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Abstract 

Due to their large deformation, rubber-like materials are used in many industrial applications. However, few 

studies are available in the literature on the classification of rubber-like materials, their mechanical properties 

and the behavior of this material due to their hyperelastic and nonlinear behavior. In this work, an 

incompressible isotropic nonlinear elastic thick-walled spherical structure subjected to external pressure is 

studied using analytical formulation. The study aims to analyze the behavior and the stress field of such 

materials which are characterized by high deformability. Five different type strain energy functions are applied 

to a pressurized thick-walled hollow sphere to model the material behavior. A closed-form analytical solution 

is obtained and the results predicted from classic strain energy models (Neo-Hookean and Mooney Rivlin) and 

those obtained by Isihara, Biderman and Gent-Thomas models are compared in the prescribed case. The 

solution obtained, for different models, was used to determine the stress field (radial and hoop stresses) across 

thickness of the sphere. Finally, the influence of some parameters such as the radial pre-stretched sphere on 

stress components was examined. Comparisons are done to investigate the accuracy and evaluating the 

effectiveness of some existing constitutive models in the analysis of spherical vessel under external pressure. 
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I. Introduction 

Rubber and rubber-like materials which are assumed 

incompressible and isotropic materials are used in many 

engineering applications such as in automotive as tires, engine 

and transmission mounts, center bearing supports and exhaust 

rubber parts. The particularity of these rubber-like materials is 

their stress- stretch curves which are S-shaped to J-shaped 

forms due to their high deformability.  

The mathematical modeling of such material encounters 

considerable difficulties related to their nonlinear behavior [1]. 

In recent years, many scholars have developed constitutive 

modeling of rubber like materials [1-5]. In order to describe 

the elastic behavior of elastomers, numerous models can be 

found in the prolific literature, but only few of them can be 

able to reproduce the response of the material, i.e. to 

satisfactorily fit experimental data for different loadings [6]. 

Among the various models recommended for the mechanical 

behavior of elastomers, the hyperelastic models are generally 

employed for modeling the nonlinear elastic behavior of 

homogeneous and isotropic polymers which exhibit large 

deformation [7-11]. The authors in [6] proposed a comparison 

of twenty different phenomenological and physical 

hyperelastic models for rubber-like materials. The material 

parameters of each model were determined by fitting to 

experimental data of [12]. The aim of their work [6] was to 

systematically compare hyperelastic models in order to 

classify them with respect to their ability to fit experimental 

data. There has been remarkable interest to know how an 

appropriate strain energy function can provide the foundation 

of an analytical solution on prediction of response of a realistic 

structure which undergoes three-dimensional large 

deformation.  

The design of thin/thick-walled hollow spherical structures 

made of hyperelatic material and subjected to internal pressure 

remains a challenging talk. From a general perspective, 

cylindrical and spherical structures used in many industrial 

applications under internal and/or external pressure require 

rigorous stress analysis for their optimal, reliable and secure 

operational design. The behavior of an inflating of thin-walled 

cylindrical/spherical membrane under internal pressure has 

been investigated for large deformations by many authors [13-

16]. In most cases the authors investigate the stability of 

hollow thin spherical membranes [17-19]. It is generally 

admitted that membranes and thin-walled spherical structures 

are successfully modeled as an ideal membrane with related 

mathematical simplifications.  

However, in the case of thick-walled spherical structures the 

problem of formulation should consider the three-dimensional 

character of the solid. Accordingly, the analysis of the 

complete stress field of thick-walled spheres made of rubber-

like materials by applying different hyperelastic models has 

received less academic interest.  

In their work, Anssari-Benam [20] investigated the accuracy 

of a generalized neo-Hookean strain energy function to model 
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the two characteristic instability phenomena in the inflation of 

rubber-like. 

Recently, Taghizadeh et al. [21] analyzed elastic behavior of 

cylindrical and spherical shells using different strain energy 

functions. The authors carried out an analytical study to 

investigate the stability of structures under internal pressure, 

where a comprehensive study was done on vanishing 

circumstances of the snap-through instability that occurs in the 

inflation of internally pressurized spherical shells and 

cylindrical tubes. 

