REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement superteur et de la Recherche Scientifique

<u>Université Abderrahmane MIRA de Bejaia</u> <u>Faculté de Technologie</u>

Département de GENIE CIVIL

Mémoire de fin d'étude

En vue de l'obtention du diplôme master en génie civil Option :Construction métallique

THEME

ETUDE D'UN HANGAR EN CHARPENTE METALLIQUE A USAGE DE STOCKAGE

Présenté par:

- > MEROUANI Yahia
- > RAMTANI Hareb

Jury:

> Mr : IDDIR

> Mr : BENYASSAD

Encadré par :

> Mr : HADDI.I

Promotion: 2015/2016

Au terme de ce modeste travail, nous rendons louange à Dieu le tout puissant de nous avoir donné le courage et la volonté de l'avoir accompli.

Comme nous tendons à adresser nos vifs remerciements à :

A nos famílles: Qui nous ont toujours encouragés et soutenus durant toutes nos études.

A M^{er}I. HADDI: Notre promoteur, pour avoir accepté de nous guider sur le bon chemin du travail.

Aux membres de jury: Pour avoir accepté de juger notre travail.

Et à tous ceux qui ont contribué de près ou de loin à la concrétisation de ce travail.

HAREB ET YAHIA.

Je dédie ce modeste travaille

A mes très chers parents pour tous leurs sacrifices depuis ma naissance à ce jour et pour les encouragements que j'ai eus de leu part.

A toutes la famille sans exception

FARIDA, SALTANA, ZAHIA, SADIKA, A MES TENTES, à mon très cher fiancé HASSIBA en particulier et sa famille.

Ames amis sans exception

Mon binôme YAHIA est sa famille et à toute la promo Construction

Métallique 2016 en particulier LOUNAS, DJAOUID et tous mes amis

de proche ou de loin.

A notre promoteur M^{er} I.HADDI pour accepter de nous guider sur le bon chemin du travail.

tous mes enseignants du primaire jusqu'à ce jour.

R. HARER

Je dédie ce modeste travaille

A mes très chers parents pour tous leurs sacrifices depuis ma naissance à ce jour et pour les encouragements que j'ai eus de leur part.

A toutes la famille sans exception sur tout

SIHAM, IMANE, ALILOU et a mes chers amis Laid, Farés, Omar,

Abdenour, Sadek, Wahid, Rahim, Fayçal, Hakim, Nadir, Cylia,

Anissa, Nadjia, Kahina, Souad, Titus ...etc.

Mon binôme HAREB est sa famille et à toute la promo Construction Métallique 2016 et tous mes amis de proche ou de loin.

A notre promoteur M^{er} I.HADDI pour accepter de nous guider sur le bon chemin du travail.

A tous mes enseignants du primaire jusqu'à ce jour.

Y. MEROUANI

SOMMAIRE

Introduction générale

Chapitre I : Présentation de projet

I. Introduction	1
I.1 Présentation de l'ouvrage	1
I.1.1 Situation du Projet	1
I.1.2 Etude du Sol	1
I.1.3 Dimension du l'ouvrage	2
I.2 Eléments de la Construction.	2
I.2.1 Ossature de la structure	2
I.2.2 La toiture	2
I.2.3 La couverture	2
I.2.4 Les poteaux	3
I.2.5 Les panne	3
I.2.6 Les contreventements	3
I.3 Généralités	3
I.3.1 Martiaux utilise	3
I.3.1.1 Acier	3
I.3.1.2 Les propriétés de l'acier	3
I.3.2 Béton	3
I.3.2.1 Propriétés du béton	4
I.4 Règlements utilise	5
I.4.1 Les états limites	5
I.4.1.1 État limite Ultime (E.L.U.)	5
I.4.1.2 État Limite de Service (E.L.S.)	5
I.5 Les Actions prises en compte	6
I.6 Vues de la structure	7
Chapitre II : Eude climatique	
II.1 Introduction	8
II.1 Coefficient de Calcul	8
II.1.1 Effet de la région	9
II 1.2 Effet de site	9

II.1.3	Coefficient de topographe	9
II.1.4	Calcul de coefficient dynamique Cd	9
II.2 Calcu	ul De Pression	9
II.2.2	Calcul de l'intensité de turbulence Iv	10
II.3 Calc	ul des Coefficients de Pression	11
II.3.1	Direction de vent sur long pan (sens v1)	11
II3.1	.1 Coefficient de pression extérieur Cpe	11
II.3.2	Direction de vent sur le pignon (sens v2)	13
II.3.2	2.1 Coefficient de pression extérieur Cpe	13
II.3.3	Direction de vent sur long pan (sens v1)	16
II.3.3	3.1 Coefficient de pression intérieur Cpi	16
II.3.4	Direction de vent sur pignon (sens v2)	17
II.3.4	4.1 Coefficient de pression intérieur Cpi	17
II.4 La p	pression aérodynamique W (zj)	18
II.4.2	Direction de vent sur pignon (sens v2)	21
II.5 Éval	uation des charges des cas les plus défavorables	23
II.6 Actio	on Ensembles	24
II.6.1	Calcul de la pression extérieure W _e	24
II.6.2	Calcul de la force extérieure : F_{we} = $Cd^*\sum W_e^*A_{re}$	25
II.6.3	Calcul de la pression intérieure W_i	25
II.6.4	Calcul de la force intérieure Fwi	25
II.6.5	Calcul de la force de frottement	26
II.6.6	Calcul de la pression extérieure We	27
II.6.7	Calcul de la force extérieure	27
II.6.8	Calcul de la pression intérieure W _i	27
II.6.9	Calcul de la force intérieure Fwi	28
II.6.10	Calcul de la force de frottement	28
II.7 Et	ude à la neige	30
II.7.1	But	30
II.7.2	la charge de neige sur le sol	30
II.7.3	Coefficient de forme de la toiture	31
II.7.4	La charge de la neige sur la toiture	32

Chapitre III : Pré-dimensionnement des éléments

III. Introduction	33
III .1 Dimensionnement des panneaux de couverture	33
III .1.1.principe de choix d'un panneau sandwich	33
III .1.2. Panneaux couverture	33
III .1.2.1. Détermination de poids propre de la couverture	34
III .1.2.2. Détermination de la portée maximale	34
III.2 Etude des pannes	35
III.2.1 Définition	35
III.2.2. Détermination des sollicitations	36
III.2.2.1. Evaluation des charges et surcharges	36
III.2.2.2. Les charges et surcharges appliquées	39
III.2.2.3 Les combinaisons d'actions	40
III.2.3 Principe de pré dimensionnement	41
III.2.3.1 Vérification à l'ELS (flèche)	41
III.2.4 Dimensionnement des pannes	43
III.2.4.1 Condition de la flèche	43
III.2.4.2 Condition de la résistance (ELU)	43
III.3 Calcul des liernes	48
III.3.1 Définition	48
III.3.2 Calcul des liernes	49
III.2.3 Détermination des efforts de traction	50
III.3.3 Calcul de la section des liernes	51
III.4 Calcul de l'échantignolle	51
III.4.1. Définition	51
III.5 Calcul des lisses de bardage	53
III .5.1 Panneaux bardage	54
III .5.1.1 Détermination de poids propre de bardage	54
III .5.1.2 Détermination de la portée maximale pour le bardage	55
III.5.2 Définition	55
III.5.3 Données de calcul	56
III.5.4 Détermination des charges et surcharges	56
III.5.7 Vérification à l'état limite ultime	57
III.5.8 Vérification au cisaillement	58
III 5 9 Vérification au déversement	58

III.5.10 Vérification à l'état limite de service	59
III.6 Calcul des suspentes	59
III.6.1 Calcul de l'effort de tractions dans la suspente la plus sollicité	60
III.6. 2 Calcul de la section des liernes	60
III.7 Les potelets	61
III.7.1 Définition	61
III.7.2 Dimensionnement des potelets	61
III.7.3 Détermination de la section de potelet (calcul a L'ELS)	62
III.7.4 Evaluation des charges	63
III.7.5 Vérification de la flexion composée	63
III.7.5.1 Vérification de l'effort axial	63
III.7.5.2 Vérification de l'effort tranchant	64
III.7.5.3 Vérification de la stabilité au flambement	64
III.8 Conclusion	70
Chapitre IV : Etude de contreventement	
IV.1 Introduction	71
IV.2 Rôle des systèmes de contreventement	71
IV.3 Contreventement de toiture (poutre au vent)	71
IV.3.1 Calcul de la poutre au vent en pignon	71
IV.3.1.1 Évaluation des efforts dons la poutre au vent	72
IV.3.1.2 Évaluation des efforts horizontaux	73
IV.3.1.3 Effort de traction dans les diagonales	74
IV.3.1.4 Dimensionnement des diagonales	
IV.3.1.5 Calcul de la section brute A	75
IV.3.1.6 Vérification à la résistance ultime de la section	75
IV.4 Vérification des pannes (montants de la poutre au vent) à la résistance	76
IV.4.1 Vérification de la section à la résistance	
IV.5 Vérification de l'élément aux instabilités (déversement)	
IV.5 Calcul de la palée de stabilité en long pans	
IV.5.1 Dimensionnement de la palé de stabilité de rive	
IV.5.1.1 Détermination de la section des diagonales	
IV.5.1.2 Vérification à la résistance ultime de la section	
IV.5.2 Dimensionnement de la palé de stabilité intermédiaire	
IV.5.2.1 Détermination de la section des diagonales	
IV.5.2.2 Vérification à la résistance ultime de la section	

IV.6 Calcul de la poutre sablière	86
IV.6.1 Vérification de l'élément aux instabilités	87
IV.6.2 Vérification de la poutre sablière à la flexion déviée composée avec déversement	
IV.7 Conclusion	90
Chapitre V : Etude de portique	
V Calcul des traverses	91
V .1 Généralité	91
V .1.1 Evaluation des charges et surcharge	91
V .1.2 Combinaison de charge les plus défavorables	92
V.2 Conclusion	93
V.3 Pré dimensionnement des poteaux	93
V.3.1 Evaluation des charges et surcharge	93
V.5 Résultats après modalisation	94
V.6 Conclusion	98
V.8 Conclusion	102
Chapitre VI : Etude sismique	
VI.1 Introduction	103
VI.2 Description de ROBOT	103
VI.3 Analyse de la structure	104
VI.3.1 Type d'analyse	104
VI.3.2 Méthodes de calcul	105
VI.3.2.1 Méthode statique équivalente	105
VI.3.2.2 Principe de la méthode	105
VI.3.2.3 Calcul de la force sismique totale	105
VI.3.2.4 Estimation de la période fondamentale	106
VI.3.2.5 Force sismique totale	108
VI.3.2.6 Méthode dynamique modale spectrale	109
VI.3.2.7 Principe de la méthode spectrale	109
VI.3.2.8 Nombre de modes de vibrations à considérer	109
VI.3.2.9 Résultat de calcul	110
VI.3.2.10 Analyse des résultats	113

VI.3.2.11	Vérification de la résultante des forces sismiques	114
VI.3.2.12	Vérification des déplacements	115
VI.3.2.13	Effet de deuxième ordre	117
Chanitre VII :	vérification des éléments	
•		110
	ction	
	e dimensionnement avec ROBOT	
	ation des traverses	
	S Charges repairées sur la traverse	
	rification de la section à la résistance	
	ffort sollicitant	
	asse de la section transversale	
	Classe de l'âme : (Flexion composée)	
	ondition de résistance	
	Vérification de l'effort tranchant	
	Vérification de l'effort normal	
	Vérification de la résistance de la section transversale	
	Vérification de l'élément aux instabilités	
	Vérification avec le logiciel ROBOT	
	ation des poteaux	
	orts sollicitant	
VII.4.2 Cla	asse de la section transversale	127
VII.4.3 Co	ondition de résistance	128
VII.4.3.3	Vérification au moment fléchissant	129
VII.4.3.4	Vérification de l'élément aux instabilités	129
VII.4.3.4	Vérification avec logiciel ROBOT	131
VII.5 Vérificat	tion des diagonales des contreventements poutre au vent	131
VII.5.1 V	érification à la traction	132
VII.5.2 Vér	ification au flambement	132
VII.5.3 Vrit	fication avec logiciel ROBOT	132
VII.6 Vérificat	tion des palées de stabilités de long pan	132
VII.6.1 Palé	e de rive (2CAE100X10)	132
VII.6.1.1	Vérification à la traction	133
VII.6.1.2	Vérification au flambement	133

VII.6.1.3 Vérification avec le logiciel ROBOT	134
VII.6.2 Palée intermédiaire (CAE100×10)	134
VII.6.2.1 Vérification à la traction	135
VII.6.2.2 Vérification au flambement	135
VII.6.2.3 Vérification avec le logiciel ROBOT	135
VII.7 Vérification des autres éléments (pannes, lisses, poutre sablière)	135
VII.7.1 Pannes (IPE140)	135
VII.7.2 Lisses de bardages pignon (UPE140)	136
VII.7.3 Lisses de bardages long pan (UPE160)	136
VII.7.4 poutre sablière (IPE 270)	136
VII.7.5 potelet (IPE330)	136
VII.6 Résumés des résultats obtenus	137
Chapitre VIII : Calcul des assemblages	
VIII.1 Introduction	120
VIII.1 Introduction	
VIII.3 Rôle des assemblages	
-	
VIII.4.1 Assemblage traverse – traverse	
VIII.4.2 Dimensionnements des boulons	
VIII.4.4 Vérification de la résistance de l'assemblage des boulons a l'ELU	
VIII.4.5 Resistance d'un boulon à l'interaction cisaillement + traction	
VIII.4.6 Assemblage platine traverse	
VIII.5 Assemblage poteau - traverse	
VIII.5.1 Condition de résistance des boulons	
VIII.5.2 Vérification	
VIII.5.3 Assemblage platine poutre	
VIII.5.4 Conclusion	
VIII.6 Assemblage de l'échantignolle	
VIII.6.1 Assemblage de l'échantignolle sur la panne	
VIII.6.2 Assemblage de l'échantignolle sur la traverse	
VIII.7 Assemblage des éléments de la Poutre au vent	
VIII.7.1 Assemblage de la diagonale sur le gousset	157

VIII.7.2 Les Vérifications	158
VIII.7.3 Les longueurs de soudures	160
VIII.8 Assemblage du contreventement (palées de stabilités)	160
VIII.8.1 Palée de stabilité de rive	160
VIII.8.1.1 Assemblage de la diagonale sur le gousset	161
VIII.8.1.2 La vérification	163
VIII.8.1.3 Les longueurs de soudures	164
VIII.8.2 Palée de stabilité intermédiaire	165
VIII.8.2.1 Assemblage de la diagonale sur le gousset	165
VIII.8.2.2 La vérification	167
VIII.8.2.3 Les longueurs de soudures	168
VIII.9 Assemblage poteau poutre- sablière	168
VIII.9.1 Assemblage platine poutre sablière	171
VIII.10 Assemblage potelet-traverse	171
VIII.11 Assemblage traverse-traverse	173
VIII.11.1 Dimensionnements des boulons	173
VIII.4.3 Dimensionnement des boulons	174
VIII.11.2 Vérification de la résistance de l'assemblage des boulons a l'ELU	175
VIII.11.3 Resistance d'un boulon à l'interaction cisaillement + traction	176
VIII.11.4 Assemblage platine traverse	177
VIII.11.5 Conclusion	178
VIII.12 Calcule de Pied de poteau	178
VIII.12.1 Introduction	178
VIII.12.2 Dimensionnement de la tige d'ancrage des poteaux	178
VIII.12.3 Vérification	180
VIII.12.4 Dimensionnement de l'épaisseur de la platine	182
VIII.13 Les pieds des potelets	186
VIII.14 Conclusion	189
Chapitre IX : Etude de l'infrastructure	
IX.1 Introduction	190
IX.2 Calcul des fondations	190
IX.2.1 Détermination des sollicitations	190
IX.2.2 Pré dimensionnement de la semelle de poteau	191

IX.2.3 Dimensionnement de la semelle	192
IX.2.4 Vérification des contraintes	193
IX.2.5 Vérification de la stabilité au renversement	194
IX.2.6 Détermination des armatures de la semelle	194
IX.3 Fondation sous potelet	198
IX.3.1 L'encrage	199
IX.3.2 Calcul des armatures	199
IX.3.3 Condition de non fragilité	199
IX.4 Calcul des longrines	200
IX.4.1 Introduction	200
IX.4.2 Pré dimensionnement	200
IX.4.3 Ferraillage	201
IX.4.4 Vérification de la condition de non fragilité	201
IX.4.5 Armatures transversales	201
IX.5 Ferraillage des futs	202
IX.5.1 Armatures transversales	203
IX.6 Conclusion	204
Chapitre X : Vérification de la stabilité d'ensemble	
X.1 Introduction	205
X.2 Détermination des moments renversants (MR)	205
X.2.1 Cas du vent	205
X.2.1.1 Vent perpendiculaire au log pan sens V1	205
X.2.1.2 Vent perpendiculaire au pignon sens V2	207
X.2.2 Cas du séisme	209
X.3 Conclusion	210

LISTE DES TABLEAUX

Tableau II.1 valeurs de coefficients dynamique Cd	9
Tableau II.2 valeurs d'intensité de turbulence Iv	10
Tableau II.3 valeurs de la pression de pointe $q_{p(ze)}$	10
Tableau II.4 les coefficients Cpe correspondant à chaque zone de parois verticales	12
Tableau II.5 les valeurs de Cpe pour la toiture	13
Tableau II.6 les surfaces correspondantes à chaque zone de parois verticales	14
Tableau II.7 les valeurs de Cpe correspondant à chaque zone de parois verticales	15
Tableau II.8 les surfaces correspondant à chaque zone de toiture	16
Tableau II.9 les coefficients Cpe correspondant à chaque zone de toiture	16
Tableau II.10 les valeurs de Cpi les plus défavorables pour le pignon et Lang pan	18
Tableau II.11 valeurs de la pression aérodynamique W (zj) à chaque zones de parois verticales avec Cpi =+0,35	18
Tableau II.12 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = +0.35$.	19
Tableau II.13 valeurs de la pression aérodynamique W (zj) à chaque zones de parois verticales avec Cpi = -0,4	20
Tableau II.14 valeurs de la pression aérodynamique $W(zj)$ sur la toiture $\ avec \ Cpi = -0,4$	21
Tableau II.15 valeurs de la pression aérodynamique $W(zj)$ à chaque zones des parois verticales avec $Cpi = +0.35$	21
Tableau II.16 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = +0.35$.	22
Tableau II.17 valeurs de la pression aérodynamique W(zj) sur les parois verticales avec C = -0,3	'pi
0,3	22
Tableau II.18 valeurs de la pression aérodynamique W(zj) sur la toiture avec Cpi = -0,3	
	23
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3$	23 24
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3.$. Tableau II.19 les valeurs plus défavorables pour le long pan (sens $V1$)	232424
Tableau II.18 valeurs de la pression aérodynamique W(zj) sur la toiture avec Cpi = -0,3 Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1) Tableau II.20 les valeurs plus défavorables pour le pignon (sens V2)	23242425
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3.$. Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1) Tableau II.20 les valeurs plus défavorables pour le pignon (sens V2) Tableau II.21 les valeurs de pression extérieure W_e pour long pan (sens V1)	2324242525
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3.$. Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1) Tableau II.20 les valeurs plus défavorables pour le pignon (sens V2) Tableau II.21 les valeurs de pression extérieure W_e pour long pan (sens V1) Tableau II.22 les valeurs des forces extérieures Fwe pour long pan (sens V1)	232424252526
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3.$. Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1)	23 24 24 25 25 26 26
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3.$. Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1)	23 24 24 25 25 26 26 27
Tableau II.18 valeurs de la pression aérodynamique $W(zj)$ sur la toiture avec $Cpi = -0,3$ Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1)	23 24 24 25 25 26 26 27 28

Tableau II.29 les valeurs de la force frottement (sens V2)	30
Tableau III.1 le poids propre e panneau correspondante à chaque épaisseur	34
Tableau III.2 les charges maximales admissibles en daN/m² en fonction des portées.	35
Tableau III.3 Caractéristiques de l'IPE 140	42
Tableau III.4 Caractéristiques de l'IPE 160	48
Tableau III.5 le poids propre e panneau correspondante à chaque épaisseur	54
Tableau III.6 Charges maximales admissibles en daN/m2 en fonction des portées d'utilisation	55
Tableau III.7 Caractéristiques de l'UPE120	57
Tableau III.8 Caractéristiques de l'IPE330	63
Tableau III.9 Coefficients de flambement correspondant à la section IPE 330	67
Tableau IV.1 Evaluation des efforts horizontaux au niveau des nœuds	73
Tableau IV.2 Caractéristiques de l'IPE 160	76
Tableau V.1 les Caractéristiques de HEA340.	92
Tableau V.2 les Caractéristiques de HEA400	93
Tableau VI.1 Pénalité de vérification	107
Tableau VI.2 tableau massique de chaque élément de la structure	108
Tableau VI.3 pourcentage de participation de masse	111
Tableau VI.4 combinaison de calcul.	114
Tableau VI.5 Vérification de l'effort tranchant à la base	115
Tableau VI.6 Déplacement max en situation durable.	115
Tableau VI.7 Déplacement relatif des niveaux.	116
Tableau VI.8 Effet P-Δ suivant X-X	117
Tableau VI.9 Effet P-Δ suivant Y-Y	117
Tableau VII.1 Les efforts dans la poutre au vent	131
Tableau VII.2 les efforts dans la palée de stabilité de rive	133
Tableau VII.3 Les efforts dans la palée de stabilité intermédiaire	135
Tableau VII.4 Listes des éléments et leur section choisie	137
Tableau VIII.1 Caractéristique mécanique des boulons selon leur classe d'acier	138
Tableau VIII.2 Valeur du coefficient de frottement μ selon la surface	139
Tableau VIII.3 Principales caractéristiques géométrique	140
Tableau VIII.4 Epaisseur du gousset en fonction de l'effort appliqué	161
Tableau VIII.5 Epaisseur du gousset en fonction de l'effort appliqué	165

Tableau IX.1 Les sollicitations à la base des poteaux HEA340	190
Tableau IX.2 Les sollicitations à la base de la semelle	193
Tableau IX.3 Vérification des contraintes dans le sol	194
Tableau IX.4 Les armatures des semelles.	197
Tableau XI. 1 Valeurs des forces extérieure horizontales et verticales dans le sens V1 et coordonnées des points d'application	205
Tableau XI. 2 Valeurs des forces intérieure horizontales et verticales dans le sens V1 et coordonnées des points d'application	205
Tableau XI.3 Les résultants de l'action de vent dans le sens V1	206
Tableau XI.4 Valeurs des forces extérieure horizontales et verticales dans le sens V2 et coordonnées des points d'application	207
Tableau XI.5 Valeurs des forces intérieure horizontales et verticales dans le sens V2 et coordonnées des points d'application	208
Tableau XI.6 Les résultants de l'action de vent dans le sens V2	208
Tableau XI.7 Réaction à la base due aux effets sismiques	209
Tableau XI.8 Vérification au renversement sous l'effet du séisme	210

LISTE DES FIGURS

Figure I.1 Vue en 3D du hangar.	1
Figure I.2 panneau sandwich	3
Figure I.3 vue de face.	7
Figure I.4 vue sur long pan	7
Figure I.5 vue d'en haut.	8
Figure II.1 présentation des directions du vent sur la structure	8
Figure II.2 répartition des pressions de pointe (N/m^2)	1
Figure II.3 Zones de pression pour les parois verticales.	2
Figure II.4 légende pour les parois verticales	2
Figure II.5 Zones de pression pour la toiture	3
Figure II.6 Zones de pression pour les parois verticales	4
Figure II.7 légende pour les parois verticales	5
Figure II.8 légende pour la toiture	6
Figure II.10 la répartition de la pression aérodynamique sur les parois verticales avec Cpi=+0,35	9
Figure II.11 la répartition de la pression aérodynamique sur les parois verticales avec Cpi = 0,4	
Figure II.12 la répartition de la pression aérodynamique sur les parois verticales avec Cpi = +0,35	
Figure II.13 la répartition de la pression aérodynamique sur les parois verticales avec Cpi = 0,3	
Figure II.14 Représentation des charges statique de neige sur la toiture et sur le sol 30	0
Figure II.15 Représentation des charges statique de neige sur la toiture et sur le sol	2
Figure III .1 détail de panneau sandwich (couverture)	4
Figure III.2 Dispositions des pannes sur la toiture	6
Figure III.3 Schéma statique de la panne sous la charge permanente	7
Figure III.4 Schéma statique de la panne sous charge d'entretien	8
Figure III.5 Schéma statique de la poutre équivalente.	8
Figure III.6 Schéma statique de la charge équivalente de vent	9
Figure III.7 Schéma statique de panne sous surcharge du vent	9
Figure III.8 Schéma statique de panne sous surcharge de la neige	0
III.9 Représentation de cisaillement de la panne	5

Figure III.10 Représentation de phénomène de déversement dans la semelle inférieure	46
Figure III.11 Shéma statique des pannes dans le cas d'escistance des lierne	49
Figure III.12 efforts de traction dans les liernes	50
Figure III.13 Coupe transversale de l'échantignole et les efforts sollicitant	52
Figure III.14 détail de panneau sandwich (bardage).	54
Figure III.15 Disposition de la lisse sur le poteau.	56
Figure III.16 Disposition des potelets.	62
Figure IV.1 Schéma statique de la poutre au vent en pignon	72
Figure IV.2 Méthode des coupures.	75
Figure VI. 3 méthodes des coupures.	84
Figure VI.4 Méthodes des coupures.	85
Figure VI.5 Schéma statique de la poutre sablière.	87
Figure VI.1 Schéma du spectre de réponse suivant X	110
Figure VI.2 Schéma du spectre de réponse suivant Y	111
Figure VI.3 Mode de déformation (1).	112
Figure VI.4 Mode de déformation (2).	113
Figure VI.5 Mode de déformation (3).	113
Figure VII.1 la traverse la plus sollicitée	119
Figure VII.2 Le poteau le plus sollicité	127
Figure VII.3 La diagonale la plus sollicité de la poutre au vent.	131
Figure VII.4 La diagonale la plus sollicité (palée de stabilité de rive).	133
Figure VII.5 La diagonale la plus sollicité (palée de stabilité intermédiaire)	134
Figure VIII.1 Assemblage traverse – traverse	141
Figure VIII.2 Désignation des entraxes et des pinces.	142
Figure VIII.3 vue de l'assemblage Traverse-Traverse	147
Figure VIII.4 assemblage poteau – traverse	148
Figure VIII.5 Schéma représente la zone tendue et la zone comprimée	151
Figure VIII.6 représentation assemblage platine poutre.	154
Figure VIII.7 vue de l'assemblage poteau-traverse	155
Figure VIII.8 Vue de face de l'échantignole.	155
Figure VIII.9 assemblage de la poutre au vent.	157
Figure VIII.10 vue d'assemblage de la poutre au vent	157
Figure VIII.11 Longueurs des soudures.	160
Figure VIII.12 assemblage de palée stabilité de rive.	161
Figure VIII.13 Vue de l'assemblage palée de stabilité de rive.	162

Figure VIII.14 assemblage de palé de stabilité intermédiaire
Figure VIII.15 vue de l'assemblage palé intermédiaire
Figure VIII.16 Assemblage traverse –traverse
Figure VIII.17 Vue de l'assemblage traverses –traverse
Figure VIII.18 Tige d'encrage du pied du poteau
Figure VIII.19 Disposition constructives
Figure VIII.20 Disposition des tiges d'encrages.
Figure VIII.21 Vérification de la section 1-1
Figure VIII.22 Vérification de la section 2-2.
Figure VIII.23 Vérification de la section 3-3
Figure VIII.24 Disposition de la bêche
Figure VIII.25 La bêche de poteau
Figure VIII.26 disposition de la platine du potelet
Figure IX.1 Dimension de la semelle
Figure IX.2 Schéma de ferraillage de la semelle de poteau
Figure IX.3 Schéma de ferraillage de la semelle de potelet
Figure IX.4 Schéma de ferraillage des longrines. 202
Figure IX.5 Section du fut à ferrailler. 202
Figure IX.6 Schéma de ferraille des futs
Figure X.1 Résultant horizontale et verticale des forces dues au vent sur le long pan 207
Figure X.2 Résultant horizontale et verticale des forces dues au vent sur le pignon 209

Sollicitation-Contrainte-Déformation

 q_p : Pression dynamique de pointe

 $q_{r\acute{e}f}$: pression dynamique moyen de référence

W: pression aérodynamique

Fw: force aérodynamique résultante

S: charge caractéristique de la neige

 S_k : charge de la neige sur le sol

G: action permanente

Q: action d'exploitation

g: Charge permanente uniformément répartie

q : Charge d'exploitation uniformément répartie

E: Module d'élasticité longitudinale de l'acier ($E = 210~000~\mathrm{MPa}$)

G : Module d'élasticité transversale de l'acier

 F_p : Effort de précontrainte dans un boulon

M : Moment sollicitant, en général

 M_{cr} : Moment critique élastique

*M*_{eff}: Montent efficace (section de classe 4)

 M_{el} : Moment élastique

 M_N : Moment résistant plastique réduit du fait de l'effort axial

 M_{pl} : Moment plastique

 M_R : Moment résistant

N_R: Effort normal résistant

N_{PL}: Effort normal de plastification

 N_U : Effort normal ultime

V : Effort tranchant sollicitant

 $\mathbf{V}_{\mathbf{PL}}$: Effort tranchant de plastification

 N_K : Effort normal critique d'Euler

 N_{pl} : Effort normal de plastification

 N_u : Effort normal ultime

 V_u : Effort tranchant ultime

 $f(ou \delta)$: Flèche d'une poutre

 f_{ub} : Contrainte de rupture d'un boulon

 f_u : Contrainte de rupture d'une pièce

Université de Bejaia/génie civil/CM2016

 f_Y : Limite d'élasticité d'un acier

 f_{red} : Limite d'élasticité réduite pour l'aire de cisaillement f_{red} = (1-p). f_Y

ε (epsilon) : Déformation linéaire unitaire

 ε_Y : Déformation correspondant à la limite d'élasticité

σ:(sigma) Contrainte normale

 σ_K : Contrainte critique d'Euler

 τ : (tau) Contrainte tangentielle ou de cisaillement

Caractéristique Géométriques

A : Section brute d'une pièce (cm²).

 A_{net} : Section nette d'une pièce (cm²).

 A_V : Aire de cisaillement (cm²).

 A_W : Section de l'âme d'une pièce (cm^2) .

 A_S : Section résistante de la tige d'un boulon en fond de filet (cm²).

I_T: Moment d'inertie de torsion (cm⁴).

 I_W : Facteur de gauchissement d'une section (cm⁴).

 I_Y : Moment d'inertie de flexion maximal (cm⁴).

I_Z: Moment d'inertie de flexion minimal (cm⁴).

W_{EL}: Module de résistance élastique (**cm**³).

W_{PL}: Module de résistance plastique (cm³).

a : Epaisseur utile (ou gorge) d'un cordon de soudure (mm).

 \mathbf{b} : Largeur d'une semelle de poutre (\mathbf{cm}) .

 $\mathbf{d_0}$: Diamètre nominal des tiges des boulons (cm).

h : Hauteur d'une piéce en général (mm,cm).

i: Rayon de giration d'une section (mm,cm).

l : Longueur en général ou portée d'une poutre (mm,cm,m).

 $\mathbf{l_f}$: Longueur de flambement ($\mathbf{mm,cm,m}$).

 \mathbf{l}_d : Longueur de déversement d'une poutre ($\mathbf{mm,cm,m}$).

 \mathbf{l}_K : Longueur de flambement d'une poutre (mm,cm,m).

R : Rigidité d'une barre (cm³).

t : Epaisseur d'une piéce ou d'une tole (mm,cm).

 $\mathbf{t_f}$: Epaisseur d'une semelle de poutre (mm,cm).

 t_w : Epaisseur d'une ame de poutre (mm,cm).

Université de Bejaia/génie civil/CM2016

Ø: Diamètre d'une section transversale (cm², mm²).

Coefficients et Grandeurs sans Dimensions

Cpe: coefficient de pression extérieur

Cpi : coefficient de pression intérieur

K : Coefficient d'encastrement ou de rigidité poteau/poutre

 k_s : Coefficient de dimension des trous perçage pour boulons

 k_y et k_z : Coefficients de flambement flexion

 k_{τ} : Coefficient de voilement par cisaillement

 $n=N/N_{pl}$: ou nombre de boulons

 β_M : Facteur de moment uniforme équivalent (flambement)

 β_w : Facteur de corrélation (soudures)

 ε : (epsilon) Coefficient de réduction élastique de l'acier

η :(eta) Facteur de distribution de rigidités (flambement)

λ: (lambda) Elancement

 λ_{cr} : Elancement critique d'Euler

 λ_k : Élancement eulérien

 $\overline{\lambda}$: Elancement réduit

 $\bar{\lambda}_{LT}$: Élancement de déversement

 λ_w : Élancement de l'âme d'un poutre

 μ :(mu) Coefficient de frottement

ρ:(rho) Rendement d'une section

χ:(chi) Coefficient de réduction de flambement

 χ_{LT} : Coefficient de réduction de déversement

 ψ : Coefficient de distribution de contraintes (psi)

Introduction Générale

Une construction, quelle que soit sa destination (habitation, usage industriel, collectivité, Spectacle...) et son principe constructif (matériau, type de structure), doit être capable de résister aux efforts qui lui sont appliqués. Ce rôle de « résistance » est assuré par l'ossature ou structure en acier constituant le « squelette » de la construction.

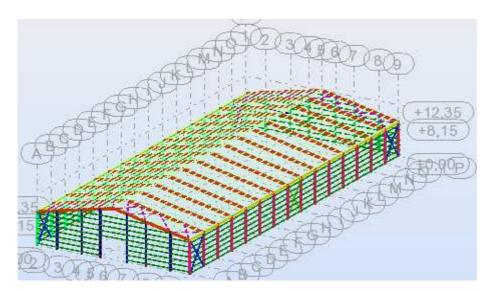
L'acier utilisé en construction métallique à des caractéristiques garanties. C'est un matériau isotrope et homogène ayant un comportement idéal vis-à-vis de la théorie de l'élasticité, base des lois de la résistance des matériaux. Il est ductile, propriété nécessaire à la bonne répartition des efforts dans les assemblages.

Il est soudable, sous réserve de respecter les dispositions prescrites au projet C'est le matériau d'usage courant en construction qui présente les caractéristiques les plus élevées pour le poids le plus faible.

La **structure** assure principalement le cheminement des efforts extérieurs appliqués jusqu'aux bases solides, les fondations. La connaissance de ce cheminement est essentielle particulièrement vis-à-vis de l'étude des éléments constitutifs de la structure ainsi que de leurs liaisons (attaches).

La structure est stable si cette transmission s'effectue sans désordre.

Les **ossatures métalliques** sont généralement « souples » et constituées des barres « élancées » ou d'éléments minces. Ces caractères spécifiques sont à garder présents à l'esprit lors des études, les problèmes de flexibilité, voilement, déversement de poutres fléchies et flambement d'éléments comprimés étant déterminants dans la justification et le dimensionnement des structures métalliques.


I. Introduction

Ce projet consiste à étudie un hangar à usage de stockage en construction métallique qui sera implantée a la zone industrielle de el-kseur à la willaya de Bejaia qui classée selon le règlement parasismique algérien (RPA99 version 2003) comme zone moyenne sismique (II a).

I.1 Présentation de l'ouvrage

I.1.1 Situation du Projet

Cet ouvrage est hangar pour le stockage, implanté au lieu dit zone industrielle dans la commune de el-kseur de la willaya de Bejaia. Le terrain est plat avec une surface de $3271,00\text{m}^2$

Figure I.1 Vue en 3D du hangar.

I.1.2 Etude du Sol

Les études faites sur le sol (rapport préliminaire de sol) ou le projet sera implanté nous renseignent sur :

La contrainte admissible du sol : 6 = 2 bar

Profondeur minimale d'ancrage égale à 2 m par rapport à la coté du terrain naturel

Présentation de projet

I.1.3 Dimension du l'ouvrage

La forme de notre projet est rectangulaire caractérisée par les dimensions suivantes :

• La langueur totale en plan; 90,22 m

• La largeur totale en plan : 38 m

• La plus grande hauteur : 12,35 m

• La hauteur des poteaux : 8.15 m

• La pente de versant $\alpha = 12.46^{\circ}$

• Les ouvertures :

Fenêtres : long pan : $2 \times 13 \times (4 \times 0.6)$ m.

Pignon: $2\times4\times(2\times0.6)$ m.

Portail: (7×8) m.

I.2 Eléments de la Construction

I.2.1 Ossature de la structure

L'ossature de l'ouvrage sera constituée par des portiques métalliques et des contreventements qui assurent la stabilité verticale et horizontale.

I.2.2 La toiture

Généralement pour les hangars de stockages le dégagement de l'espace à l'intérieur est une priorité pour le concepteur, ce qui nous conduit à utilisation d'une toiture en charpente métallique, la à deux versant qui, nous offre plusieurs avantages, les plus important sont :

- La légèreté de la toiture en charpente métallique par rapport à la dalle en béton armé ou planché mixte
- La facilité et rapidité de montage

I.2.3 La converture

La couverture sera réalisé par des panneaux sandwich, appelé aussi panneaux double peau monoblocs, ils sont constituées :

- De deux tôles de parement intérieur et extérieur
- D'une âme en mousse isolante
- De profils latéraux destinés à protéger l'isolant et réaliser des assemblages

Les panneaux sandwichs nous offrent plusieurs avantages on peut site :

- Le par-vapeur
- L'isolation et étanchéité
- Une bonne capacité portante
- Un gain de temps au montage

Mais leurs inconvénient est dans l'étanchéité des joints :

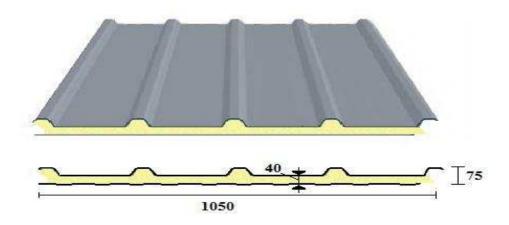


Figure I.2 panneau sandwich

I.2.4 Les poteaux

Les poteaux sont des profile métallique avec une section constante

I.2.5 Les panne

Les pannes sont des profiles métallique avec une section constante

I.2.6 Les contreventements

Les pales de stabilité en (x) dans les deux sens, assurent la verticalité des poteaux et prennent les efforts dues au séisme et au vent en le transmettant aux fondations.

I.3 Généralités

I.3.1 Martiaux utilise

I.3.1.1 Acier

L'acier est un matériau constitue essentiellement de fer et un faible taux de carbone, qui est extrait de matières naturelles tirées du sous-sol (mines de fer et de charbonne).

Présentation de projet

Le carbone n'intervient, dans la composions, que pour une très faible part (généralement inferieur à 1%).Outre le fer et le carbone, l'acier peut comporter d'autre éléments qui lui sont associés :

- Soit involontairement : phosphore, soufre qui sont des impuretés et qui altèrent les propriétés des aciers.
- Soit volontairement qui sont notamment le silicium, le manganèse, le chrome, le tungstène (résiste a la rupture, dureté, limite d'élasticité, ductilité, corrosion).

On parle dans ces cas acier alliés.

I.3.1.2 Les propriétés de l'acier

> Resistance

- Les nuances de l'acier courantes et leurs résistances limites sont données par le règlement Euro code 03.
- La nuance choisie pour la réalisation de ce projet est \$235.

Durabilité :

L'acier de construction doit satisfaire les conditions suivant :

- Le rapport $f_u / f_v > 1.2$
- La déformation ultime doit être supérieure à 20 fois la déformation élastique
- A la rupture l'allongement relatif ultime doit être supérieur ou égal à 15 %.

> Les propriétés mécaniques

- Masse volumique : $\rho = 7850 \text{ Kg/m}^3$
- Module d'élasticité longitudinale : E= 210000 Mpa
- Coefficient de poisson : v=0,3
- Coefficient de dilatation thermique $\alpha = 12.10^{-6}$
- Module d'élasticité transversale G = E/2(1+v)

I.3.2 Béton

Le béton est matériau de construction compose de granulats, sable, ciment, eau, et des adjuvants pour en modifier les propriétés.

Le béton présente une excellente résistance à la compression jusqu' a 450 da/cm²mais 10 fois moindre en traction ou au cisaillement.

I.3.2.1 Propriétés du béton

Le béton utilisé sera de classe 25 avec :

- Une résistance à la compression à 28 jours : $fc_{28} = 25$ Mpa.
- La résistance à la traction à 28 jours : ft₂₈ =2, 1 Mpa
- Le poids spécifique : ρ = 25 KN/m³
- Coefficient de retrait $\epsilon = 4.10^{-6}$.

I.4 Règlements utilise

Pour l'étude de ce projet les règlements techniques utilisés sont les suivants :

- RNVA 2013 : l'étude climatique se fait suivant le règlement neige et vent algérienne 2013.
- CCM99, Euro code 3 : l'étude et les calculs des éléments de l'ouvrage se font conformément aux CCM99 et Euro code 3.
- **RPA 99 version 2003**: l'étude sismique se fait suivant le règlement Algérienne. RPA99 version 2003.
- DTR B .C.2.2 charges permanentes et surcharges d'exploitations.
- **BAEL 91**: béton armé aux états limites.
- CBA 93: règles de conception et de calcule des structures en béton en béton armé DTR B-C2.4.

I.4.1 Les états limites

Un état limite est un état au-delà duquel la structure ne satisfait plus aux exigences pour lesquelles elle a été conçue. On en distingue état limite

I.4.1.1 État limite Ultime (E.L.U.)

Les états limites ultimes sont associés à la ruine de la structure, ils comprennent

- La perte d'équilibre de la structure ou de l'une de ses parties
- La ruine de la structure ou de l'un de ses éléments

I.4.1.2 État Limite de Service (E.L.S.)

Les états limites de service correspondent aux dépassements des critères spécifiés d'exploitation, ils comprennent :

Présentation de projet

- Les déformations et les flèches affectant l'aspect ou l'exploitation de la construction, ou provoquant des dommages à des éléments non structuraux
- Les vibrations incommodant les occupants, endommageant le bâtiment ourson contenu [Cours de *Francine SEINTURIER IUT Génie Civil de Grenoble "bases de calcul*]

I.5 Les Actions prises en compte

Une action est Une force (charge) appliquée à la structure (action directe) ou une déformation imposée (action indirecte), déplacements d'appuis, effets thermiques.

Les actions sont classées principalement en fonction de leur variation dans le temps :

- Actions Permanentes (G) : dont l'intensité est constante ou très peu variable dans le temps, ou varie dans le même sens en tendant vers une limite, tel que :
 - Poids propre de la structure
 - Poussée des terres et liquides
- Actions variables (Q) : dont l'intensité varie fréquemment et de façon importante dans le temps tel que :
 - Charges d'exploitation
 - Charges climatiques (neige S, vent W);
- Charges dues à l'effet de température (T)
- Charges appliquées en cours d'exécution.
 - Actions Accidentelles
 - Ce sont des actions qui ne surviennent que rarement durant la vie de l'ouvrage mais dont les conséquences peuvent être très néfastes, si des dispositions ne sont pas prises lors de la conception et de la réalisation de l'ouvrage. Parmi ces actions, on peut répertorier:
 - l'action sismique notée E
 - le choc, l'incendie, l'explosion, etc....

I.5 Vues de la structure

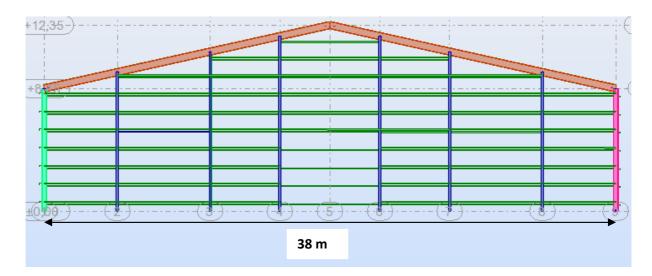


Figure I.3 vue de face.

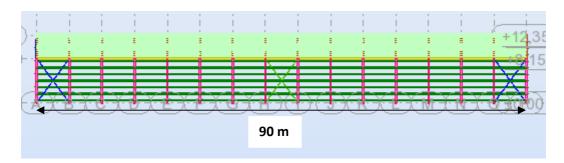


Figure I.4 vue sur long pan.

Figure I.5 vue d'en haut.

II. Introduction

L'étude climatique est l'estimation de l'action du vent et celle de la neige qui seront éventuellement appliquées à notre ouvrage, dans notre étude les effets thermique serons négliger.

L'effet du vent sur une structure métallique est généralement prépondérant, une étude approfondie doit être élaborée pour la détermination des déférents actions dues au vent et ceci dans toutes les directions possibles dont le calcul est mené conformément au règles neige et vent RNVA 2013.

Les de pression du vent dépendent d'un certain nombre de factures :

- De la région
- > Du site d'implantation
- > De la hauteur de la construction
- > De la forme géométrique de la construction
- > De la rigidité de la construction

II.1 Coefficient de Calcul

Il s'agit de déterminer les actions du vent s'exerçant sur les parois et la toiture pour un vent perpendiculaire :

- ➤ Au long pan v1
- Au pignon v2

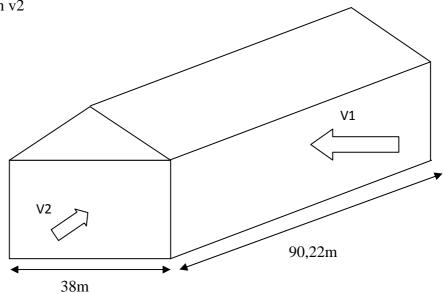


Figure II.1 présentation des directions du vent sur la structure

NB: on a une structure symétrique, d'où l'étude au vent se fera selon deux (2) sens.

II.1.1 Effet de la région

Notre structure est située dans la zones I, dont la pression de référence est donnée par le tableau 2 .2 du RNVA 2013(chapitre 2) par **qref=375N/m²**

II.1.2 Effet de site

La structure sera implantée en zone industriel catégorie (III) D'au

- ➤ Le facture de terrain Kt=0,215
- Le paramètre de rugosité Zo=0,3

(Tableau 2-4, chapitre 2 RNVA2013).

➤ La hauteur minimal Zmin=5m

II.1.3 Coefficient de topographe

Le site est plat, le coefficient de topographe Ct=1. (Formule2.4, chapitre 2 RNVA2013).

II.1.4 Calcul de coefficient dynamique Cd

La hauteur de notre projet qui égale à 12,35m est inferieur à 15m et d'apprêt le RNVA2013 le Cd =1

Direction de vent	h(m)	b(m)	C_{d}
V1	12,35	90,22	1
V2	12 ,35	38	1

Tableau II.1 valeurs de coefficients dynamiques Cd

II.2 Calcul De Pression

II.2.1 Calcul de la pression dynamique de pointe

La pression dynamique de pointe $q_p(ze)$ qui s'exerce sur un élément de surface j est donnée par la formule (2 .1 chapitre 2 RNVA 2013)

$$q_p(ze) = q_{réf} \times C_e(ze)$$
 [N/m²]

Avec:

 $_{-}$ $q_{ref}(N/m^2)$: pression dynamique de référence ._ Ce(ze): coefficient d'exposition au vent (2.2 chapitre 2 RNVA 2013) donnée par la formule suivante :

$$C_e(z) = C_t^2(z) \times C_r^2(z) \times [1 + 7I_v(z)]$$

C_r: est coefficient de rugosité donnée par la formule (2.3 chapitre 2 RNVA 2013)

 $C_r(z)=K_t\times Ln(z/zo)$ pour $Z_{min}\leq Z\leq 200m$

Z : est le hauteur considéré ;

Kt : est le coefficient de terrain (tableau 2.4) ;

Zo : (en mètre) est le paramètre de rugosité (tableau 2.4) ;

Z_{min}(en mètre est la hauteur minimale (tableau 2.4).

II.2.2 Calcul de l'intensité de turbulence Iv

 I_v : est intensité de turbulence définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent est donnée par la formule (2.5 chapitre 2 RNVA 2013)

$$I_{v}(z) = \frac{1}{Ct(z) \times Ln^{\frac{z}{z_0}}}$$
 pour $z > z_{min}$

Pour les parois verticales (z=8,15m)

$$Iv(z) = 0.302$$

Pour la toiture (z=12,35)

$$I_v(z) = 0.268$$

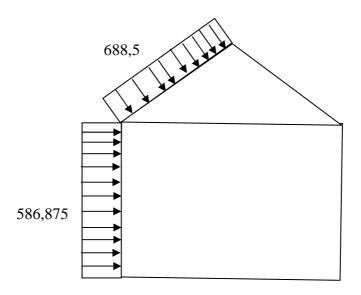

	Z(m)	Z0(m)	C_{t}	$I_{\rm v}$
Parois verticales	8,15	0,3	1	0,302
Toiture	12,35	0,3	1	0,268

Tableau II.2 valeurs d'intensité de turbulence Iv

Les résultats obtenus pour C_e, le C_r, q_p sont donnée dans le tableau suivant :

	Z(m)	C _r	C _e	$q_p[N/m2]$
Parois verticales	8,15	0,709	1,565	586,875
Toiture	12,35	0,799	1,836	688,5

Tableau II.3 valeurs de la pression de pointe $q_{p(ze)}$

Figure II.2 répartition des pressions de pointe (N/m²).

II.3 Calcul des Coefficients de Pression

II.3.1 Direction de vent sur long pan (sens v1)

II3.1.1 Coefficient de pression extérieur Cpe

> Parois verticales

On se réfère au paragraphe 1.1.1.2 du chapitre (5-1) du RNVA 2013 pour déterminer les différentes zones de pression, et au tableau (5-1) pour déterminer les valeurs des coefficients Cpe, pour chaque direction du vent considérée.

d=38m b=90,22m h=8,15m e=min [b; 2h]
e=min [38; 16, 3] =16,3m d>
$$e$$

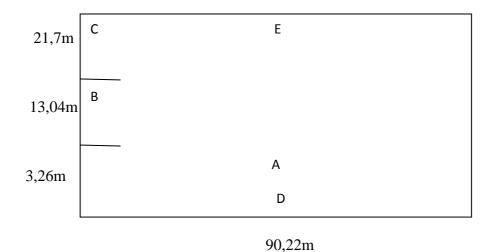


Figure II.3 Zones de pression pour les parois verticales.

Touts les surfaces sont supérieures à 10m²

Solon la formule (5.1) Cpe=Cpe₁₀

Les zones de pressions et les valeurs respectives des coefficients correspondant à ces zones sont portées sur le tableau suivant :

zones	A	В	С	D	Е
Сре	-1	-0,8	-0,5	0,8	-0,3

Tableau II.4 les coefficients Cpe correspondant à chaque zone de parois verticales

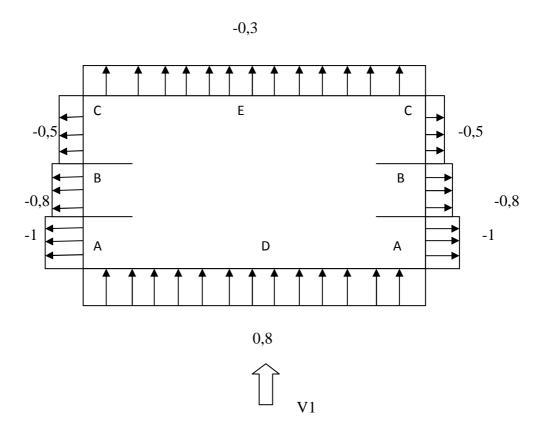


Figure II.4 légende pour les parois verticales

> Toiture

On a une toiture à deux versants, avec un pante de 12,55°, la figure (5 .4) du chapitre 2 RNVA 2013 nous montre la façon dont en doit diviser notre structure :

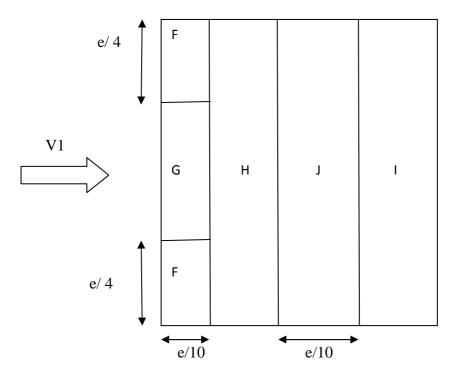


Figure II.5 Zones de pression pour la toiture

e=min [b; 2h]=min [90,22; 24,7]=24,7m

On a la formule suivant :

$$Cp_e{=}Cp_{10}{=}Cp_e(5^o){+}[\frac{{\it CP}15{-}{\it CP}5}{15{-}5}]$$

Les zones de pression et les valeurs respectives des coefficients correspondant à ces zones sont portées sur la figure suivante :

Zone	F	G	Н	J	I
S(m ²)	15,25	192,33	1491,33	222,84	1491,33
Cpe	-1,096	-0,898	-0,373	-0,0265	-0,449

Tableau II.5 les valeurs de Cpe pour la toiture

II.3.2 Direction de vent sur le pignon (sens v2)

II.3.2.1 Coefficient de pression extérieur Cpe

> Parois verticales

d=90,22m b=38m h=12,35m

e = min [38, 24,7] = 24,7m

e=24,7m

e/5=4,94m

Zone A: e/5=4,94m

Zone B: e-e/5=19,76m

Zone C: d-e=65,52m

On a d > e le découpage en zones :

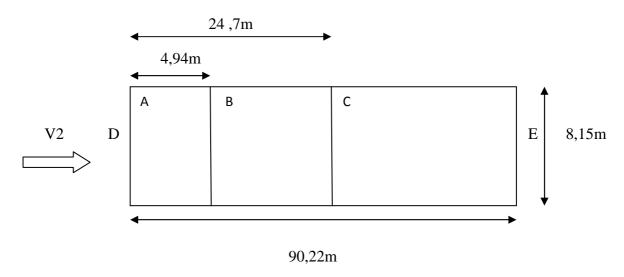


Figure II.6 Zones de pression pour les parois verticales

Zones	$S(m^2)$	
A	40 ,261	
В	161,044	
С	533,988	
D	309,7	
Е	309,07	

Tableau II.6 les surfaces correspondantes à chaque zone de parois verticales

Toutes les surfaces $> 10\text{m}^2$ \square \square \square \square \square \square

Zone	A	В	С	D	Е
Cpe	-1	-0 ,8	-0,5	+0,8	-0,3

Tableau II.7 les valeurs de Cpe correspondant à chaque zone de parois verticales

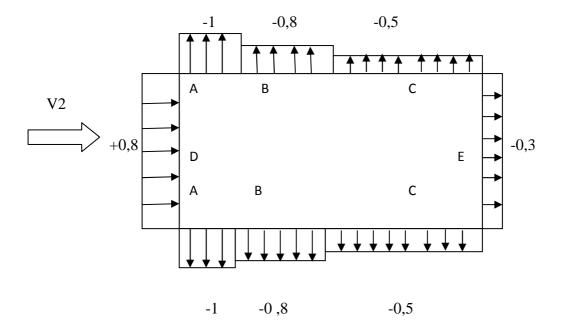


Figure II.7 légende pour les parois verticales

> Toiture

Le découpage en zones de pression se fait suivant la figure (5.4) du chapitre 5 RNVA 2013 avec direction de vent, pour la détermination des coefficients de pression. Les zones sont représentées sur la figure suivante :

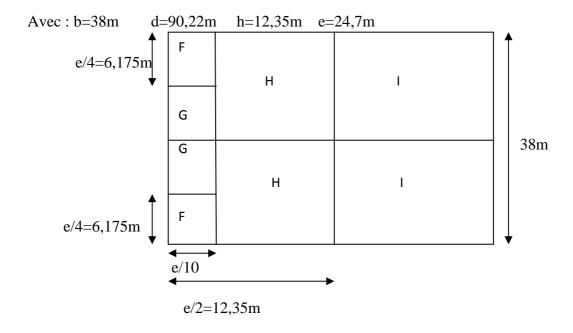


Figure II.8 légende pour la toiture

Etude climatique

Zones	S (m ²)
F	15,252
G	31,67
Н	187,72
I	622,44

Tableau II.8 les surfaces correspondant à chaque zone de toiture

Toutes les surfaces des zones sont $> 10m^2$

Les coefficients correspondants à chaque zone sont donnés par le tableau suivant :

Zone	F	G	Н	Ι
Сре	-1,373	-1,3	-0,624	-0,524

Tableau II.9 les coefficients Cpe correspondant à chaque zone de toiture

II.3.3 Direction de vent sur long pan (sens v1)

II.3.3.1 Coefficient de pression intérieur Cpi

On détermine l'indice de perméabilité µp

$$\mu p = \frac{\sum des \ surfaces \ des \ ouvertures \ sous \ le \ vent \ et \ parllèle \ au \ vent}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$$

Le coefficient de pression intérieure Cpi est donné par la figure 5.14 du RNVA2013 en fonction de l'indice de perméabilité μp .

$$h/d=12,35/38=0,325>0,25$$

D'apprêt la figure de (5.14) de RNVA2013

On a la valeur de h/d est entre h/d=0,25 et h/d=1 donc on utilise interpolation linaire

1^{er}cas: Dépression intérieure

Les fenêtres face au vent fermé et les autres ouverts :

$$\mu p = \frac{(8*0,6*2)+(7*8)+(13*0,6*4)}{(8*0,6*2)+(13*0,6*4)+(7*8)} - 1$$

Le Cpi comprise entre -0,3 et -0,5

Cpi=-0,3+
$$\frac{(-0,5)-(-0,3)}{1-0,90}$$
 (1-0,95)=-0,4 Cpi = -0,4 (le cas le plus défavorable)

2^{eme}cas: surpression intérieure

Les portes sont fermées et les fenêtres sont ouvertes :

$$\mu p = \frac{(13*0,6*4) + (8*0,6*2)}{(2*13*0,6*4) + (8*0,6*2)} = 0,5$$
 Cpi= 0,1

3^{eme}cas: surpression intérieure

Les fenêtres face au vent ouverts et les fenêtres parallèles ouverts et les (2) fenêtres sons le vent ouverts et la porte fermé :

$$\mu p = \frac{(8*0,6*2)+(2*4*0,6)}{(13*4*0,6)+(8*0,6*2)+(2*0,6*4)} = 0,315$$
 Cpi =+0,35(le cas le plus défavorable)

II.3.4 Direction de vent sur pignon (sens v2)

II.3.4.1 Coefficient de pression intérieur Cpi

h/d=12,35/90,22=0,136

On a le h/d < 0.25

1^{er}cas: dépression intérieure

Toutes les ouvertures sont ouvertes :

$$\mu p = \frac{(4*0.6*2) + (2*13*0.6*4)}{(8*7) + (8*0.6*2*) + (2*13*0.6*4)} = 0,525$$
 Cpi= 0,1

2^{eme}cas: suppression intérieure

La porte fermé et les fenêtres sont ouvert :

$$\mu p = \frac{(4*0,6*2)+2*13*0,6*4)}{8*0,6*2)+(13*2*0,6*4)} = 0,93$$
 Cpi= -0,3 (le cas le plus défavorable).

3^{eme}cas: dépression intérieure

La porte face au vent ouverte et (10) fenêtres parallèles au vent ouverts :

$$\mu p = \frac{(10*0,6*4)}{(7*8)+(10*0,6*4)} = 0,3$$
 Cpi= +0,35 (le cas le plus défavorable).

