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Introduction

Unmanned Aerial Vehicles (UAVs) have received considerable attention from research

because of their wide range of applications. They have been successfully applied to many

challenging civilian and defense applications such as surveillance, search and rescue, border

and coast patrol, �re monitoring, etc. They are particularly useful for dull and dirty

operations without exposing humans to dangerous situations. With rapid advances in

electronics, sensors and communications, it is relatively easy to manufacture inexpensive

and easy to operate UAVs, and hence they are expected to be widely deployed. The

success of a UAV mission heavily depends on the employed algorithms. To increase the

safety and reliability of UAVs, there is a need to develop more accurate algorithms which

enhance their mission success rate [1].

A fundamental requirement of an autonomous vehicle is to travel from one location

to another. And in order to travel between di�erent locations, the vehicle has to track

a planned trajectory quite accurately. Trajectory planning techniques are important for

any mission because the success of the mission heavily depends on how the trajectory

being tracked by the UAV, especially in cluttered environments [2].

Sampling-based motion planning are very known algorithms in robotics by their capa-

bility to solve high degree of freedom problems, such as PRM (Probabilistic Road Map)

and RRT (Rapidly Exploring Random Trees). These methods explores the con�gura-

tion space randomly and generates a set of optimal/sub-optimal waypoints. Then, the

trajectory is generated from these waypoints for the UAV, taking into consideration the

kinodynamic constraints. This trajectory can be an optimal one subject to an objective

function [8].

This thesis focuses on 3D motion planning for UAVs, more speci�cally for Quadrotor

type. Where it contributes in the both stages: the path planning and the trajectory
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planning. In the path planning we propose an algorithm that reduces the collision checking

time in environment with high number of obstacles for sampling-based path planning.

The algorithm disassociate the dependence of collision checking time with the number of

obstacles, where it performs a preprocessing that stores information about the obstacles,

then using them in the collision checking queries. Also, we propose a new variant of

Rapidly Exploring Random Trees Star (RRT*) named NP-RRT* to deal mainly with

narrow passages in the workspace and minimize the memory consumption. The algorithm

uses a developed steer function to explore e�ciently the con�guration space. Also, a

proposed path optimization technique is used to speed up the convergence rate to optimal

solution by generating con�gurations near the found path.

In the trajectory planning we implemented the Particle Swarm Optimization (PSO)

to minimize the energy by minimizing the snap and distance trajectory for Quadrotor.

Where the snap is the forth derivative of the path, and the motor commands and attitude

accelerations of the vehicle are proportional to the snap of the path.

The thesis is organized as follow:

• Chapter 1: gives a short history about UAVs and their structures, classi�cations

and applications. Then it presents the concept of the guidance loop and trajectory

planning.

• Chapter 2: exposes the dynamic modeling and the PD control of Quadrotor, then

it presents simulation results.

• Chapter 3: presents the preliminaries and the basic concepts of trajectory planning.

Also, it presents our proposed method in reducing the collision checking time for

sampling-based motion planning.

• Chapter 4: presents the details of our new variant of RRT* named NP-RRT* algo-

rithm and gives statistical comparisons.

• Chapter 5: presents the implementation of PSO in minimizing the snap and distance

trajectory for Quadrotors.
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Chapter 1

Unmanned Aerial Vehicles

1.1 Introduction

The aerial robotics is a vast and interdisciplinary �eld. A drone can be described as a �ying

machine without a human pilot on board. The �ight of a drone may operate with various

degrees of autonomy, either under remote control by a human operator or autonomously

by onboard computers. Multiple terms are used for drones, generally referring to the

same concept, such as UAV (Unmanned Aerial Vehicle) and UAS (Unmanned Aircraft

System). Research and development related to autonomous drones is based on the ability

to control their �ight in hostile and complex environments, in order to perform repetitive

or dangerous missions [2]. In this chapter we will present a brief short history about UAVs

and their structures and classi�cations, also their applications and guidance loop.

1.2 Short history about UAVs

The �rst known autonomous �ying machine has been credited to Archytas from the city

of Tarantas or Tarentum in South Italy, known as Archytas the Tarantine. Archytas

has been referred to as Leonardo da Vinci of the Ancient World. In 1483, he designed

an aircraft capable of hovering, called aerial screw or air gyroscope (Fig. 1.1). The �rst

widely recognized manned �ight took place in 1783 using a hot air balloon designed by the

Montgol�er brothers and commemorated (Fig. 1.2). In 1754, Russian Mikhail Lomonosov

developed a complex model with two contra-rotating coaxial rotors driven by a clockwork

3



CHAPTER 1. UNMANNED AERIAL VEHICLES

Figure 1.1: Aerial screw of Leonardo da Vinci 1483

mechanism (Fig. 1.2), the aircraft �ew freely and reached a good altitude, this concept

contributed to the development of the modern helicopter. The �rst real drone was made

by the Americans Lawrence and Sperry in 1916. They developed a gyroscope to stabilize

the drone in order to automate the piloting. This is known as the start of the concept of

attitude control, which came to be used for autopilot. Then, in 1924, Etienne Oehmichen

developed a helicopter that had four rotors and eight propellers (Fig. 1.3), all driven by

a single engine. The aircraft exhibited a considerable degree of stability and increased

control accuracy. This helicopters achieved 360m of hovering distance [1].

Since that time, the development of new UAVs gained an interesting attention and

continued throughout World War II and the Cold War. The UAVs have been used mainly

for military sector until around 1980s, their missions include reconnaissance, surveillance

and attack missions. After that, their use has become wide spread, they can be classi�ed

according to their application for military or civil use.

1.3 UAVs Classi�cation

During the last decades, signi�cant e�orts have been made in order to increase the �ight

endurance and the payload of UAVs, resulting in various UAV con�gurations with di�er-

ent sizes, endurance levels, and capabilities. Di�erent UAV classi�cation schemes have

been proposed to help di�erentiate existing systems based on their operational charac-

4



CHAPTER 1. UNMANNED AERIAL VEHICLES

Figure 1.2: The left picture is the hot air balloon designed by the Montgol�er brothers

1783, and the right picture is the model of Mikhail Lomonosov 1754

Figure 1.3: Etienne Oehmichen helicopter 1924

teristics and their capabilities. The UAVs can be classi�ed based on their aerodynamics

con�guration into four categories [1]:

• Fixed-wing UAVs: which refer to unmanned airplanes (with wings) that require

a runway to take-o� and land, or catapult launching. These generally have long

endurance and can �y at high cruising speeds.

• Rotary-wing UAVs: also called rotorcraft UAVs or vertical take-o� and landing

(VTOL) UAVs, which have the advantages of hovering capability and high ma-

neuverability. These capabilities are useful for many robotic missions, especially in

civilian applications. A rotorcraft UAV may have di�erent con�gurations, with main

and tail rotors (conventional helicopter), coaxial rotors, tandem rotors, multi-rotors.

5



CHAPTER 1. UNMANNED AERIAL VEHICLES

• Blimps: such as balloons and airships, which are lighter than air and have long

endurance, �y at low speeds, and generally are large sized.

• Flapping-wing UAVs: which have �exible and/or morphing small wings inspired

by birds and �ying insects.

Another common classi�cation based on endurance and altitude to di�erentiate be-

tween UAVs [2]:

• High Altitude Long Endurance (HALE) UAVs: They are characterized by

a wingspan close to that of a conventional aircraft, they can �y at an operational

altitude of up to 20,000 meters with a range of several thousand kilometers and a

range of about thirty hours. These planes have a large payload (Fig. 1.4).

• Medium Altitude Long Endurance (MALE) UAVs: They have an endurance

of around 40 hours and can �y between 5,000 and 15,000 meters in altitude (Fig.

1.5).

• Tactical UAVs: They have a range of mission up to more than 100 km, a range

of around 10 h, and can �y at an operational altitude of 200 to 5,000 meters (Fig.

1.6).

• Mini Aerial Vehicles (MAV): They have an endurance of a few hours and di-

mensions of the order of a meter, they can �y up to 300 m of altitude, operating at

distances of up to about 30 kilometers carrying a very light payload.

• Micro/Nano UAVs: They refer to devices smaller than �fteen centimeters in size,

and less than 5 g of mass. They are often equipped with propellers driven by electric

motors, the autonomy is about 20 minutes for a range of mission 10 km (Fig. 1.7).

In 2005 the autonomous control levels (ACL) were proposed to classify the UAVs

based on autonomy. Ten levels were proposed in [4] that were based on requirements like

situational awareness, analysis, coordination, decision making, and operational capability.

A list of the ACL is presented in Table 1.1.
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CHAPTER 1. UNMANNED AERIAL VEHICLES

Figure 1.4: The General Atomics MQ-9 Reaper (Predator B) is a High Altitude Long

Endurance UAV

Figure 1.5: Metlife snoopy two blimp is a Medium Altitude Long Endurance

Figure 1.6: The Northrop Grumman MQ-8 Fire Scout is a Tactical UAV
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CHAPTER 1. UNMANNED AERIAL VEHICLES

Figure 1.7: The Hummingbird �apping wing is a Nano UAV

Table 1.1: Autonomous control levels classi�cation [4]

ACL Level descriptor

0 Remotely piloted vehicle

1 Execute preplanned mission

2 Changeable mission

3 Robust response to real-time faults/events

4 Fault/event adaptive vehicle

5 Real-time multi-vehicle coordination

6 Real-time multi-vehicle cooperation

7 Battlespace knowledge

8 Battlespace cognizance

9 Battlespace swarm cognizance

10 Fully autonomous

8
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1.4 UAVs Applications

Drone technology is now inexpensive and accessible, is continuously evolving and being

put to several novel uses around the world. Initially known for their military use, drones

are now being used in many civil domains to accomplish various tasks. Increasing work

e�ciency and productivity, decreasing workload and production costs, improving accu-

racy, re�ning service and customer relations, and resolving security issues on a vast scale

are a few of the top uses.

Here we cite some of the main application �elds for UAVs [1].

1.4.1 Agriculture

The agricultural uses of mini-drones are very diverse. Equipped with optical or hyper-

spectral sensors, these machines make it possible to collect a large number of data, the

processing of which will then facilitate the analysis of the evolution of crops and the iden-

ti�cation of weeds or pests. Thus, regular monitoring can be guaranteed at a modest

cost.

