République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université A. MIRA-Bejaia

Faculté de Technologie

Département de Génie Electrique

Mémoire de Fin d'études

En vue de l'obtention du diplôme de Master

en Electrotechnique **Option** : Réseaux Electriques

Thème :

Îlotage du système électrique avec présence de générateurs décentralisés

Soutenue le : 04 juillet 2019		Devant le Jury composé de :					
Mr F .HAMOUDI	МСВ	Univ. de Béjaia	Président				
Mme N.AOUZELLAG	МСВ	Univ. de Béjaia	Encadreur				
Mr S. ATROUNE	DR	Univ. de Béjaia	Examinateur				
Présenté par : M ^{11e} Hania MENICHE Mr Racim OUALI							

Année Universitaire : 2018/2019

Avant tout, nous remercions Dieu le tout puissant qui nous a donné la force et la

Patience de faire ce travail.

Nos plus vifs remerciements vont à :

Notre promotrice Mme AOUZELLAG.N d'avoir bien voulus diriger ce travail,

Pour sa disponibilité, sa franchise, son aspect sérieux dans le travail et son bagage

De connaissance qu'elle nous a fait partager.

Aux enseignants qui nous ont suivis tout au long de notre cursus universitaire.

A tous les membres du jury pour avoir accepté de juger notre travail.

Et à tous ceux qui ont participé de près ou de loin à la réalisation de ce mémoire.

Dédicaces

Je dédié ce modeste travail à mes parents

Qui m'ont soutenu durant ces années d'étude

A mes chers frères

A mes chères Sœurs

A toutes ma famille

A ma chère amie Thiziri qui n'a jamais cessé de m'encourager

A mon binôme Racim et à toute sa famille

Et à tous mes amis de près ou de loin.

. Hania

Dédicaces

Je dédie ce modeste travail :

A mes parents et mon cher oncle Rachid et sa femme Sabiha pour leurs Encouragement et soutien et leur confiance notamment durant mes

études.

A mes très chers cousins Jugurtha, Yacine, Sofiane.

A ma très cher cousine Mariem et ces enfants

A la famille Benmaamar

A mon aimable binôme Hania et toute sa famille.

A tous mes collègues de la promotion

2018-2019

A tous ceux qui m'aiment et qui m'ont encouragé

Racim

Table des matières

Remerciment	I
Dédicaces	II
Table des matières	I
Listes de figures	I
Liste des tableaux	I
Introduction générale	1

Chapitre I

Modélisation des éléments de réseau et calcul de l'écoulement de puissance2
Introduction2
I.1 Modélisation des différents éléments du réseau2
I.1.1 Modélisation des générateurs2
I.1.2 Modélisation des charges
I.1.3 Modélisation des lignes aériennes
I.1.4 Modélisation des transformateurs
I.1.5 Classification des nœuds du réseau électrique7
I.2 Equations d'écoulement de puissance
I.2.1 La matrice admittance

I.2.2 Formulation des équations de puissance	9
I.2.5 Détermination des éléments du Jacobien	11
I.2.6 Limites de la puissance réactive du générateur	13
Conclusion	14

Chapitre II

Production décentralisée : Types, impacts de raccordement et possibilités d'ilotage15
Introduction15
II.1Différents types de production décentralisées15
II.1.1 Définition de production décentralisée15
II.1.2 Energies renouvelables
II.1.3 Energies non renouvelables17
II.1.4 Cogénération
II.1.5 Production décentralisée à base d'énergie éolienne
II.1.6 Production décentralisée à base d'énergie solaire
II.2 Impacts de la production décentralisée sur le réseau de transport
II.2.1Incertitude sur la phase de planification
II.2.2 Nécessité de renforcement du réseau
II.2.3 Incertitude sur la marge de réserve d'opération
II.2.4 Sensibilité liée à la gestion du réactif
II.2.5 Sensibilité liée au déclenchement intempestif des GED

II.3Impacts de la production décentralisée sur le réseau de distribution	23
II.3.1 Impacts sur le sens de transit de puissance	24
II.3.2 Impacts sur la stabilité du système	24
II.3.3 Impacts sur le plan de protection	24
II.3.4 Impacts sur l'observabilité et la contrôlabilité du système	25
II.3.6 Sur le plan de tension	26
II.3.7 Sur le plan le courant de court-circuit	26
II.4 Possibilité d'îlotages intentionnels et non-intentionnels	27
II.4.1 Définition d'îlotage	27
II.4.2Îlotage intentionnel	27
II.4.2.1 Possibilités d'îlotage intentionnel à multi - niveaux de tension	27
II.4.3 Îlotage non-intentionnel	29
II.4.3.1Conséquences de l'ilotage non-intentionnel	29
Conclusion	

Chapitre III

Simulation et analyse de cas d'études	31
Introduction	31
III.1 Description du réseau étudié	31
III.2.1 Etat du réseau sans la présence de la production décentralisée	32
III.2.2 Etude de l'état du réseau surchargé	33

III.3.2 Possibilités de séparation du réseau en zones ilotées	
III.3.3 Etat du réseau avec présence de la production décentralisée	41
III.3.4 Zones après l'insertion des productions décentralisées	45
Conclusion	48
Conclusion générale	50
Références bibliographiques	51
Annexe	53

Listes de figures

Fig.I.1: Modèle du générateur	2
Fig.I.2 : Modèle de la charge	3
Fig.I.3 : Modèle d'une ligne courte	4
Fig.I.4 : Modèle en π de la ligne de longueur moyenne	5
Fig.I.5 : Schéma unifilaire d'une ligne longue avec les paramètres par unité de longueur	5
Fig.I.6 : Modèle général de transformateur	6
Fig.I.7 : Schéma admittance d'un réseau à 4 jeux de barres	8
Fig.II.1 : Exemple d'un système éolien	19
Fig.II.2 : Principe de la conversion dans un système éolien	19
Fig.II.3 : Zones de fonctionnement d'une éolienne	20
Fig.II.4 : Schéma d'une cellule photovoltaïque élémentaire	21
Fig.II.5 : Schéma électrique équivalent d'un module PV	22
Fig.II.6 : Influence sur le sens du flux de puissance	24
Fig.II.7: Problème d'aveuglement de protections	25
Fig.II.8 : Problème du déclenchement intempestif de protections	25
Fig.II.9 : Contribution au courant de court-circuit de plusieurs GED	26
Fig.II.10 : Séparation du réseau de transport en plusieurs sous – réseaux	28
Fig.II.11 : Exemple de cellules de réseau de distribution	28
Fig.III.1 : Architecture du réseau de transport étudié	31
Fig.III.2 : Réseau de transport séparé en zones A,B et C	38
Fig.III.3 : Architecture du réseau de transport étudié avec l'insertion des producti décentralisées	ions 41
Fig.III.4 : Réseau de transport avec présence des PD séparé en zones A, B et C	45

Liste des tableaux

Tab.III.1 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes32
Tab.III.2 : Amplitude et déphasage des tensions aux jeux de barres 33
Tab.III.3 : Puissance transitée pour les quatre états du réseau
Tab.III.4 : Amplitude et déphasage des tensions pour les quatre états du réseau35
Tab.III.5 : Pertes de puissance pour les quatre états du réseau
Tab.III.6 : Chutes de tension pour les quatre états du réseau
Tab.III.7 : Puissance du générateur de référence pour les 4 états du réseau
Tab.III.8 : Puissances transitées, pertes de puissance et chutes de tension dans les lignes39
Tab.III.9 : Amplitude et déphasage des tensions aux jeux de barres
Tab.III.10 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes .40
Tab.III.11 : Amplitude et déphasage des tensions aux jeux de barres40
Tab.III.12 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes .40
Tab.III.13 : Amplitude et déphasage des tensions aux jeux de barres
Tab.III.14 : Puissances générée et consommée dans chaque zone
Tab.III.15 : Puissances transitées, pertes des puissances et chutes de tension sans et avecl'insertiondes PD
Tab.III.16 : Amplitude et déphasage des tensions sans et avec l'insertion des PD 43
Tab.III.17: Puissances transitées dans les lignes pour différents taux intégration44
Tab.III.18 : Puissance de référence et les pertes totales en fonction du taux intégration des PD
Tab.III.19 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes .46
Tab.III.20 : Amplitude et déphasage des tensions aux jeux de barres
Tab.III.21 : Puissances transitées, pertes de puissances dans les lignes et chutes de tension 47
Tab.III.22: Amplitude et déphasage des tensions 47
Tab.III.23 : Puissance transitée, pertes de puissances et chute des tensions de puissance dans
Tab.III.24: Amplitude et déphasage des tensions dans les jeux de barres 48

Tab.III.25	: Puissance	générée,	puissance	consommées	et	taux	d'intégration	dans	chaque
zone									48

Introduction générale

De nos jours, l'énergie électrique est un bien de consommation à part entière devenu indispensable, non seulement pour la vie quotidienne de chacun mais, également, pour l'économie des pays. En effet, les moindres pannes électriques ont des conséquences économiques et sociétales considérables. Ainsi la nécessité d'avoir des réseaux électriques fiables et économiques est un enjeu de plus en plus important.

D'autres aspects comme l'ouverture des marchés, la volonté de préserver l'environnement et l'inquiétude grandissante face à la question de l'épuisement des réserves d'énergies fossiles conduira, de plus en plus, à envisager l'utilisation accrue de productions décentralisées à base d'énergies renouvelables (éolien, photovoltaïque, entre autres). Ces productions seront intégrées au réseau de distribution qui devra, de la même façon que le réseau de transport, assurer la disponibilité de divers services pour les gestionnaires de réseau [ALV09].

L'insertion de cette génération d'énergie au sein du système électrique existant n'est pas sans impact sur l'exploitation et le fonctionnement de ce dernier. Cependant, l'interconnexion à grande échelle de ces systèmes aux réseaux électriques pourrait créer de nombreux problèmes techniques tels que la modification du transit de puissance, la variation de la tension, la perte de la stabilité du réseau, l'impact sur la sélectivité du plan de protection, le déséquilibre de courant et de tension et le risque de l'îlotage [DUN09].

Dans ce contexte, l'étude menée dans ce travail porte sur le concept d'ilotage d'un système électrique avec présence des productions décentralisées. Le travail sera développé en trois chapitres :

Le premier chapitre expose, la modélisation des différents éléments du réseau électrique. Un calcul de l'écoulement de puissance dans le réseau électrique sera effectué et ce en appliquant la méthode itérative de Newton Raphson.

Dans le second chapitre, une recherche sur les différentes productions décentralisées est établit, ainsi que les impacts liés au raccordement de ces productions dans le réseau de distribution et de transport. Enfin, une étude sur les possibilités d'ilotage intentionnel et nonintentionnel avec présence des productions décentralisées dans le réseau de transport et de distribution sera effectuée.

Finalement dans le dernier chapitre, nous présenterons tous les résultats obtenus à partir de calcul de l'écoulement de puissance par la méthode de Newton Raphson sous MATLAB. Celui-ci permettra d'évaluer les différentes grandeurs électriques du réseau étudié pour des scénarios supposés.

Modélisation des éléments de réseau

et calcul de l'écoulement de puissance

Introduction

Un réseau électrique est modélisé par des générateurs, des charges, des lignes et des transformateurs pour assurer une alimentation fiable et de qualité en énergie électrique, qui est un vecteur indispensable aux activités humaines et un facteur essentiel de développement pour les pays. Il est donc nécessaire de savoir la produire de manière efficace pour répondre à la consommation croissante d'électricité.

Dans un premier lieu la modélisation des différents éléments de réseau électrique sera effectuée la suite du chapitre sera consacré au calcul de l'écoulement de puissance dans le réseau électrique par la méthode de newton Raphson qui permettra d'évaluer les différentes grandeurs, tensions et déphasages aux nœuds ainsi que les puissances transitées dans les lignes du réseau.

I.1 Modélisation des différents éléments du réseau

I.1.1 Modélisation des générateurs

Les générateurs sont des éléments du réseau capable de fournir de la puissance active au système (figure I.1). Ils peuvent aussi produire, voire consommer, de la puissance réactive de manière à maintenir un certain niveau de tension. Les limites de production des générateurs sont définies par [LAH11] :

Fig.I.1: Modèle du générateur

Avec,

 P_{Gi} : Puissance active délivrée par le générateur au nœud i ; Q_{Gi} : Puissance réactive délivrée par le générateur au nœud i ; V_i : Tension au nœud i ; θ_i : Angle de phase de la tension au nœud i.

I.1.2 Modélisation des charges

Les charges sont modélisées comme montrées dans la figure I.2, par des puissances constantes indépendantes de la tension nodale données par :

$$\bar{S}_{chi} = P_{chi} + jQ_{chi} \tag{I.1}$$

Avec,

 \bar{S}_{chii} : Puissance apparente complexe au nœud i ;

*P*_{chi}: Puissance active ;

 Q_{chi} : Puissance réactive (elle peut être positive ou négative selon que la charge est de nature inductive, respectivement, capacitive) [DAS06].

Fig.I.2 : Modèle de la charge

I.1.3 Modélisation des lignes aériennes

Les lignes aériennes constituent des circuits de transmission des réseaux triphasés reliant des générateurs aux charges. Une ligne électrique peut être considérée comme une succession de circuits dont les paramètres sont uniformément répartir sur toute sa longueur. Ces circuits se composent d'une infinité d'éléments identiques tels que, résistances et inductances linéiques dans le sens longitudinal et des capacités linéiques dans le sens transversal.

Le fonctionnement de la ligne bifilaire par unité de longueur est modélisé par un tronçon de ligne où la tension \overline{V}_S et le courant \overline{I}_S d'entrée (source) sont reliés à la tension V_R et le courant \overline{I}_R de sortie (récepteur) à travers les paramètres d'un quadripôle *A*, *B*, *C* et *D*, tel que [LAH11] [BLU07]:

$$\begin{cases} \overline{V}_{S} = A\overline{V}_{R} + B\overline{I}_{R} \\ \overline{I}_{S} = C\overline{V}_{R} + D\overline{I}_{R} \end{cases}$$
(I.2)

Ou bien, sous la forme matricielle,

$$\begin{bmatrix} \overline{V}_{S} \\ \overline{I}_{S} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} \overline{V}_{R} \\ \overline{I}_{R} \end{bmatrix}$$
(I.3)

A, B, C et D sont les paramètres qui dépendent des constantes de la ligne de transmission R,

L, C et G. Les paramètres ABCD sont, en général, des nombres complexes. A et D sont sans dimensions. B a l'unité en Ohm et C a l'unité en Siemens. Dans ce qui suit, nous allons identifier les paramètres A, B, C et D.

Pour éviter la confusion entre l'impédance série totale et l'impédance série par unité de longueur, la notation suivante est employée :

 $\bar{z} = \gamma + j \omega L (\Omega / m)$, impédance série par unité de longueur, avec γ la constante de propagation de l'onde ;

 $\bar{y} = G + j \omega . C (S/m)$, admittance shunt par unité de longueur ;

 $Z = \bar{z}.l (\Omega)$, impédance série totale;

 $\bar{Y} = \bar{y}.l(S)$, admittance shunt total;

L(m), la longueur de la ligne;

La conductibilité shunt G, est habituellement négligée pour le système aérien de transmission.

A. Ligne de transmission courte

La capacité peut être ignorée sans beaucoup d'erreur si les lignes sont de moins de 80 kilomètres de long ou si le niveau de tension ne dépasse pas 66 kV. Le modèle de ligne courte par phase est illustré par la figure I.3.

Fig.I.3 : Modèle d'une ligne courte

C'est un circuit série simple. Le rapport entre les courants et les tensions de chaque extrémité de la ligne (entre la source et la charge) peut être écrit comme :

$$\begin{bmatrix} \overline{\mathbf{V}}_{S} \\ \overline{I}_{S} \end{bmatrix} = \begin{bmatrix} 1 & \overline{Z} \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \overline{\mathbf{V}}_{R} \\ \overline{I}_{R} \end{bmatrix}$$
(I. 4)

B. Ligne de transmission moyenne

Pour les lignes de longueurs comprises entre 80 km et 250 km sont considérées comme des lignes de longueurs moyennes, le courant de ligne devient appréciable et la capacité shunt doit être considérée. La moitié de la capacité shunt peut être considérée à chaque extrémité de la ligne. Ceci est désigné sous le nom du modèle nominal en π .

