

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique Université Abderrahmane MIRA- Bejaia Faculté de Technologie Département de Génie Civil

Mémoire de fin d'études

En Vue d'Obtention du Diplôme de master en génie civil Option : matériaux et structures

Thème:

Etude d'un bâtiment (R+9+Vide Sanitaire) à usage d'habitation

Contreventé par un système mixte

(voiles-portiques)

Réalisé par : Encadré par :

M^r: SENOUNE Idir
M^r: A.LAICHAOUI

M^r: AMROUN Karim

Membres de jury:

Mr: LARABAT Ziane Ahmed

Melle: MEZIANI Meriem

Promotion 2016/2017

Remerciements

Ce jour marque la fin d'une longue période d'étude à l'université de Bejaia.

Au terme de notre formation en générale et notre projet de fin d'étude.

En particulier, nous tenons à remercier, le Dieu miséricordieux qui nous a donné la force d'achever ce modeste travail.

Un grand merci à nos familles qui nous ont toujours encouragés et soutenus durant toutes nos études

Un grand merci à notre promoteur Mr : A. Laichaoui

Nos sincères remerciements vont également à tous les enseignants du génie civil De l'université de Bejaia.

Nos gratitudes à tous les membres du jury qui font l'honneur de juger notre Travail.

Un grand merci à toutes personnes ayant contribués à l'élaboration de ce Mémoire, De près ou de loin.

IDIR & KARIM

Dédicaces

Je dédie ce modeste travail à :

- ♣Mes parents qui m'ont soutenu et encouragé durant toute ma vie.
- ♣Mes frères : Massinissa, Chafik, Kouçayla et mes sœurs Dalila et nyssa et à toute la famille AMROUN.
- ♣A Mon binôme : Idir
- **♣***Mes amis sans exception.*
- \blacksquare Toute la promotion 2017.

AMROUN KARIM

Dédicaces

Je dédie ce modeste travail, avec tout ce que j'ai de sentiment de respect et d'amour, a mon premier sourire et ma source de tendresse, Ma chère mère et l'épaule solide, l'œil attentif compréhensif et la personne la plus digne de mon estime et respect, Mon chère père. C'est à ces deux chères que je me mets à genoux, c'est à eux que je dis merci et je vous aime.

A mes chères sœurs : Ryma, Wissam.

A mes chéres ancles : Karim, Samir, Farid et BOB.

A mon binôme: Karim.

Enfin je dédie ce travaille a ma grande famille et a tout mes amis particulièrement Sofiane ainsi a une personne qui est chére a mes yeux.

SENOUNE IDIR

Table des matières

Introduction générale

Chapitre I Généralités

	page
I.1.Introduction	1
I.2. Présentation de l'ouvrage	1
I.3. Caractéristiques géométriques de la structure	1
I.4. Présentation de la structure	1
I.4.1. Eléments structuraux	2
I.5. Caractéristiques du sol d'assise	3
I.6. Caractéristiques mécaniques des matériaux	3
I.6.1.Le béton	3
I.6.2. L'acier :	5
I.7. Règlementset normes utilisés : Les règlements et normes utilisés sont	7
I.8. Conclusion:	7
Chapitre II Pré dimensionnement des éléments	
II.1.Introduction	8
II.2.Les Planchers	
II.2.1.Planchers à corps creux	
II.2.1.1. Pré dimensionnement des poutrelles	
II.3.Les dalle pleins	
II.4. Ascensseur	
II.5.Les escaliers	
II.5.1. Définition	12
II.5.2. Dimensionnement	13
II.6.Les poutres	
II.6.1.Poutres principale	
II.6.2.Poutres secondaire	
II.7.Les voiles	
II.8.Les poteaux	
II.9. Evaluation des charges et surcharges sur les planchés	
II.9.1.Plancher des étages courants	

II.9.2.Dalle pleine	18
II.9.3.Les murs extérieurs (double parois en brique creuse)	18
II.9.4.Les escaliers	19
II.10.Descente de charge	19
II.10.1.Descente de charge pour le poteau (A)	20
II.10.2.Descente de charge pour le poteau (B)	22
II.10.3.La loi de dégression des charges d'exploitation	23
II.10.4. Vérifications des conditions de RPA99/2003	30
II.11. Conclusion	30
Chapitre III Etude des éléments secondaires	
III.1.Introduction:	31
III.2.Les planchers	31
III.2.1.Planchers à corps creux	31
III.2.1.1.Etude des poutrelles	31
III.2.1.1.1.Methode de calcul	31
III.2.1.1.1.a. Méthode forfaitaire	31
III.2.1.1.1.b. Méthode CAQUOT	34
III.2.1.2.Feraillage des poutrelles	43
III.2.1.3.Vérificaion a l'ELU	45
III.2.1.4. Vérification a l'ELS	46
III.2.1.5.Schéma de feraillage des poutrelles	51
III.2.1.6. Feraillage de la dalle de compression	51
III.3.Planchers à dalles pleines	52
III.3.1. Panneau DP1	52
III.3.1.1.Feraillage DP1	54
III.3.1.2.Vérification a l'ELU	55
III.3.1.3. Vérification a l'ELS	55
III.3.1.4.Schémas de feraillage DP1	58
III.3.2.Panneau DP2	58
III.3.2.1.Feraillage DP2	60
III.3.2.2.Vérification a l'ELU	61
III.3.2.3.Vérification a l'ELS	61
III.3.2.4.Schémas de feraillage DP2	63

III.3.3.Panneau DP3	64
III.3.3.1.Feraillage DP3	64
III.3.3.2. Vérification a l'ELU	65
III.3.3.3. Vérification a l'ELS	65
III.3.3.4.Schémas de feraillage DP3	66
III.4. Etudes des escliers	66
III.4.1.Escalier type1	66
III.4.1.1.Feraillage	70
III.4.1.2. Vérification de la section a l'ELU	72
III.4.1.3. Vérification de la section a l'ELS	73
III.4.1.4.Schémas de feraillage d'escalier type1	80
III.4.2.Escalier type2	80
III.4.2.1.Feraillage	85
III.4.2.2.Vérification a l'ELU	86
III.4.2.3. Vérification a l'ELS	87
III.4.2.4.Schémas de feraillage d'escalier type2	88
III.5.Etude de la poutre paliére	88
III.5.1.Pré-dimenssionnement	88
III.5.2.Calcul de la poutre paliére	89
III.5.3. Feraillage a la flexion simple	89
III.5.4. Vérification a l'ELU	90
III.5.5.Vérification a l'ELS	93
III.5.6. Schémas de feraillage de la poutre paliére	94
III.6.Etude de la poutre de chainage	94
III.6.1.Pré-dimenssionnement	94
III.6.2.Feraillage de la poutre chainage	95
III.6.3. Vérification a l'ELU	96
III.6.4.Vérification a l'ELS	96
III.6.5. Schémas de feraillage de la poutre de chainage	97
III.7.Etudes de l'assenceur	97
III.7.1.Etude de la dalle de l'assenseur	98
III.7.1.1. Cas d'une charge répartie	99
III.7.1.1.Calcul du Feraillage	100

III.7.1.1.2.Vérification a l''ELU	101
III.7.1.1.3. Vérification a l''ELS	102
III.7.1.1.4. Shéma de feraillage de la dalle	103
III.7.1.2. Cas d'une charge concentrée	103
III.7.1.2.1.Calcul du feraillage	105
III.7.1.2.2.Vérification a l''ELU	106
III.7.1.2.3. Vérification a l''ELS	107
III.7.1.2.4. Shéma de feraillage de la dalle	109
III.8. Conclusion	109
Chapitre IV Etude dynamique	
IV.1.Introduction	
IV.2.Méthodes de calcul	
IV.2.1.Méthode statique équivalente	
IV.2.2.Méthodes d'analyse modale spectrale	
IV.2.3.Modilisation de la structure	115
IV.3.2.1. Période de vibration et taux de participation des masses modales	118
IV.3.2.2.Vérification de la résultante de la force sismique	119
IV.3.2.3. Vérification de l'effort normale réduit	121
IV.3.2.4. Justification vis-à-vis de déplacement	122
IV.3.2.5. Justification vis-à-vis de l'effet P- Δ	
IV.3. Conclusion	125
Chapitre V Etude des éléments structuraux	4.0
V.1.Introduction	
V.2.Étude des poteaux :	
V.2.1.Recommandations du RPA99/2003	
V.2.2.Les sollicitations dans les poteaux	
V.2.3.Calcul de ferraillage	
V.2.4. Vérifications nécessaire	131
V.2.5.Dispositions constructives	134
V.2.6. Schéma de ferraillage des poteaux	136
V.3.Etude des poutres	137

V.3.	1. Recommandations du RPA99/2003	137
V.3.	2. sollicitations et ferraillage des poutres	138
V.3.	3.Vérification nécessaire	141
V.3.	4.Schemas de ferraillages des poutres	146
V.4. Et	ude des voiles	151
V.4.	1.Recommandation du RPA 99/2003	151
V.4.	2.Calcul des sollicitations revenant aux voile	152
V.4.	3.Ferraillage	156
V.4.	3.Schémas de Ferraillage	161
V.5. Conc	clusion	162
	Chapitre VI Etude de L'infrastructure	
VI.1.	Introduction	163
VI.2.	Choix du type de fondation	163
	VI.2.1.Vérification des semelles isolées	163
	VI.2.2.Vérification des semelles filantes	164
	VI.2.Radier général	164
	VI.2.3.1.caractéristique geomitrique de radier	165
	VI.2.3.2.Vérifications nécessaires	166
	VI.2.3.3.Ferraillage du radier général	168
	VI.2.3.4.vérification a l'ELS	169
	VI.2.3.5.Schemas de Ferraillage du radier général	170
	VI.2.3.6.ferraillage du debord	171
	VI.2.3.6.1 vérification a l'ELS	171
	VI.2.3.6.2.Shémas de ferraillage du débord	172
VI.3	3.Etudes des nervures	172
	VI.3.1.Definition des charges qui revient sur les nervures	172
	VI.3.2. Ferraillage de la nervures	175
	VI.3.3. Vérifications nécessaires	175
	VI.3.3. Shémas de ferraillage des nervures	177
VI.4.	etudes des voiles périfériques	178
	VI.4.1. Dimensionnement des voiles	178
	VI.4.2. ferraillage du voile	178
	VI.4.3. Vérifications nécessaires	179

VI.4.4. Shémas du ferraillage voile périférique	181
VI.5.Conclusion	181
Conclusion générale	
Bibliographier	
Annexes	

Liste des figures

Chapitre I Généralités

	Page
Figure I.1. Diagramme des contraintes-déformations du béton	4
Figure I.2Diagramme contrainte déformation de l'acier	6
Chapitre II Pré dimensionnement des éléments	
Figure II.1Coupe transversale d'un plancher a corps creux	8
Figure II.2Schéma d'une poutrelle	9
Figure II.3Dispositions des poutrelles	10
Figure II.4 Schéma de terminologie d'escalier	12
Figure II.5 Schéma statique type1	13
Figure II.6 Schéma statique type 2	14
Figure II.7Schéma satatique d'un voile	16
Figure II.8 vue en plan d'identification des poteaux de la descente de charge	20
Figure II.9 Surface qui revient au Poteau (A)	20
Figure II.10Surface qui revient au poteau (A) toiture	21
Figure II.11surface qui revient au poteau (B)	22
Figure II.12Surface qui revient au poteau (B) toiture	23
Chapitre III Etude des éléments secondaires	
Figure III.1 Diagramme des moments à deux travées	32
Figure III.2 Diagrammes des moments à plusieurs travées	32
Figure III.3 Diagramme des efforts tranchants à deux travées	33
Figure III.4 Diagramme des efforts tranchants à plusieurs travées	33
Figure III.5 schéma statique de la poutrelle type 1	36
Figure III.6 schéma statique de la poutrelle type 3	40
Figure III.7 schémas de ferraillage des poutrelles	51
Figure III.8 Schéma de ferraillage de la dalle de compression	52
Figure III.9 Dalle sur quatre appuis panneau DP1	53
Figure III.10 Schéma de ferraillage de panneau de dalle DP1	58
Figure III.11 Dalle sur trois appuis panneau DP2	58
Figure III.12 Schéma de ferraillage de la dalle DP2	63
Figure III.13 Schéma d'une dalle sur deux appuis DP3	64

Figure III.14 schéma de ferraillages de la dalle DP3	66
Figure III.15 Coupe en élévation de l'escalier (type 1)	66
Figure III.16 Diagramme des moments type 1 (ELU)	69
Figure III.17 Diagramme des efforts tranchant type 1(ELU)	70
Figure III.18 Diagramme des moments type 1 (ELS)	74
Figure III.19 Diagramme des efforts tranchant type 1 (ELS)	75
Figure III.20 Schéma de ferraillage d'escalier (type1)	80
Figure III.21 Coupe en élévation de l'escalier (type 2)	80
Figure III.22 Diagramme des moments type 2 (ELU)	82
Figure III.23 Diagramme des efforts tranchant type 2(ELU)	82
Figure III.24 Diagramme des moments type 2 (ELS)	84
Figure III.25 Diagramme des efforts tranchant type 2 (ELS)	84
Figure III.26 Schéma de ferraillage d'escalier (type2)	88
Figure III.27 Schémas statique de poutre palière	88
Figure III.28 Schéma de ferraillage de la poutre palière	94
Figure III.29 Schéma statique de la poutre de chainage	95
Figure III.30 Schéma de ferraillage de la poutre chainage	97
Figure III.31 Cage d'ascenseur	98
Figure III.32 Ferraillage de la dalle cas charge répartie	103
Figure III.33 Schéma représentant la surface d'impacte.	104
Figure III.34 Schéma de ferraillage de la dalle cas charge concentrée	109
Chapitre IV Etude dynamique	
Figure IV.1 Spectre de réponse Sens X ET Y	115
Figure IV.2 Disposition des voiles	116
Figure IV.3 Vue en plan	116
Figure IV.4 Premier mode de déformation (translation suivant X) (T=0.83sec)	117
Figure IV.5 Deuxième mode de déformation (translation suivant Y) (T=0.78sec)	117
Figure IV.6 Troisième mode de déformation (rotation suivant z) (T= 0.74 sec)	118
Chapitre V Etude des éléments structuraux	
Figure V.1 Zone nodale	127
Figure V.2 Section réduite du béton	132
Figure V.3 Section d'un poteau	133
Figure V.4 Ferraillage des sections des poteaux	135

Figure V.5 Les moments dans la zone nodale	143
Figure V.6 Exemple de dispositions constructives de la poutre principale	146
Figure V.7 Exemple de Schéma de ferraillage d'une poutre principale	146
Figure V.8 Schéma des contraintes	157
Figure V.9 Schéma de ferraillage du voile Vx3 RDC	161
Chapitre VI Etude de L'infrastructure	
Figure VI.1 Semelle filante	164
Figure VI.2 Schéma de ferraillage de radier	170
Figure VI.3 Shéma statique du débord	171
Figure VI.4 Schéma de ferraillage du débord	172
Figure VI.5 Schéma des lignes de rupture du radier	172
Figure VI.6 Schéma des nervures dans le sens x-x	173
Figure VI.7 Schéma des nervures dans le sens y-y	173
Figure VI.8 Section de la nervure à ferraille	175
Figure VI.9 Schéma du voile	178
Figure VI.10 Diagramme des contraintes.	178
Figure VI.11 Schéma de ferraillage du voile périphérique	181

Liste des tableaux

Chapitre I Généralités

	Page
Tableau I.1 fe en fonction du type d'acier	6
Chapitre II Pré dimensionnement des éléments	
Tableau II.1 Charges sur plancher étages courants	18
Tableau II.2 Evaluation des charges sur balcons et dalle plein autour de l'ascenseur.	18
Tableau II.3 Evaluation des charges dans les murs extérieurs.	18
Tableau II.4 Evaluation des charges du palier	19
Tableau II.5 Évaluation des charges de la volée	19
Tableau II.6 Poids propre des poteaux.	20
Tableau II.7 Descente de charge de poteau (A)	24
Tableau II.8 Descente de charge de poteau (B)	25
Tableau II.9 Vérification des poteaux à la compression simple	28
Tableau II.10 Vérification des poteaux au flambement	
Tableau II.11 Dimensions des poteaux	30
Chapitre III Etude des éléments secondaires	
Tableau III.1 Les différents types de poutrelles	35
Tableau III.2 Chargement sur les poutrelles	35
Tableau III.3 Les sollicitations des poutrelles	43
Tableau III.4 Ferraillages de la dalle sur 4 appuis DP1	54
Tableau III.5 Vérification des contraintes en travée DP1	56
Tableau III.6 Vérification des contraintes en appuis DP1	56
Tableau III.7 Vérification de la flèche panneau DP1	57
Tableau III.8 Ferraillages dalle sur trois appuis DP2	60
Tableau III.9 Vérifications des contraintes en travée DP2	62
Tableau III.10 Vérifications des contraintes en appuis DP2	62
Tableau III.11 Vérifications des contraintes en appuis DP2	62
Tableau III.12 Feraillage d'armatures principales de dalle sur deux appuis DP3	64
Tableau III.13 Vérification des contraintes en travée DP3	
Tableau III.14 Résumé des résultats de ferraillage	71
Tableau III.15 Vérification des contraintes de compression dans le béton	77

Tableau III.16 Vérification de la contrainte de béton en travée	87
Tableau III.17 Vérification de la contrainte de béton en appuis	87
Tableau III.18 Ferraillage de la poutre palière	89
Tableau III.19 Ferraillage de la poutre palière à la flexion simple	92
Tableau III.20 Ferraillage de la poutre palière à la torsion	92
Tableau III.21 Ferraillage de poutre palière en flexion et en torsion	93
Tableau III.22 Vérification a la compression de la poutre paliére	93
Tableau III.23 Ferraillage de la poutre de chainage	96
Tableau III.24 Vérification de la contrainte dans le béton	96
Tableau III.25 Vérification de la contrainte dans le béton	103
Tableau III.26 Ferraillage de la dalle cas charge concentrée	105
Tableau III.27 Vérification de la contrainte dans le béton	108
Chapitre IVEtude dynamique	
Tableau IV.1 Valeur de pénalité P _q sens X	113
Tableau IV.2 Valeur de pénalité Pq sens Y	113
Tableau IV.3 Période de vibration et taux de participation des mases modales	118
Tableau IV.4 Vérification de l'effort tranchant à la base	119
Tableau IV.5 Vérification de l'intéraction sous charges vertical	119
Tableau IV.6 Vérification de l'interaction sous charges horizontale	121
Tableau IV.7 Vérification de l'effort normal reduit	122
Tableau IV.8 Vérification des deplacement dans le sens X et Y	122
Tableau IV.9 Vérification de l'effet P-Δ dans le sens (X-X) et (Y-Y)	124
Chapitre V Etude des éléments structuraux	
Tableau V.1 Armateurs minimales et maximales dans les poteaux carrés	127
Tableau V.2 Les sollicitation revenant aux poteaux	129
Tableau V.3 Ferraillage des poteaux	130
Tableau V.4 Calcul des armatures transversales pour les poteaux	131
Tableau V.5 Vérifications du flambement des poteaux	132
Tableau V.6 Vérifications de la contrainte dans le béton des poteaux	133
Tableau V.7 Vérifications aux sollicitations tangentes pour les poteaux	134
Tableau V.8 Ferraillage des sections des poteaux	136
Tableau V.9 Ferraillages des poutres principales	139
Tableau V.10 Ferraillages des poutres secondaires	140

Tableau V.11 Vérifications des contraintes tangentielles	142
Tableau V.12 Vérifications des armatures longitudinales au cisaillement	142
Tableau V.13 Vérifications de l'état limite de compression du béton	142
Tableau V.14 Les moments résistant dans les poteaux	144
Tableau V.15 Les moments résistant dans les poutre principales	144
Tableau V.16 Les moments résistant dans les poutre secondaires	144
Tableau V.17 Vérifications des zones nodales selon le sens principales	145
Tableau V.18 Vérifications des zones nodales selon le sens secondaires	145
Tableau V.19 Schémas de ferraillages des poutres principales	147
Tableau V.20 Schémas de ferraillages des poutres secondaires	149
Tableau V.21 Les sollicitations revenant aux voiles 'Vx1, Vx2, Vx3, Vy1, Vy2	153
Tableau V.22 Ferraillage du voile 'Vx1=1m dans tout les niveaux	158
Tableau V.23 Ferraillage du voile Vy1=1.8m dans tout les niveaux	159
Tableau V.24 Ferraillage du voile Vx2=1.6m dans tout les niveaux	159
Tableau V.25 Ferraillage du voile Vy2=1.8m dans tout les niveaux	160
Tableau V.26 Ferraillage du voile Vx3=1.8m dans tout les niveaux	161
Chapitre VI Etude de L'infrastructure	
Tableau V.1 Section d'armateur du radier	169
Tableau V.2 Vérifications des contrainte a l'ELS	170
Tableau V.3 Section d'armateur du radier a l' ELS	170
Tableau V.4 Section d'armateur du débord	171
Tableau V.5 Vérifications des contrainte a l'ELS	171
Tableau V.6 Section d'armateur du débord à l'ELS	171
Tableau V.7 Sollicitations des nervures dans le sens x-x	174
Tableau V.8 Sollicitations des nervures dans le sens y-y	174
Tableau V.9 Ferraillage de la nervure sens X-X.	175
Tableau V.10 Ferraillage de la nervure sens Y-Y	175
Tableau V.11 Vérification de l'effort tranchant dans les nervures	176
Tableau V.12 Vérification des contraintes dans la nervure	176
Tableau V.13 Schéma de feraillage des nervures	177
Tableau V.14 Ferraillage des voiles périphérique	179
Tableau V.15 Vérifications des contrainte a l'ELS	180

Symboles et notation

A', Aser: Section d'aciers comprimés et section d'aciers à l'ELS respectivement.

At: Section d'un cours d'armature transversal.

A: Coefficient d'accélération de zone.

B: Aire d'une section de béton.

Br: Section réduite.

B, **b**: la largeur (m).

 \mathbf{C}_T : coefficient fonction du système de contreventement et du type de remplissage

 C_u : La cohésion du sol (KN/m²).

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

E: Module d'élasticité longitudinale.

E_i: Module d'élasticité instantanée.

E_s: Module d'élasticité de l'acier.

e_v : épaisseur du voile.

F: Force ou action générale.

 \mathbf{f}_{c28} : Résistance caractéristique à la compression donnée en (MPa).

 \mathbf{f}_{t28} : Résistance caractéristique à la traction donnée en (MPa).

 \mathbf{f}_{ii} : la flèche correspondant à j.

 \mathbf{f}_{gi} : la flèche correspondant à g.

 \mathbf{f}_{qi} : la flèche correspondant à q.

 $\mathbf{f}_{\mathbf{g}\mathbf{v}}$: la flèche correspondant à v.

 Δf_t : la flèche totale.

 $\Delta f_{t adm}$: la flèche admissible.

G: Action permanente.

H: la hauteur d'ancrage d'une fondation (m).

ht: hauteur totale du plancher.

ho: épaisseur de la dalle de compression.

he: hauteur libre d'étage.

I: Moment d'inertie (m⁴).

 I_{ji} : Moment d'inertie correspondant à j.

 I_{gi} : Moment d'inertie correspondant à g.

 I_{qi} : Moment d'inertie correspondant à q.

 I_{gv} : Moment d'inertie correspondant à v.

Q: Charge variable.

Q: Facteur de qualité.

qu: charge ultime.

q_s: charge de service.

M: Moment en général.

Ma: Moment sur appui.

Mu: Moment de calcul ultime.

Mser: Moment de calcul de service.

Mt: Moment en travée.

 M_0 : moment isostatique.

 M_i : Moment à l'appui i

 M_g et M_d : Moment à gauche et à droite pris avec leurs signes.

 M_i : Moment correspondant à j.

 M_g : Moment correspondant à g.

 $\mathbf{M}_{\mathbf{q}}$: Moment correspondant à q.

Ns: Effort normal de service.

Nu: Effort normal ultime

N: Effort normale du aux charges verticales.

R: coefficient de comportement global.

S: Section, surface

 S_r : surface du radier (m²).

St: Espacement des armatures.

V: Effort tranchant.

T₂: période caractéristique, associé à la catégorie du site.

W: poids propre de la structure.

 \mathbf{W}_{Oi} : Charges d'exploitation.

X, Y et Z: Coordonnées en général.

b₀ : Epaisseur brute de l'arme d'une section, largeur de la nervure

d: Hauteur utile.

e: Excentricité, épaisseur.

f: Flèche.

f_{bu}: Contrainte de compression du béton à l'E.L.U.R

fe: Limite d'élasticité.

 f_{cj} : Résistance caractéristique à la compression à « j » jours exprimée en (MPa).

 f_{ii} : Résistance caractéristique à la traction à « j » jours exprimée en (MPa).

h_t: hauteur total du radier (m).

h_N: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 σ_b : Contrainte de compression du béton.

 σ_s : Contrainte de compression dans l'acier

υ: Coefficient de poison

 σ_j : Contrainte correspondant à j.

 σ_g : Contrainte correspondant à g.

 σ_q : Contrainte correspondant à q.

γ_b: coefficient de sécurité.

 γ_s : coefficient de sécurité.

φ: Angle de frottement interne du sol (degrés).

 σ_{adm} : Contrainte admissible au niveau de la fondation (bars).

q: chargement KN/ml..

 τ_{ultim} : Valeur de cisaillement limite donné par le BAEL (MPa).

 τ_u : Contrainte de cisaillement (MPa).

η: Facteur d'amortissement.

β: Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

 μ_l : Moment réduit limite.

 μ_u : Moment ultime réduit.

λ_i: Coefficient instantané.

 λ_v : Coefficient différé.

Introduction Générale

Introduction générale

Introduction générale

L'intensité des forces sismiques agissant sur un bâtiment lors d'un tremblement de terre est conditionnée non seulement par les caractéristiques du mouvement sismique, mais aussi par la rigidité de la structure sollicitée.

Cependant les constatations faites dans le monde après les séismes destructeurs, ont montré que ce type de structure doit supporter d'importants déplacements relatifs entre deux étages consécutifs, et par conséquent des dommages sévères sur les éléments non structuraux. De plus les demandes excessives de ductilité et les effets des deuxièmes ordres dus aux grandes déformations, peuvent provoquer la ruine de la structure.

Lors des tremblements de terre, il a été constaté que la plus part des bâtiments à dont le système de contreventement mixte est assuré par (voile-portique) ont bien résistés, sans endommagement exagéré. Mis à part leur rôle d'éléments porteurs vis-à-vis des charges verticales, les voiles (mur de contreventement), en béton armé correctement dimensionnés, peuvent être particulièrement efficaces pour assurer la résistance aux forces horizontales, permettant ainsi de réduire les risques.

Le projet qui nous a été confié porte sur l'étude d'un bâtiment a usage d'habitations en (R+9+Vide sanitaire) implanté à Bejaia qui est classé d'après le règlement parasismique algérien zone de moyenne sismicité. Donc il y a lieu de déterminer leur comportement dynamique, afin d'assurer une bonne résistance de l'ouvrage à long terme et assurer le confort et la sécurité des vies humaines.

Pour déterminer le comportement du bâtiment lors d'un séisme, on à utiliser le règlement parasismique algérien RPA99/2003.

Le travail est réalisé selon le plan de travail suivant :

- Le premier chapitre, qui est consacré pour les généralités.
- ❖ Le deuxième chapitre, pour le pré dimensionnement des éléments structuraux de la structure.
- Le troisième chapitre, pour l'étude des éléments secondaire.
- Le quatrième chapitre, pour l'étude sismique.
- Le cinquième chapitre, pour l'étude des éléments principaux.
- ❖ Le dernier chapitre, pour l'étude de l'infrastructure.

Et on termine par une conclusion générale qui synthétise notre travail.

Chapitre I

I.1.Introduction

Pour qu'une étude génie civil soit bien faite, la reconnaissance des caractéristiques géométriques de la structure et des caractéristiques mécaniques des matériaux utilisés dans sa réalisation est indispensable ainsi que la présentation des différentes sollicitations et états limites de l'ouvrage, ce que faite l'objet de ce premier chapitre.

I.2. Présentation de l'ouvrage

Le projet qui fait l'objet de notre étude consiste à faire l'étude génie civil d'un bâtiment (R+9) en béton armé à usage d'habitation avec vide sanitaire.

Ce projet est un ouvrage courant ayant une importance moyenne, sa hauteur totale est inférieur à 48 mètres, ce qui nous conduit à le classer d'après le règlement parasismique algérien RPA 99/version 2003 « article 3.2 » [1] dans le groupe d'usage 2. Cet ouvrage est en cours de réalisation à Beni kessila, wilaya de Bejaia qui est classée d'après la classification sismique des wilayas et communes d'Algérie RPA 99/version 2003, annexe1 [1], en zone IIa.

I.3. Caractéristiques géométriques et architecturales

- \checkmark Largeur en plan $l_y=17,7m$
- ✓ Longueur en plan l_x =26.32m
- ✓ Hauteur totale30,60 m
- ✓ Vide sanitaire......2.52m
- ✓ Hauteur du rez-de-chaussée......03,06m
- ✓ Hauteur des étages courants03,06 m

I.4. Présentation de la structure

L'accès aux étages supérieurs s'effectue au moyen d'un ascenseur et d'une cage d'escalier constituée de deux volées.

Le contreventement du bâtiment est assuré par des voiles et des portiques dans les deux sens (longitudinale et transversale) et assurant une stabilité au bâtiment vis-à-vis des charges horizontales et verticales, ce qu'il lui confère une grande rigidité à la flexion et à la torsion.

Les planchers sont constitués de dalles en corps creux en partie courante et en dalles pleines pour les balcons.

D'après la classification des RPA99 version 2003 [1] le bâtiment est considéré comme un

ouvrage d'importance moyenne (groupe d'usage 2) puisque sa hauteur totale ne dépasse pas 48m.

I.4.1. Eléments structuraux

Les planchers: constitués de corps creux avec une dalle de compression qui forme un diaphragme

horizontal rigide qui assure la fonctionnalité de l'ouvrage et qui permet la transmission des efforts

de contreventement.

Un plancher doit être résistant aux charges verticales et horizontales.

Un plancher doit assurer une isolation phonique et thermique des différents étages.

Les escaliers : sont des éléments secondaires réalisés en béton armé coulés sur place, permettant le

passage d'un niveau à un autre.

Les maçonneries :

• Les murs extérieurs seront réalisés en doubles cloisons de briques creuses de 30 cm

séparées par une lame d'air de 5cm.

Les murs de séparation intérieure seront construits en une seule paroi de brique de 10cm

Balcons

Les balcons sont réalisés en dalle pleine.

Revêtements: ils seront réalisés en :

Carrelage scellé pour les planchers et les escaliers.

Céramique pour les salles d'eau et mortier de ciment pour les murs de façade.

Plâtre pour les cloisons intérieures et les plafonds.

L'infrastructure:

Elle assure les fonctions suivantes :

Transmission des charges verticales et horizontales au sol.

• Limitation des tassements différentiels

I.5. Caractéristiques du sol d'assise

- L'ouvrage appartient au groupe d'usages 2 en vertu du RPA 99 version 2003. [1]
- Le sol de notre site est d'une constitution limoneuse marneuse en surface, a marneuse argileuse parfois schisteuse en profondeur, avec passage de blocs rocheux de moyenne a grande dimension.
- Le site est considéré comme ferme (S2).

La contrainte admissible du sol = 1.4 bars.

Annexe (V)

I.6. Caractéristiques mécaniques des matériaux

I.6.1.Le béton

Le béton choisi est de classe C25/30, sa composition doit permettre d'obtenir les caractéristiques suivantes :

• Résistance caractéristique à la compression (art A.2.1, 11 CBA93) [2]

La résistance caractéristique à la compression du béton utilisé à 28 jours est :

$$f_{c28} = 25MPa$$

Résistance caractéristique à la traction

La résistance caractéristique à la traction du béton à j jours, notée f_{ij} , est conventionnellement définie par les relations :

$$f_{tj} = 0.6 + 0.06 f_{cj}$$

Pour j=28 jours et $f_{c28} = 25MPa \Rightarrow f_{t28} = 2,1MPa$

I.6.1.3. Modules de déformation longitudinale du béton

On distingue deux modules de déformation longitudinale du béton ; le module de Young instantané E_{ij} et différé E_{vj} .

$$E_{vj} = (1/3).E_{ij}$$
 (Art A.2.1.2.1 CBA93) [2]

$$E_{ii} = 11000(f_{ci})^{1/3}$$
 (Art A.2.1.2.2 CBA93) [2]

Pour
$$f_{c28} = 25MPa$$
 on a:
$$\begin{cases} E_{i28} = 32164, 20MPa \\ E_{v28} = 10818, 86MPa \end{cases}$$

• Coefficient de poisson

C'est le rapport entre les déformations transversales et les déformations longitudinales.

$$v = 0$$
 à ELU. (Article A.2.1.3 CBA93) [2]

$$v = 0.2$$
 à ELS

• Diagramme contrainte déformation

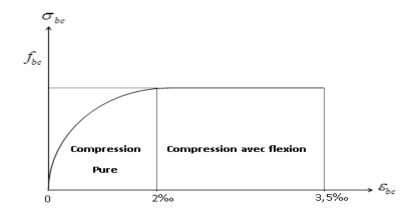


Figure I.1. Diagramme des contraintes-déformations du béton

• Contraintes limite de compression à L'ELU

$$f_{bu} = \frac{0.85 * f_{c28}}{\theta * \gamma_b}$$
 BAEL 91 (Article A.4.3.4). [3]

0,85 : coefficient qui tient compte de l'altération en surface du béton et la diminution de la résistance sous charges de longue durée.

 γ_b : Coefficient de sécurité pour le béton tel que :

- $> \gamma_b = 1,15 \rightarrow Situation accidentelle$
- $> \gamma_b = 1,50 \rightarrow \text{Situation courante}$
- θ : Coefficient d'application de charge :

$$\begin{cases} \theta = 1 & si & t \ge 24h \\ \theta = 0.9 & si & 1h < t < 24h \\ \theta = 1 & si & t < 1h \end{cases}$$

• La contrainte de compression à l'ELS

Pour
$$f_{c28} = 25Mpa$$

• Contrainte ultime de cisaillement (du béton)

Dans le cas où les armatures d'âme sont droites ou comportent à la fois des barres droites et des barres relevées, d'après l'article **A.5.2.11 de BAEL91 [3]** on a :

$$au_{adm} = \min(0.20 f_{cj} / \gamma b; 5Mpa)$$
 Pour la fissuration peu nuisible.

$$ho$$
 $au_{adm} = \min \left(0.15 f_{cj} / \gamma b; 4Mpa \right)$ pour la fissuration préjudiciable.

Dans notre cas on a $f_{c28} = 25Mpa$ donc :

 $\tau_{adm} = 3.33 Mpa$ Fissuration Peu Nuisible.

 $\tau_{adm} = 1.17 Mpa$ Fissuration Préjudiciable.

I.6.2.L'acier:

• **Définition:** Le matériau acier est un alliage Fer et Carbone en faible pourcentage, l'acier est un matériau caractérise par une bonne résistance aussi bien en traction qu'en compression; Sa bonne adhérence au béton, en constitue un matériau homogène.

Le module d'élasticité longitudinal de l'acier est pris égale à : $E_s = 200000MPa$

Résistance caractéristique de l'acier : On définit la résistance caractéristique de l'acier comme étant sa limite d'élasticité : f_{ϱ}

• Principales armatures utilisés :

Tableau I.1.	fe	en fonction	du type	d'acier.
--------------	----	-------------	---------	----------

	Aciers ronds lisses		Aciers à hautes adhérences		Treillis soudé à fils lisses	Treillis soudés à haute adhérence
Désignation	FeE215	FeE235	FeE400	FeE500	TLE500	FeTE500
f _e [MPa]	215	235	400	500	500	500

• Contrainte limite :

> Etat limite ultime :

Pour le calcul on utilise le diagramme contrainte- déformation suivant :

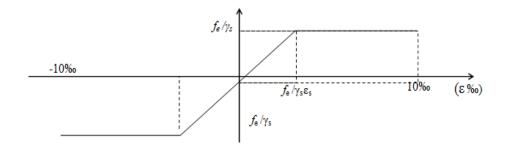


Figure I.2. Diagramme contrainte déformation de l'acier.

$$\sigma_{s} = \frac{f_{e}}{\gamma_{s}}$$

$$\varepsilon_{es} = \frac{\sigma_s}{E_s}$$

Avec:

$$E_s = 200000 Mpa$$

$$\begin{cases} \gamma_s = 1 & \text{cas de situations accidentelles.} \\ \gamma_s = 1 & \text{cas de situations accidentelles.} \end{cases}$$

Pour le cas de ce projet :

$$\sigma_s = \begin{cases} 348\text{MPa.....} \text{Pour une situation courante.} \\ 400\text{MPa....} \text{Pour une situation accidentelle.} \end{cases}$$

> Etat limite de service :

Nous avons pour cet état :

Fissuration peu nuisible : pas de vérification à faire.

Fissuration préjudiciable :
$$\sigma_{st} \leq \overline{\sigma_{st}} = \min(2/3f_e, 110\sqrt{\eta f_{tj}})$$

 η : Coefficient de fissuration.

 $\eta = 1$ pour les ronds lisses (RL)

 $\eta = 1.6$ pour les armatures à hautes adhérence (HA).

I.7. Règlements et normes utilisés :

- ✓ RPA99/version 2003.
- ✓ CBA93.
- ✓ DTR B.C.2.2.
- ✓ BAEL91/version99.
- ✓ DTR BC2.33.2.

I.8. Conclusion

Les caractéristiques du béton et d'acier utilisé sont donnes comme suite :

$$\textbf{B\'{e}ton} \left\{ \begin{array}{l} \text{R\'{e}sistance caract\'{e}ristique } (f_{c28}) & 25\text{MPa} \\ \text{Contraintes limite a L'ELU:} \\ \text{situation durable} & 14.2\text{MPa} \\ \text{situation accedentelle} & 18.45\text{MPa} \\ \text{Contrainte limite a L'ELS } (\sigma_{bc}) & 15\text{MPa} \end{array} \right.$$

$$\textbf{Acier} \left\{ \begin{array}{cccc} \text{Limite d'élasticité } (f_e) & 400\text{MPa} \\ \textbf{Module d'élasticité} & 2 \times 10^5 \textit{MPa} \\ \text{Contraintes calcul a L'ELU:} \\ & \text{situation durable} & 400\text{MPa} \\ & \text{situation accedentelle 348MPa} \\ \text{Contrainte a L'ELS:} & \text{FN} & 240\text{MPa} \\ & \text{FTN} & 176\text{MPa} \end{array} \right.$$

Chapitre II

II.1. Introduction

Le pré dimensionnement a pour but de déterminer l'ordre de grandeur des différents éléments de la structure pour reprendre les efforts dus aux charges permanentes et surcharges d'exploitations. Cette étape représente le point de départ et la base de justification à la résistance, la stabilité et la durabilité de l'ouvrage.

Le pré dimensionnement de chaque élément de la structure est conforme aux règlements, RPA 99 version 2003 ; CBA 93, BAEL 91/99 et les différents DTR [1] [2] [3].

II.2. Les Planchers:

II.2.1 Planchers à corps creux :

Le plancher à corps creux est composé de corps creux, de poutrelles et de dalle de compression **Figure II.1**. L'épaisseur du plancher est déterminée à partir de la condition de la flèche donnée par le (**CBA93 ART** : **6.8.4.2.4**). [2]

$$h_t \ge \frac{L_{\text{max}}}{22.5}$$

 $L_{
m max:}$ Longueur maximale entre nus d'appuis selon la disposition des poutrelles adoptées

 h_t : Hauteur total du plancher.

$$h_{t} \ge \frac{350 - 30}{22.5} \Rightarrow h_{t} \ge 14.22cm$$

Donc on adopte un plancher de hauteur $(h_t=h_{cc}+h_{ddc}=16+4)=20$ cm.

Avec:

 h_{cc} = 16cm : Hauteur du corps creux.

 h_{ddc} =4cm: Hauteur de la dalle de compression.

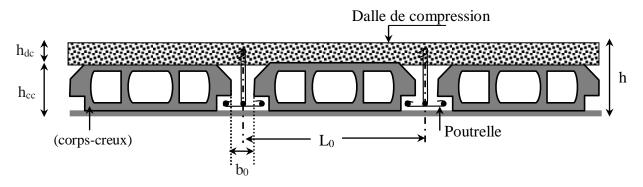


Figure II.1. Coupe transversale d'un plancher à corps creux

II.2.1.1 Pré dimensionnement des poutrelles

Les poutrelles sont des sections en Té en béton armé, servant à transmettre les charges réparties ou concentrées aux poutres principales, elles sont calculées en flexion simple.

La disposition des poutrelles se fait selon deux critères :

- Critère de la petite portée : Les poutrelles sont disposées parallèlement à la plus petite portée. (pour minimiser la flèche)
- Critère de continuité : Si les deux sens ont les mêmes dimensions, alors les poutrelles sont disposées parallèlement au sens du plus grand nombre d'appuis

Dans notre cas les poutrelles sont disposées selon deux critères.

b: Largeur de la table de compression.

h: Épaisseur du plancher = 16+4cm.

L_x: distance maximale entre nus d'appui de deux poutrelles.

 l_v : distance maximale entre nus d'appuis de deux poutres principales.

$$b_0 = (0.4 \text{ à } 0.8) \text{ h} \rightarrow b_0 = (10 \text{ à } 20 \text{cm})$$

Soit:
$$b_0 = 14$$
cm

$$b_1 \le \min(L_x/2, L_y/10)$$

 $L_x = 65-10 = 55$ cm: distance entre deux nervures Successives.

Ly: la distance minimale entre nus d'appuis des poutrelles

$$L_y = 310-55 = 255cm$$

$$b_1 \le \min(55/2; 255/10)$$

$$b_1 \le \min(27.5; 25.5)$$

$$b_1 = 25.5 cm$$

$$b = 2b_1 + b_0$$

$$b = 2 \times 25.5 + 14 = 65$$

Soit:
$$b = 65cm$$

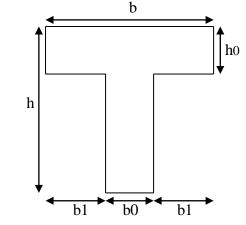


Figure II.2. Schéma d'une poutrelle

Les poutrelles sont calculées en flexion simple, comme des poutres sur plusieurs appuis.

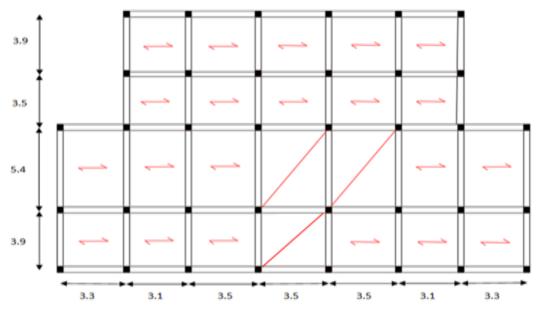


Figure II.3. Disposition des poutrelles

II.3.Les des dalles pleines

Une dalle est un élément horizontal, généralement de forme rectangulaire, d'épaisseur **e.**On désigne par lx la plus petite des portées. Son pré dimensionnement se fait en se basant sur les critères suivants :

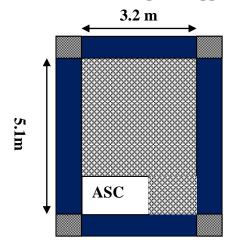
• Résistance au feu (CBA93) [2]

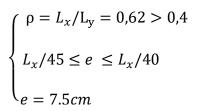
 $\{e \geq 07 \ cm \dots pour \ une \ heure \ de \ coupe \ feu \ e \geq 11 \ cm \dots pour \ deux \ heures \ de \ coupe \ feu \ e \geq 14 \ cm \dots pour \ trois \ heures \ de \ coupe \ feu$

• Résistance à la flexion

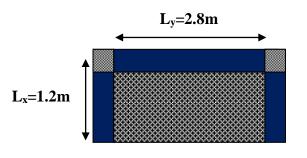
Les conditions qui doivent vérifier selon le nombre des appuis sont les suivantes :

- ightharpoonup Pour une dalle sur un seul ou deux appuis parallèles : $e \ge \frac{Lx}{20}$.
- ➤ Pour les dalles avec $\rho \le 0.4 \Rightarrow \frac{L_x}{35} \le e \le \frac{L_x}{30}$
- Pour une dalle sur trois appuis ou 4 appuis avec $\rho > 0,4 \Rightarrow \frac{Lx}{45} \le e \le \frac{Lx}{40}$

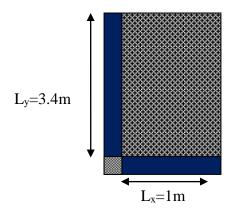

Avec:
$$\rho = \frac{Lx}{Ly}$$


L_x: la petite portée entre nus d'appuis du panneau le plus sollicité (cas le plus défavorable).

Ly : la grand portée entre nus d'appuis du panneau le plus sollicité (cas le plus défavorable).


Dans ce projet on distingue trois types de dalle pleine.

➤ Dalle (DP1) sur quatre appuis


> Dalle (DP2) sur trois appuis

$$\begin{cases} \rho = L_x / L_y = 0.42 > 0.4 \\ L_x / 45 \le e \le L_x / 40 \\ e = 3cm \end{cases}$$

> Dalle (DP3) sur deux appuis

$$\begin{cases} \rho = L_x / L_y = 0.29 > 0.4 \\ L_x / 35 \le e \le L_x / 30 \\ e = 3cm \end{cases}$$

Les épaisseurs obtenues par la condition de résistance à la flexion sont très faibles, alors le pré dimensionnement se fera suivant la condition coupe-feu, d'où on opte pour une épaisseur : $\mathbf{e} = \mathbf{14cm}$

II.4. Ascenseur

C'est un appareil au moyen duquel on élève ou on descend des personnes aux différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique. Dans notre structure on utilise un ascenseur pour huit (08) personnes dont les caractéristiques sont les suivantes :

- L: Longueur de l'ascenseur.
- l : Largeur de l'ascenseur.
- ➤ *H* : Hauteur de l'ascenseur.
- \triangleright W: Puissance de l'ascenseur = 6.8KW.
- \triangleright F_c : Charge due à la cuvette = 145KN.

Annexe nº IV

- $ightharpoonup P_m$: Charge due à l'ascenseur = 15KN.
- \triangleright D_m : Charge due à la salle des machines = 51KN.
- La charge nominale est de 630 kg.
- \triangleright La vitesse V = 1.6m/s.

Donc $g = D_m + P_m + P_{personnes} = 72.3KN$

II.5. Les escaliers :

II.5.1. Définitions :

Les escaliers sont des éléments composés d'une succession de marches permettant le passage d'un niveau à un autre, ils sont en béton armé, en acier ou en bois. Dans notre cas ils sont réalisés en béton coulé sur place. Les différents éléments constituant un escalier sont :

- (1): e (Epaisseur du palier de repos)
- (2): L_0 (Longueur totale d'escalier)
- (3): g (Giron)
- (4): h (Hauteur de la contre marche)
- (5): H_0 (Hauteur de la volée)
- (6): α (Inclinaison de la paillasse)
- (7):(Emmarchement)

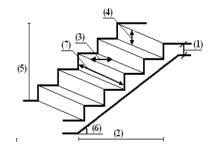


Figure II.4. Schéma de terminologie d'escalier

II.5.2.Dimensionnement:

Condition d'accès d'un étage à l'autre tant dans le sens montant que descendant pratiquement :

- la hauteur h des contremarches se situe entre 14 et 18 cm.
- la largeur g se situe entre 25 et 32 cm.

La formule très empirique de BLONDEL qui les lie est :

$$2h+g=m$$

Elle correspond à la distance franchie lors d'un pas moyen.

$$h = \frac{H}{n}$$

$$g = \frac{L_0}{n-1}$$

On distingue dans notre projet deux types d'escalier :

- ✓ Escaliers à deux volées.
- ✓ Escalier a une seul volée

Type 1 : escalier à deux volées:

• Calcul du nombre de marches et de contre marches.

$$g = \frac{L_0}{n-1}$$
 Nombre de contre marches.

$$h = \frac{H_0}{n}$$
 Nombre de marches.

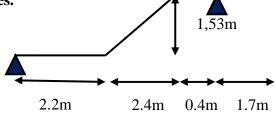


Figure II.5. Schéma statique type1

Remplaçant dans (1) on trouve:

$$0.64 \times n^2 - (0.64 + 2 \times H_0 + L_0) \times n + 2 \times H_0 = 0...$$
 (2)

$$64 \times n^2 - (64 + 2 \times 1.53 + 2.72) \times n + 2 \times 1.53 = 0$$

$$n = 9$$

Donc : nombre de contre marche (n = 9)

nombre de marche (n-1) = 8

• Calcul du giron(g) et la hauteur d'une contre marche (h)

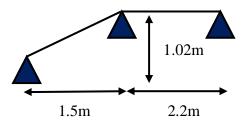
$$g = L/n-1 = 240/8 = 30cm$$

$$h = H/n = 153/9 = 17cm$$
.

• Inclinaison de la paillasse : $tg\alpha = \frac{153}{240} = 32.52$ °

Epaisseur de la paillasse

$$\frac{L}{30} \le e \le \frac{L}{20}$$


$$L = \sqrt{L_0^2 + H_0^2} = \sqrt{2.4^2 + 1.53^2} + 2.1 = 4.95m$$

$$\Rightarrow 16.5 \le e \le 24.75cm \text{ Soit } \mathbf{e} = \mathbf{18cm}.$$

Type 2 : escalier à une seule volée :

On obtient les résultats suivant :

g=30 cm, h=17 cm,
$$\alpha$$
=34.22°, **e =18 cm**

II.6.Les poutres :

Figure II.6. Schéma statique type 2

Ce sont des éléments porteurs en béton armé à ligne moyenne rectiligne, dont la portée est prise entre nus d'appuis on à deux types (poutres principales, poutres secondaires).

II.6.1. Les poutres principales

Elles sont disposées perpendiculairement aux poutrelles, leur hauteur est donnée selon la condition de la flèche qui est : $\frac{L_{\text{max}}}{15} \leq h \leq \frac{L_{\text{max}}}{10} \text{ BAEL91/99[3]}$

L_{max}: Portée maximale entre nus d'appuis.

$$L_{\text{max}} = 540 - 30 \Rightarrow L_{\text{max}} = 510cm \Rightarrow 34cm \le h \le 51cm$$

On adopte pour une section rectangulaire $(b \times h) = (35 \times 40) cm^2$

II.6.2. les poutres secondaires :

Elles sont disposées parallèles aux poutrelles

$$\frac{L_{\max}}{15} \le h \le \frac{L_{\max}}{10} \qquad (Condition de flèche).$$

$$L_{\max} = 350 - 30 \Rightarrow L_{\max} = 320cm \Rightarrow 21.33cm \le h \le 32cm$$

On adopte pour une section rectangulaire $(b \times h) = (30 \times 30) cm^2$

Les dimensions vérifient les exigences du RPA.

Après la vérification on adopte les dimensions suivantes :

Poutres principales : $b \times h = (35, 40) \text{ cm}^2$

Poutres secondaires : $b \times h = (30,30) \text{ cm}^2$

II.7. Les voiles

Ce sont des éléments de contreventement verticaux, minces et continus en béton armé, Son pré dimensionnement doit satisfaire les conditions de RPA99/2003[1]

- $e \ge \frac{he}{20}$ pour les voiles simple.
- $e \ge 15cm$

$$L_{\min} \ge 4 \times e$$

RPA99 (Article 7.7.1)[1]

Donc; $e \ge max (h_e/20;15cm)$

Avec: he: hauteur libre d'étage;

e : l'épaisseur de voile

On un voile:

➤ h_e=306-20=286cm pour étage courant et pour R.D.C.

 $e \ge max (14,3cm; 15cm) \Rightarrow e = 15cm$

Longueur minimale:

Pour qu'un voile soit considéré comme un élément de contreventement la largeur minimale doit être :

 $L \min \ge 4 e \text{ ou } L \min \ge 60 \text{ Cm}$

Soit : $L \min = 80 cm$.

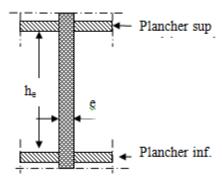
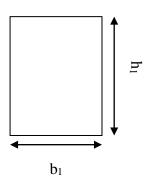


Figure II.7 .Coupe verticale d'un voile

II.8. Les poteaux

Les poteaux sont des éléments structuraux chargés de transmettre les charges verticales aux fondations et du contreventement total ou partiel du bâtiment.


Le pré dimensionnement des poteaux se fait par la vérification à la résistance d'une section choisie, en fonction des sollicitations de calcul en compression simple à l'ELU, les dimensions des poteaux sont déterminés par la descente des charges de poteau le plus chargé.

Selon le RPA99 (version2003), les dimensions de la section transversale des poteaux doivent satisfaire les conditions suivantes pour la zone IIa :

- Critère de résistance.
- Critère de stabilité de forme (flambement).
- Condition RPA.

