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Abstract

The main objective of this thesis is the study of some questions related to the existence

of fixed points for the sum of two operators defined on ordered Banach spaces. The

essential questions of this work are existence, positivity, localization and multiplicity of

solutions for nonlinear equations which are written in the form Tx + Fx = x, where

(I − T ) is a Lipchitz invertible mapping with constant γ > 0 and F is a k-set contraction

with kγ < 1. Note that many mathematical problems, related to nonlinear differential

or integral equations, can be written in the previous form. At first, we present some

preliminary elements and results for the elaboration of this thesis such as Kuratowski

measure of noncompactness and the fixed point index theory on cones. Secondly, we

develop a new fixed point theorem for sum of two operators, using the fixed point index

theory. This theory provides practical techniques for establishing fixed point theorems

in ordered Banach spaces. Finally, the obtained results will be applied to the study of

certain types of boundary value problems associated to ODEs.

Keywords: Fixed point index, cone, sum of operators, Green’s function, nonnegative

solution, ODE, first-order boundary value problems, three-point boundary value problem.
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Résumé

Le but principal de cette thèse est l’étude de quelques questions liées à l’existence de

points fixes pour la somme de deux opérateurs définis sur un espace de Banach ordonné.

Les questions essentielles de ce travail sont l’existence, la positivité, la localisation et

la multiplicité de solutions pour des équations différentielles ou intégrales non linéaires

qui s’écrivent sous la forme Tx + Fx = x, où (I − T ) est un opérteur dont l’inverse

est lipchitzien de constante γ > 0 et F est une k-contraction d’ensembles avec kγ < 1.

Notons que de nombreux problèmes mathématiques, liés à des équations différentielles ou

intégrales non linéaires, peuvent être écrits sous la forme précédente. En premier lieu,

nous présentons quelques éléments et résultats préliminaires pour l’élaboration de cette

thèse, notamment la mesure de non-compacité de Kuratowski et la théorie de l’indice du

point fixe. En deuxième lieu, nous développons un nouveau théorème du point fixe pour

la somme de deux opérateurs, en utilisant la théorie de l’indice du point fixe les cônes.

Une théorie qui fournit des techniques pratiques pour établir des théorèmes de points

fixes dans des espaces de Banach ordonnés. Enfin, les résultats obtenus seront appliqués

à l’étude de certains types de problèmes aux limites associés à des EDOs.

Mots-clés : Indice de point fixe, cône, somme d’opérateurs, fonction de Green, EDO,

solution positive, problèmes aux limites d’ordre 1, problème aux limites à trois points.
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Introduction

The first objective of this thesis is the study of the existence of fixed points for certain

classes of operators defined on cones of Banach spaces. More precisely, we are interested

in questions related to the existence, nonnegativity, localization and multiplicity of fixed

points for some operators that are of the form T +F where I −T is a Lipschitz invertible

mapping and F is a k-set contraction. The approach used is the fixed point index theory

on cones of Banach spaces. The second objective of this thesis is to study the existence

and the multiplicity of nonnegative solutions for certain classes of ordinary differential

equations subjected to different boundary conditions. The approach used is to reduce the

study, under suitable conditions, to the existence of fixed points for appropriate operators.

Recent fixed point theorems are used to show the existence of the fixed points of these

operators which are solutions of our problems.

Many problems in science can be mathematically recast as nonlinear equations of the

form Tx + Fx = x and posed in some closed convex subset of a Banach space. Notice

further that the nonnegativity of solutions of nonlinear equations, especially ordinary,

fractional, partial differential equations, and integral equations is a very important issue in

applications, where a nonnegative solution may represent a density, temperature, velocity,

gravity, etc. It’s the reason for which many recent research works investigate not only the

existence but also the nonnegativity of solutions for various types of nonlinear equations.
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Starting from the Krasnoselskii’s fixed point theorem in cones [32, 33], appeared in

1960, the fixed point theory in cones developed promptly and has been widely extended

to various directions in theory as well as in applications to many problems in nonlinear

sciences. Very recently, in 2019, the authors in [16] open a new direction of research in the

theory of fixed point in cones for the sum of two operators. Several fixed point theorems,

including Krasnosel’skii’s theorems type, have being established for a sum of an expansive

operator and a k-set contraction. Recent developments of positive fixed point theorems,

in this direction, and their applications can be found in [11, 14, 15, 16, 21, 22, 23, 24].

One of our contributions in this thesis is part of generalizations leading to fixed point

theory for sums of two operators.

This thesis is organized as follows: The first chapter will be devoted to the general

framework. Some preliminaries results and basic concepts used throughout this thesis are

collected here. Section 1.1 of this chapter opens with cones in Banach spaces which is

required in this study since it is the tool that provides the ordering needed to describe

the nonnegativity of the solution. However, some compactness criteria and the classical

Kuratowski measure of noncompactness (KMNC for short) of a set in a metric space

occupies the major part of Section 1.1. The fixed point index is a generalization of the

Leray-Schauder degree. Section 1.2 starts with a reminder of the main properties of the

fixed point index for strict set contractions defined in bounded convex subsets of Banach

spaces, in particular on cones. The definition of a generalized fixed point index for k-

set contraction perturbed by an expansive mapping as well as some of its properties are

presented. The case of a k-set contraction perturbed by any mapping T such that (I−T )

is Lipschitz invertible is also discussed in this section. As a consequence, some fixed point

theorems for the sum of two operators are derived in Section 1.3.
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In Chapter 2, the integral formulation of all boundary value problems studied in this

thesis are presented in details.

Our contributions in this thesis are presented in chapters 3 and 4.

Chapter 3 is devoted to investigate the existence of solutions to the following first order

differential equation

x′ = f(t, x), t ∈ [a, b],

subject to the boundary conditions

Mx(a) +Rx(b) = 0,

where M,R ∈ R, M +R 6= 0, a < b <∞ are given constants and

(H1) f ∈ C([a, b]×R), |f(t, x)| ≤
k∑
j=1

aj(t)|x|pj , (t, x) ∈ [a, b]×R, aj ∈ C([a, b]), 0 ≤ aj ≤

A on [a, b], pj ≥ 0, j ∈ {1, . . . , k}.

Under sufficient conditions, we show that the considered problem two nontrivial non-

negative solutions. The results of this chapter vary according to the hypotheses on the

nonlinear term of the studied differential equation. To prove our main results we propose

a new approach based upon recent theoretical results. The proof of our results made use

of two recent fixed point theorems for the sum of two operators presented in Section 1.3.

Noting that, we can consider our main results obtained in this chapter as complementary

ones to these, of the scalar-valued case, established in [44].

In Chapter 4, the functional expansion-compression fixed point theorem of Leggett-

Williams type developed in [3] is extended to the class of mappings of the form T + F,

where (I − T ) is Lipschitz invertible and F is a k-set contraction. The arguments are

based upon recent fixed point index theory for this class of mappings. As application,

our approach is applied to prove the existence of nontrivial nonnegative solutions for the
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three-point boundary value problem:

y′′ + f(t, y) = 0, t ∈ (0, 1),

y(0) = ky(η), y(1) = 0,
(0.0.1)

where η ∈ (0, 1), k > 0 with k(1− η) < 1 and f ∈ C([0, 1]× [0,∞)).

We show an existence criterion under the assumptions:

(C1) Ã < f(t, y) ≤ a1(t) + a2(t)|y|p for t ∈ [0, 1] and y ∈ [0,∞), a1, a2 ∈ C([0, 1]),

0 ≤ a1, a2 ≤ A on [0, 1], for some positive constants A, Ã and p.

(C2) ε ∈ (0, 1), and there exist a, b, c, d, z0, ρ > 0 such that

max(d, 2z0
ε
, 1

Λ (c− z0)) < b ≤ ρ;

3z0 > a; z0 ≤ c < min(a, 3 z0,
η
3

(
1− η

2

)
Ã+ (1− 1

ε
)z0);

εAB(1+bp)+3z0
ε

≤ ρ; (1− ε) cΛ + 3z0 ≤ d, where Λ =
min
(
ε η

2
18 (1− η2 )Ã, z0

)
ε ρ

,

AB(1 + bp) < b, where B = 1+kη
1−k(1−η) .

The thesis ends by a general conclusion.
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Notations

R The set of real numbers.

R+ The set of all nonnegative real numbers.

Rn The n-dimentional Euclidean space.

(a, b) Open interval ]a, b[.

inf(A) The infimum of the set A.

sup(A) The supremum of the set A.

∂Ω The boundary of Ω.

Ω̊ The interior of Ω.

Ω Adhesion de Ω.

‖.‖ A norm.

I The identity application.

BV Ps Boundary value problems.

f |V The restriction of f on V.

i(f, U,D) Fixed point index of f on U with respect to D.

Fix(f) The set of fixed points of f.

P Cone.

P∗ P/{0}.

C(Ω) The set of all real continuous functions from Ω in R.

mes(D) The Lebegues measure of the set D.

P(ψ,R) {x ∈ P : ψ(x) ≤ R} , where ψ be a nonnegative continuous functionals on P .



1 Fixed point theory on cones

1.1 Basic Concepts

1.1.1 Cones in Banach spaces

In this chapter, we will collect some notations, definitions and auxiliary results we

need throughout this thesis. Let E a Banach space.

Definition 1.1.1. A subset P ⊂ E is called cone if the following conditions are satisfied:

1. P is closed, convex and P 6= ∅.

2. If (x ∈ P and λ ≥ 0) then λx ∈ P .

3. If (x ∈ P and −x ∈ P) then x = 0, i.e., (P ∩ (−P) = {0}).

Definition 1.1.2. For any cone P in E, we can define a partial order relation ≤ on E

as follows: ∀x, y ∈ E : x ≤ y ⇔ y − x ∈ P .

We can also define the following partial order relations:

I x < y ⇔ x ≤ y and x 6= y.

1



CHAPTER 1. FIXED POINT THEORY ON CONES 2

I x� y ⇔ y − x ∈ P̊ if P̊ 6= ∅.

I x 
 y ⇔ y − x 6∈ P .

Definition 1.1.3. A segment of a cone P is defined by:

[x, y] = {z ∈ P : x ≤ z ≤ y}.

Definition 1.1.4. Let P a cone in E.

I P is called normal if there exists a positive constant δ such that

‖x+ y‖ ≥ δ, ∀x, y ∈ P with ‖x‖ = ‖y‖ = 1.

Remark 1.1.5. Geometrically, the normality of a cone means that the angle between

any two positive unit vectors cannot exceed π. In other words, a normal cone can

not be too large.

I P is called solid if P̊ 6= ∅, where P̊ is the interior of P.

I P is generator if E = P −P , i.e, ∀x ∈ E,∃ u, v ∈ P such that: x = u− v (In other

words any element x ∈ E can be written in the form: x = u− v where u, v ∈ P).

The following theorem gives us other definitions of a normal cone.

Theorem 1.1.6. ([27, Theorem 1.1.1]). Let P a cone of a Banach space E. Then the

following assertions are equivalent:

1. P is normal;

2. ∃γ > 0 such that ‖x+ y‖ ≥ γmax(‖x‖, ‖y‖), ∀x, y ∈ P;

3. ∃N > 0 such that 0 ≤ x ≤ y ⇒ ‖x‖ ≤ N ‖y‖, ∀x, y ∈ P;

(i.e. the norm ‖.‖ is semi monotone).



CHAPTER 1. FIXED POINT THEORY ON CONES 3

4. there exist an equivalent norm ‖.‖1 on E such that: 0 ≤ x ≤ y ⇒ ‖x‖1 ≤

‖y‖1, ∀x, y ∈ P ; (i.e. the norm ‖.‖1 is monotone);

5. any ordered interval [x, y] = {z ∈ E : x ≤ z ≤ y} is bounded.

Example 1.1.7.

1. Let E = Rn and P1 = {x = (x1, x2, ..., xn) ∈ Rn : xi ≥ 0, i = 1, ..., n} = (R+)n.

(a) P1 is a solid and generator cone in Rn, because P̊1 = (R∗+)n and since R+ is a

generator cone on R, then for i = 1, ..., n : ∀xi ∈ R,∃ui, vi ∈ R+ : xi = ui − vi.

(b) Since every norm on Rn is monotone, we have

∀x, y ∈ Rn, 0Rn ≤ x ≤ y ⇒ ‖x‖ ≤ ‖y‖.

So P1 is normal with the normality constant N = 1.

2. Let E = C(G), the space of continuous functions on a bounded set G ⊂ Rn be

endowed with the maximum norm ‖x‖C(G) = sup
t∈G
|x(t)|, and

P2 = {x ∈ C(G) : x(t) ≥ 0, ∀t ∈ G}.

(a) P2 is a solid cone and generator on C(G).

(b) P2 is normal because the norm ‖.‖C(G) is monotone on C(G).

(c) We can define other solid normal cones on C(G) such that:

P3 = {x ∈ C(G) : x(t) ≥ 0, and min
t∈G1

x(t) ≥ ε1‖x(t)‖C(G)},

where G1 is closed subsets of G and ε1 ∈ (0, 1).
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1.1.2 Some compactness criteria

Ascoli-Arzelà criterion

Definition 1.1.8 (Equicontinuous set). Let (X, τ) be a topological space, (X, d) a

metric space, and C(X, Y ) denotes the space of continuous functions from X to Y.

A ⊂ C(X, Y ) is called equicontinuous at a point x0 ∈ X if and only if

∀ ε > 0, ∃Uε ∈ V(x0), ∀f ∈ A, ∀x ∈ X (x ∈ Uε =⇒ f(x) ∈ B(f(x0), ε)) .

The set A is equicontinuous if it is equicontinuous at every point x0 ∈ X.

Remark 1.1.9. If (X, d) is a compact metric space, then A is equicontinuous if ∀ε >

0, ∃η > 0, ∀x, y ∈ X (d(x, y) < η =⇒ d(f(x), f(y)) < ε) , ∀f ∈ A.

To prove Ascoli-Arzelà Theorem we consider, for the sake of simplicity, a special

situation in which (X, d) is a compact metric space and (Y, ‖ · ‖) a Banach space. The

space E = C(X, Y ) is endowed with the norm: ‖f‖ = sup
x∈X
‖f(x)‖Y .

Theorem 1.1.10 (Ascoli-Arzelà Theorem). A subset H ⊂ C(X, Y ) is relatively compact

if and only if

(a) H is equicontinuous.

(b) ∀x ∈ X, the set H(x) = {f(x), f ∈ H} is relatively compact in Y .

Proof.

(1) The condition is necessary. If H is relatively compact, then for all ε > 0, there exist a

finite number of elements {fi}1≤i≤n in E such that H ⊂
n⋃
i=1

B(fi, ε/3), i.e.,

∀ f ∈ H, ∃ i ∈ {1, . . . , n}, ‖f − fi‖E ≤ ε/3.
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Hence, ∀ f ∈ H,∀x ∈ X, ∃ i ∈ {1, . . . , n}, ‖f(x)− fi(x)‖ ≤ ε/3.

Therefore, H(x) ⊂
n⋃
i=1

B (fi(x), ε/3) , which implies that H(x) is relatively compact in

Y . Now we prove that H is equicontinuous. For all i = 1, 2, . . . , n, the function fi is

continuous. Then for all positive ε, there exists δi > 0, such that ∀x, y ∈ X, we have

d(x, y) ≤ δi =⇒ ‖fi(x)− fi(y)‖ ≤ ε/3.

Let δ = min
1≤i≤n

δi and f ∈ H. There exists i ∈ {1, . . . , n} such that f ∈ B(fi, ε/3) and for

all x, y ∈ X we have

d(x, y) ≤ δ =⇒ ‖f(x)− f(y)‖ ≤ ‖f(x)− fi(x)‖+ ‖f(y)− fi(y)‖

+‖fi(x)− fi(y)‖

≤ ε
3 + ε

3 + ε
3 = ε.

Thus the equicontinuity of H.

(2) The condition is sufficient. Since E = C(X, Y ) is complete, it is sufficient to prove that

H is totally bounded. Let ε > 0. Since H is equicontinuous, for every x ∈ X, there exists

some δ > 0 such that for all y ∈ X and f ∈ H we have

d(x, y) ≤ δ =⇒ ‖f(x)− f(y)‖ ≤ ε/4.

