

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de Recherche Scientifique

> Université Abderrahmane Mira de Bejaia Faculté de technologie Département de génie civil

Mémoire de sin d'étude

En vu d'obtention du Diplôme master en génie civil Option : structure


Thème

Etude d'un bâtiment R+8+Sous sol à usage D'habitations contreventées par un système Mixte (Voile+portique)

Encadreur: M^{me} DJERROUD

Présenté par :

M^{lle} AMARA Nassima M^{lle} OULEBSIR Fatima

Remerciement

Avant tout, nous tenons à remercier Dieu le tout puissant pour nous avoir donné la force et la patience pour mener à terme ce travail.

Nous remercions nos familles respectives qui nous ont toujours encouragées et soutenues durant toutes nos études.

Nos plus grands remerciements vont à notre promoteur Mme DJERROUD.T

pour avoir accepté de nous guider sur le bon chemin tout au long de ce travail.

Nous remercions les membres de jury qui nous feront l'honneur de juger ce travail.

Nous tenons à remercier également l'ensemble des enseignants de département GENIE CIVIL pour leurs rôles importants dans notre formation

Nous remercions notre amie Ghania qui nous a aidés dans ce travail

Notre sincère gratitude va vers tous ce qui a participé de près ou de loin à la réalisation de ce travail.

Mercí

Dédicace

Je dédie ce modeste travail;

A ma chère mère

A mon cher père

A mes chers frères (Atman et Moumouh).

A ma bínôme Nassíma et toute sa famílle.

A mes chères amíes (Amel et Djedjega)

A mes amís Bílal, Mohamed et Kamel

A tous ceux quí me sont chers.

Fatíma

Dédicace

Je dédie ce modeste travail ; A la mémoire de ma très chère nièce(INES)

A ma très chère mère.

A mon cher père.

A mes chères sœurs ríma, Katía et Kenza (son marí et son fíls Samí)

A ma grande mère.

A mon grand frère Nassím et sa femme

A mon jumeau Moumen et sa femme

A mes chère cousines (Sara, Nabila, Mounia et Zoubida)

A mon cher oncle et sa femme

A ma bínôme Fatíma et toute sa famílle.

A mes meílleurs amís (Lynda, Kafía , Faírouz, Hayat , Ghanía)

A tous ceux quí me sont chers.

Nassíma

LA LISTE DES SYMBOLES

E: Séisme

G: Charges permanentes

Q: Action variables quelconque.

S: Action dues à la neige.

W: Action dues au vent.

As: Aire d'un acier.

B: Aire d'une section de béton.

E: Module d'élasticité longitudinal.

E_b: Module de déformation longitudinale du béton.

E_i: Module de déformation instantanée.

E_{fl}: Module de déformation sous fluage.

Es: Module d'élasticité de l'acier.

E_v: Module de déformation différée (E_{vi} pour un chargement appliqué à l'age de j jours).

F: Force ou action en général.

I: Moment d'inertie.

L: Longueur ou portée.

M: Moment en général.

M_g: Moment fléchissant développé par les charges permanente.

Mq: Moment fléchissant développé par les charges ou actions variable.

N: force de compression en général.

a: Une dimension (en générale longitudinal).

b: Une dimension (largeur d'une section).

b₀ : Epaisseur brute de l'âme de la poutre.

d : Distance du barycentre des armatures tendues à la fibre extrême la plus comprimée.

d : Distance du barycentre des armatures comprimées à la fibre extrême la plus comprimée.

e : Excentricité d'une résultante ou effort par rapport au centre de gravité de la section comptée positivement vers les compressions.

f: Flèche.

fe: Limite d'élasticité.

f_{cj}: Résistance caractéristique à la compression du béton a l'age j jours.

 \mathbf{F}_{tj} : Résistance caractéristique à la traction du béton a l'age j jours.

 \mathbf{F}_{c28} et \mathbf{f}_{t28} : Grandeurs précédentes avec j=28j.

g: Densité des charges permanentes.

h₀ : Epaisseur d'une membrure de béton.

h: Hauteur totale d'une section.

i: Rayon de giration d'une section de B A.

j: Nombre de jours.

lf: Longueur de flambement.

l_s: Longueur de scellement.

n: Coefficient d'équivalence acier-béton ;

p: Action unitaire de la pesanteur.

q: Charge variable.

 S_t : Espacement des armatures transversales.

x : Coordonnée en général, abscisse en particulier.

 σ_{bc} : Contrainte de compression du béton.

D : profondeur d'encastrement de la fondation.

 q_u : Contrainte de rupture.

 q_a : Contrainte admissible du sol.

 Q_{Pu} : Charge limite de pointe.

 $Q_{\mathbf{s}_{u}}$: Charge limite de frottement latérale.

C: cohesion du sol.

:ypoids volumique

 N_C , $N\gamma$, Nq sont des paramètres sans dimension dépendant de γ , ils sont donnes par le tableau de l'article 3.31 (DTR-BC2.331).

LA LISTE DES FIGURES

Figure II. 1: composantes du plancher à corps creux
Figure II. 2:Dimensions de la poutrelle
Figure II. 3:surface afferente du poteau
Figure II. 4. disposition des poutrelles dans les différents niveaux
Figure II. 5: Schéma statique d'une Poutre continue
Figure II. 6 Schéma statique d'une poutrelle sur 07 appuis
Figure II. 7 dalle sur 04 appuis
Figure II. 8.dalle sur 03 appuis
Figure II. 9. dalle sur 03 appuis
Figure II. 10.: schéma de ferraillage de D5
Figure II. 11: schéma statique des escaliers
Figure II. 12: ferraillage des escaliers
Figure II. 13: poutre palière
Figure II. 14: Section considérée dans le calcul de torsion
Figure II. 15: ferraillage de la poutre palière
Figure II. 16:Schémas de l'acrotère
Figure II. 17:schéma statique
Figure II. 18:Schéma de ferraillage de l'acrotère
Figure II. 19: Les dimensions de l'ascenseur
Figure II. 20:schéma de ferraillage de l'ascenseur
Figure II. 22: Calcul de Périmètre au niveau de la feuille moyenne
Figure II. 22 : Schémas représentant la surface d'impact
Figure II. 23:poutre de chainage
Figure II. 24 : Schéma de ferraillage de la poutre de chainage
Figure III 1.Plans de dispositions des voiles
Figure III 2 : Spectre de réponse sens x-x
Figure III 3 : Spectre de réponse sens y-y
Figure III 4 : Mode 1 de déformation (translation suivant l'axe x-x)
Figure III 5 : Mode 2 de déformation (translation suivant l'axe y-y)
Figure III 6 : Mode 3 de déformation(rotation suivant l'axe z-z)

Figure IV 1.Zone nodale.	73
.Figure IV 2.Schémas des contraintes.	85
Figure IV 3.Zone tendue et courante dans les voiles.	. 86
Figure IV 4.Schéma d'un voile pleine	87
Figure IV 5 .schémas de ferraillage du voile	. 89
Figure V 3 semelle filante	91
Figure V 2.Vue en plan de la semelle.	91
Figure V 2 Coupe P-P'.	91
Figure V 4 Dimensions du radier.	92
Figure V 5 Présentation de zone d'impact de la charge compactée	93
Figure V 6: Panneau de dalle	95
Figure V 7 schéma de ferraillage de radier	98
Figure V 8 : Section de la nervure à ferrailler	98
Figure V 9 : Répartition des charges sur la nervure la plus sollicitée selon le sens X-X	99
Figure V 10 : Répartition des charges sur la nervure la plus sollicitée selon le sens Y-Y	100
Figure V 11 : schéma de ferraillage de la nervure selon X-X	102
Figure V 12 : schéma de ferraillage de la nervure selon Y-Y	102
Figure V 13 : Poussé des terres sur les murs adossés	103
Figure V 14 : schéma de ferraillage du mur adossé.	105

LA LISTE DES TABLEAUX

Tab.I. $1:f_e$ en fonction du type d'acier.	3
Tableau II. 1: évaluation des charges permanentes et surcharges d'exploitations	des
planchers	7
Tableau II. 2:évaluation de la charge permanente des murs extérieurs et intérieurs	8
Tableau II. 3:Descente de charge pour le poteau B1	9
Tableau II. 4 Résumé des vérifications à la compression à tous les niveaux du poteau	12
Tableau II. 5 : Résumé Vérifications au flambement dans tous les niveaux du poteau	12
Tableau II. 6 Différents types de poutrelles	16
Tableau II. 7: Chargement sur les poutrelles	17
Tableau II. 8 : Les résultats des moments des autres travées et appuis du type 1	20
Tableau II. 9: Les résultats des moments des autres travées et appuis du type 1	21
Tableau II. 10 : Les résultats des moments des autres travées et appuis du type 1	21
Tableau II. 11: Sollicitations maximales pour le calcul du ferraillage CORPS CREUX	21
Tableau II. 12 : calcul des sections de Ferraillage des appuis intermédiaires	23
Tableau II. 13 : calcul des sections de Ferraillage des appuis de rive	23
Tableau II. 14 : Vérification des contraintes en travée	24
Tableau II. 15 : Vérification des contraintes aux appuis intermédiaires	24
Tableau II. 16: Calcul des moments correspondants	26
Tableau II. 17: calcul des contraintes correspondantes	26
Tableau II. 18: coefficient μ	27
Tableau II. 19: Calcul des moments d'inerties fictives	27
Tableau II. 20 : Vérification de la flèche	27
Tableau II. 21 : Vérification de la flèche	28
Tableau II. 22 : le calcul du ferraillage a l'ELU dans le plancher terrasse inaccessible	28
Tableau II. 23 : Vérification de la flèche	28
Tableau II. 24 : Schémas de ferraillage des poutrelles	29
Tableau II. 25 : résumé des épaisseurs des dalles	30
Tableau II. 26 : calcul des sections de Ferraillage de la travée	31
Tableau II. 27 : calcul des sections de Ferraillage des appuis de rive (D2)	32
Tableau II. 28: calcul des sections de Ferraillage des appuis intermédiaires (D3)	32
Tableau II 20: Vérification des contraintes en travée	33

Tableau II. 30: Vérification des contraintes aux appuis	. 33
Tableau II. 31: vérification des contraintes en travée (L _x)	. 33
Tableau II. 32: vérification des contraintes en appuis (L _y)	
Tableau II. 33: Calcul des moments correspondants	. 35
Tableau II. 34: calcul des contraintes correspondantes	. 35
Tableau II. 35 : coefficient μ	. 35
Tableau II. 36: Calcul des moments d'inerties fictives	. 36
Tableau II. 37: Vérification de la flèche	. 36
Tableau II. 38: sollicitations et ferraillage des dalles D1, D2, D3, D4, D6, D7	. 36
Tableau II. 39: Vérification des contraintes	. 37
Tableau II. 40 : Vérification des contraintes en appuis xx	. 37
Tableau II. 41 : Vérification de la flèche	. 37
Tableau II. 42: évaluation des charges permanentes et surcharges d'exploitations des	
paliers d'escaliers.	. 38
Tableau II. 43: évaluation des charges permanentes et surcharges d'exploitation des volées	
d'escaliers	. 39
Tableau II. 44: Sollicitations dans l'escalier de l'entre sol (Type 1)	. 39
Tableau II. 45: Ferraillage de 1'escalier	. 40
Tableau II. 46: Vérification des contraintes en travée	. 40
Tableau II. 47: Vérification des contraintes aux appuis	. 40
Tableau II. 48: calcul des contraintes correspondantes	. 41
Tableau II. 49: coefficient μ	.41
Tableau II. 50: Calcul des moments d'inerties fictives	. 42
Tableau II. 51: Vérification de la flèche	. 42
Tableau II. 52: sollicitation dans la poutre palière	. 43
Tableau II. 53: calcul des sections de Ferraillage en travée	. 43
Tableau II. 54:calcul des sections de Ferraillage aux appuis	. 44
Tableau II. 55: Section d'armature de calcul en flexion simple et en torsion	. 45
Tableau II. 56 : Section d'armature en travée et aux appuis	. 45
Tableau II. 57: Vérification des contraintes en travée	. 45
Tableau II. 58: Vérification des contraintes aux appuis	. 45
Tableau II. 59: Charges et surcharges.	. 47
Tableau II. 60: Différentes combinaisons à utiliser.	. 48
Tableau II. 61: Ferraillage de la dalle de l'ascenseur (dalle au-dessous)	. 52

Tableau II. 62 : Vérification des contraintes en travée (sens x-x)	53
Tableau II. 63 : Vérification des contraintes en travée (sens y-y)	54
Tableau II. 64: Ferraillage de la dalle de l'ascenseur (dalles au-dessus)	55
Tableau II. 65: Vérification des contraintes en travée (sens x-x)	57
Tableau II. 66 Vérification des contraintes en travée (sens y-y)	57
Tableau II. 67: Ferraillage de la poutre de chainage	58
Tableau II. 68: Vérification des contraintes dans la poutre de chainage	59
Tableau II. 69: Vérification de la flèche	59
Tableau III 1 Valeurs des pénalités	62
Tableau III 2 : Vérification de la période	63
Tableau III 3: Période de vibration et taux de participation des masses modales	64
Tableau III 4:Interaction sous charges verticales	67
Tableau III 5:Interaction sous charges horizontales	68
Tableau III 6: Vérification de l'effort tranchant à la base.	68
Tableau III 7 : Vérification de l'effort normal réduit	69
Tableau III 8 Vérification de l'effort normal après changement de section	69
Tableau III 9: Vérification des déplacements relatifs (sens x-x)	70
Tableau III 10: Vérification des déplacements relatifs (sens y-y)	70
Tableau III 11: Vérification des effets P-Δ (sens x-x).	71
Tableau III 12 : Vérification des effets P-Δ (sens y-y)	72
Tableau IV 1: Les sollicitations dans les poteaux	75
Tableau IV 2: Sollicitations dans les poteaux	76
Tableau IV 3: Armatures transversales dans les poteaux	76
Tableau IV 4: Justification de l'effort normal ultime et l'effort normal maximum	77
Tableau IV 5: Vérification des contraintes dans le béton	78
Tableau IV 6: Vérification des sollicitations tangentes	79
Tableau IV 7: Les sollicitations les plus défavorables dans les poutres principales et	
secondaires.	79
Tableau IV 8: Les armatures longitudinales dans les poutres principales	80
Tableau IV 9: Vérification des contraintes tangentielles.	81
Tableau IV 10: Vérification de la contrainte limite de béton	81
Tableau IV 11. Moment résistant dans les poteaux	82
Tableau IV 12Moment résistant dans les poutres secondaire	83
Tableau IV 13 : Moment résistant dans les poutres principales	83

7	Tableau IV 14 : Vérifications des zones nodales poutres secondaires	3
7	Tableau IV 15: Vérifications des zones nodales poutres principale	4
7	Tableau IV 16: Les sollicitations dans les poteaux	4
7	Tableau IV 17: Résultats du ferraillage du voile Vy2 et Vy3	7
7	Tableau IV 18: Résultats du ferraillage du voile Vy ₁ et Vy ₄	8
7	Fableau IV 19: Résultats du ferraillage du voile V_{X1} et V_{X2}	8
7	Tableau V 1: Résumé des résultats du ferraillage du radier. 9	6
7	Tableau V 2 Vérification des contraintes de radier	7
7	Tableau V 3 calcul des sections d'armatures à l'ELS	7
7	Tableau V 4 Revivifications des contraintes de radier	7
7	Tableau V 5 les sollicitations a l'ELU (sens X-X)	0
7	Tableau V 6 Sollicitations maximales (sens X-X)	0
7	Tableau V 7 Sollicitations a l'ELU (sens y-y)	0
7	Tableau V 8 Sollicitations maximales (sens Y-Y)	0
7	Tableau V 9 Tableau De ferraillage des nervures	1
7	Tableau V 10 Vérification des contraintes dans les nervures	1
7	Tableau V 11 Calcule des sections d'armature a l'ELS	1
7	Tableau V 12 ferraillage des murs adossés	4
7	Tableau V 13 Vérification des contraintes	4
7	Tableau V 14 Calcul des sections d'armatures à l'ELS	4

SOMMAIRE

Introduction

I.1. Présentation de l'ouvrage	1
I.1.1 Caractéristiques géométriques et architecturales	1
I.2. Règlements et normes utilisés	1
I.3. Les états limites	1
I.4. Les matériaux	3
I.4.1. Béton	3
I.4.2. Les aciers	3
Chapitre II : Pré dimensionnement et calcul des éléments se	condaires
II.1Introduction	4
II.2. Poutres	4
II.2.1. Poutre secondaire	4
II.2.2. Poutre principale	4
II.3. Plancher	5
II.3.1. Plancher à corps creux	5
II.3.2: Pré dimensionnement des poutrelles	5
II.4 LOI DE DEGRESSION DES CHARGES :(D.T.RB.C.2.2ART 6.3)	8
II.4.1.Vérification à la compression simple	10
II.4.2.Vérification au flambement	10
Conclusion	13
II.5. Voiles	13
II.6. Etudeéléments non structuraux	14
II.6.1 Etude des poutrelles	14

II.6.1.1 Critère de la disposition des poutrelles	14
II.6.1.2. Les différents types de poutrelles	16
II.6.1.3 Calcul des charges revenant aux poutrelles	17
II.6.1.4.Calcul des sollicitations	17
II.6.1.5 Vérifications	23
I.6.1.6Ferraillage de la dalle de compression	28
II.6.2. Plancher à dalle pleine	29
III.6.2.1. Dalle D5	31
II.6.2.2. Armature dues à l'effort tranchant	32
II.6.2.3. Vérification des contraintes	33
II.6.3 Escaliers	37
II.6.3 Escaliers	38
II6.3.2 Poutre palière	42
II.6.3.2.1 Dimensionnement	43
II.6.3.2.2 Calcul de la poutre palière	43
II.6.4 Acrotère:	46
II.6.4.1 Hypothèses de calcul	46
II.6.4.1.1 Évaluation des charges et surcharges	47
II.6.4.1.3 Calcul de l'excentricité	48
II6.4.1. 5 Schéma de Ferraillage	51
III.8. Ascenseur	51
II.6.6. Description de l'ascenseur	51
II6.6.1.Caractéristiques de l'ascenseur : Annexe (4)	51
II 6.6.1. 1Etude de l'ascenseur	52
II.6.6.2 Ferraillage	55
Chapitre III : Etude séismique de l'ouvrage	
Introduction	61

III.1.Méthodes de calcul	61
III.1.1. Méthode statique équivalente	61
III.1.2. Méthodes d'analyse dynamique	64
III.1.2.1. Modélisation de la structure	64
III.1.2. 2 Analyse spectrale	65
III.1.2.3. Analyse du comportement de la structure	66
III.2 Justification de l'interaction voile-portique	67
III.2.1. Sous charges verticales	67
III.2.2. Sous charges horizontales	68
III.3. Vérification de la résultante de la force sismique :	68
III.4. Vérification de l'effort normale réduit	69
III.5. Justification vis-à-vis de déplacement : (Article 4.4.3) RPA 99/V2003	70
III.6. Justification vis-à-vis de l'effet P- Δ : RPA99/V2003 (Article 5.9).	71
Conclusion	72
Conclusion	
Chapitre IV : Ferraillage des éléments de contreventement	
	73
Chapitre IV : Ferraillage des éléments de contreventement	
Chapitre IV : Ferraillage des éléments de contreventement Introduction	73
Chapitre IV : Ferraillage des éléments de contreventement Introduction IV.1. Étude des poteaux	73 79
Chapitre IV : Ferraillage des éléments de contreventement Introduction IV.1. Étude des poteaux IV.2.1.Ferraillage des poutres	73 79 82
Chapitre IV : Ferraillage des éléments de contreventement Introduction	73 79 82 84
Chapitre IV : Ferraillage des éléments de contreventement Introduction	73 79 82 84
Chapitre IV : Ferraillage des éléments de contreventement Introduction	73 79 82 84
Chapitre IV : Ferraillage des éléments de contreventement Introduction	73 79 82 84 90
Chapitre IV : Ferraillage des éléments de contreventement Introduction IV.1. Étude des poteaux IV.2.1.Ferraillage des poutres IV.2.2 Vérification des zones nodales IV.3. Etude des voiles Conclusion. Chapitre V : Etude de l'infrastructure V.1.Choix du type de fondation	73 79 82 84 90

V.2 Etude des nervures	98
V.3 étude du mur adossé.	102
Conclusion générale	
Liste bibliographique	
Annexes	

Introduction générale

Le domaine de construction est un vaste domaine, qui a connu durant son histoire plusieurs innovations, non seulement dans les procédés de conception et de réalisation mais aussi dans les techniques et les matériaux utilisées pour les structures selon les besoins et lés capacités de ces dernières. Ainsi on a désormais une variété de choix dans les matériaux tel que le béton armé, le béton de précontrainte, l'acier et le bois.

Cependant si le métier de construction est considéré comme vaste et ancien, il faut reconnaitre qu'il aura fallu s'adapter aux évolutions, mais aussi aux nouvelles techniques qui permettent une fiabilité maximale de la structure vis-à-vis dés phénomènes naturels tel que les séismes, ces derniers sont justement un élément de réflexion avant une conception pour tout ingénieur de génie civil, il est a noté que l'Algérie se situe dans une zone de convergence de plaques tectoniques , elle est représenté comme étant une région a forte activité sismique.

Toute étude de projet d'un bâtiment doit respecter au moins ces trois buts :

- a- Un maximum de sécurité ou autrement dit assurer la stabilité de l'ouvrage.
- b- L'économie : une mise en place planifiée des diminutions des couts du projet (les dépenses).

c- L'esthétique.

Pour satisfaire les exigences énoncées ci-dessus, on doit choisir convenablement les matériaux, définir une conception, un dimensionnement et des détails constructifs appropriés, et spécifier des procédures de contrôles adaptés au projet considéré au stade de la conception et de l'exploitation, pour ce faire il faut respecter les normes et les règles en vigueur qui sont propres pour chaque pays.

Dans le cadre de notre projet nous avons procédé au calcul d'un bâtiment d'habitation avec commerce, implanté dans une zone de moyenne sismicité, il y a lieu donc de déterminer le comportement dynamique de la structure afin d'assurer une bonne résistance de l'ouvrage à long terme et assurer confort et sécurité, on utilisé « règlement parasismique algérien RPA99 »Version 2003.

Notre étude est divisée en 5 chapitres :

- 1- présentation de l'ouvrage.
- 2- pré dimensionnement et calcul des éléments secondaires
- 3- étude dynamique (analyse du modèle de la structure en 3D à l'aide du logiciel de calcul ETABS 2016.
 - 4- étude des éléments structuraux
 - 5- étude de l'infrastructure.

Chapitre I : Hypothèse de calcul et présentation détaillé de l'ouvrage

Chapitre I Généralités

Introduction:

L'étude d'un bâtiment en béton armée nécessite des connaissances de base sur lesquelles l'ingénieur prend appuis, et cela pour obtenir une structure à la fois sécuritaire et économique.

A cet effet, on consacre ce chapitre pour la description du projet et l'étude des caractéristiques des matériaux utilisés.

I.1. Présentation de l'ouvrage:

L'ouvrage faisant objet de notre étude est un immeuble en (R+8) avec sous sol. Cet ouvrage est à usage d'habitations Il est classé d'après les règles parasismiques algériennes « RPA99 /version 2003 », dans le groupe d'usage 2, ayant une importance moyenne.

L'ouvrage est situé sur le territoire de la wilaya de Bejaia (Elkseur), qui est, d'après la classification en zones sismiques des wilayas et communes d'Algérie (RPA99/2003), en zone (IIa), qui est une zone à moyenne sismicité.

I.1.1 Caractéristiques géométriques et architecturales:

- Dimension projetée selon l'axe y-y' 9.30m.
- Hauteur totale du bâtiment30.34m.
- Hauteur du l'étage courant3.06m.
- Hauteur du sous sol......2.80m.

Etant donné que le bâtiment est situé en zone sismique (IIa) et qu'il dépasse les 14m de hauteur, l'ossature doit être en système de contreventement mixte assuré par des voiles et des portiques, RPA (article 3-4-A-1-a).

I.2. Règlements et normes utilisés:

Les règlements et normes utilisés sont ceux en vigueur dans le secteur du bâtiment en Algérie. Essentiellement ; nous avons eu recours au :

- **❖** RPA99 /version 2003.
- **❖** CBA93.
- **❖** DTR B.C.2.2.
- ❖ BAEL91/version 99.

I.3. Les états limites :

Un état limite est un état pour lequel une condition requise d'une construction (ou d'un de ses éléments) est strictement satisfaite et cesserait de l'être en cas de variation défavorable des actions appliquées. Selon le BAEL 91 ; nous avons deux états limites : ELS et ELU.

a) Etat limite ultime : Ce sont ceux qui sont associés à la perte de stabilité de la structure ; ils sont directement liés à la sécurité des personnes.

Les phénomènes correspondants sont : la rupture locale ou globale, la perte d'équilibre statique ou dynamique et l'instabilité de forme.

b) Etat limite de service : Ce sont ceux qui sont associés à l'aptitude à la mise en service; ils sont donc liés aux conditions d'exploitation et à la durabilité recherchée pour l'ouvrage.

Les phénomènes correspondants sont : la fissuration, les déformations, . . .

c) Combinaison d'actions à l'ELU: CBA93 (article : A.3.3.2)

Situation durable ou transitoire : On ne tient compte que des actions permanentes et des actions variables, la combinaison utilisée est :

$$1.35$$
Gmax+Gmin+ 1.5 Q $1+\sum 1, 3\psi_{0i}$ Q $_{i}$

 ψ oi = 0.77 pour les bâtiments à usage courant.

ψ oi: Coefficient de pondération.

> Situations accidentelles :

1.35Gmax+Gmin+FA+
$$\psi$$
1i Q1+ $\sum \psi$ 2i Qi (i>1)

FA: Valeur nominale de l'action accidentelle.

ψ1i Q1 : Valeur fréquente d'une action variable.

ψ 2i Qi : Valeur quasi-permanente d'une action variable.

$$\Psi 1i = \begin{cases} 0.15 & \text{Si l'action d'accompagnement est la neige.} \\ 0.50 & \text{Si l'action d'accompagnement est l'effet de la température.} \\ 0.20 & \text{Si l'action d'accompagnement est le vent.} \end{cases}$$

d) Combinaison d'action à l'ELS: CBA93 (article: A.3.3.3)

 ψ 0i =0.6 pour l'effet de la température.

Avec:

G max : l'ensemble des actions permanentes défavorables.

G min: l'ensemble des actions permanentes favorables.

Q1: action variable de base.

Q i : action variable d'accompagnement.

e) Combinaisons de calcul:

Les combinaisons de calcul à considérer pour la détermination des sollicitations et des déformations selon le RPA99 version 2003 sont :

Situations accidentelles

$$\begin{cases} G + Q \pm E. \\ G + Q \pm 1.2E. \\ 0.8G \pm E. \end{cases}$$

Avec: - G: étant l'action permanente.

- Q : charge d'exploitation.

- E : l'action du séisme.

Chapitre I Généralités

I.4. Les matériaux:

I.4.1. Béton : C'est un mélange de ciment, de sable, de granulat et d'eau et éventuellement des adjuvants.

Le ciment utilisé pour la réalisation de notre ouvrage en béton armé, est le CPA 325 (ciment portland artificiel). Le dosage de ciment par mètre cube de béton est de 375kg. (BAEL91; art B.1.1).

I.4.2. Les aciers:

Leurs rôles est de reprendre les efforts de traction qui ne peuvent pas être repris par le béton. Les armatures longitudinales des éléments structuraux doivent être de haute adhérence avec $f_e \le 500$ MPA et leurs allongement sous charges maximales doit être supérieur à cinq pour cent (5%) de leurs longueur initiale pour faire travailler au maximum l'acier.

I.4.2.1. Principales armatures utilisées:

	Aciers ro	onds lisses	Aciers à hautes	Treillis soudés à fils lisses
désignation	FeE215	FeE235	adhérences FeE400	TLE500
f_e [MPa]	215	235	400	500

Tab.I. $1:f_e$ en fonction du type d'acier.

Chapitre II: Pré dimensionnement et calcul des éléments secondaires

II.1Introduction:

Le pré dimensionnement a pour but de déterminer l'ordre de grandeur des différents éléments de la structure pour reprendre les efforts dus aux charges permanentes et surcharges d'exploitations.

Cette phase est une étape régie par des lois qui découlent généralement de la limitation des déformations (flèches...), et parfois de la condition de résistance au feu. Cette étape représente le point de départ et la base de justification à la résistance, la stabilité et la durabilité de l'ouvrage.

Le pré dimensionnement de chaque élément de la structure est conforme aux règlements BAEL 91, CBA 93, RPA 99 version 2003 et les différents DTR.

II.2. Poutres:

La hauteur des poutres est donnée par l'expression suivante :

$$\frac{L_{max}}{15} \le h \le \frac{L_{max}}{10}$$

Avec : L_{max} : La plus grande portée -entre nus d'appuis- dans le sens considéré.

II.2.1. Poutre secondaire:

On a L_{max} = (4.88 - 0.4)= 4.48 m.

Donc,
$$\frac{448}{15} \le \le \frac{448}{10} \Rightarrow 29.98cm \le h \le 44.8 cm$$

Alors, on prend $\begin{cases} h = 35 \text{ cm} \\ b = 30 \text{ cm} \end{cases}$: dimensions de la poutre secondaire.

Vérification des conditions du RPA:

$$\checkmark$$
 b = 30 cm > 20 cm, vérifiée.

✓
$$h = 40 \text{ cm} > 30 \text{ cm}$$
, vérifiée.

$$\checkmark \frac{h}{h} = 1.33 < 4$$
, vérifiée.

Donc, les conditions du RPA sont vérifiées, les dimensions sont maintenues.

II.2.2. Poutre principale:

On a
$$L_{max}$$
 = (4.60 - 0.35)= 4.25 m.

Donc,
$$\frac{425}{15} \le h \le \frac{425}{10} \Rightarrow 28.33 \text{ cm} \le h \le 42.5 \text{ cm}$$

Alors, on prend $\begin{cases} h = 40 \text{ cm} \\ b_p = 30 \text{ cm} \end{cases}$ dimensions de la poutre principale.

Vérification des conditions du RPA:

$$\checkmark$$
 $b_p = 30 \text{ cm} > 20 \text{ cm}$, vérifiée.

$$\checkmark h_p = 40 \text{ cm} > 30 \text{ cm}$$
, vérifiée.

$$\checkmark \frac{h_p}{b_p} = 1.33 < 4$$
, vérifiée.

II.3. Plancher:

Le plancher est une plate-forme généralement plane, qui sert à séparer entre deux niveaux qui transmet les charges et les surcharges, qui lui sont directement appliquées, aux éléments porteurs tout en assurant des fonctions de confort comme l'isolation phonique, thermique et l'étanchéité des niveaux extrêmes.

L'épaisseur des planchers dépend le plus souvent des conditions d'utilisation que des vérifications de résistance. Aussi, l'épaisseur des planchers est déduite à partir de conditions citées ultérieurement ci-dessous.

II.3.1. Plancher à corps creux :

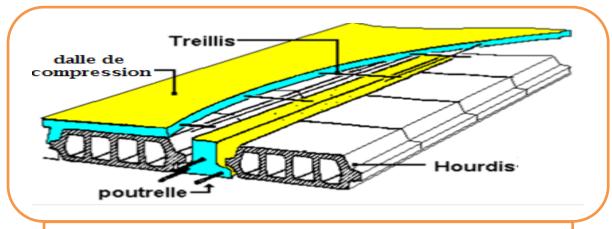


Figure II. 1: composantes du plancher à corps creux

Les planchers des étages 1 jusqu'à 10 (service et habitation) sont en corps creux.

$$h_{t} \geq \frac{L_{\max}}{22.5}$$

Avec:

- \checkmark *H*: Hauteur total du plancher.
- ✓ L_{max} : La plus grande portée entre nus d'appuis -dans le sens de disposition des poutrelles.
- L_{max} =4.88 0.4 Etage d'habitation :

$$L_{max} = 4.48 \text{ m} \implies h \ge \frac{448}{22.5}$$

Donc

$$h_t \ge 19.91cm$$

Alors, on opte pour un plancher [16 + 4]

II.3.2: Pré dimensionnement des poutrelles :

Les poutrelles sont des sections en Té en béton armé servant à transmettre les charges réparties ou concentrées vers les poutres principales.

Les poutrelles sont considérées comme poutre continue semi encastrée elles seront calculées comme une poutre continue reposant sur plusieurs appuis.

La disposition des poutrelles se fait selon deux critères :

- Critère de la petite portée : Les poutrelles sont disposées parallèlement à la plus petite portée.
- > Critère de continuité: Si les deux sens ont les mêmes dimensions, alors les poutrelles sont disposées parallèlement au sens du plus grand nombre d'appuis.

Dans notre cas les poutrelles sont disposées selon le premier critère.

b: Largeur de la table de compression.

h: Épaisseur du plancher = 16+4cm.

L,: distance maximale entre nus d'appui de deux poutrelles.

 $l_{\scriptscriptstyle y}$: distance maximale entre nus d'appuis de deux poutres principales.

$$b_0 = (0.4 \text{ à } 0.8) \text{ h} \rightarrow b_0 = (10 \text{ à } 20 \text{cm})$$

Soit: $b_0 = 10cm$

 $b_1 \le \min(L_x/2, L_y/10)$

 $L_x = 65-10 = 55$ cm : distance entre deux nervures Successives.

L_y: la distance maximale entre nus d'appuis des poutres secondaires

$$L_v = 460-40 = 420cm$$

 $b_1 \le \min(55/2; 420/10)$

 $b_1 \le \min(27.5;42)$

$$b_1 = 27.5cm$$

$$b = 2b_1 + b_0$$

$$b = 2 \times 27.5 + 10 = 65$$

Soit: b = 65cm

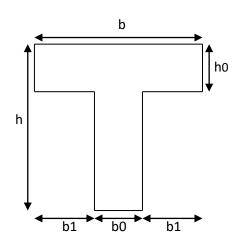


Figure II. 2:Dimensions de la poutrelle

Tableau II. 1:	évaluation	des charges pern	nanentes et su	rcharges d'ex	ploitations	des planchers.
plancher	référent	désignation	Poids	Epaisseurs	Poids G	Surcharges
			volumique	(m)	(KN/m^2)	$Q (KN/m^2)$
			(KN/m ³⁾			
	1	Gravillon de	20	0.05	1	
		protection				
	2	Etanchéité	6	0.02	0.12	
		multicouches				
Terrasse	3	Forme de	22	0.1	2.2	
inaccessible		pente				1
	4	Isolation		0.05	0.16	
		thermique				
	5	Plancher à	/	/	2,80	
		corps creux				
		(16+4)				
	6	Enduit de	10	0.015	0.15	
		plâtre				
Total					6.43	
	1	Revêtement	22	0.02	0.44	
		en carrelage				1.5 pour le
Plancher	2	Mortier de	20	0.02	0.4	plancher
Courant à		pose				d'habitation
usage	3	Lit de sable	18	0.02	0.36	
d'habitation	4	Plancher à			2,80	
		corps creux				
		(16+4)				
	5	Enduit de	20	0.02	0.4	
		ciment				
	6	Cloison de	10	0.1	1	
		distribution				
Total					5.4	
	1	Revêtement	22	0.02	0.44	3.5 pour les
Dalle pleine,		en carrelage				balcons
RDC,			20	0.02	0.4	
balcon	2	Mortier de	20	0.02	0.4	
		pose	10	0.02	0.01	
	3	Lit de sable	18	0.02	0.36	
	4	Dalle pleine	25	0.12	3	
	5	Enduit de	10	0.02	0.20	
		ciment				
Total			l	<u>I</u>	4.4	
20001						l

Tableau II. 2 : évaluation de la charge permanente des murs extérieurs et intérieurs.						
Type de murs	Désignation	Poids volumique (KN/m³)	Epaisseurs (m)	Poids G (KN/m²)		
Murs	Enduit de ciment	20	0.02	0.4		
extérieurs	Brique creuse	9	0.15	1.35		
	Lame d'aire		0.05			
	Brique creuse	9	0.1	0.9		
	Enduit de plâtre	14	0.02	0.20		
Total	_			2.85		
Murs intérieurs	Enduit de plâtre	14	0.02	0.28		
	Brique creuse	9	0.1	0.9		
	Enduit de plâtre	14	0.02	0.28		
Total				1.46		

II.4 LOI DE DEGRESSION DES CHARGES :(D.T.RB.C.2.2ART 6.3):

Soit Q_0 la charge d'exploitation sur la terrasse couvrant le bâtiment. Q_1 , Q_2 Q_n Sont les charges d'exploitation respectives des planchers d'étages 1,2.....,n, numérotés à partir du sommet du bâtiment.

