République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'Hydraulique

Laboratoire de Recherche en Hydraulique Appliquée et Environnement (LRHAE)

MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

Mr CHAIB Aboubakr

Mr MORSLI Ismail

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: Hydraulique Urbaine

INTITULE:

Conception et dimensionnement du réseau d'AEP de la nouvelle ville dans la commune de Rahmaia Alger

Soutenu le 08/07/2019 devant le jury composé de :

Président : M^r NASRI.K

- Promoteur (s) : M^r SAOU.A

- Examinateur (s): M^r BRAKENI.A

Année Universitaire : 2018/2019

Année Universitaire: 2018/2019

Remerciements

Avant tout propos, nous remercions « Dieu » le tout puissant que nous a donné sagesse et santé pour faire ce modeste travail.

Merci à notre très cher promoteur M' SAOU. A/H, pour tout le temps qu'il nous a consacré, et tout l'intérêt qu'il nous a accordé, pour tous les conseilles qu'il nous a donné, et les remarques qu'il nous a faits.

C'est avec un plaisir particulier que nous remercions tous les enseignants du Département hydraulique pour tout l'intérêt qu'ils nous ont accordé.

Nous tenons à remercier les membres de jury qui ont accepté de juger notre travail.

Nous remercions très chaleureusement toutes les personnes ayant contribué, de prés ou de loin, à la réalisation de ce travail.

ISMAIL /ABOUBAKR

Dédicace:

Je dédie ce travail :

A mon père leplus cher au monde.

A ma mère et ma soeur les plus chères au monde

A mes très chers frères.

A mes cousins

A tous mes amis.

ISMAIL

Dédicace :

Je dédie ce travail :

A l'homme de ma vie, mon exemple éternel, mon soutien moral et source dejoie et de bonheur sacrifié pour me voir réussir ;mon père.

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma

vie et mon bonheur ; maman que j'adore.

A mes très chers frères.

A tous mes amis et a la famille GAILI

ABOUBAKR

Table des matières

Introduction	1
CHAPITRE I : Présentation du site et estimation des	s besoins
I.1.Introduction	2
I.2. Présentation du site	2
I.2.1. Situation géographique	2
I.2.2.Situation topographique	3
I.2.3.Situation climatique	3
I.2.4 Situation hydraulique	4
I.2.4.1. Ressources disponibles	5
I.2.4.1.1. La chaine côtière	5
I.2.4.1.2. Les stations de pompage	5
I.3.Estimation des besoins en eau	5
I.3.1. Situation démographique	5
I.3.2. choix de la norme de consommation	6
I.3.3. Evaluation des besoins en eau	6
I.3.3.1. Consommation moyenne journalière	6
I.3.3.1.1. Besoins domestiques	7
I.3.3.1.1. Besoins commerciaux	7
I.3.3.1.3. Besoins administratifs	8
I.3.3.1.4. Besoins scolaires	8
I.3.3.1.5. Besoins sanitaires	8
I.3.3.1.6. Besoins socioculturels	9
I.3.4. Consommation moyenne journalière totale	9
I.3.5. Majoration de la consommation journalière	11
I.3.6. Variation de la consommation journalière	11
I.3.7. Variation de la consommation horaire	13
I.3.7.1. Débit maximal horaire (débit de pointe)	13
I.4. Bilan ressources - besoins	14
I.5. Conclusion.	15

CHAPITRE II : Réservoirs

II.1. Introduction	16
II.2. Classification des réservoirs	16
II.3. Emplacement du réservoir	16
II.4. Choix du type du réservoir	17
II.5. Equipements du réservoir	17
II.5.1. Conduite d'adduction	18
II.5.2. Conduite de départ	18
II.5.3. Conduite de trop-plein	19
II.5.4. Conduite de vidange	19
II.5.5. Conduite de By-pass	19
II.5.6. Matérialisation de la réserve incendie	20
II.5.6.1.Système à deux prises	20
II.5.6.2. Système à siphon	20
II.6. Capacité du réservoir	21
II.6.1.Méthode analytique :	21
II.6.2. Calcul du résidu P _{max} :	22
II.6.3 Méthode graphique :	22
II.7. Dimensionnement des réservoirs :	23
II.7.1. Calcul de la valeur de P _{max} de « R1.R2R8»	23
II.7.2.Calcul de capacité et dimensions des réservoirs :	25
II -9 Conclusion :	27
CHAPITRE III: Adduction	
III.1. Introduction	28
III.2. Choix du tracé	28
III.3. Choix du type des conduites	28
III.4. Description du schéma d'adduction	29
III.5. Diamètre économique	

III.6. Vitesse d'écoulement	30
III.7. Pertes de charge	30
III.7.1.Pertes de charge linéaire (H _I)	31
III.7.2. Les pertes de charge singulières (Hs)	32
III.8. Hauteur manométrique totale (HMT)	32
III.9. Puissance absorbée par la pompe	33
III.10. Energie consommée par la pompe	33
III.11. Frais d'exploitation	33
III.12. Frais d'amortissement :	33
III.13.Calcul du bilan :	34
III.14. Détermination du diamètre économique pour les différents tronçons	35
III.14.1. Tronçon 1 SP1-R02:	35
III.14.2. Tronçon 2 R02-R01:	36
III.14.3. Tronçon 3 SP2-R03:	37
III.14.4. Tronçon 4 R03-R06 :	38
III.14.5. Tronçon 5 R06-R04:	39
III.14.6. Tronçon 6 R04-R05 :	40
III.14.7. Tronçon 7 R05-R07:	42
III.14.8. Tronçon 8 SP3-R08:	43
III.15.Conclusion.	44
CHAPITRE IV : Les pompes	
IV.1. Introduction	45
IV -2 Classification des pompes :	45
IV.2. Choix de la pompe	45
IV.3. Principe de fonctionnement d'une pompe centrifuge	46
IV.4. Courbes caractéristiques d'une pompe centrifuge	46
IV.5. Couplage des pompes	47
IV.5.1. Couplage en série	47
IV.5.2. Couplage en parallèle	47
IV.6. Point de fonctionnement	47
IV.7. Recherche du point de fonctionnement	48
IV.7.1. Première variante : Variation du temps de pompage	48

IV.7.2. Deuxième variante : Variation de la vitesse de rotation	48
IV.7.3. Troisième variante : Régulation par vannage	49
IV.8. Etude de la cavitation	50
IV.9. Choix des pompes	51
IV.9.1. Station de pompage 01	51
IV.9.1.1. Etude de cavitation	53
IV.9.2. Station de pompage 02	53
IV.9.2.1. Etude de cavitation	54
IV.9.3. Station de pompage 03	54
IV.9.3.1. Etude de cavitation	56
IV.10. Conclusion	56
CHADITDE V. coup de hélier	
CHAPITRE V : coup de bélier	5.5
V.1. Introduction	
V.2. Les cause du phénomène	
V.2.1. Cas de la surpression	
V.2.2. Cas de la dépression	
V.3. Analyse physique du phénomène	
V.4. Les systèmes de protection des conduites (anti-bélier)	
V.4.1. Le reservoir d air	
V.4.1.2.Calcul du réservoir d'air	
V.4.1.3.Méthode de calcul (Méthode de Bergeron)	
V.4.3. Cheminé d'équilibre	
V.4.4. Le volant d'inertie	
V.5. Valeur numérique du coup de bélier	
V.5.1. Cas d'une fermeture brusque	
V.5.2. Cas d'une fermeture lente	
V.6. Vérification du coup de bélier	
V.7.Dimensionnement d'un réservoir d'air tronçon 1	
V.7. 1.Cas de la montée	
V.7. 2.Cas de la descente	

V.8. Dimensionnement d'un réservoir d'air tronçon 3	70
V.8. 1.Cas de la montée	70
V.8. 2.Cas de la descente	71
V.9. Dimensionnement d'un réservoir d'air tronçon 4	73
V.9. 1.Cas de la montée	73
V.9. 2. Cas de la descente	74
V.10. Dimensionnement d'un réservoir d'air tronçon 5	76
V.10.1.Cas de la montée	76
V.10.2. Cas de la descente	77
V.11. Dimensionnement d'un réservoir d'air tronçon 7	79
V.11.1. Cas de la montée	79
V.11.2. Cas de la descente	80
V.12. Conclusion	82
CHAPITRE VI: Distribution	
VI.1. Introduction:	83
VI.2. Choix du type de réseau de distribution :	83
VI.2.1. Réseau ramifié	83
VI.2.2. Réseau maillé :	83
VI.2.3. Réseau combiné :	83
VI.3. Choix du tracé:	84
VI.4. Choix de type de matériaux :	84
VI.5. Modélisation et simulation du réseau :	84
VI.5.1 La méthode de Hardy-Cross :	85
VI.6. Calculs hydraulique :	85
VI.6.1 Débit de pointe :	86
VI.6.2 Débit spécifique :	86
VI.6.3 Débit de route :	86
VI.6.4 Débit en nœud :	86
VI.7. Dimensionnement du réseau	86
VI.7.1 Le calcul des débits en route et les débits aux nœuds	86
VI.7.2. Résultats de la simulation du réseau avec EPANET	101
VI 8 Conclusion	115

CHAPITRE VII: SIG

VII.1. Introduction:	116
VII.2. Présentation du système d'information géographique SIG:	116
VII.2.1. Système d'information géographique	116
VII.2.2. Principales composantes d'un SIG	116
VII.2.3. Fonctionnalités d'un SIG	116
VII2.4. Utilité des SIG :	117
VII.2.5. Elaboration d'un SIG :	117
VII.2.6. Création banque de données urbaine	118
VII.2 .7. Avantage des SIG	118
VII.2.8. Les principales contraintes des SIG	118
VII.3. Présentation du logiciel MapInfo	118
VII.3.1. Définition :	118
VII.3.2. Interface de travail :	119
VII.4. Création du système d'information géographique du réseau d'AEP de la RAHMANIA :	
VII. 4.1 Préparation du fond de la carte :	119
VII.4.2. Création des tables :	120
VII.4.2.1.Structure de la table conduite :	121
VII.4.2.2.Structure de la table nœud :	121
VII.4.2.3.Structure de la table réservoir :	121
VII.4.3. La vectorisation du réseau d'AEP sur Marino :	121
VII.4.3.1. Vectorisation du réseau d'adduction :	122
VII.4.3.2. Vectorisation du réseau de distribution :	123
VII.4.3.3. Vectorisation des nœuds :	124
VII.4.3.4. Vectorisation des nœuds :	125
VII.5. La gestion du réseau d'alimentation en eau potable :	126
VII.5.1. La gestion classique des réseaux d'AEP:	126
VII.5.2. Gestion informatisé des réseaux d'AEP:	126
VII.5.3. Gestion des réseaux d'AEP par SIG :	126
VII.5.3.1Requête SQL:	126
VII.5.3.2. Analyse thématique :	127
VII 6 Conclusion:	129

Liste des Figures

Figure (I.1): La délimitation géoraphique de la commune de « Rahmania »	3
Figure(I.2) : Le diagramme climatique de la région de Rahmania	4
Figure(I.3) : courbe de température Rahmania	4
Figure (II.1): Réservoir semi-enterré	17
Figure (II.2): Adduction avec chute libre	18
Figure (II.3) : Adduction noyée	18
Figure (II.4) : Départ de la distribution	19
Figure (II.5) : Trop-plein et vidange	19
Figure (II.6): By-pass	20
Figure (II.7): Système à deux prise	20
Figure (II.8) : Système à siphon	21
Figure (II-9): Illustration de la méthode graphique pour calculer le volume d'un réservoir	23
figure (III.1) : schéma d'adduction	29
Figure (IV.1): Pompe centrifuge	46
Figure (IV.2) : courbes caractéristiques d'une pompe centrifuge	47
Figure (IV.3): point de fonctionnement d'une pompe	48
Figure (IV.4) : Recherche de la réalisation du point de fonctionnement désiré	50
Figure(IV.5) : Courbe Caractéristiques de la pompe	52
Figure(IV.6): Courbe caractéristiques de la pompe	54
Figure(IV.7) : Courbe caractéristiques de la pompe	55
Figure (V.1) : Réservoir d'air « réservoir anti bélier	59
Figure (V-2) : l'eau du réservoir sedirige vers la conduite	61
FigureV-3 : l'eau de la conduite revient dans le réservoir	62
Figure (V.4) : Soupape de décharge	63
Figure (V.5) :Cheminée d'équilibre	63
Figure (V.6): Volant d'inertie	64
Figure (V.7): Le développement des résultats de calcul du réservoir d'air du tronçon (1)	68
Figure (V.8): Epure de BERGERON pour le tronçon (1)	69
Figure (V.9): Variation de la pression absolue en fonction du temps	69
Figure (V.10): Le développement des résultats de calcul du réservoir d'air du tronçon(3)	71
Figure (V.11): Epure de BERGERON pour le tronçon (3)	72
Figure (V.12): Variation de la pression absolue en fonction du temps	72
Figure (V.13): Le développement des résultats de calcul du réservoir d'air du tronçon (4)	74
Figure (V.14): Epure de BERGERON pour le tronçon (4)	75

Figure (V.15): Variation de la pression absolue en fonction du temps	75
Figure (V.16): Le développement des résultats de calcul du réservoir d'air du tronçon (5)	77
Figure (V.17): Epure de BERGERON pour le tronçon (5)	78
Figure (V.18): Variation de la pression absolue en fonction du temps	78
Figure (V.19): Le développement des résultats de calcul du réservoir d'air du tronçon (7)	80
Figure (V.20): Epure de BERGERON pour le tronçon (7)	81
Figure (V.21): Variation de la pression absolue en fonction du temps	81
Figure (VI-1) : réseau ramifié	83
Figure (VI-2) : réseau maillé	83
Figure (VII-3) : La loi de continuité au nœud	85
Figure (VI.4) : Schéma d'ossature du réseau de distribution de la commune de Rahmania	87
Figure (VI.5): Les débits et les pressions du réseau de distribution de la commune de Rahmania	114
Figure VII.1. Organigramme d'utilisation d'un SIG	117
Figure VII.2 : Interface de travaille MapInfo	119
Figure VII.3: plan de mass de la zone d'étude (Commune de RAHMANIA)	120
Figure VII.4. Vectorisation et résultat du réseau d'adduction	122
Figure VII.5. Vectorisation et résultat de réseau de distribution.	123
Figure VII.6. Vectorisation et résultat des nœuds de réseau	124
Figure VII.7. Vectorisation et résultat du réservoir	125
Figure VII.8.résultat de la requête : conduites anciennes	127
Figure VII.9. Les etapes d'utilisation de l'utile Analyse thématique	128
Figure VII.10. Le réseau de distribution avant et après l'analyse thématique	128

Liste des tableaux

Tableau (I.1): Estimation de la population à court et long terme	6
Tableau (I.2): Besoins domestiques aux différents horizons pour chaque quartier	7
Tableau (I.3): Les besoins commerciaux de chef-lieu	7
Tableau (I.4): Les besoins administratifs de chef-lieu	8
Tableau (I.5): Besoins scolaires de chaque quartier	8
Tableau (I.6): Besoins sanitaires de chaque quartier	8
Tableau(I.7): Besoins socioculturels de chaque localité	9
Tableau (I.8): Récapitulation des besoins en eaux journaliers des différentes localités	10
Tableau (I.9): Majoration de la consommation moyenne journalière à l'horizon 2050	11
Tableau(I.10): Consommation maximale et minimale journalière à l'horizon 2050	12
Tableau(I.11): Valeurs du coefficientβ _{max}	13
Tableau (I.12): Débit de pointe de chaque Quartier à l'horizon 2050	14
Tableau(I.13): Bilan des ressources besoins	14
Tableau (II-1): Dimensionnement du réservoir	24
Tableau (III.1) : Débit véhiculé dans les tronçon	34
Tableau(III.2) : Calcul de la HMT 1	35
Tableau(III.3) :Calcul des fraix d'exploitation	35
Tableau(III.4): calcul des fraix d'amortissement	35
Tableau(III.5) : calcul de bilan	35
Tableau(III.6) : Calcul de la HMT 1	36
Tableau(III.7) :Calcul des fraix d'exploitation	36
Tableau(III.8) : calcul des fraix d'amortissement	36
Tableau(III.9) : calcul de bilan	37
Tableau(III.10) : Calcul de la HMT 1	37
Tableau(III.11) :Calcul des fraix d'exploitation	37
Tableau(III.12) : calcul des fraix d'amortissement	38
Tableau(III.13) : calcul de bilan	38
Tableau(III.14) : Calcul de la HMT 1	38
Tableau(III.15) :Calcul des fraix d'exploitation	38
Tableau(III.16) : calcul des fraix d'amortissement	39
Tableau(III.17): calcul de bilan	39

Tableau(III.18) : Calcul de la HMT 1	39
Tableau(III.19) :Calcul des fraix d'exploitation	40
Tableau(III.20) : calcul des fraix d'amortissement	40
Tableau(III.21) : calcul de bilan	40
Tableau(III.22) : Calcul de la HMT 1	41
Tableau(III.23) :Calcul des fraix d'exploitation	41
Tableau(III.24) : calcul des fraix d'amortissement	41
Tableau(III.25) : calcul de bilan	41
Tableau(III.26) : Calcul de la HMT 1	42
Tableau(III.27) :Calcul des fraix d'exploitation	42
Tableau(III.28) : calcul des fraix d'amortissement	42
Tableau(III.29) : calcul de bilan	42
Tableau(III.30) : Calcul de la HMT 1	43
Tableau(III.31) :Calcul des fraix d'exploitation	43
Tableau(III.32) : calcul des fraix d'amortissement	43
Tableau(III.33) : calcul de bilan	43
Tableau (IV-1): Tension de vapeur d'eau pompée en fonction de la température	51
Tableau(IV.2) : Caractéristiques de la pompe 1	52
Tableau(IV.3): Caractéristiques de la pompe 2	53
Tableau(IV.4): Caractéristiques de la pompe 3	55
Tableau (V.1): Les valeurs du coup de bélier des différents tronçons	66
Tableau (VI-1): Les débits de route et débit de nœud de la zone 1	88
Tableau (VI-1): Les débits de route et débit de nœud de la zone 1	88
Tableau (VI-2): Les débits de route et débit de nœud de la zone 2	91
Tableau (VI-3): Les débits de route et débit de nœud de la zone 3	92
Tableau (VI-4): Les débits de route et débit de nœud de la zone 4	93
Tableau (VI-5): Les débits de route et débit de nœud de la zone 5	94
Tableau (VI-6): Les débits de route et débit de nœud de la zone 6	95
Tableau (VI-7): Les débits de route et débit de nœud de la zone 7	96
Tableau (VI-8): Les débits de route et débit de nœud de la zone 8	98
Tableau (VI-9): Détermination des diamètres et vitesses, du réseau	101

Liste des symboles

A: amortissement annuel.

a : célérité de l'onde (m/s).

B : La valeur du coup de bélier (m).

C, C': coefficient de perte de charge dans la tuyère.

D': Diamètre de la veine contractée (m).

D : diamètre de la conduite (m).

d : Diamètre de la tuyère(m).

E: énergie consommée par la pompe (Kwh).

e : épaisseur de la conduite (mm)

g: accélération de la pesanteur (m/s²).

 \mathbf{H} : La distance entre Q_d et l'intersection de la verticale passant par le même point Q_d avec la caractéristique de la pompe.

h : la perte de charge créer par le vannage (m).

HMT: hauteur manométrique total (m).

i: taux d'intérêt annuel (annuité).

J: perte de charge en mètre par mètre de conduite.

K: rugosité absolue de la conduite. Pour les tubes en PEHD.

L: longueur de la conduite (m).

m: coefficient de rognage.

n: nombre d'année d'amortissement.

p: prix d'un Kwh (Da).

q : Dotation moyenne journalière en

l/j.habitant. Q: débit transitant dans le tronçon

 (m^3/s)

r: le pourcentage du rognage.

S: section du réservoir (m²).

T: Taux d'accroissement.

t: temps de service.

α max : coefficient qui dépend du niveau de vie de la population et du confort des bâtiments.

α : coefficient de vieillissement, il est déterminé à partir de l'abaque de PETER

LAMON. β max : coefficient qui dépend de nombre d'habitants.

η: rendement de la pompe (%).

θ: angle d'inclinaison du papillon

λ: le coefficient de perte de charge qui dépend de la rugosité relative et du régime

d'écoulement.

 ξ : coefficient d'ouverture de la vanne.

p: masse volumique de l'eau.

υ : viscosité cinématique de l'eau, elle est donnée par la formule de stocks.

DBONNIN, DBRESS: diamètre de la conduite (m).

 D_e : Le diamètre exterieur des tuyaux en PEHD (m).

D_i: Le diamètre intérieur des tuyaux en PEHD (m).

D_t : diamètre de la tubulure (m).

Fam: frais d'amortissement (Da).

Fexp: frais d'exploitation (Da).

H_d: la charge disponible (m).

Hdep: la dépression maximale (m).

Hg: hauteur géométrique (m).

hinc: hauteur d'incendie.

H1: perte de charge linéaire (m).

H₁: Pertes de charge linéaire (m).

Hp: la courbe caractéristique de la pompe.

Hs: perte de charge singulière (m).

Hsur: la surpression maximale (m).

HT: les pertes de charge totale (m).

h_v : c'est la pression de vapeur maximale que l'air peut supporter à une température donnée.

Ja : Perte de charge à l'aspiration(m)

Jv: perte de charge dans la vanne.

K max.h: coefficient de variation maximale horaire.

K0: rugosité absolue de conduites neuves (mm).

 K_c : coefficient qui dépend du matériau constituant la canalisation.

Kmax.j: Coefficient d'irrégularité maximale qui dépend de l'importance de l'agglomération.

Kmin.j: Coefficient d'irrégularité minimale.

K_r ,**K**_r ': Coefficient du rapport de vitesse.

N_i: Nombre de consommateurs.

NPSH d: la charge nette disponible à l'aspiration.

NPSH r : la charge nette requise à l'aspiration.

P max: Résidu maximum dans le réservoir (%).

Q max.j: Débit de consommation maximale du jour le plus chargé de l'année (m³/j).

Q min.j: Débit de consommation minimale du jour le moins chargé de l'année (m³/j).

Q mov.h: consommation movenne horaire (m^3/j) .

Q moy.j: Débit de consommation moyenne journalière (m³/j).

 $\mathbf{Q} \mathbf{p}$: Le débit de pointe (m^3/j) .

t1: temps de pompage réduit.

 T_f : temps de fermeture des vannes (1/4 h).

t_p: temps de pompage (h).

U max: le volume maximal dans le réservoir d'air (m³).

U min: le volume minimal dans le réservoir d'air (m³).

U₀: le volume d'air initial (m³).

V inc: Volume de la réserve d'incendie (m³).

V: vitesse d'écoulement (m/s).

V1: Vitesse dans la tuyère (m/s).

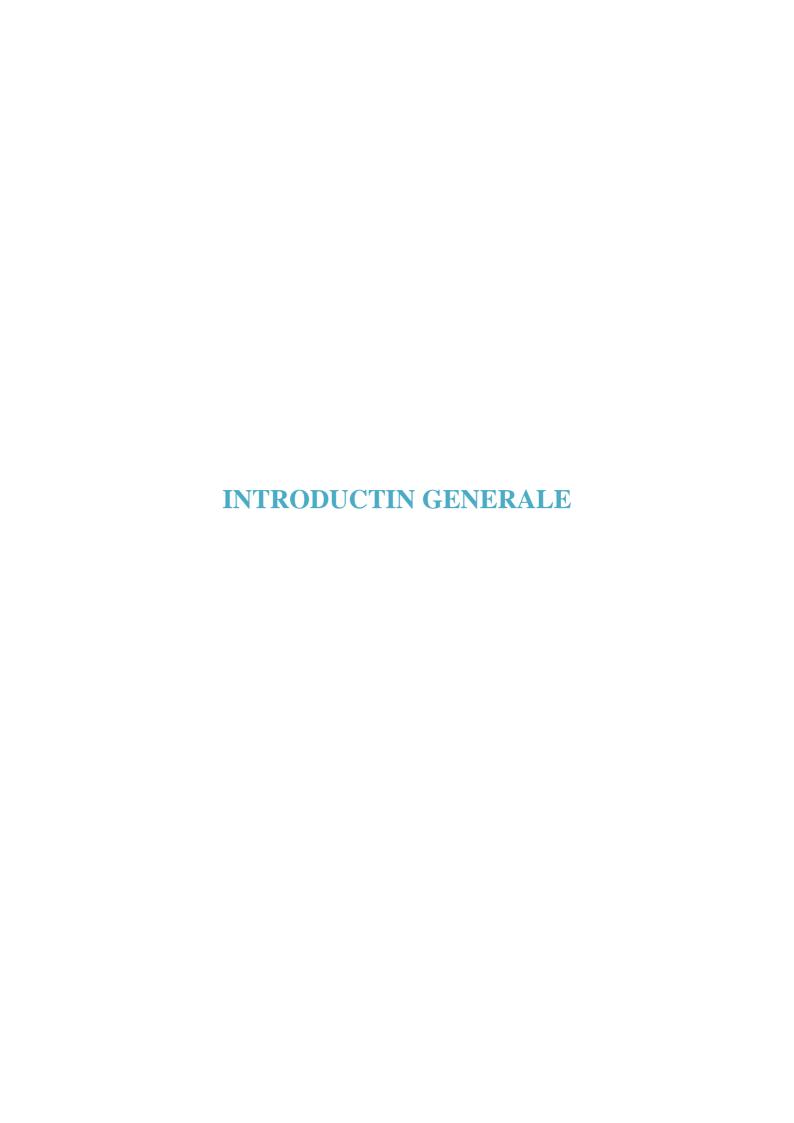
V_f: Vitesse finale choisie (m/s).

 V_n : Volume normalisé du réservoir (m³)

VR: Volume de régulation du réservoir (m³).

VSR: Volume de station de reprise (m³).

V_T: volume total du réservoir (m³).


CA: La côte du plan d'aspiration(m).

CP: La côte de l'axe de la pompe (m).

CR: côte radier (m)

CTN: côte terrain naturel (m)

CTP: côte trop plein (m)

Introduction Générale

L'eau, élément essentiel à toute forme de vie, a toujours influencé la vie de l'homme, de part son mode de vie et ses activités, la sédentarisation de l'espèce humaine dépendait principalement de la proximité des points d'eau, formant ainsi des communautés qui n'ont cessé de se développer jusqu'à l'état actuel de notre civilisation. L'expansion démographique et l'élévation du niveau de vie ont engendré une demande en eau potable croissante.

Les quantités d'eau, en Algérie, sont pour l'instant suffisantes grâce à la mobilisation des eaux surfaces, des eaux souterraines, mais à l'avenir, il ne sera plus permis de mal gérer cette ressource. La bonne gestion d'un système d'alimentation en eau potable débute par un bon dimensionnement du réseau lui-même et par une gestion rigoureuse des différentes parties du projet.

Dans ce contexte s'inscrit notre projet de fin d'étude qui vise à étudier l'alimentation en eau potable de la commune de Rahmania (Wilaya de Alger) à partir du barrage de Ghrib sur un horizon projet de 30ans.

Pour cela notre étude sera menée comme suit :

Dans le premier chapitre, nous commencerons par la présentation du site. Ensuite nous procéderons à l'estimation de la population et des besoins en eau aux divers horizons.

Le deuxième chapitre sera consacré au dimensionnement des réservoirs.

Dans le troisième chapitre, nous ferons une étude technico-économique dans le but de dimensionner les conduites d'adduction.

Le quatrième chapitre sera consacré au choix des pompes adéquates répondant aux caractéristiques du projet.

La protection des conduites contre le phénomène du coup de bélier fait l'objet du chapitre cinq.

Le sixième chapitre sera consacré à l'étude du réseau de distribution.

Le septième chapitre sera consacré le système d'information géographique (SIG)

On termine par une conclusion générale

CHAPITRE I:

PRESENTATION DE SITE ET ESTIMATION DES BESOINS

I.1.Introduction

Pour répondre aux besoins en eau des localités de la commune de « Rahmania », il est nécessaire de présenter le site du projet, à savoir : situation géographique, topographique, climatique et situation démographique.

Les besoins de la population en eau sont de plusieurs ordres: les usages artisanaux, industriels, domestiques, etc.

L'évaluation des quantités d'eau nécessaires pour une agglomération urbaine ou rurale n'est jamais faite avec certitude, car chaque catégorie de besoins en eau dépend de nombreux paramètres dont l'évolution dans le temps est très difficile à cerner.

I.2. Présentation du site

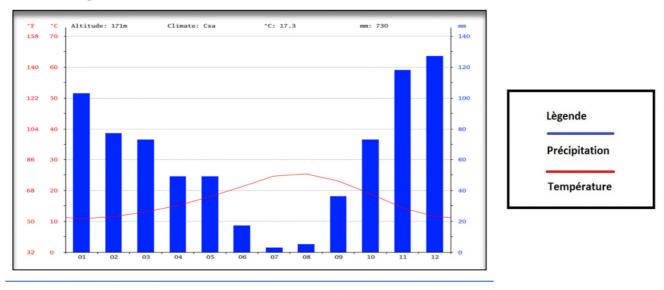
I.2.1. Situation géographique

La commune de « Rahmania » est l'une des 57 communes de la wilaya d'Alger, elle est située à l'allant tours de 176 mètres d'altitude, et sa localisation du Chef lieu de la wilaya de Alger est d'environ 25 Km au sud-ouest. Elle s'étend sur une superficie de 8.9 km², et dépend administrativement de la daïra de « Zéralda », c'est une commune née du découpage administratif du 05/02/1984 de la daïra de « Zéralda ».

La commune de Rahmania est délimitée du :

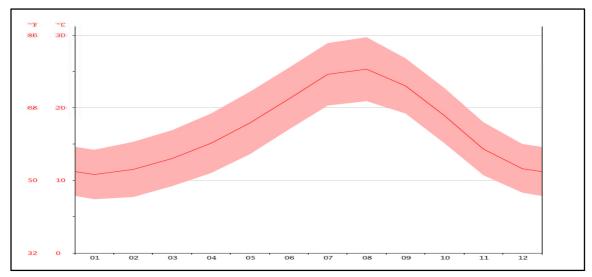
- Nord, par « Souidania » est « Ouled Fayet »
- L'Est, par la commune de « Douera »
- Sud par, la commune de « Douera »
- L'Ouest par la commune de « Mahelma »

Figure (I.1): La délimitation géoraphique de la commune de « Rahmania »


I.2.2.Situation topographique

La commune de Rahmania est caractérisé par un relief mamelonné représenté par un ensemble de collines dénudées et ravinées d'altitude moyenne de 100m

I.2.3. Situation climatique


Le climat de Rahmania est dit tempéré chaud. En hiver, les pluies sont bien plus importantes à Rahmania qu'elles ne le sont en été. Selon la classification de Köppen-Geiger, le climat est de type Csa.

La température moyenne annuelle à Rahmania est de 17.3 °C. la pluie moyenne annuelle est de 730 mm par an.

Figure(I.2) : Le diagramme climatique de la région de Rahmania

Une différence de 124 mm est enregistrée entre le mois le plus sec et le mois le plus humide. Sur l'année, la température varie de 14.5 °C. Aout est le mois le plus chaud de l'année. La température moyenne est de 25.3 °C à cette période. Le mois le plus froid de l'année est celui de Janvier avec une température moyenne de 10.8 °C.

Figure(I.3) : courbe de température Rahmania

I.2.4 Situation hydraulique

Le réseaux d'adduction d'eau potable de a wilaya de d'Alger est composé en huit principaux secteur :

La commune de Rahmania est actuellement alimentée par la chaine côtière, tandis que les communes Souidania et Doura par la chaine des hauteur

I.2.4.1. Ressources disponibles

I.2.4.1.1. La chaine côtière

Actuellement la chaine côtière possède trois types de ressources à savoir [2] :

- Les eaux de surface :
 - les eaux de SAA (Sécurisation d'Alimentation d'Alger) qui sont les eaux des trois Bouroumi, Boukourdane et Ghrib.
- Les eaux souterraines de :
 - Mazafran I : Le champ de captage est constitué de 29 forages situés à proximité de l'oued Mazafran au sud-ouest d'Alger.
 - MazafranII : Le champ de captage est constitué de 34 forages situés à proximité de la localité d'Oued Alleug.
- Les eaux dessalées :
 - Des deux stations de dessalement d'eau de mer de Zeralda.
 - De la station de dessalement d'eau de mer de Staouali.
 - Des deux stations de dessalement d'eau de mer d'Ain Benian.

I.2.4.1.2. Les stations de pompage

La chaine côtière est principalement alimentée par la station de pompage SP3 au sud, qui reçoit les eaux du Mazafran I et II et du SAA. Le volume de stockage est actuellement de 30 000 m3, suite à la réalisation des deux nouveaux réservoirs au sol de 10 000 m3 et de 20 000 m3 (CTP 67 m NGA). La station de pompage SP3 se décompose en deux unités :

- SP3 1500 : refoulement dans un DN 900 F
- SP3 400 (anciennement appelée SP3 630 avant modification des roues des pompes) :• refoulement dans un DN 700 BPAT

La station de pompage SP3 alimente le nouveau complexe hydraulique Sahel 190 (5 000 m3 et 30 000 m3 CTP 191.8 m NGA).

