
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

A/Mira University of Bejaia
Faculty of Exact Sciences

Computer Science Department

Master Thesis

In
Computer science

Option
Network and Security Administration

Theme

Deploying and Securing a High Availability
Kubernetes Cluster

Made by:

M r Anis Messaoudi & M r Ahmed Lounici

Supervised by:

M r Sofiane AISSANI, M r Mohand MOKTEFI & M r Youcef BELATTAF

the jury is made up of:

M r Karim AKILAL
M r Khaled BEDJOU
M r Sidali BELHOCINE

U. A/M Bejaia, July 2022.

Abstract

The microservices architectural style has been gaining popularity in recent years. In this
architectural style, small and loosely coupled modules are deployed and scaled independently
to compose cloud-native applications. Microservices are maintained and tested easily and
are faster at boot time. However, to fully leverage the benefits of the architectural style
of microservices, it is necessary to use technologies such as containerization. Therefore, in
practice, microservices are containerized in order to remain isolated and lightweight and are
orchestrated by orchestration platforms such as Docker Swarm or Kubernetes.

Therefore, in order to realize this thesis we have invested in learning the best DevOps
practices and mainstream containerization technologies mentioning Docker, and orchestration
tools mentioning Docker Swarm and Kubernetes.

Keywords : Virtualization; Container; Docker; Kubernetes; Orchestrator; Microservices,
Cloud-Native; Security; DevOps.

1

Agzul

Tawsit n lbenyan n tenfa timecṭah d tin yettuɣalen s imal d tagdudant xersum iseggasen-a

ineggura. Deg tewsit, ilmuden imecṭaḥ yettwasduklen s unammun axfifan d tid yettwasxedmen

ttwarsent ɣef ssellum d wudem amunnan iwakken ara d-xelqen isnassen "cloud natives". Tanfiwin

timecṭaḥ d tid yettwaṭfen arnu ttwaɛarḍent shala ɛeǧlent deg tazwara. Ihi, iwakken ad nefk s umata

ɣef tewsit n lbenyan n "microservices", ilaq ad teswasxdem tetiknulugit am "conteneurisation".

Arnu ɣur-s, deg tigawt, Tanfiwin timecṭah ttwaxedment "conteneurisés" iwakken ad qqiment d

tmunanin arnu fessus-it, ttwaselḥunt s tɣerɣert am "Docker Swarm akked Kubernetes".

Iwakken ad nessiweḍ ad nexdem tarist-a n nnig turagt, nefka azal i ulmad n tigawin yufraren

DevOps akked tiknulugit n conteneurisation, ad nebder Docker akked ullallen n uselḥu Docker

Swarm akked Kubernetes.

Iwalen n Tsarut : Virtualization; Container; Docker; Kubernetes; Orchestrator;

Microservices, Cloud-Native; Security; DevOps.

2

Résumé

Le style architectural des microservices devient de plus en plus populaire ces dernières an-
nées. Dans ce style, des petits modules faiblement couplés sont appliqués et mis à l’échelle
de manière indépendante pour créer des applications cloud natives. Les microservices sont
maintenus et testés facilement et sont plus rapides au démarrage. Cependant, afin de tirer
pleinement parti du style architectural des microservices, il est nécessaire d’utiliser des tech-
nologies telles que la conteneurisation. Ainsi, en pratique, les microservices sont conteneurisés
pour rester isolés et légers, et sont orchestrés par des plateformes d’orchestration comme Docker
Swarm et Kubernetes.

Par conséquent, afin de réaliser cette thèse, nous avons investi dans l’apprentissage des
meilleures pratiques DevOps et des technologies de conteneurisations, en mentionnant Docker
et les outils d’orchestration Docker Swarm et Kubernetes.

Mots clés : Virtualisation; Conteneur; Docker; Kubernetes; Orchestrateur; Microservices,
Cloud-Native; Securité; DevOps.

3

 ملخص

في هذا، يتم نشر وحدات صغيرة ومقترنة وتوسيع نطاقها . اكتسب نمط التطبيقات الدقيقة شعبية في السنوات الأخيرة

يتم صيانة الخدمات الصغيرة واختبارها بسهولة و التي تعتبر أسرع من حيث . بشكل مستقل لتأليف تطبيقات سحابية

الكاملة من فوائد الخدمات الدقيقة أو التطبيقات المصغرة، من الضروري استخدام ومع ذلك، للاستفادة . سرعة بدء التشغيل

لذلك، من الناحية العملية، يتم وضع الخدمات الدقيقة في حاويات من أجل إبقائها معزولة وخفيفة . تقنيات مثل الحاويات

 . Kubernetesو Docker Swarmالحجم ويتم تنظيمها بواسطة منصات تنسيق مثل

 Dockerوتقنيات الحاويات DevOpsلذلك، من أجل تحقيق هذه الأطروحة، استثمرنا في تعلم أفضل ممارسات

 .Kubernetesو Docker Swarmوأدوات التنسيق

؛ منسق ؛ التطبيقات المصغرة ؛ Kubernetes؛ Dockerالمحاكاة الافتراضية؛ حاوية ؛ : الكلمات المفتاحية

Cloud-Native ؛ الحماية ؛DevOps.

4

Acknowledgements

First of all, we would like to thank our dearest parents, siblings and friends who have stood
by us and shown us an endless amount of support and encouragement.

We would like to express our deepest gratitude to our supervisor Mr. Sofiane AISSANI
for accepting to supervise our work and providing us proper guidance and encouragement
throughout this research as well as thank him for his patience and understanding.

We would also like to express our appreciation for co-supervisor Mr. Mohand MOKTEFI
for taking time to review our work and give us thoughtful comments and recommendations
during the writing of this paper.

We would also like to thank our internship supervisor and director of EURL Tech Instinct
Mr. Youcef BELATTAF for taking time to guide us during these last months of work and for
providing the means and resources to help us in realizing this project.

Lastly, we thank the members of the jury for accepting to examine and evaluate our work.

5

Contents

General introduction 14

1 Background Concepts 16
1.1 Introduction . 16
1.2 Virtualization . 16

1.2.1 Virtual machine . 16
1.2.2 Hypervisor . 16
1.2.3 Containerization . 17
1.2.4 VM vs Container . 18

1.3 Microservices . 19
1.4 Linux . 19

1.4.1 Namespaces . 19
1.4.2 Cgroups . 20

1.5 Container Orchestration tools . 20
1.6 DevOps . 21

1.6.1 CI/CD . 22
1.6.2 GIT . 22

1.7 High Availability . 22
1.7.1 High availability cluster . 22

1.8 Network File System . 23
1.9 Conclusion . 23

2 Modern Deployment Infrastructure and Security 24
2.1 Introduction . 24
2.2 Docker . 24

2.2.1 Docker tools . 25
2.3 Docker Swarm . 26

2.3.1 Docker Swarm components and concepts 27
2.3.2 Network in Docker Swarm . 27
2.3.3 Security in Docker Swarm . 28
2.3.4 Storage in Docker Swarm . 28

2.4 Kubernetes . 30
2.4.1 Kubernetes architecture . 30
2.4.2 Kubernetes workloads . 31
2.4.3 Affinity . 32
2.4.4 Networking in Kubernetes . 33
2.4.5 Storage in Kubernetes . 34
2.4.6 Security in Kubernetes . 34

6

CONTENTS

2.4.7 Kubernetes installation . 36
2.4.8 Kubernetes cloud providers . 36

2.5 Kubernetes vs Docker Swarm . 37
2.6 Conclusion . 37

3 Analysis of current deployment 38
3.1 Introduction . 38
3.2 Analyzing the deployment architecture . 38
3.3 Services . 39

3.3.1 Nginx . 39
3.3.2 RabbitMQ . 40
3.3.3 Postgres . 41
3.3.4 Jhipster Microservices . 41
3.3.5 SIRH microservices . 43

3.4 ELK Stack . 45
3.4.1 Elasticsearch . 45
3.4.2 Logstash . 45
3.4.3 Kibana . 46
3.4.4 APM Server . 46
3.4.5 MetricBeat . 46
3.4.6 HeartBeat . 47

3.5 Microservices . 47
3.5.1 Postgres Admin . 47
3.5.2 SIRH Backoffice . 48
3.5.3 SIRH Front . 48
3.5.4 SIRH Employee-Portal . 48

3.6 Critics about the current deployment . 48
3.7 Conclusion . 49

4 Deploying and configuring the Kubernetes Cluster 50
4.1 Introduction . 50
4.2 New deployment architecture . 50
4.3 Cluster setup and microservices deployment 51

4.3.1 Creating a High Availability MicroK8s cluster 51
4.3.2 NFS for Persistent storage . 54
4.3.3 Deploying the ECK Stack . 56
4.3.4 Deploying Patroni . 61
4.3.5 Deploying pgAdmin . 61
4.3.6 Deploying Falco . 62
4.3.7 Deploying RabbitMQ . 63
4.3.8 Deploying SIRH Company-Management 64
4.3.9 Deploying SIRH Trackability . 65
4.3.10 Deploying SIRH Billing . 65
4.3.11 Deploying SIRH Pay . 66
4.3.12 Deploying Ingress . 66
4.3.13 Pushing configuration files to GitHub 70

4.4 Conclusion . 71

References 73

7

List of Figures

1 Tech Instinct logo.[75] . 14

1.1 Hypervisor types.[98] . 17
1.2 Containers.[77] . 17
1.3 Docker Engine Components.[89] . 18
1.4 Container vs virtual machine.[96] . 19
1.5 Namespaces.[76] . 20
1.6 Cgroups.[97] . 20
1.7 Container orchestration tools.[67] . 21
1.8 DevOps practices.[91] . 22
1.9 Network File System.[108] . 23

2.1 Docker architecture.[81] . 25
2.2 Docker Compose.[18] . 25
2.3 Docker Hub.[93] . 26
2.4 Docker Swarm architecture.[105] . 26
2.5 Implicit pre-Container storage.[104] . 28
2.6 Explicit Shared Storage.[104] . 29
2.7 Shared Multi-Host Storage.[104] . 29
2.8 Container Runtime Interface.[73] . 30
2.9 Kubernetes architecture.[38] . 31
2.10 Kubernetes Services.[2] . 33
2.11 Kubernetes Ingress.[26] . 34

3.1 Tech Instinct deployment architecture. 38
3.2 Nginx architecture.[87] . 39
3.3 RabbitMQ architecture.[3] . 40
3.4 Jhipster microservices architecture.[4] . 41
3.5 ELK Stack architecture.[40] . 45

4.1 New deployment architecture with Kubernetes. 50
4.2 MicroK8s installation command. 51
4.3 Generating token for node 2. 51
4.4 Joining node 2. 52
4.5 Generating token for node 3. 52
4.6 Joining node 3. 52
4.7 Nodes list. 52
4.8 Enabling storage and dns addons. 53
4.9 Checking MicroK8s cluster and HA status. 53
4.10 adding node-name label to nodes. 53

8

LIST OF FIGURES

4.11 Installing NFS server. 54
4.12 NFS directory. 54
4.13 Allowing access to the masters only. 54
4.14 Installing the CSI driver for NFS. 55
4.15 Checking driver status. 55
4.16 Creating StorageClass for NFS. 55
4.17 Setting the StorageClass. 56
4.18 Installing CRDs. 56
4.19 Installing the operator with its RBAC rules. 56
4.20 deploying Elasticsearch. 57
4.21 Elasticsearch status. 57
4.22 deploying Kibana. 57
4.23 Kibana status. 57
4.24 Kibana Web interface. 58
4.25 deploying APM. 58
4.26 APM status. 58
4.27 deploying Heartbeat. 59
4.28 Heartbeat status. 59
4.29 Heartbeat Web interface. 59
4.30 deploying Metricbeat. 60
4.31 Metricbeat status. 60
4.32 deploying Logstash. 60
4.33 Logstash status. 60
4.34 Deploying Patroni. 61
4.35 Deploying Patroni. 61
4.36 Deploying pgAdmin. 61
4.37 pgAdmin Web interface. 62
4.38 Deploying Falco. 62
4.39 Deploying Falco-sidekick. 63
4.40 Falco-sidekick Web interface. 63
4.41 Deploying RabbitMQ operator. 63
4.42 Deploying RabbitMQ cluster. 64
4.43 RabbitMQ Web interface. 64
4.44 Deploying SIRH Company-Management. 64
4.45 SIRH Company-Management status. 65
4.46 Deploying SIRH Trackability. 65
4.47 SIRH Company-Management status. 65
4.48 Deploying SIRH Billing. 65
4.49 SIRH Billing status. 66
4.50 Deploying Pay. 66
4.51 SIRH Pay status. 66
4.52 Enabling Ingress addons. 66
4.53 Deploying Ingress rules. 67
4.54 Checking Ingress status . 67
4.55 SIRH Front Authentication Web interface. 67
4.56 SIRH Backoffice Web interface. 68
4.57 SIRH Employee Portal Web interface. 68
4.58 SIRH Facturation Web interface. 69

