REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABDERRAHMANE MIRA-BEJAIA FACULTE DE TECHNOLOGIE DEPARTEMENT GENIE CIVIL

Mémoire de fin d'études

En vue de l'obtention du diplôme master en génie civil

Option: structures
THEME

Etude d'un bâtiment (R+8) à Bejaia à usage Multiple Contreventé par un système mixte

Réalisé par : Encadré par :

Bouzidi Nesrine Mr : A.SiSalem

Meridja sylia

Année Universitaire: 2019/2020

Remerciements

Ce jour marque la fin d'une longue période d'étude à l'université de Bejaia.

Au terme de notre formation en générale et notre projet de fin d'étude.

En particulier, nous tenons à remercier, le Dieu miséricordieux qui nous a donné la Force d'achever ce modeste travail.

Un grand merci à nos familles qui nous ont toujours encouragés et soutenus durant toutes nos études.

Un grand merci à notre promoteur Mr : A. Sisalem

Nos plus vifs remerciements vont aussi à Mr : A.Nekmouche

Nos sincères remerciements vont également à tous les enseignants du département génie civil.

Un grand merci à toutes personnes ayant contribués à l'élaboration de ce Mémoire, De près ou de loin.

Sylia & Nesrine

Dédicace

Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce modeste travail:

A ceux que j'aime infiniment A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce longe chemin, ma mère qui a été à mes côtés et ma soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voire devenir ce que je suis.

> A mes très chers frères et sœurs. A toute la famille : « MERIDJA »et « HAMMI ».

> > A tous mes amis sans exception. A ma chère binôme : Nesrine. A tous mes enseignants. A toute la promotion 2019-2020.

> > > Sylia

Dédicace

Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie, du fond du cœur à ceux qu'on aime et qu'on remercie en exprimant la gratitude et la reconnaissance durant toute notre existence.

Je dédie ce modeste travail:

A mes très chers parents qui ont toujours été présent pour me soutenir, me conseiller, sacrifient pour moi afin de me voir devenir ce que je suis devenu

Je le dédie aussi à

A mes très chers sœurs: Kenza, Lilia, Zahra.

A mes très chers frères : Badredine, Belkacem .

A mon adorable nièce: Melyna.

A mon très chers ami: Massi.

A toute la famille « Bouzidi ».

A ma binôme Sylia . et à tous mes amis en particuliers « Hicham et Lyna » A toute la promotion 2019/2020 .

Nesrine

Symboles et Notations

A_r : Aire d'une section d'acier de répartition

A_t: Aire d'une section d'acier transversal

A_s: Aire d'une section d'acier

B: la largeur (m).

B_r: Section réduite du béton

E_s: Module d'élasticité de l'acier

E_{vi}: Module de déformation différée du béton à l'âge de j jour

E_{ij}: Module de déformation instantanée du béton à l'âge de j jour

f_{ci}: Résistance caractéristique de compression à j jour

f_{tj}: Résistance caractéristique de traction à j jour

f_e: Limite d'élasticité de l'acier

G : Charges permanente

Q: Charges d'exploitation

E: Actions accidentelles

qu: Charges réparties ultime

q_s: Charges réparties de service

I: Moment d'inertie

M_u: Moment de calcul ultime

M_s: Moment de calcul de service

Nu: Effort normal ultime

Ns: Effort normal de service.

V: Effort tranchant

S : Surface plane de la structure

d : Position des armatures tendues par rapport à la fibre la plus comprimée

e: Epaisseur

L: Longueur

L_r: Longueur de recouvrement

l_f: Longueur de flambement

I: Rayon de giration

 Λ : Elancement

μ: Coefficient de frottement

μ_{bu} : Moment ultime réduit

v: Coefficient de poisson

 σ_{bc} : Contrainte du béton à la compression

 σ_s : Contrainte de l'acier à la traction

φ_t : Diamètre des armatures transversales

S_t: Espacement des armatures

ζ: Contrainte tangentielle de cisaillement

 ζ_{se} : Contrainte d'adhérence

η : Coefficient de fissuration

 Ψ_s : Coefficient de scellement

ls: Longueur de scellement

 ξ_{bc} : Raccourcissement relatif du béton

 ξ_s : Allongement relatif de l'acier tendu

γ_b : Coefficient de sécurité de béton

γ_s: Coefficient de sécurité de l'acier

γ : Poids spécifique déjaugé

A : Coefficient d'accélération de zone

 C_T : coefficient fonction du système de contreventement et du type de remplissage

C_u: La cohésion du sol (KN/m²).

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

Fs : Cœfficient de sécurité = 1.5

Q : Facteur de qualité

R : coefficient de comportement global

P: Poids du radier (KN).

N : Charge concentrée appliquée (ELS ou ELU).

 S_r : surface du radier (m²).

S_{bat}: Surface totale du bâtiment (m²).

St : Espacement des armatures.

W: poids propre de la structure.

W_{Oi}: Charges d'exploitation.

W_G: poids du aux charges permanentes et à celles d'équipement fixes éventuels.

Z : bras de levier

f: Flèche

fe: Limite d'élasticité

h_{t:} hauteur total du radier (m).

 $\mathbf{h}_{\scriptscriptstyle N}$: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 σ : Contrainte normale.

φ : Angle de frottement interne du sol (degrés).

 σ_{adm} : Contrainte admissible au niveau de la fondation (bars).

k_s: Coefficient de portance.

 $\mathbf{q}_{\scriptscriptstyle{0}}$: Contrainte effective verticale initiale au niveau de fondation (bars).

 σ_{i} : Contrainte effective finale (bars).

 $\tau_{\mbox{\tiny ulim}}$: Valeur de cisaillement limite donné par le BAEL (MPa).

 τ_u : Contrainte de cisaillement (MPa).

η: Facteur d'amortissement.

 β : Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

h₀: épaisseur de la dalle de radier (cm)

h_t: hauteur de la nervure (cm)

Introduction Générale

Introduction générale

Construire a toujours été l'un des premiers soucis de l'homme et l'une de ses occupations privilégiées. A ce jour, la construction connaît un grand essor dans la plus part des pays et très nombreux sont les professionnelles qui se livrent à l'activité de bâtir dans le domaine du bâtiment ou des travaux publics.

Cependant, si le métier de construire peut être considérer parmi les plus anciens exercés par l'homme, il faut reconnaître qu'il leur a fallu au cours des dernières décades, s'adapter pour tenir compte de l'évolution des constructions, mais surtout des nouvelles techniques qui permettent une fiabilité maximale de la structure vis-à-vis des aléas naturels tel que les séismes. Qui doivent en outre tenir compte de différents facteurs tels que l'économie, l'esthétique, la résistance et surtout la sécurité.

Pour satisfaire les exigences énoncées ci-dessus, on doit choisir convenablement les matériaux, définir une conception, un dimensionnement et des détails constructifs appropriés, et spécifier des procédures de contrôles adaptées au projet considérer, au stade de la conception, et de l'exploitation. Pour ce faire, il faut impérativement respecter les normes et les règles en vigueur qui sont propres à chaque pays

Le projet qui nous a été confié dans le cadre de la préparation de notre projet de fin d'étude porte sur l'étude d'un bâtiment (R+8). Il est contreventé par un système mixte (voiles /portiques) étant donné qu'il est situé en zone IIa et qu'il dépasse les 14 mètres de hauteur.

L'étude est mené en respectant les différents codes de calcul et de conception des structures du génie civil, notamment CBA93, BAEL91, RPA99 version 2003 et les différents Documents technique.

Chapitre I Généralités

Généralités

I.1. Introduction

Ce chapitre est consacré à des généralités, donne la définition des caractéristiques géométriques de la structure objet de notre étude ainsi que les caractéristiques mécaniques des matériaux utilisés pour sa réalisation.

I.2. Présentation de l'ouvrage

L'ouvrage qui fait l'objet de notre étude est un bâtiment (R+8) implanté à Bejaia au lieu-dit : **Zone D'activités Rue des Frères Mokhtari**, cette structure est destinée pour l'usage multiple, elle est classée d'après les règles parasismiques algérienne « **RPA99/Version 2003** » dans le groupe d'usage 2, ayant une importance moyenne, zone sismique (**IIa**). [1]

I.3. Caractéristiques géométriques de la structure

Les caractéristiques géométriques de la structure à étudier sont :

- Longueur en plan(RDC)20,00 m
- Largeur en plan(RDC)......10.00 m
- Hauteur des étages courants 2,89 m
- Hauteur totale du bâtiment (sans acrotère).27,86 m

I.4. Présentation de la structure

L'accès aux étages supérieurs s'effectue au moyen d'un ascenseur et d'une cage d'escalier constituée de deux volées.

Le contreventement du bâtiment est assuré par des voiles et des portiques dans les deux sens (longitudinale et transversale) et assurant une stabilité au bâtiment vis-à-vis des charges horizontales et verticales, ce qu'il lui confère une grande rigidité à la flexion et à la torsion.

D'après la classification des **RPA99 version 2003**, le bâtiment est considéré comme un ouvrage d'importance moyenne (groupe d'usage 2) puisque sa hauteur totale ne dépasse pas 48m. [1]

I.4.1. Eléments structuraux

- ❖ Les planchers : constitués de corps creux avec une dalle de compression qui forme un diaphragme horizontal rigide qui assure la fonctionnalité de l'ouvrage et qui permet la transmission des efforts de contreventement.
 - Un plancher doit être résistant aux charges verticales et horizontales.
 - Un plancher doit assurer une isolation phonique et thermique des différents étages.
- ❖ Les escaliers : sont des éléments secondaires réalisés en béton armé coulés sur place, permettant le passage d'un niveau à un autre.

Les maçonneries :

- Les murs extérieurs seront réalisés en doubles cloisons de briques creuses de 30 cm séparées par une lame d'air de 5 cm.
- Les murs de séparation intérieure seront construits en une seule paroi de brique de 10 cm

❖ L'acrotère : c'est un élément en béton armé, contournant le bâtiment, encastré à sa base au plancher de la terrasse inaccessible.

& Balcons:

Les balcons sont conçus en corps creux.

- * Revêtements : ils seront réalisés en :
 - Carrelage scellé pour les planchers et les escaliers.
 - Céramique pour les salles d'eau et mortier de ciment pour les murs de façade.
 - Plâtre pour les cloisons intérieures et les plafonds.

\L'infrastructure:

Elle assure les fonctions suivantes :

- Transmission des charges verticales et horizontales au sol.
- Limitation des tassements différentiels

I.5. Règlements et norme utilisée

- RPA99/version 2003. (Règlement Parasismique Algérien).
- CBA93. (Code du béton armé).
- ❖ DTR B.C.2.2. (Document Technique Règlementaire).
- BAEL91/version99. (Béton Armé Aux Etats Limites).
- DTR BC2.33.2. (Document Technique Règlementaire).

I.6. Caractéristiques du sol d'assise

- ➤ Le sol de notre site est d'une constitution d'argiles marneuse grisâtres.
- > Le site est considéré comme meuble (S3).
- \triangleright La contrainte admissible du sol = **1.6 bars**.
- \triangleright Ancrage des fondations D = 4m

I.7. Caractéristiques mécaniques des matériaux

I.7.1. Le béton

Le béton choisi est de classe C25/30, sa composition doit permettre d'obtenir les caractéristiques suivantes :

I.7.1.1. Résistance caractéristique à la compression (art A.2.1, 11 CBA93)

La résistance caractéristique à la compression du béton utilisé à 28 jours est :

$$f_{c28} = 25Mpa$$

I.7.1.2. Résistance caractéristique à la traction

La résistance caractéristique à la traction du béton à j jours, notée f_{ij} , est conventionnellement définie par les relations :

$$\begin{cases} f_{tj} = 0.6 + 0.06 \text{fcj} & \text{si} f_{c28} \le 60 \text{ MPa} \\ f_{tj} = 0.275 \text{ fcj} & \text{si} f_{c28} > 60 \text{ MPa} \end{cases}$$
 CBA93 (article A.2.1.1.2).

Pour j=28 jours et
$$f_{c28} = 25Mpa \Rightarrow f_{t28} = 2,1Mpa$$

I.7.1.3. Modules de déformation longitudinale du béton

On distingue deux modules de déformation longitudinale du béton ; le module de Young instantané E_{ii} et différé E_{vi} .

$$E_{vj} = (1/3).E_{ij}$$
 (Art A.2.1.2.1 CBA93) [2]
 $E_{ij} = 11000(f_{cj})^{1/3}$ (Art A.2.1.2.2 CBA93)

• Pour
$$f_{c28} = 25MPA$$
 on a :
$$\begin{cases} E_{i28} = 32164, 20MPA \\ E_{v28} = 10818, 86MPA \end{cases}$$

I.7.1.4. Coefficient de poisson

C'est le rapport entre les déformations transversales et les déformations longitudinales.

$$v = 0$$
 à ELU. CBA93 (Article A.2.1.3) [2] $v = 0.2$ à ELS

I.7.1.5. Diagramme contrainte déformation

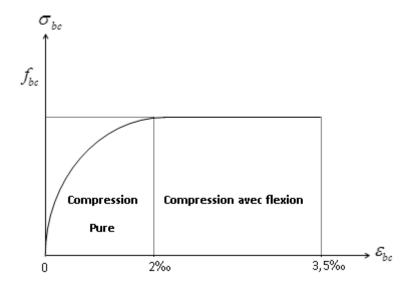


Figure I-1: Diagramme des contraintes-déformations du béton

I.7.1.6. Contraintes limite de compression à L'ELU

$$f_{bu} = \frac{0.85 * f_{c28}}{\theta * \gamma_b}$$
 BAEL 91 (Article A.4.3.4). [3]

0,85 : coefficient qui tient compte de l'altération en surface du béton et la diminution de la résistance sous charges de longue durée.

 γ_b : Coefficient de sécurité pour le béton tel que :

- > $\gamma_b = 1{,}15 \rightarrow \text{Situation accidentelle}$
- $> \gamma_b = 1.50 \rightarrow \text{Situation courante}$
- θ : Coefficient d'application de charge :

$$\begin{cases} \theta = 1 & si \quad t \ge 24h \\ \theta = 0.9 & si \quad 1h < t < 24h \\ \theta = 1 & si \quad t < 1h \end{cases}$$

I.7.1.7. La contrainte de compression à l'ELS

Pour
$$f_{c28} = 25Mpa$$
 on a:

I.7.1.8. Contrainte ultime de cisaillement (du béton)

Dans le cas où les armatures d'âme sont droites ou comportent à la fois des barres droites et des barres relevées, d'après l'article **A.5.2.11 de BAEL91** on a : [3]

$$\succ \tau_{adm} = \min(0.20 f_{ci} / \gamma b; 5Mpa)$$
 pour la fissuration peu nuisible.

$$\succ \tau_{adm} = \min(0.15 f_{cj} / \gamma b; 4Mpa)$$
 pour la fissuration préjudiciable.

Dans notre cas on a $f_{c28} = 25 Mpa$ donc :

$$\tau_{adm} = 3.33 Mpa$$
 Fissuration Peu Nuisible.

 $\tau_{adm} = 1.17 Mpa$ Fissuration Préjudiciable.

I.7.2. L'acier

Le module d'élasticité longitudinal de l'acier est pris égale à : $E_s = 200000MPa$

• Principales armatures utilisés :

Tableau I-1: f_e en fonction du type d'acier.

	Aciers	ronds	Aciers	à hautes	Treillis soudé à	Treillis soudés à haute
	lis	ses	adhé	rences	fils lisses	adhérence
Désignation	FeE215	FeE235	FeE400	FeE500	TLE500	FeTE500
f _e [MPa]	215	235	400	500	500	500

• Contrainte limite

> Etat limite ultime :

Pour le calcul on utilise le diagramme contrainte- déformation suivant :

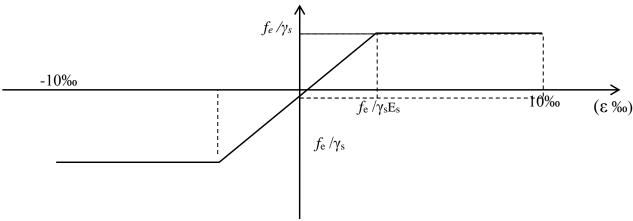


Figure I-2 : Diagramme contrainte déformation de l'acier.

$$\sigma_{s} = \frac{f_{e}}{\gamma_{s}}$$

$$\varepsilon_{es} = \frac{\sigma_{s}}{E_{s}}$$

Avec:

$$E_s = 200000 Mpa$$
 γ_s : Coefficient de sécurité.
$$\begin{cases} \gamma_s = 1 & \text{cas de situations accidentelles.} \\ \gamma_s = 1,15 \text{ cas de situations durable où transitoire.} \end{cases}$$

Pour le cas de ce projet :

$$\sigma_s = \begin{cases} 348 \text{MPA}.....\text{Pour une situation courante.} \\ 400 \text{MPA}.....\text{Pour une situation accidentelle.} \end{cases}$$

> Etat limite de service :

Nous avons pour cet état :

- Fissuration peu nuisible : pas de vérification à faire.
- Fissuration préjudiciable : $\sigma_{st} \leq \overline{\sigma_{st}} = \min(2/3f_e, 110\sqrt{\eta f_{tj}})$
- Fissuration très préjudiciable : $\sigma_{st} \leq \overline{\sigma_{st}} = \min(1/2f_e, 90\sqrt{\eta f_{tj}})$

 η : Coefficient de fissuration.

$$\eta = 1$$
 pour les ronds lisses (RL)

 η =1,6 pour les armatures à hautes adhérence (HA).

I.8. Conclusion

Dans ce ler chapitre nous avons présenté la préinscription du projet avec toutes ses caractéristiques, nous avons donné les caractéristiques des matériaux utilisés ainsi que les codes et règlements en vigueur le chapitre suivant fera l'objet du pré dimensionnement de tous les éléments de notre ouvrage.

Les caractéristiques du béton et d'acier utilisé sont donnes comme suite :

```
Résistance caractéristique (f_{c28})
                                                                            25MPa
               Contraintes limite a L'ELU:

situation durable 14.2MPa
situation accedentelle 18.45MPa
             Contrainte limite a L'ELS (\sigma_{bc})
                                                                           15MPa
  Limite d'élasticité (f<sub>e</sub>)
                                                          400MPa
 Module d'élasticité
                                                     2 \times 10^5 MPa
Contraintes calcul a L'ELU:
situat
situat
Contrainte a L'ELS:
FN
                             situation durable
                                                          400MPa
                              situation accedentelle 348MPa
                                                         201.63MPa
                                  FTN
                                                            167MPa
```

Chapitre II Pré dimensionnement des éléments

II.1. Introduction

Le pré dimensionnement a pour but de déterminer l'ordre de grandeur des différents éléments de la structure pour reprendre les efforts dus aux charges permanentes et surcharges d'exploitation. Cette étape représente le point de départ et la base de justification à la résistance, la stabilité et la durabilité de l'ouvrage.

Le pré dimensionnement de chaque élément de la structure est conforme aux règlements BAEL 91/99, CBA 93, RPA 99 version 2003 et les différents Documents technique réglementaires [1-3].

II.2. Les Planchers:

II.2.1.Planchers à corps creux

Le plancher à corps creux est composé de corps creux, de poutrelles et de dalle de compression. L'épaisseur du plancher est déterminée à partir de la condition de la flèche donnée par le (CBA93 ART : 6.8.4.2.4). [2]

$$h_t \ge \frac{L_{\text{max}}}{22,5}$$

 $L_{\text{max}:}$ Longueur maximale entre nus d'appuis selon la disposition des poutrelles adoptées $h_{\star}:$ Hauteur total du plancher.

$$h_{t} \ge \frac{355 - 30}{22.5} \Rightarrow h_{t} \ge 14cm \Rightarrow h_{t} = 20cm$$

Pour notre projet on adopte pour : $h_t = 20 \text{ cm}$: $\begin{cases} hcc=16\text{cm:l'épaisseur de corps creux} \\ hddc = 4\text{cm:dalle de compréssion} \end{cases}$

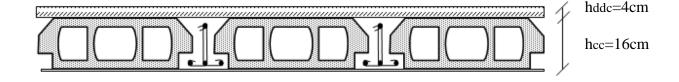


Figure II-1: Plancher à corps creux

II.2.1.1. Pré dimensionnement des poutrelles

Les poutrelles sont des sections en T en béton armé, servant à transmettre les charges réparties ou concentrées aux poutres principales, elles sont calculées en flexion simple.

La disposition des poutrelles se fait selon deux critères :

- Critère de la petite portée : Les poutrelles sont disposées parallèlement à la plus petite portée. (pour minimiser la flèche)
- Critère de continuité : Si les deux sens ont les mêmes dimensions, alors les poutrelles sont disposées parallèlement au sens du plus grand nombre d'appuis.

Dans notre cas les poutrelles sont disposées selon deux critères.

b:Largeur de la table de compression.

h:Épaisseur du plancher =16+4cm

 $L_{\rm r}$: Distance maximale entre nus d'appui de deux poutrelles.

 L_y : Distance minimale entre nus d'appuis de deux poutres principales.

$$b_0 = (0.4 \text{ à } 0.6) \text{ h} \rightarrow b_0 = (8 \text{ à } 12 \text{cm})$$

Soit : $b_0 = 10$ cm

$$b_1 \leq \min(L_x / 2, L_y / 10)$$

CBA93 (ART A.4.1.3). [2]

$$L_x = 65 - 10 = 55cm$$
: Distance entre deux nervures

successive

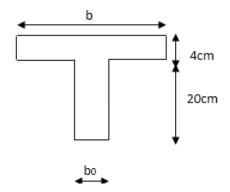


Figure II-2: Coupe transversale d'une poutrelle

$$L_{v} = 313 - 40 = 273cm$$

$$b_1 \le \min(55/2; 273/10)$$

$$b_1 \le \min(27.5; 27, 3)$$
 $b = 2b_1 + b_0$
 $b_1 = 27.3cm$ $b = 2 \times 27.3 + 10 = 64, 6$

$$b = 2b_1 + b_0$$

$$b_1 = 27.3cn$$

$$b = 2 \times 27.3 + 10 = 64,$$

Soit:
$$b = 65cm$$

II.2.2.Les des dalles pleines

Son pré dimensionnement se fait en se basant sur les critères suivants d'après le (CBA93) : [2]

Résistance au feu :

e = 7 cm pour une heure de coupe-feu.

e = 11 cm pour deux heures de coupe-feu.

e > 14cm pour quatre heures de coupe-feu.

Avec : e= épaisseur de la dalle

- > Résistance à la flexion :
- Dalle reposant sur trois ou quatre appuis avec $\rho > 0.4 : \frac{L_x}{45} \langle e \langle \frac{L_x}{40} \rangle$

Lx : est la petite portée entre nus d'appuis du panneau le plus sollicité (cas le plus défavorable).

> Type 1: dalle sur quatre appuis (cage d'ascenseur)

$$L_{\rm r} = 120cm \Rightarrow \rho = 0.72 \rangle 0.4$$

$$2.66cm \le e \le 3$$
cm

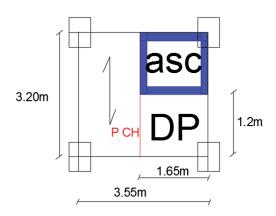


Figure II-3: Dalle sur quatre appuis

Les épaisseurs obtenues par la condition de résistance à la flexion sont très faibles, donc on utilise le résultat de la condition de coupe-feu \implies e=12cm

II.3. Pré dimensionnement des poutres

Ce sont des éléments porteurs en béton armé à ligne moyenne rectiligne, dont la portée est prise entre nus d'appuis on a deux types (poutres principales, poutres secondaires).

II.3.1.Les poutres principales

Elles sont disposées perpendiculairement aux poutrelles, leur hauteur est donnée selon la condition de la flèche qui est : $\frac{L_{\text{max}}}{15} \leq h \leq \frac{L_{\text{max}}}{10} \text{ BAEL91/99}[3]$

L_{max}: Portée maximale entre nus d'appuis.

$$L_{\max} = 326 - 30 \Longrightarrow L_{\max} = 296cm \Longrightarrow 19.73cm \le h \le 29.6cm \cdot$$

On adopte pour une section rectangulaire $(b \times h) = (30 \times 35)cm^2$

II.3.2.Les poutres secondaires

Elles sont disposées parallèles aux poutrelles

$$\frac{L_{\max}}{15} \leq h \leq \frac{L_{\max}}{10} \qquad \qquad \text{(Condition de flèche)}.$$

$$L_{\max} = 355 - 0.4 \Rightarrow L_{\max} = 315cm \Rightarrow 21cm \leq h \leq 31.5cm$$

$$\begin{cases} b = 30 \geq 20cm & \qquad \text{V\'erifie (RPA 99 version 2003Art .7.5.1)} \\ h = 35 \geq 30cm & \qquad \text{V\'erifie} \end{cases}$$

$$\frac{1}{4} \leq \frac{h}{b} = 1.16 \leq 4 \qquad \qquad \text{V\'erifie}$$

On adopte pour une section rectangulaire $(b \times h) = (30 \times 35) cm^2$

II.4. Pré dimensionnement des voiles

II.4.1.Définition

Ce sont des éléments de contreventement verticaux, minces et continus en béton armé, Son pré Dimensionnement doit satisfaire les conditions de **RPA99/2003** [1]

 $h_{\scriptscriptstyle o}$: C'est la hauteur libre d'étage

 \mathcal{L}_{\min} : Longueur de voile

e : Épaisseur de voile

Pour RDC:
$$\begin{cases} h_e = 374 - 35 = 339cm \\ e \ge \frac{339}{20} = 16.95cm \Rightarrow e = 20cm \end{cases}$$

Epaisseur de voile
Pour RDC:
$$\begin{cases} h_e = 374 - 35 = 339cm \\ e \ge \frac{339}{20} = 16.95cm \Rightarrow e = 20cm \end{cases}$$
Pour les autres niveaux:
$$\begin{cases} h_e = 289 - 35 = 254cm \\ e \ge \frac{254}{20} = 12.7cm \Rightarrow e = 15cm \end{cases}$$

Au niveau de la cage d'ascenseur : $e \ge 15cm \Rightarrow e = 15cm$

Donc on adopte pour des voiles d'une épaisseur de :

$$RDCe = 20cm$$

Pour les autres niveaux : e = 15cm

Longueur minimal des voiles sera de : $L_{\min} > 4 \times e \Longrightarrow L_{\min} = 80cm$

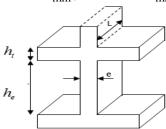


Figure II-4: Coupe de voile en élévation

II.5. Pré dimensionnement des escaliers

II.5.1. Définitions

Les escaliers sont des éléments composés d'une succession de marches permettant le passage d'un niveau à un autre, ils sont en béton armé, en acier ou en bois. Dans notre cas ils sont réalisés en béton coulé sur place. Les différents éléments constituant un escalier sont :

- (1): e (Epaisseur du palier de repos)
- (2): L_0 (Longueur totale d'escalier)
- (3): g (Giron)
- (4): h (Hauteur de la contre marche)
- (5) : H_0 (Hauteur de la volée)
- (6): α (Inclinaison de la paillasse)
- (7):(Emmarchement)

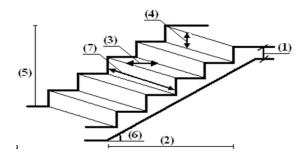


Figure II-5: Schéma de l'escalier

II.5.2.Dimensionnement

Condition d'accès d'un étage à l'autre tant dans le sens montant que descendant pratiquement :

- la hauteur h des contremarches se situe entre 14 et 18 cm.
- la largeur g se situe entre 25 et 32 cm.

La formule très empirique de BLONDEL qui les lie est :

$$2h+g = m$$
 avec $59 \le m \le 64cm...(1)$

Elle correspond à la distance franchie lors d'un pas moyen.

$$h = \frac{H}{n} \qquad g = \frac{L_0}{n-1}$$

On distingue dans notre projet un seul type d'escalier Escaliers droits à deux volées

Volée1:

$$g = 30cm$$

$$h = 17cm$$

Inclinaison de la paillasse :

$$tg\alpha = \frac{153}{240} \Rightarrow \alpha = 32.51^{\circ}$$

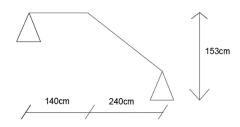


Figure II-6: Schéma de la volée

Épaisseur de la paillasse :

$$L = L_V + L_P$$

$$L = L_P + \sqrt{L_0^2 + H^2}$$

$$L = 1.4 + \sqrt{2.4^2 + 1.53^2} = 4.24m$$

$$\frac{L}{30} \le e \le \frac{L}{20}$$

$$\frac{4.24}{30} \le e \le \frac{4.24}{20}$$

$$\Rightarrow 14cm \le e \le 21.2cm$$

On prend
$$e = 15cm$$

Volée 2:

$$g = 30cm$$

$$h = 17cm$$

Inclinaison de la paillasse :

$$tg\alpha = \frac{136}{210} \Rightarrow \alpha = 32.92^{\circ}$$

Épaisseur de la paillasse :

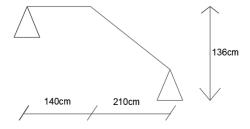


Figure II-7: Schéma de la volée2

$$L = L_P + \sqrt{L_0^2 + H^2}$$

$$L = 1.4 + \sqrt{2.1^2 + 1.36^2}$$

$$L = 3.90m \qquad \text{On prend } e = 15cm$$

$$\frac{L}{30} \le e \le \frac{L}{20}$$

$$\frac{390}{30} \le e \le \frac{390}{20}$$

$$12cm \le e \le 19.5cm$$

II.6. Ascenseur

Caractéristiques d'ascenseur :

- L:Longueur de l'ascenseur
- *l* : Largeur de l'ascenseur.
- *H* : Hauteur de l'ascenseur......Voir annexe (4)
- F_c : Charge due à la cuvette = 102 KN
- D_m : Charge due à l'ascenseur = 82KN.
- P_m : Charge due à la salle des machines = 15KN
- •La charge nominale est de 630 kg.
- •La vitesse V = 1 m/ s.

$$\Rightarrow g = D_m + P_m + P_{personnes} = 103.3KN$$

$$G_1 = (25 \times 0.15) + (25 \times 0.05) = 5KN / m^2$$

 $G_1 = poid de la dalle + revetement$

II.7. Pré dimensionnement de l'acrotère

Soit S la section de l'acrotère :
$$S = (0.6 \times 0.15) + (0.17 + 0.08) \times 0.11/2$$

 $S = 0.1037m^2$

> Charge Permanente

Poids propre:

$$G_1 = \gamma_b \times S \times 1$$

 $G_1 = 25 \times 0.1037 \times 1 \Longrightarrow G_1 = 2.6kn / ml$
Enduit de ciment :

$$G_2 = \gamma_c \times e$$

 $G_2 = 20 \times 0.02 = 0.40 kn / ml$
 $G = G_1 + G_2$

$$G = 3kn / ml$$

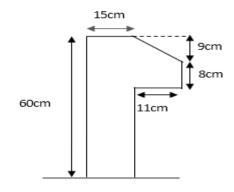


Figure II-8: Schéma de l'acrotère

➤ La Surcharge d'exploitation : **Q** = **1 KN/ml**

II.8. Pré dimensionnement des poteaux

Ce sont des éléments en béton armé, rectangulaires et circulaires, destinés à transmettre les charges aux fondations, le pré dimensionnement des poteaux se fait à la compression selon les règles du BAEL91 (art B.8.4, 1), en appliquant les critères de résistance et le critère de stabilité de forme et suivant les exigences du RPA 99 version 2003. [3][1]

On a fixé les dimensions des poteaux après avoir effectué la descente de charge, tout en vérifiant les recommandations du RPA99.

> D'après le RPA99/version 2003 : (zone II a)

Poteaux rectangulaires

$$egin{cases} Min(b_1,h_1) &\geq 25cm \ Min(b_1,h_1) &\geq rac{h_e}{20} \ rac{1}{4} &\leq rac{b_1}{h_1} &\leq 4 \end{cases}$$

D'après l'article B.8.4.1 du CBA 93 :

$$N_u \le \alpha \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A \times f_e}{\gamma_s} \right)$$

 B_r : section réduite du béton.

 γ_b : Coefficient de sécurité de béton(cas durable)

 $\gamma_s = 1.15$ Coefficient de sécurité de l'acier.

 α : Coefficient réducteur qui est en fonction de l'élancement λ

$$\alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} \dots si: \lambda \le 50$$

$$\alpha = 0.6 \times \left(\frac{50}{\lambda}\right)^2 \dots si : 50 \langle \lambda \leq 70$$

tel que:
$$\lambda = \frac{l_f}{i}$$
 avec $i = \frac{b \times h^3}{12}$ (cas rectangulaire)

On adopte préalablement la section des poteaux comme suit

Rectangulaire:

$$RDC + 1^{er}$$
 étage: $(b \times h) = (50X45)cm^2$
 2^{er} , 3^{eme} étage: $(b \times h) = (45 \times 40)cm^2$
 4^{eme} , 5^{eme} étage: $(b \times h) = (40 \times 35)cm^2$
 6^{eme} , 7^{eme} , 8^{eme} étage: $(b \times h) = (35 \times 30)cm^2$

II.9. Evaluation des charges et surcharges sur les planchers

II.9.1.Terrasse inaccessible

Tableau II-1: Evaluation des charges dans le plancher terrasse inaccessible

N°	Description	Epaisseur "e" (cm)	Poids "G" (KN/m²)
1	Gravillon de protection	4	0.8

2	Etanchéité multicouche	2	0.12
3	Isolation thermique (liège)	4	0.16
4	Forme de pente	10	2 .20
5	Plancher à corps creux (16+4)	20	2.85
6	Enduit de plâtre	2	0.2
			$\Sigma = 6.33$

II.9.2.Terrasse accessible

Tableau II-2: Evaluation des charge dans le plancher terrasse accessible

N°	Description	Epaisseur "e"(cm)	Poids "G" (KN/m²)
1	Revêtement en carrelage	2	0.4
2	Etanchéité multicouche	2	0.12
3	Isolation thermique (liège)	4	0.16
4	Forme de pente	10	2 .20
5	Plancher à corps creux (16+4)	20	2.85
6	Enduit de ciment	2	0.4
		1	$\Sigma = 6.13$

II.9.3.Plancher des étages courants

Tableau II-3: Evaluation des charges dans le plancher d'étages courant

N°	Description	Epaisseur "e" (cm)	Poids "G" (KN/m²)
1	Revêtement en carrelage	2	0.40
2	Mortier de pose	2	0.40
3	Lit de sable	2	0.36
4	Plancher à	20	2.85
_			

	corps creux (16+4)		
5	Enduit de plâtre	2	0.2
6	Cloisons de séparation	10	1
			∑ = 5.21

II.9.4.Dalle pleine

> Dalle pleine

Tableau II-4: Evaluation des charges de la dalle pleine

N°	Description	Epaisseur "e"(cm)	Poids "G" (KN/m²)
1	Revêtement	2	0.40
2	Mortier de pose	2	0.40
3	Sable fin	2	0.36
4	Dalle pleine	12	3
5	Cloison	10	1
6	Enduit de ciment	1	0.18
			∑ = 5.34

II.9.5.Les murs extérieurs (double parois en brique creuse)

Tableau II-5: Evaluation des charges dans les murs extérieurs

Description	Epaisseur "e"(cm)	Poids "G"(KN/m²)
Enduit ciment extérieur	2	0.36
Brique creuse de 15 cm	15	1.3
Lame d'air	5	/
Brique creuse de 10 cm	10	1

Enduit plâtre intérieur	2	0.2
		2.86

II.9.6.Les escaliers

➤ La volée1

Tableau II-6: Evaluation des charges de la volée1

Désignation des éléments	e (cm)	Poids (KN/m ²)
Revêtement du sol en carrelage horizontal	2	0.40
Mortier de pose horizontal	2	0.40
Paillasse	15/cos32.51	4.44
Enduit plâtre	2/cos32.51	0.23
Revêtement du sol en carrelage vertical	2*h/g	0.23
Mortier de pose vertical	2*h/g	0.23
Marche	17/2	1.87
		7.57

➤ La volée2

Tableau II-7: Evaluation des charges de la volée2

Désignation des éléments	e (cm)	Poids (KN/m²)
Revêtement du sol en carrelage horizontal	2	0.40
Mortier de pose horizontal	2	0.40
Paillasse	15/cos32.92	4.46
Enduit plâtre	2/cos32.92	0.23
Revêtement du sol en carrelage vertical	2*h/g	0.23
Mortier de pose vertical	2*h/g	0.23

Marche	17/2	1.87
		7.82

> Palier

Tableau II-8: Evaluation des charges du palier

Désignation des éléments	Epaisseur e (cm)	Poids (KN/m²)
Revêtement de sol en carrelage	2	0 .40
Mortier de pose	2	0.40
Lit de sable	2	0.36
Dalle pleine	15	3.75
Enduit de plâtre	2	0.2
		5.11

II.9.7.Surcharge d'exploitation

Tableau II-9: Surcharges d'exploitation

Surahargaa	Terrasse inaccessible	Terrasse accessible	Etage courant	Balcons	Escalier	Dalle autour de l'ascenseur
Surcharges KN/m ²	1	1.5	1.5	3.5	2.5	2.5

II.10. Descente de charge

Descente de charge sur le poteau le plus sollicité :

Le poteau le plus sollicité a la plus grand surface afférente P1



Figure II-9: Surface afférente de poteau P1

II.10.1. La loi de dégression des charges d'exploitation

II.10.1.1. Définition :

La descente de charge est le chemin suivi par les différentes actions (charges et surcharges) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol, on effectuera la descente de charges pour le poteau le plus sollicité et qui a souvent la plus grande surface afférente(DTR.B.C2.2.art.6.3): [4]

Soit Q_o la surcharge d'exploitation sur la terrasse couvrant le bâtiment.

Q à chaque niveau est déterminé comme suit :

Sous la terrasse.....Qo.

Sur le dernier étage Q_0+Q_1 .

Sur l'étage immédiatement inférieur $Q_0+0.95$ (Q_1+Q_2).

Sur l'étage immédiatement inférieur $Q_0+0.9$ ($Q_1+Q_2+Q_3$).

Pour $n \ge 5$ $Q_0 + (3+n)/2 * n (Q_1 + Q_2 + ... + Q_n)$.

