République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'**Hydraulique**

Laboratoire de recherche en Hydraulique Appliquée et Environnement (LRHAE)

MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

Mr BOUNAIL Badreddine

Mr HAROUN Rachid

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: Hydraulique Urbaine

INTITULE:

ETUDE DE RENOVATION ET EXTENSION DU SYSTEME D'AEP DE LA COMMUNE DE TACHETA ZOUGAGHA Y COMPRIS LES AGGLOMERATIONS SECONDAIRES (W.AIN-DEFLA)

Soutenu le **08 / 07 / 2019** devant le jury composé de :

Président : Mr SELLAOUI A.

- Promoteur : Mr HAMMOUCHE A.

- Examinateur : Mr MERAH F.

Année Universitaire: 2018/2019

REMERCIEMENT

En premier lieu, nous remercions Dieu le tout puissant de nous avoir donné le courage, la volonté et la patience pour mener à bien ce modeste travaille.

On tient à exprimer notre profonde gratitude et un grand respect à notre promoteur **Mr HAMMOUCHE** Abderrahmane, pour la clarté de ses enseignements, son soutien indéfectible, sa générosité, sa gentillesse, son aide, ses spéciaux conseils, son orientation et sa patience à toute épreuve afin que ce mémoire soit mené à bien.

Nous remercions profondément tous les enseignements qui ont contribué à notre formation, en particulier les enseignants du département d'hydraulique.

A la fin nous tenons à remercier les membres de jury d'avoir accepté de juger et de critiquer notre travail.

MERCIA VOUS TOUS

Dédicaces

Du profond de mon cœur, je dédie ce travail à :

A mes très chers parents

Aucune dédicace ne saurait être assez éloquente pour exprimer ma gratitude et ma reconnaissance envers vous. Ce travail est le fruit de vos sacrifices que vous avez consenti pour mon éducation et ma formation. Que dieu, le tout puissant, vous préserve et vous accorde santé, longue vie et bonheur.

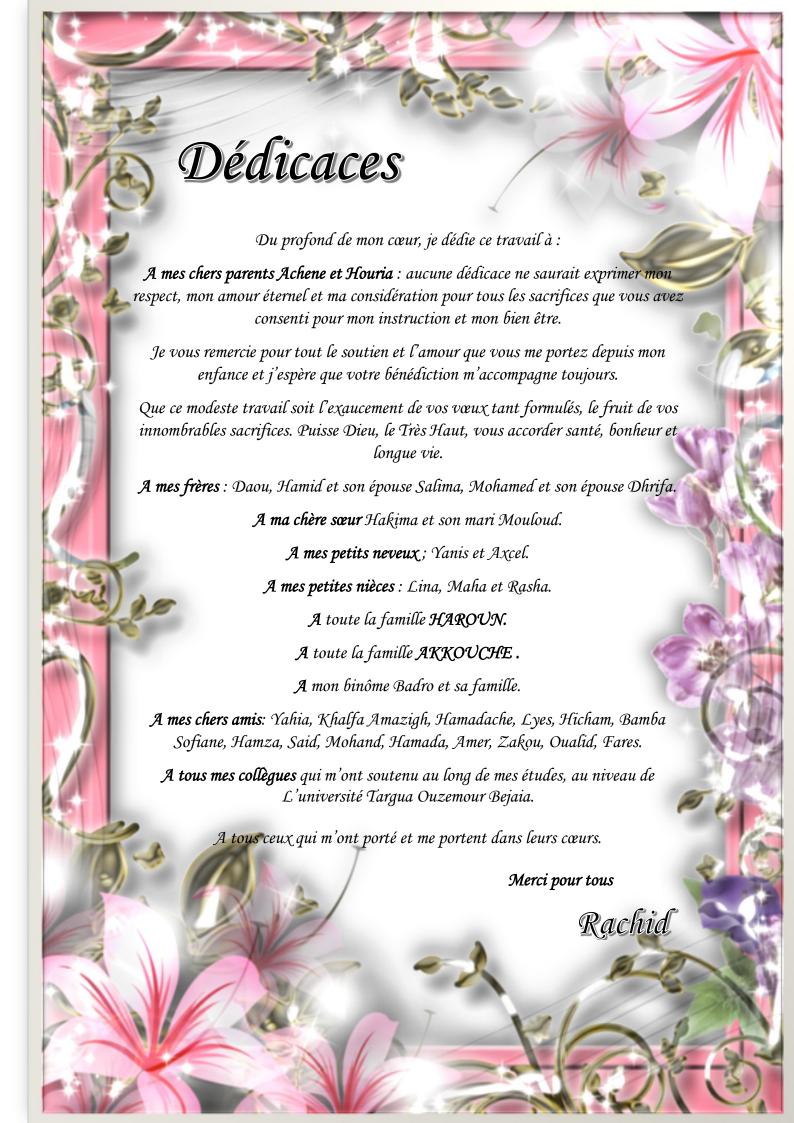
A mes chers frères

Zakaria, Djaber, Abdelghafour et Abdelwadoud

A mes chères sœurs

A toute la famille BOUNAIL

A mon binôme Rachid et sa famille


A tous mes amis et mes collègues

A toute personne ayant contribué de près ou de loin à la réalisation

de ce travail.

Merci pour tous

Badreddine

Sommaire

Liste des tableaux	
Liste des figures	
Liste des symboles et abréviations	
Liste des annexes	
Introduction générale	1
Chapitre I : Présentation de la zone d'étude	
I.1. Introduction générale	2
I.2. Aperçu historique sur la commune de Tacheta Zougagha	2
I.3. Situation géographique	2
I.4.Situation climatique	4
I.4.1. Climatologie	
I.4.2. Températures	4
I.4.3. Les précipitations	5
I.4.4. Le Vent	5
I.4.5. L'humidité relative de l'air	5
I.5. Situation géologique	6
I.6. Situation démographique	6
I.7.Situation topographique	7
I.7.1. Montagnes	7
I.7.2. Les collines	7
I.7.3. Les oueds	7
I.7.4. Les forêts	8
I.8.Situation hydraulique	8
I.8.1. Champ de captage	8
I.8.2. Stations de reprise	9
I.8.3. Ouvrages de stockage	9
I.9. Conclusion	10
Chapitre II: Estimation des besoins en eau	
II.1. Introduction	11
II.2. Situation démographique	11
II.3. Choix du taux d'accroissement	11
II 4 Estimation de la population	11

II.5. Norme de consommation	13
II.6. Equipements existants	13
II.7. Calcul des besoins en eau	16
II.7.1. Consommation moyenne journalière	16
II.7.2. Besoins domestiques	17
II.7.3. Besoins des différents équipements	17
II.7.4. Estimation des débits des équipements pour l'horizon 2050	20
II.8. Majoration de la consommation journalière (Q moy.j.maj)	21
II.9. Variation de la consommation journalière	21
II.9. 1.Débit maximum journalier (Qmaxj)	21
II.9. 2. Débit minimum journalier (Q.min.j)	22
II.10. Variation de la consommation moyenne horaire	23
II.11. Bilan ressources-besoins	24
II.12. Conclusion	25
Chapitre III : Les réservoirs	
III .1. Introduction	26
III .2. Rôles des réservoirs	26
III.2.1. Régulateur et accumulateur	26
III.2.2. Gain d'énergie au niveau de la station de pompage	26
III.2.3. Utilité pour briser la charge	26
III.2.4. Stockage de la réserve d'incendie	26
III .3. Emplacement des réservoirs	26
III .4. Classification des réservoirs	26
III .5. Choix du type de réservoir	27
III.6. Les équipements d'un réservoir	27
III.7. Capacité des réservoirs	27
III.7.1. Méthode analytique	28
III.7.2. Méthode graphique	28
III.7.3. Détermination du volume total d'un réservoir	28
III .8. Schéma général des réservoirs	28
III .9. Dimensionnement des réservoirs	29
III .9.1. Vérification de la capacité du réservoir existant Tacheta Zougagha (500 m³)	29
III .9.2. Dimensionnement du réservoir Ouled ali	31
III .9.3. Dimensionnement du réservoir Ghemamza	32
III .9.4. Dimensionnement du réservoir Ouled bouali	33

III .9.5. Dimensionnement du réservoir Ouled bessa	34
III .9.6. Dimensionnement du réservoir Khebabza	35
III .9.7. Dimensionnement du réservoir Ouled arbi	36
III .10. Dimensionnement des stations de reprises	37
III .11. Dimensionnement de la station de pompage	38
III .12. Conclusion	39
Chapitre IV : Adduction	
IV.1. Introduction	40
IV.2. Topologie des systèmes d'adduction	40
IV.3. Choix du type de conduite	40
IV.4. Equipements hydrauliques des conduites d'adduction	41
IV.4.1. Organes de sectionnement	41
IV.4.2. Organes de protection	41
IV.4.3. Organes de régulation	42
IV.4.4. Organes de branchement	42
IV.5. Description du schéma d'adduction	42
IV.6. Etude technico-économique	44
IV.6.1. Calcul du diamètre économique	44
IV.6.2. Calcul de la vitesse	45
IV.6.3. Calcul des pertes de charge	45
IV.6.3.1. Pertes de charge linéaires H _L	45
IV.6.3.2. Pertes de charge singulières H _S	46
IV.6.3.3. Pertes de charge totales H _T	47
IV.6.4. Détermination de la hauteur manométrique H _{MT}	47
IV.6.5. Puissance absorbée par la pompe	47
IV.6.6. Energie consommée par la pompe	47
IV.6.7. Frais d'exploitation	48
IV.6.8. Frais d'amortissement	48
IV.6.9. Bilan économique	49
IV.7. Dimensionnement des différents tronçons de l'adduction	
IV.7.1. Partie adduction gravitaire	49
IV.7.1.1. Tronçon RV Tacheta Zougagha-Bifurcation3	49
IV.7.1.2. Tronçon Bifurcation3-RV Ouled ali	
IV.7.1.3. Tronçon Bifurcation3 – Bifurcation4	51
IV.7.1.4. Tronçon Bifurcation4 – RV Ghemamza	51

	52
IV.7.1.6. Tronçon RV Ouled bessa – Bifurcation5	53
IV.7.1.7. Tronçon Bifurcation5 – RV Khebabza	54
IV.7.1.8. Tronçon Bifurcation5 – Station de reprise SR5	55
IV.7.2. Partie adduction par refoulement	56
IV.7.2.1. Tronçon des forages	56
IV.7.2.2. Tronçon Bifurcation1 - Bifurcation2	56
IV.7.2.3. Tronçon Bifurcation2 – Station de reprise SR1	57
IV.7.2.4. Tronçon Station de reprise SR1 – Station de reprise SR2	58
IV.7.2.5. Tronçon Station de reprise SR2 – Station de reprise SR3	59
IV.7.2.6. Tronçon Station de reprise SR3 – RV Tacheta Zougagha	60
IV.7.2.7. Tronçon Station de pompage – Station de reprise4	60
IV.7.2.8. Tronçon Station de reprise4 – RV Ouled bouali	61
IV.7.2.9. Tronçon Station de reprise4 – RV Ouled bessa	62
IV.7.2.10. Tronçon Station de reprise5 – RV Ouled arbi	63
IV.8. Récapitulatif des résultats	64
IV.9. Conclusion.	64
Chapitre V : Pompes et stations de pompages	
V.1. Introduction	65
V.2. Définition	65
V.3. Eléments constitutifs d'une station de pompage	65
V.3. Eléments constitutifs d'une station de pompage	
	65
V.4. Choix des pompes	65 66
V.4. Choix des pompes	65 66
V.4. Choix des pompes	65 66 66
V.4. Choix des pompes	65 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges	65 66 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges V.5.1. La vitesse de rotation (N) V.5.2. Le débit de pompage (Q) V.5.3. La hauteur manométrique totale (H _{MT}) V.5.4. Les puissances utiles et absorbées	65 66 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges V.5.1. La vitesse de rotation (N) V.5.2. Le débit de pompage (Q) V.5.3. La hauteur manométrique totale (H _{MT}) V.5.4. Les puissances utiles et absorbées V.5.4.1. Puissance absorbée par la pompe	65 66 66 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges V.5.1. La vitesse de rotation (N) V.5.2. Le débit de pompage (Q) V.5.3. La hauteur manométrique totale (H _{MT}) V.5.4. Les puissances utiles et absorbées V.5.4.1. Puissance absorbée par la pompe V.5.4.2. Puissance hydraulique ou utile (Pu)	65 66 66 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges V.5.1. La vitesse de rotation (N) V.5.2. Le débit de pompage (Q) V.5.3. La hauteur manométrique totale (H _{MT}) V.5.4. Les puissances utiles et absorbées V.5.4.1. Puissance absorbée par la pompe V.5.4.2. Puissance hydraulique ou utile (Pu) V.5.5. Le rendement de la pompe	65 66 66 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges V.5.1. La vitesse de rotation (N) V.5.2. Le débit de pompage (Q) V.5.3. La hauteur manométrique totale (H _{MT}) V.5.4. Les puissances utiles et absorbées V.5.4.1. Puissance absorbée par la pompe V.5.4.2. Puissance hydraulique ou utile (Pu) V.5.5. Le rendement de la pompe V.6. Les courbes caractéristiques	65 66 66 66 66
V.4. Choix des pompes V.5. Caractéristiques hydrauliques des pompes centrifuges V.5.1. La vitesse de rotation (N) V.5.2. Le débit de pompage (Q) V.5.3. La hauteur manométrique totale (H _{MT}) V.5.4. Les puissances utiles et absorbées V.5.4.1. Puissance absorbée par la pompe V.5.4.2. Puissance hydraulique ou utile (Pu) V.5.5. Le rendement de la pompe V.6. Les courbes caractéristiques V.6.1. Courbes caractéristiques des pompes centrifuges	65 66 66 66 66

V.7.2. Couplage en série	68
V.8. Point de fonctionnement	68
V.8.1. Recherche du point de fonctionnement	68
V.8.2. Réalisations du point de fonctionnement désiré	69
V.8.2.1. 1 ^{ére} Variante : Réduction ou augmentation du temps de pompage	69
V.8.2.2. 2 ^{éme} Variante : Régulation par étouffement (le vannage)	69
V.8.2.3. 3 ^{éme} Variante : variation de la vitesse	70
V.9. Etude la cavitation	71
V.10. Choix du type des pompes pour différentes stations	71
V.10.1. Station des forages	71
V.10.1.1. Tronçon Forage F1 - SR1	71
V.10.1.2. Tronçon Forage F2 - SR1	72
V.10.1.3. Tronçon Forage F3 - SR1	73
V.10.1.4. Couplage des pompes des forages avec le réseau	74
V.10.2. Tronçon SR1 – SR2	77
V.10.3. Tronçon SR2 – SR3	78
V.10.4. Tronçon SR3 – RV Tacheta	79
V.10.5. Tronçon SP – SR4	81
V.10.6. Tronçon SR4 – RV Ouled bouali	83
V.10.7. Tronçon SR4 – RV Ouled bessa	84
V.10.8. Tronçon SR5 – RV Ouled arbi	86
V.11. Conclusion	87
Chapitre VI: Protection et pose des conduites	
VI.1. Introduction	88
VI.2. Causes du coup de bélier	88
VI.3. Analyse physique du phénomène	88
VI.4. Moyens de protection contre le coup de bélier	89
VI.4.1. Volant d'inertie	89
VI.4.2. Réservoir d'air	89
VI.4.3. Cheminées d'équilibre	89
VI.4.4. Soupapes de décharge	90
VI.4.5. Ventouses (reniflards)	90
VI.5. Etude du coup de bélier	90
VI.6. Calcul du coup de bélier pour les différents tronçons du refoulement	92
VI.7. Choix du moyen de protection contre le coup de bélier	93

VI.7.1. Principe de calcul du réservoir d'air	93
VI.7.2. Application du calcul	95
VI.7.2.1. Tronçon SR1 – SR2.	95
VI.7.2.2. Tronçon SR2 – SR3.	98
VI.7.2.3. Tronçon SR3 – RV Tacheta Zougagha	100
VI.7.2.4. Tronçon SP – SR4.	102
VI.7.2.5. Tronçon SR4 – RV Ouled bessa	104
VI.8. Pose des conduites	106
VI.8.1 Exécution et aménagement de la tranchée	107
VI.8.2 Traversée de points spéciaux	107
VI.8.2.1. Traversée des oueds	107
VI.8.2.2. Passage d'une route	108
VI.8.2.3. Pose en élévation	108
VI.8.2.4. Stabilisation de la conduite	108
VI.8.3. Essais hydrostatiques du réseau (en tranchée)	109
VI.8.4. Le remblaiement de la conduite	109
VI.8.4.1. Précaution intéressant les conduites	109
VI.8.4.2. La stérilisation des conduites neuves avant la mise en service	109
VI.9. Conclusion	109
Conclusion générale	110

Liste des tableaux

Tableau (1.1)	:	Données des températures moyennes mensuelles en C°,
		période (1998-2008)
Tableau (I.2)	:	Données des moyennes mensuelles des précipitations,
		période (1998-2008)
Tableau (I.3)	:	Nombre d'habitant de la commune Tacheta Zougagha,
		période (1985-2015)
Tableau (I.4)	:	Caractéristiques du Forage F2
Tableau (I.5)	:	Caractéristiques hydrauliques de la conduite existante
Tableau (I.6)	:	Caractéristiques du réservoir Tacheta 500 m ³
Tableau (II.1)	:	Répartition de la population pour l'année 2015
Tableau (II.2)	:	Evaluation de la population à différents horizons
Tableau (II.3)	:	Norme de consommation domestique
Tableau (II.4)	:	Normes de consommation pour les différentes utilisations
Tableau (II.5)	:	Récapitulatif des équipements scolaires
Tableau (II.5)	:	Récapitulatif des équipements scolaires (suite)14
Tableau (II.6)	:	Récapitulatif des équipements sanitaires
Tableau (II.7)	:	Récapitulatif des équipements administratifs
Tableau (II.8)	:	Récapitulatif des équipements socioculturels et sportifs
Tableau (II.9)	:	Répartition du cheptel
Tableau (II.9)	:	Répartition du cheptel (suite)
Tableau (II.10)	:	Besoins domestiques à différents horizons
Tableau (II.11)	:	Les besoins scolaires
Tableau (II.12)	:	Les besoins sanitaires
Tableau (II.13)	:	Les besoins administratifs
Tableau (II.14)	:	Les besoins socioculturels et sportifs
Tableau (II-15)	:	Les besoins commerciaux
Tableau (II-15)	:	Les besoins commerciaux(suite)
Tableau (II.16)	:	Les besoins cheptels
Tableau (II.17)	:	Récapitulatif des différents besoins d'équipements20
Tableau (II-18)	:	Estimation du débit d'équipement pour l'horizon 205020
Tableau (II.19)	:	Débit moyen journalier majoré à l'horizon 205021
Tableau (II.20)	:	Débit journalier maximum à l'horizon 205022

Tableau (II.21) :	Débit journalier minimum à l'horizon 2050	22
Tableau (II.22) :	Les valeurs de ßmax	24
Tableau (II.23) :	Les valeurs de ßmax, kmax.h et Q _{max.h}	24
Tableau (II.24) :	Caractéristiques des forages	24
Tableau (II.25) :	Bilan ressources-besoins.	25
Tableau (III.1) :	Vérification de la capacité du réservoir Tacheta	29
Tableau (III .2):	La capacité des réservoirs de la zone d'étude	39
Tableau (IV.1):	Calcul des pertes de charge totales du tronçon	
	(RV Tacheta -Bifurcation3)	49
Tableau (IV.2) :	Calcul des pertes de charge totales du tronçon	
	(Bifurcation3- RV Ouled ali)	50
Tableau (IV.3):	Calcul des pertes de charge totales du tronçon	
	(Bifurcation3- Bifurcation4)	51
Tableau (IV.4) :	Calcul des pertes de charge totales du tronçon	
	(Bifurcatio4 – RV Ghemamza)	52
Tableau (IV.5):	Calcul des pertes de charge totales du tronçon	
	(Bifurcatio4 – St de pompage)	53
Tableau (IV.6):	Calcul des pertes de charge totales du tronçon	
	(RV Ouled bessa - Bifurcation5)	54
Tableau (IV.7):	Calcul des pertes de charge totales du tronçon	
	(Bifurcation5 – RV Khebabza)	54
Tableau (IV.8):	Calcul des pertes de charge totales du tronçon	
	(Bifurcation5 – SR5)	55
Tableau (IV.9):	Calcul des pertes de charge	56
Tableau (IV.10):	Calcul de la H _{MT} 1	57
Tableau (IV.11):	Calcul des frais d'exploitation et d'amortissement (F1-SR1)	57
Tableau (IV.12):	Calcul de la H _{MT} 2	57
Tableau (IV.13):	Calcul des frais d'exploitation et d'amortissement (F2-SR1)	57
Tableau (IV.14):	Calcul de la H _{MT} 3	58
Tableau (IV.15):	Calcul des frais d'exploitation et d'amortissement (F3-SR1)	58
Tableau (IV.16):	Calcul du bilan général	58
Tableau (IV.17):	Calcul de la H _{MT} (SR1– SR2)	58
Tableau (IV.18):	Calcul des frais d'exploitation et d'amortissement (SR1-SR2)	59
Tableau (IV.19):	Calcul du bilan (SR1– SR2)	59
Tableau (IV.20):	Calcul de la H _{MT} (SR2 – SR3)	59

Tableau (IV.21):	Calcul des frais d'exploitation et d'amortissement (SR2–SR3)59
Tableau (IV.22):	Calcul du bilan (SR2– SR3)59
Tableau (IV.23):	Calcul de la H _{MT} (SR3– RV Tacheta)60
Tableau (IV.24):	Calcul des frais d'exploitation et d'amortissement
	(SR3– RV Tacheta)60
Tableau (IV.25):	Calcul du bilan (SR3– RV Tacheta)
Tableau (IV.26):	Calcul de la H _{MT} (SP– SR4)61
Tableau (IV.27):	Calcul des frais d'exploitation et d'amortissement (SP- SR4)61
Tableau (IV.28):	Calcul du bilan (SP– SR4)61
Tableau (IV.29):	Calcul de la H _{MT} (SR4- RV Ouled bouali)61
Tableau (IV.30):	Calcul des frais d'exploitation et d'amortissement
	(SR4- RV Ouled bouali)61
Tableau (IV.31):	Calcul du bilan (SR4- RV Ouled bouali)62
Tableau (IV.32):	Calcul de la H _{MT} (SR4- RV Ouled bessa)
Tableau (IV.33):	Calcul des frais d'exploitation et d'amortissement
	(SR4- RV Ouled bessa)
Tableau (IV.34):	Calcul du bilan (SR4- RV Ouled bessa)
Tableau (IV.35):	Calcul de la H _{MT} (SR5- RV Ouled arbi)63
Tableau (IV.36):	Calcul des frais d'exploitation et d'amortissement
	(SR5- RV Ouled arbi)63
Tableau (IV.37):	Calcul du bilan (SR5- RV Ouled arbi)63
Tableau (IV.38):	Récapitulatif des résultats obtenus
Tableau (V.1) :	Tension de vapeur de l'eau pompée en fonction de la température71
Tableau (VI.1):	Valeurs maximales du coup de bélier92
Tableau (VI.2) :	Calcul du réservoir d'air du tronçon (SR1 – SR2)96
Tableau (VI.3):	Calcul du réservoir d'air du tronçon (SR2 – SR3)98
Tableau (VI.4) :	Calcul du réservoir d'air du tronçon (SR3 – RV Tacheta)
	Calcul du l'esci von d'an du tronçon (SRS - RV Tacheta)
Tableau (VI.5) :	Calcul du réservoir d'air du tronçon (SP – SR4)
Tableau (VI.5) : Tableau (VI.6) :	

Liste des figures

Figure (I.1)	:	Situation géographique de la commune de Tacheta Zougagha	3
Figure (I.2)	:	Graphique des variations des températures moyennes	
		mensuelles (1998-2008)	4
Figure (I.3)	:	Histogramme des variations des précipitations mensuelles (1998-2008)	5
Figure (I.4)	:	Variations du nombre d'habitant de la commune	
		Tacheta Zougagha durant la période (1985-2015)	7
Figure (I.5)	:	Forage F2	8
Figure (I.6)	:	Réservoir du Tacheta 500 m ³	10
Figure (I.7)	:	Schéma explicatif du réseau d'adduction existant	10
Figure (II.1)	:	Histogramme de l'évaluation de la population à différents horizons	12
Figure (III.1)	:	Les différents équipements d'un réservoir	27
Figure (IV.1)	:	Robinet vanne à opercule	41
Figure (IV.2)	:	Ventouse	42
Figure (IV.3)	:	Clapet anti-retour	42
Figure (IV.4)	:	Vanne robinet à papillon	42
Figure (IV.5)	:	Schéma général des adductions	43
Figure (V.1)	:	Courbes caractéristiques d'une pompe centrifuge	67
Figure (V.2)	:	Point de fonctionnement d'une pompe	68
Figure (V.3)	:	Point de fonctionnement par modification de la vitesse de rotation	70
Figure (V.4)	:	Les courbes caractéristiques de la pompe du Forage1	72
Figure (V.5)	:	Les courbes caractéristiques de la pompe du Forage2	73
Figure (V.6)	:	Les courbes caractéristiques de la pompe du Forage3	73
Figure (V.7)	:	Couplage des pompes des forages(F1,F2, F3)avec le reseau	75
Figure (V.8)	:	Les courbes caractéristiques de la pompe de SR1	78
Figure (V.9)	:	Les courbes caractéristiques de la pompe de SR2	79
Figure (V.10)	:	Les courbes caractéristiques de la pompe de SR3	80
Figure (V.11)	:	Les courbes caractéristiques de la pompe de SP	81
Figure (V.12)	:	Les courbes caractéristiques de la pompe de SR4	
		(refoule vers RV Ouled bouali)	83
Figure (V.13)	:	Les courbes caractéristiques de la pompe de SR4	
		(refoule vers RV Ouled bessa)	84
Figure (V.14)	:	Les courbes caractéristiques de la pompe de la SR5	87
Figure (VI.1)	:	Principe de la disposition d'un réservoir d'air	89

Figure (VI.2):	Cheminée d'équilibre	90
Figure (VI.3):	Soupape de décharge	90
Figure (VI.4) :	Epure de BERGERON pour le tronçon (SR1 – SR2)	97
Figure (VI.5):	Variation de la pression absolue pour le tronçon (SR1-SR2)	97
Figure (VI.6):	Epure de BERGERON pour le tronçon (SR2 – SR3)	99
Figure (VI.7):	Variation de la pression absolue pour le tronçon (SR2-SR3)	99
Figure (VI.8) :	Epure de BERGERON pour le tronçon (SR3 – RV Tacheta)1	01
Figure (VI.9) :	Variation de la pression absolue pour le tronçon (SR3-RV Tacheta)1	01
Figure (VI.10):	Epure de BERGERON pour le tronçon (SP – SR4)	03
Figure (VI.11):	Variation de la pression absolue pour le tronçon (SP-SR4) 1	04
Figure (VI.12):	Epure de BERGERON pour le tronçon (SR4 – RV Ouled bessa)	05
Figure (VI.13):	Variation de la pression absolue pour le tronçon (SR4-RV Ouled bessa)1	06
Figure (VI.14):	Traversée d'un oued1	07
Figure (VI.15):	Traversée d'une route1	08
Figure (VI.16):	Butée sur un branchement1	08
Figure (VI.17):	Butée sur coude horizontal1	08

Liste des symboles et abréviations

A: l'amortissement annuel (Annuité)

a: La célérité de l'onde (m/s)

ai : Célérité de l'onde du tronçon i du système en (m/s)

B: Valeur du coup de bélier (m)

B_L: Le bilan (DA)

CTN: Cote terrain naturel CTP: Cote de trop plein

CR: Cote du radier

Ca: La cote du plan d'aspiration

C : Coefficient de perte de charge (cas de monté de l'eau) dans la tuyère

C' : Coefficient de perte de charge (cas de descente de l'eau) dans la tuyère

Dot : Dotation moyenne journalière en (l/j/cons)

D : Diamètre de la conduite (m)

Dext: Diamètre extérieur (m)

Dint: Diamètre intérieur (m)

Dmin : Diamètre minimal de la conduite (m)

D_n: Le diamètre du tuyau (m)

D max : Diamètre maximale de la conduite (m)

D₁: Diamètre donné par BONNIN (m)

D2: Diamètre donné par BRESS (m)

d: Le diamètre de la tuyère (m)

d' : Diamètre de la veine contracté (m)

E: l'énergie consommée par la pompe (KWh)

e: Epaisseur de la conduit (m)

F: Forage

Fam: Les Frais d'amortissement (DA)

Fexp: Les Frais d'exploitation (DA)

g: l'accélération de la pesanteur (g=9,81)

Hc: charge totale en fonction du débit en (m)

H: La hauteur du réservoir (entre 3 et 6 m)

Ha: La hauteur d'aspiration en (m)

H_g: La hauteur géométrique (m)

Hinc: La hauteur d'incendié (m)

H_L: Perte de charge linéaires (m)

HMT: La hauteur manométrique totale (m)

H_s: Perte de charge singulière (m)

H_T: Perte de charge totale (m)

H1: La hauteur au point de fonctionnement désiré (m)

H₂: La distance séparée entre le point désiré et l'intersection de la verticale passant par le même point avec la caractéristique de la pompe (m)

H_d: La hauteur de dépression (m)

H_{sr}: La hauteur de surpression (m)

Ho: La pression absolue a point le plus haut de la conduite (m)

h : Perte de charge engendré par vannage (m)

 h_v : La pression de vapeur maximale que l'air peut supporter à une température donnée (dans notre étude on prend T=20 °C).

i: Le taux d'intérêt (i=8%)

j: Perte de charge linéaire (m/ml)

Ja: Perte de charge à l'aspiration en (m)

jasp: Perte de charge à l'aspiration (m)

jref: Perte de charge au refoulement (m)

J_v: Perte de charge dans la vanne (m)

Kf: Coefficient de majoration (20 %)

K : La rugosité absolue de la conduite

K max. j : coefficient d'irrégularité qui montre combien de fois le débit maximal journalier excède le débit moyen journalier (il varie entre 1,1 et 1,3)

K min. j : coefficient d'irrégularité qui montre combien de fois le débit minimal journalier est inférieur au débit moyenne journalier (il varie entre 0,7 et 0,9)

K_{min.h}: Coefficient d'irrégularité horaire minimal

k_{max.h}: Coefficient d'irrégularité horaire maximal

K': coefficient de rapport de vitesse

K_c: Coefficient dépendant de la nature de la conduite

K_{max.j}: Coefficient d'irrégularité qui dépend de l'importance de l'agglomération, sa valeur est comprise entre 1,1 et1,3

Kmax.h: Coefficient de variation horaire maximale

L: Longueur de la conduite (m)

Li: Longueur du tronçon i du système en (m)

m': Le rapport du diamètre de la section de la veine contracté et du diamètre de la tubulure

m'': Le rapport du diamètre de la tuyère et du diamètre de la tubulure

N: La vitesse de rotation (tr/min)

N': La nouvelle vitesse de rotation (tr/min)

Nc : Nombre de consommateurs

Nbr hab: Nombre d'habitants

NPSH_d: La charge minimale disponible à l'aspiration

NPSHr: La charge nette minimale à l'aspiration

n: Nombre d'année séparant l'année de référence et l'horizon de calcul

ni: Nombre d'année d'amortissement (n=25ans)

Po/W: Pression en mètre de colonne d'eau au point d'aspiration en (m.c.e)

 P_u : La puissance utile (KW)

Pa: La puissance absorbée par la pompe (KW)

Pmax: Le résidu maximale dans le réservoir (%)

P: La population à l'horizon d'étude

Pun: Le prix de mètre linéaire de la conduite (DA/ml)

Po: La population de l'année référence (2008)

PEHD: Polyéthylène haute densité

PN: La pression nominal

PS: Presssion nominal de service

Pr: Prix unitaire d'un kWh, fixé par la SONELGAZ (4.67 DA)

Qmoy,j.maj: Débit moyen journalier majoré (m³/j)

Qmoy.j: Débit moyen journalier (m³/j)

O max.i :Débit journalier maximum

Q min.j :Débit journalier minimum

 $Q_{\text{max h}}$: Consommation maximale horaire

 $Q_{min,h}$: Consommation minimale horaire

Q: Le débit qui doit transiter dans la conduite.

R : Coefficient qui caractérise la résistance de la conduite (m)

Re: Le nombre de REYNOLDS

R+: Valeur maximale dans le réservoir (%).

R-: Valeur minimale dans le réservoir (%).

S: Section de la conduite (m²)

Si : Section du tronçon i du système en m²

SR: Station de reprise

SP: Station de pompage

tac: Le taux d'accroissement annuel de la population en %, pris égale à 1.40

Tf: Le temps de fermeture de la vanne (s)

Tv: La pression de vapeur maximale de l'air

T': Le nouveau temps de pompage (s)

To: La température de l'eau en degré, T=20°C

T₁: Le temps de pompage par jour (20h)

 T_s : Temps nécessaire pour maintenir la crépine en charge (t = 0.25h)

U: Le volume de l'air dans le réservoir à l'intervalle de temps (m/s)

Uo: Volume d'air initial (m³)

Umax: Le volume maximale d'air dans la cloche (m³)

 V_{sr} : Volume de la station de reprise (m³)

V: La vitesse d'écoulement (m/s)

V_f: Vitesse finale choisie (m/s)

Vm: Moyenne arithmétique de la vitesse finale de l'intervalle précédent et la nouvelle vitesse choisie.

V_t: Le volume totale du réservoir (m³)

Vr : Le volume utile de stockage du réservoir (m³)

Vmin: La vitesse minimale de l'écoulement qui est de 0,5 m/s

V_{max}: La vitesse maximale de l'écoulement qui est de 1,5 m/s

Vinc: Le volume d'incendie (120m3)

Vo: Vitesse moyenne d'écoulement (m/s)

V1: Vitesse dans la tuyére (cas de la montée d'eau) (m/s)

V2: Vitesse dans la tuyére (cas de la descente d'eau) (m/s)

Z: L'altitude

Z': La pression dans le réservoir d'air

Z₀: Pression absolue

 θ° : Angle d'ouverture de la vanne

 θ : Temps mis par une onde, pour faire un aller-retour dans la conduite (s)

α max: Coefficient qui dépend du niveau de vie et du confort, il varie entre 1,2 et 1,4

 α_{min} : Coefficient qui dépend du confort au sien de l'agglomération, il varie entre 0.4 et 0.6

β_{min}: Coefficient qui dépend du nombre d'habitants

β max: Coefficient qui dépend du nombre d'habitant

 η : Le rendement de la pompe (%)

9: Viscosité cinématique de l'eau (m²/s)

 λ : Coefficient de frottement de Darcy

 ϕ : Le diamètre de la tubulure (m)

ε: Coefficient d'ouverture de la vanne

δο: Perte de charge dans la conduite en régime de fonctionnement normal

 ρ : La masse volumique (kg/m³)

 $\pi : 3,14$

Δh1 : La perte de charge à la montée (m)

Δh₂: La perte de charge à la descente (m)

ΔU: La variation du volume d'air (m³)

Liste des annexes

- Annexe (1): Régime de consommation horaire en fonction du K_{max.h}
- Annexe (2): Schéma général des réservoirs
- Annexe (3): Dimensionnement du réservoir Ouled ali
- Annexe (4): Dimensionnement du réservoir Ghemamza
- **Annexe (5) :** Dimensionnement du réservoir Ouled bouali
- Annexe (6): Dimensionnement du réservoir Ouled bessa
- Annexe (7): Dimensionnement du réservoir Khebabza
- Annexe (8): Dimensionnement du réservoir Ouled arbi
- Annexe (9): Dimensionnement de la station de reprise SR5
- Annexe (10): Dimensionnement de la station de pompage SP
- Annexe (11): Prix de revient des conduites PN 10, PN 16 et PN 20 (PEHD)
- Annexe (12): Evolution du coefficient d'ouverture de la vanne ϵ d'une vanne à papillon en fonction de son degré d'ouverture
- Annexe (13): Caractéristiques techniques de la pompe du forage F1
- Annexe (14): Caractéristiques techniques de la pompe du forage F2
- Annexe (15): Caractéristiques techniques de la pompe du forage F3
- Annexe (16): Caractéristiques techniques de la pompe de SR1
- Annexe (17): Caractéristiques techniques de la pompe de SR2
- Annexe (18): Caractéristiques techniques de la pompe de SR3
- Annexe (19): Caractéristiques techniques de la pompe de SP
- Annexe (20): Caractéristiques techniques de la pompe de SR4 (refoule vers RV Ouled bouali)
- Annexe (21): Caractéristiques techniques de la pompe de SR4 (refoule vers RV Ouled bessa)
- Annexe (22): Caractéristiques techniques de la pompe de SR5
- Annexe (23): Coefficient de perte de charge c dans une tuyère
- **Annexe (24) :** Enveloppes des pressions en régime permanant et transitoire du tronçon (SR1 SR2)
- **Annexe (25) :** Enveloppes des pressions en régime permanant et transitoire du tronçon (SR2 SR3)
- **Annexe (26) :** Enveloppes des pressions en régime permanant et transitoire du tronçon (SR3 RV Tacheta Zougagha)
- **Annexe** (27): Enveloppes des pressions en régime permanant et transitoire du tronçon (SP SR4)
- **Annexe (28) :** Enveloppes des pressions en régime permanant et transitoire du tronçon (SR4 RV Ouled bessa)

Introduction générale

Introduction générale

Depuis la nuit des temps, les êtres humains ont cherché à mettre l'eau en valeur pour améliorer leur existence puisqu'elle constitue l'essence de survie de tout être vivant, aussi bien animal que végétal.

L'expansion démographique, l'évolution du niveau de vie et le développement des activités économiques ont engendré une demande en eau potable sans cesse. Devant une telle situation, il est impératif de concevoir des systèmes judicieux d'adduction et de stockages qui constituent toujours un grand défi d'Ingénierie afin de satisfaire la demande et d'atténuer les pertes.

En Algérie les quantités d'eau, pour l'instant sont plus ou moins suffisantes, mais à l'avenir, on risquera d'enregistrer un déficit en eau. Ceci est dû aux différents problèmes naturels ou humains qui touchent les sites susceptibles de capter les eaux malgré la construction de nouveaux barrages.

La commune de Tacheta Zougagha (wilaya de AIN DEFLA) est caractérisée par sa situation très faible en eau potable, et ce problème dû à l'accroissement démographique et l'extension que connait cette région, ainsi que la vétusté et la corrosion très avancée de certains tronçons de conduites, ce qui fait la demande en eau devient de plus en plus accrue et les besoins de moins en moins satisfaits.

Dans ce contexte et pour satisfaire la demande suscitée, s'inscrit le présent mémoire de fin d'études, qui consiste à élaborer une étude de rénovation et extension du système d'AEP de la commune de Tacheta Zougagha y compris les agglomérations secondaires, à partir des trois forages (deux projetés et un existant) dans la région de « Abadia ».

Afin de réaliser ce projet, notre plan de travail est structuré comme suit :

Le premier chapitre sera consacré à la présentation globale du site, dans laquelle on trouve des données de base, afin de décrire les différentes situations du site ;

Dans le deuxième chapitre, nous procéderons à l'estimation des différents besoins en eau aux différents horizons futurs ainsi que le nombre d'habitants et cela, dans le but d'établir un bilan des besoins à satisfaire à long terme ;

Pour ce qui est du troisième chapitre, nous allons concevoir et dimensionner les différents ouvrages de stockage à savoir : les réservoirs et les stations de pompages et de reprises ;

Tandis que le troisième chapitre consiste essentiellement sur le dimensionnement des conduites d'adduction, en se basant sur les conditions d'ordre techniques et économiques ;

Le choix des pompes à utiliser pour les stations de pompages, en tenant compte de celle qui donne le meilleur rendement, fera l'objet du quatrième chapitre. Ce choix se fera à l'aide d'un catalogue des pompes;

Quant au dernier chapitre, sera consacré à l'étude de protection de la conduite contre le phénomène du coup de bélier, et les techniques de pose afin d'avoir un réseau fiable et durable.

On terminera cette modeste étude par une conclusion générale.

Chapitre I Présentation de la zone d'étude

I.1. Introduction

Avant tout projet d'alimentation en eau potable, l'étude du site est nécessaire pour connaitre toutes les caractéristiques du lieu et les facteurs qui influent sur la conception du projet et pour cela on va s'intéresser dans ce chapitre à la présentation générale de la zone d'étude de point de vue géographique, climatique, géologique, démographique, topographique et hydraulique.

I.2. Aperçu historique sur la commune de Tacheta Zougagha [1]

Durant la période du colonialisme, le colonisateur français, ainsi que les habitants, ont donné le nom de ''Tacheta Zougagha'' à la commune, elle a été divisée en deux zones adjacentes : ''Tacheta'', qui porte le nom de l'un des arbres de la région nommé ''Hacheta'' et'' Zougagha'' qui est un nom Berbère qui veut dire la région rouge en langue Berbère, et c'est la langue la plus parlée par les habitants de la commune. C'était l'une des anciennes communes lors de la colonisation française du pays. Et après la division administrative de 1984 de l'ordre n ° 84/84 du 04/02/1984, elle est devenue une commune indépendante pour reprendre ses fonctions.

I.3. Situation géographique :[1]

La commune de Tacheta Zougagha est une commune de la wilaya de Ain Defla. Situé à 44 Km de chef-lieu de la wilaya et sur les montagnes d'el Dahra, elle s'étend sur une superficie de 191 km² et sur une altitude de 1147m par rapport au niveau de la mer.

La commune de Tacheta Zougagha est située au Nord-Ouest de la wilaya de Ain Defla. Elle est limitée par :

- La commune de Berira (wilaya de Tipaza) au Nord;
- La daira de Abadia (wilaya de Ain defla) au Sud ;
- Les communes de Beni mileuk (wilaya de Tipaza) et Ain bouyahia (wilaya de Ain Defla) à l'Est;
- La commune de Zaboudja et Beni-Rached (wilaya de Chlef) à l'Ouest.

Figure (I.1) : Situation géographique de la commune de Tacheta Zougagha

I.4. Situation climatique [1]

I.4.1. Climatologie

La commune de Tacheta Zougagha, présente un climat méditerranéen semi-aride avec un caractère de continentalité très marque et un écart de température de 20°C entre les températures du mois du Janvier et celle d'Aout. L'été s'étend sur 5 à 6 mois environ avec les masses d'air chaudes à partir du mois du Mai. La pluviométrie reste variable et atteint 500 à 600 mm/an. Une série d'étages climatiques qui va du sub-aride au fond de la vallée au sub-humide sur les reliefs. Cette situation est liée à l'orographie : plus l'altitude est élevée plus l'étage est humide. De même pour l'enneigement qui touche les reliefs de plus de 600m d'altitude.

I.4.2. Températures

D'après les valeurs des températures moyennes mensuelles indiquées dans le tableau (I.1), on remarque qu'avec une température moyenne de 26.3 °C, le mois d'Aout est le plus chaud de l'année. Les 7.8 °C font du mois de Janvier le plus froid de l'année.

