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Abstract

The main objective of this thesis is the study of some questions related to the existence
of fixed points for the sum of two operators defined on ordered Banach spaces. The
essential questions of this work are existence, positivity, localization and multiplicity of
solutions for nonlinear equations which are written in the form Tx + Fx = x, where
(I —T) is a Lipchitz invertible mapping with constant v > 0 and F is a k-set contraction
with kv < 1. Note that many mathematical problems, related to nonlinear differential
or integral equations, can be written in the previous form. At first, we present some
preliminary elements and results for the elaboration of this thesis such as Kuratowski
measure of noncompactness and the fixed point index theory on cones. Secondly, we
develop a new fixed point theorem for sum of two operators, using the fixed point index
theory. This theory provides practical techniques for establishing fixed point theorems
in ordered Banach spaces. Finally, the obtained results will be applied to the study of
certain types of boundary value problems associated to ODEs.

Keywords: Fixed point index, cone, sum of operators, Green’s function, nonnegative

solution, ODE, first-order boundary value problems, three-point boundary value problem.



Résumé

Le but principal de cette these est ’étude de quelques questions liées a I’existence de
points fixes pour la somme de deux opérateurs définis sur un espace de Banach ordonné.
Les questions essentielles de ce travail sont l'existence, la positivité, la localisation et
la multiplicité de solutions pour des équations différentielles ou intégrales non linéaires
qui s’écrivent sous la forme Tz + Fx = x, ou (I — T) est un opérteur dont 'inverse
est lipchitzien de constante v > 0 et F' est une k-contraction d’ensembles avec ky < 1.
Notons que de nombreux probléemes mathématiques, liés a des équations différentielles ou
intégrales non linéaires, peuvent étre écrits sous la forme précédente. En premier lieu,
nous présentons quelques éléments et résultats préliminaires pour 1’élaboration de cette
these, notamment la mesure de non-compacité de Kuratowski et la théorie de I'indice du
point fixe. En deuxiéme lieu, nous développons un nouveau théoréme du point fixe pour
la somme de deux opérateurs, en utilisant la théorie de I'indice du point fixe les cones.
Une théorie qui fournit des techniques pratiques pour établir des théoremes de points
fixes dans des espaces de Banach ordonnés. Enfin, les résultats obtenus seront appliqués
a I’étude de certains types de problemes aux limites associés a des EDOs.

Mots-clés : Indice de point fixe, cone, somme d’opérateurs, fonction de Green, EDO,

solution positive, problemes aux limites d’ordre 1, probleme aux limites a trois points.
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Introduction

The first objective of this thesis is the study of the existence of fixed points for certain
classes of operators defined on cones of Banach spaces. More precisely, we are interested
in questions related to the existence, nonnegativity, localization and multiplicity of fixed
points for some operators that are of the form 7'+ F where I — T is a Lipschitz invertible
mapping and F' is a k-set contraction. The approach used is the fixed point index theory
on cones of Banach spaces. The second objective of this thesis is to study the existence
and the multiplicity of nonnegative solutions for certain classes of ordinary differential
equations subjected to different boundary conditions. The approach used is to reduce the
study, under suitable conditions, to the existence of fixed points for appropriate operators.
Recent fixed point theorems are used to show the existence of the fixed points of these
operators which are solutions of our problems.

Many problems in science can be mathematically recast as nonlinear equations of the
form Tx 4+ Fx = z and posed in some closed convex subset of a Banach space. Notice
further that the nonnegativity of solutions of nonlinear equations, especially ordinary,
fractional, partial differential equations, and integral equations is a very important issue in
applications, where a nonnegative solution may represent a density, temperature, velocity,
gravity, etc. It’s the reason for which many recent research works investigate not only the

existence but also the nonnegativity of solutions for various types of nonlinear equations.

v
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Starting from the Krasnoselskii’s fixed point theorem in cones [32, 33|, appeared in
1960, the fixed point theory in cones developed promptly and has been widely extended
to various directions in theory as well as in applications to many problems in nonlinear
sciences. Very recently, in 2019, the authors in [16] open a new direction of research in the
theory of fixed point in cones for the sum of two operators. Several fixed point theorems,
including Krasnosel’skii’s theorems type, have being established for a sum of an expansive
operator and a k-set contraction. Recent developments of positive fixed point theorems,
in this direction, and their applications can be found in [11, 14, 15, 16, 21, 22, 23, 24].
One of our contributions in this thesis is part of generalizations leading to fixed point
theory for sums of two operators.

This thesis is organized as follows: The first chapter will be devoted to the general
framework. Some preliminaries results and basic concepts used throughout this thesis are
collected here. Section 1.1 of this chapter opens with cones in Banach spaces which is
required in this study since it is the tool that provides the ordering needed to describe
the nonnegativity of the solution. However, some compactness criteria and the classical
Kuratowski measure of noncompactness (KMNC for short) of a set in a metric space
occupies the major part of Section 1.1. The fixed point index is a generalization of the
Leray-Schauder degree. Section 1.2 starts with a reminder of the main properties of the
fixed point index for strict set contractions defined in bounded convex subsets of Banach
spaces, in particular on cones. The definition of a generalized fixed point index for k-
set contraction perturbed by an expansive mapping as well as some of its properties are
presented. The case of a k-set contraction perturbed by any mapping 7" such that (I —T)
is Lipschitz invertible is also discussed in this section. As a consequence, some fixed point

theorems for the sum of two operators are derived in Section 1.3.



Table of notations vi

In Chapter 2, the integral formulation of all boundary value problems studied in this
thesis are presented in details.

Our contributions in this thesis are presented in chapters 3 and 4.
Chapter 3 is devoted to investigate the existence of solutions to the following first order
differential equation

o = f(t,z), tE€]la,b,

subject to the boundary conditions
Mz(a) + Rz(b) =0,
where MR e R, M+ R # 0, a < b < 0o are given constants and

(H1) f eC([a,b] xR), |f(t,z)] < Ek: aj(t)|xzP, (t,x) € [a,b] xR, a; € C([a,b]), 0 < a; <

Aon [a,b],p; >0,5€{l,...,k}.

Under sufficient conditions, we show that the considered problem two nontrivial non-
negative solutions. The results of this chapter vary according to the hypotheses on the
nonlinear term of the studied differential equation. To prove our main results we propose
a new approach based upon recent theoretical results. The proof of our results made use
of two recent fixed point theorems for the sum of two operators presented in Section 1.3.
Noting that, we can consider our main results obtained in this chapter as complementary
ones to these, of the scalar-valued case, established in [44].

In Chapter 4, the functional expansion-compression fixed point theorem of Leggett-
Williams type developed in [3] is extended to the class of mappings of the form T+ F,
where (I — T) is Lipschitz invertible and F' is a k-set contraction. The arguments are
based upon recent fixed point index theory for this class of mappings. As application,

our approach is applied to prove the existence of nontrivial nonnegative solutions for the
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three-point boundary value problem:

(0.0.1)

where n € (0,1), £ > 0 with k(1 —n) < 1 and f € C([0,1] x [0, 00)).

We show an existence criterion under the assumptions:

(C1) A < f(t,y) < ai(t) + as(t)|y|? for t € [0,1] and y € [0,00), a1,as € C([0,1]),

0 <ag,as < A on [0, 1], for some positive constants A, A and p.
(C2) e € (0,1), and there exist a,b, c,d, z9, p > 0 such that

max(d, 22, 1 (¢ — z)) < b < p;

320 > a; 2y < c <min(a,32, 2 (1 — g) A+(1- %)zo);

e%(l—g);{, zo)
€p )

ABUIIE < pr (1= e)§ +320 < d, where A = (

AB(1+b") <b, where B = l—lk—’(_fzn)'

The thesis ends by a general conclusion.
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Notations

R The set of real numbers.

R, The set of all nonnegative real numbers.
R” The n-dimentional Euclidean space.
(a,b) Open interval ]a, b|.

inf(A) The infimum of the set A.

sup(A) The supremum of the set A.

of) The boundary of €.

0 The interior of €.

Q Adhesion de €.

1|1l A norm.

1 The identity application.

BV Ps Boundary value problems.
flv The restriction of f on V.
i(f,U,D) Fixed point index of f on U with respect to D.

Fix(f) The set of fixed points of f.

P Cone.
P P/{0}.
C(Q2) The set of all real continuous functions from (2 in R.

mes(D)  The Lebegues measure of the set D.

P,R) {x € P:¢(x) <R}, where ¥ be a nonnegative continuous functionals on P.



Fixed point theory on cones

1.1 Basic Concepts

1.1.1 Cones in Banach spaces

In this chapter, we will collect some notations, definitions and auxiliary results we

need throughout this thesis. Let £ a Banach space.

Definition 1.1.1. A subset P C E is called cone if the following conditions are satisfied:
1. P is closed, convex and P # (.

2. If (x € P and A > 0) then Ax € P.

3. If (x€P and —x € P) thenx =0, i.e., (PN (=P)={0}).

Definition 1.1.2. For any cone P in E, we can define a partial order relation < on E

as follows: Vx,y e F: x<y&sy—xeP.
We can also define the following partial order relations:

> r<y<sax<yandz#y.
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P r<ysy—zeP if P£D.
> rLysy—xgP.

Definition 1.1.3. A segment of a cone P is defined by:

Definition 1.1.4. Let P a cone in E.
» P is called normal if there exists a positive constant § such that
|z +yll >0, Yo,y € P with [lz] = [yl = 1.

Remark 1.1.5. Geometrically, the normality of a cone means that the angle between
any two positive unit vectors cannot exceed w. In other words, a normal cone can

not be too large.

> P is called solid if P # 0, where P is the interior of P.

» P is generator if E =P —P, i.e, Vo € E, 3 u,v € P such that: © = u—v (In other

words any element x € E can be written in the form: © = u — v where u,v € P).
The following theorem gives us other definitions of a normal cone.

Theorem 1.1.6. ([27, Theorem 1.1.1)). Let P a cone of a Banach space E. Then the

following assertions are equivalent:
1. P is normal;
2. Fy > 0 such that ||z + y| > ymax([[z]], |lyl]), Vz,y € P;

3. AN > 0 such that 0 <z <y =|z|| < N ||y||, Vx,y € P;

(i.e. the norm ||.|| is semi monotone).
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IN

4. there exist an equivalent norm ||.|1 on E such that: 0 < x < y = |z

lyll1, Yo,y € P; (i.e. the norm ||.||1 is monotone);
5. any ordered interval [x,y| ={z € E: © < z <y} is bounded.
Example 1.1.7.
1. Let E=R" and P; = {x = (1,29, ..., xp) ER": 2; >0, i=1,...,n} = (Ry)™

(a) Py is a solid and generator cone in R™, because Py = (R%)™ and since Ry is a

generator cone on R, then fori=1,...n:Vx; € R, Ju;,v; e Ry : z; = u; — v;.

(b) Since every norm on R™ is monotone, we have
Vr,y € R", Opn <z <y = [lz] < lyll
So Py is normal with the normality constant N = 1.

2. Let E = C(G), the space of continuous functions on a bounded set G C R™ be

endowed with the mazimum norm ||z||¢(e) = sup |x(t)|, and
Py ={x€C(G):z(t) >0, Vt € G}.

(a) Py is a solid cone and generator on C(G).
(b) P is normal because the norm ||.||ce) is monotone on C(G).

(¢) We can define other solid normal cones on C(G) such that:
Ps={x€C(G):z(t) >0, and {glan(t) > 1|z (t) e}

where Gy is closed subsets of G and ¢, € (0, 1).
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1.1.2 Some compactness criteria

Ascoli-Arzela criterion

Definition 1.1.8 (Equicontinuous set). Let (X,7) be a topological space, (X,d) a
metric space, and C(X,Y) denotes the space of continuous functions from X to'Y.
A CC(X,Y) is called equicontinuous at a point xy € X if and only if

Ve>0,3U. € V(xy),VfeA Vre X (x e U = f(x) € B(f(x0),¢)).

The set A is equicontinuous if it is equicontinuous at every point xq € X.

Remark 1.1.9. If (X,d) is a compact metric space, then A is equicontinuous if Ve >

0,3In>0,Ve,ye X (d(z,y) <n=d(f(z), f(y)) <e€),Vf €A

To prove Ascoli-Arzela Theorem we consider, for the sake of simplicity, a special
situation in which (X, d) is a compact metric space and (Y, || - ||) a Banach space. The

space £ = C(X,Y) is endowed with the norm: ||f|| = sup||f(z)]y.
zeX

Theorem 1.1.10 (Ascoli-Arzela Theorem). A subset H C C(X,Y) is relatively compact

if and only if
(a) H is equicontinuous.

(b) Vo € X, the set H(x) = {f(z), f € H} is relatively compact in'Y .

Proof.

(1) The condition is necessary. If H is relatively compact, then for all £ > 0, there exist a

finite number of elements {f;}1<;<, in E such that H C CJ B(fi,e/3), i.e.,
i=1

VfGH,HiG{l,...,n}, ||f_fz||E§€/3
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Hence, Vf e H, Ve e X,Fie{l,...,n}, ||f(x)— fi(x)] <e/3.

Therefore, H(z) C | B(fi(z),e/3), which implies that #(z) is relatively compact in
i=1

Y. Now we prove that H is equicontinuous. For all + = 1,2,... n, the function f; is

continuous. Then for all positive ¢, there exists §; > 0, such that Vz,y € X, we have

d(z,y) < 6 = [[fi(x) = fi(y)| < /3.

Let 6 = 1r£1i<n d; and f € H. There exists i € {1,...,n} such that f € B(f;,¢/3) and for

all xz,y € X we have

d(z,y) <0 = |f(x) = fWI < [f(@) = fl@)[ + 1 F(y) = L)l
+Ifi(x) = fiy)l]

€ €€ _
st3t3=¢

IN

Thus the equicontinuity of H.