I.3. Estimation des besoins en eau

I.3.1. Situation démographique

D'après le plan d'aménagement de la VNSA, notre zone d'étude est composée de 8 quartiers résidentiels disposant d'habitats collectifs et individuels, le nombre d'habitants qui occuperont la VNSA est estimé sur la base de 6 personnes par logement.

Le taux d'accroissement moyen de la population à Alger est estimé à (T= 1.6%)

En appliquant la relation des intérêts composés qui tient compte des naissances, du taux d'immigration et du taux de mortalité, à savoir:

$$P = P0 (1+T)^n$$

Dans le cas de notre étude on va estimer la population actuel (2019) et à long terme (2050). Avec :

- P: population à l'horizon considéré,
- P0 : population à l'année de référence

- T: taux d'accroissement annuel de la population,
- n : intervalle d'année séparentP_n et P₀

Dans le cas de notre étude on va estimer la population actuelle (2019) et à long terme (2050), Le n est pris égal à 30 années à partir de la réception totale de la commune de « Rahmania ».

Quartier	Logement	Population (année de réception)	Population (horizon 30 ans)
Q 01	720	4320	6955
Q 02	192	1152	1855
Q 03	144	864	1391
Q 04	264	1584	2551
Q 05	240	1440	2319
Q 06	192	1152	1855
Q 07	432	2592	4173
Q 08	720	4320	6955
Total		17424	28054

Tableau (I.1): Estimation de la population à court et long terme

I.3.2. choix de la norme de consommation

Le choix de la dotation est effectué selon le mode de vie de la région ainsi que le nombre d'habitants des villes, Dans le cas de notre étude on opte pour une dotation de 1/j/habitant

- Dotation journalière en eau pour nettoyage commerces = 5 l/j/m²
- Dotation journalière en eau pour lycée=5L/M²/j
- Dotation journalière en eau pour CEM=5L/M²/j
- Dotation journalière en eau pour CRPS=5L/M²/j
- Dotation journalière en eau pour EQUIPEMENT ADMINISTRATION=10L/M²/J
- Dotation journalière en eau pour EQUIPEMENT SANITAIRE=25L/M²/J
- Dotation journalière en eau pour MOSQUE =25L/M²/J
- Dotation journalière en eau pour CENTRE COMMERCIALE=5L/M²/J

I.3.3. Evaluation des besoins en eau

I.3.3.1. Consommation moyenne journalière

La consommation moyenne journalière, se détermine en tenant compte des différents types de consommations :

- domestiques
- Administratives.
- Scolaires, Socioculturelles et Sportives.
- Industrielles et Agricoles.
- Publics.

Cette consommation est donnée par la formule suivante :

$$Q_{\text{moy j}} = \sum_{1000}^{q \times Ni} (m^3/j)$$
 (1.2)

Où:

- $\mathbf{Q}_{\text{moy } j}$: Consommation moyenne journalière des consommateurs (m $^3/j$)
- q: Dotation moyenne journalière en l/j.habitant
- **Ni**: Nombre de consommateurs.

I.3.3.1.1. Besoins domestiques

Tableau (I.2): Besoins domestiques aux différents horizons pour chaque quartier.

Quartier	Population		Dotation	Consomma	ntion (m³/j)
	2019	2050	(L/j/ habitant)	2019	2050
Q 01	4320	6955	150	648	1043.25
Q 02	1152	1855	150	172.8	278.25
Q 03	864	1391	150	129.6	208.65
O 04	1584	2551	150	237.6	382.65
Q 05	1440	2319	150	216	347.85
Q 06	1152	1855	150	172.8	278.25
Q 07	2592	4173	150	388.8	625.95
Q 08	4320	6955	150	648	1043.25
Total	17424	28054	150	2613.6	4207.5

I.3.3.1.1. Besoins commerciaux

Tableau (I.3): Les besoins commerciaux de chef-lieu

Equipement	Nombre	Surface (m ²)	Dotation (l/m ² /j)	Consommation (m ³ /j)	Quartier
01	7	8927	5	44.61	01
02	1	1444.32	5	7.22	02
03	6	969.18	5	4.8	03
04	3	1444.32	5	7.21	04
05	2	1805.36	5	9.02	05
06	1	730	5	3.65	07
07	9	11200.07	5	51.71	08
Total	29	26510.24		128.22	

I.3.3.1.3. Besoins administratifs

Tableau (I.4): Les besoins administratifs de chef-lieu.

Equipements	Surface (m ²)	Dotation (I/m ² /j)	Consommation (m ³ /l)	Quartier
Administration	736.37	10	7.36	Q 06
Administration	1243.5	10	12.43	Q 07
Administration	469.22	10	4.69	Q 04
Total	2449.09		24.48	

I.3.3.1.4. Besoins scolaires

Tableau (I.5): Evaluation des Besoins scolaires

Equipements	Surface (m ²)	Dotation (I/m ² /j)	Consommation	Quartier
			(m^3/l)	
GRPS scolaire	2852.2	5	14.26	Q 02
01				
CEM 01	4840.8	5	24.20	Q 04
GRPS scolaire	2730.1	5	13.65	Q 07
02				
Lycée	9381.4	5	46.90	Q 08
CEM 02	4810	5	24.05	Q 08
GRPS scolaire	2112.6	5	10.56	Q 08
03				
Total	26727.1		133.6	

I.3.3.1.5. Besoins sanitaires

Tableau (I.6): Besoins sanitaires de chaque quartier.

Equipements	Surface (m ²)	Dotation (I/m²/j)	Consommation (m ³ /j)	Quartier
Centre médical	794.74	25	4.21	08

I.3.3.1.6. Besoins socioculturels

Tableau(I.7): Besoins socioculturels de chaque localité

Equipements	Surface (m ²)	Dotation (I/m²/j)	Consommation (m ³ /j)	Quartier
Mosquée	641.45	25	16.03	04

I.3.4. Consommation moyenne journalière totale

Apres l'estimation détaillée des équipements et de leurs besoins, on obtient une demande en eau des équipements de 329.38 m³ /j pour l'année 2019.

Et pour estimer les besoins des équipements projetés, on fait intervenir le rapport entre les besoins des équipements et les besoins domestiques, et à la base de ce rapport on estime les besoins projetés d'équipements pour l'horizon (2050).

$$\frac{Q._{\text{équip}} 2019}{=} = \frac{Q._{\text{équip}} 2050}{Q._{\text{dom}} 2019} \qquad (I.3)$$

Tableau (I.8): Récapitulation des besoins en eaux journaliers des différentes localités

Quartier	Type de besoins	Besoir	ns (m ³ /j)
		2019	2050
	Domestiques	648	1043.25
01	Equipements	44.61	71.82
	Total	692.61	1115.07
	Domestiques	172.8	278.25
02	Equipements	21.47	34.57
	Total	194.27	312.82
	Domestiques	129.8	208.25
03	Equipements	4.8	7.73
	Total	134.6	215.98
	Domestiques	237.6	382.65
04	Equipements	52.13	83.93
	Total	289.73	466.58
	Domestiques	216	347.85
05	Equipements	9.02	14.52
	Total	225.02	362.37
	Domestiques	172.8	278.25
06	Equipements	7.36	11.85
	Total	180.16	290.1
	Domestiques	388.8	625.95
07	Equipements	29.73	47.86
	Total	418.53	673.81
	Domestiques	648	1043.25
08	Equipements	137.43	221.26
	Total	785.43	1264.51
	Domestiques	2613.8	4207.7
Toute la zone d'étude	Equipements	306.55	493.54
	Total	2920.35	5701.24

I.3.5. Majoration de la consommation journalière

Pour éviter toute insuffisance dans la consommation journalière, on prévoit une majoration de 20% des besoins totaux journaliers, et cela dans le but de compenser les fuites physiques au niveau des conduites.

	1 1		•	1	111 ' 205	\sim
Tablemi (LUN Ma	inration da la	concommation mov	anna iaiirr	naliara a	I horizon ///s/	11
I ADDIGAU VI. 7 J. IVIA	HULALIUH UE IA	consommation mov	CHIIC IOUIT	iancie a	1 110117011 20.3	.,
1 00010000 (11) /1 1110	101001011 000 100	• • • • • • • • • • • • • • • • • • • •	., .			~

Quartier	Horizon	Besoin (m³/j)	Perte (m ³ /j)	Besoin majorée (m³/j)
01	2019	692.61	138.52	831.13
	2050	1115.07	223.02	1338.09
02	2019	194.27	38.85	233.12
	2050	312.82	62.56	375.38
03	2019	134.6	26.92	161.52
	2050	215.98	43.2	259.18
04	2019	289.73	57.94	327.67
	2050	466.58	93.31	559.89
05	2019	225.02	45	300.02
	2050	362.37	72.47	434.84
06	2019	180.16	36	216.16
	2050	290.1	58.02	348.12
07	2019	418.53	83.7	502.23
	2050	673.81	134.76	808.57
08	2019	785.43	157.09	942.52
	2050	1264.51	252.9	1517.41
Total	2019	2920.35	584	3504.35
	2050	5701.24	1140.26	6641.49

Donc le débit moyen journalier majoré de 20% à l'horizon 2019 est de 3504.35 m³ /j soit $40.56 \, \mathrm{l/s}$

Et celui à l'horizon 2050 est de 6641.49 m³/j soit 76.87 l/s

I.3.6. Variation de la consommation journalière

La consommation d'eau potable quotidienne n'est pas régulière, elle varie en présentant des minimums et des maximums. Ces variations sont caractérisées par des coefficients d'irrégularités : K min.jet K max.j

$$K_{min.j} = \frac{\text{Consommation minimale journalière}}{\text{Consommation moyenne journalière}}$$

$$K_{max.j} = \frac{\text{Consommation moyenne journalière}}{\text{Consommation moyenne journalière}}$$

$$(I.4)$$

De ces deux formules on obtient respectivement :

$$Q \min_{j} = K \min_{j} \times Q \max_{j}$$
 (I.6)

$$Q \max_{j} K \max_{j} \times Q \max_{j}$$
 (I.7)

D'où:

Q min.j: Débit de consommation minimale du jour le moins chargé de l'année.

Q max.j: Débit de consommation maximale du jour le plus chargé de l'année.

Q moy.j: Débit de consommation moyenne journalière.

Kmin.j: Coefficient d'irrégularité minimale, il varie entre 0.7 et 0.9.

K_{max,j}: Coefficient d'irrégularité maximale qui dépend de l'importance de l'agglomération, il varie entre 1.1 et 1.3.

Dans notre étude on prend : $K_{min,j} = 0.8$ et $K_{max,j} = 1.2$

Tableau(I.10): Consommation maximale et minimale journalière à l'horizon 2050

Quartier	Horizon	Besoins majorée (m³/j)	$Q_{\text{min.j}}(m^3/j)$	$Q_{\text{max.j}}(m^3/j)$
01	2019	831.12	664.9	997.34
	2050	1338.09	1070.47	1605.71
02	2019	233.12	186.5	279.74
	2050	375.38	300.3	450.46
03	2019	161.52	129.22	193.82
	2050	259.18	207.34	311.02
04	2019	327.67	262.136	393.2
	2050	559.18	447.34	671.02
05	2019	300.02	240.02	360.02
	2050	434.84	347.87	521.81
06	2019	216.16	216.16 172.93	
	2050	348.12	278.5	417.74
07	2019	502.23	401.78	602.68
	2050	808.57	646.86	970.28
08	2019	942.52	754.01	1131.02
	2050	1517.41	1213.93	1820.89
Total	2019	3504.35	1830.88	4216.21
	2050	6641.49	4512.61	6768.93

Le débit maximum journalier à l'horizon 2019 est de **4216.21 m³/j** soit **48.8 l/s.** Le débit maximum journalier à l'horizon 2050 est de **6768.93 m³/j** soit **78.34 l/s.**

I.3.7. Variation de la consommation horaire

Le débit journalier subit des variations durant les 24h heures de la journée. Ces variations sont caractérisées par les coefficients K _{min.h} et K _{max.h}, qui sont respectivement coefficient de variation minimale, maximale horaire.

I.3.7.1. Débit maximal horaire (débit de pointe)

Ce débit nous donne la consommation horaire la plus élevé de la journée et qui nous permet ainsi de dimensionner le réseau de distribution, il ressort de la formule (I.9):

$$Q_p = K_{\text{max.h}} \times Q_{\text{moy.h}} \tag{I.10}$$

Où:

$$Q_{moy.h}$$
: consommation moyenne horaire (m³/h) $Q_{moy.h} = Q_{max.j} / 24$ (I.11)

K max.h: coefficient de variation maximale horaire.

On détermine K max.h par la formule suivante : K max.h =
$$\alpha$$
 max \times β max (I.12)

Où:

 α_{max} : coefficient qui dépend du niveau de vie de la population et du confort des bâtiments, il varie entre [1.2; 1.4] Dans le cas de notre étude on prend $\alpha_{max}=1.3$

 β_{max} : coefficient qui dépend de nombre d'habitants.

Tableau(I.11): Valeurs du coefficientβ_{max}

Nbre d'habitants $\times 10^3$	< 1	1.5	2.5	4	6	10	20	30	100	300	> 10 ³
β max	2	1.8	1.6	1.5	1.4	1.3	1.2	1.15	1.1	1.03	1

A l'horizon 2019, la population est estimée à 17424 habitants qui est comprise entre 10 000 et 20 000 habitants, par interpolation on trouve $\beta_{max} = 1.26$

A l'horizon 2045, la population est estimée à 28054 habitants qui est comprise entre 20 000 et 30 000 habitants, par interpolation on trouve $\beta_{max} = 1.17$

Tableau (I.12): Débit de pointe de chaque Quartier à l'horizon 2050

Quartier	Nombre d'habitants	$lpha_{max}$	β_{max}	K _{max.h}	Q _{moy.h} (m³/h)	Q _p (m ³ /h)
01	6955	1.3	1.375	1.79	66.90	119.75
02	1855	1.3	1.65	2.15	18.69	40.18
03	1391	1.3	1.85	2.41	12.59	30.34
04	2551	1.3	1.6	2.08	27.96	58.16
05	2319	1.3	1.65	2.15	21.74	46.74
06	1855	1.3	1.65	2.15	17.40	37.41
07	4173	1.3	1.48	1.92	40.43	77.63
08	6955	1.3	1.375	1.79	75.87	135.8
Total	28054	1.3	1.17	1.52	282.04	428.7

Le débit de pointe à l'horizon 2050est 428.7 m³/h Soit 119.08 l/s

I.4. Bilan ressources - besoins

• Ressources disponibles : Q chain_cotiere = 63 1/s

Besoins actuel (2019): Q= 48.8 l/s
Besoins future (2050): Q= 78.34 l/s

Tableau(I.13): Bilan des ressources besoins

Resso	ources	Besoins	s actuel	Besoin	s futur	Bilan		В	ilan		
dispo	disponible		(2019)		(2050) Actuel futur		(2050)		Actuel futur		utur
(l/s)	(m ³ /j)	(1/s)	(m ³ /j)	(l/s)	(m ³ /j)	(l/s)	(m ³ /j)	(1/s)	(m ³ /j)		
63	5443.2	48.8	4216.21	78.34	6768.93	14.2	1226.88	-15.34	-1325.38		

I.5. Conclusion

On résulte de ce chapitre, que dans le but d'une bonne élaboration du projet, l'acquisition des caractéristiques générales de la commune de Rahmania s'avère indispensable.

Et nous avons aussi estimé les différents besoins de toutes les Quartiers en touchant à toutes les catégories de consommation.

D'après le bilan ressources-besoins, le débit des ressources disponibles ne peuvent pas couvrir les besoins de la zone d'étude à l'horizon 2050, pour cela les services techniques proposent un renforcement par un piquage dans la conduite d'AEP du couloir Rahmania-Alger du barrage de Ghrib d'un débit de 1325.38 m³/j.

CHAPITRE II:

LES RESERVOIRS

Chapitre II Réservoirs

II.1. Introduction

Un réservoir est l'un des importants ouvrages hydraulique dans une alimentation en eau potable, il est aménagé pour stocker de l'eau. Les réservoirs présentent plusieurs fonctions à savoir [4]:

- ils servent à compenser l'écart entre les apports d'eau (par gravité ou pompage) et la consommation (débit de pointe et autres).
- Ils constituent une réserve pour les imprévus (rupture, passe des pompes, réparations...)
- Régularité dans le fonctionnement du pompage. Les pompes refoulent à un débit constant.
- Simplification de l'exploitation.
- Régularité des pressions dans le réseau.
- Réserve incendie garantie (une partie du volume est réservé à la lutte contre l'incendie).

II.2. Classification des réservoirs

Ils peuvent être classés d'après [4]:

- La nature des matériaux, on distingue :
 - Les réservoirs métalliques.
 - Les réservoirs en maçonnerie.
 - Les réservoirs en béton armé.
- La situation des lieux, ils peuvent être.
 - Enterrés.
 - Semi-enterrés.
 - Surélevés, sur tour.

II.3. Emplacement du réservoir

- L'emplacement du réservoir a pour condition de garantir une pression suffisante aux abonnés.
- Ils doivent être placés à un niveau supérieur à celui de l'agglomération qu'ils desservent.
- L'altitude du réservoir, plus précisément du radier doit se situer à un niveau supérieur par rapport à la plus haute côte piézométrique exigée sur le réseau.
- Le site du réservoir doit être le plus proche possible de l'agglomération (économie) pouvant alimenter le point le plus défavorable.
- La topographie intervient et à une place prépondérante dans le choix de l'emplacement, de même que la géologie.
- Le meilleur emplacement n'est déterminé qu'après une étude technico-économique approfondie. [4]

Chapitre II Réservoirs

II.4. Choix du type du réservoir

Le choix du réservoir sera porté sur des réservoirs circulaires, semi enterrés vu les avantages suivants [4] :

- Economie sur les frais de construction.
- Etude architecturale très simplifiée.
- Etanchéité très facile à réaliser.
- Conservation de l'eau à une température constante.

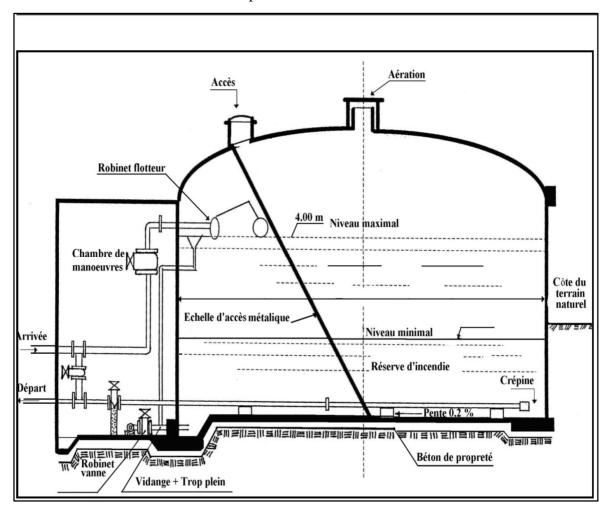


Figure (II.1): Réservoir semi-enterré

II.5. Equipements du réservoir

Le réservoir est équipé de [4] :

- Conduite d'adduction.
- Conduite de distribution.
- Conduite de trop plein.
- Conduite de vidange.
- Conduite de by-pass.
- Système de matérialisation de la réserve d'incendie.

II.5.1. Conduite d'adduction

L'arrivée de l'eau dans le réservoir se fait soit :

- Par adduction avec chute libre.
- Par adduction noyée.

L'installation du robinet flotteur interrompe l'arrivée de l'eau quand le réservoir atteint son niveau maximum.

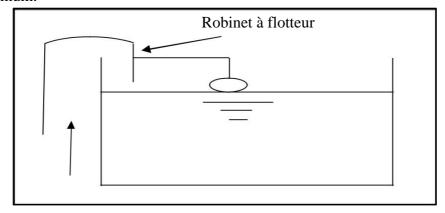


Figure (II.2): Adduction avec chute libre

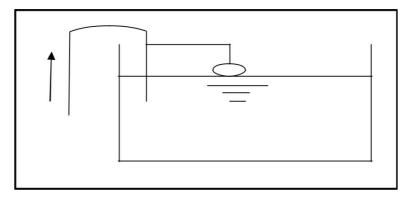


Figure (II.3): Adduction noyée

II.5.2. Conduite de départ

Cette conduite sera placée à l'opposé de la conduite d'arrivée, à quelques centimètres au dessus du radier (0.15 à 0.2 m) en vue d'éviter l'introduction des boues ou sables qui, éventuellement pourraient se décanter dans la cuve, il y a lieu aussi de réserver un minimum de 0.5 m au dessus la génératrice supérieure de la conduite en cas d'abaissement maximal du plan d'eau. Pour faciliter le brassage de l'eau, le départ sera prévu à l'opposé de l'arrivée.



Figure (II.4) : Départ de la distribution

II.5.3. Conduite de trop-plein

Cette conduite a pour rôle d'évacuer l'eau en cas de défaillance du robinet flotteur qui entraine le non arrêt de la pompe. Elle ne comporte pas de robinet sur son parcours.

II.5.4. Conduite de vidange

Elle part du point bas du réservoir et se raccorde sur la canalisation de trop-plein. Elle comporte un robinet-vanne.

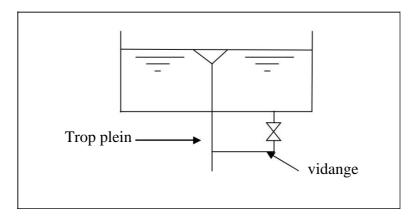


Figure (II.5): Trop-plein et vidange

II.5.5. Conduite de By-pass

En cas de nettoyage ou de réparation du réservoir, il est bon de prévoir une communication entre la conduite d'adduction et de distribution. Elle s'effectue selon le schéma de la figure (II.6), en temps normal, 1 et 3 sont ouvert et 2 fermé. En by-pass, on ferme 1 et 3 et on ouvert 2.

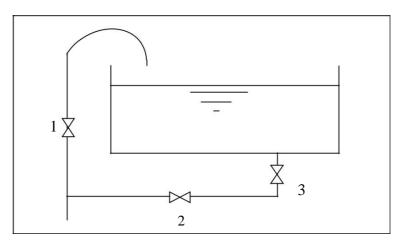


Figure (II.6): By-pass

II.5.6. Matérialisation de la réserve incendie

C'est une disposition spéciale de la tuyauterie qui permet d'interrompre l'écoulement une fois que le niveau d'incendie est atteint, on distingue :

II.5.6.1.Système à deux prises

En temps normal, 1 est fermé et 2 ouvert. En cas d'incendie, il suffit d'ouvrir 1. Mais il existe ainsi une tranche morte, ce qu'il faut éviter.

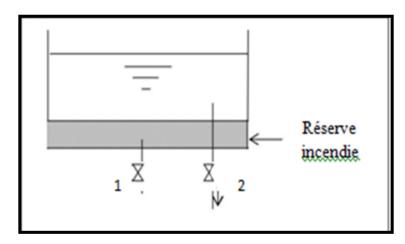


Figure (II.7): Système à deux prise

II.5.6.2. Système à siphon

C'est le dispositif le plus souvent adopté, il est constitué par un siphon qui se désamorce quand le niveau de la réserve est atteint le minimum, en service normal, on ouvre 1 et 3, et on ferme 2. En cas d'incendie, on ouvre 2.

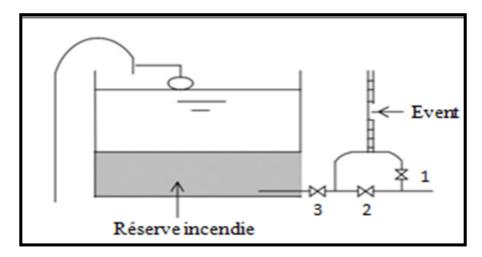


Figure (II.8): Système à siphon

II.6. Capacité du réservoir

Sa capacité est déterminée en fonction des variations du débit entrant et sortant, des apports et de la consommation journalière de l'agglomération, le calcul peut se faire de deux méthodes [7]:

- Méthode analytique
- Méthode graphique

II.6.1.Méthode analytique :

Pour dimensionner un réservoir, on est appelé à déterminer le maximum du résidu (P_{max}) dans le réservoir pour chaque heure de consommation, en fonction du rapport entre l'apport et la distribution, ce qui nous donnera la valeur max du résidu P_{max} , Vr et V seront déterminés de la même façon que dans la méthode graphique. [7]

$$V_r^{P_{\max}} \stackrel{Q_{\max j}}{=}$$

Où:

- **Vr**: volume de régularisation du réservoir (m³);
- **P**max : résidu maximum (%) ;
- Qmax.j: débit maximum journalier (m³/j).

Pour le volume total du réservoir, la réserve d'incendie sera prise en compte, et le volume total est :

$$V_T = V_R + V_{inc}$$

Avec:

- **V**_t: volume total du réservoir (m³);
- **V**inc : volume de la réserve d'incendie pris de 120 m³.

II.6.2. Calcul du résidu Pmax :

On a déjà déterminé les valeurs du coefficient de variation horaire $K_{max,h}$ pour chaque zone de distribution dans le Tableau (II-18) [7].

Le régime de consommation journalière pour chaque zone est pris du tableau du régime de distribution du débit journalier (voir Annexe (1)).

- On fait une répartition de 24 heures de pompage.
- La différence pour chaque heure de stockage entre l'apport et la consommation nous fait ressortir un surplus ou un déficit suivant le signe.
- Le résidu est ensuite déterminé pour chaque heure, la valeur maximum trouvée en P% max sera le pourcentage du volume de stockage

$$P_{max} \% = |\Delta V_{\parallel} max| + |\Delta V_{\parallel} max|$$

II.6.3 Méthode graphique :

C'est une méthode rapprochée à la méthode analytique. On trace sur un même graphe en portant sur l'axe des abscisses les heures, et sur l'axe des ordonnés le résidu cumulé comme l'illustre la Figure (II.9) [7].

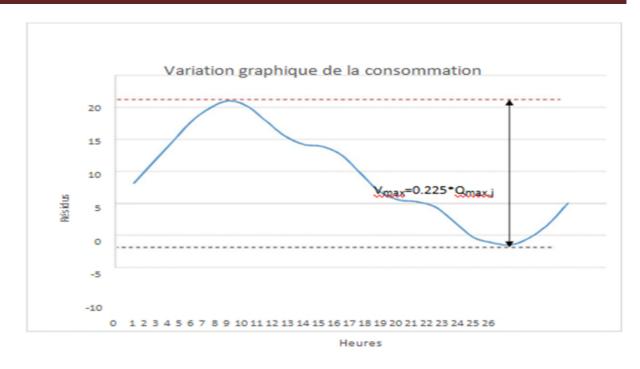


Figure (II-9): Illustration de la méthode graphique pour calculer le volume d'un réservoir

Le volume de stockage du réservoir est obtenu en sommant, en valeur absolue, les écarts des deux extremums par rapport à la courbe d'apport.

D'où le volume maximal sera :

$$V_{\text{max}} = V_{\text{(Max)}} \times Q_{\text{(max)}}$$

$$= 100$$

En tenant compte de la réserve incendie :

$$V_t = V_{max} + V_{inc}$$

II.7. Dimensionnement des réservoirs :

II.7.1. Calcul de la valeur de P_{max} de « R1.R2....R8»

Tableau (II-01): Dimensionnement du réservoir

	Consommation (%)	Apport (%)			
Heures			Surplus (%)	Déficit (%)	Résidus (%)
0-1	1	4,17	3,17		3,17
1-2	1	4,17	3,17		6,34
2-3	1	4,17	3,17		9,51
3-4	1	4,17	3,17		12,68
4-5	2	4,17	2,17		14,85
5-6	3	4,17	1,17		16,02
6-7	5	4,17		-0,83	15,19
7-8	6,5	4,17		-2,33	12,86
8-9	6,5	4,17		-2,33	10,53
9-10	5,5	4,17		-1,33	9,2
10-11	4,5	4,17		-0,33	8,87
11-12	5,5	4,17		-1,33	7,54
12-13	7	4,17		-2,83	4,71
13-14	7	4,17		-2,83	1,88
14-15	5,5	4,17		-1,33	0,55
15-16	4,5	4,17		-0,33	0,22
16-17	5	4,16		-0,84	-0,62
17-18	6,5	4,16		-2,34	-2,96
18-19	6,5	4,16		-2,34	-5,3
19-20	5	4,16		-0,84	-6,14
20-21	4,5	4,16		-0,34	-6,48
21-22	3	4,16	1,16		-5,32
22-23	2	4,16	2,16		-3,16
23-00	1	4,16	3,16		0

 $P_{max} = 22.5 \%$.

II.7.2. Calcul de capacité et dimensions des réservoirs :

Les dimensions principales seront déterminées à partir de la relation suivante :

$$V = (\pi D^2 / 4)$$
. H

donc

$$D = \sqrt{\frac{4.v}{\pi.h}}$$

- V : volume du réservoir (m₃)
- D : diamètre du réservoir (m)
- H : hauteur d'eau dans le réservoir (hauteur de la cuve en m)

Pour la hauteur « H » peut être variée entre (3 et 6) m cette hauteur peut atteindre 7 à 8m dans les grands ouvrage.

Dans notre cas on peut prendre H =5m

• Réservoire 01 :

Le volume de régulation du réservoir 01 sera :

$$V_{r2=}$$
 22..5 × 1605.71, $V_{r=}$ 361.28

Le volume total du réservoir sera : $V_t = 361.28 + 120 = 481.28 \text{ m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 500 m³.

$D_{1}=11.3 \text{ m}$

• Réservoire 02:

Le volume de régulation du réservoir 02 sera :

$$V_{r2} = 22..5 \times 450.46$$
, $V_r = 121.6 \text{ m}^3$.

Le volume total du réservoir sera : V_t = 121.6+120 = **241.6 m**³

Afin de normaliser la capacité du réservoir, on prendra un volume de 250 m³

$$D_2 = 8 \text{ m}$$

• Réservoire 03 :

Le volume de régulation du réservoir 03 sera :

$$V_{r3}=22...5 \times 311.02$$
, $V_r=69.98 \text{ m}^3$.

Le volume total du réservoir sera : $V_t = 69.98 + 120 = 189.98 \text{ m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 200 m³.

$$D_3 = 7.2 \text{ m}$$

• Réservoire 04 :

Le volume de régulation du réservoir 04 sera :

$$V_{r4} = 22..5 \times 671.02$$
, $V_r = 150.97 \text{ m}^3$.

Le volume total du réservoir sera : $V_t = 150.97 + 120 = 270.97 \text{ m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 300 m^3 .

$$D_4 = 8.8 \text{ m}$$

• Réservoire 05 :

Le volume de régulation du réservoir 05 sera :

$$V_{rl} = 22..5 \times 521.81$$
 , $V_r = 117.4$ m³.

Le volume total du réservoir sera : $V_t = 117.4 + 120 = 237.4 \text{ m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 250 m³.

$$D_5 = 8 \text{ m}$$

• Réservoire 06 :

Le volume de régulation du réservoir 06 sera :

$$V_{r6}=22..5 \times 417.74$$
 , $V_r=93.99 \text{ m}^3$.

Le volume total du réservoir sera : $V_t = 93.99 + 120 = 213.99 \text{ m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 220 m³.

$$D_6 = 7.5 \text{ m}$$

• Réservoire 07 :

Le volume de régulation du réservoir 07 sera :

$$V_{r7}=22..5 \times 970.28$$
 , $V_{r}=218.31 \text{ m}^{3}$.

Le volume total du réservoir sera : $V_t = 218.31 + 120 = 238.31 \text{ m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 250 m³.

$$D_7 = 8 \text{ m}$$

• Réservoire 08 :

Le volume de régulation du réservoir 08 sera :

$$V_{r8=} 22..5 \times 1820.89$$
, $V_{r}=409.7$ m³.

Le volume total du réservoir sera : $V_t = 409.7 + 120 = 529.7 \text{m}^3$

Afin de normaliser la capacité du réservoir, on prendra un volume de 550 m³.

$$D_8 = 11.9 \text{ m}$$

II -9 Conclusion:

Les capacités des réservoirs déterminées précédemment garantiront l'alimentation en eau potable des différentes secteur de l la nouvelle ville de Rahmania.

Nous avons procedés a projeter 8 reservoirs d'une capacité de stockage de 500,250,200,300,250,220,250 et $500 \,\mathrm{m}^3$.

CHAPITRE III: ADDUCTION

III.1. Introduction

L'adduction est le transfert de l'eau de la source naturelle ou de la station de traitement vers les réservoirs de distribution.