Remarque : les valeurs de Cpi dans les cas les plus défavorables lorsque le vent frappe le pignon et long pan sont résumée dans le tableau suivant :

Cas de pression	Long pan sens V1	Pignon sens V2
surpression intérieure	+0,35	+0,35
dépression intérieure	-0,4	-0,3

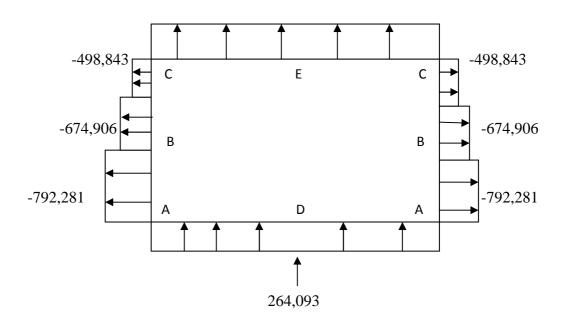
Tableau II.10 les valeurs de Cpi les plus défavorables pour le pignon et Lang pan

II.4 La pression aérodynamique W (zj)

La pression aérodynamique W (zj) agissant sur une paroi est obtenue à l'aide de la formule suivant :

$$\mathbf{W}(\mathbf{z}\mathbf{j}) = \mathbf{q_p}^* [Cpe - Cpi]$$
 [N/m²] formule (2.6) chapitre 2 de RNVA 2013

II.4.1 Direction de vent sur long pan (sens v1)


> Parois verticales

Surpression intérieure Cpi= +0,35

Zone	$q_p(N/m^2)$	Сре	Cpi	$Wzj(N/m^2)$
A	586,875	-1	+0,35	-792,281
В	586,875	-0,8	+0,35	-674,906
С	586,875	-0,5	+0,35	-498,843
D	586,875	+0,8	+0,35	264,093
Е	586,875	-0,3	+0,35	-381,468

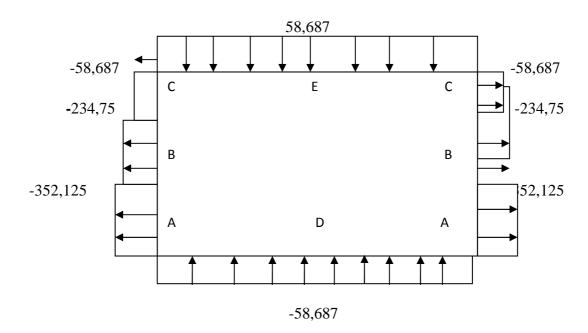
Tableau II.11 valeurs de la pression aérodynamique W (zj) à chaque zones de parois verticales avec Cpi =+0,35

Figure II.10 la répartition de la pression aérodynamique sur les parois verticales avec Cpi=+0,35

> Toiture

Surpression intérieure Cpi= +0,35

Zone	$q_p(N/m^2)$	Сре	Cpi	$Wzj(N/m^2)$
F	688,5	-1,096	+0,35	-995,571
G	688,5	-0,898	+0,35	-859,248
Н	688,5	-0,373	+0,35	-497,785
J	688,5	-0,0265	+0,35	-259,220
I	688,5	-0,449	+0,35	-550,111


Tableau II.12 valeurs de la pression aérodynamique W(zj) sur la toiture avec Cpi = +0,35

> Parois verticales

Dépression intérieure Cpi = -0,4

Zone	$q_p(N/m^2)$	Сре	Cpi	$Wzj(N/m^2)$
A	586,875	-1	-0,4	-352,125
В	586,875	-0 ,8	-0,4	-234,75
С	586,875	-0,5	-0,4	-58,687
D	586,875	+0,8	-0,4	704,25
Е	586,875	-0,3	-0,4	58,687

Tableau II.13 valeurs de la pression aérodynamique W (zj) à chaque zones de parois verticales avec Cpi = -0,4

Figure II.11 la répartition de la pression aérodynamique sur les parois verticales avec Cpi = -0,4

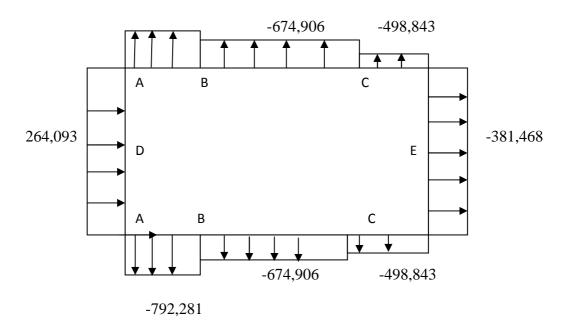
> Toiture

Dépression intérieure Cpi = -0,4

Zone	$q_p(N/m^2)$	Сре	Cpi	Wzj(N/m ²)
F	688,5	-1,096	-0,4	-479,196
G	688,5	-0,898	-0,4	-342,873
Н	688,5	-0,373	-0,4	18,589
J	688,5	-0,0265	-0,4	257,154
Ι	688,5	-0,449	-0,4	-33,736

Tableau II.14 valeurs de la pression aérodynamique W (zj) sur la toiture avec Cpi = -0,4

II.4.2 Direction de vent sur pignon (sens v2)


> Parois verticales

Surpression intérieure Cpi = +0,35

Zone	$q_p(N/m^2)$	Сре	Cpi	$Wzj(N/m^2)$
A	586,875	-1	+0,35	-792,281
В	586,875	-0,8	+0,35	-674,906
С	586,875	-0,5	+0,35	-498,843
D	586,875	+0,8	+0,35	264,093
Е	586,875	-0,3	+0,35	-381,468

Tableau II.15 valeurs de la pression aérodynamique W(zj) à chaque zones des parois verticales avec Cpi = +0.35

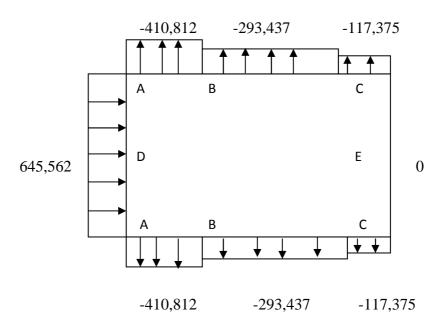
-792,281

Figure II.12 la répartition de la pression aérodynamique sur les parois verticales avec Cpi = +0,35

> Toiture

Surpression intérieure Cpi = +0,35

Zone	$q_p(N/m^2)$	Сре	Срі	Wzj(N/m ²)
F	688,5	-1,373	+0,35	-1186,285
G	688,5	-1,3	+0,35	-1136,025
Н	688,5	-0,624	+0,35	-670,599
I	688,5	-0,524	+0,35	601,749


Tableau II.16 valeurs de la pression aérodynamique W(zj) sur la toiture avec Cpi = +0,35

> Parois verticales

Dépression intérieure Cpi = -0,3

Zone	$q_p(N/m^2)$	Сре	Cpi	Wzj(N/m ²)
A	586,875	-1	-0,3	-410,812
В	586,875	-0,8	-0,3	-293,437
С	586,875	-0,5	-0,3	-117,375
D	586,875	+0,8	-0,3	645,562
Е	586,875	-0,3	-0,3	0

Tableau II.17 valeurs de la pression aérodynamique W (zj) sur les parois verticales avec Cpi = -0.3

Figure II.13 la répartition de la pression aérodynamique sur les parois verticales avec Cpi = -0,3

> Toiture

Dépression intérieure Cpi = -0,3

Zone	$q_p(N/m^2)$	Сре	Cpi	Wzj(N/m ²)
F	688,5	-1,373	-0,3	-738,760
G	688,5	-1,3	-0,3	-688,5
Н	688,5	-0,624	-0,3	-223,074
I	688,5	-0,524	-0,3	-154,224

Tableau II.18 valeurs de la pression aérodynamique W(zj) sur la toiture avec Cpi = -0,3

II.5 Évaluation des charges des cas les plus défavorables

Les valeurs la plus défavorables des pressions aérodynamiques et leurs Cpi et Cpe correspondants de chaque zone des parois verticales et la toiture.

➤ Lang pan (sens V1)

Zone	$q_p (N/m^2)$	Сре	Cpi	$W_{zj}(N/m^2)$
A	586,875	-1	+0,35	-792,281
В	586,875	-0,8	+0,35	-674,906
С	586,875	-0,5	+0,35	-498,843
D	586,875	+0,8	-0,4	704,23
Е	586,875	-0,3	+0,35	381,468
F	688,5	-1,096	+0,35	-995,571
G	688,5	-0,898	+0,35	-859,248
Н	688,5	-0,373	+0,35	-497,785
I	688,5	-0,449	+0,35	-550,111
J	688,5	-0,0265	+0,35	-259,220

Tableau II.19 les valeurs plus défavorables pour le long pan (sens V1).

➤ Pignon (sens V2)

Zone	$q_p (N/m^2)$	Сре	Cpi	$W_{zj} (N/m^2)$
A	586,875	-1	+0,35	-792,281
В	586,875	-0,8	+0,35	-674,906
С	586,875	-0,5	+0,35	-498,843
D	586,875	+0,8	-0,3	645,562
Е	586,875	-0,3	+0,35	-381,468
F	688,5	-1,373	+0,35	-1186,285
G	688,5	-1,3	+0,35	-1136,025
Н	688,5	-0,624	+0,35	-670,599
I	688,5	-0,524	+0,35	601,749

Tableau II.20 les valeurs plus défavorables pour le pignon (sens V2).

II.6 Action Ensembles

La force exercée par le vent F_w agissant sur une construction c'est la force aérodynamique résultante. Est définie par la sommation vectorielle des forces F_{we} et F_{tr} .

• La force extérieure Fwe : Définie par la formule suivant : $F_{we}=Cd^*\sum W_e^*A_{ref}$

• Force intérieure Fwi : Définie par la formule suivant : $F_{wi} = \sum W_i * A_{ref}$

• Force de frottement F_{fr} : Définie par la formule suivant : $F_{fr} = C_{fr} * q_p * A_{rf}$

1er cas long pan (sens V1)

II.6.1 Calcul de la pression extérieure W_e

est définie par la formule suivant : $W_e=q_{p(ze)}*C_{pe}$

Zones	$q_{p(ze)}$ (KN/m ²⁾	Сре	$W_e (KN/m^2)$
D	0,586	+0,8	0,468
Е	0,586	-0,3	-0,175
F	0,688	-1,373	-0,944
G	0,688	-1,3	-0,894
Н	0,688	-0,624	-0,429
I	0,688	-0,524	-0,360
J	0,688	-0,0265	-0,0182

Tableau II.21 les valeurs de pression extérieure We pour long pan (sens V1).

II.6.2 Calcul de la force extérieure : $F_{we}=Cd*\sum W_e*A_{re}$

Zone	Cd	We (KN/m ²)	Aréf (m ²)	Fw(horizontale)	Fw(verticale)
D	1	0,468	735,293	344,117	0
Е	1	-0,175	735,293	-128,676	0
F	1	-0,944	15,25	0	-14,396
G	1	-0,894	192,33	0	-171,943
Н	1	-0,429	1491,33	0	-639,780
I	1	-0,360	1491,33	0	-536,878
J	1	-0,0182	222,84	0	-4,055
	•		Fwe(résultante)	215,441	-1367,049

Tableau II.22 les valeurs des forces extérieures Fwe pour long pan (sens V1).

II.6.3 Calcul de la pression intérieure Wi

Est définie par la formule suivant : $Wi=q_p*Cpi$

Zone	$q_{p(ze)}$ (KN)	Срі	Wi (KN/m ²)
D	0,586	-0,4	-0,234
Е	0,586	+0,35	0,205
F	0,688	+0,35	0,240
G	0,688	+0,35	0,240
Н	0,688	+0,35	0,240
J	0,688	+0,35	0,240
I	0,688	+0,35	0,240

Tableau II.23 les valeurs de la pression intérieure Wi pour long pan (sens V1).

II.6.4 Calcul de la force intérieure Fwi

Est définie par la formule suivant $\mathbf{F}_{wi} = \sum \mathbf{W}_i * \mathbf{A}_{ref}$

Zone	Wi (K/N/m ²)	Aref (m ²)	Fwi	Fwi(verticale)
			(horizontale)	
D	-0 ,234	735,293	-172,058	0
Е	0,205	735,293	150,735	0
F	0,240	15,25	0	3,66
G	0,240	192,33	0	46,159
Н	0,240	1491,33	0	357,919
J	0,240	222,84	0	53,481
I	0,240	1491,33	0	357,919
		Fwi (résultante)	-21,323	819,138
		(KN)		

Tableau II.24 les valeurs de la force intérieure Fwi pour long pan (sens V1).

II.6.5 Calcul de la force de frottement

Les effets de frottement du vent sur la surface peuvent être **négligés.** Lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement incliné par rapport à la direction du vent) est inferieure à 4 fois l'aire totale de toutes les surfaces extérieure perpendiculaires au vent (au sous le vent).

Dans ce cas la direction du vent elle est perpendiculaire au long pan

• Calcul des surfaces parallèles au vent :

Les surfaces des deux pignons

=
$$[(38*8,15)+(19*4,2)]*2=779 \text{ m}^2$$

La surface de la toiture

$$= (19.42*2*90,22)=3504,14 \text{ m}^2$$

• Calcul des surfaces perpendiculaires au vent (et sous le vent) :

Les surfaces de deux longs pans

=
$$[(90,22*8,15)]*2= 1470,58 \text{ m}^2$$

Vérification de la condition (article 2.6.3 RNVA 2013)

L'aire totale des surfaces parallèles au

 $vent \leq 4 \times (l'airetoutale \ des \ surface \ perpondiculaire \ au \ vent)$

Donc on doit négliger l'effet de frottement cas de vent perpendiculaire au long pan.

2^{eme}cas pignon (sens V2)

II.6.6 Calcul de la pression extérieure We

est définie par la formule suivant : $\mathbf{W}_e = \mathbf{q}_{p(ze)} * \mathbf{C}_{pe}$

zone	q _{p(ze)} (KN°	Сре	We (KN/m ²)
D	0,586	+0,8	+0,468
Е	0,586	-0,3	-0,175
F	0,688	- 1,373	-0,944
G	0,688	-1,3	-0,894
Н	0,688	-0,624	-0,429
I	0,688	-0,524	-0,360

Tableau II.25 les valeurs de pression extérieure W_e pour pigon (sens V2).

II.6.7 Calcul de la force extérieure

$$F_{we}=Cd*\sum W_e*A_{ref}$$

Zone	Cd	We (KN/m ²)	A _{ref} (m ²)	Fwe	Fwe
				(horizontale)(KN)	KN((verticale)
D	1	+0,468	309,7	+144,939	0
Е	1	-0,175	309,7	-57,197	0
F	1	-0,944	15,252	0	-14,397
G	1	-0,894	31,67	0	-28,312
Н	1	-0,429	187,72	0	-80,531
Ι	1	-0,360	622,44	0	-224,078
		F _{we} (rés	ultante) (KN)		
				+87,742	-347,318

Tableau II.26 les valeurs de la force extérieure Fwe pour pignon (sens V2).

II.6.8 Calcul de la pression intérieure Wi

Est définie par la formule suivant : $Wi=q_p*Cpi$

Zone	$q_{p(ze)}$ (KN)	Срі	Wi (KN/m ²)
D	0,586	-0,3	-0,175
Е	0,586	+0,35	+0,205
F	0,688	+0,35	+0,240
G	0,688	+0,35	+0,240
Н	0,688	+0,35	+0,240
I	0,688	+0,35	+0,240

Tableau II.27 les valeurs des pressions intérieures Wi pour pignon (sens V2).

II.6.9 Calcul de la force intérieure Fwi

Est définie par la formule suivant $\mathbf{F}_{wi} = \sum \mathbf{W}_i * \mathbf{A}_{ref}$

Zone	Wi	Aref (m ²)	Fwi	Fwi(
	$(K/N/m^2)$		(horizontale)	verticale)
D	-0,175	309,7	-54,197	0
Е	+0,205	309,7	+63,488	0
F	+0,240	15,252	0	+3,660
G	+0,240	31,67	0	7,600
Н	+0,240	187,72	0	+45,052
I	+0,240	622,44	0	+149,385
	I	Fwi (résultante) (KN)	+9,291	+205,697
		(1311)		

Tableau II.28 les valeurs de la force intérieure Fwi pour pignon (sens V2).

II.6.10 Calcul de la force de frottement

Les effets de frottement du vent sur la surface peuvent être **négligés.** Lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement incliné par rapport à la direction du vent) est inferieure à 4 fois l'aire totale de toutes les surfaces extérieure perpendiculaires au vent (au sous le vent).

Dans ce cas la direction du vent elle est perpendiculaire au pignon

• Calcul des surfaces parallèles au vent :

Les surfaces de deux longs pans

 $= [(8,15*90,22)]*2=1470,586 \text{ m}^2$

La surface de la toiture

$$= [(19,32*2)*90,22] = 3486,100 \text{ m}^2$$

Toute les surfaces parallèles au vent =
$$1470,586+3486,1 = 4956,686 \text{ m}^2$$

• Calcul des surfaces perpendiculaires au vent (et sous le vent) :

Les surfaces de deux pignons

=
$$[(38*8,15) + (19*4,2)]*2 = 779 \text{ m}^2$$

Vérification de la condition (article 2.6.3 RNVA 2013)

Les surfaces parallèles au vent = $4956,686 \text{ m}^2 > \text{à } 4 \text{ * les surfaces perpendiculaires au vent} = 3116 \text{ m}^2$

Donc on ne doit pas négliger l'effet de frottement cas de vent perpendiculaire au pignon.

Calcul la force de frottement par la formule suivant :

$$F_{fr} = C_{fr} *q_{p(ze)} *A_{fr}$$
 avec:

C_{fr}: est le coefficient de frottement (tableau 2.8 chapitre 2 RNVA 2013).

Afr: est l'aire de la surface extérieure parallèle au vent (tableau 2.9 chapitre 2 RNVA 2013).

Dans notre cas on l'ondulation perpendiculaires au vent pour la toiture et les parois verticales donc $C_{\rm fr}=0.04$

• Pour les parois verticales $Z_e = 8,15 \text{ m} \longrightarrow q_{p(ze)} = 568,875 \text{ N/m}^2$

$$A_{fr}=[(90,22*8,15)]*2 = 1470,586 \text{ m}^2$$

$$F_{fr} = 0.04*586.875*1470.586 = 34522 \text{ N}$$
 $F_{fr} = 34.52 \text{ KN}$

• Pour la toiture
$$Ze = 12,35 \text{ m}$$
 $q_{p(ze)} = 688,5 \text{ N/m}^2$

$$A_{fr} = (19,32*2*90,22) = 3486,1 \text{ m}^2$$

$$F_{fr} = 0.04 * 688.5 * 3486.1 = 96007.197 N$$
 $F_{fr} = 96,007 KN$

$$F_{fr}$$
 totale = $F_{fr parois} + F_{fr toiture} = 34,52 + 96,007 = 130,527$ KN

 F_w c'est la sommation vectorielle des forces F_{we} , F_{wi} , $F_{fr\,n}$:

Force	Composante horizontale	Composante verticale
F_{we}	+87,742	-347,318
F_{wi}	+9,291	+205,697
F_{fr}	130,527	0
F _w (KN)	+227,568	-141,621

Tableau II.29 les valeurs de la force frottement (sens V2).

II.7 Etude à la neige

II.7.1 But

Le but principale de cette étude est de définie les valeurs représentatives de la charge statique de la neige sur toute la surface situé au-dessus du sol et soumise à l'accumulation de la neige notamment sur la toiture.

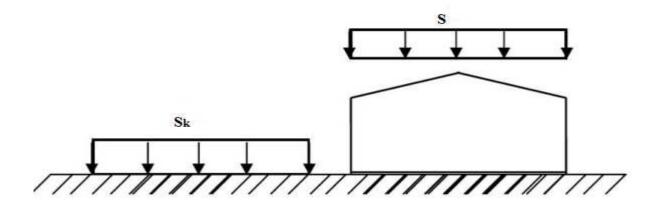


Figure II.14 Représentation des charges statique de neige sur la toiture et sur le sol.

II.7.2 la charge de neige sur le sol

La charge de neige sur le sol est fonction de la localisation géographique et de l'altitude du lieu considéré

Dans notre cas:

- Le projet est a el-kseur wilaya de Bejaia qui classée en zone A selon la classification de RNVA 2013.
- L'altitude du projet est environ 60 m

Donc : S_k est donnée par la formule suivante : (§ 4.2 RNVA 2013)

$$S_k = \frac{0,07.\,H + 15}{100}$$

H : altitude de site par rapport au niveau de la mer

H=60 m

$$S_k = \frac{0.07 \times 60 + 15}{100} = 0.192 \text{ KN/m}^2$$

$$S_k = 0.192 \text{ KN/m}^2$$

II.7.3 Coefficient de forme de la toiture

La toiture est à deux versants, le coefficient de forme est donné par le tableau 2 du RNVA 2013 pour un pante compris entre 0⁰ et 30⁰ :

$$\mu 1 = 0.8$$

II.7.4 La charge de la neige sur la toiture

$$S = \mu 1 \times Sk \qquad [KN/m^2]$$

$$S=0, 8 \times 0,192 = 0,153 \text{ KN/m}$$

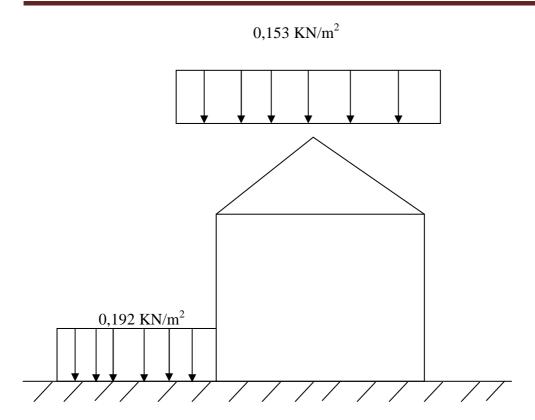


Figure II.15 Représentation des charges statique de neige sur la toiture et sur le sol.

III. Introduction

Les caractéristiques de notre structure étant définies, nous passons dans ce chapitre au prédimensionnement des éléments porteurs du bâtiment.

III .1 Dimensionnement des panneaux de couverture

III .1.1.principe de choix d'un panneau sandwich

Le panneau sandwich d'enveloppe de bâtiment, est un produit composite, fabriqué industriellement en continu, comportant un parement extérieur métallique, une âme isolante et un parement intérieur métallique solidarisés par adhérence à l'âme isolante. Ces composants travaillent ensemble et ne constituent ainsi qu'un seul élément autoportant présentant différents niveaux de résistance mécanique, de réaction et de résistance au feu, d'isolation thermique et acoustique, d'étanchéité à l'air, à l'eau et à la vapeur d'eau et d'esthétique architecturale.

III .1.2. Panneaux couverture

Pour choisi le panneau couverture convient à notre structure, on doit savoir la charge du vent maximale sollicité la toiture, et nombre d'appuis de séquelle le panneau de couverture sera appuyé ainsi que l'épaisseur de la couverture.

Dans notre cas, la charge maximale du vent est égale à W= -1.186KN/m².

Suivant une fiche technique on va choisi l'épaisseur de panneau couverture pour déterminer leur entraxe maximal et le poids propre m²:

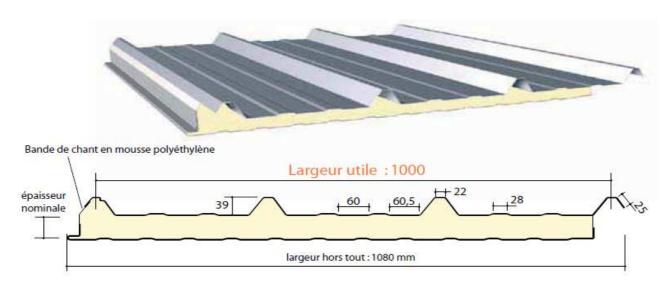


Figure III .1 détail de panneau sandwich (couverture).

III .1.2.1. Détermination de poids propre de la couverture

D'après ce tableau ci-dessous on fait choisit un panneau de couverture de 30mm d'épaisseur ce qui donne un poids de 12.5kg/m².

CARACT		Epaisseurs nominales de l'âme (mm)									
CARACTI	ERISTIQUES DU PANNEAU	30	40	50	60	80	100	120			
	Epaisseur parement extérieur (mm)			0,50	- 0,63 - 0	0,75					
	Epaisseur parement intérieur (mm)		0,50 - 0,63								
	Largeur utile		1000 mm								
DIMENSIONNELLES	Largeur hors tout		1080 mm								
	Longueur maximale hors tout		16000 mm								
	Débord en extrémité		5(-100 - 1	50 - 200	- 300 m	nm				
PONDERALES (kg/m²)	Ex. en épaisseurs 0,63 et 0,63 mm	12,5	12,9	13,3	13,7	14,5	15,3	16,1			

Tableau III.1 le poids propre e panneau correspondante à chaque épaisseur.

III .1.2.2. Détermination de la portée maximale

Dans notre cas la charge du vent maximale sur la toiture w= -1.873KN/m² (dépression)

On suppose que le panneau de couverture soit repose sur plusieurs appuis (pannes), à l'aide de tableau ci-dessus on déterminera la portée maximale entre les pannes :

2 APPUIS									3 APF	PUIS						
	Epaisseurs nominales de l'âme						PORTÉE	Epaisseurs nominales de l'âme								
	120						30	(m)		40	50	60	80	100	120	
PRESSION						330	270	200								PRESSION
DEPRESSION						240	240	2,00								DEPRESSION
PRESSION					280	260	210	2,25								PRESSION
DEPRESSION					220	220	220	2,23								DEPRESSION
PRESSION			290	290	230	200	150	2.50	240	275						PRESSION
DEPRESSION			220	190	190	190	190	2,50	190	190						DEPRESSION
PRESSION			260	260	215	170	140	2.75	195	225	260					PRESSION
DEPRESSION			205	170	170	170	170	2,75	170	170	170					DEPRESSION
PRESSION	220	220	220	220	185	140	115	3,00	165	190	225	250	250			PRESSION
DEPRESSION	190	190	190	155	155	155	155	3,00	155	155	155	155	190			DEPRESSION
PRESSION	195	195	195	195	155	120	100	2.25	140	165	190	220	220	220	220	PRESSION
DEPRESSION	175	175	175	140	140	140	140	3,25	140	140	140	140	175	175	175	DEPRESSION
PRESSION	170	170	170	170	130	100	75	2.50	120	140	165	200	200	200	200	PRESSION
DEPRESSION	160	160	160	130	130	130	130	3,50	130	130	130	130	160	160	160	DEPRESSION
PRESSION	150	150	150	150	110	85	70	3,75	105	125	145	180	180	180	180	PRESSION
DEPRESSION	150	150	150	115	115	115	115		115	115	115	115	150	150	150	DEPRESSION
PRESSION	130	130	130	130	95	70	60	4.00	90	110	125	160	160	160	160	PRESSION
DEPRESSION	140	140	140	105	105	105	105	4,00	105	105	105	105	140	140	140	DEPRESSION

Tableau III.2 les charges maximales admissibles en daN/m² en fonction des portées.

D'après le tableau précédent on adopte pour une portée maximale entre les pannes de 2.5m.

 \Rightarrow On prend l'entraxe entre les pannes e=1.58m.

III.2 Etude des pannes

III.2.1 Définition

Les pannes sont des poutres destinées à supporter la couverture et de transmettre les charges et surcharges s'appliquant sur cette dernière à la traverse ou bien à la ferme. Elles sont disposées parallèlement à la ligne de faitage, et elles sont calculées en flexion déviée, sous l'effet des charges permanentes, d'exploitations et climatiques.

Elles sont réalisées soit en profilés formés à chaud en (I), ou bien en (U), soit en profilés formés à froid en (Z), (U), (\sum) ou en treillis pour les portées supérieures à 6m.

Dans notre structure nous utiliserons des formé à chaud en (I).

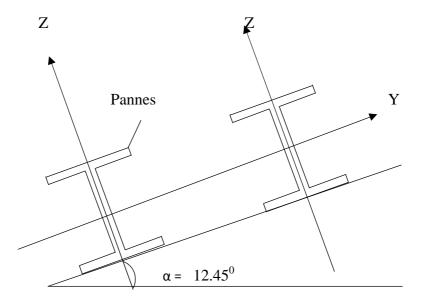


Figure III.4 Dispositions des pannes sur la toiture.

On étudie la panne la plus sollicitée qui est la panne intermédiaire de portée **L=6m**, incliné d'un angle $\alpha = 12,46^{\circ}$ et dans l'entraxe « e » égale à 1,58 m.

III.2.2. Détermination des sollicitations

III.2.2.1. Evaluation des charges et surcharges

- a) Les charges permanentes (G):
- Poids propre de la couverture (panneaux sandwichs)......12.5Kg/m².
- Poids propre d'accessoire d'attache......1.5Kg/m².
- Poids propre de la panne estimé(IPE120)......10.4Kg/m.

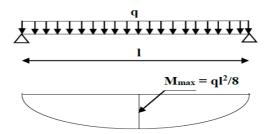


Figure III.5 Schéma statique de la panne sous la charge permanente.

$$G = (P_{couverture} + P_{accessoire}) * e + P_{panne}$$
e: espacement entre les pannes (e= 1,58m)
$$G = (12.5 + 1.5) * 1,58 + 10.4 = 32.52 \text{ Kg/m}$$

$$G = 0.325 \text{ KN/m}.$$

b) Surcharges d'entretien (P) :

Dans le cas des toitures inaccessible on considéré uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente deux charges concentrées de 100Kg chacune située à 1/3 et 2/3 de la portée de la panne.(**D'après le DTR BC 2.2**).

Afin d'unifier l'expression de la flèche sous les charges (charges permanentes) et les surcharges (charges d'exploitations), on cherche la charge uniformément répartie équivalente qui nous donne le même moment trouvé par les deux charges concentrées.

La charge uniformément répartie (Peq) due à la surcharge d'entretien est obtenue en égalisant le moment maximal au moment maximal du aux charges ponctuelles (P).

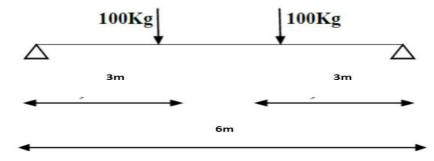


Figure III.6 Schéma statique de la panne sous charge d'entretien.

$$M_{\text{max}} = \frac{pl}{3}$$

 $Mmax = 100 \times 2 = 200 \text{Kg.m}$

Afin d'unifier l'expression de la flèche sous les charges (charges permanentes) et les surcharges (charges d'exploitation), on cherche la charge uniformément répartie équivalente qui nous donne le même moment trouvé par les deux charges concentrées.

La charge uniformément répartie (P) due à la surcharge d'entretien est obtenue en égalisant les deux moments max due à P aux charges ponctuelles (Peq).

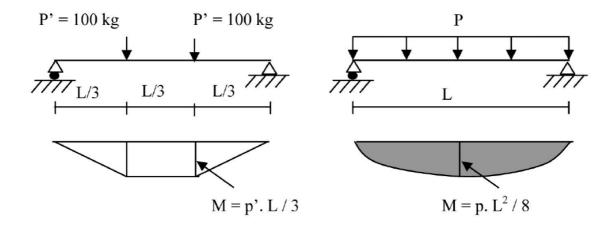


Figure III.7 Schéma statique de la poutre équivalente.

$$M_{\text{max}} = \frac{P'.l}{3} = \frac{P.l^2}{8} \Rightarrow P = \frac{8 \times P'}{3 \times l} = \frac{8 \times 100}{3 \times 6} = 44,44 \text{Kg} / \text{ml} \Rightarrow \text{P}_{\text{eq}} = 0,444 \text{KN/ml}$$

c) Surcharges climatiques:

• Surcharge du vent (W):

La Sollicitation extrême et le Cas du vent sur la façade principale et secondaire avec surpression intérieure **Cpi** = +0.35 la zone (F), et la zone(H) avec surpression intérieure **Cpi=+0.35**

W = -1,186 KN/m 2 (la zone F), et $W = -670.59 \text{KN/m}^2(\text{H})$.

On cherche la charge équivalant q_{eq}:

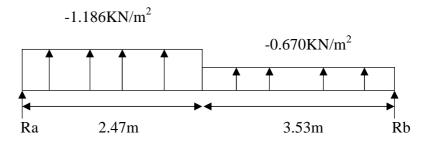


Figure III.8 Schéma statique de la charge équivalente de vent.

D'après la méthode des moments et faire les tançons on trouve :

$$Max = M_{eq} = 3.83KN.m = q_{eq} *1^2/8$$
 $q_{eq} = -0.851 KN$

La charge linéaire du vent est égal à :

$$W = -0.851*1, 58 = -1.34KN/m$$

W = -1.34KN/m.

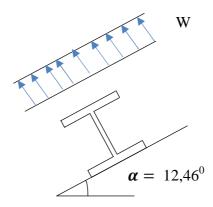


Figure III.9 Schéma statique de panne sous surcharge du vent.

• Surcharges de la neige (S):

La surcharge de la neige est en fonction de l'implantation du site de construction (région, altitude) et de la forme de la toiture (inclinaison, possibilité d'accumulation).

S : charge de la neige

Sur le sol : Sk = 0.192 KN/m2.

Charge de la neige sur la toiture S= 0,153 KN/m2

La charge linéaire de la neige sur la toiture est égal à :

$$S = 0.153 \times 1, 58 \implies S = 0.241 \text{ KN/m}.$$

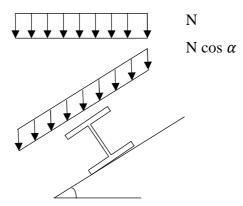


Figure III.10 Schéma statique de panne sous surcharge de la neige.

III.2.2.2. Les charges et surcharges appliquées

G = 0.325 KN/m.

Q = 0.444 KN/m.

$$W = -1.34 \text{ KN/m}.$$

$$S = 0.241 \text{K N/m}.$$

Décomposition des charges :

> Suivant l'axe Z-Z:

$$G_{ZZ} = G \cos \alpha = 0.317 \text{ KN/m}.$$

$$Q_{ZZ} = Q \cos \alpha = 0.433 \text{ KN/m}.$$

$$W_{ZZ} = W = -1,873 \text{ KN/m}.$$

$$S_{ZZ} = S \cos \alpha = 0.235 \text{ KN/m}.$$

> Suivant l'axe Y-Y:

$$G_{YY} = G \sin \alpha = 0.070 \text{ KN/m}.$$

$$Q_{YY} = Q \sin \alpha = 0.096 \text{ KN/m}.$$

$$W_{YY} = 0 \text{ KN/m}.$$

$$S_{YY} = S \sin \alpha = 0.052 \text{ KN/m}$$

III.2.2.3 Les combinaisons d'actions

- 1) ELU:
- AXE **Z-Z**

$$p_{Uz1} = G_z + 1.5W = 0.317 + 1.5 \times (-1.34) = -1.693 \text{ KN/ml}$$

$$p_{Uz2} = 1.35 G_{Z,+} + 1.5 S_Z = (1.35 \times 0.317) + (1.5 \times 0.235) = 0.780 \text{ KN/ml}$$

$$p_{UZ3}$$
= 1.35 G_Z + 1.5 Q_Z = (1.35 × 0,317) + (1.5 × 0,433) = 1.077 KN/ml

AXE Y- Y :

$$p_{Uy1} = G_y + 1.5W = 0.07 - (1.5 \times 0) = 0.07 \text{ KN/ml}$$

$$p_{Uv2} = 1.35 G_Y + 1.5 S_Y = (1.35 \times 0, 07) + (1.5 \times 0,052) = 0.172 \text{ KN/ml}$$

$$p_{Uy3} = 1.35 G_Y + 1.5 Q_Y = (1.35 \times 0.07) + (1.5 \times 0.096) = 0.238 \text{ KN/ml}$$

Selon les deux axes y et z, les charges maximales à l'ELU /ml revenant à la panne la plus sollicitée en tenant compte de la continuité :

$$q_{Uz1} = 1.25 \times (-1.693) = -2.116 \text{ KN/ml}$$

$$q_{Uy3} = 1.25 \times 0.238 = 0.297 \text{ KN/ml}$$

2) ELS:

• AXE Z-Z:

$$p_{SZ1} = G_z + W = 0.317 - 1.34 = -1.023 \text{ KN/ml}$$

$$p_{SZ2} = G_Z + S_Z = 0.317 + 0.235 = 0.552 \text{ KN/ml}$$

$$p_{SZ3} = G_Z + Q_Z = 0.317 + 0.433 = 0.75 \text{ KN/ml}$$

AXE Y-Y:

$$p_{Sv1} = G_v + W = 0.07 + 0 = 0.07 \text{ KN/ ml}$$

$$p_{Sv2} = G_Y + S_Y = 0,07 + 0.052 = 0.122 \text{ KN/ml}$$

$$p_{Sv3} = G_Y + Q_Y = 0,07 + 0,096 = 0.166 \text{ KN/ml}$$

Selon les deux axes Y et Z ; les charges maximales à l'ELS/ml revenant à la panne la plus sollicitée en tenant compte de la continuité et on majore avec 1.25 :

$$q_{SZ} = 1.25 \times (-1.023) = -1.278 \text{ KN/ml}$$

$$q_{Sy} = 1.25 \times 0.166 = 0.207 \text{KN/ml}$$

III.2.3 Principe de pré dimensionnement

Les pannes sont sollicitées à la flexion déviée (flexion bi axiale).

Elles doivent satisfaire les deux conditions suivantes :

- Condition de flèche (l'ELS).
- Condition de résistance (l'ELU).

Généralement, on fait le pré dimensionnement des pannes par l'utilisation de la condition de flèche, puis on fait la vérification de la condition de résistance.

III.2.3.1 Vérification à l'ELS (flèche)

➤ Vérification à l'**ELS** :

La flèche à l'état limite de service se fait avec les charges et surcharges de service (non pondérée) : $F \le F$ adm.

Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

$$Fz = 5 \text{ q}_z \text{ l}^4 / 384 \text{ EI}_y \le 1/200 \iff I_y \ge 1000 \text{q}_z \text{ l}^3 / 384 \text{ E}$$

$$\Rightarrow I_y \!\! \ge 1000 \; (1.278) \times 600^3 \!\! \times 10^{\text{--}1} \!\! / \!\! 384 \times 2.1 \times 10^5 = 342.32 \; \text{cm}^3$$

Donc on choisi un IPE 140 avec : Iy= 541.2 cm³.

Profilé	h (mm)	b (mm)	t _w (mm)	t _f (mm)	r (mm)	P (Kg/m)	d (mm)
	140	73	4,7	6,9	7,0	12,9	112,2
IPE 140	A (cm ₂)	I _y (cm ⁴)	i _y (cm)	W _{pl y} (cm ³)	I _z (cm ⁴)	W _{plz} (cm ³)	i _z (cm)
	16,4	541	6.58	88,3	44,9	19,3	1,65

Tableau III.3 Caractéristiques de l'IPE 140

On recalcule la condition de la flèche avec poids réel :

Le poids propre réel G devient :

$$G = (P_{converture} + A_{ccessoire}) \times e + P_{panne}$$

$$G = (12.5+1.5) \times 1,58 +12,9 = 35.02 \text{ Kg/ml}$$

G = 0.35 KN/ml

$$G_Z = 0.35 \times \cos 12.46^{\circ} = 0.341 \text{ KN/ml}$$

$$G_Y = 0.35 \times \sin 12.46^\circ = 0.075 \text{ KN/ml}$$

La combinaison les plus défavorables devient :

A L'ELU:

$$q_z = 1.25 \times (0.341 + 1.5 \times (-1.34)) = -2.08 \text{ KN/m}.$$

$$q_Y = 1.25 \times (1.35 \times 0.075 + 1.5 \times 0.052) = 0.224 \text{ KN/m}.$$

A L'ELS:

$$q_Z = 1.25 \times (0.341 + (-1.34)) = -1.248 \text{ KN/m}.$$

$$q_Y = 1.25 \times (0.075 + 0.052) = 0.158 \text{ KN/m}.$$

III.2.4 Dimensionnement des pannes

III.2.4.1 Condition de la flèche

a) Vérification de la flèche suivant l'axe Z-Z:

$$\mathit{fz} = 5 \ q_z \ l^4 / \ 384 \ EI_y = 5 \times 1.248 \times 600^4 \times 10^{\text{--}} / 384 \times 2.1 \times 10^5 \times 541.2 \ \leq l/200 = 600/200.$$

$$fz = 1.85 cm \le fadm = 3cm$$

La condition est vérifiée.

b) Vérification de la flèche suivant l'axe Y-Y:

$$fy = 5 \ q_y \ l^4 / \ 384 EI_z = 5 \times 0.158 \times 600^4 \times 10^{\text{--}} / 384 \times 2.1 \times 10^5 \times 44, 9 \leq l/200 = 600/200.$$

$$fy = 2.82cm > fadm = 3cm$$

La condition de la flèche suivant l'axe Y-Y est vérifié.

Donc la condition de la flèche est vérifié pour les deux axes on adopte un IPE140.

III.2.4.2 Condition de la résistance (ELU)

Dans la condition de résistance à l'ELU il faut faire les vérifications suivantes :

a) Vérification à la flexion déviée :

Pour cette vérification on utilise la condition suivante :

$$\left[\frac{M_{y}}{M_{p|y}}\right]^{\alpha} + \left[\frac{M_{z}}{M_{p|z}}\right]^{\beta} \le 1 \quad \quad [EC03 5.4.8.1 (11)]$$

Avec :
$$\alpha = 2, \ldots$$
 pour les profile en I. $\beta = 5n \ge 1$, $n = \frac{N}{Npl} = 0 \Rightarrow \beta = 1$

Et:
$$M_{sd} = q.1^2/8$$

Tel que:

• Axe Z-Z :

$$M_{y,sd} = q_z l^2/8 = 2.08 \times 6^2/8 = 9.36 \text{ KN.m}$$

• Axe Y-Y

$$M_{z, sd} = q_{y(1/2)^2/8} = 0.224 \times 3^2/8 = 0.252 \text{ KN.m}$$

Et: $\mathbf{Mpl} = \mathbf{W_{pl}} \cdot \mathbf{f_y} / \mathbf{Y_{m0}}$ et pour le Υ_{m0} on doit déterminer la classe du profile.

Détermination de la classe de profile :

• **Ame**:
$$d/t_w = 112,2/4,7 = 23,87 \le 72\epsilon$$

Et:
$$\varepsilon = \sqrt{\frac{235}{\text{fy}}} = \sqrt{\frac{235}{235}} = 1 \implies \varepsilon = 1$$

⇒ Ame de classe 1

• **Semelle**: $c/t_f = b/2/t_f = 36,5/6,9 = 5,28 \le 10\epsilon = 10$

⇒ Semelle de classe 1

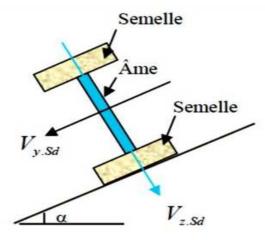
Donc la section de classe 1

$$M_{pl,y,rd} = W_{ply} \times f_y / Y_{m0} = 88.3 \times 23.5 \times 10^{-2} / 1 = 20,750 \text{ KN.m}$$

$$M_{pl,z,rd} = W_{plz} \times f_y \: / \: Y_{m0} = 19.3 \times 23.5 \times 10^{\text{--}2} \: / \: 1 = 4.535 \: KN.m$$

Et la condition sera:

$$[9.36/20,750]^2 + [0.252/4,535]^1 = 0.25 < 1$$


Donc la flexion bi-axiale est vérifiée

b) Vérification au cisaillement :

Pour la vérification au cisaillement on utilise la condition suivante :

$$V_{z,sd} \le V_{pl,rd}$$
[EC .3 p158]

$$V_{y,sd} \le V_{pl,y,rd}$$
[EC .3 p158]

III.11 Représentation de cisaillement de la panne

Avec:

$$\begin{split} &V_{z,sd} = q_z \ l/2 = &2.08 \times 6/2 = 6.24 \ KN \\ &V_{pl.rd} = A_{vz} \ .f_y / \sqrt{3} \ .Y_{m0} \\ &A_{vz} = A - 2bt_f + (t_w + 2r)t_f = 16.4 - (2 \times 7.3 \times 0.69) + (0.47 + 2 \times 0.7) \times 0.69 = 5.035 \ cm^2. \\ &V_{pl.rd} = 5.035 \times 23.5 / 1. \sqrt{3} = 86.313 \ KN \end{split}$$

D'où:

$$V_{z,sd} = 6.24~{\rm KN} < V_{pl,rd} = 86,313~{\rm KN}$$
 c'est vérifié
$$V_{y,sd} = q_y \, l/2 = 0,224 \times 6/2 = 0.672~{\rm KN}$$

$$A_{vy} = A - A_{vz} = 16,4 - 5,035 = 11,365~{\rm cm}^2$$

$$V_{plrd} = 11,365 \times 23,5 \, / \, 1 \times \sqrt{3} = 154,197~{\rm KN}$$

D'où: Vy, sd =
$$0.672$$
 KN $<$ V_{pl,rd}= $154,197$ KN **c'est vérifiée**

Donc la résistance des pannes au cisaillement est vérifiée.

C) Vérification au déversement :

Déversement = flambement latéral + rotation de la section transversale

La semelle supérieure qui est comprimée sous l'action des charges descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture il n'y a donc pas de risque de déversement contrairement à la semelle inferieure qui est comprimée sous l'action du vent de soulèvement et qui est quant à elle susceptible de déverser du moment qu'elle est libre tout au long de sa portée.

On rappelle la combinaison de charge défavorable pour le risque de déversement. Il s'agit de la première combinaison dans laquelle le vent agit seul et risque de faire déverser la panne (fléchie vers le haut) et en comprimant la semelle inférieure au niveau de la mi- travée (voir la figure)

Figure III.12 Représentation de phénomène de déversement dans la semelle inférieure.

La vérification au déversement se fait par l'utilisation de la condition suivante

$$M_{sdy} \leq M_{b,rd}$$

$$M_{b,rd} = \ \aleph_{LT} \times \beta_w \times W_{ply} \times f_y / \gamma_{M1}$$

 $\beta_{w} = 1$: Pour les sections de classe (1) et (2).

$$\beta_{w} = \frac{W_{ely}}{W_{ply}}$$
: Pour les sections de classe (3).

$$\beta_{w} = \frac{W_{effy}}{W_{ply}}$$
: Pour les sections de classe (4).

 $M_{b,rd}$: Moment résistant au déversement.

 M_{sdy} : Moment sollicitant.

 χ_{LT} : Coefficient de réduction pour le déversement.

On a : la classe de profile est de classe 01 $\implies \beta_w = 1$

Et: $\Upsilon_{m1} = 1.1$

Remarque : M_{sdy} serra calculer sous l'action de vent.

$$M_{sdy} = \frac{q_z.L^2}{8} = \frac{2.08 \times 6^2}{8} = 9.36 KN.ml$$

$$\overline{\lambda}_{LT}$$
: c'est l'élencement de diversement $\rightarrow \overline{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \cdot \sqrt{\beta_w}$

$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9\varepsilon$$

$$et \ \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$D'ou \ \lambda_1 = 93.9$$

Pour les poutres à section constante et doublement symétrique on peut utiliser la formule approximative ci-après qui place en sécurité.

et
$$\lambda_{LT} = \frac{l/i_z}{\sqrt{C_I} \left[1 + \frac{1}{20} \left(\frac{l/i_z}{h/t_f} \right)^2 \right]^{0.25}}$$
 [Annexe F EC03 partie 1-1]

l: longueur de maintien latéral (distance entre la lierne et le portique = L/2=3m).

$$\lambda_{LT} = \frac{300/1,65}{1.132^{0.5} \left[1 + \frac{1}{20} \left(\frac{300}{1,65} \right)^{2} \right]^{0.25}} = 120,072$$

D'où
$$\bar{\lambda}_{LT} = \frac{120,072}{93.9} = 1,277$$

$$\overline{\lambda}_{LT}$$
 =1,277 > 0,4 il ya risque de déversement

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left|\phi^2_{LT} + \overline{\lambda}^2_{LT}\right|^{0.5}}$$
 Mais $\chi_{LT} \le 1$

Ou:

$$\varphi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$$

Avec:

$$\alpha_{\scriptscriptstyle LT}$$
 =0.21 pour les profils laminés

D'où
$$\varphi_{LT} = 0.5[1 + 0.21(1,277 - 0.2) + 1,277^2] = 1,428$$

$$\Rightarrow \chi_{LT} = \frac{1}{1,428 + \left[1,428^2 + 1,277^2\right]^{0.5}} = 0,299$$

$$\Rightarrow Mbrd = \chi_{LT}.\beta_{w}.\frac{w_{ply}.f_{y}}{\gamma_{m0}} = 0,299 \times 1 \times \frac{88,3 \times 23.5 \times 10^{-2}}{1} = 6,204 KN.m$$

$$M_{sd,y} = 9.36 \text{ KN.m} > 6,204 \text{ KN.m}$$

La condition n'est pas vérifiée donc la stabilité au déversement de la panne n'est pas vérifier, on augmente la section de profile a un IPE 160.

Profilé	h (mm)	b (mm)	t _w (mm)	t _f (mm)	r (mm)	P (Kg/m)	d (mm)
	160	82	5.0	7.4	9,0	15.8	132
IPE 160	A (cm ₂)	I _y (cm ⁴)	i _y (cm)	W _{pl y} (cm ³)	I _z (cm ⁴)	W _{plz} (cm ³)	i _z (cm)
	20.1	869.3	6.58	123.9	68.28	26.1	1.84

Tableau III.4 Caractéristiques de l'IPE 160

On aura:

$$\lambda_{LT} = \frac{300/1.84}{1.132^{0.5} \left[1 + \frac{1}{20} \left(\frac{300/1.84}{16/0.74} \right)^{2} \right]^{0.25}} = 109.44$$

$$\overline{\lambda}_{LT} = \frac{109.44}{93.9} = 1{,}16$$

$$\varphi_{LT} = 0.5[1 + 0.21(1.16 - 0.2) + 1.16^{2}] = 1.27$$

$$\Rightarrow \chi_{LT} = \frac{1}{1,27 + \left[1.27^2 + 1,16^2\right]^{0.5}} = 0,35$$

$$\Rightarrow Mbrd = \chi_{LT}.\beta_{w}.\frac{w_{ply}.f_{y}}{\gamma_{m0}} = 0.35 \times 1 \times \frac{123.9 \times 23.5 \times 10^{-2}}{1} = 10.19 \text{KN.m}$$

$$M_{sdy} = 9.36 \text{ KN.m} < 10.19 \text{ KN.m}$$

Donc la condition est vérifiée on adopte un IPE 160.

III.3 Calcul des liernes

III.3.1 Définition

Les liernes sont des tirants qui fonctionnent en traction. Elles sont généralement formées de barres rondes ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des pannes.

III.3.2 Calcul des liernes

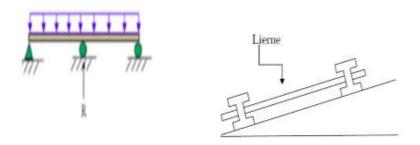


Figure III.13 Shéma statique des pannes dans le cas d'escistance des lierne

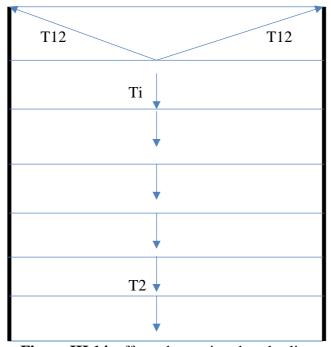


Figure III.14 efforts de traction dans les liernes

Le poids propre de la panne de IPE 160 : G = 15.8 Kg/ml

La combinaison de charge est le suivant :

$$q_{uy} = 1,35G_y + 1,5 S_y$$

$$G = [(12.5+1.5) \times 1,58] + 15.8 = 37.92 \text{ Kg/ml}$$

G = 0.379 KN/ml

$$G_z = 0.379 \cos 12,46^0 = 0,37 \text{ KN/ml}$$

$$G_y = 0.379 \text{ sin } 12.46^0 = 0.081 \text{ KN/ml}$$

$$q_{uy} = 1{,}35{\times}~0{,}081 + 1{,}5~{\times}~0{,}052 = 0.187~KN/ml$$

III.2.3 Détermination des efforts de traction

La réaction R au niveau du lierne :

$$\mathbf{R} = \mathbf{q}_{\mathbf{u}\mathbf{y}} \times \mathbf{l}_{\mathbf{y}}$$

$$l_y = \frac{l}{2} = 3m$$

$$q_{uy} = 0.187 \text{ KN/ml}$$

$$R = 0.187 \times 3 = 0.561 \text{ KN}$$

Efforts de traction dans le tronçon de lierne L1 provenant de la panne sablière :

$$T1 = R/2 = 0.561/2 = 0.280 \text{ KN}$$

- Effort dans le tronçon L2 :

$$T2 = T1 + R = 0.28 + 0.561 = 0.841 \text{ KN}$$

- Effort dans le tronçon L3:

$$T3 = T2 + R = 0841 + 0.561 = 1.402KN$$

- Effort dans les diagonales L4 :

$$T4 = T3 + R = 1.402 + 0.561 = 1.963 \text{ KN}$$

- Effort dans les diagonales L5 :

$$T5 = T4 + R = 1.963 + 0.561 = 2.524KN$$

- Effort dans les diagonales L6 :

$$T6 = T5 + R = 2.524 + 0.561 = 3.085 \text{ KN}$$

- Effort dans les diagonales L7 :

$$T7 = T6 + R = 3.085 + 0.561 = 3.646 \text{ KN}$$

- Effort dans les diagonales L8 :

$$T8 = T7 + R = 3.646 + 0.561 = 4.207 \text{ KN}$$

- Effort dans les diagonales L9 :

$$T9 = T8 + R = 4.207 + 0.561 = 4.768KN$$

- Effort dans les diagonales L10 :

$$T10 = T9 + R = 4.768 + 0.561 = 5.329 \text{ KN}$$

- Effort dans les diagonales L11 :

$$T11 = T10 + R = 5..329 + 0.561 = 5.89 \text{ KN}$$

- Effort dans les diagonales L12 :

Avec
$$\theta = 27.77^{0}$$

$$2T12 = T11/2\sin 27,77^0 = 6.32 \text{ KN}$$

$$T12 = 6.32 \text{ KN}$$

III.3.3 Calcul de la section des liernes

- Le tronçon le plus sollicité est T12.
- Condition de vérification à la résistance plastique de la section brute :

Ntsd \leq Npl.

Avec:
$$N_{pl} = A \times \frac{f_y}{\gamma_{m0}} \Longrightarrow A \ge \frac{\gamma_{m0} \times N_{tsd}}{f_y}$$

$$A \ge \frac{1 \times 6.32}{23.5} \Longrightarrow A \ge 0.268 \text{ cm}^2$$

$$A = \frac{\pi \times \emptyset^2}{40} \ge 0.268 \ cm^2 \implies \emptyset \ge \sqrt{\frac{4 \times 0.268}{3.14}} \Longrightarrow \emptyset \ge 0.584 \ cm$$

Pour des raisons pratique, on adopte pour une barre ronde de diamètre $\phi = 12$ mm.

III.4 Calcul de l'échantignolle

III.4.1. Définition

L'échantignolle est un dispositif de fixation qui permet de fixer les pannes sur les fermes ou les traverses de portiques.

Le principal effort de résistance de l'échantignolle est le moment de renversement dû au chargement (surtout sous l'action et soulèvement du vent).

L'excentrement « t » est limité par la condition suivante :

$$2 (b/2) \le t \le 3 (b/2)$$

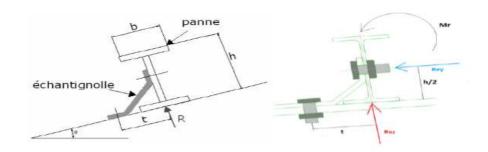


Figure III.15 Coupe transversale de l'échantignole et les efforts sollicitant.

Les pannes sont des IPE 160 avec :

b = 8.2cm et h = 16 cm

 $8.2 \text{ cm} \le t \le 12.3 \text{ cm}$, on adopte t = 10 cm.

• Sous la combinaison de charge : G. $\cos \alpha$ - 1,5 W (c'est la plus défavorable).

La combinaison devint : Gz - 1.5 Wz

G = 0.379 KN/ml

$$G_z = G.\cos \alpha = 0.379 \cos 12,46^0 = 0.37 \text{ KN}$$

$$P_{uz} = -G_z + 1.5 W_z = -0.37 + 1.5 \times 1.34 = 1.64 KN/m2$$

Charge revenant à la panne /ml et en tenant compte de la continuité

$$q_{uz} = 1.25 \text{ x } 1.64 = 2.05 \text{ KN/ml}$$

L'effort **R** revenant à l'échantignolle n'est rien que la réaction d'appui des pannes. On prendra l'effort maximal correspondant à l'échantignolle intermédiaire (et non l'échantignolle de rive).

$$R = 1,25 \times quz \times L$$

$$R=quz\times L=1,25\times 2.05\times 6=15.375 \text{ KN}$$

$$R = 22,297 \text{ KN}.$$

La condition à vérifier:

L'effort **R** risque de provoquer le pliage de l'échantignolle. Pour prévenir ce risque, il faut vérifier que le moment de renversement MR ne dépasse pas le moment de pliage

$$M_R \leq M_{pliage}$$

Avec: $\mathbf{M_R} = \mathbf{R.t}$

Pour notre cas on a IPE 160.

$$M_R = R. t = 15.375 \times 0,1 = 1.537 \text{ KN.m}$$

• M_{pliage} : est le moment résistant au pliage de l'échantignolle.

Dans la construction métallique, généralement les échantignolles sont des éléments formés à froid. La classe de la section est au moins de classe3.

$$M_{\textit{pliage}} = \frac{W_{\textit{ely}}.f_{\textit{y}}}{\gamma_{\textit{m0}}} \succ M \ \, \Rightarrow W_{\textit{ely}} \geq \frac{\gamma_{\textit{m0}} \times M_{\textit{R}}}{f_{\textit{y}}}$$

done

$$W_{ely} \ge \frac{1 \times 1.537 \times 10^2}{23.5} = 6.540 cm^3$$

Pour une section rectangulaire :

$$W_{ely} = \frac{b \times e^2}{6}$$

Remarque : la largeur de l'échantignolle (b) est prise après avoir dimensionné la traverse.

On prend b=18cm

$$W_{ely} = \frac{18 \times e^2}{6} = 6.540 \, cm^3$$

$$\Rightarrow e = \sqrt{\frac{6.540 \times 6}{18}} = 1.47cm$$

Donc : on adopte une échantignolle de 14mm d'épaisseur.

III.5 Calcul des lisses de bardage

III .5.1 Panneaux bardage

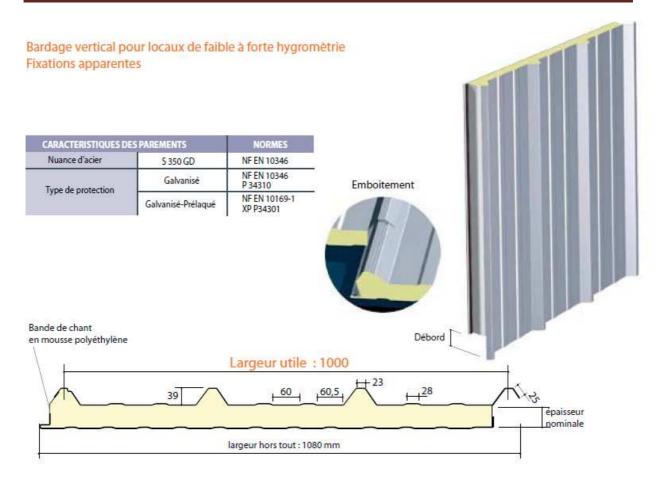


Figure III.16 détail de panneau sandwich (bardage).

