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Introduction

In recent years, especially thanks to the development of information technologies and artificial
intelligence (AI), as well as through functional medical devices, the medical community has expe-
rienced a real rise in power in clinical practice. One of the main challenges today is the analysis
and interpretation of medical images by experts. Indeed, the processing of medical images is a
multidisciplinary research axis, involving fundamental sciences such as computer science, medical
fields and mathematics. It is a very popular industry because it offers a wide range of possi-
bilities that can help doctors improve the diagnosis and treatment of patients. Medical image
segmentation is the process of identifying organs or lesions from medical imaging modalities as
Computerized Tomography (CT) scans or Magnetic Resonance Imaging (MRI) images, which can
convey basic information about the shape and volume of these organs. Previously, edge detection
filters and mathematical methods were used to automate this process. However, with the advent
of AI, deep learning has become a mainstream technology because of their powerful functions in
image processing tasks. Deep learning for medical image segmentation has existed for a long time.
Over the years, hardware improvements have made it easier for hospitals all over the world to
use it. Convolutional Neural Network (CNN) is one of the DL architectures used for this process.
CNN’s are composed of layers which are not fully connected: they have filters, sets of cube-shaped
weights that are applied throughout the image. The general idea of CNN is to use a given input
data (2D, 3D) and apply a successive filters. In the context of data analysis, most machine learning
algorithms are based on the assumption that the data set used for training and the test data set
belong to the same descriptor space and follow the same distribution of probabilities. However,
this is not the case in many applications, and Transfer Learning can be used to optimize data-
intensive and computationally expensive model retraining, especially in deep learning. Transfer
learning is a new method in which the model is trained by using the latest pre-trained model,
and the last few layers are frozen to learn weights specific to the problem. Low-level functions
are usually borrowed from ImageNet. Another method is to use 2.5D CNN, which can process a
certain amount of spatial information. They can strike a good balance between performance and
computational cost. Compared with 2.5 CNN, 3D CNN provides better performance and handles
richer spatial information.
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Introduction

Clinical motivation

Today the biggest problem in the field of medical imaging is the lack of data because this data
is often confidential and we cannot have access to this data. Applying deep learning algorithms
to segment a few unlabeled images seems therfore impossible. Nowadays, MRI represents a very
important source of information due to a large number of medical collections (mainly 2D and
3D). However, like any physical device, certain constraints will appear during MRI exams. Such
as the inequality of intensity and the presence of noise. These phenomena are common and may
embarrass the physician when delimiting the target area.

Technical Motivation

The aim of our work is to study how to reuse the powerful neural networks that exist in the
literature. Indeed, there are many powerful and well-trained classification networks on a very
large database. Through transfer learning, these pre-trained networks can be easily reused on other
classification problems. However, transferring the learning and detection power of the functionality
of a classification network to another type of problem such as segmentation is not easy; we will
try to solve this problem through the transfer learning technique.

2



Chapter 1

Medical images

1.1 Introduction

Image processing is a very vast field which has known and continues to undergo significant devel-
opments in recent decades. However, digital image processing specifies all the techniques likely to
modify digital images to improve or extract information from them.

In this chapter, we will define the image as well as its characteristics and types, then we will
introduce ourselves into medical imaging which are the type of image that we will be dealing with
throughout our work.

1.2 Definition of digital image

A digital image is an image made up of picture elements (also called pixels). The intensity or
gray level of each picture element has a finite and discrete digital representation. This is the
output of its two-dimensional function. The space represented by x and y on the x axis and y axis,
respectively. Depending on whether the resolution of the image is fixed, it can be vector or raster.
The term digital image generally refers to raster images or bitmaps (as opposed to vector images).

1.3 Types of image

In general, there are 3 main types of digital images:

1.3.1 Binary image

The binary image is a black and white image with pixel values taking 0 or 1. This kind of image is
rarely used and is often called bit map image. Binary images are used as masks for indicating the
pixels of interest in many image processing tasks [1]. Figure 1.1 is an example of binary image.

3



Medical images

Figure 1.1: binary image.

1.3.2 Grayscale image

In digital photography, computer generated imaging and colorimetry, grayscale or grayscale images
are images in which the value of each pixel is a single sample that represents only the amount of
light. In other words, it only carries intensity information. Grayscale images (a monochromatic
black and white or a gray) are made up of grayscale only. The contrast ranges from the weakest
black to the strongest white [1].

Grayscale images are different from one-bit two-color black and white images, which are images
with only two colors in the context of computer imaging: black and white (also known as two level
or binary images). There are many shades of gray between grayscale images [1].

A grayscale image can be the result of measuring the light intensity of each pixel under a specific
weighted frequency (or wavelength) combination. In this case, when "captures only one frequency
(actually a small frequency). Frequency principle the rod can originate from any position in the
electromagnetic spectrum (such as infrared, visible light, ultraviolet, etc.) [1]. An illustration in
figure 1.2 showing a grayscale image.

Figure 1.2: grayscale image.
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Medical images

1.3.3 RGB image

RGB (Red, Green, Blue) refers to three shades that can be mixed to create different colors.
Combining red, green and blue light is the standard method for generating color images on screens
such as televisions, computer monitors, and smartphone screens.

The RGB color model is an "additive" model. When each color is mixed 100%, white light will
be produced. When 0% of each color is combined, no light is generated and black is generated.
It is sometimes contrasted with CMYK (cyan, yellow, magenta, and black), which is the standard
color palette used to create printed images. CMYK is a "subtractive" color model because the
colors get darker when combined. In CMYK color model, mixing 100% of each color will produce
black, and 0% of each color will cause white [2].

The number of colors supported by RGB depends on how many possible values can be used for
red, green, and blue. This is known as "color depth" and is measured in bits. The most common
color depth is 24-bit color, also known as "true color." It supports eight bits for each of the three
colors, or 24 bits total this provides 28, or 256 possible values for red, green, and blue [2].

Figure 1.3 is an illustration showing a RGB image.

Figure 1.3: RGB (colored) image.

1.4 Characteristics of an image

Quality of an image is greatly affected by many parameters. A few of the most common parameters
deal with the quality of image are described below.
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Medical images

1.4.1 Dimension

This is the size of the image, which is presented in the form of a matrix whose elements are
numerical values representative of light intensities (pixels). The number of rows of this matrix
multiplied by the number of columns gives us the total number of pixels in a 2D image, this
number is multiplied by the number of layers to have the total number of pixels in a 3D image.

1.4.2 Resolution

The resolution of remote sensed raster data can be characterized in several different ways. There
are two primary types of "resolution" for an image.

1.4.2.1 Spatial Resolution

Spatial resolution is a term that refers to the number of pixels that are used to construct a digital
image. When we say that a digital image has higher spatial resolution than another image, it
means that the higher spatial resolution image is composed by more pixels than the lower spatial
resolution image for the same dimensions of the imaging part.

Spatial resolution can determine the quality of an image and describe how detailed an object
can be represented by the image. It is a measurement to determine how small an object should be
in order for an imaging system to detect it. In medical imaging, the term spatial resolution can
be used to describe the imaging resolution. Spatial resolution of a medical imaging system is the
ability of the system to depict microstructures [3].

Figure 1.4 show the different spatial resolution.

Figure 1.4: Different spatial resolution.

1.4.2.2 Tonal Resolution

Is meant the difference between the appearance of the feature and the background in brightness
and/or color, there is an illustration in figure 1.5 showing that.

6



Medical images

Figure 1.5: Different tonal resolution.

