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General Introduction

Time series analysis has developed tremendously and is now widely used
in both theoretical and applied fields. Throughout the previous four decades a
significant number of studies have been devoted to understanding and applying
these techniques.
Time series data is an ordered sequence of observations of well defined data items
at regular time intervals. The number of research in this area continues to increase
because time is component of everything that can be observed. Time series analysis
has two basic goals: determining the nature of the phenomenon represented by a set
of data and forecasting (predicting future values of the time series variable). Such
data has numerous applications in finance, hydrology, biology, physics...etc. For
example: In the study of weather records; time series analysis is used frequently by
weatherman to explain and predict what the temperatures will be during different
months and seasons throughout the year. In economic indicators, we have the
example of stock prices we can gain a better understanding of the patterns in various
stock prices. In the medical industry, time series analysis is used to monitor the heart
rate of patients who are taking particular medications to ensure that their heart rate
does not fluctuate too much at any given time of day.
The theoretical developments started early with stochastic processes, the first actual
application of autoregressive models to data can be brought back to the work of
Yule [89] and Slutsky [75] in the (1926) and (1927). Moving average is a method of
smoothing data points that has been in use for decades before this, it was known as
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"instantaneous averages" Hooker [46] in (1901), and Yule defined them as "moving-
averages" in (1909). Although they did not use the phrase in his textbook, it was
popularized by King’s Elements of Statistical Method [51](1912). Wold [85] "process
of moving average" (A Study in the Analysis of Stationary Time Series (1938)) is an
abbreviation for a sort of stochastic process, Wold described how special cases of the
process had been studied in the (1927) by Yule [89], the moving average was created
to remove periodic fluctuations in time series, such as those caused by seasonality.
For stationary series, Wold [85] introduced ARMA (AutoRegressive Moving Average)
models.
The expression ARMA(p,q) is written as follows

Xt = εt +
p∑
i=1

ϕiXt−i +
q∑
i=1

θiεt−i (1)

Where ϕi and θi are the parameters of the model, εi are i.i.d. errors.
ARMA(p,0) is AR(p), ARMA(0,q) is MA(q).
The Box-Jenkins [16] method considered a fundamental contribution to time series
analysis appeared only in (1970). Three principles guide this model’s handling of
data: autoregression, differencing, and moving average. These three principles are
known as p,d and q, respectively. the autoregression (p) process tests the data for
its level of stationarity, if the data being used is stationary, it can simplify the fore-
casting process, if the data are non-stationary it will need to be differenced (d). The
data is also tested for its moving average fit (which is done in part q of the analysis
process).
Overall, initial analysis of the data prepares it for forecasting by determining the
parameters (p, d, and q), which are then applied to develop a forecast. It popu-
larized the autoregressive integrated moving average ARIMA(p,d,q) model by using
an iterative modeling procedure consisting of identification, estimation, and model
checking.
Box-Jenkins multivariate models, are used to analyze more than one time dependent
variable, such as cases of COVID-19, lockdown over time and prices of food.
The first generalization was to accept multivariate ARMA models, among which
especially VAR models (Vector AutoRegressive) have become popular, Litterman

11



LIST OF TABLES

and Doan [26](1986) discussed VAR model , Litterman and Sims [52] (1984) shed
light on BVAR model. These techniques, however, are only applicable for stationary
time serie. Peiris studied an autoregressive univariate model of order 1 with time
dependent coefficient, they established an extension of the model in multivariate
case. Osborn [62](1988), Birchenhall et al. [12] were among the first to introduce
periodic models into economics (1989), other developments were extensions to mul-
tivariate periodic models in Boswijk et al. [14](1997). A thorough account of the
developments in application are reported in Xirasagar [87](2005), Anderoni et al.
[4](2006), Tsitsika et al. [81](2009).
Time series analysis was originally divided into frequency domain and time do-
main approach, The data autocorrelation function and parametric models, such as
ARIMA models, are used in the time domain approach to describe the dynamic de-
pendence of the series Box, Jenkins, and Reinsel [18](1994), The frequency domain
approach focuses on spectral analysis or power distribution over frequency to study
theory and applications of time series analysis.
The approach of Box-Jenkins can only capture short range dependence which is
characterized by an exponential decay of the autocorrelation function Brockwell
and Davis [20](1991). On the other hand long range dependence (LRD) means that
the effect of a shock could not disappear quickly but it takes a long time to vanish in
other words the sum of the auto-correlations is infnite Baillie [5](1996), the classical
models cited above can not be suitable to describe (LRD).
Fractional AutoRegressive Integrated Moving Average (ARFIMA) is a well known
model which can be accurate in modeling (LRD), it presents an extension of usual
ARIMA by allowing for fractional degrees of integration.
"Fractional differencing is a crucial step in the building of ARFIMA model, How-
ever, due to difficulties in fractional differencing, most researchers use first-order
differencing as an alternative, such technique will certainly cause over-differencing,
which will lead to the loss of information Huang" [48](2010).
Empirical evidence of long memory are numerous in different fields such as astron-
omy, chemistry, agriculture, and geophysics originates from considerably earlier eras,
for example Newcomb [61] (1886), Student [78](1927), Fairfield Smith [76](1938),
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Jeffreys [50](1939). This model has been initially treated in the field of hydrology
with Hurst’s works [49] (1951) on the floods Nile, Hosking [47](1981), Granger and
Joyeux [35](1980) introduced ARFIMA model, they based on the works of Mandel-
brot and Van Ness [60](1968) who dealt with Fractional Brownian motion.
The model ARFIMA(0,d,0) is defined as follow

(1− L)dXt = εt (2)

L is lag operator, d ∈ R, εt i.i.d. errors.
Gonçalves [33](1987) presented an extension of the model ARMA(p,q) where p and
q can take real values, this model includes ARIMA(p,d,q) short and long range de-
pendence. Beran [9] (1994) dealt with long memory processes and its probabilistic
and statistical properties, Further information on ARFIMA(p,d,q) models was given
by Sowell [74] (1992), Chung [23] (1994), Brockwell and Davis [21](2002).
Identifying the existence of long memory feature via techniques such as Autocorre-
lation Function (ACF) test is possible, this method is one of the most popular tests
identifying the memory of the time series first introduced by Ding and Granger
[36](1996). In this test, autocorrelation graph decreases from a certain value very
slowly or hyperbolically. Therefore, such time series have long memory feature.
There are other techniques used in the identifying of the long memory feature such
as Gewek and Porter-Hudak (GPH), this method is based on frequency domain
analysis.
The concept Fractional differentiation of ARIMA process was further expanded by
Andel [3] (1986) and Gray, Zhang, and Woodward [86] (1989, 1994), who introduced
the Gegenbauer ARMA abbreviated as GARMA class of time series models based
on the theory of Gegenbauer polynomials (see also Giraitis and Leipus, [32] (1995),
and Woodward, Cheng, and Gray, [37](1998)).
A GARMA process is a long memory process generated by

(1 + 2uL+ L2)dXt = εt (3)

Where |u| < 1, 0 < d <
1
2, εt i.i.d. errors.

When u = 1, we obtain ARFIMA(0,2d,0) process, it means that GARMA is Gen-
eralized model of ARFIMA.
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Sabzikar et al has recently presented a new time series model called AutoRegressive
Tempered Fractionally Integrated Moving Average (ARTFIMA).

(1− e−λL)dXt = εt (4)

λ, d are real parameters, εt are i.i.d. errors.
This model exhibit semi-long range dependence, their autocovariance function re-
sembles long range dependence for a number of lags, depending on the tempering
parameter, but eventually it decreases quickly. This model has a summable covari-
ance function, since the tempering parameter can be made as small as we like, the
mathematically more tractable ARTFIMA model can fit data that is usually mod-
eled using the ARFIMA model.
An important step in the Box-Jenkins approach is the estimation of parameters, one
of the easiest methods is the method of moments (MOM), model parameters are es-
timated by equating population and sample moments, it was introduced by Pafnuty
Chebyshev in (1887). Least squares estimation (LSE) was viewed as generalization
of method of moments, it consists to minimize the sum of the squared vertical dis-
tances, the maximum likelihood estimator (MLE) estimate model parameters by
maximizing the likelihood function, this method was developed by Fisher in (1922).
In the case of ARFIMA models, Geweke and Porter-Hudak [31] proposed a semi-
parametric estimator for ARFIMA(0,d,0), Yajima [88] (1985) discussed the estima-
tion of long memory parameter using maximum likelihood estimator, Bloomfield and
Sastry [13](1992) worked on the estimation of the parameters of ARFIMA(p,d,q),
Sowell [74] (1992) derived a procedure to compute the unconditional exact likelihood
function, Beran [10] (1995) developed an approximation based on conditional least
squares.
The adaptive estimation was also widely treated by the researchers due to its per-
formance, an adaptive estimator is an estimator in a parametric or semiparametric
model with nuisance parameters such that the presence of these nuisance param-
eters does not affect efficiency of estimation. This technique start with stein [77]
(1956) who dealt with traditional models in the independent case, Fabian and Han-
nan (1982) [28] established results for a family of model that fulfill the property of
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Local Asymptotic Normality (LAN) criterion which is introduced by Le Cam [58]
(1960), this notion consists in approaching a series of statistical experiments by a
gaussian family, it is fundamental in parametric theory and it is used to describe the
asymptotic optimality of estimators. Le Cam [59](1986) developed this technique in
the case of limit experiences, Bickel [11](1982) established some results on adaptive
estimation in regression models.
Swensen [79](1985) prove the asymptotic normality of the likelihood ratio of autore-
gressive time series with a regression, Kreiss [55](1987) established LAN of stationary
ARMA(p,q) process with independent and identically distributed but not necessary
gaussian, then they treated Local Asymptotic Minimaxity (LAM), it leads us to
show that the normal distribution is the best limit and describes the optimality of
the estimator, this concept was introduced by Haejk [42](1972). Kreiss [56](1987)
generalized adaptive estimation for non gaussian autoregressive models with infi-
nite order. Furthermore Hallin and Puri [45](1994) dealt with ARMA processes
with a linear regression trend under unspecified innovations then they showed LAN
property, Garel and Hallin [30](1995) established LAN result for vector ARMA
models with linear trend, a regression model ARFIMA(p,d,q) with long memory
disturbances are studied by Hallin et al [44](1999), we have also the contributions
of Hallin and Lotfi (2005), Bentarzi et al. [6](2009), Guta and Kiukas [38](2015),
Kara-terki and Mourid [53](2016) treated the local asymptotic normality of func-
tion autoregressive processes, Haddad and Belaide [40](2019) extended the results
of Serroukh [72](1996).
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Brief Outline of the Thesis

This dissertation is devoted to study a fractional autoregressive model of order
1, FAR(1).

(1− aL)dXt = εt (5)

L is lag operator, a and d are real parameters, εt are strong mixing noises, with
σ2 <∞.
In our case, we insure the invertibility and causality using the following conditions

• (1) |a| < 1 and d ∈ R

• (2) a = 1 and |d| < 1
2.

The errors in this model are assumed to be mixing, in reality is very fruitful to
assume the dependence of innovations, because it is applicable in economics, fi-
nance and other fields, that is why there is a vast literature on the notion of mixing
coefficients of the random variables, especially strong mixing process (α−mixing),
introduced by Rosenblatt [68](1956)
The main objective of this work is to establish some results about special ARFIMA
model and the derivation of several local asymptotic properties (Local Asymptotic
Normality (LAN) and Local Asymptotic Minimaxity (LAM)).
This thesis is set out as follows
In the first chapter, we cope with preliminaries, basic notions, definitions and key
concepts that will be used in the next chapters to arrive at the primary conclu-
sions, then we discuss some properties of ARIMA and ARFIMA models, especially
Fractional Autoregressive model of order 1. (Invertibility and causality conditions,
autocovariance function, autocorrelation function and their asymptotic behavior)
The second chapter is dedicated to generalize some probabilistic properties in the
case of Fractional Autoregressive process (FAR(1)) with strong mixing noises. We
treat the geometrical strong mixing case and the arithmetical strong mixing case,
then we check the validity of the theoretical results by a simulation study, we show
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the effect of strong mixing coefficients on the behavior of the autocorrelation func-
tion, this chapter was the subject of an article, which is submitted.
The third chapter is devoted to study several local asymptotic properties, we ex-
plore the Local Asymptotic Normality (LAN) property, give the local Asymptotic
Quadratic expression, and prove the primary result using Swensen’s conditions. Fi-
nally, we demonstrate our method with a simulation study. After that, we’ll look
at the properties of Local Asymptotic Minimaxity (LAM) and Local Asymptotic
Linearity, This chapter was the subject of an article, which is published in Commu-
nication in statistics simulation and computation.
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Chapter 1
Preliminaries on Time Series

Processes

Introduction

This chapter is devoted to study some characteristics of time series model, we
answer basic and important questions. Is the series stationary, invertible, causal?
Fluctuations in the series take long time or short time to vanish?
We use the Box-Jenkins Methodology to investigate various statistical and proba-
bilistic aspects of time series processes.
We start with the study of classical time series models AR, MA, ARMA and ARIMA,
then we deal with ARFIMA process and their properties basing on some definitions
and tools.
Furthermore, we discuss a key idea in asymptotic theory known as Local Asymp-
totic Normality, which was introduced by Lucien Le Cam, this idea dates back to
Wald [83](1943) they used a Gaussian family to approximate a series of statistical
experiments, the results of projecting the (LAN) property on a Fractional Autore-
gressive Model of order 1 (Long Memory Model) in the case of independent noises
and mixing noises are then presented.

