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Presentation

This thesis is focused on some questions related to existence, multiplicity and localization

of positive solutions for some nonlinear mathematical problems that can be represented by

equations of the form Tx+Sx = x with x is on an appropriate closed convex set. The method

used here is the fixed point theory on retracts of Banach spaces. More precisely, for proving

the desired results we rely on the fixed point index theory for the sum of two operators. This

work contains two principal types of results:

• Firstly, we have developed fixed point theorems for the sum T + S, by taking this sum

such that S is a k-set contraction and I − T is Lipschitz invertible. The obtained results

were established by using a new topological approach of the fixed point index.

• Secondly, we have used the obtained fixed point theorems and other recent ones existing in

the literature to discuss the existence, multiplicity, localization and positivity of solutions

of divers kinds of boundary value problems for difference and differential equations. Most

of the obtained existence results are illustrated by numerical examples.

This manuscript contains three essential parts: The first part "General concepts", contains

the indispensable elements which will be needed throughout this thesis. In the second part

"Difference equations", we gave firstly remainder of some concepts on linear difference equations

and then we presented our contributions. In the third part "Differential equations", we presented

our results on differential equations associated to boundary value conditions.
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General Introduction

The aim purpose of this thesis is to investigate the existence, multiplicity and localization

of positive solutions of abstract equations of the form Ax + Bx = x in a suitable subset of a

Banach space, by developing new fixed point results. We are also interested by establishing

the existence of positive solutions for boundary value problems associated to difference and

differential equations. The arguments are based on the obtained fixed point theorems as well

as on recent existing ones in the literature.

Fixed point theory, as one of the most dynamic areas, that still flourishing at present has

fascinated many researchers for the powerful and fruitful tools it provides to nonlinear analysis,

whether as fixed point theorems or in the form of topological tools. Fixed point theorems are

used for proving the existence, multiplicity and uniqueness of solutions to various mathematical

problems, such as integral equations, ordinary differential equations, partial differential equa-

tions, differences equations and variational inequalities.

In fact, long list of problems in analysis fall into the category of solving a fixed point problem

of a suitable operator, among them one can encounters operators that can be split in the form

T = A+B, where A is a contraction in some sense, and B is a compact map, however, in some

cases A may not always yield a contraction operator but another type of operator, for instance,

a non-expansive or expansive one. Therefore, neither the Banach fixed point theorem nor

the Schauder fixed point theorem immediately apply in this case. For that reason it becomes

desirable to develop fixed point theorems for such situations. One of the first results in this

direction, which combines the Banach’s and Schauder’s fixed point theorems, is Krasnosel’skii’s

theorem established on 1958, see [58]. The author’s motivation came from the observation that

the inversion of a perturbed differential operator yields the sum of a contraction and a compact

iv



General Introduction v

operator when he studied a paper of Schauder on elliptic partial differential equations [80].

Krasnosel’skii then established and proved that the sum of two operators A + B has a fixed

point in a nonempty closed convex subset Ω of a Banach space X, whenever the two operators

A,B : Ω → X satisfy

(a) A is a contraction;

(b) B is compact;

(c) Ax+By ∈ Ω, ∀x, y ∈ Ω.

This is a captivating result, and it has a number of interesting applications in studying the

existence of solutions, and it has been improved and generalized in diverse directions by mod-

ifying its hypothesis. In 1930, Kuratowski introduced his measure of noncompactness because

of the lack of compactness in infinite dimensional Banach spaces and in order to determine how

a set is not compact, see [61]. This new measure of noncompactness has been used by Darbo to

introduce a new version of the contraction hypothesis. He calls A a k-set contraction mapping

if α(A(D)) ≤ kα(D) for all bounded set D of Ω, where α denotes the Kuratowski measure of

noncompactness and k ∈ [0, 1[. He then proved that any k-set contraction mapping which maps

continuousily Ω into itself, has at least a fixed point. In fact, since the sum of a contraction

and a compact mapping turned out to be a k-set contraction, Darbo’s fixed point theorem is

considered as an extension of Krasnosel’skii’s fixed point theorem. Since then many researchers

have studied the existence of the solutions for the operational equation Ax + Bx = x, x ∈ Ω,

under different combinations of A,B and Ω. Some results in this direction can be seen in

[18, 16, 43, 34, 40, 71, 88, 89].

In the investigation of certain problems arising from diverse areas of applied sciences only

positive solutions that make sense, where this solution may describe a velocity, a density, and

more. In a Banach space, the positivity condition can be described by a cone. Therefore,

since the publication of the monograph ’Positive Solutions of Operator Equations’ in the year

1964 by Krasnosel’skii, see [59], a lot of research articles on the theory of positive solutions of

nonlinear problems have appeared.
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Among the fixed point theorems established in ordered Banach spaces, we find the class of

functional fixed point theorems used to prove existence, localization and multiplicity of positive

solutions to boundary value problems. These theorems originate with Krasnosel’skii fixed point

theorem in 1964, see [59] where the functional used was the norm and the fixed point is localized

in a conical shell of the form {x ∈ P , a ≤ ∥x∥ and ∥x∥ ≤ b} for 0 < a < b. This theorem has

been improved by many authors, we find for instance the compression-expansion fixed point

theorem of norm type, developed by Guo in [46, 48], stated as follows:

Let P be a cone of a Banach space X and assume that there exist two positive constants a; b

with a ̸= b, then a completely continuous map F : Pa,b → P has at least one fixed point in the

conical shell

Pa,b = {x ∈ P , a ≤ ∥x∥ and ∥x∥ ≤ b} for 0 < a < b,

under the following two conditions:

∥Fx∥ ≤ ∥x∥ for every x ∈ P with ∥x∥ = a,

∥Fx∥ ≥ ∥x∥ for every x ∈ P with ∥x∥ = b.

Figure 1: Illustration of cone compression-expansion fixed point theorem in case where X is the two-

dimensional plane R2

In 1979, both Leggett and Williams, see [63], presented criteria that guarantee the existence

of a fixed point for continuous, compact maps that did not require the operator to be invariant

on the underlying sets, utilizing a norm in the upper boundary and replacing the norm used
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in the lower boundary by a positive concave functional such that a ≤ α(x). In that sense,

the Leggett-Williams fixed point theorem generalized the compression-expansion fixed point

theorem of norm type and then fixed points are localized in sets of the form

P(α, a, b) = {x ∈ P , a ≤ α(x) and ∥x∥ ≤ b}.

Later, the Leggett-Williams fixed theorem was established with a little change (see [9, Theorem

16]) by introducing a convex functional β instead of the norm in the upper boundary, and then

fixed points are localized in sets of the form

P(β, α, a, b) = {x ∈ P , a ≤ α(x) and β(x) ≤ b}.

Recently, the extensions of the Leggett-Williams theorem has attracted many researchers. In

fact, using functionals we gain more flexibility and freedom to apply this kind of theorems in a

wider variety of situations.

The fixed point index provides a useful tool for proving fixed point theorems. Nevertheless,

in comparison to Leray-Schauder degree, the fixed point index is not well known. The results

based on degree theory need the operator to be defined in a suitable set with nonempty interior,

and this can be quite restrictive for certain applications. For example, when we are looking

for positive solutions to boundary value problems in cones of Lp spaces, these cones could have

empty interior and so degree techniques become inapplicable. If X is a retract of a Banach

space E, the fixed point index enables one to mimic various degree theory properties, even

though X may have an empty interior in E. For these reasons, it is interesting to consider

the problem of generalizing this index to different classes of maps. Recently, in 2019, Djebali

and Mebarki extended the fixed point index for the sum of an expansive operator and a k-set

contraction (see [34]). Their results had a significant impact on the theory of fixed point on

cones for the sum of two operators. This new index allows us to obtain new fixed point results.

This thesis is divided into three parts. The first part is devoted to the general framework,

where we present some concepts and basic tools that will be used in the next parts. In Section

1.1, we give some essential mathematical tools, starting with the concept of cones, which is

essential to introduce a partial ordering on abstract Banach spaces. In Section 1.2, we recall
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some compactness criteria, and after that, we introduce the three main and most commonly

used measures of noncompactness and recall their basic properties. In Section 1.3, we define

some classes of operators. In Section 1.4, we present the fixed point index theory, starting with

retraction, and then define the fixed point index for strict set contractions on a retract of a

Banach space. Then we present the fixed point index on cone for a k-set contraction perturbed

by an operator T , where I −T is Lipschitz invertible. Next, we give some computations of this

fixed point index on the translate of a cone.

The second part of this thesis is devoted to difference equations, it contains three chapters:

In chapter 2, we recall some mathematical background about linear difference equations. We

start with some examples of the application of difference equations in the real world, then

we give a survey of the fundamentals of the difference calculus: the difference operator, the

summation operator and some methods for solving the linear difference equations. Then we

present the theory of self adjoint difference equation on a discrete interval,

∆(p(t− 1)∆y(t− 1)) + q(t)y(t) = 0, t ∈ [a, b+ 1] = {a, a+ 1, . . . , b+ 1}, (1)

including some concepts such as generalized zero, disconjugacy, the Cauchy function and the

calculation of the Green functions for some boundary value problems.

In chapter 3, we use a new topological approach, on fixed point index for the sum of two

operators, to establish new existence criteria for the existence of positive solutions for the class

of first order impulsive difference equations with a family of nonlinear boundary conditions:

∆x(n) = f(n, x(n)), n ̸= nk, n ∈ J,

∆x(nk) = Ik(x(nk)), n = nk,

Mx(0) −Nx(T ) = g(x(0), x(T )),

(2)

where ∆ is the forward difference operator, i.e., ∆u(n) = u(n + 1) − u(n), J = [0, T ] ∩ N,

T ∈ N, N is the set of natural numbers, M,N > 0, f ∈ C(J × R), g ∈ C(R × R), Ik ∈ C(R),

k ∈ {1, . . . , p}, {nk}pk=1 are fixed impulsive points such that

0 < n1 < n2 < . . . < np < T, p ∈ N.

In chapter 4, we first give an extension of Avery-Anderson theorem to the sum of two operators
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by making use of the fixed point index developed for operators that are sums of the form

T + S, where I − T is a Lipschitz invertible mapping and S is a k-set contraction. Then the

obtained result is applied to prove the existence of at least one positive solution for the class

of non-autonomous second order difference equations with Dirichlet boundary conditions:

△2u(k) + f(k, u(k)) = 0, k ∈ {0, 1, . . . , N}, N ∈ N, N > 1. (3)

u(0) = u(N + 2) = 0. (4)

where f : {0, ..., N + 2} × [0,∞) → [0,∞) is a continuous function.

The third part of this thesis is devoted to differential equations, it contains three chapters:

In Chapter 5, we first develop new multiple fixed point theorems for the sum of two operators

T + S, where I − T is Lipschitz invertible and S is a k-set contraction on translate of a

cone of a Banach space. Then the obtained results are applied to discuss the existence of

multiple nontrivial positive solutions for the generalized Sturm-Liouville multipoint boundary

value problem:

−u′′(t) = h(t)f(t, u(t), u′(t)), 0 < t < 1,

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi),

cu(1) + du′(1) =
m−2∑
i=1

biu(ξi),

(5)

where f ∈ C([0, 1] × R∗ × R,R), h ∈ C([0, 1],R), a, b, c, d ∈ [0,∞), 0 < ξ1 < ξ2 < ... < ξm−2 <

1 (m ≥ 3), ai, bi ∈ [0,∞) are constants for i = 1, 2, . . . ,m− 2 and ρ = ac+ ad+ bc > 0.

In Chapter 6, we present a generalization of the functional expansion-compression fixed

point theorem developed by Avery et al. in [11] to the case of a k-set contraction perturbed by

an operator T , where I − T is Lipschitz invertible, then fixed points are localized in sets of the

form:

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b},

with A is a relatively open subset of a cone P , α and β are nonnegative continuous concave

and convex functionals on P , respectively. Next, we apply the obtained result to discuss the

existence of at least one nontrivial positive solution to a non-autonomous second order boundary

value problem:

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1), (6)
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x(0) = x′(1) = 0, (7)

where f : (0, 1) × [0,∞) → [0,∞) is a continuous function.

In Chapter 7, we investigate the following eigenvalue fourth order singular differential equa-

tion with boundary conditions at two points

v(4)(t) = λg(t)f(v(t)), 0 < t < 1, (8)

v(0) = a1, v(1) = a2, v′′(0) = a3, v′′(1) = a4, (9)

where f ∈ C([0, 1]), g : (0, 1) → R+ is continuous and may be singular at t = 0 or/and t = 1

and aj ≥ 0, j ∈ {1, 2, 3, 4} are given constants. Our existence result of at least one positive

solution is based on a recent Birkhoff-Kellogg type fixed point theorem developed on translate

of a cone on a Banach space.



Part I

General concepts

1



1 Essential Mathematics tools

1.1 Cones and partial ordering

Cones are closed convex subsets that can be used to generate a partial order in a linear

normed space. Usually, this concept is used in searching for positive solutions of nonlinear

differential and difference equations (see [4, 59]). In all what follows we denotes by (E, ∥.∥) a

Banach space.

Definition 1.1. A nonempty subset P ⊂ E is called a cone if it is closed, convex and satisfies

the two following conditions:

(i) (x ∈ P and λ ≥ 0) ⇒ λx ∈ P,

(ii) (x ∈ P and −x ∈ P) ⇒ x = 0, i.e., P ∩ (−P) = {0}.

Definition 1.2. Given a cone P of E, we define a partial ordering ≤ with respect to P in the

following manner:

∀x, y ∈ E : x ≤ y ⇔ y − x ∈ P .

We can also define the following order relations:

■ x < y ⇔ x ≤ y and x ̸= y.

■ x ≪ y ⇔ y − x ∈ P̊ if P̊ ≠ ∅.

■ x ⩽̸ y ⇔ y − x ̸∈ P.

2
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A segment of a cone P (order interval) is given by:

[x, y] = {z ∈ P : x ≤ z ≤ y}.

Definition 1.3. Let P be a cone of E. We say that:

■ P is normal if there existe a constant δ > 0 such that

∥x+ y∥ ≥ δ, ∀x, y ∈ P , with ∥x∥ = ∥y∥ = 1.

Geometrically, normality means that the angle between two positive unit vectors has to be

bounded away from π. In other words, a normal cone cannot be too large.

■ P is solid if its interior is nonempty, i.e., P̊ ≠ ∅.

■ P is generating if E = P − P, i.e., every element x ∈ E can be represented in the form

x = u− v, where u, v ∈ P.

Theorem 1.1. ([48] Theorem 1.1.1, p. 2) Let P be a cone in E. Then the following properties

are equivalent:

1. P is normal.

2. There exists γ > 0 such that ∥x+ y∥ ≥ γmax{∥x∥, ∥y∥} for all x, y ∈ P .

3. There exists a constant N > 0 such that

0 ≤ x ≤ y =⇒ ∥x∥ ≤ N∥y∥, for all x, y ∈ P , (1.1)

i.e., the norm ∥.∥ is semi monotone.

4. There exists an equivalent norm ∥.∥1 on E such that 0 ≤ x ≤ y =⇒ ∥x∥1 ≤ ∥y∥1, i.e.,

the norm ∥.∥1 is monotone.

5. xn ≤ zn ≤ yn (n = 1, 2, 3, ...), ∥xn − x∥ → 0, ∥yn − x∥ → 0 =⇒ ∥zn − x∥ → 0.

6. A set (B + P)⋂(B − P) is bounded, where B = {x ∈ E : ∥x∥ ≤ 1}.

7. Any order interval [x, y] = {z ∈ E : x ≤ z ≤ y} is bounded.
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Remark 1.1. The least positive number N satisfying (1.1) is called a normal constant. Clearly,

N ≥ 1. In fact, taking y = x ̸= 0 in (1.1), we have N ≥ 1.

Example 1.1. 1. Let E = Rn and P1 = {x = (x1, x2, ..., xn) ∈ Rn : xi ≥ 0, i = 1, ..., n} =

(R+)n.

(a) P1 is a solid and a generating cone in Rn, since P̊1 = (R∗
+)n and R+ is a generating

cone on R, then for i = 1, ..., n : ∀xi ∈ R,∃ui, vi ∈ R+ : xi = ui − vi.

(b) Moreover, all the norms on Rn are monotonic, we have that

∀x, y ∈ Rn, 0Rn ≤ x ≤ y ⇒ ∥x∥ ≤ ∥y∥.

Hence P1 is normal and the normal constant N = 1.

2. Let E = C(G), be the set of continuous functions on a closed and bounded subset G ⊂ Rn,

endowed with the norm ∥x∥C(G) = sup
t∈G

|x(t)| et P2 = {x ∈ C(G) : x(t) ≥ 0, ∀t ∈ G}.

(a) P2 is a solid and a generator cone on C(G).

(b) P2 is normal because its norm ∥.∥C(G) is monotonic on C(G).

(c) We define additional cones on E such that:

P3 = {x ∈ C(G) : x(t) ≥ 0, and
∫
G0
x(t)dt ≥ ε0∥x(t)∥C(G)},

P4 = {x ∈ C(G) : x(t) ≥ 0, and min
t∈G1

x(t) ≥ ε1∥x(t)∥C(G)}.

with G0, G1are closed subsets of G, and ε0 and ε1 are two constants such that 0 <

ε0 < mes(G0) and 0 < ε1 < 1. We have P3 ⊂ P2 and P4 ⊂ P2 are both normal solid

cones on C(G).

3. Let E = Lp(Ω), be the set of Lebesgue integrable functions on Ω ⊂ Rn with p ≥ 1 and

0 < mes(Ω) < ∞ endowed with the norm ∥x∥ =
(∫

Ω
|x(t)|p dt

) 1
p

and

P5 = L+
p (Ω) = {x ∈ Lp(Ω) : x(t) ≥ 0 a.e. in Ω}.

It is clear that P5 is generator, and the norm of Lp(Ω) is increasing, then it is normal, but

it is not a solid cone, because P̊5 = ∅ only the cone L+
∞(Ω) which has non empty interior.
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In fact, if P̊5 was of non empty interior then ∃f ∈ P̊5, i.e. ∃δ > 0 such that B(f, δ) ⊂ P5.

We take Ω = [0, 1], and consider the following sequence (fn)n∈N defined by:

fn(t) =


−f(t), if t ∈ [0, 1

n
],

f(t), if t ∈] 1
n
, 1].

Then

∫ 1

0
|fn(t) − f(t)|pdt =

∫ 1
n

0
|fn(t) − f(t)|pdt+

∫ 1

1
n

|fn(t) − f(t)|pdt

=
∫ 1

n

0
| − f(t) − f(t)|pdt+

∫ 1

1
n

|f(t) − f(t)|pdt

= 2p
∫ 1

n

0
|f(t)|pdt.

Hence ∥fn − f∥ = 2
 1

n∫
0

|f(t)|pdt
 1

p

→ 0 when n → ∞, if f ∈ L+
p (Ω), that is

∀δ > 0,∃n0 ∈ N, n ≥ n0 ⇒ ∥fn − f∥ ≤ δ,

which implies that

∀δ > 0, ∃n0 ∈ N, n ≥ n0 ⇒ fn ∈ B(f, δ),

which contradicts the fact that fn is not in the cone P5, because mes
(
[0, 1

n
]
)

̸= 0.

4. Let E = C1[0, 2π], be the space of all continuous and differentiable functions defined on

[0, 2π], where its norm is defined as follows:

∥x∥ = max
0≤t≤2π

|x(t)| + max
0≤t≤2π

|x′(t)|.

Let P6 = {x ∈ C1[0, 2π] : x(t) ≥ 0, 0 ≤ t ≤ 2π}. Clearly P6 is a solid cone in C1[0, 2π].

P6 is not normal. In fact, if P6 is normal, then there exists a constant N > 0 such that,

if 0 ≤ x ≤ y, then ∥x∥ ≤ N∥y∥. Let xn(t) = 1 − cosnt and yn(t) = 2 for n = 1, 2, . . . .

Clearly, we have

0 ≤ xn ≤ yn, ∥xn∥ = 2 + n, ∥yn∥ = 2.

Then 2 + n ≤ 2N for n = 1, 2, . . . , which is impossible. Therefore, P6 is not normal.
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1.2 Compactness and noncompactness

1.2.1 Some compactness criteria

Analysis is an immense field of mathematics, and compactness concepts and arguments

enter in a great many different branches of analysis. Compactness also plays a vital role in

many existence theorems as a technique of proof. Let us recall some well-known definitions and

results.

Definition 1.4. Let X be a topological space, D ⊂ X any subset. A set U is relatively open in

D if there is an open set Ω in X such that U = Ω ∩D.

Note that a set U ⊂ D can be relatively open to D without being an open set of X. For

example:

1. D = [0, 1], the half-open interval ]a, 1] is relatively open in D for every 0 ≤ a < 1, since

]a, 1] = [0, 1]∩]a, 3[. It is clear that ]a, 1] is not open in R.

2. X = R2, D = R × {0} and U =]0, 1[×{0}.

Definition 1.5. A family of open sets {Oi : i ∈ I} of a topological space (X, τ) is called

an open cover for X, if X = ⋃
i∈I
Oi. If each open cover of X has a finite subcover, then the

topological space is called compact.

Definition 1.6. A locally compact space is a Hausdorff topological space with the property that

each of its points admits a compact neighborhood.

Definition 1.7. • A subset M of a metric space (X, d) is said to be totally bounded, if for

each ε > 0, there exists a finite subset {x1, x2, ..., xn} of X (depending on ε) such that

M ⊂
n⋃
i=1

B(xi, ε). The set {x1, x2, ..., xn} is called a finite ε-net.

• A subset M is said to be bounded if M ⊂ B(x, r) for some x ∈ X and some r > 0.

Theorem 1.2. (Heine-Borel property) A subset M of R is compact if and only if it is closed

and bounded.



CHAPTER 1. ESSENTIAL MATHEMATICS TOOLS 7

Definition 1.8. A subset M of a topological space is said to be relatively compact if the closure

M of M is a compact set.

Proposition 1.1. If the metric space (X, d) is complete, then the set M is relatively compact

if and only if it is totally bounded.

Theorem 1.3. ([73], Theorem 28.2, p.179 ) For a metric space (X, d), the following properties

are equivalent:

(i) X is compact;

(ii) X is complete and totally bounded;

(iii) every sequence in X has a convergent subsequence;

(iv) X has the Bolzano-Weierstrass property, every infinite subset M of X has a limit point

x0 ∈ X, i.e. a point x0 such that every neighbourhood of x0 meets M .

Definition 1.9. Let X and Y be Banach spaces and M a subset of X. A mapping T : M ⊂

X → Y is called compact (or completely continuous) if T is continuous and maps bounded sets

into relatively compact sets.

Remark 1.2. Compact operators are useful in nonlinear functional analysis. Many results

about continuous operators on Rn are generalized to Banach spaces by replacing continuous

operator with compact operator.

Remark 1.3. For finite dimensional Banach spaces, continuous and compact operators are the

same whenever the domain of definition is closed. Indeed, if M is a bounded set, then M is

compact. Thus f(M) is also compact, and so f(M) is relatively compact.

We now apply this result to find the compact subspaces of the space C(X,Rn), in the uniform

topology. We know that a subspace of R is compact if and only if it is closed and bounded.

One might hope that an analogous result holds for C(X,Rn). But it does not, even if X is

compact. One needs to assume that the subspace of C(X,Rn) satisfies an additional condition,

called equicontinuity which is introduced independently by Arzelà and Ascoli. We consider

that notion now.
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Definition 1.10. The sequence (fn)n∈N ⊂ C([a, b],R) is equicontinuous at x ∈ [a, b] if for every

ε > 0 there is δ > 0 such that |x − y| < δ ⇒ |fn(x) − fn(y)| < ε for every n ∈ N, and (fn)n∈N

is called equicontinuous if it is equicontinuous at every x in [a, b].

Definition 1.11. The sequence (fn)n∈N is uniformly bounded if there is an L > 0 such that

|fn(x)| < L for all x ∈ [a, b] and all n ∈ N.

In its original form, the Ascoli theorem provides conditions for a sequence (fn)n∈N of contin-

uous real valued functions on a closed interval [a, b] to have a uniformly convergent subsequence.

Therefore, the Ascoli-Arzelà quest is to find sufficient and necessary conditions on subsets M

of a space C(X, Y ) of continuous functions between two topological spaces to have compact

closure, that is to be relatively compact, for some appropriate analogue of the topology of uni-

form convergence. The literature is rich in results of that type. In the following, some variants

of Ascoli-Arzelà Theorem.

Theorem 1.4. Let (X, d) be a compact metric space, (Y, ∥.∥) a Banach space, and the space

C(X, Y ) is endowed with the sup norm ∥f∥ = sup
x∈X

∥f(x)∥Y . A subset M ⊂ C(X, Y ) is relatively

compact if and only if

(a) M is equicontinuous.

(b) ∀x ∈ X, the set M(x) = {f(x), f ∈ M} is relatively compact in Y .

Theorem 1.5. Any bounded equicontinuous sequence of functions in C([a, b],R) has a uniformly

convergent subsequence.

Theorem 1.6. A subset of C([a, b],R) is compact if and only if it is closed, bounded, and

equicontinuous.

Theorem 1.7. ([73], Theorem 47.1, p.290 ) Let X be a topological space and Y be a metric

space. If M ⊂ C(X, Y ) is equicontinuous and pointwise bounded, then M is relatively compact

in C(X, Y ), that is in C(X, Y ) endowed with the topology of uniform convergence on compact

subsets of X. Moreover, if X is locally compact, the converse is true.

Theorem 1.8. Let M ⊂ C1([a, b],R) satisfy the following conditions:
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(a) There exists L > 0 such that for all t ∈ [a, b] and u ∈ M, |u(t)| ≤ L and |u′(t)| ≤ L.

(b) For every positive ε > 0, there exists δ(ε) > 0 such that for all t1, t2 ∈ [a, b] with |t1 − t2| <

δ(ε) and for all u ∈ M,

|u(t1) − u(t2)| ≤ ε and |u′(t1) − u′(t2)| ≤ ε.

Then the set M is relatively compact in C1([a, b],R).

Theorem 1.9. ([29], p.62 ) Let M ⊂ Cb(R+,R). Then M is relatively compact in Cb(R+,R)

if the following conditions hold:

(i) M is uniformly bounded in Cb(R+,R).

(ii) The functions belonging to M are almost equicontinuous on R+, i.e. equicontinuous on

every compact interval of R+.

(iii) The functions from M are equiconvergent, that is, given ε > 0, there corresponds T (ε) > 0

such that |x(t) − l| < ε for every t ≥ T (ε) and x ∈ M.

In the following result, E is a Banach space (not necessarily finite dimensional), we define

the discrete interval [0, T + 1] = {0, 1, . . . , T + 1}.

Theorem 1.10. ([2], Theorem 17.1, p.262 )(Discrete Ascoli-Arzelà Theorem)

Let M be a closed subset of C([0, T + 1], E). If M is uniformly bounded and the set {u(k) :

u ∈ M} is relatively compact for each k ∈ [0, T + 1], then M is compact.

Proof. We need only to show that every sequence in M has a Cauchy subsequence. Let

M1 = {f1,1, f1,2, . . .} be any sequence in M. Notice the sequence {f1,j(0)}, j = 1, 2, . . .

has a convergente subsequence and let M2 = {f2,1, f2,2, . . .} denote this subsequence. For

{f2,j(1)}, j = 1, 2, . . . let M3 = {f3,1, f3,2, . . .} be a subsequence of M2 such that {f3,j(1)}

converges. Since M3 is a subsequence of M2 then {f3,j(0)} also converges. Continue this

process to get a list of subsequences

M1,M2, . . . ,MT+2,MT+3
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in which each sequence is a subsequence of the one directly on the left of it and for each

k, the sequence Mk = {fk,1, fk,2, . . .} has the property that {fk,j(k − 2)}, j = 1, 2, . . . is a

convergente sequence. Thus for each k ∈ [0, T + 1], the sequence {fT+3,j(k)} is convergent.

Then since {fT+3,j(k)} is Cauchy for each k ∈ [0, T + 1], and since [0, T + 1] is finite, we have

that there exists n0 ∈ {1, 2, . . .} independent of k such that

m,n ≥ n0 implies |fT+3,m(k) − fT+3,n(k)| < ε, k ∈ [0, T + 1].

Thus MT+3 is Cauchy.

1.2.2 Measures of noncompactness

Let us recall that a subset A of a Banach space X is relatively compact if and only if to

every ε > 0 there are finitely many balls of radius ε such that their union covers A. If A

is only bounded, there is a positive lower bound for such numbers ε. These facts suggest to

introduce a new concept called measure of noncompactness (MNC for short), which determines

the deviation from relative compactness for a set.

Definition 1.12. Let A be the family of bounded sets of a Banach space E. A function ψ :

A → [0,+∞[ is called measure of noncompactness if it satisfies the following conditions:

1. ψ(A) = 0 ⇔ A is relatively compact, ∀A ∈ A.

2. ψ(A) = ψ(A), ∀A ∈ A.

3. ψ(A1 ∪ A2) = max{ψ(A1), ψ(A2)}, ∀A1, A2 ∈ A.

In this section, we present the three main and most frequently used MNCs. The first

measure of noncompactness, the function α, was defined and studied by Kuratowski [61] in

1930. In 1955, the Italian mathematician Darbo [30] used the Kuratowski measure to generalize

Schauder’s and Banach’s fixed point theorems to strict set operators. The Hausdorff MNC γ

was introduced by Goldenstein et al. [45] in 1957, and the Istratescu MNC χ introduced by

Istratescu [54] in 1972.
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In the sequel, we recall briefly the definitions of the above measures of noncompactness and

their basic properties.

Definition 1.13. (Kuratowski MNC) Let E be a real Banach space. The Kuratowski MNC

of a nonempty and bounded subset A of E, denoted by α(A) is defined by

α(A) = inf{ε > 0 : A =
n⋃
i=1

Ai, Ai ⊂ E and diam(Ai) ≤ ε, for all i = 1, ..., n, n ∈ N} (1.2)

where diam(Ai) = sup{∥x − y∥E, x, y ∈ Ai} is the diameter of Ai. i.e., the Kuratowski MNC

of a nonempty and bounded subsets A of E, denoted by α(A), is the infimum of the all numbers

ε > 0 such that A admits a finite covering by sets of diameter smaller than ε.

Example 1.2. For the closed unit ball B, in infinite dimensional Banach space, we have

α(B) = α(∂B) = α(B̊) = 2.

However, in a finite dimensional Banach space,

α(B) = α(∂B) = α(B̊) = 0.

Remark 1.4. In general, the computation of the exact value of α(A) is difficult.

Another measure of noncompactness, which seems to be more applicable, is so-called Haus-

dorff measure of noncompactness (or ball measure of noncompactness). It is defined as follows.

Definition 1.14. (Hausdorff MNC) Let E be a Banach space. The Hausdorff MNC of a

nonempty and bounded subset A of E, denoted by γ(A), is the infimum of all reals ε > 0 such

that A can be covered by a finite number of balls with radius < ε, that is,

γ(A) = inf{ε > 0 : A ⊂
n⋃
i=1

B(xi, ri), xi ∈ E, ri < ε, i = 1, 2, ..., n, n ∈ N} (1.3)

Remark 1.5. • In the definition of the Hausdorff MNC of the set A it is not supposed that

centers of the balls that cover A belong to A. Hence (1.3) is equivalent to

γ(A) = inf{ε > 0 : A has a finite ε-net in E},

where by ε-net, we mean a set {a1, a2, . . . , an} ⊂ E such that the balls

B(a1, ε);B(a2, ε); . . . ;B(an, ε) cover A.
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• In the definition of the Hausdorff MNC, instead of a finite ε-net one can speak of a totally

bounded one, i.e., an ε-net A that has a finite δ-net for any δ > 0.

Definition 1.15. (Inner Hausdorff MNC) Let E be a Banach space. The Inner Hausdorff

MNC of a nonempty and bounded subset A of E, denoted by γ0(A), is the infimum of all reals

ε > 0 such that A can be covered by a finite number of balls with radius < ε and centers in A,

that is,

γ0(A) = inf{ε > 0 : A ⊂
n⋃
i=1

B(xi, ri), xi ∈ A, ri < ε, i = 1, 2, ..., n, n ∈ N} (1.4)

Remark 1.6. The formula in (1.4) is equivalent to

γ0(A) = inf{ε > 0 : A has a finite ε-net in A}.