On distingue généralement deux types d'adduction:

- adduction gravitaire (écoulement à surface libre ou en charge): quand la cote de la source d'eau est supérieure à la cote du réservoir, il ne fait intervenir que l'action de la pesanteur.
- adduction par refoulement (écoulement en charge seulement) : quand la cote de la source d'eau est inferieur à la cote du réservoir, l'écoulement se fait par pompage en utilisant une station de pompage. [5]

III.2. Choix du tracé

- Rechercher le profil en long le plus régulier de façon à obtenir le tracé le plus directe et le plus court possible entre la source et le réservoir d'accumulation, raccordés par des courbes très ouvertes afin de réduire les frais d'investissement.
- Eviter les contres pentes qui peuvent donner lieu en exploitation à des cantonnements d'air, et le profil sera étudié de façon que celui-ci puisse être évacué facilement car le cantonnement d'air engendre la rupture de la veine liquide. [4]
- On souvent de le concevoir le long des routes ou bien des pistes pour faciliter la pose des conduites et son exploitation c'est-à-dire
 - Faciliter l'accès pour l'entretien et les réparations.
 - Faciliter la détection des fuites et les vannes défectueuses.

III.3. Choix du type des conduites

Les critères à respecter pour faire le choix du type des conduites sont [6]:

- Prix d'achat.
- La pression à supporter.
- Disponibilité sur le marché.
- La duré de vie prouvée par l'expérience et les testes de vieillissement.
- La nature du terrain.
- La longueur des conduites.

Dans notre projet, le choix s'est porté sur les conduites en PEHD (polyéthylène à haute densité)

vu les avantages qu'il présente [7]:

- Bonnes propriétés hydrauliques (coefficient de rugosité très faibles).
- Insensible aux mouvements de terrain.
- Facilité de transport et d'installation due à leur légèreté et leur flexibilité.

- Résistance à la corrosion interne, externe et microbiologique.
- Fiable au niveau de branchements, pas de fuites
- se raccorde facilement auxiliaire réseaux existants (fonte, acier ...).
- Longue durabilité (50 ans à 20°C).

Dans le cas de notre projet, on a opté pour des conduites en PEHD, vu les avantages qu'elles présentent :

• Avantages des conduites en PEHD :

Le PEHD a des caractéristiques très intéressantes à savoir :

- Une très bonne rugosité (coefficient de rugosité faible);
- Bonne résistance aux sollicitations internes et externes ;
- Insensibilité à la corrosion et à la chimie de l'eau ;
- Disponibilité sur le marché.

III.4. Description du schéma d'adduction

Le système d'adduction de notre projet de la commune de Rahmania est constitué de trois (03) chaines de refoulement SP1, SP2 et SP3 alimentée à partir des piquages 1,2 et 3

- Le 1er piquage alimentera deux bâches à eau N°01 et N°02.
- Le 2eme piquage alimentera les bâches à eau N°03 ,04 ,05 ,06 et 07 .
- Le 3eme piquage alimentera la bâche à eau N°08.

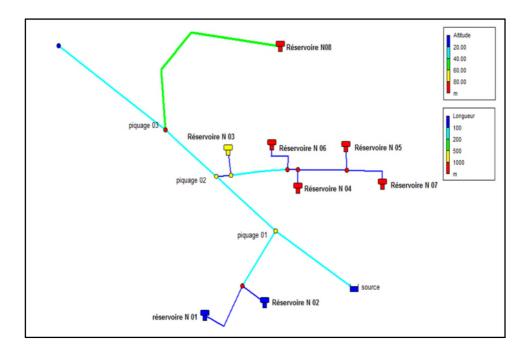


figure (III.1) : schéma synoptique de réseau d'adduction

III.5. Diamètre économique

Les formules qui nous permettent de calculer le diamètre économique sont les suivantes :

• Formule de **BONNIN**:

$$\mathbf{D} = \sqrt{\mathbf{Q}} \tag{III.1}$$

• Formule de **BRESS**:

$$D = 1, 5\sqrt{Q}$$
 (III.2)

Où:

D BONNIN, **D** BRESS : diamètre de la conduite (m)

Q: débit transitant dans le tronçon (m³/s)

On choisira un diamètre compris entre les deux valeurs calculées par la formule de BONNIN et celle de BRESS qui est plus économique.

III.6. Vitesse d'écoulement

Elle est déterminée par la formule suivante :
$$V = \frac{4 \text{ Q}}{\pi \text{ D}^2}$$
 (III.3)

Où:

V: vitesse d'écoulement dans la conduite (m²/s).

Q : débit véhiculé dans la conduite (m³/s).

D : diamètre de la conduite (m).

La vitesse d'écoulement sera comprise entre 0.5m/s et 1.5 m/s

III.7. Pertes de charge

La perte de charge est une perte de pression irréversible que subit un liquide lors de son

passage dans une canalisation car la perte de charge est transformée en chaleur ou bruits que l'on ne sait pas retransformer en pression et cela sous l'effet des frottements entre les particules de l'eau et les parois des canalisations. [8]

Elles se présentent sous formes :

- Pertes de charges linéaires.
- Pertes de charges singulières.

III.7.1.Pertes de charge linéaire (H1)

Les Pertes de Charge linéaire représentent les pertes d'énergies dues aux frottements du fluide dans une conduite de section constante. [8]

On définit la perte de charge linéaire H₁ (m) par l'expression suivante :

La formule de DARCY-WEISBACH:

$$H_L = J \times L = \frac{\lambda}{D} \frac{V^2}{2a} \times L \tag{III.4}$$

Où:

H₁: Pertes de charge linéaire (m).

J : perte de charge en mètre par mètre de conduite.

L : longueur du tronçon considéré.

 λ : le coefficient de perte de charge, qui dépend de la rugosité relative (K/D) et du régime d'écoulement. (Annexe 2)

V : vitesse moyenne d'écoulement (m/s).

g : Accélération de la pesanteur (m/s²).

D: diamètre choisi (m).

• Calcul du coefficient des pertes de charge

Pour déterminer le coefficient des pertes de charge aux différents régimes, on peut appliquer les formules suivantes :

- Régime turbulent rugueux

Il est donné par la formule de NIKURADAZI

$$\lambda = (1, 14 - 0, 86ln(\frac{k}{p}))$$
 . (III.5)

- Régime transitoire

Il est donné par la formule de COLEBROOK

$$\frac{1}{\sqrt{\lambda}} = -2 \log \left[\frac{K}{3,71.D} + \frac{2,51}{Re.\sqrt{\lambda}} \right]$$
 (III.6)

$$\mathbf{R_e} = \frac{\mathbf{v} \times \mathbf{D}}{\mathbf{v}} \tag{III.7}$$

Avec:

Où:

K : rugosité absolue de la conduite. Pour les tubes en **PEHD.**

K = 0.01 mm si D 200 mm

K = 0.02 mm si D > 200 mm

Re: nombre de Reynolds.

υ : viscosité cinématique de l'eau, elle est donnée par la formule de stocks :

$$\nu = \frac{0,0178}{(1+0,0337.t+0.000221.t^2)}$$
 (III.10)

- V : Viscosité cinématique de l'eau.

$$- \grave{a} 10^{\circ} \text{C} := 1.31 \ 10^{6} \, \text{m}^{2}/\text{s}$$

 $- \grave{a} 20^{\circ}\text{C} := 1.00 \ 10^{6} \, \text{m}^2/\text{s}$

 $- \grave{a} 30^{\circ} \text{C} := 0.08 \ 10^{6} \ \text{m}^{2}/\text{s}.$

Sa valeur est de 10^{-6} m²/s pour une température de 20°

III.7.2. Les pertes de charge singulières (Hs)

Les pertes de charges singulières sont des pertes de pression provoquées par le passage de l'eau dans des obstacles comme des vannes, raccords, élargissement, sortie de réservoir ...[8] Elles sont estimées à :

• 10% des pertes de charge linéaires pour le **PEHD** : $H_S = 0.1 H_I$ (III.7)

Hs : perte de charge singulière (m)

H₁: perte de charge linéaire (m)

III.7.3.Les pertes de charge totales (H_T)

Elles sont déterminées par la somme des pertes de charges linéaire et singulières.

• Pour le **PEHD**: $\mathbf{H}\mathbf{T} = \mathbf{H}\mathbf{l} + \mathbf{H}\mathbf{s} = \mathbf{1.1} \times \mathbf{H}\mathbf{l}$ (III.8)

III.8. Hauteur manométrique totale (HMT)

Elle est calculé comme suit : $HMT = H_g + H_T$

Où:

H_g: hauteur géométrique (m).

H_T: pertes de charge totales (m).

III.9. Puissance absorbée par la pompe

9.81 Q HMT

 $Pa = \overline{H} \qquad (III.9)$

Elle s'exprime par la relation suivante :

Où:

Pa: puissance absorbée par la pompe (kw).

Q : débit à transiter (m3/s).

HMT: hauteur manométrique total (m).

 η : rendement de la pompe.($\eta = 70\%$)

III.10. Energie consommée par la pompe

Elle est donnée par cette formule:

$$E = Pa \times t_p \times 365 \tag{III.10}$$

Où:

E : énergie consommée par la pompe (Kwh).

Pa: puissance absorbée par la pompe (kw).

t_p: temps de pompage (h).

III.11. Frais d'exploitation

Ils sont donnés par la formule suivante :

$$\mathbf{F_{exp}} = \mathbf{E} \times \mathbf{p} \tag{III.11}$$

Où:

F_{exp}: frais d'exploitation (Da).

E : énergie consommée par la pompe (Kwh).

p : prix unitaire du Kwh. fixé par la **SONELGAZ** (p = 4.67 DA/kwh).

III.12. Frais d'amortissement :

Les frais d'amortissement seront calculés à partir de la formule suivante :

$$\mathbf{F_{am}} = \mathbf{Pu} \quad \mathbf{L} \quad \mathbf{A} \tag{III.12}$$

Où:

F_{am}: frais d'amortissement (Da).

P_u : prix du mètre linéaire de la conduite (Da/ml). (Annexe 3)

L : longueur de la conduite (m).

A: amortissement annuel:
$$A = i + \frac{i}{(1 i)^n 1}$$
 (III.13)

Où:

i: taux d'intérêt annuel (annuité).i=8%.

n : nombre d'année d'amortissement. n=30 ans

Donc A = 0.089

III.13.Calcul du bilan:

Le bilan sera calculé par la formule suivante :

$$B_L = Fexp + Fam$$
 (III.14)

Avec:

BL: Le bilan en (DA).

• Calcul du débit véhiculé dans les tronçons

Tableau (III.1) : Débit véhiculé dans les tronçon

Tronçons	Débit véhiculé (l/s)
SP1-R02	78 l/s
R02-R01	24 l/s
SP2-R03	33 l/s
R03-R06	30 1/s
R06-R04	25 1/s
R04-R05	17 l/s
R05-R07	8 l/s
SP3-R08	21 l/s

III.14. Détermination du diamètre économique pour les différents tronçons

III.14.1. Tronçon 1 SP1-R02:

• Caractéristiques du tronçon

- Le débit refoulé : Q = 0.078 m3/s.

- La langueur : L = 105.4 m.

- Cote trop plein: CTP (R1) = 89.3 m.

- Cote radier: CR(SP) = 76.4 m.

- Hauteur géométrique : Hg = 12.9 m.

- DBONNIN = 0,279 m.

- DBRESS = 0.419 m.

On choisit PEHD comme matériau, les diamètres normalisés sont: 315 et 400 mm.

A. Calcul de HMT

Tableau(III.2): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
315	277.6	1.28939512	357936.08	0.01578743	0.0048190	0.5841219	13.48412192
400	352.6	0.79920893	281801.07	0,01500204	0,0013851	0.16789127	13.06789127

B. Calcul des frais d'exploitation

Tableau(III.3): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
315	277.6	14.7396863	107599.71	4,67	502490.6456
400	352.6	14.28469863	104278.3	4,67	486979.6611

C. Calcul des frais d'amortissement

Tableau(III.4): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
315	277.6	4479.51	105.4	0,0888274	41939.01584
400	352.6	7374.35	105.4	0,0888274	69041.69909

D. Calcul du bilan

Tableau(III.5) : calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
315	277.6	6187315,735	41939.01584	544429.6614
400	352.6	5797560,128	69041.69909	556021.3602

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 315 mm, avec une vitesse de 1.289 m/s, une hauteur manométrique totale de 13.48412 m et sur une longueur de 105.4 m.

III.14.2. Tronçon 2 R02-R01:

- Caractéristiques du tronçon
 - Le débit refoulé : Q =0,024 m3/s ;
 - La langueur : L = 75.32 m;
 - Cote trop plein: CTP (R1) = 99.2 m;
 - Cote radier: CR(SP) = 83.5 m;
 - Hauteur géométrique : Hg = 15.7 m;
 - DBONNIN = 0.1549 m;
 - DBRESS = 0.2324 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 160 et 200 mm.

A. Calcul de HMT

Tableau(III.6): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	Λ	(m/ml)	(m)	(m)
160	141	1.5378124	216831.549	0.018379756	0.015711887	1.360932196	
							17.0609
							322
200	176.2	0.98475859	173514.463	0,017460588	0,00489794	0.424249808	16.12424981

B. Calcul des frais d'exploitation

Tableau(III.7): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
160	141	5.73832268	41889.75557	4,67	195625.1585
200	176.2	5.42327625	39589.91662	4,67	184884.9106

C. Calcul des frais d'amortissement

Tableau(III.8): calcul des fraix d'amortissement

		` /			
Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
160	141	1204.65	75.32	0,0888274	8059.689482
200	176.2	1829.83	75.32	0,0888274	12242.4452

D. Calcul du bilan

Tableau(III.9): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
160	141	195625.1585	49922.50546	203684.848
200	176.2	184884.9106	59867.03761	197127.3558

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 160 mm, avec une vitesse de 0.98475859 m/s, une hauteur manométrique totale de 16.12424981 m et sur une longueur de 75.32 m

III.14.3. Tronçon 3 SP2-R03:

- Caractéristiques du tronçon
 - Le débit refoulé : Q = 0.033 m3/s ;
 - La langueur : L = 27.23 m;
 - Cote trop plein: CTP (R1) = 84.5 m;
 - Cote radier: CR(SP) = 79.83 m;
 - Hauteur géométrique : Hg = 4.7 m ;
 - DBONNIN = 0.182 m;
 - DBRESS = 0.272 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 200 et 250 mm.

A. Calcul de HMT

Tableau(III.10): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
200	176.2	1.35404306	238582.387	0.017460588	0.009260169	0.289977553	
							4.98997
							7553
250	220.4	0.86540839	190736.01	0,016605135	0,002875902	0.09005742	4.79005742

B. Calcul des frais d'exploitation

Tableau(III.11): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
200	176.2	2.307722047	16846.37095	4,67	78672.55232
250	220.4	2.215264698	16171.4323	4,67	75520.58883

C. Calcul des frais d'amortissement

Tableau(III.12): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
200	176.2	1829.83	27.23	0,0888274	4425.939.759
250	220.4	2890.41	27.23	0,0888274	6991.239918

D. Calcul du bilan

Tableau(III.13): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
200	176.2	78672.55232	4425.939.759	83098.49208
250	220.4	75520.58883	6991.239918	82511.82874

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 250 mm, avec une vitesse de 0.86540839 m/s, une hauteur manométrique totale de 4.79005742 m et sur une longueur de 27.23 m.

III.14.4. Tronçon 4 R03-R06:

• Caractéristiques du tronçon

- Le débit refoulé : Q =0,03 m3/s ;

- La langueur : L = 106.5 m;

- Cote trop plein: CTP(R1) = 90 m;

- Cote radier: CR(SP) = 79.83 m;

- Hauteur géométrique : Hg = 10.28 m;

- DBONNIN = 0.173 m;

- DBRESS = 0.259 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 200 et 250 mm.

A. Calcul de HMT

Tableau(III.14): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
200	176.2	1.23094823	216893.079	0.017460588	0.007653032	0.937305093	
							11.2173
							11.2173 0509

B. Calcul des frais d'exploitation

Tableau(III.15): Calcul des fraix d'exploitation

		`	/	1	
Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	

200	176.2	4.716075555	34427.35155	4,67	160775.7318
250	220.4	4.444390751	32444.05248	4,67	151513.7251

C. Calcul des frais d'amortissement

Tableau(III.16): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
200	176.2	7461.72	106.5	0,0888274	17310.41441
250	220.4	8948.09	106.5	0,0888274	27343.63023

D. Calcul du bilan

Tableau(III.17): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
200	176.2	160775.7318	70588.77896	178086.1462
250	220.4	151513.7251	84650.01999	178857.3553

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 200 mm, avec une vitesse de **1.23094823** m/s, une hauteur manométrique totale de 11.21730509 m et sur une longueur de 106.5 m.

III.14.5. Tronçon 5 R06-R04:

• Caractéristiques du tronçon

- Le débit refoulé : Q = 0.025 m3/s ;

- La langueur : L = 19.3 m;

- Cote trop plein: CTP (R1) = 89.14 m;

- Cote radier: CR(SP) = 79.83 m;

- Hauteur géométrique : Hg = 9.31 m ;

- DBONNIN = 0.158 m;

- DBRESS = 0.237 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 160 et 200 mm.

A. Calcul de HMT

Tableau(III.18): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
160	141	1.60188792	225866.197	0.018379756	0.017048488	0.378391193	
							9.68839
							1193
200	176.2	1.0257902	180744.323	0,017460588	0.005314606	0.11795767	
							9.42795
							767

B. Calcul des frais d'exploitation

Tableau(III.19): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
160	141	3.394397057	24779.09852	4,67	115718.3901
200	176.2	3.303152312	24113.01188	4,67	112607.7655

C. Calcul des frais d'amortissement

Tableau(III.20): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
160	141	1204.65	19.3	0,0888274	2065.215175
200	176.2	1829.83	19.3	0,0888274	3137.004677

D. Calcul du bilan

Tableau(III.21): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
160	141	115718.3901	2065.215175	117783.6053
200	176.2		3137.004677	115744.7702
		112607.7655		

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 200 mm, avec une vitesse de 1.0257902 m/s, une hauteur manométrique totale de 9.42795767 m et sur une longueur de 19.3 m.

III.14.6. Tronçon 6 R04-R05:

• Caractéristiques du tronçon

- Le débit refoulé : Q =0,017 m3/s ;

- La langueur : L = 91.2 m;

- Cote trop plein: CTP (R1) = 101.5 m;

- Cote radier: CR(SP) = 79.83 m;

- Hauteur géométrique : Hg = 21.67 m;

- DBONNIN = 0.130 m;

- DBRESS = 0.196 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 160 mm

A. Calcul de HMT

Tableau(III.22): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
160	141	1.08928379	153589.014	0.018379756	0.007883221	0.826792207	
							22.4967
							9221

B. Calcul des frais d'exploitation

Tableau(III.23): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
160	141	5.359700052	39125.81038	4,67	182717.5345

C. Calcul des frais d'amortissement

Tableau(III.24): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
160	141	7461.72	91.2	0,0888274	9758.944248

D. Calcul du bilan

Tableau(III.25): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
160	141	182717.5345	9758.944248	243166.3903

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 160 mm, avec une vitesse de 1.08928379 m/s, une hauteur manométrique totale de 22.49679221 m et sur une longueur de 91.2 m.

III.14.7. Tronçon 7 R05-R07:

• Caractéristiques du tronçon

- Le débit refoulé : Q =0,011 m3/s ;
- La langueur : L = 65.3 m;
- Cote trop plein: CTP (R1) = 99.8 m;
- Cote radier: CR(SP) = 79.83 m;
- Hauteur géométrique : Hg = 19.97 m ;
- DBONNIN = 0.105 m;
- DBRESS = 0.157 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 110 et 125 mm.

A. Calcul de HMT

Tableau(III.26): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
110	96.8	1.49545143	144759.699	0.020104313	0.023673338	1.777749304	21.7477493
125	110.2	1.13689559	126218.149	0.01944877	0.011540725	0.866650725	
							20.83665073

B. Calcul des frais d'exploitation

Tableau(III.27): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
110	96.8	3.352570896	24473.76754	4,67	114292.4944
125	110.2	3.212118543		4,67	109504.3332
			23448.46536		

C. Calcul des frais d'amortissement

Tableau(III.28): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
110	96.8	577.28	65.3	0,0888274	3348.473039
125	110.2	735.44	65.3	0,0888274	4265.869269

D. Calcul du bilan

Tableau(III.29): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
110	96.8	114292.4944	3348.473039	117640.9675
125	110.2		4265.869269	113950.6126
		109504.3332		

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 110 mm, avec une vitesse de 1.49545143 m/s, une hauteur manométrique totale de 21.7477493 m et sur une longueur de 65.3 m.

III.14.8. Tronçon 8 SP3-R08:

• Caractéristiques du tronçon

- Le débit refoulé : Q =0,021 m3/s ;

- La langueur : L = 413.6 m;

- Cote trop plein: CTP (R1) = 112.7 m;

- Cote radier: CR(SP) = 84.85 m;
- Hauteur géométrique : Hg = 27.85 m;
- DBONNIN = 0.145 m;
- DBRESS = 0.217 m;

On choisit **PEHD** comme matériau, les diamètres normalisés sont: 160 et 200 mm.

A. Calcul de HMT

Tableau(III.30): Calcul de la HMT 1

Dext	Dint	V			J	Ht	HMT
(mm)	(mm)	(m/s)	Re	λ	(m/ml)	(m)	(m)
160	141	1.34558585	189727.605	0.018379756	0.012029413	5.721670093	
							33.5716
							7009
200	176.2	0.86166376	151825.155	0.017460588	0.003749986	1.783643186	
							29.6336
							4319

B. Calcul des frais d'exploitation

Tableau(III.31): Calcul des fraix d'exploitation

Dext (mm)	Dint	Pa (k.w)	E (k.w.h)	eu	Fexp (DA)
	(mm)			(DA/k.w.h)	
160	141	9.880142508	72125.04031	4,67	336823.9382
200	176.2	8.72118119	63664.62268	4,67	297313.7879

C. Calcul des frais d'amortissement

Tableau(III.32): calcul des fraix d'amortissement

Dext (mm)	Dint	Pu (DA/ml)	L(m)	A	Fam (DA)
	(mm)				
160	141	1204.55	413.6	0,0888274	44257.66821
200	176.2	1829.83	413.6	0,0888274	67226.17277

D. Calcul du bilan

Tableau(III.33): calcul de bilan

Dext (mm)	Dint	Fexp (DA)	Fam (DA)	Bilan (DA)
	(mm)			
160	141	336823.9382	44257.66821	381081.6065
200	176.2		67226.17277	364539.9607
		297313.7879		

Conclusion:

Selon la combinaison des frais d'amortissement et d'exploitation, on opte pour un diamètre de 200 mm, avec une vitesse de 0.86166376 m/s, une hauteur manométrique totale de 29.63364319 m et sur une longueur de 413.6 m.

III.15. Conclusion

Au terme de ce chapitre, nous avons déterminé les diamètres économiques des différents tronçons de la chaine d'adduction de la zone d'étude.

Les diamètres obtenus sont résumés dans le tableau suivant :

Tableau (III.29): Récapitulation des résultats

Tronçons	Type d'adduction	D(m)	V (m/s)	HMT(m)	PN (bars)
SP1-R02	Refoulement	315	1.289	13.484	10
R02-R03	Refoulement	160	0.985	16.142	10
SP2 – R03	Refoulement	250	0.865	4.79	10
R03 – R06	Refoulement	200	1.23	11.217	10
R06 – R04	Refoulement	200	1.025	9.427	10
R04 – R05	Refoulement	160	1.089	22.496	10
R05 – R07	Refoulement	110	1.495	21.747	10
SP03 – R08	Refoulement	200	0.861	29.633	10

CHAPITRE IV: LES POMPES

IV.1. Introduction

A chaque type de pompe correspondent une nature et un agencement particulier des pièces mobiles internes. Quel qu'en soit le type, une pompe hydraulique remplit essentiellement le même rôle, c'est celui de faire circuler un liquide d'un point à basse pression vers un point à haute pression. C'est une transformation de l'énergie mécanique en énergie hydraulique.

Les pompes centrifuges sont les plus utilisées pour le pompage de l'eau, vu qu'elles permettent le refoulement des débits importants à des hauteurs considérables avec un bon rendement, de plus leur simplicité et de leur faible coût. [9]

IV -2 Classification des pompes :

Les pompes sont classées comme suit [11]:

Les pompes centrifuges;

- Les pompes volumétriques ;
- Les pompes à piston.

On peut classer les pompes centrifuges comme suit :

- Suivant la forme de la roue :
 - Pompes centrifuges radiales
 - Pompes centrifuges semi axial
- Suivant la forme du corps de la pompe
 - Monocellulaire à volute ou colimaçon
 - A diffuseur circulaire ou type burine
- Suivant le nombre de roue :
 - Multicellulaire
- Suivant la position de son axe :
 - Pompe à axe horizontal
 - Pompe à axe vertical

IV.2. Choix de la pompe

Le choix de pompe est opéré compte tenu de quatre paramètres [9] :

- Le débit à refouler.
- hauteur manométrique totale.
- Le rendement.
- La puissance absorbée.

Pour la station de pompage sur forage, on adaptera un groupe électropompe immergé vu les avantages qu'ils présentent, à savoir :

- Fiabilité
- Amorçage automatique.
- Rendement élevé.

• Entretien presque nul.

Pour les autres stations de pompage, notre choix se portera sur les pompes centrifuges.

IV.3. Principe de fonctionnement d'une pompe centrifuge

Dans les pompes centrifuges le mouvement du liquide résulte de l'accroissement d'énergie qui lui est communiqué par la force centrifuge.

Une pompe centrifuge est constituée par:

- une roue à aubes tournant autour de son axe
- un distributeur dans l'axe de la roue
- un collecteur de section croissante, en forme de spirale appelée volute.

Le liquide est aspiré au centre du rotor par une ouverture appelée distributeur dont le rôle est de conduire le fluide depuis la conduite d'aspiration jusqu'à la section d'entrée du rotor.

La pompe étant amorcée, la vitesse du fluide qui entre dans la roue augmente et par conséquent la pression dans l'ouïe diminue et engendre ainsi une aspiration et maintient l'amorçage.

A la sortie du rotor, le fluide se trouve projeté dans la volute dont le but est de ramener le fluide dans la section de sortie. La section offerte au liquide étant de plus en plus grande, son énergie cinétique se transforme en énergie de pression. [10]

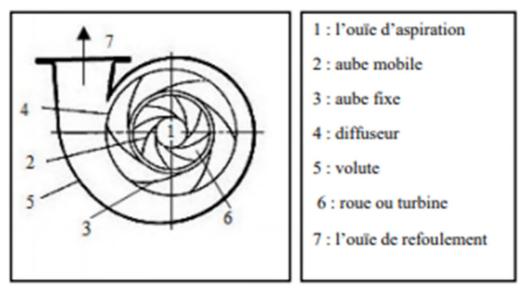


Figure (IV.1): Pompe centrifuge

IV.4. Courbes caractéristiques d'une pompe centrifuge

Les principales courbes qui caractéristiques une pompe centrifuge sont comme suit :

- La courbe hauteur Débit (Q, H), cette courbe représente la variation des différentes hauteurs d'élévation en fonction du débit. H = f(Q)
- La courbe de la puissance absorbée en fonction du débit Pa = f(Q)

La courbe rendement – Débit (Q, η) , elle exprime la variation du rendement de la pompe en fonction du débit. $\eta = f(Q)$.

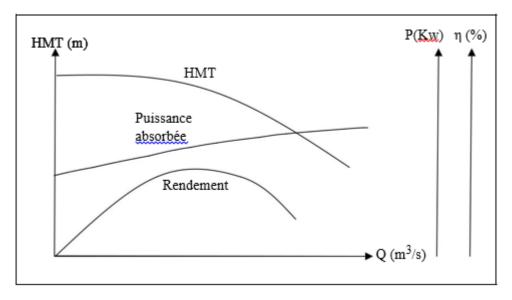


Figure (IV.2): courbes caractéristiques d'une pompe centrifuge

IV.5. Couplage des pompes

Les pompes peuvent être couplées en série ou en parallèle, selon qu'il est recherché d'augmenter, la hauteur d'élévation ou le débit. [10]

IV.5.1. Couplage en série

Dans un couplage en série le refoulement de la première pompe débouche dans l'aspiration de la seconde, le même débit traverse les deux pompes, les hauteurs engendrées s'ajoutent.

IV.5.2. Couplage en parallèle

Dans ce type de couplage, les pompes fonctionnent sous une même hauteur d'élévation et réunissent l'eau refoulé dans une même canalisation.

IV.6. Point de fonctionnement

Graphiquement, le point de fonctionnement est le point d'intersection entre la courbe caractéristique de la conduite et celle de la pompe fournie par le constructeur H=f(Q). L'équation de la courbe caractéristique d'une conduite de refoulement est donnée par la formule suivante :

$$Hc = Hg + H_T = Hg + RQ^2$$

Où:

Hg: hauteur géométrique (m)

R : résistance de la conduite $R = \frac{8L}{g D^{51}}$

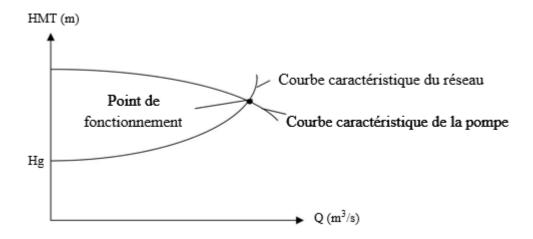


Figure (IV.3): point de fonctionnement d'une pompe

IV.7. Recherche du point de fonctionnement

Dans le cas où le point de fonctionnement ne coïncide pas avec le point désiré, ce dernier peut être obtenu par la modification de l'un des paramètres de fonctionnement de la pompe. Pour cela, quatre cas peuvent se présenter.

IV.7.1. Première variante : Variation du temps de pompage

On opte pour le point de fonctionnement P_1 (Q_1 , H_1) (figure (IV.4)) obtenu et par ailleurs on aura un débit Q_1 supérieur à celui désiré Q_d et un temps de pompage réduit t_1 . Pour conserver même volume pompé, on aura :

$$\mathbf{t}_1 = \frac{tp.Qd}{Q1}$$

Où:

t_p: temps de pompage.

t₁: temps de pompage réduit.

La puissance absorbe sera;

$$Pa = \frac{g.H1.Q1}{\eta 1}$$

IV.7.2. Deuxième variante : Variation de la vitesse de rotation

Ce cas consiste à varier la vitesse de rotation, donc on recherche une vitesse de rotation N' qui fera passer la caractéristique H = f(Q) par le point désiré P_d (Q_d , H_d). Pour cela on trace la parabole $H = aQ^2$ passant par l'origine et par le point désiré P_d et coupera la caractéristique de la pompe en un point P_2 (Q_2 , H_2).

.

D'après les lois de similitudes

$$\frac{H2}{Hd} = \frac{N2}{Nd}$$

$$\frac{\mathbf{Q2}}{\mathbf{Q} \, \mathbf{d}} = \frac{N}{N}$$

On aura:

$$H 2 = \frac{Q2^2}{Qd}Qd$$

D'où l'équation de la courbe iso-rendement :

$$H = \frac{Hd}{Qd2}Q^2$$

La vitesse de rotation sera :

$$N' = \frac{Qd}{Q2}N$$

Et la puissance absorbée : Et la puissance absorbée :

$$Pa = \frac{g.Hd.Qd}{n1}$$

IV.7.3. Troisième variante : Régulation par vannage

Elle consiste à vanner sur le refoulement pour créer des pertes de charges de façon à obtenir le débit désiré Q.

La perte de charge sera calculée comme suit : $h = H' - H_d$

Où:

h: la perte de charge créer par le vannage (m).

H'. La distance entre Q_d et l'intersection de la verticale passant par le même point Q_d avec la caractéristique de la pompe.

La puissance absorbée sera : $\mathbf{Pa} = \frac{g.Q \text{ d.H}}{n1}$

IV.7.4. Quatrième variante : Rognage de la roue de la pompe

Il est possible de rogner la roue de la pompe, c'est-à-dire réduire son diamètre. Cette opération est effectuée en gardant la même vitesse de rotation, pour cela on trace une droite H = bQ qui passe par l'origine et par le point désiré P_d , celle-ci coupe la courbe caractéristique de la pompe au point P_3 (Q_3 , P_3) (figure (IV.4)) qui est le point homologue du point désiré.

D'après les lois de similitudes on a $: \frac{Qd}{Q3} = \frac{Hd}{H3}$

D'où l'équation de la courbe iso-rendement $\mathbf{H} = \frac{\mathrm{Hd}}{\mathrm{Qd}}\mathbf{Q}$

Le coefficient de rognage est déterminé par la formule suivante :

$$\mathbf{m} = (\mathbf{D}_{d}/\mathbf{Q}_{3})^{1/2} = (\mathbf{H}_{d}/\mathbf{H}_{3})^{1/2}$$

D₁, D₃ représentent respectivement les diamètres de la roue avant et après le rognage :

$$D_3 = m \times D_1$$

Où:

m: coefficient de rognage.