Tableau (I.1) : Données des températures moyennes mensuelles en C°, Période (1998-2008).

Mois	J	F	M	A	M	J	J	A	S	0	N	D
T Min (°C)	4.5	5.3	7	9.8	13	17.3	20.9	21.7	18.2	13.4	8.4	5.6
T Max (°C)	11.2	12.2	14.3	16	21.4	26.3	30.9	31	26.8	21.4	15.4	11.7
T Moy (°C)	7.8	8.7	10.6	12.9	17.2	21.8	25.9	26.3	22.5	17.4	11.9	8.6

TMin: Température minimale ; TMax: Température maximale ; TMoy: Température moyenne

Figure (I.2): Graphique des variations des températures moyennes mensuelles (1998-2008)

I.4.3. Les précipitations

D'après les valeurs des précipitations moyennes mensuelles indiquées dans le tableau (I.2), on remarque que la variation des précipitations entre le mois le plus sec (Juillet :3 mm) et le mois le plus humide (Décembre :94 mm) est de 91 mm.

Tableau (I.2): Données des moyennes mensuelles des précipitations, Période (1998-2008).

Mois	J	F	M	A	M	J	J	A	S	o	N	D
Précipitations (mm)	90	76	71	54	49	15	3	5	28	55	88	94

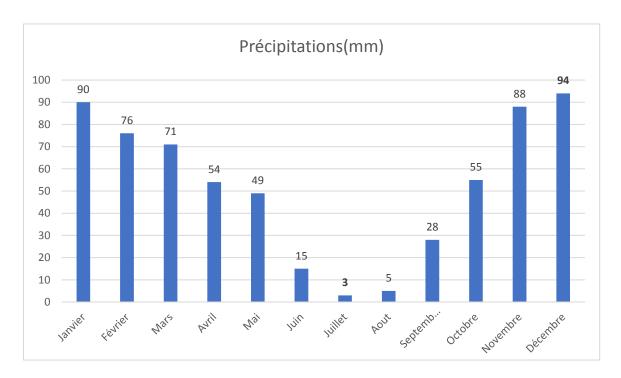


Figure (I.3): Histogramme des variations des précipitations mensuelles (1998-2008)

I.4.4. Le Vent

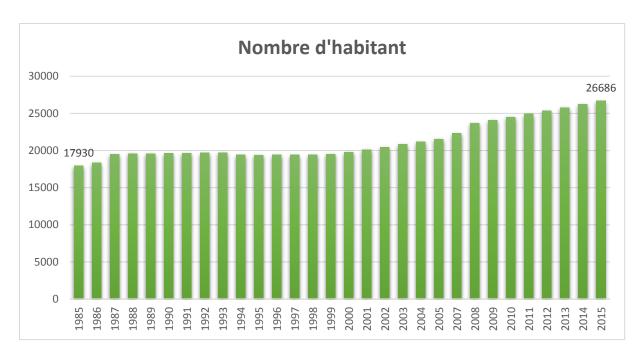
La plaine ayant une orientation Est-Ouest, les vents les plus fréquents et les plus puissants seront liés à cette direction. En hiver les vents dominants sont de direction Ouest; d'influence maritime, c'est un vent humide. En été les vents dominants sont de direction Est, leurs vitesses varient de 0.5 à 2.5 m/s en moyenne. Le maximum des forces des vents se situe au cours de la période estivale, et le minimum se situe en hiver.

I.4.5. L'humidité relative de l'air

La plus grande valeur d'humidité relative de l'air est atteinte pendant la période hivernale, avec 80.6 % au mois de Décembre, et la plus basse, pendant la période estivale avec 42 % au mois d'Août.

I.5. Situation géologique

Du point de vue géologique, le territoire de la commune est constitué notamment de calcaires, de marnes et de calcaires tendres d'origine sédimentaire du crétacé inferieur et supérieur, parfois on y trouve des taches de sédiments du triasiques présentée par les dolomites : très souvent les sédiments du crétacé inferieur et supérieur apparaissent en taches de structure. Les sols de la commune (19100 ha) sont, en général, lourds, meubles et fertiles, de texture limono-argileux. La perméabilité est faible et on note une battance importante d'où une mauvaise stabilité structurale.[2]


I.6. Situation démographique [1]

La commune de Tacheta Zougagha connaît un développement et une croissance remarquables depuis 1985. A partir de cette année, elle est devenue une commune avec 17930 habitants divisés par les différentes zones, et après le recensement général de la population et de l'habitat en 1988, le nombre des habitants a augmenté à 19578 habitants, et depuis ce moment la population commence à croître de plus de 450 personnes par an.

Tableau (I.3): Nombre d'habitant de la commune Tacheta Zougagha, période (1985-2015)

Année	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Nbr hab	17930	18342	19489	19578	19593	19615	19633	19674	19698	19400
Année	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Nbr hab	19385	19399	19423	19432	19508	19768	20110	20458	20812	21172
Année	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015
Nbr hab	21538	22290	23667	24076	24493	24916	25347	25786	26232	26686

Nbr hab: Nombre d'habitant

Figure (I.4) : Variations du nombre d'habitant de la commune Tacheta Zougagha durant la période (1985-2015)

I.7. Situation topographique

La commune de Tacheta Zougagha se caractérise par sa situation topographique montagneuse tel que :

I.7.1. Montagnes

- Montagne "Sidi Bernous": Il culmine à 1047 mètres d'altitude et constitue le sommet le plus élevé de la commune, située dans la forêt domaniale du Nord-Ouest de Tacheta Zougagha.
- Montagne ''Le nid de l'aigle'' : Il culmine à 1017 m, c'est le deuxième plus haut sommet de la commune, située dans la forêt domaniale de Tacheta Zougagha, au Nord-Ouest.

Il existe aussi d'autres sommets tel que la montagne de "Boutissit", la montagne de "Ankour", située à l'Ouest de la commune, à 880 m d'altitude.

I.7.2. Les collines

Des petites collines sont situées à l'entrée de la commune de Tacheta Zougagha du côté Sud vers la commune de ''Abadia'' et du côté Ouest vers la commune de ''Beni Malek'' (wilaya de Tipaza) et la région de ''Souk el tenin'' ; c'est des zones exploitées parfois pour l'agriculture.

I.7.3. Les oueds

Le plus grand oued de la commune appelée ''Oued lekbir'', il passe du Nord-Ouest venant des montagnes de ''Beni houa'' du côté Nord jusqu'à la région de ''Souk eltenin'', c'est un oued permanent qui ne sèche qu'à la fin de l'été.

Il existe aussi des petits oueds comme oued "elkherraz", oued "bouchitan" et oued "seffah eltelba" qui se coulent en hiver et se sèchent en été.

I.7.4. Les forêts

La superficie forestière totale de la commune est estimée à 3681 hectares et 83 ares devisée en 2 forêts, Nord-Ouest et Nord-Est :

- ➤ La forêt domaniale de Tacheta, avec une superficie de 1877 hectares et 71 ares.
- La forêt domaniale Oued lekbir, avec une superficie de 1804 hectares et 12 ares.

I.8. Situation hydraulique [1]

La zone d'étude est alimentée à partir du forage F2 qui se situe à 'Abadia' tel que les eaux sont transférées vers le réservoir 500 m³ de Tacheta par un réseau d'adduction décrit sur la figure (I.7).

I.8.1. Champ de captage

Un forage F2 existant, qui se situe à la daïra de ''Abadia'' qui fournit un débit journalier de 2520 m³/j. Il est équipé par une pompe immergée de 65 KW de Douze (12) étages.

Tableau (**I.4**) : Caractéristiques du Forage F2

Nom	Localité	Année de réalisation	Débit exploité(l/s)	Prof (m)	Niveau dynamique(m)	Coordonnées
Forage	Daïra	1998	35	180	68.53	X : 1°40'47.97"
F2	Abadia					Y:36°15'25.91"

Figure (I.5): Forage F2

I.8.2. Stations de reprise

Le système d'adduction de la commune de tacheta est constitué de trois (03) station de reprise :

Tableau (I.5): Caractéristiques hydrauliques de la conduite existante

Troncon	D(mm)	Hg(m)	Hmt(m)	Débit(l/s)	Longueur(m)	Matériaux
F2-SR1	200	107	200	35	6780	Amiante- Fonte-PEHD
SR1-SR2	200	112	160	35	2130	PEHD- Amiante
SR2-SR3	200	140	160	35	3810	PEHD- Amiante
SR3-RV	200	121	160	35	900	Amiante- PEHD

F: Forage;

SR: Station de reprise;

D: Diamètre;

Hg: Hauteur géométrique;

Hmt: Hauteur manométrique;

PEHD: Polyéthylène haute densité.

I.8.3. Ouvrages de stockage

La capacité de stockage totale de la commune de tacheta est de l'ordre de 500 m³.

❖ Réservoir 500 m³

Tableau (I.6) : Caractéristiques du réservoir Tacheta 500 m³

Nom	Réservoir	
Localité	Commune de Tacheta	
Type du réservoir	Semi enterré	
Capacité de stockage	500 m ³	
Destination	Commune de tacheta	
Observations	Bon état.	

Figure (I.6) : Réservoir du Tacheta 500 m³

La figure (I.7) ci-dessous nous montre clairement la situation hydraulique et le système d'alimentation en eau potable existant de la commune de Tacheta Zougagha.

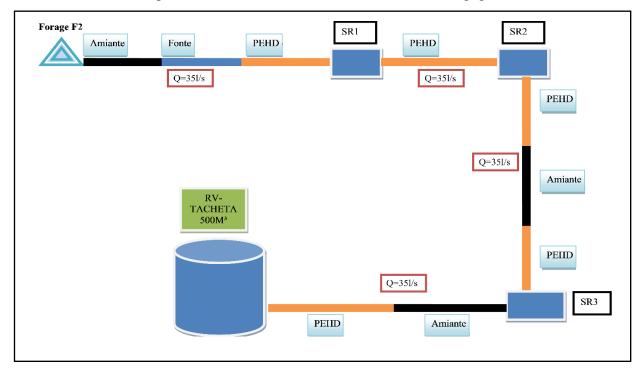


Figure (I.7): Schéma explicatif du réseau d'adduction existant

I.9. Conclusion

Dans ce chapitre, nous avons présenté la zone concernée par notre étude, ces caractéristiques générales, ainsi que les données relatives à la situation hydraulique actuelle, qui vont nous servir pour l'élaboration du projet de rénovation et extension du système d'alimentation en eau potable dans les chapitres qui suivent.

Chapitre II Estimation des besoins en eau

II.1. Introduction

Les besoins en eau varient en fonction des types de consommateurs (domestique, sanitaire...). Pour cela il est nécessaire avant tout projet de procéder au recensement de toutes leurs catégories et leurs normes de consommation unitaire et ce dans le but d'estimer les besoins de la population à différent horizon d'étude.

Dans ce présent chapitre on va évaluer les besoins en eau actuels et à l'horizon 2050 (31 ans), qui représente la moyenne d'âge de la conduite bien entretenue.

II.2. Situation démographique [1]

D'après les informations recueillies auprès des services de l'APC de Tacheta Zougagha, la population totale des agglomérations concernées par notre étude est de 16964 habitants en 2015. Le tableau (II.1) ci-dessous nous montre la répartition de la population en 2015 :

Agglomération	Population	Taux (%)
Tacheta Zougagha chef-lieu	5036	30.57
Ghemamza	1043	6.33
Ouled bessa	4306	26.13
Ouled-ali	598	3.63
Ouled-bouali	2022	12.27
Khebabza	1768	10.73
Ouled-arbi	1703	10.34
TOTAL	16476	100

Tableau (II.1): Répartition de la population pour l'année 2015

II.3. Choix du taux d'accroissement [1]

Le choix du taux d'accroissement « tac» est fait sur la base du développement du tissu urbain ainsi que l'horizon d'étude. Le taux d'accroissement de la population de la région d'étude est de i =1.40 %.

II.4. Estimation de la population

La population de la commune est estimée grâce à la loi des accroissements donnée par la formule des intérêts composés, qui s'appuie sur l'influence des naissances, du taux d'immigration et du taux de mortalité, comme suit :

$$P = P_0 (1 + t_{ac})^n$$
 (II.1)

Sachant que:

Khebabza

Ouled-arbi

Total

- P: Population future à l'horizon considéré;
- P₀: Population de l'année de référence ;
- tac: Taux d'accroissement annuel de la population pris égal à 1.40%;
- n : Nombre d'années séparant l'année de référence et l'horizon considéré.

On se référant au dénombrement de la population fait en 2015 par les services d'urbanisme de l'A.P.C de la zone d'étude [1], on évaluera la population aux horizons futurs. On a retenu l'année en cours, le court, le moyen et le long terme (2050).

Les résultats sont présentés dans le tableau suivant :

Horizons Référence Actuel **Court terme** Moyen terme Long terme Année Tacheta Zougagha chef-lieu Ghemamza **Ouled bessa Ouled-ali Ouled-bouali**

Tableau (II.2): Evaluation de la population à différents horizons

Suivant le tableau (II-2), on trace un histogramme traduisant l'évolution de la population par an, et on obtient la représentation ci-dessous.

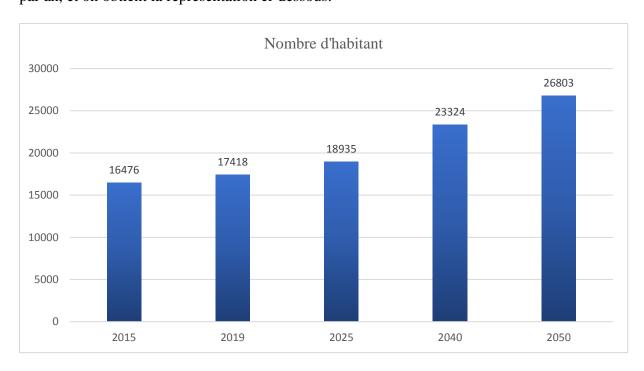


Figure (II.1): Histogramme de l'évaluation de la population à différents horizons

II.5. Norme de consommation

- La norme de consommation domestique

La population, les ressources disponibles et les normes d'hygiènes détermine la consommation à adopter. Elle se caractérise par une unité de consommation par jour par habitant [3,4].

Tableau (II.3): Norme de consommation domestique

Nombre d'habitant	Norme de consommation (l/hab/j)
De 5 000 à 20 000	150 à 200
De 20 000 à 100 000	200 à 300
Supérieur à 100 000	300 à 400

En se basant sur la population de l'horizon voulu, on opte pour une dotation de (200 l/hab/j).

-Les normes de consommations pour les différentes utilisations

Les normes de consommation sont données dans le tableau suivant [1] :

Tableau (II.4): Normes de consommation pour les différentes utilisations

Equipement		Dotation (l/ usager/ j)
Administratif		10
Scolaire		10
	Ovin	5
Cheptel	Bovin	50
	Caprin	5
Sanitaire		10
Socio	oculturel	20

II.6. Equipements existants [1]

❖ Secteur scolaire

Les équipements du secteur scolaire sont représentés dans le tableau suivant :

Tableau (II.5): Récapitulatif des équipements scolaires

Agglomération	Etablissement	Effectif (Elèves)
Tacheta Zougagha chef-lieu	1 Lycée 2 C.E.M 2 Ecole primaire 1 Annexe CFPA	668 1309 392 63
To	2432	

Tableau (II.5): Récapitulatif des équipements scolaires (suite et fin)				
Agglomération	Etablissement	Effectif (Elèves)		
Ghemamza	1 Ecole primaire	120		
Ouled bessa	1 C.E.M 2 Ecole primaire	966 484		
To	Total			
Ouled-ali	1 Ecole primaire	172		
Ouled-bouali	1 Ecole primaire	151		
Oulea-bouali	i Ecole primane	131		
Khebabza	1 Ecole primaire	275		
	-	_		

❖ Secteur sanitaire

Les équipements du secteur sanitaire sont représentés dans le tableau suivant :

Tableau (II.6): Récapitulatif des équipements sanitaires

Agglomération	Désignation	Effectif
Tacheta Zougagha chef-lieu	1 Centre de santé	13
Ouled bessa	1 salle de soin	7
Khebabza	1 salle de soin	5
Ouled-arbi	1 salle de soin	5
Total	4	30

Secteurs publics

Les équipements du secteur public sont représentés dans le tableau suivant :

Tableau (II.7): Récapitulatif des équipements administratifs

Agglomération	Équipement	Effectif (employés)
Tacheta Zougagha chef-lieu	1 APC 1 Centre téléphonique 1 Agence postale	45 4 9
Tota	58	
Ouled bessa	1 Antenne APC 1 Agence postale	3 3
Tota	6	
Total	5	64

Secteurs socioculturels et sportifs

Les équipements du secteur socioculturel sont représentés dans le tableau suivant :

Tableau (II.8): Récapitulatif des équipements socioculturels et sportifs

Agglomération	Équipement	Effectif (Usagers)
Tacheta Zougagha chef-lieu	1 Mosquée 1 Stade 1 Bibliothèque 1 Aire de jeux 1 Salle de prière 1 Ecole coranique 1 Zaouïa	1000 100 20 30 35 20 15
Total		1220
Ghemamza	1 Mosquée	300
Ouled bessa	1 Mosquée 1 Salle polyvalente 1 Aire de jeux 1 Ecole coranique	810 60 25 15
Total		910
Ouled-ali	1 Mosquée	150
Ouled-bouali	1 Mosquée 1 Aire de jeux 1 Salle de prière 1 Ecole coranique	500 20 30 20
Total		570
Khebabza	1 Ecole coranique 1 Salle de prière	25 30
Total		55
Ouled-arbi	1 Mosquée	300
Total 20		3505

❖ Recensement du cheptel

La commune de Tacheta Zougagha (agglomérations concernées) compte 1670 ovins, 370 bovins et 885 caprins qui sont représentés dans le tableau suivant :

Tableau (II.9): Répartition du cheptel

Agglomération	Cheptels	Nombre (têtes)
	Ovins	500
Tacheta Zougagha chef-lieu	Bovins	75
	Caprins	200
Т	Cotal	775
	Ovins	100
Ghemamza	35	
	Caprins	95
Γ	230	

Tableau (II.9) : Répartition du cheptel (suite et fin)			
Agglomération	Cheptels	Nombre (têtes)	
	Ovins	400	
Ouled bessa	Bovins	60	
	Caprins	150	
7	Гotal	610	
	Ovins	85	
Ouled-ali	Bovins	40	
	Caprins	80	
]	Гotal	205	
	Ovins	200	
Ouled-bouali	Bovins	50	
	Caprins	120	
]	370		
	Ovins	150	
Khebabza	Bovins	40	
	Caprins	110	
]	300		
	Ovins	155	
Ouled-arbi	Bovins	40	
	Caprins	60	
٦	Гotal	255	
	2745		

II.7. Calcul des besoins en eau

II.7.1. Consommation moyenne journalière

La consommation moyenne journalière se détermine en tenant compte des différents types de consommateurs à savoir :

- Domestiques ;
- Administratifs;
- Sanitaires;
- Socioculturelle et sportive ;
- Scolaire;
- •Les besoins cheptel.

$$Q_{\text{moy.j}} = \Sigma \left[\left(\text{Dot} \times \text{Nc} \right) / 1000 \right] \left(\text{m}^3 / \text{j} \right)$$
 (II.2)

Avec:

- $\mathbf{Q}_{\mathbf{moy,j}}$: Consommation moyenne journalière des consommateurs en (m^3/J) ;
- **Dot** : Dotation moyenne journalière en (1/j/cons) ;
- Nc : Nombre de consommateurs.

II.7.2. Besoins domestiques

Le tableau (II-10) ci-dessous, résume les besoins en eau domestiques à différents horizons avec une dotation de 200 l/j/cons des agglomérations concernées par notre étude de la commune de Tacheta Zougagha.

Besoin journalier (m³/j) Actuel **Court terme** Moyen terme Long terme Localités 2019 2025 2040 2050 Tacheta Zougagha 1157.43 1064.80 1425.82 1638.49 Chef-lieu 220.53 239.71 295.30 339.35 Ghemamza 910.45 989.65 1219.14 1400.98 **Ouled bessa** 126.44 137.44 **Ouled-ali** 169.31 194.56 427.53 464.72 572.48 **Ouled-bouali** 657.87 373.82 406.34 500.57 575.23 Khebabza Ouled-arbi 360.08 391.40 482.16 554.08

Tableau (II.10): Besoins domestiques à différents horizons

II.7.3. Besoins des différents équipements

3483.64

***** Besoins scolaires

Total

Le tableau suivant nous donne les résultats des besoins scolaires :

Tableau (**II.11**): Les besoins scolaires

3786.7

4664.77

5360.56

Agglomération	Total des effectifs (Elèves)	Dotation (l/j)	Besoins (m³/j)
Tacheta Zougagha chef-lieu	2432		24.32
Ghemamza	120		1.2
Ouled bessa	1450		14.5
Ouled-ali	172	10	1.72
Ouled-bouali	151		1.51
Khebabza	275		2.75
Ouled-arbi	242		2.42
Total	4842		48.42

& Besoins sanitaires

Les besoins sanitaires sont répartis dans le tableau ci-dessous :

Tableau (II.12): Les besoins sanitaires

Agglomération	Total des effectifs (lits)	Dotation (l/j)	Besoins(m ³ /j)
Tacheta Zougagha chef-lieu	13		0.13
Ouled bessa	7		0.07
Khebabza	5	10	0.05
Ouled-arbi	5		0.05
Total	30		0.3

***** Besoins publics

Les résultats des besoins administratifs sont résumés dans le tableau suivant :

Tableau (II.13): Les besoins administratifs

Agglomération	Total effectifs (employés)	Dotation (l/j)	Besoins (m ³ /j)
Tacheta Zougagha chef-lieu	58		0.58
Ouled bessa	6	10	0.06
Total	64		0.64

***** Besoins socioculturels et sportifs

Le tableau (II.14) résumant les besoins socioculturels et sportifs :

Tableau (II.14): Les besoins socioculturels et sportifs

Agglomération	Total des effectifs (Usagers)	Dotation (l/j)	Besoins (m³/j)
Tacheta Zougagha chef-lieu	1220		24,40
Ghemamza	300		6
Ouled bessa	910		18,2
Ouled-ali	150	20	3
Ouled-bouali	570	20	11,4
Khebabza	55		1,1
Ouled-arbi	300		6
Total	3505		70,1

***** Besoins commerciaux

Le tableau (II.15) résume les besoins commerciaux :

Tableau (II-15): Les besoins commerciaux

Agglomération	Type d'équipement	Nombre	Dotation(l/j/équip)	Besoins (m³/j)
Tacheta	Cafeterias	5		2.5
Zougagha chef- lieu	Restaurants	3	500	1.5
T	otal	8		4

Tableau (II-15): Les besoins commerciaux (suite et fin)					
Agglomération	Type d'équipement	Nombre	Dotation (l/j/équip)	Besoins (m3/j)	
Oulad bagga	Cafeterias	2		1	
Ouled bessa	Restaurants	2		1	
T	otal	4	500	2	
Ouled-bouali	Cafeterias	2		1	
T	otal	14		7	

***** Besoins cheptels

Le tableau (II.16) nous donne les résultats des besoins cheptels :

Tableau (II.16): Les besoins cheptels

Agglomération Cheptels		Nombre (têtes)	Dotation (l/s)	Besoins (m3/j)
Tacheta Zougagha chef-	Ovins	500	5	2.5
lieu	DOVIIIS	75	50	3.75
	Caprins	200	5	1
To	otal	775	3	7.25
	Ovins	100	5	0.5
Ghemamza	Bovins	35	50	1.75
	Caprins	95	5	0.475
To	otal	230	3	2.725
	Ovins	400	5	2
Ouled bessa	Bovins	60		3
	Caprins	150	50 5	0.75
To	otal	610	3	5.75
	Ovins	85	-	0.425
Ouled-ali	Bovins	40	5	2
	Caprins	80	50	0.4
To	otal	205	5	2.825
	Ovins	200	5	1
Ouled-bouali	Bovins	50	50	2.5
	Caprins	120	5	0.6
To	otal	370	3	4.1
	Ovins	150	5	0.75
Khebabza	Bovins	40	50	2
	Caprins	110	5	0.55
To	300	3	3.3	
	Ovins	155		0.775
Ouled-arbi	Bovins	40	5	2
	Caprins	60	50	0.3
To	255	5	3.075	
Total		2745		29.025

Le tableau suivant (II-17) représente le récapitulatif des différents besoins d'équipements des agglomérations concernées par notre étude.

		Besoins d'équipements (m³/j)					
Localité	Scolaires	Sanitaires	Publics	Socioculturels et sportifs	Cheptels	Commer- ciaux	Total
Tacheta Zougagha chef-lieu	24.32	0.13	0.58	24,40	7.25	4	60.68
Ghemamza	1.2			6	2.725		9.925
Ouled bessa	14.5	0.07	0.06	18,2	5.75	2	40.58
Ouled-ali	1.72			3	2.825		7.545
Ouled-bouali	1.51			11,4	4.1	1	18.01
Khebabza	2.75	0.05		1,1	3.3		7.2
Ouled-arbi	2.42	0.05		6	3.075		11.545
			Total				155.485

Tableau (II.17): Récapitulatif des différents besoins d'équipements

II.7.4. Estimation des débits des équipements pour l'horizon 2050

Après l'estimation détaillée des équipements et de leurs besoins, on obtient une demande en eau d'équipements publics pour l'horizon 2019. Pour estimer les besoins d'équipements projetés, on fait intervenir le rapport entre les besoins d'équipements et les besoins domestiques de la région, et à la base de ce rapport, on estime les besoins projetés d'équipements pour l'horizon voulu, en appliquant la formule suivante [5]:

$$\frac{Q \text{ \'equipements1}}{Q \text{ domestiques1}} = \frac{Q \text{ \'equipements2}}{Q \text{ domestiques2}}$$
(II.3)

Les résultats sont représentés dans le tableau suivant :

Tableau (II-18): Estimation du débit d'équipement pour l'horizon 2050

Agglomération	Besoin journalier d'équipements (m³/j)			
88	Actuel 2019	Long terme 2050		
Tacheta Zougagha chef-lieu	60.68	93,37		
Ghemamza	9.925	15,27		
Ouled bessa	40.58	62,44		
Ouled-ali	7.545	11,61		
Ouled-bouali	18.01	27,71		
Khebabza	7.2	11,08		
Ouled-arbi	11.545	17,77		
Total	155.485	239,26		

II.8. Majoration de la consommation journalière (Q moy.j.maj)

Le débit moyen journalier majoré est obtenu en tenant compte des fuites au niveau des conduites, et dans le but de compenser ces fuites physiques, nous optons pour une majoration de 20%, donc le débit moyen journalier est donné comme suit :

$$\mathbf{Q.moy.j.maj} = \mathbf{Kf} * \mathbf{Q.moy.j}$$
 (II.4)

Avec:

- **Q**moy.j.maj: Débit moyen journalier majoré (m³/j);
- Kr: Coefficient de majoration;
- Qmoy.j: Débit moyen journalier (m³/j).

La majoration du débit moyen journalier a différents horizons est donnée dans le tableau cidessous :

Tableau (II.19) : Débit moyen journalier majoré à l'horizon 2050

Localité	Débit moyen journalier (m³/j) Equipements + Domestiques			Débit moyen journalier majoré (m³/j) Equipements + Domestiques			
Locanie	Actuel 2019	Long terme 2050		Actuel 2019	Long terme 2050		
Tacheta Zougagha chef-lieu	1125,48	1731,86	1.2	1350,58	2078,24		
Ghemamza	230,46	354,62	1.2	276,55	425,55		
Ouled bessa	951,03	1463,42	1.2	1141,24	1756,11		
Ouled-ali	133,99	206,17	1.2	160,78	247,40		
Ouled-bouali	445,54	685,58	1.2	534,65	822,70		
Khebabza	381,02	586,31	1.2	457,22	703,57		
Ouled-arbi	371,63	571,85	1.2	445,95	686,21		
Total	3639.14	5599,82	-	4366,96	6719,78		

II.9. Variation de la consommation journalière

II.9. 1.Débit maximum journalier (Qmaxj)

Ce débit caractérise la consommation d'eau maximale du jour le plus chargé de l'année, il s'obtient par la relation suivante :

$$\mathbf{Qmax.j} = \mathbf{K} \ \mathbf{max.j} \times \mathbf{Q} \ \mathbf{moy.j}$$
 (II.5)

Avec:

- **K max**. **j** : coefficient d'irrégularité qui montre combien de fois le débit maximal journalier excède le débit moyen journalier. Il varie entre **1,1** et **1,3** ;
- **Q max.j**:Débit journalier maximum;
- **Q moy.j**:Débit moyen journalier.

Dans notre cas, on prend Kmax j = 1,2. D'où : $Q_{max j} = 1,2$ $Q_{moy j}$.

Localité	Débit moyen journalier majoré (m³/j) Equipements + Domestiques			Débit moyen max journalier (m³/j) Equipements + Domestiques			
	Actuel 2019	Long terme 2050	max. j	Actuel 2019	Long terme 2050		
Tacheta Zougagha chef-lieu	1350,58	2078,24	1.2	1620,69	2493,88		
Ghemamza	276,55	425,55	1.2	331,86	510,66		
Ouled bessa	1141,24	1756,11	1.2	1369,48	2107,33		
Ouled-ali	160,78	247,40	1.2	192,94	296,88		
Ouled-bouali	534,65	822,70	1.2	641,58	987,24		
Khebabza	457,22	703,57	1.2	548,67	844,29		
Ouled-arbi	445,95	686,21	1.2	535,14	823,46		
Total	4366,96	6719,78	-	5240.35	8063.74		

Tableau (**II.20**): Débit journalier maximum à l'horizon 2050

II.9. 2. Débit minimum journalier (Q.min.j)

Ce débit caractérise la consommation d'eau minimale du jour le moins chargé de l'année, il s'obtient par la relation suivante :

$$\mathbf{Qmin.j} = \mathbf{K} \ \mathbf{min.j} \times \mathbf{Q} \ \mathbf{moy.j}$$
 (II.5)

Avec:

- **K** min. j : coefficient d'irrégularité qui montre combien de fois le débit minimal journalier est inférieur au débit moyenne journalier, il varie entre **0,7** et **0,9** ;
- **Q min.j**:Débit journalier minimum ;
- **Q moy.j** :Débit moyen journalier .

Dans notre cas, on prend Kmin j = 0.8. D'où : $Q_{min j} = 0.8 Q_{moy j}$.

Tableau (II.21): Débit journalier minimum à l'horizon 2050

Localité	Débit moyen journalier majoré (m³/j) Equipements + Domestiques			Débit moyen min journalier (m³/j) Equipements + Domestiques			
	Actuel 2019	Long terme2050		Actuel 2019	Long terme2050		
Tacheta Zougagha chef-lieu	1350,58	2078,24	0.8	1080.46	1662,59		
Ghemamza	276,55	425,55	0.8	221,24	340,44		
Ouled bessa	1141,24	1756,11	0.8	912,99	1404,89		
Ouled-ali	160,78	247,40	0.8	128,63	197,92		
Ouled-bouali	534,65	822,70	0.8	427,72	658,16		
Khebabza	457,22	703,57	0.8	365,78	562,86		
Ouled-arbi	445,95	686,21	0.8	356,76	548,97		
Total	4366,96	6719,78	-	3491.95	5375.82		

II.10. Variation de la consommation moyenne horaire

Ce volet permet de déterminer la plus grande ou la plus faible charge du réseau afin de dimensionner, de prévoir les risques des dépôts dans les tuyaux et de déterminer la consommation maximale horaire, en introduisant le coefficient d'irrégularité horaire.

❖ Détermination de la consommation minimale horaire :

$$Q_{\min,h} = \frac{k_{\min,h} \times Q_{\min,j}}{24}$$
 (II. 6)

Avec:

K_{min.h}: Coefficient d'irrégularité horaire minimal donné par la formule :

$$K_{\min,h} = \beta_{\min} \times \alpha_{\min}$$
 (II.7)

Avec:

- α_{min} : Coefficient qui dépend du confort au sien de l'agglomération, tel que :

$$0.4 \le \alpha_{max} \le 0.6$$

- β_{min} : Coefficient qui dépend du nombre d'habitants.
 - ❖ Détermination de la consommation maximale horaire :

$$Q_{\text{max.h}} = \frac{k_{\text{max.h}} \times Q_{\text{max.j}}}{24}$$
 (II. 8)

Avec:

 $\mathbf{k_{max.h}}$: Coefficient d'irrégularité horaire maximal donné par la formule :

$$K_{\text{max.h}} = \beta_{\text{max}} \times \alpha_{\text{max}}$$
 (II. 9)

Avec:

- $lpha_{max}$: Coefficient qui dépend du confort au sien de l'agglomération, tel que :

$$1.2 \le \alpha_{max} \le 1.4$$

Dans notre étude, on prend $\alpha_{max} = 1.3$.

 $-oldsymbol{eta}_{max}$: Coefficient qui dépend du nombre d'habitants, sa valeur est donnée dans le tableau suivant :

Tableau (II.22): Les valeurs de \(\beta \)max

Nombre d'hab. x 1000	<1	1.5	2.5	4	6	10	20	50	100	300	>1000
ßmax	2	1.8	1.6	1.5	1.4	1.3	1.2	1.15	1.10	1.01	1

A partir du tableau (II.22) on peut déterminer les valeurs de β_{max} et $k_{max,h}$ selon le nombre d'habitant de notre zone d'étude à différents horizons. Et à partir de ces valeurs on peut déterminer $Q_{max,h}$.

Les valeurs de β_{max} et $k_{max,h}$ et $Q_{max,h}$ sont représentées dans le tableau suivant :

Tableau (II.23): Les valeurs de β max, kmax.h et $Q_{max.h}$

Localité	ß	max	kn	nax.h	Q _{max.h} (m ³ /h)				
Localite	2019	2050	2019	2050	2019	2050			
Tacheta Zougagha chef-lieu	1,43	1,35	1,86	1,75	125,87	181,72			
Ghemamza	1,96	1,76	2,55	2,29	35,21	48,70			
Ouled bessa	1,47	1,37	1,91	1,79	109,22	156,94			
Ouled-ali	2	2	2,6	2,6	20,90	32,16			
Ouled-bouali	1,67	1,55	2,17	2,01	58,12	82,75			
Khebabza	1,73	1,57	2,24	2,05	51,30	72,03			
Ouled-arbi	1,74	1,58	2,26	2,06	50,44	70,56			
	Total								

II.11. Bilan ressources-besoins

Notre zone d'étude va être alimentée à partir des 3 forages (1 existant et 2 projetés) qui fournissent un débit total de **9763.2 m³/j (113 l/s),** leurs caractéristiques sont représentées dans le tableau suivant [1]:

Tableau (II.24) : Caractéristiques des forages

Forage	Production (l/s)	Niveau dynamique(m)	Coordonnées
F1(Projeté)	40	65	Y:1°41'8.2962'' X:36°15'22.60''
F2(Existant)	35	68.53	Y :1°41'8.2962'' X : 36°15'22.60''
F3(Projeté)	38	67.14	X: 1°40'47.97" Y: 36°15'25.91"
Total	113		

La confrontation du débit de ces trois forages avec les besoins des agglomérations de la zone d'étude à l'horizons 2050 est donnée dans le tableau suivant :

Tableau (II.25): Bilan ressources-besoins

	Horizons				
	2019	2050			
Forages(l/s) (Existants et projetés)	113	113			
Besoins (l/s)	60.65	93.33			
Bilan (l/s)	52.35	19.67			

Ce bilan nous montre clairement que le débit fourni par ces trois forages dans le champ de captage de Abadia satisfera les besoins totaux actuels ainsi ceux du futur des agglomérations de la commune de Tacheta Zougagha.

II.12. Conclusion

Ce chapitre nous a permis d'estimer les différents besoins des agglomérations concernées par notre étude de la commune Tacheta Zougagha, en touchant à toutes les catégories de consommations, par conséquent le totale des besoins en eau à l'horizon 2050 est de **8063.74m³/j** soit **93.33 l/s.** Ceci nous permettra de mieux évaluer les capacités optimales des réservoirs, ainsi de bien dimensionner notre réseau d'adduction, afin de garantir le bon fonctionnement du système et d'assurer des quantités d'eau suffisantes.

III .1. Introduction

Le réservoir est un ouvrage hydraulique de grande importance dans un réseau d'alimentation en eau potable, aménagé pour contenir de l'eau, soit potable destinée à la consommation publique, soit pour l'usage industriel et il permet d'emmagasiner l'eau lorsque la consommation est inférieure à la production.

Dans la zone d'étude, nous avons un réservoir principal relié à d'autres réservoirs par une conduite d'adduction et qui assurent chacun l'alimentation d'une zone appropriée. Ces réservoirs sont alimentés par l'eau des forages.

III .2. Rôles des réservoirs [4]

III.2.1. Régulateur et accumulateur

Dans une agglomération, le débit refoulé par la station de pompage dans tous les cas n'égal pas au débit consommé. Donc, un réservoir s'avère indispensable pour assurer la régulation entre le débit refoulé et celui consommé.

III.2.2. Gain d'énergie au niveau de la station de pompage

Le réservoir permet de réduire les dépenses d'énergie (stockage la nuit et distribution gravitaire pendant les heures de pointe).

III.2.3. Utilité pour briser la charge

Si le terrain se trouve dans un relief accidenté, en certains points du réseau, on peut avoir des pressions non admissibles, un réservoir peut être utilisé pour briser la charge.

III.2.4. Stockage de la réserve d'incendie

On peut avoir deux cas:

- Un réservoir à part qui emmagasine la réserve d'incendie ; ceci est rare dans la pratique du fait du coût de réalisation de cette variante.
- La réserve d'incendie est accumulée dans le réservoir d'accumulation.

III .3. Emplacement des réservoirs [6]

La nature du sol et la topographie des lieux déterminent l'emplacement des réservoirs. Après une étude économique approfondie on choisit la meilleure implantation, il doit être placé à un niveau supérieur à celui de l'agglomération. L'altitude doit être à la plus haute cote piézométrique exigée sur le réseau, cette implantation a pour condition l'assurance d'une pression suffisante aux abonnées aux moments du débit de pointe.

III .4. Classification des réservoirs

D'après la nature des matériaux, nous pouvons distinguer les réservoirs : Métalliques, en maçonnerie, en maçonnerie et en béton (armé, ordinaire ou précontraint) ;

D'après leur position par rapport à la surface du sol : Nous pouvons distinguer les réservoirs: Enterrés, Semi-enterrés, Surélevés ;

D'après leur forme géométrique, on peut trouver dans la pratique deux formes usuelles des réservoirs : Circulaires, Rectangulaires et de forme quelconque (Sphérique, conique).

III .5. Choix du type de réservoir

Vu le relief très accidenté de la zone d'étude (terrain ascendant), notre choix s'est fixé sur des réservoirs circulaires semi-enterrés, pour les motifs suivants [7] :

- L'étude architecturale simplifiée.
- L'étanchéité est facile à réaliser.
- Conservation de l'eau à une température constante.
- Economie sur les frais de construction.

III.6. Les équipements d'un réservoir

La figure (III.1) montre les différents équipements d'un réservoir :

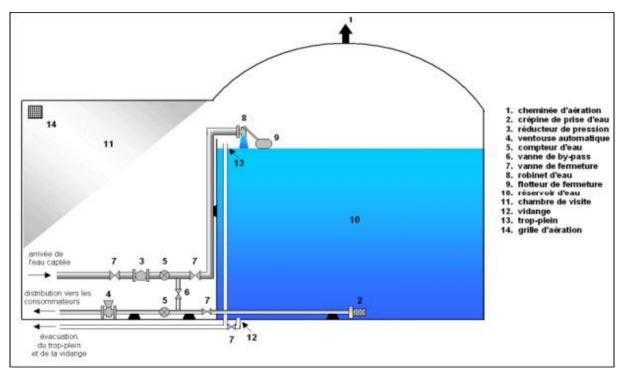


Figure (III.1): Les différents équipements d'un réservoir

III.7. Capacité des réservoirs

La capacité du réservoir est déterminée en fonction des variations du débit entrant et sortant ; en d'autres termes, du mode d'adduction (apport) et de la consommation journalière de l'agglomération. Le calcul de la capacité peut se faire suivant deux méthodes :

- Méthode analytique.
- Méthode graphique.

III.7.1. Méthode analytique

Le volume de régularisation du réservoir est déterminé comme suit :

$$Vr = \frac{Pmax \times Qmax. j}{100}$$
 (III. 1)

Où:

V_r: Volume de régularisation du réservoir (m³).

• Qmax.j : Débit maximal journalier (m³/j).

Pmax (%): Résidu maximum (%).

Avec:

$$Pmax (\%) = |R_{+}| + |R_{-}|$$
 (III.2)

R+: Valeur maximale dans le réservoir (%).

R-: Valeur minimale dans le réservoir (%).

III.7.2. Méthode graphique

Dans cette méthode, on portera sur un graphique les résultats de la variation de la consommation, en portant sur l'axe des abscisses les heures et sur l'axe des ordonnées le résidu cumulé.

III.7.3. Détermination du volume total d'un réservoir

La distribution du débit journalier sur les heures est déterminée par la connaissance du coefficient de variation horaire (K_{max.h}). Le débit de pompage est reparti sur 20 h le long de la journée, on détermine alors la différence entre l'apport et la distribution pour chaque heure de la journée, par suite on aura un déficit ou bien un surplus, ainsi la somme de la valeur maximale positive et la valeur minimale négative trouvées sera le volume maximal de stockage. Le volume total du réservoir est déterminé par la formule suivante [4]:

$$Vt = V_{inc} + V_{r}$$
 (III.3)

Avec:

Vt: Volume total du réservoir.

Vinc: Volume d'incendie.

V_r: Volume de régulation (volume maximal de stockage).

Où : $V_{inc} = 120 \text{ m}^3$ (Il représente le volume nécessaire pour l'extinction d'un incendie en un temps de 2 heures (60 m³/h)).

III .8. Schéma général des réservoirs

Le schéma détaillé des réservoirs est illustré sur l'annexe (2).

III .9. Dimensionnement des réservoirs

III .9.1. Vérification de la capacité du réservoir existant Tacheta Zougagha (500 m³)

Le réservoir de Tacheta Zougagha est alimenté par refoulement à partir de la station de reprise SR3, servira gravitairement les réservoirs qui assurent la distribution des agglomérations de la zone d'étude, et qui assure aussi la distribution pour le chef-lieu Tacheta Zougagha dont le nombre d'habitants est **8192**. Ce réservoir reçoit un débit de **8063.74 m³/j**.

La valeur $k_{\text{max.h}}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{\text{max}} = 1.3$$

$$\beta_{\text{max}} = 1.35$$
 $k_{\text{max.h}} = \alpha_{\text{max}} \times \beta_{\text{max}} = 1.75$

La vérification de la capacité du réservoir de Tacheta Zougagha est donnée dans le tableau suivant.