The spaceX being compact, can be covered by a finite number of balls Bxi = B(xi, r), 1 ≤

i ≤ m. By assumption, each subset H(x) is relatively compact in Y , then the same holds

for their finite union H =
m⋃
i=1
H(xi). Therefore, we can cover H by a finite number of balls

centered at cj (1 ≤ j ≤ p) and with radius ε/4. Let I = {1, 2, . . . ,m}, J = {1, 2, . . . , p},

and let Φ be the set of all mappings ϕ : I −→ J. For all ϕ ∈ Φ, denote by Lϕ the set of

all mappings f ∈ H such that ∀ i ∈ I, ‖f(xi) − cϕ(i)‖ ≤ ε/4. Some of the sets Lϕ may

be empty, but H is covered by the union of Lϕ. It remains to prove that the diameter of

each Lϕ is less than or equal to ε. Let f, g ∈ Lϕ. For every y ∈ X, there exists i ∈ I such
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that y ∈ Bxi . Hence, ‖f(y)− f(xi)‖ ≤ ε/4 and ‖g(y)− g(xi)‖ ≤ ε/4.

So, for all y ∈ Y , we have

‖f(y)− g(y)‖ ≤ ‖f(y)− f(xi)‖+ ‖g(y)− g(xi)‖

+‖f(xi)− cϕ(i)‖+ ‖g(xi)− cϕ(i)‖

≤ ε
4 + ε

4 + ε
4 + ε

4 = ε.

Hence, ‖f − g‖ ≤ ε, and our claim follows.

Consequently, when Y is finite dimensional, we get the following results.

Corollary 1.1.11. If H ⊂ C(X, Y ) is uniformly bounded and equicontinuous, then H is

relatively compact.

Corollary 1.1.12. LetM⊂ C1([a, b],R) satisfy the following conditions:

(a) there exists L > 0 such that for all t ∈ [a, b] and u ∈M,

|u(t)| ≤ L and |u′(t)| ≤ L.

(b) For every positive real number ε > 0, there exists δ(ε) > 0 such that for all t1, t2 ∈ [a, b]

with |t1 − t2| < δ(ε) and for all u ∈M,

|u(t1)− u(t2)| ≤ ε and |u′(t1)− u′(t2)| ≤ ε.

Then, the setM is relatively compact in C1([a, b],R).

Proof. Let {un}n∈N be a sequence of M ⊂ C1([a, b],R). To prove that M is relatively

compact in C1([a, b],R), it is equivalent to show that {un}n∈N has a subsequent converging

in C1([a, b],R). Since {un}n∈N is a sequence ofM⊂ C1([a, b],R), {u′n}n∈N (resp. {un}n∈N)

is a sequence of C([a, b],R). Corollary 1.1.11 and Assumptions (a)-(b) guarantee that

the sequence of derivatives {u′n}n∈N (resp. {un}n∈N) is relatively compact in C([a, b],R).
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As a consequence, there exists a subsequence, also denoted {un}n∈N which converges in

C([a, b],R) to a limit u ∈ C([a, b],R), and a subsequence of {u′n}n∈N, also denoted {u′n}n∈N,

converging in C([a, b],R) to a limit v ∈ C([a, b],R). Using the integral representation of

un, we find that for all t, t0 ∈ [a, b],

un(t) = u(t0) +
∫ t

t0
u′n(s)ds

→ u(t0) +
∫ t

t0
v(s)ds, as n→∞.

Then for all t ∈ [a, b], lim
n−→∞

un(t) = u(t) and the uniqueness of the limit yields that

u(t) = u(t0) +
∫ t

t0
v(s)ds. Hence u ∈ C1([a, b],R) and u′ = v.

In practice, the following result is widely used to study the compactness of a subset

of Ck([a, b],Rn).

Proposition 1.1.13. For all k ∈ N, the space Ck+1([a, b],Rn) is embedded compactly in

Ck([a, b],Rn). Here "embedded compactly" means that every uniformly bounded sequence

in Ck+1([a, b],Rn) has a convergent subsequence in Ck([a, b],Rn).

Remark 1.1.14. One of the aims of modern analysis is to characterize the relationship

between various spaces of functions, An especially important type of relationship between

Banach spaces is compact embedding: we say E1 ⊂ E2 is compactly embedded in E2 if all

bounded subsets of E1 are relatively compact subsets of E2. Compact embeddings provide a

Bolzano-Weierstrass type theorem for infinite dimensions, since a sequence that is bounded

in E1 will contain a subsequence that converges strongly in E2.

Corduneanu-Avramescu Compactness Criterion

Let Cb([0,+∞),Rn) denote the vector topological space of all bounded and continuous

functions defined on [0,+∞) and having values in Rn. Before stating a compactness
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criterion in Cb([0,+∞),Rn), we give the definition of equi-convergent set.

Definition 1.1.15. A subset H ⊂ Cb([0,+∞),Rn) is called equi-convergent if

∀ ε > 0, ∃T = T (ε) > 0, ∀ t1, t2 ∈ R,

|t1| > T, |t2| > T ⇒ ‖x(t1)− x(t2)‖ < ε, ∀x ∈ H.

Now, we state and prove Corduneanu-Avramescu compactness criterion in Cb([0,+∞),Rn).

Theorem 1.1.16. [7] A subset H ⊂ Cb([0,+∞,Rn) is relatively compact if and only if

the following conditions are satisfied:

(a) H is uniformly bounded.

(b) H is equicontinuous on every compact interval of [0,+∞)

(we say that H is almost equicontinuous).

(c) H is equi-convergent.

Example 1.1.17. (1) Let G : [a, b]× [a, b] −→ R be a continuous function and

T : C([a, b],R) −→ C([a, b],R) be the linear operator defined by:

Tx(t) =
∫ b

a
G(t, s)x(s)ds.

Then for any bounded set B in C([a, b],R), T (B) is relatively compact.

(2) Set fn(x) = sin(nx), x ∈ [0, 2π] and H = {fn(.) : n ∈ N}. Then H is uniformly

bounded. In fact, ‖fn‖∞ ≤ 1, ∀n ∈ N. However, it is not equicontinuous in

C([0, 2π],R). In fact, consider the sequence xn = π
2n , n ∈ N

∗, so |fn(xn)−fn(x2n)| =

1 −
√

2
2 > 1

2 . Hence, H is not relatively compact, i.e., we can’t extract a convergent

subsequence.
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1.1.3 Kuratowski’s measure of non-compactness

We consider a real Banach space (E, ‖.‖) and let ΩE be the class of all bounded subsets

of E. In what follows, we will give the definition of Kuratowski non-compactness measure

as well as its main properties. We will end this section by giving some examples. For

more details on this concept, we refer to the references [8, 9, 10, 12].

Definition 1.1.18. The Kuratowski’s measure of non-compactness (KMNC for short) is

the map α : ΩE −→ [0,+∞) defined by :

α (A) = inf


d > 0 : A can be covered by finitely many sets

with diameter less than or equal d

 ,
that is to say

α (A) = inf
{
d > 0 : ∃A1, ..., An ⊂ E, A ⊆

n⋃
i=1

Ai with diam (Ai) ≤ d, ∀i = 1, ..., n
}
,

where diam(Ai) = sup
x,y∈Ai

‖x− y‖ and diam(∅) = 0.

Remark 1.1.19. 1. The definition of Kuratowski’s measure of non-compactness is sig-

nificant not only for Banach spaces but also for arbitrary metric spaces.

2. 0 ≤ α (A) ≤ diam (A) <∞, ∀A ∈ ΩE.

3. A is finished =⇒ α (A) = 0, ∀A ∈ ΩE.

Elementary properties of Kuratowski’s non-compactness measure

The Kuratowski MNC α has the following properties (see [10, 12]).

Proposition 1.1.20. Let A and B be bounded subsets of a Banach space E. Then the

function α has the following properties:
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1. Regularity: α (A) = 0⇐⇒ A is compact.

2. Monotonicity: A ⊂ B =⇒ α (A) ≤ α (B) i.e., α is increasing.

3. Sub-additivity: α (A ∪B) = max (α (A) , α (B)).

4. α (A ∩B) ≤ min (α (A) , α (B)).

5. Semi-homogeneity: α (λA) = |λ|α (A) , ∀λ ∈ R.

6. Algebraic sub-additivity: α(A+B) ≤ α (A) + α (B) .

7. Invariance under passage to the closure: α (A) = α
(
A
)
.

8. Invariance under shifting: α(A+ x) ≤ α (A) , ∀x ∈ E.

9. Invariance under passage to the convex hull: α (A) = α (convA).

10. Lipschitzianity: |α (A)− α (B)| ≤ 2H(A,B), where H(A,B) denotes the Hausdorff

distance between the sets A and B.

Remark 1.1.21. a) The properties of algebraic semi-homogeneity and sub-additivity allow

us give that Kuratowski’s measure of non-compactness α is a semi-norm on E.

b) It’s not easy to determine the explicit value of α (A) for a bounded set A of E. Most

of the results obtained using KMNC are based on its properties.

Example 1.1.22. 1. Let B (0, 1) a unit ball of a Banach space E of finite dimension,

then α (B (0, 1)) = 0. Indeed, we have B (0, 1) is compact ⇐⇒ dimE <∞.

More generally, α (B (x0, r)) = 0, where B (x0, r) is a ball with center x0 and radius

r in a Banach space E. Indeed; B (x0, r) is a compact of E.

2. Let E an infinite dimensional Banach space and B (0, 1) a unit ball of E.

Then α (B (0, 1)) = 2. A simple proof is given in [12].
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3. Let Y be a Banach space, and α the KMNC in Y . If H ⊂ E = C([a, b], Y ) is bounded

and equicontinuous, then αE(H) = max
t∈[a,b]

α(H(t)), where H(t) = {x(t) : x ∈ H}, t ∈

[a, b]. For the proof see [28, Theorem 1.2.4].

4. In the Banach space E = Rn with the Euclidean norm ‖x‖ =
(

n∑
i=1

x2
i

) 1
2
, we consider

the function f = (f (1), . . . , f (n)) : E → E defined by:

f (i)(t, x1, . . . , xn, y1, . . . , yn) = 1−cos t
t+1 (1 + xpi + yqi ), for t ≥ 0,

x = (x1, . . . , xn), y = (y1, . . . , yn), p, q ∈ (0,∞), for any i ∈ {1, . . . , n}.

Then, we have

‖f(t, x, y)‖2 =
n∑
i=1

(f (i)(t, x, y))2

≤ 4 (1−cos t)2

(t+1)2

(
n+

n∑
i=1

x2p
i +

n∑
i=1

y2q
i

)
≤ 4 (1−cos t)2

(t+1)2

(
n+ (

n∑
i=1

x2
i )p + (

n∑
i=1

y2
i )q
)

≤ 4 (1−cos t)2

(t+1)2 (n+ ‖x‖2p + ‖y‖2q) .

Hence, let D1, D2 ⊂ E bounded subset, for all t ∈ R+, x ∈ D1, y ∈ D2, we have

‖f(t, x, y)‖ ≤ 21− cos t
t+ 1

(
n+ ‖x‖2p + ‖y‖2q

)
≤ 4

(
n+ ‖x‖2p + ‖y‖2q

)
<∞.

Moreover, for all 0 < t1 < t2 < +∞, x ∈ D1 and y ∈ D2, we get

lim
t1→t2

|f (i)(t1, x, y)− f (i)(t2, x, y)|

≤ lim
t1→t2

∣∣∣1−cos t1
t1+1 (1 + xpi + yqi )− 1−cos t2

t2+1 (1 + xpi + yqi )
∣∣∣

≤ lim
t1→t2

(1 + ‖x‖p∞ + ‖x‖q∞)
∣∣∣1−cos t1
t1+1 −

1−cos t2
t2+1 )

∣∣∣ = 0, ∀ i = 1, . . . , n.

Then, lim
t1→t2

‖f(t1, x, y)− f(t2, x, y)‖ = 0 and

lim
t→+∞

|f (i)(t, x, y)− lim
s→+∞

f (i)(s, x, y)|

≤ lim
t→+∞

∣∣∣1−cos t
t+1 (1 + xpi + yqi )− 0

∣∣∣ = 0, ∀ i = 1, . . . , n.
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Hence, lim
t→+∞

‖f (i)(t, x, y)− lim
s→+∞

f (i)(s, x, y)‖ = 0.

As a consequence, Corduneanu-Avramescu compactness criterion (see Theorem 1.1.16)

ensures that f(t,D1, D2) is relatively compact in Rn. So, α(f(t,D1, D2)) = 0, for

all t ∈ R+ and all bounded subsets D1, D2 ⊂ Rn.

1.1.4 Some classes of mappings: Definition and Properties

Nonnegative convex and nonnegative concave functionals

Definition 1.1.23. Let P be a cone in a real Banach space E.

(a) A map χ : P −→ [0,∞) is said to be nonnegative convex functional on P if and only

if χ (tx+ (1− t)y) ≤ tχ (x) + (1− t)χ (y) , for all x, y ∈ P and t ∈ [0, 1].

(b) A map ψ : P −→ [0,∞) is said to be nonnegative concave on P if and only if

ψ (tx+ (1− t)y) ≥ tψ (x) + (1− t)ψ (y) , for all x, y ∈ P and t ∈ [0, 1].

Example 1.1.24. (1) Let P be a cone in a real Banach space (E, ‖.‖).

φ1(x) = ‖x‖, x ∈ P is a convex functional.

(2) ψ1(x) = min
t∈[a,b]

x(t), x ∈ C([a, b],R+) is a concave functional.

(3) ψ2(x) =
∫
Ω1
x(t) dt, x ∈ C(Ω,R+), where Ω is a compact set of Rn and Ω1 is a closed

subset of Ω, is a concave functional.

I. Completely Continuous mappings

Let E and F be Banach spaces.

Definition 1.1.25. Let T : D ⊂ E −→ F be a continuous mapping. T is said to be:

(i) bounded if it maps any bounded subset of D into bounded subset of F ;
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(ii) compact if the set T (D) is relatively compact;

(iii) completely continuous if it maps bounded sets into relatively compact sets.

Remark 1.1.26 (Relation between compact and completely continuous maps). Every

compact mapping is completely continuous. If D is bounded set, the reverse implication

is true.

Example 1.1.27. In the infinite-dimensional Banach space (C([a, b]), ‖.‖∞) consider two

integral operators T and S defined by:

Ty(t) =
∫ b
a K(t, s, y(s))ds,

Sy(t) =
∫ t
aK(t, s, y(s))ds, t ∈ [a, b],

where K : [a, b]× [a, b]× [−r, r]→ R is a continuous function. Set

M = {x ∈ C([a, b]),R) : ‖x‖ ≤ r}.

Then, the operators S and T map M into C([a, b],R) and are completely continuous.

Proof. We will consider the operator S. The remaining case is treated similarly.

The set A = [a, b] × [a, b] × [−r, r] is compact, hence K is bounded and uniformly

continuous on A. Thus, there is δ > 0 such that |K(t, s, y)| ≤ δ, for all (t, s, x) ∈ A, and

for every ε > 0 there exists ρ = ρ(ε) > 0 such that

|K(t1, s1, y1)−K(t2, s2, y2)| < ε,

for all (ti, si, xi) in A, i = 1, 2, satisfying |t1 − t2|+ |s1 − s2|+ |y1 − y2| < ρ.

(i) The operator S is continuous on M . In fact, let (yn)n∈N be a sequence in M with

‖yn − y‖∞ → 0, as n→∞.
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From the uniform continuity of K and the uniform convergence of the functions yn

to y, Lebesgue’s dominated convergence theorem leads

‖Syn − Sy‖∞ = max
a≤t≤b

|Syn(t)− Sy(t)|

= max
a≤t≤b

|
∫ t

a
(K(t, s, yn(s))−K(t, s, y(s))) ds|

→ 0, as n→∞.

(ii) The set S(M) is relatively compact. In fact, let y ∈M and ε > 0, then

|Sy(t)| ≤ |
∫ t

a
K(t, s, y(s))ds| ≤ (b− a)δ, for all t ∈ [a, b].

