République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université A. MIRA - Béjaïa -Faculté des Sciences Exactes Département de Chimie

Mémoire de Master

Présenté par : AROUR Nadjat HAMANI Chafia

En vue de l'obtention du diplôme de Master en Chimie Spécialité : Chimie des matériaux

Synthèse et caractérisation des phases (1-x)SrTiO₃-xNaF-xMgF₂(x=0,225 à 0,3)

Soutenu le : 20. 06. 2013

Devant le jury composé de :

M ^{me} AMARNI	Fatiha	Président
M ^r BENMERAD	Belkacem	Examinateur
M ^{me} AIT-BRAHAM	Laila	Examinateur
M ^{me} TOUATI	Djahida	Encadreur

2012-2013

Remercíements

Nous tenons à remercier notre promotrice M^{me} **D.Touati** de nous avoir encadré et d'avoir guidé notre travaille, pour sa disponibilité, ses orientations et ses remarques fructueuses.

Nos remerciements vont à M^{me} F.Amarni d'avoir accepté de présider le jury de soutenance de Master, M^{me} L. Ait-Brahem et M^{r} B. Benmerad d'avoir accepté d'examiner notre travail.

Nos remerciements vont aussi, à tous les techniciens de laboratoire du département de chimie et à M^{me}. Z.Benidiri, technicienne supérieure au laboratoire de physique atomique pour leur disponibilité et leur gentillesse.

On n'oublie pas bien sûr, **M**^r **H.Benidiri**, responsable du diffractogramme de poudre, pour toutes les analyses de diffraction des rayons X.

M^r T. Moustefaoui, responsable de l'appareil Raman.

M^{elle} W. Rabhi technicien supérieure à l'université de Bejaia pour les analyses de l'infrarouge.

M^r A.H. kouache et A.H. Oulhaci les bibliothécaires, pour leurs disponibilités et leurs gentillesses.

En fin, nous remercions touts les personnes qui ont contribué à la réalisation de ce travail.

SOMMAIRE

INTRODUCTION	2
CHAPITRE I : LES CERAMIQUES	
I.1.DEFINITION	4
I.1.1. Choix de la matière première (naturelle ou synthétique)	4
I.1.2. Broyage et homogénéisation	4
I.1.3. Mise en forme (le moulage)	5
I.14. Chamottage (ou calcination)	5
I.1.5. Frittage	5
I.2.CLASSIFICATION DES MATERIAUX CERAMIQUES	5
I.2.1. Céramiques traditionnelles	5
I.2.2. Céramiques techniques	6
I.3. LES DIFFERENTS FAMILLES DES CERAMIQUES TECHNIQUES	\$7
I.3.1. Les oxydes métalliques	7
I.3.2. Les carbures	7
I.3.3. Les nitrures	7
CHPITRE II : FRITTAGE	
II.1. DEFINITION	11
II.2. ASPECTS THEORIQUES ET MECANISMES DE FRITTAGE	12
II.3. LES DIFFERENTS STADES DU FRITTAGE	13
CHAPITRE III : LES PEROVSKITES	
III.1. DEFINITION	15
III.2. LA STABILITE DE LA STRUCTURE PEROVSKITE	16
III.3. LE TETANATE DE SRONTIUM	17
III.4. LES PROPRIETES DES PEROVSKITES	18
III.4.1. La piézoélectricité	19
III.4.2. La ferroélectricité	20
III.4.3. La pyroélectricité	21
CHAPITRE IV : TECHNIQUES DE CARACTERISATION	
I. LA DIFFRACTION DES RAYONS X (DRX)	23
IV.1.1. schéma de Principe par la méthode de Bragg-Brentano	23
IV.2. MICROSCOPIE ELECTRONIQUE A BLAYAGE (MEB)	24
IV.3. ENERGIE DISPERSIVE SPECTROMETRIE (EDS)	25

IV.4. LES ANALYSES THERMIQUES	
IV.4.1. Analyse thermique différentielle (ATD)	26
IV.4.2. Analyse thermogravimétrique différentielle (ATG)	27
IV.4.3. Analyse Calorimétrique différentielle (DSC)	28
IV.5. SPECTROSCOPIE RAMAN	29
IV.6. INFRAROUGE (IR)	
VI.6.1. Historique	30
VI.6.2. Définition	31
VI.6.3. Principe	31
PARTIE PRATIQUE	
I. TECHNIQUES DE SYNTHESE ET DE CARACTERISATIONS	34
I.1. Technique de synthèse	34
I.2. Analyse radiocristallographique sur poudre (DRX)	35
I.3. Analyse Raman	36
I.4. Analyse infrarouge	37
II. RESULTATS ET INTERPRETATIONS	
II.1. Analyse DRX de SrTiO ₃ , SrCO ₃ et TiO ₂	
II.2. Analyse DRX des phases oxyfluorées	40
II.3. Analyse par spectroscopie Raman	46
II.4. Analyse par Infrarouge (IR)	47
CONCLUSION	52
BIBLIOGRAPHIE	54
ANNEXE 1 : LISTE DES TABLEAUX	58
ANNEXE 2 : LISTE DES FIGURES	60

Introduction

La fabrication et l'utilisation des céramiques traditionnelles remontent à plus de 5000 ans. Elles étaient et elles restent essentiellement utilisées pour la décoration et la construction (briques, tuiles...). Actuellement les propriétés optiques, électriques, magnétiques propres aux céramiques permettent un domaine d'application très vaste. Les céramiques techniques sont de plus en plus utilisées, dans l'électronique, l'électrotechnique, comme matériaux biocompatibles [1-6].

Les matériaux pérovskites ont été décris pour la première fois par le minéralogiste Gustave Rose. Ce sont un ensemble de composés possédant un arrangement cristallin ABX₃. Ces matériaux, grâce a leurs propriétés piézoélectriques, pyroélectriques, ferroélectriques, à leur stabilité thermique et chimique, et à la facilité de leurs mises en œuvre, sont utilisées dans de nombreuse applications comme : les condensateurs, les filtres pour la radio, les haut parleurs stéréo, les sonars piézoélectriques... [7].

Dans ce travail, Nous avons d'abord utilisé la méthode par voie solide pour synthétiser la pérovskite SrTiO₃, et les solutions solides oxyfluorures, dérivées de cette dernière.

Dans la deuxième partie du travail, on a caractérisé les phases inédites, en utilisant :

- l'analyse cristallographique sur poudre (DRX),
- l'analyse par spectroscopie Raman,
- l'analyse par spectroscopie infrarouge.

CHAPITRE I LES CERAMIQUES

I.1. DEFINITION

Le terme céramique vient du grec keramikos, qui signifie « argile cuite ». C'est un produit issu de la cuisson d'une terre argileuse qui peut être émaillée ou vitrifiée en surface pour donner la faïence, de la porcelaine...etc. Les céramiques sont des matériaux inorganiques caractérisés par des liaisons fortes de natures covalente ou ionique. Ceci se traduit dans la pratique par une très bonne tenue en température, Une excellente rigidité élastique, une bonne résistance à la corrosion et une bonne résistance à l'usure [1].

L'élaboration de la céramique se fait en 5 étapes : elles sont représentées dans l'organigramme suivant :

Fig.1. Organigramme de principales étapes de fabrication de la céramique.

I.1.1. Choix de la matière première (naturelle ou synthétique)

L'industrie céramique emploie des matières extrêmement variées pour s'adapter à la diversité de sa gamme de produits. Elle utilise à la fois des matières naturelles et des matières synthétiques [8].

I.1.2. Broyage et homogénéisation

Dans le but de facilité :

• L'homogénéité : plus l'argile est divisée finement et répartie régulièrement, plus l'action liante, sera efficace.

• le choix de la granulation : plus le temps de broyage sera long, plus le grain sera fin [8].

I.1.3. La mise en forme (le moulage)

C'est lorsque la poudre est compactée et portée à une température pour laquelle la diffusion devient très rapide, les particules se soudent entre elles pour formée de petits cols qui s'élargissent peu à peu, réduisant ainsi l'énergie de surface et provoquant la densification de poudre [9].

I.1.4. Chamottage (ou calcination)

Il conduit à la décomposition des hydroxydes, des carbonates, des nitrates... [8].

I.1.5. Frittage

Le frittage est un procédé de fabrication de pièces consistant à chauffer une poudre sans la mener jusqu'à la fusion [10].

I.2. CLASSIFICATION DES MATERIAUX CERAMIQUES

I.2.1. Céramiques traditionnelles

Ce sont les premiers matériaux que l'homme a fabriqué sous forme de poteries et de briques (figure 2), à partir des matières premières naturelles (argile, kaolin, sable, feldspath, quartz) par cuisson à température élevée (entre 850 et 1200°C). Les céramiques obtenues sont composées de silicates et de silico-aluminates complexes [11], les principaux céramiques sont présentés dans le tableau1 [1].