Debotton et al. [22] focused on axisymmetric bifurcations of 

thick-walled hollow spheres. The authors studied the 

mechanical behavior of a thick-walled spherical shell during 

inflation using four different material models. They 

investigated the existence of local pressure maxima and 

minima and the dependence of the corresponding stretches on 

the material model and shell thickness. 

The present workplaces emphasis on the analytical 

formulation of the distribution of stresses across the thickness 

of thick-walled spherical structure subjected to external 

pressure. The analytical solutions are proposed for different 

constitutive models to study the inflation of a hyperelastic 

material as the material parameters are identified by using 

experimental calibration for various strain energy functions. In 

Section 2, the basic equations are developed for a sphere made 

of hyperelastic isotropic homogeneous material. Section 3 

gives the results and the analysis of the sphere are described 

and discussed. 

II. Mathematical formulation 

We consider a hollow sphere made of an incompressible 

isotropic hyperelastic material. The sphere has inner and outer 

radii, noted A and B, respectively and subjected to an external 

pressure (labeled Pout). The schematic view of the thick sphere 

is shown in Figure 1, where the initial and the current 

configurations are detailed. 

 

 

Figure 1 Thick-walled sphere with wall made of hyperelastic material, (a) 

initial configuration (b) current configuration. 

Considering the symmetry of the geometry and the 

axisymmetric load conditions, it is more appropriate to 

consider a spherical coordinate system (r, θ, ϕ).  

If (R, Θ, Φ) and (r, θ, ϕ) are coordinates of the rubber sphere 

before and after deformation respectively, the deformation 

pattern of the rubber sphere can be expressed as [5]: 

 

( ), ,r f R  = = =                 (1) 

 

Based on the theory of continuum mechanics, the 

deformation gradient tensor F and left Cauchy green tensor 

B are defined as [5]: 

 

0 0

0 0

0 0

r
T

F F 









 
 

= =  
 
 

,    
T

B F F=     (2a, b) 

 

Where
r ,   and   are the principal stretches in the 

radial, circumferential and meridional direction of the thick-

walled sphere. The stretches are expressed as follow [5]: 

 

r

dr

dR
 = , 

r

R
 = ,

r

R
 =  (3) 

 

Correspondingly, the principal invariants of the left Cauchy-

Green strain tensor are [5]: 
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Substituting Eq. (2) into Eq. (4) results in [5]: 
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For convenience [21]:  

 

1R
Q

r
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−= =

 

(6) 

 

It is worth noting that the present formulation based on the 

notation facilitates the steps and the derivation trend of the 

analytical solutions. It is considered that the material of the 

sphere is considered to be incompressible.  

The resulting deformation is then described by the following 

equations [21]: 

 
2 3 3,r Q r R k = = +  (7) 

 

It can be easily concluded: 
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The principal Cauchy stresses are given in the form of: 
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where the scalar p serves as an indeterminate Lagrange 

multiplier. 

It can be also concluded: 
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where ( ) ( )2 1 1, ,W Q W Q Q Q− −=
  

By considering nobody forces, the equilibrium equation of the 

axial symmetry in the current configuration can be achieved 

as: 
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Applying the chain rule for finding derivatives, we have: 
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The substitution of Eqs. (8) and (10) into equilibrium equation 

(11) could lead to : 
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The solution of Eq.13 can be computed easily by using any 

well-known computer algebra system such as Maple for 

different strain energy functions such as Neo-Hookean, 

Mooney-Rivlin, Gent-Thomas, Biderman and Isihara. These 

models have simple mathematical forms listed below: 

- Neo-Hookean strain energy function [12]: 

 

( )10 1 3NHW C I= −  (14) 

 

where 10 2C =  and  is the shear modulus.  