18



1. PRELIMINARIES ON TIME SERIES PROCESSES

1.1 Definition and Tools in Time Series

In what follows, we regroup some definitions and tools that are going to be
necessary established by this thesis.

1.1.1 Generalities on Time Series Process

Definition 1.1. (Stochastic Process) Let (Ω,F , P ) be a probability space and let
T be an index set, any collection of random variables X = Xt : t ∈ T defined on
(Ω,F , P ) is called a stochastic process with index set T .

Definition 1.2. (Time Series Process) Time series is a sequence taken at succes-
sive equally spaced points in time, thus it is a sequence of discrete-time data, it can
be decomposed into unobservable components. In the most complete case, these
components are the trend (Tt), the seasonal (St) and the irregular components (εt).
We use a dataset of weekly mortality in Algeria caused by the Coronavirus as an
example we refer the reader to the website World Health Organization

Figure 1.1: Weekly mortality in Algeria caused by the Coronavirus. from 2nd March
2020 to 30th May 2021
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Now, we present the trend, seasonal, and random components of weekly mortality
in Algeria caused by the Coronavirus dataset.

Figure 1.2: Decomposition of weekly mortality in Algeria caused by the Coronavirus

Additive and multiplicative models

The amplitude of both the seasonal and irregular variations do not change as the
level of the trend rises or falls.
We have used dataset in R:"International airline passengers: monthly totals in thou-
sands" to illustrate Additive and multiplicative models.
In such cases, an additive model is appropriate.

Xt = Tt + St + εt

The amplitude of both the seasonal and irregular variations increase as the level of
the trend rises. In this situation, a multiplicative model is usually appropriate.

Xt = Tt × St × εt
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1. PRELIMINARIES ON TIME SERIES PROCESSES

Figure 1.3: Log of Monthly totals of international airline passengers, 1949 to 1960.

Figure 1.4: Monthly totals of international airline passengers, 1949 to 1960.
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Definition 1.3. (Lag Operator) lag operator (L) or backshift operator operates on
an element of a time series to produce the previous element.

LXt = Xt−1 LjXt = Xt−j (1.1)

Stationarity, in the most basic sense, refers to the statistical features of a process
that generates a time series that do not change over time.

Definition 1.4. (Strong Stationary Process)[63] Formally, the discrete stochastic
process {Xt, t1, ..., tn ∈ R}, h ∈ R is strongly stationary if

FX(Xt1+h, ..., Xtn+h) = FX(Xt1 , ..., Xtn) (1.2)

Where n ∈ N and FX(Xt1+h, ..., Xtn+h) represent the cumulative distribution func-
tion of the unconditional joint distribution of {Xt} at times t1 + h, . . . , tn + h.
Since h does not affect FX(·), FX is not a function of time.

Definition 1.5. (Weak stationary Process)[19] The process {X = xt, t ∈ Z} is
weakly stationary if the expected value and the variance of xt are constant over
time and if the covariance between Xt and Xt+h (called autocovariance) depends on
the time lag h only, where we assume these moments to exist. Then we write

• The first moment of xt is constant, ∀t,E[Xt] = µ

• The second moment of xt is finite, ∀t,E[X2
t ] <∞

• The autocovariance depends only on h, ∀t, Cov(Xt, Xt+h) = γ(h)

Example 1.1. We present two examples to clarify the stationary time series and
non-stationary time series.
The first case is an Autoregressive process of order 1, AR(1) (1 − 0.9L)Yt = εt is
weakly stationary time series.
The second case is an is an Autoregressive process of order 2, AR(2)
(1− 1.5L− 0.5L2)Yt = εt is a non stationary time series.
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Figure 1.5: AR(1), Yt − 0.9Yt−1 = εt

Figure 1.6: AR(2), Yt − 1.5Yt−1 − 0.5Yt−2 = εt
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1.1.2 Autocorrelation Properties

Definition 1.6. (The Autocovariance Function of a Stochastic Process) Let {Xt, t ∈
Z} be a stochastic process such that V ar(Xt) <∞ ∀t ∈ Z. The function

γX : Z× Z→ R

defined by
γX(t1, t2) = Cov(Xt1 , Xt2) (1.3)

is called Autocovariance Function of the stochastic process Xt.
The autocovariance function describes the strength of the linear relationship between
the random variables Xt1 and Xt2 .

Cov(Xt1 , Xt2) = E[(Xt1 − E(Xt1))(Xt2 − E(Xt2))]

Autocovariance function evaluated in (t, t) gives the variance, because

γx(t, t) = γX(0) = E[(Xt − µt)2] = V ar(Xt)

Where E(Xt) = µt

Definition 1.7. (The Autocorrelation Function of a stationary process) [39] Con-
sider a weakly stationary stochastic process Xt, t ∈ Z, we have that

γX(t+ k, t) = Cov(Xt+k, Xt) = γX(k) ∀t, k ∈ Z

We observe that does not depend on t γx(t + k, t). It depends only on the time
difference k.
The function γX(k) is called autocovariance function of the weakly stationary stochas-
tic process Xt, t ∈ Z

Autocorrelation function is defined by

ρX(k) = γX(k)
γX(0) (1.4)
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1.1.3 Mathematical Tools

Here we gather some mathematical tools (Special functions, inequalities and
convergence lemmas and theorems.).

Definition 1.8. (Gamma Function)[1] The Gamma function is defined as follows

Γ(z + 1) =
∫ ∞

0
zae−zdt

The Gamma function is an analogue of factorial for non-integers. The Gamma func-
tion satisfies the functional equations

Γ(z) = (z − 1)!

Γ(1 + z) = zΓ(z)

Γ(1− z) = −zΓ(−z)
Γ(−z + j)

Γ(−z) = (−1)j Γ(z + j)
Γ(z − j + 1)forj = 1, 2, 3...

Definition 1.9. (Some important formulas)[1] Hypergeometric series were stud-
ied by Leonhard Euler, but the first full systematic treatment was given by Carl
Friedrich Gauss (1813).
The hypergeometric function is defined for |z| < 1, we can write it as follows

F (a, b, c, z) = Γ(c)
Γ(a)Γ(b)

∞∑
j=0

Γ(a+ j)Γ(b+ j)
Γ(c+ j)j! zj (1.5)

F (a, b, c, 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) (1.6)

F (−δ, b, c, αz) = (1− αz)δ (1.7)

Sheppard formula
Γ(j + a)
Γ(j + b) ≈ ja−b
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Definition 1.10. (Fisher Information)[82] Fisher information informs us how much
information we can gather from a sample about an unknown parameter.
To put it another way, it informs us how well we can measure a parameter given a
set of data.
the partial derivative with respect to θ of the natural logarithm of the likelihood
function is called the score. Under certain regularity conditions (f(x; θ) are contin-
uously differentiable). The Fisher information is defined to be the variance of the
score

I(θ) = E
( ∂

∂θ
log f(X; θ)

)2
∣∣∣∣∣∣ θ
 =

∫
R

(
∂

∂θ
log f(x; θ)

)2

f(x; θ) dx, (1.8)

Proposition 1.1. (Markov inequality)([82]) If X is any nonnegative random vari-
able, then

P(X ≥ a) ≤ E(X)
a

, (1.9)

for any a > 0

Proposition 1.2. If X is any random variable, then for any a > 0 we have

P(|X − E(X)| ≥ a) ≤ V ar(X)
a2

We generalize the previous inequality

Proposition 1.3. (Tchebychev inequality)([54]) If X is any random variable, then
for any a > 0 we have

P (|X| ≥ a) ≤ 1
ap

E (|X|p) (1.10)

1.1.4 Convergence Theorems

There are different definitions of random variable convergence, a sequence of
random variables follows a fixed behavior when repeated for a large number of times.
This concept is a crucial in statistics and stochastic process.
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Proposition 1.4. (Convergence in Distribution)([71]) A sequenceX1, X2, ... of real-
valued random variables is said to converge in distribution, or converge weakly, or
converge in law to a random variable X if

lim
n→∞

Fn(X) = F (X), lim
n→∞

Fn(X) = F (X) (1.11)

Convergence in distribution is denoted by Xn →d X

Fn and F are the cumulative distribution functions of random variables Xn and X,
respectively.

Proposition 1.5. (Convergence in Probability)([71]) A sequence Xn of random
variables converges in probability towards the random variable X if for all ε > 0

lim
n→∞

P
(
|Xn −X| > ε

)
= 0. lim

n→∞
P
(
|Xn −X| > ε

)
= 0. (1.12)

Convergence in probability is denoted by Xn →P X

Convergence in probability implies convergence in distribution.

Proposition 1.6. (Lp Spaces) ([54] P 119) Given a measure space (Ω,F , µ). For
1 ≤ p <∞, we consider the set of all measurable functions from Ω to C or R whose
absolute value raised to the pth power has a finite integral, or equivalently, that

‖f‖p ≡
(∫

Ω
|f |p dµ

)1/p
<∞ (1.13)

For random variable X, we can define it in the following way

E(|X|p)
1
p <∞ (1.14)

Theorem 1.7. (The Monotone Convergence Theorem for Random Variables)([54])
Let (Xn)n be random variables such that Xn ≥ 0 for all n and Xn coverges to X as
n→∞ a.s. Then

E[Xn] = E[X] as n→∞. (1.15)

Lemma 1.1. (Fatou’s Lemma for Random Variables)([54]) Let Y be a random
variable that satisfies E[|Y |] <∞. Then the following holds,
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• If Y ≤ Xn for all n, then E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn)

• If Y ≥ Xn for all n, then E(lim sup
n→∞

Xn) ≥ lim sup
n→∞

E(Xn)

Definition 1.11. (Stochastic o and O symbols )[82] For a given sequence of random
variables Rn,

Xn = o(Rn) means Xn = YnRn and Yn
P−−→ 0,

Xn = O(Rn) means Xn = YnRn and Yn = O(1).

There are many rules of calculus with o and O symbols, which we apply without
comment. For instance

o(1) + o(1) = o(1),

o(1) +O(1) = O(1),

o(1)O(1) = o(1),

(1 + o(1))−1 = O(1),

o(Rn) = Rno(1),

O(Rn) = RnO(1),

o(O(1)) = o(1).

1.1.5 Mixing Variables

Mixing conditions are usual structures for modeling dependence for a sequence
of random variables, this notion is defined in the following way

Definition 1.12. (Mixing Processes)([68]) Mixing conditions are usual structures
for modeling dependence for a sequence of random variables. Let (Ω,F , P ) be a
probability space, let B and C be two sub σ−field of F .
In order to estimate the correlation between B and C various a coefficient are used

(1) α = α(B, C) = sup
B∈B,C∈C

| P (B ∩ C)− P (B) ∩ (C) |,
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(2) β = β(B, C) = sup
C∈C
| P (C)− P (C|B) |,

(3) ϕ = ϕ(B, C) = sup
B∈B,P (B),C∈C

| P (B ∩ C)− P (B) ∩ (B) |,

(4) ρ = ρ(B, C) = sup
X∈L2(B),X∈L2(C)

| corr(X, Y ) |. where corr is correlation.

Proposition 1.8. These coefficient satisfy the following inequalities

2α ≤ β ≤ ϕ,

4α ≤ ρ ≤ 2ϕ 1
2 .

Then

ϕ-mixing⇒ β-mixing⇒ α-mixing,
ϕ-mixing⇒ ρ-mixing⇒ α-mixing.

Proof

For more details see [27].

Remark 1.1. (1) 0 ≤ α(B, C) ≤ 1
4

(2) 0 ≤ β(B, C) ≤ 1

(3) 0 ≤ ϕ(B, C) ≤ ∞

(4) 0 ≤ ρ(B, C) ≤ 1

In this work we use the α-mixing (or strong mixing) notion, which is one of the
most treated among the different mixing structures introduced in the literature.

Definition 1.13. A process (Xt, t ∈ Z) is said to be α−mixing if

α(k) = sup
B∈B,C∈C

| P (B ∩ C)− P (B) ∩ (C) | k ≥ 1

Where B = σ(Xs, s ≤ t), B = σ(Xs, s ≥ t+ k) and

lim
k→∞

α(k) = 0.
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Definition 1.14. (Geometrical and arithmetical α-mixing)([29] P 154) We will
mainly consider both of the following subclasses of mixing processes.
The sequence Xn, n ∈ Z, is said to be arithmetically α-mixing with rate a > 0 if

∃C > 0, α(k) ≤ Ck−a

It is called geometrically α-mixing if

∃C > 0, ∃t ∈ (0, 1) α(k) ≤ Ctk

Theorem 1.9. (Davydov’s inequality)([15]) Let X and Y be two real valued ran-
dom variables such thatX ∈ Lq(P ), Y ∈ Lr(P ) where q > 1, r > 1 and 1

q
+1
r

= 1−1
p

then
|Cov(X, Y )| ≤ 2p(2α)

1
p ‖ X ‖q‖ Y ‖r (1.16)

1.2 ARIMA Processes

To model a phenomenon, Box and Jenkins provide processes. We have gone
over the most important time series models.

