

République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abderrahmane Mira de Bejaia

Faculté des Sciences de la Nature et de la Vie

Département de microbiologie

Laboratoire BBBS

Mémoire

En vue de l'obtention du diplôme d'Ingénieur d'état en **Biologie**

Option : Génie Biologique

Thème

Etat de l'art sur les psychrophiles :
Etude de cas du suivi de la flore
microbienne accompagnant le processus de
réfrigération et de congélation

Présenté par :

Melle ADEL Khadidja

Melle SAIDANI Kenza

Devant le jury:

Présidente : M^{me}. BOULKBACHE L.

Examinateur: M^{elle}. ACHAT S.

M. KATI D.

Promoteur: M. MADANI K.

Co-promoteur: M. MOUSSI K.

Invité: M. AKDIM A.

Année universitaire: 2011/2012

Louanges à Allah le miséricordieux, le très miséricordieux, qui nous a aidé tout au long de notre vie, nous le remercions pour sa bienveillance, la patience et le courage qu'il nous a accordé.

Nos plus vifs et sincères remerciements vont à notre promoteur Mr MADANI. K, qui en acceptant de diriger ce travail, nous a permis de profiter de ses conseils, son aide et ses encouragements, notre respectueuse gratitude en témoigne.

Un immense Merci à **Mr MOUSSI. K,** notre Co-promoteur, pour son aide, son soutien moral, ses précieux conseils, et surtout de nous avoir fait confiance.

Nos sincères remerciements s'adressent également aux membres du jury de nous avoir fait le grand honneur d'examiner ce modeste travail.

Nous tenons à remercier **Mr AKDIM**. **A**, de nous avoir accompagné lors de nos sorties de prélèvements et pour ses précieux conseils.

Nous adressons notre profonde reconnaissance à notre ami **Mr REMINI. H,** d'avoir été à nos côtés le long de notre travail, de nous avoir suivi, diriger, encourager et sur tout d'avoir toujours cru en nous.

Nous remercions toute l'équipe du laboratoire **BBBS** (enseignants, doctorants ainsi que les ingénieurs du laboratoire), de nous avoir accueilli chaleureusement parmi eux.

Pour finir, nous souhaitons remercier tous ceux qui sont rentrés dans nos vies à un moment ou un autre, et nous ont aidés de près ou de loin.

Dédicaces

A mes très chers parents

A mes adorables frangines

Et à tous ceux qui me sont chers ...

Khadidja

Dédicaces

A mes très chers parents qui m'offrent amour et joie de vivre.

A mes merveilleux frères et sœurs ainsi qu'à mon beau-frère et ma belle-sœur.

A tous ceux qui me sont chers ...

Kenza

Liste des tableaux

Liste des figures

Introduction

Synthèse Bibliographique

CHAPITRE I: Etat de l'art sur les Psychrophiles

I-1-Présentation	
I-2- Historique	
I-3 Adaptation des psychrophiles	8
CHAPITRE II: Les Psychrophiles dans la Biotech	nologie
II-1- Domaines d'application des psychrophiles	10
II-1-1- Bioremédiation	10
II-1-2- Applications dans la biologie moléculaire	10
II-1-3- Production de produits chimiques fins	11
II-1-4- Industrie des détergents	11
II-1-5- Industrie textile	11
II-1-6- Industrie alimentaire	12
II-1-7- Industrie pharmaceutique et cosmétique	13
II-1-8- Combustibles organiques	13
II-1-9- Nanobiotechnologie d'enzymes	14
II-2- Avantage des enzymes psychrophiles dans les industries	14
II-3-Inconvénients des enzymes psychrophiles dans les industries	15
CHAPITRE III: Contamination des surfaces et h	ygiène
III-1- Mécanismes de la contamination des surfaces	16
III-2- La conservation par le froid dans l'agroalimentaire	16
III-3- Contrôle microbiologique	17
III-4- Nettoyage et désinfection des surfaces de contact	18

Travail Expérimental

Matériels et Méthodes

IV-1 Prélèvement et échantillonnage	21
IV-2- Réactifs et appareillages	22
IV-3- Analyses microbiologiques	22
Résultats et Discussion	
V-1- La gélose PCA	26
V-2- Gélose Nutritive Ordinaire (GNO)	28
V-3- Gélose de Sabouraud au chloramphénicol	29
V-4- La gélose M 17	32
V-5- Gélose VRBG	35
V-6- La gélose VRBL	37
V-7- Gélose BCP	38
V-8- Gélose Hektoen et SS	40
V-9- Milieu Chapman	41
V-10- Gélose Cetrimide	42
V-11- King B	43
V-12- La gélose viande foie	46
Conclusion	48
Références bibliographiques	

Annexes

N°	Titre	Page
Tableau I	Les genres fongiques isolés de diverses zones écologiques dans	4
Tableau II	Kongsfjorden. Quelques genres bactériens qui contiennent des espèces connues	
Tabicau II	par leur développement au-dessous de 7°C.	5
Tableau III	Spectre d'activité des antiseptiques et des désinfectants	18
Tableau IV	Principaux microorganismes responsables de toxi-infections et de maladies alimentaires en cas de non-respect de la chaîne du froid.	19
Tableau V	Résumé de la signification des microorganismes indicateurs en microbiologie alimentaire.	20
Tableau VI	Sites de prélèvement des échantillons et leurs localisations.	22
Tableau VII	Procédure des analyses microbiologiques effectuées sur les treize échantillons.	24
Tableau VIII	Techniques d'identification des souches d'entérobactéries.	25
Tableau IX	Résultats de dénombrement de la flore totale aérobie des échantillons sur gélose PCA (×10 UFC/100 cm²).	27
Tableau X	Résultats de lecture et aspect de colonies sur milieu GNO.	29
Tableau XI	Résultats de lecture des boites sur milieu Sabouraud	31
Tableau XII	Résultat des observations à l'état frais et des colorations au bleu de méthylène de certains champignons sur milieu Sabouraud.	32
Tableau XIII	Résultats de lecture et aspect de colonies sur milieu M17.	34
Tableau XIV	Résultats de lecture et aspect de colonies sur milieu VRBG.	36
Tableau XV	Résultats de lecture et aspect de colonies sur milieu VRBL.	38
Tableau XVI	Résultats de lecture et aspect de colonies sur milieu BCP.	39
Tableau XVII	Résultats de lecture des analyses sur gélose Hektoen et SS.	41
Tableau VIII	Résultats de lecture et aspect de colonies sur gélose Cetrimide.	43
Tableau XIX	Résultats de lecture et aspect de colonies sur milieu King B.	44
Tableau XX	Résultats de lecture des tubes d milieu viande foie.	47

N° figure	Titre	Page
Figure 1	la thermo-dépendance de l'enzyme β-galactosidase chez les microorganismes psychrophiles, mésophiles et thermophiles.	4
Figure 2	Adhésion d'une bactérie à un support inerte et formation d'un biofilm.	16
Figure 3	Action de la température sur les micro-organismes.	17
Figure 4	(a): Aspect de la colonie de la levure sous loupe, (b) et la morphologie de ses cellules après coloration de Gram	26
Figure 5	Observation d'aspect de colonies sur milieu PCA sous loupe.	27
Figure 6	Aspect des colonies sur milieu GNO sous loupe.	28
Figure 7	Observation de quelque genre de champignons sous microscope optique.	30
Figure 8	Observation d'une colonie bactérienne issue sur M 17 à 4°C sous loupe	33
Figure 9	(a): aspect des colonies sur VRBG, (b): les diverses colonies obtenus sur VRBG observées sous loupe	35
Figure 10	Tests d'orientations caractéristiques des entérobactéries.	36
Figure 11	Aspects des colonies de coliformes isolées sur milieu VRBL observées sous loupe.	37
Figure 12	Aspect des colonies isolées sur milieu BCP sous loupe.	39
Figure 13	(a): Aspect des colonies isolées sur milieu Hektoen, (b): Aspect des colonies isolées sur milieu SS observées sous loupe.	40
Figure 14	(a): Aspect des colonies sur milieu Cetrimide, (b): test King A et King B	42
Figure 15	Aspect des colonies d' <i>Erwinia</i> pectinolytiques isolées sur milieu King B.	15
Figure 16	Différents résultats obtenus sur gélose viande foie.	46

SYNTHESE BIBLIOGRAPHIQUE

INTRODUCTION

Introduction

La Terre est une planète, dont on estime l'âge d'environ six milliards d'années, la verdure, l'eau, les montagnes et ses habitants font d'elle un endroit vivable, ce qui la différencie du reste des planètes du système solaire. Mais nous oublions généralement que la terre est relativement froide et que la plupart des écosystèmes sont exposés à de basses températures (Feller & Gerday, 2003), une grande partie de la biosphère terrestre n'atteint jamais des températures supérieures à 5 °C (Junge, et al., 2011; Margesin, 2008), près de trois quarts de la terre sont couverts par les océans (Abdel-Megeed, 2004) et 90 % de leur volume ont une température de -1 à 5 °C (Margesin & Miteva, 2011). Les régions polaires, y compris l'Antarctique et des parties de l'Europe et d'Amérique du Nord qui se trouvent dans le cercle Arctique (Casanueva, et al., 2010). En outre, les régions alpines, les grottes froides, les sédiments marins, la neige, les glaciers et la mer de glace fournissent également un environnement terrestre froid en permanence (Lo Giudice, et al., 2006).

En raison de ces conditions climatiques extrêmement dures, on croyait depuis longtemps que ces environnements étaient dépourvus de vie, Cependant, le nombre croissant d'études récentes sur l'écologie et la diversité microbienne ont changé ce point de vue (Miteva, 2008). Bien qu'encore limitées, elles ont montré que même dans ces conditions inhospitalières (Suzuki, et al., 2001) une grande diversité de micro-organismes a été trouvée (Junge, et al., 2011) et que malgré l'effet négatif des basses températures sur les réactions biochimiques, ces organismes se reproduisent, croissent et se déplacent, ils ont donc développé des adaptations diverses leur permettant de compenser les effets préjudiciables de la basse température (Gerday, et al., 2000). Ces micro-organismes jouent un rôle écologique important dans leurs habitats et comprennent une grande diversité (Margesin & Miteva, 2011).

La science qui étudie ces micro-organismes est connue sous le nom de *microbiologie du froid*; elle traite la physiologie, la biochimie et la génétique moléculaire des communautés microbiennes adaptées à des environnements froids, naturels et industriels. Cette science a tardé pour naitre, et a été délaissée au fil du temps, cependant, elle est remise à l'ordre du jour au cours de ces dernières années.

L'objectif du présent travail est d'amorcer et initier des travaux dans ce domaine; microbiologie du froid, encore méconnaissable en Algérie et dont l'importance ne cesse de croitre vu le recours presque quasi systématique à la réfrigération et congélation, mais également d'attirer l'attention sur les risques éventuels du non-respect de la chaine de froid. Ceci en présentant un état d'art des micro-organismes psychrophiles, et en s'appuyant sur une expérimentation comportant la mise en évidence de ces communautés microbiennes.

CHAPITRE

Etat De L'art Des Psychrophiles

I-1- Présentation

Les micro-organismes qui non seulement survivent dans le froid mais peuvent se développer à de basses températures (Oikawa et al., 2001), sont généralement classés comme psychrophiles (préfèrent le froid) ou psychrotrophes (tolèrent le froid) (Van Stempvoort & Biggar, 2008). Ces deux groupes présentent une grande diversité microbienne, on y trouve des archées, de différents genres de bactéries Gram négatives et Gram positives (tableau II), ainsi que des levures, des cyanobactéries, des mycètes (tableau I) et des algues (Margesin & Miteva, 2011; Oikawa et al., 2001), ils sont répandus dans les environnements naturels (A. M. Gounot, 1986) et dans les nourritures (Leveau, et al., 2001).

Ces micro-organismes se développent bien aux températures près du point de congélation de l'eau, (Cavicchioli et al., 2002; Tomoyuki et al., 2002; Beales, 2004). Les psychrotrophes sont des micro-organismes qui se développent à de basses températures (0-15 °C), bien que ce ne soit pas leurs température optimale (qui est audessus de 20 °C) (Van Stempvoort & Biggar, 2008), ils sont aussi appelés « psychrophiles facultatifs » (Turchetti et al., 2008; Rossi et al., 2009), en revanche, les psychrophiles autrement dit « psychrophiles obligatoires » ont été défini comme étant des organismes qui se développent à de basses températures ayant un optimum de croissance vers 15 °C (Nakagawa et al., 2004; De García et al., 2007) et une température maximale n'excédant pas 20 °C (Rossi et al., 2009; Morita, 1975), ceci en une ou deux semaines (Leveau, et al., 2001; Oikawa, et al., 2001).

Récemment, des définitions supplémentaires ont été proposés, tels que « psychrophiles modérés » avec une température de croissance minimale de 0 °C et maximale de 25 °C. ainsi que les termes « eurypsychrophile » (fait référence à un micro-organisme avec un intervalle de température de croissance limité qui ne peut tolérer des températures plus élevées pour la croissance) et « stenopsychrophile » (décrit un micro-organisme qui préfère les environnements froids en permanence, mais peut tolérer également une large gamme de températures atteignant celle des mésophiles) (**Junge, et al., 2011**). La figure 1 montre l'intervalle et l'optimum de l'activité de l'enzyme de la β galactosidase de psychrophiles en comparaison avec les mésophiles et thermophiles.

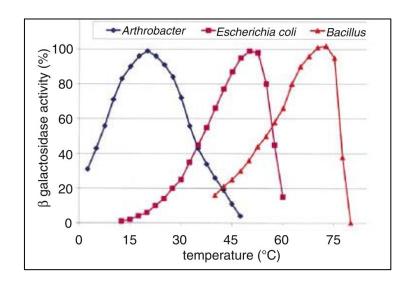


Figure 1: La thermo-dépendance de l'enzyme β -galactosidase chez les microorganismes psychrophiles, mésophiles et thermophiles (Scherer & Neuhaus, 2006).

Tableau I: Les genres fongiques isolés de diverses zones écologiques dans Kongsfjorden (Gunde-Cimerman, et al., 2005).

Espèces	Eau de mer	Mer glace	Étangs Sur glace de mer	Neige/glace dans la zone de marée	Glacier glace	Glacier Fonte l'eau	Glace antarctique (littérature données)
Acremoninm				X			X
Alternaria		X					
Ameolosidium						X	
Aspergille		X	X		X		X
Aureobasidium	X	X	X	X	X	X	
Cadophora			X		X		X
Cladosporium	X	X	X	X	X	X	X
Cryptococcus	X	X	X		X	X	X
Débaryomyces	X				X	X	
Eurotium	X	X	X	X	X		X
Filobasidium	X	X	X		X		
Geomyces					X		X
Metschnikowia	X	X					
Mucor		X	X		X		X
Penicillium	X	X	X	X	X	X	X
Phialophora				X			X
Phoma		X	X			X	
Pichia	X				X		
Rhodosporidium					X		
Rhodotorula	X	X			X	X	X
Tricellula				X			
Trichoderma			X			X	
Trichosporon					X		

Tableau II : Quelques genres bactériens qui contiennent des espèces connues par leur développement au-dessous de 7°C (**Jay, et al., 2005**).

Gram Négatifs	Nombres relatifs	Gram Positifs	Nombres relatifs
Acinétobactérie	XX	Bacille	XX
Aéromonas	XX	Brévibactérie	X
Alcaligènes	X	Brochothrix	XXX
Alteromonas	XX	Carnobacterium	XXX
Cedecea	X	Clostridium	XX
Chromobactérie	X	Corynebactérie	X
Citrobactérie	X	Deinococcus	X
Entérobactérie	XX	Enterocoque	XXX
Erwinia	XX	Kurthia	X
Escherichia	X	Lactobacille	XX
Flavobactérie	XX	Lactococcus	XX
Halobacterium	X	Leuconostoc	X
Hafnia	XX	Listeria	XX
Klebsiella	X	Microcoque	XX
Moraxella	XX	Pédiocoque	X
Morganella	X	Propionobactérie	X
Photobacterium	X	Vagococcus	XX
Pantoea	XX	Macrococcus	X
Proteus	X	Paenibacillus	X
Pro videncia	X	Staphylocoque	X
Pseudomonas	XXX		
Psychrobacter	XX		
Salmonelles	X		
Serratia	XX		
Shewanella	XXX		
Vibrio	XXX		
Burkholderia	X		
Chryseobacterium	X		
Frigoribacterium	XX		
Janthinobacterium	XX		
Acetobacterium	XX		
Yersinia	XX		

X: faible abondance.

XX : forte abondance.

XXX : très forte abondance.

I-2- Historique

Les écosystèmes froids ; milieux hostiles à l'Homme et où toute vie paraissait impossible, Cette conception a varié selon les époques grâce aux approches basées sur l'observation des formes de vie macroscopique.