9

LIST OF FIGURES

4.59 SIRH Front Web interface. 69
4.60 Setting up the repository. 70
4.61 Push to the public repository. 70
4.62 Push to the public repository. 71

10

List of Tables

1.1 Virtual machine vs container . 18

2.1 Kubernetes vs Docker Swarm . 37

3.1 Nginx information. 40
3.2 RabbitMQ information. 40
3.3 Postgres information. 41
3.4 SIRH Registry information. 42
3.5 SIRH Gateway information. 42
3.6 SIRH UAA information. 42
3.7 SIRH Company-Management information. 43
3.8 SIRH Pay information. 43
3.9 SIRH Trackability information. 44
3.10 SIRH Billing information. 44
3.11 SIRH Front-Authentication information. 44
3.12 Elasticsearch information. 45
3.13 Logstash information. 45
3.14 Kibana information. 46
3.15 APM-Server information. 46
3.16 MetricBeat information. 46
3.17 HeartBeat information. 47
3.18 PostgresAdmin information. 47
3.19 SIRH Facturation information. 47
3.20 SIRH Backoffice information. 48
3.21 SIRH Front information. 48
3.22 SIRH Employee-Portal information. 48

11

LIST OF ABBREVIATIONS

AKS Azure Kubernetes Service
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
APM Application Performance Management
CD Continuous Deployment
CI Continuous Integration
CLI Command Line interface
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit
CRI Container Runtime Interface
CRD Custom Resource Definitions
CSI Container Storage Interface
CSP Cloud Service Provider
DDoS Distributed Denial of Service
DNS Domain Same System
DVCS Distributed Version Control System
EKS Elastic Kubernetes Service
GKE Google Kubernetes Engine
ELK Elasticsearch, Logstash, and Kibana
GUI Graphical user interface
HA High Availability
IP Internet Protocol
IT Information Technology
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IMAP Internet Message Access Protocol
KVM Kernel-based Virtual Machines
K8S Kubernetes
LB Load Balancer
NAT Network Address Translation
NFS Network File System
OS Operating System
PKI Public Key Infrastructure
PoC Proof of Concept
POP3 Post Office Protocol
PV Persistent Volume
PVC Persistent Volume Claim
RAM Random Access Memory

12

LIST OF ABBREVIATIONS

RBAC Role-based access control
REST Representational State Transfer
SaaS Software as a service
SIRH Système d’Information Ressources Humaines
SCTP Stream Control Transmission Protocol
SME small and Medium-sized Enterprises
SMTP Simple Mail Transfer Protocol
SSH Secure Shell Protocol
SSO Single Sign On
STOMP Streaming Text Oriented Messaging Protocol
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
VM Virtual Machine
VMM Virtual Machine Monitor
vCPU virtual centralized processing unit
VPS Virtual Private Server
YAML YAML Ain’t Markup Language

13

General Introduction

Nowadays, IT technologies have continuously evolved to meet the challenges and demands
of users and organizations. Containerization has changed application development and deploy-
ment entirely. IT organizations have recognized the benefits of adopting containers for their
workflows because it provides businesses with a way to automate the deployment of modern
applications at scale. Containers also provide a more cost-effective method of deployment, as
applications run faster, consume fewer resources, and are portable and environment-agnostic,
all of which translate into cost savings. The usage of containers is growing, estimates that 90%
of global organizations will be running containerized applications in production by 2026. In
2020, Cloud Native Computing Foundation (CNCF) survey found that containers usage has
grown 300% since 2016, in May 2021 IDC study predicted a wholesale shift to containers in
three years where 80% of workloads will shift to or be created with containers and microser-
vices. It becomes extremely difficult to manage the container lifecycle and its management
when numbers increase dynamically with demand. Container orchestration platforms solved
the problem by automating the scheduling, deployment, scalability, load balancing, availabil-
ity, and networking of containers. Many container orchestration tools are available in the
market, such as Kubernetes, Docker Swarm, OpenShift, Nomad, and others. This raises the
question about what’s the difference between each platform and which orchestration platform
is more suitable for a business.[94]

Tech Instinct is an Algerian startup, based in Béjaïa, specializing in IT consulting and
production, founded in July 2018. It supports SMEs and start-ups to provide them with
the best technical advice and helps them to come up with the right solutions to meet their
needs. Tech Instinct possesses expertise in IT architectures, SaaS platform development, API
development, and web and mobile applications. Its strength comes from the experience of its
consultants, some of whom have been formed in the largest French companies. Tech Instinct
offers quality services at least equivalent to on-shore services (in France and Europe).[74]

Figure 1: Tech Instinct logo.[75]

Tech Instinct is using Docker to build and run their container images, and Docker Swarm as
a container orchestration tool, because it doesn’t take as much time to learn and implement
as other more complex orchestration tools.

14

General introduction

In this thesis and internship, we have analyzed and criticized the current deployment of
Tech Instinct and their services and applications, in order to propose a new deployment using
the mainstream and the widely used orchestration tool Kubernetes, and also while taking into
consideration the high availability (HA) of services, and applying solutions for the critics.

This thesis is divided into 4 parts. After talking about containerization and introducing the
internship host organization Tech Instinct in the introduction, the rest of this thesis and the
main contributions are structured as follows:

Chapter 1 Backgrounds Concepts, introduces the core concepts and important background
information of the research topic, we have talked about virtualization and containerization
technologies and the best development architecture that is Microservices, described and com-
pared between virtual machines and containers, and also presented the underlying technologies
of containers which are Namespaces and Cgroups. Then talked about orchestration tools and
DevOps practices. Finally, we have described the file protocol NFS and the concept of High
Availability.

Chapter 2 Modern Deployment Infrastructure and Security, introduces the modern deploy-
ment container virtualization technology mainly Docker, and the two container orchestration
tools Docker Swarm and Kubernetes, their components, concepts, storage, security, and net-
working within the cluster. We have finished the chapter by making a comparison between
the two orchestration tools.

In chapter 3 Analyze of current deployment, we have started by analyzing the deployment of
Tech Instinct, each applications and microservices. After finishing the analyze phase, we have
pointed out the issuses about the current deployment and explained the potential consequences.

In chapter 4 Deploying and configuring the Kubernetes Cluster, we have defined a plan for
the new deployment, then we have started on deploying the microservices and the applications.

15

Chapter 1

Background Concepts

1.1 Introduction

To better understand the scope of our project, in this chapter we introduce the background
concepts related to virtualization and containerization to describe and explain the relationship
between them. We will also discuss the practices and tools that we will use in our work.

1.2 Virtualization

Virtualization is a process of dividing the resources of a computer into multiple execution
environments for creating and running a virtual version of a device or resource, like servers,
storage resources, networks, or operating systems, by applying one or additional concepts or
technologies such as hardware and software partitioning, time-sharing, partial or complete
machine simulation, quality of service, emulation, and many others.[99]

1.2.1 Virtual machine

A VM or Virtual Machine is an emulation of a physical machine by using software, it works
like a computer within a computer. It runs on an isolated partition of its host computer
with its own CPU power, memory, operating system, and other resources. The users can run
applications on VMs and use them as they normally would on their workstations[121].

1.2.2 Hypervisor

Also known as a virtual machine monitor (VMM), is a computer software or firmware that
makes running multiple virtual machines (Guest Machine) on a Host Machine with different
operating systems possible by virtually sharing the host machine’s hardware resources such as
memory and CPU.[107]
Hypervisors can be divided into two categories:

Type-1 native or bare-metal hypervisors: Like KVM and it runs directly on the host’s
hardware.[100]

Type-2 or hosted hypervisors: Like Virtualbox, runs as a software layer on an operating
system.[100]

16

CHAPTER 1. BACKGROUND CONCEPTS

Figure 1.1: Hypervisor types.[98]

1.2.3 Containerization

Containerization is a form of virtualization, it is the packaging together of source code with
its necessary components like libraries, frameworks, and other dependencies so that they are
where applications run on an isolated lightweight executable called a container.[42]

1.2.3.1 Container

Container is a lightweight and portable package of software, it contains an application’s
code and needed configuration files, libraries and dependencies so that the application runs
quickly and reliably from one computing environment to another. It runs as a process, isolated
from all other processes using kernel Namespaces and Cgroups. Containers can run on local
machines, VMs or even deployed on the Cloud, they can run on any Operating system.[78]

Figure 1.2: Containers.[77]

1.2.3.2 Container Runtime Engine

A container engine is a software platform that supports building and running containers
based on container images. Today, the most widely known container engine is Docker, it can
be installed on the host’s operating system and becomes the medium for containers to share
the operating system resources with other running containers on the same computing system.
Container engines prepare storage to run the containers, allocate and isolate resources for use

17

CHAPTER 1. BACKGROUND CONCEPTS

of a container, and manage container’s deployment and life-cycle. A user or an orchestrator
can interact with the containers through the container engine, to give input, stop or start a
container, pull or push container images from or to a repository.[90]

Figure 1.3: Docker Engine Components.[89]

1.2.4 VM vs Container

Virtual machines are based on hardware virtualization, whereas containers are based on
OS virtualization, VMs and Containers are both “packages” that contain applications and
everything they need to run, but VMs also include the operating system itself. This makes
containers lightweight and faster to boot in comparison with VMs, and the fact that contain-
ers share the same OS, makes that OS and other containers vulnerable if a container gets
compromised.[96]

Features Container Vitrual machine
Virtualization[96] Operating System Virtualization Hardware Virtualization
Boot time[122] Fast Relatively slow
Type of OS[122] Same as Host OS Multiple independent OS

OS isolation Cgroups and Namespaces Machine Isolation
Size[122] Lightweight à Large

Security[122] Less secure More secure
OS updates/upgrades[95] On Host OS only On Each VM

Table 1.1: Virtual machine vs container

18

CHAPTER 1. BACKGROUND CONCEPTS

Figure 1.4: Container vs virtual machine.[96]

1.3 Microservices

Microservices are an architectural style that uses containers to develop a single application
as a set of small services. Each service runs in its own process. The services communicate
with clients, and often with each other, using lightweight protocols, often over messaging or
HTTP. This architecture allows for each service to scale or update without disrupting other
services in the application.[65]

1.4 Linux

Linux is a free open-source Unix-like operating system based on the Linux kernel, created
on September 17, 1991, by Linus Torvalds. Users can modify and create variations of the
source code, known as distributions such as Ubuntu, Fedora, and Arch. It’s commonly used
on servers, but Linux is also used for Desktop computers, smartphones, E-book readers like
Kindle and gaming consoles, etc.[116]

1.4.1 Namespaces

Namespace is the underlying linux feature behind containerization technologies like Docker.
It allows the system to restrict the resources that containerized processes see, and that ensures
none of them can interfere with one another, thus isolating independent processes from each
other. In other words, namespaces define the set of resources that a process can use. At
a high level, they allow fine-grain partitioning of global operating system resources such as
mounting points, network stack, and inter-process communication utilities. A powerful side
of namespace is that they limit access to system resources without the running process being
aware of the limitations.[117]

19

CHAPTER 1. BACKGROUND CONCEPTS

Figure 1.5: Namespaces.[76]

1.4.2 Cgroups

Control groups, usually referred to as Cgroups, are a Linux kernel feature which allow
processes to be organised into hierarchical groups whose usage of various types of resources
can then be limited and monitored. Cgroups are used to manage processes in many ways,
such as limiting the CPU, I/O, and memory resources that are available to a process or group
of process belonging to the Cgroup, change the priority of a group relative to other groups,
measure a group’s resource usage for accounting and billing purposes.[109]

Figure 1.6: Cgroups.[97]

