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General Introduction

AI can improve medical imaging processes like image analysis and aid in patient diagnosis. The
medical imaging AI market is expected to experience exponential growth over the next few years.

Analysis of 2D echocardiographic images plays a crucial role in clinical routine to measure
cardiac morphology and function and to arrive at a diagnosis. Such an analysis is based on
the interpretation of clinical clues which are extracted from low level image processing such as
segmentation and tracking.

We present a Deep Learning approach allowing to perform a segmentation of 2D echocardio-
graphic images, by the delineation of the left ventricular endocardium in both end diastole (ED)
and end systole (ES) in order to extract the ejection fraction (EF) of the left ventricle (LV).

We will use the CAMUS dataset in order to train our model and test its performance with
different metrics.

1



Chapter 1

Image Processing

1.1 Introduction

Image processing is a method to perform some operations on an image, in order to get an enhanced
image or to extract some useful information from it. It is a type of signal processing in which
input is an image and output may be image or characteristics/features associated with that image.
Nowadays, image processing is among rapidly growing technologies. It forms core research area
within engineering and computer science disciplines too. Image Processing nowadays refers mainly
to the processing of digital images. In this chapter, we will present the basics of the image
fundamentals, focusing on medical images.

1.2 Image

A panchromatic image is a 2D light intensity function, f(x, y), where x and y are spatial coordinates
and the value of f at (x, y) is proportional to the brightness of the scene at that point. If we have
a multi spectral image, f(x, y) is a vector, each component of which indicates the brightness of
the scene at point (x, y) at the corresponding spectral band [1].

Figure 1.1: The letter “I” placed on a piece of graph paper. Pixels are accessed by their (x;y)-
coordinates, where we go x columns to the right and y rows down [4]

2



Image Processing

1.3 Image formats

From a mathematical viewpoint, any meaningful 2-D array of numbers can be considered as an
image. In the real world, we need to effectively display images, store them (preferably compactly),
transmit them over networks and recognize bodies of numerical data as corresponding to images.
This has led to the development of standard digital image formats. In simple terms, the image
formats comprise a file header (containing information on how exactly the image data is stored)
and the actual numeric pixel values themselves. There are a large number of recognized image
formats now existing, dating back over more than 30 years of digital image storage. Some of the
most common 2-D image formats are listed in Table 1.1

Acronym Name Properties

GIF Graphics interchange format Limited to only 256 colours (8 bit); lossless
compression

JPEG Photographic Experts Group In most common use today; lossy compres-
sion; lossless variants exist

BMP Bit map picture Basic image format; limited (generally) loss-
less compression; lossy variants exist

PNG Portable network graphics New lossless compression format; designed to
replace GIF

TIF/TIFF Tagged image (file) format Highly flexible, detailed and adaptable for-
mat; compressed/uncompressed variants ex-
ist

Table 1.1: Common image formats and their associated properties [5]

As suggested by the properties listed in Table 1.1, different image formats are generally suitable
for different applications. GIF images are a very basic image storage format limited to only 256
grey levels or colours, with the latter defined via a colour map in the file header as discussed
previously. By contrast, the commonplace JPEG format is capable of storing up to a 24-bit RGB
colour image, and up to 36 bits for medical/scientific imaging applications, and is most widely
used for consumer-level imaging such as digital cameras. Other common formats encountered
include the basic bitmap format (BMP), originating in the development of the Microsoft Windows
operating system, and the new PNG format, designed as a more powerful replacement for GIF.
TIFF, tagged image file format, represents an overarching and adaptable file format capable of
storing a wide range of different image data forms. In general, photographic-type images are
better suited towards JPEG or TIF storage, whilst images of limited colour/detail (e.g. logos, line
drawings, text) are best suited to GIF or PNG (as per TIFF), as a lossless, full-colour format, is
adaptable to the majority of image storage requirements.

3
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1.4 Image Data Types

The choice of image format used can be largely determined by not just the image contents, but
also the actual image data type that is required for storage. In addition to the bit resolution of a
given image discussed earlier, a number of distinct image types also exist:

• Binary images are 2-D arrays that assign one numerical value from the set {0, 1} to each
pixel in the image. These are sometimes referred to as logical images: black corresponds to
zero (an ‘off’ or ‘background’ pixel) and white corresponds to one (an ‘on’ or ‘foreground’
pixel). As no other values are permissible, these images can be represented as a simple bit-
stream, but in practice they are represented as 8-bit integer images in the common image
formats. A fax (or facsimile) image is an example of a binary image.

Figure 1.2: Binary image[14]
.

• Intensity or grey-scale images are 2-D arrays that assign one numerical value to each pixel
which is representative of the intensity at this point. As discussed previously, the pixel value
range is bounded by the bit resolution of the image and such images are stored as N-bit
integer images with a given format.

• RGB or true-colour images are 3-D arrays that assign three numerical values to each pixel,
each value corresponding to the red, green and blue (RGB) image channel component re-
spectively. Conceptually, we may consider them as three distinct, 2-D planes so that they
are of dimension C by R by 3, where R is the number of image rows and C the number
of image columns. Commonly, such images are stored as sequential integers in successive
channel order (e.g. R0G0B0, R1G1B1, ...)).

• Floating-point images differ from the other image types we have discussed. By definition, they
do not store integer colour values. Instead, they store a floating-point number which, within a
given range defined by the floating-point precision of the image bit-resolution, represents the

4
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Figure 1.3: 8-bits grayscale image[15]
.

Figure 1.4: 8-bits RGB image

intensity. They may (commonly) represent a measurement value other than simple intensity
or colour as part of a scientific or medical image. Floating point images are commonly
stored in the TIFF image format or a more specialized, domain-specific format (e.g. medical
DICOM). Although the use of floating-point images is increasing through the use of high
dynamic range and stereo photography, file formats supporting their storage currently remain
limited.

