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Abstract

The microservices architectural style has been gaining popularity in recent years. In this
architectural style, small and loosely coupled modules are deployed and scaled independently
to compose cloud-native applications. Microservices are maintained and tested easily and
are faster at boot time. However, to fully leverage the benefits of the architectural style
of microservices, it is necessary to use technologies such as containerization. Therefore, in
practice, microservices are containerized in order to remain isolated and lightweight and are
orchestrated by orchestration platforms such as Docker Swarm or Kubernetes.

Therefore, in order to realize this thesis we have invested in learning the best DevOps
practices and mainstream containerization technologies mentioning Docker, and orchestration
tools mentioning Docker Swarm and Kubernetes.

Keywords : Virtualization; Container; Docker; Kubernetes; Orchestrator; Microservices,
Cloud-Native; Security; DevOps.
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Agzul 

 

 
Tawsit n lbenyan n tenfa timecṭah d tin yettuɣalen s imal d tagdudant xersum iseggasen-a 

ineggura. Deg tewsit, ilmuden imecṭaḥ yettwasduklen s unammun axfifan d tid yettwasxedmen 

ttwarsent ɣef ssellum d wudem amunnan iwakken ara d-xelqen isnassen "cloud natives". Tanfiwin 

timecṭaḥ d tid yettwaṭfen arnu ttwaɛarḍent shala ɛeǧlent deg tazwara. Ihi, iwakken ad nefk s umata 

ɣef tewsit n lbenyan n "microservices", ilaq ad teswasxdem tetiknulugit am "conteneurisation". 

Arnu ɣur-s, deg tigawt, Tanfiwin timecṭah ttwaxedment "conteneurisés" iwakken ad qqiment d 

tmunanin arnu fessus-it, ttwaselḥunt s tɣerɣert am "Docker Swarm akked Kubernetes".  

 
Iwakken ad nessiweḍ ad nexdem tarist-a n nnig turagt, nefka azal i ulmad n tigawin yufraren 

DevOps akked tiknulugit n conteneurisation, ad nebder Docker akked ullallen n uselḥu Docker 

Swarm akked Kubernetes. 

 
Iwalen n Tsarut : Virtualization; Container; Docker; Kubernetes; Orchestrator; 

Microservices, Cloud-Native; Security; DevOps. 
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Résumé

Le style architectural des microservices devient de plus en plus populaire ces dernières an-
nées. Dans ce style, des petits modules faiblement couplés sont appliqués et mis à l’échelle
de manière indépendante pour créer des applications cloud natives. Les microservices sont
maintenus et testés facilement et sont plus rapides au démarrage. Cependant, afin de tirer
pleinement parti du style architectural des microservices, il est nécessaire d’utiliser des tech-
nologies telles que la conteneurisation. Ainsi, en pratique, les microservices sont conteneurisés
pour rester isolés et légers, et sont orchestrés par des plateformes d’orchestration comme Docker
Swarm et Kubernetes.

Par conséquent, afin de réaliser cette thèse, nous avons investi dans l’apprentissage des
meilleures pratiques DevOps et des technologies de conteneurisations, en mentionnant Docker
et les outils d’orchestration Docker Swarm et Kubernetes.

Mots clés : Virtualisation; Conteneur; Docker; Kubernetes; Orchestrateur; Microservices,
Cloud-Native; Securité; DevOps.
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 ملخص

 

 
في هذا، يتم نشر وحدات صغيرة ومقترنة وتوسيع نطاقها . اكتسب نمط التطبيقات الدقيقة شعبية في السنوات الأخيرة

يتم صيانة الخدمات الصغيرة واختبارها بسهولة و التي تعتبر أسرع من حيث . بشكل مستقل لتأليف تطبيقات سحابية

الكاملة من فوائد الخدمات الدقيقة أو التطبيقات المصغرة، من الضروري استخدام ومع ذلك، للاستفادة . سرعة بدء التشغيل

لذلك، من الناحية العملية، يتم وضع الخدمات الدقيقة في حاويات من أجل إبقائها معزولة وخفيفة . تقنيات مثل الحاويات

 .  Kubernetesو  Docker Swarmالحجم ويتم تنظيمها بواسطة منصات تنسيق مثل 

 
 Dockerوتقنيات الحاويات  DevOpsلذلك، من أجل تحقيق هذه الأطروحة، استثمرنا في تعلم أفضل ممارسات 

 .Kubernetesو  Docker Swarmوأدوات التنسيق 

 
؛ منسق ؛ التطبيقات المصغرة ؛  Kubernetes؛  Dockerالمحاكاة الافتراضية؛ حاوية ؛ : الكلمات المفتاحية

Cloud-Native  ؛ الحماية ؛DevOps. 
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General Introduction

Nowadays, IT technologies have continuously evolved to meet the challenges and demands
of users and organizations. Containerization has changed application development and deploy-
ment entirely. IT organizations have recognized the benefits of adopting containers for their
workflows because it provides businesses with a way to automate the deployment of modern
applications at scale. Containers also provide a more cost-effective method of deployment, as
applications run faster, consume fewer resources, and are portable and environment-agnostic,
all of which translate into cost savings. The usage of containers is growing, estimates that 90%
of global organizations will be running containerized applications in production by 2026. In
2020, Cloud Native Computing Foundation (CNCF) survey found that containers usage has
grown 300% since 2016, in May 2021 IDC study predicted a wholesale shift to containers in
three years where 80% of workloads will shift to or be created with containers and microser-
vices. It becomes extremely difficult to manage the container lifecycle and its management
when numbers increase dynamically with demand. Container orchestration platforms solved
the problem by automating the scheduling, deployment, scalability, load balancing, availabil-
ity, and networking of containers. Many container orchestration tools are available in the
market, such as Kubernetes, Docker Swarm, OpenShift, Nomad, and others. This raises the
question about what’s the difference between each platform and which orchestration platform
is more suitable for a business.[94]

Tech Instinct is an Algerian startup, based in Béjaïa, specializing in IT consulting and
production, founded in July 2018. It supports SMEs and start-ups to provide them with
the best technical advice and helps them to come up with the right solutions to meet their
needs. Tech Instinct possesses expertise in IT architectures, SaaS platform development, API
development, and web and mobile applications. Its strength comes from the experience of its
consultants, some of whom have been formed in the largest French companies. Tech Instinct
offers quality services at least equivalent to on-shore services (in France and Europe).[74]

Figure 1: Tech Instinct logo.[75]

Tech Instinct is using Docker to build and run their container images, and Docker Swarm as
a container orchestration tool, because it doesn’t take as much time to learn and implement
as other more complex orchestration tools.

14



General introduction

In this thesis and internship, we have analyzed and criticized the current deployment of
Tech Instinct and their services and applications, in order to propose a new deployment using
the mainstream and the widely used orchestration tool Kubernetes, and also while taking into
consideration the high availability (HA) of services, and applying solutions for the critics.