On adoptera pour le calcul les charges d'exploitation suivantes :

- ✓ Sous la terrasseQ.
- ✓ Sous le dernier étage.... Q_0+Q_1 .
- ✓ Sous l'étage immédiatement inferieur..... $Q_0+0.95*(Q_1+Q_2)$.
- ✓ Sous l'étage immédiatement inferieur..... $Q_0+0.90*(Q_1+Q_2+Q_3)$.
- ✓ Pour n≥5.....Q₀+ (3 + n/(2n))+ $(Q_1+Q_2+Q_3)$.
- ➤ Poteau **B1** : (30 x 30)
 - **\star** L_{pp}: Longueur des poutres principales.
 - * L_{ps} : Longueur des poutres secondaires.
 - * S_{aff} : surface afférente.
 - ♣ S_{affd}: surface afférente de la Dalle pleine

Figure II.2:Demensions de la poutrelle

S_{murint}: surface des murs intérieurs.

$$S_{afferente}$$
= (2.29 *2.15) +(1.56* 2.29) + (1.56 *2.15.) =11.85cm²

$$S_{\text{dallepleine}} = (2.29 *2.975) = 4.52 \text{ cm}^2$$

- $L_{pp}=3.85$.
- $L_{ps}=1.975+2.15=4.125m$.
- $S_{aff}=2.225 (1.7+1.25) +0.05(2.125) = 6.67m^2$.
- ✓ Les cloisons:

$$h_1 = (3.06 - 0.4) = 2.66 \text{ m}$$

• Gmur = (1.95*2.85*2.66)=14.78 KN

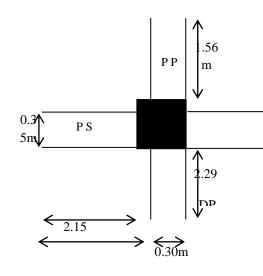


Figure II. 3:surface afférente du poteau

- Gmur = (1.56+1.1599*2.71*2.85)=21.00 KN
- P_{PS}=3.85* 0.3* 0.35* 25=10.1 KN
- P_{PP}=4.125* 0.4* 0.3* 25
- =12.37 KN
- $G_{ccT}=11.85* 6.43=76.19 \text{ KN}$
- Q_{ccT}=1* 11.85=11.85 KN
- G_{cc}=11.85* 5.4=63.95 KN
- Q_{cc}=1.5* 11.85=6.78 KN
- G_{DP}=4.52* 4.9=22.15 KN
- Q_{DP}=4.52* 1.5=6.78 KN

	ELEMENTS	G(KN	G (KN) TOTALE	Q(KN)
NIVEAUX				
	Plancher TERRASSE	76.19		11.85
N0	Poutres	22.47	163.37	
	poteaux+mur+dalle pleine	64.81		
	Venant de N0	63.95	314.60	36.4
N1	Plancher corps creux	22.47		
	Poutres	64.81		
	poteaux+mur+dalle pleine			
	Venant de N0	63.95		81.81
N2	Plancher corps creux	22.47	465.89	
	Poutres	64.81		
	poteaux+mur+dalle pleine			
	Venant de N0	63.95	617.18	100.23
N3		22.47		
	Plancher corps creux	64.81		
	Poutres			
	poteaux+mur+dalle pleine			
	Venant de N0	63.95		116.18
N4	Plancher corps creux	22.47	768.47	
	Poutres	64.81		
	poteaux+mur+dalle pleine			
	Venant de NO	63.95	919.76	129.69
N5	Plancher corps creux	22.47		
	Poutres	64.81		
	poteaux+mur+dalle pleine			
	Venant de NO	63.95		140.73
N6	Plancher corps creux	22.47		
	Poutres	64.81	1071.05	
	poteaux+mur+dalle pleine			
	Venant de N0	63.95	1222.34	151.29
N7	Plancher corps creux	22.47		
	Poutres	64.81		
	poteaux+mur+dalle pleine			
	Venant de N0	63.95		164.30
	Plancher corps creux	22.47	1373.63	
N8	Poutres	64.81		
	poteaux+mur+dalle pleine			
	Plancher corps creux	63.95	1524.92	173.6
N9	Poutres	22.47		
_ ,-	poteaux+mur+dalle pleine	64.81		

Après avoir effectué le calcul pour la recherche du poteau le plus sollicité, on a trouvé que c'est le poteau numéro qui est le plus sollicité sous charges verticales.

$$G_{totale} = 1524.92KN, Q_{totale} = 173.6KN$$

$$N_u = 1.35 \times 1524.92 + 1.5 \times 173.6 = 2319.042KN.$$

II.4.1. Vérification à la compression simple:

On doit vérifier la condition suivante :

$$\frac{N_u}{B} \le 0.6 \times f_{c28}$$
 Avec B : section du béton

$$B \ge \frac{N_u}{0.6 \times f_{c28}} \Rightarrow B \ge \frac{2550.94 \times 10^{-3}}{0.6 \times 25} = 0.170 m^2$$

$$B \ge 0.170m^2$$

On a
$$B = 0.45 \times 0.45 = 0.202 Am^2$$

II.4.2.Vérification au flambement :

D'après le (CBA 93), on doit faire vérification suivante :

$$N_{u} \leq \alpha \times \left[\frac{B_{r} \times f_{c28}}{0.9 \times \gamma_{b}} + \frac{A_{s} \times f_{e}}{\gamma_{s}} \right]$$

$$CBA 93 (Article B.8.2.1)$$

 B_r : Section réduite du béton.

 A_s : Section des armatures.

γ_b : coefficient de sécurité de béton .

γ_s: coefficient de sécurité des aciers

 α : Coefficient en fonction de l'élancement λ .

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} \to 0 < \lambda \le 50. \\ 0.6 \times (\frac{50}{\lambda})^2 \to 50 < \lambda \le 70. \end{cases}$$

On calcule l'élancement $\lambda = \frac{l_f}{i}$.

 l_f : Longueur de flambement.

 l_0 : Longueur du poteau.

$$i$$
: Rayon de giration : $i = \sqrt{\frac{I}{B}}$

$$I$$
: Moment d'inertie : $I = \frac{b_1 \times h_1^3}{12}$

$$l_f = 0.7 \times l_0 = 0.7 \times 2.45 = 1.72m$$
.

$$B = 0.45 \times 0.45 = 0.202m^2$$
.

$$I = \frac{0.45}{12} = 3.42 \times 10^{-3} \, m^4.$$

$$i = \sqrt{\frac{3.42 \times 10^{-3}}{0.20}} = 0.130$$

$$\lambda = \frac{1.72}{0.13} = 13.23 < 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \times (\frac{13.75}{35})^2} = 0.824$$

D'après le BAEL91 on doit vérifier que :

$$B_r = \frac{N_u}{\alpha \times \left[\frac{f_{c28}}{0.9 \times \gamma_s} + \frac{f_e}{200 \times \gamma_s} \right]}$$

$$B_r \ge \frac{2550.94 \times 10^{-3}}{0.824 \times \left[\frac{25}{0.9 \times 1.15} + \frac{400}{200 \times 1.15}\right]} = 0.120m^2$$

Or nous avons $B_r = (0.45 - 0.02) \times (0.45 - 0.02) \times 10^{-4} = 0.185 m^2$

0.185>0.120 donc le poteau ne risque pas de flamber.

Tableau II. 4 Résumé des vérifications à la compression à tous les niveaux du poteau						
Niveau	Nu	Section	Condition 1	B >Bcalculé	Observation	
			B (m2)	Bcalculé (m2)		
Etage 8	262.15	35 × 35	0.1225	0.017	Vérifier	
Etage7	527.24	35 × 35	0.1225	0.035	Vérifier	
Etage 6	826.83	35 × 40	0.14	0.055	Vérifier	
Etage 5	1081.89	35 × 40	0.14	0.072	Vérifier	
Etage4	1332.87	40×40	0.16	0.088	Vérifier	
Etage3	1579.83	40× 40	0.16	0.105	Vérifier	
Etage2	1822.71	45 × 40	0.18	0.122	Vérifier	
Etage1	2064.80	45 × 40	0.18	0.137	Vérifier	
RDC	2310.93	45 × 45	0.2025	0.154	Vérifier	
s-sol	2550.94	45 × 45	0.2025	0.170	Vérifier	

Niveau	Nu	Section	Condition B >Bcalculé		Observation
			Br (m2)	Brmin(m2)	_
Etage 8	262.15	35× 35	0.108	0.06	Vérifier
Etage7	527.24	35 × 35	0.108	0.06	Vérifier
Etage 6	826.83	35 × 40	0.125	0.072	Vérifier
Etage 5	1081.89	35 × 40	0.125	0.072	Vérifier
Etage4	1332.87	40× 40	0.144	0.074	Vérifier
Etage3	1579.83	40 × 40	0.144	0.074	Vérifier
Etage2	1822.71	40×45	0.163	0.107	Vérifier
Etage1	2064.80	40× 45	0.163	0.107	Vérifier
RDC	2310.93	45 × 45	0.185	0.108	Vérifier
s-sol	2550.94	45 × 45	0.185	0.120	Vérifier

Conclusion

Après avoir fini le pré dimensionnement des éléments et avoir procédé à faire les vérifications

nécessaires. On a adopté pour les éléments les sections suivantes :

Les poutres :

Poutre principale: b*h 30*40 cm² Poutre secondaire: b*h 30*35 cm²

Les poteaux :

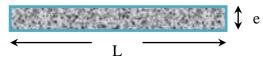
sous sol et RDC: $(b*h)=45*45 \text{ cm}^2$

1er et 2éme étage : (b*h)=40*45cm²
3éme et 4éme étage : (b*h)=40*40cm²
5éme et 6éme étage : (b*h)=35*40cm²
7éme et 8éme étage : (b*h)=35*35cm

II.5. Voiles:

Les murs en béton armé servent d'une part à contreventer le bâtiment en reprenant les efforts horizontaux (séisme, vent). D'autre part, de reprendre les efforts verticaux qu'ils transmettent aux fondations.

D'après le RPA 99 version 2003, les éléments satisfaisants la condition (L≥4.e) sont considérés comme des voiles, avec :


- L : longueur minimale du voile.
- e : épaisseur du voile.

L'article 7.7.1 du RPA 99 version 2003 définit comme étant l'épaisseur minimale du voile et de 15 cm. De plus, l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage h_l .

• Epaisseur du voile :
$$\begin{cases} e \geq 15 \ cm \ , \ article \ 7.7.1 \ du \ RPA \ 99 \ / \ 2003 \\ e = f(h_e) \end{cases}$$

Avec : $h_l = h - e_{dalle}$ (hauteur libre d'étage).

✓ On va opter pour un voile simple

• Etages (service, habitation): $h_{\text{étage}} = 3,06\text{m}$, donc, $h_l = 2,86\text{m}$.

$$e \ge \frac{286}{20} \Rightarrow e \ge 14,3 \ cm.$$

Alors, l'épaisseur est

- Longueur minimale du voile : $L \ge 4 \cdot e$
- Des fondations jusqu' au RDC L = 80cm.

Du 1^{er} étage jusqu'au bout L= 60cm.

II.6. Etudeéléments non structuraux

Les éléments non structuraux n'apportant pas de contribution significative à la résistance aux actions sismiques peuvent être considérés comme éléments secondaires.

Dans ce chapitre, on va aborder le calcul des éléments non structuraux suivants :

- Les planchers (corps creux et dalles pleines).
- Les escaliers.
- L'acrotère.
- L'ascenseur.

Les planchers sont des aires planes qui servent à séparer les différents niveaux et à transmettre les charges qui lui sont appliquées aux poutres, et ils doivent supporter les charges qui lui sont appliquées (le poids propre +la charge d'exploitation), dans notre bâtiment les planchers à rencontrer sont :

- ✓ Planchers à corps creux.
- ✓ Planchers à dalle pleine.

II.6.1 Etude des poutrelles :

Les poutrelles se calculent à la flexion simple, sont des sections en T en béton armé servant à transmettre les charges reparties ou concentrées aux poutres principales.

II.6.1.1 Critère de la disposition des poutrelles :

- Petite portée (afin de diminuer la flèche).
- > Continuité (maximum d'appuis).

D'après les plans des étages d'habitation, on opte pour les dispositions suivantes :

RDC

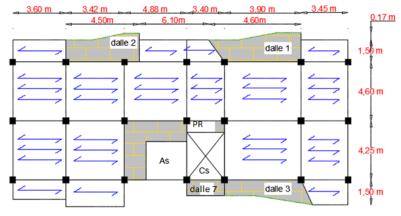
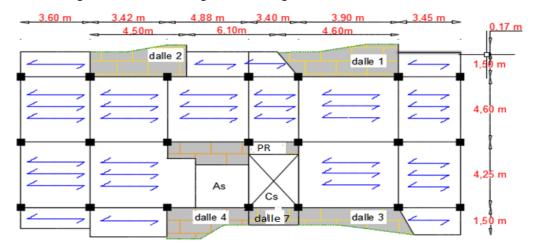
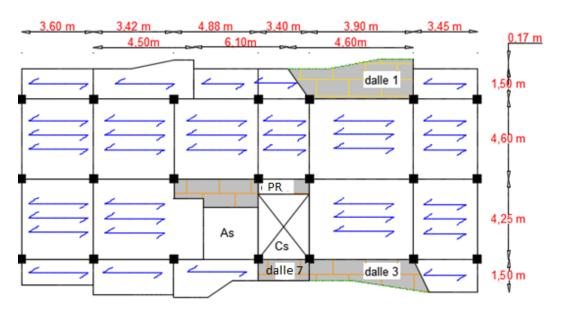
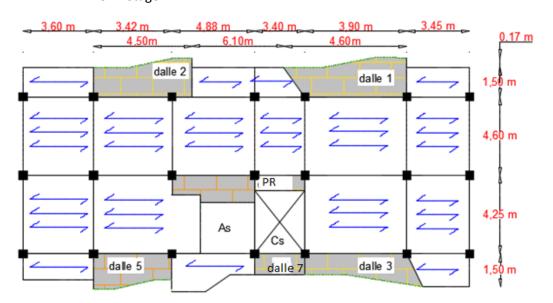
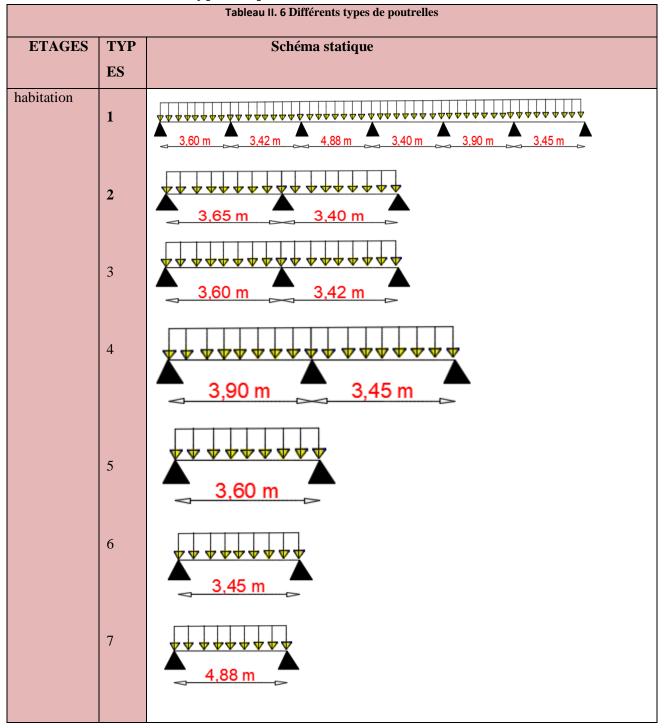
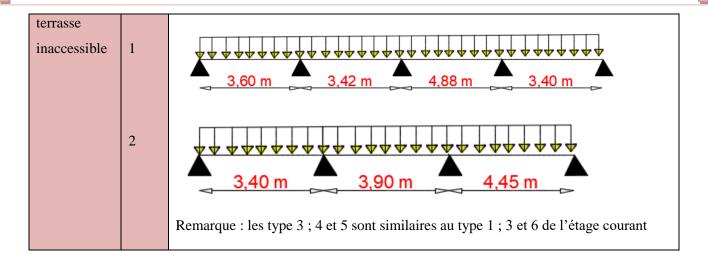




Figure II. 4. disposition des poutrelles dans les différents niveaux


• Etage courant de 1^{er} étage au 6^{eme} étage


7^{eme} etage



8^{eme} étage

II.6.1.2. Les différents types de poutrelles :

II.6.1.3 Calcul des charges revenant aux poutrelles :

	Tableau II. 7: Chargement sur les poutrelles					
NATURE	G (KN/m ²)	Q (KN/m ²)	ELU		ELS	
			1.35 G+1.5Q		G	+Q
			$P_u (KN/m^2) q_u (KN/m)$		$P_s (KN/m^2)$	q _s (KN/m)
				$0.65*P_{U}$		0.65 P _S
Terrasse						
inaccessible	6.43	1	10.18	6.62	7.43	4.82
habitation	5.4	1.5	9.54	6.20	6.9	4.48

II.6.1.4.Calcul des sollicitations :

• Exemple illustratif:

Pour le calcul on exposera un exemple pour illustrer une seule méthode [méthode Caquot minorée] -(le type (1) du plancher courant), et les autres types seront résumés dans des tableaux.

- **❖** Type (1): étage à usage d'habitation:
- ➤ Vérification des conditions d'application de la méthode forfaitaires (BA.E.L91 artB6.2.21).
- ▶ plancher à surcharge modérée ($Q \le min(2G, 5KN/m^2)$)
- \triangleright Q=1.5KN/m² \le min (10.46, 5KN/m²).....condition vérifiée.
- le moment d'inertie constant sur toutes les travées...... condition vérifiée.
- Fissuration peu nuisible (F.P.N)......condition vérifiée.

NOTE : Après la vérification des conditions d'application de la méthode forfaitaire sur les différents types de poutrelles, on remarque que tous

les types seront calculés par la méthode forfaitaire sauf le type(2) d'étage de service qui sera calculé par la méthode de Caquot minorée.

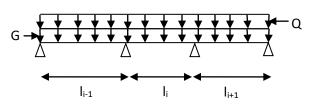


Figure II. 5: Schéma statique d'une Poutre continue

✓ Méthode de Caquot minorée :

Cette méthode s'applique lorsque la 2ème condition de la méthode forfaitaire n'est pas vérifiée.

Type 1:

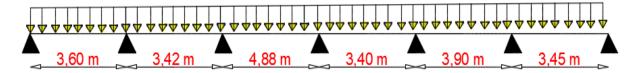


Figure II. 6 Schéma statique d'une poutrelle sur 07 appuis

NOTE : on minore « G » par un coefficient de « 2/3 » uniquement pour le calcul des moments aux appuis, tandis que pour le calcul les moments en travées, on revient à l'intégralité de « G »

$$\begin{cases} G' = \frac{2}{3} * (5.4) = 3.6 \text{ KN/}m^2 \\ Q = 1.5 \text{KN/}m^2 \end{cases}$$

- $P'_u=1.35G'+1.5Q=7.11 \text{ KN/m}^2$
- $P'_s = G' + Q = 5.1 \text{ KN /m}^2$
- $q'_u = P'_u * 0.65 = 4.62 KN/m$
- $q'_s = P'_s *0.65 = 3.31 \text{ KN/m}$
- Moments aux appuis :
 - ✓ Appuis de rives :

 M_A = M_G =0, mais le BAEL préconise de mettre des aciers de fissuration pour équilibrer un moment fictif M = - 0.15 M_0 .tel que

$$M_0^U = \frac{4.62*3.60^2}{8} = 7.48 KN.m \qquad \qquad M_0 = \frac{q'L^2}{8} \quad , \ L = max \ (l_{AB} \ , l_{FG}) = 3.60 m \qquad M_0^S = \frac{3.31*3.60^2}{8} = 5.36 KN.m$$

ELU:
$$M_A^U = M_G^U = -1.12KN.m$$

$$ELS: M_A^S = M_G^S = -0.80KN.m$$

✓ Appuis intermédiaires:

$$\mathbf{M}_{i} = -q' \left(\frac{l'_{g}^{3} + l'_{d}^{3}}{8.5(l'_{g} + l'_{d})} \right)$$
:

$$(q'_g=q'_d=q')l' = \begin{cases} l, trav\'ee derive \\ 0.8l, trav\'ee interm\'ediaire \end{cases}$$

- ✓ *l*: longueur de la travée.
- ✓ l'_a : Longueur fictive de la travée à gauche de l'appui.
- \checkmark l'_d : Longueur fictive de la travée à droite de l'appui.
- \checkmark l'_d =0.8*3.42=2.73m
- ✓ $l'_q = 3.60 \text{m}$

Appui (B):

$$\begin{cases} ELU: \ \mathsf{M}_B^U = \ -4.62 * \left(\frac{3.60^3 + 2.73^3}{8.5(3.60 + 2.73)} \right) = -5.76 \ KN. \ m \\ ELS: \ \mathsf{M}_B^S = \ -3.31 * \left(\frac{3.60^3 + 2.73^3}{8.5(3.60 + 2.73)} \right) = -4.12 \ KN. \ m \end{cases}$$

Appui (C):

$$\begin{cases} ELU: \ \mathsf{M}_c^U = \ -4.62 * \left(\frac{2.73^3 + 3.90^3}{8.5(2.73 + 3.90)} \right) = -6.55 \textit{KN}. \textit{m} \\ ELS: \ \mathsf{M}_c^S = \ -3.31 * \left(\frac{2.73^3 + 3.90^3}{8.5(2.73 + 3.90)} \right) = -4.67 \textit{KN}. \textit{m} \end{cases}$$

$$l'_{q}=0.8*3.42=2.73$$
m

Appui (D):

$$\begin{cases} ELU: \ \mathsf{M}^U_D = \ -4.62 * \left(\frac{3.90^3 + 2.72^3}{8.5(3.90 + 2.72)} \right) = -6.53KN.m \\ ELS: \mathsf{M}^S_D = \ -3.31 * \left(\frac{3.90^3 + 2.72^3}{8.5(3.90 + 2.72)} \right) = -4.66KN.m \end{cases}$$

$$l'_q = 0.8*4.88 = 3.90 \text{m}$$

$$l'_d = 0.8*3.40 = 2.72 \text{m}$$

Moments en travées:

$$\mathbf{M}_t = \mathbf{M}_0(\mathbf{x}) + \mathbf{M}_g(1 - \frac{\mathbf{X}}{L}) + \mathbf{M}_d(\frac{\mathbf{X}}{L})$$

Chargement répartie M₀: moment max dans la poutre supposée isostatique

$$M_0(x) = \frac{qx}{2}(l-x), X = \frac{l}{2} - (\frac{M_g - M_d}{q * l})$$

- ✓ *l*: longueur de la travée considérée.
- \checkmark M_q : Moment de l'appui qui est à gauche de la travée considéré.
- \checkmark M_d : Moment de l'appui qui est à droite de la travée considéré.

Travée (AB): L= 3.60;
$$\mathbf{x} = \frac{3.60}{2} - (\frac{0 - (-5.76)}{6.20 * 3.60}) = 1.54 \text{m}$$

ELU
$$M_0(x) = \frac{6.20*1.54}{2}(3.60 - 1.54) = 9.83KN. m$$

$$M_{AB}^{U} = 9.83 + 0 + (-5.76) * (\frac{1.54}{3.60}) = 7.36$$
KN. m

$$\mathbf{x} = \frac{3.60}{2} - (\frac{0 - (-4.12)}{6.20 * 3.60}) = 1.61 \text{m}$$

ELS
$$M_0(x) = \frac{4.48*1.61}{2}(3.60 - 1.61) = 7.17KN.m$$

$$M_{AB}^{S} = 7.17 + 0 + (-4.12) * (\frac{1.61}{3.60}) = 5.32$$
KN.m

Travée (BC): **L=3.42m**
$$x = \frac{3.42}{2} - (\frac{(-5.76) - (-6.55)}{6.20 * 3.42}) = 1.67m$$

ELU
$$M_0(x) = \frac{6.20*1.67}{2} (3.42 - 1.67) = 9.05 \text{KN.m}$$

$$M_{BC}^{U} = 9.05 + (-5.76)*(1-\frac{1.67}{3.42}) -6.55*\frac{1.67}{3.42} = 2.90$$
KN.m

$$x = \frac{3.42}{2} - (\frac{(-4.12) - (-4.67)}{6.20 \times 3.42}) = 1.68m$$

ELS
$$M_0(x) = \frac{4.48 \cdot 1.68}{2} (3.42 - 1.68) = 6.54 \text{KN.m}$$

$$M_{BC}^{S} = 6.54 + (-4.12)*(1-\frac{1.68}{3.42}) - 4.67 * \frac{1.68}{3.42} = 2.14KN.m$$

Travée (CD): **L=4.88m**
$$x = \frac{4.88}{2} - (\frac{(-6.55) - (-6.53)}{6.20*4.88}) = 2.44m$$

ELU
$$M_0(x) = \frac{6.20*2.44}{2} (4.88 - 2.44) = 18.45 \text{KN.m}$$

$$x = \frac{4.88}{2} - (\frac{(-4.67) - (-4.66)}{6.20 * 4.88}) = 2.44 m$$

$$\underline{ELS\ M_0}(x) = \frac{4.48.*2.44}{2} (4.88 - 2.44) = 13.33 \text{KN.m}$$

$$M_{BC}^{S} = 13.33 + (-4.67)*(1-\frac{2.44}{4.88}) - 4.66 * \frac{2.44}{4.88} = 8.70 \text{KN.m}$$

Tableau II. 8 : Les résultats des moments des autres travées et appuis du type 1					
<u>Travée</u>	M _{tELU} KN.m	$\mathbf{M_{tELS}}$ KN.m	M _{aELU} KN.m	M _{aELS} KN.m	Vu KN
Travée(DE)	3.36	2.46	-4.70	-3.37	11.39
Travée(EF)	6.48	4.20	-5.91	-5.32	12.84
Travée (FG)	6.50	4.27	-1.12	-0.80	-8.54

✓ Calcul des efforts tranchants:

$$V=V_0-(\frac{M_g-M_d}{L})$$

Travée(AB):L=3.60m

$$V_A = \frac{6.20*3.60}{2} - (\frac{(-5.91-0))}{3.60} -) = 9.56KN$$

$$V_{B} = -\frac{6.20*3.60}{2} - (\frac{(-5.9-0)}{3.60}) = -12.76KN$$

Travée(BC):L= 3.42m

$$V_{B} = \frac{6.20*3.42}{2} + (\frac{-6.55 - (-5.76)}{3,42}) = 10.37 KN$$

$$V_C = -\frac{6.20*3.42}{2} + (\frac{-6.55 - (-5.76)}{3.42}) = -10.83 \text{KN}$$

Travée(CD) :L= 4.88m

$$V_C = \frac{6.20*4.88}{2} + (\frac{-6.53 - (-6.55)}{4.88}) = 15.13KN$$

$$V_D = -\frac{6.20*4.88}{2} + (\frac{-6.53 - (-6.55)}{4.88}) = -15.12 \text{KN}$$

> Plancher étage courant :

Tableau II. 9: Les résultats des moments des autres travées et appuis du type 1							
sollicitations	MT _{ELU}	MT _{ELS}	VU	Ma_{ELU}	Ma _{ELS}	Marive	Marive
						ELU	ELS
TYPE 1	11.91	8.70	15.13	-6.55	-4.67	-1 .12	-0.80
TYPE 2	7.90	5.71	13.01	-6.19	-4.48	-1.54	-1.11
TYPE 3	7.68	5.55	-12.83	-6.02	-4.36	1.50	-1.08
TYPE 4	9.02	6.52	13.90	-7.07	-5.11	-1.76	-1.27
TYPE 5	10.04	7.26	11.16	0	0	-1.50	-1.08
TYPE 6	9.22	6.67	10.67	0	0	-1.38	-1.00
TYPE 7	18.45	13.35	15.13	0	0	-2.76	-2.00

> Plancher terrasse inaccessible :

Tableau II. 10 : Les résultats des moments des autres travées et appuis du type 1							
sollicitations	MT _{ELU}	MT _{ELS}	VU	Ma_{ELU}	Ma _{ELS}	Marive	Marive
						ELU	ELS
TYPE 1	12.57	9.21	-16.31	-7.97	-5.83	-1.14	-0.83
TYPE 2	7.71	5.59	15.07	-6.67	-4.84	-1.56	-1.13
TYPE 3	12.99	9.51	16.14	-7.60	-5.16	1.14	-0.83
TYPE 4	8.62	6.25	-15.54	-6.82	-4.95	-1.70	-1.29
TYPE 5	10.45	7.58	12.12	0	0	-1.56	-1.13

II..6.1.4 Ferraillage des poutrelles :

Tableau II. 11 : Sollicitations maximales pour le calcul du ferraillage CORPS CREUX						
Désignation	ELU	ELS				
Moments en travée (KN.m)	11.91	8.70				
Moments aux appuis de rives (KN.m)	-1.12	-0.80				
Moments aux appuis intermédiaires (KN.m)	-6.55	-4.67				
Effort tranchant (KN)	1	5.13				

Les poutrelles se calculent comme une section en « T » en flexion simple. La largeur de la dalle de compression à prendre est définie par :

♣ Ferraillage des travées:

$$M_{Tu} = f_{bu}.b.h_0.\left(d - \frac{h_0}{2}\right)$$

$$\checkmark f_{bu} = \frac{0.85 f_{c28}}{\theta.\gamma_b} = \frac{0.85*25}{1*1.5} = 14.2 MPa,$$

✓ M_{ν} : Moment sollicitant de calcul = 11.91 KN.m

 \checkmark d = 18 cm.

$$M_{Tu} = 14.2 * 10^3 * 0.65 * 0.04. \left(0.18 - \frac{0.04}{2}\right) = 59.07KN.m.$$

 $\Rightarrow M_u = 11.91KN.m < M_{Tu} = 59.072KN.m$

 $\Rightarrow \begin{cases} la \ table \ de \ compression \ n'est \ pas \ enti\`erement \ coprim\'ee. \\ l'axe \ neutre \ passe \ par \ la \ table \ de \ compression. \end{cases}$

Donc, calcul d'une section rectangulaire $(b * h_t)$

•
$$\mu_{bu} = \frac{M_u}{f_{bu}.b.d^2} = \frac{11.91*10^{-3}}{14.2*0.65*0.18^2} = 0.0398 < 0.186 \ (pivot A), \varepsilon_S = 10^{\circ} \%.$$

•
$$\mu_l = 0.8 \cdot \alpha_l \cdot (1 - 0.4\alpha_l), \ \alpha_l = \frac{3.5}{3.5 + 1000 \, \varepsilon_l}, \ \varepsilon_l = \frac{f_e}{\gamma_s * E_s}.$$

Acier FeE400 $\Rightarrow \varepsilon_l = 1.74 * 10^{-3}, \alpha_l = 0.668, \ \mu_l = 0.392$

$$\Rightarrow \mu_{bu} = 0.0398 < \mu_l = 0.3916 \Rightarrow A' = 0$$
, pas d'armature comprimée

Dans ce cas : $\varepsilon_l < \varepsilon_s < 10^{\circ}$ %.

La section d'armature en travée est défie par $A_T = \frac{M_u}{z * f_{st}}$

$$\checkmark f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 MPa.$$

$$\checkmark \quad z = d(1 - 0.4 \,\alpha).$$

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8} = \frac{1 - \sqrt{1 - 2(0.039)}}{0.8} = 0.050 \Rightarrow z = 0.18(1 - 0.4 * 0.050)$$

 $\Leftrightarrow z = 0.176 m$

$$\underline{A.N:}A_T = \frac{11.91*10^{-3}}{0.176*348} = 1.94*10^{-4}m^2$$

On choisit: 2HA12=2.26cm²

Condition de non fragilité $A_T \ge A_{min} = 0.23 \ b \ d \ \frac{f_{t28}}{f_e}$.

$$A_T = 2.26 \ cm^2 \ge A_{min} = 0.23 * 0.65 * 0.18 \ \frac{2.1}{400} = 1.41 \ cm^2 \ Condition \ v\'erifi\'ee$$

♣ Ferraillage des appuis intermédiaires :

Tableau II. 12 : calcul des sections de	Ferraillage des appuis intermédiaires
Calculs	Conclusions
$M_u = -6.55 \text{ KN.m} < 0$	• M _u <0
	\Rightarrow Calcul d'une section $(b_0 * h_t)$
$\mu_{bu} = 0.142 < 0.186 (pivot A)$	• $A' = 0$, pas d'armature comprimé.
$\mu_{bu} = 0.142 < \mu_l = 0.3916$	
$\alpha = 0.192$	• $A_{cal} = 1.13cm^2$.
Z=0.166	• <u>Choix</u> : on choisit 1HA 12=1.13cm ²
Condition de non fragilité :	$A_{cal} = 1.13cm^2 > A_{min} = 0.21cm^2$
$A_{min} = 0.23 \ b_0 \ d \ \frac{f_{t28}}{f_e} = 0.21 cm^2$	Condition vérifiée

Ferraillage des appuis de rive :

Tableau II. 13: calcul des sections de Ferraillage des appuis de rive				
Calculs	Conclusions			
M_u = - 1.12 KN.m < 0	• M _u <0			
	\Rightarrow Calcul d'une section $(b_0 * h_t)$			
$\mu_{bu} = 0.024 < 0.186 (pivot A)$	• $A' = 0$, pas d'armature comprimé.			
$\mu_{bu} = 0.024 < \mu_l = 0.3916$	$\bullet A_{\min}=0.21 \text{cm}^2$			
α=0.030	• $A_{cal} = 0.18cm^2$			
7 0 177	• $A_{min}=0.21>A_{cal=0.18}$			
Z=0.177	• <u>Choix</u> : on choisit 1HA10=0.79cm ²			

II.6.1.5 Vérifications:

***** Vérification des contraintes :

$$\text{FPN} \Rightarrow \sigma_b = \frac{M_{ser}}{I} y \leq \bar{\sigma}_b$$

$$\checkmark$$
 $\bar{\sigma}_b = 0.6 f_{c28} = 15 MPa(contraine admissible du béton).$

$$\checkmark$$
 $\bar{\sigma}_s = \frac{f_e}{\gamma_s} = 348 \, MPa(containte admissible de l'acier).$

- ✓ M_{ser} : moment max à l'ELS.
- \checkmark y: position de l'axe neutre.
- ✓ I : moment d'inertie de la section homogénéisée par rapport à l'axe neutre.

$$I = \frac{by^3}{3} - (b - b_0) \frac{(y - h_0)^3}{3} + 15 A(d - y)^2.$$

$$\frac{b_0}{2} y^2 + [15 A + (b - b_0)h_0] y - 15 A d - (b - b_0) \frac{h_0^2}{2} = 0, on \ aura \ "y".$$

• En travée :

- ✓ <u>Position de l'axe neutre</u> : $H = \frac{bh_0^2}{2} 15 A_T (d h_0) \Rightarrow H = \frac{0.65*0.04^2}{2} 15*2.26*10^{-4} (0.18 0.04) = 4.6*10^{-5} m$
- ✓ $H > 0 \Rightarrow$ calcul d'une Section en « b*h ».

Tableau II. 14 : Vérification des contraintes en travée				
Calculs	Vérifications			
y = 0.038 m	$\sigma_b = 4.13 MPa < \bar{\sigma}_b = 15 MPa$			
$I = 8.023 * 10^{-5} m^4$	Condition vérifiée			
$\sigma_b = 4.13MPa$				

• Aux appuis intermédiaires :

✓ Position de l'axe neutre:
$$H = \frac{bh_0^2}{2} - 15 A_T (d - h_0) \Rightarrow H = \frac{0.65 * 0.04^2}{2} - 15 * 1.13 * 10^{-4} (0.18 - 0.04) = 2.82 * 10^{-4} m$$

✓ $H > 0 \Rightarrow$ calcul d'une section « b_0*h ».

Tableau II. 15 : Vérification des contraintes aux appuis intermédiaires				
Calculs Vérifications				
y = 0.0612 m	$\sigma_b = 9.09MPa < \bar{\sigma}_b = 15 MPa$			
$I = 3.156 * 10^{-5} m^4$	Condition vérifiée			
$\sigma_b = 9.09 MPa$				

Vérification de l'effort tranchant :

$$\tau_{u} = \frac{V_{u}^{max}}{b_{0} * d} \leq \overline{\tau}_{u}$$

$$F.P.N \Rightarrow \overline{\tau}_{u} = min\left[0.2 \frac{f_{c28}}{\gamma_{b}}, 5MPa\right] = min\left[0.2 \frac{25}{1.5}, 5MPa\right] \Rightarrow \overline{\left[\overline{\tau}_{u} = 3.34 MPa\right]}$$

<u>A.N:</u>

$$\tau_u = \frac{15.13 * 10^{-3}}{0.1 * 0.18} = 0.840 \ MPa \le \overline{\tau}_u = 3.34 \ MPA$$

Commentaire: pas risque de rupture par cisaillement.

❖ Vérification de l'espacement « S_t » :

On fixe
$$A_t = \text{étrier } \phi_6 \Rightarrow A_{t=2} \phi_6 \Rightarrow A_t = 0.57 cm^2$$

$$\begin{cases} \textbf{1} \ S_t \leq min[0.9*d,40\ cm]. \\ \textbf{2} \ S_t \leq \frac{A_t*f_e}{0.4*b_0} \\ \textbf{3} \ S_t \leq \frac{0.8*f_e*(\sin\alpha+\cos\alpha)*A_t}{b_0(\tau_u-0.3*f_{tj}*k)} \end{cases}$$

$$\mathbf{1} \Leftrightarrow S_t \leq 16.2 \ cm \ . \qquad \mathbf{2} \Leftrightarrow S_t \leq 57 \ cm \ .$$

$$3 \Leftrightarrow \begin{cases} \alpha = 90^{\circ} \Rightarrow (\sin \alpha + \cos \alpha) = 1. \\ f_{tj} = f_{t28} = 2.1 \, MPa. \\ k = 1, car \begin{cases} F.P.N \\ Sans \, reprise \, de \, b\'etonnage. \end{cases} \Rightarrow S_t \leq 33.40 \, cm$$

$$\Rightarrow S_t \leq (S_{t \bullet \bullet}, S_{t \bullet \bullet}, S_{t \bullet \bullet}) \Rightarrow S_t \leq 16.2 \ cm$$
. Alors, on prend $S_t = 15 \ cm$

<u>Commentaire</u>: On utilise A_t = étrier ϕ_6 chaque espacement $S_t = 15 \text{ cm}$.

Vérification des armatures longitudinale « A_l » vis-à-vis des l'effort tranchant :

Appuis de rive :

$$\begin{split} A_l &\geq \frac{\gamma_s}{f_e} * V_u^{max} \\ A_l &= A_{trav\acute{e}e} + A_{rive} = 2.26 + 0.79 = 3.05 cm^2. \\ A_l &= 3.05 cm^2 \geq \frac{1,15}{400} * 15.13 * 10^{-3} = 0.54 cm^2 \end{split}$$

• Appuis intermédiaires :

$$\begin{split} A_l &\geq \frac{\gamma_s}{f_e} * \left(V_u^{max} + \frac{M_u}{0.9*d} \right) \\ A_l &= A_{trav\acute{e}e} + A_{inter} = 2.26 + 3.13 = 3.39 cm^2. \end{split}$$

$$A_l = 3.39 cm^2 \geq \frac{1.15}{400} \left(15.13*10^{-3} + \frac{(-11.91*10^{-3})}{0.9*0,18}\right) = 0.144 cm^2$$

⇒condition vèrifièe

Commentaire: Pas risque de cisaillement des armatures longitudinale par l'effort tranchant.

Vérification de la bielle :

$$\begin{cases} \sigma_{bc \leq \frac{0.8*f_{c28}}{\gamma_b}} \\ \sigma_{bc} = \frac{2*V_u}{a*b_0} \Longrightarrow \boxed{V_u \leq 0.267 \ a \ b_0 f_{c28}} \\ \checkmark \quad a = 0.9d = 0.9*0.18 = 0.162m \\ \underline{A.N:} \ a = 16.2 \ cm. \end{cases}$$

 $V_{y} = 15.13 \ KN \le 108.135 \ KN$

Commentaire: La bielle est vérifiée.

Vérification de la jonction Table – Nervure

$$\tau_u^1 = \frac{b_1 * V_u^{max}}{0.9 \ b \ d \ h_0} \le \bar{\tau}_u$$

$$b_1 = \frac{b - b_0}{2} = 27.5 cm .$$

$$\tau_u^1=0.96MPa<\bar{\tau}_u=3.34\,MPa$$

Commentaire: Pas risque de cisaillement à la jonction Table – Nervure.

Vérification de la flèche :

Si les conditions suivantes sont vérifiées, donc, il n'y a pas lieu de calculer la flèche.

$$\begin{cases} \textbf{1} \ h_t \geq \frac{M_{trav\acute{e}e}^{max} * l}{15 * M_0} \\ \textbf{2} \ A_{trav\acute{e}e} \leq \frac{3.6 \ b_0 \ d}{f_e} \\ \textbf{3} \ l \leq 8 \ m. \end{cases}$$

- ✓ h_t : Hauteur totale du plancher corps creux.
- ✓ $M_{travée}^{max}$: Moment maximale en travée à l'ELS.
- ✓ $A_{trav\acute{e}}$: Section d'armature dans la travée.
- ✓ l: Longueur de la travée maximale, l = 4.88m.
- ✓ M_0 : Moment isostatique.