1.5 Container Orchestration tools

Containers can be made highly scalable, which can be created on-demand. It is good
for a few containers but in the case of a cluster that consists of multiple nodes, on which
tens, hundreds, or even thousands of containers are running, it becomes extremely difficult
to manage the container life-cycle and its management when numbers increase dynamically
with demand. Container orchestration solves the problem by automating the scheduling,

20

CHAPTER 1. BACKGROUND CONCEPTS

deployment, scalability, load balancing, availability, and networking of containers. Container
orchestration is the automation of tasks such as:

• Provisioning and deployment

• Configuration and scheduling

• Resource allocation

• Load balancing and traffic routing

• Container availability

• Scaling or removing containers based on balancing workloads

Some of the well-known Container Orchestration tools are Kubernetes, OpenShift,
and Docker Swarm.[88]

Figure 1.7: Container orchestration tools.[67]

1.6 DevOps

DevOps is a set of practices, tools that automate and integrate the processes between
software development (Dev) and IT operations (Ops). DevOps to make short the systems
development life cycle and provide continuous delivery with high software quality. DevOps is
complementary to Agile software development, several DevOps aspects came from the Agile
methodology.[111]

21

CHAPTER 1. BACKGROUND CONCEPTS

Figure 1.8: DevOps practices.[91]

1.6.1 CI/CD

CI/CD is the combined practices of Continuous Integration (CI) and Continuous Deploy-
ment (CD), they are the culture, operational principles, and set of practices that application
development teams use to deliver code changes more frequently and reliably. Make it con-
crete. CI/CD is a DevOps and agile best practice,its automates integration and deployment,
allowing software development teams to focus on meeting their business needs while ensuring
code quality and software security.[110]

1.6.2 GIT

Git is a free and open-source Distributed Version Control System (DVCS), and it’s a DevOps
tool used to handle small to very large projects efficiently. Git is used to track changes in the
source code, so you have a record of what has been done, and you can go back to specific
versions that you need anytime and it enables multiple developers to work together on the
same project and every developer with his own version of code, they can create branches to
try to add some new features and merging those branches into the original code to implement
their changes in case it was successful.[112]

1.6.2.1 GitHub

GitHub is an open-source web-based interface and cloud-based service that uses Git, It’s a
social networking site for programmers that many companies and organizations use to facilitate
project management and collaboration.[113]

1.7 High Availability

High Availability (HA) is a characteristic that ensures that a system or application can
operate continuously without any downtime or disruption and an agreed-on operational per-
formance level is met.[114]

1.7.1 High availability cluster

Also known as HA cluster, fail-over cluster or Metrocluster Active/Active is group of com-
puters that support server applications that can be reliably used with a minimum or null
amount of down-time. If one server in a high availability cluster fails, the mission-critical app
is immediately restarted on another server the moment the fault is detected.[115]

22

CHAPTER 1. BACKGROUND CONCEPTS

1.8 Network File System

Network File System (NFS) is a networking protocol for distributed file sharing developed by
Sun Microsystems, it allows uses to access files and directories located on a remote computer
and perform actions like reading and writing as if they were on the local machine.[118]

Figure 1.9: Network File System.[108]

1.9 Conclusion

In this chapter, we have presented the basics of containerization and virtualization, also we
compared virtual machines and containers, and concluded that containers have an inherent
advantage over VMs due to the improvement of several performance metrics such as size,
storage, and boot-time. The next chapter will be devoted to talk about the modern deployment
infrastructure and technologies such as Docker and container orchestration tools Docker Swarm
and Kubernetes.

23

Chapter 2

Modern Deployment Infrastructure and
Security

2.1 Introduction

Businesses around the world increasingly rely on the benefits of container technology to
ease the burden of deploying and managing complex applications. Containers group all neces-
sary dependencies within one package. They are portable, fast, secure, scalable, and easy to
manage, making them the primary choice over traditional VMs. Nowadays, the most widely
used container engine is Docker. But to scale containers, it needs a container orchestration
tool—a framework for managing multiple containers. Today, the most prominent container
orchestration platforms are Docker Swarm and Kubernetes. They both come with advantages
and disadvantages, and they both serve a particular purpose. In this chapter, we will talk
about Docker, also about Docker Swarm and Kubernetes, and examine both to identify which
container orchestration tool is more suitable and for which scenario.

2.2 Docker

Docker (also known as Docker Engine) is a lightweight open-source software platform that
was written by the team at Docker, Inc. It allows users to build, run and deploy applica-
tions quickly, and separate applications from the infrastructure. So, they can deliver software
anywhere as long as Docker Engine is present since it uses OS-level virtualization to deliver
software packages known as containers, which are portable and have everything an application
needs to run including libraries, system tools, code, and runtime. Docker Engine is based on
the client-server architecture, where the Docker client communicates with the server (Docker
daemon) using a REST API. Docker daemon (Dockerd) does all the building, running, and
distribution of containers.[81]
Some of the reasons to use Docker are:

• Fast, consistent delivery of your applications.

• Responsive deployment and scaling.

• Running more workloads on the same hardware.

24

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

Figure 2.1: Docker architecture.[81]

2.2.1 Docker tools

2.2.1.1 Docker Desktop

Docker Desktop is an easy-to-install application for Mac and Windows environments, It’s
responsible for creating a Linux virtual machine to build and run containers in, it includes
different Docker tools such as Docker Engine, Docker CLI, and Docker Compose. Docker
Desktop is free for personal use, but a paid subscription is required for professional and business
use.[79]

2.2.1.2 Docker compose

Docker Compose is a tool for defining and running multi-container Docker applications, A
user can feed it a YAML configuration file (docker-compose.yml) that describes the services
an application needs and how they interact with each other. Using Docker Compose, users can
run multiple containers simultaneously and create multiple isolated environments on a single
host.[84]

Figure 2.2: Docker Compose.[18]

2.2.1.3 Docker Hub

Docker Hub is the largest library and community provided by Docker for container images,
Docker Hub is a cloud-based repository in which users and developer teams can get access to

25

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

free public repositories for storing and sharing images or can choose a subscription plan for
private repositories, they can also push their own Docker images into private repositories to
share between team members.[80]

Figure 2.3: Docker Hub.[93]

2.3 Docker Swarm

Docker swarm is an open-source container orchestration and scheduling tool built and man-
aged by Docker, It is the native clustering mode used by Docker that can be enabled to deploy
and manage multiple containers across multiple machines or also called nodes which together
form a cluster. One of the key benefits of using Docker Swarm is the high availability and load
balancing, which means that it will make sure to distribute the workload across worker nodes
and that each service will always be available.[85]

Figure 2.4: Docker Swarm architecture.[105]

26

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.3.1 Docker Swarm components and concepts

Below are the points for typical docker swarm components:

2.3.1.1 Nodes

A node is an instance of the Docker engine participating in the swarm, and there are two
types of nodes:

• Manager nodes
Manager nodes are used to dispatch tasks to worker nodes, and for orchestrating and
managing the functions of the swarm. a single node called the leader conducts orches-
tration tasks. If the leader node goes down, the other manager nodes select a new leader
to resume the orchestration and the maintenance of the swarm state.[82]
The manager node consists of:

◦ API: receives commands from users and creates new services.[102]

◦ Orchestrator: takes the definition of service and creates tasks.[102]

◦ Allocator: assigns IP addresses to tasks and services.[102]

◦ Scheduler: schedules tasks and assigns them to worker nodes.[102]

◦ Dispatcher : all the worker nodes connect and respond to it. Each worker will
report how many resources it has, and how many containers are run.[102]

• Worker nodes : receives tasks from manager nodes and execute required actions for
the swarm, such as starting or stopping a container. By default, manager nodes also
behave as worker nodes, but this behavior is configurable.[102]

2.3.1.2 Tasks

It carries a single Docker container and commands that define how that container will be
launched and how it will work.[102]

2.3.1.3 Services

It is the definition of the tasks to execute on the manager or worker nodes.[102]

2.3.1.4 Load balancing

The Swarm manager uses ingress load balancing to expose the services to the outside.[103]

2.3.2 Network in Docker Swarm

To connect between the different containers on the different hosts in a Swarm cluster, Docker
uses the overlay network, it handles the routing of each packet to and from the correct host
and the correct container. When you configure a Swarm or join a Docker host to an existing
Swarm, two new networks are created on that host: [86]

27

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.3.2.1 Ingress network

Ingress controls data traffic related to Swarm services, when a Swarm service is created
and does not connect to a user-defined overlay network, it connects to the ingress network by
default.[86]

2.3.2.2 Bridge network

It uses a software bridge that allows containers connected to the same bridge network to
communicate while providing isolation from containers that are not connected to that bridge
network.[86]

2.3.3 Security in Docker Swarm

Docker swarm manages security with the Public Key Infrastructure System (PKI), which
is built into Docker, making it easy to safely deploy a container orchestration system. The
nodes use Transport Layer Security (TLS) to authenticate, authorize, and encrypt the com-
munications with other nodes in the Swarm. Role-based access control (RBAC), also known
as role-based security, is used but only available in the Enterprise Edition. [83]

2.3.4 Storage in Docker Swarm

To store data in a Swarm cluster there are three types of storage to use:

2.3.4.1 Implicit pre-Container storage

It creates an implicit storage sandbox for the container, the directory "/var/lib/docker/volumes"
will be created on the host. If the container is removed the data will be lost.[104]

Figure 2.5: Implicit pre-Container storage.[104]

28

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.3.4.2 Explicit Shared Storage

It creates an explicit volume where the data will be stored, If the container is removed the
data will be lost, also it can be mapped to a directory in the host, so If the container is removed
the data is still on the host.[104]

Figure 2.6: Explicit Shared Storage.[104]

2.3.4.3 Shared Multi-Host Storage

All types of storage we discussed already make the containers non-portable, the data residing
on the host will not move with the container. By using distributed storage that is made
available to all hosts to expose their data over the internet on shared filesystems like Ceph,
GlusterFS, and Network File System (NFS).[104]

Figure 2.7: Shared Multi-Host Storage.[104]

29

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.4 Kubernetes

Often abbreviated as K8S, is an open-source platform container orchestration originally
developed by Google, it designed to automate software deployment, scaling, and management
of containerized applications.[69]

2.4.1 Kubernetes architecture

Kubernetes is an architecture that offers a couple of mechanisms for service discovery across
a cluster.

2.4.1.1 Nodes

Nodes are divided into two types:

• Worker node: is a worker machine that runs the K8S workloads, it can be a physical
machine or a virtual machine depending on the cluster. Kubernetes nodes are managed
by a control plane, each node can host one or more pods.[49]
Each node runs three main components:

◦ Kubelet: is a software agent that runs on each node in the cluster, and communi-
cates with the control plane. It allows the control plane to monitor the node.[37]

◦ Container Runtime: Kubernetes uses the Docker container as its default run-
time to run the images within the pod. Kubernetes supports multiple runtimes
using Container Runtime Interface(CRI) which is a plugin interface that enables
kubelet to use a variety of container runtimes. There are two types of the container
runtime, high-level and low-level, for example, Containerd is a high-level runtime
that pushes and pulls images and manages the lifecycle of running containers by
sending commands to a low-level container runtime such as runC. It is also possible
for containerd to support multiple low-level container runtimes.[10]

Figure 2.8: Container Runtime Interface.[73]

◦ Kube-proxy: is a network proxy that proxies the UDP, TCP, and SCTP network-
ing of each Node, and provides load balancing. It is responsible for maintaining
network rules on each node. The network rules enable network communication
between nodes and pods.[35]

• Master node: or control plane node is a node that controls and manages a set of worker
nodes and is responsible for making decisions about the cluster and pushing it towards
the desired state. For a more high-availability Kubernetes cluster, two or more master

30

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

nodes can be used.[39]
It has the following components to help manage worker nodes:

◦ Kube-APIserver: acts as the frontend to the cluster. It’s an entry point for all
the REST commands and external communication to the cluster is via the API-
Server.[33]

◦ Etcd: Is a key-value store that provides the backend database for Kubernetes. It
stores and replicates the entirety of the Kubernetes cluster state.[50]

◦ Kube-controller-manager: is a daemon that manages the Kubernetes control
loop, a control loop regulates the state of the system by watching the cluster state
through the APIserver and makes changes to move the current state towards the
desired state.[34]

