x)dx for y ∈ B,

are measurable, and it holds∫
A×B

f(x, y)d(x, y) =

∫
A

(

∫
B

f(x, y)dy)dx =

∫
B

(

∫
A

f(x, y)dx)dy. (*)

b) Let f ∈ L1(A × B). Then there are null sets NA ⊆ A and NB ⊆ B such that fx is

integrable for all x ∈ A\NA and fy is integrable for all y ∈ B\NB. We define F and G as

above for x ∈ A\NA and for y ∈ B\NB, respectively, and we put F (x) = 0 and G(y) = 0

for x ∈ NA and y ∈ NB, respectively. Then F and G are integrable and formula (*) holds.
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Cauchy’s Theorem

Let U be an open set of C. We denote by H(U), the space of holomorphic functions,

from U in C. Let g ∈ H(U), K a compact set with boundary in U and z0 inside K, then

g(z0) =
1

2πi

∫
γ

g(z)

z − z0

dz,

where γ is the positively oriented boundary of K.

Dunford Integral

Let E be a complex Banach space and A be a closed linear operator. We denote by H(A)

the space of variable complex functions which are holomorphic in a closed set containing

the spectrum of A. The formula analogous to the Cauchy formula for the holomorphic

functions is defined by the following Dunford integral

f(A) =
1

2πi

∫
γ

f(z) (z − A)−1 dz,

where γ is a simple curve and f ∈ H(A). The operator f(A) ∈ L(E) and does not depend

on γ.

1.3 Semigroups of linear operators

1.3.1 Strongly continuous semigroup

Let (X, ‖.‖) be a complex Banach space.

Definitions and Propreties

Definition 1.3.1. The family of bounded linear operators (T (t))t≥0 in X is said to be a

semigroup if it verifies

1. T (0) = I,

2. T (t1 + t2) = T (t1)T (t2), ∀t1, t2 ≥ 0.
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Definition 1.3.2. A semigroup (T (t))t≥0 is said to be strongly continuous if, for all f ∈ X,

lim
t→0+
‖T (t)f − f‖ = 0.

A strongly continuous semigroup, is called a C0-semigroup.

Example 1.3.1. We consider the space

E := {f : [0,+∞[→ R : f is uniformly continuous and bounded}.

equipped with the norm

‖f‖ = sup
x∈[0,+∞[

|f(x)|,

E becomes a Banach space. Let (T (t))t≥0 be the family of operators defined on E by

(T (t)f)(x) = f(t+ x), ∀t ≥ 0, ∀f ∈ E, ∀x ∈ [0,+∞[.

(T (t))t≥0 is a C0-semigroup of bounded linear operators on E, called C0-semigroup of right

translation.

Proposition 1.3.1. If (T (t))t≥0 is a C0-semigroup on X, then there are constants ω ∈ R

and M ≥ 1 such that

∀t ≥ 0, ‖T (t)‖ ≤Meωt.

Remark 1.3.1. 1. If ω = 0, the C0-semigroup (T (t))t≥0 is called uniformly bounded. In

this case, we have

‖T (t)‖ ≤M.

2. If ω = 0 and M = 1, (T (t))t≥0 is called C0-semigroup of contraction. In this case, we

have

‖T (t)‖ ≤ 1.

3. If M = 1 and ω ∈ R, the C0-semigroup (T (t))t≥0 is called quasi-continuous. In this

case, we have

‖T (t)‖ ≤ eωt.
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The following corollary is a direct consequence of the above proposition.

Corollary 1.3.1. Let (T (t))t≥0 be a C0-semigroup on X. Then for all x ∈ X, the function

t 7→ T (t)x is continuous from R+ to X.

1.3.2 Generators

We have already defined the C0-semigroups, now we are going to associate with them a

very important element that is the (infinitesimal) generator whose definition is as follows:

Definition 1.3.3. Let (T (t))t≥0 be a C0-semigroup on X. We call an infinitesimal generator

(or just generator) of (T (t))t≥0, the operator A defined on the set

D(A) = {f ∈ X : lim
t→0+

T (t)f − f
t

exists in X},

by

Af = lim
t→0+

T (t)f − f
t

, ∀f ∈ D(A).

Example 1.3.2. We mentioned above that the family of operators (T (t))t≥0 defined on

E := {f : [0,+∞[→ R : f is uniformly continuous and bounded}

by

(T (t)f)(x) = f(t+ x), ∀t ≥ 0, ∀f ∈ E, ∀x ∈ [0,+∞[,

is a C0-semigroup. Then we can show that its generator is the operator A defined by

D(A) = {f ∈ E : f ′ ∈ E} = and Af = f ′.

Proposition 1.3.2. Let (T (t))t≥0 be a C0-semigroup on X and A be its generator, then

1.

lim
h→0+

1

h

t+h∫
t

T (s)x ds = T (t)x, ∀t ≥ 0, ∀x ∈ X.
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2. ∀t ≥ 0, ∀x ∈ X,
t∫

0

T (s)x ds ∈ D(A) and we have

A(

t∫
0

T (s)x ds) = T (t)x− x.

3. ∀t ≥ 0, ∀x ∈ D(A), T (t)x ∈ D(A) and we have

d

dt
T (t)x = AT (t)x = T (t)Ax.

4. ∀t ≥ 0, ∀s ≥ 0, ∀x ∈ D(A), we have

T (t)x− T (s)x =

t∫
s

AT (τ)xdτ =

t∫
s

T (τ)Axdτ.

Corollary 1.3.2. Let (T (t))t≥0 be a C0-semigroup on X and A be its generator. Then A

is closed and its domain is dense in X.

Definition 1.3.4. A C0-semigroup (T (t))t≥0 of generator A can have an extension to a

group (U(t))t∈R, if and only if, (−A) generates a C0-semigroup (S(t))t≥0, In this case,

(U(t))t∈R, is defined as follow:

U(t) =

{
T (t), t ≥ 0,
S(−t), t ≤ 0.

Theorem 1.3.1. Let (T (t))t≥0 and (S(t))t≥0 be two C0-semigroups having as a generator

the same operator A. Then

T (t) = S(t), ∀t ≥ 0.

Using the definition of a C0-semigroup and that of its generator, we can prove the

following result:

Theorem 1.3.2. Let (T (t))t≥0 be a C0-semigroup on X of generator (A,D(A)), such that

‖T (t)‖ ≤Meωt.

Then for λ ∈ R, the operator (A − λI,D(A)) is a generator of the C0-semigroup

(e−λtT (t))t≥0 on X.
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1.3.3 Hille-Yosida theorem

In this subsection, we will present the theorem of Hille-Yosida which is a very powerful

tool to decide whether a given operator is or is not the generator of some C0-semigroup.

To prove this theorem, we will need some lemmas. Let us first introduce the Yosida

approximation.

Definition 1.3.5. For λ > 0, we define the Yosida approximation of a linear operator A

as follows:

Aλ = λAR(λ,A),

where R(λ,A) = (λI − A)−1. We have Aλ is a bounded operator. Indeed,

Aλ = λAR(λ,A)

= λ[λI − (λI − A)]R(λ,A)

= λ[λR(λ,A)− I]

= λ2R(λ,A)− λI.

Lemma 1.3.1. Let A be a linear operator satisfying the conditions of Hille-Yosida theorem

(see below). If Aλ is the Yosida approximation of A, then

lim
λ→+∞

Aλx = Ax, ∀x ∈ D(A).

Lemma 1.3.2. Let A be a linear operator satisfying the conditions of Hille-Yosida theorem

(see below). If Aλ is the Yosida approximation of A, then Aλ is the generator of C0-

semigroup of contraction (etAλ)t≥0. Moreover, for all x ∈ X and λ, µ > 0, we have

‖etAλx− etAµx‖ ≤ t‖Aλx− Aµx‖.

Theorem 1.3.3. (Hille-Yosida theorem)

Let (T (t))t≥0 be a C0-semigroup on X. We say that the operator A (unbounded) is a gen-

erator of (T (t))t≥0 if and only if

(1) A is closed



CHAPTER 1. PRELIMINARIES 29

(2) D(A) is dense in X

(3) ρ(A) ⊃ [0,+∞[ and there is M, ω ∈ R+ such that

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
,

for n = 1, 2, ..., if Reλ > ω.

Proposition 1.3.3. Let (T (t))t≥0 be a C0-semigroup such that

∀t ≥ 0, ||T (t)||L(X) ≤Meωt (M ≥ 1, ω ≥ 0).

Then A, the generator of (T (t))t≥0, verifies

(1) ρ(A) ⊃ {λ ∈ C, |Reλ| > ω} and

∀λ ∈ C, Reλ > ω, ∀n ∈ N∗ : ‖(λI − A)−n‖L(X) ≤
M

(Reλ− ω)n
.

(2) The resolvent of A is given by

∀λ ∈ C, Reλ > ω, (λI − A)−1x =

∫ +∞

0

e−λtT (t)xdt.

(3) The semigroup (T (t))t≥0 can be found from its generator A by

T (t)x = lim
λ−→+∞

etAλx, t ≥ 0, x ∈ X,

where Aλ ∈ L(X) is the Yosida approximation of A defined by

Aλ = λA(λI − A)−1, λ > ω.

The following diagram summarizes the relation between a C0-semigroup, its generator

and its resolvent.
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1.3.4 Analytic semigroup

In what follows, ”arg” denotes the principal determination of the function argument

characterized by

arg(z) = ϕ if z = reiϕ, r > 0, ϕ ∈]− π, π].

Definition 1.3.6. For θ ∈]0, π/2], consider the sector

Σθ := {z ∈ C \ {0} : |arg(z)| < θ}.

Suppose that T : Σθ ∪ {0} −→ L(X) is a function with the following properties:

(i) T : Σθ −→ L(X) is holomorphic.

(ii) For all z, w ∈ Σθ, we have

T (z)T (w) = T (z + w), and T (0) = I.

(iii) For every θ′ ∈]0, θ[, the equality

lim
z→0
z∈Σθ′

T (z)f = f holds for all f ∈ X,

then T is called an analytic semigroup of angle θ. Moreover, if

(iv) for all θ′ ∈]0, θ[, we have

sup
z∈Σθ′

‖T (z)‖ < +∞,
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then T is called a bounded analytic semigroup of angle θ. The generator of the restriction

T : [0,+∞[→ L(X) is called the generator of the analytic semigroup T.

Remark 1.3.2. Clearly, for an analytic semigroup T, the mapping

T :]0,+∞[→ L(X), t 7−→ T (t) ∈ L(X)

is continuous in the operator norm, it is even differentiable. Among others, this continuity

has the following consequence: For λ sufficiently large, the resolvent of the generator is

given by the improper integral

R(λ,A) =

∫ +∞

0

e−λtT (t)dt,

which is convergent in the operator norm.

Proposition 1.3.4. Let T be an analytic semigroup of angle θ ∈]0, π
2
] with generator A,

then the following assertions are true:

a) For every r > 0 and θ′ ∈]0, θ[, we have

sup{‖T (z)‖ : z ∈ Σθ′ , |z| ≤ r} < +∞.

b) For all θ′ ∈]0, θ[, there exist ω = ωθ′ > 0 and M = Mθ′ ≥ 1 such that

‖T (z)‖ ≤MeωRe(z) for all z ∈ Σθ′ .

c) For α ∈]− θ, θ[ and t ≥ 0, define Tα(t) := T (eiαt), then Tα is a strongly continuous

semigroup with generator eiαA.

Example 1.3.3. For A ∈ L(X) and z ∈ C define

T (z) = ezA :=
∞∑
n=0

znAn

n!
,

then T is an analytic semigroup.
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Example 1.3.4. The shift semigroup on Lp(R) is not analytic. Or, more generally, if T

is a strongly continuous group which is not continuous for the operator norm at t = 0, then

T is not analytic.

Theorem 1.3.4. Let A be a closed linear operator with dense domain D(A) in X and

0 < θ ≤ π
2

such that

Σπ
2

+θ ⊂ ρ(A), and ∃M > 0, ∀λ ∈ ρ(A), ||(A− λ)−1|| ≤ M

|λ|
. (*)

We define (T (t))t≥0, denoted by (etA)t≥0, by

T (0) = I and ∀t > 0,∀x ∈ X, T (t)x = etAx =
1

2πi

∫
γ

eλt(A− λI)−1x dλ,

where γ ⊂ ρ(A) is an unbounded contour in Σπ
2

+θ from +∞e−i(π2 +θ) to +∞ei(π2 +θ).

Then (etA)t≥0 is an C0-semigroup of generator A. Moreover (etA)t≥0 is extended into

an analytic semigroup of angle θ denoted by (ezA)z∈Σθ .

Remark 1.3.3. If A is a closed linear operator with dense domain D(A) in X verifying (*)

of the previous theorem, then −A ∈ sect(θ + π
2
).

Theorem 1.3.5. Let A be a closed linear operator with dense domain D(A) in X such

that

]0,+∞[⊂ ρ(A), and ∃M > 0, ∀λ > 0, ||(A− λ)−1|| ≤ M

λ
,

then there exists a sector Σφ, 0 < φ ≤ π
2
, such that

Σφ ⊂ ρ(A), and ∃M > 0, ∀λ ∈ Σφ, ||(A− λ)−1|| ≤ M

|λ|
.

The following diagram summarizes the relation between an analytic semigroup, its

generator and its resolvent.
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1.4 Interpolation

Let E0 and E1 be two Banach spaces and X be a separate topological space with

Ei ↪→ X, i = 0, 1.