Les résultats sont présentés dans le tableau suivant :

Tableau II-10: Descente de charge de poteau P1

Eléments	G (KN)	Q (KN)
Plancher terrasse inaccessible	60.70	
$G_{pp}+G_{ps}$	1.05	11.45
	16.27	
Poteau	7.58	
	Plancher terrasse inaccessible	Plancher terrasse inaccessible $G_{pp} + G_{ps} $ 16.27 Poteau

	Total	84.55	11.45
	Venant de N9	84.55 49.96	36.62
	Plancher EC $G_{pp}+G_{ps}$	16.27	
N8	Poteau	7.58	
	Total	158.36	36.62
	Venant de N8	158.36	
	Plancher EC	49.96	
	$G_{pp}+G_{ps}$	16.27	44.07
N7	Poteau	7.58	
	Total	232.17	44.07
	V 1 N7	232.17	
	Venant de N7 Plancher EC	49.96	
	$G_{pp}+G_{ps}$	16.27	57.80
N6	Poteau	10.11	
	Total	308.51	57.80
	Venant de N6	308.51	
	Plancher EC	49.96	
N5	$G_{pp}+G_{ps}$	16.27	69.82

	Poteau	10.11	
	Total	384.85	69.82
	Venant de N5	384.85	
	Plancher EC	49.96	
	$G_{pp}+G_{ps}$	16.27	
	- pp - ps		80.13
N4	Poteau	13	
		14100	00.12
	Total	464.08	80.13
	Venant de N4	464.08	
	N 1 FC	404.00	
	Plancher EC	49.96	
	$G_{pp}+G_{ps}$	16.27	00.71
N3	Poteau	13	88.71
	1 30000		
	Total	543.31	88.71
	Venant de N3	543.31	
	Plancher EC	49.96	
	$G \rightarrow G$	16 27	
	$G_{pp}+G_{ps}$	16.27	96.78
N2	Poteau	16.25	
	Total	625.29	96.78
	Venant de N2	625.29	

	RDC	49.96	106.22
N1	$G_{pp}+G_{ps}$	16.27	
	Poteau	21.03	
	Total	712.55	106.22

$$\begin{cases} G_{P1} = 712.55KN \\ Q_{P1} = 106.22KN \end{cases}$$

II.10.2. Le poteau le plus sollicité à la cage d'escalier P2

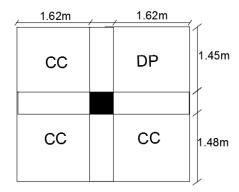


Figure II-10 : Surface afférente de poteau P2

Tableau II-11: Descente de charge de poteau P2

Niveau	Eléments	G (KN)	Q (KN)
	Terrasse inaccessible	15.19	
	$G_{pp}+G_{ps}$	8.57	3.33
N10	Poteau	2.62	
	Total	26.38	3.33
	Venant de N10	26.38	
	Plancher T inaccessible	30.38	16.04
N9	$G_{pp}+G_{ps}$	16.19	16.84

Venant de N9 100.18 Plancher EC 37.25 $G_{pp} + G_{ps}$ 16.19 37.72 Poteau 7.58 N8 Dalle pleine 19.57 Total 180.69 37.72	
Venant de N9 100.18 Plancher EC 37.25 $G_{pp} + G_{ps}$ 16.19 37.72 Poteau 7.58 N8 Dalle pleine 19.57 Total 180.69 37.72	
Venant de N9 100.18 Plancher EC 37.25 $G_{pp} + G_{ps}$ 16.19 37.72 Poteau 7.58 N8 Dalle pleine 19.57 Total 180.69 37.72	
Plancher EC 37.25 $G_{pp} + G_{ps}$ 16.19 37.72 Poteau 7.58 N8 Dalle pleine 19.57 Total 180.69 37.72	
$G_{pp} + G_{ps}$ 16.19 37.72 Poteau 7.58 N8 Dalle pleine 19.57 Total 180.69 37.72	
N8 Dalle pleine 19.57 Total 180.69 37.72	
N8 Dalle pleine 19.57 Total 180.69 37.72	
Total 180.69 37.72	
V 1 NO	N8
Venant de N8 180.69	
Plancher EC 37.25	
$G_{pp} + G_{ps}$ 16.19 53.33	
Poteau 7.58	
N7 Dalle pleine 19.57	N7
Total 261.28 53.33	
Venant de N7 261.28	
Plancher EC 37.25	
$G_{pp} + G_{ps}$ 16.19 67.07	
N6 Poteau 10.11	
Dalle pleine 19.59	N6

	Total	344.4	67.07
	Venant de N6	344.4	
	Plancher EC	37.25	
	$G_{pp}+G_{ps}$	16.19	78.75
N5	Poteau	10.11	
- 10	Dalle pleine	19.59	
	Total	427.52	78.75
	Venant de N5	427.52	
	Plancher EC	37.25	
N4	$G_{pp}+G_{ps}$	16.19	103.08
	Poteau	13	
111	Dalle pleine	19.57	
	Total	513.55	103.08
	Venant de N4	513.55	
	Plancher EC	37.25	111.5
	$G_{pp}+G_{ps}$	16.19	
N3	Poteau	13	
	Dalle pleine	19.57	
	Total	599.56	111.5

	Venant de N3	599.56	
	Plancher EC	37.25	
	$G_{pp}+G_{ps}$	16.19	120.09
N2	Poteau	16.25	
192	Dalle pleine	19.57	
	Total	688.82	120.09
	Venant de N2	688.82	
	RDC	37.25	
	$G_{pp}+G_{ps}$	16.19	129.44
N1	Poteau	16.25	
111	Dalle pleine	19.57	
	Total	778.08	129.44

$$G_{P2} = 778.08KN$$

 $Q_{P2} = 129.44KN$

II.10.3. Les vérifications nécessaires pour le poteau P2

> Poteau cage d'escalier :

L'effort normal ultime :
$$\begin{cases} N_U = 1.35G + 1.5Q \\ N_U = 1.35 \times 778.08 + 1.5 \times 129.44 \\ N_U = 1244.56KN \end{cases}$$

Selon le (CBA 93), l'effort N_u doit être majoré de 10% : $N_U = 1369.02KN$

II.10.3.1. Vérification à la compression simple

On doit vérifier la condition suivante :

$$\begin{split} \frac{N_u}{B} &\leq \overline{\sigma_{bc}} = \frac{0.85 \times f_{c28}}{1.5} = 14.2 Mpa & \text{Avec B : section du béton.} \\ B &\geq \frac{N_u}{14.2} \Longrightarrow B \geq \frac{1369.02 \times 10^{-3}}{14.2} = 0.096 m^2 \\ B &\geq 0.096 m^2 \text{ On prend } B = 0.45 \times 0.5 = 0.225 m^2 \Longrightarrow B = 0.225 m^2 \rangle 0.096 m^2 \end{split}$$

II.10.3.2. Vérification au flambement (CBA 93 .ART B.8.2.1)

D'après le (CBA 93), on doit faire vérification suivante :

$$\begin{split} N_u &\leq \alpha \times \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_s} \right] \\ l_f &= 0.7 \times l_0 = 0.7 \times 3.39 = 2.37 m \\ B &= 0.45 \times 0.5 = 0.225 m^2 \\ I &= \frac{0.45 \times (0.5)^3}{12} = 4.16 \times 10^{-3} m^4 \quad i = \sqrt{\frac{4.16 \times 10^{-3}}{0.225}} = 0.135 \\ \lambda &= \frac{2.37}{0.135} = 17.55 \langle 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \times (\frac{17.55}{35})^2} = 0.80 \end{split}$$

ightharpoonup Le **BAEL** fixe $A_s/B_r \ge 0.8\%$. On prend: $A_s/B_r = 1\%$

Donc on doit vérifier que :
$$B_r \ge N_u / \left[\alpha \left(\frac{f_{c28}}{0.9 \gamma_b} + \frac{f_e}{100.\gamma_s} \right) \right]$$

$$B_r \ge 1369.02 \times 10^{-3} / \left[0.80 \left(\frac{25}{0.9 \times 1.5} + \frac{400}{100 \times 1.15} \right) \right] = 0.07 m^2$$
Or nous avons $B_r = (45-2) \times (50-2) \times 10^{-4} = 0.2 m^2$

 $0.2m^2$ $0.07m^2$ Donc le poteau ne risque pas de flamber. [3][2]

> Vérification pour les poteaux des autres niveaux :

Tableau II-12: Vérification des poteaux à la compression simple

Niveaux	Nu (KN)	Section	Condition B >B _{calculé}		Observation
		(cm²)	B (m ²)	B calculé (m²)	
RDC et 1 étage	1369.02	45×50	0.225	0.096	Vérifiée
Etage 2,3	1074.3	45×40	0.18	0.07	Vérifiée
Etage 4,5	764.8	40×35	0.14	0.05	Vérifiée
Etage 6, 7,8	432.72	35×30	0.10	0.03	Vérifiée

Tableau II-13: Vérification des poteaux au flambement

Niveaux	Nu (KN)	Section	Condition Br> B _{r calculé}		Observation
		(cm ²)	B _r (m ²)	Br calculé (m²)	
RDC	1369.02	45×50	0.2	0.07	Vérifiée

1 étage	1221.04	45×50	0.2	0.07	Vérifiée
Etage 2,3	1074.3	45×40	0.18	0.07	Vérifiée
Etage 4,5	764.80	40×35	0.14	0.07	Vérifiée
Etage 6, 7,8	432.72	35×30	0.10	0.05	Vérifiée

II.10.4. Le poteau le plus sollicité à la cage d'escalier P2

$$Min(b,h) \ge 25 \, \mathrm{cm}$$
 vérifier $Min(b,h) \ge \frac{h_e}{20}$ vérifier $0.25 \langle \frac{b}{h} \rangle \langle 4$ vérifier

On remarque que les dimensions adoptées vérifient toutes les conditions de RPA [1]

II.11. Conclusion

Après avoir fini le pré dimensionnement des éléments et avoir procédé à faire les vérifications nécessaires. On a adopté pour les éléments les sections suivantes :

> Les poutres :

- Poutre principale: $(b \times h) = (30 \times 35) cm^2$
- Poutre secondaire: $(b \times h) = (30 \times 35) cm^2$

> Les poteaux :

• rectangulaire:

$$RDC + 1^{er}$$
 étage: $(b \times h) = (50 \times 45)cm^2$
 2^{eme} , 3^{eme} étage: $(b \times h) = (45 \times 40)cm^2$
 4^{eme} , 5^{eme} , étage: $(b \times h) = (40 \times 35)cm^2$
 6^{eme} , 7^{eme} , 8^{eme} étage: $(b \times h) = (35 \times 30)cm^2$

> Voile:

$$\checkmark$$
 RDC : $e = 20cm$

✓ Les autres niveaux : e = 15cm

Chapitre III Etude des éléments secondaires

III.1. Introduction

Les éléments non structuraux n'apportent pas de contribution significative à la résistance aux actions sismiques d'ensemble peuvent être considérés comme éléments secondaires, à condition que leur résistance à ces actions soit effectivement négligée et qu'ils ne soient soumis du fait des déformations imposées qu'à des sollicitations négligeables vis-à-vis des sollicitations d'autres origines.

Dans ce présent chapitre, nous aborderons le calcul des éléments non structuraux suivants :

- Les planchers (corps creux et dalles pleines).
- L'acrotère.

· Les escaliers.

· L'ascenseur.

III.2. Les planchers

- Planchers à corps creux.
- Planchers à dalle pleine.

III.2.1. Planchers à corps creux :

III.2.1.1. Calcul des poutrelles :

Les poutrelles se calculent à la flexion simple, ce sont des sections en T en béton armé servant à transmettre les charges reparties ou concentrées aux poutres principales.

Figure III-1: Disposition des poutrelles

III.2.1.1.1. Méthode de calcul

Les poutrelles sont calculées comme des poutres continues. Les méthodes d'RDM ont été modifiées et adaptées au béton armé et ont donné résultat à deux méthodes de calcul :

- La méthode forfaitaire.
- La méthode de Caquot.

III.2.1.1.1.a. Méthode Forfaitaire (Annexe E.1 du BAEL 91) :

Domaine d'application (B.6.210)

Pour déterminer les moments aux appuis et en travées, il est possible d'utiliser la méthode forfaitaire si les quatre conditions sont vérifiées :

- Plancher à surcharge modérée ($Q \le Min (2G, 5KN/m^2)$).
- Le rapport entre deux travées successives : $0.8 \le li / li_{+1} \le 1.25$.
- Le moment d'inertie constant sur toutes les travées.
- Fissuration peu nuisible (F.P.N). [3]

> Application de la méthode

• Evaluation des moments

Les valeurs des moments en travée Mt et aux appuis Mg (moment en appuis gauche) et Md (moment en appuis droit) doivent vérifier :

$$[a. Mt + (Md + Mg) / 2 \ge Max (1.05M_0, (1+0.3\alpha) M_0)]$$

b. Mt≥ (1+0.3α) M_0 /2→pour une travée intermédiaire.

 $Mt \ge (1.2+0.3\alpha) M_0/2$ \rightarrow pour une travée de rive.

c. La valeur absolue de chaque moment sur appui intermédiaire doit être au moins égale à :

- 0.6M₀ pour une poutre à deux travées.
- 0.5M₀ pour les appuis voisins des appuis de rive d'une poutre à plus de deux travées
- 0,4M₀ pour les autres appuis intermédiaires d'une poutre à plus de trois travées.

Les diagrammes des moments qui peuvent en résulter sont illustrés sur les figures ci-après :

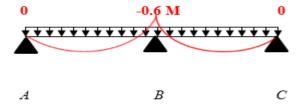


Figure III-2: Diagramme des moments à deux travées

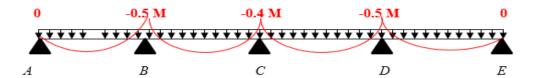


Figure III-3: Diagrammes des moments à plusieurs travées

Avec : M₀ la valeur maximale du moment fléchissant dans les travées de référence (travée isostatique) à gauche et à droite de l'appui considéré, et

$$\alpha = \frac{Q}{(G+Q)}$$
 α : Les degrés de surcharge

• Remarque

Les moments sur les appuis de rive sont nuls (pas de ferraillage) seulement le BAEL91 préconise de mettre des aciers de couture vis-à-vis de la fissuration équilibrant un moment fictif égal à :

 $-0.15M_0$ tel que $M_0 = Max (M_0^1, M_0^n)$.

• Evaluation de l'effort tranchant :

On évalue l'effort tranchant en supposant une discontinuité entre les travées c'est-à-dire l'effort tranchant hyperstatique est confondu avec l'effort tranchant isostatique sauf pour le premier appui intermédiaire (voisin de rive) où l'on tient compte des moments de continuité en majorant l'effort tranchant isostatique V_0 de :

- ✓ 15% si c'est une poutre à deux travées.
- ✓ 10½ si c'est une poutre à plus de deux travées.

Les diagrammes des efforts tranchants qui peuvent en résulter sont illustrés sur les figures ciaprès :

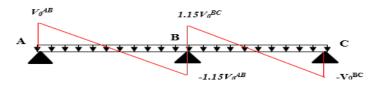


Figure III-4: Diagramme des efforts tranchants à deux travées

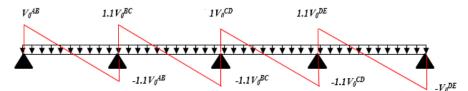


Figure III-5: Diagramme des efforts tranchants à plusieurs travées

Les différents types de poutrelles

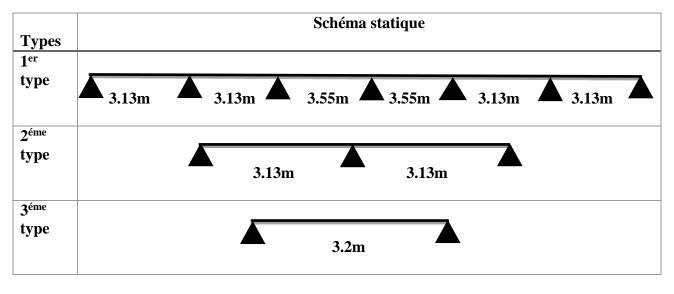


Tableau III-1: Les différentes types de poutrelles

• Remarque:

Type1: étage courant $(1, 2, 3, 4, 5, 6) \rightarrow$ planchers habitation.

Type2: étage courant (1, 2, 3, 4, 5, 6) 7,8, terrasse inaccessible → planchers habitation+terrasse inaccessible.

Type3: étage courant (1, 2, 3, 4, 5, 6) 7,8, terrasse inaccessible \rightarrow planchers habitation+terrasse inaccessible.

Type4: étage (7,8), terrasse inaccessible \rightarrow planchers habitation +terrasse inaccessible.

• Les différentes charges sur les poutrelles Tableau III-2: Les différentes charges sur les poutrelles

	G (KN/m ²)	Q (KN/m ²)	1.3	ELU 55 G+1.5Q	ELS G+Q		
NATURE			qu (KN/m²)	p _u (KN/m)0.65×q _U	q _s (KN/m ²)	P _s (KN/m)0.65×q _S	
Habitation	5.21	1.5	9.28	3.80m	6.71	4.36	
Terrasse inaccessible	6.33	1	10,04	6,52	7.33	4,76	
Terrasse accessible	6.13	1.5	10.52	6.83	7.63	4.95	

• Exemple de calcul

Application de la méthode forfaitaire pour le deuxième type du plancher à usage habitation : Etude d'une poutrelle en appliquant la méthode forfaitaire (poutrelle Type 2).

Vérification des conditions d'application de la méthode forfaitaires (BA.E.L91 art B6.2.21).

- ➤ Plancher à surcharge modérée ($Q \le min(2G, 5KN/m^2)$):
- \rightarrow Q=1.5KN/m² \leq min (2×5.21, 5KN/m²).....condition vérifiée.
- ► Le rapport entre deux travées successives : $0.8 \le l_i A_{i+1} \le 1.25$:
- Le moment d'inertie constant sur toutes les travées......condition vérifiée.
- Fissuration peu nuisible (F.P.N)......condition vérifiée. [3]

• calcul des sollicitations

À l'ELU:

$$p_u = 6.03 \text{ KN /m}^2$$

Pu: la charge transmise à la poutrelle à L'ELU.

P_s: la charge transmise à la poutrelle à L'ELS.

À l'ELS:

$$P_s = 4,36 \text{ KN/m}^2$$

• Calcul des moments isostatique :

M₀: Moment isostatique

$$M_0 = \frac{p_u l^2}{8}$$

$$M_{AB}^0 = M_{BC}^0 = \frac{6.03 \times 3.13^2}{8} = 7.38 \text{ KN.m}$$

> À l'ELS:

$$M_{AB}^0 = M_{BC}^0 = \frac{4.36 \times 3.13^2}{8} = 5.33 \text{ KN. } m$$

• Moments aux appuis :

> Appuis de rive :

$$M_A=M_C=0$$

Sur les appuis de rive, le moment est nul, mais il faut toujours mettre des aciers de fissuration équilibrant un moment égal à $0.15 \times M_{_{0}}$

$$M_0 = \frac{q L^2}{8}$$
 , L= max (L_{AB},L_{BC})= 3.13m

ELU:
$$M_A^U = M_C^U = -0.15*7.38 = -1.1 \text{ KN. m}$$

ELS:
$$M_A^S = M_C^S = -0.15*5.33 = -0.80 \text{ KN.m.}$$

> Appuis intermédiaires :

ELU:

$$M_{\rm B}^{\rm U}$$
= -0.6 max $(M_0^{\rm AB}, M_0^{\rm BC}) = -0.6 \times 7.38 = -4.42 kN.m$

ELS:

$$M_{B}^{S}$$
 = -0.6 max $(M_{0}^{AB}, M_{0}^{BC}) = -0.6 \times 5.33 = -3.19 \text{ kN.m}$

➤ Moments en travées :

Chaque travée est calculée indépendamment, le moment max en travée est déterminé par les deux conditions :

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{5.21+1.5} = 0.223$$

$$\begin{cases} (1+0.3 \ \alpha) = 1+0.3 \times 0.223 = 1.067 \\ 1.2+0.3 \ \alpha = 1.2+0.3 \times 0.223 = 1.267 \end{cases}$$

> ELU:

 $Trav\acute{e}(AB) = Trav\acute{e}(BC)$:

$$M_0 = 7.38kN.m$$

$$\begin{split} M_t + \frac{0 + 0.6 M_0}{2} &\geq Max[1.067 \times M_0; 1.05 \times M_0] \\ M_t &\geq 0.7657.....(1) \\ M_t &\geq \frac{1.267 \times M_0}{2} \end{split}$$

$$M_t \geq \frac{1}{2}$$

$$M_t \ge 0.633M_0....(2)$$

Donc : $M_t = 5.66 \, kN. \, m$

> ELS:

Travée(AB)=Travée(BC):

$$M_0 = 5.33 \, kN. m$$

Donc : $M_t = 4.08 \, kN. \, m$

• Evaluation des efforts tranchants :

L'effort tranchant isostatique à l'ELU:

$$V_0 = \frac{P_U \times L}{2}$$

Travée(AB)=Travée(BC):

$$V_A = \frac{6.03 \times 3.13}{2} = 9.43 KN$$

 $V_B = -1.15 \times V_A = -10.85 kN$
 $\Rightarrow V_{\text{max}} = 10.85 kN$

Plancher habitation

Tableau III-3: Les sollicitations des poutrelles du plancher habitation

		E	LU			ELS				
Types	Ma int (KN.m)	Ma rive (KN.m)	Mt max (KN.m)	V _{max} (KN)	M _{a int} (KN.m)	M _{a rive} (KN.m)	M _{t max} (KN.m)			
Type 1	-3.80	-1.10	6.34	10.71	-2.74	-0.79	4.58			
Type 2	-4.42	-1.10	5.66	10.85	-3.19	-0.79	4.08			
Type 3	/	-1.15	7.72	9.65	/	-0.83	5.58			

Plancher terrasse inaccessible 1

Tableau III-4: Les sollicitations des poutrelles du plancher terrasse inaccessible

		E	LU	ELS			
Types	Ma int (KN.m)	Ma rive (KN.m)	M _{t max} (KN.m)	M _{a int} (KN.m)	Ma rive (KN.m)	M _{t max} (KN.m)	
Type 2	-4.79	-1.19	5.99	-3.50	-0.87	4.37	

Type4	-5.14	-1.54	8.22	12.75	3.75	-1.12	6

> Plancher terrasse inaccessible 2

Tableau III-5: Les sollicitations des poutrelles du plancher terrasse inaccessible

		E	LU	ELS			
Types	Ma int (KN.m)	M _{a rive} (KN.m)	M _{t max} (KN.m)	M _{a int} (KN.m)	M _{a rive} (KN.m)	M _{t max} (KN.m)	
Type 3	/	-1.25	8.35	/	-0.71	6.09	

III.2.1.2. Ferraillage des poutrelles

• Exemple de calcul étage courant :

Plancher habitation poutrelle Type 2

Sollicitation maximales:

Elu:

$$M_{t}=5.66KN.m$$

$$M_{a}^{int=}-4.42KN.m$$

$$M_{a}^{rive}=-1.1KN.m$$

$$Vmax=10.85KN$$

Els:

$$M_t=4.08KN.m$$

$$M_a^{int}=-3.19KN.m$$

$$M_a^{rive}=-0.79KN.m$$

> Calcul des armatures en travée :

Le calcul se fera pour une section en T soumise à la flexion simple.

$$\Rightarrow \begin{cases} Mtu = b \times h0 \times fbu \times \left(d - \frac{h_0}{2}\right) = 0.65 \times 0.04 \times 14.2 \times 10^3 \times (0.18 - 0.02) \\ M_{tu} = 59.07 KN. m \end{cases}$$

 $M_t < M_{tu} \implies$ Le calcul sera mené pour une section rectangulaire (b×h)

$$\mu_{bu} = \frac{M^{t}}{b \times d^{2} \times f_{bu}}$$

$$\mu_{bu} = \frac{5.66 \times 10^{-3}}{0.65 \times 0.18^{2} \times 14.2} = 0.018 < \mu_{l} = 0.392 \Rightarrow A = 0.$$

$$\mu_{bu} < 0.186 \Rightarrow \text{Pivot A}: \quad \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_{e}}{\gamma_{s}} = \frac{400}{1.15} = 348Mpa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.022$$

$$Z = d (1 - 0.4 \alpha) = 0.18 (1 - 0.4 \times 0.022) = 0.178 \text{ m}$$

$$A_{t} = \frac{M_{U}}{Z \times f_{st}} = \frac{5.66 \times 10^{-3}}{0.178 \times 348} = 0.91cm^{2}$$

√ Vérification de la condition de non fragilité :

 $A_{min} = (0.23 \times b \times d \times f_{t28})/F_e$

$$A_{min}=0.23\times0.65\times0.18\times2.1/400=1.41$$
cm²

$$A_{\min} \succ A_{t} \Longrightarrow$$
 On ferraille avec Amin

On opte pour 3HA12=3.39 cm²

> Calcul des armatures aux appuis intermédiaires

La table de compression est tendue, un béton tendue n'intervient pas dans la résistance donc le calcul se ramène à une section rectangulaire $(b_0 \times h)$.

 $M_u = 12.17 KN.m$

$$\mu_{bu} = \frac{M_U}{b_0 \times d^2 \times f_{bU}} = \frac{4.42 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.096$$

$$\mu_{bu} \langle 0.186 \Rightarrow \text{Pivot A: } \xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 Mpa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0.096}) = 0.126$$

$$\Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\mu_{bu} < \mu_l \Longrightarrow A' = 0$$

Avec:

$$z = d \times (1 - 0.4 \times \alpha)$$

$$z = 0.22 \times (1 - 0.4 \times 0.126) = 0.170m$$

$$A_a^{\text{int}} = \frac{M_U}{Z \times f_{st}} = \frac{4.42 \times 10^{-3}}{0.170 \times 348} = 0.74 \,\text{cm}^2$$

√ Vérification de la condition de non fragilité

$$A_{\min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 0.1 \times 0.18 \times \frac{2.1}{400} = 0.2 \text{cm}^2$$

$$A_{\min} = 0.2 \text{cm}^2 < A_a^{\text{int}} \Longrightarrow$$
 Condition vérifiée.

On opte pour 2HA10=1.92cm².

> Calcul de l'armature aux appuis de rive

 $M_u=1.1KN.m.$

$$\mu_{bu} = \frac{M_U}{b_0 \times d^2 \times f_{bU}} = \frac{1.1 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.023$$

$$\mu_{bu}$$
<0.186 \Rightarrow Pivot A: ξ_{st} =10‰ $\Rightarrow f_{st} = \frac{f_e}{\gamma_e} = \frac{400}{1.15} = 348Mpa$

$$\mu_{bu} < \mu_{l} \Rightarrow A' = 0$$

$$\alpha = 0.029$$

$$z = 0.168m$$

$$A_a^{rive} \frac{M_U}{Z \times f_{st}} = \frac{1.1 \times 10^{-3}}{0.168 \times 348} = 0.18cm^2$$

✓ Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 0.1 \times 0.18 \times \frac{2.1}{400} = 0.2 \text{cm}^2$$

$$A_a^{rive}$$
 =0.18cm²< A_{min} =0.2cm² \Rightarrow on ferraille avec Amin.

On opte pour 1HA10=0.79cm²

• Résumé du ferraillage des différents planchers

Le ferraillage des poutrelles est calculé avec les sollicitations maximales pour chaque plancher

Tableau III-6: Ferraillage des poutrelles des plancher terrasse accessible et inaccessible

		Pl	ancher	terrass	e inaccessi	ble 1		
Elément	Moment (KN.m)	μ_{bu}	α	Z(m)	$A_{calcul\'ee}$ (cm^2)	A_{\min} (cm^2)		A _{adoptée} cm²)
Travée	8.22	0.027	0.034	0.177	1.33	1.41	3.39	⇒3HA12
Appuis Intermédiaire	-5.14	0.111	0.148	0.169	0.87	0.22	1.57	⇒2HA10
Appuis de rive	-1.54	0.133	0.042	0.176	0.25	0.22	0.79	⇒1HA10
		F	Planche	r terras:	se accessib	le 2		
Elément	Moment (KN.m)	μ_{bu}	α	Z(m)	$A_{calcul\'ee} \ (cm^2)$		A_{\min} (cm^2)	$A_{adopt\acute{e}e} \ (cm^2)$
Travée	8.35	0.027	0.035	0.177	1.3	35	1.41 3.39⇒3HA	
Appuis de rive	-1.25	0.027	0.034	0.177	0.2	22	0.22	0.79⇒1HA10

Tableau III-7: Ferraillage poutrelles du plancher habitation

	Plancher habitation étage courant (16)												
Elément	Moment (KN.m)	μ_{bu}	α	Z(m)	$A_{calcul\'ee} \ (cm^2)$	$A_{ m min} \ (cm^2)$	$A_{adopt\acute{e}e} \ (cm^2)$						
Travée	7.72	0.025	0.032	0.177	1.25	1.41	3.39⇒3HA12						
Appuis Intermédiaire	-4.42	0.096	0.126	0.170	0.74	0.22	1.57⇒2HA10						
Appuis de rive	-1.15	0.025	0.031	0.177	0.19	0.22	0.79⇒1HA10						

Plancher habitation étage (7,8)

Elément	Moment (KN.m)	μ_{bu}	α	Z(m)	$A_{calcul\'ee} \ (cm^2)$	A_{\min} (cm^2)	$A_{adopt\acute{e}e} \ (cm^2)$
Travée	7.76	0.026	0.032	0.177	1.26	1.41	3.39⇒3HA12
Appuis Intermédiaire	-4.75	0.103	0.136	0.170	0.80	0.22	1.57⇒2HA10
Appuis de rive	-1.42	0.030	0.039	0.171	0.23	0.22	0.79⇒1HA10

III.2.1.3. Vérifications à ELU:

Vérification au cisaillement :

On doit vérifier que :

$$\tau_U = \frac{V_U}{b_0 \times d} \le \overline{\tau_u}$$
 Avec $: \overline{\tau_u} = \min [0.2 \ \frac{f_{c28}}{\gamma_b}; 5\text{MPa}] = 3.33 \ \text{MPA}$

 $V_u = 10.85 KN.m$

$$\tau_{U} = \frac{V_{U}}{b_{0} \times d} = \frac{10.85 \times 10^{-3}}{0.1 \times 0.18} = 0.6 Mpa$$

 $\tau_{u} \langle \overline{\tau_{u}} \dots Condition \ v\'{e}rifi\'{e}e$. Il n'y'a pas de risque de rupture par cisaillement

➤ Vérification des armatures longitudinales (A₁) à l'effort tranchant (Vu) :

• Appuis intermédiaires :
$$A_l \ge \frac{\gamma_s}{f_a} \left[V_u + \frac{M_a}{0.9 \times d} \right] A_l = 1.57 cm^2$$

• Appuis de rive :

$$A_l \ge \frac{\gamma_s}{f_s} \times V_u$$
 Avec: $A_l = 0.79cm^2$

> Vérification de la contrainte de cisaillement à la jonction table -nervure :

On doit vérifier que :
$$\tau_u = \frac{b_1 \times V_u}{0.9 \times d \times b \times h_0} \le \overline{\tau_u}$$
 avec $\overline{\tau_u} = \min \left(0.2 \frac{f_{c28}}{\gamma_b}; 5\right) MPa$

$$\tau_{u} = \frac{0.275 \times 10.85 \times 10^{-3}}{0.9 \times 0.18 \times 0.65 \times 0.04} = 0.708 Mpa \le \overline{\tau_{u}} = 3.33 Mpa$$

Condition vérifiée. Il n' y'a pas de risque de rupture par cisaillement

\triangleright Espacement des armatures transversales S_t

L'espacement des cours successifs d'armatures transversales doit satisfaire les conditions Suivante :

✓ St1
$$\leq$$
 min (0.9d, 40cm) \Rightarrow St \leq 16.2cm

$$\checkmark .St2 \leq A_{t} \frac{0.8f_{e}(\sin\alpha + \cos\alpha)}{b_{0}(\tau_{u} - 0.3f_{u}K)}$$

$$S_{t3} \le \frac{A_t \times f_e}{0.4 \times b_0}$$

Flexion simple

$$S_t \le A_t \frac{0.8 \times f_e}{b_0 \times (\tau_u - 0.3 \times f_{t28})} \Longrightarrow St = 106cm$$

Pas de reprise de bétonnage

$$\alpha = 90^{\circ}$$
 (Armatures droit.)

$$S_t \le \frac{A_t \times f_e}{0.4 \times b_0} \Longrightarrow S_t \le 57cm$$

Soit St = 15cm. \Longrightarrow on opte pour un étrier $\phi 6$

Vérification de la bielle

$$\begin{cases} \sigma_{bc \leq \frac{0.8 \times f_{c28}}{\gamma_b}} \\ \sigma_{bc} = \frac{2 \times V_u}{a \times b_0} \end{cases} \Longrightarrow \boxed{V_u \leq 0.267 \text{ a } b_0 \text{ } f_{c28}}$$

a = min[0.9 d, largeur de l'appui - 4cm]

A.N : a = min[16.2cm, 26 cm] = 16.2 cm.

 $V_{\rm u} = 10.85 \, \rm KN \le 108 \, \rm KN$

Commentaire : La bielle est vérifiée.

III.2.1.4. Vérifications à l'ELS

Les vérifications à faire sont :

- ✓ état limite de compression du béton.
- ✓ état limite de déformation.

> Vérification à l'état limite de compression du béton :

On doit vérifier que :

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 \text{ f}_{c28}$$

• En travée :

✓ Position de l'axe neutre :
$$H = b \frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = 0.65 \times \frac{0.04^{2}}{2} - 15 \times 3.39 \times 10^{-4} \times (0.18 - 0.04) = -1.919 \times 10^{-4} m$$

$$H = -1.919 \times 10^{-4} m \langle O$$

$$\Rightarrow$$
 Calcule d'une section en T

✓ Calcul de l'axe neutre y :

$$\frac{b_0}{2}y^2 + \left[15A + (b - b_0) \times h_0\right] \times y - 15 \times A \times d - (b - b_0)\frac{h_0^2}{2} = 0$$

$$0.05y^2 + 5.08 \times 10^{-3} - 9.15 \times 10^{-4} = 0 \dots (1)$$

Après résolution de l'équation (1) : y =9.3cm

✓ Calcul de I:

$$I = \frac{b \times y^{3}}{3} - (b - b_{0}) \frac{(y - h_{0})^{3}}{3} + 15A(d - y)^{2}$$

$$I = 21276.57 \text{ cm}^{4}.$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{4.57 \times 10^{-3}}{21276.57 \times 10^{-8}} \times 0.093 = 1.78 MPa$$
Donc:
$$\sigma_{bc} \langle \overline{\sigma}_{bc} = 15 MPa \Longrightarrow \cdots$$
Condition vérifiée

.Résumé des vérifications de l'état limite de compression du béton pour les autres types de plancher ✓ Plancher terrasse inaccessible

Tableau III-8 : Vérification de l'état limite de compression de béton plancher terrasse inaccessible

Localisation	M _{ser} (KN.m)	A_{s} (Cm ²)	(m)	[(cm ⁴)	(MPa)	$\overline{\sigma}_{bc}$ (MPa)	Observation
En travée	14.71	3.39	0.05246	16921.177	4.56	15	Vérifiée
En appui	-9.58	2.26	0.09285	8148.89	10.92	15	Vérifiée

[✓] Plancher terrasse accessible

Tableau III-9: Vérification de l'état limite de compression du béton plancher terrasse accessible

Localisation	<i>M</i> _{ser} (KN.m)	A_{S} (Cm ²)	(m)	I (cm ⁴)	σ _{bc} (MPa)	(MPa)	Observation
En travée	15.40	3.39	0.05246	16921.177	4.77	15	Vérifiée
En appui	-9.24	1.92	0.08739	7289.26	11.07	15	Vérifiée

[✓] Plancher habitation

Tableau III-10: Vérification de l'état limite de compression du béton plancher habitation

Localisation	<i>M</i> _{ser} (KN.m)	A _s (Cm ²)	(m)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	Observation
En travée	16.01	3.39	0.05246	16921.177	4.96	15	Vérifiée
En appui	-9.90	2.26	0.09285	8148.89	11.28	15	Vérifiée

➤ Vérification de l'état limite de déformation BAEL l'article (B.6.5.1) et (CBA93)

Tout élément fléchit doit être vérifié à la déformation. Néanmoins de stipule que si les conditions suivantes sont remplies, le calcul de la flèche n'est pas nécessaire. [3][2]

$$\checkmark \frac{h}{l} \ge \frac{M_t}{15 \times M_0}$$

$$\checkmark \frac{A}{b \times d} \le \frac{3.6}{f_e}$$

Mt : Moment en travée

M₀: Moment isostatique de cette travée

L : Longueur de la travée

As: Section des armatures choisies

$$\sqrt{\frac{h}{l}} = \frac{20}{355} = 0.056 \ge \frac{4.57}{15 \times 6.86} = 0.044$$
 ⇒ condition vérifié $\sqrt{\frac{3.39}{10 \times 22}} = 0.015 \ge \frac{3.6}{400} = 0.009$ ⇒ condition non vérifié

$$\checkmark \frac{3.39}{10\times22} = 0.015 \ge \frac{3.6}{400} = 0.009 \implies$$
 condition non vérifié

Les deux conditions ne sont pas vérifiées donc la vérification de la flèche est nécessaire

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f_t = f_{gv} - f_{ii} + f_{pi} - f_{gi}$$

La flèche admissible pour une poutre inferieur à 5m est de :

$$f_{adm} = (\frac{l}{500}) = \frac{355}{500} = 0.71cm$$

 f_{gv} Et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 f_{ji} : Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 f_{pi} : Flèche due à l'ensemble des charges appliquées (G + Q).

• Evaluation des moments en travée

 $q_{iser} = 0.65 \times G'$: La charge permanente qui revient à la poutrelle au moment de la mise en œuvre des cloisons.

 $q_{gser} = 0.65 \times G$: La charge permanente qui revient à la poutrelle.

 $q_{pser} = 0.65 \times (G + Q)$: La charge permanente et la surcharge d'exploitation.

Remarque:

Les différents moments M_{ise}, M_{gser} et M_{pser} sont calculés avec la méthode de Caquot pour les différents chargements.

Propriété de la section

✓ Position de l'axe neutre :

$$y = 9.3cm$$

✓ Position du centre de gravité de la section homogène :

$$v = 11.62 \text{ cm}$$

✓ Moment d'inertie de la section homogène I_0 :

$$I_0 = \frac{b \times v^3}{3} + \frac{b_0 \times (h - v)^3}{3} - \frac{(b - b_0) \times (v - h_0)^3}{3} + 15 \times A_{st} (d - v)^2 + 15 \times A_{sc} (v - d')^2$$

$$A_s = 3,39cm^2$$

$$\rho = \frac{A_s}{b_0.d} = \frac{3,39}{10 \times 18} = 0,018$$

$$\lambda_i = \frac{0.05 \times b \times f_{t28}}{(2b+3b_0) \times \rho}$$

$$\begin{split} \lambda_i &= \frac{0.05 \times b \times f_{t28}}{(2b+3b_0) \times \rho} \\ \lambda_\nu &= \frac{2}{5} \times \lambda_i \end{split}$$
 Déformation instantanée.

• Calcul des déformations E_i et E_v :

 $E_V = 3700\sqrt[3]{f_{C28}}$ Module de déformation longitudinale différée du béton.

$$E_V = 10818.86MPa$$

 $E_i = 3 \times E_V$Module de déformation longitudinale instantanée du béton.

 $E_i = 32456.58MPa$

Contraintes:

σ_S: contrainte effective de l'acier sous l'effet de chargement considéré (MPa).

$$\sigma_{sj} = 15 \frac{M_{jser} \times (d - y)}{I}$$

$$\sigma_{sg} = 15 \frac{M_{gser} \times (d - y)}{I}$$

$$\sigma_{sj} = 15 \frac{M_{jser} \times (d - y)}{I} \qquad \sigma_{sg} = 15 \frac{M_{gser} \times (d - y)}{I} \qquad \sigma_{sp} = 15 \frac{M_{pser} \times (d - y)}{I}$$

• Inerties fictives (I_f):

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{si} + f_{t28}}$$

$$\mu_g = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}}$$

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}} \qquad \mu_{g} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} \qquad \mu_{p} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}}$$

$$\mu \le 0 \Rightarrow \mu = 0$$

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j}$$

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_i} \qquad If_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} \qquad If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} \qquad If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g}$$

$$If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_r}$$

$$If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g}$$

• Calcul des moments :

$$M_{serg} = 0.667 \times \frac{q_g \times L^2}{8}$$
 $M_{serj} = 0.667 \times \frac{q_j \times L^2}{8}$ $M_{serp} = 0.667 \times \frac{q_p \times L^2}{8}$

$$M_{serj} = 0.667 \times \frac{q_j \times L^2}{8}$$

$$M_{serp} = 0.667 \times \frac{q_p \times L^2}{8}$$

• Evaluation des flèches :

$$f_{ji} = \frac{M_{jser}.L^2}{10.E_i.If_{ij}}$$

$$f_{gi} = \frac{M_{gser}.L^2}{10.E_i.If_{ig}}$$

$$f_{pi} = \frac{M_{pser}.L^2}{10.E_i.If_{ip}}$$

$$f_{ji} = \frac{M_{jser}.L^2}{10.E_i.If_{ji}} \qquad f_{gi} = \frac{M_{gser}.L^2}{10.E_i.If_{je}} \qquad f_{pi} = \frac{M_{pser}.L^2}{10.E_i.If_{jp}} \qquad f_{gv} = \frac{M_{pser}.L^2}{10.E_v.If_{gv}}$$

$$q_{jser} = 0.65 \times G = 3.81 \times 0.65 = 2.47 \, KN / m$$

$$q_{gser} = 0.65 \times G = 0.65 \times 5.21 = 3.38 KN / m$$

$$q_{pser} = 0.65 \times (G+Q) = 0.65 \times (5.21+1.5) = 4.36KN/m$$

$$M_{iser} = 2.59 KN.m$$

$$M_{gser} = 3.54 KN.m$$

$$M_{jser} = 2.59 KN.m$$
 $M_{gser} = 3.54 KN.m$ $M_{pser} = 4.57 KN.m$

$$\lambda_i = \frac{0.05 \times 0.65 \times 2.1}{(2 \times 0.65 + 3 \times 0.10) \times 0.018} = 2.36$$

$$\lambda_{0} = 0.4 \times 2.36 = 0.94$$

$$\sigma_{sj} = 15 \times \frac{2.59 \times 10^{-3} \times (0.18 - 0.093)}{2127657 \times 10^{-8}} = 17.63MPa$$

$$\sigma_{sj} = 15 \times \frac{2.59 \times 10^{-3} \times (0.18 - 0.093)}{21276.57 \times 10^{-8}} = 17.63MPa \qquad \sigma_{sg} = 15 \times \frac{3.54 \times 10^{-3} \times (0.18 - 0.093)}{21276.57 \times 10^{-8}} = 21.71Mpa$$

$$\sigma_{sp} = 15 \times \frac{4.57 \times 10^{-3} \times (0.18 - 0.093)}{21276.57 \times 10^{-8}} = 28.03 Mpa$$

$$\mu_{j} = 0. \quad \mu_{g} = 0 \quad \mu_{p} = 0.108$$

$$If_{ij} = \frac{1.1 \times 48744.14}{1 + (2.36 \times 0)} = 5.361 \times 10^{-4} m^4 \qquad If_{ig} = 5.36 \times 10^{-4} m^4 \qquad If_{iP} = 4.2727 \times 10^{-4} m^4 \qquad If_{vg} = 5.361 \times 10^{-4} m^4$$

$$If_{ij} = \frac{1.1 \times 48744.14}{1 + (2.36 \times 0)} = 5.361 \times 10^{-4} m^4 \qquad If_{ig} = 5.36 \times 10^{-4} m^4 \qquad If_{iP} = 4.2727 \times 10^{-4} m^4 \qquad If_{vg} = 5.361 \times 10^{-4} m^4$$

$$f_{ji} = \frac{2.59 \times 10^{-3} \times 3.55^2}{10 \times 32456.58 \times 5.361 \times 10^{-4}} = 2.101 \times 10^{-4} m \qquad f_{gi} = 2.58 \times 10^{-4} m \qquad f_{pi} = 4.19 \times 10^{-4} m$$

$$f_{vg} = 7.00 \times 10^{-3} m$$

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 0.00700 - 0.0002101 + 0.000419 - 0.000258 = 6.9 \times 10^{-3} m_{.}$$

$$\Delta f = 6.9 mm \langle f_{adm} = 7.1 mm_{.}$$
 condition vérifiée.