(2) The condition is sufficient. Since F' = C(X,Y’) is complete, it is sufficient to prove that
‘H is totally bounded. Let € > 0. Since H is equicontinuous, for every z € X, there exists

some ¢ > 0 such that for all y € X and f € H we have

d(,y) <0 = [[f(x) = fy)ll < e/4.

The space X being compact, can be covered by a finite number of balls B,, = B(z;,r), 1 <

i < m. By assumption, each subset H(z) is relatively compact in Y, then the same holds

for their finite union % = | J H(z;). Therefore, we can cover H by a finite number of balls
i=1

centered at ¢; (1 < j < p) and with radius /4. Let I = {1,2,...,m}, J={1,2,...,p},

and let ® be the set of all mappings ¢ : I — J. For all ¢ € ®, denote by L, the set of

all mappings f € H such that Vi € I, ||f(z;) — cp@)l| < €/4. Some of the sets L, may

be empty, but H is covered by the union of L,. It remains to prove that the diameter of

each L, is less than or equal to €. Let f,g € L. For every y € X, there exists ¢ € I such
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that y € B,,. Hence, ||f(y) — f(z:)]| <e/4 and ||g(y) — g(x)|| < e/4.

So, for all y € Y, we have

1f() =gl < If(y) — fl@)ll + llg(y) — g(@)]]

| f (i) = cowll + [l9(zi) — el

£ € € e
< 14’1"‘1"‘1—8.

Hence, ||f — ¢]| < ¢, and our claim follows. O
Consequently, when Y is finite dimensional, we get the following results.

Corollary 1.1.11. If H C C(X,Y) is uniformly bounded and equicontinuous, then H is

relatively compact.
Corollary 1.1.12. Let M C C'([a,b],R) satisfy the following conditions:
(a) there exists L > 0 such that for allt € [a,b] and u € M,

lu(t)] < L and |u'(t)| < L.

(b) For every positive real number ¢ > 0, there exists §(¢) > 0 such that for all ty,ty € [a, b

with |ty — ta| < d(¢) and for all uw € M,
lu(ty) —u(te)| < e and |u'(ty) —u'(ta)] < e.
Then, the set M is relatively compact in C*([a,b], R).

Proof. Let {uy}nen be a sequence of M C C!([a,b],R). To prove that M is relatively
compact in C'([a, b], R), it is equivalent to show that {u, },cy has a subsequent converging
in C([a,b],R). Since {uy, }nen is a sequence of M C C!([a, ], R), {u/ }nen (resp. {tn }nen)
is a sequence of C([a,b],R). Corollary 1.1.11 and Assumptions (a)-(b) guarantee that

the sequence of derivatives {u), }nen (resp. {un tnen) is relatively compact in C([a, b], R).
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As a consequence, there exists a subsequence, also denoted {u,},en Wwhich converges in
C([a,b],R) to alimit u € C([a, b], R), and a subsequence of {u), },en, also denoted {u], }nen,
converging in C([a,b],R) to a limit v € C([a,b],R). Using the integral representation of
un, we find that for all ¢, ¢y € [a, 1],

() = ulty) + t:u;(sms

— u(ty) + | v(s)ds, asn — oo.
to

Then for all ¢ € [a,b], lim wu,(t) = u(t) and the uniqueness of the limit yields that

t
u(t) = u(ty) + [ v(s)ds. Hence u € C*([a,b],R) and v’ = v. O

In practice, the following result is widely used to study the compactness of a subset

of C¥([a, b], R™).

Proposition 1.1.13. For all k € N, the space C*™([a, b], R™) is embedded compactly in
C*([a,b],R™). Here "embedded compactly” means that every uniformly bounded sequence

in Ck*1([a, b],R™) has a convergent subsequence in C*([a, b], R™).

Remark 1.1.14. One of the aims of modern analysis is to characterize the relationship
between various spaces of functions, An especially important type of relationship between
Banach spaces is compact embedding: we say Ey C Ey is compactly embedded in Ey if all
bounded subsets of Ey are relatively compact subsets of E5. Compact embeddings provide a
Bolzano- Weierstrass type theorem for infinite dimensions, since a sequence that is bounded

in Ey will contain a subsequence that converges strongly in FEs.

Corduneanu-Avramescu Compactness Criterion

Let Cy([0, +00), R™) denote the vector topological space of all bounded and continuous

functions defined on [0,+00) and having values in R"™. Before stating a compactness
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criterion in Cy([0, +00), R™), we give the definition of equi-convergent set.

Definition 1.1.15. A subset H C Cy([0, +00),R") is called equi-convergent if
Ve>0,dT = T(E) >0, Vi, ty € R,
it1| > T, [ta] >T = ||x(t1) —z(ta)]| <e, Vo € H.

Now, we state and prove Corduneanu-Avramescu compactness criterion in Cy([0, +00), R™).

Theorem 1.1.16. [7] A subset H C Cy([0, 400, R™) is relatively compact if and only if

the following conditions are satisfied:
(a) H is uniformly bounded.

(b) H is equicontinuous on every compact interval of [0, 400)

(we say that H is almost equicontinuous).

(c) H is equi-convergent.

Example 1.1.17. (1) Let G : [a,b] X [a,b] — R be a continuous function and

T :C([a,b],R) — C([a, b],R) be the linear operator defined by:

b
Ta(t) = / G(t, s)z(s)ds.
Then for any bounded set B in C([a,b],R), T'(B) is relatively compact.

(2) Set fu(z) = sin(nz), x € [0,27] and H = {f.(.) : n € N}. Then H is uniformly

bounded. In fact, ||fulle < 1,¥n € N. However, it is not equicontinuous in

C([0,27],R). In fact, consider the sequence x, = =, n € N*, so | f(x,) — fn(x2,)| =

2
1 V2

5 > % Hence, H is not relatively compact, i.e., we can’t extract a convergent

subsequence.
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1.1.3 Kuratowski’s measure of non-compactness

We consider a real Banach space (E, ||.||) and let Qg be the class of all bounded subsets
of E. In what follows, we will give the definition of Kuratowski non-compactness measure
as well as its main properties. We will end this section by giving some examples. For

more details on this concept, we refer to the references [8, 9, 10, 12].

Definition 1.1.18. The Kuratowski’s measure of non-compactness (KMNC' for short) is

the map o : Qp — [0, +00) defined by :

d>0: A can be covered by finitely many sets
a(A) =inf

with diameter less than or equal d

that is to say

a(A) = inf{d >0:3A, ..., A, CE, AC | A; with diam (4;) < d, Vi =1, ,n} ,

i=1

where diam(A;) = sup ||z —y|| and diam(0) = 0.

T,YEA;
Remark 1.1.19. 1. The definition of Kuratowski’s measure of non-compactness is sig-

nificant not only for Banach spaces but also for arbitrary metric spaces.
2. 0< a(A) <diam(A) < 0, VA € Qp.
3. Ais finished = a(A) =0, VA € Qp.

Elementary properties of Kuratowski’s non-compactness measure

The Kuratowski MNC « has the following properties (see [10, 12]).

Proposition 1.1.20. Let A and B be bounded subsets of a Banach space E. Then the

function o has the following properties:
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10.

Regularity: a (A) =0 <~ A is compact.

Monotonicity: A C B= a(A) < a(B) i.e., a is increasing.
Sub-additivity: o (AU B) = max (« (A),a (B)).
a(ANB) <min(a(A),a(B)).

Semi-homogeneity: a (AA) = |A a(A), YA € R.

Algebraic sub-additivity: a(A+ B) < a(A) +a(B).
Invariance under passage to the closure: o (A) = « (Z) .
Invariance under shifting: a(A+x) < a(A),Vr € E.
Invariance under passage to the convex hull: a (A) = a (convA).

Lipschitzianity: |a(A) —a (B)| < 2H(A, B), where H(A, B) denotes the Hausdorff

distance between the sets A and B.

Remark 1.1.21. a) The properties of algebraic semi-homogeneity and sub-additivity allow

us give that Kuratowski’s measure of non-compactness a is a semi-norm on E.

b) It’s not easy to determine the explicit value of o (A) for a bounded set A of E. Most

of the results obtained using KMNC are based on its properties.

Example 1.1.22. 1. Let B(0,1) a unit ball of a Banach space E of finite dimension,

2.

then a (B (0,1)) = 0. Indeed, we have B (0,1) is compact <= dim E < oo.
More generally, o (B (xg,r)) = 0, where B (xo,7) is a ball with center xy and radius

r in a Banach space E. Indeed; B (xg,r) is a compact of E.

Let E an infinite dimensional Banach space and B (0,1) a unit ball of E.

Then o (B (0,1)) = 2. A simple proof is given in [12].
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3. LetY be a Banach space, and o the KMNC inY. If H C E = C([a,b],Y) is bounded
and equicontinuous, then ag(H) = mmax a(H(t)), where H(t) = {x(t) : x € H}, t €
cla,

la,b]. For the proof see [28, Theorem 1.2.4).

1

4. In the Banach space E = R"™ with the Fuclidean norm ||z|| = (an xf) 2, we consider
i=1

the function f = (fM, ..., f™): E = E defined by:

O @y, s y) = (142l +yf), fort >0,

r=(21,...,Tn), Y= (Y1,---,Yn), D, q € (0,00), for anyi € {1,...,n}.
Then, we have

(f(')(t Y))?

(1- Cost) n

(+1)2 (”"‘" 2 "E "+ Z Yi )

[HCEND] B

1 M=

IN

< 1;?”( mu(zy,))

< 4l (n 4[|l + ly]*).

Hence, let Dy, Dy C E bounded subset, for allt € RY, x € Dy, y € Dy, we have

1 —cost

t <2
|7yl <25

(n + H$||2p + ||y|!2q) <4 (n + HxH?P + ”y”2q> < o0,
Moreover, for all 0 < t; <ty < 400, x € Dy and y € Ds, we get

lim ‘f (tl,l’,y)—f(i)@%x,y)‘

t1—to
< t}ig%z 1tcisltl(1+x +yz)_1tcis1t2<1+$ + i)
. 1— t 1— t _ y__
< Jim (1 [l + el | 528 — S| <0, ¥i= 1,

Then, lim ||f(t1,z,y) — f(t2, z,y)|| =0 and
t1—to

lim ‘f (t,x,y)— hm f(z)(s,x,y)]

t——+o0

: l—cost —
< lim |[5et(1 4 af 4 yf) —0[=0,Vi=1,.
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i () — i () =
Hence, Tim |[|f(t, z,y) — Tim f@(s,z,y)|| = 0.
As a consequence, Corduneanu-Avramescu compactness criterion (see Theorem 1.1.16)
ensures that f(t, Dy, Dy) is relatively compact in R™. So, a(f(t, D1, Ds)) = 0, for

all t € RT and all bounded subsets D, Dy C R™.

1.1.4 Some classes of mappings: Definition and Properties

Nonnegative convex and nonnegative concave functionals

Definition 1.1.23. Let P be a cone in a real Banach space E.

(a) A map x : P — [0,00) is said to be nonnegative convex functional on P if and only

ifx(te+ 1=ty <tx(z)+ (1 —t)x(y), forallz,y € P andt € [0, 1].

(b) A map v : P — [0,00) is said to be mnonnegative concave on P if and only if

Yte+(1—t)y) >t (z)+ (1 =) (y), forallz,y € P andt € [0,1].

Example 1.1.24. (1) Let P be a cone in a real Banach space (E, ||.|).
¢1(x) = ||z||, x € P is a convex functional.

(2) Y (x) = trrfirll)]x(t), x € C([a,b],Ry) is a concave functional.
€la,

(3) Yo(x) = [o, x(t) dt, x € C(Q,Ry), where Q is a compact set of R™ and Q; is a closed

subset of €1, is a concave functional.

I. Completely Continuous mappings

Let E and F' be Banach spaces.
Definition 1.1.25. Let T : D C E — F' be a continuous mapping. T is said to be:

(i) bounded if it maps any bounded subset of D into bounded subset of F';
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(i) compact if the set T (D) is relatively compact;
(iii) completely continuous if it maps bounded sets into relatively compact sets.

Remark 1.1.26 (Relation between compact and completely continuous maps). Fvery
compact mapping is completely continuous. If D is bounded set, the reverse implication

15 true.

Example 1.1.27. In the infinite-dimensional Banach space (C([a,b]), ||.||c) consider two

integral operators T and S defined by:

Ty(t) = [ K(t s y(s)ds,

Sy(t) = JLK(ts,y(s))ds, t € [ab],

where K : [a,b] x [a,b] X [=r,r] = R is a continuous function. Set
M ={z € C([a,b]),R) : ||z| < r}.
Then, the operators S and T map M into C([a,b],R) and are completely continuous.

Proof. We will consider the operator S. The remaining case is treated similarly.
The set A = [a,b] X [a,b] x [—r,r]| is compact, hence K is bounded and uniformly
continuous on A. Thus, there is 6 > 0 such that |K(t, s,y)| < 0, for all (¢,s,x) € A, and

for every € > 0 there exists p = p(¢) > 0 such that
[K (1, 51,91) — K(t2, 52,3)| <,
for all (¢;,s;,2;) in A, i = 1,2, satisfying |t; — to] + |s1 — s2| + |y1 — ya| < p.
(i) The operator S is continuous on M. In fact, let (y,)nen be a sequence in M with

lyn — Ylloo — 0, as n — oo.
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From the uniform continuity of K and the uniform convergence of the functions v,

to y, Lebesgue’s dominated convergence theorem leads

15Yn — Syllee = max |Sy,(t) — Sy(t)|

a<t<b

_ max|/ (t, 5, yn(5)) — K(,5,y(s))) ds|

a<t<b

— 0, as n — 0.

