République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la recherche scientifique

UNIVERSITE Abderrahmane MIRA BEJAIA

Faculté des sciences et technologie

Département de génie civil

MEMOIRE

Présenté pour l'obtention du diplôme de

Master

Filière : Génie Civil

Spécialité: Structure

Par:

ADJAOUD Tahar

BELKHATMI Nacer

Thème

Etude d'un bâtiment R+13 + 2 Sous-sol a usage d'habitation contreventé par un système mixte (portiques et voiles)

Encadré par : Jury :

Dr. Bouzidi Md lamine Mr. Bouzeroura

Mr. Ourabah

Année Universitaire 2021-2022

Remerciement

Un grand merci à nos familles respectives pour leur amour leur soutient et pour tous leurs sacrifices. Nos vifs remerciements et toute notre reconnaissance s'adressent à notre encadreur Dr. Bouzidi pour son aide précieuse, sa disponibilité et sa compréhension. Nous remercions aussi les membres du jury d'avoir accepté de juger ce travail. Nous remercions notre ami Youyou TARIKAT et Madame ATROUNE propriétaire de l'école de formation LIDYCAD de nous avoir accompagné pendant ces vacances pour la réalisation de ce travail. Ainsi que tous nos amis qui ont été à nos côtés durant tout le temps. A nos enseignants qui nous accompagner malgré le peu de moyen mit à leurs dispositions.

Merci infiniment

Dédicaces

Par courtoisie et par respect, il est de notre devoir de dédier ce projet à nos chers parents respectifs qui nous ont apportés tout le soutien possible au cours de ce long parcours. Qu'ils trouvent dans ce travail, le fruit de leurs efforts et leurs sacrifices. A nos amis et compagnie qui nous apportés la joie et la bonne humeur même dans les moments les rudes. A toute personne qui nous a aidés de prés et de loin réel ou virtuel.

Tannmirt nuven

Sommaire

Remerciement	1
Dédicaces	ii
Liste des figures	iii
Liste des tableaux	v
Liste des acronymes	vii
Introduction générale	1
I- Chapitre I	1
I-1- Introduction:	1
I-2- Présentation du projet	1
I-2-1- Présentation du site et étude du sol :	1
Drainage:	2
I-2-2- Présentation de l'ouvrage :	2
I-2-3- Caractéristique géométriques du projet :	2
A l'état limite ultime (ELU) :	4
Situation durables :	4
Situation accidentelles	4
A l'état limite de service (ELS) :	5
Recommandations à propos du béton :	5
Note de calcul :	<i>6</i>
Résistances mécaniques du béton :	<i>6</i>
Résistance du béton a la compression :	<i>6</i>
Résistance à la traction :	<i>6</i>
Module d'élasticité du béton :	<i>6</i>
Le module de déformation longitudinale du béton :	<i>6</i>
Le module instantané de déformation différé :	<i>6</i>
Les contraintes limites :	7
Les aciers :	8
	8
Contrainte limite de l'acier :	8
• Les Règlement et Normes utilisées :	9
I-3- Conclusion:	9

II- Chapitre II	
II-1- Introduction:	
II-2- Pré dimensionnement des éléments secondaires :	12
II-2-1- Plancher corps creux :	
II-2-2- Dalle pleine :	14
Critères de Résistance :	
Isolation phonique:	
II-2-3- Les escaliers	15
■ Calcul du nombre de marche (n) et de contres marches (n-1) :	15
II-2-4- L'acrotère :	
II-3- Pré dimensionnement des éléments structuraux :	
II-3-1 Les Poutres :	16
II-3-2- Les Voiles :	
II-3-3- Les poteaux :	28
■ Descente des charges sur les poteaux B2	
• Conclusion :	49
III- Chapitre III	52
III-1- Introduction:	52
III-2- Etude des poutrelles	52
III-3- Etude des dalles pleines :	60
III-3-1- Sollicitations sur les dalles pleines :	62
III-4- Calcul de l'escalier :	60
III-4-1- Introduction :	60
III-4-2- Etude des escaliers :	60
Vérification de la flèche :	69
III-5- Etude de la poutre brisée	72
III-5-1- Calcul la flexion simple :	72
III-5-2- Ferraillage a la flexion simple :	73
III-5-3- Calcule à la torsion :	74
III-5-4- Calcul du ferraillage :	74
III-5-5- FERRAILLAGE GLOBALE :	74
III-5-6- Vérifications a l'ELS :	72
III-6- Poutres de chainage	75

III-6-1- Sollicitations	75
III-6-2- Ferraillage a la flexion simple :	75
III-6-3- Vérifications	76
III-6-4- Schéma de ferraillage dans toute la poutre :	77
III-7- Etude de l'ascenseur :	78
III-7-2- Calcule des sollicitations :	79
III-7-3- Calcul du ferraillage :	79
III-7-4- Vérifications :	80
III-7-5- Calcule à l'ELS :	80
III-8- Etude de l'acrotère	81
III-8-1- Introduction	81
III-8-2- Hypothèses de calculs :	81
III-8-3- Evaluation des charges et surcharges :	81
III-8-4- Calcule des sollicitations :	82
III-6-2- Ferraillage a la flexion simple :	82
III-8-6- Vérifications :	83
III-8-7- Schéma de ferraillage :	84
III-9- Conclusion:	84
contreventement de la structure, afin de satisfaire la résistance, la stabilité et la durabilit	é de ces derniers.
Nous avons aussi conçu plusieurs poutres de chainage afin de supporter la charge des pa double cloisons et aussi pour diminuer la longueur de l'escalier pour ainsi diminuer son	rois en brique épaisseur et son
• •	
IV-1- Introduction :	86
IV-2- Modélisation :	86
IV-3-1- Présentation de la méthode choisit :	87
IV-3-2- Interprétation	87
IV-3-3- Vérification	95
IV-4- Conclusion	101
V- Chapitre V	101
V-1- Introduction :	101

V.2. Étudo dos notosus	101
V-2- Étude des poteaux	
V-2-1- Sollicitations	
V-2-2- Ferraillage :	
V-3- Etude des poutres :	
V-3-1- Coffrage :	
V-3-2- Ferraillage	
V-3-3- Sollicitations et ferraillage	
V-4- Etude des voiles :	
V-4-1- Recommandation du RPA :	125
V-4-2- Sollicitations	127
Tableau de ferraillage des voiles :	131
V-5- Conclusion:	135
VI- Chapitre VI : Etude de l'infrastructure	137
VI-1- Introduction :	137
VI-2- Combinaisons de calcul	137
VI-3- Reconnaissance du sol	137
VI-4- Calcul de l'infrastructure :	138
VI-4-1- Choix du type de fondation	138
VI-4-2- Etude du Radier général	138
VI-4-3- Calcule de ferraillage :	145
VI-4-4- Etude des nervures :	147
VI-5- Conclusion :	152
VII- Conclusion générale	154
Références bibliographiques	V
VIII- Annexes	vi
/1/ Conclusions et recommandations	X
1. LITHOLOGIE: La succession lithologique du terrain est comme suit;	Xi
2. SISMICITÉ : En vu du risque sismique qui menace la zone d'étude et pour g	
pérennité de l'ouvrage ;	•
3. PORTANCE :	
Do co qui précèdo pous rotopons cos critères do dimensionnement :	Vii

Liste des figures

Figure 1 contraintes limite du béton	7
Figure 2 contrainte limite de l'acier	8
Figure 3Disposition des poutrelles	12
Figure 4 Plancher Corps creux	13
Figure 5Dimensions de la poutrelle	13
Figure 6 Types d'escaliers	15
Figure 7 dimensions de l'acrotère	16
Figure 8 Dimension des voiles	17
Figure 9 S.aff pot B2 étage14	32
Figure 10 S.aff pot B2 étage 13	32
Figure 11 S.aff cage d'escalier potB2	33
Figure 12 S.aff E.courant pot B2	33
Figure 13S.aff escalier pot B2	34
Figure 14S.aff pot B3 étage 14	34
Figure 15 S.aff potB3 étage 13	35
Figure 16 S.aff potB3 C.escalier	35
Figure 17 S.aff potB3 étage courant	36
Figure 18 S.aff pot B3 C.escaliers	36
Figure 19 Types de poutrelles	52
Figure 20 Poutrelle type 3	53
Figure 21 Ferraillage en appuis	57
Figure 22 Ferraillage en travée	57
Figure 23 Ferraillage en travée	58
Figure 24 Ferraillage en appuis	58
Figure 25. Schéma statique de la D.P.1 (balcon)	61
Figure 26 Ferraillage du balcon D.P	65
Figure 27 Schéma Statique des escaliers	66
Figure 28 Ferraillage de l'escalier volée 1	70
Figure 29 Ferraillage de la volée 2 (consol)	72
Figure 30 Ferraillage de la poutre brisée	75
Figure 31 Ferraillage des poutres de chainage	77
Figure 32 Caractéristiques de l'ascenseur	78
Figure 33 Répartition de la charge	78
Figure 34 Ferraillage de la dalle de la salle de machine	81
Figure 35 Ferraillage de l'acrotère	
Figure 36 Disposition des voiles	87
Figure 37 Vibration, période et participation massique	88
Figure 38 Mode1: translation sur YY	90

Figure 39 Mode 2 translation sur XX	91
Figure 40 Mode 3 rotation sur Z	91
Figure 41 Spectre de réponse	95
Figure 42 Zone nodale	102
Figure 43 Calcul des contraintes	111
Figure 44 schémas de ferraillage du poteau RDC	113
Figure 45 Diagramme des moments	116
Figure 46 Ferraillage des poutres principales E. courant	123
Figure 47 Ferraillage des poutres principales T. inaccessibles	123
Figure 48 Ferraillage des poutres secondaires E. courant	124
Figure 49 Ferraillage des poutres secondaires T. Inaccessible	124
Figure 50 Identification des voiles	126
Figure 51 Sollicitations sur les voiles	129
Figure 52 Ferraillage du voile Vx2	134
Figure 53 Ferraillage du voile Vy5	134
Figure 54 Dimensions de la nervure	140
Figure 55 Contraintes a l'ELS	141
Figure 56 Contrainte a l'ELS (avec débords)	142
Figure 57 Contrainte à l'ELU	142
Figure 58 Contraintes a l'ELA	143
Figure 59 Zone d'impact poinçonnement	144
Figure 60 Ferraillage de radier selon X-X	147
Figure 61 Ferraillage du radier selon Y-Y	147
Figure 62 Ferraillage de la nervure XX en appuis	151
Figure 63 Ferraillage de la nervure XX en travée	151
Figure 64 Ferraillage de la nervure YY en appuis	152
Figure 65 Ferraillage de la nervure YY en travée	152

Liste des tableaux

Tableau II-1 Plancher terrasse inaccessible	28
Tableau II-2 plancher étage courants	29
Tableau II-3 Palier et dalle pleine	29
Tableau II-4 Charges et surcharge sur la volée	30
Tableau II-5 Evaluation des charges des murs extérieurs	30
Tableau II-6 Evaluation des charges dans les balcons	31
Tableau II-7 Descente des charges sur le poteau B2	37
Tableau II-8 Descente des charges sur le poteau B3	41
Tableau II-9 Vérification des contraintes a la compression sur le poteau B2	47
Tableau II-10 Vérification au flambement des poteaux	48
Tableau II-11 Sectons adoptés pour les poutres et les poteaux	50
Tableau III-1 Sollicitations sur les poutrelles	56
Tableau III-2 Ferraillage des poutrelles	57
Tableau III-3 types des dalles pleines	60
Tableau III-4 Sollicitations sur les dalles pleines à l'ELU	63
Tableau III-5 Sollicitations sur les dalles pleines à l'ELS	
Tableau III-6 Ferraillage des dalles pleines	65
Tableau III-7 Choix des barres	65
Tableau III-8 Réaction d'appuis sur les escaliers	66
Tableau III-9 Les moments sur les escaliers	68
Tableau III-10 Armatures longitudinales sur l'escalier	68
Tableau III-11 Contraintes a la compression sur l'escalier	69
Tableau III-12 Ferraillage de la volée en consol	71
Tableau III-13 contraintes a la compression sur la volée	71
Tableau III-14 sollicitations sur la poutre brisée	73
Tableau III-15 Ferraillage a la flexion simple	73
Tableau III-16 contraintes a la compression sur la poutre brisée	74
Tableau III-17 sollicitations sur la poutre de chainage	75
Tableau III-18 Ferraillage de la poutre de chaînage	76
Tableau III-19 contraintes a la compression sur la poutre de chaînage	76
Tableau III-20 Ferraillage de la dalle	80
Tableau III-21 Contrainte a la compression sur la dalle	81
Tableau III-22 Sollicitations sur l acrotère	82
Tableau III-23 ferraillage de l'acrotère	83
Tableau IV-1Vérification de l'effort normal réduit	
Tableau IV-2 Vérification des déplacements sur X	97
Tableau IV-3 Vérification des déplacements sur Y	
Tableau IV-4 Vérification de l'effet du second ordre sur X	