Les organismes vivants dans la glace de mer furent décrits en premier par le protozoologiste Ehrenberg en 1841 (Mock & Thomas, 2005). La croissance d'une bactérie à basse température a été signalée par Forster en 1887 (Stokes & Redmond, 1966; Scherer & Neuhaus, 2006), il isole des bactéries bioluminescentes de poissons conservés par le froid, et plus tard autres bactéries, de l'eau, des aliments (A. M. Gounot, 1986; A.-M. Gounot, 1991), des surfaces, dans des intestins de poissons d'eau douce, et particulièrement dans l'eau de mer et des poissons d'océan qui ont été capables de croitre à 0 °C (Morita, 1975).

Le grand explorateur polaire Fridtjof Nansen lors de l'observation de vie microbienne dans la glace de l'océan Arctique, a relaté qu'il s'agit des organisations unicellulaires sous forme de matière visqueuse (**Mock & Thomas, 2005**). L'existence de bactéries psychrotrophes dans la région Antarctique a été mise en évidence lors des premières investigations conduites par Ekelif pendant l'expédition Antarctique suédoise en 1901-1903 (**Morita, 1975**).

En 1902 Schmidt-Nielsen a cultivé des micro-organismes à 0°C qu'il a nommé « psychrophiles » (**A. M. Gounot, 1986**), un an après, Muller s'est opposé à cette appellation puisque les organismes décrits se sont bien développés à des températures modérées (**A.-M. Gounot, 1991**), depuis, le terme « psychrophile » a été utilisé aléatoirement. Hagen et autres chercheurs précisent que ce terme a été employé et défini de plusieurs manières et la plupart des définitions ignorent la signification étymologique du mot (**Morita, 1975**), toutes ces confusions ont conduits Ingraham et Stokes à définir plus précisément que les psychrophiles sont des micro-organismes qui croissent assez rapidement à 0 °C, et à l'aide de la comparaison entre les courbes de croissance d'un *Pseudomonas* psychrophile et *d'Escherichia coli* Ingraham les a subdivisés en strictes, ou obligatoires et facultatifs (**A. M. Gounot, 1986**).

Entre 1958 et 1975, des enquêtes plus approfondies sur les microorganismes psychrophiles ont été menées (**A. M. Gounot, 1986**), de nombreux chercheurs rapportent l'isolement des micro-organismes « psychrophiles » provenant de divers milieux : poissons, sols, et les eaux marines..., (**A.-M. Gounot, 1991**).

Au cours des deux dernières décennies, quelques critiques générales sur les adaptations physiologiques des micro-organismes au froid ont été publiés (Scherer & Neuhaus, 2006), et plusieurs études sur l'écologie, la physiologie et la diversité phylogénétique des psychrophiles ont été développées en profondeur (Junge, et al., 2011), La base moléculaire des psychrophiles a été examinée en termes de mécanismes biochimiques par Herbert (1986) et Russell (1990) (A.-M. Gounot, 1991).

En 2002 Margesin, décrit l'apparition des hétérotrophes Gram positif et bactéries commensales, ainsi que des levures, dans le glacier alpin cryoconites, Buzzini (2005) a signalé la présence de cellules de levure viables en fonte allant au large des glaciers dans les Alpes Italiennes et en 2006 Gostincar, décrit l'évolution locale des organismes de type levure noires des espèces *Aureobasidium pullulans* dans la glace basale des glaciers de l'Arctique. Plus récemment, De Garcia (2007) décrit la présence de levures viables dans l'eau de fonte provenant des glaciers de la Patagonie Argentine. Butinar (2007) a signalé la présence de levures viables dans les couches de glace différentes des glaciers de l'Arctique situées dans les îles de Svalbard (Norvège) (**Turchetti, et al., 2008**).

Une étude de la littérature plus récente mettant en évidence l'adaptation moléculaire, la biodiversité et la dynamique microbienne dans le froid a mené à la conclusion que la compréhension de la vie microbienne dans les habitats congelés devrait reposer sur des études approfondies des interactions complexes entre les divers facteurs biologiques, chimiques et physiques aux interfaces eau— glace, par exemple de concentration du soluté, de pression et de l'état physique de l'eau et de la glace, plutôt que de l'effet de la température seulement (**Panikov & Sizova, 2007**).

Ces études ont progressivement reculés les limites physiques et chimiques connues de la vie sur terre. À l'heure actuelle, certaines limites ne sont toujours pas

déterminées et les recherches se poursuivent afin de définir les limites de la biosphère (Quérellou & Guézennec, 2010).

I-3 Adaptation des psychrophiles

Les organismes vivants en milieux extrêmes ont au cours de l'évolution développé des stratégies adaptatives très variées. Ils présentent de ce fait un répertoire de voies métaboliques et de biomolécules originales, leurs permettant non seulement de survivre dans ces conditions, mais aussi de se développer souvent de manière optimale (Quérellou & Guézennec, 2010).

Une des hypothèses de l'évolution microbienne est que les thermophiles sont les premiers à évoluer, suivi par les mésophiles, puis les psychrophiles. L'évolution des bactéries psychrophiles est probablement due à de nombreux événements génétiques (Morita, 1975), leur capacité de survivre et de proliférer à de basses températures implique que ces microorganismes ont surmonté les barrières principales inhérentes aux environnements froids, ces défis incluent (D'Amico et al., 2006) :

- * Réduction de l'activité enzymatique ;
- Diminution de la fluidité membranaire;
- Problèmes de transport des aliments et des déchets ;
- Diminution du taux de transcription, de traduction et de division cellulaire ;
- Dénaturation des protéines ;
- Repliement des protéines inadéquat ;
- Givrage intracellulaire.

Ils ont évolué génotypiquement et/ou phénotypiquement (A.-M. Gounot, 1991), ainsi que des stratégies qui varient entre les aspects moléculaires et cellulaires (Morgan-Kiss et al., 2006). Pour surmonter les effets négatifs des basses températures (D'Amico et al., 2006), tous les composants de la cellule; des membranes et des systèmes de transport des corps dissouts intracellulaires, des acides nucléiques et des protéines, doivent être adaptés. De même, des processus cellulaires fondamentaux du métabolisme, la réplication, la transcription et la traduction doivent également être accommodés pour résister au froid (Cavicchioli, et al., 2002).

Les mécanismes de ces adaptations demeurent mal définis, mais une conclusion générale a été tirée; pour faire face à de basses températures, toutes les structures comprenant des membranes doivent avoir une flexibilité et une fluidité suffisante pour assurer des fonctions multiples (A.-M. Gounot, 1991; Scherer & Neuhaus, 2006). Pour que les protéines puissent continuer à pomper des ions, à absorber les éléments nutritifs et à effectuer la respiration (Beales, 2004), le degré de cette fluidité est régulé par les acides gras des phospholipides membranaires; par conséquent, une augmentation de la proportion d'acides gras insaturés, une diminution de la longueur de chaîne moyenne et une augmentation des acides gras polyinsaturés sont primordiales pour maintenir la fluidité de la membrane à basse température (Thomas & Dieckmann, 2002; Van Stempvoort & Biggar, 2008). D'autres modifications peuvent survenir tel que l'augmentation de la quantité ou la nature des acides gras ramifiés, la diminution de la proportion d'acides gras cycliques et donc une augmentation d'acides gras monoinsaturés (Beales, 2004; Margesin & Miteva, 2011). Cette flexibilité conformationnelle importante s'accompagne de la thermolabilité accrue, en comparaison, les enzymes des mésophiles et thermophiles ont tendance à avoir des propriétés structurales qui produisent une structure plus rigide, ainsi conférer une haute thermostabilité (Cavicchioli, et al., 2002). Un autre changement a été observé mais négligé; c'est l'augmentation d'épaisseur de la paroi cellulaire. Ceci n'a été rapporté que pour Pseudomonas fluorescens résistant au froid, qui a montré une augmentation de deux fois d'épaisseur de paroi cellulaire (Scherer & Neuhaus, 2006).

CHAPITRE

Les Psychrophiles

Dans La

Biotechnologie

II-1- Domaines d'application des psychrophiles

Les organismes psychrophiles et leurs produits ont des applications potentielles dans un large éventail de procédés industriels, agricoles et médicales (Abdel-Megeed, 2004; Gerday, et al., 2000). Leurs utilités dérivent de leur souplesse inhérente (Cavicchioli et al., 2002).

II-1-1- Bioremédiation

La bioremédiation est une technologie récemment établie qui utilise des microorganismes pour la restauration des milieux souillés (**Suzuki**, et al., 2001).

En raison de l'efficacité catalytique élevée de leurs enzymes et spécificité inhabituelle à des températures basses et modérées, les micro-organismes adaptés au froid ont un énorme potentiel pour des applications dans ce domaine, L'inoculation des environnements contaminés avec ces micro-organismes est censée améliorer la biodégradation des substances chimiques récalcitrantes et des polluants organiques tels que les huiles (Gianfreda & Rao, 2004; Lo Giudice, et al., 2006), les composés aromatiques (Parrilli, et al., 2010), les nitrates, les hydrocarbures, les métaux lourds et les biopolymères, comme la cellulase, la chitine, la lignine, les protéines et les triacylglycérols (Gerday, et al., 2000) et donc la décontamination *in situ* des environnements froids (Margesin, 2000; Quérellou & Guézennec, 2010).

II-1-2- Applications dans la biologie moléculaire

Les enzymes psychrophiles sont des candidats idéaux pour certaines applications en biologie moléculaire (Vazquez, et al., 2004) où il faut une activité catalytique élevée en combinaison avec l'inactivation rapide et efficace de l'enzyme à des températures modérées (Abdel-Megeed, 2004).

Les enzymes adaptées au froid peuvent fournir un certain nombre d'indemnités pour les processus séquentiels. L'avantage de ces enzymes comparées à celles des mésophiles se situe dans leur labilité à la chaleur, l'activité des phosphatases psychrophiles par exemple est facilement arrêtée par le chauffage à 65°C donc les ADN ligases adaptées au froid pourraient offrir un avantage significatif par rapport aux enzymes mésophiles car les rendements de ligature augmentent à de basses températures (**Huston, 2008**).

II-1-3- Production de produits chimiques fins

La plasticité conformationnelle inhérente des enzymes adaptées au froid peut en particulier être adaptée aux applications organiques de synthèse dans les conditions de basse teneur en eau utilisés pendant la production de beaucoup de produits chimiques fins (**Huston**, 2008). Les applications industrielles des lipases des psychrophiles dans ce domaine sont très diverses (**Demirjian**, et al., 2001) par leurs propriétés de synthèse (synthèse d'esters, d'intermédiaires chiraux, d'amides, ...) (**Quérellou & Guézennec**, 2010).

II-1-4- Industrie des détergents

Les propriétés catalytiques des enzymes adaptées au froids ont trouvé de nombreuses applications dans l'industrie des détergents (**Demirjian**, et al., 2001; **Vazquez**, et al., 2004) l'avantage d'intégrer des hydrolases actives dans le froid tels les cellulases, les protéases, les lipases et les amylases comme additifs détergents est la réduction de la consommation d'énergie (**Suzuki**, et al., 2001), ainsi que la réduction de l'usure (**Gerday**, et al., 2000).

L'utilisation de ces enzymes peut être plus économique car une petite quantité de ces dernières est exigé pour réaliser le même effet obtenus par leurs homologues mésophiles, ces enzymes diminuent non seulement les besoins en énergie du lavage mais également les coûts de fabrication et l'utilisation des détergents liquides ou granulaires, des détachants, des décapants de ménage, et des applications de nettoyage industrielles (**Huston, 2008**).

II-1-5- Industrie textile

Dans la production de tissu. Un prétraitement avec cellulases, retranche la saillie des extrémités, réduit la formation de pilule et augmente la durabilité et la douceur du tissu. Le traitement actuel, cependant, s'accompagne d'une perte de résistance mécanique en raison de l'altération de la fibre principale. Une cellulase adaptés au froid, permettrait une diminution de la température du processus et de la concentration des enzymes nécessaires. La résistance mécanique du produit final serait également améliorée en raison de l'inactivation rapide spontanée de l'enzyme (Gerday et al., 2000).

II-1-6- Industrie alimentaire

La capacité de la chaleur d'inactiver les enzymes active dans le froid a une importance particulière pour l'industrie alimentaire (**Demirjian**, et al., 2001; Gounot, 1991) où il est important d'empêcher toute modification en goût et valeurs nutritives du produit et des substrats sensibles à la chaleur initiale et de réduire au minimum sa détérioration (**Cavicchioli**, et al., 2002; Gerday, et al., 2000; Nakagawa, et al., 2004).

Les applications possibles des enzymes adaptés au froid sont nombreuses, par exemple (Gerday, et al., 2000) :

- ❖ Dans l'industrie laitière, la B-galactosidase est utilisée à basse température afin de réduire la quantité de lactose responsable de graves intolérances induites dans environ les deux tiers de la population mondiale ; et convertir le lactose du lait ;
- ❖ Dans l'industrie fromagère, les protéases, peuvent être potentiellement utiles dans la maturation accélérée des fromages de lente-maturation qui exigent des conditions à basse température (Gounot, 1991; Huston, 2008);
- ❖ Dans l'industrie de jus de fruits, l'utilisation de pectinases permet le processus d'extraction de jus, réduit la viscosité et aide à clarifier le produit final (Nakagawa, et al., 2004);
- Dans l'industrie de transformation de fruits et légumes (Margesin, et al.,
 2005);
- dans le processus de cuisson, les enzymes comme les protéases, les amylases et les xylanases peuvent servir à réduire le temps de fermentation de pâte, améliorer les propriétés de la pâte et la mie, en plus à conserver les arômes et les niveaux d'humidité. Ces enzymes agissent directement sur l'amidon et le gluten hémicellulase pour pallier le faible niveau d'activité des enzymes intrinsèques dans la farine (Gerday et al., 2000);
- ❖ Dans les industries de viande, de bière, de vins, et de transformation de fruits et légumes (Margesin, et al., 2005), ainsi que dans la fabrication de l'alimentation animale (Quérellou & Guézennec, 2010; Gerday et al., 2000);

- ❖ Dans l'industrie de la boulangerie moderne, ces enzymes améliorent les conditions de travail (Pacheco et al., 2009), leurs actions peuvent avoir comme conséquence l'élasticité et l'usinabilité améliorées de la pâte, ayant pour résultat un plus grand volume et une structure améliorée de mie (Huston, 2008);
- ❖ Dans le déplacement des tissus indésirables des fruits de mer, tels que l'écaillage et le déplacement de la peau de poissons et l'extraction des caroténoproteines à partir des mollusques et crustacés (Huston, 2008);

L'utilisation d'enzymes psychrophiles dans la biotechnologie alimentaire peut être avantageuse non seulement pour leur activité spécifique élevée, réduisant la quantité d'enzyme nécessaire, mais aussi pour leur inactivation facile, cela empêche l'action prolongée de l'enzyme de modifier le produit final (Gerday, et al., 2000), ainsi que l'avantage de réduire au minimum la croissance de souiller des mésophiles et puis d'arrêter l'activité restante par pasteurisation (Gounot, 1991).

II-1-7- Industrie pharmaceutique et cosmétique

Des enzymes adaptées au froid qui montrent des activités catalytiques élevées à basse température peuvent être exploitées pour l'industrie pharmaceutique, les enzymes utilisées pour beaucoup d'applications organiques de synthèse doivent pouvoir être utiliser efficacement dans des dissolvants aqueux/organiques et non aqueux, Comme ces conditions tendent à altérer l'activité enzymatique en augmentant l'énergie d'activation des réactions tandis que limitant la mobilité conformationnelle requise pour la catalyse, la flexibilité inhérente des enzymes adaptées au froid peut être d'importance particulière une fois utilisée dans les dissolvants qui rendent les enzymes mésophiles et thermophiles inactives (**Huston, 2008**).

Dans l'industrie cosmétique, les enzymes adaptées au froid peuvent augmenter le rendement de métabolisations impliquant les substrats volatils, tels que des composés de saveur et de parfum sujet à l'évaporation à températures élevées (Huston, 2008).

II-1-8- combustibles organiques

Bien que le processus de fabrication conventionnel d'éthanol soit fortement optimisé, il n'est pas énergétiquement ou économiquement efficace puisqu'il exige des niveaux de chaleur élevée et des équipements spécialisés, un processus de fabrication à énergie réduite d'éthanol comportant l'hydrolyse crue d'amidon, également connue sous le nom d'hydrolyse à froid. Ce processus élimine essentiellement la liquéfaction d'énergie et équipement-intensive faisant l'étape de cuisson. L'incorporation du procédé cru d'hydrolyse d'amidon dans la production d'éthanol offre de nombreux avantages, y compris de plus grands rendements d'éthanol, peu de produits latéraux non désirés, des réductions de rebut d'usine et des émissions, et épargne sur des dépenses capitales, en réduisant l'équipement nécessaire (Huston, 2008).