Fig.2. Exemple de la céramique traditionnelle.

dénomination	produit	Texture et aspect	Surface émaillée	Température de cuisson [°C]
Terres cuites	Brique de construction Tuiles Carrelages	Poreux, rouge	non	900à1000
Poteries : -horticoles -culinaires -décoratives	Pots à fleurs Ustensiles de cuisson d'aliments Objets décoratifs	Poreux, rouge Poreux, coloré	oui	950à1200
Faïence	muraux vaisselle Objet décoratifs	Poreux, peu coloré	oui	950à1200
Grés	Appareille sanitaires Tuyaux Récipients Carreaux de sol	Peu poreux, peu coloré	oui	1100à1200
Grés cérame	Carreaux de sol	Très peu poreux, blanc ou volontairement coloré	non	1200 à 1300
Vitreous	Vaisselle Appareille sanitaire	Non poreux, opaque, blanc	oui	1200à1300
porcelaines	Vaisselle Objets décoratifs	Non poreux, translucide, blanc	Oui (sauf biscuits de porcelaine)	1300à1450

Tableau 1. Principaux c	céramiques traditionn	els aluminosilicates.
-------------------------	-----------------------	-----------------------

II.2.2. Céramiques techniques

Ce sont des produits conçus pour les applications industrielles particulièrement exigeantes pour fabriquer et développer des matériaux plus performants et utilisables dans la nouvelle technologie, l'utilisation des céramiques techniques se justifie, dans un grand nombre d'applications, grâce à la diversité des propriétés exceptionnelles offertes ainsi que par la conception des pièces finies prêtes à l'emploi. Les principales applications sont rappellés dans le tableau 2 [9].

Application	Propriété	Matériaux
Outils de coupe	Dureté, ténacité	Alumine, sialons
Paliers, chemises, segments d'étanchéité	Résistance à l'usure	Alumine, zircone
Outillage agricole	Résistance à l'usure	Alumine, zircone
Pièces de moteurs et de turbines, buses de brûleurs	Résistance à la chaleur et à l'usure	SiC, Si ₃ N ₄ , alumine, sialons, composite céramique-céramique
Protections et blindages	Dureté, ténacité	Alumine, carbure de bore
Hublots à hautes performances	Transparence et solidité	Alumine, magnésie
Os, dents et articulations artificiels	Résisance à l'usure, solidité	Zircone, alumine
Substrats de circuits intégrés	Isolations, résistance à la chaleur	Alumine, magnésie

Tableau 2. Applications des céramiques techniques .

I.3. LES DIFFERENTS FAMILLES DES CERAMIQUES TECHNIQUES

I.3.1. Les oxydes métalliques

Se sont les plus importants parmi les céramiques techniques. Cette première famille des céramiques est présente dans tous les domaines. Nous avons présenté dans le tableau 3 les principaux oxydes.

I.3.2. Les carbures

Le tableau 4 présente la famille des carbures et ils sont caractérisés par : une très bonne conductivité thermique et électrique, une haut stabilité, une grand dureté, et un point de fusion élevé, mais elles sont très fragiles.

I.3.3. Les nitrures

Les éléments de troisième, quatrième groupe de la classification du tableau périodique, forment des nitrure à haute point de fusion, les principaux nitrures présenté dans le tableau 5 [12].

Nom	Synonymes	Struct.cristal.couleurs	utilisation
	formules		
Oxyde d'aluminium	Alumine Al ₂ O ₃	hexagonale incolore	mécanique, thermique, électronique, biomédical, chimique, optique,
	α- Alumine (corindon)	rhombique incolore	
	γ- Alumine	cristalline microscopique blanc	
Oxyde de Béryllium	(bromellite) BeO	hexagonale blanc	électronique
Oxyde de chrome	CrO ₂	poudre brun - noir	thermomécanique, magnétique
	Cr ₂ O ₃	hexagonale vert	
Oxyde de fer	(wuestite) FeO	cubique noir	magnétique
	(magnétite) Fe ₂ O ₃	cubique noir ou poudre rouge - noir	magnétique
	Fe ₃ O ₄		Magnétique
Oxyde de magnésium	Magnésie (périclase) MgO	cubique incolore	thermique
Oxyde de silicium	(quartz) SiO ₂	hexagonale incolore	électronique, mécanique
	(tridymite) SiO ₂	rhombique incolore	
	(cristobalite)	cubique ou	
	SiO ₂	tétraédrique incolore	
Oxyde de Zirconium	Zircone ZrO ₂ (HfO ₂ <2%)	monoclinique en dessous de 1000°C et cubique au dessus blanc	thermomécanique, thermique, mécanique, électrique, électronique

I apicau. J. Les principaux oxyues	Tableau.3.	Les	princi	paux	oxydes
---	------------	-----	--------	------	--------

Noms	Synonymes formules	Struct. cristal. couleurs	Utilisations
Carbone	С	amorphe noir	nucléaire
Carbure de bore	B ₄ C	rhomboédrique noir	mécanique, nucléaire
Carbure de silicium	SiC	hexagonale ou cubique incolore - noir	thermique, thermomécanique, mécanique, électrique, électronique, nucléaire, chimique, militaire
Carbure de zirconium	ZrC	cubique	carbure d'insertion
Graphite	С	hexagonale noir	fibres réfractaires

	А Т		•	•	1
I ableau.	4. L	Jes	prine	cipaux	carbures.
	-		r	- F	

Tableaux. 5. les principaux nitrures.

Noms	Synonymes formules	Struct. cristal. couleurs	Utilisations
Nitrure d'aluminium	AlN	hexagonale blanc	électronique
Nitrure de bore	BN	hexagonale blanc	mécanique, nucléaire
Nitrure de silicium	Si ₃ N ₄	poudre amorphe	mécanique, thermique, électronique Nitrure de tantale TaN
Nitrure zirconium	ZrN	hexagonale	

CHAPITRE II LE FRITTAGE

II.1. DEFINITION

Le terme frittage est généralement défini comme le traitement thermique conduisant à la formation des liaisons solides entre grains qui assurer l'élimination de la porosité, la consolidation et la densification des pièces céramique.

Le frittage est un procédé de fabrication de pièces, qui consiste à chauffer une poudre sans la mener jusqu'à la fusion. Sous l'effet de la chaleur, les grains se soudent entre eux, ce qui forme la cohésion de la pièce (figure 3) [1].

Fig.3. Frittage des particules des céramiques [13].

Le frittage est utilisé pour obtenir la densification de matériaux céramiques, il permet aussi :

- de maîtriser la densité de la matière ; comme on part d'une poudre et que celle-ci ne fond pas, on peut maîtriser la taille des grains de poudre et la densité du matériau, selon le degré d'assemblage initial des poudres et/ou l'utilisation de dopants, et/ou l'adjonction de liants...
- d'obtenir des matériaux durs mais fragiles, à porosité contrôlée, inertes chimiquement (faible réactivité chimique et bonne tenue aux corrosions) et thermiquement.
- de maîtriser les dimensions des pièces produites : comme il n'y a pas de changement d'état, les variations de volume, de dimensions, sont peu importantes par rapport à la fusion [1].

II.2. ASPECTS THEORIQUES ET MECANISMES DE FRITTAGE

Macroscopiquement la force motrice est la diminution de l'excès d'énergies affilie aux surfaces d'un corps poreux, cela peut passer par :

- La diminution de l'aire totale de la surface liée à une augmentation de la taille des particules.
- Le transfert des surfaces solide-vapeur aux joints de grains qui est suivie d'une croissance granulaire.

Le frittage va éliminer l'excès d'énergie de surface d'un corps cru poreux (sous forme de poudre) en transformant les interfaces solide-solide et en diminuant l'aire des joints de grains.

Un corps cru correspondant à 1 mol de matière et constitué de N particules de forme sphériques

Où ρ : la masse volumique des particules

M : la masse molaire du matériau

V_m : volume molaire

r : le rayon de la sphère

L'air de surface solide-vapeur d'un système de la particule est :

tel que S : la surface solide vapeur

Si $\gamma_{s v}$ l'énergie spécifique de surface solide-vapeur, l'énergie correspondant à ce système de la particule est [1]:

$$E \ s \ = \frac{3 \ k \ \mathcal{V}_m}{r} \qquad [3]$$

II.3. LES DIFFERENTES ETAPES DU FRITTAGE

Dans le frittage on distingue trois étapes : le stade initial, le stade intermédiaire et le stade final (figure 2) [10,14].

• Le stade initial

Dans ce stade les particules que l'on peut assimiler à des sphères toutes identiques commencent par se coller entre elles, avec formation de pont ou un col de matière entre deux sphères adjacentes. Ce stade est considéré généralement terminé quand le rayon des ponts ou des cous atteint 40 à 50% du rayon des particules [1,10].

• Le stade intermédiaire

Les pores emprisonnés dans le matériau sont éliminés, après que les cous se soient développés [1,10].