1.4.3 Image noise

Noise in an image is considered to be a phenomenon of sudden variation in the intensity of a pixel
relative to its neighbors, it comes from the lighting of the optical and electronic devices of the
sensor.

1.4.4 Histogram

The grayscale or color histogram of an image is a function that shows how often each grayscale
(color) occurs in the image. It gives a great deal of information on the distribution of gray levels
(color) and to see between which limits are distributed the majority of gray levels (color) in the
case of an image that is too light or too dark.

1.4.5 Luminance

This is the degree of brightness of the points in the image. It is also defined as being the quotient
of the luminous intensity of a surface by the apparent area of this surface, for a distant observer,
the word luminance is substituted for the word brightness, which corresponds to the brightness of
an object. Good luminance is characterized by: Bright (brilliant) images. Good contrast: images
should be avoided where the range of contrast tends towards white or black; these images cause
loss of detail in dark or bright areas.

1.4.6 Contrast

It is the marked opposition between two regions of an image, more precisely between the dark
regions and the light regions of that image. Contrast is defined according to the luminance of two
image areas. If L1 and L2 are the degrees of brightness respectively of two neighboring areas A1
and A2 of an image, the contrast C is defined by the ratio :

C =
L1− L2

L1 + L2
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1.4.7 Entropy

It is a quantity which is used to describe the amount of information which must be coded by
a compression algorithm, Low entropy images, such as those containing a lot of black sky, have
very little contrast and large runs of pixels with the same or similar DN values. An image that is
perfectly flat will have an entropy of zero. Consequently, they can be compressed to a relatively
small size. On the other hand, high entropy images such as an image of heavily cratered areas
on the moon have a great deal of contrast from one pixel to the next and consequently cannot be
compressed as much as low entropy images [4].

And we can see an illustration of effect of some parameters on an image in figure 1.6.

Figure 1.6: Effect of some parameters on an image.

1.5 Image processing system

We can see what digital image processing system is made up of in figure 1.7.

Figure 1.7: Digital image processing system diagram.
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1.5.1 Image preprocessing

This stage is carried out immediately after the image is acquired, with the purpose of improving
the quality of image segmentation. Processing time (CPU time) is very important. This is a
decisive factor, and it must be as small as possible. This means that the operator must be local,
that is, they must operate on a limited number of pixels, and actually must operate on pixels close
to the current pixel.

We will present some of the most common preprocessing techniques and used in our work.

1.5.1.1 Segmentation

In this step, we are going to segment the image, separating the background from foreground objects.

1.5.1.2 Contour extraction

Edge detection is an initial step in many image analysis applications. Contours are indeed rich
clues, just like points of interest, which can be used for subsequent image interpretation. The
outlines in an image come from:

• Discontinuities of the reflectance function (texture, shadow);

• Depth discontinuities (edges of the object);

• Discontinuities of the intensity function in the images.

The classic principle of edge detection is based on the study of the derivative of the intensity
function in the image: the local extremum of the gradient of the intensity function and the zero
crossing of the Laplacian operator but there is one that interest us in our work and it is the canny
edge detector an optimal filtering approach.

1.5.1.3 Canny edge detector

Optimal impulse response filter h(x) which satisfies the following three constraints:

• Good detection;

• Good localization;

• Sparsity of response.

There is a one parameter family of optimal filters, varying in the width of filter support σ.
Detection improves and localization degrades as σ increases. As shown in figure 1.8.
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Figure 1.8: The application of the canny filter with two sigma values on an image.

1.6 Medical imaging

1.6.1 Definition of medical imaging

Medical imaging is often perceived to designate the set of techniques that noninvasively produce
images of the internal aspect of the body. It is the techniques and processes used to create
images of the human body for clinical purposes such as seeking to reveal, diagnose or examine
injury, dysfunction or pathology. As a discipline and in its widest sense,it incorporates radiology,
tomography, endoscopy, thermography, medical photography and microscopy (e.g. for human
pathological investigations) [5].

In the clinical context, medical imaging is generally equated to radiology and the medical prac-
titioner responsible for interpreting (and sometimes acquiring) the images is a radiologist. The
radiographer or radiologic technologist is usually responsible for acquiring medical images of diag-
nostic quality, although some radiological interventions are performed by radiologists [5].

1.6.2 Types of medical images

1.6.2.1 Imaging using X-rays

X-ray imaging uses an X-ray beam that is projected on the body. When passing through the body,
parts of the x-ray beam are absorbed. On the opposite side of the body, the X-rays are detected,
resulting in an image [6].

1.6.2.2 Molecular Imaging

Molecular imaging provides detailed information of the biological processes taking place in the
body at cellular and molecular levels and can indicate disease in its earliest stages [6].
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1.6.2.3 Ultrasound imaging

Ultrasound imaging (sonography) is a diagnostic medical procedure that uses high-frequency sound
waves to produce dynamic visual images of organs, tissues or blood flow inside the body. The
sound waves are transmitted to the area to be examined and the returning echoes are captured to
provide the physician with a live image of the area. Ultrasound does not require the use of ionizing
radiation, nor the injection of nephrotoxic contrast agents [6].

1.6.2.4 Magnetic Resonance Imaging (MRI)

MRI systems use a powerful magnetic field and radiofrequency pulses to produce detailed images
of the bodys internal structures as cross-sectional images or slices. Without exposing the patient
or staff to ionizing radiation (X-rays), MRI provides high quality images with excellent contrast
detail of soft tissue and anatomic structures such as gray and white matter in the brain. Its used
in a wide range of examinations from brain tumors and inflammation of the spine to slipped discs,
assessing blood flow and functioning of the heart. MRI does not emit any ionizing radiation [6].

1.6.3 Different formats of medical images

There are many format in medical imaging but we only going to define the 2 most popular.

1.6.3.1 Nifti

NIfTI (Neuroimaging Information Technology Project) is a data format used to store functional
magnetic resonance imaging (fMRI) and other medical images. Nifti is a file format that was cre-
ated by a committee of the National Institutes of Health in the early 2000s to create a neuroimaging
format that maintains the advantages of the Analyze format but can solve its shortcomings. Nifti
can actually be considered a revised Analyze format. This format fills in some unused/rarely used
fields in the Analyze 7.5 header to store new information (such as image orientation) in order to
avoid left-right ambiguity in brain research. In addition, Nifti also supports data types that are
not considered in the analysis type, such as unsigned 16-bit. Although this format also allows the
header and pixel data to be stored in separate files, the image is usually saved as a single ".nii" file
in which the header and pixel data are combined. In the case of ".hdr" and ".img" data storage,
the size of the header is 348 bytes, and in the case of a single ".nii" file, the size of the header is
352 bytes [7].

1.6.3.2 Dicom

The Dicom standard was established by the American College of Radiology and the National
Electrical Manufacturers Association. Although the Dicom standard was born in 1993, it was only
in the late 1990s that the Dicom standard was introduced into the imaging department. Today,
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the Dicom standard has become the backbone of every medical imaging department. Generally, in
terms of access, exchange, and availability of diagnostic medical images, the added value of using
it is huge. Dicom is not only a file format, but also a network communication protocol, although
these two aspects cannot be completely separated [7].