II-1-9- nanobiotechnologie d'enzymes

Les enzymes adaptées au froid sont capables de synthétiser les matériaux nanostructurés à de basses températures et à conditions modérées, ayant pour résultat des solutions de rechange peu coûteuses et favorables à l'environnement aux techniques traditionnelles de synthèse. De grandes quantités de silice sont synthétisées biologiquement des précurseurs moléculaires à de basses températures, à pressions et à pH neutre dans des nanostructures complexes, tels que les squelettes des diatomées, radiolarians et éponges, des études ont indiqué que les filaments intacts de protéine et leurs sous-unités indigènes pouvaient catalyser directement l'hydrolyse et diriger structurellement la polycondensation in vitro du silicium et de l'organosilicium vers la silice et les silicones de rendement dans des conditions à basse température (**Huston**, 2008).

II-2- Avantage des enzymes psychrophiles dans les industries

L'utilisation des psychrophiles et leurs enzymes dans les applications biotechnologiques offrent des avantages écologiques et économiques considérables (Abdel-Megeed, 2004) :

- **Économisation d'énergie.**
- Élimination des étapes de chauffage coûteux ;
- ❖ Fonctionnement dans des environnements froids;
- Niveau de stéréospécificité élevée;
- Minimisation des réactions chimiques indésirables qui peuvent se produire à des températures élevées ;
- * Rendements des procédés faisant intervenir des éléments thermosensibles
- ❖ L'inactivation facile et rapide par un traitement thermique doux grâce à leur labilité thermique
- ❖ Applications dans des conditions de basses eaux en raison de leur plus grande souplesse inhérente (Gerday, et al., 2000).

II-3-Inconvénients des enzymes psychrophiles dans les industries (Gerday, et al., 2000)

- enzymes coûteuses ;
- * réactions de faibles rendements ;
- la faible biodiversité des microorganismes psychrophiles explorées jusqu'à présent.

CHAPITRE

Contamination Des Surfaces Et Hygiène Les milieux de l'environnement (air, surfaces, eaux) présentent une contamination microbiologique permanente, mais variable dans le temps et dans l'espace. Les microorganismes font partie de la flore saprophyte, environnementale, et proviennent aussi de la flore commensale ou pathogène des individus. Les micro-organismes contribuent à la contamination progressive des divers supports inertes de l'environnement. Certains de ces micro-organismes sont à l'origine de l'altération de produits dans diverses industries (Squinazi, 2006).

III-1- Mécanismes de la contamination des surfaces

L'adhésion bactérienne débute par l'attachement des cellules grâce à des forces physiques, relativement labiles, puis la cellule bactérienne secrète des substances qui lui permettent d'adhérer plus fortement à la surface. La présence de molécules organiques est un facteur aggravant, car la surface devient alors une *surface-substrat* pour le développement des micro-organismes. Lorsque les conditions sont réunies (température, humidité), les bactéries se développent en micro-colonies ou par plaques et forment progressivement un biofilm. Celui-ci est composé de cellules bactériennes vivantes, de cellules bactériens mortes et de diverses espèces microbiennes recrutées en superficie (**Squinazi, 2006**).

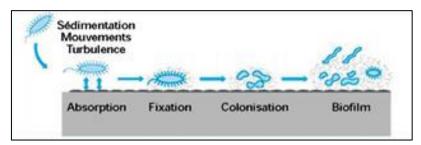


Figure 3: Adhésion d'une bactérie à un support inerte et formation d'un biofilm (Squinazi, 2006).

III-1- La conservation par le froid dans l'agroalimentaire

En abaissant la température de conservation d'un aliment, on ralentit la croissance des microorganismes (Vierling, 2008).

Dans les industries agroalimentaires, deux procédés de stabilisation font appel au froid : la réfrigération et la congélation. L'intérêt de la réfrigération est d'augmenter l'efficacité de la conservation et de prolonger sa durée (**Vierling, 2008**) en évitant d'induire des modifications organoleptiques sur les produits alimentaires, alors que les autres procédés

physiques ne donnent pas toujours aux denrées un aspect de produits frais (Bornert, 2000). L'utilisation répandue de la réfrigération pour le stockage des produits alimentaires frais fournit une grande diversité d'habitat riche en nutritif pour quelques micro-organismes résistants au froid bien connus pour la détérioration de nourriture (Joseph, et al., 2008).

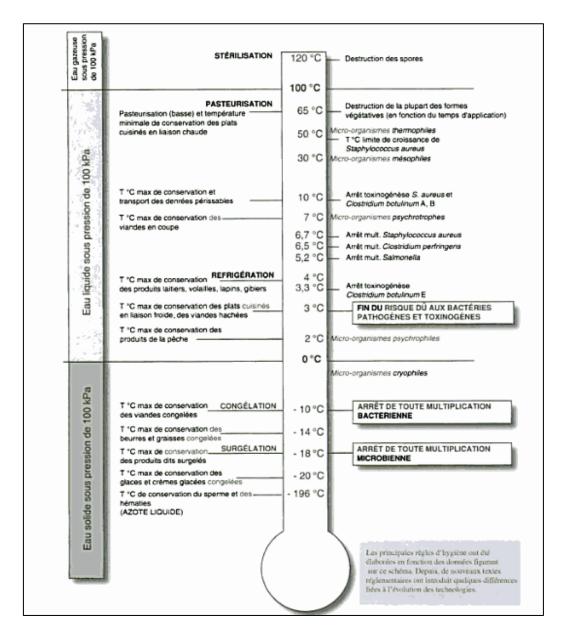


Figure 4: Action de la température sur les micro-organismes (Levral & Vierling, 2007).

III-3- Contrôle microbiologique

L'efficacité des techniques de conservation et de protection des aliments est principalement déterminée par des contrôles microbiologiques (**Vierling, 2008**), il convient donc d'identifier le ou les dangers microbiologiques potentiels (la contamination ou la reprise

de la multiplication des germes (Collobert & Metay, 2002) associés aux procédés ou aux produits, qui peuvent être à l'origine d'un effet indésirable (Squinazi, 2006)(tableau IV et V).

III-4- Nettoyage et désinfection des surfaces de contact

Le but du nettoyage est d'éliminer les salissures (poussières et germes) par une action mécanique puis par celle de substances chimiques, ce qui prive le micro-organismes de tout substrat organique pouvant favoriser leurs développement. Le nettoyage et la désinfection sont complémentaire : aucune désinfection n'est possible si elle n'a pas était précédée d'un nettoyage efficace, la plus part des désinfectant s agissent sur les structure vitale des micro-organismes, en particulier sur la membrane cytoplasmique (1), ce qui permet le maintien d'un niveau sanitaire satisfaisant (Collobert & Metay, 2002) (tableau III).

Tableau III: Spectre d'activité des antiseptiques et des désinfectants (Leveau, et al., 2001).

Désinfectants	Bactérie à Gram		mycobactérie	Cnono	ahammianan	virus
Desimectants	positif	négatif	Inycobacterie	Spore	champignon	VIIUS
Alcool à 70°	++	++	0	+	++	+
Aldéhydes	+++	+++	++	+	+++	++
Ammonium quaternaire	+++	+(1)	0	0	+	+
Carbanilides	+	0			0	
Chlorhexidine	+++	+++	+	0	+	0
Chlore	+++	+++	++	++	++	++
Hexachlorophène	+++	+	0	0	+	0
Iode	+++	+++	++	++	++	++
Dérivés mercuriels	++	++	0	0	+	
Acide peracétique	++	+++		++	++	++
Glutaraldéhyde	+++	+++	++	+	+++	++
Amphotères	+++	+		0	+	0
Biguanidine	++	++		0	(+)	0
Eau oxygénée	+++	+++		+	+	0
phénoliques	Activité variable selon les composés					

^{+++:} Très bonne activité, ++: bonne activité, +: activité moyenne, ±: activité faible,

^{(+):} activité inconstante, 0: activité nulle, (1) inactif sur Pseudomonas sp.

Tableau IV: Principaux microorganismes responsables de toxi-infections et de maladies alimentaires en cas de non-respect de la chaîne du froid (**Rosset, et al., 2002**).

Microorganisme	Température minimale de développement	Synthèse de toxines	Temps d'incubation	Symptômes
Salmonella	5°C		12 - 36 h	vomissements, diarrhée, fièvre, douleurs abdominales
Staphylococcus aureus	5°C - 12°C	entérotoxines staphylocciques préformées dans l'aliment	1 - 8 h	vomissements violents , douleurs abdominales parfois accompagnés de diarrhées et céphalées, absence de fièvre
Clostridium perfringens	14°C	entérotoxine : libérée dans l'intestin lors de la sporulation des formes végétatives	8 - 12 h	diarrhée, déshydratation, douleurs abdominales, absence de fièvre
Bacillus cereus	5°C	toxine diarrhéïque libérée dans l'intestin	8 - 12 h	diarrhée et douleurs abdominales, absence de fièvre
		toxine émétisante, préformée dans l'aliment	1 - 5 h	vomissements, nausée, occasionnellement diarrhée et douleurs abdominales, absence de fièvre
Yersinia enterocolitica	1°C	toxine préformée dans l'aliment (et invasion des cellules intestinales)	2 - 7 j	diarrhée pouvant être accompagnée d'autres symptômes inconstants : douleurs abdominales, vomissements, hyperthermie (complications : pseudo-appendicite, lupus érythémateux)
E.coli O157:H7	5 -12°C	Vérotoxines (= shiga-like toxine)		colites hémorragiques, syndromes hémolytiques urémiques et purpura thrombocytopéniques
Listeria monocytogenes	1°C		3 – 70 jours	bactériémie associée ou non à une infection du système nerveux central (méningite, méningo-encéphalite)
Clostridium botulinum	3°C	neurotoxine botulique préformée dans l'aliment (ou, plus rarement, produite dans l'intestin)	12 - 36 h	troubles oculaires, bucco-pharyngés. Dans les cas graves : mort du malade due à une paralysie respiratoire ou une fausse déglutition

Tableau V : Résumé de la signification des microorganismes indicateurs en microbiologie alimentaire (Québec, 2006)

Indicateurs	Causes les plus probables de la non-conformité
Bactéries aérobies mésophiles (BPF)	 Hygiène et salubrité déficientes Chaîne de froid non respectée Mauvais refroidissement Préparation à l'avance Conservation prolongée Température de maintien au chaud insuffisante
Bacillus cereus (Santé 2)	■ Mauvais refroidissement
Clostridium perfringens (Santé2)	■ Température de maintien au chaud insuffisante
Coliformes totaux (BPF)	 Nettoyage et désinfection inadéquats Matériaux contaminants (ex. : emballages) Mauvaises conditions d'entreposage Vulnérabilité d'une source d'eau non traitée Déficience du traitement de désinfection (ex. : eau) Déficience du traitement thermique (ex. : pasteurisation, cuisson)
(BPF ou Santé 2)	 Défaut d'hygiène du personnel Défaut de désinfection des matériaux Non-respect du protocole de décontamination Mauvaises conditions d'entreposage ou de protection
E. coli (Santé 2)	 Contamination fécale de mammifères à sang chaud; probabilité de présence de microorganismes pathogènes entériques
Coliphages F-RNA spécifiques (Santé 2)	■ Contamination fécale de l'eau ou des mollusques
Staphylocoques aureus (Santé 2)	 Défaut d'hygiène du personnel Absence du port de la résille Porteurs de Staphylococcus aureus Abcès sur la peau des manipulateurs Dispositif adéquat pour le lavage des mains non disponible (savon, eau chaude)
Bactéries lactiques (BPF - Altération)	 Bactéries d'altération des aliments emballés sous-vide ou sous atmosphère modifiée Conservation prolongée Fraîcheur du produit diminuée
Levures et moisissures (BPF - Altération)	 Microorganismes d'altération Conservation du produit prolongée Fraîcheur du produit diminuée
Pseudomonas aeruginosa (BPF)	■ Croissance dans l'eau embouteillée

TRAVAIL EXPERIMENTAL

JERE

PARTIE

Matériels et Méthodes

Les analyses microbiologiques des échantillons ont été menées au laboratoire de BBBS de l'Université de Bejaia.

L'objectif de la méthodologie du présent travail est de faire une investigation sur la flore existante au niveau des surfaces en contact avec des denrées alimentaires au niveau des réfrigérateurs et des congélateurs de quelques commerçants locaux (tableau VI).

IV-1 Prélèvement et échantillonnage

Les prélèvements sont effectués sur les surfaces horizontales sur lesquelles sont posés les diverses denrées alimentaires dans les réfrigérateurs, ainsi que sur les surfaces internes des congélateurs, en utilisant des écouvillons stériles humidifiés par du bouillon nutritif. La procédure de prélèvement est effectuée sur des surfaces de 100 cm², par des mouvements horizontaux, verticaux et diagonaux en faisant tourner l'écouvillon légèrement (ISO, 1999).

Les écouvillons d'échantillonnage sont transportés dans une glacière pour bien les maintenir à une température entre 0 °C et 4 °C, et l'ensemble des analyses microbiologiques sont effectués dans un délai de 2 heures ±1 heure (**Le Guyader**, 1999).

Tableau VI: Sites de prélèvement des échantillons et leurs localisations

Site du prélèvement	Numéro d'échantillon	Nature du produit	Type d'appareil	Date du prélèvement
Alimentation générale	1	Laitiers	Réfrigérateur	09/04/2012
Super marché 1	2	Laitiers	Réfrigérateur (présentoir) (3°/5°C)	09/04/2012
	9	Carnés : boulettes de viande	Congélateur	
Super marché 2	10	Charcuterie de poulet	Réfrigérateur	10/04/2012
	11	Laitier (yaourt, fromage)	Réfrigérateur	
Super	4	Laitier (yaourt, fromage, jus)	Réfrigérateur (4°C)	10/04/2012
marché 3	8	Laitier (fromage) cachir, pâté	Réfrigérateur (1° /5°C)	10/04/2012
Boucherie 1	3	Carnés (boulette de Viandes, steak)	Congélateur	12/04/2012
	12	Carné (poulet)	Réfrigérateur	
	5	Carné (poisson)	Congélateur (-18°C)	
Boucherie 2	6	Carné (poisson)	Congélateur	12/04/2012
Boucherie 2	7	Carné (poulet)	Réfrigérateur	12/04/2012
	13	Viande, fromage	Congélateur (présentoir)	

IV-2- Réactifs et appareillages

Les milieux de culture, les réactifs et les appareillages utilisés dans cette étude sont donnés en **(annexe I)**.

IV-3- Analyses microbiologiques

La dilution de 10^{-1} est préparée pour tous les échantillons en mettant l'écouvillon de prélèvement dans 10 ml d'eau physiologique maintenu à froid (dans un bac à glace) pour éviter les différences de température par rapport à la température d'échantillonnage.

La série des analyses microbiologiques effectuée comprend le dénombrement de:

- **!** la flore totale:
- levures et moisissures
- **Streptococcus thermophilus**;
- lactocoques mésophiles ;
- Coliformes ;
- Entérobactéries :
- les Anaérobies sulfitoréducteurs (ASR).

Ainsi que la mise en évidence microbienne (bactéries et champignons) sur différents milieux de culture gélosés, bouillon nutritif et milieu sélectif d'enrichissement pour les staphylocoques (Gioliti contoni) et les salmonelles – shigelles (SFB) (Guiraud.,2003).

Les bouillons nutritifs et les milieux d'enrichissement sont incubés à 4°C. Tandis que les autres milieux sont incubés en parallèle à 4 °C et à la température du germe recherché (30 et /ou 37°C). L'objectif principal de ces incubations est la recherche des psychrophiles et la comparaison du point de vue qualitatif et quantitatif par rapport au mésophiles (30 et /ou 37°C). Les résultats négatifs à 4 °C sont transférés à 37 °C.

Des tests d'orientations tels que :

- Coloration de Gram ;
- Coloration au bleue de méthylène,
- ❖ Observation à l'état frais,
- Mannitol mobilité,
- KIA.
- Catalase

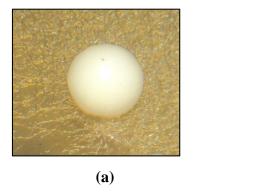
Ont été effectués pour les colonies avec un aspect particulier et dominant. En fin, des tests de confirmation des *Pseudomonas* en utilisant le King A et le King B sont réalisés (annexe II).

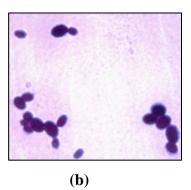
 $\it NB$: des photographies sont prises durant tous les tests effectués avec un appareil photo de 14 méga pixels.

Les analyses microbiologiques effectuées et les tests d'orientation sont résumées dans le **tableau VII** et **VIII**.

Tableau VIII : Techniques d'identification des souches d'entérobactéries.