III .5.1.1 Détermination de poids propre de bardage

D'après ce tableau ci-dessous on fait choisit un panneau de bardage de 30mm d'épaisseur ce qui donne un poids de **12.5kg/m²**.

CARACTER	Epaisseurs nominales de l'âme (mm)								
CARACTERISTIQUES DU PANNEAU			30 40 50 60 80						
	Epaisseur parement extérieur (mm) 0,50 - 0,63 - 0,75								
	Epaisseur parement intérieur (mm)	0,50 - 0,63							
	Largeur utile	1000 mm							
DIMENSIONNELLES	Largeur hors tout	1080 mm							
	Longueur maximale hors tout	16000 mm							
	Débord en extrémité			50 - 100	- 200 - 3	300 mm			
PONDERALES (kg/m²)	Ex. en épaisseurs 0,63 et 0,63 mm	12,5	12,9	13,3	13,7	14,5	15,3	16,1	

Tableau III.5 le poids propre e panneau correspondante à chaque épaisseur.

III .5.1.2 Détermination de la portée maximale pour le bardage

Dans notre cas la charge du vent maximale sur les parois verticales $W=-0.792 \text{ KN/m}^2$. (Une dépression).

On suppose que le panneau de bardage soit repose sur plusieurs appuis (lisses), à l'aide de tableau ci-dessous on déterminera la portée maximale entre les lisses :

	2 APPUIS						3 APPUIS									
		Epaisseurs nominales de l'âme					PORTÉE	ÉE Epaisseurs nominales de l'âme								
8.	120	100	80	60	50	40	30	(m)	30	40	50	60	80	100	120	
PRESSION		3-3		8	141	119	101	2.62	149							PRESSION
DEPRESSION		5 E		156	142	128	96	3,00	109	132	148	2 3				DEPRESSION
PRESSION				142	123	103	84		130	150	160					PRESSION
DEPRESSION			151	139	124	109	84	3,20	97	119	133	148				DEPRESSION
PRESSION			145	127	109	90	71	B/06/2/11-	115	132	153	160				PRESSION
DEPRESSION	158	158	133	124	109	94	74	3,40	86	107	120	132	127			DEPRESSION
PRESSION	148	148	131	114	97	79	60	4044	102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	111	96	81	66	3,60	78	97	108	119	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52	888	91	104	123	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59	3,80	72	88	98	108	115	122	122	DEPRESSION

Tableau III.6 Charges maximales admissibles en daN/m2 en fonction des portées d'utilisation

W= -79.2 daN/m² Cette valeur elle est vérifiée pour une charge utile 109 daN/m² ce qui correspondant à entraxe maximal de 300cm avec une épaisseur de 30mm; cas de panneau repose sur plusieurs appuis.

 \Rightarrow On prend l'entraxe entre les lisses **e=1.2m.**

III.5.2 Définition

Les lisses de bardages sont constituées de poutrelles (IPE, UAP, UPE) ou de profils minces pliés. Etant disposées horizontalement, elles sont portées soit par les poteaux de portiques, soit par les potelets intermédiaires. L'entre axe des lisse est déterminé par la portée admissible des bacs de bardage.

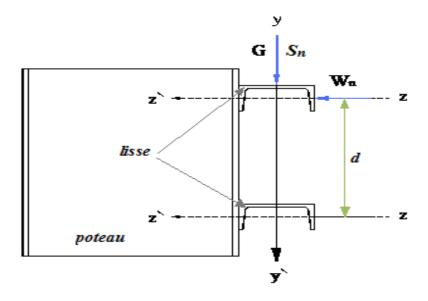


Figure III.19 Disposition de la lisse sur le poteau.

III.5.3 Données de calcul

- Chaque lisse repose sur 2 appuis.
- Le porté entre axe des lisses e=1.2m (espace entre 2 lisse).
- On dispose de 6 lignes de lisses sur chaque paroi.
- Distance entre les lisses = 6 m

III.5.4 Détermination des charges et surcharges

a) les charges permanentes

- Poids propre de la lisse estimé (UPE120)......12.1 Kg/m

$$G=[(P_{bardage} + P_{accesoire}) \times e] + P_{lisse}$$

e: espacement entre les lisse e= 1.2 m

$$G_P = [(12.5 + 3) \times 1.2] + 12.1 = 30.7 \text{ Kg/ml}$$

G = 0.307 KN/ml

b) La surcharges climatique du au vent

On calcul les lisse de bardages avec la valeur obtenue en zone avec le Cpi = 0.35

W=-0.792KN/m² (voir chapitre **II**. tableau **II** .20)

D'où : W=-
$$0.792 \times e = -0.792 \times 1.2 = -0.950 \text{ KN/ml}$$

1) Charges appliquées à l'ELU:

$$q_{wu} = 1.25 \times (1.5 \times W) \times e = 1.25 \times (1.5 \times -0.792) \times 1.2 = -1.781 \text{ KN/ml}$$

2) Charges appliquées à l'ELS:

$$q_{ws} = q_{wu} / 1.5 = -0.890 \text{ KN/ml}$$

III.5.6 Pré dimensionnement

Le pré dimensionnement se fait par la condition de la flèche :

$$f_z \le f_{adm}$$
 Avec $f_z = \frac{5 \times q_{ws} \times l^4}{384 \times E I_y} \le f_{adm} = \frac{l}{200} = \frac{600}{200} = 3 \text{ cm}$

$$I_y \ge \frac{5 \times 0.890 \times 10^{-2} \times 600^4}{384 \times 21000 \times 3} = 238.392 \text{ cm}^4$$

D' après le tableau des profilés des UPE, on adopte un UPE120

Ses caractéristiques sont :

Profilé	h (mm)	b (mm)	t _w (mm)	t _f (mm)	r (mm)	P (Kg/m)	d (mm)
	120	60	5	8	12	12.1	80
UPE120	A (cm ₂)	I _y (cm ⁴)	i _y (cm)	W _{pl y} (cm ³)	I _z (cm ⁴)	W _{plz} (cm ³)	i _z (cm)
	15.4	364	4.86	70.3	55.5	25.3	1.9

Tableau III.7 Caractéristiques de l'UPE120

Le poids propre réel G

$$G_P = [(12.5 + 3) \times 1.2] + 12.1 = 0.307 \text{ Kg/ml}$$

 $G_P = 0.307 \text{ KN/m}$

III.5.7 Vérification à l'état limite ultime

a) Condition de résistance

$$\left[\frac{M_{y}}{M_{ply}}\right]^{\alpha} + \left[\frac{M_{z}}{M_{plz}}\right]^{\beta} \le 1$$

En présence des forces horizontales dues au vent :

$$M_y = \frac{q_{wu} \times L^2}{8} = \frac{-1.781 \times 6^2}{8} = 8.014$$
KN. m

Sous l'effet des charges verticales permanentes :

$$q_{v} = 1.25 \times [1.35 \times (G_P)]$$

$$q_{v} = 1.25 \times [1.35 \times (0.307)] = 0.518KN/ml$$

$$M_z = \frac{q_v \times l^2}{8} = \frac{0.518 \times 6^2}{8} = 2.331 \text{ KN. m}$$

Et pour déterminer γ_{m0} on doit déterminer la classe de profile.

Ame:
$$d/t_w = 80/5 = 16 \le 72\varepsilon = 72$$
 âme de classe 1

Semelle :
$$c/t_f = \frac{b}{2}/t_f = 30/8 = 3.75 \le 10\varepsilon = 10$$
 ——**Semelle de classe 1**

 $\gamma m0 = 1$

Donc la section de classe 1

$$M_{ply} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{70.3 \times 10^{-3} \times 235}{1} = 16.52 \text{ KN. m}$$

$$M_{plz} = \frac{W_{plz} \times f_y}{\gamma_{M0}} = \frac{25.3 \times 10^{-3} \times 235}{1} = 5.945 \text{ KN.m}$$

Pour les profilés UPE 120de classe 01, $\alpha = 2$ et $\beta = 1$

Alors:
$$\left[\frac{8.014}{16.52}\right]^2 + \left[\frac{2.331}{5.945}\right]^1 = 0.62 < 1$$
 Vérifiée

⇒ La section **UPE120** est vérifiée à l'ELU

Donc la résistance des sections est vérifiée

III.5.8 Vérification au cisaillement

 $V_{z} \leq V_{plz}$(CC97).

$$V_z = \frac{q_{wu} \times L}{2} = \frac{1.781 \times 6}{2} = 5.343 \text{ KN}$$

$$V_{plz} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{M0}} = \frac{7.18 \times 23.5}{\sqrt{3} \times 1} = 97.41 \, KN \qquad \Longrightarrow \qquad V_z \le V_{plz}$$

L'effort tranchant est vérifié

III.5.9 Vérification au déversement

Calcul de l'élancement réduit vis-à-vis de déversement $\bar{\lambda}_{LT}$

$$\begin{split} \lambda_{\text{LT}} &= \frac{\frac{I_{z}}{i_{z}}}{(c)^{0.5} \times \left[1 + \frac{1}{20} \times \left(\frac{I_{z}}{i_{z}}\right)^{2}\right]^{0.25}} \\ \lambda_{\text{LT}} &= \frac{\frac{55.5}{1.9}}{(1.88)^{0.5} \times \left[1 + \frac{1}{20} \times \left(\frac{55.5}{1.9}\right)^{2}\right]^{0.25}} = 20.399 \\ \bar{\lambda}_{\text{LT}} &= \left(\frac{\lambda_{\text{LT}}}{\lambda_{\text{I}}}\right) \times \left[B_{\text{A}}\right]^{0.5} \\ \lambda_{\text{I}} &= \pi \times \left[\frac{E}{f_{y}}\right]^{0.5} = 93.9 \times \epsilon \\ \varepsilon &= \left[\frac{235}{f_{y}}\right]^{0.5} = 1 \\ \bar{\lambda}_{\text{LT}} &= \left(\frac{20.399}{93.9}\right) \times [1]^{0.5} \cdot 0.21 < 0.4 \end{split}$$

La vérification au déversement est vérifiée.

III.5.10 Vérification à l'état limite de service

• AXE Z-Z

$$f_z = \frac{5 \times 0.950 \times 10^{-2} \times 600^4}{384 \times 21000 \times 364} = 2.09 \text{ cm} \le f_{adm} = 3 \text{ cm}$$
 vérifiée

AXE Y-Y

$$f_y \le f_{adm}$$
 Avec $f_y = \frac{5 \times q_y \times l^4}{384 \times E \times l_z} \le f_{adm} = \frac{l}{200} = \frac{600}{200} = 3$ cm $f_y = \frac{5 \times 0.307 \times 10^{-2} \times 600^4}{384 \times 21000 \times 55.5} = 4.44 \ge f_{adm} = 3$ cm non vérifiée

Donc on adopte des suspentes, les résultats de la nouvelle vérification sont donnés comme suite :

$$f_y \le f_{adm} \text{ Avec} f_y = \frac{2.05 \times q_y \times \frac{l^4}{2}}{384 \times E \times I_z} \le f_{adm} = \frac{\frac{l}{2}}{200} = \frac{300}{200} = 1.5 \text{ cm}$$

$$f_y = \frac{2.05 \times 0.307 \times 10^{-2} \times 300^4}{384 \times 21000 \times 55.5} = 0.11 \le f_{adm} = 1.5 \quad \text{vérifiée}$$

Conclusion : on choisit pour toutes les lisses un UPE 120.

III.6 Calcul des suspentes

Les suspentes sont des tirants qui fonctionnent en traction. Elles sont généralement formées de barres rondes ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des lisses

III.6.1 Calcul de l'effort de tractions dans la suspente la plus sollicité

La réaction R au niveau du le lierne :

$$\mathbf{R} = \mathbf{q}_{\mathbf{u}\mathbf{v}} \times \mathbf{l}_{\mathbf{v}}$$

$$q_{uv} = 1.25 \times [1.35 \times (0.307)] = 0.518 \text{ KN/ml}$$

$$l_y = \frac{l}{2} = 3m$$

$$R = 0.518 \times 3 = 1.554 \text{ KN}$$

- Efforts de traction dans le tronçon de lierne L1 provenant de la panne sablière :

$$T1 = R/2 = 0.777 KN$$

- Effort dans le tronçon L2 :

$$T2 = T1 + R = 0.777 + 1.554 = 2.331 \text{ KN}$$

- Effort dans le tronçon L3:

$$T3 = T2 + R = 2.331 + 1.554 = 3.885 \text{ KN}$$

- Effort dans le tronçon L4 :

$$T4 = T3 + R = 3.885 + 1.554 = 5.439 \text{ KN}$$

- Effort dans le tronçon L5 :

$$T5 = T + R = 5.439 + 1.554 = 6.993 \text{ KN}$$

- Effort dans le tronçon L6:

Avec:
$$\theta = arctg0.5 \implies \theta = 26.56^{\circ}$$

2 T6 sin
$$\theta$$
 = T5

$$T6 = T5 / 2 \sin 26.56^{\circ}$$

III.6. 2 Calcul de la section des liernes

- Le tronçon le plus sollicité est T6
- Condition de vérification à la résistance : résistance plastique de la section brute :

 $Ntsd \leq Npl.$

Avec:
$$N_{pl} = A \times \frac{f_y}{\gamma_{mo}} \Longrightarrow A \ge \frac{\gamma_{mo} \times N_{tsd}}{f_y}$$

$$A \ge \frac{1 \times 7.819}{23.5} \implies A \ge 0.332 \text{ cm}^2$$

$$A = \frac{\pi \times \emptyset^2}{4} \ge 0.332 \ cm^2 \implies \emptyset \ge \sqrt{\frac{4 \times 0.332}{3.14}} \Longrightarrow \emptyset \ge 0.422 cm$$

Pour des raisons pratique, on opte pour une barre ronde de diamètre $\phi = 12$ mm.

III.7 Les potelets

III.7.1 Définition

Les potelets sont des éléments de profile laminé, qui ont pour rôle de transmettre les différents efforts horizontaux à la poutre au vent et les efforts verticaux vers le sol.

Et sont des profils disposés verticalement sur le pignon, comme indiqué sur la figure cidessous, et sont soumis à la flexion composée dont des efforts lesquels:

- Effort normal produit par le poids propre du potelet et lisses de bardage.
- Effort de flexion produit par l'action du vent sur le pignon.

III.7.2 Dimensionnement des potelets

- Le pignon possède 6 potelets la longueur max L=11.27m.
- \triangleright La porte maximale entre deux potelets d = 4.80m.
- Les potelets sont en acier S235
- \triangleright La surpression du vent W= 0.792 KN/m²

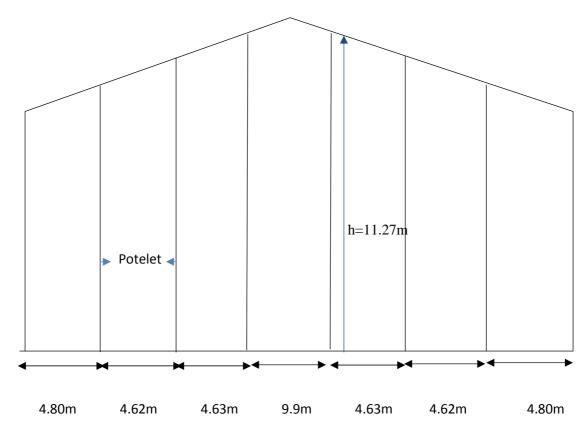


Figure III.20 Disposition des potelets.

III.7.3 Détermination de la section de potelet (calcul a L'ELS)

La charge du vent la plus défavorable sur le pignon est $Qj = 0.792KN/m^2$ en tenant la continuité des lisse de bardages :

$$q_w = Qj \times d \times 1.25 = 0.792 \times 4.80 = 4.752 \text{ KN/m}$$

$$q_{\rm w} = 4.752 \text{ KN/m}$$

Les potelets étant articulés en tête et en pied, la flèche max est :

$$f_z = \frac{5 \times qw \times h^4}{384 \times E \times Iy}$$

Et la flèche admissible : fad= $\frac{L}{200} = \frac{1127}{200} = 5.63$ cm

$$f_z = \frac{5 \times qw \times h^4}{384 \times E \times Iy} \le \frac{L}{200}$$

AN:
$$Iy \ge \frac{5}{384} \times \frac{q \times h^4}{E \times 5.63} = \frac{5}{384} \times \frac{4.75 \times 10^{-2} \times 1127^4}{2,1 \times 10^4 \times 5.63}$$

$$I_{Y} = 8442.73 \text{ cm}^4$$

Ce qui correspondant a IPE 330

Profilé	h (mm)	b (mm)	t _w (mm)	t _f (mm)	r (mm)	P (Kg/m)	d (mm)
	330	160	7.5	11.5	18	12.1	271
IPE330	A (cm ₂)	I _y (cm ⁴)	i _y (cm)	W _{pl y} (cm ³)	I _z (cm ⁴)	W _{plz} (cm ³)	i _z (cm)
	62.6	11770	13.7	804	788	98.5	3.55

Tableau III.8 Caractéristiques de l'IPE330

III.7.4 Evaluation des charges

a) les charges variables (la charge de vent)

 $q_w = 4.75 KN/m$

b) les charges permanentes :

Poids bardage $G1 = 12.5 \text{Kg/m}^2$

$$G = [(G1 \times d \times l) + (G2 \times d) + (G3 \times l)]$$

$$G = [(12.5*4.80*11.27)+(72*4.80)+(49.1*11.27) = 1575.157 \text{ Kg/m}]$$

G= 15.751 KN/ml

III.7.5 Vérification de la flexion composée

III.7.5.1 Vérification de l'effort axial

Pour cette vérification on utilise la condition suivante :

$$N_{y.sd} \le min \left\{ 0,25.N_{pl.rd}, 0,5.\frac{A_{w}.f_{y}}{\gamma_{M0}} \right\}$$

$$N_{y,sd} = \gamma_G. G = 1.5 * 15.751 = 23.626 KN$$

$$N_{v.sd} = 23.26 \text{ KN}$$

$$N_{pl,rd} = \frac{Af_y}{\gamma_{M_0}} = \frac{62.6 * 23.5}{1.1} = 1337.363KN$$

$$0.25N_{pl.y.rd} = 0.25*1337.36 = 334.34 \text{ KN}$$

$$\frac{A_W f_y}{\gamma_{M_0}} = \frac{(A - 2bt_f)f_y}{\gamma_{M_0}} = \frac{(62.6 - 2 * 16 * 1.15) * 23.5}{1.1} = 551.181KN$$

$$0.5 \frac{A_W f_y}{\gamma_{M_0}} = 275.59 KN$$

Donc

$$N_{y,sd} = 23.26 < min(0.25N_{pl,rd} = 334.34KN \,, 0.5 \frac{A_W f_y}{\gamma_{M_0}} = 275.59KN)$$

Donc la condition est vérifiée.

III.7.5.2 Vérification de l'effort tranchant

Pour la vérification de l'effort tranchant on utilise la formule suivante :

$$V_{sd.max} \le \frac{I}{2} V_{pl.rd}$$

$$V_{sd.max} = V_{sdz} = \frac{W.L}{2} = \frac{4.75*11.27}{2} = 26.766 \text{ KN}$$

$$V_{sd max} = 26.766 KN$$

$$V_{pl,rd} = A_v \cdot \frac{f_y}{\gamma_{m_0\sqrt{3}}} = 417.886KN$$

$$\frac{1}{2}V_{pl,rd} = 208.94KN$$

$$V_{sd} = 26.718KN < \frac{1}{2}V_{pl,rd} = 208.94KN$$

Donc la condition est vérifiée.

III.7.5.3 Vérification de la stabilité au flambement

Pour la vérification de la stabilité au flambement on utilise la condition suivante :

$$\frac{N_{sd}}{\chi_{min}} \left(\frac{A.f_{y}}{\gamma_{MI}}\right) + \frac{K_{y}.M_{y.sd}}{W_{pl.y}.\left(\frac{f_{y}}{\gamma_{MI}}\right)} + \frac{K_{z}.M_{z.sd}}{W_{pl.z}.\left(\frac{f_{y}}{\gamma_{MI}}\right)} \leq 1$$

Avec:

$$N_{v,sd} = 23.26KN$$

$$M_{sdy} = 1.5. \frac{q_w l^2}{8} = 1.5 \frac{4.75 * 11.27^2}{8} = 113.12KN. m$$

$$M_{sdz} = 0$$

a) Calcul de la longueur de flambement

On a autour de l'axe faible y-y (dans le plan de l'âme) : le potelet risque de flamber sur toute sa hauteur donc la longueur de flambement L_{ky} = 11.27m.

autour de l'axe fort z-z(dons le plan perpendiculaire de l'âme), le potelet est empêché de flamber sur toute sa hauteur.

Donc la longueur de flambement $L_{kz} = 1.2 \text{ m}$.

Et pour IPE 330 on a les rayons de giration sont :
$$\begin{cases} i_z = 13.7 \text{ cm} \\ i_z = 3.55 \text{cm} \end{cases}$$

b) Calcul des élancements :

$$\lambda_y = \frac{l_{ky}}{i_y} = \frac{1127}{13.7} = 82.26$$

$$\lambda_z = \frac{l_{kz}}{i_z} = \frac{120}{3.55} = 33.80$$

c) calcul les élancements critique

On a l'acier utilise est de S235.

Donc

$$\varepsilon = \left[\frac{235}{f_{\nu}}\right]^{0.5} = 1$$

Donc
$$\lambda_{cr} = 93.9\varepsilon = 93.9 * 1 = 93.9$$

d) classe de la section

➤ La classe de la semelle (comprimée)

$$\frac{c}{t_f} = \frac{b_f}{2t_f} \le 10\varepsilon \Rightarrow \frac{160}{2 \times 11.5} = 6.95 < 10 \times 1 \Rightarrow \qquad \text{Semelle de classe 01.}$$

➤ La classe d'âme (flexion composé)

$$\alpha = \frac{1}{d} \left(\frac{d + d_c}{2} \right) \le 1$$

$$d_c = \frac{N_{sd}}{t_w \times f_w} = \frac{19.615}{0.75 \times 23.5} = 1.11$$

$$\alpha = \frac{1}{27.1} \left(\frac{27.1 + 1.11}{2} \right) = 0.52 < 1$$
 avec $\alpha > 0.5$

Pour la section de classe01 :

$$\frac{d}{t_{w}} \le \frac{396\varepsilon}{(13\alpha - 1)}$$

$$\frac{d}{t_w} = \frac{27.1}{0.75} = 36.13 \qquad et \quad \frac{396\varepsilon}{(13\alpha - 1)} = \frac{396\times 1}{(13\times 0.52 - 1)} = 68.75$$

Donc:

$$\frac{d}{t_{yy}} \le \frac{396 \ \varepsilon}{(13 \ \alpha - 1)} \rightarrow \text{ Âme de classe 01.}$$

Donc la classe de la section IPE 330 est de classe 1.

e) Calcul des les élancements réduits

$$\overline{\lambda}_y = \frac{\lambda_y}{\lambda_{cr}} \times \sqrt{\beta_w} = \frac{82.26}{93.9} \sqrt{1} = 0.87 \times 0.2$$
 il ya un risque de flambement

$$\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{w}} = \frac{38.8}{93.9} \sqrt{1} = 0.41 \times 0.2$$
 il ya un risque de flambement

Avec:
$$\sqrt{\beta_w} = 1$$
 pour les classe 1.

f) calcul de coefficient de réduction

$$\chi_{\min} = \min(\chi_{y}, \chi_{z})$$

Le chois de la courbe de flambement d'après le tableau 5.5.3 Euro code 3

Pour un IPE 330 on a les caractéristiques suivant :

h=330mm; b = 160 mm; tf = 11.5 mm.

Donc:
$$\frac{h}{b} = \frac{330}{160} = 2.06 > 1,2$$
. et $t_f = 11.5 < 40$ mm.

Axe de flambement	Courbe de flambement	Facteur de d'imperfection α
y-ý	А	$\alpha_y = 0.21$
Z-Ź	В	$\alpha_z = 0.34$

Tableau III.9 Coefficients de flambement correspondant à la section IPE 330.

g) Calcule de Xmin

$$\chi_{y} = \frac{1}{\varphi_{y} + \left[\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}\right]^{0.5}} \qquad \text{Avec}: \ \chi_{y} \le 1$$

$$\varphi_{v} = 0.5[1 + \alpha_{v}(\overline{\lambda}_{v} - 0.2) + \overline{\lambda}_{v}^{2}]$$

$$\varphi_y = 0.5[1 + 0.21(0.87 - 0.2) + 0.87^2] = 0.948.$$
 $\chi_y = 0.754$

$$\chi_z = \frac{1}{\varphi_z + \left[\varphi_z^2 - \overline{\lambda}_z^2\right]^{0.5}}$$
 Avec: $\chi_z \le 1$

$$\varphi_z = 0.5 \times \left[1 + \alpha_z \left(\overline{\lambda}_z - 0.2\right) + \overline{\lambda}_z^2\right]$$

$$\varphi_z = 0.5[1 + 0.34(0.41 - 0.2) + 0.45^2] = 0.643$$
 $\chi_z = 0.907$

h) calcul l'élancement réduit $\overline{\lambda_{\scriptscriptstyle LT}}$

 $\beta_{\rm w} = 1 \implies Section \ de \ classe 1$

 $\chi_{\rm lt}$: coefficient de réduction en fonction de $\overline{\lambda_{\rm LT}}$.

$$\overline{\lambda_{LT}} = \sqrt{\frac{\beta_{w} \times W_{pl.y} \times f_{y}}{M_{cr}}} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] (\beta_{\omega})^{0.5}$$

 M_{cr} : est le moment critique de déversement.

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\}$$
(1)

Notre potelet considéré comme bi articules a ses extrémités on a :

C1, C2, facteurs dépendant des conditions de charge et d'encastrement.

$$C1 = 0.972$$
 $C2 = 0.304$

K et Kw : les facteurs de longueur effective avec : K=0.5 appui simple Kw =0.5.

 Z_a = -h/2 = -16.5cm sous le vent (-) puisque orientation repère est vert la semelle comprimé.

 $Z_s = 0$ cm section doublement symétrique

$$Zg = Za - Zs = -16.5cm$$

It=28.9 cm4

 $Iw = 199000 cm^6$

L=11.27 m

 $I_z = 788 \text{cm}^4$

G=0.4.E

$$M_{cr} = \left(0.972 \frac{\pi^2 \times 2.1 \times 10^4 \times 788}{\left(0.5 \times 1127\right)^2}\right) \left[\left(\frac{0.5}{0.5}\right)^2 \cdot \frac{19900}{788} + \frac{\left(0.5 \times 1127\right)^2 \times 0.4 \times 28.9_t}{\pi^2 \times 788} + \left(0.304 \times 16.5\right)^2 \right]^{\frac{1}{2}} + (-0.304) \times (-16.5) \right]$$

 $M_{cr} = 162.26 \text{ KN.m}$

$$\lambda_{LT}^{-} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{171.76}{162.26}} = 1.02$$
 $\lambda_{LT}^{-} = 1.02 > 0.4$ donc il ya risque de diversement

D'après ces résultats de moment critique il doit faire la vérification au diversement.

La vérification au diversement se fait par la formule suivante :

$$\frac{N}{X \min \times Nply} = \frac{K_{LT} \times M_{Y}}{X_{LT} \times M_{PLY}} \le 1$$

Pour les profile laminé on a : a = 0.21 courbe (a)

On tire χ_{LT} à partir du tableau :

$$\overline{\lambda_{LT}} = 1.07$$
 $\chi_{LT} = 0.665$

$$M_{SDY} = \frac{q*l2}{8} = 4.752*11.27^2/8 = 75.44 \text{ KN .m}$$

 $N_{ysd} = 23.626KN$

Calcul de coefficient k

$$K_{LT} = 1 - \frac{\mu_{LT} \times N}{X_Z \times A \times F_Y}$$

$$\mu_{LT} = 0.15 \times \overline{\lambda}_Z \times \beta_{MLT} - 0.15 \qquad mais \quad \mu_{LT} \le 0.9$$

$$\beta_{MLT} = 1.3$$

$$\mu_{LT} = 0.15 \times 1.3 \times 0.45 - 0.15 = -0.062 \langle 0.9 \rangle$$

$$X_Z = 0.754$$

$$K_{LT} = 1 - \frac{(-0.062) \times 2362.6}{0.754 \times 62.6 \times 10^2 \times 235} = 1.00$$

$$Mply = \frac{Wply \times f_y}{M_0} = \frac{804 \times 23.50}{1.1} = 171.76 kn.m$$

Donc:

$$\frac{N}{X \min \times Nply} + \frac{K_{LT} \times M_{y.sd}}{X_{LT} \times Mply} = 0.23 + 0.89 = 0.836 < 1$$

La condition est vérifiée on conclut que IPE 330 convient comme des potelets.

III.8 Conclusion

Les démentions que nous avons effectuée dons ce chapitre nous a permis de déterminer des types des profiles qui sons capable de résister a leur poids propre et tout les efforts de vent. Et après faire toute les vérifications nécessaires de tous les éléments on a retenus les types suivant :

- Les pannes : **IPE 160** avec des liernes de **12mm**.
- ➤ Les lisses de bardages : UPE 120 pour toutes les lisses avec un Rond de 12mm.
- Les potelets : **IPE 330.**

IV.1 Introduction

Les contreventements sont des dispositifs conçus pour reprendre les efforts dus au vent, séisme, freinage longitudinal du pont roulant et de les acheminer vers les fondations. Ils sont disposés en toiture, dans le plan des versants (poutres au vent), et en façade (palées de stabilité).

IV.2 Rôle des systèmes de contreventement

Les contreventements ont pour fonctions principales de :

- Reprendre et de transmettre jusqu'aux fondations les efforts dus aux actions latérales ou horizontales causés par : le vent, le séisme, les forces de freinage de ponts roulant, les explosions, les chocs de véhicules, la poussée des terres...
- Empêcher de grandes déformations (ou de limiter les déplacements horizontaux) sous l'effet de ces actions.
- Jouer un rôle important vis-à-vis des phénomènes d'instabilité en réduisant les risques de flambement et de déversement. En effet, ils diminuent les longueurs de flambement des poteaux, et ils constituent parfois des appuis latéraux intermédiaires pour les membrures comprimées de poutres et de portiques vis-à-vis du déversement.
- Possèdent un rôle important dans les problèmes de vibration de la construction, dans son ensemble ou dans des éléments élancés de cette construction et ce, en modifiant la période fondamentale. Ce qui permet d'éviter le phénomène de résonnance.

IV.3 Contreventement de toiture (poutre au vent)

Les contreventements sont disposés généralement suivant les versants de la toiture. Ils sont placés le plus souvent dans les travées de rive. Leurs diagonales sont généralement des cornières doubles qui sont fixées sur la traverse (ou ferme). Leur rôle principal est de transmettre les efforts du vent du pignon aux fondations.

IV.3.1 Calcul de la poutre au vent en pignon

Elle sera calculée comme une poutre à treillis reposant sur deux appuis et soumises aux réactions horizontales supérieures des potelets auxquelles on adjoint l'effort d'entraînement.

Le calcul des poutres à treillis repose sur les hypothèses suivantes :

- Les nœuds sont considérés comme des articulations, même si les barres sont assemblées par des cordons de soudure qui sont loin d'une articulation.
- Les axes des barres sont concourants aux nœuds.
- Les charges sont considérées concentrées et appliquées au droit des nœuds (pour n'avoir que des barres sollicitées par des efforts normaux).

Remarque:

- 1. Les diagonales comprimées ne sont pas prises en compte lors de la détermination des efforts dans les barres du moment qu'ils flambent au moindre effort.
- 2. Le problème est ramené à un calcul isostatique et pour déterminer ces efforts, on utilise la méthode des sections.

IV.3.1.1 Évaluation des efforts dons la poutre au vent

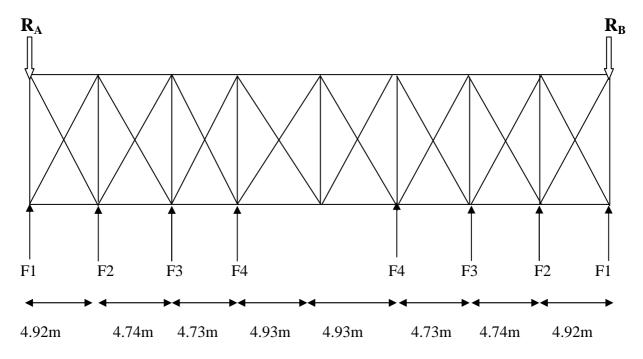


Figure IV.1 Schéma statique de la poutre au vent en pignon.

IV.3.1.2 Évaluation des efforts horizontaux

$$F_i = (V^{max} \times S_i) + F_e$$

F_i: la force dans l'élément i.

 V^{max} : effort du vent exercé sur la surface S_i de l'élément i.

S_i: Surface afférente de chaque force.

$$S_i = e_i \times \frac{h_i}{2}$$

e_i: Entre axes des potelets.

h_i: Hauteur de chaque potelets.

La force d'entraı̂nement $\mathbf{F_e}$ est la force de frottement pour la toiture, dans notre cas la force du frottement $\mathbf{F_e} = \mathbf{96.007KN}$ (voir chapitre 2)

D'après l'étude au vent dons le chapitre 2, la valeur de V^{max} est donnée comme suit :

$$V^{max} = 0.792KN/m^2$$
 (voir chapitre II).

Forces	hi/2 (m)	ei (m)	$S_i = hi/2*ei$	V _{max}	F _{fr} /n	F _i (KN)
			(m^2)	(KN/m ²)		
F1	4.075	2.4	9.78	0.792	16.001	23.74
F2	4.60	4.71	21.16	0.792	16.006	32.75
F3	5.12	4.62	23.65	0.792	16.006	34.73
F4	5.635	4.79	26.96	0.792	16.006	37.35

Tableau IV.1 Evaluation des efforts horizontaux au niveau des nœuds.

IV.3.1.3 Effort de traction dans les diagonales

On ne fait travailler que les diagonales tendues et on considère que les diagonales comprimées ne reprennent aucun effort, car du fait de leur grand élancement, elles tendent à flamber sous de faibles efforts. Suivant le sens du vent, c'est l'une ou l'autre des diagonales qui est tendue.

Le contreventement de versant est une poutre à treillis supposée horizontale.

Par la méthode des coupures, on établit que l'effort F_d dans les diagonales d'extrémité (les plus sollicitées) est donné comme suit :

Vue de la symétrie géométrique et de chargement on a :

$$\sum F_y = 0 \Longrightarrow R_A + R_B = 2F_1 + 2F_2 + 2F_3 + 2F_4$$

$$R_A + R_B = (23.74 + 32.75 + 34.73 + 37.35) \times 2$$

$$\Longrightarrow R_A + R_B = 257.14KN$$

Calcul des réactions Ra, Rb :

$$\sum F_{EXT} = 0 \Longrightarrow R_A = R_B = \frac{2F_1 + 2F_2 + 2F_3 + 2F_4}{2} KN \Longrightarrow R_B = 128.57 KN$$

$$R_A = R_B = 128.57 \text{ KN}$$

IV.3.1.4 Dimensionnement des diagonales

> Section de la diagonale

Pour déterminer la section de la diagonale on utilise la méthode des coupures on aura l'effort de traction max F_d

$$\Longrightarrow F_{\rm d} = \frac{R - F_1}{\cos \alpha}$$

•
$$\tan^{-1} \alpha = \tan^{-1} \left(\frac{4.92}{6} \right) \Rightarrow \alpha = 39.35^{\circ}$$

$$\sum F_y = 0 \Longrightarrow -R_B + F_1 + F_d \cos \alpha = 0$$

$$\implies$$
 $F_d = \frac{R_B - F_1}{\cos \alpha} = \frac{128.57 - 23.74}{\cos 39.35^{\circ}}$

$$F_d = 135.56KN$$

$$\sim$$
 N_{sd} = 135.56 KN.

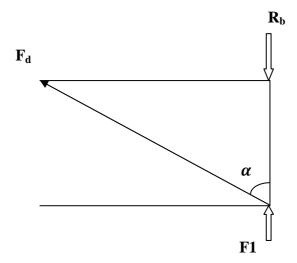


Figure IV.2 Méthode des coupures.

IV.3.1.5 Calcul de la section brute A

Pour déterminer la section des barres de contreventement de la poutre au vent on a la formule suivant :

$$N_{sd} \le N_{pl,rd} = \frac{A \times f_y}{\gamma_{M0}} \Longrightarrow A \ge \frac{N_{sd} \times \gamma_{M0}}{f_y} = \frac{135.56 \times 1}{23.5} = 5.76 \text{cm}^2.$$

On adopte une cornière $L60 \times 60 \times 6$ de section (A= 6.91cm²⁾

Avec : un boulon de 12mm et de trou 13mm.

IV.3.1.6 Vérification à la résistance ultime de la section

On a la condition de résistance suivante :

$$N_{sd} \le N_u = \frac{0.9 \times A_{nette} \times f_u}{\gamma_{M2}}$$

Soit une cornière de **L60x60x6** (A= 6.91cm²), avec un boulon de 12mm et trou de13mm.

Section nette : $A_{nette} = 6.91 - 0.6x \ 1.3 = 6.13cm^2$

$$N_{u} = \frac{0.9 \times A_{\text{nette}} \times f_{u}}{\gamma_{M2}} = \frac{0.9 \times 6.13 \times 36}{1.25} \Longrightarrow N_{u} = 158.890 \text{KN}$$

$$N_{sd} = 135.56KN < N_u = 158.890KN$$

Une cornière de **L60x60x6** (A= 6.91cm²), avec un boulon de 12mm et trou de 13mm convient pour les barres de contreventement de la poutre au vent.

IV.4 Vérification des pannes (montants de la poutre au vent) à la résistance

Les montants de la poutre au vent sont des pannes qui travaillent à la flexion déviée sous l'action de charges verticales, et en outre à la compression sous (F), on doit donc vérifier la panne à la flexion déviée composée.

Caractéristiques géométriques de l'IPE160 sont dons le tableau suivant :

Profilé	h (mm)	b (mm)	t _w (mm)	t _f (mm)	r (mm)	P (Kg/m)	d (mm)
	160	82	5.0	7.4	9,0	15.8	132
IPE 160	A (cm ₂)	I _y (cm ⁴)	i _y (cm)	W _{pl y} (cm ³)	I _z (cm ⁴)	W _{plz} (cm ³)	i _z (cm)
	20.1	869.3	6.58	123.9	68.28	26.1	1.84

Tableau IV.2 Caractéristiques de l'IPE 160

IV.4.1 Vérification de la section à la résistance

Pour la vérification de la résistance de la panne montante on va appliquée la formule suivante :

$$\left[\frac{M_{y,sd}}{M_{Ny,rd}}\right]^{\alpha} + \left[\frac{M_{z,sd}}{M_{Nz,rd}}\right]^{\beta} \le 1$$

Avec:

$$N_{\rm pl,rd} = \frac{A \times f_y}{\gamma_{M0}}$$
; $M_{\rm ply,rd} = \frac{W_{\rm ply} \times f_y}{\gamma_{M0}}$; $M_{\rm plz,rd} = \frac{W_{\rm plz} \times f_y}{\gamma_{M0}}$

> Vérification de la panne intermédiaire

• Flexion déviée (calcul des pannes)

D'après le chapitre 3 on a :

S = 0.241 KN/m

$$G = 0.37$$
 KN/m (voir chapitre III calcul des pannes)

• L'effort normal de Compression

$$V = F_4 = 37.35 \text{ KN}$$

Combinaisons de charges

$$q_{sd} = 1.35G + 1.35S$$

$$N_{sd} = 1.35V = 1.35F_4$$

Donc:

$$q_{sd} = 1.35 \times 0.37 + 1.35 \times 0.241 = 0.861 \text{ KN/m}$$

$$q_{z,sd} = q_{sd} \times \cos \alpha = 0.861 \times \cos 12.46 = 0.840 \text{ KN/m}$$

$$M_{y,sd} = \frac{q_{z,sd} \times L^2}{8} = \frac{0.840 \times 6^2}{8} = 3.78KN. m$$

$$q_{v,sd} = q_{sd} \times \sin \alpha = 0.840 \times \sin 12.46 = 0.185 \text{ KN/m}$$

$$M_{z,sd} = \frac{q_{y,sd} \times (\frac{L}{2})^2}{8} = \frac{0.185 \times (6/2)^2}{8} = 0.208 \text{ KN. m}$$

$$N_{sd}=1.35\times37.35=50.42KN$$

$$M_{\text{ply,rd}} = \frac{W_{\text{ply}} \times f_y}{\gamma_{M0}} = \frac{123.9 \times 10^{-6} \times 235 \times 10^3}{1.1} = 26.46 \text{ KN. m}$$

$$M_{\rm plz,rd} = \frac{W_{\rm plz} \times f_y}{\gamma_{M0}} = \frac{26.1 \times 10^{-6} \times 235 \times 10^3}{1.1} = 5.575 \text{ KN. m}$$

$$N_{pl,rd} = \frac{A \times f_y}{v_{M0}} = \frac{20.1 \times 23.5}{1.1} = 429.40 \text{ KN}$$

• Interaction de l'effort normal (effort normal de compression)

Si :N_{sd} $\leq \min \left(0.25N_{\rm pl,rd}; 0.5A_{\rm w} \times \frac{f_{\rm y}}{\gamma_{\rm Mo}}\right) \longrightarrow Il \text{ n'y a pas d'interaction entre le moment résistant et l'effort normal.}$

 $0.25N_{\rm pl,rd} = 0.25 \times 429.40 = 107.35 \text{ KN}$

$$A_w = A - 2 \times b \times t_f = 20.1 - (2 \times 8.2 \times 0.74) = 7.964 \text{ cm}^2$$

$$0.5A_w \times \frac{f_y}{\gamma_{M0}} = 0.5 \times 7.964 \times \frac{23.5}{1.1} = 85.07 \text{ KN}$$

 $N_{sd} = 50.42 \text{KN} < \min(107.35; 85.07) \text{KN} = 85.07 \text{ KN} \rightarrow$ Pas de l'interaction entre le moment et l'effort tranchant.

Pas de réduction des moments de résistance plastique :

$$M_{Ny,rd} = M_{ply,rd}$$

$$M_{Nz,rd} = M_{plz,rd}$$

La formule de vérification est la suivante :

$$\left[\frac{M_{y,sd}}{M_{ply,rd}}\right]^{\alpha} + \left[\frac{M_{z,sd}}{M_{plz,rd}}\right]^{\beta} \leq 1$$

Ou :
$$\alpha = 2$$
 et $\beta = 1$

$$\left[\frac{3.78}{26.46}\right]^2 + \left[\frac{0.208}{5.575}\right]^1 = 0.05 < 1$$

Donc la condition de résistance est vérifie.

• Interaction de l'effort tranchant

Si: $V_{sd} \le 0.5V_{pl,rd} \rightarrow Il n'y$ a pas d'interaction entre le moment résistant et l'effort tranchant.

A mi- travée la valeur du moment fléchissant est maximale et la valeur de l'effort tranchant est nulle, donc il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant.

IV.5 Vérification de l'élément aux instabilités (déversement)

a) Semelle supérieure

La semelle supérieure qui est comprimée sous l'action des charges verticales descendantes est susceptible de déverser, vu qu'elle est fixée à la toiture il n'y a donc pas risque de déversement.

b) Semelle inférieure

La semelle inférieure qui est comprimée sous l'action du vent du soulèvement est susceptible de déverser de moment quelle est libre tout au long de sa portée.

> La combinaison de charges

➤ Combinaisons à l'ELU

$$q_{\rm u} = G + 1.5W$$

$$q_{uz,sd} = G\cos\alpha + 1.5W_z$$

$$q_{uy,sd} = 1.35G \sin \alpha$$

$$N_{sd} = 1.5V = 1.5F_4$$

Avec:

G = 0.37 KN/m « charge permanente ».

W = -0.85KN/m« vent de soulèvement »

$$W = -0.85 \times 1.5 = -1.27 \text{ KN}.$$

V = F₄=37.35KN « effort de compression du vent revenant à la panne intermédiaire »

> Charge de flexion (moment de flexion)

$$q_{uz,sd} = G \cos \alpha + 1.5W_z = 0.37 \cos 12.46^{\circ} - 1.5 \times 1.27 = -1.54 \text{ KN/m}$$

$$M_{y,sd} = \frac{q_{z,sd} \times L^2}{8} = \frac{1.54 \times 6^2}{8} = 6.93 \text{ KN. m}$$

$$q_{uv.sd} = 1.35G \sin \alpha = 1.35 \times 0.37 \times \sin 12.46^{\circ} = 0.107 \text{ KN/m}$$

$$M_{z,sd} = \frac{q_{y,sd} \times (\frac{L}{2})^2}{8} = \frac{0.107 \times (6/2)^2}{8} = 0.120 \text{ KN. m}$$

Charge de compression (effort normal de compression)

$$N_{sd} = 1.5V = 1.5F_4 = 1.5 \times 37.35 = 56.025KN$$

 $N_{sd} = 56.025 \text{ KN/ml}$

a) Vérification au flambement (flambement flexion)

Flexion composée avec risque du flambement, la vérification au flambement se fait par la formule suivante :

$$\frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_y \times M_{y,sd}}{M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} \le 1$$
 EC03. (5. 52. Art. 5. 5. 4.)

Avec:

$$k_{y,z} = 1 - \frac{\mu_{y,z} \times N_{sd}}{\chi_{y,z} \times A \times f_y}$$
 mais $k_{y,z} \le 1.5$

$$\mu_{y,z} = \overline{\lambda}_{y,z} \times \left(2\beta_{M,y,z} - 4\right) + \left(\frac{W_{ply,z} - W_{ely,z}}{W_{ely,z}}\right) \quad \text{ mais } \ \mu_{y,z} \leq 0.90$$

 $\beta_{M,v,z} \;$: Sont les facteurs de moment uniforme equivalent pour le flambement par.

Avec:

$$N_{pl,rd} = 429.40 KN$$

$$M_{ply,rd} = 26.46KN.m$$

$$M_{plz,rd} = 5.575KN.m$$

a.1) Flambement par rapport à l'axe fort y-y

$$\begin{split} \chi_y &= \frac{1}{\phi_y + \left[\phi^2_{\ y} - \overline{\lambda_y^2}\right]^{0.5}} \\ \phi_y &= 0.5 \times \left[1 + \alpha_y \times \left(\overline{\lambda}_y - 0.2\right) + \overline{\lambda}_y^2\right] \; ; \overline{\lambda}_y = \left(\frac{\lambda_y}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5} \end{split}$$

Avec : $\beta_A = 1$ pour les sections de classe 1 et 2

$$\lambda_1 = \pi \left[\frac{E}{f_y} \right]^{0.5} = \pi \left[\frac{2.1 \times 10^6}{2350} \right]^{0.5} = 93.9.$$

α: facteur d'imperfection correspondant à la courbe de flambement appropriée, donné par le tableau **5.5.1** de l'EC3.

$$\begin{split} \lambda_y &= \frac{L_y}{i_y} = \frac{600}{6.58} = 91.18 \\ \overline{\lambda_y} &= \frac{91.18}{93.9} = 0.97 \\ \begin{cases} \frac{h}{b} = \frac{160}{82} = 1.95 > 1.2 \\ t_f = 7.4 \text{mm} < 40 \text{mm} \\ \text{Axe de flambement } y - y \end{cases} \Rightarrow \text{La courbe (a)} \\ \begin{cases} \frac{La \text{ courbe (a)}}{\overline{\lambda_y} = 0.97} \Rightarrow \chi_y = 0.69 \\ \\ \mu_y &= \overline{\lambda_y} \times \left(2\beta_{M,y} - 4\right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}}\right) \end{split}$$

Pour une poutre simplement appuyée avec une charge uniformément répartie :

$$\beta_{M,y} = 1.3$$

$$\mu_y = 0.97 \times (2 \times 1.3 - 4) + \left(\frac{123.9 - 108.7}{108.7}\right) \Longrightarrow \mu_y = -1.227 < 0.9$$

Donc la condition est vérifie.

$$k_y = 1 - \frac{\mu_y \times N_{sd}}{\chi_v \times A \times f_y} = 1 - \frac{1.227 \times 56.025}{0.69 \times 20.1 \times 23.5} = 0.789 < 1.5$$

La condition est vérifiée.

a.2) Flambement par rapport à l'axe faible z-z

$$\begin{split} &\chi_z = \frac{1}{\phi_z + \left[\phi^2_z - \overline{\lambda_z^2}\right]^{0.5}} \\ &\phi_z = 0.5 \times \left[1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2\right]; \overline{\lambda}_y = \left(\frac{\lambda_z}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5} \\ &\lambda_z = \frac{L_z}{i_z} = \frac{300}{1.84} = 163.04 \\ &\overline{\lambda}_z = \frac{163.04}{93.9} = 1.73 \\ &\left\{\frac{h}{b} = \frac{160}{82} = 1.95 > 1.2 \\ t_f = 7.4 \text{mm} < 40 \text{mm} \\ \text{Axe de flambement z} - z \\ &\left\{\text{La courbe (b)} \\ &\overline{\lambda_z} = 1.73 \end{aligned} \right. \implies \lambda_z = 0.63 \end{split}$$

$$\psi_z = 1.73 \times (2 \times 1.3 - 4) + \left(\frac{26.10 - 16.66}{16.66}\right) \implies \mu_y = -1.846 < 0.9 \qquad \text{V\'erifi\'ee}$$

$$\psi_z = 1 - \frac{\mu_z \times N_{sd}}{\chi_z \times A \times f_y} = 1 - \frac{1.864 \times 56.025}{0.63 \times 20.1 \times 23.5} = 0.649 < 1.5 \qquad \text{V\'erifi\'ee}$$

La vérification a faire est de :

$$\begin{split} \frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_y \times M_{y,sd}}{M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} &\leq 1 \\ \\ \frac{56.025}{0.63 \times 429.40} + \frac{0.789 \times 6.93}{26.46} + \frac{0.649 \times 0.120}{5.575} = 0.428 < 1 \end{split}$$

b) Vérification au déversement

$$\frac{N_{sd}}{\chi_{z} \times N_{pl,rd}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,rd}} + \frac{K_{z} \times M_{z,sd}}{M_{plz,rd}} \leq 1$$
EC03 (5.52 Art. 5.5.4)

Avec:

La condition est vérifiée.

$$\begin{split} k_{LT} &= 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y} \quad \text{mais} \quad k_{LT} \leq 1 \\ \mu_{LT} &= 0.15 \times \overline{\lambda}_z \times \beta_{M,LT} - 0.15 \quad \text{mais} \ \mu_{LT} \leq 0.90 \end{split}$$

 β_{MLT} : est un facteur de moment uniforme équivalent pour le déversement.

$$\begin{split} \chi_{LT} &= \frac{1}{\phi_{LT} + \left[\phi^2_{LT} - \overline{\lambda_{LT}^2}\right]^{0.5}} \\ \phi_{LT} &= 0.5 \times \left[1 + \alpha_{LT} \times \left(\overline{\lambda}_{LT} - 0.2\right) + \overline{\lambda}_{LT}^2\right] \\ \overline{\lambda}_{LT} &= \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times \left[\beta_A\right]^{0.5} \end{split}$$

Avec:

 α_{LT} : facteur d'imperfection pour le déversement.

 $\alpha_{LT} = 0.21$: pour les sections laminées.

 $\beta_A = 1$: pour les sections de classe 1et 2

 λ_{LT} : Élancement de l'élément vis à vis au déversement ; pour les profilés laminés I ou H.

$$\begin{split} \lambda_{LT} &= \frac{\frac{Lz}{i_z}}{(C_1)^{0.5} \times \left[1 + \frac{1}{20} \times \left[\frac{L_z}{i_z}\right]^2\right]^{0.25}} = \frac{\frac{300}{1.84}}{(1.132)^{0.5} \times \left[1 + \frac{1}{20} \left[\frac{300}{1.84}\right]^2\right]^{0.25}} = 109.448 \\ &\bar{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times [\beta_A]^{0.5} = 1.16 > 0.4 \end{split}$$

On tenir compte du risque de déversement :

$$\varphi_{LT} = 0.5 \times [1 + 0.21 \times (1.16 - 0.2) + 1.16^2] = 1.26$$

$$\chi_{LT} = \frac{1}{1.26 + [1.26^2 - 1.16^2]^{0.5}} = 0.463$$

• Calcul de coefficient K_{LT}

$$\mu_{LT} = 0.15 \times \bar{\lambda}_z \times \beta_{M,LT} - 0.15$$

 β_{MLT} : est un facteur de moment uniforme équivalent pour le déversement.

 $\beta_{MLT} = 1.3$: Pour une poutre simplement appuyée avec une charge repartie.

$$\mu_{LT} = 0.15 \times 1.73 \times 1.3 - 0.15 = 0.187 < 0.9$$
 OK

$$k_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y} = 1 - \frac{0.187 \times 56.025}{0.63 \times 20.1 \times 23.5} = 0.964 < 1$$
OK

La vérification:

$$\begin{split} &\frac{N_{sd}}{\chi_z \times N_{pl,rd}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} \leq 1 \\ &\frac{56.025}{0.63 \times 429.40} + \frac{0.964 \times 6.93}{0.463 \times 26.46} + \frac{0.649 \times 0.120}{5.575} = 0.766 < 1 \end{split}$$

Donc les IPE 160 adoptent comme panne intermédiaires.

IV.5 Calcul de la palée de stabilité en long pans

Les palées de stabilités devant reprendre les efforts du vent sur le pignon transmis par le contreventement des versants (poutre au vent). On ne fait travailler que les diagonales tendues, comme dans le cas de la poutre au vent.

Les efforts horizontaux qui peuvent les solliciter sont :

- Vent.
- Freinage des ponts roulons.
- Effet de séisme.
- Flambement et le diversement.

IV.5.1 Dimensionnement de la palé de stabilité de rive

Par la méthode de coupure :

Evaluation des efforts de traction dans les diagonales tendues se faite par la méthode des coupures

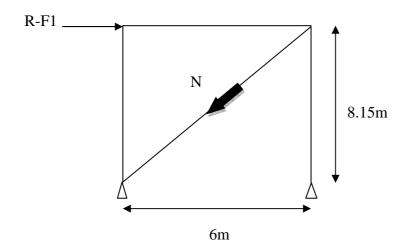


Figure VI. 3 Méthodes des coupures.

$$N\cos\beta + F_1 - R = 0$$

$$\beta$$
= Arctg 8.15/6 = 53.63⁰

$$\Rightarrow$$
 N = $\frac{R - F_1}{\cos \beta} = \frac{128.57 - 23.74}{\cos 53.63} = 176.779KN$

IV.5.1.1 Détermination de la section des diagonales

$$N_{sd} \le N_{pl.rd} = \frac{A \times f_y}{\gamma_{M0}}$$

$$N_{sd} = 1.5 \times N = 1.5 \times 176.779 = 265.168 \text{ KN}$$

$$A \ge \frac{N_{\text{sd} \times \gamma_{\text{mo}}}}{f_{\text{y}}} = \frac{265.168 \times 1.0}{23.5} = 11.283 \text{ cm}^2$$

Soit une cornière L80×80×8.

Avec $A = 12.27 \text{cm}^2$.

IV.5.1.2 Vérification à la résistance ultime de la section

On adopte pour une cornière isolée de **L80×80×8** avec un boulon de 12 mm et trous de 13mm.

$$A_{\text{net}} = A_1 + \varepsilon \times A_2$$

$$A_1 = [(8 \times 1) - (1.3 \times 0.8)] = 6.96 \text{cm}^2$$

$$A_2 = (8 - 0.8) \times 0.8 = 5.76 \text{ cm}^2$$

$$\varepsilon = \frac{3 \times A_1}{3 \times A_1 + A_2} = 0.783$$

$$A_{\text{net}} = 6.96 + 0.783 \times 5.76 = 11.47 \text{ cm}^2$$

$$N_{sd} \leq N_{u.Rd} = \frac{0.9 \times Ant \times f_u}{\gamma_{m2}}$$

$$N_{sd} \le N_{u.Rd} = \frac{0.9 \times 11.47 \times 36}{1.25} = 297.302KN$$

$$N_{sd} = 265.168 \le N_{u.Rd} = 297.302 \text{ KN}$$

Vérifeé.

Donc on adopte un cornière L80×80×8.

IV.5.2 Dimensionnement de la palé de stabilité intermédiaire

Evaluation des efforts de traction dans les diagonales tendues se faite par la méthode des coupures.

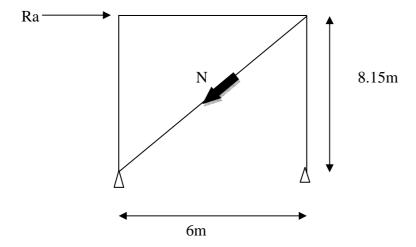


Figure VI.4 Méthodes des coupures.

$$N\cos\beta + F_1 - R = 0$$

$$\beta$$
 = Arctg 8.15/6 = 53.63⁰

$$\Rightarrow$$
 N = $\frac{Ra}{\cos\beta} = \frac{128.57}{\cos53.63} = 216.813 \text{ KN}$

IV.5.2.1 Détermination de la section des diagonales

$$N_{sd} \le N_{pl.rd} = \frac{A \times f_y}{\gamma_{M0}}$$

$$N_{sd} = 1.5 \times N = 1.5 \times 216.81 = 325.22 \text{ KN}$$

$$A \ge \frac{N_{sd \times \gamma_{m0}}}{f_v} = \frac{325.22 \times 1.0}{23.5} = 13.83 \text{ cm}^2$$

Soit double cornière 2 L70×70×7, et trous de 16mm.

IV.5.2.2 Vérification à la résistance ultime de la section

On adopte pour double cornière 2 L70×70×7 avec un boulon de 15 mm et trous de 16mm.

$$A_{\text{net}} = A_1 + \varepsilon \times A_2$$

$$A_1 = 2[(7 \times 0.7) - (1.6 \times 0.7)] = 7.56 \text{cm}^2$$

$$A_2 = 2(7 - 0.7) \times 0.7 = 8.82 \text{ cm}^2$$

$$\varepsilon = \frac{3 \times A_1}{3 \times A_1 + A_2} = 0.73$$

$$A_{\text{net}} = 7.56 + 0.73 \times 8.82 = 13.99 \text{ cm}^2$$

$$N_{sd} \leq N_{u.Rd} = \frac{0.9 \times Ant \times f_u}{\gamma_{m2}}$$

$$N_{sd} \le N_{u.Rd} = \frac{0.9 \times 13.99 \times 36}{1.25} = 362.620KN$$

$$N_{sd} = 325.22 \le N_{u.Rd} = 362.620 \text{ KN}$$

Vérifeé.

Donc on adopte un cornière 2L70×70×7.

IV.6 Calcul de la poutre sablière

La poutre sablière est considérée comme une barre de contreventement vertical, donc elle est soumis à un effort horizontal et son propre poids, d'où la vérification va se fait en flexion composée.

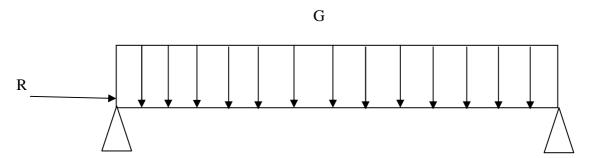


Figure VI.5 Schéma statique de la poutre sablière.