Below table 1.1 which summarizes the formats

Format Header Extension Data types
Analyze Fixed-length: 348 byte binary format .img .hdr Unsigned integer (8-bit), signed integer

(16, 32-bit), float (32,64-bit), complex
(64-bit)

Nifti Fixed-length: 352 byte binary format a
(348 byte in the case of data stored as
.img and .hdr)

.nii Signed and unsigned integer (from 8 to
64 bit), float (from 32 to 128 bit), com-
plex (from 64 to 256 bit)

Minc Extensible binary format .mnc Signed and unsigned integer (from 8 to
32 bit), float (32, 64 bit), complex (32,
64 bit)

Dicom Variable length binary format .dcm Signed and unsigned integer, (8, 16 bit;
32 bit only allowed for radiotherapy
dose), float not supported

Table 1.1: Summary of file formats characteristics[7].

1.6.4 Magnetic Resonance Imaging (MRI)

1.6.4.1 Definition

MRI (magnetic resonance imaging) is a noninvasive diagnostic test that takes detailed images of
the soft tissues of the body. Unlike X-rays or CT, images are created by using a magnetic field,
radio waves, and a computer. It allows your doctor to view your spine or brain in slices, as if it
were sliced layer-by-layer and a picture taken of each slice. This test can help diagnose tumors,
strokes, and disc herniation [8].

1.6.4.2 What does an MRI show

Nearly every part of the body may be studied with MRI. MRI gives very detailed pictures of soft
tissues like the brain. Air and hard bone do not give an MRI signal so these areas appear black.
Bone marrow, spinal fluid, blood and soft tissues vary in intensity from black to white, depending
on the amount of fat and water present in each tissue and the machine settings used for the scan.
The radiologist compares the size and distributions of these bright and dark areas to determine
whether a tissue is healthy [8].
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1.6.5 Brain

1.6.5.1 Definition of human brain

The human brain is the central organ of the human nervous system, and with the spinal cord
makes up the central nervous system. The brain consists of the cerebrum, the brainstem and the
cerebellum. It controls most of the activities of the body, processing, integrating, and coordinating
the information it receives from the sense organs, and making decisions as to the instructions sent
to the rest of the body. The brain is contained in, and protected by, the skull bones of the head
[9].

1.6.5.2 Different part of brain

The human brain consists of three main parts:

• The forebrain:

Greatly developed into the cerebrum, consists of two hemispheres joined by a bridge of nerve
fibers, and is responsible for the exercise of thought and control of speech [10].

• The midbrain:

The upper part of the tapering brainstem, contains cells concerned in eye movements [10].

• The hindbrain:

The lower part of the brainstem, contains cells responsible for breathing and for regulating
heart action, the flow of digestive juices, and other unconscious actions and processes. The
cerebellum, which lies behind the brain stem, plays an important role in the execution of
highly skilled movements [10].

Figure 1.9 is an illustration that shows the 3 parts of the brain.

Figure 1.9: The main parts of the brain.

13



Medical images

1.6.5.3 Brain tumor

A brain tumor is an abnormal growth of cells inside the brain or skull; some are benign, others
malignant. Tumors can grow from the brain tissue itself (primary), or cancer from elsewhere in
the body can spread to the brain (metastasis). Treatment options vary depending on the tumor
type, size and location. Treatment goals may be curative or focus on relieving symptoms. Many
of the 120 types of brain tumors can be successfully treated. New therapies are improving the life
span and quality of life for many people [11].

1.6.5.4 What is a brain tumor

Normal cells grow in a controlled manner as new cells replace old or damaged ones. For reasons
not fully understood, tumor cells reproduce uncontrollably [11]. A primary brain tumor is an
abnormal growth that starts in the brain and usually does not spread to other parts of the body.
Primary brain tumors may be benign or malignant [11]. A benign brain tumor grows slowly, has
distinct boundaries, and rarely spreads. Although its cells are not malignant, benign tumors can
be life threatening if located in a vital area [11]. A malignant brain tumor grows quickly, has
irregular boundaries, and spreads to nearby brain areas. Although they are often called brain
cancer, malignant brain tumors do not fit the definition of cancer because they do not spread to
organs outside the brain and spine [11].

1.6.6 Skin

1.6.6.1 Definition of skin

The human skin is the outer covering of the body and is the largest organ of the integumentary
system. The skin has up to seven layers of ectodermal tissue and guards the underlying muscles,
bones, ligaments and internal organs [12].

1.6.6.2 The different layers of the skin

• Stratum Corneum:

The stratum corneum (SC) or stratum corneum, is the outermost cell layer of the epidermis,
the most superficial tissue of the skin. It is mainly composed of dead cells called corneocytes
whose loss of the cell nucleus results from epidermal differentiation [12].

• Epidermis:

The epidermis is the outermost of the three layers that make up the skin, the inner layers
being the dermis and hypodermis. The epidermis layer provides a barrier to infection from
environmental pathogens and regulates the amount of water released from the body into
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the atmosphere through trans-epidermal water loss. The epidermis is composed of multiple
layers of flattened cells that overlie a base layer (stratum basal) composed of columnar cells
arranged perpendicularly [12].

• Dermis:

The dermis or corium is a layer of skin between the epidermis (with which it makes up the
cutis) and subcutaneous tissues that primarily consists of dense irregular connective tissue
and cushions the body from stress and strain. It is divided into two layers, the superficial
area adjacent to the epidermis called the papillary region and a deep thicker area known as
the reticular dermis [12].

• Hypodermis:

The hypodermis is the layer of tissue immediately below the dermis of the skin. It is generally
not considered to be part of the skin as such (McKinley et al, Marieb and Hoehn). It is linked
to the dermis towards the depth. It is a richly vascularized loose connective tissue which
contains more or less adipose tissue depending on the location. It serves as an interface
between the dermis and the mobile structures located below it such as muscles and tendons.
It also protects the body from physical shocks, temperature variations and serves as a fat
reserve [12].

Here is figure 1.10 which shows the 4 layers.

Figure 1.10: Skin layers.
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1.7 Conclusion

In this chapter, we introduced the basic knowledge as a basis for understanding different image
processing technologies. Some classic processing methods have been proposed in the literature.
We have introduced some of the most common methods in image processing and analysis in our
opinion, and these methods have been used throughout the work.

Image preprocessing makes it possible to consider subsequent processing to improve image qual-
ity. Two main methods can be considered to extract relevant regions from an image: We are
looking for discontinuities in the scene, this is the contour method. And we are looking for areas
with the same grayscale, this is the area method new research focuses on complex systems and
their characteristics and the application of these methods in image processing.

In this chapter we have seen the characteristics of an image and the fundamental notions of
medical images and we have defined the organs (the skin and the brain) that we will segment by
applying deep learning, as we will see in the next chapters.
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Chapter 2

Initiation to Deep learning

2.1 Introduction

Machine learning (ML) is an application of artificial intelligence (AI) that provides systems the
ability to automatically learn and improve from experience without being explicitly programmed.
Machine learning focuses on the development of computer programs that can access data and use
it learn for themselves. but today saying IA or ML the first idea that comes to our mind is deep
learning.

Nowadays, DL is the center of attention because its achievement is much more important than
any other machine learning algorithm in such complex tasks as Image processing and object recogni-
tion in [13] which show us advances in the use of deep convolutional networks for object recognition,
and the adoption of deep learning by the vision community by computer and also Speech recogni-
tion and signal processing in [14] which present the results obtained in phonetic classification for
automatic speech recognition as the first industrial application of deep learning.

DL is one of the reasons behind the recent movements and advancements in AI, and this is the
main reason why AI finally has the opportunity to become more realistic.

So what is DL?

According to the founders Yann LeCun, Yoshua Bengio Geoffrey Hinton in [15] Deep learning
allows computational models made up of several processing layers to learn data representations
with several levels of abstraction.