Condition RPA99/version 2003[1]:

$$\begin{cases} \min(b_1, h_1) \ge 25cm \\ \min(b_1, h_1) \ge \frac{h_e}{20} \\ 0.25 < \frac{b_1}{h_1} < 4. \end{cases}$$

D'après l'article **B.8.4.1 du CBA 93 [2]**

Avec:

- $B_r = (b-2) \times (h-2)cm^2$: section réduite du poteau.
- A_s: section d'armature comprimée.
- $\gamma_s = 1,15$: coefficient de sécurité de l'acier.
- $f_e = 400 \text{ MPa}$
- α : coefficient réducteur qui en fonction de l'élancement (λ)

$$\alpha = f(\lambda) avec \begin{cases} \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} si: \lambda \le 50 \\ \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 si: 50 \le \lambda \le 70 \end{cases}$$

$$\lambda = \frac{l_f}{i}$$

Tel que:

 $l_f = 0.7 \times L_0$: Longueur de flambement.

 L_0 : Hauteur libre du poteau

$$I = \frac{b \times h^3}{12} : \text{moment d'inertie}$$

$$i = \sqrt{\frac{I}{b \times h}} = \sqrt{\frac{h^2}{12}}$$
:rayon de giration

On adopte préalablement la section des poteaux $(b_1 \times h_1)$ comme suit :

- ✓ La RDC et 1^{er} étages est de section (50x55) cm².
- ✓ $2^{\text{éme}}$ et $3^{\text{éme}}$ étage est de section (45x50) cm².
- ✓ $4^{\text{\'eme}}$ et $5^{\text{\'eme}}$ étage est de section (40x45) cm².
- ✓ $6^{\text{éme}}$ et $7^{\text{éme}}$ étage est de section (35x40) cm².
- ✓ $8^{\text{éme}}$ et $9^{\text{éme}}$ étage est de section (30x35) cm².

II.9. Evaluation des charges et surcharges sur les planchés

Tuile mécanique à emboitement (linteaux compris).....0.43KN/m²

II.9.1. Plancher des étages courants

Désignation des éléments Poids G (KN/m²) Poids volumique épaisseur (m) (KN/m^3) Cloison de séparation 0.01 1,00 Carrelage 22 0,02 0,40 Mortier de pose 20 0,02 0,40 Lit de sable 18 0,02 0,36 Plancher à corps creux (16+4) / 0,2 2,85 Enduit de plâtre 10 0,02 0,20 Charge permanente totale G=5.21 Q=1.50 charge d'exploitation

Tableau II.1. Charges sur plancher étages courants

II.9.2. Dalle pleine

> les balcons et dalle plein autour de l'ascenseur

Tableau II.2. Evaluation des charges sur balcons et dalle plein autour de l'ascenseur

Désignation des éléments	Poids volumique (KN/m³)	épaisseur (m)	Poids G (KN/m ²)		
Carrelage	22	0,02	0,44		
Mortier de pose	20	0,02	0,40		
Lit de sable	18	0,02	0,36		
Plancher dalle pleine	25	0,14	3.5		
Enduit de plâtre	10	0,02	0,2		
Char	G=4.9				
cha	charge d'exploitation				

II.9.3. Les murs extérieurs (double parois en brique creuses)

Tableau II.3. Evaluation des charges dans les murs extérieurs.

Désignation des éléments	Poids volumique (KN/m³)	épaisseur (m)	Poids G (KN/m ²)
Enduit de ciment extérieur	18	0,02	0,36
Briques creuses extérieur	9	0,15	1,35
Lame d'aire	/	0.05	/
Briques creuses intérieur	9	0,10	0,90
Enduit de plâtre intérieur	10	0,02	0,20
Char	2.81		

II.9.4. Les escaliers

> Palier

Tableau II.4. Evaluation des charges du palier

Désignation des éléments	Poids volumique (KN/m³)	épaisseur (m)	Poids G (KN/m ²)
Revêtement en carrelage	22	0,02	0,44
Mortier de pose	20	0,02	0,40
Lit de sable	18	0,02	0,36
Dalle en béton armé	25	0,18	4,5
Enduit de plâtre	10	0,015	0,15
Charg	5.85		
cha	2.5		

> Volée

Tableau II.5. Évaluation des charges de la volée

Désignation des éléments	épaisseur (m)	Poids G (KN/m ²)
Revêtement en carrelage horizontale	0,02	0,4
Revêtement en carrelage verticale	0,02(17/30)	0,23
Mortier de pose horizontale	0,02	0,40
Mortier de pose verticale	0,02(17/30)	0,23
Marche (avec un béton 22 KN/m ³)	0,17(1/2)	1,87
Paillasse	0,18/ (cos (32.52)	5.33
Enduit de plâtre	0.015	0.15
Charge permaner	8.61	
charge d'exploi	itation	2.5

II.10.Descente des charges

La descente des charges désigne l'opération consistant à calculer les efforts normaux résultants de l'effet des charges verticales sur les divers éléments porteurs verticaux (poteaux ou murs) ainsi que les fondations, afin de pouvoir procéder à leur dimensionnement

Toute charge agissant sur une dalle a tendance à être reportée par celle-ci sur les éléments porteurs verticaux les plus proches. Pour le calcul de la descente des charges on utilise la règle de dégression donnée par les règlements « **D.T.R.B.C.2.2** » [4] qui recommande « d'appliquer une dégression de la charge d'exploitation lorsque le bâtiment étudié comporte plus de 5 niveaux et que l'occupation des différent niveaux peut être considérée comme indépendante»

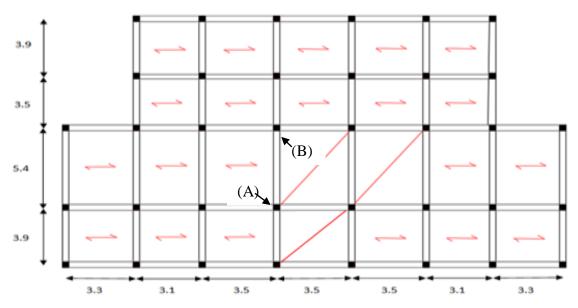
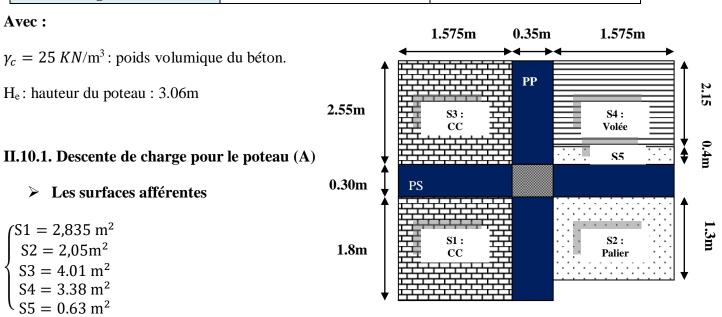



Figure II.8. vue en plan d'identification des poteaux de la descente de charge

Le calcul du poids propre des poteaux est donné dans le tableau suivant :

Tableau II.6.Poids propre des poteaux.

Niveau	Dimensions (b × h) cm ²	$poids propre g (KN)$ $g = h b H_e \gamma_c$
RDC et Etages 1	50 × 55	21.03
Etages 2 et 3	45× 50	17.21
Etages 4 et 5	40×45	13.77
Etages 6 et 7	35 × 40	10.71
Etages 8 et 9	30×35	8.032

Projet Fin d'étude Master II 2016/2017

Les charges et surcharges étage courant

Poids des poutres

Figure II.9. Surface qui revient au Poteau (A)

$$\begin{split} G_{pp} &= \gamma_c \times h_{pp} \times b_{pp} \times L_{pp} \\ \{L_{pp} &= 4.35 \ m \\ L_{ps} &= 3,15 \ m \\ \Rightarrow \begin{cases} G_{pp} &= 25 \times 0,35 \times 0,40 \times 4.35 = 15.225 KN \\ G_{ps} &= 25 \times 0,3 \times 0,3 \times 3,15 = 7.087 \ KN \\ \Rightarrow G_{\text{poutres}} &= 22.31 \ KN \end{split}$$

Poids Plancher étages RDC; 1 a 9

Surface afférente du plancher (C.C): S_{cc}= S1+S3=2.835+4.01=6.845m²

 $G=5.21\times6.845=35.66KN$

Q=1.5×6.845=10.6KN

Poids escalier

Volée

 $G_{vol\acute{e}e}$ = 8.61×2.15×1.575=22.38 KN

 $Q_{vol\acute{e}e} = 2.5 \times 2.15 \times 1.575) = 8.46KN$

> Palier

$$G_{palier} = 5.85 \times 2.68 = 15.67 KN$$

$$Q_{palier} = 2.5 \times 2.68 = 6.7 \text{KN}$$

$$G_{escalier} = G_{vol\acute{e}e} + G_{palier} = 22.38 + 15.67 = 38.05 KN$$

$$Q_{escalier} = Q_{vol\acute{e}} + Q_{palier} = 15.16KN$$

Étage Toiture

Les surfaces afférentes

$$\begin{cases} S1 = 2.835 \text{ m}^2 \\ S2 = 2.835 \text{ m}^2 \\ S3 = 4.01 \text{ m}^2 \\ S4 = 4.01 \text{ m}^2 \end{cases}$$

$$S_{totale} = S_1 + S_2 + S_3 + S_4 = 13.7 m^2$$

 $G_{pp} = 15.225 KN$

 $G_{ps} = 7.087 KN$

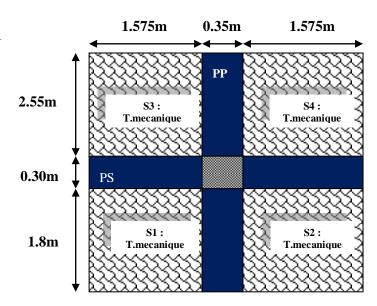


Figure II.10. Surface qui revient au Poteau (A) toiture

$$Gp_{outres} = G_{pp} + G_{ps} = 22.31 KN$$

$$G=G_{toiture} \times S_{tot}=0.43\times 13.7=5.89KN$$

$$Q=Q_{toiture} \times S_{tot}=1\times13.7=13.7KN$$

II.10.2. Descente de charge pour le poteau (B)

> Les surfaces afférentes

$$\begin{cases} S1 = 2.52 \text{ m}^2 \\ S2 = 2.52 \text{ m}^2 \\ S3 = 4.01 \text{ m}^2 \\ S4 = 4.01 \text{ m}^2 \\ S5 = 0.63 \text{ m}^2 \end{cases}$$
1.6m 0.30m

Poids des poutres

$$G_{pp} = \gamma_c \times h_{pp} \times b_{pp} \times L_{pp}$$

$$\{L_{pp} = 4.15 m \}$$

$$L_{ps} = 3,15 m$$

$$\Rightarrow \begin{cases} G_{pp} = 25 \times 0,35 \times 0,40 \times 4.15 = 14.525KN \\ G_{ps} = 25 \times 0,3 \times 0,3 \times 3,15 = 7.087 KN \end{cases}$$

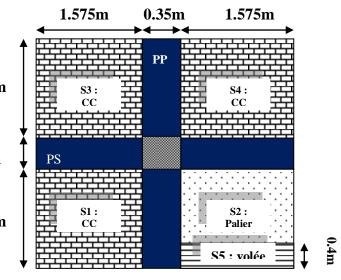


Figure II.11. Surface qui revient au Poteau (B)

$$\Rightarrow$$
 G_{poutres} = 21.61 KN

Poids Plancher étages RDC; 1 a 9

Surface afférente du plancher (C.C): S_{cc}= S1+S3+S4=2.835+4.01=10.54m²

G=5.21×10.54=54.91KN

Q=1.5×10.54=15.81KN

Poids escalier

> Palier

$$S_{palier}=S2=2.52KN$$

$$G_{palier} = 5.85 \times 2.52 = 14.74 KN$$

$$Q_{palier} = 2.5 \times 2.52 = 6.3 \text{KN}$$

> Volée

$$G_{vol\acute{e}e} = 8.61 \times 0.63 = 5.4 \text{ KN}$$

$$Q_{vol\acute{e}e} = 2.5 \times 0.63 = 1.575 KN$$

$$G_{escalier} = G_{vol\acute{e}e} + G_{palier} = 20.14KN$$

$$Q_{escalier} = Q_{vol\acute{e}e} + Q_{palier} = 7.875KN$$

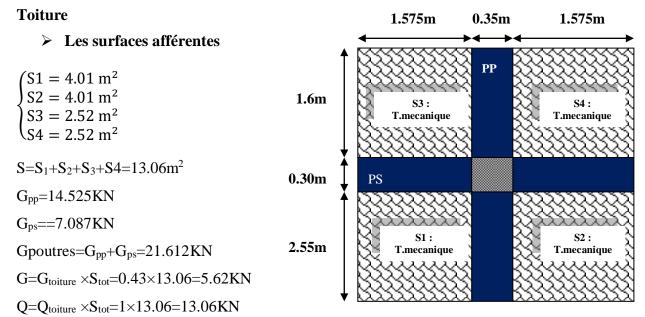


Figure II.12. Surface qui revient au Poteau (B) toiture

II.10.3. La loi de dégression des charges d'exploitation

Etant donné que nous avons plus de 5 niveaux ; nous appliquons la loi de dégression des charges.

La loi de dégression ne s'applique pas pour les planchers à usage commercial et bureau les charges va se sommer avec leurs valeurs réelles (sans coefficients).

Enoncé de la loi de dégression

Dans notre cas les surcharges d'exploitation sont égales.

 $Q_1 = Q_2 = \dots = Q_9 = Q$ (Étages à usage d'habitation), et soit Q_0 la surcharge d'exploitation sur la terrasse couvrant le bâtiment.

Donc la loi de dégression sera comme suit :

 Q_0

Etage 1: $Q_0 + Q$

Etage 2: $Q_0 + Q + 0.9 \times Q$

Etage 3: $Q_0 + Q + 0.9 \times Q + 0.8 \times Q$

Etage 4: $Q_0 + Q + 0.9 \times Q + 0.8 \times Q + 0.7 \times Q$

Etage 5: $Q_0 + Q + 0.9 \times Q + 0.8 \times Q + 0.7 \times Q + 0.6 \times Q$

Etage 6: $Q_0 + Q + 0.9 \times Q + 0.8 \times Q + 0.7 \times Q + 0.6 \times Q + 0.5 \times Q$

A partir du 6^{eme} étage on aura toujours :

Etage 7 : surcharge étage $6+0.5 \times Q$

$$Q_0 = 25.76KN$$

$$Q_1 = 27.37 + 25.76 = 39.46KN$$

$$Q_2 = Q_1 + 0.9 \times 25.76 = 62.644 KN$$

$$Q_3 = Q_2 + 0.8 \times 25.76 = 83.252KN$$

$$Q_4 = Q_3 + 0.7 \times 25.76 = 101.284 KN$$

$$Q_5 = Q_4 + 0.6 \times 25.76 = 116.74 KN$$

$$Q_6 = Q_5 + 0.5 \times 25.76 = 129.62KN$$

$$Q_7 = Q_6 + 0.5 \times 25.76 = 142.5KN$$

$$Q_8 = Q_7 + 0.5 \times 25.76 = 155.38KN$$

$$Q_9 = Q_8 + 0.5 \times 25.76 = 168.26 KN$$

Tableau II.7. Descente de charge poteau (A)

Niveaux	Élément	G(KN)	Q(KN)
N0	Tuile mécanique Poutres Poulets poteaux	5.89 22.31 2.76 8.032	13.7
	<u> </u>	38.992	13.7
	venant de N0 plancher corps creux escaliers	38.992 35.66 38.66	
N1	poutres poteaux	22.31 8.032	25.76
	Σ	143.044	39.46
	Venant de N1	143.044	
	Plancher corps creux	35.66	
N2	Escaliers Poutres poteaux	38.05 22.31 10.71	25.76
	Σ	249.774	62.644
	Venant de N2 Plancher corps creux Escaliers	249.774 35.66 38.05	
N3	Poutres poteaux	22.31 10.71	25.76
	Σ	356.504	83.252
	Venant de N3 Plancher corps creux	356.504 35.66	

N4	Escaliers	38.05	25.76
	Poutres	22.31	
	poteaux	13.77	
	$\frac{1}{2}$	472.524	101.284
	Venant de N4	472.524	
	Plancher corps creux	35.66	
	Escaliers	38.05	
N5	Poutres	22.31	25.76
N5	poteaux	13.77	
	\sum	582.314	116.74
	Venant de N5	582.314	
	Plancher corps creux	35.66	
	Escaliers	38.05	
N6	Poutres	22.31	25.76
NO	poteaux	17.21	
	\sum	694.934	129.62
	Venant de N6	694.934	
	Plancher corps creux	35.66	
	Escaliers	38.05	
N7	Poutres	22.31	25.76
147	poteaux	17.21	
	\sum	808.164	142.5
	Venant de N7	808.164	
	Plancher corps creux	35.66	
	Escaliers	38.05	
N8	Poutres	22.31	25.76
110	poteaux	21.03	
	\sum	925.214	155.38
	Venant de N8	925.214	
	Plancher corps creux	35.66	
	Escaliers	38.05	
	Poutres	22.31	25.76
N9	poutres	21.03	
	\sum	1042.264	168.26
	\sum Total	1042.264	168.26

 $N'_u = 1,35G_t + 1,5Q_t = 1.35 \times 1042.264 + 1.5 \times 168.26 = 1659.44KN \\ N_s = G_t + Q_t = 1066.92 + 159.847 = 1210.524KN$

Tableau II.8. Descente de charge poteau (B)

Niveaux	Élément	G(KN)	Q(KN)
N0	Tuile mécanique poutres poulets poteaux	5.62 21.61 2.76 8.032	13.06

	Σ	38.022	13.06
	venant de N0	38.022	13.00
	plancher corps creux	54.91	
	poutres	21.61	
	poteaux	8.032	23.685
N1	escalier	20.14	25.005
		142.714	36.745
	Venant de N1	142.714	30.712
	Plancher corps creux	54.91	
	Poutres	21.61	
	Poteaux	10.71	23.685
N2	escalier	20.14	
	\sum_{i}	250.084	58.061
	Venant de N2	250.084	00000
	Plancher corps creux	54.91	
	Poutres	21.61	
	Poteaux	10.71	23.685
N3	escalier	20.14	20.000
	Σ	357.454	77.009
	Venant de N3	357.545	777007
	Plancher corps creux	54.91	
	Poutres	21.61	
	Poteaux	13.77	23.685
N4	escalier	20.14	
	Σ	467.884	93.58
	Venant de N4	467.884	
	Plancher corps creux	54.91	
	Poutres	21.61	
***	Poteaux	13.77	23.685
N5	escalier	20.14	
	Σ	578.314	107.791
	Venant de N5	578.314	
	Plancher corps creux	54.91	
	Poutres	21.61	
NIC	Poteaux	17.21	23.685
N6	escalier	20.14	
	Σ	692.184	119.63
	Venant de N6	692.184	
	Plancher corps creux	54.91	
	Poutres	21.61	
> 15	Poteaux	17.21	23.685
N7	escalier	20.14	
	Σ.	808.054	131.47
	Venant de N7	808.054	
	Plancher corps creux	54.91	
	Poutres	21.61	
***	poteaux	21.03	23.685
N8	escalier	20.14	- 1002
	Σ	923.744	143.31
	Venant de N8	923.744	

	Plancher corps creux	54.91	
N9	Poutres	21.61	23.685
	poteaux	21.03	
	escalier	20.14	
	\sum	1041.434	155.15
	∑ Total	1041.434	155.15
	$N'_u=1,35G_t+1,5Q_t=1.35\times1041.4$		
	$N_s = G_t + Q_t = 1154.752 + 1$		

En résumé:

$$N'_{u}(P.A) = 1659.44 \text{ KN}$$

$$N'_u(P.B) = 1405.93 \text{ KN}$$

Donc, il est clair que le poteau le plus sollicité est le poteau (P.D4) au niveau de la cage d'escalier.

Afin de prendre en considération la continuité des portiques, le **CBA** (**Art B.8.1.1**) [2] nous exige de majorer l'effort N_u comme suit :

 $\begin{cases} 10 \ \% \dots \text{ poteaux internes voisin de rive dans le cas d'un batiment comportant au moins 3 travées.} \\ 15 \ \% \dots \text{ poteaux centreaux dans le cas d'un batiment à 2 travées.} \end{cases}$

Dans notre cas, le portique a plus de deux travées, donc l'effort Nu sera majoré de 10%.

$$N_u = 1.1 \text{ N'}_u = 1.1 \times 1659.44$$

 $N_u = 1825.384 \text{ KN}.$

- Vérifications à faire
- Vérification à la compression simple

Exemple de calcul

Vérification du poteau à la base « poteau RDC (50*55)cm² »

Le dimensionnement se fait à l'ELU

$$\sigma_{bc} = \frac{N_u}{B} \leq \overline{\sigma}_{bc} = \frac{0.85 \times f_{c28}}{\gamma_b \times \theta} \quad \text{ avec , } \quad \overline{\sigma}_{bc} = \frac{0.85 \times 25}{1.5 \times 1} = 14.2 \text{ MPa}$$

$$\Rightarrow$$
 B $\geq \frac{N_u}{\overline{\sigma}_{hc}} = \frac{1825.384 \times 10^{-3}}{14.2}$

$$\Rightarrow B \ge 0.128 \text{m}^2$$

Avec B: la section du poteau.

 $\gamma_b = 1,5$: coefficient de sécurité du béton.

Or, pour le poteau à la base $B = 0.5 \times 0.55 = 0.275 \text{ m}^2$

Donc
$$B = 0.275 \text{ m}^2 \ge 0.128 \text{ m}^2 \dots Condition vérifiée}$$

De la même façon que l'exemple de calcul précédent, on va vérifier le poteau le plus sollicité de chaque niveau, les résultats seront mentionnés dans le tableau ci-après.

Tableau II.9.	Vérification de	es poteaux à la	compression	simple

Etagag	N., (IZN)	Comparais	son $(B \ge B^{calc})$	Observation
Etages	Nu (KN)	B (m ²)	B^{calc} (m^2)	Observation
Etage 9	80.50	0,105	0,005	Vérifiée
Etage 8	277.52	0,105	0,019	Vérifiée
Etage 7	474.27	0,14	0,033	Vérifiée
Etage 6	666.77	0,14	0,046	Vérifiée
Etage 5	852.10	0,18	0,058	Vérifiée
Etage 4	1057.35	0,18	0,074	Vérifiée
Etage 3	1245.84	0,225	0,087	Vérifiée
Etage 2	1435.24	0,225	0,101	Vérifiée
Etage 1	1630.31	0,275	0,114	Vérifiée
RDC	1825.30	0,275	0,128	Vérifiée

Vérification au flambement

D'après le CBA93 (Art B.8.8.1) [2], la vérification suivante est indispensable :

Avec:

- $B_r = (b-2) \times (h-2)cm^2$: section réduite du poteau.
- α : coefficient réducteur qui en fonction de l'élancement (λ)
- A_s: section d'armature comprimée.
- $\gamma_s = 1,15$: coefficient de sécurité de l'acier.
- $f_{e} = 400 \text{ MPa}$

On a

$$\alpha = f(\lambda) \ avec \begin{cases} \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} & si : \lambda \le 50 \\ \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 si : 50 \le \lambda \le 7 \end{cases}$$

$$\lambda = l_f/i$$

Tel que:

 $l_f = 0.7 \times L_0$: Longueur de flambement.

 L_0 : Hauteur libre du poteau = (hauteur d'étage – hauteur de la poutre principale)

$$I = \frac{b \times h^3}{12} : \text{moment d'inertie}$$

$$i = \sqrt{\frac{I}{b \times h}} = \sqrt{\frac{h^2}{12}}$$
:rayon de giration

Exemple de calcul

• Vérification du poteau à la base (poteau RDC)

On a:
$$L_0 = 3,06 - 0,4 = 2.66 m \implies l_f = 1.862 m$$

$$i = \sqrt{\frac{0,55^2}{12}} = 0,159 \, m$$

Ce qui donne : $\lambda = 1.862/0,159 = 11.48 < 50$

donc $\alpha = \frac{0.85}{1 + 0.2(\lambda/35)^2} = 0.832$

Selon le BAEL:

 $A_s \in [0.8 \%B_r; 1.2 \% B_r]$

On prend $A_s = 1\% B_r$

D'après la formule (1):

$$B_{\rm r} \ge \frac{N_u}{\alpha} \times \frac{1}{(f_{c28}/(0.9 \times \gamma_b) + f_e/(100 \times \gamma_s)}$$

Or dans notre cas, $B_r = (55 - 2) \times (50 - 2) \times 10^{-4}$

 $B_r = 0,\!2544 \; m^2 > 0,\!1027 \; m^2......Condition \; \textit{v\'erifi\'ee}$

Puisque la condition est vérifiée, donc le poteau ne risque pas de se flamber.

De la même manière que cet exemple de calcul, on va vérifier le poteau le plus sollicité de chaque niveau, les résultats sont résumés dans le tableau qui suit :

Tableau II.10. Vérification des poteaux au flambement

Niveau	Nu (KN)	i (m)	λ	α	$(Br \ge Br^{calc})$		Observation
Miveau	140 (1314)	I (III)	λ	u	Br	Br ^{calc}	Observation
Etage 9	80.50	0.101	10.42	0,805	0.092	0,0045	Vérifiée
Etage 8	277.52	0,101	18,43	0,805	0.092	0,0156	Vérifiée
Etage 7	474.27	0.115	16.191	0,816	0.125	0,0264	Vérifiée
Etage 6	666.77	0,115		0,816	0.125	0,0371	Vérifiée
Etage 5	852.10	0,129	14.434	0,823	0.163	0,0470	Vérifiée

Etage 4	1057.35			0,823	0.163	0,0584	Vérifiée
Etage 3	1245.84	0,144	12.930	0,828	0.206	0,0684	Vérifiée
Etage 2	1435.24	0,144		0,828	0.206	0,0788	Vérifiée
Etage 1	1630.31	0,159	11,710	0,832	0.254	0,0891	Vérifiée
RDC	1825.30			0,832	0.254	0,0997	Vérifiée

II.10.4. Vérification des conditions du RPA 99 / 2003 [1]

Notre projet est implanté dans la zone IIa, donc la section des poteaux doivent répondre aux exigences suivantes

$$\begin{cases} \min(b,h) = 30 \ cm > 25 \ cm \dots \dots v\'{e}rifi\'{e}e \\ \min(b,h) = 30 \ cm > \frac{h_e}{20} = 15.3 \ cm \dots v\'{e}rifi\'{e}e \\ 1/4 \le h/b \le 4 \dots \dots \dots \dots \dots \dots v\'{e}rifi\'{e}e \end{cases}$$

II.11.Conclusion

Les conditions sont vérifiées, donc on peut opter les dimensions qu'on a proposées, à savoir :

- Plancher à corps creux (16+4) cm
- Dalle pleine $\begin{cases} e = 14 \ cm \text{ pour la dalle d'ascenseur} \end{cases}$
- Epaisseur des paillasses e = 18cm
- Epaisseur des Voiles $\begin{cases} e = 15cm \text{ pour le reste des étages.} \end{cases}$
- Poutres Principales (35×40) cm^2
- Poutres Secondaires (30×30) cm²
- Poteaux : leurs dimensions sont récapitulées dans le tableau suivant :

Tableau II.11. Dimensions des poteaux

Niveaux	RDC, étage 1	2,7		Étages 6 et 7	Étages 8 et 9
Dimensions	50 × 55	45 × 50	40 × 45	35 × 40	30 × 35

Chapitre III

III.1.INTRODUCTION:

La construction est un ensemble d'éléments qui sont classés en deux catégories : éléments principaux et élément secondaires. Dans ce chapitre on s'intéresse uniquement à l'étude des éléments secondaires (différents planchers, escalier, et l'ascenseur). Cette étude se fait en suivant le cheminement suivant : évaluation des charges sur l'élément considéré, calcul des sollicitations les plus défavorables puis, détermination de la section de l'acier nécessaire pour reprendre les charges en question tout en respectant la règlementation en vigueur (BAEL91, CBA93, RPA99 2003...). [1][2][3].

III.2. Etude des planchers :

Dans notre structure nous avons deux types de planchers :

- plancher à corps creux.
- Plancher à dalle pleine.

III.2.1.Plancher à corps creux :

III.2.1.1. Etude des poutrelles :

Les poutrelles sont des sections en T en béton armé, servant à transmettre les charges réparties ou concentrées aux poutres principales, elles sont calculées en flexion simple en respectant les critères de continuité et d'inertie constante.

b: Largeur de la table de compression.

h: Épaisseur du plancher = 16+4cm.

 L_x : distance maximale entre nus d'appui de deux poutrelles.

 l_y : distance minimale entre nus d'appuis de deux poutres principales.

III.2.1.1.1 Méthodes de calculs

Pour le calcul des sollicitations on applique deux méthodes qui sont :

- La méthode forfaitaire.
- La méthode de Caquot.

III.2.1.1.1.a. Méthode forfaitaire :

• Conditions d'application :

C'est une méthode qui s'applique pour les poutres (poutrelles) continues et pour les dalles portant dans un seul sens ($\frac{L_\chi}{L_\nu} \le 0.4$). Pour qu'elle soit appliquée il faux que :

■ Le plancher soit à surcharge modérée c'est-à-dire : $Q \le \min(2G; 5KN/m^2)$

- Le moment d'inertie soit constant sur toutes les travées.
- le rapport : $0.8 \le \frac{L_i}{L_{i+1}} \le 1.25$
- La fissuration est peu nuisible.
- Exposé de la méthode :

Soit une poutre continue soumise à une charge q

Et Soit :
$$\alpha = \frac{Q}{Q+G}$$

- Moment sur appuis :
- Sur les **Appuis de rive** les moments sont nuls cependant on les ferrailles (aciers de fissuration) avec une quantité d'acier équilibrant un moment égale à $(-0.15 \times M_0)$.
 - Appuis intermédiaires :
 - Poutres à deux travées :

Les moments sont de l'ordre de $(-0.6 \times M_0)$

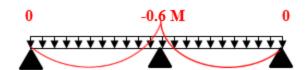


Figure III.1. Diagramme des moments à deux travées

• Poutres à plus de deux travées :

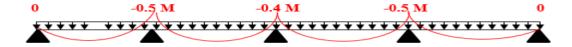


Figure III.2. Diagrammes des moments à plusieurs travées

Ces moment sont de l'ordre de : $(-0.5 \times M_0)$: Pour les appuis voisin de l'appuis de rive.

 $(-0.4 \times M_0)$: Pour les autres appuis intermédiaires.

Tel que M₀: Le maximum des deux moments isostatique encadrant l'appui considéré.

$$\mathbf{M}_0 = \frac{q \times L_i^2}{8}$$

• Moment en Travées :

Les moments en travée sont déterminés à partir des deux conditions suivantes

(1)
$$M_t + \frac{|M_g| + |M_d|}{2} \ge \max \begin{cases} (1 + 0.3 \times \alpha) \times M_0 \\ 1.05 \times M_0 \end{cases}$$

(2):
$$\begin{cases} M_{t} \ge \frac{1,2+0,3\times\alpha)\times M_{0}}{2}.....(a) \\ M_{t} \ge \frac{(1+0,3\times\alpha)\times M_{0}}{2}.....(b) \end{cases}$$

(a) : Si c'est une travée de rive.

(b) : Si c'est une travée intermédiaire.

 M_t : Est le maximum entre (1) et (2).

Tel que M_0 : Moment isostatique de la travée considérée.

• Evaluation des efforts tranchant :

Les efforts tranchants sont évalues soit forfaitairement en supposant la discontinuité entre les travées, dans ce cas les efforts tranchants hyperstatiques sont confondue même avec les efforts tranchants isostatiques sauf pour les premiers appuis intermédiaires (voisin de rive).

L'effort tranchant isostatique doit être majoré de :

- ✓ 15 % s'il s'agit d'une poutre à deux travées
- ✓ 10 % s'il s'agit d'une poutre à plus de deux travées.

Soit par la méthode RDM:

Compte tenu de la continuité : V_u = V_{u0} (isostatique) + $(M_i$ - $M_{i-1})$ / L_i

Figure III.3. Diagramme des efforts tranchants à deux travées

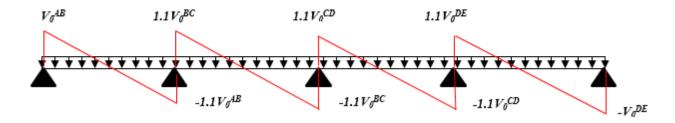


Figure III.4. Diagramme des efforts tranchants à plusieurs travées

III.2.1.1.1.b.Méthode de CAQUOT :

• Condition d'application :

Cette méthode s'applique pour les planchers à surcharge élevée mais peut également s'appliquée pour les planchers à surcharge modérée lorsque l'une des conditions de la méthode forfaitaire n'est pas satisfaite.

• Principe de la méthode :

Cette méthode est basé sur la méthode des trois moments que Caquot a simplifie et corrigé pour tenir compte de l'amortissement des effets de chargement des travées éloignées sur un appui donné, et de la variation du moment d'inertie des travées successives.

• Moment en appuis :

$$M_{i} = \frac{q_{g} \times L_{g}^{3} + q_{d} \times L_{d}^{3}}{8.5 \times (L_{g} + L_{d})}$$

Tel que : $\begin{cases} L_g \text{ et } L_d \text{ : Longueurs fictives} \\ q_g, q_d \text{ : Chargement à gauche et à droite de l'appui respectivement} \end{cases}$

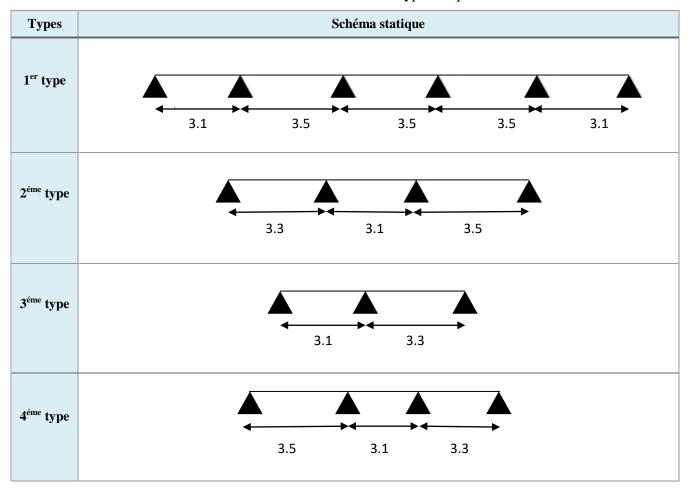
$$L = \begin{cases} 0.8L : \text{Trav\'ee interm\'ediare} \\ L : \text{Trav\'ee de rive} \end{cases}$$

• Moment en travée :

$$M(X) = M_0(X) + M_g \times \left(1 - \frac{X}{L}\right) + M_d \times \left(\frac{X}{L}\right) = \frac{q_X}{2} \times \left(L - X\right) \times M_g \left(1 - \frac{X}{L}\right) + M_d \times \left(\frac{X}{L}\right)$$

$$\frac{dM}{dX} = 0 \Rightarrow -q \times X + q \times \frac{L}{2} - \frac{M_g}{L} + \frac{M_d}{L} = 0$$

$$\Rightarrow X = \frac{\frac{q \times L}{2} - \frac{M_g}{L} + \frac{M_d}{L}}{q}$$


$$M_{\text{max}} = M(X)$$

• L'effort tranchant :

$$V = \frac{dM}{dX} = q \times \frac{L}{2} - q \times X - \frac{M_g}{L} + \frac{M_d}{L}$$

• Les différents types des poutrelles :

Tableau III.1..Les différents types de poutrelles

• calcul des charge revenant aux poutrelles :

Tableau III.2. Chargement sur les poutrelles

Type de	G (KN/m ²)	Q (KN/m ²)	l ₀ (m)	$q_u = (1.35G + 1.5Q) * l_0$	$q_s=(G+Q)*l_0$
plancher				(KN/ml)	(KN/ml)
Etage	5.20	1.5	0.65	6.025	4.355
courant					

Avec:

l₀: entraxe des poutrelles

• Calcul des sollicitations :

Nous présentons dans ce qui suit un exemple de calcul des sollicitation dans les poutrelles en utilisant la méthode forfaitaire .

> Poutrelles de type 1

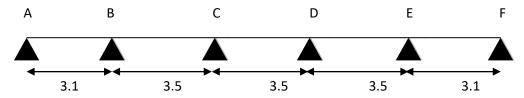


Figure III.5. schéma statique de la poutrelle type 1

• Vérification des conditions d'application de la méthode forfaitaire :

1. Plancher a surcharge modéré : $Q = 1.5KN/m^2 < 5KN/m^2$

2.
$$\frac{l_i}{l_{i+1}} = \frac{3.1}{3.5} = 0.88 \in [0.8; 1.25]; \frac{3.5}{3.5} = 1; \frac{3.5}{3.1} = 1.12$$
.

- 3. $I = C^{st}$ (meme corps creux).
- 4. FPN (car ells ne sont pas exposées aux intempéries).

⇒la methode forfaitaire est applicable.

• Calcul des moments isostatique :

$$q_u$$
=6.025 KN/ml ; q_s =4.355 KN/ml

$$M_0 = \frac{q_u l^2}{8}$$

Travée AB: $M_{0,u} = 7.237 \text{ KN.m}$

$$M_{0.s} = 5.231 \text{ KN.m}$$

Travée BC: $M_{0,u} = 9.225 \text{ KN.m}$

$$M_{0,s}$$
= 6.668 KN.m

Travée CD: $M_{0,u}$ =9.225 KN.m

$$M_{0,s}$$
=6.668 KN.m

Travée DE: $M_{0,u} = 9.225 \text{ KN.m}$

$$M_{0,s}$$
= 6.668 KN.m

Travée EF: $M_{0,u}$ = 8.201 KN.m

$$M_{0,s}$$
=5.928 KN.m

- Calcul des moment au appuis :
- Appuis de rive :

 $M_A=M_F=0$ (le BAEL 99 préconise de mettre des aciers de fissuration équilibrant un moment fictif égale a $0.15M_0$)

$$M_A = M_F = -0.15 \text{max}(M_0^{AB}; M_0^{EF})$$

$$M_{A,u} = M_{F,u} = -1.230 \text{ KN.m}$$

$$M_{A,s} = M_{F,s} = -0.889 \text{ KN.m}$$

• appui intermidiaire:

cas de plus de 3 travées :

$$M_B = -0.5 \text{max}(M_0^{AB}; M_0^{BC}) = -0.5 M_0^{BC}$$

$$M_{B,u}$$
= - 4.612 KN.m

$$M_{B,s}$$
= - 3.334 KN.m

$$M_{C}=-0.4 \text{max}(M_0^{BC};M_0^{CD})=-0.4 M_0^{CD}$$

$$M_{C,u} = -3.69 \text{ KN.m}$$

$$M_{C,s}$$
= - 2.667 KN.m

$$M_D = -0.4 max(M_0^{CD}; M_0^{DE}) = -0.4 M_0^{DE}$$

$$M_{D,u} = -3.69 \text{ KN.m}$$

$$M_{D,s}$$
= - 2.667 KN.m

$$M_E = -0.5 \text{ max}(M_0^{DE}; M_0^{EF}) = -0.5 M_0^{DE}$$

$$M_{E,u} = -4.612 \text{ KN.m}$$

$$M_{E,s}$$
= - 3.334 KN.m

• Calcul des moment en travées :

Les valeurs de M_t,M_e et M_w doivent verifier les conditions suivantes :

$$\checkmark M_t \ge \max \left[1.05 M_0; (1+0.3\alpha) M_0 \right] - \frac{M_w - M_e}{2}$$

$$\checkmark \text{ Mt} \geq \begin{cases} (1+0.3\alpha) \frac{M_0}{2} \dots \text{Dans une travée intermidiaire.} \\ (1.2+0.3\alpha) \frac{M_0}{2} \dots \text{Dans une travée de rive.} \end{cases}$$

Travée AB (rive):

$$\alpha = \frac{Q}{G+Q} = 0.263$$

$$(1+0.3\alpha) = 1.079$$

-
$$M_{t,AB}^1 + \frac{|M_A + M_B|}{2} \ge max(1.05;1+0.3\alpha)M_0^{AB}$$
.

$$- M_{t,AB}^2 \ge \left(\frac{1.2 + 0.3\alpha}{2}\right) M_0^{AB}.$$

$$\Rightarrow M_{t,AB}^2 \ge 0.639 M_{0}^{AB}$$

$$M_{t,AB} = \max(M_{t,AB}^1; M_{t,AB}^2)$$

$$M^{u}_{t,AB} = 4.95 KN.m$$

$$M_{t,AB}^{s} = 3.58KN.m$$

Travée BC (intermidiaire):

-
$$M_{t,BC}^1 = 5.79 KN.m$$

$$- M_{t,BC}^2 \ge \left(\frac{1+0.3\alpha}{2}\right) M_0^{BC}$$

$$\Rightarrow M_{t,BC}^2 \ge 0.539 M_{0}^{BC}$$

$$\Rightarrow M_{t,BC}^2 = 4.97 KN.m$$

$$M^{u}_{t,BC} = 5.79 KN.m$$

$$M_{t,BC}^{s} = 4.19 KN.m$$

Travée CD (intermidiaire):

On effectue le méme calcul que la travée BC et on retrouve :

-
$$M_{t,CD}^1 = 6.26KN.m$$

-
$$M_{tCD}^2 = 4.97 KN.m$$

$$M_{t,CD}^{u} = 6.26KN.m$$

$$M_{t,CD}^{s} = 4.53 KN.m$$

Travée DE (intermidiaire):

On effectue le méme calcul que la travée BC et on retrouve :

-
$$M_{tDE}^1 = 5.79 KN.m$$

-
$$M_{t,CD}^2 = 4.97 KN.m$$

$$M_{t,DE}^{u} = 5.79 KN.m$$

$$M_{tDE}^{s} = 4.19 KN.m$$

Travée EF (rive):

On effectue le même calcul que la travée AB et on retrouve :

-
$$M_{t.EF}^1 = 7.56KN.m$$

-
$$M_{t.EF}^2 = 5.24 KN.m$$

$$M_{t,EF}^{u} = 5.92 KN.m$$

$$M^{s}_{t,EF} = 4.28KN.m$$

• Les efforts tranchants :

L'effort tranchant isostatique doit être majoré de :

- ✓ 15 % s'il s'agit d'une poutre à deux travées
- ✓ 10 % s'il s'agit d'une poutre à plus de deux travées.

Travée AB:

$$V_A = \frac{ql_1}{2} = \frac{6.025 \times 3.1}{2} = 9.34KN$$

$$V_B = -1.1 \frac{q l_1}{2} = -10.27 KN$$

Travée BC:

-
$$V_B = 1.1 \frac{q l_2}{2} = 1.1 \times \frac{6.025 \times 3.5}{2} = 11.60 KN$$

$$V_C = -\frac{ql_2}{2} = -\frac{6.025 \times 3.5}{2} = -10.54KN$$

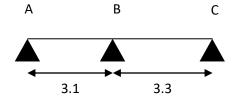
Travée CD:

$$V_C = \frac{ql_3}{2} = \frac{6.025 \times 3.5}{2} = 10.54KN$$

-
$$V_D = -1.1 \frac{ql_3}{2} = -1.1 \times \frac{6.025 \times 3.5}{2} = -11.60 KN$$

Travée DE:

-
$$V_D = 1.1 \frac{ql_4}{2} = 1.1 \times \frac{5.148 \times 3.5}{2} = 11.60 KN$$


$$V_E = -\frac{ql_4}{2} = -\frac{6.025 \times 3.5}{2} = -10.54KN$$

Travée EF:

$$V_E = \frac{ql_4}{2} = \frac{6.025 \times 3.3}{2} = 9.94KN$$

-
$$V_F = -1.1 \frac{ql_5}{2} = -1.1 \times \frac{6.025 \times 3.3}{2} = -10.94 KN$$

• Poutrelles de type 3

Figure III.6. schéma statique de la poutrelle type 3

- Vérification des conditions d'application de la méthode forfaitaire :
- 1. Plancher a surcharge modéré : $Q = 1.5KN/m^2 < 5KN/m^2$
- 2. $\frac{l_i}{l_{i+1}} = \frac{3.1}{3.3} = 0.93 \in [0.8; 1.25].$
- 3. $I = C^{st}$ (meme corps creux).
- 4. FPN (car ells ne sont pas exposées aux intempéries).

 \Rightarrow la methode forfaitaire est applicable.

- Calcul des moments isostatique :
- $q_u=6.025 \text{ KN/ml}$; $q_s=4.355 \text{ KN/ml}$

$$M_0 = \frac{q_u l^2}{8}$$

Travée AB: $M_{0,u} = 7.24 \text{ KN.m}$

$$M_{0,s} = 4.450 \text{ KN.m}$$

Travée BC: $M_{0,u} = 8.20 \text{ KN.m}$

$$M_{0,s} = 5.043 \text{ KN.m}$$

- Calcul des moment au appuis :
- Appuis de rive :

 $M_A=M_C=0$ (le BAEL 99 préconise de mettre des aciers de fissuration équilibrant un moment fictif égale a $0.15M_0$)

$$M_A = M_C = -0.15 max(M_0^{AB}; M_0^{EC})$$

$$M_{A,u} = M_{C,u} = -1.23 \text{ KN.m}$$

$$M_{A,s} = M_{C,s} = -0.89 \text{ KN.m}$$

• appui intermidiaire:

Poutres à deux travées :

$$M_B = 0.6 \text{max}(M_0^{AB}; M_0^{BC}) = 0.6 M_0^{BC}$$

$$M_{B,u} = 4.92 \text{ KN.m}$$

$$M_{B,s} = 3.56 \text{ KN.m}$$

• Calcul des moment en travées :

Les valeurs de M_t,M_e et M_w doivent verifier les conditions suivantes :

$$\checkmark M_t \ge \max \left[1.05 M_0; (1 + 0.3\alpha) M_0 \right] - \frac{M_w - M_e}{2}$$

$$\checkmark \text{ Mt} \geq \begin{cases} (1+0.3\alpha) \frac{M_0}{2} \dots \text{Dans une travée intermidiaire.} \\ (1.2+0.3\alpha) \frac{M_0}{2} \dots \text{Dans une travée de rive.} \end{cases}$$

Travée AB (rive):

$$\alpha = \frac{Q}{G+Q} = 0.263$$

$$\begin{cases} (1+0.3\alpha) = 1.079 \\ (1.2+0.3\alpha) = 1.279 \end{cases}$$

$$- M_{t,AB}^{1} \frac{|M_{A}+M_{B}|}{2} \ge \max(1.05;1+0.3\alpha)M_{0}^{AB}.$$

$$- M_{t,AB}^{2} \ge \left(\frac{1.2+0.3\alpha}{2}\right)M_{0}^{AB}.$$

$$\Rightarrow M_{t,AB}^{2} \ge 0.639M_{0}^{AB}.$$

$$M_{t,AB} = \max(M_{t,AB}^{1}; M_{t,AB}^{2})$$

$$M_{t,AB} = \max(M_{t,AB}^1; M_{t,AB}^2)$$

$$M_{t,AB}^{u} = 4.80 KN.m$$

$$M_{tAB}^{s} = 3.47 KN.m$$

Travée BC (rive):

On effectue le même calcul que la travée AB et on retrouve :

-
$$M_{t,BC}^1 = 5.77 KN.m$$

-
$$M_{t,BC}^2 = 5.24 KN.m$$

$$M_{t,BC}^{u} = 5.77 \, KN.m$$

$$M_{t,BC}^s = 4.17 KN.m$$

Les efforts tranchants :

L'effort tranchant isostatique doit être majoré de :

- ✓ 15 % s'il s'agit d'une poutre à deux travées
- ✓ 10 % s'il s'agit d'une poutre à plus de deux travées.

Travée AB:

$$V_A = \frac{ql_1}{2} = \frac{6.025 \times 3.1}{2} = 9.34KN$$

$$V_{B} = -1.15 \frac{q l_{1}}{2} = -10.74 KN$$

Travée BC:

-
$$V_B = 1.15 \frac{ql_2}{2} = 1.15 \times \frac{6.025 \times 3.3}{2} = 11.43 KN$$

$$V_C = -\frac{ql_2}{2} = -\frac{6.025 \times 3.3}{2} = -9.94 KN$$

Les resultats des autres types de poutrelles sont representés dans le tableau ci-dessous :

Tableau III.3.Les sollicitations des poutrelles

Etage courant								
Types de	ELU			ELS			Effort	
poutrelles	M _t	Ma.int	Ma.r	M _t	Ma.int	Ma.r	tranchant	
poutrenes	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	tranchant	
1	6.26	-4.61	-1.23	4.53	-3.34	-0.89	11.60	
2	6.95	-4.61	-1.38	5.03	-3.34	-1.00	-11.60	
3	5.77	-4.92	-1.23	4.17	-3.56	-0.89	9.768	
4	6.95	-4.61	-1.38	5.03	-3.34	-1.00	-11.60	

III.2.1.2. Feraillage des poutrelles

Toutes les poutrelles vont étre feraillées avec les sillicitations maximales suivantes :

 $M_t = 6.95 \text{ KN.m}$

Ma.int = 4.92 KN.m

Ma.r = 1.38 KN.m

V = 11.60 KN.m

• Feraillage longitudinal:

Avec : b = 0.65m , $h_t = 0.2m$, d = 0.9* $h_t = 0.18m$, $f_{bu} = 14.2$ MPA

a) En travée:

- si $M_u \le M_{tu}$ la table n'est pas entiérement comprimée, l'axe neure est dans la table de compression, on calcule une section rectangulaire $b \times h$
- si $M_u \ge M_{tu}$ on calcule une section en T

$$M_{tu} = b \times h_0 \times f_{bu} \left(d - \frac{h_0}{2} \right) = 0.65 \times 0.04 \times 14.2 \times (0.18 - \frac{0.04}{2}) = 59 \, KN.m$$

$$M_t = 6.95 \text{ KN.m} \le M_{tu} = 59 \text{KN.m}$$

L'axe neutre passe par la table de compression, le calcule se fera a la flexion simple pour une section rectangulaire (b×h).

$$\mu_{bu} = \frac{M_U}{bd^2 f_{bu}} = \frac{6.95 * 10^{-3}}{0.65 * (0.18)^2 * 14.2} = 0,0232$$

$$\mu_l = 0.8\alpha_l (1 - 0.4) = 0.392 > \mu_{bu} = 0,0232$$

→ Le diagramme passe par le pivot « A » et les armatures comprimées ne sont pas nécessaires

$$(A_S' = 0)$$
 et $\varepsilon_S = 10\%$; $f_{st} = \frac{f_e}{\gamma_S} = \frac{400}{1.15} = 348MPa$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}} \right) \Rightarrow \alpha = 0.025$$

$$z = d(1 - 0.4\alpha) \Rightarrow z = 0.178m$$

$$A^{trav\acute{e}} = \frac{M^{trav\acute{e}}}{z \times f_{st}} \Longrightarrow A^{trav\acute{e}} = 1.122cm^2$$

b) En appuis:

Le calcul à la flexion simple conduit a une section d'aciers :

$$A_{a.int} = 0.794 \text{ cm}^2$$

De meme, la section a mettre en appuis de rive :

$$A_{a,r} = 0.223 \text{ cm}^2$$

• Vérification de la condition de non fragilité :

- en travée :
$$A_{\min} = 0.23*b*d*\frac{f_{t28}}{f_e} = 0.23*0.65*0.18*\frac{2.1}{400} = 1.412*10^{-4}m^2 \ge A_{cal}$$

(on ferraille avec A_{min})

- en appuis :
$$A_{\min} = 0.23 * b_0 * d * \frac{f_{t28}}{f_e} = 0.23 * 0.1 * 0.18 * \frac{2.1}{400} = 0.217 * 10^{-4} m^2 \le A_{cal}$$

(on feraille avec A_{cal})

On adopte le ferraillage suivant :

$$A_t = 2HA8 + 1HA10 = 1.80 \text{ cm}^2$$
 en travée

$$A_a^{int} = 1HA10 \text{ (filante)} + 1HA10 \text{ (chapeau)} = 1.58 \text{ cm}^2$$
 en appui intermidiaire

$$A_a^{riv} = 1HA10 = 0.79 \text{ cm}^2$$
 en appui de rive

III.2.1.3. Verification à L'ELU

• Verification de la contrainte de cisaillement :

La fissuration peu nuisible $\Rightarrow \bar{\tau}_u = \min(0.13f_{C28}; 4MPa) = \min(0.13 \times 25; 4MPa)$

$$\tau_U = \frac{V_{\text{max}}}{b_0 * d} = \frac{11.60 * 10^{-3}}{0.1 * 0.18} = 0,644 MPa$$

 $\tau_u = 0.644 MPa < \bar{\tau}_u = 3.25 MPa \dots \dots$ Condition vérifiée.

• Choix des armatures transversales :

$$\emptyset_{\mathbf{t}} \leq \min \left(\emptyset_{\mathbf{l}}^{\min}; \frac{\mathbf{h}}{35}; \frac{\mathbf{b}_0}{10}\right) \Longrightarrow \emptyset_{\mathbf{t}} = 6 \text{mm}$$

On choisit un étrier Φ_6

$$A_t = 2\Phi_6 = 0.57 \text{cm}^2$$

• L'espacement :

 $St \le min (0.9d, 40cm) \Rightarrow St \le 16.20cm$

K=1 flexion simple FPN, pas de reprise de bétonnage.