This thesis is divided into 4 parts. After talking about containerization and introducing the
internship host organization Tech Instinct in the introduction, the rest of this thesis and the
main contributions are structured as follows:

Chapter 1 Backgrounds Concepts, introduces the core concepts and important background
information of the research topic, we have talked about virtualization and containerization
technologies and the best development architecture that is Microservices, described and com-
pared between virtual machines and containers, and also presented the underlying technologies
of containers which are Namespaces and Cgroups. Then talked about orchestration tools and
DevOps practices. Finally, we have described the file protocol NFS and the concept of High
Availability.

Chapter 2 Modern Deployment Infrastructure and Security, introduces the modern deploy-
ment container virtualization technology mainly Docker, and the two container orchestration
tools Docker Swarm and Kubernetes, their components, concepts, storage, security, and net-
working within the cluster. We have finished the chapter by making a comparison between
the two orchestration tools.

In chapter 3 Analyze of current deployment, we have started by analyzing the deployment of
Tech Instinct, each applications and microservices. After finishing the analyze phase, we have
pointed out the issuses about the current deployment and explained the potential consequences.

In chapter 4 Deploying and configuring the Kubernetes Cluster, we have defined a plan for
the new deployment, then we have started on deploying the microservices and the applications.
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Chapter 1

Background Concepts

1.1 Introduction

To better understand the scope of our project, in this chapter we introduce the background
concepts related to virtualization and containerization to describe and explain the relationship
between them. We will also discuss the practices and tools that we will use in our work.

1.2 Virtualization

Virtualization is a process of dividing the resources of a computer into multiple execution
environments for creating and running a virtual version of a device or resource, like servers,
storage resources, networks, or operating systems, by applying one or additional concepts or
technologies such as hardware and software partitioning, time-sharing, partial or complete
machine simulation, quality of service, emulation, and many others.[99]

1.2.1 Virtual machine

A VM or Virtual Machine is an emulation of a physical machine by using software, it works
like a computer within a computer. It runs on an isolated partition of its host computer
with its own CPU power, memory, operating system, and other resources. The users can run
applications on VMs and use them as they normally would on their workstations[121].

1.2.2 Hypervisor

Also known as a virtual machine monitor (VMM), is a computer software or firmware that
makes running multiple virtual machines (Guest Machine) on a Host Machine with different
operating systems possible by virtually sharing the host machine’s hardware resources such as
memory and CPU.[107]
Hypervisors can be divided into two categories:

Type-1 native or bare-metal hypervisors: Like KVM and it runs directly on the host’s
hardware.[100]

Type-2 or hosted hypervisors: Like Virtualbox, runs as a software layer on an operating
system.[100]
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Figure 1.1: Hypervisor types.[98]

1.2.3 Containerization

Containerization is a form of virtualization, it is the packaging together of source code with
its necessary components like libraries, frameworks, and other dependencies so that they are
where applications run on an isolated lightweight executable called a container.[42]

1.2.3.1 Container

Container is a lightweight and portable package of software, it contains an application’s
code and needed configuration files, libraries and dependencies so that the application runs
quickly and reliably from one computing environment to another. It runs as a process, isolated
from all other processes using kernel Namespaces and Cgroups. Containers can run on local
machines, VMs or even deployed on the Cloud, they can run on any Operating system.[78]

Figure 1.2: Containers.[77]

1.2.3.2 Container Runtime Engine

A container engine is a software platform that supports building and running containers
based on container images. Today, the most widely known container engine is Docker, it can
be installed on the host’s operating system and becomes the medium for containers to share
the operating system resources with other running containers on the same computing system.
Container engines prepare storage to run the containers, allocate and isolate resources for use
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of a container, and manage container’s deployment and life-cycle. A user or an orchestrator
can interact with the containers through the container engine, to give input, stop or start a
container, pull or push container images from or to a repository.[90]

Figure 1.3: Docker Engine Components.[89]

1.2.4 VM vs Container

Virtual machines are based on hardware virtualization, whereas containers are based on
OS virtualization, VMs and Containers are both “packages” that contain applications and
everything they need to run, but VMs also include the operating system itself. This makes
containers lightweight and faster to boot in comparison with VMs, and the fact that contain-
ers share the same OS, makes that OS and other containers vulnerable if a container gets
compromised.[96]

Features Container Vitrual machine
Virtualization[96] Operating System Virtualization Hardware Virtualization
Boot time[122] Fast Relatively slow
Type of OS[122] Same as Host OS Multiple independent OS

OS isolation Cgroups and Namespaces Machine Isolation
Size[122] Lightweight à Large

Security[122] Less secure More secure
OS updates/upgrades[95] On Host OS only On Each VM

Table 1.1: Virtual machine vs container
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Figure 1.4: Container vs virtual machine.[96]

1.3 Microservices

Microservices are an architectural style that uses containers to develop a single application
as a set of small services. Each service runs in its own process. The services communicate
with clients, and often with each other, using lightweight protocols, often over messaging or
HTTP. This architecture allows for each service to scale or update without disrupting other
services in the application.[65]

1.4 Linux

Linux is a free open-source Unix-like operating system based on the Linux kernel, created
on September 17, 1991, by Linus Torvalds. Users can modify and create variations of the
source code, known as distributions such as Ubuntu, Fedora, and Arch. It’s commonly used
on servers, but Linux is also used for Desktop computers, smartphones, E-book readers like
Kindle and gaming consoles, etc.[116]

1.4.1 Namespaces

Namespace is the underlying linux feature behind containerization technologies like Docker.
It allows the system to restrict the resources that containerized processes see, and that ensures
none of them can interfere with one another, thus isolating independent processes from each
other. In other words, namespaces define the set of resources that a process can use. At
a high level, they allow fine-grain partitioning of global operating system resources such as
mounting points, network stack, and inter-process communication utilities. A powerful side
of namespace is that they limit access to system resources without the running process being
aware of the limitations.[117]
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Figure 1.5: Namespaces.[76]

1.4.2 Cgroups

Control groups, usually referred to as Cgroups, are a Linux kernel feature which allow
processes to be organised into hierarchical groups whose usage of various types of resources
can then be limited and monitored. Cgroups are used to manage processes in many ways,
such as limiting the CPU, I/O, and memory resources that are available to a process or group
of process belonging to the Cgroup, change the priority of a group relative to other groups,
measure a group’s resource usage for accounting and billing purposes.[109]

Figure 1.6: Cgroups.[97]

1.5 Container Orchestration tools

Containers can be made highly scalable, which can be created on-demand. It is good
for a few containers but in the case of a cluster that consists of multiple nodes, on which
tens, hundreds, or even thousands of containers are running, it becomes extremely difficult
to manage the container life-cycle and its management when numbers increase dynamically
with demand. Container orchestration solves the problem by automating the scheduling,
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deployment, scalability, load balancing, availability, and networking of containers. Container
orchestration is the automation of tasks such as:

• Provisioning and deployment

• Configuration and scheduling

• Resource allocation

• Load balancing and traffic routing

• Container availability

• Scaling or removing containers based on balancing workloads

Some of the well-known Container Orchestration tools are Kubernetes, OpenShift,
and Docker Swarm.[88]

Figure 1.7: Container orchestration tools.[67]

