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ABSTRACT

This thesis is designed to give some results of existence and uniqueness of solutions for some
parabolic equations posed in unbounded in time non-cylindrical domains. We give sufficient
conditions on the functions of the parametrization of the non regular domains and on the
coefficients of the equations under which our problems admit unique solutions. We study the
global regularity problem in a suitable parabolic Sobolev space. The method used to prove our
main results is based on the technique of the decomposition of domains.

Key words. parabolic equations, heat equation, non-rectangular domains, conical domains, un-

bounded domains, Dirichlet-Robin conditions, anisotropic Sobolev spaces.
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RESUME

Cette these a pour but de donner des résultats d’existence et d’unicité de solutions pour cer-
taines équations paraboliques posées dans des domaines non cylindriques et non bornés en
temps. Nous donnons des conditions suffisantes sur les fonctions de paramétrisation des do-
maines non réguliers et sur les coefficients des équations sous lesquelles nos problemes admettent
une solution unique. Nous étudions le probleme de régularité globale dans un espace de Sobolev
parabolique approprié. La méthode utilisée pour démontrer nos principaux résultats est basée
sur la technique de la décomposition de domaines.

Mots clés. Equations paraboliques, équation de la chaleur, domaines non rectangulaires, do-

maines coniques, domaines non bornés, conditions de Dirichlet-Robin, espaces de Sobolev anisotropes.
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INTRODUCTION

In this thesis, we shall be concerned by the existence, the uniqueness and maximal regularity

of solutions of the following equation :
Ou — c(t)Au = f, (1)

where A is the Laplacian operator and ¢(t) is a time dependent coefficient. The second member
f belongs to the Lebesgue space of square integrable functions L?. The equation (1) is posed
in unbounded time-varying domains of R”,n = 2 or n = 3 and it is associated with boundary
conditions of the Dirichlet-Robin type or of the Cauchy-Dirichlet type.

The main pecularities of the problems studied in this thesis are the unboundedness of the
domains and the fact that they are non regular. Besides being interesting in themselves, such
kind of problems are of interest in several fields, see for example [6], [16] and the references
therein.

This thesis consists of three chapters. Let us briefly indicate the contents of each chapter.

Chapter 1 is a preliminary chapter in which we recalled essential notions and results that
will be used throughout this work. First, we recall some definitions concerning some functional
spaces, notably the anisotropic Sobolev spaces. We then prove some technical lemmas. Finally,
we present some results on some model parabolic problems that we need to develop further

arguments.



Introduction

In Chapter 2, we will prove well-posedness and regularity results for a one-dimensional
parabolic equation, subject to Dirichlet-Robin type boundary conditions and posed in an un-

bounded in time non-rectangular domain. More precisely, we are concerned by the following

problems :
du — c(t)0*u = f1 € L*(Q),
u|1"1 = 07 (2)
L 835’& + 52U|F2 = 07
and )
O — c(t)0?v = fo € L*(Q),
U|I‘2 = 07 (3)
\ dpv + Prolp, =0,
where

Q={(t,x) eR*:t>0, o1 (t) <z < pa(t)}
with ¢; € C([0,+00[) N C*H0,400),i =1, 2,
©(t) :=pa(t) —p1(t) >0 Vt>0, and ¢ (0) =0.
The lateral boundaries of ) are defined by
Li={(t,g;(t) eR*:t>0},i=1, 2.

The coefficient ¢ is a continuous real-valued function defined on [0, +oo[, differentiable on
10, +o00[ and such that

O<a<c(t)<p

for every t € [0, +o00o[, where a and /3 are positive constants. Here, the coefficient 3;, i = 1, 2
in boundary conditions are real numbers.
Problems (2) and (3) modelize, for instance, the lateral diffusion of two pollutants in a flow

of a river with variable width. Note that the Robin type conditions

0,0 + Brv|p, = Opu + Paulp, =0,
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Introduction

mean for instance, that the flux of diffusion of the pollutants are proportional to their propaga-
tions along the wide of the river. The most interesting points of the parabolic problems studied
here is the unboundedness of D with respect to the time variable ¢ and the fact that D shrinks
at t =0 (p(0) = 0) which prevent one using the methods in [20] and [21]. It is well known that
there are two main approaches for the study of boundary value problems in such non-regular
domains. The analysis can be done in weighted spaces with the weight controlling the behavior
of the solutions near the singularity of the boundary of the domain (see, for instance, [17], [18]

and [19]). Our approach is different. Indeed, the space
HY?(Q) = {w e L*(Q) : w, dyw, 3w € L* (Q)}

used here has low smoothness but one must add assumptions on the type of the domain €, as
well as conditions on the coefficients ¢ and 3;, © = 1, 2, near the singular point 0 and in the
neighborhood of +oco.

In Chapter 3, we will prove well-posedness and regularity results for a bi-dimensional
parabolic equation, subject to Cauchy-Dirichlet boundary conditions and posed in an un-
bounded in time conical domain of R®. More precisely, we are concerned by the following

problem :

dyw — ¢(t) (2w + dow) = f € L*(D), n

w|yp =0,

where the conical domain D is defined by
D= {(t,x,y) cR¥:t>0;0< \/m<gp(t)}
where ¢ € C([0, +o0[) N C*(0, +00),
@(t)>0 Vt>0, and ¢ (0) =0.

The coefficient ¢ is a continuous real-valued function defined on [0, +oo[, differentiable on
10, 400 and such that

0<y<c(t) <o
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Introduction

for every t € [0, +00[, where v and § are positive constants. by using the domain decomposi-
tion method, we prove that there exists a unique solution w of Problem (4) belonging to the

anisotropic Sobolev space

HY? (D) ={we H'(D): 9w € L*(D),0;w € L* (D), 8;,w € L* (D)}

» Yy
where H!(D) stands for the Sobolev space defined by
H' (D) ={w e L*D): dw € L*(D),0,w € L* (D) ,d,w € L* (D)}

Note that results concerning the bounded in time case are obtained for Problem (4) in [13].

We end this thesis by a conclusion and prospects.


pc
Texte tapé à la machine
Introduction

pc
Texte tapé à la machine


CHAPTER 1

PRELIMINARIES

The objective of this chapter is to recall the essential notions and results used throughout
this work. First, we recall some definitions concerning some functional spaces, notably the
anisotropic Sobolev spaces. We then prove some technical lemmas. Finally, we present some

results on some model parabolic problems. For more details, see [5], [8] and [21].

1.1 Some functional spaces

1.1.1 L? spaces

Definition 1.1.1. Let Q be an open subset of RN and p € [1,+0c]. The space LP is the vectorial

space of classes of functions u from €2 into R, Lebesque measurables, such that
1. if1 <p<+o0, / |u(x)|P dr < +oo,
Q

2. if p= 400, esssup|u(z)| < +o0, where
xeQ)

esssup|u(z)| = inf{ M| |u(z)| < M a. e. z € Q}.

€

Proposition 1.1.1. 1. The mapping || - || defined from LP(Q2) into Ry by

lull, = ( / (@) de), 1< p < +oo,
Q

[ulloo = supess|u(z)], p = oo,
e

u+—



1.1. Some functional spaces

define a norm on LP(Q2), which makes it a Banach space (and a Hilbert space if p = 2).

2. For every real p € (1,400, the dual L' (Q) of LP(Q) is isomorph to LP(Q) with %—1—1% =1.
The dual mapping is defined by

LP(Q) x LP(Q) — R, (u,v) — /Qu(a:)v(m) dx,

for each real p € [1,400]. The bi-dual of LP(2) can be identified to LP(2). We said that

LP(Q) is a reflexive space.

Theorem 1.1.1. (Hélder inequality)
Assume that f € LP and g € L?" with 113 + 1% = 1. Then fg € L' and

/Q gl de < I1f gl

We can find the proof of the previous inequality, for example, in [5] (Theorem 4.6 page 50).

Remark 1.1.1. If p=p =2, then we obtain the Cauchy-Schwarz inequality

/Q ol de < |11z glle.

1.1.2 Sobolev spaces

Assume that  is an open domain in RY. For m € N and p € [1, 400, the Sobolev space

WmP(Q)) is defined by :
WmP(Q) = {u: Q — R|D € LP(Q),Va € NV, 0 < |a| < m}

where for any a = (ay,qs,...,ay) € NY¥ we note |a| = a; + as + ... + ay and D% =

0g1052...03Nu. The space W™P(§2) is equipped with the norm

r1 “xo "

[ullwme@) = Z ||D°‘u||’£p(9) (1.1)
0<|a|<mn
or with the equivalent norm

1
lullwmoy = ( D> 1DulF,q)7-

0<|er|<m



1.1. Some functional spaces

Proposition 1.1.2. W™P(Q) is a separable Banach space. It is reflexive for 1 < p < oo.

Remark 1.1.2. 1. If p = 2, we usually write W™2(Q) = H™(QY). When equipped with the

inner product

H™(Q2) is a Hilbert space.

2. If Q is an open bounded set with smooth boundary T, the the norm (1.1) is equivalente to

the following norm

lullry + > 1Dl

|| <m

Definition 1.1.2. D(Q) is the set of functions of class C*(2) with compact support in Q, i.

e.

D(Q)={u:Q—R;ueC®) et supp(u) C K C Q, K compact}.

Definition 1.1.3. We note by Wy"*(Q) = D(Q)mep(m the closure of de D(Q) in W™P(Q).

Theorem 1.1.2. D(Q) is dense in W™P((Q).
In the sequel, W1?(Q) will be equipped with the norm
lellwsoy = (ullp ) + Z 15 )
or with the equivalent norm
[ullwrp@) = llullLr@) + Z ||—||Lp
In the case of a bounded set 2, WP(Q) can be equipped with the following norm:

iy = ( 1Vl do)?

which is called the gradient norm. The equivalence of these norms can be obtained by using

the following result :



1.1. Some functional spaces

Theorem 1.1.3. (Poincaré Inequality)
Assume that Q is bounded. Then, there exists a constant C' (which depends on Q and on p)
such that

||u||Lp(Q) < OHVUHLp(Q), Yu € Wol’p(Q), 1 <p<oo.

The mapping u +— ||Vul|Lr(q) is a norm on Wy (Q) which is equivalente to the norm
induced by || - [lwir@)-
Theorem 1.1.4. (Green Formula)

Assume that 2 is a open bounded set of RN of class C' such that its boundary is bounded.
Then, for each u € H*(Q) and for each v € H'(Q), we have

/Au~vdx:—/Vu~Vvdx +/@-vda
0 ) r on

N
ou
where g—z =Vu-n = Z n; is the normal deriative and n = ‘(ny,...,ny) is the unit
i=1

a.’lﬂ'i

normal vector.

The Green formula can be given by the following theorem :

Theorem 1.1.5. (Green Formula)
Assume that Q is an open bounded domain of RN with Lipschitz boundary T' = 0Q and 1 < p <
oo. Then, for every u € WHP(Q) and for every v € W=7 (), we have

0 0
Yodr = —/u vdx—l—/uvvida,i:l...N, (1.2)
q 0%; o Oz; r
where g—;‘i and % are taken in the distributional sens, v; is the i-th composante of unit vector

of the normale to 9. Here, W= (Q) denotes the dual space of W'P(Q), 1 < p < oo.