- Mooney-Rivlin strain energy function [23]: 

 

( ) ( )10 1 01 23 3MRW C I C I= − + −  (15) 

 

where C10 and C01 stand for the material parameters of 

Mooney-Rivlin model. 

- Gent-Thomas strain energy function [24]: 

 

( ) 2
1 1 23 ln

3
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I
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 
  (16) 

 

where C1 and C2 are the two material parameters 

- Isihara strain energy function [25]: 

 

( ) ( ) ( )
2

10 1 20 1 01 13 3 3IW C I C I C I= − + − + − (17) 

 

where C10, C20 and C01 stand for the material parameters of 

Ishira model. 

- Biderman strain energy function [26]: 

 

( ) ( )

( ) ( )
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2 3
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3 3
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(18) 

 

where C10, C01, C20 and C30 stand for the material 

parameters of Biderman model. 

The material parameters of each model can be identified 

using experimental data as shown by [6]. 

For example: 

Gent-Thomas Model: 
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where the parameter K in Eq. (19) is an unknown constant 

that is determined using the mechanical boundary conditions. 

Applying a constant uniform pressure at the outer surfaces of 

the thick-walled pressure vessel, the boundary conditions are 

expressed as: 

( )1

r out b outQ p −= = −  (20) 

 and a ba A b B = = are the radial stretch at the inside 

and outside surfaces of the sphere, respectively and are 

expressed by: 
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where A B =  

Here the hoop stress is obtained from Eq. (10): 

 

3

2
r

dW
Q

dQ
   = = −  (22) 

Assuming that the spherical shape of the pressurized sphere 

remains unchanged and 
in outP p p = − is denoting the 

pressure difference between the inner and the outer surfaces: 

 

( ) ( )1 1

r in a r out bP Q Q   − − = − = + =  (23) 

III.Numerical application  

The calibrated material parameters for Gent-Thomas (WGT), 

Ishira (WIs), Biderman (WB), Mooney Rivlin (WMR) and for 

the neo-Hookean (WNH) strain energy density functions are 

reported in Table 1.  

Table 1 Parameters of hyperelastic models for Treloar experimental data [12]. 

Type of model Material parameters 

Neo-Hookean C10 = 0.2 

Mooney-Rivlin C10 = 0.162 and C01 = 5.90 10-3 

Gent-Thomas C1 = 0.176and C2= 5.65 10-2 

Ishihara C10=0.171, C20=4.89 10-3and C01= -
2.4 10-4 

Biderman C10= 0.208, C01= 2.33 10-2,  

C20 and C30 = -2.4 10-3 

 
The parameters of the models described by the strain density 

energy functions given in Eqs (14) to (18) are listed in Table 1 

[6]. The parameters are derived by fitting data from the 

experimental results reported in Treloar [12]. 

In this section, we focus on the numerical results obtained for 

mechanical behavior modeling of these materials using five 

different types of strain energy density functions. These 

numerical computations are carried out for internal pressure 

and stress field.  

We consider a thick sphere with the following 

characteristics: A = 0.1 m, B = 0.2m. In order to determine the 

unknown constants in these closed-form solutions, appropriate 

boundary conditions should be defined. The applied external 

pressure is Pout = 0.5 MPa. 

 

IV. Results and discussions 

IV.1. Validation 

In order to validate the calculation methodology as well as 

the data consistency, the results reported in [21] are taken as a 

benchmark. In Figure 2, the pressure differences between the 

inner and the outer surfaces (ΔP) as a function of the stretch λa 

are plotted. The concordance between the outcomes of the 

current study and the reference (Taghizadeh et al. [21]) are 

evaluated by applying Mooney Rivlin (WMR) and neo-

Hookean (WNH) strain energy density functions and by 

considering η = 0.35. The results from the current analytical 

formulation are in excellent agreement with those reported in 

[21]. In fact, the maximum error does not exceed 0.1%. 

 

. 

 
Figure 2 The pressure ΔP as a function of the stretch λa for the Mooney 

Rivlin (WMR) and for the neo-Hookean (WNH) strain energy density functions 

for η = 0.35: comparison of current results and results obtained by Ref. [21].  