R: le pourcentage du rognage R = 1 - m

La puissance absorbée de la pompe sera : $Pa = \frac{g.Q d.H d}{\eta 1}$

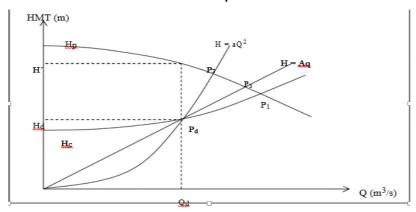


Figure (IV.4): Recherche de la réalisation du point de fonctionnement désiré

IV.8. Etude de la cavitation

On appelle cavitation d'une pompe centrifuge la vaporisation à l'entrée de la roue d'une partie du liquide pompé. C'est en effet en ce point que la pression est en général la plus basse.

On considère en général que cette vaporisation est liée au fait que la pression absolue tombe en dessous de la pression de vapeur saturante du fluide pompé. En réalité, il s'agit de la création de bulles d'air dissous dans le liquide.

Les effets de la cavitation peuvent être très néfastes pour la pompe:

- La création de bulle de vapeur à l'aspiration s'accompagnant de leur condensation brutale dans ou en sortie de roue, lorsque la pression remonte,
- Implosion des bulles de vapeur au niveau de la roue.
- vibrations anormales.
- Bruit anormal.
- Arrachement de matière dans les zones d'implosion,
- Chute du débit pompé lorsqu'apparaît le phénomène de cavitation. [11]

Pour éviter ce phénomène il faut que la pression absolue à l'ouïe d'aspiration se maintienne largement au dessus de la tension de vapeur du liquide. Soit la condition de non cavitation.

NPSH_d> NPSH_r

NPSH_d: « Net Positive Suction Head » que l'on peut traduire par « charge nette d'aspiration ». La charge nette d'aspiration disponible est la valeur de la pression absolue mesurée sur l'axe de la bride d'aspiration de la pompe. Elle est déterminée par l'utilisateur.

-Pour l'alimentation en charge
$$NPSH_{d=\frac{P0}{\rho,g}+Ha}$$
 –(Ja- h_v)

-Pour l'alimentation en dépression NPSH_d =
$$\frac{P0}{\rho \cdot g}$$
 Ha – (Ja- h_v)

Où:

 $\frac{\mathbf{P0}}{\rho \cdot \mathbf{g}}$: ;Pression au point d'aspiration (m)

Ha: Hauteur d'aspiration (m)

Ja : Perte de charge à l'aspiration(m)

h_v : C'est la pression de vapeur maximale que l'air peut supporter à une température donnée.

$$h_{\rm V} = 0.24 \text{ à T} = 20 \, {}^{\circ}{\rm C}$$

Tableau (IV-1): Tension de vapeur d'eau pompée en fonction de la température

	` '			-					1		
T°C	0	4	10	20	30	40	50	60	70	80	100
hv											
	0.06	0.083	0.125	0.24	0.43	0.75	1.26	2.03	4.10	4.80	10.30
(m)											

 $NPSH_r$: chaque constructeur possède pour chaque type de pompe et pour une vitesse de rotation déterminée, une courbe donnant la valeur du NPSH requis en fonction du débit.

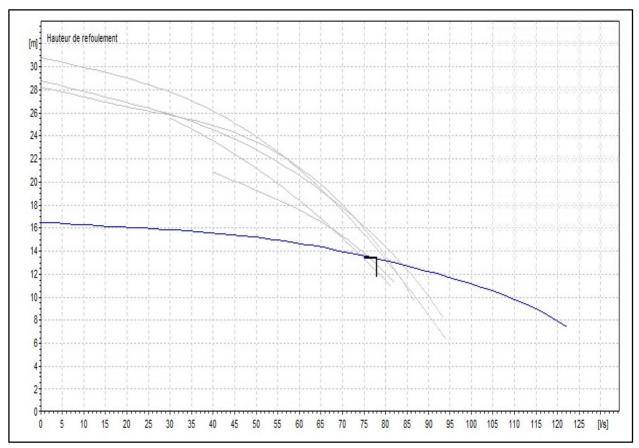
IV.9. Choix des pompes

IV.9.1. Station de pompage 01

Caractéristiques de la conduite :

- Q = 78 l/s.
- L = 105.4 m.
- Hg = 12.9 m.
- HMT = 13.48 m.

- D = 315 mm.
- V = 1.289 m/s.


D'après le catalogue des pompes KSB (Annexe 5), on a opté pour une pompe centrifuge multicellulaire haute pression à corps intermédiaire à axe horizontale de type Multitec P12C/7/30/2C et on prévoit une deuxième pompe de secoure en cas de panne.

	•				
N (tr/min)	η (%)	Pa (Kw)	$NPSH_{r}(m)$	$P_1\left(Q_1,H_1\right)$	$P_d(Q_d, H_d)$
1450	66.9	15.5	6.75	(23, 146.28)	(23, 145.14)

Tableau(IV.2): Caractéristiques de la pompe

P₁: Point de fonctionnement, P_d: Point désiré

Le point de fonctionne ment de la pompe choisie coïncide avec le point désiré, par conséquent, elle répond a ux caractéristiques requise et ne nécessite aucune modification.

Figure(IV.5): Courbe Caractéristiques de la pompe

IV.9.1.1. Etude de cavitation

- La côte du plan d'aspiration Ca= 75.4
- La côte de l'axe de la pompe Cp = 76.4
- La hauteur d'aspiration Ha = -1 m.
- NPSH_r = 6.75 m
- Calcul de la pression à la côte d'aspiration :

$$P_{Ca} = 10.33 - 0.0012 \times Ca = 10.33 - 0.0012 \times 75.4 \text{ m}.$$

$$P_{Ca} = 10.24$$
m

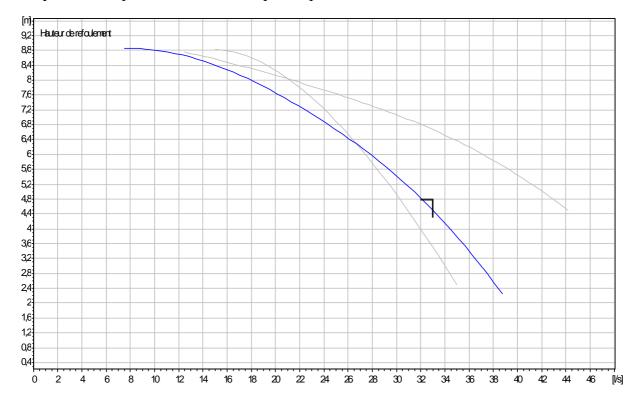
$$NPSH_d = P_{Ca+} Ha - (Ja-hv) = 10.24 + (-1) - (0 - 0.24) = 9.48 m$$

La condition de la non cavitation est vérifiée NPSH_d> NPSH_r

IV.9.2. Station de pompage 02

Caractéristiques de la conduite :

- Q = 33/s.
- L = 27.23 m.
- Hg = 4.7 m.
- HMT = 4.79 m.
- D = 250 mm.
- V = 0.865 m/s.


D'après le catalogue des pompes KSB (Annexe 5), on a opté pour une pompe centrifuge monocellulaire normalisées » à corps segmenté à axe horizontale de type Multitec NC 80-160/165 et on prévoit une deuxième pompe de secoure en cas de panne.

Tableau(IV.3): Caractéristiques de la pompe

N (tr/min)	η (%)	Pa (Kw)	NPSH _r (m)	$P_1\left(Q_1,H_1\right)$	$P_d(Q_d, H_d)$
1450	60.9	2.39	3.89	(23, 146.28)	(23, 145.14)

P₁: Point de fonctionnement, P_d: Point désiré

Le point de fonctionne ment de la pompe choisie coïncide avec le point désiré, par conséquent, elle répond a ux caractéristiques requise et ne nécessite au cune modification.

Figure(IV.6): Courbe caractéristiques de la pompe

IV.9.2.1. Etude de cavitation

- La côte du plan d'aspiration Ca= 78.83
- La côte de l'axe de la pompe Cp = 79.83
- La hauteur d'aspiration Ha = -1 m.
- NPSH_r = 3.89 m
- Calcul de la pression à la côte d'aspiration :

$$P_{Ca} = 10.33 - 0.0012 \times Ca = 10.33 - 0.0012 \times 78.83 \text{ m}.$$

$$P_{Ca} = 10.23m$$

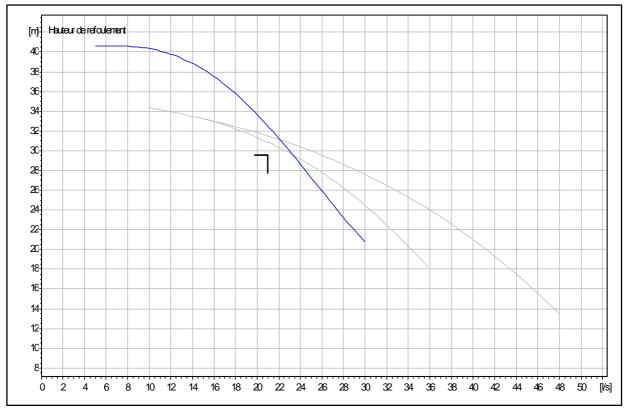
$$NPSH_d = P_{Ca+} Ha - (Ja-hv) = 10.23 + (-1) - (0 - 0.24) = 9.47$$

La condition de la non cavitation est vérifiée NPSH_d> NPSH_r

IV.9.3. Station de pompage 03

Caractéristiques de la conduite :

- Q = 21 l/s.
- L = 413.6 m.


- Hg = 27.85 m.
- HMT = 29.63 m.
- D = 200 mm.
- V = 0.861 m/s.

D'après le catalogue des pompes KSB (Annexe 5), on a opté pour une pompe centrifuge multicellulaire haute pression à corps segmenté à axe horizontale de type Multitec PM 100/2 A et on prévoit une deuxième pompe de secoure en cas de panne.

N (tr/min)	η (%)	Pa (Kw)	NPSH _r (m)	P ₁ (Q ₁ , H ₁)	$P_{d}\left(Q_{d},H_{d}\right)$
1450	72.1	9.36	2	(23, 146.28)	(23, 145.14)

P₁: Point de fonctionnement, P_d: Point désiré

Le point de fonctionne ment de la pompe choisie coïncide avec le point désiré, par conséquent, elle répond a ux caractéristiques requise et ne nécessite au cune modification.

Figure(IV.7): Courbe caractéristiques de la pompe

IV.9.3.1. Etude de cavitation

- La côte du plan d'aspiration Ca= 83.85
- La côte de l'axe de la pompe Cp = 84.85
- La hauteur d'aspiration Ha = -1 m.
- NPSH_r = 2 m

Calcul de la pression à la côte d'aspiration :

$$P_{Ca} = 10.33 - 0.0012 \times Ca = 10.33 - 0.0012 \times 83.85 \text{ m}.$$

$$P_{Ca} = 10.23m$$

$$NPSH_d = P_{Ca+} Ha - (Ja-hv) = 10.23 + (-1) - (0 - 0.24) = 9.47$$
 m

La condition de la non cavitation est vérifiée NPSH_d> NPSH_r

IV.10. Conclusion

Au cours de ce chapitre, nous avons pu déterminer les caractéristiques des pompes qui correspondent aux caractéristiques des conduites de notre projet, et pour celles qui ne correspondent pas,

Pour ce qui de la cavitation, donc le phénomène de la cavitation ne risque pas de se produire pour nos pompes.

CHAPITRE V:COUP DE BELIER

V.1. Introduction

Le coup de bélier est un phénomène résultant d'un écoulement transitoire dans une conduite lorsqu'on provoque une variation importante et souvent rapide du débit, chaque tranche d'eau dans la conduite subit des variations brusques de pression et de vitesse a des instants différents « propagation par onde »,le coup de bélier est donc un phénomène oscillatoire.

Le fonctionnement en régime transitoire des installations hydrauliques peut provoquer des ruptures de conduites et des détériorations importantes des organes traversés. [4]

V.2. Les cause du phénomène

- Actions externes
 - Ouverture ou la fermeture brusque des vannes dans les conduites en charge à écoulement gravitaire.
 - Démarrage et arrêt des pompes.
- Actions internes
 - Réservoir en fin de remplissage.
 - Fermeture de clapet anti-retour.
 - Entrée et purge d'air.
- Sans actions
 - Cavitation dynamique.
 - Turbulence de l'écoulement. [4]

V.2.1. Cas de la surpression

C'est une conséquence du coup de bélier engendrée par une pression importante se produisant a la suite d'une fermeture instantanée ou rapide d'une vanne de sectionnement ou bien a la suite d'une dépression causée par l'arrêt brusque d'une pompe, si la pression totale majorée de la valeur de surpression due au coup de bélier dépasse la pression maximale admissible des conduites, y aura risque de rupture de ces dernières et déboitement des joints , les anneaux d'étanchéité seront détérioré. [4]

V.2.2. Cas de la dépression

C'est une autre conséquence du coup de bélier engendré par l'apparition d'une pression relativement négative, a la suite d'un arrêt brusque d'une pompe ou d'une ouverture instantanée d'une vanne de sectionnement. Si cette pression devient inférieure à 10 m.c.e, il se produira une poche de cavitation, si le profil en long de la conduite est déformable la canalisation pourra être aplatie par implosion et les joints aspirés, le phénomène de cavitation, une fois apparu peut provoquer une détérioration de la couche d'enduit intérieur de la conduite. [4]

V.3. Analyse physique du phénomène

Considérons le cas d'une conduite de refoulement de longueur L et dont le débit ne soit brusquement plus fournit suite à une disjonction du moteur électrique de la pompe. [12]

• 1ère phase:

L'eau poursuit son ascension, mais la conduite n'est plus alimentée, il va donc se produire à partir de la pompe une dépression de tranche en tranche, l'eau se déprime et la conduite se contracte successivement à diminution élastique de son diamètre, l'onde de dépression se propage jusqu'au réservoir avec une vitesse « a », le temps mis par cette onde pour l'atteindre est de L/a. Au bout de ce temps, la conduite est totalement en dépression et l'eau est immobile

• 2ème phase:

La conduite étant déformée dans les limites élastiques, elle reprend son diamètre initial, à partir du réservoir les tranches successives de conduite se décontracte si bien que l'eau peut redescendre dans la conduite et au bout du temps/a, toute l'eau redescendue va se trouver arrêter par le clapet de non retour de la pompe qui est fermé. Ce retour engendre une surpression qui peut endommager la conduite.

Le phénomène se reproduirait infiniment s'il n'est pas amorti par les pertes de charge régulière. [12]

V.4. Les systèmes de protection des conduites (anti-bélier)

Dans le cas général, il est impossible de supprimer les effets du coup de bélier une fois crée, mais il convient de rechercher leur limitation à une valeur compatible avec la résistance des installations. Les appareils anti-bélier devront donc avoir essentiellement pour effet de limiter la surpression et la dépression. Les principaux types de protection anti-bélier sont explicités dans ce qui suit [12]:

V.4.1. Le réservoir d'air

V.4.1.1. Principe de fonctionnement

Cet appareil de protection est sous forme d'un récipient contenant de l'air comprimé dans sa partie supérieure et de l'eau dans sa partie inférieure, ces appareils sont appelés aussi accumulateurs, cloche a air, ballon d'air ou réservoir anti-bélier, d'autres part un clapet anti-retour est souvent prévu entre la pompe et le ballon d'air , ce dispositif est utilisé pour la protection contre la dépression et la surpression.

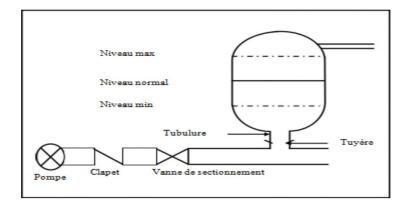


Figure (V.1): Réservoir d'air « réservoir anti bélier

V.4.1.2.Calcul du réservoir d'air

Le calcul du réservoir d'air permet de déterminer les valeurs de la surpression et de la dépression maximales dans les conduites de refoulement et le volume du réservoir d'air.

Comme méthode de calcul, on distingue :

• Méthode de Vibert :

La méthode de Vibert donne de bons résultats pour les petites installations et risque de donner des volumes de réservoirs d'air, important dans le cas de grandes installations.

• Méthode de Bergeron :

La méthode de Bergeron est la plus répandue, elle donne de bons résultats que ça soit pour les petites ou pour les grandes installations.

Remarque:

Vu ses avantages, la méthode de Bergeron est la méthode retenue dans le cas de notre projet

V.4.1.3.Méthode de calcul (Méthode de Bergeron)

C'est par l'épure de Bergeron que seront déterminées les valeurs de la dépression et de la surpression maximales dans la conduite après s'être fixé au préalable les caractéristiques du réservoir d'air (volume U₀ d'air en régime normal) et de son dispositif d'étranglement.

Cette méthode consiste à déterminer par approximation successive la vitesse de l'eau dans la conduite de refoulement au niveau du réservoir d'air.

1) Les temps se suivent selon les valeurs de

$$\theta = \frac{2 \times L}{a}$$

2) La variation du volume d'air :

$$\Delta U_i = S * V_{mi} * \theta$$

V_{mi}: La vitesse moyenne pour chaque intervalle :

$$V_{mi} = \frac{Vi + Vf}{2}$$

S: section de la conduite (m²);

3) Le volume d'air comprimé:

$$U_i = U_{i\text{-}1} \pm \Delta U i$$

 $+ \Delta Ui$: lorsque le réservoir d'air se vide.

- ΔUi : lorsque le réservoir d'air se remplit.

4) La nouvelle pression dans le réservoir d'air sera exprimée en admettant que la détente du fluide s'effectue conformément à la loi du Poisson :

$$(Z_0 + \delta_0) * U_0^{1,4} = Z * U^{1,4}$$

Où δ_0 représente les pertes de charge dans la conduite en régime en fonctionnement normal. En effet, en marche normale, la hauteur manométrique absolue à la pompe correspondant au volume U_0 est : $Z_0 + \delta_0$ donc :

$$Z = \frac{(Z_0 + \delta_0) * U_0^{1,4}}{U^{1,4}}$$

- 5) On évaluera, à la montée de l'eau, la valeur V_1 de la vitesse de l'eau dans cette tuyère en fonction de la vitesse finale V_f de l'eau dans la conduite pour l'intervalle de temps considéré. On évaluerait de même la vitesse V_2 dans cette tuyère à la descente de l'eau
- A la montée de l'eau, la tuyère ayant un coefficient de débit de l'ordre de 0,92, le rapport des vitesses $\frac{V_1}{V_f}$ est égal au rapport inverse des carrés des diamètres

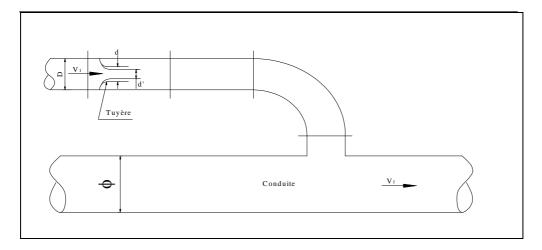


Figure (V-2): l'eau du réservoir sedirige vers la conduite

$$\frac{V_1}{V_f} = \frac{\phi^2}{d^2} = \frac{\phi^2}{(0.92*d)^2} = K$$

Ø : diamètre de la conduite

D : diamètre de la tubulaire

d : diamètre de la tuyère

d' : diamètre veine contractée

d sera choisi pour que K reste compris entre 15 et 20

La perte de charge Δh_I à la montée de l'eau en fonction du rapport m des sections de la veine contractée (diamètre d') et de la tubulure (diamètre D) qui détermine sur le graphique (Annexe 4) un coefficient c, On a ainsi :

$$\Delta h_1 = c * \frac{V_1}{2 * g}$$

• A la descente de l'eau, la tuyère agit comme un ajutage rentrant de Borda un coefficient de contraction de 0.5, le rapport des vitesses $\frac{V_2}{V_f}$ de l'eau dans la tuyère et dans la conduite est égal au rapport inverse des sections :

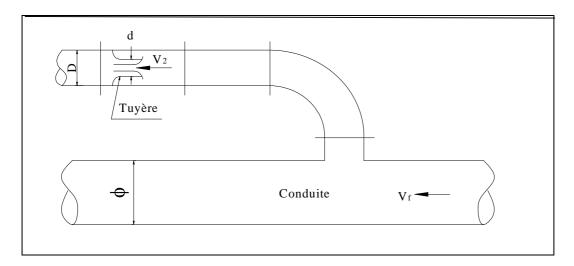


Figure V-3 : l'eau de la conduite revient dans le réservoir

$$\frac{V_2}{V_f} = \frac{2 * \phi^2}{d^2} = K'$$

La perte de charge Δh_2 à la descente de l'eau s'évalue en fonction du nouveau rapport m des sections de la veine contractée de section $(\frac{\pi * d^2}{8})$ et de la tubulure (diamètre D). Il suffit de lire sur le graphique(annexe04) le nouveau coefficient c' et on a :

$$\Delta h_2 = c' * \frac{V_2}{2 * g}$$

8) La pression absolue dans la conduite se déduit :

- en faisant la différence : $Z - \Delta h_I$ quand l'eau monte,

- en faisant la somme : $Z + \Delta h_2$ quand l'eau descend.

7) La pression finale absolue dans la conduite, en aval du diaphragme fictif des pertes de charge s'obtient :

- en faisant la différence : Z - Δh_1 - δ quand l'eau monte,

- en faisant la somme : $Z + \Delta h_2 + \delta$ quand l'eau descend.

V.4.2. Soupape de décharge

Le rôle d'une soupape consiste a dévier un certain débit a l'extérieur de la conduite a protéger dés que la pression atteint une certaine valeur de réglage estimé a environ 1.04 à 1.1 de la pression admissible, l'ouverture doit pouvoir s'effectuer très rapidement pour que l'opération soit efficace, les soupapes per mettent la protection contre les surpressions uniquement.

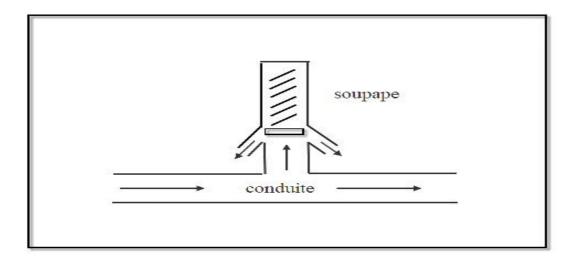


Figure (V.4): Soupape de décharge

V.4.3. Cheminé d'équilibre

Une cheminé d'équilibre est constituée d'un réservoir cylindrique a l'air libre et a axe vertical, elle joue le même rôle que le réservoir d'air, mais malheureusement on arrive a des ouvrages de dimensionnement dans le cas des hauteurs de refoulement moyennes et grandes ,elle est généralement aménagée en dérivation a la jonction d'une galerie d'amenée en charge et d'une condition forcée dans le but d e réduire la valeur des surpressions produites par le coup de bélier.

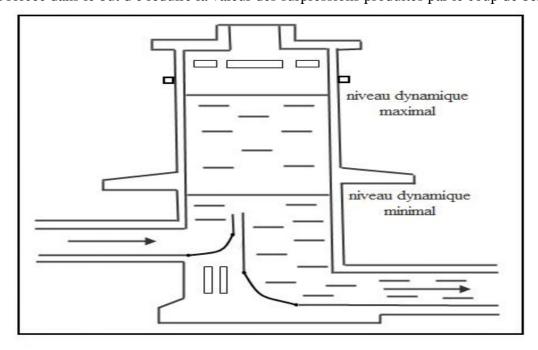


Figure (V.5): Cheminée d'équilibre

V.4.4. Le volant d'inertie

C'est un moyen dont la spécificité est qu'il continue a assurer l'alimentation de la veine liquide malgré l'arrêt du moteur actionnant la pompe, ce volant qui est placé sur l'arbre du groupe ,restitue l'énergie cinétique qu'il a cumulé pendent la marche en régime normale au moment de la disjonction et permet ainsi de d'allongé ou de prolonger le temps d'arrêt de l'ensemble du groupe ,donc de diminuer l'intensité du coup de bélier .

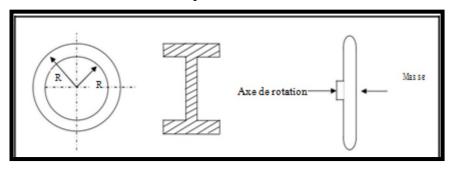


Figure (V.6): Volant d'inertie

V.5. Valeur numérique du coup de bélier

La célérité est la vitesse de propagation des ondes, elle est donnée par la formule d'ALLIEVI :

$$A = \frac{9900}{\sqrt{48.3 + \frac{\text{K.Dint.}}{e}}}$$

Où:

• : célérité de l'onde (m/s)

• D_{int} : diamètre intérieur de la conduite (mm)

• e : épaisseur de la conduite (mm)

• K_c: coefficient qui dépend du matériau constituant la canalisation (k_c=83 pour le PEHD)

V.5.1. Cas d'une fermeture brusque

La fermeture brusque d'une vanne est caractérisée par un temps de fermeture Tf tel que :

$$T_f < \frac{2 \times L}{a}$$

 $\frac{2\times L}{a}$: Le temps d'aller et retour de l'onde (s).

La valeur maximale du coup de bélier est :

$$B = \frac{a \times V_0}{g}$$

D'où:

• **B**: La valeur du coup de bélier (m);

• **a** : La célérité de l'onde (m/s) ;

• **V0**: Vitesse d'écoulement (m/s);

• **g** : Accélération de la pesanteur (m/s2).

- La valeur de la surpression maximale sera: $H_{sur} = H_0 + B$

- La valeur de la dépression maximale sera :Hdep = H0-B

Avec: $H_0 = Hg + 10$

Où:

H₀: pression absolue de la conduite avant apparition du coup de bélier (m).

Hg: hauteur géométrique (m).

10 : pression atmosphérique (m).

V.5.2. Cas d'une fermeture lente

La fermeture lente est caractérisée par un temps de fermeture Tf tel que :

$$T_f > \frac{2 \times L}{a}$$
.

Dans ce cas la valeur du coup de bélier est donnée par la formule de MICHAUD :

$$B = \frac{2 \times L \times V_0}{g \times T}$$

Remarque:

Vu que le coup de bélier est plus important dans le cas de la fermeture brusque de la vanne, par conséquent nous limiterons nos calculs à ce cas seulement.

V.6. Vérification du coup de bélier

Tableau (V.1): Les valeurs du coup de bélier des différents tronçons

Tronçons	Tronçon1	Tronçon2	Tronçon3	Tronçon4	Tronçon5	Tronçon6	Tronçon7	Tronçon8
D _e (mm)	315	160	250	200	200	160	110	200
D _i (mm)	277.6	141	220.4	176.2	176.2	141	96.8	176.2
e (mm)	18.7	9.5	14.8	11.9	11.9	9.5	6.6	11.9
V (m/s)	1.289	0.984	0.865	1.23	1.025	1.089	1.495	0.861
L (m)	105.4	75.32	27.23	106.5	19.3	91.2	65.3	413.6
Hg	12.9	15.7	4.7	10.28	9.31	21.67	19.97	27.85
a (m/s)	276.67	276.69	276.24	277.01	277.01	276.69	278.28	277.01
B (m)	36.35	27.75	24.11	34.73	28.94	30.72	42.41	19.23
H ₀ (m)	22.9	25.7	14.7	20.28	9.31	31.67	29.97	37.25
H _{sur} (m)	59.25	53.45	38.8	55.01	48.25	62.39	72.38	57.08
H _{dep} (m)	-13.45	-2.05	-9.4	-14.45	-9.63	0.95	-12.44	18.62
PN (m)	100	100	100	100	100	100	100	100

D'après les résultats obtenus dans le tableau (V.1), on remarque que la valeur de la surpression est inférieure à la pression nominale de service de la conduite en **PEHD**, donc les conduites ne nécessitépas un anti-bélier,

Et pour les valeurs de la dépression sont toutes négative sauf les tronçon8 et 6, donc il y a le risque d'aplatissement de la conduite.

V.7. Dimensionnement d'un réservoir d'air

• Dimensionnement du Réservoir d'air pour le tronçon (1) :

- \checkmark D = 0.315 m
- \checkmark Q = 0.078 m³/s.
- ✓ Hg =12.9 m
- ✓ L = 105.4 m
- \checkmark K =83
- ✓ e = 18.87 mm
- ✓ V=1.289 m/s
- ✓ $T_1 = 0.762s$
- \checkmark S= 0.0605m²
- \checkmark a = 276.67m/s
- ✓ B = 36.36 m

Supposons, d'une part, que le volume d'air en régime normal soit de $U_0 = 0.25 \text{ m}^3$ et, d'autre part, que l'on dispose d'une tuyère de diamètre d = 80 mm incorporée dans une tubulure de diamètre D = 100 mm. Les caractéristiques de la tuyère sont alors les suivantes :

V.7. 1.Cas de la montée

A la montée de l'eau, la tuyère à un coefficient de débit de l'ordre de 0,92, et le diamètre de la tuyère est pris aussi d'une manière à avoir le rapport de vitesse K_r comprit entre 15 et 20. Donc on aboutie a l'équation suivante :

$$D^{2}$$
 $15 < \underline{} < 20$
 d^{12}

Le diamètre de la tuyère sera, pour K_r pris entre 15 et 20 :

on prend d=80 mm

$$\frac{V_1}{V_f} = \frac{315^2}{(0.92*80)^2} \Rightarrow \frac{V_1}{V_f} = 18.32$$
, donc compris entre 15 et 20, Alors : V₁ = 18.32* V_f

Par ailleurs :
$$m = \frac{(0.92 * 80)^2}{100^2} \Rightarrow m = 0.54$$

A partir de graphique (Annexe 4) on trouve : c = 0.2

Donc:
$$\Delta h_1 = 0.2 * \frac{V_1}{2 * g}$$

V.7. 2.Cas de la descente

$$\frac{V_2}{V_f} = \frac{2*315^2}{80^2} \Rightarrow \frac{V_2}{V_f} = 31$$
, Alors: $V_2 = 31*V_f$

Par ailleurs : $m = 0.5 \frac{80^2}{100^2} \Rightarrow m = 0.32$

A partir de graphique (Annexe4) on trouve : c' = 0.48

Donc:
$$\Delta h_2 = 0.48 * \frac{V_2}{2 * g}$$

Les résultats obtenus du calcul ci-dessus sont saisis dans la figure (V.7) à fin d'obtenir le volume du réservoir d'air.

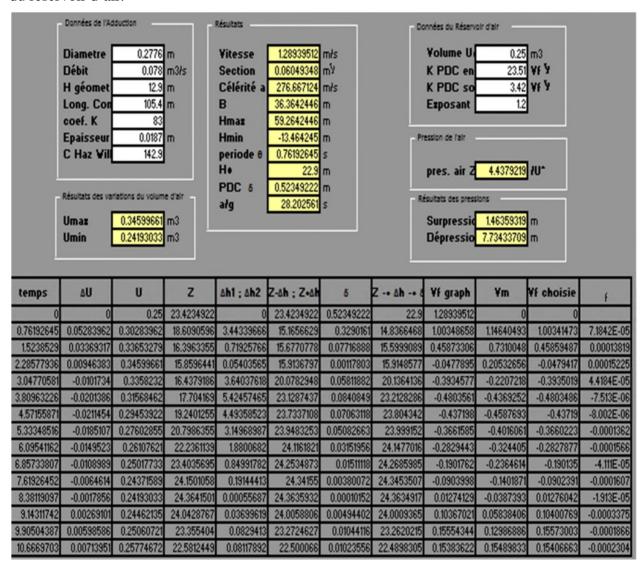


Figure (V.7): Le développement des résultats de calcul du réservoir d'air du tronçon (1)

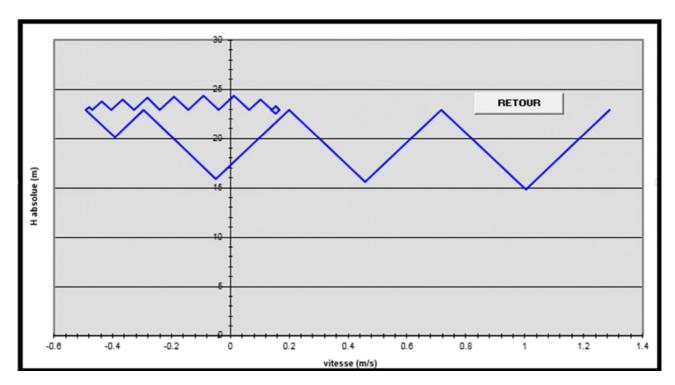


Figure (V.8): Epure de BERGERON pour le tronçon (1)

Le dimensionnement du réservoir d'air conduit à mieux protéger contre le coup de bélier, l'explication graphique est figurée sur la courbe ci-dessous, qui montre d'une façon claire la dissipation progressive du front d'onde tout en protégeant la conduite.