Consider the Banach spaces E0 ∩ E1 and E0 + E1 equipped with the norms

‖a‖E0∩E1 = ‖a‖E0 + ‖a‖E1 ,

and

‖a‖E0+E1 = inf
a=a0+a1
ai∈Ei, i=0,1

(‖a‖E0 + ‖a‖E1).

The couple (E0, E1) is called an interpolation couple.

Definition 1.4.1. Let (E0, E1) be an interpolation couple. We call intermediate space

between E0 and E1, any Banach space E such that

E0 ∩ E1 ↪→ E ↪→ E0 + E1.

Example 1.4.1. The spaces Ei, i = 0, 1 are intermediate spaces.

Theorem 1.4.1. ( Marcel Riesz’s theorem)

Let pi, qi ∈ [0,+∞[ and Ωi, i = 0, 1 be open sets of Rn, and

K : Lp0(Ω0) + Lp1(Ω0)→ Lq0(Ω1) + Lq1(Ω1)



CHAPTER 1. PRELIMINARIES 34

be a linear operator, such that {
K/Lp0 (Ω0) ∈ L (Lp0 , Lq0) ,
K/Lp1 (Ω0) ∈ L (Lp1 , Lq1) .

Let θ ∈ [0, 1] and pθ, qθ ∈ [0,+∞[, such that

1

pθ
=

1− θ
p0

+
θ

p1

and
1

qθ
=

1− θ
q0

+
θ

q1

.

Then

K/Lpθ (Ω0) ∈ L (Lpθ , Lqθ) .

Moreover

||K||L(Lpθ ,Lqθ ) ≤ ||K||1−θL(Lp0 ,Lq0 ) · ||K||
θ
L(Lp1 ,Lq1 ).

Lemma 1.4.1. (Schur’s lemma)

Let k : Ω1 × Ω2 −→ R be a measurable function such that

i) ∃a > 0,∀x2 ∈ Ω2 :
∫

Ω1
|k (x1, x2)| dx1 ≤ a,

ii) ∃b > 0,∀x1 ∈ Ω1 :
∫

Ω2
|k (x1, x2)| dx2 ≤ b.

We define the operator K by

(Kf) (x2) =

∫
Ω1

k (x1, x2) f (x1) dx1;∀x2 ∈ Ω2.

Then, ∀p ∈ [1,+∞] :

K ∈ L (Lp (Ω1) , Lp (Ω2)) .

Proof. We have K ∈ L (L1 (Ω1) , L1 (Ω2)) and K ∈ L (L∞ (Ω1) , L∞ (Ω2)), then thanks to

the theorem of Marcel Riesz we obtain the result.

Interpolation Spaces

Definition 1.4.2. An intermediate space E between E0 and E1 is an interpolation space

between E0 and E1, if for each K ∈ L(E0 + E1):

K ∈ L(Ei), i = 0, 1 =⇒ K ∈ L(E).
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Definition 1.4.3. Let (E0, E1) and (F0, F1) be two interpolation couples. We say that

two Banach spaces E and F are interpolation spaces between (E0, E1) and (F0, F1), if

1. E is intermediate space between E0 and E1,

2. F is intermediate space between F0 and F1,

3. K ∈ L(Ei, Fi), i = 0, 1 =⇒ K ∈ L(E,F ).

Example 1.4.2.

1. E0 ∩ E1 is an interpolation space between E0 and E1.

2. E0 + E1 is an interpolation space between E0 and E1.

Theorem 1.4.2. (Fundamental property of interpolation)

Let E and F be two interpolation spaces between (E0, E1) and (F0, F1), then there exists

C ≥ 0 such that for each K:

K ∈ L(E0 + E1, F0 + F1) and K ∈ L(Ei, Fi), i = 0, 1,

we have

‖K‖L(E,F ) ≤ C max
i=0,1

(‖K‖L(Ei,Fi)).

Definition 1.4.4. Two interpolation spaces E and F are said to have exponent θ ∈ [0, 1],

if there exists a constant C ≥ 0 such that for each K:

‖K‖L(E,F ) ≤ C‖K‖1−θ
L(E0,F0) · ‖K‖

θ
L(E1,F1).

Theorem 1.4.3. Let (E0, E1) be an interpolation couple. Let θ ∈]0, 1[ and p ∈ [1,∞], then

the space (E0, E1)θ,p defined by

x ∈ (E0, E1)θ,p ⇐⇒


i) ∀t > 0, ∃u0(t) ∈ E0, ∃u1(t) ∈ E1 : x = u0(t) + u1(t),

ii) t−θu0 ∈ Lp∗ (R+, E0) , t1−θu1 ∈ Lp∗ (R+, E1) ,
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(where Lp∗ denotes the space of p-integrable functions with the measure dt
t

),

equipped with the norm

‖x‖θ,p = inf
u0,u1

(
‖t−θu0‖Lp∗(R+,E0) + ‖t1−θu1‖Lp∗(R+,E1)

)
,

is an interpolation space between E0 and E1.

Definition 1.4.5. Let A be a closed linear operator and its domain DA ⊂ E is equipped

with the graph norm

∀x ∈ DA, ‖x‖DA = ‖x‖X + ‖Ax‖X .

Then we set, following the notations of P.Grisvard,

DA(θ, p) = (DA, E)1−θ,p where p ∈ [1,+∞] and 0 < θ < 1.

When operator A verifies some additional assumptions, it is then possible to give explicit

characterizations of DA(θ, p), thus:

Theorem 1.4.4. Let p ∈ [1,+∞] and θ ∈]0, 1[.

1. Suppose that ρ(A) ⊃]0,+∞[ and there exists a constant C > 0 such that

∀λ > 0,
∥∥(A− λI)−1

∥∥
L(E)
≤ C

λ
.

Then,

DA(θ, p) =
{
x ∈ E : tθA(A− tI)−1x ∈ Lp∗ (R+, E)

}
.

2. If A generates a strongly continuous bounded semigroup in E, then

DA(θ, p) =
{
x ∈ E : t−θ

(
eAt − I

)
x ∈ Lp∗ (R+, E)

}
.

3. If A generates a bounded analytic semigroup in E, then

DA(θ, p) =
{
x ∈ E : t1−θAeAtx ∈ Lp∗ (R+, E)

}
.
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So, if operators A and B are sectorial, then the intermediate spaces DA(θ, p) between

DA and E (or DB and E ) are characterized by:

DA(θ, p) =
{
x ∈ E : tθA(A− tI)−1x ∈ Lp∗ (R+, E)

}
.

In particular

DA(θ,+∞) =

{
x ∈ E : sup

r>0
rθ
∥∥A(A− r)−1x

∥∥ < +∞
}
.

Hereafter, we specify some interpolation spaces.

Example 1.4.3.

1. Let E = C ([0, 1], ‖ · ‖∞) and the operator A defined by :{
DA = {ϕ ∈ C2([0, 1]) : ϕ(0) = ϕ(1) = 0} ,
Aϕ = ϕ′′.

So for p = +∞

DA(θ,+∞) =


C2θ([0, 1]) and ϕ(0) = ϕ(1) = 0 if 2θ < 1,
C1,∗([0, 1]) and ϕ(0) = ϕ(1) = 0,
C1,2θ−1([0, 1]) and ϕ(0) = ϕ(1) = 0,

where C1,∗([0, 1]) is the so-called Zygmund space of continuous functions ϕ on [0, 1]

such that

sup
x,y∈[0,1]

∣∣ϕ(x)− 2ϕ
(
x+y

2

)
+ ϕ(y)

∣∣
|x− y|

< +∞.

2. Let E = Lp(]0, 1[), p ∈ [1,+∞[ and the operator B defined by{
DB = {u ∈ W 1,p(]0, 1[)/u(0) = 0} ,
Bu = u′,

then

DB(θ, p) =


W θ,p(]0, 1[) if 0 < θ < 1

p
,

W θ,p
0,0 (]0, 1[) if θ = 1

p
,

W θ,p
0 (]0, 1[) if 1

p
< θ < 1.

We recall that
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• For θ ∈]0.1
[
, W θ,p(]0.1[) is the subspace of Lp(]0.1[) of functions u such that∫ 1

0

∫ 1

0

|u(t)− u(s)|p

|t− s|1+θp
dtds < +∞.

For p = 2, θ = 1
2
, we find the famous H

1
2 (]0, 1[) space.

• The Sobolev space (rather called Besov space) W θ,p
0,0 (]0, 1[) is the subspace of the func-

tions u of Lp(]0.1[) such that ∫ 1

0

|u(t)|p

t
dt < +∞.

• In general, we can give

(Wm,p(Ω), Lp(Ω))θ,q = Bm(1−θ)
p,q (Ω),

where Ω is an open set with boundary of class Cm, p ∈] 1,+∞ [ , q ∈ [1,+∞], and

Bsp,q(Ω) are the Besov spaces.

Properties

We now give some fundamental properties of interpolation spaces. For all θ ∈]0, 1[ and

p, q ∈ [1,+∞], we have

1. If 0 < ω ≤ θ < 1 and p, q ∈ [1,+∞], then

(E0, E1)θ,p ↪→ (E0, E1)ω,q .

2. If p ≤ q, then

(E0, E1)θ,p ↪→ (E0, E1)θ,q .

3. If E0 = E1, then (E0, E1)θ,p = E0 = E1.

4. (E0, E1)θ,p = (E1, E0)1−θ,p.
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Particular Case (DA, E)θ,p

Let A be a closed linear operator in E. We set E0 = DA which is equipped with the

graph norm and E1 = E. Then E0 ∩ E1 = DA and E0 + E1 = E. So,

DA ↪→ (DA, E)θ,p ↪→ E.

Theorem 1.4.5. If A is the infinitesimal generator of a strongly continuous semigroup

G(t), then

x ∈ (DA, E)θ,p ⇐⇒
{
i)x ∈ E,
ii) G(t)x−x

t1−θ
∈ Lp∗(E),

with p ∈ [1,+∞]. Or, equivalently

(DA, E)θ,p =
{
x ∈ E :

∥∥tθ−1(G(t)− I)x
∥∥
E
∈ Lp∗

}
,

which is equipped with the norm

‖x‖(DA,E)θ,p = ‖x‖E +

(∫ +∞

0

t−(1−θ)p‖G(t− I)x‖pdt
t

) 1
p

,

and with the usual modifications if p =∞.



Chapter 2

Sum of linear operators’ method

The theory of linear operators’ sum is concerned with the study of the spectral properties

of the sum’s operator A+B from those of the linear operators A and B. It is marked by two

important dates: In 1975, G. Da Prato and P. Grisvard (see [7]) unify their earlier results

to develop a remarkable theory that now bears their name. In 1987, G. Dore and A. Venni,

in a famous paper (see [9]), give optimal results on the sum’s theory in the framework of

UMD spaces (Unconditional Martingale Differences). Here, we will only deal with the first

approach applicable to the study of parabolic type equations. The commutative case will

be exposed in the first section, and the non-commutative case that we will use in the third

chapter, will be exposed in the second section. The sum of linear operators’ method is

based on an explicit construction of the solution in the form of a Dunford integral and on

the use of interpolation spaces characterized by Grisvard [34].

2.1 Commutative case

2.1.1 Introduction

In the sequel, X denotes a complex Banach space. Let A and B be two closed linear

operators in X with domains D(A) and D(B), respectively. We are then interested by the

resolution of the following equation:

Au+Bu = f, (2.1)

40
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where f is a given vector of X and u is the unknown. The sum’s operator L = A + B is

defined by {
D(L) = D(A) ∩D(B)
Lu = Au+Bu if u ∈ D(L),

and the equation (2.1) becomes

Lu = f.

A strict solution of the equation (2.1) is an element u ∈ D(L) satisfying the equation (2.1).

The ideal is to find such a solution when f is an arbitrary element of X, but this is not

always possible. We therefore introduce a new notion of solution. Namely, u is a strong

solution of equation (2.1) if and only if there exists a sequence (un)n∈N ∈ D(L) such that

lim
n→+∞

un = u and lim
n→+∞

Lun = f. (2.2)

Obviously, a strict solution of the equation (2.1) is a strong solution of the equation (2.1).

The notion of strong solution is therefore weaker (but the term weak solution will not be

used here, it is generally reserved for variational solutions).

Note that if L is closed, the two notions of strict and strong solution are equivalent, but

the sum of two closed operators is not necessarily closed. On the other hand if we assume

that L is closable then (2.1) is equivalent to

u ∈ D(L̄) and L̄u = f.

Finally in the case where L is closable, the following propositions are equivalent:

1. For every f of X, there exists a strong solution of (2.1).

2. 0 ∈ ρ(L̄).

And if L is closed, the following propositions are equivalent:

1. for all f of X, there is a strict solution of (2.1).

2. 0 ∈ ρ(L).
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In this context, we understand the importance of finding reasonable conditions on the

operators A and B, which ensure that L is closable (even closed) and that 0 ∈ ρ(L̄).

Otherwise, we can introduce a spectral parameter λ and consider the equation

Au+Bu− λu = f.

The theorems of G. Da Prato and P. Grisvard, stated later, give positive answers to these

problems on the sums of operators.

2.1.2 Assumptions on A and B

Let A and B be two closed linear operators in X, with respective domains D(A) and

D(B). We propose to solve, for positive λ, the equation

Au+Bu− λu = f. (2.3)

This is equation (2.1) where A is replaced by A − λI. We recall that arg denotes the

principal determination of the function argument characterized by

arg(z) = ϕ if z = reiϕ, r > 0, ϕ ∈]− π, π].