Tableau IV-5 Vérification de l'effet du second ordre sur Y	99
Tableau IV-6 Vérification de la stabilité au renversement sur X	100
Tableau IV-7 Vérification a la stabilité au renversement sur Y	100
Tableau V-1 Sollicitations sur les poteaux	102
Tableau V-2 Ferraillage longitudinale des poteaux	106
Tableau V-3 Les armatures transversales sur les poteaux	108
Tableau V-4 Vérification au flambement des poteaux	109
Tableau V-5 Vérification au cisaillement des poteaux	110
Tableau V-6 Vérifications des contraintes à la compression du béton	111
Tableau V-7 Vérifications des contrainte de fissuration des aciers	112
Tableau V-8 Sections minimales et maximales de l'acier	115
Tableau V-9 Sollicitations sur les poutres	116
Tableau V-10 Ferraillage des poutres	117
Tableau V-11 Vérification des contraintes tangentielles	118
Tableau V-12 Vérification des armatures longitudinales au cisaillement	119
Tableau V-13 Vérification des contraintes a la compression sur les poutres	119
Tableau V-14 Sollicitations des voiles VX du RDC	127
Tableau V-15 Sollicitations sur les voiles VY du RDC	127
Tableau V-16 Sollicitations des voiles VX au 1er étage	128
Tableau V-17 Sollicitations des voiles VY au 1er étage	128
Tableau V-18 Ferraillage et vérification des voiles du RDC	132
Tableau V-19 Ferraillage et vérification des voiles du 1er étage	133
Tableau VI-1 Sollicitations sur le radier	144
Tableau VI-2 Ferraillage du radier	145
Tableau VI-3 Vérifications des contraintes	146
Tableau VI-4 Ferraillage final du radier	146
Tableau VI-5 Sollicitation sur les nervures	148
Tableau VI-6 Ferraillage des nervures	149
Tableau VI-7 Vérification des contraintes sur les nervures	150
Tableau VI-8 ferraillage finale des nervures	150

Liste des acronymes

1. Majuscules Romaines

A, As, Al: Aire d'une section d'acier (longitudinal)

At: Somme des aires des sections droites d'un cours d'armatures

transversales

B: Aire d'une section de béton

E_s: Module de Young de l'acier

E_{ij}: Module de Young instantané a l'age de j jours

 E_{vj} : Module de Young diffère à l'age de j jours

F: Force ou action en général

I₁: Moment d'inertie de la section homogénéisé par rapport au béton

(ELS)

M ser: Moment fléchissant de calcul de service

M_u: Moment fléchissant de calcul ultime

N_{ser}: Effort normal de calcul de service

N_u: Effort normal de calcul ultime

P: Action permanente

Q: Action d'exploitation

V_u: Effort tranchant de calcul ultime

a: Largeur d'un poteau ou d'un voile

b: Largeur d'une poutre (table), d'un poteau

b0: Largeur de l'âme d'une poutre

d (et d0) : Position des armatures tendues (et comprimées) par rapport à la fibre la plus comprimée de la section de béton

e : Excentricité de l'effort normal, Epaisseur d'une dalle

fe : Limite d'élasticité de l'acier

 f_{cj} : Résistance caractéristique à la compression du béton âge de j jours

 f_{tj} : Résistance caractéristique à la traction du béton âge de j jours

g: Charge permanente unitaire

h: Hauteur d'une poutre, d'une fondation

 h_0 : Hauteur du talon d'une poutre

h₁: Hauteur du hourdis d'une poutre

j : Nombre de jours de maturité du béton

L: Portée d'une poutre ou d'une dalle, hauteur d'un poteau

Notations et symboles

L_f: Longueur de flambement.

n: Coefficient d'équivalence acier-béton.

q: Charge permanente unitaire.

St: Espacement des armatures transversales.

y₁: Profondeur de l'axe neutre calculée à l'ELS.

y_u: Profondeur de l'axe neutre calculée `a l'ELU.

z,z_b: Bras de levier du couple de flexion.

α_u: Profondeur de l'axe neutre adimensionnée a l'ELU.

 γ_s : Coefficient partiel de sécurité sur l'acier (gamma).

 γ_b : Coefficient partiel de sécurité sur le béton.

 ε_{bc}^{max} : Déformations maximale du béton comprime (epsilon).

 ε_{st} : Déformations des armatures tendues.

 ε_{sc} : Déformations des armatures comprimées.

η: Coefficient de fissuration relatif a une armature (eta).

λ: Elancement mécanique d'une pièce comprimée (lambda).

μ_{ser}: Moment ultime réduit a l'ELS (mu).

μu: Moment ultime réduit `a l'ELU.

υ: Coefficient de poisson (nu).

ρ: Rapport de la section d'acier sur celle du béton (rho).

 σ : Contrainte normale (sigma).

 σ_{bc} : Contrainte maximale du béton comprime.

 σ_{st} : Contrainte dans les aciers tendus.

 σ_{sc} : Contrainte dans les aciers comprimes.

τ: Contrainte tangente (tau).

τu: Contrainte tangente conventionnelle.

τs: Contrainte d'adhérence.

τse : Contrainte d'adhérence d'entraînement.

φ: Coefficient de fluage (phi).

Φ1: Diamètre d'une armature longitudinale.

Φt: Diamètre d'une armature transversale.

ψs: Coefficient de scellement relatif `a une armature (psi)

Introduction générale

Introduction générale

De nos jours, le défi que se lance les ingénieurs en génie civil est d'assurer un compromis assurant le critère économique, résistance tout en construisant des structures offrant un maximum de confort. La satisfaction des critères cités ci-dessus requirent une étude soigneusement établie en prenant en compte tous les paramètres qui jouent un rôle favorable ou défavorable par rapport à la structure.

L'assurance des différentes exigences des règlements de construction notamment celles du RPA et le BAEL est la première démarche a envisagée. Le présent projet de fin d'études se situe dans le cadre d'un dimensionnement et analyse d'une structure. Cette dernière s'agit d'un bâtiment à usage d'habitation (R+13) avec sous-sol contreventée par un système voile porteur. Du fait de son caractère présentant un décrochement en élévation, la vérification de l'ensemble de la structure vis-à-vis du renversement est envisagée. Pour cela nous avons réparti notre travail comme suit : Après une introduction générale, le présent travail est divisé en (06) chapitres :

Le premier chapitre de notre travail est consacré aux généralités ainsi qu'une présentation complète du bâtiment, définition des différents éléments et le choix des matériaux à utilisés.

Le second chapitre est consacré au Pré-dimensionnement des éléments structuraux et secondaires suivi par le ferraillage de ces derniers.

Le troisième chapitre consiste à ferrailler les éléments secondaires déjà prédimensionner dans le précédent chapitre

Le quatrième chapitre a pour objet de modéliser la structure sous ROBOT afin de tirer les données nécessaires qui nous serviront aux vérifications des exigences du RPA vis-à-vis du comportement de la structure.

Quant au cinquième chapitre, ce dernier est consacré à l'étude des éléments structuraux ainsi qu'à leur ferraillage. Les valeurs des sollicitations nécessaires pour le ferraillage sont tirées du modèle numérique.

Le dernier chapitre est consacré au dimensionnement et au ferraillage des fondations qui s'est réalisés en se basant sur les résultats des essai in-situ et au laboratoire réalisé sur le site et enfin, une conclusion générale

I- Chapitre I

I-1- Introduction:

Avant d'entamer l'étude de tout projet tel qu'il en soit le domaine, Nous devons d'abord avoir une idée générale, un plan et une méthode de travail, des sources d'informations et des théories fiables, un règlement à respecter, (Etc.)

Mais surtout, un maximum d'informations concernant le projet.

Dans ce chapitre nous allons présenter tout ce qui concerne notre projet en se basant sur le rapport du sol fourni par le laboratoire d'analyse géotechnique, et les plans d'architecture du bâtiment.

Nous allons aussi présenter nos choix concernant la structure, l'élément, les matériaux, le règlement et les différentes méthodes de calcul.

I-2- Présentation du projet

I-2-1- Présentation du site et étude du sol :

Les coordonnées de localisation du site sur Google Earth sont :

X:0637306 m E

Y: 4034721 m

Z : 200 m

L'étude géotechnique d'avant-projet a été réalisée par le bureau "MBR ING CONSEILS".

- Le site est un terrain dégagé pratiquement plat. Il représente une pente de 1%.
- Les essaies réalisés sont de type in situ :
 - _ Deux sondages S.P.T poursuivie jusqu'à 9m de profondeur.
 - _deux profils sismique réfraction
- Les analyses laboratoires sont exploités par la méthode TERZAGUI et PECK.
- L'étude de ces données a abouti aux résultats suivants :
- 1. Le sol est classé en catégorie S2 selon sa nature géotechnique (sol ferme).
- 2. Le sol est moyennement agressif pour les bétons de fondations.
- 3. la profondeur d'ancrage est de (1,2+4=5,2m).
- 4. La capacité portante du sol est de 2.87bars.
- 5. Le type d'infrastructure recommandé est : un radier général.
- 6. Aucune nappe d'eau n'est à signaler.
- 7. Quelques paramètres liés au sol:
 - Le poids volumique humide $\gamma h = 20 \text{KN/m}^3$

- L'angle de frottement $\phi = 27^{\circ}$
- La cohésion C=0

Drainage:

De l'analyse des résultats obtenus de l'étude hydro climatique, des venus d'eau peuvent surgir en cours des terrassements. Elles seront alors collectées en périphérie et évacuée en dehors des fonds des fouilles.

I-2-2- Présentation de l'ouvrage :

Le projet à étudier est une promotion immobilière : un bloc de (R+13 + 2 sous-sol), ce projet est un ouvrage courant implanté au lieu-dit : GUENDOUZA, Cne: **AKBOU** dans la Wilaya de BEJAIA, cette région est classée d'après le règlement parasismique Algériennes RPA99 Version 2003(Article 3.2) comme une région de moyenne sismicité (zone IIa) ayant une moyenne sismicité de groupe d'usage 2B. Sa hauteur est inférieure à 48 mètres.

Le projet fait partie d'une promotion immobilière destinée pour l'habitation :

- Du 1er jusqu'au 11éme étage contiennent deux appartements pour chaque niveau.
- 12éme et dernier étage contiennent un seul appartement pour chaque niveau.
- Le RDC est à usage parking automobile.
- Les deux sous-sols peuvent être utilisés comme aire de stockage.

I-2-3- Caractéristique géométriques du projet :

a. Description architecturale de l'ouvrage :

Dimensions en élévation :

Hauteur RDC		4,58m		
•	Hauteur étage courante	3,06m		
•	Hauteur sous-sol 1	2,89m		
•	Hauteur sous-sol 2	4,59m		
•	Hauteur total de bâtiment	44,37m		
Dimension en plan :				
•	Longueur de bâtiment	19.20m		
•	Largeur de bâtiment	15.70m		

A- Caractéristiques structurales :

Ossature de l'ouvrage:

Etant donné que le bâtiment est situé en zone sismique (IIa) et il dépasse les 14m de hauteur, alors on opte d'abord pour un système de contreventement mixte (voiles+

portiques). Selon (RPA99/version 2003 article (3.4. A.4a)).

Le choix du système de contreventement peut être modifié ultérieurement lors de l'étude dynamique.

Plancher:

Les planchers sont des éléments horizontaux qui séparent les étages et qui permettent la transmission des efforts sismiques aux éléments de contreventement.

Pour notre cas, nous allons utiliser (2) deux types de planchers :

- Plancher à corps creux (Polystyrène) pour tous les étages.
- Plancher à dalle pleine pour les balcons et les escaliers et la cage d'ascenseur et la dalle de RDC.

Escalier:

Sont des éléments non structuraux, permettant le passage d'un niveau à un autre.

Dans notre cas nous avons deux types d'escaliers :

- Un escalier droit à trois volées et deux paliers intermédiaires pour tous les niveaux.
- Un escalier tournant avec un palier intermédiaire pour le RDC.

Maçonnerie:

Pour la séparation et la périphérie du bâtiment on choisira :

- Mur de séparation intérieur (simple paroi) de dimension e=10cm
- Mur extérieur (double paroi) de dimension e=30cm

Revêtement

Le revêtement du bâtiment se constituera de :

- Un carrelage pour les chambres, les couloirs et les escaliers.
- De l'enduit de plâtre pour les murs intérieurs et plafonds.
- Du mortier de ciment pour crépissages des façades extérieurs.

b. Gaine d'ascenseur :

Vu la hauteur importante de ce bâtiment, la conception d'un ascenseur est indispensable pour faciliter le déplacement entre les différents étages. La cage d'ascenseur sera conçue en béton armé.

c. Balcons et séchoirs :

Les balcons et les séchoirs seront réalisés en dalle pleine.

d. Voile:

Les voiles seront réalisés en béton armé, le choix du nombre, dimensions et l'emplacement sera étudié ultérieurement.

e. L'infrastructure:

Elle assure les fonctions suivantes :

- Transmission des charges verticales et horizontales au sol.
- Limitations des tassements différentiels

Vus l'importance de notre projet, on opte initialement pour l'infrastructure superficielle de type « Radier Général ".

B- Les hypothèses de calculs :

Tous les calculs et toutes les vérifications doivent se baser sur la notion des états limites. On distingue deux types d'états limites :

a. Combinaisons d'actions BAEL:

Les combinaisons de calcul à considérer pour la détermination des sollicitations et des déformations sont : (RPA99 version 2003 et CBA).

Avec:

• G+Q +E

(RPA99/2003 article V.5.2)

• 0,8G ±E

Pour les poteaux dans les ossatures auto stables, la combinaison G+Q+E est remplacé par la combinaison suivants :

• G+O+1,2E

(RPA99/2003 article V.5.2)

- **G**: charges permanents
- Q : charges d'exploitation non pondérée
- E : action du séisme représentée par ses composantes horizontales

A l'état limite ultime (ELU) :

Il correspond à la limite :

- De l'équilibre statique.
- De la résistance de l'un des matériaux (béton et l'acier).
- De la stabilité de forme (flambement).