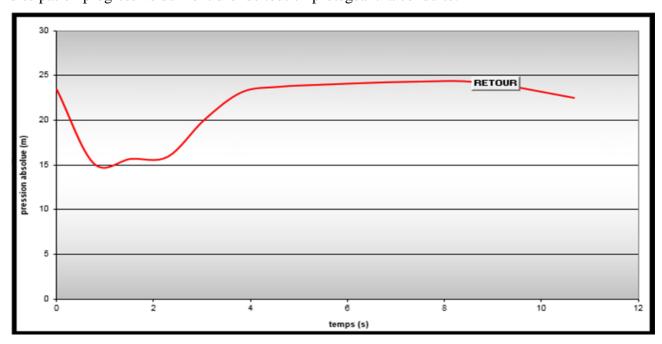


Figure (V.9): Variation de la pression absolue en fonction du temps

V.8. Dimensionnement d'un réservoir d'air

Les caractéristiques du réservoir d'air du tronçon (3) sont comme suite :

- $U_0 = 0.25 \text{ m}^3$
- $U_{max} = 0.35 \text{ m}^3$
- $U_{min} = 0.24 \text{ m}^3$

Le volume maximal du réservoir d'air sera majoré de 20% donc on obtiendra un volume de $U_{max} = 0.42 \text{ m}^3$ donc dans ce cas on va opter pour un réservoir d'air normalisé de 1m^3 .

• Dimensionnement du Réservoir d'air pour le tronçon (3) :

 \checkmark D = 0.250 m

 \checkmark Q = 0.033 m³/s.

✓ Hg =4.7 m

✓ L = 27.23 m

 \checkmark K =83

✓ e = 14.8 mm

 \checkmark V=0.865 m/s

 \checkmark $T_1 = s$

 \checkmark S=m²

 \checkmark a =276.24m/s

✓ B = 24.37m

V.8. 1.Cas de la montée

A la montée de l'eau, la tuyère à un coefficient de débit de l'ordre de 0,92, et le diamètre de la tuyère est pris aussi d'une manière à avoir le rapport de vitesse K_r comprit entre 15 et 20. Donc on aboutie a l'équation suivante :

$$\frac{D^2}{d^{12}} < 20$$

Le diamètre de la tuyère sera, pour K_rpris entre 15 et 20 :

on prend d= 62 mm

$$\frac{V_1}{V_f} = \frac{250^2}{(0.92 * 62)^2} \Rightarrow \frac{V_1}{V_f} = 19.20$$
, donc compris entre 15 et 20, Alors : V₁ = 19.2* V_f

Par ailleurs :
$$m = \frac{(0.92 * 62)^2}{80^2} \Rightarrow m = 0.51$$

A partir de graphique (Annexe 4) on trouve : c = 0.24

Donc:
$$\Delta h_1 = 0.24 * \frac{V_1}{2 * g}$$

V.8. 2. Cas de la descente

$$\frac{V_2}{V_f} = \frac{2 * 250^2}{62^2} \Rightarrow \frac{V_2}{V_f} = 32.52$$
, Alors: $V_2 = 32.52 * V_f$

Par ailleurs :
$$m = 0.5 \frac{62^2}{80^2} \Rightarrow m = 0.3$$

A partir de graphique (Annexe4) on trouve : c' = 0.49

Donc:
$$\Delta h_2 = 0.49 * \frac{V_2}{2 * g}$$

Les résultats obtenus du calcul ci-dessus sont illustrés dans la figure (V.10) à fin d'obtenir le volume du réservoir d'air.

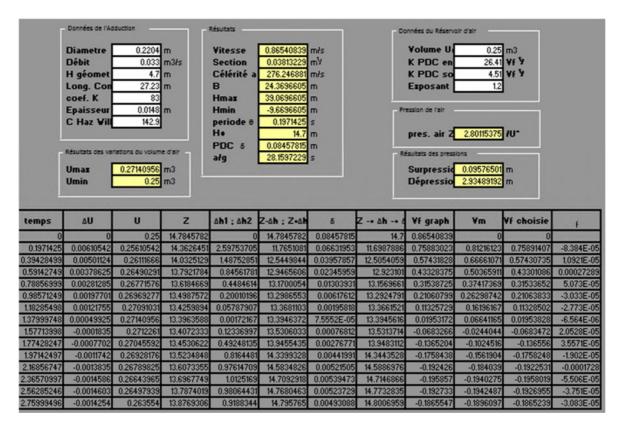
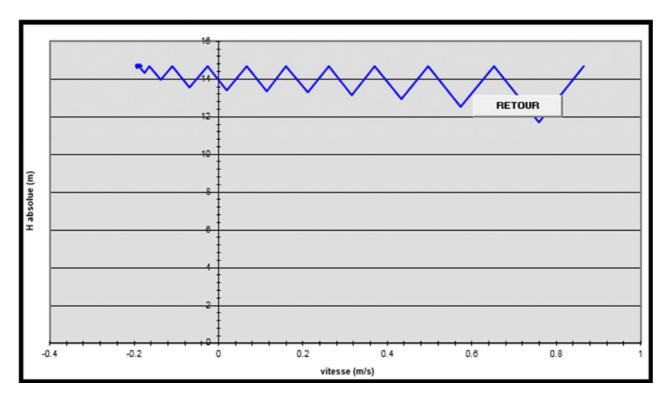



Figure (V.10): Le développement des résultats de calcul du réservoir d'air du tronçon(3)

Figure (V.11) : Epure de BERGERON pour le tronçon (3)

Le dimensionnement du réservoir d'air conduit à mieux protéger contre le coup de bélier, l'explication graphique est figurée sur la courbe ci-dessous, qui montre d'une façon claire la dissipation progressive du front d'onde tout en protégeant la conduite.

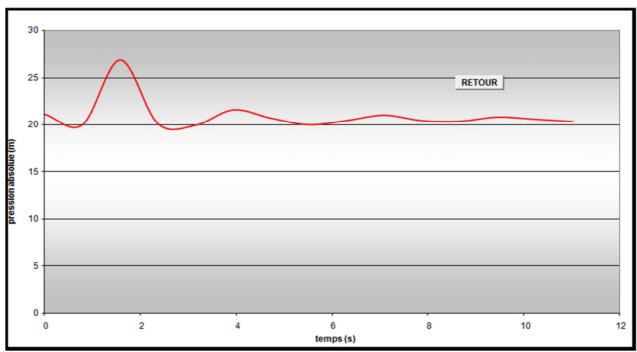


Figure (V.12): Variation de la pression absolue en fonction du temps

V.9. Dimensionnement d'un réservoir d'air

Les caractéristiques du réservoir d'air du tronçon (4) sont comme suite :

- $U_0 = 0.25 \text{ m}^3$
- $U_{\text{max}} = 0.27 \text{ m}^3$
- $U_{min} = 0.25 \text{ m}^3$

Le volume maximal du réservoir d'air sera majoré de 20% donc on obtiendra un volume de $U_{max} = 0.324 \text{ m}^3$ donc dans ce cas on va opter pour un réservoir d'air normalisé de 1m^3

- Dimensionnement du Réservoir d'air pour le tronçon (4):
 - \checkmark D =0.2m
 - \checkmark Q = 0.03 m³/s.
 - \checkmark Hg =10.28 m
 - ✓ L = 106.5 m
 - \checkmark K =83
 - ✓ e =11.9 mm
 - ✓ V=1.23 m/s
 - \checkmark T₁= 0.769s
 - \checkmark S=0.02437 m²
 - \checkmark a =277.01 m/s
 - ✓ B = 34.74 m

V.9. 1. Cas de la montée

A la montée de l'eau, la tuyère à un coefficient de débit de l'ordre de 0,92, et le diamètre de la tuyère est pris aussi d'une manière à avoir le rapport de vitesse K_r comprit entre 15 et 20. Donc on aboutie a l'équation suivante :

$$D^{2}$$
 $15 < \underline{} < 20$
 d^{12}

Le diamètre de la tuyère sera, pour K_rpris entre 15 et 20 :

on prend d= 50 mm

$$\frac{V_1}{V_f} = \frac{200^2}{(0.92 * 50)^2} \Rightarrow \frac{V_1}{V_f} = 18.9$$
, donc compris entre 15 et 20, Alors : $V_1 = 18.9 * V_f$

par ailleurs :
$$m = \frac{(0.92 * 50)^2}{80^2} \implies m = 0.33$$

A partir de graphique (Annexe 4) on trouve : c = 0.45

Donc:
$$\Delta h_1 = 0.45 * \frac{V_1}{2 * g}$$

V.9. 2. Cas de la descente

$$\frac{V_2}{V_f} = \frac{2 * 200^2}{50^2} \Rightarrow \frac{V_2}{V_f} = 32$$
, Alors: $V_2 = 32 * V_f$

par ailleurs :
$$m = 0.5 \frac{50^2}{80^2} \implies m = 0.195$$

A partir de graphique (Annexe4) on trouve : c' = 0.65

Donc:
$$\Delta h_2 = 0.65 * \frac{V_2}{2 * g}$$

Les résultats obtenus du calcul ci-dessus sont reportés dans la figure (V.10) à fin d'obtenir le volume du réservoir d'air.

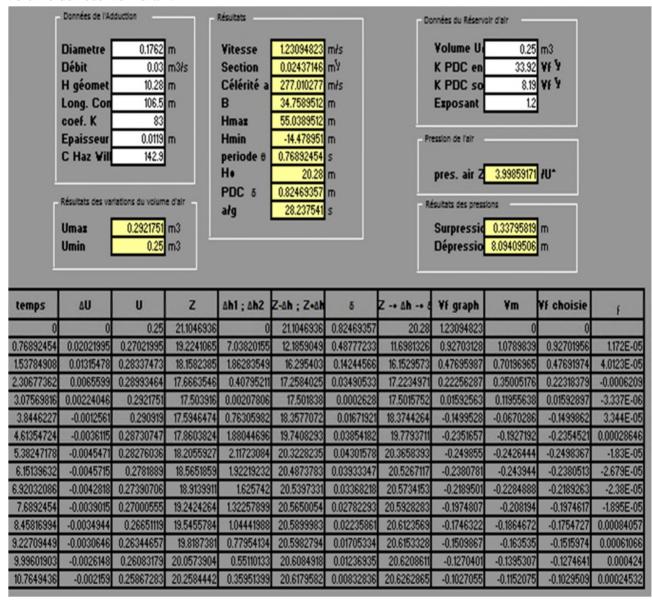


Figure (V.13): Le développement des résultats de calcul du réservoir d'air du tronçon (4)

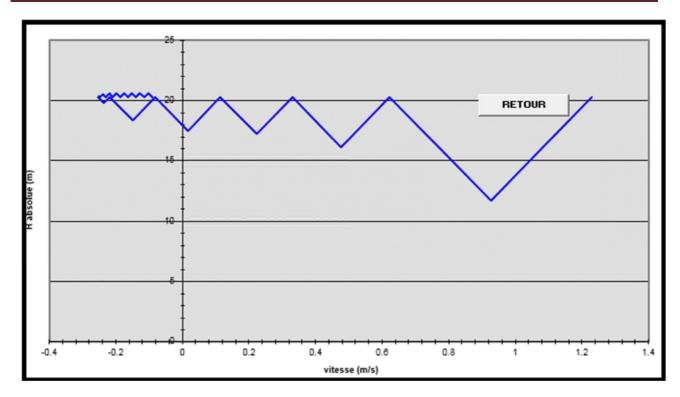


Figure (V.14): Epure de BERGERON pour le tronçon (4)R03-R06

Le dimensionnement du réservoir d'air conduit à mieux protéger contre le coup de bélier, l'explication graphique est figurée sur la courbe ci-dessous, qui montre d'une façon claire la dissipation progressive du front d'onde tout en protégeant la conduite.

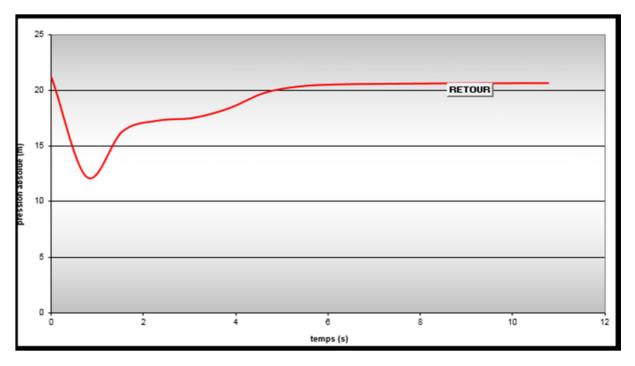


Figure (V.15): Variation de la pression absolue en fonction du temps

V.10. Dimensionnement d'un réservoir d'air

Les caractéristiques du réservoir d'air du tronçon (5) R03-R06sont comme suite :

- $U_0 = 0.25 \text{ m}^3$
- $U_{\text{max}} = 0.29 \text{ m}^3$
- $U_{min} = 0.25 \text{ m}^3$

Le volume maximal du réservoir d'air sera majoré de 20% donc on obtiendra un volume de $U_{max} = 0.348 \text{ m}^3$ donc dans ce cas on va opter pour un réservoir d'air normalisé de 1m^3 .

• Dimensionnement du Réservoir d'air pour le tronçon (5) :

- \checkmark D = 0.2m
- \checkmark Q = 0.025 m³/s.
- ✓ Hg =9.31 m
- ✓ L = 19.3 m
- \checkmark K =83
- ✓ e =11.9 mm
- ✓ V=1.025 m/s
- \checkmark T₁= 0.139 s
- \checkmark S=0.0244m²
- \checkmark a =277.01m/s
- ✓ B = 28.94m

V.10.1.Cas de la montée

A la montée de l'eau, la tuyère à un coefficient de débit de l'ordre de 0,92, et le diamètre de la tuyère est pris aussi d'une manière à avoir le rapport de vitesse K_r comprit entre 15 et 20. Donc on aboutie a l'équation suivante :

$$\begin{array}{c} D^2 \\ 15 < \underline{\hspace{0.5cm}} < 20 \\ d'^2 \end{array}$$

Le diamètre de la tuyère sera, pour K_r pris entre 15 et 20 :

on prend d=50 mm

$$\frac{V_1}{V_f} = \frac{200^2}{(0.92 * 50)^2} \Rightarrow \frac{V_1}{V_f} = 18.9$$
, donc compris entre 15 et 20, Alors : $V_1 = 18.9 * V_f$

Par ailleurs :
$$m = \frac{(0.92 * 50)^2}{80^2} \Rightarrow m = 0.33$$

A partir de graphique(Annexe 4) on trouve : c = 0.45

Donc:
$$\Delta h_1 = 0.45 * \frac{V_1}{2 * g}$$

V.10.2. Cas de la descente

$$\frac{V_2}{V_f} = \frac{2 * 200^2}{50^2} \Rightarrow \frac{V_2}{V_f} = 32$$
, Alors: $V_2 = 32 * V_f$

Par ailleurs :
$$m = 0.5 \frac{50^2}{80^2} \Rightarrow m = 0.195$$

A partir de graphique (Annexe4) on trouve : c' = 0.65

Donc:
$$\Delta h_2 = 0.65 * \frac{V_2}{2 * g}$$

Les résultats obtenus du calcul ci-dessus sont saisis dans la figure (V.10) à fin d'obtenir le volume du réservoir d'air.

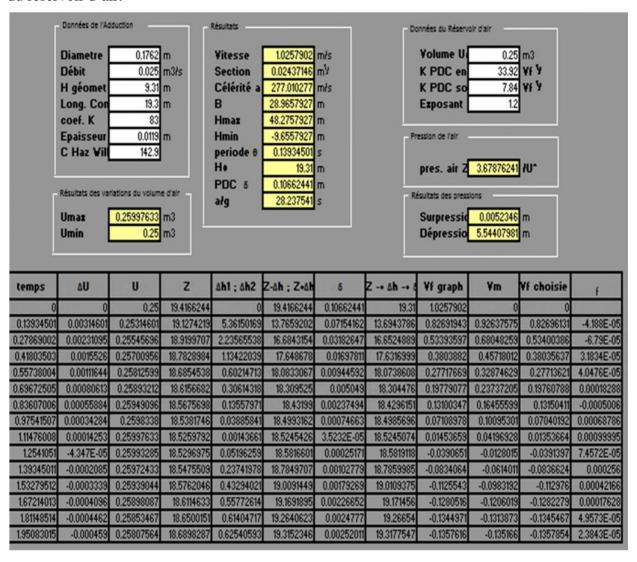
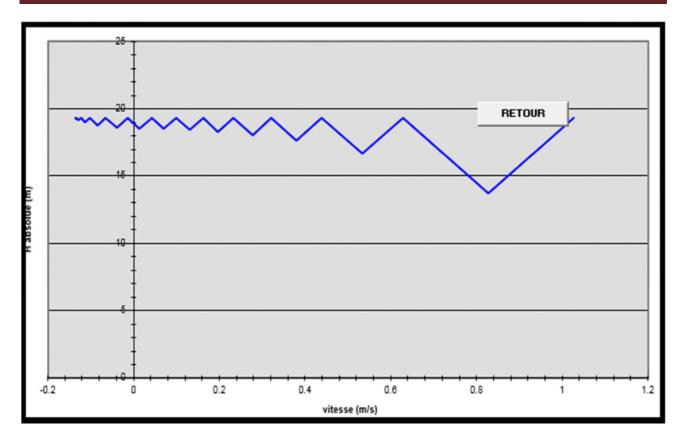



Figure (V.16): Le développement des résultats de calcul du réservoir d'air du tronçon (5)

Figure (V.17) : Epure de BERGERON pour le tronçon (5)

Le dimensionnement du réservoir d'air conduit à mieux protéger contre le coup de bélier, l'explication graphique est figurée sur la courbe ci-dessous, qui montre d'une façon claire la dissipation progressive du front d'onde tout en protégeant la conduite.

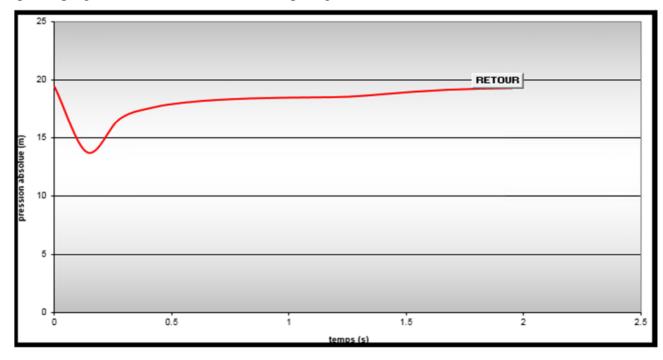


Figure (V.18): Variation de la pression absolue en fonction du temps

V.11. Dimensionnement d'un réservoir d'air

Les caractéristiques du réservoir d'air du tronçon (7)sont comme suite :

- $U_0 = 0.25 \text{ m}^3$
- $U_{\text{max}} = 0.26 \text{ m}^3$
- $U_{min} = 0.25 \text{ m}^3$

Le volume maximal du réservoir d'air sera majoré de 20% donc on obtiendra un volume de $U_{max} = 0.312 \text{ m}^3$ donc dans ce cas on va opter pour un réservoir d'air normalisé de 1m^3 .

• Dimensionnement du Réservoir d'air pour le tronçon (7) :

- \checkmark D = 0.110 m
- \checkmark Q = 0.011 m³/s.
- ✓ Hg =19.67 m
- ✓ L = 65.3 m
- ✓ K =83
- \checkmark e =6.6 mm
- ✓ V=1.495 m/s
- ✓ $T_1 = 0.469s$
- \checkmark S=0.0074m²
- \checkmark a =278.28m/s
- ✓ B = 42.41 m

V.11.1. Cas de la montée

A la montée de l'eau, la tuyère à un coefficient de débit de l'ordre de 0,92, et le diamètre de la tuyère est pris aussi d'une manière à avoir le rapport de vitesse K_r comprit entre 15 et 20. Donc on aboutie a l'équation suivante :

$$\begin{array}{c} D^2 \\ 15 < \underline{\hspace{0.5cm}} < 20 \\ d'^2 \end{array}$$

Le diamètre de la tuyère sera, pour K_rpris entre 15 et 20 :

on prend d= 28 mm

$$\frac{V_1}{V_f} = \frac{110^2}{(0.92 * 62)^2} \Rightarrow \frac{V_1}{V_f} = 18.23$$
, donc compris entre 15 et 20, Alors : $V_1 = 18.23 * V_f$

Par ailleurs :
$$m = \frac{(0.92 * 28)^2}{80^2} \Rightarrow m = 0.1$$

A partir de graphique (Annexe 4) on trouve : c = 0.82

Donc:
$$\Delta h_1 = 0.82 * \frac{V_1}{2 * g}$$

V.11.2. Cas de la descente

$$\frac{V_2}{V_f} = \frac{2*110^2}{28^2} \Rightarrow \frac{V_2}{V_f} = 30.87$$
, Alors: $V_2 = 30.87*V_f$

Par ailleurs :
$$m = 0.5 \frac{28^2}{80^2} \Rightarrow m = 0.245$$

A partir de graphique (Annexe4) on trouve : c' = 0.56

Donc:
$$\Delta h_2 = 0.56 * \frac{V_2}{2 * g}$$

Les résultats obtenus du calcul ci-dessus sont saisis dans la figure (V.12) à fin d'obtenir le volume du réservoir d'air.

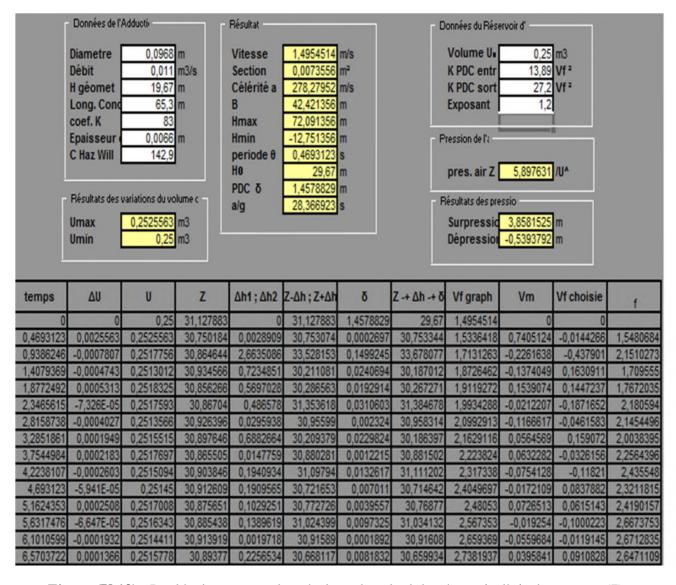


Figure (V.19): Le développement des résultats de calcul du réservoir d'air du tronçon (7)

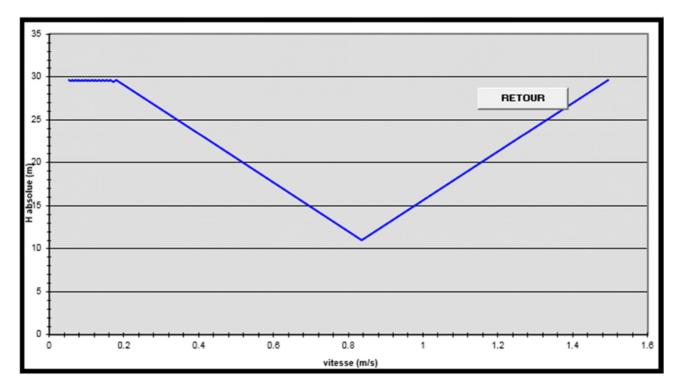


Figure (V.20): Epure de BERGERON pour le tronçon (7)

Le dimensionnement du réservoir d'air conduit à mieux protéger contre le coup de bélier, l'explication graphique est figurée sur la courbe ci-dessous, qui montre d'une façon claire la dissipation progressive du front d'onde tout en protégeant la conduite.

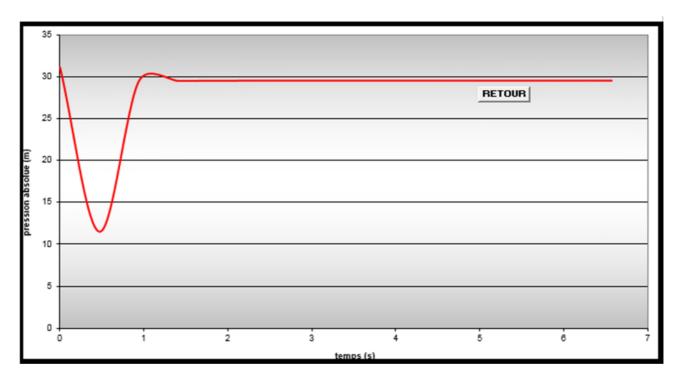


Figure (V.21): Variation de la pression absolue en fonction du temps

V.12. Conclusion

L'étude du phénomène transitoire pour la protection des conduites contre le coup de bélier d'avers que nos conduites sont touchées par des faibles dépressions pour lesquelles il faut lutter à cet effet nous avons opté pour de réservoir d'air tronçons : 1. 3. 4. 5 et 7.

CHAPITRE VI: RESEAU DE DISTRIBUTION

Chapitre VI Réseau de distribution

VI.1. Introduction:

Le réseau de distribution est un système de conduites connectées entre elles. L'eau est distribuée à partir de ce réseau qui doit être dimensionné de telle façon à assurer le débit et la pression nécessaires à chaque consommateur

Le type d'habitats majoritaires dans cette zone est des habitats collectifs avec des immeubles de 5 et 9 étages.

VI.2. Choix du type de réseau de distribution :

Suivant la structure et l'importance de l'agglomération, on distingue les différents types de réseaux de distribution dont :

VI.2.1. Réseau ramifié

Le réseau ramifié, dans lequel les conduites ne comportent aucune alimentation en retour, présente l'avantage d'être économique, mais il manque de sécurité et de souplesse en cas de rupture : un accident sur la conduite principale prive d'eau tous des abonnés d'aval [6].

VI.2.2. Réseau maillé :

Le réseau maillé permet, une alimentation en retour, au contraire du réseau ramifié, une simple manœuvre de robinets permet d'isoler le tronçon accidenté et de poursuivre néanmoins l'alimentation des abonnés d'aval. Il est, bien entendu, plus couteux d'établissement, mais, en raison de la sécurité qu'il procure, il doit être toujours préféré au réseau ramifié.

VI.2.3. Réseau combiné :

Un réseau est dit mixte (maillé-ramifié), lorsque ce dernier constitue une partie ramifiée et une autre maillée. Ce type de schéma est utilisé pour desservir les quartiers en périphérie de la ville par les ramifications issues des mailles utilisées dans le centre-ville.

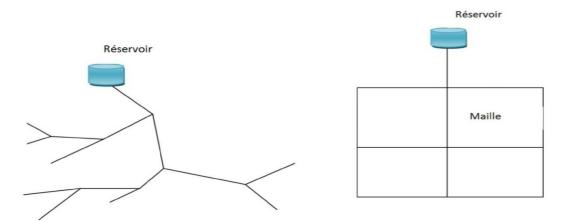


Figure (VI-1) : réseau ramifié

Figure (VI-2) : réseau maillé

Chapitre VI Réseau de distribution

Il y a plusieurs facteurs qui influencent sur la conception du réseau. Les plus importants sont l'emplacement des consommateurs, le relief et l'urbanisation de la région. La distribution se fait par gravité à partir d'un réservoir placé à une cote plus élevée par rapport à la région à desservir.

VI.3. Choix du tracé:

Pour définir le tracé définitif, il est important de penser aux points suivants :

- Minimiser le nombre de passage difficiles (traversée de route, de ravine ...);
- Eviter les pentes trop fortes ;
- Eviter les zones rocheuses : une tranchée devra être creusée ;
- Préférer les zones accessibles, le long des chemins existants (routes ...);
- Penser aux problèmes de propriété de terrain et d'autorisation ;

VI.4. Choix de type de matériaux :

Dans le but du bon choix du type de matériau, on prend en compte les paramètres suivants :

- Le diamètre ;
- La pression de service à supporter par le matériau ;
- Les conditions de pose ;
- Le prix de la conduite ;
- La durée de vie du matériau ;
- La disponibilité de ce dernier sur le marché.

Dans notre cas nous avons opté pour les conduites en PEHD vu les caractéristiques mécanique et hydraulique que ce matériau présente, on peut citer :

- Facile à poser (grande flexibilité), possibilité d'enroulement en couronnes pour les petits diamètres ;
- Fiable au niveau du branchement, pas de fuite, on raison de l'utilisation des techniques de l'électro-soudage et l'électro-fusion ;
- Durée de vie 50 ans prouvée par l'expérience et le test de vieillissement ;
- Coefficient de rugosité très faible et présente une bonne résistante à l'entartage ;
- Répond parfaitement aux normes de potabilité ;
- Résiste à la corrosion interne, externe et microbiologique ;
- Bonne résistance mécanique, l'existence d'une large gamme PN06, PN 10 PN 16 PN 20 et PN 25.

VI.5. Modélisation et simulation du réseau :

On va dimensionner notre réseau à l'aide du logiciel EPANET et de l'application, puis faire une comparaison entre les résultats trouvés.

Chapitre VI Réseau de distribution

VI.5.1 La méthode de Hardy-Cross:

La méthode de Hardy-Cross est une méthode d'analyse des réseaux de distribution d'eau, elle permet de procéder soit par corrections successives des débits, soit par corrections successives des pertes de charge (selon la formulation du problème et le groupe d'équation choisit).

La méthode de Hardy-Cross est basée sur deux lois analogues aux lois de KIRCHOFF.

a) Loi de continuité :

A un nœud donné, la somme algébrique des débits y compris la saignée est nulle, les débits entrants sont égales aux débits sortants.

$$\sum \mathbf{Q_i} = \mathbf{0}$$

Qi : représente le débit dans le tronçon de conduite i.

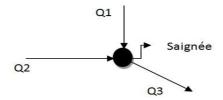


Figure (VII-3): La loi de continuité au nœud

$$Q1 + Q2 - Q3 - Qsaignée = 0$$

b) Loi de conservation de l'énergie :

Dans une boucle, la somme algébrique des pertes de charge est nulle.

$$\sum (H_L)_i = 0$$

(H_L)_i: représente les pertes de charge dans le tronçon de conduite i

VI.6. Calculs hydraulique:

La détermination des débits dans un réseau s'effectue selon les étapes suivantes :

- Déterminer la longueur de chaque de tronçon ;
- Déterminer les débits spécifiques en considérant les débits en route ;
- Calculer les débits en route pendant l'heure de ponte et celle d'indice ;
- Déterminer les débits supposés concentrer aux nœuds.

VI.6.1 Débit de pointe :

C'est le débit par lequel se fait le dimensionnement du réseau de distribution, il représente le débit de l'heure de pointe.

Qp : Débit de pointe (l/s)

VI.6.2 Débit spécifique :

C'est le volume d'eau consommé à travers un mètre de canalisation pendant une seconde

$$Qs = \frac{Qp}{\Sigma Li}$$

L_i: longueur du tronçon i.(m)

Qs : Débit spécifique

VI.6.3 Débit de route :

C'est le débit consommé d'une façon uniforme.

VI.6.4 Débit en nœud:

Le débit au nœud est celui qu'il faut assurerà chaque jonction des conduites du réseau.

Qn: débit au nœud (l/s).

q_r : débit de route en (l/s).

qc: débit concentré (l/s).