1.1.3 Anisotropic Sobolev spaces

It is well known that Lebesgue and Sobolev spaces are the essential tools of functional analysis
for the study of partial differential equations. The study of the regularity of solutions can
be carried out by their belonging to some functional spaces. In this section, we introduce

the so-called anisotropic Sobolev spaces H!? built on the Lebesgue space of square integrable



1.2. Technical Lemmas

functions L2. These spaces are the natural ones adopted in the study of second-order parabolic
equations. The main features of the spaces H? is that smoothness with respect to spatial
variables are twice as high with respect to time. For more details and proofs we refer to Lions
and Magenes [21].

Let us introduce some notations. Let {2 be a bounded open subset of R™. We denote
Q = (0,T) x Q with T maybe finite or infinite. L*(Q) denotes the space of (class of) functions

u which are square integrable on () with the Lebesgue measure dtdx, such that

1/2
il = ( [ Paae) <o
Q

Now we define the anisotropic Sobolev space H?(Q)

Definition 1.1.4. H"?(Q) = {u € L*(Q), du € L*(Q), 0°u € L*(Q), for each |a| <2} .

0% = 031 ... 09" u, a = (o, g, ..., ), o] = a1 + ... + ay, < 2. Of course, it is a Hilbert

space with inner product

(U, U)H1»2(Q) = (@u, atU)L2(Q) + Z (aau, 8QU>L2(Q)

la|<2
H12(Q) is equipped with the norm
1/2
||“||H172(Q) = ||atu||%2(Q) + Z ”aau”%Q(Q)
|| <2

Remark 1.1.3. The spaces H“(Q), are said to be anisotropic in the sense that orders of

differentiability in the time and spatial directions are not equal.

1.2 Technical Lemmas

The following result is well known, see for example [21].

Lemma 1.2.1. Let D (0,1) be the unit disk of R*. Then, the Laplace operator A = 92 + 0, -
H? (D (0,1)) N H} (D(0,1)) — L*(D(0,1)) is an isomorphism. Moreover, there exists a
constant C' > 0 such that

||UHH2(D(0,1)) <C HAUHLZ(D(O,1)) Vv € H® (D(0,1))N H& (D(0,1)).



1.2. Technical Lemmas

Here, H* and H} are the usual Sobolev spaces defined, for instance, in Lions-Magenes [21].
In the sequel, assume that 3;, i = 1,2 are real numbers such that

(-=1)'B; >0,i=1, 2. (1.3)

Lemma 1.2.2. Assume that f;, 1 = 1,2 fulfil the condition (1.3). Then, there exists a positive
constant Ky such that for each (u,v) € HZ?(0,1) x Hj (0,1)

H“(k)”m(o,l) <K H“(Q)”m(o,l)’ k=01,
[0 200y < K ([0 gy =0, 1,
where
H?(0,1) = {u e H?(0,1) : v/ (1) 4 fou (1) = u(0) = 0},
and

H; (0,1) = {v e H*(0,1) : v/ (0) + B1v (0) = v(1) = 0} .

Proof. Let hy, hy be arbitrary fixed elements of L? (0,1). Every solution of the ordinary differ-

ential equation u” = hy, (respectively, v” = hy,) is of the form

w(y) = [2{J7 R (s)ds} o+ yed (0) +u(0), y € [0,1],

(respectively,

v(y) = JJ{J5 ha(s)ds}da+yv' (0)+v(0),y € [0,1]).

The variables u (0) and «’ (0) (respectively, v (0) and v’ (0)) are to be determined in a unique way
such that the boundary conditions «’ (1) + fou (1) = u(0) = 0 (respectively, v (0) + S1v (0) =
v(1) = 0) are satisfied.

From the preceding representation of the solution (and thus also its derivative) and from

the required boundary conditions we obtain the following system to be solved:
(14 B2) u' (0) + Bou (0) = — fol hy (s)ds — Bs fol {fox hy (s) ds} dx
0u' (0) + u (0) = 0,

(respectively,
{ v (0) +v(0)=— fol {5 ha(s)ds} dx
V" (0) + Bv (0) = 0).

10



1.2. Technical Lemmas

This system in the unknowns « (0) and «’ (0) (respectively, v (0) and v (0)) is uniquely solvable
if and only if

ﬁ? +1 7é 07
(respectively,

Br—1+#0).
This condition is verified thanks to (1.3). Finally, the unique solution of the problem
U = ha,
u (0) =0,
u' (1) + Bou (1) = 0,

(respectively,
V" = hy,
v (1) =0,
v'(0) + v (0) = 0),
is given by
uly) = [J{Js h(s)ds}dx+yu' (0),
(respectively,
v(y) = [J{JS ha(s)ds}dx +yv' (0)+v(0)),
where ) )
i o M (s)ds = By [y {Jy M (s)ds} da
u (0) - )
P2+ 1
(respectively,

_ = fol {fox ha (s) ds} dx
o= Bi—1
v (0) = —p1v (0)).

Using the Cauchy-Schwarz inequality, we obtain the following estimates

[ (0)] < C [l 20,1

(respectively,
[0 (0)] < Cllhall 20,y
v (0)] <C ||h2||L2(0,1))7
which will allow us to obtain the desired estimates. [

11



1.3. Some model parabolic problems

Lemma 1.2.3. Under the assumption (1.3) on [3;, i = 1,2, there exists a positive constant Cy

(independent of a and b) such that for each (u,v) € H? (a,b) x H§ (a,b)
k)12 2(2—k)
[ ey < € (0= @)™ [

Jof

k=0,1,

2) 1|2
HLQ((L,b) ’

Mz < O 0= )P o [y k=0,

where,

H?(a,b) = {UEHQ(a,b):u(a):O,u’(b)+ P u () :0},

b—a
b
b_av(a):O,v(b):O}.

Proof. 1t is a direct consequence of Lemma 1.2.2 by using the following affine change of variable

H? (a,b) = {v € H?(a,b) : v’ (a) +

0,1] — [a,b], x— (1 —xz)a+zb=1y.

1.3 Some model parabolic problems

The following results are consequences of Theorem 4.3 ([21], Vol.2).

Proposition 1.3.1. Let R be the cylinder |0, T[ x B (0,1) where B (0,1) is the unit disk of R?,

f€L*(R) and ug € H' (). Then the problem
ou—Au= fin R,
ul. = up,

=0,

Yo

u|71

2
where A = > 892317 v = {0} x B(0,1) et vy =]0,T[ x OB (0,1), admits a (unique) solution
=1

u € H? (R) if and only if the following compatibility condition is satisfied

u0|3’70 = 0

Proposition 1.3.2. (Theorem 4.3, [21]) Let Q =]0,T[x]0,1[, f € L*(Q) and ¢ € H' ().

Then the following initial/boundary value problems :

(

O — *u = f, € L*(Q),
u|F0 = ¢7
u]rl =0,

(‘Lu + ﬁ2U|F2 = O,

12



1.3. Some model parabolic problems

and
O — 0%v = fy € L*(Q),
U’I‘O = ¢a

8:0U + EIU|I‘1 = 07

admit unique solutions in HY*(Q). Here, vo = {0} x]0, 1[, 71 =]0, T[x{0} and v, =0, T[x{1},.
The coefficients B;,1 = 1,2 are real numbers satisfying (—1)"3; > 0.

13



CHAPTER 2

GLOBAL IN TIME RESULTS FOR A
PARABOLIC EQUATION SOLUTION IN
NON-RECTANGULAR DOMAINS

This chapter deals with the parabolic equation
dw — c(t)ow = finD, D={(t,x) eR*:t >0, ¢1(t) <z < pat)}

with ¢; @ [0,400[— R,i = 1, 2 and ¢ : [0,400[— R satisfying some conditions and the
problem is supplemented with boundary conditions of Dirichlet-Robin type. We study the
global regularity problem in a suitable parabolic Sobolev space. We prove in particular that
for f € L?*(D) there exists a unique solution w such that w, dw, dw € L*(D),j =1, 2.
Notice that the case of bounded non-rectangular domains is studied in [15]. The proof is
based on energy estimates after transforming the problem in a strip region combined with some
interpolation inequality. This work complements the results obtained in [26] in the case of

Cauchy-Dirichlet boundary conditions.

14



2.1. Introduction and statement of the main result

2.1 Introduction and statement of the main result
Let D be an open set of R? defined by
D:={(t,2) eR*:t>0, p1 (t) <z < (1)}
where ; € C([0,+00[) N C*(0,4+00),i =1, 2,
©(t) :=¢@a(t) —¢1(t) >0 Vt>0, and ¢ (0) =0.
The lateral boundaries of D are defined by
Li={(tg;(t) eR*:t>0},i=1, 2.
Let us introduce the following functional space:

H"* (D) :={we L*(D): dw, 0pw,d2w € L* (D)}

where L? (D) stands for the usual Lebesgue space of square-integrable functions on D. The

space H? (D) is equipped with the natural norm, that is

2
2 2 2 i 2
iz = 032 + 1000320 + D 103w ) -
J=1

We consider the problems: to find a function v € H?(D) (respectively, v € HY?(D)) that

satisfies the equation

O — c(t)0?u = f1 a.e. on D

(respectively,

O — c(t)0?v = fo a.e. on D)

and the boundary conditions

ulp, = Opu + Paulp, =0,

(respectively,

vlp, = Oov + Prvfp, = 0),

15
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2.1. Introduction and statement of the main result

where f; € L?(D), i = 1, 2 and the coefficient ¢ is a continuous real-valued function defined

on [0, +oo[, differentiable on ]0, +o0o[ and such that
O<a<c(t)<p

for every t € [0, +oo[, where a and /3 are positive constants. Here, the coefficient 3;, i = 1, 2

in boundary conditions are real numbers such that

£ < 0 and By > 0.
x

A

Y
~

Fig.1: The unbounded non-rectangular domain D.

Problems (2.1)-(2.3) and (2.2)-(2.4) modelize, for instance, the lateral diffusion of two pol-

lutants in a flow of a river with variable width. Note that the Robin type conditions
0,0 + Brv|p, = Opu + Paulp, =0,

mean for instance, that the flux of diffusion of the pollutants are proportional to their propaga-
tions along the wide of the river. The most interesting points of the parabolic problems studied
here is the unboundedness of D with respect to the time variable ¢ and the fact that D shrinks
at t =0 (¢(0) = 0) which prevent one using the methods in [20] and [21]. It is well known that

there are two main approaches for the study of boundary value problems in such non-regular

16



2.1. Introduction and statement of the main result

domains. The analysis can be done in weighted spaces with the weight controlling the behavior
of the solutions near the singularity of the boundary of the domain (see, for instance, [17], [18]
and [19]). Our approach is different. Indeed, the space H? used here has low smoothness but
one must add assumptions on the type of the domain D, as well as conditions on the coefficients
c and (;, ¢ = 1, 2, near the singular point 0 and in the neighborhood of 4+00. So, our main

result is the following:

Theorem 2.1.1. Let us assume that

i) pt) — 0 ast—0", i=1,2, (2.5)

(=1)" (2c(t)Bi — £, (1)) >0 a.e. t €]0,+00], i =1, 2, (2.6)
@ and @' are uniformly bounded in a neighborhood of + oo, (2.7)
¢ is a decreasing function in 0, +ool, (2.8)

and one of the following conditions is satisfied
(a) ¢ is increasing in a neighborhood of 400,
(b) 3M >0: |¢'| o < Mc(t).