Fig.I.4 : Modèle en π de la ligne de longueur moyenne

$$\begin{bmatrix} \overline{\mathbf{V}}_{\mathrm{S}} \\ \overline{I}_{\mathrm{S}} \end{bmatrix} = \begin{bmatrix} \left(1 + \frac{\overline{Z} \cdot \overline{Y}}{2}\right) & \overline{Z} \\ \left(1 + \frac{\overline{Z} \cdot \overline{Y}}{4}\right) & \left(1 + \frac{\overline{Z} \cdot \overline{Y}}{2}\right) \end{bmatrix} \cdot \begin{bmatrix} \overline{\mathbf{V}}_{\mathrm{R}} \\ \overline{I}_{R} \end{bmatrix}$$
(I.5)

C. Ligne de transmission longue

Pour les longueurs de lignes courtes et moyennes, les modèles ont été obtenus en supposant que les paramètres de la ligne sont des valeurs exactes. Dans le cas où la longueur de la ligne est supérieure à 250km, pour des solutions plus précises, les paramètres doivent être donnés comme une distribution uniformément répartie le long de la longueur. Dans ce cas, les tensions et les courants varient d'un point à l'autre sur la ligne.

D'une manière similaire aux expressions (I.4) et (I.5) obtenues pour modèle équivalent en π , nous avons :

$$\begin{cases} \overline{V}_{s} = \left(1 + \frac{\overline{Z}_{p}' \overline{Y}_{p}'}{2}\right) \overline{V}_{R} + \overline{Z'}_{p} \cdot \overline{I}_{R} \\ \overline{I}_{s} = \overline{Y'}_{p} \left(1 + \frac{\overline{Z}_{p}' \overline{Y}_{p}'}{4}\right) \overline{V}_{R} + \left(1 + \frac{\overline{Z}_{p}' \overline{Y}_{p}'}{2}\right) \overline{I}_{R} \end{cases}$$
(I.6)

La figure I.5 illustre un schéma unifilaire en π d'une ligne par unité de longueur.

I.1.4 Modélisation des transformateurs

Les transformateurs de puissance sont des éléments importants du réseau et ont contribué au développement des capacités de transport des réseaux électriques. Les différentes parties du réseau électrique requièrent différents niveaux de tension. Pour tirer profit du meilleur rendement. Il parait impératif de disposer d'un outil capable de changer le niveau de tension (et l'intensité du courant) et cela à des niveaux de puissances élevés.

Le transformateur de puissance, tel qu'il est connu actuellement, répond à ce besoin avec des rendements approchant l'unité. Il existe plusieurs types de transformateurs. Deux modèles des plus usités sont représentés dans ce qui suit [HAR04]:

A. Transformateur à gradins

Un transformateur à gradins peut être modélisé par le schéma de la figure I.6, En négligant l'effet de la branche magnétisante, ce qui est admis par rapport à la puissance transitée, et en ramenant l'impédance du primaire au secondaire.

Fig.I.6 : Modèle général de transformateur

Avec,

 V_m ; I_m : Tension et courant au primaire du transformateur ;

 V_k ; I_k : Tension et courant au secondaire du transformateur ;

*E*₁; *E*₂: F.e.m primaire et secondaire ;

 μ : Rapport de transformation.

 R_{tk} et x_{tk} : sont la résistance et la réactance, respectivement, du transformateur ramené au secondaire. On peut écrire :

$$\mu = \frac{\overline{E}_1}{\overline{E}_2} = -\frac{\overline{I}_k}{\overline{I}_m}$$
(I.7)

$$\bar{V}_m = \bar{E}_1 \tag{I.8}$$

$$\bar{V}_k = \bar{E}_1 + (r_{mk} + x_{mk})\bar{I}_k$$
(I.9)

A partir de (I.7)-(I.9), les expressions des courants sont :

$$\begin{cases} \bar{I}_m = \frac{\bar{y}_{mk}}{\mu^2} \bar{V}_m + \frac{-\bar{y}_{mk}}{\mu} \\ \bar{I}_k = \frac{-\bar{y}_{mk}}{\mu} \bar{V}_m + \bar{y}_{mk} \bar{V}_k \end{cases}$$
(I. 10)

La matrice admittance nodale du transformateur est donnée par :

$$\bar{Y}_{trans} = \begin{bmatrix} \frac{\bar{y}_{mk}}{\mu^2} & \frac{-\bar{y}_{mk}}{\mu} \\ \frac{-\bar{y}_{mk}}{\mu} & \bar{y}_{mk} \end{bmatrix}$$
(I.11)

I.1.5 Classification des nœuds du réseau électrique

Chaque nœud d'un réseau est caractérisé par quatre variables, Pi, Qi, Vi et δi . Si on connaît deux des quatre variables on pourra déterminer les deux autres à partir des équations principales de l'écoulement de puissance. En pratique, le problème se pose autrement, Pour cela, il faut classifier les nœuds du système comme suit [MOU13] :

A. Nœud générateur (P, V) ou barre de régulation

C'est un nœud connecté directement avec un générateur ou une source d'énergie réactive. La puissance active et le module de la tension sont spécifiés et il reste à déterminer la puissance réactive Q et l'angle de phase. La production de l'énergie réactive est limitée par des valeurs inférieures et supérieures, et respectivement. Si l'une des deux limites est atteinte, la valeur se fixe à cette limite et la tension se libère, le nœud devient alors un nœud charge (P, Q).

B. Nœud consommateur (P, Q) ou barre de charge

C'est un nœud connecté directement avec la charge, il ne possède aucune source d'énergie. Les puissances active et réactive sont spécifiées et il reste à déterminer l'amplitude de la tension $|\overline{V}|$ et de l'angle de phase δ qui varient avec la demande en énergie électrique.

C. Nœud bilan ($|\overline{V}| \delta$) ou barre d'équilibre

C'est un nœud connecté avec un générateur relativement puissant ; il est considéré dans le calcul d'écoulement de puissance afin de compenser les pertes actives et assurer l'égalité entre la demande et la génération de la puissance active. Dans un nœud bilan, l'amplitude de la tension et l'angle de phase sont spécifiés et il reste à déterminer P et Q.

Finalement, on doit mesurer les angles de phases par rapport à une référence qui est l'accès bilan dont l'angle de phase sera alors pris égal à zéro.

I.2 Equations d'écoulement de puissance

Les équations du réseau électrique peuvent être exprimées par plusieurs formes, néanmoins, la méthode des tensions nodales est la plus utilisée. Les équations des courants à chaque nœud donnent la matrice admittance, cette dernière est utilisée pour déterminer les tensions à différents jeux de barres sous forme d'équations non linéaires qui sont résolues avec plusieurs méthodes. Les puissances active et réactive sont déduites depuis les résultats de tension obtenus [DAS06].

I.2.1 La matrice admittance

En appliquant le théorème de Kirchhoff dans les quatre jeux de barre du réseau montré sur la figure I.7 [SAA99], on obtient le système d'équations (I.12) reliant les tensions et courants à chaque jeu de barre.

$$\begin{cases} I_{1} = y_{10} \cdot V_{1} + y_{12} \cdot (V_{1} - V_{2}) + y_{13} \cdot (V_{1} - V_{3}) \\ I_{2} = y_{20} \cdot V_{2} + y_{12} \cdot (V_{2} - V_{1}) + y_{23} \cdot (V_{2} - V_{3}) \\ 0 = y_{23} \cdot (V_{3} - V_{2}) + y_{13} \cdot (V_{3} - V_{1}) + y_{34} \cdot (V_{3} - V_{4}) \\ 0 = y_{34} \cdot (V_{3} - V_{4}) \end{cases}$$
(I.12)

Fig.I.7 : Schéma admittance d'un réseau à 4 jeux de barres

En réarrangeant les équations (I.12), on obtient :

$$\begin{cases} I_1 = (y_{10} + y_{12} + y_{13}) \cdot V_1 - y_{12} \cdot V_2 - y_{13} \cdot V_3 \\ I_2 = y_{12} \cdot V_1 + (y_{20} + y_{12} + y_{23}) \cdot V_2 - y_{23} \cdot V_4 \\ 0 = y_{13} \cdot V_1 - y_{23} \cdot V_2 + (y_{13} + y_{23} + y_{34}) \cdot V_3 - y_{34} \cdot V_4 \\ 0 = -y_{34} \cdot V_3 + y_{34} V_4 \end{cases}$$
(I.13)

Ainsi on obtient les éléments de la diagonale et en dehors de la diagonale de la matrice admittance comme suit :

$$Y_{11} = y_{10} + y_{12} + y_{13}$$

$$Y_{22} = y_{20} + y_{12} + y_{23}$$

$$Y_{33} = y_{13} + y_{23} + y_{34}$$

$$Y_{44} = y_{34}$$

$$Y_{12} = Y_{21} = -y_{12}$$

$$Y_{13} = Y_{31} = -y_{13}$$

$$Y_{23} = Y_{32} = -y_{23}$$

$$Y_{34} = Y_{43} = -y_{34}$$

Les équations finales sous forme matricielle sont par le système matriciel (I.14):

$$\begin{bmatrix} I_{1} \\ I_{2} \\ \vdots \\ I_{i} \\ \vdots \\ I_{n} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{1i} & \dots & Y_{1n} \\ Y_{21} & Y_{22} & \dots & Y_{2i} & \dots & Y_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ Y_{i1} & Y_{i2} & \dots & Y_{ii} & \dots & Y_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ Y_{n1} & Y_{n2} & \dots & Y_{ni} & \dots & Y_{nn} \end{bmatrix} \cdot \begin{bmatrix} V_{1} \\ V_{2} \\ \vdots \\ V_{i} \\ \vdots \\ V_{n} \end{bmatrix}$$
(I. 14)

En général, on peut écrire le système (I.14) comme suit :

$$I_{bus} = Y_{bus} V_{bus} \tag{I.15}$$

Avec,

 I_{bus} : Vecteur des courants injectés ; V_{bus} : Vecteur des tensions ; Y_{bus} : Matrice admittance.

Les éléments de la diagonale sont exprimés comme suit :

$$Y_{ii} = \sum_{j=0}^{n} y_{ij} \, j \neq i$$
 (I.16)

Les éléments hors diagonale :

$$Y_{ij} = Y_{ji} = -y_{ij}$$
 (I.17)

Avec;

 y_{ij} : Admittance propre de la branche (i - j).

I.2.2 Formulation des équations de puissance

Les équations de puissance active (P_i) , reactive (Q_i) et apparent (S_i) sont exprimés comme suit [GRO79]:

A. Puissance apparente

$$\bar{S}_i = \sum_{j=1}^n |V_i| |V_j| |Y_{ij}| \angle (\delta_i - \delta_j - \gamma_{ij})$$
(I.18)

B. Puissance active

$$P_{i} = \sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \cos(\delta_{i} - \delta_{j} - \gamma_{ij})$$
(I.19)

C. Puissance reactive

$$Q_{i} = \sum_{j=1}^{n} |V_{i}| |V_{j}| |Y_{ij}| \sin(\delta_{i} - \delta_{j} - \gamma_{ij})$$
(I. 20)

Avec,

 V_i, V_j : Tensions aux accès (*i*) et (*j*) respectivement ;

 δ_i, δ_j : Déphasages des tensions aux accès (*i*) et (*j*) respectivement ;

 γ_{ij} : Déphasage d'admittance.

I.2.3 Ecoulement de puissance utilisant la méthode de newton Raphson

En différenciant les équations (I.19) et (I.20) par rapport a δ et $|\overline{V}|$ on aura [DAS06] ;

$$\begin{cases}
\Delta P_i = \sum_{j=1}^{n} \frac{\partial P_i}{\partial \delta_i} \Delta \delta_i + \sum_{j=1}^{n} \frac{\partial P_i}{\partial \overline{|V_j|}} + \Delta \overline{|V_j|} \\
\sum_{j=1}^{n} \frac{\partial Q_j}{\partial Q_j} = \sum_{j=1}^{n} \frac{\partial Q_j}{\partial Q_j} = \sum_{j=1}^{n} \frac{\partial Q_j}{\partial Q_j}
\end{cases}$$
(I.21)

$$\Delta Q_i = \sum_{j=1}^n \frac{\partial Q_i}{\partial \delta_i} \Delta \delta_i + \sum_{j=1}^n \frac{\partial Q_i}{\partial \overline{|V_j|}} + \Delta \overline{|V_j|}$$
(I.22)

Physiquement, les ΔP_i et ΔQ_i représentent la différence entre les valeurs spécifiées et celle calculées des puissances active $P_{spéc}$ et $Q_{spéc}$ qui peuvent être calculées comme suit :

$$\begin{cases} \Delta P_{1} \\ \vdots \\ \Delta P_{n} \\ \vdots \\ \Delta Q_{n} \end{cases} = \begin{cases} \frac{\partial P_{1}}{\partial \delta_{1}} & \cdots & \frac{\partial P_{1}}{\partial \delta_{n}} & \frac{\partial P_{1}}{\partial |V_{1}|} & \cdots & \frac{\partial P_{n}}{\partial |V_{n}|} \\ \vdots \\ \frac{\partial P_{n}}{\partial \delta_{1}} & \cdots & \frac{\partial P_{n}}{\partial \delta_{n}} & \frac{\partial P_{n}}{\partial |V_{1}|} & \cdots & \frac{\partial P_{n}}{\partial |V_{n}|} \\ \frac{\partial Q_{1}}{\partial \delta_{1}} & \cdots & \frac{\partial Q_{1}}{\partial \delta_{n}} & \frac{\partial Q_{1}}{\partial |V_{1}|} & \cdots & \frac{\partial Q_{n}}{\partial |V_{n}|} \\ \vdots \\ \frac{\partial Q_{n}}{\partial \delta_{1}} & \cdots & \frac{\partial Q_{n}}{\partial \delta_{n}} & \frac{\partial Q_{n}}{\partial |V_{1}|} & \cdots & \frac{\partial Q_{n}}{\partial |V_{n}|} \end{cases} * \begin{cases} \Delta \delta_{i} \\ \vdots \\ \Delta \delta_{n} \\ \Delta |V_{1}| \\ \vdots \\ \Delta |V_{n}| \end{cases} \end{cases}$$
(I.23)

Avec,

$$\begin{bmatrix} J_1 \end{bmatrix} = \begin{bmatrix} \frac{\partial P_1}{\partial \delta_1} & \cdots & \frac{\partial P_1}{\partial \delta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_n}{\partial \delta_1} & \cdots & \frac{\partial P_n}{\partial \delta_n} \end{bmatrix} \begin{bmatrix} J_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial P_1}{\partial |V_1|} & \cdots & \frac{\partial P_n}{\partial |V_n|} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_n}{\partial |V_1|} & \cdots & \frac{\partial P_n}{\partial |V_n|} \end{bmatrix}$$
$$\begin{bmatrix} J_3 \end{bmatrix} = \begin{bmatrix} \frac{\partial Q_1}{\partial \delta_1} & \cdots & \frac{\partial Q_1}{\partial \delta_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial Q_n}{\partial \delta_1} & \cdots & \frac{\partial Q_n}{\partial \delta_n} \end{bmatrix} \begin{bmatrix} J_4 \end{bmatrix} = \begin{bmatrix} \frac{\partial P_1}{\partial |V_1|} & \cdots & \frac{\partial P_n}{\partial |V_n|} \\ \vdots & \ddots & \vdots \\ \frac{\partial P_n}{\partial |V_1|} & \cdots & \frac{\partial P_n}{\partial |V_n|} \end{bmatrix}$$

I.2.4 Système d'équations à résoudre

Le système d'équations sous forme matricielle à résoudre s'écrit comme suit [GRO79] :

$$\begin{cases} \{\Delta P\} \\ \{\Delta Q\} \end{cases}^k = [J]^k . \begin{cases} \{\Delta \delta\} \\ \{\Delta |V|\} \end{cases}^k$$