Definition 1.15. [16] A stochastic process (Xt)t≥0 is said to be an ARIMA(p, d, q)
an integrated mixture autoregressive moving average model if it satisfies the follow-
ing equation

φ(L)(1− L)dXt = θ(L)εt ∀t ≥ 0 (1.17)

Where d ∈ N, L is lag operator, εt ∼ N (0, σ2) i.i.d. errors, with σ2 <∞.
φ(L) = (1− φ1L− ...− φpLp) with φp 6= 0
θ(L) = (1− θ1L− ...− θqLq) with θq 6= 0

In the case of d = 0, we obtain ARMA(p, q) process

φ(L)Xt = θ(L)εt ∀t ≥ 0 (1.18)
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Figure 1.7: ARIMA(1,1,1), φ1 = 0.7, θ1 = 0.8

Figure 1.8: ARMA(1,1), φ1 = 0.5, θ1 = 0.2

Autoregressive order p is written as follows
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φ(L)Xt = εt (1.19)

Moving average of order q
Xt = θ(L)εt (1.20)

Figure 1.9: AR(1),φ1 = 0.8, MA(1), θ1 = 0.3

1.2.1 Causality and Invertibility Conditions

Causality of a stationary time series indicates that the time series is dependent
on past values. Essentially, ARMA(p, q) model can be written in the following form

Xt =
∞∑
j=0

ψjεt−j (1.21)

Where ψ(z) =
∞∑
j=0

ψjz
j = θ(z)

φ(z) , |z| < 1

This would give rise to the property of causality, where sum of the coefficients of
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the infinite MA expressions is finite
∞∑
j=0
|ψj| <∞.

For MA models, there is the element of non-uniqueness in their representation re-
garding the autocorrelation function, can be the same for equations of various MA
coefficients and variance, and thus it is hard to distinguish between them.
Invertibility comes into play when one should pick the best representation by mak-
ing εt the subject and expressing the time series in an infinite AR representation.

εt =
∞∑
j=0

πjXt−j (1.22)

where π(z) =
∞∑
j=0

πjz
j = φ(z)

θ(z) , |z| < 1

It is only invertible where the infinite sum of the coefficients of the infinite AR ex-
pression is finite.

∞∑
j=0
|πj| <∞

MA(q) process is causal by definition because
q∑
i=0

θ2
i <∞

MA(q) process is invertible if and only if θz =
q∑
j=0

θjz
j = 0, for all z ∈ C and z > 1.

AR(p) is causal if and only if φz =
q∑
j=0

φjz
j = 0, for all z ∈ C and z > 1

AR(p) is invertible by definition because
q∑
i=0

φ2
i <∞

These models are called short memory processes, which means that the shock dis-
appears quickly, in other words the sum of autocorrelation is finite.
We present the example of an autocorrelation function of ARMA process. It is clear
that the process has a fast decay.

1.3 Properties of ARFIMA Processes

ARFIMA(p, d, q) [35] is defined in the following equation

φ(L)(1− L)dXt = θ(L)εt ∀t ≥ 0 (1.23)
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L is lag operator, d ∈ R, εt ∼ N (0, σ2) i.i.d. errors, with σ2 <∞

(1− L)d =
∞∑
j=0

Γ(j − d)
Γ(−d)Γ(j + 1)L

j (1.24)

Where Γ(.) is gamma function.

Figure 1.10: FAR(1), d = 0.3

The stochastic process Xt is both stationary and invertible if all roots of θ(L) and
φ(L) lie outside the unit circle and |d| < 0.5, The process is non-stationary for
d ≥ 0.5, The process exhibits short memory for d = 0, corresponding to stationary
and invertible ARMA modeling.
In this case, ARFIMA(p, d, q) we have
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Xt = (1− L)−d θ(L)
φ(L)εt (1.25)

and
εt = (1− L)dφ(L)

θ(L)Xt (1.26)

1.3.1 Autocorrelation Function of long memory model

We deal with Fractional Autoregressive process of order 1 (long memory pro-
cess)

(1− L)dXt = εt, (1.27)

where |d| < 1
2 and εt i.i.d errors and normally distributed N (0, σ2), σ2 <∞

Proposition 1.10. The model is causal, if d < 1
2 It can be stated as follows

Xt =
∞∑
i=0

ψiεt−i (1.28)

Where ψi = Γ(d+ i)
Γ(d)Γ(i+ 1)

Conditions of Causality [33]

1. d > 0 ,
∑
i=0
|ψi| <∞

2. −1
2 < d < 0

∑
i=0
|ψi| =∞ and

∑
i=0

ψ2
i <∞

3. d ≤ −1
2

∑
i=0
|ψi| =∞ =

∑
i=0

ψ2
i =∞

Proposition 1.11. The model is invertible, if −1
2 < d it can be written as follows

εt =
∞∑
i=0

πiXt−i (1.29)

Where πi = Γ(−d+ i)
Γ(−d)Γ(i+ 1)
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Conditions of Invertibility [33]

1. d < 0 ,
∑
i=0
|πi| <∞

2. 0 < d <
1
2

∑
i=0
|πi| =∞ and

∑
i=0

π2
i <∞

3. d ≥ 1
2

∑
i=0
|πi| =∞ =

∑
i=0

π2
i =∞

Proposition 1.12.

γX(h) = σ2 Γ(h+ d)
Γ(h+ 1)Γ(d)F (d, d+ h, h+ 1, 1), h ≥ 0 (1.30)

Proof

γX(h) = E([
∑
i≥0

ψiεt−i][
∑
i≥0

ψiεt+h−i])

=
∑
i≥0

ψ2
iE(εt−i, εt+h−i) +

∑
j≥0

∑
i≥0

ψiψjE(εt−j, εt+h−i)

E(εt−i, εt+h−i) = 0

E(εt−j, εt+h−i)

 σ2, j = i− h;
0, j 6= i− h.

We replace ψi by its value.

γX(h) = σ2∑
i≥0

ψiψi+h

= σ2∑
i≥0

Γ(d+ i+ h)
Γ(d)(h+ i)!

Γ(d+ i)
Γ(d)i!

=
[
σ2 Γ(h+ d)

Γ(h+ 1)Γ(d)

]  Γ(h+ 1)
Γ(h+ d)Γ(d)

∑
i≥0

Γ(d+ h)Γ(d+ h+ i)
Γ(h+ 1 + i)i!


= σ2 Γ(h+ d)

Γ(h+ 1)Γ(d)F (d, h+ d, h+ 1, 1)

Using 1.6, the autocovariance function γX(h) converges

γX(h) = σ2 Γ(h+ d)Γ(1− 2d)
Γ(h+ 1− d)Γ(d)Γ(1− d)
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when t→∞
γX(0) = σ2F (d, d, 1, 1) (1.31)

γX(h) ' Γ(1− 2d)
Γ(d)Γ(1− d)h

2d−1 (1.32)

Autocorrelation function

ρX(h) '
Γ(1−2d)

Γ(d)Γ(1−d)

F (d, d, 1, 1)h
2d−1 (1.33)

ρX(h) ' Ch2d−1 (1.34)

where C is constant.
The autocovariance function describes the behavior of FAR(1) long memory model,
this function decreases hyperbolically.

Figure 1.11: FAR(1), d = 0.4
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1.4 Preliminaries On Local Asymptotic Normal-

ity (LAN) Property

This section introduces some fundamental concepts and definitions that will
help you deal with the Local Asymptotic Normality (LAN) property for time series,
we focus on ARFIMA model especially fractional Autoregressive process of order 1,
FAR(1).

1.4.1 Converegence of Statistical Experiment

The statistical experiment is defined {Pθ, θ ∈ Θ ⊂ Rk} on sample space
(Ω,F), the full observation is a single observation from the product {P n

θ } of n copies.
it can be approximated by Gaussian experiments after a suitable reparametrization
(localization of the parameters).
We define a local parameter h =

√
n(θ− θ0) thus we obtain P n

θ0+h/
√
n an experiment

with parameter h have the same statistical properties for normal distribution, it
consists of observing a single observation from a normal distribution with mean h
and known covariance matrix equal to the inverse of the Fisher information matrix
N (h, I−1

θ ).
We use Taylor expansion of the logarithm of the likelihood.
pθ is density of Pθ, log pθ is twice differentiable

log
∏
i=1

pnθ0+h/
√
n

pθ0

(Xi) = h√
n

n∑
i=1

d log pθ(Xi)
dθ

+ h2

2n

n∑
i=1

∂2 log pθ(Xi)
∂θ2 + oXi(h2)

the first term can be rewritten as h∆n,θ is asymptotically normal with mean zero
and variance Iθ , by the central limit theorem. Furthermore, the second term in the
expansion is asymptotically equivalent to −1

2h
2Iθ, by the law of large numbers.

log
∏
i=1

pnθ0+h/
√
n

pθ0

(Xi) = h∆n,θ −
1
2h

2Iθ + oPθ(1)

this expansion concerns the likelihood process in a neighborhood of θ , we speak of
"local asymptotic normality" of the sequence of models {P n

θ : θ ∈ Θ}.
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On other side we establish a direct relationship between the local experiments and
a normal limit experiment.

log dN (h, I−1
θ )

dN (0, I−1
θ )

(Xi) = htIθXi −
1
2h

tIθh (1.35)

Fixing θ, we get Pθ+h/√n, h ∈ Rk as a statistical model with parameter h, for
"known" (θ). We show that this can be approximated by the statistical model
N (h, I−1

θ , h ∈ Rk).
Due to this expansion concerns the likelihood process in a neighborhood of θ and
the approximation to normal distribution, we speak about (Local Asymptotic Nor-
mality).

Definition 1.16. [82](Local Asymptotic Normality) A sequence of parametric sta-
tistical models Pn,θ, θ ∈ Θ is said to be locally asymptotically normal (LAN) at θ if
there exist matrices rn and Iθ and a random vector ∆n,θ ∼ N (h, Iθ)

log
dPn,θ+r−1

n h

dPn,θ
= h

′∆n,θ −
1
2h
′
Iθ h+ oPn,θ(1) (1.36)

1.4.2 Le Cam and Swensen results on LAN property

Let P0,n and P1,n be two sequences of probability measures on the measurable
spaces (Ωn,Fn) Suppose that for each n there is a filtration Fn,k ⊂ Fn,k+1 of o-
algebras with Fn,kn = Fn, let P0,n,k and P1,n,k be the restriction of P0,n and P1,n

respectively.
We consider

yn,k =
(
γn,k
γn,k+1

) 1
2

− 1

Where γn,k the Radon-Nikodym derivative on Fn,k of the part P1,n,k.
Logarithm of likelihood function Λn = log dP1,n

dP0,n
under Fn is defined by

Λn = 2
∑
k

log(yn,k + 1)

Theorem 1.13. (Le Cam)[58] Assume the following conditions are satisfied, all
convergence being in probability under P0,n
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• (i1) max
k

yn,k →P 0

• (i2)
∑
k

|y2
n,k| →P (λ(n))2

4

• (i3)
∑
k

E(y2
n,k + 2yn,k/Fn,k−1)→P 0

• (i4)
∑
k

E{(y2
n,k11(|yn,k|>δ)/Fn,k−1)→P 0} for δ > 0

Thus
Λn = N

(
−(λ(n))2

2 , (λ(n))2
)

(1.37)

We replace yn,k by martingale differences to prepare the way for the version of
Swensen.

Definition 1.17. (Martingale Differences)[43] A stochastic series X is an Martin-
gale Differences Series if its expectation with respect to the past is zero. Formally,
consider an adapted sequence {Xt,Ft}∞−∞ on a probability space (Ω,F , P )Xt is an
Martingale Differences Series if it satisfies the following two conditions

• E |Xt| <∞,

• E [Xt|Ft−1] = 0, a.s.

For all t.
By construction, this implies that if Yt is a martingale, then Xt = Yt − Yt−1 will be
a martingale differences series.

Now, we present Swensen’s conditions in the following Lemma

Lemma 1.2. (Swensen)[79] We consider {Zn,t,Fn,t} which satisfy

• (C1)
n∑
t=1

E(Zn,t − yn,t)2 −→ 0 when n→∞

• (C2) sup
n

n∑
t=1

E(Zn,t)2 <∞

• (C3) max
t≤n
|Zn,t| −→ 0 under Pθ when n→∞
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• (C4)
n∑
t=1

Z2
n,t −

(λ)2

4 −→ 0 under Pθ when n→∞

• (C5)
n∑
t=1

E(Z2
n,t11Zn,t≥ 1

2
/Fn,t) −→ 0 under Pθ when n→∞

• (C6)
n∑
t=1

E(Zn,t/Fn,t) = 0 a.s

Pθ is under P0,n, thus (i1), (i2) and (i4) of theorem above are satisfied as well as (i3)

Λn = N
(
−(λ)2

2 , (λ)2
)

(1.38)

We can replace (C4) and (C5) by the following conditions

•
n∑
t=1

E(Z2
n,t/Fn,t−1)− (λ)2

4 −→ 0 under Pθ when n→∞

•
n∑
t=1

Z2
n,t −→

(λ)2

4 under Pθ when n→∞

1.5 Local Asymptotic Normality Property for Time

series

(LAN) property was widely studied by many researchers. First with Swenesen
[79], Kreiss ([55], [56]), this criterion was projected on ARFIMA processes (see
Serroukh [72]) and recently Haddad et Belaide [40] generalize some results on long
memory process in the case of dependent noises, Amimour et Belaide [2] assumed
the periodicity of the memory parameter.
In this section we treat (LAN) for Fractional autoregressive model of order 1, we
consider the model

(1− L)dXt = εt

Where εt are i.i.d, −1
2 < d <

1
2 to insure the causality and invertibility conditions.