Then Problem (2.1),(2.3) (respectively, Problem (2.2),(2.4)) admits a unique solution u €
H2(D) (respectively, v € H?(D)).

The case where D is bounded (with ¢(t) = 1) is studied in [15]. The case where ; = oo (or
Py = o0) corresponding to Cauchy-Dirichlet boundary conditions is studied in [26]. Whereas
second-order parabolic equations in bounded non-cylindrical domains are well studied (see
for instance [2], [7], [11], [22], [23], [25] and the references therein), the literature concerning
unbounded non-cylindrical domains does not seem to be very rich. The regularity of the heat
equation solution in a non-smooth and unbounded domain (in the = direction) is obtained in
[14], [10] and [3].
In the next sections, we prove Theorem 2.1.1 in four steps:

(1) case of a bounded domain which can be transformed into a rectangle;
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2.2. The case of a bounded domain which can be transformed into a rectangle

(2) case of an unbounded domain which can be transformed into a half strip;
(3) case of a small in time bounded triangular domain;

(4) finally, we use the previous steps and a trace result to complete the proof of Theorem 2.1.1.

2.2 The case of a bounded domain which can be trans-

formed into a rectangle
Let T" be an arbitrary positive number. Denote by
Di:={(t,z) eR*:0<t<T; ¢ (t) <z < pa(t)}
with ¢ (t) > 0 for all ¢t € [0, 7] and consider the following problems:

Ou — c(t)0*u = fi a.e. on Dy,
uly, = uly, =0, (29)
dpu + Boulp, =0,

and
0w — c(t)0?v = fy a.e. on Dy,

’U’FQ = U|F0 = 07 (210)
0,0 + Bivlp, =,
where f; € L?(D;), i = 1, 2 and Iy is the part of 9D, where t = 0.

18



2.2. The case of a bounded domain which can be transformed into a rectangle

Fig.2: The bounded domain D;.

Let us denote the inner product in L? (D) by (.,.). Then, the uniqueness of the solutions may

be obtained by developing the inner products
(O — c(t)D2u,u) and (D — c(t)02v,v).

Indeed, Let us consider u € H'?(D;) (respectively, v € HY?(D;)) a solution of Problem (2.9)

(respectively, of Problem (2.10)) with a null right-hand side terms. So,
O — c(t)0?u = O — c(t)0*v = 0 in D.
In addition u and v fulfil the boundary conditions
ulp, = vlp, = ulp, = vlp, = %v + Prvly, = pu+ Poulp, = 0.

Using Green formula, we have

Jp, (O — c(t)Pou)u dt dz + [, (O — c(t)OFv) v dt dx

- faDl (% |u|2 v — c(t)@ru.uum) do + faDl (% [v]

+ fDl c(t) (|8xu|2) dt dx + fDl c(t) (|8xv|2) dt dx,

2y — c(t)0v.vv,) do

19



2.2. The case of a bounded domain which can be transformed into a rectangle

where vy, v, are the components of the unit outward normal vector at 0D;. We shall rewrite
the boundary integral making use of the boundary conditions. On the part of the boundary of
Dy where t = 0, we have u = v = 0. Accordingly the corresponding boundary integrals vanish.
On the part of the boundary of D; where t = T, we have v, = 0 and 1, = 1. Accordingly the

corresponding boundary integral

1 [e2(D) ) )

3 [l (@) + o (e,
(1)

is nonnegative. On the parts of the boundary where = = @; (t), i = 1,2, we have

(-1 G RRZ10)

Ve = y i =

L+ ()7 (1) 1+ ()2 (t)

and

u (ta ¥1 (t)) =v (t’ P2 (t)) = aﬂ?u (t7 P2 (t)) + ﬁZu (tv P2 <t>> = aﬂ?v (ta Y1 <t>) + 511} (t7 Y1 (t)) =0.

Consequently, the corresponding integral is

/0 (2e(1)B — b (1)) 1 (£, 2 (1)) dt + / (—2e(t)B1 + @, (1)) 0 (£, pn (1)) dt.

Then, we obtain

Jp, O = c(t)02u)u dt dz + [, (O — c(t)0?v) v dt du
= /0 (2¢(t)Bs — @5 (1)) u® (t, oo (t))dt‘f‘/o (=2¢(t)B1 + &, (1)) v2 (¢, 01 (1)) dt

©2(T)
by [ ) o (@l +

1(T) D,

c(t) (|0xu|2) dt dz —l—/ c(t) (|8xv|2) dt dx.

Dy

Consequently using the fact that v and v are the solutions yields

/D c(t) (|8xu|2) dt dx +/ c(t) (|8xv|2) dt dx =0,

Dy

because thanks to the condition (2.6) and to the fact that ¢(¢) > 0 for every ¢ € [0, +o0[, we

have

/0 (2e(t)Ba — i (1)) 4? (£, 02 (1)) dt + / (=2e(t)B1 + @ (1)) 0 (1, 1 (1))

1 [e2(T)
—I——/ ul? (T, 2) + |v)* (T, x)]dx +/ c(t) (|0yul?) dt dz > 0.
2 Jor(my Dy
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2.2. The case of a bounded domain which can be transformed into a rectangle

This implies that |9,ul” + [9,v]* = 0 and consequently 9%u = 92v = 0. Then, the hypothesis
Opu — c(t)0%u = Oyv — ¢(t)0%v = 0 gives dyu = dyv = 0. Thus, u, v are constants. The boundary
conditions and the fact that §; # 0,7 = 1,2 imply that v« = v = 0 in D;. This proves the
uniqueness of the solutions of Problems (2.9) and (2.10).

Now, let us look at the existence of solutions for Problems (2.9) and (2.10). The change of
variables (¢, x) to (t, %}?f”) transforms D; into the rectangle ) = 10,7 x |0, 1| and Problem

(2.9) (respectively, Problem (2.10)) becomes the following:

)
Owu+ a(t,x) yu — ;2(2) D?u = f; ae. onQ,

ul,_g = ul,_y =0,

\ Opu + Bop(t)ul,_, =0,

(respectively,
( O+ a (t, ) Opv — ;2(—2)0211 = f, a.e. on Q,
\ Vo = vl, =0,
| Oov + Brp(t)vl,—q = 0),
where f; € L*(Q), i = 1, 2 and a(t,z) = _%ﬁ)@/ﬁ)_ Observe that the coeflicient a is

bounded. So, the operator
a(t,z)0, : H? (Q) — L*(Q)

is compact. Hence, it is sufficient to study the following problem:

)
Ou — :2(2)83u = f1 a.e. on Q,

u‘t:() oy u|33:0 oy O, (211)

Ozu+ Bap(t)ul,_, =0,

(respectively,

O — ;2(2)821) = f5 a.e. on Q,

'U‘t:O g U|:L‘=1 g 0’ (212)

0,0 + Prp(t)v|,_o = 0),
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2.3. The case of an unbounded domain which can be transformed into a half strip

where f; € L*(Q), i = 1, 2. Tt is clear that Problem (2.11) (respectively, Problem (2.12))

admits a (unique) solution u € H'(Q) (respectively, v € H'?(Q)) because the coefficient

c(t)
V(¢

y satisfies the "uniform parabolicity” condition (see, for example [1]). On other hand, it
is easy to verify that the aforementioned change of variable conserves the spaces L? and H2.

Consequently, we have proved the following theorem:

Theorem 2.2.1. Problem (2.9) (respectively, Problem (2.10)) admits a (unique) solution u €
HY2(Dy) (respectively, v € HY2(Dy)).

2.3 The case of an unbounded domain which can be

transformed into a half strip

In this case, we set

Dy:={(t,x) eR*:t>0; o1 (t) <z < (1)}

with ¢ (0) > 0 and consider the following problems:

/

O — c(t)0%u = fi a.e. on Do,
u’rl = u|F0 = O7 (213)
L £2E1L —F’/321L|I~2 = (),

and
)

0w — c(t)0*v = fy a.e. on Dy,

\ dpv + PBrolp, =0,

where f; € L?(D5), i = 1, 2 and Ty is the part of 9D, where t = 0.

22



2.3. The case of an unbounded domain which can be transformed into a half strip

Y
~

Fig.3: The unbounded domain Ds.

The change of variables indicated in the previous section transforms Dy into the half strip

P =10, +00[%]0,1[. So Problem (2.13) (respectively, Problem (2.14)) can be written as follows:

Ou+ a(t,r)Oyu — Cz(t) O?u = f; a.e. on P,

2 (t)

Opu~+ Pop(t)ul,_, =0,

(respectively,
o+ a(t,x)0v — :2(—2)621) = fy a.e. on P,
Vlimp = sy =0, (2.16)
Oov + Brp(t)v],_y = 0),

where f; € L*(P), i = 1, 2 and the coefficients a is that defined in Section 2.2.
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2.3. The case of an unbounded domain which can be transformed into a half strip

v =8gu+ fau=0

Y
~

0 u:@zv+/31v:0

Fig.4: The half strip P.

Let fi("), t = 1, 2 be the restriction fihO,n[X}O,l[’ 1 =1, 2 for all n € N*. Then, Theorem 2.2.1
shows that for all n € N*, there exists a function u,, € H"* (P,) (respectively, v, € H"?* (P,))

which solves the problem

Oy, + a (t, ) Oyt — D020, = £ ae. on P,,
@3(t) 7w 1

un|t:0 = un‘zzo =0, (2.17)

Oy, + Bop(t)ty|,_; =0,

(respectively,

Oyvn + a (t,x) Dpv, — ‘:2(8) D2v, = fQ(") a.e. on P,,
Un|t:0 = Un‘m:l = 07 (218)
axvn + Blgp(t)vnlxzo = 0)7

where (™ € L%(P,), i=1, 2 and P, =]0,n[ x ]0,1[.
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2.3. The case of an unbounded domain which can be transformed into a half strip

Up = Ogun + Baun =0

Up = Vp =0

Y
~

0 Un = Ogvn + Bron =0 TV

Fig.5: The truncated half strip P,.

Now, let us prove an ”energy” type estimate for the solutions u, (respectively, v,) which will
allow us to solve Problem (2.15) (respectively, Problem (2.16)) and then equivalently Problem
(2.13) (respectively, Problem (2.14)).

Proposition 2.3.1. There exists a constant K > 0 independent of n such that

£

2 2
lunll3aar,) < K| < K| fillfar).

