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Abstract

The emerging IoT (Internet of Things) is rapidly gaining field our modern society,

aiming to improve the quality of life by connecting many smart devices, tech-

nologies, and applications, for the purpose of exchanging data over the Internet.

Overall, the IoT would allow for the automation of everything around us. In the

recent era of the Internet of Things, the dominant role of sensors and the Internet

provides a solution to a wide variety of real life application domains including

smart city, smart healthcare systems, smart building, smart transport and smart

environment. Future applications will consist in the integration of IoT devices

with other emerging technologies, such as edge computing, fog computing, cloud

computing. Such technologies provide platforms that enable the development of

flexible IoT services in the aim of recursively updating and adapting to the dy-

namic changes in the cyber physical system surrounding the IoT. IoT devices will

generate huge volumes of data in a quick span of time and thus requires scal-

able solutions for dynamic and realtime processing of the generated data. Such

solutions are expected to provide high level of accurate and reliable data for deci-

sion making. This calls for data/information fusion, which is an effective way for

optimum utilization of large volumes of data from multiple sources.

We consider in this thesis IoT integration to edge,fog, and cloud computing, the

efficiency of data processing and fusion in terms of data credibility, reliability, con-

flict, latency, and we propose several solutions herein. The first one is for efficient

data processing in edge computing, which enables sophisticated services. The pro-

cessing of data at the edge preserves the data privacy and the bandwidth when

relaying data, while reducing the communication overheads. The second approach

is an internet of things data management and control platform based on fog and

cloud computing that allows heterogeneous resources, connectivity reliability and

mobility, ensures security and contains services to fuse heterogeneity data in ap-

plication framework architecture. The numerical analysis and simulation results

show that the proposed solutions yields significant savings in energy consump-

tion and delay reduction. The thesis considers also the state estimation in the

medium level of data fusion. We propose an improved distributed particle filter

algorithm to deal with target tracking in wireless sensors networks. It increase

the estimation accuracy of the particle filter, enhance the efficiency of the particle

sampling and improve the estimation performance. The principle contribution is

a novel approach for calculating the similarity measure based on the distance be-

tween two or several belief functions. More precisely, we build probability density



functions induced by normal distribution representing continuous belief functions.

Results of simulation and numerical analysis show the superiority of the proposed

approach in terms of Root Mean Square Error and scalability. We have studied the

problem of data fusion in decisional level. The reliability of devices in the network

and the conflicts between devices are considered in our method by considering

the information lifetime, the distance separating sensors and entities, reducing the

computation and using combination rules based on the Basic Probability Assign-

ment. This allows to represent uncertain information or to quantify the similarity

between two bodies of evidence. We compared the proposed solution with some

state-of-the-art data fusion methods, and using both benchmark data simulation

and real dataset from a smart building testbed. Results show that our solution

outperforms all the above mentioned methods in terms of reliability, accuracy and

conflict management.
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well as Prof. Benchäıba Mahfoud, Dr. Tandjaoui Djamel, Prof. Slimani Hachem

and Dr. El Bouhissi Houda for honouring me with their acceptance as examiners

in my thesis jury. I feel extremely lucky and humbled to have had the opportunity

to learn from such an impressive and supportive committee.



List of Figures

2.1 IoT layered architecture . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 CoAP functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Data processing cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Application domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Taxonomy of frameworks data fusion in IoT . . . . . . . . . . . . . 32

3.2 Taxonomy of mathematical data fusion methods in IoT . . . . . . . 38

3.3 Taxonomy of D-S based data fusion methods . . . . . . . . . . . . . 46

4.1 Framework architecture . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 An overview of the prototype . . . . . . . . . . . . . . . . . . . . . 56

4.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Framework description . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Token mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 IoT data processing architecture . . . . . . . . . . . . . . . . . . . . 64

4.8 MEAN stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Web application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Mobile application . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 IoT hardware framework . . . . . . . . . . . . . . . . . . . . . . . . 70

4.12 Mean latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.13 Average latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 RMSE with variations in number of sensors . . . . . . . . . . . . . 83

6.1 Comparison between weighted data fusion methods based on relia-
bility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Comparison between weighted data fusion methods based on amount
of information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 The flowchart of DFIOT method . . . . . . . . . . . . . . . . . . . 89

6.4 The fusion results comparison between DFIOT and different rules . 95

6.5 Deployment of sensors in office . . . . . . . . . . . . . . . . . . . . . 97

6.6 The fusion results for Hypothesis H1 . . . . . . . . . . . . . . . . . 98

6.7 The fusion results comparison with hypothesis H2 . . . . . . . . . . 100

6.8 Data fusion period . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



6.9 Gain in energy consumption . . . . . . . . . . . . . . . . . . . . . . 103



List of Tables

4.1 Web application requests delay. . . . . . . . . . . . . . . . . . . . . 70

4.2 Mobile application requests delay. . . . . . . . . . . . . . . . . . . . 71

6.1 BPAs of the example . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 The results of different combination rules . . . . . . . . . . . . . . . 95

6.3 BPAs of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . 97



List of Acronyms

IoT Internet of Things

RMSE Root Mean Square Error

RFID Radio Frequency IDentification

NFC Near Field Communication

WSN Wireless Sensor Network

SOA Service Oriented Architecture

HTTP Hypertext Transfer Protocol

URI Uniform Resource Identifiers

API Application Programming Interfaces

M2M Machine-to-Machine

DTLS Datagram Transport Layer Security

MQTT Message Queuing Telemetry Transport

XMPP Extensible Messaging and Presence Protocol

AMQP Advanced Message Queuing Protocol

AI Artificial Intelligence

ANN Artificial Neural Networks

SSN Semantic Sensor Networks

SBI Sequential Bayesian Inference

ML Maximum Likelihood

KF Kalman Filter

PF Particle Filter

CC Covariance Consistency Model

DS Dempster-Shafer



SMC Sequential Monte Carlo

KLD Kullback-leiber Divergence

BPA Basic Probability Assignment



Contents

1 General Introduction 1

2 Backgroud 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Smart Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Evolution of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 IoT Architecture and Operation . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Layered Architecture . . . . . . . . . . . . . . . . . . . . . . 7

2.5.2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.3 Storage and Processing . . . . . . . . . . . . . . . . . . . . . 9

2.5.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 IoT Technology and Protocols . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 Perception Layer . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.2 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.3 Middleware Layer . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.4 Application Layer . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Data Processing in IoT and some Relevant Concepts . . . . . . . . 20

2.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.2 Data Processing Cycle . . . . . . . . . . . . . . . . . . . . . 21

2.8 Data Fusion in IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.1 Classification of Methods . . . . . . . . . . . . . . . . . . . . 23

2.8.2 Data Fusion Applications in IoT . . . . . . . . . . . . . . . . 24

2.9 Data Processing Challenges in IoT . . . . . . . . . . . . . . . . . . 27

2.9.1 Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9.2 Heterogeneous . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9.3 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9.4 Energy Saving . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9.6 Real Time Data . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Data Fusion Frameworks and Methods in IoT 30

1



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Data Processing Frameworks in IoT . . . . . . . . . . . . . . . . . . 31

3.2.1 Classification and Taxonomy . . . . . . . . . . . . . . . . . . 31

3.2.2 Description of some Solutions . . . . . . . . . . . . . . . . . 34

3.3 Mathematical Data Fusion Methods for IoT . . . . . . . . . . . . . 37

3.3.1 Classification and Taxonomy . . . . . . . . . . . . . . . . . . 37

3.3.2 Evaluation Parameters and Performance Metrics . . . . . . . 40

3.4 State Estimation Methods Based on Distributed Particle Filter . . . 41

3.4.1 Distributed Particle Filter . . . . . . . . . . . . . . . . . . . 42

3.4.2 Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . 43

3.4.3 Literature Overview and Discussion . . . . . . . . . . . . . . 44

3.5 Dempster-Shafer Data Fusion Methods . . . . . . . . . . . . . . . . 45

3.5.1 Principle and Classification . . . . . . . . . . . . . . . . . . 46

3.5.2 Description of Modified Models . . . . . . . . . . . . . . . . 48

3.5.3 Description of Modified Methods . . . . . . . . . . . . . . . 48

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Service-Based Frameworks for Data Processing in IoT 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Framework Based on Edge Computing . . . . . . . . . . . . . . . . 53

4.2.1 Framework Description . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Framework Architecture . . . . . . . . . . . . . . . . . . . . 54

4.2.3 IoT Data Processing in Edge Computing . . . . . . . . . . . 55

4.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 58

4.3 Hybrid Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Framework Description . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 IoT Data Processing Architecture . . . . . . . . . . . . . . . 64

4.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 69

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Distributed Particle Filter for Target Tracking and Data Process-
ing in Wireless Sensor Networks 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Solution Description . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 State Estimation Technique . . . . . . . . . . . . . . . . . . 75

5.3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Similarity Distance . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Belief Function Associated to a Probability Density . . . . . 79

5.4.2 Improved Particle Filter based on Similarity Distance . . . . 79



5.5 Simulation and Comparative Analysis . . . . . . . . . . . . . . . . . 81

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 DFIOT: Data Fusion for Internet of Things 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Solution Description . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Comparison Between Weighted Methods . . . . . . . . . . . 86

6.2.2 DFIOT Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Simulation and Comparative Analysis . . . . . . . . . . . . . . . . . 93

6.4 Experimental Performance Evaluation . . . . . . . . . . . . . . . . 96

6.4.1 BPA/Conflict of Hypothesis H1 . . . . . . . . . . . . . . . . 98

6.4.2 BPA/Conflict of Hypothesis H2 . . . . . . . . . . . . . . . . 99

6.4.3 Impact of Data Fusion Period . . . . . . . . . . . . . . . . . 101

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion and Future Directions 105

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 107



Chapter 1

General Introduction

The Internet of Things is an emerging technology in telecommunications and com-

puter networks continuously evolving to fit various domains. This evolution will be

accompanied by an evolution of the technological ecosystem in all its complexity.

This technology is taking a large part of the computer systems market, notabely in

smart city applications, due its flexibility and adaptability in several fields. Each

object can autonomous, able to interact and cooperate with other objects in order

to achieve common goals. It has a unique address or ID, and should not consume

a lot of energy. IoT is considered as a global infrastructure for the information,

where it is expected that billions of devices or things that are able of sensing,

communicating, computing, and potentially of actuation will be connected to the

Internet[1]. This includes sensors, RFID (Radio Frequency IDentification), cell

phones, smarter watches, smart glasses, etc. The vision of IoT is to allow these

things to be connected anytime, anywhere, with anything or anyone, ideally us-

ing any path, any network and any service. This will generate a huge amount of

data coming from different sources, which arises the need for effective methods for

processing such data[2].

The interconnection of sensing and actuation devices enables sharing platform

information in a unified framework, developing a common operating image for in-

novative applications. this is achieved through large-scale detection, data analysis

and information representation using ubiquitous detection and emerging technolo-

gies such as edge, fog, and cloud computing. Exchanging data and information

while reacting autonomously to the real/physical events of the world and influenc-

ing the execution of processes that trigger actions and create services with or with-

out direct human intervention. Regardless of the definition given to the Internet
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of Things, this technology is always carried out in three paradigms: a middleware,

oriented objects (sensors) and oriented semantics (knowledge). The usefulness of

IoT can only be seen in a field of application where the three paradigms intersect.

This type of delimitation is necessary because of the interdisciplinary nature of

the subject.

A highlight of the IoT is its pervasiveness in all areas of life. The IoT design

must be pervasive, scalable, interoperable, consistent, reliable, efficient, and se-

cure. Meanwhile, data that must be supported in the IoT can be multisource,

heterogeneous, massive, redundant, inconsistent, or unreliable. Data fusion is an

important tool in preparing for the influx of massive amounts of IoT informa-

tion. Data fusion deals with these problems for achieving situation awareness

and enabling applications, machines, and human users to understand each other

more fully, provide advanced intelligence, and interact with the dynamics of their

environments.

Data fusion is defined as the theory, techniques and tools which are used for

combining sensor data, or data derived from sensory data, into a common rep-

resentational format [3]. It is also considered as the combination of information

from different heterogeneous sources of measurement [4–6]. The goal in data fu-

sion is to improve the performance of a given system by combining complementary

or redundant information. The combination of redundant information makes it

possible to reduce the uncertainty of the measurements, whereas the combination

of complementary information makes it possible to obtain information that can-

not be perceived by a single sensor. Data fusion is commonly used for detection

and classification in different application domains [7–9], such as military, robotics,

medical, earth sciences, and industrial applications. The fundamental elements of

a distributed information fusion system in IoT are the sensors and processors. Sen-

sors are responsible for data generation by observing the operating environment,

while processors are responsible for fusing the data. Data fusion in a distributed

and heterogeneous environments such as IoT is challenging. Data perceived by

various sensors may be imprecise, inaccurate and uncertain due to data loss or

data source unreliability, which brings additional challenges for data fusion caused

by data imperfection, data conflict, data ambiguity and inconsistency. The sys-

tem must be energy efficient, secured for both data and technology. Scalability is

another challenge in IoT [10] featured with the frequent changes in the shape and

size of the networks.

In our work, we will focus on the following question:

2



How we can ensure the efficiency of data processing in IoT environments, with

more focus on data fusion, in terms of credibility, reliability, conflict and time

latency?

The rest of chapters are organized as follows:

• Chapter 2 presents some general concepts and background then provides an

overview on characteristics, goals, components and challenges of data fusion

technique in IoT.

• In Chapter 3 a state-of-the-art of frameworks and platforms of data pro-

cessing is presented. Moreover, a state-of-the-art on data fusion methods is

provided. This allows elaborating a taxonomies of proposed frameworks and

improved methods associated to data fusion in IoT environment.

• In Chapter 4 we propose two efficient data processing frameworks to ensure

real time data processing and reduce the network energy. The first one is

based on edge computing and enables sophisticated services via the Internet

in the emerging internet of things. In contrast to the existing approaches,

and by processing the data at the edge, the data privacy is preserved and the

bandwidth for data relaying is saved. With this architecture, communication

overhead can be significantly reduced, and services in the cloud ensure real

time data processing. The second solution is an efficient hybrid computing

platform for data management and control in smart cities that allows hetero-

geneous resources, connectivity reliability and mobility, It ensures security

and contains services in application framework architecture.

• In Chapter 5 we propose improved distributed particle filter algorithm to

deal with target tracking, a new algorithm with new metric. It addresses

the measurement uncertainty problem and makes the particle filter robust

to environmental change. Such an approach can be used in state estimation

to fuse data and applied in smart environments and Internet of things appli-

cations. A simulation study that compares the proposed solution with two

state-of-the-art solutions shows the superiority of the proposed approach in

RMSE (Root Mean Square Error) and ensures scalability.

• In Chapter 6 the problem of data credibility, reliability, and conflict are con-

sidered. A new method for data fusion in IoT is proposed in this chapter.

We compared the proposed solution with some state-of-the-art data fusion

methods, using both benchmark data simulation and real dataset from a

smart building testbed. Results show that our method outperforms all the

3



above mentioned methods in terms of reliability, accuracy and conflict man-

agement.

• Chapter 7 summarizes and discusses the research pursued in this thesis and

the obtained results. The contributions are reviewed, and reflections on the

results are given. The dissertation concludes with an outline of future work.

4



Chapter 2

Backgroud

2.1 Introduction

As described in Chapter 1, this dissertation focuses on the data processing in the

emerging internet of things in terms of integrity control, reliability and time la-

tency. In this chapter, some general concepts used throughout the dissertation

are defined. We first give a general overview on IoT, operation, and Protocols.

This will be followed by introducing the data processing paradigm in IoT, and

the related relevant concepts. We identify two main backgrounds required for the

comprehension of the upcoming chapters. The first is related to the IoT architec-

ture and technologies, whereas the second one is related on the data processing.

Accordingly, in the second part of the chapter, we present the data fusion methods

and application domains as well as the goals and challenges of data processing.

The Internet is changing and evolving. The main form of communication of the

current Internet is human-human. IoT can be seen as the future evolution of the

Internet that realizes machine-to-machine learning. Thus, the IoT provides con-

nectivity for everyone and any object. IoT incorporates intelligence into Internet-

connected objects to communicate, exchange information, make decisions, invoke

actions and provide surprising services [1]. The technology of the Internet of

Things will act on many areas of human life by facilitating a few and adding com-

fort to a few others (smart farm, smart home, smart health, smart city, etc.) In

this chapter we will introduce the different essential notions of IoT, its architec-

ture, its elements, the fields of application, and the challenges that have emerged

with this technology.
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2.2 Internet of Things

IoT is the interconnection of detection and actuation devices offering the ability to

share platform information in a unified framework, developing a common operat-

ing image to enable innovative applications. This is achieved through large-scale

detection, data analysis and information representation using ubiquitous detection

and cloud computing. According to the RFID group: IoT is the global network of

interconnected objects that can be uniquely addressed according to standard com-

munication protocols [2]. According to the cluster of European research projects

on the IoT: Objects are active participants in interactions, information and social

processes where they are able to interact and communicate with each other and

with the environment. Exchange data and information react autonomously to the

real/physical events of the world and influence the execution of processes that

trigger actions and create services with or without direct human intervention [2].

Regardless of the definitions given to the IoT, this technology is always carried

out in three paradigms: a middleware, oriented objects and oriented semantics.

The usefulness of IoT can only be seen in a field of application where the three

paradigms intersect, indeed this type of delimitation is necessary because of the

interdisciplinary nature of the subject [3].

2.3 Smart Objects

Smart objects, also known as intelligent objects, are objects that are equipped

with positioning and communication technologies and are integrated into a com-

munication network. These intelligent objects can enter, store and process data

and interact with other objects, systems or people. They can be embedded or fixed

in other objects and capture data about position and sensors, as well as execute

decision and control functions.

2.4 Evolution of IoT

Extracted from the URL

• 1999: The term ”Internet of Things” is coined by Kevin Ashton, Executive

Director of the Auto-ID Center Massachute Institute of Technology.

6



• 1999: Neil Gershenfeld for the first time mentions the principles of IoT in

his book ”When Things Start to Think” [11].

• 2000: LG announces its first smart refrigerator.

• 2002: The Ambient Orb created by David Rose and others in a spin-off of

the MIT Media Lab published in NY Times Magazine named as one of the

ideas of the year.

• 2003-2004: RFID is deployed massively by the US Department of Defense

in their Savi program, and Wal-Mart in the commercial world.

• 2005: The United Nations International Telecommunication Union publishes

his first report on the Internet of Things.

• 2008: After being recognized by the European Union, the first European

Conference on the Internet of Things took place.

• 2008: A group of companies launched the IPSO Alliance to promote the use

of IP in the networks of ”Smart Objects” and enable the Internet of Things.

• 2008: The FCC voted 5-0 for the opening of the ”white space” spectrum.

• 2008-2009: IoT was born according to Cisco’s Business Solutions Group.

• 2008: The US National Intelligence Council has identified IoT as one of six

”disruptive civilian technologies” that have potential repercussions on the

interests of the United States until 2025.

• 2010: Chinese Premier Wen Jiabao calls IoT a key industry for China and

intends to make significant investments in the Internet of Things.

• 2011: launch of IPv6, the new public protocol allowing 2128 addresses.

2.5 IoT Architecture and Operation

2.5.1 Layered Architecture

Essentially the structure of IoT [4] is divided into five layers named :
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2.5.1.1 Perception Layer

This is the interface layer with the environment. It includes the physical layer and

the data access layer of the open systems interconnection model. It serves to iden-

tify the objects and collect the information through the sensors. The information

can be a measure of geographical position, temperature, humidity, or vibration,

depending on the type of sensor used. The collected information is passed to the

network layer for transmission to the processing system.

2.5.1.2 Network Layer

Also called transmission layer, it ensures the transmission of information collected

by the sensors to the processing system. The transmission may be wired or non-

wired depending on the technology used (3G, WiFi, Blueutooth, ZigBee, etc.)

Thus the network layer is the intermediary between the perception layer and the

middleware layer.

2.5.1.3 Middleware Layer

In IoT each object implements different services, and it only communicates with

objects implementing the same type of services. The middleware receives infor-

mation from the network layer and stores it in a database, applies processing and

calculations to make decisions automatic. The main objective of the middleware

layer is to offer the developer a level of abstraction, allowing the implementation

of new services and the integration of new technologies without considering those

used in the lower layers.

2.5.1.4 Application Layer

Allows the user to fully manage applications based on the information processed

in the middleware layer. Applications can be different domains (health, transport,

home automation, agriculture, etc.)

2.5.1.5 Business Layer

Responsible for the overall management of the system as well as the applications

and services. It is used to develop business models, graphs, flowcharts, based on
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the information received from the application layer. Using the results analysis,

this layer helps establish effective business strategies. The layered architecture is

described in Fig. 2.1

Figure 2.1: IoT layered architecture

2.5.2 Addressing

The IoT will include an incredibly high number of nodes, each of which will produce

content that can be retrieved by an authorized user regardless of his position. This

requires effective addressing policies. currently, the IPv4 protocol identifies each

node via a 4-byte address. It is well known that the number of IPv4 addresses

available is rapidly decreasing and will soon reach zero. Therefore, it is clear that

other addressing policies should be used other than those used by IPv4. The

most critical features of creating a unique address are: uniqueness, reliability,

persistence, and scalability [7]. IPv4 can support to the extent that a group

of cohabiting sensors can be identified geographically, but not individually, IPv6

comes with addresses that are expressed by means of 128 bits, which is sufficient

for identification of billions of objects on a global scale.

2.5.3 Storage and Processing

One of the most important results of this emerging field is the creation of amounts

of data. Storage and expiration of data become critical issues. The data must

be stored and used intelligently for monitoring and intelligent actuation. It is

important to develop artificial intelligence algorithms that could be centralized or
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distributed as needed. New fusion and learning methods must be developed to

make sense of the data collected and to achieve automated decision making.

2.5.4 Visualization

Visualization is essential for an IoT application, as this allows user interaction with

the environment. With the recent advances in touch screen technologies, the use of

tablets and smart phones has become very intuitive. To fully benefit from the IoT

revolution, an attractive and easy-to-understand visualization must be created.

As we move from 2D to 3D screens, additional information can be provided to

the user in a meaningful way for the consumer. It will also enable policy makers

to convert data into knowledge that is essential for rapid decision-making. The

extraction of meaningful information from raw data is not trivial. This includes

both event detection and visualization of raw and modeled data, associated with

information represented according to end user needs.

2.6 IoT Technology and Protocols

2.6.1 Perception Layer

2.6.1.1 Sensors

Sensors are small, energy-efficient electronic devices used to monitor a specific

change and transmit it to actuators and the database as useful information. In

the literature we find many types of sensors (temperature, movement, light, etc.),

as shown in Fig. 2.2.