5
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Figure 1.5: TIFF Floating point image (Copyright: Tim Lukins, UoE)

1.5 Semantic segmentation

Image segmentation is a long-standing computer vision task than consists on dividing an image
into several parts, normally following some kind of criteria, but not necessarily pursuing an un-
derstanding of the image content. On the other hand, semantic segmentation is a different task
that goes a step further than image segmentation by trying to divide an image into semantically
meaningful parts (note that semantics is a branch of linguistics concerned with the meaning ).
More specifically, semantic segmentation is concerned about dividing the image into regions with
different meaning or belonging to different categories. Very often these categories are a predefined
set of objects that allow total segmentation of the image. An example of semantic segmentation
is shown in figure 1.6.

1.6 Medical Images

1.6.1 Overview

The rapid progress of medical science and the invention of various medicines have benefited
mankind and the whole civilization. Modern science also has been doing wonders in the surgi-
cal field. But, the proper and correct diagnosis of diseases is the primary necessity before the
treatment. The more sophisticate the bio-instruments are, better diagnosis will be possible. The
medical images plays an important role in clinical diagnosis and therapy of doctor and teaching
and researching etc. Medical imaging is often thought of as a way to represent anatomical struc-
tures of the body with the help of X-ray computed tomography and magnetic resonance imaging.

6



Image Processing

Figure 1.6: Example of semantic segmentation [11]

But often it is more useful for physiologic function rather than anatomy. With the growth of com-
puter and image technology medical imaging has greatly influenced medical field. As the quality
of medical imaging affects diagnosis the medical image processing has become a hotspot and the
clinical applications wanting to store and retrieve images for future purpose needs some convenient
process to store those images in details. Here are some types of medical imaging :

• Radiography

• Magnetic resonance imaging

• Nuclear medicine

• Ultrasound

• Tomography

7
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Format Header Extension Data types

Analyze Fixed-length: 348 byte binary for-
mat

.img .hdr Unsigned integer (8-bit), signed in-
teger (16, 32-bit), float (32,64-bit),
complex (64-bit)

Nifti Fixed-length: 352 byte binary for-
mat a (348 byte in the case of data
stored as .img and .hdr)

.nii Signed and unsigned integer (from 8
to 64 bit), float (from 32 to 128 bit),
complex (from 64 to 256 bit)

Minc Extensible binary format .mnc Signed and unsigned integer (from 8
to 32 bit), float (32, 64 bit), complex
(32, 64 bit)

Dicom Variable length binary format .dcm Signed and unsigned integer, (8, 16
bit; 32 bit only allowed for radio-
therapy dose), float not supported

Table 1.2: Summary of medical images file format characteristics [6]

1.6.2 Medical Ultrasound

Medical ultrasound uses high frequency broadband sound waves in the megahertz range that are
reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated
with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however. Other
important uses include imaging the abdominal organs, heart, breast, muscles, tendons, arteries
and veins. While it may provide less anatomical detail than techniques such as CT or MRI, it
has several advantages which make it ideal in numerous situations, in particular that it studies
the function of moving structures in real-time, emits no ionizing radiation, and contains speckle
that can be used in elastography. Ultrasound is also used as a popular research tool for capturing
raw data, that can be made available through an ultrasound research interface, for the purpose
of tissue characterization and implementation of new image processing techniques. The concepts
of ultrasound differ from other medical imaging modalities in the fact that it is operated by
the transmission and receipt of sound waves. The high frequency sound waves are sent into the
tissue and depending on the composition of the different tissues; the signal will be attenuated
and returned at separate intervals. A path of reflected sound waves in a multilayered structure
can be defined by an input acoustic impedance (ultrasound sound wave) and the Reflection and
transmission coefficients of the relative structures. It is very safe to use and does not appear
to cause any adverse effects. It is also relatively inexpensive and quick to perform. Ultrasound
scanners can be taken to critically ill patients in intensive care units, avoiding the danger caused
while moving the patient to the radiology department. The real-time moving image obtained can
be used to guide drainage and biopsy procedures. Doppler capabilities on modern scanners allow
the blood flow in arteries and veins to be assessed[12].
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1.6.3 Echocardiography

When ultrasound is used to image the heart it is referred to as an echocardiogram. Echocardio-
graphy allows detailed structures of the heart, including chamber size, heart function, the valves
of the heart, as well as the pericardium (the sac around the heart) to be seen. Echocardiography
uses 2D, 3D, and Doppler imaging to create pictures of the heart and visualize the blood flowing
through each of the four heart valves. Echocardiography is widely used in an array of patients
ranging from those experiencing symptoms, such as shortness of breath or chest pain, to those
undergoing cancer treatments. Transthoracic ultrasound has been proven to be safe for patients of
all ages, from infants to the elderly, without risk of harmful side effects or radiation, differentiating
it from other imaging modalities. Echocardiography is one of the most commonly used imaging
modalities in the world due to its portability and use in a variety of applications. In emergency
situations, echocardiography is quick, easily accessible, and able to be performed at the bedside,
making it the modality of choice for many physicians[12].

Figure 1.7: Orthogonal planes of a 3 dimensional sonographic volume with transverse and coronal
measurements for estimating fetal cranial volume [13].

1.7 Conclusion

In this chapter, we have presented the fundamentals of image processing, detailing the echocardio-
graphic images obtained from ultrasound that we will use later for our work.
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Chapter 2

Machine learning and Deep Learning

2.1 Introduction

There are problems for which existing solutions require a lot of hand-tuning or long lists of rules:
one Machine Learning algorithm can often simplify code and perform better. The availability of
data and powerful hardware (GPU) made it possible to create machine learning and deep learning
models. We will take an in-depth look at how we can do that.

2.2 Machine Learning

Machine learning is a subfield of computer science wherein machines learn to perform tasks for
which they were not explicitly programmed. In short, machines observe a pattern and attempt to
imitate it in some way that can be either direct or indirect [2].