◦ Cloud-controller-manager: The cloud-controller-manager runs in the control
plane as a replicated set of processes The cloud-controller-manager allows the con-
nection between the clusters and the cloud provider’s API and only runs controllers
specific to the cloud provider that is used.[8]

◦ Kube-scheduler: Monitors the newly created Pods without an assigned node,
and selects a node that they can run on.[36]

Figure 2.9: Kubernetes architecture.[38]

2.4.2 Kubernetes workloads

A workload is an application that runs on the K8S cluster, the pod is the smallest and
simplest object, each pod gets its IP address with which it can interact with other pods within
the cluster. Pod contains a container or more inside of it and they can communicate among
themselves via localhost. Pods have a defined lifecycle, if the pods crush or stop, new pods
need to be created to restore the normal state of the node. To automate the management of
the pods, Kubernetes provides several built-in workload resources.[71]

31

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.4.2.1 ReplicaSet

ReplicaSet is a process that ensures that there is always a stable set of running pods for
a particular workload. The ReplicaSet configuration defines the number of identical pods
required, and if a pod stops or fails, additional pods are created to compensate for the loss.[52]

2.4.2.2 Deployment

Deployment is a higher-level concept that manages ReplicaSets and provides declarative
updates to Pods, when a Deployment is created, it creates a ReplicaSet, and the it creates
pods according to the number specified. The Deployments scale the application by increasing
the number of running pods or updating the running application.[16]

2.4.2.3 StatefulSet

work much as a Deployment does, it manages the deployment and scaling of a set of pods,
and it guarantees the ordering and uniqueness of these pods.[57]

2.4.2.4 DaemonSet

ensures that all nodes (or some) are running exactly one copy of a pod. DaemonSets will
even create the pod on new nodes that are added to the cluster. DaemonSets are exceptionally
well suited for the Logs collection, node resource monitoring, and cluster storage.[12]

2.4.2.5 Operators

An Operator is an application-specific controller designed to extend the capabilities of Ku-
bernetes and simplify and automate the packaging, deployment, and management of Kuber-
netes applications. Operators are clients of K8S API and they acts as controllers for the
Custom Resources[66]

2.4.2.6 Custom Resource Definitions

CRDs are a way to extend the Kubernetes API for use cases that are not necessarily available
in a default Kubernetes installation. Like the other core Kubernetes resources, a CRD is
defined as YAML. The Kubernetes API server will process CRDs as it does to any other
resource, and report on the configuration content of a CRD to any authorized consumer of the
Kubernetes API.[11]

2.4.3 Affinity

There are two types of affinity: Kubernetes Node affinity and Kubernetes Pod affinity.

2.4.3.1 Node affinity

Node affinity allows a Pod to specify a scheduling constraint to assign it to a node or a
group of nodes.[5]

32

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.4.3.2 Pod Affinity

Pod affinity allows the user to specify the affinity constraint between the Pods using selectors,
for example, a user might want that specific Pods always run together on the same node or
that they run different nodes.[5]

2.4.4 Networking in Kubernetes

The Kubernetes network model specifies that every pod gets its IP address, containers
within a pod share the pod IP address and communicate with each other, and the pods can
communicate with the other pods in the cluster using pod IP addresses without using NAT.[9]
The concepts and resources behind networking in Kubernetes are:

2.4.4.1 Service

It groups identical Pods together to provide a way of abstracting access to them. The group
of pods backing each service is usually defined using a label selector.[56]
This diagram illustrates how services do work:

Figure 2.10: Kubernetes Services.[2]

There are four types of Services:

• ClusterIP: is the default service type, it allows services to be accessed only within the
cluster via a virtual IP address, known as the service Cluster IP.[56]

• NodePort: is the most basic way to expose the services to the internet from the IP
address of the node at the specified port number in the 30000-32767 range.[56]

• LoadBalancer :expose the service via an external Network Load Balancer. The exact
type of network load balancer depends on which public cloud provider is integrated with
the cluster. As long as the cloud provider supports the LB, This will be assigned to a
fixed IP address in the cloud.[56]

• ExternalName: is a special type of service that does not have selectors and any as-
signed ports or endpoints. it serves as a way to return an alias to an external service
residing outside the cluster.[56]

33

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.4.4.2 Ingress

Ingress Is an API object that gives HTTPS/HTTP routing policies to manage external users’
access to the services in the cluster using particular domains or URLs, it easily configures traffic
routing rules without having to create a set of load balancers or expose all services on a node.
Ingress can also be used to terminate SSL / TLS before load balancing to the service.[26]

Figure 2.11: Kubernetes Ingress.[26]

2.4.4.3 DNS

DNS Is a built-in service that is launched automatically, Kubernetes cluster provides a DNS
service, pods, and services are discoverable through the Kubernetes DNS service.[17]

2.4.4.4 Calico

Calico is open-source networking and network security solution for containers, virtual ma-
chines, and native host-based workloads. It enables Kubernetes workloads to communicate
seamlessly and securely.[1]

2.4.5 Storage in Kubernetes

Kubernetes storage architecture is based on Volumes as a central abstraction. Volumes can
be persistent or non-persistent.

Volume : Is a way to share file storage between containers in a Pod however, these Volumes
are still tied to the pod lifecycle, so if the Pod gets destroyed, the volume gets destroyed
with it.[64]

Persistent Volume : Unlike ordinary volumes, PVs are pieces of storage in the cluster as
the nodes, their lifecycle independent of any individual pod that uses the persistent
volume.[51]

Persistent Volumes Claim : Is a request from an application/user to create a persistent
volume and mount it to the pods. If a Persistent Volume that meets the requirements
exists or can be provisioned, the PVC will be bound to that PV.[51]

Storage Classe : Is an abstract underlying storage provider that enables dynamic storage
provisioning using PVC.[58]

2.4.6 Security in Kubernetes

Kubernetes offers several built-in security features which are used to help in securing the
cluster and the components.

34

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.4.6.1 The 4C’s of cloud-native security

Those “C’s” represent the different layers that need to be secured to meet overall security
goals and pass corresponding gates before exposing cloud-native applications to their cus-
tomers.

• Cloud :The Cloud layer refers to the infrastructure that runs servers, Cloud service
providers (CSPs) are responsible for setting up a secure cloud infrastructure. The most
common issues found in today’s Cloud systems are misconfigurations and challenges with
automation.[101]

• Cluster :The cluster layer consists of the Kubernetes components making up the worker
nodes and control plane. There are three main cluster elements that organizations need to
be concerned about: Cluster components, Cluster services, and Cluster networking.[101]

• Container :The container layer which is the container images contain vulnerabilities
that can be scanned. The issues such as image security, the use of unknown sources, and
weak privilege configurations are often overlooked by organizations. It is important to
regularly update containers to reduce exposure to known vulnerabilities and to scan and
audit every application running in containers.[101]

• Code :The code layer provides the highest level of security control, where it can re-
strict exposed endpoints, ports, and services to manage security risks, and also protect
communication between both internal and external services using TLS encryption.[101]

2.4.6.2 Secret

A secret is a secure object which stores sensitive data, such as passwords, OAuth tokens,
and SSH keys in the clusters. Storing sensitive data in Secrets is more secure than in Pod
specifications or in a container image in plaintext, so by using Secrets, confidential data doesn’t
need to be included in the application code.[55]

2.4.6.3 Role-based access control

RBAC is a method of granting and giving authorization to the users to access Kubernetes
API resources to perform a certain action.[63]
The RBAC API have four kinds of Kubernetes object:

• Role and ClusterRole: roles manage the permissions within a particular namespace,
so when a role is created, a namespace where it belongs needs to be specified, whereas
ClusterRole is used for non-namespaced resources such as nodes.[63]

• RoleBinding and ClusterRoleBinding: a role binding grants the permissions that
are defined in a role to users. It contains a list of subjects (users, groups, or service
accounts), and a reference to the assigned role. Permissions can be granted within a
namespace by using RoleBinding, or cluster-wide with a ClusterRoleBinding.[63]

2.4.6.4 ServiceAccount

In Kubernetes, service accounts are users managed by the Kubernetes API and used to
provide an identity for Pods. Pods that want to interact with the API server will have to
authenticate with a particular service account. By default, applications will authenticate as
the default service account in the namespace they are running in.[6]

35

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.4.6.5 Transport Layer Security

is used as a default security configuration to encrypt and protect the network traffic in the
cluster.[59]

2.4.7 Kubernetes installation

Kubernetes installation is one of the challenging topics of Kubernetes. This challenge occurs
because a multitude of installation methods exists, like Minikube, Kubeadm, Microk8s, and
other tools like Kubectl and Helm that used to interact and deploy on the cluster.

2.4.7.1 Microk8s

MicroK8s is a powerful, lightweight, and fully conformant Kubernetes distribution from
Canonical. It’s a minimalistic distribution focused on simplicity and performance by providing
the functionality of core Kubernetes components, in a small footprint, scalable from a single
node to a high-availability production cluster.[47]

2.4.7.2 Kubectl

Kubectl is the command-line interface tool that is installed with Microk8s and it is used to
run commands to interact with Kubernetes clusters. It provides an easy way to perform tasks
such as creating, managing, or deleting resources on your Kubernetes platform, Kubectl is an
essential tool.[27]

2.4.7.3 Helm

Helm is a Kubernetes deployment tool for automating creation, packaging, configuration,
and deployment of applications and services to Kubernetes clusters.[24]

2.4.8 Kubernetes cloud providers

The most popular and the major cloud providers provide managed Kubernetes services,
such as Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Service (EKS), Azure
Kubernetes Service (AKS), Red Hat’s OpenShift and others.[60]

36

CHAPTER 2. MODERN DEPLOYMENT INFRASTRUCTURE AND SECURITY

2.5 Kubernetes vs Docker Swarm

Features Kubernetes Docker Swarm
Installation[106] Complex installation Simple installation

GUI[106] Kubernetes dashboard No GUI
Scalability[106] Fast and high scalablity Very fast and high scalablity

Auto-
Scaling[106]

Support auto-scaling Does not support auto-scaling

Load
Balancing[106]

Manual load balancing Auto load balancing

Rolling Updates
and

Rollbacks[106]

Can deploy Rolling updates and
does automatic Rollbacks

Can deploy Rolling updates, but
not automatic Rollbacks

Data Volumes
[106]

Shared only with the containers
in the same Pod

Shared with any container

Logging and
Monitoring[106]

Built-in tools Third-party party like ELK

Table 2.1: Kubernetes vs Docker Swarm

2.6 Conclusion

In this chapter, we have explored the two containers orchestration tool Kubernetes and
Docker Swarm. Docker Swarm is a lightweight, easy-to-use orchestration tool with limited
offerings compared to Kubernetes. However, Kubernetes is complex but powerful and provides
self-healing, auto-scaling capabilities out of the box. Choosing an orchestration tool that is
best depends on the business needs. In the next chapter, we will study and analyze Tech
Instinct deployment and their microservices and applications.

37

Chapter 3

Analysis of current deployment
3.1 Introduction

After presenting in the previous parts the organization, and the concepts related to our
thesis, and the two container orchestration tools, we dedicate this chapter to analyzing the
Tech Instinct deployment such as networking, security, and storage, also their applications,
and microservices in order to understand the interactions between and the workings of the
infrastructure of the organization to identify the limits and issues with the current deployment,
and this will help us come up with an approach to realize our migration.

3.2 Analyzing the deployment architecture

This deployment is the one used by Tech Instinct in production environment:

Figure 3.1: Tech Instinct deployment architecture.

38

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

All the nodes are virtual machines (VPS) running on a Linux Ubuntu server with 8 GO of
RAM, 4 vCPU, and 200 GO of data storage.
The deployment architecture consists of two-part:

• Three nodes(nodes 1,2 and 3) run on the Docker Swarm cluster to manage the containers
that run on it, all the VMs are connected and communicate on all the needed ports
between them in a secure manner, and it can be reached from outside the cluster by
using HTTPs or SSH protocols.

• Three nodes(nodes 4,5 and 6) run Docker images in the default mode and not in the
Swarm mode. Each VM from the cluster is connected and communicates with all the
nodes on all the needed ports, it can be reached from outside the cluster by using HTTPs
or SSH protocols.