1.6 DevOps

DevOps is a set of practices, tools that automate and integrate the processes between
software development (Dev) and IT operations (Ops). DevOps to make short the systems
development life cycle and provide continuous delivery with high software quality. DevOps is
complementary to Agile software development, several DevOps aspects came from the Agile
methodology.[111]
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Figure 1.8: DevOps practices.[91]

1.6.1 CI/CD

CI/CD is the combined practices of Continuous Integration (CI) and Continuous Deploy-
ment (CD), they are the culture, operational principles, and set of practices that application
development teams use to deliver code changes more frequently and reliably. Make it con-
crete. CI/CD is a DevOps and agile best practice,its automates integration and deployment,
allowing software development teams to focus on meeting their business needs while ensuring
code quality and software security.[110]

1.6.2 GIT

Git is a free and open-source Distributed Version Control System (DVCS), and it’s a DevOps
tool used to handle small to very large projects efficiently. Git is used to track changes in the
source code, so you have a record of what has been done, and you can go back to specific
versions that you need anytime and it enables multiple developers to work together on the
same project and every developer with his own version of code, they can create branches to
try to add some new features and merging those branches into the original code to implement
their changes in case it was successful.[112]

1.6.2.1 GitHub

GitHub is an open-source web-based interface and cloud-based service that uses Git, It’s a
social networking site for programmers that many companies and organizations use to facilitate
project management and collaboration.[113]

1.7 High Availability

High Availability (HA) is a characteristic that ensures that a system or application can
operate continuously without any downtime or disruption and an agreed-on operational per-
formance level is met.[114]

1.7.1 High availability cluster

Also known as HA cluster, fail-over cluster or Metrocluster Active/Active is group of com-
puters that support server applications that can be reliably used with a minimum or null
amount of down-time. If one server in a high availability cluster fails, the mission-critical app
is immediately restarted on another server the moment the fault is detected.[115]

22



CHAPTER 1. BACKGROUND CONCEPTS

1.8 Network File System

Network File System (NFS) is a networking protocol for distributed file sharing developed by
Sun Microsystems, it allows uses to access files and directories located on a remote computer
and perform actions like reading and writing as if they were on the local machine.[118]

Figure 1.9: Network File System.[108]

1.9 Conclusion

In this chapter, we have presented the basics of containerization and virtualization, also we
compared virtual machines and containers, and concluded that containers have an inherent
advantage over VMs due to the improvement of several performance metrics such as size,
storage, and boot-time. The next chapter will be devoted to talk about the modern deployment
infrastructure and technologies such as Docker and container orchestration tools Docker Swarm
and Kubernetes.
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Chapter 2

Modern Deployment Infrastructure and
Security

2.1 Introduction

Businesses around the world increasingly rely on the benefits of container technology to
ease the burden of deploying and managing complex applications. Containers group all neces-
sary dependencies within one package. They are portable, fast, secure, scalable, and easy to
manage, making them the primary choice over traditional VMs. Nowadays, the most widely
used container engine is Docker. But to scale containers, it needs a container orchestration
tool—a framework for managing multiple containers. Today, the most prominent container
orchestration platforms are Docker Swarm and Kubernetes. They both come with advantages
and disadvantages, and they both serve a particular purpose. In this chapter, we will talk
about Docker, also about Docker Swarm and Kubernetes, and examine both to identify which
container orchestration tool is more suitable and for which scenario.

2.2 Docker

Docker (also known as Docker Engine) is a lightweight open-source software platform that
was written by the team at Docker, Inc. It allows users to build, run and deploy applica-
tions quickly, and separate applications from the infrastructure. So, they can deliver software
anywhere as long as Docker Engine is present since it uses OS-level virtualization to deliver
software packages known as containers, which are portable and have everything an application
needs to run including libraries, system tools, code, and runtime. Docker Engine is based on
the client-server architecture, where the Docker client communicates with the server (Docker
daemon) using a REST API. Docker daemon (Dockerd) does all the building, running, and
distribution of containers.[81]
Some of the reasons to use Docker are:

• Fast, consistent delivery of your applications.

• Responsive deployment and scaling.

• Running more workloads on the same hardware.
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Figure 2.1: Docker architecture.[81]

2.2.1 Docker tools

2.2.1.1 Docker Desktop

Docker Desktop is an easy-to-install application for Mac and Windows environments, It’s
responsible for creating a Linux virtual machine to build and run containers in, it includes
different Docker tools such as Docker Engine, Docker CLI, and Docker Compose. Docker
Desktop is free for personal use, but a paid subscription is required for professional and business
use.[79]

2.2.1.2 Docker compose

Docker Compose is a tool for defining and running multi-container Docker applications, A
user can feed it a YAML configuration file (docker-compose.yml) that describes the services
an application needs and how they interact with each other. Using Docker Compose, users can
run multiple containers simultaneously and create multiple isolated environments on a single
host.[84]

Figure 2.2: Docker Compose.[18]

2.2.1.3 Docker Hub

Docker Hub is the largest library and community provided by Docker for container images,
Docker Hub is a cloud-based repository in which users and developer teams can get access to
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free public repositories for storing and sharing images or can choose a subscription plan for
private repositories, they can also push their own Docker images into private repositories to
share between team members.[80]

Figure 2.3: Docker Hub.[93]

2.3 Docker Swarm

Docker swarm is an open-source container orchestration and scheduling tool built and man-
aged by Docker, It is the native clustering mode used by Docker that can be enabled to deploy
and manage multiple containers across multiple machines or also called nodes which together
form a cluster. One of the key benefits of using Docker Swarm is the high availability and load
balancing, which means that it will make sure to distribute the workload across worker nodes
and that each service will always be available.[85]

Figure 2.4: Docker Swarm architecture.[105]
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2.3.1 Docker Swarm components and concepts

Below are the points for typical docker swarm components:

2.3.1.1 Nodes

A node is an instance of the Docker engine participating in the swarm, and there are two
types of nodes:

• Manager nodes
Manager nodes are used to dispatch tasks to worker nodes, and for orchestrating and
managing the functions of the swarm. a single node called the leader conducts orches-
tration tasks. If the leader node goes down, the other manager nodes select a new leader
to resume the orchestration and the maintenance of the swarm state.[82]
The manager node consists of:

◦ API: receives commands from users and creates new services.[102]

◦ Orchestrator: takes the definition of service and creates tasks.[102]

◦ Allocator: assigns IP addresses to tasks and services.[102]

◦ Scheduler: schedules tasks and assigns them to worker nodes.[102]

◦ Dispatcher : all the worker nodes connect and respond to it. Each worker will
report how many resources it has, and how many containers are run.[102]

• Worker nodes : receives tasks from manager nodes and execute required actions for
the swarm, such as starting or stopping a container. By default, manager nodes also
behave as worker nodes, but this behavior is configurable.[102]

2.3.1.2 Tasks

It carries a single Docker container and commands that define how that container will be
launched and how it will work.[102]

2.3.1.3 Services

It is the definition of the tasks to execute on the manager or worker nodes.[102]

2.3.1.4 Load balancing

The Swarm manager uses ingress load balancing to expose the services to the outside.[103]