And we can see a representation of perceptron model in figure 2.1
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Figure 2.1: Perceptron

2.2 Definition of deep learning

Deep learning is a subfield of machine learning dealing with algorithms inspired by the structure
and function of the human brain. In other words, it reflects how our brain works. Deep learning
algorithms are similar to the way the nervous system structures itself where each neuron connects
and transmits information [16].

Deep learning is a relatively new advance in neural network programming and represents a
way to train deep neural networks essentially, any neural network with more than two layers is
deep. The ability to create deep neural networks has been around since Pitts (1943) introduced
the multilayer perceptron [17].

Figure 2.2 shows the structure of the multi-layer perceptron.

Figure 2.2: Multi-layer perceptron
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2.3 History of Deep learning

The history of Deep Learning can be traced back to 1943, when Walter Pitts and Warren Mc-
Culloch created a computer model based on the neural networks of the human brain. They used
a combination of algorithms and mathematics they called threshold logic to mimic the thought
process. Since that time, Deep Learning has evolved steadily, with only two significant breaks in
its development. Both were tied to the infamous Artificial Intelligence [18].

In 1960 Henry J. Kelley is given credit for developing the basics of a continuous Back Propagation
Model. In 1962, a simpler version based only on the chain rule was developed by Stuart Dreyfus.
While the concept of back propagation (the backward propagation of errors for purposes of training)
did exist in the early 1960s, it was clumsy and inefficient, and would not become useful until 1985
[18].

The first convolutional neural networks were used by Kunihiko Fukushima. Fukushima designed
NN with multiple pooling and convolutional layers and he developed in 1979 an artificial neural
network, called Neocognitron, which used a hierarchical, multilayered design. This design allowed
the computer the learn to recognize visual patterns. Additionally, Fukushimas design allowed
important features to be adjusted manually by increasing the weight of certain connections [18].

1999 was a significant evolutionary step year for DL, when computers started becoming faster
at processing data and GPU (graphics processing units) were developed. It gives faster processing.
During this time, NN began to compete with support vector machines. While a NN could be slow
compared to a support vector machine, NN offered better results using the same data and also
have the advantage of continuing to improve as more training data is added [18].

In 2001, a research report by META Group (now called Gartner) described he challenges and
opportunities of data growth as three-dimensional. In 2009, Fei-Fei Li, an AI professor at Stanford
launched ImageNet, assembled a free database of more than 14 million labeled images. The Internet
is, and was, full of unlabeled images. Labeled images were needed to train neural nets. Professor
Li said, Our vision was that Big Data would change the way machine learning works. Data drives
learning [18].

By 2011, the speed of GPUs had increased significantly, making it possible to train convolutional
neural networks without the layer-by-layer pre-training. With the increased computing speed, it
became obvious DL had significant advantages in terms of efficiency and speed. One example is
AlexNet, a convolutional neural network whose architecture won several international competitions
during 2011 and 2012. Rectified linear units were used to enhance the speed and dropout [18].
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Currently, the processing of Big Data and the evolution of Artificial Intelligence are both de-
pendent on Deep Learning. Deep Learning is still evolving and in need of creative ideas [18].

2.4 Deferent architecture of deep learning

There are mainly three types of deep learning architectures, each architecture has its own field of
use and its characteristics.

2.4.1 DNN (Deep Neural Networks)

They are also well known by ANN (Artificial Neural Network). In many scientific disciplines, artifi-
cial neural networks appear to be a useful alternative to traditional statistical modeling techniques.
Figure 2.3 shows the architecture diagram of DNN.

Figure 2.3: Architecture diagram DNN.

2.4.2 CNN (Convolutional Neural Networks)

The deep convolutional neural network (CNN) has always been at the heart of the rapid devel-
opment of deep learning. Although CNN has been used to solve character recognition tasks since
the 1990s (LeCun et al., 1997), their current widespread use is due to recent work. We can see the
architecture diagram of CNN in Figure 2.4.
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Figure 2.4: Architecture diagram CNN.

2.4.3 RNN (Recurrent neural networks)

The recurrent neural network is one of the main contents of deep learning, which enables the neural
network to process sequences of data such as text, audio and video. They can be used to reduce
sequences to advanced comprehension, annotate sequences and even generate new sequences from
scratch.Figure 2.5 shows the architecture diagram of RNN.

Figure 2.5: Architecture diagram RNN.
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2.5 Deep learning use cases

Although deep learning is starting to be popular in several sectors, but in some of these sectors it
is becoming essential.

We will define some of these essential sectors and we will end up with the area where our work
has been devoted.

2.5.1 Financial Services

The use cases here powered by deep learning architectures specially CNNs include such as leverag-
ing face detection and verification for Know Your Customer from documents applications relating
to Regulatory Technology.

2.5.2 Marketing

Because of its lower regulatory barriers compared to other sectors and to its vast datasets available,
marketing seems to us to be the first sector to be transformed by AI. The deep learning touch
comes on hyper-personalization with customer segmentation and targeted marketing that is very
relevant to the user as the future of marketing. NLP (Natural Language Processing) which is a very
important branch of Machine Learning and therefore of artificial intelligence, help us harness the
large amount of unstructured information present in social media for automated lead generation.

2.5.3 Security

This is a sector that will greatly benefit from the adoption of machine learning and deep learning
techniques such as CNNs for face detection and recognition, behavioral recognition in videos and
assist in detecting suspicious activity in cyber security.

2.5.4 Manufacturing and Industry

Automated agents (such as robots) that can automatically perform defect analysis and apply deep
reinforcement learning will be able to achieve precision manufacturing at a higher speed and scale,
and improve the efficiency of supply chain management.

2.5.5 Transportation

With the advent of driverless cars and drones, this is an industry facing fundamental changes.
5G will make the connected car an experience cabin for insiders to use augmented reality and
virtual reality to power. In addition, areas such as "multi-agent deep reinforcement learning" will
enable autonomous vehicles to communicate with each other and the surrounding environment,
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thereby providing a strong foundation for communicating with well-defined standards. This will
enable safe autonomous driving. In addition, autonomous drone technology will be able to provide
logistical support for search and rescue teams in remote or difficult terrain areas, and assist farmers
in automatic irrigation and harvesting.

As we said there is many other sector like Retail Sector and Insurance but now were going to
end up with the one that interests as and which is none other than Health Care (medical) sector.

2.5.6 Health Care

With the passage of time, this field is likely to be the most transformed field of AI. Machine
learning and deep learning will have a significant impact in fields such as medical imaging, mining
electronic health data, and robotic surgery using 5G deep reinforcement learning. The application
of machine learning technology on wearable devices allows us to process sensor data to achieve
preventive health care. In addition, fields such as precision medicine also provide patients with
improved results through technologies such as variational autoencoders.

2.6 Problems encountered in deep learning

There are two main problems encountered in deep learning and they are:

2.6.1 Overfitting

As the model learns the details and noise of the training data, overfitting occurs because it will
negatively affect the performance of the model on the new data. This means that noise or random
fluctuations in the training data will be absorbed by the model and learned as a concept. The
problem is that these concepts are not applicable to new data and will have a negative impact on
the generalizability of the model.

Nonparametric and nonlinear models are more likely to overfit, and they have more flexi-
bility when learning the objective function. In this way, many nonparametric machine learning
algorithms also include parameters or techniques to limit and constrain the amount of detail in
training the models.