Situation durables:

1,35Gmax+Gmin+ γ Q1Q1+ Σ 1,3Ψ0iQi

CBA (Article A.3.3.2.1)

Situation accidentelles

1,35Gmax+Gmin+ + Ψ 11Q1+ Σ 1,3 Ψ 2iQi

CBA (Article A.3.3.2.2)

Les coefficients $\Psi 11$ et $\Psi 2i$ sont fixes par les textes régimentaires

A l'état limite de service (ELS) :

Il correspond à la limite:

- De compression de béton.
- D'ouverture des fissures.

$Gmax+Gmin+Q1+\sum \Psi 0iQi$

CBA (Article A.3.3.3)

Avec : γQ1= 1,5 En général

- **1,35** pour l'effet de la température, et pour les bâtiments agricoles à faibles Occupation humaine.

Gmax : ensemble (somme) des actions permanentes défavorables.

Gmin: ensemble (somme) des actions permanentes favorables.

Q1: action variable de base.

Qi : autres actions variables d'accompagnement avec leur coefficient Ψ0i

Ψ0i≤1 en général Ψ0i=0,77 sauf pour les salles d'archives et les parcs de stationnement ou

Ψ0i=0,9

C- Caractéristiques mécaniques des matériaux :

b. Le Béton:

Le béton utilisé pour la construction de l'ouvrage doit respecter les règles techniques de recherche et de conception des ouvrages en béton armé (BAEL), ainsi que les règles en vigueur en Algérie. Le béton est un mélange de granulats de ciment (sable, gravier), d'eau de gâchage, et éventuellement de produits d'addition (adjuvant) suivant le respect des normes (dosage).

Le béton choisit est de classe C30/37

Recommandations à propos du béton :

Le béton doit être compact et homogène

Choix du composant :

- Ciment portland CEM II 42,5 contient 95% clinker doit être consistant.
- Gravillon 8-15 et 15-25 mm du type (concassé) doit être propre et ne contient pas impureté.
- Sable de carrière et sable fin naturel ne doivent pas contenir des particules argileuses.
- Composition approximative pour 1m³ du béton :
- 1. 350 KG de ciment.
- 2. 1225 KG de gravier.
- 3. 875 KG de sable.
- 4. 150 à 170 Litres d'eau

Note de calcul:

- 1. Le béton doit être vibré à chaque mise en place pour évacuer les vides et les poches d'aire.
- 2. Des échantillons du béton doivent être prélevés dans des éprouvettes qui seront envoyées au laboratoire pour chaque coulage de béton.
- 3. Les barres du ferraillage doivent être propres non-oxydés.
- 4. Les plans de coffrages et de ferraillages (enrobage, espacement, dimensions, etc.) doivent être respecté attentivement afin d'éviter toute forme de zone fragilité da la structure.

Résistances mécaniques du béton :

Résistance du béton a la compression :

Elle est mesurée par compression axiale d'un cylindre droit de révolution de diamètre 16cm, et de hauteur de 32cm, on peut estimer la résistance d'un béton à « j » jour notée comme suit :

$$fcj = \frac{j \times fc28}{4.76 + 0.83 \times J}$$
 Pour $fc28 \le 40 \text{MPA} (j \le 28 \text{ Jours})$ CBA93 (Art. A.2.1.1.1)

$$fcj = \frac{j \times fc28}{1.40 + 0.95 \times J}$$
 Pour $fc28 \ge 40$ MPA $(j \ge 28$ Jours)

Pour l'évaluation de la déformation, pour de grandes valeurs de j, on a : fcj = 1.1× fc28.

CBA93 (Art. A.2.1.1.2)

Pour l'étude de ce projet, on prendra : fc28 = 30 MPA

Résistance à la traction :

La résistance du béton à la traction à l'âge de 'j'jour notée « ftj » est conventionnellement définie par :

$$f$$
tj = 0,6+0,06 x f cj Pour f cj \leq 60 MPA CBA93 (Art. A.1.2.1.2)
Pour f c28 = 30 MPA nous avons f tj = 2.4 MPA.

Module d'élasticité du béton :

Le module de déformation longitudinale du béton :

Pour des charges d'une durée d'application inférieure à 24h, nous définissons le module de déformation instantanée du béton :

Eij =
$$11000*\sqrt[3]{\text{(fcj)}}=34179.55 \text{ MPA.}$$
 BAEL91 (Art.A.2.1.21)

Le module instantané de déformation différé :

Pour des charges de longue durée d'application, le module de déformation différée du béton à (j) jours est :

Coefficients de poisson:

C'est le rapport des déformations transversales et longitudinales :

$$v = 0$$
 (pour le calcul des sollicitations)

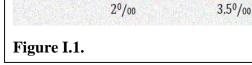
$$v = 0.2$$
 (pour le calcul des déformations)

BAEL 91 (Art A2.1.3)

Les contraintes limites :

Etat limite ultime (E.L.U):

$$fbu = \frac{0.85 \times fc28}{6 \times \gamma b}$$
RAFI 91(Art


BAEL91(Art. A.4.3, 41)

Avec:

γb : Coefficient de sécurité

- **fbu** : Contrainte de calcul

- fc28 = 25 MPA

 $\sigma_{bc}(MPa)$

Figure 1 contraintes limite du béton

Compression avec Flexion

Tel que:

$$\gamma b$$
= 1.5 Sollicitations durables (normal). f bu =17 MPA

• $\gamma b = 1.15$ Sollicitations accidentelles. f bu =22,17 MPA

Avec : θ dépend de la durée d'application des contraintes

t: la durée probable d'application

$$\theta = 1 \rightarrow Si: t > 24 h$$

$$\theta = 0.9 \rightarrow Si$$
: $1h < t < 24 h$

$$\theta = 0.85 \rightarrow Si: t < 1 h$$

Etat limite de service (E.L.S):

La contrainte du béton à l'ELS est donnée par :

$$\sigma^-_{bc} = 0.6 \ fcj \text{ (MPA)} \Rightarrow \sigma^-_{bc} = 18 \ MPa$$
BAEL91(Art.4.5.2)

La contrainte de cisaillement dans le béton à l'ELU:

La contrainte ultime de cisaillement est donnée par :

• Fissuration peu préjudiciable (F.P.P) :

 $\tau u \leq min (0.2 \times fc28/\gamma b; 5 MPa) = 4 MPa$

CBA93 (A.5.1, 2.1.1)

• Fissuration préjudiciable ou très-préjudiciable (F.P ou F.T.P) :

 $\tau u \leq \min(0.15 \times fc28 / \gamma b; 4 MPa) = 3 MPa$

CBA93 (A.5.1, 2.1.1)

Avec: τu est la contrainte ultime de cisaillement.

Les aciers :

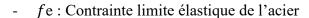
Les aciers qui seront utilisés pour la réalisation de cette structure sont des FeE400 de type 1 caractérisés par :

♣ Limite élastique : fe=400 MPA = ;

• Contrainte admissible : $\sigma s = 348 \text{ MPA}$;

♣ Coefficient de sécurité : γs=1.15 ;

♣ Module d'élasticité : Es = 2.105MPA.


Contrainte limite de l'acier : Etat limite ultime (ELU) :

$$\sigma s = \frac{fe}{\gamma s}$$
 Pour $\xi se \le \xi s < 10\%$ CBA93 (A.2.2.2)

$$\sigma s = Es \times \xi s$$
 Pour $\xi s \le \xi se$

Avec:

$$\xi s = \frac{fe}{\forall s \times Es}$$

- Vs : Coefficient de sécurité tel que :
- Vs=1 pour cas accidentels
 - Vs=1.15 cas courants
- ξs : allongement relatif

Pour le cas de ce projet : σ s :

- ✓ σ s =348 MPA Pour une situation courante.
- ✓ σ s =400 MPA Pour une situation accidentelle.

❖ Fissuration peu nuisible (F.P.N) : la vérification à faire à l'état limite ultime est suffisante. La contrainte est limitée à :

• Fissuration préjudiciable : $\sigma s = min(\frac{2}{3}Fe ; 110\sqrt{\eta \times ftj})$ (MPA)

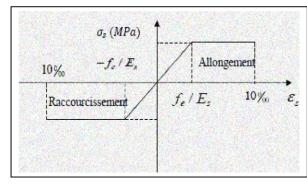


Figure 2 contrainte limite de l'acier

BAEL91 (Art. 4.5,33)

 $\Rightarrow \sigma s = 215.55 \text{MPA}$

• Fissuration très préjudiciable : $\sigma s = min(\frac{1}{2}fe; 90\sqrt{\eta \times ftj})$ (MPA)

BAEL91 (Art. A.4.5.)

 $\Rightarrow \sigma s^{-}=176.36 \text{ MPA}$

Avec:

 η : Coefficient de fissuration avec :

* $\eta=1$: pour les ronds lisses, treilles soudés.

* η =1.6 : pour les hautes adhérences $\phi \ge 6$ mm.

* η =1.3 : pour les hautes adhérences ϕ < 6mm.

• Les Règlement et Normes utilisées :

Règlements et normes utilisés sont :

- DTR BC 2.48 : Règles Parasismiques Algériennes RPA99/Version 2003
- DTR BC 2.41 : Règle de Conception et de Calcul des Structures en béton armé CBA93
- DTR B.C.2.2 : Charges permanentes et charge d'exploitation
- DTR BC 2.331 : Règles de calcul des fondations superficielles
- Béton Armée aux états limites BAEL 91/Version99

I-3- Conclusion:

Après avoir étudiés gracieusement les détails de notre projet, et après avoir définie les différents choix qui concernent l'ensemble de la structure, nous pouvons donc entamer l'étude de notre projet en utilisant les méthodes de calcul choisis et en se basant sur les règlements et les normes afin de garantir la stabilité et la sécurité et la longévité de l'ouvrage vis-à-vis des différentes sollicitations qu'il subira au fil des années.

Dans notre projet, les valeurs utilisées sont :

• Pour béton :

- $f c_{28} = 30 \text{ MPA}$
- $ft_{28} = 2.4 \text{ MPA}$
- $E_{i28} = 34179.55 \text{ MPA}$
- E_{i28} =11496.76 MPA
- σ_{bc} = 18 MPA
- f_{bu} =17 MPA Situations durables
- f_{bu} =22.17 MPA Situations accidentelle
- τu=4 MPA Fissuration peu nuisible

τu=3 MPA

Fissuration préjudiciable ou très préjudiciable

• Pour l'acier :

- FeE400: Fe=400MPa Pour les armatures longitudinales.

 $\sigma s = 215.55$ MPA Fissuration préjudiciable pour les HA.

Chapitre II

II- Chapitre II

II-1- Introduction:

Le pré-dimensionnement est très important, son objectif fondamental est de définir les dimensions des différents éléments da la structure ainsi pour les vérifier aux différentes sollicitations tel que :

- Sollicitation verticales : dues à la charge permanente et surcharge sur les planchés, poutrelles et les poutres.
- Sollicitation horizontales : dues aux effets de vent et du séisme
- La transmission des charges dans le cas d'un plancher à corps creux se fait comme suit : Poutrelles
 → planchers → poutres → poteaux → fondations → sol

Sachant que ces derniers doivent avoir une section minimale pour reprendre aux efforts sollicitant en se référant aux recommandations des règlements en vigueur à savoir le RPA99 (version 2003), BAEL 91 et CBA 93.

II-2- Pré dimensionnement des éléments secondaires :

II-2-1- Plancher corps creux:

II-2-1-1- Disposition des poutrelles :

Notre disposition est potée sur deux critères :

- Le critère de la petite portée.
- Le critère de continuité.

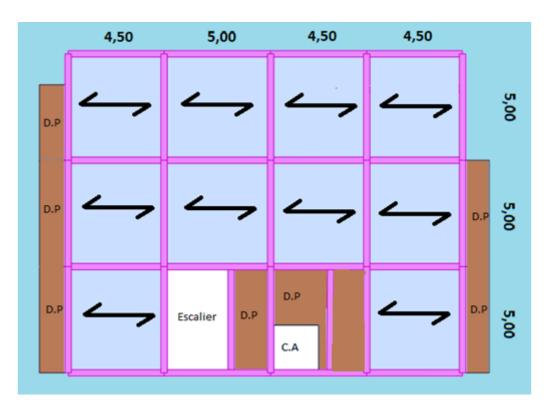


Figure 3Disposition des poutrelles

Le pré dimensionnement des planchers se fait par la satisfaction de la condition suivante

- ht = h+h0: hauteur totale du plancher.
- h0 : hauteur de la dalle de compression.
- h : hauteur de l'hourdis (corps creux).
- Lmax : distance maximale entre nus de deux poutres (selon le sens de disposition des poutrelles).

$$h_t \ge \frac{Lmax}{22.5} = \frac{500-30}{22.5} = 20.8Cm...$$
 CBA93

ht = 24 cm. Donc on adoptera pour des planchers à corps creux de 24 cm (20+4) cm

Avec:
$$\begin{cases}
20cm : hauteur du corps creux \\
4cm : hauteur de table de compression
\end{cases}$$

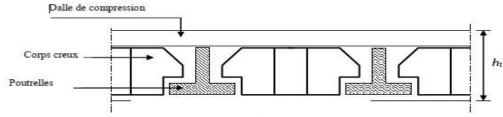
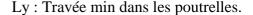


Figure 4 Plancher Corps creux

II-2-1-2- Les Poutrelles :

Les poutrelles sont des petites poutres préfabriquées ou coulées sur place en béton armé ou précontraint formant l'ossature d'un plancher, elles calculent comme des sections en T.


h: Hauteur totale de la poutrelle (hauteur du plancher)

h0: Hauteur de la dalle de compression.

b0 : Largeur de la nervure, choisie forfaitairement.

b: Largeur efficace

Lx : Distance entre nus des poutrelles.

$$\checkmark$$
 b0 = (0.4; 0.6) \times ht = (10; 14) cm

$$\checkmark$$
 b0 = 12 cm. h0 = 4 cm. ht = 24 cm

$$\checkmark$$
 $\frac{b-b0}{2} \le \text{Min}\left(\frac{Lx}{2}; \frac{Ly}{10}\right)...$ (CBA93. Art.4.1.3)

Dans notre cas, on a ce qui suit :

$$h = 20 \ cm$$
; $h0 = 4 \ cm$; $b0 = 12 \ cm$; $b1=24 \ cm$; $b=60 \ cm$
 $Lx = 60 - 12 = 48 \ cm$.