Tableau (III.1): Vérification de la capacité du réservoir Tacheta Zougagha

		Distri	bution (%)	Cumbus	Déficit	Résidu
Heure	Apport (%)	Adduction	Distribution	Surplus (%)	(%)	(%)
		(%)	(%)	(70)	(/0)	(70)
0-1	5	2.87	0.29	1.84		1.84
1-2	5	2.87	0.29	1.84		3.68
2-3	5	2.87	0.29	1.84		5.52
3-4	5	2.87	0.31	1.82		7.34
4-5	5	2.87	0.52	1.61		9.95
5-6	5	2.88	1.06	1.06		10.01
6-7	5	2.88	1.58	0.54		10.55
7-8	5	2.88	1.96	0.16		10.71
8-9	5	2.88	1.86	0.26		10.97
9-10	5	2.88	1.75	0.37		11.34
10-11	5	2.88	1.47	0.65		11.99
11-12	5	2.88	1.86	0.26		12.25
12-13	5	2.88	2.24		0.12	12.13
13-14	5	2.88	2.12		0	12.13
14-15	5	2.88	1.68	0.44		12.57
15-16	5	2.88	1.41	0.71		13.28
16-17	5	2.88	1.47	0.65		13.93
17-18	5	2.88	1.86	0.26		14.19
18-19	5	2.88	1.98	0.14		14.33
19-20	5	2.88	1.6	0.52		14.85
20-21	0	2.88	1.47		4.35	10.5
21-22	0	2.88	0.93		3.81	6.69
22-23	0	2.88	0.62		3.5	3.19
23-24	0	2.88	0.31		3.19	0
Total	100	69.07	30.93			

D'après les résultats du tableau (III.1), on a :

R₊= 14.85 %
$$P_{max} (\%) = |14.85| + |0| = 14.85\%$$

$$Vr = \frac{8063.74 \times 14.85}{100} = 1197.46 \text{ m}^3$$

 $V_t = 1197.46 + 120 = 1317.46 \text{ m}^3$.

La localité de Tacheta Zougagha chef-lieu dispose déjà d'un réservoir de capacité de 500 m³, alors on propose de construire un autre réservoir de capacité 850 m³ jumelé avec celui existant.

❖ Le diamètre du réservoir Tacheta Zougagha

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H = 5 m;

Le diamètre du réservoir est déterminé par la formule suivante :

$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$
 (III. 4)

Avec $V = 850 \text{ m}^3$

$$D = \left[\frac{4 \times 850}{\pi \times 5} \right]^{1/2}$$

D'où : D = 14.72 m

❖ Hauteur d'incendie du réservoir Tacheta Zougagha

$$H_{\text{incendie}} = \left[\frac{4 \times V_{\text{incendie}}}{\pi \times D^2} \right]$$
 (III. 5)

On considère qu'on a un seul réservoir de capacité 1350 m³.

D'où:

$$H_{\text{incendie}} = \left[\frac{4 \times V_{\text{incendie}}}{\pi \times (D_{1350})^2} \right]$$

Avec:

$$D_{1350} = \left[\frac{4 \times 1350}{\pi \times 5}\right]^{1/2}$$
D =18.55 m

Ainsi:

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (18.55)^2} \right]$$

$$\mathbf{H}_{\text{incendie}} = 0.44 \text{ m}$$

III .9.2. Dimensionnement du réservoir Ouled ali

Le réservoir de Ouled ali est alimenté gravitairement à partir du réservoir Tacheta Zougagha, qui assure la distribution pour la zone de Ouled ali dont le nombre d'habitants est de 973. Ce réservoir reçoit un débit de 296,88 m³/j.

La valeur $k_{max,h}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{max} = 1.3$$

$$\beta_{max} = 2$$
 $k_{max,h} = \alpha_{max} \times \beta_{max} = 2.6$

Les résultats des entrées et des sorties sont regroupés dans l'annexe (3).

D'après les résultats obtenus, on a :

$$R_{\text{-}} = 13.56 \%$$

$$R_{\text{-}} = -15.45 \%$$

$$P_{\text{max}} (\%) = |13.56| + |-15.45| = 29.01\%$$

$$Vr = \frac{296.88 \times 29.01}{100} = 86.13 \text{ m}^3$$

$$V_{\text{t}} = 86.13 + 120 = 206.13 \text{ m}^3.$$

Donc on optera pour un réservoir de 250 m³ pour cette agglomération.

Le diamètre du réservoir Ouled ali

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H=4 m;

Le diamètre du réservoir est déterminé par la formule suivante :

$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$
Avec V= 250 m³

$$D = \left[\frac{4 \times 250}{\pi \times 4}\right]^{1/2}$$
D'où : **D** = **8.92** m

* Hauteur d'incendie du réservoir Ouled ali

$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times D^{2}}\right]$$
D'où:
$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times (D_{250})^{2}}\right]$$

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (8.92)^{2}}\right]$$

$$H_{incendie} = 1.92 \text{ m}$$

III .9.3. Dimensionnement du réservoir Ghemamza

Le réservoir de Ghemamza est alimenté gravitairement à partir du réservoir Tacheta Zougagha, qui assure la distribution pour la zone de Ghemamza dont le nombre d'habitants est de **1697**. Ce réservoir reçoit un débit de **510,66 m³/j**.

La valeur $k_{max,h}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{max} = 1.3$$

$$\beta_{max} = 1.76$$

$$k_{max.h} = \alpha_{max} \times \beta_{max} = 2,29$$

Les résultats des entrées et des sorties sont regroupés dans l'annexe (4).

D'après les résultats obtenus, on a :

$$R_{-} = -9.15 \%$$

$$Vr = \frac{510,66 \times 22.75}{100} = 116.17 \text{ m}^{3}$$

$$V_{t} = 116.17 + 120 = 236.17 \text{ m}^{3}$$

Donc on optera pour un réservoir de 250 m³ pour cette agglomération.

❖ Le diamètre du réservoir Ghemamza

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H=4 m;

Le diamètre du réservoir est déterminé par la formule suivante :

Avec V= 250 m³
$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$
$$D = \left[\frac{4 \times 250}{\pi \times 4}\right]^{1/2}$$

D'où : D = 8.92 m

Hauteur d'incendie du réservoir Ghemamza

$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times D^{2}}\right]$$
D'où:
$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times (D_{250})^{2}}\right]$$

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (8.92)^{2}}\right]$$

$$H_{incendie} = 1.92 \text{ m}$$

III .9.4. Dimensionnement du réservoir Ouled bouali

Le réservoir de Ouled bouali est alimenté par refoulement à partir de la station de reprise SR4, qui assure la distribution pour la zone de Ouled bouali dont le nombre d'habitants est de **3289**. Ce réservoir reçoit un débit de **987,24 m³/j**.

La valeur $k_{\text{max.h}}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{max} = 1.3$$

$$\beta_{max} = 1.55$$
 $k_{max.h} = \alpha_{max} \times \beta_{max} = 2.01$

Les résultats des entrées et des sorties sont regroupés dans l'annexe (5).

D'après les résultats obtenus, on a :

$$R_{-}=20 \%$$

$$P_{max}(\%) = |20| + |-9| = 29\%$$

$$Vr = \frac{987,24 \times 29}{100} = 286.30 \text{ m}^{3}$$

$$V_{t} = 286.30 + 120 = 406.30 \text{ m}^{3}.$$

Donc on optera pour un réservoir de 450 m³ pour cette agglomération.

Le diamètre du réservoir Ouled bouali

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H=4 m;

Le diamètre du réservoir est déterminé par la formule suivante :

$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$
 Avec V= 450 m³
$$D = \left[\frac{4 \times 450}{\pi \times 4}\right]^{1/2}$$

D'où : D = 11.97 m

Hauteur d'incendie du réservoir Ouled bouali

$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times D^{2}}\right]$$

$$D'où: \qquad H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times (D_{450})^{2}}\right]$$

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (11.97)^{2}}\right]$$

$$H_{incendie} = 1.07 \text{ m}$$

III .9.5. Dimensionnement du réservoir Ouled bessa

Le réservoir de Ouled bessa est alimenté par refoulement à partir de la station de reprise SR4, servira gravitairement les réservoirs qui assurent la distribution des agglomérations de la zone d'étude, et qui assure aussi la distribution pour la zone de Ouled bessa dont le nombre d'habitants est **7005**. Ce réservoir reçoit un débit de **3775.07** m³/j.

La valeur $k_{max.h}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{\text{max}} = 1.3$$

$$\beta_{\text{max}} = 1.37$$

$$k_{\text{max},h} = \alpha_{\text{max}} \times \beta_{\text{max}} = 1.79$$

Les résultats des entrées et des sorties sont regroupés dans l'annexe (6).

D'après les résultats obtenus, on a :

Donc on optera pour un réservoir de 900 m³ pour cette agglomération.

Le diamètre du réservoir Ouled bessa

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H=5 m;

Le diamètre du réservoir est déterminé par la formule suivante :

$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$

$$Avec V = 900 \text{ m}^3$$

$$D = \left[\frac{4 \times 900}{\pi \times 5}\right]^{1/2}$$

D'où : D = 15.14 m

* Hauteur d'incendie du réservoir Ouled bessa

$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times D^{2}}\right]$$
D'ou :
$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times (D_{900})^{2}}\right]$$

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (15.14)^{2}}\right]$$

$$H_{incendie} = 0.67 \text{ m}$$

III .9.6. Dimensionnement du réservoir Khebabza

Le réservoir de Khebabza est alimenté gravitairement à partir du réservoir Ouled bessa, qui assure la distribution pour la zone de Khebabza dont le nombre d'habitants est de **2876**. Ce réservoir reçoit un débit de **844,29 m³/j**.

La valeur $k_{\text{max.h}}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{\text{max}} = 1.3$$

$$\beta_{\text{max}} = 1.57$$

$$k_{\text{max.h}} = \alpha_{\text{max}} \times \beta_{\text{max}} = 2.05$$

Les résultats des entrées et des sorties sont regroupés dans l'annexe (7).

D'après les résultats obtenus, on a :

$$\begin{array}{c} R_{+} = 20 \ \% \\ R_{-} = -9 \ \% \end{array} \quad \begin{array}{c} P_{max} \ (\%) = |14.3| + |-6.51| = 20.81\% \\ Vr = \frac{844.29 \times 20.81}{100} = 286.30 \ m^{3} \\ V_{t} = 286.30 + 120 = \textbf{295.70} \ \textbf{m}^{3} \end{array}$$

Donc on optera pour un réservoir de 300 m³ pour cette agglomération.

❖ Le diamètre du réservoir Khebabza

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H=4 m;

Le diamètre du réservoir est déterminé par la formule suivante :

$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$
 Avec V= 300 m³
$$D = \left[\frac{4 \times 300}{\pi \times 4}\right]^{1/2}$$

D'où : D = 9.77 m

* Hauteur d'incendie du réservoir Khebabza

$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times D^{2}}\right]$$
D'où:
$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times (D_{300})^{2}}\right]$$

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (9.77)^{2}}\right]$$

$$H_{incendie} = 1.6 \text{ m}$$

III .9.7. Dimensionnement du réservoir Ouled arbi

Le réservoir de Ouled arbi est alimenté par refoulement à partir de la station de reprise SR5, qui assure la distribution pour la zone de Ouled arbi dont le nombre d'habitants est de 2770. Ce réservoir reçoit un débit de 823,46 m³/j.

La valeur $k_{\text{max.h}}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à l'annexe (1), on choisit la colonne qui convient avec :

$$\alpha_{\text{max}} = 1.3$$

$$\beta_{\text{max}} = 1.58$$
 $k_{\text{max},h} = \alpha_{\text{max}} \times \beta_{\text{max}} = 2.06$

Les résultats des entrées et des sorties sont regroupés dans l'annexe (8).

D'après les résultats obtenus, on a :

R₊ = 20 %
R₋ = -9 %

$$Vr = \frac{823.46 \times 29}{100} = 238.80 \text{ m}^{3}$$

$$V_{t} = 238.80 + 120 = 358.80 \text{ m}^{3}$$

Donc on optera pour un réservoir de 400 m³ pour cette agglomération.

Le diamètre du réservoir Ouled arbi

La hauteur du réservoir varie entre H = 3 et 6 m, on prend H=4 m;

Le diamètre du réservoir est déterminé par la formule suivante :

$$D = \left[\frac{4 \times V}{\pi \times H}\right]^{1/2}$$
 Avec V= 400 m³
$$D = \left[\frac{4 \times 400}{\pi \times 4}\right]^{1/2}$$

D'où : D = 11.29 m

* Hauteur d'incendie du réservoir Ouled arbi

$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times D^{2}}\right]$$
D'où:
$$H_{incendie} = \left[\frac{4 \times V_{incendie}}{\pi \times (D_{400})^{2}}\right]$$

$$H_{incendie} = \left[\frac{4 \times 120}{\pi \times (11.87)^{2}}\right]$$

$$H_{incendie} = 1.2 \text{ m}$$

III .10. Dimensionnement des stations de reprise

La station de reprise est un complexe équipé d'un réservoir et d'une station de pompage ; elle permet le refoulement intermédiaire. Le dimensionnement de la station de reprise sera déterminé d'après le temps nécessaire pour maintenir la crépine en charge et pour que la pompe ne se désamorce pas. Ce temps est généralement pris à un quart d'heure (1/4h).

Pour procéder à la détermination du volume de la station de reprise, on utilise la formule suivante :

$$V_{Sr} = \frac{Q_{\text{max,j}} \times T_{S}}{20}$$
 (III.6)

Avec:

- ∇V_{sr} : Volume de la station de reprise (m³);
- $Q_{\text{max},j}$: Débit entrant dans la station (m³/j);
- T_s : Temps nécessaire pour maintenir la crépine en charge (t = 0.25h).

Stations de reprise SR1, SR2 et SR3

$$V_{sr1} = V_{sr2} = V_{sr3} = \frac{8063.74 \times 0.25}{20}$$
 $V_{sr1} = V_{sr2} = V_{sr3} = 100.80 \text{ m}^3.$

Les stations de reprise SR1, SR2 et SR3 existantes sont en mauvais état (bâche à eau en mauvais état, corrosion des vannes, des conduites d'aspirations), ainsi que le volume de chaque bâche à eau est de 25 m³, ce qui nous montre clairement que les volumes de ces dernières sont insuffisants, donc on va projeter des nouvelles stations de reprise à côté des anciennes avec des bâches à eau de même volume (100 m³).

> Station de reprise SR4

$$V_{sr4} = \frac{4762.31 \times 0.25}{20}$$
 $V_{sr4} = 59.53 \text{ m}^3.$

Donc le volume de la bâche a eau de la station de reprise SR4 sera 100 m³.

> Station de reprise SR5

Le dimensionnement de cette station de reprise sera comme un réservoir, vu qu'elle est alimentée gravitairement à partir de réservoir de Ouled bessa, ce qui fait qu'elle est alimentée 24h/24. Et avec un refoulement vers le réservoir de Ouled arbi pendant une durée de 20 heures par jour.

Les résultats des entrées et des sorties sont regroupés dans l'annexe (9).

D'après les résultats obtenus, on a :

$$R_{+}=2.49\%$$
 $R_{-}=-14.19\%$
 $P_{max}(\%)=|2.49|+|-14.19|=16.68\%$
 823.46×16.68

$$Vr = \frac{823.46 \times 16.68}{100} = 137.35 \text{ m}^3$$

Donc on optera pour une bâche à eau de 150 m³ pour cette station de reprise.

❖ Le diamètre du réservoir de la station de reprise SR5

On prend H=4

$$D = \left[\frac{4 \times 150}{\pi \times 4} \right]^{1/2}$$

D'où : D = 6.91 m

III .11. Dimensionnement de la station de pompage

Le dimensionnement de cette station de pompage sera comme un réservoir, vu qu'elle est alimentée gravitairement à partir du réservoir de Tacheta Zougagha, ce qui fait qu'elle est alimentée 24h/24. Et avec un refoulement vers la station de reprise SR4 pendant une durée de 20 heures par jour.

Les résultats des entrées et des sorties sont regroupés dans l'annexe (10).

D'après les résultats obtenus, on a :

$$R_{-}= 2.49 \%$$
 $P_{max} (\%) = |2.49| + |-14.19| = 16.68\%$ $R_{-}= -14.19 \%$

$$Vr = \frac{4762.31 \times 16.68}{100} = 794.35 \text{ m}$$

Donc on optera pour un réservoir de **800 m³** pour cette station de pompage.

❖ Le diamètre du réservoir de la station de pompage

On prend H=5 m

$$D = \left[\frac{4 \times 800}{\pi \times 5} \right]^{1/2}$$

D'où : D = 14.27 m

III .12. Conclusion

Le dimensionnement des ouvrages de stockage nous a permis de calculer les volumes des réservoirs. Le tableau (III .2) résume la capacité des réservoirs de la zone d'étude.

Tableau (III.2): La capacité des réservoirs de la zone d'étude

Réservoir	Volumes des réservoirs (m³)
Tacheta Zougagha chef-lieu	1350(500 existant et 850 projeté)
Ghemamza	250
Ouled bessa	900
Ouled-ali	250
Ouled-bouali	450
Khebabza	300
Ouled-arbi	400
Station de reprise SR1	100
Station de reprise SR2	100
Station de reprise SR3	100
Station de reprise SR4	100
Station de reprise SR5	150
Station de pompage	800

Après ce dimensionnement, nous allons nous intéresser à l'étude des conduites d'adduction, qui sera bien détaillée dans le prochain chapitre.

IV.1. Introduction

Après avoir dimensionné les réservoirs, nous intéressons dans ce chapitre aux conduites d'adduction. Ce dernier a comme rôle de transporter l'eau depuis la source de captage (forages) au réservoir de stockage ou de distribution à travers un réseau de conduites.

IV.2. Topologie des systèmes d'adduction [4] :

Il y a deux types d'adduction :

- ❖ Adduction gravitaire : ou l'écoulement de l'eau à des pressions importantes est causé par la différence des niveaux hydrauliques : l'altitude de la source est supérieure à l'altitude du point de consommation ; et se déplace donc grâce à la force de gravitation, d'où son nom.
- ❖ Adduction par refoulement : ou la pression sur le réseau et l'acheminement de l'eau se fait à l'aide de pompes à l'intérieur de stations de pompage. Dans ce cas, le captage se situe à un niveau inférieur à celui du réservoir.

IV.3. Choix du type de conduite

Le choix du type des conduites dépendra des critères technique et économique suivants [4] :

- Prix d'achat;
- Disponibilité sur le marché ;
- Pression à supporter ;
- La durée de vie prouvée par l'expérience et les tests de vieillissement ;
- La nature du terrain ;
- La longueur des conduites.

Dans notre projet, nous avons opté pour les conduites en polyéthylène haute densité (PEHD), pour les raisons suivantes :

Avantages

- Durée de vie importante ;
- Facilité de pose ;
- Disponibilité sur le marché national ;
- Faible conductivité thermique ;
- Coefficient de rugosité très faible ;
- Résistance contre les suppressions ;
- Résistance aux attaques chimiques (corrosion interne, externe et microbiologique);
- Fiable au niveau du branchement (pas de fuite);
- Répond parfaitement aux normes de potabilité ;
- Durée de vie prouvée par l'expérience et le test de vieillissements (théoriquement 50 ans à une température 20°C).

On utilise le PEHD (PN10) lorsque la hauteur géométrique Hg < 100 m, et le PEHD (PN20) lorsque Hg \approx 200 m.

IV.4. Equipements hydrauliques des conduites d'adduction

Un bon fonctionnement et une meilleure exploitation d'un réseau d'adduction nécessitent, en service normal comme en cas d'incident, que l'on dispose d'un certain nombre d'accessoires à savoir :

IV.4.1. Organes de sectionnement

Ils permettent l'isolement d'une partie de l'adduction en cas des travaux de réparation, ainsi que le réglage du débit, Nous citons :

- **Robinet vanne :** est une sorte de lentille épaisse qui s'abaisse ou s'élève verticalement à l'aide d'une vis tournant dans un écran fixé à la vanne (figure (IV.1)).
- **Robinet vanne papillon :** est un élément de conduite traversé par un axe déporté entrainant, en rotation, un disque obturateur appelé papillon (figure (IV.4)).

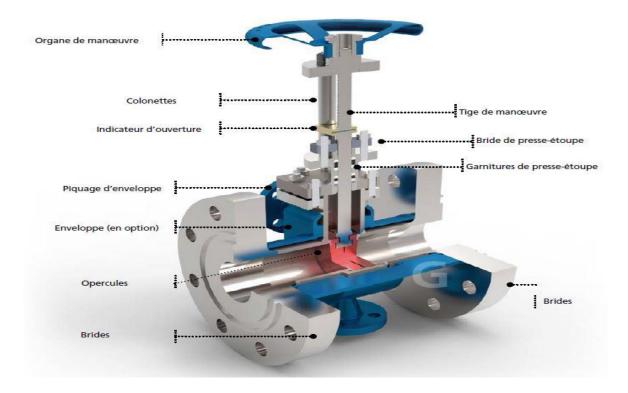


Figure (IV.1): Robinet vanne à opercule

IV.4.2. Organes de protection

Ils permettent la protection des conduites de divers phénomènes qui se traduisent au niveau des canalisations.

- **Ventouse**: sert à évacuer l'air contenu dans les conduites. Se placent aux points hauts des canalisations (figure (IV.2)).
- Clapet : destiné à assurer le passage de l'eau dans un certain sens et à l'arrêter dans le sens opposé (figure (IV.3)).
- Vanne de vidange : joue le même rôle que la ventouse, mais se place aux points bas des canalisations.

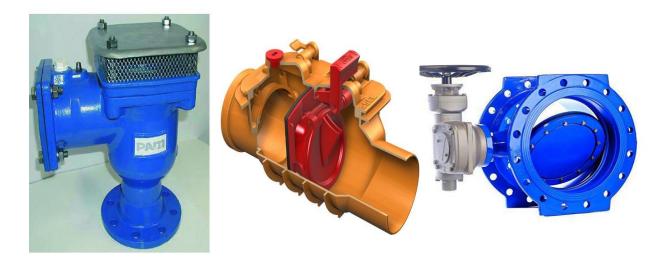


Figure (IV.2): Ventouse

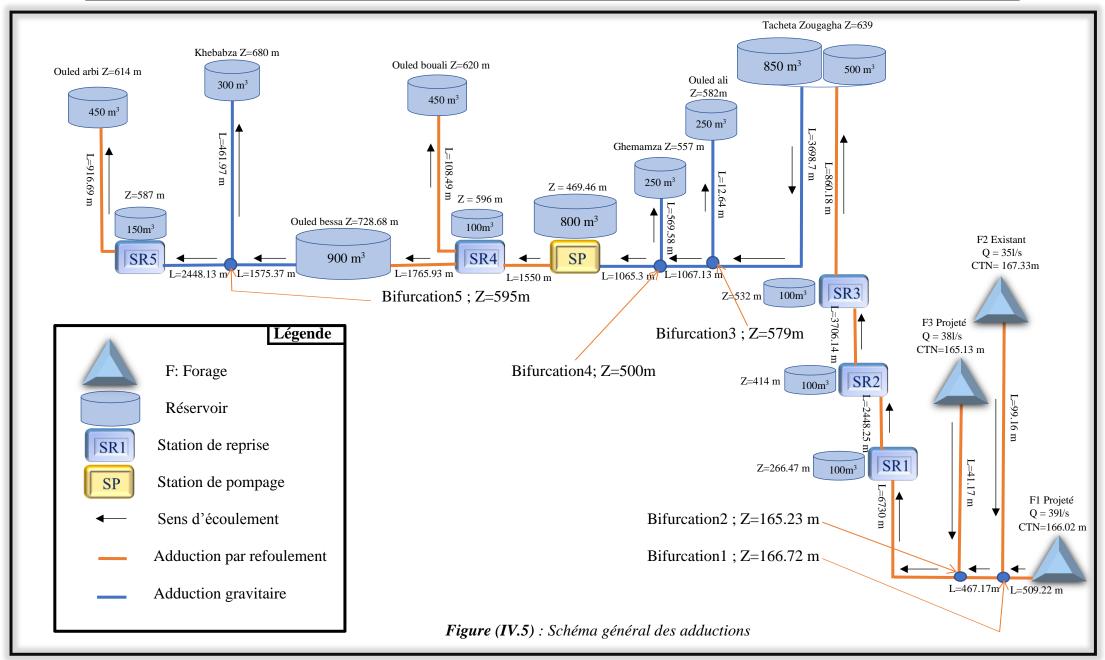
Figure (IV.3): Clapet anti-retour

Figure (IV.4): Vanne robinet à papillon

IV.4.3. Organes de régulation

Ils permettent la régulation du débit et de la pression en amont ou en aval, on cite :

- **a. Vanne de régulation du débit :** limite et stabilise le débit d'une valeur de consigne constante quelles que soient les variations de pression amont et aval.
- **b. Vanne de régulation de la pression amont :** maintient la pression amont à une valeur de consigne, quelles que soient les variations de pression et de débit à l'aval. La vanne règle en fait le débit pour assurer qu'à l'amont la pression reste suffisante. En réduisant le débit, on diminue la perte de charge et on augmente la pression. On obtient ainsi un compromis entre un minimum de pression à l'amont et un minimum de débit à l'aval.
- Vanne de régulation de la pression aval : son but est de fournir une pression à l'aval constant.


IV.4.4. Organes de branchement

Ce sont des pièces qui permettent de réaliser toutes les dispositions, on distingue :

- Les coudes : destinés pour le changement de direction ;
- Les tés : raccordent la canalisation secondaire sur la canalisation principale ;
- Les cônes : joignent des conduites de diamètres différentes.

IV.5. Description du schéma d'adduction

La chaine d'adduction dans le présent projet sera alimentée à partir de 3 forages (1 projeté et 2 existants) dans le champ de captage qui se situe à "Abadia" jusqu'au dernier réservoir Ouled arbi, sur un itinéraire de 30 km, (toutes les conduites utilisées dans notre projet seront en polyéthylène haute densité, PEHD). La figure (IV.5) nous montre clairement le schéma détaillé de la chaine d'adduction qu'on veut réaliser.

IV.6. Etude technico-économique

Elle consiste à étudier le choix le plus économique pour le diamètre de la conduite. Le choix de ce dernier repose sur deux critères [9] :

- Techniquement le diamètre de la conduite doit pouvoir faire transiter le plus grand débit à des vitesses acceptables, en assurant une pression de service compatible avec la résistance de la conduite.
- Les frais d'investissement (frais d'exploitation + frais d'amortissement) sont proportionnels aux diamètres des conduites.

Les paramètres qui interviennent dans cette étude sont :

- Le débit :
- Le diamètre ;
- La vitesse ;
- Les pertes de charge.

IV.6.1. Calcul du diamètre économique

❖ Pour les conduites de refoulement, ce diamètre est déterminé approximativement par les deux formules suivantes :

La formule de Jacques BONNIN:

$$\mathbf{D_1} = \sqrt{\mathbf{Q}} \tag{IV.1}$$

La formule de Charles BRESS:

$$\left(\mathbf{D}_{2} = \mathbf{1}.\,\mathbf{5} \times \sqrt{\mathbf{Q}}\,\right) \tag{IV.2}$$

Avec:

- **D** : Diamètre de la conduite en mètre ;
- **Q** : Débit véhiculé en m³/s.

Avec ces deux formules ((IV.1), (IV.2)) on détermine une gamme du diamètre économique, suivant plusieurs diamètres normalisés, notre choix se portera sur le plus économique c'est-à-dire, celui qui présente un bilan minimal et une vitesse comprise entre 0,5 et 1,5 m/s.

❖ Pour les conduites gravitaires, ce diamètre est déterminé approximativement avec le choix de la vitesse d'écoulement qui est comprise entre Vmax et Vmin :

$$\mathbf{D_{\min}} = \sqrt{\frac{4 \times \mathbf{Q}}{\pi \times \mathbf{V_{\max}}}}$$
 (IV. 3)

$$D_{max} = \sqrt{\frac{4 \times Q}{\pi \times V_{min}}}$$
(IV. 4)

Avec:

- V_{min}: La vitesse minimale de l'écoulement qui est de 0,5 m/s ;

- V_{max}: La vitesse maximale de l'écoulement qui est de 1,5 m/s;

- Dmin: Le diamètre minimal de la conduite (m);

- D_{max}: Le diamètre maximal de la conduite (m);

- Q : Le débit qui doit transiter dans la conduite.

Le principe de dimensionnement d'une adduction gravitaire consiste à trouver le diamètre qui convient, en utilisant les deux formules ((IV.3), (IV.4)) avec une vitesse acceptable varie entre **0.5** et **1.5 m/s**.

IV.6.2. Calcul de la vitesse

Elle est donnée par la formule suivante [4] :

D'après l'équation de la continuité :

$$Q = V \times S$$

$$V = \frac{Q}{S}$$
(IV.5)
On a:
$$V = \frac{\pi D^2}{4}$$
(IV.6)
$$V = \frac{4Q}{\pi D^2}$$
(IV.7)

Avec:

- V : vitesse d'écoulement dans la conduite (m/s) ;

- **Q**: Débit véhiculé par la conduite (m3/s);

- **D** : Diamètre de la conduite.

IV.6.3. Calcul des pertes de charge

Elle se présente sous deux formes [4] :

- Pertes de charges linéaires ;
- Pertes de charge singulières.

IV.6.3.1. Pertes de charge linéaires H_L

Les pertes de charge linéaires sont dues aux frottements de l'eau contre les parois de canalisations, peuvent être tirées d'abaques ou calculées. Elles sont déterminées par la formule de DARCY-WEISBACH:

$$H_L = J \times L = \lambda \times \frac{L}{D} \times \frac{V^2}{2g} = \frac{8\lambda L}{\pi^2 D^5 g} \times Q^2$$
 (IV. 8)

$$J = \frac{\lambda V^2}{2gD} = \frac{8 \lambda Q^2}{\pi^2 D^5 g}$$
 (IV. 9)

Pour déterminer le coefficient des pertes de charge aux différents régimes, on peut appliquer les formules suivantes :

* **Régime turbulent rugueux :** Formule de NIKURADZI :

$$\lambda = (1.14 - 0.86 \times \ln \frac{K}{D})^{-2}$$
 (IV.10)

* Régime transitoire : Formule de COLEBROOK :

$$\left(\frac{1}{\sqrt{\lambda}} = -2\log\left[\frac{K}{3.71D} + \frac{2.51}{R_e\sqrt{\lambda}}\right]$$
 (IV. 11)

Avec:

- J : Perte de charge par frottement en mètre de colonne d'eau par mètre de tuyau (m/ml);
- λ : Coefficient de frottement, qui dépend de la rugosité relative et du nombre Reynolds ;
- **D** : Diamètre de tuyau en m ;
- V : Vitesse d'écoulement en m/s ;
- g : Accélération de la pesanteur en m²/s ;
- L : Longueur de la conduite en m ;
- K: c'est la rugosité absolue, déterminée en mesurant l'épaisseur des parois internes du tuyau (pour le PEHD : K = 0.01mm, Si $D \le 200$ mm ; K = 0.02mm, si D > 200 mm).
- -Re : Nombre de Reynolds donné par la formule suivante :

$$R_{e} = \frac{VD}{\vartheta}$$
 (IV. 12)

Avec:

- 9: La viscosité cinématique de l'eau qui est égale :
 - $\text{à } 10^{\circ}\text{C} \implies \vartheta = 1,13 \times 10^{-6} \text{ m}^2/\text{s};$
 - à 20°C \implies **9** =1,00 ×10⁻⁶ m²/s;
 - à 30°C \implies **9** =0.08 ×10⁻⁶ m²/s.

IV.6.3.2. Pertes de charge singulières $H_S[4]$

Les pertes de charge singulière représentent les pertes occasionnées par les singularités dans les conduites (coudes, vannes, clapets et branchements ...etc.). Elles sont estimées à :

10% des pertes de charge linéaires pour le PEHD :

$$H_S = 0.10H_L$$
 (IV. 13)

IV.6.3.3. Pertes de charge totales H_T

Elles représentent la somme des pertes de charge linéaires et singulières, pour chaque conduite de largeur L, donc on aura pour le PEHD :

$$H_{T} = 1.1H_{L} = 1.1 \times J \times L \qquad (IV. 14)$$

Avec:

- **H**_T: Perte de charge totale (m);

- H_L: Perte de charge linéaire (m).

IV.6.4. Détermination de la hauteur manométrique H_{MT}

Elle représente une hauteur d'élévation fictive qui résulte de la somme de la hauteur géométrique et des pertes de charge résultant de l'aspiration et du refoulement.

$$\mathbf{H}_{\mathbf{MT}} = \mathbf{H}_{\mathbf{g}} + \mathbf{H}_{\mathbf{T}} \tag{IV. 15}$$

Avec:

- HT: Perte de charge totale;

- HMT: Hauteur manométrique;

- Hg: Hauteur géométrique qui correspond à la différence de niveau.

IV.6.5. Puissance absorbée par la pompe

La puissance absorbée par la pompe est donnée par la formule suivante :

$$Pa = \frac{g. Q. H_{MT}}{\eta}$$
 (IV. 16)

Avec:

- Pa: puissance absorbée par la pompe (KW);

- Q : Débit de la pompe (m3/s);

- **Н**мт: Hauteur manométrique totale (m);

- η : Rendement de la pompe (%); Dans notre cas $\eta = 70$ %.

IV.6.6. Energie consommée par la pompe

L'énergie consommée par la pompe est donnée par la formule :

$$\mathbf{E} = \mathbf{P}_{\mathbf{a}} \times \mathbf{T}_{\mathbf{1}} \times \mathbf{365} \tag{IV. 17}$$

Avec:

- E : Energie totale dépensée par la pompe (KWh) ;

- Pa: puissance absorbée (KW);

- T₁: Temps de fonctionnement des pompes (20 heures).

IV.6.7. Frais d'exploitation

Les frais d'exploitation d'un système d'adduction sont évalués à partir de la consommation d'énergie et du prix du Kilowattheure (Kwh) d'électricité, ils sont donnés par la formule suivante :

$$\mathbf{F}_{\mathrm{exp}} = \mathbf{E} \times \mathbf{P}_{\mathrm{r}} \tag{IV. 18}$$

Avec:

- **F**exp: Frais d'exploitation (DA);

- E : Energie totale dépensée par la pompe (Kwh) ;

- P_r: Prix unitaire d'un KWh fixé par la SONELGAZ (4.67 da).

IV.6.8. Frais d'amortissement

Les frais d'amortissement sont constitués par le prix de revient de la conduite depuis la fourniture jusqu'à la pose. Dans notre cas nous supposons que les frais seront amortis dans une période de 31 ans (durée d'exploitation) ce qui nous conduit au calcul de l'annuité "A".

$$A = i + \frac{i}{(i+1)^{ni} - 1}$$
 (IV. 19)

Avec:

- A : Amortissement annuel de la conduite ;

- i : Taux d'annuité (égale à 8 % en Algérie) ;

- ni : Durée d'exploitation de la conduite = 31 ans.

Donc:

$$A = 0.08 + \frac{0.08}{(0.08+1)^{31}-1}$$

$$A = 0.0881$$

Les frais d'amortissement seront calculés à partir de la formule suivante :

$$\mathbf{F}_{\mathbf{am}} = \mathbf{A} \times \mathbf{P}_{\mathbf{un}} \times \mathbf{L}$$
 (IV. 20)

Avec:

- **F**_{am}: Frais d'amortissement (DA);

- P_{un}: Prix unitaire de la conduite (DA/ml, voir Annexe (2));

- L : Longueur de la conduite(m).

IV.6.9. Bilan économique

Le bilan sera:

$$\begin{bmatrix} \mathbf{B_L} = \mathbf{F_{am}} + \mathbf{F_{exp}} \end{bmatrix} \tag{IV. 21}$$

Avec:

- $\mathbf{B_L}$: Le bilan (DA);

- F_{am}: Les frais d'amortissement (DA);

- $\mathbf{F}_{\mathbf{exp}}$: Les frais d'exploitation (DA).

IV.7. Dimensionnement des différents tronçons de l'adduction

IV.7.1. Partie adduction gravitaire

IV.7.1.1. Tronçon RV Tacheta Zougagha-Bifurcation3

Ce tronçon est alimenté à partir du Réservoir Tacheta Zougagha vers la bifurcation3 par adduction gravitaire.

Données : Q = 0.064 m³/s, L= 3698.7 ml, CR (RV Tacheta Zougagha) = 639m, Cote (Bifurcation 3) = 579m, Hg = 60 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.234$ m, $D_{max} = 0.405$ m. Le PEHD(PN10) comme matériau, les diamètres normalisés sont : 250, 315, 400 et 500 mm

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.1).

Tableau (**IV.1**) : Calcul des pertes de charge totales du tronçon (RV Tacheta Zougagha - Bifurcation3)

D e		$Q (m^3/s)$	V (m/s)	Re	L(m)	λ	J (m/m)	H _T (m)
25	0.220	4 0.064	1.6784	369912.261	3698.7	0.0149	0.00971	39.4882
31	5 0.277	6 0.064	1.0580	293691.147	3698.7	0.0152	0.00313	12.7318
40	0.352	6 0.064	06558	231221.391	3698.7	0.0157	0.00098	3.96841
50	0.440	6 0.064	0.4200	185040.087	3698.7	0.0162	0.00033	1.34688

Par conséquent, on optera pour un diamètre de 315 mm, à une vitesse acceptable de 1.0580m/s.

IV.7.1.2. Tronçon Bifurcation3-RV Ouled ali

Ce tronçon est alimenté gravitairement à partir du réservoir Tacheta Zougagha.

Données : $Q = 0.0034 \text{ m}^3/\text{s}$, L = 12.64 ml, CR (RV Tacheta Zougagha) = 639 m, CTP (RV Ouled ali) = 586 m, Hg = 53 m.

Cote piézométrique (Bifurcation 3) = CR (RV Tacheta Zougagha) - H_T (RV Tacheta Zougagha-Bifurcation3) = 639 - 12.7318 = 626.2682 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.054$ m, $D_{max} = 0.094$ m. Le PEHD(PN10) comme matériau, les diamètres normalisés sont : 63, 75, 90 et 110 mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.2).

Tableau (**IV.2**): Calcul des pertes de charge totales du tronçon (Bifurcation3- RV Ouled ali)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
63	0.0536	0.0034	1.5076	80806.1603	12.64	0.0197	0.04250	0.59090
75	0.0638	0.0034	1.0641	67887.3071	12.64	0.0202	0.01826	0.25387
90	0.0792	0.0034	0.6905	54686.9974	12.64	0.0209	0.00643	0.08938
110	0.0968	0.0034	0.4622	44743.9069	12.64	0.0218	0.00245	0.03404

Cote piézométrique (RV Ouled ali) = Cote piézométrique (Bifurcation 3) - H_T (Bifurcation 3-RV Ouled ali) = 626.2682 - 0.25387 = 626.01433 m.

On a : Cote piézométrique (RV Ouled ali) = 626.01433 m > CTP (RV Ouled ali) = 586 m.

Par conséquent, on optera pour un diamètre de 75 mm, à une vitesse acceptable de 1.0641m/s.

Pour garder le même débit véhiculé dans la conduite nous devons mettre en place une vanne qui nous permettra de créer les pertes de charges singulières nécessaire.

A Choix des vannes

Notre choix s'est porté sur les vannes papillon pour les raisons suivantes :

- ✓ Possibilité de travailler avec de grands débits (grands diamètres) ;
- ✓ Facilité de manipulation.

❖ Calcul des pertes de charge dans la vanne J_v

$$\mathbf{J}_{v} = \mathbf{H}_{g} - \mathbf{H}_{T} \tag{IV.22}$$

Dans notre cas : J_v = Cote piézométrique (RV Ouled ali) - CTP (RV Ouled ali) = 626.01433 - 586 = 40.01433 m.

❖ Calcul de coefficient d'ouverture de la vanne €

$$\boxed{\mathbf{J}_{\mathrm{V}} = \boldsymbol{\varepsilon} \times \frac{\mathrm{V}^2}{2\mathrm{g}}}$$
 (IV.23)

D'ou
$$\varepsilon = J_v \times \frac{2g}{v^2} = 40.01433 \times \frac{2 \times 9.81}{1.0641^2}$$
 \Longrightarrow $\varepsilon = 693.39$

\Leftrightarrow Calcul de l'angle d'ouverture de la vanne θ°

Pour $\varepsilon = 693.39$ l'angle d'ouverture de la vanne sera $\theta^{\circ} = 69.09^{\circ}$ (selon l'annexe (12)).

IV.7.1.3. Tronçon Bifurcation3 – Bifurcation4

Ce tronçon est alimenté gravitairement à partir du réservoir Tacheta Zougagha.

Données : $Q = 0.061 \text{ m}^3/\text{s}$, L = 1067.13 ml, CR (RV Tacheta Zougagha) = 639 m, Cote (Bifurcation4) = 500m, Hg= 139 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.228$ m, $D_{max} = 0.394$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 250, 315 et 400 mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.3).

Tableau (IV.3): Calcul des pertes de charge totales du tronçon (Bifurcation3- Bifurcation4)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
250	0.2046	0.061	1.8563	379799.640	1067.13	0.0149	0.01280	15.0296
315	0.2578	0.061	1.1692	301423.609	1067.13	0.0152	0.00411	4.82786
400	0.3274	0.061	0.7249	237345.774	1067.13	0.0157	0.00128	1.50381

Par conséquent, on optera pour un diamètre de 315 mm, a une vitesse acceptable de 1.1692m/s.

IV.7.1.4. Tronçon Bifurcation4 – RV Ghemamza

Ce tronçon est alimenté gravitairement à partir du réservoir Tacheta Zougagha.

Données : Q = 0.0059 m³/s, L= 569.58 ml, CTP (RV Ghemamza) = 561 m, CR (RV Tacheta Zougagha) = 639 m, Hg = 78m, Cote piézométrique (Bifurcation 3) = 626.2682 m.

Cote piézométrique (Bifurcation 4) = Cote piézométrique (Bifurcation 3) - H_T (Bifurcation 3) - H_T (Bifurcation 4) = 626.2682 - 4.82786 = 621.44034 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0,0708$ m, $D_{max} = 0,123$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 75, 90, 110 et 125 mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.4).

Tableau (**IV.4**): Calcul des pertes de charge totales du tronçon (Bifurcatio4 – RV Ghemamza)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
75	0.0582	0.0059	2.2189	129139.58	569.58	0.0181	0.07794	48.8312
90	0.0736	0.0059	1.3875	102118.527	569.58	0.0186	0.02482	15.5528
110	0.0900	0.0059	0.9279	83510.2619	569.58	0.0192	0.00936	5.86708
125	0.1022	0.0059	0.7196	73541.3265	569.58	0.0196	0.00507	3.17561

Cote piézométrique (RV Ghemamza) = Cote piézométrique (Bifurcation4) - H_T (Bifurcation4 – RV Ghemamza) = 621.44034 - 15.5528 = 605.88754 m.