• Le stade final

Dans ce dernier stade de densification, on considère que les pores une fois isolés, continuent de rétrécir jusqu'à leur disparition plus ou moins complète [10].

La figure 4 schématise les différents stades du frittage.

Fig.4. Les différents stades du frittage [7].

CHAPITRE III LES PEROVSKITE

III.1. DEFINITION

Les pérovskites forment une large famille d'oxydes cristallins dont le nom dérive d'un minéral naturel CaTiO₃ (le titanate de calcium) identifié par le minéralogiste russe Lev Alekaevich Perovski [1].

La formule générale des pérovskites est ABO₃, la maille est de structure cubique, avec le groupe de symétrie Pm $\overline{3}$ m [15]. Le cation A occupe les sommets du cube ; le cation B occupe le centre de la maille et les positions aux centres des phases sont occupés par les oxygènes, les gros cations « A » sont entourés de 12 plus proches voisins oxygène (coordinence 12) alors que les petits cations « B » sont au centre d'un octaèdre d'oxygène (coordinence 6) [1].

La phase pérovskite est l'une des phases ternaires les plus répandues et les plus étudiées dans le domaine de la ferroélectricité.

Il est cependant plus simple de la décrire comme un réseau d'octaèdres BO₆ liés par leurs sommets, le cation A occupe les cavités entre 8 octaèdres comme le montre la figure 5.

Les pérovskites les plus connues du type BaTiO₃, CaTiO₃, SrTiO₃ ou (PbSr) TiO₃ sont principalement utilisées en tant que diélectriques pour la fabrication de condensateurs multicouches, des thermistances, transducteurs... [16].

Fig.5. Représentation du réseau tridimensionnel d'octaèdres BO₆ [17].

Il existe deux catégories de pérovskite en fonction de types d'atomes qui occupent les sites A et B :

• Les structures pérovskites simples

Ce sont les structures ABO₃ dont les sites A ou B sont occupés par un seul type d'atome comme : SrTiO₃, BaTiO₃, NaTaO₃, PbTiO₃...

• Les structures pérovskites complexes

Ce sont les structures ABO₃ dont l'un des deux sites A ou B est occupés par deux types d'atomes comme : $K_{0.5}Bi_{0.5}TiO_3$, $Na_{0.5}Bi_{0.5}TiO_3$... [18].

III.2. LA STABILITE DE LA STRUCTURE PEROVSKITE

La structure pérovskite dépend essentiellement de deux paramètres de stabilité, le premier est le facteur de tolérance et le deuxième est l'ionicité de liaison anion-cation [19].

• Le facteur de tolérance t

Il est défini par Goldschmidt quantifie globalement la compacité de la pérovskite et la liberté de mouvement des cations A et B.

 $t = \frac{R_A + R_0}{\sqrt{2}(R_B + R_0)} \dots [4]$

Où R_A : le rayon ionique de A

R_B : le rayon ionique de B

R_O: le rayon ionique de O

 $0.89 \le t \le 1$: structure idéale de la pérovskite.

 $0.77 \le t \le 0.89$: structure déformée de la pérovskite.

• L'ionicité de la liaison anion-cation

Le caractère ionique d'une composition pérovskite ABO₃ est quantifié d'après l'échelle de Pauling à partir de la différence.

Où X_{A-O} : la différence d'électronégativité entre (A-O)

X_{B-O}: la différence d'électronégativité entre (B-O) [11].

III.3. LE TITANATE DE STRONTIUM

Les pérovskites sont une classe extrêmement importante des matériaux en céramique et le titanate de strontium (SrTiO₃) est l'un des matériaux en céramique électroniques les plus couramment employés [20].

Le titanate de strontium fait partie de la famille des pérovskites de type ABO₃, dont les principaux minéraux représentatifs sont la tausonite, la fabulite et la marvelite ; où les cations peuvent occuper les sites A et B. Sa structure cristallographique consiste en un empilement de couches SrO et TiO₂ le long de l'axe cristallin [001] [21].

Le titanate de strontium SrTiO₃ cristallise dans une maille cubique (figure 6) avec:

Une symétrie du groupe spatiale $P \ \overline{m} \ \overline{B}$;

Un paramètre de maille $a_c = a = 3,905$ Å à température ambiante (300 K); Une densité théorique r = 5,12 g/cm³.

Dont les huit sommets sont occupés par les ions Sr^{2+} , entourés de12 atomes d'oxygènes. Les 6 ions oxygène O^{2-} occupent les milieux des arêtes et les ions Ti^{4+} se situent au centre du cube en coordinence 6.

Sr²⁺ : aux sommets de la maille : 000 Ti⁴⁺ : au centre de la maille : $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ O²⁻ : aux centres des faces : $\frac{1}{2} \frac{1}{2} 0$ $\frac{1}{2} 0 \frac{1}{2}$ 0 $\frac{1}{2} \frac{1}{2}$

Le titane se situe au centre du cube formé par les ions Sr^{+2} entouré par les 6 atomes d'oxygène pour former l'octaèdre (les 6 oxygènes placés au centre des faces du cube) [22].

Fig.6. La structure pérovskite SrTiO₃ [21].

Le titanate de strontium SrTiO₃ subit une transition de phase cubique à tétragonale (a = b \neq c) avec une très faible variation de (c_{max} = 3,900 Å) s'effectue autour de 105 K par la rotation antiferrodistorsive des octaèdres TiO₆ qui tournent dans des sens inverse en cellules d'unité voisines (figure 7) [23].

Fig.7. Transition de phase de SrTiO₃ [24].

Quelques applications du titanate de strontium dans le domaine électronique

- ➤ Les condensateurs [25],
- Les sensors ou détecteurs de gaz ou d'humidité [26],
- Les applications en catalyse et en photocatalyse [27].

III.4. LES PROPRIETES DES PEROVSKITES

La plupart des pérovskites possèdent des propriétés non linéaires comme la piézoélectricité, la pyroélectricité et la ferroélectricité. Les matériaux diélectriques sont classés en différentes catégories selon qu'ils sont uniquement polarisables par un champ ou par d'autres contraintes comme le montre la figure 8.

Fig.8. Les différents types de diélectriques [11].

III.4.1. La piézoélectricité

La piézoélectricité est l'aptitude de certains matériaux cristallins de transformer une contrainte mécanique en une énergie électrique.

Tous les cristaux à l'état ferroélectriques sont aussi piézoélectriques; une contrainte Z appliquée au cristal change la polarisation électrique. De même un champ électrique E appliqué au cristal provoque la déformation de ce cristal; les équations de la piézoélectricité sont [7] :

$p = Z d + E x \dots$	[6];	effet direct
$e = Z s + E d \dots$	[7];	effet inverse

- p : la polarisation
- Z : la contrainte
- d : la constante piézoélectrique
- E : le champ électrique
- x : la susceptibilité
- e : la déformation élastique
- s : le coefficient d'élasticité

La piézoélectricité est un effet non linéaire relié à la structure microscopique du solide. On distingue 32 classes de symétrie (tableau 6) ou groupes ponctuels de symétrie parmi les 14 réseaux de Bravais. Il existe 21 Parmi les 32 classes qui ne

possèdent pas un centre de symétrie ; parmi ces 21 groupes, seuls 20 sont piézoélectriques (tous les cristaux appartenant à ces groupes sont piézoélectriques sauf ceux du groupe 432) [28]. Et parmi ceux-ci 10 sont pyroélectriques. Enfin parmi ces 10 groupes se trouvent les ferroélectriques [29]. 11 de ces classes sont centrosymétriques, et les matériaux qui leur dépendent ne peuvent pas présenter de propriétés polaires ni aucune polarisation spontanée [1].

Le tableau 5 présente une classification des 32 classes de symétrie :

Axes optiques	Système cristallin	Classes de symétrie Classes de symétriques polaires			es de symét laires	trie non centrosymétriques non polaires				
2 axes	triclinique		1	1		a	aucune classe			
	monoclinique	2	ou m	2	m	a	se			
	orthorhombique	m	imm	n	mm2			222		
1 axe	quadratique	4 ou m	4 ou mmm	4	4mm	4	₹ 42m	22		
	rhomboédrique	3	$\overline{3}m$	3	3m		32			
	hexagonal	6 ou m	6 ou mmm	6	6mm	6	<u>6</u> m2	622		
isotrope optique- ment	cubique	m3	m3m	aucune classe		432	432 3m			
nombre total de classes		11 classes		10 classes		11 classes				

Tableau 6. Les 32 classes de symétrie [1].

III.4.2. La ferroélectricité

Un cristal ferroélectrique présente une polarisation électrique spontanée même en l'absence d'un champ électrique extérieur. Ce comportement apparaît en dessous d'une certaine température appelée point de curie. Au dessus de cette température, le matériau perd son caractère ferroélectrique et montre un comportement paraélectrique.