1.4.2 Inspection

The inspection of buildings, bridges or elements of an industrial architecture as well as oil

pipelines or high voltage lines are all tasks to be carried out regularly to detect as quickly

as possible a degradation or potential failure.

1.4.3 Civil security

Drones provide invaluable assistance in the immediate response to a natural disaster or

accident. Again, they allow for the rapid deployment of sensors to gain information about

the a�ected area. In addition to these advantages, they o�er di�erent views in collecting

images compared to them from a satellite. This facilitates the post-processing of images.
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1.4.4 Search and rescue

Presence of thermal sensors gives drones night vision and makes them a powerful tool

for surveillance. Drones are able to discover the location of lost persons and unfortunate

victims, especially in harsh conditions or challenging terrains. Besides locating victims, a

drone can drop supplies to unreachable locations in war torn or disaster stricken countries.

For example, a drone can be utilized to lower a walkie-talkie, GPS locator, medicines, food

supplies, clothes, and water to stranded victims before rescue crews can move them to

someplace else.

1.4.5 Geographic mapping

Available to amateurs and professionals, drones can acquire very high-resolution data

and download imagery in di�cult to reach locations like coastlines, mountaintops, and

islands. They are also used to create 3D maps and contribute to crowd sourced mapping

applications.

1.5 UAVs guidance and trajectory planning

1.5.1 The Guidance loop

In order to enable autonomous �ight, it is necessary to use algorithms allowing the nav-

igation, guidance and piloting tasks. Fig. 1.8 represents the loop in which a navigation,

guidance and piloting algorithm is de�ned in a decoupled manner. The navigation task

consists of estimating the information relating to the state of the vehicle (position, speed,

orientation) and makes it possible to determine its location relative to a known frame of

reference. The guidance system uses this information to follow a reference trajectory and

provides for this purpose acceleration and attitude angle instructions, which will then be

applied by the piloting loop. Subsequently, the control system provides a translation of

the speci�cations emanating from the guidance in terms of the e�orts to be made through

the various actuators �tted to the vehicle. Several research works have been developed to

build the guidance and control algorithms [3].
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Figure 1.8: Guidance and piloting loop of UAVs

1.5.2 Trajectory planning for UAVs

The trajectory planning process is very important to accomplish the missions assigned

to an UAV. This process has received considerable research attention, because following

accurately the planned trajectory maximizes the likelihood of mission succession of a

�ying vehicle. The objective of the UAV trajectory planning is to �nd the optimum �ight

path that maximizes survivability while satisfying appropriate �ight path constraints [5].

The trajectory planning goes through two stages: �rstly, a path planning algorithm

generate a set of waypoints from starting point to end point, then a trajectory plan-

ning generates from these waypoints three signals for each input (position, velocity and

acceleration). Then the UAV tracks these signals using its controller.

1.6 Conclusion

This chapter have been presented a brief history of UAVs and the appearance of the �rst

rotary wing drone. Also, it has presented the di�erent classi�cations of UAVs, and their

applications. The last part outline the guidance and piloting loop, and the concept of

trajectory planning. This thesis focuses on the Quadrotor type, the next chapter will

expose the modeling and control of the Quadrotor.
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Chapter 2

Quadrotor modeling and control

2.1 Introduction

The area of small UAVs has seen a lot of exciting developments during the last �fteen

years. Because of their small size, they can maneuver in indoor or outdoor environments

easily and collect information using onboard sensors. Several domains used small UAVs to

accomplish tasks like photography, whether monitoring, surveillance activities, agriculture

missions, and many other tasks. The Quadrotor is the rotorcraft type mostly used. Its

propulsive force is provided by four rotors. This makes it a �exible and adaptable platform

for aerial robotics [2]. Examples of developed research platforms are: OS4, STARMAC,

Pixhawk, Hummingbird, and Parrot ARDrone [6].

2.2 General description of Quadrotor

A Quadrotor is a multi-rotor helicopter that is lifted by four rotors. It is classi�ed as

rotorcraft, because it can vertically take o� and land (VTOL). The four rotors are usually

placed at the ends of a cross, and the electronic control board is usually placed in the

center of the cross. To prevent the device from turning on itself around z axis, two

propellers must turn in one direction, and the other two in the other direction. The

operation of the Quadrotor is quite special. By varying the power of the motors, it is

possible to make it go up / down, tilt it left / right (roll) or forward / backward (pitch) or

even rotate it on itself (yaw). The Quadrotor has six degrees of freedom, three rotational
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movements and three translational movements, these six degrees must be controlled using

only four triggers, therefore, it is an underactuated system (the number of inputs less

than the number of outputs).

2.3 The movements of Quadrotor

In conventional helicopters, when the main rotor spins, it produces reactive torque that

would cause the helicopter body to spin in the opposite direction. This problem is solved

by adding a tail rotor which produces thrust in a lateral direction. However, this rotor

has no contribution to the thrust. In other hand, in the case of a Quadrotor, two motors

spin in clockwise direction and the two others spin in counter clockwise direction (Fig.

2.1). This e�ectively neutralizes unwanted reactive torque and allows the vehicle to hover

without turning out of control [?].

The Quadrotor has 3 translational movements and 3 rotational movements generated

by four input signals which are the thrust of the motors [2]

• Translational movements:

The vertical movement along the zf axis of the �xed frame, i.e., altitude movement,

is obtained by increasing or decreasing the speed of the four motors with the same

amount simultaneously. If the lift force is greater than the weight of the Quadrotor,

the movement is upward, and if it is less, the movement is downward. The movement

along xf or yf axis is generated by tilting the Quadrotor with a pitch angle or a roll

angle from the horizontal.

• Rotational movements:

The roll movement is obtained by applying a torque around the xb axis, i.e., applying

a di�erence in thrust between the rotor 2 and the rotor 4. The pitch movement is

obtained by applying a torque around the yb axis, i.e., applying a di�erence in thrust

between the rotor 1 and the rotor 3. The yawing movement is obtained by applying

a torque around the zb axis, i.e., applying a di�erence in thrust between the rotors

1,3 and the rotors 2,4.
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2.4 Quadrotor modeling

Modeling �ying robots is a di�cult task since the dynamics of the system is strongly

nonlinear. In order to simplify the study, the dynamic model below is developed under

these hypotheses [12]

− The structure of the Quadrotor is assumed to be rigid and symmetrical, which

implies that the inertia matrix will be assumed to be diagonal.

− The propellers are supposed to be rigid in order to be able to neglect the e�ect of

their deformation during rotation.

− The lift and drag forces are proportional to the squares of the rotational speed of

the rotors.

− All friction forces and torques are neglected.

Using the Newton-Euler formulation, the dynamics of the Quadrotor can be written

by following equations as described in [2]. The equation of the acceleration of the center

of mass is:

mr̈ =


0

0

−mg

+RB
F


0

0

u1

 (2.1)

Where:

• r = [x, y, z]t is the position vector coordinates of the center of mass of the Quadrotor

in the �xed frame (F), and RB
F is the rotation matrix according to Z−X−Y Euler

angle convention between the body �xed frame (B) and the world �xed frame (F).

Rotations are made around the instant moving axes:

RB
F = RotZ(ψ)RotX(φ)RotY (θ) (2.2)

RB
F =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ


Where c and s denote the trigonometric functions cos and sin respectively
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Figure 2.1: Reference frames and spin directions of the motors

• u1 is the input signal which controls the displacement along the zb axis expressed

as a function of the thrust forces generated by the four propellers :

u1 = F1 + F2 + F3 + F4 (2.3)

Where Fi = bω2
i , i = 1..4 , b is the thrust coe�cient and ωi is the motor angular

speed.

The equation of rotational movement is:

Iḣ =


u2

u3

u4

− h× Ih (2.4)

Where

• the sign (×) denote the cross product.

• h = [p, q, w]t is the vector of the angular velocities of the Quadrotor in the body

�xed frame (B), These values are related to the derivatives of the angles in the �xed

frame (F) [φ̇, θ̇, ψ̇] according to following equation:


p

q

w

 =


0

θ̇

0

+RotY (θ)−1


φ̇

0

0

+ (RotX(φ)RotY (θ))−1


0

0

ψ̇
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p

q

w

 =


cθ 0 −cφsθ

0 1 sφ

sθ 0 cφcθ



φ̇

θ̇

ψ̇

 (2.5)

• I is the inertia matrix supposed to be symmetric

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.6)

• u2,u3 are the inputs signals that controls roll and pitch angles respectively

u2 = L(F2 − F4)

u3 = L(F3 − F1) (2.7)

Where L is the distance between the center of mass of the Quadrotor and the axis

of a motor.

• u4 is the control input for the yawing movement written in function of drag forces

generated by the motors

u4 = M1 −M2 +M3 −M4 (2.8)

Where Mi = dω2
i , i = 1..4 , d is drag coe�cient

By replacing the vector of angular velocities h with its components we get:

I


ṗ

q̇

ẇ

 =


u2

u3

u4

−

p

q

w

× I

p

q

w

 (2.9)

By developing the last equation we get the following equation:

Ixxṗ = u2 − qw(Izz − Iyy)

Iyy q̇ = u3 − pw(Ixx − Izz)

Izzẇ = u4 (2.10)
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Note that for the third line of the last equation, we got only u4 this is because Ixx = Iyy

since the Quadrotor is considered to be symmetric.

2.5 PD Controller of Quadrotor

The proportional, integral, derivative (PID) controller has been widely used in industry

and academy. This success is a result of many good features of this controller such as

simplicity, robustness and wide applicability.

The Quadrotor is controlled by nested feedback loops as shown in Fig. 2.2. The inner

attitude control loop uses onboard sensor to control the roll, pitch, and yaw, while the

outer position control loop uses estimates of position and velocity of the center of mass

to track the desired trajectory.

A trajectory for the Quadrotor is composed of four coordinates [rT(t), ψT (t)]. This is

used by the controller to compute the desired inputs. In this controller we assume that

the Quadrotor is operating around hover conditions, θ ≈ 0, φ ≈ 0, ψ = ψ0, θ̇ ≈ 0, φ̇ ≈ 0,

ψ̇ ≈ 0.