Furthermore, for |t1 − t2| ≤ min(ρ, ε), we have

|Sy(t1)− Sy(t2)| =
∣∣∣∣∫ t1

a
K(t1, s, y(s)ds−

∫ t2

a
K(t2, s, y(s))ds

∣∣∣∣
=

∣∣∣∣∫ t1

a
K(t1, s, y(s))ds−

∫ t1

a
K(t2, s, y(s))ds

−
∫ t2

t1
K(t2, s, y(s))ds

∣∣∣∣
≤ (b− a)ε+ |t1 − t2|δ ≤ ((b− a) + δ)ε.

Hence, by the Ascoli-Arzelà Theorem, the set S(M) is relatively compact.

Consequently, (i) and (ii) together imply that the operator S is completely continuous.

Remark 1.1.28. If the operators T1, T2 : D ⊂ E −→ F are bounded ( resp. completely

continuous) then for every α, β ∈ R, the operator αT1 +βT2 is bounded ( resp. completely

continuous).

II. k-set contractions maps

Definition 1.1.29. Let E and F be Banach spaces. Let f : E −→ F be a continuous and

bounded mapping.
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1. f is said to be k-set contraction if there exist k ≥ 0, such that

α (f (A)) ≤ kα (A) , for every A bounded set of E, (1.1.1)

where α is the KMNC in E.

2. f is called strict set contraction if 0 ≤ k < 1.

3. f is said to be condensing if

α (f (A)) < α (A) , for all bounded and not relatively compact set A i.e., α (A) > 0,

Proposition 1.1.30. [40, Proposition 2] Let E be a Banach space and G a subset of E.

(a) If Ti : G → E is ki-set contraction, i = 1, 2, then T1 + T2 : G → E is (k1 + k2)-set

contraction.

(b) If T1 : G → E is k1-set contraction and T3 : T1(G) → E is k3-set contraction, then

T3 ◦ T1 : G→ E is k1k3-set contraction.

(c) T : G→ E is completely continuous if and only if T is 0-set contraction.

(d) If T : G → E is L-Lipschitzian (i.e., ‖T (x) − T (y)‖ ≤ L‖x − y‖ for x, y ∈ G), then

T is k-set contraction with k = L.

(f) If T : G→ E is completely continuous and S : G→ E is L-Lipschitzian, then T + S

is k-set contraction with k = L.

(g) If T : G→ E is completely continuous and S : G→ E is contraction with constant k,

then T + S is strict set contraction with constant k.

Proposition 1.1.31. Let E be a Banach space and D a subset of E. Suppose that

T : D ⊂ E −→ E is a k-set contraction and γ : D −→ R+ is continuous function such

that sup {γ (x) : x ∈ D} = `. Let T̃ : D ⊂ E −→ E be a map defined by

T̃ (x) = γ (x)T (x) , ∀x ∈ D.
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Then, T̃ is a k`-set contraction.

Proof. T̃ is continuous and bounded as a product of two maps continuous and bounded.

Let Ω be a bounded subset of D. We have

T̃ (Ω) ⊂ conv ({0} ∪ ` T (Ω)) .

By the properties (1) , (3) , (5) and (9) of the KMNC α(.) in Proposition 1.1.20, we get

α(T̃ (Ω)) ≤ α (conv ({0} ∪ ` T (Ω)))

= α ({0} ∪ ` T (Ω))

= max (α({0}), α(` T (Ω)))

= ` α(T (Ω))

≤ k`α(Ω).

Hence T̃ is a k`-set contraction.

Remark 1.1.32. Every completely continuous mapping f , is strict set contraction and

every strict set contraction is condensing map. Moreover, every condensing map is 1-set

contraction.

Example 1.1.33. Let X be a real normed space and T : X −→ X be a linear bounded

operator. Then T is a ‖T‖-set contraction.

Example 1.1.34. Let f ∈ C([a, b]. Define the mapping T : f ∈ C([a, b]) −→ R by

Tf(t) =
∫ b

a
cos(f(t))dt, f ∈ C([a, b]).
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For any t ∈ [a, b], we have

|Tf(t)− Tg(t)| =
∣∣∣∣∣
∫ b

a
cos(f(t))− cos(g(t))dt

∣∣∣∣∣
≤

∫ b

a
|cos(f(t))− cos(g(t))| dt

≤
∫ b

a
|f(t)− g(t)| dt

≤ (b− a) ‖ f − g ‖∞ .

So, T is (b− a)-set contraction. If b− a < 1, then T is strict set contraction.

III. Expansive and Lipschitz invertible mappings

Definition 1.1.35. Let (X, d) be a metric space and D be a subset of X. The mapping

T : D → X is said to be expansive if there exists a constant h > 1 such that

d(Tx, Ty) ≥ h d(x, y), ∀x, y ∈ D.

Example 1.1.36.

(1) An affine function with a leading coefficient σ > 1 is σ-expansive on R.

(2) The function f(x) = x3 + θx, x ∈ R+ is θ-expansive.

(3) The function f(x) = γ x
x+δ , x ∈ [a, b] is |γ δ|

(b+δ)2 -expansive.

Example 1.1.37. Let E be a infinite dimensional Banach space and let T : E → E be

the map defined by:

Tx =


2x if x ∈ B(0, 1)(
1 + 1

‖x‖

)
x if x ∈ E \B(0, 1).

Then T is 1-expansive. In fact, for x, y ∈ E, we distinguish the following four cases:

Case 1. x, y ∈ B(0, 1). We have ‖Tx− Ty‖ = 2‖x− y‖.
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Case 2. x ∈ B(0, 1) and y ∈ E \B(0, 1). Since ‖x‖ ≤ 1, we have

− (‖y‖ − ‖x‖) ≤ − (‖y‖ − 1). Hence

‖Tx− Ty‖ =
∥∥∥∥∥2x− y − y

‖y‖

∥∥∥∥∥
=

∥∥∥∥∥2(x− y) + (‖y‖ − 1)y
‖y‖

∥∥∥∥∥
≥ 2‖x− y‖ − (‖y‖ − ‖x‖)

≥ 2‖x− y‖ − ‖x− y‖

= ‖x− y‖.

Case 3. x ∈ E \B(0, 1) and y ∈ B(0, 1). As in case 2, we obtain ‖Tx− Ty‖ ≥ ‖x− y‖.

Case 4. x, y ∈ E \ B(0, 1). Since ‖x‖, ‖y‖ ≥ 1, we have − (‖x‖ − ‖y‖) ≤ − (1− ‖y‖)

and − (‖y‖ − ‖x‖) ≤ − (1− ‖x‖). Hence

‖Tx− Ty‖ =
∥∥∥∥∥x+ x

‖x‖
− y − y

‖y‖

∥∥∥∥∥
=

∥∥∥∥∥2(x− y) + (1− ‖x‖)x
‖x‖

− (1− ‖y‖)y
‖y‖

∥∥∥∥∥
≥ ‖2(x− y)‖ − (1− ‖x‖)− (1− ‖y‖)

≥ 2‖x− y‖ − (‖y‖ − ‖x‖)− (‖x‖ − ‖y‖)

= 2‖x− y‖.

Let (X, ‖.‖) be a linear normed space and D ⊂ X. An operator A : D → X is said

to be γ-Lipschitz invertible on D if it is invertible and its inverse is Lipschitzian on A(D)

with constant γ. In what follows we give some examples.

Example 1.1.38.

(1) The function f(x) = tan(x), x ∈
(
−π

2 ,
π
2

)
is 1-Lipschitz invertible on R.

(2) An affine function with a leading coefficient σ is 1
σ
-Lipschitz invertible on R.
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Lemma 1.1.39. [47, Lemma 2.1] Let (X, ‖.‖) be a linear normed space and D ⊂ X.

Assume that the mapping T : D → X is expansive with constant h > 1. Then the inverse

of I − T : D → (I − T )(D) exists and

‖(I − T )−1x− (I − T )−1y‖ ≤ 1
h− 1‖x− y‖, ∀x, y ∈ (I − T )(D).

Lemma 1.1.40. ([48, Lemma 2.3]) Let (E, ‖.‖) be a Banach space and T : E → E be

Lipschitzian map with constant β > 0. Assume that for each z ∈ E, the map Tz : E → E

defined by Tzx = Tx + z satisfies that T pz is expansive and onto for some p ∈ N. Then

(I − T ) maps E onto E, the inverse of I − T : E → E exists, and

‖(I − T )−1x− (I − T )−1y‖ ≤ γp‖x− y‖ for all x, y ∈ E,

where

γp = βp − 1
(β − 1)(lip(T p)− 1) ,

with lip(T p) = max{h ≥ 0 : d(T px, T py) ≥ h d(x, y), ∀x, y ∈ E}.

Lemma 1.1.41. ([48, Lemma 2.5]) Let (X, ‖.‖) be a linear normed space, M ⊂ X.

Assume that T : M → X is a contraction with a constant k < 1, then the inverse of

I − T : M → (I − T )(M) exists, and

‖(I − T )−1x− (I − T )−1y‖ ≤ (1− k)−1‖x− y‖ for all x, y ∈ (I − T )(M).

1.2 Fixed point index

The Leray-Schauder degree is an important tool in nonlinear analysis, allowing to

establish the existence of fixed points for a mapping acting in a normed linear space.

There are many interesting problems not set on the whole space, but instead the setting
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is a closed convex subset of a normed linear space, e.g., a cone. The fixed point index is a

generalization of the Leray-Schauder degree, that is designed to find fixed points of maps

defined on a closed convex subset of a Banach space that is not a vector subspace.

Early in the 1970s, Amann [2, 1] and Nussbaum [37, 38] introduced the fixed point

index for strict set contractions and condensing mappings and have derived as results

some fixed point theorems. As an extension, recently, Djebali and Mebarki [16] have

developed a generalized fixed point index theory for the sum of an h-expansive mapping

and a k-set contraction when 0 ≤ k < h− 1 as well as in the limit case k = h− 1. Then

some researchers have been interested in the extension of this index in various directions,

we cite [11, 17, 26].

This section starts with a reminder of the main properties of the fixed point index

for strict set contractions in a retract of a Banach space. Then we will present the fixed

point index for some classes of sums of two mappings. We will consider separately two

cases: firstly the case of the sum T + F , where T is an h-expansive map and F is a

k-set contraction when 0 ≤ k < h − 1 is treated. The definition of a generalized fixed

point index as well as some of its properties are presented. Then several results allowing

computation of this index are shown. Secondly, we extend some of these results to the

case of the sum T +F , where T is a mapping such that (I−T ) is Lipschitz invertible and

F is a k-set contraction.

Definition 1.2.1 (Retracted set). Let E be a Banach space. A subset X of E is called a

retract of E, if there exists a continuous mapping r : E → X such that

r(x) = x, ∀x ∈ X.

Then the mapping r is called retraction.
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Remark 1.2.2. Let B(0, ρ) = {x ∈ E : ‖x‖ ≤ ρ} be the closed ball in E with center 0

and radius ρ. Then r : E → B(0, ρ) given by

r(y) =


y, for ‖y‖ ≤ ρ;

ρy/‖y‖, for ‖y‖ > ρ,

defines a retraction (called the standard retraction) of E onto B(0, ρ).

Remark 1.2.3. Every closed convex set of a Banach space E is a retract of E, in par-

ticular every cone P ⊂ E is a retract of E.

1.2.1 Fixed point index for strict set contractions

The development of the theory of the fixed point index for sums of two operators,

which will be presented in subsection 1.2.2, involves the fixed point index for strict set

contractions whose basic properties are collected in the following theorem.

Theorem 1.2.4. [28, Theorem 1.3.5]. Let X be a retract of a Banach space E. For

every bounded open subset U ⊂ X and every strict set contraction f : U → X without

fixed point on the boundary ∂U, there exists uniquely one integer i (f, U,X) satisfying the

following conditions:

(a) (Normalization property). If f : U → U is a constant map, then

i (f, U,X) = 1.

(b) (Additivity property). For any pair of disjoint open subsets U1, U2 in U such that f

has no fixed point on U \(U1 ∪ U2), we have

i (f, U,X) = i (f, U1, X) + i (f, U2, X),

where i (f, Uj, X) : = i (f | Uj , Uj, X), j = 1, 2.

(c) (Homotopy Invariance property). The index i (h(t, .), U,X) does not depend on the
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parameter t ∈ [0, 1], where

(i) h : [0, 1]× U → X is continuous and h(t, x) is uniformly continuous in t with respect

to x ∈ U,

(ii) h(t, .) : U → X is a strict k-set contraction, where k does not depend on t ∈ [0, 1],

(iii) h(t, x) 6= x, for every t ∈ [0, 1] and x ∈ ∂U.

(d) (Preservation property). If Y is a retract of X and f(U) ⊂ Y , then

i (f, U,X) = i (f, U ∩ Y, Y ),

where i (f, U ∩ Y, Y ) := i (f | U∩Y , U, Y ).

(e) (Excision property). Let V ⊂ U an open subset such that f has no fixed point in U\V .

Then

i (f, U,X) = i (f, V,X).

(f) (Solvability property). If i (f, U,X) 6= 0, then f has a fixed point in U .

The following results are direct consequences of the properties of the index i.

Proposition 1.2.5. Let X be a closed convex of a Banach space E and U ⊂ X a bounded

open subset with 0 ∈ U. Assume that A : U → X is a strict set contraction that satisfies the

Leray-Schauder boundary condition: Ax 6= λx, ∀x ∈ ∂U, ∀λ ≥ 1. Then i (f, U,X) = 1.

Proof. Consider the homotopic deformation H : [0, 1]×X ∩ U → X defined by

H(t, x) = tAx.

Then the map H is continuous and H(t, ·) : U → X is a strict set contraction, and has

no fixed point on P ∩ ∂U, ∀ t ∈ [0, 1]; otherwise:

• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting x0 ∈ U.
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• If t ∈ (0, 1], there exists some x0 ∈ ∂U such that tAx0 = x0; then Ax0 = 1
t
x0 with

1
t
≥ 1, contradicting the assumption. From the invariance under homotopy and the

normalization properties of the index, we deduce i (A,U,X) = i (0, U,X) = 1.

In the sequel, we give an extension of the Leray-Schauder boundary condition, which

allows to increase the field of applications of this condition. First, we present our result

for the completely continuous mappings.

Proposition 1.2.6. [13] Let X be a closed convex subset of a Banach space E and U ⊂ X

a bounded open subset with 0 ∈ U. Assume A : U → X is a completely continuous mapping

without fixed point on the boundary ∂U with γ = dist(0, (I−A)(∂U)) and there exists ε > 0

small enough such that

Ax 6= λx for all x ∈ ∂U and λ ≥ 1 + ε. (1.2.1)

Then the fixed point index i (A,U,X) = 1.

Proof. Consider the homotopic deformation H : [0, 1]× U → X defined by

H(t, x) = 1
ε+ 1 tAx.

The operator H is completely continuous and has no fixed point on ∂U, ∀t ∈ [0, 1] ;

otherwise, we may distinguish between two cases:

• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting 0 ∈ U.

• If t ∈ (0, 1], there exists some x0 ∈ ∂U such that 1
ε+1 t Ax0 = x0; then

Ax0 = 1 + ε

t
x0 with 1 + ε

t
≥ 1 + ε,

leading to a contradiction with the hypothesis (1.2.1).

From the invariance under homotopy and the normalization properties of the index (see

[27, Theorem 2.3.1]), we deduce i ( 1
ε+1 A,U,X) = i (0, U,X) = 1.
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Now, we show that i (A,U,X) = i ( 1
ε+1 A,U,X).

Since A has no fixed point in ∂U and (I −A)(∂U) is a closed set (see [41, Lemma 1]), we

get 0 6∈ (I − A)(∂U). Hence, inf
x∈∂U

‖x− Ax‖ := γ > 0.

Let ε be sufficiently small so that ‖ ε
ε+1 Ax‖ <

γ
2 . Hence

‖Ax− 1
ε+ 1 Ax‖ = ‖Ax− Ax+ ε

ε+ 1 Ax‖ = ‖ ε

ε+ 1 Ax‖ <
γ

2 , ∀x ∈ ∂U.