VI.7. Dimensionnement du réseau

VI.7.1 Le calcul des débits en route et les débits aux nœuds

Le réseau de distribution du notre zone d'étude prend une ossature combiné,

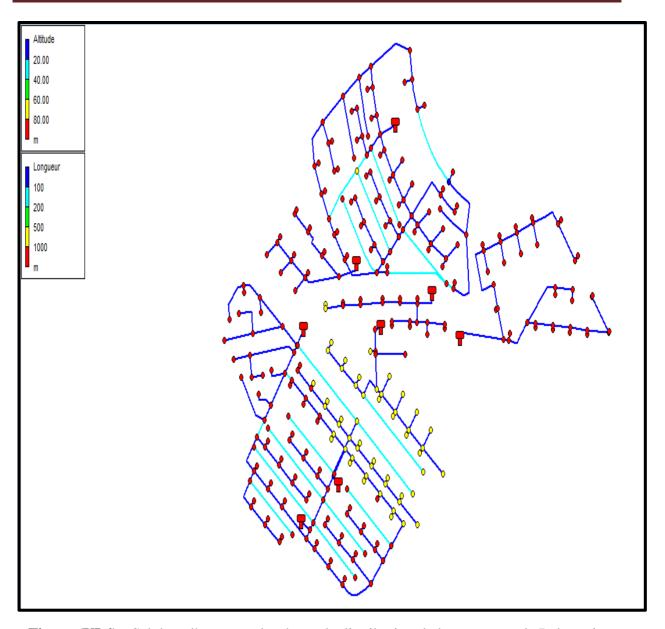


Figure (VI.4): Schéma d'ossature du réseau de distribution de la commune de Rahmania

Tableau (VI-1): Les débits de route et débit de nœud de la zone 1

ID Arc	N° DE NŒUD	trançons	Longueurs (m)	débit specifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
tuyau 1	1	R1_01	24.120	0.012	0.289	0.289
Tuyau 2	2	01_02	24.120	0.012	0.289	0.434
Tuyau 3	3	02_03	24.120	0.012	0.289	0.434
Tuyau 4	4	03_04	24.120	0.012	0.289	0.145
Tuyau 5	5	03_05	24.120	0.012	0.289	0.434
Tuyau 6	6	05_06	24.120	0.012	0.289	0.145
Tuyau 7	7	05_07	24.120	0.012	0.289	0.434
Tuyau 8	8	07_08	24.120	0.012	0.289	0.145
Tuyau 9	9	07_09	24.120	0.012	0.289	0.434
Tuyau 10	10	09_10	24.120	0.012	0.289	0.434
Tuyau 11	11	10_11	24.120	0.012	0.289	0.145
Tuyau 12	12	10_12	24.120	0.012	0.289	0.434
Tuyau 13	13	12_13	24.120	0.012	0.289	0.145
Tuyau 14	14	12_14	24.120	0.012	0.289	0.289
Tuyau 15	15	14_15	24.120	0.012	0.289	0.145
Tuyau 16	16	09_16	24.120	0.012	0.289	0.434
Tuyau 17	17	16_17	24.120	0.012	0.289	0.434

18	17_18	24.120	0.012	0.289	0.145
19	17_19	24.120	0.012	0.289	0.434
20	19_20	24.120	0.012	0.289	0.145
21	19_21	24.120	0.012	0.289	0.289
22	21_22	24.120	0.012	0.289	0.145
23	16_23	24.120	0.012	0.289	0.434
24	23_24	24.120	0.012	0.289	0.145
25	23_25	24.120	0.012	0.289	0.289
26	25_26	24.120	0.012	0.289	0.434
27	26_27	24.120	0.012	0.289	0.145
28	26_28	24.120	0.012	0.289	0.434
29	28_29	24.120	0.012	0.289	0.145
30	28_30	24.120	0.012	0.289	0.434
31	30_31	24.120	0.012	0.289	0.145
32	30_32	24.120	0.012	0.289	0.434
33	32_33	24.120	0.012	0.289	0.145
34	32_34	24.120	0.012	0.289	0.434
35	34_35	24.120	0.012	0.289	0.434
36	35_36	24.120	0.012	0.289	0.145
37	35_37	24.120	0.012	0.289	0.434
38	37_38	24.120	0.012	0.289	0.145
39	37_39	24.120	0.012	0.289	0.434
40	39_40	24.120	0.012	0.289	0.145
41	39_41	24.120	0.012	0.289	0.434
42	41_42	24.120	0.012	0.289	0.145
43	41_43	24.120	0.012	0.289	0.434
	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	19 17_19 20 19_20 21 19_21 22 21_22 23 16_23 24 23_24 25 23_25 26 25_26 27 26_27 28 26_28 29 28_29 30 28_30 31 30_31 32 30_32 33 32_33 34 32_34 35 34_35 36 35_36 37 35_37 38 37_38 39 37_39 40 39_40 41 39_41 42 41_42	19 17_19 24.120 20 19_20 24.120 21 19_21 24.120 22 21_22 24.120 23 16_23 24.120 24 23_24 24.120 25 23_25 24.120 26 25_26 24.120 27 26_27 24.120 28 26_28 24.120 29 28_29 24.120 30 28_30 24.120 31 30_31 24.120 32 30_32 24.120 33 32_33 24.120 34 32_34 24.120 35 34_35 24.120 36 35_36 24.120 37 35_37 24.120 38 37_38 24.120 39 37_39 24.120 40 39_40 24.120 41 39_41 24.120 42 41_42 24.120	19 17_19 24.120 0.012 20 19_20 24.120 0.012 21 19_21 24.120 0.012 22 21_22 24.120 0.012 23 16_23 24.120 0.012 24 23_24 24.120 0.012 25 23_25 24.120 0.012 26 25_26 24.120 0.012 27 26_27 24.120 0.012 28 26_28 24.120 0.012 29 28_29 24.120 0.012 30 28_30 24.120 0.012 31 30_31 24.120 0.012 32 30_32 24.120 0.012 33 32_33 24.120 0.012 34 32_34 24.120 0.012 35 34_35 24.120 0.012 36 35_36 24.120 0.012 37 35_37 24.120 0.012 39 37_38 24.120 0.012	19 17_19 24.120 0.012 0.289 20 19_20 24.120 0.012 0.289 21 19_21 24.120 0.012 0.289 22 21_22 24.120 0.012 0.289 23 16_23 24.120 0.012 0.289 24 23_24 24.120 0.012 0.289 25 23_25 24.120 0.012 0.289 26 25_26 24.120 0.012 0.289 27 26_27 24.120 0.012 0.289 28 26_28 24.120 0.012 0.289 29 28_29 24.120 0.012 0.289 31 30_31 24.120 0.012 0.289 32 30_32 24.120 0.012 0.289 33 32_33 24.120 0.012 0.289 34 32_34 24.120 0.012 0.289 35 34_35 24.120 0.012 0.289 36 35_36 24.120 0.

Tuyau 44	44	43_44	24.120	0.012	0.289	0.434
Tuyau 45	45	44_45	24.120	0.012	0.289	0.145
Tuyau 46	46	44_46	24.120	0.012	0.289	0.434
Tuyau 47	47	46_47	24.120	0.012	0.289	0.145
Tuyau 48	48	46_48	24.120	0.012	0.289	0.434
Tuyau 49	49	48_49	24.120	0.012	0.289	0.145
Tuyau 50	50	48_50	24.120	0.012	0.289	0.289
Tuyau 51	51	50_51	24.120	0.012	0.289	0.145
Tuyau 52	52	34_52	24.120	0.012	0.289	0.434
Tuyau 53	53	52_53	24.120	0.012	0.289	0.145
Tuyau 54	54	52_54	24.120	0.012	0.289	0.434
Tuyau 55	55	54_55	24.120	0.012	0.289	0.434
Tuyau 56	56	55_56	24.120	0.012	0.289	0.145
Tuyau 57	57	55_57	24.120	0.012	0.289	0.434
Tuyau 58	58	57_58	24.120	0.012	0.289	0.145
Tuyau 59	59	57_59	24.120	0.012	0.289	0.289
Tuyau 60	60	59_60	24.120	0.012	0.289	0.145
Tuyau 61	61	54_61	24.120	0.012	0.289	0.579
Tuyau 62	62	61_62	24.120	0.012	0.289	0.145
Tuyau 63	63	61_63	24.120	0.012	0.289	0.145
Tuyau 64	64	61_64	24.120	0.012	0.289	0.579
Tuyau 65	65	64_65	24.120	0.012	0.289	0.145
Tuyau 66	66	64_66	24.120	0.012	0.289	0.145
Tuyau 67	67	64_01	24.120	0.012	0.289	0.434
Tuyau 68	68	02_67	24.120	0.012	0.289	0.145
Tuyau 69	69	67_68	24.120	0.012	0.289	0.434

Tuyau 70	70	67_69	24.120	0.012	0.289	0.145
Tuyau 71	71	69_70	24.120	0.012	0.289	0.579
Tuyau 72	72	69_71	24.120	0.012	0.289	0.145
Tuyau 73	73	71_72	24.120	0.012	0.289	0.434
Tuyau 74	74	71_43	24.120	0.012	0.289	0.145
Tuyau 75	75	71_73	24.120	0.012	0.289	0.434
Tuyau 76	76	73_74	24.120	0.012	0.289	0.145
Tuyau 77	77	73_75	24.120	0.012	0.289	0.434
Tuyau 78	78	75_76	24.120	0.012	0.289	0.145
Tuyau 79	79	75_77	24.120	0.012	0.289	1.747
Tuyau 80	80	77_78	24.120	0.012	0.289	1.602
Tuyau 81		77_79	24.120	0.012	0.289	
Tuyau 82		79_80	24.120	0.1328442	3.204	

Tableau (VI-2) : Les débits de route et débit de nœud de la zone 2

ID Arc	NŒUD NŒUD	traçons	Longueurs (m)	débit spécifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
tuyau 83	81	R2_81	78.50	0.02	1.21	0.52
Tuyau 84	82	81_82	19.27	0.02	0.30	0.46
Tuyau 85	83	82_83	7.33	0.02	0.11	0.06
Tuyau 86	84	82_84	33.20	0.02	0.51	0.56
Tuyau 87	85	84_85	6.77	0.02	0.10	0.05
Tuyau 88	86	84_86	33.20	0.02	0.51	0.57
Tuyau 89	87	86_87	7.33	0.02	0.11	0.06
Tuyau 90	88	86_88	33.20	0.02	0.51	0.65
Tuyau 91	89	88_89	7.33	0.02	0.11	0.06

Tuyau 92	90	88_90	43.74	0.02	0.67	0.34
Tuyau 93	91	81_91	25.60	0.02	0.39	0.51
Tuyau 94	92	91_92	6.86	0.02	0.11	0.05
Tuyau 95	93	91_93	33.20	0.02	0.51	0.57
Tuyau 96	94	93_94	7.37	0.02	0.11	0.06
Tuyau 97	95	93_95	33.20	0.02	0.51	0.56
Tuyau 98	96	95_96	6.86	0.02	0.11	0.05
Tuyau 99	97	95_97	33.20	0.02	0.51	0.31
Tuyau 100	98	97_98	7.33	0.02	0.11	0.06
Tuyau 101	99	81_99	22.86	0.02	0.35	2.32
Tuyau 102	100	99_100	135.17	0.02	2.08	1.04
Tuyau 103	101	99_101	142.43	0.02	2.20	1.10

Tableau (VI-3) : Les débits de route et débit de nœud de la zone

ID Arc	N° DE NŒUD	traçons	Longueurs (m)	débit spécifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
TUYAU 104	102	R3_102	60.20	0.01	0.61	0.23
Tuyau 105	103	102_103	34.68	0.01	0.35	0.74
Tuyau 106	104	103_104	56.97	0.01	0.58	0.83
Tuyau 107	105	104_105	49.74	0.01	0.50	0.25
Tuyau 108	106	104_106	56.11	0.01	0.57	0.28
Tuyau 109	107	103_107	54.77	0.01	0.56	0.55
Tuyau 110	108	107_108	16.94	0.01	0.17	0.09
Tuyau 111	109	107_109	35.91	0.01	0.36	0.50
Tuyau 112	110	109_110	8.07	0.01	0.08	0.04
Tuyau 113	111	109_111	54.64	0.01	0.55	0.28

Tuyau 114	112	102_112	10.26	0.01	0.10	0.65
Tuyau 115	113	112_113	87.58	0.01	0.89	0.73
Tuyau 116	114	113_114	24.83	0.01	0.25	0.24
Tuyau 117	115	114_115	22.31	0.01	0.23	0.11
Tuyau 118	116	113_116	31.32	0.01	0.32	0.16
Tuyau 119	117	112_117	29.32	0.01	0.30	0.54
Tuyau 120	118	117_118	31.65	0.01	0.32	0.16
Tuyau 121	119	117_119	44.83	0.01	0.45	0.49
Tuyau 122	120	119_120	31.45	0.01	0.32	0.16
Tuyau 123	121	119_121	20.37	0.01	0.21	0.10
Tuyau 124	122	121_122	68.64	0.01	0.70	0.35

Tableau (VI-4): Les débits de route et débit de nœud de la zone 4

ID Arc	N° DE	traçons	Longueurs (m)	débit spécifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
tuyau 125	123	R4_123	9.101	0.022	0.201	0.272
Tuyau 126	124	123_124	24.661	0.022	0.544	0.426
Tuyau 127	125	124_125	10.728	0.022	0.237	0.118
Tuyau 128	126	124_126	3.247	0.022	0.072	1.091
Tuyau 129	127	126_127	56.731	0.022	1.252	0.626
Tuyau 130	128	126_128	38.890	0.022	0.858	0.971
Tuyau 131	129	_128_129	38.248	0.022	0.844	2.201
Tuyau 132	130	129_130	17.746	0.022	0.392	0.692
Tuyau 133	131	130_131	11.620	0.022	0.256	0.128
Tuyau 134	132	130_132	33.326	0.022	0.736	0.853
Tuyau 138	133	132_133	10.882	0.022	0.240	0.120

Tuyau 139	134	132_134	33.075	0.022	0.730	0.486
Tuyau 140	135	134_135	11.003	0.022	0.243	0.121
Tuyau 141	136	129_136	143.423	0.022	3.166	1.583
Tuyau 142	137	128_137	10.823	0.022	0.239	0.836
Tuyau 143	138	137_138	6.352	0.022	0.140	0.070
Tuyau 144	139	137_139	25.346	0.022	0.559	0.280
Tuyau 145	140	137_140	33.200	0.022	0.733	1.083
Tuyau 146	141	140_141	25.346	0.022	0.559	0.280
Tuyau 147	142	140_142	6.352	0.022	0.140	0.070
Tuyau 148	143	140_143	33.200	0.022	0.733	1.100
Tuyau 149	144	143_144	25.346	0.022	0.559	0.280
Tuyau 150	145	143_145	7.988	0.022	0.176	0.088
Tuyau 151	146	143_146	33.187	0.022	0.732	1.273
Tuyau 152	147	146_147	25.472	0.022	0.562	0.281
Tuyau 153	148	146_148	8.162	0.022	0.180	0.090
Tuyau 154	149	146_149	48.507	0.022	1.071	0.535

Tableau (VI-5) : Les débits de route et débit de nœud de la zone 5

ID Arc	N° DE NŒUD	traçons	Longueurs (m)	débit spécifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
tuyau 155	150	R5_150	31.560	0.034	1.071	1.008
Tuyau 156	151	150_151	4.733	0.034	0.161	0.080
Tuyau 157	152	150_152	33.497	0.034	1.136	1.206
Tuyau 158	153	152_153	4.441	0.034	0.151	0.075
Tuyau 159	154	152_154	33.173	0.034	1.125	1.366
Tuyau 160	155	154_155	4.897	0.034	0.166	0.083

Tuyau 161	156	154_156	42.463	0.034	1.441	1.367
Tuyau 162	157	156_157	4.793	0.034	0.163	0.081
Tuyau 163	158	156_158	33.314	0.034	1.130	1.203
Tuyau 164	159	158_159	4.419	0.034	0.150	0.075
Tuyau 165	160	158_160	33.179	0.034	1.126	0.646
Tuyau 166	161	160_161	4.912	0.034	0.167	0.083
Tuyau 167	162	150_162	21.194	0.034	0.719	0.915
Tuyau 168	163	162_163	19.582	0.034	0.664	1.118
Tuyau 169	164	163_164	12.703	0.034	0.431	0.215
Tuyau 170	165	163_165	33.613	0.034	1.140	0.636
Tuyau 171	166	165_166	3.887	0.034	0.132	0.066
Tuyau 172	167	162_167	13.151	0.034	0.446	0.891
Tuyau 173	168	167_168	4.873	0.034	0.165	0.083
Tuyau 174	169	167_169	34.521	0.034	1.171	0.650
Tuyau 175	170	169_170	3.807	0.034	0.129	0.065

Tableau (VI-6): Les débits de route et débit de nœud de la zone 6

ID Arc	N° DE NŒUD	traçons	longueurs (m)	débit spécifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
Tuyau 215	171	R6_171	31.728	0.026	0.836	1.391
Tuyau 216	172	171_172	39.372	0.026	1.037	1.163
Tuyau 217	173	172_173	5.657	0.026	0.149	0.075
Tuyau 218	174	172_174	43.301	0.026	1.141	1.073
Tuyau 219	175	174_175	5.817	0.026	0.153	0.077
Tuyau 220	176	174_176	32.310	0.026	0.851	0.506
Tuyau 221	177	176_177	6.136	0.026	0.162	0.081

Tuyau 222	178	171_178	66.206	0.026	1.744	1.737
Tuyau 223	179	178_179	7.932	0.026	0.209	0.104
Tuyau 224	180	178_180	24.489	0.026	0.645	0.323
Tuyau 225	181	178_181	33.234	0.026	0.875	1.303
Tuyau 226	182	181_182	8.183	0.026	0.216	0.108
Tuyau 227	183	181_183	24.353	0.026	0.642	0.321
Tuyau 228	184	181_184	33.163	0.026	0.874	0.866
Tuyau 229	185	184_185	8.438	0.026	0.222	0.111
Tuyau 230	186	184_186	24.166	0.026	0.637	0.318

Tableau (VI-7) : Les débits de route et débit de nœud de la zone 7

				débit	débit des	débit des
ID Arc	N° DE	traçons	longueurs	spécifique	routes	nœuds
127410	NŒUD	ti dyono	(m)	(I/s)	(I/s)	(I/s)
				(., 5)	(., 5)	(1,75)
tuyau 176	187	R7_187	96.846	0.021	2.054	0.382
Tuyau 177	188	187_188	36.027	0.021	0.764	0.727
Tuyau 178	189	188_189	4.243	0.021	0.090	1.168
Tuyau 179	190	188_190	28.260	0.021	0.599	1.168
Tuyau 180	191	190_191	81.885	0.021	1.737	1.556
Tuyau 181	192	191_192	6.945	0.021	0.147	0.074
Tuyau 182	193	_191_193	24.741	0.021	0.525	0.262
Tuyau 183	194	191_194	33.200	0.021	0.704	1.039
Tuyau 184	195	194_195	6.784	0.021	0.144	0.072
Tuyau 185	196	194_196	24.752	0.021	0.525	0.262
Tuyau 186	197	194_197	33.201	0.021	0.704	0.688
Tuyau 187	198	197_198	6.621	0.021	0.140	0.180
Tuyau 188	199	197_199	25.067	0.021	0.532	0.266

Tuyau 189	200	197_200	33.200	0.021	0.704	1.285
Tuyau 190	201	200_201	6.457	0.021	0.137	0.068
Tuyau 191	202	200_202	25.229	0.021	0.535	0.268
Tuyau 192	203	200_203	56.251	0.021	1.193	1.232
Tuyau 193	204	203_204	8.052	0.021	0.171	0.085
Tuyau 194	205	203_205	51.901	0.021	1.101	0.550
Tuyau 195	206	205_206	7.554	0.021	0.160	0.080
Tuyau 196	207	187_207	10.349	0.021	0.219	0.697
Tuyau 197	208	207_208	8.877	0.021	0.188	0.094
Tuyau 198	209	207_209	46.480	0.021	0.986	1.401
Tuyau 199	210	209_210	15.450	0.021	0.328	0.565
Tuyau 200	211	210_211	4.602	0.021	0.098	0.049
Tuyau 201	212	210_212_	33.205	0.021	0.704	0.753
Tuyau 202	213	212_213	4.600	0.021	0.098	0.049
Tuyau 203	214	212_214	33.205	0.021	0.704	0.753
Tuyau 204	215	214_215	4.600	0.021	0.098	0.049
Tuyau 205	216	214_216	33.195	0.021	0.704	0.838
Tuyau 206	217	216_217	4.745	0.021	0.101	0.050
Tuyau 207	218	216_218	41.067	0.021	0.871	1.007
Tuyau 208	219	218_219	2.029	0.021	0.043	0.022
Tuyau 209	220	218_220	51.900	0.021	1.101	0.568
Tuyau 210	221	220_221	1.637	0.021	0.035	0.017
Tuyau 211	222	209_222	70.167	0.021	1.488	1.178
Tuyau 212	223	222_223	7.732	0.021	0.164	0.082
Tuyau 213	224	222_224	33.200	0.021	0.704	0.485
Tuyau 214	225	224_225	12.513	0.021	0.265	0.133

 $\textbf{Tableau} \; \textbf{(VI-8)} : Les \; \text{débits de route et débit de nœud de la zone 8}$

		() = 0 / 1 =	1	Toute et deon (1	1
ID Arc	N° DE NŒUD	trançons	longueurs (m)	débit specifique (I/s)	débit des routes (I/s)	débit des nœuds (I/s)
				(1/3)	(1/3)	(1/3)
Tuyau 231	226	R8_226	15.009	0.013	0.197	0.436
Tuyau 232	227	226_227	22.123	0.013	0.290	0.423
Tuyau 233	228	227_228	10.292	0.013	0.135	0.068
Tuyau 234	229	227_229	31.976	0.013	0.420	0.279
Tuyau 235	230	229_230	10.608	0.013	0.139	0.070
Tuyau 236	231	229_231	23.567	0.013	0.309	0.694
Tuyau 237	232	231_232	82.179	0.013	1.079	0.752
Tuyau 238	233	232_233	32.433	0.013	0.426	0.535
Tuyau 239	234	233_234	14.074	0.013	0.185	0.092
Tuyau 240	235	233_235	35.025	0.013	0.460	0.996
Tuyau 241	236	235_236	14.492	0.013	0.190	0.095
Tuyau 242	237	235_237	102.245	0.013	1.342	1.299
Tuyau 243	238	237_238	13.407	0.013	0.176	0.088
Tuyau 244	239	237_239	82.253	0.013	1.080	1.555
Tuyau 245	240	239_240	57.382	0.013	0.753	0.377
Tuyau 246	241	239_241	97.240	0.013	1.276	1.548
Tuyau 247	242	241_242	6.827	0.013	0.090	0.045
Tuyau 248	244	241_244	131.842	0.013	1.731	1.044
Tuyau 249	245	244_245	7.715	0.013	0.101	0.051
Tuyau 250	246	244_246	19.491	0.013	0.256	1.406
Tuyau 251	247	246_247	17.430	0.013	0.229	0.283
Tuyau 252	248	247_248	25.670	0.013	0.337	0.439
Tuyau 253	249	248_249	8.816	0.013	0.116	0.058
Tuyau 254	250	248_250	32.422	0.013	0.426	0.474

Tuyau 255	251	250_251_	7.349	0.013	0.096	0.048
Tuyau 256	252	250_252_	32.410	0.013	0.425	0.271
Tuyau 257	253	252_253	8.948	0.013	0.117	0.059
Tuyau 258	254	247_254	17.329	0.013	0.227	0.997
Tuyau 259	255	254_255	110.435	0.013	1.450	0.725
Tuyau 260	256	254_256	24.103	0.013	0.316	0.322
Tuyau 261	257	256_257	24.970	0.013	0.328	0.445
Tuyau 262	258	257_258	9.597	0.013	0.126	0.492
Tuyau 263	259	257_259	33.217	0.013	0.436	0.492
Tuyau 264	260	259_260	8.608	0.013	0.113	0.056
Tuyau 265	261	259_261	33.211	0.013	0.436	0.280
Tuyau 266	262	261_262	9.478	0.013	0.124	0.062
Tuyau 267	263	256_263	10.372	0.013	0.136	0.899
Tuyau 268	264	263_264	103.053	0.013	1.353	0.676
Tuyau 269	265	263_265	23.545	0.013	0.309	0.254
Tuyau 270	266	265_266	15.217	0.013	0.200	0.555
Tuyau 271	267	266_267	9.801	0.013	0.129	0.064
Tuyau 272	268	266_268	26.211	0.013	0.344	0.172
Tuyau 273	269	266_269	33.271	0.013	0.437	0.680
Tuyau 274	270	269_270	8.508	0.013	0.112	0.056
Tuyau 275	271	269_271	28.742	0.013	0.377	0.189
Tuyau 276	272	269_272	33.024	0.013	0.433	0.466
Tuyau 277	273	272_273	10.397	0.013	0.136	0.068
Tuyau 278	274	272_274	27.590	0.013	0.362	0.181
Tuyau 279	275	265_275	23.810	0.013	0.313	0.611
Tuyau 280	276	275_276	10.318	0.013	0.135	0.068
Tuyau 281	277	275_277	24.652	0.013	0.324	0.162

Tuyau 282	278	275_278	34.340	0.013	0.451	0.658
Tuyau 283	279	278_279	8.301	0.013	0.109	0.054
Tuyau 284	280	278_280	25.084	0.013	0.329	0.165
Tuyau 285	281	278_281	32.566	0.013	0.427	0.411
Tuyau 286	282	281_282	10.475	0.013	0.137	0.069
Tuyau 287	283	281_226	19.572	0.013	0.257	0.897
Tuyau 288	284	226_283	24.745	0.013	0.325	0.665
Tuyau 289	285	283_284	101.341	0.013	1.330	0.891
Tuyau 290	286	283_285	10.561	0.013	0.139	0.429
Tuyau 291	287	285_286	22.539	0.013	0.296	0.067
Tuyau 292	288	286_287	10.215	0.013	0.134	0.281
Tuyau 293	289	286_288	32.609	0.013	0.428	0.067
Tuyau 294	290	288_289	10.167	0.013	0.133	0.886
Tuyau 295	291	285_290	102.678	0.013	1.348	0.481
Tuyau 296	292	290_291	32.278	0.013	0.424	0.047
Tuyau 297	293	291_292	7.136	0.013	0.094	0.611
Tuyau 298	294	291_293	33.844	0.013	0.444	0.047
Tuyau 299	295	293_294	7.220	0.013	0.095	0.134
Tuyau 300	296	295_293	52.000	0.013	0.683	1.067
Tuyau 135	297	296_295	50.290	0.013	0.660	0.476
Tuyau 301	298	296_297	72.548	0.013	0.952	0.864
Tuyau 302	299	296_298	38.097	0.013	0.500	0.449
Tuyau 303	301	298_299	68.408	0.013	0.898	0.357
Tuyau 304	302	298_231	25.203	0.013	0.331	0.047
Tuyau 305	303	295_301	20.453	0.013	0.268	0.317
Tuyau 306	304	303_302	7.127	0.013	0.094	0.048
Tuyau 307	305	301_303	33.900	0.013	0.445	0.399

Tuyau 308	306	303_304	7.264	0.013	0.095	0.044
Tuyau 309	307	290_305	20.363	0.013	0.267	0.723
Tuyau 310	308	305_306	6.641	0.013	0.087	0.043
Tuyau 311	309	305_307	33.792	0.013	0.444	0.705
Tuyau 312	310	307_308	6.571	0.013	0.086	0.768
Tuyau 313	311	307_246	69.815	0.013	0.916	0.054
Tuyau 314	312	246_309	107.431	0.013	1.410	0.274
Tuyau 316	313	265_310	75.458	0.013	0.990	0.056
Tuyau 317		310_311	8.286	0.013	0.109	
Tuyau 318		310_312	33.255	0.013	0.437	
Tuyau 319		312_313	8.508	0.013	0.112	

VI.7.2. Résultats de la simulation du réseau avec EPANET

Après avoir introduit les débits et les altitudes de chaque nœud ainsi que la longueur et des diamètres de chaque arc (conduite), on lance la simulation du réseau. Les conditions sont des vitesses comprise entre 0,2 et 1,5 m/s et les pressions aux nœuds ne doit pas dépasser 100 m.c.e (10 bars) alors notre choix c'est porté sur des conduites en PEHD PN10.

Les diamètres normalisés des conduites en PEHD PN 10 sont donnés en (Annexe (06)):

Tableau (VI-9): Détermination des diamètres et vitesses du réseau

ID Arc	tronçons	longueur	diamètre intérieure (mm)	Débit (I/s)	vitesse (m/s)
		ZON	IE 1		
Tuyau 1	R1_01	24.118	240.4	35.62	0.78
Tuyau 2	01_02	11.269	192.3	23.75	0.82
Tuyau 3	02_03	19.786	152.8	13.19	0.72
Tuyau 4	03_04	8.316	18	0.05	0.2
Tuyau 5	03_05	33.205	120.2	12.78	1.13
Tuyau 6	05_06	8.333	18	0.05	0.2

05_07	33.200	120.8	12.28	1.07
07_08	8.330	18	0.05	0.2
07_09	61.853	120.8	11.61	1.01
09_10	43.288	47.5	1.36	0.77
10_11	8.515	18	0.05	0.2
10_12	33.200	30	0.8	1.14
12_13	8.564	18	0.05	0.2
12_14	33.200	23	0.3	0.73
14_15	8.613	18	0.05	0.2
09_16	34.706	120.8	9.4	0.82
16_17	20.057	105.8	6.15	0.7
17_18	8.449	30	0.45	0.64
17_19	33.200	86.5	5.33	0.91
19_20	8.482	18	0.05	0.2
19_21	33.200	30	0.3	0.43
21_22	8.515	18	0.05	0.2
16_23	22.390	86.5	2.8	0.48
23_24	106.095	30	0.64	0.9
23_25	34.004	86.5	1.18	0.2
25_26	22.656	71.4	0.84	0.21
26_27	7.659	18	0.05	0.18
26_28	33.200	71.4	0.42	0.1
28_29	7.644	18	0.05	0.18
28_30	33.200	71.4	-0.07	0.02
30_31	7.630	18	0.05	0.18
30_32	33.200	86.5	-0.56	0.1
32_33	6.953	18	0.04	0.16
	07_08 07_09 09_10 10_11 10_12 12_13 12_14 14_15 09_16 16_17 17_18 17_19 19_20 19_21 21_22 16_23 23_24 23_25 25_26 26_27 26_28 28_29 28_30 30_31 30_32	07_08 8.330 07_09 61.853 09_10 43.288 10_11 8.515 10_12 33.200 12_13 8.564 12_14 33.200 14_15 8.613 09_16 34.706 16_17 20.057 17_18 8.449 17_19 33.200 19_20 8.482 19_21 33.200 21_22 8.515 16_23 22.390 23_24 106.095 23_25 34.004 25_26 22.656 26_27 7.659 26_28 33.200 30_31 7.630 30_32 33.200	07_08 8.330 18 07_09 61.853 120.8 09_10 43.288 47.5 10_11 8.515 18 10_12 33.200 30 12_13 8.564 18 12_14 33.200 23 14_15 8.613 18 09_16 34.706 120.8 16_17 20.057 105.8 17_18 8.449 30 17_19 33.200 86.5 19_20 8.482 18 19_21 33.200 30 21_22 8.515 18 16_23 22.390 86.5 23_24 106.095 30 23_25 34.004 86.5 25_26 22.656 71.4 26_27 7.659 18 26_28 33.200 71.4 28_29 7.644 18 28_30 33.200 71.4 30_31 7.630 18 30_32 33.200 86.5 <td>07_08 8.330 18 0.05 07_09 61.853 120.8 11.61 09_10 43.288 47.5 1.36 10_11 8.515 18 0.05 10_12 33.200 30 0.8 12_13 8.564 18 0.05 12_14 33.200 23 0.3 14_15 8.613 18 0.05 09_16 34.706 120.8 9.4 16_17 20.057 105.8 6.15 17_18 8.449 30 0.45 17_19 33.200 86.5 5.33 19_20 8.482 18 0.05 19_21 33.200 30 0.3 21_22 8.515 18 0.05 16_23 22.390 86.5 2.8 23_24 106.095 30 0.64 23_25 34.004 86.5 1.18 25_26 22.656 71.4 0.8</td>	07_08 8.330 18 0.05 07_09 61.853 120.8 11.61 09_10 43.288 47.5 1.36 10_11 8.515 18 0.05 10_12 33.200 30 0.8 12_13 8.564 18 0.05 12_14 33.200 23 0.3 14_15 8.613 18 0.05 09_16 34.706 120.8 9.4 16_17 20.057 105.8 6.15 17_18 8.449 30 0.45 17_19 33.200 86.5 5.33 19_20 8.482 18 0.05 19_21 33.200 30 0.3 21_22 8.515 18 0.05 16_23 22.390 86.5 2.8 23_24 106.095 30 0.64 23_25 34.004 86.5 1.18 25_26 22.656 71.4 0.8

Tuyau 34	32_34	16.694	86.5	-0.95	0.16
•	_				
Tuyau 35	34_35	28.175	30	0.78	1.11
Tuyau 36	35_36	7.540	18	0.05	0.18
Tuyau 37	35_37	33.200	23	0.32	0.78
Tuyau 38	37_38	7.526	18	0.05	0.18
Tuyau 39	37_39	33.200	23	-0.16	0.4
Tuyau 40	39_40	7.511	18	0.05	0.18
Tuyau 41	39_41	33.200	30	-0.65	0.92
Tuyau 42	41_42	6.349	18	0.04	0.15
Tuyau 43	41_43	106.479	60	-1.57	0.55
Tuyau 44	43_44	18.661	47.5	1.72	0.97
Tuyau 45	44_45	8.732	18	0.05	0.21
Tuyau 46	44_46	33.195	47.5	1.3	0.73
Tuyau 47	46_47	8.660	18	0.05	0.2
Tuyau 48	46_48	33.200	38	0.8	0.7
Tuyau 49	48_49	8.207	18	0.05	0.19
Tuyau 50	48_50	33.200	23	0.3	0.73
Tuyau 51	50_51	8.515	18	0.05	0.2
Tuyau 52	34_52	35.474	60	-2.21	0.78
Tuyau 53	52_53	109.733	30	0.66	0.93
Tuyau 54	52_54	20.690	86.5	-3.87	0.66
Tuyau 55	54_55	25.043	47.6	1.26	0.71
Tuyau 56	55_56	8.585	18	0.05	0.2
Tuyau 57	55_57	33.200	38	0.8	0.71
Tuyau 58	57_58	8.618	18	0.05	0.2
Tuyau 59	57_59	33.200	30	0.3	0.43
Tuyau 60	59_60	8.650	18	0.05	0.2