We define for θ ∈]0, π[, the sector

Σπ−θ = {z ∈ C∗ : | arg(z)| < π − θ} ,

and a closed linear operator P on X is said to satisfy the hypothesis (Hθ) if and only if
ρ(P ) ⊃ Σπ−θ and there is a convex even function
CP :]− π + θ, π − θ[−→ R such that:

‖(A− zI)−1‖L(X) ≤
CP (φ)
|z| for all z ∈ Σπ−θ such that arg z = φ.

(Hθ)

The two basic hypotheses on the operators A and B are the following:

(Parabolicity)


∃R > 0,∃θA, θB ∈]0, π[:
1) A verifies (HθA) , B verifies (HθB)
2) θA + θB < π.

(DP1)

and {
∀λ ∈ ρ(A),∀µ ∈ ρ(B)
(A− λI)−1(B − µI)−1 = (B − µI)−1(A− λI)−1.

(DP2)
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Remark 2.1.1. 1. Since θA + θB < π, one of the two angles is therefore strictly less than

π
2

and the corresponding operator is then the infinitesimal generator of an analytic

semigroup (not necessarily continuous at 0 , the domains D(A) and D(B) not having

been assumed to be dense).

2. Under the assumptions (DP2), if y ∈ X,λ ∈ ρ(A) and µ ∈ ρ(B), then

(A− λI)−1(B − µI)−1y = (B − µI)−1(A− λI)−1y ∈ D(A) ∩D(B).

Moreover if x ∈ D(B), even considering y = (B − µI)x we obtain{
(A− λI)−1x ∈ D(B) and
(B − µI)(A− λI)−1x = (A− λI)−1(B − µI)x.

The hypothesis (DP2) will allow us to commute the products in any functional expres-

sion containing A, B and I. In the sequel, the following commutations will be used:

Under the hypothesis (DP2), we consider λ+ z ∈ ρ(A) and −z ∈ ρ(B).

1. If f ∈ X, then

(A− λ− z)−1(B + z)−1f ∈ D(B),

and

B(A− λ− z)−1(B + z)−1f = (A− λ− z)−1B(B + z)−1f.

2. If moreover f ∈ D(B), then

B(A− λ− z)−1(B + z)−1f = (A− λ− z)−1(B + z)−1Bf.

The Sectorial Curve γλ

The hypotheses (DP1) and (DP2) will allow us to construct a sectorial curve γλ sepa-

rating σ(A− λI) and σ(−B) and remaining in ρ(A− λI) ∩ ρ(−B). So there exists θ0 > 0

such that θB < θ0 < π − θA. Note that under the hypothesis (DP1) one of the two angles

θA, θB is smaller than π
2
. So, in the sequel, we will assume that

θA <
π

2
and θ0 >

π

2
.
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We now construct, for all λ > 0, an infinite sectorial curve γλ which is the positively

oriented boundary of the domain located at the left of the lines{
teiθ0 : t > 0

}
,
{
te−iθ0 : t > 0

}
,

{
−λ

2
+ y; y ∈ R

}
,

and who lives in ρ(A−λI)∩ρ(−B). This curve is oriented, leaving the σ(A−λI) spectrum

on the left (see figure below).

We can then notice that z 7→ (A − λ − z)−1 is defined and analytic to the right of γλ

and that z 7→ (B + z)−1 is defined and analytic to the left of γλ. Note that

ρ(A− λI) ∪ ρ(−B) = C.

2.1.3 Representation of the solution

Our aim is to solve the equation

Au+Bu− λu = f, λ > 0,

under the hypotheses (DP1) and (DP2). This is to see when it is possible to define

(A+B − λI)−1 or, failing that, (A+B − λI)−1.
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Note that the hypothesis of ellipticity-parabolicity (DP1) alone is not sufficient to

guarantee that the sum A + B is closable. Similarly, if the two hypotheses (DP1) and

(DP2) are verified, this does not ensure that A+B is closed. On the other hand, they are

sufficient to have the closability of the sum even if neither of the two domains D(A), D(B)

is dense in X, see [21].There are other additional hypotheses, among others, allowing to

obtain the closedness of the sum A+B, see [9].

So what is the ”candidate” to be (A+B − λI)−1 or (A + B − λ)−1? We will build it

using the Dunford integral (cf. chapter 1):

g(T ) =
1

2iπ

∫
Γ

g(z)(zI − T )−1dz.

Here, let’s put {
g(z) = (B + zI)−1

T = A− λI = cste operator,

then

g(A− λI) =
1

2iπ

∫
Γ

g(z)(zI − (A− λI))−1dz

= − 1

2iπ

∫
Γ

(A− λI − zI)−1(B + zI)−1dz,

where Γ would be a Jordan curve surrounding the spectrum of A − λI. This leads to

consider, in what follows, the operator

f ∈ X 7−→ Sλf = − 1

2iπ

∫
γλ

(A− λI − zI)−1(B + zI)−1fdz.

Note that for z ∈ γλ, the two resolvents written above exist thanks to (DP1). The following

proposition shows that Sλ is a bounded linear operator on X.

Proposition 2.1.1. Let A and B be two closed linear operators in X satisfying (DP1)

and (DP2). So, for all λ > 0, Sλ ∈ L(X) and there exists C > 0:

‖Sλ‖L(X) 6
C

λ
.

The following proposition represents a fundamental results in the theory of sums.

Proposition 2.1.2. Let λ > 0
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1. If u ∈ D(A+B) = D(A) ∩D(B), then

Sλ(Au+Bu− λu) = u,

( So Sλ is a left inverse of (A+B − λI) on D(A+B)).

2. If f ∈ D(A) +D(B), then

Sλf ∈ D(A) ∩D(B) and (A+B − λI)Sλf = f,

( Sλ is therefore also a right inverse of (A+B − λI) but on D(A) or D(B)).

We have just seen that if f ∈ D(A) + D(B) then u = Sλf is a solution of (2.3). Can

we do better, i.e. to obtain an inverse of the sum assuming less regularity on f? The ideal

is to solve equation (2.3) for f ∈ X. This requires the use of interpolation spaces (cf.

chapter 1, [14]).

2.1.4 Main theorems

We come back to our equation (2.3): Au+Bu− λu = f, λ > 0.

Theorem 2.1.1. (Strict solution)

Let A and B be two closed linear operators in X verifying (DP1) and (DP2). Then, for

all f ∈ DB(θ,+∞) +DA(θ,+∞) where θ ∈]0, 1[, there exists a unique strict solution u of

Au+Bu− λu = f.

Moreover u is given by the Dunford integral

u = Sλf = − 1

2iπ

∫
γλ

(A− λ− zI)−1(B + zI)−1fdz.

Proof. We assume in the following that f ∈ DB(θ,+∞), for example. Let us show that

u+ Sλf ∈ D(B). We have

(A− λ− z)−1(B + z)−1f = (B + z)−1(A− λ− z)−1f,

B(A− λ− z)−1(B + z)−1f = (A− λ− z)−1B(B + z)−1f,
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and ∥∥B(A− λ− z)−1(B + z)−1f
∥∥
X
6

Cste

|z + λ||z|θ
‖f‖DB(θ,+∞).

Thus

− 1

2iπ

∫
γλ

B(A− λ− z)−1(B + z)−1fdz,

is absolutely convergent and u ∈ D(B) with

Bu = − 1

2iπ

∫
γλ

(A− λ− z)−1B(B + z)−1fdz.

Similarly, we can show that u ∈ D(A) as well as

Au+Bu− λu = f.

We have just seen that to obtain a strict solution u of (2.3), we have given ourselves a

regularity on f , namely

f ∈ DB(θ,+∞) +DA(θ,+∞).

So obviously the block Au + Bu − λu is also in DB(θ,+∞)+ DA(θ,+∞). The natural

question then arises to know if, in the end, we recover on each of the terms of the block, the

regularity that we gave ourselves at the start on f. The answer to this question is positive

as shown by the following result.

Theorem 2.1.2. (Maximal regularity)

Let A and B be two closed linear operators in X satisfying (DP1) and (DP2). For all

f ∈ DA(θ,+∞), the strict solution u of

Au+Bu− λu = f,

verifies

1. (A− λ)u ∈ DA(θ,+∞),

2. Bu ∈ DA(θ,+∞),



CHAPTER 2. SUM OF LINEAR OPERATORS’ METHOD 48

3. (A− λ)u ∈ DB(θ,+∞).

We have, by analogy, the following theorem.

Theorem 2.1.3. (Maximal regularity)

Let A and B be two closed linear operators in X satisfying (DP1) and (DP2). For all

f ∈ DB(θ,+∞), the strict solution u of

Au+Bu− λu = f,

verifies

1. (A− λ)u ∈ DB(θ,+∞),

2. Bu ∈ DB(θ,+∞),

3. Bu ∈ DA (θ,+∞) .

Proof. (of the first theorem) Let t > 0 be large enough so that −t is to the left of point

−λ
2

. So

(−B − (−t))−1 ∈ L(X),

i.e.

(B − t)−1 ∈ L(X).

Let us then show the regularity Bu ∈ DB(θ,+∞). We have to calculate (B − t)−1u. We

have
(B − t)−1u = (B − t)−1 (Sλf)

=
−1

2iπ

∫
γλ

(A− λ− z)−1(B − t)−1(B + z)−1fdz.

We use the 2nd identity of the resolvent:

(B − t)−1(B + z)−1f =
1

t+ z

(
(B − t)−1 − (B + z)−1

)
,

(similar to a decomposition into simple elements). It comes:

(B− t)−1u =
−1

2iπ

∫
γλ

(A−λ− z)−1(B− t)−1f
dz

t+ z
+

1

2iπ

∫
γλ

(A−λ− z)−1(B+ z)−1f
dz

t+ z
.
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The first integral is zero (integrate to the right of γλ, t+ z 6= 0 ). From where

B(B − t)−1u

=u+ t(B − t)−1u

=
−1

2iπ

∫
γλ

(A− λ− z)−1(B + z)−1fdz

+
1

2iπ

∫
γλ

(A− λ− z)−1(B + z)−1 (tf)

t+ z
dz

=
−1

2iπ

∫
γλ

(A− λ− z)−1

{
(B + z)−1f − t

t+ z
(B + z)−1f

}
dz

=
−1

2iπ

∫
γλ

(A− λ− z)−1(B + z)−1

(
t

t+ z

)
fdz.

By doing the same work for Bu = B (Sλf), we have for t large enough

B(B − t)−1Bu =
−1

2iπ

∫
γλ

(A− λ− z)−1B(B + z)−1 zf

t+ z
dz

=
−1

2iπ

∫
γλ

z

t+ z
(A− λ− z)−1B(B + z)−1fdz.

So ∥∥B(B − t)−1Bu
∥∥
X

= ( Cste )

∫
γλ

∣∣∣∣ z

λ+ z

∣∣∣∣ 1

|t+ z|
1

|z|θ
|dz|‖f‖DB(θ,∞)

6 ( Cste )

∫
γλ

1

|t+ z|
1

|z|θ
|dz|‖f‖DB(θ,∞),

then z → tz ∥∥B(B − t)−1Bu
∥∥
X
6 ( Cste )

[∫
γλ

1

|1 + z|
1

|z|θ
|dz|
]
‖f‖DB(θ,∞)

tθ
.

From where

tθ
∥∥B(B − t)−1Bu

∥∥
X
6 ( Cste )‖f‖DB(θ,∞),

i.e. Bu ∈ DB(θ,+∞). So since

u ∈ D(B) ⊂ DB(θ,+∞),

we deduce from the equation Au+Bu− λu = f, that

Au ∈ DB(θ,+∞).
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Finally the results obtained here extend to the case f ∈ DB(θ, p) with p ∈ [1,+∞|

thanks to the fundamental property of interpolation and to the following inclusions:
DA (θ′, q) ↪→ DA(θ, p)

if θ′ > θ, p, q any
or if θ′ = θ, q ≤ p.

Proposition 2.1.3. Let A and B be two closed linear operators in X verifying (DP1) and

(DP2). If f ∈ DB(θ, p), θ ∈]0, 1[, p ∈ [1,+∞[ then the equation Au+Bu−λu = f, admits

a unique strict solution u (u = Sλf) satisfying

1. (A− λ)u ∈ DB (θ,+∞) ,

2. Bu ∈ DB(θ,+∞),

3. Bu ∈ DA(θ,+∞).

2.2 Non-commutative case

2.2.1 Introduction

The method, as we have said earlier, is essentially based on an explicit construction

of the solution in the form of a Dunford integral and on the use of interpolation spaces

characterized by Grisvard [15] (see chapter 1). More precisely, let X be a complex Banach

space and A and B be two closed linear operators of domains DA and DB respectively, not

necessarily dense; we then consider the equation

Aw +Bw − λw = y, λ > 0. (2.4)

We will say that the equation (2.4) is of parabolic type if

(A− z)−1 and (B − z)−1 exist for z ∈ ΣA and z ∈ ΣB,where∑
A and ΣB are two sectors of the form {z ∈ C/| arg z| <

< π − ϕ} with ϕ = θA and ϕ = θB respectively and
θA + θB < π and

‖(A− z)−1‖L(X) = 0
(

1
|z|

)
and ‖(B − z)−1‖L(X) = 0

(
1
|z|

)
for z ∈ ΣA and ΣB respectively.