Avec,

$$[J] = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix}$$
(I.25)

$$\begin{cases} \{\delta\} \\ \{|V|\} \end{cases}^{k+1} = \begin{cases} \{\delta\} \\ \{|V|\} \end{cases}^{k} + \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix}^{-1k} \cdot \begin{cases} \{\Delta P\} \\ \{\Delta Q\} \end{cases}^{k}$$
(I. 26)

$$\begin{cases} |V_i|^{k+1} = |V_i|^k + \Delta |V_i|^k \\ \delta_i^{k+1} = \delta_i^k + \Delta \delta_i^k \end{cases}$$
(I.27)

I.2.5 Détermination des éléments du Jacobien

En dérivant les équations de puissance active et réactive par rapport à δ et |V|, on obtient les éléments de la matrice Jacobien comme suit [GRO79] :

A. Eléments de J1

> Eléments de la diagonale

$$\frac{\partial Pi}{\partial \delta_i} = -\sum_{\substack{j=1\\j\neq i}}^n |V_i| |V_j| |Y_{ij}| \sin(\delta_i - \delta_j - \gamma_{ij})$$
(I.28)

> Eléments hors de la diagonal

$$\frac{\partial Pi}{\partial \delta_k} = |V_i| |V_k| |Y_{ik}| \sin(\delta_i - \delta_j - \gamma_{ij}) \qquad i \neq k \qquad (I.29)$$

B. Eléments de J2

Eléments de la diagonale

$$\frac{\partial Pi}{\partial V_i} = |V_i||Y_{ii}|\cos\gamma_{ii} + \sum_{j=1}^n |V_j||Y_{ij}|\cos(\delta_i - \delta_j - \gamma_{ij})$$
(I.30)

Eléments hors de la diagonal

$$\frac{\partial Pi}{\partial V_k} = |V_i||Y_{ik}|\cos(\delta_i - \delta_k - \gamma_{ik}) \qquad i \neq k \qquad (I.31)$$

- C. Eléments de J3
- Eléments de la diagonale

$$\frac{\partial Qi}{\partial \delta_k} = \sum_{\substack{j=1\\j\neq i}}^n |V_i| |V_j| |Y_{ij}| \cos(\delta_i - \delta_j - \gamma_{ij})$$
(I.32)

Eléments hors de la diagonal

$$\frac{\partial Qi}{\partial \delta_k} = -|V_i||V_k||Y_{ik}|\cos(\delta_i - \delta_j - \gamma_{ij}) \qquad i \neq k \qquad (I.33)$$

- D. Eléments de J4
- Eléments de la diagonale

$$\frac{\partial Qi}{\partial V_i} = -|V_i||Y_{ii}|\sin\gamma_{ii} + \sum_{j=1}^n |V_j||Y_{ij}|\sin(\delta_i - \delta_j - \gamma_{ij})$$
(I.34)

Eléments hors de la diagonal

$$\frac{\partial Qi}{\partial V_k} = |V_i||Y_{ik}|\sin(\delta_i - \delta_k - \gamma_{ik}) \qquad i \neq k$$
(I.35)

I.2.6 Limites de la puissance réactive du générateur

La puissance réactive est limitée à nœud générateur « G » par une valeur minimale Q_{Gmin} et une autre maximale Q_{Gmax} [LAH11].

$$Q_{Gmin} \leq Q_G \leq Q_{Gmax}$$

Tant que Q_G reste dans les limites spécifiées, il est possible de maintenir $\Delta Q = 0$.Ceci permet d'éliminer la ligne lui correspondant dans le Jacobien. Il est possible de maintenir la tension à une valeur consigne et donc $\Delta Q=0$. On peut alors éliminer la colonne correspondante à cette tension, à condition que Q_G reste dans les limites du générateur.

$$\Delta Q_{max} = Q_{Gmax} - Q_L - Q^{cal} \Delta Q_{min} = Q_{Gmin} - Q_L - Q^{cal}$$
(I.36)

Ces simplifications s'appliquent seulement tant qu'il est possible de produire assez d'énergie réactive au nœud. Pour prendre en considération cet aspect, il faut procéder au processus itératif jusqu'à la convergence, en ignorant un éventuel dépassement des limites de puissance réactive. Après convergence, on vérifie, pour chaque nœud, s'il y'a eu effectivement un dépassement comme suit :

$$\begin{array}{l}
Q^{cal} \ge Q_{Gmax} \\
Q^{cal} \le Q_{Gmin}
\end{array} \tag{I.37}$$

1.2.7 L'équation de puissance transitée maximale

A partir de L'expression générale de puissance

$$P_{trans} = \frac{U_R \cdot U_S}{Z_L} \cdot \cos(\delta - \varphi_z) \tag{I.38}$$

Avec ;

*P*_{trans} : Puissance transitée dans la ligne ;

 U_R : Tension à la charge ;

 U_S : Tension à la source ;

 Z_L : Impédance de la ligne ;

 δ : Angle de charge ;

 φ_z : Déphasage de l'impédance.

Pour une puissance maximale on suppose $\delta = \varphi_z$ On obtient

$$P_{max} = \frac{U_R \cdot U_S}{Z_L} \tag{I.38}$$

Conclusion

Dans la première partie de ce chapitre les différents éléments du réseau électrique ont été modélisés. Une deuxième partie a été consacrée pour le calcul de la matrice admittance nodale et le développement mathématique des équations d'écoulement de puissance par la méthode de Newton-Raphson. Cette dernière a permis par son application, d'avoir des informations sur l'état du réseau à étudier pour des paramètres précis.

Dans le chapitre suivant nous avons traité les différents types des productions décentralisées et leurs impacts sur le réseau de transport et de distribution

Production décentralisée :

Types, impacts de raccordement et possibilités d'ilotage

Introduction

Traditionnellement, le renforcement du système de production électrique se fait par l'insertion de nouvelles unités de production décentralisée "PD" appelées aussi, générateurs électriques dispersés "GED" au réseau de transport ou de distribution. Au cours de ces dernières années, la tendance de libéralisation du marché de l'électricité a favorisé l'apparition de nombreux producteurs dans les réseaux électriques [PHA06].

Malgré les avantages apportés par ces productions à base de ressources renouvelables sur le réseau électrique, mais en revanche elles impactent le fonctionnement global du système.

Ce chapitre se divisera en trois parties : La première sera consacrée à définir et à exposer les différents types de productions décentralisées, la deuxième partie dédiée à la mise en évidence des impacts liés au raccordement de GED dans le réseau (sur les grandeurs électriques et sur la planification et l'exploitation) et enfin la troisième partie décrit la procédure l'ilotage intentionnel et non intentionnel dans le réseau de transport et de distribution.

II.1 Différents types de production décentralisées

II.1.1 Définition de production décentralisée

La production décentralisée ou dispersée se définit par opposition à la production classique, par unités de grosses puissances raccordées au réseau HT, dont la localisation et la puissance ont fait l'objet d'une planification, et qui sont commandées de manière centralisée pour participer au contrôle de la fréquence et de la tension, et assurer un fonctionnement fiable et économique de l'ensemble du réseau. Ces unités centralisées sont dites « dispatchées » [KOU09].

Par rapport aux unités classiques, les unités décentralisées sont caractérisées par des puissances ne dépassant pas 50 à 100 MW, ne sont pas planifiées de manière centralisée, ni actuellement coordonnées, elles sont généralement raccordées au réseau de distribution (<15 MW) et ne sont pas non plus actuellement destinées à assurer des services systèmes [KOU09].

On définit le taux d'intégration τ % d'une production décentralisée comme le rapport entre la puissance injectée par cette dernière (P_{PD}) au réseau et la puissance totale demandée par les charges situées au niveau de réseau ($\sum P_{charges}$). L'expression mathématique est donnée comme suit :

$$\tau\% = \frac{P_{PD}}{\sum P_{charges}}.100$$
 (II. 1)

Dans ce cas, la puissance générée par la centrale classique (P_G) va diminuer sa production de sorte à garantir l'équilibre entre la production et la consommation. La nouvelle valeur de la puissance du générateur devient :

$$P'_G = P_G - P_{PD} \tag{II.2}$$

Les formes d'énergie renouvelables à finalité électrique qui sont actuellement les plus exploitées tout en respectant au mieux l'environnement sont l'hydraulique, le solaire, le photovoltaïque et l'éolien. Ces formes d'énergie sont précisées dans ce qui suit :

II.1.2 Energies renouvelables

A. Hydraulique

Les centrales hydrauliques fonctionnent grâce à l'énergie potentielle de pesanteur de l'eau des rivières, des lacs ou des fleuves. Celle-ci est transformée en énergie électrique par un alternateur entrainé par une turbine mue par la force de l'eau qui est due soit à la hauteur de chute dans le cas de centrales alimentées par une conduite forcée, soit au débit dans le cas de centrales au fil de l'eau. L'énergie hydraulique est de loin l'énergie renouvelable la plus répandue puisqu'elle est également utilisée dans la production centralisée [RIC00].

B. Eolien

Les aérogénérateurs, ou les éoliennes, tirent leur énergie du vent qui est transmise par le rotor et le multiplicateur de vitesse à une génératrice. Cette source d'énergie, qui commence à atteindre sa maturité technologique, est de plus en plus répandue grâce à son fort attrait écologique [BER10].

C. Géothermie

Les centrales géothermiques utilisent la chaleur de nappes d'eau souterraines qui peuvent atteindre 350°C dans les zones les plus favorables. Cette eau chaude est pompée vers la surface pour passer dans des échangeurs. La vapeur produite est turbinée dans une installation thermique classique [LAH11].

D. Solaire photovoltaïque

L'énergie photovoltaïque est obtenue directement à partir du rayonnement solaire. Les panneaux photovoltaïques, composés de cellules photovoltaïques à base de silicium, ont la

capacité de transformer l'énergie photonique en énergie électrique. Le courant continu ainsi produit est directement utilisable [BER10].

E. Solaire thermique

Les centrales solaires thermiques sont des centrales thermiques utilisant des turbines à vapeur, celle-ci étant produite par chauffage de l'eau via un fluide caloporteur en utilisant le rayonnement solaire concentré sur un échangeur par des miroirs paraboliques [RIC00].

F. Biomasse et déchets

Les déchets agricoles, urbains renouvelables, biogaz et déchets issus de l'exploitation forestière peuvent être utilisés dans des centrales thermiques pour générer de la chaleur, puis de l'énergie électrique. L'intérêt majeur est que le dioxyde de carbone rejeté dans l'atmosphère est compensé par celui absorbé par la repousse de la biomasse. Le bilan carbone est donc proche de zéro [RIC00].

G. Marémotrice

Les centrales marémotrices peuvent s'apparenter à des centrales hydrauliques au fil de l'eau à ceci près que les turbines sont réversibles pour profiter du flux et du reflux des marées [LAV05].

H. Hydrolienne

Les centrales hydroliennes utilisent l'énergie cinétique de la houle dont l'énergie provient du vent. De nombreuses solutions techniques ont été imaginées, mais l'hostilité du milieu sous-marin compromet sérieusement leur développement à l'heure actuelle [LAV05].

II.1.3 Energies non renouvelables

A. Energies fossiles (gaz, charbon, pétrole)

Les technologies utilisant ces énergies primaires sont nombreuses et bien éprouvées, ce qui leur confère un grand intérêt économique.

Les principales technologies sont : Le thermique à flamme, basé sur des turbines ou micro turbines à vapeur, les moteurs à combustibles fossiles : Les turbines à gaz et les groupes diesel sont des moyens de productions utilisant une génératrice synchrone pour transformer l'énergie mécanique développée par celles-ci en énergie électrique. Ce type de production est le plus souvent envisagé pour des cogénérations de quelques mégawatts [RAM06].

B. Hydrogène

Les piles à combustible produisent directement de l'électricité à partir d'hydrogène et d'oxygène par réaction inverse de l'électrolyse de l'eau. C'est une énergie sur laquelle beaucoup d'espoirs sont fondés, bien que l'hydrogène ne se trouve pas sous forme directement exploitable dans la nature ; il faut en effet de l'énergie pour le produire. Les puissances disponibles de ce type de source varient en fonction de la technologie d'électrolyte considéré, de quelques kilowatts à quelques mégawatts [RAM06].

II.1.4 Cogénération

La cogénération, est une technique permettant de récupérer la chaleur produite par toute microcentrale électrique proche de bâtiments et fonctionnant à haute température, qu'il s'agisse de centrales thermiques classiques ou de certains types de piles à combustible. Le rendement énergétique global d'une telle installation peut atteindre 90% et l'utilisation locale de la chaleur produite permet d'éviter une consommation supplémentaire d'énergie pour le chauffage des bâtiments [RAM06].

II.1.5 Production décentralisée à base d'énergie éolienne

Les éoliennes sont une solution adoptée et actuellement développée notamment pour répondre aux objectifs de Kyoto afin de réduire les émissions de gaz à effet de serre. Il est d'usage d'exploiter cette énergie en mutualisant plusieurs éoliennes voisines, « ferme » éolienne ou de « parc » éolien afin d'avoir une puissance considérable. Un parc éolien peut fournir une puissance de quelques mégawatts [MOU13].

A. Constitution d'une éolienne

Une éolienne est composée de plusieurs éléments présentés sur la figure II.1 [MUL03] [LAV05].

Un mat, ou tour (17), supporte la nacelle (3) et la turbine (2). Il est important qu'il soit haut du fait de l'augmentation de la vitesse du vent avec la hauteur et aussi du diamètre des pales (1). Il est tubulaire et contient une échelle voire un ascenseur. Le capo (16) avec une armature métallique, accueille la génératrice (9) et son système de refroidissement (10), le multiplicateur de vitesse (6), quand il existe, comporte un arbre lent (5) et un cardan (4) supportant la turbine (2) et un arbre à grande vitesse d'accouplement (8) (1000 à 2000tours/min). Il est équipé d'un frein mécanique à disque (7), auquel est accouplé le générateur(9). Le multiplicateur de vitesse peut être pourvu d'un système de refroidissement (13) à huile.

La turbine (2) possède trois pales (1) qui permettent de capter l'énergie du vent et de la transférer à l'arbre lent. Un système électromécanique (15) permet généralement d'orienter les pales et de contrôler ainsi le couple de la turbine et de réguler sa vitesse de rotation. Les pales fournissent également un frein aérodynamique par «mise en drapeau» ou seulement par rotation de leurs extrémités. Un mécanisme utilisant des servomoteurs électriques (14) permet d'orienter la nacelle face au vent. Un anémomètre et une girouette (11) située sur le toit de la nacelle fournissent les données nécessaires au système de contrôle pour orienter l'éolienne et la déclencher ou l'arrêter selon la vitesse du vent.

Fig.II.1 : Exemple d'un système éolien

B. Principe de fonctionnement et conversion

Les systèmes éoliens transforment l'énergie cinétique du vent en énergie électrique à travers des aérogénérateurs. Les générateurs éoliens peuvent être connectés au réseau individuellement ou ils peuvent être groupés pour former des parcs éoliens. La plage de puissances des systèmes éoliens varie entre quelques kWs (systèmes mini éoliens) jusqu'aux installations de quelques MWs (grands systèmes éoliens). Une transmission mécanique assure la liaison entre la turbine et le rotor de la génératrice. Ce principe général de conversion est illustré sur la figure II.2 [MOU12] [RIC00].

Fig.II.2 : Principe de la conversion dans un système éolien

C. Zone de fonctionnement

Compte tenu des informations précédentes, la courbe de puissance convertie d'une turbine, généralement fournie par les constructeurs, permet de définir quatre zones de fonctionnement pour l'éolienne suivant la vitesse du vent [LAV05] :

Fig.II.3 : Zones de fonctionnement d'une éolienne

 v_i : vitesse du vent correspondant au démarrage de la turbine. Suivant les constructeurs, v_i varie entre 2.5m/s et 4m/s pour les éoliennes de forte puissance.

 v_2 : vitesse du vent pour laquelle la puissance extraite correspond à la puissance nominale de la génératrice. Suivant les constructeurs, v_2 varie entre 11.5m/s et 15m/s en fonction des technologies.

 v_3 : vitesse du vent au-delà de laquelle il convient de déconnecter l'éolienne pour des raisons de tenue mécanique en bout de pales. Pour la grande majorité des éoliennes, v_3 vaut 25m/s.