- Résumé des vérifications de la flèche pour chaque type de plancher
- ✓ Vérifications de la fléché pour plancher habitation étage7 et 8 :

Tableau III-11: Vérifications de la fléché pour plancher habitation étage7 et 8

Y	I	I_0	f_{ji}	f_{gi}	f_{pi}	f_{gv}	Δf	f_{adm}
(m)	(m ⁴)	(m ⁴)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0.3858	2.1588	0.00025	0.407	0.557	0.719	2.158	1.19	7.1

✓ Vérifications de la fléché pour plancher terrasse inaccessible 1 :

Tableau III-12 : Vérifications de la fléché pour plancher terrasse inaccessible 1

Y	I	I_{o}	$f_{\it ji}$	$f_{\scriptscriptstyle gi}$	$f_{\scriptscriptstyle pi}$	f_{gv}	Δf	$f_{\it adm}$
(m)	(m ⁴)	(m ⁴)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0.38581	2.1588	0.0002531	0.434	0.722	0.836	2.509	2.18	7.1

✓ Vérifications de la fléché pour plancher terrasse inaccessible 2 :

Tableau III-13 : Vérifications de la fléché pour plancher terrasse inaccessible 2

Y	I	I_{0}	f_{ji}	f_{gi}	f_{pi}	f_{gv}	Δf	$f_{\scriptscriptstyle adm}$
(m)	(m ⁴)	(m ⁴)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0.385	2.1588	0.00025	0.542	0.742	0.957	2.873	2.54	6.4

III.2.1.5. Schéma de ferraillage des poutrelles Tableau III-14: Schémas de ferraillage des poutrelles

Planchers	Scho	émas de ferraillage des po	outrelles
	Appuis de rive	Appuis intermédiaire	En travée
Plancher habitation Et terrasse inaccessible	Etrier Ф6	2HA10 Etrier Φ6 3HA12	1HA10 Etrier Φ6 3HA12

III.2.1.6. Ferraillage de dalle de compression : CBA (Art B.6.8.2.3) [2]

➤ Barres perpendiculaire(⊥) aux poutrelles :

50 cm ≤ ente axe entre les poutrelles l_0 = 65 cm≤ 80 cm, donc :

$$A_{\perp} = \frac{4l_0}{f_e}$$

✓
$$l_0 = 65 cm$$
.

 $\checkmark f_e = 235 \, MPa$. Car c'est du treillis soudés (Rond Lisse « RL »).

A.N:

$$A_{\perp} = \frac{4 \times 65}{235} = 1{,}106 \text{ cm}^2/\text{ml. avec}S_t \le 20 \text{ cm}$$

➤ Barres parallèle (||) aux poutrelles :

$$A_{\parallel} = \frac{A_{\perp}}{2}$$

A.N:

$$A_{\parallel} = \frac{1,106}{2} = 0,553 \ cm^2/ml. \ avec S_t \le 30 \ cm$$

On opte pour un treillis soudés $\phi_6(150 \times 150) \text{ } mm^2$.

$$\begin{cases} A_{\perp} = 5\phi_6/ml = 1,41 \ cm^2/ml. \\ S_t = 20 \ cm \le 20 \ cm. \end{cases} \begin{cases} A_{\parallel} = 4\phi_6/ml = 1,13 \ cm^2/ml. \\ S_t = 25cm \le 30 \ cm \end{cases}$$

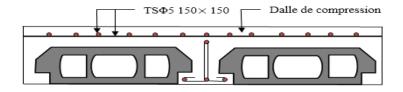
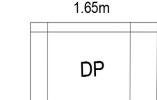


Figure III-6: Schéma de ferraillage de la dalle de compression

III.2.2. Planchers à dalles pleines :

Pour cette structure, un seul type de dalle pleine :

✓ Type 2 : dalles sur 4 appuis (panneau Dp1).


III.2.2.1. Etudes des dalles

III.2.2.1.1. Panneau DP1

C'est une dalle sur deux appuis perpendiculaires d'épaisseur e= 12cm. Elle est illustrée sur la figure suivante :

$$\begin{cases} Lx = 1.2m \\ Ly = 1.65m \end{cases} \rightarrow \rho = \frac{1.2}{1.65} = 0.72 > 0.4$$

$$\rightarrow \text{dalle travaille dans les deux sens}$$

1.2m

> Calcul des moments

✓ En travée :

$$\textbf{Elu:} \begin{cases} \textbf{M}_{\textbf{0}}^{X} = \mu_{X} \times P_{U} \times L_{X} \\ \textbf{M}_{\textbf{0}}^{Y} = \mu_{Y} \times M_{0}^{X} \end{cases}$$

Figure III-7: Dalle sur quatre appuis panneauDp1

D'après le tableau de **l'annexe (1)** on a : **ELU** $\theta = 0$ $\rho = 0.72$ $\mu_x = 0.0658$ et $\mu_y = 0.4624$ **ELS** $\theta = 0.2$ $\rho = 0.72$ $\mu_x = 0.0719$ et $\mu_y = 0.6063$

Donc:

ELS:
$$\begin{cases} \mathbf{M_0}^{\mathbf{x}} = 0.0719 \times 7.86 \times 1.2^2 = 0.81 \text{KN.m} \\ \mathbf{M_0}^{\mathbf{y}} = 0.6063 \times 0.81 = 0.49 \text{KN.m} \end{cases}$$

Calcul des moments corrigés :

✓ En travée

ELS:
$$\begin{cases} \mathbf{M_t}^{\mathbf{x}} = 0.75 \times 0.81 = 0.6 \text{KN.m} \\ \mathbf{M_t}^{\mathbf{y}} = 0.75 \times 0.48 = 0.36 \text{KN.m} \end{cases}$$

✓ En appuis

Le ferraillage se fera à la flexion simple pour une bande de largeur 1m et d'épaisseur e= 12cm, les résultats sont résumés dans les tableaux ci-dessous :

Tableau III-15: Ferraillage de panneau DP1en travée et en appuis

	En travée										
Sens	M _t (KN.m)	$\mu_{ m bu}$	α	Z(m)	A calculée (cm²/ml)						
X-X	0.78	0.0055	0.6069	0.0999	0.225						
у-у	0.36	0.0025	0.0031	0.0998	0.103						
			En appui	is							
Sens	Ma(KN.m)	$\mu_{ m bu}$	α	Z(m)	A calculée (cm²/ml)						
X-X	-0.52	0.0036	0.004	0.099	0.149						
Y-Y	-0.24	0.016	0.0021	0.099	0.069						

> Condition de non fragilité

✓ En travée

Sens x-x

$$A_{\min} = \frac{\rho_0}{2} \times (3 - \rho) \times b \times e = (8.10^{-4}/2) \times (3 - 0.72) \times 100 \times 12 = 1.09 \text{cm}^2/\text{ml} \Rightarrow A_{\min} > A_{\text{calculée}}$$

On ferraille avec Amin

Sens v-v

$$A_{min} = \rho \times b \times e = 8.10^{-4} \times 100 \times 12 = 0.96 \text{ cm}^2/\text{ml} \Rightarrow A_{min} > A_{calculée}$$
 On ferraille avec Amin

✓ En appuis

 $A_{min} = 0.23 \times b \times d \times \frac{ft28}{fe} = 0.23 \times 100 \times 10 \times \frac{2.1}{400} = 1.21 \text{ cm}^2/\text{ml}$ $A_{min} > A_{calcule}On \text{ ferraille avec Amin}$ On opte pour une section de ferraillage :

> Espacement des barres

Sens x-x: on opte pour $S_t = 20 \text{cm} \le \min(3e, 33cm)$ Sens y-y: on opte pour $S_t = 20 \text{ cm} \le \min(4e, 45cm)$

> Vérification à l'effort tranchant

$$\tau_{\rm u} = \frac{\rm V}{\rm b \times d} \le \overline{\tau_{\rm u}} \frac{0.07 {\rm fc} 28}{\gamma \rm b} = 1.16 {\rm MPa}$$

$$V_{ux} = (Pu \times L_x/2) \times Ly4/(L_y^4 + L_x^4) \Longrightarrow V_{ux} = 5.05 \text{ KN}$$

$$V_{uy} = (Pu \times L_y / 2) \times Lx4/(L_y^4 + L_x^4) \Longrightarrow V_{uy} = 1.94KN$$

Sens x-x

$$\tau_{\rm u} = \frac{V}{b \times d} = \frac{5.05}{1 \times 0.09} \times 10^{-3} = 0.056 \text{MPa} < 1.16 \text{MPa}$$

Sens y-y

$$\tau_{u} = \frac{V}{b \times d} = \frac{1.94}{1 \times 0.09} \times 10^{-3} = 0.021 \text{MPa} < 1.16 \text{MPa}$$

Donc :les armatures transversal ne sont pas nécessaire.

Vérification des contraintes

Après tout calcul fait les résultats obtenus sont résumés dans le tableau ci-dessous :

✓ En travée

Tableau III-16: Vérification des contraintes en travée

Sens	M _t (KN.m)	A (cm ² /ml)	Y(m)	I (m ⁴)	$\sigma_b(\mathrm{Mpa})$	$\sigma_b(Mpa)$	Observation
X-X	0.61	2.51	0.019	1.714×10 ⁻⁵	0.681	15	Vérifiée
у-у	0.36	2.51	0.019	1.714×10 ⁻⁵	0.413	15	vérifiée

✓ En appuis

Tableau III-17 : Vérification des contraintes en appuis

Sens	M _a (KN.m)	A (cm ² /ml)	Y(m)	I(m ⁴)	$\sigma_b(\mathrm{Mpa})$	$\sigma_b({ m Mpa})$	Observation
X-X	-0.4	2.51	0.019	1.714×10 ⁻⁵	0.454	15	Vérifiée
у-у	0.24	2.51	0.019	1.714×10 ⁻⁵	0.275	15	Vérifiée

Vérification à l'état limite de déformation

Si les deux conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche.

$$\begin{cases} e \ge \max\left[\left(\frac{3}{80}, \frac{M_t^x}{20 \times M_0^x}\right) L_x\right] \\ A_t^x \le \frac{2 \times b \times d_x}{f_0} \end{cases}$$

Le calcul de la flèche n'est pas nécessaire

> Schéma de ferraillage

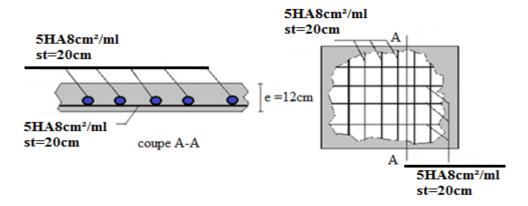


Figure III-8: Schéma de ferraillage de panneau de dalle DP1

III.3. Etude de l'acrotère

III.3.1. Hypothèses de calcul

- ✓ Le calcul se fera pour une bande de 1 ml
- ✓ La fissuration est considéré préjudiciable
- √ L'acrotère sera calculé en flexion composée

Les dimensions de l'acrotère sont adoptées d'après les plans d'architecture comme elles sont montrées sur la figure avec :

$$S = 0.6 \times 0.15 + (0.17 + 0.08) \times 0.11 / 2$$

$$S = 0.1037 m^{2}$$

III.3.2. Evaluation des charges

✓ Poids propre et la surcharge d'exploitation

G = 3kn / ml

✓ La force sismique

$$O = 1KN / ml$$

La force sismique horizontale F_P est donnée par la formule suivante :

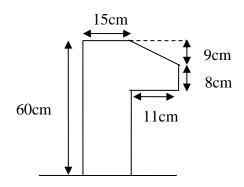
$$F_p = 4 \times A \times C_p \times W_p$$
. (**RPA99/2003,** Art 6.2.3) [1]

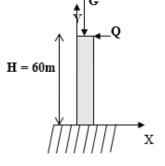
A : Coefficient d'accélération de zone (groupe d'usage 2, zone IIa, A= 0.15).

 C_p : Facteur de force horizontal ($C_p = 0.8$).

 W_p : Poids de l'acrotère.

Donc:
$$F_p = 4 \times 0.15 \times 0.8 \times 3 = 1.44 KN$$




Figure III-9: Schéma de L'acrotère

III.3.3. Calcul des sollicitations

✓ calcul du centre de pression

Les coordonnées du centre de pression sont données comme suit :

$$x_C = \frac{\sum A_i \times x_i}{\sum A_i}, y_C = \frac{\sum A_i \times y_i}{\sum A_i} \qquad \sum A_i = S$$

$$x_c = 9.32cm$$

$$y_c = 32.7cm$$

Figure III-10: Les sollicitations sur L'acrotère

$$\begin{cases} \textbf{M}_{G} \!\!=\! 0 \text{KN.m} \\ \textbf{M}_{Q} \!\!=\! Q \times h & M_{Q} \!\!=\! 1 \!\!\times\! 0.60 \!\!=\! 0.60 \text{KN.m} \\ \textbf{M}_{Fp} \!\!=\! F_{p} \times Y_{c} & M_{Fp} \!\!=\! 1.44 \times 0.327 \!\!=\! 0.47 \text{KN.m} \end{cases} \begin{cases} M_{G} \!\!=\! 0 \text{ KN.m} \\ M_{Q} \!\!=\! 0.60 \text{KN.m} \\ MFp \!\!=\! 0.47 \text{KN.m} \end{cases}$$

✓ Différentes combinaisons à utiliser

Tableau III-18: Différentes combinaisons à utiliser

Différentes combinaisons à utiliser							
Calliaitatian	ELU accidentelle	ELU	ELS				
Sollicitation	$G + Q + F_P$	$1,35\times G+1,5\times Q$	G+Q				
N (KN)	3	4.05	3				
M (KN)	1.07	0.9	0.6				

III.3.4. Ferraillage

Le ferraillage se fait à la flexion composée

✓ Calcul de l'excentricité

$$e_0=M_U/N_u = 1.07/3 = 35.66cm$$
 $e_0>H/6$ $h/6=0.60/6=10cm$

Le centre de pression se trouve à l'extérieur de la section et N_u est un effort de compression dont la section est partiellement comprimée

Le calcul se fera par assimilation à la flexion simple avec M_{ua} = $N_u \times$ e, les éléments soumis à la flexion composée doivent être justifiés vis -à- vis de l'état limite ultime de stabilité de forme (flambement)

On remplace l'excentricité réelle (e= M_u/N_u) par une excentricité totale de calcul dont l'expression est : $e=e_0+e_a+e_2$

Avec:

 e_0 : Excentricité (dite de premier ordre) de la résultante des contraintes avant l'application des excentricités additionnelles définis ci-après.

 e_a : Excentricités additionnelles traduisant les imperfections géométriques initiales.

 e_2 : Excentricité due aux effets de deuxième ordre, lies à la déformation de la structure.

 $e_a = \max (2cm \cdot L/250)$, tels que L: portée de l'élément L = 60cm

$$e_a = \max(2cm \cdot 60/250) = \max(2cm ; 0.24cm) = 2 cm$$

$$e_2 = \frac{3lf^2}{10^4.h}(2 + \alpha\varphi)$$
 (RPA Art A.4.3.5)[1]

φ: Rapport de la déformation finale due au fluage à la déformation instantanée sous la charge
considérée.

$$\alpha = \frac{M_g}{M_g + M_g} = \frac{0}{0 + 0.6} = 0$$

 $l_{\scriptscriptstyle f}$: Longueur de flambement.

$$l_f = 2 \times l_0 = 2 \times 0.6 = 1.2m \Longrightarrow e_2 = 0.58cm$$

D'où :
$$e = 35.66 + 0.58 + 2 = 38.24$$
cm

Les sollicitations deviennent alors :

$$\begin{cases} N_u = 3 \ KN \\ M_u = 3 \times 0.3824 = 1.15 KN.m \end{cases}$$

• Calcul à L'ELU

On calcule les armatures à L'ELU, puis on effectue la vérification des contraintes à L'ELS

e₀> H/6 \top\text{La section est partiellement comprimée, donc on se ramène à un calcul à la flexion simple sous l'effet d'un moment fictif M_F rapporté au centre de gravité des armatures tendues

$$M_F = M_u + N_u (d-h/2) = 1.15 + 3 (0.12 - 0.15/2) = 1.285 \text{ KN} \text{ .m}$$

 $M_{F}=1.285KN.m$

$$\begin{cases} \mu_{bu} = \frac{M_f}{b \times d^2 \times f_{bu}} \Rightarrow \mu_{bu} = \frac{1.285 \times 10^{-3}}{1 \times 0.12^2 \times 14.2} = 0.0063 \\ \mu_{bu} < \mu_t = 0.392 \Rightarrow A' = 0 \\ \alpha = \frac{1 - \sqrt{1 - 2 \times \mu_{bu}}}{0.8} = 0.0079 \qquad z = d \times (1 - 0.4 \times \alpha) = 0.119 \text{ m} \\ A_1 = \frac{M_f}{z \times f_{st}} = \frac{1.285 \times 10^{-3}}{0.119 \times 348} = 0.31 cm^2 \\ A = A_1 - \frac{N_u}{f_{st}} \Rightarrow A = 0.31 - \frac{3 \times 10^{-3}}{348} = 0.31 cm^2 \end{cases}$$

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{fe} = 0.23 \times 1 \times 0.12 \times \frac{2.1}{400} = 1.44cm^2$$

$$A\langle A_{\min} | \longrightarrow On \text{ adopte } : A_s = 4HA8 = 2.01cm^2 / ml$$

• Armature de répartition :

$$A_r = \frac{A}{4} = \frac{2.01}{4} = 0.5cm^2 / ml$$

Soit : $4HA8 = 2.01cm^2$

• L'espacement :

✓ Armature principale

$$S_t \le \frac{b}{3} = \frac{100}{3} = 33.3 \,\text{cm}$$
; soit $S_t = 25 \,\text{cm}$

✓ Armature de répartition

$$S_t \le \frac{b}{3} = \frac{100}{3} = 33cm \Longrightarrow \text{Soit}: S_t = 25cm$$

• Vérification au cisaillement :

L'acrotère est exposé aux intempéries (fissuration préjudiciable).

$$V_u = F_p + Q = 1.44 + 1 = 2.44 \text{ KN}$$

$$\tau_u = V_u/(b \times d) = 2.44 \times 10^{-3}/(1 \times 0.12) = 0.020 \text{MPa}$$

$$\bar{\tau}_u \le \min(0.2 \times f_{c28} / 1.5; 4Mpa)$$

$$\bar{\tau}_u \leq \min(3.33; 4Mpa)$$

$$\overline{\tau}_u \leq 3.33Mpa$$

• Calcul à l'ELS:

Les vérifications à effectue dans le cas de fissuration préjudiciable sont :

- ✓ Contrainte limite du béton
- ✓ Contrainte limite de l'acier

D'après le BAEL 91, la vérification des contraintes se fait de façon suivante :

> Position de l'axe neutre :

$$d = 0.12m$$

$$c = d - e_c$$

Tel que eg : distance du centre de pression C à la fibre la plus comprimée B de la section.

$$e_G = \frac{M_{ser}}{N_{corr}} = \frac{0.6}{3} = 0.2m < h/2 = 0.3m$$

$$\Rightarrow c = 0.12 - 0.2 = -0.1m(C < 0etyc > 0)$$

C à l'extérieur de la section.

$$y_{ser} = y_c + c$$

$$y_c^3 + p * y_c + q = 0$$

Tel que:

$$p = -3 \times c^2 + (d - c) \frac{90 \times A_s}{h}$$

$$q = -2 \times c^3 - (d - c)^2 \frac{90 \times A_s}{b}$$

$$\begin{cases} p = -3 \times 0.08^{2} + (0.12 - 0.08) \frac{90 \times 2.01 \times 10^{-4}}{1} = -0.02 \\ q = -3 \times 0.08^{3} + (0.12 - 0.08)^{2} \frac{90 \times 2.01 \times 10^{-4}}{1} = 0.0011 \ m^{3} \end{cases}$$
Par itération yc = 0.275m. Donc, y=0.0187m

✓ Calcul des contraintes :

$$\mu_t = \frac{b}{2}y^2 - 15A(d - y) = 1.29 \times 10^{-4}m^3$$

$$\begin{cases} \sigma_{bc} = \frac{N_{Ser}}{\mu_t}y = 3.91 \, MPa < \bar{\sigma}_{bc} = 15 \, MPa \\ \sigma_S = \frac{15 \times N_{Ser}}{\mu_t}(d - y) = 35.26 \, MPa < \bar{\sigma}_S = 201.64 \, MPa, \, FN \end{cases}$$

• Schéma de ferraillage

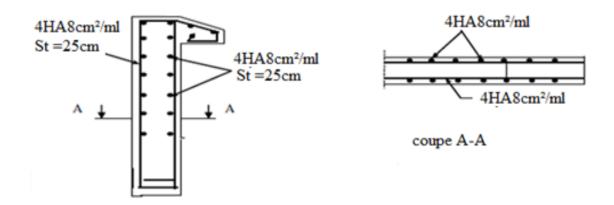


Figure III-11: Schéma de ferraillage de L'acrotère

III.4. Etude la poutre de chainage

III.4.1. Dimensionnement (RPA 99/2003 article 9.3.3) [1]

• Type01 :

Les dimensions minimales préconisées pour le chainage sont :

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$

$$L_{max} = 3.2m$$

- ✓ Hauteur minimale $h \ge 30$ cm.
- ✓ Largeur minimale $b \ge 20$ cm
- ✓ de l'épaisseur du mur.

On opte :
$$(b \times h) = (30 \times 35)cm^2$$
.

III.4.2. Sollicitations

Le chainage est conçu pour reprendre son poids propre ainsi que le poids des cloisons qu'il supporte. Il est calculé (comme une poutre simplement appuyée) en flexion simple, avec vérification de l'effort tranchant au niveau des appuis.

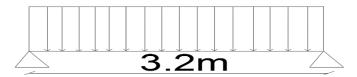


Figure III-12: Schéma statique de la poutre de chainage

Les sollicitations les plus défavorables sont données comme suite :

- ✓ $G_{p.ch} = 25 \times 0.35 \times 0.3 = 2.625 \ KN/ml$.
- \checkmark $G_{cc} = 5.21 \ KN/ml$.
- \checkmark $G_{dp} = 5.36 \times 1.65/2 = 4.42 \, KN/ml.$
- $\checkmark p_{voile} = 1.9 \times 0.15 \times 25 = 7.125 \ KN/ml.$
- ✓ $lg = 1.85/2 \Rightarrow lg = 0.925 \text{ m}$
 - Calcule des moments :

$$\begin{aligned} \textbf{ELU} & \begin{cases} \mathbf{q_u} = (1.35(~\mathbf{G_{c.c}}) + 1.5(~\mathbf{G_{cc}})) \times \frac{\mathrm{lg}}{2} + 1.35 \big(p_{voile} + G_{dp} + ~G_{p.ch}\big) + \\ & 1.5~(Q_{dp} \times 1.2~) = 30.80~\mathrm{KN/ml} \\ \mathbf{M_u} = \mathbf{q_u} \times \mathbf{l^2/8} = 39.42\mathrm{KN.m} \\ \mathbf{V_u} = \mathbf{q_u} \times \mathbf{l/2} = 49.28.~\mathrm{KN} \\ \end{cases} \\ & \mathbf{ELS} & \begin{cases} \mathbf{q_s} = \big((~\mathbf{G_{c.c}}) + ~(~\mathbf{G_{cc}})\big) \times \frac{\mathrm{lg}}{2} + \big(p_{voile} + G_{dp} + ~G_{p.ch}\big) + \\ & (Q_{dp} \times 1.2~) = 22.43~\mathrm{KN/ml} \\ \mathbf{M_s} = \mathbf{q_s} \times \mathbf{l^2/8} = 28.71\mathrm{KN.m} \end{aligned}$$

• Correction des moments :

$$\begin{split} \textbf{Trav\'ee} & \left\{ \begin{array}{l} \textbf{M}_{T}^{u} = 0.75 \; \text{M}_{u} = 29.56 \; \text{KN.} \, \text{m} \\ \textbf{M}_{T}^{s} = 0.85 \; \text{M}_{s} = 21.53 \text{KN.} \, \text{m} \\ \textbf{Appuis} \; \left\{ \begin{array}{l} \textbf{M}_{a}^{u} = -0.5 \; \text{M}_{u} = -19.71 \text{KN.} \, \text{m} \\ \textbf{M}_{a}^{s} = -0.5 \; \text{M}_{s} = -14.35 \text{KN.} \, \text{m} \end{array} \right. \end{split}$$

III.4.3. Ferraillage

Le ferraillage se fait à la flexion simple

Tableau III-19: Ferraillage de la poutre de chainage

		Ferraillage de la poutre de chainage								
	M^u $(KN.m)$	μ_{bu}	α	z (m)	$A_{calcul\acute{e}} \ (cm^2)$	$A_{choisie}$ (cm^2)	$A_{min} \ (cm^2)$			
Travée	29.56	0.063	0.081	0.319	2.66	3HA12 = 3.39	$0.23bd f_{t28}/f_e = 1.15$			

Appuis	-19.71	0.042	0.053	0.323	1.75	3HA10 = 2.36	$0.23bd f_{t28}/f_e = 1.15$
--------	--------	-------	-------	-------	------	-----------------	------------------------------

III.4.3.1. Vérifications ELU

Vérification de l'effort tranchant

$$au_u=rac{V_u}{bd}=0.497~MPa ,4 $MPa
ight)=3.33~MPa$, $FN$$$

⇒Pas risque de rupture par cisaillement.

> Calcul des armatures transversales

On fixe St = 15 cm puis on calcul les armatures transversales :

$$A_{trans} \ge \frac{0.4 \times b \times s_t}{fe} \Rightarrow A_{trans} \ge 0.45$$

$$A_{trans} \ge \frac{b \times st(\tau_u - 0.3f_{t28})}{0.9 \times fe} \Rightarrow A_{trans} \ge 0.165$$

 $soit: A_{trans} = 1 \ cadre \ \phi_8 + 1 \ étrier \ \phi_8 = 4\phi_8 = 2.01 \ cm^2.$

III.4.3.2. Vérifications ELS

Vérification de la contrainte dans le béton

Tableau III-20: Vérification de la contrainte dans le béton

	M^s (KN. m)	<i>Y</i> (<i>m</i>)	[(m ⁴)	σ_b (MPa)	$\overline{\sigma}_b$ (MPa)
Travée	29.56	0.089	3.6583×10 ⁻⁴	5.23	15
Appuis	- 19.71	0.076	2.420×10^{-4}	4.00	15

> Etat limite de déformation

• Evaluation de la flèche

$$1)\frac{h}{l} \ge \frac{M_t}{10 \times M_0} \qquad 2) \quad \frac{A}{b \times d} \le \frac{4.2}{f_e} \qquad 3) \quad \frac{h}{l} \ge \frac{1}{16}$$

$$\frac{35}{20} = 0.109m \ge \frac{19.71}{10 \times 28.71} = 0.068m \qquad \text{Condition vérifiée.}$$

$$\frac{35}{320} = 0.109m \ge \frac{19.71}{10 \times 28.71} = 0.068m$$
Condition vérifiée.
$$\frac{3.39}{30 \times 33} = 3.42 \times 10^{-3} \le \frac{4.2}{400} = 0.01$$
Condition vérifiée.
$$\frac{35}{320} = 0.109m \ge \frac{1}{16} = 0.062m$$
Condition vérifiée.

Commentaire : Le calcul de la flèche n'est pas nécessaire.

> Schéma de ferraillage

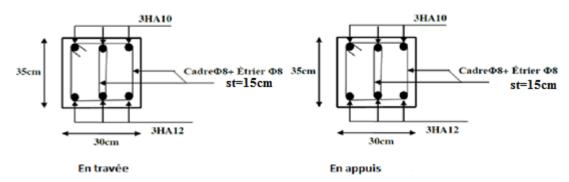


Figure III-13: Schéma de ferraillage de la poutre de chainage

●Type 02:

Remarque : il existe plusieurs types de poutres de chainage mais on a ferraillée avec les sollicitations les plus défavorables

Les dimensions minimales préconisées pour le chainage sont :

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$

 $L_{max} = 3.26$ m

✓ Hauteur minimale $h \ge 30$ cm.

✓ Largeur minimale $b \ge 20$ cm

✓ de l'épaisseur du mur.

On opte : $(b \times h) = (30 \times 30)cm^2$.

III.4.4. Sollicitations

Le chainage est conçu pour reprendre son poids propre ainsi que le poids des cloisons qu'il supporte. Il est calculé (comme une poutre simplement appuyée) en flexion simple, avec vérification de l'effort tranchant au niveau des appuis.

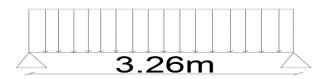


Figure III-14: Schéma statique de la poutre de chainage

Les sollicitations les plus défavorables sont données comme suite :

$$\checkmark$$
 $G_{p,ch} = 25 \times 0.3 \times 0.3 = 2.25 \ KN/ml.$

 \checkmark $G_{cc} = 6.75 \ KN/ml.$

• Calcule des moments :

$$\begin{aligned} \textbf{ELU} & \begin{cases} \textbf{q_u} = 6.75 + (2.25 \times 1.35) = 9.78 \, \text{KN/ml} \\ \textbf{M_u} = q_u \times l^2/8 = 13 \, \text{KN. m} \\ \textbf{V_u} = q_u \times l/2 = 15.94 \, \text{KN} \end{cases} \\ \textbf{q_s} = 7.04 \, \, \text{KN/ml} \\ \textbf{ELS} & \begin{cases} \textbf{q_s} = 7.04 \, \, \text{KN/ml} \\ \textbf{M_s} = q_s \times l^2/8 = 9.36 \, \text{KN. m} \end{cases} \end{aligned}$$

• Correction des moments :

$$\begin{aligned} & \text{Trav\'ee} \; \begin{cases} \textbf{M}_{\text{T}}^{\text{u}} = 0.75 \; \text{M}_{\text{u}} = 9.75 \; \text{KN. m} \\ \textbf{M}_{\text{T}}^{\text{s}} = 0.75 \; \text{M}_{\text{s}} = 7.02 \text{KN. m} \end{cases} & \quad \textbf{Appuis} \; \; \begin{cases} \textbf{M}_{\text{a}}^{\text{u}} = -0.5 \; \text{M}_{\text{u}} = -6.5 \text{KN. m} \\ \textbf{M}_{\text{a}}^{\text{s}} = -0.5 \; \text{M}_{\text{s}} = -4.68 \text{KN. m} \end{cases} \end{aligned}$$

III.4.5. Ferraillage

Le ferraillage se fait à la flexion simple

Tableau III-21: Ferraillage de la poutre de chainage

		Ferraillage de la poutre de chainage								
	M^u $(KN.m)$	μ_{bu}	α	z (m)	$A_{calcul\acute{e}} \ (cm^2)$	$A_{choisie}$ (cm^2)	$A_{min} \ (cm^2)$			
Travée	9.75	0.029	0.037	0.275	1.02	3HA10 = 2.36	$0.23bd f_{t28}/f_e = 1.01$			
Appuis	-6.5	0.019	0.024	0.267	0.67	3HA10 = 2.36	$0.23bd f_{t28}/f_e = 1.01$			

III.4.5.1. Vérifications ELU

Vérification de l'effort tranchant

$$au_u=rac{V_u}{bd}=0.18~MPa ,4 $MPa
ight)=3.33~MPa$, $FN$$$

⇒Pas risque de rupture par cisaillement.

> Calcul des armatures transversales

On fixe St = 15 cm puis on calcul les armatures transversales :

$$\begin{aligned} A_{trans} &\geq \frac{0.4 \times b \times s_t}{fe} \Rightarrow A_{trans} \geq 0.45 \\ A_{trans} &\geq \frac{b \times st(\tau_u - 0.3f_{t28})}{0.9 \times fe} \Rightarrow A_{trans} \geq 0.562 \end{aligned}$$

 $soit: A_{trans} = 1 \ cadre \ \phi_8 + 1 \ étrier \ \phi_8 = 4\phi_8 = 2.01 \ cm^2.$

III.4.5.2. Vérifications ELS

Vérification de la contrainte dans le béton

Tableau III-22: Vérification de la contrainte dans le béton

	<i>M^s</i> (<i>KN</i> . <i>m</i>)	<i>Y</i> (<i>m</i>)	<i>I</i> (<i>m</i> ⁴)	σ_b (MPa)	$\overline{\sigma}_b$ (MPa)
Travée	7.02	0.1	0.4×10^{-3}	1.73	15

Appuis	-4.68	0.02	0.1×10^{-3}	1	15

> Etat limite de déformation

• Evaluation de la flèche

$$1) \frac{h}{l} \ge \frac{M_t}{10 \times M_0} \qquad 2) \frac{A}{b \times d} \le \frac{4.2}{f_e} \qquad 3) \frac{h}{l} \ge \frac{1}{16}$$

$$\frac{30}{320} = 0.093m \ge \frac{7.02 \times 10^{-3}}{10 \times 9.36 \times 10^{-3}} = 0.075m \qquad \text{Condition v\'erifi\'ee.}$$

$$\frac{2.36 \times 10^{-4}}{30 \times 28} = 2.80 \times 10^{-3} \le \frac{4.2}{400} = 0.01 \qquad \text{Condition v\'erifi\'ee.}$$

$$\frac{30}{320} = 0.093m \ge \frac{1}{16} = 0.062m \qquad \text{Condition v\'erifi\'ee.}$$

Commentaire : Le calcul de la flèche n'est pas nécessaire.

> Schéma de ferraillage

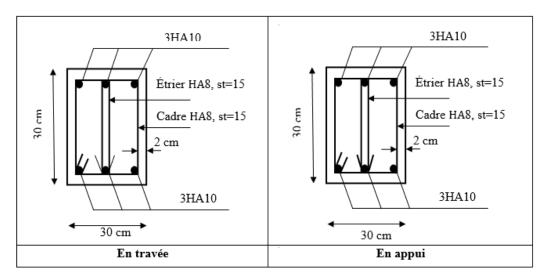


Figure III-15: Schéma de ferraillage de la poutre de chainage

III.5. Étude des escaliers :

Le calcul des sollicitations se fait par la méthode RDM.

Les escaliers se calculent à la flexion simple en considérant la dalle comme une poutre de portée « L » uniformément chargée et en tenant des types d'appuis sur lesquels elle repose.

III.5.1. Étude de type d'escalier courant

D'après le pré dimensionnement, l'épaisseur de la paillasse e=15, le calcul se fait pour une bonde de 1m.

> Evaluation des charges

$$\checkmark$$
 Volée :
G volée = 7.82 × 1 =7.82 KN/ml
Q volée = 2.5 × 1 =2.5 KN/ml
 \checkmark Palier :
G palier = 5.11 × 1 =5.11KN/ml
Q palier = 2.5 × 1 =2.5KN/ml

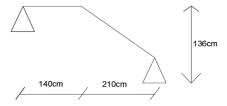


Figure III-16: Schéma d'escalier courant

> Combinaison des charges :

$$\mathbf{L'ELU:} \begin{cases} q_{vu} = 1.35G_v + 1.5Q_v = 14.30KN/ml \\ q_{pu} = 1.35G_p + 1.5Q_p = 10.64KN/ml \end{cases}$$

L'ELS :
$$\begin{cases} q_{vs} = G_v + Q_v = 10.32KN/ml \\ q_{ps} = G_p + Q_p = 7.61KN/ml \end{cases}$$

III.5.1.1. Calcul des sollicitations :

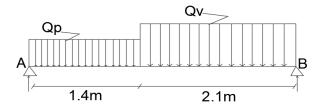


Figure III-17: Schéma statique de l'escalier courant

- Les réactions d'appuis :
- ELU

$$\sum F/y = 0 \Rightarrow \begin{cases} R_A + R_B = 10.64 \times 1.4 + 14.30 \times 2.1 \\ R_A + R_B = 44.92KN \end{cases}$$

$$\sum M/A = 0 \Rightarrow \begin{cases} -14.30 \times (2.1) \times (2.45) - 10.64 \times (1.4) \times (0.7) + R_B \times (3.5) = 0 \\ R_A = 20.92KN \\ R_B = 24KN \end{cases}$$

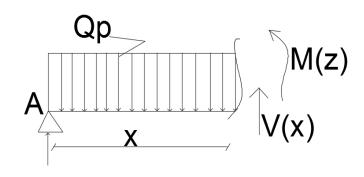
❖ ELS
$$R_A + R_B = 32.34KN$$

$$\begin{cases} R_A = 15.04KN \\ R_B = 17.30KN \end{cases}$$

• Les efforts internes :

✓ Tronçons $1:0 \le X \le 1.4$

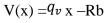
$$V(x) = q_p x - Ra$$
• ELU


$$V(0) = -20.92 \text{ KN}$$

$$V(1.4) = -6.02 \text{KN}$$
• ELS

$$\begin{cases} V(0) = -15.04 \text{ KN} \\ V(1.4) = -4.37 \text{KN} \end{cases}$$

$$M(x) = -q_p x^2 / 2 + R_A x$$
• ELU


$$M(0) = 0$$
KN.m
 $M(1.4) = 18.86$ KN.m

ELS

$$\int M(0) = 0KN.m M(1.4) = 13.58KN.m$$

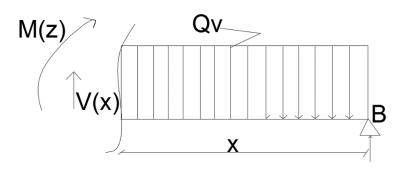
✓ Tronçons2: $0 \le X \le 2.1$

& ELU

$$\begin{cases} V(0) = -24 \text{ KN} \\ V(2.1) = 6.03 \text{ KN} \end{cases}$$
 ELS

$$V (0) = -17.3 \text{ KN}$$

$$V (2.1) = 4.37 \text{ KN}$$


$$M(x) = -q_v x^2 / 2 + R_B x$$

$$\Leftrightarrow ELU$$

$$M (0) = 0KN.m$$

 $M (2.1) = 18.86KN.m$

& ELS

$$\int M(0) = 0KN.m$$

 $M(2.1) = 13.57KN.m$

• Diagrammes des moments et des efforts tranchant à L'ELU :

III.5.1.2. Calcul des moments

Le moment max se trouve au point qui correspond à V(x) = 0.

L'ELU:

$$V(x) = 10.64x - 20.92 = 0 \Rightarrow x = 1.96 \text{ cm}.$$

$$\begin{split} M(x) &= M~(1.81) = 19.57 KN.m \\ & \begin{cases} M_{t~max} = 0.75 M_{max} = 0.75 \times 19.57 = 14.67 KN.m \\ M_{a~max} = -0.5 M_{max} = -0.5 \times 19.57 = -9.78 KN.m \\ V &= 24~KN \\ \end{split}$$

L'ELS:

$$\begin{split} V(x) &= 7.61x \text{ -}15.04 = 0 \Rightarrow x = 1.96 \text{ cm}. \\ M(x) &= M \text{ (1.96)} = 14.84 \text{KN.m} \\ & \begin{cases} M_{t \text{ max}} = 0.75 M_{\text{max}} = 0.75 \times 14.84 = 11.13 \text{KN.m} \\ M_{a \text{ max}} = -0.5 M_{\text{max}} = -0.5 \times 14.84 = -7.42 \text{KN.m} \\ V &= 16.25 \text{ KN} \\ \end{cases} \end{split}$$

III.5.1.3. Ferraillage

La fissuration est peu nuisible

* En travée:

$$\begin{split} \mu_{bu} &= \frac{M_{tu}}{bd^2 f_{bu}} = \frac{14.67 \times 10^{-3}}{1 \times 0.13^2 \times 14.2} \\ \mu_{bu} &= 0.06 < \mu_{lu} = 0.186 \Rightarrow (\text{As'= 0}). \\ \alpha &= 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) \Rightarrow \alpha = 0.077 \\ A_S &= \frac{M_u^t}{\text{d}(1 - 0.4\alpha) f_{st}} = \frac{14.67 \times 10^{-3}}{0.13(1 - 0.4 \times 0.077)348} \Longrightarrow A_S = 3.34 \ cm^2 \end{split}$$

> Condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_s} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.59 \text{cm}^2 \implies A_s \ge A_{\min} = 1.59 \text{Cm}^2$$

On adopte *5HA10 d'une* section A_s =3.93 cm² avec un espacement : $S_t = b/n = 100/4 = 25$ cm \triangleright Les armatures de répartition :

$$A_r = A_s/4 = 3.93/4 = 0.98 \text{ cm}^2$$

On adopte 3HA8 d'une section As =1.51 cm²avec un espacement : $S_t = b/n = 100/3 = 33 \text{ cm}$

❖ En appui:

$$\mu_{bu} = \frac{M_{au}}{bd^2 f_{bu}} = \frac{9.78 \times 10^{-3}}{1 \times 0.13^2 \times 14.2}$$

$$\mu_{bu} = 0.04 < \mu_{lu} = 0.186 \quad \text{(Pas d'armature comprimée A}_s = 0\text{)}.$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) \quad \Rightarrow \alpha = 0.052$$

$$A_s = \frac{M_u^t}{d(1 - 0.4\alpha)f_{st}} = \frac{9.78 \times 10^{-3}}{0.13(1 - 0.4 \times 0.052)348} \Longrightarrow A_s = 2.2 \text{ cm}^2$$

On adopte 4HA10d'une section $A_s = 3.14 cm^2$ et avec un espacement : $S_t = b/n = \! 100/4 = 25 cm$

> Les armatures de répartition :

$$A_r = A_s/4 = 3.14/4 = 0.98 \text{ cm}^2$$

On adopte 3HA8 d'une section As = 1.51cm²avec un espacement : $S_t = b/n = 100/3 = 33 \text{cm}$

> Verifications ELU

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{bd} \le \frac{T_u}{\tau_u} = 0.07 \frac{f_{c28}}{\gamma_b}$$

 $\tau_u = \frac{24 \times 10^{-3}}{1 \times 0.13} = 0.18 MPa < \bar{\tau}_u = 1.16 MPa$...pas de risque de rupture par cisaillement.

• Vérification de l'espacement des armatures :

En travée:

Les armatures principales: $St = 25cm \le \min(3e; 33cm) = 33cm$. Les armatures de répartition : $St = 25cm \le \min(4e; 45cm) = 45cm$.

En appuis:

Les armatures principales : $St = 25cm \le \min(3e; 33cm) = 33cm$. Les armatures de répartition : $St = 25cm \le \min(4e; 45cm) = 45cm$

> Verifications ELS

• Vérifications des contraintes de béton

En travée : $M_T^S = 11.13KN.m$

Tableau III-23: Vérification de contrainte de béton en travée

Vérification des contraintes en travée			
Calculs	Vérifications		
y = 0.037 m	$\sigma_b = 5.11 MPa < \bar{\sigma}_b = 15 MPa$		
$I = 8.05 \times 10^{-5} m^4$			
$\sigma_b = 5.11MPa$	Vérifiée		

En appuis : $M_a^S = 7.42KN.m$

Tableau III-24: Vérification de contrainte de béton en appuis

Vérification des contraintes en appuis				
Calculs	Vérifications			
y = 0.0004 m	$\sigma_b = 0.12 MPa < \bar{\sigma}_b = 15 MPa$			
$I = 4.17 \times 10^{-5} m^4$				
$\sigma_b = 0.12 MPa$	Vérifiée			

• Vérifications de l'état limite de déformation

Si les deux conditions sont vérifiées, il n'y a pas lieu de vérifier la flèche.