After the following deviation d(n) = d+ n−
1
2 δ(n), we obtain

(1− L)d+n−
1
2 δ(n)

Xt = εt(d(n)) (1.39)
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Proposition 1.14. Under the hypothesis of regularity, for all 0 < d <
1
2 and for

all δ(n) with sup
n
‖ δ(n) ‖<∞, we have

Local asymptotic quadratic decomposition

Λ
f,d+n−

1
2 δ(n)/d

= δ(n)∆n
f −

1
2σ

2If (δn)2π
2

6 + opd(1) (1.40)

Local Asymptotic Normality of the central sequence ∆n
f (d)

∆n
f (d) ∼ N (0, σ2If

π2

6 ) (1.41)

Proof

For a detailed proof see (Serroukh [72])
On the other hand, Haddad and Belaide treated the fractional autoregressive model
of order 1 but they assumed the dependency of the errors, case of mixing errors, we
consider the model 1.5 εt are assumed to be strong mixing.
After suitable deviation of the parameter, we get

(1− L)d+n−
1
2 δ(n)

Xt = εt(d(n)) (1.42)

Proposition 1.15. Under the hypothesis of regularity, for all 0 < d <
1
2 and for

all δ(n) with sup
n
‖ δ(n) ‖<∞, we have

Local asymptotic quadratic decomposition

Λ
f,d+n−

1
2 δ(n)/d

= δ(n)∆n
f −

1
2σ

2(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )(δn)2π

2

6 + opd(1) (1.43)

Local Asymptotic Normality of the central sequence ∆n
f (d)

∆n
f (d) ∼ N

(
[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

4
π√
6
, σ2[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2
π2

6

)
(1.44)

Proof

For a detailed proof see (Haddad and Belaide [40])
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1.6 Conclusion

In this chapter, we have presented some important definitions, tools and other
important theories which helps us to deal with different probabilistic and statistical
properties. Firstly we have focused on the classical processes ARIMA, ARMA, AR,
MA then we move to the long memory process Fractional ARIMA and Fractional
AR, then we present some results on Local Asymptotic Normality, we have started
with historical review on the concept and some useful definitions, then we have
presented examples about the application of LAN technique on ARFIMA process,
these illustrations gives us a clear road map to show the results obtained in the last
section.
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Chapter 2
Probabilistic Properties for

Fractional Autoregressive process

with mixing errors

Introduction

There is a vast literature that dealt with Fractional Autoregressive Integrated
Moving Average (ARFIMA) models, generally the researchers assume the indepen-
dence of the errors in order to facilitate the calculation and simplify the model, but
in reality the dependency of the errors is a crucial assumption because it is more
accurate to describe the behavior of real phenomena. The researchers start to be
interested in the notions of the dependency, especially the notion of mixing.
In this chapter, we treat the case of Fractional Autoregressive model of order 1 with
dependent errors, we deal with strong mixing errors (Geometrical and arithmetical
mixing errors cases).
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2.1 Properties of Fractional Autoregressive Pro-

cess with Independent Errors

Definition 2.1. [33] We consider the following model

(1− aL)dXt = εt (2.1)

L is lag opertor, a, d are real numbers, in this case the errors εt ∼ N (0, σ2) are
assumed to be i.i.d., with σ2 <∞

Figure 2.1: FAR(1), a = 0.5 and d = 0.4

Proposition 2.1. [33] Let a, d ∈ R, the process is invertible and causal if
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• |a| < 1 and d ∈ R

• a = 1 −1
2 < d <

1
2

The model is stationary, invertible and causal, thus we can write

Xt =
∞∑
i=0

ψiεt−i (2.2)

where ψi = Γ(i+ d)ai
Γ(d)Γ(i+ 1)L

i

and
εt =

∞∑
i=0

πiXt−i (2.3)

where πi = Γ(i− d)ai
Γ(−d)Γ(i+ 1)L

i

Proposition 2.2. The autocovariance function γX(.) of the process Xt is defined
as follow

γX(h) = σ2
∞∑
i=0

ψiψi+h, h ∈ Z (2.4)

Proof

Let h ∈ Z, we have

γX(h) = E[(Xt − E(Xt))(Xt−h − E(Xt−h))]

= E
[( ∞∑

i=0
ψiεt−i − E(

∞∑
i=0

ψiεt−i)
)( ∞∑

i=0
ψiεt−h−i − E(

∞∑
i=0

ψiεt−h−i)
)]

= E
[( ∞∑

i=0
ψiεt−i

∞∑
i=0

ψiE(εt−i)
)( ∞∑

i=0
ψiεt−h−i

∞∑
i=0

ψiE(εt−h−i)
)]

= E
[( ∞∑

i=0
ψiεt−i

)( ∞∑
i=0

ψiεt−h−i

)]

=
∞∑
i=0

∞∑
j=0

ψiψjE(εt−iεt−h−j)

If i = j + h, we get E(εt−iεt−h−j) = σ2 and if i 6= j + h we get E(εt−iεt−h−j) = 0
Thus, we obtain

γX(h) = σ2
∞∑
i=0

ψiψi+h
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Proposition 2.3. The autocovariance function γX(.) of the process Xt can be writ-
ten in function of hypergeometric series

γX(h) = σ2 Γ(h+ d)
Γ(h+ 1)Γ(d)a

hF (d, d+ h, h+ 1, a2), h ≥ 0 (2.5)

Where F (., ., ., .) is hypergeometric function.

Proof

Using the equation above

γX(h) = σ2
∞∑
i=0

ψiψi+h

= σ2
∞∑
i=0

Γ(i+ d)
Γ(d)

ai

Γ(i+ 1)
Γ(i+ h+ d)

Γ(d)
ai+h

Γ(i+ h+ 1)

= σ2 Γ(h+ d)
Γ(h+ 1)

∞∑
i=0

Γ(i+ d)Γ(i+ d+ h)
Γ(h+ i+ 1)Γ(d)Γ(h+ i)Γ(d)

Γ(h+ 1)
Γ(h+ d)a

2i+h

= σ2 Γ(h+ d)
Γ(h+ 1)Γ(d)a

h
∞∑
i=0

Γ(i+ d)Γ(i+ d+ h)
Γ(h+ i+ 1)Γ(h+ i)Γ(d)

Γ(h+ 1)
Γ(h+ d)a

2i

= σ2 Γ(h+ d)
Γ(h+ 1)Γ(d)a

hF (d, d+ h, h+ 1, a2)

2.1.1 Asymptotic Behavior of Autocorrelation Function

Using 1.7 Sheppard formula [1], we obtain

γX(h) ' ah

Γ(d)h
d−1(1− a2)−d (2.6)

We know that the autocorrelation function is defined in the following form

ρX(h) = Cov(Xt, Xt+h)
V ar(Xt)

(2.7)

47
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Figure 2.2: Auto-correlation function of FAR(1), a = 0.9 and d = 0.8

Using the proposition above

V ar(Xt) = F (d, d, 1, a2), (2.8)

We get

ρX(h) '
ah

Γ(d)h
d−1(1− a2)−d

F (d, d, 1, a2) (2.9)

ρX(h) ' Cahhd−1 (2.10)

where C is constant.
It is clear that the autocorrelation function has the part of hyperbolic decay hd−1 and
the part of exponential decay ah, it means that this model describes the hyperbolic
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decay when a is close to 1 and the exponential decay when a is further than 1 and
(close to 0).

2.2 Main Results

2.2.1 Presentation of the Model

A stochastic process is called a fractional autoregressive process of order 1

with strong mixing errors if it is a solution of

(1− aL)dXt = εt (2.11)

Where |a| < 1,d ∈ R so the model is causal and invertible, εt ∼ N (0, σ2) are assumed
to be strongly mixing, with σ2 <∞.

Assumptions

Our assumptions are gathered here for easy reference

(A1) The sequence of random variables (εt)t∈Z satisfy the Cramer conditions given
by

|Eεki | ≤ `k−2k!
2 E(εi) <∞ (2.12)

i = 1...n, k = 3, 4, ... and ` > 0

(A2) We consider the following subclass of strong mixing process (Geometrically
α−mixing)

∃r > 0 and 0 < b < 1 α(n) = rbn

(A3) We consider the following subclass of strong mixing process (Arithmetic α−mixing)

∃s > 0 and l < 3 α(n) = sn−l

49



2. PROBABILISTIC PROPERTIES FOR FRACTIONAL AUTOREGRESSIVE PROCESS WITH MIXING
ERRORS

Comments on the assumptions

The Assumptions (A1) guarantees that (E(εpi ))
1
p with p > 0 exists. (A2) is used to

characterize the dependency structure of noises.
The Assumptions (A1) combined with (A2) and (A3) ensures that the results con-
verge.

Remark 2.1. [15] Davydov’s inequality is modified in the case of α−mixing

|Cov(εi, εj)| ≤ Cα|i− j| (2.13)

2.2.2 Geometrical Strong Mixing Case

Theorem 2.4. Under assumptions (A1) and (A2), we have for any integer k > 2
and 0 < b < 1

|γX(h)| = σ2ψha
hF (d, d+ h, h+ 1, a2) + C ′′p b

k−2
k
h (2.14)

Proof

For h ∈ Z, we have

|Cov(Xt, Xt+h)| ≤
∞∑
i=0

ψ2
i |Cov(εt−i, εt+h−i)|+

∑
i 6=j

ψiψj|Cov(εt−i, εt+h−j)|

= P1 + P2

Firstly, we deal with P1

P1 =
∞∑
i=0

ψ2
i |Cov(εt−i, εt+h−i)|

Under the assumption (A1) and using Davydov’s inequality modified for α−mixing
case, we get

|Cov(εt−i, εt+h−i)| ≤ 8(E(εt−iεt+h−i))kα
k−2
k (h) k = 3, 4, ... (2.15)
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Using Cramer condition A(1), we obtain

P1 ≤ 8(σ2k!
2 `

k−2) 2
kα

k−2
k (h)

∞∑
i=0

ψ2
i

Thus
P1 ≤ Cα

k−2
k (h)

∞∑
i=0

ψ2
i (2.16)

where the constant C
C = 8(σ2k!

2 `
k−2) 2

k

according to (A2), we get

P1 ≤ b
k−2
k
hr

k−2
k

∞∑
i=0

ψ2
i .

P1 ≤ Ckb
k−2
k
h k = 3, 4, ... (2.17)

where Ck is constant
Ck = Cr

k−2
k

∞∑
i=0

ψ2
i .

It remains to deal with P2

P2 ≤
∑
i 6=j

ψiψj|Cov(εt−i, εt+h−j)|

now, we treat two cases; when i = j − h and i 6= j − h , following similar steps we
get

P2 ≤
∞∑
i=1

i−1∑
j=0
|ψiψj|α

k−2
k (h+ i− j) + σ2

∞∑
i=0
|ψiψi+h| k = 3, 4, ...

using the properties of hypergeometric function and (A2) and 2.5, we obtain

P2 ≤ C ′kb
k−2
k
h + σ2ψha

hF (d, d+ h, h+ 1, a2) k = 3, 4, ... (2.18)

where the constant C ′k
C ′k = 2Cr k−2

k C2

and
C2 =

∞∑
i=1

i−1∑
j=0
|ψiψj|b

k−2
k

(i−j)

we combine 2.17 and 2.18, we take C ′′k = Ck + C ′k, therefore the result will be

|Cov(Xt, Xt+h)| ≤ σ2ψha
hF (d, d+ h, h+ 1, a2) + C ′′k b

k−2
k
h

which completes the proof.
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Corollary 1 Let |a| < 1, using Theorem 2.4 we get

Cov(Xt, Xt+h) ∼
ah

Γ(d)h
d−1(1− a2)−d (2.19)

Proof

We know that 0 < b < 1, thus

C ′′k b
k−2
k
h → 0, (2.20)

when h→∞
Using Schepard formula [1] Γ(h+ a)

Γ(h+ b) = ha−b h→∞
Therefore

Γ(h+ d)
Γ(h+ 1)Γ(d) = hd−1

Γ(d)
Moreover
We use (1.7) if |a| < 1 when h tends to infinity.
Thus

F (d, d+ h, h+ 1, a2) = (1− a2)−d (2.21)

We combine (2.20) and (2.21) to obtain the result in Corollary 1.