2.6.1.2 Actuators

An actuator converts energy into motion, which means that actuators cause move-

ments in mechanical systems. Hydraulic fluid, electric current, or other power

source is required. Actuators can create linear motion, rotary motion, or oscil-

lating motion. Cover with short distances, typically up to 30 feet, and generally

communicate at less than 1 Mbps. Actuators are typically used in manufacturing

or industrial applications. There are three types of actuators: (i) Electric: AC
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Figure 2.2: Sensors

motors, stepper motors, solenoids. (ii) Hydraulic: use a hybrid fluid to actuate

the movement. (iii) Pneumatic: use compressed air to activate the movement. All

of these three types of actuators are widely used today [5].

2.6.1.3 RFID

RFID is a system that provides wireless transmission of the identity of an object

or person using radio waves in the form of a serial number. RFID technology plays

an important role in the IoT to solve the problems of identifying objects around us

in a cost-effective manner. The technology is classified into three categories based

on the method of supplying power in the labels: Active RFID, passive RFID and

semi-passive RFID [5]. Usually attached to an antenna that looks like a regular

sticker. The microchip itself can be as small as a grain of sand, around 0.4mm2.

An RFID tag transmits data over the air in response to an interrogation by an

RFID reader [6]. It is more reliable, efficient, secure, inexpensive and very precise.

RFID has a wide range of wireless applications such as distribution, tracking,

patient monitoring, military applications.

2.6.1.4 NFC

NFC (Near Field Communication) defined as a promising short range wireless

communication technology that facilitates the use of mobile phone by offering
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various services ranging from transaction payment applications, digital content

exchange, etc. NFC technology was jointly developed by Philips and Sony at the

end of 2002 for wireless communications [8]. It is a short range communication

protocol, which provides easy and secure communication between different devices.

NFC is distinct from radio frequency communication which is used in personal field

and long range wireless networks [3]. NFC relies on inductive coupling between

sending and receiving devices. Communication occurs between two compatible

devices within a few centimeters with an operating frequency of 13.56 MHz. The

data exchange rate is around 424 kbps.

2.6.1.5 WSN

WSN (Wireless Sensor Network) [9] consists of a number of sensor nodes working

together to monitor an area to obtain data on the environment. There are two

types of WSN: unstructured and structured.

• An unstructured wireless sensor network is one that contains a dense col-

lection of sensor nodes. Once deployed, the network is left unattended to

perform monitoring and reporting functions. In a WSN unstructured, net-

work maintenance, such as connectivity management and fault detection, is

difficult because there are so many nodes.

• In a structured wireless sensor networks all or part of the nodes sensors are

deployed in a pre-planned manner. The advantage of a structured network

is that fewer nodes can be deployed with maintenance and a cost of network

management lower. Fewer nodes can be deployed as compared to nodes are

placed in specific locations to provide coverage while ad hoc deployment may

have regions not covered.

2.6.2 Network Layer

2.6.2.1 IEEE 802.15.4

The IEEE 802.15.4 protocol was created to specify a sub layer for MAC layer,

and a physical layer for low speed wireless broadband networks [7]. Due to its

specifications such as low power consumption, low data rate, low cost and high

message throughput, it is also used by IoT, M2M and WSN. It provides reliable
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communication on different platforms, and can handle a large number of nodes. It

also offers a high level security, encryption and authentication services. However,

it does not provide any guarantees of quality. This protocol is the basis of the

ZigBee protocol because they both focus on low data rate services on devices with

power constraints, and they create a complete network protocol stack for WSNs.

IEEE 802.15.4 supports three bands of frequency chains and uses a direct sequence

spread spectrum method. Based on the frequency channels used, the physical layer

transmits and receives data at three data rates: 250 kbps at 2.4 GHz, 40 kbps at

915MHz and 20 kbps at 868MHz. Higher frequencies and wider bands provide high

throughput and low latency while frequencies lower ones provide better sensitivity

and cover greater distances. To reduce potential collisions, the IEEE 802.15.4

MAC uses the CSMA/CA protocol.

2.6.2.2 Bluetooth

Bluetooth is a standard for wireless communications based on a radio system

designed for short range, inexpensive communication devices suitable for replace

cables for printers, fax machines, keyboards, etc. The devices could also be used

for communications between laptops, act as bridges between other networks, or

serve as nodes of ad hoc networks. This range of applications is known as wireless

personal area network.

2.6.2.3 WiFi

WiFi (Wireless Fidelity) technology uses radio waves to communicate data be-

tween objects within a range of 100m [7]. It allows peripherals devices to commu-

nicate and exchange information without using a router in some ad hoc configu-

rations, and is governed by the IEEE 802.11 group standards (ISO/IEC 8802-11).

2.6.2.4 ZigBee

The ZigBee Alliance is an association of companies working together to develop

standards and products for reliable, cost-effective, low-cost wireless networks power.

ZigBee is based on the IEEE 802.15.4 standard which defines the physical and

MAC layers for networks with low energy consumption [10]. ZigBee defines the

network layer specifications for star topologies, tree and peer-to-peer and provides
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a framework for programming applications in the application layer. The main

characteristics of a standard ZigBee device are:

• Low data rate (maximum 127 bytes/s).

• Low power (usually uses 2 AA batteries for up to 2 years)

• Low price.

• Uses three frequencies: 868, 915 MHz and 2.4 GHz.

• low bandwidth (250 kbps in the 2.4 GHz band).

• Supports three network topologies (star, tree, mesh).

• Support for a large number of modes in the network.

• Uses ad hoc networks.

• Quick establishment of connections.

• Support for a large number of network nodes.

• Support for built-in AES-128 encryption and authentication.

2.6.2.5 6LoWPAN

6LoWPAN is an acronym of IPv6 over Low Power Wireless Personal Area Net-

works. The 6LoWPAN concept originated from the idea that ”the Internet Proto-

col could and should be applied even to the smallest devices”, and that low-power

devices with limited processing capabilities should be able to participate in the

Internet of Things. The 6LoWPAN group has defined encapsulation and header

compression mechanisms that allow IPv6 packets to be sent and received over

IEEE 802.15.4 based networks. The use of 6LoWPAN on top of IEEE 802.15.4

provides for secure, transparent connectivity with the cloud and significantly re-

duces the burden on developers and system designers by providing standard IP

compatible protocols and readily available libraries [12].
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2.6.3 Middleware Layer

2.6.3.1 Architecture

Middleware is a software layer or a set of sub-layers interspersed between the tech-

nological and application levels [3]. Middleware connects different, often complex

and already existing programs that were not originally designed to be connected.

The essence of the Internet of Things is making it possible for just about anything

to be connected and to communicate data over a network. Middleware is part

of the architecture enabling connectivity for huge numbers of diverse Things by

providing a connectivity layer for sensors and also for the application layers that

provide services that ensure effective communications among software

2.6.3.2 SOA

SOA (Service Oriented Architecture) can be both an architecture and a program-

ming model, a way of thinking about building software. SOA architecture allows

to design software systems that provide services to other applications through

published and discoverable interfaces and where the services can be invoked over

a network. The implementation of SOA architecture using web service technolo-

gies creates a new way to implement applications in a more powerful and flexible

programming model. The middleware architectures proposed in recent years for

the IoT often follow the SOA approach [3], The adoption of SOA principles makes

it possible to break down complex and monolithic systems into applications com-

posed of a ecosystem of simple and well-defined components. An SOA approach

also enables reuse of software and hardware, as it does not impose specific tech-

nology for the implementation of the service.

2.6.4 Application Layer

2.6.4.1 REST Architecture

REST (Representational State Transfer) is an abstraction of the architectural el-

ements of a distributed hypermedia system. REST is independent of component

implementation details and protocol syntax [13]. It focuses on the roles of com-

ponents, the constraints on their interaction with other components, and their
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interpretation of meaningful data elements. It encompasses the fundamental con-

straints on the components, connectors, and data that define the basis of the web’s

architecture and thus the essence of their behavior as a network application.

Architectural Elements: REST uses various types of connectors to encapsu-

late the resource access and transfer activities of resource representations. REST

components are typed by their roles in an action overall application. A user agent

uses a client connector to initiate a request and becomes the final recipient of

the response. The original server is the definitive source of representations of its

resources, it must be the final receiver of any request that intends to modify the

value of its resources. It provides a generic interface to its services via a hierarchy

of resources. The details of the implementation of the resource are hidden behind

the interface. A proxy component is an intermediary chosen by a client to pro-

vide an interface encapsulation to other services, data translation, improvement

performance or safety protection.

The Constraints Applied: The architecture client-server improves the porta-

bility of the user interface, the ability to scale out and allows components to scale

independently. The fundamental point that distinguishes the REST architecture

model from other models based on network concepts is the emphasis on a uni-

form interface between the components. By applying the software principle of

generalization to the component interface, the overall architecture of the system is

simplified and the visibility of interactions is improved. The layered system model

allows an architecture to be composed of hierarchical layers by constraining the

behavior of the components. Each component cannot see beyond the immediate

layer with which it interacts. REST allows the extension of a client’s functionality

by downloading and executing code in the form of applets or scripts. The ability

to download features after deployment improves system scalability. However, it

reduces visibility. Therefore, it constitutes an optional constraint in REST.

The Standards Used:

HTTP(Hypertext Transfer Protocol) is an application layer protocol, in-

tended for client/server communications, hereafter the most used methods:

• POST: used for the creation of new resources.
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• GET: used for resource recovery.

• PUT: used to perform a replacement update.

• PATCH: unlike PUT it is used for updating and in partial modifications.

• DELETE: useful for resource deletions.

URI(Uniform Resource Identifiers) a character string that uniquely iden-

tifies the resources of the WEB. A URI can be of type locator or name or both

such as:

• A Uniform Resource Locator is a URI which, in addition to the fact that

it identifies a resource on a network, provides the means to act on this re-

source or to obtain a representation of it by describing its mode of operation.

primary access or network location.

• A Uniform Resource Name is a URI which identifies a resource by name in

a namespace without prejudging its location or the way it is referenced.

Hypermedia Links in HTML and XML documents to represent both infor-

mation content and the transition between application states.

2.6.4.2 CoAP

The use of web services or web APIs (Application Programming Interfaces) on the

Internet has become ubiquitous in most applications and depends on the REST

from the web [7]. Constrained Application Protocol is a web transfer proto-

col specialized intended for use with constrained nodes and restricted networks.

Nodes often have 8 micro controllers bits with small amounts of ROM and RAM,

while restricted networks like IPv6 over 6LoWPAN often have High packet er-

ror rates and a typical throughput of 10s of kbit/s. The protocol is designed for

M2M (Machine-to-Machine) applications such as smart energy and building au-

tomation. Many data fusion method in the literature use this protocol [14] in IoT

environment. Fig. 2.3 shows the CoAP functionality.

CoAP has the following main characteristics:

• Web protocol meeting M2M requirements in constrained environments.
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Figure 2.3: CoAP functionality

• UDP link with optional reliability supporting unicast requests and multicast.

• Asynchronous message exchanges.

• Low header overhead and analysis complexity.

• URI and content type support.

• Simple proxy and caching capabilities.

• A stateless HTTP mapping, allowing to build proxies giving access uniformly

to CoAP resources via HTTP or to achieve interfaces simple HTTP alter-

nately over CoAP.

• Security link to DTLS (Datagram Transport Layer Security).

2.6.4.3 MQTT

MQTT (Message Queuing Telemetry Transport) is a messaging protocol that was

introduced by Andy Stanford-Clark IBM and Arlen Nipper from Arcom (now Eu-

rotech) in 1999 and was standardized in 2013 at OASIS. MQTT aims to connect

on-board devices and networks with applications and middleware. The connection

operation uses a routing mechanism (one-to-one, one-to-many, many-to-many) and

allows MQTT protocol as protocol optimal connection for IoT and M2M. MQTT

uses the publish/subscribe model to provide flexibility of transition and simplicity

of implementation [15], MQTT is suitable for resource-limited devices using un-

reliable links or low bandwidth. MQTT is built on the TCP protocol, it delivers

messages to through three levels of QoS (sent and forgotten, delivered at least

once, delivered exactly once). MQTT consists of three components: subscriber,
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publisher, and broker. An interested device signs up as a subscriber to specific

topics so that they will be notified by the broker when publishers post topics of

interest. The editor acts as a generator of interesting data. After that, the pub-

lisher transmits the information to interested entities (subscribers) through the

broker. In addition, the broker achieves security by verifying the authorization of

publishers and subscribers.

2.6.4.4 XMPP

XMPP (Extensible Messaging and Presence Protocol) was designed to chat and

message exchange. It has been standardized by the IETF (Internet Engineering

Task Force) [16]. XMPP operates over TCP and provides publish / subscribe

(asynchronous) and request/reply (synchronous) messaging systems. It is designed

for near real-time communications and therefore supports low message congestion

and low latency message exchange. XMPP has a TLS/SSL security built into

the core of the specification. However, it does not provide QoS options that

make it impractical for M2M communications. Only the Mechanisms inherited

from TCP ensure reliability. XMPP uses XML (eXtensible Markup Language)

messages which generate additional overhead due to unnecessary tags and require

XML parsing which requires additional computing capacity and increases energy

consumption.

2.6.4.5 AMQP

The AMQP (Advanced Message Queuing Protocol) is a protocol of the financial

sector. It can use different transport protocols but it assumes a reliable transport

protocol like TCP. AMQP provides asynchronous publish/subscribe communica-

tion with messaging. Its main advantage is its store and forward function which

guarantees reliability even after network interruptions [16]. It ensures reliability

with following message delivery guarantees:

• At most once: means that a message is sent once whether it is delivered or

not.

• At least once: means that a message will be definitively delivered once,

maybe more.

• Exactly once: means that a message will only be delivered once.
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Security is managed with the use of TLS/SSL over TCP protocols.

2.6.4.6 WebSocket

The Websocket protocol was developed as part of the HTML5 initiative to facilitate

communication channels over TCP. Websocket is neither a request/response nor

a publish/subscribe protocol. In Websocket, a client initiates a negotiation with a

server to establish a Websocket session [16]. The handle from main itself is similar

to HTTP so that web servers can handle Websocket sessions as well as HTTP

connections through the same port. However, what comes after the handshake

does not comply with HTTP rules. Indeed, during a session, HTTP headers are

removed, clients and servers can exchange messages in an asynchronous full-duplex

connection. The session can be stopped when no longer needed from either the

server or the client. Websocket runs over trusted TCP. If necessary, sessions can

be secured using Websocket over TLS/SSL. Websocket is designed for real-time

communication, it is secure and minimizes overhead costs.

2.7 Data Processing in IoT and some Relevant

Concepts

IoT is a network of devices and objects that are connected to the Internet. Being

connected to the Internet means that they can either collect data and send it

through the Internet, receive information from the Internet, or do both the things.

All solutions in IoT typically involves four components : sensors, connectivity,

data processing, and a user interface.

Sensors are objects that collect data and send it over the Internet. The data could

be sent for storing, processing, or further dissemination of information.

Connectivity is the piece of the IoT puzzle which enables the things to commu-

nicate and exchange data. The connection can be achieved via wired or wireless

network. However, wired network is unsuitable for most IoT applications because

its range is only as far as the wire can reach.

The amount of data collected by IoT devices is humongous. The amount of storage

space as well as processing capacity required to utilize this data is also very huge.
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Solutions for both storage and processing are proving to be benefit because they

are affordable, scalable, fast response times, and quick time to market.

The user interface consists of the features by which a user interacts with a computer

system. This includes screens, pages, icons, forms, etc. The most obvious examples

of user interfaces are software and applications on computers and smartphones.

All the four components of an IoT solution are important but data processing

proves to be the most challenging as well as crucial.

2.7.1 Definition

The volume and pace at which data is produced nowadays is unbelievable. About

90% of all data in the world today has been produced just in the past two years.

In order to make sense of the massive amount of data our IoT sensors collect, we

need to process it. Wikipedia explains data processing as the collection and ma-

nipulation of items of data to produce meaningful information. In other words, the

purpose of data processing is to convert raw data to something useful. Something

the end user can react to. We should also take notice of the difference between

data and information. Data refers to raw, unorganized facts, and it usually is fairly

useless until it is processed. Once the data is processed, it is called information.

2.7.2 Data Processing Cycle

Data processing in IoT follows the typical Input>Process>Output cycle of any

computer activity, as shown in Fig. 2.4.

Figure 2.4: Data processing cycle
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2.7.2.1 Input

Input is the first stage of the data processing cycle. It is a stage in which the

collected data is converted into a machine-readable form so that a computer can

process it. This is a very important stage since the data processing output is

completely dependent on the input data. The data collected may be in the form

of images, QR codes, text, numbers, or even videos. All these data must be

converted into machine readable form before they can be sent for processing.

2.7.2.2 Processing

In the processing stage, a computer transforms the raw data into information.

The transformation is carried out by using different data manipulation techniques

like classification, fusion, calculation, etc. to get meaningful information from the

data received.

2.7.2.3 Output

Although the information is produced in the processing phase itself, it is rendered

into human-readable format in the output stage. This output maybe in the form

of graphs, tables, audio, video, etc. Output may also be stored as data for further

processing at a later date. This is essential because comparison of current infor-

mation with historical data can produce useful insights into the overall functioning

of a system. This comparison can also be used to predict future behavior.

In this thesis, we will concentrate on the concept of data fusion which is indis-

pensable part in data processing.

2.8 Data Fusion in IoT

Data fusion techniques combine multiple data sources to obtain improved informa-

tion (cheaper, higher quality, or more relevant/useful information)[[17],[18]]. Data

fusion is a data processing technique that associates, combines, aggregates, and

integrates data from different sources. It helps to build knowledge about certain

events and environments which is not possible using individual sensors separately
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An enormous amount of data is produced in a quick span of time in the IoT envi-

ronment [19]. How to make this large volume of data precise and highly accurate

is an open problem which needs to be solved because the quality of information

plays an important role in decision making. Reliable and accurate information

is critical. This can be achieved by data fusion. Data fusion is an effective way

for the optimum utilization of large volumes of data from multiple sources [20].

Multi-sensor data fusion seeks to combine information from multiple sensors and

sources to achieve inferences that are not feasible from a single sensor or source

[21]. The fusion of information from sensors with different physical characteristics

enhances the understanding of our surroundings and provides the basis for plan-

ning, decision-making, and the control of autonomous and intelligent machines.

2.8.1 Classification of Methods

There are several classifications of data fusion methods. Here we present the most

used and the most frequent.

1. Focus on relationship among the data sources [22]. (i) Complementary fusion

involves fusing different portions of a picture into a more complete picture

(for instance, temperature readings from different locations within a green-

house in order to better understand the temperature status of the greenhouse

as a whole). In contrast, (ii) redundant fusion combines multiple instances

of the same information to increase reliability, accuracy, and/or confidence

(e.g., multiple temperature readings from the same location in a greenhouse

to get a more reliable or accurate understanding of the temperature at that

location). Finally, (iii) cooperative fusion combines multiple independent

sources of information into new, more complex information (e.g., tempera-

ture combined with light yields a better understanding of overall growing

conditions within the greenhouse).

2. Depending on the type of architecture [23]: (i). Centralized in which the

merge node resides in the central processor which receives information from

all input sources in the form of metrics. (ii). Decentralized where each

node fuses its local information with the information that is received from

its peers. Decentralized data fusion algorithms typically communicate in-

formation using the Fisher and Shannon measurements. (iii). Distributed
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architecture where measurements from each source node are processed inde-

pendently before the information is sent to the fusion node. However, the

core of data fusion does not lies in its architecture; it indisputably lies in the

data fusion methods on which ultimate fusion processing takes place.

3. Based on mathematical methods [4]: (i). Probability-based methods in-

cluding Bayesian analysis, statistics, and recursive operators. (ii). Artificial

Intelligence (AI) based techniques including classical machine learning, fuzzy

Logic, Artificial neural networks (ANN) and genetic evaluation. (iii). The-

ory of Evidence based Data Fusion methods.

4. A general classification based on the similarity of functioning of the meth-

ods, proposed by [23]: (i). Data association. (ii). State estimation. (iii).

Decisional methods.

2.8.2 Data Fusion Applications in IoT

As we sought more specific and recent examples of academic research and experi-

ments with data fusion methods, we turned to the application areas in which the

work is generally published, such as smart cities and transportation, public health,

Military, industrial manufacturing and agriculture, and localization. Additional

related surveys, as well as individual examples, are covered as depicted in Fig. 2.5.

2.8.2.1 Smart Cities and Transportation

Smart cities are incorporated into the landscape across a wide spectrum of tech-

nologies and are designed to effectively integrate urban areas for communication,

power management, resource management, transportation, emergency services,

law enforcement, and many more applications. IoT networks in smart cities fur-

ther extend this to citizens through smart offices and buildings, and even mobile

devices for pedestrian management [24]. The term smart city encompasses a wide

variety of technologies and applications exploited to support added-value services

for the administration of the city and for the citizens, as well as data fusion tech-

nique applied to extract higher level information or increase the data completeness.

The end product of data fusion include visualization of information for respective
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Figure 2.5: Application domain

administrations [25]. In intelligent transportation systems [26], transportation in-

frastructure is complimented with information and communication technologies

with the objectives of attaining improved passenger safety, reduced transporta-

tion time and fuel consumption and vehicle wear and tear. Data fusion is used to

reach a better inference.

2.8.2.2 Health

Data fusion in IoT can be used in health care domain to monitor the state of

patients at the hospital or at home. Smart Healthcare can be seen as a complex

ecosystem of smart spaces (e.g. hospital rooms, ambulances, pharmacies, etc.),

supported by a powerful infrastructure stack including edge devices and sensors,

wired and wireless networks, cloud platforms, and driven by innovative business

models and legislation enabling the Healthcare Industry. The existing approaches

to enable IoT data fusion including the Smart Healthcare domain and processing

have primarily adopted either a cloud-centric model [27], where raw data collected

by edge devices are pushed to a cloud that is seen as the primary processing

location, or hierarchical data fusion approach [28] for timely decision taking in

digital healthcare.
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2.8.2.3 Military

As the most of existing technology in the world, the military domain is the ini-

tiator engine of WSN. Military and defense services use data fusion technique in

ocean surveillance, air-to-air or ground-to-air defense, battlefield intelligence, data

acquisition, warning, defense systems, etc., using EM radiation from large dis-

tances [29]. The technique has been deployed on several major military weapons

systems, such as the U.S. Navys Cooperative Engagement Capability, a system

that enables Navy ships and aircraft to combine radar data for improved defenses

against attack aircraft and cruise missilesparticularly in coastal waters where land

clutter can make it difficult to formulate a reliable radar picture.

2.8.2.4 Industrial Manufacturing

data fusion of smart factory sensors allow for a myriad of improvements in pro-

duction. They can control energy and water usage to reduce waste and optimize

for environmentally sustainable operations. Quality control in the smart factory

can be enhanced with real time analytic on the supply chain [30]. The exchange

and combination of information from other systems and devices directly back into

the production line, enables predictive maintenance and forecasts needed.