2.2.1 Types of Machine Learning Systems

There are so many different types of Machine Learning systems that it is useful to classify them
in broad categories based on:

• Whether or not they are trained with human supervision (supervised, unsupervised, semi-
supervised, and Reinforcement Learning)

• Whether or not they can learn incrementally on the fly (online versus batch learning)

• Whether they work by simply comparing new data points to known data points, or instead
detect patterns in the training data and build a predictive model, much like scientists do
(instance-based versus model-based learning).
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2.3 Supervised/Unsupervised Learning

Machine Learning systems can be classified according to the amount and type of supervision they
get during training. There are four major categories: supervised learning, unsupervised learning,
semi supervised learning, and Reinforcement Learning.

2.3.1 Supervised learning

In supervised learning, the training data you feed to the algorithm includes the desired solutions,
called labels (Figure 2.1).

Figure 2.1: A labeled training set for supervised learning (e.g., spam classification) [2]

Here are some of the most important supervised learning algorithms:

• K-Nearest Neighbors.

• Linear Regression

• Support Vector Machines (SVMs).

• Decision Trees and Random Forests

• Neural networks.

2.3.2 Unsupervised learning

In unsupervised learning, the training data is unlabeled. The system tries to learn by itself (Figure
2.2).

Here are some of the most important unsupervised learning algorithms:

• Clustering

– K-Means

– Hierarchical Cluster Analysis

11
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Figure 2.2: An unlabeled training set for unsupervised learning [2]

• Anomaly detection and novelty detection

– One-class SVM

– Isolation Forest

• Visualization and dimensionality reduction

– Principal Component Analysis (PCA)

– Locally-Linear Embedding (LLE)

2.3.3 Semi-supervised learning

Some algorithms can deal with partially labeled training data, usually a lot of unlabeled data and
a little bit of labeled data. This is called semi-supervised learning (Figure 2.3).

Figure 2.3: Semi-supervised learning [2]
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Most semi-supervised learning algorithms are combinations of unsupervised and supervised
algorithms. For example, deep belief networks (DBNs) are based on unsupervised components
called restricted Boltzmann machines (RBMs) stacked on top of one another. RBMs are trained
sequentially in an unsupervised manner, and then the whole system is fine-tuned using supervised
learning techniques.

2.3.4 Reinforcement Learning

Reinforcement Learning is a very different beast. The learning system, called an agent in this
context, can observe the environment, select and perform actions, and get rewards in return (or
penalties in the form of negative rewards, as in Figure 2.4). It must then learn by itself what is
the best strategy, called a policy, to get the most reward over time. A policy defines what action
the agent should choose when it is in a given situation.

Figure 2.4: Reinforcement learning [2]

2.4 Neural networks

Many inventions were inspired by nature, burdrock plants inspired velcro, and countless more
inventions were inspired by nature. It seems only logical, then, to look at the brain’s architecture
for inspiration on how to build intelligent machines.
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2.4.1 Definition

The word “neural” is the adjective form of “neuron”, and “network” denotes a graph-like structure;
therefore, an “Artificial Neural Network” is a computation system that attempts to mimic (or at
least, is inspired by) the neural connections in our nervous system. Artificial neural networks are
also referred to as “neural networks” or “artificial neural systems”. It is common to abbreviate
Artificial Neural Network and refer to them as “ANN ” or simply “NN ”.

For a system to be considered an NN, it must contain a labeled, directed graph structure where
each node in the graph performs some simple computation. From graph theory, we know that a
directed graph consists of a set of nodes (i.e., vertices) and a set of connections (i.e., edges) that
link together pairs of nodes. In Figure 2.5 we can see an example of such an NN graph.

Figure 2.5: A simple NN that takes the weighted sum of the input x and weights w. This weighted
sum is then passed through the activation function to determine if the neuron fires. [4]

Each node performs a simple computation. Each connection then carries a signal (i.e., the
output of the computation) from one node to another, labeled by a weight indicating the extent
to which the signal is amplified or diminished. Some connections have large, positive weights
that amplify the signal, indicating that the signal is very important when making a classification.
Others have negative weights, diminishing the strength of the signal, thus specifying that the
output of the node is less important in the final classification. We call such a system an Artificial
Neural Network if it consists of a graph structure (like in Figure 2.5) with connection weights that
are modifiable using a learning algorithm.
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Figure 2.6: The structure of a biological neuron. Neurons are connected to other neurons through
their dendrites and enurons. [4]

2.4.2 Relation to Biology

Our brains are composed of approximately 10 billion neurons, each connected to about 10,000
other neurons. The cell body of the neuron is called the soma, where the inputs (dendrites) and
outputs (axons) connect soma to other soma (Figure 2.6).

Each neuron receives electrochemical inputs from other neurons at their dendrites. If these
electrical inputs are sufficiently powerful to activate the neuron, then the activated neuron trans-
mits the signal along its axon, passing it along to the dendrites of other neurons. These attached
neurons may also fire, thus continuing the process of passing the message along.

The key takeaway here is that a neuron firing is a binary operation – the neuron either
fires or it doesn’t fire. There are no different “grades” of firing. Simply put, a neuron will only
fire if the total signal received at the soma exceeds a given threshold.

ANNs are simply inspired by what we know about the brain and how it works. The goal of deep
learning is not to mimic how our brains function, but rather take the pieces that we understand
and allow us to draw similar parallels in our own work. At the end of the day we do not know
enough about neuroscience and the deeper functions of the brain to be able to correctly model
how the brain works – instead, we take our inspirations and move on from there.

2.4.3 Artificial Models

Warren McCulloch and Walter Pitts proposed a very simple model of the biological neuron, which
later became known as an artificial neuron: it has one or more binary (on/off) inputs and one
binary output. The artificial neuron simply activates its output when more than a certain number
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of its inputs are active. McCulloch and Pitts showed that even with such a simplified model it is
possible to build a network of artificial neurons that computes any logical proposition you want.
For example, Here’s a few ANNs that perform various logical computations (Figure 2.7), assuming
that a neuron is activated when at least two of its inputs are active.