For example, a decision tree is a very flexible nonparametric machine learning algorithm, and it
is easy to overfit the training data. This problem can be solved by pruning the tree after learning
to remove some of the details it collects.
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2.6.2 Underfitting

Underfitting refers to models that cannot be modeled on training data or that cannot be generalized
to new data. An underfit machine learning model is not a suitable model because it performs poorly
on training data, so it’s obvious. The problem of underfitting is usually not addressed because it
is easy to detect with good performance indicators. The solution is to keep trying other machine
learning algorithms. However, this contrasts sharply with the problem of overfitting.

2.7 CNN’s

Convolutional Neural Network (CNN) is a deep learning neural network designed to process struc-
tured data arrays such as images. Convolutional neural networks have been widely used in com-
puter vision, and have become the latest technology in many vision applications (such as image
classification), and have also achieved success in natural language processing for text classification.

Convolutional neural networks are very good at picking up patterns in the input image, such
as lines, gradients, circles and even eyes and faces. It is this characteristic that makes convolu-
tional neural networks so powerful for computer vision. Unlike earlier computer vision algorithms,
convolutional neural networks can run directly on the original image without any preprocessing.

Convolutional neural networks are feed-forward neural networks, usually with up to 20 or 30
layers. The function of the convolutional neural network comes from a special layer, the convolu-
tional layer.

2.7.1 The usefulness of CNNs

The use of CNNs for deep learning has grown for three important reasons:

• They eliminate the need for manual feature extraction, as they learn them directly;

• They produce excellent recognition results;

• They can be retrained to perform new reconnaissance tasks, allowing you to build on pre-
existing networks.

CNN provides the best architecture for image recognition and pattern detection. Combined
with advances in GPU and parallel computing, these are essential technologies that will drive new
developments in autonomous driving and facial recognition.

For example, deep learning apps use CNN to review thousands of pathology reports to visually
detect cancer cells. Convolutional neural networks also allow autonomous vehicles to detect objects
and learn to distinguish between traffic signs and pedestrians.
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2.7.2 How CNNs work

Convolutional neural networks can have dozens or even hundreds of layers, and each layer learns to
recognize different characteristics of an image. Apply the filter to each image trained at a different
resolution and use the output of each convolution image as the input for the next layer. The
first filter can be very simple features like brightness or edges and then move on to more complex
features to uniquely define the object.

CNNs perform the task of identifying and classifying images, text, sound and video.
A CNN always starts with an input layer then hidden layers on which it performs convolution

operations followed by pooling and ends with a fully connected layer.

2.7.3 The convolution operation

In its most general form, convolution is an operation on two functions of a real-valued argument.
The convolution product of two real or complex functions f and g is another function, which is
generally denoted "f g" and which is defined by:

(f ∗ g)(x) =
∫ +∞

−∞
f(x− t)g(t)dt =

∫ +∞

−∞
f(t)g(x− t)dt

There are several types of convolution but we are going to discuss only five that we have used
in our architecture.

2.7.3.1 Simple Convolution

The convolution operation consists of applying a filter on the image matrix and it is up to us to
choose the size of the filter as well as the stride and the padding if we need, after applying the
filter the values pixels change so we will have feature maps and these feature maps represent the
most relevant information of the image.

Figure 2.6 shows the convolution operation.
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Figure 2.6: Convolution operation [20].

2.7.3.2 Transposed Convolution (Deconvolution)

Transposed convolution is also called deconvolution, which is inappropriate because deconvolution
is all about removing the effects of convolution that we did not attempt to achieve. This is
also called oversampling convolution, and it is intuitive for the task it is used to perform (i.e.,
oversampling of the input characteristic map).

Figure 2.7 shows the transposed convolution operation.

Figure 2.7: Transposed convolution [20].

2.7.3.3 Depthwise Convolutions

In depth-wise convolution, we use each filter channel only at one input channel. In the example,
we have 3 channel filter and 3 channel image. What we do is break the filter and image into three
different channels and then convolve the corresponding image with corresponding channel and then
stack them back [18].

Figure 2.8 shows an example of a Depthwise Convolution:
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Figure 2.8: Depthwise Convolution [20].

2.7.3.4 Pointwise Convolution

Also known as point-to-point convolution is so named because it uses a 1x1x1 kernel or a kernel
that iterates through each point. The kernel has the depth of the number of channels of the input
image.

Figure 2.9 shows an example of a Pointwise Convolution.

Figure 2.9: Pointwise Convolution [20].

2.7.3.5 Depthwise Separable Convolutions

The combination of Pointwise convolution and Depthwise convolution forms the Depthwise Sepa-
rable Convolution.

The convolution separable in depth is so named because it involves not only the spatial size,
but also the size of the depth - the number of channels -. The input image can have 3 channels:
RGB. After several convolutions, the image can have several channels. You can think of each
channel as a specific interpretation of that image. For example, the "red" channel explains the
"red" of each pixel, the "blue" channel explains the "blue" of each pixel, and the "green" channel
explains the "green" of each pixel. An image with 64 channels has 64 different interpretations of
the image [20].
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2.7.4 Activation functions in a CNN

The most common functions in deep learning are:

2.7.4.1 Sigmoid

The sigmoid activation function, also known as the logistic function, has traditionally been a very
popular activation function for neural networks. The input to this function will be converted to a
value between 0.0 and 1.0 [20].

Figure 2.10 is an illustration of sigmoid function.

Figure 2.10: sigmoid function.

2.7.4.2 Hyperbolic tangent (tanh)

The hyperbolic tangent function, or tanh for short, is a similar shaped nonlinear activation function
that outputs values between -1.0 and 1.0 [20].

Figure 2.11 is an illustration of hyperbolic tangent function
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Figure 2.11: Hyperbolic Tangent Function.

2.7.4.3 The rectified linear unit (ReLU)

The rectified linear unit function or ReLU is the most widely used activation function in network
design today. Besides being nonlinear, compared to other activation functions, the main advantage
of using the ReLU function is that it does not activate all neurons at the same time. According
to the diagram here, if the input is negative, it will be converted to 0 and the neuron will not be
activated. This means that only a few neurons are activated at a time, which makes the network
rare and very efficient. In addition, the ReLU function is one of the major advancements in the
field of deep learning that overcomes the problem of gradual gradients.

We can see an illustration of ReLU function in figure 2.12.

Figure 2.12: ReLU Function.
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2.7.5 Transfer Learning

Transfer learning is one of the research areas of machine learning, which aims to transfer knowledge
from one or more source tasks to one or more target tasks.

It can be seen as the system’s ability to recognize and apply knowledge and skills acquired in
previous tasks and apply to new tasks or areas of similarity. Figure 2.13 shows a diagram of the
concept.

Figure 2.13: Transfer learning illustration.

2.8 Auto-encoders

2.8.1 Definition of Auto-Encoders

Autoencoding is an unsupervised learning technique used in neural networks. It learns efficient
representation of data (encoding) by teaching the network to ignore signal "noise". The autoencoder
network has three layers: an input layer, a hidden layer for encoding and an output decoding layer.
Using backpropagation, unsupervised algorithms train continuously by setting the target output
value to match the input. This forces the smallest hidden coding layer to use size reduction to
remove noise and reconstruct the input.
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2.8.2 Parts of the Auto-encoder

There are three main components in Autoencoder. They are Encoder, Decoder, and Code. The
encoder and decoder are completely connected to form a feed forwarding mesh. The code act as
a single layer that acts as per own dimension. To develop an Autoencoder, you have to set a
hyperparameter that is you have to set the number of nodes in the core layer. In a more detailed
manner, the output network of the decoder is a mirror image of the input encoder. The decoder
produces the desired output only with the help of the code layer [21].

Figure 2.14 shows Parts of Auto-encoder.