Definition 1.16. (Istratescu MNC) Let E be a Banach space, the Istratescu MNC also

called lattice MNC of a nonempty and bounded subset A of E, denoted by χ(A), is defined by

χ(A) = sup{ρ > 0 : there exists a sequence (xn)n ∈ A such that ∥xm − xn∥ ≥ ρ for m ̸= n}

We list below some of the properties of the MNCs α and γ that follow immediately from

the definition. These properties are straightforward consequences of others (for example, non-

singularity follows from regularity, monotonicity from semi-additivity, continuity from Lips-

chitzianity), its proof can be found in [44].

Proposition 1.2. Let A be the family of bounded sets of a real Banach space E, let ψ denote

the MNC α or the MNC γ.

(a) (Regularity). ψ(A) = 0 ⇔ Ā is compact.

(b) (Non-singularity). If A is a finite set, then ψ(A) = 0.

(c) (Semi-additivity). ψ(A1 ∪ A2) = max{ψ(A1), ψ(A2)}.

(d) (Monotonicity). A1 ⊂ A2 ⇒ ψ(A1) ≤ ψ(A2).
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(e) (Lischitzianity). Let A1 and A2 be subsets of A, then |ψ(A1) − ψ(A2)| ≤ LψdH(A1, A2),

where Lα = 2, Lγ = 1 and dH denotes the Hausdorff metric defined by

dH(A1, A2) = max{ sup
x∈A1

d(x,A2), sup
y∈A2

d(y, A1)},

where d(., .) denotes the distance from an element of E to a subset of E.i.e., d(x,A2) =

inf
y∈A2

d(x, y) and d(y, A1) = inf
x∈A1

d(y, x).

(f) (Continuity). For any A ⊂ E and any ε > 0 there is a δ > 0 such that |ψ(A)−ψ(A1)| < ϵ

for all A1 satisfying dH(A,A1) < δ.

(g) (Semi-homogeneity). ψ(λA) = |λ|ψ(A) for any λ ∈ R.

(h) (Algebraic semi-additivity). ψ(A1 + A2) ≤ ψ(A1) + ψ(A2).

(i) (Invariance under translations). ψ(A+ x) = ψ(A) for any x ∈ E.

(j) (Invariance under passage to the closure). ψ(A) = ψ(Ā).

(k) (Invariance under passage to the convex hull). ψ(A) = ψ(conv(A)).

To get an idea of how to calculate these measures of noncompactness, we give some examples.

Example 1.3. Let X = C[0, 1] be the Banach space of all continuous real functions on [0, 1],

endowed with the maximum norm. For M = B(X) = {x ∈ X : ∥x∥ ≤ 1}, we have

γ(M) = γ0(M) = 1, α(M) = 2.

On the other hand, the set M1 = {u ∈ B(X) : 0 = u(0) ≤ u(t) ≤ u(1) = 1} satisfies

γ(M1) = 1
2 , γ0(M1) = α(M1) = 1.

Similarly, for the set M2 = {u ∈ B(X) : 0 ≤ u(0) ≤ 1
3 , 0 ≤ u(t) ≤ 1, 2

3 ≤ u(1) ≤ 1} we obtain

γ(M2) = 1
2 , γ0(M2) = 2

3 , α(M2) = 1.

Finally, the (noncompact) set

M3 = {u ∈ B(X) : 0 ≤ u(t) ≤ 1
2 for 0 ≤ t ≤ 1

2 , and 1
2 ≤ u(t) ≤ 1 for 1

2 ≤ t ≤ 1}

satisfies

γ(M3) = γ0(M3) = α(M3) = 1
2 .
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1.3 On some classes of operators

Definition 1.17. Let E and F be Banach spaces and A be the family of bounded sets of E.

Let f : E → F be a continuous and bounded mapping

(a) f is called a k-set contraction, for some number k ≥ 0, if α(f(A)) ≤ kα(A), ∀A ∈ A.

(b) f is called a 1-set contraction, if k = 1.

(c) f is called a strict set contraction if 0 ≤ k < 1.

(d) f is called a condensing, if ∀A ∈ A with α(A) > 0, we have α(f(A)) < α(A).

Some Lipschitz Invertible Mappings

Let X be a linear normed space and I be the identity map of X: The case of expansive

mapping is given in the following lemma.

Definition 1.18. Let (X, d) be a metric space and D be a subset of X. The mapping T : D → X

is said to be expansive if there exists a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y), ∀x, y ∈ D.

Example 1.4.

(1) An affine function with a leading coefficient β > 1 is β-expansive on R.

(2) The function f(x) = x3 + σx, x ∈ R+ is σ-expansive for σ > 1.

(3) The function f(x) = γ x
x+δ , x ∈ [a, b] is |γ δ|

(b+δ)2 -expansive.

Definition 1.19. Let (X, ∥.∥) be a linear normed space and D ⊂ X. An operator T : D → X is

said to be γ-Lipschitz invertible on D if it is invertible and its inverse is Lipschitzian on T (D)

with constant γ.

In what follows we give some examples.

Example 1.5.

(1) The function f(x) = tan(x), x ∈
(
−π

2 ,
π
2

)
is 1-Lipschitz invertible on R.

(2) An affine function with a leading coefficient β is 1
β
-Lipschitz invertible on R.
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Lemma 1.1. [89, Lemma 2.1] Let (X, ∥.∥) be a normed linear space, D ⊂ X. If a mapping

T : D → X is expansive with a constant h > 1, then the mapping I − T : D → (I − T )(D) is

invertible and

∥(I − T )−1x− (I − T )−1y∥ ≤ (h− 1)−1∥x− y∥ for all x, y ∈ (I − T )(D).

Proof. For each x, y ∈ D, we have

∥(I − T )x− (I − T )y∥ = ∥(Tx− Ty) − (x− y)∥

≥ (h− 1)∥x− y∥,
(1.5)

which shows that (I − T )−1 : (I − T )(D) → D exists. Hence, for x, y ∈ (I − T )(D), we have

(I − T )−1x, (I − T )−1y ∈ D. Thus, using (I − T )−1x, (I − T )−1y substitute for x, y in (1.5),

respectively, we obtain

∥(I − T )−1x− (I − T )−1y∥ ≤ 1
h− 1∥x− y∥.

Some other examples of Lipschitz invertible mappings (see [88]) are presented below.

1. Let (E, ∥.∥) be a Banach space and T : E → E be Lipschitzian map with constant β > 0.

Assume that for each z ∈ E, the map Tz : E → E defined by Tzx = Tx + z satisfies

that T pz is expansive for some p ∈ N and is surjective. Then (I − T ) maps E onto E, the

inverse of I − T : E → E exists, and

∥(I − T )−1x− (I − T )−1y∥ ≤ γp∥x− y∥ for all x, y ∈ E,

where

γp = βp − 1
(β − 1)(lip(T p) − 1) ,

where lip(T p) = max{h ≥ 0 : d(T px, T py) ≥ h d(x, y), ∀x, y ∈ E}.

2. Let (X, ∥.∥) be a linear normed space, M ⊂ X. Assume that the mapping T : M → X

is contractive with a constant k < 1, then the inverse of I − T : M → (I − T )(M) exist,

and ∥(I − T )−1x− (I − T )−1y∥ ≤ (1 − k)−1∥x− y∥ for all x, y ∈ (I − T )(M).
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3. Let (E, ∥.∥) be a Banach space and T : E → E be Lipschitzian map with constant β ≥ 0.

Assume that for each z ∈ E, the map Tz : E → E defined by Tzx = Tx + z satisfies

that T pz is contractive for some p ∈ N. Then (I − T ) maps E onto E, the inverse of

I − T : E → E exists, and ∥(I − T )−1x− (I − T )−1y∥ ≤ ρp∥x− y∥ for all x, y ∈ E, where

ρp =



p
1−Lip(T p) , if β = 1;

1
1−β , if β < 1;

βp−1
(β−1)(1−Lip(T p)) , if β > 1.

where Lip(T p) denotes the Lipschitz constant for T p if T p is a Lipschitz map.

1.4 Fixed point index theory

The fixed point index theory has proved to be a useful tool in studying nonlinear problems.

It is so important for obtaining existence theorems for solutions of equations, that many math-

ematicians have labored to extend this concept to the most general situations conceivable for

instance: strict set contraction, condensing mapping, 1-set contraction, k-set contraction and

even for the sum of two operators [34, 43, 16].

1.4.1 On retract sets

Karel Borsuk introduced in 1931 the following notion, which is a kind of nonlinear projection.

Definition 1.20. Let X be a Banach space and r : X → M is a continuous map with M ⊂ X.

The map r is called a retraction if and only if

r(x) = x, ∀x ∈ M.

In that case, the set M is called a retract of X.
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Figure 1.1

Example 1.6. Let X = Rn, R > 0, and M = {x ∈ X : ∥x∥ ≤ R}. Then M is a retract of X.

A retraction r : X → M is given by

r(x) =


x, if ∥x∥ ≤ R,

Rx
∥x∥ , if ∥x∥ > R.

Example 1.7. A retract of the punctured plane R2\{(0, 0)} to the circle S1 = {(x, y), x2+y2 =

1} is given by the retraction

r(x, y) =
(

x√
x2 + y2 ,

y√
x2 + y2

)
.

Example 1.8. The projection of a square on its side AB is the mapping taking each point x of

the square into the endpoint f(x) of the perpendicular dropped from x on AB (see the Figure

1.2). For any ε-neighborhood of the point f(x) the δ-neighborhood of the point x of the same

radius projects into the first neighborhood. Hence, for any ε > 0 there exists a corresponding

δ > 0, in this case equal to ε. Therefore the projection map is continuous at each point of the

square. Hence, a closed interval is a retract of a square.

Figure 1.2
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Remark 1.7. 1. A closed interval is a retract of a triangle, as well as a convex polygon,

a cube, etc. A circle is a retract of an annulus, (i.e., the region bounded by a pair of

concentric circles).

2. The boundary of a disc is not a retract of a disc (see [81, Example 3]).

Definition 1.21. A space X has the fixed point property (or is a fixed point space) if every

continuous map f : X → X has a fixed point.

Remark 1.8. 1. If Y has the fixed point property and X is a retract of Y , then X has

the fixed point property. In fact, since X is a retract of Y , there is a continuous map

r : Y → X so that r = I on X. Let f : X → X be any continuous map. Then

f ◦ r : Y → X ⊂ Y . Hence, using that Y has the fixed point property, there is y ∈ Y so

that (f ◦ r)(y) = y and y ∈ X. From here, r(y) = y and (f ◦ r)(y) = f(r(y)) = f(y) = y.

Thus f has a fixed point in X.

2. The significance of retractions lies in the ability to reduce fixed point questions for com-

plicated sets to fixed point questions for simpler subsets [91, cf. proof of Prop.2.6 (II)].

3. Every closed convex subset of Banach space is a retract of that space (this is an easy

consequence of Dugundji’s extension theorem (see Theorem 1.11)). In particular, every

cone or translate of cone in E is a retract of E.

4. Every retract is closed but not necessarily convex.

Theorem 1.11. (Dugundji’s extension theorem)[31, Theorem 7.2, p. 44]Let X and Y be

normed linear spaces, A ⊂ X a closed subset and f : A → Y a continuous map. Then f has a

continuous extension f̃ : X → Y such that f̃(X) ⊂ Conv(f(A)).

1.4.2 On the fixed point index

If X is a topological space, U is an open subset of X, and f : U → X is a continuous map

which has a compact (possibly empty) fixed point set S = {x ∈ U : f(x) = x}, then one can
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define an integer i(f, U,X), called the fixed point index of f in U with respect to X. Roughly

speaking, i(f, U,X) will be an algebraic count of the number of fixed points of f in U .

• If U = X, i(f,X,X) is the famous Lefschetz number of f : X → X.

• If X is a Banach space or normed linear space and f(U) is compact, then i(f, U,X) is

related to the Leray-Schauder degree of I− f , i.e. i(f, U,X) = deg(I− f, U, 0) the Leray-

Schauder degree of I − f on U with respect to 0. Thus the fixed point index generalizes

the Leray-Schauder degree. However, it is also defined in situations where degree theory

is not directly applicable, for example, when X is a closed convex set with empty interior

in a Banach space Y or, when X is not a vector subspace of Y .

Note that the fixed point index is a powerful tool for the study of nonlinear problems in analysis

in comparison to Leray-Schauder degree. Many extend this index to larger classes like the class

of strict-set contractions and that of 1-set contraction mappings.

1.4.3 Fixed point index for a k-set contraction perturbed by an op-

erator T , where I − T is Lipschitz invertible

In chapters 3, 4, 5 and 6, we will use the fixed point index for a k-set contraction perturbed

by an operator T , where I−T is Lipschitz invertible, either to develop new fixed point theorems,

ensuring the existence of positive fixed points, or to discuss the existence of positive solutions

of certain BVPs associated to differential or difference equations.

The purpose of this section is to present the definition of this index as well as some of its

properties. The proofs of the results which will be presented involve the fixed point index for

strict set contractions whose basic properties are collected in the following lemma. For the

proof we refer the reader to [47, Theorem 1.3.5] or [3], [31], [48].

Lemma 1.2. Let X be a retract of a Banach space E. For every bounded open subset U ⊂ X

and every strict set contraction f : U → X without fixed points on ∂U, there exists uniquely

one integer i(f, U,X) satisfying the following conditions:
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(a) (Normalization). For every constant map f : U → U , we have i (f, U,X) = 1.

(b) (Homotopy invariance). The index i(h(t, .), U,X) does not depend on the parameter

t ∈ [0, 1], where

(i) h : [0, 1]×U → X is continuous and h(t, x) is uniformly continuous in t with respect

to x ∈ U,

(ii) h(t, .) : U → X is a strict k-set contraction, where k does not depend on t ∈ [0, 1],

(iii) h(t, x) ̸= x, for every t ∈ [0, 1] and x ∈ ∂U.

(c) (Additivity). For every pair of disjoint open subsets U1, U2 in U such that f has no fixed

points on U \ (U1 ∪ U2) we have

i (f, U,X) = i (f, U1, X) + i (f, U2, X),

where i(f, Uk, X) := i(f|Uk
, Uk, X), k = 1, 2.

(d) (Solvability). If i (f, U,X) ̸= 0, then f has at least one fixed point in U .

(e) (Permanence). If Y is a retract of X and f(U) ⊂ Y , then

i (f, U,X) = i (f, U ∩ Y, Y ),

i (f, U ∩ Y, Y ) = i (f | U∩Y , U ∩ Y, Y ).

(f) (Excision). For every open subset V ⊂ U such that f has no fixed point in U\V, then

i (f, U,X) = i (f |V , V,X).

Given a real Banach space (E, ∥.∥), let P ≠ {0} be a cone in E and K = P + θ (θ ∈ E) a

θ-translate of P . The following results are direct consequences of the properties of the index i

in case of a translate of a cone, rather than in a cone.

Proposition 1.3. Let U ⊂ K be a bounded open subset with θ ∈ U. Assume that A : U → K is

a strict set contraction that satisfies the so-called Leray-Schauder boundary condition type:

Ax− θ ̸= λ(x− θ), ∀x ∈ ∂U, ∀λ ≥ 1. (1.6)

Then i (A,U,K) = 1.
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Proof. Let

H(t, x) = tAx+ (1 − t)θ, t ∈ [0, 1], x ∈ U.

We have H : [0, 1] × U → K is continuous and H(t, ·) : U → K is a strict set contraction.

Assume that there is a (t0, x0) ∈ [0, 1] × ∂U such that H(t0, x0) = x0. Hence,

t0Ax0 + (1 − t0)θ = x0.

If t0 = 0, then x0 = θ. This is a contradiction because θ ∈ U .

If t0 ̸= 0, then Ax0 − θ = 1
t0

(x0 − θ), which contradicts with (1.6). Therefore H(t, x) ̸= x for

any (t, x) ∈ [0, 1] ×∂U . Thus, by the homotopy invariance and the normality of the fixed point

index, it follows

i(A,U,K) = i(H(1, .), U,K)

= i(H(0, .), U,K)

= i(θ, U,K)

= 1.

This completes the proof.

Proposition 1.4. Let U ⊂ K be a bounded open subset with θ ∈ U . Assume that A : U → K

is a strict set contraction that satisfies the condition of type norm:

∥Ax− θ∥ ≤ ∥x− θ∥ and Ax ̸= x, ∀x ∈ ∂U. (1.7)

Then i(A,U,K) = 1.

Proof. It is sufficient to prove that the condition (1.7) implies the condition (1.6). Indeed,

assume by contradiction that some x0 ∈ ∂U and λ0 ≥ 1 exist and satisfy Ax − θ = λ0(x − θ).

We consider two cases: If λ0 = 1, then Ax0 = x0, contradicting the hypothesis (1.7).

If λ > 1, then ∥Ax− θ∥ = λ0∥x− θ∥ > ∥x0 − θ∥, a contradiction of (1.7) is again reched.

Proposition 1.5. Let U be a bounded open subset of K. Assume that A : U → K is a strict

set contraction and there is v0 ∈ P∗ such that

x− Ax ̸= λv0, for all x ∈ ∂U, λ ≥ 0. (1.8)
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Then i(A,U,K) = 0.

Proof. Define the homotopy H : [0, 1] × U → K by

H(t, x) = Ax+ tλ0v0,

for some

λ0 > ∥v0∥−1 sup
x∈U

((∥x∥ + ∥Ax∥)). (1.9)

Such a choice is possible since U is a bounded subset and then so is A(U). The operator H

is continuous and uniformly continuous in t for each x, and the mapping H(t, .) is strict set

contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on ∂U . On the contrary,

there would exist some x0 ∈ ∂U and t0 ∈ [0, 1] such that

x0 = Ax0 + t0λ0v0,

contradicting the hypothesis. By the homotopy invariance of the fixed point index, we have

i(A,U,K) = i(H(0, ·), U,K)

= i(H(1, ·), U,K)

= 0.

Indeed, suppose that i(H(1, .), U,K) ̸= 0. Then there exists x1 ∈ U such that Ax1 +λ0v0 = x1,

which implies that λ0 ≤ ∥v0∥−1(∥x1∥ + ∥Ax1∥), contradicting (1.9).

Remark 1.9. Letting θ = 0, we obtain the computations of the index in case of a cone.

Now, let Y be a retract of a Banach space E, Ω a subset of Y , and U a bounded open

subset of Y. Assume that T : Ω → E is a mapping such that (I−T ) is Lipschitz invertible with

constant γ > 0 and F : U → E is a k-set contraction. Suppose that

0 ≤ k < γ−1,

F (U) ⊂ (I − T )(Ω),

and

x ̸= Tx+ Fx, for all x ∈ ∂U
⋂

Ω.
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Then x ̸= (I − T )−1Fx, for all x ∈ ∂U and the mapping (I − T )−1F : U → Y is a strict γk-set

contraction. Indeed, (I − T )−1F is continuous and bounded and for any bounded set B in U ,

we have

α(((I − T )−1F )(B)) ≤ γ α(F (B)) ≤ γkα(B).

By Lemma 1.2, the fixed point index i ((I − T )−1F,U, Y ) is well defined. Thus we put

i∗ (T + F,U
⋂

Ω, Y ) =


i ((I − T )−1F,U, Y ), U

⋂Ω ̸= ∅

0, U
⋂Ω = ∅.

(1.10)

The proof of different results on the fixed point index i∗ presented in this thesis invokes the

following main properties of this index.

(a) (Normalization). If Fx = y0, for all x ∈ U, where (I − T )−1y0 ∈ U ∩ Ω, then

i∗ (T + F,U ∩ Ω, Y ) = 1.

(b) (Additivity). For any pair of disjoint open subsets U1, U2 ⊂ U such that T + F has no

fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω, Y ) = i ∗(T + F,U1 ∩ Ω, Y ) + i ∗(T + F,U2 ∩ Ω, Y ).

(c) (Homotopy invariance). The fixed point index i ∗(T+H(t, .), U∩Ω, Y ) does not depend

on the parameter t ∈ [0, 1], where

(i) H : [0, 1]×U → E is continuous and H(t, x) is uniformly continuous in t with respect

to x ∈ U,

(ii) H([0, 1] × U) ⊂ (I − T )(Ω),

(iii) H(t, .) : U → E is a ℓ-set contraction with 0 ≤ ℓ < γ−1 for all t ∈ [0, 1],

(iv) Tx+H(t, x) ̸= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(d) (Solvability). If i ∗(T + F,U ∩ Ω, Y ) ̸= 0, then T + F has a fixed point in U ∩ Ω.

For more details about the definition of the index i∗ and its properties see [34, 43].
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Fixed point index on translates of cones for sum of operators

In [43], Mebarki and Georgiev generalized the fixed point index on translates of cones for the

sum T +F where T is such that (I − T ) is Lipschitz invertible map and F a k-set contraction.

Let E be a Banach space, P ⊂ E (P ̸= {0}) be a cone. Given θ ∈ E (θ ̸= 0), consider the

translate of P , namely

K = P + θ = {x+ θ, x ∈ P}.

Let Ω be any subset of K and U a bounded open of K such that U ⋂Ω ̸= ∅. We denote by U

and ∂U the closure and the boundary of U relative to K.

Since K is a closed convex of E, hence a retract, from (1.10) the fixed point index i∗ (T +

F,U
⋂Ω,K) given by

i∗ (T + F,U
⋂

Ω,K) = i ((I − T )−1F,U,K), (1.11)

is well defined whenever T : Ω → E is a mapping such that (I − T ) is Lipschitz invertible with

constant γ > 0 and F : U → E is a k-set contraction with 0 ≤ k < γ−1 and F (U) ⊂ (I−T )(Ω).

In the following, we will calculate the fixed point index on translate of cones under various

considerations. These calculations follow directly from the properties of this index.

Proposition 1.6. Let U be a bounded open subset of K with θ ∈ U. Assume that the mapping

T : Ω ⊂ K → E is such that (I − T ) is Lipschitz invertible with constant γ > 0, F : U → E is

a k-set contraction with 0 ≤ k < γ−1, and F (U) ⊂ (I − T )(Ω). If

Fx ̸= (I − T )(λx+ (1 − λ)θ) for all x ∈ ∂U, λ ≥ 1 and λx+ (1 − λ)θ ∈ Ω, (1.12)

then i∗ (T + F,U
⋂Ω,K) = 1.

Proof. Define the homotopic deformation H : [0, 1] × U → K by

H(t, x) = t(I − T )−1Fx+ (1 − t)θ.

Then, the operator H is continuous and uniformly continuous in t for each x, and the mapping

H(t, .) is a strict γk-set contraction for each t. Moreover, H(t, .) has no fixed point on ∂U .



CHAPTER 1. ESSENTIAL MATHEMATICS TOOLS 25

Otherwise, there would exist some x0 ∈ ∂U and t0 ∈ [0, 1] such that 1
t0
x0 + (1 − 1

t0
)θ ∈ Ω for

t0 ̸= 0, and

t0(I − T )−1Fx0 + (1 − t0)θ = x0.

We may distinguish between two cases:

(i) If t0 = 0, then x0 = θ, which is a contradiction.

(ii) If t0 ∈ (0, 1], then Fx0 = (I − T )( 1
t0
x0 + (1 − 1

t0
)θ), which contradicts our assumption.

The properties of invariance by homotopy and normalization of the fixed point index guarantee

that

i ((I − T )−1F,U,K) = i (θ, U,K).

Consequently, by (1.11), we deduce that i∗ (T + F,U
⋂Ω,K) = 1.

Proposition 1.7. Let U be a bounded open subset of K with θ ∈ U. Assume that the mapping

T : Ω ⊂ K → E is such that (I − T ) is Lipschitz invertible with constant γ > 0, F : U → E is

a k-set contraction with 0 ≤ k < γ−1 and F (U) ⊂ (I − T )(Ω). If

∥Fx− Tθ − θ∥ ≤ ∥x− θ∥ and Tx+ Fx ̸= x, for all x ∈ ∂U
⋂

Ω, (1.13)

then i∗ (T + F,U
⋂Ω,K) = 1.

Proof. The mapping (I − T )−1F : U → K is a strict γk-set contraction.

Since (I − T ) is Lipschitz invertible with constant γ > 0, for each x ∈ U

∥(I − T )−1Fx− θ∥ = ∥(I − T )−1Fx− (I − T )−1(I − T )θ∥

≤ γ∥Fx+ Tθ − θ∥.
(1.14)

Therefore, from (1.14) and (1.13), we conclude that for all x ∈ ∂U, we get

∥(I − T )−1Fx− θ∥ ≤ γ∥Fx+ Tθ − θ∥

≤ ∥x− θ∥.

The claim then follows from (1.7), which completes the proof.

Proposition 1.8. Assume that the mapping T : Ω ⊂ K → E is such that (I − T ) is Lipschitz

invertible with constant γ > 0, F : U → E is a k-set contraction with 0 ≤ k < γ−1, and
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(
tF (U) + (1 − t)θ

)
⊂ (I − T )(Ω) for all t ∈ [0, 1]. If (I − T )−1θ ∈ U , and

(I − T )x ̸= λFx+ (1 − λ)θ for all x ∈ ∂U
⋂

Ω and 0 ≤ λ ≤ 1, (1.15)

then i∗ (T + F,U
⋂Ω,K) = 1.

Proof. Define the homotopic deformation H : [0, 1] × U → E by

H(t, x) = tFx+ (1 − t)θ.

Then, the operator H is continuous and uniformly continuous in t for each x, and the mapping

H(t, .) is a k-set contraction for each t. Moreover, T + H(t, .) has no fixed point on ∂U
⋂Ω.

Otherwise, there would exist some x0 ∈ ∂U
⋂Ω and t0 ∈ [0, 1] such that

Tx0 + t0Fx0 + (1 − t0)θ = x0,

then x0 − Tx0 = t0Fx0 + (1 − t0)θ, then we obtain a contradiction with the hypothesis (1.15).

By invariance property and the normalization property of the fixed point index, we conclude

that

i∗ (T + F,U
⋂

Ω,K) = i∗ (T + θ, U
⋂

Ω,K)

= i ((I − T )−1θ, U
⋂

Ω,K) = 1.

Remark 1.10. Proposition 1.8 will be used to prove the existence of at least one positive

solution of BVP (3.1) in chapter 3.

Proposition 1.9. Let U be a bounded open subset of K. Assume that the mapping T : Ω ⊂

K → E be such that (I − T ) is Lipschitz invertible with constant γ > 0, F : U → E is a k-set

contraction with 0 ≤ k < γ−1, and F (U) ⊂ (I − T )(Ω) for all t ∈ [0, 1]. If there exists u0 ∈ P∗

such that

Fx ̸= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0), (1.16)

then the fixed point index i∗(T + F,U ∩ Ω,K) = 0.
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Proof. The mapping (I − T )−1F : U → K is a strict γk-set contraction. Suppose that

i∗(T + F,U ∩ Ω,K) ̸= 0. Then,

i((I − T )−1F,U,K) ̸= 0.

For each r > 0, define the homotopy:

H(t, x) = (I − T )−1Fx+ tru0, for x ∈ U and t ∈ [0, 1].

The operator H is continuous and uniformly continuous in t for each x. Moreover, H(t, .) is a

strict γk-set contraction for each t and

H([0, 1] × U) = (I − T )−1F (U) + tru0 ⊂ K.

We check that H(t, x) ̸= x, for all (t, x) ∈ [0, 1] × ∂U. If H(t0, x0) = x0 for some (t0, x0) ∈

[0, 1] × ∂U , then

x0 − t0ru0 = (I − T )−1Fx0,

and so x0 − t0ru0 ∈ Ω. Hence

(I − T )(x0 − t0ru0) = Fx0,

for x0 ∈ ∂U
⋂(Ω + t0ru0), contradicting assumption (1.16). By homotopy invariance property

of the fixed point index, we deduce that

i ((I − T )−1F + ru0, U
⋂

Ω,K) = i ((I − T )−1F,U
⋂

Ω,K) ̸= 0.

Thus the existence property of the fixed point index, for each r > 0, there exists xr ∈ U such

that

xr − (I − T )−1Fxr = ru0. (1.17)

Letting r → +∞ in (1.17), the left hand side of (1.17) is bounded while the right hand side is

not, which is a contradiction. Therefore

i∗ (T + F,U
⋂

Ω,K) = 0,

which completes the proof.

Remark 1.11. We obtain the computation of the fixed point index on cones by setting θ = 0.



Part II

Difference equations
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2 General results for linear difference equations

Difference equations appeared much earlier than differential equations, and since the inven-

tion of computers, difference equations have started receiving the attention they deserve, where

differential equations are solved by using their difference equation formulations. Further, it was

taken for granted that the theories of difference and differential equations are parallel. After

the publication of the pioneer paper by Hartman [50] in the year 1978, a significant diversities

and wide applications have made difference equations one of the major areas of research.

We begin this chapter with a number of examples that illustrate how difference equations

arise in a variety fields of applications.

2.1 Examples and motivation

Example 2.1. It is observed that the mass of a radioactive substance decrease over a fixed time

period in a manner that is proportionate to the mass that was present at the beginning of the

time period. If the half life of radium is 1600 years, find a formula for its mass as a function

of time.

Let m(t) represent the mass of the radium after t years. Then

m(t+ 1) −m(t) = −km(t),

where k is a positive constant. Then

m(t+ 1) = (1 − k)m(t), t ∈ {0, 1, 2, . . .}.

29
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Computing m recursively, we find

m(1) = m(0)(1 − k),

m(2) = m(0)(1 − k)2,

...

m(t) = m(0)(1 − k)t.

Since the half life of a radioactive substance is 1600,

m(1600) = m(0)(1 − k)1600 = 1
2m(0),

so

1 − k =
(1

2

) 1
1600

Finally, we obtain

m(t) = m(0)
(1

2

) t
1600

This problem is traditionally solved in calculus and physics textbooks by setting up and inte-

grating the differential equation m′(t) = −km(t). However, the solution presented here, using

a difference equation, is somewhat shorter and employs only elementary algebra.

Example 2.2. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, . . . , where each integer after the

first two is the sum of the two integers immediately preceding it. Certain natural phenomena,

such as the spiral patterns on sunflowers and pine cones, appear to be governed by this sequence.

Let Fn denote the nth term in the Fibonacci sequence for n = 1, 2, . . .. Fn is called the "nth

Fibonacci number" and satisfies the initial value problem

Fn+2 − Fn+1 − Fn = 0, (n = 1, 2, . . .)

F1 = 1, F2 = 1.

The characteristic equation is λ2 − λ − 1 = 0, so λ = 1±
√

5
2 . Then the general solution of the

difference equation is

Fn = C1

(
1 +

√
5

2

)n
+ C2

(
1 −

√
5

2

)n
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By using the initial conditions, we find C1 = −C2 = 1√
5 , so

Fn = 1√
5

(
1 +

√
5

2

)n
− 1√

5

(
1 −

√
5

2

)n

for n = 1, 2, . . .. Although
√

5 is predominant in this formula, all these numbers must be

integers! Note that
Fn+1

Fn
=

(
1+

√
5

2

)
−
(

1−
√

5
2

) (
1−

√
5

1+
√

5

)n
1 −

(
1−

√
5

1+
√

5

)n → 1 +
√

5
2

as n → ∞. The ratio 1+
√

5
2 is known as the "golden section".

Example 2.3. Consider a channel for instance a telephone line, and suppose that two ele-

mentary information S1 and S2 of duration k1 and k2 respectively can be combined in order to

obtain a message. Let k be a time interval greater than both k1 and k2. We are interested in the

number of messages u(k) of length k, we can distinguish two types of messages: those ending

with S1 and those ending with S2. Then we have

u(k) = u(k − k1) + u(k − k2), (2.1)

where

u(k − k1) is the number of messages ending with S1,

u(k − k2) is the number of messages ending with S2.

Suppose for example that k1 = 1 and k2 = 2, then the equation 2.1 becomes

u(k) = u(k − 1) + u(k − 2),

with initial conditions u(1) = 1, u(2) = 1. This initial value problem defines the Fibonacci

numbers.

Example 2.4. Consider the following electric circuit

Figure 2.1
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Assume that V0 = A is a given voltage and VK+1 = 0, and the shaded region represent where

the voltage is zero. Each resistance in the horizontal line is equal to R and in the vertical lines

it is equal to 4R.