(H.1)
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The commutative case corresponding to [(A− λ)−1; (B − µ)−1] = 0 was treated in the

previous section. Indeed the solution x has been constructed in the form

x = Sλy = − 1

2iπ

∫
γλ

(A− λ− z)−1(B + z)−1ydz, (2.5)

where γλ is a simple curve joining∞ exp [iθ0] to∞ exp [−iθ0] (where θ0 ∈] θB, π−θA [ ) and

residing in ΣA−λ ∩ Σ−B. (defined as in the previous section). The fundamental idea here

in this section is to construct the solution in the form of a ”left inverse” for (A+ B − λ),

more precisely we look for x in the form x = (1 + Tλ)
−1 Sλy where Tλ is ”small enough”

and zero in the commutative case. We make the assumption:
∃λ0 > 0, ψ :] 0,+∞[×]0,+∞[→ R such that∥∥z′ (A− λ0) (A− z)−1

[
(A− λ0)−1 ; (B + z′)−1]∥∥

L(X)
6 ψ (|z|, |z′|)

∀z ∈ ΣA, ∀z′ ∈ Σ−B and
∫
γλ
ψ(|z + λ|, |z|)|dz| −→ 0

λ→+∞
.

(H.2)

The hypotheses (H.1) and (H.2) and λ large enough make it possible to construct a unique

solution for the problem (2.4) for a second member y in an interpolation space between

DA and X or DB and X. To study the maximal regularity of the solution we need to

make explicit the function ψ of (H.2); we will then show that if the data y belongs to an

interpolation space DA(θ, p) (see [34] or chapter 1) then Ax and Bx are in DA(min(δ, θ), p)

where δ will be given explained in the next paragraph. The part of the theory of sums

dealt with in this section is applicable to the study of equations of parabolic type. The

main theorems of this part can be found in [20] and [21].

2.2.2 Hypotheses

Let X be a complex Banach space and A and B be two closed linear operators with

domains DA and DB, respectively, not necessarily dense in X. The operator A+B will be

denoted by L and it will be defined by Lx = Ax+Bx for x ∈ DL = DA∩DB. We propose

to solve the abstract equation: {
Lx− λx = y, λ > 0,
x ∈ DA ∩DB.

(2.6)

We will say that a linear map P of domain DP ⊂ X verifies H(ϕ) if there exists ϕ ∈ [0, π[

such that:
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1. ρP ⊂ ΣP = {z ∈ C/| arg z| < π − ϕ},

2. there exists an even and convex numerical function CP defined on ] − π + ϕ; π − ϕ[

such that: ∥∥(P − z)−1
∥∥
L(X)

6
CP (θ)

|z|
, ∀z ∈ ρP ,

with arg z = θ.

We will make the following assumptions:

Hypothesis (H.1): ∃θA > 0,∃θB > 0 such that A verifies H (θA), B verifies H (θB), and

θA + θB < π.

Hypothesis (H.2): Operators A and B verify (H.1) and in addition:

∃λ0 > 0, ψ :] 0,+∞[×]0,+∞ [→ R+

such that 
i)
∥∥∥z′ (A− λ0) (A− z)−1

[
(A− λ0)−1 ; (B + z′)

−1
]∥∥∥
L(X)
≤

≤ ψ (|z|, |z′|) ,∀z ∈ ΣA,∀z′ ∈ Σ−B

ii)

∫
γλ

ψ(|z + λ|, |z|)|dz| −→
λ→+∞

0.

(2.7)

Hypothesis (H.3): A and B satisfy (H.2) where ψ satisfies the following conditions:

∃C > 0, h ∈ N; (αi)i=1,...,h and (βi)i=1,...,h ⊂ R

such that  i) ψ (|z|, |z′|) < C
n∑
1

1

|z|αi |z′|βi
, ∀z ∈ ΣA, ∀z′ ∈ Σ−B,

ii) 0 6 1− αi < βi 6 2, ∀i = 1, . . . , h.

(2.8)

We will set

δ = min
i

(αi + βi − 1) . (2.9)

Remark 2.2.1. If ψ verifies conditions i) and ii) of (H.3) then condition ii) of hypothesis

(H.2) is verified. Indeed,∫
γλ

ψ(|z + λ|, |z|)|dz| 6 C

∫
γλ

h∑
1

1

|z + λ|βi
1

|z|αi
|dz| 6

6 C

h∑
1

∫
γλ

1

|µλ+ λ|βi
1

|µλ|αi
λ|dµ| = 0

(
1

λδ

)
.



CHAPTER 2. SUM OF LINEAR OPERATORS’ METHOD 53

We have the following two technical lemmas:

Lemma 2.2.1. ∀µ, z ∈ ρA and ∀z′ ∈ ρ−B we have

•
[
(A− z)−1; (B + z′)−1] = (A−µ)(A− z)−1 [(A− µ)−1; (B + z′)−1] (A−µ)(A− z)−1.

•
[
A(A− z)−1; (B + z′)−1] = z

[
(A− z)−1; (B + z′)−1].

•
[
(A− z)−1;B (B + z′)−1] = z′

[
(A− z)−1; (B + z′)−1].

Proof. It suffices to develop the commutators.

Lemma 2.2.2. If A and B satisfy (H.2) then we have∥∥∥z′(A− λ)(A− z)−1
[
(A− λ)−1; (B + z′)

−1
]∥∥∥
L(X)

6

6 ψ (|z|, |z′|)
(

1 +
CA · |λ− λ0|

λ

)
, ∀λ > 0,∀z ∈ ΣA,∀z′ ∈ Σ−B.

Lemma 2.2.3. If A and B satisfy (H.2) then ∀λ > λ0, ∃ϕλ :] 0, +∞ [→ R+ such that

i)

∫
γλ

ϕλ(| z |)|dz| < +∞, ∀λ > λ0.

ii)
∥∥[(A− λ)−1; (B + z)−1

]∥∥
L(X)
≤ ϕλ(|z|),∀z ∈ Σ−B.

2.2.3 Representation of the solution

Under the previous assumptions, we want to obtain a formula representing the possible

solution x of (2.6) using the operator Sλ and the regularity of the second member y.

Proposition 2.2.1. It is assumed that hypotheses (H.1) and (H.2) are verified. For y ∈

X,λ > 0, let x ∈ DA ∩DB be a solution of (2.6) then

x+ Iλ(x) = Sλy (2.10)

where

Iλ(x) = − 1

2πi

∫
γλ

z(A− λ− z)−1
[
(A− λ)−1; (B + z)−1

]
(A− λ)xdz.
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Proposition 2.2.2. Under hypotheses (H.1) and (H.2), we have

i) if y ∈ DA(σ,+∞) then Sλy ∈ DA and

(A− λ)Sλy = − 1

2πi

∫
γλ

z
[
(A− λ− z)−1; (B + z)−1

]
ydz−

− 1

2πi

∫
γλ

(B + z)−1(A− λ)(A− λ− z)−1ydz,

ii) if y ∈ DB(σ,+∞) then Sλy ∈ DA and

(A− λ)Sλy =
1

2πi

∫
γλ

(A− λ− z)−1B(B + z)−1ydz + y.

Thanks to the hypothesis (H.2) and for y ∈ DA(σ,+∞) (or DB(σ,+∞)) we can apply

(A− λ) to both members of (2.10). More precisely, we have

Proposition 2.2.3. We assume that (H.2) holds and that y ∈ DA(σ,+∞) (or y ∈

DB(σ,+∞)); then if x is a solution of (2.6) we have

(A− λ)x+ Jλ(A− λ)x = (A− λ)Sλy, (2.11)

where

Jλ(v) = − 1

2πi

∫
γλ

z(A− λ)(A− λ− z)−1
[
(A− λ)−1; (B + z)−1

]
vdz.

Proof. It is enough to notice that (H.2) allows to give a meaning to (A − λ)Iλx and

proposition 2.2.2 allows to make (A− λ)Sλy.

Equation (2.11) has the form v+Jλ(v) = h, h given; so we need to invert the continuous

operator (1 + Jλ) for some λ.

Proposition 2.2.4. We assume that (H.2) holds; then there exists λ̄ > 0 such that ∀λ > λ̄

the operator (1 + Jλ) is invertible and (1 + Jλ)
−1 ∈ L(X), additionally if y ∈ DA(σ,+∞)

(or y ∈ DB(σ,+∞)) then

x = (A− λ)−1 (1 + Jλ)
−1 (A− λ)y. (2.12)
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Proof. Thanks to ii) of the hypothesis (H.2), ∃λ̄ > 0 such that∫
γλ

ψ(|z + λ|, |z|)|dz| ≤ 1

2
, ∀λ ≥ λ̄,

and therefore ‖Jλ‖L(X) ≤
1
2
,∀λ > λ̄ , hence the invertibility and continuity of (1 + Jλ)

−1.

Applying (1 + Jλ)
−1 to (2.4), we get (2.12).

Corollary 2.2.1. (Uniqueness) We assume the hypotheses of proposition 2.2.4; then if x

is the solution to problem (2.6), x is unique.

Proof. Indeed if x1 and x2 are two solutions of (2.6), setting x = x1 − x2 we have Ax +

Bx− λx = 0 and according to the proposition 2.2.4 we have

x = x1 − x2 = (A− λ)−1
{

(1 + Jλ)
−1 (A− λ)(0)

}
= 0.

2.2.4 Approached problem

In summary of the preceding paragraphs, we have shown, thanks essentially to the

regularity of the right hand side y and to the hypothesis (H.2), that the existence of a

solution x of (2.6) implies its representation by (2.12) for λ > λ̄ and hence uniqueness. To

show the existence of x ∈ DA ∩DB solution of (2.6) we will consider the sequence (xn) of

solutions of the approximate problems of (2.6) using Yosida approximants of A defined by

An = nA(n− A)−1, n ∈ N∗. Therefore, we consider the problems:

(Ln − λx) = (An +B − λ)x = y. (2.13)

We will prove the following proposition:

Proposition 2.2.5. There exists λ∗ > 0 such that for each n > 1, λ > λ∗ and y ∈

X, ∃!xn ∈ DB solution of (2.13); in addition we have

xn = (An − λ)−1 (1 + Jn,λ)
−1 (An − λ)Sn,λy,

where{
Jn,λ(v) = 1

2πi

∫
γλ
z (An − λ) (An − λ− z)−1 [(An − λ)−1 ; (B + z)−1

]
vdz

Sn,λy = − 1
2πi

∫
γλ

(An − λ− z)−1 (B + z)−1ydz.
(2.14)
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For the proof of this proposition we need several lemmas.

Lemma 2.2.4. If A and B satisfy (H.2) then ∃M (θA, λ0) , N (B,A, θ0) such that
i)
∥∥∥z′ (An − λ) (An − z)−1

[
(An − λ)−1 ; (B + z′)

−1
]∥∥∥
L(X)
≤

≤M (θA, λ0)ψ (|z|, |z′|) , ∀n ≥ 0,∀λ ≥ λ0, ∀z ∈ ΣA,∀z′ ∈ Σ−B

ii) ‖Sn,λy‖X ≤
N (A,B, θ0)

λ
‖y‖X , ∀y ∈ X.

(2.15)

Lemma 2.2.5. For each n > 0 there exists λ(n) > 0 such that

[λ(n),+∞[⊂ ρ(Ln) ( i.e. ∀λ ≥ λ(n), (Ln − λ)−1 ∈ L(X)).

Lemma 2.2.6. There exists λ∗ > 0 such that for each n > 1, λ > λ∗; ∃M(n) such that

‖x‖X 6M(n)
‖(Ln − λ)x‖X

|λ|
, ∀x ∈ D (Ln) = DB. (2.16)

We will now study the convergence of the approximate problems (Ln − λ)x = y; for

this we look at the limits of (An − λ)Sn,λy and operators Jn,λ defined in (2.14).

Proposition 2.2.6. For each set λ > λ∗ (see Lemma 2.2.6) and y ∈ DA(σ,+∞) (or

y ∈ DB(σ,+∞)) then (An − λ)Sn,λy −→
n→+∞

(A− λ)Sλy.

Proposition 2.2.7. Suppose (H.1), (H.2) and let λ whatever such that λ ≥ λ∗, then we

have

i) ∀n > 0, ‖Jn,λ‖ 6
1

2
.

ii) ∀x ∈ X, ‖Jn,λx− Jλx‖X −→n→+∞
0.

iii) ∀n > 0, (1 + Jn,λ)
−1 exists and ||(1 + Jn,λ)

−1||L(X) 6 2, in addition

∀x ∈ X,
∥∥(1 + Jn,λ)

−1 x− (1 + Jλ)
−1 x

∥∥
X
−→
n→+∞

0.

2.2.5 Strict solution

We are now ready to state and prove the existence of the solution to the problem (2.6).

Theorem 2.2.1. Assume that A and B verify (H.1), (H.2); then there exists λ∗ > 0 such

that ∀λ > λ∗ and ∀y ∈ DA(σ,+∞) (or y ∈ DB(σ,+∞)) the equation Ax + Bx − λx = y

admits a unique solution x ∈ D(L) = DA ∩DB.
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Proof. Let λ∗ be the number defined in lemma 2.2.6 and λ ≥ λ∗; let y ∈ DA(σ,+∞) (or

y ∈ DB(σ,+∞) ), then consider the vector x defined by

x = (A− λ)−1 (1 + Jλ)
−1 (A− λ)Sλy ∈ DA, (2.17)

where Jλ and Sλ are defined in (2.11) and (2.5) respectively, and consider also the vector

xn defined by

xn =
(
An − λ)−1 (1 + Jn,λ)

−1 (An − λ)Sn,λy, (2.18)

where Jn,λ and Sn,λ are given in (2.14);xn ∈ DB is solution of the problem

(An +B − λ)xn = y. By proposition 2.2.7 we have xn −→ x
n→+∞

in E; but

Bxn = − (An − λ)xn + y = − (1 + Jn,λ)
−1 (An − λ)Sn,λy + y,

so

Bxn → − (1 + Jλ)
−1 (A− λ)Sλy + y = −(A− λ)x+ y,

and as B is closed we have

x ∈ DB ∩DA and Bx = −(A− λ)x+ y,

(x ∈ DA by its representation).