On a : Cote piézométrique (RV Ghemamza) = 605.88754 m > CTP (RV Ghemamza) = 561 m.

Par conséquent, on optera pour un diamètre de 90 mm, à une vitesse acceptable de 1.3875 m/s.

Pour garder le même débit véhiculé dans la conduite nous devons mettre en place une vanne papillon qui nous permettra de créer les pertes de charges singulières nécessaire.

❖ Calcul des pertes de charge dans la vanne J_v

$$J_v = 605.88754 - 561 = 44.88754 \text{ m}.$$

Calcul de coefficient d'ouverture de la vanne

$$\varepsilon = J_v \times \frac{2g}{v^2} = 44.88754 \times \frac{2 \times 9.81}{1.3875^2}$$
 $\varepsilon = 457.48$

\bullet Calcul de l'angle d'ouverture de la vanne θ°

Pour $\varepsilon = 457.48$, l'angle d'ouverture de la vanne sera $\theta^{\circ} = 65.36^{\circ}$ (selon l'annexe (12)).

IV.7.1.5. Tronçon Bifurcation4 – Station de pompage

Ce tronçon est alimenté gravitairement à partir du réservoir Tacheta Zougagha.

Données : Q = 0.055 m³/s, L= 1065.3 ml, CR (RV Tacheta Zougagha) = 639 m,CTP (SP) = 474.46 m, Hg = 164.54 m, Cote Piézométrique (Bifurcation 4) = 621.44034 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.216$ m, $D_{max} = 0.375$ m.

Le PEHD (PN20) comme matériau, les diamètres normalisés sont : 250, 315 et 400 mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20°C, les résultats du calcul sont représentés dans le tableau (IV.5).

Tableau (**IV.5**): Calcul des pertes de charge totales du tronçon (Bifurcatio4 – St de pompage)

O ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
250	0.1942	0.055	1.8578	360781.124	1065.3	0.0151	0.01365	15.99569
315	0.2446	0.055	1.1711	286441.923	1065.3	0.0154	0.00439	5.14814
400	0.3106	0.055	0.7263	225575.320	1065.3	0.0158	0.00137	1.60460

Cote piézométrique (SP) = Cote piézométrique (Bifurcation4) - H_T (Bifurcation4 - SP) = 621.44034 - 5.14814 = 616.29220 m.

On a : Cote piézométrique (SP) = 616.2922 m > CTP (SP) = 474.46 m.

Par conséquent, on optera pour un diamètre de 315 mm, à une vitesse acceptable de 1.1711m/s.

Pour garder le même débit véhiculé dans la conduite nous devons mettre en place une vanne papillon qui nous permettra de créer les pertes de charges singulières nécessaire.

❖ Calcul des pertes de charge dans la vanne J_v

$$J_v = 616.2922 - 474.46 = 141.8322 \text{ m}.$$

Calcul de coefficient d'ouverture de la vanne

$$\varepsilon = J_v \times \frac{2g}{v^2} = 141.8322 \times \frac{2 \times 9.81}{1.1711^2}$$
 $\varepsilon = 2029.02$

\bullet Calcul de l'angle d'ouverture de la vanne θ°

Pour $\varepsilon = 2029.02$ l'angle d'ouverture de la vanne sera $\theta^{\circ} = 80^{\circ}$ (selon l'annexe (12)).

IV.7.1.6. Tronçon RV Ouled bessa – Bifurcation5

Ce tronçon est alimenté à partir du Réservoir Ouled bessa vers la bifurcation5 par adduction gravitaire.

Données : $Q = 0.019 \text{ m}^3/\text{s}$, L = 1575.37 ml, CR (RV Ouled bessa) = 728.68 m, Cote (Bifurcation5) = 595 m, Hg = 133.68 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.128$ m, $D_{max} = 0.222$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 160, 200 et 250 mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.6).

Tableau (**IV.6**): Calcul des pertes de charge totales du tronçon (RV Ouled bessa - Bifurcation5)

D ext mm	D int (m)	$Q (m^3/s)$	V(m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
160	0.1308	0.019	1.4147	185044.508	1575.37	0.0165	0.01283	22.2345
200	0.1636	0.019	0.9043	147945.120	1575.37	0.0170	0.00433	7.50940
250	0.2046	0.019	0.5782	118298.249	1575.37	0.0179	0.00149	2.58860

Par conséquent, on optera pour un diamètre de 160 mm, à une vitesse acceptable de 1.4147 m/s.

IV.7.1.7. Tronçon Bifurcation5 – RV Khebabza

Ce tronçon est alimenté gravitairement à partir du réservoir Ouled bessa.

Données : $Q = 0.0098 \text{ m}^3/\text{s}$, L = 461.97 ml, CR (RV Ouled bessa) = 728.68 m, CTP (RV Khebabza) = 684 m, Hg = 44.68 m.

Cote piézométrique (Bifurcation 5) = CR (RV Ouled bessa) - H_T (RV Ouled bessa – Bifurcation 5) = 728.68 - 22.2345 = 706.4455 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.0911$ m, $D_{max} = 0.158$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 110, 125 et 160 mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.7).

Tableau (IV.7): Calcul des pertes de charge totales du tronçon (Bifurcation5 – RV Khebabza)

D ext mm	D int (m)	Q(m ³ /s)	V(m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
110	0.0900	0.0098	1.5412	138711.960	461.97	0.0175	0.02356	11.9724
125	0.1022	0.0098	1.1952	122153.390	461.97	0.0178	0.01270	6.45587
160	0.1308	0.0098	0.7297	95444.0094	461.97	0.0186	0.00385	1.95679

Cote piézométrique (RV Khebabza) = Cote piézométrique (Bifurcation5) - H_T (Bifurcation5 – RV Khebabza) = 706.4455 - 6.45587 = 699.98963 m.

On a : Cote piézométrique (RV Khebabza) = 699.98963 m > CTP (RV Khebabza) = 684 m.

Par conséquent, on optera pour un diamètre de 125 mm, à une vitesse acceptable de 1.1952m/s.

Pour garder le même débit véhiculé dans la conduite nous devons mettre en place une vanne papillon qui nous permettra de créer les pertes de charges singulières nécessaire.

Calcul des pertes de charge dans la vanne Jv

$$J_v = 699.98963 - 684 = 15.98963 \text{ m}.$$

Calcul de coefficient d'ouverture de la vanne

$$\varepsilon = J_v \times \frac{2g}{v^2} = 15.98963 \times \frac{2 \times 9.81}{1.1952^2}$$
 $\varepsilon = 219.60$

\Leftrightarrow Calcul de l'angle d'ouverture de la vanne θ°

Pour $\varepsilon = 219.60$, l'angle d'ouverture de la vanne sera θ ° = 61.60° (selon l'annexe (12)).

IV.7.1.8. Tronçon Bifurcation5 – Station de reprise SR5

Ce tronçon est alimenté gravitairement à partir du réservoir Ouled bessa.

Données : Q = 0.0095 m³/s, L= 2448.13 ml, CTP (SR5) = 591, CR (RV Ouled bessa) = 728.68 m, Hg = 137.68m, Cote Piézométrique (Bifurcation 5) = 706.4455 m.

En utilisant les formules (IV.3) et (IV.4), on trouve : $D_{min} = 0.0899$ m, $D_{max} = 0.156$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 90, 110, 125 et 160mm.

Les diamètres de ces conduites sont présentés dans l'annexe (11).

Donnant la viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s}$ à 20C° , les résultats du calcul sont représentés dans le tableau (IV.8).

Tableau (IV.8): Calcul des pertes de charge totales du tronçon (Bifurcation5 – SR5)

D ext mm	D int (m)	$Q (m^3/s)$	V(m/s)	Re	L(m)	λ	J(m/m)	H _T (m)
90	0.0736	0.0095	2.2341	164428.136	2448.13	0.0172	0.05938	159.897
110	0.0900	0.0095	1.4941	134465.676	2448.13	0.0176	0.02226	59.9470
125	0.1022	0.0095	1.1586	118414.000	2448.13	0.0179	0.01201	32.3391
160	0.1308	0.0095	0.7074	92522.254	2448.13	0.0187	0.00364	9.80316

Cote piézométrique (SR5) = Cote piézométrique (Bifurcation5) - H_T (Bifurcation5 - SR5) = 706.4455 - 59.9470 = 646.4985 m.

On a : Cote piézométrique (SR5) = 646.4985 m > CTP (SR5) = 591 m.

Par conséquent, on optera pour un diamètre de 110 mm, à une vitesse acceptable de 1.4941m/s.

Pour garder le même débit véhiculé dans la conduite nous devons mettre en place une vanne papillon qui nous permettra de créer les pertes de charges singulières nécessaire.

❖ Calcul des pertes de charge dans la vanne J_v

$$J_v = 646.4985 - 591 = 55.4985 \text{ m}.$$

Calcul de coefficient d'ouverture de la vanne

$$\varepsilon = J_v \times \frac{2g}{v^2} = 55.4985 \times \frac{2 \times 9.81}{1.4941^2}$$
 $\varepsilon = 487.80$

 \bullet Calcul de l'angle d'ouverture de la vanne θ°

Pour $\varepsilon = 487.80$ l'angle d'ouverture de la vanne sera $\theta^{\circ} = 65.84^{\circ}$ (selon l'annexe (12)).

IV.7.2. Partie adduction par refoulement

IV.7.2.1. Tronçon des forages

Les conduites de refoulement à partir des forages sont reliées entre elles comme le montre la figure (IV.5).

Données:

$$Q(F1) = 0.039 \text{ m}^3/\text{s};$$
 $Q(F2) = 0.035 \text{ m}^3/\text{s};$ $Q(F3) = 0.038 \text{ m}^3/\text{s};$ $P(F3) = 0.038 \text{ m}^3/\text{s};$ $P(F3$

Calcul des pertes de charges

Pour les diamètres des conduites qui sortent des forages on les choisi de telle sorte à avoir une vitesse acceptable. Le PEHD(PN10) comme matériau, ces diamètres sont donnés dans le tableau suivant :

(Viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.9): Calcul des pertes de charge

Tronçon	D ext (mm)	D int (m)	$Q (m^3/s)$	V(m/s)	Re	λ	H _T (m)
Forage 1	250	0.2204	0.039	1.0228	225415.284	0.0160	2.17175
Forage 2	200	0.1762	0.035	1.4361	253041.925	0.0155	1.00582
Forage 3	250	0.2204	0.038	0.9965	219635.405	0.0161	0.16739

IV.7.2.2. Tronçon Bifurcation1 - Bifurcation2

Données : Q = 0,074 m³/s, L= 467.17 ml (Viscosité cinématique de l'eau θ = 1,00 ×10⁻⁶ m²/s à 20C°).

Le PEHD(PN10) comme matériau, on prend un diamètre de 315 mm pour une vitesse acceptable de $1.2233 \text{ m}^3\text{/s}$ avec $H_T = 2.10314 \text{ m}$.

IV.7.2.3. Tronçon Bifurcation2 – Station de reprise SR1

Données : $Q = 0.112 \text{ m}^3/\text{s}$, L = 6730 ml, CR(SR1) = 266.47 m, CTN(Bifurcation 2) = 165.23

CTN (F1) = 166.02 m, CTN(F2) = 167.33 m, CTN (F3) = 165.13 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.335$ m, $D_2 = 0.502$ m. Le PEHD(PN20) comme matériau, les diamètres normalisés sont : 400 et 500 mm. Le prix unitaire de ces conduites est présenté dans l'annexe (11).

Ici on dispose de trois pompes, donc on doit calculer la H_{MT} de chaque pompe.

(Viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

\Leftrightarrow Calcul de la H_{MT} 1 F1 – SR1

Hg=167.24 m

Tableau (IV.10) : Calcul de la H_{MT} 1

O ext	D int (m)	$Q (m^3/s)$	V(m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
400	0.3106	0.112	1.4789	459353.378	0.0142	167.24	37.6791	209.194
500	0.3884	0.112	0.9458	367340.781	0.0145	167.24	12.6073	194.905

Tableau (**IV.11**): Calcul des frais d'exploitation (F1–SR1)

D ext (mm)	D int (m)	P(Kw)	E(Kw)	Fexp (DA/Kwh)
400	0.3106	328.351	2396961.32	11193809.38
500	0.3884	288.998	2109686.54	9852236.145

\Leftrightarrow Calcul de la H_{MT} 2 F2 - SR1

Hg=170.77 m

Tableau (IV.12) : Calcul de la H_{MT} 2

D ext mm	D int (m)	$Q (m^3/s)$	V(m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
400	0.3106	0.112	1.4789	459353.378	0.0142	170.77	37.6791	211.558
500	0.3884	0.112	0.9458	367340.781	0.0145	170.77	12.6073	186.486

Tableau (IV.13) : Calcul des frais d'exploitation (F2– SR1)

D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)
400	0.3106	332.062	2424049.03	11320308.95
500	0.3884	292.709	2136774.24	9978735.719

\Leftrightarrow Calcul de la H_{MT} 3 F3 – SR1

Hg=169.48 m

Tableau (IV.14) : Calcul de la H_{MT} 3

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
400	0.3106	0.112	1.4789	459353.378	0.0142	169.48	37.6791	207.326
500	0.3884	0.112	0.9458	367340.781	0.0145	169.48	12.6073	182.255

Tableau (IV.15) : Calcul des frais d'exploitation (F3–SR1)

D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)
400	0.3106	325.420	2375563.36	11093880.89
500	0.3884	286.067	2088288.58	9752307.652

Tableau (IV.16): Calcul du bilan général

D ext (mm)	D int (m)	V(m/s)	Fexp (DA/Kwh)	Prix (DA/ml)	A	F am (DA)	Bilan (DA)
400	0.3106	1.4789	33607999.22	13936,58	0.088	8263862.661	41871861.88
500	0.3884	0.9458	29583279.52	21737,75	0.088	12889660.2	42472939.72

D'après le tableau (IV.16) on trouve que le diamètre le plus économique est **400 mm** avec une vitesse acceptable de **1.4789m/s**.

IV.7.2.4. Tronçon Station de reprise SR1 – Station de reprise SR2

Données : $Q = 0.112 \text{ m}^3/\text{s}$, L = 2448.25 ml ; CR(SR1) = 266.47 m ; CR(SR2) = 414 m ; Hg = 147.53 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.335$ m, $D_2 = 0.502$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 400 et 500 mm.

Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.17) : Calcul de la H_{MT} (SR1–SR2)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
400	0.3274	0.112	1.3310	435782.405	0.0142	147.53	10.5837	158.114
500	0.4092	0.112	0.8521	348668.522	0.0146	147.53	3.55568	151.086

Tableau (IV.18): Calcul des frais d'exploitation et d'amortissement (SR1–SR2)

D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
400	0.3274	248.175	1811678.94	8460540.645	11116,05	0.088	2397828.232
500	0.4092	237.144	1731151.76	8084478.731	17335,76	0.088	3739473.532

Tableau (IV.19) : Calcul du bilan (SR1–SR2)

D ext (mm)	D int (m)	V(m/s)	Fexp(DA/Kwh)	F am (DA)	Bilan (DA)
400	0.3274	1.3310	8460540.645	2397828.232	10858368.88
500	0.4092	0.8521	8084478.731	3739473.532	11823952.26

D'après le tableau (IV.19) on trouve que le diamètre le plus économique est **400 mm** avec une vitesse acceptable de **1.3310 m/s**.

IV.7.2.5. Tronçon Station de reprise SR2 – Station de reprise SR3

Données : $Q = 0.112 \text{ m}^3/\text{s}$, L = 3706.14 ml ; CR(SR2) = 414 m ; CR(SR3) = 532 m ; Hg = 118 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.335 \text{ m}$, $D_2 = 0.502 \text{ m}$. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 400 et 500 mm

Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.20) : Calcul de la $H_{MT}(SR2 - SR3)$

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
400	0.3274	0.112	1.3310	435782.405	0.0142	118	16.0215	134.0215
500	0.4092	0.112	0.8521	348668.522	0.0146	118	5.38255	123.3826

Tableau (IV.21) : Calcul des frais d'exploitation et d'amortissement (SR2–SR3)

D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
400	0.3274	210.360	1535628.51	7171385.123	11116,05	0.088	3629811.957
500	0.4092	193.661	1413727.15	6602105.800	17335,76	0.088	5660783.186

Tableau (IV.22) : Calcul du bilan (SR2–SR3)

D ext (mm)	D int (m)	V(m/s)	Fexp (DA/Kwh)	F am (DA)	Bilan (DA)
400	0.3274	1.3310	7171385.123	3629811.957	10801197.08
500	0.4092	0.8521	6602105.800	5660783.186	12262888.99

D'après le tableau (IV.22) on trouve que le diamètre le plus économique est **400 mm** avec une vitesse acceptable de **1.3310 m/s**.

IV.7.2.6. Tronçon Station de reprise SR3 – RV Tacheta Zougagha

Données : $Q = 0.112 \text{ m}^3/\text{s}$, L = 860.18 ml ; CTP (RV Tacheta Zougagha) = 644 m ; CR(SR3) = 532 m ; Hg = 112 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.335$ m, $D_2 = 0.502$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 400 et 500 mm

Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\theta = 1.00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.23) : Calcul de la H_{MT} (SR3- RV Tacheta Zougagha)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
400	0.3274	0.112	1.3310	435782.405	0.0142	112	3.71851	115.7185
500	0.4092	0.112	0.8521	348668.522	0.0146	112	1.24927	113.2493

Tableau (IV.24) : Calcul des frais d'exploitation et d'amortissement (SR3–RV Tacheta Zougagha)

D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
400	0.3274	181.632	1325911.99	6192008.971	11116,05	0.088	842464.5722
500	0.4092	177.756	1297619.18	6059881.558	17335,76	0.088	1313844.723

Tableau (IV.25) : Calcul du bilan (SR3–RV Tacheta Zougagha)

D ext (mm)	D int (m)	V (m/s)	Fexp (DA/Kwh)	F am (DA)	Bilan (DA)
400	0.3274	1.3310	6192008.971	842464.5722	7034473.543
500	0.4092	0.8521	6059881.558	1313844.723	7373726.281

D'après le tableau (IV.25) on trouve que le diamètre le plus économique est **400 mm** avec une vitesse acceptable de **1.3310 m/s**.

IV.7.2.7. Tronçon Station de pompage – Station de reprise4

Données : $Q = 0.06614 \text{ m}^3/\text{s}$, L = 1550 m; CR (Station de reprise SR4) = 596m; CR (Station de pompage) = 469.46 m; Hg = 126.54 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.257$ m, $D_2 = 0.386$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 315 et 400 mm.

Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\theta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.26) : Calcul de la H_{MT} (SP-SR4)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
315	0.2578	0.066	1.2651	326130.462	0.0150	126.54	8.11304	134.6530
400	0.3274	0.066	0.7844	256800.346	0.0155	126.54	2.52396	129.0640

Tableau (IV.27) : Calcul des frais d'exploitation et d'amortissement (SP–SR4)

D ext		P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
315	0.2578	124.546	909188.469	4245910.149	6881,37	0.088	939763.1739
400	0.3274	119.377	871450.582	4069674.218	11116,05	0.088	1518077.713

Tableau (IV.28): Calcul du bilan (SP-SR4)

D ext (mm)	D int (m)	V (m/s)	Fexp (DA/Kwh)	F am (DA)	Bilan (DA)
315	0.2578	1.2651	4245910.149	939763.1739	5185673.323
400	0.3274	0.7844	4069674.218	1518077.713	5587751.931

D'après le tableau (IV.28) on trouve que le diamètre le plus économique est **315 mm** avec une vitesse acceptable de **1.2651 m/s**.

IV.7.2.8. Tronçon Station de reprise4 – RV Ouled bouali

Données : $Q = 0.014 \text{ m}^3/\text{s}$, L = 108.49 m; CR (Station de reprise SR4) = 596m; CTP (RV Ouled bouali) = 624 m; Hg = 28 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.117$ m, $D_2 = 0.176$ m. Le PEHD(PN10) comme matériau, les diamètres normalisés sont : 125, 160 et 200 mm. Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.29) : Calcul de la H_{MT} (SR4- RV Ouled bouali)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
125	0.1102	0,014	1.4686	161836.614	0.0169	28	2.01562	30.01562
160	0.1410	0,014	0.8971	126485.07	0.0176	28	0.60983	28.60983
200	0.1762	0,014	0.5744	101216.77	0.0182	28	0.20787	28.20787

Tableau (IV.30): Calcul des frais d'exploitation et d'amortissement (SR4-RV Ouled bouali)

D ex (mm		D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
125	5	0.1102	5.88906	42990.1678	200764.0837	1209,38	0.088	11560.17227
160)	0.1410	5.61325	40976.7116	191361.2431	1892,38	0.088	18088.80484
200)	0.1762	5.53438	40401.0001	188672.6703	2937,81	0.088	28081.81853

Tableau (IV.31): Calcul du bilan (SR4- RV Ouled bouali)

D ext (mm)	D int (m)	V (m/s)	Fexp (DA/Kwh)	F am (DA)	Bilan (DA)
125	0.1102	1.4686	200764.0837	11560.17227	212324.256
160	0.1410	0.8971	191361.2431	18088.80484	209450.048
200	0.1762	0.5744	188672.6703	28081.81853	216754.4888

D'après le tableau (IV.31) on trouve que le diamètre le plus économique est **160 mm** avec une vitesse acceptable de **0.8971 m/s**.

IV.7.2.9. Tronçon Station de reprise4 – RV Ouled bessa

Données : $Q = 0.052 \text{ m}^3/\text{s}$, L = 1765.93 m; CR (Station de reprise SR4) = 596m; CTP (RV Ouled bessa) = 733.68 m; Hg = 137.68 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.229$ m, $D_2 = 0.343$ m. Le PEHD(PN16) comme matériau, les diamètres normalisés sont : 250, 315 et 400 mm.

Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \text{ à } 20\text{C}^\circ$).

Tableau (IV.32) : Calcul de la H_{MT} (SR4- RV Ouled bessa)

D ext mm	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
250	0.2046	0.052	1.5824	323763.628	0.0152	137.68	18.4725	156.1525
315	0.2578	0.052	0.9967	256951.273	0.0156	137.68	5.95080	143.6308
400	0.3274	0.052	0.6180	202327.545	0.0161	137.68	1.85810	139.5381

Tableau (IV.33): Calcul des frais d'exploitation et d'amortissement (SR4-RV Ouled bessa)

	D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
	250	0.2046	113.7950	830703.5543	3879385.599	4340,56	0.088	675353.357
ſ	315	0.2578	104.6699	764090.4226	3568302.273	6881,37	0.088	1070681.28
	400	0.3274	101.6874	742317.9544	3466624.847	11116,05	0.088	1729560.63

Tableau (IV.34): Calcul du bilan (SR4- RV Ouled bessa)

D	ext (mm)	D int (m)	V (m/s)	Fexp (DA/Kwh)	F am (DA)	Bilan (DA)
	250	0.2046	1.5824	3879385.599	675353.357	4554738.956
	315	0.2578	0.9967	3568302.273	1070681.28	4638983.552
	400	0.3274	0.6180	3466624.847	1729560.63	5196185.476

D'après le tableau (IV.34) on trouve que le diamètre le plus économique (en négligeant le diamètre 250 mm, a une vitesse est égale à 1.5824 m/s supérieure à 1.5 m/s) est **315 mm**, a une vitesse acceptable de **0.9967 m/s**.

IV.7.2.10. Tronçon Station de reprise5 – RV Ouled arbi

Données : $Q = 0.011 \text{ m}^3/\text{s}$, L = 916.69 m; CR (Station de reprise SR5) = 587m; CTP (RV Ouled arbi) = 618 m; Hg = 31 m.

En utilisant les formules (IV.1) et (IV.2), on trouve : $D_1 = 0.107$ m, $D_2 = 0.160$ m. Le PEHD(PN10) comme matériau, les diamètres normalisés sont : 110, 125 et 160 mm.

Le prix unitaire de ces conduites est présenté dans l'annexe (11).

(Viscosité cinématique de l'eau $\vartheta = 1,00 \times 10^{-6} \text{ m}^2/\text{s} \ \text{à} \ 20\text{C}^\circ$).

Tableau (IV.35) : Calcul de la H_{MT} (SR5- RV Ouled arbi)

D ext	D int (m)	$Q (m^3/s)$	V (m/s)	Re	λ	Hg (m)	H _T (m)	H _{MT} (m)
110	0.0968	0.011	1.4955	144759.699	0.0173	31	20.5897	51.5897
125	0.1102	0.011	1.1539	127157.34	0.0177	31	10.9686	41.9686
160	0.1410	0.011	0.7048	99381.1266	0.0184	31	3.32946	34.3295

Tableau (**IV.36**): Calcul des frais d'exploitation et d'amortissement (SR5-RV Ouled arbi)

D ext (mm)	D int (m)	P (Kw)	E (Kw)	Fexp (DA/Kwh)	Prix (DA/ml)	A	Frais am (DA)
110	0.0968	7.95292	58056.3226	271123.0265	738,42	0.088	59640.0171
125	0.1102	6.46976	47229.2820	220560.7468	1209,38	0.088	97678.0746
160	0.1410	5.29213	38632.5606	180414.0581	1892,38	0.088	152841.9809

Tableau (IV.37): Calcul du bilan (SR5-RV Ouled arbi)

D ext (mm)	D int (m)	V (m/s)	Fexp (DA/Kwh)	F am (DA)	Bilan (DA)		
110	0.0968	1.4955	271123.0265	59640.0171	330763.0436		
125	0.1102	1.1539	220560.7468	97678.0746	318238.8215		
160	0.1410	0.7048	180414.0581	152841.9809	333256.039		

D'après le tableau (IV.37) on trouve que le diamètre le plus économique est **125 mm** avec une vitesse acceptable de **1.1539 m/s**.

IV.8. Récapitulatif des résultats

Le récapitulatif des résultats est illustré sur le tableau (IV.38) suivant.

Tableau (IV.38): Récapitulatif des résultats obtenus

Partie Gravitaire									
Tronçon	L(m)	D(mm)	Q(m3/s)	V(m/s)	Matériau				
RV Tacheta Zougagha-Bifurcation3	3698.7	315	0.064	1.0580	PEHD(PN10)				
Bifurcation3- RV Ouled ali	12.64	75	0.0034	1.0641	PEHD(PN10)				
Bifurcation3 -Bifurcation4	1067.13	315	0.061	1.1692	PEHD(PN16)				
Bifurcation4-RV Ghemamza	569.58	90	0.0059	1.3875	PEHD(PN16)				
Bifurcation4-St de pompage	1065.3	315	0.055	1.1711	PEHD(PN20)				
RV Ouled bessa-Bifurcation5	1575.37	160	0.019	1.4147	PEHD(PN16)				
Bifurcation5-RV Khebabza	461.97	125	0.0098	1.1952	PEHD(PN16)				
Bifurcation5-St de reprise SR5	2448.13	110	0.0095	1.4941	PEHD(PN16)				
Partie refoulement									
Tronçon	L(m)	D(mm)	Q(m3/s)	V(m/s)	Matériau				
Forage F1-Bifurcation1	509.22	250	0,039	1.0228	PEHD(PN10)				
Forage F2-Bifurcation1	99.16	200	0,035	1.4361	PEHD(PN10)				
Forage F3-Bifurcation2	41.17	250	0,038	0.9965	PEHD(PN10)				
Bifurcation1- Bifurcation2	467.17	315	0,074	1.2233	PEHD(PN10)				
Bifurcation2-St de reprise SR1	6730	400	0,112	1.4789	PEHD(PN20)				
St de reprise SR1-Stdereprise SR2	2448.25	400	0,112	1.3310	PEHD(PN16)				
St de reprise SR2-St de reprise SR3	3706.14	400	0,112	1.3310	PEHD(PN16)				
St de reprise SR3-RV Tacheta Zougagha	860.18	400	0,112	1.3310	PEHD(PN16)				
St de pompage-St de reprise SR4	1550	315	0,066	1.2651	PEHD(PN16)				
St de reprise SR4-RV Ouled bouali	108.49	160	0,014	0.8971	PEHD(PN10)				
St de reprise SR4-RV Ouled bessa	1765.93	315	0,052	0.9967	PEHD(PN16)				
St de reprise SR-RV Ouled arbi	916.69	125	0,011	1.1539	PEHD(PN10)				

IV.9. Conclusion

Au cours de ce chapitre, on a déterminé les diamètres économiques après avoir calculer les différents paramètres à savoir, la vitesse d'écoulement, les pertes de charge, l'énergie consommée, les frais d'exploitation et les frais d'amortissement, et en optant également pour le matériau le plus seyant qui est le PEHD.

Par conséquent, après cette étude technico-économique, on va choisir les pompes adéquates qui répondent aux conditions d'exploitations désirés, c'est ce qu'on va analyser dans le chapitre suivant.

Chapitre V Pompes et stations de pompage

V.1. Introduction

Ce présent chapitre, sera consacré pour le choix de type des pompes idéales adaptées à l'usage dans le présent projet et qui permettra d'assurer le débit appelé et la hauteur manométrique totale au niveau des six stations de pompage qu'on a le long de l'adduction.

V.2. Définition

La pompe est un appareil qui aspire un fluide d'une région à basse pression pour le refouler à une région à plus grande pression. Par conséquent on peut dire que le rôle de la pompe, est de transformer l'énergie mécanique en énergie hydraulique.

Les pompes les plus utilisées sont les pompes centrifuges, vu qu'elles permettent le refoulement des débits importants à des hauteurs considérables, et qu'elles constituent des groupes légers peu couteux et présentent un bon rendement.

V.3. Eléments constitutifs d'une station de pompage

Chaque station de pompage est généralement constituée des éléments suivants :

- ➤ Une bâche de reprise, devisée en deux compartiments afin de pouvoir mettre un des deux hors service lors des travaux de maintenance (principalement le nettoyage) ou d'éventuelles réparations. Dans le but de pouvoir mettre hors service l'un des compartiments, il est prévu d'installer des vannes de sectionnement dans la chambre des vannes. Le débit d'alimentation des pompes doit être assuré par un seul compartiment ;
- > Une chambre des pompes et moteurs dont le radier est situé en contrebas de la bâche de reprise ;
- ➤ Une clôture permettant de délimiter le périmètre des installations.

V.4. Choix des pompes

Le choix du type des pompes à installer se fait de façon à [4] :

- Assurer le débit de refoulement et la hauteur manométrique totale ;
- > Assurer un rendement maximum;
- ➤ Une vitesse de rotation importante ;
- Vérifier la condition de non cavitation ;
- > Tenant compte le cout et le type de la pompe.

Pour les différentes stations de reprise et pompage existantes dans la zone d'étude, notre choix se portera sur les pompes centrifuges à axe horizontal multicellulaires vue qu'elles s'utilisent pour les hautes pressions atteignant plusieurs centaines de mètre.

Au niveau des forages, on choisira les groupes électropompes immergés pour les avantages suivants :

- Amorçage automatique ;
- Fiabilité avec un rendement élevé ;
- Entretien nul.

V.5. Caractéristiques hydrauliques des pompes centrifuges

V.5.1. La vitesse de rotation (N)

C'est le nombre de tours qu'effectue la pompe par unité de temps, noté N ; l'unité de mesure utilisée est le tour par minute (tr/mn).

V.5.2. Le débit de pompage (Q)

C'est le volume qu'une pompe peut ou doit fournir par unité de temps.

V.5.3. La hauteur manométrique totale (H_{MT})

Elle est obtenue en sommant la hauteur géométrique et les pertes de charge à l'aspiration ainsi qu'au refoulement. Cette hauteur est donnée comme suit :

$$H_{MT} = Hg + J_{asp} + J_{ref}$$
 (V.1)

Avec:

J_{asp} : Pertes de charge à l'aspiration en (m) ; Jref : Pertes de charge au refoulement en (m).

V.5.4. Les puissances utiles et absorbées

V.5.4.1. Puissance absorbée par la pompe

Elle est exprimée par la puissance mécanique absorbée au niveau de l'arbre de la pompe notée par (Pa), unité de mesure (KW).

V.5.4.2. Puissance hydraulique ou utile (Pu)

C'est la puissance transmise au fluide de la part de la pompe.

$$Pu = g \times Q \times H \qquad (V.2)$$

- \mathbf{Q} : débit a relevé en (m³/s);
- H: hauteur d'élévation en (m).

V.5.5. Le rendement de la pompe

C'est le rapport de la puissance utile (Pu) à la puissance absorbée de la pompe (Pa).

$$\eta = \frac{Pu}{Pa}$$
 (V.3)

Avec:

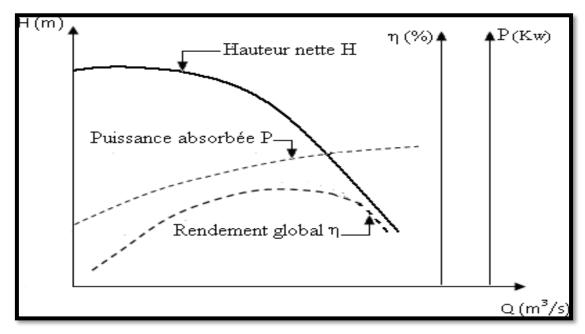
- η : Le rendement de la pompe.

V.6. Les courbes caractéristiques [4]

V.6.1. Courbes caractéristiques des pompes centrifuges

Pour une vitesse de rotation donnée, les courbes qui caractérisent les pompes centrifuges et qui expriment leurs performances, sont les suivantes :

- La courbe débit-hauteur [H= f(Q)] : elle présente les variations des différentes hauteurs en fonction du débit.
- ➤ La courbe puissance-débit [P= f(Q)] : elle présente les variations des puissances en fonction du débit.
- \triangleright La courbe rendement-débit [η= f(Q)] : elle exprime les variations des rendements en fonction du débit.


V.6.2. Courbes caractéristiques de la conduite

Le réseau hydraulique sur lequel une pompe débite est lui aussi caractérisé par une hauteur débit. La caractéristique de la conduite est déterminée par la formule suivante :

$$R = \frac{8 \times \lambda \times L}{g \times \pi^2 \times D^5}$$
(V.4)

Avec:

 H_g : hauteur géométrique en (m) ; RQ^2 : valeur de la perte de charge au point considéré en (m) ; Q: débit (m³/j) ; Hc: charge totale en fonction du débit en (m) ; R: coefficient qui caractérise la résistance de la conduite (m) ; D: diamètre de la conduite en (m) ; L: longueur de la conduite en (m) ; g: accélération de la pesanteur (g= 9.81 m/s) ; λ : coefficient de frottement, qui dépend de la rugosité relative et du nombre de Reynolds.

Figure (V.1): Courbes caractéristiques d'une pompe centrifuge

V.7. Couplage des pompes [14]

Dans bien des cas, les besoins(H-Q) ne peuvent être satisfaits que par une seule pompe, ou, pour des raisons de souplesse, on préfère utiliser plusieurs pompes. Dans ces cas, on sera amené à utiliser un couplage de pompes.

V.7.1. Couplage en parallèle [14]

Ce montage se rencontre lorsque l'on désire, pour une même hauteur de refoulement, augmenter le débit. La caractéristique de l'ensemble des deux pompes s'obtient en ajoutant pour une même hauteur les débits de chaque pompe. Il est souvent bien avantageux d'utiliser deux pompes identiques ce qui évite les risques de décrochage et améliore le rendement de l'ensemble. Il faudra de toute façon utiliser des pompes ayant une caractéristique constamment plongeante afin d'éviter le risque de faire barboter une des pompes.

V.7.2. Couplage en série [14]

Ce montage s'emploie lorsque l'on veut augmenter la hauteur de refoulement. Ce cas se rencontre par exemple sur des forages ou une pompe immergée relève l'eau jusqu'à la surface, ou elle est reprise par une pompe de surface. Dans ce cas, la caractéristique de l'ensemble des deux pompes s'obtient en ajoutant pour un débit donné les hauteurs de refoulement des deux pompes.

V.8. Point de fonctionnement

V.8.1. Recherche du point de fonctionnement

Le point de fonctionnement du système pompe-conduite, est déterminé par comparaison des deux courbes caractéristiques précédent, la courbe caractéristique de la pompe et de la conduite. Le point d'intersection entre ces deux courbes représente le point de fonctionnement d'une pompe.

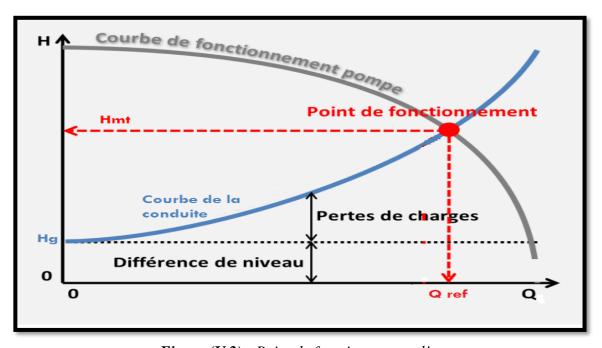


Figure (V.2): Point de fonctionnement d'une pompe

V.8.2. Réalisations du point de fonctionnement désiré

Dans le cas où le point de fonctionnement désiré coïncide avec celui de la pompe, la pompe fonctionne dans les conditions optimales d'utilisation (rendement maximal de la pompe), sinon on sera dans l'obligation de porter les modifications sur les caractéristiques de la pompe ou de la conduite de refoulement.

Les différentes techniques pour la recherche du point de fonctionnement désiré sont [8] :

V.8.2.1. 1^{ére} Variante: Réduction ou augmentation du temps de pompage

On garde le point de fonctionnement obtenu, et on cherche un temps de pompage de telle façon que le volume d'eau entrant dans les réservoirs soit le même.

Pour cela on utilise la formule qui suit :

$$\mathbf{T}' = \frac{\mathbf{T}\mathbf{1} \times \mathbf{Q}\mathbf{1}}{\mathbf{Q}} \tag{V.6}$$

Avec:

- T1: le temps de pompage, pour notre cas égale 20h.

Donc le nouveau temps de pompage sera :

$$T' = \frac{20 \times Q1}{Q} \tag{V.8}$$

La puissance absorbée par la pompe sera :

$$P_{a1} = \frac{g \times H \times Q}{\eta}$$
 (V.9)

Avec:

- **n** : Rendement correspondant au point P1 (Q1, H1) en %.

V.8.2.2. 2^{éme} Variante: Régulation par étouffement (le vannage)

Elle consiste à placer une vanne sur la conduite de refoulement pour créer une perte de charge afin d'obtenir le débit Q2. La puissance absorbée sera :

$$P_{a2} = \frac{\mathbf{g} \times \mathbf{H}_2 \times \mathbf{Q}_2}{\eta}$$
 (V. 10)

Avec: $H_2 = H_1 + h$ (V.11)

Où:

h: perte de charge engendrée par le vannage en (m); **H**₂: C'est la distance qui sépare le point de l'intersection de la verticale passant par le point désiré avec la courbe caractéristique de la pompe; **η**: rendement correspondant au point P (Q, H) en %.

Les inconvénients de la méthode sont :

- ➤ Augmentation de l'énergie consommée par la pompe ;
- > Risque de détérioration rapide de la pompe ;
- > Diminution du rendement de la pompe.

V.8.2.3. 3^{éme} Variante: variation de la vitesse

Cette solution est adoptée dans le cas où on aurait la possibilité de faire varier la vitesse de rotation. Cela consiste à chercher la vitesse souhaitée, pour que la caractéristique de la pompe H= f(Q) passe par le point désiré ; à cet effet, nous traçons la parabole H= aQ2 qui passe par l'origine du graphe. La valeur du facteur à est donnée par la formule suivante :

$$\mathbf{a} = \mathbf{H1/Q1} \tag{V. 12}$$

La parabole tracée passe par le point désiré P1 (H₁, Q1) et coupe la caractéristique de la pompe au point homologue V (Q_v, H_v) de P1(figure (V.3)), nous aurons alors d'après les lois de similitude :

$$\frac{N}{N'} = \frac{Q_V}{Q_1} \tag{V.13}$$

D'où, la nouvelle vitesse de rotation (N') est :

$$N' = N \times \frac{Q_1}{Q_V} \qquad (V.14)$$

$$H = Q^2$$

$$H = Q^2$$

$$Courbe caractéristique de la pompe de la conduite$$

Figure (V.3): Point de fonctionnement par modification de la vitesse de rotation

Qv

O1

La puissance absorbée par la pompe est :

$$P_{a3} = \frac{\mathbf{g} \times \mathbf{H}_{v} \times \mathbf{Q}_{v}}{\mathbf{\eta}}$$
 (V. 15)

V.9. Etude de la cavitation [4]

La cavitation est un phénomène physique très complexe qui se produit lorsque la pression absolue à l'entrée de la pompe est inférieure à la tension de vapeur du liquide. La formation des poches d'air dans la zone de faibles pressions à l'entrée de la roue d'une pompe, provoque d'importantes perturbations, bruits dans l'écoulement et des vibrations, ce qui entraîne la modification des caractéristiques hydraulique (rendement, hauteur d'élévation,....) et provoque l'érosion des matériaux au niveau de la pompe. Pour qu'une pompe fonctionne normalement sans cavitation, il faut vérifier la condition suivante :

$$(NPSH)_{d} > (NPSH)_{r}$$
 (V.16)

Avec:

- NPSH d: Charge nette d'aspiration disponible (donnée par l'utilisateur);
- PSH r: Charge nette d'aspiration requise (donnée par le constructeur).

NPSH d est donnée par la formule suivante :

$$NPSH_d = \frac{P_0}{W} - (Ha + J_a + h_v)$$
 {Aspiration en dépression} (V.17)

$$NPSH_d = \frac{P_0}{W} + (Ha - J_a - h_v)$$
 {Aspiration en charge} (V.18)

Avec:

Ha: Hauteur d'aspiration en (m) ; **Ja**: Perte de charge à l'aspiration en (m) ; **Po/W**: Pression en mètre de colonne d'eau au point d'aspiration en (m.c.e) ; \mathbf{h}_v : La pression de vapeur maximale que l'air peut supporter à une température donnée (dans notre étude on prend T=20 °C).

Les différentes tensions de vapeur sont données ans le tableau ci-après :

Tableau (V.1): Tension de vapeur de l'eau pompée en fonction de la température.

T(°C)	0	4	10	20	30	40	50	60	70	80	90	100
hv	0.06	0.083	0.125	0.24	0.432	0.752	1.25	2.03	3.17	4.82	7.14	10.33

V.10. Choix du type des pompes pour différentes stations

V.10.1. Station des forages

V.10.1.1. Tronçon Forage F1 - SR1

Caractéristiques du tronçon

Q = 39 l/s; Hg = 167.24m; $H_{MT} = 209.194\text{m}$.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour un groupe électropompe immergé de type : (E9S55/13I + MAC10150-8V) dont les caractéristiques sont les suivantes :

$$H = 211 \text{ m};$$
 (NPSH)_r = 7.47m; η = 76.2% $Q = 39.5 \text{ l/s};$ $N = 2920 \text{ tr/min};$ $Pa = 107 \text{ Kw}$

Les différentes courbes sont représentées dans la figure (V.4) suivante : (les détails sont donnés dans l'annexe (13)).