Figure 2.7: ANNs performing simple logical computations [2]

2.4.4 Activation function

Activation functions are mathematical equations that determine the output of a neural network.
The function is attached to each neuron in the network, and determines whether it should be acti-
vated (“fired”) or not, based on whether each neuron’s input is relevant for the model’s prediction.
Activation functions also help normalize the output of each neuron to a range between 1 and 0 or
between -1 and 1.

An additional aspect of activation functions is that they must be computationally efficient
because they are calculated across thousands or even millions of neurons for each data sample.
Modern neural networks use a technique called backpropagation to train the model, which places
an increased computational strain on the activation function, and its derivative function. The need
for speed has led to the development of new functions such as ReLu and Swish.

2.4.5 Error Function

Defines how far the actual output of the current model is from the correct output. When training
the model, the objective is to minimize the error function and bring output as close as possible to
the correct value.

16



Machine learning and Deep Learning

Figure 2.8: Top-left: Step function. Top-right: Sigmoid activation function. Mid-left: Hy-
perbolic tangent. Mid-right: ReLU activation (most used activation function for deep neural
networks). Bottom-left: Leaky ReLU, variant of the ReLU that allows for negative values.
Bottom-right: ELU, another variant of ELU that can often perform better than Leaky ReLU.
[4]

2.4.6 Backpropagation

In order to discover the optimal weights for the neurons, we perform a backward pass, moving
back from the network’s prediction to the neurons that generated that prediction. This is called
backpropagation. Backpropagation tracks the derivatives of the activation functions in each suc-
cessive neuron, to find weights that brings the loss function to a minimum, which will generate the
best prediction. This is a mathematical process called gradient descent.
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2.4.7 Hyperparameters

A hyperparameter is a setting that affects the structure or operation of the neural network. In
real deep learning projects, tuning hyperparameters is the primary way to build a network that
provides accurate predictions for a certain problem. Common hyperparameters include the number
of hidden layers, the activation function, and how many times (epochs) training should be repeated.

2.4.8 Overfitting and Underfitting in Neural Networks

Overfitting happens when the neural network is good at learning its training set, but is not able
to generalize its predictions to additional, unseen examples. This is characterized by low bias and
high variance. Underfitting happens when the neural network is not able to accurately predict for
the training set, not to mention for the validation set. This is characterized by high bias and high
variance.

2.5 Deep Neural Network

Deep learning is a subfield of machine learning, which is, in turn, a subfield of artificial intelligence
(AI).

The central goal of AI is to provide a set of algorithms and techniques that can be used to
solve problems that humans perform intuitively and near automatically, but are otherwise very
challenging for computers. A great example of such a class of AI problems is interpreting and
understanding the contents of an image – this task is something that a human can do with little-
to-no effort, but it has proven to be extremely difficult for machines to accomplish.

While AI embodies a large, diverse set of work related to automatic machine reasoning (infer-
ence, planning, heuristics, etc.), the machine learning subfield tends to be specifically interested in
pattern recognition and learning from data.

2.5.1 Major Architectures of Deep Networks

Now that we’ve seen some of the components of deep networks, let’s take a look at the four major
architectures of deep networks, but we will focus on the Convolutional Neural Networks (CNNs):

• Unsupervised Pretrained Networks (UPNs)

• Convolutional Neural Networks (CNNs)

• Recurrent Neural Networks

• Recursive Neural Networks
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Figure 2.9: A Venn diagram describing deep learning as a subfield of machine learning which is in
turn a subfield of artificial intelligence [4]

2.5.2 Convolutional Neural Networks (CNNs)

The goal of a CNN is to learn higher-order features in the data via convolutions. They are well
suited to object recognition with images and consistently top image classification competitions.
They can identify faces, individuals, street signs, platypuses, and many other aspects of visual
data. CNNs overlap with text analysis via optical character recognition, but they are also useful
when analyzing words as discrete textual units. They’re also good at analyzing sound. [3]

The efficacy of CNNs in image recognition is one of the main reasons why the world recognizes
the power of deep learning. As Figure 2.10 illustrates, CNNs are good at building position and
(somewhat) rotation invariant features from raw image data.

2.5.2.1 Definition

A Convolutional Neural Network (CNN) is a deep learning algorithm that can recognize and classify
features in images for computer vision. It is a multi-layer neural network designed to analyze visual
inputs and perform tasks such as image classification, segmentation and object detection, which
can be useful for autonomous vehicles. CNNs can also be used for deep learning applications
in healthcare, such as medical imaging. There are two main parts to a CNN:

• A convolution tool that splits the various features of the image for analysis.

• A fully connected layer that uses the output of the convolution layer to predict the best
description for the image.
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Figure 2.10: CNNs and computer vision [3]

2.5.2.2 Basic Convolutional Neural Network Architecture

CNN architecture is inspired by the organization and functionality of the visual cortex and designed
to mimic the connectivity pattern of neurons within the human brain.

The neurons within a CNN are split into a three-dimensional structure, with each set of neurons
analyzing a small region or feature of the image. In other words, each group of neurons specializes
in identifying one part of the image. CNNs use the predictions from the layers to produce a final
output that presents a vector of probability scores to represent the likelihood that a specific feature
belongs to a certain class.

2.5.2.3 CNN layers

A CNN is composed of several kinds of layers:

• Convolutional layer.
creates a feature map to predict the class probabilities for each feature by applying a filter
that scans the whole image, few pixels at a time.

• Pooling layer (downsampling).
scales down the amount of information the convolutional layer generated for each feature
and maintains the most essential information (the process of the convolutional and pooling
layers usually repeats several times).
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• Fully connected input layer.
“flattens” the outputs generated by previous layers to turn them into a single vector that can
be used as an input for the next layer.

• Fully connected layer.
applies weights over the input generated by the feature analysis to predict an accurate label.

• Fully connected output layer.
generates the final probabilities to determine a class for the image.