(ii) The set S(M) is relatively compact. In fact, let y € M and € > 0, then
t
|Sy(t)| < |/ K(t,s,y(s))ds| < (b—a)d, forallt € [a,b].
Furthermore, for |t; — t3] < min(p,e), we have

t1 to
1Sy(t) — Sy(ts)] = /K(tl,sy K(ts, 5, y(s))ds

t1 tl
/K(tl,sy th,sy ))ds

to
- K(tQasay(S>>d8

t1

< (b—a)e+ |ty —t2]0 < ((b—a) + 0)e.

Hence, by the Ascoli-Arzela Theorem, the set S(M) is relatively compact.

Consequently, (i) and (ii) together imply that the operator S is completely continuous. [J

Remark 1.1.28. If the operators Ty, Ty : D C E — F are bounded ( resp. completely
continuous) then for every o, € R, the operator oTy + BTy is bounded ( resp. completely

continuous).

II. k-set contractions maps

Definition 1.1.29. Let E and F' be Banach spaces. Let f : E — F be a continuous and

bounded mapping.
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1. [ is said to be k-set contraction if there exist k > 0, such that
a(f(A) <ka(A), for every A bounded set of E, (1.1.1)
where « is the KMNC' in E.
2. f is called strict set contraction if 0 < k < 1.
3. f is said to be condensing if

a(f(A) <a(A), for all bounded and not relatively compact set Ai.e.,a (A) > 0,

Proposition 1.1.30. /40, Proposition 2] Let E be a Banach space and G a subset of E.
(a) If T; : G — E is k;-set contraction, i = 1,2, then T1 + Ty : G — E is (k1 + ko)-set
contraction.

(b) If 1 : G — E is ky-set contraction and T3 : T1(G) — E is ks-set contraction, then
T30T1): G — E is kiks-set contraction.

(¢) T : G — E is completely continuous if and only if T is 0-set contraction.

(d) If T : G — E is L-Lipschitzian (i.e., | T(z) — T(y)|| < Ll — y|| for x,y € G), then
T is k-set contraction with k = L.

(f) If T : G — E is completely continuous and S : G — E is L-Lipschitzian, then T 4+ S
is k-set contraction with k = L.

(9) If T : G — E is completely continuous and S : G — E is contraction with constant k,

then T + S is strict set contraction with constant k.

Proposition 1.1.31. Let E be a Banach space and D a subset of E. Suppose that
T:DCE — FE isa k-set contraction and v : D — R is continuous function such

that sup {7y () :z € D} = /. Let T:D C E —s E be a map defined by

T(x)=~(z)T (x), Yx € D.
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Then, T is a kl-set contraction.

Proof. T is continuous and bounded as a product of two maps continuous and bounded.

Let Q2 be a bounded subset of D. We have

T(Q) C conv ({0} ULT (2)).

By the properties (1), (3),(5) and (9) of the KMNC «(.) in Proposition 1.1.20, we get

a(T(Q)) < a(conv({0}ULT (2)))
= a({0pUlT(Q)
= max (({0}), (T ()))
= La(T(9))
< kla(9).
Hence T is a kf-set contraction. O

Remark 1.1.32. Fvery completely continuous mapping f, is strict set contraction and
every strict set contraction is condensing map. Moreover, every condensing map is 1-set

contraction.

Example 1.1.33. Let X be a real normed space and T : X — X be a linear bounded

operator. Then T is a |T||-set contraction.

Example 1.1.34. Let f € C([a,b]. Define the mapping T : f € C([a,b]) — R by

Tf(t) :/abcos(f(t))dt, 7 e C(a,b)).
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For any t € [a,b], we have

[ cos(7 (1)) ~ costo(e))dt

< [ leos(£(t)) — cos(g(t))] dt

ITf(t) —Ty(t)] =

IN

(b—a) |l f=gll-

So, T is (b — a)-set contraction. If b—a < 1, then T is strict set contraction.

I11. Expansive and Lipschitz invertible mappings

Definition 1.1.35. Let (X,d) be a metric space and D be a subset of X. The mapping

T:D — X is said to be expansive if there exists a constant h > 1 such that
d(Tz,Ty) > hd(z,y), Vz,y € D.

Example 1.1.36.
(1) An affine function with a leading coefficient o > 1 is o-expansive on R.

(2) The function f(z) = x* + 0z, x € RT is 0-expansive.

(3) The function f(x) =y

x € [a,b] is (glggz—expansive.

w45
Example 1.1.37. Let E be a infinite dimensional Banach space and let T : E — E be

the map defined by:

2¢ if xe€ B(0,1)
Tx =

(1+ &)= if x€E\BO1).

Then T is 1-expansive. In fact, for x,y € E, we distinguish the following four cases:

Case 1. z,y € B(0,1). We have | Tx — Ty|| = 2||x — y||.
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Case 2. z € B(0,1) andy € E\ B(0,1). Since ||z|| <1, we have

= (lyll = llzll) < = (lyll = 1). Hence

[Tz =Tyl =

20 —y — y”
Iyl

Iyl

> 2fz =yl = (lyll = ll=[)

= o=+

> 2z =yl - llz —yll

[l = yl.
Case 3. z € F\ B(0,1) and y € B(0,1). As in case 2, we obtain [|Tx — Tyl > ||z — y||.

Case 4. x,y € E\ B(0,1). Since |[z]], [lyll = 1, we have —([lz[| = [lyl) < = (1 = [lyl})

and — ([yll = ll=[]) < = (L = [[=[]). Hence

ITo— Tyl — H —H
AT

oy (= lelde (1= gl
- HQ( 2 P I H
> 20— g)ll = (L= Jle]) = (1 = )

> 2l =yl = (lyll = ll=l) = (lzll = Nyl

= 2|z =yl

Let (X, ||.]]) be a linear normed space and D C X. An operator A : D — X is said
to be y-Lipschitz invertible on D if it is invertible and its inverse is Lipschitzian on A(D)

with constant 7. In what follows we give some examples.

Example 1.1.38.

(1) The function f(x) = tan(z), = € (—g, g) is 1-Lipschitz invertible on R.

(2) An affine function with a leading coefficient o is %-Lz’pschitz invertible on R.
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Lemma 1.1.39. [}7, Lemma 2.1] Let (X, ||.||) be a linear normed space and D C X.
Assume that the mapping T : D — X is expansive with constant h > 1. Then the inverse

of | =T :D — (I —T)(D) exists and

I =T)" e — (I =T)yll <

1
eyl Yoy (- T)(D).

Lemma 1.1.40. ([48, Lemma 2.3]) Let (E,|.||) be a Banach space and T : E — E be
Lipschitzian map with constant 3 > 0. Assume that for each z € E, the map T, : F — F

defined by T.x = Tx + z satisfies that TP is expansive and onto for some p € N. Then

(I —T) maps E onto E, the inverse of I =T : E — E exists, and
I =T)" e — (I =T) "yl < wllz =yl forall z,yeFE,

where
_ pr—1
T B DT — 1)

with lip(T?) = max{h > 0: d(T?z,TPy) > hd(z,y), Vx,y € E}.

Lemma 1.1.41. ([48, Lemma 2.5]) Let (X,|.||) be a linear normed space, M C X.
Assume that T : M — X is a contraction with a constant k < 1, then the inverse of

I-T:M— (I—-T)M) ezists, and

I =T)" =T =T) 'yl < (A =k) "z =yl forall 2,y € (I -T)(M).

1.2 Fixed point index

The Leray-Schauder degree is an important tool in nonlinear analysis, allowing to
establish the existence of fixed points for a mapping acting in a normed linear space.

There are many interesting problems not set on the whole space, but instead the setting
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is a closed convex subset of a normed linear space, e.g., a cone. The fixed point index is a
generalization of the Leray-Schauder degree, that is designed to find fixed points of maps
defined on a closed convex subset of a Banach space that is not a vector subspace.

Early in the 1970s, Amann [2, 1] and Nussbaum [37, 38] introduced the fixed point
index for strict set contractions and condensing mappings and have derived as results
some fixed point theorems. As an extension, recently, Djebali and Mebarki [16] have
developed a generalized fixed point index theory for the sum of an h-expansive mapping
and a k-set contraction when 0 < k < h — 1 as well as in the limit case k = h — 1. Then
some researchers have been interested in the extension of this index in various directions,
we cite [11, 17, 26].

This section starts with a reminder of the main properties of the fixed point index
for strict set contractions in a retract of a Banach space. Then we will present the fixed
point index for some classes of sums of two mappings. We will consider separately two
cases: firstly the case of the sum T + F, where T is an h-expansive map and F' is a
k-set contraction when 0 < k < h — 1 is treated. The definition of a generalized fixed
point index as well as some of its properties are presented. Then several results allowing
computation of this index are shown. Secondly, we extend some of these results to the
case of the sum 7'+ F', where T is a mapping such that (I —T') is Lipschitz invertible and

F is a k-set contraction.

Definition 1.2.1 (Retracted set). Let E be a Banach space. A subset X of E is called a

retract of E, if there exists a continuous mapping v : E — X such that

r(z) =z, Vo e X.

Then the mapping r is called retraction.
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Remark 1.2.2. Let B(0,p) = {z € E : ||z|| < p} be the closed ball in E with center 0

and radius p. Thenr: E — B(0,p) given by

Y, for |lyll < p;
r(y) =

py/yll,  for |lyll > p,

defines a retraction (called the standard retraction) of E onto B(0, p).

Remark 1.2.3. Fvery closed convex set of a Banach space E is a retract of E, in par-

ticular every cone P C E is a retract of E.

1.2.1 Fixed point index for strict set contractions

The development of the theory of the fixed point index for sums of two operators,
which will be presented in subsection 1.2.2, involves the fixed point index for strict set

contractions whose basic properties are collected in the following theorem.

Theorem 1.2.4. [28, Theorem 1.3.5]. Let X be a retract of a Banach space E. For
every bounded open subset U C X and every strict set contraction f : U — X without
fized point on the boundary OU, there exists uniquely one integer i (f,U, X) satisfying the
following conditions:

(a) (Normalization property). If f: U — U is a constant map, then
i(f,U,X) = 1.

(b) (Additivity property). For any pair of disjoint open subsets Uy, Uy in U such that f

has no fized point on U \(Uy U Us), we have
Z(f? U7X) :Z(.fa UlaX) +Z(f7U27X)>

U)h@?”@@(f,U],X) :Z<f|7J7UJ7X)7 J=12

(¢) (Homotopy Invariance property). The indez i (h(t,.),U, X) does not depend on the
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parameter t € [0, 1], where

(i) h:[0,1] x U — X is continuous and h(t, ) is uniformly continuous in t with respect
tox €U,

(ii) h(t,.) : U — X is a strict k-set contraction, where k does not depend on t € [0, 1],
(1ii) h(t,z) # x, for every t € [0,1] and x € OU.

(d) (Preservation property). If Y is a retract of X and f(U) C Y, then
i(fUX)=i(f,UNY.Y),

where i (f,UNY,Y) =i(flgry, U, Y).
(e) (Excision property). Let V C U an open subset such that f has no fized point in U\V .
Then

i{(f,UX) =i (f,V.X).
(f) (Solvability property). If i (f,U, X) # 0, then f has a fixed point in U.
The following results are direct consequences of the properties of the index 1.

Proposition 1.2.5. Let X be a closed convex of a Banach space E and U C X a bounded
open subset with 0 € U. Assume that A : U — X is a strict set contraction that satisfies the

Leray-Schauder boundary condition: Ax # \x, Yx € OU, Y X > 1. Then i (f,U, X) = 1.
Proof. Consider the homotopic deformation H : [0,1] x X N U — X defined by
H(t,x) = tAz.

Then the map H is continuous and H(t,-) : U — X is a strict set contraction, and has
no fixed point on P NIU, Vt € [0, 1]; otherwise:

o If £ = 0, there exists some xy € QU such that xy = 0, contradicting xo € U.
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o If t € (0,1], there exists some xy € QU such that tAxy = xo; then Azy = %xo with
% > 1, contradicting the assumption. From the invariance under homotopy and the
normalization properties of the index, we deduce i (4,U, X) =i (0,U, X) = 1. ]

In the sequel, we give an extension of the Leray-Schauder boundary condition, which

allows to increase the field of applications of this condition. First, we present our result

for the completely continuous mappings.

Proposition 1.2.6. [13] Let X be a closed convex subset of a Banach space E and U C X
a bounded open subset with 0 € U. Assume A : U — X is a completely continuous mapping
without fixed point on the boundary OU with v = dist(0, (I—A)(OU)) and there exists e > 0

small enough such that

Az # Xz for all x € OU and A > 1+¢. (1.2.1)
Then the fixed point index i (A, U, X) = 1.
Proof. Consider the homotopic deformation H : [0,1] x U — X defined by

1

The operator H is completely continuous and has no fixed point on oU, Vt € [0,1] ;
otherwise, we may distinguish between two cases:

o If £ = 0, there exists some xg € QU such that o = 0, contradicting 0 € U.

e If t € (0, 1], there exists some xy € QU such that EJ%ltA:zco = x; then

1+e¢ 14¢
To with Tzl—i—g,

Al’o =

leading to a contradiction with the hypothesis (1.2.1).
From the invariance under homotopy and the normalization properties of the index (see

[27, Theorem 2.3.1]), we deduce i (i AU X)=1i(0,U,X)=1.
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Now, we show that i (A, U, X) =i (i AU X).
Since A has no fixed point in OU and (I — A)(0U) is a closed set (see [41, Lemma 1]), we
get 0 & (I — A)(OU). Hence, xle%fU |z — Az|| ==~ > 0.
Let € be sufficiently small so that || 57 Az| < 3. Hence

1

Ap — —
1Az — ——

Az| = | Az — Az + —— Az = | —— Aa| < 1, Vo e oU.
e+1 e+1 2
Define the convex deformation G : [0,1] x U — X by

The operator G is completely continuous and has no fixed point on 90U, Vt € [0,1]. In

fact, for all x € QU and t € |0, 1], we have

le = Gt.a)ll = |- tAe — (1 —t)= Aa|
> o — 2 Av| — t Az — 5 Aa]
> o — Av|| — | 5y Kal| - | K2 — 2 Aa|

> v—3—3=0.