Figure 2.14: Parts of Auto-encoder [34].

2.9 Conclusion

although the field of deep learning remains vast and covers several sectors nevertheless we have
defined in this chapter some fundamental notions as well as the advanced approaches of deep
learning such as convolutional neural networks and autoencoders which will allow us to work in
the sector that interests us which is none other than the medical domain for which the segmentation
of images is our main concern.
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Chapter 3

Medical image segmentation

3.1 Introduction

Transfer learning from 2D CNNs, trained on large-scale datasets (e.g., ImageNet), is a widely-used
approach in 3D medical image analysis. To mimic the 3-channel image representation (i.e., RGB),
prior studies follow either multi-planar or multi-slice representation of 3D images as 2D inputs. In
these studies, pretrained 2D CNNs are usually fine-tuned on the target medical dataset.

Our job aim is to use a pre-formed network as an encoder and use a classic decoder to form a
UNet and use it to segment 2D and 3D images.

3.2 MRI for Brain tumors

Magnetic Resonance Imaging (MRI) has been quickly imposed as being an essential tool of modern
medical imaging and disease diagnosis. MRI is particularly useful for brain tumor diagnosis, patient
follow-up, therapy evaluation and human brain mapping. The main advantage related to the use
of MRI is its ability of acquiring non-invasive and non- irradiant medical images. It is also very
sensitive to the contrast and provides an excellent spatial resolution which is entirely appropriate
for the exploration of the brain tissues nature. In addition, the imaging derives easily 3D volumes
according to brain tissue. In many practical cases, MRI is associated to conventional imaging of
gliomas, unless indicated otherwise.

3.3 Unet architecture

UNET [26] was developed by Olaf Ronneberger et al. Used for segmentation of biomedical images.
The architecture consists of two parts, the first part is the contraction part of the applet encoder,
used to capture the context in the image. The encoder is just a traditional stack of maximum
convolution and aggregation layers. The second part is the decoder part which used for symmetric
expansion and used also for precise positioning using transposed convolution and these two parts
are linked by skip connections which makes access from the encoder to the decoder possible.

32



Medical image segmentation

The diagrams in Figure 3.1 show the Unet architecture.

Figure 3.1: Unet architecture [26].

The network architecture consists of a contracting path (left side) and an expansive path (right
side). The contracting path follows the typical architecture of a convolutional network. It consists
of the repeated application of two 3x3 convolutions (unpadded convolutions), each followed by a
rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for downsampling. At
each downsampling step we double the number of feature channels. Every step in the expansive
path consists of an upsampling of the feature map followed by a 2x2 convolution (up-convolution)
that halves the number of feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU. The
cropping is necessary due to the loss of border pixels in every convolution. At the final layer a 1x1
convolution is used to map each 64 component feature vector to the desired number of classes. In
total the network has 23 convolutional layers [26].

And although Unet is an old architecture (2015) but it remains difficult to beat in the field of
segmentation of medical images and all this thanks to its skip connections.

3.4 EfficientNet architecture

The EfficientNet-B0 architecture is not developed by engineers, but by the neural network itself.
They developed the model using research on a multi-objective neural architecture that optimizes
precision and floating-point operations. Based on EfficientNet-B0, the author developed a complete
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series of EfficientNets from B1 to B7, which achieved the highest accuracy on ImageNet dataset
and were also very effective for competitors.

EfficientNet architecture is a very recent architecture (2019) it has proven its efficiency in terms
of precision and speed, the secret of architecture comes from three main elements.

3.4.1 Depthwise Separable Convolution

By adopting the original two-step convolution depthwise and pointwise, the calculation cost can
be greatly reduced, and the loss of precision can be reduced at the same time.

3.4.2 Inverse Res

Linear activation is used in the last layer of each block to avoid losing ReLU information. The
main component of EfficientNet is MBConv, which is a reverse bottleneck conveyor belt, originally
called MobileNetV2. By connecting a smaller number of channels (relative to the expansion layer)
using a shortcut between the bottlenecks, combining it with a separable deep convolution, which
reduces the amount of computation of nearly a thousand.

Figure 3.2 shows the architecture of EfficientNet.

Figure 3.2: EfficientNet architecture [22].

3.4.3 Linear bottleneck

Uses linear activation in the last layer in each block to prevent loss of information from ReLU.

3.5 Our architectures

In what follows we will present two kinds of architecture, they are very similar, but they are applied
on different datasets.
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3.5.1 2D architecture

According to [22], they designed a new core network using neural architecture research and ex-
tended it to obtain a series of models called EfficientNets that provide better accuracy and efficiency
than other models. In particular, EfficientNet-B7 achieved a peak accuracy of 84.4% in the top
1/top 5 of ImageNet, while inference was 8.4 times smaller and 6.1 times faster. Better than the
best ConvNet, where this EfficientNets can also transfer well with fewer parameters and reach the
highest accuracy of an order of magnitude. This is why we decided to introduce the basic model
B0 of EfficientNet into our work, which is certainly not as powerful as B7,but much faster and less
in memory space.

In this first part we will deal with the problem of segmentation of skin images, i.e. segment-
ing each layer and extracting the edges using the clever algorithm and to segment we will use
autoencoders.

3.5.1.1 Images preprocessing

First of all, we must prepare all images and adapt them to neural network and to do this we will
perform several operations.

• Create labels for images:

To create a label of an image we first of all have to study the region of interest so as not to
make any errors, Then we used a software called Amira software to draw a label manually
and save it in the desired file format Nifti in our case.

• Data augmentation:

To remedy the problem of lack of data we have applied several image distortion techniques
and these techniques are:

• Zoom.

• Flip (up-down, left-right).

• Shift.

• Rotation.

• Data Normalization:

The problem with our data is that for each image we have the same min (0) but not the
same max of voxels, to manage this we have extracted the max with respect to all the images
and to normalize between 0 and 1 we have to divide all the matrices (images) on this max
and we got the values to normalize between 0 and 1.
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3.5.1.2 Method

Our method consists of using two different architectures. The first one is the classic Unet that re-
mains very efficient in the field of medical image segmentation and the second one is an architecture
that is known for its speed and power called EfficientNet.

EfficientNet architecture is dedicated to the classification of images and was formed on the
ImageNet dataset and we took the opportunity to transfer learning to our images. We used
EfficientNet as the encoder and we kept the Unet decoder and skip connections.As showed in
Figure 3.3. After having programmed the callback, we started the training over 100 epochs.

Figure 3.3: Our 2D architecture.

3.5.2 3D architecture

The proposed segmentation approach follows encoder-decoder Convolutional Neural Network ar-
chitecture. It is built from an asymmetrically larger encoder to extract image features and a
smaller decoder to reconstruct the segmentation mask. We embedded in the encoder part the re-
cent efficient network called EfficientNet. Figure 3.4 shows Schematic illustration of the proposed
network architecture. Input is a one channel 3D MRI crop. The inter- slice encoder as well as the
decoder consist of a succession of blocks, each block is a Residual Network like with a GroupNorm
normalization. The output of the decoder has three channels with the same spatial size as the
input.
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Figure 3.4: Our 3D architecture.

3.5.2.1 Data preprocessing and training

Because of the limitations in GPU memory and time-consuming computation, we were forced to
take some precautions. We possessed each modality separately, resizing the dimensions of the
images by reducing the background using the largest crop size of 192x160x108, and compromise
the batch size to be 1. We did not use any additional training data and used only the provided
training set.