La poutre sablière du portique longitudinale reçoit deux réactions des poutres au vent de pignon calculé précédemment.

Le pré dimensionnement se fait par l'utilisation de la condition de résistance de

traction
$$N^{\max} \leq N_{nl}$$
.

 $F_1 = 23.74 \text{ KN}.$

$$R = R_A = R_B = 128.57KN$$
.

$$N^{Max} = R - F = 128.57 - 23.74 = 104.83 \text{ KN}$$

$$N_{Pl} = \frac{A \times f_y}{\gamma_{M0}} \ge N^{Max} \Rightarrow A \ge \frac{N_{sd \times \gamma_{m0}}}{f_y}$$

$$A \ge \frac{104.83}{23.5} = 4.460 \text{ cm}^2$$

IV.6.1 Vérification de l'élément aux instabilités

La vérification aux instabilités est donnée par les formules suivantes :

Flexion composée avec risque de flambement

$$\frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_y \times M_{y,sd}}{M_{ply,rd}} \leq 1$$

Calcul du coefficient de réduction minimal pour le flambement χ_{\min}

$$\chi_{\min} = \min(\chi_{y}; \chi_{Z})$$

Flambement par rapport à l'axe y-y (hors plan du portique) :

α : facteur d'imperfection correspondant a' la courbe de flambement appropriée, donne par le tableau 5.5.2 de l'Eurocode 3.

$$\lambda_y = \frac{L_y}{i_y} = \frac{600}{8.26} = 72.63$$

$$\overline{\lambda_y} = \frac{72.63}{93.9} = 0.77$$

Courbe de flambement :

$$\begin{cases} \frac{h}{b} = \frac{200}{100} = 2 > 1.2\\ t_f = 8.5 \text{mm} < 40 \text{mm} \end{cases} \Rightarrow \text{La courbe (a)} \\ \text{Axe de flambement } y - y \\ \begin{cases} \text{La courbe (a)} \\ \overline{\lambda_y} = 0.77 \end{cases} \Rightarrow \chi_y = 0.821 \end{cases}$$

Calcul de coefficient k

$$\mu_y = \bar{\lambda}_y \times \left(2\beta_{M,y} - 4\right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}}\right)$$

$$\mu_y = 0.821 \times (2 \cdot 1.3 - 4) + \left(\frac{220.6 - 194.3}{194.3}\right) = -1.014 < 0.9$$
Avec $\mu_y \le 0.9$

$$k_y = 1 - \frac{\mu_y \times N_{sd}}{\chi_y \times A \times f_y} = 1 - \frac{1.04 \times 104.83}{0.821 \times 28.5 \times 23.5} = 0.8 < 1.5 \dots \dots OK$$

$$N_{sd} = 128.57KN$$
.

$$\begin{split} \mathbf{M}_{\mathrm{y,sd}} &= \frac{\mathbf{G} \times \mathbf{L}^2}{8} = \frac{22.4 \times 6^2}{8} = 100.8 \ da \text{N. m} = 1.008 \ \text{KN. m} \\ \mathbf{N}_{\mathrm{pl,rd}} &= \frac{\mathbf{A} \times f_y}{\gamma_{M0}} = \frac{28.5 \times 23.5}{1.1} = 608.86 \ \text{KN} \\ \mathbf{M}_{\mathrm{ply,rd}} &= \frac{\mathbf{W}_{\mathrm{ply}} \times f_y}{\gamma_{M0}} = \frac{220.6 \times 10^{-6} \times 235 \times 10^3}{1.1} = 47.128 \ \text{KN. m} \end{split}$$

Vérification au flambement flexion :

$$\frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_{y} \times M_{y,sd}}{M_{ply,rd}} \le 1$$

$$\frac{128.57}{0.82 \times 608.86} + \frac{0.8 \times 1.008}{47.18} = 0.27 \le 1.$$
 c'est vérifié.

La condition est vérifiée donc pas de risque de flambement flexion.

IV.6.2 Vérification de la poutre sablière à la flexion déviée composée avec risque de déversement

$$\frac{N}{X_{\text{max}} \times Nply} + \frac{K_{LT} \times My}{X_{LT} \times Mply} + \frac{Kz \times Mz}{Mplz} \le 1,0$$

$$\lambda_{LT} = \frac{\frac{Lz}{i_z}}{(C_1)^{0.5} \times \left[1 + \frac{1}{20} \times \left[\frac{L_z}{\frac{i_z}{t_f}}\right]^2\right]^{0.25}} = \frac{\frac{300}{2.24}}{(1.132)^{0.5} \times \left[1 + \frac{1}{20} \left[\frac{300}{\frac{2.24}{20}}\right]^2\right]^{0.25}} = 98.94$$

$$\bar{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times [\beta_A]^{0.5} = 1.05 > 0.4$$

On tenir compte du risque de déversement :

$$\phi_{LT} = 0.5 \times [1 + 0.21 \times (1.05 - 0.2) + 1.05^{2}] = 1.14$$

$$\chi_{LT} = \frac{1}{1.14 + [1.14^2 - 1.05^2]^{0.5}} = 0.631$$

• Calcul de coefficient K_{LT}

$$\mu_{LT} = 0.15 \times \bar{\lambda}_z \times \beta_{M,LT} - 0.15$$

 β_{MLT} : est un facteur de moment uniforme équivalent pour le déversement.

 $\beta_{MLT} = 1.3$: Pour une poutre simplement appuyée avec une charge repartie.

$$\lambda_{z} = \frac{L_{z}}{i_{z}} = \frac{300}{2.24} = 133.92$$

$$\bar{\lambda}_{z} = \frac{133.92}{93.9} = 1.42$$

$$\begin{cases} \frac{h}{b} = \frac{200}{100} = 2 > 1.2 \\ t_f = 8.5 \text{mm} < 40 \text{mm} \\ \text{Axe de flambement z} - z \end{cases} \Rightarrow \text{La courbe (b)}$$

$$\begin{cases} \text{La courbe (b)} \\ \overline{\lambda_z} = 1.42 \end{cases} \Rightarrow \chi_z = 0.41$$

$$\begin{split} \mu_{LT} &= 0.15 \times 1.42 \times 1.3 - 0.15 = 0.126 < 0.9 & \text{OK} \\ k_{LT} &= 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y} = 1 - \frac{0.126 \times 23.74}{0.41 \times 28.5 \times 23.5} = 0.891 < 1 & \text{OK} \end{split}$$

La vérification:

$$\frac{N_{sd}}{\chi_z \times N_{pl,rd}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,rd}} + \frac{K_z \times M_{z,sd}}{M_{plz,rd}} \le 1$$

Avec:

N = 23.74 KN

 $K_{lt} = 0.891$

 $K_z = 0.501$

 $X_{lt} = 0.631$

 $M_z = 0.211 \text{ KN.m}$

$$\frac{23.74}{0.41 \times 608.86} + \frac{0.891 \times 0.846}{0.631 \times 47.12} + \frac{0.501 \times 0.211}{9.52} = 0.131 \le 1,0$$
 C'est vérifié.

Donc la condition pour la vérification de la poutre sablière à la flexion composée avec risque de déversement est vérifiée on adopte un **IPE 200.**

IV.7 Conclusion

- L'IPE 200 convient pour la poutre sablière.
- ➤ Le profile IPE 160 convient pour la panne intermédiaire servant de montants pour les barre de contreventements.

V Calcul des traverses

V.1 Généralité

Les traverses sont des poutres maitresses d'une toiture a deux versants ; elles sont constituées généralement en profiles IPE ou HEA.

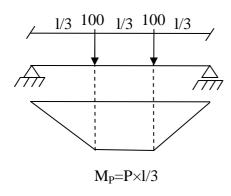
Les traverses de la toiture servent à supporter les éléments de la couverture et a en caissier les charges et sur charges exercer celles-ci :

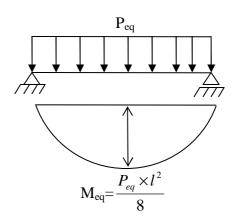
V .1.1 Evaluation des charges et surcharge

a)- charge permanentes G

Couvertures métallique......12.5 kg/m²

Les pannes IPE 160......15.8 kg


Le poids propre de la traverse estimé (HEA320).....97.6 Kg.


 $G = (12.5+1.5) \times 6,00+15.8+97.4 = 197.2 \text{ kg/ml}$

b)- surcharges d'entretien P

Dans le cas des toitures inaccessible on considéré uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente à deux charges concentrées à 1/3 et 2/3 de la portée de la panne surcharge d'entretien $P_{eq}(kg/m^2)$

(DTR BC 2.2).

 $M_P = M_{eq}$

$$\Rightarrow P \times \frac{l}{3} = \frac{P_{eq} \times l^2}{8}$$

$$\Rightarrow P_{eq} = \frac{8}{3} \times \frac{P}{l} = \frac{8}{3} \times \frac{100}{6} = 44,45 \text{kg/ml}$$

 $P=44,45\times6=226.7 \text{ kg/ml}$

c)- surcharge climatique du vent (perpendiculaire au vent)

$$W1 = -0.670 \times 6 = -4.02 \text{ KN/m}$$
 (soulèvement).

 $W2 = -0.792 \times 6 = -4.752$ KN/m(les patios verticales).

d)- surcharge climatique de la neige (par projection horizontale)

$$S=15.3 \text{ kg/m}^2$$

 $S=15.3\times6=91.8 \text{ kg/ml}$

V.1.2 Combinaison de charge les plus défavorables

$$1 \Longrightarrow G + P_{eq} = 197.2 + 44.45 = 241.9 \text{ kg/ml} \downarrow$$

$$2 \Rightarrow G+N=197.2+91.8=289.2 \text{ kg/ml}$$

$$3 \Rightarrow G-W=197.2-402 = 204.6 \text{ kg/ml}$$

Qmax = 289.2 kg/ml

Qz = Qmax = 289.2 kg/ml

V.1.3 Condition de la flèche

$$f_z \le fad = \frac{l}{200} = \frac{1945}{200} = 9.72cm$$

$$f_z = \frac{5}{384} \times \frac{Q_z \times l^4}{E \times Iy}$$

$$\Rightarrow Iy \ge \frac{5 \times Q_z \times l^4}{7.5 \times E \times 384} \ge \frac{5 \times 289.2 \times 10^{-2} \times 1945^4}{2.1 \times 10^6 \times 9.72 \times 384} \ge 26401.58cm^4$$

On prend **HEA340** avec Iy=27693.1cm⁴

G = charge permanent +poids propre de HEA340

$$G = 197.2 + 104.8 = 204.6 \text{ Kg/ml}$$

profile	h	b	tw	tf	A	Iy	Iz	Wply	Wplz
	cm	cm	cm	cm	cm ²	cm ⁴	cm ⁴	cm ³	cm ³
HEA340	33	30	0.95	1.65	133.5	27693.1	7436.3	1850.5	7436.3

Tableau V.1 les Caractéristiques de HEA340.

V.2 Conclusion

HEA 340 admit comme les traverses.

V.3 Pré dimensionnement des poteaux

Les poteaux sont des éléments verticaux de l'ossature, ils sont soumis à la compression et éventuellement à la flexion selon le système statique adopté.

- -Un effort de compression du aux charges climatique (neige, vent).
- -Un effort de flexion du aux posée horizontalement du vent pour ce la et pour les raisons de sécurité on privant un **HEA400** qui principe peut supporter toutes les charges qui lui sont transmise.

On prend HEA360 dans les caractéristiques sont :

profile	h	b	tw	tf	A	Iy	Iz	Wply	Wplz
	cm	cm	cm	cm	cm ²	cm ⁴	cm ⁴	cm ³	cm ³
HEA400	39	30	1,1	1,9	159	45070	8564	2562	872,90

Tableau V.2 les Caractéristiques de HEA400.

V.3.1 Evaluation des charges et surcharge

a)- charge permanentes G

Couvertures métallique......12.5 kg/m²

La lisse de bardages (UPE120)......12.1×6=72.6kg/m

Le poids propre de la traverse......104.8 kg/m

G: qui revient au poteau

 $G = (12.5+3) \times 6 + 72.6 + 104.8 = 270.4 \text{kg/ml}$

b) sur charge climatique de neige

 $S=15.3\times6=91.8$ kg/ml

c)- surcharge climatique du vent

 $W=-79.2\times 6=-475.2 \text{ kg/ml}$

V.4 Vérification de portique

Apres avoir étudie la stabilité

Détermination des charges

Dans le but de pré-dimensionné les poteaux et les traverses on a modaliser un portique composé de HEA400 comme des poteaux et des HEA 340 comme des traverse.

➤ **Poids propre** : le poids propre à considérer est celui de tout les éléments constatifs du portique il est pris automatiquement par le logiciel ROBOT, et le poids des pannes pour la

couverture et les lisses pour le bardage. Sons oublie le poids d'accessoires et de panneaux sandwich.

Le poids de couverture et les accessoires : (12.5+1.5)×6=84KG/m

Le poids de bardage et accessoires : (12.5+3) ×6= 93KG/m

Le poids des pannes (IPE160) :15.8×6×13= 1232.4/19.45 = 63.36KG/m

Poids des lisses de bardages : $12.1 \times 6 \times 6 = 435.6/6 = 72.6 \text{KG/m}$

- ➤ La charge du la neige N= 15.3×6= 91.8KG/m
- ➤ La charge du vent : pour le cas de vent on va prendre les valeurs maximales afin d'être toujours en sécurité que soit pour les parois verticales ou la toiture.

$$W1 = -0.670 \times 6 = -4.02 \text{ KN/m}$$
 (soulèvement).

$$W2 = -0.792 \times 6 = -4.752 \text{ KN/m}$$
 (les patios verticales).

Les combinaisons des charges à ELU sont comme suite :

- 1) 1.35G+1.5S
- 2) 1.35G+1.5S+1.5×0.67W1
- 3) 1.35GG+1.5S+1.50.67W2
- 4) 1.35G+1.5W1+1.5×0.87S
- 5) 1.5G+1.5W2+1.5×0.87S
- 6) 1.35G+1.5W1
- 7) 1.35G+1.5W2
- 8) G+1.5W1
- 9) G+1.5W2

V.5 Résultats après modalisation

Pour les poteaux

On a pris des HEA 400

Le moment maximal est de 455.2 KN.m

L'effort normal maximal est de 133.89 KN

L'effort tranchant est de 108.87 KN

• Pour les traverses

On a pris des HEA 340:

Le moment maximal est de 388.33KN/m

L'effort normal maximal est de 110.87KN/m

L'effort tranchant est de 70.24 KN/m

V.6 Pré-dimensionnement (poteau, traverse)

V.6.1 Poteau

$$M_{ply} = W_{ply} \times f_y /_{\gamma 1} = 455.2 \text{KN/m}$$
 $W_{ply} = 45520 \times 1.1 / 23.5 = 2130.72 \text{ Cm}^3$

Donc on adopte pour un HA400 Avec Wply = 2561.8 Cm³.

V.6.2 Vérification des poteaux

❖ Vérification à l'effort tranchant

$$V_{sd max} = 108.87 KN$$

On doit vérifier si V< Vpl

$$A=159cm^{2}$$

$$Av = A-2b\times tf + (tw+2r)\times tf$$

$$Av = 159-2\times30\times1.9+(1.1+2\times2.7)\times1.9$$

$$Av = 57.2cm^2$$

$$Vpl_{Rd} = Av(Fy/\sqrt{3})/\gamma M_0 = 57.2 \times \frac{23.5/\sqrt{3}}{1.1}$$

$$Vpl_{Rd}=705,52KN$$

$$V_{sd} = 108.87 \text{ KN} < 705.52 \text{ KN}$$

C'est vérifier.

❖ Incidence de l effort normal

$$Npl_{Rd} = A \times \frac{Fy}{M1} = 159 \times 23.5/1.1$$

Npl_{Rd}=3396, 8 KN

⇒L'incidence sur le moment résistant peut être négligée

Vérifications de la résistance de la section transversale

$$Mpl_{Rv}=Wply\times Fy/\gamma m_0$$

$$Mpl_{Rdy} = \left(2562 \times 10^3 \times \frac{235}{1,1}\right) \times 10^{-6}$$

$$\Rightarrow$$
 Msdy =455.2 KN.m< Mpl_{Rdy}=547,33KN.m

\$ Flambement du portique

La longueur de flambement est de 0.5L= 407.5 Cm.

Calcul de l'élancement réduit $\overline{\lambda}$:

$$iy = 16.84 \text{ cm}$$

$$i_z = 7.34cm$$

$$\lambda_y = \frac{l_{ky}}{i_y} = \frac{407.5}{16.84} = 24.19$$

$$\lambda_z = \frac{l_{kz}}{i_z} = \frac{120}{7.34} = 16.34$$

Donc on aura

$$\overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{cr}} \times \sqrt{\beta_{w}} = \frac{24.19}{93.9} \sqrt{1} = 0.25 \times 0.2$$

il ya un risque de flambement

$$\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{w}} = \frac{16.34}{93.9} \sqrt{1} = 0.174 < 0.2$$

Pas de risque de flambement dans le sens z

Il ya lieu de tenir compte du risque de flambement dans le sens y.

Calcul du coefficient de réduction de flambement selon yy

$$h/b = \frac{390}{300} = 1.3$$
 $1.2 \Rightarrow courbe de flambement : b$
 $\Rightarrow \alpha y = 0.21$

 $T_f=19mm<40mm$

Axe de flambement y-y \implies courbe de flambement b

$$\phi y = 0.5 \left[1 + \alpha \left(\overline{\lambda} y - 0.2 \right) + \overline{\lambda} y^2 \right]$$

$$\phi y = 0.5 \left[1 + 0.21 (0.25 - 0.2) + 0.25^2 \right] = 0.536$$

$$\chi_y = \frac{1}{\phi y + \sqrt{\phi y^2 - \overline{\lambda} y^2}} = \frac{1}{0.536 + \sqrt{0.536^2 - 0.25^2}}$$

$$\chi_y = 0.989$$

 $\chi_{v} = 0.989$ Donc on fait la vérification suivante :

$$N_{sd} \le N_{Rd} = \chi_y \times A \times f_y / \gamma m0$$
 avec $A = 159.0 \text{ Cm}^2$

L'effort de compression maximale est de 104.79KN

104.79KN< 3688.15KN C'est vérifié

133.89KN< 3735.98 KN C'est vérifié

Déversement

Pour la détermination du coefficient de réduction χ_{LT} , nous choisissons l'application du chapitre 6.3.2.3 réservé aux profils laminés ou section soudées équivalentes :

⇒ Courbe de déversement (a)

Détermination du moment critique de déversement

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\}$$
(1)

Ou:

C1, C2, C3: facteurs dépendants des conditions de charges et d'appuis.

$$C1 = 0.712$$
 $C2 = 0.652$

K et K_w: facteurs de longueur effective.

 $K = K_w = 0.5$ (extrémité encastrées).

It: moment d'inertie de torsion $It = 189.04 \text{ Cm}^4$.

Za : coordonnée du point d'application de la charge.

L : longueur entre points latéralement maintenus L= 6m.

 $M_{cr} = 4205.31 \text{KN.m}$

> Calcul de l'élancement réduit

$$Mply = \frac{Wply \times f_y}{\gamma M_0} = \frac{2561.8 \times 23.50}{1,1} = 547.29 kn.m$$

$$\lambda_{LT}^{-} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{547.29}{4205.31}} = 0.36$$

$$\lambda_{LT} = 0.36 < 0.4$$
 la vérification au déversement n'est pas nécessaire.

V.6 Conclusion

Le profilé **HEA400** et admis pour les poteaux.

V.7 Traverse

$$M_{ply} = W_{ply} \times f_y /_{\gamma 1} = 388.33 KN/m \quad W_{ply} = 38833 \times 1.1/23.5 = 1817.71 \ Cm^3$$

Donc on opte pour un **HA360** Avec Wply = 2088.5 Cm³ et la déférence sera compenser avec l'application d'un jarret.

❖ Vérification à l'effort tranchant

$$V_{sd max} = 70.24 KN$$

On doit vérifier si V< Vpl

$$A=142.8cm^2$$

$$Av = A-2b\times tf + (tw+2r)\times tf$$

$$Av = 142.8 - 2 \times 30 \times 1.75 + (1 + 2 \times 2.7) \times 1.75$$

$$Av = 49cm^2$$

$$Vpl_{Rd} = Av(Fy/\sqrt{3})/\gamma M_0 = 49 \times \frac{23.5/\sqrt{3}}{1.1}$$

$$V_{sd} = 70.24 \text{ KN} < 604.38 \text{ KN}$$

C'est verifier

❖ Incidence de l effort normal

$$NpL_{Rd} = A \times \frac{fy}{\gamma_{M0}} = 142.8 \times 10^3 \times \frac{235}{1,1} = 3050.72 KN$$

$$Nsd = 110.87KN \langle 0,25NpLRd = 762.68KN \rangle$$

⇒ L'incidence sur le moment résistant peut être négligée

❖ Vérification de la résistance de la section transversale

$$MpL_{Rdy} = WpLy \times \frac{fy}{\gamma_{M0}} = \left(2088.5 \times 10^{-3} \times \frac{235}{1,1}\right)$$

 $MpL_{Rdy} = 446.17 \, KN.m$
 $\Rightarrow Msd = 388.33 \, KN.m \langle MpL_{Rd} = 446.17 \, KN.m$

Flambement dons le plan du portique

On a L=
$$19.45 \text{ m}$$
 : Lk = $0.5 (19.45) = 972.5 \text{ cm}$

La longueur de flambement est de 0.5L= 972.5 Cm.

Calcul de l'élancement réduit $\bar{\lambda}$:

iy = 15.22 cm

$$i_z = 7.43$$
cm

$$\lambda_y = \frac{l_{ky}}{i_y} = \frac{972.5}{15.22} = 63.89$$

$$\lambda_z = \frac{l_{kz}}{i_z} = \frac{158}{7.43} = 21.26$$

Donc on aura

$$\overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{cr}} \times \sqrt{\beta_{w}} = \frac{63.89}{93.9} \sqrt{1} = 0.68 \times 0.2$$

$$il \ ya \ un \ risque \ de \ flambement$$

$$\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{cr}} \times \sqrt{\beta_{w}} = \frac{21.26}{93.9} \sqrt{1} = 0..22 \times 0.2$$

$$il \ ya \ un \ risque \ de \ flambement$$

Il ya lieu de tenir compte du risque de flambement dans les deux sens y et z.

Calcul du coefficient de réduction de flambement selon yy

$$h_b' = \frac{350}{300} = 1.6$$
 $1.2 \Rightarrow courbe de flambement : b$

 $T_f = 17.5 \text{ mm} < 40 \text{ mm}$

Axe de flambement y-y \Longrightarrow courbe de flambement b

$$\phi y = 0.5 \left[1 + \alpha (\overline{\lambda} y - 0.2) + \overline{\lambda} y^2 \right]$$

$$\phi y = 0.5 \left[1 + 0.21(0.68 - 0.2) + 0.68^2 \right] = 0.781$$

$$\chi_y = \frac{1}{\phi y + \sqrt{\phi y^2 - \overline{\lambda} y^2}} = \frac{1}{0.781 + \sqrt{0.781^2 - 0.68^2}}$$

$$\chi_y = 0.858$$

Donc on fait la vérification suivante :

$$N_{sd} \le N_{Rd} = \chi_y \times A \times f_y / \gamma m0$$
 avec $A = 142.8 \text{ Cm}^2$

L'effort de compression maximale est de 104.79KN

104.79KN< 3354.86KN C'est vérifié

110.87KN< 3354.86 KN C'est vérifié

Calcul du coefficient de réduction de flambement selon z-z

$$h/b = \frac{350}{300} = 1.6$$
 $1.2 \Rightarrow courbe$ de flambement :b

 $T_f=17.5$ mm<40mm

Axe de flambement z-z => courbe de flambement b

$$\overline{\lambda}z = \frac{21.26}{93.9} = 0.22$$

$$\phi z = 0.5 \left[1 + \alpha (\overline{\lambda}z - 0.2) + \overline{\lambda}z^2 \right]$$

$$\phi z = 0.5 \left[1 + 0.34(0.22 - 0.2) + 0.22^2 \right] = 0.527$$

$$\chi z = \frac{1}{\phi z + \sqrt{\phi z^2 - \overline{\lambda}z^2}} = \frac{1}{0.527 + \sqrt{0.527^2 - 0.22^2}}$$

$$\chi z = 0.91$$

Donc on fait la vérification suivante :

$$N_{sd} \le N_{Rd} = \chi_y \times A \times f_y / \gamma m0$$
 avec $A = 142.8 \text{ Cm}^2$

L'effort de compression maximale est de 104.79KN

104.79KN< 3354.86KN C'est vérifié

110.87KN< 3354.86 KN C'est vérifié

***** Déversement

Pour la détermination du coefficient de réduction χ_{LT} , nous choisissons l'application du chapitre 6.3.2.3 réservé aux profils laminés ou section soudées équivalentes :

⇒ Courbe de déversement (a)

D'après le diagramme de l'effort sous l'effet de vent de soulèvement qu'on a eu après modalisation, on a deux zones qui risquent de déverser

$$(\frac{iw}{iz} = (\frac{h-tf}{2})^2 = (\frac{35-1.75}{2})^2 = 276.39 \text{ cm}^2$$

- ❖ La semelle supérieure de la traverse proche de la zone nodale
- ❖ La semelle inferieure de la traverse hors de la zone nodale

Pour le premier cas, grâce aux pannes qui lient la semelle supérieure le déversement ne présente aucun risque. Il nous reste seulement le deuxième cas a étudie.

Détermination du moment critique de déversement

$$M_{cr} = \frac{c_1 \pi^2 E I_z}{(KL)^2} \left\{ \left[\left(\frac{K}{K_W} \right)^2 \cdot \frac{I_w}{I_z} + \frac{(KL)^2 \cdot G I_t}{\pi^2 E I_z} + \left(C_2 \cdot Z_g \right)^2 \right]^{\frac{1}{2}} - \left(C_2 \cdot Z_g \right) \right\}$$
(1)

Ou:

C1, C2, C3: facteurs dépendants des conditions de charges et d'appuis.

C1 = 0.712 C2 = 0.652

K et K_w: facteurs de longueur effective.

 $K = K_w = 0.5$ (extrémité encastrées).

It: moment d'inertie de torsion It = 148.82 Cm⁴.

Za : coordonnée du point d'application de la charge.

Mcr = 1118.83 KN.m.

❖ Calcul de l'élancement réduit

$$Mply = \frac{Wply \times f_y}{\gamma M_0} = \frac{2088.5 \times 23.50}{1,1} = 446.17 \, KN.m$$

$$\lambda_{LT}^{-} = \sqrt{\frac{M_{ply}}{M_{CR}}} = \sqrt{\frac{446.17}{1118.83}} = 0.63$$

$$\lambda_{LT} = 0.63 > 0.4$$
 La vérification au déversement est nécessaire.

$_{*}$ Calcul du moment résistant M_{RY}

$$\mathbf{M}_{\mathrm{RY}} = \mathbf{X}_{\mathrm{LT}} \cdot \mathbf{B}_{\mathrm{W}} \cdot \frac{MPLY}{\gamma m 1}$$

Avec X_{LT}: coefficient de réduction qui tient compte de déversement.

$$\phi z = 0.5 \left[1 + \alpha \left(\overline{\lambda} l t - 0.2 \right) + \overline{\lambda} l t^2 \right]$$

$$\phi z = 0.5 \left[1 + 0.21 (0.63 - 0.2) + 0.63^2 \right] = 0.743$$

$$\chi z = \frac{1}{\phi l t + \sqrt{\phi l t^2 - \overline{\lambda} l t^2}} = \frac{1}{0.743 + \sqrt{0.743^2 - 0.63^2}}$$

$$\chi z = 0.879$$

Avec:

$$M_{RY} = 0.879 \times 1 \times \frac{446.17}{1.1} = 356.53 \text{ KN}$$

Le moment sollicitant qui risque de déverser la semelle inferieure est de 261.28KN

 $M_{SY} = 261.28 \text{ KN.m} < M_{RY} = 356.53 \text{ KN.m}$ C'est vérifiée.

Donc le déversement est vérifié.

V.8 Conclusion

L'étude de portique nous à permet de déterminer toutes les sollicitations agissants sur notre structure, dont on a utilisé dans le calcul des éléments porteuses, et des assemblages.

Après le calcul avec robot on a trouve que :

- ✓ Pour les poteaux c'est des HEA400.
- ✓ Pour les traverses HEA360.

VI.1 Introduction

Le séisme est un phénomène naturel qui se caractérisé par un mouvement d'une partie de la surface de la terre provoqué par des processeurs de déformations et des ruptures à l'intérieur de la croute terrestre. L'énergie accumulée est libérée sous forme de vibration se propageant dons toutes les directions, appelées ondes sismique .ce phénomène est l'un des plus grand grave désastres pour l'humanité, son apparition brusque, l'intensité des forces mises en jeu, l'énormité des pertes humaines et matérielles ont marquées la mémoire des générations.

La principale cause des dommages dans une structure durant un séisme est sa réponse au mouvement appliqué à sa base suite au mouvement transmis à son sol d'assise. Dans le but d'analyser et d'évaluer le comportement de la structure sous ce type de chargement, les principes de la dynamique des structures doivent être appliquées pour déterminer les déformations et les contraintes développées dans la structure.

Quand on considère une analyse de structure sous un chargement dynamique, le terme dynamique 'signifie une variation dans le temps', ceci rend l'étude plus compliquée voire impossible quand il s'agit d'une structure élevée avec un nombre infini de dégrée de liberté.

Pour cela l'ingénieur asseyent de simplifier les calculs, en considérant pas la structure réelle mais un modèle qui doit être le plus proche possible de la réalité.

Pour modéliser une structure, plusieurs méthodes sont utilisées parmi lesquelles :

 Modélisation en masse concentrée: dans ce cas la structure est décomposée en plusieurs éléments, on détermine les inconnues au niveau des nœuds puis à l'aide des fonctions d'interpolations on balaie tout l'élément puis toute la structure.

• Modélisation en éléments finis :

L'analyse de la structure sera faite par le logiciel **Robot** structure qui est basé sur la méthode des éléments finis.

VI.2 Description de ROBOT

Le logiciel **Robot** est un progiciel CAO/DAO destiné à modéliser, analyser et dimensionner les différents types de structures. **Robot** permet de modéliser les structures, les calculer, vérifier les résultats obtenus, dimensionner les éléments spécifiques de la structure, la dernière étape gérée par Robot est la création de la documentation pour la structure calculée et dimensionnée.

Les caractéristiques principales du progiciel **Robot** sont les suivantes :

- La définition de la structure réalisée en mode entièrement graphique dans l'éditeur conçu à cet effet (vous pouvez aussi ouvrir un fichier, p. es. Au format DXF et importer la géométrie d'une structure définie dans un autre logiciel CAO/DAO).
- La possibilité de présentation graphique de la structure étudiée et de représentation à l'écran des différents types de résultat de calcul (effort internes, déplacement, travail simultané en plusieurs fenêtres ouvertes etc....).
- La possibilité de calculer (dimensionner) une structure et d'en étudier simultanément une autre (architecture multithread).
- La possibilité d'affecter le type de barres lors de la définition du modèle de la structure et non pas seulement dans les modules métier (très utile pour accélérer le dimensionnement).
- La possibilité d'effectuer l'analyse statique et dynamique de la structure.
- La possibilité de composer librement les impressions (notes de calcul, captures d'écran, composition de l'impression, copie des objets vers d'autres logiciels).

Le logiciel Robot regroupe plusieurs modules spécialisés dans chacune des étapes de l'étude de la structure (création du modèle de structure, calcul de la structure, dimensionnement).

Les modules fonctionnent dans le même environnement.

Différents types de structures sur ROBOT

Après la sélection de l'option *Avancé...*, la fenêtre représentée ci-dessous est affichée. Dans cette fenêtre, vous pouvez définir le type de la structure à étudier, ouvrir une structure existante ou charger le module permettant d'effectuer le dimensionnement de la structure. La signification des icônes (pour lesquels une info-bulle est affichée si vous positionnez le pointeur sur l'icône) affichés dans la fenêtre représentée ci-deus est la suivante :

VI.3 Analyse de la structure

VI.3.1 Type d'analyse

L'analyse élastique globale, peut être statique ou dynamique, selon la satisfaction des conditions posées par les règlements en vigueur, sur les cas de chargement.

> Les chargements statiques

- Poids propre de la structure.
- Les effets dus aux actions climatiques.

> Les chargements dynamiques

• Les effets sismiques.

Etude sismique

VI.3.2 Méthodes de calcul

En Algérie, la conception parasismique des structures est régie par un règlement en vigueur à

savoir le « RPA99 version 2003 ». Ce dernier propose trois méthodes de calcul dont les conditions

d'application différent et cela selon le type de structure doivent avoir pour objectif de reproduire au

mieux le comportement réel de l'ouvrage. Ces méthodes sont les suivantes :

1. La méthode statique équivalente.

2. La méthode d'analyse modale spectrale.

3. La méthode d'analyse dynamique par accélérogrammes.

VI.3.2.1 Méthode statique équivalente

La méthode de calcul la plus employée pour le calcul dynamique des structures, est celle basé

sur l'utilisation des spectres de réponse. Mais comme le RPA99 version 2003 préconise que l'effort

tranchant dynamique soit supérieur à 80% de l'effort tranchant statique, donc on calcul l'effort

tranchant statique par la méthode statique équivalente.

VI.3.2.2 Principe de la méthode

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un

système de forces statiques dont les forces statiques fictives dont les efforts sont considérés

équivalentes à ceux de l'action sismique.

VI.3.2.3 Calcul de la force sismique totale

D'après l'Art 4.2.3 de RPA 99 version 2003, la force sismique totale V qui s'applique à la base

de la structure, doit être calculée successivement dans deux directions, horizontales et orthogonales

selon la formule:

Avec:

A : coefficient d'accélération de zone, donné par le tableau (4.1) de RPA 99/version 2003 en

Fonction de la zone sismique et du groupe d'usage du bâtiment.

Dans notre cas, on est dans la Zone IIa et un Groupe d'usage 2 (stockage) (H=12.35m<17m).

Nous trouverons : A = 0.15

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5\eta (T_2/3.0)^{\frac{2}{3}} (3.0/T)^{\frac{5}{3}} & T > 3.0s \end{cases}$$

 ${f D}$: est un facteur d'amplification dynamique moyen qui est fonction de la catégorie de site du Facteur de d'amortissement (${f \xi}$) et de la période fondamental de la structure (${f T}$).

Avec:

T1, **T2**: période caractéristique associée a la catégorie du site et donnée par le tableau (4.7) du [RPA99/ version 2003 page 45].

Dans notre cas: site (S3) T1 = 0.15s; T2 (sec) = 0.5s

Donc:

 (η) : Facteur de correction d'amortissement donnée par la formule :

$$\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7$$
 Tableau 4.3 page 46 RPA 99.

Où ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du Type de structure et de l'importance des remplissages.

 $\xi :$ est donnée par le tableau (4.2) du RPA99 V2003 :

Nous avons une structure en portiques, Donc $\xi = 4\%$

D'où :
$$\eta = 1.08 > 0.7$$
 $\eta = 1.08$

VI.3.2.4 Estimation de la période fondamentale

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de Formules empiriques ou calculée par des méthodes analytiques ou numériques.

La formule empirique à utiliser est donnée par le RPA 99/ version 2003 par la formule (4.6) :

Avec:

 h_N : hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau $h_N = 12.35m$.

C_T: est un coefficient qui est fonction du système de contreventement, du type de Remplissage et est donné par le tableau (4.6) du RPA 99/version 2003.

« Contreventement assuré par portiques auto stables en acier sans remplissage en maçonnerie »

D'où : $C_T = 0.085$ on prend $C_T = 0.085$

Donc: $\mathbf{T} = \mathbf{C_T h_N}^{3/4} = 0.085 \times 12.35^{(3/4)} = \mathbf{0.55} \text{ s}$

D'apes le Formule (4.2) du RPA99 : T2=0.5s donc $T2 \le T \le 3s$ ______ D=2.53

R : coefficient de comportement global de la structure, Sa valeur est donnée par le tableau (4.3) page 38 de RPA 99/ version 2003, en fonction du système de contreventement.

Sens longitudinal : R_v= 4 (Ossature contreventée par palées triangulées en X).

Sens transversal : R_x = 4 (Portiques auto stables ordinaires).

Donc: $R_v = 4$

 $R_x = 4$

Q : facteur de qualité de la structure, fonction de la redondance, géométrie, régularité en planait en élévation et la qualité de contrôle de la constriction.

Les critères	q_p
conditions minimales sur les files porteuses	0.05
Redondance en plan	0.05
régularité en plan	0
régularité en élévation	0
Contrôle de qualité des matériaux	0.05
Contrôle de la qualité de l'exécution	0.1
Q	1+0.25= 1.25

Tableau VI.1 Pénalité de vérification.

W : poids total de la structure, W est égal à la somme des poids Wi calculés à chaque niveau (i).

W=
$$\sum W_i$$
......Formule (4.5) page41 du RPA99

Avec:

W_{Gi}: Charges permanentes et à celles des équipements fixes solidaires de la structure.

 $\mathbf{W}_{\mathbf{Q}i}$: Charge d'exploitation.

β: Coefficient de pondération fonction de la nature et de la durée de la charge d'exploitation et donné par le **tableau 4.5 du** *RPA 99* **version 2003**.

Dans notre cas : $\beta = 0.5$

Les poids estimes des différents éléments de la structure sont présentés comme suit :

Les éléments	profile	Poids(t)	Totale
			<i>(t)</i>
Le bardage+les accessoires	Sandwiche	58.282	
Les pannes	IPE140	36.97	
Les liernes des pannes	Ø12mm	0.222	
Les poteaux de portique	HEA340	13.66	
Les potelets	IPE330	4.71	
Le pelé de stabilité de rive	2L100*100*10	1.82	
Le palé de stabilité intermédiaire	L100*100*10	0.608	167.08
Les traverses	IPE500	56.48	
La poutre au vent	2L100*100*10	6.28	
Les lisses de bardages	UPE140et UPE160	25.65	
Les liernes de lisses de bardages	Ø12mm	0.098	
Poutre sablière	IPE270	5.41	

Tableau VI.2 tableau massique de chaque élément de la structure.

 $W_G = 1670.8$ KN, et $W_Q = 0.44$ KN/ml

 $Et: W = \sum W_i \quad \text{, avec}: W_i = W_{Gi} + \beta W_{Qi}$

Donc: W_{T} = 1690.6 KN DONC W_{i} = 169.06 t.

VI.3.2.5 Force sismique totale

On note que l'axe des (X) est perpendiculaire au pignon et l'axe des (Y) est parallèle au pignon

$$V_{X.Y} = \frac{A \times D \times Q}{R} \times W_T = \frac{0.15 \times 2.53 \times 1.25}{4} \times 1690.6 = 200.49 \text{ KN}$$

VI.3.2.6 Méthode dynamique modale spectrale

Cette méthode peut être utilisée dans tous les cas, et en particulier, dans le cas ou la méthode statique équivalente n'est pas permise.

VI.3.2.7 Principe de la méthode spectrale

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

> Spectre de réponse de calcul

L'action sismique est représentée par le spectre de calcul RPA 99 V2003 :

$$\frac{S_a}{g} = \begin{cases}
1.25 \text{ A} \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \eta (1.25 \text{ A}) \frac{Q}{R} & T_1 \le T \le T_2 \\
2.5 \eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 0.3s \\
2.5 \eta (1.25 \text{ A}) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 0.3s
\end{cases}$$

Avec les coefficients A, η, R, T1, T2, Q : sont déjà déterminés.

$$Q = 1.25 A = 0.15 \eta = 1.08 T1 = 0.15 T2 = 0.5 S$$

VI.3.2.8 Nombre de modes de vibrations à considérer

Selon le RPA99/V2003, Le nombre de modes de vibration à retenir doit être tel que :

- La somme des masses modales effectives pour les modes retenus soit égale à 90 % au moins de la masse totale de la structure.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum de modes à retenir est de trois (03) dans chaque direction considérée.

- Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3 \times \sqrt{N}$$
 et $TK \le 0.2s$ **RPA99/2003 (4.14.Art .4.3.3)**

Ou : N est le nombre de niveau au-dessus du sol et TK la période du mode K.

VI.3.2.9 Résultat de calcul

> Schématisation du spectre de réponse suivant X et Y

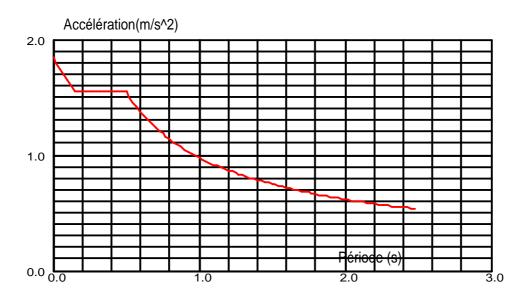


Figure VI.1 Schéma du spectre de réponse suivant X.

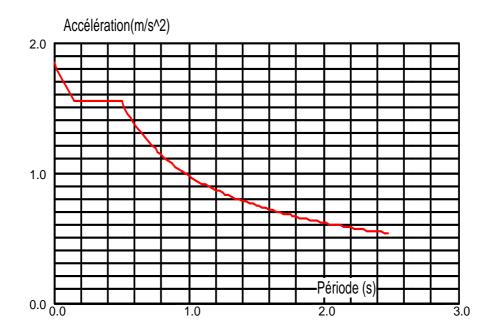


Figure VI.2 Schéma du spectre de réponse suivant Y.

> Pourcentage de la participation de masse

Pour la participation massique on utilise un nombre important de modes pour bien représenter la structure car on a une toiture légère, pas de concentration de masse au niveau du plancher d'où la présence importante des modes de torsion donc on est dans les cas (b) art (4.3.4). De RPA999version 2003.

Cas/Mode	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
6/ 1	1,60	0,62	0,00	47,75	0,0	0,00	47,75	0,0	164725,05	164577,55	0,0
6/ 2	2,10	0,48	63,77	47,75	0,0	63,77	0,00	0,0	164725,05	164577,55	0,0
6/ 3	2,13	0,47	63,81	47,75	0,0	0,04	0,00	0,0	164725,05	164577,55	0,0
6/ 4	2,15	0,46	83,17	47,75	0,0	19,36	0,00	0,0	164725,05	164577,55	0,0
6/ 5	2,20	0,46	83,26	47,75	0,0	80,0	0,00	0,0	164725,05	164577,55	0,0
6/ 6	2,27	0,44	84,33	47,75	0,0	1,07	0,00	0,0	164725,05	164577,55	0,0
6/ 7	2,39	0,42	84,33	47,75	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 8	2,55	0,39	84,50	47,75	0,0	0,17	0,00	0,0	164725,05	164577,55	0,0
6/ 9	2,76	0,36	84,50	47,75	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 10	3,00	0,33	84,52	47,75	0,0	0,02	0,00	0,0	164725,05	164577,55	0,0
6/ 11	3,25	0,31	84,52	47,75	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 12	3,52	0,28	84,53	47,75	0,0	0,01	0,00	0,0	164725,05	164577,55	0,0
6/ 13	3,76	0,27	84,53	47,75	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 14	3,98	0,25	84,53	47,75	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 15	4,10	0,24	84,53	47,75	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 16	6,15	0,16	84,53	48,27	0,0	0,00	0,52	0,0	164725,05	164577,55	0,0
6/ 17	6,43	0,16	84,53	49,19	0,0	0,00	0,93	0,0	164725,05	164577,55	0,0
6/ 18	6,79	0,15	84,53	49,19	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 19	6,88	0,15	84,54	49,20	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0
6/ 20	7,10	0,14	84,54	49,20	0,0	0,00	0,00	0,0	164725,05	164577,55	0,0

Tableau VI.3 pourcentage de participation de masse.

Le pourcentage de participation de masse est supérieure à 90% suivant les deux directions, donc les 40 modes de vibrations sont suffisants, pour mieux représenter le comportement de la structure.

Remarque : on a d'âpres la formule de empirique $\mathbf{T} = \mathbf{C_T h_N}^{3/4} = 0.085 \times 12.35^{(3/4)} = \mathbf{0.55 s}$

Donc: $0.55 \times 1.3 = 0.71 \text{ s} > T = 0.62 \text{ s. donc c'est vérifie.}$

On a:

- **↓** Translation suivant (y) pour le premier mode.
- **↓** Translation suivant (x) pour le deuxième mode.
- ♣ Rotation pour le troisième mode.On a bien que :

 $T3=0.16s \le 0.2s$

> Les réponses modales de la structure

Déformations modale

La déformation de la structure suivant les modes de vibration les plus prépondérantes est illustré par les figures suivantes :

➤ Mode 1: translation suivant Y-Y, période T= 0.62s, taux de participation de la masse 47.75 %

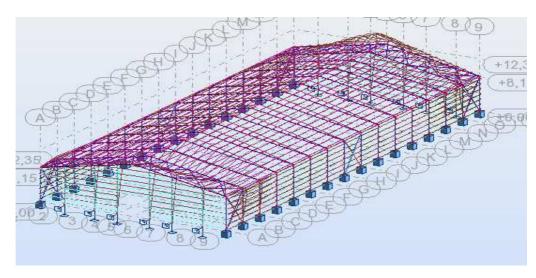


Figure VI.3 Mode de déformation (1).

➤ Mode 2 : translation suivant X-X, période T= 0.48s, taux de participation de masse 63.77%



Figure VI.4 Mode de déformation (2).

➤ Mode 3 : rotation Z-Z. période T= 0.47s.

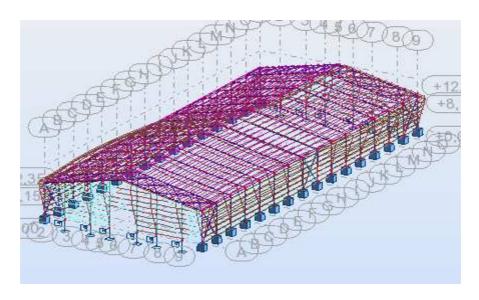


Figure VI.5 Mode de déformation (3).

VI.3.2.10 Analyse des résultats

Il ya lieu constater que la structure présente des translations suivant les deux directions horizontales et une rotation autour de l'axe verticale.

> Les combinaisons de calcul

Notation

G: poids propre.

Q : charge d'exploitation.

S: action de la neige.

V : action de vent.

Les combinaisons de calcul adopté selon les règlements : CCM 97 ET RPA 99version 2003 sont données dans le tableau suivant :

Etat limite ultime	Etat limite de service	Accidentels
G+1.5 V d	G+Vd	G+Q-Ex
G+1.5 Vs	G+ Vs	G+Q+Ex
G+1.5 S	G+Q	G+Q+Ey
1.35 G + 1.5 S	G+S	G+Q-Ey
1.35 (G + S)	G+0.9(Q+S)	0.8G+Ex
1.35 (G+Q+S)		0.8G+Ey
1.35 G+1.5 Q		0.8G-Ex
		0.8G-Ey

Vs : surpression

V d : dépression

Tableau VI.4 combinaison de calcul.

Remarque : la neige n'est pas combinée avec le vent car elle joue un rôle favorable.

VI.3.2.11 Vérification de la résultante des forces sismiques

Selon l'article (4.3.6) du RPA 99 version 2003, la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales doits être supérieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente.

Forces sismique	V statique	0.8V statique	V dynamique	Observation
	(KN)	(KN)	(KN)	
Sens xx	200.49	160.39	188.84	Vérifie
Sens yy	200.49	160.39	32.98	n'est pas vérifie

Tableau VI.5 Vérification de l'effort tranchant à la base.

0.8VSt> V dynamique suivant le sens Y-Y en multiple l'effort sismique Ey par un coefficient qui

vaut:
$$\frac{0.8 \, Vst}{Vd} = \frac{160.39}{32.98} = 4.46$$

VI.3.2.12 Vérification des déplacements

	Combin	aisons	Déplacements max (cm)		
	Avec le vent	Sans le vent	Avec le vent	Sans le vent	
Suivant X	G+1.5Vd	1.35G+1.5S	3.7	5	
Suivant Y	G+1.5Vd	1.35G+1.5S	3.1	0.3	
Suivant Z	G+1.5Vd	1.35G+1.5S	8.8	0	

Tableau VI.6 Déplacement max en situation durable.

❖ 1^{èr} Cas: situation durable

Les déplacements sont limités à :

Déplacement horizontal:

 $\frac{h}{150}$ Sans charge de vent

 $\frac{h}{125}$ Avec charge de vent EC3 Art 4.2.2(1)1

Ou h : hauteur du bâtiment

Déplacement vertical

$$\frac{L}{200}$$
 L: longueur de la travée

$$\frac{h}{150} = \frac{815}{150} = 5.4 \text{ cm}$$
; $\frac{h}{125} = \frac{815}{125} = 6.62 \text{ cm}$; $\frac{L}{200} = \frac{1946}{200} = 9.43 \text{ cm}$.

On constate que les déplacements suivant les trois directions sont inférieurs aux déplacements admissibles, donc Les déplacements sont vérifiés.

❖ 2^{ème} Cas: situation accidentelle

Le D.T.R RPA 99 V2003 précise que le déplacement horizontal est calculé sous les forces sismique seul (art 4.4.3) et préconise de limiter les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacent à 1% de la hauteur d'étage (art 5.10).

Le déplacement horizontal à chaque niveau k de la structure est calculé comme suite :

$$\delta_k = R.\delta_{ek}$$

 δ_{ek} : Déplacement dû aux forces sismiques.

R : coefficient de comportement R=4

Il s'agit de vérifier le point le plus haut de la toiture par rapport au sol.

Niveau	Déplace	ement (cm)	Déplacement relatif (cm)		
	Suivant (X)	Suivant (Y)	Suivant (X)	Suivant (Y)	
Toiture	1.8	1.8	7.2	7.2	

Tableau VI.7 Déplacement relatif des niveaux.

$$\frac{h}{100} = \frac{815}{100} = 8.15 \ cm$$
 Tous les déplacements sont inferieure à 8.15m, donc ils sont vérifier

VI.3.2.13 Effet de deuxième ordre

Les effets de seconde ordre (ou effet $P-\Delta$) peuvent être négligés si la condition suivante est satisfaite :

$$\theta = \frac{P_k.\Delta_k}{V_k.h_k} \le 0.10$$

Avec:
$$P_k = \sum_{i=1}^n W_{Gi} + \beta Q_i$$

- Pk: poids total de la structure et des charges d'exploitations associées au-dessus du niveau « k ».
- Vk : effort tranchant d'étage au niveau « k ».
- Δ k : déplacement relatif du niveau « k » par rapport au niveau « k-1 ».
- hk : hauteur de l'étage « k ».
- Si $0.1 < \theta_k \le 0.2$ les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur : $\frac{1}{1-\theta_k}$
- Si $\theta_k > 0.20$, la structure est potentiellement instable et doit être redimensionnée.

❖ Sens X-X:

Niveau(m)	Δ_k (cm)	P_k (KN)	V _k (KN)	<i>h_k</i> (m)	$(\%)\frac{\Delta_k}{\mathbf{h_K}}$	$ heta_k$
12.35	7.2	1690.6	200.46	12.35	0.005	0.04

Tableau VI.8 Effet P-Δ suivant X-X

 $\theta_k < 0.1$ donc les effets P- Δ peuvent être négligés.

❖ Sens Y-Y:

Niveau (m)	Δ_k (cm)	P_k (KN)	V_k (KN)	h_k (m)	Δ_k	$\boldsymbol{ heta}_k$
					$\mathbf{h_e}$	
12.35	7.2	1690.6	200.46	12.35	0.005	0.04

Tableau VI.9 Effet $P-\Delta$ suivant Y-Y.

 $\theta_k < 0.1$ donc les effets P- Δ peuvent être négligés.

VII.1 Introduction

Après le pré-dimensionnement des éléments et leur modalisation, on procède à la vérification (traction, flambement et résistance) sous les efforts les plus défavorables tirés du logiciel ROBOT 2013.

VII.2 Itérai de dimensionnement avec ROBOT

Avant de commencer la modalisation de la structure, on doit préalable définir quelques paramètres (préférence de l'affaire), concernant les règlements adoptés pour les calculs, et les unités.

Nous pouvons commencer la modélisation de la structure, une étape primordiale pour pouvoir dimensionner une structure avec logiciel ROBOT et que sa traduit par la conception de la structure étudie a 3D, en prenant sois de bien choisir pour chaque élément un type de profile couramment utilisé en réalité.

Après avoir modaliser la structure, on passe aux chargements, en affectant à la structure les déférents charges à quelle elle est soumise.

Notre structure est a chaque type d'élément soumise aux charges suivantes :

- Poids propre de la structure
- Charges permanentes (couverture, accessoires)
- Charge d'exploitation
- Charges climatiques (vent, la neige)
- Charge sismique

Ayant terminé le chargement de la structure, on passe à la définition des combinaisons

(ELU, ELS, ACC) avec lesquelles le logiciel ROBOT effectué le dimensionnement et la vérification, ensuite on affecte à chaque type d'élément les paramètres de flambement et de déversement pour le calcul à ELU, ainsi que les déplacements et la flèche à ELS, selon le type de chaque élément, et on lance l'analyse de la structure.

Après avoir effectué toute ces étapes, on pourra passer de pré-dimensionnement des éléments de la structure en procède comme suite :

Pour avoir effectué un pré-dimensionnement automatiquement avec ROBOT, on doit crée pour chaque type d'élément ce qu'on appelle une famille, en sélection la listes des profiles on veut que le logiciel dimensionne notre élément.

On lance le calcul, et on choisit parmi les résultats proposés par le logiciel, le profile le mieux adopté à notre cas.

VII.3 Vérification des traverses

La vérification se fait pour la traverse la plus sollicitée ; dans notre cas ; la traverse la plus sollicitée est la $N^{\circ}162$ et de longueur L =19.46 m ; comme illustré en rouge sur la figure suivante :

Figure VII.1 la traverse la plus sollicitée

VII.3.1 Les Charges repairées sur la traverse

- Poids du bardage
- Poids des pannes
- Poids propre de la traverse
- Charges d'entretien

VII.3.2 Vérification de la section à la résistance

• Bilan des efforts

La vérification à faire est de vérifier l'élément le plus sollicité (barre N°162) sous la combinaison 1.35 G+1.5 S

VII.3.3 Effort sollicitant

Les efforts sollicitant les plus défavorables calculées par le logiciel robot sont :

- ✓ Nsd = 98.36 KN
- \checkmark Vsd = 70.16 KN
- ✓ Msd = 367.33 KN.m

VII.3.3 Classe de la section transversale

VII.3.3.1 Classe de la semelle : (comprimée)

$$\frac{c}{cf} = \frac{\frac{b}{2}}{cf} \le 10\epsilon \implies \frac{\frac{20}{2}}{1.6} = 6.25 < 10\epsilon$$
 Tableau 5.3.1 (feuille) page 141 l'ECO3 6.25 < 10 ×1

⇒ Semelle de classe 1

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

VII.3.3.2 Classe de l'âme : (Flexion composée)

$$\alpha = \frac{1}{d} \left(\frac{d + d_c}{2} \right) \le 1$$
 Tableau 5.3.1 (feuille1) page 139 l'ECO3
$$d_c = \left(\frac{N_{sd}}{t_w \times f_y} \right) = \frac{98.36}{1.02 \times 23.5} = 4.1$$

$$\alpha = \frac{1}{42.6} \left(\frac{42.6 + 4.1}{2} \right) = 0.54 \le 1$$

Pour les sections de classe 1 :

$$\frac{d}{t_{w}} \le \frac{396\varepsilon}{(13\alpha - 1)}$$

$$\frac{d}{t_{w}} = \frac{42.6}{1.02} = 41.76$$

$$\frac{396\varepsilon}{(13\alpha - 1)} = \frac{396}{(13\times0.54 - 1)} = 65.78$$

$$Donc : \frac{d}{t_{w}} \le \frac{396\varepsilon}{(13\alpha - 1)} \Longrightarrow$$
 classe 01

La section de IPE500 est de classe 01

Donc : les traverse de section IPE 500 sont de classe 01.

VII.3.4 Condition de résistance

VII.3.4.1 Vérification de l'effort tranchant

On doit vérifier que : $V_{sd} \le 0,5V_{plRd}$

Vsd = 70.16 KN

$$V_{plrd} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{M0}} = \frac{59.04 \times 23.5}{\sqrt{3} \times 1} = 801.03 \text{ KN}$$

$$\frac{V_{zsd}}{V_{nlrd}} = \frac{70.16}{801.03} = 0.08 < 0.5 \rightarrow$$
 Pas de réduction du moment plastique.

Alors ; l'incidence de l'effort tranchant sur le moment résistant peut être négligée.

VII.3.4.2 Vérification de l'effort normal

Si $Nsd \prec Min(0, 25N_{pl,Rd}, 0, 5A_w f_y / \gamma_{m0})$: il n'y a pas d'interaction entre le moment résistant et l'effort normal.

$$N_{sd}$$
 = 98.36 KN

$$N_{pl,rd} = \frac{A \times f_y}{v_{mo}} = \frac{115.5 \times 23.5}{1.1} = 2467.5 \text{ KN}$$

$$0.25 \times N_{pl,rd} = 616.87 \text{ KN}$$

$$A_w = A - 2 \times b \times t_f = 115.5 - 2 \times 20 \times 1.6 = 51.5 \text{ cm}^2$$

$$0.5 \times \frac{A_w \times f_y}{\gamma_{m0}} = 550.11 \text{KN}$$

$$N_{sd < min} \left(0.25 N_{plrd,} 0.5 \times \frac{A_w \times f_y}{\gamma_{m0}} \right)$$

$$\Rightarrow N_{sd} < Min(616.87 KN; 550.11 KN)$$

$$\Rightarrow N_{sd} = 98.36 \, KN < 550.11 \, \text{KN}$$
 OK

Alors, l'incidence de l'effort normal sur le moment résistant peut être négligée.

VII.3.4.3 Vérification de la résistance de la section transversale

$$M_{plyrd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{2194.12 \times 23.5}{1.1} \times 10^{-2} = 468.74 \text{ KN. m}$$

$$\Rightarrow$$
M_{sd}= 98.36 KN.m < M_{plyrd} =468.74 KN.m

La résistance de la section transversale est vérifiée.

VII.3.4.4 Vérification de l'élément aux instabilités

> Flexion plane composée avec risque de flambement

On doit vérifier que :

$$\frac{N_{sd}}{\chi_{\min}.N_{pl,Rd}} + \frac{k_y.M_{ySd}}{M_{ply,Rd}} \le 1$$

> Flexion plane composée avec risque de déversement

On doit vérifier que :

$$\frac{N_{sd}}{\chi_z.N_{pl,Rd}} + \frac{k_{LT}.M_{ySd}}{\chi_{LT}.M_{ply,Rd}} \le 1$$

\succ Calcul du coefficient de réduction pour le flambement χ_{\min}

$$\chi_{\min} = Min(\chi_y; \chi_z)$$

Flambement par rapport à l'axe fort y-y (dans le plan du portique)

Longueur de flambement :

 l_y = 1946 cm (Longueur total de la traverse)

L'élancement:

$$\lambda_y = \frac{l_y}{l_y} = \frac{1946}{20.43} = 95.25$$

L'élancement réduit :

$$\bar{\lambda}_y = \left(\frac{\lambda_y}{\lambda_1}\right) \times [B_A]^{0.5}$$

Avec : $B_A = 1$ pour les sections de classe 1,2 et 3

$$\lambda_1 = \pi \left[\frac{E}{f_y} \right]^{0.5} = 3.14 \times \left[\frac{2.1 \times 10^6}{2350} \right]^{0.5} = 93.9$$

$$\bar{\lambda}_y = \left(\frac{95.}{93.9}\right) = 1.014 > 0.2$$
 il ya un risque de flambement suivant Y-Y

Courbe de flambement : $\frac{h}{b} = \frac{500}{200} = 1.014 < 1.2$

Axe de flambement y-y \rightarrow courbe de flambement b \longrightarrow $\alpha y = 0.34$

$$\phi_y = 0.5 \left[1 + \alpha (\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2 \right]$$

$$\phi_{v} = 0.5[1 + 0.34(1.014 - 0.2) + 1.014^{2}] = 1.15$$

$$\chi_y = \frac{1}{\phi_y + (\phi_y^2 - \overline{\lambda_y}^2)^{0.5}} = \frac{1}{1.15 + (1.15^2 - 1.014^2)^{0.5}} = 0.59$$

Flambement par rapport à l'axe faible z-z (hors plan du portique)

Longueur de flambement :

Autour de l'axe faible Z-Z (dans le plan perpendiculaire de l'âme), la traverse est empêchée de flamber sur toute sa longueur par les pannes.