AN:
$$\begin{cases} 1) \dots e \geq max \left[\left(\frac{3}{80}, \frac{M_t^x}{20 \times M_0^x} \right) L_x \right] & 2) \dots A_t^x \leq \frac{2 \times b \times d}{f_e} \\ e = 15 cm \geq max \left[(0,0375,0.037) \times 3.5 \right] = 12.9 \ cm \dots \text{Condition v\'erifi\'ee.} \\ A_t^x = 3.93 \leq 6.5 \dots \text{Condition v\'erifi\'ee.} \end{cases}$$

Commentaire : Le calcul de la flèche n'est pas nécessaire

III.5.1.4. Schéma de ferraillage de l'escalier

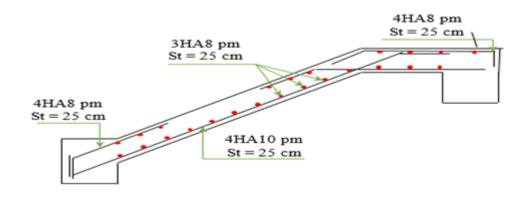


Figure III-18: Schéma de ferraillage de l'escalier courant

III.5.2. Etude de la poutre palière

La poutre palière est prévue pour être un support d'escalier, avec une longueur de 3.2 m, la poutre palière se calcul à l'ELU puisque la fissuration et considéré peu nuisible.

Pré dimensionnement III.5.2.1.

$$\frac{L}{15} \le h \le \frac{L}{10} \quad \Rightarrow \quad 19cm \le h \le 29cm$$

Alors,
$$\begin{cases} h = 30 \ cm. \\ b = 30 \ cm. \end{cases}$$

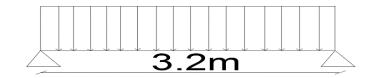


Figure III-19: Schéma statique de la poutre palière

III.5.2.1.1. Vérification des conditions du RPA 99 version 2003

$$\begin{cases} b = 30 \ cm \ge 25 \ cm \\ h = 30 \ cm \ge 30 \ cm \\ \frac{h}{b} = 1 < 4 \end{cases}$$
 [1]

 \Rightarrow On adopte une section de (30x30) cm²

III.5.2.2. Calcul de la poutre palière

Les charges revenant à la poutre :

- ✓ Poids propre de la poutre : $G_p = 0.30 \times 0.30 \times 25 = 2.25$ KN/ml.
- Charge revenant à l'escalier est la réaction d'appui ou point A : $\begin{cases} ELU: 19.28 \, KN/ml. \\ ELS: 13.88 \, KN/ml. \end{cases}$

Alors:
$$\begin{cases} q_u = (1.35 \times 2.25 + 2.89) + 19.28 = 25.20 \ KN/ml. \\ q_s = 2.25 + 2.89 + 13.88 = 19.02 \ KN/ml. \end{cases}$$

> Moments isostatiques

$$M^u = \frac{q_u \times l^2}{8} = \frac{25.2 \times 3.2^2}{8} = 32.25 \text{KN. m}$$

 $M^s = \frac{q_s \times l^2}{8} = \frac{19.02 \times 3.2^2}{8} = 24.35 \text{ KN. m}$

> Calcul des sollicitations :

En travée :

$$M_{tu} = 0.75 \times M_u = 0.75 \times 32.25 = 24.18KN.m$$

 $M_{ts} = 0.75 \times M_s = 0.75 \times 24.35 = 18.26KN.m$

En appuis:

$$M_{au} = -0.5 \times M_u = -0.5 \times 32.25 = -16.12KN.m$$

 $M_{as} = -0.5 \times M_s = -0.5 \times 24.35 = -12.17KN.m$

> Effort tranchant :

$$V_u = \frac{q_u \times 1}{2} = \frac{25.2 \times 3.2}{2} = 40.32 \text{ KN. m}$$

III.5.2.2.1. Ferraillage à la flexion simple

Tableau III-25: Ferraillage de la poutre palière

	μbu	A	Z (m)	A calculée (cm ²)	Amin (cm ²)
Travée	0.077	0.100	0.268	2.76	1.01
Appui	0.051	0.065	0.272	1.81	1.01

> Vérification au cisaillement :

$$\begin{split} \overline{\tau_u} &= \frac{_{0,2 \, \times fc28}}{_{\gamma b}} = 3.33 \, \text{MPa} & \text{Avec} : \tau_{fle} = \frac{v}{_{b \times d}} \\ \tau_{fle} &= \frac{40.32}{0.3 \times 0.28} \times 10^{-3} = 0.48 \text{MPa} < 3.33 \text{MPa} \end{split}$$

⇒Les armatures transversales ne sont pas nécessaires.

III.5.2.3. Calcul de la poutre palière à la torsion

Le moment de torsion M_{tor} est engendré par les charges ramenées par le palier et la volée, c'est le moment en appui à l'ELU.

Dont:
$$M_{tor} = 8.75 \times \frac{3.2}{2} = 14.00 \, KN. m$$

Pour une section pleine on remplace la section réelle par une section équivalente

Dont l'épaisseur de la paroi est égale au sixième du cercle qu'il est possible d'inscrire dans le contour extérieur.

U : périmètre de la section.

$$\Omega$$
: air du contour tracé à mi-hauteur.

e : épaisseur de la paroi
$$\implies$$
 e = b/6 = 5 cm

$$\Omega = [b - e] \times [h - e] \Rightarrow \Omega = 0.0625 \text{ m}^2$$

$$U = 2 \times [(h - e) + (b - e)] \Rightarrow U = 1.00 \text{ m}$$

> Calcul de la section des armatures longitudinales :

$$A_{tor} = \frac{M_{tor} \times U \times \gamma_s}{2 \times \Omega \times f_e} = \frac{14.00 \times 10^{-3} \times 100 \times 10^{-2} \times 1.15}{2 \times 0.0625 \times 400} = 3.22 cm^2$$

En travée :
$$A^t = A_{fléxion} + \frac{A_{Torsion}}{2} \Rightarrow A^t = 2.76 + 1.61 = 4.37 \text{ cm}^2$$

On ferraille avec $A^t = 3HA14+1HA12=5.75 \text{ cm}^2$

En appui :
$$A^a = A_{fl\acute{e}xion} + \frac{A_{Torsion}}{2} \Rightarrow A^a = 1.81 + 1.61 = 3.42 cm^2$$

On ferraille avec $A^a = 4HA12 = 4.52cm^2$

> Vérification de la contrainte de cisaillement :

$$\tau_u = \sqrt{\tau_{fl\acute{e}xion}^2 + \tau_{torsion}^2} < \bar{\tau}_u$$

Avec:

$$\begin{split} \tau_{torsion} = \frac{M_{tor}}{2 \times \Omega \times \mathrm{e}} = \frac{14.00 \times 10^{-3}}{2 \times 0.0625 \times 0.05} = & \ 2.24 \ MPa. \\ \tau_{u} = \sqrt{0.51^{2} + 2.24^{2}} = & \ 2.29 \ MPa \\ \tau_{u} = & \ 2.29 \ MPa \ < \bar{\tau}_{u} = & \ 3.33 \ MPa. \end{split}$$

- ⇒pas risque de rupture par cisaillement.
- ⇒ Pas de risque de cisaillement
 - \succ Calcul des armatures transversales : $A_t = A_t^{fle} + A_t^{tor}$

✓ En flexion :

$$A_{t} \geq \frac{0.4 \times b \times S_{t}}{f_{e}} = \frac{0.4 \times 0.3 \times 15}{400} = 0.45 cm^{2} \text{ Avec } : S_{t} = 15 cm$$

$$A_{t} \geq \frac{b \times S_{t} \times (\tau_{u} - 0.3 \times f_{t28})}{0.8 \times f_{e}} = \frac{0.3 \times 15 \times (2.29 - 0.3 \times 2.1)}{0.8 \times 400} = -0.16 cm^{2}$$

$$\checkmark \text{ En torsion : } A_{tor} = \frac{M_{tor} \times S_{t} \times \gamma_{s}}{2 \times \Omega \times f_{e}} = \frac{14.00 \times 10^{-3} \times 0.15 \times 1.15}{2 \times 0.0625 \times 400} = 0.48 cm^{2}$$

$$donc \Rightarrow A_{t} = 0.93 \ cm^{2}$$

Tableau III-26: Ferraillage de poutre palière en flexion et en torsion

	Flexion simple		Torsion	А т	Cotal	A adopté		
	Travée	Appuis		Travée	appuis	Travée	appuis	
Armature longitudinale (cm²)	2.76	1.81	3.22	4.37	3.42	3HA14+ 1HA12 =5.75	4HA12 =4.52	
Armature transversale (cm²)	0.	45	0.483	0.933			$\phi_8 = 2.01cm^2$ $S_t = 15cm$	

Vérifications à ELS :

✓ Etat limite de compression de béton :

Tableau III-27: Vérification de la compression dans la poutre palière

	M _{ser} (KN.m)	As (cm ²)	Y (m)	I (cm ⁴)	σ _{bc} (MPa)	σ _{adm} (MPa)	Vérification
En travée	18.72	5.75	0.091	38345.07	4.44	15	Vérifiée

En appui	12.48	4.52	0.090	31765.8	3.53	15	Vérifiée

✓ Etat limite de déformation :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche

$$\begin{cases} h \ge max \left[\left(\frac{1}{16}, \frac{M_t}{10 \times M_0} \right) l \right] \\ l \le 8m. \\ A_t \le \frac{4.2 \times b \times d}{f_e} \\ \begin{cases} h = 0.35 \ge max \left[\left(\frac{1}{16}, \frac{18.72}{10 \times 13.88} \right) \times 3.2 \right] = 0.24 \ cm \\ A_t = 5.75 \ cm^2 \le \frac{4.2 \times 30 \times 33}{400} = 8.82 cm^2 \end{cases}$$

Commentaire : Les conditions sont vérifiées, Il n'y a pas lieu de vérifier la flèche.

> Schéma de ferraillage

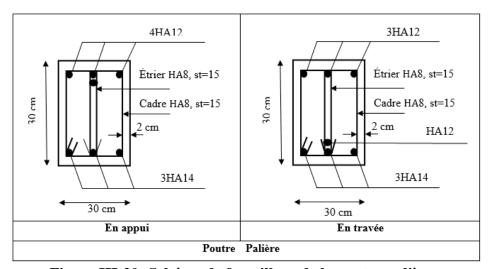


Figure III-20: Schéma de ferraillage de la poutre palière

III.6. Etude de l'ascenseur

L'ascenseur est un appareil mécanique, servant au déplacement vertical des personnes et des chargements vers les différents niveaux de la construction.

III.6.1. Caractéristiques de l'ascenseur : Annexe (4)

Nombre de passagers : Le nombre de passagers est le plus petit des nombres obtenus par la formule : $n = \frac{\text{charge nominale}}{75} \Rightarrow n = \frac{630}{75} = 8.4$

Dans notre structure, on utilise un ascenseur pour huit personnes, dont ses caractéristiques sont :

L = 160cm: Longueur de l'ascenseur.

 $L_r = 140cm$: Largeur de l'ascenseur.

H = 220cm: Hauteur de l'ascenseur.

 $F_c = 102KN$: Charge due à la cuvette.

 $D_m = 82KN$: Charge due à la salle des machines.

 $P_m = 15KN$: Charge due à l'ascenseur.

 $P_{perssonnes} = 6.3KN$: La charge nominale.

V = 1.00m/s: La vitesse.

La dalle de la cage d'ascenseur doit être épaisse pour qu'elle puisse supporter les charges important (machine+ ascenseur) qui sont appliquées sur elle.

On a:L_x = 40 cm , L_v = 160cm
$$\Rightarrow$$
 S = 1.4 \times 1.6 = 2.24m²

Soit alors son épaisseur est e=15cm.

> Evaluation des charges et surcharges :

$$G_1 = 25 \times 0.15 = 3.75 \text{ KN/m}^2$$
: Poids de la dalle en béton armé.

$$G_2 = 25 \times 0.05 = 1.25 \text{ KN/m}^2$$
: Poids de revêtement en béton.

$$G_1 = 25 \times 0.13 = 3.73 \text{ KN/m}^2$$
. Poids de la dané en beton armo $G_2 = 25 \times 0.05 = 1.25 \text{ KN/m}^2$: Poids de revêtement en béton. $G' = G_1 + G_2 = 5 \text{ KN/m}^2$ $G = \frac{F_c}{S} = \frac{102}{2.24} = 45.53 \text{ KN/m}^2$ $G_{\text{total}} = G + G' = 5 + 45.53 = 50.53 \text{ KN/m}^2$ et $Q = 1$

$$G_{\text{total}} = G + G' = 5 + 45.53 = 50.53 \text{ KN/m}^2$$
 et $Q = 1 \text{ KN/m}^2$

Cas de charge répartie III.6.2.

* A l'ELU:

Calcul les sollicitations :

$$q_u = 1.35 G + 1.5Q = 1.35 \times 50.53 + 1.5 \times 1 = 69.71 KN$$

$$\rho = \frac{l_x}{l_y} = 0.87 > 0.4 \Rightarrow$$
 La dalle travaille dans deux sens.

$$\rho = 0.87 \Rightarrow \begin{cases} \mu_x = 0.0486 \\ \mu_v = 0.7244 \end{cases}$$
 Annexe (1)

Calcul les sollicitations à ELU:

$$\begin{array}{l} \textbf{M_x^0} = \mu_x \times q_u \times L_x^2 = 0.0486 \times 69.71 \times 1.4^2 = 6.64 \text{KN.} \, m \\ \textbf{M_y^0} = \mu_y \times M_x^0 = 0.7244 \times 6.64 = 4.81 \text{KN.} \, m \end{array}$$

$$\mathbf{M_v^0} = \mu_v \times M_x^0 = 0.7244 \times 6.64 = 4.81$$
KN. m

✓ Calcul les moments réels :

En travée :
$$\begin{cases} \mathbf{M_{tx}} = 0.85 \times M_{x}^{0} = 0.75 \times 6.64 = 4.98 \text{KN. m} \\ \mathbf{M_{ty}} = 0.85 \times M_{y}^{0} = 0.75 \times 4.81 = 3.6 \text{ KN. m} \end{cases}$$

En appuis :
$$\mathbf{M_a} = -0.5 \times M_x^0 = -0.5 \times 6.64 = -3.32 \text{ KN. m}$$

 $\mathbf{M_b} = -0.5 \times M_y^0 = -0.5 \times 4.81 = -2.4 \text{ KN. m}$

> Calcul du ferraillage :

On fera le calcul de la dalle pour une bande de 1m de longueur et de 15cm d'épaisseur à la flexion simple

Le diamètre des barres utilisé doit être :
$$\varphi \leq \frac{h}{10} \Rightarrow \varphi = \frac{15}{10} = 1.5 cm$$

Tableau III-28: Ferraillage de la dalle d'ascenseur cas charge répartie

	Sens	M(kn.m)	μ_{bu}	α	Z (m)	$A_{cal}(cm^2/ml)$
En travée	Selon x	4.98	0,02	0,025	0,128	1.11
	Selon y	3.6	0,15	0,20	0,119	0.86

En	Selon x	-3.32	0,013	0,016	0,129	0.739
appuis	Selon y	-2.4	0.01	0.012	0.129	0.53

❖ Vérification à l'ELU :

> Condition de non fragilité :

✓ En travée :

On a des
$$\text{HAf}_e\text{E}400 \Rightarrow \rho_0 = 0.0008$$
 Avec $h_0 = e = 15 \, \text{cm}$, $b = 100 \, \text{cm}$ et $\rho = 0.87$
$$\begin{cases} \rho = 0.87 \\ e = 15 \, \text{cm} > 12 \, \text{cm} \end{cases}$$

$$\Rightarrow A_x^{\text{min}} = \rho_0 \times \left(\frac{3-\rho}{2}\right) \times b \times e = 0.0008 \times \left(\frac{3-0.87}{2}\right) \times 100 \times 20$$

$$\Rightarrow A_v^{min} = 1.27 \text{ cm}^2/\text{ml}$$

$$A_v^{min} = \rho_0 \times b \times e = 0.0008 \times 100 \times 15 = 1.2 \text{ cm}^2/\text{ml}$$

$$\begin{cases} A_t^x = 1.11 \text{ cm}^2/\text{ml} \le A_x^{\text{min}} = 1.27 \text{ cm}^2/\text{ml} & \text{on ferraille avec } A_x^{\text{min}} \\ A_x^y = 0.86 \text{ cm}^2/\text{ml} \le A_x^{\text{min}} = 1.27 \text{ cm}^2/\text{ml} & \text{on formalle avec } A_x^{\text{min}} \end{cases}$$

$$\begin{array}{l} \Rightarrow A_{x}^{min} = 1.27 \text{ cm}^{2}/\text{ml} \\ A_{y}^{min} = \rho_{0} \times b \times e = 0.0008 \times 100 \times 15 = 1.2 \text{ cm}^{2}/\text{ml} \\ \left\{ \begin{array}{l} A_{t}^{x} = 1.11 \text{ cm}^{2}/\text{ml} \leq A_{x}^{min} = 1.27 \text{ cm}^{2}/\text{ml} & \text{on ferraille avec } A_{x}^{min} \\ A_{t}^{y} = 0.86 \text{ cm}^{2}/\text{ml} \leq A_{y}^{min} = 1.27 \text{ cm}^{2}/\text{ml} & \text{on ferraille avec } A_{y}^{min} \\ A_{t}^{y} = 0.86 \text{ cm}^{2}/\text{ml} > \frac{A_{t}^{x}}{4} = 0.277 \text{ cm}^{2}/\text{ml} & \text{.} \text{.} \text{.} \text{V\'erifi\'ee.} \\ & \checkmark \text{ En appuis :} \\ \left\{ A_{a}^{x} = 0.739 \text{ cm}^{2}/\text{ml} \leq A_{x}^{min} = 1,27 \text{ cm}^{2}/\text{ml} & \text{on feraille avec } A_{x}^{min} \\ A_{a}^{y} = 0.53 \text{ cm}^{2}/\text{ml} \leq A_{y}^{min} = 1,2 \text{ cm}^{2}/\text{ml} & \text{on feraille avec } A_{y}^{min} \end{array} \right.$$

Les sections d'armatures adoptées en travée et en appuis sont résumées dans le tableau suivant :

4HA8 selon le sens X	4HA8 selon le sens Y	4HA8 selon x-y
$A_X = 2.01cm^2/ml$	$A_Y = 2.01cm^2/ml$	$A_{x-y} = 2.01 cm^2/ml$

Espacement des armatures :

Armatures $\|Lx \Rightarrow St = 20 \text{cm} \le \min(3h, 33 \text{cm}) = 33 \text{cm}$

Armatures \parallel Ly \Rightarrow St=20cm \leq min (4h,45cm)=45cm

> Effort tranchant :

$$\begin{split} \text{On doit v\'erifier} : \tau_u &= \frac{v_U^{max}}{b \times d} \leq \tau_{adm} = 0.05 \times f_{c28} = 1.25 \text{MPa} \\ \rho &= 0.87 > 0.4 \begin{cases} V_x = q_u \times \frac{l_x}{2} \times \frac{l_Y^4}{l_x^4 + l_y^4} = 30.76 \text{ KN} \\ V_y &= q_u \times \frac{l_Y}{2} \times \frac{l_X^4}{l_x^4 + l_y^4} = 20.76 \text{ KN} \end{cases} \end{split}$$

$$\tau_u = \frac{V_u^{max}}{b \times d} = \frac{_{30.76 \times 10^{-3}}}{_{1 \times 0.13}} = 0.23 \text{MPa} \leq \tau_{adm} = 1.25 \text{MPa}. \qquad \qquad \text{Condition v\'erifie.}$$

❖ Vérification à l'ELS:

 $q_s = G_{total} + Q = 50.53 + 1 = 51,53 \, KN/m^2$, on fera le calcul de la dalle pour une bande de 1m de longueur.

$$\rho = 0.87 \Rightarrow ELS: \begin{cases} \mu_{\chi} = 0.0556 \\ \mu_{\gamma} = 0.8074 \end{cases}$$
 Annexe (1)

> Calcul les moments :

$$M_x^{0S} = \mu_x \times q_{st} \times l_x^2 = 0.0556 \times 51,53 \times 1,4^2 = 5,61KN.m$$
 $M_y^{0S} = \mu_y \times M_x^0 = 0,8074 \times 5,61 = 4,53KN.m$
s:
$$En travées:\begin{cases} M_{tx} = 0.85 \times M_x^{0S} = 4,76 \text{ KN. m} \\ M_{ty} = 0.85 \times M_y^{0S} = 3.85 \text{ KN. m} \end{cases}$$

Calcul les moments réels :

En travées :
$$\begin{cases} M_{tx} = 0.85 \times M_x^{0S} = 4,76 \text{ KN. m} \\ M_{ty} = 0.85 \times M_y^{0S} = 3.85 \text{ KN. m} \end{cases}$$

En appuis:
$$M_a = -0.5 \times M_x^{0S} = -2,80 \text{ KN. m}$$

 $M_b = -0.5 \times M_y^{0S} = -2.26 \text{ KN. m}$

> Vérification des contraintes

Tableau III-29: Vérification de la contrainte dans le béton

	Sens	M _{ser} [kn. m]	A _s [cm ²]	y [cm]	I cm ⁴	σ _{bc} [MPa]	σ̄ _{bc} [MPa]	Observation
En	X-X	4,21	2,01	0.02514	3.84 × 10 ⁻⁵	2.75	15	Vérifiée
travée	у-у	3.40	2,01	0.02514	3.84×10^{-5}	2.22	15	Vérifiée
En	X-X	2.8	2,01	0.2514	3.84×10^{-5}	1.83	15	Vérifiée
appuis	Y-Y	2.26	20.1	0.2514	3.84 × 10 ⁻⁵	1.48	15	Vérifiée

Schéma de ferraillage

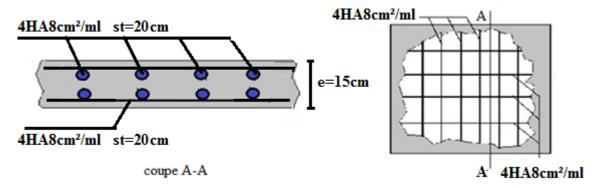
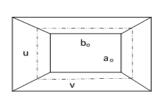
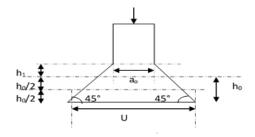


Figure III-21: Ferraillage de la dalle cas charge répartie

III.6.3. Cas d'une charge concentrée :


La charge concentré q est appliquée à la surface de la dalle sur aire $a_0 \times b_0$. Elle agit uniformément sur aire $u \times v$ située sur le plan moyen de la dalle.


 $a_0 \times b_0$: Surface sur laquelle elle s'applique la charge donnée en fonction de vitesse.

Chapitre III

 $u \times v$: Surface d'impact.

 a_0 et u: dimension suivant x-x. b_0 et v: Dimension suivant y-y.

Calcule du rectangle d'impact :

On a
$$\begin{cases} u = a_0 + h_0 + 2 \times \xi \times h_1 \\ v = b_0 + h_0 + 2 \times \xi \times h_1 \end{cases} \text{ pour } V = 1m/s \quad \Rightarrow \begin{cases} a_0 = 80cm \\ b_0 = 80cm \end{cases}$$

 $h_1 = 5cm$: Épaisseur de revêtement.

 $h_0 = 15cm$: Épaisseur de dalle.

 $\xi = 1$: Coefficient qui dépend du type de revêtement (béton).

$$\begin{cases} u = 80 + 15 + 2 \times 1 \times 5 = 1,05m \\ v = 80 + 15 + 2 \times 1 \times 5 = 1,05m \end{cases}$$

Calcul les sollicitations :

$$\begin{cases} M_x = q_u \times (M_1 + vM_2) \\ M_y = q_u \times (M_2 + vM_1) \end{cases} \text{ Avec } v : \text{Coefficient de poisson} \qquad \begin{cases} v = 0 \text{ à } L'ELU \\ v = 0.2 \text{ à } L'ELS \end{cases}$$

 M_1 Et M_2 : sont des valeurs lues à partir des tables de **PIGEAUD**

$$\checkmark$$
 M_1 est en fonction de $\frac{u}{L_x}$ et $\rho \Rightarrow \frac{u}{l_x} = \frac{1,05}{1,4} = 0,75$ et $\rho = 0,87$

✓
$$M_1$$
est en fonction $\det \frac{u}{L_x}$ et $\rho \Rightarrow \frac{u}{l_x} = \frac{1,05}{1,4} = 0,75$ et $\rho = 0,87$
✓ M_2 est en fonction $\det \frac{u}{L_y}$ et $\rho \Rightarrow \frac{u}{l_y} = \frac{1,05}{1.6} = 0,65$ et $\rho = 0,87$

En se référant à l'Annexe (2), on trouve : $M_1 = 0.077 \text{ kn. m}$ et $M_2 = 0.062 \text{ kn. m}$

\triangleright Evaluation des moments M_{x1} et M_{y2} du système de levage à l'ELU :

On a:

$$\begin{split} G &= D_m + P_m + P_{per} = 82 + 15 + 6,3 = 103,3 \ kn \\ q_u &= 1,35G = 139,455 \ kn \\ M_{x1} &= q_u \times M_1 = 139.455 \times 0,077 = 10.73 \ kn. \ m \\ M_{y1} &= q_u \times M_2 = 139.455 \times 0,062 = 8.64 \ kn. \ m \end{split}$$

> Evaluation des moments dus au poids propre de la dalle à l'ELU :

$$\begin{aligned} q_u &= 1{,}35G + 1{,}5Q = 1{,}35 \times 5 + 1{,}5 \times 1 = 8{,}25kn \\ \rho &= 0{,}87 \Rightarrow \left\{ \begin{array}{l} M_{x2} = u_x \times q_u \times l_x^2 = 0.0486 \times 8{,}25 \times 1{,}4^2 = 0.78 \ KN. \ m \\ M_{y2} &= u_x \times M_{x2} = 0.72244 \times 0.78 = 0.56 \ KN. \ m \end{array} \right. \end{aligned}$$

> Superposition des moments :

Les moments agissants sur la dalle sont :

$$\begin{cases} M_X^0 = M_{x1} + M_{x2} = 10.73 + 0.78 = 11.51 \text{ kn. m} \\ M_Y^0 = M_{y1} + M_{y2} = 8.64 + 0.56 = 9.2 \text{ kn. m} \end{cases}$$

> Les moments réels :

En travées :
$$\begin{cases} M_{tx} = 0.75 \times M_x^0 = 8.63 \ kn. m \\ M_{ty} = 0.75 \times M_y^0 = 6.9 \ kn. m \end{cases}$$

En appuis :
$$M_a = -0.5 \times M_x^0 = -5.75 \text{ kn. m}$$

 $M_b = -0.5 \times M_y^0 = -4.6 \text{ kn. m}$

> Calcul de ferraillage

Tableau III-30: Ferraillage de la dalle cas charge concentrée

	Sens	M (kn.m)	μ_{bu}	α	Z (m)	A _{cal} (cm ² /ml)
En travée	Selon x	8.63	0.035	0.044	0.127	1.95
In travec	Selon y	6.9	0.028	0.035	0,111	1.78
En	Selon x	-5.75	0.023	0.029	0,128	1.29
appuis	Selon y	-4.6	0.019	0.023	0.128	1.03

❖ Vérification à l'ELU

> Condition de non fragilité :

✓ En travée :

On a des HAf_eE400
$$\Rightarrow \rho_0 = 0.0008$$

Avec
$$h_0=e=15$$
cm, $b=100$ cm et $\rho=0.87$ ($\rho=0.87$

$$\begin{cases} e = 15 \text{ cm} > 12 \text{ cm} \end{cases}$$

$$\Rightarrow A_x^{min} = \rho_0 \times \left(\frac{3-\rho}{2}\right) \times b \times e = 0.0008 \times \left(\frac{3-0.87}{2}\right) \times 100 \times 20$$

$$\Rightarrow A_x^{min} = 1.27 \text{ cm}^2/\text{ml}$$

$$A_y^{min} = \rho_0 \times b \times e = 0.0008 \times 100 \times 15 = 1.2 \text{ cm}^2/\text{ml}$$

$$A_{\rm t}^{\rm x}=1.11~{\rm cm^2/ml} \leq A_{\rm x}^{\rm min}=1.27~{\rm cm^2/ml}$$
 on ferraille as

$$\begin{array}{l} A_x^{min} = \rho_0 \times b \times e = 0.0008 \times 100 \times 15 = 1.2 \ cm^2/ml \\ A_t^{x} = 1.11 \ cm^2/ml \leq A_x^{min} = 1.27 \ cm^2/ml & on \ ferraille \ avec \ A_x^{min} \\ A_t^{y} = 0.86 \ cm^2/ml \leq A_y^{min} = 1.27 \ cm^2/ml & on \ ferraille \ avec \ A_y^{min} \end{array}$$

En appuis :

$$\begin{cases}
A_a^x = 0.739 \text{ cm}^2/\text{ml} \le A_x^{\text{min}} = 1,27 \text{ cm}^2/\text{ml} & \text{on feraille avec } A_x^{\text{min}} \\
A_a^y = 0.53 \text{ cm}^2/\text{ml} \le A_y^{\text{min}} = 1,2 \text{ cm}^2/\text{ml} & \text{on feraille avec } A_y^{\text{min}} \\
\text{ctions d'armatures adoptées en travée et en appuis sont résumées dans le tableau s$$

Les sections d'armatures adoptées en travée et en appuis sont résumées dans le tableau suivant :

4HA8 selon le sens X	4HA8 selon le sens Y	4HA8 selon x-y
$A_X = 2.01 cm^2/ml$	$A_Y = 2.01 cm^2/ml$	$A_{x-y} = 2.01cm^2/ml$

> Espacement des armatures :

Sens x-x: $St \le min(3e; 33)cm \Rightarrow St \le 33 cm$ adopte: St = 25cm

Sens y-y: $St \le min(4e; 45)cm \Rightarrow St \le 45 cm$ adopte: St = 25cm

$Q_u \leq 0.045 \times U_c \times h \times \frac{f_{c28}}{v_h}$ Vérification au poinçonnement :

Avec Q_u : Charge de calcul à l'ELU.

h : Épaisseur total de la dalle.

 $U_c = 2 \times (u + v)$: Périmètre du contour au niveau de feuillet moyen.

$$Q_u = q_u = 139,455 \, KN < 0,045 \times u_c \times h \times \frac{f_{c28}}{\gamma_b} = 0,045 \times 4.20 \times 0,15 \times \frac{25 \times 10^3}{1,5}$$
$$= 472.5 KN$$

 $q_u = 139,455 \, KN < 472.5 \, KN$ Pas de risque de poinçonnement.

Vérification de l'effort tranchant :

On à:
$$u = v = 105 \ cm \Rightarrow V_{max} = \frac{Q_u}{2u+v} = \frac{139.455}{3.15} = 44.27KN$$
 $\Rightarrow \tau_u = \frac{V_u}{bd} = \frac{44.27 \times 10^{-3}}{1 \times 0,13} = 0,34 \ MPa < \bar{\tau} = 0,07 \times \frac{f_{c28}}{\gamma_b} = 1,16 \ MPa$ Condition vérifiée

❖ Vérification à l'ELS :

> Le moment engendré par le moment de levage :

$$\begin{array}{lll} M_1 = 0.077 \; KN.m & \text{Et} & M_2 = 0.062 KN.m \\ q_{ser} = g = 103,3 \; KN & \\ \left\{ \begin{matrix} M_{x1S} = q_{ser} \times (M_1 + \nu M_2) = 103,3 \times (0.077 + 0.2 \times 0.062) = 9.23 \; KN.m \\ M_{y1S} = q_{ser} \times (M_2 + \nu M_1) = 103,3 \times (0,062 + 0.2 \times 0.077) = 7.99 KN.m \end{matrix} \right. \end{array}$$

$$\begin{aligned} Q_{ser} &= G + Q = 6 \ kn/m \\ ELS: \rho &= 0.87 \Longrightarrow \begin{cases} \mu_{\chi} = 0.0556 \\ \mu_{y} = 0.8074 \end{cases} \end{aligned}$$

Calcul les moments :

$$\begin{cases} M_{x2S} = \mu_x \times q_{st} \times l_x^2 = 0.0556 \times 6 \times 1, & 4^2 = 0.65 \ KN. \ m \\ M_{y2S} = \mu_y \times M_{x2S} = 0.8074 \times 0.65 = 0.52 \ KN. \ m \end{cases}$$

> Superposition des moments :

✓ Les moments agissants sur la dalle sont :

$$\begin{cases} M_{xS} = M_{x1S} + M_{x2S} = 0.65 + 9.23 = 9.88KN. m \\ M_{yS} = M_{y1} + M_{y2S} = 0.52 + 7.99 = 8.51KN. m \end{cases}$$

✓ Calcul les moments réels :

$$En\ trav\'ee: \begin{cases} M_{txS} = 0.75 \times M_{xS} = 0.75 \times 9.88 = 7.41 KN.m \\ M_{tyS} = 0.75 \times M_{yS} = 0.75 \times 8.51 = 6.38 KN.m \\ En\ appuis: M_a = -0.4 \times M_x = -0.5 \times 9.88 = -4.94 KN.m \\ M_b = -0.5 \times M_{yS} = -0.5 \times 8.51 = -4.25\ KN.m \end{cases}$$

> Vérification des contraintes

Tableau III-31: Vérification de la contrainte dans le béton

	Sens	M _{ser} [kn. m]	A_s $[cm^2]$	у [cm]	I cm ⁴	σ_{bc} $[MPa]$	$\overline{\sigma}_{bc}$ $[MPa]$	Observation
En travée	x-x	7.41	3.14	0.024	3.84 × 10 ⁻⁵	4.63	15	Vérifiée

	у-у	6.38	2.01	0.024	3.84×10^{-5}	3.98	15	Vérifiée
En	х-х	-4.94	2.01	0.024	3.84×10^{-5}	3.08	15	Vérifiée
appuis	у-у	-4.25	2.01	0.024	3.84 × 10 ⁻⁵	2.65	15	Vérifiée

> Vérification de la flèche :

Si les conditions suivantes sont vérifiées, il n'y a pas lieu de vérifier la flèche.

$$\begin{cases} \frac{h_t}{l_x} = \frac{0.15}{1.4} = 0.10 > \frac{3}{80} = 0.0375 \\ \frac{h_t}{l_y} = \frac{0.15}{1.6} = 0.093 > \frac{3}{80} = 0.0375 \end{cases} \begin{cases} \frac{h_t}{l_x} = \frac{0.15}{1.4} = 0.10 > \frac{M_{tx}}{20 \times M_x} = 0.0375 \\ \frac{h_t}{l_y} = \frac{0.15}{1.6} = 0.093 > \frac{M_{ty}}{20 \times M_y} = 0.0374 \end{cases}$$
 Condition vérifiée
$$\frac{A_s}{b \times d} = \frac{2.01}{100 \times 13} = 1.54 \times 10^{-3} < \frac{2}{f_e} = 5 \times 10^{-3}$$
 Condition vérifiée

Commentaire : Le calcul de la flèche n'est pas nécessaire [3]

> Schéma de ferraillage :

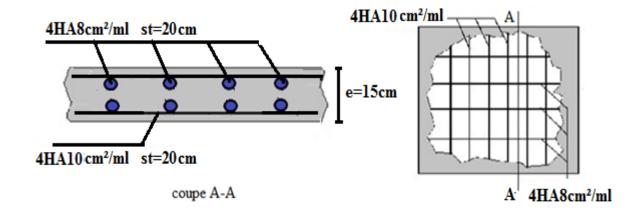


Figure III-22: Schéma de ferraillage de C la dalle cas charge concentrée

Chapitre IV Etude dynamique

IV.1. Introduction:

La simplicité de la structure doit être respectée en priorité par le concepteur car sa modélisation, son calcul, son dimensionnement et même sa mise en œuvre permettent de prévoir aisément son comportement en cas de séisme. La structure doit être le plus possible symétrique pour avoir une distribution régulière des efforts. Il est toujours conseillé de distribuer régulièrement et symétriquement les éléments structuraux.

En effet, la conception parasismique ne se limite pas au seul dimensionnement, mais met en jeu de nombreux facteurs comme la rigidité, la capacité de stockage ou de dissipation d'énergie.

De plus, il est important de tenir compte de l'activité et des propriétés du sol. Toutes ces considérations nous amènent à des calculs plus complexes que dans le cas général, car il faut tenir compte de l'interaction fondation-structure pour :

- ✓ Eviter l'effondrement de la structure sous l'effet d'une action sismique dont l'intensité avoisine l'action spécifiée par voie réglementaire (action sismique à l'ELU).
- ✓ Limiter les dommages sur des éléments non structuraux sous l'effet d'un séisme moins intense mais plus fréquent (action sismique à l'ELS).

IV.2. Méthodes de calcul

Le RPA99/2003 propose deux méthodes de calcul des sollicitations :

- ✓ La méthode statique équivalente.
- ✓ La méthode dynamique : La méthode d'analyse modale spectrale.

-La méthode d'analyse par accélérogrammes.

IV.2.1. Méthode statique équivalente

• Méthodes **Principe**:

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

La structure peut être modélisée comme une console encastrée dans le sol et dont laquelle les différents étages sont représentés par des masses ponctuelles de même centre de gravité de même propriétés d'inertie.

• Conditions d'application :

La méthode statique équivalente est applicable dans les conditions suivantes :

Le bâtiment ou le bloc étudié, respecte les conditions de régularité en plan et en élévation avec une hauteur au plus 65m en zone **I** et **IIa** et 30m en zone **III**.

Le bâtiment ou le bloc étudié présente une configuration irrégulière tout en respectant, outre les conditions énoncées en haut, d'autres conditions complémentaires énumérées dans le **RPA99/version 2003** (article 4.1.2). [1]

• Calcul de la force sismique totale :

L'effort sismique total V appliqué à la base de la structure, doit être calculé successivement dans deux directions, horizontales et orthogonales, selon la formule :

$$V_{st} = A \times D \times Q \times \frac{1}{R} \times W$$

Avec:

A: cœfficient d'accélération de la zone, dépend du groupe d'usage de la structure et de la zone sismique.

R: coefficient de comportement global de la structure.

Valeur donnée par le tableau (4.3) du RPA 99/2003 en fonction du système de contreventement. (Contreventement mixte) \Rightarrow **R** = **5**

Q: facteur de qualité: il est fonction de:

Conditions	Observations	Pénalités	Observations	Pénalités
	X-X	X-X	у-у	у-у
1. Conditions minimales sur les files	observé	0	Observé	0
de contreventement				
2. Redondance en plan	observé	0	Observé	0
3. Régularité en plan	observé	0	Non observé	0.05
4. Régularité en élévation	Non observé	0,05	Observé	0
5. Contrôle de qualité des matériaux	observé	0	Observé	0
6. Contrôle de qualité de l'exécution	observé	0	Observé	0

Sa valeur est donnée par la formule : $\mathbf{Q} = \mathbf{1} + \sum_{1}^{6} \mathbf{P} \mathbf{q}$

 P_{α} : est la pénalité à retenir selon que les critères de qualité q est satisfait ou non.

Sa valeur est donnée par le tableau (4.4) du RPA99/2003. $\mathbf{Q} = 1.05$

W : poids total de la structure : $W = \sum_{i=1}^n Wi \text{avec} : W_i = W_{Gi} + \beta \times W_{Qi}$

 \mathbf{W}_{Gi} : Poids dus aux charges permanentes et à celles des équipements éventuellement fixes de la structure.

 W_{Qi} : Charge d'exploitation.

β: Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, il est donné par le tableau 4.5 du RPA 99/2003.

$$W = 18561.304KN$$

D: facteur d'amplification dynamique moyen.

Le coefficient D est le facteur d'amplification dynamique moyen, il est fonction de la période fondamentale de la structure (T), de la nature du sol et du facteur de correction d'amortissement ($^{\eta}$).

- Le sol est considéré comme **meuble** (S3)
 - Estimation de la période fondamentale de la structure :

Selon le RPA 99/2003 (article 4.2.4), la période empirique peut être calculée de deux manières :

$$T = C_T \times (h_N)^{3/4}$$

Avec:

 h_N : La hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 $\Rightarrow h_N = 27.86m$.

 \mathcal{C}_T : Coefficient fonction du système de contreventement, du type de remplissage.

$$\Rightarrow$$
 $C_T = 0.05$ (tableau 4.6 du **RPA 99/2003**). D'où : T = 0.60s.

$$T = 0.09. \frac{h_N}{\sqrt{L}}$$
.

Dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

On prend la plus petite valeur pour T. [1]

$$\begin{cases} L_x = 20 \ m \\ L_y = 10 \ m \end{cases} \Rightarrow \begin{cases} T_x = 0.56 \ sec \\ T_y = 0.79 sec \end{cases}$$

$$T_x = \min(0.60s, 0.56s) \rightarrow T_x = 0.56s$$

$$T_y = \min(0.60s, 0.79s) \rightarrow T_y = 0.60s$$

D'après le RPA99/version 2003 art (4.2.4.4) les valeurs de T calculées à partir des formules de Rayleigh ou de méthodes numériques ne doivent pas dépasser celles estimées à partir des formules empiriques appropriées de plus de 30% soit :

$$T_{sx} = 1.3T_x = 0.72 \text{ s}$$

 $T_{sy} = 1.3T_y = 0.78 \text{ s}$

✓ Valeur de T_1 et T_2 :

 T_1 Et T_2 : Périodes caractéristiques associées à la catégorie de site (**RPA99/2003** tableau 4.7) Sol 982.meuble $\Rightarrow T_1 = 0.15 \ s$ et $T_2 = 0.5 \ s$

$$D = 2.5 \, \eta \, \left(\frac{T_2}{T}\right)^{2/3}$$
, $T_2 < T < 3 \, sec$

Tel que : $\eta = \sqrt{\frac{7}{(2+\xi)}}$ facteur de correction d'amortissement.