• • •
$$h_t = 20 \ cm < \frac{11.91*10^{-3}*4.88}{15*7*10^{-3}} = 51.8 \ cm$$

■ 1
$$h_t = 20 \ cm < \frac{11.91*10^{-3}*4.88}{15*7.*10^{-3}} = 51.8 \ cm.$$
■ 2 $A_{trav\acute{e}e} = 2.26 \ cm^2 > \frac{3.6*0.1*0,18}{400} = 1.62 \ cm^2.$

•
$$3 l = 4.88m < 8 m$$

Condition 1 non vérifiée, Donc, il faut vérifier la flèche.

On a :
$$\begin{cases} \Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}. \\ f_{admissible} = \begin{cases} \frac{l}{500}, l \le 5m. \\ 0.5 \ cm + \frac{l}{1000}, l > 5m. \end{cases}$$
$$\Delta f \le f_{admissible}$$

- \checkmark f_{gv} et f_{gi} : les flèches différées et instantanées respectivement dues à l'ensemble des charges permanentes totales (poids propre + revêtement + cloisons)
- \checkmark f_{ii} la flèche instantanée due à l'ensemble des charges permanentes appliquées au moment de la mise en œuvre des cloisons (poids propre + cloisons).
- ✓ f_{pi} la flèche instantanée due aux charges totales (G+Q).
- ✓ j: la charge permanente au moment de la mise des cloisons.
- ✓ g : la charge permanente après la mise des cloisons.
- ✓ p: la somme des charges permanentes et charges d'exploitation

$$j = 2.80. KN/m^2$$

$$g = (G_{plancher} + G_{cloisons} + G_{revettement}) = 5.4.$$

$$p = G_{Total} + Q_{Total} = 5.4 + 1.5 = 6.9 \ KN/m^2.$$

- Evaluation des charges :
- Evaluation des moments :

Tableau II. 16 : Calcul des moments correspondants				
Moment correspondant à q_j	$0.63\left(\frac{q_j*l^2}{8}\right)$	$M_j = 3.41KN.m$		
Moment correspondant à q_g	$0.63 \left(\frac{q_g * l^2}{8}\right)$	$M_g = 6.58KN.m$		
Moment correspondant à q_p	$0.63 \left(\frac{q_p * l^2}{8} \right)$	$M_p = 8.40KN.m$		

- Calcul des moments d'inerties :
- Calcul des contraintes :

Tablea	Tableau II. 17 : calcul des contraintes correspondantes				
Contrainte correspondant à q_i	$15 * M_i(d-y)$	$\sigma_i = 90.26MPa$			
, and the second	$\frac{I_0}{I_0}$,			
Contrainte correspondant à q_g	$15 * M_g(d-y)$	$\sigma_g = 174.17MPa$			
	$\overline{I_0}$				
Contrainte correspondant à q_p	$15 * M_p(d-y)$	$\sigma_p = 222.35MPa$			
·	$\overline{I_0}$				
	y = 0.0384m				
	Position de l'axe neutre				

\triangleright Calcul des coefficients μ et λ :

$$\mu = max \begin{cases} 0 \\ 1 - \left[\frac{1.75 * f_{t28}}{4 * \rho * \sigma + f_{t28}} \right] \end{cases}$$

Tableau II. 18 : coefficient μ				
Pourcentage d'armatures tendues	$\rho = \frac{A_T}{b_0 * d}$	ho = 0.012		
coefficient correspondant à q_j	$1 - \left[\frac{1.75 * f_{t28}}{4 * \rho * \sigma_j + f_{t28}} \right]$	$\mu_j = 0.44$		
coefficient correspondant à q_g	$1 - \left[\frac{1.75 * f_{t28}}{4 * \rho * \sigma_g + f_{t28}} \right]$	$\mu_g = 0.65$		
coefficient correspondant à q_p	$1 - \left[\frac{1.75 * f_{t28}}{4 * \rho * \sigma_p + f_{t28}} \right]$	$\mu_p = 0.72$		

$$\begin{cases} \lambda_i = \frac{0.0.5*b*f_{t28}}{(2b_0 + 3b)\rho}, instantanée \\ \lambda_{\nu} = \frac{2}{5}*\lambda_i, différée \end{cases}, \begin{cases} \lambda_i = 3.41 \\ \lambda_{\nu} = 1.36 \end{cases}$$

Calcul des moments d'inerties fictives :

Tableau II.	Tableau II. 19: Calcul des moments d'inerties fictives				
I correspondant à q_{ji}	$1.1 * I_0$	$I_{ji} = 8.06 * 10^{-5} m^4$			
	$1 + \lambda_i * \mu_j$	-			
I correspondant à q_{gi}	$1.1 * I_0$	$I_{gi} = 6.26 * 10^{-5} m^4$			
	$1 + \lambda_i * \mu_g$	Ü			
I correspondant à q_{gv}	$1.1 * I_0$	$I_{gv} = 1.07 * 10^{-4} m^4$			
	$1 + \lambda_{\nu} * \mu_{g}$				
I correspondant à q_{pi}	$1.1 * I_0$	$I_{pi} = 5.83 * 10^{-5} m^4$			
·	$1 + \lambda_i * \mu_p$				

Module de déformation longitudinale instantanée du béton :

$$E_i=11000*f_{c28}^{\frac{1}{3}}E_i=32164.20~MPA$$
 Module de déformation longitudinale différée du béton :

$$E_{\nu} = \frac{E_i}{3} E_{\nu} = 10721.4 \, MPA$$

	Tableau II. 20 : Vérification de la flèche					
$f_{g u}$	$M_g * l^2$	13.65mm				
	$\overline{10*E_{ u}*I_{g u}}$					
f_{ji}	$M_{j} * l^{2}$	3.13mm				
	$10 * E_i * I_{ji}$					
f_{pi}	$M_p * l^2$	10.65 mm				
	$\overline{10*E_i*I_{pi}}$					
f_{gi}	$M_g * l^2$	7.77 mm				
	$\overline{10*E_i*I_{gi}}$					
Δf	$f_{gv} - f_{ji} + f_{pi} - f_{gi}$	13.4mm				
fadmissible	<u>l</u>	9.76 mm				
	500					

Tableau II. 21 : Vérification de la flèche					Condition	
$f_{gv}(mm)$	$f_{ji}(mm)$	$f_{pi}(mm)$	$f_{gi}(mm)$	$\Delta f(mm)$	$f_{adm}(mm)$	vérifiée
8.57	1.8	5.61	4.19	8.18	9.76	

pour le ferraillage choisit (A_{st}=2.26 cm²)au niveau des poutrelle étage courant ne vérifiée pas la flèche Alors on augmente la section des acier: A_{st}=4HA12=4.52cm²

Les résultats de calcul sont résumés dans le tableau suivant :

Pour le plancher terrasse inaccessible, on procède de la même manière pour le calcul du ferraillage à l'ELU et les vérifications à L'ELS.les résultats sont présentés dans le tableau suivant :

T	Tableau II. 22 : le calcul du ferraillage a l'ELU dans le plancher terrasse inaccessible						
	M(KN.m)	μ_{bu}	α	Z(m)	$A_{cal}(cm^2)$	$A_{\min}(cm^2)$	$A_{choisit}(cm^2)$
En travée	12.99	0.043	0.055	0.176	2.12	1.41	2HA12 =2.26
En appuis intermédiaire	7.60	0.165	0.227	0.163	1.33	0.21	2HA10 =1.57
En appuis de rive	1.14	0.024	0.031	0.177	0.18	0.21	1HA10 =0.79

pour le ferraillage choisit (A_{st}=2.26 cm²)au niveau des poutrelle terrasse inaccessible ne vérifiée pas la flèche Alors on augmente la section des acier: A_{st}=4HA12=4.52cm²

Les résultats de calcul sont présentés dans le tableau suivant :

Tableau II. 23 : Vérification de la flèche						Condition
$f_{gv}(mm)$	$f_{ji}(mm)$	f_{pi} (mm)	$f_{gi}(mm)$	$\Delta f(mm)$	$f_{adm}(mm)$	vérifiée
9.66	1.65	6.12	4.77	9.3	9.76	

I.6.1.6Ferraillage de la dalle de compression : CBA93 article(B.6.8.4.2.3)

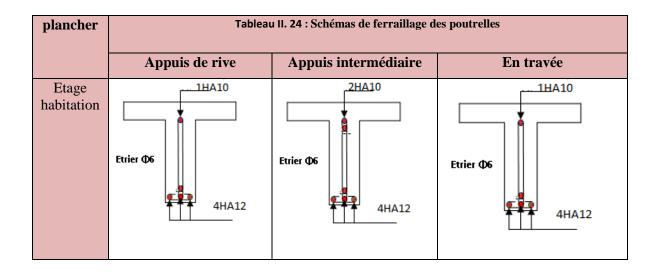
Barres perpendiculaire(\perp) aux poutrelles

50 cm ≤ ente axe entre les poutrelles l_0 = 65 cm≤ 80 cm, donc :

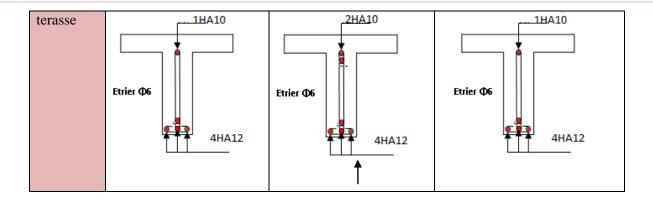
$$A_{\perp} = \frac{4l_0}{f_e}$$

$$l_0 = 65 cm$$

✓ $l_0 = 65 \, cm$. ✓ $f_e = 235 \, MPa$. Car c'est du treillis soudés (Rond Lisse « RL ») ✓ A.N:


$$A.N:$$

$$A_{\perp} = \frac{4*65}{235} = 1,106 \ cm^2/ml. \ avec S_t \le 20 \ cm$$


✓ Barres parallèle(⊥) aux poutrelles

$$A_{\parallel} = \frac{1,106}{2} = 0,553 \ cm^2/ml. \ avec S_t \le 33 \ cm$$

On opte pour un treillis

soudés
$$\phi_6(150 \ x \ 150) \ mm^2 \begin{cases} A_\perp = 5\phi_6/ml = 1,40 \ cm^2/ml. \\ S_t = 20 \ cm \leq 20 \ cm. \end{cases} \begin{cases} A_\parallel = 4\phi_6/ml = 1,13 \ cm^2/ml. \\ S_t = 25cm \leq 33 \ cm \end{cases}$$

II.6.2. Plancher à dalle pleine : *dalle sur* 4 *appuis*, $\rho = 0.89 > 0.4$)

- ✓ Critère de résistance : $\frac{l_x}{35} \le e \le \frac{l_x}{30}$
 - e : épaisseur de la dalle.
 - l_x : le plus petit côté du panneau de la dalle.
- ✓ Critère de coup feu : pour 2 heures de coup feu, $e \ge 11 \ cm$

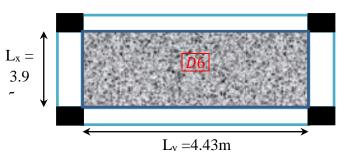


Figure II. 7 dalle sur 04 appuis

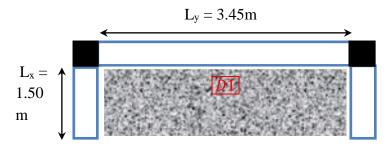


Figure II. 8.dalle sur 03 appuis

Donc, e = 14 cm

 $Donc \quad , \ e=12cm$

Remarque: on a plusieurs dalles sur 3 appuis qui diffèrent dans les dimensions

Table	Tableau II. 25 : résumé des			es
Type de dalle	Lx	Ly	ρ	Epaisseur
	ст	ст	ст	ст
Sur 03 appuis	1.30	4.95	0.26	12
Sur 03 appuis	1.1	2.97	0.37	12
Sur 03 appuis	1.20	4.43	0.27	12
Sur 03 appuis	1.30	4.50	0.28	12

Sur 03 appuis	1.40	2.95	0.47	12

Charges sur la dalle : $G = 4.4 \text{ KN/m}^2$, $Q = 3.5 \text{KN/m}^2$.

$$G = 4.4 \ KN/m^2, \ Q = 3.5 KN/m^2.$$

- ELU: $q_u = 1.35 G + 1.5 Q$.
- ELS: $q_s = G + Q$.
- $L_x = 1.30 \text{ m}.$
- $L_y = 4.50 \text{ m}.$
 - **Les moments :**

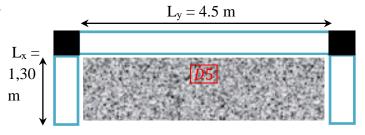


Figure II. 9. dalle sur 03 appuis

On a:
$$l_x = 1.30 \ m < \frac{l_y}{2} = 2.25 \ m.$$
 Donc,
$$\begin{cases} M_0^x = \frac{q \ l_x^2 l_y}{2} - \frac{2 \ q \ l_x^3}{3}. \\ M_0^y = \frac{q \ l_x^3}{6} \end{cases}$$

$$ELU \begin{cases} M_0^x = \frac{11.19 * 1.30^2 * 4.5}{2} - \frac{2 * 11.19 \ 1.30^3}{3} = 26.16 \ KN. m \\ M_0^y = \frac{11.19 * 1.30^3}{6} = 4.09 KN. m \end{cases}$$

$$ELS \begin{cases} M_0^x = \frac{7.9 * 1.30^2 * 4.5}{2} - \frac{2 * 7.9 \ 1.30^3}{3} = 13.44 \ KN. m \\ M_0^y = \frac{7.9 * 1.30^3}{6} = 4.09 KN. m \end{cases}$$

■ En travée :

$$panneau\ de\ rive \begin{cases} M_t^x = 0.75*M_0^x \\ M_t^y = 0.85*M_0^y \end{cases}$$

$$ELU \begin{cases} M_t^x = 19.62 \ KN.m \\ M_t^y = 3.48 \ KN.m \end{cases} ELS \begin{cases} M_t^x = 13.85 KN.m \\ M_t^y = 2.45 \ KN.m \end{cases}$$

Au niveau des appuis :

$$M_a^x = M_a^y = \begin{cases} -0.3 \ M_0^x, & appuis \ de \ rive. \\ -0.5 \ M_0^x, & appuis \ intermédiaire. \end{cases}$$

> Appuis de rive :

$$\begin{cases} ELU = M_a^y = -1.22 \ KN. \ m \\ ELS := M_a^y = -0.86 \ KN. \ m \end{cases}$$

> Appuis intermédiaires :

$$\begin{cases} ELU : M_a^x = -13.08 \ KN. \ m \\ ELS : M_a^x = -9.23 \ KN. \ m \end{cases}$$

Effort tranchant :

$$V_u = \frac{q_u * l_x}{2} \Rightarrow V_u = 7.27 \text{ KN. } m$$

III.6.2.1. Dalle D5:

Dalle sur 3 appuis, d'épaisseur 12 cm. Elle est située au niveau des planchers d'étages :

<u>NB</u>: D1, D2, D3 D4, D5 et D7 sont des dalles sur 3 appuis dont « $l_x < \frac{l_y}{2}$ »,

D6 sont des paneaux sur 04 appuis

***** Ferraillage de la travée :

Tableau II. 2	26 : calcul des sections de Ferraillage de la travée
Calculs	Conclusions
$\mu_{bu} = 0.138 < 0.186 (pivot A),$	• $A' = 0$, pas d'armature comprimé.
$\varepsilon_{\scriptscriptstyle S}=10^{\circ}\%$	• Dans ce cas : $\varepsilon_l < \varepsilon_s < 10^{\circ}$ %.
$\mu_{bu} = 0.024 < \mu_l = 0.3916$	
$\alpha x = 0.187$	• $A_t^x = 6.09 \ cm^2/ml$
	• Choix: on choisit 4 HA 12 +4 HA 8= $6.53 cm^2/ml$
$zx=0.092 \ m$	
$\alpha y = 0.0311$	• $A_t^y = 1.013 \ cm^2/ml$ • Choix: on choisit 3 HA $10 \ cm^2/ml = 1.57 \ cm^2/ml$
$zy=0.092 \ m$	
Z, 0.072 m	
Condition de non fragilité :	$A_t = 6.53 cm^2/ml > A_{min} = 0.96 cm^2/ml$
$A_{min} = \rho * b * e =$ $.0.96 cm^2/ml$	
	$\ L_x : S_t \le min[3e, 33 cm] = 33 cm \Rightarrow S_t = 25 cm$

***** Ferraillage des appuis de rive :

Tableau II. 27 : calcul des se	ections de Ferraillage des appuis de rive (D2)
Calculs	Conclusions
$\mu_{bu} = 0.00867$	• $A' = 0$, pas d'armature comprimé.
< 0.186 (pivot A),	• Dans ce cas : $\varepsilon_l < \varepsilon_s < 10^{\circ}$ %.
$\varepsilon_{\rm s}=10^{\circ}\%$	
$\mu_{bu} = 0.00867 < \mu_l$	
= 0.3916	
$\alpha = 0.056$	$\bullet A_{rive} = 0.35 \ cm^2/ml.$
z=0.099 m	• Choix: on choisit 1HA $8 / \text{ml} = 0.50 \text{ cm}^2 /$
2 0,000	ml.
	•

Condition de non fragilité : $A_{min} =$	$A_{rive} = 0.50cm^2/ml > A_{min} = 0cm^2/ml$
	$S_t = 45cm$

Ferraillage des appuis intermédiaires :

Tableau II. 28:calcul des s	sections de Ferraillage des appuis intermédiaires (D3)
Calculs	Conclusions
$\mu_{bu} = 0.064 < 0.186 (pivot A),$ $\varepsilon_s = 10^{\circ} \%$ $\mu_{bu} = 0.064 < \mu_l = 0.3916$	• $A'=0$, $pas\ d'armature\ comprim\'e$. • Dans ce cas : $\varepsilon_l<\varepsilon_s<10^\circ$ %.
$\alpha = 0.082$	• $A_{inter} = 3.24 cm^2/ml$ • Choix: on choisit 3HA 12/ml= 3.39 cm^2/ml
z=0,116 m	
Condition de non fragilité $A_{min} = 0.96cm^2/ml$ A_{min}	$A_{inter} = 3.39cm^2/ml > A_{min} = 0.96cm^2/ml$
	$S_t = 33 cm$

II.6.2.2. Armature dues à l'effort tranchant :

Si les deux conditions suivantes sont vérifiées, aucune armature transversale n'est nécessaire dans la dalle.

$$\begin{cases} \textbf{1} \ La \ dalle \ est \ coul\'ee \ sans \ reprise \ de \ b\'etonnage. \\ \textbf{2} \ \tau_u = \frac{V_u}{b*d} \leq \bar{\tau}_u = \frac{0.07 \ f_{c28}}{\gamma_b} \end{cases}$$

1 Toutes les dalles sont coulées sans reprise de bétonnage.

✓ Panneau D3 :
$$2\tau_u = 0.0727 \, MPa < \bar{\tau}_u = 1.25 \, MPa$$
.

<u>Commentaire</u>: Aucune armature transversale n'est nécessaire dans les dalles.

II.6.2.3. Vérification des contraintes :

$$\begin{cases} \sigma_b = \frac{M_{ser}}{I} y \le \bar{\sigma}_b \\ \sigma_s = \frac{15M_{ser}}{I} (d - y) \le \bar{\sigma}_s \end{cases}$$

- \checkmark $\bar{\sigma}_b = 0.6 f_{c28} = 15 \, MPa (contraine admissible du béton).$
- $\checkmark \quad \bar{\sigma}_s$: (contrainte admissible de l'acier)
- \checkmark F.N: $\bar{\sigma}_{s}=min\left[\frac{2}{3}$ fe, $110\sqrt{\eta}$ $f_{t28}\right]=201$,64 MPa, avec $\eta=1$,6 acier HA
- ✓ M_{ser} : moment max à l'ELS.
- \checkmark y: position de l'axe neutre.
- ✓ I : moment d'inertie de la section homogénéisée par rapport à l'axe neutre.

$$I = \frac{by^{3}}{3} + 15 A(d - y)^{2}.$$

$$\frac{b}{2}y^{2} + 15 A y - 15 A d = 0, on aura "y".$$
En travée:
$$\checkmark (\parallel l_{x})$$

Tableau II. 29: Vérification des contraintes en travée			
Calculs	Vérifications		
y = 0.035m	$\sigma_b = 8.84MPa < \bar{\sigma}_b = 15 MPa$		
$I = 5.56 * 10^{-5} m^4$			
$\sigma_b = 0.267 MPa$			

Aux appuis : $(\parallel L_x)$

Tableau II. 30: Vérification des contraintes aux appuis							
Calculs	Vérifications						
y = 0.0306 m	$\sigma_b = 6.70 MPa < \bar{\sigma}_b = 15 MPa$						
$I = 4.22 * 10^{-5} m^4$							
$\sigma_b = 6.70 MPa$							

En travée:

 \triangleright (|| L_{Y}):

Tableau II. 31: vérification des contraintes en travée (Lx)							
Calculs	Vérifications						
y = 0.0194 m	$\sigma_b = 2.70 MPa < \bar{\sigma}_b = 15 MPa$						
$I = 1.77 * 10^{-5} m^4$							
$\sigma_b = 2.70MPa$							

\triangleright ($\parallel L_y$):

Tableau II. 32: vérification des contraintes en appuis (L _y)							
Calculs	Vérifications						
y = 0.0115 m	$\sigma_b = 1.56 MPa < \bar{\sigma}_b = 15 MPa$						
$I = 1.716 * 10^{-5} m^4$							

* Récapitulation :

❖ Panneau D3:

•
$$(\parallel L_x)$$
:
 $e = 12 \ cm > max[(0.0375 \ L_x, 0.042 \ L_x)]$

$$A_t^x = 0.0056 > 0.005 \, m^2$$
non vérifie

Conclusion : Il faut vérifier la flèche.

ightharpoonup PanneauD3:($\parallel L_y$)

On a:
$$\begin{cases} \Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}. \\ f_{admissible} = \begin{cases} \frac{l}{500}, l \le 5m. \\ 0.5 \ cm + \frac{l}{1000}, l > 5m. \end{cases}$$
$$\Delta f \le f_{admissible}$$

- \checkmark f_{gv} et f_{gi} : les flèches différées et instantanées respectivement dues à l'ensemble des charges permanentes totales (poids propre + revêtement + cloisons)
- \checkmark f_{ji} la flèche instantanée due à l'ensemble des charges permanentes appliquées au moment de la mise en œuvre des cloisons (poids propre + cloisons).
- ✓ f_{ni} la flèche instantanée due aux charges totales (G+Q).
- ✓ j: la charge permanente au moment de la mise des cloisons.
- ✓ g : la charge permanente après la mise des cloisons.
- ✓ p: la somme des charges permanentes et charges d'exploitation

\triangleright Panneau D5 :($\parallel L_x$)

$$j = (G_{plancher}) = 3 \ KN/m^2.$$

$$g = (G_{plancher} + G_{revettement}) = 4.4 \text{ KN/m}^2.$$

$$p = G_{Total} + Q_{Total} = 4.48 + 3.5 = 7.9 \ KN/m^2$$
.

✓ Evaluation des charges :

$$q_i = 1.3* 3 = 3.9 \text{ KN/ml}.$$

$$q_g = 1.3 * 4.4 = 5.72 \text{ KN/ml}.$$

$$q_p = 1.3 * 7.9 = 10.29 \text{ KN/ml}.$$

✓ Evaluation des moments :

Tableau II. 33: Calcul des moments correspondants							
Moment correspondant à q_j	$0.75 * \left[q_j \left(\frac{l_x^2 * l_y}{2} - \frac{2 * l_x^3}{3} \right) \right]$	$M_j = 6.83KN.m$					
Moment correspondant à q_g	$0.75 * \left[q_g \left(\frac{l_x^2 * l_y}{2} - \frac{2 * l_x^3}{3} \right) \right]$	$M_g = 10.03 KN. m$					
Moment correspondant à q_p	$0.75 * \left[q_p \left(\frac{l_x^2 * l_y}{2} - \frac{2 * l_x^3}{3} \right) \right]$	$M_p = 18.04 KN. m$					

✓ Calcul des moments d'inerties :

$$y_G = \frac{\sum A_i y_{Gi}}{\sum A_i} = 0.059$$

$$I_0 = \frac{1 * 0.12^3}{12} + (1 * 0.12) \left(\frac{0.12}{2} - 0.059\right) + 15 * 6.53 * 10^{-4} * (0.1 - 0.059) = 0.00015m^4$$

✓ Calcul des contraintes :

Tableau II. 34: calcul des contraintes correspondantes								
Contrainte correspondant à q_i	$15 * M_i(d-y)$	$\sigma_i = 118.79MPa$						
		,						
Contrainte correspondant à q_g	$15 * M_g(d-y)$	$\sigma_g = 174.22MPa$						
	I	-						
Contrainte correspondant à q_p	$15 * M_p(d-y)$	$\sigma_p = 313.43MPa$						
·	I							
	y = 0.035 m							
	Position de l'axe neutre							

✓ Calcul des coefficients μ et λ :

$$\mu = \max \left\{ 1 - \left[\frac{1.75 * f_{t28}}{4 * \rho * \sigma + f_{t28}} \right] \right\}, \quad \begin{cases} \lambda_i = 3.21 \\ \lambda_v = 1.28 \end{cases}$$

Tableau II. 35 : coefficient μ									
Pourcentage d'armatures	A_T	$\rho = 0.00653$							
tendues	$ \rho = \frac{1}{b * d} $								
coefficient correspondant à	$\begin{bmatrix} 1.75 * f_{t28} \end{bmatrix}$	$\mu_i = 0.293$							
q_j	$1 - \left[\frac{1}{4*\rho*\sigma_j + f_{t28}}\right]$	·							
coefficient correspondant à	$[1.75*f_{t28}]$	$\mu_g = 0.447$							
q_g	$1 - \left[\frac{1}{4*\rho*\sigma_g + f_{t28}}\right]$	Ü							
coefficient correspondant à	$[1.75 * f_{t28}]$	$\mu_p = 0.642$							
q_p	$1 - \left[\frac{1}{4*\rho*\sigma_p + f_{t28}}\right]$								

✓ Calcul des moments d'inerties fictives :

Tableau II. 36: Calcul des moments d'inerties fictives									
I correspondant à q_{ji}	$1.1 * I_0$	$I_{fii} = 9.03 * 10^{-5} m^4$							
,	$1 + \lambda_i * \mu_j$								
I correspondant à q_{gi}	$1.1 * I_0$	$I_{fgi} = 7.20 * 10^{-5} m^4$							
	$1 + \lambda_i * \mu_g$, ,							
I correspondant à q_{qv}	$1.1 * I_0$	$I_{fgv} = 1.11 * 10^{-4} m^4$							
J	$1 + \lambda_{\nu} * \mu_{g}$, ,							
I correspondant à q_{pi}	$1.1 * I_0$	$I_{fpi} = 5.72 * 10^{-5} m^4$							
	$1 + \lambda_i * \mu_p$	<i>,</i> .							

✓ Module de déformation longitudinale instantanée du béton :

$$E_i=11000*f_{c28}^{\frac{1}{3}}E_i=32456.59\,MPA$$
 ✓ Module de déformation longitudinale différée du béton :

$$E_{\nu} = \frac{E_i}{3} E_{\nu} = 10818.86 \, MPA$$

Tableau II. 37: Vérification de la flèche								
$f_{g u}$	$M_g * l^2$	1.65 <i>mm</i>						
	$\overline{10*E_{\nu}*I_{g\nu}}$							
f_{ji}	$M_j * l^2$	0.48 <i>m</i> m						
	$\overline{10*E_i*I_{ji}}$							
f_{pi}	$\frac{10 * E_i * I_{ji}}{M_p * l^2}$	1.92 <i>mm</i>						
	$10 * E_i * I_{pi}$							
f_{gi}	$M_g * l^2$	0.87 <i>m</i> m						
	$\frac{M_g * l^2}{10 * E_i * I_{gi}}$							
Δf	$f_{gv} - f_{ji} + f_{pi} - f_{gi}$	2.26 mm						
fadmissible	<u>l</u>	2 .6 mm						
	500							

Commentaire : La flèche est vérifiée.

	Tableau II. 38: sollicitations et ferraillage des dalles D1, D2, D3, D4, D6, D7.											
paneaux	M_t^x (KN.m	$M_t^Y(KN.m)$	$M_a^x(KN.m)$	$M_a^Y(KN.m)$	Achoisie travée		2 2		Amin cm ²		S t	
					XX	уу	XX	уу	XX	уу	Circ	
D1	13 .69	5 .35	9.12	1.88	4.52	1.56	3.14	1.57	1.23	0.96	25	
D2	22 .81	3 .48	15 .20	1.22	8.01	1.57	5.65	1.01	0.96	0.96	25	
D3	7.03	2.01	5.08	0.744	2.36	0.79	2.01	0.50	0.96	0	33	
D4	17.10	2.73	11.40	0.96	5.65	0.79	3.93	0.50	0.96	0	25	
D6	4.83	3 .69	3.22	2 .46	1.51	1.51	1.51	1.51	1.18	1.12	25	
D7	8.91	4 .43	5 .98	1 .53	3 .14	1,75	2.36	1,51	1.21	0,96	25	

		Tableau II. 39: Vérification des contraintes										
	Vérification des contraintes en travée xx						Vérification des contraintes yy					
	y m	I *10	σ_b	$\bar{\sigma}_b$	observation	M _{t ELS}	y	<i>I</i> *10	σ_b	$ar{\sigma}_b$	observation	$M_{t {\scriptsize ELS}}$
		m ⁴										
D1	0.036	4.22*10	7.02	15	vérifiée	9.66	0.019	1 .77	4.14	15	vérifiée	3.77
D2	0.038	6.44	9.60	15	vérifiée	16.10	0.019	1.73	2 .70	15	vérifiée	2.45
D3	0.023	2 .49	5.02	15	vérifiée	5.38	0.014	9.67	1.93	15	vérifiée	1.49
D4	0.033	5	8.10	15	vérifiée	12.07	0.014	9.67	2.84	15	vérifiée	1.93
D6	0.021	2.5	3.36	15	vérifiée	4.02	0.02	2.5	2.81	15	vérifiée	3.36
D7	0.026	3.16	5.23	15	vérifiée	6 .29	0.020	1.94	3.22	15	vérifiée	3.07

	Table	Tableau II. 40 : Vérification des contraintes en appuis xx										
	y?	I *10	σ_b	$ar{\sigma}_b$	observation	$M_{a\; ELS}$						
D1	0.026	3 .16	5.36	15	vérifiée	6.44						
D2	0.033	5	7.20	15	vérifiée	10.73						
D3	0.021	2.19	3.56	15	vérifiée	3.59						
D4	0.028	3.78	6.15	15	vérifiée	8.04						
D6	2.68	2.52	3.36	15	vérifiée	2.68						
D7	0.023	2.50	3 .90	15	vérifiée	4.17						

panneaux	$f_{gv}mm$	$f_{gv}mm$ $f_{ji}mm$ $f_{pi}mm$ $f_{gi}mm$ Δfmm							
D2	1.55	0.44	2.70	0.78	2.38	2.6			
D6	1.72	0.41	0.75	0.57	1.48	7.9			

II.6.3 Escaliers

Dans notre projet, on distingue un seul type d'escaliers

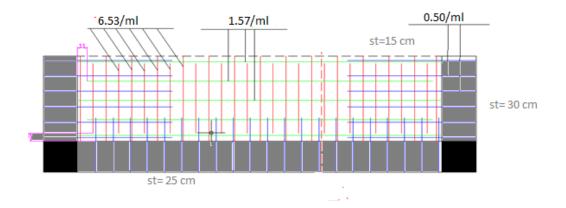


Figure II. 10.: schéma de ferraillage de D5

II.6.3 Escaliers

Dans notre projet, on distingue un seul type d'escaliers

L_p: longueur du palier h: hauteur de la contremarche.

L : retombé de la volée. g: giron

H: hauteur de la volée.

L_v: longueur de la volée.

Pour qu'un escalier garantie sa fonction dans les meilleures conditions de confort, on doit vérifier les conditions suivantes.

-la largeur g se situe entre 25 et 32 cm.

-la formule empirique de BLONDEL:

$$60 \le 2h + g \le 65cm$$

Avec:

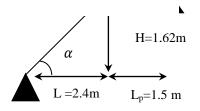


Figure II. 11: schéma statique des escaliers

h=H/n: nombre de contre marches g=L/(n-1) n-1: nombre de marches.

En résolvant l'équation : $64 n^2 - (64+2H+L) n+2H=0$, on retrouvera le nombre de contre marches.

• Escalier droit à 2 volées

Epaisseur de la paillasse :
$$\begin{cases} \frac{L'}{30} \le e \le \frac{L'}{20} \\ \text{pour 2 heures de coup feu, } e \ge 11 \text{ cm} \end{cases}$$

$$L_v = \sqrt{L^2 + H^2} \Rightarrow L_v = 2.84 \, m.$$

 $L' = L_v + L_p \Rightarrow L' = 4.35 \, m. \, (L': longeur devellop\'ee de l'appuis jusqu'à l'appuis)$

$$\Rightarrow \begin{cases} 14.5 \ cm \leq e \leq 21.75 \ cm \\ e \geq 11 cm \end{cases}$$
 Donc, l'épaisseur de la paillasse est :15 cm

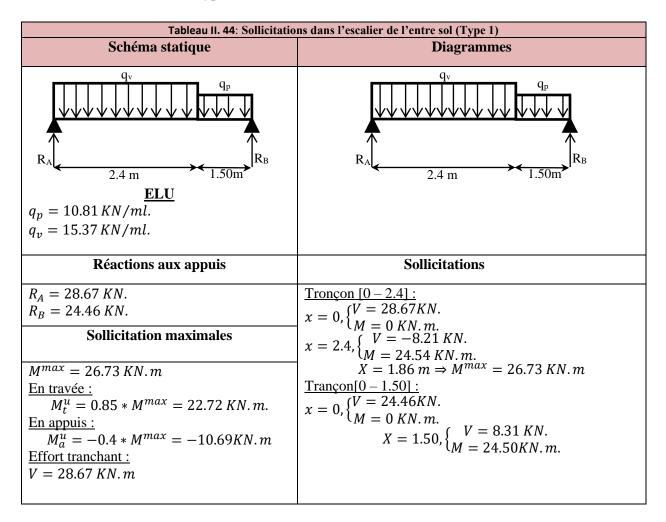

$$\alpha = tg^{-1}\left(\frac{H}{L}\right) \Rightarrow \alpha = 32.52^{\circ}, \qquad \begin{cases} n = 9\\ h = 17 \ c \ m.\\ g = 30 \ cm. \end{cases}$$

Tableau II. 42: évaluation d	ableau II. 42: évaluation des charges permanentes et surcharges d'exploitations des paliers d'escaliers.			
Désignation	Poids volumique (KN /m³)	Epaisseurs (m)	Poids (KN/m²)	Surcharges Q (KN/m²)
Palier	25	0.15	3.75	
Carrelage	22	0.02	0.44	
Mortier de pose	20	0.02	0.4	
Lit de sable	18	0.02	0.36	2.5
Enduit de plâtre	14	0.02	0.28	
Total	/	/	5.23	

Tableau II.	Tableau II. 43: évaluation des charges permanentes et surcharges d'exploitation des volées d'escaliers.			
Désignation	Poids volumique (KN/m³)	Epaisseurs (m)	Poids (KN/m ²)	Surcharges Q (KN/m²)
Revêtement en carrelage H	22	0.02	0.44	
Revêtement en carrelage V	22	0.02 h/g	0,249	
Mortier de pose H	20	0.02	0.4	2.5
Mortier de pose V	20	0.02 h/g	0.0113	
Marches	22	h/2	1.87	
Paillasse	25	0.15/cos(32.52°)	4.44	
Enduit en ciment	20	0.02	0.4	
Garde de			0.8	

corps				
	Total	Epaisseur 15cm	8.61	2.5

II.6.3.1 Etude des différents types d'escaliers :

> Ferraillage:

			1	Гableau II. 45: Feri	raillage de l'escalio	er	
Nature	μ_{bu}	α	Z	A _{calculèe} cm²/ml	A _{choisie} cm²/ml	$rac{A_r}{cm^2/ml}$	$A_r \ cm^2/ml$
	Travée (St=25cm)						
	0.0946	0.124	0.123	5.30	5HA12=5.65	1.13	3HA8=1.51
ESCALIER		Appuis (St=25cm)					
DROIT	0.044	0.056	0.127	2.41	4HA10=3.14	0.49	3HA8=1.51
	$A_{min} = 1.56cm^2/ml$						

* Vérification de l'effort tranchant :

$$\begin{split} \tau_u &= \frac{V_u}{b*d} \leq \bar{\tau}_u = \frac{0.07*f_{c28}}{\gamma b} \\ \tau_u &= 0.22 \, MPa < \bar{\tau}_u = 1.17 \, Mpa \end{split}$$

Commentaire : pas risque de rupture par cisaillement.

❖ Vérification des contraintes :

 $M_t^s=16.37 \textit{KN}.\, m$, $M_a^s=-7.70\,\textit{KN}.\, m$, $M_0^x=19.26 \textit{KN}.\, m$ En travée :

Tableau II. 46: Vérification des contraintes en travée		
Calculs	Vérifications	
y = 0.039 m	$\sigma_b = 7.14 MPa < \bar{\sigma}_b = 15 MPa$	
$I = 8.99 * 10^{-5} m^4$		

Aux appuis:

Tableau II. 47: Vérification des contraintes aux appuis		
Calculs	Vérifications	
y = 0.0305 m	$\sigma_b = 4.20 MPa < \bar{\sigma}_b = 15 MPa$	
$I = 5.60 * 10^{-5} m^4$		
$\sigma_b = 4.20 MPa$		

♣ Vérification de la flèche :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche

$$\begin{cases} \mathbf{1} \ h \ge \max \left[\left(\frac{1}{16}, \frac{M_t}{10 * M_0} \right) l \right], l \le 8m. \\ \mathbf{2} A_t \le \frac{4.2 * b * d}{f_e} \end{cases}$$

$$\mathbf{1}h = 0.15 \, m < 0.084(2.4 + 1.50) = 0.32m.$$

La condition 1 n'est pas vérifiée, Donc, il faut vérifier la flèche.