Then our claim follows from the homotopy invariance property of the index. n

Remark 1.2.7. The result of Proposition 1.2.6 remains true if A is a strict contraction

and even if A is condensing map and that according to [/1, Lemma 1].

Proposition 1.2.8. [28, Theorem 1.53.8] Let X be a closed convez of a Banach space E
and U C X be a bounded open subset. Assume that A : U — X is a strict set contraction.

If there exists ug € X, ug # 0, such that Aug € X, VA >0 and
x— Ax # Mg, Yo € OU, VA > 0,

then the fized point index i (A, U, X) = 0.
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Proof. Define the homotopy H : [0,1] x U — X by H(t,x) = Az + t\gug, for some

Ao > sup([[uoll = (ll=[| + | Az]))- (1.2.2)

zeU
Such a choice is possible since U is a bounded subset and so is A(U). The operator H is
continuous and uniformly continuous in ¢ for each z, and the mapping H(¢,.) is a strict
set contraction for each t € [0,1]. In addition, H(t,.) has no fixed point on 9U. On the

contrary, there would exist some 2y € OU and t, € [0, 1] such that
xo = Axg + toAouo,
contradicting the hypothesis. By Theorem 1.2.4, we get
(AU, X)=14(H(0,.),U,K)=14(H(1,.),U, X)=0. (1.2.3)

Indeed, suppose that i(H(1,.),U, X) # 0. Then there exists xy € U such that Azg+Ngug =

xg, which implies that Ao < ||uol| = (||zol| + [|Azo]]), contradicting (1.2.2). O

Proposition 1.2.9. Assume that X is a closed convex set of a Banach space E, X is
a bounded closed convex subset of X, U is a nonempty open set of X with U C X;. If
A Xy — X is a strict set contraction, A(X;) C Xy and A has no fixed point in X1\U,

then i (A, U, X) = 1.

Proof. Since X is a closed subset of F, U C X}, by the preservation property of the fixed
point index, it follows that

(AU, X) = i(A,U, X)). (1.2.4)

Because A has no fixed points in X;\U, by the excision property of the fixed point index,
we get

Z(A, U,Xl) :?:<A,X17X1>. (125)
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Take zp € U C X; and let
H(t,x) =tz + (1 —t)Az, te€|0,1], ze€ X;.

We have H : [0,1] x X; — X; is continuous and bounded. Also, for any t € [0,1] and B

a bounded set in X, we have
a(H(t, B)) < (1 -1t)a(A(B)) < (1 —t)ka(B).

So, H(t,") : X; — X; is a strict set contraction for any ¢t € [0,1]. Hence, using the

normality and the homotopy invariance of the fixed point index, we get
i(A, X1, X7) = i(H(0,-), X1, X1)

= i(H(,"), X1, X1)

= (20, X1, X4)

= 1.
From here and from (1.2.4), (1.2.5), we arrive at

(AU X)=1i(AU X;) =i(A X1, X;) = 1.
O

Corollary 1.2.10. Assume that X is a closed convex set in E and U is a nonempty
bounded open convex subset of X. If A : U — X is a strict set contraction and A(U) C U,
then

(AU, X) = 1.
Proof. We apply Theorem 1.2.9 for X; = U. Then

i(A,U,X) = 1.
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1.2.2 Fixed point index for perturbed k-set contractions maps

In all what follows, P will refer to a cone in a Banach space E, 2 is a subset of P, and
U is a bounded open subset of P. For some constant r > 0, we will denote P, =P NB,,

where B, = {z € E : ||z|| < r} is the open ball centered at the origin with radius r.

1. Case of k-set contraction perturbed by an h-expansive map

Assume that T : Q — F is an h-expansive mapping and F : U — E is a k-set
contraction. By Lemma 1.1.39, the operator (I — T)~! is (h — 1)~ !-Lipschitzian on (I —
T)(2). Suppose that

FU)c (I -T)(%Q) (1.2.6)

and

x# Tx+ Fx, forall x € 90U NKQ. (1.2.7)

Then x # (I — T)"'Fux, for all x € U and the mapping (I —T)"'F : U — P is strict
k(h — 1)~!'-set contraction. Indeed, (I —T)~'F is continuous and bounded; and for any

bounded set B in U, we have
a((I =T)7'F)(B)) < (h—1)" a(F(B)) < k(h = 1)"'a(B).
By Lemma 1.2.4, the fixed point index i (I — T)~'F,U, P) is well defined. Thus we put

i(I-=T)'F,UP) ifUNQ#0D
. (T+ F,UNQ,P) = (1.2.8)
0, if UNQ=0.
This integer is called the generalized fixed point index of the sum 7"+ F on U N €2 with

respect to the cone P.
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Using the main properties of the fixed point index for strict set contractions (in par-
ticular, completely continues maps), Djebali and Mebarki, have discussed the properties

of the generalized fixed point index i, in [16].
Theorem 1.2.11. [16, Theorem 2.3] The fized point index defined in (1.2.8) satisfies the
following properties:

(a) (Normalization property). If U =P,, 0 € Q, and Fx =z, € B(=T10,(h—1)r)N'P for

all z € Py, then i, (T + F,P,NQ,P) = 1.
(b) ( Additivity property). For any pair of disjoint open subsets Uy, Us in U such that T+ F
has no fized point on (U \(U; U Us)) N2, we have

W(T+FUNQP)=i., (T+F,U NQP)+i.(T+ F,U;NQ,P),

where i, (T + F,U;NQ, X) : =1, (T+F]7j,UjHQ,P), j=1,2.

(c) ( Homotopy Invariance property). The fized point index i, (T + H(t,.),U N, P) does

not depend on the parameter t € [0, 1] whenever

(i) H:[0,1] x U — E is continuous and H(t,z) is uniformly continuous in t with respect

tox €U,
(i) H([0,1] x U) C (I - T)(Q),

(iii) H(t,.) : U — E is a l-set contraction with 0 <1 < h —1 and | does not depend on
t €[0,1],

(iv) Tz + H(t,x) # x, for all t € [0,1] and xz € OU N Q.

(d) ( Solvability property). If i, (T + F,U NQ,P) # 0, then T + F has a fized point in

Unq.

Next, we compute the index i, under certain considerations.
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Proposition 1.2.12. Let U be a bounded open subset of P with 0 € U. Assume that
T:Q C P — E is an expansive mapping with constant h > 1, F : U — E is a k-set

contraction with 0 < k < h —1, and F(U) C (I = T)(Q). If
Fz # (I =T)(\x), forallx € UNQ and X\ > 1,
then the fixed point index i, (T + F,UNQ,P) = 1.

Proof. The mapping (I —T)™'F : U — P is a strict ;£;-set contraction and it is readily

seen that the following condition of Leray-Schauder type is satisfied
(I — T)_lFx # Mz, forallz € OU and A > 1.

In fact, if there exist 2o € OU and \g > 1 such that (I —T) ' Fxq = Aowo.
Then Fzo = (I — T)(Aoxo), which contradicts our assumption. Our claim then follows

from (1.2.8) and Proposition 1.2.5. O

Now, we extend the result of Proposition 1.2.6 to the case of the sum T+ F, where T

is an expansive mapping and F' is a completely continuous one.

Proposition 1.2.13. Assume that T : Q0 — E is an expansive mapping with constant
h>1, F:U— FE is a completely continuous mapping and F(U) C (I —T)(Q). Suppose
that T + F has no fixed point on OU N ). Then we have the following results: If 0 € U

and there exists € > 0 small enough such that
Fo#(I—-T)Ax) forall A\>1+¢, x € 0U and Iz €,
then the fized point index i, (T + F,UNQ,P) = 1.

Proof. The mapping (I —T)"'F : U — P is completely continuous without fixed point

on OU and it is readily seen that the following condition is satisfied

(I-T)'Fx#Xx for all x€0U and \>1+e.
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Then, our claim follows from the definition of 7, and the Proposition 1.2.6.

[]

Remark 1.2.14. Proposition 1.2.13 is an extension of Proposition 1.2.12 in the case

where the map F is completely continuous.

Proposition 1.2.15. Let U be a bounded open subset of P. Assume thatT : Q C P — E
is an expansive mapping with constant h > 1, F : U — E is a k-set contraction with

0<k<h-—1,and F(U) C (I —T)(Q). If there exists ug € P* such that
Fx# (I —=T)(x — M), forall X>0 and x € OU N (2 + Auy), (1.2.9)
then the fixed point index i, (T + F,U N, P) = 0.

Proof. The mapping (I — T)"'F : U — P is strict %-set contraction and for some

ug € P* this operator satisfies
v — (I —T) " 'Fx # Mg, Vo € U, VA > 0.
By (1.2.8) and Proposition 1.2.8, we deduce that

W (T+FUNQP)=i((I-T)'F,UP)=0.

2. Case of k-set contraction perturbed by a map 7 where (I — T') is Lipschitz

invertible

Let E be a real Banach space and P be a cone of E, {2 C P and U is a bounded open

subset of P. Assume that 7' : Q@ — E be such that (I — T") is Lipschitz invertible with
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constant v > 0, F : U — F is a k-set contraction mapping with 0 < k < v~!. Suppose
that

F(U) c (I =T)(Q),

and

x # Tx+ Fx, for all xE@UﬂQ.

Then z # (I — T) ' Fz, for all z € QU and the mapping (I — T)™'F : U — P is a strict
set contraction with constant ky < 1. Indeed, (I — T)~'F is continuous and bounded;

and for any bounded set B in U, we have
a(((I = T)"'F)(B)) < va(F(B)) < kya(B).
The fixed point index i ((I — T)~'F, U, P) is well defined. Thus we put,

(I -T)'F,U,P), if UNQ#D
i (T+FUNLP) = i ) h HUNR (1.2.10)

0, it UNQ =0.
The proof of our theoretical result presented in Chapter 4 invokes the following main

properties of the fixed point index i,.
(i) (Normalization) If Fx = yo, for all x € U, where (I —T) 'yo € U N Q, then

i (T+F,UNQP)=1.

(ii) (Additivity) For any pair of disjoint open subsets Uy, Uy C U such that 7'+ F' has no

fixed point on (U \(U; U Us)) N, we have

iTH+FEUNQP) =i (T+FUNQLP)+i.(T+FUNQP).

(iii) (Homotopy invariance) The fixed point index i.(T + H(.,t),U N Q,P) does not

depend on the parameter t € [0, 1], where
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(a) H:[0,1] x U — E is continuous and H(t,x) is uniformly continuous in ¢ with

respect to x € U,
(b) H([0,1] x U) C (I = T)(®),
(c) H(t,.): U — E is a {-set contraction with 0 < ¢ < ~y~! for all t € [0, 1],

(d) Tx+ H(t,x) # z for all t € [0,1] and z € U N Q.
(vi) (Solvability) If i (T + F,U N, P) # 0, then T+ F has a fixed point in U N Q.

For more details about the definition of the index i, and its properties see [16, 26].

Now, we compute the index 7, under certain considerations.

Proposition 1.2.16. Assume that the mapping T : Q C P — E be such that (I —T)
is Lipschitz invertible with constant v > 0, F : U — E is a k-set contraction with

0<k<~yY andtF(U)C (I-T)RQ) forallt €[0,1]. If I —=T)*0€ U, and
(I—=T)x#AFz forallz € U (Q and 0 <A <1, (1.2.11)
then the fized point index i, (T + F,UNQ,P) = 1.
Proof. Consider the homotopic deformation H : [0,1] x U — P defined by
H(t,x) = (I —T) 'tFz.

The operator H is continuous and uniformly continuous in ¢ for each x. Moreover, H (t, .)
is a strict kvy-set contraction for each ¢ and the mapping H (¢,.) has no fixed point on OU.

Otherwise, there would exist some zy € OU N2 and ¢, € [0, 1] such that

o — T.’L’O = toF.ﬁEo,
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which contradicts our assumption.
From the invariance under homotopy and the normalization property of the index fixed

point, we deduce that
i (I -T)'FUP)=i,(I-T)"'0,U,P)=1.
Consequently, from (1.2.10), we deduce that
i (T+FUNQLP) =1,
which completes the proof. n

Proposition 1.2.17. Let U be a bounded open subset of P with 0 € U. Assume that the
mapping T : Q@ C P — E be such that (I —T) is Lipschitz invertible with constant vy > 0,

F:U — E is a k-set contraction with 0 < k <~7', and F(U) C (I = T)(Q). If
Fx# (I —=T)(Ax) forallz € 0U, A >1 and \x € Q,
then the fized point index i, (T + F,UNQ,P) = 1.
Proof. The mapping (I —T)"'F : U — P is strict yk-set contraction and it is readily
seen that the following condition of Leray-Schauder type is satisfied

(I —T) 'Fo# v, forallz € U and A > 1.

In fact, if there exist zy € OU and \g > 1 such that (I —T)"'Fxo = Agwo.
Then Fzog = (I — T)(Moxo), which contradicts our assumption. The claim then follows

from (1.2.10) and the Proposition 1.2.5. O

Proposition 1.2.18. Assume that the mapping T : Q C P — E be such that (I —T)
is Lipschitz invertible with constant v > 0, F : U — E is a k-set contraction with

0<k<~Y and F(U) C (I —T)(Q). If there exists uy € P* such that

Fu# (I —T)(x— Xug), forall X>0 and z € oU ()(Q + Auy), (1.2.12)
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then the fized point index i, (T + F,UNQ,P) = 0.