We arrive in the previous paragraphs at the existence and uniqueness of the solution x

of (2.6) in the case where y is in DA(σ,+∞) or DB(σ,+∞); it is interesting to do it also for

y in DA(σ, p) or DB(σ; p) for 1 6 p < +∞. Thanks to the inclusions already mentioned:

DA(σ, p) ↪→ DA(σ,+∞), ∀p ∈ [1,+∞[,

we deduce the corollary:

Corollary 2.2.2. Suppose that A and B satisfy (H.1), (H.2), then there exists λ∗ > 0

such that ∀λ ≥ λ∗ and ∀y ∈ DA(σ, p)(1 6 p < +∞) (or y ∈ DB(σ, p)) the equation

Ax+Bx− λx = y admits a unique solution x ∈ DA ∩DB.
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2.2.6 Regularity of the solution

To study the regularity of the strict solution of problem (2.6), the hypotheses (H.1),

(H.2) are not sufficient because the function ψ(|z+λ|, |z|) is not explicit and the regularity

of (2.6) depends in some way on the ”homogeneity” of ψ. We will then need the hitherto

unused hypothesis (H.3) which explains ψ.

Now we will cite three useful lemmas for the sequel. We then assume that (H.1), (H.2)

and (H.3) hold and that the number δ is defined in (2.9). So we have

Lemma 2.2.7. i) (A− λ)Sλ ∈ L (DA(θ,+∞)) ,∀θ ∈] 0, 1[,

ii) (A− λ)Sλ ∈ L (DA(θ,+∞);DB(σ,+∞)) ,∀θ ∈] 0, 1[ and ∀σ ∈ ∈]0, β ∧ θ] where β ∧

θ = min(β, θ) and β = min {βi, i = 1, . . . , h}.

Lemma 2.2.8. i) (A− λ)SA ∈ L (DB(θ,+∞);DB(σ,+∞)) ,∀θ ∈] 0, 1[ and ∀σ ∈]0, β∧ θ],

ii) [(A− λ)Sλ − I] ∈ L (DB(θ,+∞);DA(θ,+∞)) ,∀θ ∈] 0.1[.

Lemma 2.2.9. i) Jλ ∈ L (E,DA(σ,+∞)) ,∀σ ∈] 0, δ]∩] 0, 1[,

ii) Jλ ∈ L (E;DB(σ,+∞)) ,∀σ ∈] 0, δ[∩]0, 1[,

iii) Jλ ∈ L (DB(ε,+∞), DB(σ,+∞)) ,∀σ ∈] 0, δ]∩] 0, 1[ ∀ε ∈]0, 1[.

Theorem 2.2.2. Suppose (H.1), (H.2), (H.3) and y in DA(θ,+∞); let then x be the

unique solution of (2.6). So we have

i) (A− λ)x ∈ DA(σ,+∞), ∀σ 6 δ ∧ θ,

ii) Bx ∈ DA(σ,+∞), ∀σ 6 δ ∧ θ,

iii) (A− λ)x ∈ DB(σ,+∞),∀σ 6 δ ∧ θ.

Proof. We have (A − λ)x = −Jλ((A − λ)x) + (A − λ)Sλy and therefore by ap-

plying lemma 2.2.7 and the lemma 2.2.9 we obtain (A − λ)Sλy ∈ DA(θ,+∞) and

−Jλ((A− λ)x) ∈ DA(σ,+∞),∀σ ∈] 0, δ]∩]0.1[ hence point i). Point iii) is obtained in

the same way. As for ii) it suffices to use the equation Bx+ (A− λ)x = y.

Theorem 2.2.3. We always assume (H.1), (H.2), (H.3), and y ∈ DB(θ,+∞) and let x

be the solution of (2.6); then
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i) (A− λ)x ∈ DB(σ,+∞),∀σ 6 δ ∧ θ,

ii) Bx ∈ DB(σ,+∞), ∀σ 6 δ ∧ θ,

iii) Bx ∈ DA(σ,+∞), ∀σ 6 δ ∧ θ.

Proof. We still use (A − λ)x = −Jλ((A − λ)x) + (A − λ)Sλy and the lemmas 2.2.8 and

2.2.9 i). We have (A−λ)x ∈ DB(σ,+∞), ∀σ < δ∧ 1, and from lemma 2.2.9 iii) we deduce

that (A−λ)x ∈ DB(σ,+∞), ∀σ ∈]0, δ]∩]0, 1[, and so i) and ii) thanks to the equation. On

the other hand Bx = −(A− λ)x+ y = Jλ((A− λ)x)− [(A− λ)Sλ − I] y; Lemmas 2.2.8 ii)

and 2.2.9 i) conclude for point iii) of the theorem.

If y ∈ DA(θ, p) (or DB(θ, p), 1 6 p < +∞), we do not obtain the maximal regularity

δ ∧ θ as in theorem 2.2.2 or 2.2.3; more precisely we have

Theorem 2.2.4. We suppose (H.1), (H.2), (H.3) satisfied and let y ∈ DA(θ, p)(θ ∈

]0, 1[; 1 ≤ p < +∞), then the unique solution x of (2.6) for λ > λ∗ verifies

i) (A− λ)x ∈ DA(σ, p), ∀σ ∈] 0, δ[∩]0, θ],

ii) Bx ∈ DA(σ, p), ∀σ ∈] 0, δ[∩]0, θ],

iii) (A− λ)x ∈ DB(σ, p),∀σ ∈] 0, δ[∩]0, θ].

We have an analogous statement if y ∈ DB(σ, p).

Proof. We will only demonstrate point i), the proof of points ii) and iii) being analogous

1st Case. δ ∈]0.1 [ and θ > δ; let y ∈ DA(θ, p), then y ∈ DA(θ,+∞). So for λ >

λ∗,∃!x ∈ DA∩DB such that Ax+Bx−λx = y and Theorem 2.2.2 implies that (A−λ)x ∈

DA(δ,+∞).

But DA(δ,+∞) ⊂ DA(σ, p), ∀σ < δ and ∀p ∈ [1,+∞[, so (A−λ)x ∈ DA(σ, p), ∀σ < δ.

2nd Case. δ > θ; let θ1 and θ2 in ]0, 1 [ such that θ1 < θ < θ2 and θ2 < δ; let T be the

linear map defined on DA(ω,+∞) where ω < θ1 by

T : DA(ω,+∞)→ X

y → T (y) = (A− λ)x,

x being the solution of Ax+Bx− λx = y.
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Theorem 2.2.2 then expresses that the restriction of T to the spaces DA (θi,+∞) is

continuous linear on themselves and therefore by applying the fundamental theorem of in-

terpolation [33]; T ∈ L
(

(DA (θ2,+∞) ;DA (θ1,+∞))s,q

)
and this ∀s ∈] 0, 1[,∀q ∈ [1,+∞[.

In particular if we take for s = (θ2 − θ) / (θ2 − θ1) and q = p we obtain of the iteration

theorem

(DA (θ2,+∞) ;DA (θ1,+∞))(θ2−θ)/(θ2−θ1),p = DA(θ, p),

hence the result.



Chapter 3

Lp-Regularity results for 2m-th order
parabolic equations

This chapter is devoted to the analysis of the following linear 2m-th order parabolic

equation

∂tu+ (−1)m
N∑
k=1

∂2m
xk
u = f,

subject to Dirichlet type condition

∂lνu = 0, l = 0, 1, ...,m− 1,

on the lateral boundary, where m is a positive integer. The right-hand side f of the

equation is taken in the Lebesgue space Lp, 1 < p < +∞. The problem is set in a domain

of the form

Q =

{
(t, x1, ..., xN) ∈ RN+1 : 0 ≤

√
x2

1 + ...+ x2
N < tα, 0 < t < 1

}
,

with α > 1/2m.

3.1 Introduction

Let Q be an open set of RN+1 defined by

Q =
{

(t, x1, x2, ..., xN) ∈ RN+1 : (x1, x2, ..., xN) ∈ Ωt, 0 < t < 1
}
,

61
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where for a fixed t in the interval ]0, 1[ , Ωt is a bounded domain of RN , N > 1, defined by

Ωt =

{
(x1, x2, ..., xN) ∈ RN : 0 ≤

√
x2

1 + x2
2 + ...+ x2

N < tα
}
,

with α > 1/2m and m belongs to the set of all nonzero natural numbers N∗. In Q, consider

the boundary value problem
∂tu+Mu = f ∈ Lp (Q) ,

∂lνu
∣∣
∂QrΓ1

= 0, l = 0, 1, ...,m− 1,
(3.1)

where M = (−1)m
∑N

k=1 ∂
2m
xk
, ∂Q is the boundary of Q, Γ1 is the part of the boundary of

Q where t = 1 and ∂lν stands for the derivative of order l throughout the normal vector ν

on (∂Q r Γ1). Here, Lp(Q), 1 < p < +∞, denotes the space of p-integrable functions on

Q with the measure dtdx1...dxN .

If the domain under investigation is a cylinder, the solvability of the corresponding

problem is known over the scales of anisotropic Sobolev-Slobodetskii or Hölder spaces

since the mid of the last century. Indeed, classical results on the resolution of Problem

(3.1) can be found in [22] and [23] and in the references therein. Some recent regularity

results are given in [2], [8], [11], [12], [16], [27], [28] and [29].

Besides being interesting in itself, the study of Problem (3.1) is motivated by the interest

of researchers for many mathematical questions related to non-regular domains. During

the last decades and since many applied problems lead directly to boundary-value problems

in ”bad” domains, numerous authors studied partial differential equations in non-smooth

domains. Among these which are related to higher order parabolic equations we can cite

Baderko [1], Cherepova [3], Cherfaoui et al. [5], Galaktionov [13], Grimaldi [14], Mikhailov

[25], [26], Sadallah [31] and the references therein.

The L2-solvability of Problem (3.1) has been investigated in [6] by the domain decom-

position method, see also [4] and [17]. The difficulty with the space Lp, p 6= 2, is that

this space is not a Hilbert space. So, the domain decomposition method used in [6] does

not seem to be appropriate for our study and cannot be generalized in this sense. An idea

for this extension (to the case Lp, p ∈ (1,∞)) can be found in [8] and [18], in which the
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operators’ sum method was used. This method is interesting because it may be generalized

to Banach spaces instead of Hilbert spaces. For more details and recent results concerning

this method, see [7], [30] and the references therein.

In this work, we are especially interested in the question of what sufficient conditions,

as weak as possible, the dimension N, the exponent p and the type of the domain Q must

verify in order that Problem (3.1) has a solution with optimal regularity, that is a solution

u belonging to the anisotropic Sobolev space

H1,2m
0,p (Q) :=

{
u ∈ H1,2m

p (Q) : ∂lνu
∣∣
∂QrΓ1

= 0, l = 0, 1, ...,m− 1
}
,

with

H1,2m
p (Q) = {u : ∂tu, ∂

αu ∈ Lp (Q) , |α| ≤ 2m},

where α = (i1, i2, ..., iN) ∈ NN , |α| = i1 + i2 + ... + iN and ∂αu = ∂i1x1
∂i2x2

...∂iNxNu. The space

H1,2m
p (Q) is equipped with the natural norm, that is

‖u‖H1,2m
p (Q) =

‖∂tu‖pLp(Q) +
∑
|α|≤2m

‖∂αu‖pLp(Q)

1/p

.

The main assumption is
1

2m
< α <

p− 1

N
. (3.2)

The outline of this chapter is as follows. In Section 3.2 we recall the essential of the

sum’s theory we will have to apply. In Section 3.3 we perform a change of variables

conserving (modulo a weight) the spaces Lp and H1,2m
p , and transforming Problem (3.1)

into a degenerate parabolic problems in a cylindrical domain. Section 3.4 is concerned

with the application of the sum of operators’ method to the transformed problem. Finally,

in Section 3.5 we give results concerning the transformed problem and we return to our

initial problem by using the inverse change of variables.

3.2 On the non-commutative sum of linear operators

Let Λ be a closed linear operator in a complex Banach space E. Then, Λ is said to be

sectorial if
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(i) D(Λ) and Im(Λ) are dense in E,

(ii) ker(Λ) = {0},

(iii) ]−∞, 0[⊂ ρ (Λ) (ρ (Λ) is the resolvent set of Λ) and there exists a constant K ≥ 1

such that ∀t > 0,
∥∥t (Λ + tI)−1

∥∥
L(E)

≤ K. If Λ is sectorial it follows easily that ρ (−Λ)

contains an open sector Σϕ := {z ∈ C : z 6= 0, |arg z| < ϕ} , with ϕ ∈ ]0, π[ .

Consider two closed linear operators A and B with dense domains D(A) and D(B)

respectively in E. Assume that both operators satisfy the following assumptions of Da

Prato-Grisvard’s type [7].

There exist positive numbers r, CA, CB, θA, θB such that

θA + θB < π, (3.3)

ρ (−A) ⊃ Σπ−θA := {z ∈ C : |z| ≥ r, |arg z| < π − θA}

and ∀λ ∈ Σπ−θA ,
∥∥(A+ λI)−1

∥∥
L(E)
≤ CA
|λ|

,
(3.4)

ρ (−B) ⊃ Σπ−θB := {z ∈ C : |z| ≥ r, |arg z| < π − θB}

and ∀µ ∈ Σπ−θB ,
∥∥(B + µI)−1

∥∥
L(E)
≤ CB
|λ|

.
(3.5)

We also assume that there are constants C > 0, λ0 > 0, (with λ0 ∈ ρ (−A)), τ and ρ such

that 
(i)
∥∥(A+ λ0I) (A+ λI)−1 [(A+ λ0I)−1 ; (B + µI)−1]∥∥

L(E)

≤ C

|λ|1−τ . |µ|1+ρ ∀λ ∈ ρ (−A) , ∀µ ∈ ρ (−B) ,

(ii) 0 ≤ τ < ρ ≤ 1.