Donc la longueur de flambement l_z =156 cm

L'élancement:

$$\lambda_z = \frac{l_z}{i_z} = \frac{156}{4.3} = 36.27$$

L'élancement réduit :

$$\bar{\lambda}_z = \left(\frac{36.27}{93.9}\right) = 0.38$$

il ya le risque de flambement suivant Z-Z

Courbe de flambement :
$$\frac{h}{b} = \frac{500}{200} = 2.5 < 1.2$$

Axe de flambement z-z \rightarrow courbe de flambement C \rightarrow α_z = 0.49

$$\phi_z = 0.5 \left[1 + \alpha \left(\bar{\lambda}_z - 0.2 \right) + \bar{\lambda}_z^2 \right]$$

$$\phi_z = 0.5[1 + 0.49(0.38 - 0.2) + 0.38^2] = 0.61$$

$$\chi_z = \frac{1}{\phi_z + (\phi_z^2 - \overline{\lambda_z}^2)^{0.5}} = \frac{1}{0.61 + (0.61^2 - 0.38^2)^{0.5}} = 0.75$$

Donc:
$$\aleph_{min} = \min \left(\aleph_{y}, \aleph_z\right) = \min \left(0.59, 0.75\right) = 0.59$$

\succ Calcul du coefficient de réduction pour le déversement χ_{LT}

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}} \le 1$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right]$$

Avec:

 α_{LT} : Facteur d'imperfection pour le déversement.

 α_{LT} =0,21 pour les sections laminées. (C'est notre cas)

 α_{LT} =0,49 pour les sections soudées.

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot \left[\beta_{w}\right]^{0.5} : L'élancement réduit pour le déversement.$$

Avec :
$$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9$$

 λ_{LT} : Élancement de l'élément vis-à-vis du déversement

Pour les profilés laminés en I ou en H:

$$\lambda_{LT} = \frac{L/i_z}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f} \right)^2 \right]^{0.25}}$$

IPE 500: h = 50cm, iz = 4.3, tf = 1.6 cm.

L =156 cm : Maintien par les pannes reliées à la poutre au vent.

$$M = 214.87 \text{ KN.m et } M = -367.33 \text{ KN.m}$$

(Résultats obtenus à partir du logiciel ROBOT)

$$\Psi = \frac{214.87}{-367.33} = -0.58$$

$$\Rightarrow$$
 c1 = 1.88 - 1.4(Ψ) + 0.52(Ψ)²

$$\Rightarrow c_1 = 1.88 - 1.4 (-0.58) + 0.52 (-0.58)^2 = 2.5 \le 2.7$$

$$\lambda_{LT} = \frac{\frac{156}{4.3}}{(2.5)^{0.5} \left[1 + \frac{1}{20} \left(\frac{156/4.3}{\frac{20}{1.16}} \right) \right]^{0.25}} = 22.61$$

Donc:

$$\overline{\lambda}_{LT} = \frac{22.61}{93.9} \times 1 = 0.24$$

Il ya pas de risque de déversement

$$\varphi_{LT} = 0.5[1 + 0.21(0.24 - 0.2) + 0.24^{2}] = 0.53$$

$$\Rightarrow \chi_{LT} = \frac{1}{0.53 + \left[0.53^2 + 0.24^2\right]^{0.5}} = 0.99$$

$$\chi_{LT} = 0.99 < 1$$
 c'est vérifier.

a) Calcul des coefficients k

$$k_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_{LT} \times A \times f_y} \quad et \quad k_{LT} \le 1$$

$$\mu_{LT} = 0.15 \overline{\lambda}_Z \beta_{MLT} - 0.15 \quad et \quad \mu_{LT} \le 0.9$$

 $\beta_{\!\scriptscriptstyle MLT}$ =1,8-0,7 ψ : Facteur de moment uniforme équivalent pour le déversement.

Application numérique

$$\beta_{MLT} = 1.8 - 0.7 (-0.58) = 2.2$$

$$\mu_{LT} = 0.15 \times 0.38 \times 2.2 - 0.15 = -0.024 < 0.9$$

$$k_{LT} = 1 - \frac{-0.024 \times 98.36}{0.99 \times 115.5 \times 23.5} = 1 \le 1$$

Calcul du facteur de moment uniforme équivalent pour le flambement par flexion suivant y-y.

D'après la figure 5.5.3 du CCM97

$$\begin{aligned} k_{y} &= 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} \quad avec \quad k_{y} \leq 1,5 \\ \mu_{y} &= \overline{\lambda}_{y} \left(2\beta_{My} - 4 \right) + \frac{W_{ply} - W_{ely}}{W_{ely}} \quad avec \quad \mu_{y} \leq 0,9 \end{aligned}$$

$$\beta_{\scriptscriptstyle M} = \beta_{\scriptscriptstyle M\psi} + \frac{MQ}{\Delta M} \left(\beta_{\scriptscriptstyle M,Q} - \beta_{\scriptscriptstyle M\psi}\right)$$

$$\beta_{M\psi} = 1, 8 - 0, 7\psi$$

$$\Psi = \frac{214.87}{-367.33} = -0.58 \Longrightarrow \beta_{M\Psi} = 1.8 - 0.7 (-0.58) = 2.2$$

$$MQ = |max M| = 367.33 \text{ KN.m}$$

$$\Delta M = |\max M| + |\min M| = |367.33| + |214.87| = 582.2 \text{ KN.m}$$

$$\beta_{MO} = 1.3$$
 Cas d'une charge uniformément répartie.

$$\beta_{My} = 2.2 + \frac{367.33}{582.2} \times (1.3 - 2.2) = 1.63$$

Donc:
$$\mu_y = 1.014 \times (2 \times 1.63 - 4) + \frac{2194.12 - 1927.9}{1927.9} = -0.61 < 0.9$$

$$k_y = 1 - \frac{(-0.61) \times 98.36}{0.59 \times 115.5 \times 23.5} = 1.03 \le 1.5$$

> Vérification au flambement flexion

$$\frac{N_{sd}}{\chi_{\min}.N_{pl.Rd}} + \frac{k_y.M_{y.Sd}}{M_{ply.Rd}} \le 1$$

Application numérique

$$\frac{98.36}{0.59 \times 2714.77} + \frac{1.03 \times 367.33}{515.6} = 0.79 < 1$$

Vérification au déversement

Déversement = Flambement latéral de la partie comprimée + Rotation de la section transversale.

$$\frac{N_{sd}}{\chi_{LT}.N_{pl.Rd}} + \frac{k_{LT}.M_{y.Sd}}{\chi_{LT}.M_{ply.Rd}} \le 1$$

Application numérique

$$\frac{98.36}{0.99 \times 2714.77} + \frac{1 \times 367.33}{0.99 \times 515.65} = 0.74 < 1$$

La semelle inferieure qui est comprimée sous l'action du vent de soulèvement est susceptible de déverser du moment qu'elle est libre sur toute sa longueur.

VII.3.4.5 Vérification avec le logiciel ROBOT

Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas
162 treverse_16	ОK	IPE 500	ACIER E24	95.26	451.93	0.78	32 ELU4

Conclusion

Le profile **IPE500** est adéquat comme des traverses.

VII.4 Vérification des poteaux

La vérification se fait pour le poteau le plus sollicité et dans notre cas : le poteau le plus sollicité est le N°160 de hauteur **H=8.15m** ; comme illustré en rouge sur la figure suivante :

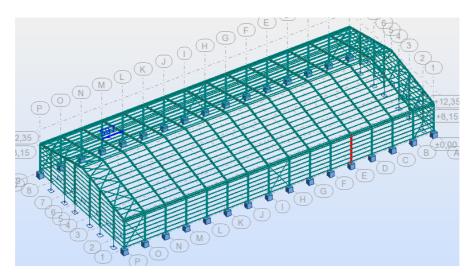


Figure VII.2 Le poteau le plus sollicité

VII.4.1 Efforts sollicitant

Les sollicitations les plus défavorables tirés à partir du logiciel ROBOT sont :

- Nsd = 89.10 KN. M
- Vz,sd = 123.71 KN
- Mz= 0.34 KN.m
- My,sd = 367.33 KN.m

Avec la combinaison la plus défavorable : 1.35 G +1.5 S

VII.4.2 Classe de la section transversale

VII.4.2.1 Classe de la semelle : (comprimée)

$$C / t_f = b_f / 2.t_f \le 10 E \implies 30/2. \ 1.65 = 90.9 < 10 E \implies Semelle de classe1$$

VII.4.2.2 Âme (flexion composée)

$$\alpha = \frac{1}{d} \left(\frac{d + d_c}{2} \right) \le 1$$

$$d_c = \left(\frac{N_{sd}}{t_w \times f_y} \right) = \frac{89.1}{0.95 \times 23.5} = 3.99$$

$$\alpha = \frac{1}{243} \left(\frac{243 + 3.99}{2} \right) = 0.50 \le 1$$

Pour les sections de classe 1 :

$$\frac{d}{t_{w}} \le \frac{396\varepsilon}{(13\alpha - 1)}$$

$$\frac{d}{t_{w}} = \frac{243}{9.5} = 25.57$$

$$\frac{396\varepsilon}{(13\alpha - 1)} = \frac{396}{(13\times0.50 - 1)} = 72$$
Donc : $\frac{d}{t_{w}} \le \frac{396\varepsilon}{(13\alpha - 1)} \Rightarrow$ classe 01

La section **HEA 340** est de classe 01.

VII.4.3 Condition de résistance

VII.4.3.1 Vérification de l'effort tranchant

Il faut vérifier que : $Vsd \leq 0.5V_{plRd}$

 V_{sd} =123.71 KN (Note de calcule sur la pièce 160 du Robot sous la combinaison :

1.35G+1.5 S

$$\mathbf{V_{plRd}} = \frac{A_{vz} \cdot f_y}{\sqrt{3} \cdot \gamma_{M_0}} = \frac{23.5 \, X \, 44.95}{\sqrt{3} X \, 1.1} = 554.42 \, \text{KN} > \text{Vsd}$$

 V_{sd} = 123.71 KN < 0.5 V_{plRd} = 277.21 KN \rightarrow Pas de réduction du moment plastique.

VII.4.3.2 Vérification à l'effort normal

Il faut vérifier que : $Nsd \le N_{plRd}$

 $N_{sd} = 89.1 \text{ KN}$

$$N_{pl,rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{133.5 \times 23.5}{1.1} = 2852.04 \ KN$$

$$N_{sd} < N_{plRd} \rightarrow ok$$

VII.4.3.3 Vérification au moment fléchissant

Il faut vérifier que : $Msd \le M_{plRd}$

M_{sd} = 367.33 KN.m (Note de calcule sur la pièce **160** du Robot sous la combinaison

1.35 G+1.5S

$$M_{\text{ply,rd}} = \frac{W_{\text{ply}} \times f_y}{\gamma_{M0}} = \frac{10^{-2} \times 23.5 \times 1850.5}{1.1} = 395.54 \text{KN. m}$$

 $M_{sd} < M_{plRd} \rightarrow ok$

VII.4.3.4 Vérification de l'élément aux instabilités

La vérification aux instabilités est donnée par les formules suivantes :

Flexion composée avec risque de flambement

$$\frac{N_{sd}}{\chi_{\min}.N_{plRd}} + \frac{k_y.M_{ysd}}{M_{plyRd}} + \frac{k_z.M_{zsd}}{M_{plzRd}} \le 1$$

> Flexion composée avec risque de déversement

$$\frac{N_{sd}}{\chi_z.N_{pl.Rd}} + \frac{k_{LT}.M_{y.Sd}}{\chi_{LT}.M_{ply.Rd}} \le 1$$

a) Calcul du coefficient de réduction χ_{\min}

$$\chi_{\min} = \min(\chi_{v}, \chi_{z})$$

Flambement par rapport à l'axe fort y-y (dans le plan du portique) :

α : facteur d'imperfection correspondant a' la courbe de flambement appropriée, donne par le tableau 5.5.1 du CC97.

- Suivant l'axe y-y:

$$\lambda_v = I_{Kv} / i_v = 0.5. \times 815 / 14.4 = 28.29$$

$$\lambda_y = \frac{\lambda_y}{\lambda_1} (\beta_A)^{0.5} = 0.30 > 0.2$$
 (il y a risque de flambement)

Le choix de la courbe de flambement :

$$h/b = 330/300 = 1.1 < 1.2$$

Axe de flambement y-y \longrightarrow courbe de flambement b ; α = 0.34 (tableau 3).

$$X_{\rm v} = 0.96$$

- Suivant l'axe faible z-z : (hors du plan du portique)

$$\lambda_z = I_{Kz} / i_z = 0.5$$
. 815/7.46 = 54.62

$$\lambda_z = \frac{\lambda_z}{\lambda_1} (\beta_A)^{0.5} = 0.58 > 0.2$$
 (il y a risque de flambement)

Le choix de la courbe de flambement :

$$h/b = 330/300 = 1.1 < 1.2$$

Axe de flambement **z-z** \longrightarrow courbe de flambement c ; α =0.49 (tableau 3).

$$X_z = 0.84$$

Donc: χ min= 0.84

b) Calcul de l'élancement réduit vis-à-vis de déversement λ_{LT}

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L/t_f}{\frac{L}{i_z}} \right)^2 \right]^{0.25}}$$

$$\lambda_{LT} = \frac{\frac{815}{7.46}}{(1.132)^{0.5} \left[1 + \frac{1}{20} \left(\frac{815}{\frac{815}{7.46}} \right)^{2} \right]^{0.25}} = 86.1$$

$$\bar{\lambda}_{LT} = \left(\frac{\lambda_{LT}}{\lambda_1}\right) \times [B_A]^{0.5} = 0.91$$

 $\bar{\lambda}_{LT} = 0.91$ Il y a de risque de déversement.

Donc on doit vérifier :

$$\frac{N_{sd}}{\chi_{\min}.N_{plRd}} + \frac{k_y.M_{ysd}}{M_{plyRd}} + \frac{k_z.M_{zsd}}{M_{plzRd}} \le 1$$

Pour les profile lamine on a : $\alpha = 0.21$

On tire X_{LT} à partire du tableau 5.5.2 du CC97 :

$$\bar{\lambda}_{LT} = 0.91 \implies X_{LT} = 0.73$$

c) Calcul de coefficient Ky Kz

$$\mu_y = \lambda_y (2 \beta_{My} - 4) + \frac{W_{ply} - W_{ely}}{W_{ely}}$$

$$\mu_z = \lambda_z (2 \beta_{Mz} - 4) + \frac{W_{plz} - W_{elz}}{W_{elz}}$$

Calcul des coefficients réducteurs

Suivant l'axe (Y-Y):

$$\Psi = \frac{M_{min}}{M_{max}} = -\frac{299}{367.33} = -0.81$$

$$\beta$$
m=1.8-0.7 (-0.81)= 2.36

$$\mu_y = 0.3 (2(2.36) - 4) + \frac{1850.5 - 1678.4}{1678.4} = 0.11$$
 avec $\mu_y = 0.11 < 0.9$

$$\chi_{\nu} = 0.96$$

$$K_y = 1 - \frac{\mu_y \cdot N}{\chi_y \cdot Af_y} = 1 - \frac{0.11.89.1}{0.96 \cdot 235.133.5 \cdot 10^2} = 0.96$$
 avec $K_z = 0.96 < 1.5$

Suivant l'axe (Z-Z):

$$\Psi = \frac{M_{min}}{M_{max}} = \frac{0.92}{2.37} = 0.38$$

$$\beta$$
=1.8-0.7×0.38 = 1.53

$$\mu_z = 0.58 (2.1.53 - 4) + \frac{755.9 - 495.8}{495.8} = -0.02$$
 avec $\mu_z = -0.02 < 0.9$

$$K_z = 1 - \frac{\mu_z \cdot N}{\chi_z \cdot Af_y} = 1 - \frac{-0.02.89.1}{0.86 \cdot 235.133.5.10^2} = 1.006$$
 avec $K_z = 1.006 < 1.5$

$$N_{pl.Rd} = A . f_y / \gamma_{m0} = 133.5. \ 23.5 / 1.1 = 2852.04 \ KN$$

$$M_{ply.Rd} = 1850.5. \ 23.5.10^{-2} / 1.1 = 395.33 \ KN.m$$

$$M_{plz.Rd} = 1678.4 \; . \; 23.5.10^{-2} \; / 1.1 = 358.56 \; KN.m$$

> Vérification au flambement

$$\frac{N_{sd}}{\chi_{\min}.N_{plRd}} + \frac{k_y.M_{ysd}}{M_{plyRd}} + \frac{k_z.M_{zsd}}{M_{plzRd}} \le 1$$

$$\frac{89.1}{0.86 \cdot 2852.04} + \frac{0.96 \times 367.33}{395.33} + \frac{1 \times 0.34}{358.56} = 0.92 < 1$$

Toutes les conditions sont vérifiées.

VII.4.3.4 Vérification avec logiciel ROBOT

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
160 poteau gouc	■ HEA 340	ACIER E24	56.58	109.19	0.89	32 ELU4

• Conclusion

Le profile choisi **HEA 340** est adéquat comme poteau pour la structure.

VII.5 Vérification des diagonales des contreventements poutre au vent

La vérification à faire est de vérifier l'élément le plus sollicité (barre $N^{\circ}727$) sous la combinaison 1.35~G+1.5~Vd

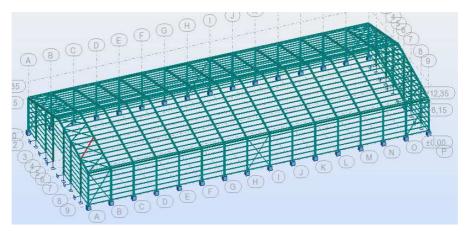


Figure VII.3 La diagonale la plus sollicité de la poutre au vent.

• Les efforts dans la poutre au vent (pignon)

Elément	Combinaisons	Nsd (KN)
Compression	1.35G+1.5Vd	-55.29
Traction	1.35G+1.5Vd	92.38

Tableau VII.1 Les efforts dans la poutre au vent

VII.5.1 Vérification à la traction

$$Nsd \le Nrd = \frac{A \times fy}{\gamma m0}$$

On a : $A = 19.2 \text{ cm}^2$

$$Nrd = \frac{19.2 \times 23.5}{1.1} = 410.18 \text{ KN}$$

Nsd = 92.38 KN < 410.18 KNLa condition est vérifié.

VII.5.2 Vérification au flambement

$$\lambda = \frac{436}{1.53} = 284.96 \text{ KN}$$

$$\lambda = \lambda / \lambda_l = \frac{284.96}{93.9} = 3$$

$$\lambda = 3 \rightarrow \text{Cour}$$

Courbe
$$\mathbf{c} \rightarrow \qquad \chi = 0.31$$

$$N_{c,Rd} = \chi . A . \beta_w . f_y / \gamma_{m0} = \frac{0.31 \times 19.2 \times 1 \times 23.5}{1.1} = 127.15 \text{ KN}$$

$$N_{sd}$$
= 92.38KN $<$ N_{c,Rd}=127.15KN \rightarrow Vérifiée

VII.5.3 Vrification avec logiciel ROBOT

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
727 poutre au ve	2 CAE 100x1	ACIER E24	143.46	105.13	0.47	32 ELU4

Conclusion

Le cornière **2CAE100X10** est adéquate comme diagonale de la poutre au vent.

VII.6 Vérification des palées de stabilités de long pan

VII.6.1 Palée de rive (2CAE100X10)

La vérification à faire est de vérifier l'élément le plus sollicité (barre N°720) sous la combinaison G+1.5Vd

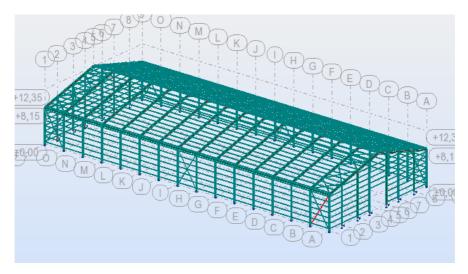


Figure VII.4 La diagonale la plus sollicité (palée de stabilité de rive).

• Les efforts dons la palée de stabilité de rive

Elément	Combinaisons	Nsd (KN)
Compression	G+1.5Vd	-38.63
Traction	G+1.5Vd	141.96

Tableau VII.2 les efforts dans la palée de stabilité de rive.

VII.6.1.1 Vérification à la traction

$$N_{sd} \le N_{rd} = \frac{A \cdot f_y}{\gamma_{mo}}$$
On a: A = 19.2 cm²

$$N_{rd} = \frac{19.2 \times 23.5}{1.1} = 410.18 \text{ KN}$$

$$N_{sd} = 141.96 \text{ KN} < N_{rd} = 410.18 \text{ KN} \qquad \Rightarrow \text{V\'erifi\'ee.}$$

VII.6.1.2 Vérification au flambement

$$\begin{split} \lambda &= \frac{506}{1.77} = 285.87 \\ \lambda &= \lambda \ / \ \lambda_l = \frac{285.87}{93.9} = 3 \\ \lambda &= 1.60 \qquad \rightarrow \qquad \text{Courbe } \mathbf{c} \qquad \rightarrow \qquad \chi = 0.43 \\ N_{c,Rd} &= \chi \ . \ A \ . \beta_w \ . f_y \ / \ \gamma_{m0} = \frac{0.43 \times 19.2 \times 1 \times 23.5}{1.1} = 176.37 \ \text{KN} \end{split}$$

 N_{sd} = 141.96 KN< $N_{c,Rd}$ = 176.37 KN

→ Vérifiée

VII.6.1.3 Vérification avec le logiciel ROBOT

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
720 pale rive_72	2 CAE 100x1	ACIER E24	166.60	122.09	0.73	29 ELU1

Conclusion

La cornière **2CAE100X10** est adéquate comme diagonale pour palées de stabilités de rive.

VII.6.2 Palée intermédiaire (CAE100×10)

La vérification à faire est de vérifier l'élément le plus sollicité (barre $N^{\circ}722$) sous la combinaison G+1.5Vd

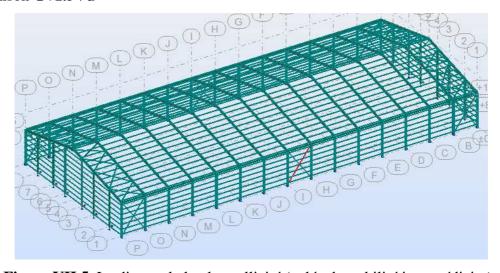


Figure VII.5 La diagonale la plus sollicité (palée de stabilité intermédiaire).

• Les efforts dans la palée de stabilité intermédiaire

Élément	Combinaison	Nsd (KN)
Compression	G+1.5Vd	-6.93
Traction	G+1.5Vd	86.19

Tableau VII.3 Les efforts dans la palée de stabilité intermédiaire.

VII.6.2.1 Vérification à la traction

$$N_{sd} \le N_{rd} = \frac{A \cdot f_y}{\gamma_{m0}}$$
On a: A = 19.2 cm²

$$N_{rd} = \frac{19.2 \times 23.5}{1.1} = 410.18 \text{ KN}$$

$$N_{sd} = 86.19 \text{ KN} < N_{rd} = 410.18 \text{ KN} \implies \text{V\'erifi\'ee}$$

VII.6.2.2 Vérification au flambement

$$\begin{split} \lambda &= \frac{506}{1.77} = 285.87 \\ \lambda &= \lambda / \lambda_l = \frac{285.87}{93.9} = 3 \\ \lambda &= 1.60 \qquad \rightarrow \qquad \text{Courbe } \mathbf{c} \qquad \rightarrow \qquad \chi = 0.26 \\ N_{c,Rd} &= \chi \; . \; A \; . \beta_w \; . f_y / \gamma_{m0} = \frac{0.26 \times 19.2 \times 1 \times 23.5}{1.1} = 106.64 \; \text{KN} \\ N_{sd} &= 86.19 \; \text{KN} < N_{c,Rd} = 106.64 \; \text{KN} \qquad \rightarrow \quad \text{Vérifiée} \end{split}$$

VII.6.2.3 Vérification avec le logiciel ROBOT

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
722 pale int_722	CAE 100x10	ACIER E24	166.59	166.59	0.88	29 ELU1

• Conclusion

La cornière **CAE100X10** est adéquate comme diagonale pour palées de stabilités l'intermédiaire.

VII.7 Vérification des autres éléments (pannes, lisses, poutre sablière)

On a fait la vérification des autres éléments avec logiciel ROBOT et on a obtenue les résultats suivants :

VII.7.1 Pannes (IPE140)

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas		
Famille: 3 paanes								
649 panne_649	IPE 140	ACIER E24	104.54	362.87	0.97	32 ELU4		

VII.7.2 Lisses de bardages pignon (UPE140)

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas		
Famille: 10 lisse de bardage pignon								
827 lisse bardag	™ UPE 140	ACIER E24	108.16	298.38	0.73	30 ELU2		

VII.7.3 Lisses de bardages long pan (UPE160)

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas		
Famille: 11 lisse de bardage longpan								
711 lisse bardag	■ UPE 160	ACIER E24	92.60	270.20	0.68	29 ELU1		

VII.7.4 poutre sablière (IPE 270)

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas		
Famille: 4 poutre sabliere								
697 poutre sabli	IPE 270	ACIER E24	53.45	198.48	0.23	29 ELU1		

VII.7.5 potelet (IPE330)

	Pièce Profil		Matériau	Lay	Lay Laz		Cas		
Г	774 potelet areir		ACIER E24	84.71	327.32	0.88	29 ELU1		

VII.6 Résumés des résultats obtenus

Les sections des profiles chosée sont donnée dans le tableau suivant :

Elément	La section choisie
	HE 4 2 40
poteaux	HEA340
Traverse	IPE500
Poutre au vent	2CAE100X10
Palée de stabilité de rive	2CAE100X10
1 alee de stabilité de 11ve	ZCAETOOATO
Palée de stabilité intermédiaire	CAE100X10
pannes	IPE140
Lisses de bardages long pan	UPE160
Lisses de bardages pignon	UPE140
La poutre sablière	IPE270
Potelet	IPE330

Tableau VII.4 Listes des éléments et leur section choisie.

VIII.1 Introduction

Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations entre les pièces, sans générer des sollicitations parasites notamment de torsions.

La conception et le calcul des assemblages revêtent en construction métallique, une importance équivalente à celle du dimensionnement des pièces pour la sécurité finale de la construction, Les ossatures ne présentent généralement pas de redondances importantes et les assemblages constituent donc le point de passage obligé pour les sollicitations régnant dans les différents composants structurels; En cas de défaillance d'un assemblage, c'est bien le fonctionnement global de la structure qui est en cause.

VIII.2 Fonctionnement des assemblages

Les principaux modes d'assemblages sont :

a) Le boulonnage

Le boulonnage est le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il offre sur site.

Dans notre cas, le choix a été porté sur le boulon de haute résistance (HR) il comprend une vis à tige filetée, une tête hexagonale ou carrée et un écrou en acier à très haute résistance :

Classe	4.6	4.8	5.6	5.8	6.6	6.8	8.8	10.9
$f_{yb}(N/mm^2)$	240	320	300	400	360	480	640	900
$f_{Ub}(N/mm^2)$	400	400	500	500	600	600	800	1000

Tableau VIII.1 Caractéristique mécanique des boulons selon leur classe d'acier.

b) Le soudage

En charpente soudée les assemblages sont plus rigides, cela a pour effet un encastrement partiel des éléments constructifs. Les soudages à la flamme oxyacéthylénique et le soudage à l'arc électrique sont des moyens de chauffages qui permettent d'élever à la température de fusion brilles des pièces de métal à assembler.

c)Fonctionnement par adhérence

Dans ce cas, la transmission des efforts s'opère par adhérence des surfaces des pièces en contact.

Cela concerne le soudage, le collage, le boulonnage par boulons HR.

d) Coefficients partiels de sécurité_(chap.6.1.2 -eurocode3)

- Résistance des boulons au cisaillement : $\gamma_{MB} = 1,25$

- Résistance des boulons à traction : $\gamma_{MB} = 1,50$

e) Coefficient de frottement

Un bon assemblage par boulons HR exige que des précautions élémentaires soient prises, notamment :

 Le coefficient de frottement μ doit correspondre à sa valeur de calcul. Cela nécessite une préparation des surfaces, par brossage ou grenaillage, pour éliminer toute trace de rouille ou de calamine ; de graissage, etc.

Surface de classe A μ =0,5 Pour surfaces grenaillées ou sablées

Surface de classe B μ =0,4 Pour surfaces grenaillées, sablées et peintes.

Surface de classe C μ =0,3 Pour surfaces brossées

Surface de classe D μ =0,2 Pour surfaces non traitées

Tableau VIII.2 Valeur du coefficient de frottement μ selon la surface.

VIII.3 Rôle des assemblages

Pour réaliser une structure métallique ; on dispose de pièces individuelles, qu'il convient d'assembler :

- -Soit bout à bout (éclissage, rabotages).
- -Soit concourantes (attaches poutre/poteau, treillis et systèmes réticulés).

Pour conduire les calculs selon les schémas classiques de la résistance des matériaux, il y a lieu de distinguer, parmi les assemblages :

- Les assemblages articulés : qui transmettront uniquement les efforts normaux et tranchants.

- Les assemblages rigides : qui transmettront en outre les divers moments.

Désignation	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d (mm)	8	10	12	14	16	18	20	22	24	27	30
d ₀ (mm)	9	11	13	15	18	20	22	24	26	30	33
A (mm2)	50,3	78,5	113	154	201	254	314	380	452	573	707
A _s (mm2)	36,6	58	84,3	115	157	192	245	303	353	459	561
φ rondelle (mm)	16	20	24	27	30	34	36	40	44	50	52
φ clé (mm)	21	27	31	51	51	51	58	58	58	58	58
Tôle usuelle (mm)	2	3	4	5	6	7	8	10,14	>14	-	-
Cornière usuelle (mm)	30	35	40	50	60	70	80	120	>120	-	-

Tableau VIII.3 Principales caractéristiques géométrique.

d : diamètre de la partie non filetée de la vis.

d₀ : diamètre nominal du trou.

A : section nominale du boulon.

A_s : section résistante de la partie filetée.

Remarque : RPA99 : les assemblages doivent être calculée pour permettre développer les forces dans les barres, les assemblages travaille en traction doivent être utilisée avec des boulons précontraintes, à la haute résistance, et à serrage contrôlé.

VIII.4 Calcul d'assemblages

VIII.4.1 Assemblage traverse – traverse

L'assemblage **traverse** – **traverse** est réalisé par l'intermédiaire d'une platine boulonnée, il est sollicité par des efforts de combinaison la plus défavorable.

Si la portée du portique ne dépasse pas certaines limites pour le transport (environ 16m), L'assemblage du faitage peut être réalisé en usine, hors chantier, permettant ainsi des économies.

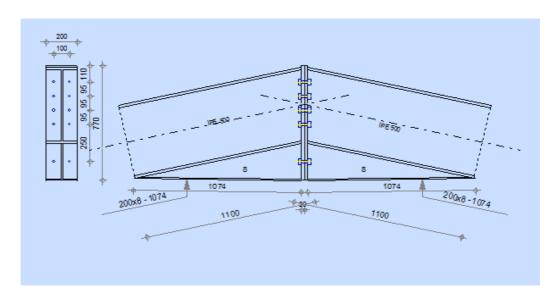


Figure VIII.1 Assemblage traverse – traverse

VIII.4.2 Dimensionnements des boulons

> Choix des diamètres des boulons

Le choix se fait suivant l'épaisseur des pièces assemblées et selon le type de profilés, on choisit des boulons de diamètre **M20**de classe **8.8**

Nombre de boulon = 10

$$n = 2$$
; $A = 314 \text{ mm}^2$; $As = 245 \text{ mm}^2$.

Section résistante de la partie filetée :

Traverse: IPE 500,

$$M_{\text{max}} = 299.23 \ \text{KN.m}$$
 , $N\text{max} = 98.36 \ \text{KN}, \ V\text{max} = 70.16 \ \text{KN}.$

> Disposition des boulons :

Les pièces ne sont pas soumises aux intempéries et ne sont pas situées dans des conditions favorisant l'oxydation.

> Entre axe des boulons :

 $P_1 \ge 2,2d_0$

 $P_2 \ge 3d_0$

Avec : $d_0 = 22 \text{ mm}$ (Tableau 6.1 Euro code 3)

 $P_1 \ge 2.2 \times 22 = 48.4 \text{ mm}$ On prend : $P_1 = 100 \text{ mm}$

 $P_2 \ge 3 \times 22 = 66 \text{ mm}$ On prend : $P_2 = 120 \text{ mm}$

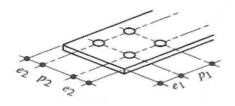


Figure VIII.2 Désignation des entraxes et des pinces.

> Pince longitudinale :

 $e_1 \ge 1.2d_0$

 $e_1 \ge 1.2 \times 22 = 26.4 \text{ mm}$ On prend : $e_1 = 75 \text{ mm}$.

> Pince transversale :

 $e_2 \ge 1.5d_0$

 $e_2 \ge 1.5 \times 22 = 33 \text{ mm}$ On prend: $e_2 = 90 \text{ mm}$

> Détermination des efforts dans les boulons

Nous considérons uniquement les boulons tendus, c'est à dire les 3 rangées supérieures des boulons.

d1 = 585 mm, d2 = 475 mm, d3 = 380 mm.

$$\sum di^2 = 585^2 + 475^2 + 380^2 = 0.71 \text{ m}^2.$$

$$N_i = \frac{M X di}{\sum di^2}$$

$$N_1 = \frac{299.23 \times 0.585}{0.71} = 246.54 \text{ KN}$$

$$N_2 = \frac{299.23 \times 0.475}{0.71} = 200.18 \text{ KN}$$

$$N_3 = \frac{299.23 \times 0.38}{0.71} = 160.15 \text{ KN}.$$

VIII.4.3 Dimensionnement des boulons

Il faut vérifier que : N1 \leq n× F_p AVEC : F_p = 0.7 × fub× As

As
$$=\frac{N1}{0.7 \times fub \times n} = \frac{246.54 \times 10^3}{0.7 \times 800 \times 2} = 220.12 \text{ mm}^2$$
 < As des boulons que na choisir.

Soit des boulons de M20, do = 22 mm, classe 8.8, et $As = 245 \text{ mm}^2$.

VIII.4.4 Vérification de la résistance de l'assemblage des boulons a l'ELU

> Vérification au moment résistant

$$M_R = \frac{F_p X \sum di^2}{d_1}$$

$$\mathbf{F}_{P} = \mathbf{0.7} \times f_{ub} \times \mathbf{A}_{S}$$
.... (Euro code 3 chap. 6.5.8.3)

F_P: force de précontrainte dans les boulons.

 $f_{\rm ub}$: 800 MPa.

n: nombre de boulon par rangé (n=2).

 $\mathbf{F_{P}} = 0.7 \times 800 \times 10^{-3} \times 245 = 137.20 \text{ KN par boulon.}$

Soit : $F_P = n . F_P = 2 .137.2 = 274.40 \text{ KN}$ par rangée.

$$M_{\rm R} = \frac{274.4 \times 0.71}{0.585} = 333.03 \text{ KN}$$

> Vérification a l'effort tranchant

$$F_{vsd} = \frac{V_{Sdmax}}{n} = \frac{70.16}{10} = 7.016 \text{ KN}.$$

Il faut vérifier que :

$$F_{\text{vsd}} \le F_{\text{rd}} = \frac{Ks \cdot m \cdot \mu \cdot Fp}{\gamma_{M2}} = \frac{1 \times 1 \times 0.3 \times 137.2}{1.25} 32.9 \text{ KN}.$$

Avec:

 $K_S = 1$: Facteur de forme, trous nominaux. (Euro code 3 chap. 6.5.8.1)

 $\mu = 0.3$: Coefficient de frottement, surface brossée (Eurocode 3chap. 6.5.8.3)

m = 1: Plan de contacte

$$F_{vsd} = 7.016 \text{ KN} < F_{rd} = 32.92 \text{ KN}$$
 OK

VIII.4.5 Resistance d'un boulon à l'interaction cisaillement + traction

Il faut vérifier que : Fvsd =
$$F_{VR} = \frac{KS \times \mu \times n \times (fp - 0.8 \text{ Ft.sd})}{\nu ms}$$

Avec :
$$\mu = 0.3$$
 , Ks = 1, $\gamma ms = 1.25$, n = 1.

$$Fp = 137.2 \text{ KN}.$$

Ft.sd=
$$\frac{Nsd}{2} = \frac{98.36}{2} = 49.18$$
 KN.

• Effort de cisaillement sollicitant par boulon

$$F_{vsd} = \frac{V_{Sdmax}}{n} = \frac{70.16}{10} = 7.016 \text{ KN}.$$

• Effort résistant de l'interaction cisaillement+ traction

$$F_{VR} = \frac{{}^{1\times0.3\times1\times(137.2-(0.8\times49.18)}}{{}^{1.25}} = 23.48~KN.$$

$$Fvsd = 7.016 \text{ KN} < F_{VR} = 23.48 \text{ KN}$$
. C'est vérifier.

> Résistance au poinçonnement

Il faut vérifier que:

$$F_{t, sd} \le B_{p, RD} = 0.6 \times \Pi \times d_m \times t_p \times f_u / \gamma_{MB}$$

avec :tp: Epaisseur de la platine

d_m: diamètre moyen entre le cercle circonscrit et le cercle a tète du boulon

$$dm = 32.4 \text{ mm}, tp = 20 \text{ mm},$$

$$B_{p, RD} = 0.6 \times 3.14 \times 3.24 \times 2 \times 36 / 1.25 = 351.59 \text{ KN}.$$

$$F_{t,sd}$$
=49.18 < $B_{p, RD}$ = 351.59 KN OK

> Vérification a la pression diamétrale

Il faut vérifier que $F_{v.sd} \le F_{brd} = 2, 5.\alpha.d.t_p.\frac{f_u}{\gamma_{mb}}$

$$\alpha = \min\left(\frac{e_1}{3d_0}, \frac{p_1}{3d_0} - \frac{1}{4}, \frac{f_{bu}}{f_u}, 1\right) = \min\left(\frac{75}{66}, \frac{100}{66} - \frac{1}{4}, \frac{800}{360}, 1\right) = 1.13$$

$$F_{brd} = 2.5 \times 1 \times 2 \times 2 \times \frac{36}{1.25} = 288 \text{ KN}.$$

$$Fvsd = 7.06 \ KN < F_{brd} = 288 \ KN$$

Vérifier.

Il n'y a pas risque de rupture par pression diamétral.

VIII.4.6 Assemblage platine traverse

Cette liaison se fera au moyen de cordon de soudure :

> Epaisseur de la platine

Soit e = 30 mm

➤ Gorge reliant l'âme

$$3\text{mm} \le a \le 0.5 \text{ t}_{\text{w}}$$
 \longrightarrow $3\text{mm} \le a \le 0.5 \times 10.2$ \longrightarrow $a = 5 \text{ mm}$

> Gorge reliant la semelle

$$6 \text{ mm} \le a \le 0.5 \text{ t}_f$$
 $6 \text{ mm} \le a \le 0.5 \times 16 \text{mm}$ $a=8 \text{ mm}$

- > Distribution des efforts sur les différents cordons
- Cordon âme platine

Chaque cordon repend : V/2 = 70.16/2 = 35 KN.

• Cordon semelle

$$L = 2b - t_w = 400 - 10.2 = 389.8 \text{ mm}$$

$$N = M/L = 299.23 / 0.389 = 769.22 \text{ KN}$$

- > Vérification
- Cordon semelle platine

$$L = \frac{N.\sqrt{3}.\beta W.\gamma MW}{a.fu}$$
 (EC3 Art 6.6.5.3)

$$\beta w = 0.8$$
, $\gamma mw = 1.25$, fu = 360 Mpa

$$L = \frac{769.22 \times \sqrt{3} \times 0.8 \times 1.25}{8 \times 36} = 4.62 \text{ cm}$$

$$L = 38.98 \text{ cm} > 4.62 \text{ cm}$$
 c'est vérifiée.

VIII.4.8 Conclusion

L'assemblage calculé est satisfait

Remarque

Le renfort de jarret est utilisé pour remplir la fonction suivante :

• Augmenter la résistance à la flexion de la traverse au niveau du moment le plus élevé pour pouvoir ainsi utiliser une traverse de plus petit taille.

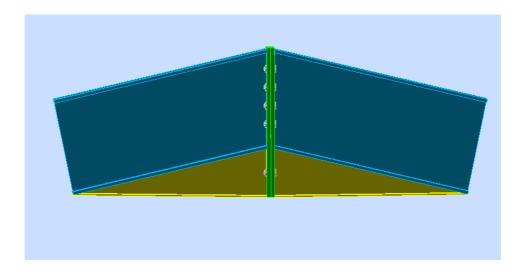


Figure VIII.3 vue de l'assemblage Traverse-Traverse

VIII.5 Assemblage poteau - traverse

- L'assemblage poteau traverse est réalisé à l'aide d'une platine boulonnée à la traverse et au poteau.
- L'assemblage est sollicité par un moment fléchissant, effort tranchant et un effort normal.

> Choix des diamètres des boulons

On choisit des boulons M20 de diamètre ø 20 de classe 10.9

Nombre de files : n = 2

Nombre de boulons = 10

Section nominale du boulon $A = 314 \text{ mm}^2$

Section résistante de la partie filetée As = 245mm²

Poteau HEA 340

Traverse IPE 500

Mmax = 367.33 KN

Nmax = 89.62KN

 $Vsd_{max} = 80.16 KN$

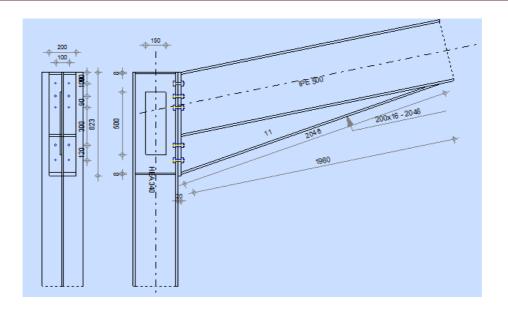


Figure VIII.4 assemblage poteau – traverse

VIII.5.1 Condition de résistance des boulons

- > Dimensionnements des boulons
- > Disposition des boulons

$$P_1 \ge 2,2d_0$$

$$P_2\!\ge 3d_0$$

Avec : $d_0 = 22 \text{ mm}$ (tableau 6.1 Euro code 3)

$$P_1 \ge 2$$
. 2 ×22= 48.4 mm

On prend: $P_1 = 100 \text{ mm}$

$$P_2 \! \geq \! 3 \times 22 = 66 \ mm$$

On prend : $P_2 = 150 \text{ mm}$

> Pince longitudinale

$$e_1 \ge 1.2d_0$$

$$e_1 \ge 1.2 \times 22 = 26,4 \text{ mm}$$

On prend : $e_1 = 65 \text{ mm}$

> Pince transversale

$$e_2 \ge 1.5d_0$$

$$e_2 \ge 1.5 \times 22 = 33 \text{ mm}$$

On prend: $e_2 = 75 \text{ mm}$

> Détermination des efforts dans les boulons

Nous considérons uniquement les boulons tendus, c'est-à-dire les 2 rongées supérieures des boulons.

$$d1 = 715$$
mm, $d2 = 625$ mm.

$$\sum d_i^2 = (715^2 + 625^2) = 0.9 \text{m}^2$$

D'où :
$$N_i = \frac{M_{sd} \times d_i}{\sum_i d_i^2}$$

$$N1 = \frac{367.34 \times 0.715}{0.9} = 291.83 \text{ KN}$$

$$N2 = \frac{367.34 \times 0.625}{0.9} = 255.09 \text{ KN}$$

> Dimensionnement des boulons

Il faut vérifier que $N \le n \times Fp$ avec : $Fp = 0.7 \times fub \times As$

As
$$\ge \frac{N1}{0.7 \times fub \times n} = \frac{291.83 \times 10^3}{0.7 \times 1000 \times 2} = 208.45 \text{ mm}^2$$

Soit des boulons de M20 de diamètre 20 classe 10.9 et $As = 245 \text{mm}^2$.

Moment résistant effectif de l'assemblage

$$M_R = \frac{F_p X \sum di^2}{d_1} \le Msd$$

$$F_P = 0.7 \times f_{ub} \times A_S$$

$$F_P = 0.7 \times 1000 \times 10^{-3} \times 245 = 171,5 \text{ KN par boulon.}$$

F_p: Force de précontrainte.

Soit $171.5 \times 2 = 343$ KN par rangée.

$$M_{Rd} = \frac{n \times F_p \times \sum d_i^2}{d_i} = M_{Rd} = \frac{2 \times 171.5 \times 0.9}{0.715} = 431.74 \text{ KN.m}$$

$$M_{Sd}$$
= 367.34 K.Nm < M_{Rd} = 431.74 KNm **OK**

VIII.5.2 Vérification

Vérification sous l'effort tranchant

Il faut vérifier la condition suivante :

Par boulons:

$$\frac{V_{sd}}{n} = \frac{80.16}{10} = 8.016$$
 KN

Il faut vérifier que :

$$_{\text{V1}} = \frac{V_{sd}}{n} \le V_{Rd} = \frac{k_s \times m \times \mu \times F_p}{\gamma_{m2}} = 41.16 \text{ KN}$$

Avec:

$$\mu = 0.3$$
 ; $K_S = 1$; $\gamma_{mb} = 1.25$; $m = 1$

$$V_{1} = 8.016 \text{ KN} \le V_{Rd} = 41.16 \text{ KN}$$
 OK

> Résistance d'un boulon à interaction cisaillement+ traction

Il faut vérifier que : Fvsd =
$$F_{VR} = \frac{KS \times \mu \times n \times (fp - 0.8 \text{ Ft.sd})}{\gamma ms}$$

Avec :
$$\mu = 0.3$$
, Ks = 1, $\gamma ms = 1.25$, n = 1.

$$Fp = 171.5 \text{ KN}.$$

Ft.sd=
$$\frac{Nsd}{2} = \frac{89.62}{2} = 44.81$$
 KN.

• Effort de cisaillement sollicitant par boulon

$$F_{vsd} = \frac{V_{Sdmax}}{n} = \frac{80.16}{10} = 8.06 \text{ KN}.$$

• Effort résistant de l'interaction cisaillement+ traction

$$F_{VR} = \frac{1 \times 0.3 \times 1 \times (171.5 - (0.8 \times 44.81))}{1.25} = 32.55 \text{ KN}.$$

Fvsd =
$$8.06 \text{ KN} < F_{VR} = 32.55 \text{ KN}$$
. C'est vérifier.

Résistance au poinçonnement

Il faut vérifier que :

$$F_{t, sd} \le B_{p, RD} = 0.6 \times \Pi \times d_m \times t_p \times f_u / \gamma_{MB}$$

avec :t_p : Epaisseur de la platine

 $d_m\colon diamètre \ moyen$ entre le cercle circonscrit et le cercle a tète du boulon

$$dm = 32.4 \text{ mm}, tp = 20 \text{ mm},$$

$$B_{p, RD} = 0.6 \times 3.14 \times 3.24 \times 2 \times 36 / 1.25 = 351.59 \text{ KN}.$$

$$F_{t,sd}$$
=44.81KN < $B_{p, RD}$ = 351.59 KN *OK*

> Vérification a la pression diamétrale

Il faut vérifier que $F_{v.sd} \le F_{brd} = 2, 5.\alpha.d.t_p.\frac{f_u}{\gamma_{mb}}$

$$\alpha = \min\left(\frac{e_1}{3d_0}, \frac{p_1}{3d_0} - \frac{1}{4}, \frac{f_{bu}}{f_u}, 1\right) = \min\left(\frac{75}{66}, \frac{100}{66} - \frac{1}{4}, \frac{800}{360}, 1\right) = 1.13$$

$$\alpha = \min\left(\frac{65}{66}, \frac{100}{66} - \frac{1}{4}, \frac{1000}{360}, 1\right) = 0.98$$

$$F_{brd} = 2.5 \times 0.98 \times 2 \times 2 \times \frac{36}{1.25} = 282.24 \text{ KN}.$$

$$Fvsd = 8.016 \text{ KN} < F_{brd} = 282.21 \text{ KN}$$

Vérifier.

Il n'y a pas risque de rupture par pression diamétral.

Vérification à la résistance de l'âme du poteau dans la zone tendue

On doit vérifie
$$F_V < F_{TRd}$$
 Avec : $F_{TRd} = t_{wc} \times b_{eff} \times \frac{f_V}{\gamma_{mo}}$

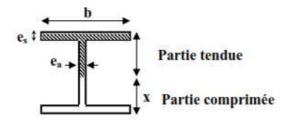


Figure VIII.5 Schéma représente la zone tendue et la zone comprimée.

Où:

 $F_{t.Rd}$: Résistance de l'âme du poteau à la traction.

twc : épaisseur de l'âme du poteau.

 $b_{eff} = P$: entraxe des rangées de boulons. ($P_2=150$ mm).

Donc:
$$F_{TRd} = 0.95 \times 15 \times \frac{23.5}{1} = 304.43 Kn$$

L'effort de cisaillement vaut :

$$F_V = \frac{M_{Sd}}{h - t_f} = \frac{89.62}{0.314} = 285.41 \text{ KN}$$

$$F_V = 285.41 \text{ KN} < F_{TRd} = 304.43 KN.$$
 vérifie

Vérification à la résistance de l'âme du poteau dans la zone comprimée

On doit vérifier que Fvrd =
$$285.41 \le Fcrd = \frac{fy \times tw \times beff}{\gamma m_0}$$

Avec : Beff = $t_f+2t+5(t_p+r)$

tw= 9.5 mm épaisseur de l'âme du poteau

tf= 16 mm épaisseur de la traverse

t= 20 mm épaisseur de la platine

tp= 16.5 mm épaisseur de la semelle du poteau

$$r = 27$$
 donc beff = 293.5mm

Fvrd = 285.41 KN < Fcrd = 595.67 KN condition vérifiée.

Vérification à la résistance de l'âme du poteau dans la zone cisaillée

On doit vérifier que : $F_V \leq V_{Rd}$

$$V_{R} = 0.58 \times f_{y} \times h \times \frac{t_{w}}{\gamma_{M_{0}}}$$

$$V_R = 0.58 \times 23.5 \times 33 \times \frac{0.95}{1.1} = 388.45 \text{ KN}.$$

L'effort de cisaillement vaut :

$$F_V = \frac{N_{Sd}}{h - t_f} = \frac{89.62}{0.314} = 285.41 \text{ KN}$$

 $D'où : F_v = 285.41KN < V_R = 388.45 KN$ vérifiée

Vérification au risque de poinçonnement lors de serrage

On doit vérifier que :

$$F_p \prec B_{prd}$$

D'où:

$$F_p = 0,7 \times A_s \times f_{ub}$$

$$F_p = 0.7 \times 245 \times 1000 = 171.5 KN$$

$$B_{prd} = 0.6 \times \pi \times d_m \times t_p \times \frac{f_u}{\gamma_{mb}}$$

Où:

d_m : diamètre moyen du boulon

 $d_{\rm m} = 32.4 \, \rm mm.$

t : épaisseur des pièces à boulonnés

t = 20 mm.

D'où:

Bprd =
$$0.6 \times 3.14 \times 3.24 \times 0.3 \times \frac{36}{1.25} = 527.39$$
KN

Fp= 171.5 KN < Bprd = 527.39 KN condition vérifiée.

VIII.5.3 Assemblage platine poutre

Cette liaison se fera au moyen de cordon de soudure

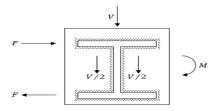


Figure VIII.6 représentation assemblage platine poutre.

> Epaisseur de la platine

Soit e = 20 mm

> Gorge reliant l'âme

$$3 \text{ mm} \le a \le 0.5 \text{ t}_w \rightarrow 3 \text{ mm} \le a \le 0.5 \times 9.5 \text{ mm} \rightarrow a = 4 \text{ mm}$$

> Gorge reliant la semelle

$$3 \text{ mm} \le a \le 0.5 t_f$$
 $\rightarrow 3 \text{ mm} \le a \le 0.5 \times 16.5 \text{mm}$ $\rightarrow a = 8 \text{ mm}$

- > Distribution des efforts sur les différents cordons
- Cordon âme platine

Chaque cordon repend : V/2 = 80.16/2 = 40.08 KN.

• Cordon semelle

$$L = 2b - t_w = 600 - 9.5 = 590.5 \text{ mm}$$

$$N = M/L = 367.34 / 0.590 = 622.61 \text{ KN}$$

- > Vérification
- Cordon semelle platine

$$L = \frac{N.\sqrt{3}.\beta W.\gamma MW}{a.fu}$$
 (EC3 Art 6.6.5.3)

$$\beta w = 0.8 \, , \gamma mw = 1.25 \, , \, \text{fu} = 360 \, \text{Mpa}$$

$$L = \frac{622.61 \times \sqrt{3} \times 0.8 \times 1.25}{8 \times 36} = 3.74 \text{ cm}$$

$$L = 59.05 \text{ cm} > 3.74 \text{ cm}$$
 c'est vérifiée.

VIII.5.4 Conclusion

L'assemblage calculé est satisfait

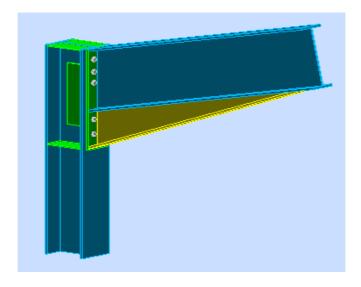


Figure VIII.7 vue de l'assemblage poteau-traverse

VIII.6 Assemblage de l'échantignolle

VIII.6.1 Assemblage de l'échantignolle sur la panne

Les pannes sont assemblées aux traverses ou aux fermes par boulonnage. Sur les toitures inclinées, pour éviter le glissement et le basculement à la pose, les pannes sont fixées à l'aide d'échantignolles.

On dimensionnera le boulon au cisaillement avec R_{qZ} / 2 (chaque boulon reprend une seul panne).

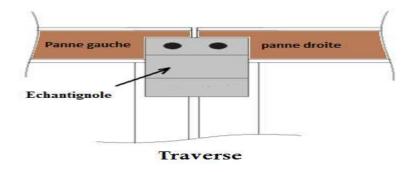


Figure VIII.8 Vue de face de l'échantignole.

On vérifiera l'assemblage pour un boulon ordinaire afin de réaliser une articulation.

 R_{qz} max = 22.29 KN est celui due au vent (voire chapitre (III) calcul de l'échantignolle).

Fvsd =
$$\frac{Rvz,max}{n \times p} = \frac{22.29}{2} = 11.14 \text{ KN}$$

On a la classe des boulons est 6.8 donc :

As
$$\ge \frac{\gamma mb \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 11.14 \times 10^3}{0.5 \times 600} > 46.41 \text{ mm}^2$$

On adopte des boulons de type M12 avec As = 84.3mm² et do = 13mm

$$F_{VRD} = \frac{0.5 \cdot As \cdot fub}{\gamma mo} = \frac{0.5 \times 0.843 \times 60}{1.25} = 20.23 > Fvsd = \frac{22.29}{2} = 11.14 \text{ KN}$$
 $\rightarrow OK$ Vérifier

VIII.6.2 Assemblage de l'échantignolle sur la traverse

Dans ce cas-là, le boulon est soumis simultanément un effort de cisaillement et de traction, Le cas le plus défavorable et celui du vent :

$$V_Z = 8.69 \text{ KN}$$
 ; $V_Y = 1.87 \text{ KN}$

Soit un boulon ordinaire M 12 de classe 6.8; $f_{ub} = 600$ MPa.

$$\frac{F_{Vsd}}{F_{Vrd}} + \frac{F_{tsd}}{1.4 \cdot F_{tRd}} \le 1$$

$$\mathbf{F_{t,Rd}} = \mathbf{0.9} \times \mathbf{As} \times \mathbf{f_{ub}} / \mathbf{y_{mb}} = 0.9 \times 0.843 \times 60 / 1.25 = 36.41 \text{ KN}$$

$$\mathbf{F_{V, Rd}} = \mathbf{0.5} \times \mathbf{A_s} \times \mathbf{f_{ub}} / \mathbf{ymb} = 0.5 \times 0.843 \times 60 / 1.25 = 20.23 \text{ KN}$$

$$\frac{11.14}{20.23} + \frac{8.69}{1.4 \times 36.41} = 0.72 \le 1$$
 — Condition vérifiée.

VIII.7 Assemblage des éléments de la Poutre au vent

Les boulons sont sollicités en cisaillement seul. Les diagonales les plus sollicitées sont celles qui reprennent un effort de traction maximum : N =95.39 KN

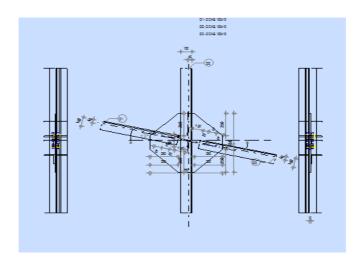


Figure VIII.9 assemblage de la poutre au vent.

VIII.7.1 Assemblage de la diagonale sur le gousset

> Pré dimensionnement du gousset

On a N= 95.39 KN
$$<$$
 200 KN d'où : e = 8mm

L'assemblage est réalisé par des boulons ordinaires de classe 5.6, dont la résistance au glissement par cisaillement est donnée comme suite :

Fvrd =
$$\frac{0.5 \times fub}{vmb}$$
 × As; avec Fub = 500 Mpa

$$\gamma = 1.25$$

Le dimensionnement des boulons se fait avec la vérification de la condition suivant :

> Distribution de l'effort normale sur les boulons

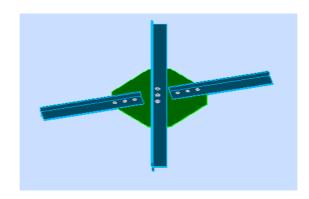


Figure VIII.10 vue d'assemblage de la poutre au vent.

$$F_{\text{vsd}} = \frac{Nmax}{n \times p} = \frac{95.39}{2 \times 3} = 15.89 \text{ KN}$$

Avec : p: nombre de plan de cisaillement = 2

n : c'est nombre de boulons pris arbitrairement = 3

> Dimensionnement des boulons

$$Fvrd = \frac{0.5 \times fub}{\gamma mb}$$

As
$$\geq \frac{\gamma mb \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 15.89 \times 10^3}{0.5 \times 500} = 79.45 \text{ mm}^2$$

On adopte des boulons de type M12 avec $As = 84.3 \text{mm}^2$ et do = 13mm.