Proof. The mapping (I—T)"'F : U — P is strict vk-set contraction and for some uy € P*

this operator satisfies
v — (I —T)'Fx # \ug, Yz € 0U, V> 0.
By (1.2.10) and the Proposition 1.2.8, we deduce that

i (T+FUNLP)=i(I-T)"'F,UP)=0.

1.3 Some fixed point theorems

1.3.1 Expansion-compression fixed point theorem of Leggett-
Williams type

In what follows, P will refer to a cone in a Banach space (E,|.||). Let x and ¢ be
nonnegative continuous functionals on P. For positive real numbers a and b, we define
the sets:

P(x,b) ={z € P: x(x) < b},
P(x.¥,a,b) ={z € P:a < x(z) and ¢(z) < b}.
The expansion-compression fixed point theorems of Krasnosel’skii type give us fixed points
localized in a conical shell of the form Py, = {x € P : a < ||z|| < b} (see [27, 32, 33])
while with the Leggett-Williams theorems type, the fixed points are localized in a conical

shell of the form P(x,¥,a,b) (see [4, 34]). In [3, Theorem 4.1], Anderson et al, have

developed a functional expansion-compression fixed point theorem of Leggett-Williams
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type. They have discussed the existence of at least one solution in P(f,«,r, R) or in
P(a, B,r, R) for the nonlinear operational equation Ax = z, where A is a completely
continuous nonlinear map acting in P, « is a nonnegative continuous concave functional
on P and 3 is a nonnegative continuous convex functional on P. Noting that, in [3], the
authors provided more general results than those obtained in [4, 6, 29, 30, 34, 42] for
completely continuous mappings. An illustration of the compressive and the expansive

form, for £ = R?, x(x) = ¢¥(z) = ||lz||, x € RZ, is depicted in the following figure

[ Compressive form l
1 »e.
- =
o R r
I:I o e [ Expansive form ]
__ =7
o r R

Theorem 1.3.1. [3, Theorem 4.1] Let P be a cone in a real Banach space E, « is a
nonnegative continuous concave functional on P, [ is a nonnegative continuous convex
functional on P and T : P — P is a completely continuous operator.

If there exist nonnegative numbers a, b, c and d such that

(A1) {z€P: a<a(x) and f(x) <b} #0;

(A2) if v € P with B(x) =b and a(x) > a, then f(Tx) < b
(A3) if x € P with 5(x) =b and a(Tx) < a, then §(Tx) < b;
(A4) {z€P: c<a(r) and B(z) < d} # 0;

(A5) if x € P with a(z) = ¢ and () < d, then o (Tx) > ¢;
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(A6) if x € P with a(z) = ¢ and f(Tx) > d, then o (Tx) > ¢

and if

(Hl) a<c¢,b<d, {zeP: b<f(z) anda(z) <c}#0, P(B8,b) CP(a,c) and

P («,c) is bounded then T has a fized point x* in P (S, a,b,¢);

(H2) c<a,d<b, {z€P: a<a(x) and f(z) <d} # 0, P(a,a) C P(B,d)

and P (B, d) is bounded then T has a fized point z* in P («, B,a,d).

Proof. We will prove the expansion result (H1). The proof of the compression result (H2)
is similar. Let

U={zxeP:px)<b},
V={xeP:ar)<c},

Then, the interior of V' — U is given by

W=(V-U)Y={zeV:b<p(z)and a(zr) < c},

Thus U, V and W are bounded (they are subsets of V' which is bounded by condition
(H1)), non-empty (by conditions (A1), (A4) and (H1)) and open subsets of P. To prove
the existence of a fixed point for our operator 7" in P (53, «, b, c), it is enough for us to
show that (T, W, P) # 0 since W is the interior of P (5, «, b, c) .

Claim 1. Tz # x for all z € 9U. In fact,

Let zy € U, then [(zy) = b. Suppose that zp = Tzg. If a(Tz) < a then 5(T2) < b by
condition (A3), and if a(zg) = a(T'29) > a then 5(T'z) < b by condition (A2). Hence in
either case we have that zy # T'zg, thus T does not have any fixed points on OU.

Claim 2. Tz # z for all x € V. In fact,

Let z; € 9V, then «a(z1) = ¢. Suppose that z; = T'z;. If 5(T2;) > d then «(Tz) > ¢ by
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condition (A6), and if 5(z1) = B(Tz1) < d then a(T'z;) > ¢ by condition (A5). Hence in
either case we have that z; # T'z;, thus T does not have any fixed points on OV

Let wy € {z € P: a < a(zr) and B(x) < b} and let Hy : [0,1] x U — P be defined by
H1<t,$) = (1 — t)TiL' +tw1.

Clearly, H; is continuous and H;([0, 1] x U) is relatively compact.

Claim 3. Hy(t,x) # « for all (t,z) € [0,1] x OU. In fact,

Suppose the contrary, that is there exist (t1,21) € [0, 1] x OU such that Hy(t1,z1) = z;.
Since x; € OU we have that 5(z;) = b. Either a(Tz;) < a or a(Tzy) > a.

Case (1): a(Tz1) < a. By condition (A3) we have f(Tx;) < b, which is a contradiction

since

b= 6(1’1) = ﬁ ((1 — tl)TIl + tlwl)
< (1 =t)B(Txy) + t1(wr)

< b

Case (2): a(Tx1) > a. We have that a(z;) > a since

a(ry) = a((l—t)Try + tiwy)

v

(1 —t))a(Txy) + tia(wr)
> a,
and thus by condition (A2) we have §(Tx;) < b, which is the same contradiction we
arrived at in the previous case.
Therefore, we have shown that H,(t,z) # x for all (¢,x) € [0,1] x OU, and thus by the

homotopy invariance property of the index ¢
Z(Ta U> 7)) = i(wh U7 P)
and by the normality property of the index i

(T, U, P) = i(w), U, P) = 1.
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Let wo € {x € P: ¢ < afx) and B(x) < d} and let Hy : [0,1] x V' — P be defined by:
H1<t,$) = (1 — t)TCL’ + th.

Clearly, H, is continuous and Hy([0,1] x V) is relatively compact.

Claim 4. Hy(t,z) # x for all (¢,x) € [0,1] x 9V In fact,

Suppose not; that is, there exist (t2,z5) € [0,1] x OV such that Hy(ts, z2) = x.

Since z5 € OV we have that a(zy) = c. Either 5(Tzy) < d or f(Tzy > d.

Case (1): 5(Txe > d. By condition (A6) we have o(Tx9) > ¢, which is a contradiction

since

Cc = Oé(l’g) = « ((1 — tQ)TZL’Q + tQWQ)
Z (1 — tQ)Oé(TJZQ) + tQOZ(WQ)
> C.

Case (2): B(Tz2) < d. We have that f(x2) < d since

B(z1) = B((1—t2)Twy+ tows)
(1 = 12)B(Tx2) + taB(w2)

S d;

IN

and thus by condition(A5) we have a(T'z3) > ¢, which is the same contradiction we arrived
at in the previous case.
Therefore, we have shown that Hs(t,xz) # x for all (t,z) € [0,1] x 9V and thus by the

homotopy invariance property of the index 7

i(T,V,P) = i(ws, V, P).

By the solution property of the index i (since wy ¢ V the index cannot be nonzero) we
have

i(T,V,P) =i(ws,V,P) = 0.
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Since U and W are disjoint open subsets of V and T has no fixed points in V — (U U V)

(by claims 1 and 2), by the additivity property of the index i
(T, V,P)=i(T,U,P)+i(T,W,P).

Consequently, we have

i(T, W, P) = —1

and thus by the solution property of the index i the operator T" has a fixed point

zreW CP(B,a,bc).

1.3.2 Fixed point theorem for the sum of two operators

To prove one of our existence results, in chapter 3, we will use Theorem 1.3.2, that we

will present and demonstrate in the sequel.

Theorem 1.3.2. [25] Let ¢ > 0, R > 0, E be a Banach space and X = {x € E :
|z|| < R}. Let also, Tx = —ex, x € X, S : X — E is a continuous map such that

(I — S)(X) resides in a compact subset of E and
{reFE:x=-XI-95z, |z|=R}=10 (1.3.1)
for any X € (0, %) Then there exists x* € X such that Tx* + Sx* = z*.

Proof. Define
1 Iz if |jz|| <eR
r(oo) =

B if ||x|| > eR.

[E
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Then r (—%(I - S)) : X — X is continuous and compact.
Suppose that r (—%(I — S)) # x for x € 90X, otherwise we are finished. From Proposi-
tion 1.2.9 and the existence property of the fixed point index, it follows that there exists

z* € X so that

r( 1([—5):5*) =z

€

Assume that —1(I — S)z* ¢ X. Then

R 1
I—8)r"|| > Re, ———F— < —
H( ) (I = S)z*|| €
and
R 1
I EE [ =5)

and hence, ||z*|| = R. This contradicts with (1.3.1). Therefore —(I — S)z* € X and

1 1
r=r (—(I — S)x*) =——I—-9)z"
€ €
or
—ex® + Sx* =x”,
or
Tx* + Sx* =",
This completes the proof. O

1.3.3 Multiple fixed point theorem for the sum of two operators

In this section, we present a multiple fixed point theorem. The proof rely on the

results of Propositions 1.2.13 and 1.2.15 producing the computation of the index i,. The
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following result will be used to prove the existence of at least two nonnegative solutions

to the problem (3.1.1)-(3.1.2).

Theorem 1.3.3. Let P be a cone in a Banach space (E,||.||). Let Q be a subset of P,
and Uy, U, and Us three open bounded subsets of P such that Uy C Uy C Uz and 0 € U;.
Assume that T : Q — E is an expansive mapping with constant h > 1, S : Us — E is a
completely continuous mapping and S(Us) C (I — T)(2). Suppose that (Uy \ Uy) N Q #

0, (Us\ Ua) N2 # 0, and there exists ug € P* such that the following conditions hold:

(i) Sz # (I —T)(x — Aug), for all x>0 and x € OU; N (2 + Aug),

(ii) there exists € > 0 small enough such that Sx # (I —T)(Ax), forall X>1+¢, €

U,y and \x € QQ,
(iii) Sz # (I —=T)(x — M), for all X >0 and x € U3 N (2 + Aug).
Then T+ S has at least two non-zero fized points x1,x9 € P such that
1 € 0U;NQ and 29 € (Us \ Uy) NQ

or

xr1 € (UQ\Ul)mQ andxg c (Ug\Uz)mQ

Proof. If Sz = (I — T)x for x € 90Uy N €2, then we get a fixed point 1 € AU, N Q of
the operator 7'+ S. Suppose that Sx # (I — T)z for any = € OU; N Q2. Without loss of
generality, assume that Tz + Sx # x on OU; N and Tx + Sx # x on OU3 N2, otherwise

the result is obvious. By Propositions 1.2.13 and 1.2.15, we have
i (T+ S, U NQP)=i.(T+S,UsnNQP) =0,

and

i (T +S,UyNQ,P) = 1.
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The additivity property of the index i, yields
i* (T+S, (U2 \Ul) ﬂQ,P) =1 and Z* (T—f-S, (U3 \Ug) ﬂQ,P) = -1

Consequently, by the existence property of the index i,, T+ S has at least two fixed points

ZCle(UQ\Ul)ﬂQ and $2€(U3\U2)HQ. ]



Integral formulation of some boundary value

problems
2.1 First order boundary value problems
Consider the following first order differential equation
¥ = f(t,z), te€lab], (2.1.1)
subject to the boundary conditions
Mz(a) + Rx(b) = 0, (2.1.2)

where MR € R, M + R # 0, a < b < oo are given constants and f € C([a,b] x R).

Lemma 2.1.1. The first order BVP (2.1.1)-(2.1.2) is equivalent to the following integral

equation
R
M+ R

(1) :/atf(s,x(s))ds— /abf(s,x(s))ds, tefab. (2.1.3)

Proof. Let x : [a,b] — R satisfy (2.1.1) and (2.1.2). It is easy to see that
t
x (1) Zx(a)+/ f(s,2(s))ds, t€la,b]. (2.1.4)

43
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So (2.1.2) gives

0=Mz(a)+ R <x (a) + /ab f(s,:z(s))ds) ) (2.1.5)
according to (2.1.5), we obtain
x@:—MiRLﬁ@amm. (2.1.6)

So substituting (2.1.6) into (2.1.4), we obtain

xwzlﬁgﬂm@—MiRLﬂuw@M&temw

Conversely, if z is a solution to (2.1.3) then is it easy to show that (2.1.1) and (2.1.2)

hold by direct calculation. O

2.2 Second order two-point boundary value prob-

lems

We consider the following linear second order differential equation

(&) (p®)y) +alt)y = h(t), =€ (a,b),
where p, g et h are regular functions, subjected to separated linear boundary conditions :

ary(a) + agy'(a) =7
Bry(b) + B2y’ (b) = 0,
where a2 + a3 # 0 et 57 + 52 # 0. In this case, The Green’s function associated to the

problem (€) + () can be determined as follows :

1 G1(t)Pa(s), a <t <s<b,

P1(s)Pa(t), a <s <t <D,

IA
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where ¢; and ¢, are, respectively, the solutions of the Cauchy’s problems:

(SH) + ¢1 <a) - and (5[{) + ¢2<b> N 52

¢i(a) = - $a(b) = =B,
and W (t) = ¢1(t)dh(t) — ¢ (t)pa(t) # 0 is their Wronskian.

Note that the product pWV is constant in [a, b].
Particular case:

Consider the Dirichlet’s problem posed in [a, b
y'=h(t), a<t<b

y(a) = y(b) = 0.

Let ¢; and ¢y be the solutions of Cauchy’s problems :

(P)

¢ =0 5=10
gra) =0  and § @y(b) =0

o(a) = —1. dh(b) = —1.