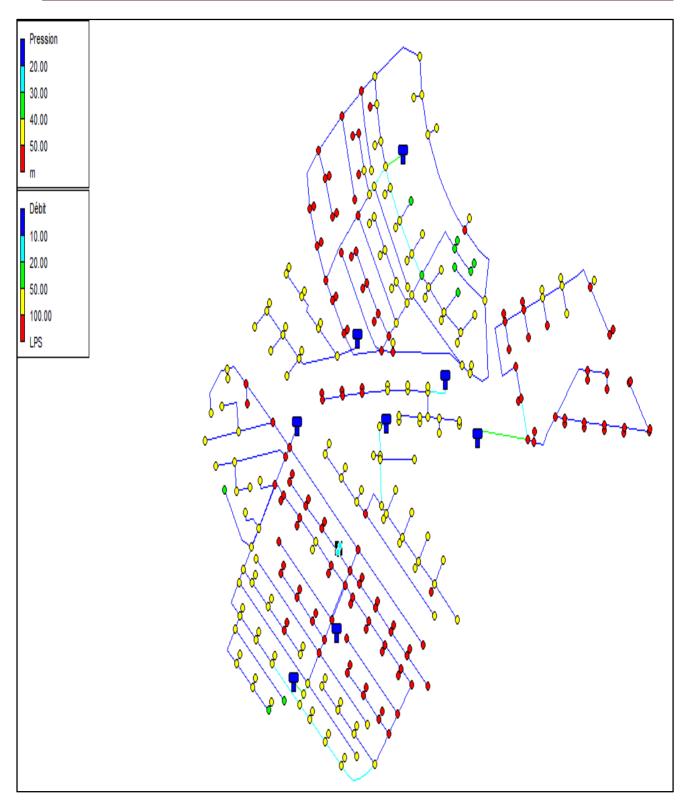
Tuyau 61	54_61	14.733	60	-5.49	1.94
Tuyau 62	61_62	100.517	30	0.6	0.85
Tuyau 63	61_63	132.434	38	0.79	0.7
Tuyau 64	61_64	31.759	153.8	-8.56	0.46
Tuyau 65	64_65	101.682	30	0.61	0.86
Tuyau 66	64_66	141.539	38	0.85	0.75
Tuyau 67	64_01	10.990	153.8	-11.73	0.63
Tuyau 68	02_67	58.273	120.8	10.02	0.87
Tuyau 69	67_68	8.300	18	0.05	0.2
Tuyau 70	67_69	33.200	105.8	9.38	1.07
Tuyau 71	69_70	8.293	18	0.05	0.2
Tuyau 72	69_71	33.200	105.8	8.88	1.01
Tuyau 73	71_72	8.286	18	0.05	0.2
Tuyau 74	71_43	52.586	71.4	4.35	1.09
Tuyau 75	71_73	13.628	71.4	3.83	0.96
Tuyau 76	73_74	101.259	30	0.61	0.86
Tuyau 77	73_75	40.605	60	2.29	0.81
Tuyau 78	75_76	8.996	18	0.05	0.21
Tuyau 79	75_77	33.200	60	1.74	0.62
Tuyau 80	77_78	8.948	18	0.05	0.21
Tuyau 81	77_79	33.283	47.6	1.24	0.69
Tuyau 82	79_80	7.794	30	0.52	0.73
		ZON	IE 2		
Tuyau 83	R2_81	78.483	120.2	9.95	0.88
Tuyau 84	81_82	19.270	59.4	2.8	1.01
Tuyau 85	82_83	7.328	18	0.06	0.22
Tuyau 86	82_84	33.200	60	2.28	0.81

Tuyau 87	84_85	6.767	18	0.05	0.2
Tuyau 88	84_86	33.200	47.6	1.67	0.94
Tuyau 89	86_87	7.328	18	0.06	0.22
Tuyau 90	86_88	33.199	38	1.04	0.92
Tuyau 91	88_89	7.328	18	0.06	0.22
Tuyau 92	88_90	43.741	23	0.34	0.81
Tuyau 93	81_91	25.599	60	2.17	0.77
Tuyau 94	91_92	8.000	18	0.05	0.21
Tuyau 95	91_93	33.200	47.6	1.61	0.91
Tuyau 96	93_94	7.371	18	0.06	0.22
Tuyau 97	93_95	33.200	38	0.99	0.87
Tuyau 98	95_96	6.864	18	0.05	0.21
Tuyau 99	95_97	33.200	23	0.37	0.89
Tuyau 100	97_98	7.328	18	0.06	0.22
Tuyau 101	81_99	22.856	86.5	4.46	0.76
Tuyau 102	99_100	135.170	38	1.04	0.92
Tuyau 103	99_101	142.431	38	1.1	0.97
		ZOI	NE 3		
Tuyau 104	R3_102	60.201	105.2	7.47	0.86
Tuyau 105	102_103	34.678	71.4	3.56	0.89
Tuyau 106	103_104	56.971	47.6	1.36	0.77
Tuyau 107	104_105	49.742	18	0.25	0.99
Tuyau 108	104_106	56.110	23	0.28	0.69
Tuyau 109	103_107	54.766	47.6	1.45	0.82
Tuyau 110	107_108	16.940	18	0.09	0.34
Tuyau 111	107_109	35.911	38	0.82	0.72
Tuyau 112	109_110	8.071	18	0.04	0.16

Tuyau 113	109_111	54.643	23	0.28	0.67
Tuyau 114	102_112	10.263	71.4	3.68	0.92
Tuyau 115	112_113	87.577	47.6	1.24	0.7
Tuyau 116	113_114	24.827	23	0.35	0.85
Tuyau 117	114_115	22.305	18	0.11	0.44
Tuyau 118	113_116	31.318	18	0.16	0.62
Tuyau 119	112_117	29.319	60	1.8	0.64
Tuyau 120	117_118	31.650	18	0.16	0.63
Tuyau 121	117_119	44.830	38	1.1	0.97
Tuyau 122	119_120	31.454	18	0.16	0.63
Tuyau 123	119_121	20.368	30	0.45	0.64
Tuyau 124	121_122	68.643	23	0.35	0.84
		ZON	IE 4		
Tuyau 125	R4_123	9.101	120.2	15.95	1.41
Tuyau 126	123_124	24.661	153.8	15.68	0.84
Tuyau 127	124_125	10.728	18	0.12	0.47
Tuyau 128	124_126	3.247	153.8	15.14	0.81
Tuyau 129	126_127	56.731	30	0.63	0.89
Tuyau 130	126_128	38.890	153.8	13.42	0.72
Tuyau 131	_128_129	38.248	105.8	6.18	0.7
Tuyau 132	129_130	17.746	60	2.4	0.85
Tuyau 133	130_131	11.620	18	0.13	0.5
Tuyau 134	130_132	33.326	47.6	1.58	0.89
Tuyau 135	132_133	50.960	72.4	2.34	0.57
Tuyau 138	132_134	10.882	18	0.12	0.47
Tuyau 139	134_135	33.075	30	0.61	0.86
Tuyau 140	129_136	11.003	18	0.12	0.48

Tuyau 141	128_137	143.423	47.6	1.58	0.89
Tuyau 142	137_138	10.823	105.8	6.27	0.71
Tuyau 143	137_139	6.352	18	0.07	0.28
Tuyau 144	137_140	25.346	23	0.28	0.67
Tuyau 145	140_141	33.200	86.5	5.08	0.86
Tuyau 146	140_142	25.346	23	0.28	0.67
Tuyau 147	140_143	6.352	18	0.07	0.28
Tuyau 148	143_144	33.200	71.4	3.65	0.91
Tuyau 149	143_145	25.346	23	0.28	0.67
Tuyau 150	143_146	7.988	18	0.09	0.35
Tuyau 151	146_147	33.187	60	2.18	0.77
Tuyau 152	146_148	25.472	23	0.28	0.68
Tuyau 153	146_149	8.162	18	0.09	0.35
Tuyau 154	R5_150	48.507	30	0.54	0.76
Tuyau 0155	150_151	31.560	105.8	11.91	1.36
Tuyau 156	150_152	4.733	18	0.08	0.32
Tuyau 157	152_153	33.497	105.8	6.19	0.7
Tuyau 158	152_154	4.441	18	0.08	0.3
Tuyau 159	154_155	33.173	86.5	4.9	0.83
Tuyau 160	154_156	4.897	18	0.08	0.33
Tuyau 161	156_157	42.463	71.4	3.46	0.86
Tuyau 162	156_158	4.793	18	0.08	0.32
Tuyau 163	158_159	33.314	60	2.01	0.71
Tuyau 164	158_160	4.419	18	0.07	0.29
Tuyau 165	160_161	33.179	38	0.73	0.64
Tuyau 166	150_162	4.912	18	0.08	0.33

Tuyau 167	162_163	21.194	86.5	4.64	0.79
Tuyau 168	163_164	19.582	60	2.04	0.72
Tuyau 169	163_165	12.703	23	0.22	0.52
Tuyau 170	165_166	33.613	38	0.7	0.62
Tuyau 171	162_167	3.887	18	0.07	0.26
Tuyau 172	167_168	13.151	71.4	1.69	0.42
Tuyau 173	167_169	4.873	18	0.08	0.32
Tuyau 174	169_170	34.521	38	0.71	0.63
		ZON	IE 6		
Tuyau 175	R6_171	3.807	18	0.06	0.25
Tuyau 176	171_172	96.846	240.4	20.2	0.45
Tuyau 177	172_173	36.027	105.2	11.03	1.27
Tuyau 178	172_174	4.243	60	1.17	0.41
Tuyau 179	174_175	28.260	105.2	9.14	1.05
Tuyau 180	174_176	81.885	105.2	7.97	0.92
Tuyau 181	176_177	6.945	18	0.07	0.29
Tuyau 182	171_178	24.741	30	0.26	0.37
Tuyau 183	178_179	33.200	105.2	6.08	0.7
Tuyau 184	178_180	6.784	18	0.07	0.28
Tuyau 185	178_181	24.752	30	0.26	0.37
Tuyau 186	181_182	33.201	105.2	4.7	0.54
Tuyau 187	181_183	6.621	23	0.18	0.43
Tuyau 188	181_184	25.067	30	0.27	0.38
Tuyau 189	184_185	33.200	105.2	3.57	0.41
Tuyau 190	184_186	6.457	18	0.07	0.27
Tuyau 191	R7_187	25.229	30	0.27	0.38
Tuyau 192	187_188	56.251	86.5	1.95	0.33


Tuyau 193	188_189	8.052	18	0.09	0.34
Tuyau 194	188_190	51.901	38	0.63	0.56
Tuyau 195	190_191	7.554	18	0.08	0.31
Tuyau 196	191_192	10.349	105.2	8.79	1.01
Tuyau 197	_191_193	8.877	18	0.09	0.37
Tuyau 198	191_194	46.480	105.2	8	0.92
Tuyau 199	194_195	15.450	105.2	4.72	0.54
Tuyau 200	194_196	4.602	18	0.05	0.19
Tuyau 201	194_197	33.205	105.2	4.11	0.47
Tuyau 202	197_198	4.600	18	0.05	0.19
Tuyau 203	197_199	33.205	100	3.3	0.42
Tuyau 204	197_200	4.600	18	0.05	0.19
Tuyau 205	200_201	33.195	72.4	2.5	0.61
Tuyau 206	200_202	4.745	18	0.05	0.2
Tuyau 207	200_203	41.067	60	1.61	0.57
Tuyau 208	203_204	2.029	18	0.02	0.08
Tuyau 209	203_205	51.900	38	0.59	0.52
Tuyau 210	205_206	1.637	18	0.02	0.07
Tuyau 211	187_207	70.167	60	1.88	0.66
Tuyau 212	207_208	7.732	18	0.08	0.32
Tuyau 213	207_209	33.200	38	0.62	0.54
Tuyau 214	209_210	12.513	18	0.13	0.52
Tuyau 215	210_211	31.728	105.8	9.56	1.09
Tuyau 216	210_212_	39.372	72.4	2.97	0.72
Tuyau 217	212_213	5.657	60	0.07	0.03
Tuyau 218	212_214	43.301	60	1.74	0.61
Tuyau 219	214_215	5.817	18	0.08	0.3

Tuyau 220	214_216	32.310	100	0.59	0.07
Tuyau 221	216_217	6.136	18	0.08	0.32
Tuyau 222	216_218	66.206	86.5	5.19	0.88
Tuyau 223	218_219	7.932	18	0.1	0.41
Tuyau 224	218_220	24.489	30	0.32	0.46
Tuyau 225	220_221	33.234	60	3.03	1.07
Tuyau 226	209_222	8.183	18	0.11	0.42
Tuyau 227	222_223	24.353	23	0.32	0.77
Tuyau 228	222_224	33.163	47.5	1.3	0.73
Tuyau 229	224_225	8.438	18	0.11	0.44
Tuyau 230	R8_226	24.166	23	0.32	0.77
Tuyau 231	226_227	15.009	192.3	36.01	1.24
Tuyau 232	227_228	22.123	105.2	9.29	1.07
Tuyau 233	227_229	10.292	18	0.07	0.27
Tuyau 234	229_230	31.976	105.2	8.8	1.01
Tuyau 235	229_231	10.608	18	0.07	0.27
Tuyau 236	231_232	23.567	105.2	8.45	0.97
Tuyau 237	232_233	82.179	71.4	2.56	0.64
Tuyau 238	233_234	32.433	60	1.81	0.64
Tuyau 239	233_235	14.074	18	0.09	0.36
Tuyau 240	235_236	35.025	47.5	1.18	0.67
Tuyau 241	235_237	14.492	18	0.1	0.37
Tuyau 242	237_238	102.245	18	0.09	0.35
Tuyau 243	237_239	13.407	18	0.09	0.35
Tuyau 244	239_240	82.253	47.5	-1.3	0.73
Tuyau 245	239_241	57.382	30	0.38	0.53

Tuyau 246	241_242	97.240	86.5	-3.23	0.55
Tuyau 240	_		80.5		
Tuyau 247	241_244	6.827	18	0.04	0.18
Tuyau 248	244_245	131.842	86.5	-4.82	0.82
Tuyau 249	244_246	7.715	18	0.05	0.2
Tuyau 250	246_247	19.491	86.5	-5.92	1.01
Tuyau 251	247_248	17.430	30	-0.47	0.67
Tuyau 252	248_249	25.670	60	1.35	0.48
Tuyau 253	248_250	8.816	18	0.06	0.23
Tuyau 254	250_251_	32.422	47.5	0.85	0.48
Tuyau 255	250_252_	7.349	18	0.05	0.19
Tuyau 256	252_253	32.410	30	0.33	0.47
Tuyau 257	247_254	8.948	18	0.06	0.23
Tuyau 258	254_255	17.329	60	-2.1	0.74
Tuyau 259	254_256	110.435	30	0.72	1.03
Tuyau 260	256_257	24.103	71.4	-3.83	0.96
Tuyau 261	257_258	24.970	47.5	1.83	1.03
Tuyau 262	257_259	9.597	30	0.49	0.7
Tuyau 263	259_260	33.217	38	0.89	0.79
Tuyau 264	259_261	8.608	18	0.06	0.22
Tuyau 265	261_262	33.211	30	0.34	0.48
Tuyau 266	256_263	9.478	18	0.06	0.24
Tuyau 267	263_264	10.372	86.5	-5.98	1.02
Tuyau 268	263_265	103.053	30	0.68	0.96
Tuyau 269	265_266	23.545	105.2	-7.55	0.87
Tuyau 270	266_267	15.217	60	2.43	0.86
Tuyau 271	266_268	9.801	18	0.06	0.25
Tuyau 272	266_269	26.211	23	0.17	0.41

Tuyau 273	269_270	33.271	60	1.64	0.58
Tuyau 274	269_271	8.508	18	0.06	0.22
Tuyau 275	269_272	28.742	23	0.19	0.45
Tuyau 276	272_273	33.024	38	0.72	0.63
Tuyau 277	272_274	10.397	18	0.07	0.27
Tuyau 278	265_275	27.590	23	0.18	0.44
Tuyau 279	275_276	23.810	105.2	-11.39	1.31
Tuyau 280	275_277	10.318	18	0.07	0.27
Tuyau 281	275_278	24.652	18	0.16	0.64
Tuyau 282	278_279	34.340	105.2	-12.23	1.41
Tuyau 283	278_280	8.301	18	0.05	0.21
Tuyau 284	278_281	25.084	23	0.16	0.4
Tuyau 285	281_282	32.566	120.5	-13.11	1.15
Tuyau 286	281_226	10.475	18	0.07	0.27
Tuyau 287	226_283	19.572	120.5	-13.59	1.19
Tuyau 288	283_284	24.745	105.8	12.69	1.44
Tuyau 289	283_285	101.341	38	0.67	0.59
Tuyau 290	285_286	10.561	105.2	11.13	1.28
Tuyau 291	286_287	22.539	38	0.84	0.74
Tuyau 292	286_288	10.215	18	0.07	0.26
Tuyau 293	288_289	32.609	30	0.35	0.49
Tuyau 294	285_290	10.167	18	0.07	0.26
Tuyau 295	290_291	102.678	105.2	9.39	1.08
Tuyau 296	291_292	32.278	47.5	-0.26	0.14
Tuyau 297	291_293	7.136	18	0.05	0.18
Tuyau 298	293_294	33.844	60	-0.78	0.28
Tuyau 299	295_293	7.220	18	0.05	0.19
			<u> </u>	1	

Tuyau 300	296_295	52.000	60	1.44	0.51
Tuyau 301	296_297	72.548	30	0.48	0.67
Tuyau 302	296_298	38.097	86.5	-3.89	0.66
Tuyau 303	298_299	68.408	30	0.45	0.64
Tuyau 304	298_231	25.203	105.2	-5.2	0.6
Tuyau 305	295_301	20.530	30	0.77	1.09
Tuyau 306	303_302	7.127	18	0.05	0.18
Tuyau 307	301_303	33.900	30	0.36	0.52
Tuyau 308	303_304	7.264	18	0.05	0.19
Tuyau 309	290_305	20.363	105.2	8.76	1.01
Tuyau 310	305_306	6.641	18	0.04	0.17
Tuyau 311	305_307	33.792	105.8	8.32	0.95
Tuyau 312	307_308	6.571	18	0.04	0.17
Tuyau 313	307_246	69.815	105.2	7.56	0.87
Tuyau 314	246_309	107.431	30	0.71	1
Tuyau 316	265_310	75.458	47.5	1.15	0.65
Tuyau 317	310_311	8.286	18	0.05	0.21
Tuyau 318	310_312	33.255	86.5	0.33	0.06
Tuyau 319	312_313	8.508	18	0.06	0.22

Figure (VI.5) : Les débits et les pressions du réseau de distribution de la commune de Rahmania

VI.8.Conclusion

Dans ce chapitre, nous avons fait le dimensionnement du réseau de distribution dont le réseau est de type combiné, nous avons déterminé les diamètres des différents tronçons en vérifiant les vitesses et les pressions au niveau de ces tronçons et des nœuds. La modélisation est effectuée à l'aide du logiciel EPANET, nous avons constaté des faible vitesses au niveau de quelques tronçons qui sont ramifications de branchement au individus

CHAPITRE VII: SIG

VII.1. Introduction:

L'aménagement et la gestion du réseau d'AEP pour assurer la distribution de l'eau nécessite un suive du comportement hydraulique de tout les éléments du réseau (réservoir, conduits, nœuds...) pour ce la nous allons informatiser le plan de réseau d'alimentation en eau potable de la commune de RAHMANIA. Cette approche informatique va nous permettre de se familiariser avec le système de gestion informatique du réseau.

VII.2. Présentation du système d'information géographique SIG:

VII.2.1. Système d'information géographique

Le système d'information géographique (SIG), est un système informatisé comprenant plusieurs bases de données géographiques, un logiciel de gestion et d'accès aux informations dont le but est d'organiser, de gérer, manipuler, d'analyser et de représenter les données à références spatiales, afin de permettre la résolution des problèmes d'aménagement et de gestion.

VII.2.2. Principales composantes d'un SIG

Un SIG comprend 4 composantes essentielles

- Matériel informatique : ordinateur, scanner ...
- logiciels SIG: Map Info, Arc Gis, Arc view ...
- Données : récupérable à partir du terrain, d'un rapport, d'une carte, ...
- Ressources humaines : opérateur formé.

VII.2.3. Fonctionnalités d'un SIG

- Abstraction : représentation du monde réel, elle se fait en deux étapes :
- La construction du schéma conceptuel de données.
- Trouver un logiciel qui soit capable de transcrire et de stocker le schéma.
- Acquisition : saisie des informations géographiques sous forme numérique
- Archivage: Stockage et gestion de base de données.
- Analyse: manipulation et interrogation des données géographiques, qui se base sur deux analyses:
- Analyse spatiale qui se bas sur la description quantitative et qualitative d'un espace.
- Analyse spatiale géométrique qui se bas sur la position de l'objet, sa forme, et les relations éventuelles entre ces objet.

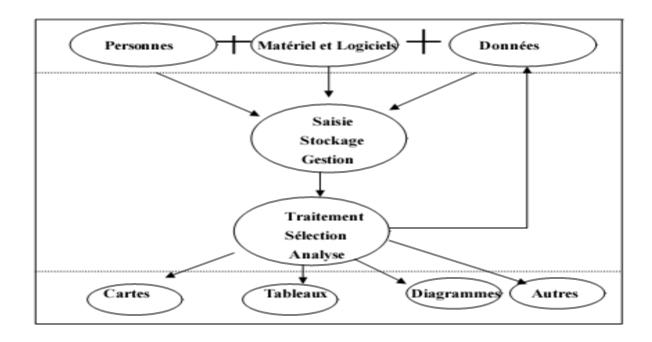


Figure VII.1. Organigramme d'utilisation d'un SIG

VII.2.4. Utilité des SIG:

- De stocker sous forme numérique de gros volumes de données géographiques de manière centralisée et durable. Par rapport au papier ou aux microfiches, les supports informatiques actuels (disques durs, DVD rom.), assurent une meilleure conservation des données,
- D'afficher et de consulter les données sur l'écran,
- De superposer plusieurs couches d'information,
- De rapprocher (assembler) des informations de différentes natures (topographique, environnementale, sociale, économique),
- D'effectuer des recherches à partir de certains critères (qualitatifs et/ou quantitatifs),
- D'actualiser ou de modifier les données sans avoir à recréer un document,
- D'analyser les données en effectuant par exemple des calculs de surface ou de distance,
- D'ajouter ou d'extraire des données, de les transformer pour les mettre à disposition d'un prestataire (géomètre, architecte, gestionnaire de réseau),
- D'éditer des plans et des cartes à la demande et en grand nombre à des coûts peu élevés.

VII.2.5. Elaboration d'un SIG:

Avant d'entreprendre la mise en place d'un SIG, il est primordial d'évalué les besoins des futurs utilisateurs du système et c'est à partie de cette analyse que dépondra la structure de la base de données. Plusieurs operateurs sont utilisés pour l'élaboration d'un SIG tel que:

- Arc GIS.
- Auto CAD Map 3D.
- Mapinfo ...

Ce qui est de notre cas nous allons utiliser le logiciel MapInfo

VII.2.6. Création banque de données urbaine

La généralisation de l'utilisation de la gestion informatique des réseaux d'AEP nécessite des plans cartographiques sur lesquels sont portés les éléments hydrauliques du réseau. Ces plans doivent être à jour d'une part et doivent être référencés d'autre part pour être traités par les Systèmes d'Informations Géographiques.

- La première étape pré requise à la gestion informatique consiste donc à disposer des plans cadastraux, mis à jour et référencés pour permettre une homogénéisation ultérieure des différents plans.
- La deuxième étape consistera à numériser les plans existants en opérant par niveau d'information pour permettre toutes les manipulations possibles des objets graphiques une fois intégrés dans le cadre d'un système d'information géographique.
- Evidemment, les données dites attributives, caractérisant les objets graphiques doivent faire l'objet d'une organisation en banque de données qui seront gérées par le SIG.
- Des données de bases constituant les entrées à un modèle de calcul hydraulique de réseau peuvent être fournies par le système. (Côte, profondeur, diamètre, longueur et nature des conduites, pentes,...etc.)

VII.2 .7. Avantage des SIG

- Capacité et fiabilité de stockage.
- Rapidité de restitution des données.
- Intégration et combinaison de données de source différentes.
- Facilité de mise à jour (outil de suivi).
- Possibilité d'analyser précisément les relations spatiales entre objets

VII.2.8. Les principales contraintes des SIG

- Manque de personnel spécialisé et compétent.
- Coût élevé et problèmes techniques pour l'acquisition des données.
- Non standardisation des formats de données.
- Manque d'outils pour la gestion du temps.

VII.3. Présentation du logiciel MapInfo

VII.3.1. Définition :

MapInfo est un:

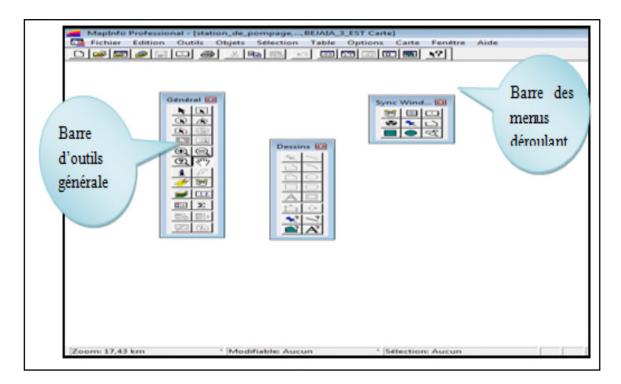
- Outil de type système d'information géographique.
- Permet de lier les donnés d'une base ou d'un tableur à des entités (caractères) spatiales.

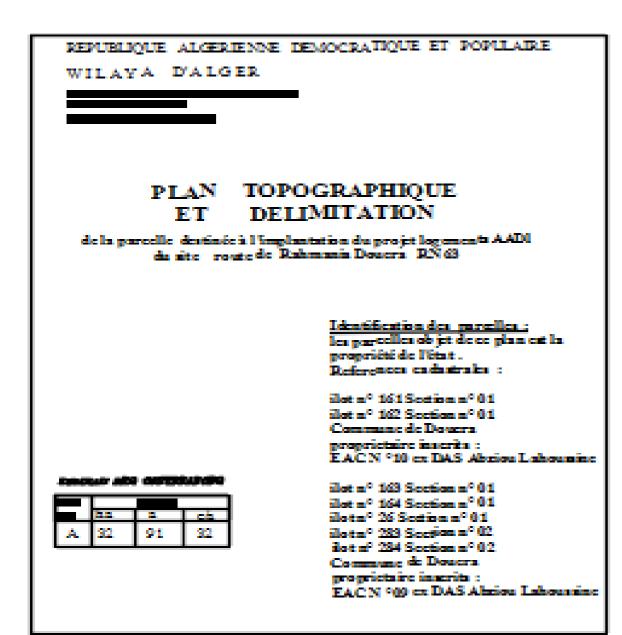
• Il combine un puissant gestionnaire de données à des outils de dessin et de présentation facile à utiliser.

- Permet d'analyser et de présenter les données sur une carte à l'aide de couleurs, d'hacheur, de type de ligne et de symboles.
- Fournit un ensemble d'outils pour visualiser, exploiter, interroger, modifier et d'analyser des informations géographique et présenter les résultats sur des documents cartographique de qualité.

VII.3.2. Interface de travail :

L'environnement de travail MapInfo se présente comme suit :




Figure VII.2: Interface de travaille MapInfo

VII.4. Création du système d'information géographique du réseau d'AEP de la commune de RAHMANIA :

Pour la création de notre SIG nous allons d'abord représenter la chaine d'adduction et le réseau de distribution séparément pour une meilleure précision à cause de l'indisponibilité d'un plan de masse englobant les deux parties du système d'alimentation en eau potable.

VII. 4.1 Préparation du fond de la carte :

Le réseau d'AEP de la commune de RAHMANIA se localise spatialement entre 36°40'51" nord et 2°54'23" est Nous avons utilisée comme support de digitalisation pour le réseau de distribution et réseau d'adduction une photo de plan de mass de la zone d'étude

Inatewnent Station Point levé Rawte Ms te Talue. Cadre—Batt Mur single Clarture Pylane B-Tension Pylone N-Tension - Ugne elec B-tandon - Ligne elec N-tension Regard Fil creeu Arrighted 1 Rossaul Lulot

LEGENDE

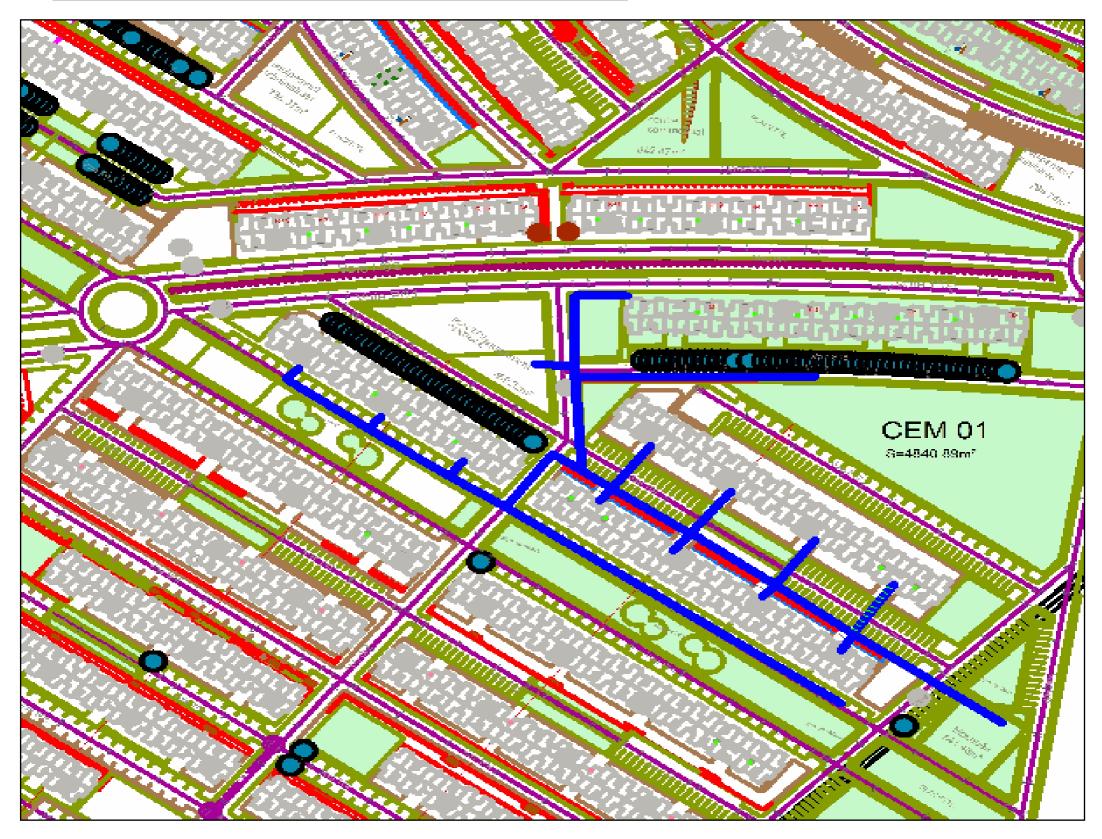


Figure VII.3 : plan de mass de la zone d'étude (Commune de RAHMANIA, W. ALGER)

VII.4.2. Création des tables :

Le but essentiel attendu d'un SIG est de réaliser une base d'information fiable et organisée en plusieurs couches superposables en forme de fenêtre carte, c'est pour cela qu'il faut accorder une particulière attention lors de la définition de la structure des tables de la base de données, en fonction des ressources et des données gérées. Les structures des tables crées sont les suivantes :

VII.4.2.1.Structure de la table conduite :

- ID_ Conduite,
- Longueur _ m,
- Diamètre _ mm,
- Vitesse _ m/s,
- Type _ matériau,
- Nœud initial
- Nœud final
- Rugosité
- Pert de charge m/Km
- Longitude,
- Latitude

VII.4.2.2.Structure de la table nœud:

- ID _ nœud,
- Altitude _ nœud _ m,
- Pression _ m,
- Charge
- Demande de base l/s
- Longitude,
- Latitude.

VII.4.2.3. Structure de la table réservoir :

- ID _ réservoir,
- Cote _ radié _ m,
- Niveau minimal m
- Niveau initial m
- Niveau maximal, m
- Capacité _ m3,
- Diamètre m
- Longitude,
- Latitude.

VII.4.3. La vectorisation du réseau d'AEP sur Marino :

La vectorisation du réseau consiste à attribuer aux données spéciales des données alphanumériques. Les données spatiales représentent des objets géographiques associés à leurs localisations dans le monde réel. Les objets géographiques sont représentés sur les cartes par des points (nœuds), des lignes (conduites), des objets (réservoir, captage, station de pompage ...etc.).