> Disposition des boulons

La cornière 2CAE (100*100*10), t = 8mm

On opte pour 3 Boulons ordinaires M12 avec un gousset de 8mm.

$$1.2$$
do≤ $e1$ ≤ $12 t$

15.6mm≤
$$e1$$
 ≤ 96

$$2.2 \text{do} \le p1 \le 14 t$$
 d'où

$$1.5do \le e2$$

$$19.5mm \le e2$$

Soit
$$e1 = 80$$
mm

$$p1 = 100mm$$

$$e2 = 90 \text{mm}$$

VIII.7.2 Les Vérifications

Vérification de la pression diamétrale

$$F_{v.s} \leq F_{p.rd}$$

$$F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{f_u}{\gamma_{Mb}}$$

$$\alpha = \min \left[\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1 \right] = \min [1.02, 1.032, 1.66, 1] = 1$$

$$F_{p.rd} = 2.5 \times 1 \times 1.2 \times 0.8 \times \frac{36}{1.25} = 69.12 \text{ KN}$$

$$F_{p.rd} = 69.12 \text{ KN} > F_{v.sd} = \frac{95.39}{6} = 15.89 \text{ KN}.$$

Pas de risque de rupture par pression diamétrale pour la cornière.

➤ Vérification vis-à-vis de la rupture de la section nette

$$N_{u.Rd} = 0.9A_{nett} \frac{f_u}{\gamma_{mb}} \ge F_{v,sd}$$

Avec:
$$A_{nett} = 2(A_1 + \xi A_2)$$

$$A_1 = (1 - d_0) \times e = (100 - 13) \times 10 = 870 \text{ mm}^2$$

$$A_2 = A_{tot} - (d_0 \times e) - A_1 = 1920 - (13 \times 10) - 870 = 920 \text{ mm}^2$$

$$\varepsilon = \frac{3 \times A_1}{3 \times A_1 + A_2} = \frac{3 \times 870}{3 \times 870 + 920} = 0.73$$

$$A_{nett} = 2 \times (870 + 0.73 \times 920) = 3083.2 mm^2$$

$$N_{u.rd} = 0.9 \times 30.832 \times \frac{36}{1.25} = 799.16 \text{ KN} > F_{v.sd} = 15.89 \text{ KN}...$$
Condition vérifiée

➤ Vérification vis-à-vis des assemblages trop longs

L=
$$(n-1) \times P_1 = (3-1) \times 10 = 20 \text{cm}$$

$$L=20>15.d=15\times1.2=18cm$$

Donc: L'assemblage est pas long.

> Dimensionnement du cordon de soudure

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante :

 $3\text{mm} \le a \le 0.5 \times \text{tmax}$

Avec:

t_{max} : épaisseur maximal des pièces assemblées.

t_{max} = 8mm (épaisseur du gousset)

 $3\text{mm} \le a \le 0.5 \times 8\text{mm}$

 $3mm \le a \le 4mm \Rightarrow a = 4mm$

VIII.7.3 Les longueurs de soudures

Les longueurs de soudure sont données comme suit

$$L_{talon} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d}{d'})}$$
 EC3 Art 6.6.5.3 $L_{bord} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d'}{d})}$

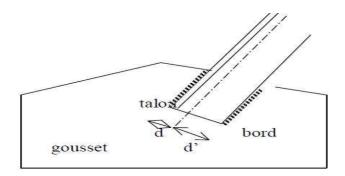


Figure VIII.11 Longueurs des soudures.

On considère que la cornière est soudée seulement au bord donc on aura :

Avec:

N : effort repris par une cornière N= 95.39 KN.

 γ_{m0} : Coefficient de sécurité $\gamma_{m0} = 1,25$

 $\beta_{\rm W}$: Coefficient de corrélation $\beta_{\rm W} = 0.8$

 f_u : Résistance limite de rupture $f_u = 360 \text{ MPa}$

a: Gorge de la soudure a = 4mm.

$$L_{bord} \ge \frac{95.39 \times 1.25 \times 0.8 \times \sqrt{3}}{0.4 \times 36} = 11 \text{ cm}$$

 $L_{bord} = 11 cm$

VIII.8 Assemblage du contreventement (palées de stabilités)

VIII.8.1 Palée de stabilité de rive

L'assemblage se fait par la détermination de l'élément le plus sollicité avec un effort de traction : Nt, sd = 140.54 KN.

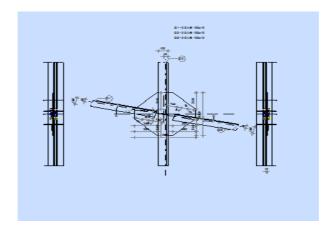


Figure VIII.12 assemblage de palée stabilité de rive.

VIII.8.1.1 Assemblage de la diagonale sur le gousset

> Pré dimensionnement du gousset

L'épaisseur du gousset dépend essentiellement de l'effort applique, il est donné par le tableau suivant :

F(KN)	≤ 200	200-450	450-750	750-1150	1150-1650
e (mm)	8	10	12	14	16

Tableau VIII.4 Epaisseur du gousset en fonction de l'effort appliqué.

Dans se genre d'assemblage, les boulons sont sollicité en cisaillement seul, les diagonales les plus sollicitées sont celles qui reprennent un effort de traction maximum.

$$N = 140.54KN$$
 d'où $e = 8mm$

L'assemblage réalisé par des boulons ordinaire de classe 5.6, dont la résistance au glissement par cisaillement est donnée comme suite :

Fvrd =
$$\frac{0.5 \times fub}{\gamma mb} \times As$$
 ; avec fub = 600 Mpa (Tableau 3.3 CC97)

Et ymb : coefficient de sécurité

Le dimensionnement des boulons se fait avec la vérification de la condition suivante :

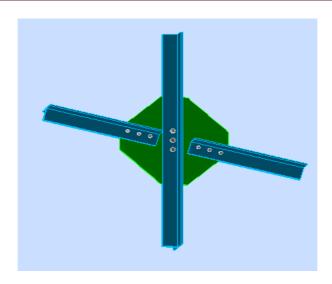


Figure VIII.13 Vue de l'assemblage palée de stabilité de rive.

> Distribution de l'effort normale sur les boulons

Fvsd =
$$\frac{Nmax}{n \times p} = \frac{140.54}{3 \times 2} = 23.42 \text{ KN}$$

Avec: p: nombre de plan de cisaillement = 2

n: est le nombre de boulons pris = 3

> Dimensionnement des boulons

Fvrd =
$$\frac{0.5 \times fub}{\gamma mb} \times As$$
 donc $As \ge \frac{\gamma mb \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 23.42 \times 10^3}{0.5 \times 600} = 97.58 \text{ mm}^2$

On adopte des boulons de type m14 avec As= 115 mm² et do = 15mm

> Disposition des géométrique

Cornière 2CAE (100*100*10) t=8mm

$$1.2 \text{do} \le e1 \le 12 t$$
 $15.6 \text{ mm} \le e1 \le 96$

$$2.2 \text{do} \le p1 \le 14 t$$
 d'où $28.6 \text{mm} \le p1 \le 112$

$$1.5do \le e2 \qquad \qquad 19.5mm \le e2$$

Soit
$$e1 = 60 \text{ mm}$$
 $p1 = 80 \text{mm}$ $e2 = 70 \text{mm}$

VIII.8.1.2 La vérification

Vérification de la pression diamétrale

$$F_{v.s} \leq F_{p.rd}$$

$$F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{f_u}{\gamma_{Mb}}$$

$$\alpha = \min \left[\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1 \right] = \min [1.02, 1.032, 1.66, 1] = 1$$

$$F_{p.rd} = 2.5 \times 1 \times 1.2 \times 0.8 \times \frac{36}{1.25} = 69.12 \text{ KN}$$

$$F_{p.rd} = 69.12 \text{ KN} > F_{v.sd} = \frac{140.54}{6} = 23.42 \text{ KN}.$$

Pas de risque de rupture par pression diamétrale pour la cornière.

Vérification vis-à-vis de la rupture de la section nette

$$N_{u.Rd} = 0.9 A_{nett} \frac{f_u}{\gamma_{mb}} \ge F_{v,sd}$$

Avec:
$$A_{nett} = 2(A_1 + \xi A_2)$$

$$A_1 = (1 - d_0) \times e = (100 - 13) \times 10 = 870 \text{ mm}^2$$

$$A_2 = A_{tot} - (d_0 \times e) - A_1 = 1920 - (13 \times 10) - 870 = 920 \text{ mm}^2$$

$$\varepsilon = \frac{3 \times A_1}{3 \times A_1 + A_2} = \frac{3 \times 870}{3 \times 870 + 920} = 0.73$$

$$A_{nett} = 2 \times (870 + 0.73 \times 920) = 3083.2 mm^{2}$$

$$N_{u.rd} = 0.9 \times 30.832 \times \frac{36}{1.25} = 799.16 \text{ KN} > F_{v.sd} = 23.42 \text{ KN}...$$
Condition vérifiée

Vérification vis-à-vis des assemblages trop longs

L=
$$(n-1)\times P_1 = (3-1)\times 10 = 20 \text{ cm}$$

$$L=20 < 15.d=15 \times 1.4=21$$
cm

Donc: L'assemblage n'est pas long.

> Dimensionnement du cordon de soudure

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante :

 $3\text{mm} \le a \le 0.5 \times \text{tmax}$

Avec:

t_{max} : épaisseur maximal des pièces assemblées.

t_{max} = 8mm (épaisseur du gousset)

 $3mm \le a \le 0.5 \times 8 mm$

 $3mm \le a \le 4mm \Rightarrow a = 4mm$

VIII.8.1.3 Les longueurs de soudures

Les longueurs de soudure sont données comme suit

$$L_{talon} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d}{d'})} \qquad \text{EC3 Art 6.6.5.3 } L_{bord} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d'}{d})}$$

On considère que la cornière est soudée seulement au bord donc on aura :

Avec:

N : effort repris par une cornière N= 140.54 KN.

 γ_{m0} : Coefficient de sécurité $\gamma_{m0} = 1,25$

 $\beta_{\rm W}$: Coefficient de corrélation $\beta_{\rm W} = 0.8$

 f_u : Résistance limite de rupture $f_u = 360 \text{ MPa}$

a: Gorge de la soudure a = 4mm.

$$L_{bord} \ge \frac{140.54 \times 1.25 \times 0.8 \times \sqrt{3}}{0.4 \times 36} = 16.9 \text{ cm}$$

 $L_{bord} = 17 cm$

VIII.8.2 Palée de stabilité intermédiaire

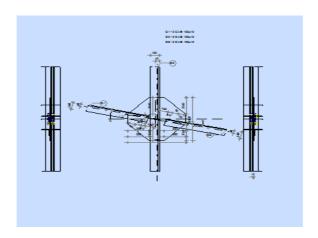


Figure VIII.14 assemblage de palé de stabilité intermédiaire.

L'assemblage se fait par la détermination de l'élément le plus sollicité avec un effort de traction : Nt,sd = 85.29 KN

VIII.8.2.1 Assemblage de la diagonale sur le gousset

> Pré dimensionnement du gousset

L'épaisseur du gousset dépend essentiellement de l'effort applique, il est donné par le tableau suivant :

F(KN)	≤ 200	200-450	450-750	750-1150	1150-1650
e (mm)	8	10	12	14	16

Tableau VIII.5 Epaisseur du gousset en fonction de l'effort appliqué.

Dans se genre d'assemblage, les boulons sont sollicité en cisaillement seul, les diagonales les plus sollicitées sont celles qui reprennent un effort de traction maximum.

$$N = 85.29KN$$
 d'où $e = 8mm$

L'assemblage réalisé par des boulons ordinaire de classe 5.6, dont la résistance au glissement par cisaillement est donnée comme suite :

Fvrd =
$$\frac{0.5 \times fub}{\gamma mb} \times As$$
 ; avec fub = 500 Mpa (Tableau 3.3 CC97)

Et ymb : coefficient de sécurité

Le dimensionnement des boulons se fait avec la vérification de la condition suivante :

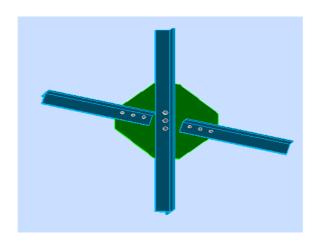


Figure VIII.15 vue de l'assemblage palé intermédiaire.

> Distribution de l'effort normale sur les boulons

$$Fvsd = \frac{Nmax}{n \times p} = \frac{85.29}{3 \times 1} = 28.43 \text{ KN}$$

Avec: p: nombre de plan de cisaillement = 1

n: est le nombre de boulons pris = 3

> Dimensionnement des boulons

Fvrd =
$$\frac{0.5 \times fub}{\gamma mb} \times As$$
 donc $As \ge \frac{\gamma mb \times Fvsd}{0.5 \times fub} = \frac{1.25 \times 28.43 \times 10^3}{0.5 \times 500} = 142.15 \text{ mm}^2$

On adopte des boulons de type M16 avec $As=157 \text{ mm}^2$ et do = 18 mm

> Disposition des géométrique

Cornière 2CAE (100*100*10) t=8mm

$$1.2\text{do} \le e1 \le 12 t$$
 $21.6 \text{ mm} \le e1 \le 96$

$$2.2 \text{do} \le p1 \le 14 t$$
 d'où $39.6 \text{ mm} \le p1 \le 112$

$$1.5do \le e2 \qquad 27 \ mm \le e2$$

Soit
$$e1 = 60 \text{ mm}$$
 $p1 = 80 \text{mm}$ $e2 = 70 \text{mm}$

VIII.8.2.2 La vérification

Vérification de la pression diamétrale

$$F_{v.s} \leq F_{p.rd}$$

$$F_{P,rd} = 2,5 \times \alpha \times d \times t_p \times \frac{f_u}{\gamma_{Mb}}$$

$$\alpha = \min \left[\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1 \right] = \min [1.02, 1.032, 1.66, 1] = 1$$

$$F_{p.rd} = 2.5 \times 1 \times 1.2 \times 0.8 \times \frac{36}{1.25} = 69.12 \text{ KN}$$

Pas de risque de rupture par pression diamétrale pour la cornière.

➤ Vérification vis-à-vis de la rupture de la section nette

$$N_{u.Rd} = 0.9 A_{nett} \frac{f_u}{\gamma_{mb}} \ge F_{v,sd}$$

Avec:
$$A_{nett} = 2(A_1 + \xi A_2)$$

$$A_1 = (1 - d_0) \times e = (100 - 13) \times 10 = 870 \text{ mm}^2$$

$$A_2 = A_{tot} - (d_0 \times e) - A_1 = 1920 - (13 \times 10) - 870 = 920 \text{ mm}^2$$

$$\varepsilon = \frac{3 \times A_1}{3 \times A_1 + A_2} = \frac{3 \times 870}{3 \times 870 + 920} = 0.73$$

$$A_{nett} = 2 \times (870 + 0.73 \times 920) = 3083.2 mm^{2}$$

$$N_{u.rd} = 0.9 \times 30.832 \times \frac{36}{1.25} = 799.16 \text{ KN} > F_{v.sd} = 28.43 \text{ KN}...$$
Condition vérifiée

Vérification vis-à-vis des assemblages trop longs

L=
$$(n-1)\times P_1 = (3-1)\times 10 = 20 \text{ cm}$$

$$L=20 < 15.d=15 \times 1.6 = 24 \text{ cm}$$

Donc: L'assemblage n'est pas long.

> Dimensionnement du cordon de soudure

La gorge de soudure doit vérifier les critères de mise en œuvre, elle est donnée par la condition suivante :

 $3\text{mm} \le a \le 0.5 \times \text{tmax}$

Avec:

t_{max} : épaisseur maximal des pièces assemblées.

 $t_{max} = 8mm$ (épaisseur du gousset)

 $3mm \le a \le 0.5 \times 8 mm$

 $3mm \le a \le 4mm \Rightarrow a = 4mm$

VIII.8.2.3 Les longueurs de soudures

Les longueurs de soudure sont données comme suit

$$L_{talon} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d}{d'})} \qquad \text{EC3 Art 6.6.5.3 } L_{bord} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d'}{d})}$$

On considère que la cornière est soudée seulement au bord donc on aura :

Avec:

N : effort repris par une cornière N= 85.29 KN.

 γ_{m0} : Coefficient de sécurité $\gamma_{m0} = 1,25$

 $\beta_{\rm W}$: Coefficient de corrélation $\beta_{\rm W} = 0.8$

 f_u : Résistance limite de rupture $f_u = 360 \text{ MPa}$

a: Gorge de la soudure a = 4mm.

$$L_{bord} \ge \frac{85.29 \times 1.25 \times 0.8 \times \sqrt{3}}{0.4 \times 36} = 10.25 \text{ cm}$$

 $L_{bord} = 10cm$

VIII.9 Assemblage poteau poutre-sablière

> Sollicitation

Nsd = 64.04 KN

V sd = 6.80KN

> Dimensionnement des boulons

On a:
$$F_{t,sd} = \frac{Nt}{4} = \frac{67.04}{4} = 16.01 \text{ KN}$$

Donc on a : As
$$\frac{Ftsd.\gamma mb}{0.9 \times fub} = \frac{16.01 \times 1.25}{0.9 \times 60} = 37.06 \text{ cm}^2$$

On choisit des boulons de type M10 de classe 6.8 avec As = 58mm².

> Disposition des boulons

$$P_1 \ge 2,2d_0$$

$$P_2 \ge 3d_0$$

Avec: $d_0 = 11 \text{ mm}$ (tableau 6.1 Euro code 3)

$$P_1 \ge 2.2 \times 11 = 24.2 \text{ mm}$$

On prend :
$$P_1 = 70 \text{ mm}$$

$$P_2 \ge 3 \times 11 = 33 \text{ mm}$$

On prend :
$$P_2 = 70 \text{ mm}$$

> Pince longitudinale

$$e_1 \ge 1.2d_0$$

$$e_1 \ge 1.2 \times 11 = 13.2 \text{ mm}$$

On prend :
$$e_1 = 30 \text{ mm}$$

> Pince transversale

$$e_2 \ge 1.5d_0$$

$$e_2 \ge 1.5 \times 11 = 16.5 \text{ mm}$$

On prend:
$$e_2 = 30 \text{ mm}$$

On prend une platine d'épaisseur 8 mm

> Vérification à la traction

Ftsd =
$$\frac{Nt}{4}$$
 = $\frac{64.04}{4}$ = 16.01 $KN \le \frac{0.9 \times fub \times As}{1.25}$ = 25.056 KN c'est vérifier.

> Vitrification au cisaillement

$$Vsd = 6.80 KN$$

Il fout vérifier que : $Vsd \le Fvrd$

$$Fvrd = \frac{0.6 \times Fub \times As}{\gamma mb} \quad avec \text{ fub} = 600 \text{Mpa}$$

Fvrd =
$$\frac{0.6 \times 60 \times 0.58}{1.25}$$
 = 16.70 KN donc on a : Fvsd = $\frac{Vsd}{4}$ = $\frac{6.80}{4}$ = 1.7 KN

la condition est vérifier

> Vérification cisaillement + traction

Vsd = 6.80 KN

Il fout vérifier que :
$$\frac{Ftsd}{1.4Ftrd} + \frac{Fvsd}{Fvrd} \le 1$$

Ftsd = 16.01 KN et Fvrd = 16.70 KN

$$\frac{16.01}{1.4 \times 25.056} + \frac{1.7}{16.70} = 0.45 + 0.1 = 0.55 < 1$$
 c'est vérifier

> Vérification au risque de poinçonnement

Il faut vérifier que:

$$F_{t, sd} \le B_{p, RD} = 0.6 \times \Pi \times d_m \times t_p \times f_u / \gamma_{MB}$$

avec :t_p: Epaisseur de la platine

d_m: diamètre moyen entre le cercle circonscrit et le cercle a tète du boulon

$$dm = 18.3 \text{ mm}, tp = 8 \text{ mm},$$

$$B_{p, RD} = 0.6 \times 3.14 \times 1.83 \times 0.8 \times 36 / 1.25 = 78.13 \text{ KN}.$$

$$F_{t,sd}$$
=16.01KN < $B_{p, RD}$ = 78.13 KN OK

Vérification a la pression diamétrale

Il faut vérifier que
$$F_{v.sd} \le F_{brd} = 2, 5.\alpha.d.t_p.\frac{f_u}{\gamma_{mb}}$$

$$\alpha = \min\left(\frac{e_1}{3d_0}, \frac{p_1}{3d_0} - \frac{1}{4}, \frac{f_{bu}}{f_u}, 1\right) = \min\left(\frac{75}{66}, \frac{100}{66} - \frac{1}{4}, \frac{800}{360}, 1\right) = 1.13$$

$$\alpha = \min\left(\frac{30}{33}, \frac{60}{33} - \frac{1}{4}, \frac{600}{360}, 1\right) = 0.98$$

Calcul des assemblages

$$F_{brd} = 2.5 \times 0.90 \times 0.11 \times 0.8 \times \frac{36}{1.25} = 57.02 \text{ KN}.$$

$$Fvsd = 1.7 \ KN < F_{brd} = 57.02 \ KN$$

Vérifier.

Il n'y a pas risque de rupture par pression diamétral.

VIII.9.1 Assemblage platine poutre sablière

La gorge de soudeur doit vérifier les critères de mise en œuvre donnée par la condition suivante : $3 \text{ mm} \le a \le 0.5 \text{ tw}$

Gorge reliant amé : en prend a= 3mm

Gorge reliant la semelle : en prend a= 4mm

VIII.10 Assemblage potelet-traverse

Les boulons sont sollicités en cisaillement seul.

On a: Nu = 34.11 KN

L'assemblage est réalisé par des boulons ordinaires de classe 4.6, dont la résistance au glissement par cisaillement est donnée comme suite :

$$Fvrd = \frac{0.6 \times fub \times As}{\gamma mb}$$
 et Fub = 400 Mpa

Le dimensionnement des boulons se fait avec la vérification de la condition suivante :

 $Fsd \leq Frd$

Avec Fsd =
$$\frac{34.11}{2}$$
 = 17.05 KN

$$As \ge \frac{Fsd \times \gamma mb}{0.6 \times fub}$$
 donc $As = 88.8 \text{ mm}^2$

On adopte pour des boulons M14, as = 115mm^2 et de classe 4.6 et une cornière de liaison d'épaisseur 8mm.

Vérification de la pression diamétrale

Nous devons vérifier la condition suivante :

$$F_{v.sd} \le F_{brd} = 2, 5.\alpha.d.t_p. \frac{f_u}{\gamma_{mb}}$$

$$e1 > 1.2 \times do$$
, $e1 > 1.2 \times 15 = 18mm$

$$e2 > 1.5 \times do$$
, $e2 > 1.5 \times 15 = 22.5 \text{ mm}$

$$p1 > 2.2 \times do$$
, $p1 > 2.2 \times 15 = 33 \text{ mm}$

$$e1 = 30mm$$
; $e2 = 30mm$; $p1 = 40mm$

$$\alpha = \min\left(\frac{30}{33}, \frac{60}{33} - \frac{1}{4}, \frac{600}{360}, 1\right) = 0.98$$

$$F_{brd} = 2.5 \times 0.75 \times 1.4 \times 5.3 \times \frac{36}{1.25} = 40.06 \text{ KN}.$$

$$Fvsd = 17.05 \text{ KN} < F_{brd} = 40.06 \text{ KN}$$

Vérifiée.

Il n'y a pas risque de rupture par pression diamétral.

➤ Vésication des cordons de soudure cornière – traverse

La gorge de soudure doivent vérifier les critères de mise en œuvre, elle est donnée par la condition suivante : $3\text{mm} \le a \le 0.7 t$ avec

t : épaisseur maximale des pièces assemblées.

t = 8mm (épaisseur de la cornière)

$$3\text{mm} \le a \le 0.7 \times 8mm$$
; $3\text{mm} \le a \le 5.6 mm$ $\implies a = 5 \text{mm}$

Les longueurs de soudure sont données comme suite :

$$L_{talon} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d}{d'})}$$
 EC3 Art 6.6.5.3 $L_{bord} \ge \frac{N\gamma_{m0}.\beta_{W}.\sqrt{3}}{a.f_{u}(1+\frac{d'}{d})}$

On considère que la cornière est soudée seulement au bord donc on aura :

Avec:

N : effort repris par une cornière N= 17.055 KN.

 γ_{m0} : Coefficient de sécurité $\gamma_{m0}=1,25$

 $\beta_{\rm W}$: Coefficient de corrélation $\beta_{\rm W}=0.8$

 f_u : Résistance limite de rupture $f_u = 360 \text{ MPa}$

a: Gorge de la soudure a = 5mm.

$$L_{bord} \ge \frac{17.055 \times 1.25 \times 0.8 \times \sqrt{3}}{0.5 \times 36} = 16 \text{ cm}$$

$$L_{bord} = 16cm$$

VIII.11 Assemblage traverse-traverse

L'assemblage **traverse** – **traverse** est réalisé par l'intermédiaire d'une platine boulonnée, il est sollicité par des efforts de combinaison la plus défavorable.

Si la portée de la traverse dépasse 12 m il fout faire un assemblage entre des deux traverse. On a une traverse de 19.46 m.

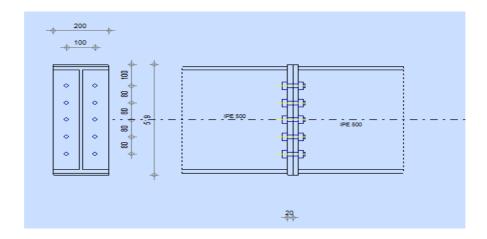


Figure VIII.16 Assemblage traverse –traverse

VIII.11.1 Dimensionnements des boulons

> Choix des diamètres des boulons

Le choix se fait suivant l'épaisseur des pièces assemblées et selon le type de profilés, on choisit des boulons de diamètre **M20**de classe **8.8**

Nombre de boulon = 10

$$n = 2$$
; $A = 314 \text{ mm}^2$; $As = 245 \text{ mm}^2$.

Section résistante de la partie filetée :

Traverse: IPE 500, IPE500

$$M_{max} = 103.45 \text{ KN.m}$$
, $Nmax = 198.36 \text{ KN}$, $Vmax = 49.64 \text{ KN}$.

> Disposition des boulons

Les pièces ne sont pas soumises aux intempéries et ne sont pas situées dans des conditions favorisant l'oxydation.

> Entre axe des boulons

$$P_1 \ge 2,2d_0$$

$$P_2\!\ge 3d_0$$

Avec :
$$d_0 = 22 \text{ mm}$$
 (Tableau 6.1 Euro code 3)

$$P_1 \ge 2.2 \times 22 = 48.4 \text{ mm}$$
 On prend : $P_1 = 100 \text{ mm}$

$$P_2 \ge 3 \times 22 = 66 \text{ mm}$$
 On prend : $P_2 = 120 \text{ mm}$

> Pince longitudinale

$$e_1 \ge 1.2d_0$$

$$e_1 \ge 1.2 \times 22 = 26.4 \text{ mm}$$
 On prend : $e_1 = 75 \text{ mm}$.

> Pince transversale

$$e_2 \ge 1.5d_0$$

$$e_2 \ge 1.5 \times 22 = 33 \text{ mm}$$
 On prend : $e_2 = 90 \text{ mm}$

> Détermination des efforts dans les boulons

Nous considérons uniquement les boulons tendus, c'est à dire les 3 rangées supérieures des boulons.

$$\sum di^2 = 411^2 + 331^2 = 0.26 \text{ m}^2.$$

$$N_i = \frac{M X di}{\sum di^2}$$

$$N_1 = \frac{103.45 \times 0.411}{0.26} = 163.53 \text{ KN}$$
 ; $N_2 = \frac{103.45 \times 0.311}{0.26} = 123.74 \text{ KN}$

VIII.4.3 Dimensionnement des boulons

Il faut vérifier que : N1
$$\leq$$
 n× F_p AVEC : F_p = 0.7 × fub× As

As $=\frac{N1}{0.7 \times fub \times n} = \frac{163.53 \times 10^3}{0.7 \times 800 \times 2} = 146$ mm² < As des boulons que na choisir.

Soit des boulons de M16, do = 18 mm, classe 8.8, et As = 157 mm^2 .

VIII.11.2 Vérification de la résistance de l'assemblage des boulons a l'ELU

> Vérification au moment résistant

$$M_R = \frac{F_p X \sum di^2}{d_1}$$

 $\mathbf{F}_{P} = \mathbf{0.7} \times f_{ub} \times \mathbf{A}_{S}$ (Euro code 3 chap. 6.5.8.3)

F_P: force de précontrainte dans les boulons.

 $f_{\rm ub}$: 800 MPa.

n: nombre de boulon par rangé (n=2).

 $\mathbf{F_{P}} = 0.7 \times 800 \times 10^{-3} \times 157 = 87.92 \text{ KN par boulon.}$

Soit : $\mathbf{F_{P}} = \mathbf{n} \cdot \mathbf{F_{P}} = 2 \times 87.92 = 175.84 \text{ KN}$ par rangée.

$$M_R = \frac{175.84 \times 0.26}{0.411} = 111.23 \text{ KN}$$

> Vérification a l'effort tranchant

$$F_{\text{vsd}} = \frac{V_{Sdmax}}{n} = \frac{49.64}{10} = 4.96 \text{ KN}.$$

Il faut vérifier que :

$$F_{\text{vsd}} \le F_{\text{rd}} = \frac{Ks \cdot m \cdot \mu \cdot Fp}{\gamma_{M2}} = \frac{1 \times 1 \times 0.3 \times 87.92}{1.25} = 20.38 \text{ KN}.$$

Avec:

 $K_S = 1$: Facteur de forme, trous nominaux. (Euro code 3 chap. 6.5.8.1)

 $\mu = 0.3$: Coefficient de frottement, surface brossée (Eurocode3 chap. 6.5.8.3)

m = 1: Plan de contacte

$$F_{vsd} = 4.96 \text{ KN} < F_{rd} = 20.38 \text{ KN}$$
 OK

VIII.11.3 Resistance d'un boulon à l'interaction cisaillement + traction

Il faut vérifier que : Fvsd =
$$F_{VR} = \frac{KS \times \mu \times n \times (fp-0.8 \text{ Ft.sd})}{\gamma ms}$$

Avec :
$$\mu = 0.3$$
 , Ks = 1, $\gamma ms = 1.25$, n = 1.

$$Fp = 87.92 \text{ KN}.$$

Ft.sd=
$$\frac{Nsd}{2} = \frac{198.36}{2} = 99.18$$
 KN.

• Effort de cisaillement sollicitant par boulon

$$F_{\text{vsd}} = \frac{V_{Sdmax}}{n} = \frac{49.64}{10} = 4.96 \text{ KN}.$$

• Effort résistant de l'interaction cisaillement+ traction

$$F_{VR} = \frac{1 \times 0.3 \times 1 \times (175.84 - 0.8 \times 99.18)}{1.25} = 23.17 \text{ KN}.$$

$$Fvsd = 4.96 \text{ KN} < F_{VR} = 23.17 \text{ KN}$$
. C'est vérifier.

> Résistance au poinçonnement

Il faut vérifier que:

$$F_{t, sd} \le B_{p, RD} = 0.6 \times \Pi \times d_m \times t_p \times f_u / \gamma_{MB}$$

avec :t_p: Epaisseur de la platine

 d_m : diamètre moyen entre le cercle circonscrit et le cercle a tète du boulon

$$dm = 32.4 \text{ mm}, tp = 20 \text{ mm},$$

$$B_{p, RD} = 0.6 \times 3.14 \times 2.24 \times 2 \times 36 / 1.25 = 121.54 \text{ KN}.$$

$$F_{t,sd}$$
=99.18 $< B_{p, RD}$ = 121.54 KN OK

> Vérification a la pression diamétrale

Il faut vérifier que
$$F_{v.sd} \le F_{brd} = 2, 5.\alpha.d.t_p.\frac{f_u}{\gamma_{mb}}$$

$$\alpha = \min\left(\frac{e_1}{3d_0}, \frac{p_1}{3d_0} - \frac{1}{4}, \frac{f_{bu}}{f_u}, 1\right) = \min\left(\frac{75}{66}, \frac{100}{66} - \frac{1}{4}, \frac{800}{360}, 1\right) = 1.13$$

$$F_{brd} = 2.5 \times 1 \times 1.6 \times 2 \times \frac{36}{1.25} = 230.4 \text{ KN}.$$

$$Fvsd \ = 4.96 \ KN < F_{brd} \ = 230.4 \ KN$$

Vérifier.

Il n'y a pas risque de rupture par pression diamétral.

VIII.11.4 Assemblage platine traverse

Cette liaison se fera au moyen de cordon de soudure :

> Epaisseur de la platine

Soit e = 20 mm

Gorge reliant l'âme

$$3\text{mm} \le a \le 0.5 \text{ t}_{\text{w}}$$
 \longrightarrow $3\text{mm} \le$

 $3\text{mm} \le a \le 0.5 \text{ t}_{\text{w}}$ \longrightarrow $3\text{mm} \le a \le 0.5 \times 10.2$ \longrightarrow a = 5 mm

➤ Gorge reliant la semelle

$$6 \text{ mm} \le a \le 0.5 \text{ t}_f$$

$$6 \text{ mm} \le a \le 0.5 \text{ t}_f$$
 $6 \text{ mm} \le a \le 0.5 \times 16 \text{ mm}$ $a=8 \text{ mm}$

- > Distribution des efforts sur les différents cordons
- Cordon âme platine

Chaque cordon repend : V/2 = 49.64/2 = 24.82 KN.

Cordon semelle

$$L = 2b - t_w = 400 - 10.2 = 389.8 \text{ mm}$$

$$N = M/L = 103.45 / 0.389 = 265.93 \text{ KN}$$

- > Vérification
- Cordon semelle platine

$$L = \frac{N.\sqrt{3}.\beta W.\gamma MW}{a.fu}$$
 (EC3 Art 6.6.5.3)

$$\beta w = 0.8$$
, $\gamma mw = 1.25$, fu = 360 Mpa

$$L = \frac{265.93 \times \sqrt{3} \times 0.8 \times 1.25}{8 \times 36} = 1.56 \text{ cm}$$

L = 38.98 cm > 1.56 cm

c'est vérifiée.

VIII.11.5 Conclusion

L'assemblage calculé est satisfait

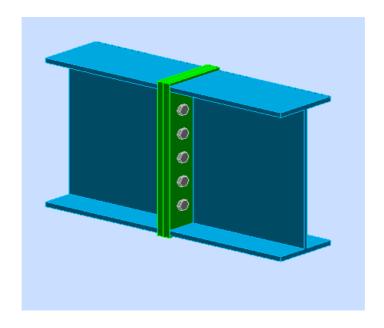


Figure VIII.17 Vue de l'assemblage traverses –traverse

VIII.12 Calcule de Pied de poteau

VIII.12.1 Introduction

Les bases des poteaux et les tiges d'ancrage sont des éléments de continuité qui assurent la transmission des efforts de la superstructure aux fondations, ce sont des dispositifs de liaisons.

Ces derniers sont constitués d'une plaque d'assise appelée platine assurant la réduction de la pression dans le béton, soudée au poteau reposant sur la fondation et fixée par écrous aux tiges d'ancrage qui sont noyées dans le béton.

VIII.12.2 Dimensionnement de la tige d'ancrage des poteaux

La tige d'ancrage sera dimensionnée avec l'effort de traction simple le plus défavorable

Nt= 157.54KN

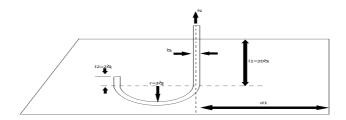


Figure VIII.18 Tige d'encrage du pied du poteau.

b = h + 2c

h : la hauteur de la section HEA340 \Rightarrow h = 330 mm

c : le débord, donné par : $c = (100 \div 150) \text{ mm}$

On prend : c = 100 mm

D'où: $a = h + 2c = 330 + 2 \times 100 = 530 \text{ mm}$

$$b = b + 2c = 300 + 2 \times 100 = 500 \text{ mm}$$

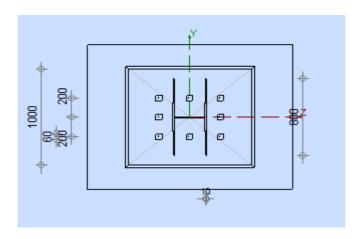


Figure VIII.19 Disposition constructives

Les tiges d'ancrages se dimensionnent à la traction simple, sous un effort de traction (Na).

$$N_{st} = \frac{N_t}{n}$$

$$Nst = \frac{157.54}{8} = 19.69 \text{ KN}$$

n: nombre de tiges.

 N_t : effort sollicitant de traction.

L'ancrage est réalisé par 6 tiges :

$$\frac{N_t}{8} \le \frac{\pi . \emptyset^2}{4} f_y \Rightarrow \emptyset \ge \sqrt{\frac{2.N_t}{4.\pi . f_y}}$$

$$\emptyset \ge \sqrt{\frac{2 \cdot 157.54}{3.14 \cdot 4 \cdot 23.5}} = 1.03 \, cm$$

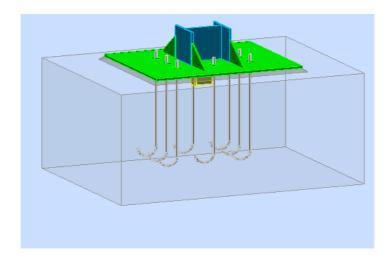


Figure VIII.20 Disposition des tiges d'encrages.

Donc on prend : $\emptyset = 2$ cm

Soit des tiges d'ancrages de 20 mm de diamètre.

VIII.12.3 Vérification

Vérification de la tige d'ancrage

L'effort admissible par scellement est fixé par la règle suivant :

$$N_a = 0.1 \cdot \left(1 + \frac{7 \cdot g_c}{1000}\right) \cdot \frac{\phi}{\left(1 + \frac{\phi}{d_1}\right)} \cdot \left(l_1 + 6.4 \cdot r + 3.5 \cdot l_2\right)$$
 (CCM97)

N_a: effort normal résistant d'une tige.

$$r = 3\emptyset$$
, $l1 = 20\emptyset$, $l2 = 2\emptyset$

 g_c : Le dosage en ciment = 350 Kg/m³

$$r = 3 \times 1.5 = 4.5$$
 cm

$$l_1 = 20 \times 1.5 = 30$$
 cm

$$l_2 = 2 \times 1.5 = 3$$
 cm

$$d_1 = 10 \text{ cm}$$

$$N_a = 33.23 \text{ KN} > \frac{N_t}{8} = 19.69 \text{KN} \dots \text{Vérifiée}$$

Vérification des contraintes dans le béton et l'acier

$$e = \frac{Msd}{Nsd} = \frac{294.51}{157.74} = 1.86 \text{ m}$$

$$e = 186 \text{ cm} > \frac{D}{8} = \frac{70}{8} = 8.75 \text{ cm}$$

Donc le centre de poussée se trouve hors de tiers central de la section, et la platine est soulevée à gauche (les boulons de gauche étant sollicités en traction).

$$A = 3 \times \Pi \times \mathbf{R}^2 = 21.19 cm^2$$
 (A : aire de la section de 4 tiges à gauche du poteau)

$$l = e + h / 2 + c/2 = 101.3cm$$

$$h = hp + d1 + d1 / 2 = 41 cm$$

$$b = 2d1 + hp = 50 cm$$

$$n = \frac{Ea}{Eh} = 15$$

Avec : c = 10 cm, c'est le débord.

$$h^{13} + 3.(l-h)h^{12} + 90A\frac{l}{b}.h' - 90A\frac{l}{b}.h = 0$$

$$h' = 34.99 \text{ cm}$$

Vérification des contraintes dans le béton

On doit vérifier que :

$$\sigma b = \frac{2N \times l}{bh'(h - \frac{h'}{2})} \le f u b = 0.85 \frac{f c 28}{\gamma b} \qquad \text{Avec } \gamma b = 1.5$$

$$\sigma b = \frac{2 \times 157.54 \times 101.3}{50 \times 34.99 \times (33 - \frac{34.99}{3})} = 0.85 \text{ Mpa} < \text{fub} = 14.2 \text{ Mpa}$$

La contrainte est vérifiée

Vérification des contraintes dans l'acier

On doit vérifier que :

$$\sigma a = \frac{N}{A} \times \frac{l - h + \frac{h'}{2}}{h - \frac{h'}{3}} \le f y$$

$$\sigma a = \frac{157.54}{21.19} \times \frac{101.3 - 33 + \frac{34.99}{2}}{33 - \frac{34.99}{3}} = 17.69 \text{Mpa} < \text{fy} = 235 \text{ Mpa}$$

La condition est vérifiée.

VIII.12.4 Dimensionnement de l'épaisseur de la platine

Vérification de la section 1-1

Le moment dans la section 1-1 est obtenu grâce au diagramme trapézoïdal de contraintes situées à droite de la section, que l'on peut décomposer en un diagramme rectangulaire (1) et un diagramme triangulaire (2).

Les moments correspondant, pour une bonde de largeur unité (1 cm) et d'épaisseur t, sont :

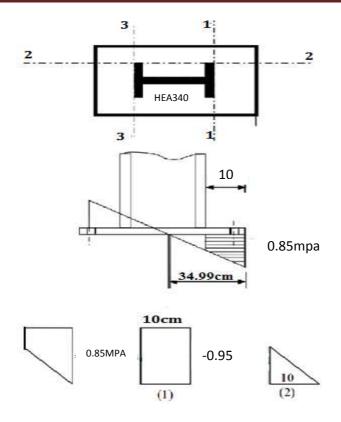


Figure VIII.21 Vérification de la section 1-1.

$$M_I = \sigma_b \ x \ dI \ x \frac{d1}{2}$$

$$M1 = 0.85 \times 10 \times 5 \times 10^{-1} = 4.25~KN.m$$

M2=
$$(10 \times \frac{0.95}{2}) \frac{2 \times 10}{3} \times 10^{-1} = 3.16 \text{ KN.m}$$

$$M = M1-M2 = 4.25-3.16 = 1.09 \text{ KN.m}$$

• Le module d'inertie de la platine pour b = 1cm

$$\frac{I}{V} = \frac{\left(\frac{bt^3}{12}\right)}{\frac{t}{2}} = \frac{bt^2}{6}$$

La contrainte de flexion dans la section1-1 est

$$\frac{M}{wel} \le fy$$
 $t \ge \sqrt{\frac{1.09}{23.5}} = 0.21 \text{ cm}$

 $t \ge 0.21cm$

> Contrainte de flexion dans la section 2-2

Le même raisonnement on aura le moment maximal :

$$M = M1 = 4.25KN$$

D'où
$$t \ge \sqrt{\frac{4.25 \times 6}{23.5}}$$
 1.04 cm

 $t \ge 1.04 cm$

Figure VIII.22 Vérification de la section 2-2.

➤ Vérification de la section 3-3

Du coté tendu, la platine est soumis à un moment : M = 0.1T

$$T = A. \ \sigma \alpha = 21.19 \times 17.69 \times 10^{-1} = 37.48 \ KN$$

$$M = 0.1 \times 37.48 = 3.74 \text{ KN.m}$$

$$W_{el} = \frac{50t^2}{6}$$

Il faut vérifier que :

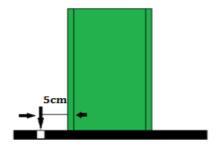


Figure VIII.23 Vérification de la section 3-3.

$$\frac{M}{Wel} \le fy$$
 $t \ge \sqrt{\frac{6M}{50 \times fy}} = \sqrt{\frac{6 \times 3.74}{50 \times 23.5}} = 0.13 \text{ cm}$

En conclusion on sélection une platine d'épaisseur t = 2 cm.

Vérification de la bâche

Si : $0.3 \times N < V$ la bèche est nécessaire

On a: N = 157.54 KN

V = 78.38 KN

 $0.3 \times 157.54 = 47.26 \text{ KN} < V = 78.38 \text{ KN}$ donc la bêche est nécessaire.

Dimensionnement de la bêche

Il est possible de compte sur le frottement de la platine d'extrémité sur l'embase en béton

Pour transmettre les efforts horizontaux. Ainsi, si pour toutes les combinaisons d'actions possibles.

Les efforts tranchant Vy ou $Vz \le 0.3$ N.

Il y'a pas lieu de prévoir de la bêche. Dans le cas contraire, il faut une bêche et celle-ci doit être dimensionnée pour transmettre l'intégralité des efforts horizontaux, la transmission mixte intégrant frottement et bêche n'étant pas autorisée.

Dans notre cas on a effort normal axial qui se décompose en deux composantes, une de traction et l'autre de cisaillement, et cette dernière doit être ajoutée à l'effort horizontal existant pour dimensionner la bêche.

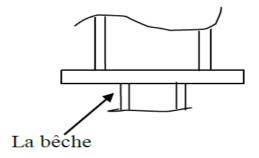


Figure VIII.24 Disposition de la bêche

Donc il faut vérifier que : $0.3 N \ge V$

$$V = Vz + N = 78.38 + 157.54 = 235.92 \text{ KN}$$

$$V = 235.92 > 0.3 N = 0.3 \times 157.54 = 47.25 KN$$

Vpl: effort tranchant de la plastification

Av : section de cisaillement

V: effort tranchant

$$V \le Avz \frac{fy}{\sqrt{3}} \times \frac{1}{\gamma m0}$$

$$Avz \ge \frac{v \times \gamma m0 \times \sqrt{3}}{23.5} = Avz = 6.34 \text{ cm}^2$$

Donc on prend un IPE 140 comme une bêche.

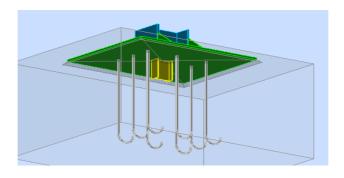


Figure VIII.25 La bêche de poteau

VIII.13 Les pieds des potelets

Dimensionnement de la tige d'encrage des potelets

Le pied de potelet est articulé

On a
$$Nt = 96.04 \text{ KN}$$

h: la hauteur de la section IPE 330 donc h = 330 mm

c: le débord, donné par : c = (100; 150) on prend c = 100mm

D'où :
$$a = h + 2 c = 330 + 100 = 530 mm$$

$$b = b + 2 c = 160 + 2*100 = 360mm$$

L'ancrage est réalisé par deux tiges

$$\frac{N_t}{2} \le \frac{\pi.\emptyset^2}{4} f_y \Rightarrow \emptyset \ge \sqrt{\frac{2.N_t}{\pi.f_y}}$$

$$\emptyset \ge \sqrt{\frac{2.96.0.4}{3.14 * 23.5}} = 1.61cm$$

Donc on prend: $\emptyset = 1.6 \text{ cm}$

Soit des tiges d'ancrages de 20 mm de diamètre.

Vérification de la tige d'ancrage

L'effort admissible par scellement est fixé par la règle suivant :

$$N_a = 0.1 \cdot \left(1 + \frac{7 \cdot g_c}{1000}\right) \cdot \frac{\phi}{\left(1 + \frac{\phi}{d_1}\right)} 2 \cdot \left(l_1 + 6 \cdot 4 \cdot r + 3 \cdot 5 \cdot l_2\right)$$
 (CCM97)

N_a: effort normal résistant d'une tige.

$$r = 3\emptyset$$
, $l1 = 20\emptyset$, $l2 = 2\emptyset$

 g_c : Le dosage en ciment = 350 Kg/m³

$$r = 3 \times 1.6 = 4.8 \text{ cm}$$

$$l_1 = 20 \times 1.6 = 32 \ cm$$

$$l_2 = 2 \times 1.6 = 32 \ cm$$

$$d_1 = 5 cm$$

$$N_a = 105 \; KN \; > \frac{N_t}{2} = 48.02 KN \dots Vérifiée$$

➤ Vérification de la contrainte de compression sur la semelle de la fondation

Lp= 60 cm (longueur de la platine)

B_P= 38 cm (largeur de la platine)

$$\sigma = \frac{\text{Nt}}{\text{Lp} \times \text{Bp}} = \frac{96.0410^{-3}}{60 \times 38 \times 10^{-4}} = 0.42 \text{ Mpa} < \text{fub} = 14.2 \text{ Mpa}$$

> Détermination de l'épaisseur de la platine

Il fout que:

$$\sigma.b \frac{\mu^2}{2} \le fy.\frac{b.t^2}{6}$$
 Soit $t \ge \mu \times \sqrt{\frac{3 \times \sigma}{fy}}$

$$t \ge 50 \times \sqrt{\frac{3 \times 0.42}{23.5}} = 11.57 \text{mm}$$
 on prend $t = 15 \text{ mm}$.

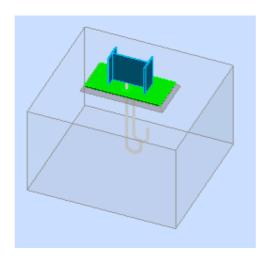


Figure VIII.26 disposition de la platine du potelet.

VIII.14 Conclusion

On adopte pour:

- Assemblage poteau-traverse, des boulons **M20** et une platine d'épaisseur 20mm.
- Assemblage traverse-traverse, des boulons **M20** et une platine d'épaisseur 20mm.
- Assemblage potelet-traverse, des boulons M14 et une cornière d'épaisseur 8mm.

Calcul des assemblages

- Assemblage poteau- poutre sablière, des boulons M10 et une platine d'épaisseur 8mm.
- Assemblage traverse –traverse, des boulons M16 et une platine d'épaisseur 20mm
- Assemblage échantignole-traverse, des boulons M12 et un échantignole d'épaisseur 8mm.
- Assemblage poutre au vent, 3 boulons M12 et un gousset d'épaisseur 8mm.
- Assemblage palée de stabilité 3 boulons M14 et un gousset d'épaisseur 8mm.
- Pour les pieds de poteaux on adopte 8 tiges d'encrages 2 cm une plaque d'assise d'épaisseur 4 cm.
- Pour les pieds de potelets, on adopte 2 tiges d'encrage de diamètre 2 cm et une plaque d'assise 2 cm.

IX.1 Introduction

Un ouvrage quelle que soit sa forme et sa destination, prend toujours appui sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre l'ouvrage et le sol s'appelle fondations. Le dimensionnement de la fondation est conditionné par le site d'implantation et la charge supportée par cette dernière.

Choix du type de fondation

Le choix du type de fondation se fait suivant trois paramètres :

- _ La nature et le poids de la superstructure.
- _ La qualité et la quantité des charges appliquées sur la construction.
- _ La qualité du sol de fondation.

La contrainte admissible de notre sol site S_3 est $\sigma = 2 bar$

La profondeur d'ancrage : D =2,00 m

IX.2 Calcul des fondations

IX.2.1 Détermination des sollicitations

Pour le dimensionnement des fondations superficielles, les sollicitations sont déterminées selon les combinaisons d'actions suivantes :

$$\begin{cases} G + Q + E \\ 0.8G \pm E \end{cases}$$
 (Art 10.1.4.1 RPA99/2003)

Ainsi que les combinaisons citées par le BAEL91.

Compte tenu de l'application à la résistance ultime du sol q_u d'un coefficient de sécurité de 2.

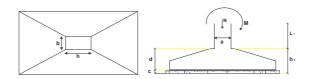
Sollicitation	Situation accidentelle	Situation durable	
		ELU	ELS
	G+Q+Ex	G+1.5V	G+V
N ^{max} (KN)	107.66	244.92	170.73
M _y (KN.m)	3.07	116.50	65.99
M _Z (KN.m)	0.5	0.43	0.31
V _y (KN)	9.85	1.64	0.98
V _Z (KN)	2.08	8.01	2.7

Tableau IX.1 Les sollicitations à la base des poteaux HEA340.

IX.2.2 Pré dimensionnement de la semelle de poteau

> La condition de rigidité

Les dimensions de la semelle sont choisies de manière qu'elles soient homothétiques avec celle du pied de poteau, les poteaux de notre structure sont rectangulaires à la base (h*b), donc les semelles sont rectangulaire (H*B).


$$\frac{H}{B} = \frac{h}{b}$$

h et b : dimension du poteau considéré. (HEA340)

H et B: dimension de la semelle.

 $h_1 = d + c$; avec c = 5 cm. (Béton de propreté)

d : hauteur utile de la semelle est donnée par.

Figure X.1 Dimension de la semelle.

$$d = \max \begin{cases} \frac{B-b}{4} \\ \frac{H-h}{4} \end{cases}$$
 (BAEL 91-Ch. 15.III-Art 1.2)

On a des poteaux HEA320 et pour la platine est prise (80*60) donc :

h = 80 cm = 0.8 m

b = 60 cm = 0.6 m

> Critère de non poinçonnement

• $\sigma_{M} < 2\sigma_{sol}$: Situation accidentelle

• $\sigma_{M} < 1.33 \sigma_{sol}$: Situation durable

 $\sigma_{\scriptscriptstyle M}$: Contrainte maximale dans la semelle donnée par la formule suivante :

$$\sigma_{M} = \frac{N}{H \times B} \left(1 + \frac{6 \times e_{0}}{B} \right)$$

$$\sigma_{M} = \frac{N}{H \times B} \left(1 + \frac{6 \times e_{0}}{H} \right)$$

$$e_0 = \frac{My}{N}$$

$$\sigma_{\rm sol}$$
 = 2 bar

h = 80cm

b = 60 cm

$$\frac{b}{h} = \frac{B}{H}$$
 \Longrightarrow B = 0.75 H

IX.2.3 Dimensionnement de la semelle

> Situation accidentelle : σ_M ≤ $2\sigma_{sol}$

$$\frac{N}{N} (1 + \frac{6 \times eo}{R}) \le 2 \sigma_{\text{sol}}$$

$$\frac{N}{H \times \frac{0.6}{0.8} H} \left(1 + \frac{6 \times eo}{\frac{0.6}{0.8} H} \right) \le 2 \, \sigma_{\text{sol}}$$

$$-H^3 + 0.26H + 0.054 \le 2\sigma_{sol}$$
 avec $e_0 = \frac{3.07}{107.66} = 0.08$

avec
$$e_0 = \frac{3.07}{107.66} = 0.08$$

Soit H = 1.2 m et $B = 0.75 \times 1.2 = 0.9 \text{ m}$

Donc on a H = 1.2m et B = 0.9 m

> Situation durable: σ_M ≤1,33 σ_{sol}

$$\frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{H} \right) \le 1{,}33\sigma_{sol}$$

$$\frac{N}{B \times \left(\frac{h \times B}{b}\right)} \left(1 + \frac{6 \times e_0}{\left(\frac{h \times B}{b}\right)}\right) \le 1,33\sigma_{sol}$$

$$-H^3 + 0.69 4 H + 0.739 \le 0$$

$$H = 1.6 \text{ m}$$
 $B = 0.75 \times 1.5 = 1.12 \text{ m}$

On a le poinçonnement n'est pas vérifier donc :

On choisit pour toutes les semelles B=1,6 m et H=2.5 m

$$d = max (0.25; 0.42) = 42cm$$

$$h_1 = d + c = 42 + 5 = 47$$
 cm

l₁: hauteur de l'amorce de poteau

$$l_1 = 2,00 - 0.47 = 1,53 \text{ m}$$

Poids de la semelle:

$$\mathbf{P} = (H*B*ht) + (h*b*l1)$$

$$P = (2.5 \times 1.6 \times 0.47) + (0.6 \times 0.8 \times 1.53) \times 25 = 65.36$$
 KN

Les moments à la base:

$$M_{by} = M_{y} + T_{z} \times (h_{1} + l_{1})$$

 $M_{bz} = M_{z} + T_{y} \times (h_{1} + l_{1})$

	Situation	Situation	durable
Sollicitation	Accidentelle	ELU	ELS
	G+Q+E	G+1.5Vd	G+V
N ^{max} (KN)	173.02	310.28	236.09
M _{by} (KN.m)	7.23	132.52	71.39
M_{bZ} (KN.m)	20.02	3.71	2.27
$V_{y}(KN)$	9.85	1.64	0.98
V _z (KN)	2.08	8.01	2.7

Tableau IX.2 Les sollicitations à la base de la semelle.

IX.2.4 Vérification des contraintes

Les contraintes dans les semelles excentrées sont données par les expressions suivantes :

$$sensB \begin{cases} \sigma_{\text{max}} = \frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{B} \right) \leq \begin{cases} 2.\sigma_{sol} \rightarrow \text{situation accidentelle} \\ 1,33\sigma_{sol} \rightarrow \text{situation durable} \end{cases}$$

$$\sigma_{\text{min}} = \frac{N}{B \times H} \left(1 - \frac{6 \times e_0}{B} \right) \rightarrow avec \ e_0 = \frac{M_Z}{N}$$

$$sensH\begin{cases} \sigma_{\max} = \frac{N}{B \times H} \left(1 + \frac{6 \times e_0}{H} \right) \leq \begin{cases} 2.\sigma_{sol} \rightarrow \text{situation accidentelle} \\ 1,33\sigma_{sol} \rightarrow \text{situation durable} \end{cases} \\ \sigma_{\min} = \frac{N}{B \times H} \left(1 - \frac{6 \times e_0}{H} \right) \rightarrow avec \ e_0 = \frac{M_y}{N} \end{cases}$$

$$2 \times \sigma_{sol = 2 \times 200 = 400 \text{ KN/m}2}$$

$$1.33 \times \sigma_{sol} = 1.33 \times 200 = 266 \text{ KN/m}^2$$

$$\sigma_{moy} = \frac{3.\sigma_{max} + \sigma_{min}}{4} \le \sigma_{sol}$$

Les contraintes sont regroupées dans le tableau suivant :

Cas d	Cas de		e ₀ (m)	σ_{max} (bar)	$\sigma_{_{ m min}}$ (bar)	σ_{moy} (bar)
chargen	nent					
Situation		Sens H	0.041	0.475<4	0.38	0.45<2
accidentelle		Sens B	0.11	0.61<4	0.25	0.52<2
Situation	ELU	Sens H	0.42	1.55<2.66	-0.0062	1.16<2
Durable		Sens B	0.01	0.8<2.66	0.48	0.72<2
	ELS	Sens H	0.3	1.01<2.66	0.16	0.91<2
		Sens B	0.009	0.61<2.66	0.57	0.6<2

Tableau IX.3 Vérification des contraintes dans le sol.

Les contrainte moyennes sont vérifier donc : B=1.6 m et H=2.5 m

IX.2.5 Vérification de la stabilité au renversement

On a d'après le RPA 99 v2003.Art.10.1.5

Dans le cas accidentel, il faut vérifier que :

$$e \le \begin{cases} \frac{B}{4} = \frac{1.6}{4} = 0.4\text{m} & \longrightarrow \text{Sens B} \\ \frac{H}{4} = \frac{2.5}{4} = 0.62 \text{ m} & \longrightarrow \text{Sens H} \end{cases}$$

Sens B: $e_0 = 0.11 \text{m} < 0.62 \text{m}$

Sens H : $e_0 = 0.041 \text{ m} < 0.4 \text{ m}$

Donc la vérification au renversement est satisfaite.