Test	Protocol	Lecture
Catalase	Sur une lame déposer une goutte d'eau oxygénée. prélever dans la zone d'asepsie une colonie à l'aide de l'anse de platine puis la déposer sur la goutte d'eau oxygénée.	 ❖ Bactérie possédant une catalase : Apparition d'effervescence. ❖ La bactérie ne possédant pas de catalase : Pas d'apparition d'effervescence.
Etude de la fermentation des sucres sur KIA (Hajna Kligler)	Ensemencer la pente par des stries puis réaliser une piqûre centrale. L'incubation se fait à 4°C pendant une semaine puis à 37°C pendant 24 h.	 ❖ Fermentation positive de lactose: virage au jaune de la pente ❖ Fermentation positive de saccharose: virage au jaune de la région médiane. ❖ Fermentation positive de glucose: virage au jaune fond du tube ❖ Production de gaz: présence de bulle d'air ❖ Production d'H₂S: noircissement du tube.
Etude de la mobilité et de la fermentation du mannitol sur milieu Mannitol mobilité	L'ensemencement se fait à l'aide d'une anse de platine par une piqûre centrale. L'incubation est effectuée à 4°C pendant une semaine puis à 37°C pendant 24 h.	 ❖ Fermentation de Mannitol positive: virage au jaune du tube ❖ Présence d'une Mobilité : diffusion de part et d'autre de la piqûre centrale.
Recherche de l'uréase et production d'indole, sur milieu urée- indole	Ensemencer le milieu urée indole et l'incuber à 4°C pendant une semaine puis à 37°C pendant 24 h. Pour mettre en évidence la production d'indole additionner quelques gouttes de réactif de Kovacs.	 Production d'une uréase : coloration rose violette. Production d'indole : apparition d'un anneau rouge à la surface.

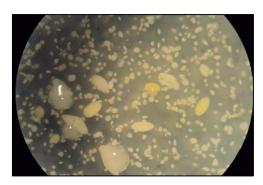

2^{ÈME}


PARTIE

Résultats et Discussions

Les micro-organismes psychrophiles se développent bien aux environs de 0°C (Cavicchioli et al., 2002) ils ont un optimum de croissance vers 15 °C (Nakagawa et al., 2004; De García et al., 2007) et une température maximale n'excédant pas 20°C (Rossi et al., 2009; Morita, 1975) leurs visualisation macroscopique commence au bout d'une ou deux semaines (Oikawa et al., 2001), ils sont répandus dans l'environnement et dans les aliments (A. M. Gounot, 1986).

L'ensemble des analyses effectuées dans le cadre de la présente étude, montre une diversité microbienne (bactéries et champignons) qualitative et quantitative sur les différents milieux, pour les 13 échantillons. En plus, des colonies de levure ont été constatées dans la totalité des milieux de culture utilisées et pour les trois températures d'incubation (4, 30 et 37°C) (**figure 4**).


Figure 4 : (a) : Aspect de la colonie de levure sous loupe binoculaire (×2,5), **(b)** et la morphologie de ses cellules après coloration de Gram.

V-1- La gélose PCA

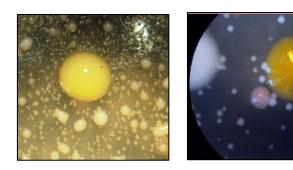
La gélose glucosée à l'extrait de levure « Plate Count Agar » ou PCA, est utilisée en bactériologie alimentaire pour le dénombrement des bactéries psychrotrophes et mésophiles dans les produits alimentaires (anonyme 1).

Pour des raisons de manque de matériel, l'ensemencement sur milieu PCA n'est effectué qu'à partir de deux dilutions : 10⁻¹ et 10⁻².

L'observation des boites de Pérti dévoile une large gamme d'aspect de colonies de tailles variables (petite, moyenne et grande), de couleurs différentes (blanche, jaune, crème et transparente) et de forme circulaire, fusiforme avec un pourtour régulier ou irrégulier. Les colonies les plus dominantes sont celles de couleur crème, petites de taille, plates en surface, et fusiformes en masse (figure 5).

Figure 5: Observation d'aspect de colonies sur milieu PCA sous loupe binoculaire $(\times 2,5)$.

Les résultats obtenus (**tableau IX**) révèlent qu'il existe une poussée intense de flore bactérienne qui se développe à 4°C pour la majorité des échantillons, à l'exception des échantillons 8 et 10 qui présentent un nombre réduit, et les échantillons 1 et 9 qui contiennent au maximum 4 colonies par boite.


Tableau IX : Résultats de dénombrement de la flore totale aérobie des échantillons sur gélose PCA (×10 UFC/100 cm²).

Echantillan	Dilution			
Echantillon	10 ⁻¹	10 ⁻¹	10 ⁻²	10 ⁻²
1	4	4	Absence	Absence
2	Indénombrable	Indénombrable	Indénombrable	Indénombrable
3	Indénombrable	Indénombrable	Indénombrable	Indénombrable
4	Indénombrable	Indénombrable	Indénombrable	Indénombrable
5	Indénombrable	Indénombrable	Indénombrable	Indénombrable
6	Indénombrable	Indénombrable	Indénombrable	Indénombrable
7	Indénombrable	Indénombrable	Indénombrable	Indénombrable
8	198	141	19	59
9	Absence	Absence	1	Absence
10	18	33	4	13
11	Indénombrable	Indénombrable	Indénombrable	Indénombrable
12	Indénombrable	Indénombrable	Indénombrable	137
13	Indénombrable	Indénombrable	Indénombrable	Indénombrable

V-2- Gélose Nutritive Ordinaire (GNO)

La gélose nutritive est utilisée dans le cadre de la microbiologie alimentaire pour la culture d'une grande variété de microorganismes, en vue de la purification nécessaire et préalable aux étapes d'identification prévues dans les normes spécifiques de recherche et/ou de dénombrement. L'utilisation de ce milieu doit conduire à l'obtention de colonies bien isolées (anonyme 2).

Les résultats obtenus montrent une importante charge bactérienne dans la plupart des échantillons concernant les deux températures d'incubation (**figure 6**), ceci est dû au fait que ce milieu convient à tous les germes, les échantillons 1 et 9 font l'exception de cette observation, car ils présentent un très faible nombre de colonies bactériennes à 37°C et l'absence totale de ces dernières à 4°C.

Figure 6: Aspect des colonies sur milieu GNO sous loupe binoculaire ($\times 2,5$).

Une importante variabilité du taux des champignons a été constatée, seul les échantillons effectués au niveau des surfaces où sont déposés des produits laitiers ont révélés une présence de champignons ; ils présent un très faible nombre, alors que l'échantillon 4 a atteint un taux indénombrable, en revanche une absence totale a été remarqué pour les échantillons effectués sur les surfaces comprenant des produits carnés. Cette poussée fongique observée pour les échantillons des réfrigérateurs contenant des produits laitiers pourrait s'expliquer par le fait que la plus parts de ces produit sont du fromage et du camembert, et que ces derniers sont affinés à l'aide de culture de champignon.

Les résultats discutés ci-dessus sont représentés dans le (tableau X)

Tableau X : Résultats de lecture et aspect de colonies sur milieu GNO.

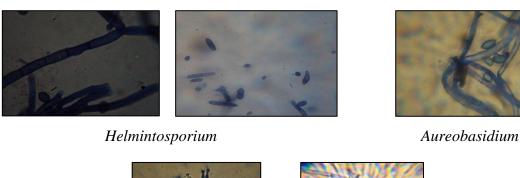
GNO			
N°	Tei	mpérature	
d'échantillon	37 °C	4 °C	
1	18 colonies petites jaune marron	1 très petit champignon	
2	Indénombrable /	Indénombrable très fin/ 23 roses saumon/1	
	6 champignons	jaune/ 19 blanches très grande/ 35 blanches moyennes	
3	Indénombrable très claire 162	Indénombrables colonies très fines, très	
	colonies beiges foncées	rapprochées, beiges.	
4	Indénombrable bactéries et champignons	Indénombrable blanches lisses / 2jaunes	
5	Indénombrable très fin/ 188 colonies	Indénombrables colonies très fines, très	
	beiges foncés	rapprochées, beiges.	
6	Indénombrables fine très claires/	Indénombrable colonies très fines, très	
	beiges foncés	rapprochées beiges	
7	Indénombrable bactéries et 2	Indénombrable colonies très fines, très	
	champignons	rapprochées beiges	
8	Indénombrable bactérie / 59 colonies	Indénombrables moyenne/ 53 Blanches	
	transparentes/ 10 champignons	bombées moyennes	
9	1 champignon/ 14 colonies	3 très petits champignons	
10	5 champignons/ 19 colonies	22 petites colonies blanches bombées /4 très	
	blanches/ 17 jaunes/ 3 marron	petits champignons	
	claires/ 1 orange		
11	Indénombrable	Indénombrable roses petites/ 24 blanches	
		bombées moyennes/ 27 oranges petites/	
		18 jaunes petites	
12	Indénombrable	Indénombrable colonies beiges fines,	
		petites, et moyennes très rapprochées	
13	Indénombrables colonies beiges	Indénombrable colonies beiges fines,	
	foncées et colonies très claire	petites, et moyennes très rapprochées	

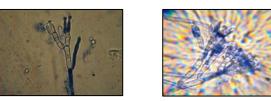
V-3- Gélose de Sabouraud au chloramphénicol

La gélose de Sabouraud au chloramphénicol est recommandée pour l'isolement des levures et des moisissures, surtout lorsque les prélèvements sont fortement contaminés par des bactéries. Le chloramphénicol, antibiotique thermostable à large spectre antibactérien, inhibe le développement de la microflore contaminante (anonyme 3).

Les champignons ont été cités déjà aux cours des recherches précédentes comme des genres psychrophiles (Gunde-Cimerman, et al., 2005)..

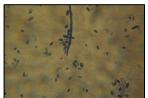
Les examens macroscopiques à l'œil nu et à la loupe binoculaire (tableau XI) permettent de distinguer deux sortes de formes, on observe des champignons filamenteux qui sont plus abondants lors de l'incubation à 37°C qu'à 4°C, et les


champignons unicellulaires, présent avec un taux indénombrable pour la pluparts des échantillons à 4°C, à l'exception de l'échantillon 8 ou l'on constate un taux indénombrable de champignons unicellulaires pour les deux températures d'incubation.


Les échantillons 1 et 9 ne présentent aucun champignon unicellulaire, et révèlent un nombre très faible de champignons filamenteux.

La forte présence pourrait s'expliquer par le fait que ces champignons se développent sur des déchets organiques et les produits alimentaires (**Guiraud**, 2003).

Les champignons connus pour leurs contaminations des produits alimentaires et de leurs environnements sont *Mucor*, *Geotrichum*, *Penicillium*, *Cladosporium*, *Aspergillus* ... (**Frémy et Dragacci**, **1999**). En effet, les observations microscopiques et colorations à l'état frais de la présente étude permettent l'orientation de point de vue morphologique vers certains genres de champignons, qui sont représentés dans le **tableau XII** et la **figure 7**, ceci en se basant sur la morphologie :


- ❖ Du mycélium : Présence ou absence de cloisons, mode de ramification ;
- Des organes de fructification (sporulation);

Penicilium

sporotrichum

Figure 7: Observation de quelque genre de champignons sous microscope optique.

Tableau XI: Résultats de lecture des boites sur milieu Sabouraud.

	Sabouraud			
N°	Température			
d'échantillon	$30^{\circ}\mathrm{C}$	4°C		
1	1 champignon filamenteux vert / 1 champignon filamenteux blanc	Absence		
2	2 champignons filamenteux verts / 1champignon forme de chapeau/2 champignons unicellulaires saumon/7 blanc/ 2 jaunes	Indénombrable champignons unicellulaires très claires/ 57 saumon/ 25 blanc petits		
3	3 champignons filamenteux beiges / 2 vert	Indénombrables champignons unicellulaires très fins, très rapprochés, beiges		
4	3 champignons rhizoïdes 6 champignons filamenteux beiges moyens/11 petits blancs	3 grands champignons unicellulaires blancs / 33 trop fin		
5	4 champignons verts petits	Indénombrables champignons unicellulaires très fins, rapprochés beiges		
6	1 champignon filamenteux blanc de petite taille	Indénombrables champignons unicellulaires très fins, rapprochés beiges		
7	3 champignons rhizoïdes	Indénombrables champignons unicellulaires, petits éloignés		
8	Indénombrable champignons unicellulaires beiges/ 36 blanc très claires/14 champignons filamenteux/	Indénombrables champignons unicellulaires blancs petits en surface/ autre dans le font/ 12champignons filamenteux grands		
9	4 champignons filamenteux verts petits/ 1 blanc	3 champignons filamenteux très clairs petits		
10	12 champignons unicellulaires marron foncées/ 68 beiges grisâtres	1 champignon filamenteux très clair petit/ un très clair grand/ 3 unicellulaire petites beiges		
11	4 champignons filamenteux : 1saumon, 1 à centre noir, 1 à centre vert, 1 qui a envahi la moitié de la boite / champignons unicellulaires blanc fins	Indénombrable champignons unicellulaires blancs moyens / 2 roses/ 13 crémeuses grandes/19 champignons filamenteux		
12	4 champignons filamenteux	Indénombrable champignons unicellulaires beiges fins, très rapprochés		
13	1 champignon filamenteux blanc	Indénombrable champignons unicellulaires beiges fins, très rapprochés / 33 moyennes		

Tableau XII: Résultat des observations à l'état frais et des colorations au bleu de méthylène de certains champignons sur milieu Sabouraud.

Milieu	Aspect des colonies	Etat frais/ Coloration de Bleu de méthylène
	Champignon blanc à centre vert	Mycélium cloisonnés avec 4 noyaux dans chaque cellule, présence de sporanges (Cladosporium)
	Champignon très grand grisâtre	Mycélium ramifié, cloisonné avec plusieurs noyaux, présence de spore
	Champignon petit vert plus foncé au centre	Mycélium cloisonnés avec spore (Helmintosporium)
	Champignon à centre vert gris, et contour très blanc	Mycélium cloisonné avec des spores (Aureobasidium)
	Champignon moyen très blanc	Mycélium cloisonné avec une base ramifié en 3 (Penicillium)
	Champignon saumon	Mycélium cloisonné ramifié (Sporotrichum)
Sabouraud	Champignon à chapeau	mycélium non cloisonnés avec sporange
	Colonie beige opaque bombée	mycélium
	Colonie beige	Cellules petites rondes avec couleur transparente
	Colonie rose	Cellules petites regroupées
	Champignon blanc à centre vert	Mycéliums cloisonnés, avec quelques sporanges éclatés
	champignon filamenteux beige	Mycélium non cloisonnés avec des sporanges
	Petite colonie plate beige transparente	Mycélium très fragile et des fois même coupés
	Colonie beige opaque à centre bombé	Moisissures avec spores, avec mycélium très fragile fragmenté
	Forme rhizoïde beige	Mycélium ramifié sous forme d'étoile (Ascospore)

V-4- La gélose M 17

La gélose M 17 est utilisée pour le dénombrement des lactocoques (particulièrement *Lactococcus lactis*) et des streptocoques (particulièrement *Streptococcus thermophilus*) dans le domaine alimentaire. Ces germes donnent des colonies qui atteignent 1 à 2 mm de diamètre, cocci à Gram positif en chaînettes ou en diplocoques (anonyme 4).

Le développement du genre *Lactococcus* à des températures inférieures à 7 °C a été indiqué aux cours des précédents travaux (**Jay, et al., 2005**).

Dans le cas du présent travail, on a constaté la présence des aspects de colonies citées dans la bibliographie, mais aussi d'autres formes et d'autres couleurs pour les trois températures d'incubation (**tableau XIII**), une forme totalement différente des autres a été observée au niveau de l'échantillon11 lors de l'incubation à 4 °C, il s'agit d'une colonie beige bombée avec un centre creux (**figure 8**).

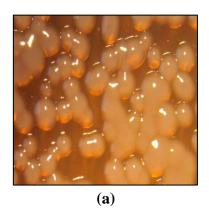
Figure 8: Observation d'une colonie bactérienne issue sur M 17 à 4°C sous loupe binoculaire (×2,5).

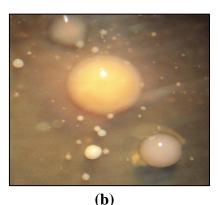
Concernant le 4°C, certains échantillons présentent une faible charge par rapport à celles de 30 et 37°C à l'exception de l'échantillon 2 qui paradoxalement présente une faible croissance à 37°C et une forte poussée à 4 et 30 °C qui peut être expliqué par la nature du produit conservé qu'est laitier. D'autre part, des échantillons à 4°C sont caractérisés par une absence totale de croissance qui peut être expliqué par l'absence de psychrophiles.

Les colorations de Gram des colonies choisies révèlent la présence des Gram positif avec différentes morphologies (cocci ; diplocoque, bacille, diplobacille et Diplococcobacille) leur regroupement est en chainette, en grappe de raisin, ou des cellules bien isolées. Il est à signaler la présence des cellules Gram négatif sur les trois températures d'incubation, les levures psychrophiles présentent beaucoup plus de couleur sur la gélose que leurs homologues mésophiles.

Tableau XIII: Résultats de lecture et aspect de colonies sur milieu M17.