2.8.2.5 Agriculture

In agricultural domain , sensors use both predictive approaches and control ap-

proaches that include information from static indicators. As with industrial manu-

facturing. Smart farming has been expanded by introducing cloud computing and

IoT solutions [31]. Using cloud computing and key IoT techniques, visualization

and SOA technologies can take advantage of massive data involved in agricultural

production.

2.8.2.6 Localisation

The localisation problem including indoor and outdoor spans multiple fields such as

physics, sensor fusion, and real-time computation. The indoor localisation problem

is more complex than just finding whereabouts of users. Finding positions of users

relative to the devices of a smart space is even more important. The recent studies

propose a system to address the problem of locating devices and users relative to
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those devices [31], and employ data fusion techniques to solve this problem using

motion data from users.

2.9 Data Processing Challenges in IoT

2.9.1 Big Data

Big data processing is a research area that ensures the aggregation of data gener-

ated either independently or collectively. It facilitates an improvement in decision

making through value extraction. The result of this is data are better generated,

stored, manipulated and analyzed [32]. But it also faces a number of challenges

caused by limited storage and energy of sensor devices. It is also difficult to distin-

guish spurious data, and wide distribution of this data incurs high communication

and serious delay in data processing models.

2.9.2 Heterogeneous

Heterogeneity in IoT environment is a challenging issue to handle during system

integration due to different sources of data. The involvement of data from various

sensors enhances the breadth of collected data. But the diversity of data with

different types, forms, representations, scales and densities makes it hard to fuse

the data directly. Methods are required to transform heterogeneous data to ho-

mogeneous space [33]. Further heterogeneous datasets add uncertainty. Complex

multivariate relationships among the datasets. However, processing data from

heterogeneous observations promises to find complex multivariate relationships

among the data sets.

2.9.3 Data Quality

Quality of the data sources directly determine the quality of output results since

processing module follows the GIGO (garbage in and garbage out) theorem in

fusing data sources [25]. Data perceived by various sensors may be imprecise,

inaccurate and uncertain due to data loss or data source unreliability, which brings

additional challenges for data fusion caused by data imperfection, data conflict,

data ambiguity and inconsistency.
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2.9.3.1 Data Imperfection

Sensor data is imprecise at times; it can be inaccurate and uncertain. This behavior

is not infamous in wireless sensor networks. The imperfection must be dealt with

effectively with the use of data fusion algorithms.

2.9.3.2 Ambiguities and Inconsistencies

Impreciseness is not the only factor responsible for data inconsistencies; the en-

vironment in which a sensor is operating is largely responsible as well. Outliers

detection, replacement and data imputation are vital in IoT environment.

2.9.3.3 Conflicting Nature

The conflicting nature of data can give rise to counter-intuitive results. The prob-

lem of conflicting data is visible more in evidential belief reasoning and Dempsters

rule of combination. The data fusion algorithm must take critical care while treat-

ing conflicting data.

Another challenges should be considered in the process of data fusion such as

triviality and correlation data, and most relevant features need to be selected

before that process.

2.9.4 Energy Saving

Energy efficiency plays a critical role in data processing and also in IoT environ-

ment [34], since we have hundreds of sensors operating together. The system must

be energy efficient. Otherwise, a lot of cost is incurred on energy consumption by

the sensors, the different data processing methods will be discussed and evaluated

in terms of energy consumption.

2.9.5 Security

Processing multisensory data increases the risk of privacy invasion. How to pre-

serve user privacy during data processing and at the same time ensure accuracy is

an important research issue. There are two general security concerns data fusion
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in IoT environment, which are security of technology/infrastructure (data center,

services, and system architecture) and data security (data generation, storage,

and communication). The security of the technology and infrastructure highly

relies on the design architecture of the system being deployed [35]. The main

objective is to deploy a hack-proof/exploit-less system architecture. Alternately,

propose different strategies to enhance the security of such architecture by focusing

on the common security standards/practices/protocols. Meanwhile, data security

also contributes to the significant part of applications ecosystem. Observed data

may always carry some personal information of an observed target. The common

method to combat such issue is leveraging encryption techniques [36], where it

encodes the data so that only the authorized parties have access to it. there is

also a need for distributed blockchain technologies for the failure and risk-free

computation of IoT sensor data [37].

2.9.6 Real Time Data

One key challenge of data processing in IoT is performing low-latency analysis with

real-time data. For instance, real time applications (medical emergencies,target

tracking) require consideration of additional constraints and requirements, to per-

form the transformation of raw sensor data into more valuable and insightful in-

formation in real-time [38].

2.10 Conclusion

In this chapter, we have presented the general concepts that required to understand

the rest of the chapters. Moreover, the main challenges of a data processing in

IoT environment have been presented. We have explained the IoT architecture

and several technology and protocols used during the process of data. In this

chapter, we have presented the classification of a data fusion methods as well as

the application areas in IoT environment, The various application areas covered in

this section offer a broad array of data fusion methodologies, including techniques

for fusing both homogeneous and heterogeneous data. The data fusion methods

would be presented in the next chapter.
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Chapter 3

Data Fusion Frameworks and

Methods in IoT

3.1 Introduction

As we have seen in the previous chapters, data fusion provides many advantages for

data processing and analytic by enhancing dataset quality and reducing the volume

of data transmission. However, the characteristics of IoT data come up with new

challenges for data fusion in IoT. First, the large amount of data collected in IoT

makes data fusion difficult, which increases the complexity and even introduces in-

consistently and conflicted data. Second, the multi-modality and heterogeneity of

data collected from various sensors further complicate data fusion. Third, collected

data will be transmitted over the Internet, which may undermine privacy and be

vulnerable to false data injection. The present chapter gives a taxonomies on the

data fusion frameworks and approaches. Data fusion platform aims to update

and adapt the dynamic changes in the IoT systems surroundings, whereas data

fusion approaches aims to achieve better reliability, accuracy, position estimation,

velocity measurement, attribute evaluations and identity exploration. Data fusion

solutions consider, besides data imprecise, energy consumption and scalability as

critical metrics.

In recent years, the adoption of emerging technologies has revolutionized cloud

computing, fog computing and edge computing towards IoT sensor data fusion.

These enabling technologies provide a pervasive, reliable and convenient platform

to handle IoT sensor datas dynamic, heterogeneous nature. As such, the data
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fusion layer aims at developing smart functionality to address a wide variety of

IoT-based applications. The objectives of these frameworks are to reduce the

computation and storage cost, improve network transmission reliability, reduce

the network delay, enhance IoT network security and privacy, ensure scalability,

and allow failure and risk-free IoT solutions. In Section 3.2, we focus on the

frameworks of the data processing, and classify them according on the architec-

ture into two categories: middleware and application solutions. In the other side,

the methods that can add credibility to the data fusion process are mathemati-

cal methods. These methods could be characterized as probabilistic, statistical,

knowledge-based, inference and reasoning methods. The probabilistic methods in-

clude Bayesian networks, maximum likelihood estimation methods, inference the-

ory, Kalman filtering, etc. Statistical methods include covariance, cross variance,

and other statistical analyses [39]. Knowledge-based methods include artificial

neural networks, fuzzy logic, genetic algorithms, etc. Depending on the problem

specification, the appropriate data fusion methods are to be chosen. In Section

3.3, Data fusion solutions are classified according to fusion level into three cat-

egories: (i) measurement methods; (ii) characteristic methods; and (iii) decision

methods. Further, each category is sub-classified based on its techniques and ob-

jectives. Some data fusion method aim to enhance data quality such as reliability

and accuracy, whereas the others aim to reduce data latency.

3.2 Data Processing Frameworks in IoT

The IoT sensor network based applications involve dynamic factors, distributed

services, and real-time responsive mechanisms. Hence, there is a middleware layer

requirement between IoT-based applications and the underlying IoT sensor data.

Further, the scalability addresses huge volumes of data that are obtained from the

IoT sensor network. To tackle dynamic, real time data processing and scalability

issues, solutions through the integration of IoT sensor networks with other emerg-

ing technologies, such as cloud computing, fog computing, and edge computing

are required.

3.2.1 Classification and Taxonomy

Many frameworks have been proposed in the literature. Depending on the type

architecture, we classify data fusion frameworks into two categories: middleware
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solutions that provide the reusable functionalities required to meet complex cus-

tomer requirements, and application systems where data fusion framework solution

are narrowly focused on one specific domain. Furthermore, we refine this classi-

fication into four categories, depending on the model of computation platform of

processed data: edge computing, fog computing, cloud computing, and hybrid

computing, as shown in Fig. 3.1

Figure 3.1: Taxonomy of frameworks data fusion in IoT

3.2.1.1 Computing Model

Edge Computing In edge computation platform, data sources are processed

and fused at the edge which means very close to the physical location, where data

is actually collected. Edge computation devices include micro-controller, comput-

ing devices (Raspberry pi), computers, etc. Such architecture can be found in

works such as [40], [41]. Edge computing can enable real-time data processing

with negligible latency due to the close distance between the sensor node and the

edge server. This is a desirable property for time sensitive applications like au-

tonomous vehicles. Besides, by processing the data at the edge, the data privacy

is preserved and the bandwidth for data relaying is saved. With this architecture,

communication overheads can be significantly reduced. However, data processing

in this level has limitations, because in-network devices such as sensor nodes and

mobile phones perceive only limited knowledge about the environment (local con-

text). Therefore, data processing cannot make high level decision where overall

knowledge is required.
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Fog Computing The new paradigm of fog computing will serve as the central

system architecture principle as it fulfills the requirements of fast data processing.

In fog computation platform, data sources are processed and fused at the middle

layer, which means between the edge and the cloud. In this architecture, data is

periodically or continuously sampled at the edge without processing and is then

forwarded to a gateway that acts as a fog device. At the gateway, computing

resources are provided for data processing to be achieved low latency and high

bandwidth as well as security and fault-tolerante for sensor application close to

the edge computing with real-time demands. as shown in [42], [43]. Fog computing

architecture should be preferred when it is difficult to find stable power sources at

the edge.

Cloud Computing In cloud computation platform, data sources are processed

and fused in the cloud to provide resources in a transparent and usable form,

where the application can adapt the resource to its requirement, This is the most

common technique practiced by industry and research institutes for processing big

data. Examples of this architecture being used are [44], [45]. The advantages of

cloud computing architecture includes ready access to the data and both online

and offline for further processing or fusing. The disadvantages include increased

communication overheads and costs, large latency between data capture and com-

putation, and excessive ingress bandwidth consumption.

Hybrid Computing In hybrid computation platform, processing is distributed

among two or more layers in edge, fog and cloud as shown in [46], [47]. In this

architecture, depending on the available resources or application objectives, some

low level data fusion and processing is done at the edge or fog, while high level

information is extracted in the cloud. The use a hybrid approach is the ideal

way to process sensor data since all advantages and levels sensor data processing

techniques are employed.

3.2.1.2 IoT Technologies

Even though data fusion in IoT paradigm is somehow new, there are various tech-

nologies, protocols and frameworks that target it. For such we can cite ZigBee,

6LoWPAN, BLE, IPv6, CoAP, MQTT, SOA, etc as known technologies and pro-

tocols used in Internet of things to enhance,process, and evaluate the performance

of product. [15],[7],[14].
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3.2.2 Description of some Solutions

3.2.2.1 ECVID

[48] proposes an Edge Computing architecture that provides an intermediate com-

puting layer for IoT data. The proposed architecture uses VID (Virtual IoT De-

vices) for local data processing, management of physical IoT devices and quick

reaction using actuators. The concept of VID is characterized as: (i) a virtualized

instance of one or more sensors or actuators, (ii) hosted in a Cloud or Edge Com-

puting platform and (iii) provides device description including a list of capabilities

in terms of events, properties and action to facilitate data processing and commu-

nication to actuators. The Edge Computing system is running on a Raspberry Pi3

hardware and supports IoT devices exchanging data using HTTP and CoAP over

BLE and WiFi. The platform is used in the context of a smart city scenario where

connected vehicles provide sensor data about city temperature. Such architecture

in turn reduce latency, improve QoS, allow real time data analysis and actuation

resulting in superior user experience in consumer IoT applications and services.

3.2.2.2 EFCP

[49] proposed an edge and fog computing platform which facilitates the integration

of complex heterogeneous sensors within a common management framework. The

main contribution is the symbiotic hardware/software design approach, with the

implementation of an efficient data fusion strategy. It is achieved by treating

the sensors as services in a SOA and using a messaging abstraction that provides

common functionality that can be tailored to each specific requirement in the

communications path. Sensor services can identify themselves if they are real

physical systems, or can be defined by a standard JSON representation which

defines the operation of each virtual, or locally configured sensor. Regardless

of their origin, sensors are defined by the messages they produce and consume

making them a standard element within the framework. Therefore, the definition

of a sensor provides an efficient and well-established interface, making it trivial

to design a virtual sensor, providing a common ground for heterogeneous data

sources. The SOA and abstract messaging system has been embedded in a modular

hardware platform based on a layered architecture which provides a set of digital,

analog and power-supplying interfaces. Heterogeneous physical sensors may be

designed for each application in compliance with this hardware architecture, while

the messaging structure allows their top-level integration into the overall system
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by just defining the associated complex sensor messages. This approach could

be especially beneficial for those applications where data provided from a set of

complex sensors must be fused to obtain the desired output; for instance, think of

a radar that provides distance information of the detected objects that has to be

integrated to generate their exact geographical position.

3.2.2.3 OpenHab

The open Home Automation Bus (OpenHAB) is a platform for home automation

applications. It provides the ability to connect a large number of devices and

systems [50]. openHAB communicates electronically with devices in the smart

home environment and performs user-defined actions. openHAB uses MQTT as

M2M/IoT connectivity protocol to pushes the data to the public cloud for further

processing. Various data (e.g, parameters of hue lights like color, brightness, and

saturation) can be fused and controlled by REST API in order to create more

accurate information making faultless actions in that smart home. openHAB is

developed with Java so it works on Linux, Windows and MAC OS. OpenHAB is

very flexible and customizable, and what’s more important is open source. But

it comes at a cost, you have to invest time to learn its concepts and set up an

individual system adapted to your needs. Many parts of the installation require

text-based configuration, potential access to log files for debugging, etc. The

configuration of openHAB is therefore mainly reserved for technophiles. It is not

a commercial product available on the market. In addition openHab does not

support many types of devices which present a compatibility issue.

3.2.2.4 OpenIoT

[51] proposed OpenIoT, an open source IoT platform enabling the semantic inter-

operability of IoT services in the cloud. OpenIoT promotes interoperability among

IoT silos right from the sensor to the cloud services. OpenIoT is built upon seman-

tic web standards such as W3C Semantic Sensor Networks (SSN) ontology, which

provides a common standards-based model for representing physical and virtual

sensors, RDF to store, index and retrieve data, and supports virtually any IoT

protocols such as CoAP, 6LoWPAN etc. OpenIoT includes also sensor middleware

and sensor data fusion capability at the things and at the cloud. OpenIoT eases

the collection of data from virtually any sensor, while at the same time ensuring

they are embedded with proper semantic annotation. Furthermore, it offers a wide
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range of Doit-yourself visual tools that enable the development and deployment of

IoT services and applications with almost zero programming. Another key feature

of OpenIoT is its support for mobile sensors and thereby enabling support for an

emerging wave of mobile crowd sensing applications. The OpenIoT platform is a

blueprint architecture to develop semantically interoperable smart city solutions

with support for complex sensor data fusion algorithms.

3.2.2.5 SmartCity

Zanella et al., [52] provide an overview of the techniques, architecture and proto-

cols available for an urban IoT system realized in the city of Padova, Italy. The

application consists of a system for monitoring public lighting by means of wireless

nodes, placed on streetlights and connected to the Internet via a gateway. Each

IoT node is geographically located, so IoT data can be enhanced with context

information. The nodes are equipped with photometric sensors which directly

measure the intensity of the light emitted at regular time intervals or on demand.

Wireless IoT nodes are also equipped with temperature and humidity sensors,

which provide data on weather conditions, and a node is also equipped with a

sensor which monitors air quality. data is collected, fused using IoT technologies.

Smart City adopts IETF standards which are open and free. The IETF Standards

for IoT provide a web service architecture for IoT services. This approach enables

the development of flexible IoT services that can easily interact with other web

services by adopting the REST paradigm. In particular, common standards for In-

ternet communications, such as HTTP, IPv4, and Ethernet, are being superseded

in resource-constrained devices (like sensor nodes) by their IoT counterparts, i.e.,

the constrained application protocol CoAP , IPv6 and 6LoWPAN. The protocol

stack used in the solution is suitable for restricted nodes in terms of resources, the

use of CoAP at the application level will considerably reduce the communications.

The architecture of the solution based on the REST paradigm allows better scal-

ability and flexibility of the solution. The solution does not use application-level

communication encryption, although it could be beneficial for the lightness of the

solution but the user data will not be sure.
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3.3 Mathematical Data Fusion Methods for IoT

Some recent surveys give an overview of data fusion solutions in IoT environment.

Lee et al. [53] provided a review on data fusion techniques, algorithms and theories,

but they did not give a discussion on the data fusion specifically designed for IoT

environment. Alam et al. [4] presented a critical review of data fusion for IoT

with a particular focus on probabilistic, artificial intelligence, and theory of belief

methods in specific ubiquitous environments but ignored the security issues in IoT.

[54] proposed classification of data fusion methods into three categories: stage-

based methods, feature-level-based methods, semantic-based methods. This based

on data properties including imperfection, correlation, and insistences. However,

Do not touch concrete IoT application scenarios. [55] investigated and classified

data fusion methods according to challenging problems of input data, without

discussion of application in IoT environment. Pires et al. [56] Focus on sensing and

fusion methods for identification of activities in daily life, but ignores the privacy

issues and the relationships among different applications in IoT. Wang et al. [39]

reviewed and analyzed existing work according to an evaluation framework that

consists of several features, which based on configuration, data processing, sensors,

and portability. Ding et al. [33] specified data fusion requirements, pointed out the

differences and characteristics of popular IoT application domains, and emphasized

security and privacy issues in data fusion of IoT. However, they neglected the

design of fusion methods in IoT environment. Though above surveys on data fusion

in IoT, these are mainly focused on specific applications areas or classifications

based on appointed features or security and privacy issues in the process of data

fusion. In this section, our taxonomy and the different performance criteria used

to evaluate the existing solutions are presented.

3.3.1 Classification and Taxonomy

As depicted in Fig. 3.2, a taxonomy of data fusion solutions the aim to process

data in IoT environment is given. Data fusion solutions consider, besides energy

consumption, data reliability, data accuracy and latency as critical metrics. Data

fusion solutions are classified according to mathematical method into three cat-

egories: (i) measurement methods; (ii) characteristic methods; and (iii) decision

methods. Further, each category is sub-classified based on its techniques and ob-

jectives. Some data fusion method aim to enhance data quality (data reliability,

data accuracy), whereas the others aim to reduce data latency.
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Figure 3.2: Taxonomy of mathematical data fusion methods in IoT

3.3.1.1 Association Technique

Data association considered as low level data fusion technique, the raw data mea-

surements are directly provided as an input to the data fusion process, which

provide more accurate data than the individual sources. data fusion is based on

similarity between at least two or more data sources. Common techniques for

data association include K.Means [57], Probabilistic Data Association [58], and

Multiple Hypothesis Test [59], and Graph Model.

3.3.1.2 State Estimation Technique

State estimation is essential step in data fusion, which used mathematical method

namely probabilistic and theory of belief in a specific IoT environment such as

nonlinear and big data. The estimation problem involves finding the values of the

vector state (e.g., position, velocity, and size) that fits as much as possible with the

observed data. SBI (Sequential Bayesian Inference) is a method of analysis that
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combines information collected from experimental data with the knowledge one

has prior to performing the experiment. Common techniques under this category

are ML (Maximum Likelihood) [60], KF (Kalman Filter) [61], PF (Particle Filter)

[62], and CC (Covariance Consistency Model) [63].

3.3.1.3 Decision Technique

In this kind of technique, A decision is typically taken based on the knowledge

of the perceived situation, which is provided by many sources in the data fusion

domain. These techniques aim to make a high-level inference about the events and

activities that are produced from the data sources. These techniques often use

symbolic information, and the fusion process requires to reason while accounting

for the uncertainties and constraints. Further, methods of decisional level can be

divided into two subclasses:

Artificial Intelligence AI (Artificial Intelligence) can be defined as an area of

computer science that seeks to build intelligent machines which can think or work

like humans. In data fusion, AI enables the actuators to take highly accurate and

informed decisions based on the sensed data. AI can play a crucial role in the

IoT paradigm, especially in the areas where decision making and prediction are of

vital importance. Developing intelligence is a gradual process, acquired by super-

vised/unsupervised machine learning [64], Artificial neural networks [65], Fuzzy

Logic [66], and semantic approaches [67].

Belief Theory This type of decisional fusion methods has been proposed to

combine evidence according to the probability theory rules, where uncertainty is

represented using the conditional probability terms that describe beliefs. The be-

lief theory provides a formalism that could be used to represent incomplete knowl-

edge, updating beliefs, and a combination of evidence which allows to represent

the uncertainty explicitly. Common techniques under this category are Bayesain

inference [68] and D-S (Dempster-Shafer) inference [69]. Detailed description of

this technique is presented later.
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3.3.2 Evaluation Parameters and Performance Metrics

With respect to challenge of IoT environment including big data, Heterogeneous,

privacy and imprecise. Different systems or solutions are evaluated across a variety

of performance metrics, including accuracy, precision, computational complexity,

robustness, and scalability.

3.3.2.1 Imprecise

Imprecise is an essential performance criterion. Data perceived by various sensors

may be uncertain, inaccurate due to data loss or data source unreliability, which

brings additional challenges for data fusion caused by data imperfection, data

conflict, data ambiguity and inconsistency.

Data Imperfection: Collected data is sometimes inaccurate; it can be inaccu-

rate and uncertain. This behavior is not infamous in wireless sensor networks. The

imperfection must be dealt with effectively with the use of data fusion algorithms.

Ambiguities and Inconsistencies: Impreciseness is not the only factor re-

sponsible for data inconsistencies; the environment in which a sensor operate is

largely responsible as well. Outlier detection, replacement and data imputation

are vital in IoT environment.

Conflict: The conflicting nature of data can give rise to counter-intuitive results.

The problem of conflicting data is visible more in evidential belief reasoning and

Dempsters rule of combination. The data fusion algorithm must take critical care

while treating conflicting data.

3.3.2.2 Energy Saving

Wireless Sensor Networks which is part of IoT environment consist of a large

number of source nodes with limited capabilities, especially the strictly limited

energy. in-network data processing, such as data fusion can significantly improve

the energy-efficiency of the networks. Through this dissertation, the data fusion

method will be discussed and evaluated in terms of energy consumption.
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3.3.2.3 Computational Complexity

Computational complexity is provided by authors and includes reported details

about algorithmic complexity or runtimes. Qualitative assessments such as low,

moderate, and high may be provided when published information adequately sup-

ported such an evaluation.