La courbe de polarisation du matériau en fonction du champ électrique est appelée cycle d'hystérésis, elle caractérise tout matériau férroelectrique [1]. Le cycle d'hystérésis qui représente dans la figure 4 traduit le déplacement des parois de domaines ferroélectriques et l'orientation de ceux-ci sous l'effet du champ électrique alternatif appliqué.

Fig.9. Cycle d'hystérésis d'un matériau ferroélectrique [1].

- P_s: la polarisation
- P_r : la polarisation permanente
- E_c: le champ coercitif
- tan α = (P/E)_i: la pente à l'origine de la courbe

III.4.3. La pyroélectricité

Le phénomène de pyroélectricité capable sous l'effet de la chaleur d'émettre un courant ; la polarisation des cristaux pyroélectriques est en fonction monotone de la température [1].

La variation de la polarisation spontanée $(\vec{P_s})$ en fonction de la température est donnée par :

 $\Delta \vec{P}_s = \vec{p} \cdot \Delta T......[8]$

Où \vec{p} est le vecteur des coefficients pyroélectriques et ΔT est la variation de la température [1].

CHAPITRE IV TECHNIQUES DE CARACTERISATION DES MATERIAUX

IV.1. LA DIFFRACTION DES RAYONS X (DRX)

Ils ont été découverts par Röntgen en 1895 et leur nature ondulatoire a été établie en 1913 avec la réalisation des premières expériences de Von Laüe. Le domaine de longueur d'onde va de 0,1 Å (limite des rayons γ) à 100 Å (limite de l'U.V. lointain).

Cette méthode ne s'applique qu'à des milieux cristallins (roches, cristaux, minéraux, argiles...), qui possèdent un arrangement ordonné, périodique et tridimensionnels des motifs (atomes, molécules, ions) [30].

Lorsqu'un rayon X monochromatique de longueur d'onde λ est envoyé sur un échantillon avec un angle d'incidence θ , les plans réticulaires (hkl) du cristal, équidistants de d_{hkl} (distance inter-réticulaire), vont se comporter comme des miroirs parallèles et réfléchir l'onde électromagnétique, induisant un phénomène de diffraction. L'intensité diffractée sera non nulle seulement si les contributions des plans successifs sont en phase (interférences constructives), c'est-à- dire si la loi de Bragg est respectée :

Lorsque l'angle d'incidence θ correspond à un angle de Bragg pour une longueur d'onde donnée, on enregistre un pic de diffraction dont on mesure l'intensité. La méthode des poudres nous donne les angles de diffraction θ en fonction des intensités I.

IV.1.1. Schéma de Principe par la méthode de Bragg-Brentano

La Figure 10 représente le schéma du principe le plus courant, qu'est un montage en réflexion dit de Bragg-Brentano. Le rayonnement incident est monochromatique. La source S est linéaire et perpendiculaire au plan d'incidence. Elle est placée sur le cercle (C) du diffractomètre. L'échantillon (E) est tel que son plan de référence passe par l'axe du diffractomètre C et tourne autour de cet axe avec une vitesse ω réglable. La fenêtre F du compteur se déplace également sur le cercle (C), à une vitesse angulaire double, 2ω . Pour un angle d'incidences nulles, S, F et C sont alignés. On réalise ainsi un balayage (θ , 2θ).

Fig.10. Principe du diffractomètre de poudre dans la géométrie de Bragg-Brentano.

A tout moment, le plan de référence de l'échantillon (E) est tangent au cercle S C F. On obtient ainsi une focalisation approchée de Bragg-Brentano, dans la mesure où des rayons, de même longueur d'onde, mais légèrement divergents, issus de S, qui sont diffractés avec le même angle de Bragg par des cristallites légèrement désorientés (pour tenir compte de la variation d'incidence), atteignent simultanément le compteur F [31].

IV.2. MICROSCOPIE ELECTRONIQUE A BLAYAGE (MEB)

Le Microscopie Electronique à Balayage est une technique d'analyse qui permet l'observation de la nature des phases en présence, la taille et la forme des grains. Il permet aussi d'apprécier la densification ou la porosité des céramiques.

Le Microscope Electronique à Balayage utilise un faisceau très fin d'électrons, émis par un canon à électrons, qui balaie la surface de l'échantillon. Des lentilles électromagnétiques permettent de focaliser le faisceau d'électrons sur l'échantillon. L'interaction entre les électrons et la matière provoque la formation d'électrons secondaires de plus faible énergie. Ils sont augmentés puis détectés et convertis en un signal électrique. Ce processus est réalisé en chaque point de l'échantillon par un balayage du microscope. L'ensemble des signaux permet de reconstruire la typographie de l'échantillon et de fournir une image en relief [32,33]. Le principe de Microscopie Electronique à Balayage est représenté dans la figure 11.

Fig.11. Schéma de principe du microscope électronique à balayage.

1) Canon à électrons à la tension $(-V_0)$, 2) anode à la masse, 3) condenseur, 4)système de déflexion-balayage, 5) objectif, 6) préparation sur porte-objet goniométrique, 7) détecteur d'électrons à scintillateur, 8) détecteur d'électrons rétrodiffusés à semi conducteur, 9)spectromètre de rayons X à dispersion d'énergie Si(Li), 10) détecteur d'électrons transmis, 11) mesure du courant absorbé, 12) électronique de commande, d'exploitation et de visualisation des images et spectres.

IV.3. ENERGIE DISPERSIVE SPECTROMETRIE (EDS)

Le détecteur EDS utilisé est du silicium dopé au lithium et polarisé. Le photon x est capté par un détecteur, ce qui génère un photon x dont l'énergie se dissipe par création de paire électrons-trous.

L'énergie du photon X (E) est proportionnelle au nombre N de paires électronstrous produit dans le cristal :

$$N = E/\varepsilon.....[10]$$

L'énergie d'ionisation du Si étant de $\varepsilon = 3,8$ eV à 77 K. Le nombre d'impulsion correspond au nombre de photons et on exprime l'intensité en coups par seconde (c.p.s). Un analyseur multicanaux nous permet d'obtenir un spectre I-E, et de

reconstituer ainsi le spectre d'émission de l'échantillon [34]. Le principe de l'EDS est représenté dans la figure 12.

Fig.12. Schéma de principe d'EDS.

IV.4. LES ANALYSES THERMIQUES

Elles comprennent toutes les mesures qui font intervenir la température d'une manière contrôlée. Elles permettent de mesurer des variables d'état de l'échantillon (la masse, la température, le volume,...) et elles permettent de caractériser l'échantillon (la structure, la composition,...) les analyses thermiques comprennent un certain nombre de méthodes telle que l'ATD (analyse thermique différentielle), l'ATG (analyse thermogravimétrique) et la DSC (calorimétrie différentielle à balayage).

IV.4.1. L'Analyse Thermique Différentielle (ATD)

L'analyse thermique différentielle a été la première technique utilisée dans le domaine de l'analyse thermique par Henri LE CHATELIER en 1887 [34]. C'est une technique dans la quelle la différence d'énergie entre un échantillon et une référence est enregistrée en fonction du temps ou en fonction de la température. Elle permet d'identifier les phénomènes exothermiques ou endothermiques lors de la montée en température : évaporation, fusion, cristallisation, oxydation... [35].

Cette analyse peut être utilisée à très haute température, pour étudier par exemple les échanges de chaleur dans les céramiques, les métaux ou les alliages lors des transformations physiques ou chimiques [36].

Tout phénomène thermique au sein de l'echantillon, fait naitre une différence de température qui atteint son maximum en fin de réaction et s'annule plus ou moins lentement jusqu' a ce que l'equilibre thermique soit de nouveau atteint. On enregistre ainsi une inflexion endothermique ou un crochet exothermique qui peuvent permettre l'édentification de la nature du matériau à étudié [32]. La figure 13 présente le principe de l'ATD.

Fig.13. Schéma de principe de l'ATD [37].

IV.4.2. Analyse Thermogravimétrique Différentielle (ATG)

La thermogravimétrie est une technique qui mesure la variation de masse d'un échantillon lorsqu'il est chauffé de la température ambiante à une température T, sous atmosphère contrôlée.

Cette variation peut être une perte de masse ou bien un gain de masse. Elle est utilisée pour étudier les phénomènes chimiques, physiques ou physico-chimiques qui se traduisent sous l'effet de la température. Elle permet de mesurer la stabilité thermique de l'échantillon et de déterminer les paramètres cinétiques de la réaction [38].

L'analyse s'effectue à l'aide d'une thermo balance en fonction de la température (ou du temps) dans un milieu inerte (Azote, Argon ou Hélium) pour des essais à haute température ou oxydant (dioxygène). La figure 14 présente le principe d'ATG.

Fig.14. Schéma de principe de l'ATG [39].