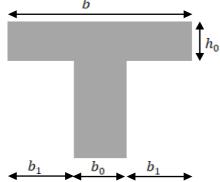


Figure 5Dimensions de la poutrelle

Ly min = 500 - 30 = 470 cm pour tous les niveaux $\frac{b-b0}{2} \le Min (24 \text{ cm}; 47 \text{ cm})$ Ce qui donne b = 60 cm.

II-2-2- Dalle pleine:

La dalle pleine est un élément horizontal porteur en béton armé continu sans nervures coulé sur place. Elle repose avec ou sans continuité sur 1, 2,3 ou 4 appuis constitués par des poutres. Dans notre bâtiment, nous disposons (3) panneaux de dalles pleines.

Critères de Résistance :

$$e \ge \frac{Lx}{20}$$
.....Pour une dalle sur 1 appui ou 2 appuis parallèles

$$\frac{Lx}{35} \le e \le \frac{Lx}{30}$$
......Pour une dalle sur 4 appuis $\rho \le 0.4$

$$\frac{Lx}{45} \leq e \leq \frac{Lx}{40}.....$$
 Pour une dalle sur 4 appuis $\rho \geq 0.4$

Résistance au feu :

E=7Cm..... Pour une heure de coupe-feu.

E=11Cm.....Pour deux heures de coupe-feu.

E17CmPour 4 heures de coupe-feu.

Isolation phonique :

Selon les règles, l'épaisseur du plancher doit être $e \ge 13Cm$

- Pour notre cas on a 3 types de dalle pleine (sur 1 appuis et sur 4 appuis)
 - A) Différents types des dalles pleines
 - **D1 sur 1 appuis** : (Balcon)

Lx = 1,25 m (Elle travaille sur un seul sens) $e \ge 6.25$ cm

❖ D2 sur 4 appuis :

Lx = 4,7m, Ly = 4.7 m. $\rho = 1 \ge 0.4$ (Elle travaille sur 2 sens) 10.44 cm $\le e \le 11.75$ cm

D3 sur 4 appuis :

Lx = 1.7m, Ly = 4.7 m. ρ =0.36 \leq 0.4 (Elle travaille sur 1 sens) 4.8 $cm \leq e \leq$ 5.6 cm

D4 sur 4 appuis :

Lx = 2,4m, Ly = 4.7 m. ρ =0.51 \geq 0.4 (Elle travaille sur 2 sens) 5.3 $cm \leq e \leq$ 6.00 cm

❖ D5 sur 4 appuis :

Lx = 2.1m, Ly = 4.7 m. ρ =0,44\ge 0.4 (Elle travaille sur 2 sens) 4.66 cm \le e \le 5.25 cm

- ➤ La condition du coupe-feu : $e \ge 11$ cm (2 Heures coupe-feu)
 - Alors on opte pour toutes les dalles pleines pour une épaisseur de e=12Cm. (Pour la Cage d'ascenseur et les paliers, les balcons) et une épaisseur de 15 Cm pour la dalle pleine du RDC.

II-2-3- Les escaliers

Pour notre projet nous avons deux types d'escalier à trois travées, un escalier droit et un autres tournant.

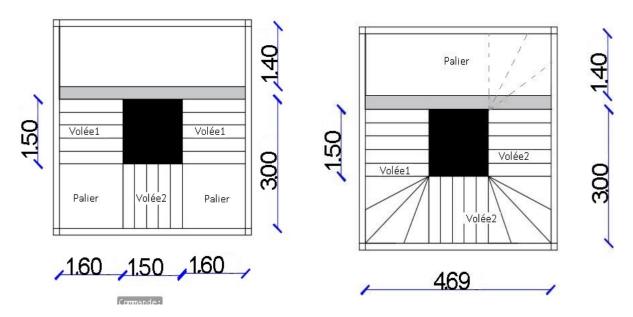


Figure 6 Types d'escaliers

Pour vérifier les dimensions des marches et des contres marches « g et h » on utilise la LOI de BLONDEL : $60 \text{ cm} \le 2h + g \le 64 \text{cm}$.

D'où:
$$g = \frac{Lo}{n-1}$$
 et $h = \frac{Ho}{n}$

Avec : $n: nombre \ de \ contremarches.$ $n-1: nombre \ de \ marches.$

- Calcul du nombre de marche (n) et de contres marches (n-1) :
 - Pour volée 1 et 2 (Etage Courant)

H=1.02, L0=4.7m, $\alpha=34.21$ °

✓ VERIFICATION DE LA LOI DE BLONDEL

D'après le plan architectural tiré du plan sur Autocad :

Largeur de la marche g=30 Cm

Hauteur d'une travée : = 1,02 M

Nombre de marches: 6

On déduit la hauteur de la contre marche = 17 Cm

$$60 \text{ cm} \le 2\text{h} + \text{g} \le 64\text{cm} \rightarrow 60 \text{ cm} \le 64 \le 64\text{cm}$$

LA LOI DE BLONDEL est vérifiée

✓ Épaisseur de la paillasse : $\frac{Lmax}{30} \le e \le \frac{Lmax}{20}$

$$L_{\text{max}} = (1.5 + 1.5) = 3\text{m} \Rightarrow \frac{300}{30} = 10 \le e \le \frac{300}{20} = 15$$
 On adopte : **ep=12 cm.**

II-2-4- L'acrotère:

L'acrotère est un élément n en Béton Armé encastré situé en bordures du plancher terrasse pour permettre le relevée d'étanchéité.

Les dimensions de l'acrotère sont architecturales :

■ Hauteur de l'acrotère est : h = 50 cm.

Poids propres:

- $S = 0.0537 \text{ m}^2$
- G = 1.34 KN/m

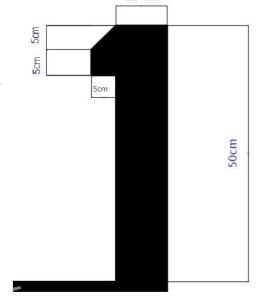


Figure 7 dimensions de l'acrotère

II-3- Pré dimensionnement des éléments structuraux :

II-3-1-. Les Poutres:

Le Pré-dimensionnement de ces poutres sera effectué et vérifiée selon la formule suivante :

$$\frac{Lmax}{15} \le h \le \frac{Lmax}{10}$$

Avec : L_{max} : portée maximal entre nus d'appui

II-3-1-1- Poutres principales:

$$L_{max} = 500 - 30 = 470 \text{cm} \rightarrow 31.33 \text{Cm} \le h \le 47 \text{Cm}$$
 h=45Cm et b=30Cm

On adoptera une section rectangulaire (30*50) Cm².

➤ La vérification selon RPA99/2003 :

✓ b=30Cm>
$$20Cm$$
Condition vérifiée

II-3-1-2- Poutres secondaire:

$$L_{max}$$
= 470Cm \rightarrow 31.33 \leq h \leq 47Cm **h=40Cm** et **b=30Cm**

On adoptera une section rectangulaire (30*40) Cm².

➤ La vérification selon RPA99/2003 :

- ✓ h=40Cm> 30CmCondition vérifiée
- ✓ b=30Cm> 20*Cm*Condition vérifiée
- $\checkmark \frac{h}{h} = 1.33 < 4$Condition vérifiée

II-3-2- Les Voiles :

Les voiles sont des éléments de contreventement verticaux en béton armé. Ils assurent deux fonctions principales :

- ☐ Ils sont porteurs ce qui leur permet le transfert des charges verticales.
- ☐ Une fonction de contreventement qui garantit la stabilité sous l'action des charges horizontales

L'épaisseur du voile doit être déterminée en fonction de la hauteur libre d'étage et des contrade rigidité aux extrémités. Selon RPA99/ (2003):

- $e \ge 15 \text{ Cm}$
- $e \ge \frac{he}{20}$
- L≥4e

Avec:

- o **he**: hauteur libre d'étage,
- o **e** : épaisseur du voile,
- o L: longueur du voile

Pour notre projet, nous avons deux épaisseurs de voile

- RDC : He =4,59-0.4 =4.19 m
 - \circ e = 20 Cm
- Autres niveaux : He =3.06-0,4= 2.66 m
 - \circ e = 15 Cm

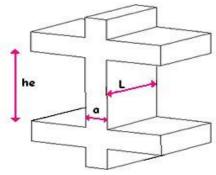


Figure 8 Dimension des voiles

II-3-3- Les poteaux :

Ceux sont des éléments porteurs, en béton armé, participant à la reprise des efforts sismiques et les efforts verticaux pour les acheminer vers la base. Le pré-dimensionnement des poteaux se fait selon 03 critères :

- 1. Critères de résistance. (Compression simple)
- 2. Critères de stabilité de former (flambement).
- 3. Condition de RPA.

On utilise un calcul basé sur la descente de charge tout en appliquant la loi de dégression des charges d'exploitation.

II-3-3-1- Évaluations Des charges et surcharge :

Tableau II-1 Plancher terrasse inaccessible

N°	Couche	Poids volumique (KN/m3)	Epaisseur (m)	Poids surfacique (KN/m2)	
1	Protection gravillons	20	0,05	1,00	
2	Etanchéité	6	0,02	0,12	
3	Forme de pente	22	0,1	2,20	
4	Corps creux		0,24	2,32	
5	Isolation thermique	4	0,04	0,16	
6	Enduit de plâtre	10	0,02	0,20	
	Charge	Charge permanente G 6,00		6,00	
	Charge d'exploitation Q		1		

Plancher Étage courant :

Tableau II-2 plancher étage courants

N°	Couches	Poids volumique(KN/m3)	Epaisseur (m)	Poids surfacique (KN/m²)	
1	Dalle de sol	20	0,01	0,20	
2	Mortier De pose	20	0,02	0,40	
3	Lit de sable	18	0,02	0,36	
4	Corps creux		0,24	2,32	
5	Double Cloisons	0,9	2	1,80	
6	Enduit de plâtre	10	0,02	0,20	
	Ch	arge permanente G	5,28		
	Q éta	ges courant	1,5		

Escaliers et cage d'ascenseur :

❖ Palier en dalle pleine : (Escalier et Ascenseur)

Tableau II-3 Palier et dalle pleine

N°	Couche	Poids volumique (KN/m3)	Epaisseur (m)	Poids surfacique (KN/m²)	
1	Dalle pleine	25	0,12	3	
2	Carrelage	20	0,02	0,4	
3	Mortier de pose	20	0,02	0,4	
4	Lit de sable	18	0,02	0,36	
5	Enduit de plâtre	10	0,02	0,2	
	Charge permanente G		4,36		
	Charg	e d'exploitation Q	2,5		

❖ Volées en dalle pleine :

Tableau II-4 Charges et surcharge sur la volée

N°	Couche		Couche			lumique /m3)	Epaisseur (m)	Poids surfacique (KN/m²)
1	Dalle ple	ine	2	5	0,145	3,625		
2	Carrelage	Horizon	2	0	0,0113	0,226		
		Vertical	2	0	0,0113	0,226		
3	Mortier de	Horizon	2	0	0,02	0,4		
	pose	vertical	2	0	0,02	0,4		
4	Enduit de p	olâtre	1	0	0,02	0,2		
5	Poids des marches		2	2	0,085	1,87		
6	Garde de c	orps						
	Charge permanente G (KN/m2)				6,9	25		
	Charge d'explo	itation Q (KN/m ²)		2	5		

Murs extérieures

Tableau II-5 Evaluation des charges des murs extérieurs

Désignation des éléments	Epaisseur 'e' (m)	Poids volumique (KN/m³)	Poids ''G'' (KN/m2)
Enduit de plâtre(Intérieur)	0,02	10	0,2
Briques creuses	0,15	9	1,35
Lame d'air	0,05	0	0
Briques creuses	0,1	9	0,9
Enduit de Ciment (Extérieur)	0,02	18	0,36
La charge permanente totale		2,81	

Balcons:

N° Couche **Poids volumique** Poids surfacique **Epaisseur** (KN/m3)(m) (KN/m2)25 0,12 3 1 Dalle pleine 2 Dalle de sol 0,02 0,4 20 3 Mortier de pose 20 0,02 0,4 4 Lit de sable 18 0,02 0,36 5 Enduit de plâtre 10 0,02 0,2 6 Cloison de 10 0,2 2 répartition Charge permanente G 6,36 Charge d'exploitation Q 3,5

Tableau II-6 Evaluation des charges dans les balcons

II-3-3-2- Descente de charges :

La descente de charge est le chemin suivi par la différente action (charge et surcharge) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol, on effectuera la descente de charge pour deux poteaux les plus sollicité et qui ont souvent la plus grande surface afférente et qui supporte la charge des escaliers et des dalles d'ascenseur soit les poteaux **B2** et **B3**.