L2(Pn)

2
£

2
||Un||H172(Pn) < K‘ L2(Pp)

2
< K| fallz2p)

In order to prove Proposition 2.3.1, we need the following result:

Lemma 2.3.1. There exists a constant K independent of n such that
2
||Un||L2(P,L) <K ||a$un||L2(Pn) <K ||f1||L2(P

2 2 2
||Un||L2(Pn) <K ||a$vn||L2(Pn) < K||f2||L2(P)

Proof. The Poincaré inequality gives ||un|[p2p,) < K [|0zunll p2(p,y and [[vnll 25,y < K (| O0vnll 12,
Now, we estimate the inner products <f1(n), un> and <f2(n), vn> in L? (P,).
1) Estimation of <f1(”),un>:

<f1(n)7un> - fP U Opundtdr + fp a(t, ) und, undtdac N fP Q(t)una%”dtdx

faP |:_ |un| v+ a(t x>l ’un| Vy t) unV:ci| do

+fp C(t 8un) dtdw—QfP aatx) |un| dtdzx,
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2.3. The case of an unbounded domain which can be transformed into a half strip

where 14, v, are the components of the unit outward normal vector at the boundary of P,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of P, where ¢t = 0, we have w,, = 0 and consequently the corresponding boundary
integral vanishes. On the part of the boundary where ¢t = n, we have v, = 0 and v, = 1.

Accordingly the corresponding boundary integral is the following:

/01 % (un)? (n, z)dz.

On the part of the boundary where x = 0, we have v, = —1, 1, = 0 and u, (¢,0) = 0.
Consequently, the corresponding integral vanishes. On the part of the boundary where x = 1,

we have v, =1, v, = 0 and

Dyt (£,1) + Bop (1) iy (£,1) = 0.

Consequently, the corresponding integral is

" (2e(t)B2 =5 (1) 12
/0 e ) e

Finally,

<f1n),un> = (w1 L(up)? (n, x )z + [ w( W) (1) dt—i—fp (8pun)” dtdx

pi(n) 2 2(1)
(1)
+3 /. 0] u,|? dtd.

Thanks to the condition (2.6) and since the function ¢ increases, we obtain

n c(t
<f1( )au"> = / 902(&) (aﬂﬁun)z dtdr > C ||al‘unHiQ(P

Hence, for all € > 0,

2 n)
”azunHLQ(Pn) < % ezl 2 Pn )fl L2(Py)
. 2
< fl L2(P,) tC Hu”||L2(Pn) :
By using the Poincaré inequality, we obtain
€ 2 1 (n) 2
(1 — 6) Hamun”LQ(Pn) < a fl L2(Py) ’

Choosing € small enough in the previous inequality, we prove the existence of a constant K

such that

2
(n)
A7 L )

2
|9uall} e,y < K |
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2.3. The case of an unbounded domain which can be transformed into a half strip

Since

2
7

L2(Pr)

2 2
||8$un||L2(Pn) <K ||f1||L2(P) .

1) Estimation of < fén),vn>: We have

2
< [ Aillzzpy -

we obtain

O2v,dtdx

<f2(n);vn> = fp v Oyvydtdr + fp (t, 2) 0,0,V dtdx — fP
- faP |:_ |Un‘ U + Cl(t I‘)‘ |UTL| Vy — _t)a Up.- Unl/x] do
I + ) dtdr — 5 [ dpa(t, x) v, |* dtdz,

where v, v, are the components of the unit outward normal vector at the boundary of P,. We

shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of P, where ¢t = 0, we have v, = 0 and consequently the corresponding boundary
integral vanishes. On the part of the boundary where ¢t = n, we have v, = 0 and v, = 1.

Accordingly the corresponding boundary integral is the following:

"1
/ = (v,)? (n, z)dz.
0 2
On the part of the boundary where z = 0, we have v, = —1, v, = 0 and
Oy (t,0) + Brp () v, (t,0) = 0.

Consequently, the corresponding integral is

(=2e()BL+ 1 (1) e
A =0 (0n)? (£, 0)dt

On the part of the boundary where z = 1, we have v, = 1, v, = 0 and v, (£,1)) = 0.

Consequently, the corresponding integral vanishes. Finally,

n n )6 + 1() C
<f2( )7Un> fm( ) 5 (0)" (n,z)dz + [ Ttt)w) (vn)? (t,0)dt + [, @é—z) (0,0,)° dtda
+3 fP e |vn\ dtdw,

Thanks to the condition (2.6) and since the function ¢ increases, we obtain

n c(t
<5%%>2/‘ ”(@%fﬁmzcw@%ﬁmm.
P,

, 2 (1)
Hence, for all € > 0,
2
10cvalz2gp, < é el N .
< f2 L(P) +& an”LZ(Pn)‘
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2.3. The case of an unbounded domain which can be transformed into a half strip

By using the Poincaré inequality, we obtain

€ 2

1-5

1
2 (n)
M 00nlaqr,y < = |11

L2(Pyp)

Choosing € small enough in the previous inequality, we prove the existence of a constant K

such that
2
2 (n)
J0cvlzey < K||57)] -
Since
2
n 2
[, < 120

we obtain

2 2
Ha:cUnHL?(Pn) <K ||f2||L2(P) ‘

]

Remark 2.3.1. Similar computations show that the same result holds true when we substitute

the condition that ¢ increases in a neighborhood of +oo by the following:
' ()] p(t) < Me(t).

Proof of Proposition 2.3.1

Let us denote the inner product in L? (P,) by {.,.), and set L := 0; + a (t,x) 0, — ;2(8) 02,

then we have

2
’ fl(n) . = (Qyuy + a(t,z) Opu, — :2(—2)331%, Oy + a(t, ) Opu, — (:2% 02uy,)
2
2 2 et
= [0wunllz2(p,) + lladutin2p,) + wé(z)aiun . +2 an a0y, Oz unpdtdx
—9 an a;2(8) Ot O, dtdz — 2 an ;2(—8)8tun8§undtdx
and
m)||? (t) A2 c(t) A2
‘ e, = (On+ (0) Butn = 5 D20, Dutin + a(t,2) Oy — i 020n)
2
2 2 c(t
= 10wl Z2(p, + 100stnl[2(p,) + || 205020 pomy 2 Jp, 00, 0pvydtda

-2 an asfg(—g)amvn@ﬁvndtdx —2 an C(t)) Oy, 02 v, dtdx

V3 (t
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2.3. The case of an unbounded domain which can be transformed into a half strip

Observe that the coefficients a and = ( ) are bounded. So, thanks to Lemma 3.3.2, for all ¢ > 0

we obtain

2 c(t
1Oktunl 325, + || S0 02tun vy~ 2 S5 Orun Oy dtd
2
n 2 c
< |67+ NaDetallzagry + 2000ty Dty + 2 10200y [0t Do
L2(Pn) L?(Pn)
n 2 2
< ’ f1( ) L2(Pn) + K (1 + %) ||axunHL2(Pn) te HatunHm(Pn) +e ||a§un||L2(Pn)
2
(n) 2 2
< Ke||f L2(P) te ”atunHm(Pn) te ||amu"||L2(Pn)
and

||8tvn||iz(pn) + ;2(2) 2v,,) ;(Pn) -2/, ;2(—'&))8tvn8§vndtd$

< |l#I) 100ty + 210l el + 2108l [T [

g+ 0 (U D N0+ N0,y + € 120,

A L e L e
where K, and K are constants independent of n. Consequently

(1= 0 (10allZagpy + 1020al 2oy < 2 [, 00,2t + K | 17 ;(Pn) (2.19)
and

2

(=) (1000l + 1020l iace,)) < 2 [, SipOnivndidn + K| 7] L - (2:20)

Estimation of 2 an :g—@))@tunagundtdx : We have
Oundu, = 0, (OpunOpun) — 30, (Opun)”.

Then
2fP DPupdtde = 2an e (Optn Oy, ) dtdx — fP (Dpun)” dtdx

oP, o ( [ (Daten)? Vi + 204, 0, Uan] do + fpn A uy, )?dtdx
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2.3. The case of an unbounded domain which can be transformed into a half strip

where vy, v, are the components of the outward normal vector at the boundary of P,. We shall
rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of P, where ¢t = 0, we have u,, = 0 and consequently 0,u,, = 0. The corresponding
boundary integral vanishes. On the part of the boundary where ¢ = n, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral
1
—/0 ;2(—?(2)(8xun)2(n, x)dx
is negative. On the part of the boundary where + = 0, we have v, = —1, 1, = 0 and
uy, (t,0) = 0. Consequently, the corresponding integral vanishes. On the part of the boundary

where x = 1, we have v, = 1, v, = 0 and
Oyt (t,1) + Bop () uy, (t,1) = 0.

Consequently, the corresponding integral is

/n M)aﬂtn(t; Duy,(t, 1)dt = _626(71 / ﬁQ

v (1) o)

which is negative thanks to the condition (2.8) and to the fact that S > 0. Finally,

YuZ(t,1)dt,

2 [, O Oundtde = 1é—n><axun>2<n,x>dx — B0 1)+ [ Bl )t 1)t
+ fpn 1) (Duun)*dtd
(( 5y and (so )) are bounded. So, by using Lemma 2.3.1, we deduce
2fP t) 8tun82undtdx < fP 2(t) "(Opuy,)?dtdz
<

K ’|8xunHL2(Pn)

2
< Kslfillzzpy

where Ky and K3 are constants independent of n. Consequently, Choosing € = % in the rela-

tionship (2.19), we obtain

5 2 2
||8tunHL2(Pn) + HaiunHLQ(Pn) <K HleLQ(P)
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2.3. The case of an unbounded domain which can be transformed into a half strip

Estimation of 2fP 2(t 8tvn82vndtdx We have

Ovn02v, = 0, (040,0503) — 10, (0pv)? .

Then

2 an %@%%%dtdl’ = 2 an Cz(t) Oy (@Un@xvn) dtdx — f cz(_t)at (axvn)2 dtdx

©*(

o, @ [ (0, vn) vy + 20,0,0, vnym} do + fP C(t) ) (Opvp )% dtdx
where 14, v, are the components of the outward normal vector at the boundary of P,. We shall
rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of P, where t = 0, we have v, = 0 and consequently d,v, = 0. The corresponding

boundary integral vanishes. On the part of the boundary where ¢ = n, we have v, = 0 and

vy = 1. Accordingly the corresponding boundary integral

—IC() U n.,xr)axr
/ow)(a ), 2)da

is negative. On the part of the boundary where x = 0, we have v, = —1, v, = 0 and
0pp (t,0) + B (t) vy, (¢,0) = 0.

Consequently, the corresponding integral is
" 2Bc(t
/ BClt)) 58, 0)un(t, 0)dt = 516 / By (=
o () @ (n
which is negative thanks to the conditions (2.8) and the fact that 52 > 0. On the part of

’2t0)d

the boundary where x = 1, we have v, = 1, v, = 0 and v, (f,1) = 0. Consequently, the

corresponding integral vanishes. Finally,
QfP C(t 0tvn82vndtdx = 0 @2(71 L (0,v0)2(n, x)dx + ﬁ;f(j—i")) —J5

+Jp. (5

Note that the functions ;2(2) and ( )) are bounded. So, by using Lemma 2.3.1, we deduce

Y2 (t, 0)dt

7) (Opvp)?dtda

c(t ’
2 fp, (pz(—(z)é?wn@gvndtdx < an(gﬁ((z)

2
Ky HaxUnHLQ(Pn)

) (Oyvy)2dtdx

A

2
< Ksllfallzep)
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2.4. The case of a small in time bounded triangular domain

where Ky and K3 are constants independent of n. Consequently, Choosing ¢ = % in the rela-

tionship (2.20), we obtain

5 2 2
Hat?]nHLz(Pn) + HaivnHLQ(Pn) <K HfQHLQ(P) :

This ends the proof of Proposition 2.3.1.