We want to find the voltage for 1 ≤ k ≤ K. For this, by using the Kirchoff’s current law that

state that the sum of the currents entering a junction point is equal the sum of the currents

leaving the junction point. From the junction point corresponding to the voltage Vk+1, we obtain

Ik+1 = Ik+2 + ik+1.

Using Ohm’s law I = V
R

, the above equation becomes

Vk − Vk+1

R
= Vk+1 − Vk+2

R
+ Vk+1 − 0

4R ·

Identifying Vk as u(k) leads to the second order difference equation

4u(k + 2) − 9u(k + 1) + 4u(k) = 0, k ∈ N ∩ (0, K − 1),

with boundary conditions

u(0) = A, u(k + 1) = 0.

Many of the calculations involved in solving and analyzing difference equations can be sim-

plified by use of the difference calculus, a collection of mathematical tools quite similar to the

differential calculus and just as the differential operator plays the central role in the differ-

ential calculus, the difference operator is the basic component of calculations involving finite

differences. Difference calculus is the discrete analogue of the familiar differential and integral

calculus. In the following sections we introduce some very basic properties of two operators that

are essential in the study of difference equations. These operators are the difference operator

and the summation operator.

2.2 Difference operator

Definition 2.1. Let y be a function of a real variable t. The difference operator ∆ is defined

by: ∆y(t) = y(t+ 1) − y(t).
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Remark 2.1. Occasionally we will apply the difference operator to a function of two or more

variables. In this case, a subscript will be used to indicate which variable is to be shifted by one

unit. For example,

∆tte
n = (t+ 1)en − ten = en,

while

∆nte
n = ten+1 − ten = ten(e− 1).

An elementary operator that is often used in conjunction with the difference operator is the

shift operator.

Definition 2.2. The shift operator E is defined by: Ey(t) = y(t+ 1).

Remark 2.2. 1. ∆ and E are linear operators.

2. ∆ and E commute, i.e. ∆E = E∆.

3. ∆ = E − I where I denotes the identity operator.

Definition 2.3. Let E0 = ∆0 = I. We define ∆n and En for n ∈ N∗ respectively by:

(i) ∆ny(t) = ∆(∆n−1y(t)).

(ii) Eny(t) = y(t+ n).

Lemma 2.1. Using the Binomial Theorem from algebra we obtain:

(i) ∆ny(t) = (E − I)ny(t) =
n∑
k=0

(
n
k

)
(−1)kEn−ky(t).

(ii) Eny(t) = (∆ + I)ny(t) =
n∑
k=0

(
n
k

)
∆n−ky(t).

Proposition 2.1. [56, Theorem 2.1]

(a) ∆m(∆ny(t)) = ∆m+ny(t) for all positive integers m and n.

(b) ∆(y(t) + z(t)) = ∆y(t) + ∆z(t).

(c) ∆(c y(t)) = c∆y(t), if c is a constant.
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(d) ∆(y(t)z(t)) = y(t)∆z(t) + Ez(t)∆y(t).

(e) ∆(y(t)
z(t)) = z(t)∆y(t)−y(t)∆z(t)

z(t)Ez(t) .

Proposition 2.2. Let Nn0 = {n > n0, n0 ∈ N}, the following statements hold:

(a)
n−1∑
i=n0

∆x(i) = x(n) − x(n0), n ∈ Nn0.

(b) ∆
(
n−1∑
i=n0

x(i)
)

= x(n), n ∈ Nn0.

(c) Let P (n) =
k∑
i=0

ain
k−i be a polynomial of degree k, where {a0, a1, . . . , ak} are constants.

Then

∆kP (n) = a0k! (2.2)

∆k+iP (n) = 0, ∀i ≥ 1. (2.3)

Proof. Using the definition of ∆, we obtain

(a)
n−1∑
i=n0

∆x(i) =
n−1∑
i=n0

(x(i+ 1) − x(i))

=
n∑

i=n0+1
x(i) −

n−1∑
i=n0

x(i)

= x(n) − x(n0).

(b)

∆
n−1∑
i=n0

x(i)
 =

n∑
i=n0

x(i) −
n−1∑
i=n0

x(i)

= x(n).

(c) On the one hand we have

∆p(n) =
k∑
i=0

ai(n+ 1)k−i −
k∑
i=0

ain
k−i.

On the other hand, we have

(n+ 1)k =
k∑
i=0

(
k

i

)
ni = 1 + kn+ k(k − 1)

2 n2 + · · · + knk−1 + nk

(n+ 1)k−1 = 1 + (k − 1)n+ (k − 1)(k − 2)
2 n2 + ...+ (k − 1)nk−2 + nk−1

...
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Then ∆p(n) = a0kn
k−1 + P1(n), where P1 is a polynomial of degree strictly less than k − 1.

Similarly, we can show that

∆2p(n) = a0k(k − 1)nk−2 + P2(n), where deg(P2) < k − 2,

∆3p(n) = a0k(k − 1)(k − 2)nk−3 + P3(n), where deg(P3) < k − 3,
...

Carrying out this process k times we obtain the equality (2.2).

To show (2.3) we use the definition of △ and (2.2).

Proposition 2.3. [56, Theorem 2.2] Let a be a constant. Then

(a) ∆ at = (a− 1)at.

(b) ∆ sin at = 2 sin a
2 cos a(t+ 1

2).

(c) ∆ cos at = −2 sin a
2 sin a(t+ 1

2).

(d) ∆ ln at = ln(1 + 1
t
).

(e) ∆ ln Γ(t) = ln t.

Here ln t represents any logarithm of the positive number t.

Remark 2.3. 1. One of the most basic special formulas in the differential calculus is the

power rule d
dt
tn = ntn−1. Unfortunately, the difference of a power is complicated and, as

a result, is not very useful:

∆tt
n = (t+ 1)n − tn

=
n∑
k=0

(
n

k

)
tk − tn

=
n−1∑
k=0

(
n

k

)
tk.

2. All the formulas in Proposition 2.3 remain valid if a constant "shift" is introduced in the

t variable. For example, ∆at+k = (a− 1)at+k.

3. The formulas in Propositions 2.1 and 2.3 can be used in combination to find the differences

of more complicated expressions. However, it may be easier to use the definition directly.
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2.3 Summation operator

In this section, we introduce the right inverse operator of the difference operator, which is

called the "Indefinite sum" or "Antidifference".

Definition 2.4. An indefinite sum (or antidifference) of y(t), denoted ∑ y(t), is any function

so that ∆(∑ y(t)) = y(t) for t in the domain of y.

Remark 2.4. 1. Recall that the indefinite integral plays a similar role in the differential

calculus.

2. The indefinite sum is also not unique as the indefinite integral.

Theorem 2.1. [56, Theorem 2.4] If z(t) is an indefinite sum of y(t), then every indefinite sum

of y(t) is given by ∑ y(t) = z(t) + c(t), where c has the same domain as y and ∆c(t) = 0.

Example 2.5. Compute the indefinite sum ∑ 6t.

From the Proposition 2.3, ∆6t = 5.6t, so we have ∆6t

5 = 6t.

It follows that 6t

5 is an indefinite sum of 6t and we write:

∑
6t = 6t

5 + c(t),

where c(t) is any function with the same domain as 6t and ∆c(t) = 0.

Corollary 2.1. Let y be defined on a set of the type {a, a + 1, a + 2, . . .}, where a is any real

number, and let z(t) be an indefinite sum of y(t). Then every indefinite sum of y(t) is given by∑
y(t) = z(t) + c, where c is an arbitrary constant.

Remark 2.5. 1. If the domain of y is a set of integer. Then ∆c(t) = c(t + 1) − c(t) = 0,

that is, c(1) = c(2) = c(3) = . . . , so c(t) is a constant.

In this case, we write ∑ 6t = 6t

5 + c, where c is any constant.

2. If the domain of y is the set of all real numbers, then the equation ∆c(t) = c(t+1)−c(t) = 0

says that c(t + 1) = c(t) for all real t, which means that c can be any periodic function

having period one. For example, we could choose c(t) = 2 sin 2πt, or c(t) = −5 cos 4π(t−

π), in Theorem 2.1 and obtain an indefinite sum.
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Proposition 2.4. [56, Theorem 2.6] Every indefinite sum satisfies the following properties:

(a) ∑(y(t) + z(t)) = ∑
y(t) +∑

z(t).

(b) ∑(λ y(t)) = λ
∑
y(t) if λ is a constant.

(c) ∑(y(t) ∆z(t)) = y(t) z(t) −∑(Ez(t) ∆y(t)).

(d) ∑(Ey(t) ∆z(t)) = y(t) z(t) −∑
z(t) ∆y(t).

Remark 2.6. 1. The formulas (c) and (d) in the above Theorem are called summation by

parts formulas.

2. The summation by parts formulas can be used to compute certain indefinite sums much

as the integration by parts formula is used to compute integrals.

Proposition 2.5. [56, Theorem 2.5] Let a be a constant. Then, for ∆c(t) = 0, we have

(a) ∑
at = at

a−1 + c(t), (a ̸= 1).

(b) ∑ sin at = − cos a(t− 1
2 )

2 sin a
2

+ c(t), (a ̸= 2nπ).

(c) ∑ cos at = sin a(t− 1
2 )

2 sin a
2

+ c(t), (a ̸= 2nπ).

(d) ∑ ln t = ln Γ(t) + c(t), (t > 0).

(e) ∑(
t
a

)
=
(

t
a+1

)
+ c(t).

(f) ∑(
a+t
t

)
=
(
a+t
t−1

)
+ c(t).

Remark 2.7. The operators ∆ and ∑ do not commute, such as in the differential calculus the

operators D (derivative) and
∫

do not commute.

For example, ∑ 1 = t.

∆t = (t+ 1) − t = 1.

Apply ∑ to this equation, then t + c(t) = ∑ 1, where c(t) is an arbitrary periodic function of

period 1.
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Proposition 2.6. (a) Let m,n, p ∈ N. For m fixed and n ≥ m, we have ∆
(
n−1∑
k=m

yk

)
= yn,

then, ∑
yn =

n−1∑
k=m

yk + c, where c is a constant.

(b) For p fixed and p ≥ n, we have ∆
( p∑
k=n

yk

)
= −yn, then,

∑
yn = −

p∑
k=n

yk + d, where d is a constant.

Proposition 2.7. [56, Theorem 2.7] If zn is an indefinite sum of yn and m,n (n ≥ m) are

integers, then
n−1∑
k=m

yk = [zn]nm = zn − zm.

2.4 General results for linear difference equations

This section investigates the essential techniques employed in the treatment of linear differ-

ence equations. We begin Section 2.4 with the fundamental theory of linear difference equations,

and then we develop the method of variation of constants. We then specialize our discussions

on linear difference equations with constant coefficients, since this is an important class in itself.

First order difference equations

Definition 2.5. A first order linear difference equation is an equation in the form:

y(t+ 1) − p(t)y(t) = r(t), (2.4)

where p(t) and r(t) be given functions with p(t) ̸= 0 for all t.

If p(t) = 1 for all t, then equation (2.4) is simply

∆y(t) = r(t),

its solution is

y(t) =
∑

r(t) + c(t),
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where ∆c(t) = 0.

Consider the first order homogeneous equation

u(t+ 1) = p(t)u(t), t ∈ {a, a+ 1, . . .}, a ∈ R (2.5)

which is easily solved by iteration:

u(a+ 1) = p(a)u(a)

u(a+ 2) = p(a+ 1)p(a)u(a)
...

u(a+ n) = u(a)
n−1∏
k=0

p(a+ k).

Then

u(t) = u(a)
t−1∏
s=a

p(s), (t = a, a+ 1, ...),

where it is understood that
a−1∏
s=a

p(s) = 1.

Equation (2.4) can be solved by substituting y(t) = u(t)v(t), where v is to be determined:

u(t+ 1)v(t+ 1) − p(t)u(t)v(t) = r(t),

u(t+ 1)v(t+ 1) + v(t)[u(t+ 1) − p(t)u(t)] − v(t)u(t+ 1) = r(t),

u(t+ 1)[v(t+ 1) − v(t)] = r(t),

or

Eu(t)∆v(t) = r(t),

or

∆v(t) = r(t)
Eu(t) ·

So,

v(t) =
∑ r(t)

Eu(t) + c.

Then,

y(t) = u(t)
[∑ r(t)

Eu(t) + c

]
.

The last equation with c an arbitrary constant gives us a representation of all solutions of the

equation (2.4) provided u is any nontrivial solution of the equation (2.5).
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Linear difference equations of order k ≥ 1

Definition 2.6. An equation in the form:

y(t+ k) + p1(t) y(t+ k − 1) + . . .+ pk(t) y(t) = f(t), (2.6)

where p1(t), . . . , pk(t) and f(t) are assumed to be known and pk(t) ̸= 0, for all t, is called linear

non-homogeneous difference equations of order k.

Definition 2.7. The homogeneous corresponding equation to (2.6) is given by

y(t+ k) + p1(t) y(t+ k − 1) + . . .+ pk(t) y(t) = 0, (2.7)

Remark 2.8. 1. The equation (2.6) can also be written using the shift operator as

(E k + p1(t)E k−1 + . . .+ pk(t)E 0)y(t) = f(t), where E 0 = I.

2. Since E = ∆ + I, it is also possible to write equation (2.6) in terms of the difference

operator.

Definition 2.8. If we specify k initial conditions of the equation (2.6), we are led to the

following corresponding initial value problem, where the ci, i ∈ {0, . . . , k − 1} are real numbers

y(t+ k) + p1(t) y(t+ k − 1) + . . .+ pk(t) y(t) = f(t), t ∈ {a, a+ 1, . . .}, (2.8)

y(t0) = c0, y(t0 + 1) = c1, . . . , y(t0 + k − 1) = ck−1, ∀ t0 ∈ {a, a+ 1, . . .}. (2.9)

Theorem 2.2. [35, Theorem 2.7, page 66] The initial value problem (2.8)-(2.9) have a unique

solution.

Example 2.6. Consider the following difference equation of second order

y(n+ 2) + n

n+ 1 y(n+ 1) − 3 y(n) = n, n ∈ N,

with y(0)=1 and y(1) = −1 and we will find the values of y(3) and y(4).

First we rewrite the equation in the convenient form

y(n+ 2) = − n

n+ 1 y(n+ 1) + 3y(n) + n, n ∈ N. (2.10)
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Letting n = 0 in (2.10), we have

y(2) = 3y(0) = 3.

For n = 1, we have

y(3) = −1
2 y(2) + 3y(1) + 1 = −7

2 ·

Then,

y(4) = −2
3 y(3) + 3y(2) + 1 = 37

3 ·

Theorem 2.3. [56, Theorem 3.3, page 51]

(a) If y1 and y2 are solutions to the homogenous equation (2.7), then c1y1 + c2y2 with c1, c2 are

constant solve the equation (2.7).

(b) If y1 is a solution to the equation (2.7) and y2 is a solution to the equation (2.6), then y1 +y2

solve the non homogenous equation (2.6).

(c) If y1 and y2 are solutions to the equation (2.6), then y1 − y2 solves the homogenous equation

(2.7).

Remark 2.9. Solutions of the non homogeneous equation (2.6) do not form a vector space.

In particular, neither the sum(difference) of two solutions nor a multiple of a solution is a

solution.

Corollary 2.2. If z is a solution of equation (2.6), then every solution y of equation (2.6) takes

the form y = z + u where u is some solution of equation (2.7).

Lemma 2.2. Define the operator L by

L(y) =
k∑
i=0

pi(t)y(t+ k − i), t ∈ R. (2.11)

Then, L is linear.

Proof. Let α, β ∈ R and t ∈ R, then

L(αx(t) + βy(t)) =
k∑
i=0

pi(t)(αx(t+ k − i) + βy(t+ k − i))

= α
k∑
i=0

pi(t)x(t+ k − i) + β
k∑
i=0

pi(t)y(t+ k − i)

= αLx(t) + βLy(t).
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Remark 2.10. Let L defined by (2.11), then equation (2.6) takes the form

Ly(t) = f(t), t ∈ R (2.12)

and equation (2.7) will be

Ly(t) = 0, t ∈ R, (2.13)

with p0(t) = 1.

Proposition 2.8. Let S be the set of solutions of equation (2.13). Then S is a vector space R.

Proof. Direct consequence of lemma 2.2. In fact, S is the kernel of the linear operator L.

Definition 2.9. The set of functions {y1, y2, . . . , yk} is linearly dependent on the set t ∈ {a, a+

1, . . .} if there are constants c1, . . . , ck, not all zero, so that

c1y1(t) + c2y2(t) + . . .+ ckyk(t) = 0, for t ∈ {a, a+ 1, . . .}.

Otherwise the set is linearly independent.

Theorem 2.4. Let {y1, y2, . . . , yk} be the set of linearly independent solutions of equation

(2.13) and let yp be a particular solution of equation (2.12), then any other solution y of non-

homogeneous equation (2.12) can be written in the form

y(t) =
k∑
i=1

ciyi(t) + yp(t), ci ∈ R, i ∈ {1, . . . , k} and t ∈ R. (2.14)

Proof. Let y be a solution of equation (2.12) et yp a particular solution of the same equation.

From lemma 2.2, the function (y − yp) is a solution to equation (2.13). Then

y(t) − yp(t) =
k∑
i=1

ciyi(t), t ∈ R. (2.15)

Hence

y(t) =
k∑
i=1

ciyi(t) + yp(t), t ∈ R. (2.16)
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Definition 2.10. A set of k linearly independent solutions of (2.12) is called a fundamental

set of solutions.

It is not practical to check the linear independence of a set of solutions using the definition.

Fortunately, there is a simple method to check the linear independence of solutions using the

Casoratian.

Definition 2.11. Let {y1, y2, . . . , yk} be the set of solution of the equation (2.13). The Caso-

ratian of these solutions is given by:

W (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) . . . yk(t)

y1(t+ 1) y2(t+ 1) . . . yk(t+ 1)
... ... . . . ...

y1(t+ k − 1) y2(t+ k − 1) . . . yk(t+ k − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Remark 2.11. The Casoratian is the discrete analogue of the Wronskian in differential equa-

tions.

Example 2.7. {t, 2t} is a fondamental set of solutions of the equation :

y(t+ 2) − 3t− 2
t− 1 y(t+ 1) + 2t

t− 1 y(t) = 0. (2.17)

W (t) =

∣∣∣∣∣∣∣∣
t 2t

t+ 1 2t + 1

∣∣∣∣∣∣∣∣ = −1 ̸= 0

Hence by Theorem 2.5, the solutions t, 2t are linearly independent and thus form a fundamental

set of solutions for (2.17).

Remark 2.12. It is not difficult to check that the Casoratian satisfies the equation

W (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) . . . yk(t)

∆y1(t) ∆y2(t) . . . ∆yk(t)
... ... . . . ...

∆k−1y1(t) ∆k−1y2(t) . . . ∆k−1yk(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



CHAPTER 2. GENERAL RESULTS FOR LINEAR DIFFERENCE EQUATIONS 44

Lemma 2.3. Abel’s lemma[35, Theorem 2.13, page 68]

Let y1, y2, . . . , yk be solutions of (2.7) and let W be their Casoratian. Then, for n ≥ n0,

W (n) = (−1)k(n−n0)

n−1∏
i=n0

Pk(i)
W (n0). (2.18)

Corollary 2.3. Suppose that Pk(n) ̸= 0 for all n ≥ n0. Then the Casoratian W (n) ̸= 0 for all

n ≥ n0 if and only if W (n0) ̸= 0.

Proof. This corollary follows immediately from formula (2.18).

Theorem 2.5. [56, Theorem 3.4, page 52] Let y1(t), . . . , yk(t) be solutions of equation (2.7)

for t ∈ {a, a+ 1, . . .}. Then the following statements are equivalent:

(a) The set {y1(t), . . . , yk(t)} is linearly dependent for t ∈ {a, a+ 1, . . .}.

(b) W (t) = 0 for some t.

(c) W (t) = 0 for all t.

Theorem 2.6. (The Fundamental Theorem)

If Pk(t) ̸= 0 for all t ≥ t0, then (2.7) has a fundamental set of solutions for t ≥ t0.

Proof. By Theorem 2.2, the problem

yi(t+ k) + P1(t) yi(t+ k − 1) + . . .+ Pk(t) yi(t) = 0,

yi(t0 + i− 1) = 1, yi(t0 + j) = 0, ∀ j ̸= i− 1, 1 ≤ i ≤ k,

has solutions y1, y2, . . . , yk. Let W (t) be their Casoratian, then

W (t0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(t0) y2(t0) . . . yk(t0)

y1(t0 + 1) y2(t0 + 1) . . . yk(t0 + 1)
... ... . . . ...

y1(t0 + k − 1) y2(t0 + k − 1) . . . yk(t0 + k − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

0 1 . . . 0
... ... . . . ...

0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1.

It follows that W (t0) = 1 ̸= 0.

This implies that the set {y1, y2, . . . , yk} is a fundamental set of solutions of equation (2.7).

Theorem 2.7. [56, Theorem 3.5, page 53] If y1, . . . , yk are independent solutions of the ho-

mogenous equation (2.7) then every solution y of equation (2.7) can be written in the form

y = c1y1 + . . .+ ckyk, for some constant c1, . . . , ck.
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Linear difference equations with constant coefficient

Consider the following linear difference equations with constant coefficient of kth order.

y(t+ k) + p1 y(t+ k − 1) + p2 y(t+ k − 2) + . . .+ pk y(t) = 0, (2.19)

where p1, . . . , pk are constants and pk ̸= 0. Our goal in this paragraphe is to find a fondamental

set of solutions and consequently the general solution of equation (2.19).

Definition 2.12. (a) The polynomial λk + p1λ
k−1 + . . . + pk is called the characteristic poly-

nomial of equation (2.19).

(b) The equation λk + p1λ
k−1 + . . . + pk = 0 is the characteristic equation for the equation

(2.19).

(c) The solutions λ1, . . . , λk of the characteristic equation are the characteristic roots.

Remark 2.13. 1. If we introduce the shift operator E into equation (2.19), it takes on the

form of its characteristic equation and has similar factors:

(Ek + pk−1E
k−1 + . . .+ pkE

0)y(t) = 0,

or

(E − λ1)m1 . . . (E − λr)mry(t) = 0,

where m1 +m2 + . . .+mr = k.

2. Since pk ̸= 0, none of the characteristic roots is equal to zero.

Proposition 2.9. Let λ be a real number different from zero, if y(t) = λt, ∀t ∈ R is a solution

to the equation (2.19), then λ is a solution to the equation

λk + p1λ
k−1 + . . .+ pk = 0. (2.20)

Theorem 2.8. [35, page 75] Let λi, i ∈ {1, . . . , k} distinct characteristic roots of the equation

(2.20). Then {λt1, . . . , λtk} is a fundamental set of solutions of the equation (2.19).
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Proof. To prove this theorem, it suffices to show that W (0) ̸= 0, where W (t) is the Casoratian

of the solutions. That is

W (0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

λ1 λ1 . . . λk

... ... . . . ...

λk−1
1 λk−1

2 . . . λk−1
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This determinant is called the Vandermonde determinant given by

W (0) =
∏

1≤i<j≤k
(λj − λi).

Since all the λi are distinct, then W (0) ̸= 0.

Corollary 2.4. The general solution of equation (2.19) is given by

y(t) =
k∑
i=1

Ciλ
t
i, Ci ∈ R.

Theorem 2.9. [56, Theorem 3.6, page 55]

Suppose that equation (2.19) has characteristic roots λ1, λ2, . . . , λr with multiplicities m1,m2, . . . ,mr,

respectively with r ≤ k and m1 +m2 + . . .+mr = k. Then

{λt1, tλt1, . . . , tm1−1λt1, λ
t
2, tλ

t
2, . . . , t

m2−1λt2, λ
t
r, tλ

t
r, . . . , t

mr−1λtr}

is a fundamental set of solutions of the equation (2.19).

Corollary 2.5. The general solution of equation (2.19) can be written in the form

y(t) =
r∑
i=1

mi−1∑
j=0

ci,jt
jλti, ci,j ∈ R.

Solving linear difference equations: Annihilator method

In this paragraphe we focus our attention on solving the kth order linear non-homogeneous

equation with constants coefficients

y(t+ k) + p1 y(t+ k − 1) + . . .+ pk y(t) = f(t), (2.21)

where p1, . . . , pk−1 are constants and pk ̸= 0.

The corresponding homogeneous equation is given by

y(t+ k) + p1 y(t+ k − 1) + . . .+ pk y(t) = 0, t ∈ R. (2.22)
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Theorem 2.10. [35, Theorem 2.30, page 84] Let {y1, y2, . . . , yk} be a fundamental set of solu-

tions of the homogeneous equation(2.22) and yp a particular solution of the non-homogeneous

equation (2.21). Then any solution y of (2.21) may be written as

y(t) = yp(t) +
k∑
i=1

ciyi(t), ci ∈ R.

Definition 2.13. A polynomial operator N(E), where E is the shift operator defined in Defi-

nition 2.2, is said to be an annihilator of f if

N(E) f(t) = 0, ∀t ∈ R. (2.23)

Let us now rewrite (2.21) using the shift operator E as

P (E) y(t) = f(t), (2.24)

where P (E) = E k + p1E
k−1 + . . .+ pkI.

Assume now that N(E) is an annihilator of f in (2.24). Applying N(E) on both sides of (2.24)

yields

N(E)P (E) y(t) = 0, ∀ t ∈ R. (2.25)

• Let λ1, λ2, . . . , λk be the characteristic roots of the homogeneous equation

P (E)y(t) = 0. (2.26)

• Let µ1, µ2, . . . , µk be the characteristic roots of the equation

N(E)y(t) = 0. (2.27)

We must consider two separate cases:

Case 1: λi ̸= µj, i, j ∈ {1, 2, . . . , k}. In this case, write the particular solution yp in the form

of the general solution of (2.27) with undetermined constants. Substituting back this

particular solution into (2.21), we find the values of the constants.

Case 2: ∃ i, j ∈ {1, 2, . . . , k} such that λi = µj. In this case, to determine a particular solution

yp, we first find the general solution of (2.25) and then drop all the terms that appear in

the general solution of the homogenous equation associeted to (2.21). Then proceed as

in case 1 to evaluate the constants.
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Solving linear difference equations: Variation of parameters method

Consider the following difference equation of second order

p0(t)y(t+ 2) + p1(t)y(t+ 1) + p2(t)y(t) = f(t), t ∈ R (2.28)

where p0(t), p1(t), p2(t) and f(t) are assumed to be known and p0(t) ̸= 0, p2(t) ̸= 0, for all t ∈ R.

The homogeneous equation corresponding to (2.28) is given by

p0(t)y(t+ 2) + p1(t)y(t+ 1) + p2(t)y(t) = 0. (2.29)

Let u1, u2 be two independent solutions of equation (2.29).

We seek a solution of equation (2.28) of the form y(t) = a1(t)u1(t) + a2(t)u2(t), where a1, a2

are to be determined. Then

y(t+ 1) = a1(t+ 1)u1(t+ 1) + a2(t+ 1)u2(t+ 1) (2.30)

= a1(t)u1(t+ 1) + a2(t)u2(t+ 1) + ∆a1(t)u1(t+ 1) + ∆a2(t)u2(t+ 1). (2.31)

In this method we choose a1, a2 so that

∆a1(t)u1(t+ 1) + ∆a2(t)u2(t+ 1) = 0. (2.32)

Next, from (2.30) and (2.32) we have

y(t+ 2) = a1(t+ 1)u1(t+ 2) + a2(t+ 1)u2(t+ 2) (2.33)

= a1(t)u1(t+ 2) + a2(t)u2(t+ 2) + ∆a1(t)u1(t+ 2) + ∆a2(t)u2(t+ 2). (2.34)

Now substitue the expressions (2.30), (2.32) and (2.33) into (2.28) to obtain

p0(t)y(t+ 2) + p1(t)y(t+ 1) + p2(t)y(t) = a1(t)[p0(t)u1(t+ 2) + p1(t)u1(t+ 1) + p2(t)u1(t)]

a(t)[p0(t)u2(t+ 2) + p1(t)u2(t+ 1) + p2(t)u2(t)]

+p0(t)[u1(t+ 2)∆a1(t) + u2(t+ 2)∆a2(t)]

Since u1 and u2 satisfy the equation (2.29) the first two bracketed expressions are zero. Then

y(t) satisfies equation (2.28) if

u1(t+ 2)∆a1(t) + u2(t+ 2)∆a2(t) = f(t)
p0(t)

· (2.35)
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Let W (t) be the Casoratien of solutions u1 and u2, then

W (t+ 1) =

∣∣∣∣∣∣∣∣
u1(t+ 1) u2(t+ 1)

u1(t+ 2) u2(t+ 2)

∣∣∣∣∣∣∣∣ = u1(t+ 1)u2(t+ 2) − u2(t+ 1)u1(t+ 2)

By multiplying (2.35) by u2(t+ 1) we obtain

u1(t+ 2)u2(t+ 1)∆a1(t) + u2(t+ 2)u2(t+ 1)∆a2(t) = f(t)
p0(t)

u2(t+ 1). (2.36)

Combining (2.32) with (2.36) we obtain

∆a1(t) [u1(t+ 2)u2(t+ 1) − u2(t+ 2)u1(t+ 1)] = f(t)
p0(t)

u2(t+ 1), (2.37)

which implies

∆a1(t) = − f(t)u2(t+ 1)
p0(t)W (t+ 1) , t ∈ N0.

Then using the Proposition 2.2

a1(t) =
t−1∑
i=0

− f(i)u2(i+ 1)
p0(i)W (i+ 1) , t ∈ N0.

In the same way we get

∆a2(t) = − f(t)u1(t+ 1)
p0(t)W (t+ 1) , t ∈ N0.

Then

a1(t) =
t−1∑
i=0

− f(i)u1(i+ 1)
p0(i)W (i+ 1) , t ∈ N0.

2.5 The self-adjoint second order linear equation

In this section we will introduce the second order self-adjoint difference equation and we

will show which second order linear difference equations can be put in the self-adjoint form.

The linear second order self-adjoint difference equation is defined to be

∆(p(t− 1)∆y(t− 1)) + q(t)y(t) = 0, t ∈ [a, b+ 1] = {a, a+ 1, . . . , b+ 1}, (2.38)

where p(t) > 0 is defined on the set of integers [a, b+1] and q(t) is defined on the set of integers

[a+ 1, b+ 1].



CHAPTER 2. GENERAL RESULTS FOR LINEAR DIFFERENCE EQUATIONS 50

Equation (2.38) may be written in the more familiar form

p(t)y(t+ 1) + c(t)y(t) + p(t− 1)y(t− 1) = 0, (2.39)

where

c(t) = q(t) − p(t) − p(t− 1) for t ∈ [a+ 1, b+ 1]. (2.40)

Remark 2.14. Any equation written in the form of equation (2.39), where p(t) > 0 on [a +

1, b+ 1], can be written in the self-adjoint form of equation (2.38) by taking

q(t) = c(t) + p(t) + p(t− 1). (2.41)

In fact, any equation of the form

α(t)y(t+ 1) + β(t)y(t) + γ(t)y(t− 1) = 0, (2.42)

where α(t) > 0 on [a, b+ 1], γ(t) > 0 on [a+ 1, b+ 1], can be written in the self-adjoint form of

the equation (2.38) or (2.39). To find p(t) and q(t) from α(t), β(t) and γ(t), we multiply both

sides of the equation (2.42) by a positive function h(t) to obtain

α(t)h(t)y(t+ 1) + β(t)h(t)y(t) + γ(t)h(t)y(t− 1) = 0. (2.43)

Comparing (2.43) with (2.39), we obtain

α(t)h(t) = p(t),

γ(t)h(t) = p(t− 1).

Thus

α(t)h(t) = γ(t+ 1)h(t+ 1),

or

h(t+ 1) = α(t)
γ(t+ 1)h(t), t ∈ [a, b]. (2.44)

Hence

h(t) = A
t−1∏
s=a

α(s)
γ(s+ 1) ,
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where A is any positive constant. This gives us

p(t) = Aα(t)
t−1∏
s=a

α(s)
γ(s+ 1) ·

Also, from (2.41) we obtain q(t) = β(t)h(t) + p(t) + p(t− 1), then we have that equation (2.42)

is equivalent to (2.38).