 $\alpha = 90^{\circ}$ Flexion simple, armatures droites.

$$S_t \le A_t \frac{0.8 \times f_e}{b_0 \times (\tau_v - 0.3 \times f_{exp})} \Rightarrow S_t \le 32cm$$

$$S_{t} \le \frac{A_{t} \times f_{e}}{0.4 \times b_{0}} \Rightarrow S_{t} \le \frac{0.57 \times 400}{0.4 \times 10} = 57cm$$

On prend St = 15cm

• Vérification à l'effort tranchant:

Vérification de la bielle

On doit verifier que:

$$\begin{split} &V_u \leq 0.267*a*b_0*f_{c28} \\ &a \leq \min \left(0.9*d; \left(l_{appuis} - 4\right)\right) = 0.162m \\ &\Rightarrow V_u = 11.60KN \leq 0.276*0.162*0.1*25 = 111.78KN.....verifier \end{split}$$

- Vérification des armatures longitudinales (A_t) à l'effort tranchant (V_u) :
- L'appui intermédiaire :

$$A_l \ge \frac{\gamma_s}{f_e} (V_u + \frac{M_u}{0.9d})$$

$$A_{l} \ge \frac{1.15}{400 \times 10^{3}} (4.92 - \frac{6.95}{0.9 \times 0.18}) = -1.091 \times 10^{-4} cm^{2} \le 0$$

⇒pas de verification a faire car leffort tranchant est négligeable devant l'effort du moment .

• Au niveau de l'appui de rive :

$$A_L \ge \frac{\gamma_s}{f_e} V_u \Rightarrow A_l \ge \frac{1.15}{400} \times 11.60 \times 10^{-3} = 0.334 cm^2$$

Avec : $A_i = 1.80 + 0.79 = 2.59$ cm² Condition vérifiée

• Cisaillement au niveau de la jonction table-nervure :

$$\tau_{u} = \frac{V_{U}(\frac{b-b_{0}}{2})}{0.9 \times dbh_{0}} = \frac{11.60 \times 10^{-3} \left(\frac{0.65 - 0.1}{2}\right)}{0.9 \times 0.18 \times 0.65 \times 0.04} = 0.757 MPa$$

 $\tau_u \le \bar{\tau}_u = \min(0.13 f_{C28}; 4MPa) = 3.25MPA...$ Condition vérifier \Rightarrow pas de risque de cissaillement a la jonction table-nervure.

III.2.1.4. Vérification des poutrelles à l'ELS :

Il y a lieu de vérifier : - Etat limite de compression du béton.

- Etat limite d'ouverture des fissures.
- Etat limite de déformation.
- > Etat limite de compression du béton :
- En travée :

$$M_t^{\max} = 6.95 KN.m$$

Position de l'axe neutre

$$H = b\frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = 0.65 \times \frac{0.04^2}{2} - 15 \times 1.80 \times 10^{-4} \times (0.18 - 0.04) = 1.42 \times 10^{-4} \ge 0$$

L'axe neutre passe par la table ⇒ calcul de section rectangulaire b*h

$$\Rightarrow \frac{b}{2} y^2 + 15(A + A') y - 15(Ad + A'd') = 0$$
$$\Rightarrow \frac{0.65}{2} y^2 + 15(1.8 \times 10^{-4} + 0) y - 15(1.8 \times 10^{-4} \times 0.18) = 0$$

$$\Rightarrow$$
y = 0.0343m

• Moment d'enertie :

$$\Rightarrow I = \frac{0.65}{3} \times 0.0343^{3} + 15 \times 1.8 \times 10^{-4} (0.18 - 0.0343)^{2} = 6.606 \times 10^{-5} m^{4}$$
$$\Rightarrow I = 6.606 \times 10^{-5} m^{4}$$

* Contraintes:

$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \Rightarrow \sigma_{bc} = \frac{5.03 \times 10^{-3}}{6.606 \times 10^{-5}} \times 0.0343$$

$$\Rightarrow \begin{cases} \sigma_{bc} = 2.611 MPa \\ \overline{\sigma_{bc}} = 0.6 \times f_{c28} = 15 MPa \end{cases}$$
 condition verifier

• En appuis :

$$M_{a \max int}^{ser} = -3.56 \times 10^{-3} MN.m$$

Position de l'axe neutre :

$$H = 0.65 \times \frac{0.04^{2}}{2} - 15 \times 1.58 \times 10^{-4} \times (0.18 - 0.04) = 1.882 \times 10^{-4}$$

 $H>0 \Rightarrow 1$ 'axe neutre passe par la table de compression.

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \frac{1}{\sigma_{bc}}$$

$$A' = 0 \Rightarrow \frac{b}{2} y^2 + 15Ay - 15Ad = 0$$

$$\frac{0.65}{2} y^2 + 15 \times 1.58 \times 10^{-4} y - 15 \times 1.58 \times 10^{-4} \times 0.18 = 0$$

$$\sqrt{\Delta} = 0.024$$

$$y_{1} = -0.040m$$

$$y_{2} = 0.036m$$

$$I = \frac{b}{3}y^{3} + 15A(d - y)^{2} \Rightarrow I = 0.217 \times (0.036)^{3} + 15 \times 1.58 \times 10^{-4} \times (0.18 - 0.036)^{2}$$

$$I = 5.93 \times 10^{-5} m^{4}.$$

$$\sigma_{bc} = \frac{3.56 \times 10^{-3}}{5.93 \times 10^{-5}} 0.036 = 2.161 MPa$$

$$\sigma_{bc} < \overline{\sigma_{bc}}$$
C'est vérifié.

> Etat limite de déformation :

Le calcul des déformations est effectué pour évaluer les flèches dans l'intention de fixer les contreflèches à la construction ou de limiter les déformations de service.

Evaluation de la flèche BAEL 91(Article B.6.5) et le CBA 93.[2][3]

Si l'une de ses conditions ci-dessous n'est pas satisfaite la vérification de la flèche devient nécessaire :

$$\frac{h}{l} \ge \frac{1}{16}$$

On a : $\frac{h}{l} = \frac{20}{350} = 0.057 < \frac{1}{16}$ la condition n'est pas satisfaite donc on doit faire une vérification de

la flèche.

La flèche admissible pour une poutre inférieure à 5m est de :

$$f_{adm} = \frac{l}{500} = \frac{350}{500} = 0.7cm$$

- f_{gv} et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.
- f_{ij} : Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.
- f_{pi} : Flèche due à l'ensemble des charges appliquées (G+Q).
 - Evaluation des moments en travée :

 $q_{jser} = 0.65 \times G = 0.65 \times 3.80 = 2.47$ KN/ml la charge permanente qui revient à la poutrelle sans la charge de revêtement.

 $q_{\it gser} = 0.65 \times G = 0.65 \times 5.20 = 2.73 \, {\rm KN/ml}$ la charge permanente qui revient à la poutrelle.

 $q_{pser} = 0.65 \times (G + Q) = 0.65 \times (5.20 + 1.5) = 4.355 \text{KN/ml}$ la charge permanente et la surcharge d'exploitation.

$$M_{jser} = \frac{q_{jser} \times l^2}{8} = 3.782 \text{ KN.m}$$

$$M_{gser} = \frac{q_{gser} \times l^2}{8} = 4.180 \text{ KN.m}$$

$$M_{pser} = \frac{q_{pser} \times l^2}{8} = 5.673 \text{ KN.m}$$

• Calcule de λ et ρ :

$$A_{s} = 1.80cm^{2}$$

$$\rho = \frac{A_s}{b_0.d} = \frac{1.80}{10 \times 18} = 0.01$$

$$\lambda_i = \frac{0.05.f_{t28}}{(2+3\frac{b_0}{h})\rho} = 4.266$$
 Déformation instantanée

$$\lambda_{v} = 0.4 \times \lambda_{i} = 1.706$$
 Déformation différée.

• Calcul du moment d'inertie et la position de l'axe neutre I et Y :

$$Y = 3.43$$
cm
 $I = 6.606 \times 10^{-5}$ m⁴

* Calcul des contraintes

$$\sigma_{sj} = \frac{M_{jser}}{A_s \times (d - \frac{y}{2})} = \frac{3.782 \times 10^{-3}}{1.80 \times 10^{-4} \times (0.18 - \frac{0.0343}{2})} = 129.021 Mpa$$

$$\sigma_{sg} = \frac{M_{gser}}{A_s \times (d - \frac{y}{2})} = \frac{4.180 \times 10^{-3}}{1.80 \times 10^{-4} (0.18 - \frac{0.0343}{2})} = 142.598 Mpa$$

$$\sigma_{sp} = \frac{M_{pser}}{A_s \times (d - \frac{y}{2})} = \frac{5.673 \times 10^{-3}}{1.80 \times 10^{-4} \times (0.18 - \frac{0.0343}{2})} = 193.531 Mpa$$

* Calcul de μ :

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}} = 1 - \frac{1.75 \times 2.1}{4 \times 0.01 \times 129.021 + 2.1} = 0.493$$

$$\mu_g = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} = 1 - \frac{1.75 \times 2.1}{4 \times 0.01 \times 142.598 + 2.1} = 0.529$$

$$\mu_p = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}} = 1 - \frac{1.75 \times 2.1}{4 \times 0.01 \times 193.53 + 2.1} = 0.626$$

* Calcul du moment d'enertie de la section homogéne par rapport a l'axe qui passe par le CDG I_0 :

$$B_0 = b \times h + 15 A_s = (65 \times 20) + (15 \times 1.80) = 1327 \text{ cm}^2$$

$$V_1 = \frac{1}{B_0} \left(\frac{b \times h^2}{2} + 15A_s \times d \right) = 10.162cm$$

$$V_2 = h - V_1 = 9.838cm$$

$$I_0 = \frac{b}{2} (V_1^3 + V_2^3) + 15A_S (d - V_1)^2 = 66709.9cm^4$$

* Calcul des moments d'inertie fictifs If:

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_i} = \frac{1.1 \times 66709.9}{1 + 4.266 \times 0.493} = 23647.317cm^4$$

$$If_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_a} = \frac{1.1 \times 66709.9}{1 + 4.266 \times 0.529} = 22532.187cm^4$$

$$If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} = \frac{1.1 \times 66709.9}{1 + 4.266 \times 0.626} = 19991.98cm^4$$

$$If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} = \frac{1.1 \times 66709.9}{1 + 1.706 \times 0.529} = 38571.297 cm^4$$

* Calcul de E:

$$E_i = 11000\sqrt[3]{f_{c28}} = 32164.2 Mpa$$
 module de deformation longitudinale instantanée du béton $E_v = \frac{E_i}{2} = 10721.4 Mpa$ module de deformation longitudinale différée du béton

* Evaluation de la fléche :

III.2.1.5. Schémas des ferraillages

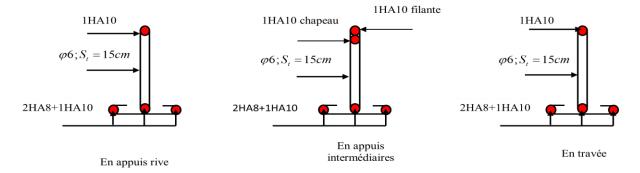


Figure III.7. schémas de ferraillage des poutrelles

III.2.1.6. Feraillage de la dalle de compression

Armatures perpendiculaires aux nervures

Selon le **BAEL 91** (**B.6.8, 423**)[3]:

$$A_{\perp} = \frac{4 \times b}{f_{e}} = \frac{4 \times 0.65}{235} = 1.1 cm^{2} / ml$$

• Armatures parallèles aux nervures

$$A_{//} = \frac{A_{\perp}}{2} = 0.55 \text{ cm}^2/\text{ml}$$

D'après le même article cité ci-dessus les espacements ne doivent pas dépasser :

- 20cm (5 p.m) pour les armatures perpendiculaires aux nervures,
- 33cm (3 p.m) pour les armatures parallèles aux nervures.

On choisit:

 $5TS6/ml = 1.41 \text{ cm}^2$ perpendiculaires aux poutrelles $\rightarrow S_t = 20 \text{cm} \le 20 \text{ cm}$vérifier $5TS6/ml = 1.41 \text{cm}^2$ paralléles aus poutrelles $\rightarrow S_t = 20 \text{cm} \le 30 \text{ cm}$vérifier

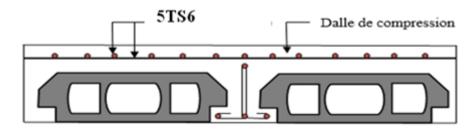


Figure III.8 Schéma de ferraillage de la dalle de compression

III.3.Planchers a dalles pleines

Une dalle peine est définie comme une plaque horizontale mince, dont l'épaisseur est relativement faible par rapport aux autres dimensions. Cette plaque peut être encastrée, sur deux ou plusieurs côtés, comme elle peut être assimilée à une console.

- Dalle sur quatre appuis.
- Dalle sur trois appuis.
- Dalle sur deux appuis.

L_x: la plus petite dimension du panneau.

L_y: la plus grande dimension du panneau.

$$\rho = \frac{l_x}{l_y}$$

Si : $\rho \le 0.4 \Rightarrow$ La dalle travail suivant un seul sens (flexion principale suivant l_x).

Si : $\rho > 0.4 \Rightarrow$ La dalle travail suivant les deux sen

Le calcul se fait à la flexion simple pour une bande de $(1*e)m^2$.

III.3.1. Panneau DP1

C'est une dalle sur quatre appuis perpendiculaires d'épaisseur

e= 14cm. Elle est illustrée sur la figure suivante :

$$Lx = 3.2. m$$

$$Ly = 5.1m$$

$${\bf G} = 4.9 \text{KN/m}^2$$

 ${\bf O} = 3.5 \text{KN/m}^2$

$$\rho = \frac{3.2}{5.1} = 0.62 > 0.4 \rightarrow dalle \ travaille \ dans \ les \ deux \ sens$$

• Evaluation des charges :

ELU:
$$q_u = (1,35G+1,5Q) = 1.35 \times 4.9 + 1.5 \times 3.5 = 11.86 \text{ KN/m}^2$$

ELS: $q_S = (G+Q) = 4.9 + 3.5 = 8.4 \text{ KN/m}^2$

> Calcul des moments

En travée

$$\begin{cases} M_{0x} = \mu_x \times qu \times l_x^2 \\ M_{0y} = \mu_y \times M_{0x} \end{cases}$$

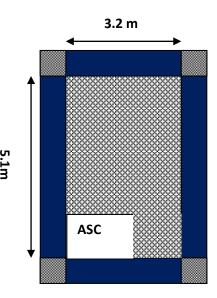


Figure III.9. Dalle sur quatre appuis panneau DP1

ELU:
$$\begin{cases} \mu_x = 0.0844 \\ \mu_y = 0.4892 \end{cases}$$
 ELS:
$$\begin{cases} \mu_x = 0.0844 \\ \mu_y = 0.4892 \end{cases}$$
 Annexe (I)

ELU:
$$\begin{cases} M_{0x} = 0.0794 \times 11.86 \times 3.1^2 = 9.04 \text{ KN.m} \\ M_{0y} = 0.3205 \times 9.04 = 2.89 \text{ KN.m} \end{cases}$$

ELS:
$$\begin{cases} M_{0x} = 0.0844 \times 11.86 \times 3.1^2 = 9.61 \text{KN.m} \\ M_{0y} = 0.4892 \times 9.61 = 4.70 \text{KN.m} \end{cases}$$

• Calcul des moments corrigés

• En travée

$$ELU: \begin{cases} M_{tx} = 0.75 \times M_{ox} = 6.78 \text{ KN.m} \\ M_{ty} = 0.75 \times M_{oy} = 2.16 \text{KN.m} \end{cases}$$

ELS:
$$\begin{cases} M_{tx} = 0.75 \times M_{ox} = 7.20 \text{KN.m} \\ M_{ty} = 0.75 \times M_{oy} = 3.52 \text{KN.m} \end{cases}$$

• En appuis

ELU:
$$\{M_{ax} = M_{ay} = -0.5 \times M_0^x = -0.5 \times 9.04 = -4.52 \text{KN.m} \}$$

ELS: $\{M_{ax} = M_{ay} = -0.5 \times M_0^x = -0.5 \times 9.61 = -4.80 \text{KN.m} \}$

III.3.1.1.Ferraillages DP1

Le ferraillage se fera à la flexion simple d'une section de 1 m et d'épaisseur e = 14 cm les résultats obtenus sont résumés dans le tableau ci-dessous

Le diamètre des barres utilisées doit êtres $\phi \le \frac{e}{10} = \frac{140}{10} \Longrightarrow \phi \le 14mm$

$$d_x = h - e = 14 - 2 = 12cm$$

 $d_y = d_x - \phi_{armatures} = 11cm$

$$\varepsilon_S = 10\%$$
; $f_{St} = \frac{f_e}{\gamma_S} = 348MPa$

$$\mu_{bu} = \frac{M_U}{bd^2 f_{bu}}$$

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8}$$

$$Z = d(1 - 0.4\alpha)$$

$$A_{S} = \frac{M^{t}}{z f_{St}}$$

Tableau III.4. Ferraillages de la dalle sur 4 appuis DP1

			En travée							
Sens	$M_t(KN.m)$	$\mu_{ m bu}$	α	Z(m)	A calculée (cm²/ml)					
X-X	6.78	0.0333	0.0421	0.1179	1.65					
y-y	2.16	0.0105	0.0132	0.1193	0.52					
	En appuis									
x-x/y-y	4.52	0.0221	0.0279	0.1186	1.09					

• Condition de non fragilité

• En travée

Pour e > 12 cm et ρ > 0,4(ρ = 0,62) donc :

$$\begin{cases} A_x^{\min} = \rho_0 \times \frac{(3-\rho)}{2} \times b \times e = 8 \times 10^{-4} \times \frac{(3-0,62)}{2} \times 100 \times 14 \Rightarrow A_x^{\min} = 1.33 cm^2 \\ A_x^{\min} = 1.33 cm^2 < A_x^{calcul\'ee} = 1.65 cm^2 \Rightarrow On \ ferraille \ avec A_x^{calcul\'ee} \\ A_y^{\min} = \rho_0 \times b \times e = 8 \times 10^{-4} \times 100 \times 14 \Rightarrow A_y^{\min} = 1.12 cm^2 \\ A_y^{\min} = 1.12 cm^2 > A_x^{calcul\'ee} = 0.52 cm^2 \Rightarrow On \ ferraille \ avec A_y^{\min} \end{cases}$$

• En appuis

$$A_{min} = 0,23 \times b \times d \times \frac{ft28}{fe} = 0.23 \times 100 \times 12 \times \frac{2.1}{400} = 1.44 \text{ cm}^2$$

$$A_{min} > A_{calcul\'ee}On ferraille avec A_{min}$$

On opte pour une section de ferraillage:

• En travée :

Sens x-x: $3HA10 = 2.36cm^2$ **Sens y-y**: $3HA10 = 2.36cm^2$

• En appuis :

 $3HA10 = 2.36 \text{ cm}^2$

Espacement des barres

Sens x-x: on opte pour $S_t = 33 \text{cm} < \min(3e, 33 \text{cm})$

Sens y-y: on opte pour $S_t = 33 \text{ cm} < \min(4e, 45cm)$

• En appuis

 $St \le min (3e, 33cm) = 33 cm$; on opte St = 33 cm

III.3.1.2. Vérifications à l'ELU:

• Vérification à l'effort tranchant

$$\rho = \frac{3.2}{5.1} = 0.62 > 0.4$$

$$\tau_{u} = \frac{V}{b \times d} \le \frac{1}{\tau} = \frac{0.07 \text{fc}}{7 \text{b}} = 1.16 \text{MPa}$$

$$V_{ux} = (qu \times L_x / 2) \times L_y^4 / (L_y^4 + L_x^4) \Longrightarrow V_{ux} = 16.42 \text{ KN}$$

$$V_{uy} = (\text{qu} \times \text{L}_y / 2) \times \text{L}_x^4 / (\text{L}_y^4 + \text{L}_x^4) \Longrightarrow V_{uy} = 4.05 \text{KN}$$

Sens x-x

$$\tau_u = \frac{V}{b \times d} = \frac{16.42}{1 \times 0.12} \times 10^{-3} = 0.136 \text{MPa} < 1.16 \text{MPa}$$

Sens y-y

$$\tau_u = \frac{V}{b \times d} = \frac{4.05}{1 \times 0.12} \times 10^{-3} = 0.033 \text{MPa} < 1.16 \text{MPa}$$

Donc: les armatures transversal ne sont pas nécessaire.

III.3.1.3. Vérifications à l'ELS

Vérification des contraintes

Après tout calcul fait les résultats obtenus sont résumés dans le tableau ci-dessous:

• En travée

$$Y = \frac{b}{2} \times y^2 + 15 \times A_s y - 15A_s d \Longrightarrow 50y^2 + 35.4y - 424.8 = 0$$

$$Y = 2.58cm$$

$$I = \frac{b}{3} \times y^3 + 15A_s(d - y) \Longrightarrow 33.33 \times 2.58^3 + 15 \times 2.36(12 - 2.58)^2$$

$$I = 3713.66 cm^4$$

$$\sigma bc = \frac{M_s}{I} y \le \overline{\sigma b} = 0.6 \times 3 f_{c28} \Longrightarrow \frac{7.20 \ 10^{-3}}{3713.66 \ 10^{-8}} \times 0.024 \le 0.6 \times 25$$

Tableau III.5. Vérification des contraintes en travée DP1

Sens	M _t (KN.m)	A (cm²/ml)	Y (cm)	I(cm ⁴)	σ _{bc} (Mpa)	$\overline{\sigma_{bc}}$ (MPa)	Observation
X-X	7.20	2.36	2.4	3713.66	4.65	15	Vérifiée
y-y	3.52	2.36	2.11	3713.66	2.27	15	vérifiée

• En appuis

Tableau III.6. Vérification des contraintes en appuis DP1

Sens	M _a (KN.m)	A (cm²/ml)	Y(cm)	I(cm ⁴)	σ _{bc} (Mpa)	$\overline{\sigma_{bc}}$ (MPa)	Observation
x-x/y-y	-4.80	2.36	2.11	3713.66	3.10	15	Vérifiée

• Etat limite de déformation (la flèche)

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées :

Sens x-x:

$$\begin{cases} e \ge \max\left[\left(\frac{3}{80}, \frac{M_t^x}{20 \times M_0^x}\right) L_x\right] \\ A_t^x \le \frac{2 \times b \times d}{f_0} \end{cases}$$

 $e = 12 cm < max[(0,0375\,,0,0398)L_x] = 12.74\,cm$Condition vérifiée.

 $A_t^x = 2.36 \ cm^2$ Condition vérifiée.

Sens y-y:

$$\begin{cases} e \geq max \left[\left(\frac{3}{80} , \frac{M_t^y}{20 \times M_0^y} \right) L_y \right] \\ A_t^y \leq \frac{2 \times b \times d}{f_e} \\ e = 12cm < max[(0,0375,0,0374)L_x] = 19.07 \ cm$$
......Condition non vérifiée.
$$A_t^y = 2.36 \ cm^2 \leq 6 \ cm^2$$
....Condition vérifiée.

Commentaire : Le calcul de la flèche est nécessaire

$$\begin{cases} \Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}. \\ f_{admissible} = \begin{cases} \frac{l}{500}, l \le 5m. \\ 0.5 \ cm + \frac{l}{1000}, l > 5m. \end{cases} \\ \Delta f \le f_{admissible} \end{cases}$$

 f_{gv} Et f_{gi} : Les flèches différées et instantanées respectivement dues à l'ensemble des charges permanentes totales (poids propre + revêtement + cloisons).

 f_{ji} : La flèche instantanée due à l'ensemble des charges permanentes appliquées au moment de la mise en œuvre des cloisons (poids propre + cloisons).

 f_{pi} : La flèche instantanée due aux charges totales (G+Q).

J: La charge permanente au moment de la mise des cloisons.

g : La charge permanente après la mise des cloisons.

p : La somme des charges permanentes et charges d'exploitation.[3]

• Vérification de la flèche

$$\begin{cases} j = 3.5 \text{ KN/m}^2 \\ g = 4.9 \text{ KN/m}^2 \\ p = 8.4 \text{ KN/m} \end{cases}$$

Les résultats de calcul sont résumés dans le tableau suivant

Tableau III.7. Vérification de la flèche panneau DP1

$f_{gv}(mm)$	f _{ji} (mm)	$f_{pi}\left(mm\right)$	$f_{gi}\left(mm\right)$	$\Delta \mathbf{f}$ (mm)	f_{adm} (mm)	observation
1.51	0.75	0.95	0.47	1.24	10.2	vérifiée

On remarque bien que $\Delta f < f_{adm}$, La flèche est donc vérifiée

Remarque

Les armatures qui devraient traverser l'ouverture de la cage d'ascenseur seront remplacées par des aciers de renfort de section équivalente définit comme suit :

$$A'_x = 2.1 \times 2.36 = 5,956 cm^2$$
 Soit $A'_x = 4 \text{HA} 14 = 6,16 \ cm^2$

$$A'_y = 2.4 \times 2,36 = 5.664 \ cm^2 \text{Soit} A'_y = 4\text{HA}14 = 6.16 \ cm^2$$

La longueur de ces barres et définie par la relation suivante :

$$L_a = a + b + 2l_s$$
 ; $L_b = a + b + 2l_s$; $l_s = 40 \emptyset$ pour HA

$$L_a = 2.1 + 2.4 + 2 \times 40 \times 0.014 = 5.26$$

$$L_b = 2.1 + 2.4 + 2 \times 40 \times 0.014 = 5.26$$

III.3.1.4. Schéma de ferraillage DP1

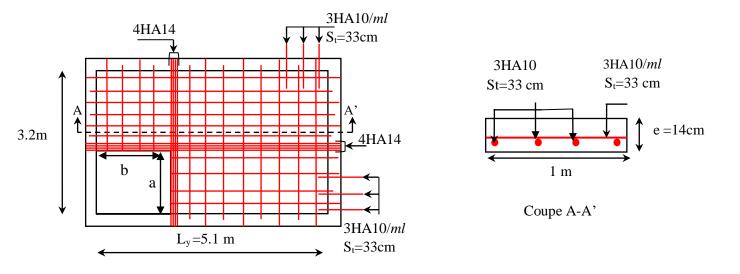


Figure. III.10. Schéma de ferraillage de la dalle DP1

III.3.2.Panneau DP2

C'est une dalle sur trois appuis d'épaisseur e= 14cm. Elle est illustrée sur la figure suivante :

$$Lx = 1.2m$$
 $Ly = 2.8m$

$$\begin{cases} G = 4.9 \text{KN/m}^2 \\ Q = 3.5 \text{KN/m}^2 \end{cases}$$
 $L_x=1.2m$

Figure III.11. Dalle sur trois appuis panneau DP2

$$\rho = \frac{1.2}{2.8} = 0.42 > 0.4 \rightarrow \textit{dalle travaille dans les deux sens}$$

> Evaluation des charges

ELU:
$$\begin{cases} q_u = 1.35G \times 1.5Q \\ q_u = 1.35 \times 4.9 + 1.5 \times 3.5 = 11.86KN.m \end{cases}$$

ELS:
$$\begin{cases} q_s = G + Q \\ q_s = 4.9 + 3.5 = 8.4 KN.m \end{cases}$$

> Calcul des moment

On a: Lx = 1.2 m < Ly/2 = 1.4 m

$$\Rightarrow \begin{cases} M_{ox} = \frac{P \times L_x^2 \times L_y}{2} - \frac{2 \times P \times L_x^3}{3} \\ M_{oy} = \frac{P \times L_x^3}{6} \end{cases}$$

$$ELU \begin{cases} M_{ox} = \frac{11.811 \times 1.2^{2} \times 2.8}{2} - \frac{2 \times 11.811 \times 1.2^{3}}{3} = 10.2 \text{KN.m} \\ M_{oy} = \frac{11.811 \times 1.2^{3}}{6} = 3.4 \text{KN.m} \end{cases}$$

ELS
$$\begin{cases} M_{ox} = \frac{8.36 \times 1.2^{2} \times 2.8}{2} - \frac{2 \times 8.36 \times 1.2^{3}}{3} = 7.22 KN.m \\ M_{oy} = \frac{8.36 \times 1.2^{3}}{6} = 2.4 KN.M \end{cases}$$

- Calcul des moments corrigés
 - En travée

ELU:
$$\begin{cases} M_{tx} = 0.85 \times M_{ox} = 0.85 \times 10.2 = 8.67 \text{ KN.m} \\ M_{ty} = 0.85 \times M_{oy} = 0.85 \times 3.4 = 2.89 \text{ KN.m} \end{cases}$$

ELS:
$$\begin{cases} M_{tx} = 0.85 \times M_{ox} = 0.85 \times 7.22 = 6.14 \text{KN.m} \\ M_{ty} = 0.85 \times M_{oy} = 0.85 \times 2.4 = 2.04 \text{KN.m} \end{cases}$$

• En appuis

$$\begin{cases} ELU: M_{ax} = M_{ay} = -0.5 \times M_{ox} = -0.5 \times 10.2 = -5.1 KN.m \\ ELS: M_{ax} = M_{ay} = -0.5 \times M_{ox} = -0.5 \times 7.32 = -3.66 KN.m \end{cases}$$

III.3.2.1.Ferraillages DP2

Tableau III.8. Ferraillages dalle sur trois appuis DP2

			En travée		
Sens	M _t (KN.m)	$\mu_{ m bu}$	α	Z(m)	A calculée (cm²/ml)
X-X	8.67	0.042	0.0541	0.1174	2.12
у-у	2.89	0.0016	0.0021	0.1198	0.69
			En ap	puis	
Sens	M _a (KN.m)	$\mu_{ m bu}$	α	Z(m)	A calculée (cm ² /ml)
x-x/y-y	-5.1	0.0244	0.0309	0.1185	1.23

• Condition de non fragilité

• en travée

Sens x-x

$$A_{\min} = \frac{\rho_0}{2} (3 - \rho) \times b \times e = \frac{8.10^{-4}}{2} \times (3-0.42) \times 100 \times 14 = 1.44 cm^2 < A_{\text{calcule}}$$

Sens y-y

$$A_{min} = \rho_0 \times b \times e = 8.10^{-4} \times 100 \times 14 = 1.12 \ cm^2 > A_{calcule}$$

On opte pour une section de ferraillage:

• En travée :

Sens $x-x : 4HA10 = 3,14 \text{ cm}^2$

Sens y-y: $4HA10 = 3.14 \text{ cm}^2$

• en appuis :

$$4HA8 = 2.01 \text{ cm}^2$$

• Espacement des barres

Sens x-x: on opte pour $S_t = 20 \text{cm} < \min(3e, 33cm)$

Sens y-y: on opte pour $S_t = 20 \text{cm} < \min(4e, 45 \text{cm})$

III.3.2.2. Vérifications à l'ELU:

• Vérification à l'effort tranchant

$$\tau_u = \frac{V}{b \times d} \leq \overline{\tau_u} \frac{0.07 fc28}{\gamma b} = 1.16 MPa$$

$$V_{ux} = (Pu \times L_x / 2) \times L_y^4 / (L_y^4 + L_x^4) \Longrightarrow V_{ux} = 6.85 KN$$

$$V_{uy} = (Pu \times L_y / 2) \times L_x^4 / (L_y^4 + L_x^4) \Longrightarrow V_{uy} = 0.53KN$$

Sens x-x

$$\tau_u = \frac{V}{b \times d} = \frac{6.85}{1 \times 0.12} \times 10^{-3} = 0.0571 \text{MPa} < 1.16 \text{MPa}$$

Sens y-y

$$\tau_u = \frac{V}{b \times d} = \frac{0.53}{1 \times 0.12} \times 10^{-3} = 0.00441 \text{MPa} < 1.16 \text{MPa}$$

Donc: les armatures transversal ne sont pas nécessaire.

III.3.2.3. Vérifications à l'ELS

• Vérification des contraintes

Après tout calcul fait les résultats obtenus sont résumés dans le tableau ci-dessous:

$$\frac{b}{2}y^2 + 15 \times A \times y - 15 \times A \times d = 0$$

$$I = \frac{b_0}{3} y^3 + 15A(d - y)^2$$

$$\sigma_{bc} = \frac{M_{ser} \times y}{I}$$

$$\sigma_{st} = 15 \frac{M_s}{I} (d - y) \le \bar{\sigma}_{st} = \min\left(\frac{2}{3} f_e; 110 \sqrt{\eta f_{t28}}\right)$$

• En travée

Tableau III.9. Vérifications des contraintes en travée DP2

Sens	M _t (KN.m)	A (cm ² /ml)	Y(cm)	I(cm ⁴)	$\sigma_{bc}(\mathrm{Mpa})$	$\overline{\sigma}_{b c}$	Observation	σ_{st} (MPa)	σ̄ _{st} (Mpa)	Observation
X-X	6.14	3.14	2.92	4713.04	3.80	15	Vérifiée	177.43	201,64	vérifiée
у-у	2.04	3.14	2.92	4713.04	1.26	15	Vérifiée	58.95	201,64	vérifiée

• En appuis

Tableau III.10. Vérifications des contraintes en appuis DP2

Sens	M _t (KN.m)	A (cm²/ml)	Y(cm)	I(cm ⁴)	σ _{bc} (Mpa)	$\overline{\sigma}_{bc}$	Observation	σ_{st} (MPa)	σ̄ _{st} (Mpa)	Observation
X-X	-5.1	2.01	2.4	3239.37	3.77	15	Vérifiée	226.71	201,64	Non vérifiée
у-у	-3.66	2.01	2.4	3239.37	2.71	15	Vérifiée	162.69	201,64	vérifiée

Remarque:

Les contraintes d'aciers ne sont pas vérifiées on augmente la section de l'acier, on opte pour :

Sens x-x

En appuis : $3HA10 = 3,14 \text{ cm}^2$

• Rê vérification des contraintes

• En appuis

Tableau III.11. Vérifications des contraintes en appuis DP2

Sens	M _t (KN.m)	A (cm ² /ml)	Y(cm)	I(cm ⁴)	σ _{bc} (Mpa)	$\overline{\sigma}_{bc}$	Observation	σ_{st} (MPa)	σ̄ _{st} (Mpa)	Observation
X-X	-5.1	3.14	2.92	4713.04	3.15	15	Vérifiée	162.31	201,64	vérifiée

• Vérification à l'état limite de déformation

On doit vérifier les deux conditions suivantes :

Sens x-x

$$\begin{cases} e \ge \max\left[\left(\frac{3}{80}, \frac{M_t^x}{20 \times M_0^x}\right) L_x\right] \\ A_t^x \le \frac{2 \times b \times d}{f_e} \end{cases}$$

 $e = 14 cm > max[(0.0375 L_x, 0.0425 L_x)] = 5.10 cm Condition vérifiée$

 $A_t^x = 3.14 \, cm^2 < 6 \, cm^2$Condition vérifiée

Sens y-y

$$\begin{cases} e \ge \max\left[\left(\frac{3}{80}, \frac{M_t^y}{20 \times M_0^y}\right) L_y\right] \\ A_t^y \le \frac{2 \times b \times d}{f_e} \end{cases}$$

 $e=14\ cm > max igl[igl(0.0375\ L_y, 0.0425L_y igr) igr] = 11.9cm \dots$ Condition vérifiée $A_t^x = 3.14\ cm^2 < 6\ cm^2 \dots$ Condition vérifiée

Commentaire : la vérification de flèche n'est pas nécessaire.

III.3.2.4.Schéma de ferraillage

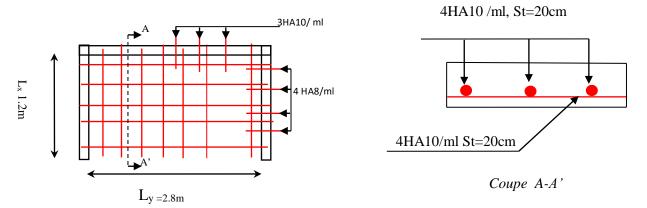
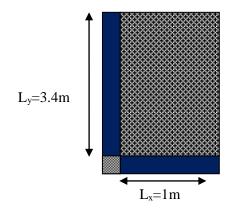



Figure. III.12. Schéma de ferraillage de la dalle DP2

III.3.3. Panneau DP3

$$lx = 1m$$

 $ly = 3.4m$
 $\rho = \frac{1}{3.4} = 0.29 < 0.4$

 \Rightarrow la dalle porte sur un seul sens (sens x) (console)

Evaluation des charges :

$$G = 4.9KN / m^2$$
$$Q = 3.5KN / m^2$$

FigureIII.13. Schéma d'une dalle sur deux appuis DP3

$$ELU: \begin{cases} q_u = 1.35G \times 1.5Q \\ q_u = 1.35 \times 4.9 + 1.5 \times 3.5 = 11.86KN.m \end{cases}$$

ELS:
$$\begin{cases} q_s = G + Q \\ q_s = 4.9 + 3.5 = 8.4 \text{KN.m} \end{cases}$$

• Calcul Les sollicitations

$$M_u^{max} = -\frac{q_u \times L_x^2}{2} = -5.93 KN. m$$

$$M_s^{max} = -\frac{q_s \times L_x^2}{2} = -4.18 \text{ KN. m}$$

$$Vu = q_u \times l = 11.8KN$$

III.3.3.1.Ferraillages DP3

Sens principale : Résultats du ferraillage de la dalle sur deux appuis

Tableau III.12. Ferraillages d'armatures principales de dalle sur deux appuis DP3.

M(KN.m)	$\mu_{ m bu}$	α	Z(m)	A calculée (cm²)	A adoptée (cm²)
-5.93	0.029	0.036	0.118	1.43	4HA8=2.01

• Condition de non fragilité

On a
$$\begin{cases} \rho < 0.4 \\ e > 12 \ cm \end{cases}$$
 $\Rightarrow A_{tx}^{min} = \rho_0 \times b \times e = 0.0008 \times 100 \times 14 = 1.04 \ cm^2 < A_t^x \text{ verifieé}$

1.04 < 2.01 C'est vérifié. On adopte une section $4HA8 = 2.01 \text{ cm}^2/\text{ml}$

• Calcul de l'espacement :

$$S_t \le \min(3e;33cm) \Rightarrow S_t \le 33cm$$

on adopte $S_t = 25cm$

III.3.3.2. Vérifications à l'ELU:

Vérification de l'effort tranchant

$$\tau_u \leq \frac{V_u}{b \times d} = 0.098 \ \textit{MPa} \ \ \ \ \ \ \tau_u < \tau_u^- = \frac{0.07 \times f_{c28}}{\gamma_b} = 1.16 \ \textit{MPa}$$

condition vérifiée (pas de risque de rupture par cisaillement).

III.3.3.3. Vérification à l'ELS

• La contrainte dans le béton

$$M_{ser} = -\frac{q_s \times l^2}{2} = M_{ser} = \frac{8.4 \times 1^2}{2} = 4.2 \text{KN.m}$$

Après tout calcul fait les résultats obtenus sont résumés dans le tableau ci-dessous:

Tableau III.13. Vérification des contraintes en travée DP3

M _t (KN.m)	A (cm ² /ml)	Y(m)	I(cm ⁴)	σ _{bc} (Mpa)	$\overline{\sigma_{bc}}$ (MPa)	Observation
4.2	2.01	0.0254	3516.49	11.24	15	Vérifiée

> Vérification de la flèche

$$e \ge max \left[\left(\frac{3}{80}, \frac{M_t^x}{20 \times M_0^x} \right) L_x \right]$$

$$A_t^x \le \frac{2 \times b \times d}{f_e}$$

 $e = 14 \ cm > max[(0.0375 \ L_x, 0.0425 \ L_x)] = 4.25 \ cm \dots$ Condition vérifiée

$$A_t^x = 2.01cm^2 < 6 cm^2$$
.....Condition vérifiée

Commentaire : La vérification de la flèche n'est pas nécessaire

III.3.3.4.Schéma de ferraillage DP3

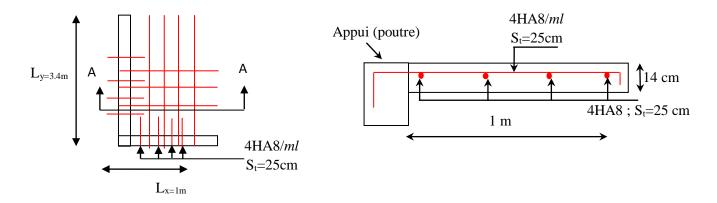


Figure III.14.schéma de ferraillages de la dalle DP3

III.4. Etude des escaliers :

III.4.1.Escalier type 1:

Figure III.15. Coupe en élévation de l'escalier (type 1)

• Evaluation des charges et surcharges :

Pour une bande de 1 m on aura :

Pour la volée : G_V =8.61KN/m
 Pour le palier : G_P =5.85 KN/m

 \circ Pour l'escalier : Q =2,5KN/m

• l'ELU:

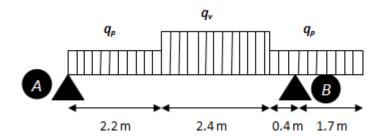
$$q_V = 1.5Q_V + 1.35G_V$$

 $\Rightarrow q_V = 1.5 * 2.50 + 1.35 * 8.61 = 15.37 KN / m$
 $\Rightarrow q_V = 15.37 KN / m$
 $q_P = 1.5Q_P + 1.35G_P = 1.5 * 2.5 + 1.35 * 5.85$
 $\Rightarrow q_P = 11.64 KN / m$

• l'ELS :

$$q_V = Q_V + G_V$$

$$\Rightarrow q_V = 2.50 + 8.61 = 11.11KN / m$$


$$\Rightarrow q_V = 11.11KN / m$$

$$q_P = Q_P + G_P = 2.5 + 5.85 = 8.35KN / m$$

$$\Rightarrow q_P = 8.35KN / m$$

1) Calcul à ELU

$$q_V = 15.37 \, KN / m$$
$$q_P = 11.64 \, KN / m$$

La poutre isostatique, alors on utilise la méthode de la résistance des matériaux.

$$\sum F = 0 \Leftrightarrow R_A + R_B = R_{P1} + R_V + R_{P2} = (11.64 \times 2.2 \times 1) + (15.37 \times 2.4 \times 1) + (11.64 \times 0.4 \times 1) + (11.64 \times 1.7 \times 1)$$

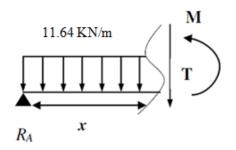
$$\Leftrightarrow R_A + R_B = 86.94KN$$

$$\sum M /_{A} = 0 \Leftrightarrow R_{p_{1}}(\frac{2.2}{2}) + R_{p_{2}}(\frac{0.4}{2} + 2.40 + 2.2) + R_{p_{3}}(\frac{1.7}{2} + 0.4 + 2.4 + 2.2) + R_{V}(\frac{2.4}{2} + 2.2)$$

$$= R_{R}(2.2 + 2.40 + 2.1)$$

$$R_B = 57.34 KN$$

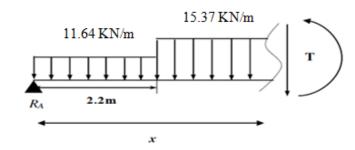
$$R_A = 86.94 - R_B$$
$$R_A = 28.60KN$$


> Calcul des sollicitations :

> Moment fléchissant :

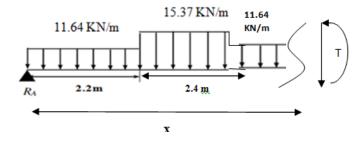
$$\bullet 0 \le x \le 2.2m$$

$$M(x) = R_A \times x - q_p \frac{x^2}{2}$$


$$\begin{cases} M(0) = 0 \\ M(2.2) = 34.75 \text{KN.m} \end{cases}$$

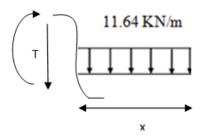
$$\bullet$$
2.2 ≤ *x* ≤ 4.6*m*

$$M(x) = R_A \times x - (q_p \times 2.2) \times (x - \frac{2.2}{2}) - q_V \frac{(x - 2.2)^2}{2}$$


$$\begin{cases} M(2.2) = 34.75 \text{KN.m} \\ M(4.6) = -2.33 \text{KN.m} \end{cases}$$

•4.6 $\leq x \leq 5m$

$$M(x) = R_A \times x - (q_p \times 2.2) \times (x - \frac{2.2}{2}) - (q_v \times 2.4) \times \left(x - \left(\frac{2.4}{2} + 2.2\right)\right) - q_p \times \left(\frac{(x - 4.6)^2}{2}\right)$$


$$\begin{cases} M(4.6) = -2.33KN.m \\ M(5) = -16.82KN.m \end{cases}$$

 $\bullet 0 \le x \le 1.7m$

$$M(x) = -q_p \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0KN.m \\ M(1.7) = -16.82KN.m \end{cases}$$

Donc on a : M_{max} = 34.75 KN/m

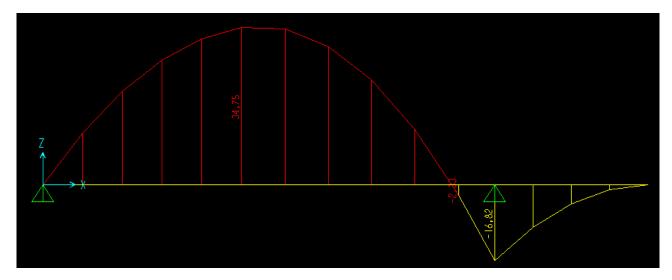


Figure III.16.Diagramme des moments type 1(ELU)

• Effort tranchant :

$$\bullet 0 \le x \le 2.2m$$

$$T(x) = R_A - q_p \times x$$

$$\begin{cases} T_Y(0) = -28.60 KN \\ T_Y(2.2) = -2.99 KN \end{cases}$$

$$\bullet 2.2 \le x \le 4.6m$$

$$T_{Y}(x) = R_{A} - q_{p} \times 2.2 - q_{v}(x - 2.2)$$

$$\begin{cases} T_{Y}(2.2) = -2.99KN \\ T_{Y}(4.6) = 33.90KN \end{cases}$$

$$\bullet 4.6 \le x \le 5m$$

$$T_{Y}(x) = R_{A} - q_{p} \times 2.2 - q_{v} \times 2.4 - q_{p} (x - 4.6)$$

$$\begin{cases} T_{Y}(4.6) = 33.90KN \\ T_{Y}(5) = 38.55KN \end{cases}$$

$$\bullet 0 \le x \le 1.7m$$

$$T_{Y}(x) = -q_{p}x$$

$$\begin{cases} T_{Y}(0) = 0KN \\ T_{Y}(1.7) = -19.78KN \end{cases}$$

Donc on a: $T_{max}=38.55$ KN

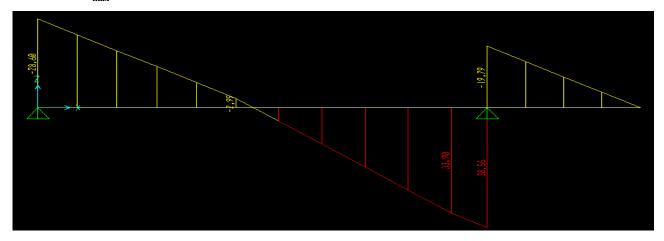


Figure II.17. Diagramme des efforts tranchant type 1(ELU)

Les sollicitations max sont :

 \rightarrow M_{0max}= 34.75KN.m pour x=2.2m

Donc on a :
$$\begin{cases} M^{t} = 0.85M_{\text{max}} = 29.53KN.m \\ M^{a} = -0.4M_{\text{max}} = -13.9KN.m \end{cases}$$

III.4.1.1. Ferraillage

Le ferraillage se fera pour une bande d'un mètre en flexion simple pour une sollicitation maximale à l'ELU. Et la vérification se fera à l'ELS.

a) En travée:

$$\begin{split} M^{t} &= 29.53KN.m \\ f_{bu} &= \frac{0.85 * f_{c28}}{\gamma_{b}} = \frac{0.85 * 25}{1.5} = 14.2MPa \\ \mu_{bu} &= \frac{M^{t}}{bd^{2}f_{bu}} = \frac{29.53 * 10^{-3}}{1(0.16)^{2}14.2} = 0.081 \\ \mu_{bu} &= 0.081 \prec \mu_{l} = 0.392. \end{split}$$

ightharpoonup Pivot A et las armatures comprimée sont pas nécessaires ($A_S'=0$)

$$\varepsilon_{S} = 10\%; f_{St} = \frac{f_{e}}{\gamma_{S}} = 348MPa$$

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8} = 0.105$$

$$Z = d(1 - 0.4\alpha) = 0.153m$$

$$A_{S} = \frac{M^{t}}{zf_{St}} = \frac{29.53 \times 10^{-3}}{0.153 \times 348} = 5.53cm^{2}$$

On adopte : $5\varphi 12 = 5.65cm^2$

b) En appuis:

$$M^{a} = 13.9 KN.m$$

$$\mu_{bu} = \frac{13.9 \times 10^{-3}}{1(0.16)^{2} 14.2} = 0.038$$

$$\mu_{bu} = 0.038 < \mu_{l} = 0.392.$$

$$\alpha = 0.048$$

$$Z = 0.156m$$

$$A_S = \frac{13.9 * 10^{-3}}{0.156 * 348} = 2.54cm^2$$

On adopte : $3\varphi 12 = 3.39cm^2$

On résume les calculs dans le tableau suivant :

Tableau III.14. Résumé des résultats de ferraillage

	M(KN.m)	μ_{bu}	α	Z(m)	A _{CAL} (cm ² /ml)	A Adobté (cm²/ml)
En travée	29.53	0.081	0.105	0.153	5.53	5HA12=5.65
En appuis	13.9	0.038	0.048	0.156	2.54	3HA12=3.39

✓ Calcul des armatures de répartition :

Selon l'article **E.8.2.41 du BAEL91 [3]** lorsque les charges appliquées ne comprennent pas des efforts concentrés les armatures de répartition sont aux moins égale à $\frac{A}{4}$ alors :

En travée :
$$A_t \ge \frac{A_s}{4} = \frac{5.65}{4} = 1.41 \text{cm}^2 / m$$
 on choisie : $3\text{HA8} = 1.51 \text{cm}^2 / \text{m}$

En appuis :
$$A_a \ge \frac{A_a}{4} = \frac{3.39}{4} = 0.84 cm^2 / m$$
 on choisie : $3HA8 = 1.51 cm^2 / m$

III.4.1.2. Vérification de la section a l'ELU:

✓ Vérification de la condition de non fragilité :

$$A_{\min} = 0.23bd \frac{f_{t28}}{f_e} = 0.23*1*0.16 \frac{2.1}{400} = 1.932cm^2$$

$$\bullet A^a = 3.39cm^2 > A_{\min} = 1.932cm^2$$
.....c.vérifiée

→ Condition vérifiée.

✓ Vérification de l'effort tranchant :

L'escalier est a l'intérieure du bâtiment donc fissuration peu nuisible :

$$\tau_u \le \bar{\tau}_u = \min(0.13 \times \frac{f_{c28}}{\gamma_b}; 4MPa) = 3,25MPa.$$

$$\tau_u = \frac{V}{b.d} = \frac{38.55 \times 10^{-3}}{1 \times 0.16} = 0,222 MPa < \tau_u^-.$$
 Condition vérifiée (donc pas d'armatures transversal).