Remark 2.3.2. We obtain the solution u of Problem (2.13) (respectively, v of Problem (2.14))
by letting n go to infinity in the previous proposition. The uniqueness can be proved as in

Theorem 2.2.1.

Finally, we have proved the following Theorem:

Theorem 2.3.1. Problem (2.13) (respectively, Problem (2.14)) admits a (unique) solution
u € HY2(Dsy) (respectively, v € H?(Dy) ).

2.4 The case of a small in time bounded triangular do-

main
Let T" be a small enough positive real number. We set
Dy:={(t,z) eR*:0<t<T; o1 (t) <z < pa(t)}

with ¢ (0) = 0 and consider the following problems:

(

Owu — c(t)0?u = f; a.e. on Ds,
ulp, =0, (2.21)
dpu + Boulp, =0,

and

0w — c(t)0?v = fy a.e. on Dj,

vlp, =0, (2.22)

8:(:@ + 61U|1"1 = 07
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2.4. The case of a small in time bounded triangular domain

where f; € L?(D3), 1 = 1, 2. Set

1 1
Qn:{(t7$)€D3i—<t<T},n€N* and — < 7.
n n

For each n € N* such that % < T, we set fi( = filg, € L*(Q,), i = 1,2 and denote by

€ HY?(Q,) (respectively, v, € H"?(Q,)) the solution of the following problem:

;

Oy, — c(t)0?u,, = f1 a.e. on Q,,

Unlp—1 = tn] =0, (2.23)

=1 (t)

0 o Un + Botiy] = 0.

IQOQ

(respectively,
)

Oy, — c(t)0?v, = fo a.e. on Q,,
0, (2.24)

Unl=t = Unlomgy

6 U+ B10] y =0).

x=p1(t

Such a solution exists by Theorem 2.2.1.

Proposition 2.4.1. There exists a constant K > 0 independent of n such that

£

2
< K| fillz2(py) -

2
2
Un |31, < K‘
H ||H1 #(@n) L2(Qn)

ol < K || 27|
n Hl’z(Qn) - 2 L2(Qn)

Remark 2.4.1. Let € > 0 be a real which we will choose small enough. The hypothesis (3.3)

2
< K| f2llz2(py) -

implies the existence of a real number T > 0 small enough such that

|0; (1) p(t)] <€, forallt € (0,T),i=1,2. (2.25)

In order to prove Proposition 2.4.1, we need some preliminary results.

Lemma 2.4.1. There exists a constant K independent of n such that for all t €]0,T1:

D lunll 2y < K N0l 2(q,,) » anHLz Q=K H@@ vnHLz )3

2) <p2 t) u?(t,z)dr < Kot sz t)(ﬁz 2(t, x)dx, fw 2(t, x) dm < K<p4f<p2 @) (02v,)%(t, x)dx

3) fm (Opun ) (t, z)dw < KgoQ 52(%)(82 n)2(t, z)dr, fm (Opvn)?(t, z)dx < Kgpz fm 1;) 20,2 (t x)dz;
4) ”azunHB(Qn) < K||f1”L2(D3)7 ”a’BUnHL?(Qn) <K Hf2HL2(D3)‘
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2.4. The case of a small in time bounded triangular domain

Proof. Inequalities (1) are consequences of the Poincaré inequality.

The following operators are isomorphisms (see, [15])
H?(0,1) — L*(0,1), u—u", HF(0,1) — L*(0,1), v 1",
where,
H?(0,1) = {u e H*(0,1) : u(0) = 0, (1) + Bu (1) = 0}

and
H; (0,1) = {v e H*(0,1) : v/ (0) + B1v (0) = 0,v (1) =0} .

So, there exists a constant K > 0 such that

||u||L2(0,1) < ||u//||L2(0,1)7 HUHL?(OJ)

IN

10"l 20,1y »
HU/HL2(0,1) < HUNHL2(0,1)a HU/HL2(0,1) HUHHLQ(O,l)‘

The change of variables (for a fixed t)

[0,1] = [p1(t), 2()]; ¥y = (1 = 2)p1(t) + a(?),

leads to the estimates (2) and (3).
To prove (4), it is sufficient to expand the inner products < fl("), un> and < fQ(n), vn> and use the
inequalities (1). Indeed, we deduce for all € > 0, (see the proof of uniqueness of solutions in

Theorem 2.2.1)

an c(t)(Opun)?dtdr < ‘<f1(n)a Un>’
< ), el
‘ L2(Qn) "
2 2
< A2y + €K llounllzzg,)
and
Jo, () (Opvn)?dtdr < <f2("), vn>
1| ] 2
< /e "’EHUnHLZ(Qn)

L2(Qn)
2 2
< el py + €K llevalliz,) -
However, ¢ is bounded and ¢ > a > 0. Choosing ¢ small enough yields the desired result. [

Proof of Proposition 2.4.1: Let us denote the inner product in L?(Q,,) by (.,.) and set

L := 0; — c(t)0?, then we have

2

T = (Lun, Lun) = [00ttnllZ2(q,) + () B2unlr2q,) — 2(Ortn, c(t) )

L2(Qn)
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2.4. The case of a small in time bounded triangular domain

and

2
oy (Lvn, Lon) = 100all72(q,) + 16()P0all12(q,) — 2(0ivn, c(t)O7vn).

Estimation of —2(du,,, c(t)0%u,) : We have

Oun®u, = O (Ounpun) — 10, (9,u,)” .
Then,

—2(0ptn, c(t)Fun) = =2 [, c(t)0unOZundtde

= -2 fQ c(t)0y (OyunOpuy,) dtdx + fQ ()0, (Opun)? dtda

- faQ t) (0 ) vy — 2040, UpVy| do — fQ )(Opuy,)?dtdz
where v, 1, are the components of the unit outward normal vector at the boundary of @,,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of (),, where t = %, we have u,, = 0 and consequently d,u,, = 0. The corresponding
boundary integral vanishes. On the part of the boundary where t = T, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral

#2(T)
/ o(T) (Byun)” dz
©1(T)

is nonnegative. On the parts of the boundary where z = ¢; (t), i = 1,2, we have

V= (-1 _ =y w’( ) o, (1
vrum%w 1+ (¢

Consequently, the corresponding integral is

2 (1)) + Baun (t, 2 (t)) = 0.

- / c(t)¢ (1) [0t (t, 1 (1)) dt =2 [ c(t)Dpun (1 02 (1)) O (L, 02 (1)) dt

:h

- / (1)) () [rtun (2. 02 (D) d.

By putting h(t) := u,(t, 2(t)), t € [£,T], we obtain
Optin(t, (1) Dutin(t, a(1)) = W (1)Dsun(t, 0a(t)) — s (t) (Bun(t, 02(t)))*.
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2.4. The case of a small in time bounded triangular domain

So, by using the boundary conditions, we get

—2f () Opun (t, 0o (t))Optn (t, po(t)) dt

T

— 9 / ()N () Dt (L, 0o (t)) dt + 2 / c(t)a(t) (Dutun(t, ga(t)))* dt

— 25, / ()N ()h(t) di +2 / (1) pn(t) (Drn(t, a(t)))?

|

N

= 52/1 C(t)(h(t)Q)'dH?[ c(t)pa(t) (Dun(t, (1)) dt

= ﬁQC(T)(h(T))Q—Bzﬁ ¢ (t)un (t, () dt+2[ c()py(t) (Dutta(t, a(t)))” dt.

Observe that, thanks to the condition (2.8) and the fact that 5, > 0, ¢(t) > 0, we have

Buc(T)(W(T))* — B / SOt oty > 0.

So, by setting
T 2
L = —[ c(t)ey (t) [Opun (t, @1 (t))]” dt,

L, = / (1)) () Do (02 (£))2 dt,

we have

—2(Btn, c(t)02un) > — L] — [Inzl - (2.26)
Estimation of —2(dv,, c¢(t)0*v,) : We have
0yvn 020, = 0y (00, 0pvn) — 30, (Dpvn)?.
Then,

—2(0ty, c(t)Puy,) = —2 fQ c(t)0yv, 02v, dtdx
= -2 fQ c(t)0y (Oyv,, 0pvy,) dtdx + fQ (t)0y (0, vn) dtdz
= fGQ [ (0 vn) vy — 20,0,0, vnyx] do — fQ )(Opvy)2dtdz
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2.4. The case of a small in time bounded triangular domain

where v, v, are the components of the unit outward normal vector at the boundary of @),,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of ), where t = %, we have v,, = 0 and consequently 0,v, = 0. The corresponding
boundary integral vanishes. On the part of the boundary where t = T, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral
w2(T) )
/ c(T) (Opvy)” dx
01(T)

is nonnegative. On the parts of the boundary where z = ¢; (t), i = 1,2, we have

N N C W“%(
V1+ (@) (t) \/ 1+ (

Consequently, the corresponding integral is

= 0pun (L, 1 (1)) + Bron (£, 1 (2)) = 0.

T

[ et 0 o (o O e+ 2 [ 000, (801 (6) Duvn (1 (1)

[ st 0o .01 ) e

By putting k(t) := v, (¢, ¢1(¢)), t € [+,T], we obtain

Dyon(t, 01(1)Duva(t, 01(1) = K ()0sva(t, 1(1)) — €1(8) (Brvalt, ¢1(1)))*.

So, by using the boundary conditions, we get

2 [1 c(t)0hvn(t, o1 (£)Davalt, o1 (1)) dt

n

T

= 2 [ OR 0 0) =2 [ 60 @rrlton(0)* d

1

= —251[ C(t)k'(t)k‘(t)dt—Q/ c()¢ (1) (Dovonlt, o2(1)))° dt
= —51[ C(t)(’f(tf)’dt—?[ c(t)¢ (1) (vt p1(1)))° dt

T

_ —@deMT»%H%/id@waa%@nﬁ—2/;dw@ax@wﬁﬂn®»2w.
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2.4. The case of a small in time bounded triangular domain

Observe that, thanks to the condition (2.8) and the fact that 8, < 0, ¢(t) > 0, we have

BT 4B [ it = o0

So, by setting
T 2
Jon — / (), (1) [Buvn (1,01 (1) dt,

Jur = - / (t)h (1) [Brvn (¢, 02 (D) dt,

we have

— 2040, c(t)20,) > — | Jna] — | T2l - (2.27)
Estimation of 1,5, Juu k=1, 2:
Lemma 2.4.2. There exists a constant K > 0 independent of n such that

max(| L], [Inp]) < Ke Hagun”i?(c)n) )
max(| |, [Jnel) < Ke|02val12q,)

Proof. We convert the boundary integral .J,, ; into a surface integral by setting

=3 (t)

[Oon (8,00 D) = =205 [Ouva (¢, 2)]

P20 =e1l) =10

_ 902()@ {m(t)—w 0,0, (£, )] }dm

w1(t) ©(t)

:B
= —2 20 elry  (t2) 02, (tx) do + [723) L [0, (t, 7)) da.

Then, we have

Tat = Ji e®)¢h (8) [0avn (tp (t))fdt
et

n

= [, 0 (9,0,)2dbde — 2 f, LUZe(t)gh () (Oy0,) (020,) dider.