3.3 Services

In the current deployment set of services running on it:

3.3.1 Nginx

Nginx is an open-source software designed for web servers, reverse proxies, caching, load
balancing, and media streaming. It also has HTTP server functionality, acting as a proxy
server for email (IMAP, POP3, and SMTP) and as a reverse proxy and load balancer for
HTTP, TCP, and UDP servers. It is designed for low memory usage and high concurrency.
Instead of creating a new process for each web request, we use an asynchronous event-driven
approach where the request is processed by a single thread.[70]

Figure 3.2: Nginx architecture.[87]

39

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

Table 3.1: Nginx information.

3.3.2 RabbitMQ

RabbitMQ is a microservice known as a message-broker that supports multiple messaging
protocols, such as the Advanced Message Queuing Protocol (AMQP), Streaming Text Oriented
Messaging Protocol (STOMP), MQ Telemetry Transport (MQTT), and other protocols.[43]

Figure 3.3: RabbitMQ architecture.[3]

Table 3.2: RabbitMQ information.

40

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.3.3 Postgres

Postgres is a microservice running the PostgreSQL database, Postgres is a free and open-
source relational database management system, designed to work with different kinds of work-
loads, from single machines to data warehouses.[119]

Table 3.3: Postgres information.

3.3.4 Jhipster Microservices

JHipster or Java Hipster is a free and open-source development platform to quickly generate,
deploy, and develop modern web applications & microservice architectures.[30]

Figure 3.4: Jhipster microservices architecture.[4]

41

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.3.4.1 JHipster Registry

Registry is a key part of service discovery, it is a database microservice for the storage of
data structures for application-level communication, also it contains the network locations of
service instances.[31]

Table 3.4: SIRH Registry information.

3.3.4.2 SIRH Gateway

Gateway is a microservice that redirects and routes requests (layer 7 routings, usually HTTP
requests) to the endpoints of the internal microservices.[4]

Table 3.5: SIRH Gateway information.

3.3.4.3 SIRH UAA

UAA is a microservice that manages user authentication and authorization.[62]

Table 3.6: SIRH UAA information.

42

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.3.5 SIRH microservices

3.3.5.1 SIRH Company-Management

Company Management is an application built for businesses to manage companies, employ-
ees, establishments, and everything related to the organization of the company.

Table 3.7: SIRH Company-Management information.

3.3.5.2 SIRH Pay

Pay is an application that manages payroll, social and tax returns, reports, and exports.

Table 3.8: SIRH Pay information.

43

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.3.5.3 SIRH Trackability

Trackability is an application that records the tracks and all the events that happen on the
platform.

Table 3.9: SIRH Trackability information.

3.3.5.4 SIRH Billing

SIRH Billing is an application built for commercial management (invoicing, stocks, products,
purchases, etc).

Table 3.10: SIRH Billing information.

3.3.5.5 SIRH Front-Authentication

SIRH Front-Authentication is A web SSO system allows a user to log in using the SSO
web service with one set of credentials for authentication, which are unique usernames and
passwords. Then, this authentication allows them to access many other web-based applications
and password-protected websites.

Table 3.11: SIRH Front-Authentication information.

44

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.4 ELK Stack

The ELK Stack is a collection of three open-source products Elasticsearch, Logstash, and
Kibana.

Figure 3.5: ELK Stack architecture.[40]

3.4.1 Elasticsearch

Elasticsearch is An open-source search and analysis engine that can quickly store, search,
and analyze large amounts of data in near real-time and return answers in milliseconds.[68]

Table 3.12: Elasticsearch information.

3.4.2 Logstash

Logstash is a lightweight, open-source, server-side data processing pipeline that collects data
from a variety of sources and manages events and logs.[41]

Table 3.13: Logstash information.

45

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.4.3 Kibana

Kibana is a free and open frontend application that works as data visualization dashboard
software for Elasticsearch.[32]

Table 3.14: Kibana information.

3.4.4 APM Server

APM-Server is an application performance monitoring system built on the Elastic Stack. It
allows tracking of key performance-related information such as requests, responses, database
transactions, errors, etc.[20]

Table 3.15: APM-Server information.

3.4.5 MetricBeat

MetricBeat is a microservice that periodically collects metrics from the operating system
and services running on the server. It takes the collected statistics and sends them to the
specified output, such as Elasticsearch or Logstash.[44]

Table 3.16: MetricBeat information.

46

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.4.6 HeartBeat

Heartbeat is a lightweight daemon that is used to periodically check the status of the services
and determines whether they are available and reachable.[23]

Table 3.17: HeartBeat information.

3.5 Microservices

In the current depolyment set of services running on it.

3.5.1 Postgres Admin

PgAdmin is a web-based GUI microservice used to interact with the Postgres database
sessions and to connect the two instances of postgress that we have on the current deployment
architecture.[92]

Table 3.18: PostgresAdmin information.

3.5.1.1 SIRH Facturation

SIRH Facturation is an an AngularJS web application.

Table 3.19: SIRH Facturation information.

47

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.5.2 SIRH Backoffice

SIRH Backoffice is an an AngularJS web application.

Table 3.20: SIRH Backoffice information.

3.5.3 SIRH Front

SIRH Front is an an AngularJS web application.

Table 3.21: SIRH Front information.

3.5.4 SIRH Employee-Portal

SIRH Employee-Portal is an an AngularJS web application.

Table 3.22: SIRH Employee-Portal information.

3.6 Critics about the current deployment

• Running older versions of applications and services
Using older versions of applications and services can lead to crashes, decreased produc-
tivity, and cybersecurity vulnerabilities which can lead to security breaches.

• Running multiple different instances of Postgres can cause data loss
Two instances of Postgres running in master-slave mode lead to data loss if the master
instance or both instances stop since the slave instance takes on services in read-only
mode.

• Running multiple different instances of Rabbitmq can cause message loss
Only two instances of Rabbitmq running can cause message loss if both instances go
down

48

CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

• Using storage from working nodes for containers
Using local storage (on machines) for each container instance puts pressure on the net-
work and consumes bandwidth while replicating data between different container in-
stances on different nodes, and it can also cause data incoherence.

• No mechanism to detect intrusions and report them
It’s true that the different applications and services are using secure protocols and strong
passwords, but that does not exclude the possibility of someone intruding into the system,
so having a mechanism in place to monitor the system and detect such intrusions is
critical.

• Usage of plaintext passwords in configuration files
Passwords are used in plaintext in configuration files which can be stolen if someone gets
access to the files.

3.7 Conclusion

After having completed our study and analysis of the current deployment of microservices
and applications, we have identified the conditions to be met, and also we have described some
of the issues that should be fixed in the new deployment. In the next chapter, we will plan
our solution and put it into action.

49

Chapter 4

Deploying and configuring the
Kubernetes Cluster
4.1 Introduction

In the previous chapter, we have analyzed and studied the current deployment, and defined
the conditions that we will take into consideration in the new deployment. In this chapter,
we will set a plan for the new deployment, after that we will start deploying the microservices
and the applications.

4.2 New deployment architecture

Figure 4.1: New deployment architecture with Kubernetes.

50

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

This diagram represents the new deployment architecture, where we have used 4 VMs (VPS)
with 4 vCPU and 8 GO of RAM running on Ubuntu server 20.04 LTS, 3 of the machines are
dedicated to running the cluster which means the total of its resources is 12 vCPU and 24 GO
of RAM, and one is used as centralized storage using NFS protocol, with a storage capacity
of 200 GO.

4.3 Cluster setup and microservices deployment

4.3.1 Creating a High Availability MicroK8s cluster

High availability add-on gets enabled on MicroK8s by default for a cluster that consists of
three master nodes or more.[46]

4.3.1.1 Setting up the first node

MicroK8s installs as a snap package by running a single installing command on each node.[46]
Snap is a software packaging and deployment system developed by Canonical for operating
systems that use the Linux kernel.[120]

Figure 4.2: MicroK8s installation command.

4.3.1.2 Adding master nodes to the cluster

After installing MicroK8s on nodes 2 and 3 in the same way as in node 1 we add them to
the cluster.[46]

• Node 2 : On the node 1, we run this command to generate a token:

Figure 4.3: Generating token for node 2.

It returns a command with a joining token which should be executed on the MicroK8s
node that we wish to join the cluster.[46]

51

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Figure 4.4: Joining node 2.

• Node 3 : By following the same previous steps used to add node 2, we add node 3.[46]

Figure 4.5: Generating token for node 3.

Figure 4.6: Joining node 3.

To verify that the nodes are joined the cluster[46], we run this command:

Figure 4.7: Nodes list.

52

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.1.3 Enabling storage and DNS add-ons

To enable storage and DNS on the cluster [46],we should run those command:

Figure 4.8: Enabling storage and dns addons.

4.3.1.4 Checking MicroK8s cluster and HA status

After a restart of the cluster, to check the cluster status and whether High Availability is
set[46], we run the following command:

Figure 4.9: Checking MicroK8s cluster and HA status.

4.3.1.5 Setting node-name label for the nodes

Labeling nodes will help us in scheduling pods on specific nodes using Node affinity properties.[46]

Figure 4.10: adding node-name label to nodes.

53

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.2 NFS for Persistent storage

4.3.2.1 Setting up the NFS server

We install the nfs-kernel-server package[48] by running the command shown below:

Figure 4.11: Installing NFS server.

4.3.2.2 Creating an NFS Export Directory

Create a directory that is shared between client nodes, then remove any restrictions in
directory permissions, and grant read, write, and execute permissions for all the contents
inside the directory.[48]

Figure 4.12: NFS directory.

4.3.2.3 Allow the masters to mount the directory

Making sure that the nodes are allowed to mount this share. Node names are associated to
their IP addresses in the /etc/hosts file.[48]

Figure 4.13: Allowing access to the masters only.

54

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.2.4 Install the CSI driver for NFS

Deploy the NFS provisioner using the official Helm chart, then installing the Helm chart
under the kube-system namespace.[48]

Figure 4.14: Installing the CSI driver for NFS.

4.3.2.5 Checking the driver status

After deploying the Helm chart, we check the driver status by running a kubectl command.[48]

Figure 4.15: Checking driver status.

4.3.2.6 Creating a StorageClass for NFS

Creating a Kubernetes StorageClass to use the provisioner nfs.csi.k8s.io CSI driver, and
applying it.[48]

Figure 4.16: Creating StorageClass for NFS.

55

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

After that, We set the nfs-csi StorageClass to be the default one by running the kubectl
command.[48]

Figure 4.17: Setting the StorageClass.

4.3.3 Deploying the ECK Stack

4.3.3.1 Installing the CRDs

Custom Resource Definitions will be installed by running the following command:[15]

Figure 4.18: Installing CRDs.

4.3.3.2 Deploying the Operator with its RBAC rules

The Operator will automatically create and manage Kubernetes resources to achieve the
desired cluster state of Elasticsearch, Kibana, APM Server, Beats, etc.

The ECK Operator will be installed with its RBAC rules[15], by running the following com-
mand:

Figure 4.19: Installing the operator with its RBAC rules.

56

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.3.3 Deploying Elasticsearch

After creating Elasticsearch configuration YAML file, We deploy it on the cluster.[14]
Since this is only a PoC, the Elasticsearch cluster consists only of one node.

Figure 4.20: deploying Elasticsearch.

Checking Elasticsearch status.[14]

Figure 4.21: Elasticsearch status.

4.3.3.4 Deploying Kibana

After creating Kibana configuration YAML file, We deploy it on the cluster.[13]
Since this is only a PoC, the Kibana cluster consists only of one node.

Figure 4.22: deploying Kibana.

Checking Kibana status.[13]

Figure 4.23: Kibana status.

57

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking Kibana Web interface.

Figure 4.24: Kibana Web interface.

4.3.3.5 Deploying APM

After creating APM configuration YAML file, We deploy it on the cluster.[61]

Figure 4.25: deploying APM.

Checking APM status.[61]

Figure 4.26: APM status.

58

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.3.6 Deploying Heartbeat

After creating Heartbeat configuration YAML file, we deploy it on the cluster.[54]

Figure 4.27: deploying Heartbeat.

Checking Heartbeat deployment status.[54]

Figure 4.28: Heartbeat status.

Checking Heartbeat Web interface.

Figure 4.29: Heartbeat Web interface.

59

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.3.7 Deploying Metricbeat

After creating Metrictbeat configuration YAML file, we deploy it on the cluster.[53]

Figure 4.30: deploying Metricbeat.

Checking Metricbeat status.[53]

Figure 4.31: Metricbeat status.