Corollary 2 Let |a| < 1 using Theorem 2.4 and the precedent corollary

ρX(h) ∼
ah

Γ(d)h
d−1(1− a2)−d

F (d, d, 1, a2) (2.22)

Proof

We know that
ρX(h) = γX(h)

V ar(Xt)
The autocovariance Cov(Xt, Xt+h) is calculated in 2, it suffices to compute V ar(Xt)
which is expressed in equation (2.8), Finally, we obtain

ρX(h) ∼
ah

Γ(d)h
d−1(1− a2)−d

F (d, d, 1, a2) (2.23)

which completes the proof.
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2.2.3 Arithmetical Strong Mixing Case

On the other hand, if the innovations (εi) are arithmetically α-mixing, we
obtain this result

Theorem 2.5. Under the assumption (A1) and A(3), we have for any integer p > 2
and reel l > 3,

|γX(h)| = σ2Ψha
hF (d, d+ h, h+ 1, a2) + Vph

l 2−k
k + V

′

ph
−1 (2.24)

Proof

We follow the same steps as in the case of geometrical strong mixing errors.
For h ∈ Z, we have

|Cov(Xt, Xt+h)| ≤
∞∑
i=0

ψ2
i |Cov(εt−i, εt+h−i)|+

∑
i 6=j

ψiψj|Cov(εt−i, εt+h−j)|

= R1 +R2

On the first hand, we treat R1

R1 =
∞∑
i=0

ψ2
i |Cov(εt−i, εt+h−i)|

Under the assumption (A1) and using Davydov’s inequality modified for α−mixing
case, we get

|Cov(εt−i, εt+h−i)| ≤ 8(E(εt−iεt+h−i))kα
k−2
k (h) k = 3, 4, ... (2.25)

Using Cramer condition A(1), we obtain

R1 ≤ 8(σ2k!
2 `

k−2) 2
kα

k−2
k (h)

∞∑
i=0

ψ2
i

Thus
R1 ≤ Cα

k−2
k (h)

∞∑
i=0

ψ2
i (2.26)

According to (A2), we get

R1 ≤ s
k−2
k
hn

k−2
k

∞∑
i=0

ψ2
i .
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Vp = Cs
k−2
k

∞∑
i=0

ψ2
i (2.27)

Where C is constant
On the second hand we deal with R2, R2 = R2,1 +R2,2

R2,1 =
∑
i 6=j
|ψiψj||Cov(εt−i, εt+h−j)| with j = i+ h

R2,1 = σ2ψhF (d, d+ h, h+ 1, a2) (2.28)

R2,2 =
∑
i 6=j
|ψiψj||Cov(εt−i, εt+h−j)| with j 6= i+ h

R2,2 = V ′ph
−1 (2.29)

With V ′p = 2Cs
p−2
p C1,

Where C1 =
∞∑
i=1

i−1∑
j=0
|ψiψj|h((i− j) + h)l(

2−p
p

)

We combine (2.28), (2.29) and (2.26) to complete the proof.
The asymptotic behavior in this case can be deduced analogously to geometric strong
mixing case.

Arithmetical Strong Mixing Case for long memory model

• In the case of a = 1, we refer the reader to the work of Haddad and Belaide
[41].

(1− L)dXt = εt (2.30)

|d| < 1
2 to insure the invertibility, εt ∼ N (0, σ2) are i.i.d., with σ2 <∞

Theorem 2.6. Under the assumption (A1) and A(3), we have for any integer p > 2
and reel l > 3,

|γx(h)| = σ2Ψha
hF (d, d+ h, h+ 1, 1) + Vph

l 2−k
k + V

′

ph
−1 h > 0 (2.31)
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Where

Vp = C
∞∑
i=0

ψ2
i p ≥ 3

V ′p = C
∞∑
j=1

ψ2
j p ≥ 3

C positive constant

Proof

We treat analogously to the Arithmetic and geometrical mixing noises cases.

Lemma 2.1. 0 < d <
1
2 , using the previous result 2.6

ρ(h) ' Ch2d−1whenh→∞ (2.32)

Proof

The proof is deduced immediately using Scheppard formula.

2.3 Simulation study

A simulation study with R is illustrated to check the results elaborated in the
previous section.
We generate the process which satisfies the model (5) in dependent case (α−mixing)
when (α = 0.1) and (α = 0.25) then we compare the behavior of the model in this
case to the independent case (α = 0).

Remark 2.2. We generate strong mixing sequence of variables then we use it to
simulate the model given by the equation (5)

• When α = 0, the graph in black

• When α = 0.1, the graph in red
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• When α = 0, the graph in blue

In order to measure the performance of our approach we use sample lags (h = 500)
then we treat different cases, we take a = 0.99, 0.2 and d = 0.49, 0.1.
We summarize the results obtained in tables then we present the simulated data in
graphs to show the effect of (α−mixing) noise.

Table: Auto-correlation for a = 0.99 and d = 0.49

h 1 50 100 200 300 400 500
α = 0 0.8757 0.2096 0.0934 0.0250 0.0024 0.0007 0.0004
α = 0.1 0.9324 0.3346 0.2342 0.1732 0.1576 0.1530 0.1515
α = 0.25 0.9499 0.3741 0.2775 0.2187 0.2037 0.1992 0.1978

Figure 2.3: Auto-correlations for FAR(1) with a = 0.99 and d = 0.49.

Table: Auto-correlation for a = 0.99 and d = 0.1
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h 1 50 100 200 300 400 500
α = 0 0.6544 0.4250 0.1475 0.0030 0.0015 0.0004 0.0001
α = 0.1 0.6805 0.1139 0.0882 0.0773 0.0753 0.0747 0.0745
α = 0.25 0.6889 0.1369 0.1119 0.1013 0.0993 0.0988 0.0986

Figure 2.4: Auto-correlations for FAR(1) with a = 0.99 and d = 0.1.

Interpretation

In these figures, we present FAR(1) and we show the influence of the α−mixing
noise, we fix a = 0.99 then we variate d, it takes the values 0.49, 0.1.

• We remark clearly that the simulated model is affected by the variation of
d.(when the parameter d is bigger the decay is slower).

• The results shown above illustrate how strong mixing can affect the behavior
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of the model, as the coefficient mixing is higher the decay will be slower.

• When α = 0.25, 0.1 (dependent case) the auto-correlation of the model de-
creases more slowly than in the independent case α = 0.

Table: Auto-correlation for a = 0.2 and d = 0.49

h 1 50 100 200 300 400 500
α = 0 0.2248 1e-27 2e-53 2e-106 2e-151 3e-211 2e-263
α = 0.1 0.2391 0.0183 0.0183 0.0182 0.0182 0.0182 0.0181
α = 0.25 0.2441 0.0247 0.0247 0.0247 0.0247 0.0246 0.0246

Figure 2.5: Auto-correlations for FAR(1) with a = 0.2 and d = 0.49.

Table: Auto-correlation for a = 0.2 and d = 0.1
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h 1 50 100 200 300 400 500
α = 0 0.1662 2e-28 8e-55 2e-107 8e-160 3e-212 2e-264
α = 0.1 0.1721 0.0007 0.0007 0.0007 0.0007 0.0007 0.0006
α = 0.25 0.1742 0.0009 0.0009 0.0009 0.0009 0.0008 0.0008

Figure 2.6: Auto-correlations for FAR(1) with a = 0.2 and d = 0.1.

Interpretation

Finally, we treat our model FAR(1), we take a = 0.2 and d = 0.49, 0.1.

• When the mixing coefficient is higher the auto-correlation decreases quickly
but slower than in the case of α = 0 (independent) ρX(h) .

• The effect of d is clear on the behavior of FAR(1), moreover we have a relation
between the strong correlation and the parameter d.
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• We remark that ρX(h) decreases to zero as h→∞ (in all figures)

We remark clearly the influence of the parameter a in all figures because the auto-
correlation is equal to V ahhd−1 where V is constant , when the value of a is higher
(close to 1) the auto-correlation decay hyperbolically and when the value of a is
lower(close to 0) the decay is fast, now we can say that the value of the parameter
a play a major role in the behavior of the process.
In other words, when (a is close to 1) our model behaves as long-memory process
but when (a is close to 0) the behavior of the model approach to the behavior of
short-memory process.

2.4 Conclusion

In this chapter, we have treated several probabilistic properties of fractional
autoregressive models with strong mixing errors, we shed light on autocovariance,
autocorrelation functions and their asymptotic behavior, we remark the effect of
strong mixing coefficients on the behavior of the model in other words memory
is longer when the strong mixing coefficient is higher, furthermore we remark the
effect of the parameters of models (d the parameter of the memory) especially the
parameter a, our model behaves as long-memory when (a is close to 1) but it behaves
as short-memory process when (a is close to 0).
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Chapter 3
Local Asymptotic Properties for

Fractional Autoregressive process

with mixing noises

Introduction

Asymptotic approximation can be used theoretically to study the quality
(efficiency) of statistical procedures, other asymptotic approach exists in addition
to the usual one Local Asymptotic Normality (LAN) concept it is assumed that the
value of the "true parameter" in the model varies slightly with n. This approach lets
us study the regularity of estimators.
This approach start with Wald [83](1943) and developed by Le Cam [58](1960), we
study also Local Asymptotic Minimaxity (LAM) and Local Asymptotic Linearity.
In our work we use Swensen’s Lemma [79] (1985), we follow the same methodology
in Kreiss [55](1987).
Serroukh [72](1996) treated LAN and LAM properties for Fractional Autoregressive
model FAR(1), Haddad and Belaide [40](2020) dealt with LAN property for long
memory process.
We generalize the results of Haddad and Belaide on (LAN) for FAR(1) with long
memory, we deal with

(1− aL)dXt = εt (3.1)
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|a| < 1, d ∈ R, εt are assumed to be strongly mixing.

3.1 Construction of the Variables

3.1.1 Notations and Hypothesis

We consider the following deviation of the parameter θ

ι(n) = n
1
2 (θ(n) − θ) where θ(n) = (a+ n−

1
2η(n), d+ n−

1
2 δ(n))

After local deviation of the parameter of the model 3.1, we obtain

(1− (a+ n
−1
2 η(n))L)d+n

1
2 δ(n)

Xt = εt n = 1...t ∈ Z (3.2)

Where ||ι(n)|| <∞ and ||.|| is any norm on R2

An(X) denote the σ−algebra generated by (Xt, t ≤ n).
An(ε) denote the σ−algebra generated by (εt, t ≤ n).
An,t denote the sub σ−algebra of An(X) generated by the past of process until the
moment t
Pθ the probability distribution of the random vector X = (X1, ..., Xn) under θ and
f(.) unknown probability density of the white noise εt

1. The moving average representation: Gonçalves [33]

X
(n)
t =

∞∑
i=0

ψi(θ(n))εt−i t ∈ Z

Where ψi(θ(n)) = Γ(i+ d+ n−
1
2 δ(n))(a+ n−

1
2η(n))i

Γ(d+ n−
1
2 δ(n))Γ(i+ 1)

2. The autoregressive representation: Gonçalves [33]

εnt (θ(n)) =
∞∑
j=0

πj(θ(n))Xt−j

Where πj(θ(n)) = Γ(j − d− n− 1
2 δ(n))(a+ n−

1
2η(n))j

Γ(−d− n− 1
2 δ(n))Γ(j + 1)
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(Γ(.) is gamma function)

εt(θn) =
t−1∑
j=0

πj(θn)Xt−j +
∞∑
k=0

k∑
j=0

πj(θn)Xn
t−j

=
t−1∑
j=0

πj(θn)Xt−j +
∞∑
k=0

k∑
j=0

πj(θn)ψk−jεt−k

=
t−1∑
j=0

πj(θn)Xt−j +
∞∑
k=0

k∑
j=0

πj+t(θn)ψk−jε−k

Indeed εt(θn) =
t−1∑
j=0

πj(θn)Xt−j +
∞∑
k=0

k∑
j=0

πj+t(θn)ψk−jε−k

We assume that we have a finite length realization X(n) = (X(n)
1 ...X(n)

n ) of stationary
solution of 3.1 and note by
H

(n)
f (θ) the hypothesis on which X(n)

t is generated by the model given by 3.1.
H

(n)
f (θ(n)) the counter-hypothesis sequence under which X(n)

t is generated by 3.2.

The Likelihood Function

To prove LAN property, we deal with the asymptotic distribution of the logarithm
of conditional likelihood ratio.
Under H(n)

f (θ) The likelihood function is given by

Iθ,f (X(n)) = f

t−1∑
j=0

πj(θ)Xt−j +
∞∑
k=0

k∑
j=0

πj+t(θ)ψk−jε−k


Now, we use Swensen’s lemma [79]

Λ
f,θ+n−

1
2 ι(n)/θ

= log Υ
f,θ+n−

1
2 ι(n)/θ

where Υ
f,θ+n−

1
2 ι(n)/θ

(X(n)) =
Iθ(n),f (X(n))
Iθ,f (X(n))

Zt(θ) is the residual under the hypothesis H(n)
f (θ), it coincides with white noise εt

Zt(θ)− γn,t = Zt(θ(n))

Where
γn,t =

∞∑
k=1

k∑
j=1

(πj(θ(n))− πj(θ))ψk−j(θ)Zt−k(θ(n))

63



3. LOCAL ASYMPTOTIC PROPERTIES FOR FRACTIONAL AUTOREGRESSIVE PROCESS WITH
MIXING NOISES

and
Zt(θ) =

t−1∑
j=0

πj(θ)Xt−j +
∞∑
k=0

k∑
j=0

πj+t(θ)ψk−jZ−k

We pose

yn,t = f
1
2 (Zt − γn,t)
f

1
2 (Zt)

− 1

Assumptions and comments

The assumptions are gathered here for easy references.