 ξ (%): est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de remplissage (**RPA 99/2003** tableau 4.2). [1] $\xi = 10$ %.

$$\begin{cases} D_x = 1.76 \\ D_Y = 1.68 \end{cases}$$

Donc:

$$V_{stX} = 1029.03 \, KN$$

$$V_{stY} = 982.26 \, KN$$

IV.2.2. Méthode d'analyse dynamique

> Modale spectrale :

Cette méthode peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

Principe:

Il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul.

Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

Les hypothèses:

- -les masses sont supposées concentrées au niveau des nœuds principaux (nœuds maîtres).
- -seuls les déplacements horizontaux des nœuds sont pris en compte.

-le nombre de mode à prendre en compte est tel que la somme des taux de participation des masses modales atteint au moins 90% de la masse globale de la structure.

IV.2.2.1. Modélisation de la structure

La forme architecturale de la structure à étudier, nous a poussé à une recherche d'un bon comportement dynamique pour que l'ouvrage résiste aux différentes sollicitations.

La hauteur du bâtiment dépasse les 14 mètres, donc selon RPA99/2003 (article 3.4) on doit introduire des voiles de contreventement.

On a opté à cette disposition :

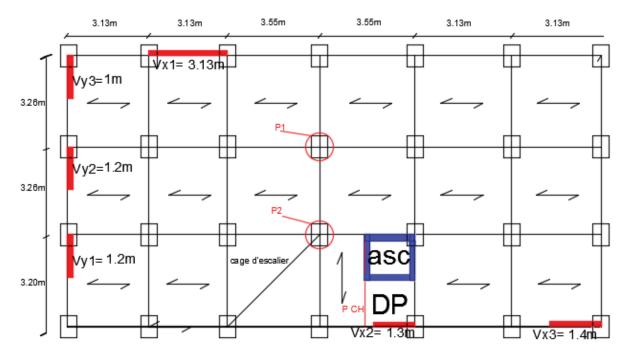


Figure IV-1: Disposition des voiles

Nous présenterons dans les figures suivantes la modélisation de la structure :

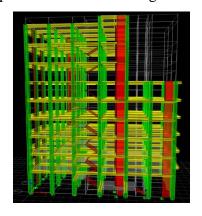


Figure IV-2: Vue en plan

Figure IV-3: Vue de face

IV.2.2.2. Analyse du comportement de la structure

✓ Mode1:

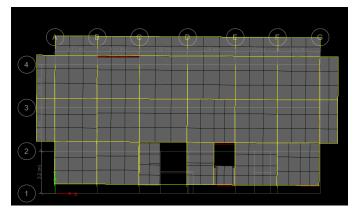


Figure IV-4: Premier mode de déformation (translation suivant Y) (T=0,68sec)

✓ Mode 2:

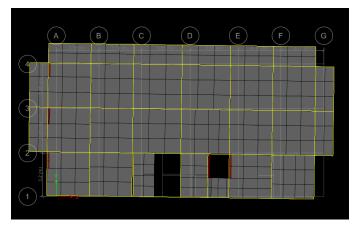


Figure IV-5: Deuxième mode de déformation (translation suivant X) (T=0,59sec)

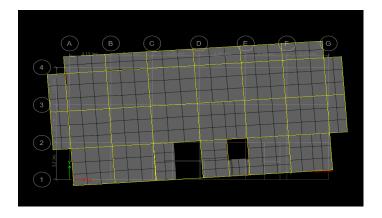


Figure IV-6: Troisième mode de déformation (rotation suivant z) (T= 0,55sec)

✓ Période de vibration et taux de participation des masses modales :

Tableau IV-1: Période de vibration et taux de participation des masses modales

Modes	Périodes	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,681	0,0013	0,7221	0	0,0013	0,7221	0
2	0,596	0,6924	0,0023	0	0,6937	0,7244	0

3	0,552	0,0118	0,0096	0	0,7055	0,734	0
4	0,223	0,0009	0,1373	0	0,7065	0,8713	0
5	0,203	0,089	0,0048	0	0,7954	0,8761	0
6	0,18	0,0687	0,0013	0	0,8641	0,8774	0
7	0,115	0,0016	0,0523	0	0,8658	0,9297	0
8	0,107	0,0208	0,0058	0	0,8865	0,9355	0
9	0,089	0,0477	0,0002	0	0,9343	0,9357	0
10	0,069	0,00000	0,0295	0	0,9343	0,9652	0

Remarque:

Concernant les modes à retenir, nous avons constaté que le pourcentage de participation modale atteint plus de 90% à partir du 9éme mode (sens x-y) ce qui vérifie la condition du RPA99/2003.

IV.2.2.3. **Analyse spectrale**

Spectre de réponse : La réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ξ) , et de la pulsation (ω) . Donc, pour des accélérogrammes donnés, si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est nommé spectre de réponse, et qui aide à faire une lecture directe des déplacements maximaux d'une structure. L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25 \ A \left[1 + \frac{T}{T_1} \left(2.5 \ \eta \ \frac{Q}{R} - 1 \right) \right] \dots & 0 \le T \le T_1 \\ 2.5 \ \eta \ (1.25 \ A) \frac{Q}{R} \dots & T_1 \le T \le T_2 \\ 2.5 \ \eta \ (1.25 \ A) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} \dots & T_1 \le T \le 3 \ sec \end{cases}$$

$$2.5 \ \eta \ (1.25 \ A) \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} \frac{Q}{R} \dots & T \ge 3 \ sec \end{cases}$$
Représentation graphique du graphe de répense de calcul :

> Représentation graphique du spectre de réponse de calcul :

L'excitation du modèle par le spectre du RPA, nous permet d'évaluer sa réponse sismique.

Figure IV-7: Réponse spectrale de la structure

IV.3. Justification de l'interaction voile-portique

Les tableaux (**IV.2**) et (**IV.3**) Illustrent respectivement la justification de l'interaction sous charges horizontales et verticales. L'article (3.4.A.4.a) du RPA99/version2003 stipule que pour les constructions à contreventement mixte, les voiles doivent reprendre au plus 20% des sollicitations dues aux charges verticales. Les charges horizontales sont reprises conjointement par les voiles et les portiques qui doivent reprendre au moins 25%de l'effort tranchant d'étage.

IV.3.1. Sous charges verticales

-Pourcentage des charges verticales reprises par les portiques : $\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\%$

-Pourcentage des charges verticales reprises par les voiles : $\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 20\%$

Les résultats de l'interaction sous charges verticales sont présentés sur le tableau suivant :

Tableau IV-2: Interaction sous charges verticales

I	Niveaux	Les charges re	eprises (KN)	Pourcentages repris		
		Portiques	Voiles	Portiques %	Voiles %	
ĺ	LA BASE	17100.3875	4259.4476	80.05	19.94	

Commentaire: L'interaction verticale est vérifiée

IV.3.2. Sous charges horizontales

-Pourcentage des charges horizontales reprises par les portiques : $\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 25\%$

-Pourcentage des charges horizontales reprises par les voiles : $\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 75\%$

Les résultats de l'interaction sous charges horizontales sont présentés sur le tableau suivant :

Tableau IV-3: Interactions sous charge horizontales

Nivea		SENS(X	X.X)		SENS(Y.Y)			
ux	Portique	Voiles	Portiq	Voiles	Portiques	Voiles	Portiq	Voiles
	s (KN)	(KN)	ues %	%	(KN)	(KN)	ues %	%
RDC	322.0358	580.0835	35.82	64.17	415.9874	440.519	48.56	51.43
1	405.2703	467.3081	46.44	53.55	412.8072	345.8136	54.41	45.58
2	387.597	428.4472	47.49	52.50	378.0128	327.0682	53.61	46.38
3	427.3321	317.384	57.48	42.61	391.535	257.082	60.37	39.62
4	344.2254	304.9507	53.02	46.97	314.3728	258.8676	54.84	45.15
5	366.6734	168.3338	68.53	31.46	327.988	160.9593	67.08	32.91
6	194.6454	190.5303	50.36	49.64	163.957	194.2792	45.76	54.23
7	167.7199	111.8827	59.98	40.01	140.694	128.784	52.20	47.79
8	155.5672	58.3164	72.73	27.26	119.8274	66.5546	64.29	35.70

Commentaire: L'interaction horizontale est vérifiée dans tous les étages

IV.4. Vérification de la résultante de la force sismique

Selon **RPA99V2003** (**Article 4.3.6**), la résultante des forces sismiques à la base obtenue par la combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminées par la méthode statique équivalente.[1]

Tableau IV-4: Vérification de l'effort tranchant à la base

Résultats des	$V_{dy}(KN)$	$V_{st}(KN)$	$0.8 \times V_{st}(KN)$	Observation
forces sismiques				
Sens x-x	921.52	1029.03	823.22	Vérifiée
Sens y-y	884.32	982.26	785.81	Vérifiée

IV.5. Vérification de l'effort normal réduit

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$V = \frac{N_d}{B_c \times f_{c28}} < 0.3$$
 (Article7.1.3.3) RPA99V2003.[1]

Avec:

 N_d : Effort normal de calcul s'exerçant sur une section de béton.

 B_c : Aire (section brute) de cette dernière

 f_{c28} : Résistance caractéristique du béton = 25MPa

Tableau IV-5 : Vérification de l'effort normal réduit des poteaux

Niveaux	B (cm2)	N (KN)	V	Observation
RDC et 1	2750	1366.194	0.198	Vérifiée
2 et 3	2250	1013.431	0.180	Vérifiée
4 et 5	1800	690.007	0.153	Vérifiée
6, 7,8	1400	416.667	0.119	Vérifiée

L'effort normal réduit est vérifié pour tous les poteaux de notre structure

IV.6. Justification vis-à-vis de déplacement : (Article 4.4.3) RPA 99/V2003.

Le déplacement horizontal à chaque niveau (k) de la structure est calculé comme suit :

$$\delta_K = R \times \delta_{eK}$$
 Formule (4-19).

 δ_K : Déplacement dû aux forces sismiques F_i (y compris l'effet de torsion).

R: coefficient de comportement (R = 5).

Le déplacement relatif de niveau (k) par rapport au niveau (k-1) est égal à :

$$\Delta_K = \delta_K - \delta_{K-1}$$
 Formule (4-20).

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1% de la hauteur de l'étage à moins qu'il ne puisse être prouvé qu'un plus grand déplacement relatif peut être toléré (**Article 5.10**) **RPA99/2003.**[1]

Les résultats sont résumés dans le tableau ci- après :

Tableau IV-6: Vérification de déplacement relatif dans le sens (X-X) et (Y-Y)

Niveau	Sens X – X						
	$\delta ek(m)$ $\delta k(m)$ $\delta k-1(m)$ $\Delta k(m)$ $hk(m)$ $\Delta k/hk(% k-1)$						Observation
RDC	0.000189	0.00094	0	0.000945	3.74	0.025	Vérifiée
1	0.000347	0.00173	0.000945	0.000785	2.89	0.027	Vérifiée
2	0.000413	0.00215	0.001735	0.000415	2.89	0.014	Vérifiée
3	0.000432	0.00216	0.00215	0.00001	2.89	0.000346	Vérifiée

4	0.000435	0.00217	0.00216	0.000015	2.89	0.00051	Vérifiée
5	0.00041	0.00205	0.00217	0.000175	2.89	0.0060	Vérifiée
6	0.000412	0.00206	0.00205	0.00001	2.89	0.000346	Vérifiée
7	0.000379	0.00189	0.00206	0.000165	2.89	0.005	Vérifiée
8	0.000337	0.00168	0.001895	0.00021	2.89	0.007	Vérifiée
Niveau			Sens Y	– Y			
	δek (m)	δk (m)	δk-1 (m)	Δk (m)	hk(m)	Δk/hk(%)	Observation
RDC	0.00024	0.0012	0	0.0012	3.74	0.03	Vérifiée
1	0.000452	0.0026	0.0012	0.0014	2.89	0.04	Vérifiée
2	0.000527	0.00263	0.0026	0.000035	2.89	0.0012	Vérifiée
3	0.000543	0.00271	0.002635	0.000075	2.89	0.0025	Vérifiée
4	0.000533	0.00255	0.002715	0.00005	2.89	0.0017	Vérifiée
5	0.00049	0.00245	0.002665	0.000215	2.89	0.0074	Vérifiée
6	0.000441	0.00220	0.00245	0.00025	2.89	0.0086	Vérifiée
7	0.000413	0.00206	0.0022	0.00014	2.89	0.0048	Vérifiée
8	0.000373	0.00186	0.002065	0.0002	2.89	0.0069	Vérifiée

D'après le tableau ci-dessus nous constatons que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage, ce qui signifie que la condition est vérifiée.

IV.7. Justification vis-à-vis de l'effet P- Δ : RPA99/V2003 (Article 5.9).

Les effets de second ordre (ou effet $P-\Delta$) peuvent être négliges dans le cas des bâtiments où la condition suivante est satisfaite à tous les niveaux.

$$\theta = \frac{P_K \times \Delta_K}{V_K \times h_K} \le 0.10$$
 Formule (5.6).

P_k: Poids total de la structure et des charges d'exploitation associés au-dessus du niveau (k).

$$P_K = \sum_{i=K}^n (W_{Gi} + \beta W_{Qi})$$

 V_K : Effort tranchant d'étage au niveau k.

 Δ_K : Déplacement relatif du niveau k par rapport au niveau k-1.

 h_K : Hauteur d'étage (k).

Si $0.10 < \theta_K < 0.20$: les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1^{er} ordre par le facteur : $\frac{1}{(1-\theta_K)}$

Si : $\theta_K > 0.20$ La structure est potentiellement instable et doit être redimensionnée.

La condition $\theta \le 0.10$ est satisfaite, d'où les effets de second ordre ou effet P- Δ peuvent être négligés.[1]

Les résultats sont résumés dans le tableau ci- après :

Tableau IV-7: Vérification de l'effet P- Δ dans le sens (X-X) et (Y-Y)

Niveau	Sens X – X						
	Δk (m)	Pk (KN)	Vk (KN)	hk (m)	Θ	Observation	
RDC	0.000945	18561.304	920.0222	3.74	0.00509	Vérifiée	
1	0.000785	16055.3262	981.722	2.89	0.00489	Vérifiée	

2	0.000415	13650.4984	845.184	2.89	0.00231	Vérifiée			
3	0.00001	11238.9769	776.0828	2.89	0.0000751	Vérifiée			
4	0.000015	8918.4904	681.4218	2.89	0.0000679	Vérifiée			
5	0.000175	6577.2213	559.5862	2.89	0.000711	Vérifiée			
6	0.00001	4361.777	413.6704	2.89	0.0000364	Vérifiée			
7	0.000165	2793.5291	297.8266	2.89	0.000535	Vérifiée			
8	0.00021	1315.7777	168.8449	2.89	0.000566	Vérifiée			
Niveau									
		Sens Y – Y							
	ATCS	DI (TZNI)	TTI (TZBI)	11 ()		01 4			
	Δk (m)	Pk (KN)	Vk (KN)	hk (m)	Θ	Observation			
RDC	0.0012	18561.304	882.5576	3.74	0.00674	Vérifiée			
RDC 1		· /	` /	` ,					
RDC 1 2	0.0012	18561.304	882.5576	3.74	0.00674	Vérifiée			
1	0.0012 0.0014	18561.304 16055.3262	882.5576 850.715	3.74 2.89	0.00674 0.00914	Vérifiée Vérifiée			
1 2	0.0012 0.0014 0.000035	18561.304 16055.3262 13650.4984	882.5576 850.715 801.4958	3.74 2.89 2.89	0.00674 0.00914 0.000204	Vérifiée Vérifiée Vérifiée			
1 2 3	0.0012 0.0014 0.000035 0.000075	18561.304 16055.3262 13650.4984 11238.9769	882.5576 850.715 801.4958 730.128	3.74 2.89 2.89 2.89	0.00674 0.00914 0.000204 0.000399	Vérifiée Vérifiée Vérifiée Vérifiée			
1 2 3 4	0.0012 0.0014 0.000035 0.000075 0.00005	18561.304 16055.3262 13650.4984 11238.9769 8918.4904	882.5576 850.715 801.4958 730.128 638.5061	3.74 2.89 2.89 2.89 2.89	0.00674 0.00914 0.000204 0.000399 0.000241	Vérifiée Vérifiée Vérifiée Vérifiée Vérifiée			
1 2 3 4 5	0.0012 0.0014 0.000035 0.000075 0.00005 0.000215	18561.304 16055.3262 13650.4984 11238.9769 8918.4904 6577.2213	882.5576 850.715 801.4958 730.128 638.5061 526.813	3.74 2.89 2.89 2.89 2.89 2.89	0.00674 0.00914 0.000204 0.000399 0.000241 0.00108	Vérifiée Vérifiée Vérifiée Vérifiée Vérifiée Vérifiée			

On remarque que la condition $\theta \le 0.10$ est satisfaite, donc l'effet P- Δ n'a pas d'influence sur la structure d'où les effets du 2° ordre peuvent être négligés

IV.8. Conclusion

L'étude au séisme de notre structure s'est faite par la méthode dynamique suite à la non vérification des conditions d'application de la méthode statique équivalente.

La modélisation de notre structure s'est donc faite à l'aide du logiciel ETABS.V16.

Les voiles présentent une grande résistance vis-à-vis des forces horizontales. L'aspect architectural a été un véritable obstacle vu la non symétrie et le décrochement que présente la structure pour la disposition des voiles.

Après plusieurs essais, nous sommes arrivés à une disposition qui nous donne un bon comportement dynamique de la structure et qui satisfait l'interaction (voile- portique) vis-à-vis du **RPA 99/version 2003.** Nous avons vérifié les déplacements horizontaux ainsi que l'effet du second ordre (effet P- Δ).

Chapitre V éléments structuraux

Etude des

Introduction:

La superstructure est la partie supérieure du bâtiment, située au-dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (Poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé, leur rôle est d'assurer la résistance et la stabilité de la structure avant et après le séisme, cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

V.1. Étude des poteaux

Les poteaux sont ferraillés à la flexion composée sous les combinaisons suivantes :

- ✓ $G + Q \pm E$(1)
- ✓ 0.8 G ±E....(2)

Les armatures sont déterminées suivant les sollicitations suivantes :

- 1. Effort normal maximal et le moment correspondant : $(N_{\text{max}} \rightarrow M_{corr})$
- 2. Effort normal minimal et le moment correspondant : $(N_{\min} \rightarrow M_{corr})$
- 3. Moment maximum et effort normal correspondant : $(M_{max} \rightarrow N_{corr})$

V.1.1. Recommandations du RPA99/2003

V.1.1.1. Les armatures longitudinales : (Article 7.4.2.1)

- Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- ✓ Leur pourcentage minimal sera de : 0.8 % de la section des poteaux en zone **Ha**
- ✓ Leur pourcentage maximal sera de :
 - 4 % en zone courante.
 - 6 % en zone de recouvrement.
- ✓ Le diamètre minimum est de 12mm.
- ✓ La longueur minimale des recouvrements est de 40ϕ en zone **IIa**.
- ✓ La distance entre les barres verticales dans une face du poteau ne doit pas dépasser : 25cm en zone (IIa).
- ✓ Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).

La zone nodale est constituée par le nœud poutres-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre sont données dans la figure (**V.1**).[1]

h'= Max (
$$\frac{h_e}{6}$$
; b_1 ; b_1 ; 60 cm) $l' = 2 \times h$

 $\boldsymbol{h_{e}}$: La hauteur d'étage.

 b_1 , h_1 : Dimensions de la section transversale du poteau

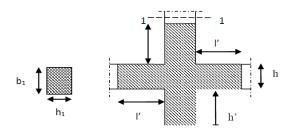


Figure V-1: Zone nodale

Les valeurs numériques relatives aux prescriptions du RPA99/V2003 sont apportées dans le tableau suivant :

Tableau V-1: Armateurs minimales et maximales dans les poteaux rectangulaires

Niveau	section du poteau (cm²)	Amin (cm²)	Amax(cm²) Zone courante	Amax(cm²) zone de recouvrement
RDC	50×55	22	110	165
Étage 1	50×55	22	110	165
Étage 2 et 3	45×50	18	90	135
Étage 4 et 5	40×45	14.4	72	108
Étage 6,7,8	35×40	11.2	56	84

V.1.1.2. Armatures transversales: (Article 7.4.2.2)

Les armatures transversales des poteaux sont calculées à l'aide de la formule : $\frac{A_t}{t} = \frac{\rho_a \times V_u}{h_1 \times f_e}$

 V_u : L'effort tranchant de calcul.

 h_1 : Hauteur totale de la section brute.

 $f_{\it e}$: Contrainte limite élastique de l'acier d'armature transversale.

 ρ_a : Coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant, il est pris égal à 2,5 si l'élancement géométrique " λ_g " dans la direction considérée est supérieur ou égal à 5 et à 3,75 dans le cas contraire.

- t: L'espacement des armatures transversales dont la valeur est déterminée dans la formule précédente, par ailleurs la valeur max de cet espacement est fixé comme suit :
 - **Dans la zone nodale :** $t \le Min (10\phi_l, 15 \text{ cm})$. En zone **IIa**.
 - **Dans la zone courante :** $t' \le 15\phi_l$. En zone **IIa**.

Où : ϕ_l est le diamètre minimal des armatures longitudinales du poteau.

La quantité d'armatures transversales minimales :

$$\frac{A_{t}}{t.b_{1}} \text{En \% est donnée comme suit}: \begin{aligned} A_{t}^{\min} &= 0.3\% \text{ ($t \times b_{1}$) } si \, \lambda_{g} \geq 5 \\ A_{t}^{\min} &= 0.8\% \text{ ($t \times b_{1}$) } si \, \lambda_{g} \leq 3 \end{aligned}$$

si: $3 < \lambda_p < 5$ Interpoler entre les valeurs limites précédentes.

 λ_{g} : est l'elencement géométrique du poteau.

$$\lambda_g = \left(\frac{l_f}{a} \text{ ou } \frac{l_f}{b}\right)$$
; Avec a et b, dimensions de la section droite du poteau dans la direction de

déformation considérée, et l_f : longueur de flambement du poteau.

- ✓ Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite $de 10\phi$, minimum .
- ✓ Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants (ϕ cheminées > 12 cm) pour permettre une vibration correcte du béton sur toute la hauteur des poteaux.

V.1.2.Les sollicitations dans les poteaux

Calcul de f Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du logiciel ETABS V16, sont résumés dans les tableaux ci-après :

Niveau	Nmax-	$\rightarrow M_{cor}$	Mmax-	$\rightarrow N_{cor}$	Nmin—	→Mcor
Niveau	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)
RDC	1366.19	1.67	57.54	1217.28	1.27	17.15
Étage 1	1184.51	16.17	43.46	822.51	0.69	9.38
Étage 2 et 3	1013.43	10.68	40.05	53.03	0.38	4.88
Étage 4 et 5	690.00	4.57	31.29	369.66	0.14	1.60
Étage 6 ,7 ,8	416.66	3.70	27.22	88.40	0.15	18.01

Tableau V-2: Les sollicitations dans les poteaux

V.1.3. Ferraillage

Le calcul du ferraillage se fera pour un seul poteau comme exemple de calcul et les autres seront résumés dans des tableaux.

Soit à calculer le poteau le plus sollicité de RDC (50x55), avec les sollicitations suivantes :

Nmax = 1366.19KN (compression) \rightarrow Mcor = 1.67KN.m

$$d = 52m$$
; $d' = 0.03m$.

$$e_G = M/N = 0.001m$$

 $e_G < h/2 = 0.55/2 = 0.275m \implies$ le centre de pression est à l'intérieur de la section entre les armatures (A et A').

Il faut vérifier la condition suivante :

$$(a) \ge (b)$$
.....(*I*).

$$(a) = (0.337 \times h - 0.81 \times d') \times b \times h \times f_{bu}$$

$$(b) = N_u \times (d - d') - M_{UA}$$

$$M_{UA} = M + N \times (d - h/2) = 1366.194 + 1.679 \times (0.52 - 0.55/2) = 335.12 \text{KN.m.}$$

$$(0.337 \times 0.55 - 0.81 \times 0.03) \times 0.55 \times 0.5 \times 18.5 = 0.81 > [1366.194 \times (0.52 - 0.03) - 335.12] \times 10^{-3} = 0.33$$

 $\Rightarrow (I)$ est vérifiée.

Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

$$\begin{split} \mu_{bu} &= \frac{M_{UA}}{b \times d^2 \times f_{bu}} = \frac{335.12 \times 10^{-3}}{0.5 \times 0.52^2 \times 18.5} = 0.133 \\ \mu_{bu} &= 0.133 < \mu_l = 0.391 \Rightarrow A' = 0 \\ \mu_{bu} &> 0.186 \Rightarrow pivotA \\ \alpha &= 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) = 0.179 \\ z &= d \left(1 - 0.4\alpha\right) = 0.482m. \\ \Rightarrow A_1 &= \frac{M_{UA}}{z \times f_{st}} = \frac{335.12 \times 10^{-3}}{0.482 \times 348} = 17.38cm^2. \\ A_s &= A_1 - \frac{N}{f_{st}} = 17.38 \times 10^{-4} - \frac{1366.194 \times 10^{-3}}{400} = -1.67 \times 10^{-3}m^2. \end{split}$$

Le tableau résume le calcul des armatures pour les différents poteaux des différents niveaux

Tableau V-3: Ferraillage des poteaux

Niveau	sections	A' (cm ²)	A (cm ²)	A _{RPA} (cm ²)	Aadap (cm ²)	Barres
RDC	55×50	0	0.844	22	22.24	8HA16+4HA14
Étage 1	55×50	0	0.46	22	22.24	8HA16+4HA14
Étage 2 et 3	50×45	0	2.84	18	18.47	12HA14
Étage 4 et 5	45×40	0	2.85	14.4	15.21	4HA14+8HA12
Étage 6, 7, 8	40×35	0	1.23	11.2	13.57	12HA12

V.1.4. Armatures transversales

On prend comme exemple le poteau (55×50) cm²pour le calcul des armatures transversales :

$$L_{f}=0.7L_{0}=0.7\times3.74=2.618 \text{ m}.$$

$$\lambda g = L_f/b = 2.618/0.5 = 5.236 \Longrightarrow A_{t \ min} = 0.3\% \ t \ b_1 = 0.3 \times 10 \times 50 = 1.5 \ cm^2$$

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents poteaux des différents niveaux.

Tableau V-4: Calcul des armatures transversales pour les poteaux

Section s (cm ²)	Φ _l ^{min} Cm	Vd (KN)	lr (cm)	t zone couran te(cm)	t zone nodal (cm)	λg	At (cm ²)	Amin (cm ²)	Atadop (cm ²)	barre s
55×50	1.4	65.100	60	20	10	5.23	1.66	1.5	2.01	4HA8

55×50	1.4	40.90	60	20	10	4.04	1.04	2.7	2.01	6HA8
50×45	1.4	40.77	60	20	10	4.49	1.14	1.89	2.01	4HA8
45×40	1.2	35.81	50	15	10	5.05	1.11	1.2	2.01	4HA8
40×35	1.2	29.84	50	15	10	5.78	0.68	1.05	2.01	4HA8

V.1.5. Vérifications nécessaire

V.1.5.1. Vérification au flambement

Selon le **BAEL99** (**Art 4.4.1**), les éléments soumis à la flexion composée doivent être justifiés vis à vis de l'état limite ultime de stabilité de forme.

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.[3]

On doit vérifier que :

$$N_d \le N_u = \alpha \times \left[\frac{Br \times fc_{28}}{0.9 \times \gamma_b} + \frac{As \times fe}{\gamma_s} \right]$$

As: est la section d'acier comprimée prise en compte dans le calcul.

Br : est la section réduite du poteau obtenue en déduisant de sa section réelle un centième d'épaisseur sur toute sa périphérie.

$$\gamma b = 1.5, \ \gamma s = 1.15$$

 α :est un coefficient fonction de l'élancement mécanique λ qui prend les valeurs :

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \dots pour \lambda \le 50.$$

$$\alpha = 0.6 \left(\frac{\lambda}{50}\right)^2 \dots pour 50 < \lambda \le 70.$$

Si plus de la moitié des charges est appliquée avant 90 jours, alors on remplace α par $\alpha/1.10$.

L'élancement mécanique est donné par :

$$\int_{-\infty}^{\infty} \lambda = 3.46 \times l_f/b \text{ pour les sections rectangulaires.}$$

$$\lambda = 4 \times l_f/f \text{ pour les sections circulaires.}$$

 $L_f = l_0$ longueur de flambement.

La vérification se fait pour le poteau le plus sollicité à chaque niveau, et comme exemple de calcul on prendra le même exemple qu'on a pris pour le calcul du ferraillage.

Nd = 1366.19KN

$$L_{f}=2.61cm$$
; $\lambda = 18.06 < 50$; $\alpha = 0.80$

$$Br = (0.55 - 0.02) \times (0.5 - 0.02) = 0.254m^2.$$

$$N_u = 0.80 \times \left[\frac{0.254 \times 25}{0.9 \times 1.5} + \frac{22.24 \times 10^{-4} \times 400}{1.15} \right] = 5.66MN.$$

 $Nd=1.366MN < Nu=5.66 MN \rightarrow pas de risque de flambement.$

Le tableau ci-après résume les résultats de vérifications de flambement pour les différents poteaux des différents niveaux.

Niveau	Section (cm ²)	<i>l</i> ₀ (m)	<i>l</i> _f (m)	λ	α	As (cm ²)	<i>Br</i> (m ²)	Nu (MN)	Nd (MN)	Obser- vation
RDC	55×50	3.74	2.61	18.06	0.80	22.24	0.254	5.66	1.366	vérifiée
Étage1	55×50	2.89	2.02	13.99	0.82	22.24	0.254	5.78	1.184	vérifiée
Étage 2 et 3	50×45	2.89	2.02	15.55	0.81	18.47	0.206	4.67	1.013	vérifiée
Étage 4et 5	45×40	2.89	2.02	17.49	0.80	15.21	0.163	3.68	0.690	vérifiée
Étage 6.7.8	40×35	2.89	2.02	19.99	0.76	13.57	0.125	2.72	0.416	vérifiée

Tableau V-5: Vérifications du flambement des poteaux

V.1.5.2. Vérification des contraintes

Comme la fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression dans le béton seulement, cette vérification sera faite pour le poteau le plus sollicité à chaque niveau là où il y a réduction de section. On doit vérifier que :

$$\sigma_{bc1,2} \leq \overline{\sigma_{bc}}$$

$$\sigma_{bc1} = \frac{N_{ser}}{S} + \frac{M_{ser} \times V}{I_{yy'}}.$$
fibre superieure.
$$\sigma_{bc2} = \frac{N_{ser}}{S} - \frac{M_{ser} \times V'}{I_{yy'}}.$$
fibre inferieure.
$$S = b \times h + 15(A + A') \text{ (section homogène)}.$$

$$V = \frac{\frac{b \times h^{2}}{2} + 15(A' \times d' + A \times d)}{S} \quad et \quad V' = h - V$$

$$I_{yy'} = \frac{b}{3}(V^{3} + V^{3}) + 15A'(V - d')^{2} + 15A(d - V)^{2}$$

$$\overline{\sigma_{bc}} = 0.6 \times fc_{28} = 15MPa.$$

Les résultats de calcul sont résumés dans les tableaux suivants :

Tableau V-6: Vérifications de la contrainte dans le béton pour poteaux

Niveau	RDC	Étage 1	Étage 2 et 3	Étage 4 et 5	Étage 6, 7,8
Section(cm ²)	50×55	50×55	50×45	45×40	40×35
d (cm)	52	52	47	42	37
A' (cm ²)	0	0	0	0	0
A (cm ²)	22.24	22.24	18.47	15.21	13.57
V (cm)	54.67	54.67	49.67	44.66	39.61
V' (cm)	0.32	0.32	0.32	0.33	0.38

Iyy (m4)	0.027265	0.027265	0.01840	0.011894	0.007269
Nser(KN)	989.460	857.828	733.979	502.330	303.576
M ^{ser} (KN.m)	16.738	14.059	11.866	13.079	19.141
σ _{bc1} (MPa)	3.54	3.06	3.16	2.81	2.37
σ _{bc2} (MPa)	3.20	2.78	2.9	2.47	1.88
σ _{bc} (MPa)	15	15	15	15	15
Observation	Vérifiée	vérifiée	vérifiée	Vérifiée	Vérifiée

V.1.5.3. Vérifications aux sollicitations tangentes

D'après le **RPA99** version 2003 **article 7.4.3.2**, la contrainte de cisaillement conventionnelle de calcul dans le béton τ_{bu} sous combinaison sismique doit être inférieure ou égale à la valeur limite suivante : [1]

$$\bar{\tau}_{bu} \! = \! \rho_{d} \! \times \! fc_{28} \quad \mathrm{avec:} \quad \rho_{d} \! = \! \begin{cases} 0.075 \quad \! Si \; \lambda_{g} \geq 5. \\ 0.040 \quad \! Si \; \lambda_{g} \! < \! 5. \end{cases} \; ; \; \tau_{bu} \! = \! \frac{V_{d}}{b \! \times \! d}$$

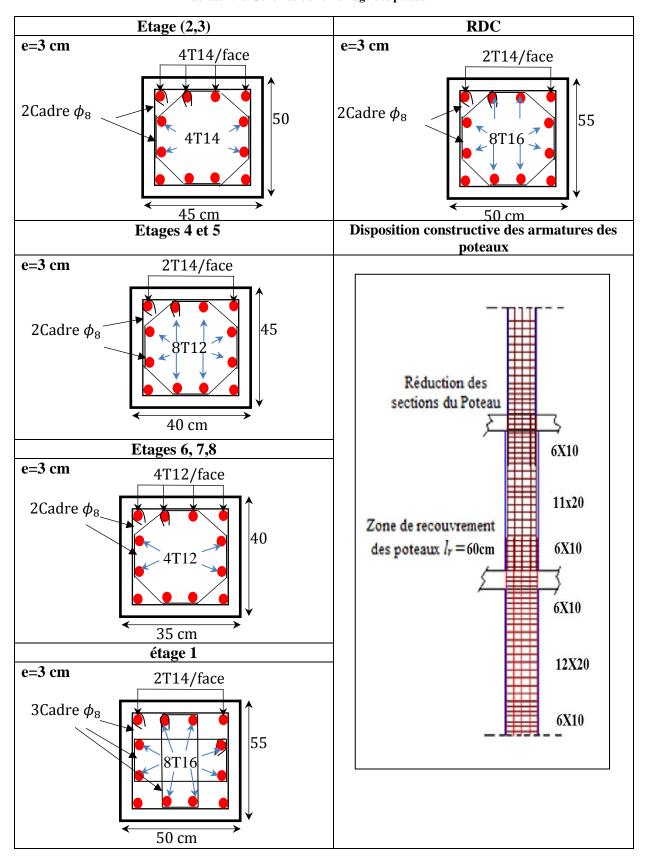

Les résultats de calcul sont représentés dans le tableau suivant :

Tableau V-7 : Vérifications aux sollicitations tangentes pour les poteaux

Niveau	Sections (cm ²)	l _f (cm)	λ g	ρa	d (cm)	V _d (KN)	τ _{bu} (MPa)	T _{bu} (MPa)	Obser- vation
RDC	50×55	2.618	5.23	0.075	52	65.1008	0.25	1.875	vérifiée
Étage1	50×55	2.023	4.046	0.04	52	40.90	0.157	1.00	vérifiée
Étage 2et 3	50×45	2.023	4.49	0.04	47	40.77	0.192	1.00	vérifiée
Étage 4et5	45×40	2.023	5.05	0.075	42	35.81	0.213	1.875	vérifiée
Étage 6, 7,8	40×35	2.023	5.78	0.075	37	29.84	0.230	1.875	vérifiée

Schéma de ferraillage

Tableau V-8: Schémas du ferraillage des poteaux

V.2. Etude des poutres

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (M, T), on procède au ferraillage en respectant les prescriptions données par le RPA99/2003 et celles données par le BAEL91/99.[1][3]

Les poutres sont étudiées en tenant compte des efforts données par le logiciel ETABS, V16 combinés par les combinaisons les plus défavorables données par le *RPA99 /2003* suivantes :

- \checkmark 1.35×G+1.5×Q
- $\checkmark G+O$
- $\checkmark G + O \pm E$
- $\checkmark 0.8 \times G \pm E$

V.2.1.Ferraillage

V.2.1.1. Armatures longitudinales: RPA 99/2003 (art 7.5.2.1)

Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de

0.5% en toute section.

Le pourcentage total maximum des aciers longitudinaux est de :

-4% en zone courante.

- 6% en zone de recouvrement.

La longueur minimale de recouvrement est de 40Φ en zone **IIa.**

Avec : Φ max : le diamètre maximal d'armature dans la poutre.

- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué conformément à la figurV-3, avec des crochets à 90°. Cette même figure comporte les autres dispositions constructives et quantités minimales d'armatures.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U superposés formant un carré ou un rectangle (là où les circonstances s'y prêtent, des cadres traditionnels peuvent également être utilisés).
- Les directions de recouvrement de ces U doivent être alternées Néanmoins, il faudra veiller à ce qu'au moins un coté fermé des U d'un cadre soit disposé de sorte à s'opposer à la poussé au vide des crochets droits des armatures longitudinales des poutres.

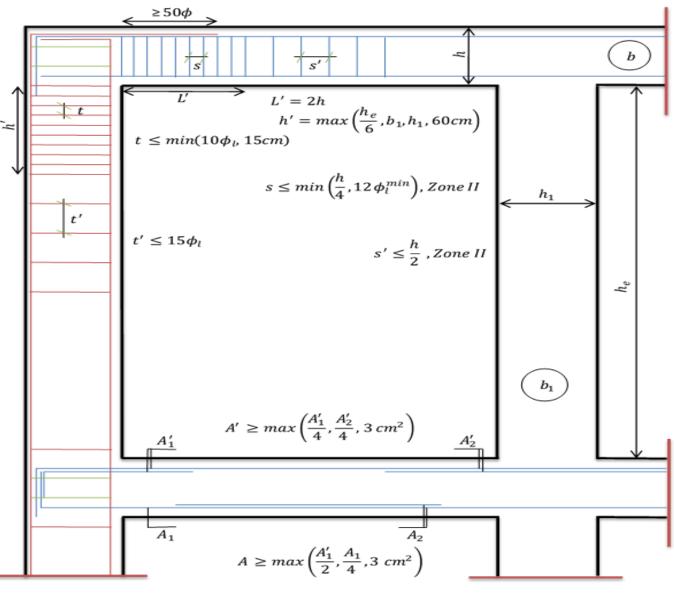
On doit avoir un espacement maximum de 10 cm entre deux cadres et un minimum de trois cadres par nœuds. [1]

V.2.1.2. Armatures transversales : RPA 99/2003 (art 7.5.2.2)

La quantité d'armatures transversales minimale est donnée par :

$$A_t = 0.003 \times St \times b$$

St: espacement maximum entre les armatures transversales donné comme suit :


 $-St \le min$ (h/4; 12Φl) en zone nodale.

-St ≤h/2 en dehors de la zone nodale.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.