Les données attributaires décrivent des propriétés particulières des objets géographiques.

VII.4.3.1. Vectorisation du réseau d'adduction :

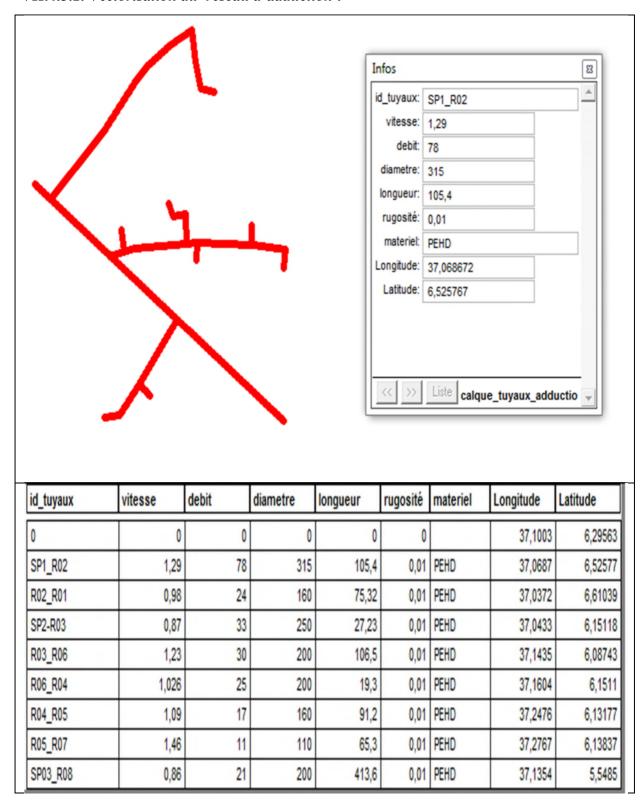
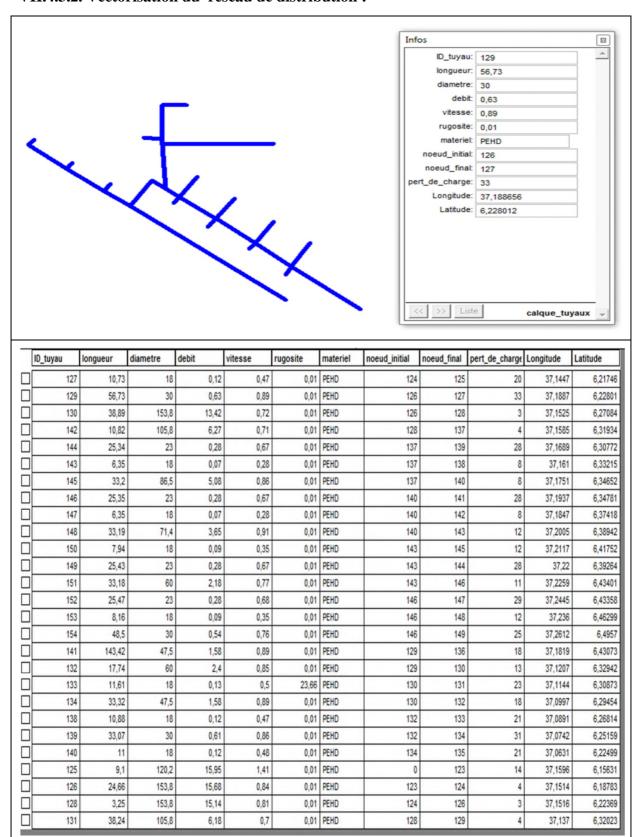
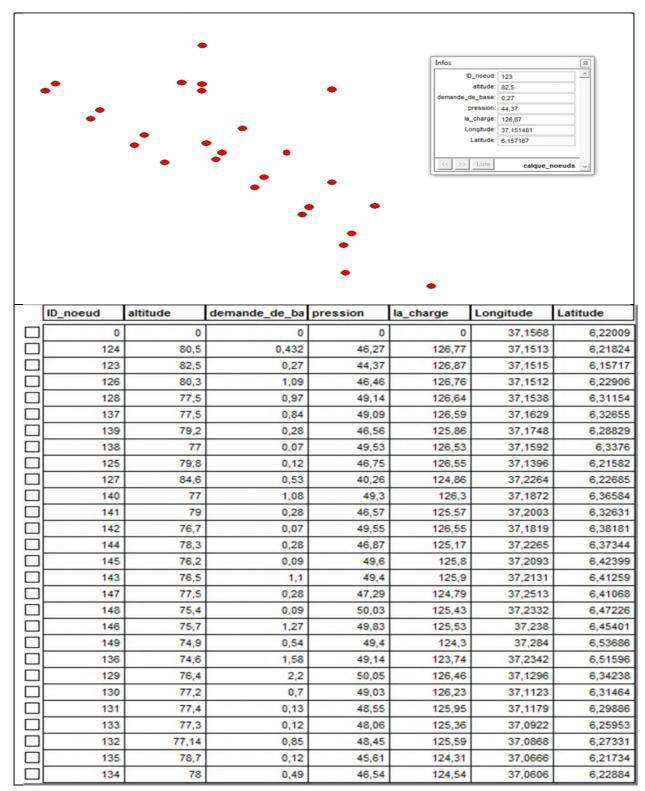
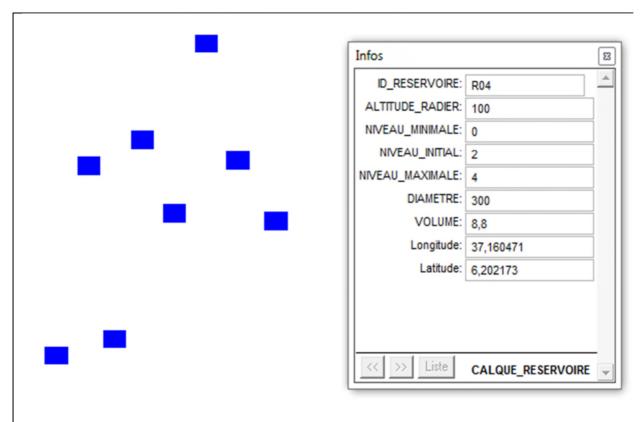


Figure VII.4. Vectorisation et résultat du réseau d'adduction

VII.4.3.2. Vectorisation du réseau de distribution :


Figure VII.5. Vectorisation et résultat de réseau de distribution.

VII.4.3.3. Vectorisation des nœuds:

Figure VII.6. Vectorisation et résultat des nœuds de réseau.

VII.4.3.4. Vectorisation des nœuds :

ID_RESERVOIRE	ALTITUDE_RADIE	NIVEAU_MINIMAI	NIVEAU_INITIAL	NIVEAU_MAXIMA	DIAMETRE	VOLUME	Longitude	Latitude
r08	120	0	2	4	11,9	550	37,2044	5,70632
	0	0	0	0	0	0	37,1056	6,00804
R06	100	2	0	4	7,5	220	37,1163	5,98844
R03	105	0	2	4	7,2	200	37,042	6,06475
R04	100	0	2	4	300	8,8	37,1605	6,20217
R05	115	0	2	4	8	250	37,2484	6,04985
R07	120	0	2	4	8	250	37,3012	6,22518
R02	120	0	2	4	8	250	37,0774	6,57126
R01	140	0	2	4	11,3	500	36,9967	6,62002

Figure VII.7. Vectorisation et résultat du réservoir

VII.5. La gestion du réseau d'alimentation en eau potable :

La problématique des exploitants des réseaux d'AEP se pose en plusieurs points : une démographie galopante, une urbanisation mal contrôlée, des réseaux et par parties mal connus, un déficit de la ressource, une gestion administrative laborieuse et une consommation incontrôlée rendant nécessaire la mise en place de moyens modernes et efficaces.

L'objectif de la gestion d'un réseau d'AEP est d'assurer les fonctions de stockage, de distribution et de production. Et cela pour optimiser la consommation et minimiser les fuites dans le réseau.

VII.5.1. La gestion classique des réseaux d'AEP :

La gestion classique des réseaux présents beaucoup d'inconvénient car les supports cartographiques sur lesquels sont portés les objets sont difficilement manipulables. Cette gestion est aussi très limitée. Ils présentent les problèmes suivants :

- L'archivage des documents cartographiques et les fiches techniques du réseau en support papier,
- la perte de temps pour la recherche d'une information bien déterminé,
- la difficulté de la mise à jour,
- la facilité de prendre les informations à cause de la mémorisation et l'archivage anarchique.

VII.5.2. Gestion informatisé des réseaux d'AEP :

Pour répondre à toutes les difficultés trouvées dans la gestion classique des réseaux d'AEP, une gestion informatisée s'avère indispensable et cela est rendu possible grâce aux progrès de l'informatique.

Elle présente les avantages suivants :

- Améliorer la connaissance des réseaux étudiés,
- Détecter et comprendre le désordre pouvant se produire sur le réseau,
- Simuler sur une période d'au moins une journée le comportement du réseau afin d'en optimiser les ressources, les capacités de stockage, les pompages,
- -Dimensionner les extensions, le renforcement ou les aménagements nécessaires pour satisfaire les nouveaux besoins.

VII.5.3. Gestion des réseaux d'AEP par SIG :

Le SIG joue le rôle d'aide à la décision pour les gestionnaires des réseaux d'AEP et cette gestion est liée à la structure du réseau et aux conditions d'exploitation. Différentes techniques ont été développées pour la gestion des réseaux par SIG

VII.5.3.1..Requête SQL:

L'interrogation d'une base de données relationnelle se fait par l'intermédiaire d'un langage de Requêtes SQL (Structured Query Language) ; ce langage permet de formuler des Requêtes sur une base de données en s'appuyant sur des opérateurs de l'algèbre relationnel.

La commande SQL la plus riche sémantiquement est de l'ordre SELECT. Dont la forme la plus simple comprend les clauses Select, From et Where.

- Select (liste des attributs) : permet d'exprimer la projection sur la liste d'attributs.
- From (liste des tables) : permet de citer la liste des tables.
- Where (condition): regroupe un en ensemble de condition et permet d'exprimer l'objet de la restriction.

ici un Exemple de requêtes sur le SIG du réseau de distribution de la localité de Rahmania: Nous avons analysé notre réseau selon le critère "PEHD" nous avons obtenues les résultats suivants :

ID_tuyau	longueur	diametre	debit	vitesse	rugosite	materiel	noeud_initial	noeud_final	pert_de_charge	Longitude	Latitude
127	10,73	18	0,12	0,47	0,01	PEHD	124	125	20	37,1447	6,21746
129	56,73	30	0,63	0,89	0,01	PEHD	126	127	33	37,1887	6,22801
130	38,89	153,8	13,42	0,72	0,01	PEHD	126	128	3	37,1525	6,27084
142	10,82	105,8	6,27	0,71	0,01	PEHD	128	137	4	37,1585	6,31934
144	25,34	23	0,28	0,67	0,01	PEHD	137	139	28	37,1689	6,30772
143	6,35	18	0,07	0,28	0,01	PEHD	137	138	8	37,161	6,33215
145	33,2	86,5	5,08	0,86	0,01	PEHD	137	140	8	37,1751	6,34652
146	25,35	23	0,28	0,67	0,01	PEHD	140	141	28	37,1937	6,34781
147	6,35	18	0,07	0,28	0,01	PEHD	140	142	8	37,1847	6,37418
148	33,19	71,4	3,65	0,91	0,01	PEHD	140	143	12	37,2005	6,38942
150	7,94	18	0,09	0,35	0,01	PEHD	143	145	12	37,2117	6,41752
149	25,43	23	0,28	0,67	0,01	PEHD	143	144	28	37,22	6,39264
151	33,18	60	2,18	0,77	0,01	PEHD	143	146	11	37,2259	6,43401
152	25,47	23	0,28	0,68	0,01	PEHD	146	147	29	37,2445	6,43358
153	8,16	18	0,09	0,35	0,01	PEHD	146	148	12	37,236	6,46299
154	48,5	30	0,54	0,76	0,01	PEHD	146	149	25	37,2612	6,4957
141	143,42	47,5	1,58	0,89	0,01	PEHD	129	136	18	37,1819	6,43073
132	17,74	60	2,4	0,85	0,01	PEHD	129	130	13	37,1207	6,32942
133	11,61	18	0,13	0,5	23,66	PEHD	130	131	23	37,1144	6,30873
134	33,32	47,5	1,58	0,89	0,01	PEHD	130	132	18	37,0997	6,29454
138	10,88	18	0,12	0,47	0,01	PEHD	132	133	21	37,0891	6,26814
139	33,07	30	0,61	0,86	0,01	PEHD	132	134	31	37,0742	6,25159
140	11	18	0,12	0,48	0,01	PEHD	134	135	21	37,0631	6,22499
125	9,1	120,2	15,95	1,41	0,01	PEHD	0	123	14	37,1596	6,15631
126	24,66	153,8	15,68	0,84	0,01	PEHD	123	124	4	37,1514	6,18783
128	3,25	153,8	15,14	0,81	0,01	PEHD	124	126	3	37,1516	6,22369
131	38,24	105,8	6,18	0,7	0,01	PEHD	128	129	4	37,137	6,32023

Figure VII.8. résultat de la requête PEHD

VII.5.3.2. Analyse thématique :

Une analyse thématique c'est de donnée un sens à une représentation graphique, pour lancer une analyse thématique une superposition de couches doit être ouverte on procédant comme suite :

Carte > Analyse thématique

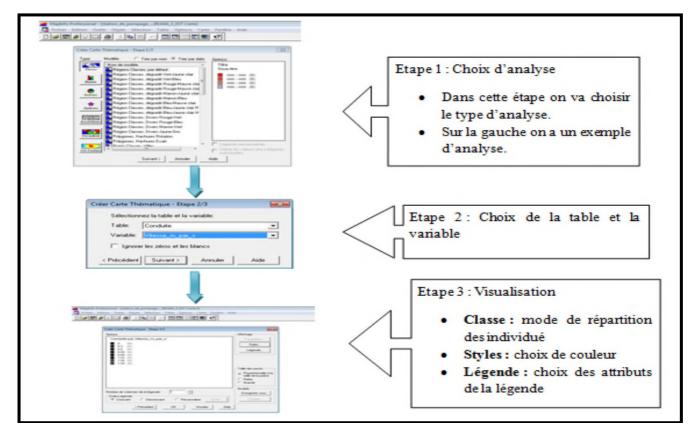


Figure VII.9. Les etapes d'utilisation de l'utile Analyse thématique

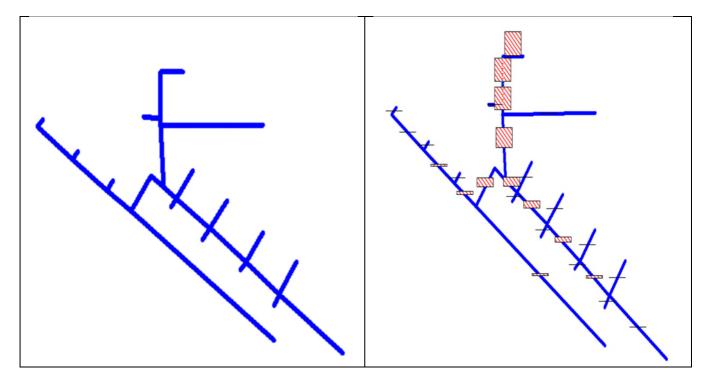


Figure VII.10. Le réseau de distribution avant et après l'analyse thématique

VII.6.Conclusion:

Les systèmes d'informations géographiques (SIG) sont devenus des outils de gestion incontournables aux mains des décideurs et autres intervenants dans le domaine du territoire.

La mise en place de ce prototype passe par une phase difficile et très lente (organisation, traitement des données, codification, digitalisation, homogénéisation des données géographiques, saisie des données attributaires...). La phase d'exploitation ouvre par contre des perspectives extraordinaires en matière de traitement, d'analyse et de restitution des données localisées.

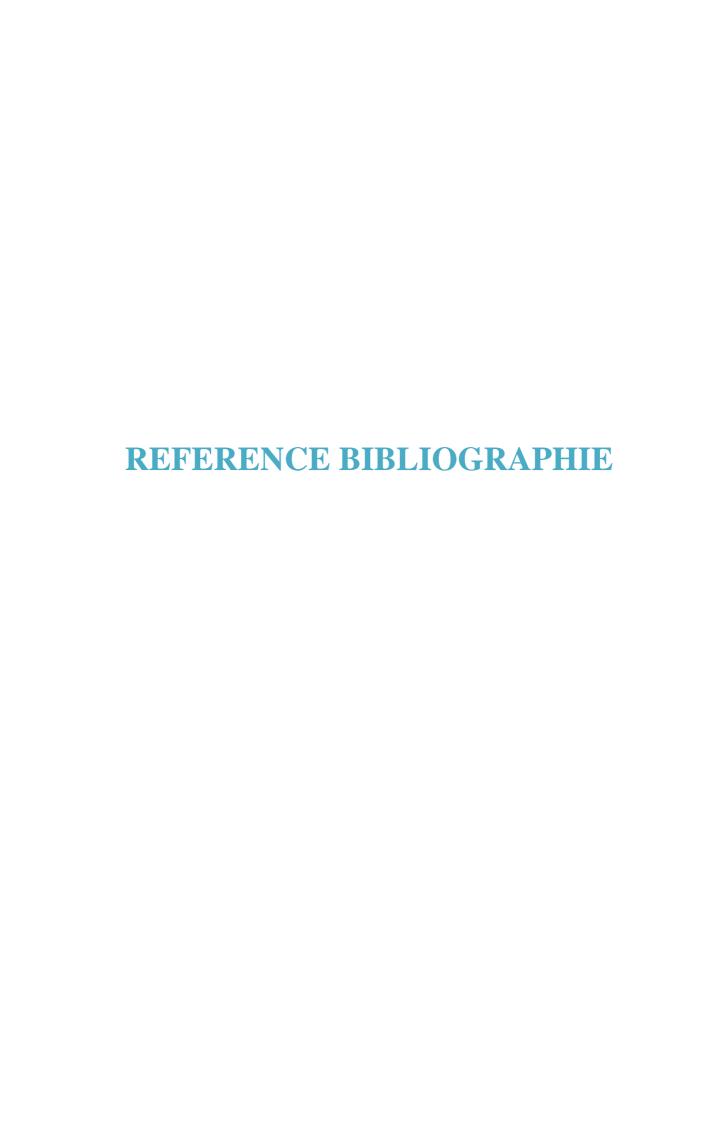
Il s'avère que l'élaboration d'un système d'information géographique pour les réseaux, notamment les réseaux d'AEP est non seulement une nouveauté mais aussi une opportunité pour tout éventuelle conception.

Conclusion générale

Conclusion générale

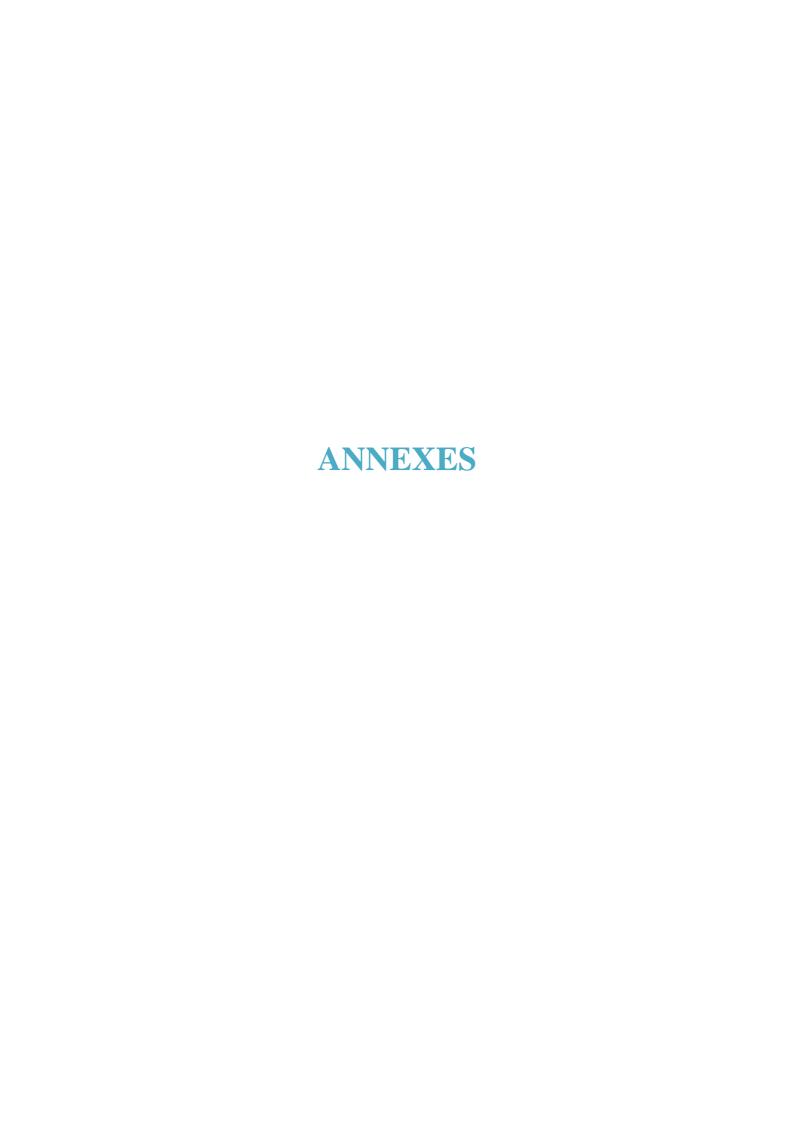
Après avoir estimé les différents besoins en eau aux divers horizons, nous avons constaté que les besoins à long terme 2050 qui sont de 6768.93 m³/j soit 78.34 l/s,

Afin d'assurer l'alimentation en eau potable dans la zone d'étude, nous avons procédé à projeter 8 réservoirs d'une capacité de stockage de 500, 250, 200, 300, 250, 220, 250 et 550 m³


Pour le dimensionnement des conduites d'adduction, nous avons choisi les diamètres les plus économiques avec des vitesses acceptables, à savoir des diamètres respectifs de 315, 160, 250, 200, 200, 160, 110, 200 mm, nous avons aussi opté pour le PEHD PN10 pour les avantages qu'il présente.

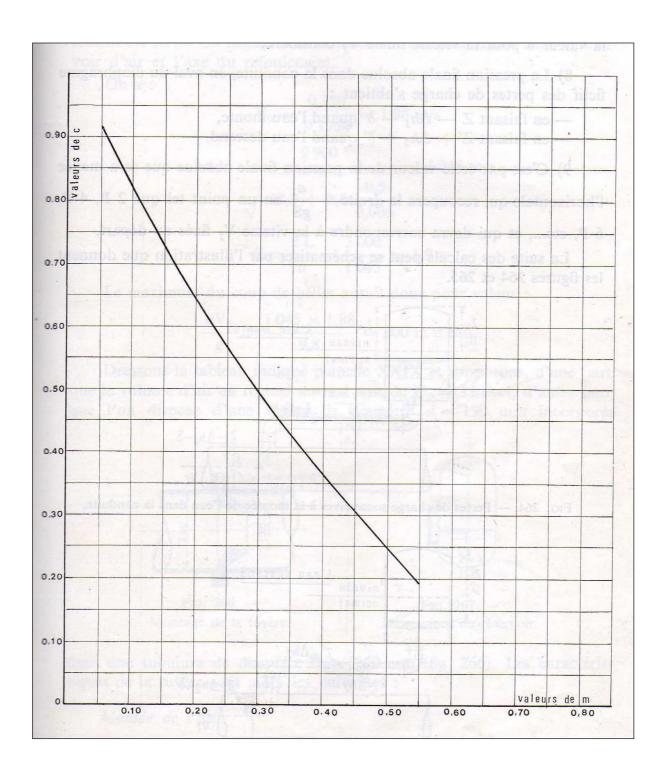
Le choix des pompes adéquates au refoulement, a été déduit par un logiciel KAPRARI qui donne des résultats les plus précis sur les caractéristiques des pompes du projet présent.

Une vérification du risque d'apparition du phénomène du coup de bélier a été faite, nous avons constaté que dans les tronçons 1. 3. 4. 5 et 7 il y a une dépression, afin de protéger ces tronçons contre ce phénomène nous avons proposé d'installer des réservoirs d'air ayant un volume normalisé de $1m^3$.


En ce qui concerne la distribution, après la simulation faite à l'aide du logiciel EPANET, nous avons obtenu des vitesses comprises entre 0,5m/s et 1,5m/s, et des pressions entre 30 m et 70m, en utilisant le PEHD avec des diamètres allant de 20mm à 250mm

Enfin, nous espérons que ce modeste travail puisse être utile à l'étude finale détaillée, du réseau d'alimentation en eau potable de la commune de Rahmania .

Références bibliographiques


- [1] : Climat data ORG, climat de région du monde.
- [2]: Information requise au prés des services de l'APC de Rahmania sur la répartition de la population sur le territoire communal.
- [3]: Taux d'accroissement d'après les informations requise au prés des services de l'APC.
- [4]: DUPONT, A, 1979 « Hydraulique Urbaine »Tome II : ouvrage de transport, élévation et distribution des eaux » Edition EYROLLES.
- [5]: Mahmoud Moussa professeur à l'école national d'ingénieur du TUNIS version 2002.
- [6] :MEDJEKDOUD Nedjma, étude de la chaine d'adduction de la ville de GRAREM W.MILA, juillet 2011.
- [7]: HAMDAOUI Houria, MERZOUGUI Kahina, raccordement de l'AEP de la commune de Bejaïa à partir du barrage Tichy-Hah W.Bejaia, juillet 2010.
- [8] :Mecaflux aide aux calculs des mécaniques des fluides, définition de perte charge, www.mecaflux.com
- [9]: MIZI Allaoua Lotfi, BOUZIT Nassima, Etude d'un réseau d'AEP de la ville nouvelle d'El Meneaa.2012 2013.
- [10]: CYRIL Gomella et HENRI Guerrée. La distribution d'eau dans les agglomérations Urbaines et rurales, 3^{iémé} édition EYROLLES 1980 Tome II.
- [11] : BENDAHMANE, B, OUBELGHA Nadia, «Renforcement de l'AEP de OUADHIAS et de TAGUEMONT EL DJDID à partir de TAKHOUKHT, Wilaya de Tizi-Ouzou », Mémoire de fin d'étude, mémoire d'ingéniorat, université de Bejaia, 2006-2007
- [12]: AMARA Lyes, BOUSMAR Idir, Etude de l'alimentation en eau des localités TOGHZA et CHOKRANE, commune de CHORFA, W de Bouira et report sur SIG

Annexes I : Distribution du débit journalier sur les heures du jour

Heures	Coefficient de variation maximal horaire de la consommation $(K_{\text{max},h})$											
	1.2	1.25	1.3	1.35	1.4	1.45	1.5	1.7	1.8	1.9	2	2.5
0-1	3.5	3.35	3.2	3	2.5	2	1.5	1	0.9	0.85	0.75	0.6
1-2	3.45	3.35	3.25	3.2	2.65	2.1	1.5	1	0.9	0.85	0.75	0.6
2-3	3.45	3.3	2.9	2.5	2.2	1.85	1.5	1	0.9	0.85	1	1.2
3-4	3.4	3.2	2.9	2.6	2.25	1.9	1.5	1	1	1	1	1.2
4-5	3.4	3.25	3.35	3.5	3.2	2.85	2.5	2	1.35	2.7	3	3.5
5-6	3.55	3.4	3.75	4.1	3.9	3.7	3.5	3	3.85	4.7	5.5	3.5
6-7	4	3.85	4.15	4.5	4.5	4.5	4.5	5	5.2	5.35	5.5	4.5
7-8	4.4	4.45	4.55	4.9	5.1	5.3	5.5	6.5	6.2	5.85	5.5	10.2
8-9	5	5.2	5.05	4.9	5.35	5.8	6.25	6.5	5.5	4.5	3.5	8.8
9-10	4.8	5.05	5.4	5.6	5.85	6.05	6.25	5.5	5.85	4.2	3.5	6.5
10-11	4.7	4.85	4.85	4.9	5.35	5.8	6.25	4.5	5	5.5	6	4.1
11-12	4.55	4.6	4.6	4.7	5.25	5.7	6.25	5.5	6.5	7.5	8.5	4.1
12-13	4.55	4.6	4.5	4.4	4.6	4.8	5	7	7.5	7.9	8.5	3.5
13-14	4.55	4.55	4.3	4.1	4.4	4.7	5	7	6.7	6.35	6	3.5
14-15	4.6	4.75	4.4	4.1	4.6	5.05	5.5	5.5	5.35	5.2	5	4.7
15-16	4.6	4.7	4.55	4.4	4.6	5.3	6	4.5	4.65	4.8	5	6.2
16-17	4.6	4.65	4.5	4.3	4.9	5.45	6	5	4.5	4	3.5	10.4
17-18	4.3	4.35	4.25	4.1	4.6	5.05	5.5	6.5	5.5	4.5	3.5	9.4
18-19	4.35	4.4	4.25	4.5	4.7	4.85	5	6.5	6.3	6.2	6	7.3
19-20	4.25	4.3	4.4	4.5	4.5	4.5	4.5	5	5.35	5.7	6	1.6
20-21	4.25	4.3	4.4	4.5	4.4	4.2	4	4.5	5	5.5	6	1.6
21-22	4.15	4.2	4.5	4.8	4.2	3.6	3	3	3	3	3	1
22-23	3.9	3.75	4.2	4.6	3.7	2.85	2	2	2	2	2	0.6
23-24	3.8	3.7	3.5	3.3	2.7	2.1	1.5	1	1	1	1	0.6
Total	100	100	100	100	100	100	100	100	100	100	100	100

Annexes IV: Coefficient de perte de charge c dans la tuyère

ملخص

في عملنا هذا قمنا بدراسة مشروع التزويد بالمياه الصالحة للشرب لبلدية الرحمانية والذي مصدره مياه سد غريب على مدى 30سنة. بعد ان قمنا بتقديم منطقة الدراسة وتقييم احتياجاتها المائية قمنا بتصميم شبكة نقل المياه وحساب مختلف أبعاد خزانات المياه ثم إننا وبعد إجراء دراسة تقنية واقتصادية حددنا قطر أنابيب نقل المياه بين الخزانات وأيضا أنابيب توزيع المياه لبلدية الرحمانية وبعد دلك من أجل حماية شبكة نقل المياه من ظاهرة المطرقة المائية أجرينا دراسة لوسائل الحماية المناسبة، وكَحَل لهذه الظاهرة قمنا باختيار خزانات الهواء.

في النهاية باستعمال أنظمة الاعلام الجغرافي مع البرنامج مابيتفو بهدف خلق قاعدة بيانات لها علاقة مع النموذج الالكتروني للمنطقة الدي بمكننا من إنشاء و تسبير الشبكة.

الكلمات المفتاحية: شبكة التزويد بالمياه الصالحة للشرب، خزان، توزيع، المطرقة المائية، أنظمة الاعلام الجغرافي، مابيتفو

Abstract

In our work we have studied the Drinking Water Supply project of the commune of Rahmania from the Ghrib Dam in the span of 30 years.

After the presentation of the study site and the estimation of their needs, we have elaborated an adduction network and measured the dimensions of different storage reservoirs.

Next, after the techno-economic study, we have determined the diameters of the supply and distribution pipes of the commune of Rahmania.

In the aim of protecting our adduction network from the phenomenon of Water Ram, we have studied the appropriate means for the protection, and for a solution we have chosen Air Reservoirs.

In the end, we have elaborated a Geographic Information System (SIG) with the software MapInfo in the aim to create a bank of data in relation with the digital land model that could provide opportunities for both design and network management.

Key Words: Drinking Water Supply, Adduction, Distribution, Reservoir, Water Ram, SIG, MapInfo

Résumé

Dans notre travail nous avons étudié le projet d'alimentation en eau potable de la commune Rahmania à partir de barrage du Ghrib à l'horizon de 30 ans

Après la présentation du site d'étude et l'estimation de leurs besoins nous avons conçu le réseau d'adduction et calculer les dimensions des différents réservoirs de stockage.

En suite ; après l'étude techno-économique. Nous avons déterminé les diamètres des conduite d'adduction et celles de distribution dans la commune de Rahmania.

dans le but de protéger notre réseau d'adduction contre le phénomène de coup de bélier, nous avons étudié les moyens appropriés pour la protection, et comme solution nous avons choisi

les réservoirs d'air.

Enfin, nous avons élaboré un système d'informations géographiques (SIG) avec le logiciel MapInfo dont le but est de créer une banque de donnée en relation avec le modèle numérique du terrain susceptible de fournir des opportunités pour la conception d'une part et de la gestion du réseau d'autre part.

Mots clés: Alimentation en eau potable, Distribution, réservoir, coup de bélier, SIG, Mapinfo