3.3.2.4 Scalability

The implementation strategy should be scaled from a small simulation to a big

scale. Thus, for an IoT environment, data fusion architecture scalability is of

utmost importance. anothers parameters shoud be considered includes the size of

the space in which experiments were conducted. Where possible to assess, and

also the dimensions in which the approach was tested or to which it may extend.

3.3.2.5 Robustness

The comments of summarizes authors are based on robustness, inculding a qual-

itative assessment such as low, moderate, or high, if possible, of the solutions

robustness to interference, noise, incomplete information, etc.

3.4 State Estimation Methods Based on Distributed

Particle Filter

State estimation methods are indispensable in data processing, which used proba-

bilistic and theory of belief techniques in a definite IoT environment such as non-

linear and target tracking. Target tracking is a dynamic state estimation problem

prevalent in several area, including air traffic control, autonomous vehicles and

robotics, remote sensing, surveillance, and computer vision [70] [71]. The problem

basically concerns inferring the state of the target that is assumed as a random

variable, by observing it or another random variable associated with it, namely

observations. SBI (Sequential Bayesian inference) is a method of analysis that

combines information collected from experimental data with the knowledge one

has prior to performing the experiment. In particular, the particle filter is one of

the most vital tools for realizing SBI [72], which uses a set of weighted samples
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(called particles) to approximate the Bayesian prior and posterior, also known as

SMC (Sequential Monte Carlo) [4] [23]. In recent years, particle filter has been

successfully applied into many fields such as robotics, data processing. The advan-

tages of the PF is that is not restricted by the linear and Gaussian assumptions

[73], which makes it applicable in a wide range of wireless sensor networks and

hence to the IoT applications. Also PF does not make any assumption on the mea-

surement noise distribution. However, the estimation accuracy of the PF can also

be degraded due to the range measurement uncertainty, also there are expensive

computational demands in this approach.

To develop a distributed particle filter, there are two most important questions

need to be handled. The first one is that what information we should communicate

between sensors. The second one is that how we fuse the information contained

in each sensor.

3.4.1 Distributed Particle Filter

Particle filtering methods are Bayesian methods that recursively approximate the

posterior distribution of the unknown kinematic parameters using a discrete mea-

sure with a random support. The discrete measure is defined using a set of samples,

also refereed particles, and their associated weights. The particles are sequen-

tially drawn from an importance function through Monte Carlo technique, and

the weights are recursively computed using the prior and the likelihood function

of the kinematic parameters [74].

Particle filtering methods can be implemented in a distributed manner on sensor

networks. In such implementation, each of the sensors on the network locally runs

a particle filtering algorithm and exchanges information with the other sensors to

approximate the global posterior distribution of the kinematic parameters [75].

However, after a number of measurements, most particles have negligible weight.

It is the phenomenon of degeneration of weight. The particle system is depleted

and therefore can no longer correctly represent the density of probability with the

consequence of a possible divergence of the filter. To correct this phenomenon,

a step additional so-called resampling is introduced. Higher weight particles are

favored by replicating them identically, those of low weight which are found in

the least probable regions are little or not at all chosen and disappear. This step

allows to concentrate the capacity of the network. the state estimation model is

applied to describe the nonlinear estimation problem based on the Markov process.
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require two models, namely, state model and measurement model. The former de-

scribes the evolution of the state with time while the latter defines the relationship

between the noisy observations and state. A state system model for the wireless

sensor networks is considered as follows [71].

1) The state transition model: xn = Fxn−1 + Gun where xn is a vector that de-

notes unknown states of the dynamic system at time n, F denotes the function

that describes the time-evolution of the vector xn and G is a vector of the state

noise.

2) The measurement model: Zk,n = hk(xn) + ek,n where Zk,n is a vector that

describes the measurement obtained from sensor k at time instant n, and hk the

measurement function that maps the kinematic vector parameter xn to the mea-

surement vector Zk,n.

The particle filter algorithm is presented in Algorithm. 3.1 as follows:

Algorithm 3.1: particle filter algorithm

1 Prediction :x̂n = fn(xn−1)

2 prior Measurement: ẑn = h(x̂n)

3 //Importance sampling

4 Draw
{
xin
}Ns
i=1
∼ N (µ, σ)

5 //Measurement

6 For particle i=1: Ns do

7 Compute likelihood function:
{
xin
}Ns
i=1
∝ p(xin|xin−1) state transition model

8 Weight:
{
win
}Ns
i=1

win ∝ p(zin|xin) observation model

9 End For

10 Normalizing: win = wi
n∑Ns

i=1 w
i
n

11 Resampling:
{
xin, , w

i
n

}Ns
i=1

3.4.2 Kullback-Leibler Divergence

The KLD (Kullback-leiber Divergence), named also the relative entropy, computes

the divergence between two pdfs (probability density functions). In the case of

gaussian distributions, it evaluates the Burg matrix divergence between covariance

matrices used in some optimization problems [76]. The KLD is a non-symmetric
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measure of the difference between two probability distributions p and q ; p rep-

resents the ”true” distribution of data, observations, or a precisely calculated

theoretical distribution. The measure q represents a theory, model, description,

or approximation of p. KLD is defined in Eq. 3.1 as follows :

K(p, q) =
∑
x

p(x)log
p(x)

q(x)
. (3.1)

It represents the average of the logarithmic difference between the probabilities p

and q, where the average is taken using the probabilities p.

3.4.3 Literature Overview and Discussion

In this sub-section we present a state-of-the-art of improved distributed particle

filter solutions focused on single target tracking. Contains those that solve the

problem of sample impoverishment and weight degeneracy [77], computational

efficiency systems (estimation accuracy) [78] and importance sampling proposal

[74]. Existing distributed particle filter solutions can be classified into two main

categories. One is to adapt the proposal using an approximation of the Kullback-

Leibler Divergence in order to avoid degeneracy, while the other is to move the

particle cloud through the sequence of densities to reduce weight degeneracy.

In the first group, a recent attempt is given by automatically adapting the proposal

using an approximation of the KLD between the true posterior and the proposal

distribution, based on optimal adjusted variance and gradient data [[79], [80],

[81]]. This is by increasing variance inversely proportional to the likelihood and

creating new samples near the true distribution or the high likelihood region. More

systematically, (group/layered/heretical) multiple importance sampling schemes

use a set of different proposal distributions for better robustness [[82],[83]], by

ensuring that an appropriate proposal density is obtained automatically. These,

however, come at the expense of a moderate increase in the complexity.

In the second group, representative efforts include progressive consensus-based par-

ticle filter algorithms. Consensus means a global agreement on some quantity that

depends on the data of all sensors, and a consensus algorithm specifies the corre-

sponding information exchange between neighboring sensors and the computations

performed locally by each sensor. Consensus algorithms are iterative schemes that

diffuse information through the network and, usually, reach a global agreement
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only asymptotically. There is no single point of failure, and the algorithms are

robust to changing network topologies and unreliable network conditions such

as link failures. To reduce the number of particles, and hence the communica-

tion requirements, the DPF presented in [71] uses an average consensus filter or

forward-backward propagation strategy that limits the information exchange of

each sensor to only its neighbors. In [84], a distributed implementation of an

auxiliary PF is proposed. For distributed weight calculation, a modification of

the randomized gossip algorithm known as selective gossip algorithm [85] is used.

Here, the communication requirements are reduced by transmitting only informa-

tion about the largest weights. In [86], two alternative algorithms for distributed

weight computationbroadcast gossip and belief propagation are investigated and

compared regarding their performance and convergence speed.

In Chapter 5, We will present a new method to choose the appropriate sample used

in particle filter algorithm, this by comparing two probability density functions.

The proposed solution used a new method to measure the similarity distance be-

tween functions, such measure optimize the number of particles used in resampling

phase, and hence calculate the weights with more precision.

3.5 Dempster-Shafer Data Fusion Methods

The Dempster-Shafer theory [87] is largely used for uncertainty reasoning, which

allows processing uncertain or imprecise information without prior knowledge.

This can be well used in IoT environment. It supports the representation of both

imprecision and uncertainty, and it allows deriving the probabilities of a collection

of hypothesis while dealing with missed information. This can be helpful to process

the heterogeneous IoT data. However, under situations where the evidence highly

conflicts, it may obtain counterintuitive results.

Several protocols based on D-S theory have been proposed in IoT environment that

aims at improving decision-making. Some of these protocols rely on the combina-

tion rule, while some others are interested in the measurement of distance between

nodes (weight) or amount of information. The relevant literature is reviewed in

this section based on different categories of D-S approaches. We propose a taxon-

omy of the state-of-the-art protocols that are based on D-S theory using several

criteria as shown in Fig. 3.3, and then we describe the most common methods.

Two main categories may be distinguished, 1) methods based on modified models,

and 2) improved D-S based on modified methods.
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Figure 3.3: Taxonomy of D-S based data fusion methods

3.5.1 Principle and Classification

The basic concept of the D-S evidence theory was originally developed in (1967)

[88], and then evolved towards belief functions to model uncertain knowledge on

the basis of mathematical formulations [89]. In D-S reasoning system, possible

assumptions consist of all elements of indivisible hypothesis that are mutually

exclusive and comprehensive. This includes a frame of discernment, denoted T ,

the space of inference system, θ, which includes all possible subsets of T elements.

The number of possible combination (including the empty set) is 2n, where n is

the number of elements in T . There are three main functions in D-S theory, i)

the basic belief mass function that specifies the belief mass distribution (m-values)

over all possible sub-sets of a frame of discernment, ii) the Belief function, and iii)

the Plausibility function.

The Mass function, which is also called a basic probability assignment, associates

for every element, E ∈ θ, m(E) that is the proportion to all available evidence.

The value of m(E) therefore concerns only the state E and brings no credit to the

subsets of E, which by definition have their own mass. The mass of the empty set

is null (m(∅) = 0), and the masses of θ’s subsets sum up to 1, i.e.,
∑

E∈θm = 1.

The belief of a set, A, to a node, i, say Beliefi(A), is defined as the sum of the

masses of all A’s subsets (Eq. 3.2).

Beliefi(A) =
∑
Ek⊆A

mi(Ek). (3.2)

The plausibility measures the intensity with which the element, A, is found (with

no doubt). It can also be interpreted as the maximum belief in A, or the sum of
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the evidence that is not against A. Plausibility(A) is defined as the sum of the

masses of all sets that intersects with A (Eq. 3.3).

Plausibilityi(A) =
∑

Ek∩A 6=∅

mi(Ek). (3.3)

The procedure for fusing multiple evidence using the previously defined mass func-

tions is an important issue in the D-S theory, which provides a method to compute

the orthogonal sum (m = m1⊕m2) of two bodies of evidence according to Demp-

ster's combination rule [90].

When there are multiple sources and the observations are assumed to be indepen-

dent of each other, the combination of evidence in D-S provides away to combine

these observations. For every proposition A in, θ, the combination rule between

an object with a mass, mi, and another object with a mass, mj, is given by Eq.

3.4,

m(A) =

∑
B∩C=A

mi(B)mj(C)

1−K
, (3.4)

where K is a measure of conflict between the sources, which is also called incon-

sistency of the merger. It is given by Eq. 3.5.

K =
∑

B∩C=∅

mi(B)mj(C). (3.5)

The mass function obtained after combination tends to reinforce the belief of

decisions for which the sources are consistent. Note that this combination of

evidence rule is both associative and commutative. That is, the mass function

can be the result of a combination of evidence between two other objects. The

evidence of combination process for multiple sources can be chained, and the

order in which the sources are combined does not affect the final results. The

combination of conflicting evidence has always been challenging in D-S evidence

theory [91]. Many methods have been proposed to solve this problem [90, 92, 93],

but there is no universal solution thus far.

As depicted in Fig. 3.3, we classify the existing solutions of literature into two

classes: (i) protocols based on modified models in which measure of conflict is
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modified in combined rules and (ii) improved DS based on modified methods in

which a weight coefficient is used in the calculation of BPA. In the remaining of this

section, existing solutions belonging to each class are presented, their advantages

and shortcomings are highlighted.

3.5.2 Description of Modified Models

Solutions of this category aim to reduce the conflict in combined rule by exploring

the advantage of using D-S theory and mass function.

Yager [94, 95] suggested that all conflicting evidence is unable to provide effective

information, so he assigned all conflicts to unknowns m(θ). The improved formula

can be used in high conflicting evidence combination, but the irrational distribu-

tion will lead to unreasonable results for assigning all conflicting evidence to the

unknown.

Smets [96] considers that the data sources are reliable. Based on this assump-

tion, the conflict can only come from an ill-posed problem, i.e., the non-inclusion

of one or several assumptions in the frame of discernment. Therefore, the author

recommends redistributing the conflict mass K, but only on the empty set.

Dubois and Prade [97] consider that the data sources are the unreliable part and

assume that when a conflict exists between two data sources, at least one of the

two sources is reliable. Given the impossibility of identifying the reliable source,

they opted for redistributing the conflicting mass on the union of the two sources.

Dubois and Prades rule doesnt work for dynamic fusion problems when a singleton

or a union of singletons becomes empty. This problem is fixed by the sum S2 in

the general D-S rule of combination.

Murphy [98] averaging approach suggested that if all the evidence are available

at the same time, the average of evidence masses is calculated and then combined

N time using D-S theory, where N is the Number total of evidence. However, this

approach does not consider the association relationship and difference among the

evidence.

3.5.3 Description of Modified Methods

The second category which focused on modified method when applying D-S theory.

This by using a weight coefficient to calculate the basic probability assignment.

the modified methods are divided into two classes, reliability methods vs. the
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amount of information based methods.

In reliability methods, the evidence distance of Jousselme [99] is used. The

distance between two bodies of evidence, dBOE(m1,m2), is defined in Eq. 3.6.

dBOE(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2), (3.6)

where −→m1 and −→m2 are the vector forms of the evidence bodies. The size of each

body is 2θ. D is a 2θ ∗ 2θ matrix, whose elements are given by Eq. 3.7,

D(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

, s1, s2 ∈ 2θ. (3.7)

Yong [100] applied the evidence distance to obtain a weighted average combination

and thus measure the conflict degree among evidence. The higher the distance

between two bodies of evidence is, the less these two bodies of evidence support

each other. If evidence conflicts highly with others, it will have less effect on the

final combination result. The support degree and the credibility degree of each

evidence are defined, respectively, with Eq. 3.8 and Eq. 3.9.

Sup(mi) =
N∑

j=1,j 6=i

(1− d(mi,mj)). (3.8)

Crdi =
Sup(mi)∑k
j=1 Sup(mj)

. (3.9)

The credibility degree represents how reliable evidence is. The higher the credi-

bility degree is, the more effective the evidence will have on the final combination

result.

Zhang [101] proposed a new method of combining conflicting evidence based on

average. This method considered the association relationship among the evidence

collected from multi-sources, and it weighs the evidence based on the distance of

evidence.

Zhu [102] proposed a new method for weighting evidence using PSO (Particle

Swarm Optimization) algorithm to optimize the calculation of sources weight.
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Context-aware data fusion [103–105] is employed in the basic concepts of IoT. The

amount of information based methods use efficient tools to quantify information.

These approaches can be applied in evidence theory where the uncertain informa-

tion is represented by BPA.

Deng entropy [106] is one of these methods and a generalization of Shannon

entropy [107]. It is an efficient way to measure uncertainty, not only under the

situation where the uncertainty is represented by a probability distribution, but

also in the situation where the uncertainty is represented by BPA. This enabled

its wide application in D-S evidence theory. When the uncertainty is expressed

in the form of a probability distribution, Deng entropy degenerates to Shannon

entropy.

The related concepts are given in the following. Let Ai be a proposition of BPA

m; the cardinality of the set Ai is denoted by |Ai|. Deng entropy Ed of the set Ai

is defined by Eq. 3.10

Ed = −
∑
i

m(Ai)log
m(Ai)

2|Ai| − 1
. (3.10)

Tzu [108] proposes another method to calculate information volume, which reap-

portions the mass in the null set among the other subsets that are originally

assigned to the null set. This is using Eq. 3.11.

Iev =

n(Ai)∑
i=1,Ai 6=∅

m(Ai)

|Ai|
. (3.11)

Yuan [109] combines the weighted credibility method in [100] to reduce conflict

between evidence, and Deng entropy when calculating information volume.

Contrary to most of the previous methods that are pointed to only one parameter

to calculate the weighted evidence, the one proposed in this article improves the

credibility degree by considering the evidence relationships, and enhancing the

uncertainty degree using inner properties of evidence. We are particularly inter-

ested in the reliability of a sensor which is determined by the distance between the

sensor and the entity in question, as well as the time validity of the information

(lifetime).
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3.6 Conclusion

This chapter investigated the data fusion principle and focused on features and

requirements that should be implemented by data fusion methods as well as plat-

forms. In particular, the chapter reviewed existing approaches by proposing a

taxonomy to classify frameworks data fusion in IoT environment. Based on our

study in this chapter, choosing the best method to fuse data with dynamic, real

time data processing and scalability issues. The surveyed mathematical solutions

for data fusion aim to reduce the data latency, energy consumption, increase the

data accuracy and ensure data reliability. We have proposed a clear taxonomy

to classify existing solutions into three main levels: measurement, feature, and

decision. more focused on state estimation solutions, Existing distributed particle

filter solutions can be classified into two main categories. One is to adapt the

proposal using an approximation of the KLD in order to avoid degeneracy, while

the other is to move the particle cloud through the sequence of densities to reduce

weight degeneracy. The chapter also reviewed decisional methods based on D-S

theory. We have classified existing solutions into two classes: modified methods in

which measure of conflict is modified in combined rules; whereas the second one is

modified methods in which a weight coefficient is used in the calculation of BPA.

Unlike the modified models methods that not consider the association relation-

ship and difference among the evidence in data fusion, modified methods-based

solutions regard the credibility degree by considering the evidence relationships,

and the uncertainty degree using inner properties of evidence. For this reason, the

weighted D-S solutions has been more attractive than the modified model-based

ones in recent years.
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Chapter 4

Service-Based Frameworks for

Data Processing in IoT

4.1 Introduction

IoT data processing based solutions leverage advances in web and mobile appli-

cations, especially with the emergence of service oriented architecture, to provide

flexible, dynamic, adaptable, and above all, easy to use administrative and control

applications [7]. Software applications will be installed on mobile devices (smart

phones, tablets, PCs, etc.) which will considerably increase the scope of the so-

lutions. However, despite the wide efforts in web technologies adoption and stan-

dardization for the IoT, designing a scalable and extensible IoT framework that

meets IoT functional requirements remains challenging. This has been considered

in this work, in which we designed and implemented data processing frameworks to

manage and control web/mobile applications in IoT using IPv4/IPv6 and higher

layer protocols such as CoAP, HTTP, WebSocket. The frameworks allow anomaly

detection in IoT devices and real-time error reporting mechanisms.

In this chapter, we propose two efficient data processing frameworks to ensure

real-time data processing and reduce the network energy. The first solution is

based on edge computing which integrates sensors and RFID technologies to en-

able sophisticated services via the Internet. In contrast to the existing approaches,

and by processing data at the edge of the network, communication overheads can

be significantly reduced and hence reduce energy consumption. The second solu-

tion is an efficient hybrid computing framework for data management and control
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in smart cities to fuse heterogeneity data. The framework allows heterogeneous

resources, connectivity, reliability and mobility. It ensures security and contains

services to enhance data processing in application framework architecture.

The rest of this chapter is organized as follows. The framework based on edge

computing is presented in Section 4.2. The proposed approach process data at

the edge of the network via several services. In Section 4.3, we present our second

solution, efficient hybrid computing framework for data management and control,

which combines heterogeneity data. The process is tackled in edge, fog, and cloud

computing. As an instantiation of the proposed frameworks, we consider the

smart parking and smart home scenarios for the implementation and tests. We

thus implemented the different modules via an IoT enabled mobile application,

and made extensive tests. The results show considerable reduction in cost and

energy consumption. We draw conclusions in Section 4.4.

4.2 Framework Based on Edge Computing

4.2.1 Framework Description

As seen in Chapter 3, the main objectives of IoT data processing frameworks are to

reduce the computation and storage cost, improve network transmission reliability,

reduce the network delay, enhance IoT network security, and ensure scalability. We

propose an application dependant framework that we implemented for car park-

ing management in smart cities as a typical application. The main contribution

is the symbiotic hardware/software design approach, with the implementation of

data processing strategy. The integration of networked sensor/actuator and RFID

technologies enable sophisticated services in the emerging Internet of things con-

text. The framework uses an active RFID tag per vehicle. The tag can be allocated

to a subscribed customers over a long period of time, or it can be dynamically pro-

vided to the transient customers at the entrance. Each parking lot is equipped

with a sensor (ultrasonic sensor are used in the implemented prototype) that is

connected to a wireless mote. The mote will manage a bunch of sensors connected

in serial mode. Data are processed in the edge to preserve data privacy and to

save the bandwidth for relaying data. With this architecture, communication over-

heads can be significantly reduced as well as energy consumption. Additional, the

service is proposed to customers via mobile device application. It is achieved by

treating the sensors as services in a SOA and using a messaging abstraction that
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provides common functionality that can be tailored to each specific requirement

in the communications path. Sensor services can be defined by a standard JSON

representation which defines the operation of each configured sensor.

4.2.2 Framework Architecture

The proposed framework builds upon a four-layer ubiquitous architecture: i) A

sensor layer hosts the hybrid sensors and is used for parking spot detection and se-

curity. ii) A network layer is layered above the sensor layer to enable dissemination

of the information between sensors and gateways. It uses both wired and wireless

communication. Sitting on top of the network layer, iii) a middleware storing data

and enabling visualization is used as an interface between the network layer and,

iv) the application layer, where different services related to the smart parking are

implemented. The implementation of the Framework includes three parts that are

connected using a LAN network (WLAN or Ethernet). i) The first part is the

parking manager, where all data are stored. It may provide some information

for clients over internet, e.g. parking spots availability. The payment service is

also provided by the parking manager within a park. ii) The second part is the

gate manager with main function to control the gate using WSN and forward the

gate status to the Parking Manager. iii) Finally, the parking spots manager is

responsible for monitoring the parking spots and the cars within the level. WSN

is used within the level to carry the status of spots and cars to the sink in a level

as depicted in Fig. 4.1. This would be transmitted using a LAN network. The

proposed framework scales to a multi-level car parks.

Figure 4.1: Framework architecture
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Existing data at the sensor mote (Master) need to be forwarded to the sink of

a level using multi-hop communications. For this purpose, we propose to use

LIBP [110] data gathering protocol that provides efficient management of energy

consumption in heterogeneous wireless sensor networks. In WSN with multiple

types of motes having different levels of consumption, the aim is to ensure the

network traffic can be managed to achieve balanced lifetime for all the motes in

the network. This is a typical utilization in the car parking management, featured

by the co-existence of: i) simple node as guiding node with moderate energy

consumption, ii) the master node responsible for parking lots management, which

consumes more power, and iii) the hybrid node (integrating the wireless mote and

RFID reader) that is the most power consuming.