Zone I : v< v₁

La vitesse du vent est trop faible. La turbine peut tourner mais l'énergie à capter est trop faible.

Zone II : v₁<v< v₂ :

Le maximum de puissance est capté dans cette zone pour chaque vitesse de vent. Différentes méthodes existent pour optimiser l'énergie extraite. Cette zone correspond au fonctionnement à charge partielle (CP).

Zone III : v₂<v< v₃

La puissance disponible devient trop importante. La puissance extraite est donc limitée, tout En restant le plus proche possible de puissance nominale. Cette zone correspond au fonctionnement à pleine charge.

Zone IV : v> v₃

La vitesse du vent devient trop forte. La turbine est arrêtée et la puissance extraite est nulle.

II.1.6 Production décentralisée à base d'énergie solaire

A. Définition

Une cellule photovoltaïque est un dispositif qui permet de transformer l'énergie solaire en énergie électrique. Cette transformation est basée sur les trois mécanismes suivants

• Absorption des photons (dont l'énergie est supérieure au gap) par le matériau constituant le dispositif.

- Conversion de l'énergie du photon en énergie électrique, ce qui correspond à la création de paires électron/trous dans le matériau semi-conducteur.
- Collecte des particules générées dans le dispositif [OLE05].

B. Principe de fonctionnement

Une cellule photovoltaïque est assimilable à une diode photosensible, son fonctionnement est basé sur les propriétés des matériaux semi-conducteurs. La cellule photovoltaïque permet la conversion directe de l'énergie lumineuse en énergie électrique. Son principe de fonctionnement repose sur l'effet photovoltaïque. Une cellule est constituée de deux couches minces d'un semi-conducteur. Ces deux couches sont dopées différemment. Pour la couche N, c'est un apport d'électron périphérique et pour la couche P c'est un déficit d'électrons. Les deux couches présentent ainsi une différence de potentielle. L'énergie des photons lumineux captés par les électrons périphérique (couche N), leur permet de franchir la barrière de potentiel et d'engendrer un courant électrique continuI_{cell}. Pour effectuer la collecte de ce courant, des électrodes sont déposées par sérigraphie sur les deux couches de semi-conducteur (figure II. 4). L'électrode supérieure est une grille permettant le passage des rayons lumineux. Une couche antireflet est ensuite déposée sur cette électrode afin d'accroitre la quantité de la lumière absorbée [ZEG17].

Fig.II.4 : Schéma d'une cellule photovoltaïque élémentaire

C. Modélisation des générateurs PV

Le schéma électrique équivalent d'un module PV est donné à la figure II.5, où I_L représente le photo courant crée dans les photopiles par le rayonnement solaire. Il est Proportionnel à l'éclairement reçu et opposé au courant de la diode équivalente. I_d représente le courant de la diode à l'obscurité, est la résistance série Rs, due principalement à la difficulté de collecter les charges à la surface photosensible, Rp est la résistance parallèle, elle est une conséquence de l'état de la surface le long de la périphérie des photopiles, R_L représente la charge électrique [TAF06].

Fig.II.5 : Schéma électrique équivalent d'un module PV

II.2 Impacts de la production décentralisée sur le réseau de transport

L'intérêt de l'étude des impacts de l'insertion massive de production décentralisée sur le réseau de transport est apparu récemment lorsque certaines technologies utilisées sont arrivées à une certaine maturité (le cas de l'éolien). Cependant, ce type d'étude devenait un véritable besoin notamment après des incidents majeurs qui se sont passés au cours des dernières années dans le monde (black-out en Italie en Septembre 2003, par exemple) où la stratégie d'exploitation inadéquate des GED a contribué à des causes décisives de l'écroulement total du réseau.

C'est pour cette raison que dans cette partie, différents impacts que la pénétration à grande échelle de production décentralisée peut provoquer sur réseau de transport seront analysés [PHA06].

II.2.1 Incertitude sur la phase de planification

- **a.** Compte contenu des conditions géographiques diverses, ce n'est pas évident d'établir un lien entre la production et la capacité installée. Car, certaines périodes de l'année sont favorables en production (éolienne et photovoltaïque), mais faibles en consommation, ou inversement.
- **b.** En plus des raisons économiques et d'efficacité d'exploitation de ces parcs, une surestimation de la puissance installée peut conduire à des erreurs de planification des moyens de production à moyen et long terme.

II.2.2 Nécessité de renforcement du réseau

La modification des transits de puissance due à l'introduction des GED peut provoquer des problèmes de congestions locales. Plus la puissance produite par ces GED est grande, plus le risque de congestions dans les zones spécifiques est important des nouveaux renforcements de l'infrastructure du réseau seront alors nécessaires.

II.2.3 Incertitude sur la marge de réserve d'opération

Les GED de type intermittent provoquent également une incertitude en termes de quantité d'énergie générée et d'estimation du volume de réserve de puissance active et

réactive pour faire face aux aléas.

Traditionnellement, l'exploitation du réseau repose sur des principes de réaction rapide et sécurisée des moyens de grande production face à des aléas de consommation. L'augmentation de la production décentralisée impose de disposer de plus de réserve car on peut être en déficit de puissance de régulation pendant les périodes où l'éolien n'est pas disponible, et on peut avoir un surplus de réserve lorsque le vent est favorable. Par conséquent, l'opérateur du réseau doit être très flexible au niveau de l'estimation des marges de réserve afin de suivre non seulement l'évolution des charges mais aussi l'intermittence des sources.

II.2.4 Sensibilité liée à la gestion du réactif

Plusieurs systèmes à base des GED utilisent plutôt des générateurs de type à induction que des générateurs synchrones. Ces groupes consomme de puissance réactive et contribue à la chute de tension pendant la période de pointe. Ce phénomène pourrait dans certains cas déstabiliser le réseau jusqu'à l'écroulement de tension du réseau et contribuer ainsi à l'initiation d'un black-out.

II.2.5 Sensibilité liée au déclenchement intempestif des GED

Malgré que le taux de pénétration des GED devienne significatif dans certains systèmes, l'opérateur du réseau considère, en général, ces sources comme des charges négatives (nœud P-Q) qui devraient être déconnectées lors de l'incident arrivant au réseau. Les normes actuelles sur les conditions de raccordement des GED au réseau imposent des seuils assez stricts sur les variations de fréquence et de tension admissibles. GED doivent être déconnectées si :

- ➢ la tension dépasse la fourchette de 85% à 115% de la tension nominale ;
- la fréquence dépasse la fourchette de 49.5 à 50.5 Hz ou la fourchette de 47.5 à 51.5 Hz.

II.3 Impacts de la production décentralisée sur le réseau de distribution

On trouve dans la littérature plusieurs études qui ont été faites afin d'identifier et d'évaluer les impacts de la production décentralisée sur le réseau, puis, de proposer des solutions adaptées :

L'opérateur du réseau se préoccupe de ce type d'étude lors de la phase de planification ou de l'approbation d'un projet de raccordement des GED. Les principaux impacts à rappeler sont les suivants [ALV09] [LAV05] [CAI04] [VIE09] :

II.3.1 Impacts sur le sens de transit de puissance

Les réseaux sont dimensionnés pour recevoir les flux d'énergie du réseau de transport vers la distribution. L'insertion des GED dans les niveaux de tension autres que le réseau de transport peut créer une injection de puissance dans le sens contraire, c'est-à-dire de la distribution vers le transport. Les équipements, notamment les protections doivent alors être bidirectionnelles.

Ainsi, sachant que les réseaux aux niveaux de tension inférieure sont normalement surdimensionnés afin de faire face à l'accroissement de consommation, on n'aura peut-être pas, à court terme, de problèmes liés à des limites de la capacité de transfert d'énergie ; mais à plus long terme, lorsque le taux de pénétration de GED augmentera, la modification du sens de transit de puissance pourra éventuellement provoquer des congestions locales.

Fig.II.6 : Influence sur le sens du flux de puissance

II.3.2 Impacts sur la stabilité du système

Les génératrices de productions décentralisées peuvent être de type synchrone ou asynchrone. L'insertion de générateurs synchrones dans le réseau va changer le temps critique d'élimination de défaut (correspondant à la durée maximale d'une perturbation à laquelle le système peut résister sans perte de stabilité). Ceci influencera directement la limite de la stabilité dynamique du système en considération.

II.3.3 Impacts sur le plan de protection

La connexion de nouveaux générateurs au réseau modifiera également les courants de court-circuit et donc le réglage des seuils des protections. Deux principaux problèmes apparaissent suite à une insertion de GED:

A. Le problème d'aveuglement de protections

Le problème d'aveuglement de protections se produit lorsqu'un défaut apparaît sur un départ possédant une GED. Ce problème est illustré sur la Figure II.7. En effet, en l'absence de GED, le seuil de la protection P2 est réglé à $I_{seuilP2} = I_{df 1}$ (courant de défaut provenant du réseau amont). Si on raccorde une GED, alors la GED va participer au courant de défaut. Le courant de défaut apporté par le réseau amont $I_{df 2}$, est alors plus faible que $I_{df 1}$ est donc inférieur au seuil de la protection P2 qui ne déclenche pas d'où le terme d'aveuglement.

Fig.II.7: Problème d'aveuglement de protections

B. Déclenchement intempestif des protections

Le problème de déclenchement intempestif (illustré sur la figure II.8) se produit lorsqu' un défaut apparaît sur un départ adjacent au départ possédant une GED. En effet, la GED participant au courant de défaut peut faire déclencher la protection P2 si le courant de défaut apporté par la GED est supérieur au seuil de la protection P2.

Fig.II.8 : Problème du déclenchement intempestif de protections

II.3.4 Impacts sur l'observabilité et la contrôlabilité du système

Les GED, notamment celles à type énergie nouvelle et renouvelable, sont caractérisées par l'intermittence des sources primaires. Cela sera difficile pour l'opérateur d'estimer la puissance de sortie de ces producteurs, donc la puissance fournie du système, par conséquent.

II.3.5 Impacts sur la qualité de service

Les GED de type asynchrone consomment de la puissance réactive afin de magnétiser leur circuit magnétique. Lors de la connexion au réseau, elles appellent un courant fort, ce qui contribue au creux de tension (en profondeur).

D'ailleurs, la présence d'interfaces d'électronique de puissance peut faire augmenter le taux des harmoniques qui nuisent gravement à la qualité de service fournie.

II.3.6 Sur le plan de tension

La production décentralisée peut causer des modifications du profil de tension, qui peut être un problème complexe (mesure, analyse et atténuation). Ces fluctuations peuvent être temporaires comme lors du démarrage d'une machine (générateur asynchrone ou enclenchement des transformateurs de raccordement par exemple) ou progressives dans le cas d'une variation de la production et de la charge environnante qui conduit à un changement dynamique important de la tension.

A. Les creux de tension

Il s'agit d'une diminution brutale de la tension qui peut aller jusqu'à 90% de la tension nominale pendant une durée comprise entre 10ms et 1minute. Le fonctionnement des protections limite la durée des creux de tension suite à des défauts polyphasés. Ils peuvent intervenir également lorsqu'une GED se couple au réseau.

B. Flicker

Il s'agit de variations rapides de la tension inférieures à 10% de la tension nominale de manière répétitive. Il provient du fonctionnement de certaines machines comme les fours à arcs par exemple. Le « Flicker » n'a aucune incidence sur les matériels. Cependant il provoque une gêne visuelle car il est responsable du papillotement des ampoules à incandescence. Le« flicker » peut apparaître en raison de l'intermittence des GED si celles-ci sont des éoliennes ou encore des panneaux photovoltaïques.

II.3.7 Sur le plan le courant de court-circuit

La contribution aux courants de court-circuit de la production décentralisée peut modifier les niveaux de courant de court-circuit et causer un dysfonctionnement du plan de protection (coordination entre les différentes protections). Cela pourrait affecter la fiabilité et la sûreté du système électrique et mettre en danger les personnes et les biens (figure II.9).

Fig.II.9 : Contribution au courant de court-circuit de plusieurs GED

II.4 Possibilité d'îlotages intentionnels et non-intentionnels

II.4.1 Définition d'îlotage

L'ilotage est un phénomène correspondant à la continuité du fonctionnement d'un réseau local lorsque celui-ci est déconnecté du réseau global. Pour qu'un ilot perdure, il doit y avoir, avant apparition de l'ilot, un certain équilibre entre la puissance produite et la puissance consommée, à la fois en termes de puissance active et de puissance réactive; autrement dit, le réseau amont ne doit fournir ou recevoir qu'une petite partie de la puissance active et réactive consommée ou produite par l'ilot. Ainsi, la perte du réseau amont ne constituera qu'un «évènement mineur» du point de vue de l'ilot, qui passera potentiellement inaperçu aux yeux des protections qui y sont situées. L'ilot formé peut être intentionnel ou non-intentionnel [ARG18].

II.4.2 Îlotage intentionnel

On parle alors de micro- réseau. C'est par exemple le cas des îles qui sont la plupart du temps isolées électriquement de tout autre réseau. Un micro-réseau doit pouvoir assurer la stabilité de la tension et de la fréquence, et ce sans bénéficier des effets de foisonnement de la production et de la consommation et sans avoir la possibilité de mutualiser les ressources à grande échelle comme le ferait un réseau de transport continental (micro- réseau). A priori, ceci tend à accroitre les coûts de l'énergie électrique et réduire la qualité de fourniture; mais le secteur est encore en plein développement et est le sujet de nombreux travaux de recherches [PHA06].

II.4.2.1 Possibilités d'îlotage intentionnel à multi - niveaux de tension

L'îlotage intentionnel n'est pas un concept nouveau. De plus, considérant que les moyens de production principaux du système électrique traditionnel sont de très grande puissance, raccordés au réseau de transport et exploités de manière centralisée, ce mode d'opération n'est classiquement possible que sur le réseau de transport. Le concept d'îlotage intentionnel ou tout simplement l'îlotage est donc habituellement sous-entendu par l'îlotage sur le réseau de transport.

On peut en compter trois types:

A. Îlotage intentionnel sur le réseau de transport

Aujourd'hui, l'îlotage intentionnel au niveau du réseau de transport fait partie du plan de défense de nombreux systèmes électriques dans le monde. Ce mode d'opération exceptionnel est surveillé depuis le centre de dispatching national par un système de télé conduite et de télécommunication de plus en plus performant.

Fig.II.10 : Séparation du réseau de transport en plusieurs sous - réseaux

On note Bi, le nœud *i* avec i défini sur la figure II.10. Les différentes cellules peuvent être formées par : l'ouverture des lignes B1 - B39, B3 - B4, B17 - B18 et B25 - B26 pour former la zone D ; l'ouverture des lignes B25 - B26, B16 - B17 et B17 - B18 pour former la zone C ; l'ouverture des lignes B14 - B15 et B16 - B17 pour former la zone B.

B. Îlotage intentionnel sur le réseau de distribution

L'îlotage sur une partie du réseau de distribution se fait donc par l'ouverture du disjoncteur de départ et de certains interrupteurs tout au long du départ. L'alimentation de la cellule est assurée par les GED.

La démarcation de ces cellules sera différente en fonction des situations : elles peuvent être formées sur une portion d'un départ HTA ou sur une zone qui regroupe des portions qui se situent sur plusieurs départs, voire sur des postes sources différents.

Fig.II.11 : Exemple de cellules de réseau de distribution

C. Îlotage intentionnel sur le réseau de basse tension

L'îlotage intentionnel au niveau des réseaux de basse tension est un mode de fonctionnement que l'on voit actuellement sous plusieurs formes. Nous avons vu que les clients prioritaires tels que les hôpitaux, certaines industries, relais de télécommunication, etc.

doivent toujours disposer de sources de secours sur leur sites afin d'assurer la continuité des services vitaux lors des défauts sur le réseau principal. Des consommateurs situés sur les sites isolés et difficiles d'accès au réseau principal (refuges de montagne, petites îles, etc.) ont également recours à un mode de fonctionnement îloté en s'équipant de petites sources d'alimentation autonomes.