✓ Vérification de l'espacement des armatures :

Les charges appliquées sont des charges réparties alors les armatures de la même nappe ne doivent pas dépasser les espacements suivants :

- Les armatures principales : $(3h;33cm) = (3 \times 16;33) = 33cm$ vérifiée
- Les armatures secondaires : $(4h; 33cm) = (4 \times 16; 45) = 45cm$ vérifié

• Influence de l'effort tranchant au voisinage de l'appui :

D'après le BAEL99/article 5.13.2 [3]on a deux types :

✓ L'influence sur le béton

On vérifie que :

$$V_{max} \le 0.267*a*b*f_{c28}$$

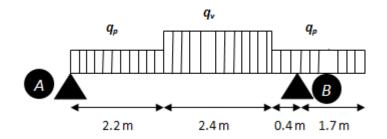
 $a = 0.9d = 0.9*0.16 = 0.144$

$$0.267*a*b*f_{c28} = 0.267*0.144*1*25 = 0.961 \text{ MN}$$

$$V_{max} = 0.03855 \text{ MN} \le 0.961 \text{ MN}....$$
verifiée

✓ Vérification des armatures longitudinales à l'effort tranchant

$$A_l \ge \frac{1.15V_u}{f_e}$$


$$A_l = A_t + A_a = 5.65 + 3.39 = 9.04 \text{cm}^2$$

$$A_l = 9.04 \text{cm}^2 > \frac{1.15 \times 38.55 \times 10^{-3}}{400} = 1.022 \text{cm}^2 \dots \text{Vérifiée}$$

III.4.1.3. Vérification de la section a l'ELS:

1. Calcul a l'ELS:

$$q_V = 11.11 KN / m^2$$

 $q_P = 8.35 KN / m^2$

La poutre isostatique, alors on utilise la méthode de la résistance des matériaux.

$$\sum F = 0 \Leftrightarrow R_A + R_B = R_{P1} + R_V + R_{P2} = (8.35 \times 2.2 \times 1) + (11.11 \times 2.4 \times 1) + (8.35 \times 0.4 \times 1) + (8.35 \times 1.7 \times 1)$$

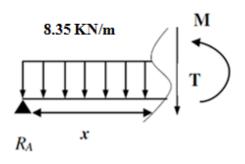
$$\Leftrightarrow R_A + R_R = 62.57 KN$$

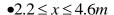
$$\sum M /_{A} = 0 \Leftrightarrow R_{P1}(\frac{2.2}{2}) + R_{P2}(\frac{0.4}{2} + 2.40 + 2.2) + R_{P3}(\frac{1.7}{2} + 0.4 + 2.4 + 2.2) + R_{V}(\frac{2.4}{2} + 2.2)$$

$$= R_{B}(2.2 + 2.40 + 0.4 + 1.7)$$

$$R_B = 41.99KN$$

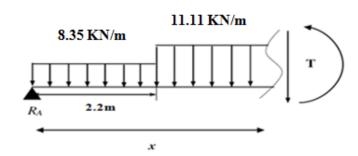
$$R_{\scriptscriptstyle A} = 62.57 - R_{\scriptscriptstyle B}$$


$$R_{\scriptscriptstyle A}=20.58KN$$

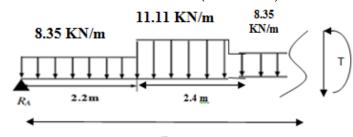

Calcul des sollicitations :

> Moment fléchissant :

$$\bullet 0 \le x \le 2.2m$$

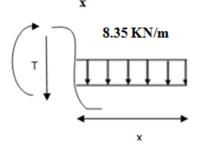

$$M(x) = R_A \times x - q_p \frac{x^2}{2}$$
$$\begin{cases} M(0) = 0 \\ M(2.2) = 25.07 \, KN.m \end{cases}$$

$$M(x) = R_A \times x - (q_p \times 2.2) \times (x - \frac{2.2}{2}) - q_V \frac{(x - 2.2)^2}{2}$$


$$\begin{cases} M(2.2) = 25.07 \, \text{KN.m} \\ M(4.6) = -1.62 \, \text{KN.m} \end{cases}$$

 $\bullet 4.6 \le x \le 5m$

$$M(x) = R_A \times x - (q_p \times 2.2) \times (x - \frac{2.2}{2}) - (q_v \times 2.4) \times \left(x - \left(\frac{2.4}{2} + 2.2\right)\right) - q_p \times \left(\frac{(x - 4.6)^2}{2}\right)$$


$$\begin{cases} M(4.6) = -1.62KN.m \\ M(5) = -12.07KN.m \end{cases}$$

 $\bullet 0 \le x \le 1.7m$

$$M(x) = -q_p \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0KN.m \\ M(1.7) = -12.07KN.m \end{cases}$$

Donc on a : M_{max} = 25.07 KN/m

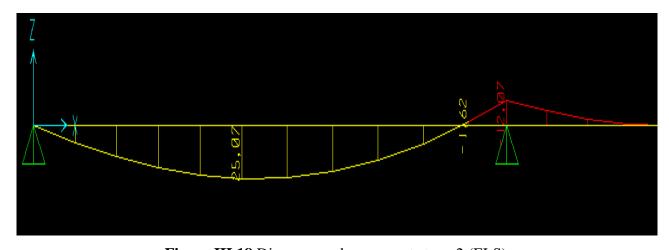


Figure III.18. Diagramme des moments type 2 (ELS)

• Effort tranchant :

$$\bullet 0 \le x \le 2.2m$$

$$T(x) = R_A - q_p \times x$$

$$\int T_{\rm Y}(0) = -20.58KN$$

$$T_Y(2.2) = -2.21KN$$

\bullet 2.2 ≤ *x* ≤ 4.6*m*

$$T_Y(x) = R_A - q_p \times 2.2 - q_v(x - 2.2)$$

$$\int T_Y(2.2) = -2.21KN$$

$$T_Y(4.6) = 24.49KN$$

$$\bullet 4.6 \le x \le 5m$$

$$T_{Y}(x) = R_{A} - q_{p} \times 2.2 - q_{v} \times 2.4 - q_{p}(x - 4.6)$$

$$\int T_Y(4.6) = 24.49 KN$$

$$T_{V}(5) = 27.79 KN$$

$$\bullet 0 \le x \le 1.7m$$

$$T_{Y}(x) = -q_{p}x$$

$$T_{\gamma}(0) = 0KN$$

$$T_Y(1.7) = -14.20KN$$

Donc on a : T_{max} =27.79 KN

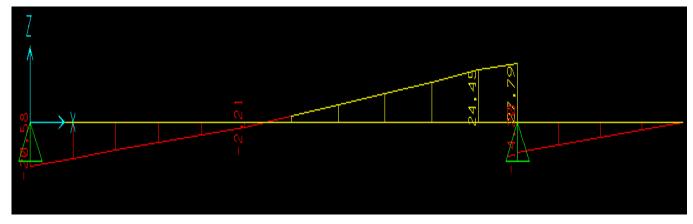


Figure II.19. Diagramme des efforts tranchant type 2 (ELS)

Donc on a :
$$\begin{cases} M^{t} = 0.85M_{\text{max}} = 21.30KN.m \\ M^{a} = 0.4M_{\text{max}} = 10.02KN.m \end{cases}$$

b) Vérification à l'ELS:

La fissuration est peu nuisible car les escaliers sont à l'abri des intempéries, donc les vérifications à f aire sont :

√ Vérification de la contrainte d'adhérence :

$$\tau_{ser} \leq \tau_{ser}^{-}$$

$$\tau_{ser}^- = 0.6 \times \psi^2 \times f_{t28} = 0.6 \times (1.5^2) \times 2.1 = 2.83 MPa$$

avec $\psi = 1.5$ pour les HA

$$\tau_{ser} = V_{ser} \big/ 0\text{,9.d.} \sum U_{i}$$

 $\sum U_i$: Somme des périmètres des barres = $\pi \times n \times \phi$

$$\sum U_i = n.\varphi.\pi = 5 \times 1.2 \times 3.14 = 18.84$$
cm.

$$\tau_u = \frac{27.79 \times 10^{-3}}{0.9 \times 0.16 \times 18.84 \times 10^{-2}} = 1.024 MPa.$$

$$au_{ser} < au_{ser}^-$$

Condition vérifiée.

✓ Vérification de l'état limite de compression du béton :

La fissuration étant peu nuisible la seule vérification à faire est de vérifier que la contrainte de compression du béton ne dépasse pas la contrainte admissible.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$M_t = 21.30 KN.m$$

$$M_a = 10.02 \text{ KN.m}$$

Calcul de y :
$$\frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d' \times A_s) = 0$$

Calcul de
$$I: I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

 σ_{bc} (MPa) Localisation M_{ser} (KN.m) I (cm⁴) Y(m) σ_{bc} (MPa) **Travées** 21.03 0.0442 14243.02 6.52 15 10.02 0,0355 9373.16 3.79 15 **Appuis**

Tableau. III.15. Vérification des contraintes de compression dans le béton.

État limite de déformation

• Vérification de la flèche

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots \\ \frac{h}{L} \ge \frac{M_{t}}{10 \times M_{0}} & \dots \\ \frac{A}{b_{0} \times d} \le \frac{4.2}{f_{e}} & \dots \end{cases}$$
BAEL91

$$\frac{h}{L} = \frac{18}{670} = 0.0276 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, donc il faut vérifier la flèche.

La flèche totale est définie par le BAEL91 [3] comme suit :

Pour une poutre simplement appuyé de portée inférieure à 5m, la flèche admissible est

prise égale à :
$$f_{adm} = \frac{L}{500}$$
 , ce qui donne pour notre cas : $f_{adm} = 1.34cm$

Calcul de
$$I_0: I_0 = \frac{b}{3} \times (V_1^3 + V_2^3) + 15 \times A_s \times (V_2 + c)^2$$

$$V_1 = \frac{1}{B} \times (\frac{b \times h^2}{2} + 15 \times A_s \times d)$$

$$V_2 = h - V_1$$

$$B = b \times h + 15 \times A_s \implies B = 100 \times 18 + 15 \times 5.65 = 188.475 \text{ cm}^2$$

$$V_1 = \frac{1}{188.475} \times (\frac{100 \times 18^2}{2} + 15 \times 5.65 \times 16) = 9.31$$

$$V_2 = 18 - 9.31 \Rightarrow V_2 = 8.69 \text{ cm}$$

$$I_0 = \frac{100}{3} \times (9.31^3 + 8.69^3) + 15 \times 5.65 \times (8.69 + 2)^2$$

$$I_0 = 58457.87 \text{ cm}^4$$

$$\rho = \frac{A_s}{b \times d} = \frac{5.65}{100 \times 16} = 0.00353$$

$$\Rightarrow \lambda_i = \frac{0.05 \times f_{t28}}{\rho \times (2 + 3 \times \frac{b_0}{t})} \Rightarrow \lambda_i = \frac{0.05 \times 2.1}{0.00353 \times (2 + 3)} = 5.94$$

$$\lambda_{v} = 0.4 \times \lambda_{i} \Longrightarrow \lambda_{v} = 2.376$$

-Calcul de M_{serj}; M_{serg}; M_{serp}:

- ullet M_{serj} : correspond aux charges permanentes avant la mise en place des revêtements.
- ullet M_{serg} : correspond aux charges permanentes après la mise en place des revêtements.
- ullet M_{serp} : correspond aux charges permanentes plus les charges d'exploitation.

$$G_v = 8.61 \text{ KN/m}^2$$

$$G_p = 5.85 \text{KN/m}^2$$

$$M_{serg} = 0.85 \times M_0^{\text{max}} \implies M_{serg} = 0.85 \times 20.06 = 17.05 \text{ KN.m}$$

$$q_v = 8.27 \text{ KN/m}$$

$$q_p = 4.46 \text{ KN/m}$$

$$M_{serj} = 0.85 \times M_0^{\text{max}} \implies M_{serj} = 0.85 * 15.78 = 13.41 \text{ KN.m}$$

$$q_v = G + Q = 8.93 + 2.5 = 11.43 \text{ KN/m}^2$$

$$q_{p}\!\!=G+Q=~4.86\!+~2.5=7.36KN/m^{2}$$

$$M_{serp} = 0.85 \times M_0^{max}$$
 $\Rightarrow M_{serp} = 0.85 \times 29.20 = 24.82 \text{ KN.m}$

-Calcul de
$$\sigma_s$$
: $\sigma_s = 15 \times \frac{M_{ser} \times (d - y)}{I}$

$$\sigma_{sg} = 15 \times \frac{M_{serg} \times (d - y)}{I} = \sigma_{sg} = 15 \times \frac{20.25 \times (0.16 - 0.0442) \times 10^{2}}{5.8457} \Longrightarrow \sigma_{sg} = 601.71 \,\text{MPA}$$

$$\sigma_{Sj} = 15 \times \frac{M_{serj} \times (d - y)}{I} = 15 \times \frac{13.41 \times (0.16 - 0.0442) \times 10^2}{5.8457} \Rightarrow \sigma_{Sj} = 535.349 MPA$$

$$\sigma_{\mathit{Sp}} = 15 \times \frac{M_{\mathit{serp}} \times (d-y)}{I} = 15 \times \frac{24.82 \times (0.16 - 0.0442) \times 10^2}{5.8457} \Rightarrow \sigma_{\mathit{Sp}} = 11062.65 MPA$$

-Calcul de
$$\mu$$
: $\mu = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_S + f_{t28}}$

$$\mu_g = 1 - \frac{1.75 \times 2.1}{4 \times 0.00353 \times 601.71 + 2.1} = 0,654$$

$$\mu_{j} = 1 - \frac{1.75 \times 2.1}{4 \times 0.00353 \times 535.34 + 2.1} = 0,620$$

$$\mu_{p} = 1 - \frac{1.75 \times 2.1}{4 \times 0.00353 \times 11062.65 + 2.1} = 0,977$$

$$I_f = \frac{1.1 \times I_0}{1 + \lambda \times \mu}$$

$$I_{fij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} = I_{fij} = \frac{1.1 \times 5.8457 \times 10^{-4}}{1 + 5.94 \times 0.620} = 0,000137 \text{ m}^4$$

$$I_{fig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} = I_{fig} = \frac{1.1 \times 5.8457 \times 10^{-4}}{1 + 5.94 \times 0.654} = 0,000131 \,\text{m}^4$$

$$I_{fip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} = I_{fip} = \frac{1.1 \times 5.8457 \times 10^{-4}}{1 + 5.94 \times 0.977} = 0,000945 \,\text{m}^4$$

$$I_{fvg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} = I_{fvg} = \frac{1.1 \times 5.8457 \times 10^{-4}}{1 + 2.376 \times 0,654} = 0,000251 \text{ m}^4$$

$$f_{ij} = \frac{M_j \times L^2}{10 \times E_i \times I f_{ij}} \Rightarrow f_{ij} = \frac{13.41 \times 6.7^2}{10 \times 32456.59 \times 0.000137} = 13.53 \text{ mm}$$

$$f_{gi} = \frac{M_g \times L^2}{10 \times E_i \times I f_{ig}} \Rightarrow f_{gi} = \frac{20.25 \times 6.7^2}{10 \times 32456.59 \times 0,000131} = 21.37 \text{ mm}$$

$$f_{vg} = \frac{M_g \times L^2}{10 \times E_v \times I_{fvg}} \Rightarrow f_{gv} = \frac{20.25 \times 6.7^2}{10 \times 10818.86 \times 0,000251} = 33.47 \text{ mm}$$

$$f_{pi} = \frac{M_p \times L^2}{10 \times E_i \times If_{in}} \Rightarrow f_{pi} = \frac{24.82 \times 6.7^2}{10 \times 32456.59 \times 0,000945} = 3.632 \text{ mm}$$

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij} = 33.47 + 3.63 - 13.53 - 21.37 = 2.2 \text{ mm}$$

$$\Delta f = 2.2 \text{mm} < f_{adm} = \frac{470}{500} = 13.4 \text{mm}$$

III.4.1.4. Schéma de ferraillage type 1

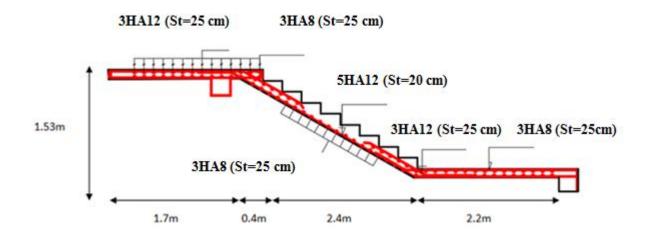


Figure III.20. Schéma de ferraillage d'escalier (type1)

III.4.2. Etude d'escalier type 2 :

D'après le pré dimensionnement, l'épaisseur de la paillasse e = 18, le calcul se fait pour une bonde de 1m.

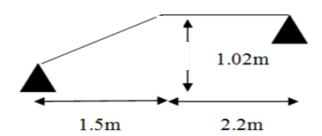


Figure III.21. Coupe en élévation de l'escalier (type 2)

Evaluation des charges

Pour une bande de 1m:

Volée :
$$G_{volée} = 8.61 \times 1 = 8.61 \text{ KN/ml}$$

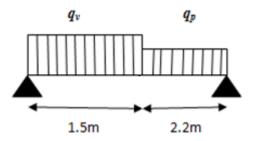
$$Q_{\text{vol\'ee}} = 2.5 \times 1 = 2.5 \text{ KN/ml}$$

✓ Palier:

 $G_{palier} = 5.85 \times 1 = 5.85 \text{KN/ml}$

$$Q_{palier} = 2.5 \times 1 = 2.5 \text{KN/ml}$$

Combinaison des charges :


L'ELU:

$$\begin{cases} q_{vu} = 1.35G_v + 1.5Q_v = 15.37 \text{KN/ml} \\ q_{pu} = 1.35G_p + 1.5Q_p = 11.64 \text{KN/ml} \end{cases}$$

L'ELS

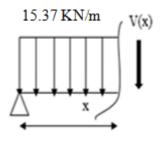
$$\begin{cases} q_{vs} = G_v + Q_v = 11.11 \text{KN/ml} \\ q_{ps} = G_p + Q_p = 8.35 \text{KN/ml} \end{cases}$$

• Calcul des sollicitations :

> ELU:

• Les réactions d'appuis :

$$\sum \mathbf{F/y} = 0 \Longrightarrow \begin{cases} R_A + R_B - 15.37 \times (1.5) - 11.64 \times (2.2) = 0 \\ R_A + R_B = 48.66 \text{KN} \end{cases}$$


$$\Sigma^{\mathbf{M}}/_{\mathbf{B}} = \Longrightarrow \begin{cases} 15.80 \times (1.5) \times (2.95) + 10.31 \times (2.2) \times (1.1) - R_{A} \times (3.7) = 0 \\ R_{A} = 25.99 \text{KN} \\ R_{B} = 22.67 \text{KN} \end{cases}$$

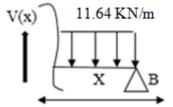
• Les efforts internes :

✓ Tronçons $1:0 \le X \le 1.5$

$$T(x) = R_A - q_V \times x$$

$$\begin{cases} T_Y(0) = -25.99KN \\ T_V(1.5) = -2.94KN \end{cases}$$

$$M(x) = R_A \times x - q_V \frac{x^2}{2}$$
$$\begin{cases} M(0) = 0 \\ M(1.5) = 21.70 \text{KN.m} \end{cases}$$


✓ Tronçons2: $0 \le X \le 2.2$

$$T(x) = R_B - q_p \times x$$

$$\begin{cases} T_Y(0) = 22.67 KN \\ T_Y(1.5) = -2.94 KN \end{cases}$$

$$M(x) = R_B \times x - q_P \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(2.2) = 21.70 \text{KN.m} \end{cases}$$

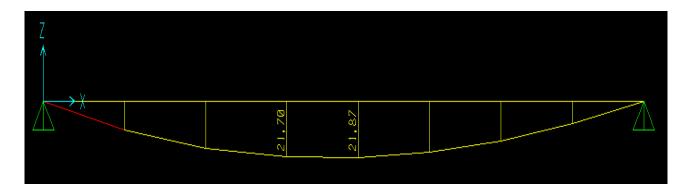


Figure III.22. Diagramme des moments type 2 (ELU)

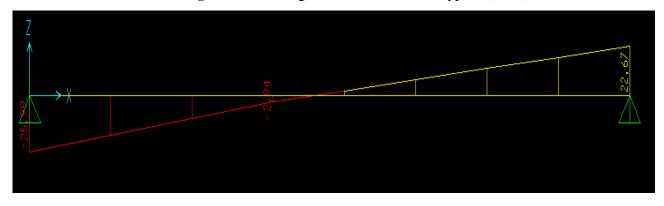
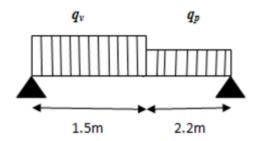
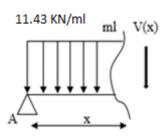



Figure III.23. Diagramme des efforts tranchant type 2 (ELU)

Donc on a : M_{max} =21.81KN.m a x=1.94m

 T_{max} =22.67KN a x=2.7m

> ELS:


• Les réactions d'appuis :

$$\sum \mathbf{F}/\mathbf{y} = 0 \Longrightarrow \begin{cases} R_A + R_B - 11.11 \times (1.5) - 8.35 \times (2.2) = 0 \\ R_A + R_B = 35.04 \text{KN} \end{cases}$$

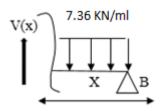
$$\Sigma^{\mathbf{M}}/_{\mathbf{B}} = \Longrightarrow \begin{cases} 11.43 \times (1.5) \times (2.95) + 7.36 \times (2.2) \times (1.1) - R_{\mathbf{A}} \times (3.7) = 0 \\ R_{\mathbf{A}} = 18.75 \text{KN} \\ R_{\mathbf{B}} = 16.29 \text{KN} \end{cases}$$

• Les efforts internes :

✓ Tronçons
$$1:0 \le X \le 1.5$$

$$T(x) = R_A - q_V \times x$$

$$\begin{cases} T_{Y}(0) = -18.75KN \\ T_{Y}(1.5) = -2.08KN \end{cases}$$


$$M(x) = R_A \times x - q_V \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(1.5) = 15.62KN.m \end{cases}$$

✓ Tronçons2 : $0 \le X \le 2.2$

$$T(x) = R_B - q_p \times x$$

$$\begin{cases} T_Y(0) = 16.29KN \\ T_Y(2.2) = -2.08KN \end{cases}$$

$$M(x) = R_B \times x - q_P \frac{x^2}{2}$$

$$\begin{cases} M(0) = 0 \\ M(2.2) = 15.62 \text{ KN.m} \end{cases}$$

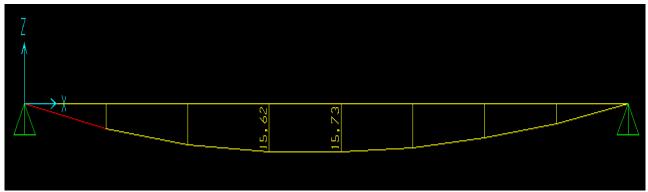


Figure III.24. Diagramme des moments type 2 (ELS)

Figure III.25. Diagramme des efforts tranchant type 2 (ELS)

Donc on a : M_{max} =15.73 KN.m a x=1.94m

$$T_{max} = -18.75 \text{ KN a x} = 0 \text{m}$$

• Calcul des moments

Le moment max se trouve au point qui correspond à V(x) = 0.

L'ELU:

$$\begin{cases} M_t^u = 0.85 \times M_{t \, max}^u = 0.85 \times 21.81 = 18.53 \text{KN. m} \\ M_a^s = -0.5 \times M_{t \, max}^u = -0.5 \times 21.81 = -10.90 \text{KN. m} \\ V = 22.67 \text{ KN} \end{cases}$$

L'ELS:

$$\begin{cases} M_s^t = 0.85 M_{s max}^t = 0.85 \times 15.73 = 13.37 \text{KN. m} \\ M_s^a = -0.5 M_{s max}^t = -0.5 \times 15.73 = -7.86 \text{KN. m} \\ V = 18.75 \text{KN} \end{cases}$$

III.4.2.1.Ferraillage:

En travée:

$$\mu_{bu} = \frac{M_{tu}}{bd^2 f_{bu}} = \frac{18.53}{1 \times 0.16^2 \times 14.2 \times 10^3}$$

$$\mu_{bu} = 0.048 < \mu_{lu} = 0.186 \Rightarrow (As'=0).$$

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu_{bu}}) \Rightarrow \alpha = 0.06$$

$$A_S = \frac{M_u^t}{d(1 - 0.4\alpha) f_{st}} = \frac{18.53 \times 10^{-3}}{0.16(1 - 0.4 \times 0.06)348} \Rightarrow A_S = 3.24 \ cm^2$$

• Condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 1 \times 0.16 \times \frac{2.1}{400} = 1.93 \text{cm}^2$$

$$\Rightarrow A_s \ge A_{min} = 3.24 \text{ cm}^2$$

On adopte 4HA12 d'une section A_s=4.52 cm² avec un espacement :

$$S_t = b/n = 100/4 = 25cm$$

• Les armatures de répartition:

$$A_r = A_s/4 = 4.52/4 = 1.13 \text{ cm}^2$$

On adopte 3HA8 d'une section As =1.51cm² avec un espacement :

$$S_t = b/n = 100/3 = 33cm$$

❖ En appui:

$$\mu_{bu} = \frac{M_{au}}{bd^2f_{bu}} = \frac{10.90}{1 \times 0.16^2 \times 14.2 \times 10^3}$$

 $\mu_{bu} = 0.028 < \mu_{lu} = 0.186 \quad \mbox{(Pas d'armature comprimée A'}_{s} = 0). \label{eq:mubu}$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{\text{bu}}} \right) \qquad \Rightarrow \alpha = 0.035$$

$$A_S = \frac{M_u^t}{d(1-0.4\alpha)f_{St}} = \frac{10.90 \times 10^{-3}}{0.16(1-0.4 \times 0.035)348} \Longrightarrow A_S = 1.90 \text{cm}^2$$

On adopte 3HA10 d'une section $A_s = 2.36 \text{ cm}^2$ et avec un espacement :

$$S_t = b/n = 100/3 = 33cm$$

• Les armatures de répartition:

$$A_r = A_s/4 = 2.36/4 = 0.59 \text{ cm}^2$$

On adopte 3HA8d'une section $As = 1.51 \text{ cm}^2\text{avec}$ un espacement :

$$S_t = b/n = 100/3 = 33cm$$

III.4.2.2. Verifications à l'ELU

• Vérification de l'effort tranchant:

$$\tau_{\rm u} = \frac{V_{\rm u}}{\rm bd} \le \overline{\tau_{\rm u}} = 0.07 \frac{f_{c28}}{\gamma_{\rm b}}$$

 $\tau_u = \frac{^{22.67\times 10^{-3}}}{^{1\times 0.16}} = 0.141 \text{ MPa} < \bar{\tau}_u = 1.16 \text{MPa...pas de risque de rupture par cisaillement.}$

• Vérification de l'espacement des armatures :

En travée:

Les armatures principales : $St = 25cm \le min(3e; 33cm) = 33cm$.

Les armatures secondaires : $St = 33cm \le min(4e; 45cm) = 45cm$.

En appuis:

Les armatures principales : $St = 33cm \le min(3e; 33cm) = 33cm$.

Les armatures secondaires :St = 33cm $\leq min(4e; 45$ cm) = 45cm.

III.4.2.3. Verifications ELS

• Vérifications des contraintes de béton

En travée : $M_T^S = 13.37KN.m$

Tableau III.16. Vérification de la contrainte de béton en travée

Vérification des contraintes en travée							
Calcule	Vérifications						
y = 0.0405 m							
$I = 1.2223 \times 10^{-4} m^4$	$\sigma_b = 4.155 MPa < \bar{\sigma}_b = 15 MPa$						
$\sigma_b = 3.34MPa$							

En appuis : $M_a^S = 7.86KN.m$

Tableau III.17. Vérification de la contrainte de béton en appuis

Vérification des contraintes en appuis						
Calcule	Vérifications					
y = 0.0240 m						
$I = 0.7202 \times 10^{-4} m^4$	$\sigma_b = 2.46 MPa < \bar{\sigma}_b = 15 MPa$					
$\sigma_b = 2.21MPa$						

• Vérifications de l'état limite de déformation

Si les deux conditions sont vérifiées, il n'y a pas lieu de vérifier la flèche.

$$\bullet \quad e \geq \max\left[\left(\frac{_3}{_{80}} \text{ ,} \frac{_{M_t^x}}{_{20\times M_0^x}}\right)L_x\right]$$

•
$$A_t^x \le \frac{2 \times b \times d}{f_e}$$

* AN:

• Commentaire : Le calcul de la flèche n'est pas nécessaire

III.4.2.4.Schéma de ferraillage type 2

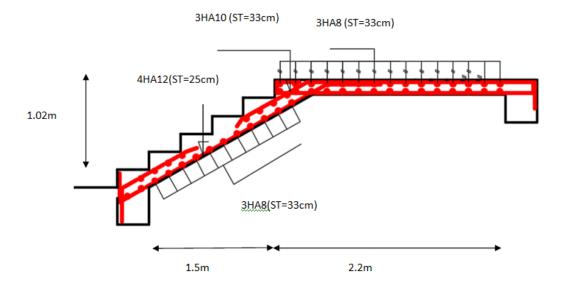


Figure III.26. Schéma de ferraillage d'escalier (type2)

III.5. Etude de la poutre palière

La poutre palière est prévue pour être un support d'escalier, avec une longueur de 3.5 m, la poutre palière se calcul àl'ELU puisque la fissuration et considéré peu nuisible.

III.5.1.Pré dimensionnement de la poutre paliere

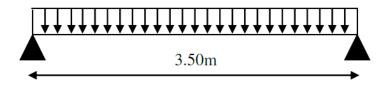


Figure III.27. Schemas statique de poutre paliere

$$\frac{L}{15} \le h \le \frac{L}{10} \quad \Rightarrow \quad 23.33cm \le h \le 35cm$$
Alors,
$$\begin{cases} h = 35 \ cm. \\ b = 30 \ cm \end{cases}$$

❖ Vérification des conditions du RPA 99 version 2003[1]

$$\begin{cases} b = 30 \ cm \ge 25 \ cm \\ h = 35 \ cm \ge 30 \ cm \\ \frac{h}{h} = 1.16 < 4 \end{cases}$$

 \Rightarrow On adopte une section de (30x35) cm²

III.5.2.Calcul de la poutre palière

Les charges revenant à la poutre :

- ✓ Poids propre de la poutre : $G_p = 0.30 \times 0.35 \times 25 = 2.625 \ KN/ml$.
- ✓ Charge revenant à l'escalier est la réaction d'appui ou point B : ${ELU: 41.22 \, KN/ml.} {ELS: 29.61 \, KN/ml.}$
- \checkmark G_m :poids de mur extérieur : $G_m = 2.85 \times (1.53 0.3) = 3.50 \, KN/m$

Alors :
$$\begin{cases} q_u = (1.35 \times 2.625 + 3.50) + 41.22 = 48.26 \, KN/ml. \\ q_s = 2.625 + 3.50 + 29.61 = 35.73 \, KN/ml. \end{cases}$$

➤ Moments isostatiques:

$$M^u = \frac{q_u \times l^2}{8} = \frac{48.26 \times 3.5^2}{8} = 73.89 \text{ KN. m}$$

 $M^s = \frac{q_s \times l^2}{8} = \frac{35.73 \times 3.5^2}{8} = 54.71 \text{ KN. m}$

• Calcul des sollicitations :

En travée:

$$M_{tu} = 0.85 \times M_u = 0.85 \times 73.89 = 62.80 KN. m$$

$$M_{ts} = 0.85 \times M_s = 0.85 \times 54.71 = 46.36 KN. m$$

En appuis:

$$M_{au} = -0.5 \times M_u = -0.5 \times 73.89 = -37.09 KN. m$$

 $M_{as} = -0.5 \times M_s = -0.5 \times 54.71 = -27.35 KN. m$

Effort tranchant:

$$V_u = \frac{q_u \times l}{2} = \frac{48.26 \times 3.5}{2} = 84.45 \text{ KN. m}$$

III.5.3.Ferraillage à la flexion simple

Tableau III.18. Ferraillage de la poutre palière

	μ_{bu}	α	Z (m) A calculée (cm ²)		A _{min} (cm ²)
Travée	0.143	0.193	0.295	6.11	1.15
Appui	0.085	0.111	0.305	3.46	1.15

III.5.4. Verifications à l'ELU

• Vérification au cisaillement :

$$\begin{split} \overline{\tau_u} &= \frac{_{0,2 \times fc28}}{_{\gamma b}} = 3.33 \text{ MPa} \quad \text{ Avec}: \tau_{fle} = \frac{_{V}}{_{b \times d}} \\ \\ \tau_{fle} &= \frac{84.45}{0.3 \times 0.32} \times 10^{-3} = 0.87 \text{MPa} < 3.33 \text{MPa} \end{split}$$

⇒Les armatures transversales ne sont pas nécessaires.

• Calcul de la poutre palière à la torsion

Le moment de torsion M_{tor} est engendré par les charges ramenées par le palier et la volée, c'est le moment en appui à l'ELU.

$$\begin{split} M_{torsion} &= q \frac{L}{2} \\ q_a &= 10.31 \times \frac{2.2}{2} = 11.34 KN \\ q_a &= 15.80 \times \frac{2.4}{2} = 18.96 KN \\ M_{torsion} &= q_{\max} \frac{L}{2} \end{split}$$

Dont : $M_{tor} = 33.18 \, KN. \, m$

Pour une section pleine on remplace la section réelle par une section équivalente Dont l'épaisseur de la paroi est égale au sixième du cercle qu'il est possible d'inscrire dans le contour extérieur.

U : périmètre de la section.

 Ω : air du contour tracé à mi-hauteur.

e : épaisseur de la paroi \implies e = b/6 = 5 cm

$$\Omega = [b - e] \times [h - e] \Longrightarrow \Omega = 0.0750m^2$$

$$U = 2[(h - e) + (b - e)] \Longrightarrow U = 1.10 \text{ m}$$

• Calcul de la section des armatures longitudinales :

$$A_{tor} = \frac{M_{tor} \times U \times \gamma_s}{2 \times \Omega \times f_e} = \frac{33.18 \times 10^{-3} \times 110 \times 10^{-2} \times 1.15}{2 \times 750 \times 10^{-4} \times 400} = 7.00 \ cm^2$$

En travée :
$$A^t = A_{fléxion} + \frac{A_{Torsion}}{2} \Rightarrow A^t = 6.11 + 3.5 = 9.61 cm^2$$

On ferraille avec $A^t = 3HA14+3HA16= 10.65 \text{ cm}^2$

En appui :
$$A^a = A_{fléxion} + \frac{A_{Torsion}}{2} \Rightarrow A^a = 3.46 + 3.5 = 6.96cm^2$$

On ferraille avec $A^a = 6HA14 = 9.24 \text{ cm}^2$

• Vérification de la contrainte de cisaillement :

$$\tau = \sqrt{\tau_{fl\acute{e}xion}^2 + \tau_{torsion}^2} \le \bar{\tau}_u$$

Avec:

$$\begin{split} \tau_{torsion} = \frac{M_{tor}}{2 \times \Omega \times \mathrm{e}} = \frac{33.18 \times 10^{-3}}{2 \times 0.0750 \times 0.05} = \ 4.42 \ \mathit{MPa}. \\ \tau_u = \sqrt{0.756 + 19.53} = 4.50 \ \mathit{MPa} \\ \tau_u = 4.50 \ \mathit{MPa} > \bar{\tau}_u = 3.33 \ \mathit{MPa}. \end{split}$$

⇒On doit augmenter la section de poutre palière.

Remarque: Redimensionnement de la poutre palière (b=35cm, h=40cm).

• Calcul des sollicitations

✓ Flexion

ELU	ELS
$R_B = 41.22 \text{ KN/ml}$	$R_B = 29.61 \text{ KN/ml}$
$g_0 = 3.5 \text{ KN/m}$	$g_0 = 3.5 \text{ KN/m}$
$P_u = 49.44 \text{ KN/m}$	$P_s = 36.61 \text{ KN/m}$
$M^t = 64.34 KN. m$	$M^t = 47.65KN.m$
$M^a = -37.85KN.m$	$M^a = -28.02KN.m$
$V_U = 86.52KN$	

• Ferraillage en flexion

Tableau III.19. Ferraillage de la poutre palière à la flexion simple

	μ_{bu}	α	Z (m)	A calculée (cm²)	A _{min} (cm ²)
Travée	0.094	0.123	0.351	5.26	1.61
Appui	0.055	0.070	0.359	3.02	1.61

• Ferraillage en torsion

Tableau III.20. Ferraillage de la poutre palière à la torsion

$M_{tor}(KN.m)$	e (cm)	$\Omega\left(m^2\right)$ U (m)		$A_{tor}(cm^2)$
33.18	5.83	0.096673	1.3	6.41

En travée :
$$A^t = A_{fléxion} + \frac{A_{Torsion}}{2} \Rightarrow A^t = 5.26 + 3.20 = 8.46 cm^2$$

On ferraille avec $A^t = 3HA12+3HA16= 9.42 \text{ cm}^2$

En appui :
$$A^a = A_{fléxion} + \frac{A_{Torsion}}{2} \Rightarrow A^a = 3.02 + 3.20 = 6.22 cm^2$$

On ferraille avec $A^a = 6HA12 = 6.79 \text{ cm}^2$

Vérification de la contrainte de cisaillement :

$$\tau_u = \sqrt{\tau_{fl\acute{e}xion}^2 + \tau_{torsion}^2} < \bar{\tau}_u$$

Avec:

$$\begin{split} \tau_{torsion} &= \frac{M_{tor}}{2 \times \Omega \times \mathrm{e}} = \frac{33.18 \times 10^{-3}}{2 \times 0.0966 \times 0.0583} = \ 2.94 \ \mathit{MPa}. \\ \tau_{u} &= \sqrt{0.422 + 8.643} = 3.01 \ \mathrm{MPa} \\ \tau_{u} &= 3.01 \ \mathit{MPa} < \bar{\tau}_{u} = 3.33 \ \mathit{MPa}. \end{split}$$

Commentaire :Pas de risque de cisaillement.

Calcul des armatures transversales $:A_t = A_t^{fle} + A_t^{tor}$

✓ En flexion :

$$\begin{split} A_t \geq \frac{_{0.4 \times b \times S_t}}{f_e} &= \frac{_{0.4 \times 35 \times 15}}{_{400}} = 0.525 cm^2 \text{ Avec } : S_t = 15 cm \\ A_t \geq \frac{b \times S_t \times (\tau_u - 0.3 \times f_{t28})}{0.8 \times f_e} &= \frac{0.35 \times 15 \times (0.29 - 0.3 \times 2.1)}{0.8 \times 400} = -0.557 cm^2 \end{split}$$

$$A_{tor} = \frac{M_{tor} \times S_t \times \gamma_s}{2 \times \Omega \times f_e} = \frac{33.18 \times 10^{-3} \times 0.15 \times 1.15}{2 \times 0.0966 \times 400} = 0.741 cm^2$$
$$donc \implies A_t = 1.25 \ cm^2$$

Le ferraillage final est résumé dans le tableau suivant :

✓ En torsion :

Tableau III.21. Ferraillage de poutre palière en flexion et en torsion

	Section d'armature en travée et aux appuis								
	Flexion simple				A Total	A adopté			
	Travée	Appuis		Travée	Appuis	Travée	appuis		
Armature longitudinale (cm²)	5.56	3.02	6.41	8.46	6.22	3HA16+ 3HA12= 9.42	6HA12 =6.79		
Armature transversale (cm²)	0.525		0.741	1.25		$4\phi_8 = 2.01cm^2$ $S_t = 15cm$			

III.5.5.Vérifications à ELS:

• Etat limite de compression de béton :

Tableau III.22. Vérification de la compression dans la poutre palière

	M _{ser} (KN.m)	As (cm ²)	Y (m)	I (cm ⁴)	σ _{bc} (MPa)	σ _{adm} (MPa)	Vérification
En travée	47.65	9.42	0.1438	116660.1	5.71	15	Vérifiée
En appui	28.02	6.79	0.1205	83814.93	3.92	15	Vérifiée

• Etat limite de déformation :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche

$$\begin{cases} h \ge max \left[\left(\frac{1}{16}, \frac{M_t}{10 \times M_0} \right) l \right], l \le 8m. \\ A_t \le \frac{4.2 \times b \times d}{f_e} \end{cases}$$

$$\begin{cases} h = 0.40 \ge max \left[\left(\frac{1}{16,47.65} \right) \times 3.5 \right] = 0.304 m \\ A_t = 10.68 cm^2 \le \frac{4.2 \times 35 \times 37}{400} = 13.59 cm^2 \end{cases}$$

commentaire : Les conditions sont vérifiées, Il n'y a pas lieu de vérifier la flèche.

III.5.6. Schéma de ferraillage de la poutre paliére

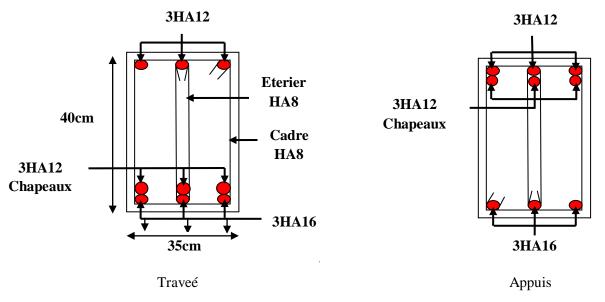


Figure III.28. Schéma de ferraillage de la poutre palière

II.6. Etude la poutre de chainage

III.6.1.Dimensionnement (RPA 99/2003 article 9.3.3) [1]

Les dimensions minimales préconisées pour le chainage sont

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$

- ✓ $L_{max} = 3.5m$ hauteur minimale h ≥ 23.33 cm.
- ✓ Largeur minimale $b \ge 2/3$ de l'épaisseur du mur.

On opte :
$$(b \times h) = (25 \times 30) cm^2$$
.

Sollicitations

Le chainage est conçu pour reprendre son poids propre ainsi que le poids des cloisons qu'il supporte. Il est calculé (comme une poutre simplement appuyée) en flexion simple, avec vérification de l'effort tranchant au niveau des appuis.

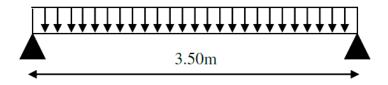


Figure III.29. Schéma statique de la poutre de chainage

Les sollicitations les plus défavorables sont données comme suite :

$$\checkmark$$
 $G_{p,c} = 25 \times 0.25 \times 0.3 = 1.875 \, KN/ml.$

$$\checkmark$$
 $G_{mur} = 2.85 (3.06 - 0.3) = 7.86 KN/ml.$

• Calcule des moments :

$$\begin{aligned} \textbf{ELU} & \begin{cases} & \textbf{q_u} = 1.35 \big(G_{p.c} + G_{mur} \big) = 13.14 \, \text{KN/ml} \\ & \textbf{M_u} = q_u \times l^2 / 8 = 20.12 \text{KN.m} \\ & \textbf{V_u} = q_u \times l / 2 = 22.99 \text{KN} \\ \end{aligned}$$

$$\text{ELS} \begin{cases} q_s = G_{p.c} + G_{mur} = 9.73 \, \text{KN/ml.} \\ M_s = q_s \times l^2/8 = 14.90 \, \text{KN.} \, \text{m} \end{cases}$$

• Correction des moments :

Travée
$$\begin{cases} \mathbf{M_{T}^{u}} = 0.85 \text{ M}_{u} = 17.11 \text{ KN. m} \\ \mathbf{M_{T}^{s}} = 0.85 \text{ M}_{s} = 12.66 \text{KN. m} \end{cases}$$

Appuis
$$\begin{cases} \mathbf{M_a^u} = -0.5 \; \mathbf{M_u} = -10.06 \text{KN. m} \\ \mathbf{M_a^s} = -0.5 \; \mathbf{M_s} = -7.47 \text{KN. m} \end{cases}$$

III.6.2. Ferraillage de la poutre de chainage

Le ferraillage se fait à la flexion simple

Ferraillage de la poutre de chainage M^u Z A_{calculé} Achoisie A_{min} α μ_{bu} (cm^2) (cm^2) (cm^2) (KN.m)**(m)** 3HA10 $0.23bd f_{t28}/f_e = 0.81$ Travée 17.11 0.061 0.078 0.27 1.81 = 2.363HA10 - 10.06 0.036 0.0460.27 1.05 $0.23bd f_{t28}/f_e = 0.81$ **Appuis** = 2.36

Tableau III.23. Ferraillage de la poutre de chainage

III.6.3. Vérifications ELU

Vérification de l'effort tranchant

$$au_u=rac{V_u}{bd}=0.33~MPa ,4 $MPa
ight)=3.33~MPa$, $FN$$$

Calcul des armatures transversales

$$A_t = 1 \ cadre \ \phi_8 + 1 \ étrier \ \phi_8 = 4\phi_8 = 2.01 \ cm^2$$
.

Calcul de l'espacement

$$S_{t} \leq \frac{0.8f_{e}(\sin \alpha + \cos \alpha)A_{t}}{b(\tau_{u} - 0.3 \times k \times f_{t28})}; k = 1, car \begin{cases} FN \\ sans\ reprise\ de\ b\'etonnage. \end{cases}$$

$$\Rightarrow \boxed{S_{t} = 25\ cm}$$

 $S_{t} \le (A_{t} \times f_{e})/(0.4 \, b) = 80.4 \, cm; \, S_{t} \le min[0.9d, 40 \, cm] = 24.3 \, cm.$

III.6.4. Vérifications ELS

• Vérification de la contrainte dans le béton

Tableau III.24. Vérification de la contrainte dans le béton

	$M^{s}(KN.m)$	<i>Y</i> (<i>cm</i>)	<i>I</i> (<i>cm</i> ⁴)	σ_b (MPa)	$\overline{\sigma}_b$ (MPa)
Travée	14.90	7.44	16975.73	6.53	15
Appuis	- 7.47	7.44	16975.73	3.27	15

• Etat limite de déformation

Evaluation de la flèche

$$\checkmark \quad \frac{h}{l} \ge \frac{M_t}{10 \times M_0}$$

$$\checkmark \quad \frac{A}{b \times d} \le \frac{4.2}{f_e}$$

$$\checkmark \quad \frac{h}{l} \ge \frac{1}{16}$$

Commentaire: Les trois conditions sont vérifiées, calcul de la flèche n'est pas nécessaire

III.6.5.ferraillage de la poutre chainage

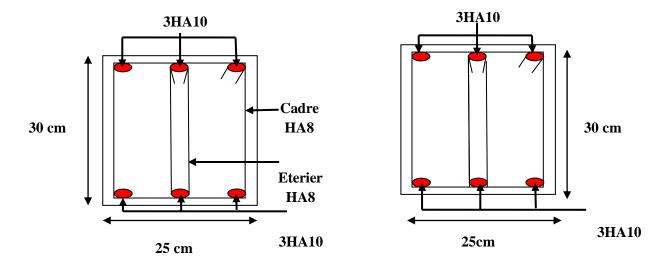


Figure III.30. Schéma de ferraillage de la poutre chainage

III.7. Etude de l'ascenseur :

• Définition :

C'est un appareil au moyen duquel on élève ou on descend des personnes aux différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique. Dans notre structure on utilise un ascenseur pour huit (08) personnes dont les caractéristiques sont les suivantes :

- L: Longueur de l'ascenseur.
- l: Largeur de l'ascenseur.
- \triangleright *H* : Hauteur de l'ascenseur.
- \triangleright W: Puissance de l'ascenseur = 6.8KW.
- F_c: Charge due à la cuvette = 145KN.

Annexe n°1

- \triangleright P_m : Charge due à l'ascenseur = 15KN.
- \triangleright D_m : Charge due à la salle des machines = 51KN.
- ➤ La charge nominale est de 630 kg.
- \triangleright La vitesse V = 1.6m/s.

Donc
$$g = D_m + P_m + P_{personnes} = 72.3KN$$

III.7.1. Etude de la dalle de l'ascenseur :

La dalle du local des machines doit être dimensionnée pour reprendre des charges importantes.

On a $l_x = 2.1m$ et $l_y = 2.40m$ donc une surface $S = 2.1 \times 2.40 = 5.04m^2$

$$e \ge \frac{l}{20} = \frac{2.40}{20} = 0.12m$$
 soit $e = 14cm$.

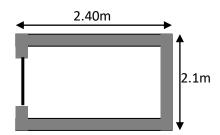


Figure III.31. Cage d'ascenseur

Evaluation des charges et surcharges :

 $G_1 = 25 \times 0.14 = 3.36 KN / m^2$ Poids de la dalle en béton armé.

 $G_2 = 20 \times 0.03 = 0.6 KN/m^2$ Poids du mortier de pose de 3cm.

 $G_3 = 0.1KN/m^2$ Poids de l'isolant thermique.

 $G_4 = 22 \times 0.03 = 0.66 KN/m^2$ Poids de la forme de pente méta chape.

$$G_5 = 22 \times 0.02 = 0.44 \, KN \, / \, m^2$$

Poids du revêtement dallage colle.

$$G' = 5.16KN / m^2$$
.

Somme de $G_1, G_2, ..., G_5$.

$$G^{"} = \frac{F_e}{S} = \frac{145}{2.1 \times 2.40} = 28.77 \, \text{KN} / m^2$$
. Poids de la machine.

$$G_{totale} = G' + G'' = 33.93KN / m^2.$$

$$Q = 1KN/m^2$$
.

III.7.1.1.Cas d'une charge répartie :

• Calcul des sollicitations :

A l'ELU:

$$q_u = 1.35 \times G_{totale} + 1.5 \times Q = 47.30 KN / m^2$$
.

$$\rho = \frac{l_x}{l_y} = 0.87 > 0.4 \Rightarrow$$
 La dalle travaille dans les deux sens.

$$\rho = 0.87 \Rightarrow \begin{cases} \mu_x = 0.0486 \\ \mu_y = 0.7244 \end{cases}$$

Annexe I

Sens x-x':
$$M_0^x = \mu_x \times q_u \times l_x^2 \Rightarrow M_0^x = 10.13 KNm$$

Sens y-y':
$$M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = 7.33KNm$$

• Calcul des moments réels :

> En travée :

Sens x-x':
$$M_t^x = 0.85 \times M_0^x = 8.61 KNm$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 6.23 KNm$$

> En appui:

$$M_a^x = M_a^y$$

$$M_a^{\text{int }e} = 0.5 \times M_0^x = 5.06 KNm$$

 $M_a^{\text{rive}} = 0.3 \times M_0^x = 3.04 KNm$

On vérifie que :

$$M_t + \frac{M_g + M_d}{2} \ge 1.25 \times M_0 \Rightarrow 12.66 = 12.66$$

$$M_g = 0.3 \times M_0$$

$$M_d = 0.5 \times M_0$$

$$M_t = 0.85 \times M_0$$
La condition est vérifiée.

III.7.1.1.1.Calcul du ferraillage:

On fera le calcul de la dalle pour une bande de 1m de longueur et de 14cm d'épaisseur à la flexion simple

• En travée :

// à
$$l_x$$
:

$$\mu_{bu} = \frac{M_t^x}{b \times d_x^2 \times f_{bu}} = 2.09 \times 10^{-2}.$$

$$\alpha = 1,25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.0264$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.152m$$
.

$$A_t^x = \frac{M_t^x}{z \times f_{st}} = 1.62cm^2 / ml.$$

// à
$$l_y$$
:

$$\mu_{bu} = \frac{M_t^y}{b \times d_y^2 \times f_{bu}} = 1.51 \times 10^{-2}.$$

$$\alpha = 1,25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.0190$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.168m$$
.

$$A_t^y = \frac{M_t^x}{z \times f_{st}} = 1.06cm^2 / ml.$$

• En appui:

✓ Appui intermédiaire :

$$\mu_{bu} = 1.23 \times 10^{-2}$$
 $\alpha = 0.0156$
 $z = 0.168m$
 $A_a^{\text{int } e} = 0.87cm^2 / ml$

✓ Appui de rive:

$$\mu_{bu} = 7.40 \times 10^{-3}$$
 $\alpha = 0.00928$
 $z = 0.169m$
 $A_a^{rive} = 0.52cm^2 / ml$

III.7.1.1.2. Vérification à l'ELU:

• Condition de non fragilité:

On calcule A_{\min} :

$$\begin{vmatrix} h_0 > 12cm \\ \rho > 0.4 \end{vmatrix} \Rightarrow \begin{cases} A_{\min}^x = \rho_0 \times \frac{3-\rho}{2} \times b \times h_0 \\ A_{\min}^y = \rho_0 \times b \times h_0 \end{cases}$$

On a des HA $f_e E400 \Rightarrow \rho_0 = 0.0008$

$$b = 100cm$$

$$\rho = 0.87$$

$$\begin{cases} A_{\min}^{x} = 1.62cm^{2} / ml \\ A_{\min}^{y} = 1.52cm^{2} / ml \end{cases}$$

 $h_0 = e = 19cm$

On vérifie que
$$A_t^y > \frac{A_x^t}{4} \Rightarrow 1.52cm^2 > 0.405cm^2$$
 c'est vérifiée.

On choisit suivant le:

Sens x-x', en travée et en appui: $A_t^x = 4T8 = 2.01cm^2$

Sens y-y', en travée et en appui: $A_t^y = 4T8 = 2.01cm^2$

• Calcul des espacements :

Sens x-x':
$$S_t \le \min(3e;33cm) \Rightarrow S_t \le 33cm$$

on adopte $S_t = 25cm$

Sens y-y':
$$S_t \le \min(4e;45cm) \Rightarrow S_t \le 45cm$$

on adopte $S_t = 35cm$

• Vérification de l'effort tranchant :

$$\tau_{u} = \frac{V_{\text{max}}}{h \times d} \le \bar{\tau}_{u} = 0.05 \times f_{c28} = 1.25 MPa$$

 $\rho = 0.82 > 0.4 \Rightarrow$ Flexion simple dans les deux sens:

$$V_{x} = q_{u} \times \frac{l_{x}}{3} = 33.11KN$$

$$V_{y} = q_{u} \times \frac{l_{x}}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 34.60KN$$

$$\tau_u = \frac{34.60 \times 10^{-3}}{1 \times 0.170} = 0.20 MPa < 1.25 MPa$$

c'est vérifiée.

III.7.1.1.3. Vérification à l'ELS:

$$q_{ser} = G_{totale} + Q = 33.93 + 1 = 34.93 KN / m^2$$

 $v = 0.2$

Sens x-x':
$$M_0^x = \mu_x \times q_{ser} \times l_x^2 \Rightarrow M_0^x = 7.48 KNm$$

Sens y-y':
$$M_0^y = \mu_y \times M_0^x \Longrightarrow M_0^y = 5.41 KNm$$

En travée : Sens x-x' : $M_t^x = 0.85 \times M_0^x = 6.36 KNm$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 4.60 KNm$$

En appuis : $M_a = -0.5 \times M_x^{0.5} = -3.74 \text{ KN. } m$

• Vérification des contraintes

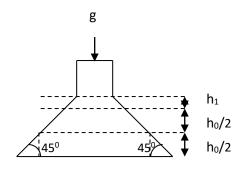
	Sens	M _{ser} [kn. m]	A _s [cm ²]	y [cm]	I cm ⁴	σ _{bc} [MPa]	σ̄ _{bc} [MPa]	Observation
En	X-X	7.48	2,01	2.91	6807.02	3.20	15	Vérifiée
travée	у-у	5.41	2,01	2.91	6807.02	2.31	15	Vérifiée
En appuis	х-у	-3.74	2,01	2.91	6807.02	1.60	15	Vérifiée

Tableau III.25. Vérification de la contrainte dans le béton

III.7.1.1.4. Schéma de ferraillage :

Figure III.32. Ferraillage de la dalle cas charge répartie

III.7.1.2.Cas d'une charge concentrée:


La charge concentrée q est appliquée à la surface de la dalle sur une aire $a_0 \times b_0$, elle agit uniformément sur une aire $u \times v$ située sur le plan moyen de la dalle.