IX.2.6 Détermination des armatures de la semelle

On a deux conditions à vérifier :

$$(1) \begin{cases} e_0 < \frac{b}{6} \to sensB \\ e_0 < \frac{h}{6} \to sensH \end{cases}$$

$$(2) \begin{cases} e_0 < \frac{B}{24} \to sensB \\ e_0 < \frac{H}{24} \to sensH \end{cases}$$

Si les deux conditions sont vérifiées, les armatures seront calculées sous un effort normal fictif:

$$N' = N \times \left(1 + \frac{3 \times e_0}{B}\right) \to sensB$$
$$N' = N \times \left(1 + \frac{3 \times e_0}{H}\right) \to sensH$$

Si l'une des deux conditions est vérifiée, les armatures seront calculées sous un moment M₁

$$M_1 = (4 \times B + 0.3 \times b - 9 \times e_0) \left(\frac{\frac{B}{2} - 0.35 \times b}{\frac{B}{2} - e_0} \right)^2 \times \frac{N}{27} \to sensB$$

$$M_1 = \left(4 \times H + 0.3 \times h - 9 \times e_0\right) \left(\frac{\frac{H}{2} - 0.35 \times h}{\frac{H}{2} - e_0}\right)^2 \times \frac{N}{27} \rightarrow sensH$$

a) Situation accidentelle

➤ Armatures parallèles à H=2.50m

$$e_0 = 0.041 \text{ m} < \frac{h}{6} = \frac{0.8}{6} = 0.13$$

 $e_0 = 0.041 \text{ m} < \frac{H}{24} = \frac{2.5}{24} = 0.1 \text{ m}$
 $N' = 107.66 (1 + \frac{3 \times 0.041}{2.5}) = 112.95 \text{ KN}$

$$N' = 112.95KN$$

As =
$$\frac{N' \times (H-h)}{8 \times d \times fst}$$

As = $\frac{112.95 \times (2.5-0.8)}{8 \times 0.42 \times 348 \times 10^3}$ = 1.64 cm²

$$\rightarrow$$
 Armature parallèles à B = 1.6 m

On a:
$$e_0 = 0.11 \text{ m} > \frac{0.6}{6} = 0.1 \text{ m}$$
 $e_0 = 0.11 \text{m} > \frac{1.6}{24} = 0.06$ calcul avec M1

M1 =
$$(4 \times B + 0.3 \times b - 9 \times e_0) \left(\frac{\frac{B}{2} - 0.35 \times b}{\frac{B}{2} - e_0} \right)^2 \frac{N}{27}$$
 sens B

M1 =
$$(4 \times 1.6 + 0.3 \times 0.8 - 9 \times 0.11)$$
 $\left(\frac{\frac{1.6}{2} - 0.35 \times 0.6}{\frac{1.6}{2} - 0.11}\right)^2 \frac{107.66}{27} = 16.47 \text{ KN.m}$

As =
$$\frac{M1}{z \times fst}$$
 avec $z = 0.9 \times d = 0.9 \times 0.42 = 0.378 \text{ m}$

$$As = \frac{16.47 \times 10^{-3}}{0.378 \times 348} = 1.25 \text{ cm}^2$$

b) situation durable

- A l'ELU:
- > Armatures parallèles à H

$$e_0 = 0.42 > \frac{0.8}{6} = 0.133 m$$

$$e_0 = 0.42 > \frac{2.5}{24} = 0.1$$

M1 =
$$(4 \times H + 0.3 \times h - 9 \times e_0) \left(\frac{\frac{H}{2} - 0.35 \times h}{\frac{H}{2} - e_0} \right)^2 \frac{N}{27}$$
 sens H

M1 =
$$(4 \times 2.5 + 0.3 \times 0.8 - 9 \times 0.42) \left(\left(\frac{\frac{2.5}{2} - 0.35 \times 0.8}{\frac{2.5}{2} - 0.42} \right)^2 \frac{244.92}{27} = 80.03 \text{ KN.m}$$

As =
$$\frac{M1}{z \times fst}$$
 avec z = 0.9 × d = 0.9 × 0.42 = 0.378 m

$$As = \frac{80.03 \times 10^{-3}}{0.378 \times 348} = 6.08 \text{ cm}^2$$

> Armature parelles à B

$$e_0 = 0.01 < \frac{0.6}{6} = 0.1$$

$$e_0 = 0.01 < \frac{1.6}{24} = 0.06 \text{ m}$$

Calcul avec N'

N'= 244.92
$$(1+\frac{3\times0.01}{1.6}) = 249.51 \text{ KN}$$

$$As = \frac{N' \times (B-b)}{8 \times d \times fst}$$

$$As = \frac{249.51 \times (1.6 - 0.6)}{8 \times 0.42 \times 348 \times 10^{3}} = 2.134 \text{cm}^{2}$$

c) Condition de non fragilité

Min A_B =
$$0.23 \times \frac{ft28}{fe} \times B \times h1 = 0.23 \times \frac{2.1}{400} \times 160 \times 42 = 8.11 \text{ cm}^2$$

Min A_H =
$$0.23 \times \frac{ft28}{fe} \times H \times h1 = 0.23 \times \frac{2.1}{400} \times 250 \times 42 = 12.67 \text{ cm}^2$$

d) Disposition constructives

Les armatures seront munies des crochets si : (ls>H/4 sens H et ls>B/4 sens B)

$$l_s = \frac{\varphi \times f_e}{4 \times 0, 6 \times \psi_s^2 \times f_{tj}}$$

 l_s : longueur de scellement

$$\psi_s = 1.5 \rightarrow HA$$

> Suivant H

$$l_s = \frac{1 \times 40}{2.4 \times 0.21 \times 1.5^2} = 35.27 \text{ cm} < \frac{H}{4} = \frac{2.5}{4} = 62.5 \text{ cm}$$

> Suivant B

$$l_s = \frac{1 \times 40}{2.4 \times 0.21 \times 1.5^2} = 35.27 \text{ cm} < \frac{B}{4} = \frac{1.6}{4} = 40 \text{ cm}$$

Donc les barres doivent être prolongées jusqu'à l'extrémité de la semelle, avec des crochets suivant B

Tous les résultats sont regroupés dans le tableau suivant :

Armatures	Situation accidentelle	Situation Durable	A _{min} (cm ²)	Nombre De	A _s (cm ²)	l _s (cm)	S _t (cm)
	accidentene	Durable		barre			
		ELU					
A _s (H)	1.64	6.08	8.11	8HA14	12.32	50	30
$A_{s}(B)$	1.25	2.134	12.67	9HA14	13.85	50	17

Tableau IX.4 Les armatures des semelles.

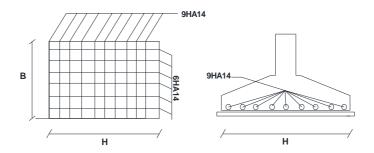


Figure IX.2 Schéma de ferraillage de la semelle de poteau.

IX.3 Fondation sous potelet

Nous avons des potelets IPE330, la surface de la platine du potelet S :

$$S = a \times b$$

Avec:

$$a = 330 + 2(100) = 53$$
 cm

$$b = 160 + 2(100) = 36 \text{ cm}$$

Donc
$$S = 53 \times 36 = 1908 \text{ cm}^2$$

Avec : N : effort normal de compression et (A, B) : dimension (longueur et largeur) de la base inferieure.

$$\frac{a}{b} = \frac{A}{B} \quad \text{Donc A} = 1.47 \text{ B}$$

$$\sigma c = \frac{Nsd}{A \times B} = \frac{Nsd}{1.47 B} \le \sigma sol$$

Avec $\sigma sol = 2$ bar, et N = 34.11 KN.

$$B \ge \sqrt{\frac{34.11}{1.47 \times 200}} = 0.34 \text{m}$$

Soit
$$B = 80$$
 cm, d'où $A = 120$ cm

• La hauteur de la semelle

$$d \ge max \qquad \left(\frac{A-a}{4} = \frac{120-53}{4} = 16.75 \text{ cm} \right)$$
$$\frac{B-b}{4} = \frac{80-36}{4} = 11 \text{ cm}$$

$$d = 17$$
 cm. On pend $d = 20$ cm

IX.3.1 L'encrage

$$h_t = d + c = 20 + 5 = 25 \text{ cm}$$

$$\frac{\text{ht}}{3} \le \text{hp} \le \frac{\text{ht}}{2}$$
 \implies 8.33 \le hp \le 12.5 Avec C = 5 cm

Soit $h_p = 10 \text{ cm}$

On doit vérifier que : $\sigma_{\rm c} = \frac{Nt}{S} \leq \sigma_{\rm sol}$

Avec : Nt = Nsd + 1.35 Ps

Ps : poids de la semelle = $\gamma \times Vs$ et Vs : volume de la semelle, $\gamma = 25 \ KN/m^2$

$$Vs = A \times ht \times B = 1.2 \times 0.25 \times 0.8 = 0.24 \text{ m}^3$$

$$Ps = 25 \times 0.24 = 6 \text{ KN}$$

$$Nt = 34.11 + 1.35 \times 6 = 42.24 \text{ KN}$$

D'où
$$\sigma_c = \frac{42.24}{1.2 \times 0.8} = 44 \text{ KN/m}^2 < \sigma_{sol} = 200 \text{ KN/m}^2$$

IX.3.2 Calcul des armatures

On fait le calcul de ferraillage par la méthode des bielles : la semelle se comporte en une semelle isolée, la transmission de N par de bielles.

$$Fx = \frac{Nt(A-a)}{8 \times d} = \frac{44(1.2-0.53)}{8 \times 0.2} = 18.42 \text{ KN}$$

Fy =
$$\frac{Nt(B-b)}{8 \times d}$$
 = $\frac{44(0.8-0.36)}{8 \times 0.2}$ = 12.1 KN

$$\frac{Fx}{\sigma s} = Ax = \frac{18.42}{\frac{40}{1.15}} = 0.52 \text{ cm}^2$$

$$\frac{Fy}{\sigma s} = Ay = \frac{12.1}{\frac{40}{1.15}} = 0.34 \text{ cm}^2$$
 avec $\sigma s = \frac{fe}{\gamma s}$

IX.3.3 Condition de non fragilité

 $A_x \ge Ax \min$

 $Ay \ge Ay min$

Avec : $Ft_{28} = 2.1 \text{ Mpa}$, fe=400 Mpa

$$A_{x \min} = 0.23 \left(\frac{Ft28}{fe} \right) A \times d = 0.23 \times \left(\frac{2.1}{400} \right) 120 \times 20 = 2.89 \text{ cm}^2$$

$$A_{ymin} = 0.23 \left(\frac{Ft28}{fe} \right) B \times d = 0.23 \times \left(\frac{2.1}{400} \right) 80 \times 20 = 1.93 \text{ cm}^2$$

On a:
$$A_{x min} = 2.89 cm^2 > Ax = 0.52 cm^2$$

$$A_{vmin}$$
= 1.93 cm² > Ay = 0.34 cm²

Dans le plan XX', on prend $4HA12 = 4.52 \text{ cm}^2$, avec espacement de 35 cm entre deux barres.

Dans le plan YY', on prend $4HA10 = 3.14 \text{ cm}^2$, avec espacement de 25 cm entre deux barres.

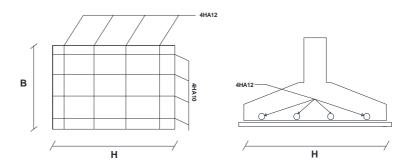


Figure IX.3 Schéma de ferraillage de la semelle de potelet.

IX.4 Calcul des longrines

IX.4.1 Introduction

Les longrines sont des éléments appartenant à l'infrastructure et qui servent à rigidifier l'ensemble des semelles. Elles sont soumises à des forces axiales de traction, ils sont en béton armé ou en béton précontraint.

IX.4.2 Pré dimensionnement

Les dimensions minimales de la section transversale des longrines d'après le RPA99vs2003 sont :

25 cm x 30 cm : sites de catégorie S₂ et S₃

30 cm x 30 cm : sites de catégorie S₄

Pour notre cas on optera pour des longrines de section : (30x35) cm² (puisque S3)

IX.4.3 Ferraillage

Les longrines doivent être calculées pour résister à l'action d'une forces de traction qui est égale à :

$$N_{t} = \left(\frac{N}{\alpha}\right) \ge 20KN$$
 (Art 10.1.4.1 RPA99/2003)

α: coefficient fonction de la zone sismique et de la catégorie de site considérée

 N_n^{max} : L'effort normal ultime du poteau le plus sollicité.

 $\alpha = 12$ (zone II_a, site S₃)

$$A_s = \frac{N_t}{fst}$$

Nu = 89.10 KN : à ELU

Ns = 57.64 KN : à ELS

ELU : Nt =
$$\frac{89.10}{12}$$
 = 7.42 KN

ELS:
$$N_t = \frac{57.64}{12} = 4.80$$

ELU: As =
$$\frac{7.02 \times 10^{-3}}{348}$$
 = 0.21 cm²

ELS:
$$A_s = \frac{4.80 \times 10^{-3}}{201} = 0.23 \text{ cm}^2$$

$$A_{min} = 0.6 \% \ B = 0.6 \times 10^{-2} \times 30 \times 35 = 6.3 \ cm^2$$

$$A_{min} = 6.3 \text{ cm}^2$$

Donc on ferraille avec Amin

Soit **6HA12**, avec $A_s = 6,79 \text{ cm}^2$

IX.4.4 Vérification de la condition de non fragilité

$$A_s \ge \frac{\beta \times f_{t28}}{f_e}$$

$$A_s \ge \frac{30 \times 35 \times 2,1}{400} = 5,51$$

$$5,51cm^2 < 6,3cm^2$$
 Vérifiée

IX.4.5 Armatures transversales

Soit des cadres de diamètre 8mm dont l'espacement est inférieur à : min [20 cm, 15Φ]

 $S_t < min [20cm, 15*1, 2] = 18 cm$

Les cadres sont espacés de 15 cm en travée et de 10 cm en zone nodale.

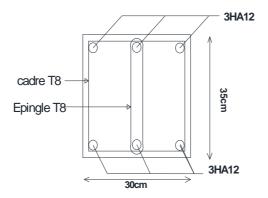


Figure IX.4 Schéma de ferraillage des longrines.

IX.5 Ferraillage des futs

Les fondations sont ancrées à D=2m; l'assemblage platine massif doit être au-dessus du sol; donc on prévoit un poteau en B.A (fût) de dimension (80*60) cm².

Le fût est soumis à un effort normal, un effort tranchant et un moment fléchissant. Le ferraillage de la section sera calculé en flexion composé.

On calculera uniquement le fût le plus sollicité; par les efforts (M. N.T)

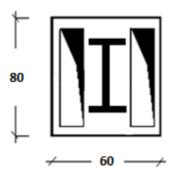


Figure IX.5 Section du fut à ferrailler.

On à Nu = 244.92 KN; Mu = 116.50 KN; Vu = 1.64KN.

$$e = \frac{Mu}{Nu} = \frac{116.50}{244.92} = 0.47$$

$$\frac{h}{6} = \frac{0.8}{6} = 0.13$$
m

On: e =0.47 m >
$$\frac{h}{6}$$
 = 0.13 m

Donc on a une section partiellement comprime pour ce la on doit comparer les deux paramètres suivant :

$$Nu \times (d-d') - Mu \dots (1)$$

$$((0.337 \times h) - (0.81 \times d') \times b \times h \times Fbu$$
(2)

Avec : Mua = Mu + Nu
$$\left(d - \frac{h}{2}\right)$$
 = 116.5+244.92 $\left(0.85 - \frac{0.8}{2}\right)$ = 226.71 KN.m

$$(1) = 244.92 \times (0.85 - 0.05) - 226.71 = -33.83 \text{ KN}$$

$$(2) = ((0.337 \times 0.8) - (0.81 \times 0.05)) \times 0.6 \times 0.8 \times 14.2 = 1561.54 \text{ KN}$$

On voit bien que (1) < (2) donc A = 0

$$\mu b_e = \frac{Mua}{b \times Fbu \times d^2} = \frac{226.71 \times 10^{-3}}{0.6 \times 14.2 \times 0.85^2} = 0.036$$

$$\mu b_{e=0.036 < \mu \ 1=0.392}$$
 Donc A1 = $\frac{Mua}{Z \times fst}$, avec :

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu bu}) = 1.25(1 - \sqrt{1 - 0.036}) = 0.045$$

$$Z = d (1-0.4\alpha) = (0.85(1-0.4 \times 0.045) = 0.834$$

Donc on a : A1 =
$$\frac{226.71 \times 10^{-3}}{0.834 \times 384}$$
 = 7.07 cm²

On revient à la flexion composée : A = A1+
$$\frac{Nu}{fst}$$
 = 7.07 + ($\frac{244.92\times10^{-3}}{384}$ × 10⁴) =13.44 cm²

La section minimale d'armatures longitudinales est :

Amin =
$$0.23 \times b \times d \times \frac{ft28}{fe} = 0.23 \times 60 \times 80 \times 85 \times \frac{2.1}{400} = 5.79 \text{ cm}^2$$

Donc on va ferrailler avec A

Soit **9HA14** et
$$A = 13.80 \text{ cm}^2$$

IX.5.1 Armatures transversales

Soit un cadre et une épingle de diamètre 8 mm dont l'espacement donnés par le RPA comme suite :

Dans les zones nodales : $St \le 10 \ cm$ on prend $St = 10 \ cm$

Dans les zones courant $St \le Min(\frac{h}{2}, \frac{h}{3}, 10 \, \emptyset)$ avec \emptyset est le diamètre minimale des armatures longitudinale on prend $St = 15 \, \text{cm}$.

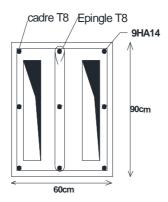


Figure IX.6 Schéma de ferraille des futs.

IX.6 Conclusion

On adopte des sections suivantes :

• Pour les semelles poteaux :

8HA14 sens H

9HA14 sens B

• Pour les semelles des potelets :

4HA12 sens H

4HA10 sens B

• Pour les futs

9HA14

• Pour les longrines

6HA12

X.1 Introduction

Après le dimensionnement et la vérification des éléments de la structure, on doit vérifier la stabilité d'ensemble sous l'action du vent et du séisme.

La stabilité de la structure est assurée si :

 Σ Moments résistants (stabilisateurs) $\geq \Sigma$ moments renversants.

 $\sum M_{st} \geq \sum M_R$

X.2 Détermination des moments renversants (MR)

X.2.1 Cas du vent

L'action du vent est décomposée en deux composantes :

- Une composante horizontale (F_H)
- Une composante verticale (F_V)

C'est deux composantes donnent un moment de renversement (MR), il faut que ce moment de renversement reste inferieur au moment stabilité.

X.2.1.1 Vent perpendiculaire au log pan sens V1

force extérieur

	Composantes		Cordonnés	du point d'ap	plication
Zone	horizontales de Fw,e (KN)	Composantes verticales de Fw,e (KN)	X	Y	Z
D	344.117	0	0	45	4.075
E	-128.676	0	38	45	4.075
F1	0	-14.396	1.235	3.087	8.69
F2	0	-14.396	1.235	86.91	8.69
G	0	-171.953	1.235	45	8.96
Н	0	-639.780	10.835	45	9.97
J	0	-536.878	20.235	45	9.97
I	0	-4.005	29.735	45	8.69
Fwe H (résultante)	215.441	0	-22.69	45	4.075
Fwe V (résultante)	0	-1381.408	16.81	45	9.78

Tableau XI. 1 Valeurs des forces extérieure horizontales et verticales dans le sens V1 et coordonnées des points d'application

> Force intérieur

	Composantes		Cordonnés du point d'application				
Zone	horizontales de Fw,i (KN)	Composantes verticales de Fw,i (KN)	X	Y	Z		
D	-172.058	0	0	45	4.075		
Е	150.735	0	38	45	4.075		
F1	0	3.66	1.235	3.087	8.69		
F2	0	3.66	1.235	86.91	8.69		
G	0	46.159	1.235	45	8.69		
Н	0	357.919	10.835	45	9.97		
J	0	53.481	20.235	45	9.97		
I	0	357.919	29.735	45	8.69		
Fwi H (résultante)	-21.323	0	-26862	45	4.075		
Fw V (résultante)	0	822.798	15.52	45	9.33		

Tableau XI. 2 Valeurs des forces intérieure horizontales et verticales dans le sens V1 et coordonnées des points d'application

	Action	Action	Cordonnés du point d'application			
	horizontale	verticale	X	Y	Z	
F _{w,e}	215.441	0	-22.69	45	4.075	
F _{w,e}	0	-1381.408	16.81	45	9.78	
$F_{w,i}$	-21.323	0	-268.62	45	4.075	
$F_{w,i}$	0	822.798	15.52	45	9.33	
Résultante F_{w}	194.118	0	4.324	45	4.075	
Résultante $\boldsymbol{F_w}$	0	-558.61	18.71	45	10.44	

Tableau XI.3 Les résultants de l'action de vent dans le sens V1

F_V: Forces verticales.

F_H: Forces horizontales

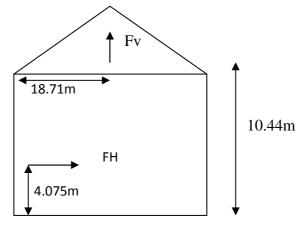


Figure X.1 Résultant horizontale et verticale des forces dues au vent sur le long pan

> Calcul du moment de renversement

 $M_r = F_H \times 33.92 + Fv \times (38 - 18.71) = 194.118 \times 33.92 + 558.61 \times 19.29 = 17348.30 \text{ KN.m}$ $M_r = 17348.30 \text{ KN.m}$

> Calcul du moment stabilisant

 $M_s = w \times 19.002$

Avec:

X= 19.002 m : centre de gravité de la structure.

 $W \approx 1670.85$: Poids approximatif totale du bâtiment.

 $M_s = 1670.85 \times 19.002 = 37749.49 \text{ KN.m}$

 $M_r \prec M_s$: La stabilité transversale est vérifiée.

X.2.1.2 Vent perpendiculaire au pignon sens V2

L'action du vent est décomposée en deux composantes :

- Une composante horizontale (Rh)
- Une composante verticale (R v)

> force extérieur

Zone	Composantes horizontales de Fw,e (KN)	Composantes verticales de Fw,e (KN)	Cordonnés du point d'application		
			X	Y	Z
D	144.939	0	0	19	4.075
Е	-57.197	0	90	19	4.075
F1	0	-14.397	1.223	3.085	8.83
F2	0	-14.397	1.233	3.091	8.83
G1	0	-28.312	1.223	12.585	8.83
G2	0	-28.312	1.223	25.41	8.83
H1	0	-80.531	7.41	9.5	9.56
H2	0	-80.531	7.41	28.5	9.56
I1	0	-224.078	51.175	9.5	9.56
I2	0	-224.078	51.175	28.5	9.56
Fwe H	87.742	0	51.175	19	4.075
(résultante)	07.742	U	51.175	19	4.075
Fwe V (résultante)	0	-694.636	51.175	18.34	9.47

Tableau XI.4 Valeurs des forces extérieure horizontales et verticales dans le sens V2 et coordonnées des points d'application

> Force intérieure

-54.197 63.488 0	0	X 0 90	Y 19	Z 4.075
63.488 0	0			4.075
0		90	10	
	2//		19	4.075
_	3.66	1.223	3.085	8.83
0	3.66	1.233	3.091	8.83
0	7.6	1.223	12.585	8.83
0	7.6	1.223	25.41	8.83
0	45.052	7.41	9.5	9.56
0	45.052	7.41	28.5	9.56
0	149.385	51.175	9.5	9.56
0	149.385	51.175	28.5	9.56
0.201	0	£1 17£	10	4.075
9.491	U	31.1/3	19	4.0/5
0	411.394	38.855	18.71	9.52
	0 0 0 0 0 0 0 9.291	0 3.66 0 7.6 0 7.6 0 45.052 0 45.052 0 149.385 0 149.385 9.291 0	0 3.66 1.233 0 7.6 1.223 0 7.6 1.223 0 45.052 7.41 0 45.052 7.41 0 149.385 51.175 0 149.385 51.175 9.291 0 51.175	0 3.66 1.233 3.091 0 7.6 1.223 12.585 0 7.6 1.223 25.41 0 45.052 7.41 9.5 0 45.052 7.41 28.5 0 149.385 51.175 9.5 0 149.385 51.175 28.5 9.291 0 51.175 19

Tableau XI.5 Valeurs des forces intérieure horizontales et verticales dans le sens V2 et coordonnées des points d'application

	Action	Action Action		Cordonnés du point d'application			
	horizontale	verticale	X	Y	Z		
F _{w,e}	87.742	0	51.15	19	4.075		
F _{w,e}	0	-694.636	34.88	18.34	9.47		
$F_{w,i}$	9.291	0	51.175	19	4.075		
$F_{w,i}$	0	411.394	38.855	18.71	9.52		
$F_{fr(y=0)}$ parois verticale	17.26	0	45	0	4.075		
$F_{fr(y=27.5)}$ parois verticale	17.26	0	45	38	4.075		
F_{fr} (toiture)	96.007	0	45	19	12.35		
Résultante $\mathbf{F}_{\mathbf{w}}$	227.56	0	47.623	19	7.56		
Résultante $\mathbf{F}_{\mathbf{w}}$		-283.242	29.106	17.80	9.39		

Tableau XI.6 Les résultants de l'action de vent dans le sens V2

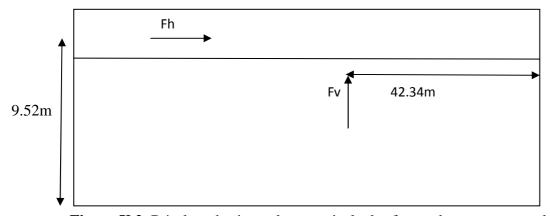


Figure X.2 Résultant horizontale et verticale des forces dues au vent sur le pignon.

> Calcul du moment de renversement

$$M_r = R_h \times 7.56 + R_v \times (90-47.37) = 227.56 \times 7.56 + 283.242 \times 42.37 = 70264.91 \text{ KN.m}$$

 $M_r = 70264.91 \text{ KN.m}$

> Calcul du moment stabilisant

$$M_s = w \times 45.181$$

Avec:

Y = 45.181 m: le centre de gravité de la structure.

 $W \approx 1670.85 \text{ KN}$: Poids approximatif totale du bâtiment.

$$M_s = 1670.85 \times 45.181 = 75491.01 \text{ KN.m}$$

 $M_r \prec M_s$: La stabilité longitudinale est vérifiée.

Conclusion

La stabilité du bâtiment vis-à-vis du vent est vérifiée dans les deux directions

X.2.2 Cas du séisme

Le moment de renversement qui peut être causé par l'action sismique doit être calculé par rapport au niveau de contacte sol –fondation.

a). Réaction à la base

Le mode			Réaction		
	$F_x(KN)$	$F_{y}(KN)$	$F_z(KN)$	$M_{xx}(KN.m)$	$M_{yy}(KN.m)$
CQC	48.58	16.33	79.93	2.08	187.91

Tableau XI.7 Réaction à la base due aux effets sismiques.

CQC: combinaison quadratique complète.

$$M_{R/xx} = M_{xx} + F_z \times Y_G = 2.02 + (79.93 \times 45.181) = 3613.33 \text{ KN.m}$$

$$M_{R/yy} = M_{yy} + F_z \times X_G = 187.91 + (79.93 \times 19.002) = 1706.73 \text{ KN.m}$$

Avec:

$$Y_G = 45.181 \text{ m}$$

$$X_G = 19.002m$$

 Y_G et X_G : coordonnée de centre de gravité de la structure avec la prise en compte des masses statiques globales (Ref: **note de calcul complète robot**).

b). Calcul des moments résistant (stabilisateurs)

- Poids de la structure :

 P_{T} = 1670.85 KN

1) Moment résistant

$$M_{ST/xx} = \sum P_i \times Y_i = P_T \times Y_G$$

$$M_{ST/yy} = \sum P_i \times X_i = P_T \times X_G$$

- $M_{st}/XX = 1670.85 \times 45 = 75188.25 \text{ KN.m}$
- $M_{st}/YY = 1670.85 \times 19.002 = 37749.49 \text{ KN.m}$

	M _R (KN.m)		M_R (KN.m) M_{st} (KN.m)			0,8 M _{st} (KN.m)		
	Par rapport à l'axe x-x	1 1	1 1	1 1	1 1	1.1		
	3613.33	1706.73	75188.25	37749.49	60150.6	30199.59		

Tableau XI.8 Vérification au renversement sous l'effet du séisme.

Tous les moments résistants (stabilisateurs) sont supérieurs aux moments renversants, donc il n'y'a pas de risque au renversement et la stabilité d'ensemble est assurée.

X.3 Conclusion

La stabilité d'ensemble vis-à-vis du vent et du séisme respectivement est vérifiée ; donc notre construction est stable.

Conclusion générale

La réalisation d'une construction métallique exige la participation de plusieurs intervenants dans de différents niveaux :

- ❖ Au niveau de la conception (choix technologie, calcul).
- ❖ Au niveau de la production (plan exécution choix, des méthodes, fabrication, contrôle).
- ❖ Au niveau de la manutention (transport, levage, montage).

Mais les apparitions de désordres dans les constructions métalliques, sont les conséquences d'erreurs qui peuvent se situer dans ces différents niveaux.

Les causes des désordres en construction métallique sont multiple et leurs conséquences de portées très variables. Il faut simplement retenir que tout les intervenants concernés (conception, calcul, dessins, assemblages,....). Sont implique et responsables à leurs niveaux respectifs d'intervention et que la prudence doit rester de vigueur pour tous.

Pour éviter les tâtonnements, nous avons procédé à toutes les vérifications ainsi que le dimensionnement de tous les éléments structuraux de la construction à l'aide d'un logiciel de calcul Robot Millénium.

Ce travail nous a permis d'appliquer ce que nous avons appris durant toute la période de formation, d'améliorer notre connaissance en utilisant des logiciels de calcul, de connaitre des nouvelles méthodes de calcul dans le domaine de charpente métallique ainsi que dans le domaine de génie civil.

BIBLIOGRAPHIE

Règlements:

- RNVA 2013 : l'étude climatique se fait suivant le règlement neige et vent algérienne 2013.
- CCM99, Euro code 3 : l'étude et les calculs des éléments de l'ouvrage se font conformément aux CCM99 et Euro code 3.
- **RPA 99 version 2003**: l'étude sismique se fait suivant le règlement Algérienne. RPA99 version 2003.
- DTR B .C.2.2 charges permanentes et surcharges d'exploitations.
- BAEL 91 : béton armé aux états limites.
- **CBA 93** : règles de conception et de calcule des structures en béton en béton armé DTR B-C2.4.

Cours:

- Béton armé
- Resistance des matériaux
- Cours de charpente métallique.

Tableau des armatures (1)

Ф (тт)	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,7
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,72	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,53
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,10
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,66
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,23
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,80
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,55	163,36
14	2,75	3,96	7,04	11,00	15,38	21,55	28,15	43,98	68,72	112,59	175,93
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,64	188,50
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	128,68	201,06
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,72	213,63
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,76	226,20
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	93,27	152,81	238,76
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,85	251,33

Section en cm² de N armatures de diamètre Φ (mm)

Valeur de χ en fonction de $\overline{\lambda}$

	C	oefficients de rédu	uction	
$\overline{\lambda}$	Valeur	rs de χ pour la cou	ırbe de flambe	ment
	a	В	c	d
0,2	1,0000	1,0000	1,0000	1,0000
0,3	0,9775	0,9641	0,9491	0,9235
0,4	0,9528	0,9261	0,8973	0,8504
0,5	0,9243	0,8842	0,8430	0,7793
0,6	0,8900	0,8371	0,7854	0,7100
0,7	0,8477	0,7837	0,7247	0,6431
0,8	0,7957	0,7245	0,6622	0,5797
0,9	0,7339	0,6612	0,5998	0,5208
1,0	0,6656	0,5970	0,5399	0,4671
1,1	0,5960	0,5352	0,4842	0,4189
1,2	0,5300	0,4781	0,4338	0,3762
1,3	0,4703	0,4269	0,3888	0,3385
1,4	0,4179	0,3817	0,3492	0,3055
1,5	0,3724	0,3422	0,3145	0,2766
1,6	0,3332	0,3079	0,2842	0,2512
1,7	0,2994	0,2781	0,2577	0,2289
1,8	0,2702	0,2521	0,2345	0,2093
1,9	0,2449	0,2294	0,2141	0,1920
2,0	0,2229	0,2095	0,1962	0,1766
2,1	0,2036	0,1920	0,1803	0,1630
2,2	0,1867	0,1765	0,1662	0,1508
2,3	0,1717	0,1628	0,1537	0,1399
2,4	0,1585	0,1506	0,1425	0,1302
2,5	0,1467	0,1397	0,1325	0,1214
2,6	0,1362	0,1299	0,1234	0,1134
2,7	0,1267	0,1211	0,1153	0,1062
2,8	0,1182	0,1132	0,1079	0,0997
2,9	0,1105	0,1060	0,1012	0,0937
3,0	0,1036	0,0994	0,0951	0,0882

Tableau 5.5.3 Choix de la courb	e de flambement correspo	ondant à une se	ection
Type de Section	limites	axe de flambement	courbe de flambement
Sections en I laminées	h / b > 1,2 : t _f ≤ 40 mm	y - y	a
+ -		z - z	b
h yy	40 mm < t _f ≤ 100 mm	y - y z - z	c
	h / b ≤ 1,2 : t _f ≤ 100 mm	y-y	b
b -		z - z	c
	t _f > 100 mm	y - y z - z	d d
Sections en I soudées	t _f ≤ 40 mm	y - y	b
т _е т _е		z - z y - y	c
	t _f > 40 mm	Z-Z	d
Sections creuses	laminées à chaud	quel qu'il soit	а
	formées à froid - en utilisant f _{yb} *)	quel qu'il soit	b
	formées à froid - en utilisant f _{ya} *)	quel qu'il soit	С
Caissons soudés	d'une manière générale (sauf ci-dessous)	quel qu'il soit	b
z , , , , , , , , , , , , , , , , , , ,	Soudures épaisses et b / t _f < 30	W = W	
h y z i	h / t _w < 30	y - y z - z	C
Sections en U, L, T et sections pleines			
	-	quel qu'il soit	С
*) Voir 5.5.1.4 (4) et figure 5.5.2			

Tableau F.1.2	Coefficients C ₁ , C ₂ et C dans le cas de charges	•		rs de k,	
Chargement et	Diagramme de	Valeur de		Coefficients	
conditions d'appuis	moment de flexion	k	C ₁	C ₂	C ₃
Ст М		1,0	1,132	0,459	0,525
		0,5	0,972	0,304	0,980
		1,0	1,285	1,562	0,753
		0,5	0,712	0,652	1,070
F		1,0	1,365	0,553	1,730
		0,5	1,070	0,432	3,050
F F		1,0	1,565	1,267	2,640
		0,5	0,938	0,715	4,800
Ę.	· · · · · · · · · · · · · · · · · · ·	1,0	1,046	0,430	1,120
F F		0,5	1,010	0,410	1,890
 					

Facteurs de moment uniforme équivalent βM

	Destant difforme equivalent pivi
Diagramme des moments	Facteur de moment uniforme équivalent β _M
Moments d'extrémité M_1 ψ_{M_1} $-1 \le \psi \le 1$	$\beta_{M,\psi} = 1.8 - 0.7 \psi$
Moment crée par des forces latérales dans le plan MQ	$\beta_{M,Q} = 1.3$
↑M _Q	$\beta_{M,Q} = 1.4$
Moment créé par des forces latérales dans le plan et des moments d'extrémité	
M ₁ $\bigwedge_{M_Q} \bigwedge_{\Delta M}$	$\beta_{\mathbf{M}} = \beta_{\mathbf{m}, \mathbf{\Psi}} + \frac{M_{\mathbf{Q}}}{\Delta \mathbf{M}} (\beta_{\mathbf{M}, \mathbf{Q}} - \beta_{\mathbf{M}, \mathbf{\Psi}})$
M ₁ M_Q ΔM	$M_Q = MaxM $ dû aux charges transversales seulement
	max M pour diagrammes de moment sans
M _Q AM	$\Delta M = \begin{cases} \text{changement de signe} \\ \text{max } M + \text{min } M \text{ pour diagrammes} \\ \text{de moment avec} \\ \text{changement de signe} \end{cases}$

TABLEAUX DES PROFILETS

Designa	AA 80° 4,9 78 46 3,2 4,2 80° 5,0 78 46 3,3 4,2 80° 6,0 80 46 3,8 5,2 8A 100° 6,7 97,6 55 3,6 4,5 A 100° 8,1 100 55 4,1 5,7 8A 120° 8,4 117 64 3,8 4,8 4,120° 8,7 117,6 64 3,8 5,1 120 10,4 120 64 4,4 6,3 A 140° 10,1 136,6 73 3,8 5,6 140 12,9 140 73 4,7 6,9 A 140° 12,9 140 73 4,7 6,9 A 160° 15,8 160 82 5,0 7,4 A 180° 14,9 176,4 91 4,3 6,5 A 180° 15,4 177 91 4,3 6,5 A 180° 18,8 180 91 5,3 8,0 D 180° 18,8 180° 91 5,3 8,0 D 180° 18,0 180° 180° 180° 180° 180° 180° 180° 180					Dimen	ons de cons sions for de struktionsm	etailing			face fläche			
				-8-		mm	A mm² x10²	h mm	d mm	ø	P _m mm	Pioce Imm	A _c m²/m	Ac m²/t
PEAA BO*	4,9	78	46	3,2	4,2	5,0	6,31	69,6	59,6	-	70		0,325	65,67
PEA 80+/*	5,0	78	46	3,3	4,2	5,0	6,38	69,6	59,6	ij.	-	-	0,325	64,90
IPE 80*	6,0	80	46	3,8	5,2	5,0	7,64	69,6	59,6		÷	16	0,328	54,64
IPE AA 100*	6,7	97,6	55	3,6	4,5	7,0	8,56	88,6	74,6	-	7.	1.71	0,396	58,93
PEA 100-/*	6,9	98	55	3,6	4,7	7,0	8,8	88,6	74,6	ģ	-	£:	0,397	57,57
IPE 100*	8,1	100	55	4,1	5,7	7,0	10,3	88,6	74,6	£	4	16)	0,400	49,33
PEAA 120*	8,4	117	64	3,8	4,8	7,0	10,7	107,4	93,4	- 8	- 2	i.	0,470	56,26
PEA 120+	8,7	117,6	64	3,8	5,1	7,0	11,0	107,4	93,4	2	2.	-	0,472	54,4
PE 120	10,4	120	64	4,4	6,3	7,0	13,2	107,4	93,4	ē	*	5	0,475	45,83
PEAA140*	10,1	136,6	73	3,8	5,2	7,0	12,8	126,2	112,2	2	2	- 2	0,546	54,2
PEA 140+	10,5	137,4	73	3,8	5,6	7,0	13,4	126,2	112,2	8	91	8.5	0,547	52,0
PE 140	12,9	140	73	4,7	6,9	7,0	16,4	126,2	112,2	Ť	-		0,551	42,7
IPEAA 160*	12,1	156,4	92	4,0	5,6	7,0	15,4	145,2	131,2		*	E	0,621	50,4
PEA 160-	12,7	157	8.7	4,0	5,9	90	16,2	145,2	127,2		*		0,619	48,7
PE 160	15,8	160	92	5,0	7,4	9,0	20,1	145,2	127,2	2	2	2	0,623	39,4
PE AA 180*	14,9	176,4	91	4,3	6,2	9,0	19,0	164,0	146,0	M 10	48	48	0,693	46,3
FE A 180-	15,4	177	91	4,3	5,5	9,0	19,6	164,0	145,0	M 10	48	48	0,694	45,1
PE 180	18,8	180	91	5,3	8,0	9,0	23,9	164,0	146,0	M 10	48	48	0,698	37,1
IPE O 180+	21,3	187	97	6,0	9,0	9,0	27,1	164,0	146,0	M 10	50	50	0,705	33,1
PE AA 200*	18,0	196,4	100	4,5	6,7	12,0	72,9	183,0	159,0	M 10	54	58	0,763	42,5
PE A 200-	18,4	197	100	4,5	7,0	12,0	23,5	183,0	159,0	M 10	54	58	0,764	41,4
PE 200						12,0	28,5	183,0	159,0	M 10	54	58	0,768	34,3
PE O 200+	25,1	202	102	6,2	9,5	12,0	32,0	183,0	159,0	M 10	56	60	0,779	31,0
PE AA 220*	21,2	216,4	110	4,7	7,4	12,0	27,0	701,6	177,6	M 12	60	62	0,843	39,7
PE A 220-	22,2	217	110	5,0	7,7	17,0	28,3	201,6	177,6	M 12	60	57	0,842	38,0
IPE 220	26,2	220	110	5,9	9,2	12,0	33,4	201,6	177,6	M 12	60	62	0,848	32,3
PE 0 220+	29,4	222	112	6,6	10,7	12,0	37,4	701,6	177,6	M 10	58	66	0,858	79.7

Désignat			شفيل	Valeurs		s / Sect	tion pro	1000		he Kenr	werte			1	EN 19		icatio 1-1:			04	94	
Designat Bezeichn			stro	forty- ng axis y Achse	-y		50	weaka	ble z-z ixis z-z Actise z	-1					Pure inting y			Puni mpress		- 2: 2004	-4: 2DI	10225:2001
	G kg/m	y mm²	W _{ey}	W _(a) • mm³	ý mm	A _e mm ³	nim ^e	W _{KU}	W _{po} + mm³	i mm	S, mm	enen e	nene mene	5235	\$325	5460	\$235	5355	2460	EN 10025-	EN 10025-4: 2004	EN 102
		x10*	x10 ¹	x101	x10	x10 ³	x10 ⁴	x10 ¹	x10 ³	x10		x10 ¹	x10 ⁹		91	8		<i>9</i> 9	**		-	
PEAA 80	4,9	64,1	16,4	18,9	2,19	3,00	6,85	2,98	4,7	1,04	17,5	0,40	0,09	1	1		1	1		V		
PEA BO	5,0	64,4	16,5	19,0	2,18	3,07	6,85	2,98	4,7	1,04	17,6	0,42	0,09	11	1	-	1	1		6		
PE 80	6,0	80,1	20,0	23,2	3,24	3,58	8,49	3,69	5,8	1,05	20,1	0,70	0,12	1	1	E.	1	1	1	1		
PEAA 100	6,7	136	27,9	31,9	3,98	4,40	12,6	4,57	7,2	1,21	20,8	0,73	0,27	1	1	1	1	1		V		
PEA 100	6,9	141	28,8	33/0	4,01	4,44	13,1	4,77	7,5	1,22	21,2	0.77	0,28	.1	1		1	1	-	1		
PE 100	B,1	171	34,2	39,4	4,07	5,08	15,9	5,79	9,2	1,24	23,7	1,20	0,35	1	1	i i	1	1		7		
PEAA 120	B,4	244	41,7	47,5	4,79	5,36	21,1	6,59	10,4	1,41	21,6	0,95	0,66	1	1		1	1		V		
PEA 120	8,7	257	43,8	49,9	4,83	5,41	22,4	7,00	11,0	1,42	22,2	1,04	0,71	1	1		1	1		V		
PE 120	10,4	318	53,0	60,7	4,90	6,31	27,7	8,65	13,6	1,45	25,2	1,74	0,89	á	1	0	1	1		V		
PEAA 140	10,1	407	59,7	67,6	5,64	6,14	33,8	9,27	14,5	1,63	22,4	1,19	1,46	1	1		1	2	-	1		
PEA 140	10,5	435	63,3	71,E	570	6,21	36,4	10,0	15,5	1,65	23,2	1,36	1,58	1	1	1	1	2	3	V	1	1
PE 140	12,9	541	77,3	88,3	5,74	7,64	44,9	12,3	19,3	1,65	26,7	2,45	1,98	1	1	1	1	1	2	Y	1	1
PEAA 160	12,1	646	82,6	93,3	6,47	7,24	51,6	12,6	19,6	1,83	23,4	1,57	2,93	1	1	117	1	3	-	V		
PEA 160	12,7	689	87,8	99,1	6,53	7,80	54,4	13,3	20,7	1,83	26,3	1,95	3,09	1	1	1	1	3	4	V	V	¥
PE 160	15,8	869	109	124	6,58	9,66	68,3	16,7	26,1	1,84	30,3	3,60	3,96	1	1	1	1	1	2	1	1	*
PEAA 180	14,9	1020	116	131	7,32	9,13	78,t	17,2	26,7	2,03	27,2	2,48	5,64	1	1	13	2	3	-	V		
PEA 180	15,4	1063	120	135	7,37	9,20	81,9	18,0	28,0	7,05	27,0	2,70	5,93	1	1	1	2	3	4	V	4	۲
PE 180	18,8	1317	146	166	7,42	11,3	101	22,2	34,6	2,05	31,8	4,79	7,43	1	1	1	1	2	3	V	1	*
PE O 180	21,3	1505	165	189	7,45	12,7	117	25,5	39,9	7,08	34,5	6,76	8,74	1	1	1	1	1	2	V.	V.	1
PEAA 200	19,0	1522	156	176	8,19	11,4	112	22,4	35,0	7,21	32,0	3,84	10,1	ī	1		2	4		ï		
PEA 200	18,4	1591	162	182	8,23	11,5	117	23,4	36,5	2,23	32,6	4,11	10,5	1	1	1	2	4	4	1	4	V
PE 200	22,4	1943	194	221	B,26	14,0	142	28,5	44,5	2,24	36,7	6,98	13,0	1	1	1	1	2	3	V	V	¥
PE O 200	25,1	2211	219	249	B,32	15,5	169	33,1	51,9	2,30	39,3	9,45	15,6	1	1	1	1	1	2	Y	4	4
PEAA 220	21,2	2219	205	230	9,07	12,8	165	29,9	46,5	2,47	33,6	5,02	17,9	1	1	35.8	2	4	-	V.		
PEA-220	22,2	2317	214	740	9,05	13,6	171	31,2	48,5	2,46	34,5	5,69	18,7	11	1	1	2	4	4	1	V	+
PE 220	26,2	2772	252	285	9,11	15,9	205	37,3	58,1	2,48	38,4	9,07	22,7	1	1	1	1	2	4	V	4	*
PE O 220	29,4	3134	282	321	9,16	17,7	240	42,8	66,9	2,53	41,1	12,3	26,8	1	1	1	1	2	2	V.	V.	1

Dësigna Designa Bezeichi	stion			Olmension: ornessunge					Dimens	ons de cons sions for de truktionsn	etailing			face fläche
	G	h:	b	t,	t _i	(f)	A	h:	ď	ø	Pres	P _{nix}	A;	Ac
	kg/m	те	mm	mm	mm	mm	mm ² x10 ²	mm	TEATT		mm	mm	m³/m	m³/t
PEAA 240*	24,9	236,4	120	4,8	8,0	15,0	31,7	220,4	190,4	M 12	64	68	0,917	36,86
PEA 240-	26,2	237	120	5,2	8,3	15,0	33,3	220,4	190,4	M 12	64	68	0,918	35,10
PE 240	30,7	240	120	6,2	9,8	15,0	39,1	220,4	190,4	M 12	66	68	0,922	30,00
₽EO 240+	34,3	242	122	7,0	10,8	15,0	43,7	220,4	190,4	M 12	56	70	0,932	27,17
IPE A 270+	30,7	267	135	5,5	8,7	15,0	39,2	249,6	219,6	M 16	70	72	1,037	33,75
IPE 270	35,1	270	135	6,6	10,2	15,0	45,9	249,5	219,6	M 16	72	72	1,041	28,88
PE O 270+	42,3	274	136	7,5	12,2	15,0	53,8	749,6	219,6	M 16	72	72	1,051	74,88
I/E A 300+	36,5	297	150	-6,1	9,2	15,0	46,5	279,6	748,6	M 16	72	916	1,156	31,61
IPE 300	42,2	300	150	7,1	10,7	15,0	53,8	278,6	248,6	M16	72	86	1,160	27,4
IPE O 300+	49,3	304	157	8,0	12,7	15,0	62,8	278,6	248,6	M 16	74	88	1,174	23,81
IPEA 330+	43,0	327	160	6,5	10,0	18,0	54,7	307,0	271,0	M16	78	96	1,250	29,09
IPE 330	49,1	330	160	7,5	11,5	18,0	62,6	307,0	271,0	M16	78	96	1,254	25,52
PE O 330+	57,0	334	162	8,5	13,5	18,0	72,6	307,0	271,0	M16	80	98	1,268	22,2
PEA 360+	50,2	357,6	170	6,6	11,5	18,0	64,0	334,6	298,6	M 22	86	88	1,351	26,9
PE 360	57,1	360	170	8,0	12,7	18,0	72,7	334,6	298,6	M 22	88	BB	1,353	23,70
IFE O 3604	66,0	364	17.2	9,7	14,7	18,0	B4,1	334,6	798,6	M 22	90	90	1,367	20,6
IPEA 400-	57,4	397	180	7,0	17,0	21,0	73,1	373,0	331,0	M 22	94	98	1,464	25,51
IPE 400	66,3	400	180	8,6	13,5	21,0	84,5	373,0	331,0	M 22	96	98	1,467	22,13
IPE O 400+	75,7	404	182	9,7	15,5	21,0	96,4	373,0	331,0	M 22	96	100	1,481	19,5
IPE A 450	67,2	447	190	7,6	13,1	21,0	85,6	420,8	378,8	M 24	100	102	1,603	23,B
IPE 450	77,6	450	190	9,4	14,6	21,0	98,8	420,8	378,8	M 24	100	102	1,605	20,69
IPE O 450+	92,4	456	192	11,0	17,6	21,0	118	470,8	378,8	M 24	102	104	1,622	17,58
IPE A 500+	79,4	497	200	8,4	14,5	21,0	101	468,0	426,0	M 24	100	112.	1,741	21,9
IPE 500	90,7	500	200	10,2	16,0	21,0	116	468,0	426,0	M 24	107	112	1,744	19,2
IPE 0 500+	107	506	202	12,0	19,0	21,0	137	468,0	426,0	M 24	104	114	1,760	16,4

Désignat	ton			Valeurs		es / Sec	tion pro			he Kenr	werte						katio	n 2005		¥	¥	
Designat Bezelchn			stron	forty- ng axis y Achse	-y		sch	weak a	ble z - z oxis z - z Achse z	-1				-	Pura	nitio		Puse mpress		5-2: 2004	5-4: 200	250001
	G kg/m	ly mm²	W _{sy}	W _{thy} •	ly mm	A,	l, mm ^t	W _{six}	mш ₂	mm L	s, mm	mu _v	mm ²	5235	5355	2460	5235	\$355	5460	EN 10025-	EN 10025-4: 2004	FN 102252001
	2774	x10 ⁴	x10 ³	x10°	x10	x102	x10°	x10 ¹	x10 ²	x10		x10 ⁴	x10°	97	(n	V	Vi	Vi	U)			
PEAA 240	24,9	3154	267	298	9,97	15,3	231	38,6	60,0	2,70	38,4	7,33	30,1	1	1	18	3	4	-	V		
PEA 240	26,2	3290	278	312	9,94	16,3	240	40,0	62,4	2,68	39,4	8,35	31,3	1	1	1	2	4	4	1	4	1
PE 240	30,7	3892	324	367	9,97	19,1	284	47,3	73,9	2,69	43,4	12,9	37,4	1	1	1	1	2	4	1	4	¥
PE O 240	34,3	4369	361	410	10,0	21,4	179	53,9	84/4	2,74	46,2	17,2	43,7	1	1	1	1	2	3	V	ď	4.
PEA 270	30,7	4917	368	413	11,2	18,8	358	53,0	82,3	3,02	40,5	10,3	59,5	1	Ť	1	1	14	4	V	V	1
PE 270	36,1	5790	429	484	11,2	22,1	420	62,2	97,0	3,02	44,6	15,9	70,6	1	1	11	2	3	4	V	4	V
PE 0 270	42,3	6947	507	575	11,4	25,7	514	75,5	118	3,09	49,5	24,9	B7,6	1	1	1	1	2	1	4	¥	1
PEA 300	36,5	7173	483	542	12/4	22,3	519	69;2	307	3,34	42,1	13/4	107	(1	1	1	3	4	4	V	V	¥
PE 300	42,2	8356	557	628	12,5	25,7	604	80,5	125	3,35	46,1	20,1	126	9	1	1	2	4	4	V	4	V
IPE O 300	49,3	9994	658	744	12,5	29,1	746	98,1	153	3,45	51,0	31,1	158	1	1	1	1	3	4	1	4	1
IPEA 330:	43	10230	626	702	13,7	27,0	685	85,6	133	3,54	47,E	19,6	172	1	1	1	3	(4	4	V	V	V
IPE 330	49,1	11770	713	804	13,7	30,8	788	98,5	154	3,55	51,6	28,2	199	1	1	1	2	4	4	V	1	1
PE O 330	57	13910	833	943	13,8	34,9	960	119	185	3,64	56,6	47,2	246	1	1	1	1	3	đ	V	V	1
PEA 360	50,2	14520	N12	907	15,1	29,8	944	111	177	3,84	50,7	26,5	282	1	1	ï	4	4	4	7	Ý.	1
IPE 360	57,1	16270	904	1019	15,0	35,1	1043	123	191	3,79	54,5	37,3	314	1	1	1	2	4	4	1	1	V
IPE O 360	66	19050	1047	1186	15,1	40,2	1251	146	227	3,86	59,7	55,8	380	1	1	1	1	3	4	V.	V	¥
PEA 400	57,4	20290	1022	1144	16,7	35,8	1171	130	202	4,00	55,6	34,8	432	1	1	1	4	4	4	V	¥	V
IPE 400	66,3	23130	1160	1307	16,6	42,7	1318	145	229	3,95	60,2	51,1	490	1	1	1	3	4	4	1	1	V
PE 0 400	75,7	26750	1324	1502	16,7	48,0	1564	172	269	4,03	65,3	73,1	588	ij1	1	1	2)	3	4	4	V.	1
PEA 450	17,2	29760	1231	1494	18,7	42,3	1502	158	246	4,19	58,4	45,7	705	1	1	1	4	4	4	V.	V.	1
PE 450	77,6	33740	1500	1702	18,5	50,9	1676	176	276	4,12	63,2	66,9	791	1	1	1	3	4	4	V	V	V
PE O 450	92,4	40920	1795	2046	18,7	59,4	2085	217	341	4,21	70,8	109	998	1	1	1	2	A	4	V,	¥	Ý
PEA 500	79,4	42930	1728	1946	20,6	50,4	1939	194	302	4,38	67,0	62,8	1125	1	t	1	4	4	4	V	V	V
PE 500	90,7	48200	1930	2194	20,4	59,9	2142	214	336	4,31	66,8	89,3	1249	9	1	1	3	4	4	V	1	V
PE 0 500	107	57780	2784	2612	20,6	70,2	2672	260	409	438	74,5	144	1548	1	1	1	7	4	4	1	4	V

Désigna Designa Bezeich	ation			Dimension brnessunge					Dimer	ions de cons islons for d struktionsn	etalling			face fläche
	G kg/m	h mm	b mm	t, mm	t _r	r mm	A mm ²	h mm	d mm	ø	P==	P⇔	A m²/m	A _c
		1.4960			5454	3.000	x10 ²				1,7115	1.030	390,6300	10014
HE 100 AA*	12,2	91	100	4,2	5,5	12	15,5	80	56	M 10	54	58	0,553	45,1
HE 100 A	16.7	96	100	5	9	12	21,2	BO	56	M 10	54	58	0,561	33,6
HE 100 B	20,4	100	100	6	10	12	26,0	90	56	M 10	56	58	0,567	27,7
HE 100 C*	30,9	110	103	9	15	12	39,3	80	56	M 10	59	61	0,593	19,2
HE 100 M	41,8	120	106	12	20	12	53,2	80	56	M 10	62	64	0,619	14,8
HE 120 AA*	14,6	109	120	4,2	5,5	12	18,6	98	74	M 12	58	68	neen	45,9
	N. A. Viene					12	HINCO COMMISSION						0,669	0.900
HE 120 A HE 120 B	19,9	114	120	5 6,5	11	12	25,3 34,0	98	74	M 12	58 60	68	0,677	34,0
	26,7						HARVEST IN						170000	25,7
HE 120 C*	39,2	130	123	9,5	16	12	49,9	98	74	W 13	63	72	0,712	7B,1
HE 120 M	52,1	140	126	12,5	21	12	56,4	98	74	M 12	66	74	0,738	14,1
HE 140 AA*	18,1	128	140	4,3	6	12	23,0	115	92	M 16	64	76	0,787	43,5
HE 140 A	74,7	133	140	5,5	8,5	12	31,4	116	92	M 16	64	76	0,794	32,2
HE 140 B	33,7	140	140	7	12	12	43,0	116	92	M 16	66	76	0,805	23,8
HE 140 C*	49,2	150	143	10	17	12	61,5	116	92	M 16	69	79	0,831	17,2
HE 140 M	63,2	160	146	13	22	12	90,6	116	97	M16	72	82	0,857	13,5
HE 160 AA*	23,8	149	160	4,5	7	15	30,4	134	104	M 20	76	84	0,901	37,8
HE 160 A	30,4	152	160	E	q	15	38,8	134	104	M 20	78	84	0,906	29,7
HE 160 B	42,6	160	160	8	13	15	54,3	134	104	M 20	80	84	0,918	21,5
HE 160 C*	59,2	170	163	11	18	15	75,4	134	104	M 20	84	88	0,944	15,9
HE 160 M	76,2	180	166	14	23	15	97,1	134	104	M 20	86	90	0,970	12,7
HE 180AA	28,7	167	180	5	7,5	15	36,5	152	122	M.24	84	92	1,018	35,5
HE 180A	35,5	171	180	í.	9,5	15	45,3	152	122	M 24	86	97	1,024	28,8
HE 180 B	51,2	180	180	8,5	14	15	65,3	152	122	M 24	88	92	1,037	20,2
HE 180 C*	69,8	190	183	11,5	19	15	89/0	152	122	M 27	92	96	1,063	15,2
HE180M	88,9	200	186	14,5	24	15	113,3	152	122	M 24	94	98	1,089	12,2
UE DOO AA *	745	100	200	**		4.0	44.5	8.99	124	11.77	ne:	200	1.120	20.0
HE 200 AA*	34,6	186	200	5,5	B 10	18	44,1	170	134	M 27	96 98	100	1,130	32,0
	42,3			6,5			53,8						1,136	26.8
HE 200 B	61,3	200	200	9	15	18	78,1	170	134	M 27	100	100	1,151	18,7
HE 200 C*	81,9	210	203	12	20	18	104,4	170	134	M 27	104	104	1,177	14,3
HE 200 M	103	220	206	15	25	18	131,3	170	134	M 27	106	106	1,203	110