On a :
$$\begin{cases} \Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}. \\ f_{admissible} = \begin{cases} \frac{l}{500}, l \le 5m. \\ 0.5 \ cm + \frac{l}{1000}, l > 5m. \end{cases}$$
$$\Delta f \le f_{admissible}$$

- \checkmark f_{gv} et f_{gi} : les flèches différées et instantanées respectivement dues à l'ensemble des charges permanentes totales (poids propre + revêtement + cloisons)
- \checkmark f_{ji} la flèche instantanée due à l'ensemble des charges permanentes appliquées au moment de la mise en œuvre des cloisons (poids propre + cloisons).
- ✓ f_{ni} la flèche instantanée due aux charges totales (G+Q).
- ✓ j: la charge permanente au moment de la mise des cloisons.
- ✓ g : la charge permanente après la mise des cloisons.
- ✓ p: la somme des charges permanentes et charges d'exploitation

$$\begin{cases} j_p = 3.75 \ KN/m^2 \\ g_p = 5.23 \ KN/m^2 \\ p_p = 7.73 \ KN/m^2 \end{cases}, \qquad \begin{cases} j_v = 4.46 \ KN/m^2 \\ g_v = 8.61 \ KN/m^2 \\ p_v = 11.11 \ KN/m^2 \end{cases}$$

$$\begin{cases} M_j = 6.87 \ KN.m \\ M_g = 12.34 \ KN.m \\ M_n = 16.36 \ KN.m \end{cases}$$

> Calcul des contraintes :

Tableau II. 48: calcul des contraintes correspondantes			
Contrainte correspondant à q_i	$15 * M_j(d-y)$	$\sigma_i = 104.02MPa$	
,	Ī	,	
Contrainte correspondant à q_g	$15 * M_g(d-y)$	$\sigma_g = 186.87 MPa$	
	I	G	
Contrainte correspondant à q_p	$15 * M_p(d-y)$	$\sigma_p = 247.69 MPa$	
·	I	-	
	y = 0.039 m		
	Position de l'axe neutre		

\triangleright Calcul des coefficients μ et λ :

$$\mu = \max \left\{ 1 - \left[\frac{1.75 * f_{t28}}{4 * \rho * \sigma + f_{t28}} \right], \begin{cases} \lambda_i = 4.83 \\ \lambda_{\nu} = 1.93 \end{cases} \right.$$

	Tableau II. 49: coefficientμ		
Pourcentage d'armatures	A_T	$\rho = 0.00346$	
tendues	$ \rho = \frac{1}{b * d} $		
coefficient correspondant à	$\begin{bmatrix} 1.75 * f_{t28} \end{bmatrix}$	$\mu_j = 0.0597$	
q_j	$1 - \left[\frac{1}{4*\rho*\sigma_j + f_{t28}}\right]$,	
coefficient correspondant à	$[1.75*f_{t28}]$	$\mu_g = 0.312$	
q_g	$1 - \left[\frac{1}{4*\rho*\sigma_g + f_{t28}}\right]$		
coefficient correspondant à	$[1.75*f_{t28}]$	$\mu_p = 0.426$	
q_p	$1 - \left[\frac{1}{4*\rho*\sigma_p + f_{t28}}\right]$	·	

> Calcul des moments d'inerties fictives :

Tableau	Tableau II. 50: Calcul des moments d'inerties fictives			
I correspondant à q_{ji}	$1.1 * I_0$	$I_{ii} = 16224cm$		
	$\overline{1+\lambda_i*\mu_j}$,		
I correspondant à q_{gi}	$1.1 * I_0$	$I_{gi} = 83230cm$		
G	$\overline{1+\lambda_i*\mu_g}$	J. Company of the com		
I correspondant à q_{qv}	$1.1 * I_0$	$I_{gv} = 13027cm$		
J	$\overline{1 + \lambda_{\nu} * \mu_g}$			
I correspondant à q_{pi}	$1.1 * I_0$	$I_{pi} = 68325cm$		
	$1 + \lambda_i * \mu_p$			

 $E_i = 32456.59 \, MPa$, $E_{\nu} = 10818.86 MPa$

Tableau II. 51: Vérification de la flèche

f_{gv}	$M_g * l^2$	0 .1300 cm
	$\overline{10*E_{ u}*I_{g u}}$	
f_{ji}	$M_j * l^2$	0.019 cm
	$\overline{10*E_i*I_{ji}}$	
f_{pi}	$M_p * l^2$	0.112 cm
	$\overline{10*E_i*I_{pi}}$	
f_{gi}	$M_g * l^2$	0.069 cm
	$\overline{10*E_i*I_{gi}}$	
Δf	$f_{gv} - f_{ji} + f_{pi} - f_{gi}$	0 .156 cm
$f_{admissible}$	<u>l</u>	0.78 cm
	500	

Commentaire : La flèche est vérifiée.

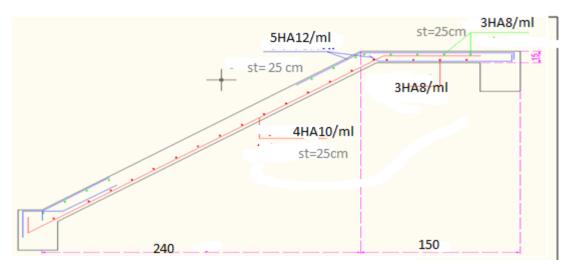


Figure II. 12: ferraillage des escaliers

II6.3.2 Poutre palière:

Notre poutre palière est une poutre simplement appuie sur deux poteaux, servant d'appui aux paliers.

Elle reprend les charges suivantes :

- ✓ Son poids propre.
- ✓ Réactions du palier.
- ✓ Poids propre de la maçonnerie (s'il y on a).

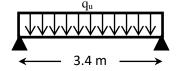


Figure II. 13: poutre palière

II.6.3.2.1 Dimensionnement:

1- Selon la condition de rigidité :

$$\frac{l}{15} \leq h \leq \frac{l}{10} \Longrightarrow \frac{340}{15} \leq h \leq \frac{340}{10} \Longrightarrow 22.66cm \leq h \leq 34cm$$

Alors,
$$\begin{cases} h = 40 \ cm. \\ b = 35 \ cm \end{cases}$$

2- Vérification des conditions du RPA 99 version 2003:

$$\begin{cases} b = 30 \ cm > 25 \ cm \\ h = 30 \ cm > 30 \ cm \\ \frac{h}{b} = 1 < 4 \end{cases}$$

II.6.3.2.2 Calcul de la poutre palière :

- Charge revenant à la poutre palière :
 - ✓ Poids propre de la poutre : $G_p = 0.30 * 0.30 * 25 = 2.25 \text{ KN/}^{ml}$.
- Sollicitations:

$$M^{max} = \frac{q_u * l^2}{8} = 39.72 KN.m \quad , \quad V^{max} = \frac{q_u * l}{2} = 46.73 KN$$

Tableau II. 52: sollicitation dans la poutre palière		
Localisation	Moment	
En travée	$0.85 * M^{max} = 33.76KN.m$	
Aux appuis	$-0.4 * M^{max} = 15.88KN.m$	

- > Ferraillage à la flexion simple :
- Armature longitudinale :

Tableau II. 53: calcul des sections de Ferraillage en travée		
Calculs	Conclusions	
$M_u = 33.76$ KN.m		
$\mu_{bu} = 0.101 < 0.186 \ (pivot \ A), \varepsilon_s = 10^{\circ} \%$ $\mu_{bu} = 0.101 < \mu_l = 0.3916$	A _{CAL} =3.66cm ² Condition de non fragilité:	
$\alpha = 0.133$	$A_{min} = 0.23 * b * d * \frac{f_{t28}}{f_s} = 1.014cm^2$	
z = 0.265m	Je	

Tableau II. 54:calcul des sections de Ferraillage aux appuis					
Calculs	Conclusions				
M_u =15.88 KN.m					
$\mu_{bu} = 0.047 < 0.186 \ (pivotA), \varepsilon_S = 10^{\circ} \%$					
$\mu_{bu} = 0.047 < \mu_l = 0.3916$					
0.061	$A_{CAL}=1.67 \text{cm}^2$				
$\alpha = 0.061$					
z = 0.273 m	Condition de non fragilité :				
·	$A_{min} = 0.23 * b * d * \frac{f_{t28}}{f_e} = 1.014 \text{cm}^2$				
) e				

• Armature Transversale:

$$A_t \geq (0.4*b*S_t)/f_e \Longrightarrow A_t \geq 0.45$$

 $Avec S_t = 15cm$

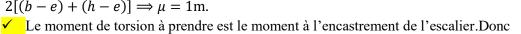
• Vérification de l'effort tranchant :

$$au_u = rac{V^{max}}{b*d} = 0.55 MPa < ar{ au}_u = \min\left(0.2 rac{f_{c28}}{\gamma_b}, 5 \ MPa
ight) = 3.33 \ MPa$$
 , FPN

Commentaire : la bielle est vérifiée.

> Ferraillage à la torsion :

On définit « Ω », l'aire de torsion, par une section


creuse à mi-épaisseur « e » tel que :

$$\Omega = (b - e) * (h - e), e = b/6.$$

Donc, $e = 0.05m \Rightarrow \Omega = 0.0625m^2$.

On définit « μ » comme étant le périmètre de « Ω » :

$$\mu = 2[(b-e) + (h-e)] \Rightarrow \mu = 1$$
m.

le calcul de torsion

$$\tau_u = \frac{M_{tor}}{2*\Omega*e} = 2.98MPa. < \bar{\tau}_u = 3.33 MPa, FPN$$

Armature longitudinale et transversale :

$$\frac{A_t * f_e}{S_t * \gamma_S} = \frac{A_l * f_e}{\mu * \gamma_S} = \frac{M_{tor}}{2 * \Omega}$$

> Armature longitudinale :

$$A_{l} = \frac{M_{tor} * \mu * \gamma_{s}}{2 * \Omega * f_{e}} = \frac{18.63 * 10^{-3} * 1 * 1.15}{2 * 0.0625 * 400}$$

$$A_{r} = 4.28 \text{ cm}^{2}$$

> Armature transversale :

$$A_t = \frac{M_{tor} * S_t * \gamma_s}{2 * \Omega * f_e} = \frac{18.63 * 10^{-3} * 0.15 * 1.15}{2 * 0.0625 * 400}$$
$$A_t = 0.64cm^2$$

<u>Note</u>: La section d'armature totale sera calculée en (flexion simple + torsion), elle est donnée dans le tableau ci-dessous :

	Tableau II. 55: Section d'armature de calcul en flexion simple et en torsion			
	Flexion simple		Torsion	
	Travée	appuis		
Moment	33.76	15 .88	18.63	
(KN.m)				
Armature			4.28	
longitudinale	3.66	1.67		
(cm ²)				
Armature				
transversale	0.45		0.64	
(cm ²)				
Contrainte de		·		
cisaillement	0.5	2.98		
(MPa)				

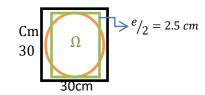


Figure II. 14: Section considérée dans

		Tableau II. 56 : Section d'armature en travée et aux appuis						
		Flexion	simple	Torsion	A_{Total}		Aopté	
		Travée	appuis		Travée appuis		Travée	appuis
	Armature				3.66	1.67	6 <i>HA</i> 12	Tapez une
1	longitudinale	3.66	1.67	4.28	4.28	$+\frac{4.28}{2}$	=6.79	4HA12
	(cm ²)				$+\frac{4.28}{2}$	+ -2		=
					=	=		4.52
					5.8	3.81		
	Armature				0.45+0.64		$4\phi_8 = 2$	$2.01cm^{2}$
trai	nsversale (cm ²)	0.	45	0.64	=		(2 cad	2.01cm² lre φ ₈) 20cm
					1.09		$S_t =$	20 <i>cm</i>

$$A_{min} = 0.5\%(b*h) = 4.5 \text{ cm}^2 < A = A_t + A_a = 9.61\text{cm}$$

• Vérification vis-à-vis de l'effort tranchant :

$$\tau = \sqrt{\tau_{flexion} + \tau_{tortion}} = 1.88 \, MPa < \bar{\tau}_u = 3.33 \, MPa.$$

• Vérification des contraintes :

$$M_t^{ser} = 32.35 \, KN. m$$

Tableau II. 57: Vérification des contraintes en travée				
Calculs	Vérifications			
y = 10.80cm	$\sigma_b = 6.16MPa < \bar{\sigma}_b = MPa$			
$I = 42728cm^4$				
$\sigma_b = 6.16 MPa$				

$$M_a^{ser} = 15.22KN.m$$

Tableau II. 58: Vérification des contraintes aux appuis				
Calculs Vérifications				
y = 9.21	$\sigma_b = 3.32 MPa < \bar{\sigma}_b = 15 MPa$			
$I = 3175cm^4$				
$\sigma_h = 3.32 MPa$				

• Vérification de la flèche :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche

$$\begin{cases} \mathbf{1} \ h \ge \max\left[\left(\frac{1}{16}, \frac{M_t}{10 * M_0}\right)\right] = 0.085 \\ \mathbf{2} A_t \le \frac{4.2 * b * d}{f_e} \end{cases}$$

$$\mathbf{1}h = 0.30 \, m > 0.085(3.4) = 0.288m.$$

$$2A_t = 6.79 \ cm^2 < 8.82 \ cm^2$$

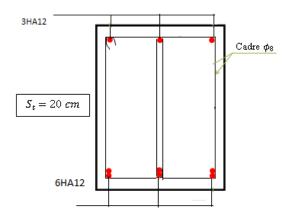


Figure II. 15: ferraillage de la poutre palière

II.6.4 Acrotère:

L'acrotère est un élément secondaire, se trouvant au niveau de la terrasse, il a pour rôle d'empêcher

les infiltrations des eaux pluviales entre la forme de pente et le plancher terrasse ainsi qu'un rôle de gardecorps pour les terrasses accessibles.

Les charges revenantes à l'acrotère sont résumées dans ce qui suit :

II.6.4.1 Hypothèses de calcul:

- L'acrotère est sollicité en flexion composée.
- La fissuration est considérée comme préjudiciable.
- Le calcul se fera pour une bande de un mètre linéaire.

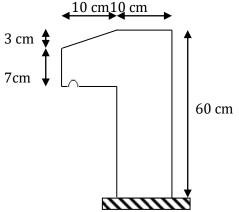


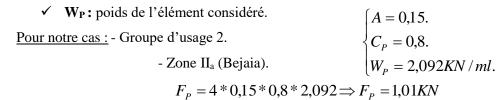
Figure II. 16:Schémas de l'acrotère

II.6.4.1.1 Évaluation des charges et surcharges :

Verticales:

Tableau II. 59: Charges et surcharges.					
Surface (m ²)	Poids propre (KN/ml)	Enduit ciment intérieur KN/ml	Enduit ciment extérieur	G KN/ml	Q (KN/ml)

			KN/ml		
0.069	1,725	0,015*0,6*18*1=0 ,162	18* 0,02* 0,6*1=	2,092	1
		,102	0,22		


Horizontales: (dues au séisme).

$$F_{P} = 4 * A * C_{P} * W_{P}$$

D'après le RPA99, l'acrotère est soumis

 F_p : une force horizontale due au séisme

- ✓ A : Coefficient d'accélération de zone, obtenu dans le tableau (4-1) du RPA99 pour la zone et le groupe d'usages appropriés.
- ✓ C_P: Facteur de force horizontale variant entre 0.3 et 0.8 (**Tab. 6.1** du **RPA99**).

Donc:

NB: La section de calcul en flexion composée sera de (100*10) cm², car le calcul se fait pour une bande de un mètre linéaire.

II.6.4.1.2 Calcul des sollicitations :

A. Calcul du centre de pression :

$$x_{C} = \frac{\sum A_{i} * x_{i}}{\sum A_{i}}, y_{C} = \frac{\sum A_{i} * y_{i}}{\sum A_{i}}$$

$$\sum A_{i} = S$$

$$x_{C} = \frac{0.6 * 0.1 * (0.1/2) + 0.07 * 0.1 * (0.1 + 0.1/2) + 0.5 * 0.1 * 0.03 * (0.1 + 0.1/3)}{0.0685}$$

$$x_{C} = 0.0620m$$

$$y_{C} = 0.30m$$
Moment engendré par les efforts normaux :

$$\begin{split} N_G &= 2,092KN \, / \, ml \Rightarrow M_G = 0. \\ Q &= 1KN \, / \, ml \Rightarrow M_Q = 1*0.6 \Rightarrow M_Q = 0.6KN.m. \\ F_P &= 1,01KN \Rightarrow M_{F_P} = F_P * y_C = 1,01*0.30 \Rightarrow M_{F_P} = 0.323KN.m. \end{split}$$

NB:La section dangereuse se situe à l'encastrement.

Tableau II. 60: Différentes combinaisons à utiliser.						
Sollicitation RPA 99/2003 ELU ELS						
	$G+Q+F_P$	1,35*G + 1,5*Q	G+Q			

N (KN)	2.092	2,82	2,092
M (KN)	0.923	0,9	0,6

II.6.4.1.3 Calcul de l'excentricité:

$$e_1 = \frac{M_u}{N_u} = \frac{0.923}{2.092} = 0.44m$$

$$e_1 > \frac{H}{6} \Rightarrow \text{La section est partiellement comprimée.}$$

$$e_2 = e_1 + e_a$$
 ; Tel que

 e_a : Excentricité additionnelle.

Excentricité structurale (résultat des contraintes normales avant

application des excentricités additionnelles).
$$e_a = \max(2cm; \frac{l}{250}) = \max(2cm; \frac{60}{250}) = 2cm$$

$$d'où : e_2 = 0.44 + 0.02 = 0.46m$$

Calcul à la flexion composée, en tenant compte de façon forfaitaire de l'excentricité (e₃) du second ordre due à la déformation.

$$e_3 = \frac{3*l_f^2*(2+\alpha*\phi)}{10^4*h}$$
.....BAEL91

 α : Le rapport du moment du premier ordre dû aux charges permanentes et quasi-permanentes au moment total du premier ordre.

 ϕ : Le rapport de la déformation finale dû au fluage à la déformation instantanée sous la charge considérée.

$$\alpha = \frac{M_G}{M_G + M_O} = \frac{0}{0 + 0.6} = 0 \Rightarrow e_3 = \frac{3*(2*0.6)^2*(2+0)}{10^4*0.1} = 0.026m.$$

$$d'o\dot{u}$$
: $e_t = e_2 + e_3 = 0.46 + 0.026 = 0.48m$

Les sollicitations corrigées pour le calcul en flexion composée sont :

$$N_U = 2.82 \text{ KN et } M_U = N_U * e_t = 2.82 * 0.48 = 1.35 \text{ KN}.$$

II.6.4.1.4 Ferraillage:

A. ELU:

$$h = 10 \text{ cm}; d = 8 \text{ cm}; b = 100 \text{ cm}$$

L'acrotère, est sollicité en flexion composée, mais le calcul se fera par assimilation à la flexion

simple sous l'effet d'un moment fictif :
$$M_{uA} = M_{uG} + N_u * (d - \frac{h}{2})$$

- $\checkmark \ \ M_{uG}$ et N_u : les sollicitations au centre de gravité de la section du béton seul.
- \checkmark M_{uA}: moment de flexion évalué au niveau de l'armature

$$\Rightarrow M_{uA} = 1,35 + 2.82*(0.08 - \frac{0.1}{2}) = 1.43KN.m$$

$$\mu_{bu} = \frac{M_{uA}}{b*d^2*f_{bu}} = \frac{1.43*10^{-3}}{1*0.08^2*14.2} = 0.0157 < \mu_l = 0.392 \rightarrow (F_e E400)$$

$$d'où: A's = 0.$$

$$\alpha = \frac{1 - \sqrt{1 - 2*\mu^{bu}}}{0.8} = 0.019$$

$$z = d*(1 - 0.4*\alpha) = 0.0793$$

$$A_{Ls} = \frac{M_{uA}}{z*f_{st}} = \frac{1.43*10^{-3}}{0.0793*348} = 0.52cm^2$$

$$A_S = A_{Ls} - \frac{N_u}{\sigma_s} = 0.52*10^{-4} - \frac{2.82*10^{-3}}{0.0793*348} = 0.43cm^2$$

$$0.43cm^2$$

$$0.43cm^2$$

$$A_{\min} = 0.23*b*d*\frac{f_{t28}}{f_e} = 0.23*1*0.08*\frac{2.1}{400} = 0.966cm^2$$

$$A_{min} > A_s \Rightarrow$$
 on adopte $A_s = 4HA8 = 2.01 \text{ cm}^2/\text{ml}$.

• Armatures de répartition :

$$A_r = A_s / 4 = 2,01 / 4 = 0,5025 \text{ cm}^2 \Longrightarrow A_r = 4HA6 (1,13 \text{ cm}^2/\text{ml}).$$

- Espacement :
 - 1. Armatures principale : $S_t \le 100/3 = 33$, 3 cm \rightarrow on adopte $S_t = 30$ cm.
 - 2. Armatures de répartitions : $S_t \le 100 / = 33.3$ cm \rightarrow on adopte $S_t = 30$ cm.
- Vérification au cisaillement :

L'acrotère est exposé aux intempéries (fissuration préjudiciable).

$$\begin{split} & \Rightarrow \overline{\tau_u} \leq \min(0.1*f_{c28},3Mpa) \\ & \overline{\tau_u} \leq \min(2,5;3Mpa) \\ & \overline{\tau_u} \leq 2,5Mpa \\ & V_u = F_p + Q \longrightarrow V_U = 1,01 + 1 = 2,01KN \\ & \tau_u = \frac{V_u}{b*d} = \frac{2,01*10^{-3}}{1*0,08} \Rightarrow \tau_u = 0,025MPa \;. \end{split}$$

 $\tau_{u} < \bar{\tau}_{u} \rightarrow \text{Pas de risque de cisaillement}$

• Vérification de l'adhérence :

$$\tau_{se} = \frac{V_u}{0.9*d*\sum \mu_i}; \sum \mu_i :$$
 La somme des périmètres des barres.

$$\sum \mu_i = n * \pi * \phi = 4 * \pi * 0.6 = 7.53cm$$

$$\tau_{se} = \frac{0,00201}{0.9 * 0.08 * 7.53 * 10^{-2}} = 0.370MPa$$

$$\overline{\tau_s} = 0.6 * \psi_s^2 * f_{c28} = 0.6 * 1.5^2 * 2.1 = 2.83MPa$$

$$\Rightarrow \tau_{se} < \overline{\tau_{se}} \rightarrow \text{ Pas de risque par rapport à l'adhérence.}$$

B. ELS: (vérification des contraintes).

d = 0.08 m;

D'après le BAEL 91, la vérification des contraintes se fait de façon suivante :

✓ Position de l'axe neutre :

$$C = d - e_A$$
;

Tel que e_1 : distance du centre de pression C à la fibre la plus comprimée B de la section.

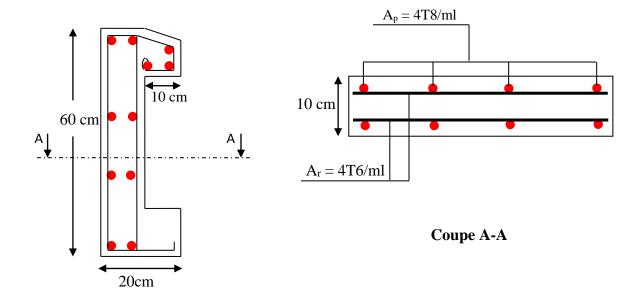
$$e_A = \frac{M_{ser}}{N_{ser}} + (d - h/2) = \frac{0.6}{2.092} + (0.08 - 0.1/2) = 0.31m$$

$$\Rightarrow c = 0.08 - 0.31 = 0.23m$$

$$y_{ser} = y_c + c$$

$$y_c^3 + p * y_c + q = 0$$
Tel que:
$$p = -3 * c^2 + (d - c) * \frac{90 * A_s}{b}.$$

$$q = -2 * c^3 - (d - c)^2 * \frac{90 * A_s}{b}.$$


$$\begin{cases} P = -3 * 0.23^2 + (0.08 - 0.23) * \frac{90 * 2.01 * 10^{-4}}{1} = -0.16 m^2 \\ q = -3 * 0.23^3 + (0.08 - 0.23)^3 * \frac{90 * 2.01 * 10^{-4}}{1} = 0.106 m^3 \end{cases}$$

Par itération $y_c = 0.62m$. Donc, y=0.39m

✓ Calcul des contraintes :

$$\mu_t = \frac{b}{2}y^2 - 15A(d - y) = 0,050 \text{m é} \&^2$$

$$\begin{cases} \sigma_{bc} = \frac{N_{Ser}}{\mu_t} * y = 4,68 MPa < \bar{\sigma}_{bc} = 15 MPa \\ \sigma_S = \frac{15 * N_{Ser}}{\mu_t} * (d - y) = -0,058 MPa < \bar{\sigma}_S = 201.64 MPa, FN \end{cases}$$

II6.4.1. 5 Schéma de Ferraillage :

III.8. Ascenseur:

L'ascenseur est un appareil mécanique, servant au déplacement vertical des personnes et des chargements vers les différents niveaux de la construction.

II.6.6. Description de l'ascenseur :

- ❖ Cabine : Organe de l'ascenseur destiné à recevoir les personnes et les charges à transporter.
- ❖ Gaine : Volume dans lequel se déplacent la cabine, le contrepoids et le vérin hydraulique. Ce volume est matériellement délimité par le fond de la cuvette, les parois et le plafond.
- ❖ Palier : Aire d'accès à la cabine à chaque niveau de service.
- Cuvette : Partie de la gaine située en contre bas du niveau d'arrêt inférieur desservi par la cabine.
- * Hauteur libre : Partie de la gaine située au-dessus du dernier niveau desservi par la cabine.
- ❖ local des machines : Local où se trouvent la machine et son appareillage.

II6.6.1. Caractéristiques de l'ascenseur: Annexe (4)

Nombre de passagers :

Le nombre de passagers est le plus petit des nombres obtenus par la formule :

$$n = \frac{\text{charge nominale}}{75} \Rightarrow n = \frac{630}{75} = 8.4$$

Dans notre structure, on utilise un ascenseur pour huit personnes, dont ses caractéristiques sont :

L=180cm Longueur de l'ascenseur

L_{ār}=160cm largeur de l'ascenseur.

H = 220cm: Hauteur de l'ascenseur.

 $F_c = 102KN$: Charge due à la cuvette.

 $D_m = 82KN$: Charge due à la salle des machines.

 $P_m = 15KN$: Charge due à l'ascenseur.

 $P_{perssonnes} = 6.3KN$: La charge nominale.

V = 1.00m/s: La vitesse.

II 6.6.1. 1Etude de l'ascenseur :

La dalle de la cage d'ascenseur doit être épaisse pour qu'elle puisse supporter les charges important (machine+ ascenseur) qui sont appliquées sur elle.

On a :
$$L_x = 160cm$$
, $L_y = 180cm \Rightarrow S = 1.60 * 1.80 = 2.88m$
Soit alors son épaisseur est **e=14cm**.

> Evaluation des charges et surcharges :

$$G_1 = 25 * 0.14 = 3.5 \text{ KN/m}^2$$
: Poids de la dalle en béton armé.

$$G_2 = 22 * 0.04 = 0.88 \, KN/m^2$$
: Poids de revêtement en béton.

$$G' = G_1 + G_2 = 4,38 \text{ KN/m}^2$$

 $G = \frac{F_c}{S} = \frac{102}{2.88} = 35,41 \text{ KN/m}^2$

 $G_{total} = G + G' = 4.38 + 35.41 = 39.79 KN/m^2$ Et $Q = 1 KN/m^2$ Figure II. 19: Les dimensions de l'ascenseur.

A. Cas de charge repartie :

- A l'ELU:
- **✓** Calcul les sollicitations :

$$q_u = 1.35 G + 1.5Q = 1.35 * 39,79 + 1.5 * 1 = 55,21 KN$$

$$\rho = \frac{l_x}{l_y} = 0.88 > 0.4 \Rightarrow$$
 La dalle travaille dans deux sens.

$$\rho = 0.88 \Rightarrow \begin{cases} \mu_x = 0.0476 \\ \mu_y = 0.7438 \end{cases}$$

> Calcul les sollicitations à ELU:

$$\mathbf{M}_{x}^{0} = \mu_{x} * q_{u} * L_{x}^{2} = 0.0476 * 55,21 * 1.6^{2} = 6.72 \text{ KN. m}$$

 $\mathbf{M}_{y}^{0} = \mu_{y} * M_{x}^{0} = 0.7438 * 6.72 = 5 \text{KN. m}$

Calcul les moments réelles :

En travée :
$$\begin{cases} \boldsymbol{M_{tx}} = 0.85 * M_x^0 = 0.85 * 6.72 = 5.71 KN. m \\ \boldsymbol{M_{ty}} = 0.85 * M_y^0 = 0.85 * 5 = 4.25 KN. m \\ \text{En appuis} : \boldsymbol{M_a} = -0.4 * M_x^0 = -0.3 * 6.72 = -2.01 KN. m \end{cases}$$

Calcul du ferraillage :

On fera le calcul de la dalle pour une bande de 1m de longueur et de 14cm d'épaisseur à la flexion simple, Les résultats sont résumés dans le tableau suivant :

	Tableau II. 61: Ferraillage de la dalle de l'ascenseur (dalle au-dessous).									
Sens $M_u(KN.m)$ μ_{bu}		μ_{bu}	α	Z(m)	$A_{Calcul\'ee} \ (cm^2/ml)$	A opté (cm^2/ml)	$S_{t}(cm)$			
Travée	5,71	0.027	0.034	0,118	1,39	4HA8=2.01	St≤ min (2e,25cm)			
X-X	X-X						St=25			
Travée	4,25	0.020	0.025	0,118	1,03	4HA8=2.01	St≤ min (2e,25cm)			
у-у							St=25			
Appuis	2.01	0.0098	0.012	0,119	0.48	3HA8=1.51	25cm			

- Vérification a l'ELU:
- ✓ Condition de non fragilité :
- En travée :

On a des HAf_eE400 $\Rightarrow \rho_0 = 0.0008$

En appuis : $A_a = 3HA8/ml = 1.51 \ cm^2/ml > A_a^{min} = 1.12 \ cm^2/ml$ La condition est vérifiée

✓ Vérification l'effort tranchant :

ρ=0.88>0.4 flexion simple dans les deux sens

$$\begin{cases} V_x = q_u * \frac{l_x}{3} = 29,44 \text{ KN} \\ V_y = q_u * \frac{l_x}{2} * \frac{1}{1 + \frac{1}{\rho}} = 20,67 \text{ KN} \end{cases}$$

$$\Rightarrow \tau_u = \frac{V_u}{b d} = \frac{29.44 \times 10^{-3}}{1000 \times 120} = 0.25 Mpa < \overline{\tau} = \frac{0.07}{\gamma_b} f_{c28} = 1.16 Mpa.$$

Donc, la condition est vérifiée.

Vérification a l'ELS:

 $q_s = G_{total} + Q = 39,79 + 1 = 40,79 \, KN/m^2$, on fera le calcul de la dalle pour une bande de 1m de longueur.

$$\rho = 0.88 \Rightarrow ELS: \begin{cases} \mu_x = 0.0546 \\ \mu_y = 0.8216 \end{cases}$$
 Annexe (1)

Calcul les moments :

$$M_x^0 = \mu_x * q_{st} * l_x^2 = 0.0546 * 40,79 * 1.6^2 = 5.70 \text{ KN. m}$$

 $M_y^0 = \mu_y * M_x^0 = 0.8216 * 5.70 = 4.68 \text{ KN. m}$

• Calcul les moments réels :

En travées :
$$\begin{cases} M_{tx} = 0.85 * M_x^0 = 4.84 \text{ KN. m} \\ M_{ty} = 0.85 * M_y^0 = 3,97 \text{ KN. m} \end{cases}$$

$$\checkmark \text{ En appuis : } M_a = -0.3 * M_x^0 = -1,71 \text{ KN. m}$$

❖ Vérification de la contrainte:

Tableau II. 62 : Vérification des contraintes en travée (sens x-x)					
Calculs	Vérifications				
y = 2,40cm	$\sigma_b = 3,59MPa < \bar{\sigma}_b = 15 MPa$				
I = 3239cm	C'est vérifiée				
$\sigma_b = 3,59 MPa$					

Tableau II. 63 : Vérification des contraintes en travée (sens y-y)

Calculs	Vérifications
y = 2,40	$\sigma_b = 1.3 MPa < \bar{\sigma}_b = 15 MPa$
I = 3239	C'est vèrifièe
$\sigma_b = 2,95MPa$	

❖ hémas de ferraillage :

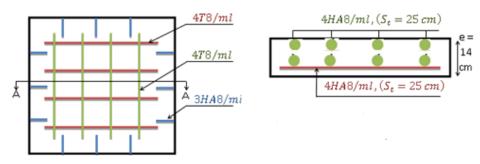


Figure II. 20:schéma de ferraillage de l'ascenseur

2) Cas d'une charge concentrée :

La charge concentré q est appliquée à la surface de la dalle sur aire $a_0 \times b_0$. Elle agit uniformément sur aire $u \times v$ située sur le plan moyen de la dalle.

 $a_0 \times b_0$: Surface sur laquelle elle s'applique la charge donnée en fonction de vitesse.

 $u \times v$: Surface d'impact.

 a_0 et u =dimension suivant x-x.

 b_0 et v: Dimension suivant y-y.

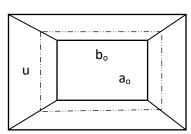


Figure II. 22 : Schémas représentant la surface d'impact.

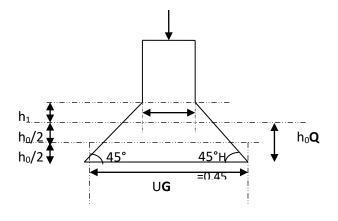


Figure II. 22: Calcul de Périmètre au niveau de la feuille moyenne.

On a
$$\begin{cases} u = a_0 + h_0 + 2 \times \xi \times h_1 \\ v = b_0 + h_0 + 2 \times \xi \times h_1 \end{cases} pour \quad V = 1m/s \Longrightarrow \begin{cases} a_0 = 80cm. \\ b_0 = 80cm. \end{cases}$$

Avec h₁=4cm : Épaisseur de revêtement.

 $H_0=0,14$: Épaisseur de dalle.

 $\zeta = 1$: Coefficient qui dépend du type de revêtement.

Calcul les sollicitations :

$$\begin{cases} M_x = q_u * (M_1 + \nu M_2) \\ M_y = q_u * (M_2 + \nu M_1) \end{cases}, \text{ Avec } \gamma : \text{Coefficient de poisson } \begin{cases} \gamma = 0 & \text{\hat{a} $l'ELU$} \\ \gamma = 0.2 & \text{\hat{a} $l'ELS$} \end{cases}$$

• M₁ est en fonction de
$$\frac{u}{L_x}$$
 et $\rho \Rightarrow \frac{u}{l_x} = \frac{102}{160} = 0.63$ et $\rho = 0.88$

•
$$M_2$$
 est en fonction de $\frac{v}{L_v}$ et $\rho \Rightarrow \frac{v}{l_y} = \frac{102}{180} = 0.56$ et $\rho = 0.88$

En se référant à l'Annexe (2), on trouve : M₁=0.085 KN.m et M₂=0.067 KN.m

Evaluation des moments M_{x1} et M_{y2} du système de levage à l'ELU :

$$v = 0 \Rightarrow \begin{cases} M_x = q_u * M_1 \\ M_y = q_u * M_2 \end{cases}$$

On a:
$$g = D_m + P_m + P_{perssonne} = 82 + 15 + 6.3 = 103.3 KN$$
.

$$q_u = 1.35 \times g = 1.35 \times 103.3 = 139.455 KN$$

$$\begin{cases} M_{x1} = q_u * M_1 = 139.45 * 0.085 = 11,85 \ KN. \ m \\ M_{y1} = q_u * M_2 = 139.45 * 0.067 = 9.34 \ KN. \ m \end{cases}$$

Evaluation des moments due au poids propre de la dalle à l'ELU:

 $q_u=1.35G+1.5Q=1.35*4.38+1.5*1=7.41KN/m$

$$\rho = 0.88 \Rightarrow \begin{cases} M_{x2} = u_x * q_u * l_x^2 = 0.0476 * 7.41 * 1.6^2 = 0.90 \text{ KN. m} \\ M_{y2} = u_x * M_{x2} = 0.7438 * 0.90 = 0.66 \text{KN. m} \end{cases}$$

Superposition des moments:

Les moments agissants sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 11.85 + 0.90 = 12.75 KN. \, m \\ M_y = M_{y1} + M_{y2} = 9.34 + 0.66 = 10 KN. \, m \end{cases}$$

> Les moments réels :

✓ En appuis :
$$M_a = -0.3 * M_x^0 = 3.82 \text{ KN. } n$$

II.6.6.2 Ferraillage:

Le calcul se fera pour une bande de 1m de longueur et en prend

Les résultats sont résumés dans le tableau suivant :

	Tableau II. 64: Ferraillage de la dalle de l'ascenseur (dalles au-dessus)											
Sens	Sens $M_u(KN.m)$ μ_{bu} α $Z(m)$ $A_{calculée}$ $A_{opté}$ $S_t(cm)$											
							~;(****)					
						. , ,						
Travée	10.83	0.052	0.066	0.116	2.68	4HA10=3.14	St≤ min (3e,33cm)					
X-X							St=25					
Travée	8.50	0.041	0.052	0.117	2.08	4HA10=3 .14	St≤ min (3e, 33cm)					
у-у							St=25					
Appuis	3.82	0.018	0.022	0.118	0.93	4HA8=2.01	St=25cm					

❖ Vérification a l'ELU :

1) Vérification de condition de non fragilité :

$$\begin{cases} A_t^x = 4\text{HA}10/ml = 3.14 \ cm^2/ml > A_x^{min} = 1.18c \ cm^2/ml \\ A_t^y = 4\text{HA}10/ml = 3.14 \ cm^2/ml > A_y^{min} = 1.12 \ cm^2/ml \end{cases}$$
 Vérifiée

$$A_t^y = 4\text{HA}10/ml = 3.14 \text{ cm}^2/ml > \frac{A_t^x}{4} = 0.5025 \text{ cm}^2/ml.......\text{Vérifiée.}$$

En appuis :
$$A_a = 4T8 = 2.01 \ cm^2/ml > A_a^{min} = 1.12 \ cm^2/ml$$
 La condition est vérifiée,

2) Vérification au poinçonnement :

$$Q_u \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b}$$

Avec Q_u : Charge de calcul à l'ELU.

h : Épaisseur total de la dalle.

 U_c : Périmètre du contour au niveau de feuillet moyen.

$$Q_u = q_u = 139.455 \, KN < 0.045 * u_c * h * \frac{f_{c28}}{\gamma_h} = 0.045 * 4.08 * 0.14 * \frac{25 * 10^3}{1.5}$$

 $q_u = 428,4 \ KN < 660 \ KN$. Donc, pas de risque de poinçonnement.