2.3.2 Network in Docker Swarm

To connect between the different containers on the different hosts in a Swarm cluster, Docker
uses the overlay network, it handles the routing of each packet to and from the correct host
and the correct container. When you configure a Swarm or join a Docker host to an existing
Swarm, two new networks are created on that host: [86]
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2.3.2.1 Ingress network

Ingress controls data traffic related to Swarm services, when a Swarm service is created
and does not connect to a user-defined overlay network, it connects to the ingress network by
default.[86]

2.3.2.2 Bridge network

It uses a software bridge that allows containers connected to the same bridge network to
communicate while providing isolation from containers that are not connected to that bridge
network.[86]

2.3.3 Security in Docker Swarm

Docker swarm manages security with the Public Key Infrastructure System (PKI), which
is built into Docker, making it easy to safely deploy a container orchestration system. The
nodes use Transport Layer Security (TLS) to authenticate, authorize, and encrypt the com-
munications with other nodes in the Swarm. Role-based access control (RBAC), also known
as role-based security, is used but only available in the Enterprise Edition. [83]

2.3.4 Storage in Docker Swarm

To store data in a Swarm cluster there are three types of storage to use:

2.3.4.1 Implicit pre-Container storage

It creates an implicit storage sandbox for the container, the directory "/var/lib/docker/volumes"
will be created on the host. If the container is removed the data will be lost.[104]

Figure 2.5: Implicit pre-Container storage.[104]
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2.3.4.2 Explicit Shared Storage

It creates an explicit volume where the data will be stored, If the container is removed the
data will be lost, also it can be mapped to a directory in the host, so If the container is removed
the data is still on the host.[104]

Figure 2.6: Explicit Shared Storage.[104]

2.3.4.3 Shared Multi-Host Storage

All types of storage we discussed already make the containers non-portable, the data residing
on the host will not move with the container. By using distributed storage that is made
available to all hosts to expose their data over the internet on shared filesystems like Ceph,
GlusterFS, and Network File System (NFS).[104]

Figure 2.7: Shared Multi-Host Storage.[104]
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2.4 Kubernetes

Often abbreviated as K8S, is an open-source platform container orchestration originally
developed by Google, it designed to automate software deployment, scaling, and management
of containerized applications.[69]

2.4.1 Kubernetes architecture

Kubernetes is an architecture that offers a couple of mechanisms for service discovery across
a cluster.

2.4.1.1 Nodes

Nodes are divided into two types:

• Worker node: is a worker machine that runs the K8S workloads, it can be a physical
machine or a virtual machine depending on the cluster. Kubernetes nodes are managed
by a control plane, each node can host one or more pods.[49]
Each node runs three main components:

◦ Kubelet: is a software agent that runs on each node in the cluster, and communi-
cates with the control plane. It allows the control plane to monitor the node.[37]

◦ Container Runtime: Kubernetes uses the Docker container as its default run-
time to run the images within the pod. Kubernetes supports multiple runtimes
using Container Runtime Interface(CRI) which is a plugin interface that enables
kubelet to use a variety of container runtimes. There are two types of the container
runtime, high-level and low-level, for example, Containerd is a high-level runtime
that pushes and pulls images and manages the lifecycle of running containers by
sending commands to a low-level container runtime such as runC. It is also possible
for containerd to support multiple low-level container runtimes.[10]

Figure 2.8: Container Runtime Interface.[73]

◦ Kube-proxy: is a network proxy that proxies the UDP, TCP, and SCTP network-
ing of each Node, and provides load balancing. It is responsible for maintaining
network rules on each node. The network rules enable network communication
between nodes and pods.[35]

• Master node: or control plane node is a node that controls and manages a set of worker
nodes and is responsible for making decisions about the cluster and pushing it towards
the desired state. For a more high-availability Kubernetes cluster, two or more master
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nodes can be used.[39]
It has the following components to help manage worker nodes:

◦ Kube-APIserver: acts as the frontend to the cluster. It’s an entry point for all
the REST commands and external communication to the cluster is via the API-
Server.[33]

◦ Etcd: Is a key-value store that provides the backend database for Kubernetes. It
stores and replicates the entirety of the Kubernetes cluster state.[50]

◦ Kube-controller-manager: is a daemon that manages the Kubernetes control
loop, a control loop regulates the state of the system by watching the cluster state
through the APIserver and makes changes to move the current state towards the
desired state.[34]

◦ Cloud-controller-manager: The cloud-controller-manager runs in the control
plane as a replicated set of processes The cloud-controller-manager allows the con-
nection between the clusters and the cloud provider’s API and only runs controllers
specific to the cloud provider that is used.[8]

◦ Kube-scheduler: Monitors the newly created Pods without an assigned node,
and selects a node that they can run on.[36]

Figure 2.9: Kubernetes architecture.[38]

2.4.2 Kubernetes workloads

A workload is an application that runs on the K8S cluster, the pod is the smallest and
simplest object, each pod gets its IP address with which it can interact with other pods within
the cluster. Pod contains a container or more inside of it and they can communicate among
themselves via localhost. Pods have a defined lifecycle, if the pods crush or stop, new pods
need to be created to restore the normal state of the node. To automate the management of
the pods, Kubernetes provides several built-in workload resources.[71]
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2.4.2.1 ReplicaSet

ReplicaSet is a process that ensures that there is always a stable set of running pods for
a particular workload. The ReplicaSet configuration defines the number of identical pods
required, and if a pod stops or fails, additional pods are created to compensate for the loss.[52]

2.4.2.2 Deployment

Deployment is a higher-level concept that manages ReplicaSets and provides declarative
updates to Pods, when a Deployment is created, it creates a ReplicaSet, and the it creates
pods according to the number specified. The Deployments scale the application by increasing
the number of running pods or updating the running application.[16]

2.4.2.3 StatefulSet

work much as a Deployment does, it manages the deployment and scaling of a set of pods,
and it guarantees the ordering and uniqueness of these pods.[57]

2.4.2.4 DaemonSet

ensures that all nodes (or some) are running exactly one copy of a pod. DaemonSets will
even create the pod on new nodes that are added to the cluster. DaemonSets are exceptionally
well suited for the Logs collection, node resource monitoring, and cluster storage.[12]

2.4.2.5 Operators

An Operator is an application-specific controller designed to extend the capabilities of Ku-
bernetes and simplify and automate the packaging, deployment, and management of Kuber-
netes applications. Operators are clients of K8S API and they acts as controllers for the
Custom Resources[66]

2.4.2.6 Custom Resource Definitions

CRDs are a way to extend the Kubernetes API for use cases that are not necessarily available
in a default Kubernetes installation. Like the other core Kubernetes resources, a CRD is
defined as YAML. The Kubernetes API server will process CRDs as it does to any other
resource, and report on the configuration content of a CRD to any authorized consumer of the
Kubernetes API.[11]

2.4.3 Affinity

There are two types of affinity: Kubernetes Node affinity and Kubernetes Pod affinity.