Figure 2.2: The nested control loop for attitude and position control

2.5.1 Attitude control

The attitude controller allows to track trajectories in SO(3) that are close to the nominal

hover state where the roll and pitch angles are small. From equation 2.10, if we assume

that the products of inertia are small, and under the assumption of nominal hover state

φ̇ ≈ p, θ̇ ≈ q, and ψ̇ ≈ w, we can use simple proportional derivative control laws as

follows:
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u2 = kpφ(φdes − φ) + kdφ(pdes − p)

u3 = kpθ(θdes − θ) + kdθ(qdes − q)

u4 = kpψ(ψdes − ψ) + kdψ(wdes − w) (2.11)

2.5.2 Position control

The position of the Quadrotor in xf ,yf plan is controlled by pitch and roll angle, and the

position along zf is controlled by u1. The command accelerations r̈des are calculated from

the PD feedback of the position error as follow:

r̈des = r̈T + Kd(ṙT − ṙ) + Kp(rT − r) (2.12)

where Kp and Kd are 3x3 diagonal matrices contains the proportional and derivative

gains respectively.

The relationship between the desired accelerations and roll and pitch angles can be

obtained from the equation 2.1 after the linearization:

ẍdes = g(θdescos(ψT ) + φdessin(ψT ))

ÿdes = g(θdessin(ψT ) + φdescos(ψT ))

z̈des =
u1

m
− g (2.13)

From these relationships the desired roll and pitch angles are computed for the attitude

controller as follow:

φdes =
1

g
(ẍdessin(ψT )− ÿdescos(ψT ))

θdes =
1

g
(ẍdescos(ψT ) + ÿdessin(ψT )) (2.14)

The complete altitude and attitude control inputs can be written as follow:
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u1

u2

u3

u4

 =


m(z̈des + g)

kpφ(φdes − φ) + kdφ(pdes − p)

kpθ(θdes − θ) + kdθ(qdes − q)

kpψ(ψdes − ψ) + kdψ(wdes − w)

 (2.15)

2.5.3 PD tuning

Many various tuning methods have been proposed in the literature for gaining better and

more acceptable control system response based on desired control objectives.

In our case, we are using just the PD terms of the controller. The proportional

and derivative gains from the equation 2.12 are diagonal matrices. In order to tune

the PD gains, we have separated the system. Firstly, we tried to �x the gains for the

altitude control on z axis. Then, we moved to attitude control, we consider the Quadrotor

operating in the plan z,y so the rotation can only be done around x axis. We tried to �x

the gains in this case for the attitude for φ angle. Since the simulation's conditions are

considered to be ideal, so the same gains found for φ angle are used for θ angle. Lastly,

we have tuned the gains for the attitude control for ψ angle [13].

After tuning all the gains, these following gains are used for simulation

Kp =


1 0 0

0 1 0

0 0 3.4

 ,Kd =


0.8 0 0

0 0.8 0

0 0 3.02


kpφ = kpθ = kpψ = 3.5

kdφ = kdθ = kdψ = 3

2.6 Quadrotor simulation

In order to test the presented PD controller, we have built a Simulink model for the

Quadrotor's dynamics in MATLAB software (version 2014a) as shown in Fig. 2.3. The
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Table 2.1: Quadrotor's parameters used for simulation [7]

Designation Parameter Value

mass of Quadrotor m 0.95kg

acceleration due to gravity g 9.81m.s−1

drag factor d 7.5× 10−7N.m.s2

thrust factor b 3.13× 10−5N.s2

inertia moments in x and y axis Ixx = Iyy 5× 10−3kg.m2

inertia moment in z axis Izz 10−2kg.m2

distance between rotor's center to CoG L 0.22mm

simulation goes through two stages, �rst we test the model with the controller giving to

the system step inputs, then, secondly we test the tracking of 3D reference trajectory by

the system. For the simulations we assume that the Quadrotor is operating around the

equilibrium stat, θ ≈ 0, φ ≈ 0, ψ = ψT . The parameters of the Quadrotor used in this

simulation are presented in Table 2.1. All the simulations are performed on a computer

with Intel Core i3 2.30 GHz, and 4 GB of RAM.

Figure 2.3: The Simulink bloc diagram model of the Quadrotor in MATLAB

For the �rst stage, Fig. 2.5 shows the step responses of the Quadrotor. Where the

value of the step for each input are [x, y, z, ψ] = [1, 1, 1, 0.02]. The responses for the

position and the angles coordinates are quite good with little overshot for z response.

However, the rising time is long, where it take 5.5s to reach 1.
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For the second stage, we generated a 7th order polynomial trajectory from point

[x, y, z, ψ] = [0, 0, 0, 0] to [x, y, z, ψ] = [1, 1, 1, 0.1]. The polynomial is the same for x,y and

z coordinates. Fig. 2.4 shows the Quadrotor tracks this 3D trajectory. The responses of

the system are plotted in Fig. 2.6 . From these responses it is clear that the PD controller

succeeded to track the generated trajectory with small errors.

(a) (b)

(c) (d)

Figure 2.4: 3D simulation of Quadrotor tracking the trajectory from point (x, y, z, ψ) =

(0, 0, 0, 0) to (x, y, z, ψ) = (1, 1, 1, 0.1)

21



CHAPTER 2. QUADROTOR MODELING AND CONTROL

Figure 2.5: Step responses for Quadrotor dynamics: on the top the attitude responses

φ, θ, ψ; on the bottom the position responses x, y, z
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Figure 2.6: The output signals of the Quadrotor tracking a 3D trajectory from

(x, y, z, ψ) = (0, 0, 0, 0) to (x, y, z, ψ) = (1, 1, 1, 0.1): on the top the attitude responses; on

the bottom the position responses
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2.7 Conclusion

In this chapter, we have presented the modeling and control of Quadrotor aircraft. Where

the PD controller was used to track desired trajectories. Simulation of Quadrotor dynam-

ics in MATLAB was presented with output responses. The next chapter will focus on

motion planning for Quadrotors.
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Chapter 3

Trajectory planning for Quadrotors

3.1 Introduction

Accomplishing tasks by UAVs in real environments, needs an important module in their

piloting loop, which is the trajectory planning module. In order to move the UAV from

starting point to end point, the trajectory planning module ensures �nding a feasible,

collision-free, and shortest safe path, then generates consign signals inputs for the con-

troller of the UAV. This trajectory is most likely to be the optimal solution subject to an

objective function and possibly some constraints.

Since the UAVs are operating in 3D environments, 2D planning algorithms are not the

quali�ed methods. Path planning in 3D environment shows great prospect, but unlike 2D

path planning, the complexity increases exponentially with kinematic constraints. In order

to plan a collision-free path through a cluttered environment, modeling the environment

while taking the kinematic constraints into consideration is the challenge that needs to be

solved. From the optimization point of view, �nding a 3D optimal path planning problem

is NP-hard, thus, common solutions are not existing [11].

This chapter presents the basic terminologies and the mathematical notations for

motion planning. Also, it presents the two sampling-based algorithms that are used in

this thesis. Finally, a new collision checking strategy that we have proposed is presented

with simulation results.
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3.2 De�nitions and mathematical model

To plan the movement of a robot we must be able to specify its position and orientation

in the space. More precisely, we must be able to specify the position of each point of the

robot, and ensure that it does not collide with an obstacle. The following concepts and

notations will help us to de�ne the geometric model of the environment, the robot, the

obstacles and the path.

3.2.1 The workspace

The workspace W is the set of all the positions of a robot M. W can contain a set of

n obstacles, which can be expressed by the notation WO. The robot M is physically

present in W . A position in W is reachable ifM does not collide with an obstacle. if W

is a 2D space,M acts in the plane, and if W is a 3D space,M acts in the space [8]. The

set of reachable positions Wfree byM is de�ned by the equation 3.1.

Wfree =W \
⋃n

1
WOi (3.1)

where the sign \ is a subtraction operator.

3.2.2 The con�guration space

To standardize the description of the workspace, W is transformed into Con�guration

space Q. This transformation into con�guration space makes it possible to replace the

search for a path of M in W by the search for the path of a point in Q. The robot

M has n degrees of freedom, a con�guration is de�ned by a vector q = (q1, q2, . . . , qn)

composed of the set of n values of the degrees of freedoms ofM. Q is de�ned by the set

of all possible vectors q [8]. The free space Qfree in the con�guration space is de�ed by

the equation 3.2.

Qfree = Q \
⋃n

1
Qobs (3.2)

Where Qobs is the obstacle projection in Q.
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Figure 3.1: Example of a planned path from qinit to qgoal in a workspace with two obstacles.

3.2.3 The problem of path planning

To make the robot move from one point to another, we have to �nd a succession of

admissible con�gurations allowing it to achieve its objective. The path planning problem

corresponds to the search for a sequence of con�gurations belonging to Qfree from the start

qinit to the goal qgoal. The solution in the con�guration space is a continuous function

c(s) ∈ C0 [8], such that:

c : [0, 1]→ Q where c(0) = qinit, c(1) = qgoal and c(s) ∈ Qfree∀s ∈ [0, 1] (3.3)

3.2.4 Optimal path planning problem

According to [9] the optimal path planning can be formulated as follows: Let Q ⊂ Rd

be the con�guration space, where d is the space dimension. And, let c : [0, 1] 7→ Q be a

sequence of con�gurations that forms a path, and Σ be the set of all nontrivial paths. The

optimal path c∗ ⊂ Qfree that connect qinit to qgoal, and minimize a given cost function

σ : c 7→ R+ is given by this equation

c∗ = arg min
c∈Σ

{ σ(c) | c(0) = qinit, c(1) = qgoal, ∀s ∈ [0, 1], c(s) ∈ Qfree} (3.4)

3.2.5 Path planning and trajectory planning

Path planning and trajectory planning problems are two distinct parts of robotics, but

they are intimately related. Path planning provides a geometric description of the robot's
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movement, but it does not specify the dynamic aspects of the movement. Whereas tra-

jectory planning is the parametrization of the path c by time t, then velocities and accel-

erations can be computed by taking derivatives with respect to time of c(t). This means

that c should be at least twice-di�erentiable, i.e., in the class C2. Trajectory planning

can be referred also by motion planning [10].