3.5.2.2 Encoder part

The encoding process goes through two steps. First, encoding three-dimensional data to two-
dimensional data, while keeping the height and width at their original size and compressing only
the depth to 3 channels. Thus the data is ready to start the second encoding step, which is none
other than the EfficientNet network without the fully connected layers.

As shown in Figure 3.4, the EfficientNet is represented as blocks as in its original version.
However, only the blocks involved in skip connection layers are represented. Under each block,
one can see outputs dimensions of features.

The inter-slices encoding part uses convolutional blocks which consists of two convolutions
with normalization and ReLU, followed by identity skip connection. Following the works of [22]
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we chose to use Group Normalization, which seems to be better than BatchNorm performance,
especially when batch size is small.

3.5.2.3 Decoder part

Asymmetrically to the encoding part, the decoder is composed entirely of homogeneous blocks
as shown in Figure 3.4. Obviously, the decoding part linked to the EfficientNet is a 2D decoder
whereas the inter-slice decoding is a 3D decoder. Each decoder level begins by upsampling the
spatial dimension, doubling the number of features by a factor of 2 followed by skip connections.
The output of the decoder has three channels with the same spatial size as the input.

3.5.2.4 Loss

Many networks use cross-entropy loss functions for training, but based on Dice scores, the results
may not be ideal. As an alternative, the soft dice loss function can be used to train the proposed
network. Although there are several dice loss formulas in the literature, we prefer to use soft dice
loss because according to the literature it is one of the best evaluation metrics. The soft dice loss
function is differentiable and is given by:

LDice =
2
∑

PtruePpred∑
P 2
true +

∑
P 2
pred + ε

Where Ptrue and Ppred represent respectively the ground truth and the predicted labels. Brain
MRI segmentation is a challenging task, partly because of the heavy class Imbalance and a large
number of classes. Solve the problem of class imbalance the whole training only uses fixed loss
function, cross entropy or dice Period is not the best strategy. Therefore, the linear combination
of the two the loss function is generally considered to be the best practice and can bring more
powerful functions and the best segmentation model. In fact, the final loss function is as follows:

L = LCross − LDice

3.5.2.5 Optimization

The proposed network architecture is trained with centered cropped patches of size 192x160x108
voxels, ensuring that all images content remains within the limits of the crop area. Constrained
by the performance of the material, we set the batch size to 1. Training has been done using the
Adam optimizer with an initial learning rate of lr = 1e−4, and reduced by a factor of 10 whenever
the loss has not improved for 50 epochs.
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3.6 Conclusion

In this part of the work, we saw how we raised a problem of small dataset, also we put forward
our different architecture and our methods including the transfer of skills from a powerful and
pre-trained network that is not other than efficientnet on 2D images to an auto-encoder processing
3D images, and for that we have invested all our time to carry out this work and respond to the
BraTS challenge 2020.
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Chapter 4

Experimental Results

4.1 Introduction

In this chapter, we will introduce the data set and show the results of segmentation. the process of
our work is to deal with two different data sets, Therefore two different problems, our first challenge
is to segment different layers of skin (stratum corneum, epidermis, dermis, subcutaneous tissue).
The second challenge is to segment brain tumors (whole tumor, tumor core, enhanced tumor) by
participating in the Brats 2020 challenge, we must say though we lack material resources, but the
effect is still good.

4.2 Skin dataset

The biggest problem with medical imaging in general is that there is not a lot of data available
because the data is confidential, specially in our case the problem is that we have very little image
and the other problem is that they are not labeled so segmenting very few unlabeled images using
a powerful deep learning architecture is a difficult problem and avoiding overfitting is a miracle.

Figure 4.1 shows what the images look like.

The data consisted of 20 healthy subjects who underwent a 3T MRI (T2-weighted calculation
with polycyclic echo) and a microscopic coil on the left heel. The outgoing images are of dimensions
384x384x1 (top, width, channel), these images are 2D MRI images encoded on 32 bits in Nifti
format (.nii) and Figure 4.2 show the information of a sample.
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Figure 4.1: Some images from skin dataset.

Figure 4.2: Skin image information.
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4.3 BraTS challenge 2020

Multimodal Brain Tumor Segmentation Challenge (BraTS) aims at encouraging the development
of state of the art methods for the segmentation of brain tumors by providing a large 3D MRI
dataset of annotated Low Grade Glioma (LGG) and High Grade Glioma (HGG). BraTS 2020
training dataset included 369 cases, each with 4 modalities describing a) native (T1) and b)
post-contrast T1- weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR) volumes, the data were acquired with different clinical protocols and various
scanners from multiple institutions, using various MRI scanners. Each tumor was segmented into
edema, necrosis and non-enhancing tumor and active/enhancing tumor. The annotations were
combined into 3 nested sub-regions: whole tumor (WT), tumor core (TC) and enhancing tumor
(ET).

4.4 BraTS dataset

Ample multi-institutional routine clinically-acquired pre-operative multimodal MRI scans of glioblas-
toma (GBM/HGG) and lower grade glioma (LGG), with pathologically confirmed diagnosis, this
data are provided as the training, validation and testing data for this years BraTS challenge.
Specifically, the datasets used in this year’s challenge have been updated, since BraTS’19, with
more routine clinically-acquired 3T multimodal MRI scans, with accompanying ground truth labels
by expert board-certified neuroradiologists.

All BraTS multimodal scans are available as NIfTI files (.nii.gz) and describe a) native (T1) and
b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR) volumes, and were acquired with different clinical protocols and various
scanners from multiple institutions.

All the imaging datasets have been segmented manually, by one to four raters, following the
same annotation protocol, and their annotations were approved by experienced neuro-radiologists.
Annotations comprise the GD-enhancing tumor (ET label 4), the peritumoral edema (ED label
2), and the necrotic and non-enhancing tumor core (NCR/NET label 1). BraTS challenge provides
369 images of different patients for training with dimensions 240x240x155 (height, width, channel)
these are very large images and this size requires powerful equipment (RAM memory and GPU
memory).Figure 4.3 shows the 4 different modalities of one same brain and Figure 4.4 shows the
label of the image in figure 4.3.

These images are 3D MRI images encoded on 32 bits in Nifti (.nii) format, figure 4.5 shows
the information of an image from our dataset
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Figure 4.3: First image in dataset with its four modalities (flair, t1, t1ce, t2 from left to right).

Figure 4.4: the ground truth of the first image in dataset.
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Figure 4.5: Brain image information.

4.5 Result of the 2D approach

4.5.1 Result of Skin data segmentation with Unet

For the first neural network (Unet) the accuracy reached is 81%. Figure 4.6 shows the predicted
mask from a test image (new image different from the training images).

Figure 4.6: Result of Unet segmentation after 100 epochs.
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After applying the canny filter on the predicted mask and extracting the borders, we superim-
posed it on the original image to better see the result ( see figure 4.7 ).

Figure 4.7: Canny filter result of Unet superimposed on the original image.

4.5.2 Result of Skin data segmentation with EfficientNet

For our second neural network (EfficientNet) the accuracy reached is 90%. Figure 4.8 shows the
predicted mask from a test image (new image different from the training images).

Figure 4.8: Result of EfficientNet segmentation after 100 epochs.
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After applying the canny filter on the predicted mask and extracting the borders, we superim-
posed it on the original image to better see the result, figure 4.9 shows that.

Figure 4.9: Canny filter result of EfficientNet superimposed on the original image.

The table 4.1 shows the 2 different results obtained from the 2 models applied to the skin data
set.

Architectures Accuracy (after 100 epochs)
Unet 81%
EfficientNet 90%

Table 4.1: Skin data results.