Define the convex deformation G : [0, 1]× U → X by

G(t, x) = tAx+ (1− t) 1
ε+ 1Ax.

The operator G is completely continuous and has no fixed point on ∂U, ∀t ∈ [0, 1]. In

fact, for all x ∈ ∂U and t ∈ [0, 1], we have

‖x−G(t, x)‖ = ‖x− tAx− (1− t) 1
ε+1Ax‖

≥ ‖x− 1
ε+1Ax‖ − t‖Ax−

1
ε+1Ax‖

≥ ‖x− Ax‖ − ‖ ε
ε+1Kx‖ − t‖Kx−

1
ε+1Ax‖

> γ − γ
2 −

γ
2 = 0.

Then our claim follows from the homotopy invariance property of the index.

Remark 1.2.7. The result of Proposition 1.2.6 remains true if A is a strict contraction

and even if A is condensing map and that according to [41, Lemma 1].

Proposition 1.2.8. [28, Theorem 1.3.8] Let X be a closed convex of a Banach space E

and U ⊂ X be a bounded open subset. Assume that A : U → X is a strict set contraction.

If there exists u0 ∈ X, u0 6= 0, such that λu0 ∈ X, ∀λ ≥ 0 and

x− Ax 6= λu0, ∀x ∈ ∂U, ∀λ ≥ 0,

then the fixed point index i (A,U,X) = 0.
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Proof. Define the homotopy H : [0, 1]× U → X by H(t, x) = Ax+ tλ0u0, for some

λ0 > sup
x∈U

(‖u0‖−1(‖x‖+ ‖Ax‖)). (1.2.2)

Such a choice is possible since U is a bounded subset and so is A(U). The operator H is

continuous and uniformly continuous in t for each x, and the mapping H(t, .) is a strict

set contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on ∂U . On the

contrary, there would exist some x0 ∈ ∂U and t0 ∈ [0, 1] such that

x0 = Ax0 + t0λ0u0,

contradicting the hypothesis. By Theorem 1.2.4, we get

i(A,U,X) = i(H(0, .), U,K) = i(H(1, .), U,X) = 0. (1.2.3)

Indeed, suppose that i(H(1, .), U,X) 6= 0. Then there exists x0 ∈ U such thatAx0+λ0u0 =

x0, which implies that λ0 ≤ ‖u0‖−1(‖x0‖+ ‖Ax0‖), contradicting (1.2.2).

Proposition 1.2.9. Assume that X is a closed convex set of a Banach space E, X1 is

a bounded closed convex subset of X, U is a nonempty open set of X with U ⊂ X1. If

A : X1 → X is a strict set contraction, A(X1) ⊂ X1 and A has no fixed point in X1\U ,

then i (A,U,X) = 1.

Proof. Since X1 is a closed subset of E, U ⊂ X1, by the preservation property of the fixed

point index, it follows that

i(A,U,X) = i(A,U,X1). (1.2.4)

Because A has no fixed points in X1\U , by the excision property of the fixed point index,

we get

i(A,U,X1) = i(A,X1, X1). (1.2.5)
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Take z0 ∈ U ⊂ X1 and let

H(t, x) = tz0 + (1− t)Ax, t ∈ [0, 1], x ∈ X1.

We have H : [0, 1]×X1 → X1 is continuous and bounded. Also, for any t ∈ [0, 1] and B

a bounded set in X1, we have

α(H(t, B)) ≤ (1− t)α(A(B)) ≤ (1− t)kα(B).

So, H(t, ·) : X1 → X1 is a strict set contraction for any t ∈ [0, 1]. Hence, using the

normality and the homotopy invariance of the fixed point index, we get

i(A,X1, X1) = i(H(0, ·), X1, X1)

= i(H(1, ·), X1, X1)

= i(z0, X1, X1)

= 1.

From here and from (1.2.4), (1.2.5), we arrive at

i(A,U,X) = i(A,U,X1) = i(A,X1, X1) = 1.

Corollary 1.2.10. Assume that X is a closed convex set in E and U is a nonempty

bounded open convex subset of X. If A : U → X is a strict set contraction and A(U) ⊂ U ,

then

i(A,U,X) = 1.

Proof. We apply Theorem 1.2.9 for X1 = U . Then

i(A,U,X) = 1.
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1.2.2 Fixed point index for perturbed k-set contractions maps

In all what follows, P will refer to a cone in a Banach space E, Ω is a subset of P , and

U is a bounded open subset of P . For some constant r > 0, we will denote Pr = P ∩ Br,

where Br = {x ∈ E : ‖x‖ < r} is the open ball centered at the origin with radius r.

1. Case of k-set contraction perturbed by an h-expansive map

Assume that T : Ω → E is an h-expansive mapping and F : U → E is a k-set

contraction. By Lemma 1.1.39, the operator (I − T )−1 is (h− 1)−1-Lipschitzian on (I −

T )(Ω). Suppose that

F (U) ⊂ (I − T )(Ω) (1.2.6)

and

x 6= Tx+ Fx, for all x ∈ ∂U ∩ Ω. (1.2.7)

Then x 6= (I − T )−1Fx, for all x ∈ ∂U and the mapping (I − T )−1F : U → P is strict

k(h − 1)−1-set contraction. Indeed, (I − T )−1F is continuous and bounded; and for any

bounded set B in U , we have

α(((I − T )−1F )(B)) ≤ (h− 1)−1 α(F (B)) ≤ k(h− 1)−1α(B).

By Lemma 1.2.4, the fixed point index i ((I − T )−1F,U,P) is well defined. Thus we put

i∗ (T + F,U ∩ Ω,P) =


i ((I − T )−1F,U,P) if U ∩ Ω 6= ∅

0, if U ∩ Ω = ∅.
(1.2.8)

This integer is called the generalized fixed point index of the sum T + F on U ∩ Ω with

respect to the cone P .
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Using the main properties of the fixed point index for strict set contractions (in par-

ticular, completely continues maps), Djebali and Mebarki, have discussed the properties

of the generalized fixed point index i∗ in [16].

Theorem 1.2.11. [16, Theorem 2.3] The fixed point index defined in (1.2.8) satisfies the

following properties:

(a) (Normalization property). If U = Pr, 0 ∈ Ω, and Fx = z0 ∈ B(−T0, (h− 1)r) ∩ P for

all x ∈ Pr, then i∗ (T + F,Pr ∩ Ω,P) = 1.

(b) ( Additivity property). For any pair of disjoint open subsets U1, U2 in U such that T+F

has no fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i∗ (T + F,U ∩ Ω,P) = i∗ (T + F,U1 ∩ Ω,P) + i∗ (T + F,U2 ∩ Ω,P),

where i∗ (T + F,Uj ∩ Ω, X) : = i∗ (T + F | Uj , Uj ∩ Ω,P), j = 1, 2.

(c) ( Homotopy Invariance property). The fixed point index i∗ (T +H(t, .), U ∩Ω,P) does

not depend on the parameter t ∈ [0, 1] whenever

(i) H : [0, 1]× U → E is continuous and H(t, x) is uniformly continuous in t with respect

to x ∈ U,

(ii) H([0, 1]× U) ⊂ (I − T )(Ω),

(iii) H(t, .) : U → E is a l-set contraction with 0 ≤ l < h − 1 and l does not depend on

t ∈ [0, 1],

(iv) Tx+H(t, x) 6= x, for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(d) ( Solvability property). If i∗ (T + F,U ∩ Ω,P) 6= 0, then T + F has a fixed point in

U ∩ Ω.

Next, we compute the index i∗ under certain considerations.
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Proposition 1.2.12. Let U be a bounded open subset of P with 0 ∈ U. Assume that

T : Ω ⊂ P → E is an expansive mapping with constant h > 1, F : U → E is a k-set

contraction with 0 ≤ k < h− 1, and F (U) ⊂ (I − T )(Ω). If

Fx 6= (I − T )(λx), for all x ∈ ∂U ∩ Ω and λ ≥ 1,

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 1.

Proof. The mapping (I − T )−1F : U → P is a strict k
h−1 -set contraction and it is readily

seen that the following condition of Leray-Schauder type is satisfied

(I − T )−1Fx 6= λx, for all x ∈ ∂U and λ ≥ 1.

In fact, if there exist x0 ∈ ∂U and λ0 ≥ 1 such that (I − T )−1Fx0 = λ0x0.

Then Fx0 = (I − T )(λ0x0), which contradicts our assumption. Our claim then follows

from (1.2.8) and Proposition 1.2.5.

Now, we extend the result of Proposition 1.2.6 to the case of the sum T +F, where T

is an expansive mapping and F is a completely continuous one.

Proposition 1.2.13. Assume that T : Ω → E is an expansive mapping with constant

h > 1, F : U → E is a completely continuous mapping and F (U) ⊂ (I − T )(Ω). Suppose

that T + F has no fixed point on ∂U ∩ Ω. Then we have the following results: If 0 ∈ U

and there exists ε > 0 small enough such that

Fx 6= (I − T )(λx) for all λ ≥ 1 + ε, x ∈ ∂U and λx ∈ Ω,

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 1.

Proof. The mapping (I − T )−1F : U → P is completely continuous without fixed point

on ∂U and it is readily seen that the following condition is satisfied

(I − T )−1Fx 6= λx for all x ∈ ∂U and λ ≥ 1 + ε.
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Then, our claim follows from the definition of i∗ and the Proposition 1.2.6.

Remark 1.2.14. Proposition 1.2.13 is an extension of Proposition 1.2.12 in the case

where the map F is completely continuous.

Proposition 1.2.15. Let U be a bounded open subset of P . Assume that T : Ω ⊂ P → E

is an expansive mapping with constant h > 1, F : U → E is a k-set contraction with

0 ≤ k < h− 1, and F (U) ⊂ (I − T )(Ω). If there exists u0 ∈ P∗ such that

Fx 6= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0), (1.2.9)

then the fixed point index i∗ (T + F,U ∩ Ω,P) = 0.

Proof. The mapping (I − T )−1F : U → P is strict k
h−1 -set contraction and for some

u0 ∈ P∗ this operator satisfies

x− (I − T )−1Fx 6= λu0, ∀x ∈ ∂U, ∀λ ≥ 0.

By (1.2.8) and Proposition 1.2.8, we deduce that

i∗ (T + F,U ∩ Ω,P) = i ((I − T )−1F,U,P) = 0.

2. Case of k-set contraction perturbed by a map T where (I − T ) is Lipschitz

invertible

Let E be a real Banach space and P be a cone of E, Ω ⊂ P and U is a bounded open

subset of P . Assume that T : Ω → E be such that (I − T ) is Lipschitz invertible with
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constant γ > 0, F : U → E is a k-set contraction mapping with 0 ≤ k < γ−1. Suppose

that

F (U) ⊂ (I − T )(Ω),

and

x 6= Tx+ Fx, for all x ∈ ∂U
⋂

Ω.

Then x 6= (I − T )−1Fx, for all x ∈ ∂U and the mapping (I − T )−1F : U → P is a strict

set contraction with constant kγ < 1. Indeed, (I − T )−1F is continuous and bounded;

and for any bounded set B in U , we have

α(((I − T )−1F )(B)) ≤ γ α(F (B)) ≤ kγ α(B).

The fixed point index i ((I − T )−1F,U,P) is well defined. Thus we put,

i∗ (T + F,U
⋂

Ω,P) =


i ((I − T )−1F,U,P), if U ⋂Ω 6= ∅

0, if U ⋂Ω = ∅.
(1.2.10)

The proof of our theoretical result presented in Chapter 4 invokes the following main

properties of the fixed point index i∗.

(i) (Normalization) If Fx = y0, for all x ∈ U, where (I − T )−1y0 ∈ U ∩ Ω, then

i∗ (T + F,U ∩ Ω,P) = 1.

(ii) (Additivity) For any pair of disjoint open subsets U1, U2 ⊂ U such that T +F has no

fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω,P) = i ∗(T + F,U1 ∩ Ω,P) + i ∗(T + F,U2 ∩ Ω,P).

(iii) (Homotopy invariance) The fixed point index i ∗(T + H(., t), U ∩ Ω,P) does not

depend on the parameter t ∈ [0, 1], where
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(a) H : [0, 1]× U → E is continuous and H(t, x) is uniformly continuous in t with

respect to x ∈ U,

(b) H([0, 1]× U) ⊂ (I − T )(Ω),

(c) H(t, .) : U → E is a `-set contraction with 0 ≤ ` < γ−1 for all t ∈ [0, 1],

(d) Tx+H(t, x) 6= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(vi) (Solvability) If i ∗(T + F,U ∩ Ω,P) 6= 0, then T + F has a fixed point in U ∩ Ω.

For more details about the definition of the index i∗ and its properties see [16, 26].

Now, we compute the index i∗ under certain considerations.

Proposition 1.2.16. Assume that the mapping T : Ω ⊂ P → E be such that (I − T )

is Lipschitz invertible with constant γ > 0, F : U → E is a k-set contraction with

0 ≤ k < γ−1, and tF (U) ⊂ (I − T )(Ω) for all t ∈ [0, 1]. If (I − T )−10 ∈ U , and

(I − T )x 6= λFx for all x ∈ ∂U
⋂

Ω and 0 ≤ λ ≤ 1, (1.2.11)

then the fixed point index i∗ (T + F,U
⋂Ω,P) = 1.

Proof. Consider the homotopic deformation H : [0, 1]× U → P defined by

H(t, x) = (I − T )−1tFx.

The operator H is continuous and uniformly continuous in t for each x. Moreover, H(t, .)

is a strict kγ-set contraction for each t and the mapping H(t, .) has no fixed point on ∂U .

Otherwise, there would exist some x0 ∈ ∂U
⋂Ω and t0 ∈ [0, 1] such that

x0 − Tx0 = t0Fx0,
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which contradicts our assumption.

From the invariance under homotopy and the normalization property of the index fixed

point, we deduce that

i∗ ((I − T )−1F,U,P) = i∗ ((I − T )−10, U,P) = 1.

Consequently, from (1.2.10), we deduce that

i∗ (T + F,U
⋂

Ω,P) = 1,

which completes the proof.

Proposition 1.2.17. Let U be a bounded open subset of P with 0 ∈ U. Assume that the

mapping T : Ω ⊂ P → E be such that (I − T ) is Lipschitz invertible with constant γ > 0,

F : U → E is a k-set contraction with 0 ≤ k < γ−1, and F (U) ⊂ (I − T )(Ω). If

Fx 6= (I − T )(λx) for all x ∈ ∂U, λ ≥ 1 and λx ∈ Ω,

then the fixed point index i∗ (T + F,U
⋂Ω,P) = 1.

Proof. The mapping (I − T )−1F : U → P is strict γk-set contraction and it is readily

seen that the following condition of Leray-Schauder type is satisfied

(I − T )−1Fx 6= λx, for all x ∈ ∂U and λ ≥ 1.

In fact, if there exist x0 ∈ ∂U and λ0 ≥ 1 such that (I − T )−1Fx0 = λ0x0.

Then Fx0 = (I − T )(λ0x0), which contradicts our assumption. The claim then follows

from (1.2.10) and the Proposition 1.2.5.

Proposition 1.2.18. Assume that the mapping T : Ω ⊂ P → E be such that (I − T )

is Lipschitz invertible with constant γ > 0, F : U → E is a k-set contraction with

0 ≤ k < γ−1, and F (U) ⊂ (I − T )(Ω). If there exists u0 ∈ P∗ such that

Fx 6= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U
⋂

(Ω + λu0), (1.2.12)
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then the fixed point index i∗ (T + F,U
⋂Ω,P) = 0.

Proof. The mapping (I−T )−1F : U → P is strict γk-set contraction and for some u0 ∈ P∗

this operator satisfies

x− (I − T )−1Fx 6= λu0, ∀x ∈ ∂U, ∀λ ≥ 0.

By (1.2.10) and the Proposition 1.2.8, we deduce that

i∗ (T + F,U
⋂

Ω,P) = i ((I − T )−1F,U,P) = 0.