3.2.6 Motion planning terminology

A motion planning algorithm is considered to be complete if and only if it's able to �nd

a path when exists, and can detect that no path exists in �nite time. It is considered to

be optimal when it returns the optimal path with respect to some criterion. Two forms

of completeness and optimality are also commonly used: resolution completeness with

optimality, and probabilistic completeness with optimality. Resolution completeness is

related to the discretization of the solution space, and means that as the resolution of the

discretization increases, an exact solution is achieved. Probabilistic completeness means

that as computing time approaches in�nity, the probability of �nding an exact solution

approaches one [10].

3.3 Sampling based motion planning

The main idea of sampling-based motion planning is to avoid the explicit construction of

Qfree, instead, it conducts a search that probes the con�guration space with a sampling

scheme. This probing is enabled by a collision detection module, which enables the devel-

opment of planning algorithms that are independent of the particular geometric models.

The collision detection module handles concern such as whether the models are semi-

algebraic sets, 3D triangles, nonconvex polyhedron, and so on. This general philosophy

has been very successful in recent years for solving problems from robotics, manufactur-

ing, and biological applications that involve thousands and even millions of geometric

primitives. Such problems would be practically impossible to solve using techniques that

explicitly represent Qfree [11].

The crucial feature of sampling algorithms is randomness, where the samples of con�g-

urations are generated randomly in Q. Then, a local planner is used to connect between
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samples by local paths. This information is stored in a graph, where its nodes represent

the samples and its edges represent local paths. The shortest path in Q can be found

using an algorithm that �nds the shortest path in the graph between the start and the

end nodes.

The most two known sampling-based algorithms in the literature are PRM [14] (Prob-

abilistic Road Maps), and RRT [15] (Rapidly Exploring Random Trees). PRM is a multi-

queries algorithm, this means that it builds the graph one time then it answers planning

quires. RRT is a single query algorithm, this means that it rebuilds the graph for each

planning query. These two methods have seen many developments. The optimal versions

of these methods have been published in 2011, under the names PRM* and RRT* [9]. In

this thesis we will focus on RRT* algorithm, where we propose a new e�cient variant.

The details will be explained in next chapter. Also, we will use the PRM algorithm for

testing our proposed collision checking strategy. The details will be presented in the next

section.

3.3.1 The basic PRM

The probabilistic roadmap [14] was the �rst proposed sampling based-algorithm. It pro-

ceeds in two phases: learning phase and query phase. In the learning phase, the sampled

con�gurations from Q are stored in a graph data structure called a roadmap. The latter

is constructed in a probabilistic way. The roadmap is a unidirectional graph G = (V,E),

where V is a set of free con�gurations sampled randomly and E is a set of edges corre-

sponding to local paths. For every con�guration q ∈ V , a set Nq of k closest neighbors

to the con�guration q is chosen from V according to a metric distance dist. Then, the

local planner is called to connect q to each con�guration q′ ∈ Nq. If the local planner

∆ succeeds to compute a feasible path between q and q′, the edge (q, q′) is added to the

roadmap.

In the query phase, the initial and the end con�gurations qinit, qgoal are connected

to the roadmap using the local planner then an algorithm of �nding the shortest path

in the graph, like A∗ or Dijkstra, is used to �nd the path between the start and the

end con�guration. A post-processing step can be performed to improve the quality of

resulting path by checking whether nonadjacent con�gurations q and q′ along the path
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can be connected with the local planner.

Algorithm 1 Learning phase of PRM
1: Input:

2: nn : number of nodes to put in the roadmap

3: k : number of closest neighbors to examine for each con�guration

4: Output:

5: A roadmap G(V,E)

6: while size of V < nn do

7: while q in collision do

8: q ← random con�guration from Q

9: end while

10: V ← V ∪ q

11: end while

12: for all q ∈ V do

13: Nq ← the k closest neighbors of q chosen from V according to dist

14: for all q′ ∈ Nq do

15: if (q, q′) /∈ E and ∆(q, q′) 6= NIL then

16: E ← E ∪ {(q, q′)}

17: end if

18: end for

19: end for

3.3.2 The basic RRT*

RRT* [9] build incrementally a tree G(V,E) of feasible paths rooted at qinit. Such that V

is the set of nodes that forms the tree, and E is the set of edges of G. In each iteration,

a con�guration qrand is sampled randomly from Q, then qrand is rejected if it lies in Qobs.

However, if qrand is in Qfree, a nearest node qnrst is searched from G, according to a

metric. If the path between qnrst and qrand is in collision, then a steer function is used to

generate a con�guration qnew, such that the path between qnrst and qnew is collision free.

Now, within the radius rRRT ∗ from qnew, the nearest neighbor which has minimum cost is

connected as parent to qnew.
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Algorithm 2 Query phase of PRM
1: Input:

2: qinit : the initial con�guration

3: qgoal : the goal con�guration

4: k : number of closest neighbors to examine for each con�guration

5: G(V,E) : the roadmap constructed by the Algorithm 1

6: Output:

7: A path from qinit to qgoal or failure

8: V ← V ∪ {qinit} ∪ {qgoal}

9: for q ← {qinit, qgoal} do

10: Nq ← the k closest neighbors of q chosen from V according to dist

11: q′ ← the closest neighbor of q from Nq

12: while Nq is not empty do

13: if ∆(q, q′) 6= NIL then

14: E ← E ∪ (q, q′)

15: end if

16: Nq ← Nq − {q′}

17: q′ ← the closest neighbor of q from Nq

18: end while

19: end for

20: path← The shortest path in G from qinit to qgoal

21: if path is empty then

22: return failure

23: else

24: return path

25: end if
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rRRT ∗ = γ

(
log(n)

n

)1/d

(3.5)

where n is the number of nodes in the tree, γ is the constant of planning, dependent

on the environment, and d is the con�guration space dimension.

A rewiring procedure is used in each iteration to identify whether qnew can be a parent

of one of the nearest neighbors within the radius rRRT ∗ . This procedure improves the

quality of paths. Indeed, the processes of selecting the minimum cost nearest neighbor

and rewiring tree are the crucial features of RRT*.

For all the algorithms in this thesis we are using some procedures explained as follows:

Sample: creates a random con�guration qrand in Qfree space.

Nearest: returns the closest node qnrst in the tree G to qrand.

Steer: returns a con�guration qnew on the straight line (qnrst, qrand) if the path between

qnrst and qrand is in collision. Else, it returns qrand.

Near: returns the closest nodes Qnear to qnew in the tree G according to rRRT ∗ .

CollisionFree: this function checks the collision for a given con�guration or for a

path between two given con�gurations. It returns True if there is no collision, else, it

returns False.

BestParent: returns the best cost node qmin in Qnear.

RewireTree: this function checks if qnew can be parent of a node in Qnear.

3.4 New collision checking strategy

Given a con�guration q in Q , the collision checking module returns a boolean true if

the q is in collision, and returns false if q is collision-free. In sampling-based motion

planning, the collision checking module called many times and this operation takes the

most planning time. The time complexity of the collision checking increases exponentially

in function of the number of obstacles. Thus, this module is the critical part of sampling

methods. A variety of collision detection algorithms exist, ranging from theoretical algo-

rithms that have excellent computational complexity to heuristic.
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Algorithm 3 Basic RRT*

1: V ← {qinit} ; E ← ∅;

2: for i = 1 to N do

3: qrand ← Sample(Q);

4: qnrst ← Nearest(G = (V,E), qrand);

5: qnew ← Steer(qnrst, qrand);

6: if CollisionFree(qnrst, qnew) then

7: Qnear ← Near(qnew, G = (V,E), rRRT ∗);

8: qmin ← BestParent(qnew, Qnear);

9: V ← V ∪ {qnew}; E ← E ∪ {(qnew, qmin)};

10: G← RewireTree(qnew, Qnear, G = (V,E));

11: end if

12: end for

13: return G = (V,E);

Many algorithms have been proposed to reduce the number of calls to collision checking

procedure, in order to minimize the planning time. The most of them use prior information

about the sampled con�gurations [16] [17] or collision queries [18] [19]. In other words,

they modify the sampling strategy to reduce the complexity of the approach.

Our contribution in this thesis is an approach of collision checking for sampling-based

motion planning [20]. The approach addresses mainly the problems with high number of

obstacles. The next sub-sections presents the details of the method.

3.4.1 Collision checking in cluttered environment

Collision testing takes the most of time in path planning, especially with high number

of obstacles, as the number of obstacles increase as the complexity augment. Our main

contribution is to disassociate the dependence of collision testing complexity with the

number of obstacles in the workspace. To avoid the collision test with all the obstacles

as the traditional method do, we add a pre-processing to localize the obstacles in the

workspace by decomposing the workspace into rectangular cells then we give for each

obstacle a rectangular region by taking the maximum and the minimum of vertices co-

ordinates of the obstacle (Fig. 3.2). Then, we construct the matrix M representing the
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workspace. Each matrix element contains the number of obstacle regions overlapping the

corresponding cell.

Figure 3.2: A non-convex obstacle A with his rectangular region found by taking the

maximum and the minimum abscises according to X and Y axises. The blue rectangle is

the obstacle region

Once the construction of the matrix M is done, it can be used now in the collision

checking procedure. After localizing the sampled con�guration in the workspace, we do

the collision checking with just the obstacles found in the cell of the matrix M that

corresponding to the location of the sampled con�guration.

3.4.2 Pre-processing (obstacles localization)

The idea of the pre-processing algorithm is to perform the most of collision checking tests

in the beginning. In this paper, we consider a 2D environment, and the obstacles are non-

convex polygons, so the matrixM that represent the environment is of dimension (n×m).

First of all, the algorithm divides the environment into a grid as is shown in Fig. 3.3.