 $a_0 \times b_0$: Surface sur laquelle elle s'applique la charge donnée en fonction de la vitesse.

 $u \times v$: Surface d'impacte.

 a_0 et u: Dimensions suivant le sens x-x'.

 b_0 et v: Dimensions suivant le sens y-y'.

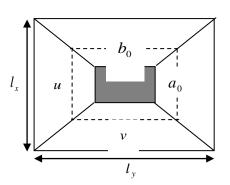


Figure III.33. Schéma représentant la surface d'impacte.

$$\begin{cases} u = a_0 + h_0 + 2 \times \xi \times h_1. \\ v = b_0 + h_0 + 2 \times \xi \times h_1. \end{cases}$$

On a une vitesse
$$V = 1.6m/s \Rightarrow \begin{cases} a_0 = 150cm \\ b_0 = 160cm \end{cases}$$

On a un revêtement en béton d'épaisseur $h_1 = 4cm \Rightarrow \xi = 1$.

Donc:

$$\begin{cases} u = 150 + 19 + 2 \times 1 \times 4 = 177 cm. \\ v = 160 + 20 + 2 \times 1 \times 4 = 187 cm. \end{cases}$$

• Calcul des sollicitations :

$$\begin{cases} M_x = P_u \times (M_1 + \upsilon \times M_2). \\ M_y = P_u \times (M_2 + \upsilon \times M_1). \end{cases}$$
 Avec υ : Coefficient de poisson
$$\begin{cases} \upsilon = 0 \to ELU \\ \upsilon = 0.2 \to ELS \end{cases}$$

$$M_1$$
 En fonction de $\frac{u}{l_x}$ et ρ $\frac{u}{l_x} = 0.84$ et $\rho = 0.87$

$$M_2$$
 En fonction de $\frac{v}{l_y}$ et ρ $\frac{v}{l_y} = 0.78$ et $\rho = 0.87$

En se referant à **l'annexe II** on trouve $M_1 = 0.058$ et $M_2 = 0.047$

 \triangleright Evaluation des moments M_{x1} et M_{y1} du système de levage à l'ELU :

$$\begin{cases} M_{x1} = P_u \times M_1 \\ M_{y1} = P_u \times M_2 \end{cases}$$

$$P_u = 1.35 \times g = 1.35 \times 72.3$$

$$P_u = 97.60KN$$

$$\begin{cases} M_{x1} = 5.66KNm \\ M_{y1} = 4.58KNm \end{cases}$$

> Evaluation des moments dus au poids propre de la dalle à l'ELU :

$$q_u = 1.35 \times 6.8 + 1.5 \times 1 = 10.68 KN$$

$$M_{x2} = \mu_x \times q_u \times l_x^2 \Longrightarrow M_{x2} = 2.28 KNm$$

$$M_{y2} = \mu_y \times M_{x2} \Longrightarrow M_{y2} = 1.65 KNm$$

Superposition des moments :

Les moments agissants sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 7.91 KNm \\ M_y = M_{y1} + M_{y2} = 6.23 KNm \end{cases}$$

• Les moments réels :

En travées :
$$\begin{cases} M_{tx} = 0.85 \times M_x^0 = 6.72 \text{ kn. m} \\ M_{ty} = 0.85 \times M_y^0 = 5.29 \text{ kn. m} \end{cases}$$

En appuis :
$$M_a = -0.5 \times M_x^0 = -3.95 \text{ kn. m}$$

III.7.1.2.1.Calcul de ferraillage

Tableau III.26. Ferraillage de la dalle cas charge concentrée

	Sens	M (kn.m)	μ_{bu}	α	Z (m)	A _{cal} (cm ² /ml)
En travée	Selon x	6.72	0.0163	0.0205	0.168	1.15
	Selon y	5.29	0.0128	0.0161	0,168	0.90

En	Selon x-y	-3.95	0.0962	0.126	0,161	0.70
appuis						

III.7.1.2.2. Vérification à l'ELU:

• Condition de non fragilité :

En travée:

On a des HAf_eE400 $\Rightarrow \rho_0 = 0.0008$

Avec $h_0 = e = 17$ cm, b = 100cm et $\rho = 0.87$

$$\begin{cases} \rho = 0.87 \\ e = 17 \text{ cm} > 12 \text{ cm} \end{cases} \Rightarrow A_x^{min} = \rho_0 \times \left(\frac{3-\rho}{2}\right) \times b \times e = 0.0008 \times \left(\frac{3-0.87}{2}\right) \times 100 \times 17$$

$$\Rightarrow A_x^{min} = 1.44 \text{ cm}^2/\text{ml}$$

$$A_y^{min} = \rho_0 \times b \times e = 0.0008 \times 100 \times 17 = 1.36 \text{ cm}^2$$

$$\begin{cases} A_t^x = 1.15 \text{ cm}^2/\text{ml} < A_x^{min} = 1.44 \text{ cm}^2/\text{ml} \\ A_t^y = 0.90 \text{ cm}^2/\text{ml} < A_y^{min} = 1.36 \text{ cm}^2/\text{ml} \end{cases}$$

$$A_t^y = 0.90 \text{ cm}^2/\text{ml} > \frac{A_t^x}{4} = 0.287 \text{ cm}^2/\text{ml}$$

En appuis:

$$\begin{cases} A_a^x = 0.70 \text{ cm}^2/\text{ml} \le A_x^{\text{min}} = 1,44 \text{ cm}^2/\text{ml} & \text{on feraille avec } A_x^{\text{min}} \\ A_a^y = 0.70 \text{ cm}^2/\text{ml} \le A_y^{\text{min}} = 1,26 \text{ cm}^2/\text{ml} & \text{on feraille avec } A_y^{\text{min}} \end{cases}$$

Les sections d'armatures adoptées en travée et en appuis sont résumées dans le tableau suivant :

4HA8 selon le sens X	4HA8 selon le sens Y	4HA8 selon x-y
$A_X = 2.01 \frac{cm^2}{ml}$	$A_Y = 2.01 \frac{cm^2}{ml}$	$A_{x-y} = 2.01 \frac{cm^2}{ml}$

• Espacement des armatures :

Sens x-x: $St \le min(3e; 33)cm \Rightarrow St \le 33 \ cmadopte : St = 25cm$

Sens y-y: $St \le min(4e; 45)cm \Rightarrow St \le 45 \ cmadopte: St = 25cm$

• Vérification au poinçonnement :

$$Q_u \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b}$$

Avec Q_u : Charge de calcul à l'ELU.

h : Épaisseur total de la dalle.

 $U_c = 2 \times (u + v)$: Périmètre du contour au niveau de feuillet moyen.

$$Q_u = q_u = 97.60 \text{ KN} < 0.045 \times u_c \times h \times \frac{f_{c28}}{\gamma_b} = 0.045 \times 7.28 \times 0.17 \times \frac{25 \times 10^3}{1.5} = 928.2 \text{ KN}$$

 $q_u = 97.60 \, KN < 928.2 \, KN$ Pas de risque de poinçonnement

• Vérification de l'effort tranchant :

On à:

$$V_{max} = Q_{u}/(2u + v) = 97.60/5.41 = 18.04KN$$

$$\Rightarrow \tau_u = \frac{V_u}{bd} = \frac{18.04 \times 10^{-3}}{1 \times 0.17} = 0.106 \ MPa < \bar{\tau} = 0.07 \times \frac{f_{c28}}{\gamma_h} = 1.16 \ MPa$$
 Condition vérifiée

III.7.1.2.3. Vérification à l'ELS:

• Le moment engendré par le moment de levage :

$$M_1 = 0.058 \, KN. \, m \, \text{Et} \, M_2 = 0.047 \, KN. \, m$$

$$q_{ser} = g = 72.3 \ KN$$

$$\begin{cases} M_{x1S} = q_{ser} \times (M_1 + \nu M_2) = 72.3 \times (0.058 + 0.2 \times 0.047) = 4.87 \ KN. \ m \\ M_{y1S} = q_{ser} \times (M_2 + \nu M_1) = 72.3 \times (0.047 + 0.2 \times 0.058) = 4.23 \ KN. \ m \end{cases}$$

• Le moment dû au poids propre de la dalle:

$$Q_{ser} = G + Q = 6.16 \frac{kn}{m}$$

ELS:
$$\rho = 0.87 \Longrightarrow \begin{cases} \mu_x = 0.0486 \\ \mu_y = 07244 \end{cases}$$

• Calcul les moments :

$$\begin{cases} M_{x2S} = \mu_x \times q_{st} \times l_x^2 = 0.0486 \times 6.16 \times 2.1^2 = 1.42KN. m \\ M_{v2S} = \mu_v \times M_{x2S} = 0.7244 \times 1.42 = 1.03 KN. m \end{cases}$$

- Superposition des moments :
- Les moments agissants sur la dalle sont :

$$\begin{cases} M_{xS} = M_{x1S} + M_{x2S} = 4.87 + 1.42 = 6.29KN. m \\ M_{yS} = M_{y1} + M_{y2S} = 4.23 + 1.03 = 5.26KN. m \end{cases}$$

• Calcul les moments réels :

$$En~trav\'ee: \begin{cases} M_{txS} = 0.85 \times M_{xS} = 0.85 \times 6.29 = 5.35 KN. \, m \\ M_{tyS} = 0.85 \times M_{yS} = 0.85 \times 5.26 = 4.47 KN. \, m \end{cases}$$

En appuis:
$$M_a = -0.5 \times M_x = -0.5 \times 6.29 = -3.14$$
KN. m

• Vérification des contrainte

Tableau III.27. Vérification de la contrainte dans le béton

	sens	M _{ser} [kn.m]	A_s $[cm^2]$	y [cm]	I cm ⁴	σ_{bc} $[MPa]$	$\overline{\sigma}_{bc}$ $[MPa]$	Observation
En	<i>x-x</i>	6.30	2.01	2.91	6267.89	2.92	15	Vérifiée
travée	у-у	5.44	2.01	2.91	6267.89	2.52	15	Vérifiée
En appuis	х-у	-3.70	2.01	2.91	6267.89	1.72	15	Vérifiée

• Vérification de la flèche :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche.

$$\begin{cases} \frac{h_t}{l_x} = \frac{0.17}{2.1} = 0.080 > \frac{3}{80} = 0.0375 & \begin{cases} \frac{h_t}{l_x} = \frac{0.17}{2.1} = 0.080 > \frac{M_{tx}}{20 \times M_x} = 0.042 \\ \frac{h_t}{l_y} = \frac{0.17}{2.4} = 0.071 > \frac{3}{80} = 0.0375 & \begin{cases} \frac{h_t}{l_x} = \frac{0.17}{2.4} = 0.071 > \frac{M_{ty}}{20 \times M_y} = 0.042 \end{cases} \end{cases}$$

Condition vérifiée

*
$$\frac{A_s}{b \times d} = \frac{2.01}{100 \times 17} = 1.18 \times 10^{-3} < \frac{2}{f_e} = 5 \times 10^{-3}$$
......Condition vérifiée

Commentaire : Le calcul de la flèche n'est pas nécessaire

III.7.1.2.4. Schéma de ferraillage :

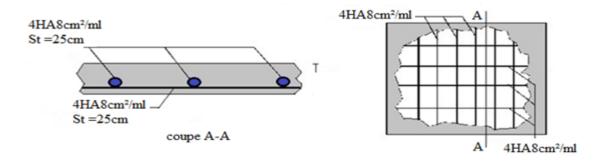


Figure III.34. Schéma de ferraillage de la dalle cas charge concentrée

III.8. CONCLUSION

Le but de ce chapitre été la détermination des sections d'acier nécessaire pour reprendre les charges revenant aux éléments non structuraux.

Le choix de la disposition des poutrelles s'est fait au chapitre précédent. D'après la disposition adoptée nous avons eu plusieurs types de poutrelles. Ces dernières ont été étudiées et ferraillées.

Notre structure présente deux types d'escalier . Dans ce chapitre il a été procédé à son étude et son ferraillage.

Ainsi, nous avons fait l'étude de l'ascenseur puis on a ferraillé la dalle de locale des machines.

La poutre palière a été étudiée sous des sollicitations de flexion de torsion ainsi pour la poutre de chainage qui a été étudier en flexion simple.

Notre projet comprend trois types de dalle pleine, elle ont été étudié et ferraillé avec les sollicitations

Chapitre IV

IV.1.Introduction

Le séisme est un phénomène naturel, qui correspond à un mouvement du sol libérant une énergie de déformation importante. Il peut causer d'importants dégâts selon son intensité.

Alors les constructions se comportent comme une console, encastrées à la base lors des sollicitations sismique, qui s'applique comme une force d'inertie horizontale sur le plancher avec la transmission des efforts par des éléments verticaux jusqu'aux fondations.

Selon le **RPA99/ version 2003[1],** tout ouvrage dépassant quatre (4) niveaux ou (14m) de hauteur en zone IIa, devra être contreventée par des voiles, c'est le cas de notre structure en se référant à (**l'article 3.4.A.1.a du RPA99/ version 2003) [1],** la structure sera mixte (voiles portiques), par conséquent elle présente un aspect intéressant du point de vue économique.

IV.2. Méthodes de calcul

Le règlement parasismique algérien (RPA99) [1] propose trois méthodes de calcul des sollicitations :

- -La méthode statique équivalente.
- -La méthode d'analyse modale spectrale.
- -La méthode d'analyse dynamique par accélérographe.

IV.2.1.La méthode statique équivalente

Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de force statique fictive dont les effets sont considérés équivalents à ceux de l'action sismique.

> Condition d'application de la méthode

D'après le RPA 99 (Art 4.1.2)[1], les conditions d'applications de la méthode statique sont :

- le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus de 65m en zone I et II et de 30m en zone III.
- Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant outres les conditions de hauteur énoncées en haut.

> Calcul de la force sismique totale

La force sismique totale V appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales et orthogonales selon la formule :

$$V = \frac{A * D * Q}{R} * W \qquad (RPA99 Art 4.2.3)[1]$$

Avec:

✓ A : coefficient d'accélération de la zone. Suivant la zone sismique et le groupe d'usage du bâtiment. RPA99 (Tableau 4.1)[1]

- Groupe d'usage : groupe 2

- Zone sismique : zone IIa $\Rightarrow A=0.15$

✓ R: Coefficient de comportement global de la structure, il est fonction du système de contreventement. RPA99 (Tableau 4.3)[1]

Dans le cas de notre projet, on opte pour un système de contreventement mixte portiques-voiles avec justification de l'interaction, donc : R=5

✓ **D**: facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période de la structure (T).

$$D = \begin{cases} 2.5 * \eta \dots 0 \le T \le T_2 \\ 2.5 * \eta * (\frac{T_2}{T})^{\frac{2}{3}} \dots T_2 \le T \le 3 \sec (\mathbf{RPA99Art 4.2.3})[1] \\ 2.5 * \eta * (\frac{T_2}{3})^{\frac{2}{3}} * (\frac{3}{T})^{\frac{5}{3}} \dots T \ge 3 \sec \end{cases}$$

Avec:

T₁, T₂ : Périodes caractéristiques associées à la catégorie de site et donnée par le **RPA99.Tableau 4.7** [1]

Dans notre cas le sol est ferme (Site S₂)
$$\Rightarrow$$
 $\begin{cases} T_1 = 0.15 s \\ T_2 = 0.4 s \end{cases}$

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{\frac{7}{2 + \xi}} \ge 0,7 \text{ (RPA99 Art 4.2.3)[1]}$$

 ξ (%): pourcentage de l'amortissement critique fonction du matériau constitutif, du type de la structure et de l'importance des remplissages.(**RPA99.tableau 4.2**)[1]

Portique auto stable $\rightarrow \xi = 7 \%$.

Voiles
$$\rightarrow \xi = 10 \%$$
.

Donc, pour une construction mixte on prend la moyenne: $\xi = 8.5\%$

$$\Rightarrow \eta = \sqrt{\frac{7}{2+8.5}} = 0.82$$

T : période fondamentale de la structure donnée par les deux formules empiriques suivantes :

T = min
$$\begin{cases} T = C_T * (h_N)^{3/4} \\ T = 0.09. \frac{h_N}{\sqrt{L}} \end{cases}$$
 (RPA99 art 4.2.4)[1]

Avec:

 \boldsymbol{h}_{N} : hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau

$$h_{N} = 30.6 \text{ m}$$

 $\boldsymbol{C}_{\scriptscriptstyle T}$: coefficient fonction du système de contreventement et du type de remplissage

$$\Rightarrow$$
 C_T = 0,05(tableau 4.6 du RPA 99/2003) [1]

L: est la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée. $\begin{cases} L_x = 26.32 \text{ m} \\ L_v = 17.7 \text{ m} \end{cases} \Rightarrow \begin{cases} T_x = 0.54 \text{ sec} \\ T_v = 0.65 \text{ sec} \end{cases} ,$

La période fondamentale statique majorée de 30 % donc on a

$$\begin{cases} T_{Sx} = 1.3 \times \min(0.54; 0.65) = 0.702s \\ T_{Sy} = 1.3 \times \min(0.65; 0.65) = 0.845s \end{cases}$$

Calcul de D

D=2.5*
$$\eta$$
* $(\frac{T_2}{T})^{\frac{2}{3}}$ car 0.4 \le T \le 3 \sec

$$D_x = 2.5*0.82*(0.4 / 0.702)^{\frac{2}{3}} = 1.408$$

$$D_y = 2.5*0.82*(0.4/0.845)^{\frac{2}{3}} = 1.245$$

✓ **Q** : Facteur de qualité.

La valeur de Q est déterminée par la formule :

$$Q = 1 + \sum_{1}^{6} Pq$$
 RPA99 (Formule 4.4)[1]

Pq: est la pénalité à retenir selon que le critère de qualité q est satisfait ou non.

Les valeurs à retenir sont dans le tableau suivant :

Tableau IV.1. Valeurs des pénalités Pq sens X

Critère Q _X	Valeurs de Pq		
	Observé	non observé	
Condition minimale des files porteuses	Oui	0.00	
2) Redondance en plan	Oui	0.00	
3) Régularité en plan	non	0.05	
4) Régularité en élévation	Oui	0.00	
5) Contrôle de la qualité des matériaux	Oui	0.00	
6) Contrôle de la qualité de la construction	Oui	0.00	

Tableau IV.2. Valeurs des pénalités Pq sens Y

	Valeurs de Pq		
Critère Q _Y			
	Observé	non observé	
Condition minimale des files porteuses	Non	0.05	
2) Redondance en plan	Non	0.05	
3) Régularité en plan	Non	0.05	
4) Régularité en élévation	Oui	0.00	
5) Contrôle de la qualité des matériaux	OUI	0.00	
6) Contrôle de la qualité de la construction	Oui	0.00	

$$Q_x = 1.05$$

$$Q_y = 1.15$$

✓ W: Poids total de la structure. La valeur de W comprend la totalité des charges permanentes pour les bâtiments d'habitation. Il est égal à la somme des poids Wi; calculés à chaque niveau (i):

$$W = \sum_{i=1}^{n} Wi \text{ avec } W_i = W_{Gi} + \beta \times W_{Qi} RPA99 \text{ (Formule 4.5)[1]}$$

 W_{Gi} : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.

W_{Qi}: charges d'exploitation.

 β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation.

Concernant notre projet on a des appartements à usage d'habitation donc un coefficient de pondération $\beta = 0.20$.

$$W = \sum_{i=1}^{n} Wi = 43706.293 \text{KN}$$

La force sismique totale à la base de la structure est : $V_{st} = \frac{A \times D \times Q}{R} \times W$

$$V_{stx} = \frac{0.15 \times 1.408 \times 1.05}{5} \times 43706.293 = 1938.461 KN$$

$$V_{sty} = \frac{0.15 \times 1.245 \times 1.15}{5} \times 43706.293 = 1877.294 KN$$

IV.2.2.Méthodes d'analyse modale spectrale :

Cette méthode peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

• Principe:

Il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul.

Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

• Les hypothèses :

- -les masses sont supposées concentrées au niveau des nœuds principaux (nœuds maîtres).
- -seuls les déplacements horizontaux des nœuds sont pris en compte.
- -le nombre de mode à prendre en compte est tel que la somme des taux de participation des masses modales atteint au moins 90% de la masse globale de la structure.

> Analyse spectrale

Spectre de réponse : La réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ξ) , et de la pulsation (ω) . Donc, pour des accélérogrammes donnés, si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est nommé spectre de réponse, et qui aide à faire une lecture directe des déplacements maximaux d'une structure. L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25 \, A \left[1 + \frac{T}{T_1} \left(2.5 \, \eta \, \frac{Q}{R} - 1 \right) \right] \dots & 0 \le T \le T_1 \\ 2.5 \, \eta \, \left(1.25 \, A \right) \frac{Q}{R} \dots & T_1 \le T \le T_2 \\ 2.5 \, \eta \, \left(1.25 \, A \right) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} \dots & T_1 \le T \le 3 \, sec \\ 2.5 \, \eta \, \left(1.25 \, A \right) \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} \frac{Q}{R} \dots & T \ge 3 \, sec \end{cases}$$

Représentation graphique du spectre de réponse de calcul :

L'excitation du modèle par le spectre du RPA, nous permet d'évaluer sa réponse sismique.

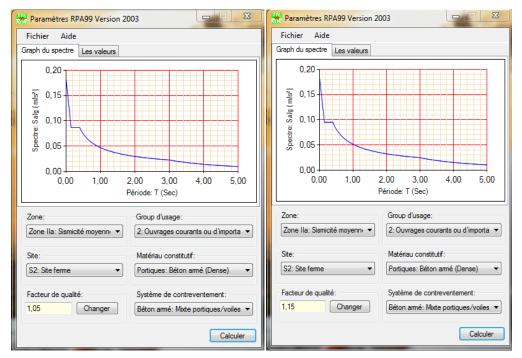


Figure IV.1. Spectre de réponse Sens X ET Y

IV.2.3. Modélisation de la structure :

La forme architecturale de la structure à étudier, nous à pousser à une recherche d'un bon comportement dynamique qui peut résister aux différentes sollicitations. La hauteur du bâtiment dépasse les 20 mètres, donc selon **RPA99/2003** (article 3.4) [1] on doit introduire des voiles Après plusieurs essais on a opté à cette disposition :

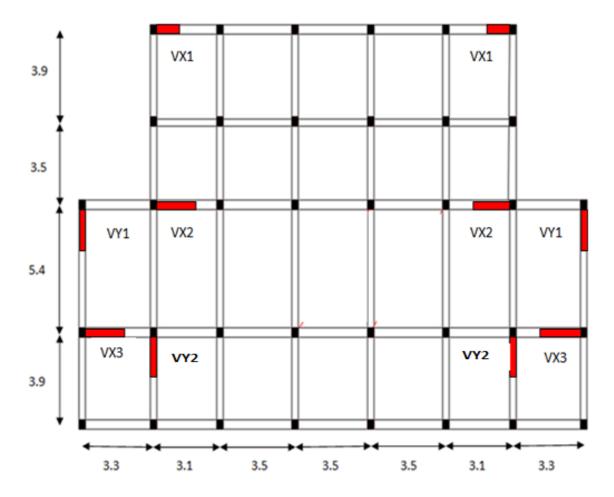


Figure IV.2. Disposition des voiles

Nous présenterons dans les figures suivantes la modélisation de la structure :

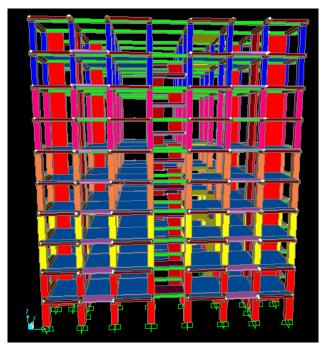


Figure IV.3. Vue en plan

> Analyse du comportement de la structure

✓ Mode1:

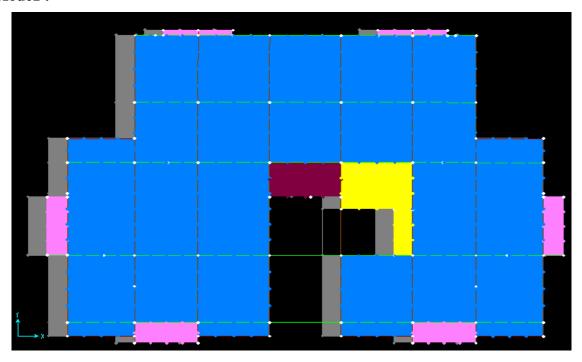
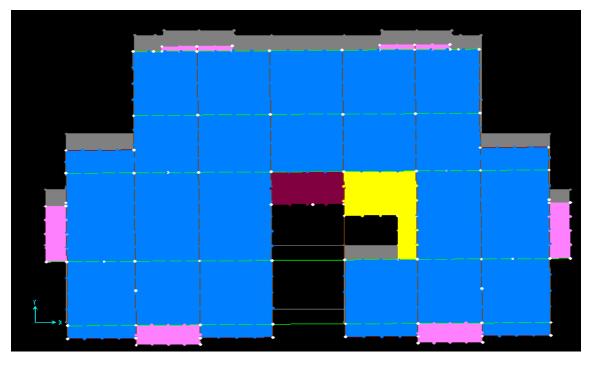



Figure IV.4. Premier mode de déformation (translation suivant X) (T=0.83sec)

Analyse des résultats : la participation modale du premier mode suivant (X) est prépondérante, un mode de translation suivant cette direction.


✓ Mode 2 :

Figure IV.5.Deuxième mode de déformation (translation suivant Y) (T=0.78sec)

Analyse des résultats : la participation modale du deuxième mode suivant (Y) est prépondérante, un mode de translation suivant cette direction.

✓ Mode3:

Figure IV.6. Troisième mode de déformation (rotation suivant z) (T= 0.74 sec)

IV.3.2.1.Période de vibration et taux de participation des masses modales:

Tableau IV.3. Période de vibration et taux de participation des masses modales

Modes	Périodes (s) INDIVIDUAL MODE (PERCENT)		CUMULATIVE SUM (PERCENT)				
	(5)	UX	UY	UZ	UX	UY	UZ
1	0,831359	0,831359	0,00008112	6,725E-08	0,73179	0,00008 112	6,725E-08
2	0,78187	0,78187	0,73093	0,00001461	0,74499	0,73102	0,00001468
3	0,746949	0,746949	0,00527	1,002E-07	0,74548	0,73628	0,00001478
4	0,264222	0,264222	0,00002275	2,654E-07	0,85761	0,7363	0,00001505
5	0,250824	0,250824	0,12028	0,000003015	0,85785	0,85658	0,00001806
6	0,236372	0,236372	0,0004	6,239E-08	0,85785	0,85698	0,00001812
7	0,137799	0,137799	0,000007617	6,349E-08	0,90499	0,85699	0,00001819
8	0,132554	0,132554	0,05113	0,00002568	0,90499	0,90812	0,00004387

Remarque:

Concernant les modes à retenir, nous avons constaté que le pourcentage de participation modale attient plus de 90% à partir du 7éme mode (sens x) et 8éme mode (sens y) ce qui vérifie la condition du **RPA99/2003.** [1]

IV.3.2.2. Vérification de la résultante de la force sismique :

Selon RPA99V2003 (Article 4.3.6) [1], la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminées par la méthode statique équivalente.

Tableau IV.4. Vérification de l'effort tranchant à la base

	V _{st} (KN)	V dyn (KN)	V dyn V st	Observation
Sens x-x	1938.461	1819,296	0,9385	Vérifie
Sens y-y	1877.294	2080,854	1,1084	Vérifie

• Sous charges verticales

Pourcentage des charges vertical est reprises par les portiques.

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\% \ .$$

Pourcentage des charges verticales reprises par les voiles.

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 20\%$$

Les résultats sont présentés dans le tableau suivant :

Tableau IV.5. Vérification de l'interaction sous charges verticale.

	Portique (KN)	Voiles(KN)	Portique (%)	Voiles(%)
RDC	42704,33	4788,287	89,91783	10,08217
1 ^{er} étage	36493,84	5815,853	86,25409	13,74591
2 ^{ème} étage	31653,9	5427,324	85,36369	14,63631
3 ^{ème} étage	27227,48	4837,543	84,91333	15,08667
4 ^{ème} étage	22667,75	4333,523	83,95067	16,04933

5 ^{ème} étage	18475,38	3684,354	83,37365	16,62635
6 ^{ème} étage	14202,51	3084,105	82,159	17,841
7 ^{ème} étage	10269,24	2338,751	81,45025	18,54975
8 ^{ème} étage	6343,224	1583,883	80,01941	19,98059
9 ^{ème} étage	2730,64	2730,64	50	50

On remarque que l'interaction portique-voiles sous charges verticales est vérifiée dans tous les étages.

Ces résultats sont obtenus après redimensionnent des sections des poteaux comme suit :

Etages	Poteaux (cm²)
RDC,1 ^{er} étage	65*70
2 ^{eme} et 3 ^{eme} étage	60*65
4 ^{eme} et 5 ^{eme} étage	55*60
6 ^{eme} et 7 ^{eme} étage	50*55
8 ^{eme} et 9 ^{eme} étage	45*50

• Sous charges horizontales

Pourcentage des charges horizontales reprises par les portiques.

$$\frac{\sum F_{portiques}}{\sum F_{portiques}} + \sum F_{voiles} \ge 25\%$$

Pourcentage des charges horizontales reprises par les voiles.

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 75\%$$

Les résultats sont présentés dans le tableau ci-dessous :

		Sens	X-X			Sen	s y-y	
	portique	Voiles	P(%)	V(%)	portique	Voiles	P(%)	V(%)
RDC	1245,081	414,616	75,01857	24,98143	1586,993	458,696	77,57743	22,42257
1 ^{er} étage	947,946	646,666	59,44681	40,55319	1263,188	651,704	65,96654	34,03346
2 ^{ème} étage	920,839	569,668	61,78025	38,21975	1246,895	540,613	69,75605	30,24395
3 ^{ème} étage	933,073	456,341	67,15587	32,84413	1256,022	398,747	75,90316	24,09684
4 ^{ème} étage	819,395	429,296	65,62032	34,37968	1103,257	390,529	73,85643	26,14357
5 ^{ème} étage	798,322	321,332	71,30078	28,69922	1049,174	275,185	79,22127	20,77873
6 ^{ème} étage	635,86	310,489	67,19086	32,80914	831,268	290,745	74,0872	25,9128
7 ^{ème} étage	579,439	199,444	74,39359	25,60641	732,001	175,102	80,69657	19,30343
8 ^{ème} étage	396,169	151,014	72,40155	27,59845	495,991	141,396	77,8163	22,1837
9 ^{ème} étage	327,656	327,656	50	50	398,397	398,397	50	50

Tableau IV.6. Vérification de l'interaction sous charges horizontale

On remarque que l'interaction portique-voiles sous charges horizontales est vérifiée dans tous les étages.

IV.3.2.3. Vérification de l'effort normal réduit

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble due au séisme, le **RPA** (article 7.4.3.1) [1] exige que l'effort normal de compression de calcul soit limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.30 \Longrightarrow N_d \le 0.3 \times B_c \times f_{c28}$$
 Avec :

 N_d : désigne l'effort normale de calcul s'exerçant sur une section de béton.

 B_c : Est l'aire (section brute) de poteau.

 f_{ci} : Est la résistance caractéristique du béton.

Il est à noter que les sections des poteaux ont été augmentées pour tous les niveaux. Ceci a été fait dans le but de vérifier l'interaction voile-portique exigée par le **RPA**.

Le tableau ci-dessous présente la vérification de l'effort normale réduit dans le poteau le plus sollicité.

Niveaux $N_d(KN)$ $B_c(cm^2)$ Condition RDC et E1 2109.776 0.19 vérifier 65*70 1565.915 0.16 vérifier E2 et E3 60*65 1105.82 0.13 vérifier **E4 et E5** 55*60 0.098 **E6 et E7** 672.733 vérifier 50*55 308.374 0.056 Vérifier **E8 et E9** 45*50

Tableau IV.7. Vérification de l'effort normal réduit.

IV.3.2.4. Justification vis-à-vis de déplacement

Le déplacement horizontal à chaque niveau K de la structure est calculé par :

$$\delta_k = R \times \delta_{ek}$$
 RPA99 (Article 4.4.3) [1]

 $\delta_{\it ek}$:Déplacement dû aux forces F_i

R : Coefficient de comportement (R=5).

Le déplacement relatif au niveau K par rapport au niveau K-1 est égal à :

$$\Delta_{k} = \delta_{k} - \delta_{k-1}$$

Le RPA exige que le déplacement relatif soit inférieur à 1% de la hauteur de l'étage, C.à.d.:

 $\Delta_k < 1\% \times h_e$. **RPA** (article 5.10) [1] h_e : Étant la hauteur de l'étage.

Les résultats sont présentés dans les tableaux ci-dessous :

Tableau IV.8. Vérification des déplacements dans le sens X et Y.

Niveau		Sens X – X											
	δek(m)	(m)											
RDC	0	0	0	0	3.06	0	Vérifiée						
1	0,001929	0,009645	0	0,0096	3,06	0,0032	Vérifiée						
2	0,003526	0,01763	0,009645	0,0080	3,06	0,0026	Vérifiée						
3	0,005208	0,02604	0,01763	0,0084	3,06	0,0027	Vérifiée						

4	0,006877	0,034385	0,02604	0,0083	3,06	0,0027	Vérifiée					
5	0,00843	0,04215	0,034385	0,0078	3,06	0,0025	Vérifiée					
6	0,009839	0,049195	0,04215	0,0070	3,06	0,0023	Vérifiée					
7	0,011059	0,055295	0,049195	0,0061	3,06	0,0020	Vérifiée					
8	0,012091	0,060455	0,055295	0,0052	3,06	0,0017	Vérifiée					
9	0,012959	0,064795	0,060455	0,0043	3,06	0,0014	Vérifiée					
Niveau	Sens Y – Y											
	δek(m)	δk (m)	δk-1 (m)	Δk (m)	hk	Δk/hk (%)	Observation					
					(m)							
RDC	0	0	0	0	3.06	0	Vérifiée					
1	0,00203	0,01015	0	0,0102	3,06	0,0033	Vérifiée					
2	0,003596	0,01798	0,01015	0,0078	3,06	0,0026	Vérifiée					
3	0,005445	0,027225	0,01798	0,009245	3,06	0,0030	Vérifiée					
4	0,007171	0,035855	0,027225	0,0086	3,06	0,0028	Vérifiée					
5	0,008762	0,04381	0,035855	0,0080	3,06	0,0026	Vérifiée					
6	0,010193	0,050965	0,04381	0,0072	3,06	0,0023	Vérifiée					
7	0,011396	0,05698	0,050965	0,0060	3,06	0,0020	Vérifiée					
8	0,012382	0,06191	0,05698	0,00493	3,06	0,0016	Vérifiée					
9	0,01321	0,06605	0,06191	0,0041	3,06	0,0014	Vérifiée					

D'après le tableau ci-dessus nous constatons que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage, ce qui signifie que la condition est vérifiée.

IV.3.2.5. Justification vis-à-vis de l'effet P-Δ

L'effet P- Δ (effet de second ordre) est l'effet dû aux charges verticales après déplacement. Il peut être négligé si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{p_K \times \Delta_K}{V_K \times h_k} \le 0,1 \quad \text{RPA99/2003(Article 5.9) [1]}$$

Tel que:

 $p_{\boldsymbol{k}}$: Poids total de la structure et des charges d'exploitations associées au-dessus du niveau « \boldsymbol{k} » ; avec :

$$p_k = \sum_{i=1}^{n} (W_{Ci} + \beta \times W_{Qi})$$

 V_k : Effort tranchant d'étage au niveau « k ».

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 ».

 h_k : Hauteur de l'étage « k ».

- Si $0.1 < \theta_k < 0.2$, l'effet P- Δ peut être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculée au moyens d'une analyse élastique du premier ordre par le facteur $\frac{1}{1-\theta}$.
- Si θ_k >0,2 la structure est partiellement instable elle doit être redimensionnée.

Les résultats sont présentés dans le tableau ci-dessous :

Tableau IV.9. Vérification de l'effet P-Δ dans le sens (X-X) et (Y-Y)

Niveau			Sens	s X – X		
	Δk (m)	Pk (KN)	Vk (KN)	hk (m)	Θ	Observation
1	0,0096	42993,72	1659,697	3.06	0.0081	Vérifiée
2	0,0080	38348,21	1594,612	3.06	0.062	Vérifiée
3	0,0084	33618,62	1490,507	3.06	0.061	Vérifiée
4	0,0083	29099,07	1389,414	3.06	0.056	Vérifiée
5	0,0078	24529,76	1248,691	3.06	0.050	Vérifiée
6	0,0070	20184,2	1119,654	3.06	0.041	Vérifiée
7	0,0061	15805,44	946,349	3.06	0.033	Vérifiée
8	0,0052	11622,7	778,883	3.06	0.025	Vérifiée
9	0,0043	7436,145	547,183	3.06	0.019	Vérifiée
Niveau			Sens	s Y – Y		
	Δk (m)	Pk (KN)	Vk (KN)	hk (m)	Θ	Observation
1	0,0102	42993,72	2045,689	3.06	0.07	Vérifiée
2	0,0078	38348,21	1914,892	3.06	0.051	Vérifiée
3	0,009245	33618,62	1787,508	3.06	0.056	Vérifiée
4	0,0086	29099,07	1654,769	3.06	0.049	Vérifiée
5	0,0080	24529,76	1493,786	3.06	0.042	Vérifiée
6	0,0072	20184,2	1324,359	3.06	0.035	Vérifiée
7	0,0060	15805,44	1122,013	3.06	0.027	Vérifiée

8	0,00493	11622,7	907,103	3.06	0.020	Vérifiée
9	0,0041	7436,145	637,387	3.06	0.015	Vérifiée

On remarque d'après les résultat obtenue (θ_k < 0.1) dans tous les niveaux d'où les effets du second ordre (effet P- Δ) peuvent être négligés.

IV.4.Conclusion

L'étude au séisme de notre structure s'est faite par la méthode dynamique suite à non vérification des conditions d'application de la méthode statique équivalente.

La modélisation de notre structure s'est donc faite à l'aide du logiciel Sap2000.V14.

Après plusieurs essais sur la disposition des voiles de contreventement et sur l'augmentation des dimensions des éléments structuraux, et en équilibrant entre le critère de résistance et le critère économique, nous avons pu satisfaire toutes les conditions exigées par le RPA99/2003[1], ce qui nous permet de garder notre modèle et de passer au calcul des éléments structuraux.

Chapitre V

V.1.Introduction:

La superstructure est la partie supérieure du bâtiment, située au-dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (Poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé, leur rôle est d'assuré la résistance et la stabilité de la structure avant et après le séisme, cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

V.2.Étude des poteaux :

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les sollicitations (efforts normaux et moments fléchissant) à la base de la structure. Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel SAP2000.V14 dans l'ordre suivant :(RPA99/2003) [1].

- ✓ 1.35 G + 1.5 O....(1)
- ✓ G + Q.....(2)
- ✓ $G + Q \pm E$(3)
- ✓ $0.8 \text{ G} \pm \text{E}$(4)

Les armatures sont déterminées suivant les sollicitations suivantes :

- 1. Effort normal maximal et le moment correspondant : $(N_{\text{max}} \rightarrow M_{corr})$
- 2. Effort normal minimal et le moment correspondant : $(N_{\min} \rightarrow M_{corr})$
- 3. Moment maximum et effort normal correspondant : $(M_{max} \rightarrow N_{corr})$

V.2.1.Recommandations du RPA99/2003:

- Les armatures longitudinales : (Article 7.4.2.1) [1].
- ✓ Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- ✓ Leur pourcentage minimal sera de : $0.8 \% \times b_1 \times h_1$ en zone **IIa**
- ✓ Leur pourcentage maximal sera de :
 - 4 % en zone courante.
 - 6 % en zone de recouvrement.
- ✓ Le diamètre minimum est de 12mm.
- ✓ La longueur minimale des recouvrements est de 40ϕ en zone **IIa**.
- ✓ La distance entre les barres verticales dans une face du poteau ne doit pas dépasser : 25cm en zone (IIa).
- ✓ Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).

La zone nodale est constituée par le nœud poutres-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre sont données dans la figure (**V.1**). [1]

h'= Max (
$$\frac{h_e}{6}$$
; h_1 ; h_1 ; 60 cm)

$$l' = 2 \times h$$

 h_e : La hauteur d'étage.

 b_1, h_1 : Dimensions de la section transversale du poteau

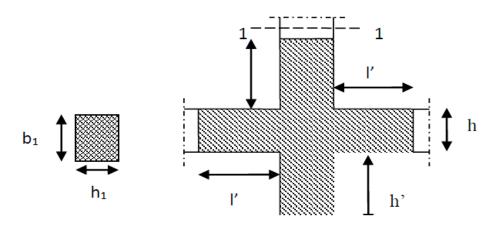


Figure V.1. Zone nodale

Les valeurs numériques relatives aux prescriptions du RPA99/V2003 [1]. sont apportées dans le tableau suivant :

Tableau V.1. Armateurs minimales et maximales dans les poteaux carrés

Niveau	section du poteau (cm²)	Amin (cm²)	Amax(cm²) Zone courante	Amax(cm²) zone de recouvrement
RDC et étage 1	65*70	36.4	182	273
Étage 2 et 3	60*65	31.2	156	234
Étage 4 et 5	55*60	26.4	132	198
Étage 6 et 7	Étage 6 et 7 50*55		110	165
Étage 8 et 9	Étage 8 et 9 45*50		90	135

• Armatures transversales : RPA (Article 7.4.2.2) [1].

Les armatures transversales des poteaux sont calculées à l'aide de la formule :

$$\frac{A_t}{t} = \frac{\rho_a \times V_u}{h_1 \times f_e}$$

 V_{u} : L'effort tranchant de calcul.

 h_1 : Hauteur totale de la section brute.

 $f_{\it e}$: Contrainte limite élastique de l'armature transversale.

 ρ_a : Coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant, il est pris égal à 2,5 si l'élancement géométrique " λ_g " dans la direction considérée est supérieur ou égal à 5 et à 3,75 dans le cas contraire.

t : L'espacement des armatures transversales dont la valeur est déterminée dans la formule précédente, par ailleurs la valeur max de cet espacement est fixé comme suit :

- **Dans la zone nodale :** $t \le Min (10\phi_l, 15 \text{ cm})$. En zone **IIa**.
- **Dans la zone courante :** $t' \le 15\phi_l$. En zone **IIa**.

Où : ϕ_l est le diamètre minimal des armatures longitudinales du poteau.

> La quantité d'armature transversale minimale :

$$\frac{A_{t}}{t.b_{1}} \text{En \% est donnée comme suit :} \begin{cases} A_{t}^{\min} = 0.3\% \ (t \times b_{1}) \ si \ \lambda_{g} \geq 5 \\ A_{t}^{\min} = 0.8\% \ (t \times b_{1}) \ si \ \lambda_{g} \leq 3 \end{cases}$$

 $si: 3 < \lambda_g < 5$ Interpoler entre les valeurs limites précédentes.

 λ_{o} : est l'elencement géométrique du poteau.

 $\lambda_g = \left(\frac{l_f}{a} \operatorname{ou} \frac{l_f}{b}\right) \text{; Avec a et b, dimensions de la section droite du poteau dans la direction de déformation considérée, et } l_f : \text{longueur de flambement du poteau.}$

- ✓ Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de 10ϕ , minimum .
- ✓ Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants $(\phi \text{ cheminées} > 12 \text{ cm})$ pour permettre une vibration correcte du béton sur toute la hauteur des poteaux.

V.2.2.Les sollicitations dans les poteaux

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du logiciel SAP2000, sont résumés dans le tableau ci-après

 $Nmax \rightarrow Mcor$ $Mmax \rightarrow Ncor$ Nmin→Mcor Niveau N(KN) M(KN.m)N(KN) M(KN.m) N(KN) M(KN.m)-2221.039 -207.913 -1932.723 202.124 -77.467 46.612 RDC et Étage 1 -1766.973 -7.647 -130.792 -1141.853 -57.267 -1.167 Étage 2 et 3 -1281.623 -7.813 -116.216 -739.046 -103.202 5,286 Étage 4 et 5 -382.584 -824.653 -38.017 -89.041 -18.704 36.83 Étage 6 et 7 -403.46 -32.884 62.093 -123.512 39.906 0.941 Étage 8 et 9

Tableau V.2. Les sollicitations revenant aux poteaux

V.2.3. Calcul de ferraillage

Le calcul du ferraillage se fera pour un seul poteau comme exemple de calcul et les autres seront résumés dans des tableaux.

Soit à calculer le poteau le plus sollicité RDC, avec les sollicitations suivantes :

Nmax= 2221.039 KN(compression) → Mcor=77.467KN.m(ELU)

d = 67m; d' = 0.03m.

 $e_G = M/N = 0.0035m$

 $e_G < h/2 = 0.70/2 = 0.35m \implies$ le centre de pression est à l'intérieur de la section entre les armatures (A et A').

Il faut vérifier la condition suivante :

$$(a) \ge (b)$$
.....(I).

$$(a) = (0.337 \times h - 0.81 \times d') \times b \times h \times f_{bu}$$

$$(b) = N_u \times (d - d') - M_{UA}$$

$$M_{UA} = M + N \times (d - h/2) = (77.467 + 2221.039) \times (0.67 - 0.70/2) = 735.52 \text{ KN.m.}$$

$$(0.337 \times 0.70 - 0.81 \times 0.03) \times 0.65 \times 0.70 \times 14.2 = 1.367 > [2221.039 \times (0.67 - 0.03) - 735.52] \times 10^{-3} = 0.633$$

 $\Rightarrow (I)$ est vérifiée.

Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

$$\begin{split} \mu_{bu} &= \frac{M_{UA}}{b \times d^2 \times f_{bu}} = \frac{788.2 \times 10^{-3}}{0.65 \times 0.67^2 \times 14.2} = 0.190 \\ \mu_{bu} &= 0.190 < \mu_l = 0.391 \Rightarrow A' = 0 \\ \mu_{bu} &> 0.186 \Rightarrow Pivot \ B \Rightarrow \varepsilon_{st} = \frac{3.5}{1000} \left(\frac{1-\alpha}{\alpha} \right) \\ \alpha &= 1.25 \left(1 - \sqrt{1-2\mu_{bu}} \right) = 0.265 \Rightarrow \varepsilon_{st} = 9.7 \times 10^{-3} > \varepsilon_l = 1.74 \times 10^{-3} \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = 348 MPa. \\ z &= d \left(1 - 0.4\alpha \right) = 0.598 m. \\ \Rightarrow A_1 &= \frac{M_{UA}}{z \times f_{st}} = \frac{788.2 \times 10^{-3}}{0.598 \times 348} = 37.87 cm^2. \\ A_s &= A_1 - \frac{N}{f_{st}} = 37.87 \times 10^{-4} - \frac{2221.039 \times 10^{-3}}{348} = -25.95 cm^2 \Rightarrow A_s = 0 cm^2. \end{split}$$

Le tableau résume le calcul des armatures pour les différents poteaux des différents niveaux

Tableau V.3.Ferraillage des poteaux

Niveau	sections	A' (cm²)	A (cm ²)	A _{RPA} (cm ²)	Aadap (cm²)	Barres
RDC et 1	65*70	0	0	36.4	37.7	12HA20
Étage 2 et 3	60*65	0	0	31.2	31.29	8HA20+4HA14
Étage 4 et 5	55*60	0	0	26.4	28.65	4НА20+8НА16
Étage 6 et 7	50*55	0	0	22	24.13	12HA16
Étage 8 et 9	45*50	0	0	18	18.47	12HA14

> Armatures transversales

> Exemple de calcul

On prend pour exemple le poteau de l'étage RDC+1 (65×70) :

Soit:
$$\frac{A_t}{t} = \frac{\rho_a \times V_u}{h_1 \cdot f_e}$$

 $\lambda g = (\frac{l_f}{a} ou \frac{l_f}{b}) = \frac{0.7 \times 2.66}{0.6} = 2.86 \Rightarrow \rho_a = 3.75$
 $D'où: A_t = \frac{3.75 \times 149.543 \times 10^{-3} \times 15}{70 \times 400} \times 10^4 = 3 \text{ cm}^2$

> Longueur de recouvrement

$$L_r \ge 40 \ \varphi_{l_{\text{max}}} \Longrightarrow L_r = 80 \ cm$$

> Espacement

- Dans la zone nodale : $t \le Min (10\phi_{lmin}; 15 \text{ cm}) = min (14; 15) \Rightarrow t = 10 \text{ cm}$
- Dans la zone courante : $t' \le 15 \varphi_{l \min} = 15 \times 1, 4 = 21 cm \Rightarrow t' = 15 cm$

> La quantité d'armature minimale

On a $3 < \lambda g < 5$, d'où:

- Dans la zone nodale : $A_t^{\text{min}} = 0.5\%(t \times b) = 0.5\%(10 \times 65) = 3.25 \text{ } cm^2$
- Dans la zone courante : $A_t^{\text{min}} = 0.5\%(t' \times b) = 0.5\%(15 \times 65) = 4.875 \text{ cm}^2$

Donc: on adopte pour 10HA8=5.03 cm²

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents poteaux des différents niveaux

Sections (cm ²)	Φι ^{min} cm	Vd (KN)	lr (cm)	t zone nodale	t zone courant e	λg	At (cm ²)	Amin (cm²)	A_t^{adop} (cm^2)	barres
65×70	2	149.543	80	10	15	3.29	3	4.875	5.03	10HA8
60×65	1.4	144.662	80	10	15	3.57	3.12	4.5	5.03	10HA8
55×60	1.6	133.201	80	10	15	3.89	3.12	4.125	5.03	10HA8
50×55	1.6	105.894	64	10	15	4.28	2.70	3.75	4.02	8HA8
45×50	1.4	74.414	56	10	15	4.28	2.09	3.375	4.02	8HA8

Tableau V.4. Calcul des armatures transversales pour les poteaux

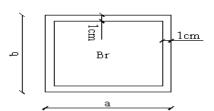
V.2.4. Vérifications

> Vérification au flambement

Selon le **CBA93** (art 4.4.1) [2], les éléments soumis à la flexion composée doivent être justifiés vis à vis de l'état limite ultime de stabilité de forme.

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

La vérification se fait pour le poteau le plus sollicité à chaque niveau et le poteau le plus élancé.


Exemple de calcul

On prend pour exemple le poteau de RDC+1 (65×70):

$$l_0 = 2.66m \ et \ N_{\text{max}} = 2221.039 KN.$$

$$N_{\max} \leq N_d = \alpha \times (\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + A_s \times \frac{f_e}{\gamma_s})$$

Tel que : $\begin{cases} \gamma_b = 1.5 \\ \gamma_s = 1.15 \end{cases}$ Coefficients de sécurité béton, acier.

 α : Coefficient fonction de l'élancement λ

Br: Section réduite du béton.

Figure V.2. Section réduite du béton

 A_s : Section d'acier comprimé prise en compte dans le calcul.

 l_f : Longueur de flambement (0.7 × l_0 =1.862m)

i: Rayon de giration

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{b \times h^3}{12b \ h}} = \sqrt{\frac{h^2}{12}} = \sqrt{\frac{0.7^2}{12}} \Rightarrow i = 0,20m \qquad \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2}....pour \ \lambda \le 50.$$

$$\alpha = 0.6 \left(\frac{\lambda}{50}\right)^2 \dots pour 50 < \lambda \le 70.$$

 λ élancement du poteau prise : $\lambda=3,46\times l_f/b$poteau rectangulaire $\lambda=4\times l_f/\phi$poteau circulaire

$$\Rightarrow \lambda = 3,46 \times \frac{1.862}{0,65} = 9.91 \rightarrow \alpha = \frac{0,85}{1 + 0.2 \left(\frac{9.91}{35}\right)^2} \Rightarrow \alpha = 0,836.$$

$$B_r = (a-2) \times (b-2) = (65-2) \times (70-2) = 4284cm^2 = 0,4284m^2$$

$$N_d = 0.836 \times \left[\frac{0.4284 \times 25}{0.9 \times 1.5} + 37.7 \times 10^{-4} \times \frac{400}{1.15} \right] \times 10^3 \Rightarrow N_d = 7691.53 KN$$

 $N_{\rm max} = 2221.039 \, KN < N_d \rightarrow Pas \, de \, risque \, de \, flambement.$

Le tableau ci-après résume les résultats de vérifications de flambement pour les différents poteaux des différents niveaux.