 

IV.2. Current work 

 

 
Figure 3. The pressure ΔP as a function of the stretch λafor the Gent-Thomas 

(WGT), for the Ishira (WIs), for the Biderman (WB), for Mooney Rivlin (WMR) 

and for the neo-Hookean (WNH) strain energy density functions for η = 0.5. 

 
Figure 3 illustrates the difference on the pressure ΔP as a 

function of the stretch λa for different strain energy density 

functions studied herein, for the case of internal to external 

radii ratios η = 0.5 for the spherical shell made of the rubber 

tested by Treloar (Treloar [12]). It could be concluded that a 

progressive increase of in the stretch λa leads to create a 

monotonic increase in pressure until λa ~ 2. 
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In the case of Gent-Thomas (WGT), Mooney Rivlin (WMR) 

and neo-Hookean (WNH) models, the pressure curves have a 

single local pressure maximum and after that the pressure 

curves suddenly show monotonic decrease. This general 

observation is violated for the Ishira (WIs) and the Biderman 

(WB) models where the two curves remain with the same slope.  

Thus the evolution trend of the pressure could be classified as 

closer for three models whereas large dispersion is observed 

for the two representative curves of Ishira (WIs) and the 

Biderman (WB). In fact, as the stretch λais higher than 2, a 

disproportional increase of the pressure is identified. 

 

Figure 4a shows the radial stress distributions (σrr/Pi) in the r-

direction for different strain energy functions, from which it is 

found that the radial stress components have its minimum 

values in at inner surface of the sphere ( )r A=  and its 

magnitude shows a monotonic behavior increasing towards the 

outer surface of the sphere. However, for all the applied 

models, the normalized radial stress is minus one at outer 

surface (σrr/Pi(r=B) = -1) of the sphere that satisfies the 

boundary conditions. The curves of the radial stresses 

components show a divergence between models results in the 

outer region of the sphere. 

The circumferential stress component (σθθ/Pi) is a maximum at 

the inner surface of the hollow sphere and its magnitude shows 

a monotonic behavior decreasing towards the outer surface of 

the sphere for all the tested strain energy functions (Figure 4b). 

The curves of the hoop stresses remain parallel. 

As shown in Figure 4, the radial stress is consistently 

compressive; however, the hoop stress is tensile at the inner 

surface and become compressive at outer surface. 

 

V. Conclusions 

In this work, the behavior of a thick-walled pressure sphere 

made of an incompressible isotropic nonlinearly elastic 

material is studied. The aim through this investigation is to 

examine the stress field and the response of the sphere to the 

imposed mechanical loading. A closed-form analytical 

solution was derived from the governing equations. The 

hyperelastic behavior was modeled by employing five 

different strain energy functions (Neo-Hookean, Mooney 

Rivlin, Gent-Thomas, Biderman and Isihara) as established in 

the literature. The result analysis shows that an important 

divergence of the stress components is outlined as different 

models are applied. At the first glance, the study highlights the 

importance to impose a concise methodology to select 

modelsfor structural designing as hyperelastic materials are in 

process. The difference between the results obtained based on 

different strain energy functions are related to the accuracy 

with which these models reproduce the experimental data. 

Mechanical loading as radial stretch is too important structural 

designing parameters; stress field of a thick-walled pressure 

sphere is examined in terms of the influence of these 

parameters. It was shown that the radial and hoop stress 

components are sensitive to the variation of radial stretch 

where the higher radial stretch is applied the higher stress 

components are generated.      

 

 

 

Figure 4. The normalized  radial (a) and hoop (b) stresses as a function of 

the dimensionless radial position (R/A) of a spherical vessel made for the 

Gent-Thomas (WGT), for the Ishira (WIs), for the Biderman (WB), for 

Mooney Rivlin (WMR) and for the neo-Hookean (WNH) strain energy density 

functions in the presence of radial loading λa =1.2 and for η = 0.5. 
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