(3.6)

For more details concerning this last Labbas-Terreni commutator assumption, see [19] and

[20].

For any σ ∈ ]0, 1[ and 1 ≤ p ≤ +∞, let us introduce the real Banach interpolation

spaces DA (σ, p) between D (A) and E (or DB (σ, p) between D (B) and E) which are

characterized (for 1 ≤ p < +∞) by

DA (σ, p) =
{
ξ ∈ E : t 7−→

∥∥tσA (A+ tI)−1 ξ
∥∥
E
∈ Lp∗

}
,
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where Lp∗ denotes the space of p-integrable functions on (0,+∞) with the measure dt/t.

For p = +∞,

DA (σ,+∞) =

{
ξ ∈ E : sup

t>0

∥∥tσA (A+ tI)−1 ξ
∥∥
E
<∞

}
.

For these spaces, see [15]. Then the main result proved in Labbas-Terreni [19] is

Theorem 3.2.1. Under assumptions (3.3), (3.4), (3.5) and (3.6), there exists λ∗ > 0 such

that for any λ ≥ λ∗ and for any h ∈ DA (σ, p) , equation

Aw +Bw + λw = h,

has a unique solution w ∈ D (A) ∩ D (B) with the regularities Aw, Bw ∈ DA (θ, p) and

Aw ∈ DB (θ, p) for any θ verifying θ ≤ min (σ, ρ− τ) .

3.3 Change of variables and operational setting of the

problem

3.3.1 Change of variables

We make the following change of variables and functions

Π : Q −→ G

(t, x1, x2, ..., xN) 7−→ (t, y1, y2, ..., yN) =
(
t,
x1

tα
,
x2

tα
, ...,

xN
tα

)
,

where G = ]0, 1[×B (0, 1) , with B (0, 1) is the unit ball of RN centered at the origin. Set

u (t, x1, x2, ..., xN) = v (t, y1, y2, ..., yN) and f (t, x1, x2, ..., xN) = g (t, y1, y2, ..., yN) , then

Problem (3.1) is transformed, in G, into the following degenerate evolution problem
t2mα∂tv +Mv − αt2mα−1

∑N
k=1 yk∂ykv = t2mαg = h,

v|Σ0
= 0,

∂lνv
∣∣
∂Gr(Σ0∪Σ1)

= 0, l = 0, 1...,m− 1,

(3.7)
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where M =
∑N

k=1 ∂
2m
yk
, Σj, j = 0, 1 is the part of the boundary of G where t = j. It is

easy to see that f ∈ Lp (Q) if and only if tNα/pg ∈ Lp (G) . Indeed,

f ∈ Lp (Q) ⇔
∫ 1

0

∫
Ωt
|f (t, x1, ..., xN)|p dt dx1...dxN < +∞

⇔
∫ 1

0

∫
B(0,1)

∣∣tNα/pg (t, y1, ..., yN)
∣∣p dt dy1...dyN < +∞

⇔ tNα/pg ∈ Lp (G) .

Consequently, f ∈ Lp (Q) if and only if t−2mα+(Nα/p)h ∈ Lp (G) which implies that h ∈

Lp (G) , since h =
(
t−2mα+(Nα/p)h

)
t2mα−(Nα/p) and 2mα− (Nα/p) > 0. Then, the function

h = t2mαg lies in the closed subspace of Lp (G) defined by

E =
{
h ∈ Lp (0, 1;Lp (B (0, 1))) : t−2mα+(Nα/p)h ∈ Lp (0, 1;Lp (B (0, 1)))

}
.

This space is equipped with the norm ‖h‖E =
∥∥t−2mα+(Nα/p)h

∥∥
Lp(0,1;Lp(B(0,1)))

.

3.3.2 Operational formulation of Problem (3.7)

Recall that α > 1/2m and assume

p > 1 +Nα. (3.8)

Set X = Lp (B (0, 1)) and define the functions

v : [0, 1] −→ X; t 7−→ v (t) ; v (t) (y1, y2, ..., yN) = v (t, y1, y2, ..., yN) ,

h : [0, 1] −→ X; t 7−→ h (t) ; h (t) (y1, y2, ..., yN) = h (t, y1, y2, ..., yN) .

Consider the family of operators (L (t))t∈[0,1] defined by
D (L (t)) =

{
ψ ∈ W 2m,p (B (0, 1)) : ∂lνψ

∣∣
∂B(0,1)

= 0, l = 1, ...,m− 1
}
,

(L (t)ψ) = Mψ − αt2mα−1
∑N

k=1 yk∂ykψ for a.e. t ∈ (0, 1) ,

then Problem (3.7) is equivalent to the following operational degenerate Cauchy problem

in X 
t2mαv′ (t) + L (t) v (t) = h (t) , t ∈ (0, 1) ,

v (0) = 0.
(3.9)
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Observe that D (L (t)) = X. Set
w (t) = eλ

t1−2mα

1−2mα v (t) ,

k (t) = eλ
t1−2mα

1−2mα h (t) ,

where λ is some positive number. Then, w verifies
t2mαw′ (t) + L (t)w (t) + λw (t) = k (t) , t ∈ (0, 1) ,

w (0) = 0,
(3.10)

where k belongs to the space

E =
{
h ∈ Lp (0, 1;X) : t−2mα+(Nα/p)h ∈ Lp (0, 1;X)

}
.

We obtain then the new operational form of the previous problem, mainly

Aw +Bw + λw = k,

where

(Aw) (t) = L (t)w (t) , t ∈ [0, 1] ,

with domain

D (A) =
{
w ∈ E : t−2mα+(Nα/p)w ∈ Lp

(
0, 1;W 2m,p (B (0, 1)) ∩Wm,p

0 (B (0, 1))
)}
,

and

(Bw) (t) = t2mα (t)w′ (t) , t ∈ [0, 1] ,

with domain

D (B) =
{
w ∈ E : t(Nα/p)w′ ∈ Lp (0, 1;X) and w (0) = 0

}
.

Note that the trace w (0) is well defined in D (B) . In fact, we have

tNα/pw ∈ Lp (0, 1;X) , tNα/pw′ ∈ Lp (0, 1;X) ,

and in virtue of (3.8) (Nα/p)+(1/p) < 1. Then, w is continuous on [0, 1] , (see [33, Lemma,

p. 42]).
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3.4 Application of the sums

Now we are in position to apply the result of the sums of operators. For this purpose,

we must verify the assumptions of Theorem 3.2.1. The spectral properties of A and B are

as follows.

Proposition 3.4.1. A and B are linear closed operators and their domains are dense in

E. Moreover, they satisfy assumptions (3.3), (3.4) and (3.5).

Proof. 1. Let us study the spectral equation related to the operator B

Bw + zw = k.

Fix some positive µ0 and let z such that Re z ≥ µ0. Then the general solution of the

problem 
t2mαw′ (t) + zw (t) = k (t) , t ∈ [0, 1] ,

w (0) = 0,

is given by

w (t) = d exp

(
z

∫ 1

t

ds

s2mα

)
+

∫ t

0

(
k (σ)

σ2mα
exp

(
−z
∫ t

σ

ds

s2mα

))
dσ,

where d is an arbitrary constant. The hypothesis p > 1 +Nα implies that the function

t 7→ t−2mα+(Nα/p) exp

(
z

∫ 1

t

ds

s2mα

)
does not belong to Lp (B (0, 1)) . So, we will take d = 0 to obtain w ∈ E. Consequently

w (t) =
(
(B + zI)−1 k

)
(t)

=
∫ t

0

(
k (σ)

σ2mα
exp

(
−z
∫ t
σ

ds

s2mα

))
dσ

= exp
(

z
(2mα−1)t2mα−1

) ∫ t
0

k (σ)

σ2mα
exp

(
−z

(2mα−1)σ2mα−1

)
dσ.

Let us check that this formula is well defined on [0, 1] and gives w (0) = 0. Set µ = z
(2mα−1)

,
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then

‖w (t)‖ ≤ exp
(

Re µ
t2mα−1

) ∫ t
0

∥∥σ−2mα+(Nα/p)k (σ)
∥∥σ−Nα/p exp

( −Re µ
σ2mα−1

)
dσ

≤
(∫ t

0

∥∥σ−2mα+(Nα/p)k (σ)
∥∥p dσ)1/p (∫ t

0
σ−qNα/pdσ

)1/q

≤ ( 1
1−(qNα)/p

)
1
q t(1/q)−(Nα/p) ‖k‖E ,

where (1/p) + (1/q) = 1. Hence w (t) is defined and w (0) = 0 since

1

q
− Nα

p
= 1− 1

p
− Nα

p

means p > 1 +Nα. On the other hand we can write

t−2mα+(Nα/p)w (t)

=
∫ t

0

(
k (σ)

t2mα−(Nα/p)σ2mα
expµ (t−2mα+1 − σ−2mα+1)

)
dσ

=
∫ t

0

(
k (σ)

σ2mα−(Nα/p)

(
1

t2mα−(Nα/p)σNα/p
expµ (t−2mα+1 − σ−2mα+1)

))
dσ.

Putting

Kµ (t, σ) =


1

t2mα−(Nα/p)σNα/p
expµ (t−2mα+1 − σ−2mα+1) if t > σ,

0 if t < σ,

we deduce that

t−2mα+(Nα/p)w (t) =

∫ 1

0

k (σ)

σ2mα−(Nα/p)
Kµ (t, σ) dσ.

We need the following classical interpolation result, the so-called Schur’s Lemma.

Lemma 3.4.1. If there exists a constant C such that

a)
∫ 1

0
|Kµ (t, σ) |dσ ≤ C for every t ∈ ]0, 1[ ,

b)
∫ 1

0
|Kµ (t, σ) |dt ≤ C for every σ ∈ ]0, 1[ ,

then ∥∥t−2mα+(Nα/p)w
∥∥
Lp(0,1;X)

≤ C
∥∥t−2mα+(Nα/p)k

∥∥
Lp(0,1;X)

.
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Now, we have to check that the conditions a) and b) are satisfied.

Condition a)

We have∫ 1

0
|Kµ (t, σ)| dσ = 1

t2mα−(Nα/p) exp (t−2mα+1.Re µ)
∫ t

0

exp(−σ−2mα+1.Re µ)
σNα/p

dσ

≤ 1
2mα−1

exp (t−2mα+1.Re µ)
∫ +∞
t−2mα+1 exp (−s.Re µ) ds

≤ 1
Re z

.

Consequently

max
t∈[0,1]

∫ 1

0

|Kµ (t, σ)| dσ ≤ 1

Re z
. (3.11)

This shows that the condition a) of Lemma 3.4.1 holds true.

Condition b)

We have∫ 1

0
|Kµ (t, σ)| dt = 1

σ
Nα
p

exp (−σ−2mα+1.Re µ)
∫ 1

σ

exp(t−2mα+1.Re µ)
t2mα−(Nα/p) dt

= 1
2mα−1

exp(−σ−2mα+1.Re µ)

σ
Nα
p

∫ σ−2mα+1

1
1

s
Nα

p(2mα−1)

exp (s.Re µ) ds,

and∫ σ−2mα+1

1
1

s
Nα

p(2mα−1)

exp (s.Re µ) ds =
∫ 1+σ−2mα+1

2

1
1

s
Nα

p(2mα−1)

exp (s.Re µ) ds

+
∫ σ−2mα+1

1+σ−2mα+1

2

1

s
Nα

p(2mα−1)

exp (s.Re µ) ds

≤
∫ 1+σ−2mα+1

2

1
exp (s.Re µ) ds

+ 1

( 1+σ−2mα+1

2
)

Nα
p(2mα−1)

∫ σ−2mα+1

1+σ−2mα+1

2

exp (s.Re µ) ds,

= I1 + I2.

Then
I1 ≤ 1

Re µ
[exp(Re µ (1+σ−2mα+1)

2
)− exp(Re µ)]

≤ 1
Re µ

exp(Re µ (1+σ−2mα+1)
2

),
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and
1

2mα−1

exp(−σ−2mα+1.Re µ)

σ
Nα
p

I1 ≤ 1
Re z

exp(
−(σ−2mα+1−1)

2
.Re µ)

σ
Nα
p

≤ 1
Re z

exp(
−(σ−2mα+1−1)

2
.µ0)

σ
Nα
p

≤ C1(α,p)
Re z

,

since the function

σ 7→
exp(−(σ−2mα+1−1)

2
.µ0)

σ
Nα
p

is continuous on [0, 1]. Moreover

1
2mα−1

exp(−σ−2mα+1.Re µ)

σ
Nα
p

I2 ≤ 1
2mα−1

exp(−σ−2mα+1.Re µ)

σ
Nα
p ( 1+σ−2mα+1

2
)

Nα
p(2mα−1)

∫ σ−2mα+1

1+σ−2mα+1

2

exp (s.Re µ) ds

≤ 1
Re z

C2(α,p)

σ
Nα
p ( 1+σ−2mα+1

2
)

Nα
p(2mα−1)

≤ C3(α,p)
Re z

,

in virtue of the fact that

lim
σ→0

1

σ
Nα
p (1 + σ−2mα+1)

Nα
p(2mα−1)

= 1.