2.4.3.1 Node affinity

Node affinity allows a Pod to specify a scheduling constraint to assign it to a node or a
group of nodes.[5]
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2.4.3.2 Pod Affinity

Pod affinity allows the user to specify the affinity constraint between the Pods using selectors,
for example, a user might want that specific Pods always run together on the same node or
that they run different nodes.[5]

2.4.4 Networking in Kubernetes

The Kubernetes network model specifies that every pod gets its IP address, containers
within a pod share the pod IP address and communicate with each other, and the pods can
communicate with the other pods in the cluster using pod IP addresses without using NAT.[9]
The concepts and resources behind networking in Kubernetes are:

2.4.4.1 Service

It groups identical Pods together to provide a way of abstracting access to them. The group
of pods backing each service is usually defined using a label selector.[56]
This diagram illustrates how services do work:

Figure 2.10: Kubernetes Services.[2]

There are four types of Services:

• ClusterIP: is the default service type, it allows services to be accessed only within the
cluster via a virtual IP address, known as the service Cluster IP.[56]

• NodePort: is the most basic way to expose the services to the internet from the IP
address of the node at the specified port number in the 30000-32767 range.[56]

• LoadBalancer :expose the service via an external Network Load Balancer. The exact
type of network load balancer depends on which public cloud provider is integrated with
the cluster. As long as the cloud provider supports the LB, This will be assigned to a
fixed IP address in the cloud.[56]

• ExternalName: is a special type of service that does not have selectors and any as-
signed ports or endpoints. it serves as a way to return an alias to an external service
residing outside the cluster.[56]
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2.4.4.2 Ingress

Ingress Is an API object that gives HTTPS/HTTP routing policies to manage external users’
access to the services in the cluster using particular domains or URLs, it easily configures traffic
routing rules without having to create a set of load balancers or expose all services on a node.
Ingress can also be used to terminate SSL / TLS before load balancing to the service.[26]

Figure 2.11: Kubernetes Ingress.[26]

2.4.4.3 DNS

DNS Is a built-in service that is launched automatically, Kubernetes cluster provides a DNS
service, pods, and services are discoverable through the Kubernetes DNS service.[17]

2.4.4.4 Calico

Calico is open-source networking and network security solution for containers, virtual ma-
chines, and native host-based workloads. It enables Kubernetes workloads to communicate
seamlessly and securely.[1]

2.4.5 Storage in Kubernetes

Kubernetes storage architecture is based on Volumes as a central abstraction. Volumes can
be persistent or non-persistent.

Volume : Is a way to share file storage between containers in a Pod however, these Volumes
are still tied to the pod lifecycle, so if the Pod gets destroyed, the volume gets destroyed
with it.[64]

Persistent Volume : Unlike ordinary volumes, PVs are pieces of storage in the cluster as
the nodes, their lifecycle independent of any individual pod that uses the persistent
volume.[51]

Persistent Volumes Claim : Is a request from an application/user to create a persistent
volume and mount it to the pods. If a Persistent Volume that meets the requirements
exists or can be provisioned, the PVC will be bound to that PV.[51]

Storage Classe : Is an abstract underlying storage provider that enables dynamic storage
provisioning using PVC.[58]

2.4.6 Security in Kubernetes

Kubernetes offers several built-in security features which are used to help in securing the
cluster and the components.
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2.4.6.1 The 4C’s of cloud-native security

Those “C’s” represent the different layers that need to be secured to meet overall security
goals and pass corresponding gates before exposing cloud-native applications to their cus-
tomers.

• Cloud :The Cloud layer refers to the infrastructure that runs servers, Cloud service
providers (CSPs) are responsible for setting up a secure cloud infrastructure. The most
common issues found in today’s Cloud systems are misconfigurations and challenges with
automation.[101]

• Cluster :The cluster layer consists of the Kubernetes components making up the worker
nodes and control plane. There are three main cluster elements that organizations need to
be concerned about: Cluster components, Cluster services, and Cluster networking.[101]

• Container :The container layer which is the container images contain vulnerabilities
that can be scanned. The issues such as image security, the use of unknown sources, and
weak privilege configurations are often overlooked by organizations. It is important to
regularly update containers to reduce exposure to known vulnerabilities and to scan and
audit every application running in containers.[101]

• Code :The code layer provides the highest level of security control, where it can re-
strict exposed endpoints, ports, and services to manage security risks, and also protect
communication between both internal and external services using TLS encryption.[101]

2.4.6.2 Secret

A secret is a secure object which stores sensitive data, such as passwords, OAuth tokens,
and SSH keys in the clusters. Storing sensitive data in Secrets is more secure than in Pod
specifications or in a container image in plaintext, so by using Secrets, confidential data doesn’t
need to be included in the application code.[55]

2.4.6.3 Role-based access control

RBAC is a method of granting and giving authorization to the users to access Kubernetes
API resources to perform a certain action.[63]
The RBAC API have four kinds of Kubernetes object:

• Role and ClusterRole: roles manage the permissions within a particular namespace,
so when a role is created, a namespace where it belongs needs to be specified, whereas
ClusterRole is used for non-namespaced resources such as nodes.[63]

• RoleBinding and ClusterRoleBinding: a role binding grants the permissions that
are defined in a role to users. It contains a list of subjects (users, groups, or service
accounts), and a reference to the assigned role. Permissions can be granted within a
namespace by using RoleBinding, or cluster-wide with a ClusterRoleBinding.[63]

2.4.6.4 ServiceAccount

In Kubernetes, service accounts are users managed by the Kubernetes API and used to
provide an identity for Pods. Pods that want to interact with the API server will have to
authenticate with a particular service account. By default, applications will authenticate as
the default service account in the namespace they are running in.[6]
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2.4.6.5 Transport Layer Security

is used as a default security configuration to encrypt and protect the network traffic in the
cluster.[59]

2.4.7 Kubernetes installation

Kubernetes installation is one of the challenging topics of Kubernetes. This challenge occurs
because a multitude of installation methods exists, like Minikube, Kubeadm, Microk8s, and
other tools like Kubectl and Helm that used to interact and deploy on the cluster.

2.4.7.1 Microk8s

MicroK8s is a powerful, lightweight, and fully conformant Kubernetes distribution from
Canonical. It’s a minimalistic distribution focused on simplicity and performance by providing
the functionality of core Kubernetes components, in a small footprint, scalable from a single
node to a high-availability production cluster.[47]

2.4.7.2 Kubectl

Kubectl is the command-line interface tool that is installed with Microk8s and it is used to
run commands to interact with Kubernetes clusters. It provides an easy way to perform tasks
such as creating, managing, or deleting resources on your Kubernetes platform, Kubectl is an
essential tool.[27]

2.4.7.3 Helm

Helm is a Kubernetes deployment tool for automating creation, packaging, configuration,
and deployment of applications and services to Kubernetes clusters.[24]

2.4.8 Kubernetes cloud providers

The most popular and the major cloud providers provide managed Kubernetes services,
such as Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Service (EKS), Azure
Kubernetes Service (AKS), Red Hat’s OpenShift and others.[60]
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2.5 Kubernetes vs Docker Swarm

Features Kubernetes Docker Swarm
Installation[106] Complex installation Simple installation