Figure 2.11: The convolution operation [3]

2.5.3 Deep Learning Applications in Healthcare

Deep learning techniques use data stored in EHR records to address many needed healthcare
concerns like reducing the rate of misdiagnosis and predicting the outcome of procedures. By pro-
cessing large amounts of data from various sources like medical imaging, ANNs can help physicians
analyze information and detect multiple conditions:

• Analyze blood samples.

• Track glucose levels in diabetic patients.

• Detect heart problems.

• Using image analysis to detect tumors.

• Detecting cancerous cells and diagnosing cancer.
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2.6 Conclusion

In this chapter, we have talked about the basics of Machine Learning and Deep Learning with the
different learning algorithms used to build models that can help us in several areas. In the next
chapter, we will look at a practical example of the use of Deep Learning and see how it would help
us in the healthcare field by building a model to perform image segmentation on medical images
from the CAMUS dataset.
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Chapter 3

Dataset and Related Work

3.1 Introduction

Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task
to establish a diagnosis. Over the past decades, the automation of this task has been the subject
of intense research. In this chapter, we will talk about the heart and its cardiac function as
well as the CAMUS Dataset with which we will train our model to perform segmentation on 2D
echocardiographic images.

3.2 Cardiac function

The heart is a hollow muscle, located at the level of the thorax between the lungs and resting on
the diaphragm. This muscle is a pump whose function is to propel blood to all the organs of the
body [16]. It pumps 5 liters of blood per minute and will beat about 3 billion times in a lifetime.

3.2.1 Anatomical structure of the heart

The internal structure of the heart is made up of 3 layers with from the inside to the outside:
the endocardium, myocardium and pericardium. The pericardium is a double-walled sac
that envelops the heart. The myocardium constitutes the heart muscle proper; it is a striated
muscle, that is to say it has the same structure as the muscles of the limbs and the same force
of contraction. The endocardium is an endothelial membrane that lines the inner surface of the
heart [16]. The heart is divided into 4 chambers:

• 2 upper cavities: the right and left atria separated by the interatrial septum.

• 2 lower cavities: the right and left ventricles separated by the interventricular septum.

The atria communicate with the ventricles through the atrioventricular openings. We thus
distinguish the right heart consisting of a right atrium and ventricle communicating through the
tricuspid orifice and the left heart consisting of an atrium and a left ventricle communicating
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through the mitral orifice. Each atrioventricular orifice includes a valve apparatus formed by
a fibrous ring, valves, and cords connecting the valves to the muscle pillars inserting into the
endocardium. The aortic (located at the entrance to the aorta) and pulmonary (located at the
entrance to the pulmonary artery) orifices are made up of a fibrous ring and three so-called sigmoid
valves[16].

Figure 3.1: The heart, showing valves, arteries and veins. The white arrows show the normal
direction of blood flow[17].

3.2.2 Heartbeat

Heart rate depends on 2 components:

• A mechanical component or cardiac cycle that can be simplified in 3 phases:[16]

– A phase of relaxation called diastole allowing the filling of the heart chambers with
blood;

– A phase of contraction called systole which is characterized by an increase in intracav-
itary pressure;
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– A phase of ejection of blood into the circulatory network;

• An electrical component directly responsible for the mechanical phase. The heart muscle is
gifted with automatism: it has specialized muscle fibers that generate spontaneous repeti-
tive electrical activity. These fibers make up what is called nodal tissue, which has a first
cell cluster in the wall of the right atrium near the mouth of the superior vena cava: the
sinoatrial node. This has the property of rhythmically generating an electrical impulse which
propagates to the two atria and causes them to contract. Then the electrical signal will be
transmitted to the atrioventricular node and then relayed to the ventricles thanks to the
bundle of His and the network of Purkinje. The contraction of the ventricles occurs a few
fractions of a second after that of the atria, due to the propagation time of the nerve impulse.
On the other hand, there are quasi-simultaneous right and left atrial systoles (followed by di-
astoles) and also simultaneous systoles (followed by diastoles) of the right and left ventricles.
Resting heart rate averages 60 to 80 beats per minute[16].

3.2.3 Blood flow

The left heart ensures the "systemic" circulation, also called "great circulation" feeding all the
peripheral organs. The right heart ensures “the small circulation or pulmonary circulation” which
aims to renew the blood gases in the pulmonary alveoli. Blood from organs, poor in oxygen
and rich in wastes, is collected by the lower and upper vena cava to be returned to the right
atrium. The atria contract and blood then passes from the right atrium to the right ventricle
through the tricuspid valve. After the right ventricle contracts, the blood will be directed through
the pulmonary artery to the lungs for oxygen. At the entrance to the pulmonary artery, the
function of the pulmonary valve is to prevent the backflow of blood into the right ventricle. Once
oxygenated, the blood returns to the left atrium through the pulmonary veins. Blood passes from
the atrium to the left ventricle through the mitral valve. Finally, the oxygenated blood is propelled
by the left ventricle into the aorta and will flow to all the organs. Again, the aortic valve prevents
backflow of blood into the left ventricle[16].

3.3 CAMUS Dataset

CAMUS stands for "Cardiac Acquisitions for Multi-structure Ultrasound Segmentation". It con-
tains 2D echocardiographic sequences with two and four-chamber views of 500 patients that were
acquired with the same equipment in the same medical center. The size of this dataset and its
tight connection to everyday clinical issues give the possibility to train deep learning methods to
automatically analyze echocardiographic data. In addition, CAMUS includes manual expert an-
notations for the left ventricle endocardium (LVEndo), the myocardium (epicardium contour more
specifically, named LVEpi) and the left atrium (LA)[7]. The purpose of this clinical dataset is to :
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• enable to appropriately train machine / deep learning models;

• allow a meaningful comparison between state-of-the-art methods;

• evaluate how far supervised learning methods can go at assessing 2D echocardiographic
images i.e. segmenting cardiac structures as well as estimating clinical indices.

Figure 3.2: Multi-structure segmentation seen as a multi-label classification problem. 2D echocar-
diographic image with structures in the left and the ground truth mask in the right.