Consequently, there exists some constant C(α, p) > 0 such that

max
σ∈[0,1]

∫ 1

0

|Kz (t, σ)| dt ≤ C(α, p)

Re z
. (3.12)

This shows that the condition b) of Lemma 3.4.1 holds also true. Now, using Lemma 3.4.1

together with (3.11) and (3.12), we obtain∥∥t−2mα+(Nα/p)w
∥∥
Lp(0,1;X)

≤ C(α, p)

Re z

∥∥t−2mα+(Nα/p)k
∥∥
Lp(0,1;X)

,

from which it follows ∥∥(B + zI)−1
∥∥
L(E)
≤ C(α, p)

Re z
.

Thus, we can take θB = π
2
− θ0, (for each θ0 ∈

]
0, π

2

[
).

2. Now, we are concerned with the operator A which has the same properties as its

realization L (t) . The study uses the following perturbation result due to Lunardi ([24,

Proposition 2.4.3, p. 65]).
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Proposition 3.4.2. Let L0 be a linear operator of domain D (L0) dense in E. Assume

that L0 is sectorial and P a linear continuous operator on D (L0) which is compact. Then

operator L0 + P : D (L0)→ X is sectorial.

For each t ∈ [0, 1] , we write

L (t)ψ = L0ψ + P (t)ψ

with 
D (L0) =

{
ψ ∈ W 2m,p (B (0, 1)) : ∂lνψ

∣∣
∂B(0,1)

= 0, l = 0, 1, ...,m− 1
}
,

L0ψ = Mψ =
∑N

k=1 ∂
2m
yk
ψ,

and 
D (P (t)) = W 1,p (B (0, 1)) ,

P (t)ψ = −αt2mα−1
∑N

k=1 yk∂ykψ.

It is well known that D (L0) = Lp (B (0, 1)) . The fact that L0 is sectorial can be proved as

in [8, Lemma 5.2 and Lemma 5.3 , pp. 18-19]. Observe that

ψ(l)(y) =

∫ y

0

(−sψ(l+1)(s))ds+

∫ 1

y

(1− s)ψ(l+1)(s)ds−
∫ 1

0

ψ(l)(s)ds; l = 1, 2, ..., 2m− 1,

where ψ(l) denotes the derivative of order l of ψ. Thanks to Hölder inequality, for

ψ ∈ D (L0) ⊂ D (P (t)) and by using the previous equality we have

‖P (t)ψ‖Lp(B(0,1))

=
(∫

B(0,1)

∣∣∣−αt2mα−1
∑N

k=1 yk∂ykψ (y1, y2, ..., yN)
∣∣∣p dy1dy2...dyN

) 1
p

≤
∑N

k=1

(∫
B(0,1)

∣∣∣−αt2mα−1yk(
∫ yk

0
sk∂

2
sk
ψdsk +

∫ 1

yk
(1− sk)∂2

sk
ψdsk)

∣∣∣p dy1...dyN

) 1
p

≤ αt2mα−1
[
C1 (p) ‖Mψ‖Lp(B(0,1)) + C2 (p) ‖Mψ‖Lp(B(0,1))

]
≤ C3 (α, p) ‖ψ‖D(L0) .
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On the other hand, let us set

mk (t) : Lp (B (0, 1)) → Lp (B (0, 1))
ψ 7→ (mk (t)ψ) = −αt2mα−1ykψ, k = 1, ..., N,

i : W 1,p (B (0, 1)) → Lp (B (0, 1))
ψ 7→ ψ,

dk : W 2m,p (B (0, 1)) → W 1,p (B (0, 1))
ψ 7→ dk (ψ) = ∂ykψ, k = 1, ..., N.

Then one has

P (t) =
N∑
k=1

Pk(t) =
N∑
k=1

mk (t) ◦ i ◦ dk.

Thus, P (t) is compact from D (L0) into E since i is compact and dk, mk (t) , k = 1, ..., N

are continuous. So for any t ∈ [0, 1] , the operator L(t) is sectorial and consequently there

exist some r0 > 0 and θ1 ∈
]
0, π

2

[
such that

ρ (−L (t)) ⊃ Σπ−θ1 = {z : |z| ≥ r0, |arg z| < π − θ1} .

Now, for k ∈ E and z ∈ Σπ−θ1 the spectral equation

Aw + zw = k,

is equivalent to

L (t)w (t) + zw (t) = k (t) , t ∈ [0, 1] ,

which admits a unique solution

w (t) = (L (t) + zI)−1 k (t) .

Hence

‖w (t)‖Lp(B(0,1)) ≤
K

|z|
‖k (t)‖Lp(B(0,1)) ,

which implies

‖w‖E =

(∫ 1

0

∥∥t−2mα+(Nα/p)w(t)
∥∥p
X
dτ

)1/p

≤ K

|z|
‖k‖E .

This ends the proof of Proposition 3.4.1.
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Proposition 3.4.3. Operators A and B satisfy the Labbas-Terreni condition (3.6).

Proof. In our case, since the domains D(L(t)) are constant, the condition (3.6) holds

whenever the following so-called estimate of Sobolevskii [32] is fulfilled: There exists K > 0

such that for all t, σ ∈ [0, 1],

∥∥(L(t)L(σ)−1 − I)
∥∥
L(X)
≤ K |t− σ|ρ . (3.13)

For g ∈ X = Lp(B(0, 1)), the equation ψ = L(σ)−1g is equivalent to
(L (t)ψ) (y) = Mψ − αt2mα−1

∑N
k=1 yk∂ykψ(y) = g(y),

∂lνψ
∣∣
∂B(0,1)

= 0, l = 0, 1, ...,m− 1,

and

[(L(t)− L(σ))L(σ)−1g](y) = α(σ2mα−1 − t2mα−1)
N∑
k=1

yk∂ykψ(y),

where y = (y1, y2, ..., yN) . Then, we get

‖[(L(t)− L(σ))L(σ)−1g]‖X ≤ α |t2mα−1 − σ2mα−1|
∥∥∥∑N

k=1 yk∂ykψ
∥∥∥
X

≤ M1 |t− σ|min(1,2mα−1) ‖Mψ‖Lp(B(0,1))

≤ M2 |t− σ|min(1,2mα−1) ‖ψ‖W 2m,p(B(0,1))

≤ K |t− σ|min(1,2mα−1) ‖g‖Lp(B(0,1)) .

So, the condition (3.13) is satisfied with ρ = min (1, 2mα− 1) . To prove (3.6), it is sufficient

to estimate ∥∥A (A+ λ)−1 [A−1; (B + z)−1]∥∥
L(E)

,
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where λ ∈ ρ (−A) and z ∈ ρ (−B) . Let k ∈ E, then

D =
(
t−2mα+(Nα/p)A (A+ λ)−1 [A−1; (B + z)−1] k) (t)

= t−2mα+(Nα/p)(A (A+ λ)−1 (A−1 (B + z)−1 − (B + z)−1A−1
)
k) (t)

= t−2mα+(Nα/p)L (t) (L (t) + λ)−1

×
[
L (t)−1 ((B + z)−1 k

)
(t)−

(
(B + z)−1 L (t)−1 k

)
(t)
]

= L (t) (L (t) + λ)−1 ∫ 1

0
σ−2mα+(Nα/p)Kµ (t, σ)

(
L (t)−1 − L (σ)−1) k (σ) dσ

=
∫ 1

0
σ−2mα+(Nα/p)Kµ (t, σ)L (t) (L (t) + λ)−1 (L (t)−1 − L (σ)−1) k (σ) dσ

=
∫ 1

0
σ−2mα+(Nα/p)Kµ (t, σ) (L (t) + λ)−1 (I − L (t)L (σ)−1) k (σ) dσ,

since the domains D(L (t)) are constant, where (we recall)

Kµ (t, σ) =


1

t2mα−(Nα/p)σNα/p
expµ (t−2mα+1 − σ−2mα+1) if t > σ,

0 if t < σ,

with µ = z
(2mα−1)

. Then

‖D‖X ≤
K

|λ|
∫ 1

0
|Kµ (t, σ)| |t− σ|ρ σ−2mα+(Nα/p) ‖k (σ)‖X dσ,

with ρ = min (1, 2mα− 1) . We have∫ 1

0
|Kµ (t, σ)| |t− σ|ρ dσ =

1

t2mα−(Nα/p)
exp (t−2mα+1.Re µ)

×
∫ t

0
σ−Nα/p (t− σ)ρ exp (−σ−2mα+1.Re µ) dσ.

Then by Hölder inequality, one has

∫ t
0
σ−Nα/p (t− σ)ρ exp (−σ−2mα+1.Re µ) dσ

≤
(∫ t

0
σ−Nα/p exp (−σ−2mα+1.Re µ) dσ

)1−ρ

×
(∫ t

0
σ−Nα/p (t− σ) exp (−σ−2mα+1.Re µ) dσ

)ρ
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and

J1 =
(∫ t

0
σ2mα−(Nα/p)σ−2mα exp (−σ−2mα+1.Re µ) dσ

)1−ρ

≤ (t2mα−(Nα/p))
1−ρ

(2mα−1)1−ρ
1

(Re µ)1−ρ (exp (−t−2mα+1.Re µ))
1−ρ

,

J2 =
(∫ t

0
σ2mα−(Nα/p)σ−2mα (t− σ) exp (−σ−2mα+1.Re µ) dσ

)ρ
≤ (t2mα−(Nα/p))

ρ

(2mα−1)ρ
1

(Re µ)ρ

(∫ t
0

(t− σ)χ′ (σ) dσ
)ρ
,

where χ (σ) = exp (−σ−2mα+1.Re µ) . Using an integration by parts, we obtain∫ t
0

(t− σ)χ′ (σ) dσ =
∫ t

0
exp (−σ−2mα+1.Re µ) dσ

=
∫ t

0
σ2mασ−2mα exp (−σ−2mα+1.Re µ) dσ

≤ t2mα

2mα−1

1

Re µ
exp (−t−2mα+1.Re µ) ,

from which we deduce that

J2 ≤
(t2mα−(Nα/p)ρ

(2mα− 1)ρ
1

(Re µ)ρ
(t2mα)ρ

(2mα− 1)ρ
1

(Re µ)ρ
(exp

(
−t−2mα+1.Re µ

)
)ρ.

Finally we have

∫ 1

0
|Kµ (t, σ)| |t− σ|ρ dσ

≤ exp(t−2mα+1.Re µ)
t2mα−(Nα/p)

(t2mα−(Nα/p))
1−ρ

(2mα−1)1−ρ
(exp(−t−2mα+1.Re µ))

1−ρ

(Reµ)1−ρ

×(t2mα−(Nα/p))
ρ

(2mα−1)ρ
1

(Re µ)ρ
ρ

(2mα−1)ρ
1

(Re µ)ρ
[exp (−t−2mα+1Re .µ)]ρ

≤ (t2mα)ρ

(2mα−1)1+ρ
1

(Re µ)1+ρ ,

and

max
t∈[0,1]

∫ 1

0

|Kµ (t, σ)| |t− σ|ρ dσ ≤ C

(Re µ)1+ρ . (3.14)

In a similar manner we obtain

max
σ∈[0,1]

∫ 1

0

|Kµ (t, σ)| |t− σ|ρ dt ≤ C

(Re µ)1+ρ . (3.15)



CHAPTER 3. LP -REGULARITY RESULTS FOR 2M-TH ORDER PARABOLIC EQUATIONS77

Now, using Schur interpolation Lemma together with (3.14) and (3.15), we obtain∥∥A (A+ λ)−1 [A−1; (B + z)−1]∥∥
L(E)
≤ C

|λ| (Reµ)1+ρ =
C

|λ| (Re z)1+ρ ,

which implies ∥∥A (A+ λ)−1 [A−1; (B + z)−1]∥∥
L(E)
≤ C

|λ| |z|1+ρ ,

for any λ ∈ ρ (−A) and any z belonging to a simple path γ joining ∞e−iθ2 to ∞eiθ2 for

some θ2 ∈]π − θB, θ1[, γ lies to Σπ−θ1 ∩ Σπ−θB . Then (3.6) is verified with

(τ, ρ) = (0,min (1, 2mα− 1)) .

3.5 Regularity results for the original problem

3.5.1 Regularity results for the transformed problem (3.7)

Using Theorem 3.2.1, we deduce the following result

Proposition 3.5.1. There exists λ∗ such that for all λ ≥ λ∗ and for all k ∈ DA (σ, p)

(respectively, k ∈ DB (σ, p)), Problem (3.10) admits a unique solution w ∈ D (A) ∩D (B)

such that for all θ ≤ min (σ, 2mα− 1)

i) L (.)w ∈ DA (θ, p) ,

ii) tαw′ ∈ DA (θ, p) ,

iii) L (.)w ∈ DB (θ, p)

(respectively,

i) L (.)w ∈ DB (θ, p) ,

ii) tαw′ ∈ DB (θ, p) ,

iii) L (.)w ∈ DA (θ, p)).

Now, let us specify the space DA (σ, p) . One has
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DA (σ, p) =
{
w ∈ E : t−2mα+(Nα/p)w ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) , ∂lνw

∣∣
∂B(0,1)

= 0
}

where l = 0, 1, ...,m− 1; if 2mσ > 1/p,{
w ∈ E : t−2mα+(Nα/p)w ∈ Lp (0, 1;W 2mσ,p (B(0, 1)))

}
if 2mσ < 1/p.