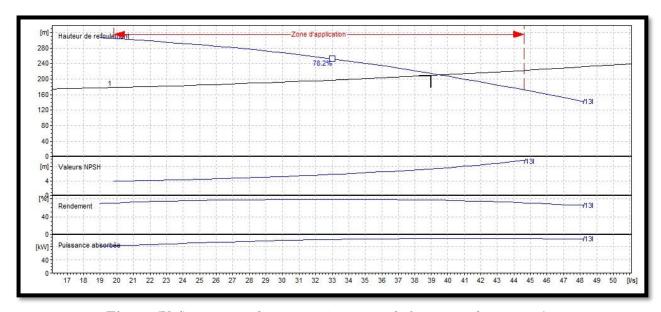


Figure (V.4): Les courbes caractéristiques de la pompe du Forage1.

V.10.1.2. Tronçon Forage F2 - SR1

Caractéristiques du tronçon

$$Q = 35 \text{ l/s}$$
; $Hg = 170.77 \text{ m}$; $H_{MT} = 211.558 \text{ m}$.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour un groupe électropompe immergé de type : (E10R40/12 + MAC10150-8V) dont les caractéristiques sont les suivantes :

$$H = 212 \text{ m};$$
 (NPSH)_r = 8.72m; $\eta = 68\%$ Q=34.9 l/s N=2920 tr/min Pa = 106 Kw

Les différentes courbes sont représentées dans la figure (V.5) suivante : (les détails sont donnés dans l'annexe (14)).

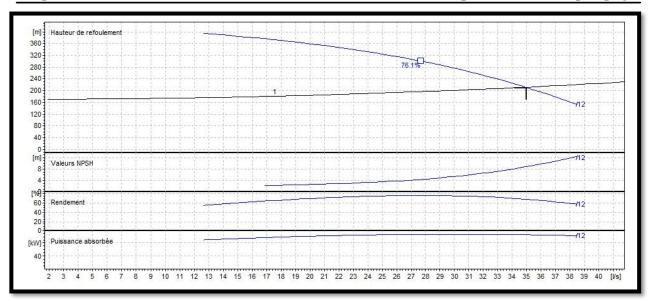


Figure (V.5): Les courbes caractéristiques de la pompe du Forage2.

V.10.1.3. Tronçon Forage F3 - SR1

* Caractéristiques du tronçon

$$Q = 38 \text{ l/s}$$
; $Hg = 169.48 \text{ m}$; $H_{MT} = 207.326 \text{m}$.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour un groupe électropompe immergé de type : (E8S64/14A + MAC10150-8V) dont les caractéristiques sont les suivantes :

$$H = 208 \text{ m};$$
 (NPSH)_r = 5.12m; $\eta = 75.8\%$
Q= 38.1 l/s N=2920 tr/min Pa = 102 Kw

Les différentes courbes sont représentées dans la figure (V.6) suivante : (les détails sont donnés dans l'annexe (15)).

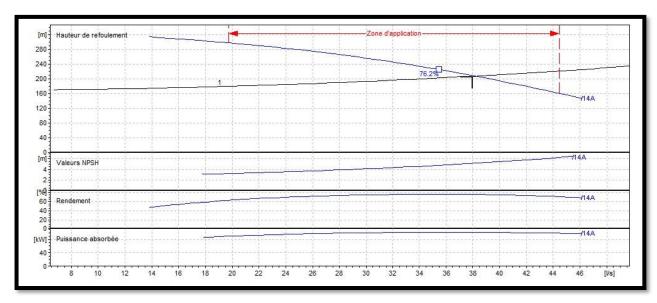


Figure (V.6): Les courbes caractéristiques de la pompe du Forage3

V.10.1.4. Couplage des pompes des forages avec le réseau [15]

Au niveau de la station des forages, on dispose de trois pompes en parallèle qui sont reliées entre elles par des conduites de longueurs différentes (voir figure (IV.5) du chapitre d'adduction). Pour trouver le point de fonctionnement de l'ensemble des pompes, il faut procéder à : (voir figure (V.7)) :

- Tracer la courbe caractéristique de chaque pompe sur le même graphe, qui est (H_{P1}, H_{P2}) et H_{P3} .

La construction s'effectue en considérant les dégradations successives de l'énergie de l'eau au fur et à mesure qu'elle chemine vers la station de reprise SR1en appliquant les règles données concernant les conduites en série et en parallèle.

D'après ces principes, le tracé s'effectue comme suit :

- On retranche de la caractéristique H_{P1} les ordonnées des pertes de charges J_{F1}, on trace la courbe H_{P1C}.
- Il est fait de même pour les autres tronçons, mais dans notre cas, on néglige les petites quantités de pertes de charge dans les tronçons.
- A la bifurcation1, les pompes (P1et P2) débitent en parallèle dans la conduite bifurcation1 bifurcation2, donc les débits s'ajoutent pour une même hauteur, et on trace la courbe caractéristique des deux pompes H (P1+P2).
- A la bifurcation2, les pompes (P1et P2) et P3 débitent en parallèle dans la conduite dans la conduite bifurcation2 SR1, donc les débits s'ajoutent pour une même hauteur, et on trace la courbe caractéristique des trois pompes H (P1+P2+P3).
- On trace aussi la caractéristique du réseau Hc.

L'horizontale qui passe par le point d'intersection de Hc avec la caractéristique de l'ensemble des pompes coupe les différentes courbes caractérisant les pompes aux différents points (P1, P2 et P3). D'après la figure (V.7), on trouve les coordonnées de ces trois points :

- Le point de fonctionnement de la pompe du forage F1 : P1(39.23 l/s; 212.86m);
- Le point de fonctionnement de la pompe du forage F2 : P2(34.92 l/s ; 211.66m) ;
- Le point de fonctionnement de la pompe du forage F3 : P3(37.99 l/s ; 208.72m).

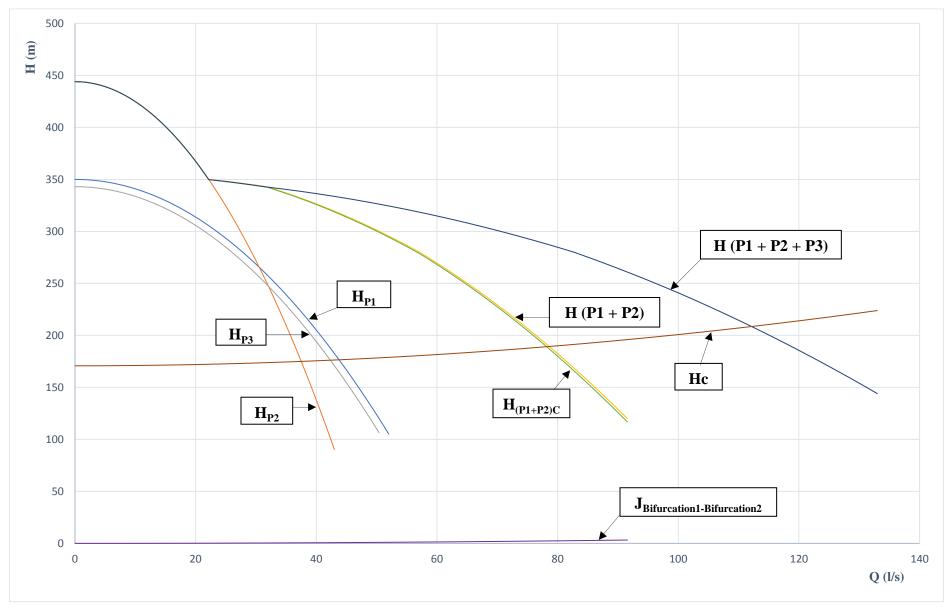


Figure (V.7): Couplage des pompes des forages (F1, F2, F3) avec le réseau

* Réduction du temps de pompage de la pompe du forage F1

On remarque que le point de fonctionnement (39.23 ; 212.86) ne coïncide pas avec le point désiré (39 ; 209.194), par conséquent, cette pompe nécessite certaines modifications.

Afin d'adopter la pompe aux conditions de travail désirées, il y a lieu de varier le temps de pompage qui sera :

$$T' = T_1 \times \frac{Q_1}{Q} = 20 \times \frac{0.039}{0.03923} = 19.88 \text{ h.}$$

Donc la pompe fonctionnera 19h, 52 min et 48s.

La puissance absorbée sera :
$$Pa = \frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 212.86 \times 0.03923}{0.762} = 107.5044 \text{ KW}.$$

Les frais d'exploitation seront : $\mathbf{F_{exp}} = \mathbf{Pa} \times \mathbf{T'} \times \mathbf{P_r} \times \mathbf{365} = 107.5044 \times 19.88 \times 4.67 \times 365$

Avec: **P**_r: Prix d'un KWh (4,67 DA; fixé par la SONELGAZ).

$$F_{\text{exp}} = 3642944.267 \text{ DA}$$

❖ Augmentation du temps de pompage de la pompe du forage F2

On remarque que le point de fonctionnement (34.92 ; 211.66) ne coïncide pas avec le point désiré (35 ; 211.558), par conséquent, cette pompe nécessite certaines modifications.

Afin d'adopter la pompe aux conditions de travail désirées, il y a lieu de varier le temps de pompage qui sera :

$$T' = T_1 \times \frac{Q_1}{Q} = 20 \times \frac{0.035}{0.03492} = 20.05 \text{ h.}$$

Donc la pompe fonctionnera 20h et 3 min.

La puissance absorbée sera :
$$Pa = \frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 211.66 \times 0.03492}{0.68} = 106.6284 \text{ KW}.$$

Les frais d'exploitation seront : $\mathbf{F_{exp}} = \mathbf{Pa} \times \mathbf{T'} \times \mathbf{P_r} \times \mathbf{365} = 106.6284 \times 20.05 \times 4.67 \times 365$

Avec : P_r : Prix d'un KWh (4,67 DA ; fixé par la SONELGAZ).

$$F_{\text{exp}} = 3644158.378 \text{ DA}$$

Augmentation du temps de pompage de la pompe du forage F3

On remarque que le point de fonctionnement (37.99 ; 208.72) ne coïncide pas avec le point désiré (38 ; 207.326), par conséquent, cette pompe nécessite certaines modifications.

Afin d'adopter la pompe aux conditions de travail désirées, il y a lieu de varier le temps de pompage qui sera :

$$T' = T_1 \times \frac{Q_1}{Q} = 20 \times \frac{0.038}{0.03799} = 20 \text{ h.}$$

Donc la pompe fonctionnera 20h.

La puissance absorbée sera : $Pa = \frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 208.72 \times 0.03799}{0.758} = 102.6203 \text{ KW}.$

Les frais d'exploitation seront : $\mathbf{F}_{\text{exp}} = \mathbf{Pa} \times \mathbf{T'} \times \mathbf{P_r} \times \mathbf{365} = 102.6203 \times 20 \times 4.67 \times 365$

Avec : P_r : Prix d'un <u>KWh</u> (4,67 DA ; fixé par la SONELGAZ).

 $F_{\text{exp}} = 3498427.692 \text{ DA}$

***** Etude de cavitation pour les 3 forages

Par mesure de sécurité, les pompes immergées seront placées à 1m au-dessous du niveau dynamique des forages, donc ces pompes travaillent en charge et par conséquent il n'y a pas de cavitation.

V.10.2. Tronçon SR1 – SR2

Caractéristiques du tronçon

Q = 112 l/s; Hg=147.53m; HMT = 158.114m.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire pour haut pression à axe horizontal de type : (PM 150/8 A), dont les caractéristiques sont les suivantes :

H = 158 m; (NPSH)_r = 8.04m; $\eta = 67.7\%$ Q = 112 1/s; N=1490 tr/min; Pa = 256 Kw

On remarque que le point de fonctionnement (112 ; 158) coïncide avec le point désiré (112 ; 158.114), par conséquent, cette pompe nécessite aucune modification.

Les différentes courbes sont représentées dans la figure (V.8) suivante : (les détails sont donnés dans l'annexe (16)).

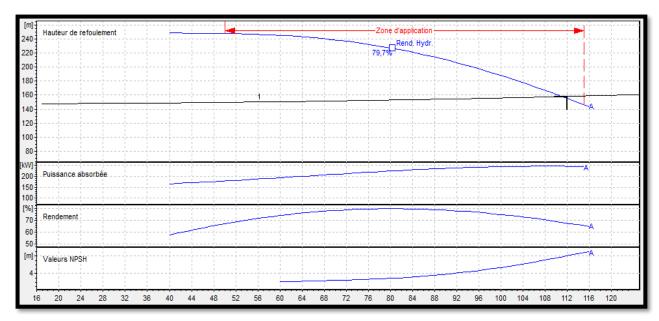


Figure (V.8) : Les courbes caractéristiques de la pompe de SR1

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 266.47 m;
- La cote de l'axe de la pompe 266.47 m;
- Hauteur d'aspiration ; Ha= (266.47-266.47) = 0 m ;
- Perte de charge d'aspiration : Jasp = 0 (négligeable) ;
- (NPSH) r = 8.04 m.

La hauteur d'aspiration égale à zéro, donc la pompe est montée en charge.

➤ Calcul de la pression à la cote d'aspiration

D'où $(NPSH)_d = 9.77 \text{ m} > (NPSH)_r = 8.04 \text{ m}$. Donc la pompe ne cavite pas.

V.10.3. Tronçon SR2 – SR3

Caractéristiques du tronçon

Q = 112 l/s; Hg=118m; H_{MT} = 134.0215m.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire pour haut pression à axe horizontal de type : (PM 150/7 A), dont les caractéristiques sont les suivantes :

$$H = 134 \text{ m};$$
 (NPSH)_r = 8.04m; $\eta = 67.7\%$
Q = 112 l/s; N=1490 tr/min; Pa = 217 Kw

On remarque que le point de fonctionnement (112 ; 134) coïncide avec le point désiré (112 ; 134.0215), par conséquent, cette pompe nécessite aucune modification.

Les différentes courbes sont représentées dans la figure (V.9) suivante : (les détails sont donnés dans l'annexe (17)).

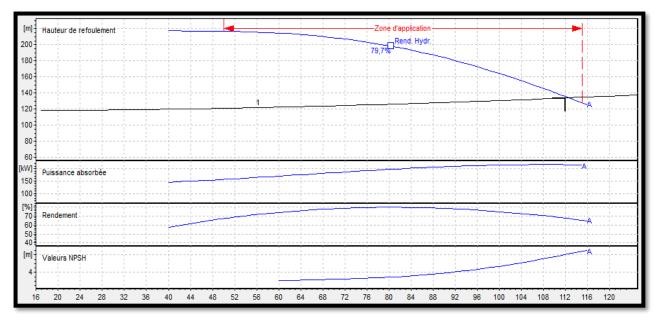


Figure (V.9) : Les courbes caractéristiques de la pompe de SR2

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 414 m;
- La cote de l'axe de la pompe 414 m;
- Hauteur d'aspiration ; Ha= (414 414) = 0 m ;
- Perte de charge d'aspiration : Jasp = 0 (négligeable) ;
- (NPSH) r = 8.04 m.

La hauteur d'aspiration égale à zéro, donc la pompe est montée en charge.

➤ Calcul de la pression à la cote d'aspiration

D'où $(NPSH)_d = 9.59 \text{ m} > (NPSH)_r = 8.04 \text{ m}$. Donc la pompe ne cavité pas.

V.10.4. Tronçon SR3 – RV Tacheta

Caractéristiques du tronçon

Q = 112 l/s; Hg=112m; H_{MT} = 115.718m.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire pour haut pression à axe horizontal de type :(PM 150/6 A), dont les caractéristiques sont les suivantes :

$$H = 116 \text{ m};$$
 (NPSH)_r = 8.04m; $\eta = 67.7\%$
Q = 112 l/s; N=1480 tr/min; Pa = 188 Kw

On remarque que le point de fonctionnement (112 ; 116) coïncide avec le point désiré (112 ; 115.718), par conséquent, cette pompe nécessite aucune modification.

Les différentes courbes sont représentées dans la figure (V.10) suivante : (les détails sont donnés dans l'annexe (18)).

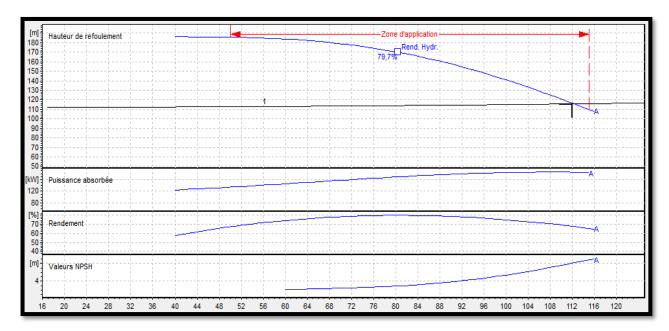


Figure (V.10): Les courbes caractéristiques de la pompe de SR3

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 532 m;
- La cote de l'axe de la pompe 532 m;
- Hauteur d'aspiration ; Ha= (532 532) = 0 m ;
- Perte de charge d'aspiration : Jasp = 0 (négligeable) ;
- $(NPSH)_{r} = 8.04 \text{ m}.$

La hauteur d'aspiration égale à zéro, donc la pompe est montée en charge.

➤ Calcul de la pression à la cote d'aspiration

$$P_0=10$$
, $33 - (0.0012 \times C_a) = 10.33 - (0.0012 \times 532) = 9.69 m$.
Donc: $(NPSH)_d = 9.69 + 0 - (0 + 0.24)$

D'où $(NPSH)_d = 9.45 \text{ m} > (NPSH)_r = 8.04 \text{ m}$. Donc la pompe ne cavite pas.

V.10.5. Tronçon SP – SR4

Caractéristiques du tronçon

$$Q = 66 \text{ l/s}$$
; $Hg=126.54\text{m}$; $H_{MT} = 134.653\text{m}$.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire à axe horizontal de type :(PM 150/6 D), dont les caractéristiques sont les suivantes :

$${f H} = 136 \ m;$$
 $({f NPSH})_{f r} = 2.54 \ m;$ ${f \eta} = 78.4 \ \%$ ${f Q} = 71.9 \ l/s;$ ${f N} = 1480 \ tr/min;$ ${f Pa} = 122 \ Kw$

On remarque que le point de fonctionnement (71.9 ; 136) ne coïncide pas avec le point désiré (66 ; 134.653), par conséquent, cette pompe nécessite certaines modifications.

Les différentes courbes sont représentées dans la figure (V.11) suivante : (les détails sont donnés dans l'annexe (19)).

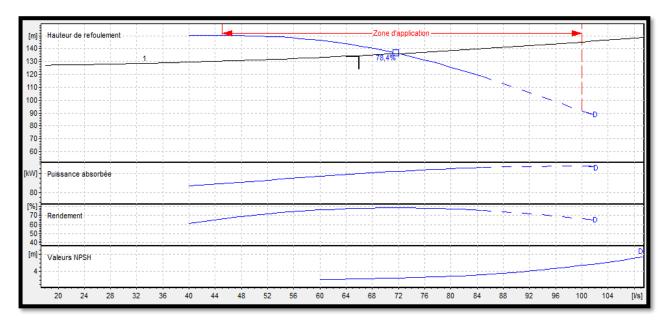


Figure (V.11): Les courbes caractéristiques de la pompe de SP

***** Etude des variantes

1^{ére} variante: Réduction ou augmentation du temps de pompage

Afin d'adopter la pompe aux conditions de travail désirées, il y a lieu de varier le temps de pompage qui sera :

$$T' = T_1 \times \frac{Q_1}{Q} = 20 \times \frac{0.066}{0.0719} = 18.36 \text{ h.}$$

Donc la pompe fonctionnera 18h, 21 min et 36 s.

 $Pa = \frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 136 \times 0.0719}{0.784} = 122.3547 \text{ KW}.$ La puissance absorbée sera:

Les frais d'exploitation seront : $F_{exp} = Pa \times T' \times P_r \times 365 = 122.3547 \times 18.36 \times 4.67 \times 365$

P_r: Prix d'un KWh (4,67 DA; fixé par la SONELGAZ). Avec:

$$F_{exp} = 3829156.93 DA$$

2^{éme} Variante: Régulation par étouffement (le vannage)

- La perte de charge crée par la vanne d'étouffement égale à : $\mathbf{h} = H_2 H_1 = 142 134.653 =$ 7.347m.
- La puissance absorbée sera : $Pa = \frac{g \times H_2 \times Q_1}{\eta} = \frac{9.81 \times 142 \times 0.066}{0.784} = 117.2695 \text{ KW}.$ Les frais d'exploitation seront : $F_{exp} = Pa \times T_1 \times P_r \times 365 = 117.2695 \times 20 \times 4.67 \times 365$

$$F_{\text{exp}} = 3997835.916 \text{ DA}$$

3^{éme} Variante : variation de la vitesse

La nouvelle vitesse de rotation de la pompe s'écrit comme suit : $N_1 = N \times \frac{Q_1}{Q_2}$ (tr/min).

L'équation de la courbe iso-rendement s'écrit : $H = Q^2 \times \frac{H_1}{{Q_1}^2} \implies H = 0.03091 \times Q^2$

L'équation de la pompe est donnée comme suit : $Hp = a \times Q^2 + b$

Pour
$$Q = 0 \text{ l/s}, H = 176\text{m}$$

 $Q = 71.9 \text{ l/s}, H = 136 \text{ m}$ $Q = 71.9 \text{ l/s}, H = 136 \text{ m}$ $Q = 71.9 \text{ l/s}, H = 136 \text{ m}$

Ce qui donne : Hp= - $0.007737 Q^2 + 176$

On pose Hp = H, On trouve Q = 67.48 l/s et H = 140.76 m; $P_2(67.48; 140.76)$.

- Donc: N'= N× $\frac{Q_1}{Q_2}$ = 1480 × $\frac{66}{67.48}$ = 1448 tr/min
- $Pa = \frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 134.653 \times 0.066}{0.784} = 111.2021 \text{KW}.$ La puissance absorbée sera
- Les frais d'exploitation seront $\mathbf{F_{exp}} = \mathbf{Pa} \times \mathbf{T_1} \times \mathbf{P_r} \times \mathbf{365} = 111.2021 \times 20 \times 4.67 \times 365$ F

$$F_{exp} = 3790990.138 DA$$

Notre choix se portera sur la variation de la vitesse de rotation qui présente la variante la plus économique.

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 474.46 m;
- **F** Hauteur d'aspiration; Ha= 1 m;
- F Perte de charge d'aspiration : $J_{asp} = 0$ (négligeable) ;
- **F** (NPSH) r = 2.54 m.

➤ Calcul de la pression à la cote d'aspiration

$$P_0=10$$
, $33 - (0.0012 \times C_a) = 10.33 - (0.0012 \times 474.46) = 9.76 m$.
Donc: $(NPSH)_d = 9.76 + 1 - (0 + 0.24)$

D'où
$$(NPSH)_d = 10.52 \text{ m} > (NPSH)_r = 2.54 \text{ m}$$
. Donc la pompe ne cavite pas.

V.10.6. Tronçon SR4 – RV Ouled bouali

Caractéristiques du tronçon

$$Q = 14 \text{ l/s}$$
; Hg=28m; H_{MT} = 28.609m.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire à axe horizontal de type :(MEC-MR 65-3/3G), dont les caractéristiques sont les suivantes :

$$H = 28.6 \text{ m};$$
 (NPSH)_r = 2.09 m; $\eta = 65 \%$
Q = 14 l/s; N=1450 tr/min; Pa = 6.03 Kw

On remarque que le point de fonctionnement (14 ; 28.6) coïncide avec le point désiré (14 ; 28.609), par conséquent, cette pompe nécessite aucune modification.

Les différentes courbes sont représentées dans la figure (V.12) suivante : (les détails sont donnés dans l'annexe (20)).

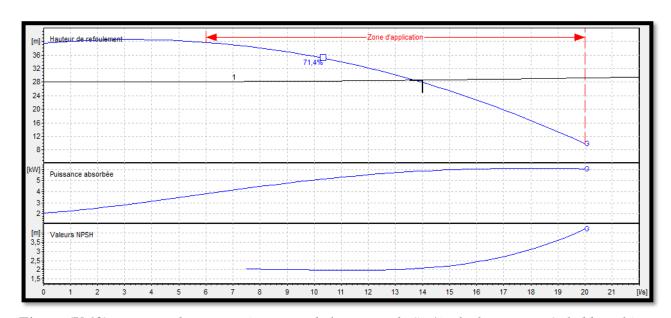


Figure (V.12): Les courbes caractéristiques de la pompe de SR4(refoule vers RV Ouled bouali)

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 596 m;
- La cote de l'axe de la pompe 596m;
- Hauteur d'aspiration ; Ha= (596 596) = 0 m ;

- Perte de charge d'aspiration : $J_{asp} = 0$ (négligeable) ;
- (NPSH) r = 2.09 m.

La hauteur d'aspiration égale à zéro, donc la pompe est montée en charge.

➤ Calcul de la pression à la cote d'aspiration

P₀=10, 33 –
$$(0,0012 \times C_a)$$
 = 10,33 - $(0,0012 \times 596)$ = 9.61 m.
Donc : $(NPSH)_d = 9.61 + 0 - (0 + 0, 24)$

D'où $(NPSH)_d = 9.37 \text{ m} > (NPSH)_r = 2.09\text{m}$. Donc la pompe ne cavite pas.

V.10.7. Tronçon SR4 – RV Ouled bessa

Caractéristiques du tronçon

Q = 52 l/s; Hg=137.68m; H_{MT} = 143.631m.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire à axe horizontal de type :(PM 100/3 A), dont les caractéristiques sont les suivantes :

$$H = 144 \text{ m};$$
 (NPSH)_r = 8.81 m; $\eta = 67.3 \%$
Q = 54.4 l/s; N=2970 tr/min; Pa = 114 Kw

On remarque que le point de fonctionnement (54.4 ; 144) ne coïncide pas avec le point désiré (52 ; 143.631), par conséquent, cette pompe nécessite certaines modifications.

Les différentes courbes sont représentées dans la figure (V.13) suivante : (les détails sont donnés dans l'annexe (21)).

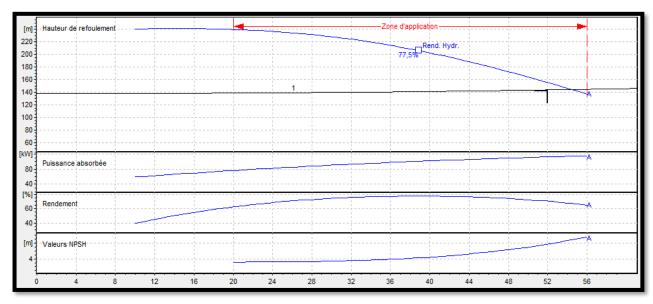


Figure (V.13): Les courbes caractéristiques de la pompe de SR4(refoule vers RV Ouled bessa)

Etude des variantes

1^{ére} variante: Réduction ou augmentation du temps de pompage

Afin d'adopter la pompe aux conditions de travail désirées, il y a lieu de varier le temps de pompage qui sera:

$$T' = T_1 \times \frac{Q_1}{Q} = 20 \times \frac{0.052}{0.0544} = 19.12 \text{ h.}$$

Donc la pompe fonctionnera 19h, 7 min et 12 s.

La puissance absorbée sera :
$$Pa = \frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 144 \times 0.0544}{0.673} = 114.1866 \text{ KW}.$$

Les frais d'exploitation seront : $F_{exp} = Pa \times T' \times P_r \times 365 = 114.1866 \times 19.12 \times 4.67 \times 365$

Les frais d'exploitation seront :
$$\mathbf{F_{exp}} = \mathbf{Pa} \times \mathbf{T'} \times \mathbf{P_r} \times \mathbf{365} = 114.1866 \times 19.12 \times 4.67 \times 365$$

P_r: Prix d'un KWh (4,67 DA; fixé par la SONELGAZ). Avec:

$$F_{exp} = 3721456.68 DA$$

2^{éme} Variante: Régulation par étouffement (le vannage)

- La perte de charge crée par la vanne d'étouffement égale à : $\mathbf{h} = H_2 \cdot H_1 = 156 143.631 =$ 12.369m.
- La puissance absorbée sera : $Pa = \frac{g \times H_2 \times Q_1}{\eta} = \frac{9.81 \times 156 \times 0.052}{0.673} = 118.2447 \text{ KW}.$
- Les frais d'exploitation seront : $\mathbf{F_{exp}} = \mathbf{Pa} \times \mathbf{T_1} \times \mathbf{P_r} \times \mathbf{365} = 118.2447 \times 20 \times 4.67 \times 365$

$$F_{\text{exp}} = 4031081.937 \text{ DA}$$

3^{éme} Variante : variation de la vitesse

La nouvelle vitesse de rotation de la pompe s'écrit comme suit : $N_1 = N \times \frac{Q_1}{Q_2}$ (tr/min).

L'équation de la courbe iso-rendement s'écrit : $H = Q^2 \times \frac{H_1}{Q_1^2} \Longrightarrow H = 0.0531 \times Q^2$

L'équation de la pompe est donnée comme suit : $Hp = a \times Q^2 + b$

Pour
$$Q= 0 \text{ l/s}, H = 239 \text{m}$$
 \longrightarrow D'où, $144 = a \times 54.4^2 + 239$, donc $a = -0.0321$

Ce qui donne : Hp= $-0.0321 Q^2 + 239$

On pose Hp = H, On trouve Q = 52.96 l/s et H = 148.95 m; $P_2(52.96; 148.95)$.

Donc: N'= N×
$$\frac{Q_1}{Q_3} = 2970 \times \frac{52}{52.96} = 2916 \text{ tr/min}$$

Q₃ 52.96

Pa =
$$\frac{g \times H_{MT} \times Q}{\eta} = \frac{9.81 \times 143.631 \times 0.052}{0.673} = 108.8693 \text{KW}.$$

Les frais d'exploitation seront

$$\mathbf{F_{exp}} = \mathbf{Pa} \times \mathbf{T_1} \times \mathbf{P_r} \times \mathbf{365} = 108.8693 \times 20 \times 4.67 \times 365$$

$$F_{\rm exp} = 3711463.652 \, {\rm DA}$$

Notre choix se portera sur la variation de la vitesse de rotation qui présente la variante la plus économique.

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 596 m;
- La cote de l'axe de la pompe 596m;
- Hauteur d'aspiration ; Ha= (596 596) = 0 m ;
- Perte de charge d'aspiration : $J_{asp} = 0$ (négligeable) ;
- (NPSH) r = 8.81 m.

La hauteur d'aspiration égale à zéro, donc la pompe est montée en charge.

➤ Calcul de la pression à la cote d'aspiration

P₀=10, 33 –
$$(0,0012 \times C_a)$$
 = 10,33 - $(0,0012 \times 596)$ = 9.61 m.
Donc: (NPSH)_d = 9.61+0- $(0+0,24)$

D'où $(NPSH)_d = 9.37 \text{ m} > (NPSH)_r = 8.81 \text{m}$. Donc la pompe ne cavite pas.

V.10.8. Tronçon SR5 – RV Ouled arbi

* Caractéristiques du tronçon

$$Q = 11.4 \text{ l/s}$$
; $Hg=31\text{m}$; $H_{MT} = 41.969\text{m}$.

Caractéristiques de la pompe

En consultant le catalogue des pompes, on opte pour une pompe centrifuge multicellulaire à axe horizontal de type :(MEC-MR 65-3/3C), dont les caractéristiques sont les suivantes :

$$H = 42 \text{ m};$$
 (NPSH)_r = 2 m; $\eta = 71.6 \%$
Q = 11.4 l/s; N=1450 tr/min; Pa = 6.57 Kw

On remarque que le point de fonctionnement (11.4 ; 42) coïncide avec le point désiré (11.4 ; 41.969), par conséquent, cette pompe nécessite aucune modification.

Les différentes courbes sont représentées dans la figure (V.14) suivante : (les détails sont donnés dans l'annexe (22)).

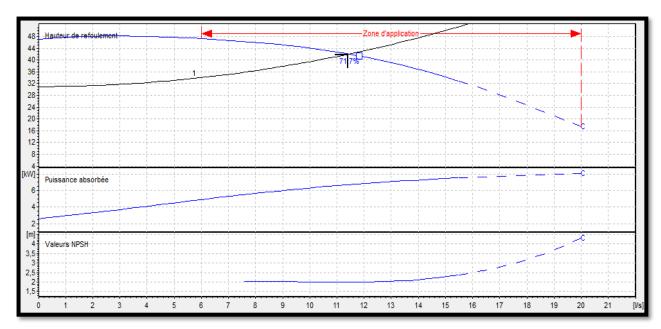


Figure (V.14) : Les courbes caractéristiques de la pompe de la SR5

***** Etude de cavitation

- La cote du plan d'aspiration Ca = 591 m;
- Hauteur d'aspiration; Ha=1 m;
- Perte de charge d'aspiration : Jasp = 0 (négligeable) ;
- $(NPSH)_r = 2 \text{ m}.$
 - ➤ Calcul de la pression à la cote d'aspiration

```
P<sub>0</sub>=10, 33 – (0,0012×C<sub>a</sub>) = 10,33 - (0,0012×591) = 9.62 m.

Donc: (NPSH)<sub>d</sub> = 9.62+1-(0+0, 24)
```

D'où $(NPSH)_d = 10.38 \text{ m} > (NPSH)_r = 2\text{m}$. Donc la pompe ne cavite pas.

V.11. Conclusion

A travers ce chapitre, nous avons déterminé les pompes donnant le meilleur rendement à l'aide du catalogue des pompes, suite aux calculs des hauteurs manométriques totales et des débits désirés, nous avons opté pour des pompes multicellulaires à axe horizontal pour les cinq stations de reprise, ainsi que la station de pompage, et pour des pompes de type immergé pour les trois forages. Pour le fonctionnement idéal du réseau nous avons procédé à quelques modifications en étudiants les différentes variantes séparément comme cités auparavant, et nous avons terminé cette présente partie par une vérification de la présence ou non du phénomène de la cavitation, phénomène qui affecte considérablement les pompes.

Chapitre VI Protection et pose des conduites

VI.1. Introduction

Le coup de bélier, en hydraulique, est un phénomène résultant d'un écoulement non permanent (transitoire) qui apparait dans une conduite lorsqu'on provoque une variation importante du débit à l'extrémité aval de celle-ci. Autrement dit, les coups de bélier sont des ondes de surpression et de dépression liées à un changement brutal de l'écoulement dans la conduite.

Dans ce présent chapitre on va étudier d'une manière précise ce phénomène, les risques qu'il présente et les moyens de protections.

VI.2. Causes du coup de bélier

Le coup de bélier est un phénomène oscillatoire dont les causes les plus fréquentes sont les suivantes [10] :

- Arrêt brutal, par disjonction inopinée, d'un ou de plusieurs groupes électropompes alimentant une conduite de refoulement;
- Démarrage d'une pompe ;
- Fermeture instantanée où trop rapide d'une vanne de sectionnement ou d'un robinet d'obturation placé au bout d'une conduite d'adduction ;
- Fermeture ou ouverture d'un robinet d'isolement.

VI.3. Analyse physique du phénomène

L'analyse sera faite pour le cas d'un arrêt brusque d'une pompe. Quatre phases peuvent être envisagées [4] :

❖ 1^{ére} phase :

Au temps initial t =0 (moment d'arrêt du courant), la colonne d'eau va poursuivre son ascension mais elle n'est plus alimentée. Il en résultera une dépression qui se propagera avec une célérité a. Au bout du temps T = L/a, l'eau est alors immobile et la conduite sera en dépression.

❖ 2^{éme} phase :

L'eau revient ensuite vers la pompe, et à T = 2L/a, toute l'eau sera redescendue et arrêtée par le clapet anti-retour de la pompe, qui entre temps se referme.

❖ 3^{éme} phase :

L'eau va se trouver comprimée, de proche en proche, dans le sens « pompe-réservoir » entraînant une dilatation de la conduite à T = 3L/a. toute l'eau sera comprimée et immobile.

❖ 4^{éme} phase :

La conduite va tendre à revenir à son diamètre initial, de proche en proche, à partir de la pompe, d'où la propulsion de l'eau vers le réservoir à T = 4L/a, la conduite revient à son état initial.

VI.4. Moyens de protection contre le coup de bélier

Il est impossible de supprimer définitivement les effets du coup de bélier. Mais il y a des dispositifs de protection engagés ont un rôle de limiter les variations de la pression (surpression ou dépression) dans la conduite, Les appareils les plus adaptés sont [9] les suivants :

VI.4.1. Volant d'inertie

Le volant d'inertie permet de ralentir plus progressivement l'arrêt des pompes en cas de panne de courant électrique (ou du moteur).

VI.4.2. Réservoir d'air

C'est un réservoir métallique disposé à la station de pompage et raccordé à la conduite de refoulement, immédiatement à l'aval du clapet (Figure (VI.1)).

Sa capacité contient de l'eau et de l'air, et en marche normale, la pression de cet air équilibre la pression dans la conduite au point considéré.

A la disjonction, le clapet se ferme, puisque la pompe ne fournit plus de pression. Une partie de l'eau de la cloche est chassée dans la conduite. A ce moment, la pression de l'air de la cloche est encore supérieure à celle qui s'exerce à l'autre extrémité de la conduite, au réservoir.

Apres diminution progressive, puis annulation de sa vitesse, l'eau de la conduite revient en arrière et remonte dans la cloche, augmentant la pression dans la conduite de refoulement.

Ce dispositif est excessivement simple et protégera l'installation aussi bien contre les dépressions que contre les surpressions.

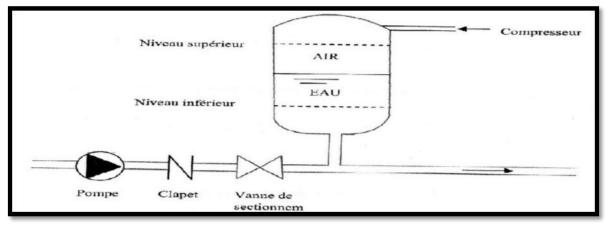


Figure (VI.1): Principe de la disposition d'un réservoir d'air

VI.4.3. Cheminées d'équilibre

Les cheminées d'équilibre (figure (VI.2)) sont des réservoirs à l'air libre, sous forme d'un tube piézométrique vertical, elles peuvent jouer le même rôle que les réservoirs d'air, afin de diminuer leurs dimensions, elles sont souvent utilisées au niveau des points hauts, elles sont très rarement utilisées à la station.

Elles présentent certains avantages à savoir :

- Un fonctionnement qui ne nécessite aucun entretient ;
- La protection idéale pour les points du parcourt difficilement accessible.

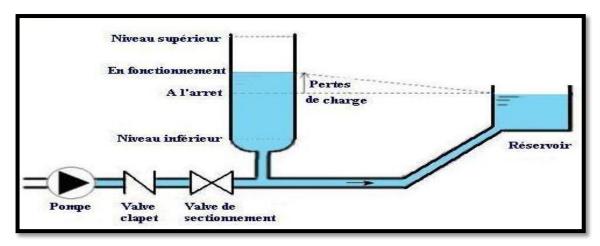


Figure (VI.2): Cheminée d'équilibre

VI.4.4. Soupapes de décharge

Les soupapes de décharge (figure (VI.3)) s'ouvrent pour réduire la surpression à une valeur acceptable. Ces dispositifs sont généralement constitués d'une soupape maintenue par un ressort, cette soupape ne doit s'ouvrir que sur une pression déterminée, légèrement supérieure à (5%) à la pression maximale de fonctionnement normale.

L'ouverture de la soupape doit pouvoir s'effectuer très rapidement pour que l'opération soit efficace, et laisse passer un débit qui doit être évacué vers l'extérieur.

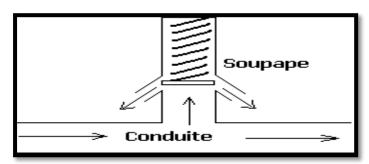


Figure (VI.3) : Soupape de décharge

VI.4.5. Ventouses (reniflards)

Une ventouse est constituée d'un flotteur sphérique en caoutchouc logé dans un corps en fonte. Leur rôle principal est l'évacuation ou l'admission de l'air continu dans des conduites. On procède à leur vidange lorsqu'il y a apparition de la cavitation en un point haut.

VI.5. Etude du coup de bélier

Le coup de bélier est étudié pour les deux cas :

1er cas: Fermeture brusque

La fermeture brusque est caractérisée par un temps T_f, tel que :

$$\left[T_{\rm f} < \frac{2 \times L}{a}\right] \tag{VI. 1}$$

La valeur maximale du coup de bélier est dans ce cas :

$$B = \frac{\mathbf{a} \times \mathbf{V_0}}{\mathbf{g}}$$
 (VI. 2)

Avec:

B: La valeur du coup de bélier en (m);

Vo: Vitesse d'écoulement en (m/s);

g: Accélération de la pesanteur en (m/s²);

a : La célérité de l'onde en (m/s).

Où la célérité des ondes est donnée par la formule d'ALLIEVI suivante :

$$a = \frac{9900}{\sqrt{48.3 + \frac{K_c \times D}{e}}}$$
 (VI. 3)

Avec:

 K_c : Coefficient dépendant de la nature de la conduite (K = 83 pour le PEHD);

D: Diamètre intérieur de la conduite en (m);

e : Epaisseur de la conduite en (m).

La valeur maximale de la pression-surpression est :

$$\mathbf{H}_{\mathrm{sr}} = \mathbf{H}_0 + \mathbf{B} \tag{VI.4}$$

La valeur maximale de la pression-dépression est :

$$\mathbf{H_d} = \mathbf{H_0} - \mathbf{B} \tag{VI.5}$$

Où:

H₀: La pression absolue au point le plus haut de la conduite, telle que :

$$\left(\mathbf{H_0} = \mathbf{H_g} + \mathbf{10} \right) \tag{VI.6}$$

Avec:

Hg: Hauteur géométrique de refoulement;

10 : Pression atmosphérique ;

 \mathcal{F} H₀: Pression absolue de la conduite.

2^{éme} cas : Fermeture lente

La fermeture lente est caractérisée par un temps T_f, tel que :

$$T_{f} > \frac{2 \times L}{a}$$
 (VI.7)

La valeur maximale du coup de bélier sera calculée par la formule de MICHAUD [12] :

$$B = \frac{2 \times L \times V_0}{g \times T_f}$$
 (VI.8)

Avec:

L: La longueur de la conduite (m);

 $\ \ \ \ \ \ \ \ T_f$: Temps de fermeture de la vanne (s).

Remarque:

Le coup de bélier est plus important dans le cas d'une fermeture brusque qu'en fermeture lente, c'est pour ça que dans notre étude on considéra le cas le plus défavorable c'est-à-dire la fermeture brusque.