II.4.3 Îlotage non-intentionnel

On parle aussi d'ilot non voulu, d'ilot non contrôlé, ou d'ilot intempestif. Il peut aussi bien se former au niveau d'un réseau BT qu'au niveau d'un réseau HTA. Cela peut arriver lorsqu'une des protections amont s'ouvre à un moment où un certain équilibre approximatif existait entre puissance consommée localement et puissance produite localement, en actif et en réactif. Ce type d'évènement n'est pas voulu et n'est pas contrôlé: le contrôle interne des générateurs n'est pas adapté pour fonctionner sur un réseau iloté (contrairement à des générateurs installés sur un micro-réseau), le plan de protection du réseau de distribution n'est pas prévu pour ce mode de fonctionnement. Les GED demandent donc aux producteurs de détecter tout fonctionnement anormal du réseau, ce qui inclut les ilots non-intentionnels, et d'arrêter alors le fonctionnement du générateur; ce rôle est assuré par les protections de découplage [BRU17] [ARG18].

II.4.3.1 Conséquences de l'ilotage non-intentionnel

L'ilotage non-intentionnel cause de nombreux problèmes. Par exemple, la sécurité des personnes n'est plus à son meilleur niveau, en effet, ne dispose pas de moyen de vérifier, en temps-réel et à distance, si le réseau continue à être alimenté ou non. Ceci entrainerait donc des risques pour les personnes intervenant sur les réseaux.

L'ilotage non-intentionnel provoque également un danger pour le matériel raccordé au réseau îloté. Lors d'un ilotage non-intentionnel, la tension et la fréquence varient selon les charges et les productions dans l'ilot. Les équipements sur le réseau et chez les consommateurs ne sont, a priori, pas dimensionnés pour fonctionner lors de variations brutales de fréquence et/ou de tension, ce qui pourrait conduire à leur dégradation. Cette situation pose également des problèmes concernant la qualité de l'énergie. La commission de régulation de l'énergie (CRE) définit la qualité de l'énergie par trois différentes notions :

- La qualité de l'onde de tension comprend les perturbations concernant la forme de l'onde de tension comme les creux de tension ou le taux d'harmonique.
- La qualité de service recouvre les relations entre les utilisateurs et le gestionnaire de réseau associé (voire même un fournisseur). Cela comprend par exemple des délais de remise en service et les notifications de coupure programmée.
- La continuité d'alimentation (qui englobe les coupures ainsi que les interruptions subies par les utilisateurs).

Les coupures inférieures à une seconde ne sont pas classées et sont considérées comme des creux de tension.

Conclusion

L'intégration de productions décentralisées dans le réseau de distribution provoque de nombreuses modifications du comportement de celui-ci. Ces modifications peuvent être bénéfiques pour le réseau mais également préjudiciables à savoir, sur les transits de puissance, le plan de tension et les courants de court-circuit. De plus, ces productions peuvent également modifier le comportement du système de protection et amener à des situations d'aveuglement ou de déclenchement intempestif, pour assurer la continuité de service et éviter les conséquences néfastes sur le fonctionnement du réseau, les gestionnaires optent à l'ilotage du réseau.

Le troisième chapitre sera consacré à la simulation d'un réseau électrique IEEE dans un environnement MATALB. Il sera sujet de différents scénarios de ses états de fonctionnement sans et avec présence des productions décentralisées.

Simulation et analyse de cas d'études

Introduction

Dans ce chapitre, nous allons effectuer le calcul de l'écoulement de puissance en appliquant la méthode de Newton Raphson, afin d'étudier l'état du réseau et d'évaluer les grandeurs tensions et puissances avant et après l'insertion des productions décentralisées.

Un regard sera porté sur quelques impacts pouvant touchés le fonctionnement du réseau, pour cela, le travail sera concentré sur l'étude de l'état du réseau pour trois scénarios différents :

- Réseau à son état initial ;
- Réseau surchargé ;
- Réseau avec production décentralisée.

III.1 Description du réseau étudié

Le cas d'étude dans ce travail est un réseau de transport 400kV présenté dans la figure III.1 [PHA06]. Le réseau est constitué de 29 jeux de barres (Jb), le premier (1) représente l'accès de référence avec 9 générateurs, 18 charges et 35 lignes. Les générateurs sont indiqués par des symboles 'G', tandis que les charges sont représentées par des flèches.

Fig.III.1 : Architecture du réseau de transport étudié

Les paramètres du réseau (résistance, réactance et capacité des lignes) ainsi que les données (puissances active et réactive des productions et des charges) sont représentés dans l'annexe.

III.2 Résultats de simulation

III.2.1 Etat du réseau sans la présence de la production décentralisée

Le calcul de l'écoulement de puissance du réseau à l'état de fonctionnement initial a été effectué afin d'évaluer les tensions aux jeux de barres ainsi que les puissances transitées à travers les lignes. Une étude comparative entre les puissances transitées ' P_{trans} ' et celles maximale théoriques ' P_{maxth} ' au niveau de chaque ligne est présentée dans le tableau (III.1). L'amplitude et le déphasage des tensions aux jeux de barres sont donnés dans le tableau (III.2). Les valeurs sont calculées en (pu) dans la base 100MVA et 400kV.

On remarque bien que les valeurs des puissances transitées, des pertes de puissances ainsi que celles des chutes de tension sont dans les limites tolérées par la norme

N° de la ligne	Ptrans	Pmaxth	ΔP	$\Delta P\%$	ΔV	$\Delta V\%$
	(pu)	(pu)	(pu)		(pu)	
1	6.5288	43.7090	0.0741	0.1191	0.0262	2.4673
2	5.1968	44.2598	0.0460	0.0740	0.0131	1.2383
3	5.8360	66.2472	0.0376	0.0605	0.0030	0.2815
4	0.7374	115.9971	0.0003	0.0005	0.0000	0.0000
5	-5.0734	25.4038	0.0774	0.1245	0.0469	4.4220
6	0.6679	46.6270	0.0010	0.0016	0.0100	0.9428
7	1.9104	75.6206	0.0037	0.0060	0.0026	0.2462
8	-3.2975	77.2669	0.0099	0.0160	0.0055	0.5157
9	-1.0356	76.6607	0.0012	0.0020	0.0059	0.5568
10	-3.2134	382.8907	0.0021	0.0034	0.0015	0.1456
11	-0.0940	88.1867	0.0003	0.0005	0.0067	0.6338
12	1.3100	107.5371	0.0016	0.0026	0.0078	0.7358
13	-1.0097	121.7120	0.0006	0.0010	0.0007	0.0666
14	-1.0296	213.4603	0.0003	0.0005	0.0005	0.0436
15	-6.3442	28.1675	0.1105	0.1776	0.0421	3.9725
16	1.0106	232.1581	0.0003	0.0005	0.0007	0.0666
17	3.4894	232.0589	0.0037	0.0059	0.0003	0.0263
18	3.4857	98.6911	0.0085	0.0137	0.0014	0.1308
19	2.4404	45.3871	0.0098	0.0157	0.0102	0.9645
20	-2.7694	104.6291	0.0058	0.0094	0.0089	0.8371
21	-0.0157	112.5468	0.0008	0.0013	0.0097	0.9147
22	-3.2994	51.0246	0.0154	0.0247	0.0025	0.2320
23	-2.2171	73.0868	0.0053	0.0086	0.0057	0.5402
24	-0.5331	168.0060	0.0002	0.0002	0.0016	0.1491
25	-0.3266	123.1915	0.0001	0.0002	0.0016	0.1550
26	0.3101	59.0697	0.0006	0.0010	0.0102	0.9611
27	2.0052	57.6410	0.0052	0.0084	0.0000	0.0000
28	-4.9624	70.6638	0.0250	0.0402	0.0082	0.7722
29	0.5125	103.8908	0.0002	0.0003	0.0000	0.0000
30	2.6373	28.3778	0.0181	0.0291	0.0040	0.3811
31	2.5371	31.8304	0.0180	0.0290	0.0310	2.9204
32	2.5077	71.1562	0.0072	0.0115	0.0135	1.2766
33	-0.3119	17.8339	0.0113	0.0181	0.0117	1.1042
34	-1.0668	16.4508	0.0066	0.0106	0.0310	2.9204
35	-2.3831	67.3217	0.0085	0.0136	0.0193	1.8162
		Pertes totales (pu)	0.5174		•	·

Tab.III.1 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes

	Amplitude et déphasage des tensions
Jeu de barres	(pu)
1	1.0600∠0
2	1.0000∠-0.3163
3	1.0030∠-0.4047
4	0.9930∠-0.4183
5	0.9985∠-0.3758
6	1.0000∠-0.3675
7	0.9922∠-0.3791
8	0.9917∠-0.3743
9	1.0338∠-0.1476
10	1.0000∠-0.3548
11	1.0007∠-0.3592
12	1.0003∠-0.3699
13	0.9989∠-0.4052
14	0.9887∠-0.4582
15	0.9975∠-0.4323
16	1.0072∠-0.4330
17	1.0056∠-0.4302
18	1.0000∠-0.3675
19	1.0000∠-0.4023
20	0.9918∠-0.4015
21	1.0000∠-0.3314
22	1.0000∠-0.3363
23	0.9960∠-0.4291
24	1.0000∠-0.3227
25	1.0310∠-0.4047
26	1.0174∠-0.4390
27	1.0193∠-0.3741
28	1.0000∠-0.3371
29	1.0469∠-0.1165

Tab.III.2 : Amplitude et	déphasage des	tensions aux jeux	de barres
--------------------------	---------------	-------------------	-----------

III.2.2 Etude de l'état du réseau surchargé

Des modifications ont été apportées aux niveaux des jeux de barres charges 4, 8 et 14, telles que les puissances active et réactive sont augmentées de manière à créer une surcharge. Le calcul de l'écoulement de puissance a été effectué de nouveau afin de voir le comportement du réseau vis-à-vis de cette surcharge. Le tableau (III.3) présente les valeurs de la puissance transitée dans les lignes ainsi que la puissance maximale théorique après la surcharge aux différents jeux de barres.

	Puisson oos tronsitios (nu)							
Nº de le liene		Puissances ti	ansitees (pu)		Dmoyth			
in de la lighe	Etat initial	Surcharge au	Surcharge au	Surcharge au	Pinaxui			
		Jb4	Jb4 et Jb8	Jb4, Jb8 et Jb14				
1	6.5288	9.4332	12.8281	14.2151	43.7090			
2	5.1968	7.7356	10.2778	12.2726	44.2598			
3	5.8360	7.7656	9.6029	10.2390	66.2472			
4	0.7374	1.1961	1.6755	2.7885	115.9971			
5	-5.0734	-7.4617	-9.7784	-11.5275	25.4038			
6	0.6679	2.4650	4.0158	3.6023	46.6270			
7	1.9104	2.0142	2.2652	3.3003	75.6206			
8	-3.2975	-5.4062	-3.8961	-4.5497	77.2669			
9	-1.0356	-2.1399	-2.1156	-1.8705	76.6607			
10	-3.2134	-3.8004	-3.5500	-3.5917	382.8907			
11	-0.0940	-1.6345	-0.3618	-0.9789	88.1867			
12	1.3100	0.1635	1.1565	0.6576	107.5371			
13	-1.0097	-0.4520	-1.1972	-0.7420	121.7120			
14	-1.0296	-2.1764	-1.1937	-1.6980	213.4603			
15	-6.3442	-9.0363	-12.0103	-13.1414	28.1675			
16	1.0106	0.4522	1.1985	0.7425	232.1581			
17	3.4894	4.0478	3.3015	3.7575	232.0589			
18	3.4857	4.0428	3.2981	3.7532	98.6911			
19	2.4404	1.8852	1.1681	1.8667	45.3871			
20	-2.7694	-3.3207	-4.0342	-3.3392	104.6291			
21	-0.0157	-0.5697	-1.2871	-0.5887	112.5468			
22	-3.2994	-3.2993	-3.2993	-3.2991	51.0246			
23	-2.2171	-2.2172	-2.2173	-2.2173	73.0868			
24	-0.5331	-0.5329	-0.5329	-0.5326	168.0060			
25	-0.3266	-0.4296	-0.6791	-1.7070	123.1915			
26	0.3101	-0.1409	-0.6095	1.1180	59.0697			
27	2.0052	2.0052	2.0052	2.0052	57.6410			
28	-4.9624	-4.9625	-4.9625	-4.9624	70.6638			
29	0.5125	0.5124	0.5123	0.5122	103.8908			
30	2.6373	2.6372	2.6372	2.6370	28.3778			
31	2.5371	2.9952	3.4738	4.5838	31.8304			
32	2.5077	2.9613	3.4336	4.5275	71.1562			
33	-0.3119	-0.3214	-0.3283	-0.3729	17.8339			
34	-1.0668	-1.0584	-1.0524	-1.0117	16.4508			
35	-2.3831	-2.3918	-2.3981	-2.4400	67.3217			

Tab.III.3 : Puissance transitée pour les quatre états du réseau

L'amplitude et déphasage des tensions, les pertes de puissance ainsi que les chutes des tensions sont représentés dans les tableaux (III.4), (III.5) et (III.6) respectivement.

Tab.III.4 : Amplitude et déphasage des tensions pour les quatre états du réseau

Jeu de barre	Amplitude (pu) et déphasage (rad) des tensions								
N°	Etat initial	Surcharge au Jb4	Surcharge aux	Surcharge aux					
			Jbs 4 et 8	Jbs 4, 8 et 14					
1	1.0600∠0	1.0600∠0	1.0600∠0	1.0600∠0					
2	1.0000∠-0.3163	1.0000∠-0.48.06	1.0000∠-0.6579	1.0000∠-0.8130					
3	1.0030∠-0.4047	0.9940∠-0.5985	0.9897∠-0.8041	0.9858∠-0.9694					
4	0.9930∠-0.4183	0.9728∠-0.6514	0.9687∠-0.8921	0.9659∠-1.0487					
5	0.9985∠-0.3758	0.9935∠-0.5807	0.9877∠-0.8409	0.9852∠-0.9884					
6	1.0000∠-0.3675	1.0000∠-0.5712	1.0000∠-0.8325	1.0000∠0.9800					
7	0.9922∠-0.3791	0.9847∠-0.5715	0.9623∠-0.8406	0.9538∠-0.9827					
8	0.9917∠-0.3743	0.9805∠-0.5608	0.9470∠-0.8335	0.9344∠-0.9725					
9	1.0338∠-0.1476	1.0078∠-0.128	0.9494∠-0.3131	0.9157∠-0.3591					
10	1.0000∠-0.3548	1.0000∠-0.5655	1.0000∠-0.8174	1.0000∠-0.9707					
11	1.0007∠-0.3592	1.0007∠-0.5675	1.0007∠-0.8226	1.0007∠-0.9740					
12	1.0003∠-0.3699	0.9973∠-0.5828	0.9970∠-0.8315	0.9963∠-0.9867					
13	0.9989∠-0.4052	0.9894∠-0.6238	0.9877∠-0.8648	0.9856∠-1.0247					
14	0.9887∠-0.4582	0.9834∠-0.6656	0.9819∠-0.8906	0.9786∠-1.0664					
15	0.9975∠-0.4323	0.9941∠-0.6342	0.9928∠-0.8523	0.9891∠-1.0345					
16	1.0072∠-0.4330	1.0025∠-0.6298	1.0003∠-0.8412	0.9923∠-1.0294					
17	1.0056∠-0.4302	0.9992∠-0.6260	0.9961∠-0.8353	0.9894∠-1.0148					
18	1.0000∠-0.3675	1.0000∠-0.5694	1.0000∠-0.7875	1.0000∠-0.9697					
19	1.0000∠0.4023	1.0000∠-0.6043	1.0000∠-0.8223	1.0000∠-1.0046					
20	0.9918∠-0.4015	0.9901∠-0.6033	0.9894∠-0.8213	0.9874∠-1.0035					
21	1.0000∠-0.3314	1.0000∠-0.5333	1.0000∠-0.7513	1.0000∠-0.9335					
22	1.0000∠-0.3363	1.0000∠-0.5382	1.0000∠-0.7562	1.0000∠-0.9384					
23	0.9960∠-0.4291	0.9930∠-0.6310	0.9918∠-0.84	0.9886∠-1.0312					
24	1.0000∠-0.3227	1.0000∠-0.4909	1.0000∠-0.6723	1.0000∠-0.8371					
25	1.0310∠-0.4047	1.0285∠-0.5873	1.0268∠-0.7839	1.0151∠-0.9846					
26	1.0174∠-0.4390	1.0138∠-0.6282	1.0116∠-0.8316	0.9931∠-1.0492					
27	1.0193∠-0.3741	1.0187∠-0.5574	1.0183∠-0.7545	1.0158∠-0.9583					
28	1.0000∠-0.3371	1.0000∠-0.5204	1.0000∠-0.7173	1.0000∠-0.9206					
29	1.0469∠-0.1165	1.0308∠-0.1756	1.0064∠-0.2383	0.9790∠-0.2920					