La loi de régression :

Soit Q_0 la charge d'exploitation sur le toit de la terrasse couvrant le bâtiment $Q_1 Q_2 \dots Q_n$ les charges d'exploitation respectives des planches des étages $(1 2 \dots n)$ numérotés à partir du sommet du bâtiment.

On adaptera pour le calcul des points d'appuis des charges d'exploitation suivantes :

Sous la terrasse : Q_0

- Sous dernier étage : Q_0+Q_1

- Sous avant dernier étage : $Q_0+0.95(Q_1+Q_2)$

Sous étage immédiatement inférieur (étage3) : $Q_0+0.9(Q_1+Q_2+Q_3)$

- Sous étage n quelconque (étage n): $Q_0 + \frac{3+n}{2*n}(Q_1 + Q_2 + ... + Q_n)$

_

A- Poteau B2:

• Etage 14:

Surfaces afférentes

S1=2 .35*2.35=5.52m².

o Poids sous G.

 $S_{plancher cc}$ $G = S1*G_{ti} = 5,52*6 = 33.12KN$

o Poids sous Q

$$\begin{split} S_{plancher\ cc}^{\quad Q} = & S1*Q_{ti+} S_{Poutres} = 6.93*1\\ = & 6.93KN. \end{split}$$

Poids des Poutres

- $g_{pp}=\rho\times b\times h\times Lp=7.93 \text{ KN}$ Avec Lp=2.35m

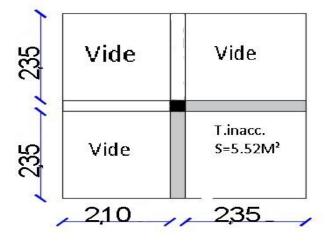


Figure 9 S.aff pot B2 étage14

• Etage 13:

■ A-Terrasse inaccessible :

Surfaces afférentes

S1=2.35*2.1=4.93m².

S2=2 .35*2.35=5.52m².

S3=2.35*2.1=4.93m².

o Poids sous G.

 $S_{plancher cc}$ $G = S1 + S2 + S3*G_{ti} = 15.38*6 = 92.28KN.$

o Poids sous Q

 $S_{plancher cc}{}^{Q} = S1+S2+S3*Q_{ti} + S_{Poutres} = 18.14*1$ =18.14KN

o Poids des Poutres

- $g_{pp}=\rho \times b \times h \times Lp=15.86 \text{ KN}$ Avec Lp=4.7m
- $g_{ps} = \rho \times b \times h \times Lp = 13.35 \text{ KN}$ Avec Lp = 4.45m

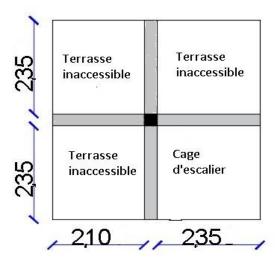


Figure 10 S.aff pot B2 étage 13

o La cage d'escalier :

> Palier:

$$\begin{aligned} &\mathbf{S_{palier}} = 1.5^2 = 2.25 m^2 \\ &\mathbf{G_{palier}} = \mathbf{S_{palier}} \times G_p = 9.81 \text{ KN} \\ &\mathbf{Q_{palier}} = \mathbf{S_{palier}} \times Q_p = 5.62 \text{ KN} \end{aligned}$$

> Volée:

$$\begin{aligned} \mathbf{S_{vol\acute{e}e}} &= 2 \times (1.5 \times 0.85) = 2.55 m^2 \\ \mathbf{G_{vol\acute{e}e}} &= \mathbf{S_{vol\acute{e}e}} \times G_v = 17.72 \text{ KN} \\ \mathbf{Q_{vol\acute{e}e}} &= \mathbf{S_{vol\acute{e}e}} \times Q_v = 6.37 \text{ KN} \end{aligned}$$

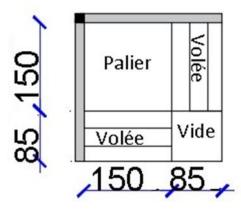


Figure 11 S.aff cage d'escalier potB2

Donc la charge finale sur l'escalier sera comme suit :

- * $G_{escalier} = 27.53 \text{ KN}$
- * Qescalier = 12 KN

> Double Paroi en briques :

- * G_{paroi en briques} = $2.35 \times 2 \times 2.66 \times 2.81 = 35.13$ KN
- > Poutre brisée:
 - * G_{poutre brisée} = $25 \times 0.3 \times [(0.45 \times 1.7) + 0.54 \times 0.65)] = 8.37 \text{ KN}$

• Etage 12 au 2ème sous-sol:

•

■ A- Étage courante :

o Surfaces afférentes

S1=2.35*2.1=4.93m².

S2=2.35*2.35=5.52m².

S3=2 .35*2.1=4.93m².

o Poids sous G.

 $S_{plancher cc}$ $G = S1 + S2 + S3 * G_{ti} = 15.38 * 5.28 = 81.2 KN.$

o Poids sous Q

 $S_{plancher cc}^{Q} = S1+S2+S3*Q_{ti} + S_{Poutres} = 18.14*1.5$ =27.21KN

- g_{pp}= $\rho \times b \times h \times Lp$ =15.86 KN Avec Lp = 4.7m
- $g_{ps} = \rho \times b \times h \times Lp = 13.35 \text{ KN}$ Avec Lp = 4.45m
 - La cage d'escalier :

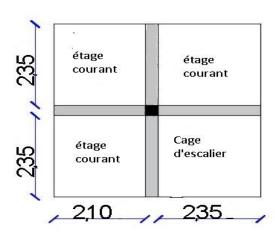


Figure 12 S.aff E.courant pot B2

> Palier:

$$S_{palier} = 1.5^2 = 2.25 \text{ m}^2$$

$$G_{palier} = S_{palier} \times G_p = 9.81 \text{ KN}$$

$$Q_{palier} = S_{palier} \times Q_p = 5.62 \text{ KN}$$

> Volée:

Svolée =
$$2 \times (1.5 \times 0.85) = 2.55 \text{m}^2$$

$$G_{vol\acute{e}e} = S_{vol\acute{e}e} \times G_v = 17.72 \text{ KN}$$

$$Q_{vol\acute{e}e} = S_{vol\acute{e}e} \times Q_v = 6.37 \text{ KN}$$

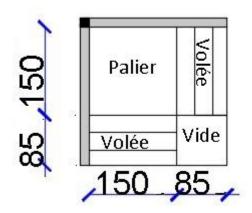


Figure 13S.aff escalier pot B2

Donc la charge finale sur l'escalier sera comme suit :

- * $G_{escalier} = 27.53 \text{ KN}$
- * Qescalier = 12 KN

> Double Paroi en briques :

* Gparoi en briques =
$$2.35 \times 2 \times 2.66 \times 2.81 = 35.13$$
 KN

> Poutre brisée:

Gpoutre brisée =
$$25 \times 0.3 \times [(0.45 \times 1.7) + 0.54 \times 0.65)] = 8.37 \text{ KN}$$

B- Poteau B3:

• Etage 14:

Surfaces afférentes

S1=2.35*2.35=5.52m².

o Poids sous G.

$$S_{plancher cc}$$
 $G = S1*G_{ti} = 5.52*6 = 33.12KN$

o Poids sous Q

$$S_{plancher cc}$$
 $Q = S1*Q_{ti +} S_{Poutres} = 7.02*1 = 7.02KN.$

o Poids des Poutres

- $p_{pp} = \rho \times b \times h \times Lp = 7.93 \text{ KN}$ $Avec \ Lp = 2.35m$
- $page = p \times b \times h \times Lp = 7.05 \text{ KN}$ Avec Lp = 2.35 m

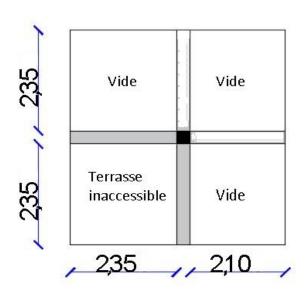


Figure 14S.aff pot B3 étage 14

• Etage 13

■ A-Terrasse inaccessible :

Surfaces afférentes

o Poids sous G.

 $S_{plancher\,cc}\,{}^G\!\!=\!\!S1\!+\!S2\!+\!S3^*G_{ti}\!\!=\!\!15.38^*6=\!\!92.28KN.$

o Poids sous Q

 $S_{plancher cc}$ $Q = S1+S2+S3*Q_{ti} + S_{Poutres} = 18.14*1 = 18.14KN$

o Poids des Poutres

- $g_{pp}=\rho \times b \times h \times Lp=15.86 \text{ KN}$ Avec Lp=4.7m
- $g_{ps} = \rho \times b \times h \times Lp = 13.35 \text{ KN}$ Avec Lp = 4.45 m
- $g_{pchainage} = \rho \times b \times h \times Lp = 5.28 \text{ KN}$ Avec Lp = 2.35 m

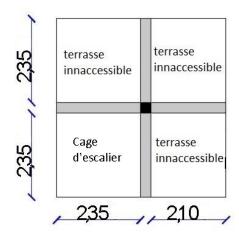


Figure 15 S.aff potB3 étage 13

o La cage d'escalier :

> Palier:

$$S_{palier} = (1.7-0.3)2.35=3.29m^2$$

 $G_{palier} = S_{palier} \times G_p = 14.34 \text{ KN}$

> Volée:

$$S_{\text{vol\'ee}}$$
= $(1.5 \times 0.65) = 0.97 \text{ m}^2$
 $G_{\text{vol\'ee}}$ = $S_{\text{vol\'ee}} \times G_{\text{v}} = 6.77 \text{ KN}$

Donc la charge finale sur l'escalier sera comme suit :

*
$$Q_{escalier} = S \times 2.5 = 12.43 \text{ KN}$$

$$S = 2.35^2 - (0.65 \times 0.85) = 4.97 \text{ m}^2$$

> Double Paroi en briques :

* Gparoi en briques =
$$2.35 \times 3 \times 2.66 \times 2.81 = 52.69$$
 KN

• Etage 12 au 2ème sous-sol :

■ A- Étage courante :

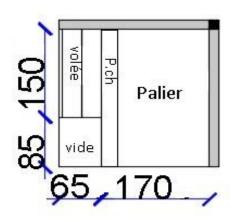


Figure 16 S.aff potB3 C.escalier

Surfaces afférentes

S1=2.35*2.1=4.93m².

S2=2 .35*2.35=5.52m².

o Poids sous G.

 $S_{plancher cc}$ $G = S1 + S2*G_{ti} = 10.45*5.28 = 55.17KN.$

o Poids sous Q

 $S_{plancher cc}^{Q} = S1 + S2 * Q_{ti} + S_{Poutres} = 10.45 * 1.5 = 15.67 KN$

o Poids des Poutres

- $g_{pp}=\rho \times b \times h \times Lp=15.86 \text{ KN}$ Avec Lp=4.7m
- $g_{ps} = \rho \times b \times h \times Lp = 13.35 \text{ KN}$ Avec Lp = 4.45m

O Dalle pleine :

S=2.1*2.35=4.93m².

o Poids sous G.