Example 2.8. Write the following equation in the self-adjoint form,

2ty(t+ 1) + (sin t− 3.2t−1)y(t) + 2t−1y(t− 1) = 0·

Here p(t) = 2t and c(t) = sin t− 3.2t−1. Hence,

q(t) = c(t) + p(t) + p(t− 1) = sin t− 3.2t−1 + 2t + 2t−1 = sin t.

Then the self-adjoint form of this equation is

∆(2t−1∆y(t− 1)) + sin ty(t) = 0.

In what follows, we define a linear operator L on the set {y : [a, b+ 2] → R} by:

Ly(t) = ∆(p(t− 1)∆y(t− 1)) + q(t)y(t), for t ∈ [a+ 1, b+ 1]. (2.45)

Definition 2.14. The Cauchy function z = z(t, s), defined for a ≤ t ≤ b+ 2 and a+ 1 ≤ s ≤

b + 1, is defined as the function that, for each fixed s in [a + 1, b + 1], is the solution of the

initial value problem

Lz(t, s) = 0,

z(s, s) = 0,

z(s+ 1, s) = 1
p(s) ·

Example 2.9. For s fixed in [a+ 1, b+ 1], find the Cauchy function for

∆(p(t− 1)∆y(t− 1)) = 0, t ≥ s.

Since for each fixed s the Cauchy function for this difference equation is a solution for

∆(p(t− 1)∆z(t− 1, s)) = 0, t ∈ [a+ 1, b+ 1].
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Therefore there is a constant α(s) such that

p(t− 1)∆z(t− 1, s) = α(s), t ∈ [a+ 1, b+ 2].

From the initial conditions, for t = s+ 1, we find that α(s) = 1.

So replacing t by t+ 1 yields

∆z(t, s) = 1
p(t) ·

Assuming that t ≥ s and summing from s to t− 1, we obtain

z(t, s) − z(s, s) =
t−1∑
τ=s

1
p(τ) ·

Then the Cauchy function is

z(t, s) =
t−1∑
τ=s

1
p(τ) , t ≥ s.

Example 2.10. The difference equation ∆2y(t− 1) = 0 has the Cauchy function

z(t, s) = t− s, t ≥ s.

Theorem 2.11. [56, Theorem 6.3, page 236] If u1, u2 are two linearly independent solutions

of equation (2.38), then the Cauchy function for (2.38) is given by:

z(t, s) =

∣∣∣∣∣∣∣∣
u1(s) u2(s)

u1(t) u2(t)

∣∣∣∣∣∣∣∣
p(s)

∣∣∣∣∣∣∣∣
u1(s) u2(s)

u1(s+ 1) u2(s+ 1)

∣∣∣∣∣∣∣∣
,

for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1.

Example 2.11. Find the Cauchy function of the following difference equation using Theorem

2.11.

∆(p(t− 1)∆y(t− 1)) = 0, t ≥ s.

We have u1(t) = 1 et u2(t) =
t−1∑
τ=a

1
p(τ) are two linearly independent solutions of the equation.
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Then, from Theorem 2.11, we have

z(t, s) =

∣∣∣∣∣∣∣∣∣
1

s−1∑
τ=a

1
p(τ)

1
t−1∑
τ=a

1
p(τ)

∣∣∣∣∣∣∣∣∣
p(s)

∣∣∣∣∣∣∣∣∣
1

s−1∑
τ=a

1
p(τ)

1
s∑

τ=a
1

p(τ)

∣∣∣∣∣∣∣∣∣

=
t−1∑
τ=s

1
p(τ) ·

Linear self-adjoint equations with initial conditions

The following two results show how the Cauchy function is used to solve an initial non-

homogeneous problem.

Theorem 2.12. The solution of the initial value problem

Ly(t) = h(t), t ∈ [a+ 1, b+ 1]

y(a) = 0,

y(a+ 1) = 0,

is given by

y(t) =
t∑

s=a+1
z(t, s)h(s), (2.46)

for t ∈ [a, b + 2], where z is the Cauchy function for Ly(t) = 0. (Here, if t = b + 2, then the

term z(b+ 2, b+ 2)h(b+ 2) is understood to be zero.)

Proof. Let the function y be given by (2.46). By convention y(a) = 0. Also,

y(a+ 1) = z(a+ 1, a+ 1)h(a+ 1) = 0,

y(a+ 2) = z(a+ 2, a+ 1)h(a+ 1) + z(a+ 2, a+ 2)h(a+ 2)

= h(a+1)
p(a+1) .

Then y satisfies Ly(t) = h(t) for t = a+ 1.

Assume that a+ 2 ≤ t ≤ b+ 1. Then

Ly(t) = p(t− 1)y(t− 1) + c(t)y(t) + p(t)y(t+ 1)

=
t−1∑

s=a+1
p(t− 1)z(t− 1, s)h(s) +

t∑
s=a+1

c(t)z(t, s)h(s) +
t+1∑

s=a+1
p(t)z(t+ 1, s)h(s)

=
t−1∑

s=a+1
Lz(t, s)h(s) + c(t)z(t, t)h(t) + p(t)z(t+ 1, t)h(t) + p(t)z(t+ 1, t+ 1)h(t+ 1)

= h(t).
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Remark 2.15. 1. The formula (2.46) is called variation of constants formula.

2. In the variation of constants formula, we only need to know the Cauchy function for t ≥ s.

Corollary 2.6. The solution of the non-homogenous initial value problem

Ly(t) = h(t), t ∈ [a+ 1, b+ 1]

y(a) = A,

y(a+ 1) = B,

is given by

y(t) = u(t) +
t∑

s=a+1
z(t, s)h(s), (2.47)

where z is the Cauchy function for Ly(t) = 0 and u is the solution of the initial value problem

Lu(t) = 0, u(a) = A, u(a+ 1) = B.

Proof. Since u is the solution of Lu(t) = 0 and
t∑

s=a+1
z(t, s)h(s) is a solution of Ly(t) = h(t),

then

y(t) = u(t) +
t∑

s=a+1
z(t, s)h(s)

is a solution of Ly(t) = h(t). Also, y(a) = u(a) = A and y(a+ 1) = u(a+ 1) = B.

Linear self-adjoint equations with boundary conditions

In [50], Hartman introduced the notion of generalized zeros in order to obtain a discrete

analogue of Sturm’s separation theorem in differential equations. This concept provides a

mechanism for obtaining fundamental results about second order self-adjoint equations and

also represents the best approach for extending these results to higher order equations. The

concept of disconjugacy of difference equation will be introduced in this section, and we will

see its importance in obtaining an existence and uniqueness result for solutions of boundary

value problems and the existence and uniqueness of the Green’s functions.
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The following lemma shows that there is no nontrivial solution of equation (2.38) with

y(t0) = 0 and y(t0 − 1)y(t0 + 1) ≥ 0, t0 > a. In some sense this lemma says that nontrivial

solutions of equation (2.38) can have only simple zeros.

Lemma 2.4. If y is a nontrivial solution of equation (2.38) such that y(t0) = 0, a < t0 < b+ 2,

then y(t0 − 1)y(t0 + 1) < 0.

Proof. Since y(t) is a nontrivial solution of equation (2.38) with y(t0) = 0, a < t0 < b + 2, we

obtain from equation (2.39)

p(t0)y(t0 + 1) = −p(t0 − 1)y(t0 − 1),

y(t0 + 1)
y(t0 − 1) = −p(t0 − 1)

p(t0)
< 0.

Since p(t) > 0, then y(t0 + 1), y(t0 − 1) ̸= 0, it follows that

y(t0 − 1)y(t0 + 1) < 0.

Definition 2.15. A solution y of the equation (2.38) has a generalized zero at t0 provided that

y(t0) = 0 if t0 = a and if t0 > a either y(t0) = 0 or y(t0 − 1)y(t0) < 0.

In other words, a generalized zero of a solution is either an actual zero or where the solution

changes its sign.

Theorem 2.13. (Sturm separation theorem)[35, Theorem 7.9, page 321]

Let y1 and y2 be two linearly independent solutions of (2.38). Then the following statements

hold:

(i) y1 and y2 cannot have a common zero, that is, if y1(t0) = 0, then y2(t0) ̸= 0.

(ii) If y1 has a zero at t1 and a generalized zero at t2 > t1, then y2 must have a generalized

zero in (t1, t2].

(iii) If y1 has a generalized zero at t1 and t2 > t1, then y2 must have a generalized zero in

[t1, t2].
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Definition 2.16. We say that the difference equation (2.38) is "disconjugate" on [a, b + 2]

provided that no nontrivial solution of (2.38) has two or more generalized zeros on [a, b+ 2].

Of course, in any interval [a, b + 2] there is a nontrivial solution with at least one generalized

zero.

Example 2.12. The difference equation

y(t+ 1) −
√

3y(t) + y(t− 1) = 0,

is disconjugate on any interval of length less than 6. This follows from the fact that any solution

of this equation is of the form: y(t) = c1 sin(πt6 + c2), c1, c2 ∈ R.

However, if we consider the difference equation

y(t+ 2) − 7y(t+ 1) + 12y(t) = 0,

we find that it is disconjugate on any interval because its solution is given by: y(t) = c14t+c23t,

with c1, c2 ∈ R.

Theorem 2.14. The difference equation Ly(t) = 0 is disconjugate on [a, b + 2] if and only if

there is a positive solution of Ly(t) = 0 on [a, b+ 2].

Proof. Assume that Ly(t) = 0 is disconjugate on [a, b + 2]. Let u(t), v(t) be solutions of

Ly(t) = 0, satisfying

u(a) = 0, u(a+ 1) = 1,

v(b+ 1) = 1, v(b+ 2) = 0.

By the disconjugacy, u(t) > 0 on [a + 1, b + 2] and v(t) > 0 on [a, b + 1]. It follows that

y(t) = u(t) + v(t) is a positive solution of Ly(t) = 0.

Conversely assume that Ly(t) = 0 has a positive solution on [a, b+2]. It follows from the Sturm

separation theorem that no nontrivial solution has two generalized zeros in [a, b+ 2].

Consider the boundary value problem :

∆2y(t− 1) + 2y(t) = 0,

y(0) = A, y(2) = B.
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• If A = B = 0, this boundary value problem has infinitely many solutions.

• If A = 0, B ̸= 0, it has no solutions.

In the following theorem we show that with the assumption of disconjugacy this type of bound-

ary value problem has a unique solution.

Theorem 2.15. [56, Theorem 6.7, page 243] If the equation Ly(t) = 0 is disconjugate on

[a, b+ 2], then the boundary value problem

Ly(t) = h(t),

y(t1) = A,

y(t2) = B,

where a ≤ t1 < t2 ≤ b+ 2, A,B ∈ R, has a unique solution.

Proof. Let y1, y2 be two linearly independent solutions of Ly(t) = 0 and let yp be a particular

solution of Ly(t) = h(t), then a general solution of Ly(t) = h(t) is

y(t) = C1y1(t) + C2y2(t) + yp(t), C1, C2 ∈ R·

The boundary conditions lead to the system of equations

C1y1(t1) + C2y2(t1) = A− yp(t1),

C1y1(t2) + C2y2(t2) = B − yp(t2).

This system has a unique solution if and only if∣∣∣∣∣∣∣∣
y1(t1) y2(t1)

y1(t2) y2(t2)

∣∣∣∣∣∣∣∣ ̸= 0.

Assume that ∣∣∣∣∣∣∣∣
y1(t1) y2(t1)

y1(t2) y2(t2)

∣∣∣∣∣∣∣∣ = 0,

Then there are constants d1, d2 (d1 = y2(t2) or d1 = −y2(t1) and d2 = −y1(t2) or d2 = y1(t1) ),

not both zero, such that the nontrivial solution

y(t) = d1y1(t) + d2y2(t)
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satisfies

y(t1) = y(t2) = 0.

This contradicts the disconjugacy of Ly(t) = 0 on [a, b+ 2].

2.6 Green’s functions

2.6.1 Green’s function for conjugate boundary value problems

In this section we introduce the Green’s function for a two point conjugate boundary value

problem. It will follow that under certain conditions the solution of a non-homogeneous BVP

can be expressed in terms of Green’s functions. By Theorem 2.15, If Ly(t) = 0 is disconjugate

on [a, b+ 2], then the BVP

Ly(t) = h(t), t ∈ [a+ 1, b+ 1] (2.48)

y(a) = 0, (2.49)

y(b+ 2) = 0, (2.50)

has a unique solution y. We would like to have a formula like the variation of constants formula

for this solution. First, assume that there is a function G = G(t, s) that satisfies the following:

(a) G(t, s) is defined for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1.

(b) LG(t, s) = δts for a + 1 ≤ t ≤ b + 1, a + 1 ≤ s ≤ b + 1, where δts is the Kronecker delta

(δts = 0 if t ̸= s, δts = 1 if t = s).

(c) G(a, s) = G(b+ 2, s) = 0, a+ 1 ≤ s ≤ b+ 1.

We set

y(t) =
b+1∑

s=a+1
G(t, s)h(s), t ∈ [a, b+ 2].

We claim that y satisfies (2.48)-(2.50). First by (c), we have

y(a) =
b+1∑

s=a+1
G(a, s)h(s) = 0
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and

y(b+ 2) =
b+1∑

s=a+1
G(b+ 2, s)h(s) = 0,

then (2.49) and (2.50) hold. Next, for a+ 1 ≤ t ≤ b+ 1, we have

Ly(t) =
b+1∑

s=a+1
LG(t, s)h(s)

=
b+1∑

s=a+1
δtsh(s)

= h(t).

Thus we have shown that if there is a function G = G(t, s) satisfying (a)−(c), then the function

y defined by y(t) =
b+1∑

s=a+1
G(t, s)h(s) satisfies the BVP (2.48)-(2.50).

We show that if Ly(t) = 0 is disconjugate on [a, b+ 2], then there is a function G satisfying

(a) − (c), where the operator L is given by (2.45).

Let y1 be the solution to the initial value problem Ly(t) = 0, t ∈ [a, b+2], y1(a) = 0, y1(a+1) =

1, and let z = z(t, s) be the Cauchy function for Ly(t) = 0.

For a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1 define G(t, s) by:

G(t, s) =


− z(b+2,s)

y1(b+2) y1(t), t ≤ s

z(t, s) − z(b+2,s)
y1(b+2) y1(t), s ≤ t.

(2.51)

Note that

• Since Ly(t) = 0 is disconjugate on [a, b+ 2], so y1(b+ 2) > 0, we are not dividing by zero

in the definition of G(t, s).

• Since z(s, s) = 0, we may write t ≤ s and s ≤ t in the definition of G(t, s).

We have

G(a, s) = −z(b+ 2, s)
y1(b+ 2) y1(a) = 0

and

G(b+ 2, s) = z(b+ 2, s) − z(b+ 2, s)
y1(b+ 2) y1(b+ 2) = 0,

then G(t, s) satisfies (c).

Next we show that G satisfies (b). We distinguish three cases:
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• If t ≥ s+ 1, then

LG(t, s) = Lz(t, s) − z(b+ 2, s)
y1(b+ 2) Ly1(t) = 0.

• If t ≤ s− 1, then

LG(t, s) = −z(b+ 2, s)
y1(b+ 2) Ly1(t) = 0.

• If t = s,

LG(s, s) = p(s)G(s+ 1, s) + c(s)G(s, s) + p(s− 1)G(s− 1, s)

= p(s)z(s+ 1, s) − z(b+ 2, s)
y1(b+ 2) Ly1(s)

= 1.

Hence G satisfies (a) − (c).

Next, we show that if Ly(t) = 0 is disconjugate on [a, b+2], there is a unique function satisfying

(a) − (c).

We know that G defined by equation (2.51) satisfies (a)−(c). Assume that H = H(t, s) satisfies

(a) − (c). Fix s ∈ [a+ 1, b+ 1] and set

z(t) = G(t, s) −H(t, s).

It follows from (b) that z is a solution of Ly(t) = 0, t ∈ [a, b+ 2].

By (c), we obtain z(a) = 0, z(b+ 2) = 0. Since Ly(t) = 0 is disconjugate on [a, b+ 2], we must

have z ≡ 0 on [a, b+ 2]. Since s ∈ [a+ 1, b+ 1] is arbitrary, it follows that

G(t, s) = H(t, s), for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1.

Definition 2.17. If Ly(t) = 0 is disconjugate on [a, b+ 2], we define the Green’s function for

the boundary value problem Ly(t) = 0, y(a) = 0, y(b+ 2) = 0 to be the unique function G(t, s)

satisfying (a) − (c).

Theorem 2.16. [56, Theorem 6.8, page 246] If the equation Ly(t) = 0 is disconjugate on

[a, b+ 2], then the boundary value problem

Ly(t) = h(t), t ∈ [a+ 1, b+ 1]
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y(a) = 0 = y(b+ 2),

has a unique solution given by

y(t) =
b+1∑

s=a+1
G(t, s)h(s), t ∈ [a, b+ 2],

where G is the Green’s function defined by:

G(, s) =


− z(b+2,s)

y1(b+2) y1(t), t ≤ s

z(t, s) − z(b+2,s)
y1(b+2) y1(t), t ≥ s.

Moreover, G verify G(t, s) < 0 on the square a+ 1 ≤ t, s ≤ b+ 1.

Proof. It remains to show that G(t, s) < 0 on the square a+ 1 ≤ t, s ≤ b+ 1.

To see this, fix s ∈ [a+ 1, b+ 1]. Since Ly(t) = 0 is disconjugate on [a, b+ 2], then y1(t) > 0 for

a < t ≤ b+ 2 and z(t, s) > 0 for s < t ≤ b+ 2. Hence

G(t, s) = −z(b+ 2, s)
y1(b+ 2) y1(t) < 0, a+ 1 ≤ t ≤ s,

and

G(t, s) = z(t, s) − z(b+ 2, s)
y1(b+ 2) y1(t), s ≤ t ≤ b+ 2,

which as a function of t is a solution of Ly(t) = 0 on [a, b + 2]. Since G(b + 2, s) = 0 and

G(s, s) < 0, we have that

G(t, s) < 0, s ≤ t ≤ b+ 1.

Since s ∈ [a+ 1, b+ 1] is arbitrary, we get the desired result.

Example 2.13. Consider the boundary value problem

∆(p(t− 1)∆y(t− 1)) = 0,

y(a) = y(b+ 2) = 0·

From example 2.9 the Cauchy function is given by

z(t, s) =
t−1∑
τ=s

1
p(τ) , t ≥ s.
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The solution that satisfies the initial conditions y(a) = 0, y(a+ 1) = 1, is

y1(t) = z(t, a) =
t−1∑
τ=a

1
p(τ)

Then,

For t ≤ s

G(t, s) = −z(b+ 2, s)
y1(b+ 2) y1(t)

= −

b+1∑
τ=s

1
p(τ)

b+1∑
τ=a

1
p(τ)

t−1∑
τ=a

1
p(τ) ·

For t ≥ s

G(t, s) = z(t, s) − z(b+ 2, s)
y1(b+ 2) y1(t)

=
t−1∑
τ=s

1
p(τ) −

b+1∑
τ=s

1
p(τ)

b+1∑
τ=a

1
p(τ)

t−1∑
τ=a

1
p(τ)

= −

s−1∑
τ=a

1
p(τ)

b+1∑
τ=a

1
p(τ)

b+1∑
τ=t

1
p(τ) .

Then the Green function is given by

G(t, s) =



−

b+1∑
τ=s

1
p(τ)

b+1∑
τ=a

1
p(τ)

t−1∑
τ=a

1
p(τ) , if t ≤ s

−

s−1∑
τ=a

1
p(τ)

b+1∑
τ=a

1
p(τ)

b+1∑
τ=t

1
p(τ) , if s ≤ t.

In particular, the Green function to the problem

∆2y(t− 1) = 0,

y(a) = y(b+ 2) = 0

is defined by:

G(t, s) =


− (t−a)(b+2−s)

b+2−a , si t ≤ s

− (s−a)(b+2−t)
b+2−a , si s ≤ t.

(2.52)
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Corollary 2.7. [56, Corollary 6.4, page 249] If Ly(t) = 0 is disconjugate on [a, b + 2], the

unique solution of the boundary value problem

Ly(t) = h(t),

y(a) = A, y(b+ 2) = B,

is given by:

y(t) = u(t) +
b+1∑

s=a+1
G(t, s)h(s),

where G is the Green’s function for the BVP Ly(t) = 0, y(a) = 0 = y(b + 2) and u is the

solution of the BVP Lu(t) = 0, u(a) = A, u(b+ 2) = B.

Example 2.14. Consider the following boundary value problem:

∆2y(t− 1) = 12, t ∈ [1, 5]

y(0) = 1, y(6) = 7.

By Theorem 2.16 , the solution to the associated homogenous problem is given by:

y(t) =
s=5∑
s=1

12G(t, s),

where, from Example 2.13,

G(t, s) =


− (6−s)t

6 , t ≤ s

− (6−t)s
6 , s ≤ t.

Hence the solution to the homogenous problem is

y(t) = 6t2 − 36t, t ∈ [0, 6].

From Corollary 2.7, the general solution is given by

y(t) = u(t) + 6t2 − 36t, t ∈ [0, 6],

where u is a solution to the problem :

∆2u(t− 1) = 0,

u(0) = 1, u(6) = 7.

We find that u(t) = 1 + t. Then, y(t) = 6t2 − 35t+ 1, t ∈ [0, 6].
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Definition 2.18. We say that the difference equation Ly(t) = 0 is "disfocal" on [a, b+2] if there

is no nontrivial solution y such that y has a generalized zero at t1 and ∆y has a generalized

zero at t2, where a ≤ t1 ≤ t2 ≤ b+ 1.

Theorem 2.17. [56] If Ly(t) = 0 is disfocal on [a, b+ 2], then the BVP

Ly(t) = h(t),

y(t1) = A,

∆y(t2) = B,

where a ≤ t1 < t2 ≤ b+ 1, A,B constants, has a unique solution.

Proof. Let y1, y2 be two linearly independent solutions of Ly(t) = 0 and let yp be a particular

solution of Ly(t) = h(t), then a general solution of Ly(t) = h(t) is

y(t) = C1y1(t) + C2y2(t) + yp(t), C1, C2 ∈ R·

The boundary conditions lead to the system of equations

C1y1(t1) + C2y2(t1) = A− yp(t1),

C1∆y1(t2) + C2∆y2(t2) = B − ∆yp(t2).

This system has a unique solution if and only if∣∣∣∣∣∣∣∣
y1(t1) y2(t1)

∆y1(t2) ∆y2(t2)

∣∣∣∣∣∣∣∣ ̸= 0.

Assume that ∣∣∣∣∣∣∣∣
y1(t1) y2(t1)

∆y1(t2) ∆y2(t2)

∣∣∣∣∣∣∣∣ = 0,

Then there are constants d1, d2 (d1 = ∆y2(t2) or d1 = −y2(t1) and d2 = −∆y1(t2) or d2 = y1(t1))

not both zero, such that the nontrivial solution

y(t) = d1y1(t) + d2y2(t),

with

∆y(t) = d1∆y1(t) + d2∆y2(t)
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satisfies

y(t1) = ∆y(t2) = 0.

This contradicts the disfocality of Ly(t) = 0 on [a, b+ 2].

2.6.2 Green’s function for focal boundary value problems

In this section we introduce the Green’s function for a focal boundary value problem. It will

follow that under certain conditions the solution of a non-homogeneous BVP can be expressed

in terms of Green’s functions. By Theorem 2.17, If Ly(t) = 0 is disfocal on [a, b+ 2], then the

BVP

Ly(t) = h(t), t ∈ [a+ 1, b+ 1] (2.53)

y(a) = 0, (2.54)

∆y(b+ 1) = 0, (2.55)

has a unique solution y.

First, assume that there is a function G = G(t, s) that satisfies these properties:

(a) G(t, s) is defined for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1.

(b) LG(t, s) = δts for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1.

(c) G(a, s) = ∆G(b+ 1, s) = 0, a+ 1 ≤ s ≤ b+ 1.

We set

y(t) =
b+1∑

s=a+1
G(t, s)h(s), t ∈ [a, b+ 2].

We claim that y satisfies (2.53)-(2.55). First by (c), we have

y(a) =
b+1∑

s=a+1
G(a, s)h(s) = 0

and

∆y(b+ 1) =
b+1∑

s=a+1
∆G(b+ 1, s)h(s) = 0.
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Then the boundary conditions (2.54) and (2.55) hold.

Next, for a+ 1 ≤ t ≤ b+ 1 we obtain

Ly(t) =
b+1∑

s=a+1
LG(t, s)h(s)

=
b+1∑

s=a+1
δtsh(s)

= h(t).

Thus we have shown that if there is a function G = G(t, s) satisfying (a) − (c), then y(t) =
b+1∑

s=a+1
G(t, s)h(s) is a solution to the problem (2.53)- (2.55).

Know, we show that if Ly(t) = 0 is disfocal on [a, b + 2], then there is a function G

satisfying the conditions (a) − (c). Let y1(t) be the solution to the initial value problem (2.38),

y1(a) = 0, y1(a+ 1) = 1, and let z(t, s) be the Cauchy function for Ly(t) = 0.

Since Ly(t) = 0 is disfocal on [a, b+2], then y1 satisfies ∆y1(t) ̸= 0 for a+1 ≤ t ≤ b+1. Define

G(t, s) for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1 by:

G(t, s) =


−∆y(b+1,s)

∆y1(b+1) y1(t), t ≤ s

y(t, s) − ∆y(b+1,s)
∆y1(b+1) y1(t), s ≤ t.

(2.56)

We have

G(a, s) = −∆y(b+ 1, s)
∆y1(b+ 1) y1(a) = 0

and

∆G(b+ 1, s) = ∆y(b+ 1, s) − ∆y(b+ 1, s)
∆y1(b+ 1) y1(b+ 1) = 0,

then G(t, s) satisfies (c).

Next we show that G satisfies (b). We distinguish three cases:

• If t ≥ s+ 1, then

LG(t, s) = Ly(t, s) − ∆y(b+ 1, s)
∆y1(b+ 1) Ly1(t) = 0.

• If t ≤ s− 1, then

LG(t, s) = −∆y(b+ 1, s)
∆y1(b+ 1) Ly1(t) = 0.



CHAPTER 2. GENERAL RESULTS FOR LINEAR DIFFERENCE EQUATIONS 67

• If t = s, then

LG(s, s) = p(s)G(s+ 1, s) + c(s)G(s, s) + p(s− 1)G(s− 1, s)

= p(s)y(s+ 1, s) − ∆y(b+ 1, s)
∆y1(b+ 1) Ly1(s)

= 1.

Hence G(t, s) satisfies (a) − (c).

Next, we show that if Ly(t) = 0 is disfocal on [a, b + 2], there is a unique function G

satisfying (a) − (c). We know that G(t, s) defined by equation (2.56) satisfies (a) − (c). Assume

that H(t, s) satisfies (a) − (c). Fix s ∈ [a+ 1, b+ 1] and set

z(t) = G(t, s) −H(t, s).

It follows from (b) that z is a solution of Ly(t) = 0 on [a, b+ 2].

By (c), z(a) = 0, ∆z(b+ 2) = 0. Since Ly(t) = 0 is disfocal on [a, b+ 2], we must have z(t) = 0

on [a, b+ 2]. Since s ∈ [a+ 1, b+ 1] is arbitrary, it follows that

G(t, s) = H(t, s), for a ≤ t ≤ b+ 2, a+ 1 ≤ s ≤ b+ 1.

Definition 2.19. If Ly(t) = 0 is disfocal on [a, b + 2], then there is a unique function G(t, s)

satisfying properties (a) − (c). This function G(t, s) is called the Green’s function for the

boundary value problem Ly(t) = 0, t ∈ [a+ 1, b+ 1], y(a) = ∆y(b+ 1) = 0.

Theorem 2.18. [56] If Ly(t) = 0 is disfocal on [a, b+ 2], then the unique solution of

Ly(t) = h(t),

y(a) = ∆y(b+ 1) = 0,

is given by

y(t) =
b+1∑

s=a+1
G(t, s)h(s),

where,

G(t, s) =


−∆y(b+1,s)

∆y1(b+1) y1(t), t ≤ s

y(t, s) − ∆y(b+1,s)
∆y1(b+1) y1(t), t ≥ s.

Furthermore, G(t, s) ≤ 0 on a ≤ t ≤ b+ 1, a+ 1 ≤ s ≤ b+ 1.



3 Nonlinear first order impulsive difference
equations

The results of this chapter are obtained by Bouchal, Mebarki and Georgiev in [24].

3.1 Introduction

This chapter is devoted to investigate the following boundary value problem for impulsive

difference equations with nonlinear two point functional boundary conditions:

∆x(n) = f(n, x(n)), n ̸= nk, n ∈ J,

∆x(nk) = Ik(x(nk)), n = nk,

Mx(0) −Nx(T ) = g(x(0), x(T )),

(3.1)

where ∆ is the forward difference operator, i.e., ∆x(n) = x(n + 1) − x(n), J = [0, T ] ∩ N,

T ∈ N, N is the set of natural numbers, M,N > 0, f ∈ C(J × R), g ∈ C(R × R), Ik ∈ C(R),

k ∈ {1, . . . , p}, {nk}pk=1 are fixed impulsive points such that

0 < n1 < n2 < . . . < np < T, p ∈ N.

Differential equations and difference equations serve as descriptions for many real world

phenomena that are explored in applied sciences. However, many of them, including models

for neural networks, populations dynamics, optimal control, control theory, economics, indus-

trial robotics, and medicines, etc, experience abrupt changes in their states whose duration is

negligible in comparison with the duration of the process, often these short term disruptions

are represented in the form of impulses treated mathematically by an impulsive equations. For

68
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further information on impulsive equations, we refer the reader to the books [62, 1].

There are three components that compose an impulsive difference equation:

• a difference equation, which describes the state of the system between impulses.

• an impulse equation, which models an impulsive jump defined by a jump function at the

instant an impulse occurs.

• a jump criterion, which defines a set of jump events in which the impulse equation appears.

3.2 Historical notes and motivations

In order to represent the development of a real process with a short-term perturbation,

it is sometimes convenient to treat these perturbations as "instantaneous" which is described

mathematically by impulsive equations. Such problems attracted the attention of physicists,

because they was aware that the modelisation of many applied problems arising in several

sciences and engineering fields are pointless without the dependence with impulses states, and

these equations gave the possibility to adequately describe a variety of nonlinear phenomena.

In 1960, Mil’man and Myshkis introduced the work on impulsive ordinary differential equations

in their paper entitled "On the stability of motion in the presence of impulses" [69], where they

gave some general concepts about the systems with impulses and they obtained the first result

on stability of solutions of such systems.

In the literature, there exist a great number of works devoted to the study of first order

impulsive differential equations with different types of boundary conditions such as: periodic

[52, 51, 37, 83], anti-periodic [32, 66, 38], multi-point, nonlinear, nonlocal and integral boundary

conditions [28, 92, 8] and references therein. In comparison to their discrete analogues, there

are fewer works devoted to the study of first order discrete impulsive equations. The well-known

methods used to deal with first order impulsive difference equations are the method of upper

and lower solutions, the monotone iterative technique and fixed point theory. In the following,

we summarize some works:
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When the function g in the BVP (3.1) is a constant, criteria on the existence of minimal and

maximal solutions to this problem are obtained in [85] by using a comparison theorem and the

method of upper and lower solutions coupled with the monotone iterative technique. Note that,

the principle idea of this method is that by making use of the upper and lower solution as an

initial iteration one can construct monotone sequences from the corresponding linear equation,

and then these sequences converge monotonically to the maximal and minimal solution of the

nonlinear equation.

In 2018, Tian et al. [82] investigated periodic boundary value problems for first order impul-

sive difference equations with time delay, by utilizing the combination of these two methods

where an existence theorem of extremal solutions is obtained. The authors in [55, 84] analyzed

by using the same approach the existence of solutions for a first order functional difference

equations without impulse effects with nonlinear functional boundary conditions of the form

g(x(0), x(T )) = 0 and g(x(0), x) = 0, respectively with g ∈ C(R × R,R). Wang and Tian

in [86, 87] studied the existence of solutions for difference equations involving causal opera-

tors without impulses with nonlinear boundary conditions to the two following boundary value

problems:

∆x(n) = (Qx)(n), n ∈ [0, T − 1] = {0, 1, . . . , T − 1},

g(x(0);x(T )) = 0,
(3.2)

with ∆x(n) = x(n + 1) − x(n), g ∈ C(R × R,R), E0 = C([0, T − 1],R) and Q ∈ C(E0, E0) is a

causal operator.