The number of the grid cells along the X axis is n and the number of the grid cells along

the Y axis is m. Then, the algorithm creates the (n×m) empty matrix M witch has the

same dimension of the grid. The obstacles are numbered from 1 to k. The algorithm gives

for each obstacle Oi a rectangular region (Fig. 3.3), where the vertices coordinates of this

region in clockwise direction are XOiregion = [min(XOi
) min(XOi

) max(XOi
) max(XOi

)],

YOiregion = [min(YOi
) max(YOi

) max(YOi
) min(YOi

)]. In the workspace, each obstacle

region cover some cells of the grid, so for each obstacle region, the algorithm will write

its number in all the elements of the matrix M that correspond to the cells of the grid
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covered by this obstacle region. Note that a cell of the grid can be covered by more than

one obstacles region. An example of creating the matrixM for a 2 dimension environment

is shown in Fig. 3.3 .

3.4.3 Collision checking procedure

We consider the robot is punctual, so in this procedure, when a con�guration is sampled,

the algorithm �nds the cell of the grid that contains this con�guration. Next, the collision

checking will be performed with just the obstacles whose numbers are found in the element

of the matrix M that correspond to this cell. By applying this strategy we avoid the

collision checking with all obstacles in the workspace. This strategy can be used with

polygonal robot, where we �nd all the cells that contain the robot then we perform the

collision checking with the union of obstacles numbers found in the elements of the matrix

M corresponding to those cells. This algorithm can be generalized to three dimensions

environment.

Figure 3.3: 2D environment divided into grid with its corresponding matrix M . The bold

rectangles are the obstacles regions. One cell can be covered by more than one obstacle

region. NIL means the cell is not cover by any obstacles region
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Algorithm 4 The pre-processing procedure (obstacles localization)

1: Input:

2: Obs : the vector of obstacles

3: Output:

4: M : the matrix representing the environment, contains the information about the

obstacles

5: for A in Obs do

6: Imin, Imax ← indices of cells that containmin(XA), max(XA) respectively according

to X axis

7: Jmin, Jmax ← indices of cells that contain min(YA), max(YA) respectively according

to Y axis

8: for i← Imin to Imax do

9: for j ← Jmin to Jmax do

10: if N(A) in M(i, j) then

11: Continue

12: else

13: M(i, j)←M(i, j) ∪N(A)

14: end if

15: end for

16: end for

17: end for
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Algorithm 5 Collision checking procedure
1: Input:

2: Obs : obstacles vertices coordinate

3: conf : the con�guration to test for collision

4: M : the produced matrix by algorithm 4.

5: Output:

6: true: if the con�guration is in collision ; false: otherwise

7: i, j ← indices of cells that contain conf according to X axis and Y axis

8: Obst ←M(i, j)

9: for A in Obst do

10: if conf in collision with A then

11: return true

12: end if

13: end for

14: return false

3.4.4 Simulation results

To state the performance of our algorithm, we have integrated it with the probabilistic

roadmap planner (PRM). Then, we compared its performance with a PRM that uses a

traditional collision checking. A 2D environment and a punctual robot model are consid-

ered. The comparison in the simulation has been done only for the learning phase of the

PRM. We have used two sampling strategies: the Gaussian and the uniform. The number

of con�gurations to generate in each simulation is set to n = 500.
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Figure 3.4: Execution time in function of number of obstacles for learning phase of PRM

path planning with traditional collision checking, using the uniform sampling and the

Gaussian sampling strategies.

Figure 3.5: Execution time in function of number of obstacles for learning phase of PRM

path planning with our collision checking approach, using the uniform sampling and the

Gaussian sampling strategies.

Fig. 3.4 shows the variation of execution time of learning phase in function of number

of obstacles for PRM with a traditional collision checking procedure. It is clear for tradi-

tional collision checking that the execution time increases linearly in function of number
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of obstacles, t = 7.96s with 300 obstacles for uniform strategy, and t = 97.3s with 300

obstacles for Gaussian strategy. While, with our algorithm (Fig. 3.5), the execution time

stay roughly constant, around t = 0.28s for uniform strategy, and it decreases until t=

2.3s for the Gaussian strategy. In Fig. 3.4, the execution time for Gaussian strategy

does not increases linearly because the saturation of the scene of obstacles, this gives high

chances to �nd the second con�guration. Otherwise it should grow linearly.

From this results we can conclude that our approach in collision checking is very

e�cient with high number of obstacles.

3.5 Conclusion

We have presented in this chapter the basic concepts and preliminaries of motion planning.

Then, we have focused on sampling-based motion planning algorithms which are known

by their e�ciency in solving high degree of freedom problems. After that, we presented

the PRM and RRT* algorithms witch are used in this thesis. Then, we have presented

our proposed approach for reducing the collision checking time in cluttered environment.

The next chapter will focus on the proposed RRT* variant called NP-RRT*.
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Chapter 4

Narrow Passage RRT*

4.1 Introduction

Motion planning algorithms aims to �nd feasible paths from starting point to goal point,

avoiding all the obstacles. In the context of optimality, the planned path should be

the optimal path in the workspace. Motion planning has been widely used in robotics,

video games, digital character animation, and in many other related domains [21]. Many

path-planning algorithms have been presented over the last decades, including Potential

Fields [22], Cell Decomposition [23], Graph-Based [24] [25], Roadmap, and sampling-based

algorithms [14]. Each of them has advantages and disadvantages, in term of complexity

and convergence to optimal path. Sampling-based planning algorithms are the most

popular compared with the other approaches, because of their less complexity and their

e�ciency in solving high dimensional con�guration space problems [26].

(RRT*) Rapidly Exploring Random Trees Star [9] introduced in 2011, is a sampling-

based algorithm. It was a major breakthrough development in the optimal path planning.

RRT* is probabilistic complete and asymptotically optimal. This means it can answer

a query if adequate number of samples are provided, and it converges to an optimal

solution when the iterations number goes to in�nity [8]. However, this method has many

limitations like the slow convergence rate, large memory requirements, dealing with narrow

passages and the complexity of collision checking module.

In this chapter we will present our contribution in path planning, which is a modi�ed

RRT* called Narrow passage RRT* (NP-RRT*) [27]. It addresses mainly the problem of
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narrow passages, also, the convergence rate and the memory consumption issues.

4.2 Literature review

Many researches have been done to overcome the limitations of RRT*, modifying the sam-

ple biasing, using heuristic-based sample rejection, graph pruning, and proposing other

strategies [28]. The Anytime RRT* [29] was proposed to overcome the large computa-

tional time, by executing the planner for a speci�ed amount of time. Once an initial path

is found, the rest of the time is allocated to improve the initial solution. The authors

in [30] introduced a new version of RRT* called RRT* Fixed Nodes (RRT*FN), to deal

with the large memory limitation. It allows limited number of nodes in tree. When

this pre-de�ned number is reached, then a new node can only be inserted by deleting an

old one. This variant has been improved in [31] [32]. Another variant of RRT*, called

RRT*-Smart proposed by [33], addresses the issue of slow convergence. The �rst path

is searched using the basic RRT* algorithm. Then, it is optimized using an intelligent

sampling strategy with triangular inequality principle. In other variant of RRT* named

Informed-RRT* [34], a direct sampling method introduced by de�ning the accepted region

as a hyper-ellipsoid, in order to reduce the execution time and convergence rate. This

variant has been improved in [35] [36] [37]. However, these methods relies upon the �rst

solution found by RRT*. RRT*N [38] introduced a technique to reduce the processing

time, where they concentrate the generated random con�gurations near a geometric vector

between the start point and the goal point, according to uniform distribution. In 2019,

a modi�ed RRT* named Quick-RRT* [39] proposed a new strategy to generate better

initial solution and converges to the optimal faster than RRT*. This method enlarge the

set of possible parents in the Choose Parent and Rewiring procedures.

A combination of RRT*-connect and Informed-RRT* was proposed in [40] named

Informed-RRT*-Connect. The latter takes the advantages of both methods to reduce

the number of iterations and to generate low cost solution. Another combination named

PQ-RRT* was introduced in [41], where they combined between Potential-RRT* [42] and

Quick-RRT*, resulting to a method that �nds the �rst solution very fast and converges to

optimal solution quickly. Similar work in [43] propose a potentially guided bi-directional

RRT* to speed up the convergence rate and to optimize the memory. The method builds
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incrementally two trees, the �rst rooted to start point and the second to the goal point.

4.3 Collision checking in RRT*

The complexity of collision checking module in RRT* as shown in [9], depends on number

of obstacles. As a result, solving problems with high number of obstacles needs in�nite

execution time. Several studies have been addressed this problem by proposing strategies

to reduce the number of calls to collision checking module [16] [18] [44]. Our approach

presented in [20], shows that the complexity of collision checking do not depend on the

number of obstacles. The idea is to perform a pre-procedure that saves information about

the obstacles position in a matrix at the beginning of planning process. Then, this matrix

is used to answer collision checking queries. The advantage of this approach is to perform

the collision checking with just nearby obstacles to the con�guration, instead of testing

the collision with all the obstacles.

4.4 NP-RRT* Algorithm

In this section, the NP-RRT* algorithm alongside the modi�ed steer function and the path

optimization technique are described. The algorithm searches for initial path performing

the same as RRT* except that NP-RRT* uses a modi�ed steer function named SteerNP

to generate samples near the obstacles as will be discussed in the next subsection. Once a

�rst path is found, the path optimization technique starts executing at regular intervals of

iterations by generating a random con�guration near the path. This interval depends on

the environment. Whenever a new low-cost path is found, the path optimization technique

will generate a con�guration near that path, performing a tradeo� between exploring the

con�guration space and path optimization. This process is outlined in Algorithm 6.

The steps 1,3 and from 14 to 18 execute the same as RRT*, the di�erence here between

NP-RRT* and RRT* is there is an if condition in step 4 giving two ways to generate a sam-

ple that expand the tree, either optimizing the path (step 5 to 8) or exploring the con�gu-

ration space (step 10 to 12). The optimization path branch uses RandConfNearPath func-

tion to generate randomly a sample qrand near the new found path returned by FindPath
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function (step 22), then qnew is generated using the same steer function of RRT*. This

last branch is executed only if the iteration is equal to the optimization iteration nop.

The variable nop is returned once a �rst path is found (steps 19 to 21). Then, nop is

incremented by the pre-selected interval I in step 5. In the exploring branch, qrand is

generated in the same way as in RRT*, then qnew is returned from SteerNP function.