La valeur du diamètre ϕ_l des armatures longitudinales à prendre est le plus petit diamètre utilisé, et dans le cas d'une section en travée avec armatures comprimées. C'est le diamètre le plus petit des aciers comprimés. [1]

V.2.1.3. Dispositions constructives des portiques : (RPA 99/2003)

Détail d'un cours d'armatures transversales de la zone nodale

2 U superposés (avec alternation dans l'orientation)

Figure V-2: Dispositions constructive des portiques

V.2.1.4. Recommandation de BAEL 91/99

La section minimale des aciers longitudinaux est de :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e}$$
 (Condition de non fragilité)**BAEL91 (Art F.IV.2)** [3]

V.2.1.5. Calcul du ferraillage

Prenons comme exemple de calcul de ferraillage la poutre principale (30×35) la plus sollicitée du plancher entre sol avec les sollicitations suivantes :

V.2.1.5.1. Armatures en appui

$$\mu_{bu} = \frac{M_A}{b \times d^2 \times f_{bu}} = \frac{50.50 \times 10^{-3}}{0.3 \times 0.32^2 \times 14.2} = 0.116$$

$$\mu_{bu} = 0.116 < \mu_l = 0.392 \rightarrow pivot \ A \Rightarrow A' = 0$$

$$\alpha = 0.154, \ Z = 0.3m$$

$$A_{st} = \frac{M_A}{Z \times \sigma_{st}} = \frac{50.50 \times 10^{-3}}{0.3 \times 400} = 4.84 \ cm^2$$

V.2.1.5.2. Armatures en travée

$$\mu_{bu} = \frac{M_t}{b \times d^2 \times f_{bu}} = \frac{45.756 \times 10^{-3}}{0.30 \times 0.32^2 \times 14.2} = 0.104, \quad \alpha = 0.138, \quad Z = 0.302m$$

$$A_{ct} = 4.35 \text{ cm}^2$$

Le tableau suivant regroupe le calcul de ferraillage des différentes poutres :

Tableau V-9: Ferraillages des poutres principales et secondaires

Niveau	Type de poutre	Section (cm ²)	Locali- sation	M (KNm)	Vu	A calcul (cm ²)	A _{min} (cm ²)	A _{adopté} (cm ²)	N ^{bre} de barres
	PP	30×35	Appui	-50.50	69.83	4.84	1.16	5.09	2HA14+ 1HA16
			Travée	45.756	2	4.35	1.16	4.62	3HA14
RDC	DC	20.7/25	Appui	-32.208	38.69	3.01	1.16	3.39	3HA12
	PS	30×35	Travée	16.731	7	1.53	1.16	3.39	3HA12
	PP	30×35	Appui	-60.342	80.14	5.86	1.16	6.03	3HA16
	rr	30 ^ 33	Travée	45.713	80.14	4.35	1.10	4.62	3HA14
Étages1	PS	30×35	Appui	-39.178	46.62	3.69	1.16	4.21	2HA14+ 1HA12
			Travée	13.40		1.22		3.39	3HA12
	PP	30×35	Appui	-65.044	78.88	6.36	1.16	7.16	2HA16+ 1HA20
			Travée	47.82		4.56		4.62	3HA14
Etage 2			Appuis	-41.547		3.39		3.39	3HA12
	PS	30×35	Travée	16.104	48.59	1.47	1.16	3.39	3HA12

									2HA16+
			A:	(2726		6.22		7.16	
	PP	30×35	Appui	-63.736	70.86	6.22	1.16	7.16	1HA20
			Travée	48.427	, 0.00	4.62		4.62	3HA14
Etage 3			Appuis	-39.278		3.70		4.21	2HA14+
Etage 5	PS	30×35	трриго	37.270	45.94	3.70	1.16		1HA12
	15	30 × 33	Travée	18.274	75.77	1.68	1.10	3.39	3HA12
			Appui	-60.931		5.92		6.03	3HA16
	PP	30×35	Travée	50.53	66.46	4.84	1.16	5.15	2HA16+
			Travee	30.33		4.04		3.13	1HA12
Etogo 4			A	27.076		256		4.21	2HA14+
Etage 4	DC	20 × 25	Appuis	-37.876	12.74	3.56	1.16	4.21	1HA12
	PS	30×35	Travée	20.686	42.74	1.90	1.16	3.39	3HA12
			Appui	-54.877		5.29		6.03	3HA16
	PP	30×35	TD /	71 001	60.08	4.00	1.16	F 15	2HA16+
			Travée	51.091		4.90		5.15	1HA12
Etage 5			Appuis	-36.094		3.39		3.39	3HA12
g.	PS	30×35	Travée	22.468	30.69	2.07	1.16	3.39	3HA12
			Travec	22.400		2.07		0.00	JIIAIZ
			Appui	-48.897		4.67		5.15	3HA16
	PP	30×35	•		52.52		1.16		2HA16+
			Travée	53.158		5.11		5.15	1HA12
Etage 6			Appuis	-36.036		3.38		3.39	3HA12
g. :	PS	30×35	Travée	24.239	28.00	2.24	1.16	3.39	3HA12
	- ~		Travec	24.23)		2.24		3.37	311112
			Appui	-48.05		4.59		4.62	3HA14
			110001	10.00					
	PP	30×35	Travée	53.108	50.20	5.10	1.16	5.15	2HA16+
Etage 7			Travec	33.100		3.10		3.13	1HA12
Luge /			Appuis	-25.643		2.38		3.39	3HA12
	PS	30×35	Travée	35.928	28.14	3.37	1.16	3.39	3HA12
	1.5	30 / 33	Travee	33.740	20.17	3.37	1.10	3.37	311A12
			Appui	-32.112		3.00		3.39	3HA12
	PP	30×35	Travée	30.367	40.98	2.83	1.16	3.39	3HA12
			Appuis	-30.477		2.84		3.39	3HA12
Etage 8	PS	30×35	Travée	21.551	22.24	1.99	1.16	3.39	
	15	30 / 33	Travee	21.331	22.27	1.99	1.10	3.33	3HA12
					1				

V.2.1.6. Vérification des armatures selon le RPA 99

V.2.1.6.1. Pourcentage maximum des armatures longitudinales :

✓ En zone courante : $A_{max} = 4\%b \times h = 0.04 \times 30 \times 35 = 42 \text{ cm}^2 > A$ adopté ✓ En zone de recouvrement : $A_{max} = 6\%b$. $h = 0.06 \times 30 \times 35 = 63 \text{cm}^2 > A$ adopté

V.2.1.6.2. Les longueurs de recouvrement

 $Lr > 40 \times \phi$ en zone IIa

$$\phi$$
= 20mm Lr > 40×20= 80cm on adopte Lr = 80cm

$$\phi$$
= 16mm Lr > 40×16= 64cm on adopte Lr = 65cm

$$\phi$$
= 14mm Lr > 40×14= 56cm on adopte Lr = 60cm

$$\phi$$
= 12mm Lr > 40×12= 48cm on adopte Lr = 50cm

V.2.1.7. Les armatures transversales

\checkmark Calcul de Φ_t :

Le diamètre des armatures transversales pour les poutres principales et secondaires est donnée par :

$$\phi \le \min\left(\phi_1; \frac{h}{35}; \frac{b}{10}\right) \qquad \phi \le \min\left(1.4; \frac{35}{35}; \frac{30}{10}\right) \qquad \phi_t \le \min(1.2; 1; 3.0) cm$$

$$\phi_t \le 1cm \Rightarrow \text{Soit } \phi_t = 8mm$$

Donc on opte pour $A_t = 4HA8 = 2.01$ cm² Soit : 1 cadre + 1 étrier de HA8 pour toutes les poutres

✓ Calcul des espacements des armatures transversales :

Calcul des espacements St

D'après le RPA99/2003 (Art7.5.2.2):

En zone nodale: St
$$\leq \min\left(\frac{h}{4}; 12\emptyset_l^{min}\right) \Longrightarrow \begin{cases} \text{Poutres principales St= 08 cm} \\ \text{Poutres secondaires St= 08 cm} \end{cases}$$

En zone courantes:
$$St \le \frac{h}{2} \Longrightarrow \begin{cases} Poutres \text{ principales } St=15 \text{ cm} \\ Poutres \text{ secondaires } St=15 \text{ cm} \end{cases}$$

Vérification des sections d'armatures transversales minimales

On a
$$A_{min} = 0.3\% \times St \times b = 1.35 \text{ cm}^2 < A_t = 2.01 \text{ cm}^2$$
 Vérifiée

V.2.1.8. Vérification à l'ELU : BAEL91 (Art F.IV.2)

✓ Condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} \Rightarrow A_{\min} = 1.34 cm^2.$$
 Condition vérifiée

✓ Contrainte tangentielle maximale : BAEL91 (Art H.III.2)[3]

> Vérification de l'effort tranchant :

Il faut vérifier que :
$$Tel \ que : \tau_u = \frac{V_u}{b \times d}$$

Fissuration peu nuisible $\Rightarrow \bar{\tau}_u = \min(0.133 \times f_{c28}; 5MPa) \Rightarrow \bar{\tau}_u = 3.33MPa$.

Les résultats sont donnés dans le tableau suivant :

Tableau V-10 : Vérifications des contraintes tangentielles

Poutres	Vu (KN)	$\tau_{bu}(\mathbf{MPa})$	- τ (MPa)	Observation
Principales	80.14	0.83	3.33	Vérifiée
Secondaires	78.888	0.82	3.33	Vérifiée

Donc pas de risque de cisaillements

✓ Vérification des armatures longitudinales au cisaillement :BAEL91 (Art H.IV.2)

Appuis de rives :
$$A_l > \frac{V_u \times \gamma_s}{f_e}$$
....(1)

Appuis intermédiaires :
$$A_l \ge \frac{\gamma_s}{f_e} \times (V_u - \frac{M_a}{0.9 \times d})$$
.....(2) $\gamma s = 1.15, fe = 400MPa$

Les vérifications sont résumées dans le tableau ci-après :

Tableau V-11: Vérifications des armatures longitudinales au cisaillement

Poutres	A ₁ (cm ²)	V _u (KN)	Ma(KN.m)	A ₁ ^{rive} (cm ²)	A ₁ ^{int} (cm ²)	Observation
Principales	6.03	80.14	60.342	2.3	-3.71	Vérifiée
Secondaires	3.39	78.888	41.547	2.26	-1.87	Vérifiée

V.2.1.9. Vérifications ELS: BAEL91 (Art E.III.1) [3]

✓ Etat limite de compression du béton :

$$\frac{b}{2}y^{2} + 15y(A_{s} + A_{s}') - 15(dA_{s} + d'A_{s}') = 0; \sigma_{bc} = \frac{M_{ser}}{I}y; \overline{\sigma}_{bc} = 0, 6f_{c28} = 15MPa$$

$$I = \frac{b \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s}' \times (y - d')^{2}\right]$$

Les vérifications sont résumées dans le tableau ci-après :

Tableau V-12: Vérifications de l'état limite de compression du béton

Poutres	Localisatio n	Mser (KN.m	I (cm ⁴)	Y (m)	σ _{bc} (MPa)	— o bc (MPa)	Observation
Poutres principales	Appuis	-39.29	0.00016	0.029 6	7.06	15	vérifiée
	Travées	19.727	0.00054	0.109	3.92	15	vérifiée
Poutres secondaires	Appuis	-51.57	0.00016	0.029 6	9.26	15	vérifiée
	Travées	36.35	0.00054	0.109	7.23	15	vérifiée

✓ Etat limite de déformation :

D'après le **BAEL91** et le **CBA93** la vérification à la flèche est inutile si :[3][2]

Tableau V-13: Vérification de la flèche pour les poutres

	h _t cm	b (cm)	L (m)	A _s (cm ²)	$\frac{h_t}{l}$	$\frac{M_t}{10 \times M_0}$	$\frac{A_{\scriptscriptstyle S}}{b_{\scriptscriptstyle 0}\! imes\!d}$	$\frac{4.2}{f_e}$	$\frac{h_{t}}{l} > \frac{1}{16}$	$\frac{h_t}{l} > \frac{M_t}{10M_0}$	$\frac{A_{S}}{b_{0} \times d} \le \frac{4.2}{f_{e}}$
PP	35	30	3.5 5	6.03	0.09 8	0.084	0.007	0.01	Vérifiée	Vérifiée	Vérifiée
PS	35	30	3.1	3.39	0.11	0.085	0.003	0.01	Vérifiée	Vérifiée	Vérifiée

Donc la vérification de la flèche n'est pas nécessaire car toutes les conditions sont vérifiées.

V.2.2. Vérification des zones nodales

Dans le but de faire en sorte que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux, le RPA99 (Art 7.6.2) exige de vérifier :

$$|M_N| + |M_S| \ge 1.25 \times (|M_W| + |M_E|)$$

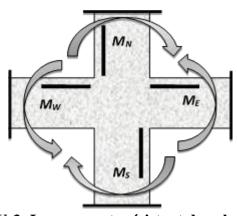


Figure V-3: Les moments résistant dans la zone nodale

V.2.2.1. Détermination du moment résistant dans les poteaux

Le moment résistant (MR) d'une section de béton dépend essentiellement :

✓ des dimensions de la section du béton.

$$M_R = z \times A_s \times \sigma_s$$

✓ de la quantité d'armatures dans la section.

$$avec: z = 0.9 \times h$$
 et $\sigma_s = \frac{f_s}{\gamma_s} = 348MPa$.

✓ de la contrainte limite élastique des aciers.

Les résultats de calcul des moments résistants dans les poteaux sont donnés dans les tableaux suivants :

Tableau V-14: Les moments résistant dans les poteaux

Niveau	Section (cm ²)	Z (cm)	As (cm ²)	MR (KN.m)
RDC + étage 1	50×55	49.5	22.24	383.106
Étage 2 et 3	45×50	45	18.47	289.24
Étage 4 et 5	40×45	40.5	15.21	214.36
Étage 6, 7,8	35×40	36	13.57	170

V.2.2.2. Déterminations des moments résistant dans les poutres

 M_W et M_E sont les moments (en KN) calculés en fonction des aciers adoptés en appuis à gauche et à droite du nœud (face tendue de la poutre au niveau du nœud).

Tableau V-15: Les moments résistant dans les poutres

Niveau	Section(cm ²)	Z(cm)	A(cm²)	MR(KN.M)
RDC	PP (30X35)	31.5	5.09	55.79
	PS (30x35)	31.5	3.39	37.16
Etage 1	PP (30X35)	31.5	6.03	66.10
	PS (30x35)	31.5	4.21	50.64
Etage 2	PP (30X35)	31.5	7.16	78.48
	PS (30x35)	31.5	3.39	46.80
Etage 3	PP (30X35)	31.5	7.16	66.10
	PS (30x35)	31.5	4.21	46.80
Etage 4	PP (30X35)	31.5	6.03	66.10
	PS (30x35)	31.5	4.21	37.16
Etage 5	PP (30X35)	31.5	6.03	56.45
	PS (30x35)	31.5	3.39	37.16
Etage 6	PP (30X35)	31.5	5.15	56.45
	PS (30x35)	31.5	3.39	37.16
Etage 7	PP (30X35)	31.5	4.62	50.64
	PS (30x35)	31.5	3.39	37.16
Etage 8	PP (30X35)	31.5	3.39	37.16
	PS (30x35)	31.5	3.39	37.16

Les résultats de calcul sont résumés dans le tableau de vérification des zones nodales. On effectue la vérification de la zone nodale pour le nœud central :

Tableau V-16: Vérifications de la zone nodale (sens principale)

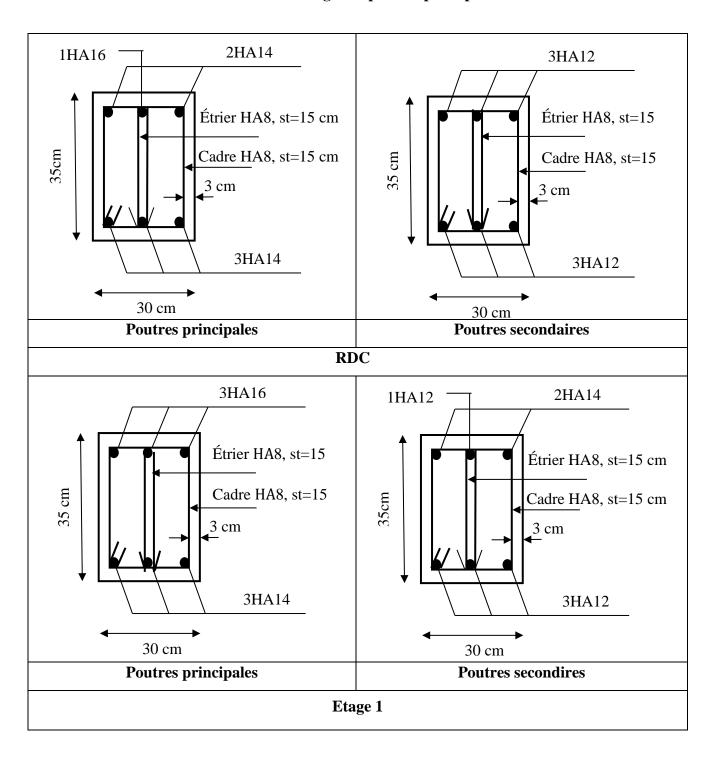
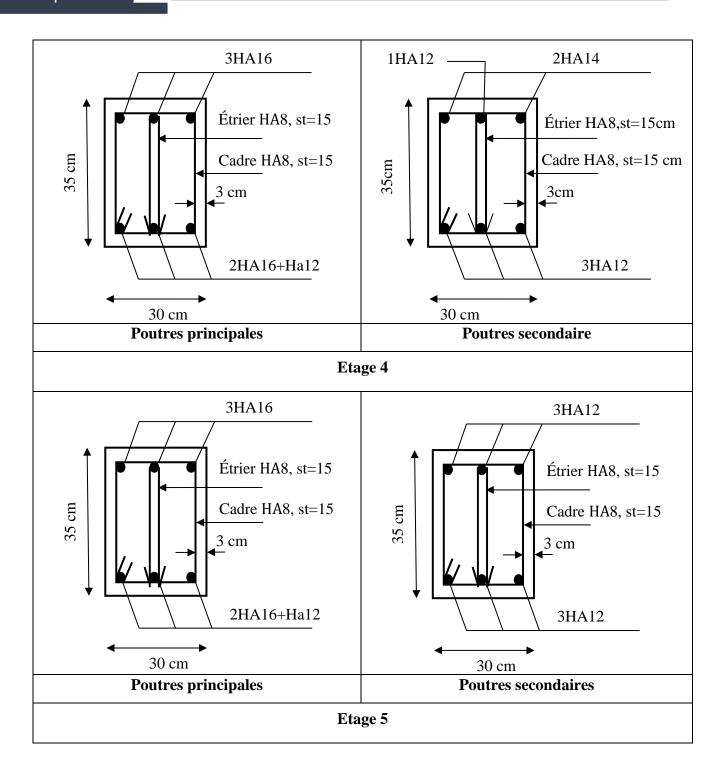
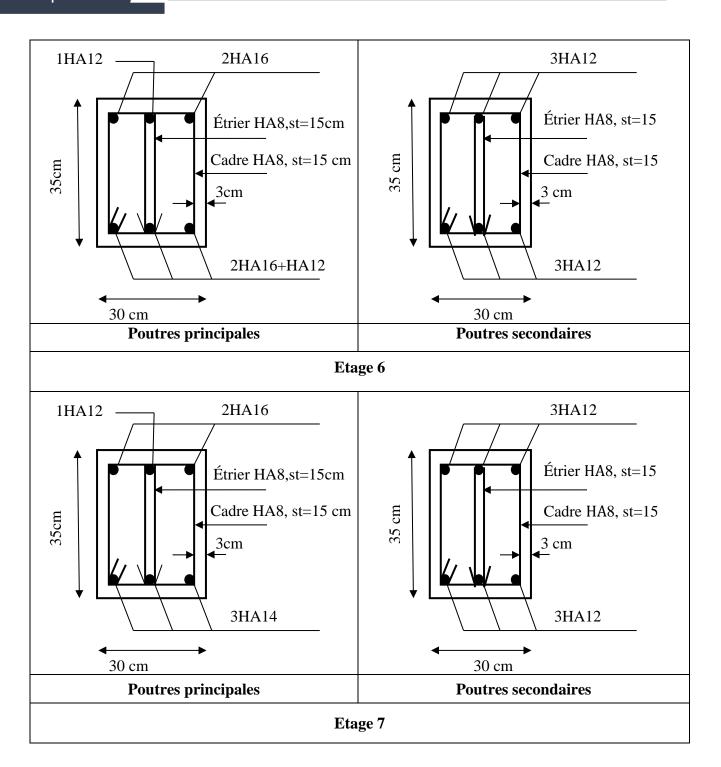
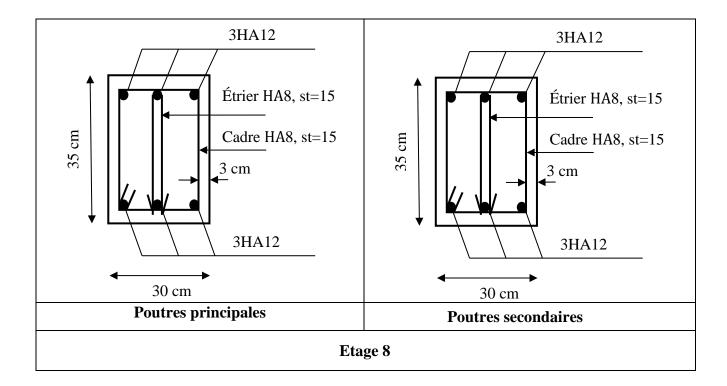

Niveau	M_N	M_S	M_N+M_S	M_W	M_E	$1.25 (M_W + M_E)$	Observation
RDC	383.106	383.106	766.21	55.79	55.79	139.47	Vérifiée
Etage1	289.24	383.106	672.34	66.10	66.10	165.25	Vérifiée
Etage2	289.24	289.24	578.48	78.48	78.48	196.2	Vérifiée
Etage3	214.36	289.24	503.6	78.48	78.48	196.2	Vérifiée
Etage4	214.36	214.36	428.72	66.10	66.10	165.25	Vérifiée
Etage5	170	214.36	384.36	66.10	66.10	165.25	Vérifiée
Etage6	170	170	340	56.45	56.45	141.12	Vérifiée
Etage7	170	170	340	50.64	50.64	126.6	Vérifiée
Etage 8	0	170	170	37.16	37.16	92.9	Vérifiée


Tableau V-17: Vérifications de la zone nodale (sens secondaire)


Niveau	M_N	M_S	M_N+M_S	M_W	M_E	$1.25 (M_W + M_E)$	Observation
RDC	383.106	383.106	766.21	37.16	37.16	92.9	Vérifiée
Etage1	289.24	383.106	672.34	50.64	50.64	126.6	Vérifiée
Etage2	289.24	289.24	578.48	37.16	37.16	92.9	Vérifiée
Etage3	214.36	289.24	503.6	46.80	46.80	117	Vérifiée
Etage4	214.36	214.36	428.72	46.80	46.80	117	Vérifiée
Etage5	170	214.36	384.36	37.16	37.16	92.9	Vérifiée
Etage6	170	170	340	37.16	37.16	92.9	Vérifiée
Etage7	170	170	340	37.16	37.16	92.2	Vérifiée
Etage 8	0	170	170	37.16	37.16	92.9	Vérifiée


Schéma de ferraillage des poutres


Tableau V-18: Schéma de ferraillage des poutres principales et secondaires

V.3. Etude des voiles

Un voile travaille comme une console encastré à sa base, on distingue deux types de voiles qui ont des comportements différents : [1]

- Voiles élancés : $\frac{h}{l} > 1.5$
- Voiles courts : $\frac{h}{l}$ < 1.5

Un voile est sollicité en flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de rupture suivants :

- ✓ Rupture par flexion.
- ✓ Rupture en flexion par effort tranchant.
- ✓ Rupture par écrasement ou traction du béton.

Les voiles sont ferraillés sous les sollicitations suivantes :

- 1.35G+1.5Q
- G+Q±E
- 0.8G±E

V.3.1.Recommandation du RPA 99/2003

V.3.1.1. Armatures verticales

Les armatures verticales sont destinées à reprendre les efforts de flexion. Elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :

✓ L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que : $A_{min} = 0.20\%$ ($L_t \times e$)

 L_t : Longueur de la zone tendue.

e : Épaisseur du voile.

- ✓ Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement st < e (e : épaisseur de voile).
- ✓ A chaque extrémités du voile, l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile.
- ✓ Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

V.3.1.2. Armatures horizontales

Les armatures horizontales sont destinées à reprendre les efforts tranchants, Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de $10\phi_l$.

V.3.1.3. Armatures transversales

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement. Elles sont en nombre de quatre épingles par 1m² au moins.

V.3.1.4. Armatures de coutures

Le long des joints de reprises de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{Vj} = 1.1 \times \frac{V}{f_e}$$
; avec: $V = 1.4 \times V_u$

V.3.1.5. Règles communes (armatures verticales et horizontales)

✓ Le pourcentage minimum d'armatures (verticales et horizontales) :

- $A_{\min} = 0.15\%$ De la section du voile, dans la section globale du voile.
- $A_{\min} = 0.10\%$ De la section du voile, dans la zone courante.
- $\phi_l \le \frac{1}{10} \times e$ (Exception faite pour les zones d'about).
- ✓ L'espacement : $S_t = \min(1.5 e, 30 cm)$.
- ✓ Les deux nappes d'armatures horizontales doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.
- ✓ Longueurs de recouvrement :
 - 40ϕ : Pour les barres situées dans les zones où le renversement de signe des efforts et possible.
 - 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

V.3.2. Calcul des sollicitations revenant aux voile

Les sollicitations sont déterminées à partir de logiciel ETABS 2016 le tableau suivant illustre les sollicitations revenant aux voiles Vx1, Vx3, Vy1, Vy2,Vy3 :

Tableau V-19: Les sollicitations revenant aux voiles Vx1, Vx2, Vx3Vy1, Vy2,Vy3

	voil	Nmax-	→Mcor	Mmax-	→Ncor	Nmin	→Mcor	
Niveau	e	N(KN)	M(KN.m	M(KN.m)	N(KN)	N(KN)	M(KN.m)	V(KN)
RDC		1085.795	70.909	1051.713	1339.436	834.149	969.610	334.657
1 ^{ère} étage		1449.910	58.179	587.496	1777.134	581.743	56.182	281.012
2 ^{ème} ,3 ^{ème} étage	V_{x1}	1323.209	60.140	447.872	984.466	470.221	11.79	250.323
4 ^{ème} ,5 ^{ème} étage		1038.260	47.150	201.001	773.993	351.979	4.846	170.668
6,7,8 ^{ème} étage		674.907	47.157	141.677	504.204	95.461	17.827	123.198
RDC		602.746	169.182	169.182	602.746	15.776	146.323	64.038
1 ^{ère} étage		100.820	62.931	69.321	315.088	100.820	62.931	41.764
2 ^{ème} ,3 ^{ème} étage	V_{x2}	291.162	7.921	63.811	173.398	114.687	43.591	49.936
4 ^{ème} , 5 ^{ème} Etage		233.300	9.736	46.379	143.672	70.015	27.049	45.959
6,7,8 ^{ème} étage		169.184	5.159	39.435	97.302	7.197	20.505	46.354
RDC		430.547	210.992	210.992	430.547	4.624	184.537	87.253
1 ^{ère} étage	V_{x3}	196.984	7.665	86.629	175.820	75.65	77.536	50.315
2 ^{ème} ,3 ^{ème} étage	, x 3	160.209	0.526	70.995	72.429	37.682	48.081	51.992
4ème ,5èmeétage		75.084	43.623	44.946	20.730	1.739	28.851	43.207
RDC		771, 219	156,537	184,859	11,125	11,125	184,859	82,632
1 ^{ère} étage		478,241	73,848	87,552	131,737	38,049	84,277	61,775
2 ^{ème} ,3 ^{ème} étage	V_{y1}	404,567	54,605	76,919	166,380	77,937	72,663	60,501
4 ^{ème} ,5 ^{ème} étage		312,946	13,360	55,105	162,886	89,018	36,523	59,291
6,7,8 ^{ème} étage		208,751	12,795	32,048	129,771	28,713	7,440	39,479
RDC		795,987	156,531	183,303	182,357	19,051	177,442	82,878
1 ^{ère} étage	V_{y2}	532,179	10,983	91.273	280.982	150.791	87.544	65.662
2 ^{ème} ,3 ^{ème} étage		492.100	21.619	88.162	299.565	175.208	65.043	70.153

4 ^{ème} , 5 ^{ème} Etage		385.920	21.705	69.488	257.308	134.950	48.155	64.800
6,7,8 ème étage		247.251	22.666	47.265	164.045	21.910	15.762	52.887
RDC		583.242	8.619	106.746	282.387	136.730	103.977	55.153
1 ^{ère} étage	V_{y3}	449.506	4.813	47.723	308.795	195.702	46.018	41.848
2 ^{ème} ,3 ^{ème} étage		417.019	15.690	52.111	278.045	141.384	35.418	50.265
4 ^{ème} ,5 ^{ème} étage		329.653	15.95	40.256	208.231	94.705	25.527	46.329
6,7,8 ^{ème} étage		209.350	15.948	26.558	122.705	10.44	7.551	36.896

V.3.3. Ferraillage

On prend comme exemple de calcul le voile V_{x1} , sous les sollicitations N_{max} et M_{cor} , les autres cas seront résumés dans des tableaux

Armatures verticales :

$$L=3.13m, d=3.1m, e=0.20 m.$$

N_{max}= 1087.795KN, Mcor= 70.909KN. m

$$e_G = \frac{M}{N} = 0.065m < \frac{l}{2} = \frac{3.13}{2} = 1.56m \Rightarrow$$
 (le centre de pression est à l'intérieur de la section).

Il faut vérifier la condition suivante :

$$(a) \ge (b)....(I).$$

$$(a) = (0.337 \times h - 0.81 \times d') \times b \times h \times f_{bu}$$

$$(b) = N_u \times (d - d') - M_{UA}$$

$$M_{UA} = M + N \times (d - h/2) = 70.909 + 1087.795 \times (3.1 - 3.13/2) = 1746.42KN.m.$$

$$(a) \ge (b)$$
.....verifiée

Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple

$$\mu_{bu} = \frac{M_{UA}}{b \times d^2 \times f_{bu}} = \frac{1746.42 \times 10^{-3}}{0.2 \times 3.1^2 \times 18.5} = 0.049$$

$$\mu_{bu} = 0.049 < \mu_l = 0.391 \Rightarrow A' = 0$$

$$\mu_{bu} > 0.186 \Rightarrow pivotA$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) = 0.062$$

$$z = d(1 - 0.4\alpha) = 3.02m$$
.

$$\Rightarrow A_1 = \frac{M_{UA}}{z \times f_{st}} = \frac{1746.42 \times 10^{-3}}{3.02 \times 400} = 14.45 cm^2.$$

$$A_s = A_1 - \frac{N}{f_{ct}} = 14.45 \times 10^{-4} - \frac{1087.795 \times 10^{-3}}{400} = -1.27 \times 10^{-3} \, m^2.$$

On ferraille avec la section minimale prescrite par le RPA

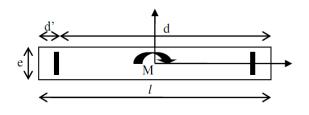


Figure V-4: Schéma d'un voile plein

> Armatures horizontales :

V=334.657 KN

Leur section est calculée selon la formule suivante :

$$\begin{split} \frac{A_h}{e \times S_h} &\geq \frac{\tau_u}{0.8 \times f_e} \\ \tau_u &= \frac{1.4 \times V_d}{e \times d} = \frac{1.4 \times 334.657 \times 10^{-3}}{0.2 \times 3.1} = 0.757 MPa. \end{split}$$

Soit
$$S_h = 20cm \Rightarrow A_h = 0.94cm^2$$
.

$$Ah_{min} = 0.15\% \times e \times Sh = 0.15\% \times 20 \times 20 = 0.6 \text{ cm}^2.$$

> Vérifications :

 $\begin{aligned} &\mathbf{A_{min}(zT)} = 0.2\% \times e \times L_t = 0.2\% \times 20 \times 1.37 = 5.48 cm^2. & (A_{min} \text{ en zone tendue par le RPA}). \\ &\mathbf{A_{min}(zG)} = 0.15\% \times e \times L = 0.15\% \times 20 \times 313 = 9.39 \ cm^2. & (A_{min} \text{ en zone globale du voile par le RPA}). \end{aligned}$

> Choix des armatures

✓ Armatures verticales :

On opte pour chaque face : $14HA16=28.15cm^2$ avec St = 15 cm.

✓ Armatures horizontales :

On opte $2HA10 = 1.57 \text{ cm}^2$ avec St = 20 cm

Le tableau suivant illustre les résultats de calcul des armatures verticales et horizontales du voile

 V_{x1} dans les autres niveaux :

 A_v^{cal} : Section d'armature verticale totale du voile.

 $A_{v \min}^{RPA}$: Section d'armature verticale minimale dans le voile complet.

 A_V^{adap} : Section d'armature verticale adaptée dans le voile complet.

Nbre/face : nombre de barres adaptées par face.

 S_t : Espacement.

 A_H^{\min} : Section d'armature horizontale minimale dans le voile complet.

 A_H^{cal} : Section d'armature horizontale pour 1 mètre linéaire.

 A_H^{adap} /ml : Section d'armature horizontale adaptée pour 1 mètre linéaire.

Tableau V-20: Ferraillage du voile Vx1

Niveau	RDC	1 ^{ér} étage	2 ^{éme} et 3 ^{éme} étage	4 ^{éme} ,5 ^{éme} étage	6 ,7 , 8 ^{éme} étage
Section (m ²)	0.2×3.13	0.15 ×3.13	0.15×3.13	0.15×3.13	0.15×3.13
M(KN)	70.909	58.179	447.872	201.001	141.677
N(KN)	1087.795	1449.10	984.466	773.993	504.204
Section	PC	PC	PC	PC	PC
V (KN)	334.657	281.012	250.323	170.668	123.198

					l .	
τ	t(MPa)	0.757	0.846	0.754	0.513	0.370
$\bar{\tau} = 0.$	2f _{c28} (MPa)	5	5	5	5	5
	L^{tendu}	1.37	1.44	0.2	0.79	0.72
A_{i}	cal (cm2)	0	0	0	0	0
$A_{\scriptscriptstyle \mathcal{V}}^{\min}$	RPA (cm ²)	9.39	7.04	7.04	7.04	7.04
	$A_{Z.T}^{\min}$	5.48	4.33	1.8	2.36	2.17
A_{ι}^{ι}	adop (cm²)	31.42	31.42	31.42	31.42	31.42
N^{br}	/par face	20HA10	20HA10	20HA10	20HA10	20HA10
St	Zone courante	15	15	15	15	15
(cm)	Zone d'extrémité	7.5	7.5	7.5	7.5	7.5
	_					
A_{i}	$_{h}^{cal}$ (cm ²)	0.94	0.79	0.71	0.48	0.35
	$_{h}^{cal}$ (cm ²)	0.94	0.79	0.71	0.48	0.35 0.45
A_{l}^{1}	···					

Tableau V-21: Ferraillage du voile Vx2

Niveau	RDC	1 ^{ér} étage	2 ^{éme} et 3 ^{éme} étage	4 ^{éme} , 5 ^{éme} étage	6,7, 8 ^{éme} étage
Section (m ²)	0.2×1.3	0.15×1.3	0.15×1.3	0.15×1.3	0.15×1.3
M(KN)	146.323	62.931	7.921	9.736	20.505
N(KN)	15.776	100.820	291.162	233.300	7.197
Section	PC	PC	PC	PC	PC
V (KN)	64.038	41.764	49.936	45.959	46.354
τ(MPa)	0.354	0.306	0.366	0.337	0.340
$\bar{\tau} = 0.2 f_{c28}(MPa)$	5	5	5	5	5
$L^{^{tendu}}$	0.63	0.42	0.57	0.52	0.6
A_{v}^{cal} (cm2)	2.72	0	0	0	0.31
A_{ν}^{\min} RPA (cm ²)	3.9	2.93	2.93	2.93	2.93
$A_{Z.T}^{ m min}$	2.54	1.27	1.71	1.57	1.8
$A_{v}^{adop}(\mathbf{cm}^{2})$	15.71	15.71	15.71	15.71	15.71
N ^{bre} /par face	10HA10	10HA10	10HA10	10HA10	10HA10
Zone courante	10	10	10	10	10

St (cm)	Zone d'extrémité	5	5	5	5	5
A_h^{ca}	cal (cm ²)	0.44	0.29	0.34	0.32	0.32
A_h^{m}	nin (cm ²)	0.6	0.45	0.45	0.45	0.45
A_h^{aa}	dop (cm ²)	5HA8	5HA8	5HA8	5HA8	5HA8
S	St (cm)	20	20	20	20	20

Tableau V-22 : Ferraillage du voile Vx3

ľ	Niveau	RDC	1 ^{ér} étage	2 ^{éme} et 3 ^{éme} étage	4 ^{éme} , 5 ^{éme} étage
Sec	tion (m ²)	0.2×1.4	0.15×1.4	0.15×1.4	0.15×1.4
N	M(KN)	184.537	77.536	48.081	44.946
1	N(KN)	4.624	75.65	37.682	20.730
S	Section	PC	PC	PC	PC
7	V (KN)	87.253	50.315	51.992	43.207
τ	(MPa)	0.444	0.342	0.354	0.294
$\bar{\tau} = 0.2$	2fc28(MPa)	5	5	5	5
د.	$L^{^{tendu}}$	0.7	0.54	0.57	0.62
A_{ν}^{α}	(cm2)	3.36	0.48	0.41	0.56
A_{ν}^{\min}	RPA (cm ²)	4.2	3.15	3.15	3.15
	$A_{Z.T}^{\min}$	2.8	1.62	1.72	1.87
A_{v}^{a}	udop (cm²)	15.71	15.71	15.71	15.71
N^{bro}	/par face	10HA10	10HA10	10HA10	10HA10
St	Zone courante	10	10	10	10
(cm)	Zone d'extrémité	5	5	5	5
A_{l}^{c}	cal (cm ²)	0.56	0.32	0.33	0.28
A_h^{r}	min (cm ²)	0.6	0.45	0.45	0.45
A_h^a	dop (cm ²)	5HA8	5HA8	5HA8	5HA8
5	St (cm)	20	20	20	20

 $Tableau\ V-23:\ Ferraillage\ du\ voile\ Vy1$

Niveau	RDC	1 ^{ér} étage	2 ^{éme} et 3 ^{éme} étage	4 ^{éme} , 5 ^{éme} étage	6,7, 8 ^{éme} étage
Section (m ²)	0.2×1.2	0.15×1.2	0.15×1.2	0.15×1.2	0.15×1.2

ľ	M(KN)	184.859	84.277	72.663	36.523	12.795
I	N(KN)	11.125	38.049	77.937	89.018	-208.751
S	Section	PC	PC	PC	PC	PC
7	V (KN)	82.632	61.775	60.501	59.291	39.479
τ	(MPa)	0.494	0.492	0.482	0.472	0.314
$\bar{\tau} = 0.$	2f _{c28} (MPa)	5	5	5	5	5
	$L^{^{tendu}}$	0.59	0.55	0.47	0.31	0.42
A_{ι}°	cal (cm2)	3.89	1.35	0.59	0	2.92
$A_{_{\!\scriptscriptstyle \mathcal{V}}}^{\mathrm{min}}$]	RPA (cm²)	3.6	2.7	2.7	2.7	2.7
	$A_{Z.T}^{ m min}$	2.37	1.64	1.41	0.92	1.25
A_{ν}^{α}	adop (cm ²)	14.14	14.14	14.14	14.14	14.14
N^{bro}	/par face	9HA10	9HA10	9HA10	9HA10	9HA10
St	Zone courante	10	10	10	10	10
(cm)	Zone d'extrémité	5	5	5	5	5
A_{i}	cal (cm ²)	0.62	0.46	0.45	0.44	0.3
A_{k}^{1}	min (cm ²)	0.6	0.45	0.45	0.45	0.45
A_h^a	dop (cm ²)	5HA8	5HA8	5HA8	5HA8	5HA8
	St (cm)	20	20	20	20	20

Tableau V-24: Ferraillage du voile Vy2

Niveau	RDC	1 ^{ér} étage	2 ^{éme} et 3 ^{éme} étage	4 ^{éme} , 5 ^{éme} étage	6,7, 8 ^{éme} étage
Section (m ²)	0.2×1.2	0.15×1.2	0.15×1.2	0.15×1.2	0.15×1.2
M(KN)	177.442	87.544	65.043	21.705	15.762
N(KN)	19.051	150.791	175.208	385.920	21.762
Section	PC	PC	PC	PC	PC
V (KN)	82.878	65.662	70.153	64.800	52.887
τ(MPa)	0.495	0.523	0.559	0.516	0.421
$\bar{\tau} = 0.2 f_{c28}(MPa)$	5	5	5	5	5
$oldsymbol{L}^{tendu}$	0.59	0.39	0.28	0.43	0.43
A_{v}^{cal} (cm2)	3.63	0.03	0	0	0.06
A_{ν}^{\min} RPA (cm ²)	3.6	2.7	2.7	2.7	2.7
$A_{Z.T}^{ m min}$	2.35	1.18	0.83	1.3	1.3

A_{v}^{α}	adop (cm ²)	14.14	14.14	14.14	14.14	14.14
N^{bro}	/par face	9HA10	9HA10	9HA10	9HA10	9HA10
St	Zone courante	10	10	10	10	10
(cm)	Zone d'extrémité	5	5	5	5	5
A_{j}	cal (cm ²)	0.62	0.49	0.52	0.48	0.4
**	min (cm ²)	0.6	0.45	0.45	0.45	0.45
A_h^a	dop (cm ²)	5HA8	5HA8	5HA8	5HA8	5HA8
S	S _t (cm)	20	20	20	20	20

Tableau V-25: Ferraillage du voile Vy3

ľ	Niveau	RDC	1 ^{ér} étage	2 ^{éme} et 3 ^{éme} étage	4 ^{éme} ,5 ^{éme} étage	6,7, 8 ^{éme} étage
Sec	tion (m ²)	0.2×1	0.15×1	0.15×1	0.15×1	0.15×1
N	M(KN)	103.977	46.018	35.418	25.527	7.551
1	N(KN)	136.730	195.702	141.384	94.705	10.44
S	Section	PC	PC	PC	PC	PC
1	V (KN)	55.153	41.848	50.265	46.329	36.896
τ	(MPa)	0.398	0.402	0.483	0.445	0.355
$\bar{\tau} = 0.2$	2fc28(MPa)	5	5	5	5	5
4	$L^{^{tendu}}$	0.39	0.15	0.17	0.19	0.38
A_{v}^{α}	(cm2)	1.03	0	0	0	0.06
$A_{\scriptscriptstyle \mathcal{V}}^{ m min}$]	RPA (cm ²)	3	2.25	2.25	2.25	2.25
	$A_{Z.T}^{ m min}$	1.56	0.44	0.5	0.57	1.15
A_{v}^{a}	adop (cm ²)	11	11	11	11	11
N^{bre}	/par face	7HA10	7HA10	7HA10	7HA10	7HA10
St	Zone courante	10	10	10	10	10
(cm)	Zone d'extrémité	5	5	5	5	5
A_h^{α}	cal (cm ²)	0.5	0.38	0.45	0.42	0.33
A_h^{r}	min (cm ²)	0.6	0.45	0.45	0.45	0.45
A_h^{aa}	dop (cm ²)	5HA8	5HA8	5HA8	5HA8	5HA8
S	S _t (cm)	20	20	20	20	20

V.3.3.1. Schéma de ferraillage

On prend comme exemple le voile Vy1

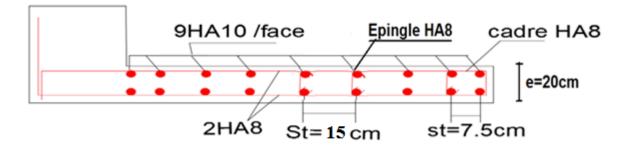


Figure V-5: Ferraillage du voile Vy1



Figure V-6 : Coupe en élévation du voile Vy1

V.3.4. Conclusion

Les éléments principaux jouent un rôle prépondérant dans la résistance et la transmission des sollicitations. Ils doivent donc, être correctement dimensionnés et bien armés. Dans la détermination des ferraillages des différents éléments principaux, il a été tenu compte des ferraillages obtenus par le logiciel de calcul (ETABS V.16) et le ferraillage minimum édicté par le RPA 99/ 2003.