Tab.III.5 : Pertes de puissance pour les quatre états du réseau

	Pertes de puissance								
N° de	Etat i	nitial	Surcharg	Surcharge au Jb4 Surcharge aux			x Surcharge aux		
ligne					Jbs 4	4 et 8	Jbs 4, 8 et 14		
	ΔP (pu)	$\Delta P\%$	ΔP (pu)	$\Delta P\%$	ΔP (pu)	$\Delta P\%$	ΔP (pu)	$\Delta P\%$	
1	0.0741	0.1191	0.0448	0.0666	0.3326	0.4520	0.4372	0.5679	
2	0.0460	0.0740	0.0118	0.0176	0.1909	0.2595	0.2853	0.3707	
3	0.0376	0.0605	0.0472	0.0702	0.1019	0.1385	0.1164	0.1512	
4	0.0003	0.0005	0.0012	0.0019	0.0017	0.0023	0.0047	0.0061	
5	0.0774	0.1245	0.0238	0.0354	0.3084	0.4191	0.4597	0.5972	
6	0.0010	0.0016	0.0193	0.0287	0.0275	0.0374	0.0224	0.0291	
7	0.0037	0.0060	0.0001	0.0001	0.0056	0.0076	0.0114	0.0148	
8	0.0099	0.0160	0.0143	0.0213	0.0157	0.0213	0.0209	0.0272	
9	0.0012	0.0020	0.0104	0.0155	0.0064	0.0087	0.0056	0.0072	
10	0.0021	0.0034	0.0039	0.0058	0.0065	0.0089	0.0085	0.0110	
11	0.0003	0.0005	0.0003	0.0004	0.0108	0.0147	0.0179	0.0232	
12	0.0016	0.0026	0.0031	0.0046	0.0122	0.0166	0.0176	0.0229	
13	0.0006	0.0010	0.0018	0.0027	0.0009	0.0012	0.0003	0.0004	
14	0.0003	0.0005	0.0000	0.0000	0.0039	0.0054	0.0066	0.0086	
15	0.1105	0.1776	0.0688	0.1023	0.4851	0.6592	0.6365	0.8269	
16	0.0003	0.0005	0.0009	0.0014	0.0004	0.0006	0.0002	0.0002	
17	0.0037	0.0059	0.0024	0.0035	0.0033	0.0045	0.0044	0.0057	
18	0.0085	0.0137	0.0057	0.0085	0.0080	0.0109	0.0105	0.0136	
19	0.0098	0.0157	0.0004	0.0006	0.0023	0.0031	0.0058	0.0076	
20	0.0058	0.0094	0.0219	0.0326	0.0122	0.0166	0.0086	0.0112	
21	0.0008	0.0013	0.0018	0.0027	0.0016	0.0021	0.0003	0.0004	
22	0.0154	0.0247	0.0398	0.0592	0.0155	0.0210	0.0156	0.0203	
23	0.0053	0.0086	0.0119	0.0177	0.0052	0.0071	0.0051	0.0067	
24	0.0002	0.0002	0.0008	0.0012	0.0001	0.0002	0.0001	0.0002	
25	0.0001	0.0002	0.0017	0.0025	0.0005	0.0006	0.0019	0.0025	
26	0.0006	0.0010	0.0006	0.0008	0.0010	0.0013	0.0017	0.0022	
27	0.0052	0.0084	0.0013	0.0019	0.0052	0.0071	0.0052	0.0068	
28	0.0250	0.0402	0.0385	0.0572	0.0252	0.0343	0.0254	0.0330	
29	0.0002	0.0003	0.0001	0.0001	0.0002	0.0003	0.0002	0.0002	
30	0.0181	0.0291	0.0314	0.0467	0.0181	0.0247	0.0182	0.0237	
31	0.0180	0.0290	0.0058	0.0086	0.0309	0.0419	0.0510	0.0662	
32	0.0072	0.0115	0.0118	0.0176	0.0131	0.0178	0.0238	0.0309	
33	0.0113	0.0181	0.0731	0.1087	0.0099	0.0134	0.0072	0.0093	
34	0.0066	0.0106	0.0220	0.0327	0.0062	0.0084	0.0051	0.0067	
35	0.0085	0.0136	0.0151	0.0224	0.0084	0.0114	0.0081	0.0105	
Pertes totales (pu)	0.5174		0.5376		1.6777		2.2495		

	Chute de tension								
N° de	Etat i	nitial	Surcharg	ge au Jb4	Surcha	Surcharge aux Surcharge aux			
lignes					Jbs 4	et 8	Jbs 4, 8 et 14		
	$\Delta V (pu)$	$\Delta V\%$	$\Delta V (pu)$	$\Delta V\%$	$\Delta V (pu)$	$\Delta V\%$	$\Delta V (pu)$	$\Delta V\%$	
1	0.0262	2.4673	0.0185	1.7416	0.1106	10.4333	0.1443	13.6120	
2	0.0131	1.2383	0.0038	0.3605	0.0536	5.0610	0.0810	7.6384	
3	0.0030	0.2815	0.0060	0.5664	0.0103	0.9678	0.0142	1.3423	
4	0.0000	0.0000	0	0	0	0	0	0	
5	0.0469	4.4220	0.0562	5.2999	0.0064	0.5994	0.0210	1.9781	
6	0.0100	0.9428	0.0201	1.8988	0.0211	1.9867	0.0198	1.8714	
7	0.0026	0.2462	0.0033	0.3091	0.0064	0.6008	0.0036	0.3392	
8	0.0055	0.5157	0.0221	2.0819	0.0190	1.7947	0.0193	1.8161	
9	0.0059	0.5568	0.0156	1.4744	0.0190	1.7913	0.0196	1.8523	
10	0.0015	0.1456	0.0041	0.3834	0.0123	1.1599	0.0148	1.3976	
11	0.0067	0.6338	0.0027	0.2546	0.0407	3.8412	0.0508	4.7953	
12	0.0078	0.7358	0.0068	0.6459	0.0377	3.5609	0.0462	4.3578	
13	0.0007	0.0666	0.0007	0.0640	0.0007	0.0661	0.0007	0.0672	
14	0.0005	0.0436	0.0001	0.0079	0.0153	1.4402	0.0195	1.8351	
15	0.0421	3.9725	0.0483	4.5568	0.0024	0.2282	0.0186	1.7587	
16	0.0007	0.0666	0.0007	0.0640	0.0007	0.0661	0.0007	0.0672	
17	0.0003	0.0263	0.0024	0.2289	0.0030	0.2871	0.0037	0.3529	
18	0.0014	0.1308	0.0081	0.7619	0.0093	0.8762	0.0107	1.0085	
19	0.0102	0.9645	0.0089	0.8384	0.0058	0.5468	0.0070	0.6570	
20	0.0089	0.8371	0.0101	0.9528	0.0109	1.0279	0.0105	0.9872	
21	0.0097	0.9147	0.0085	0.8045	0.0075	0.7060	0.0032	0.3034	
22	0.0025	0.2320	0.0093	0.8763	0.0072	0.6822	0.0109	1.0313	
23	0.0057	0.5402	0.0034	0.3177	0.0034	0.3223	0.0016	0.1533	
24	0.0016	0.1491	0.0012	0.1100	0.0009	0.0880	0.0004	0.0407	
25	0.0016	0.1550	0.0020	0.1855	0.0041	0.3908	0.0029	0.2752	
26	0.0102	0.9611	0.0092	0.8641	0.0113	1.0686	0.0008	0.0745	
27	0.0000	0.0000	0	0	0.0000	0.0000	0	0	
28	0.0082	0.7722	0.0127	1.1941	0.0106	1.0045	0.0126	1.1846	
29	0.0000	0.0000	0	0	0.0000	0.0000	0	0	
30	0.0040	0.3811	0.0105	0.9863	0.0082	0.7702	0.0114	1.0720	
31	0.0310	2.9204	0.0217	2.0501	0.0268	2.5279	0.0151	1.4290	
32	0.0135	1.2766	0.0133	1.2578	0.0152	1.4355	0.0221	2.0824	
33	0.0117	1.1042	0.0009	0.0884	0.0084	0.7971	0.0007	0.0628	
34	0.0310	2.9204	0.0217	2.0501	0.0268	2.5279	0.0151	1.4290	
35	0.0193	1.8162	0.0227	2.1385	0.0183	1.7308	0.0158	1.4917	

Tab.III.6 : Chutes de tension pour les quatre états du réseau

Les valeurs de la puissance générée par le générateur de référence dans les quatre états de fonctionnement du réseau sont calculées en MW et représentées dans le tableau (III.7).

Tab.III.7 : Puissance du générateur de référence pour les 4 états du réseau

Etat de fonctionnement du réseau	Etat initial	surcharge au Jb4	surcharge au Jb8	Surcharge au Jb14
Puissance du générateur de référence (MW)	2276.56	2820.87	3414.59	3752.77

Interprétation

On remarque que les chutes de tension augmentent au niveau des lignes (1) et (2) et dépassent les limites tolérées par la norme ce qui engendre une baisse de tension au niveau des jeux de barres(7), (8), (9) et (29).

Les pertes de puissances augmentent aussi à cause de l'appel en puissance active et réactive importantes qui fait que les courants transités à travers les lignes deviennent plus importants engendrant ainsi l'élévation des pertes.

Lorsqu'on surcharge les jeux de barres, le générateur de référence augmente sa puissance générée pour satisfaire la demande (ce qui peut engendrer le dépassement des limites maximales tolérées de la puissance produite par le générateur de référence).

III.3.2 Possibilités de séparation du réseau en zones ilotées

Pour soulager les lignes, diminuer la chute de tension, les pertes de puissance et garantir la continuité de service et l'équilibre entre la production et la consommation, on propose la séparation du réseau en zones ilotées comme le montre la figure III.2. Ces zones sont définies de telle sorte à garantir l'équilibre entre la somme des puissances produites par les générateurs et la somme des puissances demandées par les charges se trouvant dans la même zone.

Fig.III.2 : Réseau de transport séparé en zones A,B et C

A. Zone ilôtée A

Pour cette zone on a choisi le générateur (1) comme référence et on a refait le calcul d'écoulement de puissance afin d'évaluer les valeurs des puissances transitées et maximales ainsi que les pertes de puissance et les chutes de tension dans les lignes. Les résultats sont regroupés dans le tableau (III.8). Dans le tableau (III.9) sont représentées les tensions aux jeux de barres.

•

Départ	Arrivée	Pmaxth	Ptrans	ΔP	$\Delta P\%$	ΔV	$\Delta V\%$
		(pu)	(pu)	(pu)		(pu)	
1	8	44.4922	2.1849	0.0081	0.0343	0.0076	0.7199
1	13	44.7714	0.9285	0.0015	0.0061	0.0010	0.0969
2	13	25.6974	-0.9190	0.0080	0.0338	0.0590	5.5635
2	3	46.4896	2.4190	0.0094	0.0397	0.0070	0.6588
3	4	77.3582	-0.7481	0.0007	0.0029	0.0066	0.6220
3	12	76.7377	-1.8424	0.0036	0.0150	0.0069	0.6463
4	5	383.3330	-2.9937	0.0018	0.0076	0.0004	0.0368
4	7	88.8768	2.2449	0.0040	0.0170	0.0013	0.1193
5	6	107.9970	3.1646	0.0070	0.0296	0.0036	0.3354
5	10	121.7009	-2.6443	0.0042	0.0177	0.0006	0.0581
6	7	215.8014	0.8196	0.0003	0.0011	0.0019	0.1793
7	8	28.8632	-2.1598	0.0169	0.0710	0.0540	5.0966
9	10	232.1370	2.6506	0.0021	0.0090	0.0006	0.0581
9	11	232.1714	1.8494	0.0011	0.0044	0.0008	0.0720
11	12	98.8353	1.8483	0.0024	0.0101	0.0009	0.0845
			Pertes totale (pu)	0.5647			

Tab.III.8 : Puissances transitées, pertes de puissance et chutes de tension dans les lignes

Tab.III.9 : Amplitude et déphasage des tensions aux jeux de barres

Nœud	Amplitude (pu) et déphasage (rad)
1	1.0600∠0
2	1.0000∠-0.0525
3	0.9930∠-0.1041
4	0.9996∠-0.0949
5	1.0000∠-0.0871
6	0.9964∠-0.1162
7	0.9983∠-0.1201
8	1.0524∠-0.0486
9	1.0000∠-0.0538
10	1.0006∠-0.0653
11	1.0008∠-0.0619
12	0.9999∠-0.0805
13	1.0590∠-0.0207

B. Zone ilôtée B

Dans cette zone on a considéré le générateur (6) comme référence et un écoulement de puissance est effectué, les résultats sont regroupés dans tableaux (III.10) et (III.11).

Départ	Arrivée	Pmaxth	Ptrans	ΔP	$\Delta P\%$	ΔV	$\Delta V\%$
		(pu)	(pu)	(pu)		(pu)	
1	5	75.5219	3.1779	0.0260	0.0949	0.0600	5.6604
1	6	112.4038	10.2179	0.0752	0.2744	0.0393	3.7076
2	3	99.0218	-10.4000	0.0912	0.3330	0.0416	3.9278
3	4	50.4936	-6.4111	0.0591	0.2158	0.0128	1.2114
3	6	74.4326	-7.3449	0.0578	0.2112	0.0335	3.1642
3	7	166.9319	-0.0253	0.0019	0.0069	0.0128	1.2114
4	5	57.6410	-1.1502	0.0017	0.0063	0	0
7	8	28.0186	2.0979	0.0119	0.0433	0.0166	1.5705
			Pertes totales (pu)	0.3248			

Tab.III.10 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes

Tab.III.11: Amplitude et déphasage des tensions aux jeux de barres

Nœud	1	2	3	4	5	6	7	8
V (pu)	1.0600	0.9455	0.9872	1.0000	1.0000	1.0207	1.0000	0.9834
Déphasage (rad)	0	-0.2879	-0.1852	-0.0579	-0.0379	0.0882	-0.1859	-0.1859

C. Zone ilôtée C

Le générateur de référence considéré dans cette zone est le générateur (8) et après le calcul de l'écoulement de puissance, nous avons obtenu les valeurs qui sont mentionnés dans les tableaux (III.12) et (III.13) :

Tab.III.12 : Puissances transitée	s, pertes	de puissances	et chutes	de tension	dans l	les lignes
-----------------------------------	-----------	---------------	-----------	------------	--------	------------

Dánast	Aurianta	D	D (٨D	A D0/	A T 7	A T 70 /
Depart	Arrivee	Pmaxth	Ptrans	ΔP	$\Delta P\%$	ΔV	$\Delta V\%$
		(pu)	(pu)	(pu)		(pu)	
		_	_	_		_	
1	7	75.5616	5.5433	0.0324	0.1935	0.0192	1.8160
1	5	17.2116	4.3342	0.0805	0.4805	0.0424	4.0019
2	4	74.6508	-3.2200	0.0105	0.0626	0.0009	0.0858
3	4	121.4171	4.8244	0.0140	0.0834	0.0017	0.1621
3	6	57.7585	-4.8244	0.0305	0.1822	0.0020	0.1923
5	6	69.1709	7.7293	0.0644	0.3842	0.0155	1.4662
5	7	18.6387	-3.0743	0.3766	2.2480	0.0617	5.8179
8	5	31.4174	1.8000	0.0087	0.0520	0.0176	1.6585
			Pertes				
			totales	0.6176			
			(pu)				

Tab.III.13	: Amplitude	et déphasage d	les tensions aux	jeux de barres
------------	-------------	----------------	------------------	----------------

Nœud	1	2	3	4	5	6	7	8
V (pu)	1.0600	0.9974	1.0000	0.9983	1.0176	1.0020	1.0792	1.0000
Déphasage (rad)	0	-0.5273	-0.4444	-0.4840	-0.2497	-0.3604	-0.0747	-0.1911

Dans le tableau (III.14) sont représentées les puissances totales produites par tous les générateurs ainsi que les puissances totales demandées par toutes les charges situées dans chaque zone.