3) Vérification de l'effort tranchant :

On a u=v=102cm
$$\Rightarrow V_{max} = \frac{Q_u}{2*u+v} = \frac{139.455}{3*102} = 45.57KN$$

$$\Rightarrow \tau_u = \frac{V_u}{b d} = \frac{45.57 \times 10^{-3}}{1 * 0.12} = 0.37 Mpa < \overline{\tau} = 0.05 f_{c28} = 1.25 Mpa \dots vérifiée$$

Calcul à l'ELS:

1) Le moment engendré par le moment de levage :

$$q_{ser} = g = 103.3KN$$

$$\begin{cases} M_{x1} = q_{ser} * (M_1 + \nu M_2) = 103.3 * (0.085 + 0.2 * 0.067) = 10.16 KN. m \\ M_{y1} = q_{ser} * (M_2 + \nu M_1) = 103.3 * (0.067 + 0.2 * 0.085) = 8.67KN. m \end{cases}$$

2) Le moment dû au poids propre de la dalle:

$$q_{ser} = G + Q = 4.38 + 1 = 5.38 \text{ KN/m}$$

ELS:
$$\rho = 0.88 \Longrightarrow \begin{cases} \mu_x = 0.0546 \\ \mu_y = 0.8216 \end{cases}$$

> Calcul les moments :

$$\begin{cases} M_{x2} = \mu_x * q_{st} * l_x^2 = 0.0546 * 5.38 * 1.6^2 = 0.75KN.m \\ M_{y2} = \mu_y * M_{x2} = 0.8216 * 0.75 = 0.60 KN.m \end{cases}$$

3) Superposition des moments :

Les moments agissants sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 10.16 + 0.75 = 10.91 \, KN. \, m \\ M_y = M_{y1} + M_{y2} = 8.67 + 0.60 = 9.27 KN. \, m \end{cases}$$

> Calcul les moments réels :

En travée:
$$\begin{cases} M_{tx} = 0.85 * M_x = 0.85 * 10.91 = 9.27 \ KN.m \\ M_{ty} = 0.85 * M_y = 0.85 * 9.27 = 7.87 \ KN.m \\ En appuis: M_a = -0.3 * M_x = -0.3 * 10.91 = -3.27 \ KN. \end{cases}$$

Vérification de la contrainte:

Tableau II. 65: Vérification des contraintes en travée (sens x-x)					
Calculs	Vérifications				
y = 0.029m	$\sigma_b = 5.70 MPa < \bar{\sigma}_b = 15 MPa$				
$I = 4.71 * 10^{-5} m^4$	C'est vérifiée				
$\sigma_b = 5.70MPa$					
$\sigma_{\rm S}=235{\rm MPa}$					

Tableau II. 66 Vérification des contraintes en travée (sens y-y)					
Calculs	Vérifications				
y = 0.029 m	$\sigma_b = 4.84 MPa < \bar{\sigma}_b = 15 MPa$				
$I = 4.71 * 10^{-5} m^4$	C'est vérifiée				
$\sigma_b = 4.84MPa$					

Vérification de la flèche :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche.

$$\begin{cases} \frac{h_t}{l_x} = \frac{0.14}{1.6} = 0.087 > \frac{1}{16} = 0.06 \\ \frac{h_t}{l_x} = \frac{0.14}{1.6} = 0.087 > \frac{M_{tx}}{20 * M_x} = 0.042 \\ \frac{h_t}{l_y} = \frac{0.14}{1.8} = 0.077 > \frac{1}{16} = 0.06 \\ \frac{h_t}{l_y} = \frac{0.14}{1.8} = 0.077 > \frac{M_{ty}}{20 * M_y} = 0.042 \\ 25 \end{cases}$$

$$\text{\Rightarrow Dalle an dessons } \begin{cases} \frac{A_s}{b*d_x} = \frac{3.14}{100*12} = 0.0026 < \frac{2}{f_e} = 0.005 \\ \frac{A_s}{b*d_y} = \frac{3.14}{100*12} = 0.0026 < \frac{2}{f_e} = 0.005 \end{cases}$$

II.6.7 Poutre de chainage :

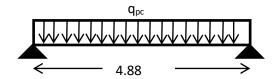
Les poutres d chainage sont des poutres continues en béton armé, elles ceinturent les façades à chaque étage au niveau des planchers, ainsi qu'au couronnement des murs qui sont reliés au droit de de chaque refend.

Le chainage travaille comme une poutre horizontale ou verticale, il doit régner sur tout l'épaisseur du mur. Il a pour but :

- ✓ Liaison horizontale des murs et poteaux pour éviter :
 - Un effort de traction due à la dilatation de la terrasse.
 - Le mouvement d'un immeuble sous l'effet d'un tassement du sol ou charges appliquées.
- ✓ Rigidité longitudinale pour tenir compte des risques de fissurations.

II.6.7.1. Dimensionnement : (RPA 99/2003 article 9.3.3) :

Les dimensions minimales préconisées pour le chainage sont :


- ➤ Hauteur minimale $h \ge 15$ cm.
- Largeur minimale $b \ge 2/3$ de l'épaisseur du mur.

On opte : $(b x h) = (30 x 35)cm^2$.

II.6.7.2 Sollicitations:

Le chainage est conçu pour reprendre son poids propre ainsi que le poids des cloisons qu'il supporte. Il est calculé (comme une poutre simplement appuyée) en flexion simple, avec vérification de l'effort tranchant au niveau des appuis.

t Etage à usage d'habitation :

$$\checkmark$$
 $G_{p.c} = 25 * 0.3 * 0.35 = 2.63 KN/ml.$

Figure II. 23:poutre de chainage

$$\checkmark$$
 $G_{mur} = 2.85(3.06 - 0.40) = 7.581 KN/ml.$

$$ELU \begin{cases} q_u = 1.35 \big(G_{p.c} + G_{mur} \big) + 1.5 \; Q = 16.03 \; KN/ml. \\ M_u = q_u * l^2/8 = 47.73 KN.m \\ V_u = q_u * l/2 = 39.11 KN \end{cases}$$

$$ELS \begin{cases} q_s = G_{p.c} + G_{mur} + Q = 11.71 \ KN/ml. \\ M_s = q_s * l^2/8 = 34.85 KN.m \end{cases}$$

Correction des moments :

$$Trav\'ee \left\{ egin{align*} & M_T^u = 0.75 \ M_u = 35.79 KN.m \\ & M_S^s = 0.75 \ M_s = 26.14 KN.m \end{array}
ight., Appuis \left\{ egin{align*} & M_a^u = -0.5 \ M_u = -23.86 \ KN.m \\ & M_a^s = -0.5 \ M_s = -17.43 \ KN.m \end{array}
ight.
ight.$$
 III.6.3.

FerraillageII. 6.7.3

	Tableau II. 67: Ferraillage de la poutre de chainage							
	$M^u(KN.m)$	μ_{bu}	α	Z	$A_{calcul\acute{e}}$	A _{choisie}	A_{min}	
				(<i>m</i>)	(cm^2)	(cm^2)	(cm^2)	
Travée	35.79	0.077	0.100	0.316	3.24	4HA12	$0.23bd f_{t28}/f_e = 1.19$	
						= 4.52	1 323 1 1	
Appuis	-23.86	0.051	0.066	0.321	2.13	4HA10	$0.23bd f_{t28}/f_e = 1.19$	
						= 3.14		

II.6.7.3.1 Vérification de l'effort tranchant :

$$au_u=rac{V_u}{bd}=0.39$$
MP $a ,4 MP $a)=3.33$ MP a , FN$

II.6.7.3.2 Calcul de l'espacement :

$$A_t=1\ cadre\ \phi_8+1\ \acute{e}trier\ \phi_8=4\phi_8=2.01\ cm^2.$$

1
$$S_t \le \frac{A_t * f_e}{0.4 \ b} = 0.67 \ m.$$
 2 $S_t \le min[0.9d, 40 \ cm] = 0.297 \ m.$

$$3 S_t \leq \frac{0.8 f_e(\sin\alpha + \cos\alpha) A_t}{b(\tau_u - 0.3 * k * f_{t28})} ; k = 1, car \begin{cases} FN \\ sans\ reprise\ de\ bétonnage. \end{cases}$$

 \Rightarrow $S_t = 25 \, cm$ **Tableau III.113 :** Vérification des contraintes dans la poutre de chainage

II.6.7. 3.3 Vérification des contraintes :

		Tableau II. 68: Vérification des contraintes dans la poutre de chainage							
		M^s $(KN.m)$	<i>Y</i> (<i>m</i>)	$I (m^4)$	σ_b (MPa)	$\bar{\sigma}_b$ (MPa)			
Ī	Travée	26.14	0.101	$4.58*10^{-4}$	5.79	15			
Ī	Appuis	-17.43	0.087	$3.43*10^{-4}$	4.42	15			

$$RPA\frac{99}{2003}$$
: $A_{min} = 0.5\%(b*h) = 4.5 cm^2 < A = A_t + A_a = 7.66 cm^2$

II.6.7.3.4 Vérification de la flèche

$$\begin{cases} \mathbf{1} \ h \ge max \left[\left(\frac{1}{16}, \frac{M_t}{10 * M_0} \right) l \right], l \le 8m \\ \mathbf{2} A_t \le \frac{4.2 * b * d}{f_e} \end{cases}$$

$$\mathbf{1} h = 0.35 \ m > 0.075(4.88) = 0.36m.$$

$$\mathbf{2}A_t = 4.52 \ cm^2 < 10.395 \ cm^2$$

Note: Il faut vérifier la flèche

Tableau II. 69: Vérification de la flèche								
$f_{gv}mm$	$f_{ji}mm$	f_{pi} mm	$f_{gi}mm$	Δfmm	$f_{admissible}$ mm			
3.61	0.31	2.92	1.62	4.58	9.76			

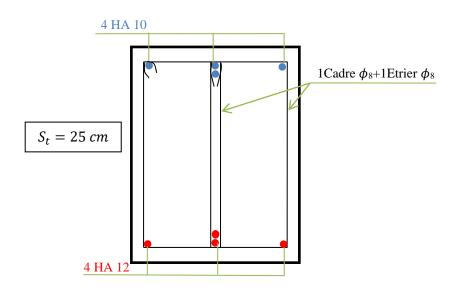


Figure II. 24 : Schéma de ferraillage de la poutre de chainage

Chapitre III: Etude séismique de l'ouvrage

Introduction:

La simplicité de la structure doit être respectée en priorité par le concepteur car sa modélisation, son calcul, son dimensionnement et même sa mise en œuvre permettent de prévoir aisément son comportement en cas de séisme. La structure doit être le plus possible symétrique pour avoir une distribution régulière des efforts. Il est toujours conseillé de distribuer régulièrement et symétriquement les éléments structuraux.

En effet, la conception parasismique ne se limite pas au seul dimensionnement, mais met en jeu de nombreux facteurs comme la rigidité, la capacité de stockage ou de dissipation d'énergie.

De plus, il est important de tenir compte de l'activité et des propriétés du sol. Toutes ces considérations nous amènent à des calculs plus complexes que dans le cas général, car il faut tenir compte de l'interaction fondation-structure pour :

- ✓ Eviter l'effondrement de la structure sous l'effet d'une action sismique dont l'intensité avoisine l'action spécifiée par voie réglementaire (action sismique à l'ELU).
- ✓ Limiter les dommages sur des éléments non structuraux sous l'effet d'un séisme moins intense mais plus fréquent (action sismique à l'ELS).

III.1.Méthodes de calcul:

Le RPA99/2003 propose deux méthodes de calcul des sollicitations :

- ✓ La méthode statique équivalente.
- ✓ La méthode dynamique : La méthode d'analyse modale spectrale.

-La méthode d'analyse par accélérogrammes.

III.1.1. Méthode statique équivalente:

A. Principe:

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

La structure peut être modélisée comme une console encastrée dans le sol et dont laquelle les différents étages sont représentés par des masses ponctuelles de même centre de gravité, de même propriétés d'inertie.

B. Conditions d'application :

La méthode statique équivalente est applicable dans les conditions suivantes :

- ✓ Le bâtiment ou le bloque étudié, respecte les conditions de régularité en plan et en élévation avec une hauteur au plus 65m en zone I et IIa et 30m en zone IIb et III.
- ✓ Le bâtiment ou le bloque étudié présente une configuration irrégulière tout en respectant, outre les conditions énoncées en haut, d'autre conditions complémentaires énumérées dans le **RPA99/version 2003** (article 4.1.2).

C. Calcul de la force sismique totale :

L'effort sismique total V, appliquée à la base de la structure, doit être calculée successivement dans deux directions, horizontales et orthogonales, selon la formule :

$$V = \frac{A * D * Q}{R} * W$$

Avec:

• A : cœfficient d'accélération de la zone, dépend du groupe d'usage de la structure et de la zone sismique.

Dans notre cas : - Groupe d'usage 2
- Zone sismique : IIa
$$\mathbf{A} = \mathbf{0.15}$$

- R: coefficient de comportement global de la structure.
 Valeur donnée par le tableau (4.3) du RPA 99/2003 en fonction du système de contreventement.(Contreventement mixte) ⇒ R = 5
- Q : facteur de qualité : il est fonction de :

Tableau.III.1 Valeurs des pénalités

	Selon x-x		Selon y-y	
Conditions	Observations	pénalités	Observations	pénalités
Conditions minimales sur les files de contreventement	observés	0	Non observé	0.05
2. Redondance en plan	Non observé	0,05	observé	0.05
3. Régularité en plan	observé	0	observé	0
4. Régularité en élévation	observé	0	observé	0
5. Contrôle de qualité des matériaux	observé	0	observé	0
6. Contrôle de qualité de l'exécution	observé	0	observé	0

Sa valeur est donnée par la formule : $Q = 1 + \sum_{1}^{6} p_q$.

 $p_{\,q}\,$: est la pénalité à retenir selon que les critères de qualité q est satisfait ou non.

Sa valeur est donnée par le tableau (4.4)du RPA99/2003. $Q_x = 1.05$ $Q_y=1.1$

• **W**: poids total de la structure :
$$W = \sum_{i=1}^{13} W_i$$
, avec : $W_i = W_{Gi} + \beta * W_{Qi}$

 $W_{\rm Gi}$: Poids dus aux charges permanentes et à celles des équipements éventuellement fixes de la structure.

 W_{Oi} : Charge d'exploitation.

 β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, il est donné par le tableau 4.5 du RPA 99/2003.

$$W = 27931,5 \text{ KN}.$$

D: facteur d'amplification dynamique moyen.
 Il est fonction de la catégorie du site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure T.

D. Estimation de la période fondamentale de la structure :

Selon le RPA 99/2003(article 4.2.4), la période empirique peut être calculée de deux manières :

$$\checkmark$$
 T = C_T * $(h_N)^{3/4}$ avec :

 h_N : la hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau. $\Rightarrow h_N = 27.54$ m.

 $C_{\scriptscriptstyle T}$: Coefficient fonction du système de contreventement, du type de remplissage.

$$\Rightarrow$$
 $C_T = 0.05$ (tableau 4.6 du RPA 99/2003). D'où : T = 0.601 s.

$$\checkmark \quad T = 0.09. \frac{h_N}{\sqrt{L}}.$$

D : est la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

On prend la plus petite valeur pour T.

$$\begin{cases} L_x = 23.1m \\ L_y = 9.3 \; m \end{cases} \Rightarrow \begin{cases} T_x = 0.51 \; sec \\ T_y = 0.81 \; sec \end{cases} ; \begin{cases} \min(0.51; 0.601) = 0.51 sec \\ \min(0.81; 0.601) = 0.601 sec \end{cases}$$

Après majoration de 30% $\begin{cases} T_x = 0.66 \text{ sec} \\ T_y = 0.78 \text{ sec} \end{cases}$

Valeur de T_1 et T_2 :

 T_1 , T_2 : périodes caractéristiques associées à la catégorie de site (RPA99/2003 tableau 4.7)

Sol meuble
$$\Rightarrow$$
 site S₃ \Rightarrow $\begin{cases} T_1 = 0.15 \text{sec} \\ T_2 = 0.50 \text{sec} \end{cases}$

$$D = 2.5 \, \eta \, \left(\frac{T_2}{T}\right)^{2/3}$$
, $T_2 < T < 3 \, sec$

Tel que :
$$\eta = \sqrt{\frac{7}{(2+\xi)}}$$
 facteur de correction d'amortissement.
 $\eta = 0.76$

• ξ (%) est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de remplissage (RPA 99/2003 tableau 4.2).

On prend : $\xi = 10 \%$.

Le tableaux ci-dessous montre comment choisir la période de calcul de V_{MSE}

ANNEXE Mr BELAZOUGUI

Si:	La période choisie pour le calcul du facteur D EST :
${f T}$ analytique $<$ T empirique	$\mathbf{T} = \mathbf{T}_{ ext{ empirique}}$
$T_{\text{empirique}} < T_{\text{analytique}} < 1,3 T_{\text{empirique}}$	$\mathbf{T} = \mathbf{T}$ analytique
1, $3T_{\text{empirique}} < T_{\text{analytique}}$	T= 1,3T empirique

On est dans le 3ème intervalle :

Sens x-x:

$$1.3T_{\text{empirique}} < T_{\text{analytique}}$$
 \longrightarrow $1.3T_{\text{empirique}} = 0.66 \text{ sec} < 0.99 \text{sec}$

 $D_X = 1,57$

Sens y-y:

$$1.3T_{\text{empirique}} < T_{\text{analytique}}$$
 \longrightarrow $1.3T_{\text{empirique}} = 0.78 \text{sec} < 0.92 \text{sec}$

 $D_{Y}=1,41$

Donc

$$V_x = 1381.35 \, KN$$

 $V_Y = 1240.58 \, KN$

III.1.2. Méthodes d'analyse dynamique :

modale spectrale :

cette méthode peut être utilisée dans tout les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

A. principe:

Il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul.

Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

B. les hypothèses:

- 1. les masses sont supposées concentrées au niveau des nœuds principaux (nœuds maîtres).
- 2. seuls les déplacements horizontaux des nœuds sont pris en compte.
- 3. le nombre de mode à prendre en compte est tel que la somme des taux de participation des masses modales atteint au moins 90% de la masse globale de la structure.

III.1.2.1. Modélisation de la structure :

La forme architecturale de la structure à étudier, nous à pousser à une recherche d'un bon comportement dynamique qui peut résister aux différentes sollicitations.

La hauteur du bâtiment dépasse les 20 mètres, donc selon RPA99/2003 (article 3.4) on doit introduire des voiles

On a opté à cette disposition :

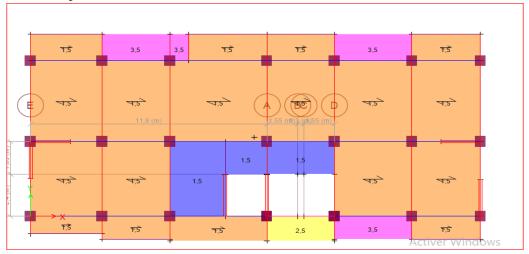


Figure III.1 . Plans de dispositions des voiles

Période de vibration et taux de participation des masses modales:

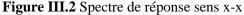
Tableau III.2: Période de vibration et taux de participation des masses modales

				SUM	SUM
mode	periode	UX	UY	UX	UY
1	0,991	0,7208	0,0055	0,7208	0,0055
2	0,924	0,0046	0,7094	0,7254	0,7149

3	0,85	0,011	0,0007	0,7364	0,7155
4	0,299	0,1379	0,002	0,8743	0,7175
5	0,261	0,0019	0,1352	0,8762	0,8527
6	0,247	0,0006	0,0144	0,8768	0,8671
7	0,153	0,0493	0,0007	0,9261	0,8678
8	0,129	0,0022	0,0024	0,9283	0,8702
9	0,124	0,0005	0,0376	0,9288	0,9078

On constate au mode 1 translation selon x, tx=0,991s au mode2 translation selon y, ty=0,924s

La participation massique modale atteins les 90% de la masse totale du bâtiment au 9 modes selon X et y


III.1.2. 2 Analyse spectrale:

Spectre de réponse : La réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ξ) , et de la pulsation (ω) . Donc, pour des accélérogrammes donnés, si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est nommé spectre de réponse, et qui aide à faire une lecture directe des déplacements maximaux d'une structure. L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25 A \left[1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1 \right) \right] \dots & 0 \le T \le T_1 \\ 2.5 \eta (1.25 A) \frac{Q}{R} \dots & T_1 \le T \le T_2 \end{cases} \\ 2.5 \eta (1.25 A) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} \dots & T_1 \le T \le 3 \text{ sec} \end{cases}$$

$$2.5 \eta (1.25 A) \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} \frac{Q}{R} \dots & T \ge 3 \text{ sec} \end{cases}$$

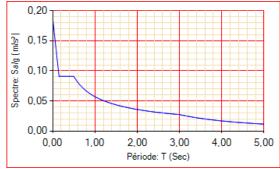
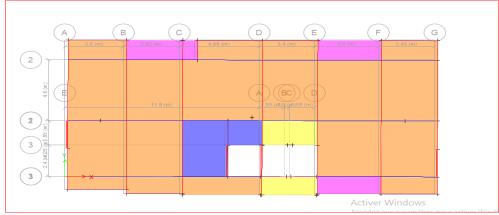



Figure III.3 Spectre de réponse sens y-y

III.1.2.3. Analyse du comportement de la structure :

Analyse des résultats: la participation modale du premier mode suivant (x) est prépondérante, un mode de translation suivant cette direction.

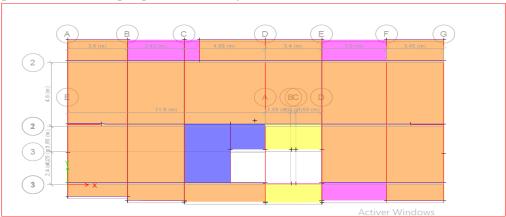

On remarque aussi que la période fondamentale de vibration (T=0.99s) est supérieur à celle calculée par les formules empiriques du RPA majorées de 30%.(T=0.66s).

Figure III.4 Mode 1 de déformation(translation suivant l'axe x-x)

Analyse des résultats : la participation modale du deuxième mode suivant (y) est prépondérante, un mode de translation suivant cette direction.

On remarque aussi que la période fondamentale de vibration(T=0.92s) est supérieur à celle calculée par les formules empiriques du RPA majorées de 30%.(T=0.78s).



Figure III.5 Mode 2 de déformation(translation suivant l'axe y-y)

Analyse des résultats : la participation modale du deuxième mode suivant (y) est prépondérante, un mode de translation suivant cette direction.

On remarque aussi que la période fondamentale de vibration(T=0.92s) est superieur à celle calculée par les formules empiriques du RPA majorées de 30%.(T=0.78s).

Mode(3)

Figure III.6 Mode 3 de déformation(rotation suivant l'axe z-z)

III.2 Justification de l'interaction voile-portique :

Les tableaux(III.3) et (III.4) illustrent respectivement la justification de l'interaction sous charges horizontales et verticales. L'article (3.4.A.4.a) du RPA99/version2003 stipule que pour les constructions à contreventement mixte, les voiles doivent reprendre au plus 20% des sollicitations dues aux charges verticales. Les charges horizontales sont reprises conjointement par les voiles et les portiques qui doivent reprendre au moins 25% de l'effort tranchant d'étage.

III.2.1. Sous charges verticales:

-Pourcentage des charges verticales reprises par les portiques :
$$\frac{\sum F_{portiques}}{\sum F_{portiques}} \ge 80\%$$

-Pourcentage des charges verticales reprises par les voiles :
$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \leq 20\%$$

Les résultats de l'interaction sous charges verticales sont présentés sur le tableau suivant :

			<u> </u>	
niveaux	Les charges rep	rises (KN)	Pourcentag	ges repris
	Portiques	Voiles	Portiques %	Voiles %
1	27108,43	5321,739	83,59016	16,4098428
2	23980,89	4803,932	83,31089	16,6891121
3	20774,7	4322,331	82,77752	17,2224808
4	17691,16	3758,406	82,47794	17,522061
5	14581,68	3220,753	81,90836	18,0916436
6	11593,54	2603,607	81,66106	18,3389409
7	8599,05	1993,285	81,18182	18,8181849
8	5676,42	1343,39	80,86287	19,1371259
9	2861,596	686,3413	80,6552	19,3447963

Tableau III.3: Interaction sous charges verticales

D'après le tableau IV.2, on voit bien que l'interaction sous charges verticales est vérifiée.

III.2.2. Sous charges horizontales:

-Pourcentage des charges horizontales reprises par les portiques
$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 25\%$$

- Pourcentage des charges horizontales reprises par les voiles :
$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 75\%$$

Les résultats de l'interaction sous charges horizontales sont présentés sur le tableau suivant :

Niveaux		SENS	(X.X)			SEN	NS(Y.Y)	
	Portiques	Voiles	Portiques	Voiles %	Portique	Voiles	Portiques %	Voiles %
	(KN)	(KN)	%		s (KN)	(KN)		
1								
	496,6733	609,4894	44,900565	55,09944	362,4966	742,8952	32,793495	67,20651
2	534,6478	484,9989	52,434613	47,56539	471,8837	646,0323	42,211016	57,78898
3	551,9424	384,4887	58,941058	41,05894	483,1485	584,3449	45,260092	54,73991
4	558,1014	308,24	64,420493	35,57951	508,1285	491,6001	50,826644	49,17336
5	484,821	296,0429	62,087772	37,91223	467,5152	439,8051	51,52703	48,47297
6	455,6423	231,5601	66,303945	33,69606	446,7882	345,1828	56,414717	43,58528
7	393,7667	178,2978	68,83257	31,16743	353,2713	295,3554	54,464502	45,5355
8	285,7609	138,6486	67,33141	32,66859	295,5424	194,8634	60,264866	39,73513
9	290,6214	84,4212	77,490237	22,50976	265,1368	95,3422	73,551247	26,44875

Tableau III.4: Interaction sous charges horizontales

Les portiques reprennent plus 25% de l'effort tranchant d'étage dans tous les niveaux dans la direction x-x et y-y L'interaction horizontale est donc vérifiée dans les deux sens . les voiles reprend moins 75%. de l'effort tranchant d'étage dans tous les niveaux dans la direction x-x et y-y.

III.3. Vérification de la résultante de la force sismique :

Selon **RPA99V2003** (**Article 4.3.6**), la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminées par la méthode statique équivalente.

Tableau III.5: Vérification de l'effort tranchant à la base.

Résultats des forces	V_{dvn} (KN)	V_{sta} (KN)	observation
sismiques		sia ·	
Sens x-x	1034.04	1105.08	Non vérifié
Sens y-y	1060.16	992.46	vérifié

Dans le sens XX pour Ex il faut augmenter tous les paramètres de la réponse de

L'effort tranchant a la base est vérifié

1,069

III.4. Vérification de l'effort normale réduit :

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$\nu = \frac{N_d}{B_c.f_{c28}} < 0.30 \quad \text{(Article7.1.3.3) RPA99V2003.}$$

Avec:

 N_d : Effort normal de calcul s'exerçant sur une section de béton.

 B_c : Aire (section brute) de cette dernière

 f_{cj} : Résistance caractéristique du béton = 25 MPa

Tableau III.6	Vérification	de l'effort i	normal réduit
---------------	--------------	---------------	---------------

Niveaux	Las	section adop	tée (cm²)	N (KN)	• >	observation	
Mireuna	b (cm)	h (cm)	aire (cm²)	14 (1114)	\cup \cup	observation	
RDC	55	55	3025	2300.16	0.30415	Non vèrifièe	
1	50	55	2750	2005.71	0.29174	vérifiée	
2	50	55	2750	1643.04	0.13899	vérifiée	

L effort normal réduit n'est pas vérifié en RDC donc on augmente la section des poteaux

Tableau III.7Vérification de l'effort normal après changement de section

Niveaux	Las	section adop	otée (cm²)	N (KN)		observation
Niveuux	b (cm)	h (cm)	aire (cm²)	IV (MIV)	U	ooservation
RDC	55	60	3300	2370.06	0.287	vérifiée
1	55	60	3300	2070.30	0.251	vérifiée
2	55	55	3025	1699.36	0.225	vérifiée
3	55	55	3025	1338.63	0.177	vérifiée
4	50	55	2750	1011.33	0.147	vérifiée
5	50	55	2750	727.07	0.106	vérifiée
6	50	50	2500	489.94	0.036	vérifiée
7	45	50	2250	297.08	0.024	vérifiée
8	45	45	2025	152,35	0,014	vérifiée

III.5. Justification vis-à-vis de déplacement : (Article 4.4.3) RPA 99/V2003.

Le déplacement horizontal à chaque niveau (k) de la structure est calculé comme suit :

 $\delta_{k} = R \times \delta_{ek}$ Formule (4-19).

 $\delta_{ek}\,$: Déplacement dû aux forces sismiques F_i (y compris l'effet de torsion).

R: coefficient de comportement (R = 5).

Le déplacement relatif de niveau (k) par rapport au niveau (k-1) est égal à :

$$\Delta_k = \delta_k - \delta_{k-1}$$
 Formule (4-20).

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1% de la hauteur de l'étage à moins qu'il ne puisse être prouvé qu'un plus grand déplacement relatif peut être toléré (**Article 5.10**) **RPA99/2003.**

Les résultats sont résumés dans le tableau ci- après

Niveau Sens X - X δek (mm) δk (mm) δk-1 (mm) $\Delta k (mm)$ hk (mm) $\Delta k/hk$ (%) **Observation** 0.008 0,0016 0.008 3060 2,6144E-06 vérifiée 2 0,0049 0,0245 0,008 0,0165 3060 5,3922E-06 vérifiée 3 0,0091 0,0455 0,0245 0,021 3060 6,8627E-06 vérifiée 4 0,0135 0,0675 0,0455 0,022 3060 7,1895E-06 vérifiée 5 0,09 0,0675 0,0225 3060 7,3529E-06 0,018 vérifiée 6 0,0222 0,111 0,09 0,021 3060 6,8627E-06 vérifiée 7 0,026 0,13 0,111 0,019 3060 6,2092E-06 vérifiée 8 0,0293 0,1465 0,13 0,0165 3060 5,3922E-06 vérifiée 9 0,0321 0,1605 0,1465 0,014 3060 4,5752E-06 vérifiée

Tableau III. 8: Vérification des déplacements relatifs (sens x-x).

Tableau III. 9: Vérification des déplacements relatifs (sens y-y).

Niveau				Sens Y - Y			
	δek (mm)	δk (mm)	δk-1	Δk (mm)	hk (mm)	Δk/hk (%)	Observation
			(mm)				
1	0,0003	0,0015	0	0,0015	3060	4,902E-07	vérifiée
2	0,0009	0,0045	0,0015	0,003	3060	9,8039E-07	vérifiée
3	0,0017	0,0085	0,0045	0,004	3060	1,3072E-06	vérifiée
4	0,0026	0,013	0,0085	0,0045	3060	1,4706E-06	vérifiée
5	0,0035	0,0175	0,013	0,0045	3060	1,4706E-06	vérifiée
6	0,0043	0,0215	0,0175	0,004	3060	1,3072E-06	vérifiée
7	0,005	0,025	0,0215	0,0035	3060	1,1438E-06	vérifiée
8	0,0057	0,0285	0,025	0,0035	3060	1,1438E-06	vérifiée
9	0,0062	0,031	0,0285	0,0025	3060	8,1699E-07	vérifiée

D'après le tableau ci-dessus nous constatons que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage, ce qui signifie que la condition est vérifiée.

III.6. Justification vis-à-vis de l'effet P-Δ: RPA99/V2003 (Article 5.9).

Les effets de second ordre (ou effet $P-\Delta$) peuvent être négliges dans le cas des bâtiments où la condition suivante est satisfaite à tous les niveaux.

$$\theta = \frac{P_k \cdot \Delta_k}{V_k \cdot h_k} \le 0.10 \text{ Formule (5.6).}$$

P_k: Poids total de la structure et des charges d'exploitation associés au-dessus du niveau (k).

$$P_k = \sum_{i=k}^n (W_{Gi} + \beta W_{Qi})$$

 V_k : Effort tranchant d'étage au niveau k.

 Δ_k : Déplacement relatif du niveau k par rapport au niveau k-1.

 h_{k} : Hauteur d'étage (k).

Étude dynamique Chapitre III

Si $0.10 < \theta_k < 0.20$: les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1er ordre par le facteur: $\frac{1}{(1-\theta_k)}$

Si $\theta_{k} > 0.20$: La structure est potentiellement instable et doit être redimensionnée.

La condition $\theta \le 0.1$ est satisfaite, d'où les effets de second ordre ou effet P- Δ peuvent être négligés. Les résultats sont résumés dans le tableau ci- après :

Niveau Sens X - X Pk (kn) Vk (kn) hk (mm) θ Observation $\Delta k (m)$ 29435,1312 1106,1627 0,008 3060 6,9569E-05 vérifiée 1 2 1019,6467 0,0165 26134,4692 3060 0,00013821 vérifiée 3 0,021 22796,3137 936,4311 3060 0,00016707 vérifiée 4 0,022 19498,481 866,3414 3060 0,00016181 vérifiée 5 0,0225 16200,8664 780,8639 3060 0,00015255 vérifiée 0,021 12945,1113 687,2024 3060 6 0,00012928 vérifiée 7 0,019 9689,6949 572,0645 3060 0,00010517 vérifiée 8 0,0165 3060 6473,6871 424,4095 8,2249E-05 vérifiée 9 0,014 3333,6731 375,0426 3060

Tableau. III.10: Vérification des effets $P-\Delta(sens x-x)$.

Tableau III.11: Vérification des effets P- Δ (sens y-y)

4,0668E-05

vérifiée

Niveau						
			Sens Y - Y			
	Δk (mm)	Pk (kn)	Vk (kn)	hk (mm)	θ	Observation
1	0,0015	29435,1312	1105,3918	3060	1,3053E-05	Vérifiée
2	0,003	26134,4692	1117,916	3060	2,2919E-05	Vérifiée
3	0,004	22796,3137	1067,4934	3060	2,7915E-05	Vérifiée
4	0,0045	19498,481	999,7286	3060	2,8682E-05	Vérifiée
5	0,0045	16200,8664	907,3203	3060	2,6258E-05	Vérifiée
6	0,004	12945,1113	791,971	3060	2,1367E-05	Vérifiée
7	0,0035	9689,6949	648,6267	3060	1,7087E-05	Vérifiée
8	0,0035	6473,6871	490,4058	3060	1,5099E-05	Vérifiée
9	0,0025	3333,6731	360,479	3060	7,5555E-06	Vérifiée

On remarque que la condition $\theta \le 0.1$ est satisfaite, donc l'effet P- Δ

Conclusion:

L'étude au séisme de notre structure s'est faite par la méthode dynamique suite à non vérification des conditions d'application de la méthode statique équivalente. La modélisation de notre structure s'est donc faite à l'aide du logiciel ETABS 2016

Les voiles présentent une grande résistance vis-à-vis des forces horizontales.

Après plusieurs essais, nous sommes arrivés à une disposition qui nous donne un bon comportement dynamique de la structure et qui satisfait l'interaction (voile- portique) vis-à-vis le RPA 99/version 2003. Nous avons vérifié les déplacements horizontaux ainsi que l'effet du second ordre (effet P- Δ).

Chapitre IV: Ferraillage des éléments de contreventement

Introduction:

La superstructure est la partie supérieure du bâtiment, située au-dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (Poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé, leur rôle est d'assuré la résistance et la stabilité de la structure avant et après le séisme, cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

IV.1. Étude des poteaux :

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les sollicitations (efforts normaux et moments fléchissant) à la base de la structure. Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel ETABS 2016 dans l'ordre suivant :(RPA99/2003).

✓ 1.35 G + 1.5 Q.....(1) ✓ G + Q....(2) ✓ G + Q + E....(3) ✓ G+Q-E....(4) ✓ 0.8 G +E....(5) ✓ 0.8G-E....(6)

Les armatures sont déterminées suivant les sollicitations suivantes :

- 1. Effort normal maximal et le moment correspondant : $(N_{\text{max}} \rightarrow M_{corr})$
- 2. Effort normal minimal et le moment correspondant : $(N_{\min} \rightarrow M_{corr})$
- 3. Moment maximum et effort normal correspondant : $(\mathbf{M}_{\max} \to N_{corr})$

IV.1.1. Recommandations du RPA99/2003:

- A. Les armatures longitudinales : (Article 7.4.2.1)
- ✓ Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- ✓ Leur pourcentage minimal sera de : $0.8 \% \times b_{1} \times h_{1}$ en zone II
- ✓ Leur pourcentage maximal sera de :
 - 4 % en zone courante.
 - 6 % en zone de recouvrement.
- ✓ Le diamètre minimum est de 12mm.
- \checkmark La longueur minimale des recouvrements est de 40ϕ en zone IIa.
- ✓ La distance entre les barres verticales dans une face du poteau ne doit pas dépasser : 25cm en zone (II_a).
- ✓ Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).

La zone nodale est constituée par le nœud poutres-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre sont données dans la figure (V.1).

h'= Max (
$$\frac{h_e}{6}$$
; b_1 ; h_1 ; 60 cm)
 $l'=2\times h$

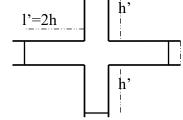


Figure. IV.1 Zone nodale.

 h_a : La hauteur d'étage.

 b_1, h_1 : Dimensions de la section transversale du poteau.

Les valeurs numériques relatives aux prescriptions du RPA99/V2003 sont apportées dans le tableau suivant :

B. Armatures transversales: (Article 7.4.2.2).

Les armatures transversales des poteaux sont calculées à l'aide de la formule : $\frac{A_t}{t} = \frac{\rho_a \times V_u}{h_1 \times f_e}$

 $\checkmark V_u$: L'effort tranchant de calcul.

 $\checkmark \quad h_1$: Hauteur totale de la section brute.

 \checkmark f_e : Contrainte limite élastique de l'acier d'armature transversale.

- $\sqrt{\rho_a}$: Coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant, il est pris égal à 2,5 si l'élancement géométrique " λ_g " dans la direction considérée est supérieur ou égal à 5 et à 3,75 dans le cas contraire.
- \checkmark t: L'espacement des armatures transversales dont la valeur est déterminé dans la formule précédente ; par ailleurs la valeur max de cet espacement est fixée comme suit :
 - **Dans la zone nodale :** $t \le Min (10\phi_1, 15 \text{ cm})$. En zone IIa.
 - **Dans la zone courante :** $t' \le 15\phi_l$. En zone IIa.

Où : ϕ_l est le diamètre minimal des armatures longitudinales du poteau.

La quantité d'armatures transversales minimales :

 $\frac{A_t}{t.b_1}$ En % est donnée comme suit :

$$A_t^{\min} = 0.3\% \ (t \times b_1) \ si \lambda_g \ge 5$$

$$A_t^{\min} = 0.8\% \ (t \times b_1) \ si \lambda_g \le 3$$

 $si: 3 < \lambda_g < 5$ Interpoler entre les valeurs limites précédentes.

 λ_{g} : est l'elencement géométrique du poteau

 $\lambda_g = \left(\frac{l_f}{a} \text{ ou} \frac{l_f}{b}\right)$; Avec a et b, dimensions de la section droite du poteau dans la direction de

déformation considérée, et l_f : longueur de flambement du poteau.

- Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de 10ϕ , minimum.
- Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants (φ cheminées > 12 cm) pour permettre une vibration correcte du béton sur toute la hauteur des poteaux.