∆x(n− 1) = (Qx)(n), n ∈ [1, T ] = {1, 1, . . . , T},

g(x(0);Nx(T )) = 0,
(3.3)

with ∆x(n − 1) = x(n) − x(n − 1), g ∈ C(R × R,R), E1 = C([1, T ],R) and Q ∈ C(E1, E1) is a

causal operator.

In 2006, the authors in [64] obtained the existence of positive solutions for a class of first

order impulsive difference equations with periodic boundary value conditions using fixed point
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theorems of Krasnosel’skii and Leggett Williams, for this problem

−∆x(n) + p(n)x(n) = f(n, x(n)), n ∈ [0, T − 1], n ̸= nk,

∆x(nk) = bk x(nk), n = nk,

x(0) = x(T ),

(3.4)

where {p(n)}T−1
n=0 , bk are real number sequences and nk ∈ [0, T − 1] ∩ N are fixed points such

that 0 = n0 < n1 < . . . < nk < nk+1 = T − 1·

3.3 Auxiliary results

Approach used

In this section, we propose a new approach that ensure the existence of at least one positive

solution to the BVP (3.1). The nonlinear terms in the equation and in the boundary conditions

as well as the jump function satisfy a general polynomial growth conditions. Our existence

result is based on a recent fixed point index theory developed by Mebarki et al. in [34, 43] for

the sum of two operators on cones of a Banach space. Precisely, our method involves the fixed

point index for the sum of two operators T + F on cones of a Banach space, where I − T is

Lipschitz invertible and F is a k-set contraction.

Assumptions

We suppose that

(H1) The functions f , g, Ik, k ∈ {1, . . . , p}, satisfy

0 ≤ f(n, x(n)) ≤ a1(n) + a2(n)|x(n)|p1 ,

0 ≤ g(x(0), x(T )) ≤ b1 + b2|x(0)|p2 + b3|x(T )|p3 ,

0 ≤ Ik(x(nk)) ≤ a3(nk) + a4(nk)|x(nk)|p4 , k ∈ {1, . . . , p},

where a1, a2, a3, a4 ∈ C(J,R) are positive functions, b1, b2, b3, p1, p2, p3, p4 are nonnegative

constants, and

0 ≤ a1(n), a2(n), a3(n), a4(n), b1, b2, b3 ≤ D, n ∈ J,



CHAPTER 3. NONLINEAR FIRST ORDER IMPULSIVE DIFFERENCE EQUATIONS 72

for some positive constant D.

(H2) The constants c ∈ (0, 1), B > 0, D > 0, M > 0, N > 0, T ∈ N, pj ≥ 0, j ∈ {1, . . . , 4},

satisfy

M −N(1 − c)T > 0

and

B1 = D (1 +Bp2 +Bp3)
M −N(1 − c)T

+2T M +N

M −N(1 − c)T (D(1 +Bp1 +Bp4) + cB)

< B.

Sum formulation

Lemma 3.1. Suppose that (H1) holds. Let x ∈ C(J,R) satisfies the equation

x(n) = g(x(0), x(T ))(1 − c)n
M −N(1 − c)T +

T−1∑
j=0,j ̸=nk

G(n, j) (f(j, x(j)) + cx(j))

+
∑

0<nk≤T−1
G(n, nk) (cx(nk) + Ik(x(nk))) , n ∈ J.

Then it satisfies the BVP (3.1).

where 0 < c < 1 and

G(n, j) = 1
M −N(1 − c)T


M (1−c)n

(1−c)j+1 , 0 ≤ j ≤ n− 1,

N (1−c)T +n

(1−c)j+1 , n ≤ j ≤ T − 1.

Proof. We have

x(n) = g(x(0), x(T ))(1 − c)n
M −N(1 − c)T + M(1 − c)n

M −N(1 − c)T
∑

0≤j≤n−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ N(1 − c)T+n

M −N(1 − c)T
∑

n≤j≤T−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ M

M −N(1 − c)T
∑

0<nk≤n−1

(1 − c)n
(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

+ N

M −N(1 − c)T
∑

n≤nk≤T−1

(1 − c)T+n

(1 − c)nk+1 (cx(nk) + Ik(x(nk))) , n ∈ J.
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Hence, for n ̸= nk, k ∈ {1, . . . , p}, we have

x(n+ 1) = g(x(0), x(T ))(1 − c)n+1

M −N(1 − c)T

+ M(1 − c)n+1

M −N(1 − c)T
∑

0≤j≤n,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ N(1 − c)T+n+1

M −N(1 − c)T
∑

n+1≤j≤T−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ M

M −N(1 − c)T
∑

0<nk≤n

(1 − c)n+1

(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

+ N

M −N(1 − c)T
∑

n+1≤nk≤T−1

(1 − c)T+n+1

(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

= g(x(0), x(T ))(1 − c)n+1

M −N(1 − c)T + M

M −N(1 − c)T (f(n, x(n)) + cx(n))

+ M(1 − c)n+1

M −N(1 − c)T
∑

0≤j≤n−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

− N(1 − c)T
M −N(1 − c)T (f(n, x(n)) + cx(n))

+ N(1 − c)T+n+1

M −N(1 − c)T
∑

n≤j≤T−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ M(1 − c)n+1

M −N(1 − c)T
∑

0<nk≤n−1

1
(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

+ N(1 − c)T+n+1

M −N(1 − c)T
∑

n≤nk≤T−1

1
(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

= (1 − c)
(
g(x(0), x(T ))(1 − c)n
M −N(1 − c)T

+ M(1 − c)n
M −N(1 − c)T

∑
0≤j≤n−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))
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+ N(1 − c)T+n

M −N(1 − c)T
∑

n≤j≤T−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ M(1 − c)n
M −N(1 − c)T

∑
0<nk≤n−1

1
(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

+ N(1 − c)T+n

M −N(1 − c)T
∑

n≤nk≤T−1

1
(1 − c)nk+1 (cx(nk) + Ik(x(nk)))

)

+f(n, x(n)) + cx(n)

= (1 − c)x(n) + f(n, x(n)) + cx(n)

= f(n, x(n)) + x(n).

So,

∆x(n) = f(n, x(n)), n ̸= nk.

Next, for n = nk, k ∈ {1, . . . , p}, we have

∆x(nk) = x(nk + 1) − x(nk)

= g(x(0), x(T ))(1 − c)nk+1

M −N(1 − c)T

+ M(1 − c)nk+1

M −N(1 − c)T
∑

0≤j≤nk,j ̸=nl

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+N(1 − c)T+nk+1

M −N(1 − c)T
∑

nk+1≤j≤T−1,j ̸=nl

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ M(1 − c)nk+1

M −N(1 − c)T
∑

0<nl≤nk

1
(1 − c)nl+1 (cx(nl) + Ik(x(nl)))

+N(1 − c)T+nk+1

M −N(1 − c)T
∑

nk+1≤nl≤T−1

1
(1 − c)nl+1 (cx(nl) + Ik(x(nl)))

−x(nk)



CHAPTER 3. NONLINEAR FIRST ORDER IMPULSIVE DIFFERENCE EQUATIONS 75

= (1 − c)
(
g(x(0), x(T ))(1 − c)nk

M −N(1 − c)T

+ M(1 − c)nk

M −N(1 − c)T
∑

0≤j≤nk−1,j ̸=nl

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ N(1 − c)T+nk

M −N(1 − c)T
∑

nk≤j≤T−1,j ̸=nl

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ M(1 − c)nk

M −N(1 − c)T
∑

0<nl≤nk−1

1
(1 − c)nl+1 (cx(nl) + Ik(x(nl)))

+ N(1 − c)T+nk

M −N(1 − c)T
∑

nk≤nl≤T−1

1
(1 − c)nl+1 (cx(nl) + Ik(x(nl)))

)

+ M

M −N(1 − c)T (cx(nk) + Ik(x(nk)))

− N(1 − c)T
M −N(1 − c)T (cx(nk) + Ik(x(nk))) − x(nk)

= (1 − c)x(nk) + cx(nk) + Ik(x(nk)) − x(nk)

= Ik(x(nk)).

Moreover,

Mx(0) = g(x(0), x(T ))M
M −N(1 − c)T

+ MN(1 − c)T
M −N(1 − c)T

∑
0≤j≤T−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ MN(1 − c)T
M −N(1 − c)T

∑
0≤nk≤T−1

1
(1 − c)nk+1 (cx(nk) + Ik(x(nk))) ,
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Nx(T ) = g(x(0), x(T ))N(1 − c)T
M −N(1 − c)T

+ MN(1 − c)T
M −N(1 − c)T

∑
0≤j≤T−1,j ̸=nk

1
(1 − c)j+1 (f(j, x(j)) + cx(j))

+ MN(1 − c)T
M −N(1 − c)T

∑
0≤nk≤T−1

1
(1 − c)nk+1 (cx(nk) + Ik(x(nk))) .

Therefore

Mx(0) −Nx(T ) = g(x(0), x(T )).

This completes the proof.

3.4 Main result

Existence result

Our main result is as follows.

Theorem 3.1. Suppose that (H1) and (H2) hold. Then the BVP (3.1) has at least one positive

solution x ∈ C(J,R) so that 0 ≤ x(n) < B, n ∈ J.

To prove this result we will use proposition 1.8 for the case θ = 0.

For x ∈ C(J,R), define the operator

Fx(n) = g(x(0), x(T ))(1 − c)n
M −N(1 − c)T +

T−1∑
j=0,j ̸=nk

G(n, j) (f(j, x(j)) + cx(j))

+
∑

0<nk≤T−1
G(n, nk) (cx(nk) + Ik(x(nk))) , n ∈ J.

By Lemma 3.1, it follows that any fixed point x ∈ C(J,R) of the operator F is a solution to

the BVP (3.1).

Auxiliary lemmas

We have that

G(n, j) ≤ M +N

M −N(1 − c)T , n, j ∈ J. (3.5)
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In the Banach space C(J,R) of the continuous real-valued functions defined on J , define the

norm

∥x∥ = max
n∈J

|x(n)|.

Lemma 3.2. Suppose that (H1) holds. If x ∈ C(J,R), ∥x∥ ≤ B, then

0 ≤ f(n, x(n)) ≤ D (1 +Bp1) , n ∈ J,

0 ≤ g(x(0), x(T )) ≤ D (1 +Bp2 +Bp3) ,

0 ≤ Ik(x(nk)) ≤ D (1 +Bp4) , k ∈ {1, . . . , p}.

Proof. By (H1), we get

0 ≤ f(n, x(n))

≤ a1(n) + a2(n)|x(n)|p1

≤ D (1 +Bp1) , n ∈ J,

and

0 ≤ g(x(0), x(T ))

≤ b1 + b2|x(0)|p2 + b3|x(T )|p3

≤ D (1 +Bp2 +Bp3) ,

and

0 ≤ Ik(x(nk))

≤ a3(nk) + a4(nk)|x(nk)|p4

≤ D (1 +Bp4) , k ∈ {1, . . . , p}.

This completes the proof.

Lemma 3.3. Suppose that f ∈ C(J × R), g ∈ C(R × R) and Ik ∈ C(R), k ∈ {1, . . . , p}. Then

F : C(J,R) → C(J,R) is a continuous operator.
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Proof. (a) Since G ∈ C(J × J), f ∈ C(J × R), g ∈ C(R × R) and Ik ∈ C(R), k ∈ {1, . . . , p},

the operator F maps C(J,R) into C(J,R).

(b) F is continuous. In fact, take {xl}l∈N ⊂ C(J,R) such that xl → x, as l → +∞ in

C(J,R). Fix ε > 0 arbitrarily. Then there is a δ = δ(ε) ∈ N such that

|xl(n) − x(n)| < ε,

|f(n, xl(n)) − f(n, x(n))| < ε,

|Ik(xl(n)) − Ik(x(n))| < ε

for any n ∈ J , k ∈ {1, . . . , p}, and for any l ≥ δ. We have

|Fxl(n) − Fx(n)| =
∣∣∣∣∣(g(xl(0), xl(T )) − g(x(0), x(T ))) (1 − c)n

M −N(1 − c)T

+
T−1∑

j=0,j ̸=nk

G(n, j) ((f(j, xl(j)) − f(j, x(j))) + c(xl(j) − x(j)))

+
∑

0<nk≤T−1
G(n, nk) (c(xl(nk) − x(nk)) + (Ik(xl(nk)) − Ik(x(nk))))

∣∣∣∣∣
≤ |g(xl(0), xl(T )) − g(x(0), x(T ))|

M −N(1 − c)T

+
T−1∑

j=0,j ̸=nk

G(n, j) (|f(j, xl(j)) − f(j, x(j))| + c|xl(j) − x(j)|)

+
∑

0<nk≤T−1
G(n, nk) (c|xl(nk) − x(nk)| + |Ik(xl(nk)) − Ik(x(nk))|)

<
ε

M −N(1 − c)T

+
T−1∑

j=0,j ̸=nk

M +N

M −N(1 − c)T (ε+ c ε)

+
∑

0<nk≤T−1

M +N

M −N(1 − c)T (ε+ c ε)

≤ ε

(
1

M −N(1 − c)T

+2T M +N

M −N(1 − c)T (1 + c)
)
, n ∈ J, l ≥ δ.

This completes the proof.

Lemma 3.4. Suppose that (H1) and (H2) hold. For x ∈ C(J,R), ∥x∥ ≤ B, we have

Fx(n) ≤ B1, |∆Fx(n)| ≤ 2B1, n ∈ J.
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Proof. We have

Fx(n) ≤ D (1 +Bp2 +Bp3)
M −N(1 − c)T

+
T−1∑

j=0,j ̸=nk

M +N

M −N(1 − c)T (D (1 +Bp1 +Bp4) + cB)

+
∑

0<nk≤T−1

M +N

M −N(1 − c)T (D (1 +Bp1 +Bp4) + cB)

≤ D (1 +Bp2 +Bp3)
M −N(1 − c)T

+2T M +N

M −N(1 − c)T (D(1 +Bp1 +Bp4) + cB)

= B1, n ∈ J.

Next,

|∆Fx(n)| = |Fx(n+ 1) − Fx(n)|

≤ Fx(n+ 1) + Fx(n)

≤ 2B1, n ∈ J.

This completes the proof.

Proof of the main result

Take ϵ > 0 arbitrarily. Let E = C(J,R) be endowed with the norm ∥x∥ = max
n∈J

|x(n)|, and

P = {x ∈ E : x(n) ≥ 0, n ∈ J},

Ω = P2B = {x ∈ P : ∥x∥ < 2B} ,

U = PB = {x ∈ P : ∥x∥ < B} .

For x ∈ E, define the operators

T1x(n) = (1 + ϵ)x(n),

F1x(n) = −ϵFx(n), n ∈ J.

Note that for any fixed point x ∈ E of the operator T1 + F1 is a solution of the BVP (3.1).
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1. For x, y ∈ E, we have

∥(I − T1)−1x− (I − T1)−1y∥ = 1
ϵ
∥x− y∥,

i.e., (I − T1) : E → E is Lipschitz invertible with constant 1
ϵ
.

2. According to the Ascoli-Arzelà compactness criteria, by Lemma 3.3 and Lemma 3.4, it

follows that F1 : U → E is a completely continuous operator. Therefore F1 : U → E is a

0-set contraction.

3. Let t ∈ [0, 1] and x ∈ U be arbitrarily chosen. Then

z = tFx ∈ E

and

z(n) ≤ tB1

< tB

≤ B, n ∈ J,

i.e., z ∈ Ω. Next,

tF1x(n) = −tϵFx(n)

= −ϵz(n)

= (I − T1)z(n), n ∈ J.

Thus, tF1(U) ⊂ (I − T1)(Ω).

4. Note that

(I − T1)−10 = 0 ∈ U.

5. Assume that there are x ∈ ∂U
⋂Ω and λ ∈ [0, 1] such that

(I − T1)x = λF1x.

If λ = 0, then

0 = (I − T1)x = −ϵx on J,
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whereupon x(n) = 0, n ∈ J , thus a contradiction because x ∈ ∂U . Therefore λ ∈ (0, 1].

Let n1 ∈ J be such that x(n1) = B. Then

(I − T1)x(n1) = −ϵx(n1)

= −ϵB

= −ϵλFx(n1),

whereupon

B = λFx(n1)

≤ λB1

< λB

≤ B,

i.e., B < B, which is a contradiction.

Consequently, by setting θ = 0 in Proposition 1.8 and the existence property of the fixed point

index, it follows that the operator T1 + F1 has a fixed point in U , denote it by x. We have

0 ≤ x(n) < B, n ∈ J,

and x ∈ E is a solution of the BVP (3.1).

3.5 Example

Consider the following boundary value problem:

∆x(n) = (x(n))2

1010000(n2 + 1) , n ∈ [0, 20],

∆x(nk) = (x(nk))2

1010000 , k ∈ {1, 2, 3, 4},

10100x(0) − x(20) = (x(0))2

1010000(1 + x(20) + (x(20))2)

Let

D = 1
1010000 , B = 1, p = 4, p1 = p2 = p3 = p4 = 2, T = 20,
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and

a1(n) = a2(n) = a3(n) = a4(n) = 1
1010000 , n ∈ [0, 20], b1 = b2 = b3 = 1

1010000 ,

n1 = 1, n2 = 3, n3 = 7, n4 = 11,

and

N = 1, c = 1
1010000 , M = 10100.

Then

B1 =
3

1010000

10100 −
(
1 − 1

1010000

)20 + 40 10100 + 1
10100 −

(
1 − 1

1010000

)20

( 4
1010000

)
< 1 = B

Hence, by Theorem 3.1, we obtain the existence of a solution x ∈ C([0, 20] ∩ N,R) such that

0 ≤ x(n) < 1, n ∈ {0, 1, . . . , 20}.

3.6 Comparison and conclusion

(1) The boundary conditions considered in this work involving nonlinear functional at two

point are more general. They include, as particular cases, periodic, multipoint boundary

value conditions and integral boundary value conditions. The case of an initial value

problem is not considered because N > 0,M > 0.

(2) In [85], the BVP (3.1) is investigated when

f(n, x) − f(n, y) ≥ −L(x− y)

for α0 ≤ α(n) ≤ y ≤ x ≤ β(n) ≤ β0, n ∈ J , and

Ik(x) − Ik(y) ≥ −Lk(x− y)

for α0 ≤ α(nk) ≤ y ≤ x ≤ β(nk) ≤ β0, k ∈ {1, . . . , p}, and g is a constant, where α0, β0

are nonnegative constants, α and β are suitable nonnegative functions, 0 < L,Lk < 1,

k ∈ {1, . . . , p}. It is given in [85] a criteria for existence of positive minimal and maximal

solutions. If

f(n, x) = Ik(x) = a

(1 + x)2 , x ≥ 0, a >
(1 + β0)4

1 + α0
,
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Then

Ik(x) − Ik(y) = f(n, x) − f(n, y)

= a

(1 + x)2 − a

(1 + y)2

= −a(x− y)(2 + x+ y)
(1 + x)2(1 + y)2

≤ −2a(x− y)(1 + α0)
(1 + β0)4

< −2(x− y), α0 ≤ y ≤ x ≤ β0.

Thus, the conditions in [85] are not fulfilled, but our conditions hold. Also, our main

result is valid in the case when g is not a constant. Therefore we can consider our main

result as a complementary and improvement result to those in [85].



4 New fixed point theorem and application to
nonlinear second order difference equations

The results of this chapter are obtained by Bouchal, Mebarki and Goergiev in [25].

4.1 Introduction

In this chapter, by making use of the generalized fixed point index developed in [34] we

have obtained a new functional fixed point theorem for the operator sum T + S, where I − T

is Lipschitz invertible and S is a k-set contraction. Then we present a technique that takes

advantage of the flexibility of this new fixed point theorem to establish the existence of at least

one positive solution for a conjugate boundary value problem for the second order difference

equation. Throughout this chapter, P will refer to a cone in a Banach (E, ∥ ∥).

4.2 Functional type fixed point theorems

4.2.1 Historical notes and motivations

A variant of fixed point theorems that have many applications in proving the existence

and multiplicity of positive solutions of boundary value problems are fixed point theorems of

functional types. This class of theorems originates with Krasnosel’skii fixed point theorem in

1964 [59] where the functional used was the norm and the fixed point is localized in a conical

shell of the form {x ∈ P , a ≤ ∥x∥ and ∥y∥ ≤ b} for 0 < a < b, but the pionniers of functional

fixed point theorem can be traced back to both Leggett and Williams in 1979 [63] where they

84
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replaced the norm used in the lower boundary of Guo-Krasnosel’skii fixed point theorem [46, 48]

by a positive concave functional of the form a ≤ α(x) and then fixed points are localized in

sets of the form P(α, a, b) = {x ∈ P , a ≤ α(x) and ∥x∥ ≤ b}.

Later, a slight modification of this theorem is given (see [9, Theorem 16]) by introducing a

convex functional β instead of the norm in the upper boundary to have more flexibility in the

upper wedge condition, and then fixed points are localized in sets of the form

P(β, α, a, b) = {x ∈ P , a ≤ α(x) and β(x) ≤ b}.

In 2002, Avery and Anderson generalized the Guo-Krasnosel’skii fixed point theorem (see

[5, Theorem 10]). A generalization that allows the user to choose two functionals that satisfy

certain conditions that are used instead of the norm. The interesting point in their result is

that these functionals do not need to be concave or convex, which leaves more freedom and

flexibility, especially in applications to boundary value problems. This is one of the reasons

that motivated us to extend Avery-Anderson’s theorem for the sum of two operators.

4.2.2 Functional fixed point theorem for sums of two operators

In the sequel, we will establish an extension of [5, Theorem 10] which guarantees the exis-

tence of at least one nontrivial positive solution to some equations of the form Tx + Sx = x

posed on cones of a Banach space. The proof is based on the properties of the generalized fixed

point index i∗ presented in chapter 1.

A map α is said to be a nonnegative continuous functional on a cone P of a real Banach space

E if α : P → [0,∞) is continuous. Let α and β be nonnegative continuous functionals on P ;

and let r, R be two positive real numbers, we define the sets:

P(β,R) = {x ∈ P : β(x) < R},

P(β, α, r, R) = {x ∈ P : r < α(x) and β(x) < R}. (4.1)

Theorem 4.1. Let E be a Banach space; P ⊂ E a cone; α and β be nonnegative continuous

functionals on P and let r < R be two positive real numbers. Let T : Ω ⊂ P → E be a mapping
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such that (I − T ) is Lipschitz invertible with constant γ > 0 and S : P(β,R) → E be a k-set

contraction mapping with 0 ≤ k < γ−1. Assume that P(β, α, r, R) ∩ Ω ̸= ∅, P(α, r) ⊂ P(β,R)

and

S(P(β,R)) ⊂ (I − T )(Ω). (4.2)

If one of the two following conditions is satisfied

(A1) for all x ∈ ∂P(α, r) and λ > 1 with λx ∈ Ω and T (λx) + Sx ∈ P ,

α(T (λx) + Sx) ≤ r, λα(x) ≤ α(λx) and α(0) < r, (4.3)

and there exists u0 ∈ P∗, for all η > 0 and x ∈ ∂P(β,R) ∩ (Ω + ηu0) with T (x− ηu0) +

Sx+ ηu0 ∈ P ,

β(T (x− ηu0) + Sx+ ηu0) ̸= R, (4.4)

or

(A2) for all x ∈ ∂P(β,R) and λ > 1 with λx ∈ Ω and T (λx) + Sx ∈ P ,

β(T (λx) + Sx) ≤ R, λβ(x) ≤ β(λx) and β(0) < R, (4.5)

and there exists u0 ∈ P∗, for all η > 0 and x ∈ ∂P(α, r) ∩ (Ω + ηu0) with T (x− ηu0) +

Sx+ ηu0 ∈ P ,

α(T (x− ηu0) + Sx+ ηu0) ̸= r, (4.6)

then T + S has at least one nontrivial fixed point x∗ ∈ P(β, α, r, R) ∩ Ω.

Proof. Suppose that Tx+ Sx ̸= x for all x ∈ ∂P(β, α, r, R), otherwise we are finished.

We will suppose that the condition (A1) holds; the proof when (A2) is satisfied is similar.

Claim 1: Sx ̸= (I − T )(λx) for all x ∈ ∂P(α, r), λ > 1 and λx ∈ Ω.

On the contrary, suppose that there exists a x0 ∈ ∂P(α, r), λ0 > 1 and λ0x0 ∈ Ω such

that T (λ0x0) + Sx0 = λ0x0. Then,

r ≥ α (T (λ0x0) + Sx0) = α (λ0x0) ≥ λ0α(x0) > α(x0) = r,
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which is a contradiction with (4.3).

Note that 0 ∈ P(α, r). Hence, from Proposition 1.6,

i∗(T + S,P(α, r) ∩ Ω,P) = 1.

Claim 2: Sx ̸= (I−T )(x−ηu0) for all η > 0 and x ∈ ∂P(β,R)∩ (Ω+ηu0), for some u0 ∈ P∗.

On the contrary, for any u0 ∈ P∗ there exist η0 > 0 and z0 ∈ ∂P(β,R) ∩ (Ω + ηu0) such

that Sz0 = (I − T )(z0 − η0u0). So,

T (z0 − η0u0) + Sz0 + η0u0 = z0.

Then,

β(T (z0 − η0u0) + Sz0 + η0u0) = β(z0) = R,

which is a contradiction with (4.4).

As a result of Proposition 1.9, we arrive at

i∗(T + S,P(β,R) ∩ Ω,P) = 0.

Thus, from the additivity property of the fixed point index, we have

i∗(T + S,P(β, α, r, R) ∩ Ω,P) = i∗(T + S,P(β,R) ∩ Ω,P) − i∗(T + S,P(α, r) ∩ Ω,P)

= −1.

By the existence property of the fixed point index the operator T + S has at least one fixed

point x∗ ∈ P(β, α, r, R) ∩ Ω. Hence the desired result.

4.3 Application to difference equations

In this section, we will investigate the difference equation

△2u(k) + f(k, u(k)) = 0, k ∈ {0, 1, . . . , N}, N ∈ N, N > 1, (4.7)

with boundary conditions

u(0) = u(N + 2) = 0, (4.8)
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where f : {0, ..., N + 2} × [0,∞) → [0,∞) is a continuous function.

∆2 is the second forward difference operator which acts on u by △2u(k) = u(k + 2) − 2u(k +

1) + u(k), k ∈ {0, 1, . . . , N}, with {0, 1, ..., N} is a discrete interval. By positive solution, we

mean a function u : {0, . . . , N + 2} → R such that u(k) ≥ 0 on {0, 1, . . . , N + 2} and verifies

the posed BVP.

In [5] (2002), Anderson and Avery prove the existence of a positive solution to the autonomous

problem given below, using the cone compression and expansion fixed point theorem of func-

tional type [5, Theorem 10].

△2u(k − 1) + f(u(k)) = 0, k ∈ {a+ 1, . . . , b+ 1}, a, b ∈ N, b > a+ 2, (4.9)

with boundary conditions

u(a) = u(b+ 2) = 0, (4.10)

where f : R → R is continuous and nonnegative function.

In [74] (2012), Neugebaeur and Seelbach give an application to an extension of the Leggett-

Williams fixed point theorem due to Avery [13, Theorem 3.1], to obtain at least one positive

solution to the difference equation

△2u(k) + f(u(k)) = 0, k ∈ {0, . . . , N − 2}, (4.11)

with boundary conditions

u(0) = u(N) = 0, (4.12)

where f : [0,∞) → [0,∞) is a continuous function.

In [75] (2017), a compression-expansion fixed point theorem of functional type has been used

to obtain at least one positive solution for the autonomous second order difference equation:

△2u(k) + f(u(k)) = 0, k ∈ {0, 1, . . . , N}, N ∈ N, N > 1, (4.13)

with boundary conditions

u(0) = u(N + 2) = 0, (4.14)

where f : [0,∞) → [0,∞) is a continuous function satisfying some conditions of monotonic

type. In [76] (2020), the layered compression-expansion fixed point theorem was applied to
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show the existence of solutions to the BVP (4.13)-(4.14), where the nonlinearity f is the sum

of a monotonic increasing and a monotonic decreasing functions.

In these three last works the functions in the cone are required to be nonnegative, nondecreasing

on the half of the interval and symetric when applying the Avery, Anderson and Henderson

theorems and they obtain the localisation of the positive solution and its symmetry.

In what follows, by using our approach, we will establish sufficient criteria for the existence of

positive solutions to BVP (4.7)-(4.8) on a cone which is nonnegative.

4.3.1 Auxiliary results

Define the function

H(k, l) = 1
N + 2


k(N + 2 − l), k ∈ {0, . . . , l},

l(N + 2 − k), k ∈ {l + 1, . . . , N + 2},

for any l ∈ {0, ..., N + 2} is the Green’s function for −∆2u = 0 satisfying the boundary

conditions (4.8). In [75] it is proved that if u ∈ E is a solution to the BVP (4.7)-(4.8), then it

is a solution to the sum equation

u(k) =
N+1∑
l=1

H(k, l)f(l, u(l)), k ∈ {0, . . . , N + 2},

and conversely. We have that

H(k, l) ≤ N + 2, k, l ∈ {0, . . . , N + 2}.

Assumptions

Suppose that we have the following hypothesis

(H1)


0 ≤ f(k, u(k)) ≤ a(k) + b(k)|u(k)|p, p ≥ 0, a, b : {0, . . . , N + 2} → [0,∞) be such that

0 ≤ a(k), b(k) ≤ B, k ∈ {0, . . . , N + 2}, for some positive constant B.

(H2) ϵ, A1, B, B1, R, R1, r are positive constants such that

ϵ ∈ (0, 1), B1

2 > A1(N + 3) ((N + 2)(N + 1)B (1 +Rp) +R) ,

r

A1
< R, R1 > max{R, 1}, A1 ∈ (0, 1),

A1(ϵ+ r + 2B1) ≤ r.
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Define the Banach space

E = {u : {0, . . . , N + 2} → R}

with the norm

∥u∥ = max
k∈{0,...,N+2}

|u(k)|.

Let

S1u(k) =
N+1∑
l=1

H(k, l)f(l, u(l)), k ∈ {0, . . . , N + 2}.

Auxiliary lemmas

Lemma 4.1. Suppose that (H1) holds. Let u ∈ E and ∥u∥ ≤ Q for some positive constant Q.

Then

S1u(k) ≤ (N + 2)(N + 1)B(1 +Qp), k ∈ {0, . . . , N + 2}.

Proof. We have

S1u(k) =
N+1∑
l=1

H(k, l)f(l, u(l))

≤ (N + 2)
N+1∑
l=1

(a(l) + b(l)|u(l)|p)

≤ (N + 2)(N + 1)B(1 +Qp), k ∈ {0, . . . , N + 2}.

This completes the proof.

For u ∈ E, define the operator

S2u(k) = A1

k−1∑
m=0

(S1u(m) − u(m)) , k ∈ {1, . . . , N + 2}.

Lemma 4.2. Suppose that (H1) and (H2) hold. Let u ∈ E and

S2u(k) = C, k ∈ {1, . . . , N + 2}, (4.15)

where C is a constant. Then u is a solution to the BVP (4.7)-(4.8).

Proof. We have

k−1∑
m=0

(
N+1∑
l=1

H(m, l)f(l, u(l)) − u(m)
)

− C

A1
= 0, k ∈ {1, . . . , N + 2}.
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We take the ∆-operator of both sides of the last equation and we find

k∑
m=0

(
N+1∑
l=1

H(m, l)f(l, u(l)) − u(m)
)

−
k−1∑
m=0

(
N+1∑
l=1

H(m, l)f(l, u(l)) − u(m)
)

=
N+1∑
l=1

H(k, l)f(l, u(l)) − u(k) = 0,

k ∈ {1, . . . , N + 2}. This completes the proof.