Zone	Zone A	Zone B	Zone C
Puissances produites par les générateurs (pu)	34.4747	27.3958	16.7526
Puissances demandées par les charges (pu)	33.9100	27.0710	16.1350

Tab.III.14 : Puissances	s générée et	consommée	dans c	chaque	zone
-------------------------	--------------	-----------	--------	--------	------

Interprétation

A partir des résultats obtenus dans les tableaux de (III.8) à (III.14) on constate que :

- Dans chaque zone on a réalisé un équilibre entre la production et la consommation, ce qui assure la stabilité de la fréquence (pas de sur fréquence en cas où la puissance totale générée est supérieure à la demande totale et aussi pas de sous fréquence dans le cas contraire).
- Une diminution de la chute de tension est aussi constatée, ce qui engendre une amélioration d'amplitude de la tension aux jeux de barres de chaque zone.
- Une diminution importante des pertes de puissance dans les zones est remarquée par rapport au fonctionnement du réseau global dans son état surchargé.

III.3.3 Etat du réseau avec présence de la production décentralisée

Dans le but d'étudier le comportement du réseau de transport vis-à-vis d'une intégration massive des productions décentralisées, nous avons inséré trois générateurs qui injectent des puissances différentes au réseau, notés par ' PD_1 ', ' PD_2 ' et ' PD_3 ' aux jeux de barres (4), (8) et (14) respectivement (ces jeux de barres présentent une grande demande en puissance) comme montré sur la figure.III.3.

Le taux d'intégration est varié de 5% à 40% de la charge totale du réseau estimée à 61.696 pu. Dans ce qui suit, nous allons présenter les résultats des tensions aux jeux de barres après l'intégration des productions décentralisées ainsi que les puissances transitées dans les lignes.

Un calcul de l'écoulement de puissance a été effectué pour un taux d'intégration de 5% et les résultats obtenus pour évaluer les puissances transitées, pertes de puissances, les tensions aux jeux de barres et les chutes de tension sont représentés dans les tableaux (III.15) et (III.16)

Tab.III.15 : Puissances transitées, pertes des puissances et chutes de tension sans et avec l'insertion des PD

N° de lignes	Etat initial				vec l'insertion des PD	
	Ptrans (pu)	ΔV (pu)	ΔP (pu)	Ptrans (pu)	$\Delta V (pu)$	ΔP (pu)
1	6.5288	0.0262	0.0741	4.7091	0.0156	0.0380
2	5.1968	0.0131	0.0460	3.7602	0.0071	0.0240
3	5.8360	0.0030	0.0376	4.7959	0.0044	0.0255
4	0.7374	0.0000	0.0003	0.3977	0.0000	0.0001
5	-5.0734	0.0469	0.0774	-3.6936	0.0529	0.0427
6	0.6679	0.0100	0.0010	0.0257	0.0097	0.0003
7	1.9104	0.0026	0.0037	1.5247	0.0025	0.0024
8	-3.2975	0.0055	0.0099	-2.8484	0.0047	0.0074
9	-1.0356	0.0059	0.0012	-1.0980	0.0055	0.0013
10	-3.2134	0.0015	0.0021	-3.1564	0.0006	0.0020
11	-0.0940	0.0067	0.0003	0.3007	0.0033	0.0001
12	1.3100	0.0078	0.0016	1.6191	0.0049	0.0020
13	-1.0097	0.0007	0.0006	-1.2617	0.0007	0.0010
14	-1.0296	0.0005	0.0003	-0.7208	0.0010	0.0002
15	-6.3442	0.0421	0.1105	-4.6121	0.0482	0.0589
16	1.0106	0.0007	0.0003	1.2632	0.0007	0.0005
17	3.4894	0.0003	0.0037	3.2368	0.0007	0.0032
18	3.4857	0.0014	0.0085	3.2336	0.0005	0.0073
19	2.4404	0.0102	0.0098	2.1270	0.0096	0.0074
20	-2.7694	0.0089	0.0058	-2.0521	0.0081	0.0033
21	-0.0157	0.0097	0.0008	0.7041	0.0098	0.0013
22	-3.2994	0.0025	0.0154	-3.2994	0.0014	0.0154
23	-2.2171	0.0057	0.0053	-2.2171	0.0062	0.0054
24	-0.5331	0.0016	0.0002	-0.5331	0.0017	0.0002
25	-0.3266	0.0016	0.0001	0.0578	0.0015	0.0000
26	0.3101	0.0102	0.0006	0.6451	0.0101	0.0010
27	2.0052	0.0000	0.0052	2.0052	0.0000	0.0052
28	-4.9624	0.0082	0.0250	-4.9624	0.0076	0.0250
29	0.5125	0.0000	0.0002	0.5126	0	0.0002
30	2.6373	0.0040	0.0181	2.6374	0.0031	0.0181
31	2.5371	0.0310	0.0180	2.1976	0.0318	0.0143
32	2.5077	0.0135	0.0072	2.1715	0.0133	0.0055
33	-0.3119	0.0117	0.0113	-0.3084	0.0124	0.0116
34	-1.0668	0.0310	0.0066	-1.0698	0.0318	0.0067
35	-2.3831	0.0193	0.0085	-2.3800	0.0194	0.0085
		Pertes totales	0.5174		Pertes totales	0.2460
		(pu)	0.3174		(pu)	0.5400

N° du	Etat initial	Avec l'insertion des PD
Jeu de barres	Amplitude (pu) et déphasage (rad)	Amplitude (pu) et déphasage (rad)
1	1.0600∠0	1.0600∠0
2	1.0000∠-0.3163	1.0000∠-0.2265
3	1.0030∠-0.4047	1.0044∠-0.2992
4	0.9930∠-0.4183	0.9947∠-0.2990
5	0.9985∠-0.3758	0.9994∠-0.2625
6	1.0000∠-0.3675	1.0000∠-0.2542
7	0.9922∠-0.3791	0.9951∠-0.2689
8	0.9917∠-0.3743	0.9961∠-0.2656
9	1.0338∠-0.1476	1.0444∠-0.1056
10	1.0000∠-0.3548	1.0000∠-0.2384
11	1.0007∠-0.3592	1.0007∠-0.2439
12	1.0003∠-0.3699	1.0007∠-0.2524
13	0.9989∠-0.4052	1.0002∠-0.2851
14	0.9887∠-0.4582	0.9905∠-0.3312
15	0.9975∠-0.4323	0.9986∠-0.3122
16	1.0072∠-0.4330	1.0084∠-0.3192
17	1.0056∠-0.4302	1.0069∠-0.3195
18	1.0000∠-0.3675	1.0000∠-0.2473
19	1.0000∠-0.4023	1.0000∠-0.2822
20	0.9918∠-0.4015	0.9924∠-0.2813
21	1.0000∠-0.3314	1.0000∠-0.2112
22	1.0000∠-0.3363	1.0000∠-0.2162
23	0.9960∠-0.4291	0.9969∠-0.3089
24	1.0000∠-0.3227	1.0000∠-0.2300
25	1.0310∠-0.4047	1.0318∠-0.3013
26	1.0174∠-0.4390	1.0185∠-0.3309
27	1.0193∠-0.3741	1.0194∠-0.2705
28	1.0000∠-0.3371	1.0000∠-0.2336
29	1.0469∠-0.1165	1.0529∠-0.0840

Tab.III.16 : Amplitude et déphasage des tensions sans et avec l'insertion des PD

On a varié le taux d'intégration des PD de 5% jusqu'au 40% et nous avons évalué les puissances transités à travers les lignes, les puissances générées par le générateur de référence et les pertes totales, les résultats obtenus sont représentés dans les tableaux (III.17) et (III.18).

	Puissances transitées dans les lignes (pu)								
Taux d'intégration									
N° de la ligne	5%	10%	15%	20%	25%	30%	35%	40%	
1	4.7091	2.9078	1.1283	-0.6258	-2.3501	-4.0402	-5.6900	-7.2918	
2	3.7602	2.3645	1.0005	-0.3383	-1.6574	-2.9618	-4.2558	-5.5439	
3	4.7959	3.7717	2.7581	1.7510	0.7465	-0.2590	-1.2694	-2.2889	
4	0.3977	0.0632	-0.2677	-0.5963	-0.9236	-1.2509	-1.5793	-1.9100	
5	-3.6936	-2.3350	-0.9904	0.3453	1.6771	3.0099	4.3487	5.6989	
6	0.0257	-0.6056	-1.2303	-1.8522	-2.4744	-3.1003	-3.7332	-4.3770	
7	1.5247	1.1413	0.7597	0.3795	0.0001	-0.3790	-0.7581	-1.1378	
8	-2.8484	-2.3894	-1.9251	-1.4591	-0.9950	-0.5361	-0.0860	0.3509	
9	-1.0980	-1.1606	-1.2233	-1.2860	-1.3484	-1.4106	-1.4723	-1.5333	
10	-3.1564	-3.0976	-3.0377	-2.9774	-2.9172	-2.8577	-2.7994	-2.7431	
11	0.3007	0.7029	1.1092	1.5163	1.9213	2.3213	2.7134	3.0939	
12	1.6191	1.9337	2.2511	2.5691	2.8857	3.1991	3.5070	3.8071	
13	-1.2617	-1.5174	-1.7749	-2.0325	-2.2889	-2.5426	-2.7922	-3.0359	
14	-0.7208	-0.4069	-0.0905	0.2265	0.5419	0.8539	1.1603	1.4586	
15	-4.6121	-2.8680	-1.1175	0.6339	2.3813	4.1202	5.8453	7.5501	
16	1.2632	1.5195	1.7777	2.0362	2.2936	2.5485	2.7993	3.0442	
17	3.2368	2.9805	2.7223	2.4638	2.2064	1.9515	1.7007	1.4558	
18	3.2336	2.9778	2.7200	2.4619	2.2048	1.9503	1.6998	1.4551	
19	2.1270	1.8095	1.4899	1.1699	0.8511	0.5349	0.2232	-0.0822	
20	-2.0521	-1.3394	-0.6290	0.0807	0.7911	1.5039	2.2208	2.9437	
21	0.7041	1.4186	2.1299	2.8399	3.5499	4.2616	4.9766	5.6969	
22	-3.2994	-3.2994	-3.2993	-3.2993	-3.2993	-3.2993	-3.2993	-3.2994	
23	-2.2171	-2.2170	-2.2170	-2.2170	-2.2170	-2.2170	-2.2170	-2.2170	
24	-0.5331	-0.5332	-0.5332	-0.5332	-0.5332	-0.5332	-0.5332	-0.5332	
25	0.0578	0.4402	0.8213	1.2016	1.5814	1.9614	2.3419	2.7234	
26	0.6451	0.9760	1.3044	1.6316	1.9585	2.2864	2.6164	2.9497	
27	2.0052	2.0052	2.0052	2.0052	2.0052	2.0052	2.0052	2.0052	
28	-4.9624	-4.9624	-4.9624	-4.9624	-4.9624	-4.9624	-4.9624	-4.9624	
29	0.5126	0.5126	0.5126	0.5126	0.5126	0.5126	0.5126	0.5126	
30	2.6374	2.6374	2.6374	2.6374	2.6375	2.6375	2.6374	2.6374	
31	2.1976	1.8632	1.5323	1.2035	0.8758	0.5481	0.2192	-0.1122	
32	2.1715	1.8399	1.5114	1.1846	0.8586	0.5321	0.2041	-0.1267	
33	-0.3084	-0.3058	-0.3040	-0.3029	-0.3025	-0.3029	-0.3040	-0.3059	
34	-1.0698	-1.0720	-1.0736	-1.0746	-1.0749	-1.0746	-1.0736	-1.0720	
35	-2.3800	-2.3777	-2.3760	-2.3750	-2.3747	-2.3750	-2.3760	-2.3777	

Tab.III.17: Puissances transitées dans les lignes pour différents taux intégration

Taux d'intégration	5%	10%	15%	20%	25%	30%	35%	40%
Puissance de référence (pu)	19.5093	16.3123	13.1688	10.0759	7.0325	4.0380	1.0942	-1.7957
Perte totale (pu)	0.3460	0.2336	0.1750	0.1670	0.2082	0.2986	0.4397	0.6344

Tab.III.18 : Puissance de référence et les pertes totales en fonction du taux intégration des PD

Interprétation

Il bien clair que plus le taux d'intégration est élevé, plus les pertes de puissances diminuent et la puissance produite par le générateur de référence diminue aussi, donc soulagement de la source. En revanche, au-delà de 21% du taux d'intégration, les pertes de puissances totales à travers les lignes commencent à augmenter, donc on peut conclure que le taux d'intégration de 20% est l'optimal pour ce réseau.

Un autre point important a souligné qu'au-delà de 36% du taux d'intégration, la puissance du générateur de référence devient négative, ce qui peut être interprété par un black-out. On peut aussi, conclure que le taux de 35% est une limite critique pour le bon fonctionnement du système.

On remarque aussi qu'avec l'insertion des PD, le plan de tension est amélioré et une diminution remarquable des chutes de tension.

III.3.4 Zones après l'insertion des productions décentralisées

Pour éviter le black-out, réduire les pertes de puissances, assurer la continuité de service et l'équilibre entre la production et la consommation, le réseau est séparé en zone. Un calcul de l'écoulement de puissance est effectué à nouveau pour chaque zone avec présence des productions décentralisées et les résultats obtenus pour chaque zone sont résumés dans les tableaux (III.19) à (III.24).