VI.6. Calcul du coup de bélier pour les différents tronçons du refoulement

Les valeurs numériques du coup de bélier pour les tronçons (SR1-SR2), (SR2-SR3), (SR3-RV Tacheta Zougagha), (SP-SR4), (SR4-RV Ouled bouali), (SR4-RV Ouled bessa), (SR5-RV Ouled arbi) sont représentées dans le tableau suivant :

arbi) sont représentée	arbi) sont représentées dans le tableau suivant :										
Tableau (VI.1) : Valeurs maximales du coup de bélier											
Tronçon	SR1-	SR2-	SR3-RV Tacheta	SP –	SR4- RV	SR4- RV	SR5- RV				

Tron	çon	SR1- SR2	SR2- SR3	SR3-RV Tacheta Zougagha	SP – SR4	SR4- RV Ouled bouali	SR4- RV Ouled bessa	SR5- RV Ouled arbi
iques luite	D _{int} (m)	0.3274	0.3274	0.3274	0.2578	0.1410	0.2578	0.1102
Caractéristiques de la conduite	e(m)	0.0363	0.0363	0.0363	0.0286	0.0095	0.0286	0.0074
Cars de]	V(m/s)	1.3310	1.3310	1.3310	1.2651	0.8971	0.9967	1.1539
H ₀ =H	g+10	157.53	128	122	136.54	38	147.68	41
Célérito (m/		350.698	350.698	350.698	350.795	276.692	350.795	276.247
Valeur d de bélie	_	47.582	47.582	47.582	45.239	25.303	35.641	32.494
Dépres ''H _d ''		109.948	80.418	74.418	91.301	12.697	112.039	8.5065
Surpre		205.112	175.582	169.582	181.779	63.303	183.321	73.494
Pression service "		160	160	160	160	100	160	100

D'après le tableau (VI.1) on remarque qu'au long de la chaine de refoulement, il existe des surpressions (la surpression maximale dépasse la valeur de la pression de service admissible).

Par conséquent, le phénomène du coup de bélier se manifeste au niveau de ces tronçons. Donc, ces tronçons nécessitent des protections.

VI.7. Choix du moyen de protection contre le coup de bélier

Dans notre cas, on utilise un réservoir fermé dont la partie supérieure contient de l'air sous pression et la partie inférieure un certain volume d'eau, couramment appelé « Réservoir d'air ».

VI.7.1. Principe de calcul du réservoir d'air

Une fois, les caractéristiques du réservoir d'air (volume U₀ d'air en régime normal) et de son dispositif d'étranglement sont fixées. Les valeurs maximales de la surpression et la dépression seront déterminées par la méthode de BERGERON.

Les étapes à suivre pour le dimensionnement du réservoir d'air sont les suivantes :

1) Les temps se suivent selon les valeurs de :

$$T = \frac{2 \times L}{a}$$
 (VI. 9)

2) Variation du volume d'air :

$$\Delta \mathbf{U} = \mathbf{S} \times \mathbf{V}_{\mathbf{m}} \times \mathbf{\theta} \tag{VI. 10}$$

Avec:

- $\triangle U$: Variation du volume d'air (m³);
- S: Section de la conduite (m²);
- θ : Temps mis par une onde, pour faire un aller-retour dans la conduite ;
- V_m: Moyenne arithmétique de la vitesse finale de l'intervalle précédent et la nouvelle vitesse choisie.
- 3) Le volume d'air comprimé :

$$\left(\mathbf{U_i} = \mathbf{U_{i-1}} \pm \Delta \mathbf{U_i} \right) \tag{VI. 11}$$

- $+ \Delta U_i$: lorsque le réservoir d'air se vide ;
- ΔU_i: lorsque le réservoir d'air se remplit.
- **4)** La pression dans le réservoir d'air est donnée par la loi de Poisson :

$$(\mathbf{Z}_0 + \mathbf{\delta}_0) \times \mathbf{U}_0^{1.4} = \mathbf{Z}' \times \mathbf{U}^{1.4}$$
 (VI. 12)

Avec:

- δ_0 : Perte de charge dans la conduite en régime de fonctionnement normal;
- \mathbb{Z}_0 : Pression absolue;
- U₀: Volume d'air initial;
- **Z'**: Pression dans le réservoir d'air ;
- U: Volume nouveau de l'air.

5) La vitesse dans la tubulure :

> Cas de la montée de l'eau :

A la montée de l'eau, on a un coefficient de débit de 0,92.

$$\frac{\mathbf{V_1}}{\mathbf{V_f}} = \frac{\mathbf{D^2}}{\mathbf{d'^2}} = \mathbf{K}$$
 (VI. 13)

Avec:

D: Diamètre de la conduite ;

d' : Diamètre de la veine contractée.

Où:

$$d'=0.92 d$$
 (VI. 14)

d sera choisi pour que K reste compris entre 15 et 20.

> Cas de la descente de l'eau :

La tuyère agit comme un ajutage BORDA avec un coefficient de 0,5 à la descente de l'eau.

$$\frac{V_2}{V_f} = 2 \times \frac{D^2}{d^2} = K'$$
 (VI. 15)

Avec:

 ∇V_2 : Vitesse de l'eau dans la tuyère ;

V_f: Vitesse de l'eau dans la conduite.

6) Calcul des pertes de charge

Cas de la montée de l'eau :

$$\Delta \mathbf{h}_1 = \mathbf{C} \times \frac{\mathbf{V}^2}{2 \times \mathbf{g}}$$
 (VI. 16)

$$C = f(m')$$

Avec:

$$m' = \frac{(0.92 \times d)^2}{\emptyset^2}$$
 (VI. 17)

La valeur de C est lue sur l'abaque (Annexe (23)).

> Cas de la descente de l'eau :

$$\Delta \mathbf{h}_{2} = \mathbf{C}' \times \frac{\mathbf{V}^{2}}{2 \times \mathbf{g}}$$
(VI. 18)

Avec:

$$m'' = \frac{1}{2} * \frac{d^2}{\emptyset^2}$$
 (VI. 19)

La valeur de C' est lue sur l'abaque (Annexe (23)).

VI.7.2. Application du calcul

VI.7.2.1. Tronçon SR1 – SR2

On dispose d'une tuyère de diamètre $\mathbf{d} = 100 \text{ mm}$ qui est incorporée dans une tubulure de diamètre $\boldsymbol{\phi} = 200 \text{ mm}$.

Les caractéristiques de la tuyère sont :

➤ Montée de l'eau :
$$K = \frac{V_1}{V_f} = \frac{D^2}{d^2} = \frac{D^2}{(0.92 \times d)^2} = \frac{0.4^2}{(0.92 \times 0.1)^2} = 19$$
 \Box $V_l = 19 V_f$.

Donc, K = 19. Compris entre 15 et 20, d'où la condition pour K est vérifiée.

A partir de l'annexe (23), on déterminera la valeur du coefficient de perte de charge « C » dans la tuyère. Ce qui nous donne C = 0.63.

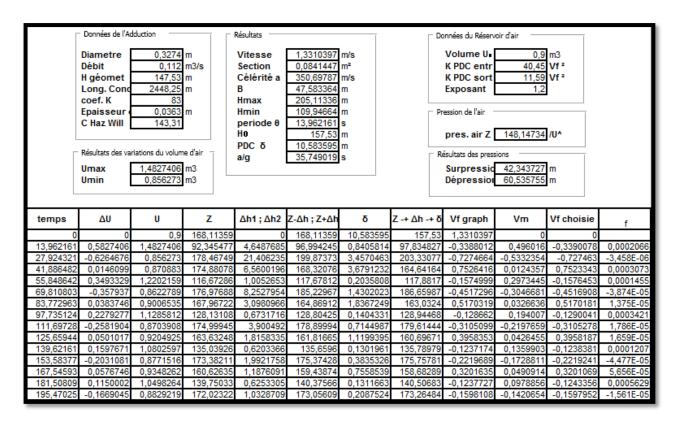
D'où la perte de charge correspondant au cas de la montée de l'eau est :

$$\Delta \mathbf{h_1} = \mathbf{C} \times \frac{\mathbf{V}^2}{2 \times \mathbf{g}}$$
 $\Delta \mathbf{h_1} = \mathbf{0.63} \times \frac{\mathbf{V}^2}{2 \times \mathbf{g}} = 11.59 \text{ V}_f^2.$

➤ **Descente de l'eau** :
$$K' = \frac{V_2}{V_f} = 2 \times \frac{D^2}{d^2} = 2 \times \frac{0.4^2}{0.1^2} = 32$$
 \tag{V_2=K'\times V_f = 32 V_f.}

Par ailleurs, m'' =
$$\frac{1}{2} * \frac{d^2}{d^2} = \frac{1}{2} * \frac{0.1^2}{0.2^2} = 0.125$$
 m'' = **0.125**

A partir de l'annexe (23), on déterminera la valeur du coefficient de perte de charge « C'» dans la tuyère. Ce qui nous donne C' = 0.775.


D'où la perte de charge correspondant au cas de la décente de l'eau est :

$$\Delta \mathbf{h}_2 = \mathbf{C}' \times \frac{\mathbf{V}^2}{2 \times \mathbf{g}}$$
 $\Delta \mathbf{h}_2 = \mathbf{0}.775 \times \frac{\mathbf{V}^2}{2 \times \mathbf{g}} = 40.45 \text{ V}_f^2$.

Résultats de calcul du réservoir d'air

Les résultats du calcul du réservoir d'air pour le tronçon (SR1- SR2) en utilisant la méthode de BERGERON, sont donnés dans le tableau (VI.2) ci-dessous. L'épure de BERGERON est illustrée par la figure (VI.4).

Tableau (VI.2): Calcul du réservoir d'air du tronçon (SR1 – SR2).

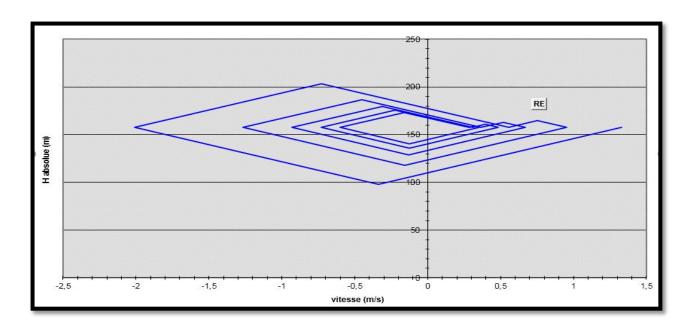


Figure (VI.4): Epure de BERGERON pour le tronçon (SR1 – SR2)

- > Interprétation des résultats : on remarque que :
- Pendant la phase de dépression, on a enregistré une dépression maximale de **60.53 m**, le volume d'air à la fin de cette dépression est de **0.86 m³**.
 - La surpression est de 42.34 m, le volume d'air à la fin de cette surpression est de 1,48 m³.

Par ailleurs, la figure (VI.5) montre clairement que le phénomène du coup de bélier s'est amorti en fonction du temps.

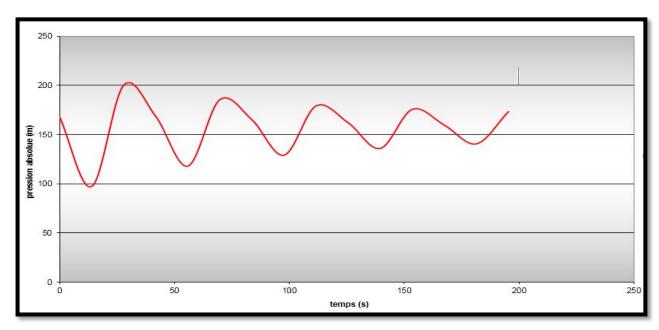


Figure (VI.5): Variation de la pression absolue pour le tronçon (SR1-SR2)

> Enveloppes des pressions

Le rapport des pressions en régime permanent et transitoire est représenté dans l'annexe (24).

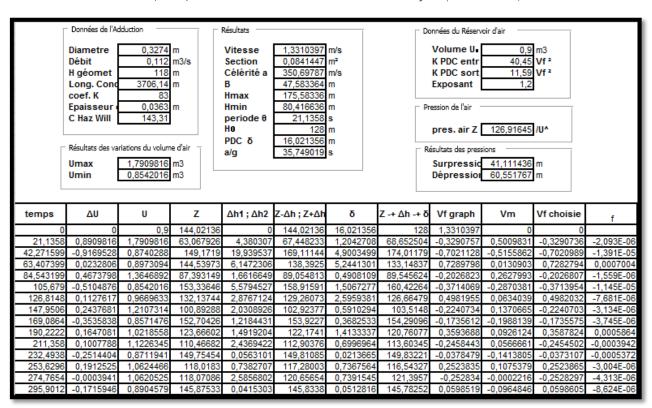
Dimensionnement du réservoir d'air :

Afin qu'il reste encore de l'eau dans le réservoir, on va majorer ce volume d'air de 20 %, donc le volume du réservoir sera de :

$$U = 1.2 \times U_{max} = 1.2 \times 1.48 = 1.776 \text{ m}^3$$

Finalement on optera pour un réservoir anti-bélier d'une capacité de : U = 1800 l.

VI.7.2.2 Tronçon SR2 – SR3


On prend les mêmes dimensions pour la tuyère que le cas précédent (SR1-SR2). Donc une tuyère de diamètre d=100 mm dans une tubulure de diamètre $\phi=200$ mm. D'où on aura :

- Montée de l'eau : La perte de charge est : $\Delta h_1 = 0.63 \times \frac{v^2}{2 \times g} = 11.59 \text{ V}_f^2$.
- **Descente de l'eau :** La perte de charge est : $\Delta \mathbf{h_2} = \mathbf{0.775} \times \frac{\mathbf{v^2}}{2 \times \mathbf{g}} = 40.45 \text{ V}_f^2$.

Résultats de calcul du réservoir d'air

Les résultats du calcul du réservoir d'air pour le tronçon (SR2- SR3) en utilisant la méthode de BERGERON, sont donnés dans le tableau (VI.3) ci-dessous. L'épure de BERGERON est illustrée par la figure (VI.6).

Tableau (VI.3): Calcul du réservoir d'air du tronçon (SR2 – SR3).

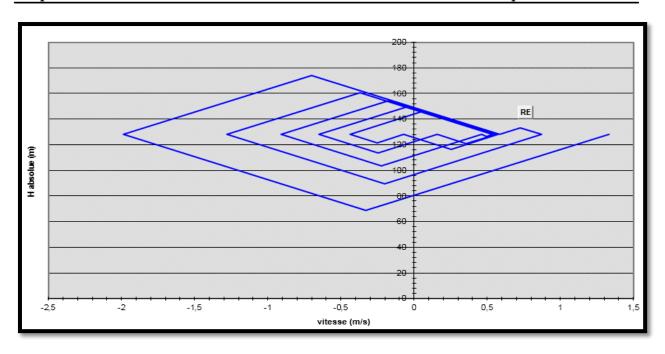


Figure (VI.6): Epure de BERGERON pour le tronçon (SR2 – SR3)

- > Interprétation des résultats : on remarque que :
- Pendant la phase de dépression, on a enregistré une dépression maximale de **60.55 m**, le volume d'air à la fin de cette dépression est de **0,85 m³**.
 - La surpression est de 41.11 m, le volume d'air à la fin de cette surpression est de 1.79 m³.

Par ailleurs, la figure (VI.7) montre clairement que le phénomène du coup de bélier s'est amorti en fonction du temps.

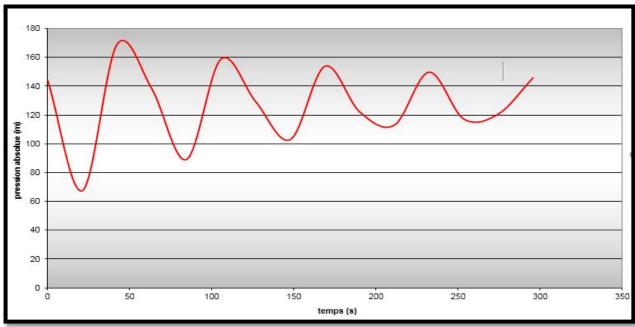


Figure (VI.7): Variation de la pression absolue pour le tronçon (SR2-SR3)

> Enveloppes des pressions

Le rapport des pressions en régime permanent et transitoire est représenté dans l'annexe (25).

> Dimensionnement du réservoir d'air :

Afin qu'il reste encore de l'eau dans le réservoir, on va majorer ce volume d'air de 20 %, donc le volume du réservoir sera de :

$$U = 1.2 \times U_{max} = 1.2 \times 1.79 = 2.148 \text{ m}^3$$

Finalement on optera pour un réservoir anti-bélier d'une capacité de : U = 2200 l.

VI.7.2.3. Tronçon SR3 – RV Tacheta Zougagha

On prend les mêmes dimensions pour la tuyère que le cas précédent (SR1-SR2). Donc une tuyère de diamètre d=100 mm dans une tubulure de diamètre $\phi=200$ mm. D'où on aura :

- Montée de l'eau : La perte de charge est : $\Delta h_1 = 0.63 \times \frac{v^2}{2 \times g} = 11.59 \text{ V}_f^2$.
- **Descente de l'eau :** La perte de charge est : $\Delta h_2 = 0.775 \times \frac{v^2}{2 \times g} = 40.45 \text{ V}_f^2$.

> Résultats de calcul du réservoir d'air

Les résultats du calcul du réservoir d'air pour le tronçon (SR3- RV Tacheta Zougagha) en utilisant la méthode de BERGERON, sont donnés dans le tableau (VI.4) ci-dessous. L'épure de BERGERON est illustrée par la figure (VI.8).

Tableau (VI.4): Calcul du réservoir d'air du tronçon (SR3 – RV Tacheta Zougagha).

	Diametre Débit H géomet Long, Conc coef, K Epaisseur C Haz Will Résultats des var Umax Umin	0,3274 0,112 112 860,18 83 0,0363 143,31	m m3/s m m m m m m m m m m m m m m m m m m m	Résultats Vitesse Section Célérité a B Hmax Hmin periode θ H0 PDC δ a/g	1,3310397 0,0841447 350,69787 47,583364 169,58336 74,416636 4,905533 122 3,7184914 35,749019	m² m/s m m m s m	_ Pr	volume U K PDC entr K PDC sort Exposant ession de l'air pres. air Z ésultats des press Surpression Dépression	0,9 40,45 11,59 1,2 110,78735 sions 13,203499	Vf ²]/U^	
temps	ΔU	U	Z	Δh1; Δh2	Z-Δh ; Z+Δh	δ	Z -+ Δh -+ δ	Vf graph	Vm	Vf choisie	f
0	0		125,71849	0	405 74040						
4.905533		0,9	125,71049	U	125,71849	3,7184914	122	1,3310397	0	0	
4,505555	0,3347287	1,2347287	86,020965	0,9801502	85,040815	3,7184914 0,2223109		1,3310397 0,2909693	0,8109233	0,2908068	0,0001625
9,8110661	0,3347287 -0,1002974			0,9801502 24,406593				_	0,8109233 -0,2429833	0,2908068 -0,7767734	0,0001625 -0,0001818
9,8110661 14,716599	-0,1002974 -0,2476202	1,2347287 1,1344313 0,8868111	86,020965 95,226169 127,96547	24,406593 7,2380244	85,040815 119,63276 135,2035	0,2223109 1,371482 0,4450068	84,818504 121,00424 135,64851	0,2909693 -0,7769551 -0,4230223	-0,2429833 -0,5998917	-0,7767734 -0,4230101	-0,0001818 -1,221E-05
9,8110661 14,716599 19,622132	-0,1002974 -0,2476202 -0,0328582	1,2347287 1,1344313 0,8868111 0,8539529	86,020965 95,226169 127,96547 133,89657	24,406593 7,2380244 0,8065757	85,040815 119,63276 135,2035 133,09	0,2223109 1,371482 0,4450068 0,1855996	84,818504 121,00424 135,64851 132,9044	0,2909693 -0,7769551 -0,4230223 0,263791	-0,2429833 -0,5998917 -0,0796032	-0,7767734 -0,4230101 0,2638037	-0,0001818 -1,221E-05 -1,268E-05
9,8110661 14,716599 19,622132 24,527665	-0,1002974 -0,2476202 -0,0328582 0,119721	1,2347287 1,1344313 0,8868111 0,8539529 0,973674	86,020965 95,226169 127,96547 133,89657 114,39154	24,406593 7,2380244 0,8065757 1,1593496	85,040815 119,63276 135,2035 133,09 113,23219	0,2223109 1,371482 0,4450068 0,1855996 0,2597086	84,818504 121,00424 135,64851 132,9044 112,97248	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925	-0,2429833 -0,5998917 -0,0796032 0,2900396	-0,7767734 -0,4230101 0,2638037 0,3162755	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05
9,8110661 14,716599 19,622132 24,527665 29,433198	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955	24,406593 7,2380244 0,8065757 1,1593496 1,5666759	85,040815 119,63276 135,2035 133,09 113,23219 112,57623	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721	84,818504 121,00424 135,64851 132,9044 112,97248 112,6841	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317 0,9016122	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721 0,1961912	84,818504 121,00424 135,64851 132,9044 112,97248 112,6841 128,63386	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731 39,244264	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195 -0,0278567	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317 0,9016122 0,8737555	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878 130,26336	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813 0,2170746	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766 130,04629	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721 0,1961912 0,0550457	84,818504 121,00424 135,64851 132,9044 112,97248 112,6841 128,63386 129,99124	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486 0,1372563	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155 -0,0674864	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286 0,1368557	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05 0,0004006
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731 39,244264 44,149797	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195 -0,0278567 0,0752343	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317 0,9016122 0,8737555 0,9489898	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878 130,26336 117,97129	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813 0,2170746 0,6007724	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766 130,04629 117,37052	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721 0,1961912 0,0550457 0,1412893	84,818504 121,00424 135,64851 132,9044 112,97248 112,6841 128,63386 129,99124 117,22923	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486 0,1372563 0,2273418	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155 -0,0674864 0,1822648	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286 0,1368557 0,2276739	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05 0,0004006 -0,0003321
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731 39,244264 44,149797 49,05533	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195 -0,0278567 0,0752343 0,0249816	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317 0,9016122 0,8737555 0,9489898 0,9739714	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878 130,26336 117,97129 114,34962	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813 0,2170746 0,6007724 0,4599283	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766 130,04629 117,37052 114,80955	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721 0,1961912 0,0550457 0,1412893 0,0346744	84,818504 121,00424 135,64851 132,9044 112,97248 112,6841 128,63386 129,99124 117,22923 114,84422	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486 0,1372563 0,2273418 -0,1062772	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155 -0,0674864 0,1822648 0,0605212	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286 0,1368557 0,2276739 -0,1066316	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05 0,0004006 -0,0003321 0,0003544
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731 39,244264 44,149797 49,05533 53,960863	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195 -0,0278567 0,0752343 0,0249816 -0,0635644	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317 0,9016122 0,8737555 0,948898 0,9739714 0,910407	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878 130,26336 117,97129 114,34962 123,99593	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813 0,2170746 0,6007724 0,4599283 1,6399831	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766 130,04629 117,37052 114,80955 125,63592	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721 0,1961912 0,0550457 0,1412893 0,0346744 0,1125381	84,818504 121,00424 135,64851 132,9044 112,97248 112,68341 128,63386 129,99124 117,22923 114,84422 125,74845	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486 0,1372563 0,2273418 -0,1062772 -0,2015896	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155 -0,0674864 0,1822648 0,0605212 -0,1539928	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286 0,2276739 -0,1066316 -0,2013541	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05 0,0004006 -0,0003321 0,0003544 -0,0002355
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731 39,244264 44,149797 49,05533 53,960863 58,866396	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195 -0,0278567 0,0752343 0,0248816 -0,0635644 -0,0255908	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983117 0,9016122 0,8737555 0,948898 0,9739714 0,910407 0,848163	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878 130,26336 117,97129 114,34962 123,99593 128,31176	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813 0,2170746 0,6007724 0,4599283 1,6399831 0,0693616	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766 130,04629 117,37052 114,80955 125,63592 128,24239	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1961912 0,0550457 0,1412893 0,0346744 0,1125381 0,0191381	84,818504 121,00424 135,64851 132,9044 112,97248 112,6841 128,63386 129,99124 117,22923 114,84422 125,74845 128,22326	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486 0,1372563 0,2273418 -0,1062772 -0,2015896 0,077347	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155 -0,0674864 0,1822648 0,0605212 -0,1539928 -0,0619969	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286 0,1368557 0,2276739 -0,106316 -0,2013541 0,0773602	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05 0,0004006 -0,0003321 0,0003544 -0,0002355 -1,322E-05
9,8110661 14,716599 19,622132 24,527665 29,433198 34,338731 39,244264 44,149797 49,05533 53,960863	-0,1002974 -0,2476202 -0,0328582 0,119721 0,0246577 -0,0967195 -0,0278567 0,0752343 0,0249816 -0,0635644	1,2347287 1,1344313 0,8868111 0,8539529 0,973674 0,9983317 0,9016122 0,8737555 0,948898 0,9739714 0,910407	86,020965 95,226169 127,96547 133,89657 114,39154 111,00955 125,44878 130,26336 117,97129 114,34962 123,99593	24,406593 7,2380244 0,8065757 1,1593496 1,5666759 2,9888813 0,2170746 0,6007724 0,4599283 1,6399831	85,040815 119,63276 135,2035 133,09 113,23219 112,57623 128,43766 130,04629 117,37052 114,80955 125,63592	0,2223109 1,371482 0,4450068 0,1855996 0,2597086 0,1078721 0,1961912 0,0550457 0,1412893 0,0346744 0,1125381	84,818504 121,00424 135,64851 132,9044 112,97248 112,6341 128,63386 129,99124 117,22923 114,84422 125,74845 128,22326 119,31403	0,2909693 -0,7769551 -0,4230223 0,263791 0,3162925 -0,1968242 -0,2718486 0,1372563 0,2273418 -0,1062772 -0,2015896	-0,2429833 -0,5998917 -0,0796032 0,2900396 0,0597365 -0,2343155 -0,0674864 0,1822648 0,0605212 -0,1539928	-0,7767734 -0,4230101 0,2638037 0,3162755 -0,1968024 -0,2718286 0,2276739 -0,1066316 -0,2013541	-0,0001818 -1,221E-05 -1,268E-05 1,709E-05 -2,185E-05 -2,002E-05 0,0004006 -0,0003321 0,0003544 -0,0002355

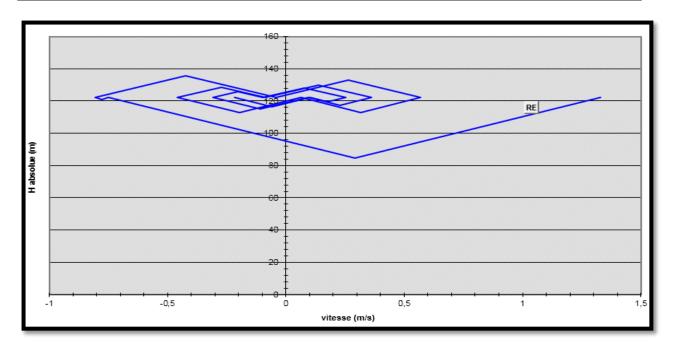


Figure (VI.8): Epure de BERGERON pour le tronçon (SR3 – RV Tacheta Zougagha)

- > Interprétation des résultats : on remarque que :
- Pendant la phase de dépression, on a enregistré une dépression maximale de **36.96 m**, le volume d'air à la fin de cette dépression est de **0,85 m³**.
 - La surpression est de 13.20 m, le volume d'air à la fin de cette surpression est de 1.23 m³.

Par ailleurs, la figure (VI.9) montre clairement que le phénomène du coup de bélier s'est amorti en fonction du temps.

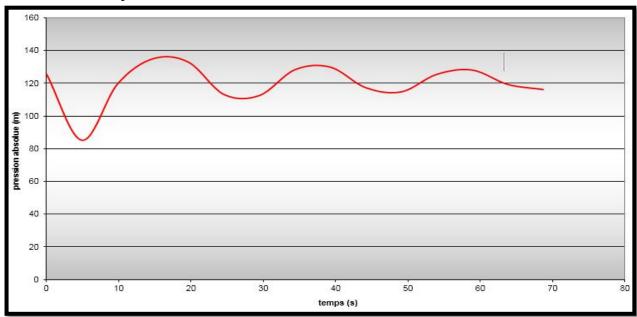


Figure (VI.9): Variation de la pression absolue pour le tronçon (SR3-RV Tacheta Zougagha)

> Enveloppes des pressions

Le rapport des pressions en régime permanent et transitoire est représenté dans l'annexe (26).

> Dimensionnement du réservoir d'air :

Afin qu'il reste encore de l'eau dans le réservoir, on va majorer ce volume d'air de 20 %, donc le volume du réservoir sera de :

$$U = 1.2 \times U_{max} = 1.2 \times 1.23 = 1.476 \text{ m}^3$$

Finalement on optera pour un réservoir anti-bélier d'une capacité de : U = 1500 l.

VI.7.2.4. Tronçon SP – SR4

On dispose d'une tuyère de diamètre $\mathbf{d} = \mathbf{80} \ \mathbf{mm}$ qui est incorporée dans une tubulure de diamètre $\boldsymbol{\phi} = \mathbf{150} \ \mathbf{mm}$.

Les caractéristiques de la tuyère sont :

➤ Montée de l'eau :
$$K = \frac{V_1}{V_f} = \frac{D^2}{d^2} = \frac{D^2}{(0.92 \times d)^2} = \frac{0.315^2}{(0.92 \times 0.08)^2} = 18$$
 \Box $V_l = 18 \ V_f$.

Donc, K = 18. Compris entre 15 et 20, d'où la condition pour K est vérifiée.

Par ailleurs, m' =
$$\frac{(0.92 \times d)^2}{\emptyset^2} = \frac{(0.92 \times 0.08)^2}{0.15^2} = 0.24$$
 m' = **0.24**

A partir de l'annexe (23), on déterminera la valeur du coefficient de perte de charge « C » dans la tuyère. Ce qui nous donne C = 0.57.

D'où la perte de charge correspondant au cas de la montée de l'eau est :

$$\Delta \mathbf{h_1} = \mathbf{C} \times \frac{\mathbf{v}^2}{2 \times \mathbf{g}}$$
 $\Delta \mathbf{h_1} = \mathbf{0}.\mathbf{57} \times \frac{\mathbf{v}^2}{2 \times \mathbf{g}} = 9.41 \text{ V}_f^2.$

> Descente de l'eau :
$$K' = \frac{V_2}{V_f} = 2 \times \frac{D^2}{d^2} = 2 \times \frac{0.315^2}{0.08^2} = 31$$
 $V_2 = K' \times V_f = 31V_f$.

A partir de l'annexe (23), on déterminera la valeur du coefficient de perte de charge « C'» dans la tuyère. Ce qui nous donne C' = 0.74.

D'où la perte de charge correspondant au cas de la décente de l'eau est :

$$\Delta \mathbf{h}_2 = \mathbf{C}' \times \frac{\mathbf{V}^2}{2 \times \mathbf{g}}$$
 $\Delta \mathbf{h}_2 = \mathbf{0}.74 \times \frac{\mathbf{v}^2}{2 \times \mathbf{g}} = 36.25 \text{ V}_f^2$.

Résultats de calcul du réservoir d'air

Les résultats du calcul du réservoir d'air pour le tronçon (SP- SR4) en utilisant la méthode de BERGERON, sont donnés dans le tableau (VI.5) ci-dessous. L'épure de BERGERON est illustrée par la figure (VI.10).

	Données de l'Ac Diametre Débit H géomet Long, Conc coef, K Epaisseur o C Haz Will Résultats des va Umax Umin	0,2578 0,066 126,54	m m3/s m m m e d'air —	Résultats Vites se Section Célérité a B Hmax Hmin periode θ H0 PDC δ a/g	1,2650522 0,0521718 350,79467 45,236857 181,77686 91,303143 8,8370785 136,54 8,1130542 35,758885	m² m/s m m m s m	_ Pr	vonnées du Réserv Volume U K PDC entr K PDC sort Exposant ession de l'air pres. air Z ésultats des press Surpressio Dépression	94,285575	/U^	
temps	ΔU	U	Z	Δh1; Δh2	Z-∆h ; Z+∆h	δ	Z -+ Δh -+ δ	Vf graph	Vm	Vf choisie	f
0	0	0,7	144,65305	0	144,65305	8,1130542	136,54	1,2650522	0	0	
8,8370785	0,3060375	1,0060375	93,606981	0,0367897	93,570191	0,0309313	93,53926	0,0625332	0,6637897	0,0625271	6,086E-06
17,674157	-0,1782999	0,8277376	118,29708	25,334103		3,7669654	147,39815	-0,8363368	-0,3867292	-0,8359855	-0,0003512
26,511235		0,6502689	158,02786	0,0411554	157,9867	0,0343159	157,95239	0,0661114	-0,3849262	0,0661331	-2,163E-05
35,348314		0,7625312	130,53775	1,6667002	128,87105	1,0567581	127,81429	0,4208955	0,2434947	0,4208564	3,912E-05
44,185392		0,8120925	121,03714	1,536232	122,57337	0,2810731	122,85444	-0,2058372	0,1074976	-0,2058612	2,4E-05
53,022471	-0,1112139	0,7008786	144,43548		147,20849	0,485661	147,69415	-0,2766282	-0,2412209	-0,2765806	-4,761E-05
61,859549		0,6964378	145,54136		144,9183	0,4248798	144,49342	0,2577165	-0,0096319	0,2573167	0,0003999
70,696628		0,7901804	125,07592	0,2098525	124,86607	0,1551058	124,71097	0,1493348	0,2033259	0,1493352	-4,54E-07
79,533706		0,7630567	130,42987	2,5841667	133,01404	0,4549557	133,46899	-0,267346	-0,0588308	-0,2669969	-0,0003491
88,370785		0,6898022	147,22304	0,0934693	147,31651	0,0210378	147,33755	-0,0512726	-0,1588878	-0,0507786	-0,0004941
97,207863		0,732706	136,93977	0,5280761	136,41169	0,3645461	136,04714	0,2368989	0,0930575	0,2368937	5,201E-06
40001											
106,04494		0,7790473	127,22389	0,0466326	127,27052	0,0110501	127,28157	-0,0357967	0,1005135	-0,0358666	6,994E-05
106,04494 114,88202 123,7191	-0,0531621	0,7790473 0,7258852 0,703994	127,22389 138,48532 143,66881	0,0466326 1,374855 0,0936967	127,27052 139,86017 143,57512	0,0110501 0,2536216 0.073511		-0,0357967 -0,1947681 0.0998552	-0,1005135 -0,1153076 -0.0474816	-0,0358666 -0,1947486 0.0997855	-1,941E-05 6.976E-05

Tableau (VI.5): Calcul du réservoir d'air du tronçon (SP – SR4).

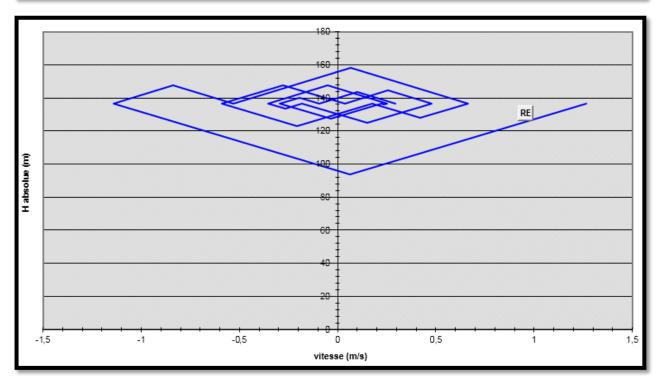


Figure (VI.10): Epure de BERGERON pour le tronçon (SP – SR4)

- > Interprétation des résultats : on remarque que :
- Pendant la phase de dépression, on a enregistré une dépression maximale de **42.97 m**, le volume d'air à la fin de cette dépression est de **0,65 m**³.
 - La surpression est de 21.45 m, le volume d'air à la fin de cette surpression est de 1.01 m³.

180 160 140 pression absolue (m) 100 80 60 40 20 0 20 40 80 100 120 temps (s)

Par ailleurs, la figure (VI.11) montre clairement que le phénomène du coup de bélier s'est amorti en fonction du temps.

Figure (VI.11): Variation de la pression absolue pour le tronçon (SP-SR4)

> Enveloppes des pressions

Le rapport des pressions en régime permanent et transitoire est représenté dans l'annexe (27).

> Dimensionnement du réservoir d'air :

Afin qu'il reste encore de l'eau dans le réservoir, on va majorer ce volume d'air de 20 %, donc le volume du réservoir sera de :

$$U = 1.2 \times U_{\text{max}} = 1.2 \times 1.01 = 1.212 \text{ m}^3$$

Finalement on optera pour un réservoir anti-bélier d'une capacité de : U = 1300 l.

VI.7.2.5. Tronçon SR4 – RV Ouled bessa

On prend les mêmes dimensions pour la tuyère que le cas précédent (SP-SR4). Donc une tuyère de diamètre d=80 mm dans une tubulure de diamètre $\phi=150 \text{ mm}$. D'où on aura :

- Montée de l'eau : La perte de charge est : $\Delta h_1 = 0.57 \times \frac{v^2}{2 \times g} = 9.41 \text{ V}_f^2$.
- **Descente de l'eau :** La perte de charge est : $\Delta h_2 = 0.74 \times \frac{V^2}{2 \times g} = 36.25 \text{ V}_f^2$.
- > Résultats de calcul du réservoir d'air

Les résultats du calcul du réservoir d'air pour le tronçon (SR4- RV Ouled bessa) en utilisant la méthode de BERGERON, sont donnés dans le tableau (VI.6) ci-dessous. L'épure de BERGERON est illustrée par la figure (VI.12).

	Diametre Débit H géomet Long, Conc coef, K Epaisseur C Haz Will Résultats des val Umax Umin	0,2578 0,052 137,68 1765,93 83 0,0286 142,696	m m3/s m m m e d'air — m3	Résultats Vitesse Section Célérité a B Hmax Hmin periode θ H0 PDC δ a/g	0,9967078 0,0521718 350,79467 35,64116 183,32116 112,03884 10,068169 147,68 5,9508105 35,758885	m² m/s m m m s m	_ p	vonnées du Réserv Volume U K PDC entr K PDC sort Exposant ression de l'air pres. air Z lésultats des press Surpression Dépression	0,64 36,25 9,41 1,2 89,927867 sions	Vf ² Vf ²]/U^	
temps	ΔU	U	Z	Δh1 ; Δh2	Z-Δh ; Z+Δh	δ	Z -+ Δh -+ δ	Vf graph	Vm	Vf choisie	f
0	0	0.64	153,63081	0	153,63081						
10.068169			133,03001	0	100,00001	5,9508105	147,68	0,9967078	0	0	
10,000103	0,2275451	0,8675451	106,64582	0,6156611	107,26148	5,9508105 0,13748	147,68 107,39896		0,433193	0 -0,1303217	0,0005671
20,136338	-0,2113803	0,8675451 0,6561648	106,64582 149,10039	16,492744	107,26148 165,59313	0,13748 2,8875031	107,39896 168,48064	-0,1297546 -0,6745256	-0,402419	-0,6745163	-9,323E-06
20,136338 30,204507	-0,2113803 -0,0654532	0,8675451 0,6561648 0,5907116	106,64582 149,10039 169,13898	16,492744 1,702088	107,26148 165,59313 167,4369	0,13748 2,8875031 1,229062	107,39896 168,48064 166,20783	-0,1297546 -0,6745256 0,4252981	-0,402419 -0,1246078	-0,6745163 0,4253008	-9,323E-06 -2,645E-06
20,136338 30,204507 40,272676	-0,2113803 -0,0654532 0,1759531	0,8675451 0,6561648 0,5907116 0,7666646	106,64582 149,10039 169,13898 123,69945	16,492744 1,702088 0,5632082	107,26148 165,59313 167,4369 123,13624	0,13748 2,8875031 1,229062 0,4413711	107,39896 168,48064 166,20783 122,69487	-0,1297546 -0,6745256 0,4252981 0,2447194	-0,402419 -0,1246078 0,3349738	-0,6745163 0,4253008 0,2446469	-9,323E-06 -2,645E-06 7,255E-05
20,136338 30,204507 40,272676 50,340845	-0,2113803 -0,0654532 0,1759531 -0,0618725	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921	106,64582 149,10039 169,13898 123,69945 136,84252	16,492744 1,702088 0,5632082 8,3599645	107,26148 165,59313 167,4369 123,13624 145,20248	0,13748 2,8875031 1,229062 0,4413711 1,5391131	107,39896 168,48064 166,20783 122,69487 146,7416	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342	-0,402419 -0,1246078 0,3349738 -0,117791	-0,6745163 0,4253008 0,2446469 -0,4802288	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06
20,136338 30,204507 40,272676 50,340845 60,409014	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695	16,492744 1,702088 0,5632082 8,3599645 0,0328075	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183 80,545352	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786 0,0191236	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525 0,7151762	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692 134,46172	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831 2,3765405	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923 136,83826	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675 0,4802136	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597 -0,2560484	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532 0,036407	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603 -0,2560464	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07 -2,074E-06
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183 80,545352 90,613521	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786 0,0191236 -0,1019178	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525 0,7151762 0,6132584	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692 134,46172 161,7045	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831 2,3765405 0,6317085	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923 136,83826 162,3362	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675 0,4802136 0,1407952	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587 137,31847 162,477	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597 -0,2560484 -0,1320102	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532 0,036407 -0,1940278	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603 -0,2560464 -0,1320093	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07 -2,074E-06 -9,453E-07
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183 80,545352 90,613521 100,68169	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786 0,0191236 -0,1019178 0,041756	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525 0,7151762 0,6132584 0,6550144	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692 134,46172 161,7045	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831 2,3765405 0,6317085 0,7968305	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923 136,83826 162,3362 148,61785	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675 0,4802136 0,1407952 0,6086244	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587 137,31847 162,477 148,00923	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597 -0,2560484 -0,1320102 0,2909958	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532 0,036407 -0,1940278 0,0794938	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603 -0,2560464 -0,1320093 0,2909968	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07 -2,074E-06 -9,453E-07 -9,24E-07
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183 80,545352 90,613521 100,68169 110,74986	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786 0,0191236 -0,1019178 0,041756 0,0598623	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525 0,7151762 0,6132584 0,6550144 0,7148767	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692 134,46172 161,7045 149,41468 134,52932	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831 2,3765405 0,6317085 0,7968305 0,1441917	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923 136,83626 162,3362 148,61785 134,67351	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675 0,4802136 0,1407952 0,6086244 0,0358499	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587 137,31847 162,477 148,00923 134,70936	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597 -0,2560484 -0,1320102 0,2909958 -0,0625223	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532 0,036407 -0,1940278 0,0794938 0,1139639	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603 -0,2560464 -0,1320093 0,2909968 -0,063069	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07 -2,074E-06 -9,453E-07 -9,24E-07 0,0005467
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183 80,545352 90,613521 100,68169 110,74986 120,81803	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786 0,0191236 -0,1019178 0,041756 0,0598623 -0,0731815	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525 0,7151762 0,6132584 0,6550144 0,7148767 0,6416952	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692 134,46172 161,7045 149,41468 134,52932 153,14392	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831 2,3765405 0,6317085 0,7968305 0,1441917 1,6845863	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923 136,83826 162,3362 148,61785 134,67351 154,82851	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675 0,4802136 0,1407952 0,6086244 0,0358499 0,3491741	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587 137,31847 162,477 148,00936 155,17768	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597 -0,2560484 -0,1320102 0,2909958 -0,0625223 -0,2155741	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532 0,036407 -0,1940278 0,0794938 0,1139639 -0,1393206	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603 -0,2560464 -0,132093 0,2909968 -0,063069 -0,2155721	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07 -2,074E-06 -9,453E-07 -9,24E-07 0,0005467 -1,938E-06
20,136338 30,204507 40,272676 50,340845 60,409014 70,477183 80,545352 90,613521 100,68169 110,74986	-0,2113803 -0,0654532 0,1759531 -0,0618725 -0,1106182 0,1018786 0,0191236 -0,1019178 0,041756 0,0598623 -0,0731815 -0,0071828	0,8675451 0,6561648 0,5907116 0,7666646 0,7047921 0,5941739 0,6960525 0,7151762 0,6132584 0,6550144 0,7148767	106,64582 149,10039 169,13898 123,69945 136,84252 167,95695 138,90692 134,46172 161,7045 149,41468 134,52932	16,492744 1,702088 0,5632082 8,3599645 0,0328075 1,0176831 2,3765405 0,6317085 0,7968305 0,7968305 0,441917 1,6845863 0,3333773	107,26148 165,59313 167,4369 123,13624 145,20248 167,92415 137,88923 136,83826 162,3362 148,61785 134,67351 154,82851 154,89324	0,13748 2,8875031 1,229062 0,4413711 1,5391131 0,0317304 0,7633675 0,4802136 0,1407952 0,6086244 0,0358499	107,39896 168,48064 166,20783 122,69487 146,7416 167,89242 137,12587 137,31847 162,477 148,00923 134,70936 155,17768	-0,1297546 -0,6745256 0,4252981 0,2447194 -0,4802342 0,0587651 0,3288597 -0,2560484 -0,1320102 0,2999958 -0,0625223 -0,2155741 0,1882228	-0,402419 -0,1246078 0,3349738 -0,117791 -0,2105913 0,1939532 0,036407 -0,1940278 0,0794938 0,1139639	-0,6745163 0,4253008 0,2446469 -0,4802288 0,0590461 0,3288603 -0,2560464 -0,1320093 0,2909968 -0,063069 -0,2155721 0,1882232	-9,323E-06 -2,645E-06 7,255E-05 -5,36E-06 -0,0002811 -6,262E-07 -2,074E-06 -9,453E-07 -9,24E-07 0,0005467

Tableau (VI.6): Calcul du réservoir d'air du tronçon (SR4 – RV Ouled bessa).