Thanks to Lemma 2.4.1, we can write

P2(t) . ) P2(t) 5
/ (0,0, (t,2)]" de < C'lp (t)] / (020, (t,2)]" dx.

1(t) e1(t)

Therefore,

p2(t) 5 || ©2() 9
[ o Plae < clliel [ o2 ko)) ds,
%)

1(t) e1(t)
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2.4. The case of a small in time bounded triangular domain

consequently,

| Jna| < C’fQ £) 124 [] (02vy,)” dtdx—l—QfQ t) |} ] 100 |0%0,| dtdz,

p2(l)—=

since
w(t)

[Tal < C [y, le@®er] [#] (820,)? dtdz + € Jo, t) (0%v,)* dtdx + 1 fQ ()2 (8,v,)° dtda.

Lemma 2.4.1 yields

1 an 2 (Opvn) dtde < O an ) ()2 @) (820,)° did.
Thus, there exists a constant M > 0 independent of n such that

[Jaal < C Jo. c®) (|51 9] + L (91)? [0] (020,)° dtda + € [, c(t) (02v,)" dtda
< Me [, ( (820, dtdz,

because |g0/1g0| < €. The inequalities

1| < Kel|0Pu,|?

oo, s nel < Ke |02

oo, s nal < Kel|02v,]);

Iz

can be proved by a similar argument. O

Now, we can complete the proof of Proposition 2.4.1. Summing up the estimates (2.26),

(2.27) and those of Lemma 2.4.2, we then obtain

n 2 2 2
R L O s 0 Y 3
2 2
> HatunHm(Qn) + (a? — Kie) HagunHLQ(Qn)
and
n 2 2 2
| gy 2 N00nliag, + 100l iag,) = Ko 2l 2(q,

2 2
> HatU””L?(Qn) + (a? — Kze) ||agvn||L2(Qn) J

where K;, ¢ = 1,2 are positive numbers. Then, it is sufficient to choose € such that
min (a2 — K€, 02 — ng) > 0,

to get a constant K > 0 independent of n such that

|

|2
1
L2<Qn>

Ko[10nll 720, + 10202 0,
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2.5. Back to Problems (2.1)-(2.3) and (2.2)-(2.4) and proof of Theorem 2.1.1

and
Hfén) ;(Qn) > Ko(l0wnllz2(g,) + 1930al72(q,)-
But
Hfl(”) on < N fillzepy) »
‘fQ(”) an < N Fallpepy) »

then, there exists a constant K > 0, independent of n satisfying

2
||8tun||i2(Qn) + HagunHLQ(Qn) <K “fl”iQ(Ds)
and
2 2 2
10nllz2(q, + 1020 | 2,y < K I Fallz2 () -

Consequently, making use of Lemma 2.4.1 and the previous estimates, then, there exists a

constant K > 0, independent of n satisfying
2 2
[unll3r2q,) < C Il 0y
and
2 2
[onll302(q,) < ClIf2llz2(py) -

This ends the proof of Proposition 2.4.1. Finally, we have proved the following Theorem:

Theorem 2.4.1. Problem (2.21) (respectively, (2.22)) admits a (unique) solution u € H'?(D3)
(respectively, v € H'?(Ds)).

Proof. We obtain the solution u of Problem (2.21) (respectively, v of Problem (2.22)) by letting
n go to infinity in the previous proposition. The uniqueness can be proved as in Theorem

2.2.1. [l

2.5 Back to Problems (2.1)-(2.3) and (2.2)-(2.4) and proof
of Theorem 2.1.1

The proof of Theorem 2.1.1 can be obtained by subdividing the domain

D:={(t,z) eR*:t>0, o1 (t) <z < pa(t)}
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2.5. Back to Problems (2.1)-(2.3) and (2.2)-(2.4) and proof of Theorem 2.1.1

into three open subdomains €24, {25 and Q3. So, we set D =y U Qs U Q3 U 'y, U Ty, where
le{(t,$)€DZO<t<T1}, QQZ{(th)GDZT1<t<T2}, 93:{(t7$’)€D2t>TQ},

Ip = {(Tl,x) ER?: ) (Th) <7 < o (Tl)} and 'y, = {(Tg,l') ER?: ¢, (Th) < x < @y (Tz)}

with 77 is a small enough positive number and 75 is an arbitrary positive number such that

T, > Ty. In the sequel, fi, fo stands for an arbitrary fixed elements of L? (D) and ( 1(i), fQ(i)) =

(filg, > f2lo,), i=1,2,3.

Theorem 3.4.1 applied to the triangular domain €2, shows that there exists a unique solution

wy € HY? () (respectively, wy € H? (1)) of the problem
dwy — c()0?w; = 1V ae. on Q,

wilp,, =0, (2.28)

axwl + ng1|r2,1 = 0,

(respectively,

Dywy — c(t) 0wy = f2 a.e. on {1y,
wlp,, =0, (2.29)
Opws + Prwslp, | = 0),
where fi(l) € L?(Q), i = 1,2 and T';; are the parts of the boundary of ; where x = ; (t), i =
1,2.
Lemma 2.5.1. I[fw € H"2 (|0, T[ x]0,1[), then w|,_, € H' (7o), w|,_, € Hi (3) and w|,_, €

H (75), where 50 = {0} x 0, 1[, 71 =10, T[ x {0} and 75 =]0,T[ x {1}.
It is a particular case of Theorem 2.1 ([21], Vol.2). The transformation
(t,z) — (t',2) = (t, o () =+ o1 (1))
leads to the following lemma:

Lemma 2.5.2. If w € H'?(Qy), then wlp,, € H (Try) s wlyep o € Hi () and wl ) €

x=pa(t
Hi (T'y2), where I'; 5 are the parts of the boundary of o whe're x=;(t),i=12.
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2.5. Back to Problems (2.1)-(2.3) and (2.2)-(2.4) and proof of Theorem 2.1.1

Hereafter, we denote the trace wi|, =~ (respectively, ws|p ) by 91 (vespectively, ¢) which
1 1
is in the Sobolev space H' (I'y,) because w; € HY2(Qy) (respectively, wy € HY?(Qy)) (see

Lemma 2.5.2). Now, consider the following problem in 2, :

( 2, — 2
Oyws — c(t)0;ws = f17 a.e. on o,
w| = 1,
T (2.30)
1U3|1“L2 = 07
([ Oows + Bows|p,, =0,
(respectively,
(
Bywy — c(t)PPwy = £ ae. on Qy,
Wy = ¢27
e (2.31)
w4’[‘2’2 = 07
[ dvws+ 51?1)4‘112 =0,

where fi(2) € L*(Qs), @ = 1,2 and T, 5 are the parts of the boundary of Qs where 2 = ¢; (),
i = 1,2. We use the following result, which is a consequence of Theorem 4.3 ([21], Vol.2), to
solve Problem (2.30).

Proposition 2.5.1. Let Q be the rectangle 10, T[ % 10,1[, fi, fo € L?(Q) and 11,5 € H' (o) .
Then, the following problem admits a (unique) solution u € HY? (Q) (respectively, v € HY? (Q)):

;

O — c(t)02u = f1 € L*(Q) ,
U/|,70 - wla

Mmoo 0,

8zu + ﬁ2u|72 = 07

ul

(respectively,
.
O — c(t)0*v = foy € L*(Q),
U"YO = 1/}27
vl =0,

72

| Osv + frvl,, = 0),
where o = {0} x ]0,1[, 1 =10, T[ x {0} and v, =]0,T[ x {1} .
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2.5. Back to Problems (2.1)-(2.3) and (2.2)-(2.4) and proof of Theorem 2.1.1

Thanks to the transformation

(t,z) — (t,y) = (Lo () z + @1 (1)),
we deduce the following result:

Proposition 2.5.2. Problem (2.30) (respectively, (2.31)) admits a (unique) solution ws €
HY2 () (respectively, wy € HY? (Qs)).
Hereafter, we denote the trace ws|. by ®; (vespectively, wylp by ®2) which is in the

Sobolev space H' (I'z,) because ws € HY?(Qy) (respectively, wy, € HY?(Qy)) (see Lemma

2.5.2). Now, consider the following problem in {23 :

(
dyws — c(t) 02wz = f1(3) a.e. on {3,
w = Oy,
oler, = (2.32)
w5|1—‘173 = 07
[ dvws + /82w5|r273 =0,
(respectively,
§
Aws — c(t)PPwg = £ a.e. on Qs,
w| = Oy,
i (2.33)
w6|r2’3 = 07
[ Ovwe + Ble‘Fl’g =0,)

where fi(g) € L?*(Q3), i = 1,2 and T, 3 are the parts of the boundary of Q3 where z = ¢; (),

1 = 1,2. By similar arguments like those used previously, we deduce the following result:

Proposition 2.5.3. Problem (2.32) (respectively, (2.33)) admits a (unique) solution ws €
HY2 (Q3) (respectively, wg € HY? (Q3)).

Finally, the function u (respectively, v) defined by

w1 in Ql,
u = ws in g,

Wy in Q3,
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2.5. Back to Problems (2.1)-(2.3) and (2.2)-(2.4) and proof of Theorem 2.1.1

(respectively,

wy in 4,
Vi= 9wy in o,
we in 3,
is the (unique) solution of Problem (2.1)-(2.3) (respectively, (2.2)-(2.4)). This ends the proof

of Theorem 2.1.1.
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CHAPTER 3

RESOLUTION OF A PARABOLIC
EQUATION IN UNBOUNDED CONICAL
DOMAINS OF R?

3.1 Introduction and statement of the main result
Let D be an open set of R? defined by
D= {(t,:c,y) eR:t>0; 0< \/W<gp(t)}
where ¢ € C([0, +o0[) N C*(0, +00),
@(t) >0 Vt>0, and ¢ (0) =0.
Let us introduce the following functional space
HY? (D) ={ue HY(D): diuec L*(D),0;u e L*(D),d;,u e L* (D)}
where H'(D) stands for the Sobolev space defined by

H'(D) = {u € LX(D) : dyu € L> (D), 0,u € L* (D), d,u € L* (D)}
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3.1. Introduction and statement of the main result

with L? (D) stands for the usual Lebesgue space of square-integrable functions on D. The space

H'2 (D) is equipped with the natural norm, that is
o 2 2 2 2 2 2 2 1/2
lullzpzpy = (HuHHl(D) + Haﬂ&uHLQ(D) + ||8ﬂ»‘yul|L2(D) + Hayu”m(z))) :
We consider the problem: to find a function u € H?(D) that satisfies the equation
Oyu — c(t)(0u + du) = f ae. on D (3.1)

and the boundary condition

where f € L*(D) and the coefficient ¢ is a continuous real-valued function defined on [0, +o0],

differentiable on |0, +o0] and such that
O<a<ce(t)<p

for every t € [0, +00[, where a and /3 are positive constants.

Fig.1: The unbounded conical domain D.