 $S_{plancher\ DP}^{\ G} = S*G_{ti} = 4.93*4.36 = 21.51KN.$

o Poids sous Q

 $S_{plancher\ DP}^{\ Q} = S*Q_{ti} = 4.93*2.5 = 12.32KN$

o La cage d'escalier :

> Palier:

 $\begin{aligned} &\mathbf{S_{palier}} = (1.7\text{-}0.3)2.35\text{=}3.29\text{m}^2\\ &\mathbf{G_{palier}} = \mathbf{S_{palier}} \times \mathbf{G_{p}} = 14.34 \text{ KN} \end{aligned}$

 $\mathbf{Q_{palier} = S_{palier} \times Q_p = 8.225 \ KN}$

> Volée:

 $S_{\text{vol\'ee}} = (1.5 \times 0.65) = 0.97 \text{m}^2$

 $G_{vol\acute{e}e} = S_{vol\acute{e}e} \times G_v = 6.77 \text{ KN}$

 $Q_{vol\acute{e}e} = S_{vol\acute{e}e} \times Q_v = 2.42 \text{ KN}$

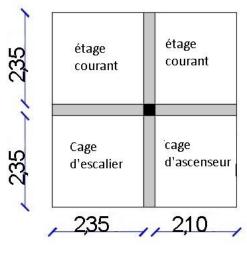


Figure 17 S.aff potB3 étage courant

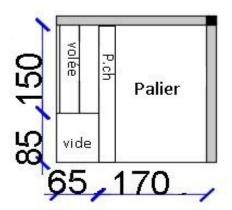


Figure 18 S.aff pot B3 C.escaliers

Donc la charge finale sur l'escalier sera comme suit :

- * $G_{escalier} = 21.11 \text{ KN}$
- * $Q_{escalier} = 12.43 \text{ KN}$

> Double Paroi en briques :

* **G**_{paroi en briques} = $2.35 \times 3 \times 2.66 \times 2.81 = 52.69$ KN

II-3-3-3- Calcul de l'effort normal ultime :

Descente des charges sur les poteaux B2

Tableau II-7 Descente des charges sur le poteau B2

N.T.	6 17	C(IA)	0(1)	1 250 - 1 5 0	1.1/1.050 (1.50)
Niv	Éléments	G(KN)	Q(kN)	1,35G + 1,5 Q	1.1(1.35G+1.5Q)
N117	D.T. '11	22.12			
N17	PT. Inaccessible	33,12			
	Poteau 30*30	6,88			
	Parois en brique	35,13			
	Pp 30x45	7,93			
	Ps 30x40	7,05			
	Totale	90,11	6,93	132,0435	145,24785
N16	N17	90,11	30,14		
	P T. Inaccessible	92,28			
	Pp 30*40	15,86			
	Ps 30*35	13,35			
	Cage d'escalier	27,53			
	Poteau 30*30	6,88			
	Parois en brique	35,13			
	Poutre brisé	8,37			
	Totale	246,01	37,07	387,7185	426,49035
N15	N16	246,01	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 30*30	6,88			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	434,33	72,81	695,5605	765,11655
N14	N15	434,33	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 30*30	6,88			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	622,65	104,63	997,5225	1097,2748
N13	N14	622,65	39,21		
	PÉ courant	81,2	1		
	Pp 30x45	15,86			
	*				

	Do 2040	12.25			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 30*35	8,03			
	Poutre brisé	8,37			
	Parois en brique	35,13	100.50	1007.177	
	Totale	812,12	132,53	1295,157	1424,6727
N12	N13	812,12	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 35*40	10,71			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	1004,27	156,51	1590,5295	1749,5825
N11	N12	1004,27	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 35*45	12,04			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	1197,75	176,57	1881,8175	2069,9993
N10	N11	1197,75	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 40*45	13,77			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	1392,96	192,71	2169,561	2386,5171
N9	N10	1392,96	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 40*50	15,3			
	Poutre brisé	8,37			
	Parois en brique	35,13			

	T-4-1-	1500.7	204.0	2452 445	2600 7005
7.70	Totale	1589,7	204,9	2453,445	2698,7895
N8	N9	1589,7	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 45*50	17,21			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	1788,35	213,22	2734,1025	3007,5128
N7	N8	1788,35	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 45*55	18,93			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	1988,72	217,49	3011,007	3312,1077
N6	N7	1988,72	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 50*55	21,03			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	2191,19	218,05	3285,1815	3613,6997
N5	N6	2191,19	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 50*60	22,95			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	2395,58	237,65	3590,508	3949,5588
N4	N5	2395,58	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	-				

	G 11 11	27.52			
	Cage d'escalier	27,53			
	Poteau 55*60	25,24			
	Poutre brisé	8,37			
	Parois en brique	35,13			
	Totale	2602,26	257,26	3898,941	4288,8351
N3	N4	2602,26	71,68		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	33,36			
	Poteau 55*65	41,02			
	Poutre brisé	8,37			
	Totale	2795,42	293,12	4213,497	4634,8467
N2	N3	2795,42	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	33,36			
	Poteau 60*65	44,75			
	Poutre brisé	8,37			
	Totale	2992,31	312,7	4508,6685	4959,5354
N1	N2	2992,31	39,21		
	PÉ courant	81,2			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	27,53			
	Poteau 60*70	30,34			
	Poutre brisé	8,37			
	Totale	3168,96	332,31	4776,561	5254,2171

 ^{✓ (}Sans majoration): Nu = (1.35G + 1.5Q) = 4776.56KN
 ✓ (Avec majoration): Nu* =1.1 (1.35G + 1.5Q) = 5254.22KN

II-3-3-4- Descente des charges sur les poteaux B3 :

Tableau II-8 Descente des charges sur le poteau B3

Niv	Éléments	G(KN)	Q(kN)	1,35G + 1,5 Q	1.1(1.35G+1.5Q)
N17	PT. Inaccessible	33,12			
	Poteau 30*30	6,88			
	Parois en brique	35,13			
	Pp 30x45	7,93			
	Ps 30x40	7,05			
	Totale	90,11	6,93	132,0435	145,24785
N16	N17	90,11	30,14		
	P T. Inaccessible	92,28			
	Pp 30*45	15,86			
	Ps 30*35	13,35			
	Cage d'escalier	21,11			
	Poteau 30*30	6,88			
	Parois en brique	52,69			
	Poutre Chainage	5,28			
	Totale	239,59	37,07	379,0515	416,95665
N15	N16	239,59	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.52			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 30*30	6,88			
	Poutre Chainage	5,28			
	Parois en brique	52,69			

	TD 4 1	400.02	70.01	((2,(205	700 00055
271.4	Totale	409,93	72,81	662,6205	728,88255
N14	N15	409,93	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 30*30	6,88			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	580,27	104,63	940,3095	1034,3405
N13	N14	580,27	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 30*35	8,03			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	751,76	132,53	1213,671	1335,0381
N12	N13	751,76	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 35*40	10,71			
	Poutre Chainage	5,28			

	Parois en brique	52,69			
	Totale	925,93	156,51	1484,7705	1633,2476
N11	N12	925,93	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 35*45	12,04			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	1101,4	176,57	1751,7855	1926,9641
N10	N11	1101,4	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 40*45	13,77			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	1278,7	192,71	2015,256	2216,7816
N9	N10	1278,7	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 40*50	15,3			

	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	1457,4	204,9	2274,867	2502,3537
N8	N9	1457,4	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 45*50	17,21			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	1638,1	213,22	2531,2515	2784,3767
N7	N8	1638,1	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 45*55	18,93			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	1820,5	217,49	2783,883	3062,2713
N6	N7	1820,5	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			

	Poteau 50*55	21,03			
	1 01044 30 33	21,03			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	2005	218,05	3033,7845	3337,163
N5	N6	2005	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 50*60	22,95			
	Poutre Chainage	5,28			
	Parois en brique	52,69			
	Totale	2191,4	237,65	3314,838	3646,3218
N4	N5	2191,4	39,21		
	PÉ courant	55,17			
	PÉ courant Dalle pleine	55,17 21.51			
	Dalle pleine	21.51			
	Dalle pleine Pp 30x45	21.51 15,86			
	Dalle pleine Pp 30x45 Ps 30x40	21.51 15,86 13,35			
	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier	21.51 15,86 13,35 21,11			
	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier Poteau 55*60	21.51 15,86 13,35 21,11 25,24			
	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier Poteau 55*60 Poutre Chainage	21.51 15,86 13,35 21,11 25,24 5,28	257,26	3598,998	3958,8978
N3	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier Poteau 55*60 Poutre Chainage Parois en brique	21.51 15,86 13,35 21,11 25,24 5,28		3598,998	3958,8978
N3	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier Poteau 55*60 Poutre Chainage Parois en brique Totale	21.51 15,86 13,35 21,11 25,24 5,28 52,69	257,26	3598,998	3958,8978
N3	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier Poteau 55*60 Poutre Chainage Parois en brique Totale N4	21.51 15,86 13,35 21,11 25,24 5,28 52,69 2380,1 2380,1	257,26	3598,998	3958,8978
N3	Dalle pleine Pp 30x45 Ps 30x40 Cage d'escalier Poteau 55*60 Poutre Chainage Parois en brique Totale N4 PÉ courant	21.51 15,86 13,35 21,11 25,24 5,28 52,69 2380,1 2380,1 55,17	257,26	3598,998	3958,8978

	Cage d'escalier	21,11			
	Poteau 55*65	41,02			
	Poutre Chainage	5,28			
	Totale	2531,9	293,12	3857,7045	4243,475
N2	N3	2531,9	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 60*65	44,75			
	Poutre Chainage	5,28			
	Totale	2687,4	312,7	4097,0265	4506,7292
N1	N2	2687,4	39,21		
	PÉ courant	55,17			
	Dalle pleine	21.51			
	Pp 30x45	15,86			
	Ps 30x40	13,35			
	Cage d'escalier	21,11			
	Poteau 60*70	30,34			
	Poutre Chainage	5,28			
	Totale	2828,5	332,31	4316,94	4748,634

^{✓ (}Sans majoration) : Nu = (1.35G + 1.5Q) = 4316,94KN

On conclut que le poteau B2 est plus sollicité que le poteau B3.

II-3-3-5- Vérification du poteau :

Selon le <u>CBA93 (article B.8.11)</u> on doit majorer pour les poteaux intermédiaires l'effort de compression ultime NU a 10%, telle que : NU=1.1 (1.35G+1.5Q) Tel que les tableaux précédents montre, Le poteau C3 est le plus défavorable : Nu= $5308.88KN \rightarrow Nu* 5839.79KN$

^{✓ (}Avec majoration) : $Nu^* = 1.1 (1.35G + 1.5Q) = 4748,634KN$

A- Vérification à la compression simple :

Il faut vérifie la condition suivante : Nu $\leq \overline{\sigma}bc$.tel que : $\sigma \overline{b}c = \frac{0.85 f c 28}{1.5} = 17 \text{ MPA}.$

Ce tableau résume les vérifications à la compression à tous les niveaux :

Tableau II-9 Vérification des contraintes a la compression sur le poteau B2

Niveaux	Nu* (KN)	Sections (cm2)	b	h	В	σbc	σl	$bc \leq \overline{\sigma}bc$
							σbc	observation
SOUS SOL 2	5254,2171	60x70	60	70	0,42	12,51	17	vérifiée
SOUS SOL 1	4959,5354	60x65	60	65	0,39	12,72	17	vérifiée
RDC	4634,8467	55x65	55	65	0,36	12,96	17	vérifiée
1eme étages	4288,8351	55x60	55	60	0,33	13,00	17	vérifiée
2eme étages	3949,5588	50x60	50	60	0,30	13,17	17	vérifiée
3eme étage	3613,6997	50x55	50	55	0,28	13,14	17	vérifiée
4eme étage	3312,1077	45x55	45	55	0,25	13,38	17	vérifiée
5eme étage	3007,5128	45x50	45	50	0,23	13,37	17	vérifiée
6eme étage	2698,7895	40x50	40	50	0,20	13,49	17	vérifiée
7eme étage	2386,5171	40x45	40	45	0,18	13,26	17	vérifiée
8ème étage	2069,9993	35x46	35	45	0,16	13,14	17	vérifiée
9ème étage	1749,5825	35x40	35	40	0,14	12,50	17	vérifiée
10ème étage	1424,6727	30x35	30	35	0,11	13,57	17	vérifiée
11ème étage	1097,2748	30x30	30	30	0,09	12,19	17	vérifiée
12ème étage	765,11655	30x30	30	30	0,09	8,50	17	vérifiée
13ème étage	426,49035	30x30	30	30	0,09	4,74	17	vérifiée
14ème étage	145,24785	30x30	30	30	0,09	1,61	17	vérifiée

II-3-3-6- Vérification au flambement :

D'après le CBA 93 (Article B.8.4.1), on doit faire la vérification suivante :

✓ Nu≤Nu*=
$$\alpha \frac{Br*fc28}{0.9 \gamma b} + \frac{As*fe}{\gamma s}$$

Avec:

Br : section réduite du béton $(B_r = (a-2) *(b-2))$.

As: Section d'acier.

γb=1.5 : coefficient de sécurité de béton.

ys=1.15 coefficient de sécurité d'acier

 α : Coefficient réducteur qui est en fonction d'élancement λ)

$$\alpha = \frac{0.85}{1 + 0.2(\frac{\lambda}{35})^2}$$
 si 0< λ <50

$$\alpha = 0.6(\frac{50}{\lambda})^2$$
 Si 50 < λ <70

Tel que : $\lambda = \frac{Lf}{i}$ (calcule d'élancement). $i = \sqrt{\frac{I}{b*h}}$; $I = \frac{bh^3}{12}$

- Lf : longueur de flambement

 $1f = 0.7 L_0$

- L₀: la hauteur libre du poteau l₀= h poteau - h poutre principale

> Vérification au flambement des poteaux

Tableau II-10 Vérification au flambement des poteaux

Niv	Nu*	В	Lo	Lf	i (m3)	α1	Á	I (m4)	Condi	tion Br	≥ Br cal
	(KN)		(m)	(m)					Br Cal m ²	Br m²	observa tion
SOUS SOL2	5254,2	0,42	2,49	1,743	0,202	0,8398	8,626	0,0171	0,285	0,394	vérifiée
SOUS SOL1	4959,5	0,39	4,19	2,933	0,188	0,8174	15,631	0,0137	0,276	0,365	vérifiée
RDC	4634,8	0,36	4,19	2,933	0,188	0,8174	15,631	0,0125	0,258	0,334	vérifiée
1er étage	4288,8	0,33	2,66	1,862	0,173	0,8343	10,75	0,0099	0,234	0,307	vérifiée
2eme étage	3949,5	0,3	2,66	1,862	0,173	0,8343	10,75	0,009	0,215	0,278	vérifiée
3eme étage	3613,6	0,28	2,66	1,862	0,159	0,8313	11,728	0,0069	0,198	0,254	vérifiée
4eme étage	3312,1	0,25	2,66	1,862	0,159	0,8313	11,728	0,0062	0,181	0,228	vérifiée

5eme	3007,5	0,23	2,66	1,862	0,144	0,8275	12,9	0,0046	0,165	0,206	vérifiée
étage											
6eme	2698,7	0,2	2,66	1,862	0,144	0,8275	12,9	0,0041	0,148	0,182	vérifiée
étage											
7eme	2386,5	0,18	2,66	1,862	0,13	0,8224	14,334	0,0030	0,132	0,163	vérifiée
étage											
8ème	2069,9	0,16	2,66	1,862	0,13	0,8224	14,334	0,0026	0,115	0,142	vérifiée
étage											
9ème	1749,5	0,14	2,66	1,862	0,115	0,8154	16,125	0,0018	0,098	0,125	vérifiée
étage											
10ème	1424,6	0,11	2,66	1,862	0,101	0,8053	18,429	0,0010	0,08	0,092	vérifiée
étage											
11ème	1097,2	0,09	2,66	1,862	0,087	0,7903	21,501	0,0006	0,063	0,078	vérifiée
étage											
12ème	765,11	0,09	2,66	1,862	0,087	0,7903	21,501	0,0006	0,044	0,078	vérifiée
étage											
13ème	426,49	0,09	2,66	1,862	0,087	0,7903	21,501	0,0006	0,025	0,078	vérifiée
étage											
14ème	145,24	0,09	2,66	1,862	0,087	0,7903	21,501	0,0006	0,008	0,078	vérifiée
étage											

On conclut que : $Br \ge Brcal \Rightarrow$ donc les poteaux de la structure ne risquent pas de se flamber.

```
Vérification des conditions du RPA :

Min (b; h) = 30 \ cm > 25 \ cm. (Zone IIa)

Min(b;h). \geq \frac{he}{2} ...... Les trois conditions doivent être vérifiées 0.25 \leq h/b \leq 4.
```

✓ Résultats de vérification à l'exigence de RPA pour les poteaux.