Indeed, we know that

DA (σ, p) =
{
w ∈ E :

∥∥ζ1−σAe−ζAw
∥∥
E
∈ Lp∗

}
,

because (−A) is a generator of the analytic semigroup
{
e−ζA

}
ζ≥0

. Now, w ∈ DA (σ, p)

implies ∥∥ζ1−σAe−ζAw
∥∥
E
∈ Lp∗.

Or
∥∥ζ1−σAe−ζAw

∥∥
E
∈ Lp∗ is equivalent to

∫∞
0

∥∥ζ1−σAe−ζAw
∥∥p
E
dζ
ζ

=
∫∞

0

∥∥t−2mα+(Nα/p)ζ1−σAe−ζAw
∥∥p
Lp(0,1;Lp(B(0,1)))

dζ

ζ

=
∫∞

0

(∫ 1

0

∥∥t−2mα+(Nα/p)ζ1−σ (Ae−ζAw) (t)
∥∥p
Lp(B(0,1))

dt
) dζ
ζ
< +∞.

On the other hand, thanks to the Dunford representation of the semigroup
{
e−ζA

}
ζ≥0

, we

have

e−ζA =
1

2iπ

∫
γ

eζλ (A+ λI)−1 dλ,

where γ is a sectorial curve lying in ρ (−A) such that Re (−λ) < 0 for a larger λ ∈ γ.

Moreover (
Ae−ζAw

)
(t) = L (t) eζL(t) (w (t)) .

Then, by Fubini’s Theorem, we obtain

∫∞
0

∥∥ζ1−σAe−ζAw
∥∥p
E
dζ
ζ

=
∫∞

0

[∫ 1

0

∥∥t−2mα+(Nα/p)ζ1−σL (t) eζL(t) (w (t))
∥∥p
Lp(B(0,1))

dt
] dζ
ζ

=
∫ 1

0

∥∥t−2mα+(Nα/p)
∥∥p [∫∞

0

∥∥ζ1−σL (t) eζL(t)w (t)
∥∥p
Lp(B(0,1))

dζ

ζ

]
dt < +∞,
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which means that, for almost every t, the function

(y1, y2, ..., yN) 7→ t−2mα+(Nα/p)(t)w (t) (y1, y2, ..., yN)

is in DL(t) (σ, p) . It is well known that this last space is the following:

DL(t) (σ, p) =
(
W 2m,p (B(0, 1)) ∩Wm,p

0 (B(0, 1)) ;Lp (B(0, 1))
)

1−σ,p ,

and (
W 2m,p (B(0, 1)) ∩W 2,p

0 (B(0, 1)) ;Lp (B(0, 1))
)

1−σ,p

=


{
w ∈ W 2mσ,p (B(0, 1)) : ∂lνw

∣∣
∂B(0,1)

= 0, l = 0, 1, ...,m− 1
}

if 2mσ > 1/p,

W 2mσ,p (B(0, 1)) if 2mσ < 1/p.

Let σ be a fixed positive number satisfying σ < 1/2mp and σ ≤ 2mα− 1. From the above

proposition, we deduce the following result.

Proposition 3.5.2. For all h such that t−2mα+(Nα/p)h ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) , Prob-

lem (3.9) admits a unique solution fulfilling the following regularity properties:

(i) w ∈ Lp (]0, 1[×B(0, 1)) , t−2mα+(Nα/p)w ∈ Lp (]0, 1[×B(0, 1)) , w (0) = 0,

(ii) t−2mα+(Nα/p)Mw ∈ Lp (]0, 1[×B(0, 1)) ,

(iii) tNα/p∂tw ∈ Lp (]0, 1[×B(0, 1)) ,

(iv) t−2mα+(Nα/p)Mw ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) ,

(v) tNα/p∂tw ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) .

3.5.2 Going back to the original problem (3.1)

We go back to our original domain Q by using the inverse change of variables

Π−1 : G =]0, 1[×B(0, 1) −→ Q

(t, y1, y2, ..., yN) 7−→ (t, x1, x2, ..., xN) = (t, tαy1, t
αy2, ..., t

αyN) .

Let us recall that 
h (t, y1, y2, ..., yN) = t2mαg (t, y1, y2, ..., yN) ,

g (t, y1, y2, ..., yN) = f (t, x1, x2, ..., xN) ,

w (t, y1, y2, ..., yN) = u (t, x1, x2, ..., xN) .
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First, we see that 
∂ykw = tα∂xku, k = 1, 2, ..., N,

∂2m
yk
w = t2mα∂2m

xk
u, k = 1, 2, ..., N,

∂tw = ∂tu+ (α/t)
∑N

k=1 xk∂xku.

The assumption t−2mα+(Nα/p)h ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) means that∫ 1

0

∥∥t−2mα+(Nα/p)(t)h (t, .)
∥∥p
W 2mσ(B(0,1))

dt <∞.

So, by setting

y = (y1, y2, ..., yN) , y′ = (y′1, y
′
2, ..., y

′
N) , dy = dy1...dyN , dy

′ = dy′1...dy
′
N ,

we have

∫ 1

0

∥∥t−2mα+(Nα/p)(t)h (t, .)
∥∥p
W 2mσ(B(0,1))

dt

=
∫ 1

0
tNα−2mαp

∫
B(0,1)

∫
B(0,1)

|h (t, y)− h (t, y′)|p

‖y − y′‖2mσp+N
dydy′dt

=
∫ 1

0
t2mσαp

∫
Ωt

∫
Ωt

|f (t, x)− f (t, x′)|p

‖x− x′‖2mσp+N
dxdx′dt,

where

x = (tαy1, t
αy2, ..., t

αyN) , x′ = (tαy′1, t
αy′2, ..., t

αy′N) , dx = dx1...dxN , dx
′ = dx′1...dx

′
N ,

and

Ωt =

{
(x1, x2, ..., xN) ∈ RN : 0 ≤

√
x2

1 + x2
2 + ...+ x2

N < tα
}
.

Let us introduce the following subspace of Lp (Q) :

Lpt2mσα
(
0, 1;W 2mσ,p

tα

)
=

{
f ∈ Lp (Q) :

∫ 1

0

t2mασp
∫

Ωt

∫
Ωt

|f (t, x)− f (t, x′)|p

‖x− x′‖2mσp+N
dxdx′dt <∞

}
.

Then, we are in position to prove the main result of this work.

Theorem 3.5.1. For given σ ∈ ]0, 1[ such that 0 < σ <
1

2mp
(such that p verifies (3.2)),

and for any f ∈ Lpt2mασ
(
0, 1;W 2mσ,p

tα

)
, Problem (3.1) has a unique solution u ∈ H1,2m

p (Q)

with the regularities: u, ∂tu, ∂xku, k = 1, ..., N and Mu belong to Lpt2mασ
(
0, 1;W 2mσ,p

tα

)
.
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The proof of Theorem 3.5.1 can be easily deduced from the following equivalences.

Proposition 3.5.3. (i) t−2mα+(Nα/p)h ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) if and only if f ∈

Lpt2mασ
(
0, 1;W 2mσ,p

tα

)
,

(ii) t−2mα+(Nα/p)w ∈ Lp (0, 1;Lp (B(0, 1))) if and only if u ∈ Lp (Q) ,

(iii) t−2mα+(Nα/p)Mw ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) if and only if Mu ∈

Lpt2mασ
(
0, 1;W 2mσ,p

tα

)
,

(iv) tNα/p∂tw ∈ Lp (0, 1;W 2mσ,p (B(0, 1))) if and only if ∂tu ∈ Lpt2mασ
(
0, 1;W 2σ,p

tα

)
.



Conclusion and prospects

In this work, we have studied a linear 2m-th order parabolic equation, on a time-varying

domain of RN+1, subject to Dirichlet type condition on the lateral boundary, where the

right-hand side of the equation is taken in the Lebesgue space Lp.

The approach is based on the use of the operators’ sum method in Banach spaces; we

have used the results of operators’ sum theory in the non-commutative case.

We were particularly interested in the question of which sufficient conditions, as weak

as possible, the dimension N , the exponent p and the type of the domain must be verified

in order that our problem has a solution with optimal regularity.

This work may be extended at least in the following directions:

1. The high order operator M may be replaced by the following constant coefficient

operator:

L =
∑

|δ|=|β|=m

(−1)maδβ∂
δ∂β

with aδβ = aβδ and there exists a constant C > 0 such that

aδβξ
δξβ > C|ξ|2m, ξ ∈ RN .

2. The function f on the right-hand side of the equation of Problem (3.1), may be taken

in Hölder or little Hölder spaces.
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opérationnelles, J. Math. Pures Appl., vol. IX Ser., no. 54, (1975), 305-387.

83



BIBLIOGRAPHY 84

[8] M. Di Cristo, D. Guidetti and A. Lorenzi, Abstract parabolic equations with applications

to problems in cylindrical space domains, Advances in Differential Equations, vol. 15,

no. 1-2, (2010), 1-42.

[9] G. Dore and A. Venni, On the Closedness of the Sum of Two Closed Operators, Math.

Z. 196 (1987), 189-201.

[10] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, M.

Dekker, New York, 1999.

[11] S. Gala, Q. Liu, and M. A. Ragusa, Logarithmically improved regularity criterion

for the nematic liquid crystal flows in B−1
∞,∞ space, Computers and Mathematics with

Applications, vol. 65, (2013), 1738-1745.

[12] S. Gala and M. A. Ragusa, A new regularity criterion for the 3D incompressible MHD

equations via partial derivatives, Journal of Mathematical Analysis and Applications,

vol. 481, no. 2, Article number 123497, 2020.

[13] V. A. Galaktionov, On regularity of a boundary point for higher-order parabolic equa-

tions: towards Petrovskii-type criterion by blow-up approach, Nonlinear Di er. Equ.

Appl., vol. 16, no. 5, (2009), 597-655.

[14] A. Grimaldi Piro and F. Ragnedda, Higher order parabolic operators in domains with

a ”nonsmooth” boundary, Rend. Sem. Fac.Sci. Univ. Cagliari, vol. 54, (1984), 45-62.

[15] P. Grisvard, Caracterisation de quelques espaces d’interpolation, Arch. Rational Mech.

Anal., vol. 25, no. 1, (1967), 40-63.

[16] A. Kheloufi, Intermediate regularity results for the solution of a high order parabolic

equation, Miskolc Mathematical Notes, vol. 20, no. 2, (2019), 1013-1019.

[17] A. Kheloufi and B. K. Sadallah, Resolution of a high-order parabolic equation in conical

time-dependent domains of R3, Arab Journal of Mathematical Sciences, vol. 22, (2016),

165-181.



BIBLIOGRAPHY 85

[18] R. Labbas, A. Medeghri and B. K. Sadallah, On a parabolic equation in a triangular

domain, Applied Mathematics and Computation, vol. 130, (2002), 511-523.

[19] R. Labbas and B. Terreni, Sommes d’opérateurs linéaires de type parabolique. lère

partie, Boll. Un. Mat. Ital., vol. 1-B, no. 7, (1987), 141-162.

[20] R. Labbas and B. Terreni, Sommes d’opérateurs linéaires de type parabolique. 2ème
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[25] V. P. Mikhailov, The Dirichlet problem for a parabolic equation, I, Mat. Sb., vol. 61,

no. 103, (1963), 40-64.

[26] V. P. Mikhailov, The Dirichlet problem for a parabolic equation, II, Mat. Sb., vol. 62,

no. 104, (1963), 140-159.

[27] M. A. Ragusa, Cauchy-Dirichlet problem associated to divergence form parabolic equa-

tions, Communications in Contemporary Mathematics, vol. 6, no. 3, (2004), 377-393

[28] M. A. Ragusa and A. Scapellato, Mixed Morrey spaces and their applications to partial

differential equations, Nonlinear Analysis-Theory Methods and Applications, vol. 151,

(2017), 51-65.



BIBLIOGRAPHY 86

[29] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double

phase with variable exponents, Adv. Nonlinear Anal., no. 9, (2020), 710-728.

[30] N. Roidos, Closedness and invertibility for the sum of two operators, Adv. Oper.

Theory, no. 3, (2018), 582-605.

[31] B. Sadallah, Etude d’un problème 2m-parabolique dans des domaines plan non rect-

angulaires, Bollettino della Unione Matematica Italiana, vol. 2B, no. 5, (1983), 51-112.

[32] P. E. Sobolevskii, On equations of parabolic type in Banach space, Amer. Math. Soc.

Transl., (1965), 1-62.

[33] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Hol-

land, 1978.
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Abstract

In this thesis, we have studied a linear parabolic equation of any even order, on a domain

of RN+1, with Dirichlet type condition on the lateral boundary, where the right-hand side

of the equation is taken in the Lebesgue space Lp.

The study is based on the use of the results of operators’ sum theory, non-commutative

case, in Banach spaces.

We were interested in determining the sufficient conditions, as weak as possible, on the

dimension N , the exponent p and the type of the domain which must be verified so that

our problem has a solution with optimal regularity.

Résumé

Dans cette thèse, nous avons étudié une équation parabolique linéaire d’ordre pair

quelconque, sur un domaine de RN+1, sous une condition aux limites de type Dirichlet sur

la frontière latérale, où le membre droit de l’équation est pris dans l’espace de Lebesgue

Lp.

L’étude est basée sur l’utilisation des résultats de la théorie des sommes d’opérateurs,

cas non commutatif, dans les espaces de Banach.

Nous étions intéressés à déterminer les conditions suffisantes, aussi faibles que possible,

sur la dimension N , l’exposant p et le type du domaine qui doivent être vérifiées pour que

notre problème ait une solution avec une régularité optimale.
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