GUI[106] Kubernetes dashboard No GUI
Scalability[106] Fast and high scalablity Very fast and high scalablity

Auto-
Scaling[106]

Support auto-scaling Does not support auto-scaling

Load
Balancing[106]

Manual load balancing Auto load balancing

Rolling Updates
and

Rollbacks[106]

Can deploy Rolling updates and
does automatic Rollbacks

Can deploy Rolling updates, but
not automatic Rollbacks

Data Volumes
[106]

Shared only with the containers
in the same Pod

Shared with any container

Logging and
Monitoring[106]

Built-in tools Third-party party like ELK

Table 2.1: Kubernetes vs Docker Swarm

2.6 Conclusion

In this chapter, we have explored the two containers orchestration tool Kubernetes and
Docker Swarm. Docker Swarm is a lightweight, easy-to-use orchestration tool with limited
offerings compared to Kubernetes. However, Kubernetes is complex but powerful and provides
self-healing, auto-scaling capabilities out of the box. Choosing an orchestration tool that is
best depends on the business needs. In the next chapter, we will study and analyze Tech
Instinct deployment and their microservices and applications.
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Chapter 3

Analysis of current deployment
3.1 Introduction

After presenting in the previous parts the organization, and the concepts related to our
thesis, and the two container orchestration tools, we dedicate this chapter to analyzing the
Tech Instinct deployment such as networking, security, and storage, also their applications,
and microservices in order to understand the interactions between and the workings of the
infrastructure of the organization to identify the limits and issues with the current deployment,
and this will help us come up with an approach to realize our migration.

3.2 Analyzing the deployment architecture

This deployment is the one used by Tech Instinct in production environment:

Figure 3.1: Tech Instinct deployment architecture.
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All the nodes are virtual machines (VPS) running on a Linux Ubuntu server with 8 GO of
RAM, 4 vCPU, and 200 GO of data storage.
The deployment architecture consists of two-part:

• Three nodes(nodes 1,2 and 3) run on the Docker Swarm cluster to manage the containers
that run on it, all the VMs are connected and communicate on all the needed ports
between them in a secure manner, and it can be reached from outside the cluster by
using HTTPs or SSH protocols.

• Three nodes(nodes 4,5 and 6) run Docker images in the default mode and not in the
Swarm mode. Each VM from the cluster is connected and communicates with all the
nodes on all the needed ports, it can be reached from outside the cluster by using HTTPs
or SSH protocols.

3.3 Services

In the current deployment set of services running on it:

3.3.1 Nginx

Nginx is an open-source software designed for web servers, reverse proxies, caching, load
balancing, and media streaming. It also has HTTP server functionality, acting as a proxy
server for email (IMAP, POP3, and SMTP) and as a reverse proxy and load balancer for
HTTP, TCP, and UDP servers. It is designed for low memory usage and high concurrency.
Instead of creating a new process for each web request, we use an asynchronous event-driven
approach where the request is processed by a single thread.[70]

Figure 3.2: Nginx architecture.[87]
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Table 3.1: Nginx information.

3.3.2 RabbitMQ

RabbitMQ is a microservice known as a message-broker that supports multiple messaging
protocols, such as the Advanced Message Queuing Protocol (AMQP), Streaming Text Oriented
Messaging Protocol (STOMP), MQ Telemetry Transport (MQTT), and other protocols.[43]

Figure 3.3: RabbitMQ architecture.[3]

Table 3.2: RabbitMQ information.
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3.3.3 Postgres

Postgres is a microservice running the PostgreSQL database, Postgres is a free and open-
source relational database management system, designed to work with different kinds of work-
loads, from single machines to data warehouses.[119]

Table 3.3: Postgres information.

3.3.4 Jhipster Microservices

JHipster or Java Hipster is a free and open-source development platform to quickly generate,
deploy, and develop modern web applications & microservice architectures.[30]

Figure 3.4: Jhipster microservices architecture.[4]
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3.3.4.1 JHipster Registry

Registry is a key part of service discovery, it is a database microservice for the storage of
data structures for application-level communication, also it contains the network locations of
service instances.[31]

Table 3.4: SIRH Registry information.

3.3.4.2 SIRH Gateway

Gateway is a microservice that redirects and routes requests (layer 7 routings, usually HTTP
requests) to the endpoints of the internal microservices.[4]

Table 3.5: SIRH Gateway information.

3.3.4.3 SIRH UAA

UAA is a microservice that manages user authentication and authorization.[62]

Table 3.6: SIRH UAA information.
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3.3.5 SIRH microservices

3.3.5.1 SIRH Company-Management

Company Management is an application built for businesses to manage companies, employ-
ees, establishments, and everything related to the organization of the company.

Table 3.7: SIRH Company-Management information.

3.3.5.2 SIRH Pay

Pay is an application that manages payroll, social and tax returns, reports, and exports.

Table 3.8: SIRH Pay information.
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3.3.5.3 SIRH Trackability

Trackability is an application that records the tracks and all the events that happen on the
platform.

Table 3.9: SIRH Trackability information.

3.3.5.4 SIRH Billing

SIRH Billing is an application built for commercial management (invoicing, stocks, products,
purchases, etc).

Table 3.10: SIRH Billing information.

3.3.5.5 SIRH Front-Authentication

SIRH Front-Authentication is A web SSO system allows a user to log in using the SSO
web service with one set of credentials for authentication, which are unique usernames and
passwords. Then, this authentication allows them to access many other web-based applications
and password-protected websites.

Table 3.11: SIRH Front-Authentication information.
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3.4 ELK Stack

The ELK Stack is a collection of three open-source products Elasticsearch, Logstash, and
Kibana.

Figure 3.5: ELK Stack architecture.[40]

3.4.1 Elasticsearch

Elasticsearch is An open-source search and analysis engine that can quickly store, search,
and analyze large amounts of data in near real-time and return answers in milliseconds.[68]

Table 3.12: Elasticsearch information.

3.4.2 Logstash

Logstash is a lightweight, open-source, server-side data processing pipeline that collects data
from a variety of sources and manages events and logs.[41]

Table 3.13: Logstash information.
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3.4.3 Kibana

Kibana is a free and open frontend application that works as data visualization dashboard
software for Elasticsearch.[32]

Table 3.14: Kibana information.

3.4.4 APM Server

APM-Server is an application performance monitoring system built on the Elastic Stack. It
allows tracking of key performance-related information such as requests, responses, database
transactions, errors, etc.[20]

Table 3.15: APM-Server information.

3.4.5 MetricBeat

MetricBeat is a microservice that periodically collects metrics from the operating system
and services running on the server. It takes the collected statistics and sends them to the
specified output, such as Elasticsearch or Logstash.[44]

Table 3.16: MetricBeat information.
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3.4.6 HeartBeat

Heartbeat is a lightweight daemon that is used to periodically check the status of the services
and determines whether they are available and reachable.[23]

Table 3.17: HeartBeat information.

3.5 Microservices

In the current depolyment set of services running on it.

3.5.1 Postgres Admin

PgAdmin is a web-based GUI microservice used to interact with the Postgres database
sessions and to connect the two instances of postgress that we have on the current deployment
architecture.[92]

Table 3.18: PostgresAdmin information.