Il est noté que le ferraillage minimum du **RPA** est souvent plus important que celui obtenu par les codes de calcul utilisé. Les ferraillages adoptés respectent les recommandations du **RPA** et le **BAEL**.

Chapitre VI Etude de L'infrastructure

VI.1. Introduction

Les éléments de fondation ont pour objet de transmettre au sol les efforts apportés par les éléments de la structure (poteaux, murs, voiles...). Cette transmission peut être directe (cas des semelles reposant sur le sol ou cas des radiers) ou être assuré par l'intermédiaire d'autres organes (par exemple, cas des semelles sur pieux).

La détermination des ouvrages de fondation se fait en fonction des conditions de résistance et de tassement liées aux caractères physiques ou mécaniques des sols.

Les questions abordées dans ce chapitre concernent la détermination des dimensions et le ferraillage des éléments de fondations en tant qu'éléments en béton armé.

Dans le cas le plus général, un élément de la structure peut transmettre à sa fondation (supposée horizontale) :

- ✓ Un effort normal.
- ✓ Une force horizontale, résultant par exemple de l'action d'un séisme.
- ✓ Un couple qui peut être de grandeur variable et s'exercer dans des plans différents.

VI.2. Choix du type de fondation

Le choix de type des fondations dépend essentiellement des facteurs suivants :

- La capacité portante du sol d'assise.
- > La distance entre axes des poteaux.
- Les charges transmises au sol.
- La profondeur du bon sol.

D'après le rapport du sol, il est recommandé d'ancrer la fondation de type superficielle (filante ou radier) à partir de 4 m de profondeur par rapport à la cote du terrain naturel et de prendre une contrainte admissible $\sigma_{sol} = 1.6bars$.

Les fondations sont calculées par les combinaisons d'actions suivantes :

$$\checkmark G+Q\pm E$$

$$\checkmark 0.8G\pm E$$

$$\checkmark G+Q$$

D'une manière générale les fondations doivent répondre à la relation suivante :

 $\frac{N}{S} \le \overline{\sigma}_{sol}$, avec : N : Poids total de l'ouvrage en fonctionnement.

S: Surface d'appui sur le sol.

 σ_{sol} : La capacité portante du sol.

Pour connaître le type de fondations qui convient à notre structure, on procède à la vérification des semelles isolées puis des semelles filantes. Si ces deux types de semelles ne conviennent pas ; on passe au radier général. [1]

VI.3. Vérification des semelles isolées :

La vérification à faire :
$$\frac{N}{S} \le \overline{\sigma}_{sol}$$

N.B: Pour cette vérification on prend la semelle la plus sollicitée.

 $N_{\rm sup}$: Effort normal agissant sur la semelle calculée selon la combinaison ELS ; obtenu par l'logiciel ETABS V16.

N = 989.453KN

S: La surface d'appui de la semelle.

 $\bar{\sigma}_{sol}$: Contrainte admissible du sol.

On a choisi deux poteaux de section (50×55) dans la structure où la distance entre eux est de 3.2 m dans le sens (x-x)

$$A \ge \sqrt{\frac{b \times N}{a \times \sigma_{sol}}}$$
, avec $\sigma_{sol} = 1.6 \ bars \Rightarrow A \ge \sqrt{\frac{0.55 \times 989.453}{0.50 \times 160}} = 2.60 \ \mathrm{m}$

On remarque que les semelles isolées sous poteaux sont très rapprochées dans le sens (x-x) la distance entre eux est de 3.13m, Ce qui nous a conduits à vérifier les semelles filantes.

VI.4. Vérification des semelles filantes

Choisissant une semelle filante, de largeur B et de longueur L situé sous un portique de 4 poteaux.

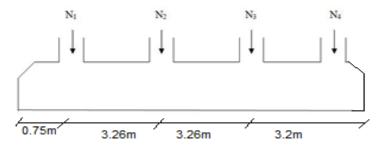


Figure VI-1: Semelle filante D

Avec:

N_i: l'effort normal provenant du poteau « i »(ELS).

$$N = \sum N_i = 3514.25 KN$$

$$\frac{N}{B \times L} \le \frac{-}{\sigma_{sol}} \Rightarrow B \ge \frac{N}{\sigma_{sol} \times L} \Rightarrow B \ge \frac{3514.25}{160 \times 10.75} = 2.04m$$

On remarque qu'il n y a pas de chevauchement entre les semelles en tenant compte des entres axes des poteaux, donc on opte pour des semelles filantes.

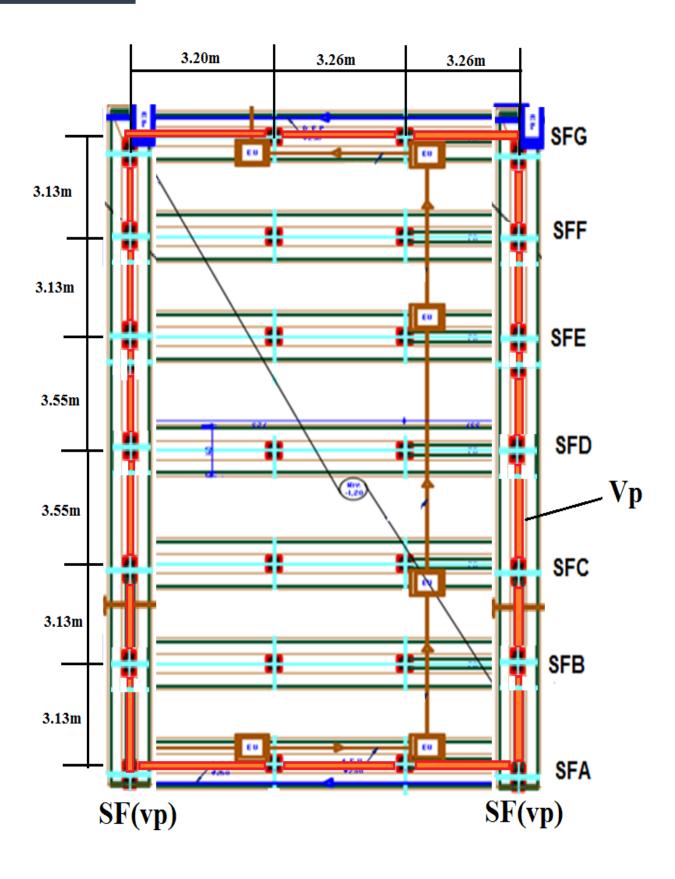


Figure VI-2: disposition des Semelles filantes

Dans le sens XX, les semelles filantes sont liaisonnées à la base par des longrines de 25/30 cm en vue d'assurer un monolithisme vis-à-vis des efforts horizontaux ainsi que de reprendre les moments de flexion dans le sens XX (M_{xx}).

Remarque : Afin de prendre en compte les divers poids des couches de terres sur la semelle filante ainsi que son poids propre, on majore l'effort de 20%, soit un ratio moyen déterminé compte tenu des calculs développés manuellement

Les résultats de dimensionnement des autres semelles filantes sont résumées dans le tableau

Tableau VI-1: Dimensionnement des différentes semelles filantes

Semelle	SFA	SFB	SFC	SFD	SFE	SFF	SFG
N(KN)	3545.39	3309.98	3524.2	4217.1	2996	3023.97	2279.46
M(KN.M)	8.96	16.28	21.06	14.84	7.61	5.64	10.22
e (m)	0.002	0.004	0.005	0.003	0.002	0.001	0.004
B(m)	2.1	2	2.1	2.5	1.8	1.8	1.4

VI.4.1. Dimensionnement de la poutre de libage

on a un poteau de dimension : b=50 cm donc $b_0=b+10$ cm =60 cm

$$\frac{L_{\text{max}}}{9} < h_0 < \frac{L_{\text{max}}}{6} \rightarrow \frac{3.26}{9} = 0.36 < h_0 < \frac{3.26}{6} = 0.54$$

• Hauteur totale de la semelle filante (ht)

$$h_t \ge \frac{B-b}{4} + 0.05 = \frac{2.5-0.5}{4} + 0.05 = 0.55$$

On prend : $h_t = 0.55 \text{ m}$

 $h_0 = max (h_0, h_t)$ On prend : $h_0 = 0.55m$

• Hauteur du glacis

$$h_1 \ge 15 \text{ cm}$$

 $h_1 \ge 6\emptyset_1 + 6 \text{ cm} = 12 \text{cm}$

On prend $h_1 = 20$ cm

Avec

B : largeur de la semelle filante

h₀=50cm h₀=50cm ht= 55cm

Figure VI-3: Coupe transversale d'une semelle filante

 h_t : hauteur totale de la semelle filante

 b_0 : largeur de la poutre de libage

 h_0 : hauteur de la poutre de libage

*h*₁: hauteur du glacis

VI.4.1.1. Calcul de l'effort sollicitant la semelle filante (SFD) à l'ELU

$$q_{ref} = \frac{_{1.2 \times N_u}}{_{B \times (L-2 \times e)}} \rightarrow q_{ref} = \frac{_{1.2 \times 4836.51}}{_{2.5 \times (10.75-2 \times 0.003)}} = 216.07 \text{ KN/m}^2$$

$$P_u = q_{ref} \times B = 216.07 \times 2.5 = 540.19 \text{ KN/ml} \text{ (Réaction du sol)}$$

Pu représente la réaction linéique du sol sous la semelle filante dont les effets de flexion sont supportés par la poutre de rigidité (Libage)

Les autres résultats des efforts sollicitant des semelles filantes sont résumés dans le tableau

Tableau VI-2Les efforts sollicitant des différentes semelles filantes à l'ELU

Semelle	SFA	SFB	SFC	SFD	SFE	SFF	SFG
N (KN)	3497.4	4544.04	4673.53	5803.81	4112.90	3709.5	3135.48
M (KN.m)	12.42	22.51	32.75	20.58	4.54	7.22	14.26
e (m)	0.003	0.004	0.007	0.003	0.001	0.001	0.004
q _{ref} (KN/m ²)	130.23	169.20	174.12	216.07	153.06	138.05	116.75
P _u (KN/ml)	260.46	423	435.3	540.19	382.65	345.12	291.87

VI.4.1.2. Ferraillage transversal de la semelle

$$\begin{split} A_u &\geq \frac{P_u \times (B-b)}{8 \times d \times \overline{\sigma}_a} \; avec: \; \overline{\sigma}_a = 3480 \; bar \, , \; d = 50 \; cm \, , \; b = 50 \; cm \\ A_u &\geq \frac{540.19 \times (2.5-0.5) \times 10^{-3}}{8 \times 0.5 \times 348} = 7.75 \; cm^2/ml \\ Choix: 6HA14 = 9.24 \; cm^2, \, e = 20 \; cm \end{split}$$

• Aciers de répartition

$$A_r = \frac{A_t}{3} = \frac{9.24}{3} = 3.08 \text{ cm}^2 \text{ Choix} : 5HA10 = 3.93 \text{ cm}^2/\text{ml},$$

VI.4.1.3. Dimensionnement et calcul des semelles sous voiles dans le sens x-x

Pour les voiles dans le sens x-x dont une partie sort des limites des semelles filantes disposées dans le sens y-y, on dimensionnera des semelles sous voile avec un débord de 0.75m.

Soit le voile Vx3=1.4 m, avec

$$N = 217.58 \text{ KN}$$
; $M = 2.23 \text{ KN.m}$; $e = 0.01 \text{ m}$

$$B \ge \frac{1.2N}{(L-2\times e)\times \overline{\sigma_2}} \to \frac{261.09}{(2.15-2\times 0.01)\times 160} = 0.76m$$
, on prend $B = 1$ m.

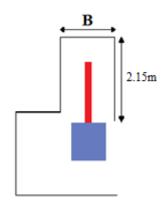


Figure VI-4: Semelle sous voile

$$\begin{split} & \bullet \textbf{Ferraillage} \\ & q_{ref} = \frac{281.41}{1 \times (2.15 - 2 \times 0.06)} = 139.86 \text{KN/m}^2 \\ & P_u = q_{ref} \times B = 139.86 \text{KN/ml} \\ & A_u \geq \frac{P_u \times (B - b)}{8 \times d \times \overline{\sigma_a}} = \frac{0.13986 \times (1 - 0.2)}{8 \times 0.2 \times 348} = 2 \text{cm}^2/\text{ml} \end{split}$$

Choix: $4HA12 = 4.52 \text{ cm}^2/\text{ml}$; e = 20 cm

•Aciers de répartition

$$A_r = \frac{A_t}{3} = \frac{4.52}{3} = 1.5 \text{ cm}^2 \text{ Choix: } 4HA8 = 2.01 \text{ cm}^2/\text{ml} ; e = 20 \text{ cm}$$

VI.4.1.4. Dimensionnement et calcul des semelles sous voile périphérique

La charge de voile sur la semelle :

$$P_v = h \times e \times \gamma b \times 1 = 4 \times 0.2 \times 25 \times 1 = 20KN$$

Avec
$$X = \frac{(B-e)}{2} = \frac{B}{2} - \frac{e}{2}$$

e=20cm

La charge de Remblai sur la semelle :

$$N_R = h \times x \times \gamma s \times 1 =$$

$$18 \times 4 \times \left(\frac{B}{2} - 0.1\right) = 72 \times \left(\frac{B}{2} - 0.1\right)$$

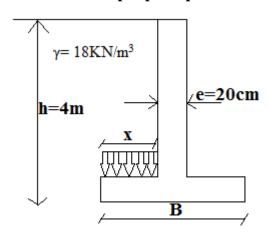


Figure VI-5: Semelle sous voile périphérique

$$\begin{split} &M_G = N_R \times \left(\frac{X}{2} + 0.1\right) = N_R \times \left(\frac{B}{4} - 0.05 + 0.1\right) = N_R \times \left(\frac{B}{4}\right) \\ &M_G = 72 \times \left(\frac{B}{2} - 0.1\right) \times \left(\frac{B}{4}\right) \end{split}$$

A partir du modèle de Meyerhof, le critère de résistance :

$$q_{ref} = \frac{N_R}{(B-2e)\times 1} \le \overline{\sigma}_S = avec \quad e = \frac{M_G}{N_R} = \frac{X}{2} + 0.1 = \frac{B}{4} - 0.05 + 0.1 \simeq \frac{B}{4} \quad \to \ e \simeq \frac{B}{4}$$

$$q_{ref} = \frac{72(\frac{B}{2} - 0.1)}{B(1 - \frac{1}{2}) \times 1} \le \overline{\sigma}_{S} \qquad \leftrightarrow \qquad \frac{36B - 7.5}{B \times 0.5} \le \overline{\sigma}_{S} \qquad \leftrightarrow \qquad B \ge -0.17$$

Soit B=1m

$$h_t \ge \frac{B-e}{4} + 0.05 = \frac{1-0.2}{4} + 0.05 = 0.25 \text{ m}$$

On prend : $h_t = 0.25 \text{ m}$

• Ferraillage

on a:
$$d = 0.9h_t = 0.9*0.25=0.225m$$

$$A_u \ge \frac{N_R \times (B - e)}{8 \times d \times \overline{\sigma_a}} = \frac{28.8 \times 10^{-3} \times (1 - 0.2)}{8 \times 0.225 \times 348} = 0.36cm^2/ml$$

Choix : $4HA10 = 3.14 \text{ cm}^2/\text{ml}$

Aciers de répartition

$$A_r = \frac{A_t}{3} = \frac{3.14}{3} = 1.04 \text{ cm}^2$$

Choix: $3HA8 = 1.51 \text{ cm}^2/\text{ml}$

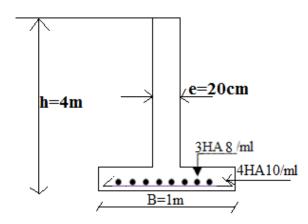


Figure VI-6 : schéma de ferraillage de la semelle sous voile périphérique

VI.4.1.5. Vérification de la rigidité flexionnelle de la semelle

$$\begin{split} L_e &= \sqrt[4]{\frac{4\times E_c\times I_{xx}}{K_z\times B}} \text{ avec } E_c = 32\times 10^6, \ B=\ 2.5 \ m \,, \end{split}$$
 pour un_sol moyen_ $K=4\times 10^4 \text{KN/m}^3$

$$\begin{split} L_e &= \sqrt[4]{\frac{4 \times 32 \times 10^6 \times 0.034}{4 \times 10^4 \times 2.5}} = 2.56 \text{ m} \\ L_{max} &< \frac{\pi \times L_e}{2} + b \ \rightarrow 3.26 < \frac{3.14 \times 2.56}{2} + \ 2.5 = 5.36 \text{ m} \end{split}$$

$$L_{\text{max}} < \frac{\pi \times L_e}{2} + b \rightarrow 3.26 < \frac{3.14 \times 2.56}{2} + 2.5 = 5.36 \text{ m}$$

La semelle est donc rigide.

VI.4.1.6. Calcul des sollicitations des poutres de libage

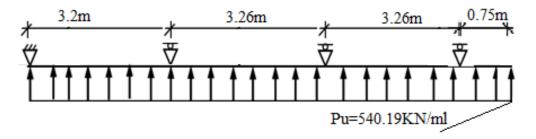


Figure VI-7 : Schéma statique de la poutre de libage

Les diagrammes des moments et efforts tranchant à l'ELU dans la poutre de libage sont représentés ci-dessous

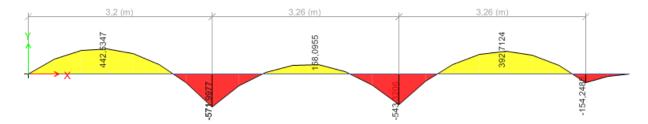


Figure VI-8: Diagramme des moments dans la poutre de libage à l'ELU

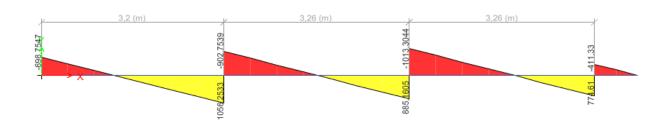


Figure VI-9: Diagramme des efforts tranchants dans la poutre de libage à l'ELU

Les résultats des moments maximales et effort tranchant maximal sont :

$$M_a = 571.99 \text{ KN. m}; M_t = 442.53 \text{ KN. m}; V_u = 1056.25 \text{ KN}$$

VI.4.1.7. Calcul du ferraillage

A) Ferraillage de la partie inferieure

On a :
$$f_{c28} = 25$$
 Mpa , $F_e = 400$ Mpa, $f_{bu} = 14.2$ Mpa (ELU) , ${\pmb \sigma}_a = \!\! 348$ Mpa

$$\mu_{bu} = \frac{M_{max}}{b_0 \times d \times \sigma_a} = \frac{571.99 \times 10^{-3}}{0.6 \times 0.5^2 \times 14.2} = 0.268 \rightarrow pivot \ b$$

$$\mu_{bu} < \mu_l \rightarrow A' = 0 ~~\alpha = 0.399 \, \text{, } z = 0.420 \; \text{m}$$

$$A_u \ge \frac{M_{max}}{z \times \sigma_a} = \frac{571.99 \times 10^{-3}}{0.420 \times 348} = 39.13 \text{ cm}^2$$

B) Ferraillage de la partie supérieure

On a :
$$f_{c28} = 25$$
 Mpa , $F_e = 400$ Mpa, $f_{bu} = 14.2$ Mpa (ELU) , ${\pmb \sigma}_a = \!\! 348$ Mpa

$$\mu_{bu} = \frac{M_{max}}{b_0 \times d^2 \times \sigma_a} = \frac{442.53 \times 10^{-3}}{0.6 \times 0.5^2 \times 14.2} = 0.207 \rightarrow pivot \ B$$

$$\mu_{bu} < \mu_l \rightarrow A' = 0$$
 $\alpha = 0.294$, $z = 0.441$ m

$$A_{u} \ge \frac{M_{max}}{z \times \sigma_{a}} = \frac{442.53 \times 10^{-3}}{0.441 \times 348} = 28.83 \text{ cm}^{2}$$

C) Ferraillage vis à vis de l'effort tranchant

$$\tau_{\rm u} = \frac{v_{\rm u}}{b_0 \times d} = \frac{1056.25 \times 10^{-3}}{0.6 \times 0.5} = 3.52 \,\text{Mpa}, \ f_{\rm tk} = 2.1 \,\text{Mpa}$$

$$\phi_{\rm t} \le \min\left(\frac{h}{35}; \frac{b_o}{10}; \phi_{\rm l}\right) \Rightarrow \phi_{\rm tmin} \le \min\left(15.71, 60, 10\right) mm$$

$$\Rightarrow \phi_{\rm t} \le 10 mm$$

Espacement

$$St \le \min\left(\frac{h}{4}; 12\phi_l\right) \Rightarrow St \le 12cm$$

 $\Rightarrow St = 10cm....zone.nodale$
 $St \le \frac{h}{2}; St \le 27.7cm \Rightarrow St = 25cm...zone.courante$

• Les armatures de peau

En vertu des préscriptions du CBA-93, on prend 2HA12=2.26cm²

Les resultats de calcul des semelles à l'ELU sont récapitulés dans le tableau suivant

Tableau VI-3: Résultats de ferraillage à l'ELU des différentes semelles filantes.

		Ferraillage		Ferrail	Ferraillage de la poutre d		
		transversal (cm ²)			libage (cm ²)		
Semelle	B(m)	A ^{trans}	A ^{transR}	A ^{sup}	A^{inf}	A^{t}	
		(cm ²)	(cm ²)	(cm ²)	(cm ²)	(cm ²)	
SFA	2.1	3.32	1.5	13.17	17.35	6.28	
SFB	2	5.69	2.26	21.97	29.37	6.28	
SFC	2.1	5.55	2.26	22.70	30.34	6.28	
SFD	2.5	7.75	3.08	28.83	39.13	6.28	
SFE	1.8	4.82	2.26	19.74	26.26	6.28	
SFF	1.8	4.35	1.5	17.66	23.42	6.28	
SFG	1.4	3.49	1.5	14.83	19.55	6.28	

• Le même travail sera effectué pour le ferraillage des différentes semelles filantes à l'ELA, les résultats sont résumés dans le tableau suivant

Tableau VI-4: Résultats de ferraillage à l'ELA des différentes semelles filantes.

		Ferraillage de la			poutre de	
		transver	rsal (cm ²)	libage (cm ²)		
Semelle	B(m)	A ^{trans}	A ^{transR}	A ^{sup}	A^{inf}	A ^t
		(cm ²)	(cm ²)	(cm ²)	(cm ²)	(cm ²)
SFA	2.1	3.82	1.27	13.04	17.11	6.28
SFB	2	4.43	1.47	14.36	18.92	6.28
SFC	2.1	5.42	1.8	18.77	24.80	6.28
SFD	2.5	6	2	18.43	23.87	6.28
SFE	1.8	4.76	1.58	16.55	21.86	6.28
SFF	1.8	3.47	1.15	11.98	15.71	6.28
SFG	1.4	3.48	1.16	12.65	16.59	6.28

Choix: On prend le plus défavorable entre l'ELU et L'ELA.

Tableau VI-5: Choix de ferraillage des différentes semelles filantes.

Semelle	A _{Sup P.L} (cm ²)	A _{Inf P.L} (cm ²)	A _{trans semelle} (cm ²)	$A_{transRep}$ (cm ²)
SFA	5HA20=15.71	10HA16=20.11	4HA12=4.52	5HA8=2.51
SFB	5HA25=24.54	5HA25+5HA14=32.24	6HA12=6.79	5HA8=2.51
SFC	5HA25=24.54	5HA25+5HA14=32.24	6HA12=6.79	5HA8=2.51
SFD	5HA25+5HA14=32.24	5HA25+5HA20=40.25	6HA12=6.79	5HA10=3.93
SFE	10HA16=20.11	5HA25+5HA14=32.24	6HA12=6.79	5HA8=2.51
SFF	10HA16=20.11	5HA25=24.54	4HA12=4.52	5HA8=2.51
SFG	5HA20=15.71	10HA16=20.11	4HA12=4.52	5HA8=2.51

VI.4.1.8. Schéma de ferraillage

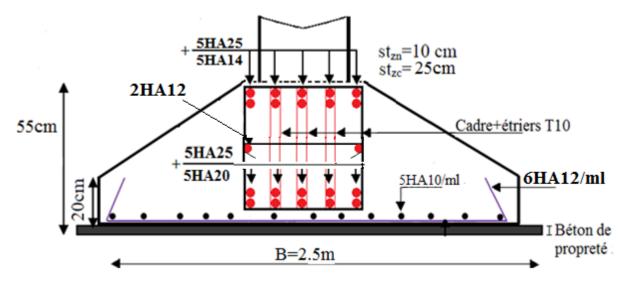


Figure VI-10 : Exemple de schéma de ferraillage de la semelle filante D

VI.5. Les longrines

VI.5.1. Pré dimensionnement des longrines

Le RPA 99/2003, exige les conditions suivantes :

- Les points d'appuis doivent être solidarisés, par un réseau bidirectionnel de longrines, pour s'opposer au déplacement relatif de ces points d'appuis dans le plan horizontal.
- Les dimensions minimales de la section transversale des longrines en site S3 sont : 25x30 cm².
- Les longrines doivent être calculées pour résister à la traction, sous l'action d'une force égale à

 $F = \frac{N}{\alpha} \ge 20$ KN avec N : Force égale à la valeur maximale des charges verticales de gravité apportées par les points d'appui solidarisés.

- α : Coefficient fonction de la zone sismique et de la catégorie de site considérée.
- Le ferraillage minimum doit être de 0.6% de la section avec des cadres dont l'espacement est inférieur au min (20 cm; 15Ø₁).

VI.5.2. Vérification

Nous avons N=1366.194KN, d'après le RPA on a: α =12 en zone II, site S3.

 $F = \frac{1366.194}{12} = 113.84 \text{ KN D'où} : F > 20 \text{ KN}$

VI.5.3. Ferraillage

A) Armatures longitudinales

$$\begin{split} A_u &= \frac{N_u \times \gamma_s}{f_e} = \frac{0.11384 \times 1.15}{400} = 3.27 \text{ cm}^2 \; . \\ &\frac{L_{max}}{15} < h \quad < \frac{L_{max}}{10} \to \frac{326}{15} = 21.73 < h \quad < \frac{326}{10} = 32.6 \end{split}$$

on choisit une section de : (25×30) cm² \rightarrow $A_{min} = 0.6\% \times 25 \times 30 = 4.5$ cm² Choix : 6HA12=6.79 cm².

B) Armatures transversales

 $S_t \le \min(20 \text{ cm}, 15\emptyset) \to \text{on choisit un cadre et un étrier } \emptyset 8, \text{ pour un espacement de 15 cm}.$

• **Vérification :** Condition de non fragilité :
$$B=750~cm^2 \leq \frac{A \times f_e}{f_{t28}} = \frac{6.79 \times 400}{2.1} = 1293.33~cm^2$$

C) Schéma de ferraillage

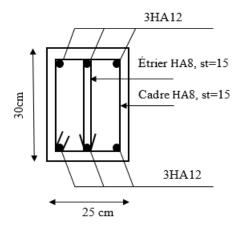


Figure VI-11: Schéma de ferraillage de la longrine

VI.6. Conclusion

L'étude de l'infrastructure est une étape importante de toute étude partant du choix du type de fondations qui dépendent de plusieurs paramètres liés aux caractéristiques du sol en place ainsi que les caractéristiques géométriques de la structure, allant jusqu'au choix des armatures.

Liste des figures

Chapitre I Généralités	page
Figure I-1 : Diagramme des contraintes-déformations du béton	3
Figure I-2 : Diagramme contrainte déformation de l'acier.	5
Charitus II Dué dimansian noment des éléments	
Chapitre II Pré dimensionnement des éléments	
Figure II-1 : Plancher à corps creux	7
Figure II-2: Coupe transversale d'une poutrelle	8
Figure II-3: Dalle sur quatre appuis	8
Figure II-4: Coupe de voile en élévation	10
Figure II-5: Schéma de l'escalier	10
Figure II-6: Schéma de la volée	11
Figure II-7: Schéma de la volée2	11
Figure II-8: Schéma de l'acrotère	12
Figure II-9: Surface afférente de poteau P1	18
Figure II-10 : Surface afférente de poteau P2	21
Chapitus III Etudo dos áléments secondoires	
Chapitre III Etude des éléments secondaires	
Figure III-1: Disposition des poutrelles	27
Figure III-2: Diagramme des moments à deux travées	28
Figure III-3: Diagrammes des moments à plusieurs travées	28
Figure III-4: Diagramme des efforts tranchants à deux travées	29
Figure III-5: Diagramme des efforts tranchants à plusieurs travées	29
Figure III-6: Schéma de ferraillage de la dalle de compression	42
Figure III-7: Dalle sur quatre appuis panneauDp1	43
Figure III-8: Schéma de ferraillage de panneau de dalle DP1	46
Figure III-9: Schéma de L'acrotère	47
Figure III-10: Les sollicitations sur L'acrotère	47
Figure III-11: Schéma de ferraillage de L'acrotère	50
Figure III-12: Schéma statique de la poutre de chainage	51

Figure III-13: Schéma de ferraillage de la poutre de chainage	53
Figure III-14: Schéma statique de la poutre de chainage	53
Figure III-15: Schéma de ferraillage de la poutre de chainage	55
Figure III-16: Schéma d'escalier courant	55
Figure III-17: Schéma statique de l'escalier courant	56
Figure III-18: Schéma de ferraillage de l'escalier courant	60
Figure III-19: Schéma statique de la poutre palière	60
Figure III-20: Schéma de ferraillage de la poutre palière	63
Figure III-21: Ferraillage de la dalle cas charge répartie	66
Figure III-22: Schéma de ferraillage de C la dalle cas charge concentrée	70
Chapitre IV Etude dynamique	
Figure IV-1: Disposition des voiles	74
Figure IV-2 : Vue en plan	74
Figure IV-3 : Vue de face	74
Figure IV-4: Premier mode de déformation (translation suivant Y) (T=0,68sec)	75
Figure IV-5: Deuxième mode de déformation (translation suivant X) (T=0,59sec)	75
Figure IV-6: Troisième mode de déformation (rotation suivant z) (T= 0,55sec)	75
Figure IV-7: Réponse spectrale de la structure	76
Chapitre V Etude des éléments structuraux	
Figure V-1: Zone nodale	82
Figure V-2: Dispositions constructive des portiques	90
Figure V-3: Les moments résistant dans la zone nodale	95
Figure V-4: Schéma d'un voile plein	105
Figure V-5: Ferraillage du voile Vy1	111
Figure V-6 : Coupe en élévation du voile Vy1	111
Chapitre VI Etude de l'infrastructure	
Figure VI-1: Semelle filante D	113
Figure VI-2: disposition des Semelles filantes	114
Figure VI-3 : Coupe transversale d'une semelle filante	115
Figure VI-4: Semelle sous voile	116
Figure VI-5: Semelle sous voile périphérique	117
Figure VI-6 : schéma de ferraillage de la semelle sous voile périphérique	118

Figure VI-7 : Schéma statique de la poutre de libage	118
Figure VI-8: Diagramme des moments dans la poutre de libage à l'ELU	119
Figure VI-9: Diagramme des efforts tranchants dans la poutre de libage à l'ELU	119
Figure VI-10 : Exemple de schéma de ferraillage de la semelle filante D	122
Figure VI-11: Schéma de ferraillage de la longrine	123

Liste des tableaux

Chapitre I Généralités	page
Tableau I-1: fe en fonction du type d'acier	4
Chapitre II Pré dimensionnement des éléments	
Tableau II-1: Evaluation des charges dans le plancher terrasse inaccessible	13
Tableau II-2: Evaluation des charge dans le plancher terrasse accessible	14
Tableau II-3: Evaluation des charges dans le plancher d'étages courant	14
Tableau II-4: Evaluation des charges de la dalle pleine	15
Tableau II-5: Evaluation des charges dans les murs extérieurs	15
Tableau II-6: Evaluation des charges de la volée1	16
Tableau II-7: Evaluation des charges de la volée2	16
Tableau II-8: Evaluation des charges du palier	17
Tableau II-9: Surcharges d'exploitation	17
Tableau II-10: Descente de charge de poteau P1	18
Tableau II-11: Descente de charge de poteau P2	21
Tableau II-12: Vérification des poteaux à la compression simple	
Tableau II-13: Vérification des poteaux au flambement	25
Chapitre III Etude des éléments secondaires	
Tableau III-1: Les différentes types de poutrelles	30
Tableau III-2: Les différentes charges sur les poutrelles	30
Tableau III-3: Les sollicitations des poutrelles du plancher habitation	32
Tableau III-4: Les sollicitations des poutrelles du plancher terrasse inaccessible	32
Tableau III-5: Les sollicitations des poutrelles du plancher terrasse inaccessible	33
Tableau III-6: Ferraillage des poutrelles des plancher terrasse accessible et inaccessible	35
Tableau III-7: Ferraillage poutrelles du plancher habitation	35
Tableau III-8 : Vérification de l'état limite de compression de béton plancher terrasse inaccessible	38
Tableau III-9: Vérification de l'état limite de compression du béton plancher terrasse accessible	38
Tableau III-10: Vérification de l'état limite de compression du béton plancher habitation	ı38

Tableau III-11: Vérifications de la fléché pour plancher habitation étage7 et 841
Tableau III-12 : Vérifications de la fléché pour plancher terrasse inaccessible 141
Tableau III-13 : Vérifications de la fléché pour plancher terrasse inaccessible 241
Tableau III-14: Schémas de ferraillage des poutrelles
Tableau III-15: Ferraillage de panneau DP1en travée et en appuis44
Tableau III-16: Vérification des contraintes en travée
Tableau III-17 : Vérification des contraintes en appuis
Tableau III-18: Différentes combinaisons à utiliser47
Tableau III-19: Ferraillage de la poutre de chainage51
Tableau III-20: Vérification de la contrainte dans le béton
Tableau III-21: Ferraillage de la poutre de chainage54
Tableau III-22: Vérification de la contrainte dans le béton
Tableau III-23: Vérification de contrainte de béton en travée
Tableau III-24: Vérification de contrainte de béton en appuis59
Tableau III-25: Ferraillage de la poutre palière61
Tableau III-26: Ferraillage de poutre palière en flexion et en torsion62
Tableau III-27: Vérification de la compression dans la poutre palière62
Tableau III-28: Ferraillage de la dalle d'ascenseur cas charge répartie64
Tableau III-29: Vérification de la contrainte dans le béton
Tableau III-30: Ferraillage de la dalle cas charge concentrée68
Tableau III-31: Vérification de la contrainte dans le béton69
Chapitre IV Etude dynamique
Tableau IV-1: Période de vibration et taux de participation des masses modales75
Tableau IV-2: Interaction sous charges verticales77
Tableau IV-3: Interactions sous charge horizontales77
Tableau IV-4: Vérification de l'effort tranchant à la base78
Tableau IV-5 : Vérification de l'effort normal réduit des poteaux78
Tableau IV-6: Vérification de déplacement relatif dans le sens (X-X) et (Y-Y)78
Tableau IV-7: Vérification de l'effet P-∆ dans le sens (X-X) et (Y-Y)79
Chapitre V Etude des éléments structuraux
Tableau V-1: Armateurs minimales et maximales dans les poteaux rectangulaires82
Tableau V-2: Les sollicitations dans les poteaux83
Tableau V-3: Ferraillage des poteaux

Tableau V-4: Calcul des armatures transversales pour les poteaux	84
Tableau V-5: Vérifications du flambement des poteaux	86
Tableau V-6: Vérifications de la contrainte dans le béton pour poteaux	86
Tableau V-7 : Vérifications aux sollicitations tangentes pour les poteaux	87
Tableau V-8: Schémas du ferraillage des poteaux	88
Tableau V-9: Ferraillages des poutres principales et secondaires	91
Tableau V-10 : Vérifications des contraintes tangentielles	94
Tableau V-11: Vérifications des armatures longitudinales au cisaillement	94
Tableau V-12: Vérifications de l'état limite de compression du béton	94
Tableau V-13: Vérification de la flèche pour les poutres	95
Tableau V-14: Les moments résistant dans les poteaux	96
Tableau V-15: Les moments résistant dans les poutres	96
Tableau V-16: Vérifications de la zone nodale (sens principale)	97
Tableau V-17: Vérifications de la zone nodale (sens secondaire)	97
Tableau V-18: Schéma de ferraillage des poutres principales et secondaires	98
Tableau V-19: Les sollicitations revenant aux voiles Vx1, Vx2, Vx3Vy1, Vy2,Vy3	104
Tableau V-20: Ferraillage du voile Vx1	106
Tableau V-21: Ferraillage du voile Vx2	107
Tableau V-22 : Ferraillage du voile Vx3	108
Tableau V-23: Ferraillage du voile Vy1	108
Tableau V-24: Ferraillage du voile Vy2	109
Tableau V-25: Ferraillage du voile Vy3	110
Chapitre VI Etude de l'infrastructure	
Tableau VI-1: Dimensionnement des différentes semelles filantes	115
Tableau VI-2Les efforts sollicitant des différentes semelles filantes à l'ELU	116
Tableau VI-3: Résultats de ferraillage à l'ELU des différentes semelles filantes	120
Tableau VI-4: Résultats de ferraillage à l'ELA des différentes semelles filantes	121
Tableau VI-5: Choix de ferraillage des différentes semelles filantes	121

Table des matières

Introduction générale

Chapit	re I	Généralités	0
I.1.	Intro	oduction	1
I.2.	Prés	entation de l'ouvrage	1
I.3.	Cara	actéristiques géométriques de la structure	1
I.4.	Prés	entation de la structure	1
I.4	.1.	Eléments structuraux	1
I.5.	Règ	lements et norme utilisée	2
I.6.	Cara	actéristiques du sol d'assise	2
I.7.	Cara	actéristiques mécaniques des matériaux	2
I.7	' .1.	Le béton	2
I.7	<i>'</i> .2.	L'acier	4
I.8.	Con	clusion	6
Chapit	re II	Pré dimensionnement des éléments	6
II.1.	Intro	oduction	7
II.2.	Les	Planchers:	7
II.	2.1.	Planchers à corps creux	7
II.	2.2.	Les des dalles pleines	8
II.3.	Pré	dimensionnement des poutres	9
II.	3.1.	Les poutres principales	9
II.	3.2.	Les poutres secondaires	9
II.4.	Pré	dimensionnement des voiles	9
II.	4.1.	Définition	9
II.5.	Pré	dimensionnement des escaliers	10
II.:	5.1.	Définitions	10
II.	5.2.	Dimensionnement	10
II.6.	Asce	enseur	12
II.7.	Pré	dimensionnement de l'acrotère	12
II.8.	Pré	dimensionnement des poteaux	12
II.9.	Eval	luation des charges et surcharges sur les planchers	13
II.	9.1.	Terrasse inaccessible	13
II.	9.2.	Terrasse accessible	14
II.	9.3.	Plancher des étages courants	14
II.	9.4.	Dalle pleine	15

II.9.5.	Les murs extérieurs (double parois en brique creuse)	15
II.9.6.	Les escaliers	16
II.9.7.	Surcharge d'exploitation	17
II.10. De	escente de charge	17
II.10.1.	La loi de dégression des charges d'exploitation	18
II.10.2.	Le poteau le plus sollicité à la cage d'escalier P2	21
II.10.3.	Les vérifications nécessaires pour le poteau P2	24
II.10.4.	Le poteau le plus sollicité à la cage d'escalier P2	26
II.11. Co	onclusion	26
Chapitre III	Etude des éléments secondaires	26
III.1. In	troduction	27
III.2. Le	es planchers	27
III.2.1.	Planchers à corps creux :	27
III.2.2.	Planchers à dalles pleines :	43
III.3. Et	ude de l'acrotère	46
III.3.1.	Hypothèses de calcul	46
III.3.2.	Evaluation des charges	46
III.3.3.	Calcul des sollicitations	47
III.3.4.	Ferraillage	47
III.4. Et	ude la poutre de chainage	50
III.4.1.	Dimensionnement (RPA 99/2003 article 9.3.3) [1]	50
III.4.2.	Sollicitations	51
III.4.3.	Ferraillage	51
III.4.4.	Sollicitations	53
III.4.5.	Ferraillage	54
III.5. Ét	ude des escaliers :	55
III.5.1.	Étude de type d'escalier courant	55
III.5.2.	Etude de la poutre palière	60
III.6. Et	rude de l'ascenseur	63
III.6.1.	Caractéristiques de l'ascenseur : Annexe (4)	63
III.6.2.	Cas de charge répartie	64
III.6.3.	Cas d'une charge concentrée :	66
Chapitre IV	Etude dynamique	70
IV.1. In	troduction:	71
IV.2. M	éthodes de calcul	71
IV.2.1.	Méthode statique équivalente	71
IV.2.2.	Méthode d'analyse dynamique	73

IV.3. Ju	ustification de l'interaction voile-portique	77
IV.3.1.	Sous charges verticales	77
IV.3.2.	Sous charges horizontales	77
IV.4. V	érification de la résultante de la force sismique	77
IV.5. V	érification de l'effort normal réduit	78
IV.6. Ju	ustification vis-à-vis de déplacement : (Article 4.4.3) RPA 99/V2003	78
IV.7. Ju	ustification vis-à-vis de l'effet P-Δ : RPA99/V2003 (Article 5.9)	79
IV.8. C	onclusion	80
Chapitre V	Etude des éléments structuraux	80
V.1. Étu	de des poteaux	81
V.1.1.	Recommandations du RPA99/2003	81
V.1.2.	Les sollicitations dans les poteaux	83
V.1.3.	Ferraillage	83
V.1.4.	Armatures transversales	84
V.1.5.	Vérifications nécessaire	85
V.2. Etu	de des poutres	89
V.2.1.	Ferraillage	89
V.2.2.	Vérification des zones nodales	95
Schéma	de ferraillage des poutres	98
V.3. Etu	de des voiles	102
V.3.1.	Recommandation du RPA 99/2003	102
V.3.2.	Calcul des sollicitations revenant aux voile	103
V.3.3.	Ferraillage	105
V.3.4.	Conclusion	111
Chapitre VI	Etude de L'infrastructure	111
VI.1. Ir	ntroduction	112
VI.2. C	hoix du type de fondation	112
VI.3. V	érification des semelles isolées :	112
VI.4. V	'érification des semelles filantes	113
VI.4.1.	Dimensionnement de la poutre de libage	115
VI.5. L	es longrines	122
VI.5.1.	Pré dimensionnement des longrines	
VI.5.2.	Vérification	122
	Ferraillage	123
VI.5.3.	1 offuniugo	123
	onclusion	

Annexes

Bibliographie

Conclusion Générale

Conclusion générale

Notre projet s'est effectué à base de deux critères, à savoir la résistance des éléments porteurs d'un bâtiment et la stabilité de sa forme vis-à-vis des différentes sollicitations pour assurer la sécurité des usagers et l'adaptation des solutions économiques.