Tableau V.5. Vérifications du flambement des poteaux

Niveau	Section (m ²)	l ₀ (m)	l _f (m)	λ	α	A_s (m^2)	$\mathbf{B_r}$ (\mathbf{m}^2)	N _d (KN)	N _{max} (KN)	obs
RDC+1 étages	65×70	3.06	1.862	9.91	0,836	37.7	0.4284	7691.53	2221.039	vérifiée
2,3éme étages	60×65	3.06	1.862	10.73	0,823	31.29	0,3654	6511.80	1766.973	vérifiée
4,5éme étages	55×60	3.06	1.862	11.71	0,829	28.65	0,3074	5518.51	1281.623	vérifiée
6,7éme étages	50×55	3.06	1.862	12.88	0,824	24.13	0,2544	4551.134	824.653	vérifiée
8,9éme étages	45×50	3.06	1.862	14.31	0,817	18.47	0,2046	3602.66	403.46	vérifiée

On voit bien que N_{max}<N_u pour tous les niveaux de cette structure, donc il n'y pas de risque de flambement

Vérification des contraintes de compression

La fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression du béton seulement, cette vérification sera faite pour le poteau le plus sollicité à chaque niveau.

$$\sigma_{bc1, 2 \le \overline{\sigma_{bc}}}$$
; $\overline{\sigma_{bc}} = 0.6 f_{c28} = 15 MPa$ tel que:

$$\sigma_{bc1} = \frac{N_{ser}}{S} + \frac{M_{serG}}{I_{yy'}}V$$
 béton fibre supérieure.

$$\sigma_{bc2} = \frac{N_{ser}}{S} - \frac{M_{serG}}{I_{yy'}} V' b\acute{e}ton fibre inferieure$$

 $S = b \times h + 15(A + A')$ (section homogène)

$$M_{\text{serG}} = M_{\text{ser}} - N_{\text{ser}} \left(\frac{h}{2} - V \right)$$

$$V = \frac{\frac{b \times h^2}{2} + 15(A' \times d' + A \times d)}{S} ; V' = h - V$$

$$I_{yy'} = \frac{b}{2}(V^3 + V'^3) + 15A'(V - d')^2 + 15A(d - V')^2$$

$$I_{yy} = \frac{b}{2} (V^3 + V^{'3}) + 15A'(V - d')^2 + 15A(d - V')^2$$

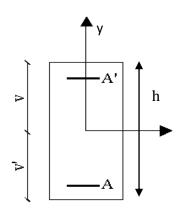


Figure V.3. Section d'un poteau

Tous les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.6. Vérification des contraintes dans le béton des poteaux

Niveau	RDC+ 1 ^{er} étages	2,3 ^{éme} étages	4,5 ^{éme} étages	6, 7 ^{éme} étages	8,9 ^{éme} étages
Section (cm ²)	65×70	60×65	55×60	50×55	45×50
d (cm)	64	59	54	49	44
A' (cm ²)	37.7	31.29	28.65	24.13	18.47
A (cm)	37.7	31.29	28.65	24.13	18,47
S (m ²)	0,5681	0,48387	0,41595	0,34739	0,28041
V (cm)	34.70	32,20	29,69	27.19	24.70
V' (cm)	35.30	32.80	30.31	27.81	25.30
I _{yy} , (m ⁴)	0,0382	0,0278	0,0203	0,0141	0,00930
N _{ser} (KN)	-1618.737	-1287.571	-934.165	-600.745	-294.231
M _{ser} (KN.m)	56.556	34.165	32.385	29.293	38.96
M _{serG} (MN.m)	0,0542	0,0420	0,0321	0,0215	0,0127
σ _{bc1} (MPa)	3.34	3.14	2.39	2.14	1.37
σ _{bc2} (MPa)	2.34	2.16	1.76	1.3	0.7
σ_{bc} (MPa)	15	15	15	15	15
Observation	Vérifiée	vérifiée	vérifiée	vérifiée	vérifiée

Vérification aux sollicitations tangentes

Selon le RPA99.2003 (Article 7.4.3.2) [1]:

$$\tau_{bu} \leq \overline{\tau}_{bu} \quad \text{Tel que}: \quad \overline{\tau}_{bu} = \rho_d \times f_{c28} \quad \text{avec}: \rho_d = \begin{cases} 0.075 \, si \, \lambda_g \geq 5 \\ 0.04 \, si \, \lambda_g < 5 \end{cases}$$

$$\lambda_g = \frac{l_f}{a} ou \, \lambda_g = \frac{l_f}{b}$$

 $\tau_{bu} = \frac{V_u}{b_0 \times d}$ (La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique).

Les résultats de calculs effectués sont représentés dans le tableau suivant :

Tableau V.7. Vérification des sollicitations tangentes dans les poteaux

Niveau	Section (cm ²)	l _f (cm)	$\lambda_{ m g}$	Pα	d (cm)	V _u (KN)	τ _{bu} (MPa)	$\overline{\tau}_{bu}$ (MPa)	Observation
RDC+1 étages	65×70	1.862	2.86	0,04	65	149.543	0,353	1	vérifiée
2,3éme étages	60×65	1.862	3.10	0,04	60	144.662	0,401	1	vérifiée
4,5éme étages	55×60	1.862	3.38	0,04	55	133.201	0,440	1	vérifiée
6,7éme étages	50×55	1.862	3.72	0,04	50	105.894	0,423	1	vérifiée
8,9éme étages	45×50	1.862	4.13	0,04	45	74.414	0,367	1	vérifiée

V.2.5. Dispositions constructives

> Longueur des crochets

$$L=10\times\varphi_t=10\times0.8=8cm$$

> Longueur de recouvrement

$$L_r \ge 40 \times \varphi$$
:

$$\begin{split} \varphi &= 20mm \rightarrow L_r = 40 \times 2 = 80cm. & On \ adopte: & L_r = 80cm. \\ \varphi &= 16mm \rightarrow L_r = 40 \times 1, 6 = 64cm & On \ adopte: & L_r = 65cm. \\ \varphi &= 14mm \rightarrow L_r = 40 \times 1, 4 = 56cm & On \ adopte: & L_r = 60cm. \end{split}$$

Détermination de la zone de recouvrement

La détermination de la zone de recouvrement est nécessaire car c'est à ce niveau qu'on disposera les armatures transversales de façon à avoir des espacements réduits. Ceci se fait car cet endroit est très exposé au risque du cisaillement.

Les jonctions par recouvrement doivent être faites si possible à l'extérieur de ces zones nodales sensibles (selon le RPA99/2003) [1].

La longueur à prendre en compte pour chaque barre est donnée dans la figure suivante :

Avec:

$$h' = \max(\frac{h_e}{6}; h_1; b_1; 60cm)$$

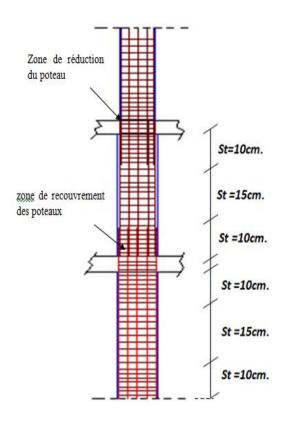
 $L' = 2 h$

 h_e : Hauteur de chaque niveau.

•RDC + les étages :

$$L' = 2 \times 30.6 = 61.2cm$$

 $h' = \max(51;70;65;60cm) = 70cm.$



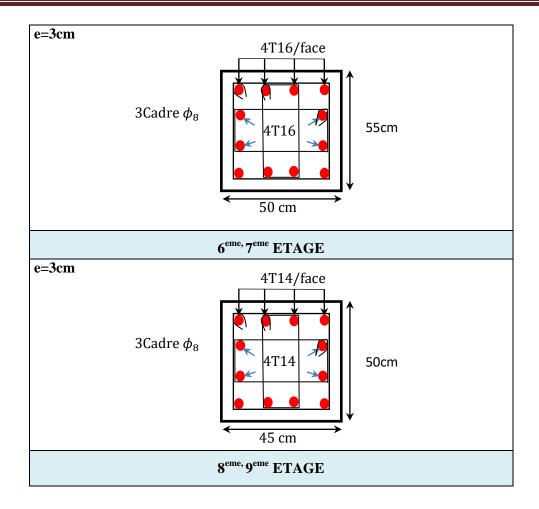


Figure V.4. Ferraillage des sections des poteaux

V.2.6 Schéma de ferraillage des poteaux

Tableau V.8. Ferraillage des sections des poteaux

V.3. Etude des poutres

Les poutres sont calculées en flexion simple sous l'action des sollicitations les plus défavorables (Moment fléchissant et effort tranchant) résultant des combinaisons suivantes :

$$\begin{cases} 1,35G+1,5Q \dots \dots ELU \\ G+Q \dots \dots ELS \end{cases}$$

$$\begin{cases} G+Q+E \\ G+Q-E \\ 0,8G+E \\ 0,8G-E \end{cases}$$

V.3.1.Recommandations

> Armatures longitudinales: RPA99/2003(Art 7.5.2.1) [1].

- ✓ Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% de la section du béton en toute section.
- ✓ Le pourcentage total maximum des aciers longitudinaux est de :
 - 4% de la section du béton en zone courante.

6 % de la section du béton en zone de recouvrement.

- ✓ La longueur minimale des recouvrements est de 40Φ en zone IIa.
- ✓ Les poutres supportent de faibles charges verticales et sollicitées principalement par les forces latérales sismiques doivent avoir des armatures symétriques avec une section en travée au moins égale à la moitié de la section sur appui.

> Armatures transversales : RPA99/2003(Art 7.5.2.2) [1].

✓ La quantité d'armatures transversales minimales est donnée par : 0.3% st \times h

Avec St : espacement maximum entre les armatures transversales déterminé comme suit :

$$St \le \min\left(\frac{h}{4}; 12\emptyset_l\right)$$
 en zone nodale

 $St \le \frac{h}{2}$ en dehors de la zone nodale

> Remarque

La valeur du diamètre \emptyset_l des armatures longitudinales à prendre est le plus petit diamètre utilisé. Dans le cas d'une section en travée avec armatures comprimées, c'est le diamètre le plus petit des aciers comprimés.

Les premières armatures transversales doivent être disposées à 5cm au plus du nu d'appui ou de l'encastrement.

V.3.2. Sollicitations et ferraillage des poutres

Les sollicitations de calcul sont tirées directement du logiciel SAP2000 V14.

Prenons comme exemple de calcul de ferraillage, la poutre principale (35×40) la plus sollicitée du plancher étage 1 avec les sollicitations suivantes :

> Armatures en appui:

$$\mu_{bu} = \frac{M_A}{b \times d^2 \times f_{bu}} = \frac{77.90 \times 10^{-3}}{0.35 \times 0.37^2 \times 14.2} = 0.114$$

$$\mu_{bu} = 0.114 < \mu_l = 0.392 \rightarrow pivot \ A \Rightarrow A' = 0$$

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_{bu}}) = 0.152$$

$$Z = d(1 - 0.4\alpha) = 0.347m$$

$$A_{st} = \frac{M_A}{Z \times \sigma_{st}} = \frac{77.90 \times 10^{-3}}{0.347 \times 400} = 5.61 \, cm^2$$

> Armatures en travée :

$$\mu_{bu} = \frac{M_t}{b \times d^2 \times f_{bu}} = \frac{50.99 \times 10^{-3}}{0.35 \times 0.37^2 \times 14.2} = 0.075$$

$$\mu_{bu} = 0.075 < \mu_l = 0.392 \rightarrow \text{pivot A} \Rightarrow A' = 0$$

$$\alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_{bu}}) = 0.097$$

$$Z = d(1 - 0.4\alpha) = 0.356m$$

$$A_{st} = \frac{M_t}{Z \times f_{st}} = \frac{50.99 \times 10^{-3}}{0.356 \times 400} = 3.58cm^2$$

Le tableau suivant regroupe le calcul de ferraillage des différentes poutres :

Tableau V.9.Ferraillage des poutres principales (35×40) cm²

Niveaux	Localisation	M (KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adop} (cm ²)	N ^{bre} de barres
Etagog 1	Travée	50.99	3.58	7	4.62	3HA14
Etages 1	Appui	-77.90	5.61	7	6.03	3HA16
Etagas 2	Travée	70.49	5.04	7	6.03	3HA16
Etages 2	Appui	-100.09	7.35	7	8.01	3HA14+3HA12
Etagas 2	Travée	74.42	5.34	7	6.03	3HA16
Etages 3	Appui	-104.82	7.45	7	8.01	3HA14+3HA12
Etages 4	Travée	70.29	5.03	7	6.03	3HA16
Etages 4	Appui	-103.65	7.64	7	8.01	3HA14+3HA12
Etagog 5	Travée	62.98	4.47	7	4.62	3HA14
Etages 5	Appui	-90.24	6.57	7	8.01	3HA14+3HA12
Etagas 6	Travée	53.37	3.76	7	4.62	3HA14
Etages 6	Appui	-79.39	5.71	7	6.03	3HA16
Etagas 7	Travée	41.28	2.88	7	3.39	3HA12
Etages 7	Appui	-75.42	5.41	7	6.06	3HA16
E4a cas 0	Travée	39.71	2.81	7	3.39	3HA12
Etages 8	Appui	-71.26	5.10	7	5.75	3HA14+1HA12
Etagog 0	Travée	38.38	2.67	7	3.39	3HA12
Etages 9	Appui	-67.24	4.80	7	5.75	3HA14+1HA12
Etages	Travée	29.13	2.01	7	3.39	3HA12
10	Appui	-57.44	4.06	7	4.62	3HA14

Niveaux	Localisation	M (KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adop} (cm ²)	N ^{bre} de barres
Etagas 1	Travée	44.76	4.51	4.5	4.62	3HA14
Etages 1	Appui	-45.14	4.55	4.5	4.62	3HA14
Etagas 2	Travée	62.04	6.48	4.5	6.79	6HA12
Etages 2	Appui	-61.42	6.39	4.5	6.79	6HA12
Etagas 2	Travée	67.54	7.15	4.5	8.01	3HA14+3HA12
Etages 3	Appui	-64.99	6.58	4.5	6.79	6HA12
Etamas 4	Travée	64.86	6.81	4.5	8.01	3HA14+3HA12
Etages 4	Appui	-62.10	6.49	4.5	6.79	6HA12
Etagas 5	Travée	59.41	6.16	4.5	6.79	6HA12
Etages 5	Appui	-59.44	6.16	4.5	6.79	6HA12
E4	Travée	53.15	5.44	4.5	6.03	3HA16
Etages 6	Appui	-53.89	5.52	4.5	6.03	3HA16
Etogog 7	Travée	46.35	4.67	4.5	6.03	3HA16
Etages 7	Appui	-48.20	5.26	4.5	6.03	3HA16
Etagas 9	Travée	38.71	3.84	4.5	4.62	3HA14
Etages 8	Appui	-41.33	4.13	4.5	4.62	3HA14
Etagog 0	Travée	32.94	3.24	4.5	3.39	3HA12
Etages 9	Appui	-36.13	3.57	4.5	4.62	3HA14
Etages	Travée	18.29	1.74	4.5	3.39	3HA12
10	Appui	-24.53	2.36	4.5	3.39	3HA12

Tableau V.10. Ferraillage des poutres secondaires (30×30) cm²

✓ Calcul des espacements St

Calcul de \emptyset_t

Le diamètre des armatures transversales est donné par la relation suivante :

$$\emptyset_t \le \min\left(\emptyset_{lmin}; \frac{h}{35}; \frac{b}{10}\right) \Longrightarrow \begin{cases} \text{Poutres principales: } \emptyset_t \le \min(12;11.42;35) \text{mm} \\ \text{Poutres secondaires: } \emptyset_t \le \min(12;8.57;30) \text{mm} \end{cases}$$

$$\emptyset_t = 8 \ mm \ \text{et} \quad A_t = 4\emptyset 8 = 2,01 \ \text{cm}^2 (1 \text{cadre} + 1 \ \text{\'etrier})$$

D'après le RPA99/2003 (Art7.5.2.2) [1]:

En zone nodale: St
$$\leq \min\left(\frac{h}{4}; 12\emptyset_l^{min}\right) \Longrightarrow \begin{cases} \text{Poutres principales St= 10 cm} \\ \text{Poutres secondaires St= 08 cm} \end{cases}$$

Armatures transversales

En zone courantes:
$$St \le \frac{h}{2} \Longrightarrow \begin{cases} Poutres \text{ principales } St = 20 \text{ cm} \\ Poutres \text{ secondaires } St = 15 \text{ cm} \end{cases}$$

Vérification des sections d'armatures transversales minimales (poutres principales)

On a
$$A_{min} = 0.3\% \times St \times b = 1.80 \text{ cm}^2 < A_t = 2.01 \text{ cm}^2$$
 Vérifiée

> Calcul des longueurs de recouvrement

Pour
$$\emptyset = 16 \text{ mm} \rightarrow lr = 40 \times 1.6 = 64 \text{cm}$$
 \Longrightarrow On adopte : $lr = 65 \text{ cm}$.

Pour
$$\emptyset = 14 \text{ mm} \rightarrow lr = 40 \times 1.4 = 56 \text{cm}$$
 \Longrightarrow On adopte : $lr = 60 \text{cm}$.

Pour
$$\emptyset = 12 \text{ mm} \rightarrow lr = 40 \times 1.2 = 48 \text{cm} \implies \text{On adopte} : lr = 50 \text{cm}.$$

V.3.3. Vérifications nécessaires

Vérification des pourcentages maximale d'armatures longitudinales

Pour l'ensemble des poutres :

En zone de recouvrement : $A_{max} = 4\%(b \times h)$

- ✓ Poutres principales : $A_{max} = 56 cm^2$
- ✓ Poutres secondaires : $A_{max} = 36 cm^2$

En zone courante : $A_{max} = 6\%(b \times h)$

- ✓ Poutres principales : $A_{max} = 84 \text{ cm}^2$
- ✓ Poutres secondaires : $A_{max} = 54 \text{ cm}^2$

Donc, c'est vérifié pour toutes les poutres.

- > Vérifications à l'ELU
- Condition de non fragilité

$$\mathbf{A}^{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} \leq A^{cal} \Longrightarrow \begin{cases} \text{Poutres principales:} \mathbf{A}^{\min} = 1.56 \text{cm}^2 \\ \text{Poutres secondaires:} \mathbf{A}^{\min} = 0.97 \text{cm}^2 \end{cases} \dots v \acute{e}rifi\acute{e}e$$

> Vérification des contraintes tangentielles

La condition qu'on doit vérifier est la suivante :

$$\tau_{bu} = \frac{V_u}{b.d} \le \bar{\tau}_{bu} = \min\left(0.2 \frac{f_{c28}}{\gamma_b}; 5Mpa\right) \quad (F.P.N)$$

La vérification concerne uniquement les poutres les plus défavorables, car si ces dernières sont vérifiées, les autres le seront surement.

Les résultats sont récapitulés dans le tableau suivant :

Tableau V.11. Vérification des contraintes tangentielles

Poutres	V ^{max} (KN)	τ _{bu} (Mpa)	τ̄ _{bu} (Mpa)	Observation
Principale	139.069	1.07	3,33	Vérifiée
Secondaires	116.315	1.43	3,33	Vérifiée

➤ Vérification des armatures longitudinales vis-à-vis le cisaillement

Pour les appuis de rives:
$$A_l \ge A_l^{rive} = V^{max} \times \frac{\gamma_s}{f_e}$$

Pour les appuis intermédiaires:
$$A_l \ge A_l^{inter} = (V^{max} - \frac{M_a}{0.9d}) \frac{\gamma_s}{f_e}$$

Tableau V.12. Vérification des armatures longitudinales au cisaillement

Poutres	V ^{max} (KN)	<i>M_a</i> (KN.m)	A_l (cm ²)	$A_l^{rive} \\ (cm^2)$	A ^{inter} (cm ²)	Observation
Principale	139.069	104.82	8.01	3.99	-5.05	Vérifiée
Secondaires	116.315	64.99	8.01	1.86	-4.34	Vérifiée

➤ Vérification à l'ELS

Les vérifications concernées sont les suivantes :

- ✓ Vérification de l'état limite de compression du béton ;
- ✓ Vérification de l'état limite de déformation (Evaluation de la flèche).
- ✓ Etat limite de compression du béton

$$\sigma_{\rm bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{\rm bc} = 0.6 \times f_{\rm c28} = 15 \, MPa$$

Calcul de y :
$$\frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d' \times A_s) = 0$$

Calcul de
$$I : I = \frac{b \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Tableau V.13. Vérification de l'état limite de compression du béton

Dautwag	Localisation	isotion M ^{ser}		Y	I	Contraintes		Observation	
Poutres Localisation		(KN.m)	(cm^2)	(cm)	(cm^4)	σ(MPa)	$\overline{\sigma}(MPa)$	Obsci vation	
Duin ain alaa	Travée	28.61	3.39	9.01	48371.31	5.32	15	Vérifiée	
Principales	Appui	-49.23	3.39	9.01	48371.31	9.16	15	Vérifiée	
Casandainas	Travée	14.90	3.39	8.02	23476.71	5.71	15	Vérifiée	
Secondaires	Appui	-16.90	3.39	8.02	23476.71	6.48	15	Vérifiée	

Vérification de l'état limite de déformation

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas vérifiée :

1)
$$h \ge h_f = \max\left(\frac{1}{16}; \frac{M_t}{10 M_0}\right) \times l$$

2)
$$A \le A_f = \frac{4,2.b.d}{f_e}$$

$$Poutres\ principales: \begin{cases} h = 40cm > h_f = 33.75cm \\ A = 8.01cm^2 < A_f = 13.59\ cm^2 \cdots \cdots V\'erifi\'ee \end{cases}$$

Poutres secondaires :
$$\begin{cases} h = 30 \text{ cm} > h_f = 21.87 \text{ cm} \\ A = 8.01 < A_f = 8.5 \text{ cm}^2 \end{cases} \dots \dots \dots V\acute{e}rifi\acute{e}e$$

Les deux conditions sont observées, donc la vérification de la flèche n'est pas nécessaire.

Vérification des zones nodales

Cette disposition tend à faire en sorte que les rotules plastiques dans les poutres et non dans les poteaux.

Ce pendant, cette vérification est facultatif pour les deux derniers niveaux des bâtiments supérieurs à R+2.

 M_s : Moment résistant dans le poteau inférieur.

 M_n : Moment résistant dans le poteau supérieur.

 M_{w} : Moment résistant gauche de la poutre.

 M_e : Moment résistant droite de la poutre.

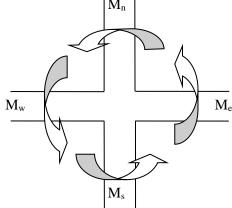


Figure V. 5. Les moments dans la zone nodale

• Détermination du moment résistant dans les poteaux

Le moment résistant (M_R) d'une section de béton dépend essentiellement :

- Des dimensions de la section du béton
- De la quantité d'armatures dans la section du béton
- De la contrainte limite élastique des aciers

 $M_R = z \times A_s \times \sigma_s$ Avec : Z=0,9×h (h : La hauteur totale de la section du béton).

$$\sigma_s = \frac{f_s}{\gamma_s} = 348 \,\mathrm{MPa}$$

Les résultats obtenus sont donnés dans le tableau ci-dessous:

Tableau V.14. Moment résistant dans les poteaux

Niveau	h (cm)	z (cm)	A_s (cm ²)	M _R (kn.m)
RDC +Etage1	70	63	37.7	826.53
Etage2 et 3	65	58.5	31.29	637
Etage4 et 5	60	54	28.65	538.39
Etage6 et 7	55	49.5	24.13	415.66
Etage8 et 9	50	45	18.47	289.24

Les résultats des moments résistant dans les poutres principales sont donnés dans le tableau cidessous :

Tableau V.15. Moments résistants dans les poutres principales

Niveau	h (m)	z (cm)	A_s (cm ²)	M _R (kn.m)
Etages 1	0,4	0,36	6.03	75.54
Etages 2	0,4	0,36	7.57	94.83
Etages 3	0,4	0,36	7.57	94.83
Etages 4	0,4	0,36	8.04	100.72
Etages 5	0,4	0,36	7.16	89.70
Etages 6	0,4	0,36	6.03	75.54
Etages 7	0,4	0,36	5.56	69.65
Etages 8	0.4	0,36	5.15	64.51
Etages 9	0.4	0.36	5.15	64.51
Etages 10	0,4	0,36	4.62	57.87

Les résultats des moments résistant dans les poutres secondaires sont donnés dans le tableau cidessous :

Tableau V.16. Moments résistants dans les poutres secondaires

Niveau	h (m)	z (cm)	A_s (cm ²)	M _R (kn.m)
Etages 1	0,3	0,27	4.62	43.40
Etages 2	0,3	0.27	7.16	67.27
Etages 3	0,3	0,27	7.16	67.27
Etages 4	0,3	0,27	7.16	67.27
Etages 5	0,3	0,27	7.16	67.27
Etages 6	0,3	0,27	5.56	52.24

Etages 7	0,3	0,27	5.56	52.24
Etages 8	0,3	0,27	4.62	43.40
Etages 9	0,3	0,27	4.62	43.40
Etages 10	0,3	0,27	3.39	36.64

Les résultats de la vérification concernant les zones nodales sont récapitulées dans les tableaux suivant :

Tableau V.17. Vérification des zones nodales selon le sens principale

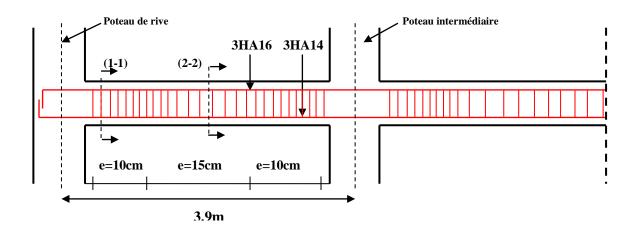
Niveau	M_N	M_S	M_N+M_S	M_W	M_E	1.25 $(M_W + M_E)$	Observation
Etages 1	826.53	826.53	1653.06	75.54	75.54	188.85	Vérifiée
Etages 2	637	826.53	1463.53	94.83	94.83	237.07	Vérifiée
Etages 3	637	637	1274	94.83	94.83	237.07	Vérifiée
Etages 4	538.39	637	1175.39	10.07	100.72	251.8	Vérifiée
Etages 5	538.39	538.39	1076.78	89.70	89.70	224.25	Vérifiée
Etages 6	415.66	538.39	954.05	75.54	75.54	188.85	Vérifiée
Etages 7	415.66	415.66	831.32	69.65	69.65	174.12	Vérifiée
Etages 8	289.24	415.66	704.9	64.51	64.51	161.27	Vérifiée
Etages 9	289.24	289.24	578.48	64.51	64.51	161.27	Vérifiée
Etages 10	0	289.24	289.24	57.87	57.87	144.67	Vérifiée

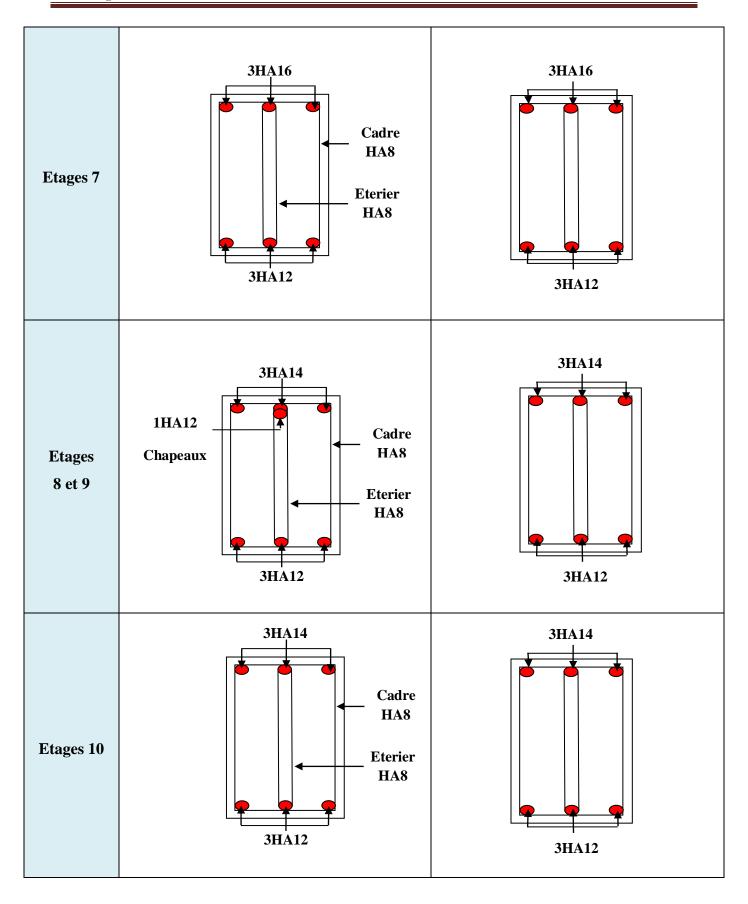
Tableau V.18. Vérification des zones nodales selon le sens secondaire

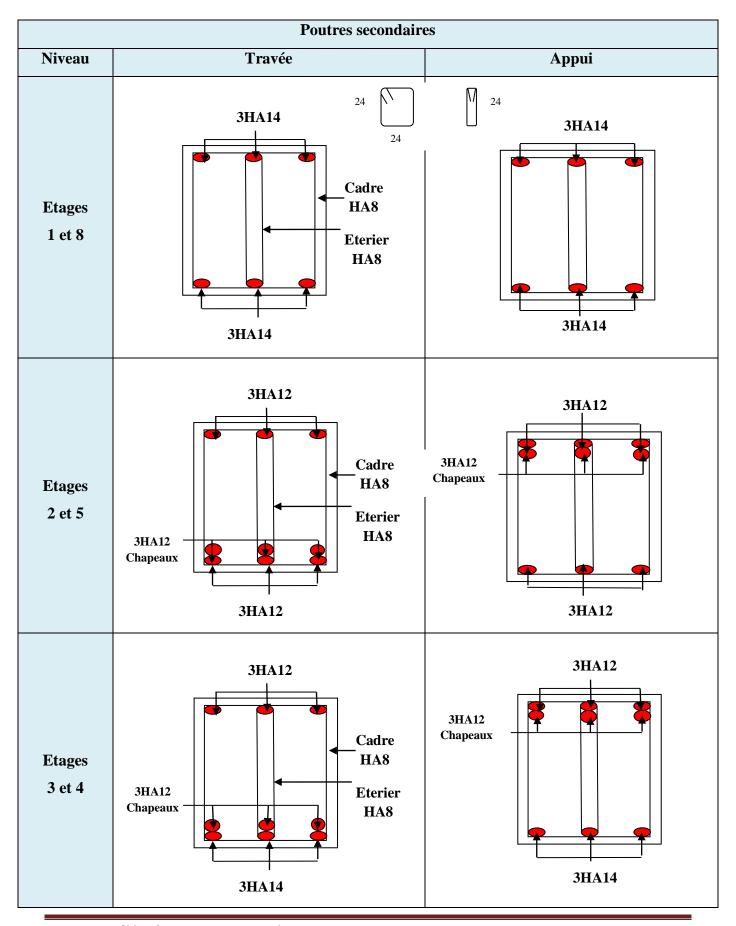
Niveau	M_N	M_S	M_N+M_S	M_W	M_E	1.25 $(M_W + M_E)$	Observation
Etages 1	826.53	826.53	1653.06	43.40	43.40	108.5	Vérifiée
Etages 2	637	826.53	1463.53	67.27	67.27	167.17	Vérifiée
Etages 3	637	637	1274	67.27	67.27	167.17	Vérifiée
Etages 4	538.39	637	1175.39	67.27	67.27	167.17	Vérifiée
Etages 5	538.39	538.39	1076.78	67.27	67.27	167.17	Vérifiée
Etages 6	415.66	538.39	954.05	52.24	52.24	130.6	Vérifiée
Etages 7	415.66	415.66	831.32	52.24	52.24	130.6	Vérifiée
Etages 8	289.24	415.66	704.9	43.40	43.40	108.5	Vérifiée
Etages 9	289.24	289.24	578.48	43.40	43.40	108.5	Vérifiée
Etages 10	0	289.24	289.24	36.64	36.64	91.6	Vérifiée

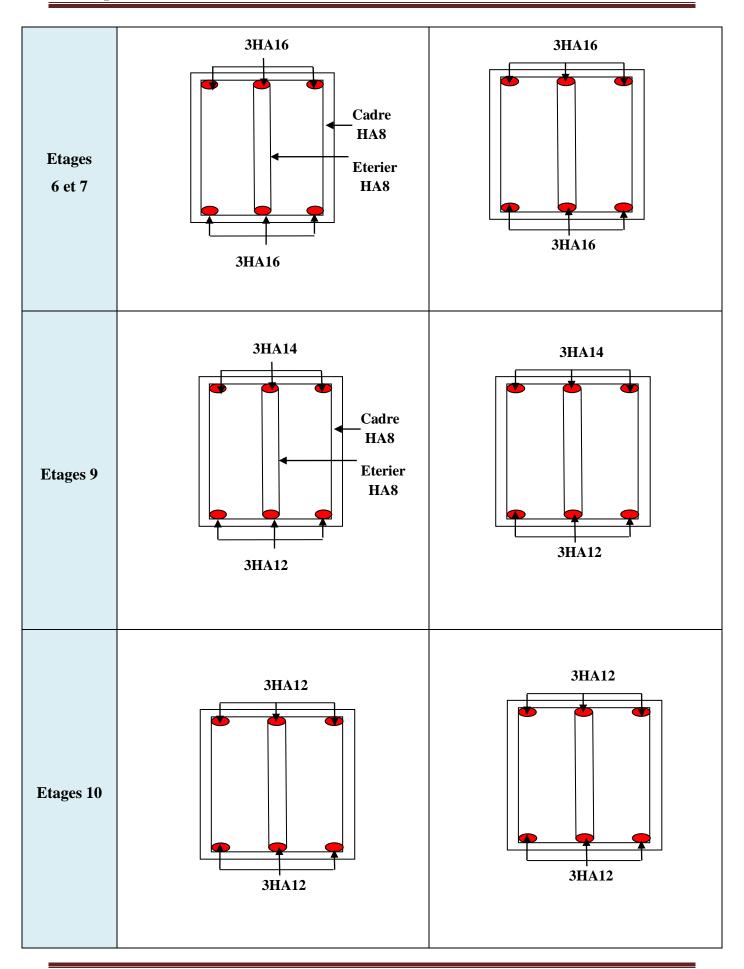
V.3.4. Schémas de ferraillage des poutres

Nous exposerons ici un exemple d'un schéma de ferraillage d'une poutre principale du plancher etage1, et le reste des schémas vont être donnés dont les **Tableaux V.19 (pp), et Tableaux V.20(PS).**




Figure V.6. Exemple de dispositions constructives de la poutre principale.


Figure V.7. Exemple de Schéma de ferraillage d'une poutre principale.


Tableau V.19. Schémas de Ferraillage des poutres principales (35×40)

Poutres Principales Poutres Principales							
Niveau	Appuis	Travée					
Etages 2 et 3	3HA14 Cadre HA8 Eterier HA8 3HA16	3HA14 3HA16					
Etages 4	3HA14 Cadre HA8 Eterier HA8	3HA14 3HA16					
Etages 5	3HA14 Cadre HA8 Eterier HA8 3HA14	3HA14					

Tableau V.20. Schémas de Ferraillage des poutres secondaires (30×30)

V.4. Etude des voiles :

Le **RPA 99/ 2003[1]**, exige de mettre des voiles à chaque structure en béton armé dépassant quatre niveaux ou 14m de hauteur dans la zone **IIa** (moyenne sismicité).

Les voiles de contreventement peuvent être définis comme étant des éléments verticaux qui sont destinés à reprendre, outre les charges verticales (au plus 20%), les efforts horizontaux (au plus 75%) grâce à leurs rigidités importantes dans leurs plan. Ils présentent deux plans l'un de faible inertie et l'autre de forte inertie ce qui impose une disposition dans les deux sens (x et y).

Un voile travaille comme une console encastré à sa base, on distingue deux types de voiles qui ont des comportements différents :[1]

- Voiles élancés : $\frac{h}{l} > 1.5$
- Voiles courts : $\frac{h}{l} < 1.5$

Un voile est sollicité en flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de rupture suivants :

- ✓ Rupture par flexion.
- ✓ Rupture en flexion par effort tranchant.
- ✓ Rupture par écrasement ou traction du béton.

V.4.1.Recommandation du RPA 99/2003 [1]

• Armatures verticales

Les armatures verticales sont destinées à reprendre les efforts de flexion. Elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :

✓ L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que : $A_{min} = 0.20\% (L_t \times e)$

 L_t : Longueur de la zone tendue.

e : Épaisseur du voile.

- ✓ Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement st < e (e : épaisseur de voile).
- ✓ A chaque extrémités du voile, l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile.
- ✓ Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

• Armatures horizontales

Les armatures horizontales sont destinées à reprendre les efforts tranchants. Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de $10\phi_l$.

• Armatures transversales

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement. Elles sont en nombre de quatre épingles par 1m² au moins.

• Armatures de coutures

Le long des joints de reprises de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{Vj} = 1.1 \times \frac{V}{f_e}$$
; avec: $V = 1.4 \times V_u$

• Règles communes (armatures verticales et horizontales)

✓ Le pourcentage minimum d'armatures (verticales et horizontales) :

- $A_{\min} = 0.15\%$ De la section du voile, dans la section globale du voile.
- $A_{\min} = 0.10\%$ De la section du voile, dans la zone courante.
- $\phi_l \le \frac{1}{10} \times e$ (Exception faite pour les zones d'about).
- ✓ L'espacement : $S_t = \min(1.5 e, 30 cm)$.
- ✓ Les deux nappes d'armatures horizontales doivent être reliées avec au moins quatre épingles par 1m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.
- ✓ Longueurs de recouvrement :
 - 40ϕ : Pour les barres situées dans les zones où le renversement de signe des efforts et possible.
 - 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

V.4.2. Calcul des sollicitations revenant aux voile

Les sollicitations sont déterminées à partir de logiciel sap2000 V14 le tableau suivant illustre les sollicitations revenant aux voiles Vx1, Vx2, Vx3, Vy1, Vy2 :

Tableau V.21. Les sollicitations revenant aux voiles Vx1, Vx2, Vx3, Vy1, Vy2

Niveau	Voile	Nmax→Mcor		Mmax→Ncor		Nmin→Mcor		V(VN)
		N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	V(KN)
RDC	$\mathbf{V}_{\mathbf{x}1}$	524.380	98.4052	98.4052	524.38	50.959	-97.0546	53.33
1 ^{ère} étage		392.375	5.6015	67.4266	357.946	147.372	-60.3932	57.66
2 ^{ème} étage		374.170	9.3716	59.0339	304.607	150.118	3.2408	59.145
3 ^{ème} étage		330.959	7.0097	42.8181	264.215	134.154	1.9162	-127.34
4 ^{ème} étage		301.362	10.7556	42.1942	245.908	124.512	4.3588	52.564
5 ^{ème} étage		251.570	8.3702	29.2489	217.927	106.313	3.1317	41.509
6 ^{ème} étage		209.802	11.3978	29.6549	532.400	86.907	-15.7553	-120.54
7 ^{ème} étage		151.670	9.3241	19.3367	147.655	49.436	-8.1608	29.152
8 ^{ème} étage		99.633	19.5512	19.5512	99.633	25.980	-5.5877	26.805
9 ^{ème} étage		47.239	14.346	14.346	47.239	3.610	-5.5954	11.668
RDC	$\mathbf{V_{y1}}$	1059.091	-430.4337	629.6783	163.699	5.288	599.830	-160.960
1 ^{ère} étage		969.825	-316.3043	-316.3043	969.825	257.471	279.3013	-167.140
2 ^{ème} étage		896.808	-42.9363	-220.23	730.388	360.078	-15.7149	-133.785
3 ^{ème} étage		795.759	-34.4245	-136.945	664.882	320.77	-11.701	-96.210
4 ^{ème} étage		711.213	-44.022	-124.468	637.674	266.504	71.717	-97.322

5 ^{ème} étage		599.397	-36.820	-91.755	585.622	197.505	48.275	-71.978
6 ^{ème} étage		503.626	-93.795	-93.795	503.626	132.716	43.206	-79.620
7 ^{ème} étage		418.985	-85.815	-85.815	418.985	61.506	44.039	-55.505
8 ^{ème} étage		298.288	-83.709	-83.709	298.288	28.406	39.058	-49.421
9 ^{ème} étage		161.843	-72.527	-72.527	161.843	6.263	35.801	-46.777
RDC	$\mathbf{V}_{\mathbf{x}2}$	921.023	320.509	-394.76	239.177	72.864	-384.105	140.299
1 ^{ère} étage		995.299	2.714	243.1807	933.139	314.365	-239.802	141.563
2 ^{ème} étage		947.637	6.978	184.786	763.142	424.767	-176.477	-121.42
3 ^{ème} étage		851.947	0.158	-127.262	392.676	392.676	-127.262	-97.711
4 ^{ème} étage		772.374	11.56	113.247	635.19	334.149	-100.385	91.164
5 ^{ème} étage		660.031	5.236	75.946	570.604	258.852	-70.767	-67.122
6 ^{ème} étage		555.594	13.930	71.986	488.065	211.698	-56.053	65.687
7 ^{ème} étage		424.831	9.082	48.681	398.109	137.945	-38.964	-41.095
8 ^{ème} étage		290.015	14.290	48.646	283.695	86.582	-32.484	31.394
9 ^{ème} étage		153.42	40.469	40.469	153.422	28.742	-30.490	-24.074

		<u> </u>			ı	T		
RDC		1112.782	-420.061	632.241	173.103	-18.178	598.83	-156.772
1 ^{ère} étage		1083.403	-333.637	334.500	439.300	214.093	333.835	-198.784
2 ^{ème} étage		969.769	-10.593	231.480	361.515	351.700	6.208	-172.839
3 ^{ème} étage		866.351	-3.300	-160.843	708.229	330.379	14.621	-138.684
4 ^{ème} étage		759.598	-21.228	-143.067	635.470	302.919	-5.686	-132.764
5 ^{ème} étage		648.802	-7.350	-89.069	572.142	40.069	81.266	-96.893
6 ^{ème} étage		543.379	-14.646	-83.832	490.092	192.187	66.096	-94.029
7 ^{ème} étage	V_{y2}	412.499	-9.964	-64.356	405.895	114.758	53.145	-60.145
8 ^{ème} étage		292.348	-65.444	-65.441	292.348	67.917	50.285	-45.694
9 ^{ème} étage		161.968	-55.108	-55.108	161.068	17.067	47.829	-30.206
RDC		856.168	436.060	-531.75	212.482	64.067	-518.133	163.973
1 ^{ère} étage		922.861	8.795	336.863	824.431	339.402	-325.720	186.279
2 ^{ème} étage		878.905	7.139	246.788	702.121	406.282	-238.04	156.501
3 ^{ème} étage		788.515	-1.892	-167.969	289.809	289.809	-167.809	-126.499
4 ^{ème} étage	V_{x3}	710.773	6.728	141.123	668.966	227.966	-133.362	-117.855
		606.150	-1.180	-94.700	159.714	159.714	-94.700	-90.315

5 ^{ème} étage							
6 ^{ème} étage	516.089	83.047	83.047	516.089	127.232	-78.352	-87.165
7 ^{ème} étage	426.210	55.561	-59.969	68.141	68.141	-59.969	-59.809
8 ^{ème} étage	305.494	53.718	-55.441	38.211	38.211	-55.441	-47.190
9 ^{ème} étage	171.924	44.292	-50.941	3.904	3.904	-50.941	-33.770

V.4.3.Ferraillages

• Calcul du ferraillage sous N_{max} et M_{cor} .

Le Calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section $(e \times l)$.

La section trouvée (A) sera répartie sur toute la zone tendue de la section en respectant les recommandations du **RPA99** [1]

$$L = 1.80 m$$
, $d = 1.75 m$, $e = 0.20m$. Voile VY1

 N_{max} =1059.091 KN (traction), M_{cor} =430.4337 KN. m.

$$e_G = \left| \frac{M}{N} \right| = 0.406 \ m < \frac{l}{2} = 0.9 m \Longrightarrow$$
 le centre de pressions est à l'extérieur de la section

Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple.

$$\begin{aligned} \mathbf{M}_{\mathrm{ua}} &= \mathbf{M} + \mathbf{N} \times \left(\mathbf{d} - \frac{\mathbf{h}}{2} \right) = 430.4337 + (-1059.091) \times \left(1.75 - \frac{1.80}{2} \right) = -469.79 \ KN. \ m \\ \mu_{bu} &= \frac{\mathbf{M}_{ua}}{\mathbf{b} \mathbf{d}^2 \mathbf{f}_{\mathrm{bu}}} = \frac{469.79 \times 10^{-3}}{0.20 \times 1.75^2 \times 18.48} = 0,0415 \end{aligned}$$

$$\mu_{bu} = bd^2f_{bu} = 0.20 \times 1.75^2 \times 18.48 = 0.0413$$

$$\mu_{bu} = 0.0415 < \mu_l = 0.391 \Rightarrow \text{Pivot A} \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1} = 400$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2 \times \mu_{bu}} \right) = 0.0530$$

$$z = d(1 - 0.4\alpha) = 1.75(1 - 0.4 \times 0.0530) = 1.712m$$

$$\begin{split} A_1 &= \frac{\mathrm{M}_{ua}}{z\mathrm{f}_{\mathrm{st}}} = \frac{-469.79 \times 10^{-3}}{1.712 \times 400} = -6.86 \ cm^2 \\ A &= A_1 - \frac{\mathrm{N}_u}{\mathrm{f}_{\mathrm{st}}} = -6.86 \times 10^{-4} - \frac{-1059.091 \times 10^{-3}}{400} = 19.02 cm^2 \end{split}$$

Soit $A_s = 19.02 \ cm^2$

• Armatures minimales dans tout le voile

Selon RPA99/2003 on a : $A_{min} = 0.15\% \text{ b} \times \text{h} = 0.15\% \times 0.20 \times 1.80 = 5.4 \text{cm}^2$

• Longueur de la partie tendue L_t

$$A_{min}^{tendu} = 0.2\% \text{ b} \times l_t$$

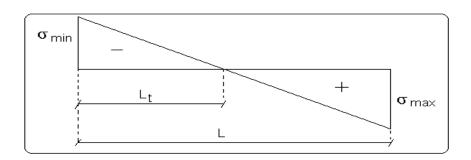


Figure V.8. Schéma des contraintes

$$\begin{split} l_t &= \frac{\sigma_{min} \times L}{\sigma_{max} + \sigma_{min}} \\ \sigma_1 &= \frac{N}{B} + \frac{M}{I}V = 1.0436 \, MPa \\ \sigma_2 &= \frac{N}{B} - \frac{M}{I}V = -6.9272 MPa \\ l_t &= \frac{1.0436 \times 1.8}{1.0436 + 6.9272} = 0.235 m \\ A_{min} &= 0.2\% \, 0,20 \times 0.235 = 0.94 \, cm^2 \end{split}$$

• Armatures minimales dans la zone comprimée

courante
$$A_{min} = 0.1\% \text{ b} \times l_c$$

$$l_c = L - 2l_t = 1.8 - 2 \times 0.235$$

$$l_c = 1.33 \text{ m}$$
 courante
$$A_{min} = 0.1\% \times 0.20 \times 1.33 = 2.66cm^2$$

• Espacement des barres verticales

$$S_t \le \min(1.5 e; 30 \text{cm}) = 12.5 \text{ cm}$$

Avec - $S_t = 6.5 cm$ sur une longueur de L/10 du voile

- $S_t = 12.5 \ cm$ en dehors de L/10 du voile

• Armatures horizontales

La section des Armatures horizontales est calculée selon la formule suivante :

$$V_{max} = 160.960KN$$

$$A_h = \frac{\tau_u \times e \times S_t}{0.8 \times f_e}$$

$$\tau_u = \frac{1,4V_d}{e \times d} = \frac{1,4 \times 160.960 \times 10^{-3}}{0,20 \times 1.75} = 0.696 \, MPa$$

• Espacement des barres horizontales

$$S_t \le \min(1.5 e; 30 \text{cm}) = 20 \text{ cm}$$

On prend
$$S_t = 20 cm$$

$$A_h = \frac{0.696 \times 0.2 \times 0.2}{0.8 \times 400} = 0.87 \ cm^2$$

• Choix des barres

✓ Armatures verticales

En zone tendu $A^{ZT} = 14HA14 = 21.56 cm^2$

En zone comprimée $A^{Zc} = 4HA14 = 6.16 cm^2$

✓ Choix des armatures horizontales

$$A_h = 2HA12 = 2.26 \ cm^2$$

Les tableaux suivants illustres les résultats de calcul des armatures verticales et horizontales des différents voiles.

Tableau V.22. ferraillage du voile $V_{x1}=1$ m dans tous les niveaux

Niveau	RDC,1 ^{ere} etage	2 ^{eme} et 3 ^{éme} étage	4 ^{éme} et5 ^{éme} étage	6 ^{éme} et7 ^{éme} étage	8 ^{éme} et 9 ^{éme} étage
Section (m ²)	0.2×1	0.2×1	0.2×1	0.2×1	0.2×1
M(KN)	98.4052	9.3716	10.7556	11.3978	19.5512
N(KN)	-524.280	-374.170	-301.362	-209.802	-99.633
V (KN)	53.33	59.145	52.564	29.152	26.805
τ(MPa)	0.397	0.460	0.409	0.227	0.208
$\overline{\tau} = 0.2f_{c28}(MPa)$	5	5	5	5	5
A_{v}^{cal} (cm2)	9.199	5.783	4.796	3.507	1.752

A_{ν}^{\min} (cm ²)	3	4	4	4	3
A_v^{adop} (cm ²)	9.24	6.79	6.79	4.71	3.01
N ^{bre} /par face	6HA14	6HA12	6HA12	6HA10	6HA8
$S_t(cm)$	15	15	15	15	15
A_h^{cal} (cm ²)	0.496	0.580	0.510	0.280	0.260
A_h^{\min} (cm ²)	0.6	2.850	2.850	2.850	0.6
A_h^{adop} (cm ²)	1.57	3.14	3.14	3.14	1.57
N ^{bre} /par plan	2HA10	4HA10	4HA10	4HA10	2HA10
S _t (cm)	20	20	20	20	20

Tableau V.23. ferraillage du voile V_{y1} =1.80m dans tous les niveaux

Niveau	RDC,1 ^{ere} etage	2 ^{eme} et 3 ^{éme} étage	4 ^{éme} et5 ^{éme} étage	6 ^{éme} et7 ^{éme} étage	8 ^{éme} et 9 ^{éme} étage
Section (m ²)	0.2×1.8	0.2×1.8	0.2×1.8	0.2×1.8	0.2×1.8
M(KN)	430.4337	42.9363	44.022	93.795	83.709
N(KN)	-1059.091	896.808	-711.213	-503.626	-298.288
V (KN)	160.960	133.785	97.322	79.620	49.421
τ(MPa)	0.696	0.578	0.421	0.344	0.214
$\bar{\tau} = 0.2f_{c28}(MPa)$	5	5	5	5	5
A_{v}^{cal} (cm2)	19.020	13.920	11.278	8.249	5.473
A_{ν}^{\min} (cm ²)	3	4	4	7.2	7.2
A_{v}^{adop} (cm ²)	21.56	15.82	15.82	11.06	11.06
N ^{bre} /par face	14HA14	14HA12	14HA12	14HA10	14HA10
S _t (cm)	12.5	12.5	12.5	12.5	12.5
A_h^{cal} (cm ²)	0.870	0.720	0.530	0.430	0.270
A_h^{\min} (cm ²)	0.6	5.250	5.250	5.250	5.250
A_h^{adop} (cm ²)	2.26	6.16	6.16	6.16	6.16
N ^{bre} /par plan	2HA12	4HA14	4HA14	4HA14	4HA14
S _t (cm)	20	20	20	20	20

Tableau V.24. ferraillage du voile V_{x2} =1.60m dans tous les niveaux

Niveau	RDC, 1 ^{ere} etage	2 ^{eme} et 3 ^{éme} étage	4 ^{éme} et 5 ^{éme} étage	6 ^{éme} et 7 ^{éme} étage	8 ^{éme} et 9 ^{éme} étage
Section (m ²)	0.2×1.6	0.2×1.6	0.2×1.6	0.2×1.6	0.2×1.6
M(KN)	320.509	184.786	11.56	13.930	48.646
N(KN)	-921.023	-763.142	-772.374	-555.594	-283.695

V (KN)	140.299	121.42	91.164	65.687	65.687
τ(MPa)	0.682	0.590	0.443	0.319	0.319
$-\frac{\tau}{\tau}$ =0.2f _{c28} (MPa)	5	5	5	5	5
A_{v}^{cal} (cm2)	16.390	13.870	11.414	8.362	4.686
A_{ν}^{\min} (cm ²)	4.8	6.4	6.4	6.4	6.4
A_{ν}^{adop} (cm ²) 18.48 16.02		13.56	9.48	7.75	
N ^{bre} /par	N ^{bre} / par 12HA14 6		12HA12	12HA10	6HA10+6HA8
face					
S _t (cm)	12.5	12.5	12.5	12.5	12.5
A_h^{cal} (cm ²)	0.850	0.740	0.550	0.400	0.400
A_h^{\min} (cm ²)	0.6	4.650	4.650	4.650	4.650
A_h^{adop} (cm ²)	2.26	5.34	5.34	5.34	5.34
N ^{bre} /par plan			2HA14+2HA12	2HA14+2HA12	2HA14+2HA12
S _t (cm)	20	20	20	20	20

Tableau V.25. ferraillage du voile V_{y2} =1.80m dans tous les niveaux

Niveau	RDC,1 ^{ere} etage	2 ^{eme} et 3 ^{éme} étage	4 ^{éme} et5 ^{éme} étage	6 ^{éme} et7 ^{éme} étage	8 ^{éme} et 9 ^{éme} étage
Section (m ²)	0.2×1.8	0.2×1.8	0.2×1.8	0.2×1.8	0.2×1.8
M(KN)	420.061	10,593	21.228	14.646	65,444
N(KN)	- 1112.782	-969.769	-759.598	-543.379	-292.348
V (KN)	156.772	172,839	132.764	94.029	45.694
τ(MPa)	0.677	0.747	0.574	0.406	0.197
$-\frac{\tau}{\tau}$ =0.2 \mathbf{f}_{c28} (MPa)	5	5	5	5	5
A_{v}^{cal} (cm2)	19.473	14,194	11.428	8.162	5.018
A_{ν}^{\min} (cm ²)	5.4	7.2	7.2	7.2	7.2
A_v^{adop} (cm ²)	21.56	15.82	13.44	11.06	9.04
N ^{bre} /par face	14HA14	14HA12	7HA12+7HA10	14HA10	7HA10+7HA8
S _t (cm)	12.5	12.5	12.5	12.5	12.5
A_h^{cal} (cm ²)	0.850	0.930	0.720	0.510	0.250
A_h^{\min} (cm ²)	0.6	5.250	5.250	5.250	4.650
A_h^{adop} (cm ²)	2.26	5.34	5.34	5.34	5.34
N ^{bre} /par plan	2HA12	2HA14+2HA12	2HA14+2HA12	2HA14+2HA12	2HA14+2HA12

$S_t(cm)$	20	20	20	20	20

Tableau V.26. ferraillage du voile V_{x3} =1.80m dans tous les niveaux

Niveau	RDC,1 ^{ere} etage	2 ^{eme} et 3 ^{éme} étage	4 ^{éme} et5 ^{éme} étage	6 ^{éme} et7 ^{éme} étage	8 ^{éme} et 9 ^{éme} étage
Section (m ²)	0.2×1.8	0.2×1.8	0.2×1.8	0.2×1.8	0.2×1.8
M(KN)	436,060	7,139	141.123	83.047	53.718
N(KN)	-856.168	-878.905	-668.966	-516.089	-305.494
V (KN)	163.973	156.501	117.855	87.165	47.190
τ (MPa)	0.709	0.676	0.509	0.377	0.204
$= 0.2f_{c28}(MPa)$	5	5	5	5	5
A_v^{cal} (cm2)	16.774	12.805	11.302	8.181	4.938
A_{ν}^{\min} (cm ²)	5.4	7.2	7.2	7.2	7.2
A_v^{adop} (cm ²)	18.48	13.56	13.56	9.48	6.02
N ^{bre} /par face	12HA14	12HA12	12HA12	12HA10	12HA8
S _t (cm)	15	15	15	15	15
A_h^{cal} (cm ²)	0.890	0.850	0.640	0.470	0.250
A_h^{\min} (cm ²)	0.6	5.250	5.250	5.250	5.250
A_h^{adop} (cm ²)	2.26	5.34	5.34	5.34	5.34
N ^{bre} /par plan	2HA12	2HA14+2HA12	2HA14+2HA12	2HA14+2HA12	2HA14+2HA12
S _t (cm)	20	20	20	20	20

V.4.4.Schéma de ferraillage :

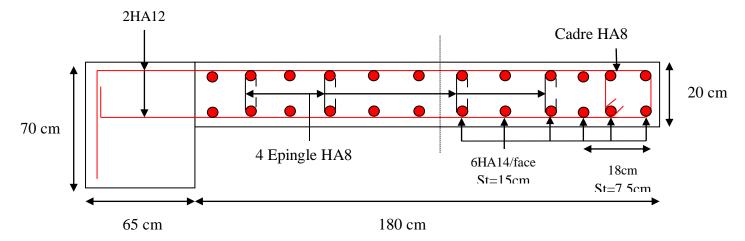


Figure V.9. Schéma de ferraillage du voile Vx3 RDC

V.5. Conclusion

Au terme de ce chapitre, nous avons étudié les différents éléments principaux, après cette étude on conclu que :

- ➤ Pour les poteaux, les poutres et les voile, les sollicitations adoptées pour le calcul de Ferraillage sont extraite du logiciel **SAP 2000**.
- ➤ Les différents ferraillages adoptés pour les éléments structuraux respectent les Recommandations du RPA99/2003 et du BAEL.