Lemma 4.3. Suppose that (H1) and (H2) hold. Let u ∈ E and ∥u∥ ≤ Q for some positive

constant Q. Then ∥S2u∥ ≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Qp) +Q) .

Proof. We have

∥S2u∥ ≤ A1

k−1∑
m=0

(∥S1u∥ + ∥u∥)

≤ A1

N+2∑
m=0

(∥S1u∥ + ∥u∥)

≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Qp) +Q) .

This completes the proof.

4.3.2 Main result

Our main existence result is the following

Theorem 4.2. Suppose that (H1) and (H2) hold. Then the BVP (4.7)-(4.8) has at least one

positive solution u∗ ∈ E such that r
A1

≤ max
k∈{0,...,N+2}

u∗(k) ≤ R.

Proof. Let

P = {u ∈ E : u ≥ 0},

Ω = P .

For u ∈ P , define the functionals

α(u) = A1 max
k∈{0,...,N+2}

u(k),

β(u) = max
k∈{0,...,N+2}

u(k),
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and for u ∈ E, define the operators

Tu(k) = −ϵ u(k)
R1 + u(k) ,

S3u(k) = ϵ
u(k)

R1 + u(k) + u(k) + S2u(k),

Su(k) = S3u(k) +B1, k ∈ {1, . . . , N + 2}.

Note that if u ∈ P is a fixed point of the operator T + S, then Tu + Su = u, whereupon

S2u(k) = −B1, k ∈ {0, . . . , N + 2}, and then it is a positive solution to the BVP (4.7)-(4.8).

1. Define the function

g(x) = x

R1 + x
, x ≥ 0.

Then

g′(x) = R1

(R1 + x)2 , x ≥ 0,

and

|g′(x)| ≤ 1, x ≥ 0.

Hence,

|g(x) − g(y)| ≤ |x− y|, x, y ≥ 0,

and ∥∥∥∥ u

R1 + u
− v

R1 + v

∥∥∥∥ ≤ ∥u− v∥, u, v ∈ P .

Therefore, for u, v ∈ P , we have

∥(I − T )u− (I − T )v∥ ≥ ∥u− v∥ − ϵ
∥∥∥∥ u

R1 + u
− v

R1 + v

∥∥∥∥
≥ (1 − ϵ)∥u− v∥.

Thus, I − T : P → E is Lipschitz invertible with a constant γ = (1 − ϵ)−1.

2. Let u ∈ P(β,R). Then ∥u∥ ≤ R and by Lemma 4.3, it follows

∥S2u∥ ≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Rp) +R) ,

and

ϵ
u(k)

R1 + u(k) ≤ ϵ, k ∈ {0, . . . , N + 2}.
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Consequently

∥Su∥ ≤ ϵ+R + A1(N + 3) ((N + 2)(N + 1)B(1 +Rp) +R) +B1,

Therefore, S : P(β,R) → E is a completely continuous operator. Thus, S is a 0-set

contraction.

3. Because r
A1
< R, we have that P(β, α, r, R)⋂Ω ̸= ∅ and P(α, r) ⊂ P(β,R).

4. Let u ∈ P(β,R) be arbitrarily chosen. By Lemma 4.3 and (H2), we find

∥S2u∥ ≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Rp) +R)

<
B1

2 .

Therefore

S2u(k) + B1

2 > 0, k ∈ {1, . . . , N + 2}.

Now, using that u(k) ≥ 0, k ∈ {1, . . . , N + 2}, we obtain

S3u(k) + B1

2 = ϵ
u(k)

R1 + u(k) + u(k) + S2u(k) + B1

2

≥ S2u(k) + B1

2
> 0, k ∈ {1, . . . , N + 2}.

Hence,

Su(k) = S3u(k) + B1

2 + B1

2
>

B1

2 , k ∈ {1, . . . , N + 2}.

Next,

Su(k) = ϵ
u(k)

R1 + u(k) + S2u(k) + u(k) +B1

≤ ϵ+R +B1 +B1

= ϵ+R + 2B1, k ∈ {1, . . . , N + 2}.

Take

v =
−(R1 + ϵ− Su) +

√
(R1 + ϵ− Su)2 + 4R1Su

2 .
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We have v ≥ 0 and therefore v ∈ Ω. Also,

0 = v2 + (R1 + ϵ− Su)v −R1Su,

whereupon

v2 +R1v + ϵv = Su v +R1Su

and

v(R1 + v) + ϵv = Su(v +R1).

Thus,

Su = v + ϵv

R1 + v

= (I − T )v.

Therefore

S
(
P(β,R)

)
⊂ (I − T )(Ω).

5. Let x ∈ ∂P(α, r) and λ > 1. Then

α(T (λx) + Sx) = A1 max
k∈{0,...,N+2}

(
− ϵλx(k)
R1 + λx(k) + Sx(k)

)

≤ A1 max
k∈{0,...,N+2}

Sx(k)

≤ A1(ϵ+ r + 2B1)

≤ r.

6. For any x ∈ ∂P(α, r), λ > 1, we have

α(λx) = A1 max
k∈{0,...,N+2}

(λx(k))

= A1λ max
k∈{0,...,N+2}

x(k)

= λα(x)

and

α(0) < r.
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7. Let η > 0 and u0 ∈ P⋆ be arbitrarily chosen. Take

x ∈ ∂P(β,R)
⋂

(Ω + ηu0).

Then x(k) ≤ R, k ∈ {0, . . . , N + 2}, and x− ηu0 ∈ Ω or

x(k) − ηu0(k) ≥ 0, k ∈ {0, . . . , N + 2}.

Because
ϵ(x(k) − ηu0(k))
R1 + x(k) − ηu0(k) ≤ ϵx(k)

R1 + x(k) , k ∈ {0, . . . , N + 2},

we get

β (ηu0 + T (x− ηu0) + Sx) = β

(
ηu0 − ϵ(x− ηu0)

R1 + x− ηu0
+ ϵx

R1 + x
+ x+ S2x+B1

)

≥ β
(
x+ B1

2

)
> β(x)

= R

and hence,

β (ηu0 + T (x− ηu0) + Sx) ̸= R.

All conditions of (A1) of Theorem 4.1 are then satisfied. Thus, we conclude that the BVP

(4.7)-(4.8) has at least one solution u∗ ∈ P such that r
A1

≤ ∥u∗∥ ≤ R. This completes the

proof.

Example

Let

ϵ = B = A1 = 1
10500 , R = 1, B1 = 2

10400 , r = 1
10600 , N = 5, p = 2, R1 = 100.

Then

A1(N + 3) ((N + 2)(N + 1)B (1 +Rp) +R) = 1
10500 · 8 ·

(
7 · 6 · 1

10500 (1 + 1) + 1
)

<
1

10400 = B1

2
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and

R1 = 100 > r,
r

A1
= 1

10100 < R,

and

A1(ϵ+ r + 2B1) = 1
10500

( 1
10500 + 1

10600 + 4
10400

)
<

1
10600 = r.

Thus, (H2) holds. Now, by our main result, it follows that the BVP

∆2u(k) = k

101000(1 + k + k2) + 1
10500 (u(k))2, k ∈ {0, . . . , 5},

u(0) = u(7) = 0

has at least one positive solution.

4.4 Concluding remarks

(1) In this chapter we have presented a new functional fixed point theorem on cones for the

sum of two operators. The arguments are based upon recent fixed point index theory in

cones of Banach spaces.

(2) By utilizing our approach, sufficient conditions for the existence of at least one positive

solution are established for a non-autonomous second order difference equation.

(3) The nonlinearity f considered in the BVP (4.7)-(4.8) is non-autonomous and satisfies a

general growth condition, while in [75] the nonlinear term must be autonomous with some

conditions of monotonic type. Moreover, one can easily give an example for the constants

ϵ, A1, B, B1, R, R1, r which satisfy the condition (H2).

(4) The functionals α and β considered in this work are more general than those in [75].

They are supposed to be only nonnegative and continuous, while in [75] the functionals

α and β besides of being nonnegative and continuous were assumed concave and convex,

respectively.

(5) For all the above reasons, our new topological approach developed in this chapter can be

used to study other types of difference equations as well as dynamic equations.
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5 New multiple fixed point theorems and
application to Sturm-Liouville BVP

The results of this chapter are obtained by Bouchal and Mebarki in [22].

5.1 Introduction

In this chapter, we develop new multiple fixed point theorems for the sum of k-set contraction

perturbed by an operator T such that (I − T ) is Lipschitz invertible on translate of cones.

Therefore, existence criteria for at least three positive solutions for a singular generalized Sturm-

Liouville multipoint boundary value problem are established, we also discussed the existence of

countably many solutions. This study is carried out under conditions much weaker than those

imposed in [94] and [93].

5.2 Multiple fixed point theorems for the sum of two

operators

It is well-known that if D is bounded open subset of a Banach space E and A is a strict

set contraction mapping defined on the closure of D and taking values in E, then the Leray-

Schauder boundary condition:

Ax ̸= λx for all x ∈ ∂D, λ > 1,

98
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is sufficient to guarantee the existence of a fixed point for A. For the importance of this

condition and its extensions in the study of nonlinear problems, we refer the reader to [40, 57].

In this work, we develop an extension of the Leray-Schauder boundary condition by considering

a translate of cone P defined by Kw = P + w = {x+ w : x ∈ P} for w ∈ E. First, we present

our result for the class of strict set contractions. Next, we extend it for some class of k-set

contractions perturbed by an operator T such that (I − T ) is Lipschitz invertible.

Lemma 5.1. Let Kω be a translate of a cone P and U ⊂ Kω a bounded open subset with ω ∈ U.

Assume that A : U → Kω is a strict k-set contraction without fixed point on ∂U and there exists

ε > 0 small enough such that

Ax− ω ̸= λ(x− ω) for all x ∈ ∂U and λ ≥ 1 + ε. (5.1)

Then the fixed point index i (A,U,Kω) = 1.

Proof. Consider the homotopic deformation H : [0, 1] × U → Kω defined by

H(t, x) = t

ε+ 1 (Ax− ω) + ω.

The operator H is continuous and uniformly continuous in t for each x, and the mapping

H(t, .) is a strict set contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on

∂U . Otherwise, there would exist some x0 ∈ ∂U and t0 ∈ [0, 1] such that t0
ε+1 (Ax0−ω)+ω = x0,

then

• If t0 = 0, we get x0 = ω, contradicting ω ∈ U.

• If t0 ∈ (0, 1], we get Ax0 − ω = 1+ε
t0

(x0 − ω) with 1+ε
t0

≥ 1 + ε, contradicting the assumption

(5.1).

From the invariance under homotopy and the normalization properties of the index, we deduce

i ( 1
ε+ 1 A+ ε

ε+ 1 ω, U,Kω) = i (ω, U,Kω) = 1.

Now, we show that

i (A,U,Kω) = i ( 1
ε+ 1 A+ ε

ε+ 1 ω , U,Kω).
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Since A has no fixed point in ∂U and (I − A)(∂U) is a closed set (see [78, Lemma 1]), we get

0 /∈ (I − A)(∂U).

Hence,

γ := dist(0, (I − A)(∂U)) = inf
x∈∂U

∥x− Ax∥ > 0.

Let ε be sufficiently small so that ∥ ε
ε+1(Ax− ω)∥ < γ

2 and ε+2
ε+1k < 1. Hence

∥∥∥∥∥Ax−
(

1
ε+ 1Ax+ ε

ε+ 1ω
)∥∥∥∥∥ =

∥∥∥∥∥ ε

ε+ 1

(
Ax− ω

)∥∥∥∥∥ , ∀x ∈ ∂U.

Define the convex deformation G : [0, 1] × U → Kω by

G(t, x) = tAx+ (1 − t)
(

1
ε+ 1 Ax+ ε

ε+ 1 ω
)
.

The operator G is continuous and uniformly continuous in t for each x, and the mapping G(t, .)

is strict set contraction, with constant ε+2
ε+1k, for each t ∈ [0, 1]. In addition, G(t, .) has no fixed

point on ∂U . In fact, for all x ∈ ∂U , we have

∥x−G(t, x)∥ =
∥∥∥∥∥x− tAx− (1 − t)

(
1
ε+1 Ax+ ε

ε+1 ω

)∥∥∥∥∥

≥
∥∥∥∥∥x−

(
1
ε+1 Ax+ ε

ε+1 ω

)∥∥∥∥∥− t

∥∥∥∥∥Ax−
(

1
ε+1 Ax+ ε

ε+1 ω

)∥∥∥∥∥

=
∥∥∥x− Ax+ ε

ε+1 Ax− ε
ε+1 ω

∥∥∥− t

∥∥∥∥∥ ε
ε+1

(
Ax− ω

)∥∥∥∥∥

≥ ∥x− Ax∥ −
∥∥∥∥∥ ε
ε+1

(
Ax− ω

)∥∥∥∥∥− t

∥∥∥∥∥ ε
ε+1

(
Ax− ω

)∥∥∥∥∥

> γ − γ
2 − γ

2 = 0.

Then our claim follows from the invariance by homotopy property of the index.

Now, we extend the previous result to the case of a k-set contraction perturbed by an

operator T such that (I − T ) is Lipschitz invertible.
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Lemma 5.2. Let Kω be a translate of a cone P. Let Ω be a subset of Kω and U a bounded open

subset of Kω. Assume that T : Ω → E be such that (I −T ) is Lipschitz invertible mapping with

constant γ > 0, S : U → E is a k-set contraction with 0 ≤ k < γ−1 and S(U) ⊂ (I − T )(Ω).

Suppose that T + S has no fixed point on ∂U ∩ Ω. Then we have the following results:

(1) If ω ∈ U and there exists ε > 0 small enough such that

Sx ̸= (I − T )(λx+ (1 − λ)ω) for all λ ≥ 1 + ε, x ∈ ∂U and λx+ (1 − λ)ω ∈ Ω,

then the fixed point index i∗ (T + S, U ∩ Ω,Kω) = 1.

(2) If there exists u0 ∈ P∗ such that

Sx ̸= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U ∩ (Ω + λu0),

then the fixed point index i∗ (T + S, U ∩ Ω,Kω) = 0.

Proof. (1) The mapping (I − T )−1S : U → Kω is a strict γk-set contraction without fixed

point on ∂U ∩ Ω, and our hypothesis implies

(I − T )−1Sx− ω ̸= λ(x− ω) for all x ∈ ∂U and λ ≥ 1 + ε.

Then, our claim follows from (1.10) and Lemma 5.1.

(2) The mapping (I − T )−1S : U → Kω is a strict γk-set contraction.

Assume by contradiction that i∗ (T + S, U ∩ Ω,Kω) ̸= 0, then

i((I − T )−1S, U,Kω) ̸= 0.

For each r > 0, define the homotopy:

H(t, x) = (I − T )−1Sx+ tru0, for x ∈ U and t ∈ [0, 1].

The operator H is continuous and uniformly continuous in t for each x. Moreover, H(t, .)

is a strict γk-set contraction mapping for each t, and

H([0, 1] × U) = ((I − T )−1S(U) + tru0) ⊂ Kω.
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In addition, H(t, x) ̸= x for all (t, x) ∈ [0, 1] × ∂U . Otherwise, there would exist some

(t0, x0) ∈ [0, 1] × ∂U such that H(t0, x0) = x0, then

(I − T )−1Sx0 = x0 − t0ru0,

and so x0 − t0ru0 ∈ Ω. Hence

Sx0 = (I − T )(x0 − t0ru0),

for some x0 ∈ ∂U∩(Ω+t0ru0), which contradict our assumption. By homotopy invariance

property of the fixed point index, we deduce that

i((I − T )−1S + ru0, U,Kω) = i((I − T )−1S, U,Kω) ̸= 0.

Thus, from the existence property of the fixed point index, for each r > 0, there exists

xr ∈ U such that

xr − (I − T )−1Sxr = ru0. (5.2)

Letting r → +∞ the left hand side of (5.2) is bounded, while the right hand side is not,

which is a contradiction. Therefore

i∗(T + S, U ∩ Ω,Kω) = 0.

Remark 5.1. (a). The result (1) in Lemma 5.2 is an extension of [34, Proposition 2.11], [43,

Proposition 4.1] and [33, Proposition 4].

(b). The result (2) in Lemma 5.2 and additional results concerning the computation of the

fixed point index for the sum T + S on translates of cones, are given in [43].

The following result prove the existence of at least three fixed points for the operator T +S

on translates of cones.

Theorem 5.1. Let U1, U2 and U3 three open bounded subsets of Kω such that U1 ⊂ U2 ⊂ U3

and ω ∈ U1,and Ω be a subset of Kω. Assume that T : Ω → E be such that (I − T ) is Lipschitz

invertible mapping with constant γ > 0, S : U3 → E a k-set contraction with 0 ≤ k < γ−1 and
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S(U3) ⊂ (I−T )(Ω). Suppose that (U2 \U1) ∩ Ω ̸= ∅, (U3 \U2) ∩ Ω ̸= ∅, and there exist u0 ∈ P∗

and ε > 0 small enough such that the following conditions hold:

(i) Sx ̸= (I − T )(λx+ (1 − λ)ω), for all λ ≥ 1 + ε, x ∈ ∂U1 and λx+ (1 − λ)ω ∈ Ω,

(ii) Sx ̸= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U2 ∩ (Ω + λu0),

(iii) Sx ̸= (I − T )(λx+ (1 − λ)ω), for all λ ≥ 1 + ε, x ∈ ∂U3 and λx+ (1 − λ)ω ∈ Ω,

Then T + S has at least three nontrivial fixed points x1, x2, x3 ∈ Kω such that

x1 ∈ ∂U1 ∩ Ω and x2 ∈ (U2 \ U1) ∩ Ω and x3 ∈ (U3 \ U2) ∩ Ω,

or

x1 ∈ U1 ∩ Ω and x2 ∈ (U2 \ U1) ∩ Ω and x3 ∈ (U3 \ U2) ∩ Ω.

Proof. If Sx = (I − T )x for x ∈ ∂U1 ∩ Ω, then we get a fixed point x1 ∈ ∂U1 ∩ Ω of the

operator T + S. Suppose that Tx + Sx ̸= x on ∂U1 ∩ Ω. Without loss of generality, assume

that Tx+ Sx ̸= x on ∂U3 ∩ Ω. By Lemma 5.2, we have

i∗ (T + S, U1 ∩ Ω,Kω) = i∗ (T + S, U3 ∩ Ω,Kω) = 1.

and

i∗ (T + S, U2 ∩ Ω,Kω) = 0,

From the additivity property of the index i∗, we get

i∗ (T + S, (U2 \ U1) ∩ Ω,Kω) = −1,

i∗ (T + S, (U3 \ U2) ∩ Ω,Kω) = 1,

Consequently, by the existence property of the index i∗, T + S has at least three fixed points

such that x1 ∈ U1 ∩ Ω, x2 ∈ (U2 \ U1) ∩ Ω and x3 ∈ (U3 \ U2) ∩ Ω.

Similarly, we can prove the following results, which are extensions of Theorem 5.1.
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Theorem 5.2. Let U1, U2, . . . , Un be n (n ≥ 3) open bounded subsets of Kω such that U1 ⊂

U2 ⊂ · · · ⊂ Un and ω ∈ U1 and Ω be a subset of Kω. Assume that T : Ω → E be such that

(I − T ) is Lipschitz invertible mapping with constant γ > 0, S : Un → E is a ℓ-set contraction

with 0 ≤ ℓ < γ−1 such that T + S has no fixed point in ∂U2k+1 ∩ Ω for 2k + 1 ∈ {1, . . . , n} and

S(Un) ⊂ (I − T )(Ω).

Suppose that (Ui+1 \ U i) ∩ Ω ̸= ∅, for i ∈ {1, . . . , n − 1}, and there exist u0 ∈ P∗ and ε > 0

small enough such that the following conditions hold:

(a) Sx ̸= (I − T )(λx+ (1 − λ)ω), for all λ ≥ 1 + ε, x ∈ ∂U2k+1, for 2k + 1 ∈ {1, . . . , n} and

(λx+ (1 − λ)ω) ∈ Ω.

(b) Sx ̸= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U2k ∩ (Ω + λu0), for 2k ∈ {2, . . . , n}.

Then T + S has n nontrivial fixed points x1, x2, . . . , xn ∈ Kω satisfying

x1 ∈ U1 ∩ Ω, and xi ∈ (Ui \ U i−1) ∩ Ω, for i ∈ {2, . . . , n}.

Theorem 5.3. Let U1, U2, . . . , Un+1 be n + 1 (n ≥ 3) open bounded subsets of Kω such that

U1 ⊂ U2 ⊂ · · · ⊂ Un+1 and ω ∈ U1. Let T : Ω → E be such that (I − T ) is Lipschitz invertible

mapping with constant γ > 0, S : Un+1 → E is a k-set contraction with 0 ≤ ℓ < γ−1 such that

T + S has no fixed point in ∂U2k ∩ Ω for 2k ∈ {2, . . . , n+ 1} and S(Un+1) ⊂ (I − T )(Ω).

Suppose that (Ui+1 \ U i) ∩ Ω ̸= ∅, for i ∈ {1, . . . , n − 1}, and there exist u0 ∈ P∗ and ε > 0

small enough such that the following conditions hold:

(a) Sx ̸= (I−T )(x−λu0), for all λ ≥ 0 and x ∈ ∂U2k+1∩(Ω+λu0), for 2k+1 ∈ {1, . . . , n+1}.

(b) Sx ̸= (I − T )(λx + (1 − λ)ω), for all λ ≥ 1 + ε, x ∈ ∂U2k, for 2k ∈ {2, . . . , n + 1} and

(λx+ (1 − λ)ω) ∈ Ω.

Then T + S has n nontrivial fixed points x1, x2, . . . , xn ∈ Kω satisfying

xi ∈ (Ui+1 \ U i) ∩ Ω, for i ∈ {1, . . . , n}.
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5.3 Application to ODE’s

In this section, by using our new topological approach for the sum of two operators, de-

veloped in Section 5.2, we discuss the existence of multiple positive solutions for the following

singular Sturm-Liouville multipoint boundary value problem (BVP for short) :

−u′′(t) = h(t)f(t, u(t), u′(t)), 0 < t < 1,

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi),

cu(1) + du′(1) =
m−2∑
i=1

biu(ξi),

(5.3)

where f ∈ C([0, 1] × R∗ × R,R), h ∈ C([0, 1],R), a, b, c, d ∈ [0,∞), 0 < ξ1 < ξ2 < ... < ξm−2 <

1 (m ≥ 3), ai, bi ∈ [0,∞) are constants for i = 1, 2, . . . ,m− 2 and ρ = ac+ ad+ bc > 0.

By a positive solution, it means a function u ∈ C1([0, 1])∩ C2((0, 1)) such that u(t) ≥ 0 on [0, 1]

not identically zero and u satisfies (5.3).

Multipoint boundary value problem theory has been developed rapidly over the past twenty

years. Since the original work of Il’in and Moiseev [53] on the existence of solutions for a linear

multipoint BVP, special attention has been paid to the study of multipoint BVP for nonlinear

ordinary differential equations. Different approaches have been used to deal with such kind

of problems: Leray-Schauder continuation theorem, fixed point theorems in cones, coincidence

degree theory and the method of upper and lower solutions.

In [94], by using the fixed point theorem of Avery and Peterson, Zhang and Sun discussed the

existence of three positive solutions to the problem (5.3) in the case where h ∈ C([0, 1], [0,∞)).

In [93], by using the same approach, Zhang obtained a multiplicity result for this problem in

the singular case (where h may be singular at t = 0 and /or t = 1).
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5.3.1 Integral formulation

Let x(t) = at+ b and y(t) = d+ c(1 − t) for t ∈ [0, 1] and denote

∆ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aix(ξi) ρ−
m−2∑
i=1

aiy(ξi)

ρ−
m−2∑
i=1

bix(ξi) −
m−2∑
i=1

biy(ξi)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In [67], it is proved that, if ∆ ̸= 0, then the problem (5.3) is equivalent to the following integral

equation

u(t) =
∫ 1

0
G(t, s)h(s)f(s, u(s), u′(s)) ds+ A(hf)x(t) + B(hf) y(t), t ∈ [0, 1], (5.4)

where

G(t, s) = 1
ρ


(d+ c(1 − t))(as+ b), 0 ≤ s ≤ t ≤ 1,

(at+ b)(d+ c(1 − s)), 0 ≤ t ≤ s ≤ 1,
(5.5)

A(v) := 1
∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai
1∫
0
G(ξi, s)v(s) ds ρ−

m−2∑
i=1

aiy(ξi)

m−2∑
i=1

bi
1∫
0
G(ξi, s)v(s) ds −

m−2∑
i=1

biy(ξi)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

B(v) := 1
∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aix(ξi)
m−2∑
i=1

ai
1∫
0
G(ξi, s)v(s) ds

ρ−
m−2∑
i=1

bix(ξi)
m−2∑
i=1

bi
1∫
0
G(ξi, s)v(s) ds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Let E be the Banach space C1([0, 1]) endowed with the norm

∥u∥ = max
(

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
)
.

For u ∈ E, we define the operators

Fu(t) =
∫ 1

0
G(t, s)h(s)f(s, u(s), u′(s)) ds+ A(hf)x(t) + B(hf)y(t),

S1u(t) = Fu(t) − u(t),

S2u(t) =
∫ t

0
(t− s)2 g(s)S1u(s) ds, t ∈ [0, 1], g ∈ C([0, 1], (0,∞)).

By (5.4), it follows that if u ∈ E satisfies the equation S1u = 0, then it is a solution to the

problem (5.3).
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5.3.2 Assumptions

We first enunciate the common assumptions that we will use in order to prove our main

results. Further assumptions will be assumed in each existence criteria.

(H1) f ∈ C([0, 1] × [0,∞) × (−∞,∞), (−∞,∞)),

|f(t, u, v)| ≤ k1|u|p1 + k2|v|p2 + k3, t ∈ [0, 1], u, v ∈ R,

k1, k2, k3, p1, p2 are positive constants.

(H2) h ∈ C((0, 1),R) may be singular at t = 0 and/or t = 1 and
1∫
0
G(s, s)h(s) ds < ∞,

where G is given by (5.5).

(H3) ∆ < 0, ρ−
m−2∑
i=1

aiy(ξi) > 0, ρ−
m−2∑
i=1

bix(ξi) > 0.

5.3.3 Auxiliary results

Lemma 5.3. Suppose that (H1)-(H3) hold. Let L a real constant and u ∈ E satisfies the

equation

S2u(t) + 2L = 0, t ∈ [0, 1]. (5.6)

Then u is a solution to the problem (5.3).

Proof. We differentiate the integral equation (5.6) three times with respect to t and we get

g(t)S1u(t) = 0, t ∈ [0, 1],

whereupon

S1 u(t) = 0, t ∈ [0, 1].

This completes the proof.

Set

M :=
∫ 1

0
G(s, s)|h(s)| ds,
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A := 1
|∆|

∣∣∣∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai ρ−
m−2∑
i=1

aiy(ξi)

−
m−2∑
i=1

bi
m−2∑
i=1

biy(ξi)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

B := 1
|∆|

∣∣∣∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

aix(ξi) −
m−2∑
i=1

ai

ρ−
m−2∑
i=1

bix(ξi)
m−2∑
i=1

bi

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Fix B > 0 arbitrarily.

Lemma 5.4. Suppose that (H1)-(H3) hold. For any u ∈ E with ∥u∥ ≤ B, we have

|Fu(t)| ≤ M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) , t ∈ [0, 1].

Proof. We have

|A(hf)| ≤ 1
|∆|

((
m−2∑
i=1

ai
1∫
0
G(ξi, s)|h(s)||f(s, u(s), u′(s))| ds

) (
m−2∑
i=1

biy(ξi)
)

+
(
m−2∑
i=1

bi
1∫
0
G(ξi, s)|h(s)||f(s, u(s), u′(s))| ds

)(
ρ−

m−2∑
i=1

aiy(ξi)
))

≤ 1
|∆|

((
m−2∑
i=1

ai
1∫
0
G(ξi, s)|h(s)| ds

) (
m−2∑
i=1

biy(ξi)
)

+
(
m−2∑
i=1

bi
1∫
0
G(ξi, s)|h(s)| ds

)(
ρ−

m−2∑
i=1

aiy(ξi)
))

(k1|u|p1 + k2|u|p2 + k3)

≤ 1
|∆|

((
m−2∑
i=1

ai
1∫
0
G(s, s)|h(s)| ds

) (
m−2∑
i=1

biy(ξi)
)

+
(
m−2∑
i=1

bi
1∫
0
G(s, s)|h(s)| ds

)(
ρ−

m−2∑
i=1

aiy(ξi)
))

(k1∥u∥p1 + k2∥u∥p2 + k3)

≤ MA (k1B
p1 + k2B

p2 + k3) .

Similarly, we obtain

|B(hf)| ≤ MB (k1B
p1 + k2B

p2 + k3) .
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Then

|Fu(t)| ≤
1∫
0
G(t, s)|h(s)||f(s, u(s), u′(s))| ds+ |A(hf)|x(t) + |B(hf)| y(t)

≤
1∫
0
G(t, s)|h(s)| (k1|u(s)|p1 + k2|u′(s)|p2 + k3) ds

+MA((k1∥u∥p1 + k2∥u∥p2 + k3))x(t)

+MB((k1∥u∥p1 + k2∥u∥p2 + k3))y(t)

≤ M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) , t ∈ [0, 1].

This completes the proof.

Suppose

(H4) g ∈ C([0, 1], (0,∞)) be such that

∫ 1

0
((1 − s)2 + 2(1 − s) + 2) g(s) ds ≤ A1,

for some constant A1 > 0.

Lemma 5.5. Suppose that (H1)-(H4) hold. Let u ∈ E be such that ∥u∥ ≤ B. Then

∥S2u∥ ≤ A1(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B),

|(S2u)′′(t)| ≤ A1(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B), t ∈ [0, 1].

Proof. Using Lemma 5.4, we arrive at

|S2u(t)| =
∣∣∣∣∫ t

0
(t− s)2g(s)S1u(s) ds

∣∣∣∣
≤

∫ t

0
(t− s)2g(s)|S1u(s)| ds

≤
∫ t

0
(t− s)2g(s)|Fu(s) − u(s)| ds

≤
∫ 1

0
(1 − s)2g(s)(|Fu(s)| + |u(s)|) ds

≤ (M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B)
∫ 1

0
(1 − s)2g(s) ds

≤ A1(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B), t ∈ [0, 1],
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and

|(S2u)′(t)| = 2
∣∣∣∣∫ t

0
(t− s)g(s)S1u(s) ds

∣∣∣∣
≤ 2

∫ t

0
(t− s)g(s)|S1u(s)| ds

≤ 2
∫ t

0
(t− s)g(s)|Fu(s) − u(s)| ds

≤ 2(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B)
∫ 1

0
(1 − s)g(s) ds

≤ A1(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B), t ∈ [0, 1],

Hence,

∥S2u∥ ≤ A1(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B).

and

|(S2u)′′(t)| =
∣∣∣∣2 ∫ t

0
g(s)S1u(s) ds

∣∣∣∣
≤ 2

∫ t

0
g(s)|S1u(s)| ds

≤ 2(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B)
∫ 1

0
g(s) ds

≤ A1(M (1 + (a+ b)A + (c+ d)B) (k1B
p1 + k2B

p2 + k3) +B), t ∈ [0, 1].

This completes the proof.

5.3.4 Main results

In the sequel, suppose that the constant A1 which appears in (H4) satisfies the following

inequality:

A1 (M (1 + (a+ b)A + (c+ d)B) (k1R
p1
1 + k2R

p2
1 + k3) +R1) < 2L1, (5.7)

where L1, R1 are such that r1 < L1 < R1 with r1 a positive constant.

The first main existence criteria is the following:

Theorem 5.4. If the assumptions (H1)-(H4) and the inequality (5.7) are satisfied, the problem

(5.3) has at least three positive solutions u1, u2, u3 ∈ C1([0, 1]) ∩ C2((0, 1)) that satisfy

0 ≤ max{max
t∈[0,1]

|u1(t)|, max
t∈[0,1]

|u′
1(t)|} ≤ r1,
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r1 < max{max
t∈[0,1]

|u2(t)|, max
t∈[0,1]

|u′
2(t)|} < L1,

L1 < max{max
t∈[0,1]

|u3(t)|, max
t∈[0,1]

|u′
3(t)|} ≤ R1.