• (H1) f(x) > 0, x ∈ R :

–
∫ −∞

+∞
xf(x)dx = 0

–
∫ −∞

+∞
x2f(x)dx = σ2

–
∫ −∞

+∞
x4f(x)dx <∞.

• (H2) (Hajek and Sidak [42] 1967) there exists function f such that −∞ < a <

b < +∞, f(b) − f(a) =
∫ −∞

+∞
f ′(x)dx where f is absolutely continuous over

finite intervals.

• (H3) Let φf = −f
′

f
, f has a positif and finite Fischer information

I(f) =
∫ −∞

+∞
φ2
f <∞ and

∫ b

a
(−f

′

f
)4f(x)dx <∞

• (H4)f is unimodal, ie − log(x) function is convex on the open intervals ]a; b[,
φf is increasing on R.

• (H5)The sequence of random variables (εt)t∈Z satisfy the Cramer conditions
given by

|Eεmi | ≤ `m−2m!
2 E(εi) <∞

i = 1...n and m = 3, 4, ...

• (H6) ∃un ∈ N∗, o(n[α(un]
p−2
p ) −→n→∞ 0
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Construction of the central sequence

We apply Taylor expansion on γn,t, we get

We write πj(θ(n))−πj(θ) = n−
1
2

2

∞∑
k=1

k∑
j=1

(
∂πj(θ)
∂a

η(n) + ∂πj(θ)
∂d

δ(n)
)

+n
−1

2 ∂2πj(θ)(n−
1
2 cι(n)), 0 <

c < 1
Where

∂2πj(θ)(n−
1
2 cι(n)) = ∂2πj(θ)(n−

1
2 cι(n))

∂a2 (ηn)2+∂
2πj(θ)(n−

1
2 cι(n))

∂a∂d
(ηnδn)+∂

2πj(θ)(n−
1
2 cι(n))

∂d2 (δn)2

∂2πj(θ)(n−
1
2 cι(n))→ 0

Thus

Zn,t = n−
1
2

2

∞∑
k=1

k∑
j=1

(
∂πj(θ)
∂a

η(n) + ∂πj(θ)
∂d

δ(n)
)
ψk−j(θ)φ(Zt)Zt−k

We replace
(
∂πj(θ)
∂a

η(n) + ∂πj(θ)
∂d

δ(n)
)

and ψk−j by their values, we obtain

Zn,t = n−
1
2

2 (
∞∑
k=1

k∑
j=1

η(n) −Γ(j − d)Γ(k − j + d)
Γ(−d)Γ(d)Γ(k − j + 1)Γ(j)a

k−1φ(Zt)Zt−k

+δ(n) Γ(j − d)Γ(k − j − d)
Γ(−d)Γ(d)Γ(k − j + 1)Γ(j + 1)

 j∑
h=1

1
j − h− d

 akφ(Zt)Zt−k)

Because

•
k∑
j=1

−Γ(j − d)Γ(k − j + d)
Γ(−d)Γ(d)Γ(k − j + 1)Γ(j) = −d

•
k∑
j=1

Γ(j − d)Γ(k − j − d)
Γ(−d)Γ(d)Γ(k − j + 1)Γ(j + 1)

 j∑
h=1

1
j − h− d

 = 1
k

For more details see Gonçalves [33]
We remark that

Zn,t = n−
1
2

2 η(n)d
q∑

k=1
ak−1φf (Zt)Zt−k−1 + n−

1
2

2 δ(n)d
q∑

k=1

ak

k
φf (Zt)Zt−k +Rn,t

= n−
1
2

2

q∑
k=1

ak−1(dη(n) + a

k
δ(n))

n∑
t=k+1

φf (Zt)Zt−k +Rn,t︸︷︷︸
o(1)
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with
Rn,t = n−

1
2

2

∞∑
k=q+1

ak−1(dη(n) + a

k
δ(n))

∞∑
t=k+1

φf (Zt)Zt−k

Rn,t = oP (1)
Thus

2Zn,t = (ιn)′∆(n)
f + op(1)

∆(n)
f = n−

1
2


q∑

k=1
dak−1

n∑
t=q+1

φf (Zt)Zt−k
q∑

k=1

ak

k

n∑
t=q+1

φf (Zt)Zt−k

 (3.3)

∆(n)
f is called central sequence.

q = q(n) < n, q is truncation parameter.

Proposition 3.1. We have

(log(1− L))2(1− L)n
− 1

2 cδ(n) =
l=2∑
∞
hl,nL

l (3.4)

with hl,n =
j=0∑
l−2

Cl−j
Γ(j − n− 1

2 cδ(n))
Γ(−n− 1

2 cδ(n))Γ(j + 1)
l = 2, 3, ...

Where Cl = 2
l

l−1∑
i=1

1
i

l ≥ 2 and
∞∑
l=2

h2
l,n <∞ if n−

1
2 cδ(n) > 0

Proof

The proof is detailed in Page 58-60 in Serroukh [44].

3.2 Main results

Theorem 3.2. Under the assumptions (H1) to (H6) and for any integer p > 2 and
k ≥ 1

E(∆(n)
f ) ≤


(

d2

(1− a2)

) 1
2 [

(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )
] 1

4

( q∑
k=1

a2k

k2

) 1
2 [

(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )
] 1

4

 (3.5)
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with C0 = 8C
2
p , C = p!

2 k
p−2α

2−p
p , p > 2, k > 0

The covariance matrix is expressed as follows V1,1 V1,2

V2,1 V2,2

 (3.6)

V1,1 ≤
d2

(1− a2)([(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2 )

V1,2 ≤
−d
a

log(1− a2)
(

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

)
V2,1 ≤

−d
a

log(1− a2)
(

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

)
V2,2 ≤

q∑
k=1

a2k

k2

(
[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2

)

Proof

We know that

E(∆n
f ) ≤ −1

2



 q∑
k=1

d2a2k−2
n∑

t=k+1
V ar(φf (Zt)Zt−k) + Ifσ

2

 1
2

.

 q∑
k=1

a2k

k2

n∑
t=k+1

V ar(φf (Zt)Zt−k) + Ifσ
2

 1
2

.


Firstly, we deal with V ar(φf (Zt)Zt−k) using Davydov’s inequality [27] modified for
α−mixing case, we take p = q 6= 2 it implies that r = p

p− 2 where p > 2 and q <∞,
1
p

+ 1
q

+ 1
r

= 1 and p ∈ N and using the (H5) we obtain

V ar(φf (Zt)Zt−k) ≤ (I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2 − Ifσ2 (3.7)

with C0 = 8C
2
p , C = p!

2 k
p−2α

2−p
p , p > 2, k > 0

We replace 3.7 in the previous inequality of E(∆n
f ), we get the result.

Now, we prove the second part of the Theorem 3.2
On the first hand we calculate V1,1 and V2,2 using the following inequality
V ar(φf (Zt)Zt−k) ≤ [(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2 − Ifσ2
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So

V1,1 ≤
d2

(1− a2)

(
[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2 − Ifσ2 + Ifσ
2
)

≤ d2

(1− a2)( [(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2 )

Similarly, we calculate V2,2

V2,2 ≤
q∑

k=1

a2k

k2

(
[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2

)
On the other hand, we calculate V1,2 and V2,1, we get

V1,2 ≤ −d
q∑

k=1

a2k − 1
k

(
[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2

)

≤ −d
a

log(1− a2)
(

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

)

Similarly we calculate V2,1.

3.2.1 Local Asymptotic Normality

Proposition 3.3. Under the assumptions (H1)− (H6), for |a| ≤ 1 and d ∈ R, for
all bounded sequences ι(n), we have LAN property.
Local Asymptotic Quadratic (LAQ) decomposition has the following form

Λ
f,θ+n−

1
2 ι(n)/θ

= (ι(n))′∆(n)
f (θ)− 1

2(ι(n))′(I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2 Ξ(θ)ι(n)

Where

Ξ(θ) =


d2

1− a2
−d
a

log(1− a2)
−d
a

log(1− a2)
∞∑
k=1

a2k

k2


with θ = (a, d)

The central sequence ∆(n)
f (θ) 3.3 is asymptotically normal under Hf

n(θ) with:

Mean


(

d2

1− a2

) 1
2

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

4( q∑
k=1

a2k

k2

) 1
2

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

4


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Covariance
(

(I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2 Ξ(θ)
)

Where C0 = 8C
2
p , C = p!

2 k
p−2α

2−p
p , p ∈ N, p > 0, k > 0

Proof

To prove the previous proposition we have to check the conditions of Swensen’s
lemma 1.2

Proof (C1)

E
n∑
t=1

(Zn,t − yn,t)2 ≤ 2
n∑
t=1

E

f 1
2 (Zt − γn,t)
f

1
1 (Zt)

− 1 + 1
2γn,tφf (Zt)

2

+ 2
n∑
t=1

E(Zn,t −
1
2γn,tφf (Zt))

2

≤ A+B

We start with the second term B

Firstly

Zn,t −
1
2γn,tφf (Zt) = φf (Zt)ψk−jZt−k × (n

−1

4

∞∑
k=1

k∑
j=1

∂2πj(θ + n−
1
2 cι(n))

∂a2 (η(n))2

+n
−1

2

∞∑
k=1

k∑
j=1

∂2πj(θ + n−
1
2 cι(n))

∂a∂d
(η(n)δ(n))

+n
−1

4

∞∑
k=1

k∑
j=1

∂2πj(θ + n−
1
2 cι(n))

∂d2 (δ(n))2)

= B1 +B2 +B3

Where B1 = φf (Zt)ψk−jZt−k ×
n−1

4

∞∑
k=1

k∑
j=1

∂2πj
∂a2 (θ + n−

1
2 cι(n))(η(n))2


B2 = φf (Zt)ψk−jZt−k

n−1

2

∞∑
k=1

k∑
j=1

∂2πj(θ + n−
1
2 cι(n))

∂a∂d
(η(n)δ(n))


B3 = φf (Zt)ψk−jZt−k

n−1

4

∞∑
k=1

k∑
j=1

∂2πj(θ + n−
1
2 cι(n))

∂d2 (δ(n))2


We know that (Zn,t −

1
2γn,tφf (Zt))

2 ≤ 5(B2
1 +B2

2 +B2
3)

We deal with B1

B1 = n−1

4 (η(n))2[(1− (a+ n−
1
2 cη(n))L)d+n−

1
2 cδ(n)−2(1− aL)Zt−2]φf (Zt)

= n−1

4 (η(n))2[I1 × I2Zt−2]φf (Zt)
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Where
I1 = (1− (a+ n−

1
2 cη(n))L)d+n−

1
2 cδ(n)−2 and I2 = (1− aL)

Using Davydov’s inequality, we get

E(B2
1) ≤ n−1

4 (η(n))2[(1−(a+n− 1
2 cη(n))L)d+n−

1
2 cδ(n)−2(1−aL)]2(I2

f+C0I
2
p

f ) 1
2 (σ4+C0σ

4
p ) 1

2

The terms I1 and I2 are integrable and square integrable.
We deduce

∞∑
t=1

E(B1)2 −→ 0

Following the same steps, we calculate
∞∑
t=1

E(B2)2

E(B2
2) = (n

−1

2 η(n)δ(n))E[(1− (a+ n−
1
2 cη(n))L)d+n−

1
2 cδ(n)−1 log(1− (a+ n−

1
2 cη(n))L)

(1− aL)−dZt]2(φf (Zt))2

= (n
−1

2 η(n)δ(n))E[(1− (a+ n−
1
2 cη(n))L)d+n−

1
2 cδ(n)−1 log(1− (a+ n−

1
2 cη(n))L)

(1− aL)−dZt−k]2[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

The three terms are squared integrable, thus
∞∑
t=1

E(B2)2 −→ 0

Analogously we treat B3.

B3 = −n
−1

2 (δn)2
∞∑
k=1

k∑
j=1

 ∂2

∂d2
Γ(j − d− n− 1

2 cδ(n))(a+ n−
1
2 cη(n))j

Γ(j − d− n− 1
2 cδ(n))j!