1.3 Some fixed point theorems

1.3.1 Expansion-compression fixed point theorem of Leggett-

Williams type

In what follows, P will refer to a cone in a Banach space (E, ‖.‖). Let χ and ψ be

nonnegative continuous functionals on P . For positive real numbers a and b, we define

the sets:

P(χ, b) = {x ∈ P : χ(x) ≤ b},

P(χ, ψ, a, b) = {x ∈ P : a ≤ χ(x) and ψ(x) ≤ b}.

The expansion-compression fixed point theorems of Krasnosel’skii type give us fixed points

localized in a conical shell of the form Pab = {x ∈ P : a ≤ ‖x‖ ≤ b} (see [27, 32, 33]) ,

while with the Leggett-Williams theorems type, the fixed points are localized in a conical

shell of the form P(χ, ψ, a, b) (see [4, 34]). In [3, Theorem 4.1], Anderson et al, have

developed a functional expansion-compression fixed point theorem of Leggett-Williams
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type. They have discussed the existence of at least one solution in P(β, α, r, R) or in

P(α, β, r, R) for the nonlinear operational equation Ax = x, where A is a completely

continuous nonlinear map acting in P , α is a nonnegative continuous concave functional

on P and β is a nonnegative continuous convex functional on P . Noting that, in [3], the

authors provided more general results than those obtained in [4, 6, 29, 30, 34, 42] for

completely continuous mappings. An illustration of the compressive and the expansive

form, for E = R2, χ(x) = ψ(x) = ‖x‖, x ∈ R2
+, is depicted in the following figure

Theorem 1.3.1. [3, Theorem 4.1] Let P be a cone in a real Banach space E, α is a

nonnegative continuous concave functional on P, β is a nonnegative continuous convex

functional on P and T : P −→ P is a completely continuous operator.

If there exist nonnegative numbers a, b, c and d such that

(A1) {x ∈ P : a < α (x) and β (x) < b} 6= ∅;

(A2) if x ∈ P with β (x) = b and α (x) ≥ a, then β (Tx) < b;

(A3) if x ∈ P with β (x) = b and α (Tx) < a, then β (Tx) < b;

(A4) {x ∈ P : c < α (x) and β (x) < d} 6= ∅;

(A5) if x ∈ P with α (x) = c and β (x) ≤ d, then α (Tx) > c;
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(A6) if x ∈ P with α (x) = c and β (Tx) > d, then α (Tx) > c;

and if

(H1) a < c, b < d, {x ∈ P : b < β (x) and α (x) < c} 6= ∅, P (β, b) ⊂ P (α, c) and

P (α, c) is bounded then T has a fixed point x∗ in P (β, α, b, c) ;

(H2) c < a, d < b, {x ∈ P : a < α (x) and β (x) < d} 6= ∅, P (α, a) ⊂ P (β, d)

and P (β, d) is bounded then T has a fixed point x∗ in P (α, β, a, d) .

Proof. We will prove the expansion result (H1). The proof of the compression result (H2)

is similar. Let

U = {x ∈ P : β(x) < b},

V = {x ∈ P : α(x) < c},

Then, the interior of V − U is given by

W = (V − U)o = {x ∈ V : b < β(x) and α(x) < c},

Thus U , V and W are bounded (they are subsets of V which is bounded by condition

(H1)), non-empty (by conditions (A1), (A4) and (H1)) and open subsets of P . To prove

the existence of a fixed point for our operator T in P (β, α, b, c) , it is enough for us to

show that i(T,W,P) 6= 0 since W is the interior of P (β, α, b, c) .

Claim 1. Tx 6= x for all x ∈ ∂U. In fact,

Let z0 ∈ ∂U, then β(z0) = b. Suppose that z0 = Tz0. If α(Tz0) < a then β(Tz0) < b by

condition (A3), and if α(z0) = α(Tz0) ≥ a then β(Tz0) < b by condition (A2). Hence in

either case we have that z0 6= Tz0, thus T does not have any fixed points on ∂U .

Claim 2. Tx 6= x for all x ∈ ∂V. In fact,

Let z1 ∈ ∂V, then α(z1) = c. Suppose that z1 = Tz1. If β(Tz1) > d then α(Tz1) > c by
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condition (A6), and if β(z1) = β(Tz1) ≤ d then α(Tz1) > c by condition (A5). Hence in

either case we have that z1 6= Tz1, thus T does not have any fixed points on ∂V .

Let ω1 ∈ {x ∈ P : a < α(x) and β(x) < b} and let H1 : [0, 1]× U → P be defined by

H1(t, x) = (1− t)Tx+ tω1.

Clearly, H1 is continuous and H1([0, 1]× U) is relatively compact.

Claim 3. H1(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂U . In fact,

Suppose the contrary, that is there exist (t1, x1) ∈ [0, 1]× ∂U such that H1(t1, x1) = x1.

Since x1 ∈ ∂U we have that β(x1) = b. Either α(Tx1) < a or α(Tx1) ≥ a.

Case (1): α(Tx1) < a. By condition (A3) we have β(Tx1) < b, which is a contradiction

since
b = β(x1) = β ((1− t1)Tx1 + t1ω1)

≤ (1− t1)β(Tx1) + t1β(ω1)

< b.

Case (2): α(Tx1) ≥ a. We have that α(x1) ≥ a since

α(x1) = α ((1− t1)Tx1 + t1ω1)

≥ (1− t1)α(Tx1) + t1α(ω1)

≥ a,

and thus by condition (A2) we have β(Tx1) < b, which is the same contradiction we

arrived at in the previous case.

Therefore, we have shown that H1(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂U , and thus by the

homotopy invariance property of the index i

i(T, U,P) = i(ω1, U,P)

and by the normality property of the index i

i(T, U,P) = i(ω1, U,P) = 1.
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Let ω2 ∈ {x ∈ P : c < α(x) and β(x) < d} and let H2 : [0, 1]× V → P be defined by:

H1(t, x) = (1− t)Tx+ tω2.

Clearly, H2 is continuous and H2([0, 1]× V ) is relatively compact.

Claim 4. H2(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂V . In fact,

Suppose not; that is, there exist (t2, x2) ∈ [0, 1]× ∂V such that H2(t2, x2) = x2.

Since x2 ∈ ∂V we have that α(x2) = c. Either β(Tx2) ≤ d or β(Tx2 > d.

Case (1): β(Tx2 > d. By condition (A6) we have α(Tx2) > c, which is a contradiction

since
c = α(x2) = α ((1− t2)Tx2 + t2ω2)

≥ (1− t2)α(Tx2) + t2α(ω2)

> c.

Case (2): β(Tx2) ≤ d. We have that β(x2) ≤ d since

β(x1) = β ((1− t2)Tx2 + t2w2)

≤ (1− t2)β(Tx2) + t2β(w2)

≤ d,

and thus by condition(A5) we have α(Tx2) > c, which is the same contradiction we arrived

at in the previous case.

Therefore, we have shown that H2(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂V and thus by the

homotopy invariance property of the index i

i(T, V,P) = i(ω2, V,P).

By the solution property of the index i (since ω2 6∈ V the index cannot be nonzero) we

have

i(T, V,P) = i(ω2, V,P) = 0.
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Since U and W are disjoint open subsets of V and T has no fixed points in V − (U ∪ V )

(by claims 1 and 2), by the additivity property of the index i

i(T, V,P) = i(T, U,P) + i(T,W,P).

Consequently, we have

i(T,W,P) = −1

and thus by the solution property of the index i the operator T has a fixed point

x∗ ∈ W ⊂ P (β, α, b, c) .

1.3.2 Fixed point theorem for the sum of two operators

To prove one of our existence results, in chapter 3, we will use Theorem 1.3.2, that we

will present and demonstrate in the sequel.

Theorem 1.3.2. [25] Let ε > 0, R > 0, E be a Banach space and X = {x ∈ E :

‖x‖ ≤ R}. Let also, Tx = −εx, x ∈ X, S : X → E is a continuous map such that

(I − S)(X) resides in a compact subset of E and

{x ∈ E : x = −λ(I − S)x, ‖x‖ = R} = ∅ (1.3.1)

for any λ ∈
(
0, 1

ε

)
. Then there exists x∗ ∈ X such that Tx∗ + Sx∗ = x∗.

Proof. Define

r
(1
ε
x
)

=


1
ε
x if ‖x‖ ≤ εR

Rx
‖x‖ if ‖x‖ > εR.
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Then r
(
−1
ε
(I − S)

)
: X → X is continuous and compact.

Suppose that r
(
−1
ε
(I − S)

)
6= x for x ∈ ∂X, otherwise we are finished. From Proposi-

tion 1.2.9 and the existence property of the fixed point index, it follows that there exists

x∗ ∈ X̊ so that

r
(
−1
ε
(I − S)x∗

)
= x∗.

Assume that −1
ε
(I − S)x∗ 6∈ X. Then

∥∥∥∥(I − S)x∗
∥∥∥∥ > Rε,

R

‖(I − S)x∗‖ <
1
ε

and

x∗ = − R

‖(I − S)x∗‖(I − S)x∗ = r
(
−1
ε
(I − S)x∗

)

and hence, ‖x∗‖ = R. This contradicts with (1.3.1). Therefore −1
ε
(I − S)x∗ ∈ X and

x∗ = r
(
−1
ε
(I − S)x∗

)
= −1

ε
(I − S)x∗

or

−εx∗ + Sx∗ = x∗,

or

Tx∗ + Sx∗ = x∗.

This completes the proof.

1.3.3 Multiple fixed point theorem for the sum of two operators

In this section, we present a multiple fixed point theorem. The proof rely on the

results of Propositions 1.2.13 and 1.2.15 producing the computation of the index i∗. The
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following result will be used to prove the existence of at least two nonnegative solutions

to the problem (3.1.1)-(3.1.2).

Theorem 1.3.3. Let P be a cone in a Banach space (E, ‖.‖). Let Ω be a subset of P,

and U1, U2 and U3 three open bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1.

Assume that T : Ω → E is an expansive mapping with constant h > 1, S : U3 → E is a

completely continuous mapping and S(U3) ⊂ (I − T )(Ω). Suppose that (U2 \ U1) ∩ Ω 6=

∅, (U3 \ U2) ∩ Ω 6= ∅, and there exists u0 ∈ P∗ such that the following conditions hold:

(i) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0),

(ii) there exists ε > 0 small enough such that Sx 6= (I − T )(λx), for all λ ≥ 1 + ε, x ∈

∂U2 and λx ∈ Ω,

(iii) Sx 6= (I − T )(x− λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω

or

x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.

Proof. If Sx = (I − T )x for x ∈ ∂U2 ∩ Ω, then we get a fixed point x1 ∈ ∂U2 ∩ Ω of

the operator T + S. Suppose that Sx 6= (I − T )x for any x ∈ ∂U2 ∩ Ω. Without loss of

generality, assume that Tx+Sx 6= x on ∂U1 ∩Ω and Tx+Sx 6= x on ∂U3 ∩Ω, otherwise

the result is obvious. By Propositions 1.2.13 and 1.2.15, we have

i∗ (T + S, U1 ∩ Ω,P) = i∗ (T + S, U3 ∩ Ω,P) = 0,

and

i∗ (T + S, U2 ∩ Ω,P) = 1.
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The additivity property of the index i∗ yields

i∗ (T + S, (U2 \ U1) ∩ Ω,P) = 1 and i∗ (T + S, (U3 \ U2) ∩ Ω,P) = −1.

Consequently, by the existence property of the index i∗, T+S has at least two fixed points

x1 ∈ (U2 \ U1) ∩ Ω and x2 ∈ (U3 \ U2) ∩ Ω.



2 Integral formulation of some boundary value
problems

2.1 First order boundary value problems

Consider the following first order differential equation

x′ = f(t, x), t ∈ [a, b], (2.1.1)

subject to the boundary conditions

Mx(a) +Rx(b) = 0, (2.1.2)

where M,R ∈ R, M +R 6= 0, a < b <∞ are given constants and f ∈ C([a, b]× R).

Lemma 2.1.1. The first order BVP (2.1.1)-(2.1.2) is equivalent to the following integral

equation

x(t) =
∫ t

a
f(s, x(s))ds− R

M +R

∫ b

a
f(s, x(s))ds, t ∈ [a, b]. (2.1.3)

Proof. Let x : [a, b]→ R satisfy (2.1.1) and (2.1.2). It is easy to see that

x (t) = x (a) +
∫ t

a
f(s, x(s))ds, t ∈ [a, b]. (2.1.4)

43
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So (2.1.2) gives

0 = Mx (a) +R

(
x (a) +

∫ b

a
f(s, x(s))ds

)
, (2.1.5)

according to (2.1.5), we obtain

x (a) = − R

M +R

∫ b

a
f(s, x(s))ds. (2.1.6)

So substituting (2.1.6) into (2.1.4), we obtain

x(t) =
∫ t

a
f(s, x(s))ds− R

M +R

∫ b

a
f(s, x(s))ds, t ∈ [a, b].

Conversely, if x is a solution to (2.1.3) then is it easy to show that (2.1.1) and (2.1.2)

hold by direct calculation.

2.2 Second order two-point boundary value prob-

lems

We consider the following linear second order differential equation

(E) (p(t)y′)′ + q(t)y = h(t), x ∈ (a, b),

where p, q et h are regular functions, subjected to separated linear boundary conditions :

(F)


α1y(a) + α2y

′(a) = γ

β1y(b) + β2y
′(b) = δ,

where α2
1 + α2

2 6= 0 et β2
1 + β2

2 6= 0. In this case, The Green’s function associated to the

problem (E) + (F) can be determined as follows :

G(t, s) = 1
p(t)W (t)


φ1(t)φ2(s), a ≤ t ≤ s ≤ b,

φ1(s)φ2(t), a ≤ s ≤ t ≤ b,
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where φ1 and φ2 are, respectively, the solutions of the Cauchy’s problems:

(EH) +


φ1(a) = α2

φ′1(a) = −α1

and (EH) +


φ2(b) = β2

φ
′
2(b) = −β1,

and W (t) = φ1(t)φ′2(t)− φ′1(t)φ2(t) 6= 0 is their Wronskian.

Note that the product pW is constant in [a, b].

Particular case:

Consider the Dirichlet’s problem posed in [a, b]

(P)


y′′ = h(t), a < t < b

y(a) = y(b) = 0.

Let φ1 and φ2 be the solutions of Cauchy’s problems :

φ′′1 = 0

φ1(a) = 0

φ′1(a) = −1.

and



φ′′2= 0

φ2(b) = 0

φ′2(b) = −1.

We find φ1(x) = a− t, φ2(x) = b− t, W (φ1, φ2) = b− a 6= 0 and p(t) = 1, t ∈ [a, b].

Hence the Green’s function

G(t, s) = 1
b− a


(t− a)(s− b), if a ≤ t ≤ s ≤ b

(s− a)(t− b), if a ≤ s ≤ t ≤ b.

(2.2.1)

Lemma 2.2.1. (The nonlinear case).

Let f ∈ C([a, b]× R), then the nonlinear boundary value problem
−y′′ + f(t, y) = 0, t ∈ (a, b),

y(a) = 0, y(b) = 0,
(2.2.2)

is equivalent to the integral equation

y(t) =
∫ b

a
G(t, s) f(s, y(s))ds, t ∈ [a, b].

where G is given in (2.2.1).
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2.3 Second order three-point boundary value prob-

lems

Consider the following second order nonlinear differential equation

y′′ + f(t, y) = 0, t ∈ (a, b),
(2.3.1)

subject to the boundary conditions

y(a) = ky(η), y(b) = 0, (2.3.2)

where η ∈ (0, 1), k ∈ R with k(b− η) 6= b− a and f ∈ C([a, b]× [0,∞)).

Lemma 2.3.1. (The linear case, see[49]) Assume that k (b− η) 6= b−a and g ∈ C([a, b]).

Then y ∈ C2([a, b]) is a solution of the linear boundary value problem
y′′ + g(t) = 0, t ∈ (a, b),

y(a) = ky(η), y(b) = 0,
(2.3.3)

if and only if

y(t) =
∫ b

a
G(t, s)g(s) ds, t ∈ [a, b], (2.3.4)

where the Green’s function G is defined on [a, b]× [a, b] by

G(t, s) = H(t, s) + k(b− t)
b− a− k(b− η)H(η, s), t, s ∈ [a, b],

with

H(t, s) = 1
b− a


(t− a) (b− s) , a ≤ t ≤ s ≤ b,

(s− a) (b− t) , a ≤ s ≤ t ≤ b.