Après avoir étudié ce projet, on a constaté quelques points:

- La bonne disposition des voiles, est un facteur beaucoup plus important que la quantité des voiles à placer à la structure, elle a un rôle déterminant dans le comportement de cette dernière vis-à-vis du séisme.
- La satisfaction des conditions de vérification des moments résistants en zones nodales, permet de situer le risque de formation des rotules plastiques dans les poutres et non dans les poteaux.
- La vérification de l'interaction entre les voiles et les portiques vis-à-vis des charges verticales et horizontales est indispensable et dans la plus part des cas est déterminante pour le dimensionnement des éléments structuraux.

L'étude de ce projet est notre première vraie épreuve avant de s'insérer dans la vie active, ceci nous a permis d'améliorer nos connaissances des problèmes de la conception et l'étude des ossatures en béton armé ainsi que d'élargir nos connaissances dans le domaine pratique.

Nous avons aussi pris conscience de l'évolution considérable du Génie Civil sur tous les niveaux, en particulier dans le domaine de l'informatique (logiciels de calcul), comme exemple, nous citerons Le logiciel ETABS V16 que nous avons appris à appliquer durant la réalisation de ce projet.

En fin, nous souhaitons que ce modeste travail va être d'un grand apport pour les promotions à venir.

Bibliographie

Bibliographie

- ❖ [1] RPA99 « Règles parasismiques Algériennes 1999/ver 2003 ».
- ❖ [2] CBA 93 « Code du béton armé, 1993 ».
- ❖ [3] BAEL91/99« Béton armé aux états limites, 1997/ver1999».
- ❖ [4] DTR BC 2.2« Charges permanentes ET surcharges d'exploitation ; édition 1989 ».
- ❖ [5] DTR BC 2.33.1 « Règles de calcul des fondations superficielles ; édition 1992 ».
- * Cahier de cours du cursus.
- Logiciels utilisés :
 - > ETABS Version16.
 - > AutoCAD.
 - > Socotec.

Annexes

Annexe (I):
Dalles rectangulaires uniformément chargées articulées sur leur contour

$\alpha = L_x$	es rectangulaires ui		ELS 1	
$\frac{L_{Y}}{L_{Y}}$	μχ	μ_{y}	μ _x	μ_{y}
0.40	0.1101	0.2500	0.0121	0.2854
0.41	0.1088	0.2500	0.1110	0.2924
0.42	0.1075	0.2500	0.1098	0.3000
0.43	0.1062	0.2500	0.1087	0.3077
0.44	0.1049	0.2500	0.1075	0.3155
0.45	0.1036	0.2500	0.1063	0.3234
0.46	0.1022	0.2500	0.1051	0.3319
0.47	0.1008	0.2500	0.1038	0.3402
0.48	0.0994	0.2500	0.1026	0.3491
0.49 0.50 0.51 0.52	0.0980 0.0966 0.0951 0.0937	0.2500 0.2500 0.2500 0.2500 0.2500	0.1013 0.1000 0.0987 0.0974	0.3580 0.3671 0.3758 0.3853
0.53	0.0922	0.2500	0.0961	0.3949
0.54	0.0908	0.2500	0.0948	0.4050
0.55	0.0894	0.2500	0.0936	0.4150
0.56	0.0880	0.2500	0.0923	0.4254
0.57	0.0865	0.2582	0.0910	0.4357
0.58	0.0851	0.2703	0.0897	0.4456
0.59	0.0836	0.2822	0.0884	0.4565
0.60	0.0822	0.2948	0.0870	0.4672
0.61	0.0808	0.3075	0.0857	0.4781
0.62	0.0794	0.3205	0.0844	0.4892
0.63	0.0779	0.3338	0.0831	0.5004
0.64	0.0765	0.3472	0.0819	0.5117
0.65	0.0751	0.3613	0.0805	0.5235
0.66	0.0737	0.3753	0.0792	0.5351
0.67	0.0723	0.3895	0.0780	0.5469
0.68	0.0710	0.4034	0.0767	0.5584
0.69	0.0697	0.4181	0.0755	0.5704
0.70	0.0684	0.4320	0.0743	0.5817
0.71	0.0671	0.4471	0.0731	0.5940
0.72	0.0658	0.4624	0.0719	0.6063
0.73	0.0646	0.4780	0.0708	0.6188
0.74	0.0633	0.4938	0.0696	0.6315
0.75	0.0621	0.5105	0.0684	0.6447
0.76	0.0608	0.5274	0.0672	0.6580
0.77	0.0596	0.5440	0.0661	0.6710
0.78	0.0584	0.5608	0.0650	0.6841
0.79	0.0573	0.5786	0.0639	0.6978
0.80	0.0561	0.5959	0.0628	0.7111
0.81	0.0550	0.6135	0.0617	0.7246
0.82	0.0539	0.6313	0.0607	0.7381
0.83	0.0528	0.6494	0.0956	0.7518
0.84	0.0517	0.6678	0.0586	0.7655
0.85	0.0506	0.6864	0.0576	0.7794
0.86	0.0496	0.7052	0.0566	0.7932
0.87	0.0486	0.7244	0.0556	0.8074
0.88	0.0476	0.7438	0.0546	0.8216
0.89	0.0466	0.7635	0.0537	0.8358
0.90	0.0456	0.7834	0.0528	0.8502
0.91	0.0447	0.8036	0.0518	0.8646
0.92	0.0437	0.8251	0.0509	0.8799
0.93	0.0428	0.8450	0.0500	0.8939
0.94	0.0419	0.8661	0.0491	0.9087
0.95	0.0410	0.8875	0.0483	0.9236
0.96	0.0401	0.9092	0.0474	0.9385
0.97	0.0392	0.9322	0.4065	0.9543
0.98	0.0384	0.9545	0.0457	0.9694
0.99	0.0376	0.9771	0.0449	0.9847
1.00	0.0368	1.0000	0.0441	0.1000

Annexe (II)

Table de PIGEAUD

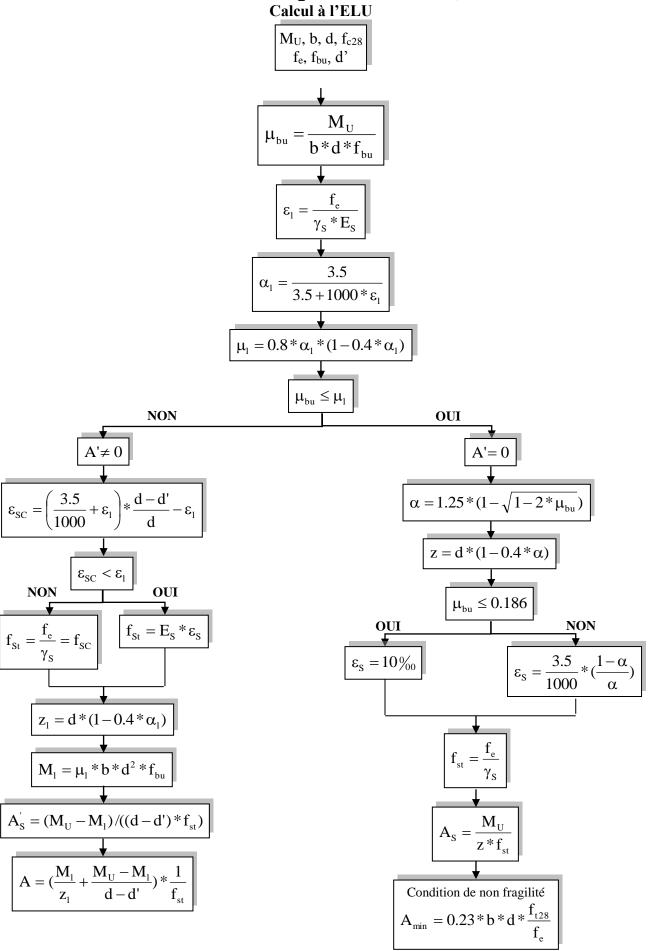
M1 et M2 pour une charge concentrique P = 1 s'exerçant sur une surface réduite $u \times v$ au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension

$$Lx \times Ly$$
Avec $Lx < Ly$.
$$\rho = 0.9$$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.302 0.260 0.227 0.202 0.181 0.161 0.144 0.132 0.122 0.112	0.254 0.235 0.214 0.196 0.178 0.160 0.146 0.133 0.123 0.114 0.102	0.187 0.183 0.175 0.164 0.153 0.141 0.130 0.121 0.113 0.103 0.093	0.154 0.152 0.148 0.142 0.134 0.126 0.118 0.110 0.102 0.093 0.084	0.131 0.130 0.128 0.124 0.118 0.113 0.106 0.098 0.092 0.084 0.075	0.115 0.114 0.112 0.109 0.105 0.100 0.095 0.088 0.083 0.076 0.068	0.102 0.101 0.099 0.097 0.093 0.089 0.085 0.079 0.074 0.068 0.062	0.090 0.089 0.088 0.086 0.083 0.080 0.077 0.072 0.067 0.062 0.057	0.081 0.080 0.079 0.078 0.075 0.073 0.069 0.065 0.061 0.057 0.051	0.073 0.073 0.072 0.070 0.068 0.066 0.063 0.058 0.055 0.051 0.046	0.067 0.067 0.066 0.065 0.063 0.060 0.057 0.054 0.049 0.046 0.042
Valeur de M ₂	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	/ 0.253 0.202 0.167 0.143 0.128 0.114 0.102 0.09 0.081 0.073	0.310 0.208 0.175 0.150 0.132 0.118 0.106 0.094 0.083 0.076 0.069	0.200 0.173 0.152 0.135 0.122 0.108 0.096 0.086 0.077 0.071 0.065	0.167 0.151 0.137 0.123 0.110 0.097 0.087 0.078 0.072 0.066 0.060	0.149 0.136 0.123 0.110 0.098 0.088 0.079 0.073 0.066 0.061 0.055	0.134 0.123 0.110 0.099 0.088 0.080 0.073 0.067 0.062 0.056 0.050	0.122 0.110 0.100 0.088 0.081 0.073 0.067 0.062 0.056 0.052 0.047	0.110 0.099 0.089 0.081 0.067 0.062 0.057 0.052 0.047 0.043	0.098 0.089 0.082 0.074 0.067 0.062 0.056 0.052 0.047 0.043 0.038	0.088 0.081 0.074 0.067 0.061 0.056 0.052 0.047 0.043 0.038 0.035	0.081 0.074 0.067 0.061 0.056 0.051 0.047 0.043 0.038 0.035 0.035

Annexe (III) Sections en (cm^2) de N armatures de diamètre ϕ en (mm)

ø :	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	154	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.42	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.8
13	2.55	3.68	6.53	10.21	14.70	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.5
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	2036	27.71	36.19	56.55	88.36	144.76	226.2
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

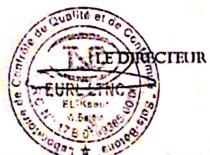

Annexe (IV)

306

950 x 1450

Contraction of	かん あんとうかん か		1	(V -	CVII	L		A LILL	CULL	L	-				1					日、日本の日本の日本の日本の日本									
DU PRO	ETABLISSEMENT- DU PROGRAMME D'ASCENSEURS!	R DEFINITION DE LA CHARGE,	ON DE	Š	HAR	GE,	DEL	AVI	TESS	E E	TDC	NO NO	MBR	E D'	ASCE	A VITESSE ET DU NOMBRE D'ASCENSEURS	URS				■ EXEMPLE: Immeuble de 7 niveaux au-dessus du hall de départ. Caractéristiques de l'immeuble: 140 memore.	EXEMPLE: Immeuble de 7 niveaux au-dessus du aractéristiques de l'immeuble :	e 7 niveau.	x au-dessi	us du hal	l de dép	art.		
(5)	uite) Soy			No	Nombre total de niveaux desservis y compris hall de départ et parkings	total	de niv	veaux	x des	servi	syc	ошр	s hal	l de c	éparl	et p	arkin	35			- population - niveaux des	population a prendre en compte : 140 personnes , niveaux) ; niveaux desservis à prendre en compte : 8 (hall de départ + 7 niveaux) ;	dre en com	to person ipte : 8 (ha	all de dép	art + 7 n	iveaux)		
	Desserte	Charges	4	2		9		7	8		6		10	=		12	13	-	1 2		- distance sé	distance séparant les deux niveaux extremes desservis : 19,50 m.	ux niveaux	extremes	desservis	00,81 : 5	ë.		
(m/s)		minimales (kg)	- а	a	-		۵	-	Ь	-	-	۵.	-	۵	Д.	-	d	-	- d		1. Choix de l	 Choix de l'intervalle maximal probable: 1 = 80 secondes. 	imai proba	Die : 1 = 00	Second				
	Tous		188 64	164		148 81 176 91		100	126 9	95 11	117 103	109	110							ÉTABLISSEMENT	2. Équipemen	Équipement minimal : un ascenseur de charge nominale 1 000 kg.	ascenseu	r de charg	le nomina	le 1 000	kg.	-	9
0.63	les niveaux desservis	630	260 77 293 82 322 87	225 250 277	96 22 2		0 183 9 203 4 224	118			157 127					4 4 7				DU PROGRAMME D'ASCENSEURS	3. Vitesse noi course/vitess.	 Mitesse normale: on se fixe une limite superieure de 23 secondes pour le rapport course/vitesse, ce qui correspond à une vitesse nominale de 1,00 m/s au moins. 	espond à u	nite super ne vitesse	nominal	e de 1,00	m/s au	7	moins
		400	211 57 250 64	190	63 17 20 20	176 68 205 78	162	74 84					88	2000000	92 124	The second second		_		(SUITE)	4. La lecture niveaux dess	4, La lecture du tableau du DTU 75,1 donne pour un ascenseur 1 000 Kg a 1,00 m/s, tot niveaux desservis, les couples de valeurs « P-1 » applicables suivants :	DTU 75.1 ples de val	donne po.	ur un asc " applicat	enseur 1 oles suiva	000 kg ants :		a 1,0
	Tous les niveaux	069	320 75	282	85 22 22	55 94	1 235	102					122	188	28 178	20 CO					P. 154	4 178	200	220	239	256			273
	-		386 83	333	36 2	99 10	7 276	116			15.42		140	218 1	47 208	8 154		-			87	8 90	100	109	117	125			132
80,1			463 95	381	109 20 20 20 20 20 20 20 20 20 20 20 20 20	342 117	7 313	128				147 258 153 272 82 138	155 162 87		163 234 171 246 192 124		225 225 237	170 2 178 2 186 2 1	205 176 219 185 227 194		Du fait que, o	Du fait que, dans le couple de valeurs P = 154 et l = 78, P est supérieur à la population prendre en compte et l'inférieur à l'intervalle maximal probable, la solution est satisfaisa	e de valeur érieur à l'in	s P = 154 tervalle ma	et I = 78, aximal pro	P est su obable, la	périeur a solutio		à la po
	1 niveau	630					No.			- 0000			98 106 114				140 161 180				E CARACTÉ	☐ CARACTÉRISTIQUES ET DIMENSIONS	ET DIMEN	SIONS					AN
			A CONTRACTOR	14.75		108 208 308	200	1		200	271 14	12 233 48 254	126	2339	34 227		199					Charge utile	le	9	630 kg ou 8 personnes	8 person	-		1 000 kg ou 13 pe
		00:	1	VE J	* 12			1/3		100	The later		136	278	44 261	1 153		155 2				Course maxi en m	en m		35	45	09		35
			45	222	Z.	07 58	3 197		185		176 68		71 740	163			265					Vitesses en m/s	m/s	3	0,63	1,00	1,60		69'0
	. •	400	286 56	258	60	239 67	7 225	77			20	79 195	82	186	86 180		-		168 95		Pu	Puissance moteur en kW	ur en kW		5	6,8	16		8,9
	Tous	630	358 67	320	75	93 82	2 273	88					102			6 111	211	104 1					Larg. A	A	-	1100			
		THE REAL PROPERTY.	\$27	376	8,8	40 8	3 295	101	296		280 11	174 269	119	258 1	16 233 24 248	3 120	226	124 2	219 128	4	Cabine en mm	en mm	Prof. B	3	1	1 400			
		1000	456 79	400	8 8	385 104	336	107	316	114 2		121 283	127	2.	32 263	100	254		245 147	20654			Haut		300	2 200			
1.60			909	449	98	04 10	9 372	118	349		328 13	134 314	140	300		8 153	267			*46	9.40		Larg. C	O		1 600			
		400								- 0	182 66	E 171	70	164 7	73 158	8 76	152						Prof. D	. 0	2	2100			
	1 Division									200		82 230	87		91 211			99	172 93	ASCENSEURS A	Section 1	Gaine en mm	S dalle Q		3700 3	3800	4 000		3700
	desservi	630	1	- Control	-	3			3				10 93	245	98 233	5 103	224			denois	ili pode		Cuv P		1 400 1	1 500	1700		1 400
					经		1					9 30	105	288 1	11 276	6 116	264		254 126	PAR TREUIL	P ₃	Palier	U mini	ni.		1 500			
		1000	75-74-	Serve	85 S	9.0	85,4	K3)		0000		108 348 112 370 60 194	113	3331	10000		319			Section 1	(2014-Ne)		R mini		2 200 2	2 2 0 0	2200		2 400
	<u>7</u> 00s	630	7.					V d		2000		70 219 80 241 89 261	5883		75 208 86 227 95 245	5 98 7 98 98 98	200 220 238 238	91 2 101	174 69 195 82 215 93 231 104		M. A. 1. 2		T mini		3700	3700	3 500		4 200
	les niveaux desservis	阿拉斯斯斯	E.	2.7	100	550	100 Person	1	100			7 27	101	269 1	12 262 12 276		252			(Sec.)	Machine	Machinerie en mm	S m² mini	inir		10			
		0001	2000 法第	H Sh	in the second		No.	ALL T	1907	60.0	325 11	111 310	3 12	300	20 230	20000	281	128 2	273 132	462	y at W		н .			2 000			
2,50			2000年	632		985 143	02	1					38 88	SEC. T.		7,139	306	86 142		e e vojek	32.22.3		Trappe	90	950 × 950	920	950 x 1450		950 x 950
	-	630						Š.		100		73 263	92	253	79 244	4 82		77 28	203 79		2/220		Porte	0)06	900 x 2 000			
		and the same of th			1	1-11		16	7			4 314	-	301	87 267 93 289	-	258	-	250 96	Light Control	Efforts	Efforts globaux	Sur dalle	alle	43		20		
	sur 2	G L			製料				5,1	000	360 8		g .8		99 31	80000	299	107 2			ō	en kN	En cuvette	ette		55			
		1000	はい	1				(A)				335	10,5	367	109 351	8.7	330	200	308 117	3 2	127								

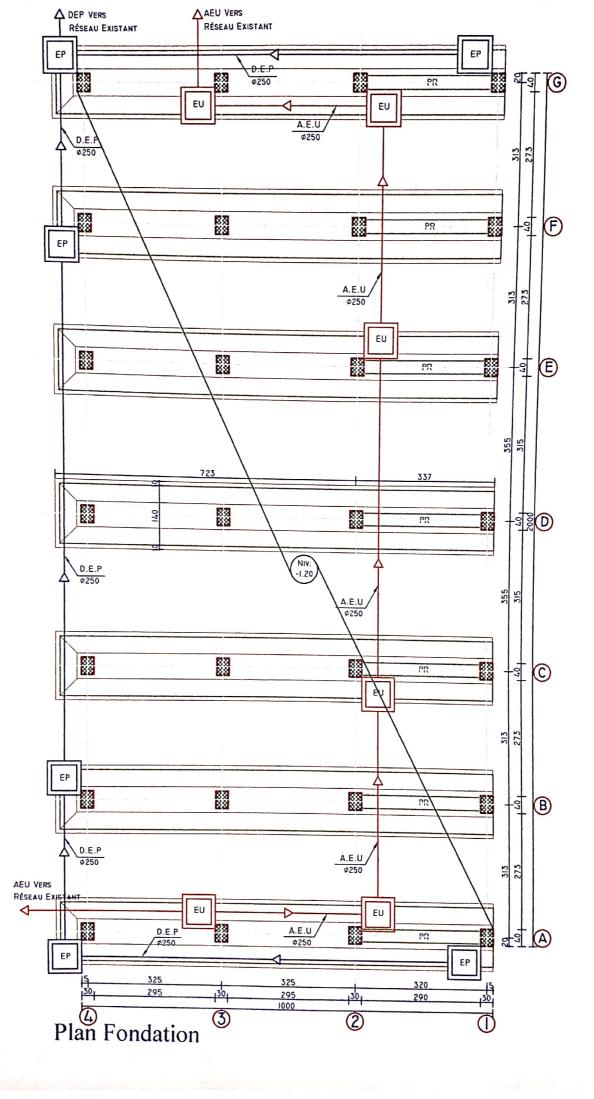
Flexion simple: Section rectangulaire

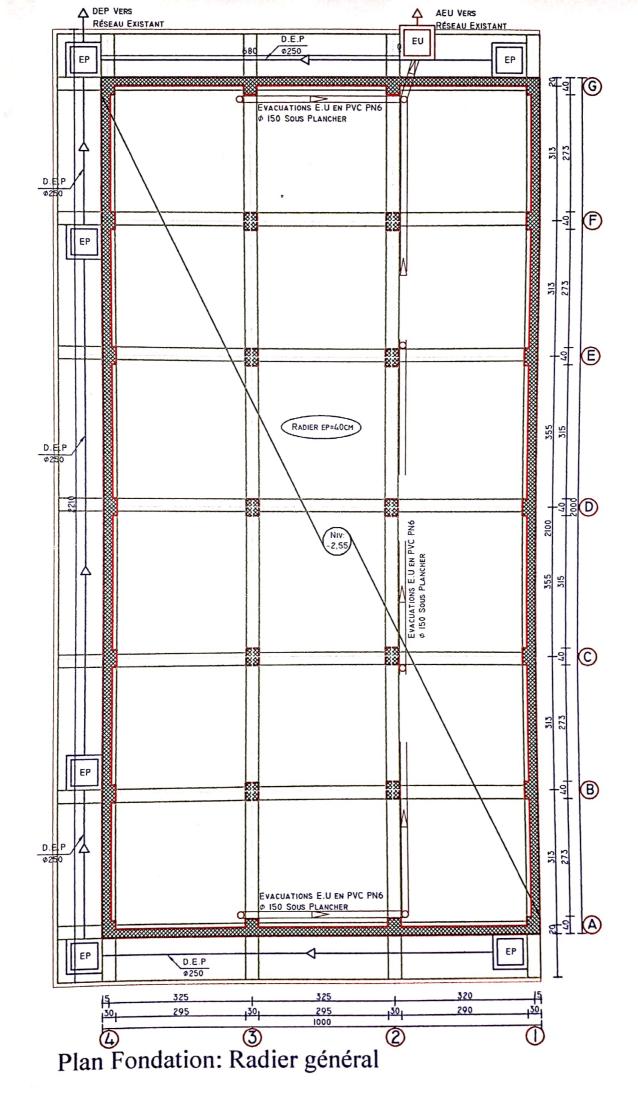


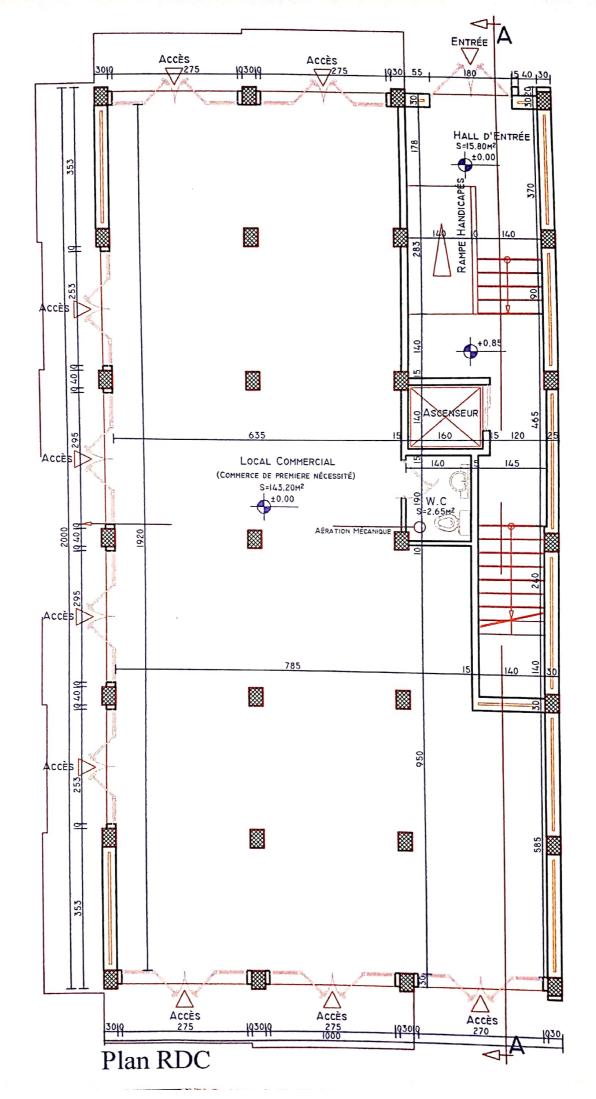
VIII- CONCLUSION:

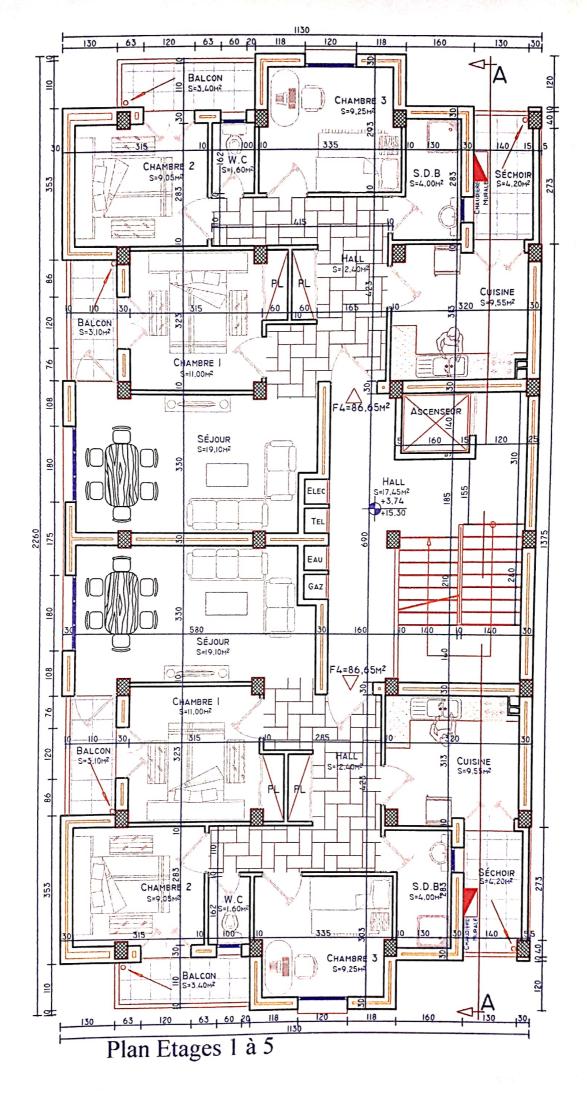
Le site objet de notre étude est destiné pour la Réalisation d'un bloc en R+8 + terrasse inaccessible au lieu dit Zone D'activité Rue des Frères Mokhtari WILAYA DE BEJAIA:

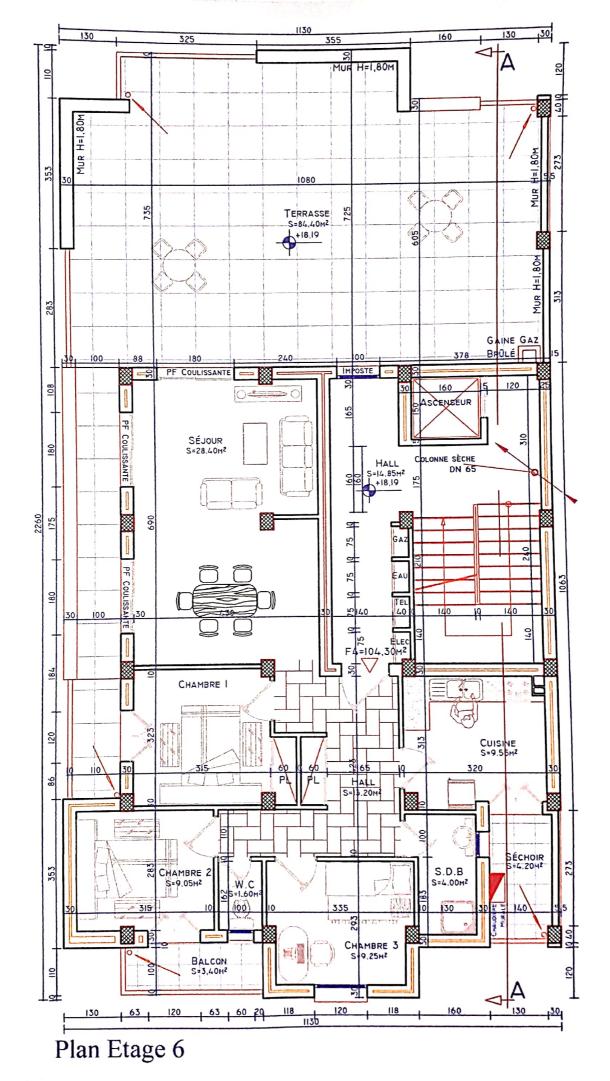
D'après les résultats des sondages pénétrometriques, les sondages carottés, les essais au laboratoire, ainsi que les observations visuelles sur le site, nous pouvons tirer les conclusions suivantes :

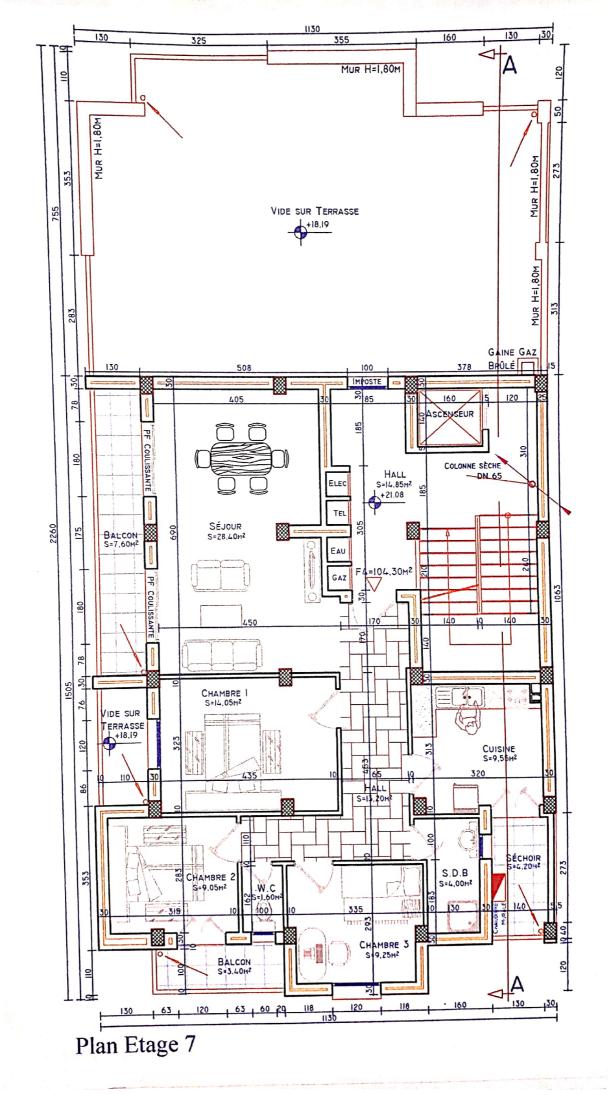

- 1. Les sondages pénétrométriques nous ont permis de déterminer la résistance du sol, son homogénéité ainsi que sa capacité portante. L'analyse des pénétrographes à enregistrée des résistances de pointes faibles en surface;
- 2. Au vu de la nature géologique du site ainsi que les résultats des essais in situ, nous vous recommandons des fondations superficielles, ancrées à partir de 4,00 m de profondeur par rapport à la côte du terrain naturel (présence de sous sol) et de prendre comme contrainte admissible Qadm = 1,60 bars:
- 3. Les analyses d'échantillons prélevées au niveau du sondage carotté montrent que :
 - Les analyses granulométriques indiquent un sol fin, car plus de 50% des éléments passent au tamis 80µ.
 - Ces sols présentent des densités faibles à moyennes
 - Ces sols présentent des teneurs en eau naturelles moyennes à élevés.
 - L'indice de plasticité mesurée est 29,16 avec une limite de liquidités correspondantes à 58,05 %.
 - Les limites d'ATTERBERG permettent de classer ces tranches de sol parmi les argiles tres plastiques.
- 4. Le site est situé sur un terrain plat, d'où il y'a lieu d'assurer un bon drainage des eaux pluviales et de surélever la construction (plate forme) par rapport à la cote du terrain naturel;
- 5. Un étalement des parois est nécessaire pour éviter le glissement des berges des talus et d'assurer la sécurité lors des travaux en infrastructure et surtout la partie mitoyenne à la bâtisse voisine qui nécessite un blindage,
- 6. Nous constatons que la nature de ce terrain est constitué essentielles par des :
 - > Argiles marneuse grisatres;
- 7. Eviter les travaux de terrassement en période de pluies ;
- 8. Selon le nombre de coups moyen (N) calculé selon la formule suivant les Règles Parasismiques Algériennes: (RPA 99/ version 2003 Art 3.3.1 page 26), la classification du site est: S3 site Meuble;
- 9. Selon les recommandations du CGS (règlement parasismique algérienne RPA 99/version 2003), la région de la wilaya de Bejaïa est classée en zone de sismicité moyenne IIa. D'où, Il y'a lieu de prendre en compte la sismicité de cette région dans le calcul des bétons armés.

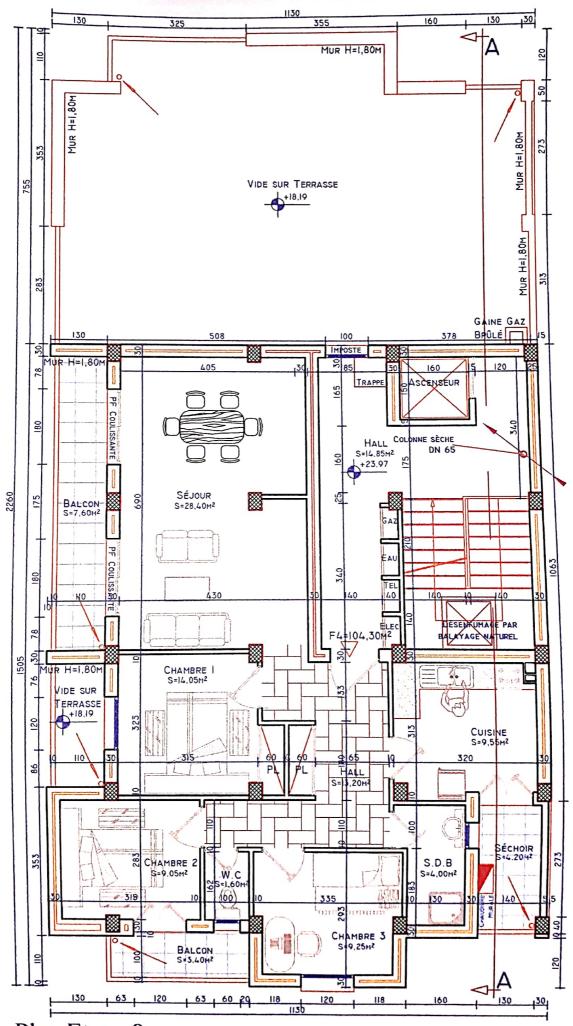


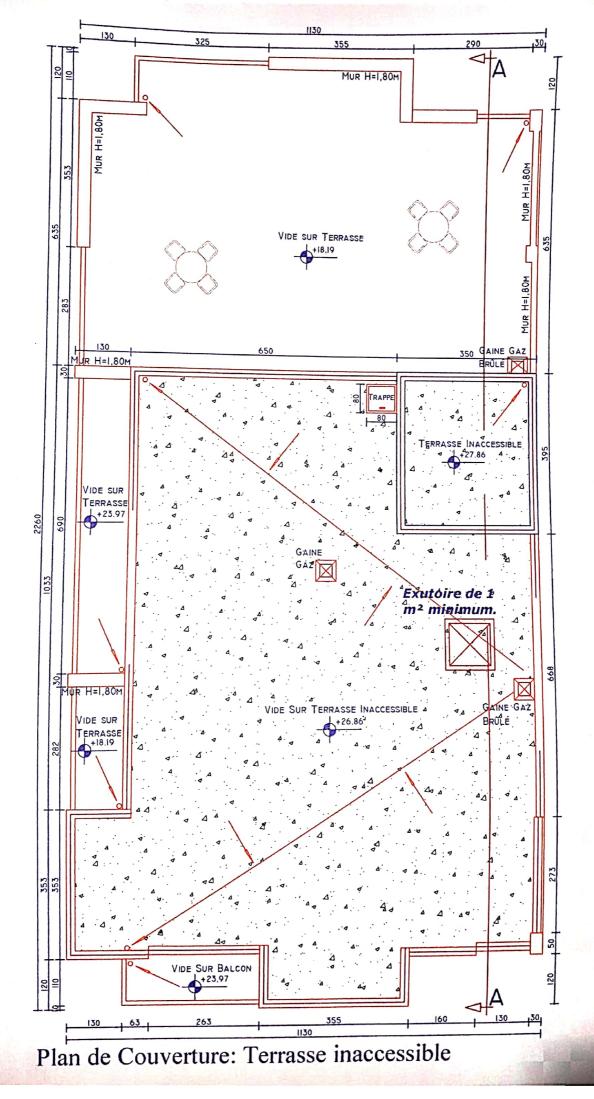

Projet : la Réalization d'un blot en R+8 + sous-sol + terraise inattention

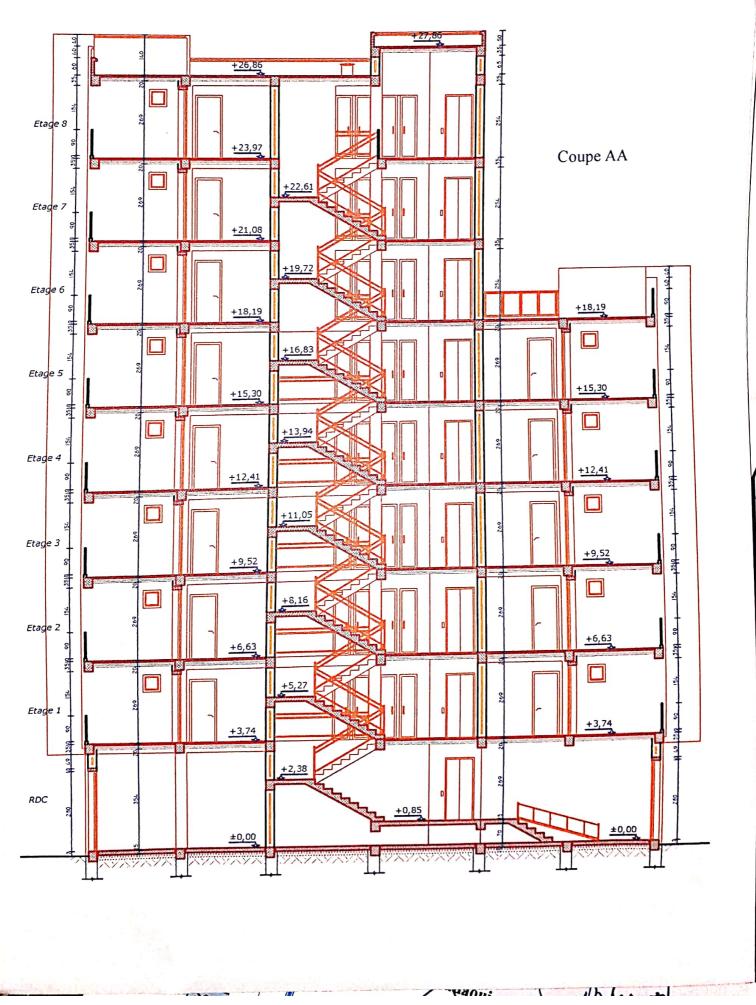

Bomler Na:


1100H par : 1.HIDDI 028/11/Jap-sol/2019









Plan Etage 8

Façade Sud