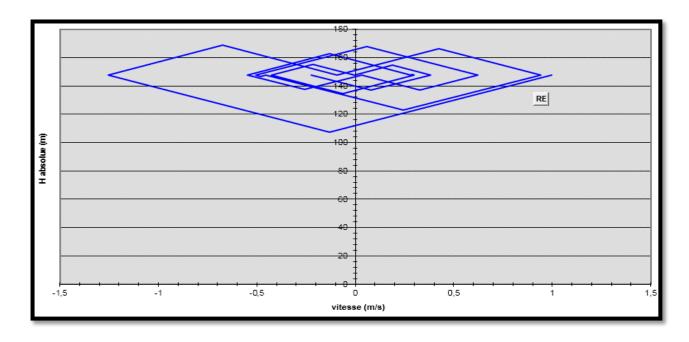


Figure (VI.12): Epure de BERGERON pour le tronçon (SR4 – RV Ouled bessa)

- > Interprétation des résultats : on remarque que :
- Pendant la phase de dépression, on a enregistré une dépression maximale de 40.42 m, le volume d'air à la fin de cette dépression est de $0,59 \text{ m}^3$.
 - La surpression est de 20.24 m, le volume d'air à la fin de cette surpression est de 0.87 m³.

180 140 120 pression absolue 100 80 60 40 20 0 20 40 80 120 140 temps (s)

Par ailleurs, la figure (VI.13) montre clairement que le phénomène du coup de bélier s'est amorti en fonction du temps.

Figure (VI.13): Variation de la pression absolue pour le tronçon (SR4-RV Ouled bessa)

> Enveloppes des pressions

Le rapport des pressions en régime permanent et transitoire est représenté dans l'annexe (28).

> Dimensionnement du réservoir d'air :

Afin qu'il reste encore de l'eau dans le réservoir, on va majorer ce volume d'air de 20 %, donc le volume du réservoir sera de :

$$U = 1.2 \times U_{max} = 1.2 \times 0.87 = 1.044 \text{ m}^3$$

Finalement on optera pour un réservoir anti-bélier d'une capacité de : U = 1100 l.

Remarque:

Pour les tronçons gravitaires, on procède à une fermeture lente de la vanne pour éviter le coup de bélier.

VI.8. Pose des conduites

Le rôle de la conduite est de pouvoir transporter un débit souhaité en résistant aux pressions, aux surpressions, aux flexions longitudinales, aux efforts d'ovalisation (dus à son propre poids, au poids d'eau, à celui des terres et aux surcharges roulantes) et à l'agressivité du sol.

La pose de la conduite est d'une importance majeure ; pour cela, on doit tenir compte de certains impératifs lors de l'aménagement de la fouille et de la pose de la conduite.

VI.8.1 Exécution et aménagement de la tranchée [13]

- La section transversale de la tranchée dépend essentiellement de la largeur et de la profondeur;
- La largeur est évidement fonction du diamètre de la conduite ; elle varie aussi selon la nature du sol ;
- Le fond de la fouille doit être purgé des pierres qui pourraient s'y trouver, et convenablement dressé, après il sera recouvert d'un lit de pose de 10 à 15 cm;
- La profondeur doit être suffisante pour assurer la protection de la conduite contre le risque d'écrasement sous l'effet des charges et surcharges, et aussi contre la variation de la température pour éviter le gel en temps froid. Pour cela, on prévoit une profondeur de 1 m jusqu'à la génératrice supérieure de la conduite ;
- Pour permettre aux ouvriers de travailler aisément, on doit prévoir un espacement de 50 cm de part et d'autre de la conduite.

C. J.	NE (2.2)	TT. 4 1		
Couche	Matériau	Hauteur de remblai		
Lit de pose	Sable 0.1 à 5 mm	Couche au moins 10 cm		
Assise	Sable 0.1 à 5 mm	Jusqu'à hauteur axe du tube		
Remblai de protection	Sable 0.1 à 5 mm	10 cm au-dessus du tube		
Remblai supérieur	Réutilisation déblai	Jusqu'à la surface		

Tableau (VI.7): Les différents matériaux

VI.8.2. Traversée de points spéciaux

Pendant l'exécution des travaux de terrassement on se trouve dans pas mal de cas obligé de traverser des points spéciaux : route, chemin de fer ou rivière.

VI.8.2.1. Traversée des oueds

Pour le passage des oueds, la conduite peut emprunter les caniveaux qui ont été réservés sur le trottoir d'un pont s'il existe, sinon elle peut être posée dans le lit même des oueds, dans ce dernier cas, il faut établir une fouille dans laquelle la conduite sera posée et recouverte de béton, (figure (VI.14)).

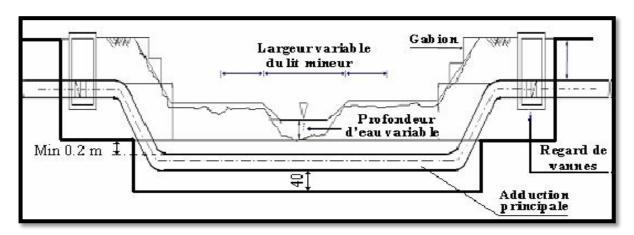


Figure (VI.14): Traversée d'un oued

VI.8.2.2. Passage d'une route

Une conduite traversant une route sera exposée à des charges qui peuvent amener des ruptures, par conséquent, des infiltrations nuisibles à la conduite et à la route, afin d'éviter ces dégâts, la pose des conduites s'effectuera dans des buses de diamètre supérieur, dans lesquelles les conduites seront introduites pour les protéger contre les chocs et les vibrations, (Figure (VI.15)).

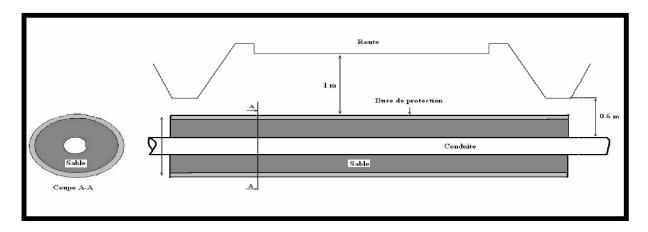


Figure (VI.15): Traversée d'une route

VI.8.2.3. Pose en élévation

Lors de la traversée des terrains très accidentés ou de dépressions, la conduite reposera sur des tasseaux en béton dans lesquels des têtes de pieux seront noyées, butées au préalable jusqu'au bon sol. Les tasseaux peuvent être au nombre d'un ou de deux par tuyau.

VI.8.2.4. Stabilisation de la conduite

A cause de la poussée de l'eau, il y a risque d'un déboîtement des joints dans les parties soudées ou la rupture des soudures soit au niveau des branchements ou dans le cas d'un changement de direction. Pour remédier à ce type de problème, on construit des massifs en béton, qui s'opposent aux déboitements et ruptures grâce à leurs poids, on peut les associés à des fers d'amarrage, nécessaires même pour les conduites à joints soudés ou à brides si l'intensité des efforts en jeu l'exige. On peut distinguer [12]:

- Butée d'extrémité en vue d'un essai hydraulique ;
- Butée sur un branchement (Figure (VI.16));
- Butée sur un coude horizontal (Figure (VI.17));
- Butée sur un coude vertical :
- Butée sur un cône.

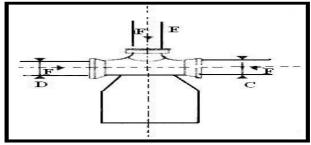


Figure (VI.16): Butée sur un branchement

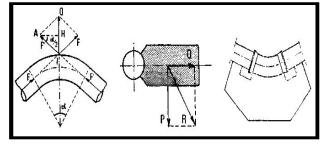


Figure (VI.17): Butée sur coude horizontal

VI.8.3. Essais hydrostatiques du réseau (en tranchée) [4]

Dès la fin des travaux sur l'ensemble du réseau ou une partie homogène dotée de tous ses équipements hydrodynamiques et avant le remblaiement de la tranchée, il sera procédé à un essai progressif du réseau jusqu'à ce que la pression atteint la pression de service demandée pour vérifier l'étanchéité des joints. Tous les ouvrages et organes de la conduite feront l'objet d'une vérification et éventuellement d'une manœuvre test sur des tronçons de 200 m au maximum, avec une pression égale à la pression majorée de 50 % pendant un temps d'épreuve de 30 minutes. Cette opération s'effectue à l'aide d'une pompe d'épreuve, et la variation de pression doit être inférieure à 0.2 bar.

VI.8.4. Le remblaiement de la conduite

Le remblaiement de la tranchée s'effectue par couches successives, en utilisant une terre dépourvue de pierres, très fortement damée pour éviter tous tassement ultérieur du terrain autour de la conduite.

VI.8.4.1. Précaution intéressant les conduites

L'entrepreneur prendra toutes dispositions utiles pour qu'à aucun moment les travaux des corps étrangers ne viennent à pénétrer dans les tuyaux. Il devra en particulier vérifier chaque élément de tronçons avant sa pose et procéder à un bouchage efficace des tronçons posés ou en cours d'essai.

VI.8.4.2. La stérilisation des conduites neuves avant la mise en service

Elle doit être précéder d'un nettoyage et d'un rinçage pour éliminer la terre ou les poussières introduites pendant la pose plutôt qu'un simple remplissage suivi d'une vidange souvent insuffisant ou un rinçage au fil de l'eau, il est préférable de procéder à un nettoyage mécanique.

VI.9. Conclusion

Dans ce chapitre, nous nous sommes intéressés au phénomène du coup de bélier, et afin de protéger le réseau étudié contre ce phénomène, nous avons procédé à :

- La fermeture lente de la vanne pour les tronçons gravitaires ;
- L'utilisation des réservoirs d'air pour les tronçons de refoulement.

Les volumes des réservoirs d'air trouvés sont : 1.8 m³, 2.2 m³, 1.5 m³, 1.3 m³ et 1.1 m³ pour les tronçons SR1- SR2, SR2 - SR3, SR3 - RV Tacheta Zougagha, SP – SR4 et SR4 – RV Ouled bessa respectivement.

Nous sommes intéressés aussi à l'opération de pose des conduites dont le but d'assurer l'équilibre des tuyaux et l'étanchéité des joints pour donner une stabilité importante du réseau et diminuer les frais d'entretien.

Conclusion générale

Conclusion générale

La rénovation et l'extension du système d'alimentation en eau potable de la commune Tacheta Zougagha et ses agglomérations secondaires, constitue une priorité à long terme, où ces dernières souffrent d'un manque exorbitant en eau.

Lors de cette étude, nous avons essayé de résoudre cette problématique, où il s'est avéré nécessaire de rénover le système d'alimentation par la projection de deux forages, une station de pompage, cinq stations de reprise et sept réservoirs avec une nouvelle chaine d'adduction.

La réalisation de notre projet a nécessité la prise en compte des caractéristiques hydrauliques de la commune de Tacheta Zougagha et ses agglomérations secondaires et des données démographiques projetées à partir des données existantes et du taux d'accroissement de la population qui est de **1.40 %**.

Après avoir estimé les différents besoins en eau aux divers horizons, nous avons constaté que ces besoins à long terme sont de **8063.74m³/j** soit **93.33 l/s**, ils ne seront pas satisfaits par le débit journalier fourni par le forage existant qui est de **35 l/s**, ce qui est nous oblige à projeter deux forages avec un débit exploitable totale de **77 l/s**.

Afin d'assurer l'alimentation en eau potable de la zone d'étude, et son acheminement par refoulement et gravitairement, nous avons projeté : 7 réservoirs leurs volumes varie entre 250 m³ et 900 m³, une station de pompage avec un réservoir de capacité de 800m³, cinq stations de reprise : SR1, SR2, SR3, SR4 avec des bâches à eau de même capacité de 100m³ et SR5 avec une bâche à eau de capacité de 150 m³.

Pour le dimensionnement de la conduite d'adduction, nous avons choisi les diamètres les plus économiques avec des vitesses acceptables, dans le cas de l'adduction gravitaire et afin d'augmenter les pertes de charge, nous avons utilisé des vannes. Concernant le choix du type du matériau des conduites, nous avons opté pour le PEHD pour les avantages qu'elle présente, à savoir : durée de vie importante, facilité de pose, ainsi qu'elles répondent parfaitement aux normes de potabilité.

Le choix des pompes a été porté sur les pompes immergées et les pompes centrifuges multicellulaires à axe horizontal vu leur rendement qui est très élevé. Ce choix a été réalisé à l'aide d'un catalogue des pompes.

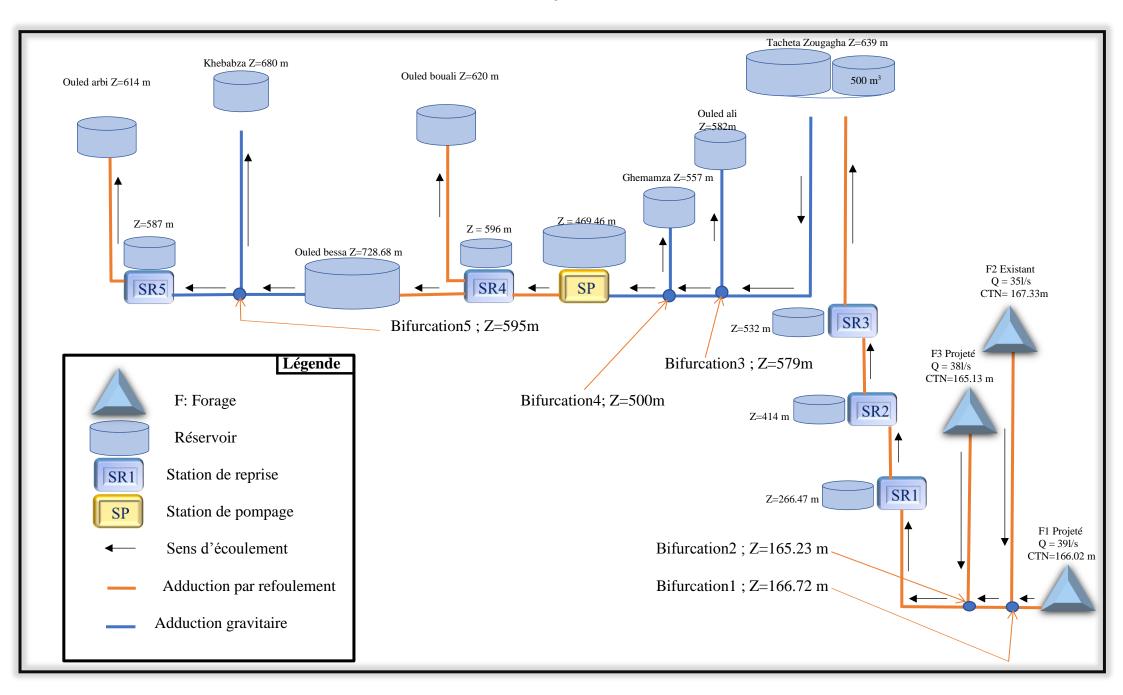
L'analyse du phénomène du coup de bélier fait ressortir qu'il peut survenir dans certains tronçons. Pour les conduites de refoulement, les résultats nous ont montré que la protection est nécessaire. De ce fait, nous avons dimensionné des réservoirs d'air ayant les capacités : **1.8 m³**, **2.2 m³**, **1.5 m³**, **1.3 m³** et **1.1 m³** pour les tronçons SR1- SR2, SR2 - SR3, SR3 - RV Tacheta, SP - SR4 et SR4 - RV Ouled bessa respectivement.

Pour les conduites gravitaires, nous préconisons une fermeture lente des vannes pour éviter l'apparition de ce phénomène.

Cette étude nous a permis de mettre en pratique toutes les connaissances acquises dans le domaine de l'hydraulique durant notre cycle de formation et nous espérons que ce modeste travail servira comme référence pour les promotions futures.

Bibliographie

Bibliographie


- [1] recueillies auprès des services : APC de la Commune de Tacheta Zougagha Wilaya de Ain defla et la direction d'Hydraulique de la Wilaya.
- [2] D.S.A d'Ain defla,2011 : Direction des services Agricoles
- [3] **Bonnin**, **J.**: "Hydraulique urbaine appliquée aux agglomérations de petite et moyenne importance". Edition EYROLLES, 1979.
- [4] **DUPONT, A.:** "Hydraulique urbaine. Tome II: Ouvrages de transport, élévation et distribution des eaux". Edition EYROLLES, 1979.
- [5] AMARA, L.: "Etude de l'alimentation en eau des localités TOGHZA et CHOKRANE, commune de CHORFA et report sur SIG, Wilaya de Bouira". Mémoire de fin d'études, Université de BEJAIA, 2007.
- [6] BONVIN, J.: "Hydraulique urbaine", Tome I. Version 2005.
- [7] ALLOUNE, N. et YOUBI, S. « Renforcement de l'A.E. P de la rive gauche de la commune d'Amizour Wilaya de Bejaia à partir du barrage de Tichy Haf ». Mémoire de fin d'études, Université de Bejaia, 2008.
- [8] HUGUES, G., Adduction et distribution d'eau, Technique de l'ingénieur, Doc C5 195.
- [9] ALMAS.M et MAAKNI.R: « Réhabilitation de la chaine de refoulement de Tebliente Tychi Bejaia ». Diplôme d'Etude Universitaire appliquées options: Gestion des réseaux Urbaines, 2007.
- [10]: Cours hydraulique 3, 3ème année hydraulique urbaine, Université de Bejaia, 2017.
- [11] AMI, D. et SADOU, B. « Etude de l'adduction en eau potable de la commune d'Adekar et les deux villages Tifra et Tizi-tifra à partir des deux forages projetés sur la rive d'Oued soummam, Mémoire de fin d'études, D.E.U.A., Université de Bejaia ,2008.
- [12] DUPONT, A.: « Hydraulique Générale et Appliquée ». Edition EYROLLES, 1980.
- [13] BENDAHMANE, B. et OUBELGHA, N.: « Renforcement de l'AEP de OUADHIAS et de TAGUEMOUNT EL DJEDID à partir de TAKHOUKHT (Wilaya de TIZI OUZOU) ». Mémoire de fin d'études, Université de Bejaia, 2007.
- [14] LABORDE, J.P.: "Eléments d'Hydraulique générale". Edition 2000.
- [15] **DUPONT**, A.: Hydraulique urbaine, exercices et projets. Edition Eyrolles, 1970.

Annexes

Annexe (1): Régime de consommation horaire en fonction du $K_{max.h}$

Heures	C	oefficie	ent de v	ariatio	n maxi	mal ho	raire d	e la co	nsomn	nation (Kmax h)
Heures	1.2	1.25	1.3	1.35	1.4	1.45	1.5	1.7	1.8	1.9	2	2.5
0-1	3.5	3.35	3.2	3	2.5	2	1.5	1	0.9	0.85	0.75	0.6
1-2	3.45	3.35	3.25	3.2	2.65	2.1	1.5	1	0.9	0.85	0.75	0.6
2-3	3.45	3.3	2.9	2.5	2.2	1.85	1.5	1	0.9	0.85	1	1.2
3-4	3.4	3.2	2.9	2.6	2.25	1.9	1.5	1	1	1	1	2
4-5	3.4	3.25	3.35	3.5	3.2	2.85	2.5	2	1.35	2.7	3	3.5
5-6	3.55	3.4	3.75	4.1	3.9	3.7	3.5	3	3.85	4.7	5.5	3.5
6-7	4	3.85	4.15	4.5	4.5	4.5	4.5	5	5.2	5.35	5.5	4.5
7-8	4.4	4.45	4.55	4.9	5.1	5.3	5.5	6.5	6.2	5.85	5.5	10.2
8-9	5	5.2	5.05	4.9	5.35	5.8	6.25	6.5	5.5	4.5	3.5	8.8
9-10	4.8	5.05	5.4	5.6	5.85	6.05	6.25	5.5	5.85	4.2	3.5	6.5
10-11	4.7	4.85	4.85	4.9	5.35	5.8	6.25	4.5	5	5.5	6	4.1
11-12	4.55	4.6	4.6	4.7	5.25	5.7	6.25	5.5	6.5	7.5	8.5	4.1
12-13	4.55	4.6	4.5	4.4	4.6	4.8	5	7	7.5	7.9	8.5	3.5
13-14	4.55	4.55	4.3	4.1	4.4	4.7	5	7	6.7	6.35	6	3.5
14-15	4.6	4.75	4.4	4.1	4.6	5.05	5.5	5.5	5.35	5.2	5	4.7
15-16	4.6	4.7	4.55	4.4	4.6	5.3	6	4.5	4.65	4.8	5	6.2
16-17	4.6	4.65	4.5	4.3	4.9	5.45	6	5	4.5	4	3.5	10.4
17-18	4.3	4.35	4.25	4.1	4.6	5.05	5.5	6.5	5.5	4.5	3.5	9.4
18-19	4.35	4.4	4.25	4.5	4.7	4.85	5	6.5	6.3	6.2	6	7.3
19-20	4.25	4.3	4.4	4.5	4.5	4.5	4.5	5	5.35	5.7	6	1.6
20-21	4.25	4.3	4.4	4.5	4.4	4.2	4	4.5	5	5.5	6	1.6
21-22	4.15	4.2	4.5	4.8	4.2	3.6	3	3	3	3	3	1
22-23	3.9	3.75	4.2	4.6	3.7	2.85	2	2	2	2	2	0.6
23-24	3.8	3.7	3.5	3.3	2.7	2.1	1.5	1	1	1	1	0.6
Total	100	100	100	100	100	100	100	100	100	100	100	100

Annexe (2): Schéma général des réservoirs

Annexe (3): Dimensionnement du réservoir Ouled ali

Heure	Apport (%)	Distribution (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	4.16	0.6	3.56		3.56
1-2	4.16	0.6	3.56		7.12
2-3	4.16	1.2	2.96		10.08
3-4	4.16	2	2.16		12.24
4-5	4.16	3.5	0.66		12.9
5-6	4.16	3.5	0.66		13.56
6-7	4.16	4.5		0.34	13.22
7-8	4.16	10.2		6.04	7.18
8-9	4.17	8.8		4.63	2.55
9-10	4.17	6.5		2.33	0.22
10-11	4.17	4.1	0.07		0.29
11-12	4.17	4.1	0.07		0.36
12-13	4.17	3.5	0.67		1.03
13-14	4.17	3.5	0.67		1.7
14-15	4.17	4.7		0.53	1.17
15-16	4.17	6.2		2.03	-0.86
16-17	4.17	10.4		6.23	-7.09
17-18	4.17	9.4		5.23	-12.32
18-19	4.17	7.3		3.13	-15.45
19-20	4.17	1.6	2.57		-12.88
20-21	4.17	1.6	2.57		-10.31
21-22	4.17	1	3.17		-7.14
22-23	4.17	0.6	3.57		-3.57
23-24	4.17	0.6	3.57		0
Total	100	100			

Annexe (4): Dimensionnement du réservoir Ghemamza

Heure	Apport (%)	Distribution (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	4.16	0,67	3.49		3.94
1-2	4.16	0,67	3.49		6.98
2-3	4.16	1,1	3.06		10.04
3-4	4.16	1,5	2.66		12.7
4-5	4.16	3,26	0.9		13.6
5-6	4.16	4,5		0.34	13.26
6-7	4.16	5		0.84	12.42
7-8	4.16	7,85		3.69	8.73
8-9	4.17	6,15		1.98	6.75
9-10	4.17	5		0.83	5.92
10-11	4.17	5,05		0.88	5.04
11-12	4.17	6,3		2.13	2.91
12-13	4.17	6		1.83	1.08
13-14	4.17	4,75		0.58	0.5
14-15	4.17	4,85		0.68	-0.18
15-16	4.17	5,6		1.43	-1.61
16-17	4.17	6,95		2.78	-4.39
17-18	4.17	6,45		2.28	-6.67
18-19	4.17	6,65		2.48	-9.15
19-20	4.17	3,8	0.37		-8.78
20-21	4.17	3,8	0.37		-8.41
21-22	4.17	2	2.17		-6.24
22-23	4.17	1,3	2.87		-3.37
23-24	4.17	0,8	3.37		0
Total	100	100	'	'	

Annexe (5): Dimensionnement du réservoir Ouled bouali

Heure	Apport (%)	Distribution (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	5	0.75	4.25		4.25
1-2	5	0.75	4.25		8.5
2-3	5	1	4		12.5
3-4	5	1	4		16.5
4-5	5	3	2		18.5
5-6	5	5.5		0.5	18
6-7	5	5.5		0.5	17.5
7-8	5	5.5		0.5	17
8-9	5	3.5	1.5		18.5
9-10	5	3.5	1.5		20
10-11	5	6		1	19
11-12	5	8.5		3.5	15.5
12-13	5	8.5		3.5	12
13-14	5	6		1	11
14-15	5	5		0	11
15-16	5	5		0	11
16-17	5	3.5	1.5		12.5
17-18	0	3.5		3.5	9
18-19	0	6		6	3
19-20	0	6		6	-3
20-21	0	6		6	-9
21-22	5	3	2		-7
22-23	5	2	3		-4
23-24	5	1	4		0
Total	100	100			

Annexe (6): Dimensionnement du réservoir Ouled bessa

		Distrib	oution (%)	Surplus	Déficit	Résidu
Heure	Apport (%)	Adduction	Distribution	(%)	(%)	(%)
		(%)	(%)	(70)	(70)	(/ 0)
0-1	5	1.84	0,5	2.66		2.66
1-2	5	1.84	0,5	2.66		5.32
2-3	5	1.84	0,5	2.66		7.98
3-4	5	1.84	0,56	2.6		10.58
4-5	5	1.84	0,75	2.41		12.99
5-6	5	1.84	2,15	1.01		14
6-7	5	1.84	2,9	0.26		14.26
7-8	5	1.84	3,46		0.3	13.96
8-9	5	1.84	3,07	0.09		14.05
9-10	5	1.84	3,27		0.11	13.94
10-11	5	1.84	2,79	0.37		14.31
11-12	5	1.84	3,63		0.47	13.84
12-13	5	1.84	4,19		1.03	12.81
13-14	5	1.84	3,74		0.58	12.23
14-15	5	1.84	2,99	0.17		12.4
15-16	5	1.84	2,6	0.56		12.96
16-17	5	1.84	2,51	0.65		13.61
17-18	0	1.84	3,07		4.91	8.7
18-19	0	1.84	3,52		5.36	3.34
19-20	0	1.84	2,99		4.83	-1.49
20-21	0	1.84	2,79		4.63	-6.12
21-22	5	1.84	1,67	1.49		-4.63
22-23	5	1.85	1,11	2.04		-2.59
23-24	5	1.85	0,56	2.59		0
Total	100	44.18	55.82			

Annexe (7): Dimensionnement du réservoir Khebabza

Heure	Apport (%)	Distribution (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	4.16	0.75	3.41		3.41
1-2	4.16	0.75	3.41		6.82
2-3	4.16	1	3.16		9.98
3-4	4.16	1	3.16		13.14
4-5	4.16	3	1.16		14.3
5-6	4.16	5.5		1.34	12.96
6-7	4.16	5.5		1.34	11.62
7-8	4.16	5.5		1.34	10.28
8-9	4.17	3.5	0.67		10.95
9-10	4.17	3.5	0.67		11.62
10-11	4.17	6		1.83	9.79
11-12	4.17	8.5		4.33	5.46
12-13	4.17	8.5		4.33	1.13
13-14	4.17	6		1.83	-0.7
14-15	4.17	5		0.83	-1.53
15-16	4.17	5		0.83	-2.36
16-17	4.17	3.5	0.67		-1.69
17-18	4.17	3.5	0.67		-1.02
18-19	4.17	6		1.83	-2.85
19-20	4.17	6		1.83	-4.68
20-21	4.17	6		1.83	-6.51
21-22	4.17	3	1.17		-5.34
22-23	4.17	2	2.17		-3.17
23-24	4.17	1	3.17		0
Total	100	100			

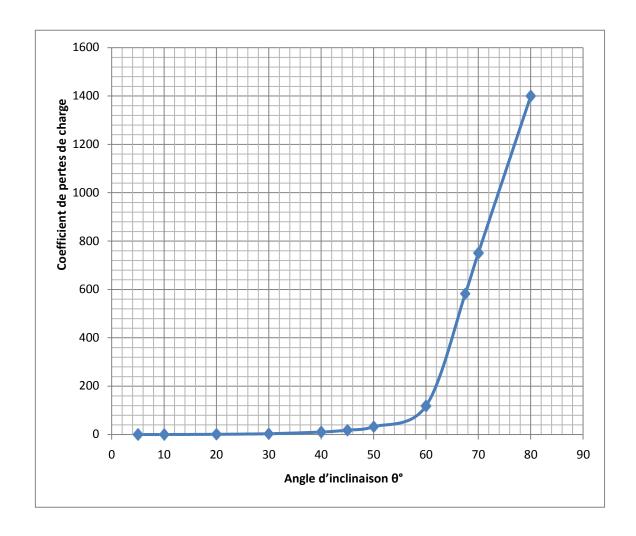
Annexe (8): Dimensionnement du réservoir Ouled arbi

Heure	Apport (%)	Distribution (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	5	0.75	4.25		4.25
1-2	5	0.75	4.25		8.5
2-3	5	1	4		12.5
3-4	5	1	4		16.5
4-5	5	3	2		18.5
5-6	5	5.5		0.5	18
6-7	5	5.5		0.5	17.5
7-8	5	5.5		0.5	17
8-9	5	3.5	1.5		18.5
9-10	5	3.5	1.5		20
10-11	5	6		1	19
11-12	5	8.5		3.5	15.5
12-13	5	8.5		3.5	12
13-14	5	6		1	11
14-15	5	5		0	11
15-16	5	5		0	11
16-17	5	3.5	1.5		12.5
17-18	0	3.5		3.5	9
18-19	0	6		6	3
19-20	0	6		6	-3
20-21	0	6		6	-9
21-22	5	3	2		-7
22-23	5	2	3		-4
23-24	5	1	4		0
Total	100	100			

Annexe (9): Dimensionnement de la station de reprise SR5

Heure	Apport (%)	Distribution (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	4.16	5		0.84	-0.84
1-2	4.16	5		0.84	-1.68
2-3	4.16	5		0.84	-2.52
3-4	4.16	5		0.84	-3.36
4-5	4.16	5		0.84	-4.2
5-6	4.16	5		0.84	-5.04
6-7	4.16	5		0.84	-5.88
7-8	4.16	5		0.84	-6.72
8-9	4.17	5		0.83	-7.55
9-10	4.17	5		0.83	-8.38
10-11	4.17	5		0.83	-9.21
11-12	4.17	5		0.83	-10.04
12-13	4.17	5		0.83	-10.87
13-14	4.17	5		0.83	-11.7
14-15	4.17	5		0.83	-12.53
15-16	4.17	5		0.83	-13.36
16-17	4.17	5		0.83	-14.19
17-18	4.17		4.17		-10.02
18-19	4.17		4.17		-5.85
19-20	4.17		4.17		-1.68
20-21	4.17		4.17		2.49
21-22	4.17	5		0.83	1.66
22-23	4.17	5		0.83	0.83
23-24	4.17	5		0.83	0
Total	100	100			

Annexe (10): Dimensionnement de la station de pompage SP


Heure	Apport (%)	Distribution (%)	Surplus	Déficit	Résidu
licuic	/*pport (/ 0)	Distribution (70)	(%)	(%)	(%)
0-1	4.16	5		0.84	-0.84
1-2	4.16	5		0.84	-1.68
2-3	4.16	5		0.84	-2.52
3-4	4.16	5		0.84	-3.36
4-5	4.16	5		0.84	-4.2
5-6	4.16	5		0.84	-5.04
6-7	4.16	5		0.84	-5.88
7-8	4.16	5		0.84	-6.72
8-9	4.17	5		0.83	-7.55
9-10	4.17	5		0.83	-8.38
10-11	4.17	5		0.83	-9.21
11-12	4.17	5		0.83	-10.04
12-13	4.17	5		0.83	-10.87
13-14	4.17	5		0.83	-11.7
14-15	4.17	5		0.83	-12.53
15-16	4.17	5		0.83	-13.36
16-17	4.17	5		0.83	-14.19
17-18	4.17		4.17		-10.02
18-19	4.17		4.17		-5.85
19-20	4.17		4.17		-1.68
20-21	4.17		4.17		2.49
21-22	4.17	5		0.83	1.66
22-23	4.17	5		0.83	0.83
23-24	4.17	5		0.83	0
Total	100	100			

Annexe (11): Prix de revient des conduites PN 10, PN 16 et PN 20 (PEHD)

PN (bar)	Diamètre extérieur (mm)	Epaisseur (mm)	Prix de revient (DA/ml)
	25	2,0	39,60
	32	2,4	61,54
	40	3,0	147,17
	50	3,7	232,79
	63	4,7	329,13
	75	5,6	392,5
	90	5,4	579,62
10	110	6,6	738,42
10	125	7,4	1209,38
	160	9,5	1892,38
	200	11,9	2937,81
	250	14,8	4684,62
	315	18,7	7516,57
	400	23,7	11724,57
	500	29,7	11724,79
	630	37,4	17729,58
	25	3,0	56,20
	32	3,6	88,20
	40	4,5	136,47
	50	5,6	211,4
	63	7,1	337,16
	75	8,4	473,63
	90	8,2	571,69
16	110	10,0	844,3
16	125	11,4	1093,08
	160	14,6	1786,51
	200	18,2	2805,48
	250	22,7	4340,56
	315	28,6	6881,37
	400	36,3	11116,05
	500	45,4	17335,76
	630	57,2	26341,10
	90	10,1	754,61
	110	12,3	1117,42
	125	14,0	1436,69
	160	17,9	2336,43
20	200	22,4	3657,02
	250	27,9	5688,70
	315	35,2	8647,89
	400	44,7	13936,58
	500	55,8	21737,75

Annexe (12): Evolution du coefficient d'ouverture de la vanne & d'une vanne à papillon en fonction de son degré d'ouverture

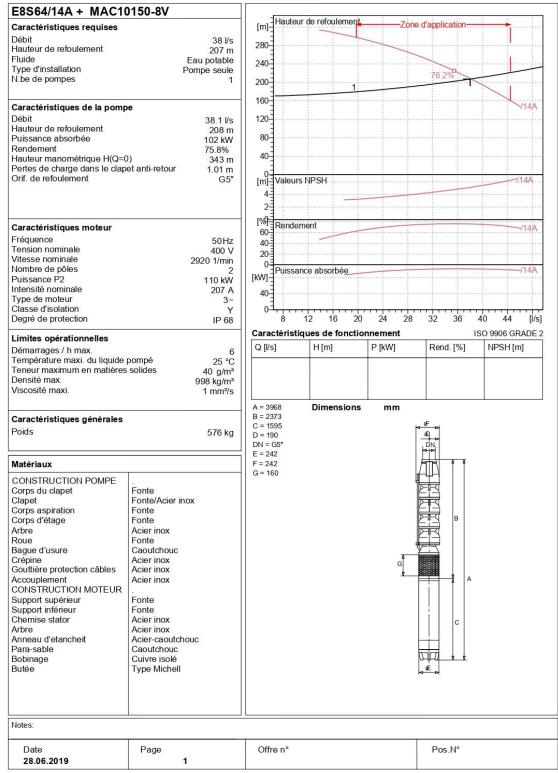
Angle d'inclinaison $ heta^\circ$	0-5	10	20	30	40	45	50	60	70	80
ε	0.25	0.52	1.54	3.91	10.8	18.7	32.6	118	751	1400

Annexe (13) : Caractéristiques techniques de la pompe du forage F1

Caractéristiques techniques

E9S55/13I + MAC10 Caractéristiques requises		[m]-	Hauteu	de refoulem	ent. Zone d'applic	ation	
Débit	39 Vs	-	-				I
Hauteur de refoulement	209 m	280					1
Fluide	Eau potable	240-			78.2%		
Type d'installation	Pompe seule	ll .					-
N.be de pompes	1	200-	1				
		160-					
Caractéristiques de la pomp	e e						/131
Débit	39.5 l/s	120-					
Hauteur de refoulement Puissance absorbée	211 m	80-					
Rendement	107 kW 76.2%						
Hauteur manométrique H(Q=0		40-					
Pertes de charge dans le clap	et anti-retour 1.08 m	0-					
Orif. de refoulement	DN125	[m]-	Valeurs	NPSH			/13۱/ــــ
		4-					
		-0,ο1					
Caractéristiques moteur		[%]	Renden	ent			/131
Fréquence	50Hz	40					
Tension nominale	400 V	20-					
Vitesse nominale Nombre de pôles	2920 1/min	0-	Duicean	ce absorbée			/131
Puissance P2	2 110 kW	[kW]	ı-uıs5al)	ce absolbee			1131
Intensité nominale	207 A	40-					
Type de moteur	3~						
Classe d'isolation	Y	0-	1 2	0 34	28 32	36 40	AA 51/o ²
Degré de protection	IP 68	1					44 [l/s]
Limites opérationnelles					ctionnement		ISO 9906 GRADE
Démarrages / h max.	6	Q [l/s	s]	H [m]	P [kW]	Rend. [%]	NPSH [m]
Température maxi. du liquide	pompé 25 °C						
Teneur maximum en matières	9						
Densité max. Viscosité maxi.	998 kg/m³						
VISCOSITE IIIAXI.	1 mm²/s						
5237 S15795 (400) 77-87 57 49		A = 48		Dimensio	ons mm		
Caractéristiques générales		B = 32 C = 15				***	
Poids	573.5 kg	D = 19	90		L OF J	N°. L / ø	VI
		DN = 1			(d)		TH I
Matériaux		F = 24			DN		<u> </u>
		G = 16			 	4 4	
CONSTRUCTION POMPE Corps du clapet	Fonte	H = 16					
Clapet	Fonte/Acier inox	I = 190 L = 6	J		E-i-Z		
Corps aspiration	Fonte	M = 13	3.5				
Corps d'étage	Fonte				<u> </u>		
Arbre	Acier inox					В	
Roue Bague d'usure	Fonte						
Crépine	Caoutchouc Acier inox						
Gouttière protection câbles	Acier inox				d III		
Accouplement	Acier inox				7	↓	
CONSTRUCTION MOTEUR	<u> </u>					A	
Support supérieur	Fonte						
Support inférieur Chemise stator	Fonte Acier inox						
Arbre	Acier inox Acier inox						
Anneau d'etancheit	Acier-caoutchouc					C	
Para-sable	Caoutchouc						
Bobinage	Cuivre isolé					Ţ	
Butée	Type Michell				₫E.		
Notes:	<u> </u>						
Notes:	Page	Offr	e n°			Pos.N°	

Annexe (14): Caractéristiques techniques de la pompe du forage F2

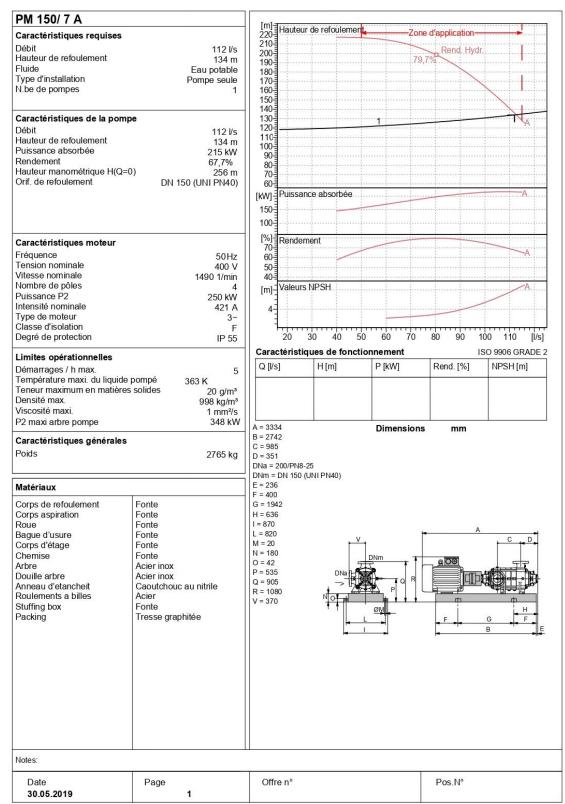

Caractéristiques techniques

E10R40/12 + MAC10	150-8V					
Caractéristiques requises Débit Hauteur de refoulement Fluide	35 √s 212 m Eau potable	360 320	uteur de refouleme	nt	76.1%	
Type d'installation N.be de pompes	Pompe seule 1	240-			0.1.0	
Caractéristiques de la pomp Débit Hauteur de refoulement Puissance absorbée Rendement Hauteur manométrique H(Q=0 Orif. de refoulement	34.9 Vs 212 m 106 kW 68%	120 120 80 120 120 120 120 120 120 120 120 120 12	eurs NPSH	1		Y12
Caractéristiques moteur Fréquence Tension nominale Vitesse nominale Nombre de pôles Puissance P2 Intensité nominale Type de moteur Classe d'isolation Degré de protection	50Hz 400 V 2920 1/min 2 110 kW 207 A 3~ Y IP 68	[%] Re 60 40 20 0 Pul [kW] 40 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	issance absorbée	16 20		7/12
Limites opérationnelles Démarrages / h max. Température maxi. du liquide Teneur maximum en matières Densité max. Viscosité maxi.		Q [l/s]	H [m]	P [kW]	Rend. [%]	SO 9906 GRADE 2 NPSH [m]
Caractéristiques générales Poids	561 kg	A = 3248 B = 1653 C = 1595 D = 215 DN = G4" E = 242	·	Dimension	s mm	
Matériaux CONSTRUCTION POMPE Corps du clapet Clapet Corps aspiration Corps d'étage Arbre Entretoise d'arbre Roue Crépine Gouttière protection câbles Accouplement CONSTRUCTION MOTEUR Support supérieur Support inférieur Chemise stator Arbre Anneau d'etancheit Para-sable Bobinage Butée	Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier inox Acier inox - Fonte Fonte Fonte Fonte Fonte Cier inox Acier inox Cier inox Acier inox	F = 250 G = 160		\$ G	B B	
Notes:						
Date 28.06.2019	Page 1	Offre n	0		Pos.N°	