(2.3.5)
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Proof. It is well known that the function H, as in (2.3.5), is the Green function of the

second-order two-point linear boundary value problem
y′′ + g(t) = 0, t ∈ (a, b),

y(a) = 0, y(b) = 0,
(2.3.6)

and the solution of (2.3.6) is given by

z(t) =
∫ b

a
H(t, s) g(s)ds, t ∈ [a, b]. (2.3.7)

Next, the three-point boundary value problem (2.3.3) can be obtained from replacing

y(a) = 0 by y(a) = ky(η) in (2.3.6). Thus, we suppose that the solution of the three-

point boundary value problem (2.3.3) can be expressed by:

y(t) = z(t) + (c+ d t) z(η), t ∈ [a, b], (2.3.8)

where c and d are constants that will be determined.

From (2.3.7) and (2.3.8), we get

y(a) = (c+ d a) z(η);

y(b) = (c+ d b) z(η);

y(η) = (c+ d η + 1) z(η).

Putting these into (2.3.2) yields
c+ d a = k (c+ dη + 1) ,

c+ d b = 0.
(2.3.9)

Since k (b− η) 6= b− a, solving the linear system (2.3.9), we obtain

c = kb
b−a−k(b−η) ,

d = −k
b−a−k(b−η) .
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Hence, c+ dt = k(b−t)
b−a−k(b−η) . By substitution in (2.3.8), we deduce

y (t) = z (t) + k(b− t)
b− a− k(b− η)z (η) .

This together with (2.3.7) implies that

y(t) =
∫ b

a
H(t, s) g(s)ds+ k(b− t)

b− a− k(b− η)

∫ b

a
H(η, s) g(s)ds.

whence the form of the Green’s function G.

Conversely, let y ∈ C1([a, b]) be defined by (2.3.4). A direct differentiation of (2.3.4)

gives

y′(t) =
∫ b

a
Gt(t, s)g(s) ds, t ∈ [a, b], (2.3.10)

where Gt(t, s) = Ht(t, s)− k
b−a−k(b−η) H(η, s) is the partial derivative of G(t, s) with respect

to t and

Ht(t, s) = 1
b− a


b− s, a ≤ t ≤ s ≤ b,

a− s, a ≤ s ≤ t ≤ b.

Differentiating again (2.3.10), we finally arrive at

y′′(t) = −g(s), t ∈ (a, b).

Hence y ∈ C2([a, b]) and y satisfies (2.3.6).

Consequently, we have

Corollary 2.3.2. (The nonlinear case). Let η ∈ (0, 1), k ∈ R with k(b− η) 6= b− a and

f ∈ C([a, b]× [0,∞)), then the nonlinear boundary value problem
y′′ + f(t, y) = 0, t ∈ [a, b],

y(a) = ky(η), y(b) = 0,
(2.3.11)

is equivalent to the integral equation

y(t) =
∫ b

a
G(t, s) f(s, y(s))ds, t ∈ (a, b).

where G is given by (2.3.1) in Lemma 2.3.1.



3 Existence of solutions for a class of first order
boundary value problems

The results of this chapter are obtained by Mouhous, Goergiev and Mebarki in [36].

3.1 Introduction

In this chapter, we investigate the existence of solutions of the following first order

differential equation

x′ = f(t, x), t ∈ [a, b], (3.1.1)

subject to the boundary conditions

Mx(a) +Rx(b) = 0, (3.1.2)

where M,R ∈ R, M +R 6= 0, a < b <∞ are given constants and

(H1) f ∈ C([a, b]×R), |f(t, x)| ≤
k∑
j=1

aj(t)|x|pj , (t, x) ∈ [a, b]×R, aj ∈ C([a, b]), 0 ≤ aj ≤

A on [a, b], pj ≥ 0, j ∈ {1, . . . , k}.

The first-order BVPs arise in many applications of science, engineering and technol-

ogy (see [5, Chapter 1]). Thanks to these applications, more theoretical studies of the

subject can be developed, including: solvability, uniqueness, positivity and multiplicity of

49
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solutions. For the recent developments involving existence of solutions to BVPs for first

order differential equations, we can refer to [18, 31, 39, 43, 44, 45, 46].

In this work, we propose a new approach to ensure the existence of solutions for the first

order BVP (3.1.1)-(3.1.2). Our method involves new fixed point theorem (Theorem 1.3.3)

for the sum of two operators. The problem (3.1.1)-(3.1.2) one can consider as a scalar-

valued analogue of the problem in [44]. The scalar-valued analogues of the conditions

used in [44] are as follows:

(C1) there exist nonnegative constants α and K so that

|f(t, x)| ≤ αxf(t, x) +K, (t, x) ∈ [a, b]× R, and
∣∣∣∣MR

∣∣∣∣ ≤ 1,

(C2) there exist nonnegative constants α and K so that

|f(t, x)| ≤ −αxf(t, x) +K, (t, x) ∈ [a, b]× R and
∣∣∣∣ RM

∣∣∣∣ ≤ 1,

(C3) there exists a C1 function V : R → [0,∞) and nonnegative constants α and K so

that

|f(t, x)| ≤ αV ′(x)f(t, x) +K, (t, x) ∈ [a, b]× R and V (x(a)) ≥ V (x(b)),

(C4) there exists a C1 function V : R → [0,∞) and nonnegative constants α and K so

that

|f(t, x)| ≤ −αV ′(x)f(t, x) +K, (t, x) ∈ [a, b]× R and V (x(a)) ≤ V (x(b)).

Note that the conditions (C1),(C2), (C3),(C4) in the scalar-valued case are different from

the condition (H1). Moreover, in [44] there is an additional restriction
∣∣∣M
R

∣∣∣ ≤ 1 (
∣∣∣ R
M

∣∣∣ ≤ 1)

on R and M . Thus, we can consider our main result as a complementary result to these

of [44] in the scalar-valued case. Moreover, our main results are valid in the case when

R = 0. Thus, our main results can be applied for the classical initial value problems of

first order ODEs whenever f satisfies (H1).
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3.2 Main results

3.2.1 Auxiliary results

In [44], it is proved that the problem (3.1.1)-(3.1.2) is equivalent to the following

integral equation

x(t) =
∫ t

a
f(s, x(s))ds− R

M +R

∫ b

a
f(s, x(s))ds, t ∈ [a, b]. (3.2.1)

Let E = C([a, b]) be endowed with the maximum norm

‖x‖ = max
t∈[a,b]

|x(t)|.

For x ∈ E, define the operator

S1x(t) =
∫ t

a
f(s, x(s))ds− R

M +R

∫ b

a
f(s, x(s))ds− x(t), t ∈ [a, b].

By (3.2.1), it follows that if x ∈ E satisfies the equation S1x = 0, then it is a solution to

the problem (3.1.1)-(3.1.2). Fix B > 0 arbitrarily.

Lemma 3.2.1. Suppose that (H1) holds. For any x ∈ E with ‖x‖ ≤ B, we have

‖S1x‖ ≤ A
(

1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B.

Proof. We have

|S1x(t)| =
∣∣∣∣∣
∫ t

a
f(s, x(s))ds− R

M +R

∫ b

a
f(s, x(s))ds− x(t)

∣∣∣∣∣
≤

∫ b

a
|f(s, x(s))|ds+

∣∣∣∣ R

M +R

∣∣∣∣ ∫ b

a
|f(s, x(s))|ds+ |x(t)|

≤
(

1 +
∣∣∣∣ R

M +R

∣∣∣∣) ∫ b

a

k∑
j=1

aj(s)|x(s)|pjds+B

≤ A
(

1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B, t ∈ [a, b],
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whereupon

‖S1x‖ ≤ A
(

1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B.

This completes the proof.

Let g ∈ C([a, b]) be positive except at a finite number of points on [a, b] and

C =
∫ b

a
g(t)dt. (3.2.2)

For x ∈ E, define the operator

S2x(t) =
∫ t

a
g(τ)S1x(τ)dτ, t ∈ [a, b].

Lemma 3.2.2. Suppose (H1). If x ∈ E satisfies the integral equation

S2x(t) = c, t ∈ [a, b], c ∈ R, (3.2.3)

then x is a solution to the proplem (3.1.1)-(3.1.2).

Proof. We differentiate the equation (3.2.3) with respect to t and we get

g(t)S1x(t) = 0, t ∈ [a, b],

whereupon

S1x(t) = 0, t ∈ [a, b].

This completes the proof.

Lemma 3.2.3. Suppose that (H1) hold. Let x ∈ E be such that ‖x‖ ≤ B. Then

‖S2x‖ ≤ C

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B

 .
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Proof. Using Lemma 3.2.1, we arrive at

|S2x(t)| =
∣∣∣∣∫ t

a
g(τ)S1x(τ)dτ

∣∣∣∣

≤ C

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B

 , t ∈ [a, b].

Hence,

‖S2x‖ ≤ C

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B

 .
This completes the proof.

3.2.2 Existence of at least two nonnegative solutions

Let m > 0 be large enough and A, r, L, R1 be positive constants that satisfy the

following inequalities

(H2)


r < L < R1, R1 >

(
2

5m + 1
)
L,

C

(
A
(
1 +

∣∣∣ R
M+R

∣∣∣) (b− a)
k∑
j=1

R
pj
1 +R1

)
< L

5 ,

where C is the constant which appears in (3.2.2). Let ε > 0, For x ∈ E, define the

operators

T1x(t) = (1 +mε)x(t)− ε L10 ,

S3x(t) = −εS2x(t)−mεx(t)− ε L10 , t ∈ [a, b].

Note that any fixed point x ∈ E of the operator T + S3 is a solution to the problem

(3.1.1)-(3.1.2). Our main result in this section is as follows.

Theorem 3.2.4. Suppose that (H1) and (H2) hold. Then the problem (3.1.1)-(3.1.2) has

at least two nontrivial nonnegative solutions in C1([a, b]).
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Proof. We will use Theorem 1.3.3. Define the positive cone

P̃ = {x ∈ E : x ≥ 0 on [0, 1]}.

With P we will denote the set of all equicontinuous families in P̃ . Let

U1 = Pr = {v ∈ P : ‖v‖ < r},

U2 = PL = {v ∈ P : ‖v‖ < L},

U3 = PR1 = {v ∈ P : ‖v‖ < R1},

R2 = R1 + C

m
(A(1 + | R

M +R
|)(b− a)

k∑
j=1

R
pj
1 +R1) + L

5m,

Ω = PR2 = {v ∈ P : ‖v‖ ≤ R2}.

1. For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 +mε)‖v1 − v2‖,

whereupon T1 : Ω→ E is an expansive operator with a constant 1 +mε.

2. For v ∈ PR1 , we get

‖S3v‖ ≤ ε‖S2v‖+mε‖v‖+ ε
L

10

≤ ε

(
C

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

R
pj
1 +R1

+mR1 + L

10

)
.

Therefore S3(PR1 ) is uniformly bounded. Since S3 : PR1 → X is continuous, we

have that S3(PR1 ) is equicontinuous. Consequently S3 : PR1 → X is a completely

continuous mapping.

3. Let v1 ∈ PR1 . Set

v2 = v1 + 1
m
S2v1 + L

5m.



CHAPTER 3. EXISTENCE OF SOLUTIONS FOR A CLASS OF FIRST ORDER BOUNDARY
VALUE PROBLEMS 55

Note that S2v1 + L
5 ≥ 0 on [a, b]. We have v2 ≥ 0 on [a, b] and

‖v2‖ ≤ ‖v1‖+ 1
m
‖S2v1‖+ L

5m

≤ R1 + C

m

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

R
pj
1 +R1

+ L

5m
= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L

10 − ε
L

10

or

(I − T1)v2 = −εmv2 + ε
L

10
= S3v1.

Consequently S3(PR1 ) ⊂ (I − T1)(Ω).

4. Assume that for any u0 ∈ P∗ there exist λ > 0 and x ∈ ∂Pr ∩ (Ω + λu0) or

x ∈ ∂PR1 ∩ (Ω + λu0) such that

S3x = (I − T1)(x− λu0).

Then

−εS2x−mεx− ε
L

10 = −mε(x− λu0) + ε
L

10

or

−S2x = λmu0 + L

5 .

Hence,

‖S2x‖ =
∥∥∥∥λmu0 + L

5

∥∥∥∥ > L

5 .

This is a contradiction.
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5. Let ε1 = 2
5m . Assume that there exist λ1 ≥ ε1 + 1 and x1 ∈ ∂PL, λ1x1 ∈ PR2 such

that

S3x1 = (I − T1)(λ1x1). (3.2.4)

Since x1 ∈ ∂PL and λ1x1 ∈ PR2 , it follows that

( 2
5m + 1

)
L < λ1L = λ1‖x1‖ ≤ R2.

Moreover, −εS2x1 −mεx1 − ε L10 = −λ1mεx1 + ε L10 ,

or

S2x1 + L

5 = (λ1 − 1)mx1.

From here,

2L5 >
∥∥∥∥S2x1 + L

5

∥∥∥∥ = (λ1 − 1)m‖x1‖ = (λ1 − 1)mL

and
2

5m + 1 > λ1,

which is a contradiction.

Therefore all conditions of Theorem 1.3.3 hold. Hence, the problem (3.1.1)-(3.1.2) has at

least two solutions u1 and u2 so that

‖u1‖ = L < ‖u2‖ < R1

or

r < ‖u1‖ < L < ‖u2‖ < R1.

This completes the proof.
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3.2.3 Applications

Consider the boundary value problem:

x′(t) = (x(t))2 + 1
1+t2 (x(t))4 + 1, t ∈ [0, 1],

2x(0) + x(1) = 0.
(3.2.5)

Here

f(t, x) = x2 + 1
1 + t2

x4 + 1, k = 3, a1(t) = 1, a2(t) = 1
1 + t2

, t ∈ [0, 1],

a = 0, b = 1, p1 = 2, p2 = 4, p3 = 0, M = 2, R = 1.

Firstly, we will note that the scalar-valued case of the results in [44] are not applicable

for the BVP (3.2.5). Here R
M

= 1
2 < 1. Assume that there are nonnegative constants α

and K so that |f(t, x)| ≤ −αxf(t, x) +K, (t, x) ∈ [0, 1]× R, which is equivalent to

x2 + 1
1 + t2

x4 + 1 ≤ −αx
(
x2 + 1

1 + t2
x4 + 1

)
+K, (t, x) ∈ [0, 1]× R,

or

(1 + αx)
(
x2 + 1

1 + t2
x4 + 1

)
≤ K, (t, x) ∈ [0, 1]× R.

The last inequality is impossible because

lim
x→∞

(1 + αx)
(
x2 + 1

1 + t2
x4 + 1

)
=∞,

i.e., (C2) does not hold. Now, we will show that our main results are applicable for the

BVP (3.2.5). We have A = 1. Take B = 1. We have

A
(

1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B =
(

1 + 1
3

)
(1 + 1 + 1) + 1 = 5.

Let

g(t) = 2
1010 t, t ∈ [0, 1].
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Then ∫ 1

0
g(t)dt = 2

1010

∫ 1

0
tdt = 1

1010 .

Take C = ε = 1
1010 . Let now

R1 = 10, L = 5, r = 4, m = 1050.

Then

r < L < R1, 10 = R1 >
( 2

5 · 1050 + 1
)

5 =
( 2

5m + 1
)
L

and

C

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

R
pj
1 +R1



= 1
1010

(4
3 ·
(
102 + 103 + 1

)
+ 10

)
<

1
105 < 1 = L

5 .

So, (H2) holds. Then, by Theorem 3.2.4, it follows that the BVP (3.2.5) has at least two

nonnegative solutions.