Proof. Let

P = {u ∈ E : u ≥ 0 on [0, 1]}.

For u ∈ P let us define the operators T and S as follows:

Tu(t) = (1 + µε)u(t) − εL1,

Su(t) = −εS2u(t) − µεu(t) − εL1, t ∈ [0, 1],

where µ is a large enough positive constant and ε ≥ 4
µ
L1
r1
. Note that any fixed point u ∈ P of

the operator T + S is a solution to the problem (5.3). Define

U1 = Pr1 = {u ∈ P : ∥u∥ < r1},

U2 = PL1 = {u ∈ P : ∥u∥ < L1},

U3 = PR1 = {u ∈ P : ∥u∥ < R1},

ϱ = 1
µ

(A1(M (1 + (a+ b)A + (c+ d)B) (k1R
p1
1 + k2R

p2
1 + k3) +R1] + 2L2 + µR1)

Ω = Pϱ = {v ∈ P : ∥v∥ ≤ ϱ}.

1. For u1, u2 ∈ Ω, we have

∥Tu1 − Tu2∥ = (1 + µε)∥u1 − u2∥,

then T is an expansive operator with constant 1 + µε.

So, (I − T ) : E → E is Lipschitz invertible with constant 1
µε

.

2. As in [93, Lemma 2.5], by applying Ascoli-Arzelà compactness criterion, we can prove that

the operator S is completely continuous then S is 0-set contraction.

3. We prove that S(PR1) ⊂ (I − T )(Ω). Let u ∈ PR1 be arbitrarily chosen. Set

v = S2u+ 2L1 + µu

µ
·
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It is clear that v ≥ 0 and

∥v∥ = ∥ 1
µ
(S2u+ 2L1 + µu)∥

≤ 1
µ
(∥S2u∥ + 2L1 + µ∥u∥)

≤ 1
µ

(A1(M (1 + (a+ b)A + (c+ d)B) (k1R
p1
1 + k2R

p2
1 + k3) +R1) + 2L1 + µR1)

= ϱ.

Therefore v ∈ Ω and

(I − T )v = −ϵ(µv − L1)

= −ϵ(µ(S2u+2L1+µu
µ

) − L1)

= −ϵ(S2u+ µu+ L1)

= Su.

Thus, S(PR1) ⊂ (I − T )(Ω).

4. Assume that there exist ϱ
r1

≥ λ1 ≥ ε + 1 and x1 ∈ ∂Pr1 (λ1x1 ∈ Ω leads to λ1 ≤ ϱ
∥x1∥) such

that

Sx1 = (I − T )(λ1x1).

Then

−εS2x1 − µεx1 − εL1 = −εµλ1x1 + εL1,

or equivalently

S2x1 = µ(λ1 − 1)x1 − 2L1.

So
∥S2x1∥ = ∥µ(λ1 − 1)x1 − 2L1∥

≥ µ(λ1 − 1)∥x1∥ − 2L1

≥ µ(λ1 − 1)r1 − 2L1

≥ µεr1 − 2L1

≥ 2L1.

Hence, a contradiction with one of the results of Lemma 5.5 and (5.7).

5. Assume that for any u0 ∈ P∗, there exist λ0 ≥ 0 and x0 ∈ ∂PL1 ∩ (Ω + λ0u0) such that

Sx0 = (I − T )(x0 − λ0u0).
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Then

−ε(S2x0 + µx0 + L1) = −ε(µ(x0 − λ0u0) − L1),

or equivalently

S2x0 = −(λ0µu0 + 2L1).

So

∥S2x0∥ = ∥λ0µu0 + 2L1∥ ≥ 2L1,

which is a contradiction.

6. Assume that there exist ϱ
R1

≥ λ2 ≥ ε+ 1 and x2 ∈ ∂PR1 such that

Sx2 = (I − T )(λ2x2).

Then

S2x2 = (λ2 − 1)µx2 − 2L1.

So
∥S2x2∥ = ∥µ(λ1 − 1)x2 − 2L1∥

≥ µ(λ2 − 1)R1 − 2L1

≥ µεR1 − 2L1

≥ µεr1 − 2L1

≥ 2L1,

which is a contradiction.

Therefore all conditions of Theorem 5.1 hold for w = 0. Hence, the problem (5.3) has at least

three solutions u1, u2 and u3 in P so that

0 ≤ ∥u1∥ < r1 < ∥u2∥ < L1 < ∥u3∥ ≤ R1.

Now, we discuss the existence of countably many positive solutions for the problem (5.3).

If we replace the inequality (5.7) by the following one

A1 (M (1 + (a+ b)A + (c+ d)B) (k1R
p1
n + k2R

p2
n + k3) +Rn) < 2L1, (5.8)
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where n ∈ N∗ fixed and for i ∈ {1, . . . , n}, Li, Ri ∈ (0,∞) are such that ri < Li < Ri with

ri > Ri−1, i ≥ 2, and by using similar arguments as in the proof of Theorem 5.4, we can prove

the following generalized existence criteria:

Theorem 5.5. If the assumptions (H1)-(H4) and the inequality (5.8) are satisfied, the problem

(5.3) has at least 2n+ 1 positive solutions uk ∈ C1([0, 1]) ∩ C2((0, 1)), k ∈ {1, . . . , 2n+ 1} that

satisfy

0 ≤ ∥u1∥ < r1 < ∥u2∥ < L1 < ∥u3∥ ≤ R1,

rk ≤ ∥u2k∥ < Lk < ∥u2k+1∥ ≤ Rk, for k ∈ {2, . . . , n}.

Proof. In this case for i ∈ {1, . . . , n}, we consider

U
(i)
1 = Pri

= {u ∈ P : ∥u∥ < ri},

U
(i)
2 = PLi

= {u ∈ P : ∥u∥ < Li},

U
(i)
3 = PRi

= {u ∈ P : ∥u∥ < Ri},

ϱ = 1
µ

(A1(M (1 + (a+ b)A + (c+ d)B) (k1R
p1
n + k2R

p2
n + k3) +Rn) + 2L1 + µRn)

Ω = Pϱ = {u ∈ P : ∥u∥ ≤ ϱ}.

5.3.5 Examples

Let m = 4,

a = 4, b = 2, c = 4, d = 2,

a1 = 1
4 , a2 = 1

2 , b1 = 1
3 , b2 = 1

2 ,

ξ1 = 1
4 , ξ2 = 1

2 ,

We consider the following BVP

−u′′(t) = h(t)f(t, u(t), u′(t)), 0 < t < 1,

4u(0) − 2u′(0) = 1
4u(1

4) + 1
2u(1

2),

4u(1) + 2u′(1) = 1
3u(1

4) + 1
2u(1

2).

(5.9)
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Where

h(t) = 1√
t

+ 1√
1 − t

, t ∈ (0, 1),

f(t, y, z) = 1
102 t+ 1

104 y + 1
104 z

1
5 , t ∈ [0, 1], y ∈ [0,∞), z ∈ (−∞,∞).

Let also,

r1 = 1, L1 = 15, R1 = 20,

r2 = 25, L2 = 35, R2 = 40,

p1 = 1
2 , p2 = 1

2 , A1 = 1
2 ,

k1 = 1
3 , k2 = 1

3 , k3 = 1
3 ,

By some calculations, we have

ρ = 32, ∆ = −823.66,

and the conditions (H1) and (H3) hold.

We have,

G(s, s) = − 1
32(4s+ 2)(4s− 6).

Let

M =
∫ 1

0
G(s, s)h(s) ds = 53

30 ·

Then

A1((M + (a+ b)A + (c+ d)B) (k1R
p1
2 + k2R

p2
2 + k3) +R2) = 25, 4559 < 2L1.

Let g(s) = s+1
10 , s ∈ [0, 1]. Then

∫ 1

0
((1 − s)2 + 2(1 − s) + 2) g(s) ds = 1

10

∫ 1

0
((1 − s)2 + 2(1 − s) + 2) s ds = 19

40 = 0, 475 ≤ A1.

Then all assumptions of Theorem 5.5 for n = 2. Hence, the problem (5.9) has at least five

positive solutions u1, u2, u3, u4, u5 such that

0 ≤ ∥u1∥ ≤ 1,

1 < ∥u2∥ < 10,
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10 < ∥u3∥ ≤ 20.

25 ≤ ∥u4∥ < 35,

35 < ∥u5∥ ≤ 40.

5.4 Comparison and concluding remarks

In this section we compare the results obtained in this work with those obtained by Zhang-

Sun [94] and Zhang [93].

(1) In this work the nonlinear term f takes values on R and it is involved with the first order

derivative, in addition f satisfies a general growth condition. The nonlinearity considered

in [94] and [93] takes values in [0,∞) and supposed piecewise bounded.

(2) The problem studied here is endowed with a singular term given by h which takes values

on R and the integral of h on (0, 1) do not have to be finite as in [93], it is sufficient that∫ 1
0 G(s, s)h(s) ds < ∞.

(3) The conditions a >
m−2∑
i=1

ai, c >
m−2∑
i=1

bi in both [94] and [93] are not of interest in our work.

(4) In this work, sufficient conditions for the existence of countably many positive solutions

for the problem (5.3) are established. However, in [94] and [93] the authors have only

discussed the existence of three positive solutions.

(5) Our approach has been applied to prove the existence of finite multiple positive solutions

as well as the existence of a countable many positive solutions for the problem (5.3), and

it can be used to study the existence of multiple solutions for other classes of differential

equations covered by various types of boundary value problems.



6 Fixed point theorem on functional intervals for
sum of two operators and application to ODEs

The results of this chapter are obtained by Bouchal and Mebarki in [21].

6.1 Introduction

This chapter is a part of generalization of some results in fixed point theory on cones of

Banach spaces for the sum of two operators. More precisely, we are interested in the theorems

of functional types and their applications in the study of boundary value problems. Note that,

Leggett and Williams [63] were the originators of this class of fixed point theorems. Since

then, the literature has had a significant number of functional fixed point theorems developed

promptly in different directions, especially those due to Avery et al. [13, 10, 7, 6, 12]. From

a mathematical point of view, when functionals are used in applications instead of norms, we

get more freedom and flexibility.

Recently, in [34] a new direction of research in the theory of fixed point in ordered Banach

spaces for the sum of two operators was opened. Then, several fixed point theorems, including

Leggett-Williams theorems type in cones, have been developed (see [16, 19, 41, 42, 43, 72]).

These theorems have been applied to discuss the existence of positive solutions for various types

of boundary and/or initial value problems (see [39, 41, 43]).

In [11], Avery et al. have developed an extension of the compression-expansion fixed point

theorem of functional type by generalizing the underlaying set using functional-type interval

117
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which are sets of the form

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b},

where A is an open subset of a cone P . Motivated by this work, we improve this result by

considering the sum of two operators T + F , where I − T is Lipschitz invertible and F a k-set

contraction. The main tool used is a recent fixed point index theory in cones for this class of

mappings developed by Mebarki et al. in [34, 43].

6.2 Fixed point theorem on functional intervals

In the sequel, we will establish an extension of [11, Theorem 3.1] which guarantees the

existence of at least one nontrivial positive solution to some equations of the form Tx+Fx = x

posed on cones of a Banach space.

Definition 6.1. A map α is said to be a nonnegative continuous concave functional on a cone

P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y),

for all x, y ∈ P and t ∈ [0, 1].

A map β is said to be a nonnegative continuous convex functional on a cone P of a real Banach

space E if β : P → [0,∞) is continuous and

β(tx+ (1 − t)y) ≤ tβ(x) + (1 − t)β(y),

for all x, y ∈ P and t ∈ [0, 1].

Let A be a relatively open subset of a cone P , α be a nonnegative continuous concave

functional on P ; β be a nonnegative continuous convex functional on P and let a, b be two

positive real numbers, then the set

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b},
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is an interval of functional type.

Note that A(β, b, α, a) is a subset of P(β, b, α, a) defined by:

P(β, b, α, a) = {x ∈ P : a < α(x) and β(x) < b}.

Theorem 6.1. Let E be a Banach space; P ⊂ E be a cone, A be a relatively open subset of

P, α and ψ are nonnegative continuous concave functionals on P and β and θ are nonnegative

continuous convex functionals on P.

Let T : Ω ⊂ P → E be a mapping such that (I − T ) is Lipschitz invertible with constant γ > 0

and F : P → E be a k-set contraction mapping with 0 ≤ k < γ−1.

Assume that there exist four nonnegative numbers a, b, c and d, and ω0 ∈ A(β, b, α, a) ∩

A(θ, c, ψ, d) such that

(I − T )−1ω0 ∈ A(β, b, α, a), (6.1)

λF (A(β, b, α, a)) + (1 − λ)ω0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1], (6.2)

(H1) A(β, b, α, a) is bounded, and ∂A ∩ A(β, b, α, a) = ∅;

(H2) if x ∈ P with α(x) = a and either θ(x) ≤ c or θ(Tx+ Fx) > c, then α(Tx+ Fx) > a;

(H3) if x ∈ P with β(x) = b and either ψ(Tx+ Fx) < d or ψ(x) ≥ d, then β(Tx+ Fx) < b;

(H4) if x ∈ P with α(x) = a, then α(Tx+ ω0) > a and θ(Tx+ ω0) ≤ c;

(H5) if x ∈ P with β(x) = b, then β(Tx+ ω0) < b and ψ(Tx+ ω0) ≥ d;

then T + F has at least one fixed point x∗ ∈ A(β, b, α, a).

Proof. Claim 1: Tx+ Fx ̸= x for all x ∈ ∂A(β, b, α, a).

The functional interval A(β, b, α, a) = A ∩ P(β, b, α, a), then by the condition (H1),

∂A(β, b, α, a) = A ∩ ∂P(β, b, α, a).

Suppose that there exist z0 ∈ ∂A(β, b, α, a) such that Tz0 + Fz0 = z0. Since z0 ∈

∂P(β, b, α, a) so either β(z0) = b or α(z0) = a.
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Case 1: β(z0) = b.

If ψ(Tz0 + Fz0) < d or ψ(z0) = ψ(Tz0 + Fz0) ≥ d, then by the condition (H3),

β(Tz0 + Fz0) < b.

Hence we have that Tz0 + Fz0 ̸= z0.

Case 2: α(z0) = a.

If θ(z0) = θ(Tz0 + Fz0) ≤ c or θ(Tz0 + Fz0) > c, then by the condition (H2),

α(Tz0 + Fz0) > a.

Hence we have that Tz0 + Fz0 ̸= z0.

Therefore, T + F does not have any fixed points on ∂A(β, b, α, a).

Claim 2: Let H : [0, 1] × A(β, b, α, a) → E be defined by

H(t, x) = tFx+ (1 − t)ω0.

We have

(i) H : [0, 1] × A(β, b, α, a) → E is continuous and H(t, x) is uniformly continuous

in t with respect to x ∈ A(β, b, α, a),

(ii) H([0, 1] × A(β, b, α, a)) ⊂ (I − T )(Ω),

(iii) H(t, .) : A(β, b, α, a) → E is a k-set contraction with 0 ≤ k < γ−1 for all

t ∈ [0, 1],

(iv) Tx+H(t, x) ̸= x, for all t ∈ [0, 1] and x ∈ ∂A(β, b, α, a) ∩ Ω.

Properties (i), (ii) and (iii) follow directly from the definition of H and the conditions on

F and T . We only check (iv).

Suppose the contrary, that is, there would exists (t1, x1) ∈ [0, 1] × ∂A(β, b, α, a) ∩ Ω

such that Tx1 + H(t1, x1) = x1. Since x1 ∈ ∂A(β, b, α, a) = A ∩ ∂P(β, b, α, a), so

x1 ∈ ∂P(β, b, α, a) we have that β(x1) = b or α(x1) = a.
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(1) β(x1) = b. Either ψ(Tx1 + Fx1) < d or ψ(Tx1 + Fx1) ≥ d.

If ψ(Tx1 + Fx1) < d, by the condition (H3) we have that β(Tx1 + Fx1) < b, thus

from the convexity of β and the condition (H5) it follows that

b = β(x1) = β(Tx1 +H(t1, x1))

= β(Tx1 + t1Fx1 + (1 − t1)ω0)

= β(t1(Tx1 + Fx1) + (1 − t1)(Tx1 + ω0))

≤ t1β(Tx1 + Fx1) + (1 − t1)β(Tx1 + ω0)

< t1b+ (1 − t1)b

= b,

which is a contradiction.

If ψ(Tx1 + Fx1) ≥ d, we have that ψ(x1) ≥ d since

ψ(x1) = ψ(Tx1 +H(t1, x1))

= ψ(Tx1 + t1Fx1 + (1 − t1)ω0)

= ψ(t1(Tx1 + Fx1) + (1 − t1)(Tx1 + ω0))

≥ t1ψ(Tx1 + Fx1) + (1 − t1)ψ(Tx1 + ω0)

≥ d,

and thus by the condition (H3) we have that β(Tx1 + Fx1) < b, which is the

same contradiction we arrived at in the previous subcase.

(2) α(x1) = a. Either θ(Tx1 + Fx1) ≤ c or θ(Tx1 + Fx1) > c.

If θ(Tx1 + Fx1) > c, by the condition (H2) we have that α(Tx1 + Fx1) > a, thus

from the concavity of α and the condition (H4), it follows that

a = α(x1) = α(Tx1 +H(t1, x1))

= α(Tx1 + t1Fx1 + (1 − t1)ω0)

= α(t1(Tx1 + Fx1) + (1 − t1)(Tx1 + ω0))
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≥ t1α(Tx1 + Fx1) + (1 − t1)α(Tx1 + ω0)

> a,

which is a contradiction.

If θ(Tx1 + Fx1) ≤ c, we have that θ(x1) ≤ c since

θ(x1) = θ(Tx1 +H(t1, x1))

= θ(Tx1 + t1Fx1 + (1 − t1)ω0)

= θ(t1(Tx1 + Fx1) + (1 − t1)(Tx1 + ω0))

≤ t1θ(Tx1 + Fx1) + (1 − t1)θ(Tx1 + ω0)

≤ c,

and thus by the condition (H2) we have that α(Tx1 + Fx1) > a, which is the

same contradiction we arrived at in the previous subcase.

Therefore, Tx+H(t, x) ̸= x, for all t ∈ [0, 1] and x ∈ ∂A(β, b, α, a) ∩ Ω.

By the homotopy invariance property and the normality property of the fixed point index i∗

i∗(T + F,A(β, b, α, a),P) = i∗(T + ω0,A(β, b, α, a),P) = 1.

Then T + F has at least one fixed point in A(β, b, α, a).

6.3 Application to ODE’s

In this section, we will investigate the equation

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1), (6.3)

with boundary conditions

x(0) = x′(1) = 0, (6.4)
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where f : (0, 1) × [0,∞) → [0,∞) is a continuous function.

The Green’s function G for −x′′(t) = 0, t ∈ (0, 1) satisfying (6.4) is given by

G(t, s) =


t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1,

= min{t, s}, (t, s) ∈ [0, 1] × [0, 1].

Note that, if x is a fixed point of the operator S defined by

Sx(t) =
∫ 1

0
G(t, s)f(s, x(s)) ds,

then x is a solution of the boundary value problem (6.3)-(6.4).

6.3.1 Assumptions

Suppose that

(H1) The functions f satisfy Ã ≤ f(t, x(t)) ≤ a1(t) + a2(t)|x(t)|p, for t ∈ [0, 1] and a1, a2 ∈

C([0, 1]), 0 < a1(t), a2(t) ≤ A for t ∈ [0, 1], where p,A and Ã are nonnegative constants.

(H2) There exist positive constants ε, η, a, b, c, d, C1, C2, C3, ρ and R such that

ε ∈ (0, 1), η ∈ (0, 1), 2b ≤ min(R, ρ),

A(1 + bp) < b, (6.5)

max
(
a

2 ,
d

C2

)
< C1 < min

(
b,

c

C3

)
,

0 ≤ C3

(
(1 − ε) 1

Λ(a− C1) + εC1

)
≤ c, C2 ((1 − ε)Λb+ εC1) ≥ d,

where Λ = min( η
8 Ã,C1)
ρ

·

Remark 6.1. As in [72, Remark 4.1], we can discuss the validity of the inequality (6.5).
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6.3.2 Main result

Our main result in this section is as follows.

Theorem 6.2. If (H1) and (H2) hold, then the problem (6.3)-(6.4) has at least one positive

solution x ∈ C([0, 1]) such that a < min
t∈[0,1]

x(t) + 2C1 and max
t∈[0,1]

x(t) < b.

To prove this result we will use theorem 6.1.

Proof. Define the Banach space E = C([0, 1]) with the norm ∥x∥ = max
t∈[0,1]

|x(t)| and

P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1], min
t∈[ η

8 ,η]
x(t) ≥ Λ∥x∥}, Ω = {x ∈ P : ∥x∥ ≤ ρ} .

For x ∈ P define the convex functionals

β(x) = max
t∈[0,1]

|x(t)|, θ(x) = C3 max
t∈[0,1]

|x(t)|.

For x ∈ P define the concave functionals

α(x) = min
t∈[0,1]

x(t) + 2C1, ψ(x) = C2 min
t∈[ η

8 ,η]
x(t).

For x ∈ P define the operators

Tx(t) = (1 − ε)x(t) + (ε− 1)C1

Fx(t) = ε
∫ 1

0
G(t, s)f(s, x(s)) ds+ (1 − ε)C1, t ∈ [0, 1].

Note that if x ∈ P is a fixed point of the operator T + F then it is a positive solution to the

problem (6.3)-(6.4).

We set

A = P ∩B(0, R) = {x ∈ P : ∥x∥ < R},

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b}.

1. For x, y ∈ P , we have

|(I − T )x(t) − (I − T )y(t)| = ε|x(t) − y(t)|, t ∈ [0, 1].
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Hence

∥(I − T )x− (I − T )y∥ = ε∥x− y∥.

Thus, I − T : P → E is Lipschitz invertible with a constant γ = 1
ε
.

2. Since f is continuous, then F is continuous. Also, for x ∈ P , we have

|Fx(t)| = |ε
∫ 1

0
G(t, s)f(s, x(s)) ds+ C1 − εC1|

≤ ε(a1(t) + a2(t)|x(t)|p) + C1

≤ εA(1 + |x(t)|p) + C1

≤ εA(1 + ∥x∥p) + C1 < ∞, t ∈ [0, 1]

and

|(Fx)′(t)| = |ε
∫ 1

0

∂G(t, s)
∂t

f(s, x(s)) ds+ C1 − εC1|

≤ |ε(a1(t) + a2(t)|x(t)|p) + C1|

≤ εA(1 + |x(t)|p) + C1

≤ εA(1 + ∥x∥p) + C1 < ∞, t ∈ [0, 1].

Consequently, by Ascoli-Arzelà compactness criteria, F : P → E is a completely contin-

uous operator. Then F : P → E is a 0-set contraction.

3. Let ω0 ≡ C1 ∈ A(β, b, α, a) ∩ A(θ, c, ψ, d) be a constant, we have

(I − T )x = εx+ (1 − ε)C1

(I − T )−1x = x− C1

ε
+ C1, x ∈ P .

Hence,

∣∣∣(I − T )−1ω0(t)
∣∣∣ =

∣∣∣(I − T )−1C1

∣∣∣ =
∣∣∣∣C1 − C1

ε
+ C1

∣∣∣∣
= C1

< R, t ∈ [0, 1],

and

min
t∈[ η

8 ,η]
((I − T )−1ω0(t)) = C1 − C1

ε
+ C1 = C1 ≥ ΛC1.
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Also,

α((I − T )−1ω0) = min
t∈[0,1]

((I − T )−1ω0(t)) + 2C1 = min
t∈[0,1]

((I − T )−1C1) + 2C1

>
C1 − C1

ε
+ 3C1

> a,

and

β((I − T )−1ω0) = max
t∈[0,1]

|(I − T )−1ω0(t)| = max
t∈[0,1]

∣∣∣∣C1 − C1

ε
+ C1

∣∣∣∣
= C1

< b.

Then

(I − T )−1ω0 ∈ A(β, b, α, a).

4. We have A(β, b, α, a) ⊂ P ∩B(0, b), then A(β, b, α, a) is bounded and by construction of

A, ∂A ∩ A(β, b, α, a) = ∅. So, the condition (H1) holds.

5. Let x ∈ P with α(x) = a and either θ(x) ≤ c or θ(Tx+ Fx) > c. Then

α(Tx+ Fx) = min
t∈[0,1]

(Tx(t) + Fx(t)) + 2C1

> a.

Consequently, the condition (H2) holds.

6. Let x ∈ P with β(x) = b and either ψ(Tx+ Fx) < d or ψ(x) ≥ d. Then

β(Tx+ Fx) = max
t∈[0,1]

|Tx(t) + Fx(t)|

= max
t∈[0,1]

∣∣∣∣(1 − ε)x(t) + ε
∫ 1

0
G(t, s)f(s, x(s)) ds

∣∣∣∣
≤ (1 − ε) max

t∈[0,1]
|x(t)| + ε max

t∈[0,1]

∫ 1

0
|G(t, s)||f(s, x(s))| ds

≤ (1 − ε)b+ εA(1 + ∥x∥p)

≤ (1 − ε)b+ εA(1 + bp)

< b.

Consequently, the condition (H3) holds.
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7. Let x ∈ P with α(x) = a. Then

α(Tx+ ω0) = min
t∈[0,1]

(Tx(t) + C1) + 2C1

= min
t∈[0,1]

((1 − ε)x(t) + (ε− 1)C1 + C1) + 2C1

≥ (1 − ε) min
t∈[0,1]

x(t) + εC1 + 2C1

= (1 − ε)(a− 2C1) + (ε+ 2)C1

> a,

and

θ(Tx+ ω0) = C3 max
t∈[0,1]

|Tx(t) + C1|

= C3 max
t∈[0,1]

|(1 − ε)x(t) + εC1|

≤ C3

(
(1 − ε) max

t∈[0,1]
|x(t)| + εC1

)

≤ C3

(
(1 − ε) 1

Λ min
t∈[ η

8 ,η]
x(t) + εC1

)

≤ C3

(
(1 − ε) 1

Λ(a− C1) + εC1

)
≤ c.

Consequently, the condition(H4) holds.

8. Let x ∈ P with β(x) = b. Then

β(Tx+ ω0) = max
t∈[0,1]

|Tx(t) + C1|

= max
t∈[0,1]

|(1 − ε)x(t) + εC1|

≤ (1 − ε) max
t∈[0,1]

|x(t)| + εC1

≤ (1 − ε)b+ εC1

< b,
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and

ψ(Tx+ ω0) = C2 min
t∈[ η

8 ,η]
(Tx(t) + C1)

= C2

(
min
t∈[ η

8 ,η]
(1 − ε)x(t) + εC1

)

≥ C2

(
(1 − ε) min

t∈[ η
8 ,η]

x(t) + εC1

)

≥ C2 ((1 − ε)Λ∥x∥ + εC1)

≥ C2 ((1 − ε)Λb+ εC1)

≥ d.

Consequently, the condition (H5) holds.

9. Let λ ∈ [0, 1] is fixed and x̃ ∈ A(β, b, α, a) is arbitrary chosen. Set

w(t) = λ
∫ 1

0
G(t, s)f(s, x̃(s)) ds+ (1 − λ)C1.

We have that w(t) ≥ 0, t ∈ [0, 1], and

w(t) ≤ A(1 + |x̃(t)|p) + (1 − λ)C1 < A (1 + bp) + b, t ∈ [0, 1].

So,

∥w∥ < A (1 + bp) + b ≤ ρ,

and

min
t∈[ η

8 ,η]
w(t) = min

t∈[ η
8 ,η]

(
λ
∫ 1

0
G(t, s)f(s, x̃(s)) ds+ (1 − λ)C1

)
≥ λ

η

8 Ã+ (1 − λ)C1

≥
min(η8 Ã, C1)

ρ
ρ

≥ Λ∥w∥.
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Therefore ω ∈ Ω. Also, we have

λF x̃(t) + (1 − λ)ω0 = λ
[
ε
∫ 1

0
G(t, s)f(s, x̃(s)) ds+ (1 − ε)C1

]
+ (1 − λ)C1

= λε
∫ 1

0
G(t, s)f(s, x̃(s)) ds+ λ(1 − ε)C1 + (1 − λ)C1

= λε
∫ 1

0
G(t, s)f(s, x̃(s)) ds− λεC1 + C1

= λε
∫ 1

0
G(t, s)f(s, x̃(s)) ds− λεC1 + C1 − εC1 + εC1

= ε
(
λ
∫ 1

0
G(t, s)f(s, x̃(s)) ds+ (1 − λ)C1

)
+ (1 − ε)C1

= εw(t) + (1 − ε)C1

= (I − T )w(t), t ∈ [0, 1].

Then

λF (A(β, b, α, a)) + (1 − λ)ω0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1].

Hence, all the conditions of Theorem 6.1 are satisfied, and it follows that the operator T+F has

at least one fixed point x∗ ∈ A(β, b, α, a), which is a positive solution of the problem (6.3)-(6.4).

This completes the proof.

6.3.3 Example

Let,

ε = η = 1
2 , a = 8, b = 10, c = 12, d = 1

3 , C1 = 8, C2 = C3 = 1,

A = 2, Ã = 1
4 ,

p = 1
2 , R = 25, ρ = 25.

So,

2b = 20 ≤ min(ρ,R) = 25, A(1 + bp) = 2(1 + 10 1
2 ) = 8.3246 < b = 10,

max
(
a

2 ,
d

C2

)
= max

(
4, 1

3

)
= 4 < C1 = 8 < min

(
b,

c

C3

)
= min(10, 12) = 10,

Λ =
min(η8 Ã, C1)

ρ
= 6.25 × 10−4,

C3

(
(1 − ε) 1

Λ(a− C1) + εC1

)
= 4 ≤ c = 12,
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C2 ((1 − ε)Λb+ εC1) = 4.0031 ≥ d = 1
3 .

Thus, (H2) holds. Now, by our main result, it follows that the boundary value problem:
x′′(t) = t+1

4 + 2
√
x(t)

1+x(t)4 , t ∈ (0, 1),

x(0) = x′(1) = 0,

has at least one positive solution.

6.4 Concluding remarks

(1) In this chapter, we have obtained a new functional fixed point theorem on intervals of

functional type, using the fixed point index approach for the sum of two operators on

cones of a Banach space.

(2) We discussed existence of at least one positive solution to the problem (6.3)-(6.4) using the

developed fixed point theorem for the sum of two operators, The solutions are localized

in functional type intervals of a cone A(β, b, α, a) instead of sets of the form P(β, b, α, a).



7 Fourth order singular eigenvalue boundary value
problems

The results of this chapter are obtained by Bouchal, Mebarki and Georgiev in [23].

7.1 Introduction

In this chapter, we investigate the following fourth order singular differential equation with

parameter with boundary conditions at two points

v(4)(t) = λg(t)f(v(t)), 0 < t < 1, (7.1)

v(0) = a1, v(1) = a2, v′′(0) = a3, v′′(1) = a4, (7.2)

where ai ≥ 0, i ∈ {1, 2, 3, 4}, are given constants. Assume that we have the two following

hypotheses:

(H1) f ∈ C([0,∞)),

0 < A1 ≤ f(x) ≤ A2 +
k∑
j=0

Bjx
j, x ∈ [0,∞),

A2 ≥ A1 > 0 and Bj ≥ 0, j ∈ {0, . . . , k}, k ∈ N0, are given constants.

(H2) g : (0, 1) → R+ is continuous and may be singular at t = 0 or/and t = 1 , g ̸≡ 0 on (0, 1)

and
1∫
0
s(1 − s)g(s)ds < ∞.