3.5.1.1 SIRH Facturation

SIRH Facturation is an an AngularJS web application.

Table 3.19: SIRH Facturation information.

47



CHAPTER 3. ANALYSIS OF CURRENT DEPLOYMENT

3.5.2 SIRH Backoffice

SIRH Backoffice is an an AngularJS web application.

Table 3.20: SIRH Backoffice information.

3.5.3 SIRH Front

SIRH Front is an an AngularJS web application.

Table 3.21: SIRH Front information.

3.5.4 SIRH Employee-Portal

SIRH Employee-Portal is an an AngularJS web application.

Table 3.22: SIRH Employee-Portal information.

3.6 Critics about the current deployment

• Running older versions of applications and services
Using older versions of applications and services can lead to crashes, decreased produc-
tivity, and cybersecurity vulnerabilities which can lead to security breaches.

• Running multiple different instances of Postgres can cause data loss
Two instances of Postgres running in master-slave mode lead to data loss if the master
instance or both instances stop since the slave instance takes on services in read-only
mode.

• Running multiple different instances of Rabbitmq can cause message loss
Only two instances of Rabbitmq running can cause message loss if both instances go
down
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• Using storage from working nodes for containers
Using local storage (on machines) for each container instance puts pressure on the net-
work and consumes bandwidth while replicating data between different container in-
stances on different nodes, and it can also cause data incoherence.

• No mechanism to detect intrusions and report them
It’s true that the different applications and services are using secure protocols and strong
passwords, but that does not exclude the possibility of someone intruding into the system,
so having a mechanism in place to monitor the system and detect such intrusions is
critical.

• Usage of plaintext passwords in configuration files
Passwords are used in plaintext in configuration files which can be stolen if someone gets
access to the files.

3.7 Conclusion

After having completed our study and analysis of the current deployment of microservices
and applications, we have identified the conditions to be met, and also we have described some
of the issues that should be fixed in the new deployment. In the next chapter, we will plan
our solution and put it into action.
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Chapter 4

Deploying and configuring the
Kubernetes Cluster
4.1 Introduction

In the previous chapter, we have analyzed and studied the current deployment, and defined
the conditions that we will take into consideration in the new deployment. In this chapter,
we will set a plan for the new deployment, after that we will start deploying the microservices
and the applications.

4.2 New deployment architecture

Figure 4.1: New deployment architecture with Kubernetes.
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This diagram represents the new deployment architecture, where we have used 4 VMs (VPS)
with 4 vCPU and 8 GO of RAM running on Ubuntu server 20.04 LTS, 3 of the machines are
dedicated to running the cluster which means the total of its resources is 12 vCPU and 24 GO
of RAM, and one is used as centralized storage using NFS protocol, with a storage capacity
of 200 GO.

4.3 Cluster setup and microservices deployment

4.3.1 Creating a High Availability MicroK8s cluster

High availability add-on gets enabled on MicroK8s by default for a cluster that consists of
three master nodes or more.[46]

4.3.1.1 Setting up the first node

MicroK8s installs as a snap package by running a single installing command on each node.[46]
Snap is a software packaging and deployment system developed by Canonical for operating
systems that use the Linux kernel.[120]

Figure 4.2: MicroK8s installation command.

4.3.1.2 Adding master nodes to the cluster

After installing MicroK8s on nodes 2 and 3 in the same way as in node 1 we add them to
the cluster.[46]

• Node 2 : On the node 1, we run this command to generate a token:

Figure 4.3: Generating token for node 2.

It returns a command with a joining token which should be executed on the MicroK8s
node that we wish to join the cluster.[46]
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Figure 4.4: Joining node 2.

• Node 3 : By following the same previous steps used to add node 2, we add node 3.[46]

Figure 4.5: Generating token for node 3.

Figure 4.6: Joining node 3.

To verify that the nodes are joined the cluster[46], we run this command:

Figure 4.7: Nodes list.
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4.3.1.3 Enabling storage and DNS add-ons

To enable storage and DNS on the cluster [46],we should run those command:

Figure 4.8: Enabling storage and dns addons.

4.3.1.4 Checking MicroK8s cluster and HA status

After a restart of the cluster, to check the cluster status and whether High Availability is
set[46], we run the following command:

Figure 4.9: Checking MicroK8s cluster and HA status.

4.3.1.5 Setting node-name label for the nodes

Labeling nodes will help us in scheduling pods on specific nodes using Node affinity properties.[46]

Figure 4.10: adding node-name label to nodes.
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4.3.2 NFS for Persistent storage

4.3.2.1 Setting up the NFS server

We install the nfs-kernel-server package[48] by running the command shown below:

Figure 4.11: Installing NFS server.

4.3.2.2 Creating an NFS Export Directory

Create a directory that is shared between client nodes, then remove any restrictions in
directory permissions, and grant read, write, and execute permissions for all the contents
inside the directory.[48]

Figure 4.12: NFS directory.

4.3.2.3 Allow the masters to mount the directory

Making sure that the nodes are allowed to mount this share. Node names are associated to
their IP addresses in the /etc/hosts file.[48]

Figure 4.13: Allowing access to the masters only.
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4.3.2.4 Install the CSI driver for NFS

Deploy the NFS provisioner using the official Helm chart, then installing the Helm chart
under the kube-system namespace.[48]

Figure 4.14: Installing the CSI driver for NFS.

4.3.2.5 Checking the driver status

After deploying the Helm chart, we check the driver status by running a kubectl command.[48]

Figure 4.15: Checking driver status.

4.3.2.6 Creating a StorageClass for NFS

Creating a Kubernetes StorageClass to use the provisioner nfs.csi.k8s.io CSI driver, and
applying it.[48]

Figure 4.16: Creating StorageClass for NFS.
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After that, We set the nfs-csi StorageClass to be the default one by running the kubectl
command.[48]

Figure 4.17: Setting the StorageClass.

4.3.3 Deploying the ECK Stack

4.3.3.1 Installing the CRDs

Custom Resource Definitions will be installed by running the following command:[15]

Figure 4.18: Installing CRDs.

4.3.3.2 Deploying the Operator with its RBAC rules

The Operator will automatically create and manage Kubernetes resources to achieve the
desired cluster state of Elasticsearch, Kibana, APM Server, Beats, etc.

The ECK Operator will be installed with its RBAC rules[15], by running the following com-
mand:

Figure 4.19: Installing the operator with its RBAC rules.

56



CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

4.3.3.3 Deploying Elasticsearch

After creating Elasticsearch configuration YAML file, We deploy it on the cluster.[14]
Since this is only a PoC, the Elasticsearch cluster consists only of one node.

Figure 4.20: deploying Elasticsearch.

Checking Elasticsearch status.[14]

Figure 4.21: Elasticsearch status.

4.3.3.4 Deploying Kibana

After creating Kibana configuration YAML file, We deploy it on the cluster.[13]
Since this is only a PoC, the Kibana cluster consists only of one node.

Figure 4.22: deploying Kibana.

Checking Kibana status.[13]

Figure 4.23: Kibana status.
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Checking Kibana Web interface.