4.3.3.8 Deploying Logstash

After creating Logstash configuration YAML file, we deploy it on the cluster.[72]

Figure 4.32: deploying Logstash.

Checking Logstash status.[72]

Figure 4.33: Logstash status.

60

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.4 Deploying Patroni

Patroni is a Python-based open-source PostgreSQL template and controller, Which can run
and manage High-Availability Postgres clusters.[29]

4.3.4.1 Deploying Patroni

After creating Patroni configuration YAML files, We deploy it on the cluster.[22]

Figure 4.34: Deploying Patroni.

Checking Patroni status.

Figure 4.35: Deploying Patroni.

4.3.5 Deploying pgAdmin

After creating PgAdmin YAML files, We deploy it on the cluster.[25]

Figure 4.36: Deploying pgAdmin.

61

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking pgAdmin Web interface.

Figure 4.37: pgAdmin Web interface.

4.3.6 Deploying Falco

Falco is the open source tool for continuous risk and threat detection across Kubernetes,
containers and cloud.It is continuously detecting unexpected behavior, configuration changes,
intrusions, and data theft in real time. Falco has a lot reports output options like exporting
into a file, Web server or a Slack channel, by by default it uses a simple WebUI that works as
output for displaying the latest events called Falcosidekick.[19]

4.3.6.1 Deploying Falco

After creating Falco configuration YAML files, We deploy it on the cluster.[7]

Figure 4.38: Deploying Falco.

62

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.6.2 Deploying Falco-sidekick

Falco-sidekick will be deployed using Helm charts[21], by running the following command :

Figure 4.39: Deploying Falco-sidekick.

Checking Falco-sidekick Web interface.

Figure 4.40: Falco-sidekick Web interface.

4.3.7 Deploying RabbitMQ

4.3.7.1 Deploying RabbitMQ Operator

RabbitMQ operator will be deployed[28], by running the following command :

Figure 4.41: Deploying RabbitMQ operator.

63

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.7.2 Deploying RabbitMQ cluster

After creating RabbitMQ cluster configuration YAML file[28], we deploy it on the cluster.

Figure 4.42: Deploying RabbitMQ cluster.

Checking RabbitMQ Web interface.

Figure 4.43: RabbitMQ Web interface.

4.3.8 Deploying SIRH Company-Management

After creating SIRH Company-Management configuration YAML files, We deploy it on the
cluster.

Figure 4.44: Deploying SIRH Company-Management.

64

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking SIRH Company-Management status.

Figure 4.45: SIRH Company-Management status.

4.3.9 Deploying SIRH Trackability

After creating SIRH Trackability configuration YAML files, We deploy it on the cluster.

Figure 4.46: Deploying SIRH Trackability.

Checking SIRH Trackability status.

Figure 4.47: SIRH Company-Management status.

4.3.10 Deploying SIRH Billing

After creating SIRH Billing configuration YAML files, We deploy it on the cluster.

Figure 4.48: Deploying SIRH Billing.

65

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking SIRH Billing status.

Figure 4.49: SIRH Billing status.

4.3.11 Deploying SIRH Pay

After creating SIRH Pay configuration YAML files, We deploy it on the cluster.

Figure 4.50: Deploying Pay.

Checking SIRH Pay status.

Figure 4.51: SIRH Pay status.

4.3.12 Deploying Ingress

4.3.12.1 Enabling Ingress addons

This addon adds an NGINX Ingress Controller for MicroK8s. It is enabled by running the
command:[45]

Figure 4.52: Enabling Ingress addons.

66

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.12.2 Deploying Ingress rules

Ingress rules can be deployed from the configuration YAML file, by running the following
command: [26]

Figure 4.53: Deploying Ingress rules.

4.3.12.3 Checking Ingress status

After deploying ingress rules, we checking it status.

Figure 4.54: Checking Ingress status

Checking SIRH Front Authentication Web interface.

Figure 4.55: SIRH Front Authentication Web interface.

67

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking SIRH Backoffice Web interface.

Figure 4.56: SIRH Backoffice Web interface.

Checking SIRH Employee Portal Web interface.

Figure 4.57: SIRH Employee Portal Web interface.

68

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking SIRH Facturation Web interface.

Figure 4.58: SIRH Facturation Web interface.

Checking SIRH Front Web interface.

Figure 4.59: SIRH Front Web interface.

69

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.13 Pushing configuration files to GitHub

We push the configuration files of the project to our public GitHub repository wh0kn0ws/k8s-
deployment

4.3.13.1 Setting up the repository

We start by initializing the local repository that contains our configurations files, then we
link it to the public GitHub repository, and we commit the new changes.

Figure 4.60: Setting up the repository.

4.3.13.2 Pushing the configuration to the public repository

We push the configuration files to the public GitHub repository.

Figure 4.61: Push to the public repository.

70

CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.13.3 Checking GitHub repository

After pushing the configuration files to the remote repository successfully, we can clearly
see the presence of the files in the public repository on GitHub platform.

Figure 4.62: Push to the public repository.

4.4 Conclusion

In this chapter, we have presented a diagram that explains the overall architecture and
the different components of the new deployment, after that, we have started setting up a
highly available Kubernetes cluster, NFS server, and deployed microservices and applications
succesfully. After finishing with the deployment, we created remote public repository to push
the configuration files to share and save the files, and to keep track of the future changes that
could be made to the deployment.

71

General conclusion and future
perspectives

Most companies and organizations are adopting the cloud-native approaches because of their
performance efficiency, which further lies in technologies like containerization, orchestration,
and microservices capable of providing highly scalable, light-weighted, portable, and flexible
solutions. Through this work, we aimed to review, analyze, and critique Tech Instinct deploy-
ment and its applications and microservices, and then proposed a solution by migrating from
a Docker Swarm cluster to a high-availability Kubernetes cluster.

In the future, We will be adding more nodes to the cluster to distribute the workloads more
efficiently and reduce the pressure on them, configure auto-scaling rules basing on traffic to
reduce downtime and respond to the high demand, protect against potential DDoS attacks,
and will also add more storage servers and configure a High Availability storage cluster.

72

Bibliography

[1] About calico. https://projectcalico.docs.tigera.io/about/about-calico. (Ac-
cessed on 06/10/2022).

[2] About kubernetes services. https://projectcalico.docs.tigera.io/about/
about-kubernetes-services. (Accessed on 06/06/2022).

[3] Amqp 0-9-1 model explained — rabbitmq. https://www.rabbitmq.com/tutorials/
amqp-concepts.html. (Accessed on 06/06/2022).

[4] Api gateway. https://www.jhipster.tech/api-gateway/. (Accessed on 06/06/2022).

[5] Assigning pods to nodes | kubernetes. https://kubernetes.io/docs/concepts/
scheduling-eviction/assign-pod-node. (Accessed on 06/27/2022).

[6] Authenticating | kubernetes. https://kubernetes.io/docs/reference/
access-authn-authz/authentication/. (Accessed on 06/06/2022).

[7] charts/falco at master · falcosecurity/charts · github. https://github.com/
falcosecurity/charts/tree/master/falco. (Accessed on 06/29/2022).

[8] Cloud controller manager | kubernetes. https://kubernetes.io/docs/concepts/
architecture/cloud-controller/. (Accessed on 06/06/2022).

[9] Cluster networking | kubernetes. https://kubernetes.io/docs/concepts/
cluster-administration/networking/. (Accessed on 06/06/2022).

[10] Container runtime interface (cri) | kubernetes. https://kubernetes.io/docs/
concepts/architecture/cri/. (Accessed on 06/06/2022).

[11] Custom resources | kubernetes. https://kubernetes.io/docs/concepts/
extend-kubernetes/api-extension/custom-resources/. (Accessed on 06/27/2022).

[12] Daemonset | kubernetes. https://kubernetes.io/docs/concepts/workloads/
controllers/daemonset/. (Accessed on 06/06/2022).

[13] Deploy a kibana instance | elastic cloud on kubernetes [2.3] | elastic. https://www.
elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-kibana.html. (Accessed
on 06/29/2022).

[14] Deploy an elasticsearch cluster | elastic cloud on kubernetes [2.3] | elastic. https://www.
elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html.
(Accessed on 06/29/2022).

73

https://projectcalico.docs.tigera.io/about/about-calico
https://projectcalico.docs.tigera.io/about/about-kubernetes-services
https://projectcalico.docs.tigera.io/about/about-kubernetes-services
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.jhipster.tech/api-gateway/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://github.com/falcosecurity/charts/tree/master/falco
https://github.com/falcosecurity/charts/tree/master/falco
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/architecture/cloud-controller/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/architecture/cri/
https://kubernetes.io/docs/concepts/architecture/cri/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-kibana.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-kibana.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html

BIBLIOGRAPHY

[15] Deploy eck in your kubernetes cluster | elastic cloud on kubernetes [2.3] | elastic. https:
//www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-eck.html. (Ac-
cessed on 06/29/2022).

[16] Deployments | kubernetes. https://kubernetes.io/docs/concepts/workloads/
controllers/deployment/. (Accessed on 06/06/2022).

[17] Dns for services and pods | kubernetes. https://kubernetes.io/docs/concepts/
services-networking/dns-pod-service/. (Accessed on 06/06/2022).

[18] Docker compose | neo kobo. https://neokobo.blogspot.com/2017/04/
docker-compose.html. (Accessed on 06/05/2022).

[19] The falco project | falco. https://falco.org/docs/. (Accessed on 06/15/2022).

[20] Free and open application performance monitoring | apm user guide [8.2] | elastic. https:
//www.elastic.co/guide/en/apm/guide/current/apm-overview.html. (Accessed on
06/06/2022).

[21] Github - falcosecurity/falcosidekick: Connect falco to your ecosystem. https://github.
com/falcosecurity/falcosidekick. (Accessed on 06/29/2022).

[22] Github - zalando/patroni: A template for postgresql high availability with etcd, con-
sul, zookeeper, or kubernetes. https://github.com/zalando/patroni. (Accessed on
06/15/2022).

[23] Heartbeat by elastic | docker hub. https://hub.docker.com/_/heartbeat. (Accessed
on 06/06/2022).

[24] Helm. https://helm.sh/. (Accessed on 06/06/2022).

[25] How to deploy pgadmin in kubernetes. https://www.enterprisedb.com/blog/
how-deploy-pgadmin-kubernetes. (Accessed on 06/15/2022).

[26] Ingress | kubernetes. https://kubernetes.io/docs/concepts/
services-networking/ingress/. (Accessed on 06/06/2022).

[27] Install tools | kubernetes. https://kubernetes.io/docs/tasks/tools/. (Accessed on
06/06/2022).

[28] Installing rabbitmq cluster operator in a kubernetes cluster — rabbitmq. https:
//www.rabbitmq.com/kubernetes/operator/install-operator.html. (Accessed on
06/29/2022).

[29] Introduction — patroni 2.1.4 documentation. https://patroni.readthedocs.io/en/
latest/. (Accessed on 06/26/2022).

[30] Jhipster - full stack platform for the modern developer! https://www.jhipster.tech/.
(Accessed on 06/06/2022).

[31] Jhipster registry. https://www.jhipster.tech/jhipster-registry/. (Accessed on
06/06/2022).

74

https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-eck.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-eck.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://neokobo.blogspot.com/2017/04/docker-compose.html
https://neokobo.blogspot.com/2017/04/docker-compose.html
https://falco.org/docs/
https://www.elastic.co/guide/en/apm/guide/current/apm-overview.html
https://www.elastic.co/guide/en/apm/guide/current/apm-overview.html
https://github.com/falcosecurity/falcosidekick
https://github.com/falcosecurity/falcosidekick
https://github.com/zalando/patroni
https://hub.docker.com/_/heartbeat
https://helm.sh/
https://www.enterprisedb.com/blog/how-deploy-pgadmin-kubernetes
https://www.enterprisedb.com/blog/how-deploy-pgadmin-kubernetes
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/tasks/tools/
https://www.rabbitmq.com/kubernetes/operator/install-operator.html
https://www.rabbitmq.com/kubernetes/operator/install-operator.html
https://patroni.readthedocs.io/en/latest/
https://patroni.readthedocs.io/en/latest/
https://www.jhipster.tech/
https://www.jhipster.tech/jhipster-registry/

BIBLIOGRAPHY

[32] Kibana: Explore, visualize, discover data | elastic. https://www.elastic.co/kibana/.
(Accessed on 06/06/2022).