Remarque : Comme pour le flambement et la compression notre poteau répond parfaitement aux 3 conditions précédentes du RPA.

Conclusion:

Après que nous avons fini le pré dimensionnement des éléments secondaires et que nous avons fait toutes les vérifications nécessaires, nous avons adopté pour les éléments cité ci-dessus les sections suivantes :

- Plancher: Pour le corps creux est (20+4); pour les dalles pleines = 12cm.
- o Escalier (palier et volée): Nous avons adopté une épaisseur :
 - Palier : e= 12 cmVolée : e = 12cm.

- Voiles: e = 20 cm pour RDC, SOUS-SOL 1, SOUS-SOL 2.
- O Voiles : e= 15 cm Pour tous les étages
- o L'acrotère H = 50 cm

Section adoptée pour les poutres et les poteaux.

Tableau II-11 Sections adoptés pour les poutres et les poteaux

Elément	b	h	B(m²)
Poutre Principale	30	45	0,135
Poutre Secondaire	30	40	0,12
Poutre De Chainage	30	30	0,09
Poutre Brisée	30	45	0,135
Poteau Sous-sol 2	65	70	0,455
Poteau Sous-sol 1	60	65	0,39
Poteau RDC (Rectangulaires)	60	65	0,39
Poteau RDC (Circulaires)	7	0	0,385
Poteau E1	55	60	0,33
Poteau E2	55	60	0,33
Poteau E3	50	55	0,275
Poteau E4	50	55	0,275
Poteau E5	45	50	0,225
Poteau E6	45	50	0,225
Poteau E7	45	50	0,225
Poteau E8	45	50	0,225
Poteau E9	35	40	0,14
Poteau E10	35	40	0,14
Poteau E11	30	35	0,105
Poteau E12	30	35	0,105
Poteau E13	30	30	0,09
Poteau E14	30	30	0,09

Remarque:

Les dimensions des éléments prisent sont provisoires, elles peuvent être modifiées dans les prochains chapitres afin de satisfaire toutes les vérifications et les exigences des règlements utilisés.

Chapitre III Calcul des éléments

secondaires

Chapitre III

III- Chapitre III

III-1- Introduction:

Les éléments non structuraux sont les éléments qui n'ont pas une fonction porteuse ou de contreventement. Le calcul de ces éléments se fait sous l'action des charges permanentes et des surcharges d'exploitations et éventuellement sous l'action des charges sismiques pour certains éléments.

III-2- Etude des poutrelles

Les poutrelles se calculent à la flexion simple. Ce sont des sections en T en béton arméservent à transmettre les charges reparties ou concentrées aux poutres principales.

Les différents types de poutrelles :

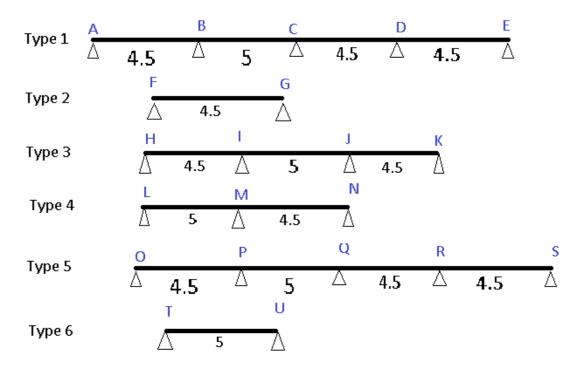


Figure 19 Types de poutrelles

III-2-1-1- Méthode de calcul des poutrelles :

Les méthodes envisagées pour la détermination des sollicitations dans les poutrelles : la méthode forfaitaire la méthode Caquot minorée et la méthode RDM

La méthode forfaitaire

Elle est applicable si les conditions suivantes sont vérifiées :

- Plancher a surcharge modérée, Q ≤ min (2G; 5KN/m²)
- Le rapport des portées successives est compris entre 0.8 et 1.25
- -Le moment d'inertie est constant sur tout le long de la travée
- -Fissuration peu nuisible

> Méthode Caquot minorée :

Cette méthode s'applique lorsqu'une des trois dernières conditions de la méthode de forfaitaire n'est pas vérifiée. Cette méthode se base sur la méthode des trois moments.

NOTE : on minore « G » par un coefficient de « 2/3 » uniquement pour le calcul des moments aux appuis, tandis que pour le calcul les moments en travées, on revient à l'intégralité de « G »

> Méthodes RDM:

Pour le calcul des poutres isostatique qui ne contient qu'une seule travée.

Dans notre cas, toutes les conditions sont vérifiées pour la méthode forfaitaire sur toutes les poutrelles qui contient plusieurs travées.

III-2-1-2- Exemple de calcule :

Soit la poutre de type 3 (étage courant) $G=5.28 \ KN/m^2$. $Q=1.5 \ KN/m^2$.

Type 3

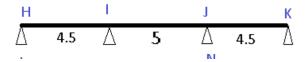


Figure 20 Poutrelle type 3

Plancher a surcharge modérée

$$(Q \le \min(2G, 5KN/m^2))$$

$$\circ \quad Q = 1,5 KN/m^2 \le min \ (10.56 \ ,5 KN/m^2) \ \dots \qquad Condition \ v\'erifi\'e$$

- Le moment d'inertie constant sur toutes les travées..... Condition vérifiée
- Le rapport entre deux travées successives : $0.8 \le \frac{Li}{Li+1} \le 1.25$

$$0.8 \le \frac{4.2}{4.7} = 0.89 \le 1.25 \dots Condition vérifiée$$

Toutes les conditions sont vérifiées donc la méthode forfaitaire est applicable.

> Calcul des charges :

$$\begin{cases} P_{u} = (1.35 \times 5.28 + 1.5 \times 1.5) \text{ X0.6} \\ P_{u} = 5.62 \text{KN/m} \end{cases}$$

$$\begin{cases} P_{s} = (5.28 + 1.5) \text{ X0.6} \\ P_{s} = 4.07 \text{KN/m} \end{cases}$$

A- Calcul des moments

c. Moment isostatique:

Travée 1 ET 3

• Mu = (q1²/8) =
$$M_0^U = 12.39\text{KN/m}^2$$

$$M_0^S = 8.97\text{KN/m}^2$$

Travée 2

ravee 2
•
$$Mu = (ql^2/8) =$$

$$M_0^U = 15.51 \text{KN/m}^2$$

$$M_0^S = 11.23 \text{KN/m}^2$$

d. Moment aux appuis :

On constate que la poutre est symétrique, donc : $M_H=M_K$ (appuis de rives) et $M_I=M_J$ (appuis intermédiaires), et aussi $M^t_{H-I}=M^t_{J-K}$ (moments en travées)

Appuis de rives :

$$\circ \quad M_H = M_K = -0.15 \, \text{Mo}$$

$$M_H = M_K = -0.15 \, \text{x} \, 12.39 = -1.856 \, \text{KN.m} \, \text{``ELU ``}$$

$$M_H = M_K = -0.15 \, \text{x} \, 8.97 = -1.34 \qquad \text{KN.m} \, \text{``ELS ``}$$

Appuis intermédiaire :

e. Moment en travée :

Le rapport de charge α :

$$\alpha = \frac{Q}{Q+G} = \frac{1,5}{1,5+5,28} = 0.21$$

$$1+0.3\alpha = 1.063$$

$$1.2+0.3\alpha = 1.263$$

Travée H-I et J-K:

$$M_{HI}^{t} + \frac{Mh + Mi}{2} \ge max(1.05; 1.063) M_{0}^{1}$$

$$\begin{cases} \bullet & \mathbf{M}^{t}_{\mathrm{HI}} \geq 1.063 \mathbf{M}^{1}_{0} = \frac{MI}{2} \quad \text{avec M}_{\mathrm{I}} = 0,5 \mathbf{M} \mathbf{o} \\ \bullet & \mathbf{M}^{t}_{\mathrm{HI}} \geq (1.063 \text{-} 0.25) \; \mathbf{M}^{0} \; \text{donc} : \mathbf{M}^{t}_{\mathrm{HI}} \geq 0.813 \; \mathbf{M}^{0} \qquad \qquad \qquad 1 \\ \bullet & \mathbf{M}^{t}_{\mathrm{HI}} \geq (1.263/2) \; \mathbf{M}^{0} \; \text{donc} : \mathbf{M}^{t}_{\mathrm{HI}} \geq 0.63 \; \mathbf{M}^{0} \qquad \qquad \qquad 2 \end{cases}$$

Entre 1,2 et la limite $M_{HI}=0.813 M^0$

Donc
$$\begin{cases} M^{tHI} = M^{tJK=} 10.07 \text{KN.m} \\ M^{tHI} = M^{tJK=} 7.14 \text{KN.m} \end{cases}$$
 (ELU) (ELS)

Travée I-J:

$$\begin{split} M^t{}_{IJ} + & \frac{MI + MJ}{2} \geq & \max(1.05~;~1.063)~M^2{}_0 \\ & = & M^t{}_{IJ} & \geq 1.063 M^1{}_0 = \frac{MI + MJ}{2} \quad avec~M_I = M_J = 0,5 Mo \\ & = & M^t{}_{IJ} & \geq (1.063 - 0.5)~M^0~donc~:~M^t{}_{IJ} \geq 0.563~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0 & ... \\ & = & M^t{}_{IJ} & \geq (1.063/2)~M^0~donc~:~M^t{}_{IJ} \geq 0.531~M^0~donc~:~M^t{}_{IJ} \geq$$

Entre 1,2 et la limite $M_{HI}=0.563 M^0$

Donc
$$M^{tIJ} = 8.73 \text{ KN.m(ELU)}$$
$$M^{tHI} = 6.32 \text{KN.m(ELS)}$$

B- Evaluation des efforts tranchants :

Pour les poutres a plus de 2 travées, les efforts tranchants sur les appuis voisins de rives doivent être majorés de 10%.

Le calcule se fait uniquement à l'ELU.

Travée H-I:

- VH=
$$\frac{qu \times l}{2}$$
 =11.8 KN
- VI= -1.1× $\frac{qu \times l}{2}$ = -13.2 KN

Travée I-J:

- VI=
$$1.1 \times \frac{qu \times l}{\frac{2}{2}}$$
= 13.2 KN
- VJ= $-1.1 \times \frac{qu \times l}{\frac{2}{2}}$ = -13.2 KN

Travée J-K:

- VJ=
$$1.1 \times \frac{qu \times l}{2}$$
= 13.2 KN
- VK= $-\frac{qu \times l}{2}$ = -11,8 KN

Ainsi on calcule les sollicitations sur les autres types afin d'avoir les moments et les efforts tranchants maximales.

C- Sollicitations sur les poutrelles :

Voici l'ensemble des sollicitations sur les poutrelles figurant sur le tableau ci-dessous :

Tableau des sollicitations :

Tableau III-1 Sollicitations sur les poutrelles

types de pout	Mtmax((KN.m)	Mamax(KN.m)		
	ELU	ELS	ELU	ELS	
E. courant	type1	10.13	7.32	-7.77	-6.2
	type2	10.54	7.62	-1.86	-1.4
	type 3	10.07	7.14	-6.19	-4.48
T. Inaccessible	type 4	10.16	7.4	-7.95	-5.78
	type5	11.93	8.69	-9.54	-6.95
	type 6	13.51	9.85	-2.38	-1.74

D- Calcul du ferraillage:

Nous pouvons donc calcules deux type de poutrelles (étage courant et terrasse inaccessible) avec les sollicitations les plus défavorables pour chaque type.