4.2.3 IoT Data Processing in Edge Computing

The flexibility of the integration of WSN and RFID network enables to provide

many services that facilitate data processing. Here the data concerns the identity

of the car (tags ID) and the location of the car in the parking lot. The following

are some examples of these services:

4.2.3.1 Car Retrieval Service

A common problem for clients is when they forget where they park their cars.

The proposed framework provides a service that assists in retrieving a forgotten

car location using the integration of WSN and RFID in the hybrid node, and an

active RFID tag to be kept by customers. When a customer requests his cars spot

using a trigger in the active tag, a hybrid node gets the tags ID and transmits

it to the parking manager. This latter checks the occupied parking spots in the

database and in the parking field using the WSN. The response is returned to the

appropriate guiding node for display in the variable message screen.

4.2.3.2 Parking Spot Reservation

Bunch of sensors can be enhanced with a source of light in each parking spot.

These lights are controllable by the wireless mote. They can provide information

about the status of a spot, e.g., red for occupied, green for empty, yellow for

reserved, and blue for out-of-service. the service of checking the free parking spot

is proposed using REST API.
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4.2.3.3 Gate Management Service

Another use of RFID tags is gate management. As example, a gate can be opened

automatically using an RFID reader and the vehicles tag at the gate.

4.2.3.4 Availability Checking over Internet

The car parking framework provides a real-time availability checking over internet.

Cars can be checked if they are in spots and drivers if they are in a car parking

using their tags. REST has been chosen for its stateless architecture that generally

runs over HTTP.

4.2.3.5 Parking Management Applications

Advanced applications for both computer (website) and smart phones (android)

can be designed based on the proposed framework.

4.2.4 Implementation

The proposed framework has been implemented and tested in lab prototype as

presented in Fig. 4.2. Client devices have been connected via TCP/IP protocol

to a parking database. The latter is updated in real time with the status of

parking lots. Two kinds of client applications have been considered for parking

lots monitoring: 1) mobile device application, for phones and tablets, and 2)

desktop application for laptops and desktop computers.

Figure 4.2: An overview of the prototype

56



In the prototype implementation, ultrasonic sensors are connected in serial mode

using micro-controllers. All data are first transmitted to a master mote, then

forwarded to the based station. This latter stores data in MySQL database for

the client application. I2C protocol has been used to transmit data from the

parking lots (micro-controllers with ultrasonic sensor) to the master wireless mote.

In the prototype, ARM-based development boards have been integrated to the

level gateway. Further, the proposed portable and efficient design for lot manager

pattern has been implemented. In order to test the efficiency of the prototype,

real-world experimentation on a bunch of lots has been carried out in our campus

at CERIST research center. We have used for this experiment: i) Two wireless

motes, a transmitter and a receiver. The transmitter is the sensor bunch master,

and the receiver is for connection to the gateway, i.e., it is plugged to the gateway.

ii) Three micro-controllers equipped with ultrasonic sensors, one is used per lot.

iii) A PandaBoard: an ARM based board, as a gateway. iv) LCD Screen. When a

car is parked in the free lot, it will be detected by the mote through the appropriate

sensor. The data will be transmitted from the wireless mote (transmitter) to the

receiver mote that is connected to Pandaboard. The event will be stored in the

gateway of the level, which is in our case a Pandaboard ARM based computer.

The Pandaboard provides the service of checking the free parking spot using JSON

web server over the local network using WiFi or Ethernet.

We present a user application for car park management as shown in Fig. 4.3. It

enables to obtain the number of free spot using mobile phones or tablet that are

equipped with Internet connection. The user application accesses the database

using web services and has two modules: i) smart parking module, ii) web site

administrator for the management. Different technologies have been used. An-

droid as the underlying operating system, and Java as the programming language

with the android integrated virtual machine. The use of Java language enables

developers to take advantage of Android library set up by Google, in addition to

the standard Java libraries. Further, the interface of applications is constructed

using an XML file, which allows for an SDK (Software Development Toolkit) that

provides a graphical help interface for their construction. The paradigm of web

services is based on a components architecture that uses Internet protocols to man-

age the communication between components, interact with a database, make the

link between an external application and the database, provide access to content

while keeping it safe. REST API has been chosen for its stateless architecture

that generally runs over HTTP. REST involves reading a designated web page
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that contains an XML file. The XML file describes and includes the desired con-

tent. Database server, MySQL, is defined as a management system database. A

set of APIs for the development of business-oriented applications is used. The

J2EE architecture is based on the Java language that allows the deployment of

components on various platforms, independently of the programming language.

We used web server Apache Tomcat, which is a server provided by JBuilderX to

compile and execute the APIs (Servlets and Java Server Pages).

Figure 4.3: User interface

4.2.5 Performance Evaluation

We conducted a number of experiments and simulations to quantitatively inves-

tigate the impact of the proposed framework in terms of energy efficiency. The

performance metrics include the energy consumption of a bunch of lots for locating

parking spots and the energy consumption for data gathering from the sensors to

the base station. We compared the proposed approach of using hybrid wired/wire-

less communication (integration in a bunch of nodes) with the standard approach

of using a wireless mote per spot, as in [111], [112], [113]. Empirical experimenta-

tion using real equipment has been conducted for this comparison. For practical

limitations, limited number of nodes are used in the experiments, but it is obvious

that the difference will increase with the number of nodes. For each number of

nodes (from one to six), the two approaches are compared. Fig. 4.4 depicts the

cumulative energy consumption. It numerically demonstrates that the proposed

solution is more engineering efficient than using one sensor per parking spot.
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Figure 4.4: Energy efficiency

However, the proposed framework has limitations. First, processing data in the

edge has a limited storage and knowledge about the environment (local context).

Therefore, data processing cannot make high level decision where overall knowl-

edge is required. Second, the proposed framework do not take into consideration

the heterogeneity of data. For that, we propose in the following more generic

framework to process heterogeneity of data based on edge, fog, and cloud comput-

ing.

4.3 Hybrid Framework

4.3.1 Framework Description

In this section, we present a design and implementation of a data management

framework to monitor and control smart objects in IoT using edge, fog, and cloud

computing. This is through IPv4/IPv6, and by combining heterogeneity data and

also IoT specific features and protocols such as CoAP, HTTP and WebSocket. The

framework allows anomaly detection in IoT devices and real-time error reporting

mechanisms. Moreover, the framework is designed as a standalone application,

which aims at extending cloud connectivity to the edge of the network with fog

computing. Fog computing extends cloud computing to the edge of the network

to eliminate the delay caused by transferring data to the remote cloud. It ex-

tensively uses the features and entities provided by the capillary networks with
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a micro-services based architecture linked via a large set of REST APIs, which

allows developing applications independently of the heterogeneous devices. The

framework addresses the challenges in terms of connectivity, reliability, security

and mobility of the Internet of Things through IPv6. The composition of each

layer is illustrated in Fig. 4.5 and described in the following.

Figure 4.5: Framework description

4.3.1.1 Heterogeneous Resources

Since IoT ecosystems will be composed of a high range of technologies, a suitable

support for the heterogeneity needs to be provided by the IoT communication

architecture. In the proposed solution, we take into consideration sensors, actua-

tors and tags. The use a RESTfull API to expose every object in its part boosts

heterogeneity and facilitate the extensibility of the system. Furthermore, the wire-

less technologies exposed in our solution permit integration of different resources

easily.

4.3.1.2 Connectivity/Reliability

The base of the Internet of Things is providing connectivity and reliability. IPv6

is the main enabler for extending the Internet of Things to the Future Internet.

This work presents how the architecture has been powered by the IPv6 connectiv-

ity in order to provide an homogeneous, scalable, and interoperable medium for
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integrating heterogeneous devices built on technologies such as 6LoWPAN, Blue-

tooth Low Energy (BLE). Using IPv6 allows each device to connect directly to the

Internet and would allow billions of devices to connect and exchange information

in a standardized way over the Internet.

As BLE doesn’t natively communicate with IP, the best way to achieve this is to

use 6LoWPAN. This simplifies the IP headers, compresses data and encapsulates

the IP packets to allow them to be sent via Bluetooth efficiently, conserving band-

width and power. The combination of BLE and IPv6 brings us much closer to

the goal of having small, low-power devices that can communicate directly with

each other and the Internet without using different hubs from each manufacturer

sitting in the middle.

Nowadays, a variety of IEEE 802.11n wireless APs (Access-Points), including a

dedicated commercial AP, a software AP, and a mobile router, can be used for

wireless local-area networks. Along this trend, we use the Raspberry Pi as a

Gateway that interconnects beacons and also as a device to run the software AP,

because it provides a cost effective, energy saving, and portable embedded system.

In this chapter, we present a conguration of Raspberry Pi for the software AP

using IPv4/IPv6. We configure our software AP package which provides a script

that combines hostapd package, which has WPA2 support, dnsmasq and iptables

for the good functioning of the access point.

Since IPv6 infrastructure is not yet deployed in some countries, the communication

to an IPv6 network is not possible through an IPv4 one, our solution surpass this

constraints by offering a translation mechanism by the implementation of a CoAP-

http proxy that translates the http-IPv4 requests to a CoAP-IPv6 requests and

the same is done for responses.

4.3.1.3 Mobility

The use of an IPv6 based architecture will permit addressing large set of devices,

and make them uniquely identifiable in the internet. Further, the adoption of a

micro-services architecture will address more than one object using the same ip

address and differentiate between them using the URI. This will make the com-

munication with the objects independent of their location in the globe, which

improves objects mobility. Additionally the exploitation of fog computing will es-

sentially simplify direct communication with mobile devices and therefore enhance

mobility.
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4.3.1.4 Security

The security of our framework is ensured using Token-based authentication, DTLS

protocol and passwords encryption.

Token-Based Authentication: Token-based authentication is a very powerful

concept that provides a very high level of security. It is used to manage access to

system resources by using a token without the need to send authentication data

whenever a resource is requested. The sequence is as follows:

1. The client requests an access token for authentication by sending an HTTP

request to the authentication server that contains the user name and pass-

word.

2. A response containing an access token and a refresh token is sent by the

server if the received data is correct. An error message is sent otherwise.

The sent token is unique and associated to a single user. It is characterized

by an expiration date after which refreshment is necessary.

3. The client uses the token to request access to a resource. The token will be

included in the header of each sent request.

4. Upon receipt of a request, the server checks the validity of the token. If it is

not valid, an error message is returned.

The Fig. 4.6 shows the exchanges between the client and the server:
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Figure 4.6: Token mechanism

DTLS: The DTLS protocol [114] provides communications privacy for datagram

protocols. The protocol allows client/server applications to communicate in a way

that is designed to prevent eavesdropping, tampering, or message forgery. DTLS

uses two algorithms Elliptic Curve Diffie-Hellman Exchange and Elliptic curve

digital signature algorithm. In our solution, we implement DTLS in two parts: i)

server: which contain implementation of DTLS in Contiki[115] using tinydtls[116]

library. tinydtls has become an important tool for experimenting with DTLS in

constrained devices by users from the academia as well as the industry, this part is

used in the devices. ii) client : which contains implementation of scandium [117]

and is used in mobile application.

Passwords Encryption: The user database is a critical element of the system,

if a hacker gets access to it he will have access to all accounts of users, hence

the importance of securing the users passwords. To ensure security, there are

several hash functions such as Hash function with a fixed salt, Hash function with

one salt per user and Slow hash functions (Bcrypt). After studying the different

hash functions, we opted for the use of Bcrypt which gives us a high level of

security. Bcrypt takes approximately 100 milliseconds to execute. It’s fast enough

so that the user does not notice it when connecting, but still slow enough to make

it extremely expensive to run it to chop up a large list of frequent passwords.

Bcrypt runs an internal encryption function multiple times, which slows down its

execution. The number of loops is configurable which means that if we ever get
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processors or GPUs 1000 times more powerful than the ones we have today, we

can just re-configure the system and increase the number of loops. This will cancel

the advantage of the new processors.

4.3.2 IoT Data Processing Architecture

The architecture on how IoT data is processed is proposed. The aims is to ensure

efficient services in each level. The Iot data processing architecture using edge,fog

and cloud computing is depicted as shown in the Fig. 4.7 bellow,

Figure 4.7: IoT data processing architecture

4.3.2.1 Data Acquisition

Objects intercept changes in the environment and communicate the data to the

data acquisition service via the CoAP protocol. This service is also responsible for

translating HTTP requests from the client to CoAP requests for querying objects.

The local database will permit the principal of fog computing.
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4.3.2.2 Data Management

It is responsible for the analysis of requests from the client, it deals with manage-

ment of users and homes, and redirects the those concerning the control of objects

to the acquisition service.

4.3.2.3 Data Access

It manages the different connections with the database (add, update, delete), the

databases synchronization and the control of objects.

4.3.2.4 Data Encryption

To maintain privacy and security parameters, data obtained from the sensor are

encrypted using DTLS protocol.

4.3.2.5 Data Presentation

It represents the interface of the system with the user, it includes the mobile

interface built with Android and the interface of the website built with Angular.

4.3.2.6 Data Synchronization Service

A remote storage service is called upon to receive the data from local database

(Raspberry Pi) to be archived in global database.

4.3.2.7 Authentication Service

A federated authentication service is used to allow the user to log in with their

Google ID.

4.3.3 Implementation

There are a various application frameworks available for web and mobile devel-

opment, each one has its specificities that make it usfull in some cases and not
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in others. Because our solution targets an IoT environment, we opted to use a

Javascript stack technologies in both frontend and backend because of the advan-

tages offered by this language such as rapidity, asynchronous requests, interop-

erability with other languages, simplicity and extended functionality with third

party add-ons. This stack is called MEAN Stack which refers to (MongoDB, Ex-

pressJs, Angular, NodeJs). The web application will exploit the backend beside

the frontend. Hereafter we explain in details each part and the technologies used:

4.3.3.1 Backend

It uses NodeJs, an open-source, cross-platform JavaScript run-time environment

and exposes a Restful api with ExpressJS, to access data stored in a NoSql

database managed by MongoDB, to fuse heterogeneity data for the purpose of

the right decision (action) in a very short time. The communication with ob-

jects insured by an IoT CoAP application protocol with the implementation of

Node-CoAP.

4.3.3.2 Frontend

It uses a component oriented framework which is angular based on typescript; a

superset of JavaScript that allows to speed up development and facilitates code

reuse. This uses stack of technologies called MEAN Stack as shown in Fig. 4.8.

Figure 4.8: MEAN stack
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The web application is used to control and administrate smart home, it allows

to manage houses, including their rooms, users, and Raspberry servers with their

sensors, actuators and cameras as shown in Fig. 4.9.

Figure 4.9: Web application

4.3.3.3 Mobile Client

The mobile client is implemented with Java, while the communication with objects

is achieved using Californium, an implementation of CoAP with java. Our choice

of Node-Coap and Californium CoAP implementations is based on a comparison

done by [14], who showed that these implementations offer all CoAP functional-

ities and extensions. Node-Coap is more suitable for applications WEB, and its

implementation in Javascript makes it easier to integrate with WEB applications.

For the mobile application, the most suitable implementation for Android is Cali-

fornium that implements all the features of CoAP. Fig. 4.10 illustrates the mobile

application.
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Figure 4.10: Mobile application

4.3.3.4 IPv4-IPv6 Translation

Since our system is built on an IoT architecture, the use of IPv6 becomes obvious.

However, The problem is that IPv6 is not deployed on a large scale and most

devices can only access the IPv4 network. To provide the user with an easy-to-use

application that requires no additional configuration, we have opted to translate

IPv4 requests into IPv6 requests using a translation mechanism at the application

layer. To achieve this mechanism it was necessary that:

• The Raspberry is in dual-stack mode to accept both IPv4 and IPv6 networks.

• The Raspberry is accessible via a public IPv4 address.

• The client (mobile / web) connects with the Raspberry via the IPv4 protocol.
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• The Raspberry translates IPv4 requests to IPv6 requests and forwards them

to objects.

• The objects respond to the Raspberry with IPv6 packets.

• The Raspberry translates the IPv6 packets coming from the objects to IPv4

packets and transmits them to the client.

When sending the request from the client to the Raspberry server, we add the

object address to the body of the request. It will be used as the recipient address

by the Raspberry in the IPv6 packet. If the client (web/mobile) has access to

IPv6 networks, the user will not need the translation mechanism but queries the

objects directly. In this case, the Raspberry acts as a gateway.

4.3.4 Performance Evaluation

Our solution is tested in a smart home environment, which provides a set of sensors

and actuators including light, motion, temperature, power, fan and a lamp. The

fusion of these heterogeneity data is considered to make the right decision and

action in a very short time. Sensors and actuators are connected directly to a

Nordic beacons nRF51822, these latter are connected using Bluetooth low energy

to a gateway which is a Raspberry Pi. The IPv6 camera is connected to the

Internet. Fig. 4.11 below illustrates the hardware used in the tests.

69



Figure 4.11: IoT hardware framework

We evaluate our framework with several tests, we present the response time of

objects to query GET in both the web and the mobile applications. Results are

shown in Table. 4.1 and Table. 4.2.

Table 4.1: Web application requests delay.

Object Test 1 Test 2 Test 3
Lamp 133 ms 141 ms 119 ms
Motion 141 ms 121 ms 111 ms
power 89 ms 98 ms 138 ms
Light 158 ms 189 ms 138 ms
Temperature 88 ms 109 ms 156 ms

Response time values shown in both mobile and web application do not exceed

190ms. According to [118], to evaluate the performance of our system, the results

are perceived as instantaneous and confirm that our system enables real time

services.
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Table 4.2: Mobile application requests delay.

Object Test 1 Test 2 Test 3
Lamp 120 ms 118 ms 147 ms
Motion 129 ms 96 ms 111 ms
power 112 ms 162 ms 97 ms
Light 78 ms 96 ms 110 ms
Temperature 128 ms 131 ms 138 ms
Ventilator 103 ms 127 ms 127 ms

We varied the number of requests for 4 sensors (Power,light,Temperature,Motion)

as depicted in Fig. 4.12. The mean latency are close to each other, and do not

exceed 600ms for 500 requests.

Figure 4.12: Mean latency

As shown in Fig. 4.13, the average latency increases slightly with the number of

requests. This confirm the effectiveness of our framework in term of latency.
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Figure 4.13: Average latency

4.4 Conclusion

In this chapter, we proposed two IoT data processing frameworks. The first is

application dependent and is baseed on fog computing. The second is hybrid

(based on edge, fog, cloud computing) and manages and control data combined

from several sensors. It supports IPv6/IPv4 and takes into consideration hetero-

geneous resources, connectivity/reliability, security and mobility. The proposed

frameworks are applied to smart car parks, and smart home environment, respec-

tively. The systems allow to manage and interrogate smart objects (sensors and

actuators), the collection of the same or different type of data to follow the evo-

lution of each object as a graph, and to apply rules allowing objects to cooperate

and accomplish a specific tasks like turning light on when presence detected or

start the ventilation when the temperature exceeds a certain degree. The different

rules can be customized by the user. The implemented system allows the user to

receive notifications, and to be alerted for any changes in the environment. An

access rights management is applied to limit the actions that can be performed

by a user. The security of the system in the second solution is ensured by the

exploitation of some techniques such as token access, DTLS, encryption of pass-

words and secure sessions. The framework has been used to develop a smart home

control mobile application, which has been extensively tested. The results show
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low latency, at the order of few ten of milliseconds for building control over the

implemented mobile application, which confirm real time feature of the proposed

solution. The frameworks proposed in this chapter are a set of structures that pro-

vide the required processing, but a set of principles, practices and tools are still

needed. This is by using a methodology to guide processes to achieve a particular

goal. In Chapter 5 and Chapter 6 , we propose novel methods of data fusion based

on mathematical methods.
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Chapter 5

Distributed Particle Filter for

Target Tracking and Data

Processing in Wireless Sensor

Networks

5.1 Introduction

Data Fusion can be seen as the process of combining data or Information to esti-

mate or predict entity states. In the aim of assuring efficiency of fusion at feature

level, a novel Distributed Particle Filter for Target Tracking algorithm (DPFTT)

is proposed, a new algorithm with new metric. The proposed method address

the measurement uncertainty problem and make the particle filter robust to en-

vironmental change. Such method can be used in state estimation to fuse data

and applied in smart environments and Internet of things applications. This by

estimate the kinematic parameters of the target. the aims of our proposal is

to calculate the distance between probability densities which is described using

Gaussian distribution and generate the optimal importance proposal distribution.

The various estimation techniques are compared by computing the estimation root

mean square error. The simulation results show that the proposed algorithm, en-

sures scalability and outperforms the standard particle filter, the improved particle

filter based on KLD, and consensus based particle filter algorithm in high noise

environment.
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The remainder of the chapter is organized as follows. Section 5.2 sketches the

solution description. Section 5.3 Formulate the problem and present the system

model. Section 5.4 describes the proposed solution, and Section 5.5 describes the

simulation results. Finally, Section 5.6 draws conclusions and summarizes the

perspectives.

5.2 Solution Description

In order to estimate target tracking in wireless sensor networks, a novel distributed

particle filter algorithm for Target Tracking and data processing in wireless sensor

networks (DPFTT) is proposed.

The algorithm consist of three phases:

1. Prediction and prior measurement.

2. Importance sampling.

3. Resampling phase.

The particles are selected based on their closeness to the real measurement, in

the sense of an appropriate distance. DPFTT calculates similarity between two

probability distributions, which based on Jousselme distance [61]. It optimize the

number of particles in the resampling phase.

5.3 Problem Formulation

In this section, we review distributed particle filter algorithm and jousseleme simi-

larity distance. Besides that, we propose the new method to calculate the similarity

between the true posterior and the proposal distribution. Such measure optimize

the number of particles and enhance the particle filter algorithm for object track-

ing.

5.3.1 State Estimation Technique

The key idea of particle filter is to represent the required posterior density func-

tion by a set of random samples with associated weights, and to compute the
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estimates based on these samples and weights. The problem major encountered

is the large number of samples, this Monte Carlo characterization becomes an

equivalent representation of the posterior probability function, and the solution

approaches the optimal Bayesian estimate. The particle filter algorithm makes use

of an important density, which is a proposed density to represent the posterior one

that cannot be exactly computed. Then, samples are drawn from the important

density instead of the actual density. A common problem with the particle filter

is the degeneracy phenomenon, where after a few states all but one particle will

have negligible weight [71]. This degeneracy implies that a large computational

effort is devoted to updating particles whose contribution to the approximation of

the posterior density function is almost zero. This problem can be overcome by

increasing the number of particles, or more efficiently by approximately selecting

the important density. In addition, the use of resampling technique [84] is recom-

mended to avoid the degeneracy of the particles as algorithm. The particle filter

algorithm is presented in Algorithm. 5.1.