Om versite de Dejara geme ervin errizoro

Děsigna	tion		2.01	Valeurs s	tatique	s / Secti	on prope	-		Kenny	verte			F	Cl V 19		ication 1-1-		5		y.	
Designa Bezeichr	tion		stron	fort y-y g axis y- Achse y-			SE	axe fall weak a twache	xis z-z	-2					Pura	-		Pare		5-2; 2004	i-4; 2004	EN 10225-2001
	G	4	Wey	W _{my} ◆	1	A,	1	Water	W _{str} ♦	1,	5	h	Ļ	W		23	W	S	8	X025	3025	102
	kg/m	mm*	mm‡	mm [†]	mm	mm ⁷	mm*	mm ³	mm²	mm	mm	mm*	mm ^e	\$235	5355	5460	5235	\$355	5.460	BN:1002	EN10025-4:	Z
		x10 ^e	x103	X103	x10	x10 ²	x10 ^t	x101	X10 ²	x10		x10 ^t	X10 ²			8	20	ď	IA			
HE 100 AA	12,2	236,5	51,98	58,36	3,89	6,15	92,06	18,41	28,44	2,43	79,26	2,51	1,68	1	1	2	1	1	2	¥	V	٧
HE 100 A	15,7	349,2	72,76	EE,01	4,06	7,56	133,6	26,76	41,14	251	35,06	5,24	2,58	1	1	1	1	1	1	1	1	
HE 100 B	20,4	449,5	89,91	104,2	4,16	9,04	167,3	33,45	51,42	2,53	40,06	9,25	3,38	1	1	1	1	1	1	V	1	1
E100C	30,9	758,7	137,9	165,8	4,39	13.39	274,4	53,28	82,08	2,64	53,06	29,30	6,16	1	1		1	1		V		
HE 100 M	41,8	1143	190,4	235,8	4,63	18,04	399,2	75,31	116,3	2,74	66,06	Attitude	9,93	1	1	1	1	1	1	1	V	¥
HE 120 AA	14,6	413,4	75,85	84,12	4,72	6,90	158,8	26,47	40,62	2,93	29,26	2,78	4,24	1	3	3	4	3	3	1	~	4
HE 120 A	19.9	606,2	106,3	119,5	4,89	B,46	230,9	38,48	58,85	3,07	35,06	5,99	6,47		1	1	1	1	1	1	4	1
HE 120 B	26,7	864,4	144,1	165,2	5,04	10,96	317,5	52,92	80,97	3,06	42,56	13,84	9,41	1	1	1	4	1	9	1	1	V
E 120 C	39,2	1388	213,6	752,9	5,77	15.91	497,7	90.92	124,2	1,16	55,56	40.96	16,12	1	1		1			1	ST.	m
HE 120 M	52,1	2018	288,2	350,6	5,51	21,15	702,8	111,6	ales and	3,25	68,56	The Castles	24,79	1	1	1	1	1	1	٧	٧	¥
HE140AA	18,1	719,5	112,4	123,8	5,59	7,92	274,B	39,26	59.93	3,45	30,36	3,54	10,21	2	3	3	2	3	3	¥	1	
HE 140 A	24,7	1033	155,4	173,5	573	10,12	389,3	55.62	84,85	3,52	36,56	8,13	15,06	13	4	5	1	7	2		5	
HE140B	33,7	1509	215,6	245,4	5,93	13,08	549,7	78,52	119,8	3,58	45,06	20,06	22,48	9		4	4	4	4	1	1	
E140C	48,2	2330	310,6	363.8	6.16	18.67	830.3	116,1	1777	3.68	58,06	55,6B	36,64	4	4	1	100	1	17	3	di.	il.
HE140 M	100			DOM: U	6.39			- 4000cc	KKANYA	EMPHONE		MORAL AND SE		7			4	-			10	100
IE 190 M	63,2	3291	411,4	493,8	0,39	24,46	1144	150,8	240,5	3,77	71,00	120,0	54,33	1		4	1	1	1	*	*	*
HE 160 AA	23,8	1283	173,4	190,4	6,50	10,38	47B,7	59,84	91,36	3,97	36,07	6,33	23,75	1	3	3	1	3	3	V	1	Y
HE 160 A	30,4	1673	220,1	245,1	6,57	13,21	615,6	76,95	117,6	1,98	41,57	12,19	31,41	1	1	2	1	1	2	V.	W	V
HE 160 B	42,6	2492	311,5	354,0	6,78	17,59	889,2	111,2	170,0	4,05	51,57	31,24	47.94	1	1	1	1	1	1	٧	٧	4
E160C	59,2	3704	435,8	507,6	7,01	24,05	1307	159,8	244,9	4,15	64,57	79,21	75,04	1	1	*:	1	1	-	×		
HE 160 M	76,2	5098	566,5	674,6	7,25	30,81	1759	211,9	325,5	4,26	77,57	162,4	108,1	1	1	1	1	1	1	Y	1	1
HE180AA	28,7	1967	235,6	258,2	7,34	12,16	730,0	81,11	123,6	4,47	37,57	8,33	46,36	2	3	3	2	3	3	¥	V	٧
HE 190 A	35,5	2510	293,6	224,9	7,45	14,47	924,5	107,7	156.5	4,52	42,57	14,B0	60,21	1	2	1	1	2	3	٧.	1	Y
HE 1808	51,2	3831	425,7	481,4	7,66	20,24	1363	151,4	231,0	4,57	54,07	42,16	93,75	1	1	1	1	1	1	V	1	¥
E180C	69,8	5543	583,5	675,0	7,89	27,30	1944	217,5	324,9	4,68	67,07	102,1	141,9	1	1		1	1	4	¥		
HE 180 M	88,9	7483	748,3	883,4	8,13	34,65	2580	277,4	425,2	4,77	80,07	203,3	199,3	1	1	1	1	1	1	1	1	V
HE 200 AA	34,6	2944	316,6	347,1	8,17	15,45	1068	106,8	163,2	4,92	42,59	12,69	84,49	2	3	3	2	3	3	V	V	V
HE 200 A	42,3	3692	388,6	429,5	8,28	18,08	1336	-	203,B	4,98		20,98	109,0	1	7	3	1	2	3	Y	y	Y
HE 200 B	61,3	5696	569,6	642,5	8,54	24,83	2003		305,8	5,07		59,28	171,1	1	1	1	1	1	1	1	V	V
E 200 C	81,9	8029	764,7	880,6	8,77	32,78	2794		421,0	5,17	73,09		751,7	1	1	4	1	1	-	V		
HE 200-M	103	10640	967,4	1135	9,00	41,03	3651		543,2	5,27		259,4		1	1	1	1	1	1	V	V	V

Designa Designa Bezeichn	tion			Dimension brnessung					Dimer	ions de con isions for d struktionsr	etailing			face fläche
	G	h	b	t,	t _t	Ť	Α	h	ď	ø	Print	Prox	A	Ac
	kg/m	mm	тт	mm	mm	mm	mm ³ x10 ³	mm	mm	1	mm	mn	m²/m	m ³ /1
HE 220 AA	40,4	205	220	6	8,5	18	51,5	188	152	M 27	98	118	1,247	30,8
HE 220 A	50,5	210	220	7	11	18	64,3	188	157	M 27	98	118	1,255	24,B
HE 220 B	71,5	220	220	9,5	16	18	91,0	188	152	M 27	100	118	1,270	17,7
HE 220 C*	94,1	230	223	12,5	21	18	119,9	188	152	M 27	104	122	1,296	13,7
HE 220 M	117	240	226	15,5	26	18	149,4	188	152	M 27	108	124	1,322	11,2
TIL 2 gurier	111	240	220	1,0,0	29	10	142,4	100	1100	MI Z.I	199	124	1,025	11,2
HE 240 AA*	47,4	224	240	6,5	9	21	60,4	206	164	M 27	104	138	1,359	28,6
HE 240 A	50,3	230	240	7,5	12	21	76,8	206	164	M-27	104	138	1,369	22,7
HE 240 B	83,2	240	240	10	17	21	106,0	206	164	M 27	108	138	1,384	16,6
HE 240 C*	119	255	244	14	24,5	23	152,2	206	164	M 27	112	142	1,422	11,9
HE 240 M	157	270	248	18	32	21	199,6	206	164	M 27	116	146	1,460	9,31
HE 260 AA	54,1	244	260	6,5	9,5	24	69,0	225	177	M.27	110	158	1,474	27,2
HE 260 A	68,7	250	260	7,5	12,5	74	96,8	225	177	M 27	110	158	1,484	21,7
HE 260 B	93,0	260	260	10	17,5	24	118,4	225	177	M 27	114	158	1,499	16,1
HE 260 C*	132	275	264	14	25	24	168,4	225	177	M 27	118	162	1,537	11,5
HE 260 M	172	290	268	18	32,5	24	219,6	225	177	M 27	122	166	1,575	9,13
HE 280 AA*	61,2	264	280	7	10	24	78,0	244	196	M 27	110	178	1,593	26,0
HE 280 A	76,4	270	780	8	13	74	97,3	244	196	M 27	112	178	1,603	20,9
HE 280 B	103	280	280	10,5	18	24	131,4	244	196	M.27	114	178	1,618	15,6
HE 280 C*	145	295	284	14,5	75.5	74	185,7	244	196	M 27	118	182	1,656	11,3
HE 280 M	189	310	288	18,5	33	24	240,2	244	196	M 27	122	186	1,694	8,98
HE 300AA	69,8	283	300	7,5	10,5	27	88,9	262	208	M.27	116	198	1,705	24,4
HE 300A	88,3	790	300	45 45	14	27	112,5	762	208	M 27	118	198	1,717	19,4
HE 300 B	117	300	300	11	19	27	149,1	262	208	M 27	120	198	1,732	14,8
HE 300 C*	177	320	305	16	29	27	225,1	762	208	M 27	126	204	1,782	10,0
HE 300 M	238	340	310	21	39	27	303,1	262	208	M 27	132	208	1,832	7,69
HE 320AA*	74,2	301	300	8	11	27	94,6	279	225	M 27	118	198	1,740	23,4
HE 320A	97,6	310	300	9	15,5:	27		279	775	M 27	118	198		17,9
							124,4						1,756	
HE 320 B	127	320	300	11,5	20,5	27	161,3	279	225	M 27	122	198	1,771	13,9
HE 320 C*	186	340	305	16	30,5	27	236,9	279	275	M:27	126	204	1,822	9,79

Universite de Dejara/genie civii/Civi2010

Dēsignat		n nadest 257				s / Secti	on prope	arties / S		Kenny	verte			E			ication 1-1:	on 200	15	24	90	
Designat Bezeichn			stron	forty-y g axis y- Achse y	у		sri	weak a		-7				ber	Puru	1-1	cor	Pure ripress		-2: 2004	4: 2004	MONTH SECOND
	G	Ļ	Way	Way	1	A,	ı	Wate	W _{ttr} ♦	,	2	k	l,	75		1		A.S.S.		025	025	550
	kg/m	mm*	mm ³	mm ₃	mm	mm ³	mm ^e	mm³	mm ³	mm	mm	mm ^a	mm ^e	5235	S355	5460	5535	S388	5460	EN 10025-2:	EN 10025-4:	PN-1
		x10 ^t	x10°	x10°	x10	x102	x10 ^t	x10 ¹	X101	x10		x10°	x101	Ē,	*							
HE 220 AA	40,4	4170	406,9	AAFE	0.00	1757	1510	4373	200.2	E 42	44,09	15.00	145,6	3	2	4	2	3		J	J	
HE 220 AA	19150	5410	515.2	445,5 568,5	9,00	17,63 20,67	1510	137,3	-01/17/08	5,42	50,09	15,93	193,3	3	7	9	2	3	3	1	1	1
HE 220 B	50,5 71,5	8091	735,5	827,0	9,17	27,92	2843	177,7 258,5	393.9	559	62,59	28,46 76,57	295,4	4	*	1	4	4			V	05
	-			-		-				7/-	-	- 4	-	212	1	- 1	1 1	1	-1		V.C.C	1
HE 220 C	94,1	11180	972,2	1114	9,65	36,47	3888	348,7	532,4	5,69	75,59	168,2	423,9		1					×	1	
HE 220 M	117	14600	1217	1419	9,89	45,31	5012	443,5	678,6	5,79	88,59	315,3	572,7	1	1		1	1	10	*	¥	4
HE 240 AA	47,4	5835	521,0	570,6	9,83	21,54	2077	173,1	264,4	5,87	49,10	22,98	239,6	3	3	4	1	3	4	¥	V	v
HE 240 A	60,3	7763	675,1	744,6	10,05	25,18	2769	230,7	351,7	6,00	56,10	41,55	328,5	1	2	3	1	2	3	V.	V	٧
HE 240 B	83,2	11260	938,3	1053	10,31	33,23	3923	326,9	498,4	5,08	68,60	102,7	486,9	Ť	1	1	i	1	9	1	V	¥
HE 240 C	119	17330	1359	1564	10,67	46,35	5947	487,1	743,8	6,25	87,60	288,7	787,9	1	1		1	1	=	V		
HE 240 M	157	24290	1799	2117	11,03	60,07	8153	657,5	1006	6,39	106,6	627,9	1152	1	1	*	1	1	7	¥	d)	4
HE 260 AA	54,1	7981	654,1	7145	10.76	24,75	2788	214,5	327,7	6,36	53,67	30,31	382,6	3	3	4	-11	3	4	1	4	3
HE 260 A	68,7	10450	836,4	919.8	10,97	28.76	3668	282,1	430.7	6,50	60,67	52.37	516,4	-	1	3	1	1	3	V	Н	H
E 260 B	93,0	14920	1148	1283	11,22	TO SHARE	5135	395.0	602.7	5,58	73,12	123,8	753,7	4	1	4	4	4	4	1	Н	Н
€ 260 C	132	22590	1643	1880	11,58	51,94	7680	581 B	888.3	5,75	97,12	335,4	1198		1		1	1			1 44	T.
HE 260 M	172	31310	2159	2524		66,89	10450	779,7	1192	6,90	111,1	719,0	1728	4	1	1	1	1	3	4	Н	В
ir non sa	222	40000	WHA 15	mm 4		ecorum.	ner.	200.0	700.4	P. 60	FF 15	2012	7004		-		-	-		1020	1/12/	100
HE 280 AA	61,2	10560	799,B	873,1	- NGOST	27,52	3664	1000000	399,4	5,85	55,12	G-DATES AND	590,1	3	3	4	3	3	4	ď	٧	Y
HE 280 A	76,4	13670	1013	1112		31,74					62,12				2	3		3	3		111	
Æ 290 B	103	19270	1376	1534		41,09	6595		717,6	and a con-	74,62		1130	0.	1	1	7		3	٧	H	n
HE 280 C HE 280 M	189	78810 39550	1957 2551	2225 2966		56,26 72,03	9750 13160	686,6 914,1		7,26	93,67	382,5 807,3	176E 2520	1	1	1	1	1	1	V	110	H
Walter La	2,000	10000	-		12/12	***	(Qup)	1	****		22.10		2000	-		021	72	8	70	20		
HE 300 AA	69,8	13800	975,6	1065		32,37			HOWA	O'CO	60,13		877,2	3	3	4	3	3	4	*	A	٧
HE 300 A	88,3	18760	1260	1383		37,28	6310		541,2	7,49	68,13		1200	1	1	3	1	1	3	. *	10.	H
HE 300 B	117	25170	1678	1869	-	47,43	8563	NO. OF STREET	870,1	7,58	1	185,0	1688	1	1	1	1	1	1	٧	HI	H
HE 300 C	177	40950	2559	2927	PARTIES T		13736			7,81		598,3	2903	100	1	· ·	1	1		V CONTRACTOR	oleteter	10.00
HE 300 M	238	59200	3482	4078	13,98	90,53	19400	1252	1913	B,00	130,5	1408	4386	1	1	1	1	1	1	V	H	H
HE 320 AA	74,2	16450	1093	1196	13,19	35,40	4959	330,6	505,7	7,24	61,63	55,87	1041	3	3	4	3	3	4	٧	V	٧
HE 320 A	97,5	22930	1479	1628	13,58	41,13	6985	465,7	709,7	7,49	71,53	108,0	1512	1	2	1	1	2	3	1	H	H
HE 320 B	127	30820	1926	2149	13,82	51,77	9239	615,9	939,1	7,57	84,13	225,1	2069	1	1	1	1	1	9	1	HI	H
HE 320 C	186	48710	2865	3274	040640		14445	947	1445	7,81	108,6		3454	1	1		1	1	-	Y		
HE 320 M	245	68130	3796	4435			19710			7,95	132,6		5004	1	4	1	9	1	1	1	H	14

Désignation Designation Bezeichnung		Dimensions Abmessungen						Dimensions de construction Dimensions for detailing Konstruktionsmaße					Surface Oberfläche	
	G	h	b	į,	t,	r	Α	h	đ	ø	Pos	Prox	A.	A:
	kg/m	mm	mm	mm	mm	mm	mm ³	mm	mm		mm	mm	m³/m	m ³ /1
		-110376			7.002	I HOUSE	x10 ²	200.541	0.570			12412115	1	71460
HE 340 AA*	78,9	320	300	8,5	11,5	27	100,5	297	243	M 27	118	198	1,777	22,5
HE 340 A	105	330	300	9,5	16,5	27	133,5	297	243	M-27	110	198	1,795	17,1
HE 340 B	134	340	300	12	21,5	27	170,9	297	243	M 27	122	198	1,810	13,49
HE 340 M	748	377	309	21	40	27	315,8	297	243	M 27	132	204	1,902	7,670
HE 360 AA	83,7	339	300	9	12	77	106,6	315	261	M 27	118	198	1,814	21,5
HE 360 A	112	350	300	10	17,5	27	142,8	315	261	M.27	120	198	1,834	16,3
HE 360 B	142	360	300	12,5	22,5	27	180,6.	315	261	M 27	122.	198	1,849	13,0
HE 360 M	250	395	308	21	40	27	318,8	315	261	M 27	132	204	1,934	7,73
HE 400 AA*	92,4	378	300	9,5	13	27	117,7	352	298	M 27	118	198	1,891	20,4
HE 400 A	125	390	300	11	19	27	159,0	357	299	M 27	120	198	1,912	15,3
HE 400 B	155	400	300	13,5	24	27	197,8	352	298	M 27	124	198	1,927	12,4
HE 400 M	256	432	307	21	40	27	325,8	352	298	M 27	132	202	2,004	7,83
HE 450 AA	99,7	425	300	10	135	27	127,1	398	344	M 27	120	198	1,984	19,8
HE 450 A	140	440	300	11,5	21	27	178,0	398	344	M.27	122	198	2,011	14,3
HE 450 B	171	450	300	14	26	27	218,0	398	344	M 7.7	124	198	2,026	11,8
HE 450 M	263	478	307	21	40	27	335,4	398	344	M 27	132	202	2,096	7,95
HE 500 AA	107	472	300	10,5	14	27	136,9	444	390	M 27	120	198	2,077	19,3
HE SOOA	155	490	300	12	22	27	197,5	444	390	M ZZ	122	198	2,110	13,6
HE 500 B	197	500	300	14,5	28	27	238,6	444	390	M 27	124	198	2,125	11,3
HE 500 M	270	524	306	21	40	27	344,3	444	390	M 27	132	202	2,184	8,07
HE 550 AA*	120	522	300	11,5	15	27	157,8	492	438	M 27	122	198	2,175	18,1
HE 550A	166	540	300	12,5	24	27	211,8	492	438	M 27	122	198	2,209	13,2
HE 550 B	199	550	300	15	29	27	254,1	492	438	M 77	124	198	2,224	11,1
HE 550 M	278	572	306	21	40	27	354,4	492	438	M 27	132	202	2,280	8,19
HE 600 AA*	129	571	300	12	15,5	27	164,1	540	486	M 27	122	198	2,272	17,6
HE 600 A	178	590	300	13	75	77	226,5	540	486	M 27	122	198	2,309	12,9
HE 600 B	212	600	300	15,5	30	27	270,0	540	486	M 27	126	198	2,323	10,9
HE GOO M	285	620	305	21	40	77	363,7	540	486	M 27	132	200	2,372	8,30
HE 600 x 337*	337	632	310	25,5	46	27	429,2	540	486	M 27	138	202	2,407	7,14
HE 600 x 399°	399	648	215	30	54	27	508,5	540	486	M-27	142	208	2,450	6,13

Oniversite de Dejara genie envir enizero

Notations pages 205-209 / Beatsichnungen Seiten 205-209 Classification Valeurs statiques / Section properties / Statische Kennwerte Désignation EN 1993-1-1: 2005 2004 EN 10025-4; 2004 axe faible z-z axe forty-y Designation EN10225;2001 Pure weak axis z - z strong axis y-y Bezelchnung BN 10025-2; benoingy-y starke Achsey-y schwache Achse z-z compression Ġ W_{ric}+ ٨, Well Way + l, $W_{e_{ij}}$ S, ł 5355 5460 S355 5.460 kq/m mm^c mm² mm3 шш mm² mm¹ mm3 mm³ mm mm mm⁴ mm_e x10^t x101 x101 x10 x102 x101 x101 x101 x10 x101 x10* HE 340 AA 78,9 19550 1222 1341 13,95 38,69 5185 345,6 529,3 7,18 63,13 63,07 1231 3 3 4 3 HE340A 105 27690 1678 1850 14,40 44,95 7436 495.7 755.9 7.45 74.13 127.2 1874 1 Н H HE 340 B 646,0 985,7 753 1 1 134 36660 2156 2408 14,65 56,09 9690 86,63 257,2 2454 1 HI H HE 340 M 248 4052 4718 15,55 98,63 19710 1276 1953 7,90 132,6 1506 5584 1 Н Ы 76370 HE 360 AA 83.7 23040 1359 1495 14,70 42,17 5410 360,7 553,0 7,12 64.63 70.99 1444 7 3 3 7 3 V HE 360 A 112 33090 1891 208B 15,22 48,96 7BB7 525,B 802.3 7,43 76,63 148,8 2177 H HE 360 B 2883 142 43190 2400 15,46 50,60 10140 676,1 1037 7,49 89,13 292,5 1 H H HE 360 M 250 84870 4797 16,32 102,4 19520 1268 1942 7,83 132,6 1507 6137 1 H H HE 400 AA 97,4 31250 1654 1824 16,30 47,95 5861 390,8 599,7 7,05 67,13 84,69 1948 2 3 2942 HE 400 A 125 45070 2311 2562 16,84 57,33 9564 570.9 872.9 734 80.63 189,0 1 7 H H HE 400 B 155 57680 2884 3232 17,08 69,98 10820 721.3 1104 7,40 93,13 355,7 3917 1 H H 104100 4820 770 132,6 1515 7410 Н HE 400 M 256 17,88 110,7 19340 1260 1934 H 1 3 7 4 HE 450 AA 99,7 41890 1971 2183 18,16 54,70 6088 405,8 624,4 6,92 58,63 95,61 2572 V V HE 450 A 140 63770 2896 3216 18,92 65,78 9465 631,0 965,5 B5.13 243,8 4148 H 7,29 3 H HE 450 B 171 79890 3551 3987 19,14, 79,66 11728 781,4 1198 7,33 97,63 440,5 5258 H H HE 450 M 5501 6331 19,80 119,8 19340 1260 1939 7,59 132,6 1529 9251 1 1 263 131500 1 1 H HE 500 AA 107 54640 2315 2576 19,98 61,91 6314 420,9 649,3 5,79 70,13 107,7 3304 2 3 3 HE 500 A 155 86970 3550 209f 7472 10770 691.1 1059 7.24 89.63 309,3 5643 3 HE 500 B 187 107200 4287 4815 21,19 89,82 12620 841,6 1292 7,27 102,1 538,4 7018 1 2 2 H HE 500 M 161900 6180 7094 21,69 129,5 19150 1252 1932 7,45 132,6 1539 11190 HE 550 AA 120 72970 2792 3128 21,84 72,66 6767 451,1 698,6 5.65 73.13 133.7 4338 7 V 2 HE 550 A 10820 721,3 1107 7,15 166 111900 4146 4627 22,99 83,72 92,13 351,5 7189 4 HI H HE 550 B 199 136700 4971 5591 23,20 100,1 13080 871,8 1341 7,17 1045 500,3 8856 H H 6923 HE 550 M 7933 23,64 139,6 19160 1252 1937 132,6 1554 13520 278 198000 7,35 HE 600 AA 129 91900 3218 3623 23,66 81,29 6993 466,2 724,5 74,63 149,8 5381 3 6.53 2 3 HE 600 A 141200 4787 7497 93,71 11270 751,4 1156 7.05 94,63 397,8 178 8978 H Н HE 600 B 6425 HI 212 171000 5701 25.17 110.8 13530 902.0 1391 7,08 107.1 667.2 10970 H HE GOOM 1564 15910 285 237400 7660 8777 75.55 149.7 18990 1244 1930 132,6 15 H 10380 25,69 180,5 22940 1490 149,1 2451 H HE 600 x 337 337 283200 8961 2310 7,31 19610 390 10640 12460 26,03 213,6 28280 1796 2814 7.45 169.6 3966, 24810 HE 600 x 399 744G(X)

Omitorate de Dejuiu geme ertin entizore

Design Design Bezelci	ation			Dimension					Surface Oberfläche					
	G kg/m	h mm	b mm	mm.	t, mm	r	A mm² x10²	mm	d mm	ø	e _{rer} mm	e _{ras} mm	A. m³/m	A: m³/t
UPE 80*	7,90	BO	50	4,0	7,0	10	10,1	66	46	37	5	35	0,343	43,45
UPE 100*	9,82	100	55	4,5	7,5	10	12,5	85	65	M 12	35	36	0,402	41,00
UPE 120*	12,1	120	60	5,0	8,0	12	15,4	104	80	M 12	35	41	0,460	37,9
UPE 140*	14,5	140	65	5,0	9,0	12	18,4	122	98	M 16	35	38	0,520	35,9
UPE 160*	17,0	160	70	5,5	9,5	12	21,7	141	117	M 16	36	43	0,579	34,0
UPE 180*	19,7	180	75	5,5	10,5	12	25,1	159	135	M 16	36	48	0,639	32,40
UPE 200*	22,8	200	80	6,0	11,0	13	29,0	178	152	M 20	46	47	0,697	30,6
UPE 220*	26,6	220	85	6,5	12,0	13	33,9	196	170	M 22	47	49	0,756	7B,4
UPE 240*	30,2	240	90	7,0	12,5	15	38,5	215	185	M 24	47	51	0,813	26,8
UFT 270*	35,2	270	95	7,5	13,5	15	44,8	243	213	M 27	48	50	0,897	25,3
UPE 300*	44,4	300	100	9,5	15,0	15	56,6	270	240	M 27	50	55	0,968	21,7
UPE 330*	53,2	330	105	11,0	16,0	18	67,E	298	262	M 27	54	60	1,043	19,6
UPF 360*	61,2	360	110	12,0	17,0	18	77,9	326	290	M 27	55	65	1,121	18,3
UPE 400*	72,2	400	115	13,5	18,0	18	91,9	364	328	M.27	57	70	1,218	16,8

	nation		200	Val.	10	atiques	/ Secti		ble z-z	Statis	che Ke	nnwert	е					tration		2004	2004
	nation chrung		stron	g axis y Achse	<i>у</i> -у			weak a	xis z-z Achse :	Z-Z						Pu	mi 199-y		in the second	N	4 8
	G kg/m	h mm*	W _{ey}	W _{py} ∎ mm³	ly mm	Az mm²	le mm ⁴	W _e , mm²	W _{iu'}	mm	S,	nm ⁴	mm ^e	y, mm	y= mm	\$235	\$3ES	5235	5355	1002	EN10025-
	make or a	x101	x10 ²	x10 ³	x10	x10 ²	x10 ^t	x10 ³	x10 ²	x10	alles.	x10 ^t	x10°	x10	x10	М	N	M	17	120	
UPE 80	7,90	107	26,8	31,2	3,26	4,05	25,5	B,0	14,3	1,59	16,9	1,47	0,22	1,82	3,71	1	1	1	1.	V	
UPE 100	9,82	207	41,4	48,0	4,07	5,34	38,3	10,6	19,3	1,75	17,9	2,01	0,53	1,91	3,93	1	9	1	1	V	
UPE 120	12,1	364	60,6	70,3	4,86	7,18	55,5	13,8	25,3	1,90	20,0	2,90	1,12	1,98	4,12	(1)	1	1	1	V	
UPE 140	14,5	600	B5,6	98,8	5,71	8,25	7B,8	18,2	33,2	2,07	21,0	4,05	2,20	2,17	4,54	1	1	1	1	1	
UPE 160	17,0	911	114	132	6,48	10,0	107	22,6	41,5	2,22	27,0	5,20	3,96	2,27	4,75	1	1	1	1	¥	П
UPE 180	19,7	1350	150	173	7,34	11,2	144	28,6	52,3	2,39	23,0	6,99	6,81	2,47	5,19	1	1	1	1.	4	
UPE 200	22,8	1910	191	220	B,11	13,5	187	34,5	63,3	2,54	24,6	8,89	11,0	2,56	5,41	1	1	1	1	V	
UPE 220	26,6	2680	244	281	8,90	15,8	247	42,5	78,2	2,70	26,1	12,1	17,6	2,70	5,70	1	1	1	1	1	
UPE 240	30,2	3600	300	347	9,67	18,8	311	50,1	92,2	2,84	28,3	15,1	26,4	2,79	5,91	1	1	1	1	V	
UPE 270	35,2	5250	389	451	10,8	22,2	401	.60,7	117	2,99	29,8	19,9	43,6	2,89	5,14	1	1	1	2	¥	
UPE 300	44,4	7820	522	613	11,8	30,3	538	75,6	137	3,00	33,3	31,5	72,7	2,89	6,03	11	(1	1	1	¥	
UPE 330	53,2	11010	667	792	12,7	38,8	681	89,7	156	3,17	37,5	45,7	112	2,90	6,00	1	1	1	1	1	
UPE 360	61,2	14830	824	982	13,8	45,6	244	105	178	3,29	39,5	58,5	166	2,97	6,12	1	1	1	1	4	
UPE 400	72,2	20980	1050	1260	15,1	56,2	1045	123	191	3,37	42,0	79,1	259	2,98	6,06	1	1	1	1	4	

Désignation Designation Bezeichnung			Dimer Abmes	nsions sungen				Position	des axes n of axes r Achsen			face flàche
	G kg/m	h-b mm	t mm	r _t	r ₂ mm	A mm² x10²	z _e y, mm x10	v mm x10	ur mm x10	u ₂ mm x10	A, m³/m	A _c m ² /1
L 70x 70x 6	6,38	70	6	9	4,5	8,13	1,93	4,95	2,73	2,46	0,272	42,61
170x70x7	7,38	70	7	9	4,5	9,40	1,97	4,95	7,79	2,47	0,272	36,9
L70x 70x 8*/*	8,37	70	8	10	5,0	10,7	2,01	4,95	2,84	2,47	0,271	32,4
L70x70x9***	9,32	70	9	9	4,5	11,9	2,05	4,95	2,90	2,50	0,272	29,2
LYUAYUAS	5,52	70	9	3	4,2	11,5	2,03	n _i po	2,00	2,30	Ujar z	20,21
75×75×4°	4,65	75	4	9	4,5	597	1,96	5,30	2,76	2,63	0,292	62,83
L75x75x5"	5,76	75	5	9	4,5	7,34	2,01	5,30	2,84	2,63	0,292	50,7
L75x75x6		75	6	9	4,5	0,73	2,05	5,30	2,90	2,64	0,292	42,6
L75x75x7*	6,85 7,93	75	7	9	4,5	10,1	2,10	5,30	2,96	2,65	0,292	36,8
L75x75x8	8,99	75	В	g	4,5	11,4	2,14	5,30	3,02	2,66	0,792	37,5
L75x75x10*	11,1	75	10	9	4,5	14,1	2,72	5,30	3,13	2,69	0,292	26,4
F.CAR.CAR.IO.	334	3.2	(W.	3	19,22	1971	,6,66°	2,20	- ajra	2,03	Mart	20,4
L80x80x5*	6,17	80	5	10	5,0	7,86	2,12	5,66	3,00	2,81	0,311	50,4
80x 80x 6***	7,34	80	6	10	5,0	9,35	2,17	5,66	3,07	2,81	0,311	42,4
L80x80x7*	8,49	90	7	10	5,0	10,8	2,21	5,66	3,13	2,82	0,311	36,6
80x80x8	9,63	90	1	10	5,0	17,3	2,26	5,66	2,19	7,83	0,311	32,3
L 80x 80x 10	11,9	80	10	10	5,0	15,1	2,34	5,66	3,30	7,85	0,311	76,2
ENWERNAS.	0.00				000	18.7	5.74				2000	
L90x90x6***	8,28	90	6	10	5,0	10,5	2,42	6,36	3,42	3,16	0,351	42,4
190x90x7	9,61	90	7	11	5,5	12,2	2,45	6,36	3,47	3,16	0,351	36,4
L90x90x8	10,9	90	8	11	5,5	13,9	2,50	6,36	3,53	3,17	0,351	32,1
190x90x9	12,2	90	.9	11	5,5	15,5	7,54	6,36	3,59	3,18	0,351	28,7
L90x90x10	13,4	90	10	11	5,5	17,1	2,58	6,36	3,65	2,19	0,351	26,0
L90x90x11"	14,7	90	11	11	5,5	18,7	2,62	6,36	3,70	3,21	0,351	23,8
L100 x 100 x (1"/"	9,26	100	6	12	6,0	11,8	2,64	7,07	2,74	3,51	0,390	47,0
L 100 x 100 x 7	10,7	100	7	12	6,0	13,7	2,69	7,07	3,81	3,51	0,390	36,3
L100 x 100 x 8*	12,2	100	8	12	6,0	15,5	2,74	7,07	3,87	3,52	0,390	32,0
L 100 x 100 x 10*	15,0	100	10	12	6,0	19,2	2,82	7,07	3,99	3,54	0,390	25,9
L 100 x 100 x 12*	17,8	100	12	12	6,0	22,7	2,90	7,07	4,11	3,57	0,390	21,8
L 110 x 110 x 8*/*	127	140	D	12	E/O	174	2.00	7.70	4.22	701	0.420	21.0
L 110x 110x 10***	13,4	110	10	17	6,0	17,1	7,99	7,78	4,22	3,87	0,430	31,9
L110x110x10	16,6 19,7	110	10	13	6,5 6,5	21,2 25,1	3,06	7,78	4,33	3,88	0,429	25,7

Universite de Dejara/genie civil/Civizu10

HARD COL			Valeur	s statiques	/ Section pro	perties / 5t	atische Kenn	werte			ication		
Désignati Designati Bezelchnu	on	ax	ke y-y / axe z- ds y-y / axis z se y-y / Achse	-1	axis	axe u-u axis u-u Achse u-u		v-v v-v ev-v		P	1-1: 2005 ure nession	5-2: 2004	EN 10025-4: 2004
	G	!-!	$W_{dy}\!=\!W_{dz}$	j-1,	L	Ą	4	k	ţ,	10	19	EN10025-2:	1002
	kg/m	mm ¹ x10 ²	mm ³ x10 ³	mm x10	mm* x10*	mm x10	mm ^e x10 ^e	mm x10	mm ⁴	\$238	\$355	S	8
L70x70x6	6,38	36,88	7,27	2,13	58,60	2,69	15,16	1,37	-21,72	2	3	V	
L70x70x7	7,38	42,30	8,41	2,17	67,19	2,67	17,41	1,36	-24,89	1	2	¥	
L70x70x8	8,37	47,27	9,46	2,10	75,01	2,65	19,52	1,35	-27,75	1	1	V	
L70x70x9	9,32	52,47	10,60	2,10	83,18	2,65	21,76	1,35	-30,71	(1)	1	Ø.	
1.75x75x4	4,65	31,43	5,67	2,30	49,85	2,90	13,01	1,48	-18,42	4	4	V.	
L75x75x5	5,76	38,77	7,06	2,30	61,59	2,90	15,96	1,47	-22,82	3	3	4	
L75x75x6	6,85	45,83	8,41	2,29	72,84	2,89	18,82	1,47	-27,01	2	3	¥.	
L75x75x7	7,93	52,61	9,74	2,28	83,60	2,88	21,62	1,46	-30,99	1	3	V	
L75×75×8	8,99	59,13	11,03	2,27	93,91	2,86	24,35	1,46	-34,78	1	1	1	
L75x75x10	11,1	71,43	13,52	2,25	113,2	2,83	29,68	1,45	-41,75	1	1	V	4
L80x80x5	6,17	47,14	8,02	2,45	74,83	3,09	19,45	1,57	-27,69	3	4	¥	
L BO x BO x 6	7,34	55,82	9,57	2,44	88,69	3,08	22,96	1,57	-32,87	3	3	1	
L BO x BO x 7	8,49	64,19	11,09	2,44	102,0	3,07	26,38	1,56	-37,81	1	3	1	
L 80 x 80 x B	9,63	72,25	12,58	2,43	114,B	3,05	29,72	1,56	-42,52	1	2	V	
L80x80x10	11,9	87,50	15,45	2,41	138,8	3,03	36,24	1,55	-51,27	1	1	4	4
L 90 x 90 x 6	8,28	80,72	12,26	2,77	128,3	3,49	33,16	1,77	-47,57	3	4	1	
L90x90x7	9,61	92,55	14,13	2,75	147,1	3,47	38,03	1,76	-54,52	3	3	1	
L90x90x8	10,9	104,4	16,05	2,74	165,9	3,46	42,89	1,76	-61,50	1	3	V	
L 90 x 90 x 9	12,2	115,8	17,93	2,73	184,0	3,44	47,65	1,75	-68,19	1	2	6	
L90x90x10	13,4	126,9	19,77	2,72	201,5	3,43	52,33	1,75	-74,59	1	1	V	
E90x90x11	14,7	127,6	21,57	2,71	218,3	3,42	56,94	174	-80,70	23%	1	V	
L 100 x 100 x 6	9,26	111,1	15,09	3,07	1763	3,87	45,80	1,97	-65,25	1	4	Ÿ	
L100x100x7	10,7	128,2	17,54	3,06	203,7	3,86	52,72	1,96	-75,48	3	3	V	
L 100 x 100 x B	12,2	144,8	19,94	3,06	230,2	3,85	59,49	1,96	-85,35	2	3	Y	
L100 x 100 x 10	15,0	176,7	24,62	3,04	280,7	3,83	72,66	1,95	-104,0	1	2	1	
100x100x12	17,8	206,7	29,12	3,02	377,9	3,80	85,44	1,94	-121,3	4	1	7	
110x110x8	13,4	195,3	24,37	3,30	310,5	4,26	80,11	2,16	-115,2	1	3	ć	
L110x110x10	16,6	238,0	29,99	3,35	378,2	4,23	97,74	2,15	-140,2	1	3	1	
110x 110x 12	19,7	279,1	35,54	3,33	443,2	4,20	115,0	2,14	-164,1	1	1	V	

Désignation Designation Bezeichnun	1			nsions sungen				Position Position Lage de		Surface Oberfläche		
	G	h-b	t	Į1	T ₂	Α	LeY _k	٧	U ₁	U ₂	A,	A _c
	kg/m	mm:	mm	mm	mm:	mm ²	:mm	mm:	mn	:mm	m²/m	m ² /1
	-					x10 ²	x10	x10	x10	x10	5.37.700.0	4000
L 120x 120 x 8***	14,7	120	8	13	6,5	18,7	3,23	8,49	4,56	4,22	0,469	31,87
L 120x 120x 10 th	10,2	120	10	13	6,5	23,2	3,31	8,49	4,69	4,24	0,469	25,70
L120x120x11**	19,9	120	11	13	6,5	25,4	3,36	8,49	4,75	4,25	0,469	23,5
120x 120x 12 ³	21,6	120	12	13	6,5	27,5	3,40	8,49	4,80	4,26	0,469	21,69
L 120x 120x 13**	23,3	120	13	13	6,5	29,7	3,44	8,49	4,86	4,28	0,469	20,1
L120x120x15**	26,6	120	15	13	6,5	33,9	3,51	8,49	4,97	4,31	0,469	17,6
L 120 x 120 x 16**	28,3	120	16	13	6,5	36,0	3,55	8,49	5,02	4,32	0,469	16,5
L130x130x10*	19,8	130	10	14	7,0	25,2	3,55	9,19	5,03	4,58	0,508	25,6
L 130 x 130 x 12"	23,5	130	12	14	7,0	30,0	3,64	9,19	5,15	4,60	0,500	21,5
L130x130x13*	25,4	130	13	14	7,0	32,3	3,68	9,19	5,20	4,62	0,508	20,0
L130x130x14*/*	27,2	130	14	14	7,0	34,7	3,72	9,19	5,26	4,63	0,508	18,6
L130x 130x 16*	30,8	130	16	14	7,0	39,3	3,80	9,19	5,37	4,66	0,508	16,4
L 150x 150x 10 ^{4/8}	23,0	150	10	16	8,0	29,3	4,03	10,61	5,71	5,28	0,586	25,5
L 150x 150x 12***	27,2	150	17	16	8,0	34,8	4,12	10,61	5,83	5,29	0,586	21,4
L150x150x13"	29,5	150	13	16	8,0	37,6	4,17	10,61	5,89	5,30	0,586	19,8
L 150x 150x 14 ⁽¹⁴⁾	31,6	150	14	16	8,0	40,3	4,21	10,61	5,95	5,32	0,586	18,5
L 150x 150x 15"	33,8	150	15	16	8,0	43,0	4,25	10,61	6,01	5,33	0,586	17,3
150x150x16"	39,9	150	16	16.	0,6	45,7	4,29	10,61	6,06	5,34	0,586	16,3
L 150x 150x 18 ^{-k}	40,1	150	18	16	8,0	51,0	4,37	10,61	6,17	5,37	0,586	14,6
. 150x 150x 20 ⁻⁸	44,2	150	20	16	8,0	56,3	4,44	10,61	6,28	5,41	0,586	13,2
. 160x 160x 141	33,9	160	14	17	8,5	43,2	4,45	11,31	6,79	5,66	0,625	19,4
L 160x 160x 15"	36,2	160	15	17	8,5	46,1	4,49	11,31	6,35	5,67	0,625	17,3
L160x 160x 161	38,4	160	16	.17	8,5	49,0	4,53	11,31	6,41	5,69	0,625	16,2
L160x160x17"*	40,7	160	17	17	8,5	51,8	4,57	11,31	5,46	5,70	0,625	15,3

Omversite de Dejara/geme Civil/Civi2010

Distanti			Valeurs	statiques	Section pro	perties / St	atische Kenn	werte		1 201	assificati			22	
Dēsignatik Designatik Bezelchnu	20)	. 3	xe y-y / axe z- kb y-y / axb z- se y-y / Achse	-2	axe u-u ax's u-u Achse u-u		axe axis Achs			EN 1993-1-1: 2005 Pure compression			5-2: 2004	BN 10025-4: 2004	BN 102252001
	G kg/m	j− l, mm²	W _{elg} w W _{eLr}	ij− i, mm	l, mm ^a	mm	mm ^e	mm	mm ^e	52.35	23.55	54 60	EN 10025-2;	N 1002	BN 102
	0.796/000	x10 ^t	x101	x10	x10 ⁴	x10	x10 ²	x10	x10 ⁸	in	1/1	un	ш	9	
L120x120x8	147	SEE A	20.44	2.00	Anc n	ACC	1040	2.27	450.0	3	4	4	1	1	7
	14,7	255,4	29,11	3,69	406,0	4,65	104,8	2,37	-150,6	The second			1	Y)	
L 120x 120x 10 L 120x 120x 11	18,2	212,9	36,03	3,67	497,6 EASE	4,63	128,3	2,75	-184,6 -200.0	7	3	3	1	V	4
	19,9	340,6	39,41	3,66	541,5	4,62	139,8	2,35	-200,9	1	3	3	V	1	×
L 120x 120x 12	21,6	367,7	42,73	3,65	584,3	4,61	151,1	2,34	-216,6	I S			1	1	y
L 120x 120x 13	23,3	394,0	46,01	3,64	625,8	4,59	162,2	2,34	-231,B	1	1	3	V	1	V
L 120x 120x 15	26,6	444,9	52,43	3,62	705,6	4,56	184,2	2,33	-260,7	7	1	1			¥
L 120x 120x 16	28,3	469,4	55,57	3,61	743,8	4,54	195,0	2,33	-274,4	4	1	10	*	V	X.
L 130x 130x 10	19,8	401,1	42,47	3,99	637,8	5,03	164,5	2,55	-236,7	3	3		4		
L 130x 130x 12	23,5	472,2	50,44	3,97	750,6	5,00	193,7	2,54	278,4	1	3		V		
L130x130x13	25,4	506,5	54,35	3,96	804,9	4,99	208,1	2,54	-298,4	1	2		4		
L 130 x 130 x 14	27,2	540,1	58,70	2,95	857,9	4,98	222,3	2,53	-217,B	1	1		4		
L 130 x 130 x 16	30,8	605,0	65,75	3,93	959,7	4,94	250,3	2,53	-354,7	1	1		1		
L 150 x 150 x 10	23,0	624,0	56,91	4,62	992,0	5,82	256,1	2,96	-368,0	1	4	4	7	1	7
L150x150x12	27,3	736,9	67,75	4,60	1172	5,80	307,1	2,94	-434,9	3	3	3	V	1	V
L150x150x13	29,5	791,7	73,07	4,59	1259	5,79	324,6	2,94	-467,1	2	3	3	V	V	¥
L150x150x14	31,6	845,4	78,31	4,58	1344	5,77	346,9	2,93	498,5	1	3	3	V	1	V.
L150x150x15	33,8	898,1	83,52	4,57	1427	5,76	369,0	2,93	-579,1	1	2	3	V	V	V
L 150 x 150 x 16	35,9	949,7	88,05	4,56	1509	5,74	390,8	7,92	-558,9	1	2	3	1	V	V
L150x150x18	40,1	1050	98,74	4,54	1666	5,71	433,8	7,92	-616,1	1	1	2	1	4	V
L 150 x 150 x 20	44,7	1146	108,6	451	1817	5,68	476,7	7,91	-670,2	1	1	1	V	Y	Ý
L 160 x 160 x 14	33,9	1034	89,50	4,89	1644	6,17	423,9	3,13	609,9	7	3		V.		
L160x160x15	36,2	1099	95,47	4,88	1747	5,16	450,9	3,13	-647,9	1	3		1		
L160x160x16	38,4	1163	101,4	4,97	1848	6,14	477,7	3,17	-685,0	1	2		1		
L160x160x17	40,7	1225	107,2	4,86	1947	6,13	504,2	3,12	-721,2	1	2		V		

Mousse de Polyuréthane sans HCHC

TABLEAU D'UTILISATION

Charges maximales admissibles en daN/m2 en fonction des portées d'utilisation (pour épaisseurs de parements (50 - 0,50 mm)

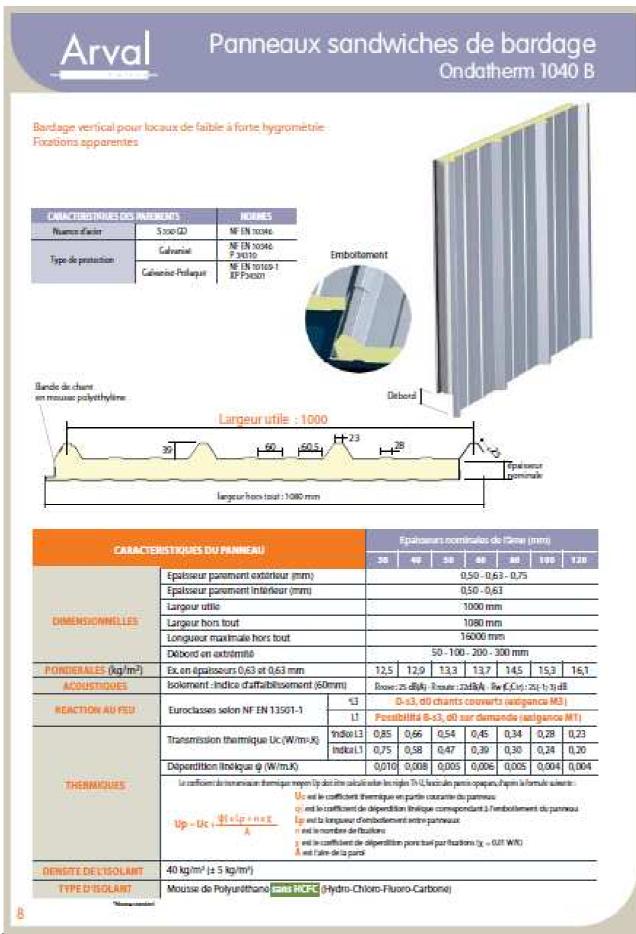
14				2.80	PUS					A .						
			-11			Talle		PORTÉE								
								(m)			30				100	
PRESSION -			0-2	3 - 3		330	270	1.34								PRESSION
DEPRESSION						340	240	2,60								DEPRESSION
RESSON					280	260	210	200								PRESSION
DEFRESSION			Jane 1	and the second	220	770	730	2,25	4.00							DEPRESSION
RIESSION	= 0.0		790	250	730	200	130	70.000	340	175		8 8				PRESSION
EPRESSION.			330	190	190	190	190	2,50	190	190						DEPRESSION
RESION			250	260	215	170	140	Company of	195	7.25	260					PRESSION
DEPRESSON			205	170	1.70	170	170	2,73	170	1.70	170	200	ansi.			DEPHESSON
RESSON	720	200	220	220	185	140	7.15	1000000	168	190	225	250	250			PRESSION
DEPRESSION.	190	190	190	155	.155	155	335	3,50	155	155	155	355	190	1400	133.6	DEPOESSION
SESSION	198.	195	195	195	155	129	100	22.00	140	165	190	220	220	729	220	PRESSION
DEPRESSION.	11%	175	175	140	140	140	140	3,25	140	140	140	3.40	175	175	175	DEPOSSION
PRESSION	139	130	170	130	130	100	75	100	120	140	165	300	200	700	200	PRESSION
DEFRESSION	100	160	700	130	130	130	130	3,30	130	130	130	120	100	160	100	DEPRESSION
PRESSION	150	150.	350	150	110	- 85	70		105-	125	145	390	100	180	100	PRESSION
DEPRESSION	150	150	150	315	186	115	135	3,75	115	115	135	315	110	-150	150	DEPRESSION
RESSION	130	130	130	130	. 15	20	60	100.00	100	110	125	160	160	160	100	PRESSION
DEPRESSION	140	140	340	105	105	105	105	4,00	105	105	105	305	-140	1400	140	DEPRESSION
RESSON	110	110	130	110	-00	-55			75	- 15	110	250	150	150	150	F0E53008
DEPRESSION	130	130	130	95	15	255		4,25	95	- 25	.95	95	130	130	130	DEPRESSION
RESSION	85	95	93	90	-65				65	- 85	100	130	130	130	130	PRESSION
DEPRESSION	120	130	130	90	30			4,58	90	.10	90	90	120	120	130	DEPRESSION
MESSION	100	60	60	80	-55				60	75	90	120	170	120	120	PRESSION
DEPTHISSION	115	115	145	60	80			4,75	80	80	30	80	115	315	115	DEPOSITS ON
RESSON	70	70	.70	76				Prancial r	55	65	85	105	105	105	1988	PRESSION
SPESSON.	110	310	1100	75				5,00	75	25	25	75	110	110	130	DEPRESSION
FIESSON	60	60	60	60				2000		55	70	95	95	185	75	PRESSION
DEPRESSION	105	105	105	-65				5,25		65	-65	65	105	105	105	DEPRESSION
PRESSION			-	100				01/200		10	45	95	165	18	155	PRESSION
DEFRESSION			la a					2,30		00	60	:60	100	100	100	DEPRESSION
RESSION								100000		-	55	25	75	75	75	POESSION
DEPRESSION								5,75	_		50	50	70	10	50	DEPRESSION

(les parimeiaus sons fixes à chaque sommet de minsure et sur tous les appuis)

FILM DE PROTECTION

Un film polylithylane achied de protection est appliqui en usine sur les paraments politaquis entanteur et intérieur des paraments. Datei-di devra être enlavé au fur et à messes de la pose et au plus fand 3 mois après la mise à disposition de la manthandise en usine.

PERCAGES ET DECOUPES


Crars la mesara die popultile, detter foute découpe sur site.

Aftin de limitur les reques de décritoarisation mousse-métal lors d'une opération de découpe, il est conseillé de poser le parmisse sur des appuis de telle sorte que les parements entérieures installeurs de part et d'autre de la découpe (matériel conseillé-sciensauteuse).

Los d'une opération de découps, protiger la sone entremante afin d'élèter de délérieur le svétiment des panneaux. Après toute opération de découpe ou perpage, il conviendes de balayer immédiatement les panneaux afin d'élèteres toutes limailles ou copeaux.

CALEFINAGE

Avail toute commands, wealth; apporter use attention particulties as calephage get sera guard drave mission moves corrects at rapide. Unlook do commande se trouve à la fin de cette documentation afin de rous apsider dans cette démandre.

Panneaux sandwiches de bardage Ondatherm 1040 B

TABLEAU D'UTILISATION

Charges maximales admissibles en daN/m² en fonction des portées d'utilisation (pour épaisseurs de parements 0,50 - 0,50 mm)

			2 AP	PUES												
		Epaix	sours n	omina	les de	řáme		PORTÉE								
	120	100	800	600	50	40	30	(m)	30	40	500	60	80	100	120	
PRESSION					141	119	101		149							PRESSION
DEPRESSION				156	142	128	96	3,00	109	132	148					DEPRESSION
2005300N				142	123	103	84		130	150	160					PRESSION
DEPRESSION			151	139	124	109	84	3,20	97	119	133	148				DEPRESSION
PRESSION			145	127	109	90	71		115	132	153	160				PRESSION
DEPRESSION	158	158	133	124	109	94	74	3,40	86	107	120	132	127			DEPRESSION
PRESSION	148	148	131	1114	97	79	60	2.40	102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	1111	96	81	66	3,60	78	97	108	119	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52		91	104	123	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59	3,80	72	88	98	108	115	122	122	DEPRESSION
PRESSION	120	120	107	93	78	63	45		81	93	1111	129	160	160	160	PRESSION
DEPRESSION	117	117	97	90	76	63	54	4,00	66	79	89	99	110	120	120	DEPRESSION
PRESSION	108	108	97	85	71	56			73	83	100	118	157	160	160	PRESSION
DEPRESSION	105	105	88	81	69	56		4,20	61	72	81	90	105	119	119	DEPRESSION
PRESSION	98	98	88	78	64	51			67	75	91	108	144	160	160	PRESSION
DEPRESSION	94	94	79	74	62	50		4,40	55	65	74	83	100	117	117	DEPRESSION
PRESSION	89	89	80	71	59	46			61	68	84	99	126	153	153	PRESSION
DEPRESSION	85	85	72	68	56	45		4,60	48	60	68	77	96	115	115	DEPRESSION
PRESSION	81	81	74	66	54				56	62	77	92	111	131	131	PRESSION
DEPRESSION	78	78	66	62	51			4,80	42	55	63	71	85	100	100	DEPRESSION
PRESSION	74	74	68	61	50			5.00	51	57	71	85	99	112	112	PRESSION
DEPRESSION	71	71	60	57	47			27,000	37	50	58	65	76	86	86	DEPRESSION
PRESSION	69	69	62	56	46			5.20	47	52	66	80	88	97	97	PRESSION
DEPRESSION	65	65	55	53	43			5,20	32	46	53	60	68	75	75	DEPRESSION
PRESSION	63	63	58	52				5,40		48	61	75	81	88	88	PRESSION
DEPRESSION	60	60	51	49				25,400		43	49	56	62	68	68	DEPRESSION
PRESSION	59	59	54	49				5.60			57	70	76	82	82	PRESSION
DEPRESSION	55	55	47	46				5/60			46	52	57	63	63	DEPRESSION
PRESSION	54	54	50	46				5.80			53	66	71	77	77	PRESSION
DEPRESSION	51	51	44	43				2/60			43	49	53	58	58	DEFRESSION
PRESSION	51	51	47					6.00			50	62	67	72	72	PRESSION
DEFRESSION	47	47	41					negranal			40	45	50	54	54	DEPRESSION

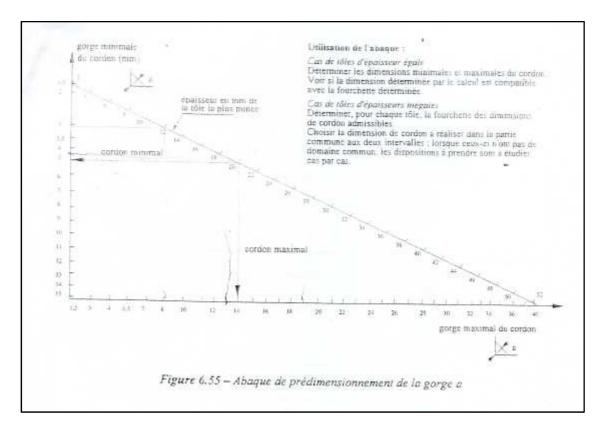
(les parmeaux sort fixés à chaque sommet de nervure et sur tous les appuis)

FILM DE PROTECTION

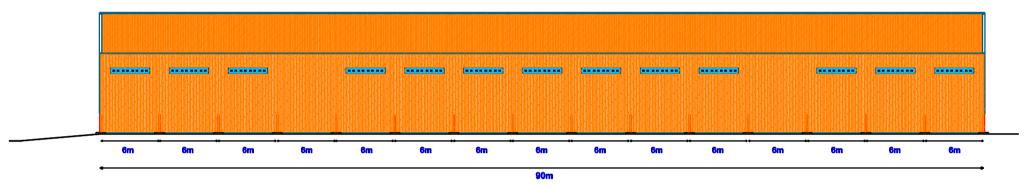
Un film polyéthylène adhésif de protection est appliqué en usine sur les parements prélaqués extérieur et intérieur des panneaux. Celul-ci devra être enlevé au fur et à mesure de la pose et au plus tard 3 mois après la mise à disposition en usine de la marchandise.

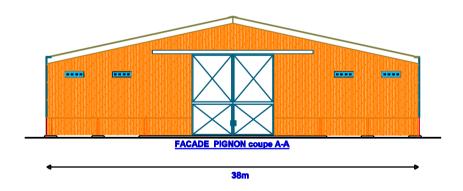
PERÇAGES ET DECOUPES

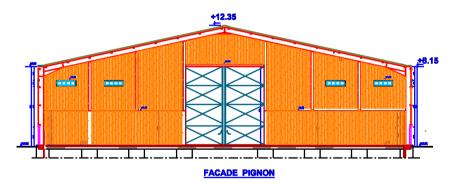
Dans la mesure du possible, éviter toute découpe sur site.

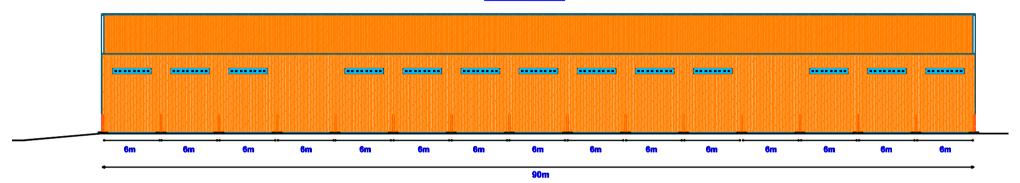

Afin de limiter les risques de désolidarisation mousse-métal lers d'une opération de découpe, il est conseillé de poser le panneau sur des appuis de telle sorte que les parements extérieur et intérieur soient maintenus de part et d'autre de la découpe (matériel conseillé : scie sauteuse).

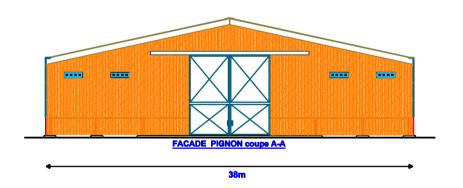
Lors d'une apération de découpe, protéger la zone environnante afin d'éviter de détériorer le revêtement des panneaux. Après toute opération de découpe ou perçage, il conviendre de balayer immédiatement les panneaux afin d'éliminer toutes limailles ou copeaux.

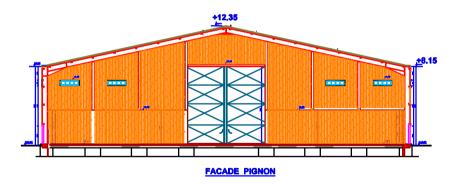

CALEPINAGE


Avent toute commande, veuillez apporter une attention particulière au calepinage qui sera garant d'une mise en œuvre correcte et rapide. Un bon de commande se trouve à la fin de cette documentation afin de vous se sister dans cette démarche.


Abaque de pré-dimensionnement de la gorge a


FACADE LONG PAN





FACADE LONG PAN