N 70	N	I 17		
N°	25.00	Température 200G	400	
d'échantillon	37 °C	30°C	4°C	
1	4 colonies	1 colonie jaune moyenne	Absence	
2	10 colonies blanches bombées visqueuses	Indénombrable très fin/2jaunes/7 beiges transparentes	Indénombrable très fines claires grises/ 33saumons/ 3 blanches	
3	Indénombrables blanches bombées/ 38 colonies caramels/ 1 jaune bombées	105 colonies beiges/ 1 très grande beige jaune muqueuse/ 2 plus petites	Absence	
4	Indénombrable	Indénombrable très fin (transparente/ Orange/ beige/ jaune)	7 très claires, très petites	
5	73 colonies petites/ 8 grande colonies d'un aspect bizarre	Indénombrable fines/ 32 colonies petites/ 2champignions	1 petite colonie beige	
6	Indénombrable très fines/ 76 colonies beiges	Indénombrable très fines/75 colonies beiges petites	absence	
7	59 colonies /3 très grandes/ le tour de la boite une forme de fuseau	92 colonies beiges moyennes/ 78 colonies blanches claires	Absence	
8	92 colonies	Indénombrable blanches/59 colonies oranges	120 blanches moyennes / 9 colonies saumon	
9	Absence	Absence	Absence	
10	52 colonies /1 colonie jaune	12 colonies violettes grises/ 9 jaunes orangés/ 10 transparentes	Absence	
11	Indénombrable	Indénombrable /2 colonies oranges/ 1 colonie jaune	49 colonies beiges creuses/ 2 colonies petites beiges/ 133 petites beiges	
12	Indénombrable très fin/ 54 colonies caramels/ 2 colonies jaunes	54 colonies beiges opaques	31 colonies beiges petites	
13	Indénombrable/ 61 colonies beiges	Indénombrable trop fines/96 colonies jaunes grisâtres/ un aspect rhizoïde	59 colonies beiges fines et petites / 24 colonies beiges crémeuses moyennes	


V-5- Gélose VRBG


La gélose VRBG (gélose glucosée biliée au cristal violet et au rouge neutre) est utilisée pour la recherche et le dénombrement des entérobactéries dans les produits laitiers, les viandes, les charcuteries et les autres produits alimentaires. Ces bactéries sont des Gram-, et présentent des colonies violettes, entourées ou non d'un halo violet (anonyme 5).

Une forte poussée bactérienne a été observée lors de l'incubation à 4°C pour la majorité des échantillons, et une absence totale pour l'incubation à 37°C, à l'exception des échantillons 3 et 11 ou l'on a constaté une poussée bactérienne mais à une faible charge à 37 °C. Les colonies observées sont identiques pour les deux températures et correspondent à celles décrites dans la littérature (**figure 9 (a)**). En plus de celles-ci, d'autres colonies de couleurs différentes sont obtenus (**figure 10**) ainsi que quelques moisissures.

Les psychrophiles ne poussent pas au-delà de 20°C (**Rossi et al., 2009**), L'absence de croissance à 37°C pourrait s'expliquer par la sensibilité de ces bactéries à la chaleur, en indiquant la présence seulement de psychrophiles.

Les échantillons 1, 4, 9, et 10 présentent une absence totale de poussée microbienne pour les deux températures ; ce qui mène à dire qu'il y a une absence d'entérobactéries dans ces échantillons.

Figure 9 : (a) : aspect des colonies sur VRBG, **(b)** : les diverses colonies obtenus sur VRBG observées sous loupe binoculaire (×2,5).

Les tests d'orientations effectués sur les différentes colonies obtenus, répondent aux critères caractéristiques des entérobactéries : Gram- (figure 10 (a)), catalase + (figure 10 (b)), lac+, glu+, production de gaz (figure 10 (c)), une fois de plus la levure psychrophile se retrouve sur ce milieu.

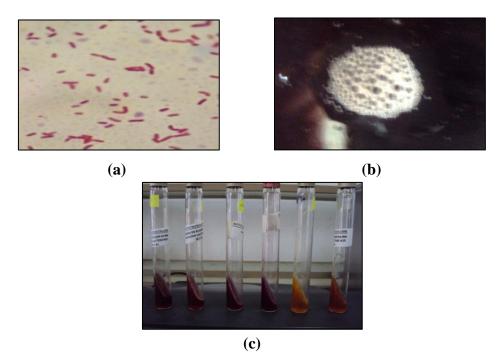


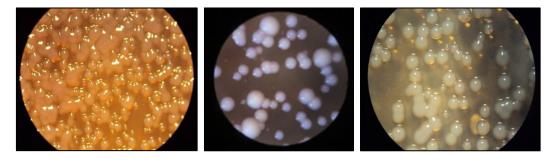
Figure 10: Tests d'orientations caractéristiques des entérobactéries.

Le détail des observations faites sur milieu VRBG pour les 13 échantillons sont représentés dans le **tableau XVI**.

Tableau XVI: Résultats de lecture et aspect de colonies sur milieu VRBG.

	VRBG			
N°	Température			
d'échantillon	37 °C	4°C		
1	Absence	Absence		
2	Absence	Indénombrable très fins/ 14 mauves/ 2saumon		
3	16 caramels/ 12 rose violet très rapprochée et rose foncé bombé	Indénombrable très fines, très rapprochées violettes grisâtres		
4	absence	absence		
5	Absence	Indénombrable très fines, très rapprochées violettes grisâtres		
6	Absence	Indénombrable colonies trop fines violettes grisâtres		
7	Absence	Indénombrable colonie moyennes violettes grisâtres		
8	Absence	Indénombrable colonies petites fines violettes grisâtres		
9	Absence	Absence		
10	Absence	Absence		
11	3 colonies roses pales bombées	39 colonies crémeuses roses bombées		
12	Absence	Indénombrable colonie trop fines violettes grisâtres		
13	Absence	Indénombrable colonie violettes grisâtres fines et moyennes		

V-6- La gélose VRBL


La gélose lactosée biliée au cristal violet et au rouge neutre (VRBL) est un milieu sélectif utilisé pour la recherche et le dénombrement des coliformes dans les produits alimentaires. Les coliformes présentent des colonies violacées de diamètre égal ou supérieur à 0,5 mm (anonyme 6).

D'après les résultats obtenus, représentés au niveau du **tableau XV**, on constate que, l'aspect de nos colonies obtenues tend vers l'aspect des coliformes décrit dans la littérature, ainsi que la présence de colonies blanches bombées sur l'échantillon 3 à 30°C, par contre elles sont très petites sur l'échantillon 2 à 4°C **(figure 11).**

Les échantillons 1, 9 et 10 ne présentent aucune poussée bactérienne pour les deux températures d'incubation ; tandis qu'on remarque une absence de croissance à 30°C pour les échantillons 2,4, 6, 7 et 8, en confirmant les résultats d'ensemencement sur milieu VRBG.

La réalisation de coloration de Gram sur les colonies violettes montrent qu'il s'agit de Gram négatifs de différentes morphologies (cocci isolée, diplocoque, et bacille isolée) alors que la coloration de la colonie de forme étoile, très grande, aplatie et violette détectée sur l'échantillon 3 à 30°C a donné des cellules à Gram positive en diplobacille.

Les colonies transparentes observées sur les échantillons 4 et 8 à la température de 4°C, sont supposées lactose-négatif.

Figure 11 : Aspects des colonies de coliformes isolées sur milieu VRBL observées sous loupe binoculaire (×2,5).

Tableau XV: Résultats de lecture et aspect de colonies sur milieu VRBL.

VRBL			
N°	Température		
d'échantillon	37 °C	4°C	
1	Absence	Absence	
2 3	Absence	Indénombrables blanches	
3	40 grosses colonies blanches	Indénombrable petites violettes	
	bombées et violettes / 1 forme d'étoile muqueuse violette	grisâtres bombées lisses	
4	Absence	8 colonies transparentes	
5	22 colonies violettes marron/ 3	Indénombrable petites violettes	
	grosses colonies	grisâtres bombées lisses	
6	Absence	Indénombrable colonies moyennes	
		violettes grisâtres	
7	Absence	Indénombrable colonies moyennes	
		violettes grisâtres	
8	Absence	Indénombrable colonies petites	
		transparentes	
9	Absence	Absence	
10	Absence	Absence	
11	2 colonies violettes	8 colonies bombées voilettes grisâtres	
		grandes/ 3 colonies dégonflées violettes	
		grisâtres grandes / 35 trop petites	
12	10 colonies violettes	Indénombrable colonie petites violettes	
		grisâtres	
13	2 colonies violettes	Indénombrable colonies violettes	
		grisâtres fines et 13 moyennes	

V-7- Gélose BCP

La gélose lactosée au pourpre de bromocrésol (BCP) est un milieu non sélectif, utilisé pour la détection et le ré-isolement des entérobactéries dans l'eau et les produits alimentaires, il permet la différenciation entre les bactéries lactose positif (colonies transparente : *Escherichia coli, Citrobacter*.) et les bactéries lactose négatif (colonies bleues) (**Anonyme 7**). La présence du genre *Citrobacter* a été rapportée dans la littérature comme bactérie psychrophile (**Scherer & Neuhaus, 2006 ; Jay, et al., 2005**) ainsi que *Escherichia* mais avec une faible présence (**Jay, et al., 2005**). Les résultats obtenues (**Tableau XIV**) montrent qu'il y'a une tendance élevée du développement des bactéries lactose négatif à 4°C à l'exception des échantillons 9, 10, 11,12 et 13 dont on constate des colonies transparentes. Cependant à 37°C la croissance est très faible, et les colonies apparentes sont des lactoses négatifs (**Figure 12**).

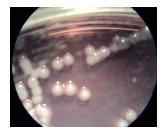
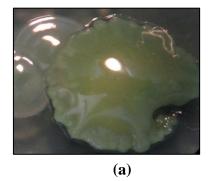


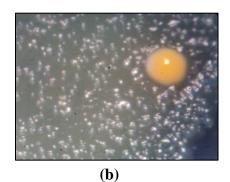
Figure 12 : Aspect des colonies isolées sur milieu BCP sous loupe binoculaire (×2,5).

Tableau XIV: Résultats de lecture et aspect de colonies sur milieu BCP.

		BCP
N°		Température
d'échantillon	37 °C	4°C
1	Absence	17colonies bleues violettes bombées et dégonflées, petites et moyennes / 4 plus bleu
2	29 trop fines bleu	Tapis au début/colonies moyennes isolées bleu violettes/ virage de la couleur du milieu : plus sombre
3 4	Absence	Bleu violettes bombées moyennes / 3 plus bleu
	Absence	Bleu violettes bombées et dégonflées, petites et moyennes / 4 plus bleu
5	Absence	Tapis au début /Bleu violettes bombées moyennes et petites/ 6 plus bleu
6	Absence	Tapis au début /Bleu violettes bombées moyennes et petites/ 8 plus bleu
7	Absence	Tapis au début /Bleu violettes bombées moyennes et petites/6 plus bleu
8	2 colonies transparentes à centre bleu moyennes/ 3 plus fines	Tapis fin au 1 ^{er} quart bleu violettes, puis colonies transparentes à centre bleu petites
9	Absence	Juste au 1 ^{er} quart : colonies très rapprochées transparentes petites et moyennes / colonies bleues filamenteuses
10	Absence	Tapis au début très fin transparent/ 8 colonies bleu violettes bombées et 3 de formes irrégulières
11	35 colonies transparentes à centre violet grisâtres moyennes/ 21 même aspect fines	Tapis au début avec des colonies transparentes fines et petites, puis colonies isolées bleu violettes bombées et dégonflées moyennes
12	1 colonie blanche petite	Tapis au début avec des colonies transparentes fines et petites, puis colonies isolées bleu violettes bombées et dégonflées moyennes
13	Absence	Tapis au début avec des colonies transparentes fines et petites, puis colonies isolées bleu violettes bombées et dégonflées moyennes

V-8- Gélose Hektoen et SS


Ces deux géloses sont utilisées dans les analyses d'hygiène alimentaire et analyses médicales, c'est un milieu d'isolement des Salmonelles et des Shigelles, bien que de nombreuses bactéries à Gram négatif puissent se développer sur ce milieu. L'identification d'entérobactéries pathogènes repose sur la non utilisation des glucides présents dans le milieu (**Joffin et Leyral, 2006**).


Le genre Salmonella a été identifié au cours des précédentes études comme psychrophile (Jay, et al., 2005).

Avant d'ensemencer sur ce milieu, un enrichissement sur bouillon SFB est effectué, les résultats de cet enrichissement se traduisent par un trouble au niveau du bouillon, l'ensemencent de ces troubles sur gélose SS et Hektoen révèlent que seul les levures ont poussées lors de l'incubation à 4°C avec la même forme et la même couleur pour tous les échantillons, concernant l'incubation à 37°C deux types de colonies bactériennes sont obtenus, la majorité de ces dernières sont de couleur verte de petite taille (**Figure 13 (a)**), sont caractéristiques des salmonelles. Par contre, les colonies de couleur saumon (**Figure 13 (b)**) sont caractéristiques d'*E. coli* sur ce milieu, sont observées seulement pour l'échantillon 11 avec un très faible nombre (**tableau XVII**).

Les colorations de Gram effectuées pour ces colonies correspondent exactement au gram des deux genres bactériens cités au-dessus, mais les tests biochimiques répondent négativement à leurs critères biochimiques.

Les résultats des analyses effectués pour les 13 échantillons sont illustrés dans le **tableau XVII**.

Figure 13 : (a) : Aspect des colonies isolées sur milieu Hektoen, **(b) :** Aspect des colonies isolées sur milieu SS observées sous loupe binoculaire (×2,5).

Tableau XVII: Résultats de lecture des analyses sur gélose Hektoen et SS.

	Hektoen et SS			
N°	Température			
d'échantillon	37 °C Hektoen	SS 4°C		
1	Absence	Absence		
2 3	Absence	37 colonies blanches petites et fines		
3	25 colonies petites	1 Colonie beige petite		
	vertes			
4	Absence	50 colonies blanches		
5	60 colonies petites	Absence		
	vertes			
6	1 colonie verte de	Absence		
	taille moyenne			
	filamenteuse			
7	18 colonies vertes	Absence		
	petites / 1 grande			
	filamenteuse			
8	Tapis vert fin au début	1 ^{er} quart : 14 colonies blanches fines		
	du 1 ^{er} quart			
9	Absence	22 colonies blanches trop fines		
10	Absence	Absence		
11	Tapis au 1 ^{er} quart avec	2 colonies trop fines blanches		
	66 colonies vertes			
	petites/ 11 colonies			
	oranges grandes			
12	56 colonies vertes	Absence		
	petites			
13	28 colonies vertes	Absence		
	petites			

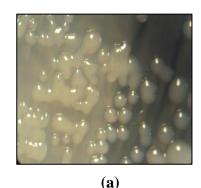
V-9- Milieu Chapman

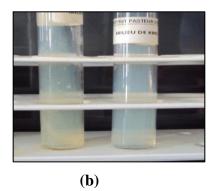
Le milieu Chapman est destiné pour la recherche et le dénombrement des staphylocoques pathogènes (*Staphylococcus aureus*, *S. saprophyticus* ...), une croissance de quelques espèces halophiles est possible. Les colonies caractéristiques sur ce milieu sont les colonies blanches ou jaunes entourées d'un halo jaune (**Anonyme 9**).

Le genre *Staphylococcus* est aussi mis en évidence à des basses températures comme étant psychrophile (**Jay, et al., 2005**).

Au cours du présent travail, un léger trouble blanc a été remarqué après une incubation de deux semaines à 4°C, avec une absence de dépôt noir au fond du tube d'enrichissement (Giolitti Contoni) ce qui prédit une absence de Staphylocoques. Ce soupçon est confirmé par l'absence de croissance sur le milieu gélosé concernant tous

les échantillons pour les deux températures. A l'exception de la petite colonie blanche sur l'échantillon 2 à 4°C, identifiée après coloration de Gram comme étant la levure retrouvée sur tous les milieux.


V-10- Gélose Cetrimide


La gélose au Cétrimide est un milieu sélectif destiné aux isolements et dénombrements de Pseudomonas aeruginosa dans les produits biologiques d'origine animale, les produits pharmaceutiques et les produits cosmétiques. La Cétrimide agit comme inhibiteur d'une grande variété de germes, y compris les espèces de Pseudomonas autres que Pseudomonas aeruginosa, et favorise la production des pigmentations fluorescéine et pyocyanine (anonyme 10).

La présence du genre *Pseudomonas* a été rapportée dans la littérature comme bactérie psychrophile (Scherer & Neuhaus, 2006).

Les observations faites concernant ce milieu montrent une absence totale chez la majorité des échantillons lors de l'incubation à 37°C, mis à part l'échantillon 11 ou l'on observe une charge moyenne de colonies bactériennes.

Concernant l'incubation à 4°C la même constatation a été faite pour la plus parts des échantillons, une forte présence de colonies bactériennes a été observée, avec la même forme et la même couleur pour tous les échantillons (figure 14 (a)), ceci a nécessité d'avoir recours aux tests d'orientation (coloration de Gram) et quelques tests biochimiques (test de confirmation king A et king B) (figure 14 (b)); les résultats obtenus (tableau XVIII) poussent à suggérer la présence des Pseudomonas qui se développent bien aux basses températures (Jay, et al., 2005). Les échantillons (1, 4, 9 et 10) se caractérisent par une absence totale de bactéries que ce soit à 4 ou à 37°C.