Algorithm 5.1: particle filter algorithm

1 Prediction :x̂n = fn(xn−1)
2 prior Measurement: ẑn = h(x̂n)
3 //Importance sampling

4 Draw
{
xin
}Ns
i=1
∼ N (µ, σ)

5 //Measurement
6 For particle i=1: Ns do

7 Compute likelihood function:
{
xin
}Ns
i=1
∝ p(xin|xin−1) state transition model

8 Weight:
{
win
}Ns
i=1

win ∝ p(zin|xin) observation model

9 End For

10 Normalizing: win = wi
n∑Ns

i=1 w
i
n

11 Resampling:
{
xin, , w

i
n

}Ns
i=1

5.3.2 System Model

The model based methods for tracking applications generally require two models,

namely, state model and measurement model. The former describes the evolution

of the state with time while the latter defines the relationship between the noisy

observations and state. A state system model for the wireless sensor networks is

considered as follows [71]:

1. The state transition model:
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xn = Fxn−1 +Gun

where xn is a vector that denotes unknown states of the dynamic system

at time n, F denotes the function that describes the time-evolution of the

vector xn and G is a vector of the state noise.

the state equation is defined in Eq. 5.1 as :

F =


1 0 Ts 0

0 1 0 Ts

0 0 1 0

0 0 0 1

 , G =


T 2
s

2
0

0 T 2
s

2

Ts 0

0 Ts

 . (5.1)

Ts is the time sampling period , un ∼ N (0,Σu) is a two-dimensional Gaus-

sian noise vector.

2. The measurement model:

Zk,n = hk(xn) + ek,n

where Zk,n is a vector that describes the measurement obtained from sensor k

at time instant n, and hk the measurement function that maps the kinematic

vector parameter xn to the measurement vector Zk,n.

The measurement equation of the dynamic system is defined in Eq. 5.2 as :

Zk,n =
C

(xn − sx,k)2 + (yn − sy,k)2
+ ek,n, (5.2)

where Zk,n denotes the measured signal at time n by sensor k, sx,k and sy,k

denote the x- and y-axis location of sensor k, C is a constant chosen to

calibrate the SNR of the signal received bu the furthest sensor, and ek,n ∼
N (0, σ2

e) is a measurement of Gaussian noise of sensor.

5.3.3 Similarity Distance

The similarity distance is first proposed by Jousselme et al [99] and then applied

to weighted averaging combination method by Yong et al. [100]. It can measure
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the dissimilarity between two basic belief assignment (bba) defined on the set of all

subsets of Ω = {w1, ..., wn} called the frame of discernment. The distance between

two bodies of evidence, dBOE(m1,m2) is defined in Eq. 5.3, for m1,m2 on 2Ω:

dBOE(m1,m2) =

√
1

2
(‖m1‖2 + ‖m2‖2 − 2 〈m1,m2〉), (5.3)

where 〈m1,m2〉 is the scalar product defined in Eq. 5.4,

〈m1,m2〉 =
n∑
i=1

n∑
j=1

m1(Ai)m2(Aj)
|Ai ∩ Aj|
|Ai ∪ Aj|

, (5.4)

where n=|2Ω|.

In order to quantify how much two or more objects are different, we use a distance

to measure the similarity between the belief functions.

The distance can measure the conflict degree among evidences effectually. The

greater the distance of two bodies of evidence is, the less evidence support each

other.

5.4 Solution

We proposed a new method to guarantee a better estimate of the target state

using an optimal number of samples. DPFTT is based on similarity distance.

In the first part of this chapter, we have presented different specification of discrete

belief function. Unfortunately, these functions do not allow us to manipulate

continuous data that can be provided by sensors in different areas like search and

rescue problems,classification issues, and data fusion. For that, we are based on the

distance of jousselme by calculating the similarity between the probability density

functions using normal Gaussian distribution. Belief function can be defined by a

finite number of parameters using Smets formalism [119].
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5.4.1 Belief Function Associated to a Probability Density

A probability density function (pdf) is considered as an expert belief, it can be

defined according to basic belief density which is described using a normal distri-

bution [120]. We defined the distance between two densities in Eq. 5.5,

d(f1, f2) =

√
1

2
(‖f1‖2 + ‖f2‖2 − 2 〈f1, f2〉), (5.5)

where 〈f1, f2〉 is defined in Eq. 5.6 as:

〈f1, f2〉 =

∫ +∞

−∞

∫ +∞

yi=xi

∫ +∞

−∞

∫ yj=+∞

yj=xj

f1(xi, yi)f2(xj, yj)δ(xi, yi, xj, yj)dyjdxjdyidxi,

(5.6)

and δ(xi, yi, xj, yj) is Lebesgue measure which is an extension of Jaccard measure

applied for the intervals in the case of continuous belief functions [119].

This distance can be used between two or more belief functions as Eq. 5.7 :

d(fi, σf) =
1

n− 1

n∑
j=1,i 6=j

d(fi, fj), (5.7)

where σf is defined as a set of belief densities.

5.4.2 Improved Particle Filter based on Similarity Dis-

tance

The distributed particle filter algorithm for target tracking is proposed. DPFTT

operates in Three steps.

1) In the first one, the samples are initially generated using sensor readings and

propagated according to the transition state model x̂n = fn(xn−1). When con-

sidering the processing noise x̂n = (xn + qn) where qn is the additive noise and

follows normal distribution. the predicted measurement for sensors derived from

x̂n is ẑn = h(x̂n) = h(xn + qn) which used as prior information for measurement

likelihood.

2) In the second step, a new metric is added in importance sampling phase. We

used f = p1(zn/xn) as the objective distribution or proposal and employ g =
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p2(zn/xn) as the tuning distributions, then the distance is applied using Eq. 5.3.

The most likely to choose is the sample whose pdf is nearest to the high likelihood

region. We apply this choice using Eq. 5.8 and hence eliminate samples with low

importance weights.

A = argmin(d(f, g)). (5.8)

3) In the last step, the new weight is employed in the resampling phase, and to

avoid the degeneracy phenomenon of particle filter algorithm, a suitable measure

of the effective sample size Neff which is introduced in [121], and is defined in

Eq. 5.9 as :

Neff =
1∑N

i=1(w
(i)
n )2

, (5.9)

where w
(i)
n are n normalized weight. DPFTT algorithm is described in Algorithm.

5.2 as follows:

Algorithm 5.2: improved distributed particle filter algorithm

1 Prediction :x̂n = fn(xn−1)

2 prior Measurement: ẑn = h(x̂n)

3 //Importance sampling

4 Draw
{
xin
}Ns
i=1
∼ N (µ,Q)

5 //Measurement

6 For particle i=1: Ns do

7 Compute the similarity distance using Eq. 5.5

8 Choose the appropriate using Eq. 5.8

9 Mean: µ̂n,k =
∑Ns

i=1w
i
nx

i
n

10 Covariance: Q̂n,k =
∑Ns

i=1 w
i
n(xin − µ̂n)(xin − µ̂n)ᵀ

11 Compute likelihood function :
{
xin
}Ns
i=1

using Eq. 5.1

12 Update the weight :
{
win
}Ns
i=1
∼ Nn,k(xin, µ̂n,k, Q̂n,k)

13 End For

14 Normalizing important weights : win = wi
n∑Ns

i=1 w
i
n

15 Resampling with the new samples :

16 if Neff = 1∑Ns
i=1(wi

n)2
< Ns

2

17
{
xin, w

i
n

}Ns
i=1

18 State Estimation x̂n =
∑Ns

i=1w
i
nx

i
t
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5.5 Simulation and Comparative Analysis

For purposes of illustration and visualization of results of the proposed method,

we used a simulation scenario to verify the effectiveness of our proposed algorithm.

The different patterns are evaluated in terms Root Mean Square Error(RMSE),

which indicates the root value of the unbiased covariance. We have computed the

RMSE of the estimated target position (x̂n, ŷn) at each time instant n from all

sensors, This using Eq. 5.10.

RMSE(n) =

√√√√ 1

R

R∑
r=1

(x
(r)
n − x̂(r)

n )2 + (y
(r)
n − ŷ(r)

n )2, (5.10)

where R is the number of simulation runs on which the root mean square is cal-

culated.

In the simulation environment, which is developed in Matlab, A target tracking

problem on a two-dimensional plane (x − y) was considered. A sensor network

consisting of 100 sensors laid out on a 200 m 200 m field, which is used to collect

and process data. The motion of the target is assumed to be constant velocity

and the evolution of its kinematic parameters are modeled by: xn = Fxn−1 +Gun,

where the state vector denoted by xn = [xnynẋnẏn]ᵀ consists of the xy positions

(xn, yn) and velocities (ẋn, ẏn) of the target. The sampling period Ts is assumed to

be equal to 1, and un ∼ N (0, Q) is a two-dimensional Gaussian noise vector with

covariance of Q = diag(0.005, 0.005). The measurements obtained by the sensors

are expressed as a function of the distance of the sensors from the location of the

target is given by the measurement equation described in system model. where

C=570 and ek,n ∼ N (0, σ2
e) is a measurement of Gaussian noise of sensor, with

unity variance σ2
e = 1.

To evaluate the performance of DPFTT and to compare it to the other algorithms

such as the standard particle filter algorithm DPF, improved particle filter using

KLD (IKLD) in [79], and improved particle filter with exchange data (EXCH) in

[71], we used the same runtime environment and the same simulation parameters,

we executed our proposed algorithm, comparing it with the algorithms mentioned.

The calculation results of RMSE of the estimated target position as time instant

evolves from 1 to 60 are depicted in Fig. 5.1.
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Figure 5.1: RMSE

According to Fig. 5.1, the RMSE, for DPFTT is less than the original particle filter

DPF. Additionally, the DPFTT have about 1m less than IKLD and more than 1m

less than EXCH in the whole of time. The max error, which is the worst case for

estimation, in the DPF is more than 9m and even between 7m and 8m in EXCH

and IKLD. However, DPFTT have about less than 5,4 m,which is more precise

than the other solutions, and hence indicates that our adaptation method can

improve the measurement likelihood and estimation accuracy. We also compare

estimation performance of DPFTT with varying the sensors number. In order to

test the scalability, we executed our solution by varying the number of sensors, we

carried out tests based on RMSE. The results of this proposal are represented in

Fig. 5.2
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Figure 5.2: RMSE with variations in number of sensors

As shown in Fig. 5.2, The RMSE of DPFTT is the lowest compared to DPF,EXCH

and IKLD, with the increased sensors number, we can still see that our solution

remains reliable and provides the best estimate among the other solutions because

despite the change of environment (number of sensors) it ensures good results,

scaling and so it is reliable.

5.6 Conclusion

In this chapter, we proposed an improved distributed particle filter algorithm is

proposed to deal with target tracking in wireless sensors networks. It increase

the estimation accuracy of the particle filter, enhance the efficiency of the parti-

cle sampling and improve the estimation performance. The proposed solution is

based on distributed particle filter and the Sequential Monte Carlo algorithm for

weight adjustment. Adding to it a novel similarity calculation method between two

probability density functions using jousselme distance, such measure optimize the

number of particles used in resampling phase. A simulation study that compares

the proposed solution with two state-of-the-art solutions shows the superiority of

the proposed approach in Root Mean Square Error and ensures scalability. In
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perspective, we plan to propose an alternative for reading real data by simulating

targets tracking, to test the solution in a real deployment scenario, and to study

the efficiency of the solution with high volume of heterogeneous data. DPFTT

is proposed in the feature level of data fusion, in the next chapter, we proposed

efficient method of data fusion in decisional level.
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Chapter 6

DFIOT: Data Fusion for Internet

of Things

6.1 Introduction

Our solution presented in the previous chapter is state estimation technique, which

is defined in feature level of data fusion. We consider in this chapter the decision

fusion, where the fusion supplies decisional information. Decision fusion methods

provide a formalism for combining evidence according to the probability theory

rules, where uncertainty is represented using the conditional probability terms that

describe beliefs.

The D-S theory [87] is largely used for uncertainty reasoning, which allows process-

ing uncertain or imprecise information without prior knowledge. This can be well

used in IoT environment. It supports the representation of both imprecision and

uncertainty, and it allows deriving the probabilities of a collection of hypothesis

while dealing with missed information. This can be helpful in such heterogeneous

IoT data. However, under situations where the evidence highly conflicts, it may

obtain counterintuitive results. This problem is tackled in this chapter in which

we first present the literature on decision fusion methods, and then propose a

taxonomy of D-S approaches. The most common methods are reviewed by ex-

ploring benefits and challenges. A new efficient method is then developed, which

emphasizes the importance of reducing the uncertainty of the measurements and

conflicts in data fusion. It takes into consideration the contextual IoT parameters

while reducing the degree of uncertainty. It also enhance the entropy of Deng,
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by selecting a sensor report which has a big information volume and well sup-

ported by the others sensors. This by exploring similarity between evidence, and

hence enhances credibility. Results show that the proposed solution outperforms

all the above mentioned methods in terms of reliability, accuracy, and conflict

management.

6.2 Solution Description

In this chapter, a weighted evidence combination method is used. It is based on

weight which represents the degree of confidence that is given to a data source.

The method is largely used for uncertainty measure [109] to handle conflicting

evidence combination and to take into consideration heterogeneous data in IoT

[101, 102]. Our solution addresses the features of IoT data fusion which are: i)

the uncertainty, as data provided by sensors, is always subjected to some level

of uncertainty and inconsistency. Data fusion algorithms reduce uncertainty by

combining data from several sources. ii) Conflicts to present quality data to users,

which is critical to resolve conflicts and discover parameters’ values that reflect

the real world. iii) Energy consumption has always been challenging in wireless

sensors networks, and consequently in IoT. To justify the choice of the weighted

method upon which we rely for developing the proposed solution, a comparison

between several state-of-the-art methods in each subcategory has been carried out.

The results are presented in the following.

6.2.1 Comparison Between Weighted Methods

We implemented and compared the methods based on reliability, which are all

based on jousselme distance. A benchmark numerical example has been used

[101]. The results are given in Fig. 6.1(a) and Fig. 6.1(b). They show that both

Yong and Zhang methods give approximately the same BPA of hypothesis A (up

to 98%). Yong method, however, has less conflict and increases its performance

as the number of evidence goes up.
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Figure 6.1: Comparison between weighted data fusion methods based on re-
liability

We implement also the second category of data fusion methods based on the

amount of information, and compare them using a benchmark numerical example

[106]. The results are depicted in Fig. 6.2(a) and Fig. 6.2(b). Deng entropy

has clearly the best results in terms of accuracy (BPA) and reaches up to 98%,

while D-S's BPA is equal to 0. Deng also has the best performance in terms, e.g.,

87



it remains at 0.32 for 5 bodies of evidence while the other solutions exceed 0.50.

Based on these results, we use Yong method to calculate the credibility of evidence

and Deng entropy to capture the information volume when combining evidence.
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Figure 6.2: Comparison between weighted data fusion methods based on
amount of information

The aim is to select the best improved method and use it to calculate the credibility

degree of evidence in the first category and the uncertainty degree in the second
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one. The simulation results justify our choice of Yong and Deng entropy.

6.2.2 DFIOT Steps

DFIOT is based on D-S theory and Deng entropy. It proposes three methods

IDeng, WDST and WDSD, to improve the information processing. IDeng is an

improved Deng method that gives more importance to a sensor which has low

uncertainty, i.e., more volume of information, and less evidence distance vs. other

sensors. That is, if a sensor report has a big information volume and a less evidence

distance, it will be well supported by other sensors and thus will have a higher

weight proportion. Otherwise, a small weight proportion will be assigned to sensors

with conflicting readings (having high evidence distance) or with a low volume of

information. The contextual parameters used in DFIOT are, 1) the lifetime of

sensed data, which is represented by Weighted Dempster Shafer method based

on Time (WDST), and 2) the distance between sensors and the entity which is

represented by Weighted Dempster Shafer method based on Distance (WDSD).

DFIOT includes four steps as illustrated in Fig. 6.3, and detailed in the following:

Figure 6.3: The flowchart of DFIOT method

6.2.2.1 Calculate the Credibility Degree of Evidence

For every piece of data collected by sensors, Eq. 3.6 is used to calculate the distance

between every two bodies of evidence, and Eq. 3.8 to obtain the support degree
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of each evidence. Algorithm. 6.1 describes the calculation of evidence credibility.

Algorithm 6.1: Credibility computation of each evidence

Input : <m1,m2,m3,.> [vector of evidences]

N: number of evidence

T = h1, h2, h3, ...... frame of discernment.

Output: CRD vector

1 CRD = zeros(N) : Initialization

2 Sum=0;

3 SumCRD=0

4 Begin

5 z for i = 1 to N do

6 for j = 1 to N do

7 if i 6= j then

8 Sum = Sum+ 1− dBPA(mi,mj)

9 end if

10 endfor

11 CRD[i]=Sum;

12 SumCrd=SumCrd+CRD[i];

13 Sum=0;

14 endfor

15 for i = 1; i <= N ; i+ + do

16 CRD[i] = CRD[i]/SumCrd

17 endfor

18 Return CRD vector

19 End

6.2.2.2 Calculation of the Uncertainty Degree of Evidence

We propose an Improved Deng method (IDeng) to calculate the information vol-

ume (degree of uncertainty) associated with each evidence. The Deng entropy

presented in Chapter 3 is used. In fact, each evidence suffers from a degree of un-

certainty that influences on the degree of its involvement in the final combination.

Three cases can be identified: i) Evidence has a high degree of uncertainty (low

information volume); its weight must be set to a small value (case of uncertainty).

ii) Evidence has a low degree of uncertainty and significant evidence distance
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with the other evidence; its weight must be set to a small value (case of negative

certainty). iii) Evidence has a low degree of uncertainty and low evidence distance;

its weight must be set to a high value (case of positive certainty). The information

volume of sensed data I(SD) will be calculated for each evidence in two steps as

follows:

First, the entropy of each evidence is calculated with Eq. 3.10. Second, the dis-

tance of evidence is verified in terms of decision with other bodies of evidence. To

determine if the certainty is positive or negative, the sum of the distance is calcu-

lated and the farthest evidence is ignored. If the sum reaches a certain threshold

then the certainty is considered negative, otherwise it is considered positive. This

is explained in Algorithm. 6.2. The final weight for each evidence is calculated

using Eq. 6.1.

ED = 1− ED

sum(ED)
. (6.1)

where sum(ED) is the sum of all evidence.

Algorithm 6.2: Information volume computation of each evidence

Input : <m1,m2,m3,.> [vector of evidences]
N: evidence number
T = h1, h2, h3, · · · frame of discernment.

Output: ED vector; information volume of sensors
1 ED= zeros(N); NC= zeros(N); booleen , NC:Negative Certainty
2 SumDisatance = 0; MaxDistance = 0;
3 Begin for i = 1 to N do
4 SumDistance=<Sum of evidences>
5 MaxDistance=<the largest distance between evidence i and the others>
6 ED[i]=DengEntropy(mi);
7 if SumDistance−MaxDistance) > 0.5(N − 2) then
8 NC[i] = true;

9 endif
10 done

11 for each evidence i do
12 ED = ED ∗N/Sum of ED
13 if NC[i] = true then
14 RetunED = ED/2;

15 endif
16 endfor

17 Return the vector ED
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6.2.2.3 Addition of Contextual Parameters

In IoT applications, a large collection of sensors, devices, and users provide a large

amount of information in different contexts. This information is usually prone

to errors and lacks reliability and credibility. The information to be used must

be analyzed, substantiated and motivated. Therefore, merging contexts while

increasing the confidence to bring new information, and giving a complete view of

the environment is important when fusing data in IoT.

To enhance the quality of data fusion in large heterogeneous and distributed wire-

less sensors networks used in IoT applications, we consider contextual parameters

that are essential for any type of IoT application. These parameters measure

the degree of conformity of the IoT environment as perceived by the measuring

device. The first parameter is sensor confidence distance, which is a quality pa-

rameter that measures the accuracy of the information in a context object. The

quality of the decision made by a sensor is strongly affected by the resolution of

the space, namely, the distance between the sensor and the entity in question. The

second parameter that has been taken into account is the time validity or lifetime

of the information. In fact, the information taken at time t is more important

than information taken at t − 1. Furthermore, the information becomes invalid

after a certain time, which depends on the context of the application.

Lifetime of Sensed Data: A new parameter is added into WDST that mea-

sures the validity of contextual information. The lifetime of sensed data(SD) is

normalized by Eq. 6.2

Lifetime(SD) = 1− Age(SD)

∆Tmax
. (6.2)

where ∆Tmax, the maximum lifetime or total duration of the information when we

recover all sensed data, Age(SD) represents the lifetime of the observation, which

is given by Eq. 6.3 :

Age(SD) = T − Tmes(SD) (6.3)

where T is the current time and Tmes(SD) the time when SD was collected.

Distance between Sensors and the Entity: In the WDSD, the quality of

the decision−making is strongly affected by the resolution of the space, i.e., the
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distance between the sensor and the monitored entity. The normalized function is

given in Eq. 6.4 is used. The following function:

Dis(S) = 1− D(S,E)

Dmax

∗ δ. (6.4)

where D(S,E) denotes the distance between the sensor S and the entity E, Dmax

the maximum distance upon which the sensors observation can be trusted, and δ

the accuracy of a sensor measured on the basis of statistical estimation.

6.2.2.4 Normalization of the Weights and Data Fusion Combination

For each evidence, i, the weight Wi is defined with Eq. 6.5,

Wi = CRD(i) ∗ ED(i) ∗ Lifetime(i) ∗Dis(i). (6.5)

Assume there are k evidence; the normalized weight is given by Eq. 6.6.

W̃i =
Wi∑k
j=1Wj

(i = 1, 2, ..., k). (6.6)

We use the weights obtained in Eq. 6.6 to calculate the BPA. The weighted evi-

dence are then combined using orthogonal (Eq. 6.7). Notice that the Dempster's

rule of combination has the attractive property of commutativity and associativity

[89].

M = m1 ⊕m2 ⊕ ...⊕mk. (6.7)

6.3 Simulation and Comparative Analysis

A numerical analysis with MATLAB [122] is presented in this section. The pro-

posed solution is compared with five state-of-the-art methods, including D-S [92],

Murphy [98], Yong [100], Deng [106], and Yuan [109]. These methods are the most

efficient from the literature for conflict management, and thus the most relevant

for comparison. A benchmark numerical example[101] has been used. In a sys-

tem of automatic target recognition {A,B,C} based on different types of sensors
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(CCD, sound, infrared, radar and ESM), assume that the current target is A and

the number of sensors is five. The system has collected five bodies of evidence,

the results obtained are shown in Table. 6.1.