[33] kube-apiserver | kubernetes. https://kubernetes.io/docs/reference/
command-line-tools-reference/kube-apiserver/. (Accessed on 06/06/2022).

[34] kube-controller-manager | kubernetes. https://kubernetes.io/docs/reference/
command-line-tools-reference/kube-controller-manager/. (Accessed on
06/06/2022).

[35] kube-proxy | kubernetes. https://kubernetes.io/docs/reference/
command-line-tools-reference/kube-proxy/. (Accessed on 06/06/2022).

[36] kube-scheduler | kubernetes. https://kubernetes.io/docs/reference/
command-line-tools-reference/kube-scheduler/. (Accessed on 06/06/2022).

[37] kubelet | kubernetes. https://kubernetes.io/docs/reference/
command-line-tools-reference/kubelet/. (Accessed on 06/06/2022).

[38] Kubernetes components | kubernetes. https://kubernetes.io/docs/concepts/
overview/components/. (Accessed on 06/06/2022).

[39] Kubernetes components | kubernetes. https://kubernetes.io/docs/concepts/
overview/components/. (Accessed on 06/06/2022).

[40] Logging aggregator · tmt common software (csw). https://tmtsoftware.github.io/
csw/commons/logging_aggregator.html. (Accessed on 06/06/2022).

[41] Logstash: Collect, parse, transform logs | elastic. https://www.elastic.co/logstash/.
(Accessed on 06/06/2022).

[42] Master 2 - thesis, deploying and securing a kubernetes cluster - online latex editor over-
leaf. https://www.overleaf.com/project/62801418836fa94030a2ee98. (Accessed on
06/08/2022).

[43] Messaging that just works — rabbitmq. https://www.rabbitmq.com/. (Accessed on
06/06/2022).

[44] Metricbeat overview | metricbeat reference [8.2] | elastic. https://www.elastic.
co/guide/en/beats/metricbeat/current/metricbeat-overview.html. (Accessed on
06/06/2022).

[45] Microk8s - addon: Ingress. https://microk8s.io/docs/addon-ingress. (Accessed on
06/28/2022).

[46] Microk8s - high availability (ha). https://microk8s.io/docs/high-availability.
(Accessed on 06/29/2022).

[47] Microk8s - microk8s documentation - home. https://microk8s.io/docs. (Accessed on
06/06/2022).

[48] Microk8s - use nfs for persistent volumes. https://microk8s.io/docs/nfs#
heading--nfs, journal=microk8s.io, language=en ,. (Accessed on 06/29/2022).

75

https://www.elastic.co/kibana/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://tmtsoftware.github.io/csw/commons/logging_aggregator.html
https://tmtsoftware.github.io/csw/commons/logging_aggregator.html
https://www.elastic.co/logstash/
https://www.overleaf.com/project/62801418836fa94030a2ee98
https://www.rabbitmq.com/
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-overview.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-overview.html
https://microk8s.io/docs/addon-ingress
https://microk8s.io/docs/high-availability
https://microk8s.io/docs
https://microk8s.io/docs/nfs#heading--nfs
https://microk8s.io/docs/nfs#heading--nfs

BIBLIOGRAPHY

[49] Nodes | kubernetes. https://kubernetes.io/docs/concepts/architecture/nodes/.
(Accessed on 06/06/2022).

[50] Operating etcd clusters for kubernetes | kubernetes. https://kubernetes.io/docs/
tasks/administer-cluster/configure-upgrade-etcd/. (Accessed on 06/06/2022).

[51] Persistent volumes | kubernetes. https://kubernetes.io/docs/concepts/storage/
persistent-volumes/. (Accessed on 06/06/2022).

[52] Replicaset | kubernetes. https://kubernetes.io/docs/concepts/workloads/
controllers/replicaset/. (Accessed on 06/06/2022).

[53] Run metricbeat on kubernetes | metricbeat reference [8.3] | elastic. https://www.
elastic.co/guide/en/beats/metricbeat/current/running-on-kubernetes.html.
(Accessed on 06/29/2022).

[54] Running heartbeat on kubernetes | heartbeat reference [8.3] | elastic. https://www.
elastic.co/guide/en/beats/heartbeat/current/running-on-kubernetes.html.
(Accessed on 06/29/2022).

[55] Secrets | kubernetes. https://kubernetes.io/docs/concepts/configuration/
secret/. (Accessed on 06/06/2022).

[56] Service | kubernetes. https://kubernetes.io/docs/concepts/
services-networking/service/. (Accessed on 06/06/2022).

[57] Statefulsets | kubernetes. https://kubernetes.io/docs/concepts/workloads/
controllers/statefulset/. (Accessed on 06/06/2022).

[58] Storage classes | kubernetes. https://kubernetes.io/docs/concepts/storage/
storage-classes/. (Accessed on 06/06/2022).

[59] Tls | kubernetes. https://kubernetes.io/docs/tasks/tls/_print/. (Accessed on
06/06/2022).

[60] Top 6 kubernetes as a service providers and why you need them -
aqua. https://www.aquasec.com/cloud-native-academy/kubernetes-101/
kubernetes-as-a-service/. (Accessed on 06/06/2022).

[61] Use an elasticsearch cluster managed by eck | elastic cloud on kubernetes
[2.3] | elastic. https://www.elastic.co/guide/en/cloud-on-k8s/current/
k8s-apm-eck-managed-es.html. (Accessed on 06/29/2022).

[62] Using jhipster uaa for microservice security. https://www.jhipster.tech/using-uaa/.
(Accessed on 06/06/2022).

[63] Using rbac authorization | kubernetes. https://kubernetes.io/docs/reference/
access-authn-authz/rbac/. (Accessed on 06/06/2022).

[64] Volumes | kubernetes. https://kubernetes.io/docs/concepts/storage/volumes/.
(Accessed on 06/06/2022).

[65] What are microservices? https://microservices.io/index.html. (Accessed on
06/05/2022).

76

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://www.elastic.co/guide/en/beats/metricbeat/current/running-on-kubernetes.html
https://www.elastic.co/guide/en/beats/metricbeat/current/running-on-kubernetes.html
https://www.elastic.co/guide/en/beats/heartbeat/current/running-on-kubernetes.html
https://www.elastic.co/guide/en/beats/heartbeat/current/running-on-kubernetes.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/tls/_print/
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-as-a-service/
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-as-a-service/
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-apm-eck-managed-es.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-apm-eck-managed-es.html
https://www.jhipster.tech/using-uaa/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/storage/volumes/
https://microservices.io/index.html

BIBLIOGRAPHY

[66] What is a kubernetes operator? - aqua. https://www.aquasec.com/
cloud-native-academy/kubernetes-101/kubernetes-operators/. (Accessed on
06/10/2022).

[67] What is container orchestration? definition & related faqs | avi net-
works. httpvinetworks.com/glossary/container-orchestration/. (Accessed on
06/05/2022).

[68] What is elasticsearch? | elastic. https://www.elastic.co/what-is/elasticsearch.
(Accessed on 06/06/2022).

[69] What is kubernetes? | kubernetes. https://kubernetes.io/docs/concepts/
overview/what-is-kubernetes/. (Accessed on 06/05/2022).

[70] What is nginx? - nginx. https://www.nginx.com/resources/glossary/nginx/. (Ac-
cessed on 06/06/2022).

[71] Workloads | kubernetes. https://kubernetes.io/docs/concepts/workloads/. (Ac-
cessed on 06/06/2022).

[72] How to deploy logstash and filebeat on kubernetes with eck and ssl
| by raphael de lio | medium. https://raphaeldelio.medium.com/
deploy-logstash-and-filebeat-on-kubernetes-with-eck-ssl-and-filebeat-d9f616737390,
Nov 2020. (Accessed on 06/29/2022).

[73] Kubernetes deprecating docker & kubernetes container run-
times: What you need to know | hcl blogs. https://web.
archive.org/web/20210923151939/https://www.hcltech.com/blogs/
kubernetes-deprecating-docker-and-kubernetes-container-runtimes-what-you-need-know,
Sep 2021. (Accessed on 06/06/2022).

[74] A propos - tech-instinct. https://tech-instinct.com/a-propos/, January 2021. (Ac-
cessed on 06/05/2022).

[75] Tech-instinct logo. "https://tech-instinct.com/", January 2021. (Accessed on
06/05/2022).

[76] What are namespaces and cgroups, and how do they work?2021, Jul2021.

[77] What is a container? - docker. https://www.docker.com/resources/what-container/,
Nov 2021. (Accessed on 06/08/2022).

[78] What is a container? - docker. https://www.docker.com/resources/what-container/,
November 2021. (Accessed on 06/05/2022).

[79] Docker desktop overview | docker. https://docs.docker.com/desktop/, Jun 2022. (Accessed
on 06/05/2022) Documentation.

[80] Docker hub quickstart | docker documentation. https://docs.docker.com/docker-hub/,
Jun 2022. (Accessed on 06/05/2022).

[81] Docker overview | docker documentation. https://docs.docker.com/get-started/
overview/, Jun 2022. (Accessed on 06/05/2022).

77

https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-operators/
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-operators/
httpvinetworks.com/glossary/container-orchestration/
https://www.elastic.co/what-is/elasticsearch
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.nginx.com/resources/glossary/nginx/
https://kubernetes.io/docs/concepts/workloads/
https://raphaeldelio.medium.com/deploy-logstash-and-filebeat-on-kubernetes-with-eck-ssl-and-filebeat-d9f616737390
https://raphaeldelio.medium.com/deploy-logstash-and-filebeat-on-kubernetes-with-eck-ssl-and-filebeat-d9f616737390
https://web.archive.org/web/20210923151939/https://www.hcltech.com/blogs/kubernetes-deprecating-docker-and-kubernetes-container-runtimes-what-you-need-know
https://web.archive.org/web/20210923151939/https://www.hcltech.com/blogs/kubernetes-deprecating-docker-and-kubernetes-container-runtimes-what-you-need-know
https://web.archive.org/web/20210923151939/https://www.hcltech.com/blogs/kubernetes-deprecating-docker-and-kubernetes-container-runtimes-what-you-need-know
https://tech-instinct.com/a-propos/
https://tech-instinct.com/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.docker.com/desktop/
https://docs.docker.com/docker-hub/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/

BIBLIOGRAPHY

[82] How nodes work | docker documentation. https://docs.docker.com/engine/swarm/
how-swarm-mode-works/nodes/#manager-nodes, Jun 2022. (Accessed on 06/05/2022).

[83] Manage swarm security with public key infrastructure (pki) | docker documentation. https:
//docs.docker.com/engine/swarm/how-swarm-mode-works/pki/, Jun 2022. (Accessed on
06/05/2022).

[84] Overview of docker compose | docker documentation. https://docs.docker.com/compose/,
Jun 2022. (Accessed on 06/05/2022).

[85] Swarm mode overview | docker documentation. https://docs.docker.com/engine/swarm/,
Jun 2022. (Accessed on 06/05/2022).

[86] Use overlay networks | docker documentation. https://docs.docker.com/network/
overlay/, Jun 2022. (Accessed on 06/05/2022).

[87] Abdalrhmanalkraien. Intro to nginx web server (part 1).
=https://medium.com/javarevisited/intro-to-nginx-web-server-part-1-bb590fad7035, Feb
2022. (Accessed on 06/06/2022).

[88] Asad Ali. 14 container orchestration tools for devops. https://geekflare.com/
container-orchestration-software/, Jul 2020. (Accessed on 06/05/2022).

[89] Kumar Atul. Docker architecture | docker resource isola-
tion | lifecycle. https://k21academy.com/docker-kubernetes/
docker-architecture-docker-engine-components-container-lifecycle/, June 2020.
(Accessed on 06/05/2022).

[90] Stephen J. Bigelow. A breakdown of container runtimes for kuber-
netes and docker. https://www.techtarget.com/searchitoperations/tip/
A-breakdown-of-container-runtimes-for-Kubernetes-and-Docker, October 2021.
(Accessed on 06/05/2022).

[91] Wikimedia Commons. File:devops-nshe free media repository. https://commons.wikimedia.
org/w/index.php?title=File:Devops-toolchain.svg&oldid=504012285, 2020. (Accessed
on 06/05/2022).