IV.1.2. Les sollicitations dans les poteaux :

	Tableau IV.1 : Les sollicitations dans les poteaux.												
Niveaux	comb	Mmax, N _{corr}		comb	Nmax, M _{corr}		comb	N _{mii}	n, M _{corr}				
		M(KN.m)	N (KN)		N (KN)	M(KN.m)		N(KN)	M(KN.m)				
s sol RDC, et 1	ELA	95.42	1265.91	ELU	2444.63	16.42	ELA	396.071	18.01				
2 et 3	ELA	100.99	442.30	ELU	1893.75	47.95	ELA	70.64	25.16				
4 et 5	ELA	82.01	938.30	ELU	1349.46	52.84	ELA	6.40	25.84				
6	ELA	72.69	421.96	ELU	811.99	51.23	ELA	32.78	15.94				
7	ELA	58.21	429.2	ELU	545.11	53.53	ELA	0.45	8.14				
8	ELA	70.01	179.26	ELU	279.94	61.43	ELA	17.8	7.36				

IV.1.3.Ferraillage:

IV.1.3.1. Ferraillage des poteaux

Le ferraillage des poteaux se fait à la flexion composée

- > Exemple de calcul : poteau du RDC (60×55) cm2 :
 - A. Armatures longitudinales
 - B. Données:
 - C. N_{max}→M_{cor}
 - D. Soit: N_{MAX}= 2444.63 KN; M_{corres}= 16.42 KN.m
 - E. b = 55 cm; h = 60 cm; d = 57 cm;
 - F. A L ELU : $\gamma_b = 1.5$ et $\gamma_s = 1.15$
 - G. $e_G = \frac{M}{N} = 0.0067 \ m < \frac{h}{2} = 0.30 \ m \Longrightarrow$ le centre de pression est à l'intérieure de la section.
 - H. N est un effort de compression et le centre de pression est à l'intérieure de la section du béton, donc la section est partiellement comprimée, avec la condition suivante :
 - I. $N_u(d-d') M_{UA} \le (0.337h 0.81d')b \ h \ f_{bu}$
 - J. On a:

K.
$$M_{UA} = M_{UG} + N_u \left(d - \frac{h}{2} \right) = 16.42 \times 10^{-3} + 2444.63 \times 10^{-3} \left(0.57 - \frac{0.6}{2} \right)$$

- L. $M_{UA} = 0.676 \text{ MN. m}$
- M. $N_{\nu}(d-d') M_{IIA} = 2444.63 \times 10^{-3}(0.57 0.03) 0.676 = 0.644$ MN.m
- N. $(0.337h 0.81d')b \ h \ f_{bu} = (0.337 \times 0.6 0.81 \times 0.03) \times (0.55) \times (0.60) \times 14.2 = 0.833 \ \text{MN.m}$
- O. Donc:
- P. $0.644 < 0.833 \Rightarrow$ Le calcul se fait par assimilation à la flexion simple avec :

Q.
$$\mu_{bu} = \frac{M_{UA}}{bd^2 f_{bu}} = \frac{0.676}{0.55 \times (0.57)^2 \times 14.2} = 0.266 > 0.186 \implies pivot B \implies A' = 0;$$

R.
$$f_{st} = \frac{f_e}{v_s} = 348 \, MPa$$

S.
$$\begin{cases} \alpha = 1.25 \left[1 - \sqrt{1 - 2\mu_{bu}} \right] = 0.394 \\ z = d(1 - 0.4\alpha) = 0.48 \ m \end{cases} \Rightarrow A_1 = \frac{M_{UA}}{z \times f_{st}} = 40.46 \ cm^2$$

T. On revient à la flexion composée :

U.
$$A = A_1 - \frac{N_u}{f_{st}} = -29.77 \ cm^2$$

V. Donc, on prend A = 0

Donc, on prend A = 0

Les résultats des ferraillages adoptés pour les poteaux sont résumés dans le tableau suivant :

Tableau IV.2: Sollicitations dans les poteaux

Niveaux	Section du poteau (cm²)	$\begin{array}{c} A_{min} \\ RPA \\ (cm^2) \end{array}$	A _{cal} (cm ²) (Socotec)	Nombre de barres	A _{adopté} (cm ²)
s sol RDC, et 1	55*60	26.4	0	4T16 + 12T14	26.51
2 et 3	55*55	24.2	0.29	4T16 + 12T14	26.51
4 et 5	50*55	22	1.16	4T16 + 12T14	26.51
6	50*50	20	0.42	16T14	24.63
7	45*50	18	0.43	12T14	18.47
8	45*45	16.2	0.62	12T14	18.47

B .Armatures transversales

Les armatures transversales sont déterminées grâce aux formules du RPA, Les résultats de calcul sont donnés sur le tableau suivant :

Tableau IV.3: Armatures transversales dans les poteaux

Niveaux	В	ϕ_l^{min}	$l_f(c)$	λ_{q}	V _u (K	S _t (S _t (zone	A_t^{calcul}	A_t^{min}	$A_t^{adopt\acute{e}}$ (cm
	(cm ²)	(c	m)	J	N)	zone	Courante	(cm ²)	(cm ²)	2)
		m)				nodale)(cm)			,
)(c				
s sol	55*60	1.4	1.64	2.7	41.91	10	15	0.98	4.5	6HA10=4.7
			5	4						1
RDC,et1	55*60	1.4	1.82	3.0	84.50	10	15	1.98	4.5	6HA10=4.7
			7	4						1
2 et 3	55*55	1.4	1.82	3.3	85.51	10	15	2.40	4.12	6HA10=4.7
			7	2						1
4 et 5	50*55	1.4	1.82	3.3	73.43	10	15	1.87	4.12	6HA10=4.7
			7	2						1
6	50*50	1.4	1.82	3.6	54.15	10	15	1.52	3.75	4HA10=3.1
			7	5						4
7	45*50	1.4	1.82	3.6		10	15	1.14	3.75	4HA10=3.1
			7	5	40.82					4
8	45*45	1.4	1.82	4.0	51.61	10	15	1.70	3.37	4HA10=3.1
			7	6						4

Conformément au RPA99/2003 et au BAEL 91, le diamètre des armatures transversales doit vérifier la

condition suivante : $\phi_t \ge \frac{\phi_t^{\text{max}}}{3}$

Ce qui est vérifié pour notre cas, puisque nous avons $\phi_t \ge \frac{16}{3} = 5.33 mm$.

IV.1.4. Vérifications

A. Vérification au flambement (effort normal ultime) :

• Exemple de calcul

$$h = 2.61m \ et \ N_{\text{max}} = 2444.63 KN.$$

$$N_{U} = \alpha \left[\frac{B_{r} \times f_{c28}}{0.9 \times \gamma_{b}} + A_{S} \times \frac{f_{e}}{\gamma_{S}} \right].$$

Tel que:

 α : Coefficient fonction de l'élancement λ

Br: Section réduite du béton.

 A_s : Section d'acier comprimée prise en compte dans le calcul.

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2(\frac{\lambda}{35})^2} & \text{.....} & \lambda < 50\\ 0.6 \times (\frac{\lambda}{35})^2 & \lambda = 3.46 \frac{l_f}{b} \end{cases}$$

 I_f : Longueur de flambement (0.7 * l_0 = 1.827 m), l_0 : hauteur libre d'étage = (h - l_0) hauteur libre d'étage = (h - l_0)

$$\lambda = 3.46 \frac{1.82}{0.55} = 14.6$$

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{14.64}{35}\right)^2} = 0.821.$$

$$B_r = (a - 2)(b - 2) = (a - 2)(b - 2)$$

$$= (55 - 2)(60 - 2) = 0.3074 \, m^2$$

$$N_U = 0.821 \times \left[\frac{0.3074 \times 25}{0.9 \times 1.5} + 26.51 \times 10^{-4} \times \frac{400}{1.15}\right]$$

$$\Rightarrow N_U = 5430.65KN$$

$$N_{\text{max}} = 2444.63KN < N_U \rightarrow Pas \ de \ risquede \ flambement.$$

Les résultats des calculs effectués sont représentés dans le tableau suivant :

Tableau IV.4 : Justification de l'effort normal ultime et l'effort normal maximum

Niveaux	Section	L_0	l_{f}	λ	α	As	B_{r}	N _{max}	N _u	observation
	(cm ²)	(m)	(m)			(cm ²)	(cm ²)	(KN)	(KN)	
s sol	55*60	2.35	1.645	10.34	0.835		3074	2594.56	5521.09	vérifiée
						26.51				
RDC, 1	55*60	2.61	1.827	14.64	0.821	26.51	3074	2444.63	5430	vérifiée
2 et 3	55*55	2.61	1.827	14.64	0.821	26.51	2809	1893.75	5026.23	vérifiée

4 et 5	50*55	2.61	1.827	14.64	0.821	26.51	2544	1349.46	4623.94	vérifiée
6	50*50	2.61	1.827	12.59	0.829	24.63	2304	811.99	4241.7	vérifiée
7	45*50	2.61	1.827	12.59	0.829	18.47	2064	545.11	3699.35	vérifiée
8	45*45	2.61	1.827	13.99	0.824	18.47	1849	279.94	3347.44	vérifiée

<u>Commentaire</u>: On voit bien que $N_{max} < N_u$ pour tous les niveaux, donc il n'y pas de risque de flambement.

B. Vérification des contraintes de compression :

C.
$$e_{G} = \frac{M}{N} = \frac{12.06}{1787.49} = 0.006 < \frac{60}{6} = 10 \text{ cm section entierement comprimé}$$

$$\begin{cases} \sigma_{b1} = \frac{N_{ser}}{S} + \frac{M_{ser}}{I_{gg}} v \leq \bar{\sigma}_{bc} = 15 \text{ MPa} \\ \sigma_{b2} = \frac{N_{ser}}{S} - \frac{M_{ser}}{I_{gg}} \dot{v} \leq \bar{\sigma}_{bc} = 15 \text{ MPa} \end{cases}$$

$$\sigma_{b1} = \frac{1787.49}{0.369} + \frac{63.89}{0.0124} 0.329 = 6.53 \leq \bar{\sigma}_{bc} = 15 \text{ MPa}$$

$$\sigma_{b2} = \frac{1787.49}{0.369} - \frac{63.89}{0.0124} 0.324 = 3.14 \leq \bar{\sigma}_{bc} = 15 \text{ M}$$

$$I_{gg} = \frac{b}{3} \times (v^3 + v^3) + 15 \times A_s \times (v - d')^2 + 15 \times A_s \times (d - v)^2$$

$$A' = 0 \Rightarrow I_{gg} = \frac{b}{3} \times (v^3 + v^{'3}) + 15 \times A_s \times (d - v)^2$$

$$v = \frac{1}{B} \times (\frac{b \times h^2}{2} + 15 \times A_s \times d)$$

$$v' = h - v$$
 Et

$$B = b \times h + 15 \times A_{c}$$

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau IV.5 : Vérification des contraintes dans le béton

Niveaux	Section	d	As	v	v'	I_{gg}	N_{ser}	M_{ser}	σ_1	σ_2
Tireaux	(cm ²)	(cm)	(cm ²)	(m)	(m)	(m4)	(KN)	(KN.m)	(MPa)	(MPa)
S SOL	60*55	57	26 ,51	0.329	0.27	0.012	1891.44	7.58	6.53	3.14
1 ,RDC	60*55	57	26 .51	0.329	0.27	0.012	1787.49	12.06	6.53	3.14
2,3	55*55	52	26 .51	0.303	0.247	0.010	1384.80	35.20	6.12	2.35
4 ,5	55*50	52	26.51	0.303	0.247	0.0089	986.97	38.78	5.39	1.30
6	50*50	47	24 .63	0.279	0.220	0.0673	594.22	37.60	3.63	2.13
7	50*45	47	18 .47	0.247	0.226	0.0064	399.24	39.27	2.48	1.40
8	45*45	42	18.47	0.282	0.167	0.0045	205 .51	45.27	2.03	0.80

On voit bien que $\sigma_{bc} < \sigma_{bc}$ dans les poteaux pour tous les niveaux, donc la contrainte de

Compression dans le béton est vérifiée.

C .Vérification aux des sollicitations tangentes Selon leRPA99/2003 (Article 7.4.3.2), la contrainte de cisaillement conventionnelle de calcul dans le béton τ_{bu} sous combinaison sismique doit être inférieure ou égale à la valeur limite suivante :

$$\tau_{bu} \leq \overline{\tau}_{bu} \quad \text{Tel que}: \ \overline{\tau}_{bu} = \rho_{d} \times f_{c28} \ \text{avec}: \rho_{d} = \begin{cases} 0.075 \ si \ \lambda_{g} \geq 5 \\ 0.04 \ si \ \lambda_{g} < 5 \end{cases}$$

$$\lambda_g = \frac{l_f}{a} ou \, \lambda_g = \frac{l_f}{b}$$

 $\tau_{bu} = \frac{v_u}{b*d}$: La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique.

Les résultats de calculs effectués sont représentés dans le tableau suivant :

Tableau IV.6: Vérification des sollicitations tangentes

Niveaux	Section	l_{f}	λ_g	ρ_d	d	$V_{\rm u}$	$ au_{bu}$	$ar{ au}_{bu}$
	(cm ²)	(m)			(cm)	(KN)	(MPa)	(MPa)
S SOL	60×55	1.645	2.74	0.04	57	41.91	0.13	1
1 ,RDC	60×55	1.827	3.04	0.04	57	84.50	0.26	1
2,3	55×55	1.827	3.32	0.04	52	85.51	0.29	1
4 ,5	55×50	1.827	3.32	0.04	52	73.43	0.28	1
6	50×50	1.827	3.65	0.04	47	54.15	0.23	1
7	50×45	1.827	3.65	0.04	47	40.82	0.19	1
8	45×45	1.827	4.06	0.04	42	51.61	0.27	1

Sollicitations tangentielles est vérifiée pour tous les étages

IV.2.1.Ferraillage des poutres :

IV.2.1 .1. Sollicitation de calculs :

Les sollicitations de calcul les plus défavorables sont représentées dans le tableau ci-dessous :

Tableau IV.7: Les sollicitations les plus défavorables dans les poutres principales et secondaires.

	Pot	ıtre principale		Poutre secondaire			
Planchers	M _{travée} (KN.m)	M _{appuis} (KN.m)	V(KN)	$M_{trav\acute{e}}(KN.m)$	$M_{appuis}(KN.m)$	V(KN)	
sous sol et RDC	82.21	92.67	89.07	64.39	82.63	112.57	
Habitations	124.14	136.39	130.50	86.90	124.03	167.39	
Terrasse	52.08	97.94	90.28	33.19	68.28	75.57	

V.2.1.2. Les armatures longitudinales :

Le ferraillage longitudinal calculé est celui obtenu par le logiciel ETABS 2016. Nous avons Retenu le ferraillage le plus défavorable pour chaque type de poutres de chaque niveau. Les résultats de ferraillage sont résumes dans le tableau suivant :

Tableau IV.8: Les armatures longitudinales dans les poutres principales.

Planchers	Type de	Section	Localisation	A	Amin	A adoptée
	poutres	(cm ²)		(cm ²)	(cm ²)	(cm ²)
	Principale	45×30	Appui	4.98	6.75	5 HA 14 = 7.7
Sous-sol et			Travée	6.61		5 HA 14= 7.7
RDC	Secondaire	40×30	Appui	5.17	5.25	5HA12 = 5.65
			Travée	6.76		5HA14 = 7.7

	Principale	45×30	Appui	7.72	6.75	6HA14 = 9.24
Habitations			Travée	8.54		6HA14 = 9.24
	Secondaire	40×30	Appui	7.14	5.25	5HA14 = 7.7
			Travée	10.62		3HA14 + 3HA16 =
						10.65
	Principale	45×30	Appui	3.10	6.75	5HA 14 =7.7
Terrasse			Travée	7.01		5 HA 14 = 7.7
	Secondaire	40×30	Appui	2.58	5.25	5HA12 = 5.65
			Travée	5.50		5 HA 12 = 5.65

! Longueur de recouvrement :

L_r≥40 Φ₁

- RPA/2003 Art (7.5.2.1).
- Φ_1 =16mm $\rightarrow L_r \ge 45 \times 1.6 = 72$ cm, on adopte: $L_r = 75$ cm.
- $\Phi_1 = 14$ mm $\rightarrow L_r \ge 45 \times 1.4 = 65$ cm, on adopte: $L_r = 65$ cm.
- $\Phi_1 = 12$ mm $\rightarrow L_r \ge 45 \times 1.2 = 54$ cm, on adopte: $L_r = 55$ cm.
- ❖ Pourcentage total maximum des aciers longitudinaux:
- ✓ En zone courante :

$$6HA14 = 9.42 \text{ cm}^2 < 4\% (30 \times 45) = 54 \text{cm}^2 \dots \text{Vérifiée.}$$

✓ En zone de recouvrement :

$$(6HA14 + 6HA14) = 9.42 + 9.42 = 18.84 \text{ cm}^2 < 6\% (30 \times 45) = 81 \text{ cm}^2 \dots \text{Vérifiée}$$

❖ Pourcentage total minimal des aciers longitudinaux:

$$0.5\%$$
 (b×h) = 6.75 cm² < 9.42 cm² Vérifiée.

IV.2.1.3.Les armatures transversales :

$$\phi \le \min\left(\phi_1; \frac{h}{35}; \frac{b}{10}\right)$$
 BAEL91 (articleH.III.3).

✓ Poutres principales :

$$\phi \le \min\left(1.4; \frac{45}{35}; \frac{30}{10}\right) \le 1.28 \Rightarrow \phi = 8mm$$

Donc on prend $\phi_t = 10mm \Rightarrow A_t = 4T10 = 3.14cm^2$ (un cadre et un étrier).

✓ Poutres secondaires :

$$\phi \le \min\left(1.6; \frac{40}{35}; \frac{30}{10}\right) \le 1.14 \Longrightarrow \phi = 8mm$$
.

Donc on prend $\phi_t = 8mm \Rightarrow A_t = 4T8 = 2.01cm^2$ (un cadre et un étrier).

Calcul des espacements des armatures transversales :

$$S_{t1} \le \frac{A_t \times f_e}{0.4 \times b} \Rightarrow S_{t1} \le 67cm$$

 $S_{t2} \le min(0.9 \ 0.43, 40cm) = 38.7 \ cm$ BAEL91 (Article H.III.3)

Selon le RPA 99/2003 (article 7.5.2.2):

- $S_t \le \frac{h}{2} = 22.5 cm$, On adopte un espacement de 15cm en zone courante.
- $S_t \leq min\left(\frac{h}{4}, 12\phi_l^{min}\right) = 11.25cm$. On adopte $S_t=10$ cm en zone nodale.

On adopte un espacement de 10cm en zone nodale sur une longueur de $l' = 2 \times h = 80cm$.

$$A_t^{\text{min}} = 0.003 \times S_t \times b = 0.003 \times 15 \times 45 = 2.025 cm^2$$

$$A_t = 3.14cm^2 > A_t^{\text{min}} = 1.55cm^2$$
 Condition vérifiée

IV.2.1.4. Vérifications à l'ELU:

A. Condition de non fragilité :

$$A_{min} = 0.23 \ b \ d \ \frac{f_{t28}}{f_e} = 1.55 cm^2$$
, Pour les poutres principales.

Donc la condition de non fragilité est vérifiée.

B . Vérification des contraintes tangentielles :

La vérification à faire vis-à-vis de la contrainte tangentielle maximale est celle relative à la fissuration peu nuisible: $\tau_{bu} = \frac{v_u}{b*d} \le \bar{\tau} = \min(3.33 \times f_{c28}; 5MPa) = 3.33MPa$, **BAEL91 (Article H.III).**

Tableau IV.9: Vérification des contraintes tangentielles.

Poutres	V _u (KN)	τ _u (MPa)	Observation
Principales	130.50	1.01	Vérifiée
Secondaires	84.086	1.4	Vérifiée

Commentaire : Pas de risque de cisaillement et cela pour tout type de poutre.

IV.2.1.5. Vérifications à l'ELS:

A . Etat limite de compression du béton :

Tableau IV.10 : Vérification de la contrainte limite de béton

Poutres	Localisation	M _{ser} (KN.m)	I (cm ⁴)	Y (cm)	σ_{bc} (MPa)	σ_{bc} (MPa)
Poutres	Appuis	13.64	141983.89	15.84	1.52	15
principales	Travées	62.44	141983.89	15.84	7.74	15

B. Vérification de la flèche:

Nous allons évaluer la flèche selon les règles du BAEL 91(Article B.6.5) et du CBA 93.

Si l'une des conditions ci-dessous n'est pas satisfaite la vérification de la flèche devient nécessaire :

$$\checkmark \quad \frac{h}{l} \ge \frac{1}{16} \tag{1}$$

$$\checkmark \quad \frac{h}{l} \ge \frac{M_t}{10 \times M_0} \tag{2}$$

$$\checkmark \quad \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \tag{3}$$

Faisons ces vérifications pour la poutre la plus défavorable.

$$\frac{h}{l} = \frac{45}{488} = 0.09 > \frac{1}{16} = 0.0625$$
 Condition vérifiée.

✓ Poutres principales :

Faisons ces vérifications pour la poutre la plus défavorable.

$$\frac{h}{l} = \frac{40}{488} = 0.09 > \frac{M_t}{10M_0} = 0.075...$$
Condition vérifiée.

IV.2.2 Vérification des zones nodales :

Dans le but de permettre la formation des rotules plastiques dans les poutres et non dans les poteaux, le *RPA99addenda2003 (Art.7.6.2)* exige que :

$$|M_n| + |M_s| \ge 1.25 \times |M_w| + |M_e|$$

Cependant cette vérification est facultative pour les deux derniers niveaux (bâtiments supérieurs à R+2

A. Détermination du moment résistant dans les poteaux

Le moment résistant (M_R) d'une section de béton dépend essentiellement :

- ✓ Des dimensions de la section du béton.
- ✓ De la quantité d'armatures dans la section du béton.
- ✓ De la contrainte limite élastique des aciers

 $Z = 0.85 \times h$ (h : La hauteur totale de la section du béton

•
$$\sigma_S = \frac{f_e}{\gamma_S} = 348 MPa$$

Les résultats obtenus sont donnés dans le tableau ci-dessous :

Tableau IV.11. Moment résistant dans les poteaux

Niveau	Section (cm ²)	Z(m)	As (cm ²)	M_R (KN.m)
RDC,1, sous sol	60×55	0.54	26.51	572.61
2 et 3	55×55	0.49	26.51	519.59
4 et 5	55×55	0.49	26.51	519.59
6	55×50	0.45	24.63	443.34
7	50×45	0.45	18.47	332.46
8	45×45	0.40	18.47	295.52

Tableau IV.12. Moment résistant dans les poutres secondaire

	Niveau	h(m)	Z (m)	As (cm ²)	$\sigma_{\scriptscriptstyle S}$	$M_R(KN.m)$
Ī	Sous sol	0.35	0.315	5.65	400	71.19
	RDC	0.35	0.315	7.7	400	97.02

1	0.35	0.315	10.90	400	137.34
2	0.35	0.315	10.65	400	13419
3	0.35	0.315	10.65	400	134.19
4	0.35	0.315	10.90	400	137.34
5	0.35	0.315	10.90	400	137.34
6	0.35	0.315	7.7	400	97.02
7	0.35	0.315	7.7	400	97.02
8	0.35	0.315	5.65	400	71.19

Tableau IV- 13: Moment résistant dans les poutres principales

Niveau	h(m)	Z (m)	As (cm ²)	σ_{s}	M_R (KN.m)
Sous sol	0.45	0.405	7.7	400	124.74
RDC	0.45	0.405	7.7	400	124.74
1	0.45	0.405	9.24	400	149.68
2	0.45	0.405	9.24	400	149.68
3	0.45	0.405	9.24	400	149.68
4	0.45	0.405	7.7	400	124.74
5	0.45	0.405	7.7	400	124.74
6	0.45	0.405	7.7	400	124.74
7	0.45	0.405	7.7	400	124.74
8	0.45	0.405	7.7	400	124.74

Tableau IV-1: Vérifications des zones nodales poutres secondaires.

Niveaux	Poutres secondaires							
	M _n	Ms	M_n+M_s	M_{w}	Me	$1,25(M_w+M_e)$	Observation	
	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)		
Sous sol	572.61	572.61	373.24	71.19	71.19	177.97	vérifiée	
RDC	572.61	572.61	373.24	97.02	97.02	245.55	vérifiée	
1	519.59	519.59	305.28	137.34	137.34	343.35	vérifiée	
2	5	145.23	1039.18	134.19	134.19	335.4	vérifiée	
3	519.59	519.59	1039.18	134.34	134.34	335.4	vérifiée	
4	519.59	519.59	1039.18	137.34 137.34		343.35	vérifiée	
5	443.34	519.59	962.93	137.34		343.35	vérifiée	
					137.34			
6	332.46	443.34	775.8	97.02	97.02	242.55	vérifiée	
7	295.52	332.46	627.92	97.02	97.02	242.55	vérifiée	
8	0	295.52	295.52	71.19	71.19	177.97	vérifiée	

Tableau IV- 15 : Vérifications des zones nodales poutres principale

Niveaux	Poutres secondaires								
	M_n	M_s	M_n+M_s	M_{w}	Me	$1,25(M_w+M_e)$	Observation		
	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)			

Sous sol	572.61	572.61	1145.22	124.7	124.7	311.85	vérifiée
RDC	572.61	572.61	1145.22	124.7	124.7	311.85	vérifiée
1	519.59	572.61	1092.2	149.6 149.6		374.2	vérifiée
2	519.59	519.59	1039.18	149.6	149.6	374.2	vérifiée
3	519.59	519.59	1039.18	149.6	149.6	374.2	vérifiée
4	519.59	519.59	1039.18	124.6	124.6	311.85	vérifiée
5	443.34	519.59	962.93	124.6	124.6	311.85	vérifiée
6	332.46	443.34	775.8	124.6	124.6	311.85	vérifiée
7	295.52	332.46	627.92	124.6	124.6	311.85	vérifiée
8	0	295.52	295.52	124.6	124.6	311.85	vérifiée

. IV.3. Etude des voiles :

Le RPA 99/2003, exige de mettre des voiles à chaque structure en béton armé dépassant

IV.3.1. ferraillage:

Tableau IV.16: Les sollicitations dans les poteaux.										
Niveaux	comb	Mmax _	Ncorr	comb	Nmax → M _{corr}		comb	NminM_corr		
		M(KN.m)	N (KN)			N (KN)	M(KN.m)	N(KN)	M(KN.m)	
RDC et 1	ELA	612.55	794.37	ELU	1681.31	129.14	ELA	375.28	133.79	

$$M_{MAX} = 612.55 \text{ KN}$$
; $N_{cor} = 794.37 \text{ KN.m.}$

$$1 = 2.375 \text{ m}$$
; $e = 0.15 \text{ m}$; $d = 2.325 \text{ m}$; $d' = 0.05 \text{ m}$.

$$e_G = \frac{M}{N} = \frac{612.55}{794.37} = 0.77 \, m < \frac{l}{2} = \frac{2.375}{2} = 1.187 \, m \implies N$$
 Effort de compression et c le centre de pression est à l'intérieur de la section.

Donc la section est partiellement comprimée et le calcul de ferraillage se fera par assimilation à la flexion simple.

$$M_{uA} = M + N \times \left(d - \frac{h}{2}\right) = 612.55 + 794.37 \times \left(2.325 - \frac{2.375}{2}\right) = 1517,28 \text{ KN. m}$$

= 1.517MN. m

$$\mu_{bu} = \frac{M_{uA}}{bd^2 f_{bu}} = \frac{1,517}{0.15 \times (2,325)^2 \times 18.48} = 0.101$$

$$\mu_{bu} = 0.101 < \mu_l = 0.391 \Longrightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1} = 400 MPa$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2 \times \mu_{bu}}\right) = 0.13$$

$$z = d(1 - 0.4\alpha) = 2,325(1 - 0.4 \times 0.13) = 2,2 m$$

$$A_1 = \frac{M_{uA}}{z \times f_{st}} = \frac{1,517}{2,2 \times 400} = 17,23 \text{ cm}^2$$

On revient à la flexion composée :

$$A = A_1 - \frac{N_u}{f_{st}} = 17,23 \times 10^{-4} - \frac{794,37 \times 10^{-3}}{400} = -2,62 \ cm^2$$

Soit $A_s = 2,62 \text{ cm}^2$

Détermination des longueurs (tendue et comprimée) :

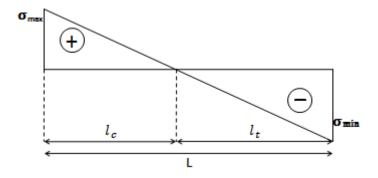


Figure IV.2 Schémas des contraintes.

On a:

$$\begin{cases} l_t = \frac{\sigma_{min} \times L}{\sigma_{max} + \sigma_{min}} \\ l_c = L - 2l_t \end{cases}$$

Avec:

 $l_t\,$: Longueur de la zone tendue (partie tendue du voile).

 l_c : Longueur de la zone comprimée (partie comprimée du voile).

$$\sigma = \frac{N}{S} \pm \frac{M}{I}V$$

$$\begin{aligned} \text{Soit:} & \begin{cases} \sigma_{max} \text{,} \sigma_{min} > 0 \longrightarrow SEC; \\ \sigma_{max} \text{,} \sigma_{min} < 0 \longrightarrow SET; \\ \sigma_{max} > 0, \sigma_{min} < 0 \longrightarrow SPC. \end{cases} \end{aligned}$$

Dans notre cas:

$$\begin{cases} \sigma_1 = \frac{794.375 \times 10^{-3}}{2.375 \times 0.15} + \frac{612.55 \times 10^{-3}}{0.16} \times 1.18 = 6.74 MPa \\ \sigma_2 = \frac{794.375 \times 10^{-3}}{2.375 \times 0.15} - \frac{612.55 \times 10^{-3}}{0.16} \times 1.18 = -2.28 MPa \end{cases}$$

Pour éviter tous risques de changement de signe et contraintes sur les différentes combinaisons, la zone tendue calculée avec les extrémités du voile, le voile sera donc ferrailler symétriquement.

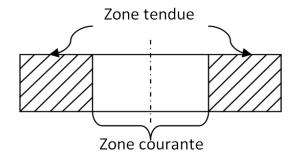


Figure IV.3 Zone tendue et courante dans les voiles.

Donc:

$$\begin{cases} l_t = \frac{2.28 * 2.375}{6.74 + 2.28} = 0.60m \\ l_c = 2.375 - 2 \times 0.60 = 1.17 \ m \end{cases}$$

Armatures minimales en zone tendue et zone comprimée (courante):

On a:

$$\begin{cases} A_{min}^{Z.T} = 0.2\%(e \times l_t) = 0.2\%(15 \times 60) = 1.8 \ cm^2 \\ A_{min}^{Z.C} = 0.10\%(e \times l_c) = 0.10\%(15 \times 117) = 1.75 cm^2 \end{cases}$$

• Armatures minimales dans tout le voile

Selon le **RPA99/V2003**, on a :
$$A_{min} = 0.15\% (e \times l) = 0.15\% (15 \times 237.5) = 5.34 cm^2$$

Espacement des barres verticales

$$S_t \le \min(1.5 \times e; 30 \ cm) \Longrightarrow S_t = 20 \ cm$$

Armatures horizontales

Rôle des armatures verticales :

- ✓ Reprendre l'effort tranchant ;
- ✓ Empêcher le flambement.

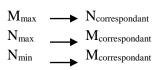
La section des armatures horizontales est calculée selon la formule suivante :

$$A_h = \frac{\tau_u \times e \times S_t}{0.9 \times f_e}$$

Avec:

$$\tau_u = \frac{1.4V_u}{e \times d} = \frac{1.4 \times 236.21 \times 10^{-3}}{0.15 \times 2.325} = 0.94MPa$$

Espacement des barres horizontales


$$S_t \le \min(1.5e; 30 \ cm) \Longrightarrow S_t = 20 \ cm$$

On opte : $S_t = 20 cm$

Donc:

$$A_h = \frac{0.94 \times 0.15 \times 0.2}{0.9 \times 400} = 0.78 \ cm^2$$

Le calcul des armatures verticales se fait à la flexion composée sous (M et N) pour une section ($e \times L$) selon la sollicitation la plus défavorable de ce qui suit :

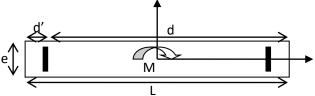


Figure IV.4 Schéma d'un voile pleine

Armatures horizontales :

Tableau IV.17 : Résultats du ferraillage du voile Vy_2 et Vy_3

		Vo	ile Vy2			
Section	RDC et 1	Etage	Etage	Etage	Etage	Etage
1/	2 275	2-3	4-5	6	7	8
l(m)	2.375	2.375	2.375	2.375	2.375	2.375
e(m)	0,15	0,15	0,15	0,15	0,15	0.15
N(KN)	794.37	1144.8	890.77	561.62	376.55	174.29
M(KN.m)	612.55	378.22	235.56	167.62	162.85	120.30
d (m)	2.325	2.325	2.325	2.325	2.325	2.325
V(KN)	236.216	217.77	165.93	114.57	80.69	52.88
τ (MPa)	0.94	0.87	0.66	0.45	0.32	0.21
$\overline{\tau}$ (MPa)	5	5	5	5	5	5
A^{cal} (cm ²)	0	0	0	0	0	0
$A^{min}(cm^2)$	5.34	5.34	5.34	5.34	5.34	5.34
$I(m^4)$	0.16	0.16	0.16	0.16	0.16	0.16
v(m)	1.18	1.18	1.18	1.18	1.18	1.18
σ_1 (MPa)	6.74	6.12	4.31	2.86	2.30	1.41
$\sigma_2(MPa)$	-2,28	0.42	0.68	0.28	-0.19	-0.43
$l_t(m)$	0.60	0.15	0.32	0.21	0.18	0.55
$l_c(m)$	1.17	2.07	1.72	1.94	2	1.25
A_{tendu}^{min} (cm ²)	1.8	0.45	0.96	0.63	0.54	1.65
$A_{\rm courant}^{\rm min} (cm^2)$	1.75	3.10	2.58	2.92	3	1.87
$S_t(m)$	0,2	0,2	0.2	0,2	0,2	0.2
$A_{v/face}^{adopt\acute{e}}$	6HA12	6HA12	6HA12	6HA12	6HA12	6HA12
S_t (m)	0,2	0,2	0,2	0,2	0,2	0.2
$A_h^{cal}(cm^2)$	0.78	0.72	0.55	0.37	0.26	0.17
A_h^{min}	0.45	0,45	0,45	0,45	0,45	0.45
A _h ^{adoptè}	2HA8	2HA8	2HA8	2HA8	2HA8	2HA8

Tableau IV.18 : Résultats du ferraillage du voile Vy_1 et $\ Vy_4$

		Vo	oile V4			
Section	RDC et 1	Etage	Etage	Etage	Etage	Etage
		2-3	4-5	6	7	8
l(m)	2.1	2.1	2.1	2.1	2.1	2.1
e(m)	0,15	0,15	0,15	0,15	0,15	0.15
N(KN)	397.89	493.32	323.15	149.94	75.71	27.87
M(KN.m)	574.43	353.40	232.67	147.36	104.55	93.19
d (m)	2.05	2.05	2.05	2.05	2.05	2.05
V(KN)	225.30	184.99	149.50	109.47	76.46	56.58
τ (MPa)	1.025	0.84	0.68	0.49	0.34	0.25
$\overline{\tau}$ (MPa)	5	5	5	5	5	5
A^{cal} (cm ²)	2.45	1.06	0	0	0.32	0.78
$A^{min}(cm^2)$	4.72	4.72	4.72	4.72	4.72	4.72
$I(m^4)$	0.11	0.11	0.11	0.11	0.11	0.11
v(m)	1.05	1.05	1.05	1.05	1.05	1.05
$\sigma_1 (MPa)$	6.74	4.93	3.24	1.88	1.23	0.97
$\sigma_2(MPa)$	-4.22	-1.80	-1.19	-0.93	-0.75	-0.80
$l_t(m)$	0.80	0.56	0.56	0.69	0.79	0.94
$l_c(m)$	0.5	0.98	0.98	0.72	0.52	0.22
A_{tendu}^{min} (cm ²)	2.4	1.68	1.68	2.07	2.37	2.82
$A_{\rm courant}^{\rm min} (cm^2)$	0.75	1.47	1.47	1.08	0.78	0.33
$S_t(m)$	0,2	0,2	0,2	0,2	0,2	0.20
$A_{v/face}^{adopt \epsilon}$	6HA14	6HA14	6HA14	6HA14	6HA14	6HA14
S_t (m)	0,2	0,2	0,2	0,2	0,2	0.20
$A_h^{cal}(cm^2)$	0.85	0.7	0.56	0.40	0.28	0.20
$A_h^{min}(cm^2)$	0.45	0,45	0,45	0,45	0,45	0.45
$A_h^{adopt\grave{e}}$	2HA8	2HA8	2HA8	2HA8	2HA8	2HA8

Tableau IV.19 : Résultats du ferraillage du voile V_{X1} et $\ V_{X2}$

	Voile VX1								
Section	RDC et 1	Etage	Etage	Etage	Etage	Etage			
		2-3	4-5	6	7	8			
l(m)	2	2	2	2	2	2			
e(m)	0,15	0,15	0,15	0,15	0,15	0.15			
N(KN)	746.28	581.98	401.16	221.78	140.42	78.33			
M(KN.m)	607.84	302.36	218.54	135.83	122.69	120.50			
d (m)	1.95	1.95	1.95	1.95	1.95	1.95			
V(KN)	264.62	169.42	144.82	101.91	93.04	62.18			
τ (MPa)	1.26	0.81	0.69	0.48	0.44	0.29			

$\overline{\tau}$ (MPa)	5	5	5	5	5	5
A^{cal} (cm ²)	0	0	0	0	0	0.56
$A^{min}(cm^2)$	4.5	4.5	4.5	4.5	4.5	4.5
$I(m^4)$	0.10	0.10	0.10	0.10	0.10	0.10
v(m)	1	1	1	1	1	1
σ_1 (MPa)	8.56	4.96	3.52	2.09	1.69	1.46
$\sigma_2(MPa)$	-3.59	-1.08	-0.84	-0.62	-0.75	-0.94
$l_t(m)$	0.59	0.35	0.38	0.45	0.61	0.78
$l_c(m)$	0.82	1.3	1.24	1.1	0.78	0.44
A_{tendu}^{min} (cm^2)	1.77	1.05	1.14	1.35	1.83	2.34
$A_{\rm courant}^{\rm min} (cm^2)$	1.23	1.95	1.86	1.65	1.17	0.66
$S_t(m)$	0,2	0,2	0,2	0,2	0,2	0.2
$A_{v/face}^{adopt\acute{e}}$	7HA12	7HA12	7HA12	7HA12	7HA12	7HA12
S_t (m)	0,2	0,2	0,2	0,2	0,2	0.2
$A_h^{cal}(cm^2)$	1.05	0.67	0.57	0.4	0.36	0.24
$A_h^{min}(cm^2)$	0.45	0,45	0,45	0,45	0,45	0.45
$A_h^{adopt\grave{e}}$	2HA8	2HA8	2HA8	2HA8	2HA8	2HA8

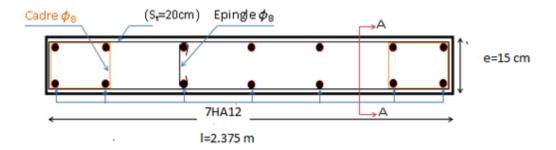


Figure IV.5 schéma de ferraillage du voile (V_{X1})

Conclusion:

Les éléments principaux jouent un rôle prépondérant dans la résistance et la transmission des sollicitations. Ils doivent donc, être correctement dimensionnés et bien armés. Dans la détermination des ferraillages des différents éléments principaux, il a été tenu compte des ferraillages obtenus par le logiciel de calcul (ETABS 2016) et l'application (SOCOTEC) ainsi que le ferraillage minimum édicté par le RPA 99/ 2003.