Annexe (15): Caractéristiques techniques de la pompe du forage F3

Caractéristiques techniques

Annexe (16) : Caractéristiques techniques de la pompe de SR1

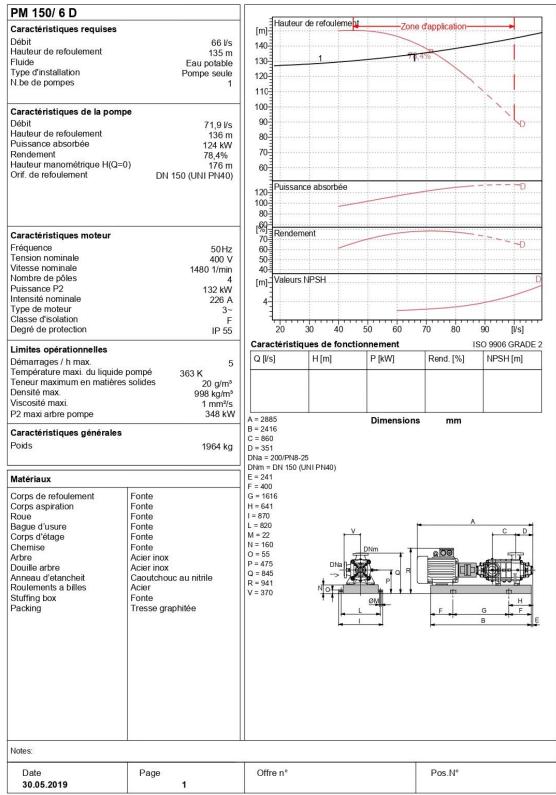

Caractéristiques techniques

Canaataniatia	<u></u>	[m]-Haute	ır de refoulemen	7on	e d'application—	
Caractéristiques requises		240=		201		ļ
Débit Hauteur de refoulement	112 Vs 158 m	220		70	Rend Hydr.	
Fluide	Eau potable	II			1170	
Type d'installation	Pompe seule	200-				
N.be de pompes	1	180-				
		160-				
Caractéristiques de la po	ompe	II 3				N _A
Débit	112 l/s	140-				
Hauteur de refoulement	158 m	120-				·····
Puissance absorbée Rendement	246 kW	100-				
Hauteur manométrique H(0	Q=0) 67,7% 292 m	E ₀₈				
Orif. de refoulement	DN 150 (UNI PN40)	F00				
			nce absorbée			A
		200				
		150				[
		100				·
Caractéristiques moteur		[%] Rende	ment			
Fréquence .	50Hz	70				Δ
Tension nominale	400 V	60-				· · · · · · · · · · · · · · · · · · ·
Vitesse nominale	1490 1/min	50=	<u>ii</u>			
Nombre de pôles	4	[m]-Valeur	s NPSH			Α
Puissance P2 Intensité nominale	315 kW					
Type de moteur	528 A 3~	4				
Classe d'isolation	F]],,,,,,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Degré de protection	IP 55	20	30 40 50	60 70	80 90 1	00 110 [i/s]
	3331	Caractérist	iques de foncti	onnement	19	SO 9906 GRADE
Limites opérationnelles	-	Q [l/s]	H [m]	P [kW]	Rend. [%]	NPSH [m]
Démarrages / h max. Température maxi. du liqui	ide pompé 363 K	([[]		. []	rtona. [70]	- Interregal
Teneur maximum en matiè						
	998 kg/m³					
Densite max.						
Densité max. Viscosité maxi.	1 mm²/s					
		A = 3459		Dimension	s mm	
Viscosité maxi. P2 maxi arbre pompe	1 mm²/s 348 kW	B = 2867		Dimension	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale	1 mm²/s 348 kW	B = 2867 C = 1110		Dimension	s mm	
Viscosité maxi. P2 maxi arbre pompe	1 mm²/s 348 kW	B = 2867	-25	Dimension	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques général Poids	1 mm²/s 348 kW	B = 2867 C = 1110 D = 351		Dimension	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux	1 mm²/s 348 kW es 2888 kg	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400		Dimension	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement	1 mm²/s 348 kW es 2888 kg	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067		Dimensions	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration	1 mm²/s 348 kW es 2888 kg Fonte Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400		Dimensions	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement	1 mm²/s 348 kW es 2888 kg	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636		Dimensions	s mm	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20		Dimension:	s mm	C D
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180		Dimension:	A	C D
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20		1	s mm	C D
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42		1	A	C
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étancheit	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm	- A	C D
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905		DNm P	A	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm	A	
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	- A	Н
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	1 mm²/s 348 kW es 2888 kg Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box Packing	Fonte Fonte Fonte Fonte Fonte Fonte Fonte Fonte Cautchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H
Viscosité maxi. P2 maxi arbre pompe Caractéristiques générale Poids Matériaux Corps de refoulement Corps aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'etancheit Roulements a billes Stuffing box	Fonte Fonte Fonte Fonte Fonte Fonte Fonte Fonte Cautchouc au nitrile Acier Fonte	B = 2867 C = 1110 D = 351 DNa = 200/PN8 DNm = DN 150 E = 236 F = 400 G = 2067 H = 636 I = 870 L = 820 M = 20 N = 180 O = 42 P = 535 Q = 905 R = 1080		DNm P	A	G H

Annexe (17): Caractéristiques techniques de la pompe de SR2

Caractéristiques techniques

Annexe (18) : Caractéristiques techniques de la pompe de SR3

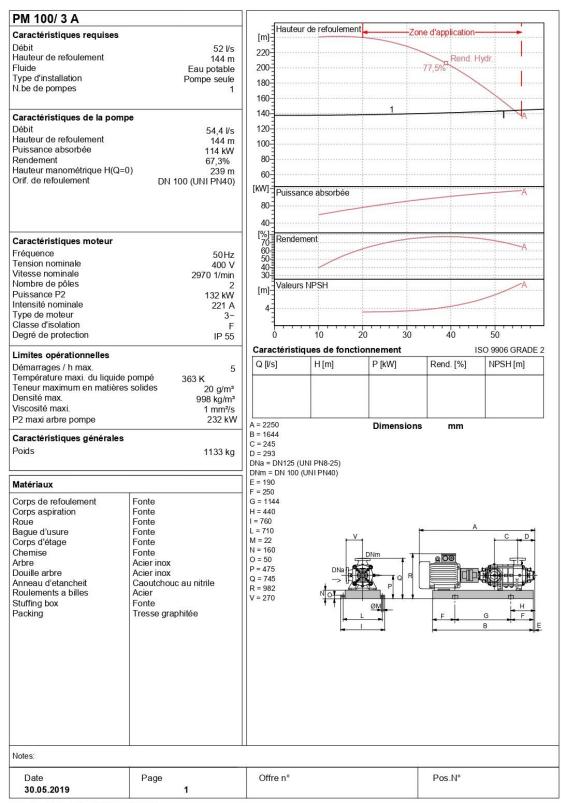

Caractéristiques techniques

Caractéristiques requises		11 1000	auteur de ref	oulement		Zone d'ap	plication—		4
Débit	112 Vs	180=	<u> </u>			\	Rend Hydr.		
lauteur de refoulement	116 m	170	1 1	T		79,7%	117.01		
luide	Eau potable	160-	T T			T			
ype d'installation	Pompe seule	0.000	T T	T		ī ī			
l.be de pompes	1	140	T	1		1			
		120	Ţ						
aractéristiques de la pomp	De .	110			1				N
ébit	112 Vs	100							A
auteur de refoulement	116 m	90-	ļ						
uissance absorbée	185 kW	80	ļ			ļ			
endement	67,7%	70-	ļ			ļķ			
auteur manométrique H(Q=0		60-	ļ						
if. de refoulement	DN 150 (UNI PN40)	50-	<u> </u>			<u></u>		<u>[i</u>	i
		rkWJ = P	uissance abs	orbée					—A
		120-							
		11 3							
		80=	1 1	1		11			
aractéristiques moteur		[%] R	endement	1					
équence .	50Hz	70-	7						A
nsion nominale	400 V	50-	<u> </u>						
tesse nominale	1480 1/min	40	ļ						
ombre de pôles	4		aleurs NPSH			1			_A
issance P2	200 kW	Ling 3							
ensité nominale	203 A	4	<u> </u>			ļi			
pe de moteur	3~								
asse d'isolation	F	1-	juurjuu	أبسن		 		irri	,,,,,,,,
egré de protection	IP 55		20 30	40 50	60 7	0 80	90 1	00 11	0 [l/s]
mites opérationnelles		Caracte	éristiques d	e fonction	onnement		18	O 9906	GRADE 2
	-	Q [l/s]	H [n	าไ	P [kW]	Re	nd. [%]	NPSH	-l [m]
émarrages / h max. empérature maxi. du liquide	nomné acak	- ()			. []		[]	1	. []
eneur maximum en matières									
ensité max.	998 kg/m³								
iscosité maxi.	1 mm²/s								
2 maxi arbre pompe	348 kW				1				
60 AMA		A = 3067 B = 2467			Dimensi	ons	mm		
aractéristiques générales		C = 860							
oids	2338 kg	D = 351							
		DNa = 200	0/PN8-25 N 150 (UNI PN	40)					
latériaux		E = 241 F = 400	1 100 (01111 11						
Corps de refoulement	Fonte	G = 1667							
corps aspiration		H = 641							
oue	Fonte	I = 870							
	Fonte	1 = 870					4		
		L = 820		V		ļ -	A		_
orps d'étage	Fonte Fonte Fonte	L = 820 M = 20		V	ţ	1	A		D D
orps d'étage nemise	Fonte Fonte Fonte Fonte	L = 820 M = 20 N = 160			DNm				D
orps d'étage nemise bre	Fonte Fonte Fonte Fonte Acier inox	L = 820 M = 20 N = 160 O = 42		V	DNm		A		D.
orps d'étage nemise bre puille arbre	Fonte Fonte Fonte Fonte Acier inox Acier inox	L = 820 M = 20 N = 160		DNa 1	DNm	R		·	D.
orps d'étage nemise bre puille arbre nneau d'etancheit	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile	L = 820 M = 20 N = 160 O = 42 P = 475	į.	V DNa		R			D
rps d'étage lemise bre vuille arbre ineau d'etancheit vulements a billes	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845	+	DNa DNa	P	R			
rps d'étage lemise bre uille arbre lineau d'étancheit julements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	DNa DNa		R			H
rps d'étage lemise bre uille arbre lineau d'étancheit julements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I F
orps d'étage nemise bre puille arbre nneau d'etancheit pulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R			H
orps d'étage nemise bre puille arbre nneau d'etancheit pulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I I F
rps d'étage lemise bre uille arbre lineau d'étancheit julements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I I F
rps d'étage lemise bre uille arbre lineau d'étancheit julements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I F
orps d'étage nemise bre puille arbre nneau d'etancheit pulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I I F
orps d'étage nemise bre ouille arbre nneau d'étancheit oulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I I F
orps d'étage nemise bre buille arbre nneau d'étancheit pulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I I F
ague d'usure orps d'étage hemise bre ouille arbre nneau d'étancheit oulements a billes urfing box acking	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I F
orps d'étage nemise bre ouille arbre nneau d'étancheit oulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I F
orps d'étage nemise bre bre suille arbre nneau d'etancheit sulements a billes uffing box acking	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	+	1 17	P	R		G	I F
orps d'étage hemise bre ouille arbre nneau d'etancheit oulements a billes uffing box	Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc au nitrile Acier Fonte	L = 820 M = 20 N = 160 O = 42 P = 475 Q = 845 R = 941	*	1 17	P	R		G	I F

Annexe (19) : Caractéristiques techniques de la pompe de SP

Caractéristiques techniques

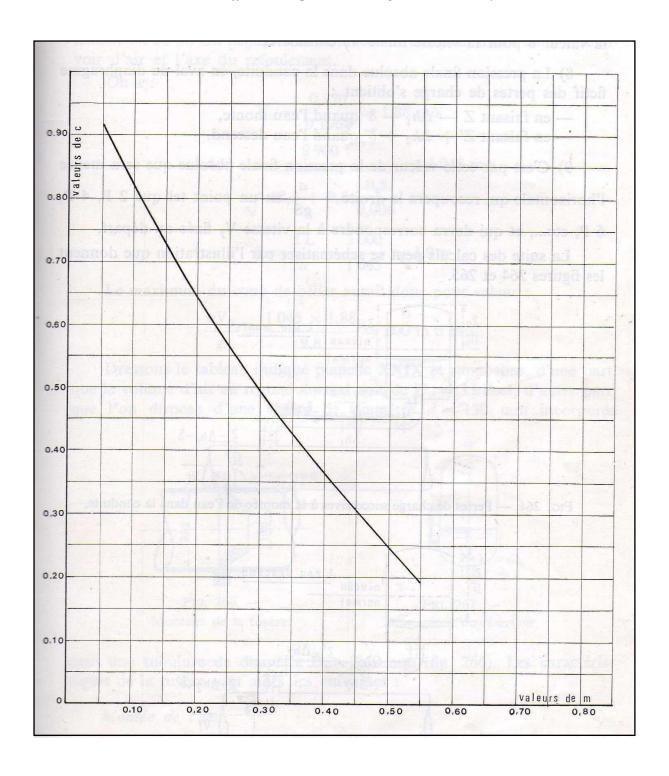
Annexe (20) : Caractéristiques techniques de la pompe de SR4 (refoule vers RV Ouled bouali)

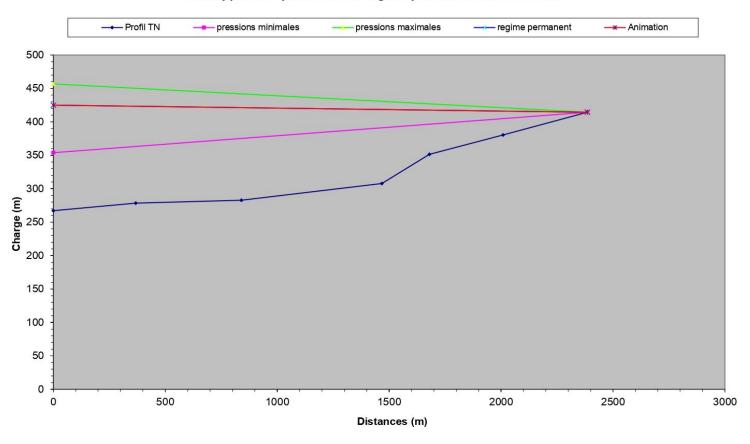

Caractéristiques techniques

Caractéristiques requise		Ha	uteur de réfouleme	ent	o d'application	
		[m]		Zon	e d'application —	
Débit	14 l/s	36=				
Hauteur de refoulement	28,6 m			71,4%		1
Fluide Type d'installation	Eau potable Pompe seule	32=			1	
N.be de pompes	1.0	28		1		
11.00 de pompes	1	1				
		_ 24				
Caractéristiques de la pe	ompe	20=				
Débit	14 Vs	11 7				
Hauteur de refoulement	28,6 m	16-				
Puissance absorbée	5,85 kW	12=				\
Rendement	65%	11 7				G
Hauteur manométrique H		8=				
Orif. de refoulement	DN 65	11 3_	1 1 1		1 1 1	
		[kW]=Pu	issance absorbée			G
		5				
		4				
		3				
Caractéristiques moteur		11 3				
Fréquence		2			T	
Tension nominale	50Hz 400 V	[m] Va	leurs NPSH			Æ
Vitesse nominale	1450 1/min	[m]=va				
Nombre de pôles	1430 1/11111	3,5				/
Puissance P2	7,5 kW	2.5				
Intensité nominale	0 A	2,5				
Type de moteur	3~	1,5				
Classe d'isolation	F	1	 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Degré de protection	IP 55	0	2 4 6	8 10	12 14 16	18 20 [
		Caracté	ristiques de fond	ctionnement		ISO 9906-A
Limites opérationnelles		Q [l/s]	H [m]	P [kW]	Rend. [%]	NPSH [m]
Démarrages / h max.	15	G [I/S]	11 [111]	L [KAA]	Renu. [70]	INF 311 [III]
Température maxi. du liqu	14 1:70 1:21:12					
Teneur maximum en mati	20 g/111					
Densité max.	998 kg/m³					
Viscosité maxi.	1 mm²/s	0.0				
		A = 1175		Dimension	ns mm	
Caractéristiques généra	les	B = 275				
Poids	188 kg	C = 1103				
1 0103	100 kg	D = 6 DNa = 80/P				
			N10			
		DNm = 65/F				
Matériaux		E = 175				
	Fonte	E = 175 F = 753				
Corps de refoulement	Fonte Fonte	E = 175 F = 753 G = 181				
Corps de refoulement Corps aspiration	Fonte	E = 175 F = 753				
Corps de refoulement Corps aspiration Corps d'étage		E = 175 F = 753 G = 181 H = 380		Δ		
Corps de refoulement	Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38		A	<u>-</u> 1	
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier	Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80		A		
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre	Fonte Fonte Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240		<u> </u>	30 a.m. 1	
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre	Fonte Fonte Fonte Acier inox	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		<u> </u>		
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue	Fonte Fonte Fonte Acier inox Acier cromé	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240		<u> </u>	20	
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Fonte Acier inox Acier cromé Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		<u> </u>		
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515				
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			al M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			ØL M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			el M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			el H
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			QL M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			PL MM
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			el H
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			QL M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			QL M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN4			P. L. H. M.
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Tresse graphitée	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515 Q = 434	DN D			QL M
Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing	Fonte Fonte Fonte Acier inox Acier cromé Fonte Acier Fonte Fonte	E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515	DN D			el H

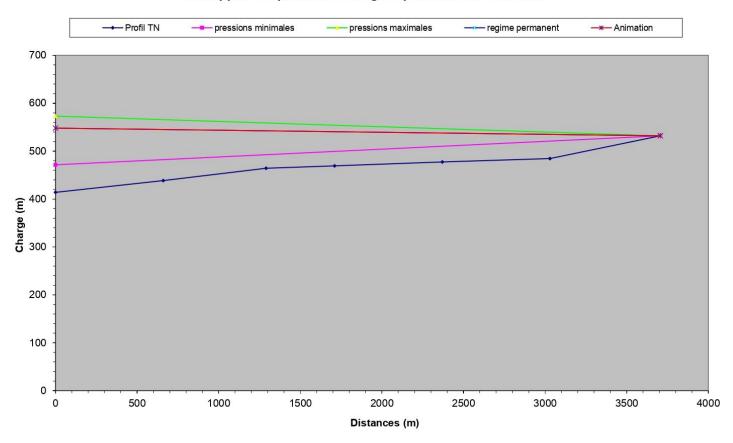
Annexe (21): Caractéristiques techniques de la pompe de SR4 (refoule vers RV Ouled bessa)

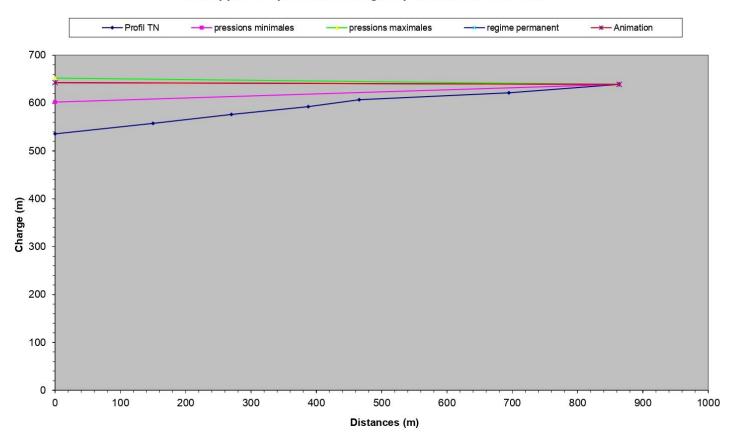
Caractéristiques techniques

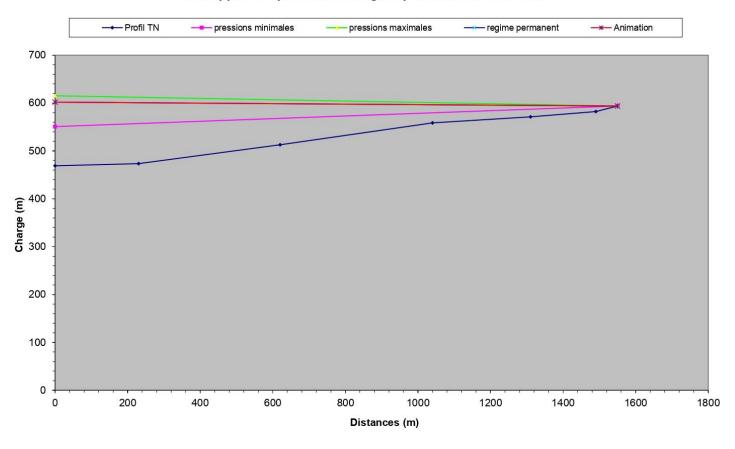

Annexe (22) : Caractéristiques techniques de la pompe de SR5

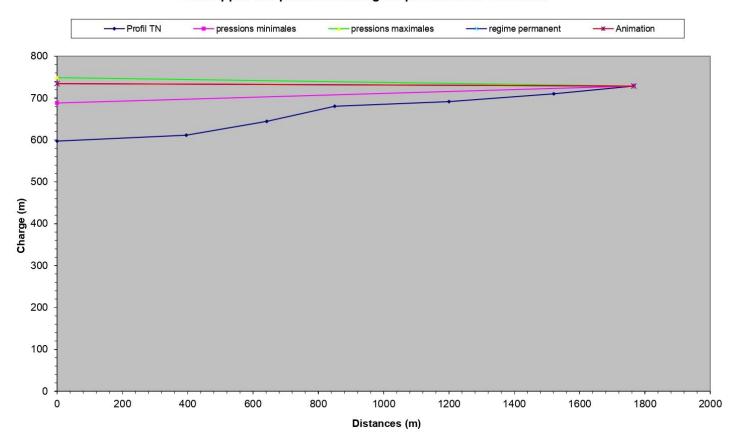

Caractéristiques techniques

Caractéristiques requises Débit 11,4 l/s Hauteur de refoulement 42 m Fluide Eau potable (Npe d'installation Pompe seule (Npe d	MEC-MR 65-3/3C			1000			
Hebit 11,4 ks Haulsur de refoulement 4 au method Eau potable (Libe de pemples et la Caractéristiques de la pompe Pempe suit (Libe de pemples et la Caractéristiques de la pompe Pember 11,4 ks Haulsur de refoulement 4 2 m			Hau	iteur de réfoulement	Zone	d'application-	
Hauteur de refoulement 42 m 42 m	Débit	11 / I/e					
Fluide Eau potable Pompo sout	Hauteur de refoulement				7	1	
Type dinstallation Delta de prompes 11,4	Fluide		40-3		71%		***************************************
Notes. Date de pompes 1 Caractéristiques de la pompe Dath Hauleur de refoulement	Type d'installation		36=				
Caractéristiques de la pompe Débit 11.4 l/s Hauteur de refoulement 42 m Vissance alsorbée 569 kW 12 Pussance alsorbée 679 kW 12 Pussance alsorbée 160 170 m 65 Hauteur manométique H(Q=0) 47 m Drif de refoulement DN 65 Caractéristiques moteur Fréquence 50 Hz Fréquence 1400 V/v Visses nominale 1450 l/min Nombre de pôles 4 4 Pussance P2 7,5 kW 2 Pussance P2 7,5 kW 2 Pussance P2 17,5 kW 2 Pussance		65	32=				
Caracteristiques de la pompe Dahi Hauleur de rebulement Jan 11,4 Vs Rendement Hauleur de rebulement Jan 11,4 Vs Rendement Hauleur manométique H(Q=0) Jan 12,4 de refoulement Jan 14,5 Vs Rendement Jan		0.58	-			\	
11.4 15			1			111	
Hauteur de refoulement Pussance absorbée 6.69 WR Rendement 71,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 78,6% Hauteur manométrique H(Q=0) 79,6% Hauteur manométrique H(Q=0) 70,6% Hauteur	Caractéristiques de la pompe		24				
Hauteur de refoulement Pussance absorbée 6.69 WR Rendement 71,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 77,6% Hauteur manométrique H(Q=0) 78,6% Hauteur manométrique H(Q=0) 79,6% Hauteur manométrique H(Q=0) 70,6% Hauteur	Débit	11 4 l/s	E0c			ļ <u>i</u> <u>i</u>	
Pulsance absorbée Randement 17,6% Hauteur manométrique H(Q=0) 47 m DN 65 Port. de refoulement 17,6% Hauteur manométrique H(Q=0) 47 m DN 65 Port. de refoulement 17,6% Hauteur manométrique H(Q=0) 47 m DN 65 Port. de refoulement 17,6% Hauteur manométrique H(Q=0) 47 m DN 65 Port. de refoulement 17,6% Nombre de pôles 1450 17 m Pulsance P2 7,5 kW Intersité nominale 0 0 A Pulsance P2 7,5 kW Intersité nominale 0 0 A Pulsance P2 7,5 kW Intersité nominale 0 0 A Pulsance P2 7,5 kW Intersité nominale 0 0 A Pulsance P2 7,5 kW Intersité nominale 0 0 A Posse de protection P55 Limites opérationnelles Demarrages / h max. du liquide pompé 180 kg/m² / 1 mm²/s Poids 18 kg Caractéristiques générales Poids 18 kg Matériaux Corps de refoulement 180 g990s A Pointe Pointe 19 pointe 20 poi			II 3				C
Rendement T7,6% Hauteur manométrique H(0=0) 47 m Drif. de refoulement DN 65	Puissance absorbée		-				
Acractéristiques moteur Fréquence Fr	Rendement		12=				
Caractéristiques moteur Fréquence 50Hz Fersion nominale 4000 V Fussance PX Fus	Hauteur manométrique H(Q=0)		8 -			ļļķ	
Caractéristiques moteur Fréquence Frequence Fr	Orif, de refoulement		4				
Caractéristiques moteur Fréquence 50Hz Tension nominale 400 V tiesse nominale 1450 l/min Nombre de pôles 4 4 50 1/min Nombre de pôles 9 7,5 kW ntensité nominale 0 AA 150 1/min Nombre de pôles 1 4 50 l/min Nombre de pôles 1 5 l/min Nombre de pôles 1 4 50 l/min Nombre de pôles 1 5 l/min Nombre de pôles		2		ssance absorbée		J	
Caractéristiques moteur Fréquence Tension nominale Vilosse nominale Vilosse nominale Vilosse poninale Viloss			7.3	ssairce absorbee			
Caractéristiques moteur Fréquence Tension nominale Vilosse nominale Vilosse nominale Vilosse poninale Viloss			6			Ţ	
Caractéristiques moteur Fréquence Frequence Fr							
Treiquence 50Hz Tension nominale 400 V tiesse nominale 1450 I/min Nombre de pôles 4 40 V tiesse nominale 1450 I/min Nombre de pôles 4 40 V tiesse nominale 1450 I/min Nombre de pôles 4 40 V tiesse nominale 10 A 4 5 5			4				
Tresson nominale ### Vites on nominale ###	Caractéristiques moteur					f	
Tension nominale Vitesse nomi		5011	II 73			1	
Montro de pôles			[m] 1/21/	PAN SILI		 	· · · · · ·
Nombre de pôles Puissance P2 7,5 kW			4 Vale	DUID INF OF		······	, , ,
Note Page		20	3,5			ł	
Intensite nominale Type de moleur 3-Classe d'solation F F Degré de protection IP 55 Degré de protection IP 56 Degré de protection IP 57 Degré degré de protection IP 57 Degré		10				ļ	
Date Page Date							
Limites opérationnelles		2233333					
Degree de protection P 55 Degree de protection P 55 Demarages / h max 15 Température maxi. du liquide pompé 363 K Teneur maximum en matières solides 20 g/m² 998 kg/m² Sucosité maxi. 1 mm²/s Caractéristiques générales Poids 188 kg Matériaux 5 Corps de refoulement Corps de refoulement Fonte Fonte Fonte Chaise palier		4732	7.000			ļ	
Caractéristiques de fonctionnement ISO 9906-A			1.1	rįminija	 	jarjarj i	njanjad
Demerages / h max. Température maxi. du liquide pompé Densité max. Densité max. Servici maxi. Température maxi. du liquide pompé Densité max. Densité max. 1 mm/s Servici maxi. Se	Degré de protection	IP 55	0	2 4 6	8 10 1	12 14 16	18 20 [l
Demerages / h max. Température maxi. du liquide pompé Densité max. Densité max. Servici maxi. Température maxi. du liquide pompé Densité max. Densité max. 1 mm/s Servici maxi. Se			Caractéri	istiques de fonctio	onnement		ISO 9906-A
Temperature maxi du liquide pompé Teneur maximum en matières solides 20 g/m³						D 1 10/1	
Date Page Offre n° Pos.N° Pos.N° Date Page Offre n° Pos.N°	Démarrages / h max.	15	Q [l/s]	H [m]	P[kW]	Rend. [%]	NPSH [m]
Teneur maximum en matières solides 20 g/m² 998 kg/m² 1 mm²/s Caractéristiques générales Poids 188 kg Poids 188 kg Dimensions Matériaux Corps de refoulement Corps de refoulement Corps de spiration Corps d'étage Chaise -palier Roue Ponte Chaise -palier Roue Fonte Chaise -palier Roue Fonte Chaise -palier Roue Fonte Roue Fonte Ponte Ponte Chaise -palier Roue Fonte Chaise -palier Roue Fonte Ponte Roue Fonte Roulements a billes Stuffing box Packing Notes: Date Page Offre n° Pos.N°	Température maxi. du liquide pompé	363 K	0	9.27	1	0.0285	1
Densite max. 998 kg/m² 1 mm²/s	Teneur maximum en matières solides	20 g/m³	1.5				
A = 1175 B = 275 C = 1103 D = 6 DNa = 80/PN10 DNm = 65/PN16 E = 175 F = 753 G = 181 H = 380 Corps de refoulement Corps agriration Corps de refoulement Corps d'etage Chaise - palier Roue Acier romé Bague d'usure Roulements a billes Stuffing box Packing Date Page Offre n° Pos.N°					1		
B = 275							
B = 275	Densité max.	998 kg/m³					
Poids 188 kg Matériaux Corps de refoulement Corps aspiration Corps d'étage Fonte Corps aplier Roue Fonte Roue Fonte Acier cromé Bague d'usure Roulements a billes Stuffing box Packing Date Page Offre n° Pos.N° C = 1103 D = 6 DNa = 80/PN10 DNm = 680/PN16 E = 175 F = 753 F = 753 F = 753 F = 753 F = 181 H = 380 D = 0 DNa = 80/PN16 E = 141 H = 380 D = 0 DNa = 80/PN16 E = 175 F = 753 F = 181 H = 380 D = 0 DNa = 80/PN16 E = 141 H = 380 D = 0 DNa = 80/PN16 E = 141 H = 380 D = 0 DNa = 80/PN16 E = 141 H = 380 D = 0 DNa = 80/PN16 E = 141 H = 380 D = 0 DNa = 80/PN16 E = 141 H = 380 D = 0 DNa = 80/PN16 E = 175 F = 753 F = 181 H = 380 D = 0 D = 181 H = 380 D = 0 D = 181 H = 380 D = 0 D = 181 H = 380 D = 19 D = 19 D = 10	Densité max. Viscosité maxi.	998 kg/m³					
Matériaux Corps de refoulement Corps aspiration Corps d'étage Fonte Chaise - palier Roue Acier cromé Bague d'usure Roulements a billes Stuffing box Packing Date Page Offre n° Pos.N°	Densité max. Viscosité maxi.	998 kg/m³			Dimensions	s mm	
Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise - palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing DiNa = 80/PN10 DiNm = 65/PN16 E = 775 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 Douille arbre Acier roromé Ponte Acier roromé Ponte Acier roromé Fonte Tresse graphitée Ponte Tresse graphitée Notes: Date Page Offre n° Pos.N°	Densité max.	998 kg/m³	B = 275		Dimensions	s mm	
Matériaux Corps de refoulement Corps ade refoulement Corps aspiration Corps d'étage Chaise - palier Roue Acher Acher Douille arbre Roulements a billes Stuffing box Packing Date Page Dinne = 65/PN16 E = 175 F = 753 G = 181 H = 380 I = 340 I = 16 M = 38 N = 80 O = 240 D = 241 D = 515 Q = 434 D = 6 D = 700	Densité max. Viscosité maxi. Caractéristiques générales	998 kg/m³ 1 mm²/s	B = 275 C = 1103		Dimensions	s mm	
Corps de refoulement Corps aspiration Corps d'étage Chaise-palier Roue Arbre Acier cromé Bagque d'usure Roulements a billes Stuffing box Packing Pack Date Page Page Page Page Ponte F-753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 O = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D = 240 D = 434 DN = 00 D	Densité max. Viscosité maxi.	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6	N10	Dimensions	s mm	
Corps aspiration Corps d'étage Chaise - palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Packing Page Page Offre n° Ponte H = 380 I = 340 L = 16 M = 38 N = 80 0 = 240 P = 515 Q = 434 Ponte Fonte Acier Fonte Acier Fonte Fonte Acier Fonte Fonte Acier Fonte Tresse graphitée Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P		Dimensions	s mm	
Corps d'étage Chaise -palier Roue Arbre Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Packing Page Ponte Fonte Tresse graphitée Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753		Dimensions	s mm	
Chaise -paller Roue Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Rotes: Date Ponte Fonte Fonte Acier cromé Fonte Acier cromé Fonte Acier spanitée L = 16 M = 38 N = 80 O = 240 P - 515 Q = 434 Diagram L = 16 M = 38 N = 80 O = 240 P - 515 Q = 434 Diagram Roulements a billes Stuffing box Packing Roulements a billes Stuffing box Packing Roulements a billes Stuffing box Ponte Fonte Acier Fonte Ac	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181		Dimensions	s mm	
Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Notes: Date Page Page Ponte Acier inox Acier cromé Fonte Acier cromé Fonte Acier Fonte Tresse graphitée Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Corps aspiration Fonte	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380		Dimensions	s mm	
Action in the property of the	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Fonte Fonte Corps détage Fonte	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340		Dimensions	s mm	
Acier inox Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Acier romé Fonte Acier romé	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Corps aspiration Fonte Corps d'étage Fonte Chaise -palier Fonte	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16		Dimensions	s mm	
Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Acier Fonte Tresse graphitée Pestis Q = 240 P = 515 Q = 434 Notes: Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Corps aspiration Fonte Corps d'étage Fonte Chaise -palier Fonte	998 kg/m³ 1 mm²/s	B = 275 C = 1103 D = 6 DNa = 80/PP DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38		Α	s mm	
Bague d'usure Roulements a billes Stuffing box Packing Fonte Tresse graphitée P=515 Q = 434 DN DT DT DT DT DT DT DT DT DT	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Corps aspiration Fonte Corps d'étage Fonte Chaise -palier Fonte Roue Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80		Α	s mm	
Roulements a billes Stuffing box Packing Acier Fonte Tresse graphitée Notes: Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Fonte Fonte Corps d'étage Fonte Corps d'étage Fonte Roue Fonte Acier inc.	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240		Α	s mm	
Stuffing box Packing Fonte Tresse graphitée Tresse graphitée Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Corps aspiration Fonte Corps d'étage Fonte Chaise -palier Fonte Roue Fonte Acier inc Douille arbre Acier cr	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		Α		
Packing Tresse graphitée G G F F F G C C C C C C C C C C C C C C	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Fonte Corps aspiration Fonte Corps d'étage Fonte Chaise -palier Fonte Roue Fonte Acier inc Douille arbre Acier orc Bague d'usure Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		Α		
Notes: Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Fonte Chaise -palier Fonte Roue Fonte Acier inc Douille arbre Acier or Fonte Roulements a billes Acier	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		Α		
Notes: Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Active Active Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		Α		
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		øl. M
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Active Active Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		ØL M
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Active Active Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		al M
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acier int Douille arbre Sague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		QL M
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acier int Douille arbre Sague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		gl MM
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acter inc Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		QL MM
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acter inc Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Active Active Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		QL H
Date Page Offre n° Pos.N°	Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acter inte Douille arbre Sague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		øl M
Date Page Offre n° Pos.N°	Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acter inte Douille arbre Sague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		el M
Date Page Offre n° Pos.N°	Densité max. Viscosité maxi. Caractéristiques générales Poids Watériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Active Active Douille arbre Bague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		QL H
Date Page Offre n° Pos.N°	Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acter inte Douille arbre Sague d'usure Roulements a billes Stuffing box Fonte	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		al H
	Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Arbre Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Caractéristiques générales Fonte Fonte Fonte Acier int Acier cre Fonte Acier ronte Fonte Tresse g	998 kg/m³ 1 mm²/s 188 kg	B = 275 C = 1103 D = 6 DNa = 80/Pt DNm = 65/P E = 175 F = 753 G = 181 H = 380 I = 340 L = 16 M = 38 N = 80 O = 240 P = 515		A DNm		QL H
	Densité max. Viscosité maxi. Caractéristiques générales Poids Matériaux Corps de refoulement Corps aspiration Corps d'étage Chaise -palier Roue Acier int Douille arbre Bague d'usure Roulements a billes Stuffing box Packing Notes:	998 kg/m³ 1 mm²/s 188 kg ox omé graphitée	B = 275 C = 1103 D = 6 DNa = 80/P1 DNm = 65/P E = 175 F = 753 G = 181 H = 380 L = 16 M = 38 N = 80 O = 240 P = 515 Q = 434	DN G G	A DNm	Se la	OL H


Annexe (23) : Coefficient de perte de charge c dans une tuyère


Annexe (24): Enveloppes des pressions en régime permanant et transitoire du tronçon (SR1 – SR2)


Annexe (25): Enveloppes des pressions en régime permanant et transitoire du tronçon (SR2 – SR3)


Annexe (26): Enveloppes des pressions en régime permanant et transitoire du tronçon (SR3 – RV Tacheta Zougagha)

Annexe (27): Enveloppes des pressions en régime permanant et transitoire du tronçon (SP – SR4)

Annexe (28): Enveloppes des pressions en régime permanant et transitoire du tronçon (SR4 – RV Ouled bessa)

Résumé

Le présent mémoire de fin d'études présente un projet d'étude de rénovation et extension du système d'AEP de la commune de Tacheta Zougagha y compris les agglomérations secondaires sur un horizon de 31 ans (w.Ain-defla).

Au préalable, après avoir présenté la zone d'étude, nous avons procédé à l'estimation des besoins actuels et futurs. Par la suite, nous avons conçu et dimensionné les différents réservoirs et conduites d'adduction.

La distance du circuit de transfert d'eau entre les forages et le réservoir principal de Tacheta Zougagha (1350 m³) est de l'ordre de 14861.29 m assuré par refoulement. Par ailleurs, la longueur entre ce dernier et les réservoirs secondaires est de l'ordre de 15239.93 m, cette partie du transfert est assurée gravitairement et par refoulement.

Par la suite, nous avons choisi les pompes adéquates pour les différentes stations de reprise et pompage. En dernier lieu, et afin de protéger les conduites de refoulement contre le phénomène du coup de bélier, nous avons préconisé des réservoirs d'air.

Mots clés : Alimentation en eau potable, Réservoir, Adduction, Refoulement, Gravitaire, Pompe, Station de pompage, Forage, Coup de bélier.

Abstract

The following research paper is seeking to present a project of renovation and expansion of drinking water supply system of Tacheta Zougagha municipality and the surrounding areas on the horizons of 31 years (W.Ain defla).

In the first, and after presenting the area of stud, we have proceeded to the assessment of the current needs as well as the future ones. After that, we conceived and calculated the different dimensions of reservoirs and water pipes.

The distanced of distribution network of water between drilling sites and the main reservoir of Tacheta Zougagha municipality (1350 m³) is around 14861.29 m provided by backflow. Moreover, the distance between this main reservoir and the secondary reservoirs is around 15239.93, water is provided gravitationally and by backflow.

Furthermore, we have chosen adequate water pumps for different pumping stations.

In the end, and in order to protect backflow water pipes against water hammer phenomenon, we have recommended air reservoirs.

Key words: drinking water supply, Reservoir, Water conveyance, backflow, gravitational, pump, pumping station, drilling, water hammer phenomenon.

ملخص

تقدم أطروحة نهاية الدراسة هذه مشروعًا لدراسة تجديد وتوسيع نظام إمدادات المياه التابعة لبلدية تاشتة زوقاغة بما في ذلك التجمعات الثانوية المحيطة بها على مدى أفق31 عامًا (و. عين الدفلي). بعد تقديم منطقة الدراسة، شرعنا في تقدير الاحتياجات المائية الحالية والمستقبلية. بعد ذلك، قمنا بتصميم وتحجيم الخزانات وخطوط الأنابيب المختلفة.

يبلغ طول أنابيب نقل المياه بين الأبار والخزان الرئيسي في تاشتة زوقاغة (1350 م³) 14861.29 م، بينما يبلغ طول الأنابيب الرابطة بين هذا الأخير وباقي الخزانات الثانوية 15239.93 م، حيث أن عملية النقل في كلتا الحالتين تتم عن طريق عملية الضخ تارة وعن طريق الجاذبية تارة أخرى.

بعد ذلك، اخترنا المضخات المناسبة لمحطات الضخ المختلفة.

أخبرًا، ومن أجل حماية أنابيب الضبخ من ظاهرة المطرقة المائية، اقتر حنا خز إنات هو ائية.

الكلمات المفتاحية: إمدادات مياه الشرب، الخزان، تحويلات، الضخ، الجاذبية، المضخة، محطة الضخ، الآبار، المطرقة المائية.