Table 6.1: BPAs of the example

A B C A,C
S1:m1(.) 0.41 0.29 0.3 0
S2:m2(.) 0 0.9 0.1 0
S3:m3(.) 0.58 0.07 0 0.35
S4:m4(.) 0.55 0.1 0 0.35
S5:m5(.) 0.6 0.1 0 0.3

Notice for the BPAs given above that the detection of S2 is abnormal. This may

lead to a contradictory result after fusion. As the information concerning the

lifetime of sensed data, and the distance between sensor and entity are required

in the benchmark example, we used our solution without considering contextual

parameters. Two metrics are used in the simulation, 1) certainty in the decision

(BPA), and 2) the conflict between evidence. Table. 6.2 depicts the fusion results

when varying the combination rules and the number of evidence. The calculation

process about the last column of the proposed method is given.
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Table 6.2: The results of different combination rules

Method Fusion Results
m1,m2 m1,m2,m3 m1,...,m4 m1,...,m5

D-S m(A)=0 m(A)=0 m(A)=0 m(A)=0
m(B)=0.8969 m(B)=0.6575 m(B)=0.3323 m(B)=0.1422
m(C)=0.1031 m(C)=0.3425 m(C)=0.6679 m(C)=0.8578

Murphy m(A)=0.0964 m(A)=0.4619 m(A)=0.8362 m(A)=0.9620
m(B)=0.8119 m(B)=0.4498 m(B)=0.1147 m(B)=0.0210
m(C)=0.0917 m(C)=0.0792 m(C)=0.0410 m(C)=0.0138
m(AC)=0 m(AC)=0.0090 m(AC)=0.0081 m(AC)=0.0032

Yong m(A)=0.1463 m(A)=0.6021 m(A)=0.9330 m(A)=0.9851
m(B)=0.7620 m(B)=0.2907 m(B)=0.0225 m(B)=0.0017
m(C)=0.0917 m(C)=0.0990 m(C)=0.0353 m(C)=0.0096
m(AC)=0 m(AC)=0.0082 m(AC)=0.0092 m(AC)=0.0035

Deng m(A)=0.0964 m(A)=0.4674 m(A)=0.9089 m(A)=0.9820
m(B)=0.8119 m(B)=0.4054 m(B)=0.0444 m(B)=0.0008
m(C)=0.0917 m(C)=0.0888 m(C)=0.0379 m(C)=0.0089
m(AC)=0 m(AC)=0.0084 m(AC)=0.0089 m(AC)=0.0036

Yuan m(A)=0.2849 m(A)=0.8274 m(A)=0.9596 m(A)=0.9886
m(B)=0.5306 m(B)=0.0609 m(B)=0.0032 m(B)=0.0002
m(C)=0.1845 m(C)=0.0986 m(C)=0.0267 m(C)=0.0072
m(AC)=0 m(AC)=0.0131 m(AC)=0.0106 m(AC)=0.0039

DFIOT m(A)=0.3178 m(A)=0.9134 m(A)=0.9748 m(A)=0.9918
m(B)=0.5233 m(B)=0.0039 m(B)=0.0002 m(B)=0.0001
m(C)=0.1589 m(C)=0.0395 m(C)=0.0066 m(C)=0.0061
m(AC)=0 m(AC)=0.0333 m(AC)=0.0183 m(AC)=0.0020

1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of evidences

C
on

fli
ct

 

 
D−S
Murphy
Yong
Deng
Yuan
DFIOT

(b) The value of conflict between evidences

Figure 6.4: The fusion results comparison between DFIOT and different rules
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Fig. 6.4(a) shows the evolution of belief’s value assigned to the target A (the

right decision) after each combination of five bodies of evidence for the compared

methods. Fig. 6.4(a) shows that the accuracy (BPA) of the proposed solution

is always superior to all the other solutions and reaches up to 99.18%. More

importantly, while all solutions converge to BPA values beyond 95%, DFIOT grows

very fast. It exceeds 90% with only three bodies of evidence, while Yuan's method

reaches about 82% and the others remain below 60%. DFIOT also provides the

best performance for conflict that was smoothly increasing between 0.058 and

0.170 as shown in Fig. 6.4(b), while all the other solutions exceed 0.29 for five

bodies of evidence (some go up to 0.9). These results confirm the efficiency of the

proposed method and the effectiveness of considering conflict, information volume.

6.4 Experimental Performance Evaluation

The model is evaluated through an extensive set of experiments realized in (CERIST-

ALGERIA) research center lab in the context of IoT and smart building project. In

addition to the simulation study presented in the previous section. A real dataset

collected from a testbed has been used for further investigation on the performance

of DFIOT in comparison with state-of-the-art solutions. An IoT based building

automation application has been considered in the office scenario, where presence

and ambient light are permanently monitored with IoT enabled wireless sensors to

optimize lighting and energy control of appliances and HVAC systems. 4 sensors

have been placed on the ceiling of an office, including 3 PIR sensors and a light

sensor. The reason behind using three sensors is the need to detect even small

movements when the office is occupied (e.g., typesetting on the keyboard, head

movements, etc.), which usually occur at the desk space. No placement of a single

sensor can guarantee total coverage of this space. Optimal positions of the PIR

sensors have been calculated using an integer linear programming (ILP) model and

CPLEX solver, where the space has been uniformly split into equal distance grids.

The outcome for a 30cm granularity unit provides optimal number of sensors that

cover the whole office space (centers of cells in the space) to be four, with the

positions depicted in Fig. 6.5.

A handy device at the entrance has been added as a ground truth sensor for the

presence, with buttons the occupants are asked to push on for every entrance/exit

during the experiment. Every node acts as a source and sends data periodically

to the central station that stores the data in a dataset. We define 4 hypothesis
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Figure 6.5: Deployment of sensors in office

(H1, H2, H3, H4) as follows. H1: office occupied and light value is more than

580lux, H2: office empty and light value is more than 580lux, H3: office occupied

and light value is not exceeding 580lux. H4: office empty and light value is not

exceeding 580lux. The frame of discernment is o = H1, H2, H3, H4. Without

loss of generality, we use a simple scenario; light control, where the data fusion

method is applied to make a decision of switching on/off the light. The BPA has

been calculated using the mean values in each state and the environment has been

simulated with a standard error and confidence interval of 98%. In the following,

we consider the situations when hypothesis H1 and H2 are verified. The ground

truth has been used to filter out entries in the dataset where each hypothesis is

verified. In Table. 6.3, the system has collected bodies of evidence when hypothesis

H1 is verified. This includes PIR sensors, light sensor, and a ground truth sensor:

Table 6.3: BPAs of the solution

H1 H2 H3 H4
S1:m1(.) 0.72 0.17 0.10 0
S2:m2(.) 0.69 0.08 0.22 0.01
S3:m3(.) 0.81 0.06 0.11 0.02
S4:m4(.) 0.83 0.07 0.09 0

The BPA of Hypothesis and the conflict degree are presented vs. the variation of

evidence numbers.
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6.4.1 BPA/Conflict of Hypothesis H1

We illustrate the three proposed methods (IDeng, WDST and WDSD) separately

to investigate the efficiency of each method of DFIOT.
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Figure 6.6: The fusion results for Hypothesis H1
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In D-S evidence theory, the BBA of H1 is 87%, and it decreases gradually with

the increase of evidence. The conflict hugely increases and reaches 0.92. In Yuan

method, the belief degree of H1 is 98%, while the new method has a higher be-

lief degree of 99.18%. The main reason is that the proposed method takes into

consideration the dynamic reliability measured by evidence distance and entropy,

it also enhance the Deng entropy and add a new parameters, which decreases the

conflict less than 0.6. These results improve accuracy and confirm the efficiency

of DFIOT. Each parameter added considerably increases the BPA. The results

presented in Fig. 6.6(a) and Fig. 6.6(b) confirm those presented in the previous

section and the superiority of the proposed solutions. Similarly, BPA of DFIOT

and all its versions grows much faster than the other solutions, and have lower

conflict values.

6.4.2 BPA/Conflict of Hypothesis H2

The hypothesis, in this case, is H2 that is when we have no presence detection

(empty office) and light exceeding 580lux. The results are depicted in Fig. 6.7(a)

and Fig. 6.7(b) and confirm the superiority of our method. The results are very

similar to those obtained for hypothesis H1, except that Yuan provides a bit better

performance in terms of BPA (compared to its performance in hypothesis H1), but

still clearly lower than DFIOT.

A sensor may be misled by many factors and provide wrong evidence, and such

abnormal measurement can generate a conflicting mass during the evidence combi-

nation which leads to the conflict. As shown in the simulation section, the classical

Dempster's rule cannot support the correct hypothesis H1 and cannot eliminate

the conflict between evidence. and a wrong final result. With incremental evi-

dence, our solution provides better results.
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Figure 6.7: The fusion results comparison with hypothesis H2

100



6.4.3 Impact of Data Fusion Period

6.4.3.1 Impact on BPA

We investigated the impact of the data fusion period on the BPA. Results in Fig.

6.8(a) shows that the proposed solution provides the best values and is less affected

by increasing this period compared to the other solutions. It remains beyond 90%

even for as a high period as 60min. Similarly in Fig. 6.8(b), when Hypothesis H2

has applied the results show the effectiveness of our method when reducing the

period of data fusion. While the other solutions are influenced considerably by the

increase of the data fusion period, especially in D-S method where the BPA is less

than 50% in both cases of H1 and H2, which leads to a wrong decision (switching

on/off the light).
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Figure 6.8: Data fusion period

6.4.3.2 Energy Gain

We investigated the impact of this data fusion on the application performance, in

our case energy gain is used as the application related metric. It is defined in Eq.

6.8.
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Gain(A) =

∑n
i=1 αi∑k
j=1 γj

. (6.8)

where αi represents the total period when the office is unoccupied (hypothesis H2

and hypothesis H4 are verified.), and γj represents the total period of data fusion

in a day. As shown in Fig. 6.9, the gain increases with the increase of the fusion

frequency (decreasing the period). The increase is fast for values bellow 30min

and reaches up to 90% for a data fusion period of 5min, which is a reasonable

period.
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Figure 6.9: Gain in energy consumption

Contrary to the previous weighted methods that either calculate the weight of

each evidence based on similarity distance to enhance credibility degree, or take

into consideration the information volume to upgrade the uncertainty degree of

evidence. DFIOT takes into consideration several parameters when calculating the

mass function. DFIOT has several advantages: First, It improves the Deng entropy

in uncertainty degree of evidence by giving more importance to sensors which

have low uncertainty, i.e., more volume of information and less evidence distance

vs. other sensors and by eliminating the evidence with the farthest distances

when making decisions. It applies evidence distance in measuring conflict degree
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and credibility. The second advantage that has been considered is the contextual

parameters, which assure accuracy of the information affected by the resolution of

the space. It focuses on the most recent information and avoids invalid information

using the lifetime of sensed data. Another critical advantage of our method is that

it helps to take the right decision when fusing the critical information. Examples

of this include critical medical areas that need the lifetime of measurements to

make a sensible decisions, in military applications that take the distance between

entity and sensors as essential parameters, and in smart buildings that help to

combine measurements and take optimal actions.

6.5 Conclusion

A novel data fusion method for the Internet of Things, we called DFIOT, has been

proposed in this chapter. This method uses an adaptive weighted fusion algorithm

based on D-S theory. The reliability of devices in the network and the conflicts

between devices are considered in DFIOT. This by considering the information

lifetime, the distance separating sensors and entities, reducing the computation

and by using combination rules based on the Basic Probability Assignment, which

allows to represent uncertain information or to quantify the similarity between

two bodies of evidence. We compared the proposed solution with some state-of-

the-art data fusion methods, including D-S, Murphy, Deng and Yuan, and using

both benchmark data simulation and real dataset from a smart building testbed.

Results show that DFIOT outperforms all the above mentioned methods in terms

of reliability, accuracy and conflict management. The impact of this improvement

from the application performance perspective has also been investigated, and the

results show a gain of up to 90% in energy saving when using DFIOT.

104



Chapter 7

Conclusion and Future Directions

7.1 Conclusion

Over the past few decades, the world has seen the emergence of a new technol-

ogy called the Internet of Things, which has grown rapidly and to this day it is

still evolving. It has attracted the attention of many specialists in various fields,

The IoT enables physical objects to see, hear, think and perform jobs by having

them talk together, to share information and to coordinate decisions. The IoT

transforms these objects from being traditional to smart by exploiting its underly-

ing technologies such as ubiquitous and pervasive computing, embedded devices,

communication technologies, sensor networks, Internet protocols and applications.

Smart objects along with their supposed tasks constitute domain specific applica-

tions such as healthcare,transportation, agriculuture, smart cities, etc.

The interconnection of detection and actuation devices offering the ability to share

platform information in a unified framework and services oriented architecture.

This is achieved through large-scale detection, data processing and information

representation using ubiquitous detection and even emerging technologies such as

edge,fog, and cloud computing. exchanging data and information while reacting

autonomously to the real/physical events of the world and influencing the execu-

tion of processes that trigger actions and create services with or without direct

human intervention. IoT is carried out in three paradigms: a middleware, ori-

ented objects (sensors) and oriented semantics (knowledge). The challenge is how

to process heterogeneity and huge data, fusion with other data sources, to produce

knowledgeable insight into data patterns for fast accurate decision making.
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A highlight of the IoT is its pervasiveness in all areas of life. The IoT design

must be pervasive, interoperable, consistent, reliable, efficient, and secure. Mean-

while, data that must be supported in the IoT can be multisource, heterogeneous,

massive, redundant, inconsistent, or unreliable. Data fusion is an important tool

that aim to combine measurements makes information more intelligent, decisive,

sensible and precise which is coming from multiple sensors and sources. It can

be helpful in handling the big data issues of IoT because we are fusing data from

many sensors into more precise and accurate information. However, Data per-

ceived by various sensors may be uncertain, inaccurate due to data loss or data

source unreliability, which brings additional challenges for data fusion caused by

data imperfection, data conflict, data ambiguity and inconsistency.

In this dissertation, we have dealt with these limitations by discussing and propos-

ing solutions that ensure data processing in the emerging IoT.

On a side, we have proposed two efficient data processing frameworks to ensure

real time data processing and reduce the network energy. The first framework

integrate sensors and RFID technologies to enable sophisticated services in the

emerging internet of things. With this architecture which based on edge comput-

ing, communication overheads can be significantly reduced and service in the cloud

ensure real time data processing. The second solution is a platform to monitor and

control smart objects in the Internet of Things (IoT). This is through IPv4/IPv6,

and by fusing heterogeneity data and also combing IoT specific features and proto-

cols such as CoAP, HTTP and WebSocket. The platform allows anomaly detection

in IoT devices and real-time error reporting mechanisms. Moreover, the platform

is designed as a standalone application, which targets at extending cloud connec-

tivity to the network with fog computing. that allows heterogeneous resources,

connectivity reliability and mobility, ensures security and contains services to en-

hance data fusion in application framework architecture.

On the other side, mathematical methods is indispensable when fusing data, it

increases the quality of data, ensure reliability and scalability. These methods

include data association, state estimation, and decision fusion. In order to en-

sure data credibility, reliability, reduce the data conflicts, and increase the data

accuracy, we have proposed two methods. One in the feature data fusion and

the other is decisional data fusion. We have proposed a new algorithm with new

metric. The proposed method address the measurement uncertainty problem and

make the particle filter robust to environmental change. Such method can be used

in state estimation to fuse data and applied in smart environments and Internet
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of things applications. This by estimate the kinematic parameters of the target.

the aims of our proposal is to calculate the distance between probability densities

which is described using Gaussian distribution and generate the optimal impor-

tance proposal distribution. The various estimation techniques are compared by

computing the estimation root mean square error. The simulation results show

that the proposed algorithm, ensures scalability and outperforms the standard

particle filter, the improved particle filter based on KLD, and consensus based

particle filter algorithm in high noise environment. Moreover, we have proposed

a new efficient method is proposed, which emphasizes the importance of reducing

the uncertainty of the measurements and conflicts in data fusion. It takes into con-

sideration the contextual IoT parameters while reducing the degree of uncertainty.

It also enhance the entropy of Deng, by selecting a sensor report which has a big

information volume and well supported by the others sensors. This by exploring

similarity between evidence, and hence enhances credibility. Results show that

the proposed solution outperforms all the above mentioned methods in terms of

reliability, accuracy, and conflict management.

7.2 Future Research Directions

The proposed frameworks and mathematical methods for data fusion open per-

spectives for the application in the emerging IoT. Integrating a virtual assistant

to facilitate interaction with the system is a possible perspective. As the second

perspective, the realized mathematical methods can be added in the proposed

framework. The third perspective is the integration of machine learning to allow

the system to learn habits of users and plan actions. The last perspective in our

agenda is the integration of artificial intelligence algorithms to enable the system

making autonomous decisions when necessary. A typical example of this (on which

we are currently working) is the use of augmented and virtual reality based to de-

velop mobile interfaces for IoT application system. The data fusion framework

proposed in this chapter facilitates the development of these solutions.

107



Our Contributions

The following papers are the fruits of our work during the dissertation:

Journal papers

[1] Sahar Boulkaboul and Djamel Djenouri. DFIOT: Data Fusion for Internet Of

Things. J. Netw. Syst. Manag. Springer, 28(4):11361160,2020. doi: 10.1007/s10922-

020-09519-y. URL https://doi.org/10.1007/s10922-020-09519-y.

[2] Djamel Djenouri, Elmouatezbillah Karbab, Sahar Boulkaboul, and Antoine

B.Bagula. Networked wireless sensors, active RFID, and handheld devices for

moderncar park management: WSN, RFID, and mob devs for car park manage-

ment. Int.J.Handheld Comput. Res. IGI Global, 6(3):45, 2015. doi: 10.4018/I-

JHCR.2015070103.

URL https://doi.org/10.4018/IJHCR.2015070103.

Conference papers

[3] Sahar Boulkaboul, Djamel Djenouri, Sadmi Bouhafs, and Mohand Ouamer

Nait Belaid. Iot-DMCP: An IoT Data Management and Control Platform for

smart cities. In Proceedings of the 9th International Conference on Cloud Com-

puting and Services Science, CLOSER 2019, Heraklion, Crete, Greece, May 2-4,

2019, pages 578583. SciTePress, 2019. doi: 10.5220/0007861005780583. URL

https://doi.org/10.5220/0007861005780583.

[4] Elmouatezbillah Karbab, Djamel Djenouri, Sahar Boulkaboul, and Antoine

B. Bagula. Car park management with networked wireless sensors and active

RFID. In IEEE International Conference on Electro/Information Technology, EIT

2015,Dekalb, IL, USA, May 21-23, 2015, pages 373378. IEEE, 2015. doi: 10.1109/EIT.

2015.7293372. URL https://doi.org/10.1109/EIT.2015.7293372.

108



Bibliography

[1] Rafiullah Khan, Sarmad Khan, Rifaqat Zaheer, and Shahid Khan. Future

internet: The internet of things architecture, possible applications and key

challenges. pages 257–260, 12 2012. ISBN 978-1-4673-4946-8. doi: 10.1109/

FIT.2012.53.

[2] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements, and

future directions. Future Gener. Comput. Syst., 29(7):16451660, September

2013. ISSN 0167-739X. doi: 10.1016/j.future.2013.01.010.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:

A survey. Comput. Netw., 54(15):27872805, October 2010. ISSN 1389-1286.

doi: 10.1016/j.comnet.2010.05.010.

[4] F. Alam, R. Mehmood, I. Katib, N.N. Albogami, and A. Albeshri. Data

fusion and iot for smart ubiquitous environments: A survey. IEEE Access,

5:9533–9554, 2017. doi: 10.1109/ACCESS.2017.2697839.

[5] Somayya Madakam, R Ramaswamy, and Siddharth Tripathi. Internet of

things (iot): A literature review. Journal of Computer and Communications,

3:164–173, 04 2015. doi: 10.4236/jcc.2015.35021.

[6] A. Juels. Rfid security and privacy: a research survey. IEEE Journal on

Selected Areas in Communications, 24(2):381–394, 2006.

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.

Internet of things: A survey on enabling technologies, protocols, and ap-

plications. IEEE Communications Surveys and Tutorials, 17(4):2347–2376,

2015. doi: 10.1109/COMST.2015.2444095.

[8] Vedat Coskun, Busra Ozdenizci, and Kerem Ok. A survey on near field

communication (nfc) technology. Wireless Personal Communications, 71,

08 2013. doi: 10.1007/s11277-012-0935-5.

109



[9] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor

network survey. Comput. Netw., 52(12):22922330, August 2008. ISSN 1389-

1286. doi: 10.1016/j.comnet.2008.04.002.

[10] Paolo Baronti, Prashant Pillai, Vince Chook, Stefano Chessa, Alberto Gotta,

and Yim Hu. Wireless sensor networks: A survey on the state of the art and

the 802.15.4 and zigbee standards. Computer Communications, 30:1655–

1695, 05 2007. doi: 10.1016/j.comcom.2006.12.020.

[11] Neil Gershenfeld. When things start to think. Coronet Books Hodder &

Stoughton, 1999. ISBN 978-0-8050-5874-1.

[12] Ruchi Garg and Sanjay Sharma. A study on need of adaptation layer in

6lowpan protocol stack. International Journal of Wireless and Microwave

Technologies, 7:49–57, 05 2017. doi: 10.5815/ijwmt.2017.03.05.

[13] Roy Thomas Fielding and Richard N. Taylor. Architectural Styles and the

Design of Network-Based Software Architectures. PhD thesis, 2000.

[14] G. Tanganelli, C. Vallati, and E. Mingozzi. Coapthon: Easy development of

coap-based iot applications with python. In 2015 IEEE 2nd World Forum

on Internet of Things (WF-IoT), pages 63–68, Los Alamitos, CA, USA, dec

2015. IEEE Computer Society. doi: 10.1109/WF-IoT.2015.7389028.

[15] Samir Chouali, Azzedine Boukerche, and Ahmed Mostefaoui. Towards a

formal analysis of mqtt protocol in the context of communicating vehicles.

In Proceedings of the 15th ACM International Symposium on Mobility Man-

agement and Wireless Access, MobiWac ’17, pages 129–136, New York, NY,

USA, 2017. ACM. ISBN 978-1-4503-5163-8. doi: 10.1145/3132062.3132079.

[16] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vzquez-Gallego, and

Jess Alonso-Zrate. A survey on application layer protocols for the internet

of things. Transaction on IoT and Cloud Computing, 1(1), January 2015.

doi: 10.5281/zenodo.51613.

[17] D. L. Hall and J. Llinas. An introduction to multisensor data fusion. Pro-

ceedings of the IEEE, 85(1):6–23, 1997. doi: 10.1109/5.554205.

[18] Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41

(1), January 2009. ISSN 0360-0300. doi: 10.1145/1456650.1456651.

110



[19] Bahador Khaleghi, Alaa Khamis, Fakhreddine O. Karray, and Saiedeh N.

Razavi. Multisensor data fusion: A review of the state-of-the-art. In-

formation Fusion, 14(1):28 – 44, 2013. ISSN 1566-2535. doi: https:

//doi.org/10.1016/j.inffus.2011.08.001.

[20] H.B Mitchell. Multi-sensor data fusion: An introduction, 2007.

[21] Data fusion. https://algo-data.quora.com/Data-Fusion-an-overview-of-

some-relevant-works, 2021.

[22] Hugh F. Durrant-Whyte. Sensor Models and Multisensor Integration, pages

73–89. Springer New York, New York, NY, 1990. ISBN 978-1-4613-8997-2.

doi: 10.1007/978-1-4613-8997-2 7.