×Γ(k − j + d)ak−j

Γ(d)(k − j)! φf (Zt)Zt−k

= −n
−1

2 (δn)2
[(

∂2

∂d2 (1− (a+ n−
1
2 cη(n))L)d+n−

1
2 cδ(n)(1− aL)−dZt

)
φf (Zt)

]

We calculate

∂2

∂d2 (1− (a+ n−
1
2 cδ(n))L)d+n−

1
2 cδ(n)

∂2

∂d2 (1− (a+ n−
1
2 cδ(n))L)d+n−

1
2 cδ(n) = ∂

∂d

[
∂

∂d
exp(d+ n−

1
2 cδ(n)) log(1− (a+ n−

1
2 cη(n))L)

]

=
[
log(1− (a+ n−

1
2 cη(n))L)

]2
(1− (a+ n−

1
2 cη(n))L)d+n−

1
2 cδ(n)
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We get

B3 = −n
−1

2 (δ(n))2
[
log(1− (a+ n−

1
2 cη(n))L)2(1− (a+ n−

1
2 cη(n))L)d+n−

1
2 cδ(n)(1− aL)−dZt

]
(3.8)

The components of 3.8 are square integrable, consequently
∞∑
t=1

E(B3)2 −→n→∞ 0.

Now, using then results of B1, B2, B3, we conclude that B converges to zero.
For the first term A, we can write γn,t as follow

γn,t = n−
1
2Ut + Vn,t

We note
ϕ

(n)
1,k = η(n)dak−1 + δ(n)a

k

k

ϕ
(n)
2,k(θ + n−

1
2 cη(n)) =

k∑
j=1

ψt−j(θ)∂2πj(θ + n−
1
2 cη(n))

and
Ut =

q∑
k=1

ϕ
(n)
1,kZt−k Vn,t =

q∑
k=1

n−1

2 ϕ
(n)
2,k(θ + n−

1
2 cη(n))Zt−k

We consider A1,n and A2,n

and A1(m) = {|Zt−i| < m, i = 1...q} A2(m) = {|Zt−i| ≥ m, i = 1...q}

A1,n =
n∑
t=1

E{11A1(f
1
2 (Zt − γn,t)
f

1
2 (Zt)

− 1− Zn,t)2}

=
n∑
t=1

E{11A1

f 1
2 (Zt − n−

1
2Ut − Vn,t)− f

1
2 (zt)

(n− 1
2Ut + Vn,t)f

1
2 (Zt)

− 1
2φf (Zt)

2

γ2
n,t}

We integrate with respect to z, u, vn, than we obtain

A1,n ≤ sup
|u|<k0,vn≤n−rk1

∫
R

f 1
2 (Z − n− 1

2u− vn)− f 1
2 (Z)

(n− 1
2u+ vn)

− 1
2
f ′(Z)
f(Z)

2

dz
n∑
t=1

E(γ2
n,t)

According to Swensen it is suffices to show that E(γ2
n,t) <∞

E(γ2
n,t) < E(n− 1

2

∞∑
k=0

ϕ
(n)
1,kZt + ϕ

(n)
2,k(θ + n−

1
2 cι(n))Zt−k)2

< 2σ2
∞∑
k=0

(ϕ(n)
1,k)2 + n−1

2 σ2
∞∑
k=0

(ϕ(n)
2,k)2

< ∞
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We conclude that A1,n −→ 0
Analogously, we treat A2,n

A2,n =
n∑
i=1

E

11A2(f
1
2 (Zt − n−

1
2 )Ut − Vn,t − f

1
2 (Zt)

f
1
2 (Zt)

)− 1
2φf (Zt)γn,t


=

∫
R

(
f

1
2 (z − n− 1

2u− vn)− f 1
2 (z)− 1

2(n− 1
2u− vn)φf (z)f 1

2 (z)
)2
dz

≤
∫
R
(f(z − n− 1

2u− vn)dz +
∫
R
f(z)dz +

∫
R
(n− 1

2u− vn)φ2
f (z)f(z)dz

≤ (n− 1
2u− vn)[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2

using Holder’s inequality

A2,n ≤ [(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2P (|Zt−i| ≥ m, i = 1, ..., ) 1
3

n∑
i=1

E(|γn,t|3) 2
3

Where E(|γn,t|3) 2
3 is bounded because

E(γ4
n,t) ≤ 4n−2E

( ∞∑
k=1

ϕ1,kZt−k

)4

+ n−4

4 E
( ∞∑
k=1

ϕ2,k(θ + n−
1
2 cι(n))Zt−k

)
The coeffi-

cients ϕ1,k and ϕ2,k(θ + n−
1
2 cι(n)) are square integrable, Thus

E(γ3
n,t)

2
3E(γ4

n,t)
1
2

and P (|Zt−i| ≥ m, i = 1, ..., ) 1
3 ≤ σ

2
3k−

2
3 (log q)− 1

3 where q is truncation parameter.
Finally we conclude that A2,n →∞ 0 A2,n −→ 0

Proof C2

Zn,t = n−
1
2

2

∞∑
k=1

ϕ
(n)
1,kφf (Zt)Zt−k

E(Zn,t)2 = n−1

4 lim
m→∞

inf E(
m∑
k=1

ϕ
(n)
1,kφf (Zt)Zt−k)2

= n−1

4 (I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )
∞∑
k=1

(ϕ(n)
1,k)2

We have
∞∑
k=1

ϕ
(n)
1,k <∞ =⇒ E(Zn,t)2 <∞

We conclude that sup
n

E(Z2
n,t) <∞
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Proof C3

We consider max
t≤n
|Zt,n| = Zt0,n

We have

max
t≤n
|Zt,n| > ε = Zt0,n +

n∑
t=1,t6=t0

Zn,t11(|Zt,n|>ε) > ε

=
n∑
t=1

Zn,t11(|Zt,n|>ε) > ε2

Using Markov inequality, we obtain

P
(

max
t≤n
|Zt,n| > ε

)
≤ 1
ε2

n∑
t=1

E(Z2
n,t11(|Zt,n|>ε))

and

E(Z2
n,t11(|Zt,n|>ε)) = n−1

4 E

lim inf
m→∞

n∑
t=1

(
m∑
k=1

ϕ1,k(θ)φf (Zt)Zt−k
)2

11(|Zt,n|>ε)


= n−1

4

n∑
k=1

lim inf
m→∞

E
(

(
m∑
k=1

ϕ1,k(θ)φf (Zt)Zt−k)211(|Zt,n|>ε)

)

= n−1

4 lim inf
m→∞

n∑
t=1

∫
(|Zt,n|>ε)

(ϕ1,k(θ)φf (Zt)Zt−k)2dPθ

and∫
(|Zt,n|>ε)

(
n∑
k=1

ϕ1,k(θ)φf (Zt)Zt−k)2dPθ ≤
n∑
k=1

ϕ2
1,k

∫
(|Zt,n|>ε)

(φf (ZtZt−k))2dPθ

We have also
|Zt,n| > ε⇔ |n

− 1
2

2

∞∑
k=1

ϕ1,kφf (ZtZt−k)| > ε

Combining the results we get

n∑
t=1

∫
(|Zt,n|>ε)

(ϕn1,kφf (ZtZt−k))2dPθ −→ 0

When n −→ 0
Consequently C3 is verified.

Proof C4∑
Z2
n,t = n−1

4

n∑
t=1

(
∞∑
k=1

ϕ
(n)
1,kφf (Zt)Zt−k)2

Um,n = n−1

4

n∑
t=1

φ2
f (Zt)(

m∑
k=1

ϕ
(n)
1,kZt−k)2
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The process n−1

4

n∑
t=1

φ2
f (Zt)(

m∑
k=1

ϕ
(n)
1,kZt−k)2 is strictly (m + 1) dependent with the

mean (I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2

m∑
k=1

(ϕ(n)
1,k)2 according to the Ergodic theorem

Um,n −
1
4(I2

f + C0I
2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2

m∑
k=1

(ϕ(n)
1,k)2 = opθ(1)

1
4(I2

f + C0I
2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2σ2
m∑
k=1

(ϕ(n)
1,k)2 −→n→∞

(λ)2

4 <∞

On the other hand

P(|Z2
n,t − Um,n| > ε) = P(n

−1

4 |
n∑
t=1

φ2
fZt[(

∞∑
k=1

φ2
fZt−k)2 − (

∞∑
k=1

φ2
fZt−k)2]| > ε)

≤ (I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2
n−1

4 ×
n∑
t=1

E|(
∞∑

t=m+1
ϕ1,k(θ)Zt−k)2 + 2(

m∑
k=1

ϕ1,k(θ)Zt−k)(
∞∑

k=m+1
ϕ1,k(θ)Zt−k)|

We apply Cauchy-Schwartz inequality then we obtain

P(|Z2
n,t − Um,n| > ε) ≤ 1

4(I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2 ∞∑
k=m+1

ϕn1,k(θ)σ2[
m∑
k=1

ϕ2
1,k(θ)σ2] 1

2 [
∞∑

k=m+1
ϕ2

1,k(θ)σ2] 1
2


P(|Z2

n,t − Um,n| > ε) −→m→ 0 Thus Um −
(λn)2

4 = opθ(1)

Proof C5

E(E(Z2
n,t11|Zn,t|> 1

2
/An,t−1)) ≤ E(Zn,t11max1≤t≤n |Zn,t|> 1

2
) based on (Swensen [79]), we

have to show
∑

Z2
n,t is uniformly integrable, for this purpose we use Serfling [71]

lemma ([71] P 15) and C4 then we conclude under Pθ that
∑

Z2
n,t <∞

Proof C6

E(Zn,t/An,t−1) = n
−1
2

2 E(
∞∑
k=1

ϕ1,k(θ)φf (Zt)Zt−k/An,t−1)

= n
−1
2

2

∞∑
k=1

ϕ1,k(θ)ZtE(φf (Zt)/An,t−1)

= 0
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Because E(φf (Zt)/An,t−1) =
∫ 1

0
ϕ(u, f)du = 0 We use absolutely continuous densi-

ties compared to the Lebesgue measure, therefore the conditions of Swensen’s lemma
are satisfied, condition (iii) of Le Cam theorem stated in Swensen [79] is automati-
cally satisfied.
Using Swensen’s lemma and assumption (S6) in (Haddad and Belaide [40])

2
n∑
t=1

Zn,t is asymptotically N (µ,CV )

µ =


(

d2

1− a2

) 1
2

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

4

∞∑
k=1

(
a2k

k2

) 1
2

(I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

4


CV =

(
(I2
f + C0I

2
p

f ) 1
2 (σ4 + C0σ

4
p ) 1

2 Ξ(θ)
)

Where µ is the mean and CV is the covariance matrix.
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3.3 Simulation study

In order to check the validity of the theoretical results presented above we
conduct numerical simulations.
Firstly, we deal with central sequence then we show the local asymptotic normality
using equation 3.3. For each ∆n

f and k ≤ n we generate n sequence of geometrical
strong mixing errors, f assumed to be normal distribution, we vary the values of
α = 0, 0.15, 0.25 and we vary the values of n.
Figures 1,2 and 3: We present the QQ-plot sample of ∆n

f which shows that the
central sequence has normal distribution limit.

Figure 3.1: QQ-plot of ∆n
f sample for α = 0.25
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Figure 3.2: QQ-plot of ∆n
f sample for α = 0.1

Figure 3.3: QQ-plot of ∆n
f sample for α = 0
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Figures 4,5 and 6 : The density curve of the central sequence and the density
curve of normal distribution with sample mean and sample variance are presented
in figures below, we remark clearly that the two curves are very close to each other
in the three graphs when α=0.25, 0.15 and also for the case α = 0
We take the values d = 0.4, a = 0.8, σ = 2.
Therefore, the figures show that the central sequence has normal distribution.
We note that alpha means the value of α−mixing parameter.

Figure 3.4: Density plot of ∆n
f sample for α = 0.25

To compare between the generated central sequence ∆n
f and the gaussian process

with same parameters we use Root Mean Squared Errors (RMSE) which is an im-
portant tool, it shows that our central sequence is very close to the Gaussian process
N (µ,CV ).
nine different sample sizes are used namely n= 500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 5000.
Table: RMSE of generated central sequence and the gaussian process.
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Figure 3.5: Density plot of ∆n
f sample for α = 0.1

Figure 3.6: Density plot of ∆n
f sample for α = 0
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n 500 1000 1500 2000 2500 3000 3500 4000 5000
α = 0 3.104 2.579 2.372 2.092 1.844 1.755 1.683 1.541 1.423
α = 0 5.389 3.962 3.644 3.055 2.891 2.717 2.582 2.453 2.201

α = 0.15 2.914 2.142 1.808 1.614 1.516 1.411 1.366 1.293 1.259
α = 0.15 5.126 3.742 3.279 2.872 2.698 2.598 2.444 2.385 2.225

α = 0.25 2.914 2.142 1.808 1.599 1.449 1.375 1.299 1.246 1.178
α = 0.25 5.086 3.686 3.218 2.816 2.618 2.474 2.418 2.318 2.160

Interpretation

• RMSE decreases when the size of n increases.

• We remark clearly that the values of RMSE are small, it means that ∆n
f is

close to the gaussian process with same parameters.

• We remark that the strong mixing coefficients has a significant influence on
the behavior of LAN property, when α−mixing coefficient is higher the RMSE
is small.

• In the case of independent errors (α = 0) the RMSE is higher than the case
of dependent errors, when (α=0.25, 0.15).
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3.4 Local Asymptotic Minimaxity For FAR(1) Pro-

cess

Introduction

Under Local Asymptotic Normality property, an asymptotic efficiency criterion
is often considered in the literature "Local Asymptotic Minimax" (LAM) property
which is an important concept of optimality used in the estimation.
In this section, we treat several local asymptotic properties for Fractional Autore-
gressive process, we deal with Local Asymptotic Minimax and Local Asymptotic
Linearity.