After the generation of qnew, the same process of RRT* is executed (step 14 to 18) adding

qnew to the tree and rewiring procedure.
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Algorithm 6 NP-RRT* Algorithm

1: V ← {qinit} ; E ← ∅;

2: nop ← 0;

3: for i = 1 to N do

4: if i = nop then

5: nop ← nop + I;

6: qrand ← RandConfNearPath(Q, path);

7: qnrst ← Nearest(G = (V,E), qrand);

8: qnew ← Steer(qnrst, qrand);

9: else

10: qrand ← Sample(Q);

11: qnrst ← Nearest(G = (V,E), qrand);

12: qnew ← SteerNP(qnrst, qrand);

13: end if

14: if CollisionFree (qnrst, qnew) then

15: Qnear ← Near(qnew, G = (V,E), rRRT ∗);

16: qmin ← BestParent(qnew, Qnear);

17: V ← V ∪ {qnew}; E ← E ∪ {(qnew, qmin)};

18: G← RewireTree(qnew, Qnear, G = (V,E));

19: if Initial path found then

20: nop ← i+ 1;

21: end if

22: path← FindPath(G = (V,E), qinit, qgoal);

23: end if

24: end for

25: return G = (V,E);

4.4.1 Steer function

The steer function of RRT* as described in [9]: given two con�guration qrand (generated

randomly in the con�guration space) and qnrst (the con�guration from which the algorithm

tries to expand the tree), the function Steer (qnrst, qrand) returns a con�guration qnew
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between qnrst and qrand such that qnew is closer to qrand then qnrst. This strategy of

sampling has bad performance in the presence of narrow passages. Because it samples the

space uniformly, there is low chance to sample narrow passages. For that, the SteerNP

function samples the near obstacles region to cover these narrow passages. The idea of this

modi�ed steer function was inspired from the Gaussian sampling strategy in probabilistic

roadmap method [45], where the con�gurations are generated near the obstacles according

to Gaussian distribution.

Let Qnor be the near obstacles region and Qnp denotes the narrow passages sub-

space. Let wo be the width of obstacle region around that obstacle. It is obvious that

Qnor ∩Qnp ⊂ Qnor. Also, when wo is big enough Qnp ⊂ Qnor. From this, we can say that

sampling Qnor sub space means sampling Qnp.

The SteerNP function takes as inputs two con�gurations qnrst and qrand. Then, it

moves incrementally an intermediate con�guration named qint from qnrst towards qrand

along a straight line by a step Stp, until qint is in collision or the distance between qnrst

and qint is greater than a pre-de�ned distance d. After that, qint moved back by a step

Stp, and it returned as qnew. This process is outlined in Algorithm 7 and illustrated in

Fig. 4.1. The main two features of SteerNP function is it returns a collision free edge

(qnrst, qnew) directly without calling the collision checking procedure, such as the step 6

in RRT* algorithm. The second feature, is that it can explore open spaces outside of

obstacles regions, by setting the maximum distance d between qnrst and qnew.

Algorithm 7 SteerNP function
1: qint ← qnrst; qnew ← qnrst;

2: while CollisionFree(qnrst, qint) do

3: if dist(qnrst, qint) > d then

4: qnew ← qint;

5: return qnew;

6: end if

7: qint ← qint + Stp;

8: end while

9: qnew ← qint − Stp;

10: return qnew;
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Figure 4.1: The blue points denote qint which moves incrementally from qnrst towards qrand

along straight line, until it reachs an obstacle. The red point is qint which is in collision.

The green point denotes the returned qnew.

4.4.2 Path optimization technique

During the RRT* planning process, the tree is expanding towards con�gurations generated

uniformly. Even an initial path was found, the algorithm pursues the same behavior. As

a result, the convergence rate of RRT* is slow. In NP-RRT* algorithm, the found path

is exploited as information to generate useful nodes. Once an initial path is found, the

path optimization technique branch (step 5 to 8 in algorithm 6) will be executing at

regular intervals of iterations. The randNodeNearPath function takes the found path as

parameter, then it selects randomly an edge from this path, and generates a con�guration

near that edge using Gaussian distribution. After that, qnew is generated simply using

Steer function of RRT*.

4.5 Complexity analysis

4.5.1 Space complexity

The space complexity of an algorithm is the amount of memory space required to solve

an instance of the computational problem as a function of the size of the input [46]. Since

NP-RRT* requires n number of memory con�gurations to execute n number of iterations,

the space complexity of NP-RRT* is the same as RRT* which is O(n).
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4.5.2 Time complexity

The time complexity is the computational complexity that describes the required amount

of time taked to run an algorithm [46]. In the case of NP-RRT*, the additional SteerNP

function and path optimization steps have neglected e�ect on the time complexity. But

the used collision checking procedure, signi�cantly reduced the execution time. The T-

Notation analysis for both algorithms, comparing the execution time for the same number

of iterations, gives a signi�cantly less time for NP-RRT* compared to RRT*. Therefore,

the time complexity of NP-RRT* is the same as RRT* which is O(nlogn) with much

better performance.

4.6 Simulations and results

In this section, statistical comparison results between NP-RRT* and RRT* are presented.

This comparison goes through three stages. The �rst one shows the performance of

both methods in �nding the �rst path in three di�erent environments.Then, the second

stage presents the convergence rate of the two methods in simple and narrow passage

environments. The last stage shows the e�ect of collision checking procedure for both

algorithms in high number of obstacles environments.

For all the simulations, the cost of paths is chosen to be the Euclidean distance as

metric in the con�guration space. We set the gamma constant for both methods to γ = 8,

and we �xed the interval of iteration to execute the path optimization technique for NP-

RRT* to I = 5. In the �gures, the red point denotes the starting node and the green

point denotes the destination. The blue line is the path and the green solid boxes are the

obstacles. All the simulations are performed on a computer with Intel Core i3 2.30GHz,

and 4GB of RAM, using MATLAB version (2014a).

4.6.1 First path

In order to test the performance of our method in �nding the �rst path, we have chosen

three di�erent environments: simple, narrow passage and maze as shown in Fig. 4.2. The

results of 50 runs are presented in Table 4.1. In this stage, we are not using the presented
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collision checking approach, in order to show the e�ect of SteerNP function in �nding the

�rst path.

Figure 4.2: The �rst path found by NP-RRT* and RRT* in three di�erent environments:

simple (on the left), narrow passage (in the middle) and maze (on the right). (a), (b), (c)

for NP-RRT*, (d), (e), (f) for RRT*.

Table 4.1: Statistical comparison between NP-RRT* and RRT* in �nding the �rst path

in three di�erent environments.
Env. Simple Narrow Passage Maze

Alg. RRT* NP-RRT* RRT* NP-RRT* RRT* NP-RRT*

Avrg. Std. d Avrg. Std. d Avrg. Std. d Avrg. Std. d Avrg. Std. d Avrg. Std. d

Ex. t (s) 1.55 0.52 1.56 0.67 2.26 0.68 1.94 0.44 6.98 1.80 6.10 1.62

Nodes 66.80 33.82 50.02 26.27 123.05 55.85 75.50 21.18 707.05 260.07 356.57 111.35

Cost 15.73 1.89 15.98 1.62 18.39 1.50 18.50 1.25 39.61 3.14 40.77 2.79

It 99.62 41.89 73.60 30.15 303.25 167.98 168.30 59.88 1463.37 468.80 808.50 255.01

Env.: Environments; Avrg.: Average; Std. d: Standard deviation; Ex. t: Execution time; It: Iterations.

From Table 4.1, it is clear that NP-RRT* has better performance in term of iteration

and node number for the three environments. But in term of cost, the �rst path found by

RRT* has less cost comparing to NP-RRT* for all the environments. In term of execution

time, NP-RRT* takes less time in narrow passage and maze environment, whereas they

take roughly the same time in the simple environment.

From this comparison, NP-RRT* shows good performance in �nding the �rst path
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faster than RRT* in di�cult and simple environments. Beside that, NP-RRT* consumes

less memory in all the simulations.

Figure 4.3: The path at 2000 iterations in simple environment on left side, and in narrow

passage environment on the right side. (a), (b) for NP-RRT* and (c), (d) for RRT*.

4.6.2 Convergence test

In this stage, we have selected two environments to compare the convergence rate of our

method with RRT*. These two environments are shown in Fig. 4.3, where the �rst one is

designed to be a simple environment, and the second one is designed to contain a narrow

passage. The statistical results of 50 runs are presented in Fig. 4.4, where the costs are

plotted versus number of iterations.

From Fig. 4.4, it can be seen that for the two environments, NP-RRT* starts from a big

initial cost comparing to RRT*, then it converges very fast to an optimal or sub-optimal

path in �nite number of iterations, whereas RRT* still in process of reaching an optimal

solution with slow rate of convergence. It is clear that the graph of NP-RRT* start before

the graph of RRT* taking a smaller number of iterations for the two environments. This

ensures the e�ciency of our algorithm in �nding quickly the �rst solution.
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(a)

(b)

Figure 4.4: Convergence rate for NP-RRT* and RRT*. (a) in simple environment, (b)

narrow passage environment.
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Table 4.2: Comparison of execution time between NP-RRT* and RRT* in di�erent clut-

tered environments.

Number of obstacles Ex. t (s) for RRT* Ex. t (s) for NP-RRT*

10 60.54 7.06

50 293.05 7.29

100 889.61 9.56

150 1001.20 8.53

300 1554.32 9.96

500 2012.54 9.98

4.6.3 Cluttered environments

In order to show the e�ect of the presented collision checking, we have generated randomly

three cluttered environments with di�erent numbers of obstacles. Fig. 4.5 shows these

environments, where the �rst has 10 obstacles, the second has 50 obstacles and 300 for

the third. The average results of both methods are presented in the Table 4.2, where the

execution time are captured for the same number of iterations it=2000.

Table 4.2 demonstrates clearly that NP-RRT* has signi�cantly less time comparing

to RRT* for all the environments. Also, the pattern of execution time of RRT*, is

growing as the number of obstacles grows, where it starts from 60.54s for 10 obstacles, to

reach 2012.54s for 500 obstacles. Whereas, NP-RRT* stays roughly constant,where the

execution time for 10 obstacles is 7.06s, and 9.98s for 500 obstacles.