IV.4.3. L'Analyse Calorimétrique Différentielle (DSC)

L'analyse calorimétrique différentielle à balayage (DSC) est une technique qui détermine la variation du flux thermique émis ou reçu par un échantillon lorsqu'il est soumis à une variation de température, sous atmosphère contrôlée. Lors d'une chauffe ou d'un refroidissement, toute transformation intervenant dans un matériau est accompagnée d'un échange de chaleur.

La technique DSC est la même que pour l'ATD, elle permet de mettre en évidence divers phénomènes thermiques, comme la transition vitreuse, la cristallisation, la fusion, les transitions des phases. Cette technique permet de déterminer les températures de transitions des phases et les variations d'enthalpies.

La valeur de la variation d'enthalpie est donnée par l'aire du pic de la courbe :

$$\frac{d H}{d T} = f (T.)....[11]$$

Entre deux températures données T₁ et T₂ :

$$\Delta H = \int_{T}^{T} \frac{2d}{d} \frac{H}{T} dT.$$
 [12]

Le principe de cet appareil est la compensation de puissance : cela consiste à mesurer directement et de façon continue la différence de puissance électrique qu'il faut fournir à la référence et à l'échantillon quand il se produit dans ce dernier une réaction

endothermique ou exothermique de façon à réduire et à annuler la différence de température entre l'échantillon et la référence grâce à un programme de chauffe établi au préalable. C'est en fait l'intensité du courant, fournie par un générateur de puissance, nécessaire à l'équilibre thermique entre les deux têtes de mesure qui est enregistrée en fonction du temps et qui est exprimée en mcal/s, le signal enregistré est donc proportionnel à la différence de chaleur fournie à l'échantillon et à la référence, et le résultat est donné en fonction de la température moyenne des deux échantillons. Pour travailler à haute température. Le principe de DSC est représenté dans la figure 12.

Fig.15. Schéma représenté le principe de l'DSC [28].

IV.5. SPECTROSCOPIE RAMAN

En 1928 le pharisien indién Sir Chandrasekhar Venkata Raman à découvre une nouvelle méthode d'analyse qui complété l'IR ces la spectroscopie Raman. C'est une méthode non destructive, qui utilise les interactions entre la lumière excitatrice et les vibrations des atomes. Les spectres ainsi obtenus nous permettent d'avoir des informations qualitatives et quantitatives sur le matériau étudié (composition et structure du matériau, nature et environnement des atomes, liaisons interatomiques, symétrie, constantes de forces, structures cristallines, ...) [40].

Ce type d'analyse se fait par excitation du matériau par une forte source lumineuse monochromatique d'une fréquence v_0 , de type laser. Le faisceau du laser est conduit par une fibre optique jusqu'à l'échantillon qui provoqué son excitation.

La lumière produite est recueillie par un capteur, puis amenée par une fibre optique jusqu'au séparateur, qui est couplé à un détecteur (figure17) [42].

Fig.16. Schéma de principe d'un spectroscope Raman [41].

IV.6. INFRAROUGE (IR)

VI.6.1. Historique

- En 1800 : Sir William HERSCHEL a montré pour la première fois l'existence d'un rayonnement non visible et porteur d'une énergie par son effet calorifique c'est « le rayonnement infrarouge ».
- > En 1830 : apparition des premier détecteur appeler « thermopiles ».
- Entre 1870 et 1920 : développement du premier détecteur quantique basé sur l'interaction du rayonnement et la matière.
- Entre 1930 et 1944 : développement du détecteur au sulfure de plomb (PbS), essentiellement pour les besoins militaires.
- De 1940 à 1950 : extensions du domaine spectral vers l'infrarouge moyen du 3 à 5 microns par les détecteurs à l'Antimoniure Indium (InSb).
- En 1960 : exploration de l'infrarouge lointain de 8 à14 microns par les détecteurs au tellurure de cadmium mercure (Hg Te Cd) [43].
- Après 1975 : le rayonnement infrarouge a remplacé progressivement les ultrasons jusque la utilisé par les télécommandes [44].

VI.6.2. Définition

La spectroscopie infrarouge est une méthode d'identification basée sur l'absorption des radiations électromagnétiques par l'échantillon, d'une longueur d'onde supérieure a celle de la lumière visible et inférieure a celle des micro-ondes, Cette absorption correspondant à des changements d'énergie entre 2 à 10 Kcal. mol⁻¹ [45]. On distingue alors :

- Infrarouge proche : de 0,75 à 1,5 micron: des émulsions photographique, les cellules photoémissive, des détecteurs photoconducteurs.
- Infrarouge moyen : de 1,5 à 20 microns: les détecteurs thermiques, photoconducteurs, photovoltaïques.
- Infrarouge lointain : de 20 à 1000 micron : détecteurs thermiques [43].

L'analyse IR peut donner des renseignements sur la structure des matériaux, ces informations sont tirées des spectres par deux types d'analyse :

A-Analyses Qualitatives : Les longueurs d'onde auxquelles l'échantillon absorbe, sont caractéristiques des groupements chimiques présents dans le matériau analysé.

B- Quantitatives : l'intensité de l'absorption et la longueur d'onde caractéristique sont reliées à la concentration du groupement chimique responsable de l'absorption [45].

IV.6.3. Principe

Le spectre infrarouge d'un échantillon est établi en faisant passer un faisceau de lumière infrarouge au travers de cet échantillon. Lorsque la longueur d'onde du faisceau émis est proche de l'énergie de vibration de la molécule, cette dernière absorbe le rayonnement et on enregistre une diminution de l'intensité réfléchie ou transmise après l'interaction. Ceci conduit à l'apparition d'une bande d'absorption à une fréquence donnée. Cette dernière dépend de la géométrie de la molécule ainsi que de sa symétrie. Les modes de vibrations actifs en infrarouge peuvent être déterminés pour une géométrie donnée en utilisant les relations décrites par la théorie des groupes. La position de ces bandes d'absorption dépend de la différence d'électronégativité des atomes (force de la liaison) et de leur masse. Par conséquent, un matériau donné présentera un ensemble de bandes d'absorption caractéristiques qui permettent de l'identifier (figure 18) [46].

Fig.17. Schéma de principe de l'infrarouge [46].

Partie pratique

I. TECHNIQUES DE SYNTHESE ET DE CARACTERISATIONS

I.1. Technique de synthèse

La méthode utilisée pour la préparation des composés est la méthode des poudres ; elle consiste à faire réagir à l'état solide des réactifs qui sont en général, des carbonates et des oxydes.

Cette méthode est le mode de préparation le plus classique, très utilisé dans l'industrie. Il consiste à faire un mélange de plusieurs oxydes solides à une température inférieure à leurs températures de fusion respectives de telle sorte que la réaction s'effectue à l'état solide. Une telle réaction se produit d'abord à l'interface entre les grains des solides, puis se poursuit par diffusion des réactifs du cœur vers l'interface réactionnelle. Cette méthode simple présente cependant plusieurs inconvénients :

- faible vitesse des réactions à l'état solide, cette vitesse dépend du cycle thermique utilisé (vitesse de chauffage et temps de recuit)
- mise en jeu de hautes températures qui nécessitent l'apport de grandes quantités d'énergie
- inhomogénéité de la composition du produit final obtenu.

Le carbonate $SrCO_3$, l'oxyde de titane TiO_2 , et les fluorures NaF et MgF₂ sont des produits de pureté supérieure à 99%. Tout les produits sont mis préalablement à l'étuve à une température de 150°C pendant plusieurs jours afin d'éliminer toute trace d'eau. Le tableau 7 donne les caractéristiques des produits utilisés pour la synthèse de $SrTiO_3$ et des oxyfluorures.

L'obtention du SrTiO₃ a lieu par calcination du mélange équimolaire dans un four de marque Select-Horn des deux poudres TiO_2 et SrCO₃ à 1000°C durant 20 heures. La calcination du mélange et la formation du SrTiO₃ a lieu selon la réaction suivante :

$$SrCO_3 + TiO_2$$
 _____ SrTiO_3 + CO_2

La réaction a lieu à l'air, dans un creuset en céramique.

Divers mélanges stœchiométriques ont été alors préparées à partir de $SrTiO_3$ et des fluorures NaF et MgF₂ suivant la réaction:

$$(1-x)SrTiO_3 + xNaF + xMgF_2 \xrightarrow{950^{\circ}C, 4h} Sr_{1-x}Na_xTi_{1-x}Mg_xO_{3-3x}F_{3x}$$

0,225 \le x \le 0,30

Nom	Formule	$M (g.mol^{-1})$	$d (g.cm^{-3})$	Couleur	Pureté	Fabricant
					(%)	
Carbonate	SrCO ₃	147,63	3,736	blanche	99	Biochem
de strontium						(chemopa
						-arma)
Dioxyde	TiO ₂	79,99	3,9-4,3	blanche	99	Biochem
de titane						(chemopa
						-arma)
Fluorure	NaF		2,8	blanche	98	Biochem
de sodium		41,99				(chemopa
						-arma)
fluorure	MgF ₂	62,30	3,148	blanche	99	Biochem
de						(chemopa
magnésium						-arma)

Tableau 7. Les caractéristiques des produits utilisés.