We find ¢1(z) =a—t, ¢o(x) =b—1t, W(d1,¢2) =b—a+#0andp(t)=1,1t¢€ [a,b]

Hence the Green’s function

1 (t—a)(s—=0b), ifa<t<s<b

G(t,s) = r——

(s—a)(t—>0), fa<s<t<b.
Lemma 2.2.1. (The nonlinear case).

Let f € C(la,b] x R), then the nonlinear boundary value problem

—y"+ f(t,y) =0, te(ab)
y(a) =0, y(b) =0,
s equivalent to the integral equation

y(0)= [ Clt.5) F(s,y(s))ds, t € [a,].

where G is given in (2.2.1).

(2.2.1)

(2.2.2)
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2.3 Second order three-point boundary value prob-
lems

Consider the following second order nonlinear differential equation

Yy + f(t7y) =0, te (a, b)’ (2.3.1)

subject to the boundary conditions

y(a) = ky(n), y(b) =0, (2.3.2)
where n € (0,1), k € R with k(b—1n) #b—a and f € C([a,b] x [0,00)).

Lemma 2.3.1. (The linear case, see[49]) Assume that k (b —n) #b—a and g € C([a,b]).

Then y € C*([a,b]) is a solution of the linear boundary value problem

y'+9(t) =0, te€(ab),

(2.3.3)
y(a) = ky(n), y(b) =0,
if and only if
y(t) = / "Gt s)gls) ds, € [ab], (2.3.4)
where the Green’s function G is defined on [a,b] X [a,b] by
B k(b—t)
G<t,5)—H(t,s)—i_b—a—k(b—n)H(n’S), t,SE[CL,b],
with
— b— b
Ht,5) = 1 (t—a)(b—s), a<t<s<hb, (235
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Proof. 1t is well known that the function H, as in (2.3.5), is the Green function of the

second-order two-point linear boundary value problem

y'+9(t) =0, te(ab),

(2.3.6)
y(a) =0, y() =0,
and the solution of (2.3.6) is given by
b
2(t) = / H(t,s)g(s)ds, t€ [ab]. (2.3.7)

Next, the three-point boundary value problem (2.3.3) can be obtained from replacing
y(a) = 0 by y(a) = ky(n) in (2.3.6). Thus, we suppose that the solution of the three-

point boundary value problem (2.3.3) can be expressed by:

y(t) = z(t) + (c+ dt) z(n), t € [a,b], (2.3.8)

where ¢ and d are constants that will be determined.

From (2.3.7) and (2.3.8), we get

y(a) = (c+da)z(n);
y(b) = (c+db)=z(n);
y(n) = (c+dn+1)zn).

Putting these into (2.3.2) yields

c+da=k(c+dn+1), (23.9)

c+db=0.
Since k (b —n) # b — a, solving the linear system (2.3.9), we obtain

kb
b—a—k(b—n)’

_ —k
d= b—a—k(b—n) "

CcC =
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k(b—t)

Hence, c+ dt = m.

By substitution in (2.3.8), we deduce

v =20+ .

This together with (2.3.7) implies that

y(t) = /ab H(t,s)g(s)ds + = C]:(_b ;(Z)_ o /ab H(n,s) g(s)ds.

whence the form of the Green’s function G.

Conversely, let y € C!([a,b]) be defined by (2.3.4). A direct differentiation of (2.3.4)

gives
b
Y (1) = / Gu(t,s)g(s)ds,  telab], (2.3.10)
where Gy(t, s) = H(t,s)— #(b*n) H(n, s) is the partial derivative of G(¢, s) with respect
to t and
b—s, a<t<s<b,
Ht(t7 S) = b —a

Hence y € C%([a, b]) and y satisfies (2.3.6). O

Consequently, we have
Corollary 2.3.2. (The nonlinear case). Let n € (0,1), k € R with k(b —n) # b—a and
f € C([a,b] x [0,00)), then the nonlinear boundary value problem
y'+ flty) =0, telab],

y(a) = ky(n), y() =0,

is equivalent to the integral equation

(2.3.11)

y(t) = /abG(t, s) f(s,y(s))ds, t € (a,b).

where G is given by (2.3.1) in Lemma 2.3.1.



Existence of solutions for a class of first order
boundary value problems

The results of this chapter are obtained by Mouhous, Goergiev and Mebarki in [36].

3.1 Introduction

In this chapter, we investigate the existence of solutions of the following first order

differential equation

= f(t,z), tE€]la,b, (3.1.1)

subject to the boundary conditions
Mz(a) + Rz(b) =0, (3.1.2)
where MR e R, M+ R # 0, a < b < oo are given constants and

(H1) f €C([a,b] xR), |f(t,z)] < Zk: aj(t)|xzP, (t,x) € [a,b] xR, a; € C([a,b]), 0 < a; <

Aon [a,b],p; >0,5€{L,...,k}.
The first-order BVPs arise in many applications of science, engineering and technol-
ogy (see [5, Chapter 1]). Thanks to these applications, more theoretical studies of the

subject can be developed, including: solvability, uniqueness, positivity and multiplicity of

49
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solutions. For the recent developments involving existence of solutions to BVPs for first
order differential equations, we can refer to [18, 31, 39, 43, 44, 45, 46].

In this work, we propose a new approach to ensure the existence of solutions for the first
order BVP (3.1.1)-(3.1.2). Our method involves new fixed point theorem (Theorem 1.3.3)
for the sum of two operators. The problem (3.1.1)-(3.1.2) one can consider as a scalar-
valued analogue of the problem in [44]. The scalar-valued analogues of the conditions
used in [44] are as follows:

(C1) there exist nonnegative constants o and K so that
M
f(t,2)| < azf(t,2) + K, (t,7) € [a,b] x R, and ‘R‘ <1,
(C2) there exist nonnegative constants o and K so that
R
f(t,2)| < —axf(t,2) + K, (t2) € [a,b] xR and ’M’ <1,

(C3) there exists a C! function V : R — [0, 00) and nonnegative constants a and K so

that
lf(t,2)| <aV'(x)f(t,z)+ K, (t,z) € la,b] x R and V(z(a)) > V(z(b)),

(C4) there exists a C' function V : R — [0, 00) and nonnegative constants a and K so

that
If(t,z)| < —aV'(x)f(t,z) + K, (t,z) € [a,b] x R and V(z(a)) < V(x(b)).

Note that the conditions (C1),(C2), (C3),(C4) in the scalar-valued case are different from
the condition (H1). Moreover, in [44] there is an additional restriction ‘%‘ <1 (‘%‘ <1)
on R and M. Thus, we can consider our main result as a complementary result to these
of [44] in the scalar-valued case. Moreover, our main results are valid in the case when

R = 0. Thus, our main results can be applied for the classical initial value problems of

first order ODEs whenever f satisfies (H1).
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3.2 Main results

3.2.1 Auxiliary results

In [44], it is proved that the problem (3.1.1)-(3.1.2) is equivalent to the following

integral equation

(1) :/atf(s,m(s))ds— MT_R/abf(s,x(s))ds, te o] (3.2.1)

Let E = C([a,b]) be endowed with the maximum norm

= ).
o] = max [«()

For x € E, define the operator

Sua(t) :/atf(s,x(s))ds— M]iR/abf(s,x(s))ds—x(t), telab).

By (3.2.1), it follows that if x € E satisfies the equation Sjz = 0, then it is a solution to

the problem (3.1.1)-(3.1.2). Fix B > 0 arbitrarily.

Lemma 3.2.1. Suppose that (H1) holds. For any x € E with ||z|| < B, we have

R k
S <A(1 ’ D b— BPi + B.
Il < A1+ |y gl 0 -0 S B+

Proof. We have

S0 = | [ Ss,0)ds = s [ flssale)ds 20

[ 176 ds + |

(i) [ g oracs s

IN

[ 15, x()lds +1(r)

IN

IN

k
A(1 b—a)> BY + B, telab
(+|arrgl) 0o p7+ 8. telen,
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whereupon
R k
S <A(1+’ ')b—a B" + B.
el < A (14 |55 -0 X
This completes the proof. n

Let g € C([a, b]) be positive except at a finite number of points on [a, b] and

C= /bg(t)dt. (3.2.2)

For z € F, define the operator

t

Sox(t) :/a g(1)S1z(T)dr, t € [a,b].
Lemma 3.2.2. Suppose (H1). If x € E satisfies the integral equation
Sex(t) =¢, tE€][a,b], cER, (3.2.3)
then x is a solution to the proplem (3.1.1)-(3.1.2).

Proof. We differentiate the equation (3.2.3) with respect to t and we get
g(t)S1x(t) =0, te€la,b],

whereupon
Siz(t) =0, te]a,b].

This completes the proof. O

Lemma 3.2.3. Suppose that (H1) hold. Let x € E be such that ||z|| < B. Then

R k
< All b— B+ B|.
s <€ (4(+ g7 09 5 53]




CHAPTER 3. EXISTENCE OF SOLUTIONS FOR A CLASS OF FIRST ORDER BOUNDARY
VALUE PROBLEMS o3

Proof. Using Lemma 3.2.1, we arrive at

t
Sax(®)] = |[ a(r)Sia(r)dr
R k

< C A(l ’ Db— B%+B|, telab)

< v wml) ¢ a);1 + [a, 4]
Hence,

R k

Syl < C A(l ‘ D b—a)y BY + B .

ISaal < g -0 X B
This completes the proof. n

3.2.2 Existence of at least two nonnegative solutions

Let m > 0 be large enough and A, r, L, R; be positive constants that satisfy the
following inequalities
r<L<R, Ri>(&+1)L
(H2) B
C<A(1+\M§R|) (b—a) > R +R1> <L
j=1

where C' is the constant which appears in (3.2.2). Let € > 0, For « € E, define the

operators
L
Tix(t) = (1+me)z(t) — ST
Ssx(t) = —eSyx(t) — mex(t) — 6116, t € [a,bl.

Note that any fixed point € E of the operator 7'+ S3 is a solution to the problem

(3.1.1)-(3.1.2). Our main result in this section is as follows.

Theorem 3.2.4. Suppose that (H1) and (H2) hold. Then the problem (3.1.1)-(3.1.2) has

at least two nontrivial nonnegative solutions in C*([a, b]).
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Proof. We will use Theorem 1.3.3. Define the positive cone
P={zcE:x2>0 on [0,1]}.
With P we will denote the set of all equicontinuous families in P. Let

Uy = Po={veP:|vf<r}
Uy = Pr={veP:|v|| <L}
U3 = Pr ={veP:|v| <R},
C R LR L
Ry = R1+%(A(1+|M+R|>(b_a)le +R1)—|—57m,

i=1
Q = Pr,={veP:|v| <R}

1. For vy, vy € Q, we have
[Tyor = Thos|| = (14 me)llvr — val|,
whereupon 77 : 2 — F is an expansive operator with a constant 1 + me.
2. For v € Pg,, we get

L
1550l < ellSevll + mel|v]| + e

e(C’ (A<1+’MiRD (b—a)f:Rfj—i—Rl) +le+1L0>.

Therefore S3(Pg, ) is uniformly bounded. Since S3 : Pr, — X is continuous, we

IN

have that S3(Pg, ) is equicontinuous. Consequently S3 : Pr, — X is a completely

continuous mapping.

3. Let vy € Pg,. Set
L

1
vy = v; + —Sov; + —.
m 5m
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Note that Syv; + % > 0 on [a,b]. We have vy > 0 on [a,b] and

1 L
= o e e
C R i . L
<RA(1‘ Db— RV 4Ry | +—
< 1+m< i ( a);1+1+5m
- RQ.
Therefore v, € 2 and
B g L L
€EMvy = —€Mvy €02V € 10 € 10
or
(I —-Ty) + L
— = —emu €—
1)U2 €Muy 10
= Sg’Ul.

Consequently S3(Pg, ) C (I —T1)(Q).

4. Assume that for any uy € P* there exist A > 0 and =z € 9P, N (2 + Aug) or

xr € OPgr, N (2 + Aug) such that
Sgl’ - (I - T1>(I - )\Uo)

Then

L
—€Sox — mex — 0= —me(z — Aug) + 10

or

—Sex = dmug + 5

Hence,

L L

This is a contradiction.
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5. Let ¢, = 5lm Assume that there exist \; > ¢; + 1 and 27 € 0P, \z1 € Pg, such
that

Ssxy = (I —T1) (A1), (3.2.4)

Since x; € 9Py, and \jx; € Pg,, it follows that

2
( + ].) L < )\1L = )\1”1‘1” < Rs.

om
Moreover, —eSsxq — mex; — e% = —A\imexr; + el%,
or
L
52131 + g = ()\1 — 1)mx1
From here,
L L
2 > ’Sle + 5H — (M= Dmlan] = (O = 1)ml
and
2
—+1> /\1,
om

which is a contradiction.

Therefore all conditions of Theorem 1.3.3 hold. Hence, the problem (3.1.1)-(3.1.2) has at

least two solutions u; and uy so that

[uall = L < Juzll < R

or

r<||lwl] < L < |Juz|| < Ry.

This completes the proof. n
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3.2.3 Applications

Consider the boundary value problem:

2(t) = (z(t)*+ 2Lz ()P +1, te]0,1],

e (3.2.5)
2¢(0)+2(1) = 0
Here
t = 2° Loii1 k=3 t)=1 (t)—L t €10,1]
f(,lf)—$+1+t2$+7 - 9% al()_a a2 —1+t27 y L1y

a = 07 bzl; p1:27 p2:47 p3:O7 M:27 R=1

Firstly, we will note that the scalar-valued case of the results in [44] are not applicable

for the BVP (3.2.5). Here £ =1 < 1. Assume that there are nonnegative constants o

and K so that |f(t,z)| < —axf(t,x) + K, (t,z) € [0,1] x R, which is equivalent to

2 4 2 4
x +1+t2x +1§—am<x +1+t2x +1)+K, (t,z) € [0,1] x R,
or
1
(1+ax)(x2+1+t2x4+1)§l{, (t,z) € [0,1] x R.