Chapitre VI

VI.1. Introduction

On appelle infrastructure, la partie inférieure d'un ouvrage reposant sur un terrain d'assise auquel sont transmises toutes les charges supportées par l'ouvrage, soit directement (cas des semelles reposant sur le sol ou cas des radiers) soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

Donc elles constituent la partie essentielle de l'ouvrage.

Il existe plusieurs types de fondations, le choix se fait selon les conditions suivantes :

- La capacité portante du sol;
- ➤ La charge à transmettre au sol ;
- La dimension des trames ;
- ➤ La profondeur d'ancrage.

On distingue:

- Fondation superficielle (Semelle isolée, Semelle filante, Radier général)
- ➤ Les fondations semi-profondes
- > Fondation profonde (semelle sous pieux)

• Combinaisons de calcul

Le dimensionnement des fondations superficielles, selon la réglementation parasismique Algérienne (RPA99 version 2003, Article 10.1.4.1) [1], se fait sous les combinaisons suivantes:

$$G + Q \pm E$$

 $0.8G \pm E$

• Reconnaissance du sol

Pour projeter correctement une fondation, Il est nécessaire d'avoir une bonne connaissance de l'état des lieux au voisinage de la construction à édifier, mais il est surtout indispensable d'avoir des renseignements aussi précis que possible sur les caractéristiques géotechnique des différentes couches qui constituent le terrain.

Le taux de travail du sol retenu pour le calcul des fondations est de 1,4 bar pour une profondeur d'ancrage de 1.5 m.

VI.2. Choix du type de fondation

VI.2.1. Vérification de la semelle isolée

Dans ce projet, nous proposons en premier lieu des semelles isolées, pour cela, nous allons procéder à une première vérification telle que :

$$\frac{N}{S} \le \overline{\sigma}_{sol} \dots \dots \dots \dots (1)$$

On va vérifier la semelle la plus sollicitée:

N: L'effort normal transmis à la base obtenu par le logiciel SAP 2000 V14. N=1912.62~KN

S : Surface d'appuis de la semelle. $S = A \times B$

 $\overline{\sigma}_{sol}$: Contrainte admissible du sol. $\overline{\sigma}_{sol} = 1,4 \ bar$

On a une semelle rectangulaire, donc on doit satisfaire la condition d'homothétie :

$$\frac{A}{a} = \frac{B}{b} \Longrightarrow A = \frac{a}{b}B$$

a, b : dimensions du poteau à la base.

On remplace A dans l'équation (1) on trouve

$$B \geq \sqrt{\frac{b}{a} \times \frac{N}{\overline{\sigma}_{sol}}} \Longrightarrow B \geq \sqrt{\frac{0.70}{0.65} \times \frac{1912.62}{140}} \Longrightarrow B \geq 3.83 \ m$$

Vu que l'entraxe minimal des poteaux est de 3.10 m, on remarque qu'il va avoir un chevauchement entre les semelles, ce qui revient à dire que ce type de semelles ne convient pas à notre projet.

VI.2.2. Vérification de la semelle filante.

Pour la vérification, on va choisir la semelle filante intermédiaire qui nous semple d'être la plus sollicitée.

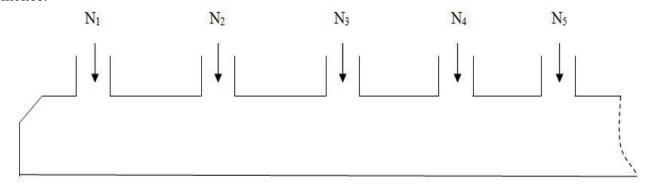


Figure VI.1. Semelle filante

La surface totale des semelles est donné par :

$$S_S \ge \frac{N}{\sigma_{Sol}} \Longrightarrow B \times L \ge \frac{N}{\sigma_{Sol}} \Longrightarrow B \ge \frac{N}{\sigma_{Sol} \times L}$$

 N_i : L'effort normal provenant du poteau « i ».

 $N_1 = 1623.37KN$; $N_5 = 2353.28KN$

 $N_2 = 1906.25KN$; $N_6 = 1581.02KN$

 $N_3 = 1613.65KN$; $N_7 = 1912.62KN$

 $N_4 = 2250.56KN$; $N_8 = 1627.47KN$

$$\sum_{i=1}^{7} N_i = 14868.22 \, KN$$

$$B \ge \frac{14868.22}{140 \times 23.6} = 4.5 \, m$$

L'entraxe minimal des poteaux est de 3.10 m, donc il y a un chevauchement entre les semelles filantes, ce qui revient à dire que ce type de semelles ne convient pas à notre structure.

VI.2.3. Radier général

Puisque les deux premières vérifications ne sont pas observées, on va opter pour un radier général comme type de fondation pour fonder l'ouvrage. Ce type de fondation présente plusieurs avantages qui sont :

- L'augmentation de la surface de la semelle qui minimise la forte pression apportée par la structure;
- ➤ La réduction des tassements différentiels;
- La facilité d'exécution.

VI.2.3.1. Caractéristiques géométriques du radier

Le radier est considéré comme infiniment rigide, donc on doit satisfaire les conditions suivantes :

• Condition de coffrage :

h_t: hauteur des nervures.

h_r: hauteur de la dalle.

 L_{max} : la plus grande portée entre deux éléments porteurs successifs. ($L_{max} = 5.4$ m)

$$h_r \ge \frac{L}{20} = \frac{540}{20} = 27 \ cm$$

$$h_t \ge \frac{L}{10} = \frac{540}{10} = 54 \ cm$$

• Condition de rigidité

Pour qu'un radier soit rigide il faut que :

$$L_{max} \le \frac{\pi}{2} L_e$$

$$L_e \ge \sqrt[4]{(4.E.I)/(K.b)}$$

Avec

Le: est la longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible).

K: coefficient de raideur du sol $K=4\times10^4$ KN/m³ (sol moyen);

E: module d'élasticité du béton : $E = 3,216 \times 10^7 \text{ KN/m}^2$;

b: largeur de la semelle ;

$$\mathbf{I} = \frac{b. h_t^3}{12}$$
, inertie de la semelle ;

$$h_t \ge \sqrt[3]{\frac{48 L_{max}^4 K}{\pi^4 E}} = \sqrt[3]{\frac{48 \times 5.40^4 \times 4.10^4}{\pi^4 3,216.10^7}} = 80cm$$

Donc,
$$h_t \ge 80 \ cm \implies h_t = 85 \ cm$$

$$L_e \ge \sqrt[4]{\frac{0.85^3 \times 3.216 \ 10^7}{3 \times 4 \times 10^4}} = 3.42 \ m$$

• Calcul de la surface du radier

$$S_{rad} \ge \frac{Ns}{\bar{\sigma}_{sol}}$$

$$S_{rad} \ge \frac{55775.699}{140} = 398.39 \ m^2$$

Donc, on peut prendre $S_{rad} = S_{rad} = 340.27 m^2$

• Dimensions du radier

Nous adopterons pour les dimensions suivantes:

Hauteur de la nervure $h_t = 85 \text{cm}$;

Hauteur de la table du radier $h_r = 30 \text{cm}$;

Enrobage d' = 5cm.

La surface du radier $S_{rad} = 340.27 m^2$

VI.2.3.2. Vérifications nécessaires

Vérification de la contrainte dans le sol

Sous l'effet du moment renversant dû au séisme, la contrainte sous le radier n'est pas uniforme. On est dans le cas d'un diagramme rectangulaire ou trapézoïdal, la contrainte moyenne ne doit pas dépasser la contrainte admissible du sol.

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} \leq \overline{\sigma}_{sol}$$

Avec:

$$\overline{\sigma}_{sol} = 0.14 MPa$$
 ; $\sigma = \frac{N}{S_{rad}} \pm \frac{M_{\chi} \times Y_G}{I_{\chi}}$
 $I_{\chi} = 8936.26$ et $X_G = 11.65 \, m$; $I_{y} = 17581.5 m$ et $Y_G = 8.35 m$

✓ Sens X-X

Données:

N = 55699.87 KN;
$$M_x = 14949.99$$
 KN. m; $I_{xG} = 8936.26 m^4$

$$\begin{cases}
\sigma_{max} = \frac{N}{S_{rad}} + \frac{M_x \times Y_G}{I_{xG}} = \frac{55.69}{340.27} + \frac{14.94}{8936.26} \times 8.35 = 0,177 \\
\sigma_{min} = \frac{N}{S_{rad}} - \frac{M_x \times Y_G}{I_{xG}} = \frac{55.69}{340.27} - \frac{14.94}{8936.26} \times 8.35 = 0,161
\end{cases}$$

Ce qui donne:
$$\sigma_{moy} = \frac{3 \times 0,177 + 0,161}{4} = 0,173 \ MPa > \overline{\sigma}_{sol} = 0,14 \ MPa$$

Donc la contrainte n'est pas vérifiée selon le sens X-X.

✓ Sens Y-Y

Données:

$$N = 55775.69 \text{ KN }; M_y = 313.85 \text{ MN.m}; I_{YG} = 17581.5 \text{ m}^4$$

$$\begin{cases}
\sigma_{max} = \frac{N}{S_{rad}} + \frac{M_y \times X_G}{I_{yG}} = \frac{55.77}{340.27} + \frac{0.313}{17581.5} \times 13.6 = 0.164 \\
\sigma_{min} = \frac{N}{S_{rad}} - \frac{M_y \times X_G}{I_{yG}} = \frac{55.77}{340.27} - \frac{0.313}{17581.5} \times 13.6 = 0.163
\end{cases}$$

$$\sigma_{moy} = \frac{3 \times 0.164 + 0.163}{4} = 0.163 \ MPa > \overline{\sigma}_{sol} = 0.14 \ MPa$$

Donc la contrainte n'est pas vérifiée selon le sens Y-Y.

Remarque

Les contraintes dans le sol ne sont pas vérifiées dans les deux sens, et pour remédier ce problème, on se sert d'un radier avec débord (Figure VI.5). La nouvelle surface du radier est :

$$S = 340.27 + 60.6 = 400.87 \text{m}^2; \ I_x = 13360.03 \ \text{m}^4 \ ; \ X_G = 12.65 \text{m} \ ; \ I_y = 25124.77 \ \text{m}^4 \ ; \ Y_G = 9.35 \text{m}^2 \ ; \ Y_G = 12.65 \text{m} \ ; \ Y_G = 12.65 \text{$$

• Vérification des contraintes dans le sol avec la nouvelle surface du radier

✓ Sens X-X

$$\begin{cases} \sigma_{max} = \frac{N}{S_{rad}} + \frac{M_x \times Y_G}{I_{xG}} = \frac{55.69}{400.87} + \frac{14.94}{13362.03} 9.35 = 0,14 \\ \sigma_{min} = \frac{N}{S_{rad}} - \frac{M_x \times Y_G}{I_{xG}} = \frac{55.69}{400.87} - \frac{14.94}{13362.03} 9.35 = 0,12 \end{cases}$$

Ce qui donne:
$$\sigma_{moy} = \frac{3 \times 0,14 + 0.12}{4} = 0,13 \ MPa < \overline{\sigma}_{sol} = 0,14 \ MPa$$

La contrainte est vérifiée selon le sens X-X.

✓ Sens Y-Y

$$\begin{cases} \sigma_{max} = \frac{N}{S_{rad}} + \frac{M_y \times X_G}{I_{yG}} = \frac{55.69}{400.87} + \frac{0.313}{25124.77} \times 12.65 = 0,13 \\ \sigma_{min} = \frac{N}{S_{rad}} - \frac{M_y \times X_G}{I_{yG}} = \frac{55.69}{400.87} - \frac{0.313}{25124.77} \times 12.65 = 0,13 \\ \sigma_{moy} = \frac{3 \times 0,13 + 0,13}{4} = 0,13 \ MPa < \overline{\sigma}_{sol} = 0,14 \ MPa \end{cases}$$

La contrainte est vérifiée selon le sens Y-Y.

• Vérification au cisaillement

$$\begin{aligned} \tau_{u} &= \frac{V_{d}}{b \times d} \leq \bar{\tau}_{u} = \min\left(0.15 \frac{f_{c28}}{\gamma_{b}}; 4\right) = 2.5 \, MPa \\ V_{d} &= \frac{N_{d} \times L_{max}}{2 \times S_{rad}} \Longrightarrow \qquad d \geq \frac{V_{d}}{b \times \bar{\tau}_{u}} \end{aligned}$$

 N_d : Effort normal de calcul résultant de la combinaison la plus défavorable.

$$N_d = 55775.69 \, KN$$

$$V_{\rm d} = \frac{55775.69 \times 5.4}{2 \times 400.87} = 375.66KN$$

$$d \ge \frac{354,44 \times 10^{-3}}{1 \times 2,5} = 0,15 \, m, \quad \text{Soit} \quad d = 25 \, cm$$

Vérification au poinçonnement

Selon le **BAEL99** (Article A.5.2.4.2) [1], il faut vérifier la résistance de la dalle au poinçonnement par effort tranchant, cette vérification s'effectue comme suit :

$$N_d \le 0.045 \times U_c \times h_t \times \frac{f_{c28}}{\gamma_b}$$

N_d: Effort normal de calcul.

 h_t : Hauteur total de la dalle du radier.

U_c : Périmètre du contour au niveau du feuillet moyen.

Sous le poteau le plus sollicité

Le poteau le plus sollicité est le poteau (70×65) cm², le périmètre d'impact U_cest donné par la formule suivante : $U_c = 2 \times (A+B)$

$$\begin{cases}
A = a + h_t = 0.70 + 0.85 = 1.55 \\
B = b + h_t = 0.65 + 0.85 = 1.5
\end{cases} \implies U_c = 6.1 m$$

$$\Rightarrow$$
 N_d = 2.35 MN \leq 0,045 \times 6.1 \times 0,85 \times $\frac{25}{1.5}$ = 3.88 MN Condition vérifiée

Donc, pas de risque de poinçonnement.

Vérification de la poussée hydrostatique :

La condition à vérifier est la suivante :

$$N \ge f_s \times H \times S_{rad} \times \gamma_w$$

Avec:

- fs = 1,15 (coefficient de sécurité).
- $\gamma_w = 10\text{KN/m}^3$ (poids volumique de l'eau).
- $Srad = 400.87 \text{ m}^2 \text{ (surface du radier)}.$
- H = 1.5 m, (hauteur de la partie ancrée du bâtiment).

VI.2.3.3. Ferraillage du radier général

Le radier se calcul comme un plancher renversé, sollicité à la flexion simple causée par la réaction du sol. Le ferraillage se fera pour le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier.

Calcul des sollicitations

$$Q_{u} = \frac{N_{u}}{S_{rad}}$$

 N_u : L'effort normal ultime donné par la structure

$$N_{rad} = 3006.52 \, KN$$

$$N_{ner} = 2149.25 \, KN$$

$$\mathbf{N}_{u} = \mathbf{N}_{u,cal} + \mathbf{N}_{rad} + \mathbf{N}_{ner} = 72682.281 + 3006.52 + 2149.25 = 77838.05 \ KN$$

$$Q_u = \frac{77838.05}{400.87} = 194.17 \text{ KN/}m^2$$

Le panneau le plus sollicité est :

$$L_x = 3.5 - 0.65 = 2.85 m$$
; $L_y = 5.4 - 0.70 = 4.7 m$

$$\rho = \frac{l_x}{l_y} = 0.6 > 0.4 \implies$$
 la dalle travaille dans les deux sens

$$\begin{cases} \mu_x = 0.0822 \\ \mu_y = 0.2948 \end{cases}$$

$$(\mu_{\rm v} = 0.2948)$$

$$\begin{cases} M_{0x} = \mu_x \times Q_u \times L_x^2 \\ M_{0y} = \mu_y \times M_{0x} \end{cases} \Longrightarrow \begin{cases} M_{0x} = 0.0822 \times 194.17 \times 2.85^2 \\ M_{0y} = 0.2948 \times 129.64 \end{cases}$$

$$\Longrightarrow \begin{cases} M_{0x} = 129.64 \ KN. \ m \\ M_{0y} = 38.21 \ KN. \ m \end{cases}$$

• Calcul des moments corrigés

$$M_{tx} = 0.75 M_{0x} = 97.23 KN.m$$
; $M_{ty} = 0.85 M_{0y} = 32.47 KN.m$
 $M_{ax} = M_{ay} = -0.5 M_{0x} = -64.82 KN.m$

Le ferraillage se fait pour une section (b×h)= $(1\times0,3)$ m²

Tableau VI.1. Section d'armateur du radier

Localisation		M(KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adop} (cm ²)	N ^{bre} de barres	St(cm)
Travée	X-X	97.23	10,32	2,88	10,78	7HA14	15
Travec	Y-Y	32.47	3.30	2,40	5,65	5HA12	20
App	ui	- 64.82	6.73	2,88	7.92	7HA12	15

• Condition de non fragilité

On a e =30 cm > 12 cm et ρ =0,60 > 0,4

$$A_{minx} = \rho_0 \times (\frac{3-\rho}{2}) \times b \times h_r = 0.0008(\frac{3-0.60}{2}) \times 0.3 = 2.88 \ cm^2$$

$$A_{miny} = \rho_0 \times b \times h_r = 0.0008 \times 0.30 = 2.4 \text{ cm}^2$$

VI.2.3.4. Vérification à l'ELS

$$Q_s = \frac{N_s}{S_{rad}}$$

N_s: L'effort normal de service donné par la structure

$$N_s = 55699.87 \, KN$$

$$Q_s = \frac{55699.87}{400.87} = 138.94 \text{ KN/}m^2$$

$$\begin{cases} \mu_x = 0.0870 \\ \mu_y = 0.4672 \end{cases} \implies \begin{cases} M_{0x} = 98.18 \; KN. \, m \\ M_{0y} = 45.86 \; KN. \, m \end{cases}$$

• Les moments corrigés

$$M_{tx} = 73.63 \, KN. m$$

$$M_{tv} = 38.98 \, KN. m$$

$$M_{ax} = M_{ay} = -49.09 \text{ KN. } m$$

• Vérification des contraintes

Localisa	ition	M _s KN.m	Y (cm)	[(cm ⁴)	$ \sigma_{bc} \leq \overline{\sigma}_{bc} \\ (MPA) $	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st}$ (MPA)	Obs.
Twoyon	X-X	73.63	7,56	63584.34	8.75 < 15	Vérifié	302.93 > 201,63	N. Vérifiée
Travée	у-у	38.98	5,71	37741.46	5.89 < 15	Vérifié	298.84 > 201,63	N. Vérifiée
Appı	ui	-49.09	6,61	49804.04	6.51 < 15	Vérifié	271.89 > 201,63	N. Vérifiée

Tableau VI.2. Vérifications des contraintes à l'ELS

On remarque que les contraintes de traction dans l'acier ne sont pas vérifiées, donc on doit recalculer les sections d'armatures à l'ELS.

Les résultats sont résumés dans le tableau qui suit :

Tableau VI.3. Section d'armateur du radier à l'ELS

Localisa	tion	M _s KN.m	$m{eta}{(10^{-2})}$	α	A_{cal} (cm ² /ml)	${ m A_{adop}} \ ({ m cm^2/ml})$	N ^{bre} de barres	S _t (cm)
Travée	X-X	73.63	0,584	0,35	16.53	18.10	9HA16	11
Travee	y-y	38.98	0,309	0,27	8.49	9.24	6HA14	15
Appı	ıi	-49.09	0.389	0,30	10,82	12.32	8HA14	12

Vérification des espacements

Selon x-x: $S_t \le \begin{cases} \min(2.5 \text{ h}_r, 25 \text{ cm}) = 25 \text{ cm} \\ 100/8 = 11 \text{ cm} \end{cases}$ Selon y-y: $S_t = 15 \text{ cm} < \min(3 \text{ h}_r; 33 \text{ cm}) = 33 \text{ cm}$

VI.2.3.5.Schéma de Ferraillage du radier

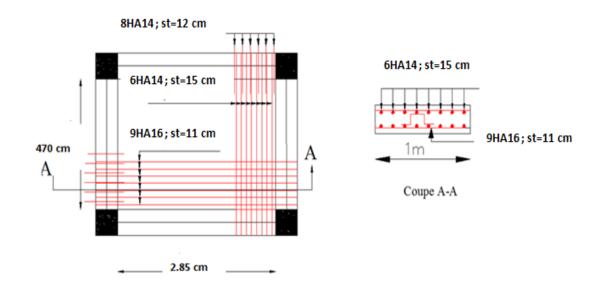
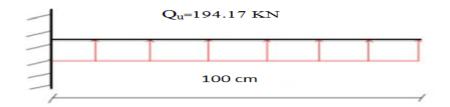



Figure VI.2. Schéma de ferraillage du radier

VI.2.3.6.Ferraillage du débord

.Figure VI.3. Schéma statique du débord

• Calcul du moment sollicitant

$$M_u = -\frac{Q_u \times l^2}{2} = -98.585 \text{ KN. } m$$

Les armatures nécessaires pour le débord sont mentionnées dans le tableau suivant :

Tableau VI.4. Section d'armateur du débord

M (KN.m)	Acal (cm²/m)	Amin (cm ² /m)	A ^{adop} (cm ² /m)	N ^{bre} de barres / ml	St (cm)	Ar (cm ² /m)	$\begin{array}{c} A_{radop} \\ (cm^2/m) \end{array}$
- 98.585	10.47	3,02	11.31	10HA12	10	1,50	4HA12=4,52

VI.2.3.6.1. Verifications à l'ELS

$$M_s = -\frac{Q_s \times l^2}{2} = -\frac{138.94 \times 1^2}{2} = -69.97 \text{ KN. m}$$

Tableau VI.5. Vérifications des contraintes à l'ELS

Localisation	M _s KN.m	Y (cm)	(cm ⁴)	$ \sigma_{bc} \leq \overline{\sigma}_{bc} \\ (MPA) $	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st}$ (MPA)	Obs.
Travée	- 69.97	7.80	66007.65	8.26 < 15	Vérifiée	273.48 > 201,63	N. Vérifiée

On remarque que la contrainte de traction dans l'acier n'est pas vérifiée, donc on doit recalculer la section d'armature à l'ELS.

Les résultats sont résumés dans le tableau qui suit :

Tableau VI.6. Section d'armateur du débord à l'ELS

Localisation	M _s KN.m	$\begin{array}{ c c } \beta \\ 10^{-2} \end{array}$	α	A _{cal} cm ² /ml	A _{adop} cm ² /ml	N ^{bre} de barres	S _t cm	Ar cm ² /ml	A _{r adop} cm ² /ml
Travée	-69.97	0,55	0,35	15,71	16,08	8HA16	12	5,36	4HA14

VI.2.3.6.2.Schéma de ferraillage

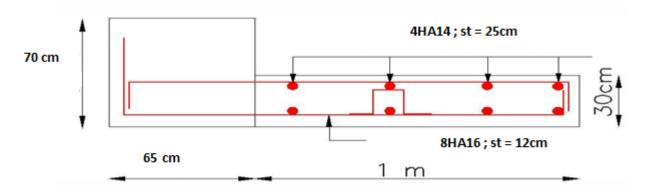


Figure VI.4. Schéma de ferraillage du débord

VI.3. Etude des nervures

VI.3.1.Définition des charges qui reviennent sur les nervures

Les nervures servent d'appuis pour la dalle du radier, donc la transmission des charges s'effectue en fonction des lignes de ruptures comme indiqué sur la figure ci-après :

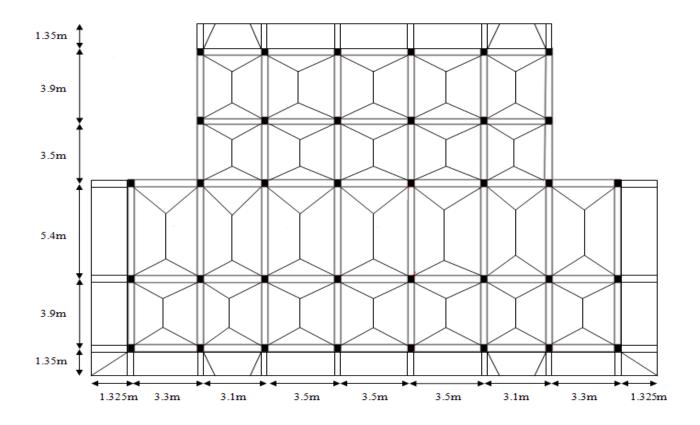


Figure VI.5. Schéma des lignes de rupture du radier

Afin de simplifier les calculs, les charges triangulaires et trapézoïdales peuvent être remplacées par des charges équivalentes uniformément réparties.

 P_m : Charge uniforme qui produit le même moment maximum que la charge réelle.

 P_v : Charge uniforme qui produit le même effort tranchant maximal que la charge réelle.

Charge trapézoïdale	Charge triangulaire		
$P_{m} = \frac{q}{2} \left[\left(1 - \frac{\rho_{g}^{2}}{3} \right) L_{xg} + \left(1 - \frac{\rho_{d}^{2}}{3} \right) L_{xd} \right]$ $P_{v} = \frac{q}{2} \left[\left(1 - \frac{\rho_{g}}{2} \right) L_{xg} + \left(1 - \frac{\rho_{d}}{2} \right) L_{xd} \right]$	$P_m = \frac{2ql_x}{3}$ $P_v = \frac{1ql_x}{2}$		

Avec :
$$\rho_g = \frac{L_{xg}}{L_y}$$
 , $\rho_d = \frac{L_{xd}}{L_y}$

$$Q_u = 194.17KN/m^2$$
, $Q_s = 138.94KN/m^2$

On traitera un exemple de nervure dans chaque sens :

\checkmark Sens X-X:

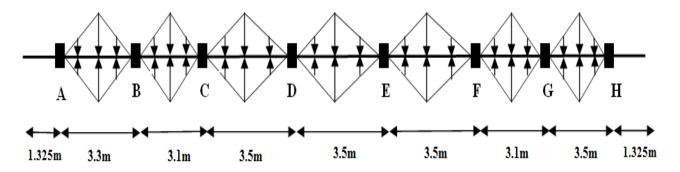


Figure VI.6. Schéma des nervures dans le sens x-x

✓ Sens Y-Y:

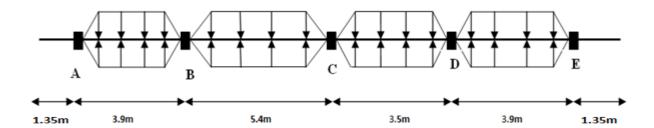


Figure VI.7. Schéma des nervures dans le sens y-y

• Calcul des sollicitations

Pour le calcul des sollicitations on utilise la méthode de Caquot :

Moments aux appuis

$$M_{a} = -\frac{P_{g} \times l_{g}^{'3} + P_{d} \times l_{d}^{'3}}{8.5 \times (l_{g}^{'} + l_{d}^{'})}$$

Avec : Les longueurs fictives : $l' = \begin{cases} l \\ 0.8 \times l \end{cases}$

Moment en travée :

$$M_{t}(x) = M_{0}(x) + M_{g}(1 - \frac{x}{l}) + M_{d}(\frac{x}{l})$$

$$M_0(x) = \frac{q \times x}{2}(l - x)$$

$$x = \frac{l}{2} - \frac{M_g - M_d}{q \times l}$$

 M_g et M_d : moments sur appuis gauche et droit respectivement

\checkmark Sens x-x:

Les résultats des calculs sont récapitulés dans le tableau ci-dessous :

Tableau VI.7. Sollicitations des nervures dans le sens x-x

Travée	$\mathbf{l_x}$	ľx	Pu	M _a (KN.m)		X	$\mathbf{M_t}$
	(m)	(m)	(KN/m)	M_{g}	\mathbf{M}_{d}	(m)	(KN.m)
A-B	3.3	3.3	343.032	-70.043	- 349.378	1.403	267.686
В-С	3.1	2.48	317.144	- 349.378	- 288.235	1.612	62.776
C-D	3.5	2.80	368.922	- 288.235	- 340.276	1.71	250.956
D-E	3.5	2.8	368.922	- 340.276	- 340.276	1.75	224.636
E-F	3.5	2.8	368.922	- 340.276	-288.235	1.79	250.956
F-G	3.1	2.48	317.144	-288.235	-349.378	1.488	62.776
G-H	3.3	3.3	343.032	-349.378	-70.043	1.897	267.686

✓ Sens y-y:

Les résultats des calculs sont récapitulés dans le tableau ci-dessous :

Tableau VI.8. Sollicitations des nervures dans le sens y-y

Travée	l_x	ľx	Pu	M _a (KN.m)		X	$\mathbf{M_t}$	
	(m)	(m)	(KN/m)	$M_{ m g}$	M_d	(m)	(KN.m)	
A-B	3.9	3.9	407.272	-116.149	- 907.684	1.452	312.98	
В-С	5.4	4.32	486.978	- 907.684	- 782.543	2.748	930.473	
C-D	3.5	2.8	368.922	-782.543	-565.377	1.978	-103.83	
D-E	3.9	3.9	407.272	-565.377	-115.864	2.234	448.154	

VI.3.2.Ferraillage de la nervure

$$h_t = 0.85 \text{m}, h_t = 0.30 \text{m}, b_0 = 0.70 \text{m}, d = 0.75 \text{m}$$

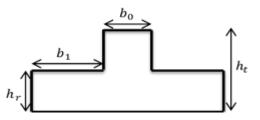


Figure VI.8. Section de la nervure a ferraille

$$\frac{b - b_0}{2} \le \min\left(\frac{L_x}{2}; \frac{L_y^{min}}{10}\right) \dots \dots (CBA. Art 4. 1. 3)$$

$$\frac{b - 0.70}{2} \le \min(1.75m; 0.540 m)$$

Donc, b = 1,78 m.

Les résultats du ferraillage sont récapitulés dans le tableau ci-dessous :

✓ Sens X-X:

Tableau VI.9.Ferraillage de la nervure sens X-X

Sens	Localisation	$M_u(KNm)$	A _{cal} (cm ²)	A _{min} (cm ²)	Aadopté (cm²)	Choix
	Travée	267.686	9.70	17.19	17.75	5HA16+5HA14
X-X	Appui	349.378	12.69	17.17	17.75	5HA16+5HA14

✓ Sens Y-Y:

Tableau VI.10. Ferraillage de la nervure sens Y-Y

Sens	Localisation	$M_u(KNm)$	A _{cal} (cm ²)	A _{min} (cm ²)	Aadopté (cm²)	Choix
Y-Y	Travée	930.473	34.46	17.19	45.55	8HA25+2HA20
1-1	Appui	907.684	33.59	17.19	45.55	8HA25+2HA20

VI3.3. Vérifications:

A l'ELU:

• Vérification de l'effort tranchant :

$$V_g = \frac{q \times l}{2} - \frac{M_g - M_d}{l} \quad ; V_d = -\frac{q \times l}{2} - \frac{M_g - M_d}{l} .$$

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(\frac{0.15 f_{c28}}{\gamma_b}; 4\text{MPa}) = 2.5\text{MPa}$$

Les résultats sont présentés dans le tableau ci-dessous :

Tableau VI.11. Vérification de l'effort tranchant dans les nervures

Sens	Vu (KN)	$ au_{bu}(\mathbf{MPa})$	$\overline{\tau_{bu}}$ (MPa)	Observation
Sens x-x	660.482	0.338	2.5	Vérifiée
Sens y-y	1338.015	0.939	2.5	Vérifiée

> A l'ELS:

• État limite de compression du béton :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

• Les contraintes dans l'acier :

La fissuration est préjudiciable donc La contrainte de traction des armatures est limitée, c'est le cas des éléments exposés aux intempéries.

$$\sigma_s \le \min(\frac{2}{3} \times f_e, 110\sqrt{\eta \times f_{tj}}) = 201,63 \,\text{MPa}$$

$$\sigma_{s} = 15 \times \frac{M_{ser} \times (d - y)}{I}$$

Les résultats sont récapitulés dans le tableau suivant :

Tableau VI.12. Vérification des contraintes dans la nervure

S	Sens	M (KN.m)	Y (cm)	I (cm ⁴)	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ_s (MPa)	σ_s (MPa)
X-X	travée	191.546	14.04	1322590	2.03	15	143.27	201.63
AA	appui	249.999	14.04	1322590	2.65	15	187.00	201.63
у-у	travée	665.805	21.23	2927625	4.83	15	200.45	201.63
y - y	appui	649.499	21.23	2927625	4.71	15	195.54	201.63

Remarque : la condition $\sigma_s < \overline{\sigma_s}$ est vérifiée.

• Armatures transversales

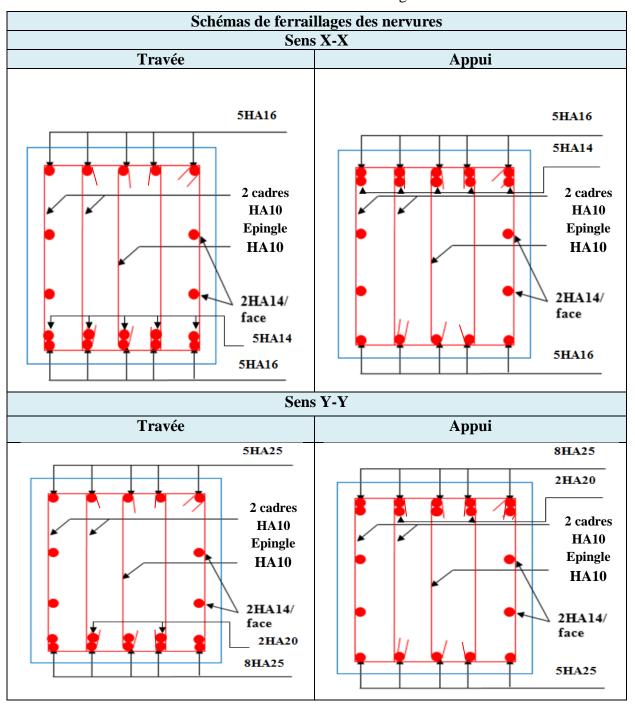
$$\varphi_t \le \min(\frac{h}{35}; \frac{b_0}{10}; \varphi_t) = \min(24, 28; 70; 14) = 14mm \text{ Soit } \phi_t = 10\text{mm}.$$

• Espacement des aciers transversaux

$$St \le \min(\frac{h}{4}; 12; 10\varphi_{l\min}) \Rightarrow St \le \min(21, 25; 12; 14) = 12cm$$

On prend St=10cm en zone nodale et 15cm en travée.

• Armatures de peau :


La hauteur des nervures est h = 85cm, dans ce cas le **CBA** (Article A.7.3)[2] préconise de mettre des armatures de peau de section Ap = 3 cm²/ml de hauteur.

Pour h = 85 cm,

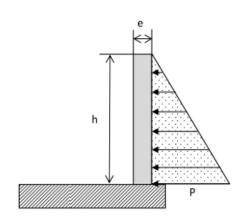
On a: Ap = $3 \times 0.85 = 2.55$ cm2. On opte 2HA14 = 3.08 cm²/face

VI.3.4.Schéma de ferraillage :

Tableau VI.13. Schéma de ferraillage des nervures

VI.4. Etude du voile Périphérique :

D'après le RPA 99/2003 (Art 10.1.2)[1], Le voile périphérique contenu entre le niveau des fondations et le niveau de base doit avoir les caractéristiques minimales suivantes :


- L'épaisseur minimale est de 15 cm.
- ➤ Il doit contenir deux nappes d'armatures.
- Le pourcentage minimal des armatures est de 0.1% dans les deux sens.
- Les ouvertures dans le voile ne doivent pas réduire sa rigidité d'une manière importante.

VI.4.1. Dimensionnement des voiles

- Hauteur h= 2.52 m
- Longueur L= 5.4 m
- Épaisseur e=20 cm

• Caractéristiques du sol

- Poids spécifique $\gamma_h = 20.4 \, KN/m^3$
- Cohésion $C = 0.39 \, KN/m^2$
- Angle de frottement : $\varphi = 27^{\circ}$

Figure VI.9. Schéma du voile

• Evaluation des charges et surcharges

Le voile périphérique et soumis aux chargements suivants :

✓ La poussée des terres

$$\begin{split} G &= h \times \gamma \times tg^2(\frac{\pi}{4} - \frac{\varphi}{2}) - 2 \times c \times tg(\frac{\pi}{4} - \frac{\varphi}{2}) \\ G &= 2.52 \times 20.4 \times tg^2\left(\frac{\pi}{4} - \frac{27}{2}\right) - 2 \times 0.39 \times tg(\frac{\pi}{4} - \frac{27}{2}) = 19.06 \ KN/m^2 \end{split}$$

✓ Surcharge accidentelle

$$q = 10KN/m^{2}$$

$$Q = q \times tg^{2} \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) \Longrightarrow Q = 3.75 KN/m^{2}$$

VI.4.2.Ferraillage du voile

Le voile périphérique sera calculé comme une dalle pleine sur quatre appuis uniformément chargée, l'encastrement est assuré par le plancher, les poteaux et les fondations.

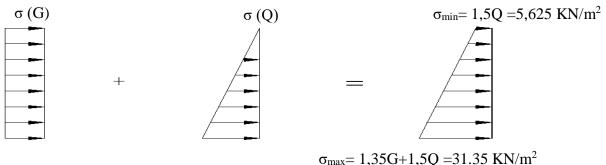


Figure VI.10. Diagramme des contraintes.

Le diagramme des contraintes est trapézoïdal, donc :

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3 \times 31.35 + 5.625}{4} = 24.91 \, KN/m^2$$

$$q_u = \sigma_{mov} \times 1 \text{ ml} = 24.91 \text{ KN/ m}l$$

Pour le ferraillage on prend le plus grand panneau dont les caractéristiques sont

$$L_x = 2,52 \text{ m}$$
 b =

$$L_y = 5.4 \text{ m}$$
 $e = 0.2 \text{ m}$

$$\rho = 2.52/5.4 = 0.46 > 0.4 \implies$$
 Le voile porte dans les deux sens

• Calcul des moments isostatiques

$$M_{0x} = \mu_x \times q \times l_x^2$$

$$M_{0y} = \mu_y \times M_{0x}$$

$$\rho=0.46 \Longrightarrow ELU \begin{cases} \mu_x=0.1022 \\ \mu_y=0.2508 \end{cases}$$

$$M_{0x} = 0.1022 \times 24.91 \times 2.52^2 = 16.16 \, KN. m$$

$$M_{0y} = 0.2508 \times M_{0x} = 4.05 \, KN. m$$

Les moments corrigés

$$M_x = 0.85 M_{0x} = 13.73 KN. m$$

$$M_y = 0.75 M_{0y} = 3.03 KN. m$$

$$M_{ax} = M_{ay} = -0.5M_{0x} = -8.08KN.m$$

Les sections d'armatures sont récapitulées dans le tableau ci-dessous :

Avec :
$$A_{min} = 0.1\% \times b \times h$$

Tableau VI.14. Ferraillage des voiles périphérique

Localis	sation	M (KN.m)	μ _{bu}	α	Z (m)	A _{cal} (cm ² /ml)	A _{min} (cm ² /ml)	A _{adopté} (cm²/ml)
Travás	X-X	13.75	0,029	0,036	0.177	2.23	2	5HA10 = 3,93
Travée	Y-Y	3.03	0,006	0,008	0,179	0.48	2	4HA10= 3.14
Appui		- 8.08	0,017	0,021	0,178	1.30	2	4HA10=3.14

Espacements

Sens x-x :
$$S_t \le \min(2e; 25 cm) \Longrightarrow S_t = 20 cm$$

Sens y-y :
$$S_t \le \min(3e; 33 \ cm) \Longrightarrow S_t = 25 \ cm$$

VI.4.3. Vérifications

> L'ELU:

$$\rho = 0.46 > 0.4$$

$$e = 20 \text{ cm} > 12$$

$$A_x^{min} = \frac{\rho_0}{2} \times (3 - \rho)b \times e$$

$$A_x^{min} = \frac{0,0008}{2}(3 - 0,46)100 \times 20 = 2.032cm^2$$

$$A_y^{min} = \rho_0 \times b \times e = 1.2 \ cm^2$$

$$A_{min} = 0.1\% \times b \times h = 0.001 \times 20 \times 100 = 2 \text{ cm}^2$$

• Calcul de l'effort tranchant

$$V_u^x = \frac{q_u \times L_x}{2} \times \frac{L_y^4}{L_x^4 + L_y^4} = \frac{24.91 \times 2.52}{2} \times \frac{5.4^4}{2,52^4 + 5.4^4} = 29.96KN$$

$$V_u^y = \frac{q_u \times L_y}{2} \times \frac{L_x^4}{L_x^4 + L_y^4} = \frac{24.91 \times 5.4}{2} \times \frac{2,52^4}{2,52^4 + 5.4^4} = 3.04KN$$

• Vérification de l'effort tranchant

On doit vérifier que

$$\begin{split} &\tau_u = \frac{V}{b \times d} \leq \overline{\tau}_u = 0.07 \times \frac{f_{c28}}{\gamma_b} \\ &\tau_u = 0.166 \; MPa \leq \overline{\tau}_u = 1.17 \; MPa \end{split}$$

> L'ELS:

$$\begin{split} \rho &= 0.46 \Longrightarrow ELS \begin{cases} \mu_x = 0.1051 \\ \mu_x = 0.3319 \end{cases} \\ \sigma_{-}max &= G + Q = 22.81 \ KN/m^2 \\ \sigma_{-}min &= Q = 3.75 \ KN/m^2 \\ \sigma_{moy} &= \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3 \times 22.81 + 3.75}{4} = \frac{18.045 KN}{m^2} = \sigma_{moy} \times 1 \ \text{ml} = 18.045 \ \text{KN/ml} \end{split}$$

Calcul des moments isostatiques

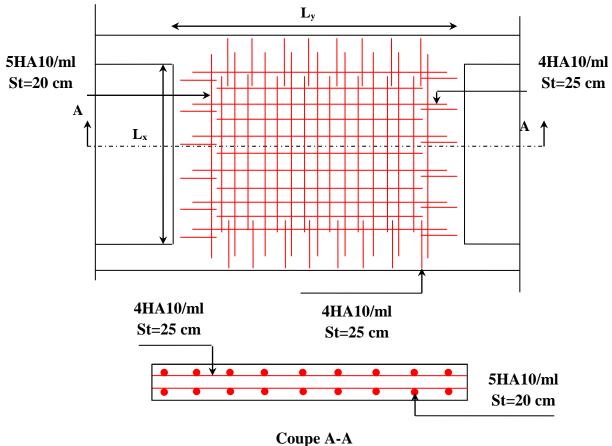
$$M_{0x} = 0.1051 \times 18.045 \times 2.52^2 = 12.04KN.m$$

 $M_{0y} = 0.3319 \times M_{0x} = 3.99KN.m$

• Les moments corrigés

$$M_x = 0.85 M_{0x} = 10.23 KN.m$$

 $M_y = 0.75 M_{0y} = 2.99 KN.m$
 $M_{ax} = M_{ay} = -0.5 M_{0x} = -6.02 KN.m$


• Vérification des contraintes

$$\sigma_{bc} = \frac{M_s}{I} y \le \bar{\sigma}_{bc} = 0.6 \times f_{c28}$$

$$\sigma_{st} = \frac{15M_s}{I} (d - y) \le \bar{\sigma}_{st} = \min\left(\frac{2}{3} f_e; 110\sqrt{\eta f_{t28}}\right)$$

Tableau VI.15. Vérifications des contraintes à l'ELS

Localisa	ation	M ^s KN.m	Y (cm)	[(cm ⁴)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$ (MPA)	Obs.	$\sigma_{st} \leq \overline{\sigma}_{st}$ (MPA)	Obs.
Travée	X-X	12.04	4.05	13678.26	3.56 < 15	Vérifié	184.18 < 201,63	Vérifié
Travee	y-y	2.99	3.67	11314.74	0,97 < 15	Vérifié	56.80 < 201,63	Vérifié
App	ui	6.02	3.67	11314.74	1,95 < 15	Vérifié	114.36 < 201,63	Vérifié

VI.4.4.Schéma de ferraillage du voile périphérique

Figure VI.11. Schéma de ferraillage du voile périphérique

VI.5.Conclusion

Pour connaître le type de fondation qui convient à notre structure, nous avons procédé à un calcul avec semelles isolées. Ces dernières ne convenaient pas à cause du chevauchement qu'elles engendraient. Le même calcul a été mené avec des semelles filantes. Ces dernières ne convenaient pas non plus pour les mêmes raisons.

Nous sommes ensuite passé à un calcul avec fondation sur radier général. Ce dernier a été calculé comme un plancher renversé. Le ferraillage adopté a été vérifié et s'est avéré satisfaisant.

Conclusion Générale

Conclusion générale

Conclusion générale

L'étude de ce projet nous a permis, d'appliquer et d'enrichir toutes nos connaissances acquises durant le cursus universitaire ainsi que les approfondir d'avantage concernant le domaine de bâtiment. On a pu aussi se familiariser à l'utilisation des logiciels SAP2000 V14, autocad etc. Les points important tirés de cette étude sont :

- 1. La modélisation doit, autant que possible englober tous les éléments de la structure secondaires soient ils, ou structuraux, ceci permet d'avoir un comportement proche du réel.
- 2. La disposition des voiles en respectant l'aspect architectural du bâtiment, est souvent un obstacle majeur pour l'ingénieur du Génie Civil, ces contraintes architecturales influentes directement sur le comportement de la structure vis-à-vis des sollicitations extérieures, telles que les séismes.
- **3.** Il est apparu que la vérification de l'interaction entre les voiles et les portiques dans les constructions mixtes vis-à-vis des charges verticales et horizontales est indispensable et dans la plus part des cas est déterminant pour le dimensionnement des éléments structuraux.
- **4.** La présence des voiles dans la structure a permis la réduction des efforts internes de flexion et de cisaillement au niveau des poteaux et des portiques. Ceci a donné lieu à des sections de poteaux soumises à des moments relativement faibles, donc un ferraillage avec le minimum du RPA s'est imposé.
- **5.** Le radier nervuré est le type de fondation choisi, vu les charges importantes et les petites trames qui induisent des chevauchements pour le choix des semelles isolées ou filantes.

Nous souhaitons que ce modeste travail soit bénéfique pour les prochaines promotions.

Bibliographie

Bibliographie

- ❖ [1] RPA99 « Règles parasismiques Algériennes 1999/ver 2003 ».
- ❖ [2] CBA 93 « Code du béton armé, 1993 ».
- ❖ [3] BAEL91/99« Béton armé aux états limites, 1997/ver1999».
- ❖ [4] DTR BC 2.2« Charges permanentes ET surcharges d'exploitation; édition 1989 ».
- ❖ [5] DTR BC 2.33.1 « Règles de calcul des fondations superficielles ; édition 1992 ».
- * Ancien mémoires de fin d'étude.
- Logiciels utilisés :
 - > SAP 2000 Version14.