I.2. Analyse radiocristallographique sur poudre (DRX)

L'analyse radiocristallographique a été effectuée à température ambiante, sur un diffractomètre de poudre de marque Bruker AXS, D8 ADVANCE (Figure 20), fonctionnant avec une tension de 40 kV et une intensité de 40 mA. L'analyse est effectuée grâce au rayonnement K_{α} d'une anticathode de cuivre ($\lambda(K_{\alpha}) = 1,54060 \text{ Å}$), du silicium de très haute pureté est utilisé comme étalon interne. Les spectres RX ont été enregistrés en 2 θ , entre 10 et 80°. Les données sont récoltées avec un pas de 0,02° et un temps par pas de 0,5 *s*.

L'identification des différentes phases est réalisée par isotopie avec les bases de données existantes sur les matériaux (fiches ASTM – American Society For Testing Materials). Les spectres de SrTiO₃ et des phases oxyfluorées ont été indexés par isotypie avec la fiche ASTM de code référenciel : 00-005-0634 [47].

Les paramètres de maille ont été déterminés à partir de la relation :

$$d_{h \ k} \models \frac{1}{\sqrt{f a^{*2} + k^2 b^{*2} + l^2 c^{*2} + 2hk} \ ab^* \cos \gamma^* + 2hl} \ ac^* \cos \beta^* + 2k \ l \ bc^* \cos \alpha^*}$$

a^{*}, b^{*}, c^{*} : les paramètres réciproques de la maille

 $\alpha^*, \beta^*, \gamma^*$: les angles réciproques de la maille

Le calcul de la taille des grains a été déterminé à partir de la relation de Scherrer, basée sur l'élargissement des pics de diffraction du à la taille des cristallites et qui est donné par la relation:

$$D = \frac{0,89\lambda}{\beta\cos\theta}$$

D : diamètre moyen des cristallites,

 λ : Longueur d'onde des rayons X (Å),

 β : représente la largeur à mis hauteur observée dans le diagramme de diffraction (Radiant),

 θ : Angle de diffraction.

La figure 19 montre la définition de β à partir de la courbe de diffraction des rayons X.

Fig.18. Illustration montrant la définition de β à partir de la courbe de diffraction des rayons X.

Fig.19. L'appareille de la diffraction des rayons X.

I.3. Analyse Raman

Les analyses Raman ont été effectuées à l'aide d'un appareil de marque AvaSoft Raman 7.3, fonctionnant avec une puissance de 100 mW, une longueur d'onde de 532 nm, et une résolution de 4 cm⁻¹. Le système se compose d'un spectromètre AvaSpec 2048 CCD et d'une diode laser (la lumière verte). Les spectres obtenus sont donnés par le logiciel spécial AvaSoft 7.5, qui enregistre l'intensité en fonction de nombre d'onde (décalage Raman en cm⁻¹) (figure 21).

Fig.20. L'appareille de la diffractomètre Raman.

I.4. Analyse infrarouge

L'analyse des différents échantillons a été effectuée sur un appareil de marque IRiffinity-1. La figure 22 donne la photo de l'appareil.

Donc on prépare une poudre en broyant finement le produit solide avec le bromure de potassium KBr (80%), préalablement étuvé à 110°C dans un mortier en agate. La poudre est ensuite placée dans un moule puis comprimé sous forme de pastille de diamètre 13 mm, sous une pression de 80 à 90 kN. La pastille est ensuite placée soigneusement dans la cellule.

Fig.21. photo de l'appareil Infra-Rouge.

II. RESULTATS ET INTERPRETATIONS II.1. Analyse DRX de SrTiO₃, SrCO₃ et TiO₂

La figure 23 donne les spectres de diffractions de $SrCO_3$, TiO_2 et $SrTiO_3$, obtenus à température ambiante. Le titanate de strontium a subi un traitement thermique à 1000°C.

L'analyse montre que TiO_2 et $SrCO_3$ ont totalement réagit, puisqu'ils n'apparaissent pas sur le spectre de $SrTiO_3$.

Sur la figure 23, la plupart des raies de diffractions correspondent à la céramique pérovskite cubique $SrTiO_3$. Quelques raies de très faible intensité apparaissent et elles appartiennent à une phase intermédiaire Sr_2TiO_4 [48].

Fig.22. Diffractogramme de SrCO₃, TiO₂ et de SrTiO₃.

Le paramètre de maille a été déterminé à partir de la relation :

$$d_{h\ k} \models \frac{a}{\sqrt{h^2 + k^2 + t^2}}.$$
[13]

Où a : paramètre de maille

d_{hkl}: distance interréticulaire

Le tableau 8 donne les valeurs des indices des plans hkl, des distances interréticulaires d_{hkl} , de l'intensité relative I et du paramètre de maille de SrTiO₃. Les résultats obtenus ($a_{moy} = 3,89453$ Å) concordent parfaitement avec ceux trouvés dans la littérature, qui donne une valeur de a =3,90138 Å [49].

Raie	2θ(°)	d _{hkl} (Å)	I(%)	hkl	La phase	a(Å)
1	22,8347	3,89453	3,78	100	cubique	3,89453
2	32,4709	2,75515	100	110	cubique	3,89637
3	49,0272	2 ,25074	20,42	111	cubique	3,89840
4	46,5392	1,94984	36,93	200	cubique	3,89968
5	52,4090	1,74443	2,25	210	cubique	3,90066
6	57,8510	1,59261	30,11	211	cubique	3,90108
7	67,8850	1,37956	16,37	220	cubique	3,90198
8	72,6118	1,30097	0,82	221	cubique	3,90291
9	77,2399	1,23415	9,90	310	cubique	3,90272

Tableau 8. Valeurs des hkl, d_{hkl} , de I et du paramètre de maille de SrTiO₃.

II.2. Analyse DRX des phases oxyfluorées

Les spectres de diffraction des rayons X pour les poudres calcinées à 950°C, de composition (1-x)SrTiO₃ + xNaF + xMgF₂, $(0,225 \le x \le 0,3)$ sont regroupés dans les figures 24, 25 et 26.

Les spectres des phases oxyfluorées ont été indexés par comparaison avec la phase $SrTiO_3$. Ces phases inédites sont de structure pérovskite cubique. On observe des raies de très faible intensité, qui apparaissent pour certaines compositions $(1-x)SrTiO_3$ + xNaF + $xMgF_2$ entre x=0 et x=0,270 et finissent par disparaitre à partir de x=0,275. Ces raies appartiennent aux phases intermédiaires suivantes :

Fig.23. Diffractogrammes de SrTiO₃ et des phases de compositions

(1-x)SrTiO₃ + xNaF + xMgF2 (0,225 \le x \le 0,245).

Fig.24. Diffractogrammes de SrTiO₃ et des phases de compositions (1-x)SrTiO₃ + x NaF + xMgF₂ $(0,250 \le x \le 0,270)$.

Fig.25. Diffractogrammes de SrTiO₃ et des phases de compositions (1-x) SrTiO₃ + x NaF + x MgF₂ (0,275 \leq x \leq 0,3).

- Sr_2TiO_4 pour les compositions x = 0,240 et x = 0,270 [48].
- $Sr_3Ti_2O_7$ pour les compositions x = 0,245, x = 0,250 et x = 0,260 [50].

Aucune autre raie caractéristique de NaF ou de MgF_2 n'a été observée. Cela veut dire que ces fluorures sont bien rentrés dans le réseau cristallin de $SrTiO_3$, et que la limite de substitution n'a pas encore été atteinte

Les tableaux 9 et 10 donne les distances interréticulaires, les indices hkl des plans diffractés et les paramètres de maille des compositions $(1-x)SrTiO_3 + xNaF + xMgF_2$ pour x=0,225 et x=0,230. Le tableau 11 donne Les paramètres de maille des compositions synthétisées.

Les paramètres de maille des oxyfluorures $Sr_{1-x}Na_x(Ti_{1-x}Mg_x)O_{3-3x}F_{3x}$ sont assez proches de ceux de SrTiO₃ pur. Les octaèdres TiO₆ et MgF₆ ont des tailles voisines. La taille des cations, qui augmente de Ti⁴⁺ à Mg²⁺ est compensée par la diminution de celle des anions de O²⁻ à F⁻ ($r_{Ti^{4+}} = 0,605$ Å, $r_{Mg^{2+}} = 0,720$ Å, $r_{O^{2-}} = 1,40$ Å, $r_{F^-} = 1,33$ Å en coordinence 6) [39]. L'augmentation de la taille des cations en coordinence 12 n'est pas très significative ($r_{Se^{2+}} = 1,44$ Å, $r_{Na^+} = 1,39$ Å) [51].