Figure 4.24: Kibana Web interface.

4.3.3.5 Deploying APM

After creating APM configuration YAML file, We deploy it on the cluster.[61]

Figure 4.25: deploying APM.

Checking APM status.[61]

Figure 4.26: APM status.
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4.3.3.6 Deploying Heartbeat

After creating Heartbeat configuration YAML file, we deploy it on the cluster.[54]

Figure 4.27: deploying Heartbeat.

Checking Heartbeat deployment status.[54]

Figure 4.28: Heartbeat status.

Checking Heartbeat Web interface.

Figure 4.29: Heartbeat Web interface.
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4.3.3.7 Deploying Metricbeat

After creating Metrictbeat configuration YAML file, we deploy it on the cluster.[53]

Figure 4.30: deploying Metricbeat.

Checking Metricbeat status.[53]

Figure 4.31: Metricbeat status.

4.3.3.8 Deploying Logstash

After creating Logstash configuration YAML file, we deploy it on the cluster.[72]

Figure 4.32: deploying Logstash.

Checking Logstash status.[72]

Figure 4.33: Logstash status.
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4.3.4 Deploying Patroni

Patroni is a Python-based open-source PostgreSQL template and controller, Which can run
and manage High-Availability Postgres clusters.[29]

4.3.4.1 Deploying Patroni

After creating Patroni configuration YAML files, We deploy it on the cluster.[22]

Figure 4.34: Deploying Patroni.

Checking Patroni status.

Figure 4.35: Deploying Patroni.

4.3.5 Deploying pgAdmin

After creating PgAdmin YAML files, We deploy it on the cluster.[25]

Figure 4.36: Deploying pgAdmin.

61



CHAPTER 4. DEPLOYING AND CONFIGURING THE KUBERNETES CLUSTER

Checking pgAdmin Web interface.

Figure 4.37: pgAdmin Web interface.

4.3.6 Deploying Falco

Falco is the open source tool for continuous risk and threat detection across Kubernetes,
containers and cloud.It is continuously detecting unexpected behavior, configuration changes,
intrusions, and data theft in real time. Falco has a lot reports output options like exporting
into a file, Web server or a Slack channel, by by default it uses a simple WebUI that works as
output for displaying the latest events called Falcosidekick.[19]

4.3.6.1 Deploying Falco

After creating Falco configuration YAML files, We deploy it on the cluster.[7]

Figure 4.38: Deploying Falco.
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4.3.6.2 Deploying Falco-sidekick

Falco-sidekick will be deployed using Helm charts[21], by running the following command :

Figure 4.39: Deploying Falco-sidekick.

Checking Falco-sidekick Web interface.

Figure 4.40: Falco-sidekick Web interface.

4.3.7 Deploying RabbitMQ

4.3.7.1 Deploying RabbitMQ Operator

RabbitMQ operator will be deployed[28], by running the following command :

Figure 4.41: Deploying RabbitMQ operator.
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4.3.7.2 Deploying RabbitMQ cluster

After creating RabbitMQ cluster configuration YAML file[28], we deploy it on the cluster.

Figure 4.42: Deploying RabbitMQ cluster.

Checking RabbitMQ Web interface.

Figure 4.43: RabbitMQ Web interface.

4.3.8 Deploying SIRH Company-Management

After creating SIRH Company-Management configuration YAML files, We deploy it on the
cluster.

Figure 4.44: Deploying SIRH Company-Management.
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Checking SIRH Company-Management status.

Figure 4.45: SIRH Company-Management status.

4.3.9 Deploying SIRH Trackability

After creating SIRH Trackability configuration YAML files, We deploy it on the cluster.

Figure 4.46: Deploying SIRH Trackability.

Checking SIRH Trackability status.

Figure 4.47: SIRH Company-Management status.

4.3.10 Deploying SIRH Billing

After creating SIRH Billing configuration YAML files, We deploy it on the cluster.

Figure 4.48: Deploying SIRH Billing.
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Checking SIRH Billing status.

Figure 4.49: SIRH Billing status.

4.3.11 Deploying SIRH Pay

After creating SIRH Pay configuration YAML files, We deploy it on the cluster.

Figure 4.50: Deploying Pay.

Checking SIRH Pay status.

Figure 4.51: SIRH Pay status.

4.3.12 Deploying Ingress

4.3.12.1 Enabling Ingress addons

This addon adds an NGINX Ingress Controller for MicroK8s. It is enabled by running the
command:[45]

Figure 4.52: Enabling Ingress addons.
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4.3.12.2 Deploying Ingress rules

Ingress rules can be deployed from the configuration YAML file, by running the following
command: [26]

Figure 4.53: Deploying Ingress rules.

4.3.12.3 Checking Ingress status

After deploying ingress rules, we checking it status.

Figure 4.54: Checking Ingress status

Checking SIRH Front Authentication Web interface.

Figure 4.55: SIRH Front Authentication Web interface.
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Checking SIRH Backoffice Web interface.

Figure 4.56: SIRH Backoffice Web interface.

Checking SIRH Employee Portal Web interface.

Figure 4.57: SIRH Employee Portal Web interface.
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Checking SIRH Facturation Web interface.

Figure 4.58: SIRH Facturation Web interface.

Checking SIRH Front Web interface.

Figure 4.59: SIRH Front Web interface.
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4.3.13 Pushing configuration files to GitHub

We push the configuration files of the project to our public GitHub repository wh0kn0ws/k8s-
deployment

4.3.13.1 Setting up the repository

We start by initializing the local repository that contains our configurations files, then we
link it to the public GitHub repository, and we commit the new changes.

Figure 4.60: Setting up the repository.

4.3.13.2 Pushing the configuration to the public repository

We push the configuration files to the public GitHub repository.

Figure 4.61: Push to the public repository.
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4.3.13.3 Checking GitHub repository

After pushing the configuration files to the remote repository successfully, we can clearly
see the presence of the files in the public repository on GitHub platform.

Figure 4.62: Push to the public repository.

4.4 Conclusion

In this chapter, we have presented a diagram that explains the overall architecture and
the different components of the new deployment, after that, we have started setting up a
highly available Kubernetes cluster, NFS server, and deployed microservices and applications
succesfully. After finishing with the deployment, we created remote public repository to push
the configuration files to share and save the files, and to keep track of the future changes that
could be made to the deployment.
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General conclusion and future
perspectives

Most companies and organizations are adopting the cloud-native approaches because of their
performance efficiency, which further lies in technologies like containerization, orchestration,
and microservices capable of providing highly scalable, light-weighted, portable, and flexible
solutions. Through this work, we aimed to review, analyze, and critique Tech Instinct deploy-
ment and its applications and microservices, and then proposed a solution by migrating from
a Docker Swarm cluster to a high-availability Kubernetes cluster.

In the future, We will be adding more nodes to the cluster to distribute the workloads more
efficiently and reduce the pressure on them, configure auto-scaling rules basing on traffic to
reduce downtime and respond to the high demand, protect against potential DDoS attacks,
and will also add more storage servers and configure a High Availability storage cluster.
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