Structure Left ventricle Myocardium Left atrium Other (background)
Label 1 2 3 0

Table 3.1: Labels associated to identify cardiac structures

The CAMUS dataset consists of clinical exams from 500 patients, acquired at the University
Hospital of St Etienne (France) and included in this study within the regulation set by the local
ethical committee of the hospital[7].

450 of the 500 patients were made available with the mask to perform supervised learning,
the other 50 are without a mask in order to measure the performance of for the segmentation
of cardiac structures, Via a dedicated online platform. Note that the images of a patient have
different quality (poor, medium, good).

3.4 Our approach

3.4.1 Model

The model being used here is a modified U-Net.A U-Net consists of an encoder (downsampler)
and decoder (upsampler). In-order to learn robust features, and reduce the number of trainable
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parameters. The encoder for this task will be EfficientNet B0 model, whose intermediate outputs
will be used, and the decoder will be the upsample block.

3.4.2 U-NET architecture

U-Net is a convolutional neural network that was developed for biomedical image segmentation at
the Computer Science Department of the University of Freiburg, Germany. The network is based
on the fully convolutional network and its architecture was modified and extended to work with
fewer training images and to yield more precise segmentations[8].

Unet architecture uses standard 3x3 convolutions followed by a ReLU activation function and
a 2x2 max pooling layer this architecture has 23 convolution layers in total and it ends with a 1x1
convolution and a sigmoid as an activation function.

Figure 3.3: Architecture (example for 32x32 pixels in the lowest resolution). Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the box.
The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature
maps. The arrows denote the different operations[8]

.

And although Unet is an old architecture (2015) but it remains difficult to beat in the field of
segmentation of medical images and all this thanks to its skip connections.
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3.5 EfficientNet architecture

The EfficientNet-B0 architecture is not developed by engineers, but by the neural network itself.
They developed the model using research on a multi-objective neural architecture that optimizes
precision and floating-point operations. Based on B0, the author developed a complete series of
EfficientNets from B1 to B7, which achieved the highest accuracy on ImageNet and were also very
effective for competitors.

EfficientNet architecture is a very recent architecture (2019) it has proven its efficiency in terms
of precision and speed its power comes from three main elements.

3.5.1 Depthwise Separable Convolution

By adopting the original two-step convolution depthwise and pointwise, the calculation cost can
be greatly reduced, and the loss of precision can be reduced at the same time.

3.5.2 Inverse Res

Linear activation is used in the last layer of each block to avoid losing ReLU information. The
main component of EfficientNet is MBConv, which is a reverse bottleneck conveyor belt, originally
called MobileNetV2. By connecting a smaller number of channels (relative to the expansion layer)
using a shortcut between the bottlenecks, combining it with a separable deep convolution, which
reduces the amount of computation of nearly a thousand. Compared to the traditional layer, k
represents the kernel size, which specifies the height and width of the two-dimensional convolution
window.

Figure 3.4: EfficientNet architecture[9]

3.6 Model specifications

3.6.1 Processing part

• Convert images from mhd format to nii format;
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• Select only good and medium quality images;

• Resize all images to the shape (352, 352, 1);

• Normalise images to speed up training phase;

• Data augmentation with a flip from left to right;

3.6.2 Training part

• Spliting the dataset to 90% portion for training and 10% for validation;

• Shuffle the training portion;

• Batch Size of 1;

• Adam as an optimizer;

• Sparse Categorical Crossentropy from logits as a loss;

• Accuracy as metrics;

• 60 epochs;

• NVIDA T4 GPU;

3.6.3 Training results

after the final epoch of the training phase, we obtained a 97% accuracy percentage on the training
data as well as validation data with a total duration of almost 2 hours, which is very fast thanks
to the powerful GPU we used.

3.7 Conclusion

We presented in this chapter, general information on the heart and its anatomical structure, as well
as the CAMUS challenge to achieve a segmentation of cardiac structures by using our approach.
In the next chapter we will talk about performance indices and test results obtained through our
approach.
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Chapter 4

Experimental Results

4.1 Introduction

In the previous chapter, we talked about the cardiac structure of the heart as well as the CAMUS
dataset and our model based on U-NET and EfficientNet. In this chapter, we will show the results
obtained from 31 patients with our approach, but before that we will define the performance
metrics used by the CAMUS challenge.

4.2 Medical image segmentation metrics

Standard evaluation in medical imaging requires the establishment of task-specific sets of quality
criteria designed to provide meaningful information over the degree of agreement between method
predictions and expert annotations. Segmentation metrics traditionally focus on the accuracy of
contouring. We present here the classical metrics used in the case of binary segmentation which
separates a single structure (labeled 1) from the background (labeled 0).

4.2.1 Region overlap

Overlap metrics give global scores on the quality of the image segmentation. All overall indices
are derived from the four cardinalities of the confusion matrix:

1. True Positive (TP): number of elements (pixels / voxels) correctly assigned to 1;

2. False Positive (FP): number of elements wrongly assigned to 1;

3. True Negative (TN): number of elements correctly assigned to 0;

4. False Negative (FN): number of elements wrongly assigned to 0;

The sensitivity (true positive rate), specificity (true negative rate) and fallout (false positive
rate) are often used to evaluate classification tasks. However, they are not truly appropriate for
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segmentation as they are very sensitive to objects size. The overlap index between two segmenta-
tions A and B is called the Dice, and noted D(A,B) thereafter. The Dice and the Jaccard Index
JAC (also called the intersection of union IOU ) are less sensitive to the number of elements and
more frequently used in the literature:

D(A,B) = 2 ∗ A ∩B

|A|+ |B|
= 2 ∗ TP

2TP + FP + FN
= 2 ∗ JAC

1 + JAC

In our study, we use the Dice (best score of 1) to represent the overall performance of segmen-
tation methods.