From these results, one can observe the huge reduction in time complexity due to the

presented collision checking for NP-RRT*. This shows the e�ciency of our method in

solving problems with high number of obstacles.
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4.7 Conclusion

We have presented in this chapter our a new variant of RRT*, named NP-RRT*, to over-

come the limitations of RRT* in solving problems with narrow passages and high number

of obstacles, also to address the issue of convergence rate. A new steer function that

generates con�gurations near the obstacles has been proposed, in order to sample di�cult

spaces. Path optimization technique was presented to speed up the convergence rate by

generating nodes near the found path. Simulation results demonstrate the e�ciency of

our method in �nding the �rst solution in di�erent environments, comparing to basic

RRT*, in respect to iteration number, execution time and node number. The NP-RRT*

converges very fast to optimal or sub-optimal path, comparing to RRT*. Furthermore, the

execution time of RRT* in cluttered environments has grown as the number of obstacles

grow, whereas, the number of obstacles has no e�ect on our method.

In the next chapter we will present the trajectory generation and optimization for

Quadrotors in 3D environment.
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Chapter 5

Minimum snap trajectory for

Quadrotors

5.1 Introduction

Accomplishing tasks by a Quadrotor needs motion planning, to �nd safe, feasible, and

collision-free trajectories, possibly in the presence of some constraints. Two planning

approaches are used. The decupled approach, �rst, looks for a collision-free path in the

con�guration space and, then, �nds the trajectory in the state space. While the direct

approach �nds, directly, the trajectory in the state space [8].

The Quadrotors are non-linear systems with six degrees of freedom, controlled by

four input signals. Optimizing trajectories for such systems has been the subject of many

research works. Cowling et al. [48] and Bouktir et al. [47] presented decupled optimal tra-

jectory planners based on polynomials and B-Splins, respectively. The path is planned in

the con�guration space, then the trajectory is parametrized in time considering dynamical

and feasibility constrains. Lai et al. [49] handled the problem of time optimal control us-

ing nonlinear programming method coupled with Genetic Algorithm (GA). Mixed Integer

Linear Programming (MILP) was implemented in [50] to minimize trajectories for UAVs.

But it increases the number of variables, resulting on increasing number of evaluations of

the recursive functions. This causes a heavy computational burden. Di�erential �atness

representation for Quadrotor guarantees su�ciently continuous trajectories, in �at output

space. Then, these trajectories can be translated into dynamically feasible trajectories,
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in the state space [51]. Based on this concept, Mellinger and Kumar [52] have presented

an algorithm to minimize the snap, using quadratic programming. Richter et al. [53]

extended this work to �nd the optimal waypoints in cluttered environment, using RRT*.

Then the whole polynomial trajectory is optimized, based on unconstrained quadratic

programming.

Since trajectory optimization for Quadrotors can be a multi-objective problem, the

numerical solutions stated before became computationally impractical when trying to

optimize trajectory with high number of waypoints, in addition to other constraints, like

energy and distance optimization. In such complex situations, Evolutionary Algorithms

may be useful, because they can �nd good compromise, by approximating the Pareto

optimal set in a single run [54].

Many studies have used these algorithms, but most of them tried to solve path planning

in the con�guration space. In [55] Bezier curves are used with GA to produce trajectories

that respect a minimum curvature for UAVs. Bao et al. [56] presented a Particle Swarm

Optimization (PSO) based method to compute the shortest path between two points.

Nikolos et al. [57] presented an o�ine/online path planner based on GA and B-Spline

curves.

In this chapter will present a PSO algorithm to minimize the snap of polynomial

trajectories for Quadrotors, using PD control. The main contribution is we add the

minimum distance criterion beside the minimum snap and time to the cost function. This

improves the quality of the trajectory.

5.2 Minimum snap and distance trajectory

The snap is the forth derivative of the path. Minimum snap trajectory for Quadrotors was

�rst introduced by Mellinger and Kumar [52]. They showed that the Quadrotor dynamics

can be written as di�erential �atness representation. Then, they showed that minimum

snap polynomial trajectories are the natural choice for Quadrotors. Because the motor

commands and attitude accelerations of the vehicle are proportional to the snap of the

path. This work has been extended by Richter et al. [53]. They used the quadratic

program to �nd the minimum snap polynomial trajectory composed of many segments in
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indoor cluttered environments. The waypoints are generated by RRT* algorithm.

In this work, the same problem formulation described in [53] is used, but we added the

minimum distance term to the cost function and, instead of using the quadratic program,

we used the PSO algorithm for the optimization task. It is, also, assumed that the

waypoints are given in 3D environment without obstacles.

For one segment trajectory between two con�gurations, the Quadrotor has four inde-

pendent polynomials x, y, z, ψ. The cost function for one polynomial P (t), that minimize

the snap and the distance, can be written as

J(T ) =

∫ T

0

(P ′(t)2 + P (4)(t)2)dt (5.1)

Where T is the duration of the trajectory.

From the calculus of variations, the polynomial P (t) is seventh order, the example for

the polynomial of x is:

x(t) = c7t
7 + c6t

6 + c5t
5 + c4t

4 + c3t
3 + c2t

2 + c1t+ c0 (5.2)

The solution of this integral can be written in matrix form as follows:

J(T ) = pT
i Qsi(T )pi + pT

i Qdi(T )pi (5.3)

where pi = [c7, c6, . . . , c0]T is the vector of one polynomial coe�cients and (Qsi , Qdi)

are the Hessian matrices for the snap and distance.

For n polynomial segments, the cost function will be

Jt = pTQs(T )p + pTQd(T )p (5.4)

Where p = [p1, . . . ,pn]T is the total vector of n polynomial coe�cients, and (Qs, Qd)

are the total Hessian matrices written as block diagonal fashion.

To ensure the continuity and the di�erentiability, each end segment i conditions must

be the same as starting conditions of the next segment i + 1. Since the polynomials are

seventh order, the coe�cients of one polynomial are calculated by solving a linear system

of eight order
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Aipi = di (5.5)

where di is the vector that contains the initial and the end conditions for the ith

polynomial, and Ai is a 8×8 matrix written in function of T . Therefore, for n polynomial

segments, (eq. 5.5) becomes

A


p1

...

pn

 =


d1

...

dn


Ap = d (5.6)

By replacing the vector of coe�cients p in the cost function by the vector of conditions

d, the decision variables will be the waypoint's conditions. The new cost function will be

Jt = dTA−1QsA
−1d + dTA−TQdA

−1d (5.7)

In the previous cost function, the duration of each segment is supposed to be priori

�xed. This assumption is used in [52], where they �xed the total time heuristically, then,

they minimized the snap using the remaining degrees of freedom. However, the authors

in [53] showed that, from the planning context point of view, the time cannot be priori

�xed, instead, one can let it free to vary with the optimization process. This will improve

the quality of the solution. Hence, in this work, the sum of segment times is added to the

previous cost function, then we penalize each term by a factor, as it will be discussed in

the next section. The �nal cost function has the following form:

Jt = ksd
TA−1QsA

−1d

+ kdd
TA−TQdA

−1d + kt
∑n

i=1
Ti (5.8)
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5.3 PSO implementation

Particle swarm optimization is a population-based optimization technique proposed in

1995 by Eberhart and Kennedy [58]. The idea is inspired from the swarm behavior of

birds. A basic variant of the PSO algorithm initializes a swarm's particles randomly in a

prespeci�ed range. In each iteration, these particles update their positions and velocities

using the following equations:

vt+1 = wv + c1r1(xLbestt − xt) + c2r2(xGbestt − xt)

xt+1 = xt + vt+1 (5.9)

Where x is a particle, v is the velocity of a particle, w is the inertia coe�cient, c1,

c2 are the acceleration coe�cients, xLbest is the local best position particle, xGbest is the

global best position particle.

The movements of the particles, in the search-space, are guided by their local best

position and the global best position. When improved position is discovered, the latter

will guide the search of the swarm. This process is repeated until a maximum number of

iterations is reached or a satisfactory solution is discovered.

5.3.1 Multi-objective PSO

Multi-objective PSO Many works have been proposed to extend the basic PSO to handle

multi-objective problems [59]. The reason that we have chosen PSO among the other

evolutionary algorithms is that it is a population based approach and it is simple and

power full, it has been used widely for trajectory optimization problems. This work

uses the version proposed in [60]. The latter looks �rst for the front of pareto-optimal

solutions set, then it uses a gradient technique to �nd an optimal solution. The idea of

this approach is to divide the swarm equally to m subswarms. Then, for each subswarm,

a set of weights, penalizing the objective function, are used to compute the cost of

particles. Each subswarm evolves into the direction of its own leader. The total swarm

is guided by the particle yielding the best cost value. Fig. 5.1 summarizes the method.
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Figure 5.1: The multi-objective PSO proposed in [60]

The proposed objective function (eq. 5.8) has three terms: distance, snap, and time.

These terms are weighted by kd, ks, kt respectively, where the sum of this coe�cients

is one. These factors can be �xed heuristically, if the number of subswarms is small, or

randomly, if it is high. In our implementation, we have �xed the number of subswarms

to m = 10. Therefore, we have set the weight factors randomly for each subswarm. The

other parameters of PSO are �xed as follows

• The inertia coe�cient w = 0.8

• The acceleration coe�cients c1 = 1, c2 = 1

• r1, r2 are random values between 0 and 1

5.3.2 Decision variables vector components

For one polynomial, the decision variable vector D has the form

D = [d, T ] (5.10)

The vector d is composed of initial and �nal conditions for each waypoint, where

the conditions are: position, velocity, acceleration, and jerk. For n waypoints, d has the

dimension 8(n−1). Since the position of each waypoint is known priori and the conditions

59



CHAPTER 5. MINIMUM SNAP TRAJECTORY FOR QUADROTORS

of the staring and the end points are also known, the dimension of d will be 3(n−2). The

time of segments T has the dimension (n− 1), hence, the dimension of the total decision

variable vector is (4n−7). Since we are using a linear controller, the yaw must be close to

the initial yaw. In our implementation, we let it �x. Therefore, the trajectory will have

just three polynomials. The total decision vector will have the dimension 10n − 19, and

its form will be

D = [dx,dy,dz, T ] (5.11)

5.4 Time and motors constraints

When generating a trajectory for a Quadrotor, we have to ensure that the control input

signals require admissible motor thrusts. The formal solution to this problem, when using

a di�erential model, is to map the motor constraints into the �at output space, before

starting the optimization. An alternative technique is to compute the motors thrusts

algebraically during each iteration of the optimization process to verify that the thrusts

stays within the motors range capability [53]. Sine we are using a linearized controller,

the roll and pitch angles are limited to be close to zero. Hence, the motor constraint is

always veri�ed. The constraint that we have to check iteratively will be the maximum

and minimum allowed angles.