[92] Aveek Das. An overview of pgadmin – postgresql management tool.
=https://www.sqlshack.com/an-overview-of-pgadmin-postgresql-management-tool/, Jun
2021.

[93] durgeshkashyap. Dockerfile tutorial | dockerfile example | 2021 - infohubblog. https://
infohubblog.com/dockerfile-tutorial-dockerfile-example.html, Aug 2021. (Accessed
on 06/05/2022).

[94] Richard Hatheway. Why enterprise it organizations will benefit from
application containerization. https://www.cio.com/article/189567/
why-enterprise-it-organizations-will-benefit-from-application-containerization.
html, November 2021. (Accessed on 06/05/2022).

[95] Gerend Jason. Containers vs virtual machines. =https://docs.microsoft.com/en-
us/virtualization/windowscontainers/about/containers-vs-vm, Oct 2021. (Accessed on
06/05/2022).

78

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/#manager-nodes
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/pki/
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
=
https://geekflare.com/container-orchestration-software/
https://geekflare.com/container-orchestration-software/
https://k21academy.com/docker-kubernetes/docker-architecture-docker-engine-components-container-lifecycle/
https://k21academy.com/docker-kubernetes/docker-architecture-docker-engine-components-container-lifecycle/
https://www.techtarget.com/searchitoperations/tip/A-breakdown-of-container-runtimes-for-Kubernetes-and-Docker
https://www.techtarget.com/searchitoperations/tip/A-breakdown-of-container-runtimes-for-Kubernetes-and-Docker
https://commons.wikimedia.org/w/index.php?title=File:Devops-toolchain.svg&oldid=504012285
https://commons.wikimedia.org/w/index.php?title=File:Devops-toolchain.svg&oldid=504012285
=
https://infohubblog.com/dockerfile-tutorial-dockerfile-example.html
https://infohubblog.com/dockerfile-tutorial-dockerfile-example.html
https://www.cio.com/article/189567/why-enterprise-it-organizations-will-benefit-from-application-containerization.html
https://www.cio.com/article/189567/why-enterprise-it-organizations-will-benefit-from-application-containerization.html
https://www.cio.com/article/189567/why-enterprise-it-organizations-will-benefit-from-application-containerization.html
=

BIBLIOGRAPHY

[96] Doug Jones. Containers vs. virtual machines (vms): What’s the difference?
=https://www.netapp.com/blog/containers-vs-vms/, Mar 2018. (Accessed on 06/05/2022).

[97] Stefanie Lai. Layer-by-layer cgroup in kubernetes. =https://medium.com/geekculture/layer-
by-layer-cgroup-in-kubernetes-c4e26bda676c, Nov 2021. (Accessed on 06/05/2022).

[98] Dac-Nhuong Le, Raghvendra Kumar, Gia Nhu Nguyen, and Jyotir Moy Chatterjee. Cloud
Computing and Virtualization, page 23. John Wiley & Sons, Inc., Hoboken, NJ, USA, Mar
2018. (Accessed on 06/05/2022).

[99] Dac-Nhuong Le, Raghvendra Kumar, Gia Nhu Nguyen, and Jyotir Moy Chatterjee. Cloud
Computing and Virtualization, page 16. John Wiley & Sons, Inc., Hoboken, NJ, USA, Mar
2018. (Accessed on 06/05/2022).

[100] Dac-Nhuong Le, Raghvendra Kumar, Gia Nhu Nguyen, and Jyotir Moy Chatterjee. Cloud
Computing and Virtualization, page 22. John Wiley & Sons, Inc., Hoboken, NJ, USA, Mar
2018. (Accessed on 06/05/2022).

[101] Magno Logan. Securing the 4 cs of cloud-native systems: Cloud,
cluster, container, and code - security news. https://www.
trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/
securing-the-4-cs-of-cloud-native-systems-cloud-cluster-container-and-code,
May 2020. (Accessed on 06/30/2022).

[102] Marek Moravcik and Martin Kontsek. Overview of docker container orchestration tools. In
2020 18th International Conference on Emerging eLearning Technologies and Applications
(ICETA), page 476, Košice, Slovenia, Nov 2020. IEEE. (Accessed on 06/05/2022).

[103] Marek Moravcik and Martin Kontsek. Overview of docker container orchestration tools. In
2020 18th International Conference on Emerging eLearning Technologies and Applications
(ICETA), page 477, Košice, Slovenia, Nov 2020. IEEE. (Accessed on 06/05/2022).

[104] Janakiram MSV. Managing persistence for docker containers – the new stack. https:
//thenewstack.io/methods-dealing-container-storage/, Sep 2016. (Accessed on
06/05/2022).

[105] Stefan Scherer. Run a local windows docker swarm. https://stefanscherer.github.io/
build-your-local-windows-docker-swarm/, March 2016. (Accessed on 06/05/2022).

[106] Jay Shah and Dushyant Dubaria. Building modern clouds: Using docker, kubernetes & google
cloud platform. In 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), page 0189, Las Vegas, NV, USA, Jan 2019. IEEE.

[107] WMWare Staff. What is a hypervisor? https://www.vmware.com/topics/glossary/
content/hypervisor.html. (Accessed on 06/05/2022).

[108] ZindagiTechnologies.Nfsisfile−levelstorage,allocatedbysharedstorage,Feb2022. [Online;accessed6−June−2022].

[109] Wikipedia contributors. Cgroups — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Cgroups&oldid=1091179269, 2022. (Accessed on
06/05/2022)=.

79

=
=
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/securing-the-4-cs-of-cloud-native-systems-cloud-cluster-container-and-code
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/securing-the-4-cs-of-cloud-native-systems-cloud-cluster-container-and-code
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/securing-the-4-cs-of-cloud-native-systems-cloud-cluster-container-and-code
https://thenewstack.io/methods-dealing-container-storage/
https://thenewstack.io/methods-dealing-container-storage/
https://stefanscherer.github.io/build-your-local-windows-docker-swarm/
https://stefanscherer.github.io/build-your-local-windows-docker-swarm/
https://www.vmware.com/topics/glossary/content/hypervisor.html
https://www.vmware.com/topics/glossary/content/hypervisor.html
https://en.wikipedia.org/w/index.php?title=Cgroups&oldid=1091179269
https://en.wikipedia.org/w/index.php?title=Cgroups&oldid=1091179269

BIBLIOGRAPHY

[110] Wikipedia contributors. "ci/cd — Wikipedia, the free encyclopedia". https://enCI/CD&
oldid=10809, 2022. (Accessed on 06/05/2022).

[111] Wikipedia contributors. Devops — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=DevOps&oldid=1090566794, 2022. (Accessed on 06/05/2022).

[112] Wikipedia contributors. Git — Wikipedia,note = (Accessed on 06/05/2022), the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Git&oldid=1089059306, 2022.

[113] Wikipedia contributors. Github — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=GitHub&oldid=1095216695, 2022. [Online; accessed 2-July-2022].

[114] Wikipedia contributors. High availability — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=High_availability&oldid=1085124228, 2022. [On-
line; accessed 6-June-2022].

[115] Wikipedia contributors. High-availability cluster — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=High-availability_cluster&
oldid=1085114380, 2022. [Online; accessed 26-June-2022].

[116] Wikipedia contributors. Linux — Wikipedia, the free encyclopedia. https://en.wikipedia.
org/w/index.php?title=Linux&oldid=1091428024, 2022. (Accessed on 06/05/2022).

[117] Wikipedia contributors. Linux namespaces — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Linux_namespaces&oldid=1090068250, 2022. (Ac-
cessed on 06/05/2022).

[118] Wikipedia contributors. Network file system — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Network_File_System&oldid=1089090313, 2022. [On-
line; accessed 6-June-2022].

[119] Wikipedia contributors. Postgresql — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=PostgreSQL&oldid=1089176863, 2022. [Online; ac-
cessed 6-June-2022].

[120] Wikipedia contributors. Snap (software) — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Snap_(software)&oldid=1095218727, 2022. [Online;
accessed 2-July-2022].

[121] Wikipedia contributors. Virtual machine — Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=1086757768, 2022. (Ac-
cessed on 06/05/2022).

[122] Anuj Kumar Yadav, M. L. Garg, and Ritika. Docker Containers Versus Virtual Machine-
Based Virtualization, volume 814, page 147. Springer Singapore, Singapore, 2019. (Accessed
on 06/05/2022).

80

https://enCI/CD&oldid=10809
https://enCI/CD&oldid=10809
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=1090566794
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=1090566794
https://en.wikipedia.org/w/index.php?title=Git&oldid=1089059306
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=1095216695
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=1095216695
https://en.wikipedia.org/w/index.php?title=High_availability&oldid=1085124228
https://en.wikipedia.org/w/index.php?title=High_availability&oldid=1085124228
https://en.wikipedia.org/w/index.php?title=High-availability_cluster&oldid=1085114380
https://en.wikipedia.org/w/index.php?title=High-availability_cluster&oldid=1085114380
https://en.wikipedia.org/w/index.php?title=Linux&oldid=1091428024
https://en.wikipedia.org/w/index.php?title=Linux&oldid=1091428024
https://en.wikipedia.org/w/index.php?title=Linux_namespaces&oldid=1090068250
https://en.wikipedia.org/w/index.php?title=Linux_namespaces&oldid=1090068250
https://en.wikipedia.org/w/index.php?title=Network_File_System&oldid=1089090313
https://en.wikipedia.org/w/index.php?title=Network_File_System&oldid=1089090313
https://en.wikipedia.org/w/index.php?title=PostgreSQL&oldid=1089176863
https://en.wikipedia.org/w/index.php?title=PostgreSQL&oldid=1089176863
https://en.wikipedia.org/w/index.php?title=Snap_(software)&oldid=1095218727
https://en.wikipedia.org/w/index.php?title=Snap_(software)&oldid=1095218727
https://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=1086757768
https://en.wikipedia.org/w/index.php?title=Virtual_machine&oldid=1086757768

	093ee90703698d6b72d369eb4ebbc670c9eadaaf4d6a997c0ed46794bbc63221.pdf
	aa63b9a54a3b3077f971609ad0990d87e27e8b76643e91bbf2bc514df80d28df.pdf
	093ee90703698d6b72d369eb4ebbc670c9eadaaf4d6a997c0ed46794bbc63221.pdf
	896e3ea2e7d4dda839e3b4035cd0595b60b3f141dcda9968353d602f2931d798.pdf
	093ee90703698d6b72d369eb4ebbc670c9eadaaf4d6a997c0ed46794bbc63221.pdf
	General introduction
	Background Concepts
	Introduction
	Virtualization
	Virtual machine
	Hypervisor
	Containerization
	VM vs Container

	Microservices
	Linux
	Namespaces
	Cgroups

	Container Orchestration tools
	DevOps
	CI/CD
	GIT

	High Availability
	High availability cluster

	Network File System
	Conclusion

	Modern Deployment Infrastructure and Security
	Introduction
	Docker
	Docker tools

	Docker Swarm
	Docker Swarm components and concepts
	Network in Docker Swarm
	Security in Docker Swarm
	Storage in Docker Swarm

	Kubernetes
	Kubernetes architecture
	Kubernetes workloads
	Affinity
	Networking in Kubernetes
	Storage in Kubernetes
	Security in Kubernetes
	Kubernetes installation
	Kubernetes cloud providers

	Kubernetes vs Docker Swarm
	Conclusion

	Analysis of current deployment
	Introduction
	Analyzing the deployment architecture
	Services
	Nginx
	RabbitMQ
	Postgres
	Jhipster Microservices
	SIRH microservices

	ELK Stack
	Elasticsearch
	Logstash
	Kibana
	APM Server
	MetricBeat
	HeartBeat

	Microservices
	Postgres Admin
	SIRH Backoffice
	SIRH Front
	SIRH Employee-Portal

	Critics about the current deployment
	Conclusion

	Deploying and configuring the Kubernetes Cluster
	Introduction
	New deployment architecture
	Cluster setup and microservices deployment
	Creating a High Availability MicroK8s cluster
	NFS for Persistent storage
	Deploying the ECK Stack
	Deploying Patroni
	Deploying pgAdmin
	Deploying Falco
	Deploying RabbitMQ
	Deploying SIRH Company-Management
	Deploying SIRH Trackability
	Deploying SIRH Billing
	Deploying SIRH Pay
	Deploying Ingress
	Pushing configuration files to GitHub

	Conclusion

	References