4.2.2 Spatial distances between contours

Spatial distance based metrics allow a better assessment of the contouring accuracy. They are
often restricted to the elements of the contours for computational efficiency. The Mean Absolute
Distance (MAD) represents the average error in segmentation, while the Hausdorff Distance (HD)
shows the maximum error. Let dC1(C2) be the set of euclidean distances obtained from perpendic-
ularly projecting the points of contour C2 onto the contour C1 . To ensure a symmetric behavior,
we use the corresponding formulations for MAD and HD :

MAD(CA, CB) =
dCA

(CB) + dCB
(CA)

2

HD(CA, CB) = max(max dCA
(CB)),max dCB

(CA)

Where CA and CB are the sets of points of each object, d the euclidean distance, and • the average
operator.

The association of Dice and HD enables to encode both local and global accuracy through
the measurement of the overlap and maximum error. In this study, we also indicate the MAD to
represent the average closeness of the borders.

4.3 Results

In these 3 tables, we present the results obtained after submitting the images of the 50 test patients
on the online platform of the CAMUS challenge. Note that we have only presented 31 patients, as
the other 19 have metadata issues (which we will try to fix the issue in the future).
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ED dice ES dice ED hausdorff ES hausdorff ED mad ES mad
mean 0.917 0.88 27.1 43.7 10.48 13.06

patient1 0.924 0.913 48.9 55.8 11.3 13.4
patient10 0.929 0.877 35.9 45.3 7.8 10.9
patient11 0.943 0.918 47.0 57.9 10.1 12.5
patient12 0.937 0.923 29.4 38.1 6.6 8.8
patient14 0.941 0.919 54.1 55.0 11.1 12.4
patient16 0.900 0.837 40.5 48.0 12.7 15.5
patient17 0.917 0.937 53.5 54.8 11.6 11.0
patient18 0.919 0.888 50.2 65.3 11.5 17.0
patient19 0.912 0.899 44.7 53.3 11.1 13.8
patient22 0.936 0.908 43.2 48.7 11.1 12.4
patient23 0.903 0.893 39.3 44.0 8.8 9.4
patient24 0.933 0.903 32.4 40.8 8.5 11.9
patient25 0.931 0.909 33.9 42.1 8.6 11.0
patient26 0.927 0.905 48.6 55.7 9.5 12.7
patient27 0.857 0.875 50.1 59.1 12.3 15.3
patient28 0.894 0.840 62.3 73.9 14.3 22.3
patient29 0.935 0.879 44.3 55.5 11.7 14.8
patient3 0.946 0.941 50.0 46.8 9.6 10.1
patient30 0.944 0.921 44.2 50.2 10.5 11.6
patient31 0.901 0.764 40.2 52.9 11.4 15.1
patient32 0.903 0.864 41.3 50.5 11.6 13.9
patient34 0.895 0.831 30.4 39.3 9.5 12.2
patient35 0.929 0.879 41.0 48.9 9.7 12.9
patient36 0.927 0.908 35.0 46.5 9.4 11.8
patient39 0.891 0.881 31.4 43.2 11.0 12.9
patient4 0.943 0.950 56.8 58.5 11.4 11.9
patient41 0.913 0.867 53.0 62.4 11.4 14.7
patient43 0.911 0.874 40.7 47.3 10.4 13.1
patient47 0.904 0.881 55.0 64.2 13.3 17.2
patient5 0.917 0.919 36.7 43.5 9.1 10.6
patient6 0.909 0.859 39.4 47.1 8.6 11.0

Table 4.1: Results of LEFT VENTRICLE: ENDOCARDIUM
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ED dice ES dice ED hausdorff ES hausdorff ED mad ES mad
mean 0.956 0.946 43.4 51.0 10.5 14.0

patient1 0.958 0.956 48.9 55.8 11.8 15.1
patient10 0.964 0.956 35.9 45.3 7.6 11.2
patient11 0.970 0.960 47.0 57.9 10.6 15.0
patient12 0.948 0.946 29.4 38.1 6.3 9.3
patient14 0.956 0.948 54.1 55.0 14.6 15.8
patient16 0.944 0.941 40.5 48.0 9.6 12.3
patient17 0.947 0.954 53.5 54.8 16.1 14.4
patient18 0.969 0.948 50.0 62.8 12.2 20.1
patient19 0.950 0.944 44.7 53.3 11.1 14.8
patient22 0.962 0.964 43.2 48.7 10.1 12.3
patient23 0.938 0.934 39.3 44.0 8.9 10.5
patient24 0.962 0.965 32.4 40.8 6.6 10.8
patient25 0.961 0.939 33.9 42.1 7.4 11.6
patient26 0.951 0.960 44.2 55.4 10.6 15.0
patient27 0.942 0.928 50.1 59.1 12.8 17.1
patient28 0.953 0.895 61.8 65.7 17.0 23.9
patient29 0.972 0.956 44.3 55.5 10.5 16.3
patient3 0.968 0.952 50.0 46.8 10.4 11.4
patient30 0.966 0.967 44.0 50.2 10.2 12.4
patient31 0.957 0.937 40.2 52.9 10.1 15.3
patient32 0.955 0.944 41.3 50.5 9.9 13.6
patient34 0.956 0.930 30.4 39.3 7.0 10.6
patient35 0.964 0.929 40.5 48.1 9.9 13.3
patient36 0.966 0.966 35.0 46.5 7.1 11.4
patient39 0.944 0.943 31.4 43.2 6.9 11.2
patient4 0.968 0.960 56.8 58.5 15.9 16.5
patient41 0.963 0.930 53.0 62.4 13.2 18.3
patient43 0.967 0.956 40.5 47.3 10.0 13.1
patient47 0.963 0.950 55.0 64.2 15.3 19.1
patient5 0.964 0.953 36.7 43.5 7.5 10.2
patient6 0.920 0.932 39.4 47.0 9.2 12.1