Fig.III.4 : Réseau de transport avec présence des PD séparé en zones A, B et C

A. Zone ilôtée A

Départ	Arrivé	Ptrans	ΔP	$\Delta P\%$	ΔV	$\Delta V\%$
_		(pu)	(pu)		(pu)	
1	8	-3.3817	0.0204	0.0371	0.0095	0.8980
1	13	-2.2835	0.0090	0.0202	0.0032	0.2973
2	13	2.3149	0.0223	0.0738	0.0568	5.3631
2	3	-0.8149	0.0013	0.0009	0.0071	0.6672
3	4	-3.1606	0.0092	0.0336	0.0071	0.6659
3	12	-2.6556	0.0072	0.0351	0.0066	0.6219
4	5	-3.5664	0.0026	0.0136	0.0000	0.0013
4	7	0.3966	0.0001	0.0039	0.0013	0.1180
5	6	1.7739	0.0022	0.0187	0.0015	0.1390
5	10	-1.8270	0.0020	0.0146	0.0007	0.0635
6	7	-0.5663	0.0002	0.0007	0.0027	0.2557
7	8	3.4393	0.0371	0.0931	0.0492	4.6457
9	10	1.8301	0.0010	0.0074	0.0007	0.0635
9	11	2.6699	0.0022	0.0105	0.0006	0.0545
11	12	2.6678	0.0050	0.0241	0.0011	0.0998
		Pertes totale (pu)	0.1218			

Tab.III.19 : Puissances transitées, pertes de puissances et chutes de tension dans les lignes

Tab.III.20 : Amplitude et déphasage des tensions aux jeux de barres

Nœud	Amplitude (pu) et déphasage (rad)
1	1.0600∠0
2	1.0000∠0.1458
3	0.9929∠0.1640
4	1.0000∠0.2045
5	1.0000∠0.2138
6	0.9985∠0.1975
7	1.0012∠0.1999
8	1.0505∠0.0774
9	1.0000∠0.2368
10	1.0007∠0.2288
11	1.0006∠0.2252
12	0.9995∠0.1982
13	1.0568∠0.0516

B. Zone ilôtée B

Tab.III.21 : Puissances transitées, pertes de puissances dans les lignes et chutes de tension

Départ	Arrivé	Ptrans	ΔΡ	$\Delta P\%$	ΔV	$\Delta V\%$
		(pu)	(pu)		(pu)	
1	5	-0.9440	0.0198	0.1429	0.0600	5.6604
1	6	0.7956	0.0060	0.0431	0.0276	2.6030
2	3	2.8923	0.0072	0.0520	0.0110	1.0424
3	4	-2.3368	0.0079	0.0570	0.0052	0.4875
3	6	1.9587	0.0083	0.0603	0.0272	2.5698
3	7	-0.0268	0.0003	0.0022	0.0052	0.4875
4	5	2.9753	0.0115	0.0833	0.0000	0.0000
7	8	2.0979	0.0119	0.0856	0.0166	1.5705
		Pertes	0.0720			
		totales (pu)	0.0729			

Tab.III.22: Amplitude et déphasage des tensions

Nœud	Amplitude (pu) et déphasage (rad)			
1	1.0600∠0			
2	0.9941∠0.0506			
3	1.0052∠0.0225			
4	1.0000∠0.0685			
5	1.0000∠0.0168			
6	1.0324∠-0.0051			
7	1.0000∠0.0230			
8	0.9834∠-0.0507			

C. Zone ilôtée C

Tab.III.23 : Puissance transitée, pertes de puissances et chute des tensions de puissance dans

Départ	Arrivé	Ptrans	ΔP	$\Delta P\%$	ΔV	$\Delta V\%$
		(pu)	(pu)		(pu)	
1	7	5.5433	0.0324	0.1935	0.0192	1.8160
1	5	4.3342	0.0805	0.4805	0.0424	4.0019
2	4	-3.2200	0.0105	0.0626	0.0009	0.0858
3	4	4.8244	0.0140	0.0834	0.0017	0.1621
3	6	-4.8244	0.0305	0.1822	0.0020	0.1923
5	6	7.7293	0.0644	0.3842	0.0155	1.4662
5	7	-3.0743	0.3766	2.2480	0.0617	5.8179
8	5	1.8000	0.0087	0.0520	0.0176	1.6585
		Pertes totales (pu)	0.6176			

les lignes

Nœud	Amplitude (pu) et déphasage (rad)		
1	0.0192∠0		
2	0.0424∠-0.5273		
3	0.0009∠-0.4444		
4	0.0017∠-0.4840		
5	0.0020∠-0.2497		
6	0.0155∠-0.3604		
7	0.0617∠-0.0747		
8	0.0176∠-0.1911		

Tab.III.24: Amplitude et déphasage des tensions dans les jeux de barres

Tab.III.25 : Puissance générée, puissance consommées et taux d'intégration dans chaque zone

Zone	Zone A	Zone B	Zone C
Puissance produite par les générateurs (pu)	14.9825	13.8516	16.7526
Puissance consommée par les charges (pu)	14.8607	13.7787	16.1350
Taux d'intégration pour chaque zone	37%	37%	0%

Interprétation

D'après les résultats obtenus des deux états de fonctionnement (sans et avec présence des PD) par rapport à chaque zone ilôtées, on remarque que l'insertion des PD a un effet remarquable sur le plan de tension (diminution des chutes de tension et amélioration de l'amplitude des tensions au niveau des jeux de barres). Les pertes de puissances totales sont aussi réduites dans les zones A et B.

Conclusion

Dans ce chapitre nous avons exposé le concept de l'ilotage dans le réseau de transport sans et avec la présence massive de la production décentralisée. L'équilibre de production et de consommation a représenté la condition la plus importante, dans ce contexte un calcul d'écoulement de puissance a été effectué pour chaque scénario supposé dans le réseau afin d'évaluer les grandeurs tensions aux jeux de barres et les puissances transitées. Dans cette partie du travail, nous avons effectué :

- ✓ L'évaluation des différentes grandeurs caractérisant le réseau dans son état initial ;
- ✓ La surcharge des jeux de barres pour créer un déséquilibre entre production et consommation.
- ✓ La séparation du réseau en trois zones ilôtées pour le soulager tout en respectant la condition de l'équilibre entre la production et la consommation.
- ✓ L'intégration des productions décentralisées dans les jeux de barres qui représentent une charge importante ce qui a engendré l'amélioration du plan de tension la

diminution des chutes de tension ainsi que les pertes de puissances. En revanche, un fort taux d'intégration a causé l'inversion de transit de des flux de puissances à travers les lignes reliées au générateur de référence ;

✓ La séparation du réseau en zones avec la présence des productions décentralisées afin d'éviter l'instabilité de la tension (la déconnexion des productions décentralisées créent des creux de tension au jeu de barres de leur interconnexion) et déséquilibre de fréquence (équilibre entre la production et la consommation pour éviter les sur fréquence ou sous fréquence).

Conclusion générale

La demande de l'électricité est en constante croissance, pour satisfaire cette demande, plusieurs techniques ont été mis au point, la première solution est de réaliser un réseau de transport qui va relier l'ensemble des centrales de production afin de répartir la charge demandée. Cela n'a pas suffit à cause de l'apparition de nouvelles extensions et l'augmentation exponentielle de la consommation de l'énergie électrique. Pour compenser ce manque, de nouvelles sources d'énergie moins puissantes que les premières ont été introduites dans le réseau, appelées sources de production décentralisée. On y trouve des sources d'énergies renouvelables, ainsi que des génératrices à faible puissance. Cependant, et malgré leur apport positif en puissance, quelques-unes de ces énergies renouvelables ont une influence négative sur les paramètres du réseau électrique, notamment la tension.

L'étude menée dans notre travail est l'étude du concept de l'ilotage d'un réseau électrique sans et avec présence des productions décentralisées. Le travail effectué a été subdivisé en trois chapitres.

Dans le premier chapitre, nous avons mis en évidence la modélisation des différents éléments du réseau électrique, nous avons développé les équations de l'écoulement de puissance qui permettent d'évaluer les grandeurs du réseau.

Dans le second chapitre, nous avons abordé les moyens de production d'énergie électrique à base de ressources renouvelables, nous nous sommes intéressés à l'énergie éolienne et photovoltaïque. Nous avons aussi porté un regard sur les différents impacts de la production décentralisée sur le fonctionnement du système électriques, à savoir, la modification du plan de tension, le sens du flux puissance et sur l'intensité des courants de court-circuit. Ces derniers peuvent aussi modifier le comportement du système de protection et amener à des situations d'aveuglement ou de déclenchement intempestif. Nous avons abordé aussi les possibilités d'ilotage intentionnel et non-intentionnel dans un réseau de transport et de distribution.

Nous avons consacré le dernier chapitre à la présentation des résultats obtenus par calcul de l'écoulement de puissance par la méthode de Newton Raphson sous MATLAB dans un réseau de transport à 29 jeux de barres sans et avec l'insertion des productions décentralisées afin d'étudier son impact sur le plan de tension et les puissances transitées à travers les lignes du réseau. Nous avons proposé comme solution de séparer le réseau en zones ilotées afin de soulager la production, garantir l'équilibre entre production et la consommation pour assurer la stabilité de la tension et de la fréquence.

Références bibliographiques

[ALV09] M. Cécile ALVAREZ-HÉRAULT, «Architectures des réseaux de distribution du futur en présence de production décentralisée », Thèse doctorat, Institut polytechnique de Grenoble, 2009.

[ARG18] O.ARGUENCE, « Modélisation des ilots non-intentionnels et caractérisation des méthodes passives de détection d'ilotage », Thèse de doctorat, Université GRENOBLE ALPES, 2018.

[BER.10] B.BERSENEFF, «Réglage de la tension dans les réseaux de distribution du futur», Thèse de doctorat, Université GRENOBLE, 2010.

[BRU17] J. BRUSCHI « Caractérisation du phénomène d'îlotage non-intentionnel dans les réseaux de distribution », Université Grenoble Alpes, 2017.

[BLU07] S.W.BLUME, « Electric power system basics », edition: JOHN WILY & SONS, 2007.

[CAI04] R. CAIRE« Gestion et Stratégies de conduite de la Production Décentralisée », Thèse de Doctorat INP Grenoble, 2004.

[DAS06] D.DAS, « Electrical power systems », edition: NEW AGE INTERNATIONAL, 2006.

[DUN09] T.K.V.DUNG « Interconnexion des sources d'énergie renouvelables au réseau de distribution électrique », Thèse de doctorat, Université du QUEBEC A TROIS-RIVIERES, 2009.

[HAR04] J.H.HARLOW, « Electric power transformer engineering », edition: MARCEL DEKKER, 2002.

[GRO86] C. A. GROSS, «Power systems analysis », 2 edition JOHN WILEY& SONS, 1986.

[KOU09] F.KOUADRA, «Etude des variations rapides de tension pour le raccordement d'une production décentralisée dans un réseau MT », Mémoire de Magister, Université MENTOURI de Constantine 2009.

[LAV05] N. LAVERDURE, « l'Intégration des générateurs éoliens dans les réseaux faibles ou insulaires », Thèse de doctorat de l'INPG, 2005.

[LAH11] N. LAHAÇANI AOUZELLAG, « Contribution à l'Amélioration de la Flexibilité dans les Réseaux Electriques liée à l'Intégration des Générateurs Eoliens », Thèse de doctorat, Université A.MIRA de Bejaïa, 2011.

[MOU12] M.MOUZAIA S.IDIRI, «Etude de la variation de tension pour le raccordement d'une production décentralisée dans un réseau de distribution », Mémoire de fin d'études, Université A.MIRA de Bejaia, 2013.

[MUL.03] B. Multon, « Production d'Énergie Électrique par Sources Renouvelables », Techniques de l'Ingénieur, traité Génie Electrique, D 4005, 2003.

[OLE05] N. OLEKSY, «Simulation, fabrication et analyse de cellules photovoltaïques à contacts arrières interdigités». Thèse de doctorat, Institut national des sciences appliquées de Lyon, 2005.

[PRO96] L.PROTIN AND S. ASTIER, « Convertisseur photovoltaïque », Technique de l'ingénieur, traité Génie Electrique, D 3360, 1996.

[PHA06] T.T.PHAM, «Influences de la production décentralisée sur la gestion des infrastructures critiques des réseaux de puissance», Thèse doctorat, Institut national polytechnique de GRENOBLE, 2006.

[RIC00] O. RICHARDOT, « Réglage Coordonné de Tension dans les Réseaux de Distribution à l'aide de la Production Décentralisée » Thèse de doctorat INPG, 2000.

[RAM06] G. RAMI, « Contrôle de tension auto adaptatif pour des productions décentralisées d'énergies connectées au réseau électrique de distribution» Thèse de doctorat INPG, 2006.

[SAA99] H. SAADAT, «Power systems analysis », Université de Michigan, 1999.

[TAF06] T. TAFTICHT « Analyse et commande d'un système hybride photovoltaïque éolien », Thèse de doctorat, Université du QUEBEC A TROIS-RIVIERES, 2006.

[ZEG17] M.ZEGRAR « Optimisation de l'association GPV-onduleur multi-niveaux », Mémoire de magister Université d'Oran Mohamed Boudiaf, 2017.

Annexe

Données du réseau d'étudié

 $S_{base} = 100$ MVA , $U_{base} = 400$ kV

Tab.1 : Données des nœuds

			Consommation		Production		δ
Nœud	Туре	Nom	Р	Q	Р	Q	(rad)
			(pu)	(pu)	(pu)	(pu)	
1	Nucléaire	GEN 1	11.0400	2.5000	0.0000	0.0000	0.0000
2	Hydraulique	GEN 10	0.0000	0.0000	1.5000	0.0000	0.0000
3	Charge	/	3.2200	0.0240	0.0000	0.0000	0.0000
4	Charge	/	5.0000	1.8400	0.0000	0.0000	0.0000
5	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000
6	Nucléaire	GEN 2	0.0920	0.0460	3.6078	0.0000	0.0000
7	Charge	/	2.3380	0.8400	0.0000	0.0000	0.0000
8	Charge	/	5.2200	1.7600	0.0000	0.0000	0.0000
9	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000
10	Nucléaire	GEN 3	0.0000	0.0000	4.5000	0.0000	0.0000
11	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000
12	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000
13	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000
14	Charge	/	5.2000	1.5300	0.0000	0.0000	0.0000
15	Charge	/	3.2900	0.3230	0.0000	0.0000	0.0000
16	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000
17	Charge	/	1.5800	0.3000	0.0000	0.0000	0.0000
18	Nucléaire	GEN 4	0.0000	0.0000	5.3200	0.0000	0.0000
19	Hydraulique	GEN 5	6.0800	1.0300	4.0800	0.0000	0.0000
20	Charge	/	2.7400	1.1500	0.0000	0.0000	0.0000
21	Nucléaire	GEN 6	0.0000	0.0000	5.5000	0.0000	0.0000
22	Hydraulique	GEN 7	2.4750	0.8460	4.6000	0.0000	0.0000
23	Charge	/	2.0860	0.9220	0.0000	0.0000	0.0000
24	Thermique	GEN 8	2.2400	1.9720	4.0400	0.0000	0.0000
25	Charge	/	1.3900	0.1700	0.0000	0.0000	0.0000
26	Charge	/	2.8100	0.7550	0.0000	0.0000	0.0000
27	Charge	/	2.0600	0.2760	0.0000	0.0000	0.0000
28	Thermique	GEN 9	2.8350	2.2690	6.3000	0.0000	0.0000
29	Charge	/	0.0000	0.0000	0.0000	0.0000	0.0000

Tab.2 : Données des lignes

	Ligne		R	X	C/2
N° de ligne	Départ	Arrivé	(pu)	(pu)	(pu)
1	1	9	0.0019	0.0250	0.5064
2	1	29	0.0019	0.0250	0.5064
3	2	3	0.0011	0.0151	0.3059
4	2	24	0.0006	0.0086	0.1742
5	2	29	0.0030	0.0411	0.8325
6	3	4	0.0016	0.0213	0.4314
7	3	17	0.0010	0.0133	0.2694
8	4	5	0.0009	0.0128	0.2593
9	4	13	0.0010	0.0129	0.2693
10	5	6	0.0002	0.0026	0.0527
11	5	8	0.0008	0.0112	0.2269
12	6	7	0.0007	0.0092	0.1863
13	6	11	0.0006	0.0086	0.1661
14	7	8	0.0003	0.0046	0.0932
15	8	9	0.0027	0.0363	0.7353
16	10	11	0.0003	0.0043	0.0871
17	10	12	0.0003	0.0043	0.0871
18	12	13	0.0007	0.0101	0.2046
19	13	14	0.0016	0.0217	0.4395
20	14	15	0.0007	0.0094	0.1904
21	15	16	0.0007	0.0089	0.1803
22	15	18	0.0014	0.0195	0.3950
23	15	20	0.0010	0.0135	0.2734
24	15	23	0.0004	0.0059	0.1195
25	16	17	0.0006	0.0082	0.1661
26	16	26	0.0013	0.0173	0.3504
27	18	19	0.0013	0.0173	0.3504
28	20	21	0.0010	0.014	0.2836
29	21	22	0.0007	0.0096	0.1944
30	22	23	0.0026	0.035	0.7089
31	24	25	0.0024	0.0323	0.6542
32	25	26	0.0011	0.0147	0.2978
33	25	27	0.0035	0.0474	09601
34	25	28	0.0046	0.0625	1.2659
35	27	28	0.0011	0.0151	0.3059