Il est noté que le ferraillage minimum du RPA est souvent plus important que celui obtenu par les deux codes de calcul utilisé.

Chapitre V: Etude de l'infrastructure

Introduction:

Les éléments de fondation ont pour objet de transmettre au sol les efforts apportés par les éléments de la structure (poteaux, murs, voiles...). Cette transmission peut être directe (cas des semelles reposant sur le sol ou cas des radiers) ou être assuré par l'intermédiaire d'autres organes (par exemple, cas des semelles sur pieux).

La détermination des ouvrages de fondation se fait en fonction des conditions de résistance et de tassement liées aux caractères physiques ou mécaniques des sols.

Les questions abordées dans ce chapitre concernent la détermination des dimensions et le ferraillage des éléments de fondations en tant qu'éléments en béton armé.

Dans le cas le plus général, un élément de la structure peut transmettre à sa fondation (supposée horizontale) :

- Un effort normal.
- Une force horizontale, résultant par exemple de l'action d'un séisme.
- Un couple qui peut être de grandeur variable et s'exercer dans des plans différents.

V.1. Choix du type de fondation :

Le choix de type des fondations dépend essentiellement des facteurs suivants :

- ✓ La capacité portante du sol d'assise.
- ✓ La distance entre axes des poteaux.
- ✓ Les charges transmises au sol.
- ✓ La profondeur du bon sol.

D'après le rapport du sol, il est recommandé d'ancrer la fondation de type superficielle (filante ou radier) à partir 2 m de profondeur après terrassements des remblais et de prendre une contrainte admissible $\sigma_{sol} = 1.5 \ bars$.

Les fondations sont calculées à L ELS selon le BAEL

D'une manière générale les fondations doivent répondre à la relation suivante :

$$\frac{N}{S} \le \frac{-}{\sigma_{sol}}$$
, avec : N : Poids total de l'ouvrage en fonctionnement.

S : Surface d'appui sur le sol.

 σ_{sol} : La capacité portante du sol.

Pour connaître le type de fondations qui convient à notre structure, on procède à la vérification des semelles isolées puis des semelles filantes. Si ces deux types de semelles ne conviennent pas ; on passe au radier général.

V.1.1. Vérification des semelles isolées :

Les poteaux de notre structure sont rectangulaires à la base $(a \times b)$ d'où les semelles sont rectangulaires $(A \times B)$.

La vérification à faire :
$$\frac{N}{S} \le \overline{\sigma}_{sol}$$

<u>N.B</u>: Pour cette vérification on prend la semelle la plus sollicitée.

 $N_{\rm sup}$: Effort normal agissant sur la semelle calculée selon la combinaison ELU ; obtenu par L'ETABS 2016.

 $N_{\rm inf}$: Le poids estimé de la semelle.

$$N_{\text{inf}} = 25 \times 0.45 \times 1.5 \times 1.5 = 25.31 \text{KN}$$

$$N = N_{\text{sup}} + N_{\text{inf}} = 2484.887 + 25.31 = 2510.197 \text{KN}.$$

S: La surface d'appui de la semelle.

 $\overline{\sigma}_{sol}$: Contrainte admissible du sol.

Figure V.1 Vue en plan de la semelle.

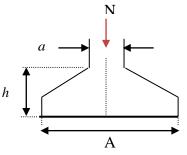


Figure V.2 Coupe P-P'.

Choisissant un poteau de section (60* 55) dans le sens (y-y)

$$A \ge \sqrt{\frac{a*N}{a*\sigma_{sol}}}$$
, avec $\sigma_{sol} = 1.5 \; bars \Rightarrow A \ge \sqrt{\frac{0.60*1891.44}{0.55*150}} = 3.70 \; \mathrm{m}$

On remarque qu'il y a un chevauchement entre les semelles isolées, vu que l'entre axe minimal des poteaux est de 3.4 m, donc le choix des semelles isolées dans notre cas ne convient pas.

V.1.2. Vérification des semelles filantes :

Choisissant une semelle filante, de largeur B et de longueur L situé sous un portique de 7 poteaux

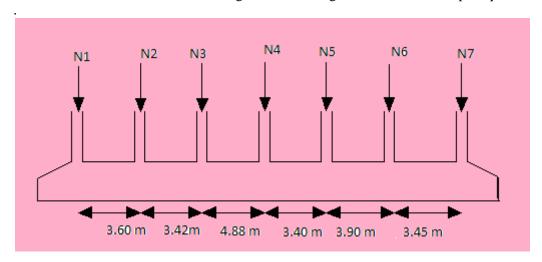


Figure V.3 semelle filante

Avec:

N_i: l'effort normal provenant du poteau « i ».

$$N_1 = 1254.1768 \text{ KN}, \ N_2 = 1762.4233 \text{KN}, \ N_3 = 1891.4456 \text{ KN}, \ N_4 = 1890.143 \text{KN}$$

 $N_5 = 1865.4182$. $N_6 = 1622.9018$ KN. $N_7 = 1304.8445$

$$N = \sum N_i = 11591.35KN$$

$$\frac{N}{B*L} \le \overline{\sigma}_{sol} \Rightarrow B \ge \frac{N}{\overline{\sigma}_{sol}*L} \Rightarrow B \ge \frac{11591.35}{150*23.10} = 3.34 \ m$$

Vu la distance existante entre les axes de deux portiques parallèles, on constate qu'il y a un chevauchement entre les deux semelles.

Donc on doit passer à un radier général.

V.1.3 Radier général:

Le radier est une fondation superficielle travaillant comme un plancher renversé, il est choisit selon ces trois principales caractéristiques :

- un mauvais sol.
- les charges transmises au sol sont importantes.
- les poteaux rapprochés (petite trames).

Les choix d'emploi d'un radier général est une solution, afin d'éviter au maximum les désordres dus aux tassements différentiels et assurer une bonne répartition des charges transmises par la superstructure sur le sol d'assise.

On opte pour un radier nervuré, car il offre une grande rigidité, et une facilité d'exécution

VI.1.3.1 Pré dimensionnement :

A. La condition de coffrage :

✓ Nervure :
$$h_t \ge \frac{l_{\text{max}}}{10} = \frac{488}{10} = 48.8cm \Rightarrow h_t = 50cm$$

✓ **Dalle**:
$$h_r \ge \frac{l_{\text{max}}}{20} = \frac{488}{20} = 24.4 cm \Rightarrow h_r = 40 cm$$

- L_{max} =4.88 m: La plus grande portée entre deux éléments porteurs successifs.
- h_t : hauteur de la nervure.
- h_r : hauteur du radier.

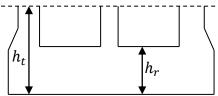


Figure V.4 Dimensions du radier.

B. La condition de rigidité :

$$\frac{\pi}{2} \times L_e \ge L_{\text{max}}$$

ullet L_e : est la longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible).

$$L_{e} \geq \sqrt[4]{\frac{4 \times E \times I}{K \times b}}$$

- E : Module d'élasticité du béton, $E = 3.2 \times 10^{-3} \text{ KN/m}^2$.
- I : Inertie de la section du radier.
- K : Coefficient de réaction du sol, pour un sol moyen $K = 4 \times 10^4 \text{ KN/m}^3$
- b : La largeur de l'élément considéré (radier) de 1ml.

On a:
$$I = \frac{bh^3}{12} \Rightarrow h \ge \sqrt[3]{\frac{48L_{\text{max}}^4 K}{\pi^4 E}} \Rightarrow h \ge 0.70 \text{ m}....(b)$$

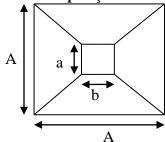
A partir des deux conditions (a) et (b) on prend :

- ✓ La hauteur de la nervure $h_t = 90$ cm.
- ✓ La hauteur du radier $h_r = 40$ cm.

C. Calcul du Poids:

• N_{ser} : l'effort de service de la superstructure. N_{ser} = 35107.07 KN

$$\frac{N_{ser}}{S_{radier}} \le \sigma_{sol} \Rightarrow S_{radier} \ge \frac{N_{ser}}{\sigma_{sol}} = 234.04m^2$$


La surface du bâtiment $S_{b\hat{a}t}$ =23.10×9.30=214.83 m^2

Donc on prend $S_{radier} = 234.04m^2$

 $S_{radier} = S_{batiment}$

V 1.3.2. Les Vérifications nécessaires :

• Vérification au poinçonnement :

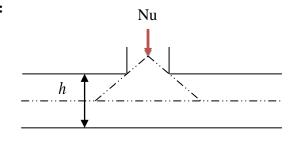


Figure V.5 Présentation de zone d'impact de la charge compactée

Il faut vérifier que : $N_U \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b}$ BAEL91 (Art A.5.2 ,42)

- N_{II} : L'effort normal sur le poteau.
- U_c : Le périmètre du contour cisaillé projeté sur le plan moyen du radier.

$$U_c = 2 \times (A+B)$$

$$\begin{cases} A = a + h \\ B = b + h \end{cases}$$
; On $a \neq b \Longrightarrow A = 0.60 + 0.90 = 1.50 \text{m}$

$$\implies$$
 B=0.55+0.90=1.45m

On trouve Uc = 5.9 m

$$N_u = 2594.5627KN < 0.045 \times 5.9 \times 0.90 \times \frac{25}{1.5} = 3982.5KN$$
 (La condition est vérifiée).

⇒ Pas risque au poinçonnement.

• Vérification au cisaillement :

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(0.15 \times \frac{f_{c28}}{\gamma_b}; 4 \text{ MPa}) = 2.5 \text{ MPa}$$

...CBA 93 (A.5.1.2.1.1).

On considère une bande de b = 1 m

$$V_u = \frac{Nd \times Lmax}{2Srad} = \frac{47995.96 \times 4.88}{2 \times 234.04} = 500.38KN$$

Donc:

$$d \ge \frac{500.38 \times 10^{-3}}{1 \times 2.5} = 0.20m$$

On prend: d= 35 cm

 $\tau = 1.42 \text{ MPA}$

Pas risque de rupture par cisaillemen

Vérification des contraintes dans le sol : DTR BC 2.33.1 (Art : 3.541 (a)).
 Cette vérification de la contrainte du sol consiste à satisfaire la condition suivante dans le sens longitudinal et transversal.

Il faut vérifier que :
$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} \le \sigma_{sol} \text{ Avec} \quad \sigma_{(max,min)} = \frac{N}{S_{rad}} \pm \frac{M}{I} \times (X_G, Y_G)$$

N: L'effort normal dûaux charges verticales.

 M_y , M_x : Moments sismiques à la base tiré du logiciel **Etabs 2016**, avec la combinaison ELS A partir du programme **SOCOTEC** (calcul des formes) on trouve :

$$\sqrt{\text{Dans le sens x-x : N}} = 35107.07 \text{ KN}; M_Y = 26047.48 KN. m}$$

$$\sigma_{\text{max}} = \frac{N}{S_{\text{rad}}} + \frac{M_{Y}}{I_{Y}} * Y_{G} = \frac{35107.07 * 10^{-3}}{234.04} + \frac{26047.48 * 10^{-3} * 4.65}{9553} = 0.15 MPa$$

$$\sigma_{\min} = \frac{N}{S_{rad}} - \frac{M_Y}{I_Y} * Y_G = 0.14MPa$$

$$\sigma_{moy} = \frac{3 * \sigma_{max} + \sigma_{min}}{4} \le \frac{-}{\sigma_{Sol}} \Rightarrow \sigma_{moy} = 0.14 MPa \le \frac{-}{\sigma_{Sol}} = 0.150 MPa$$

⇒ La contrainte est vérifiée dans le sens xx.

 $\sqrt{\text{Dans le sens y-y : N}} = 35107.07 \text{ KN}; M_X = 25468.28 \text{ KN. } m_X = 25668.28 \text{ KN. } m_X = 256688.28 \text{ KN. } m$

$$\sigma_{\text{max}} = \frac{N}{S_{\text{rad}}} + \frac{M_X}{I_X} * X_G = \frac{35107.07 * 10^{-3}}{234.04} + \frac{2568.28 * 10^{-3} * 11.55}{1548.4} = 0.16$$

$$\sigma_{\min} = \frac{N}{S_{rad}} - \frac{M_X}{I_X} * X_G = 0.13MPa \langle \overline{\sigma}_{Sol} = 1.5MPa \rangle$$

$$\sigma_{moy} = \frac{3 * \sigma_{max} + \sigma_{min}}{4} = \langle \overline{\sigma}_{Sol} \Rightarrow \sigma_{moy} = 0.15MPa \le \overline{\sigma}_{Sol} = 0.150MPa$$

⇒ la contrainte est vérifiée dans le sens yy.

• Vérification de la stabilité au renversement :

Selon (Article 10.1.5) du RPA99/2003, on doit vérifier que l'excentrement de la résultante des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié centrale de la base des éléments de fondation résistent au renversement :

On doit vérifier que :
$$e = \frac{M}{N} \le \frac{B}{4}$$

Dans le sens x-x :

 $\sqrt{}$ Dans le sens y-y:

⇒ Pas risque au renversement dans les deux sens.

Vérification de la poussé hydrostatique :

On fait cette vérification pour éviter le renversement de la structure sous l'effet de la poussée hydrostatique de la nappe d'eau, pour cela il faut s'assurer que :

$$N \ge F_S * H * S_{rad} * \gamma_W$$

Avec:

N = 35107.07 KN

H = 2m, (la hautaeur de la partie encrée du bâtiment).

 $F_s = 1.15$ (coefficient de sécurité).

 $S_{rad} = 234.04m^2$ (surface du radier).

 $\gamma_{\rm W} = 10 {\rm KN/m^3}$ (poids volumique de l'eau).

On trouve : $N = 35107.07 \text{ KN} \ge 1.15 * 2 * 234.04 * 10 = 5382.92 \text{ KN}$.

La condition est vérifiée.

⇒ Le bâtiment est stable vis-à-vis l'arrivé de l'eau.

V 1.3.3 Ferraillage du radier :

Le radier sera calculé comme une dalle pleine renversée et sollicitée à la flexion simple causée par la réaction du sol, il faut considérer le poids propre du radier comme une charge favorable. On calculera le panneau le plus sollicité et on adoptera le même ferraillage pour tout le radier.

Soit : G₀ le poids propre du radier.

$$Grad = \rho \times e = 25 \times 0.40 = 10KN/m^2.$$

4.43 m

V.1.3.3.1 Calcul des sollicitations :

•
$$q_u = \frac{N_u}{S_{rad}} + 1.35G_{rad} \implies q_u = \frac{47995.96}{234.04} + 1.35 * 10 = 218.57 \, KN/m^2$$
 Figure V.6: Panneau de dalle

•
$$q_s = \frac{N_s}{S_{rad}} + G_0 \Rightarrow q_s = \frac{35107.07}{234.04} + 10 = 160 \, KN/m^2$$

 $\rho = \frac{l_x}{l_y} = 0.94 > 0.4 \Rightarrow Alors, la dalle travaille dans les deux sens$
 $\checkmark L'ELU:$

$$\begin{cases} M_0^x = \mu_x q_u l_x^2 \\ M_0^y = \mu_y M_0^x \end{cases}$$

$$\mu_x, \mu_y \begin{cases} \rho = 0.94 \\ v = 0 \end{cases} \Rightarrow d'apr\'es\ l'annexe\ 1 \begin{cases} \mu_x = 0.0419 \\ \mu_y = 0.8661 \end{cases}$$

$$\begin{cases} M_0^x = 0.0419 * 218.57 * 4.2^2 = 161.54 \text{ KN.m} \\ M_0^y = 139.90 \text{ KN.m} \end{cases}$$

Figure 1. En travée:
$$\begin{cases} M_t^x = 0.75 \, M_0^x = 121.15 \, KN. \, m \\ M_t^y = 0.85 \, M_0^y = 118.91 \, KN. \, m \end{cases}$$

En appui :
$$M_a^x = M_a^y = 0.4 M_0^x = -64.61 \text{ KN. m}$$

Le ferraillage se fera pour une section : $b \times h_r = (1 \times 0.40)m^2$.

Les résultats du ferraillage sont résumés dans le tableau suivant :

Tableau V.1: Résumé des résultats du ferraillage du radier.

		M(KN.m)	$A_{calcul\'ee\ (cm^2/ml)}$	$A_{choisie\ (cm^2/ml)}$	$S_t(cm)$
En travée	Sens x-x	121.15	10.39	7HA14=10.78	15
	Sens y-y	118.91	10.13	7HA14=10.78	15
En appuis		-64.61	5.40	5HA12=5.65	20

Nota : On prend le même ferraillage pour tous les panneaux.

Vérification de condition de non fragilité

► En travée :
$$\begin{cases} e = 40 \ge 12 \\ \rho = 0.94 \end{cases}$$
; $\begin{cases} Acier\ HA\ FeE400 \\ \Rightarrow \rho_0 = 0.0008 \end{cases}$

► En travée :
$$\begin{cases} e = 40 \ge 12 \\ \rho = 0.94 \end{cases} \begin{cases} Acier \, HA \, FeE400 \\ \Rightarrow \rho_0 = 0.0008 \end{cases}$$
• Sens xx: $A_{min} = \frac{\rho_0}{2}(3 - \rho)b * h_r = 3.29 \, cm^2/ml$ condition vérifiée $A_t^x = 10.39cm^2/ml > A_{min} = 3.29 \, cm^2/ml$

• Sens yy:
$$A_{min} = \rho_0 * b * h_r = 3.2 \ cm^2/ml$$

$$A_t^y = 10.13cm^2/ml > A_{min} = 3.2 cm^2/ml$$

En appuis:

$$A_{min} = 0.23 * b * d * \frac{f_{t28}}{f_e} = 4.22/ml$$

$$\Rightarrow A_a = 5.4 \text{ cm}^2/ml > A_{min} = 4.22 \text{ cm}^2/ml$$

Vérification de l'effort tranchant :

$$\begin{split} \tau_{u} &= \frac{V_{u}}{b*d} \leq \bar{\tau}_{u} = \frac{0.07 \ f_{c28}}{\gamma_{b}} = 1.17 \ MPa \\ V_{u}^{x} &= \frac{q_{u*l_{x}}}{2} * \frac{l_{y}^{4}}{l_{y}^{4} + l_{x}^{4}} = 253.87 KN \\ V_{u}^{y} &= \frac{q_{u*l_{y}}}{2} * \frac{l_{y}^{4}}{l_{y}^{4} + l_{x}^{4}} = 216.35 \ KN \end{split} \right\} \Rightarrow V_{max} = 253.87 \ KN \end{split}$$

$$\tau_u = \frac{253.87 \times 10^{-3}}{1 \times 0.35} \Rightarrow \tau_u = 0.72 MPa < 1.17 MPa \dots c'est vérifiée$$

⇒Pas risque de cisaillement suivant les deux sens.

$$\begin{array}{l} \checkmark \quad \mathbf{L'ELS}: \\ \begin{cases} M_0^x = \mu_x q_s l_x^2 \\ M_0^y = \mu_y M_0^x \end{cases} \\ \mu_x, \mu_y = \begin{cases} \rho = 0.94 \\ v = 0.2 \end{cases} \Rightarrow d'apr\'es\ l'annexe\ 1 \begin{cases} \mu_x = 0.0491. \\ \mu_y = 0.9087 \end{cases} \\ \begin{cases} M_0^x = 0.0491 * 160 * 4.2^2 = 138.57\ KN.m \\ M_0^y = 125.92\ KN.m \end{cases} \\ \end{cases} \\ \text{En trav\'ee}: \begin{cases} M_t^x = 0.75\ M_0^x = 103.92KN.m \\ M_t^y = 0.85\ M_0^y = 107.03\ KN.m \end{cases} \\ \end{cases} \\ \end{cases} \\ \text{En appui}: M_a^x = M_a^y = -0.4\ M_0^x = 55.42\ KN.m \end{cases}$$

Vérification des contraintes :

$$I = \frac{by^3}{3} + 15 A(d - y)^2.$$

$$\frac{b}{2}y^2 + 15 A y - 15 A d = 0, on aura "y".$$

Tableau V.2 Vérification des contraintes de radier.

Sens	Moments (KN.m)	$egin{aligned} A_{adopt\'ee} \ (cm^2/ml \) \end{aligned}$	y (cm)	I(cm ⁴)	(MPa)	Observ ation	σ _s (Mpa)	Observ ation
X-X	$M_t^x = 103.92$	10.78	9.14	146312.7	6.49	vérifiée	275.50	Non
у-у	$M_t^y = 107.03$	10.78	9.14	146312.7	6.49		383.75	vérifiée
appuis	$M_a = -55.42$	5.65	6.90	83344.89	4.58		280.27	

 $[\]$ **Remarque :** On remarque que la condition $\sigma_s < \sigma_s$ n'est pas vérifiée. Donc il faut augmenter la section d'acier A_s .

Tableau V.3 calcul des sections d'armatures à l'ELS

Sens	Moments (KN.m)	β	α	$A_{calc\ (cm^2/ml)}$	$A_{choisie\ (cm^2/ml)}$	$S_t(cm)$
	,					
X-X	$M_t^x = 103.92$	$4.2063 * 10^{-3}$	0.344	16.63	6HA20=18.85	15
у-у	$M_t^y = 107.03$	$4.333 * 10^{-3}$	0.349	17.16	6HA20=18.85	15
appu	$M_a = -55.42$	$2.243 * 10^{-3}$	0.255	8.58	6HA14=9.24	15
is						

Tableau V.4 Revivifications des contraintes de radier.

Sens	Moments (KN.m)	$egin{aligned} A_{adopt\'ee} \ (cm^2/ml \) \end{aligned}$	y (cm)	I(cm ⁴)	(MPa)	Obser vation	σ _s (Mpa)	Obser vation
X-X	$M_t^x = 103.92$	18.85	11.5	232192.4	5.14	Vé	157.76	Vé
у-у	$M_t^y = 107.03$	18.85	11.5	232192.4	5.30	rif	162.48	rif
Appui	$M_a = -55.42$	9.24	8.56	128262.69	3.69	ié	171.36	ié
S								

[♥] Toutes les contraintes sont vérifiées.

Espacement des armatures :

- $\begin{array}{l} \sqrt{\quad} \text{Sens x-x:} S_t \leq min[3h_r \ , 33\ cm] = 33\ cm \Rightarrow S_t = 15cm \\ \sqrt{\quad} \text{Sens y-y:} S_t \leq min[4h_r \ , 45\ cm] = 45\ cm \Rightarrow S_t = 15\ cm \end{array}$



Figure V.7 schéma de ferraillage de radie

V.2 Etude des nervures :

Les nervures sont des poutres de section en Té, noyées dans le radier. Elles sont calculées à la flexion simple.

V.2.1 Dimensionnement de la nervure :

\checkmark Sens x-x:

$$h_t = 0.9 \text{m}, h_r = 0.40 \text{m}, b_0 = 0.60 \text{m}, d = 0.85 \text{m}$$

$$b_1 \le \min(\frac{l_y}{10}; \frac{l_x}{2}) \Rightarrow b_1 \le \min(\frac{395}{10}; \frac{295}{2})$$

$$b_1 \le \min(39.5; 147.5)$$

 $Soit: b_1 = 35cm$

Donc
$$b = b_1 \times 2 + b_0 = 130cm$$

 \checkmark Sens y-y:

✓ Le rapport $\rho = \frac{l_x}{l_y} > 0.4$ pour tous les panneaux constituants le radier, donc les

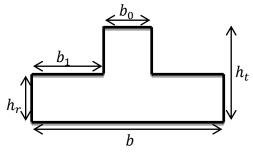


Figure V.8: Section de la nervure à ferrailler

Charge trapézoïdale	Charge triangulaire
$P_{m} = \frac{q}{2} \left[\left(1 - \frac{\rho_{g}^{2}}{3} \right) L_{xg} + \left(1 - \frac{\rho_{d}^{2}}{3} \right) L_{xd} \right]$ $P_{v} = \frac{q}{2} \left[\left(1 - \frac{\rho_{g}}{2} \right) L_{xg} + \left(1 - \frac{\rho_{d}}{2} \right) L_{xd} \right]$	$P'_{m} = P'_{v} = \frac{q}{2} \cdot \frac{\sum L_{xi}^{2}}{\sum L_{xi}}$ Remarque: si la nervure est soumise à un chargement triangulaire à deux coté

Avec:

$$\checkmark \quad \rho_g = \frac{L_{xg}}{L_y} , \rho_d = \frac{L_{xd}}{L_y}$$

V.2.2. Calcul des sollicitations :

Pour le calcul des sollicitations, on utilise la méthode de « Caquot » :

Moments aux appuis :

$$M_{a} = \frac{P_{g} \times l_{g}^{'3} + P_{d} \times l_{d}^{'3}}{8.5 \times (l_{g}^{'} + l_{d}^{'})}$$

Avec : Les longueurs fictives : $l' = \begin{cases} l \ , \ pour \ une \ travée \ de \ rive \\ 0.8l \ , pour \ une \ travée \ intermédiaire \end{cases}$

Pour l'appui de rive, on a :
$$M_a = -0.15 \times M_0$$
, avec : $M_0 = \frac{q \times l^2}{8}$

❖ Moments en travée :

M_g et M_d: Moments sur appuis de gauche et droite respectivement.

$$M_{t}(x) = M_{0}(x) + M_{g}(1 - \frac{x}{l}) + M_{d}(\frac{x}{l})$$

$$M_0(x) = \frac{q \times x}{2}(l - x)$$

$$x = \frac{l}{2} - \frac{M_g - M_d}{q \times l}$$

Sens X-X:

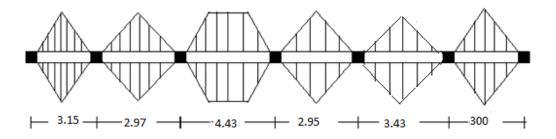


Figure V.9 Répartition des charges sur la nervure la plus sollicitée selon le sens X-X

On a: $q_u = 218.22 \text{ KN/m}^2$

	Tableau	u .5 les sol	llicitations a	l 'ELU (sens	s X-X)	
Travée	1	P _m	M _a (K	N.m)	X	M_t
	(m)	(KN/m)	Mg	M_d	(m)	(KN.m)
A-B	3.15	477.19	0	-446.31	1,278	389.74
В-С	2.97	450.96	-446.31	-703.7	1,293	69.44
C-D	4.43	680.34	-703.7	-702.42	2,215	915.05
D-E	2.95	448.05	-702.42	-386.97	1,714	44.54
E-F	3.45	520.9	-386.97	-474.79	1,676	344.74
F-G	3.00	455.34	-474.79	0	1,848	302.36

Tableau V.6 Sollicitations maximales (sens X-X)				
Localisation Travée Appuis				
Moment (KN.m) 915.05 -703.7				
Effort tranchant (KN)	1461.34			

Sens Y-Y:

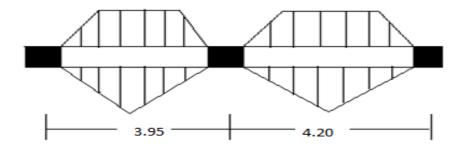


Figure V.10 Répartition des charges sur la nervure la plus sollicitée selon le sens Y-Y

On a : $q_u = 218.22 \text{ KN/m}^2$

1	Tableau V.7 Sollicitations a l'ELU (sens y-y)							
Travée	1	P _m	M _a (K	N.m)	X	M_t		
	(m)	(KN/m)	$M_{ m g}$ $M_{ m d}$		(m)	(KN.m)		
A-B	3.95	623.27	0	1229.63	1.47	678.49		
В-С	4.20	631.29	-1229.63	0	2.56	845.06		

Tableau V.8	Sollicitations maximales (sens Y	Y-Y)
Localisation	Travée	Appuis

Moment (KN.m)	845.06	1229.63
Effort tranchant (KN)	1618.47	

V.2.3. Ferraillage:

	Ta	bleau V.9	Γableau De f	erraillage de	es nervures
Localisation		M	A _{cal}	A _{min} (cm ²	Choix (cm ² / ml)
		(KN.m)	(cm^2/ml)	/ml)	
Sens	Travée	915.05	32.07	13.34	4HA16+8HA20=33.17
X-X	Appui	703.7	25.10	6.15	8HA20=25.13
Sens	Travée	845.06	29.59	12.82	8HA20+4HA12=29.65
Y-Y	Appui	1229.6	47.4	5.64	6HA25 + 6HA20 =
					48.3

Vérification de l'effort tranchant :

$$au_u=rac{V_u}{bd}=1.32\ MPa$$

Vérification des contraintes :

On a:
$$q_s = 160 \text{ KN/m}^2$$
.
 $\{ \bar{\sigma}_{bc} = 15 \text{ MPa} \}$
 $\{ \bar{\sigma}_s = 201.64 \text{ MPa, FN} \}$

	Tablea	u V.10 Vérifi	cation des con	traintes dans les n	ervures
Local	isation	Moment	σ_{bc}	$\sigma_{\scriptscriptstyle S}$	Observation
		(KN.m)	(MPa)	(MPa)	
Sens	Travée	670.18	6.04	260.10	N Vérifiée
X-X	Appui	-515.38	8.37	269.84	N Vérifiée
Sens	Travée	618.47	5.96	267.91	N Vérifiée
Y-Y	Appui	-900.47	9.88	250.49	N Vérifiée

La contrainte de traction n'est pas vérifiée, donc on doit calculer les armatures à l'ELS

	Tableau V.	11 Calcule des s	sections	d'armature a l'E	LS	
Sens	Moments (KN.m)	β	α	$A_{calc\ (cm^2/ml)}$	$A_{choisie\ (cm^2/ml)}$	$S_t(cm)$
X-X	$M_t = 670.18$	$3.5*10^{-3}$	0.17	41.45	10HA25	15
X-X	$M_a = -515.38$	$5.89*10^{-3}$	0.39	34.56	10HA25	15
у-у	$M_t = 618.47$	$3.39 * 10^{-3}$	0.31	40.24	10HA25	15
у-у	$M_a = -900.47$	$10.30*10^{-3}$	0.51	63.30	13HA25	15

$$\phi_t \leq min\left[\frac{h_t}{35}, \frac{b_0}{10}, \phi_l^{max}\right] = 25 \; mm, \, \text{Alors,} \; \phi_t = 10 \; mm.$$

Service Espacements des aciers transversaux :

Pour les armatures transversales, on a :

$$A_t = 3Cadres \ \phi_{10} = 6 \ \phi_{10} = 4.74 \ cm^2.$$

$$S_{t1} \le \frac{A_t \times f_e}{0.4 \times b_0} \Rightarrow S_{t1} \le 73cm$$

$$S_{t3} \le \frac{0.9 \times f_e \times A_t}{b_0 \times \gamma_s \times (\tau_u - 0.3 \times f_{t28})} S_{t3} \le 21.13 cm$$

$$S_{t2} \le min(0.9 \ d, 40cm) = 60.3 \ cm Soit : S_t = 15 \ cm$$

Figure V.10

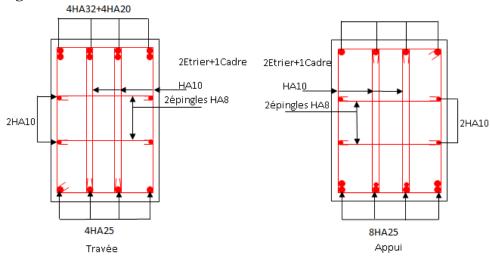


Figure V.11 schéma de ferraillage de la nervure selon X-X

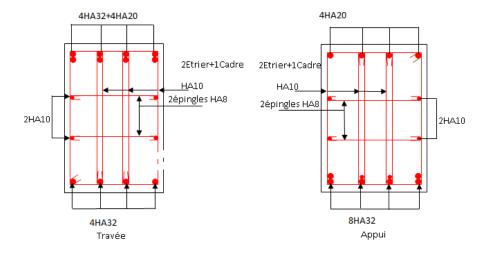


Figure V.12 schéma de ferraillage de la nervure selon Y-Y

V.3 étude du mur adossé

Les ossatures au-dessous de niveau de base, doivent comporter un mur continu entre le niveau de fondation et le niveau de terrain naturel (Entre sol et sous-sol). L'immeuble, destiné à soutenir l'action des poussées des terres.

Il doit remplir les exigences suivantes :

- ✓ Les armatures sont constituées de deux nappes.
- ✓ Le pourcentage minimum des armatures est de 0.1% dans les deux sens (horizontal et vertical).
- ✓ Les ouvertures dans ce voile ne doivent pas réduire (diminue) sa rigidité d'une manière importante.
- ✓ Épaisseur minimale $E_p \ge 15$ cm.

V.3.1 Dimensions de mur:

Les dimensions du voile périphérique sont représentées sur la figure suivante :

On prend, $E_p = 20 \text{ cm}$

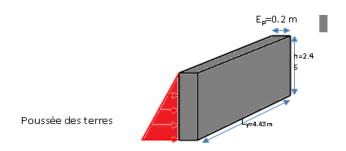


Figure V.13 Poussé des terres sur les murs adossés

V.3.2 Caractéristiques du sol :

- ✓ Poids spécifique : $\gamma = 20.8 \ KN/m^3$.
- ✓ Angle de frottement : $\varphi = 19.29^{\circ}$
- ✓ Cohésion : C=0.

V.3.3Méthode de calcul:

Le voile périphérique est considéré comme un ensemble de panneaux dalles, encastrés en chaque côté. Le calcul se fait pour une bande de 1m de largeur.

V.3.4 Sollicitations:

A. Poussée des terres :

$$P_{1} = \gamma \times h \times tg^{2} \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) - 2 \times C \times tg \left(\frac{\pi}{4} - \frac{\varphi}{2}\right)$$

$$P_{1} = 20.8 \times 2.45 \times tg^{2} \left(\frac{180}{4} - \frac{19.29}{2}\right) = 25.65 \text{ KN/m}^{2}.$$

B. Charge due à la surcharge :

Au vu du plan de masse annexé au plan de notre structure, il existe un terrain qui peut être exploitable dans le futur. Pour tenir compte d'éventuelles charges que ça peut engendrer ; on prévoit le calcul de notre voile périphérique en tenant compte d'une surcharges Q=10KN/m².

$$P_2 = Q \times tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 10 \times tg^2 \left(\frac{180}{4} - \frac{19.29}{2}\right) = 5.03 \text{ KN/m}^2.$$

VI.3.5 Ferraillage de voile périphérique :

Le voile périphérique se calcule comme un panneau de dalle sur quatre appuis, uniformément chargé d'une contrainte moyenne tel que :

$$\begin{cases} L_x = 2.45 \ m \\ L_y = 4.43 \ m \Rightarrow \\ E_p = 20 \ cm \end{cases} \begin{cases} (h = 0m) = 1.5 * P_2 = 7.55 \ KN/m^2 \\ \sigma_{max}(h = 2.45 \ m) = 1.35 * P_1 + 1.5 * P_2 = 42.17 \ KN/m^2 \\ q_u = \sigma_{moy} = \frac{3 * \sigma_{max} + \sigma_{min}}{4} = 33.51 \ KN/m^2 \end{cases}$$

$$\rho = \frac{L_x}{L_y} = 0.55 \ \Rightarrow \text{Le panneau travaille dans les deux sens.} \begin{cases} \mu_x = 0.0894 \\ \mu_y = 0.2500 \end{cases}$$

• ELU:(v = 0)

Tableau V.12 ferraillage des murs adossés

Désignation	$q_{u} = 33.5$	51KN/m ²
·	Sens x-x	Sens y-y
Mt (KN.m)	13.48	3.82
A _{calculée} (cm ² /ml)	2.31	0.64
A _{min} (cm ² /ml)	2	2
A _{adoptée} (cm ² /ml)	3HA10= 2.36	4HA8 = 2.01
M _a (KN.m)	7.19	1.79
A _{calculée} (cm ² /ml)	1.22	0.30
A _{min} (cm ² /ml)	2	2
A _{adoptée} (cm ² /ml)	4HA8 = 2.01	4HA8 = 2.01

Vérification au cisaillement:

$$\begin{aligned} V_u^x = &37.53 \text{ KN }, V_u^y = 6.34 \text{ KN} \\ \tau_{ux} = & \frac{V_u}{bd} = 0.22 \text{KN} < \bar{\tau}_u = \min(0.13 f_{c28}, 4 \text{MPa}) = 3.25 \text{ MPa} \\ \tau_{uy} = &0.037 \end{aligned}$$

Commentaire : Pas risque de cisaillement par effort tranchant.

Vérification des contraintes :

$$\begin{cases} \sigma_b = \frac{M_{ser}}{I} y \le \bar{\sigma}_b = 15 \text{ MPa} \\ \sigma_s = \frac{15 M_{ser}}{I} (d - y) \le \bar{\sigma}_s = 201.64 \text{ MPa , FN} \end{cases}$$

Les résultats sont résumés dans le tableau suivant :

		Tab	oleau V.13 V	Vérification	des contrain	tes		
Lo	calisation	M_{ser}	A (cm ²)	Y (m)	I (m ⁴)	σ_{bc}	$\sigma_{\rm s}$	Observatio
		(KN.m)				(MPa)	(MPa)	n
Sens	En travée	10.21	2.36	0.031	7.83*10 ⁻⁵	4.08	271.36	non
X-X								Vérifiée
	En appuis	5.44	2.01	0.029	6.8*10 ⁻⁵	2.33	81.8	Vérifiée
Sens	En travée	3.82	2.01	0.029	6.8*10 ⁻⁵	0.96	149.17	Vérifiée
у-у	En appuis	1.79	2.01	0.029	6.8*10 ⁻⁵	2.05	70.20	Vérifiée

Tableau V.14 Calcul des sections d'armatures à l'ELS

Sen		β	α	$A_{calc\ (cm^2/ml)}$	$A_{choisie\ (cm^2/ml)}$	$\sigma_{\rm s}$
	(KN.m)					(MPa)
Х-У	$M_t^x = 10.21$	$1.75 * 10^{-3}$	0.22	3.22	3HA12=3.39	191.10

Service Espacement des armatures

Conformément au RPA 99/2003, l'espacement doit vérifier la condition suivante :

- $\checkmark \quad \underline{Sens~X\text{-}X\text{:}S_t} \leq min~(3E_p, 33~cm) = 33~cm.~Alors,~S_t = 25~cm.$
- $\checkmark \quad \underline{Sens \; Y\text{-}Y\text{:}} \; S_t \leq min \; (4E_p, 45 \; cm) = 45 \; cm. \; Alors, \; S_t = 25 \; cm.$

Schémas de ferraillages:

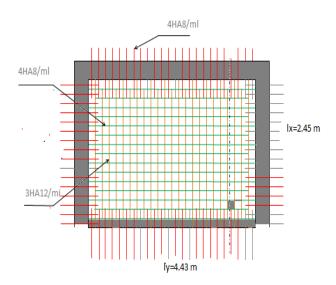


Figure V.14 schéma de ferraillage du mur adossé.