Cetrimide			
N°	Température		
d'échantillon	37 °C	4°C	
1	Absence	Absence	
2	Absence	Colonies isolées verdâtres claires moyennes	
		et petites	
3	Absence	Tapis très fin, puis colonie claires isolées	
		petites	
4	Absence	Absence	
5	absence	Tapis très fin 1 ^{er} quart, puis colonies claires	
		isolées petites et fines	
6	Absence	Tapis très fin 1 ^{er} quart, puis colonies claires	
		isolées petites et fines	
7	Absence	Tapis très fin 1 ^{er} quart, puis colonies claires	
		isolées petites et fines	
8	Absence	Les 4 quarts : du tapis fin jusqu'à des	
		colonies vertes moyennes isolées	
9	Absence	Absence	
10	Absence	Absence	
11	60 colonies verdâtres	Tapis au début vert, puis colonies isolées	
	moyennes, petites et fines	vertes claires petites et moyennes	
12	Absence	Tapis au début vert, puis colonies isolées	
		vertes claires fines, petites et moyennes	
13	Absence	Tapis au début vert, puis colonies isolées	
		vertes claires, petites, moyennes et grandes	

Tableau XVIII: Résultats de lecture et aspect de colonies sur gélose Cetrimide.

V-11- King B

La gélose King B permet la production de fluorescéine (ou pyoverdine), pigment jaune vert fluorescent sous lumière ultra-violette, par certains *Pseudomonas*. Le milieu est utilisé principalement dans l'analyse de l'eau pour la détection et la différenciation de *Pseudomonas aeruginosa* (anonyme 11).

Dans le présent travail, le milieu est utilisé dans le but de la mise en évidence des *Pectobacterium* phytobatogenes appelée aussi *Erwinia* pectinolytiques.

Les colonies typiques d'*Erwinia* pectinolytiques sont irisées, d'aspect lisse, de couleur blanche crémeuse et donnant des suspensions homogènes (**Hélias. V, (1999).**

D'après les lectures des boites incubées à différentes températures (tableau XIX), on distingue une large gamme d'aspects et de tailles de colonies à couleur très variés (blanc transparent, blanc crémeux, blanc cassé, blanc, beige, jaune, orange, jaune orangé et rose saumon) (Figure 15).

Une poussée intense et la totalité des aspects cités sont retrouvées dans les échantillons incubés à 4°C, alors qu'à la température d'incubation de 28°C, on ne constate que la présence de colonies ayant l'aspect présumées comme étant celui des *Erwinia* pectinolytiques sur les treize échantillons et certaines colonies blanchâtres. En outre les boites incubées à 37°C ne présentent que certains types de colonies avec une dominance des colonies blanches transparentes, et des colonies à couleur beige.

L'identification préliminaire de ces bactéries donne que la majorité sont des Gram négatif, en forme de petits bacilles ou coccobacilles isolés ou en agrégats paires et en chaînes, catalase positive ; à l'exception des résultats à 4°C des colonies jaunes et oranges qui présentent une coloration de Gram positif.

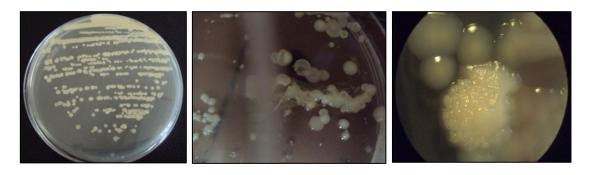


Figure 15: Aspect des colonies d'Erwinia pectinolytiques isolées sur milieu King B.

Tableau XIX: Résultats de lecture et aspect de colonies sur milieu King B.

King B					
N°	Température				
d'échantillon	37 °C	30°C	4°C		
1	25 colonies très fines blanches transparentes	Indénombrables colonies blanches crémeuses moyennes rapprochées	Indénombrables colonies blanches crémeuses moyennes et grandes, bombées et dégonflées rapprochées/ 1 colonie jaune orangé		
2	Indénombrable très fines beiges transparentes/ 43 colonies petites et moyennes/ 1colonie orange grande	Indénombrable colonies blanches crémeuses moyennes rapprochées/ 1 blanche moyenne	Colonies blanches crémeuses moyennes et grandes, bombées et dégonflées rapprochées/ 1 colonie blanche moyenne		
3	Colonies petites transparentes/ 21 beiges dans le fond/ 23 moyennes et petites beiges opaques	Colonies blanches crémeuses moyennes rapprochées	Colonies beiges claires trop fines		

1	~100 to a fin / 60	Calanias blanchas	Indépendent la / colonia tuda fina
4	$\approx 100 \text{ très fin/} 68$	Colonies blanches	Indénombrable/ colonie très fine
	moyennes/7 grandes/	crémeuses moyennes	blanc cassée/ transparentes/ une
_	1 grande orange	rapprochées	centaine jaunes fines
5	Fin tapis / 1 grande	Colonies blanches	Tapis trop fin / puis Colonies
	jaune/ 3grandes beiges/	crémeuses moyennes	beiges claires moyennes
	12 petites beiges	rapprochées	
6	6 colonies beiges	Colonies blanches	Tapis au 1 ^{er} quart puis colonies
	moyennes / 1 rose	crémeuses moyennes	bien isolées beiges claires petites
	saumon grande / 56	rapprochées/2 blanches/	et moyennes
	transparentes petites	une filamenteuse	
7	58 colonies	Colonies blanches	Indénombrable isolés beiges
	transparentes fines/ 6	crémeuses moyennes	claires fines, petites et
	colonies moyennes	rapprochées	moyennes
	beiges/ 1 grande	11	·
	saumon claire		
8	Indénombrable fin/ 3	Colonies blanches	Tapis au début puis colonies
	colonies jaunes	crémeuses moyennes	isolées de couleur blanc cassé de
	grandes/ 20 avec	rapprochées	différents diamètres
	contour non régulier	11	
9	8 colonies beiges	Colonies blanches	Tapis au 1 ^{er} quart orange, puis
	aplaties / 11 colonies	crémeuses moyennes	colonies isolées grosses oranges
	beiges avec contours	rapprochées	à centre foncé/17 colonies
	non réguliers/1 colonie	rupproenees	blanches claires
	jaune moyenne/ 5		oranies cranes
	colonies jaunes avec		
	contours non réguliers		
10	3 colonies beiges	Colonies blanches	Tapis au 1 ^{er} quart, puis colonies
10	moyennes/ 1 colonie	crémeuses moyennes	isolées de couleur blanc cassé de
	beige grande/ 1 colonie	rapprochées	différents diamètres/5 jaunes
	jaune moyenne.	rapproences	claires/ 1 rose
11	Tapis au 1 er quart puis	Colonies blanches	Tapis au 1 ^{er} puis colonie isolées
11	des colonies orange et	crémeuses moyennes	de couleur blanc cassé petites et
	beiges petites/3	rapprochées/ 42	moyennes/ 9 oranges
		colonies blanches	moyennes/ 9 oranges
	colonies moyennes blanches	colonies branches	
12	Indénombrable trop	Colonies blanches	Tapis au 1 ^{er} quart beige, puis
14	_		
	fines rapprochées	crémeuses moyennes	colonies isolées beiges petites et
	blanches jaunâtres/ 11	rapprochées/ 48	moyennes
	colonies beiges aplaties	colonies blanches	
1.2	moyennes	Colonias Islanda	To déa ambanhla baisas fina
13	20 colonies petites	Colonies blanches	Indénombrable beiges fines et
	isolées/ 2 colonies à	crémeuses moyennes	petites
	centre saumon/	rapprochées/ 12	
	moyennes 2 colonies	colonies blanches	
	jaunâtres moyennes		

V-12- La gélose viande foie

La gélose viande-foie est utilisée en tube profond pour la détermination du type respiratoire des micro-organismes, la culture de germes anaérobies stricts, mais aussi pour le dénombrement des spores de *Clostridia* sulfitoréducteurs dans les eaux, les produits laitiers et les autres produits alimentaires (anonyme 12).

Clostridium a été cité déjà aux cours des études précédentes comme étant un genre qui contient des espèces psychrophiles (Jay, et al., 2005).

A la température de 4 °C pendant une semaine, aucune croissance n'a été remarquée sur les treize échantillons, par contre après avoir transférer les tubes à l'étuve de 37 °C, trois types de germes sont constatés:

- ⇒ Des bactéries qui se développent sur toute la hauteur du tube sont les aéroanaérobies facultatif « AAF » (échantillons 1, 2, 4, 8, 9 et 11) (**figure 16 (a)**).
- ⇒ Clostriduim sulfitoréducteur s'est révélé sous forme de tache noire au centre du tube, et qui a envahi le tube entier au bout de quatre jours. (figure 16 (b)).
- ⇒ Les bactéries gaz + lors de la fermentation du glucose amène à la formation de bulles de gaz et l'éclatement de la gélose (échantillons2, 6, 10 et 13) (figure 16 (c)).

Alors que les échantillons 5, 7 et 12 présentent une absence totale de bactéries.

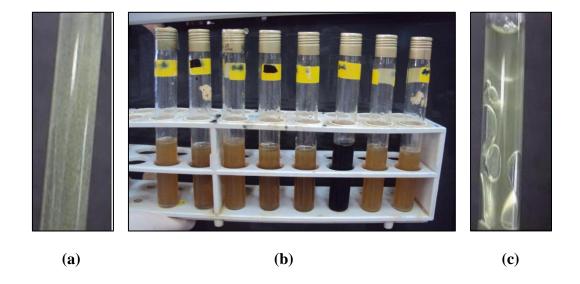


Figure 16 : Différents résultats obtenus sur gélose viande foie.

Tableau XX: Résultats de lecture des tubes du milieu viande foie.

VF						
N° d'échantillon	Température					
N° d'echantinon	37 °C	4 °C				
1	Trouble	Absence				
2	Trouble + éclatement de la gélose	Absence				
3	une colonie noire	Absence				
4	Trouble	Absence				
5	Absence	Absence				
6	Eclatement de la gélose	Absence				
7	Absence	Absence				
8	Trouble	Absence				
9	Trouble	Absence				
10	Eclatement de la gélose	Absence				
11	Trouble	Absence				
12	Absence	Absence				
13	Eclatement de la gélose	Absence				

CONCLUSION

Conclusion

Le présent travail a permis partiellement de satisfaire la curiosité intellectuelle concernant les psychrophiles, on remarque qu'il y a un énorme potentiel inexploité de ces micro-organismes et de leurs enzymes, une compréhension plus approfondie de leur structure et de leur adaptation aux basses températures offre des avantages capitaux en matière de leur utilisation dans des procédés biotechnologiques.

L'ensemble des analyses effectuées dans cette étude visent la recherche, la mise en évidence et le dénombrement de certains micro-organismes psychrophiles dans les milieux de conservation des aliments par le froid. En effet, la procédure expérimentale consiste à des prélèvements par écouvillonnage d'une surface de 100 cm² de 13 sites d'échantillonnage entre réfrigérateurs et congélateurs au niveau des centres commerciaux locaux.

L'ensemble des résultats obtenus indiquent la présence des psychrophiles qui se développent à 4°C pour tous les échantillons et pour la plus part des milieux utilisés pour la recherche de la flore totale, des levures et moisissures, des entérobactéries, des coliformes , des lactocoques ; streptocoques, salmonelles, staphylocoques, les *Pseudomonas*, *Pectobacterium* et les anaérobies sulfito-reducteurs .

A 4°C, des différences qualitatives et quantitatives dans les différents milieux de culture ont été constaté par rapport à 30°C et 37°C. Les Salmonelles, Staphylocoques et les anaérobies sulfito-reducteurs sont absents à 4°C, en revanche la présence des salmonelles et des anaérobies sulfito-reducteurs est détecté à 37°C pour les mêmes échantillons.

En perspective, la standardisation des paramètres tels que la température , le type d'appareil , type du produit est nécessaire pour pouvoir contrôler les conditions de croissance et le bon suivi de la recherche des psychrophiles, ainsi que l'utilisation d'autres tests biochimiques, sérologiques et le séquençage d'ADN pour pouvoir identifier les espèces des souches à isoler. En outre, d'autres objectifs sont la recherche et la caractérisation éventuellement de nouvelles substances antimicrobiennes chez les psychrophiles du fait qu'il s'agit d'un écosystème différent par rapport à celui des mésophiles et des thermophiles.

RÉFÉRENCES BIBLIOGRAPHIQUES

Références Bibliographiques

A

- Abdel-Megeed, A. (2004). *Psychrophilic degradation of long chain alkanes*. Dissertation Technische Universität Hamburg-Harburg.
- Alchihab, M. (2010). Application de la biotechnologie à la biosynthèse de molécules:

 Production de γ-décalactone par la levure psychrophile Rhodotorula
 aurantiaca A19. Unpublished doctorat, Université de Liège, Liège (Belgique).

 \mathcal{B}

- Beales, N. (2004). Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. *Comprehensive Reviews in Food Science and Food Safety*, 3(1), 1-20.
- Bornert, G. (2000). Importance des bactéries psychrotrophes en hygiène des denrées alimentaires. *Revue Méd. Vét, 151*(11), 1003-1010.

C

- Casanueva, A., Tuffin, M., Cary, C., & Cowan, D. A. (2010). Molecular adaptations to psychrophily: the impact of omic technologies. *Trends in microbiology*, *18*(8), 374-381.
- Cavicchioli, R., Siddiqui, K. S., Andrews, D., & Sowers, K. R. (2002). Low-temperature extremophiles and their applications. *Current Opinion in Biotechnology*, *13*(3), 253-261.
- César, M. (2006). Analyse bactériologique des aliments en milieu rural au Laos. Unpublished licence en Sciences Biomédicales, Université de Liège, Liège.
- Collins, G., Woods, A., McHugh, S., Carton, M. W., & O'Flaherty, V. (2003). Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. *FEMS Microbiology Ecology*, 46(2), 159-170.
- Collobert, J. F., & Metay, M. (2002). Conditionnement d'ambiance et climatisation dans les IAA. *Techniques de l'ingénieur*. *Agroalimentaire*, 1(F1270), F1270. 1271-F1270. 1212.

- D'Amico, S., Collins, T., Marx, J.-C., Feller, G., & Gerday, C. (2006). Psychrophilic microorganisms: challenges for life. *EMBO Rep*, 7(4), 385-389.
- De García, V., Brizzio, S., Libkind, D., Buzzini, P., & Van Broock, M. (2007). Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. *FEMS Microbiology Ecology*, *59*(2), 331-341.
- Demirjian, D. C., Morís-Varas, F., & Cassidy, C. S. (2001). Enzymes from extremophiles. *Current Opinion in Chemical Biology*, *5*(2), 144-151.

 ${\boldsymbol{F}}$

Feller, G., & Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold adaptation. *Nature Reviews Microbiology*, *1*(3), 200-208.

 \boldsymbol{G}

- GAY, J. (2002). Lutte contre la pollution des eaux: Valorisation énergétique des boues. *Techniques de l'ingénieur*. *Technologies de l'eau*, 2(G1455).
- Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.-P., Claverie, P., Collins, T.,
 D'Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne,
 T., Meuwis, M.-A., & Feller, G. (2000). Cold-adapted enzymes: from fundamentals to biotechnology. *Trends in Biotechnology*, 18(3), 103-107.
- Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: a review. *Enzyme and Microbial Technology*, 35(4), 339-354.
- Gounot, A.-M. (1991). Bacterial life at low temperature: physiological aspects and biotechnological implications. *Journal of Applied Microbiology*, 71(5), 386-397.
- Gounot, A. M. (1986). Psychrophilic and psychrotrophic microorganisms. *Cellular and Molecular Life Sciences*, 42(11), 1192-1197.
- Gunde-Cimerman, N., Butinar, L., Sonjak, S., Turk, M., Uršič, V., Zalar, P., & Plemenitaš, A. (2005). Halotolerant and Halophilic Fungi from Coastal Environments in the Arctics. In N. Gunde-Cimerman, A. Oren & A. Plemenitaš (Eds.), *Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya*, vol. 9 (pp. 397-423): Springer Netherlands.

Huston, A. L. (2008). Biotechnological Aspects of Cold-Adapted Enzymes In R.Margesin, F. Schinner, J.-C. Marx & C. Gerday (Eds.), *Psychrophiles: from Biodiversity to Biotechnology*, (pp. 347-363): Springer Berlin Heidelberg.

I

ISO. (1999). Salles propres et environnements maîtrisés apparentés- Maîtrise de la biocontamination. In, vol. ISO 14698-1 (pp. 35). Genève: ISO.

 $\boldsymbol{\mathcal{J}}$

- Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). *Modern food microbiology*: Springer Verlag.
- Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. *Biotechnology Advances*, 26(5), 457-470.
- Junge, K., Christner, B., & Staley, J. T. (2011). Diversity of Psychrophilic Bacteria from Sea Ice and Glacial Ice Communities. In K. Horikoshi (Ed.), *Extremophiles Handbook*, (pp. 793-815): Springer Japan.

K.

Kaouache, S. (2010). Evaluation et taxonomie numérique de la flore Listeria spp.