Table 4.2: Results of LEFT VENTRICLE: EPICARDIUM
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ED dice ES dice ED hausdorff ES hausdorff ED mad ES mad
mean 0.889 0.92 6.0 7.7 2.4 1.9

patient1 0.947 0.962 4.0 3.3 1.3 1.1
patient10 0.927 0.932 3.8 4.9 1.2 1.4
patient11 0.926 0.948 5.1 4.1 1.6 1.3
patient12 0.918 0.917 3.0 5.6 1.3 1.8
patient14 0.942 0.917 3.5 5.3 1.4 2.1
patient16 0.891 0.917 4.9 4.3 2.0 1.6
patient17 0.861 0.905 10.8 6.9 4.1 2.5
patient18 0.933 0.954 5.0 4.2 1.4 1.3
patient19 0.929 0.909 4.1 5.2 1.4 2.3
patient22 0.913 0.923 4.5 4.5 1.9 1.8
patient23 0.926 0.946 3.4 3.1 1.2 1.1
patient24 0.912 0.913 3.1 4.1 1.4 1.8
patient25 0.913 0.920 3.4 4.3 1.4 1.5
patient26 0.907 0.946 3.9 3.8 1.9 1.1
patient27 0.897 0.907 7.7 6.8 2.4 2.4
patient28 0.919 0.941 5.6 36.4 2.1 2.0
patient29 0.944 0.949 3.5 5.7 1.1 1.3
patient3 0.770 0.800 15.4 15.8 4.8 5.2
patient30 0.903 0.938 5.9 4.3 1.9 1.4
patient31 0.913 0.926 5.3 43.2 1.8 3.5
patient32 0.428 0.922 22.6 4.0 11.6 1.9
patient34 0.871 0.879 5.8 6.9 2.0 2.1
patient35 0.839 0.861 6.8 10.8 3.6 3.5
patient36 0.925 0.932 3.1 3.0 1.2 1.4
patient39 0.922 0.877 3.1 6.3 1.2 2.8
patient4 0.935 0.953 9.1 6.3 2.0 1.4
patient41 0.932 0.929 3.4 4.5 1.4 1.9
patient43 0.905 0.927 4.3 4.4 1.8 1.6
patient47 0.889 0.947 8.7 5.8 3.0 1.5
patient5 0.804 0.911 10.3 4.8 3.9 1.8
patient6 0.897 0.917 4.3 6.0 1.8 1.8

Table 4.3: Results of LEFT ATRIUM
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4.4 Conclusion

In this chapter, we have defined the metrics used in the CAMUS challenge to evaluate the perfor-
mance of the segmentation methods. We can see from the data in the tables 4.1, 4.2, 4.3, that our
model based on U-NET and EfficientNet gives very good results, especially in the dice score, most
of which exceed 0.8.
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4.5 Tensorflow

TensorFlow is a powerful library for numerical computation, particularly well suited and fine-tuned
for large-scale Machine Learning (but you could use it for anything else that requires heavy com-
putations). It was developed by the Google Brain team and it powers many of Google’s large-scale
services, such as Google Cloud Speech, Google Photos, and Google Search. It was open sourced
in November 2015, and it is now the most popular deep learning library (in terms of citations in
papers, adoption in companies, stars on github, etc.): countless projects use TensorFlow for all
sorts of Machine Learning tasks, such as image classification, natural language processing (NLP),
recommender systems, time series forecasting, and much more.[2]

Figure 4.1: Tensorflow Logo [18]

4.6 SimpleITK

Open-source multi-dimensional image analysis in Python, R, Java, C, Lua, Ruby, TCL and C++.
Developed by the Insight Toolkit community for the biomedical sciences and beyond.[19]
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Figure 4.2: SimpleITK Logo [19]

4.7 ITK-SNAP

ITK-SNAP is a software application used to segment structures in 3D medical images. It is the
product of a decade-long collaboration, whose vision was to create a tool that would be dedicated
to a specific function, segmentation, and would be easy to use and learn. ITK-SNAP is free,
open-source, and multi-platform. ITK-SNAP provides semi-automatic segmentation using active
contour methods, as well as manual delineation and image navigation. In addition to these core
functions, ITK-SNAP offers many supporting utilities.[20]

Figure 4.3: ITK-SNAP Logo [20]

4.8 Google Colab

Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows anybody
to write and execute arbitrary python code through the browser, and is especially well suited
to machine learning, data analysis and education. More technically, Colab is a hosted Jupyter
notebook service that requires no setup to use, while providing free access to computing resources
including GPUs.
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Figure 4.4: Colab Logo

4.9 Scikit-learn

Scikit-learn is an open source machine learning library that supports supervised and unsupervised
learning. It also provides various tools for model fitting, data preprocessing, model selection and
evaluation, and many other utilities. [10]

Figure 4.5: Scikit-learn Logo [10]

4.10 Keras

tf.keras is TensorFlow’s high-level API for building and training deep learning models. It is used
in rapid prototyping, advanced research and going into production. It has three major advantages:
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• Friendliness
Keras has a simple and consistent interface optimized for common use cases. It provides
clear and concrete information about user errors.

• Modularity and ease of composition
Keras models are created by connecting configurable components, with some restrictions.

• Ease of extension
Compose custom building blocks to express new research ideas. Create layers, metrics, and
loss functions, and develop cutting-edge models.[21]

Figure 4.6: Keras Logo
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Conclusion

Part of the work carried out within the framework of this thesis involves the automatic segmentation
of echocardiographic images.

The separation and identification of the different structures from accurate delineation, called
semantic segmentation, is the first step to measure surfaces or volumes.

However, segmentation in echocardiography is a particularly difficult task due to the lack of
clear boundaries, a low signal-to-noise ratio, the speckled texture specific to ultrasound images,
and the presence of numerous and complex image artifacts such as as reverberations and loss of
signal.

We have presented a fully automatic deep learning approach based on the U-NET architecture
by integrating EfficientNet as an encoder.

Our network has achieved 97% accuracy on training data as well as validation data, which
makes our network powerful.

The results of the test on the CAMUS challenge dataset clearly show this with a Dice score
above 0.8. As prospects, we want to make changes to our network using the transfer learning
technique in order to improve it and solve the problem of metadata of the 19 patients.
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