3.4.1 Preliminaries for Local Asymptotic Minimax

In this section, we study LAM property under Local Asymptotic Normality
conditions. Let `(.) (lost function) defined in R2 satisfied the following conditions:
(i) `(x) > 0 (ii) `(x) = `(−x) (iii) {x\`(x) ≤ u} is convex ∀u ∈ R∗+
We use LAN conditions to construct LAM estimator

Theorem 3.4. Local Asymptotic Minimax Let Zn be a sequence of an arbitrary es-
timators of θ and ` be a loss function on R, we consider LAN condition LAN(θ,Ξ(θ),∆f

n(θ))
is satisfied

lim
M→∞

lim inf
n→∞

inf
Zn

sup√
n|θ−θ0|≤M

E(`{
√
n(Zn − θ)}) ≥ E(`(Z)) (3.9)

A sequence of estimators Zn is said to be Local Asymptotic Minimax (LAM) is the
previous inequality is satisfied.

Lemma 3.1. Under LAN conditions, for any sequences of estimators Zn, if Zn is
θ−regular, then Zn is Local Asymptotic Minimax.

Remark 3.1. The value of θ under the null hypothesis is unspecified, thus we
replace θ by θ̂n which is

√
n−consistent.
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θ̂n is
√
n−consistent it means that

√
n(θ̂n − θ) = Op(1) if ∃c > 0

such that
√
n|θ̂n − θ| ≤ c, ∀n ∈ N, θ ∈ Θ

We use also discrete sequence od estimators θn

Definition 3.1. A sequence θn of estimators is said to be discrete is there is K ∈ N

such that θn takes at most K different values in the following set

Qn = {θ ∈ Rk :
√
n|θ − θ0| < c}, c > 0.

This property allows us to construct regular estimator using local asymptotic discrete
estimator.

3.4.2 Local Asymptotic Properties for FAR(1) with Inde-

pendent Noises

Local Asymptotic Minimaxity for FAR(1) is expressed in the following lemma, the
errors are i.i.d noises.

Lemma 3.2. Under the conditions of invertibility and LAN hypothesis, for all θ(n)

If
√
n(θ(n) − θ)−

(
Ξ(θ)−1

If

)
∆(n)
f (θ) = oPθ(1) (3.10)

Then
θ(n) is LAM under H(n)

f (θ)

On the other hand, result on Local Asymptotic Linearity is established in the fol-
lowing lemma

Lemma 3.3. If θ(n) is sequence of estimators of θ,
√
n(θ(n) − θ) = Opθ(1)

∆(n)
f (θ(n))−∆(n)

f (θ) + IfΞ(θ)
√
n(θ(n) − θ) = opθ(1) (3.11)
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3.5 Local Asymptotic Properties for Fractional

Autoregressive Model with Strong Mixing Noises

We generalize the results of Serroukh (1996) in the case of mixing noises.

3.5.1 Local Asymptotic Minimaxity

Lemma 3.4. Under the conditions of invertibility and LAN hypothesis, for all θ(n)

If

√
n(θ(n) − θ)−

(
Ξ(θ)[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2

)−1
∆(n)
f (θ) = oPθ(1) (3.12)

Then
θ(n) is LAM under H(n)

f (θ)

θ(n) is said θ−regular, if 3.12 is verified.

Proof

We based on Lemma (4.1) (Kreiss)[55] they dealt with the case of ARMA processes
it suffices to use Davydov’s inequality to obtain the result.
In order to construct regular estimates, we have to consider θ(n) which is

√
n-

convergent estimators, it is essential to assume that

√
n(θ(n) − θ) = Opθ(1) (3.13)

Remark 3.2. θ(n) is consistent estimator of θ and it is asymptotically equivalent
to θ(n).

On the other hand we establish local asymptotic linearity.

3.5.2 Local Asymptotic Linearity

We use Local Aymptotic Quadratic decomposition to deduce this property.
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Lemma 3.5. If θ(n) is sequence of estimators of θ,
√
n(θ(n) − θ) = Opθ(1)

∆(n)
f (θ(n))−∆(n)

f (θ) + [(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2 Ξ(θ)
√
n(θ(n) − θ) = opθ(1) (3.14)

Proof

The proof can be deduced directly from LAN property

∆(n)
f (θ)−∆(n)

f (θ + n−1/2ι(n)) = Ξf (θ)ι(n) + oPθ(1) (3.15)

We consider θ(n) = θ + n−
1
2 (n 1

2 (θ(n) − θ)) and ι(n) = n
1
2 (θ(n) − θ)

We replace θ(n) and ι(n) by the expressions above, we get

∆(n)
f (θ)−∆(n)

f (θ(n)) = Ξf (θ)n
1
2 (θ(n) − θ) + oPθ(1) (3.16)

Proposition 3.5. We consider θ(n) a sequences of estimators
√
n−convergent and

Locally asymptotically discrete of θ, then

θ̂(n) = θ
(n) + 1√

n

(
Ξ̂(n)(θ(n))[(I2

f + C0I
2
p

f )(σ4 + C0σ
4
p )] 1

2

)−1
∆(n)
f (θ(n)) (3.17)

is θ(n)−regular.

Where Ξ̂(θ) = 1
n

n∑
t=1

Yt−1(θ)(Yt−1(θ))′ With Yt−1(θ) =


d

q∑
j=1

aj−1Zt−j−1

q∑
j=1

aj

j
Zt−j


Proof

If 3.12 is verified, then θ̂(n)
f is θ−regular

√
n(θ̂(n) − θ)− (Ξ(θ))−1

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

∆(n)
f (θ) =

√
n(θ(n)−θ)−

(
Ξ̂(n)(θ(n))

)−1

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

∆(n)
f (θ)− (Ξ(θ))−1

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

∆(n)
f (θ) =

(
Ξ̂n(θ(n))

)−1

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

([(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2 Ξ̂(n)(θ(n))
√
n(θ(n) − θ)

+∆(n)
f (θ)− Ξ−1(θ)Ξ̂(n)(θ(n))∆n

f (θ)) =
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Ξ̂(n)(θ(n))
)−1

[(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2

([(I2
f +C0I

2
p

f )(σ4 +C0σ
4
p )] 1

2 (Ξ̂n(θ(n))−Ξ(θ))
√
n(θ(n)− θ)

+∆(n)
f (θ(n))−∆(n)

f (θ)+[(I2
f+C0I

2
p

f )(σ4+C0σ
4
p )] 1

2 Ξ(θ)
√
n(θ(n)−θ)+(1−Ξ−1(θ)Ξ̂(n)(θn))∆(n)

f (θ))
after a suitable decomposition we use local asymptotic linearity of ∆(n)

f (θ) and lemma
3.5 which implies

∆(n)
f (θ(n))−∆(n)

f (θ) + [(I2
f + C0I

2
p

f )(σ4 + C0σ
4
p )] 1

2 Ξ(θ)
√
n(θ(n) − θ) = opθ(1)

We know that (Ξ(θ)− Ξ̂(θ))∆(n)
f (θ) = oPθ(1).

We combine the results above to prove proposition 3.5.

3.6 Conclusion

In this chapter we have achieved the main goal which is the study of local
asymptotic normality for fractional autoregressive model with strong mixing noises,
we have proved asymptotic normality of the central sequence of our model using
Swensen’s lemma, then we have showed that FAR(1) satisfies local asymptotic min-
imaxity property and local asymptotic linearity. Finally we have used numerical
simulation to check that the central sequence obeys a standard law and this result
is elaborated theoretically.
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General Conclusion

To sum up, this thesis a study on Fractional AutoRegressive model of order
1 with dependent errors, we have focused o the case of mixing errors because it is
fruitful and more realistic to assume the dependency of the errors as we have done in
our work. We have discussed several probabilistic and statistical properties such as
autocovariance function, autocorrelation function and their asymptotic properties
which allows us to detect the effect of mixing errors on the behavior of the model
studied, we have implemented a simulation study in order to check the validity of
the theoretical results and show us clearly the difference between the behavior of
independent case and dependent case (strong mixing errors with different values)
Furthermore, we have studied an important asymptotic theory which is known as
Local Asymptotic Normality (LAN) property basing on Swensen’s lemma, then we
have made a simulation study to prove the established results.
We have dealt with some local asymptotic properties such as (Local Asymptotic
Minimax (LAM), Local Asymptotic Linearity), these properties are crucial in the
construction of the adaptive estimator.
This work answered concisely and clearly the main research question and show us
the impact of the dependency of the errors, this property was especially studied in
finance and economic.

Perspectives

It will be interested to deal with
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• Construction of the adaptive estimator of the model studied in this thesis.

• Extension of the results to the case of associated errors.

• Adaptive estimation for GARMA process with mixing errors.

• Local Asymptotic Normality for Tempered ARFIMA with mixing errors.

• Local Asymptotic Normality for superior order of ARFIMA process.
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Résumé 

Dans cette thèse, nous avons étudié le processus Autoregressive moyenne mobile fractionnaire 

(ARFIMA), nous nous concentrons sur le modèle le plus simple Autoregressive fractionnaire d’ordre  

1 FAR(1), ce modèle est souvent appliqué dans plusieurs domaines en hydrologie, économie, finance 

… etc. Dans notre cas, les erreurs étant supposées dépendantes, nous mettons en lumière les erreurs 

mélangeants notamment le coefficient de mélange fort . Nous avons établi diverses propriétés 

statistiques et probabilistes telles que la fonction d'autocorrélation et son comportement asymptotique ; 

on remarque l'effet du coefficient de mélange sur le comportement des propriétés probabilistes. Cela 

peut être clairement démontré dans une étude de simulation. De plus, plusieurs propriétés 

asymptotiques locales ont été principalement discutées, la normalité asymptotique locale (LAN) pour 

FAR(1) avec des erreurs  mélange a été prouvée en utilisant les conditions de Swensen, puis nous 

avons traité la minimaxité asymptotique locale (LAM) et la linéarité asymptotique locale, ces 

propriétés sont très utiles pour étudier l'optimalité des estimateurs et des tests. 

Mots Clés : Procesuss autoregressive fractionnaire, Autocorrélation, Erreurs mélangeants, Normalité 

Asymptotique locale, Normalité asymptotique minimax, normalié asymptotique linéaire, simulation.    

Abstract 

In this thesis, we have studied Fractional Autoregressive integrated Moving Average 

(ARFIMA) process, we focus on the simplest  model which is  Fractional Autoregressive process of 

order 1 FAR(1), this model has a large number of applications in hydrology, economic, finance… etc. 

In our case, the errors are assumed to be dependent, we shed the light on mixing errors especially 

strong mixing coefficient which is the strongest mixing coefficient. We have established various 

statistical and probabilistic properties such as autocorrelation function and its asymptotic behavior; we 

remark the effect of mixing coefficient on the behavior of the probabilistic properties.  This can be 

shown clearly in a simulation study. Moreover, several local asymptotic properties have been mainly 

discussed, local asymptotic normality (LAN) for FAR(1) with strong mixing noises have been proved 

using Swensen’s conditions, then we have dealt with local asymptotic minimaxity (LAM) and local 

asymptotic linearity, these properties are very useful to study the optimality of the estimators and tests. 

Key words: Fractional Autoregressive process, Autocorreltion, mixing errors, Local asymptotic 

normality, Local asymptotic minimaxiy, local asymptotic linearity, simulation. 

 الملخص 

 الذاتي الانحدار عملية وهو نموذج أبسط على المتكامل،ونركز الجزئي المتحرك المتوسط عملية درسنا الأطروحة، هذه في         

 تكون أن المفترض منحالتنا, في. إلخ…  مالية،ال ،الاقتصاد ريال في التطبيقات من كبير عدد على يحتوي النموذج هذا الجزئي،

 من العديد أنشأنا لقد. خلط معامل أقوى وهو القوي الخلط معامل وخاصة الخلط أخطاء على الضوء بإلقاء قمنا فقد ، مرتبطة الأخطاء

 الخواص سلوك على الخلط معامل تأثير نلاحظ ؛ المقارب وسلوكها الذاتي الارتباط وظيفة مثل والاحتمالية الإحصائية الخصائص

 المحلية المقاربة الخصائص من العديد مناقشة تمت ، ذلك على علاوة.المحاكاة دراسة في بوضوح هذا يظهر أن يمكن. الاحتمالية

المحلية المقاربة الطبيعية الحالة إثبات تم حيث ، أساسي بشكل  الحد مع تعاملنا ثم ظروف، باستخدام القوية الخلط ضوضاء مع لـ  

.                         والاختبارات المقدرات أمثلية لدراسة جداً مفيدة الخصائص هذه ،و الحد الأدنى المقارب المحلية المقاربة والخطية  

نموذج الانحدار الذاتي, الارتباط الذاتي, الأخطاء المخلوطة, الحالة الطبيعية المقاربة المحلية, الحالة الخطية   الكلمات المفتاحية :  

 المقاربة المحلية, الحاد  الأدنى المقارب المحلي
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