Dans un environnement d'élevage bovin. Unpublished Magistère Ecologie

Microbienne, Université Mentouri Constantine, Constantine.

L

- Leveau , J. Y., Larpent , J. P., & Bouix , M. (2001). Sécurité microbiologique des procédés alimentaires. *Techniques de l'ingénieur. Bioprocédés*(F1120), F1120.1121 F1120.1119.
- Leyral, G., & Vierling, E. (2007). *Microbiologie et toxicologie des aliments: hygiène et sécurité alimentaires*: Editions Doin.
- Lo Giudice, A., Michaud, L., De Pascale, D., De Domenico, M., Di Prisco, G., Fani, R., & Bruni, V. (2006). Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). *Journal of Applied Microbiology*, 101(5), 1039-1048.

- Margesin, R. (2000). Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. *International Biodeterioration & amp; Biodegradation*, 46(1), 3-10.
- Margesin, R. (2008). *Psychrophiles: from biodiversity to biotechnology*: Springer Verlag.
- Margesin, R., Fauster, V., & Fonteyne, P. A. (2005). Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. *Letters in Applied Microbiology*, 40(6), 453-459.
- Margesin, R., & Miteva, V. (2011). Diversity and ecology of psychrophilic microorganisms. *Research in Microbiology*, *162*(3), 346-361.
- Merlino, A., Krauss, I. R., Castellano, I., Vendittis, E. D., Rossi, B., Conte, M., Vergara, A., & Sica, F. (2010). Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis. *Journal of Structural Biology*, 172(3), 343-352.
- Messali, N., & Ouaglal, H. (2008). *Identification des différents genres de moisissures* contaminants le fromage frais "Petit Gervais aux Fruits" produit au niveau de Danone-Djurdjura. Unpublished Ingenieurat d'état en genie biologique, université de Bejaia, Bejaia.
- Miteva, V. (2008). Bacteria in Snow and Glacier Ice. In R. Margesin, F. Schinner, J.-C. Marx & C. Gerday (Eds.), *Psychrophiles: from Biodiversity to Biotechnology*, (pp. 31-50): Springer Berlin Heidelberg.
- Mock, T., & Thomas, D. N. (2005). Recent advances in sea-ice microbiology. *Environmental Microbiology*, 7(5), 605-619.
- Moletta, R., & Torrijos , M. (1999). Traitement des effluents de la filière laitière. *Techniques de l'ingénieur. Agroalimentaire*, 2(F1501), F1501. 1501-F1501. 1523.
- Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., & Huner, N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. *Microbiology and molecular biology reviews*, 70(1), 222-252.

Morita, R. Y. (1975). Psychrophilic bacteria. *Bacteriological Reviews*, 39(2), 144-167.

N

Nakagawa, T., Nagaoka, T., Taniguchi, S., Miyaji, T., & Tomizuka, N. (2004). Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. *Letters in Applied Microbiology*, *38*(5), 383-387.

0

Oikawa, T., Yamanaka, K., Kazuoka, T., Kanzawa, N., & Soda, K. (2001). Psychrophilic valine dehydrogenase of the antarctic psychrophile, Cytophaga sp. KUC-1. *European Journal of Biochemistry*, 268(16), 4375-4383.

P

- Pacheco, A., Pereira, C., Almeida, M. J., & Sousa, M. J. (2009). Small heat-shock protein Hsp12 contributes to yeast tolerance to freezing stress. *Microbiology*, 155(6), 2021-2028.
- Panikov, N. S., & Sizova, M. V. (2007). Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35°C. *FEMS Microbiology Ecology*, *59*(2), 500-512.
- Parrilli, E., Papa, R., Tutino, M. L., & Sannia, G. (2010). Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. *Bioengineered Bugs*, 1(3), 213.

Q

- Québec, G. d. (2006). Lignes directrices et normes pour l'interprétation des résultats analytiques en microbiologie alimentaire In, (pp. 63). Québec: Gouvernement du Québec.
- Quérellou, J., & Guézennec, J. (2010). Biotechnologie des extrêmophiles *Techniques* de l'ingénieur. Agroalimentaire(bio580), BIO 580.581-BIO 580.513.

R

- Robinson, C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. *New Phytologist*, 151(2), 341-353.
- Rosset, P., Beaufort, A., Cornu, M., & Poumeyrol, G. (2002). La chaîne du froid en agroalimentaire. *Cahier de Nutrition et de Diététique*, *37*(2), 124-130.

- Rossi, M., Buzzini, P., Cordisco, L., Amaretti, A., Sala, M., Raimondi, S., Ponzoni, C., Pagnoni, U. M., & Matteuzzi, D. (2009). Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. *FEMS Microbiology Ecology*, 69(3), 363-372.
- Russell, N. J. (1997). Psychrophilic bacteria: molecular adaptations of membrane lipids. *Comparative biochemistry and physiology. Part A. Physiology, 118*(3), 489-493.

S

- Scherer, S., & Neuhaus, K. (2006). Life at low temperatures. In *The prokaryotes*, vol. 2 (pp. 210-262).
- Squinazi, F. (2006). Analyses en microbiologie Environnement microbien (air, surfaces,eau). *Techniques de l'ingénieur*(P3355), P 3 355.351 P 353 355.355.
- Stokes, J. L., & Redmond, M. L. (1966). Quantitative Ecology of Psychrophilic Microorganisms. *Applied Microbiology*, *14*(1), 74-78.
- Suzuki, T., Nakayama, T., Kurihara, T., Nishino, T., & Esaki, N. (2001). Cold-active lipolytic activity of psychrotrophic *Acinetobacter sp.* strain no. 6. *Journal of Bioscience and Bioengineering*, 92(2), 144-148.

T

- Thomas, D. N., & Dieckmann, G. S. (2002). Antarctic Sea Ice--a Habitat for Extremophiles. *Science*, 295(5555), 641-644.
- Tomoyuki, N., Kaichiro, Y., Tatsuro, M., & Noboru, T. (2002). Cold-active pectinolytic activity of psychrophilic-basidiomycetous yeast cystofilobasidium capitatum strain PPY-1. *Journal of Bioscience and Bioengineering*, 94(2), 175-177.
- TORRIJOS, M., & MOLETTA, R. (1999). Traitement des effluents de la filière laitière. *Techniques de l'ingénieur*. *Agroalimentaire*, 2(F1501), F1501.1501-F1501.1523.
- Turchetti, B., Buzzini, P., Goretti, M., Branda, E., Diolaiuti, G., D'Agata, C., Smiraglia, C., & Vaughan-Martini, A. (2008). Psychrophilic yeasts in glacial environments of Alpine glaciers. *FEMS Microbiology Ecology*, *63*(1), 73-83.

- Van Stempvoort, D., & Biggar, K. (2008). Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. *Cold Regions Science and Technology*, *53*(1), 16-41.
- Vazquez, S. C., Coria, S. H., & Mac Cormack, W. P. (2004). Extracellular proteases from eight psychrotolerant antarctic strains. *Microbiological Research*, 159(2), 157-166.

Vierling, E. (2008). Aliments et boissons: filières et produits. France: Editions Doin.

 $\boldsymbol{\mathcal{Z}}$

Zhang, H., Hosoi-Tanabe, S., Nagata, S., Ban, S., & Imura, S. (2008). Cultivation and Characterization of Microorganisms in Antarctic Lakes. In *OCEANS* 2008 - *MTS/IEEE Kobe Techno-Ocean*, (pp. 1-4). Kobe (Japon): IEEE.

Anonyme 1, Fiche technique gélose PCA, Biokar Diagnostics. Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/5F49F476B0956812C12574 C700313A31/\$file/FT BK144 BM015 033 v8.pdf > (consulté le 24.03.2012).

Anonyme 2, Fiche technique gélose nutritive ordinaire, Biokar Diagnostics. Disponible sur

http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/9D142A4CF499FD4EC1257 4C9003915EC/\$file/FT_BM125_v4.pdf> (consulté le 24.03.2012).

Anonyme 3, Fiche technique milieu Sabouraud au chloramphénicol, BIO-RAD. Disponible sur : http://lycee-valin.fr/bgb/ftech/S2K.pdf (consulté le 24.03.2012).

Anonyme 4, Fiche technique gélose M17, Biokar Diagnostics Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/85C88662DDC092E1C1257 4B800265258/\$file/TDS_BK088_v6.pdf > (consulté le 24.03.2012).

Anonyme 5, Fiche technique gélose VRBG, Biokar Diagnostics. Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/2534514325C567C8C12574 950048C168/\$file/FT_BK011_BM075_v8.pdf> (consulté le 24.03.2012).

Anonyme 6, Fiche technique gélose VRBL, Biokar Diagnostics. Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/068D13B6BB029F25C12574 C7004A4C68/\$file/FT_BK152_BM034_035_v6.pdf > (consulté le 24.03.2012).

Anonyme 7, Fiche technique gélose BCP, Biokar Diagnostics. Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/9C6915BF322E519FC12574 B2002C5C93/\$file/FT_BK042_v5.pdf> (consulté le 24.03.2012).

Anonyme 8, Fiche technique milieu chapman, Biokar Diagnostics. Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/92BDE8FB0C0B2A47C1257 4B100330483/\$file/FT_BK030_BM148_v8.pdf> (consulté le 24.03.2012).

Anonyme 9, Fiche technique gélose cetrimide, Biokar Diagnostics. Disponible sur : http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/2EBF40584F0452D2C12574 B30028D639/\$file/FT_BK049_v5.pdf > (consulté le 24.03.2012).

Anonyme 10, Fiche technique milieu King B, Biokar Diagnostics. Disponible sur : < http://lycee-valin.fr/bgb/ftech/K1K.pdf > (consulté le 24.03.2012).

Anonyme 11, Fiche technique gélose viande foie, Biokar Diagnostics. Disponible sur

http://www.solabia.fr/solabia/produitsDiagnostic.nsf/0/46B8E0D68CA9A2EFC1257 4C800304D70/\$file/FT_BK157_v5.pdf> (consulté le 24.03.2012).

Annexe I

Matériels, réactifs et milieux de cultures utilisés

Matériels: Boites de Pétri en plastique ; Micropipettes; Tubes à essai; Etuves réglées à 30 et 37 °C; Réfrigérateur réglé à 4 °C; Ances de platines; Microscope optique; Loupe binoculaire; Bec benzène; Hotte aspirante (en ventilation). Réactifs: Alcool; Fushine; Violet de gentiane; Lugol; Bleue de méthylène; Réactif de kovacs. Milieux de cultures utilisés Gélose PCA; Gélose Nutritive; Gélose Sabouraud au chloramphénicol; Gélose M17; Gélose VRBG; Gélose VRBL; Gélose BCP: Gélose Hektoen; Gélose SS;

Gélose Chapman;

Gélose Cetrimide;

Gélose King B.

Annexe II

Tableau I : Résultats des colorations de Gram effectuées pour les différentes colonies.

Milieu	T °	Aspect des colonies	Gram	Observation microscopique	
	30 °C	Petite blanche		Levure	
		Jaune moyenne	+	Diplocoque	
		Blanc cassé bombée moyenne	+		
		Dégonflée pale	-	Cocci	
		Bombée caramel grande	-	Diplocoque	
		Orange saumon	+	grappe de raisin	
		Caramel très plate petite	+	Cocci	
		Caramel très claire transparente	+	Cocci	
		Beige crème élastique petite		Levure petite de taille	
		Jaune petite	+	Cocci	
	37 °C	Filamenteuse crème	-	Cocci en chainette	
M 17		Blanc cassé crémeuse	+	coccobacille	
		Beige foncé irrégulière	+	Long bacille isolé	
		Beige foncé petite régulière bombée	+	Diplococcobacille	
	4°C	Beige moyenne		Levure grande	
		Beige creuse petite	+	Coccobacille	
		Rose moyenne	+	Coccobacille	
		Filamenteuse	+	Bacille	
				D' 1 1 '11	
		Crémeuse caramel	-	Diplococcobacille	
		Rose petite Crème petite		Levure grande Levure grande	
		Blanche petite		Levure grande	
		Mauve petite		Levure grande	
	4°C	Blanche petite bombée		Levure	
		Bleu violette petite		Levure	
		Mauve transparente	-	Bacille	
		Violette a centre foncé	_	Bacille	
VRBL		Violette grosse bombée	-	Diplocoque	
		Violette dégonflée	_	Cocci isolé/ en grappe	
		Forme de fleur aplatie violette	_	Diplocoque	
	37 °C	Forme d'étoile Aplatie Violette Grisâtre	+	Bacille isolé	
	31	Torrito a ctorio ripiatio violette orisatio	Т	Duolilo 15010	

		Rose marron grande bombée	-	Diplococcobacille
		Transparente moyenne	-	Diplococcobacille
	4 °C	Beige irrégulière	-	Diplococcobacille
VRBG		Marron orangé petite	-	Diplococcobacille
VKDG		Blanche régulière		Levure
		Bleu grise très claire petite		Levure
		Crémeuse crème grande	-	Diplococcobacille
	37 °C	Rose marron bombée moyenne	-	Diplococcobacille
	37 °C	Transparente très claire	+	Diplobacille
		Transparente très claire	-	Long bacille
		Bombée grande crémeuse	+	coccobacille
GNO	4°C	Orange petite	+	Diplococcobacille
		Jaune orangée	-	Diplobacille
		Jaune petite	-	Tétrade
		Rose petite		Levure grande
		Saumon de grande taille	-	bacille
	37 °C	Verte a centre foncé	-	bacille
Hektoen		Jaune saumon irrégulière	-	bacille
		Verte foncé très petite	-	diplobacille
		Verte claire petite	-	diplobacille
SS	4 °C	Blanche petite		Levure
		Beige transparente moyenne	-	bacille
	37 °C	Verte moyenne		coccobacille, isolé/
Cetrimide				diplocoque
	4 °C	Verte moyenne	-	coccobacille, isolé /amas
	30 °C	Blanche crémeuse moyenne	-	Petit bacille
		Beige grande	-	Diplococcobacille
	4°C	Blanche moyenne	-	Petit bacille
King B		Beige moyenne	-	Diplococcobacille
		Beige aplatie à centre dégonflé	-	Diplococcobacille
		Jaune très fine	+	Diplococcobacille
		Orange grande	+	Diplococcobacille
	4°C	Bleue foncée petite	-	Diplocoque
ВСР		Bleue grise	-	Diplocoque
		Filamenteuse bleue	-	Diplocoque
	37 °C	Bleue grise a centre foncé	-	Diplocoque
		Bleue grise transparente	-	Diplocoque

Tableau II: Résultats des tests d'orientations effectuées sur certaines colonies.

	Aspect des colonies	Gram	catalase	KIA				
Milieu				pente	culot		II C	Manitol mobilité
				lac	glu	gaz	H_2S	moonne
VRBG	Rose à centre bombé saumon moyenne	-	+	++	++	++	-	+
	Crème crémeuse plate moyenne	+	+	+	+	+	ı	+
	Transparente petite	-	+				-	+
	colonie rhizoïde grande	-	+				-	- avec Croissance
	Bleu violette fine	-	+				-	+
VRBL	Blanche petite	-	+				-	+
VIDL	Transparente rosâtre petite	-	+	+	+	+	-	+
	Grise violacée plate très grande	+	+				-	+
ВСР	Grisâtre à centre foncé moyenne	-	+	+	+	+	-	+
	Transparente petite	-	+				-	+ éclatement de la gélose
	Bleu petite	-	+	+	+	+	-	
SS	Beige petite	-	+	++	++	++	-	+
	Verte à centre foncé moyenne	-	+	++	++	++	-	+
Hektoen	Verte filamenteuse	-	+	-	-	-	-	-
	Verte foncé petite	-	+	-	-	-	-	- Avec croissance
M 17	Rose bonbon petite		+				-	+
	Rose claire moyenne	+	+				-	- Avec croissance
	Sous forme de soleil grand	-	+				-	-
	Blanche bombée moyenne	+	+	+	+	+	-	- Avec croissance
	Beige bombée creuse au centre	+	+	+	+	+	-	+

Tableau III : Résultats des tests effectués des colonies prélevées du milieu Cetrimide et King B.