Conclusion générale

Le présent travail élaboré nous a permis non seulement de prendre connaissances des principales étapes à mener lors de l'étude d'un projet de construction mais, surtout d'approfondir nos connaissances dans le domaine de génie civil.

Il nous a permis également de faire connaissance avec le logiciel de calcul (**ETABS 2016**) et les programmes conçus pour le calcul des structures tel que le **CBA99** et le **BAEL99**. Et d'en faire un certain nombre de conclusions. Parmi celles-ci, on a pu retenir ce qui suit :

- La modélisation doit, autant que possible englober tous les éléments de la structure secondaires soient ils ou structuraux, ceci permet d'avoir un comportement proche de la réalité.
- 2. La contrainte architecturale était un vrai obstacle pour nous, pour la disposition des voiles à cause de la diminution de la rigidité en plan et l'emplacement de la cage d'escalier et de l'assesseure qui a provoqué une torsion.
- **3.** La bonne disposition des voiles, joue un rôle important sur la vérification de la période, ainsi que sur la justification de l'interaction "voiles-portique"
- **4.** L'existence des voiles dans la structure à permis la réduction des efforts internes de flexion et de cisaillement au niveau des poteaux des portiques, ceci a donne lieu à des sections de poteaux soumises à des moments relativement faibles, donc le ferraillage avec le minimum du RPA s'est imposé.
- **5.** Pour l'infrastructure, le radier général est le type de fondation le plus adéquat pour notre structure.

Outre la résistance, l'économie est un facteur très important qu'on peut concrétiser en jouant sur le choix de section du béton et d'acier dans les éléments résistants de l'ouvrage, tout en respectant les sections minimales requises par le règlement en vigueur.

Bibliographie

- Règles BAEL 91 modifiées 99.
 - (Edition Eyrolles Troisième édition 2000).
- Règles Parasismiques Algériennes.
 - (Edition CGS RPA 99 / version 2003).
- DTR B.C.2.2 : charges permanentes et charges d'exploitations. (Edition CGS Octobre 1988).
- DTR –BC 2.331 : Règles de calcul des fondations superficielles. (Edition OPU 2005).
- DTR –BC 2.332 : Règles de calcul des fondations profondes. (Edition OPU).
- Règles de conception et de calcul des structures en béton armé (CBA 93). (Edition CGS Décembre 1993).
- Cours de béton armé
- Anciens mémoires de fin d'étude.

Logiciels

- ETABS 2016
- SOCOTEC

Annexes

Annexe 1

L	$\alpha = \frac{L_X}{}$	ELU	v = 0	ELS 1) = 0.2
0.40 0.101 0.101 0.2500 0.0121 0.2524 0.41 0.41 0.1188 0.2500 0.1109 0.1009 0.3009 0.3009 0.42 0.42 0.149 0.43 0.449 0.2500 0.1075 0.3185 0.450 0.46 0.10122 0.2500 0.1053 0.3234 0.46 0.46 0.1022 0.2500 0.1053 0.3234 0.46 0.47 0.1098 0.2500 0.1055 0.3319 0.47 0.47 0.1098 0.2500 0.1055 0.3319 0.48 0.49 0.0990 0.2500 0.1003 0.1003 0.3319 0.49 0.49 0.0990 0.2500 0.1003 0.1003 0.3319 0.40 0.50 0.50 0.0996 0.2500 0.1003 0.1003 0.3580 0.50 0.50 0.50 0.0996 0.2500 0.1000 0.1000 0.3671 0.51 0.51 0.0991 0.2500 0.09971 0.3533 0.3522 0.09977 0.3500 0.09974 0.3583 0.555 0.0894 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0948 0.4150 0.55 0.6894 0.2500 0.0936 0.4150 0.566 0.8890 0.2500 0.0936 0.4150 0.577 0.08856 0.2582 0.0881 0.2703 0.2500 0.09977 0.4456 0.2500 0.606 0.0822 0.2948 0.0879 0.4466 0.0872 0.656 0.600 0.0822 0.2948 0.0879 0.4466 0.0871 0.4565 0.601 0.0888 0.0779 0.3338 0.0871 0.4565 0.606 0.08822 0.2948 0.0879 0.4466 0.0871 0.611 0.0888 0.09775 0.08876 0.6565 0.6600 0.08816 0.2773 0.30584 0.0879 0.4466 0.0871 0.6666 0.0771 0.08888 0.0979 0.3358 0.0881 0.2703 0.08871 0.2500 0.08871 0.2500 0.08872 0.09844 0.0870 0.4672 0.08888 0.09791 0.4456 0.6565 0.6600 0.08822 0.2948 0.0870 0.08876 0.08876 0.08876 0.08877 0.4585 0.08871 0.2713 0.08977 0.4456 0.6570 0.08878 0.08871 0.08878 0.08871 0.08878 0.08871 0.08878 0.08871 0.08878 0.08879 0.08878 0.08878 0.08879 0.08878 0.08879 0.08878 0.08878 0.08879 0.08879 0.08878 0.08879 0.08878 0.08879 0.08878 0.08878 0.08879 0.08878 0.08879 0.08878 0.08878 0.08879 0.08879 0.08878 0.08879 0.08878	L_{Y}	II _v	II.	II.	II _v
0.41 0.1088 0.2500 0.1110 0.2924 0.422 0.1075 0.2500 0.1098 0.3000 0.444 0.1049 0.2500 0.1087 0.3077 0.3075 0.3155 0.450 0.454 0.1049 0.2500 0.1063 0.3075 0.3155 0.3155 0.45 0.45 0.46 0.1022 0.2500 0.1063 0.3031 0.3031 0.46 0.1023 0.2344 0.1008 0.2500 0.1063 0.3319 0.47 0.1008 0.2500 0.1038 0.402 0.402 0.408 0.0994 0.2500 0.1038 0.402 0.402 0.4091 0.40 0.0990 0.2500 0.1038 0.402 0.401 0.40 0.0990 0.2500 0.1013 0.3580 0.402 0.5500 0.1006 0.402 0.401 0.5500 0.1006 0.550 0.0966 0.2500 0.1006 0.05671 0.550 0.0994 0.2500 0.0006 0.0007 0.3671 0.550 0.0994 0.0991		PX.	p.y	PX.	μy
0.42 0.1075 0.2500 0.1087 0.3007 0.441 0.1042 0.2500 0.1088 0.3000 0.451 0.1044 0.1049 0.2500 0.1075 0.3155 0.3155 0.3254 0.455 0.1036 0.2500 0.1075 0.3155 0.3254 0.455 0.1036 0.2500 0.1063 0.3224 0.47 0.1008 0.2500 0.1051 0.3319 0.47 0.1008 0.2500 0.1018 0.3402 0.48 0.0994 0.2500 0.1013 0.3580 0.3402 0.49 0.0986 0.2500 0.1013 0.3580 0.50 0.50 0.0966 0.2500 0.1013 0.3580 0.550 0.0966 0.2500 0.1013 0.3580 0.551 0.2500 0.0937 0.2500 0.0997 0.3758 0.552 0.0937 0.2500 0.09961 0.3949 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0998 0.2500 0.0993 0.0555 0.0894 0.2500 0.0993 0.0993 0.4450 0.2500 0.0938 0.4500 0.0938 0	0.40	0.1101	0.2500	0.0121	0.2854
0.44 0.44 0.1049 0.2500 0.467 0.45 0.468 0.1036 0.2500 0.1063 0.3155 0.477 0.1008 0.2500 0.1063 0.3155 0.488 0.4994 0.2500 0.1013 0.488 0.3491 0.49 0.499 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.500 0.490 0.490 0.500 0.490 0.500 0.490 0.500 0.490 0.500 0.500 0.9986 0.2500 0.1013 0.3883 0.3491 0.51 0.51 0.521 0.0956 0.2500 0.1000 0.3871 0.2500 0.1000 0.3871 0.2500 0.1000 0.3871 0.2500 0.09974 0.3883 0.53 0.9922 0.2500 0.09974 0.3883 0.53 0.6922 0.2500 0.09966 0.4150 0.555 0.0894 0.2500 0.09933 0.4254 0.559 0.0865 0.2502 0.2984 0.2500 0.09970 0.09877 0.4456 0.590 0.09966 0.0852 0.2984 0.08870 0.04672 0.611 0.08088 0.20725 0.0884 0.0870 0.04722 0.0484 0.0490 0.0504 0.04822 0.09844 0.04866 0.08922 0.29848 0.0870 0.0870 0.04724 0.611 0.08088 0.3075 0.0870 0.0870 0.04724 0.614 0.08088 0.3075 0.0844 0.4502 0.0845 0.0844 0.09666 0.07707 0.06684 0.07707 0.06684 0.07707 0.06684 0.07707 0.06684 0.07707 0.06684 0.07707 0.06684 0.07707 0.06684 0.07707 0.06686 0.07707 0.06684 0.07707 0.06684 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06686 0.07707 0.06786 0.06089 0.07708 0.08086 0.07709 0.08086 0.07709 0.08086 0.08086 0.08086 0.08086 0.08086 0.08086 0.08086 0.08086 0.08086 0.08086 0.08086 0.080866 0.08086 0.08086 0.080866 0.08086 0.080866 0.080866 0.080866 0.080866 0.0808666 0.	0.41	0.1088	0.2500	0.1110	0.2924
0.45	0.42	0.1075	0.2500	0.1098	0.3000
0.44	0.43	0.1062	0.2500	0.1087	0.3077
0.45					
0.46					
0.47					
0.48					
0.49					
0.50 0.9966 0.2500 0.1000 0.3671 0.51 0.0951 0.2500 0.0987 0.3758 0.52 0.0927 0.2500 0.0974 0.3853 0.53 0.0922 0.2500 0.0961 0.3499 0.55 0.0998 0.2590 0.0936 0.4150 0.55 0.0880 0.2590 0.0936 0.4150 0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0851 0.2703 0.0897 0.4456 0.59 0.0836 0.2822 0.0884 0.4665 0.60 0.0822 0.2948 0.0870 0.4472 0.61 0.08088 0.3075 0.0857 0.4781 0.62 0.0794 0.3238 0.0857 0.4781 0.63 0.0775 0.0857 0.4781 0.4924 0.65 0.0751 0.3338 0.0831 0.3004 0.65 0.0751 0.3413 0.0809 0.5459 <td></td> <td></td> <td></td> <td></td> <td></td>					
0.51 0.0951 0.2500 0.0987 0.3758 0.52 0.0937 0.2500 0.0974 0.3853 0.53 0.0902 0.2500 0.0948 0.4050 0.54 0.0908 0.2500 0.0948 0.4050 0.55 0.0894 0.2500 0.0936 0.4150 0.57 0.0865 0.2502 0.0910 0.4357 0.58 0.0881 0.2500 0.0923 0.4254 0.58 0.0851 0.2703 0.0897 0.4357 0.58 0.0851 0.2703 0.0897 0.4357 0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0857 0.4721 0.61 0.0808 0.3075 0.0857 0.4721 0.62 0.07794 0.3238 0.0831 0.5004 0.63 0.07799 0.3338 0.0831 0.5117 0.65 0.0751 0.5613 0.08019 0.5151 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0.52 0.0937 0.2500 0.0961 0.3949 0.53 0.0992 0.2500 0.0948 0.4050 0.55 0.0884 0.2500 0.0936 0.4150 0.56 0.0880 0.2500 0.0923 0.4254 0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0851 0.2703 0.0884 0.4565 0.59 0.0836 0.2822 0.0910 0.4357 0.60 0.0822 0.2948 0.0870 0.4456 0.61 0.0888 0.3075 0.0884 0.4565 0.62 0.0794 0.3205 0.0884 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0881 0.5117 0.65 0.0751 0.3613 0.0895 0.5235 0.66 0.0737 0.7553 0.0792 0.5351 0.67 0.0723 0.3895 0.0730 0.5469					
0.53 0.0922 0.2500 0.0941 0.349 0.54 0.0998 0.2500 0.0948 0.4050 0.55 0.0894 0.2500 0.0936 0.4150 0.57 0.0865 0.2522 0.0910 0.4357 0.58 0.0851 0.2703 0.0897 0.4456 0.58 0.0856 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0870 0.4456 0.60 0.0822 0.2948 0.0870 0.4456 0.61 0.0808 0.3075 0.0887 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.07751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3995 0.0780 0.5469					
0.54 0.0908 0.2500 0.0948 0.4050 0.55 0.0884 0.2500 0.0923 0.4150 0.56 0.0880 0.2500 0.0923 0.4254 0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0851 0.2703 0.0897 0.4456 0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0870 0.4672 0.61 0.0808 0.3075 0.0887 0.4781 0.62 0.0794 0.3205 0.0884 0.4892 0.63 0.0779 0.3338 0.0881 0.4892 0.64 0.0737 0.3338 0.0881 0.5004 0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584					
0.55 0.0894 0.2500 0.0936 0.4150 0.56 0.0880 0.2560 0.0923 0.4254 0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0831 0.2822 0.0887 0.4456 0.60 0.0822 0.2948 0.0870 0.4665 0.61 0.0808 0.3075 0.0857 0.4781 0.62 0.0794 0.3205 0.0857 0.4781 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0731 0.3753 0.0805 0.5235 0.66 0.0737 0.3753 0.3792 0.5351 0.67 0.0723 0.3895 0.0780 0.5235 0.68 0.07110 0.4034 0.0767 0.5584 0.69 0.06697 0.4181 0.0755 0.5584 0.70 0.0684 0.4374 0.4371 0.5794 <td></td> <td></td> <td></td> <td></td> <td></td>					
0.56 0.0880 0.2500 0.0923 0.4254 0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0851 0.2703 0.0897 0.4456 0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.08222 0.2948 0.0870 0.4672 0.61 0.0808 0.3075 0.0857 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.670 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0765 0.5794 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 <td></td> <td></td> <td></td> <td></td> <td></td>					
0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0851 0.2703 0.08997 0.4456 0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0870 0.4662 0.61 0.0808 0.3075 0.0857 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5361 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0765 0.5584 0.69 0.0607 0.4181 0.0755 0.5704 0.71 0.0684 0.4320 0.0743 0.5817 0.72 0.06884 0.4210 0.0719 0.6063 <td>0.55</td> <td>0.0894</td> <td>0.2500</td> <td>0.0936</td> <td>0.4150</td>	0.55	0.0894	0.2500	0.0936	0.4150
0.57 0.0865 0.2582 0.0910 0.4357 0.58 0.0851 0.2703 0.08997 0.4456 0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0870 0.4662 0.61 0.0808 0.3075 0.0857 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5361 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0765 0.5584 0.69 0.0607 0.4181 0.0755 0.5704 0.71 0.0684 0.4320 0.0743 0.5817 0.72 0.06884 0.4210 0.0719 0.6063 <td>0.56</td> <td>0.0880</td> <td>0.2500</td> <td>0.0923</td> <td>0.4254</td>	0.56	0.0880	0.2500	0.0923	0.4254
0.58 0.0851 0.2703 0.0897 0.4456 0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0870 0.4672 0.61 0.0808 0.3075 0.0887 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.06697 0.4181 0.0755 0.5704 0.71 0.0664 0.4320 0.0743 0.5817 0.71 0.0665 0.4471 0.0731 0.5940 0.72 0.0668 0.424 0.0719 0.6603	0.57	0.0865	0.2582	0.0910	0.4357
0.59 0.0836 0.2822 0.0884 0.4565 0.60 0.0822 0.2948 0.0870 0.4672 0.61 0.0808 0.3075 0.0857 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.3613 0.0805 0.2535 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.06671 0.4471 0.0733 0.5817 0.72 0.0568 0.4624 0.0719 0.6063 0.73 0.0664 0.4780 0.0719 0.6063 <td></td> <td></td> <td></td> <td></td> <td></td>					
0.60 0.0822 0.2948 0.0870 0.4672 0.61 0.0808 0.3075 0.0887 0.4781 0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.2613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4220 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6663 0.73 0.0664 0.4780 0.0709 0.0603 0.74 0.0633 0.4938 0.0696 0.6315					
0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0737 0.3531 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0661 0.5105 0.0684 0.6447 0.77 0.0596 0.5440 0.0661 0.6710					
0.62 0.0794 0.3205 0.0844 0.4892 0.63 0.0779 0.3338 0.0831 0.5004 0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0737 0.3531 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0661 0.5105 0.0684 0.6447 0.77 0.0596 0.5440 0.0661 0.6710	0.61	0.0808	0.3075	0.0857	0.4781
0.63 0.0779 0.3338 0.0819 0.5117 0.65 0.0751 0.5613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6603 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5410 0.0661 0.6710 0.78 0.0584 0.5086 0.0661 0.6710					
0.64 0.0765 0.3472 0.0819 0.5117 0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.06671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.75 0.0621 0.5105 0.0684 0.6447 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.506 0.540 0.0646					
0.65 0.0751 0.3613 0.0805 0.5235 0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0534 0.500 0.0631 0.6510 0.79 0.0573 0.5786 0.0639 0.6978					
0.66 0.0737 0.3753 0.0792 0.5351 0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0735 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111					
0.67 0.0723 0.3895 0.0780 0.5469 0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.508 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246					
0.68 0.0710 0.4034 0.0767 0.5584 0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0719 0.6063 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0628 0.7111 0.81 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381					
0.69 0.0697 0.4181 0.0755 0.5704 0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0639 0.6978 0.80 0.0573 0.5786 0.0639 0.6978 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.6339 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655					
0.70 0.0684 0.4320 0.0743 0.5817 0.71 0.0671 0.4471 0.0731 0.5940 0.72 0.0658 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0526 0.6846 0.0576 0.7518 0.84 0.0517 0.6678 0.0586 0.7655	0.68	0.0710	0.4034	0.0767	0.5584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.69	0.0697	0.4181	0.0755	0.5704
0.72 0.0668 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7555 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.890	0.70	0.0684	0.4320	0.0743	0.5817
0.72 0.0668 0.4624 0.0719 0.6063 0.73 0.0646 0.4780 0.0708 0.6188 0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7555 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.890	0.71	0.0671	0.4471	0.0731	0.5940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
0.74 0.0633 0.4938 0.0696 0.6315 0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.88 0.0476 0.7384 0.0528 0.8502					
0.75 0.0621 0.5105 0.0684 0.6447 0.76 0.0608 0.5274 0.0672 0.6580 0.77 0.0596 0.5440 0.0661 0.6710 0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.88 0.0476 0.7438 0.0546 0.8216 0.89 0.0466 0.7635 0.0537 0.8358					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.76	0.0608	0.5274	0.0672	0.6580
0.78 0.0584 0.5608 0.0650 0.6841 0.79 0.0573 0.5786 0.0639 0.6978 0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
0.80 0.0561 0.5959 0.0628 0.7111 0.81 0.0550 0.6135 0.0617 0.7246 0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8861 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
0.82 0.0539 0.6313 0.0607 0.7381 0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.88 0.0476 0.7438 0.0546 0.8216 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385					
0.83 0.0528 0.6494 0.0956 0.7518 0.84 0.0517 0.6678 0.0586 0.7655 0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.88 0.0476 0.7438 0.0546 0.8216 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
0.85 0.0506 0.6864 0.0576 0.7794 0.86 0.0496 0.7052 0.0566 0.7932 0.87 0.0486 0.7244 0.0556 0.8074 0.88 0.0476 0.7438 0.0546 0.8216 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
0.88 0.0476 0.7438 0.0546 0.8216 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
0.88 0.0476 0.7438 0.0546 0.8216 0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847	0.87	0.0486	0.7244	0.0556	0.8074
0.89 0.0466 0.7635 0.0537 0.8358 0.90 0.0456 0.7834 0.0528 0.8502 0.91 0.0447 0.8036 0.0518 0.8646 0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.0537	
0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
0.92 0.0437 0.8251 0.0509 0.8799 0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847	0.91	0.0447	0.8036	0.0518	0,8646
0.93 0.0428 0.8450 0.0500 0.8939 0.94 0.0419 0.8661 0.0491 0.9087 0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
0.95 0.0410 0.8875 0.0483 0.9236 0.96 0.0401 0.9092 0.0474 0.9385 0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
0.97 0.0392 0.9322 0.4065 0.9543 0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847	0.04	0.0401	0.0002	0.0474	0.0382
0.98 0.0384 0.9545 0.0457 0.9694 0.99 0.0376 0.9771 0.0449 0.9847					
0.99 0.0376 0.9771 0.0449 0.9847					
1.00 0.0368 1.0000 0.0441 0.1000	1.00	0.0368	1.0000	0.0441	0.1000

Annexe 2

Table de PIGEAUD

M1 et M2 pour une charge concentrique P = 1 s'exerçant sur une surface réduite $u \times v$ au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension

 $Lx \times Ly$ Avec Lx < Ly. $\rho = 0.8$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.320 0.257 0.225 0.203 0.184 0.167 0.150 0.135 0.124 0.113	0.250 0.235 0.216 0.198 0.181 0.166 0.151 0.137 0.124 0.114 0.105	0.200 0.194 0.184 0.172 0.160 0.148 0.135 0.123 0.113 0.104 0.096	0.168 0.166 0.160 0.152 0.142 0.132 0.122 0.112 0.103 0.095 0.087	0.144 0.143 0.140 0.134 0.126 0.117 0.109 0.101 0.094 0.087 0.079	0.126 0.125 0.123 0.118 0.112 0.105 0.098 0.093 0.086 0.079 0.072	0.110 0.109 0.108 0.104 0.100 0.085 0.089 0.084 0.078 0.072 0.066	0.099 0.098 0.097 0.094 0.090 0.086 0.082 0.076 0.071 0.065 0.059	0.089 0.088 0.086 0.082 0.078 0.074 0.069 0.064 0.059 0.054	0.081 0.079 0.078 0.076 0.073 0.068 0.063 0.058 0.054 0.049	0.077 0.077 0.075 0.073 0.069 0.066 0.061 0.057 0.053 0.049 0.045
Valeur de M ₂	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.227 0.160 0.128 0.107 0.090 0.079 0.069 0.062 0.055 0.049	0.282 0.196 0.150 0.122 0.102 0.087 0.076 0.067 0.059 0.053 0.047	0.231 0.174 0.139 0.114 0.097 0.083 0.073 0.064 0.0057 0.051 0.046	0.199 0.159 0.129 0.107 0.091 0.078 0.069 0.062 0.054 0.048 0.044	0.175 0.145 0.120 0.101 0.086 0.074 0.066 0.058 0.052 0.046 0.041	0.156 0.133 0.109 0.094 0.081 0.071 0.063 0.056 0.049 0.044 0.038	0.141 0.121 0.103 0.088 0.076 0.067 0.058 0.052 0.046 0.042 0.036	0.129 0.111 0.096 0.082 0.071 0.063 0.055 0.048 0.043 0.038	0.116 0.102 0.087 0.075 0.066 0.057 0.051 0.045 0.040 0.036 0.032	0.105 0.093 0.079 0.068 0.059 0.053 0.047 0.042 0.037 0.033 0.028	0.095 0.083 0.070 0.061 0.058 0.047 0.043 0.038 0.033 0.029 0.027

Annexe 3

Tableau des Armatures (en cm²)

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.7	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

Annexe 4

Performances & Raffinement

Table dimensionnelle T30

Ligne	Build	ling				machii	ascenseurs de personnes machinerie supérieure entraînement électrique						
Charge nomina en kg	le Z	Vitesse nominale en m/s	Entraîn. (1)	Nombre niveaux maxi	Course maxi en m	Dimensions de cabine	Passage libre	Dimensions de gaine	Profonde cuv	Account the last and the Control of			
630		1.00	2 v		22	Marie Salar Marie Marie Salar	BTXHT	BS x TS	HSG	1. 200			
8 pers.	6	1.00	AND THE RESERVE	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140			
RES.			DyS	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140			
		1.60	ACVF	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140			
		1,60	DyS	18	50	110 x 140 x 220	80 x 200	180 x 210 +	150	160			
			ACVF	18	50	110 x 140 x 220	80 x 200	180 x 210	150	160			
300		1.00	2 V2			iles, and the	2007/2002/5		140				
			DyS			Section 1	27.00			100			
			MACNIE I			TELE			20				
		1/00	0.	7		AGE OF STREET							
			Sept.	- 2	17.0	(C) (E) 2011	1000	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
71	1		NO.			450 00000	1. 200						
			10/2			100 miles	1 (20)		10				
000	6	1,00	2 v	12	- 32	160 x 140 x 230	110 x 210	240 x 230	140	140			
3 pers			Dy S	12	32	160 x 140 x 230	110 x 210	240 x 230	140	140			
		H. A.	ACVF	12	32	160 x 140 x 230	110 x 210	240 x 230	140	140			
		1.60	DyS	18	50	160 x 140 x 230	110 × 210	240 x 230	155	160			
			ACVF	18	50	160 x 140 x 230	110 x 210	240 x 230	155	160			
	1364	2.50	Dy MV	28	80	160 x 140 x 230	110 x 210	240 x 230	180	220 *			
			TD 2	31	80	160 x 140 x 230	110 x 210	240 x 230	180	220			
		4.00	TD 2	31	80	160 x 140 x 230	110 x 210	240 × 230	320				
250	[à]	1.00	DyS .	12	32	195 x 140 x 230	110 x 210	260 x 230	140	160			
6 pers	101		ACVF	12	32	195 x 140 x 230	110 x 210	260 × 230	140	160			
		1.60	DyS	18	50	195 x 140 x 230	110 × 210	260 × 230	155	160			
			ACVF	18	50	195 x 140 x 230	110 x 210	260 × 230	155	160			
		2.50	Dy MV	28	80	195 x 140 x 230	. 110 × 210	260 4 230	180	220			
		2.00	TD 2	31	80	195 x 140 × 230	110 x 210	260 × 230	180	220			
		4 00	TD 2	31	80	195 x 140 x 230	110 - 210	260 < 230	320	220			
600	6	:,00	DyS	12	32	195 x 175 x 230	110 x 210	260 × 260		100			
pers.	100		ACVF	12	32	195 x 175 x 230	110 x 210		140	160			
		1,60	DyS	18	50	195 x 175 x 230	110 x 210	260 x 260	140	160			
			ACVF	18	50	195 x 175 x 230	110 x 210	260 x 260	155	160			
		: 50	Dy MV	28	80	195 x 175 x 230	110 x 210	200	155	160			
			TD 2	31	80	195 × 175 × 230	110 x 210	260 x 260	180	220			
		= 00	TD 2	31	80	195 × 175 × 230 .	110 x 210	260 x 260	180	220			
		6 30	TD 2	31	80	195 × 175 × 230	110 x 210	260 x 260 260 x 260	400				

Note: Tours lecicies sont exprindes en centimetres sei inscators contraines (2) Les profondeurs de carette et heuteurs sous cale sont hocutes survent le normanisment 2 v 2 visesses, Dy 5 - Dynatron 5 visesses and 5 v

Caractéristiques générales

Etombre de faces de service

Distance mini entre niveaux

resposition.

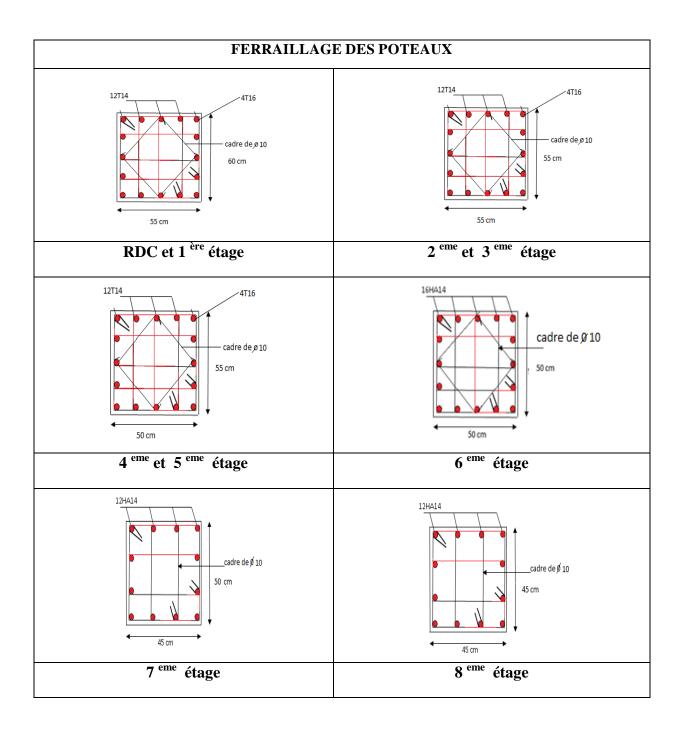
en simplex (pour les dispositions en batterie, consulter la table T31)

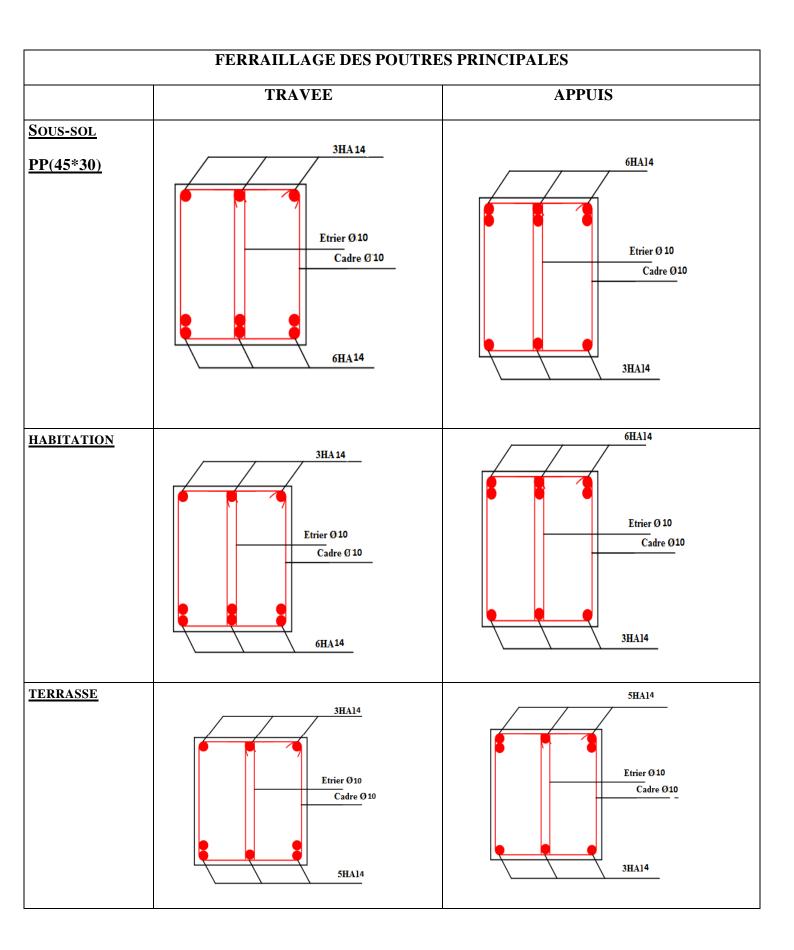
simple acces 255 cm Marianne

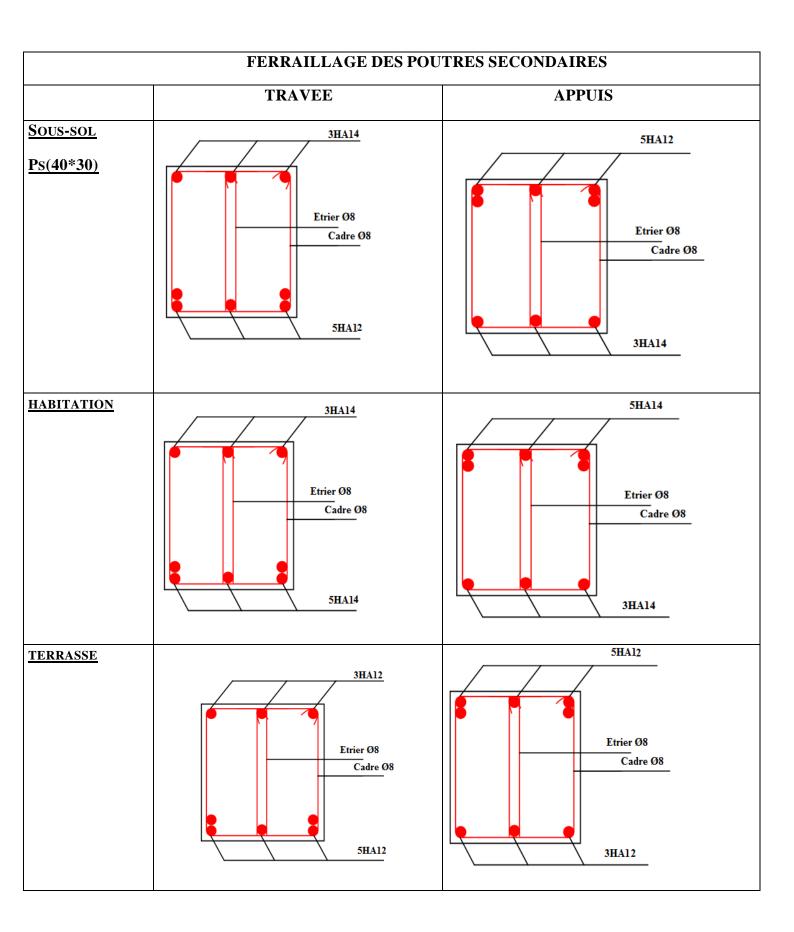
Poures automatiques

collective descente sélective, à analyse permanente de trafic

à ouverture centrale trafic intense


Hauteur sous dalle	Dimensions mini (EN 8	libre .	AND THE PERSON NAMED IN COLUMN 2 IN COLUMN 2	té pour 5 père	0 Hz		Puissanca	Réaction maxi en daN.			
HSK 355 380	BO TO HO		TRI 220	7	TRI 3	M	CO) en kVA	cuvette FC	DM	machines PM	
355 380	180 360 200 180 380 200	120 x 100	36	94 87	21	54 50	26 25 .	10200	8200	1500	
355 380	180 420 200 180 400 200	120 x 100	28	70 -	16	40	SERVICE TO ALL DES	10200	TOTAL THE TOTAL	1500	
365 400	180 420 200	140 x 100	42	99	24	57 53	28	14500	5100 5100	1500	


369	30.0	20 M. (4)				100							
												75.71	
7										10		enrit.	
	in S				6.5						3.00		
्द्रद											100	200	
	500		301	SA1									11
365	420	240	390	200	140 x 100	54	179	21				400	
365	420	240	400	200	120 x 100	49	117	28	104	43	25000	8400	1 50
365	420	240	440	200	120 × 100	31	78	18	67	33	25000	8400	1 50
375	420	240	400	200	140 x 100	59	142		45	22	25000	8400	150
375	420	240	440	200	140 x 100	49	123	34	82	40	25500	9000	1 50
435	520	240	460	210	180 x 100	123	391	29	73	36	25500	9000	150
465	520	240	460	220	150 x 100	723	391	71	226	96	27000	10500	200
490		240	500	240	140 x 120	7	7	T	7	T	28000	11000	200
400	440	260	400	200	140 x 100			4	T	8	30 000	12500	300
400	440	260	400	200	120 x 100	59	142	34	82	40	29000	9500	1 50
410	440	260	400	200	160 x 100	49	123	29	73	36	29000	9 500	150
416	440	260	400	200	140 x 100	59	140	52	127	62	30,000	11000	150
435	540	260	460	220	200 x 120	141	148	34	85	41	30,100	11,000	1.50
465	540	260	460	220	150 x 120	141	451	82	262	111	31000	12000	2 00
530		260	500	240	160 x 120	2	-	4			32,000	12 800	250
400	440	260	430	200	140 x 100		3	4	Т	2	337.20	14000	300
400	440	260	430	200	120 x 100	59	142	34,-	82	40	33 000	11000	150
410	440	260	430	200	170 x 100	49	123	29	73	36	33 000	11000	150
410	440	260	430	200	140 x 100	66	166	52	127	62	33 500	12500	150
460	540	260	520	210	210 x 120	166	165	38:	95	46	33 500	12500	150
470	340	260	520	220	150 x 120	π	530	96	307	130	35 000	13500	250
540		260	520	240	200 x 120	<u> </u>	 -	<u> </u>	7		36 000	14000	300
590		260	520	280	230 x 140	T	 -	п	- T	Ψ.	38000	18000	500
100	Symbole &	ntribue par le C	omits Nat	ional de I buto	poor a Reeds harron des		υ	•	T	T	38000	19500	7 000


fautorisation of emploi in 0011; Les appareils sont conformes à la Norme NE P 91-201 et ... accessibles aux handicapés circulent an fautos if toutairs affectives.

The stress possible de plormer des valeurs precises deris le contexte d'un document général S'existant d'installetions à très hautes performances. Il est vivement conseilé de prendre contect avec votre correspondent Schindler hebituel

Annexe 5 Schéma de ferraillage des éléments

Annexe 6 Conclusion du rapport de sol

VIII. CONCLUSIONS

Le site destiné pour la réalisation d'une promotion immobilière de 114 logements est situé sur un terrain doté d'une pente faible à moyenne; caractérisé par de faibles dépressions.

Il est limité à l'Est par la rue ATALA AEK, à l'Ouest par la zone non aedificandie, au Nord par l'ilot n° 15, n° 16 et une bâtisse en R+1 et au Sud par l'ilot n° 12 et un Oued.

La géologie du site est constituée par des argiles limoneuses noirâtres et rougeâtre légèrement graveleuse, une nappe alluvionnaire de dimensions moyennes à grossières composée par des argiles, limons, graviers, galets et blocs calcaire et gréseux, reposant sur une formation de marnes limoneuses associées avec des grés.

En se basant sur la nature du sous-sol, les caractéristiques géotechniques ainsi que les résultats des essais pénétrométriques nous vous recommandons des fondations superficielles de type radier qu'il y a lieu d'ancrer à partir de 2m de profondeur et de prendre une contrainte admissible 1,5 bars.

Le sous sol du site est constitué par une nappe alluvionnaire, composée par des argiles, sables graviers, galets et blocs, d'où cette formation hétérogènes peuvent engendrer des tassements différentiels, d'où il ya lieu d'opter pour un compactage de l'assise de fondation afin d'éliminer tous les vides.

Les tassements seront ressentis lors de la construction de l'ouvrage qui consiste à la réorganisation des éléments graveleux

Afin d'assurer la stabilité de l'ouvrage, il ya lieu d'effectuer :

- C. Q
- Un drainage efficace des eaux pluviales et les eaux de surface.
- Réaliser des dispositifs de protection du ravin contre les affouillements et l'érosion
- De prendre en compte la sismicité de la région dans le calcul des structures en béton armés.

Les analyses chimiques indiquent que ces sols ne présentent aucune agressivité pour les bétons hydrauliques de l'infrastructure

INGÉNIEUR CHARGÉ DE L'ÉTUDE

LE DIRECTEUR Directeul

EURL NEL CONSTRUCTION

Annexe 7 Plans architecturaux du Bâtiment