[23] Federico Castanedo. A review of data fusion techniques. The Scientific

World Journal, 2013. doi: 10.1155/2013/704504.

[24] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of

things for smart cities. IEEE Internet of Things Journal, 1(1):22–32, 2014.

[25] Billy Pik Lik Lau, M. S. Hasala, Y. Zhou, N. Hassan, C. Yuen, Meng Zhang,

and U. Tan. A survey of data fusion in smart city applications. Inf. Fusion,

52:357–374, 2019.

[26] Nour-Eddin El Faouzi, Henry Leung, and Ajeesh Kurian. Data fusion in

intelligent transportation systems: Progress and challenges - a survey. Inf.

Fusion, 12(1):410, January 2011. ISSN 1566-2535. doi: 10.1016/j.inffus.

2010.06.001.

[27] Redowan Mahmud, Fernando Luiz Koch, and Rajkumar Buyya. Cloud-fog

interoperability in iot-enabled healthcare solutions. In Proceedings of the

19th International Conference on Distributed Computing and Networking,

ICDCN ’18, New York, NY, USA, 2018. Association for Computing Ma-

chinery. ISBN 9781450363723. doi: 10.1145/3154273.3154347.

[28] Rustem Dautov, Salvatore Distefano, and Rajkumaar Buyya. Hierarchical

data fusion for smart healthcare. Journal of Big Data, 6, 12 2019. doi:

10.1186/s40537-019-0183-6.

[29] Abder Rezak Benaskeur and Franois Rhaume. Adaptive data fusion and

sensor management for military applications. Aerospace Science and Tech-

nology, 11(4):327 – 338, 2007. ISSN 1270-9638. COGIS ’06.

111



[30] A. Sadeghi, C. Wachsmann, and M. Waidner. Security and privacy chal-

lenges in industrial internet of things. In 2015 52nd ACM/EDAC/IEEE De-

sign Automation Conference (DAC), pages 1–6, 2015. doi: 10.1145/2744769.

2747942.

[31] M. S. Mekala and P. Viswanathan. A survey: Smart agriculture iot

with cloud computing. In 2017 International conference on Microelec-

tronic Devices, Circuits and Systems (ICMDCS), pages 1–7, 2017. doi:

10.1109/ICMDCS.2017.8211551.

[32] Gang Sun, Victor Chang, Sheng-Uei Guan, Muthu Ramachandran, Jin Li,

and Dan Liao. Big data and internet of thingsfusion for different services

and its impacts. Future Generation Computer Systems, 86:1368–1370, 09

2018. doi: 10.1016/j.future.2018.05.022.

[33] Wenxiu Ding, Xuyang Jing, Zheng Yan, and Laurence Yang. A survey on

data fusion in internet of things: Towards secure and privacy-preserving

fusion. Information Fusion, 51, December 2018. doi: 10.1016/j.inffus.2018.

12.001.

[34] Yassine Himeur, Abdullah Alsalemi, Ayman Al-Kababji, Faycal Bensaali,

and Abbes Amira. Data fusion strategies for energy efficiency in buildings:

Overview, challenges and novel orientations. Information Fusion, 64:99 –

120, 2020. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2020.07.

003.

[35] Rustem Dautov, Salvatore Distefano, and Rajkumaar Buyya. Hierarchical

data fusion for smart healthcare. Journal of Big Data, 6, 12 2019. doi:

10.1186/s40537-019-0183-6.

[36] Nashreen Nesa and Indrajit Banerjee. Combining merkle hash tree and

chaotic cryptography for secure data fusion in iot. In Marina L. Gavrilova,

C. J. Kenneth Tan, Khalid Saeed, and Nabendu Chaki, editors, Transactions

on Computational Science, pages 85–105, Berlin, Heidelberg, 2020. Springer

Berlin Heidelberg. ISBN 978-3-662-61092-3.

[37] Ana Reyna, Cristian Martn, Jaime Chen, Enrique Soler, and Manuel Daz.

On blockchain and its integration with iot. challenges and opportunities.

Future Generation Computer Systems, 88:173 – 190, 2018. ISSN 0167-739X.

doi: https://doi.org/10.1016/j.future.2018.05.046.

112



[38] Klemen Kenda, Blaz Kazic, Erik Novak, and Dunja Mladeni. Streaming

data fusion for the internet of things. Sensors, 19:1955, 04 2019. doi: 10.

3390/s19081955.

[39] Rajiv Ranjan, Meisong Wang, Charith Perera, Prem Prakash Jayaraman,

Miranda Zhang, Peter Strazdins, and R.K. Shyamsundar. City data fusion:

Sensor data fusion in the internet of things. Int. J. Distrib. Syst. Technol.,

7(1):1536, January 2016. ISSN 1947-3532. doi: 10.4018/IJDST.2016010102.

[40] Jong-Woong Park, Sung-Han Sim, and Hyung-Jo Jung. Wireless displace-

ment sensing system for bridges using multi-sensor fusion. Smart Materials

and Structures., 23(4):045022, mar 2014. doi: 10.1088/0964-1726/23/4/

045022.

[41] S. Katoch, G. Muniraju, S. Rao, A. Spanias, P. Turaga, C. Tepedelenlioglu,

M. Banavar, and D. Srinivasan. Shading prediction, fault detection, and

consensus estimation for solar array control. In 2018 IEEE Industrial Cyber-

Physical Systems (ICPS), pages 217–222., 2018.

[42] Vincenzo Catania and Daniela Ventura. An approch for monitoring and

smart planning of urban solid waste management using smart-m3 platform.

volume 236, pages 24–31, 04 2014. ISBN 978-5-8088-0890-4. doi: 10.1109/

FRUCT.2014.6872422.

[43] Feng Tian. An agri-food supply chain traceability system for china based on

rfid and blockchain technology. pages 1–6, 06 2016. doi: 10.1109/ICSSSM.

2016.7538424.

[44] Sergio Consoli, Diego Reforgiato Recupero, Misael Mongiovi, Valentina Pre-

sutti, Gianni Cataldi, and Wladimiro Patatu. An urban fault reporting and

management platform for smart cities. In Proceedings of the 24th Interna-

tional Conference on World Wide Web, page 535540, New York, NY, USA,

2015. Association for Computing Machinery. ISBN 9781450334730. doi:

10.1145/2740908.2743910.

[45] F. Ahmed and Y.E. Hawas. An integrated real-time traffic signal system

for transit signal priority, incident detection and congestion management.

Transportation Research Part C: Emerging Technologies, 60(C):52–76, 2015.

doi: 10.1016/j.trc.2015.08.004.

[46] H. M. Hondori, M. Khademi, and Cristina V Lopes. Monitoring intake

gestures using sensor fusion (microsoft kinect and inertial sensors) for smart

113



home tele-rehab setting. In IEEE HIC 2012 Engineering in Medicine and

Biology Society Conference on Healthcare Innovation, Houston, TX, Nov 7-9

2012.

[47] S. Izumi and S. Azuma. Real-time pricing by data fusion on networks. IEEE

Transactions on Industrial Informatics, 14(3):1175–1185, 2018.

[48] Soumya Kanti Datta and Christian Bonnet. An edge computing architecture

integrating virtual IoT devices. In GCCE 2017, IEEE 6th Global Conference

on Consumer Electronics, October 24-27, 2017, Nagoya, Japan, Nagoya,

JAPON, 10 2017. doi: http://dx.doi.org/10.1109/GCCE.2017.8229253.

[49] Gabriel Mujica, Roberto Rodriguez-Zurrunero, Mark Richard Wilby, Jorge

Portilla, Ana Beln Rodrguez Gonzlez, Alvaro Araujo, Teresa Riesgo, and

Juan Jos Vinagre Daz. Edge and fog computing platform for data fusion of

complex heterogeneous sensors. Sensors, 18(11), 2018. ISSN 1424-8220. doi:

10.3390/s18113630.

[50] Florian Heimgaertner, Stefan Hettich, Oliver Kohlbacher, and Michael

Menth. Scaling home automation to public buildings: A distributed mul-

tiuser setup for openhab 2. In GIoTS, pages 1–6. IEEE, 2017.

[51] John Soldatos, Nikos Kefalakis, and Manfred Hauswirth. Openiot: Open

source internet-of-things in the cloud. In Interoperability and Open-Source

Solutions for the Internet of Things, pages 13–25, Cham, 2015. Springer

International Publishing. ISBN 978-3-319-16546-2.

[52] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of

things for smart cities. IEEE Internet of Things Journal, 1(1):22–32, 2014.

[53] H. Lee, B. Lee, K. Park, and R. Elmasri. Fusion techniques for reliable

information: A survey. International Journal of Digital Content Technology

and its Applications, 4(2):74–88, 2010. doi: 10.4156/jdcta.vol4.issue2.9.

[54] Bahador Khaleghi, Alaa Khamis, Fakhreddine O. Karray, and Saiedeh N.

Razavi. Multisensor data fusion: A review of the state-of-the-art. In-

formation Fusion, 14(1):28 – 44, 2013. ISSN 1566-2535. doi: https:

//doi.org/10.1016/j.inffus.2011.08.001.

[55] Y. Zheng. Methodologies for cross-domain data fusion: An overview. IEEE

Transactions on Big Data, 1(1):16–34, March 2015. ISSN 2332-7790. doi:

10.1109/TBDATA.2015.2465959.

114



[56] Ivan Miguel Pires, Nuno M. Garcia, Nuno Pombo, and Francisco Flrez-

Revuelta. From data acquisition to data fusion: A comprehensive review

and a roadmap for the identification of activities of daily living using mobile

devices. Sensors, 16(2), 2016. ISSN 1424-8220. doi: 10.3390/s16020184.

[57] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-

actions on Information Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.

1053964.

[58] Yaakov Bar-Shalom, Fred Daum, and Jim Huang. The probabilistic data

association filter. IEEE Control Systems Magazine, 29(6):82–100, 2009. doi:

10.1109/MCS.2009.934469.

[59] Roger Higdon. Multiple Hypothesis Testing. Springer New York, New York,

NY, 2013. ISBN 978-1-4419-9863-7. doi: 10.1007/978-1-4419-9863-7 1211.

[60] W. Sung, J. Chen, D. Huang, and Y. Ju. Multisensors realtime data fusion

optimization for iot systems. In 2014 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pages 2299–2304, 2014.

[61] P. Jorge Escamilla-Ambrosio and N. Mort. Hybrid kalman filter-fuzzy logic

adaptive multisensor data fusion architectures. The 42th IEEE Conference

on Decision and Control, 5:5215–5220, January 2004. doi: 10.1109/CDC.

2003.1272465.

[62] Jesse Read, Katrin Achutegui, and Joaqúın Mı́guez. A distributed particle
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Abstract : The emergence IoT is rapidly gaining ground in our modern society, aiming to improve the quality of life by 

connecting many smart devices, technologies and applications, for the purpose of exchanging data over the Internet. IoT 

devices will generate huge volumes of data in a rapid period of time and therefore require scalable solutions for dynamic and 

real-time processing of the generated data. Such solutions should provide a high level of accurate and reliable data for 

decision making. This requires data fusion, which is an efficient way for optimal use of a huge volume of data from multiple 

sources. We consider in this thesis the integration of IoT with edge, fog and cloud computing, the efficiency of data 

processing and fusion in terms of credibility, reliability, conflict, latency, and we propose several solutions. The first 

concerns the efficient processing of data in edge computing, which enables sophisticated services. The second approach is a 

hybrid computing-based IoT data management and control platform that enables heterogeneous resources, reliable 

connectivity and mobility, provides security, and contains services to merge data. heterogeneous. Numerical analysis and 

simulation results show that the proposed solutions allow significant savings in terms of energy consumption and reduction 

of lead times. The thesis also considers the state estimation in the average level of data fusion. We provide an improved 

distributed particulate filter algorithm to process target tracking in wireless sensor networks. It increases the estimation 

accuracy of the particulate filter, improves the efficiency of particle sampling, and improves the estimation performance. The 

simulation and numerical analysis results show the superiority of the proposed approach in terms of root mean square error 

and scalability. We have studied the problem of data fusion at the decision-making level. Reliability and conflicts are taken 

into account in our method by considering the information lifetime, the distance between sensors and features, reducing the 

computation and using combination rules based on the base probability assignment . This makes it possible to represent 

uncertain information or to quantify the similarity between two bodies of evidence. We compared the proposed solution with 

state-of-the-art data fusion methods, and using both benchmark data simulation and an actual data set from an intelligent 

building testbed. The results show that our solution outperforms methods in terms of reliability, accuracy and conflict 

handling. 

Keywords : Internet of Things;  Edge Computing;  Fog Computing;  Cloud Computing;  Dempster-Shafer theory;  Confict 

management; Energy consumption; Basic Probability Assignment; Similarity distance; Weighted evidences. 

 

Résumé : L'émergence de l'IoT gagne rapidement du terrain dans notre société moderne, visant à améliorer la qualité de vie 

en connectant de nombreux appareils, technologies et applications intelligents, dans le but d'échanger des données sur 

Internet. Les appareils IoT généreront d'énormes volumes de données dans un laps de temps rapide et nécessiteront donc des 

solutions évolutives pour le traitement dynamique et en temps réel des données générées. De telles solutions devraient fournir 

un niveau élevé de données précises et fiables pour la prise de décision.Cela nécessite une fusion données, qui est un moyen 

efficace pour une utilisation optimale d’un  volume énorme de données provenant de sources multiples. Nous considérons 

dans cette thèse l'intégration de l'IoT à edge, fog et au cloud computing, l'efficacité du traitement et de la fusion des données 

en termes de crédibilité, de fiabilité, de conflit, de latence, et nous proposons plusieurs solutions. La première concerne le 

traitement efficace des données dans l'edge computing, qui permet des services sophistiqués. La deuxième approche est une 

plate-forme de gestion et de contrôle des données de l'IoT basée sur le hybride computing qui permet des ressources 

hétérogènes, la fiabilité de la connectivité et la mobilité, assure la sécurité et contient des services pour fusionner les données 

dhétérogéne. L'analyse numérique et les résultats de simulation montrent que les solutions proposées permettent des 

économies significatives en termes de consommation d'énergie et de réduction des délais. La thèse considère également 

l'estimation d'état dans le niveau moyen de fusion de données. Nous proposons un algorithme de filtre à particules distribué 

amélioré pour traiter le suivi de cible dans les réseaux de capteurs sans fil. Il augmente la précision d'estimation du filtre à 

particules, améliore l'efficacité de l'échantillonnage des particules et améliore les performances d'estimation. Les résultats de 

simulation et d'analyse numérique montrent la supériorité de l'approche proposée en termes d'erreur quadratique moyenne et 

d'évolutivité. Nous avons étudié le problème de la fusion de données au niveau décisionnel. La fiabilité et les conflits sont 

pris en compte dans notre méthode en considérant la durée de vie des informations, la distance séparant les capteurs et les 

entités, en réduisant le calcul et en utilisant des règles de combinaison basées sur l'affectation de probabilité de base. Cela 

permet de représenter des informations incertaines ou de quantifier la similitude entre deux corpus de preuves. Nous avons 

comparé la solution proposée avec des méthodes de fusion de données de pointe, et en utilisant à la fois une simulation de 

données de référence et un ensemble de données réel à partir d'un testbed de bâtiment intelligent. Les résultats montrent que 

notre solution surpasse toutes les méthodes en termes de fiabilité, de précision et de gestion des conflits. 

Mots-clés : Internet des objets ; Edge Computing ; Fog Computing ; Cloud computing; théorie de Dempster-Shafer; Gestion 

de conflit ; consommation d'énergie; Affectation de probabilité de base; distance de similarité. 

 

ٌكتسب ظهور إنترنت الأشٌاء تقدمًا سرٌعًا فً مجتمعنا الحدٌث ، بهدف تحسٌن نوعٌة الحٌاة من خلال ربط العدٌد من الأجهزة والتقنٌات والتطبٌقات : ملخص

تولد أجهزة إنترنت الأشٌاء أحجامًا ضخمة من البٌانات فً فترة زمنٌة سرٌعة ، وبالتالً تتطلب حلولًً قابلة للتطوٌر . الذكٌة ، بغرض تبادل البٌانات عبر الإنترنت
وهذا . ٌجب أن توفر مثل هذه الحلول مستوى عالٍ من البٌانات الدقٌقة والموثوقة لًتخاذ القرار. للمعالجة الدٌنامٌكٌة وفً الوقت الفعلً للبٌانات التً تم إنشاؤها

نعتبر فً هذه الأطروحة تكامل إنترنت الأشٌاء مع الحافة . ٌتطلب دمج البٌانات ، وهً طرٌقة فعالة للاستخدام الأمثل لحجم ضخم من البٌانات من مصادر متعددة
الأول . ، والحوسبة السحابٌة والضبابٌة ، وكفاءة معالجة البٌانات ودمجها من حٌث المصداقٌة ، والموثوقٌة ، والتعارضات ، والكمون ، ونقترح العدٌد من الحلول

أما الأسلوب الثانً فهو عبارة عن نظام أساسً لإدارة بٌانات إنترنت الأشٌاء . ٌتعلق بالمعالجة الفعالة للبٌانات فً الحوسبة المتطورة ، والتً تتٌح خدمات متطورة
تظهر . والتحكم فٌها ٌعتمد على الحوسبة وٌتٌح موارد غٌر متجانسة واتصال وتنقل موثوق به وٌوفر الأمان وٌحتوي على خدمات لدمج البٌانات غٌر المتجانسة

تتناول الأطروحة أٌضًا تقدٌر الحالة فً . نتائج التحلٌل العددي والمحاكاة أن الحلول المقترحة تسمح بتوفٌر كبٌر من حٌث استهلاك الطاقة وتقلٌل المهل الزمنٌة
ٌزٌد من دقة تقدٌر . نقدم خوارزمٌة مرشح الجسٌمات الموزعة المحسنة لمعالجة تتبع الهدف فً شبكات الًستشعار اللاسلكٌة. المستوى المتوسط لدمج البٌانات

تظهر نتائج المحاكاة والتحلٌل العددي تفوق النهج المقترح من حٌث جذر متوسط . مرشح الجسٌمات ، وٌحسن كفاءة أخذ عٌنات الجسٌمات ، وٌحسن أداء التقدٌر
تؤخذ الموثوقٌة والتعارضات فً الًعتبار فً طرٌقتنا من خلال النظر . لقد درسنا مشكلة دمج البٌانات على مستوى إتخاد القرار. الخطأ التربٌعً وقابلٌة التوسع

هذا ٌجعل من الممكن . فً وقت المعلومات ، والمسافة بٌن المستشعرات والمٌزات ، وتقلٌل الحساب واستخدام قواعد المجموعة بناءً على تعٌٌن الًحتمال الأساسً
قارنا الحل المقترح بأحدث طرق دمج البٌانات ، وباستخدام كل من محاكاة البٌانات . تمثٌل معلومات غٌر مؤكدة أو تحدٌد التشابه بٌن مجموعتٌن من الأدلة

.تظهر النتائج أن حلنا ٌتفوق أداءا على الأسالٌب المدروسة من حٌث الموثوقٌة والدقة ومعالجة النزاعات. المعٌارٌة ومجموعة البٌانات الفعلٌة من اختبار بناء ذكً                        
انترنت الأشٌاء؛ حوسبة الحافة حوسبة الضباب؛ حوسبة سحابٌة؛ نظرٌة دٌمبستر شافر؛ إدارة الصراع؛ استهلاك الطاقة؛ الًحتمالٌة الأساسٌة ؛ : الكلمات المفتاحية

.مسافة التشابه ؛الأدلة المرجحة         


	1 General Introduction
	2 Backgroud
	2.1 Introduction
	2.2 Internet of Things
	2.3 Smart Objects
	2.4 Evolution of IoT
	2.5 IoT Architecture and Operation
	2.5.1 Layered Architecture
	2.5.2 Addressing
	2.5.3 Storage and Processing
	2.5.4 Visualization

	2.6 IoT Technology and Protocols
	2.6.1 Perception Layer
	2.6.2 Network Layer
	2.6.3 Middleware Layer
	2.6.4 Application Layer

	2.7 Data Processing in IoT and some Relevant Concepts
	2.7.1 Definition
	2.7.2 Data Processing Cycle

	2.8 Data Fusion in IoT
	2.8.1 Classification of Methods
	2.8.2 Data Fusion Applications in IoT

	2.9 Data Processing Challenges in IoT
	2.9.1 Big Data
	2.9.2 Heterogeneous
	2.9.3 Data Quality
	2.9.4 Energy Saving
	2.9.5 Security
	2.9.6 Real Time Data

	2.10 Conclusion

	3 Data Fusion Frameworks and Methods in IoT
	3.1 Introduction
	3.2 Data Processing Frameworks in IoT
	3.2.1 Classification and Taxonomy
	3.2.2 Description of some Solutions

	3.3 Mathematical Data Fusion Methods for IoT
	3.3.1 Classification and Taxonomy
	3.3.2 Evaluation Parameters and Performance Metrics

	3.4 State Estimation Methods Based on Distributed Particle Filter
	3.4.1 Distributed Particle Filter
	3.4.2 Kullback-Leibler Divergence
	3.4.3 Literature Overview and Discussion

	3.5 Dempster-Shafer Data Fusion Methods
	3.5.1 Principle and Classification
	3.5.2 Description of Modified Models
	3.5.3 Description of Modified Methods

	3.6 Conclusion

	4 Service-Based Frameworks for Data Processing in IoT
	4.1 Introduction
	4.2 Framework Based on Edge Computing
	4.2.1 Framework Description
	4.2.2 Framework Architecture
	4.2.3 IoT Data Processing in Edge Computing
	4.2.4 Implementation
	4.2.5 Performance Evaluation

	4.3 Hybrid Framework
	4.3.1 Framework Description
	4.3.2 IoT Data Processing Architecture
	4.3.3 Implementation
	4.3.4 Performance Evaluation

	4.4 Conclusion

	5 Distributed Particle Filter for Target Tracking and Data Processing in Wireless Sensor Networks
	5.1 Introduction
	5.2 Solution Description
	5.3 Problem Formulation
	5.3.1 State Estimation Technique
	5.3.2 System Model
	5.3.3 Similarity Distance

	5.4 Solution
	5.4.1 Belief Function Associated to a Probability Density
	5.4.2 Improved Particle Filter based on Similarity Distance

	5.5 Simulation and Comparative Analysis
	5.6 Conclusion

	6 DFIOT: Data Fusion for Internet of Things
	6.1 Introduction
	6.2 Solution Description
	6.2.1 Comparison Between Weighted Methods
	6.2.2 DFIOT Steps

	6.3 Simulation and Comparative Analysis
	6.4 Experimental Performance Evaluation
	6.4.1 BPA/Conflict of Hypothesis H1
	6.4.2 BPA/Conflict of Hypothesis H2
	6.4.3 Impact of Data Fusion Period

	6.5 Conclusion

	7 Conclusion and Future Directions
	7.1 Conclusion
	7.2 Future Research Directions