Tableau 9. Les valeurs des distances interréticulaires, des indices hkl et du paramètrede maille de la composition (1-x)SrTiO₃ + xNaF + xMgF₂ (x=0,225).

Raie	2θ(°)	d _{hkl} (Å)	hkl	La phase	a(Å)
1	22,8037	3,89974	100	cubique	3,89974
2	26,5960	2,75960	110	cubique	3,90252
3	39,9885	2,25469	111	cubique	3,90524
4	46,5093	1,95102	200	cubique	3,90204
5	52,3703	1,74563	210	cubique	3,90335
6	57,8056	1,59375	211	cubique	3,90387
7	67,8418	1,38035	220	cubique	3,90422
8	72,5883	1,30133	221	cubique	3,90399
9	77,2045	1,23463	310	cubique	3,90424
10	81,7477	1,17712	311	cubique	3,90407
11	86,2150	1,12721	222	cubique	3,90477
12	95,1082	1,04339	321	cubique	3,90401

Le pic	20	d _{hkl}	hkl	La phase	a(Å)
1	22 ,7919	3,90174	100	cubique	3,90174
2	32,4200	2,76164	110	cubique	3,90555
3	39,9701	2,25568	111	cubique	3,90695
4	46,4848	1,95199	200	cubique	3,90398
5	52,3858	1,74515	210	cubique	3,90227
6	57,8014	1,59386	211	cubique	3,90414
7	67,8275	1,38060	220	cubique	3,90493
8	72,6010	1,30114	300	cubique	3,90342
9	77,1901	1,23483	310	cubique	3,90488
10	81,7316	1,17731	311	cubique	3,90470
11	86,2002	1,12736	222	cubique	3,90529
12	95,1084	1,04388	321	cubique	3,90584

Tableau 10. Les valeurs des distances interréticulaires, des indices hkl et du paramètrede maille de la composition $(1-x)SrTiO_3 + xNaF + xMgF_2$ (X=0,230).

Tableau 11. Le paramètre de maille des compositions (1-x)SrTiO₃+xNaF+x MgF₂.

La composition (x)	Le paramètre a(Å)	composition (x)	Le paramètre a(Å)
0	3,89643	0,265	3,90585
0,225	3,90255	0,270	3,89835
0,230	3,90474	0,275	3,90070
0,235	3,89953	0,280	3,90266
0,240	3,89889	0,285	3,90504
0,245	3,90526	0,290	3,90781
0,250	3,89989	0,295	3,9085
0,255	3,909226	0,3	3,90614
0,260	3,90675		

Le calcul des tailles des grains correspond aux raies les plus intenses ($2\theta = 32^{\circ}$) pour les différentes compositions (1-x)SrTiO₃ + xNaF + xMgF₂ sont présenté dans le tableau 12.

composition	Taille des grains (nm)	composition	Taille des gains (nm)
SrTiO ₃	101	X = 0,265	124
X = 0,225	71	X = 0,270	77
X = 0,230	71	X = 0,275	101
X = 0,235	71	X = 0,280	68
X = 0,240	101	X = 0,285	82
X = 0,245	81	X = 0,290	71
X = 0,250	81	X = 0,295	82
X = 0,255	81	X =0,3	83
X = 0,260	81		

Tableau 12. La taille des grains pour $SrTiO_3$ et différentes compositions $(1-x)SrTiO_3 + xNaF + xMgF_2$.

II.3. Analyse par spectroscopie Raman

La figure 27 donne les spectres Raman de 4 composition (1-x)SrTiO₃ + xNaF + xMgF₂ (x=0,225 ; x=0,230 ; x=0,235 ; x=0,270).

Les spectres montrent deux bandes caractéristiques de SrTiO₃, une bande importante de large intensité dans l'intervalle 200-500 cm⁻¹, une autre bande large de plus faible intensité dans l'intervalle 700-900 cm⁻¹. Ce résultat correspond à ceux trouvés par d'autres auteurs [52-54]

En plus des bandes caractéristiques de SrTiO₃, on observe des pics plus ou moins intenses entre 4500 et 5000 cm⁻¹, situées à 4093 ; 4486 ; 4787 ; 4917cm⁻¹. Ces pics diminuent en fonction de la composition. Pour x=0,270, on observe par contre une bande fine à 4536 et une bande large à 4818 cm⁻¹. Ces bandes n'appartiennent ni à NaF ni MgF₂ d'après nos recherches [55-57]. On n'a pas attribué ces dernières à un composé donné mais elles appartiennent probablement à la solution solide 0,73 SrTiO₃ + 0,27 NaF +0,73 MgF₂

II.4. Analyse par Infrarouge (IR)

Les spectres obtenus par spectroscopie IR pour $SrTiO_3$ et les phases oxyfluorées sont présentés sur les figures 28 et 29. On observe les deux bandes d'absorption caractéristique de $SrTiO_3$ [53]. La première bande de faible intensité (sous forme de pic) est située dans l'intervalle 450-600 cm⁻¹. La deuxième bande, large, de forte intensité située, entre 600-1500 cm⁻¹.

Les bandes d'absorption obtenues dans notre analyse se rapprochent de ceux obtenu par d'autres auteurs [53, 55].

D'autre part ces résultats, nous ont permis de confirmer ceux trouvés par la spectroscopie Raman.

Fig.26. les spectres Raman de 4 composition (1-x)SrTiO₃ + xNaF + xMgF₂ (x=0,225;x=0,230 ; x=0,235 ; x=0,270).

Fig.27. Les spectres d'analyse par IR de SrTiO₃ et des phases de compositions (1-x) SrTiO₃ + xNaF + xMgF₂ (0,225 \le x \le 0,245).

Fig.28. Les spectres d'analyse par IR de SrTiO₃ et des phases de compositions (1-x) SrTiO₃ + xNaF + xMgF₂ ($0,250 \le x \le 0,265$ et x=0,275).

Conclusion

La pérovskite SrTiO₃ et les phases oxyfluorées (1-x)SrTiO₃ + xNaF + xMgF₂ ont été préparées par voie solide, à l'air. Le titanate de strontium a été synthétisé à partir des poudres SrCO₃ et TiO₂, à une température de 1000 °C et les solutions solides à partir de SrTiO₃ et des fluorures NaF et MgF₂, à 950 °C.

L'analyse par diffraction des rayons X montre que toutes les compositions préparées sont bien cristallisées, de taille des grains compris entre 68 et 124 nm. Ces phases ont été indexées par isotypie avec la phase pérovskite SrTiO₃ de symétrie cubique.

Les spectres Raman montrent deux bandes caractéristiques de $SrTiO_3$, une bande large intense importante dans l'intervalle 200-500 cm⁻¹, une autre bande large de plus faible intensité dans l'intervalle 700-900 cm⁻¹. Ces bandes sont caractéristiques de $SrTiO_3$. Ce résultat correspond à celui trouvés par d'autres auteurs [57-59].

L'analyse par l'infrarouge nous a permis d'observer les deux bandes d'absorption caractéristique de SrTiO₃, la première entre 450-600 cm⁻¹, la deuxième entre 600-1500 cm⁻¹. Ce résultat corrobore avec ceux déjà trouvés par d'autres auteurs [53,55].

Bibliographie

[1] J.M. Haussonne, C. Carry, P. Bowen, J. Barton, «Céramiques et verres», édition, ed. Presses Polytechniques et Universitaires Romandes, (2005).

[2] M. Viviani, M.T. Buscaglia, V. Buscaglia, M. Leoni, P. Nanni, J. European Ceram. Soc., 21 (2001) 1981-1984

[3] M. Manso, M. Langlet, J.M. Martinez-Duart, Mater. Science and Eng., C23 (2003) 447-450.

[4] E. Brzozowski, M.S. Castro, J. European Ceram. Soc., 24 (2004) 2499-2507.

[5] L. Taïbi – Benziada, Mater. Science Forum, 492 – 493 (2005) 109-114.

[6] B.D. Lee, H.R. Lee, K.H. Yoon, Y.S. Cho, Ceramics International, **31** (2005) 143-146.

[7] C. Kittel, physique de l'état solide, ed. Dunod (1998).

[8] J.M. Haussonne, «Céramique pour l'électronique et l'électrotechnique», ed.Presses Polytechniques et Universitaires Romandes, lausane (2002).

[9] Michael F. ashby, David R. H. Jones, « Matériaux : 2. Microstructures, mise en ouvre et conception », ed. Dunod (2008).

[10] Y. ADDA, J.M. Dupouy, J. Philibert, Y. Quere, «Eléments de métallurgie physique, diffusion, transformation ».

[11] N. Amaouze, thèse de doctorat, université de Mouloud Mammeri, Tizi-ouzou, (2011).