The last inequality is impossible because

lim (1 + ax) <$2 +

T—00

4 _
112" +1> %

i.e., (C2) does not hold. Now, we will show that our main results are applicable for the

BVP (3.2.5). We have A =1. Take B = 1. We have

i 1
A1 b—a)Y B +B=(1+5)(1+1+1)+1=5
<+‘M+RD( a)jzl " <+3>(+ th+1=5

Let

2

Wt’ t€10,1].

g(t) =
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Then

1 d 2 1d 1
| ot = 1o [t = 1.

Take C'= € = 155 Let now

Ri=10, L=5, r=4, m=10"

Then

2 2

m

and

k

[0+ [srial) p-o g v

J=1

1 /4 1 L
= —(=-(10°+10°+1 1o)<<1:.
1010(3( + +)+ 100 5

So, (H2) holds. Then, by Theorem 3.2.4, it follows that the BVP (3.2.5) has at least two
nonnegative solutions.
Let now, R = 0 and f, k, ay, as, a, b, p1, p2, p3, M, Ry, L, r, m, C, € and ¢ be as

above. Consider the IVP

2(t) = (@) + e @®)' +1, tel01], (3.2.6)

z(0) = 0.

Then

)(b—a)zk:Bpj+B:1~(1+1+1)+1:4

=1

k

(J(A <1+ MﬁRD (b—a)ZR€j+Rl)

=1

_ mlm(1.(102+103+1)+10)<135<1:§.

So, (H2) holds. Then the IVP (3.2.6) has at least two nonnegative solutions.
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3.3 Concluding remarks

1. In this work, we have investigated a class of boundary value problems for first order
ODEs. The nonlinear term depends on the solution and may change sign, and it
satisfies general polynomial growth conditions. We prove existence of at least one
solution and two nonnegative solutions in C!([a,b]). The proof of the main results

is based upon recent theoretical results.

2. The conditions (3.1.2) are general and they capture in particular the anti-periodic

conditions corresponding to the case M = R = 1.

3. Our main results obtained in this work and the results in [44] are complementary.
Moreover, in [44], there is an additional restriction on the constants R and M
(‘%‘ <1 or ‘%‘ < 1). Note that our main results also depend on the hypothesis
(H2), where the conditions are controlled by the constants C, € and B and the

source term f does not depend on these constants.

4. New existence results of multiple non trivial nonnegative solutions are proved using

recent fixed point theorems on cones in Banach spaces for the sum of two operators.

5. It is noted that Theorem 3.2.4 can be generalized to the case where f € C([a,b] X
R™ R™), n > 1. In this case, we will consider the space E; = (C([a,b]))" endowed
with the norm

ol = max oyl @ = @),

The hypothesis (H1) takes the form

Dji
)

(HY) f € C(lab) x RE), [ = (fioooo ). £ € X asOle
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(t,x) € [a,b] x R™, a;; € C([a,b]), 0 < a;; <Aon[a,b],pj; >0,je{l,...,k},

ie{l,...,n},
and the hypothesis (H2) will be the same.

6. These theoretical results can be used to study other classes of BVP as well as some
IVP in ODEs. For these aims, firstly we search an integral representation of the
solutions of the considered IVPs/BVPs. Then we use it to define the operators Sy,

Sy, S, S and T. Finally, we apply Theorem 1.3.3.



Existence of fixed points in conical shells of a
Banach space and application to ODEs

The results of this chapter are obtained by Mouhous and Mebarki in [35].

4.1 Introduction

In this chapter, the functional expansion-compression fixed point theorem of Leggett-
Williams type developed in [3] is extended to the class of mappings of the form T + F,
where (I — T) is Lipschitz invertible and F' is a k-set contraction. As application, the
existence and multiplicity of nontrivial nonnegative solutions for a nonlinear second order
three-point boundary value problem is established.

Recently, in 2019 a new direction of research in the theory of fixed point in ordered
Banach spaces for the sum of two operators is opened by Djebali and Mebarki [16].
Then, several fixed point theorems, including Krasnosel’skii and Leggett-Williams types
theorems in cones, have been established (see [11, 14, 15, 20, 22, 26]). These theorems
have been applied to obtain existence results for nonnegative solutions of various types
of boundary and/or initial value problems (see [19, 20, 23, 24, 26]). In our work, we have

used the fixed point index theory developed in [16] and [26] to generalize the main result

61
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of [3, Theorem 4.1] for the sum 7' + F where (I — T') is a Lipschitz invertible mapping

with constant v > 0 and F' is a k-set contraction with kv < 1.

4.2 Main results

Let P be a cone in a Banach space (E, ||.||) and Q a subset of P. Our main result is

as follows.

Theorem 4.2.1. Let a be a nonnegative continuous concave functional on P and (B be a
nonnegative continuous convex functional on P. Let T : Q C P — E be such that (I —T)
is Lipschitz invertible mapping with constant v > 0, F' : P — E is a k-set contraction
with 0 < k < v~ 1. Assume that there exist four nonnegative numbers a, b, ¢, d and zy € P

such that B((I —T)7'0) <b, a((I—T) '2) > c and
Frx+TxeP, TP, forallxze dP(S,b)UIP(a,c),
ANFE(P(B,b)) C (I —T)(R), forall X €[0,1], (4.2.1)

AF(P(a,c) + (1= N)zg C (I =T)(R), forall X €[0,1]. (4.2.2)

Suppose that:
(A1) if x € P with B(x) = b, then o(Tz) > a;

(A2) if x € P with f(x) = b and [a(z) > a or «(Tx + Fz) < al, then 3(Tx + Fx) <b

and f(Tx) < b;
(A3) if x € P with a(x) = ¢, then f(Tx + z) < d;

(A4) if z € P with a(x) = ¢ and [5(x) < d or f(Tx + Fz) > d|, then o(Tx + Fx) > ¢

and a(Tx + 2z9) > ¢;



CHAPTER 4. EXISTENCE OF FIXED POINTS IN CONICAL SHELLS OF A BANACH SPACE
AND APPLICATION TO ODES 63

Then,
1. (Ezpansive form) T + F has a fized point z* in P(S, a, b, ¢) N if

(Hl) a < ¢, b<d, {z € P:b< Bx)anda(z) < ctNQ # 0, P(B,b) C

P(a,c), P(8,b) NQ # D and P(a,c) is bounded.
2. (Compressive form) T + F has a fized point x* in P(a, B,¢,b) NQ if

(H2) c < a,d < b, {z € P:c < alx)andB(z) < b} NQ # 0, Pla,e) C

P(B,b), Pla,c) NQ #£ D, and P(S3,b) is bounded.

Proof. We will prove the expansion form. The proof of the compression form is similar.
We list

U={zxeP:px)<b},
V={zeP:alr)<c}

Then, the interior of V' — U is given by
W=V-U)Y={zxeP: b<p(x)and a(z) < c}.

Thus U, V and W are bounded, not empty and open subsets of P. To prove the existence
of a fixed point for the sum 7'+ F' in P(5,a,b,c) N, it is enough for us to show that
i.(T + F,WNQ,P)# 0 since W is the interior of P(3, a, b, ¢).

Claim 1. Tz + Fx # z for all x € 0U N Q).
Let o € OU N, then 5(x¢) = b. Suppose that xg = Tzq + Fxg, then 5(Txo+ Fxo) = b.
By the condition (A2), if a(zg) > a, then B(Txg + Fxy) < b, and if a(zy) < a, thus
a(Txy + Frg) < a, then f(Txy + Fzo) < b. This is a contradiction. Thus we have

Tx+ Fx # x for all x € OU N Q.
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Claim 2. Tz + Fx # z for all x € 0V N Q.
Let x1 € OV N, then a(x;) = ¢. Suppose that z; = Txy + Fxq, then a(Tx; + Frq) = c.
By the condition (A4), if f(x;) < d, then a(Tx; + Fx,) > ¢, and if f(x1) > d, thus
p(Txy + Fxy) > d, then a(Txy + Fzy) > c¢. This is a contradiction. Thus we have
Tx+ Fx # x for all x € 0V N Q.

Claim 3. i,(T + F,UNQ,P) = 1.

Let Hy : [0,1] x U — E be defined by
H(t,z) =tFx.

Clearly H; is continuous and uniformly continuous in ¢ with respect to z € U, and from
(4.2.2) we easily see that H,([0,1] x U) C (I — T)(£2). Moreover H(t,.) : U — E is a
k-set contraction for all ¢ € [0,1] and Tz + Hy(t,z) # x for all (¢,z) € [0,1] x U N Q.
Otherwise, there would exists (t9,z2) € [0, 1] x U N such that Txs + Hy(ty, x2) = xo.
Since xo € OU, ((x3) = b. Either a(Txs + Fxy) < a or a(Txy + Fxy) > a.

Case (1): If a(T'zy + Fxs) < a, the convexity of 5 and the condition (.A2) lead

b=p(r2) = B(Txs+ Hi(ts,12))
= [((1 —t2)Txe+ to(Txg + Fuv))
< (1 —t9)B(Tx2) + tof(Taxg + Fuo)
< b,
which is a contradiction.
Case (2): If a(Tzy + Fxg) > a, from the concavity of a and the condition (A1), we

obtain «a(z3) > a. Indeed,

O[(J]Q) = Oé(Tl’Q—f—Hl(tg,fL’Q))
Z (1 — tz)Oz(Tﬂfg) + tQO{(T.TQ + FZL’Q)
> a,
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and thus by the condition (A2), we have 5(T'zy 4+ Fxy) < b and B(Tx2) < b, which is the
same contradiction we arrived at in the previous case.
Being (I — T)7'0 € U N Q, the homotopy invariance property (iii) and the normality

property (i) of the index i, lead
i(T+FEUNQP) =i (T +0,UNQP)=1.

Claim 4. i,(T + F,V N Q,P) = 0.

Let Hy: [0,1] x V — F be defined by
Hy(t,x) =t Fx+ (1 —t)z.

Clearly H, is continuous and uniformly continuous in ¢ with respect to x € V, and from
(4.2.2) we easily see that (Hy([0,1] x V))) C (I —T)(Q2). Moreover Hy(t,.) : V — E is a
k-set contraction for all t € [0,1] and Tz + Hy(t,x) # x for all (¢,2) € [0,1] x IV N Q.
Otherwise, there would exists (t3,x3) € [0, 1] x OV N Q such that Taxs + Ha(t3, x3) = x3.
Since x3 € OV we have that a(x3) = ¢. Either f(Tx3 + Fx3) < d or (Txz3 + Fx3) > d.
Case (1): If B(Tx3 + Fx3) > d. the concavity of o and the condition (.A4) lead
c=axs) = a(Txs+ Hy(ts, x3))
= a(ts(Trs + Fas) + (1 — t3)(Txs + 20))
> tza(Txsz + Frg) + (1 — t3)a(Tzs + 20)

> C.

This is a contradiction.
Case (2): If p(Tx3 + Fxg) < d, from the convexity of 5 and the condition (.A43), we
obtain f(z3) < d. Indeed,
Blxs) = B(Txs + Ha(ts, x3))

tgﬁ(TJ?g + Fxg) -+ (1 — tg)ﬁ(ng + Zo)

IA

IA

d,
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and thus by the condition (A4), we have a(Tx3+ Fx3) > ¢, this is the same contradiction
that we found in the previous case.

Hence, the homotopy invariance property (iii) of the fixed index i, yields
wW(T+EVNQP)=i.(T+ 2,VNQP),

and by the solvability property (iv) of the index i, ( since (I —T) 'z ¢ V the index

cannot be nonzero) we have
wW(T+F,VNQP)=0(T+ 2,VNQP)=0.

Since U and W are disjoint open subsets of V' and T'+ F has no fixed points in V —(UUW)

(by Claims 1 and 2), from the additivity property (ii) of the index i,, we deduce
WT+EVNQP)=i,(T+F,UNQP)+i.(T+ F,WnNQP).
Consequently, we get
wW(T+ EFE,WNQP)=—1,

and thus by the solvability property (iv) of the fixed point index i,, the sum 7'+ F' has

a fixed point z* € WNQ C P(B,a,b,c) N O

Now we add restrictions on the operator 1"+ F' of Theorem 4.2.1 and we combine the

expansive form and the compressive form to establish a multiplicity result.

Theorem 4.2.2. Let o be a nonnegative continuous concave functional on P and (3,7
be nonnegative continuous convex functionals on P for allx € P. Let T : Q CP — E
be such that (I — T') is Lipschitz invertible mapping with constant ¢ > 0, F : P — E is
a k-set contraction with 0 < k < (71, Assume that there exist siz nonnegative numbers

a<c<r,b<d< R and zy € P such that

B((I—T)7*0) <b, y(I-T)'0) <R, a((I-T)"2) >c,
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Fr+TxeP, TxeP, forallxzedP(B,b)UIP(a,c)UIP(v,R),
ANE(P(v,R)) C (I —T)(R), forall X €]0,1],
AF(P(a,e))+ (1 —XNzo € (I —T)(Q), forall X € [0,1].

In addition to the assumptions (Al) — (A4) of Theorem 4.2.1, we suppose that the

following conditions hold:
(B1) if x € P with v(z) = R, then o(Tx) > r;

(B2) if v € P with y(x) = R and [a(x) > r or o(Tx + Fz) <r], then y(Tx + Fz) < R

and v(Tx) < R.