Fourth order two point boundary value problems (BVPs for short) have been received much

attention by many authors due to their importance in physics. Usually, they are essential in

describing a vast class of elastic deflections with several types of boundary conditions such as

131
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whose ends are simply-supported at 0 and 1 (v(0) = v(1) = v′′(0) = v′′(1) = 0). A great

number of research has been devoted to investigate the existence of positive solutions to this

class of problems, see [15, 14, 17, 49, 65, 68, 77, 90, 95] and the references therein. The authors

in [15] discussed the existence, uniqueness and multiplicity of positive solutions to the following

eigenvalue BVP by means of fixed point theorem and degree theory

v(4)(t) = λf(t, (v(t)), 0 < t < 1, (7.3)

v(0) = v(1) = v′′(0) = v′′(1) = 0, (7.4)

where λ > 0 is a constant and f : [0, 1] × [0,∞) → [0,∞) is continuous. In [90] by applying

a Krasnosel’skii fixed point theorem of cone expansion and compression the author obtained

the existence and multiplicity results of equation (7.3) with boundary conditions v(0) = v(1) =

v′(0) = v′(1) = 0. In the literature, there are few papers devoted to study fourth order

singular eigenvalue problems. In the case when ai = 0, i ∈ {1, 2, 3, 4}, the BVP (7.1)-(7.2) is

investigated in [36] when f ∈ C([0,∞)), f > 0 on [0,∞), f is nondecreasing on [0,∞) and

there exist δ > 0, m ≥ 2 such that f(u) > δum, u ∈ [0,∞), and g ∈ C(0, 1), g > 0 on (0, 1) and

0 <
1∫
0
s(1 − s)g(s)ds < ∞. In [36], Feng and Ge used the method of upper and lower solutions

and the fixed point index to discuss the existence of positive solutions.

The approach used in this chapter is to rewrite the BVP (7.1)-(7.2) into a perturbed integral

equation for which we search for solutions in a suitable subset of a Banach space by means of

recent fixed point theorem of Birkhoff-Kellogg type developed by Calamai and Infante in [27].

Note that this fixed point theorem has been applied very recently to discuss the solvability of

fourth order retarded equations in [26].

7.2 Birkhoff-Kellogg type fixed point theorem in cones

The possible existence of a positive eigenvalue plays an important role in the study of

nonlinear operators. One of the classical results concerning the existence of positive eigenvalues

for compact mappings originates from the work of Birkhoff and Kellogg [20], and it appears in

the publication of Schauder ([79], page 180 ) as follows:
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Theorem 7.1. (The Birkhoff-Kellogg Theorem) Let B be the closed unit ball of an infinite

dimensional Banach space E and F : ∂B → E a compact continuous single valued function

such that F (∂B) has a positive distance from 0. Then F has an invariant direction, i.e. there

is x ∈ ∂B and λ > 0 such that F (x) = λx.

Krasnosel’skii and Ladyzenskii introduced the Birkhoff-Kellogg type theorem in cones in

1954 [60], and recently on 2022 [27] Calmai and Infante give another version of this theorem

on translate of cone, which is a kind of complement result of the interesting topological results

proved by Djebali and Mebarki in [33].

Let (X, ∥.∥) be a real Banach space. For a given y ∈ X, we consider the translate of a cone K,

namely

Ky = K + y = {x+ y : x ∈ K}.

Given an open bounded subset D of X we denote DKy = D ∩ Ky, an open subset of Ky. The

following theorem will be used in Chapter 7 to prove the existence of at least one positive

solution to a fourth order boundary value problem with parameter.

Theorem 7.2. [27, Corollary 2.4] Let (X, ∥.∥) be a real Banach space, K ⊂ X be a cone, and

D ⊂ X be an open bounded set with y ∈ DKy and DKy ̸= Ky. Assume that F : DKy → K is a

completely continuous map and assume that

inf
x∈∂DKy

∥Fx∥ > 0.

Then there exist x∗ ∈ ∂DKy and λ∗ ∈ (0,∞) such that

x∗ = y + λ∗F (x∗).

7.3 Auxiliary results

Let

y1(t) = (a1 + a4

6 )(1 − t) + a2t+ a3

6 (1 − t)3 + a4

6 (t3 − 1) + a3

6 (t− 1), t ∈ [0, 1].
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We have

0 ≤ y1(t) ≤ a1 + a2 + a3 + a4, t ∈ [0, 1],

and

y′
1(t) = −a1 − a4

6 + a2 − 1
2a3(1 − t)2 + 1

2a4t
2 + a3

6 , t ∈ [0, 1].

y′′
1(t) = a3(1 − t) + a4t, t ∈ [0, 1].

Hence,

y1(0) = a1, y1(1) = a2, y′′
1(0) = a3, y′′

1(1) = a4.

Set

y(t) = −y1(t), t ∈ [0, 1].

Now, consider the BVP

u(4) = λg(t)f(u(t) − y(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(7.5)

where f and g satisfy (H1) and (H2), respectively.

Let X = C([0, 1]) be endowed with the norm ∥u∥ = max
t∈[0,1]

|u(t)|. Define the cone

K = {u ∈ X : u(t) ≥ 0, t ∈ [0, 1]}.

Since 0 ≤
∫ 1

0 s(1 − s)g(s)ds < ∞, there exists a nonnegative constant C0 such that

∫ 1

0
s(1 − s)g(s)ds = C0.

Because g ̸≡ 0 on (0, 1), there are C1 > 0, s0 ∈ (0, 1) and ϵ > 0 such that s0 − ϵ, s0 + ϵ ∈ (0, 1)

and

g(s) ≥ C1, s ∈ (s0 − ϵ, s0 + ϵ).

Define

G(t, s) =


t(1 − s)2s−s2−t2

6 , 0 ≤ t ≤ s ≤ 1,

s(1 − t)2t−t2−s2

6 , 0 ≤ s ≤ t ≤ 1.

We have

0 ≤ G(t, s) ≤ 1
6 s(1 − s) ≤ 1

6 , 0 ≤ t, s ≤ 1,
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Note that

∫ 1

0
G(s0 + ϵ, s)g(s)ds ≥

∫ s0+ϵ

s0−ϵ
G(s0 + ϵ, s)g(s)ds

≥ C1

∫ s0+ϵ

s0−ϵ
G(s0 + ϵ, s)ds

= C1

∫ s0+ϵ

s0−ϵ
s(1 − s0 − ϵ)2(s0 + ϵ) − (s0 + ϵ)2 − s2

6 ds

≥ 2
3C1ϵ(s0 − ϵ)2(1 − s0 − ϵ)2

> 0.

For u ∈ X, define the operator

Tu(t) =
∫ 1

0
G(t, s)g(s)f(u(s) − y(s))ds, t ∈ [0, 1].

In [36], it is proved that any fixed point u ∈ X of the operator λT is a solution to the BVP

(7.5). Fix C2 > a1 + a2 + a3 + a4 arbitrarily. Define

D = {u ∈ X : ∥u∥ < C2}.

We have that D is an open bounded set in X, y ∈ D and DKy = D ∩ Ky ̸= Ky, with

Ky = K + y = {x + y : x ∈ K}.. Note that for any u ∈ DKy , we have u(t) = y(t) + z(t),

t ∈ [0, 1], for some z ∈ K, and so u(t) − y(t) = z(t) ≥ 0, t ∈ [0, 1], and

f(u(t) − y(t)) ≤

A2 +
k∑
j=0

Bj(u(t) − y(t))j


≤
(
A2 +

k∑
j=0

Bj2j
(
|u(t)|j + |y1(t)|j

))

≤
(
A2 +

k∑
j=0

Bj2j
(
Cj

2 + (a1 + a2 + a3 + a4)j
))

, t ∈ [0, 1].

7.4 Main result

Our main result is as follows

Theorem 7.3. Suppose that (H1) and (H2) hold. Then there is a λ∗ > 0 such that the BVP

(7.1)-(7.2) has at least one positive solution for λ = λ∗.

To prove this result we will use the Theorem 7.2.



CHAPTER 7. FOURTH ORDER SINGULAR EIGENVALUE BOUNDARY VALUE PROBLEMS 136

Proof. Since f ∈ C([0,∞)) and g ∈ C(0, 1), we have that T : DKy → K is a continuous

operator. Next, for u ∈ DKy , we have

Tu(t) =
∫ 1

0
G(t, s)g(s)f(u(s) − y(s))ds

≤ 1
6

A2 +
k∑
j=0

Bj2j
(
Cj

2 + (a1 + a2 + a3 + a4)j
)∫ 1

0
s(1 − s)g(s) ds

= 1
6C0

A2 +
k∑
j=0

Bj2j
(
Cj

2 + (a1 + a2 + a3 + a4)j
) , t ∈ [0, 1],

whereupon

∥Tu∥ ≤ C0

A2 +
k∑
j=0

Bj2j
(
Cj

2 + (a1 + a2 + a3 + a4)j
) .

Then, T (DKy) is uniformly bounded. Moreover, for u ∈ DKy and t1, t2 ∈ [0, 1], t1 < t2, the

Lebesgue dominated convergence theorem guarantees that

|Tu(t1) − Tu(t2)| ≤
1∫
0

|G(t1, s) −G(t2, s)|g(s)f(u(s) − y(s))ds ds

≤
(
A2 +

k∑
j=0

Bj2j
(
Cj

2 + (a1 + a2 + a3 + a4)j
)) 1∫

0
g(s)|G(t1, s) −G(t2, s)|ds

→ 0, t1 → t2,

Therefore, T (DKy) is equicontinuous. According to the Ascoli-Arzelà compactness criterion, we

conclude that the operator T : DKy → K is completely continuous.

Observe that, for u ∈ ∂DKy ,

max
t∈[0,1]

|Tu(t)| ≥ Tu(s0 + ϵ) =
∫ 1

0
G(s0 + ϵ, s)g(s)f(u(s) − y(s))ds

≥ A1

∫ 1

0
G(s0 + ϵ, s)g(s)ds

≥ 2
3A1C1ϵ(s0 − ϵ)2(1 − s0 − ϵ)2

> 0.

Consequently

inf
u∈∂DKy

∥Tu∥ ≥ 2
3A1C1ϵ(s0 − ϵ)2(1 − s0 − ϵ)2 > 0.

Now, applying Theorem 7.2, we conclude that there are λ∗ ∈ (0,∞) and u∗ ∈ ∂DKy such that

u∗(t) = y(t) + λ∗
∫ 1

0
G(t, s)g(s)f(u∗(s) − y(s))ds, t ∈ [0, 1].
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Let

v∗(t) = u∗(t) − y(t), t ∈ [0, 1].

Then

v∗(0) = u∗(0) − y(0) = a1,

v∗(1) = u∗(1) − y(1) = a2,

v∗′′(0) = u∗′′(0) − y′′(0) = a3,

v∗′′(1) = u∗′′(1) − y′′(1) = a4

and

v∗(t) = λ
∫ 1

0
G(t, s)g(s)f(v∗(s))ds, t ∈ [0, 1],

whereupon

v∗(4)(t) = λg(t)f(v∗(t)), 0 < t < 1.

Since u∗ ∈ ∂DKy , we have that u∗(t) = y(t) + z∗(t), t ∈ [0, 1], for some z∗ ∈ K, and then

v∗(t) = u∗(t) − y(t) = z∗(t) + y(t) − y(t) = z∗(t) ≥ 0, t ∈ [0, 1].

7.5 Example

Consider the following BVP

u(4) = λ
( 1

2 −t)2

t(1−t)

(
1 + 1

1+(u(t))2

)
, t ∈ (0, 1),

u(0) = 0, u(1) = 1, u′′(0) = 1
2 , u′′(1) = 1.

(7.6)

Here

f(x) = 1 + 1
1 + x2 , x ∈ [0,∞), g(t) =

(
1
2 − t

)2

t (1 − t) , t ∈ (0, 1),

and

a0 = 0, a1 = 1, a2 = 1
2 , a3 = 1.

By our main result, it follows that the BVP (7.6) has at least one positive solution.
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7.6 Concluding remarks

(1) In our main result we do not require any monotonicity assumptions on f , and we do not

assume that f is either superlinear or sublinear.

(2) In the particular case ai = 0, i ∈ {1, 2, 3, 4}, our main result is valid in the case when f

is decreasing on [0,∞), while the corresponding result in [36] is not valid. For instance,

f(x) = 1 + 1
1+x2 , x ∈ [0,∞), satisfies (H1) for A1 = 1, A2 = 2, Bj = 0, j ∈ {0, . . . , k},

and f is decreasing on [0,∞), whereupon it does not satisfy the conditions in [36]. Also,

the conditions for g in [36] are more restrictive than (H2). For instance, g(t) = ( 1
2 −t)2

t(1−t) ,

t ∈ (0, 1), satisfies (H2) and does not satisfy the conditions in [36] because g
(

1
2

)
= 0.

Thus, we can consider the particular case of our main result, ai = 0, i ∈ {1, 2, 3, 4}, as a

complementary result to the result in [36].
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A Sum and integral formulations

One of the methods used to study boundary value problems is the fixed point theory, where

we transform the problem into a fixed point equation for a suitable operator. If L is a linear

operator and the equation Lu(t) = h(t),∀t ∈ [a, b] is associated to appropriate homogeneous

linear boundary value conditions, has only the trivial solution u ≡ 0 for h ≡ 0, then the operator

L is invertible and its inverse operator L−1 is characterized by an integral kernel, G(t, s) called

Green’s function and the solution of the considered problem is then given by

u(t) = L−1f(t) =
∫ b

a
G(t, s)h(s) ds, t ∈ [a, b].

George Green (1793 − 1841) was the first who introduced such kernels to solve boundary value

problems. The principle advantage of Green’s function is the fact that it is independent of the

function h called usually the second member. To get the exact solution for each case of h we

only need to calculate the corresponding integral, and so we have the expression that we are

looking for.

The sum and integral formulations of the boundary value problems studied in this thesis are

presented in this section; the first subsection is devoted to difference boundary value problems,

and the second to differential boundary value problems.

139
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A.1 Sum formulation of problems (3.1) and (4.7)-(4.8)

I. Impulsive difference equations with linear two point boundary conditions

Consider the following boundary value problem for first impulsive difference equations at

two point boundary conditions

∆u(n) + cu(n) = σ(n), n ̸= nk, n ∈ J,

∆u(nk) = −Lku(nk) + Ik(η(nk)) + Lkη(nk), k ∈ {1, . . . , p},

Mu(0) −Nu(T ) = C,

(7)

where 0 < c < 1, Lk, C, k ∈ {1, . . . , p}, are given constants, η ∈ E1, σ ∈ C(J), where E1 is

the set of real-valued functions defined on J , where ∆ is the forward difference operator, i.e.,

∆u(n) = u(n + 1) − u(n), J = [0, T ] ∩ N, T ∈ N, N is the set of natural numbers, M,N > 0,

Ik ∈ C(R), k ∈ {1, . . . , p}, {nk}pk=1 are fixed impulsive points such that

0 < n1 < n2 < . . . < np < T, p ∈ N.

The solution of the problem (7) can be represented in the form

u(n) = C(1 − c)n
M −N(1 − c)T +

T−1∑
j=0,j ̸=nk

G(n, j)σ(j)

+
∑

0<nk≤T−1
G(n, nk) ((c− Lk)u(nk) + Ik(η(uk)) + Lkη(uk)) , (8)

where

G(n, j) = 1
M −N(1 − c)T


M (1−c)n

(1−c)j+1 , 0 ≤ j ≤ n− 1,

N (1−c)T +n

(1−c)j+1 , n ≤ j ≤ T − 1.

Proof. Set y(n) = u(n)
(1−c)n , n ∈ J. From (7), we see that y(n) satisfies

y(n+ 1) = y(n) + σ(n)
(1−c)n+1 , n ̸= nk, n ∈ J,

∆y(nk) = c−Lk

1−c y(nk) + Ik(η(nk))+Lkη(nk)
(1−c)n

k
+1 , k ∈ {1, . . . , p},

My(0) − Ny(T )(1 − c)T = C,

(9)

From (9), we have

y(n) = y(0) +
n−1∑

j=0,j ̸=nk

σ(j)
(1 − c)j+1 +

∑
0<nk≤n−1

(
c− Lk
1 − c

y(nk) + Ik(η(uk)) + Lkη(uk)
(1 − c)nk+1

)
. (10)
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Let n = T in (10). Then we get

y(n) = y(0) +
T−1∑

j=0,j ̸=nk

σ(j)
(1 − c)j+1 +

∑
0<nk≤T−1

(
c− Lk
1 − c

y(nk) + Ik(η(uk)) + Lkη(uk)
(1 − c)nk+1

)
. (11)

From the boundary conditions y(T ) = My(0)−C
N(1−c)T , we obtain

y(n) = C

M −N(1 − c)T + N(1 − c)T
M −N(1 − c)T

[
T−1∑

j=0,j ̸=nk

σ(j)
(1 − c)j+1

+
∑

0<nk≤T−1

(
c− Lk
1 − c

y(nk) + Ik(η(uk)) + Lkη(uk)
(1 − c)nk+1

)]
(12)

Substituting (12) into (10) and using y(n) = u(n)
(1−c)n , n ∈ J, we see that u satisfies (8). If u is a

solution of (8) then u satisfies the boundary value problem (7).

II. Second order difference equation

Consider the following second order difference equation with Dirichlet boundary conditions

△2u(k) + f(k) = 0, k ∈ {0, 1, . . . , N}, N ∈ N, N > 1.

u(0) = u(N + 2) = 0.
(13)

where f : {0, ..., N + 2} → [0,∞) is a continuous function.

∆2 the second forward difference operator which acts on u by △2u(k) = u(k+ 2) − 2u(k+ 1) +

u(k), k ∈ {0, 1, . . . , N}.

From Theorem 2.16 the boundary value problem (13), is equivalent to the sum equation

u(k) =
N+1∑
l=1

H(k, l)f(l), k ∈ {0, . . . , N + 2},

with

H(k, l) =


−y(N+2,l)
y1(N+2) y1(k), k ≤ l

y(k, l) − y(N+2,l)
y1(N+2) y1(k), k ≥ l

for any l ∈ {0, ..., N + 2}.

The Cauchy function

We have that u1(k) = 1, u2(k) = k are two linearly independent solution of the second order

difference equation ∆2u(k) = 0. In fact,

W (u1, u2) =

∣∣∣∣∣∣∣∣
1 k

1 k + 1

∣∣∣∣∣∣∣∣ = 1 ̸= 0.
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Then the Cauchy function is given by

y(k, l) =

∣∣∣∣∣∣∣∣
u1(l) u2(l)

u1(k) u2(k)

∣∣∣∣∣∣∣∣
p(l)

∣∣∣∣∣∣∣∣
u1(l) u2(l)

u1(l + 1) u2(l + 1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 l

1 k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 l

1 l + 1

∣∣∣∣∣∣∣∣
= k − l

l + 1 − l
= k − l.

The equation ∆2u(k) = 0 can be written in the form (2.45) with p(k) = 1 and q(k) = 0.

y1(k) = k is a solution to the following initial problem

∆2y1(k) = 0,

y1(0) = 0,

y1(1) = 1,

(14)

Consequently, From (2.51), we have

H(k, l) =


−y(N+2,l)
y1(N+2) y1(k) = − (N+2−l)

N+2 k, for k ≤ l

y(k, l) − y(N+2,l)
y1(N+2) y1(k) = (k − l) − (N+2−l)

N+2 k = − l(N+2−k)
N+2 , for k ≥ l.

(15)

Hence, the Green’s function associated to the operator ∆2u(k) = 0 with Dirichlet boundary

conditions is given by

H(k, l) = 1
N + 2


−k(N + 2 − l), k ∈ {0, . . . , l},

−l(N + 2 − k), k ∈ {l + 1, . . . , N + 2},
(16)

with (k, l) ∈ [0, N + 2] × [1, N + 1].

A.2 Integral formulation of problems (5.3) and (7.1)-(7.2)

I. Generalized Strum Liouville multipoint boundary value problem

Consider the following Sturm-Liouville multipoint boundary value problem

(P1)



(p(t)u′(t))′ − q(t)u(t) = −v(t), 0 < t < 1,

au(0) − bu′(0) =
m−2∑
i=1

aiu(ξi),

cu(1) + du′(1) =
m−2∑
i=1

biu(ξi),

(17)
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where a, b, c, d ∈ [0,∞), 0 < ξ1 < ξ2 < ... < ξm−2 < 1 (m ≥ 3), ai, bi ∈ [0,∞) are constants for i =

1, 2, . . . ,m− 2 and ρ = ac+ ad+ bc > 0 and p ∈ C1([0, 1], (0,∞)), q ∈ C([0, 1], (0,∞)).

Let x(t) = at+ b and y(t) = d+ c(1 − t) for t ∈ [0, 1] be the solutions to the problems



(p(t)x′(t))′ − q(t)x(t) = 0 0 < t < 1,

x(0) = b,

x′(0) = a,

(p(t)y′(t))′ − q(t)y(t) = 0 0 < t < 1,

y(1) = d,

y′(1) = −c,

Set

∆ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aix(ξi) ρ−
m−2∑
i=1

aiy(ξi)

ρ−
m−2∑
i=1

bix(ξi) −
m−2∑
i=1

biy(ξi)

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

ρ = p(0)

∣∣∣∣∣∣∣∣
y(0) x(0)

y′(0) x′(0)

∣∣∣∣∣∣∣∣ .
Since x and y are linearly independent then by Liouville formula, we have that

∀t ∈ [0, 1] ρ = p(t)

∣∣∣∣∣∣∣∣
y(t) x(t)

y′(t) x′(t)

∣∣∣∣∣∣∣∣ .
If ∆ ̸= 0, then the problem (P1) has a unique solution given by the following integral equation

u(t) =
∫ 1

0
G(t, s)v(s) ds+ A(v)x(t) + B(v) y(t), t ∈ [0, 1], (18)

where

G(t, s) = 1
ρ


y(t)x(s), 0 ≤ s ≤ t ≤ 1,

x(t)y(s), 0 ≤ t ≤ s ≤ 1,

= 1
ρ


(d+ c(1 − t))(as+ b), 0 ≤ s ≤ t ≤ 1,

(at+ b)(d+ c(1 − s)), 0 ≤ t ≤ s ≤ 1,
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with

A(v) := 1
∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds ρ−
m−2∑
i=1

aiy(ξi)

m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds −
m−2∑
i=1

biy(ξi)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (19)

B(v) := 1
∆

∣∣∣∣∣∣∣∣∣∣∣∣∣

−
m−2∑
i=1

aix(ξi)
m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds

ρ−
m−2∑
i=1

bix(ξi)
m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (20)

In the sequel, we show that the function u given in (18) is a solution of the problem (P1) only

if A and B are as in (19) and (20), respectively. Let

u(t) =
∫ 1

0
G(t, s)v(s) ds+ Ax(t) + B y(t), t ∈ [0, 1], (21)

be a solution of the problem (P1) , then we have that ∀t ∈ [0, 1]

u(t) =
∫ t

0

1
ρ
x(s)y(t)v(s) ds+

∫ 1

t

1
ρ
x(t)y(s)v(s) ds+ Ax(t) + B y(t),

p(t)u′(t) = p(t)y′(t)
∫ t

0

1
ρ
x(s)v(s) ds+ p(t)x′(t)

∫ 1

t

1
ρ
y(s)v(s) ds+ A p(t)x′(t) + B p(t)y′(t),

and
(p(t)u′(t))′ = (p(t)y′(t))′ ∫ t

0
1
ρ
x(s)v(s) ds+ p(t)y′(t)1

ρ
x(t)v(t)

+(p(t)x′(t))′ ∫ 1
t

1
ρ
y(s)v(s) ds− p(t)x′(t)1

ρ
y(t)v(t)

+A (p(t)x′(t))′ + B (p(t)y′(t))′,

so that

(p(t)u′(t))′ − q(t)u(t) = p(t)
ρ

(y′(t)x(t) − x′(t)y(t)) v(t)

((p(t)y′(t))′ − q(t)y(t))
∫ t

0
1
ρ
x(s)v(s) ds

+ ((p(t)y′(t))′ − q(t)y(t))
∫ 1
t

1
ρ
y(s)v(s) ds

+A ((p(t)y′(t))′ − q(t)y(t)) + B ((p(t)y′(t))′ − q(t)y(t))

= −p(t)
ρ

(−y′(t)x(t) + x′(t)y(t)) v(t)

= −p(t)
ρ

∣∣∣∣∣∣∣∣
y(t) x(t)

y′(t) x′(t)

∣∣∣∣∣∣∣∣ v(t)

= −p(t)
ρ
v(t)

∣∣∣∣∣∣∣∣
y(0) x(0)

y′(0) x′(0)

∣∣∣∣∣∣∣∣
p(0)
p(t)

= −v(t).
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Since

u(0) = x(0)
∫ 1

0

1
ρ
y(s)v(s) ds+ Ax(0) + B y(0),

u′(0) = x′(0)
∫ 1

0

1
ρ
y(s)v(s) ds+ Ax′(0) + B y′(0),

then

B (ay(0) − by′(0)) =
m−2∑
i=1

ai

[∫ 1

0
G(ξi, s)v(s) ds+ Ax(ξi) + B y(ξi)

]
. (22)

Since

u(1) = y(1)
∫ 1

0

1
ρ
x(s)v(s) ds+ Ax(1) + B y(1),

u′(1) = x′(1)
∫ 1

0

1
ρ
x(s)v(s) ds+ Ax′(1) + B y′(1),

then

A (cx(1) + dx′(1)) =
m−2∑
i=1

bi

[∫ 1

0
G(ξi, s)v(s) ds+ Ax(ξi) + B y(ξi)

]
. (23)

From (22) and (23), we obtain that
[
−

m−2∑
i=1

aix(ξi)
]

A +
[
ρ−

m−2∑
i=1

aiy(ξi)
]

B =
m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds[
ρ−

m−2∑
i=1

bix(ξi)
]

A −
[
m−2∑
i=1

biy(ξi)
]

B =
m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds

From the first equation we have

A =

m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds−
[
ρ−

m−2∑
i=1

aiy(ξi)
]

B[
−

m−2∑
i=1

aix(ξi)
] (24)

we replace in the second equation

[
ρ−

m−2∑
i=1

bix(ξi)
] [m−2∑

i=1
ai

∫ 1
0 G(ξi,s)v(s) ds−

[
ρ−

m−2∑
i=1

aiy(ξi)
]

B[
−

m−2∑
i=1

aix(ξi)
] ]

−
[
m−2∑
i=1

biy(ξi)
]

B =
m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds

so, [
ρ−

m−2∑
i=1

bix(ξi)
]
m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds−
[
ρ−

m−2∑
i=1

bix(ξi)
] [
ρ−

m−2∑
i=1

aiy(ξi)
]

B

−
[
−

m−2∑
i=1

aix(ξi)
] [

m−2∑
i=1

biy(ξi)
]

B =
[
−

m−2∑
i=1

aix(ξi)
]
m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds

then, [
ρ−

m−2∑
i=1

bix(ξi)
]
m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds−
[
−

m−2∑
i=1

aix(ξi)
]
m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds

= B
([
ρ−

m−2∑
i=1

bix(ξi)
] [
ρ−

m−2∑
i=1

aiy(ξi)
]

−
[
m−2∑
i=1

aix(ξi)
] [

m−2∑
i=1

biy(ξi)
])
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then

−
[
ρ−

m−2∑
i=1

bix(ξi)
]
m−2∑
i=1

ai
∫ 1

0 G(ξi, s)v(s) ds+
[
−

m−2∑
i=1

aix(ξi)
]
m−2∑
i=1

bi
∫ 1

0 G(ξi, s)v(s) ds

= B
(

−
[
ρ−

m−2∑
i=1

bix(ξi)
] [
ρ−

m−2∑
i=1

aiy(ξi)
]

+
[
−

m−2∑
i=1

aix(ξi)
] [

−
m−2∑
i=1

biy(ξi)
])

this is implies that B and satisfy (20), and replacing B in (24) we obtain that B is as (20).

We can easily verify that the function u given in (18) is a solution of the problem (P1) if A and

B are defined by (19) and (20), respectively.

II. Fourth order differential equation at two points

Consider the following fourth order differential equation at two point

u(4)(t) = ϕ(t), t ∈ [0, 1], (25)

with two point boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0. (26)

We set v = u′′, then the problem is reduced to the following second order problems with Dirich-

let boundary conditions

(A1)


v′′(t) = ϕ(t) 0 < t < 1,

v(0) = v(1) = 0.
(A2)


u′′(t) = v(t) 0 < t < 1,

u(0) = u(1) = 0.

Clearly the solutions v and u of the above problems depend on ϕ.

The solution of the problems (A1) and (A2) can be represented respectively in the forme

v(x) = −
∫ 1

0
G1(x, t)ϕ(t) dt,

u(x) = −
∫ 1

0
G1(x, t)v(t) dt,

where G1(x, t) : [0, 1] × [0, 1] → R denotes the Green function for the differential operator −u′′

with homogenous Dirichlet boundary condition

G1(x, t) =


x(1 − t), 0 ≤ x ≤ t ≤ 1,

t(1 − x), 0 ≤ t ≤ x ≤ 1.
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Then
u(t) = −

∫ 1
0 G1(x, t)v(t) dt = −

∫ 1
0 G1(x, t)

(
−
∫ 1

0 G1(t, s)ϕ(s) ds
)
dt

=
∫ 1

0
∫ 1

0 G1(x, t)G1(t, s)ϕ(s) ds dt

=
∫ 1

0

(∫ 1
0 G1(x, t)G1(t, s) dt

)
ϕ(s) ds

=
∫ 1

0 G(t, s)ϕ(s) ds

where G : [0, 1] × [0, 1] → R

G(t, s) =
∫ 1

0
G1(x, t)G1(t, s) dt =


t(1 − s)2s−s2−t2

6 , 0 ≤ t ≤ s ≤ 1,

s(1 − t)2t−t2−s2

6 , 0 ≤ s ≤ t ≤ 1.



General conclusion

This thesis is a contribution dedicated to the fixed point theory for the sum of two operators

on cones and its applications. Our work was motivated, in one hand, by the fact that many

problems arising in applied sciences can be formulated as fixed point equation for the sum of

two operators in appropriate spaces. In the other hand, it is motivated by the fact that the

positivity of a solutions which may represent a density, a temperature, a velocity, a gravity,

and more, is a very important issue in applications.

In this thesis, several fixed point theorems of Krasnosel’skii type and Leggett-Williams type

are extended to the class of mappings of the form T + S, where (I − T ) is Lipschitz invertible

and S is a k-set contraction. The arguments are based upon recent fixed point index theory

developed by Mebarki et al. in [34, 43]. The obtained results and other recent ones are used to

investigate the existence of positive solutions for various classes of boundary value problems for

difference and differential equations, and then new existence criteria are obtained. As prospects

this new approach can be used to study other kinds of boundary value problems for differential,

partial differential, fractional and differences equations, and even for dynamic equations on

times scales. This approach can also adopted in:

• Metric fixed point theory.

• Random fixed point theory.

• Discrete fixed point theory (Tarski’s fixed point theorem).
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ABSTRACT

In this work, we are concerned with the study of existence, multiplicity, po-
sitivity, and localization of solutions various kinds of boundary value problems for
difference and differential equations. The approach used is the fixed point theory for
the sum of two operators on the retracts of Banach spaces. Firstly, we developed
new fixed point results for a class of k-set contractions perturbed by an operator
T such that (I − T ) is Lipschitz invertible on cones as well as on the translates
of cones. Then, we used these results to obtain new criteria that ensures existence,
multiplicity and localization of positive solutions for diverse classes of boundary va-
lue problems. Most of the obtained theoretical criteria are illustrated by numerical
examples.

Key words : Fixed point ; sum of operators ; fixed point index ; cone ; Banach
space ; boundary value problems ; difference equations ; differential equations.

RÉSUMÉ

Dans ce travail, nous nous intéressons à l’étude de l’existence, la multiplicité,
la positivité et la localisation des solutions de divers types de problèmes aux limites
associés à des équations aux différences et à des équations différentielles. L’approche
utilisée est la théorie du point fixe pour la somme de deux opérateurs sur les rétractés
des espaces de Banach. D’une part, nous avons développé de nouveaux théorèmes
de points fixes pour une classe une k-contractions d’ensembles perturbées par un
opérateur T tel que (I − T ) est Lipschitz inversible sur les cônes ainsi que sur les
translations des cônes. D’autre part, nous avons utilisé ces résultats pour obtenir
de nouveaux critères qui assurent l’existence, la multiplicité et la localisation de
solutions positives pour différentes classes de problèmes aux limites. La plupart des
critères théoriques obtenus sont illustrés par des exemples numériques.

Mots clés : Point fixe ; somme d’opérateurs ; indice de point fixe ; cône ; espace
de Banach ; problèmes aux limites ; équations aux différences ; équations différen-
tielles.
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