Observe that the main difficulties related to this kind of problems are due to the facts that
¢ (0) = 0 and the unboundedness of D with respect to the time variable. It is well known
that there are two main approaches for the study of our problem. We can look for boundary
conditions assuring the existence of the solution in the natural space, or we can work directly in

the 'bad’ domain which generates some singularities in the solution (see, for example [25] and
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3.2. Problem (3.1),(3.2) in a bounded domain which can be transformed into a cylinder

[12]). Tt is the first approach that we follow in this work. So, we impose sufficient conditions

on the function ¢ in the neighborhoods of 0 and +oc0. Our main result is the following :

Theorem 3.1.1. Let us assume that

o' ()] p(t) — 0 ast— 0", (3.3)

@ and ¢ are bounded in a neighborhood of + oo, (3.4)

and one of the following conditions is satisfied
(a) ¢ is increasing in a neighborhood of 400,
(b) IM > 0: |¢'| ¢ < Mc(t).

Then Problem (5.1),(3.2) admits a unique solution v € H"“*(D).

3.2 Problem (3.1),(3.2) in a bounded domain which can

be transformed into a cylinder
Let T" be an arbitrary positive number. Denote by
Dy = {(t,x,y) ER*:0<t<T;0< /a2t < gp(t)}

with ¢ (t) > 0 for all ¢ € [0,7] and consider the following problem: to find a function u €

H12(Dy) that satisfies the equation
Oyu — c(t)(02u + du) = f ae. on Dy (3.5)

and the boundary condition
u|6D1\FT = O’

where f € L*(D;) and 'z is the part of 9D; where t = T, defined by

Ir = {(T,x,y) ER*:0< a2+ y2 < go(T)}.
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3.2. Problem (3.1),(3.2) in a bounded domain which can be transformed into a cylinder

?Z/ '
Y
Fig.2: The bounded domain D;.

Let us denote the inner product in L?(D;) by (.,.). Then, the uniqueness of the solutions
may be obtained by developing the inner product (9yu — ¢(t)(02u 4 0Zu), u) . Indeed, Let us

consider u € H?(D;) a solution of Problem (3.5),(3.6) with a null right-hand side term. So,
Ou — c(t)(Oou + &2u) = 0 in Dy.

In addition w fulfils the boundary condition (3.6). Using Green’s formula, we have

S, [Ovu — c(t)(02u + 02u)] w dt dz dy
- faDl (3 [l vy — e(t) (u.Opuvy + u.0yuvy)| do
+ [, c)(|0uf® + [Opul*)dt dx dy,

where v, v,, v, are the components of the unit outward normal vector at dD;. Taking into

account the boundary conditions, all the boundary integrals vanish except | oD, lu|® vdo. We

have
/ ul* vydo =/ |u|® dedy.
8D1 FT
Then
i, [Ovu — c(t)(02u + 02u)] w dt dz dy
= [, $lul dz dy + [, c(t)(|0zul* + |0yul’)dt dx dy.
Consequently

/ [Ovu — c(t)(03u + O2u)| w dt dx dy =0
Dy
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3.2. Problem (3.1),(3.2) in a bounded domain which can be transformed into a cylinder

yields
/ c(t)(|0pul” + |0yul*)dt dz dy = 0,
Dy

because

1
/ 5 |u|® dz dy > 0.
I'r

This implies that |0,ul*+|0,ul* = 0, since c(¢) > 0 for all t € [0, T]. Consequently, d2u+02u = 0.
Then, the hypothesis dyu — c(t)(07u + dju) = 0 gives dyu = 0. Thus, u is constant. The
boundary conditions imply that « = 0 in D;. This proves the uniqueness of the solution of
Problem (3.5),(3.6).

Now, let us look at the existence of solutions for Problem (3.5),(3.6). The change of variables
(t,z,y) to (t, 0L %) transforms D; into the cylinder @ =10, T[ x D (0, 1), where D (0,1) is

the unit disk of R? and Problem (3.5),(3.6) becomes the following: to find a function u € H'?(Q)

that satisfies the equation
Oyu + (a(t,z) Opu+ a(t,y) Oyu) — b (t) (Pou+ dju) = f ae onQ (3.7)

and the boundary condition
“|aQ\({T}xD(o,1)) =0, (3.8)
where f € L*(Q) and
a(t,z) = —%x, a(t,y) = A0}
b(t) = -

The coefficients a(t, x) and a(t,y) are bounded. So, the operator

la(t, )0, + a(t,y)d,] : H* (Q) — L*(Q)

is compact. Hence, it is sufficient to study the following problem: to find a function u € H'?(Q)

that satisfies the equation

Ou—b(t) (O2u+ Oju) = f ae. onQ (3.9)
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3.3. Well-posedeness results for Problem (3.1),(3.2) in a domain which can be transformed
into a half strip

and the boundary condition

U\ (1ryxD0,1y) = 0- (3.10)
It is clear that Problem (3.9),(3.10) admits a (unique) solution v € H"?(Q) because the coeffi-
cient b satisfies the "uniform parabolicity” condition (see, for example, [1]). On other hand, it
is easy to verify that the aforementioned change of variables conserves the spaces L? and H2.
Consequently, we have proved the following theorem:

Theorem 3.2.1. Problem (3.5),(3.6) admits a (unique) solution u € HY*(Dy).

3.3 Well-posedeness results for Problem (3.1),(3.2) in a

domain which can be transformed into a half strip

In this case, we set

Dy = {(t,:p,y) 6R3:t>0; 0 < ax?2+y? <90(t)}

with ¢ (0) > 0 and consider the following problem: to find a function u € H?(D,) that satisfies

the equation

O — c(t)(0u + O2u) = f a.e. on Dy (3.11)

and the boundary condition

ulpp, =0, (3.12)

where f € L*(Dy).

Y
Fig.3: The unbounded domain Ds.
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3.3. Well-posedeness results for Problem (3.1),(3.2) in a domain which can be transformed
into a half strip

The change of variables indicated in the previous section transforms D, into the half strip
P =]0,+o0o[ x D(0,1), where D (0,1) is the unit disk of R%. So Problem (3.11)-(3.12) can be

written as follows: to find a function u € H?(P) that satisfies the equation
O+ (a(t,z) Opu + a(t,y) Oyu) — b(t)(Oiu + diu) = f ae. on P (3.13)
and the boundary condition
ulyp =0, (3.14)

where the coefficients a(t,x), a(t,y) and b(t) are those defined in Section 2. Let f, be the
restriction f|]07n[xD(0’1) for all n € N*. Then, Theorem 3.2.1 shows that for all n € N*, there

exists a function wu,, € H'? (P,) which solves the problem

Oy, + (a (t,2) Optin + a (t,y) Oyun) — b (t) (OFun + Douy) = frn € L? (P), (3.15)

Unlop,\((nyxp(0.1)) = 05
where P, =]0,n[ x D (0,1). Now, let us prove an ”"energy” type estimate for the solutions u,

which will allow us to solve Problem (3.15) and then equivalently Problem (3.11)-(3.12).

Proposition 3.3.1. There exists a constant K independent of n such that
HunHHw(Pn) <K Hf”L2(P) .
In order to prove Proposition 3.3.1, we need the following lemmas:
Lemma 3.3.1. There exists a constant C' > 0 independent of n such that
92 un| 02uy|? Pun|?, < CllAu,?
162,y + 1520 + 1020y < € N

The previous lemma is a consequence of Lemma 1.2.1 and Grisvard-Looss [9, Theorem 2.2].

Lemma 3.3.2. There exists a constant K independent of n such that
HunHm(Pn) <K HvunHm(Pn) <K Hf”LQ(P)a

where Vu,, = (0yun, Oyuy,).
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3.3. Well-posedeness results for Problem (3.1),(3.2) in a domain which can be transformed
into a half strip

Proof. The Poincaré inequality gives |[un |l 25,y < [Vnl|p2(p,)- Moreover, by developing the
inner product (Syu, + (a (t, ) Opun + a (t,y) Oyun) — b (t) (O2uy + O2un), un) in L? (P,) , we ob-
tain
(fo,un) = fP Up [Opun, + (a (¢, x) 8 un +a(t,y) Oyuy,) — b(t) (82un + 02un)]dtd:vdy
= 5[ |t |? dedy + [, 5 ¢ up (t,x,y) dtdedy + [, b t) [V, |* dtdady.

where I'), = {(n, T,y) ER3:0 < /a2 +9y? < 1} . Since the function ¢ increases, we obtain

) = [ 50) V] dedady > |V,
Hence, for all € > 0,

2
||Vun||L2(Pn) S % ||un||L2(Pn) ”anLQ(Pn)
2 € 2

By using the Poincaré inequality, we obtain

(1- —) IVunllz2gp,) < Hme

Choosing € small enough in the previous 1nequahty, we prove the existence of a constant K

such that
IVunllpzp,y < Kl r2ep) -
]

Remark 3.3.1. Similar computations show that the same result holds true when we substitute

the condition that ¢ increases in a neighborhood of +o0o by the following:
' ()] p(t) < Mc(t).
Proof of Proposition 3.3.1: Set
Lu,, = Oy, + (a (t, 2) Oy, + a (t,y) Oyun) — b (t) Auy,
where Au,, = 02u,, + Jju,. We have

1 fallZogpy = (Lun, Lun)
= [|0allz2(p,) + la (8, 2) Quttall2gp,y + la(t,y) Dyunllfagp,) + 110 (8) Atn 72,
+2 fP a(t, )0y, Opundtdrdy + 2fP a(t, y)OyunOyu,dtdrdy
—2 fP ) Optin Ay dtdady — 2 fP Y)b(t)0yun A, dtdrdy
—2 an b0 u, A, dtdzdy.
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3.3. Well-posedeness results for Problem (3.1),(3.2) in a domain which can be transformed
into a half strip

Observe that the coefficients a(t, z), a(t,y) and b(t) are bounded. So, thanks to Lemma 3.3.2,

for all € > 0 we obtain

IN

IA

<

1Ostnll72 p,y + 1 (8) Al = 2 [, bOsttn Aty tdazdy

1122 p) + lla (@) Dol 2,y + lla (8, 9) Dytnllfagp,y + 2 10eunll 12,y llalt, ) Dutinl| 2,
+2|0unl| 12,y la(t, y)Oyunll 12,y + 2| Atnl| r2(p,) lalt, 2)b(E)Optunl| 125,
+2[[Aun | p2(p, [lalt, y)b()yunl| 125,

2 2 2
11 z20m) + K1 (14 2) 10sunllze e,y + 18yunll2 p,) + 2€ 10tall 2,y + 26 1(8) Al o,

K|l fllzap) + 2€ 10unllzap, + 2€ | Aunl[7ap,)

where K. and K are constants independent of n. Consequently

(1 — 2€) (yyatunuig(Pn) + Hb(t)AunHiz(Pn)) <2 / b(t)Dpun Aundtdrdy + K || fl[72p) - (3.16)

n

Estimation of 2 [, b p. b(t)Opun Au, dtdrdy: We have

Opttn-Atty, = Oy (OOt + Oy Oyt Oyy) — %[at (Dptin)® + 0y (Dyun)?).