4.6 Result of 3D approach

Before seeing the results, we will first see the different sub-regions of the tumor through the
figure 4.10 where each tumor was segmented into edema, necrosis and non-enhancing tumor, and
active/enhancing tumor. Annotations were combined into 3 nested sub-regions: Whole Tumor
(WT), Tumor Core (TC) and Enhancing Tumor (ET).

After the long training of our network on the 368 images, we downloaded the validation dataset
that contains 125 new patients and we tested our network on these 125 images. Figure 4.11 shows
the predicted mask of the validation image which gave the best result in achieving 89% Dice for
enhancing tumor (ET) and 90% for whole tumor (WT) and 95% for tumor core (TC).
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Figure 4.10: Typical result on the BraTS validation dataset. From left to right: axial, coronal and
sagittal views in T1ce modality. Enhancing tumor is shown in yellow, necrosis in red and edema
in green.

Figure 4.11: predicted mask from a validation image.

These results above show the precision of one image among 125 images, but the average of all
results of the 125 images is as follows 65% Dice for enhancing tumor (ET) and 84% for whole
tumor (WT) and 68% for tumor core (TC), and this after several modifications and the addition
of a parameter alpha = [0.05 ... 0.4] which represents a slight noise added to the background
class, we noticed that the network formed on the T1ce modality well segments the two tumors
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(ET) and (TC) unlike the other networks formed on the other modalities, after that we consulted
the opinion of a specialist (doctor) who informed us that the ET and TC tumors did not are
visible only through the T1ce modality, and this is why we make sure that the network formed on
T1ce focuses on the predictions of two tumors (ET) and (TC) and for the tumor prediction (WT)
will be carried out by the network formed by the three combined modalities, so the modifications
improved our results and we reached a better score and this despite of 20 mask predicted at 0%
Dice for both (ET) and (TC) tumors, the following table 4.2 shows the improvements in our results
after several tests.

Dice Coefficient Mean stdDev Median
Sub-regions ET WT TC ET WT TC ET WT TC
Flair 0.30 0.84 0.53 0.23 0.13 0.25 0.37 0.89 0.61
T1ce 0.65 0.74 0.68 0.32 0.17 0.31 0.80 0.78 0.79
T2 0.35 0.81 0.57 0.25 0.13 0.25 0.42 0.85 0.65
First combination 0.65 0.84 0.68 0.31 0.10 0.31 0.81 0.87 0.78
Second combina-
tion

0.46 0.78 0.62 0.29 0.12 0.26 0.58 0.81 0.73

Best one (first com-
bination)

0.65 0.84 0.68 0.31 0.10 0.31 0.81 0.87 0.78

Table 4.2: Results where first combination we used the weight of T1ce modality to predict ET and
TC sub-regions and to predict WT we used the mean of the prediction get from 3 modalities which
are (Flair, T1ce, T2). For the second combination, we also used the weight of T1ce modality to
predict ET and TC sub-regions but to predict WT we used the mean of the prediction get from
all modalities.

4.7 Conclusion

In this chapter, we have presented the results of different architectures applied to different datasets
(Skin 2D dataset and Brain 3D dataset), and learned how the EfficientNet network has proven
its effectiveness as an encoder by providing good results. (90% accuracy on the skin dataset and
65%, 84% and 68% of dice respectively for ET, WT and TC on the brain dataset). For the BraTS
challenge, our goal is not to get the best score, but to adapt a network designed to classify 2D
RGB images to another more complicated task which is the segmentation of 3D MRI images. It
can be seen that the learning transfer of trained weights on 2D natural images can be used for
processing 3D medical images.
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Conclusion

Part of the work carried out within of this thesis involves the automatic segmentation of skin
layers, and more importantly, in another part, we involve the automatic segmentation of brain
tumors on volumetric MRI images.

This research represents an important issue in the field of medical diagnostic monitoring and
assistance. The difficulties encountered by physicians in the process of quantification and 3D
modeling indicate that manual segmentation may have direct neurological consequences for patient
survival, and therefore, the main interest of the work carried out.

The first work concerns the segmentation of the cutaneous layers we have used two different
architectures. The first one is Unet that is renowned for its power in the medical field, which
reached 81% of precision. But despite its power, it remains weak compared to EfficientNet. the
latter was introduced as being the encoder part of the network and keeping Unet as the decoder
part, this network has exceeded the Unet in terms of precision and speed by reaching 90% of
precision.

The second work is a participation in one of the most famous challenges in the field of medical
image segmentation called Brain Tumor Segmentation "BraTS" 2020. This challenge proposes to
segment 3D images of brain tumors. To do so, we introduced a generic 3D U-Net architecture that
allows a performance transfer, by embedding 2D classifier network (efficientnet). The encoder as
well as the decoder are composed of two stages. The 3D input data goes through a process of
depth shrinking in order to transform the 3D data into 2D data. Moreover, decoding also goes
through a 2D decoding phase followed by a 3D decoding procedure, we managed to segment the
three existing sub-regions of a brain tumor ET, WT and TC for each image after several tests and
our network reached 65%, 84% and 68% of dice coefficient respectively for ET, WT and TC.

As perspectives we want to integrate the concept of Variational Auto-Encoder (VAE) and the
concept of regularization after each convolution of our network and will see if the results will
improve.
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Appendix A

Tools and software

A.1 Tensorfow

Created by the Google Brain team in 2011, as a proprietary system dedicated to deep learning
neural networks, TensorFlow was originally called DistBelief. Subsequently, the source code of
DistBelief was modified and this tool became an application-based library. In 2015 it was renamed
TensorFlow and Google made it open source. Since then, it has undergone over 21,000 commu-
nication changes and moved to version 1.0 in February 2017. To put it simply, TensorFlow is a
machine learning library, it is a toolkit for solving problems. extremely complex math with ease.
It allows researchers to develop experimental learning architectures and turn them into software
[23].

A.2 Mango Software

Mango software is a tool for viewing medical images, whether 2D or 3D or other, mango provides
image viewing and provides all the information related to this image.

A.3 Amira Software

Amira Software is a powerful, universal 2D-5D solution for visualizing, analyzing and understand-
ing life science and biomedical research data from many image modalities, including Optical and
Electron Microscopy, CT, MRI and other techniques. With incredible speed and flexibility, Amira
Software supports advanced 2D-5D bioimaging workflows in research areas ranging from structural
and cellular biology to tissue imaging, neuroscience, preclinical imaging and bioengineering [24].

We use this software to create labels for our skin images.
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A.4 Google Colab

Google Colab or Colaboratory is a cloud service provided by Google (free), based on Jupyter
Notebook, designed for training and research in machine learning. This platform allows you to
train machine learning models directly in the cloud. Therefore, there is no need to install any
software on our computer except the browser [25].

Appendix B

Acceptance letter
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Abstract

3D medical image processing with deep learning greatly suffers from a
lack of data. Thus, studies carried out in this field are limited compared
to 2D image analysis related works, where very large datasets exist. As a
result, powerful and efficient 2D convolutional neural networks have been
developed and trained. In this work, we investigate the way to transfer the
performance of a two-dimensional classification network for the purpose
of three-dimensional semantic segmentation of brain tumors. We propose
an asymmetric U-Net network by integrating the EfficientNet model as
part of the encoding branch. As the input data is in 3D, the first layers
of the encoder are devoted to the reduction of the third dimension in
order to fit the input of the EfficientNet network. Experimental results
on validation data from the BraTS 2020 challenge demonstrate that the
proposed method achieve promising performance.