[12] Les Céramiques Industrielles, Applications industrielles et développements potentiels dans les Alpes-Maritimes, Etude réalisée par le CARMAoctobre (1999).

[13] J. DEJOU, « les céramiques », Société Francophone de Biomatériaux Dentaires, (2009-2010).

[14] Y. QUERE, « Défauts ponctuels dans les métaux », ed. Masson, Paris (1967).

[15] P. Sanchez, A. Stashans, Philosophical Magazine, 81 (2001) 1963-1976.

[16] K. RIDA, thèse de Doctorat, Université Mentouri, Constantine (2008).

[17] http:// www.intechopen.com

[18] S. Kennour, Mémoire de Magistère, Université de Mouloud Mammeri, Tizi-Ouzou(2011).

[19] H. LIDJICI, thèse de Doctorat, Université Mentouri, Constantine (2011).

[20] P. Sanchez, A. Stashans, Phys. Stat. Sol, 230 (2001) 397-400.

[21] G. Garcia Rosales, thèse de Doctorat, Université Paris sud 11 UFR Scientéfique D'ORSAY, (2007).

[22] C. SABATHIER, thèse de Doctorat, université de paris-sud U.F.R scientifique d'orsay (2003).

[23] A. kodre, I. Arcon, J.P. Gomilsek, B.Zalar, EXAFS Study of Disorder in SrTiO3 perovskite, (2000).

[24] W. Zhong, D. Vanderbilt, Physical Review, 5 (1996).

[25] C.Y. Liu, T.Y. Tseng, Ceramics International, 30 (2004) 1101–1106.

[26] M.L. Post, J.J. Tunney, D. Yang, X. Du, D.L. Singleton, Sensors and Actuators, B 59 (1999) 190–194.

[27] E. Magori, G. Reinhardt, M. Fleischer, R. Mayer, H. Meixner, Sensors and Actuators B 95 (2003) 162–169.

[28] D.Talantikite, thèse de doctorat, Université des sciences et de la technologie houari boumediene (2008).

[29] Maurice Gerl Jean-Paul lssi, « physique des matériaux », ed. Presses polytechniques et universitaires romandes.

[30] M. J. Wyart, M. J. A. « Thomas, principes de radiocristallographie », ed. Masson et C^{ie}, (1960).

[31] J.L. Martin, « caractérisation expérémental des matériaux, analyse par RX, éléctron et neutrons »

[32] C.A. Jouenne, « traité des céramiques et matériaux minéraux », ed. Société des Matériaux Minérale, paris, réimpression (2010).

[33] J.P.Ebrahart, «Analyse structurale et chimique des matériaux», ed. Dunod, paris(1997).

[34] J.L.Martin, A.George, « caractérisation expérimentale des matériaux II, Analyse par les RX, électrons et neutrons », ed. Presses Polytechniques et Universitaires Romandes, (1998).

[35] N. Kozhaya, thèse de doctorat, Université Paul Verlaine – Metz (UPVM), (2011).

[36] P. Parlouër, B. Legendr, « matériaux de référence pour les technique d'analyse thermique et de calorimétrie et méthode de mesure calorimétrique », ed. (2005)

[37] http://www.rncn.gc/mineraux-metaux exposifs/science technologie/2953

[38] P. Parlouër, B. Legendr, « matériaux de référence pour les technique d'analyse thermique et de calorimétrie et méthode de mesure calorimétrique », (2005).

[39] http://fr.wikipédia.org/ wiki/Analyse-thermogravimétrique.

[40] R. Poilblanc, F.Crasnier, « spectroscopies infrarouge et Raman », EDP, Science, (2006).

[41] M. Laarej, thèse de doctorat, l'Université Abou Bekr Belkaïd - Tlemcen (2010).

[42] M.Hamon, M.Gurnet, F.Pellerein, G.Mahuzier, « chimie analytique, méthode spectrale et analyse organique », Paris(1990).

[43] G.Gaus orgues, « thermographie infrarouge, principe, thechnologie, application » (1984).

[44] F.Wohlrabe, « guide pratique de l'infrarouge », Publitronig, (2002)

[45] D. Bartrand, « spectroscopie infrarouge et ces analytique », (2000).

[46] T. Thomas, M. Nicolas, compte-rendu de TP de spectrophotométrie, Université de Créteil-Paris XII, (2003/2004).

[47] Fiche ASTM de code 00-005-0634, Swanson, Fuyat, NBS Circular 539, (1953).

[48] Fiche ASTM de code 00-039-147, Wong-Ng, W. McMurdie, H. Paretzkin,

B.Hubbard, C. Dragoo, A. NBS (USA), (1988).

[49 Fiche ASTM de code 00-011-0663, S.N Popper, 54, Ruddlesden, (1958).

[50] Fiche ASTM de code 01-076-0740Ruddlesden, S.N., Popper, 54, (1958).

[51] B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, J. Phys. Condens. Matter, 1(1999) 1479-1488.

[52] J. Petzelt, T. Ostapchuk, I. Gregora, M. Savinov, D. Chvostova, J. Liu, Z. Shen, Journal of the European Ceramic Society, 26 (2006) 2855–2859.

[53] D. Popovi'c, N. Rom'cevi'c, S. Spasovi'c, J. Doj'cilovi'c, A. Golubovi'c, S. Nikoli'c, Journal of Alloys and Compounds 425 (2006) 50–53.

[54] K.R.S. PreethiMeher, ChristineBogicevic, Pierre-EymericJanolin, K.B.R.Varma, Journal of Solid State Chemistry 192 (2012) 296–304.

[55] R.S. Krishnan, R.S. Katiyar, J. Phys.France, 26 (1965) 627-629.

[56]A.R. Evans, D.B. Fitchen, Solid State Communications, 8 (1970) 537-539.

[57] J. R. Hardy, A. M. Karo, I. W. Morrsion, C. T. Sennett, J. P. Russell, Physical Review, 179 (1969).

[58] M.P. Seabraa, A.N. Salaka, V.M. Ferreiraa, J.L. Ribeirob, L.G. Vieira Journal of the European Ceramic Society 24 (2004) 2995–3002.

Annexe 1 Liste des tableaux

Annexe 2 Liste des figures

Annexe 2 Liste des figures

Fig.1. Principale étape de fabrication de céramique4
Fig.2. Exemple de la céramique traditionnelle
Fig.3. Frittage des particules des céramiques11
Fig.4. Les différents stades du frittage
Fig.5. Représentation du réseau tridimensionnel d'octaèdres BO ₆ 15
Fig.6. La structure pérovskite SrTiO317
Fig.7. Transition de phase de SrTiO ₃ 18
Fig.8. Les différents types de diélectriques
Fig.9. Cycle d'hystérésis d'un matériau ferroélectrique21
Fig.10. Principe du diffractomètre de poudre dans la géométrie de Bragg-Brentano24
Fig.11. Schéma de principe du microscope électronique à balayage25
Fig.12. Schéma de principe d'énergie dispersive spectrométrie
Fig.13. Schéma de principe de l'ATD27
Fig.14. Schéma de principe de l'ATG
Fig.15. Schéma représenté le principe de l'DSC
Fig.16. Schéma de principe d'un spectroscope Raman
Fig.17. Schéma de principe de l'infrarouge
Fig.18. Illustration montrant la définition de β à partir de la courbe de diffraction des
rayons X
Fig.19. Photon de l'appareille de la diffraction des rayons X
Fig.20. Photon de l'appareille de diffractomètre Raman
Fig.21. Photon de l'appareil à Infra-Rouge
Fig.22. Diffractogramme de SrCO ₃ , TiO ₂ et de SrTiO ₃
Fig.23. Diffractogrammes de $SrTiO_3$ et des phases de compositions (1-x) $SrTiO_3$ +
$xNaF + x MgF2 (0,225 \le x \le 0,245)41$
Fig.24. Diffractogrammes de $SrTiO_3$ et des phases de compositions (1-x) $SrTiO_3 + x$
$NaF + x MgF_2 (0,250 \le x \le 0,270)42$
Fig.25. Diffractogrammes de SrTiO ₃ et des phases de compositions (1-x) SrTiO ₃ +xNaF
+ x MgF ₂ (0,275 \leq x \leq 0,3)43
Fig.26. les spectres Raman de 4 composition (1-x) $SrTiO_3 + x NaF + x MgF_2$
(x=0,225;x=0.230; x=0.235; x=0,270)48
Fig.27. Les spectres d'analyse par IR de SrTiO ₃ et des phases de compositions (1-x)
$SrTiO_3 + x NaF + x MgF_2 (0,225 \le x \le 0,245)49$

Fig.28.	Les sp	pectres	d'analyse	par IR	de	SrTiO ₃	et de	s phases	de	compositions	(1 - x)
SrTiO ₃	+ x Na	F + x N	/IgF ₂ (0,25	$50 \le x \le 10^{-10}$	≤ 0,2	65 et x=	=0,27	5)			50