If the two following conditions hold,

(H1) {z e P:b< B(z) and a(z) < c}NQ#0, P(B,b) C P(a,c),
P(B,0) NQ # D and P(«, ¢) is bounded,

(H2) {z e P:c<a(z) and y(x) < R}NQ #0, Pla,c) C P(v, R),
Pla,e)NQ #0, and P(v, R) is bounded,

then, T+ F has at least two nontrivial fixed points x1, x5 € P such that

x1 € P(B,a,b,¢) NQ and x5 € Pla, 7y, ¢, R) N

Proof. We list
U={xeP:pz)<b}
V={cecP:alr)<c
Y ={z € P:q(z) <R}

Then, the interior of V' — U is given by

W=V-U)Y={zxeP: b<pfx)and a(x) < c},



CHAPTER 4. EXISTENCE OF FIXED POINTS IN CONICAL SHELLS OF A BANACH SPACE
AND APPLICATION TO ODES 68

and the interior of ¥ — V' is given by
Z=Y -V ={xeP: c<alr)and y(z) < R}.

Thus U, V, Y and W, Z are bounded, not empty and open subsets of P. To prove the
existence of two fixed point for the sum 7'+ F in P(f, a, b, c) N Q and P(a, 7, ¢, R) N it
is enough for us to show that i.(T'+ F,W NQ,P) # 0 and i.(T + F, Z N Q,P) # 0 since
W is the interior of P(5, , b, c) and Z is the interior of P(«,7, ¢, R).

The use of the fixed point index here is similar to the proof of Theorem 4.2.1. m

4.3 Application to EDOs

In the sequel, we will investigate the three-point BVP:

Y+ f(t,y) =0, te (Oa 1)7 (4.3.1)

where n € (0,1), k > 0 with k(1 —7n) < 1 and f € C([0,1] x [0, 00)). Set B = —*1_ and

1—k(1-n)

suppose that

(C1) A < f(t,y) < ay(t) + as(t)|y|” for t € [0,1] and y € [0,00), a,as € C([0,1]),

0 < ay,as < A on [0, 1], for some positive constants A, A and p.

(C2) €€ (0,1), and there exist a, b, ¢, d, zy, p > 0 such that

2 1
max(d, ﬁ, n (c—20)) <b<p; 3z >aq
€
zp < ¢ < min(a, 3 z, g (1 - g) A+ (1= Dyz);

2 ~
el (1 — 77) A, zo>
18 2

min
AB(1 + 0P <
eAB(1+b") + 3% < p: (1_6)%+320§d, where A =

€ €p
and

AB(1 + W) < b, (4.3.2)

)
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Remark 4.3.1. 1. We end this section by an illustrative example, in which we give
the constants €, a, b, c, d, p, zo and the function f that satisfy (C1)-(C2). After setting

the constants A, A and p, we choose the constants €, a,b,d, 2y, ¢ and p.
2. Discussion of Hypothesis (4.5.2):

(a) Ifp=1, the inequality (4.5.2) may be rewritten as (45 —1)b > 1. A necessary

condition for (4.3.2) to hold is that A < %-

(b) If p # 1, the inequality (4.3.2) can be written as Kb — b > 1 with K = ﬁ.

Consider the continuous function ®(x) = Kz — aP on [0,00), then

K

-1

P(r) =0 z=129= "{/—.
p

(i) When p < 1, the function ® wverifies ®(0) = 0 and 1_131 P(x) = +o0.
Moreover, ® is decreasing on [0,x0) and increasing on (zg,00) and assumes

% P—,l/%(p — 1) as a minimum at the point xy. Hence for every real number

r > 0, there exists a constant b > 0 with ®(b) > r. In particular ®(b) > 1.

(it) When p > 1, the function ® verifies ®(0) = 0 and EIE d(z) = —o0.
Moreover, ® is increasing on [0, o) and decreasing on (xg,00) and assumes

% P*\l/g (p—1) as a mazimum at x = xy. Hence the inequality ®(b) > 1 has a

solution b > 0 if and only if % P—\1/§ (p—1)>1.

4.3.1 Existence of at least one nonnegative solution

Our existence result is as follows.

Theorem 4.3.2. Suppose (C1) and (C2). Then the BVP (4.3.1) has at least one nontrivial

nonnegative solution y € C*([0,1]) such that ¢ < Ir[lnir;]] (t)+2 and max ly(t)] <.
te 399D te|0,
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Proof. To prove our main result, we will use Theorem 4.2.1.

Set

H(t,s) =

In [49] it is proved that the solution of the BVP (4.3.1) can be expressed in the following

form
o) = [ Gl fs.ys)ds, 1€ [0.1),
where
G(t,s) = H(t,s) + %H(n’ s), t,s€l0,1].

Note that 0 < H(t,s) <1, t,s € [0,1]. Hence,

k 1—k+kn+k

0< Gt <1 —

e T R gy v gy
1+ kn

Moreover, for t, s € [g, g}, we have

and

Next,

Hy(t,s) =

Hence, |Hy(t,s)| <1, t,s € [0,1], and

Ge(t,s)| = |Hi(t,s) — m[{(% s)
< v
< 1+ K LM gy seo)

L—k(l—n) 1—k(1—7)
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Let E = C([0,1]) be endowed with the maximum norm

— £)].
Iyl max ly(t)|

Define

372

P = {yeE: y(t) >0, teo,1], trflnir}]]y(t)zAHyH},

Q

{yeP:lyl<r}.

For y € P, let us define

aly) = terimf] y(t) + 20, Bly) = mmax ly(t)].

It’s obvious that, since 2% <b<p, weget A<Ll.

For y € P, define the operators
Tyt) = (1—e)y(t)+ 22,
1
Fy(t) = ¢ / Gt 8)f(5,y(s))ds — 220, ¢ €[0,1].
0

Note that if y € P is a fixed point of the operator T'+ F', then it is a solution to the BVP

(4.3.1). Next, if y € P and ||y|| < b, we have
Ty)] < (1—eylt)+ 22
S (1 — E)b + 2210

< b, te]0,1],

and

1

G(t,5)f(s,y(s))ds

G(t,s) (ar(s) + az(s)[y(s)[") ds

Ty(t) + Fyt)] = |(1—-ey(t)+e

S~

< (1—ey(t)+e

S~

< (1—e€)b+€eAB

~—~

14+07)

< b, te]0,1].
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Therefore, if y € P and ||y|| < b, we have
[Tyl < b, (4.3.3)

and

Ty + Fyl| < b. (4.3.4)
1. For y, z € P, we have
(I =T)y(t) = (I = T)z(t)] = ely(t) — 2()], t€][0,1].
Hence,
(I =T)y = (I =T)z[| = elly — 2|
Thus, I — T : P — FE is Lipschitz invertible operator with constant v = %

2. Let y € P. Then

FyO) < e| [ Gl 5)5(s (5))ds| + 229

eAB(1+ ||y||?) + 220, t€]0,1],

IN

whereupon

| Fy|| < eAB(1+ [|y||P) 4+ 220 < oc.

Moreover,

[ Gult )65, uts)ds

ABe(1+ |ly||P) < o0, te][0,1].

IN

Consequently, by Ascoli-Arzela compactness criteria, the map F' : P — FE is completely

continuous. Then F': P — FE is a 0-set contraction.
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3. For y € E, we have

. y—|—220‘
€

(I-T)"y

Hence,

3 3
ZO):ZOJFZOZC,
€ €

a((I—T)_lz()) = a(

and

2 2
€ €

3((r-1)70) =5 (

Suppose that y € P with 5(y) = b. Then

a(Ty) = min_Ty(t) + 2o > 320 > a.

te[3.3]
Consequently, (.A1) holds.
4. Let y € P with f(y) = b and [a(y) > a or «(Ty + Fy) < a]. Then, using (4.3.3) and
(4.3.4), we obtain

B(Ty) <b and [(Ty+ Fy) <b.

Consequently, (LA2) holds.

5. Let y € P with a(y) = ¢, we get

1 ) 1 c
HMSKn%y@SKMw—K

te[2.3]
Hence,

ﬁ(Ty—l—zo)g(l—e)%jL?)zogd.

Consequently, (.A3) holds.
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6. Suppose that y € P with a(y) = ¢. Then

a(Ty+ Fy) =

Vv

v

Moreover, we have

terflin (Ty(t) + Fy(t)) + 2o

a(Ty+2) = min_ (Ty(t) + 20) + 20

Consequently, (A4) holds.

7. Let by = 2 2y. Then

A2V,
/:B
I iE
2
e
Eo=
=~
s 0
NN
o
+
e~
N
o

AV
W
&
V
)

alby) =329 >c and [(b)) =229 <b.

Therefore

{yeP:c<aly) and PBly) <b}NQ#0.

8. Let y € P(ar,¢). Then y € P and a(y) < c. Hence,

1
< —
Il <

1
min y(t) < —(c— z9) < b.
i ol0) < (0= 20) <

Thus, y € P(B,b) so P(a,c) C P(B,b) and P(B,b) is bounded. Since 0 € P(«,c), we get

Pla,c)NQ £ 0.
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9. Let A € [0, 1] be fixed and u € P(3,b) be arbitrary chosen. Take

o(t) = 2(1— N)zo + Xe foleG(t, s)f(s,u(s))als7 re o1

We have v(t) >0, t € [0,1], and

2
o(t) < eAB(1+bP) + 2z <o teo]
€

Moreover,

e fgg min_G(t, s)f(s,u(s))ds +2(1 — Nz

te| 2,4
min_v(t) > [3:4]
e[ ‘

= €
. min (e% (1 — g) A, zo)
€
min (e% (1 — g) A, zo>
= Aol

Therefore v € €. Also,

AFu(t) = e /01 G(t,s)f(s,u(s))ds — A2z
] € [} G(t,s)f(s,u(s))ds +2(1 — Nz

€

— 229
= eu(t) — 2z
= (I-T)w(), telo1].
Therefore
AF(P(B,b)) C (I - T)().

10. Let A € [0,1] is fixed and @ € P(a, ¢) is arbitrarily chosen. So

u(t) < —(c—2p) <.

==

==
Fﬁ
=eE.
NS} 5

3]
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Set

w(t) = Ae [ G(t,8)f(s, ﬂ(:))ds +3(1 — )\)ZO7 te 0,1,

We have that w(t) > 0, t € [0,1], and

< eAB(1+0P) + 3%

w(t) < - <p, te]0,1],
SO
AB(1+b)+3
Juf < APLEEH5%
€
Moreover,
Ae fgg min G(t, s)f(s,u(s))ds +3(1 — X))z
min_w(t) > <3 4]
te[3.4] ¢
. N (3-D)2(1-2) A+ (1- Nz
B €
. min (6717—8 (1 — g) A, zo)
B €
min (e% ( — g) A, zo)
> Aljwl].
Thus, w € ). Next,
AFa(t) + (1= Nzg = —2Xz0+ Ae [y G(L,8)f(s,(s))ds + 20 — Az

= Xefy G(t,s)f(s,u(s))ds + (1 —3X\)z

6)\5 fol G(t,s) f(s,a(s))ds+3(1—X)zo

€

— 22
= ew(t) — 22
= (I-Tw(), telo,1].
Therefore

AF(P(a,a)) + (1 =Nz C (I —=T)(9).
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By Theorem 4.2.1, it follows that the BVP (4.3.1) has at least one solution y € € such
that

Bly) <b and a(y) >c

[l
4.3.2 An Example
Consider the BVP
y? .
Y+ (200 - 12)(1 + 9) +as(1+8) = 0, te(0,1),
(4.3.5)

Here

2
Y 1 1
t,y) = + — (14t tel0,1 € 0,00 k=1 = —.

1
We have, f € C([0,1] x RT) and 0 < —— < f(t,y) < ai1(t) + as(t) |[y|* for ¢ €

500
1 1
[0,1] and y € [0,00), where p = 2, a;(t) = %(H—t), as(t) = 200 £ 7 0<aj,a < 200
on [0, 1]. So, the condition (C1) holds.
Take the constants
1 1 1 41 4 4
6257 B = ) A:ma — 500’ b:507 d—g,ng
. in((3752) X z5, 107
c=2=2x10" a=2x10" A= min((3753) X 55, 107°) _ 3% 107% < 1

We have

2p < ¢ < min (a, (1—¢€)(c—2)+ eg (1 — 727) fl,3z0> = ; x 1076,

2 1
20 4y =8x1075 < b, Tle—z)=0<b,
€

2
(1—6)%+3Z0:§+6X10_6<d,
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AB(1+b°)+3 3 41\? 4
€ (+ )_'_ ZO_ <1+<>>+12X10_6§5:p7

¢ ~ 500 50
3 41\ 2 25
Ay - S (1 () B,
(1+07) 200<+ 50 ) 1000

Thus, (C2) holds. By Theorem 4.3.2, it follows that the BVP (4.3.5) has at least one

nonnegative solution.

4.4 Concluding remarks

In this work, the functional Expansion-Compression fixed point theorem of Leggett-
Williams type developed in [3] is extended to the class of mappings of the form T + F,
where (I —T') is Lipschitz invertible and F' is a k-set contraction. As application of some
obtained theoretical results, a new result on the existence of nonnegative solutions for
a second order differential equation subjected to three-point boundary value problem is
developed. The fixed point theorems presented in this chapter can be used to study other
classes of BVPs as well as some IVPs for ODEs. For these purposes, we must first find an
integral representation of the solutions of the considered IVPs/BVPs and use it to define

the operators F' and T



General conclusion

This work is a contribution to fixed point theory on cones of Banach spaces for the
sum of two operators and to the study of the existence of solutions for boundary value
problems subjected to ordinary differential equations. More precisely, the purpose of this
thesis is twofold, firstly, we develop a new fixed point theorem in cones of functional type
for the class of k-set contraction perturbed by a mapping 7" such that (I —T') is Lipschitz
invertible. Secondly, we use some recent fixed point results to investigate the existence,
nonnegativity, localization and multiplicity of solutions for two-point BVPs of first order
as well as for three-point BVPs of second order. The study of these types of problems
is driven not only by a theoretical interest, but also by the fact that several phenomena
in engineering, physics, and in the life sciences can be modeled in this way. Overall, this

work is a contribution to both theoretical and applied parts of the fixed point theory.
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