Let now, R = 0 and f , k, a1, a2, a, b, p1, p2, p3, M , R1, L, r, m, C, ε and g be as

above. Consider the IVP

x′(t) = (x(t))2 + 1
1+t2 (x(t))4 + 1, t ∈ [0, 1],

x(0) = 0.
(3.2.6)

Then

A
(

1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

Bpj +B = 1 · (1 + 1 + 1) + 1 = 4

C

A(1 +
∣∣∣∣ R

M +R

∣∣∣∣) (b− a)
k∑
j=1

R
pj
1 +R1


= 1

1010

(
1 ·
(
102 + 103 + 1

)
+ 10

)
<

1
105 < 1 = L

5 .

So, (H2) holds. Then the IVP (3.2.6) has at least two nonnegative solutions.
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3.3 Concluding remarks

1. In this work, we have investigated a class of boundary value problems for first order

ODEs. The nonlinear term depends on the solution and may change sign, and it

satisfies general polynomial growth conditions. We prove existence of at least one

solution and two nonnegative solutions in C1([a, b]). The proof of the main results

is based upon recent theoretical results.

2. The conditions (3.1.2) are general and they capture in particular the anti-periodic

conditions corresponding to the case M = R = 1.

3. Our main results obtained in this work and the results in [44] are complementary.

Moreover, in [44], there is an additional restriction on the constants R and M

(
∣∣∣M
R

∣∣∣ ≤ 1 or
∣∣∣ R
M

∣∣∣ ≤ 1). Note that our main results also depend on the hypothesis

(H2), where the conditions are controlled by the constants C, ε and B and the

source term f does not depend on these constants.

4. New existence results of multiple non trivial nonnegative solutions are proved using

recent fixed point theorems on cones in Banach spaces for the sum of two operators.

5. It is noted that Theorem 3.2.4 can be generalized to the case where f ∈ C([a, b] ×

Rn,Rn), n > 1. In this case, we will consider the space E1 = (C([a, b]))n endowed

with the norm

‖x‖1 = max
j∈{1,...,n}

‖xj‖, x = (x1, . . . , xn).

The hypothesis (H1) takes the form

(H1′) f ∈ C([a, b]× R,Rn), f = (f1, . . . , fn), |fi(t, x)| ≤
k∑
j=1

aji(t)|x|pji ,
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(t, x) ∈ [a, b]×Rn, aji ∈ C([a, b]), 0 ≤ aji ≤ A on [a, b], pji ≥ 0, j ∈ {1, . . . , k},

i ∈ {1, . . . , n},

and the hypothesis (H2) will be the same.

6. These theoretical results can be used to study other classes of BVP as well as some

IVP in ODEs. For these aims, firstly we search an integral representation of the

solutions of the considered IVPs/BVPs. Then we use it to define the operators S1,

S2, S, S̃ and T . Finally, we apply Theorem 1.3.3.



4 Existence of fixed points in conical shells of a
Banach space and application to ODEs

The results of this chapter are obtained by Mouhous and Mebarki in [35].

4.1 Introduction

In this chapter, the functional expansion-compression fixed point theorem of Leggett-

Williams type developed in [3] is extended to the class of mappings of the form T + F ,

where (I − T ) is Lipschitz invertible and F is a k-set contraction. As application, the

existence and multiplicity of nontrivial nonnegative solutions for a nonlinear second order

three-point boundary value problem is established.

Recently, in 2019 a new direction of research in the theory of fixed point in ordered

Banach spaces for the sum of two operators is opened by Djebali and Mebarki [16].

Then, several fixed point theorems, including Krasnosel’skii and Leggett-Williams types

theorems in cones, have been established (see [11, 14, 15, 20, 22, 26]). These theorems

have been applied to obtain existence results for nonnegative solutions of various types

of boundary and/or initial value problems (see [19, 20, 23, 24, 26]). In our work, we have

used the fixed point index theory developed in [16] and [26] to generalize the main result

61
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of [3, Theorem 4.1] for the sum T + F where (I − T ) is a Lipschitz invertible mapping

with constant γ > 0 and F is a k-set contraction with k γ < 1.

4.2 Main results

Let P be a cone in a Banach space (E, ‖.‖) and Ω a subset of P . Our main result is

as follows.

Theorem 4.2.1. Let α be a nonnegative continuous concave functional on P and β be a

nonnegative continuous convex functional on P. Let T : Ω ⊂ P → E be such that (I −T )

is Lipschitz invertible mapping with constant γ > 0, F : P → E is a k-set contraction

with 0 ≤ k < γ−1. Assume that there exist four nonnegative numbers a, b, c, d and z0 ∈ P

such that β((I − T )−10) < b, α((I − T )−1z0) > c and

Fx+ Tx ∈ P , Tx ∈ P , for all x ∈ ∂P(β, b) ∪ ∂P(α, c),

λ F (P(β, b)) ⊂ (I − T )(Ω), for all λ ∈ [0, 1], (4.2.1)

λF (P(α, c)) + (1− λ)z0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1]. (4.2.2)

Suppose that:

(A1) if x ∈ P with β(x) = b, then α(Tx) ≥ a;

(A2) if x ∈ P with β(x) = b and [α(x) ≥ a or α(Tx+ Fx) < a], then β(Tx + Fx) < b

and β(Tx) ≤ b;

(A3) if x ∈ P with α(x) = c, then β(Tx+ z0) ≤ d;

(A4) if x ∈ P with α(x) = c and [β(x) ≤ d or β(Tx+ Fx) > d], then α(Tx + Fx) > c

and α(Tx+ z0) ≥ c;
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Then,

1. (Expansive form) T + F has a fixed point x∗ in P(β, α, b, c) ∩ Ω if

(H1) a < c, b < d, {x ∈ P : b < β(x) and α(x) < c} ∩ Ω 6= ∅, P(β, b) ⊂

P(α, c), P(β, b) ∩ Ω 6= ∅ and P(α, c) is bounded.

2. (Compressive form) T + F has a fixed point x∗ in P(α, β, c, b) ∩ Ω if

(H2) c < a, d < b, {x ∈ P : c < α(x) and β(x) < b} ∩ Ω 6= ∅, P(α, c) ⊂

P(β, b), P(α, c) ∩ Ω 6= ∅, and P(β, b) is bounded.

Proof. We will prove the expansion form. The proof of the compression form is similar.

We list

U = {x ∈ P : β(x) < b},

V = {x ∈ P : α(x) < c}.

Then, the interior of V − U is given by

W = (V − U)o = {x ∈ P : b < β(x) and α(x) < c}.

Thus U , V andW are bounded, not empty and open subsets of P . To prove the existence

of a fixed point for the sum T + F in P(β, α, b, c) ∩ Ω, it is enough for us to show that

i∗(T + F,W ∩ Ω,P) 6= 0 since W is the interior of P(β, α, b, c).

Claim 1. Tx+ Fx 6= x for all x ∈ ∂U ∩ Ω.

Let x0 ∈ ∂U ∩Ω, then β(x0) = b. Suppose that x0 = Tx0 +Fx0, then β(Tx0 +Fx0) = b.

By the condition (A2), if α(x0) ≥ a, then β(Tx0 + Fx0) < b, and if α(x0) < a, thus

α(Tx0 + Fx0) < a, then β(Tx0 + Fx0) < b. This is a contradiction. Thus we have

Tx+ Fx 6= x for all x ∈ ∂U ∩ Ω.
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Claim 2. Tx+ Fx 6= x for all x ∈ ∂V ∩ Ω.

Let x1 ∈ ∂V ∩Ω, then α(x1) = c. Suppose that x1 = Tx1 +Fx1, then α(Tx1 +Fx1) = c.

By the condition (A4), if β(x1) ≤ d, then α(Tx1 + Fx1) > c, and if β(x1) > d, thus

β(Tx1 + Fx1) > d, then α(Tx1 + Fx1) > c. This is a contradiction. Thus we have

Tx+ Fx 6= x for all x ∈ ∂V ∩ Ω.

Claim 3. i∗(T + F,U ∩ Ω,P) = 1.

Let H1 : [0, 1]× U → E be defined by

H1(t, x) = tFx.

Clearly H1 is continuous and uniformly continuous in t with respect to x ∈ U , and from

(4.2.2) we easily see that H1([0, 1] × U) ⊂ (I − T )(Ω). Moreover H1(t, .) : U → E is a

k-set contraction for all t ∈ [0, 1] and Tx + H1(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂U ∩ Ω.

Otherwise, there would exists (t2, x2) ∈ [0, 1] × ∂U ∩ Ω such that Tx2 + H1(t2, x2) = x2.

Since x2 ∈ ∂U , β(x2) = b. Either α(Tx2 + Fx2) < a or α(Tx2 + Fx2) ≥ a.

Case (1): If α(Tx2 + Fx2) < a, the convexity of β and the condition (A2) lead

b = β(x2) = β (Tx2 +H1(t2, x2))

= β ((1− t2)Tx2 + t2(Tx2 + Fx2))

≤ (1− t2)β(Tx2) + t2β(Tx2 + Fx2)

< b,

which is a contradiction.

Case (2): If α(Tx2 + Fx2) ≥ a, from the concavity of α and the condition (A1), we

obtain α(x2) ≥ a. Indeed,

α(x2) = α (Tx2 +H1(t2, x2))

≥ (1− t2)α(Tx2) + t2α(Tx2 + Fx2)

≥ a,
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and thus by the condition (A2), we have β(Tx2 + Fx2) < b and β(Tx2) < b, which is the

same contradiction we arrived at in the previous case.

Being (I − T )−10 ∈ U ∩ Ω, the homotopy invariance property (iii) and the normality

property (i) of the index i∗ lead

i∗(T + F,U ∩ Ω,P) = i∗(T + 0, U ∩ Ω,P) = 1.

Claim 4. i∗(T + F, V ∩ Ω,P) = 0.

Let H2 : [0, 1]× V → E be defined by

H2(t, x) = t Fx+ (1− t)z0.

Clearly H2 is continuous and uniformly continuous in t with respect to x ∈ V , and from

(4.2.2) we easily see that (H2([0, 1] × V )) ⊂ (I − T )(Ω). Moreover H2(t, .) : V → E is a

k-set contraction for all t ∈ [0, 1] and Tx + H2(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂V ∩ Ω.

Otherwise, there would exists (t3, x3) ∈ [0, 1] × ∂V ∩ Ω such that Tx3 + H2(t3, x3) = x3.

Since x3 ∈ ∂V we have that α(x3) = c. Either β(Tx3 + Fx3) ≤ d or β(Tx3 + Fx3) > d.

Case (1): If β(Tx3 + Fx3) > d. the concavity of α and the condition (A4) lead

c = α(x3) = α(Tx3 +H2(t3, x3))

= α(t3(Tx3 + Fx3) + (1− t3)(Tx3 + z0))

≥ t3α(Tx3 + Fx3) + (1− t3)α(Tx3 + z0)

> c.

This is a contradiction.

Case (2): If β(Tx3 + Fx3) ≤ d, from the convexity of β and the condition (A3), we

obtain β(x3) ≤ d. Indeed,

β(x3) = β(Tx3 +H2(t3, x3))

≤ t3β(Tx3 + Fx3) + (1− t3)β(Tx3 + z0)

≤ d,
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and thus by the condition (A4), we have α(Tx3 +Fx3) > c, this is the same contradiction

that we found in the previous case.

Hence, the homotopy invariance property (iii) of the fixed index i∗ yields

i∗(T + F, V ∩ Ω,P) = i∗(T + z0, V ∩ Ω,P),

and by the solvability property (iv) of the index i∗ ( since (I − T )−1z0 6∈ V the index

cannot be nonzero) we have

i∗(T + F, V ∩ Ω,P) = i∗(T + z0, V ∩ Ω,P) = 0.

Since U andW are disjoint open subsets of V and T+F has no fixed points in V −(U∪W )

(by Claims 1 and 2), from the additivity property (ii) of the index i∗, we deduce

i∗(T + F, V ∩ Ω,P) = i∗(T + F,U ∩ Ω,P) + i∗(T + F,W ∩ Ω,P).

Consequently, we get

i∗(T + F,W ∩ Ω,P) = −1,

and thus by the solvability property (iv) of the fixed point index i∗, the sum T + F has

a fixed point x∗ ∈ W ∩ Ω ⊂ P(β, α, b, c) ∩ Ω.

Now we add restrictions on the operator T +F of Theorem 4.2.1 and we combine the

expansive form and the compressive form to establish a multiplicity result.

Theorem 4.2.2. Let α be a nonnegative continuous concave functional on P and β, γ

be nonnegative continuous convex functionals on P for all x ∈ P. Let T : Ω ⊂ P → E

be such that (I − T ) is Lipschitz invertible mapping with constant ζ > 0, F : P → E is

a k-set contraction with 0 ≤ k < ζ−1. Assume that there exist six nonnegative numbers

a < c < r, b < d < R and z0 ∈ P such that

β((I − T )−10) < b, γ((I − T )−10) < R, α((I − T )−1z0) > c,
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Fx+ Tx ∈ P , Tx ∈ P , for all x ∈ ∂P(β, b) ∪ ∂P(α, c) ∪ ∂P(γ,R),

λ F (P(γ,R)) ⊂ (I − T )(Ω), for all λ ∈ [0, 1],

λ F (P(α, c)) + (1− λ)z0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1].

In addition to the assumptions (A1) − (A4) of Theorem 4.2.1, we suppose that the

following conditions hold:

(B1) if x ∈ P with γ(x) = R, then α(Tx) ≥ r;

(B2) if x ∈ P with γ(x) = R and [α(x) ≥ r or α(Tx+ Fx) < r], then γ(Tx + Fx) < R

and γ(Tx) ≤ R.

If the two following conditions hold,

(H1) {x ∈ P : b < β(x) and α(x) < c} ∩ Ω 6= ∅, P(β, b) ⊂ P(α, c),

P(β, b) ∩ Ω 6= ∅ and P(α, c) is bounded,

(H2) {x ∈ P : c < α(x) and γ(x) < R} ∩ Ω 6= ∅, P(α, c) ⊂ P(γ,R),

P(α, c) ∩ Ω 6= ∅, and P(γ,R) is bounded,

then, T + F has at least two nontrivial fixed points x1, x2 ∈ P such that

x1 ∈ P(β, α, b, c) ∩ Ω and x2 ∈ P(α, γ, c, R) ∩ Ω.

Proof. We list

U = {x ∈ P : β(x) < b},

V = {x ∈ P : α(x) < c},

Y = {x ∈ P : γ(x) < R}.

Then, the interior of V − U is given by

W = (V − U)o = {x ∈ P : b < β(x) and α(x) < c},
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and the interior of Y − V is given by

Z = (Y − V )o = {x ∈ P : c < α(x) and γ(x) < R}.

Thus U, V, Y and W, Z are bounded, not empty and open subsets of P . To prove the

existence of two fixed point for the sum T +F in P(β, α, b, c)∩Ω and P(α, γ, c, R)∩Ω it

is enough for us to show that i∗(T + F,W ∩ Ω,P) 6= 0 and i∗(T + F,Z ∩ Ω,P) 6= 0 since

W is the interior of P(β, α, b, c) and Z is the interior of P(α, γ, c, R).

The use of the fixed point index here is similar to the proof of Theorem 4.2.1.

4.3 Application to EDOs

In the sequel, we will investigate the three-point BVP:

y′′ + f(t, y) = 0, t ∈ (0, 1),

y(0) = ky(η), y(1) = 0,
(4.3.1)

where η ∈ (0, 1), k > 0 with k(1− η) < 1 and f ∈ C([0, 1]× [0,∞)). Set B = 1+kη
1−k(1−η) and

suppose that

(C1) Ã < f(t, y) ≤ a1(t) + a2(t)|y|p for t ∈ [0, 1] and y ∈ [0,∞), a1, a2 ∈ C([0, 1]),

0 ≤ a1, a2 ≤ A on [0, 1], for some positive constants A, Ã and p.