Milieu	Aspect des colonies	Gram	catalase	King A	King B	Manitol mobilité
	Verte claire moyenne	-	+	+	+	
Cetrimide	Verte légèrement plus foncé moyenne	-	+	+	+	- avec croissance
	Verte moyenne	-	+	+	+	+
King B	Jaune orangée grande filamenteuse	-	+		+	++
	Beige plate moyenne	-	+		+	- avec croissance
	Blanche plate moyenne	-	+		-	- avec croissance
	Rouge plate	-	+		+	
	Jaune verdâtre fine	+	+		+	
	Orange	+	+		+	+

Annexe III

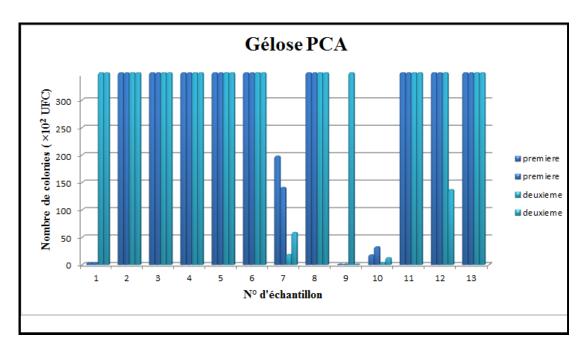


Figure 1 : Résultats de dénombrement obtenus sur gélose PCA

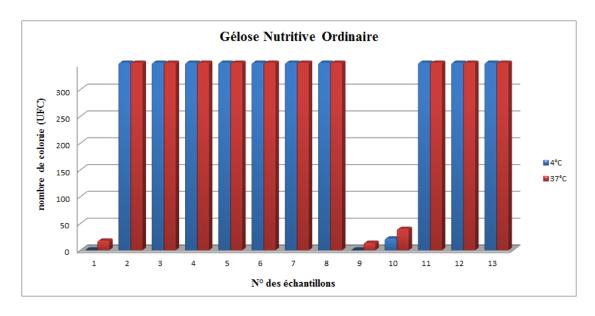


Figure 2 : Résultats obtenus sur gélose nutritive (Bactéries)

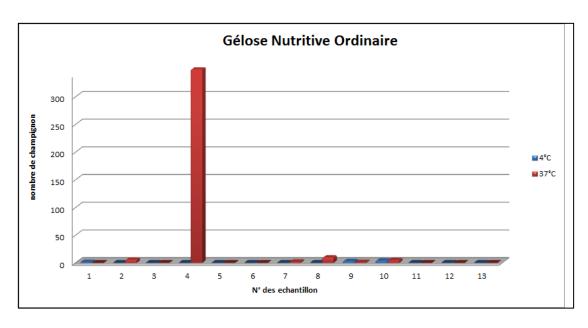


Figure 3 : Résultats obtenus sur gélose nutritive (Champignons)

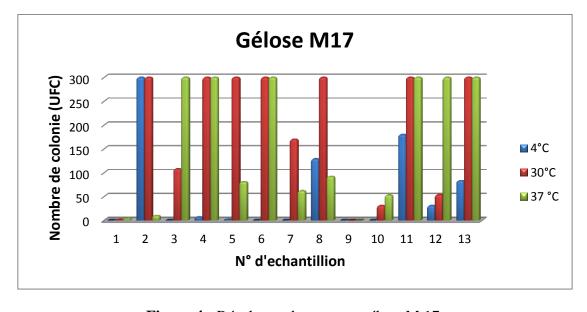


Figure 4: Résultats obtenus sur gélose M 17.

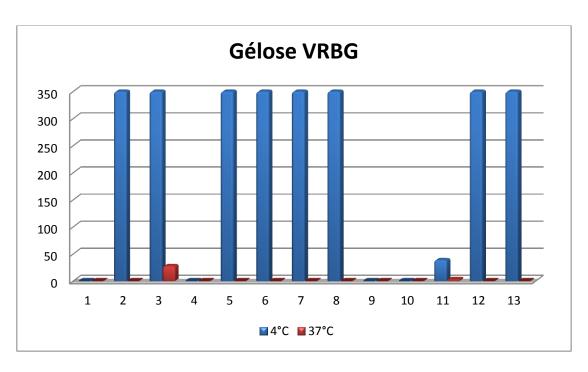


Figure 5 : Résultats de dénombrement obtenus sur gélose VRBG.

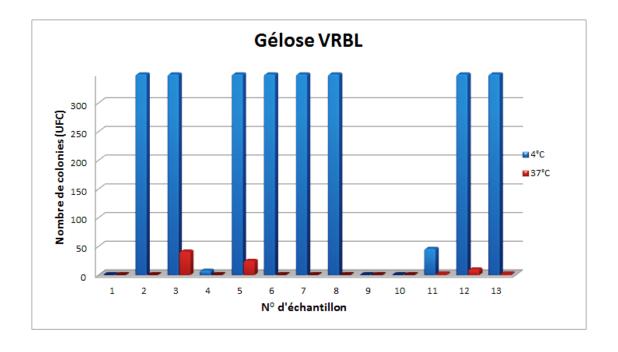


Figure 6 : Résultats de dénombrement obtenus sur gélose VRBL.

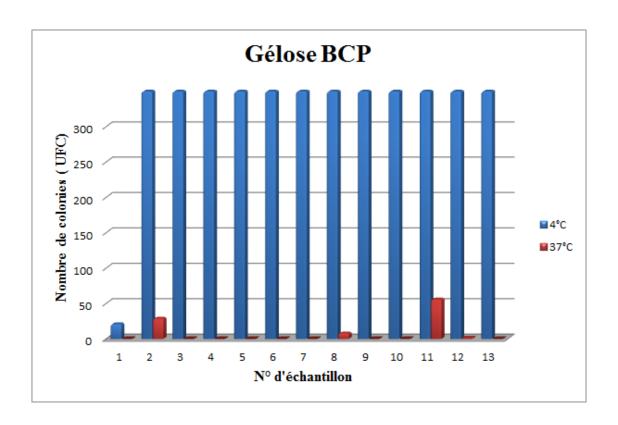


Figure 7 : Résultats obtenus sur gélose BCP.

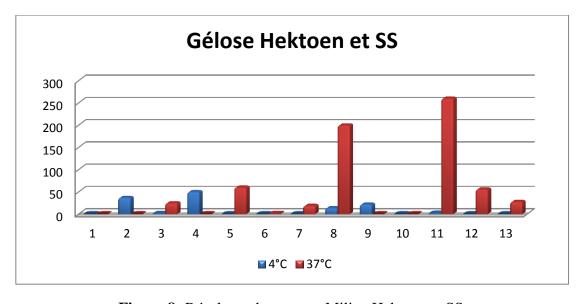


Figure 8: Résultats obtenus sur Milieu Hektoen et SS.

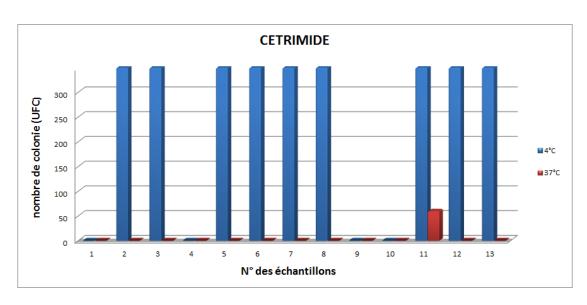


Figure 9 : Résultats obtenus sur gélose Cétrimide.

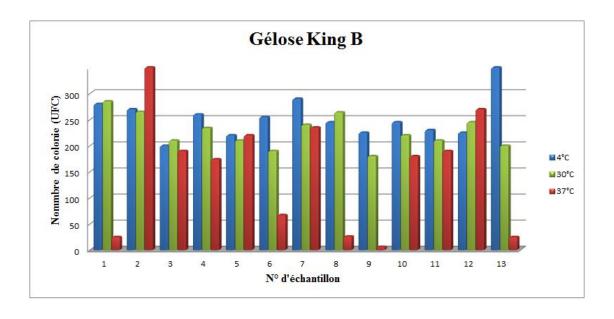
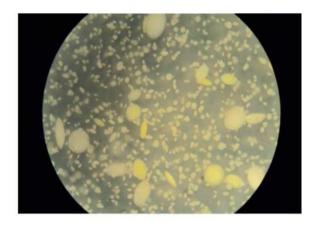
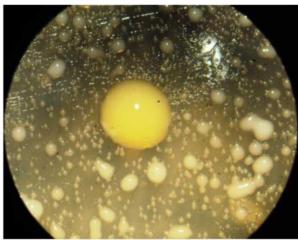



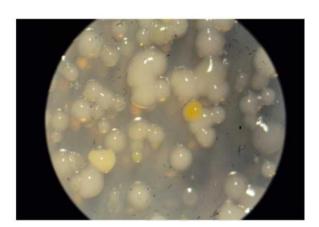

Figure 10 : Résultats obtenus sur milieu King B

Annexe IV A

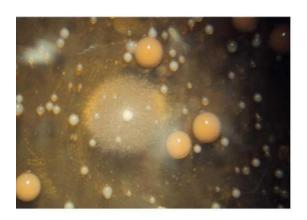
Les différentes formes de colonies obtenues sur gélose PCA observées sous loupe binoculaire (X 2,5)



Annexe IV B

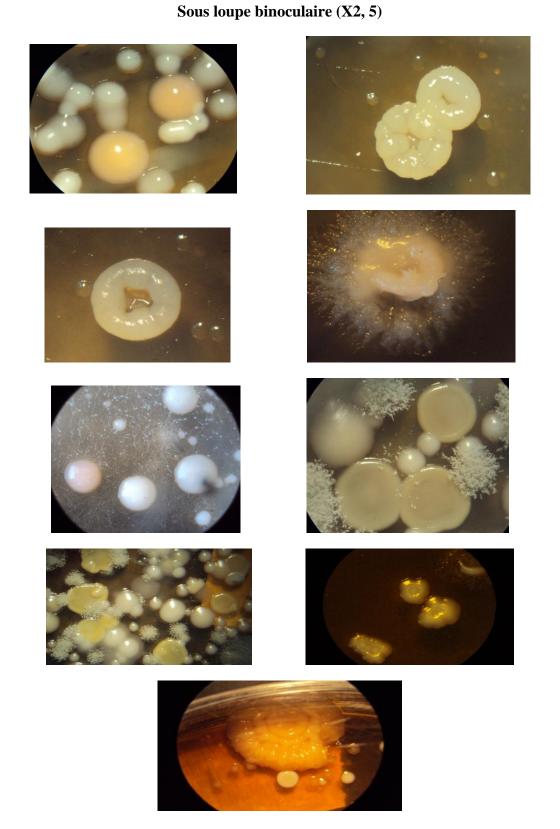

Les différentes formes de colonies obtenues sur gélose nutritive observées

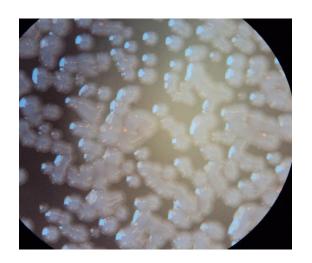
Sous loupe binoculaire (X2, 5)

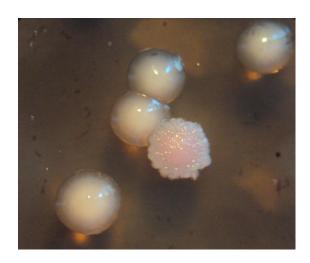

Annexe IV C

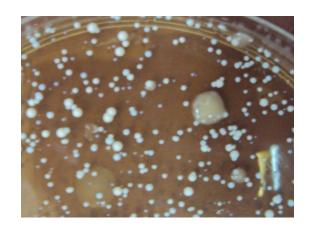
Différentes formes de champignons obtenues sur Sabouraud observées

sous loupe binoculaire (2,5)

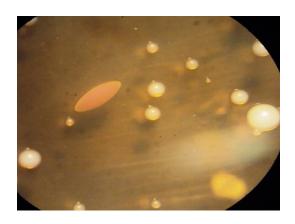


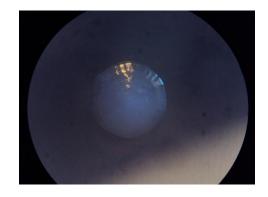


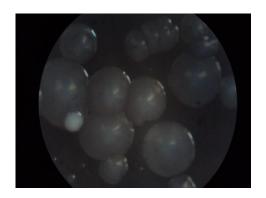

Annexe IV D Différentes formes de colonies obtenues sur M17 observées



Annexe IV E Différentes Formes de colonies obtenues sur VRBG observées

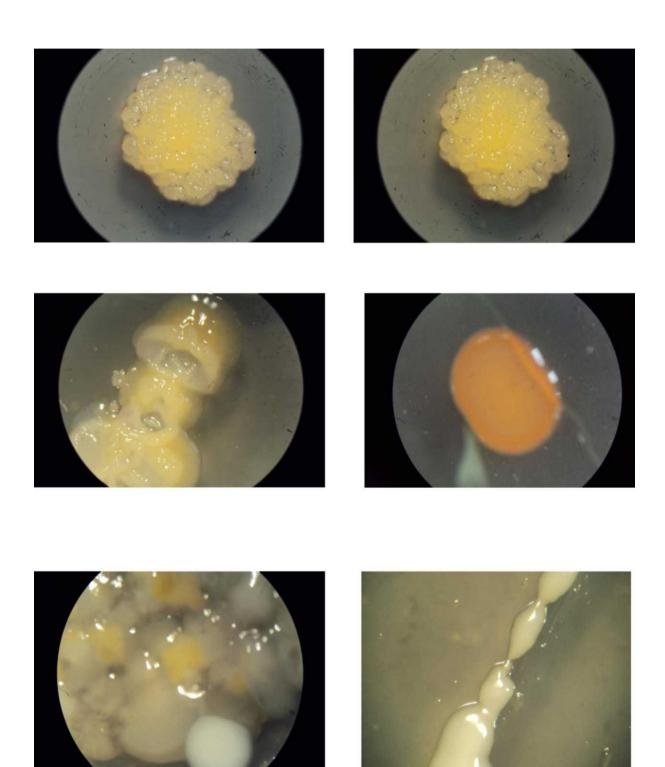

Sous loupe binoculaire (X2, 5)





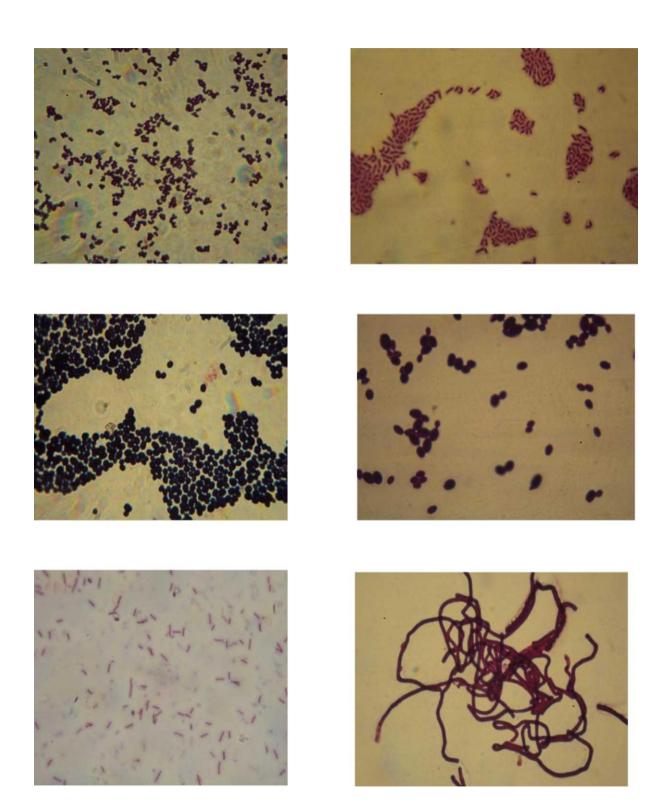
Annexe IV F

Différentes formes de colonies obtenues sur BCP observées sous loupe binoculaire (X 2,5)



Annexe IV

G


Différentes formes de colonies sur milieu King B observées Sous

loupe binoculaire (X2, 5)

Annexe IV H

Les différents Gram obtenues après coloration de Gram de différentes colonies sur divers milieux

Résumé

La science qui étudie les psychrophiles est connue sous le nom de *microbiologie* du froid, encore méconnaissable en Algérie et dont l'importance ne cesse de croitre vu le recours presque quasi systématique à la réfrigération et congélation, Sur ce concept, l'étude a porté sur la recherche de ces micro-organismes sur différents milieux de cultures microbiennes par la procédure de prélèvement des échantillons par écouvillonnage de surface. En références aux résultats, il a été constaté que les psychrophiles se développent à 4°C pour la plus part des milieux utilisés pour la recherche de la flore totale, des levures et moisissures, des entérobactéries, des coliformes, des lactocoques ; streptocoques, salmonelles, staphylocoques, les *Pseudomonas*, *Pectobacterium* et les anaérobies sulfitoreducteurs. En outre, à 4 °C, des différences qualitatives et quantitatives dans les différents milieux de culture ont été constaté par rapport à 30°C et 37°C.

Mots clés

Psychrophiles, flore totale, entérobactéries, moisissures, levures, lactocoques.

Abstract

The science that studies the psychrophilic micro-organisms is known as Microbiology of cold, unrecognizable in Algeria and whose importance continues to grow given the almost systematic use almost chilling and freezing, on this concept, the study focused research of these microorganisms on different microbial culture media by the procedure of sampling by swabbing the surface. Results chows that psychrophilic grow at 4 °C for most of the media used for research of the total flora, yeasts and molds, Enterobacteriaceae, coliforms, lactococcus, streptococcus, salmonella, staphylococcus, Pseudomonas, Pectobacterium and anaerobic sulphite reducers. In addition, at 4 °C, the qualitative and quantitative differences in the different culture media were found from 30 °C and 37 °C.

Key words

Psychrophilic, total flora, entérobactéria, yeasts, molds, lactococcus.