Annexes

Annexe (I):
Dalles rectangulaires uniformément chargées articulées sur leur contour

$\alpha = \frac{L_x}{L_y} \qquad \qquad \mu_x \qquad \mu_y \qquad \mu_x$ $0.40 \qquad 0.1101 \qquad 0.2500 \qquad 0.0121$ $0.41 \qquad 0.1088 \qquad 0.2500 \qquad 0.1110$ $0.42 \qquad 0.1075 \qquad 0.2500 \qquad 0.1098$	μ _y 0.2854 0.2924 0.3000 0.3077
0.41 0.1088 0.2500 0.1110 0.42 0.1075 0.2500 0.1098	0.2924 0.3000 0.3077
0.41 0.1088 0.2500 0.1110 0.42 0.1075 0.2500 0.1098	0.2924 0.3000 0.3077
	0.3077
0.43 0.1062 0.2500 0.1087	
0.44 0.1049 0.2500 0.1075	0.3155
0.45 0.1036 0.2500 0.1063	0.3234
0.46 0.1022 0.2500 0.1051	0.3319
0.47 0.1008 0.2500 0.1038	0.3402
0.48 0.0994 0.2500 0.1026	0.3491
0.49 0.0980 0.2500 0.1013	0.3580
0.50 0.0966 0.2500 0.1000	0.3671
0.51 0.0951 0.2500 0.0987	0.3758
0.52 0.0937 0.2500 0.0974	0.3853
0.53 0.0922 0.2500 0.0961 0.54 0.0908 0.2500 0.0948	0.3949 0.4050
0.54 0.0908 0.2500 0.0948 0.55 0.0894 0.2500 0.0936	0.4150
0.56 0.0880 0.2500 0.0923 0.57 0.0865 0.2582 0.0910	0.4254 0.4357
0.57 0.0865 0.2562 0.0910 0.58 0.0851 0.2703 0.0897	0.4456
0.58 0.0831 0.2703 0.0837 0.59 0.0836 0.2822 0.0884	0.4565
0.60 0.0822 0.2948 0.0870	0.4672
0.61 0.0808 0.3075 0.0857	0.4781
0.62 0.0794 0.3205 0.0844	0.4892
0.63 0.0779 0.3338 0.0831	0.5004
0.64 0.0765 0.3472 0.0819	0.5117
0.65 0.0751 0.3613 0.0805	0.5235
0.66 0.0737 0.3753 0.0792	0.5351
0.67 0.0723 0.3895 0.0780	0.5469
0.68 0.0710 0.4034 0.0767	0.5584
0.69 0.0697 0.4181 0.0755	0.5704
0.70 0.0684 0.4320 0.0743	0.5817
0.71 0.0671 0.4471 0.0731	0.5940
0.72 0.0658 0.4624 0.0719	0.6063
0.73	0.6188
0.74 0.0633 0.4938 0.0696 0.75 0.0621 0.5105 0.0684	0.6315 0.6447
0.76 0.0608 0.5274 0.0672 0.77 0.0596 0.5440 0.0661	0.6580 0.6710
0.77 0.0596 0.3440 0.0661 0.78 0.0584 0.5608 0.0650	0.6841
0.79 0.0573 0.5786 0.0639	0.6978
0.80 0.0561 0.5959 0.0628	0.7111
0.81 0.0550 0.6135 0.0617	0.7246
0.82 0.0539 0.6313 0.0607	0.7381
0.83 0.0528 0.6494 0.0956	0.7518
0.84 0.0517 0.6678 0.0586	0.7655
0.85 0.0506 0.6864 0.0576	0.7794
0.86 0.0496 0.7052 0.0566	0.7932
0.87 0.0486 0.7244 0.0556	0.8074
0.88 0.0476 0.7438 0.0546	0.8216
0.89 0.0466 0.7635 0.0537 0.90 0.0456 0.7834 0.0528	0.8358 0.8502
0.91 0.0447 0.8036 0.0518 0.92 0.0437 0.8251 0.0509	0.8646
0.92 0.0437 0.8251 0.0509 0.93 0.0428 0.8450 0.0500	0.8799 0.8939
0.93 0.0428 0.8450 0.0300 0.94 0.0419 0.8661 0.0491	0.9087
0.95 0.0419 0.8875 0.0483	0.9236
0.96 0.0401 0.9092 0.0474	0.9385
0.97 0.0392 0.9322 0.4065	0.9543
0.98 0.0384 0.9545 0.0457	0.9694
0.99 0.0376 0.9771 0.0449	0.9847
1.00 0.0368 1.0000 0.0441	0.1000

Annexe (II)

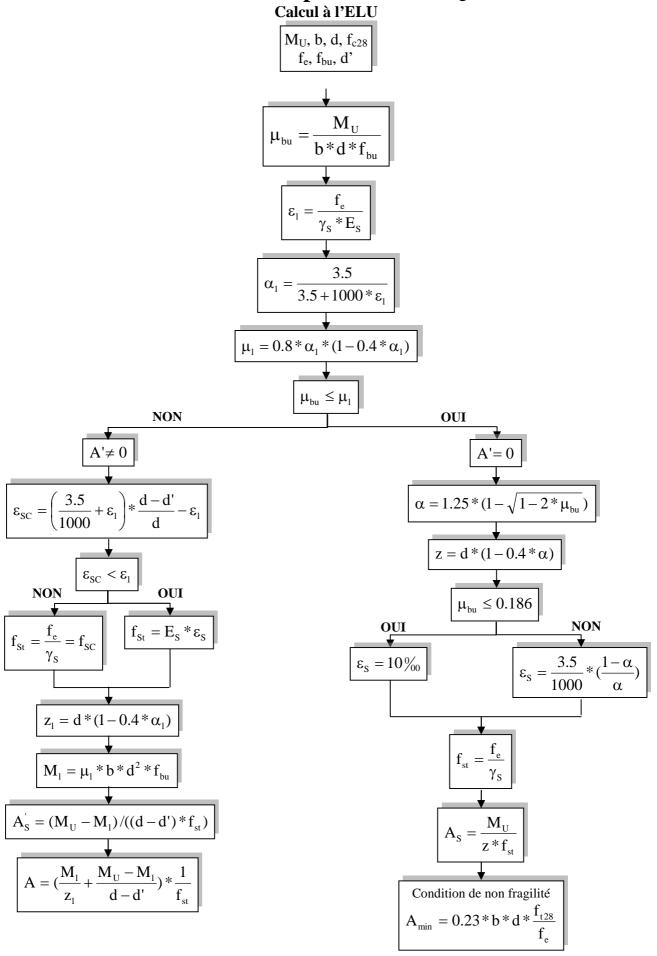
Table de PIGEAUD

M1 et M2 pour une charge concentrique P=1 s'exerçant sur une surface réduite $u \times v$ au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension

$$Lx \times Ly$$
Avec $Lx < Ly$.
$$\rho = 0.9$$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.302 0.260 0.227 0.202 0.181 0.161 0.144 0.132 0.122 0.112	0.254 0.235 0.214 0.196 0.178 0.160 0.146 0.133 0.123 0.114 0.102	0.187 0.183 0.175 0.164 0.153 0.141 0.130 0.121 0.113 0.103 0.093	0.154 0.152 0.148 0.142 0.134 0.126 0.118 0.110 0.102 0.093 0.084	0.131 0.130 0.128 0.124 0.118 0.113 0.106 0.098 0.092 0.084 0.075	0.115 0.114 0.112 0.109 0.105 0.100 0.095 0.088 0.083 0.076 0.068	0.102 0.101 0.099 0.097 0.093 0.089 0.085 0.079 0.074 0.068 0.062	0.090 0.089 0.088 0.086 0.083 0.080 0.077 0.072 0.067 0.062 0.057	0.081 0.080 0.079 0.078 0.075 0.073 0.069 0.065 0.061 0.057 0.051	0.073 0.073 0.072 0.070 0.068 0.066 0.063 0.058 0.055 0.051 0.046	0.067 0.067 0.066 0.065 0.063 0.060 0.057 0.054 0.049 0.046 0.042
$\rm Valeur\ de\ M_2$	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	/ 0.253 0.202 0.167 0.143 0.128 0.114 0.102 0.09 0.081 0.073	0.310 0.208 0.175 0.150 0.132 0.118 0.106 0.094 0.083 0.076 0.069	0.200 0.173 0.152 0.135 0.122 0.108 0.096 0.086 0.077 0.071 0.065	0.167 0.151 0.137 0.123 0.110 0.097 0.087 0.078 0.072 0.066 0.060	0.149 0.136 0.123 0.110 0.098 0.088 0.079 0.073 0.066 0.061 0.055	0.134 0.123 0.110 0.099 0.088 0.080 0.073 0.067 0.062 0.056 0.050	0.122 0.110 0.100 0.088 0.081 0.073 0.067 0.062 0.056 0.052 0.047	0.110 0.099 0.089 0.081 0.074 0.067 0.062 0.057 0.052 0.047 0.043	0.098 0.089 0.082 0.074 0.067 0.062 0.056 0.052 0.047 0.043 0.038	0.088 0.081 0.074 0.067 0.061 0.056 0.052 0.047 0.043 0.038 0.035	0.081 0.074 0.067 0.061 0.056 0.051 0.047 0.043 0.038 0.035 0.032

Annexe (III) Sections en (cm^2) de N armatures de diamètre ϕ en (mm)


φ:	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	154	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6,28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5,65	7.70	10,05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29,45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87,96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18,10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.42	125.66
11	2.16	3.11	5.53	8.64	12,44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13,57	18.47	24.13	37.70	58.91	96.51	150.8
13	2.55	3.68	6.53	10.21	14.70	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68,72	112.59	175.93
15	2.95	4.24	7.54	11.78	16,96	23.09	30.16	47.12	73.63	120.64	188.5
16	3.14	4.52	8.04	12.57	18,10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19,23	26.17	34.18	53.41	83,45	136,72	213,63
18	3.53	5.09	9.05	14.14	2036	27.71	36.19	56.55	88,36	144.76	226.2
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

Annexe (IV)

950 x 1450

Company Comp	The complete of the control of the	B DEFINITION DEF	Charges 4	Granding (%) p 1 p 1 p 1 p 1 p 1 p 1 p 1 p 1 p 1 p	Tous 226 71 135 82 179 81 160 100 148 109 138 116 129 129 1	Has inventors (5)0 2200 F7 220 98 200 100 103 109 104 107 107 107 147 147 147 147 147 147 147 147 147 14	211 57 190 63 178 68 162 74 154 78 145 83 135 88 193 92 124 47 119 101 113 25 56 57 57 57 77 57 77 57 77 57 77 57 77 57 77 7	630 354 75 322 85 255 94 235 102 220 109 207 116 197 122 188 188 178 134 134 135 146 148 153 135 135 149 154 155 155 155 155 155 155 155 155 155	356 63 333 96 259 107 256 108 256 155 257 140 259 122 140 218 147 208 154 208 155 151 178	440 91 381 108 342 117 313 128 280 138 272 147 288 155 245 183 284 177 245 178 178 178 178 178 178 178 178 178 178	400 174 29 155 159 179 113 173 25 155 159 179 179 171 174 159 150 179 179 179 179 179 179 179 179 179 179	271 1JU 254 126 239 154 254 156 159 159 159 159 159 159 159 159 159 159	315 27 284 135 278 144 281 153 248 181 237	45 49 222 54 207 58 197 61 185 65 176 68 169 71 162 74 156 77 159 78 146	400 286 56 259 62 239 67 225 71 213 75 203 79 195 82 186 86 180 89 174 92 168 23 22 62 200 68 287 75 250 80 235 85 225 89 215 93 205 97 200 100 192 104 107	630 530 07 320 75 283 82 283 83 285 82 287 101 284 105 222 111 241 116 203 120 226 124 215	1000 456 79 400 90 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50	#25 30 14 28 14 49 98 404 109 372 118 308 128 308 134 140 300 147 289 159 288 159 288 288 288 288 288 288 288 288 288 28	400 400 400 400 400 400 400 400 400 400	244 62 230 87 220 91 211 65 202 99 194 273 88 250 93 245 98 233 102 224 107 214	228 94 200 100 255 110 243 115 223 372 99 305 105 201 111 275 116 254 121 254	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 60 194 62 188 64 182 66 173 67 174 82 80 80 195 65 178 80 195 80 241 80 233 86 25 80 25 80 25 80 185 80 25 80 25 80 185 80 25 80 18	289 97 277 101 209 104 205 104 205 104 205 104 205 104 205 105 105 105 105 105 105 105 105 105 1	225 111 30 116 300 120 120 120 120 120 120 120 120 120 1	20 1 57 200 100 110 110 110 110 110 110 110 110	630 630 77 253 76 253 77 253 78 253 79 244 82 255 85 227	304 79 289 83 276 87 267 90 258 83 250 334 89 301 93 289 97 280 100 269	25 300 104 323 303 311 103 299 107 288	000 001 000 001 000 001 000 000 000 000
Monthly to be A virtual to the property of t	Company A 5 6 7 7 8 9 9 9 9 9 9 9 9 9	M DEFINITION DE	Charges 4	4 - 4 - 4 - 4 - 4 - 4 - 4	188 64 104 73 148 81 136 88 126 95 117 103 109 110 226 77 195 92 176 91 160 100 148 108 138 116 129 124	280 77 225 89 200 100 143 109 108 119 157 127 147 283 82 280 96 224 109 203 118 188 128 175 137 164 322 87 277 101 246 114 224 125 205 138 132 146 100	211 57 190 63 178 68 162 74 154 78 145 83 135 88 193 92 124 47 119 101 113 25 56 57 57 57 77 57 77 57 77 57 77 57 77 57 77 7	320 75 282 85 555 94 255 103 220 105 107 112 193 118 118 173 156 128 149 320 108 149 149 154 155 156 158 149 32 158 149 159 149 159 149 159 149 159 149 159 149 159 149 159 149 159 149 159 149 159 149 159 159 159 159 159 159 159 159 159 15	356 83 333 96 529 107 275 116 256 125 271 130 229 140 243 140 249 154 260 160 192 414 87 380 100 321 112 285 122 273 132 227 140 243 148 271 145 271 145 271 140 243 148 271 145 271 1	440 91 381 105 342 117 313 1281 289 138 272 (47 288 155 245 183 224 117 245 178 178 178 178 178 178 178 178 178 178	774 02 6 7 5 5 7 5 7 5 7 7 7 8 7 1 7 1 3 1 1 1 1 1 3 7 7 7 8 7 8 7	251 125 234 334 225 134 135 135 234 157 205 134 136 131 138 135 135 135 135 135 135 135 135 135 135	315 27 284 135 278 144 281 153 248 181 237	45 49 222 54 207 58 197 61 185 65 176 68 169 71 162 74 156 77 159 78 146	286 56 258 62 239 67 225 71 213 75 203 79 195 82 196 88 180 89 174 92 168 32 85 225 89 215 93 208 97 200 100 192 104 107	630 530 07 320 75 283 82 283 83 285 82 287 101 284 105 222 111 241 116 203 120 226 124 215	456 7 20 30 30 30 30 30 30 30 30 30 30 30 30 30	462 65-426 54 355 104 354 113 353 120 315 127 259 134 286 140 276 145 257 150 258	102 06 171 70 164 73 158 76 152 79 146 213 75 203 79 193 83 184 87 178 90 172	244 62 230 67 220 91 211 95 202 99 194 273 68 250 93 245 98 234 107 214	25 (45) (15) (15) (15) (15) (15) (15) (15) (1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 60 194 62 188 64 182 66 173 67 174 82 80 80 195 65 178 80 195 80 241 80 233 86 25 80 25 80 25 80 185 80 25 80 25 80 185 80 25 80 18	289 97 277 101 209 104 205 104 205 104 205 104 205 104 205 105 105 105 105 105 105 105 105 105 1	325 111 (0) 116 300 (20 290)24 (28 273	25 25 25 25 25 25 25 25 25 25 25 25 25 2	274 56 233 69 225 71 216 74 208 77 203 274 73 263 76 253 79 244 62 235 85 227	334 79 289 83 276 87 267 90 258 93 250	25 CF 75 75 350 69 340 94 323 99 311 103 299 107 288	000 001 000 001 000 001 000 000 000 000
Nombre total de rivoux desserva y comprès hal de éfourt et parkings 1	Nombre total de rivoux desserva y comprès hal de éfourt et parkings 1	ON DE LA CATANGE, DE LA VILESSE ET DU NOMBHE D'ASCEN. Nombre total de riveaux desservis y compris hall de départ e	4	4 - 4 - 4 - 4 - 4 - 4 - 4	71 195 82 176 81 166 100 146 108 128 116 129 124	77 225 89 200 100 163 109 168 119 157 127 147 82 250 96 224 109 203 118 188 128 175 137 164 87 277 101 246 114 224 125 206 136 192 146 190	190 63 176 68 162 74 164 78 145 83 136 88 130 92 124 97 119 101 113	28.5 85 25.0 97 25.1 50 20 100 100 100 100 110 100 110 110 110	333 96 299 107 276 116 256 125 241 130 229 140 218 147 208 144 266 150 192 380 100 331 112 295 122 273 132 277 140 213 148 231 146 291 147 208 145 200 149 192 380 100 331 112 295 122 273 132 277 140 243 148 231 148 291 145 200 149	381 105 342 117 313 128 290 138 272 (47 258 155 245 183 234 77) 255 778 279 140 405 405 172 331 133 308 44 288 327 455 251 171 248 785 277 88 227 48 229 237 188 227 48 229 237 188 227 48 229 237 188 227 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	251 125 234 334 225 134 135 135 234 157 205 134 136 131 138 135 135 135 135 135 135 135 135 135 135	315 27 284 135 278 144 281 153 248 181 237	45 49 222 54 207 58 197 61 185 65 176 68 169 71 162 74 156 77 159 78 146	56 259 62 209 67 225 71 213 75 203 79 195 82 166 86 180 89 174 92 166 62 200 60 267 75 250 80 235 85 225 89 215 93 206 87 200 100 192 104 107	07 320 73 283 82 273 88 285 95 277 101 284 105 222 111 24 116 233 120 226 124 1219	79 (VC) 90 354 (9) 336 (0) 316 (14 250 (2) 28 12 72 73 (32 253 137 254 42 245 245 740 (2) 354 (4) 354 (4) 355	83, 425 94 385 104 334 113 333 120 315 127 299 134 286 140 276 145 267 150 258 87 449 98 404 109 372 118 349 128 328 134 140 300 147 288 153 278 156 268	75 203 79 193 83 184 87 178 95 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	25 (45) (15) (15) (15) (15) (15) (15) (15) (1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	289 97 277 101 209 104 202 107 222 111 248	325 111 (0) 116 300 (20 290)24 (28 273	25 SEC. 12 SEC	73 263 76 253 79 244 82 235 85 227	334 79 289 83 276 87 267 90 258 93 250	25 CF 75 75 350 69 340 94 323 99 311 103 299 107 288	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	Nombre total de niveaux desservis y compris hall de départ e	5 6 7 8 9 10 11 12 13	a - a - a - a - a - a	195 62 176 81 136 88 128 95 117 103 109 110	225 89 200 100 163 109 168 119 157 127 147 250 96 224 109 203 118 188 128 175 137 164 277 101 246 114 224 125 206 136 192 146 140	190 63 176 68 162 74 164 78 145 83 136 88 130 92 124 97 119 101 113	28.5 85 25.0 97 25.1 50 20 100 100 100 100 110 100 110 110 110	333 96 299 107 276 116 256 125 241 130 229 140 218 147 208 144 266 150 192 380 100 331 112 295 122 273 132 277 140 213 148 231 146 291 147 208 145 200 140 192 192 145 200 140 140 140 140 140 140 140 140 140 1	381 105 342 117 313 128 290 138 272 (47 258 155 245 183 234 77) 255 778 279 140 405 405 172 331 133 308 44 288 327 455 251 171 248 785 277 88 227 48 229 237 188 227 48 229 237 188 227 48 229 237 188 227 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	250 116 250 137 209 134 199 141 189 157 209 139 134 199 141 189 157 158 158 158 158 159 159 159 159 159 159 159 159 159 159	315 27 284 135 278 144 281 153 248 181 237	222 S4 207 58 197 61 185 65 176 68 169 71 162 74 156 77 159 78 146	259 62 239 67 225 71 213 75 203 79 195 82 186 86 180 89 174 92 168 200 60 267 75 250 80 235 85 225 89 215 93 206 97 200 100 192 104 107	320 75 233 82 273 88 235 83 245 88 235 102 224 107 216 111 211 114 203 350 80 318 88 295 95 277 101 284 106 222 111 241 116 233 120 226 124 219	270 55 544 24 31 10 240 500 14 250 17 27 27 172 256 137 256 137 254 342 245 245 245 245 245 245 245 245 245 2	429 98 404 109 372 118 349 126 315 127 259 134 286 140 276 145 267 150 258 443 98 404 109 372 118 349 128 328 134 140 300 147 288 153 278 158 268	75 203 79 193 83 184 87 178 95 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	288 94 500 100 267 110 243 115 233 15 533 15 533 15 233 15	700 00 00 110 20 112 213 127 271 271 271 271 271 271 271 271 271	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	289 97 277 101 289 104 282 107 282 111 248 289 307 104 283 104 283 104 282 111 248	325 11 310 116 300 120 200 124 281 128 273	25 15 15 15 15 15 15 15 15 15 15 15 15 15	73 263 76 253 79 244 82 235 85 227	334 79 289 83 276 87 267 90 258 93 250	25 CF 75 75 350 69 340 94 323 99 311 103 299 107 288	000 00 000 000 000 000 000 000 000 000
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	bre total de niveaux desarvis y compris hall de départ e	0 7 8 9 10 11 12 13	a - a - a - a - a	178 81 136 88 128 95 117 103 100 110	200 100 163 109 168 119 157 127 147 224 109 203 119 188 128 175 137 164 245 114 224 125 205 138 192 146 100	175 68 162 74 154 78 148 83 136 88 130 92 124 47 111 138 116 132 220 78 199 88 178 90 167 86 28 101 113 116 144 111 138 116 132 220 78 78 78 78 78 78 78 78 78 78 78 78 78	255 94 235 102 220 109 102 102 103 103 103 104 105 105 106 108 109 105 105 105 105 105 105 105 105 105 105	299 107 275 116 256 125 247 130 229 140 218 147 208 142 200 169 192 321 112 295 122 273 132 257 140 248 148 201 156 193	342 117 313 128 290 138 272 147 258 155 245 153 254 177 246 178 257 178 251 122 351 133 305 144 288 153 272 162 245 153 254 177 245 178 257 185 277 18	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	251 140 254 134 139 141 189 150 259 150 257 141 256 254 150 259 150 257 141 256 148 206	315 127 284 135 278 144 281 153 248 151 237	207 58 197 61 185 65 176 68 169 71 162 74 156 77 152 79 146	239 67 225 71 213 75 203 79 195 82 186 86 180 89 174 92 166 267 75 250 80 235 85 225 89 215 93 206 97 200 100 192 104 107	233 62 23 00 23 93 245 98 235 102 224 107 216 111 211 114 203 318 88 295 95 277 101 264 105 252 111 241 116 233 120 226 124 219	246 49 35 10 25 10 25 11 28 28 12 28 3 127 273 132 263 137 25 142 245	335 104 334 113 330 120 315 127 299 134 286 140 276 145 267 150 288 404 109 372 118 349 128 328 134 140 300 147 288 153 278 156 268	75 203 79 193 83 184 87 178 95 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	728 94 280 100 267 105 255 110 243 115 233 110 245 115 233 115 233 115 233 115 233 115 233 115 254 121 254	26 1 2 2 2 3 4 2 2 2 3 4 2 2 2 2 3 4 2 2 2 2	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	225 111 300 116 300 120 230 120 231 128 273	27 25 25 25 25 25 25 25 25 25 25 25 25 25	73 263 76 253 79 244 82 235 85 227	334 79 289 83 276 87 267 90 258 93 250	25 CF 75 75 350 69 340 94 323 99 311 103 299 107 288	000 001 000 001 000 001 000 000 000 000
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	is to the visual deservicy compris hall de départ e	7 8 9 10 11 12 13	a - a - a - a - a	106 88 126 95 117 109 109 110	203 119 188 128 175 127 147 2203 119 188 128 175 137 164 224 125 205 138 192 146 180	68 162 74 154 78 145 83 135 86 130 92 124 97 119 101 113 77 190 84 778 90 167 96 158 90 1131 30 144 111 138 136 132	94 235 102 200 100 100 100 112 103 118 163 123 156 128 139 144 135 102 200 100 100 100 100 100 100 100 100	107 276 116 256 125 271 133 229 140 218 142 20 44 48 185 161 178 112 295 125 273 132 271 140 243 48 271 146 224 520 180 192	117 313 128 280 138 272 147 258 155 245 153 264 177 256 178 219 178 219 237 188 227	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	271 178 254 141 689 147 216 148 200 200 178 200 200 200 200 200 200 200 200 200 20	315 27 284 135 278 144 281 153 248 151 237	58 197 61 185 85 176 68 169 71 162 74 156 77 155 79 146	67 225 71 213 75 203 79 195 82 186 86 180 89 174 92 166 75 250 80 235 85 225 89 215 93 206 97 200 100 192 104 107	88 295 95 277 101 264 106 222 111 241 116 233 120 226 124 219	94 31/ 101 270 103 300 114 250 119 258 124 258 259 134 252 199 336 107 316 114 250 121 283 127 273 132 263 137 254 142 245	109 372 118 349 128 328 134 344 140 300 147 288 155 278 156 258	75 203 79 193 83 184 87 178 95 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	223 94 80 100 267 105 255 110 243 115 223	370 108 348 115 331 121 315 127 271 727 271 370 133 288 372 127 277 271 372 373 127 277 277 378 378 378 378 378 378 378 378 378 3	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	225 111 300 116 300 120 230 120 231 128 273	27 25 25 25 25 25 25 25 25 25 25 25 25 25	73 263 76 253 79 244 82 235 85 227	334 79 289 83 276 87 267 90 258 93 250	25 CF 75 75 350 69 340 94 323 99 311 103 299 107 288	000 001 000 001 000 001 000 000 000 000
14 14 15 15 15 15 15 15	14 14 15 15 15 15 15 15	A VII ESSE ET DU NOMBHE D'ASCEN	7 8 9 10 11 12 15	a - a - a - a	100 148 108 138 116 129 124	109 168 119 157 127 147 118 188 128 175 137 164 125 205 138 192 148 180	74 154 78 145 83 136 88 130 92 124 97 119 101 113 84 178 90 167 96 158 101 151 136 144 111 138 116 132	22. 22.0 109 207 116 197 12. 188 128 178 171 156 128 149	10 250 125 241 131 229 140 218 147 201 154 165 151 178 122 123 125 140 241 140 192 187 147 140 192 187 147 140 140 192 187 147 140 140 192 187 147 140 140 140 140 140 140 140 140 140 140	120 230 136 272 (47 258 155 245 163 234 171 225 178 219 225 178 227 186 227 162 227 162 27 162 227 163 225 171 245 178 297 186 227	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	251 182 553 150 550 177 209 134 199 141 189 551 189 551 189 551 189 554 159 559 134 557 147 559 559 134 555 159 559 559 559 559 559 559 559 559	315 27 284 135 278 144 281 153 248 181 237	61 185 85 176 68 169 71 162 74 156 77 152 79 146	71 213 75 203 79 195 82 186 86 180 89 174 92 166 80 235 85 225 89 215 93 206 97 200 100 192 104 107	00 258 93 245 98 235 002 224 107 216 111 211 114 203 95 277 101 264 106 222 111 241 116 233 120 226 124 219	101 275 100 280 114 269 119 258 124 248 128 239 134 232 140 230 114 296 121 283 127 273 132 263 137 254 142 245	113 333 120 315 127 289 134 286 140 276 145 267 150 258 118 349 128 328 134 314 140 300 147 268 153 278 158 268	75 203 79 193 83 184 87 178 95 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	223 94 80 100 267 105 255 110 243 115 223	370 108 348 115 331 121 315 127 271 727 271 370 133 288 372 127 277 271 372 373 127 277 277 378 378 378 378 378 378 378 378 378 3	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	TI 01 202 101 202 104 202 107 202 101 203 104 202 105 202 101 203 202 101 203 202 101 203 202 101 203 202 101 203 202 202 202 202 202 202 202 202 202	325 111 3(0 116 300 120 290 124 281 128 273	2 21 57 200 00 194 62 189 64 187 66 175	73 263 76 253 79 244 82 235 85 227	334 84 314 89 301 93 289 97 280 100 258	75 77 75 360 69 340 94 223 99 311 163 299 107 288	408 98 385 104 357 109 351 114 339 118 35
14 14 15 15 15 15 15 15	14 14 15 15 15 15 15 15	esse et Du nombhe D'Ascen dessevis y compris hall de départ e	8 9 10 11 12 13	a - a - a - a -	95 117 103 109 110	128 175 127 147 128 175 137 164 136 192 146 180	78 145 83 136 88 130 92 124 97 119 101 113 90 167 96 158 101 151 136 144 111 138 116 132	109 202 105 105 105 108 118 103 123 156 128 148	125 247 150 213 100 218 147 208 154 100 192 192 152 257 150 218 147 208 154 200 150 192 192 192 192 193 154 155 155 155 155 155 155 155 155 155	138 272 (47 258 155 245 163 234 171 225 178 219 144 268 153 272 162 257 171 245 179 237 186 227	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	271 148 254 126 239 134 227 141 216 148 206	315 127 254 135 278 144 261 153 248 161 237	85 176 68 168 71 162 74 156 77 152 78 146	75 203 79 195 62 186 86 180 89 174 92 168 85 225 89 215 93 206 97 200 100 192 104 107	93 245 98 235 102 224 107 216 111 211 114 203 101 264 106 252 111 241 116 233 120 226 124 219	00 280 171 280 177 273 132 263 137 254 142 245	120 315 127 289 134 286 140 276 145 267 150 268 126 328 134 134 140 300 147 288 153 278 158 268	75 203 79 193 83 184 87 178 96 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	238 94 80 100 267 105 255 110 243 115 233 115 233 115 233 115 233 115 254 121 254	370 109 348 715 331 121 315 127 301 133 288	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	289 97 277 101 269 104 262 107 252 111 248 307 104 294 109 286 112 276 136 267 150 259	225 111 310 116 300 120 290 124 281 128 273	255 f24 341 129 326 135 311 132 204 136 236 211 57 200 00 134 62 188 64 182 66 176	73 263 76 253 79 244 82 235 85 227	334 84 314 89 301 93 289 97 280 100 259	73 360 69 340 94 323 89 311 163 299 107 288	408 98 385 104 307 109 351 114 330 118 30
14 14 15 15 15 15 15 15	14 14 15 15 15 15 15 15	ET DU NOMBHE D'ASCEN	9 10 11 12 13	a - a - a -	103 109 110	127 147 137 164 146 180	83 136 88 130 92 124 97 119 101 113 96 158 101 151 136 144 111 138 116 132	116 197 122 188 128 178 134 171 140 164	241 133 229 140 218 147 208 154 200 160 192 257 140 243 148 231 156 224 150 140 140 156 224 150 140 140 140 140 140 140 140 140 140 14	272 (47 258 155 245 153 234 171 225 178 219 288 153 272 162 257 171 246 179 237 186 227	02 100 97 100 82 124 97 119 101 113 02 153 08 155 103 114 109 140 144 134 100 189 106 179 112 159 118 161 124 154 107 211 114 200 120 189 127 180 133 173	148 254 126 239 134 227 141 216 148 206	127 294 135 278 144 261 153 248 161 237	68 169 71 162 74 156 77 152 79 146	79 195 82 186 86 180 89 174 92 168 89 215 93 206 97 200 100 192 104 107	98 235 102 224 107 216 111 211 114 203 106 252 111 241 116 233 120 226 124 219	296 121 283 127 273 132 263 137 254 142 245	315 127 289 134 286 140 276 145 267 150 258 328 134 314 140 300 147 288 153 278 158 268	75 203 79 193 83 184 87 178 96 177	88 258 97 220 91 211 95 202 99 194 88 258 93 245 98 233 103 224 107 214	228 34 260 100 267 105 255 110 243 115 223 323 99 305 105 288 111 275 116 264 121 254	370 108 348 115 391 121 315 127 301 133 288 333 112 370 119 349 128 333 132 319 138 306	60 194 62 188 64 182 65 179 67 174 70 219 73 219 75 208 77 200 80 185 90 241 83 230 86 227 88 220 91 215 89 251 92 253 95 245 88 220 91 215	289 97 277 101 269 104 262 107 252 111 248 307 104 294 109 286 112 276 136 267 150 259	225 111 310 116 300 120 290 124 281 128 273	255 f24 341 129 326 135 311 132 204 136 236 211 57 200 00 134 62 188 64 182 66 176	73 263 76 253 79 244 82 235 85 227	304 79 289 83 276 87 267 90 258 93 250 334 84 314 89 301 93 289 97 280 100 269	350 89 340 94 323 89 311 103 299 107 288	408 98 385 104 367 109 351 114 339 118 39
P 1	P 1	NOMBHE D'ASCEN	10 11 12 13	a - a - a	100 110	5 2 5	136 88 130 92 124 97 119 101 113	197 122 188 128 178 134 171 140 164	229 140 218 147 208 154 200 150 192 243 148 231 156 220 150 192	258 155 245 163 234 171 225 178 219 272 162 257 171 246 179 237 186 227	163 98 155 103 47 109 140 114 134 189 106 179 112 159 150 118 151 124 154 154 154 154 154 154 154 154 154 15	254 126 239 134 227 141 216 148 206	294 135 278 144 261 153 248 161 237	169 71 162 74 156 77 159 79 146	195 82 186 86 180 89 174 92 168 215 93 205 97 200 100 192 104 197	252 111 241 116 233 120 226 124 219	283 127 273 132 263 137 254 142 245	289 .134 286 140 276 145 257 150 258 314 140 300 147 288 153 278 158 268	771 70 164 73 158 76 152 79 146 203 79 193 83 184 87 178 90 172	230 87 220 91 211 95 202 99 194 258 93 245 98 233 103 224 107 214	305 (05 288 111 276 116 264 121 254	3-48 115 331 121 315 127 301 133 288 370 119 349 128 333 132 319 138 306	194 62 188 64 182 65 178 67 174 219 73 213 75 208 77 200 80 185 241 83 233 85 227 88 220 91 215 25 25 18 25 25 35 245 245 25 25 25 25 25 25 25 25 25 25 25 25 25	277 101 269 104 202 107 252 111 248 293 109 286 112 276 198 257 129 259	116 300 120 290 124 281 128 273	200 60 194 62 189 64 182 66 175	263 76 253 79 244 82 235 85 227	314 89 301 93 289 97 280 100 259	340 94, 323 199 311 103 299 107 288	385 104 367 109 351 114 339 118 329
P 1	14 14 15 15 15 15 15 15	she D'ASCEN	11 12 13	a - a -	7	99	130 92 124 97 119 101 113	188 128 178 134 171 140 164	203 136 194 144 185 151 178 218 147 208 154 200 160 192 231 156 221 169 449 479 948	245 153 234 171 225 178 219 257 171 246 179 237 186 227	25 103 147 109 140 114 134 157 115 115 115 115 115 115 115 115 115	239 134 227 141 216 148 206	278 144 261 153 248 161 237	162 74 156 77 152 79 146	205 97 200 100 192 104 107	224 107 216 111 211 114 203	258 124 248 129 239 134 232 273 132 263 137 254 142 245	286 140 276 145 267 150 258 300 147 288 153 278 158 268	164 73 158 76 152 79 146	220 91 211 95 202 99 194 245 98 233 103 224 107 214	283 111, 275 116 264 121 254	351 121 315 127 301 133 288 349 128 333 132 319 138 306	188 64 182 66 179 67 174 213 75 208 77 200 80 185 253 85 227 88 220 91 215 253 95 245 08 229 474 231	263 104 202 107 252 111 248	300 120 290 124 281 128 273	326 135 317 139 306 144 297 194 62 188 64 182 66 176	253 79 244 82 235 85 227	276 87 267 90 258 93 250 301 93 289 97 280 100 269	323 99 311 103 299 107 288	367 109 351 114 330 118 35.
P 1	P 1	ASCEN départ e	12 13	d - d - d			124 97 119 101 113	123 156 128 149	208 154 200 160 192	234 171 225 178 219 246 179 237 186 227	147 109 140 114 134 165 169 169 173 189 127 180 133 173	227 141 216 148 206	261 153 248 161 237	156 77 152 79 146	180 89 174 92 168 200 100 192 104 187	233 120 226 124 219	263 137 254 142 245	276 145 267 150 258 288 153 278 158 268	158 76 152 79 146 184 87 178 90 172	233 103 224 107 214	255 110 243 115 233 275 116 264 121 254	315 127 301 133 288 333 132 319 138 306	182 66 179 67 174 208 77 200 80 195 227 89 220 91 235 245 98 220 91 235	202 107 252 111 248 276 176 267 130 260	290 124 281 128 273	317 139 306 144 297 188 64 182 66 176	246 74 209 77 203 244 82 235 85 227	267 90 258 93 250 289 97 280 100 269	311 103 299 107 288	351 114 339 118 334
14 14 15 15 15 15 15 15	14 14 15 15 15 15 15 15	7 10	2 13	a -			119 101 113	128 149	200 160 192	179 237 186 227	97 119 101 113 109 140 114 134 118 161 124 154 127 180 133 173	141 216 148 206	153 248 161 237	77 152 78 146	100 192 104 187	120 226 124 219	129 239 134 232 137 254 142 245	153 278 158 268	76 152 79 146	202 99 194	110 243 115 233	122 283 127 271 127 301 133 288 132 319 138 306	77 200 80 195 88 220 91 215	107 252 111 248	124 281 128 273	132 294 136 286 139 306 144 297 64 182 66 176	74 209 77 203 82 235 85 227	258 93 250	103 299 107 288	114 330 118 326
14 14 15 15 15 15 15 15	14 14 15 15 15 15 15 15	SEUI t part	10	a -			101 113	128 149	160 192	178 219 186 227	124 154 133 173	141 189	161 237	79 146	92 168	124 219	134 232 142 245	150 258	79 146	99 194	121 254	133 288 138 306	67 174 80 195 91 215	248	128 273	144 297 144 297 175	77 203 85 227	93 250	107 288	2 6
ETABLISSEMENT DU PROGRAMMI DU SCOCKESURS (SUITE) 100 101 102 103 104 105 107 108 109 109 109 109 109 109 109	ETABLISSEMENT DU PROGRAMMI DU P	TS dugs	8	-	-											_			-		103101					-	_	_	20.00	
ETABLISSEMENT DU PROGRAMMI DUASCENSEURS (SUITE) ASCENSEURS A ENTRAÎMENT PAR TREUIL FAR TREUIL FAR TEUR	ETABLISSEMENT DU PROGRAMMI DUASCENSEURS (SUITE) ASCENSEURS A ENTRAÎMENT PAR TREUIL FAR TREUIL FAR TEUR		2	_										-																
AT.	NOTITION OF THE PROPERTY OF TH				ETABLISSEN	D'ASCENSE D'ASCENSE											- ymn	4.044	es wie	1-250		Arriver.	nas same	SON SON				MIN.	***	
ACRAPLE: Immerble de 7 niveaux au-dessus du hall actériques de l'immeuble de 7 niveaux au-dessus du hall actériques de l'immeuble de chapte en compte: 140 personnes; veaux desservis à prendre en compte: 18 (hall de dépositatiques de l'intervalle maximal probable: 1 = 80 seconde quipement minimal: un ascenseur de charge nominale du probable: 1 = 80 seconde quipement minimal: un ascenseur de charge nominale segorate maximal probable: 1 = 80 seconde quipement minimal: un ascenseur de charge nominale al lecture du tableau du DTU 75.1 donne pour un ascenseux desservis, les couples de valeurs « P-1 » applicat de taples de capitale de charge nominale en compte et l'inférieur à l'intervalle maximal produce en maximal produce en maximal produce en mindre en min	XEMPLE: Immeuble de 7 niveaux au-dessus du hall de déparatre particisatiques de l'immeuble : 140 personnes : veauvlations à prendre en compte : 8 (hall de déparat + 7 niveaux des à prendre en compte : 9 (hall de déparat + 7 niveaux extrêmes desservis : 19,60 niveaux extrêmes en minite supérieure de 25 secondes. Qui des un minimal : un ascenseur de charge nominale de 1,00 niveaux desservis : 19,60 niveaux desservis : 19,60 niveaux extrêmes en minimal supérieure de 25 secondes. Course maxi en minimal : un ascenseur et au l'intérieur à l'intervalle maximal probable, la nique, dans le couple de valeurs P = 154 et l = 78, P est supersonne compte et l'inférieur à l'intervalle maximal probable, la nique, dans le couple de valeurs P = 154 et l = 78, P est supersonne en minimal sour extrement en minimal extrement en minimal sour extrement en minimal extrement en en minimal extrement en extrement	Mar Car	p ·		12.0	-V-15-	e2 7	1		Do	=		7.64						e e	URSA	EUIL .	EX.			2.0				5100	
neuble de 7 niveaux au-dessus du hall neuble de 7 niveaux au-dessus du hall el l'immeuble (8 (hald de de) and les deux niveaux extrêmes desservis and en compte : 140 personnes; and en compte : 140 personnes desservis and en compte : 140 personnes desservis and les deux niveaux extrêmes desservis and les deux niveaux extrêmes desservis and correspond à une viresse nominale le : on se fixe une limite supérieure de 2 e qui correspond à une viresse nominale le : on se fixe une limite supérieure de 2 e qui correspond à une viresse nominale le : on se fixe une limite supérieure de 2 200 220 239 90 100 109 117 170 LES ET DIMENSIONS TIQUES ET DIMENSIONS TIQUES ET DIMENSIONS S dalle Q 3700 3 Trappe B mini 2 200 2 Trappe Trappe 3700 3 Trappe 41 Trappe 3700 43 Trappe 43 Trappe 43 Trappe 43	Intercept Completed Comp	XEMPLE: Imi actéristiques o opulation à pri iveaux dessen	istance sépara	thoix de l'inter	iquipement mi	rse/vitesse, or	eaux desservis	W.A.	87 7.8	fait que, dans andre en comp	CARACTÉRIS		Cor	i,	Puissa	online on			Gaine on		Palier		ŀ	Machinerie				Efforts alo	en kN	
a 7 niveaux au-dessus du hall ble : 140 personnes ; somple : 140 person	bile : The complete of the file of epart + 7 mives welf- The complete of the file of the file of the complete of the complet	meuble de Je l'immeu endre en c vis à prent	ant les det	valle max	inimal : un	e qui corre	s, les coup	178	06	s le couple ote et l'infe	TIQUES	Charge util	urse maxi	tesses en	nce moter	and and			I					mm us				baux		
x au-dessus du hall 40 personnes; halt e 80 second the 1 = 80 second the 1 = 80 second the charge nominal mite supérieure de 2 ane vitesse nominale donne pour un asce donne pour un asc	x au-dessus du hall de depa x au-dessus du hall de depa de de part + 7 n'i extrêmes desservis : 19,60 n le extrême de conne donne donne donne donne pour un ascenservi 1 de leurs « P-I » applicables suivaint la probable, la	e 7 niveau uble : compte : 1 dre en cor	ux niveaux	imal proba	i ascenset	aspond à 1	oles de va	200	100	de valeur érieur à l'ir	ET DIMEN	le le	en m	s/w	ur en kW	Larg.	Hau	Larg.	Prof.	S dall	Umi	R	T H	S m²	_	Trap	Por	Sur	En cu	
18 du hall la cu hall la cu hall la cu cu hall la cu	1s du hall de départ + 7 niv desservis: 19,60 nives; la de départ + 7 niv desservis: 19,60 nives de 25 secondes. e nominale de 1,00 kieur de 25 secondes. e nominale de 1,00 kieur de 25 secondes. 239 256 117 125 117 125 239 256 117 125 1100 1,100 1100 2,000 2200 2200 2,200 2200 2200 3,300 4 1400 3,300 4 1400 3,300 4 1400 3,300 4 1400 3,300 4 1500 1	x au-dessi 40 personi npte : 8 (he	extrêmes	tble: I = 80	ir de charg mite supér	une vitesse	eurs « P-1	220	109	s P = 154 itervalle ma	SIONS	9				4 E		U						inin		od	te .	alle	vette	
	art + 7 niv 1: 19,60 m 1: 10,00 m 1: 125 m 125	ssus du ha sonnes ; (hall de dép	desservis	seconde (e nominal	nominale	applicab	239	117	et I = 78, aximal pro		30 kg on					2	-	2	-	-		-			950 x 9	006	43		
re depart. 19,60 m. 10,00 kg. secondes pour le rapport le 1,00 m/s, tou secondes pour le 1,00 m/s, tou able, la solution est satisfaisa le 60 m/s le 1,00 m/s, tou solution est satisfaisa le 60 m/s le 1,00 m/s, tou solution est satisfaisa le 60 m/s le		départ.	,60 m.		s pour l	E .c				a pop est sa		1 000 kg ou 13 pe	2	53 1,00	6,8 10	2 100	2200	1 600	-	3700 3800	-	2400 2400	4200 4200		2 000	950 x 950	900 × 20	9	55	

Flexion simple: Section rectangulaire

Annexe (V)

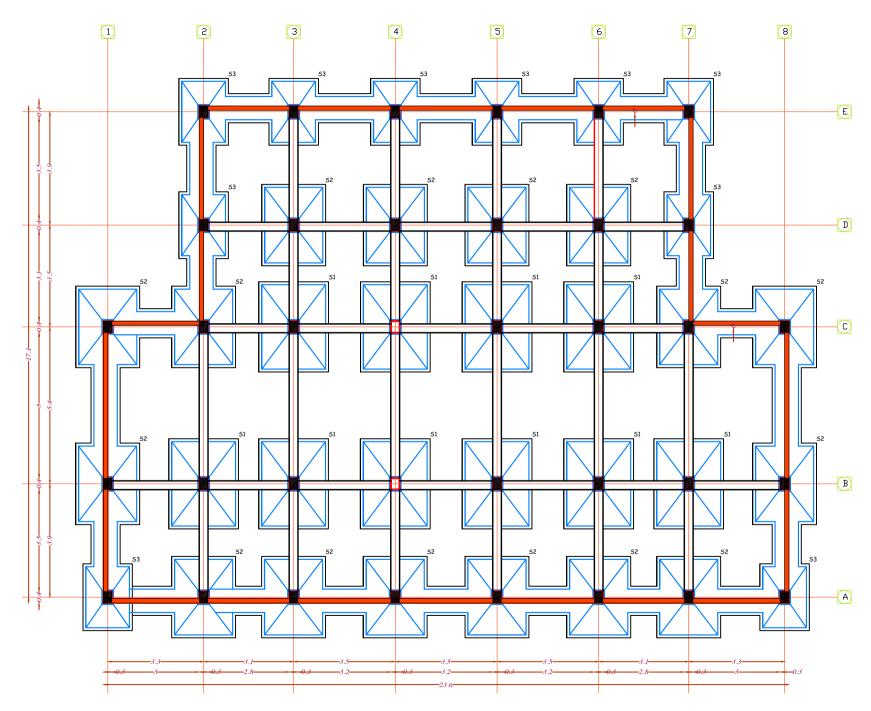
- CAPACITE PORTANTE DU SOL

Au vu de la nature géologique du site ainsi que les résultats d'essai pénétrométrique, nous vous recommandons une fondation superficielle ancrée :

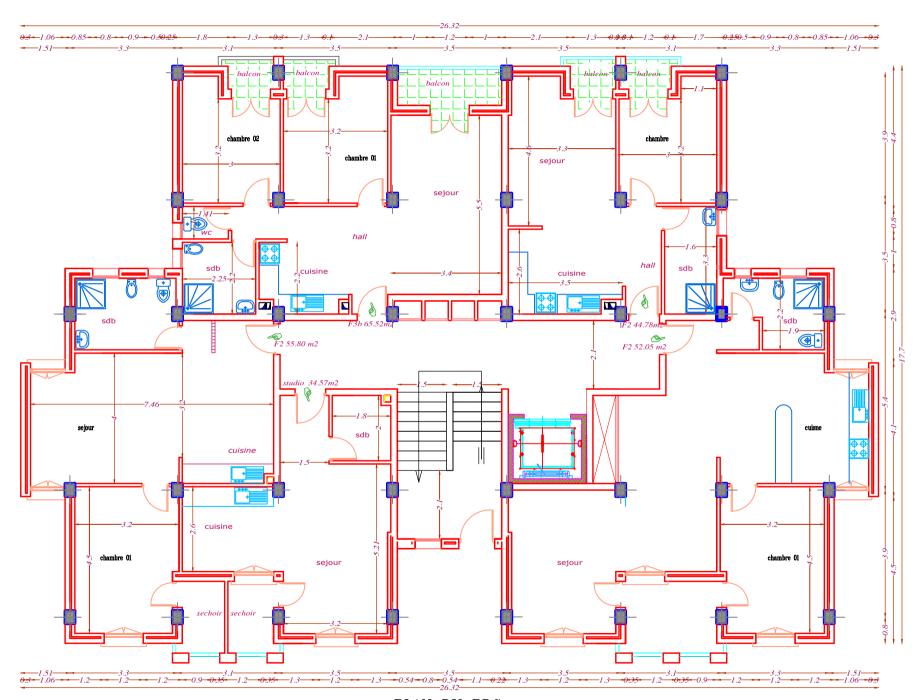
A partir de 1,50m après décapage d'au moins 60cm, correspondant à une contrainte admissible Qadm = 1,4 Bars.

- CONCLUSIONS ET RECOMMANDATIONS

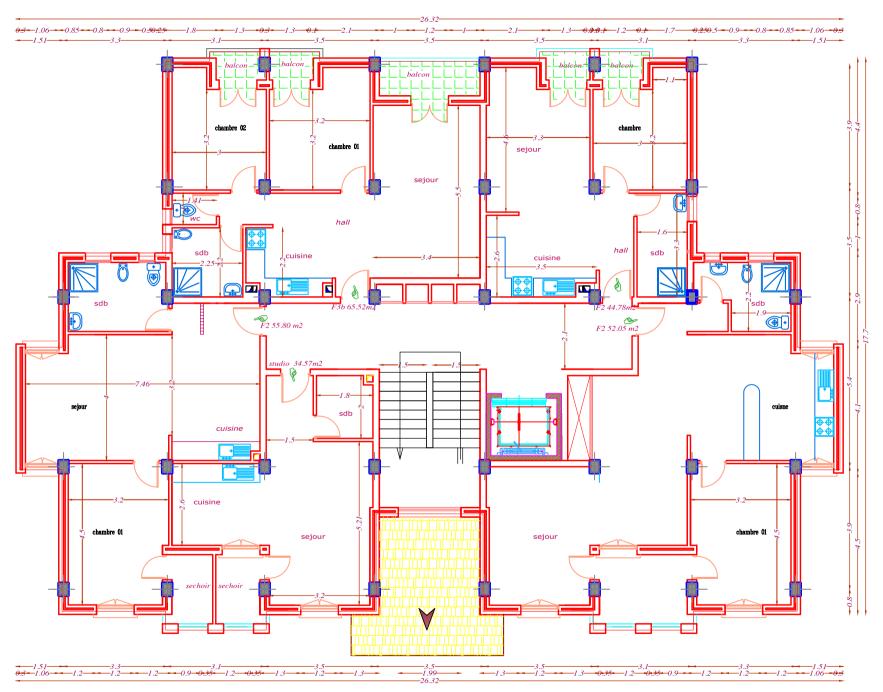
En se basant sur l'essai au pénétromètre dynamique, nous vous recommandons un ancrage à partir de 1,50m après décapage d'au moins 60cm, correspondant à une contrainte admissible Qadm = 1,40 Bars.


Le site est situé sur un terrain plat, il y a donc lieu d'effectuer un bon drainage des eaux pluviales et de prévoir une surélévation de la construction par rapport à la cote du terrain naturel.

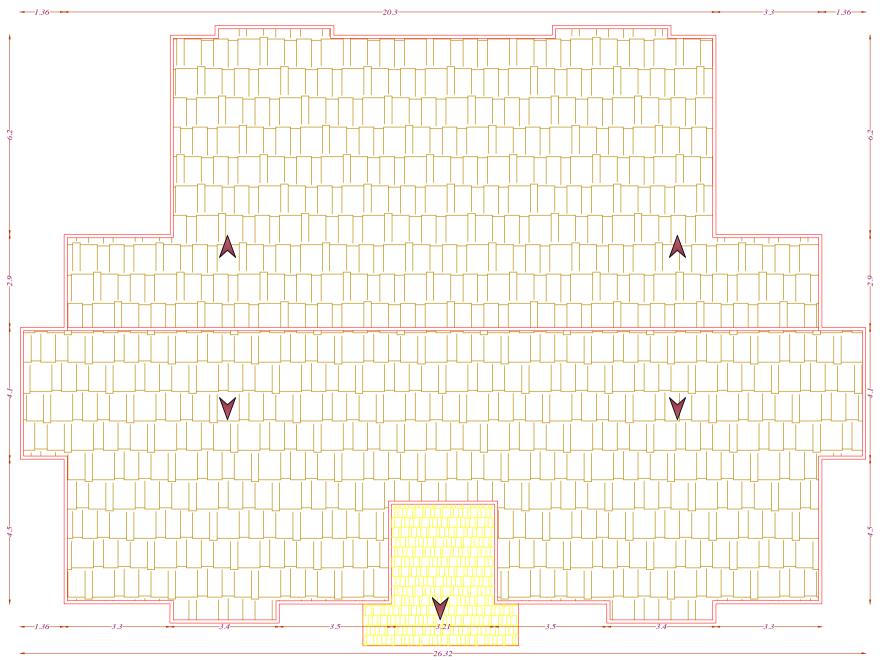
Selon les recommandations du (CGS 2003), la région est classée en zone de sismicité moyenne (IIa), il y a donc lieu de prendre en compte la sismicité de cette région dans le calcul.


Le Responsable D'essai

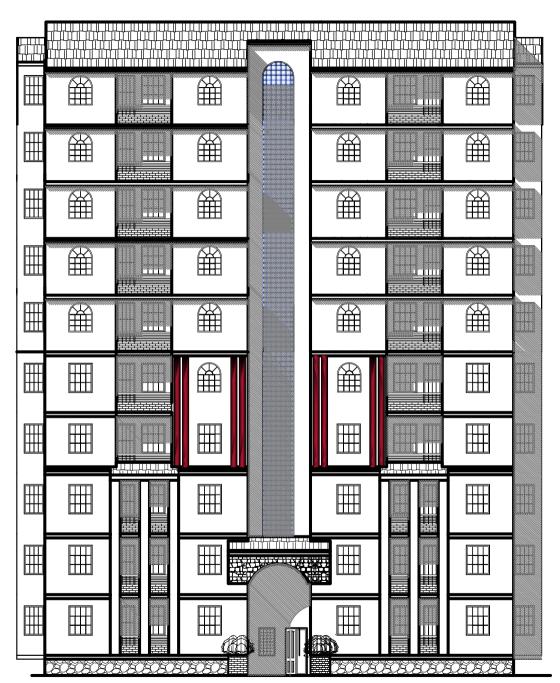
4


Les plans


PLAN DE FONDATION



PLAN DU RDC



PLAN DU 1er ,2eme,3eme et 4eme,5eme,6eme,7eme,8eme,9eme ETAGE COURANT

PLAN DE TOITURE

façade Coté entrée