(C2) ε ∈ (0, 1), and there exist a, b, c, d, z0, ρ > 0 such that

max(d, 2z0

ε
,

1
Λ (c− z0)) < b ≤ ρ; 3z0 > a;

z0 ≤ c < min(a, 3 z0,
η

3
(
1− η

2

)
Ã+ (1− 1

ε
)z0);

εAB(1 + bp) + 3z0

ε
≤ ρ; (1− ε) cΛ + 3z0 ≤ d, where Λ =

min
(
ε
η2

18

(
1− η

2

)
Ã, z0

)
ε ρ

,

and

AB(1 + bp) < b. (4.3.2)
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Remark 4.3.1. 1. We end this section by an illustrative example, in which we give

the constants ε, a, b, c, d, ρ, z0 and the function f that satisfy (C1)-(C2). After setting

the constants A, Ã and p, we choose the constants ε, a, b, d, z0, c and ρ.

2. Discussion of Hypothesis (4.3.2):

(a) If p = 1, the inequality (4.3.2) may be rewritten as ( 1
AB
− 1) b > 1. A necessary

condition for (4.3.2) to hold is that A < 1
B
·

(b) If p 6= 1, the inequality (4.3.2) can be written as Kb− bp > 1 with K = 1
AB

.

Consider the continuous function Φ(x) = Kx− xp on [0,∞), then

Φ′(x) = 0⇔ x = x0 = p−1

√
K

p
.

(i) When p < 1, the function Φ verifies Φ(0) = 0 and lim
x→+∞

Φ(x) = +∞.

Moreover, Φ is decreasing on [0, x0) and increasing on (x0,∞) and assumes

K
p

p−1
√

K
p

(p − 1) as a minimum at the point x0. Hence for every real number

r > 0, there exists a constant b > 0 with Φ(b) > r. In particular Φ(b) > 1.

(ii) When p > 1, the function Φ verifies Φ(0) = 0 and lim
x→+∞

Φ(x) = −∞.

Moreover, Φ is increasing on [0, x0) and decreasing on (x0,∞) and assumes

K
p

p−1
√

K
p

(p− 1) as a maximum at x = x0. Hence the inequality Φ(b) > 1 has a

solution b > 0 if and only if K
p

p−1
√

K
p

(p− 1) > 1.

4.3.1 Existence of at least one nonnegative solution

Our existence result is as follows.

Theorem 4.3.2. Suppose (C1) and (C2). Then the BVP (4.3.1) has at least one nontrivial

nonnegative solution y ∈ C2([0, 1]) such that c < min
t∈[ η3 ,

η
2 ]
y(t) + z0 and max

t∈[0,1]
|y(t)| < b.
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Proof. To prove our main result, we will use Theorem 4.2.1.

Set

H(t, s) =


s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

In [49] it is proved that the solution of the BVP (4.3.1) can be expressed in the following

form

y(t) =
∫ 1

0
G(t, s) f(s, y(s))ds, t ∈ [0, 1],

where

G(t, s) = H(t, s) + k(1− t)
1− k(1− η)H(η, s), t, s ∈ [0, 1].

Note that 0 ≤ H(t, s) ≤ 1, t, s ∈ [0, 1]. Hence,

0 ≤ G(t, s) ≤ 1 + k

1− k(1− η) = 1− k + kη + k

1− k(1− η)

= 1 + kη

1− k(1− η) = B, t, s ∈ [0, 1].

Moreover, for t, s ∈
[
η
3 ,

η
2

]
, we have

H(t, s) ≥ η

3

(
1− η

2

)

and

G(t, s) ≥ H(t, s) ≥ η

3

(
1− η

2

)
.

Next,

Ht(t, s) =


−s, 0 ≤ s ≤ t ≤ 1,

1− s, 0 ≤ t ≤ s ≤ 1.

Hence, |Ht(t, s)| ≤ 1, t, s ∈ [0, 1], and

|Gt(t, s)| =
∣∣∣∣∣Ht(t, s)−

k

1− k(1− η)H(η, s)
∣∣∣∣∣

≤ |Ht(t, s)|+
k

1− k(1− η)H(η, s)

≤ 1 + k

1− k(1− η) = 1 + kη

1− k(1− η) = B, t, s ∈ [0, 1].
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Let E = C([0, 1]) be endowed with the maximum norm

‖y‖ = max
t∈[0,1]

|y(t)|.

Define

P =

y ∈ E : y(t) ≥ 0, t ∈ [0, 1], min
t∈[ η3 , η2 ]

y(t) ≥ Λ‖y‖

 ,
Ω = {y ∈ P : ‖y‖ ≤ ρ } .

For y ∈ P , let us define

α(y) = min
t∈[ η3 , η2 ]

y(t) + z0, β(y) = max
t∈[0,1]

|y(t)|.

It’s obvious that, since 2z0
ε
< b ≤ ρ, we get Λ < 1.

For y ∈ P , define the operators

Ty(t) = (1− ε)y(t) + 2z0,

Fy(t) = ε
∫ 1

0
G(t, s)f(s, y(s))ds− 2z0, t ∈ [0, 1].

Note that if y ∈ P is a fixed point of the operator T +F , then it is a solution to the BVP

(4.3.1). Next, if y ∈ P and ‖y‖ ≤ b, we have

|Ty(t)| ≤ (1− ε)y(t) + 2z0

≤ (1− ε)b+ 2z0

< b, t ∈ [0, 1],

and

|Ty(t) + Fy(t)| =
∣∣∣∣(1− ε)y(t) + ε

∫ 1

0
G(t, s)f(s, y(s))ds

∣∣∣∣
≤ (1− ε)y(t) + ε

∫ 1

0
G(t, s) (a1(s) + a2(s)|y(s)|p) ds

≤ (1− ε)b+ εAB(1 + bp)

< b, t ∈ [0, 1].
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Therefore, if y ∈ P and ‖y‖ ≤ b, we have

‖Ty‖ < b, (4.3.3)

and

‖Ty + Fy‖ < b. (4.3.4)

1. For y, z ∈ P , we have

|(I − T )y(t)− (I − T )z(t)| = ε|y(t)− z(t)|, t ∈ [0, 1].

Hence,

‖(I − T )y − (I − T )z‖ = ε‖y − z‖.

Thus, I − T : P → E is Lipschitz invertible operator with constant γ = 1
ε
.

2. Let y ∈ P . Then

|Fy(t))| ≤ ε
∣∣∣∣∫ 1

0
G(t, s)f(s, y(s))ds

∣∣∣∣+ 2z0

≤ εAB(1 + ‖y‖p) + 2z0, t ∈ [0, 1],

whereupon

‖Fy‖ ≤ εAB(1 + ‖y‖p) + 2z0 <∞.

Moreover,
∣∣∣∣∣ ddtFy(t)

∣∣∣∣∣ =
∣∣∣∣ε ∫ 1

0
Gt(t, s)f(s, y(s))ds

∣∣∣∣
≤ AB ε(1 + ‖y‖p) <∞, t ∈ [0, 1].

Consequently, by Ascoli-Arzelà compactness criteria, the map F : P → E is completely

continuous. Then F : P → E is a 0-set contraction.
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3. For y ∈ E, we have

(I − T )−1y = y + 2z0

ε
·

Hence,

α
(
(I − T )−1z0

)
= α

(3z0

ε

)
= 3z0

ε
+ z0 ≥ c.

and

β
(
(I − T )−10

)
= β

(2z0

ε

)
= 2z0

ε
< b.

Suppose that y ∈ P with β(y) = b. Then

α(Ty) = min
t∈[ η3 , η2 ]

Ty(t) + z0 ≥ 3z0 > a.

Consequently, (A1) holds.

4. Let y ∈ P with β(y) = b and [α(y) ≥ a or α(Ty + Fy) < a]. Then, using (4.3.3) and

(4.3.4), we obtain

β(Ty) < b and β(Ty + Fy) < b.

Consequently, (A2) holds.

5. Let y ∈ P with α(y) = c, we get

‖y‖ ≤ 1
Λ min

t∈[ η3 , η2 ]
y(t) ≤ 1

Λ α(y) = c

Λ .

Hence,

β(Ty + z0) ≤ (1− ε) cΛ + 3z0 ≤ d.

Consequently, (A3) holds.
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6. Suppose that y ∈ P with α(y) = c. Then

α(Ty + Fy) = min
t∈[ η3 , η2 ]

(Ty(t) + Fy(t)) + z0

= min
t∈[ η3 , η2 ]

(
(1− ε)y(t) + ε

∫ 1

0
G(t, s)f(s, y(s))ds

)

≥ (1− ε) min
t∈[ η3 , η2 ]

y(t) + ε min
t∈[ η3 , η2 ]

∫ η
2

η
3

G(t, s)f(s, y(s))ds

≥ (1− ε)(c− z0) + ε
η

3

(
1− η

2

)
Ã

> c.

Moreover, we have

α(Ty + z0) = min
t∈[ η3 , η2 ]

(Ty(t) + z0) + z0

≥ min
t∈[ η3 , η2 ]

Ty(t) + 2z0

≥ (1− ε) min
t∈[ η3 , η2 ]

y(t) + 4z0

≥ 4z0 > c.

Consequently, (A4) holds.

7. Let b1 = 2 z0. Then

α(b1) = 3 z0 > c and β(b1) = 2 z0 < b.

Therefore

{y ∈ P : c < α(y) and β(y) < b} ∩ Ω 6= ∅.

8. Let y ∈ P(α, c). Then y ∈ P and α(y) ≤ c. Hence,

‖y‖ ≤ 1
Λ min

t∈[ η3 , η2 ]
y(t) ≤ 1

Λ (c− z0) ≤ b.

Thus, y ∈ P(β, b) so P(α, c) ⊂ P(β, b) and P(β, b) is bounded. Since 0 ∈ P(α, c), we get

P(α, c) ∩ Ω 6= ∅.
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9. Let λ ∈ [0, 1] be fixed and u ∈ P(β, b) be arbitrary chosen. Take

v(t) = 2(1− λ)z0 + λε
∫ 1

0 G(t, s)f(s, u(s))ds
ε

, t ∈ [0, 1].

We have v(t) ≥ 0, t ∈ [0, 1], and

v(t) ≤ εAB(1 + bp) + 2z0

ε
≤ ρ, t ∈ [0, 1].

Moreover,

min
t∈[ η3 , η2 ]

v(t) ≥
λε
∫ η

2
η
3

min
t∈[ η3 , η2 ]

G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ε

≥
λε
(
η
2 −

η
3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ε

≥
min

(
εη

2

18

(
1− η

2

)
Ã, z0

)
ε

=
min

(
εη

2

18

(
1− η

2

)
Ã, z0

)
ε ρ

ρ

≥ Λ‖v‖.

Therefore v ∈ Ω. Also,

λFu(t) = ελ
∫ 1

0
G(t, s)f(s, u(s))ds− λ2z0

= ε
ε
∫ 1
0 G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ε
− 2z0

= ε v(t)− 2z0

= (I − T )v(t), t ∈ [0, 1].

Therefore

λF (P(β, b)) ⊂ (I − T )(Ω).

10. Let λ ∈ [0, 1] is fixed and ũ ∈ P(α, c) is arbitrarily chosen. So

‖ũ‖ ≤ 1
Λ min

t∈[ η3 , η2 ]
ũ(t) ≤ 1

Λ(c− z0) ≤ b.



CHAPTER 4. EXISTENCE OF FIXED POINTS IN CONICAL SHELLS OF A BANACH SPACE
AND APPLICATION TO ODES 76

Set

w(t) = λε
∫ 1

0 G(t, s)f(s, ũ(s))ds+ 3(1− λ)z0

ε
, t ∈ [0, 1].

We have that w(t) ≥ 0, t ∈ [0, 1], and

w(t) ≤ εAB(1 + bp) + 3z0

ε
≤ ρ, t ∈ [0, 1],

so

‖w‖ ≤ εAB(1 + bp) + 3z0

ε
≤ ρ.

Moreover,

min
t∈[ η3 , η2 ]

w(t) ≥
λε
∫ η

2
η
3

min
t∈[ η3 , η2 ]

G(t, s)f(s, ũ(s))ds+ 3(1− λ)z0

ε

≥
λε
(
η
2 −

η
3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ε

≥
min

(
εη

2

18

(
1− η

2

)
Ã, z0

)
ε

=
min

(
εη

2

18

(
1− η

2

)
Ã, z0

)
ε ρ

ρ

≥ Λ‖w‖.

Thus, w ∈ Ω. Next,

λF ũ(t) + (1− λ)z0 = −2λz0 + λε
∫ 1

0 G(t, s)f(s, ũ(s))ds+ z0 − λz0

= λε
∫ 1

0 G(t, s)f(s, ũ(s))ds+ (1− 3λ)z0

= ε
λε
∫ 1

0 G(t,s)f(s,ũ(s))ds+3(1−λ)z0

ε
− 2z0

= εw(t)− 2z0

= (I − T )w(t), t ∈ [0, 1].

Therefore

λF (P(α, a)) + (1− λ)z0 ⊂ (I − T )(Ω).
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By Theorem 4.2.1, it follows that the BVP (4.3.1) has at least one solution y ∈ Ω such

that

β(y) < b and α(y) > c.

4.3.2 An Example

Consider the BVP

y′′ + y2

(200 + t2)(1 + y) + 1
500(1 + t) = 0, t ∈ (0, 1),

y(0) = y
(

1
2

)
, y(1) = 0.

(4.3.5)

Here

f(t, y) = y2

(200 + t2)(1 + y) + 1
500(1 + t), t ∈ [0, 1], y ∈ [0,∞), k = 1, η = 1

2 .

We have, f ∈ C([0, 1] × R+) and 0 <
1

500 ≤ f(t, y) ≤ a1(t) + a2(t) |y|2 for t ∈

[0, 1] and y ∈ [0,∞), where p = 2, a1(t) = 1
500(1+t), a2(t) = 1

200 + t2
, 0 ≤ a1, a2 ≤

1
200

on [0, 1]. So, the condition (C1) holds.

Take the constants

ε = 1
2 , B = 3, A = 1

200 , Ã = 1
500 , b = 41

50 , d = 4
5 , ρ = 4

3

c = z0 = 2× 10−6, a = 5
2 × 10−6, Λ =

min((1
2

1
72

3
4)× 1

500 , 10−6)
2
3

= 3
2 × 10−6 < 1.

We have

z0 ≤ c < min
(
a, (1− ε)(c− z0) + ε

η

3

(
1− η

2

)
Ã, 3z0

)
= 5

2 × 10−6,

2z0

ε
= 4 z0 = 8× 10−6 < b,

1
Λ (c− z0) = 0 ≤ b,

(1− ε) cΛ + 3z0 = 2
3 + 6× 10−6 < d,
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εAB(1 + bp) + 3z0

ε
= 3

500

(
1 +

(41
50

)2)
+ 12× 10−6 ≤ 4

5 = ρ,

AB(1 + bp) = 3
200

(
1 +

(41
50

)2)
= 25

1000 < b.

Thus, (C2) holds. By Theorem 4.3.2, it follows that the BVP (4.3.5) has at least one

nonnegative solution.

4.4 Concluding remarks

In this work, the functional Expansion-Compression fixed point theorem of Leggett-

Williams type developed in [3] is extended to the class of mappings of the form T + F,

where (I − T ) is Lipschitz invertible and F is a k-set contraction. As application of some

obtained theoretical results, a new result on the existence of nonnegative solutions for

a second order differential equation subjected to three-point boundary value problem is

developed. The fixed point theorems presented in this chapter can be used to study other

classes of BVPs as well as some IVPs for ODEs. For these purposes, we must first find an

integral representation of the solutions of the considered IVPs/BVPs and use it to define

the operators F and T .



General conclusion

This work is a contribution to fixed point theory on cones of Banach spaces for the

sum of two operators and to the study of the existence of solutions for boundary value

problems subjected to ordinary differential equations. More precisely, the purpose of this

thesis is twofold, firstly, we develop a new fixed point theorem in cones of functional type

for the class of k-set contraction perturbed by a mapping T such that (I−T ) is Lipschitz

invertible. Secondly, we use some recent fixed point results to investigate the existence,

nonnegativity, localization and multiplicity of solutions for two-point BVPs of first order

as well as for three-point BVPs of second order. The study of these types of problems

is driven not only by a theoretical interest, but also by the fact that several phenomena

in engineering, physics, and in the life sciences can be modeled in this way. Overall, this

work is a contribution to both theoretical and applied parts of the fixed point theory.
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