The second constraint that must be taken into account is the time of each segment.

Since the trajectory depends on time, this can activate the angles constraint. Therefore,

the segment times must be limited by a minimum allowed time. A simple expression is

used to calculate the minimum time for each segment.

Tmini = βdi (5.12)

Where di is the Euclidian distance between two waypoints, and β is a coe�cient

calculated by simulating the Quadrotor cruising along a straight-line trajectory between

two waypoints with the maximum allowed angles.
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Figure 5.2: Tracking of an optimized trajectory generated from 5 waypoint using the

modi�ed cost function

5.5 Simulation results

In this section, we will present a software validation of the proposed scheme. All the

simulations are performed on a computer with Intel Core i3 2.30GHz, and 4GB of RAM,

using MATLAB version (2014a). The Quadrotor parameters are listed in the Table 2.1.

Since the decision vector is composed of derivative conditions in each waypoint, the

angle limits can be transformed to derivative limits using the dynamical model. But the

angle limits constraint is not sure to be veri�ed along the polynomial segments. Hence,

an iteration test is required, which add more computation. The used PD controller can

support up to 10 for pitch and roll angles, in order to avoid the iteration testing for the

angle limits constraint we set the limits to 5o. After hundreds of simulations, 98% of the

generated trajectories remain in the angle range supported by the controller. Fig. 5.2

shows the Quadrotor tracks a 3D trajectory generated from 5 waypoints. We note that

the waypoints are generated manually in free of obstacles 3D space.

Table 5.2 shows the results corresponding to three samples of waypoints, n = 5, n = 50,

and n = 100, where the execution time and the trajectory length are computed for two

sets of the cost function terms: (time + snap) and (time + snap + distance). From the

results presented in Table 5.2, it is clear that the used multi-objective PSO succeeded
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Table 5.1: The execution time and the trajectory length in function of the waypoints

number. Where CF is the cost function, S for the snap term, d for the distance term and

t for the time term

CF terms S + t S + d + t

N Tex (s) Lpath (m) Tex (s) Lpath (m)

5 8.493 6.135 11.112 5.848

50 326.80 39.476 569.32 29.165

100 1804.28 70.352 3352.78 61.65

to solve the trajectory optimization problem for all the di�erent samples of waypoints.

In term of trajectory length, the use of distance term in the cost function gives shortest

paths for all the sample of waypoints. However, the execution time in the absence of the

distance term in the cost function is small comparing to when it is present.

Fig. 5.3 shows two paths generated for the same 7 waypoints, without and with the

distance term. From the results, it is clear that the use of the distance term in the

cost function gives short trajectories. However, this increases the execution time of the

optimization process proportionally to the number of waypoints.

5.6 Conclusion

This chapter presented an application of a multi objective PSO to minimize the snap of

polynomial trajectories for Quadrotors. A linearized PD controller is used to track the

trajectories. The distance term is added to the cost function to improve the quality of the

trajectory. Simulation results show the e�ciency of the algorithm in solving the trajectory

optimization problem for di�erent number of waypoints. The generated trajectories with

the distance term in the cost function had the best quality, but it takes more execution

time.
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(a) (b)

Figure 5.3: Trajectories generated from 7 waypoints: (a) minimum snap and time trajec-

tory 9.02m, (b) minimum snap, time and distance trajectory 8.61m

(a) (b)

Figure 5.4: Tracking of di�erent shape of 3D trajectories: (a) wave form generated from

6 waypoints, (b) square form generated from 5 waypoints
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Conclusion and future work

The topic of this thesis has been the development of new techniques in motion planning

for UAVs, more speci�cally for Quadrotors. Path planning and trajectory generation are

two important areas for the development of autonomous systems. Path planning tries to

obtain a sequence of vehicle con�gurations (waypoints) between an initial con�guration

and a �nal con�guration that avoids collision and minimize certain objective function.

Trajectory generation aims at obtaining a time parametrized path that describe the mo-

tion along the path.

The contributions of this thesis have been presented in both stages: path planning

and trajectory planning. In the path planning, a collision checking algorithm has been

developed for sampling-based motion planning to address the problem of high number

of obstacles. The method disassociates the dependence of time complexity with number

of obstacles, By performing a pre-processing that stores information about the obstacles,

then using them in the collision checking queries. We have also presented a new variant of

RRT* algorithm named NPRRT* to address mainly the problem of narrow passages and

convergence rate to optimal solution. Also, it addresses the memory consumption limit.

We have introduced a steer function that explores more e�ciently the di�cult parts of

the con�guration space. A proposed path optimization technique has been used to speed

up the convergence rate by generating con�gurations near the found path.

In the trajectory planning, the generation of 3D trajectory for Quadrotors has been

implemented using PSO algorithm. The algorithm succeeded to minimize the snap, time

and distance for polynomial trajectories. Where, a PD controller has been used to track

the generated trajectory.

During this thesis a number of issues that require further investigation and consid-

eration have been brought to attention and the most important are summarized here as
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suggestions for future works.

• In the presented collision checking method, the robot was considered to be punctual

and the obstacles are polygons. As future work, the polyhedron shape for robot and

obstacles will be considered for 3D environment.

• The future extensions for the NPRRT* may be the generalization of the method for

higher dimensional space and improving the process of parameter selection. Also,

the implementation of the method on real robots may require some improvements

such as the smoothing of the generated path to adapt the kinodynamics of the robot.

• For the PSO implementation in the minimum snap and distance trajectory, future

work would be using a non linear control in order to relax the near hovering condi-

tions and studying the case of cluttered environments.
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 تركز الأطروحة  على تخطيط  الحركة  للنوع .  تتناول هذه الأطروحة تطوير خوارزميات تخطيط المسار للمركبات الجوية غير المأهولة

 تخطيط  المسار نقترح  تقنية لتقليل  وقت   في  . تخطيط  المسار وتخطيط  ال حركة  : حيث ت ساهم  الأطروحة  على  مستويين   . المحركاتعي  ربا

. حيث أن الطريقة تفصل علاقة عدد المعيقات مع وقت  بيئة مزدحمة لطرق تخطيط  المسار  القائمة  على أخذ  العينات فحص  التصادم في 

 أيضًا، نقترح نسخة مطورة لومات عند فحص التصادم. وهذا بتخزين معلومات حول البيئة مسبقا، ثم يتم استعمال هذه المع  فحص التصادم

 ، والمسماة  طريقة  شجرة  الاستكشاف  السريعة  العشوائية  النجمية  للممرات  الضيقة  . لطريقة  شجرة  الاستكشاف  السريعة  العشوائية النجمية

 العمل وتسريع عملية  الحصول  على الحل  الأمثل  ،  وكذلك  تقليل  أين تتعامل هذه  الأخيرة  بشكل  أساسي مع الممرات  الضيقة  في  مساحة 

. حيث أن  الطاقة  والمسافة لرباعي المحركات  في  تخطيط الحركة نطبق طريقة  سرب الجسيمات للتحسين في تقليل  .استهلاك الذاكرة

 ه المسارات. استعمال المسارات محسنة المشتق الرابع هو الاختيار الطبيعي لرباعيات المحركات لأن التسارع يتناسب طرديا مع هذ

Abstract: 

     This thesis addresses the development of trajectory planning algorithms for unmanned aerial vehicles 

(UAVs). It focuses on the motion planning for Quadrotor type and contributes in the both stages: the path 

planning and the trajectory planning. In path planning, a technique is proposed to reduce the collision checking 

time in cluttered environment for sampling-based path planning. The method disassociates the dependence of 

time complexity with number of obstacles, by performing a pre-processing that stores information about the 

obstacles, then using them in the collision checking queries. Also, we propose a new variant of Rapidly 

Exploring Random Trees Star (RRT*) named NP-RRT* to deal mainly with narrow passages in the workspace 

and to speed up the convergence rate to optimal solution, also, to minimize the memory consumption. In the 

trajectory planning, we implement the Particle Swarm Optimization (PSO) to minimize the snap and distance 

trajectory for Quadrotor. The minimum snap polynomial trajectories are the natural choice for Quadrotors, since the 

motor commands and attitude accelerations of the vehicle are proportional to the snap of the path.  

 

 

 

Résumé : 

     Cette thèse porte sur le développement d'algorithmes de planification de trajectoires pour les véhicules 
aériens sans pilote (UAV). La thèse porte sur la planification de mouvements pour le type Quadrotor. La 
contribution concerne les deux étapes : la planification du chemin et la planification de trajectoires. Dans la 
planification du chemin, une technique est proposée pour réduire le temps de test de collision dans des 
environnements encombrés pour les méthodes de planification basée sur l'échantillonnage.  Le procédé 
dissocie la dépendance de la complexité temporelle du nombre d'obstacles, en effectuant un prétraitement qui 
stocke des informations sur les obstacles, puis en les utilisant dans les requêtes de vérification de collision. De 
plus, nous proposons une nouvelle variante de l’algorithme RRT* (pour : Rapidly Exploring Random Trees Star) 
nommée NP-RRT* pour traiter principalement les passages étroits dans l'espace de travail et accélérer la 
convergence vers une solution optimale, ainsi que minimiser la consommation de mémoire. Dans la 
planification de trajectoires, nous implémentons la méthode (PSO) pour minimiser l’énergie et la distance pour 
les Quad-rotors. Les trajectoires polynomiales en minimisant la quatrième dérivée sont le choix naturel pour 
les Quad-rotors, puisque les commandes du moteur et les accélérations d'attitude du véhicule sont 
proportionnelles à la quatrième dérivée de la trajectoire. 
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