Then

2fP (t)Oyun Auydtdedy = 2fP e (Opun Opuy,) dtdrdy + pr 0y (Oyun0yuy,) dtdxdy

- fP ()0 (0 Un) dtdzdy — fp ()0 (O Un) dtdxdy
= Jop, bO[= [Vun|* vy + 200 (Osttnv + Oyunv)do
—|—an b'(t) |Vun| dtdzdy,

where v, v, and v, are the components of the unit outward normal vector at 0F,. We shall

rewrite the boundary integral making use of the boundary conditions. On the parts of the

boundary of P, where t = 0 and /2% + 4?2 = 1, we have u,, = 0 and consequently d,u, =

Oyu, = 0. The corresponding boundary integral vanishes. On Ty, the part of the boundary

where t = n, we have v, = v, = 0 and 4 = 1. Accordingly the corresponding boundary integral

- / b(n) [Va|? (n, 2, ) dedy
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3.4. Local in time result

is negative. Finally,

2 [ b(t)OsunAupdtdzdy = — [i. b(n) V| (n, 2, y) dedy + Jp V(1) |V, |? dtdzdy.
Note that the functions b(¢) and b/(¢) are bounded. So, by using Lemma 3.3.2, we deduce

2[5 b(D)Oup Auydtdedy < [, V() |[Vu,|” dtdzdy

A

2
K [ V|2 p,)

2
< Kslfllzap)

where K5 and K3 are constants independent of n. Consequently, Choosing € = }L in the rela-

tionship (3.16), we obtain

2 2 2
HatunHH(Pn) + HAunHLQ(Pn) <K HfHL2(P) :

This ends the proof of Proposition 3.3.1.

Remark 3.3.2. We obtain the solution u of Problem (3.11)-(3.12) by letting n go to infinity

in the previous proposition. The uniqueness can be proved as in Theorem 3.2.1.

Finally, we have proved the following Theorem:

Theorem 3.3.1. Problem (3.11)-(3.12) admits a (unique) solution u € H%?(Ds).

3.4 Local in time result

Let T" be a small enough positive real number. We set

Ds = {(t,x,y)eR3:0<t<T; 0< \/a:2+y2<90(t)}

with ¢ (0) = 0 and consider the following problem: to find a function u € H?(D3) that satisfies
the equation

Oyu — c(t)(0u + d2u) = f a.e. on Dy (3.17)

and the boundary condition

ppgry =0, (3.18)
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3.4. Local in time result

where f € L?*(Ds) and T'r is the part of 9Dz where t = T, defined by

Ir = {(T,m,y) ER*:0< Va2 +y2 < gp(T)}.
Set

1 1
Qn:{(t,x7y)€D3:—<t<T},nEN* and—<T,
n n

For each n € N* such that < T, we set f, = f|, € L*(Qn), and denote by u, € H"?(Qn)

the solution of the following problem:

O, — c(t)(O*up, + 0%uy) = fn a.e. on Q,

Unlag,r, = 0-

Such a solution exists by Theorem 3.2.1.

Proposition 3.4.1. There exists a constant K > 0 independent of n such that

2 2 2
||un||H112(Qn) <K ||f7l||L2(Qn) <K ||fHL2(D3) :

Remark 3.4.1. Let € > 0 be a real which we will choose small enough. The hypothesis (3.3)

implies the existence of a real number T' > 0 small enough such that

o' (t) p(t)| <€, forallt € (0,T). (3.20)

In order to prove Proposition 3.4.1, we need some preliminary results.

Lemma 3.4.1. For a fixed t € ]%, T[, let Q; be the bounded domain of R? defined by
Q= {(m,y) cR*:0< \/m<cp(t)}.

Then, there exists a constant C' > 0 such that

(a) max(||0sunll72q,) s [18yunlz20,) < CP° () [Aunlz2, »

(b) Nltnllz2( < Co* () 1AU][7 20y

Proof. 1t is a direct consequence of Lemma 1.2.1. Indeed, let t € ] %, T[ and define the following

change of variables
D(0,1) —

(z,y) = (p®)z,0()y) = (2,y).
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3.4. Local in time result

Set
v (2,y) = un (0 (t) 2,0 (t) y) ,
(a) We have
||aazv||i2(D(o,1)) = f (6 U)Q(x y) dzdy
= fg i) ,y’) ? () gy da’dy’
= fQ )’ (2, y) da dy’
= ||a$’un||L2(Qt)'
On the other hand, we have
18005 p00) = S (020 +830) (2,9)]” dedy
= fgt[ 2 (1) (02 + O2un)]” (2, ') ey da’dy’
/

= ©*(t) [02u, + 8§,un} (x
= & (1) | Aunll72 0,

,Y') dx’dy

Using the inequality
2 2
10200 22p0.1y) < ClIAVIL2(po1)

of Lemma 1.2.1, we obtain the desired inequality
2 2
100tz < C9® (8) | At 720, -

By a similar argument, we get

2 2
“ay’un”m(gt) < C¥ (1) “AUHHL?(QQ :
(b) We have
2 - 2
10132 (p01y = 72 (1) lunllzz(q,) -

On the other hand,
”A’UHiZ’(D(o,n) = (1) |\Aun‘|i2(9t) :
Using the inequality
HUHZLQ(D(OJ)) < CHAUHiQ(D(O,l))

of Lemma 1.2.1, we obtain the desired inequality

2 2
||un||L2(Qt) < 0904 (t) ||Aun||L2(Qt) :
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3.5. Main result

Proof of Proposition 3.4.1: This result can be obtained by following step by step the

proof of [[13], Proposition 3.2].
Theorem 3.4.1. Problem (3.17)-(5.18) admits a (unique) solution u € H"*(D3).

Proof. We obtain the solution u of Problem (3.17)-(3.18) by letting n go to infinity in the

previous proposition. [

3.5 Main result
The proof of Theorem 3.1.1 can be obtained by subdividing the domain

D= {(t,:c,y) ERY:1>0; 0< /22 + 42 < gp(t)}
into three subdomains Dy, Dy and Ds. We set D = Dy U Dy U D3 U 'y, U T'p,, where

D1:{<t,$,y>€D: 0<t<T1},D2:{(t,ZC,y)€D T1<t<T2},

Dy ={(t.0,y) € D: t > T}, Ty i= {(Th,,y) € R* 10 < /o 147 < p(T1) |,
and
Pp, = {(T2.9) € R : 0 < Va2 42 < ()},
with T} is a small enough positive number and 75 is an arbitrary positive number such that

T, > T;. In the sequel f stands for an arbitrary fixed element of L*(D) and f® = f| byt =1,2,3.

In the conical domain Dy, there exists a unique solution u; € H?(D;) of the problem

8tu1 — c(t)[agul + 851/4] = f(l) S L2(D1), (3 21)

ul‘apl—rTl =0,

Hereafter, we denote the trace uler by 11 which is in the Sobolev space H' (I'y,) because
1

up € HY? (Dy) (see [21]). Now, consider the following problem in D,
Ayuz — (t)[02uz + O2ug) = f@ € L2(Dy),

usly, =, (3.22)

=0.

Uz ‘ ODa—(I'g, U,
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3.5. Main result

We use the following result, which is a consequence of Theorem 4.3 ([21], Vol.2) to solve Problem

(3.22).

Proposition 3.5.1. Let Q be the cylinder ]0,T[x D (0,1) where D (0,1) is the unit disk of R?,
feL*(Q) and ¢ € H' (7o). Then, the problem

Ou — c(t)Au = f in Q,

u"Yo =9,

u‘ =0
YoUn ’

where o = {0} x D (0,1), v =10, T[ x 0D (0,1), admits a (unique) solution v € H“? (Q).

Thanks to the transformation

(t,z,y) — (2", y) = (Lo )z, 0 (t)y),

we deduce the following result :

Proposition 3.5.2. Problem (3.22) admits a (unique) solution uy € HY?(Ds).

Hereafter, we denote the trace us|r,, by 1, which is in the Sobolev space H'(I'r,) because

uy € HY2(Dy). Now, consider the following problem

atu?) - c(t)[@iugr, + 873“3] = f(S) S LQ(Dg),
U3‘FTZ = 1, (3.23)

u3‘8D3—FT2 =0.
By similar arguments like those used previously, we deduce the following result :

Proposition 3.5.3. Problem (3.23) admits a (unique) solution uz € H?*(Ds).
Finally, the function u defined by 1

Uy in Dl,
U= Uy in DQ,
us in Dg,

is the (unique) solution of our problem. This ends the proof of Theorem 3.1.1.
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CONCLUSION AND PROSPECTS

There are many natural systems which evolve on time-dependent spatial domains. In this thesis,

we have studied two boundary value problems associated to the following parabolic equation
Oyu — c(t)Au = f,

where A is the Laplacian operator, c(t) is a time dependent coefficient and f € L?. The
equation is posed in unbounded non regular domains and it is associated to different boundary
conditions.

Whereas a comprehensive theory of such kind of problems exists in the case of bounded
regular domains, the literature in the case of unbounded non-smooth domains does not seem
to be very rich. One of the central results of this theory is the so-called ”schift theorem”: ”If
the second member is an element of a certain given regularity (in a Sobolev space for example),
then the solution admits this regularity 4+ 2.” In this thesis, we have given sufficient conditions
on the functions of parametrization of the domains, and on the coefficients in order to bring to
life this result when the domains are unbounded and non-smooth and the second member is in
the Lebesgue space of square integrable functions, L?.

First, we have proved well-posedness and regularity results for the above mentioned parabolic

equation, subject to Dirichlet-Robin type boundary conditions and posed in an unbounded in
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Conclusion and prospects

time non-rectangular domain. In the second work, the two dimensional case with Cauchy-
Dirichlet boundary conditions is studied in the case of unbounded conical domains.
In forthcoming works, the results obtained in this thesis will be extended at least in the

following directions:

1. The function f on the right-hand side of the above mentioned equation, may be taken in
LP, where p €]1, 400 or in Holder spaces. The difficulty with the space L?, p # 2, is that
this space is not a Hilbert space, and so there is no an inner product. So, the domain

decomposition method used in this cannot be generalized in this sense.

2. Consider higher-order parabolic equations and other boundary conditions.
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ABSTRACT

This thesis is designed to give some results of existence and uniqueness of solutions for
someparabolic equations posed in unbounded in time non-cylindrical domains. We give
sufficient conditions on the functions of the parametrization of the non regular domains and
on the coefficients of the equations under which our problems admit unique solutions. We
study the global regularity problem in a suitable parabolic Sobolev space. The method used to
prove our main results is based on the technique of the decomposition of domains.

Key words. parabolic equations, heat equation, non-rectangular domains, conical domains,
unbounded domains, Dirichlet-Robin conditions, anisotropic Sobolev spaces.

RESUME

Cette thése a pour but de donner des résultats d'existence et d'unicité de solutions pour
certaines équations paraboliques posées dans des domaines non cylindriques et non bornés en
temps. Nous donnons des conditions suffisantes sur les fonctions de paramétrisation des
domaines non réguliers et sur les coefficients des équations sous lesguelles nos problémes
admettent une solution unique. Nous étudions le probleme de régularité globale dans un
espace de Sobolev parabolique approprié. La méthode utilisée pour démontrer nos principaux
résultats est basée sur la technique de la décomposition de domaines.

Mots clés. Equations paraboliques, égquation de la chaleur, domaines non rectangulaires, domaines
coniques, domaines non bornés, conditions de Dirichlet-Robin, espaces de Sobolev anisotropes.
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