Certains niveaux comportent des planchers mixtes (E.C et T.I), ces derniers vont être considérés des terrasses inaccessibles (qui est le cas le plus défavorable).

Les vérifications se feront uniquement pour les sollicitations les plus défavorables. Si elles sont vérifiées donc il est inutile de vérifié les autres cas.

Exemple de ferraillage

Les caractéristiques géométriques de la poutrelle sont :

- b=60cm,
- $b_0 = 12$ cm,
- h0=4 cm
- d=h-d'=23cm,
- h=20 cm.

- fc28= 30MPa
- ht=24cm,
- ft28=2.4 MPa.
- fbu=17MPa

Le calcul du ferraillage se fait pour une section en T soumise à une flexion simple

a. Calcul a l'ELU

Armatures longitudinales :

> Ferraillage en travée :

Le moment équilibré par la table de compression

Mtu=b*h0*fbu* (d-
$$\frac{H\bar{0}}{2}$$
) \rightarrow Mtu=0.60*0.04*14.2* (0.22 - $\frac{0.04}{2}$) \rightarrow Mtu=81.6 KN.m

Mtu > Mu=15. 882KN.m→ l'axe neutre passe par la table de compression, donc la table n'est pas entièrement comprimée, la section en T sera calculée comme une section rectangulaire (b*h)

•
$$\mu bu = \frac{Mu}{b.d2.fbu} = \frac{0.01351}{0.6*0.048*17} = 0.027$$

- μ bu< μ l=0.392 \rightarrow le diagramme passe par le pivot « A » \rightarrow A'=0
- ξ st= 10‰ \rightarrow fst= $(fe/\gamma s)$ =400/1.15 = 348Mpa

•
$$\alpha = \frac{1 - \sqrt{1 - 2Ubu}}{0.8} = 0.034$$

• $Z=d(1-0.4\alpha)=0.217m$

•
$$A^{\text{trav\'ee}} = \frac{\text{Mtmax}}{z*\text{fst}} = \frac{0.0135}{0.217*348} = 1.79 \text{cm}^2$$

Soit: As=2HA10+HA8= 2.07 cm².

Pour le ferraillage en appuis, $Ma^{max} = 9.54KN.m$, section rectangulaire (b_0*h) on aura $Aa=1.30cm^2$ Soit 2HA10=1.57 cm²

Condition de non-fragilité :

At^{min}= 0,23.b.d
$$\frac{\text{ft28}}{\text{fe}}$$
 = 1.82 cm² \leq A^{adopté}= 2.07cm²

Aa^{min}= 0,23.b₀.d $\frac{\text{ft28}}{\text{fe}}$ = 0.36 cm² \leq A^{adopté}= 1.57cm²

Ainsi on calcule les autres ferraillages (les appuis intermédiaires et de rive) et pour l'autre type (étage courant) tous les résultats sont résumés au tableau suivant:

Tableau III-2 Ferraillage des poutrelles

types de poutrel	le	Travée		Appuis		
		Acal Cm ²	cal Cm ² Achoisis		A choisis	
E. courant	type1	1.3	2HA10	1	HA10+HA8	
	type2		2HA10	0.5	HA10	
	type 3	1.3	2HA10	0.8	HA10+HA8	
T. Inaccessible	type 4	1.3	2HA10	1	HA10+HA8	
type5		1.5	2HA10	1.2	HA10+HA8	
	type 6	1.79	2HA10+HA8	0.5	HA10	

E- Schéma de ferraillage des poutrelles

Schéma de ferraillage des poutrelles pour les types 1 à 5 :

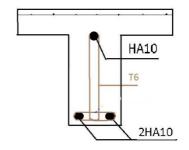


Figure 22 Ferraillage en travée

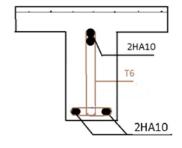


Figure 21 Ferraillage en appuis

Schéma de ferraillage des poutrelles pour le type 6 :

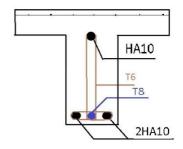


Figure 23 Ferraillage en travée

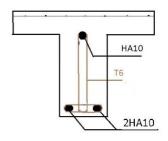


Figure 24 Ferraillage en appuis

Ferraillage de la dalle de compression :

On a $1x=60cm \le 80 cm donc$:

Généralement on utilise des ronds lisses de nuance fe235, donc on aura :

•
$$A \perp = \frac{4*Lo}{fe} = \frac{4*60}{235} = 1.02 \text{cm}^2/\text{ml}$$

•
$$A = A / 2 = 0.51 \text{ cm}^2/\text{ml}$$

Pour le choix:

• A $\underline{\perp} = 6\phi 5 = 1.18 \text{cm}^2/\text{ml} \text{ espacement} = 15 \text{cm} \le 20 \text{cm}$ (CBA 93)

• $A \setminus = 5\phi 5 = 0.98 \text{cm}^2/\text{ml espacement} = 20 \text{cm} \le 30 \text{cm}$ (CBA 93)

Afin de faciliter la mise en œuvre, on peut directement utiliser un treillis soudé de maille carré de (150* 150) mm²

III-2-1-3- Vérifications:

A- Vérification a l'ELU:

a. Vérification de la contrainte de cisaillement :

Pour la fissuration peu-nuisible :

$$\tau u = \frac{Vu \text{ max}}{b0.d} = 0.59 \text{Mpa} \le \frac{0.2}{\gamma} \text{ fc} 28 = 4 \text{ mpa}$$
.

La contrainte de cisaillement est vérifiée.

b. Vérification des espacements :

Soit At un étrier $\phi 6 = 0.57 \text{ cm}^2 \text{ (FPN)}$; alors :

• St \leq min (0.9d; 40cm) \rightarrow St= 0.198 cm

■ St
$$\leq$$
At $\frac{0.8\text{fe}}{\text{bo}(\tau u - 0.3\text{ft}28)}$ =valeur négative

■ $St \le \frac{At*fe}{0.4*bo} \longrightarrow St \le 47.5 \text{ cm}$

Entre 1, 2 et 3 on prend St = 15 cm pour la poutre de type 5 et St=20cm pour les autres

c. Vérification des armatures longitudinales vis-à-vis de l'effort tranchant :

Appuis de rive :

On doit vérifier que : $A \ge \frac{\gamma s * Vu}{fe} = 0.06 \text{cm}^2$ (largement vérifié)

Appuis intermédiaire :

On doit vérifier que $A \ge \frac{\gamma s}{fe} (Vu + \frac{Ma}{0.9d})$ avec Ma : pris avec son signe négatif.

Le résultat de la formule est négatif donc l'effort tranchant est négligeable devant l'effet du moment.

d. Vérification de la contrainte de cisaillement a la jonction table-nervure

On doit vérifier que τ u= $\frac{b1*Vu}{0.9*d*b*ho} \le \tau$ =4Mpa Avec b1=24 cm τ u=0.78Mpa \le 3.33Mpa (vérifié)

B- Vérification a l'ELS:

a. Vérification de la contrainte de compression du béton :

- > Vérifications des contraintes
- Position de l'axe neutre H

• H=
$$(b.h^2/2)$$
 -15A $(d-h_0)$ =-6cm ≤ 0

L'axe neutre ne passe pas par la table de compression, donc on fait des vérifications des contraintes pour une section en T

Il faut vérifier que

$$\sigma_{bc} = \frac{Mser}{I} y \le \sigma_{bc} = 0.6 \text{ fc}_{28} = 18\text{Mpa}$$

Calcule de y:

•
$$\frac{bo}{2}$$
 *y²+ (15A+(b-bo) *ho) y -15Ad- (b-bo) *h²/2=0

•
$$Y=15.48$$
 cm.

Calcule de I:

•
$$I = \frac{b}{3}y^3 - \frac{(b-bo)(y-ho)^3}{3} + 15 \text{ A } (d-y)^2 = 51130 \text{cm}^4 = 0.0005113 \text{m}^4.$$

Donc

•
$$\sigma_{bc} = \frac{Mser}{I} y = 2.98 Mpa \le 0.6 \ fc_{28} = 18 Mpa$$

La contrainte a la compression du béton est vérifiée.

La fissuration est peu-nuisible, inutile de vérifier les contraintes de l'acier.

b. Vérification de la flèche

La poutrelle de type 6 est la plus défavorable vis-à-vis de la flèche, pour le calcul on va résumer l'ensemble des donnés et des résultats dans les tableaux suivants :

Vérification de la flèche :

Le calcul de la flèche se fera uniquement pour le cas le plus défavorable qui est la poutrelle de type 6 qui ne contient qu'une seul travée isostatique et qui un chargement plus important que les autres en plus de ça elle a la plus longue portée (L=4.7m)

Pour que la flèche soit vérifiée il faut que Δ f $\leq f^{-}$

Et
$$\Delta f = \frac{L}{500} = \frac{470}{500} = 9.4 \text{ mm}$$

Avec
$$\Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}$$

Données:

- $\mathbf{j}(\mathbf{t/m}) = 0.6$ Charges permanentes avant mis en place des cloisons
 - g(t/m) = 0.6 Charges permanentes après mis en place des cloisons
 - \mathbf{p} (t/m) =0,7 Charges totales
 - L (m)= 4,7 Portée de la poutre
 - A $(cm^2) = 2.07$ Section des armatures tendues
 - \mathbf{b} (\mathbf{m}) =0,6 Largeur de la table
 - **b0** (m)= 0.12 Largeur de la nervure
 - h(m) = 0.24 Hauteur de la poutrelle
 - h0 (m) = 0.04 Hauteur de la table
 - c (m) = 0.01 Enrobage des aciers tendus
 - Fc28 (Mpa)= 30 Résistance à la compression du béton à 28 jours

Après les calculs des moments, des inerties et des contraintes pour chaque chargement, nous avons abouti aux résultats suivants

fgv = 18,342 mm

fji =11,686 mm

fpi = 14,376 mm

fgi=11,686 mm

Ce qui nous donne $\Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 9.35 \text{ mm} \le f^- = 9.4 \text{ mm}$

La flèche calculée ne dépasse pas la flèche admissible donc elle est vérifiée.

III-3- Etude des dalles pleines :

Nous avons 5 types de dalles pleine, (balcons, palier sur la cage d'escaliers, deux palier sur la cage d'ascenseur, plancher RDC de l'accès mécanique.

Voici les différents types :

Tableau III-3 types des dalles pleines

Type:	Lx (m)	Ly (m)	f (Lx/ly)	e (cm)
DP1	1.25	1	0≤0.4	12
DP2	4.7	4.7	1≥ 0.4	15
DP3	1.7	4.7	0.36≤0.4	12
DP4	2.4	4.7	0.51≥ 0.4	12
DP5	2.1	4.7	0.44≥ 0.4	12

Les détails de calcul se feront uniquement sur deux types qui sont le balcon en DP et le plancher RDC (accès mécanique) et le reste seront résumé dans le tableau des sollicitations.

Les détails du ferraillage se feront uniquement pour le balcon et les autres seront récapitulés dans le tableau de ferraillages

Les résultats des autres types seront résumés dans des tableaux

III-3-1- Sollicitations sur les dalles pleines :

III-3-1-1- Dalle du Balcon sur 1 appuis D₁

A- Evaluation des charges :

$$G=6.36 \text{ KN/m}^2$$
 , $Q=3.5 \text{ KN/m}^2$

Le balcon contient une charge concentrée à l'extrémité qui est celle de la paroi en brique (double cloison) donc : G'=7.6 KN

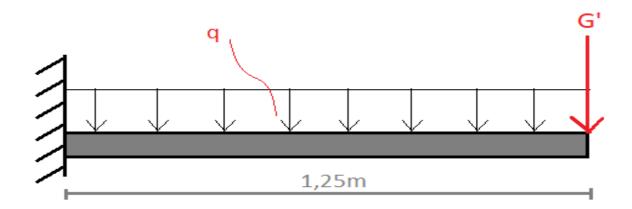


Figure 25. Schéma statique de la D.P.1 (balcon)

B- Calcul du chargement :

• Charge concentrée :

$$G'_u = 1.35*7.5 = 10.26 \text{ KN}$$
 (ELU)

$$G's=7.5 \text{ KN} \tag{ELS}$$

• Charge répartie

$$qu=1.35G +1.5Q = 13.83KN/m^2$$

$$qs = G + Q = 9.86 \text{ KN/m}^2$$

C- Calcule des Sollicitations :

Le balcon se porte sur 1 seul appui donc son étude se fera comme un consol de longueur de l=1.25m, largeur b=1m et d'une hauteur h=12cm par un calcul RDM.

$$M^{max} = -(q*l^2)/2 - G'*l$$
 avec: $l=1.25m$

On aura $M_u = -10.8 - 12.82 = -23.62$ KN.m (ELU)

Et
$$M_s = -7.7 - 9.5 = 17.2 \text{ KN.m}$$
 (ELS)

L'effort tranchant Vu= Pu *1 + G'u

$$Vu = 13.83*1.25 + 10.26 = 26.88 \text{ KN}.$$

III-3-1-2- Dalle du Plancher RDC sur 4 appuis D2

La dalle est d'une forme carré $\rho=1\geq0.4$

A- Evaluation des charges :

 $G=5.11 \text{ KN/m}^2$

B- Calcul du chargement

$$P_U = 1.35G + 1.5Q = 14.4 \text{ KN/m}^2$$

$$P_S = G + Q = 10.11 \text{ KN/m}^2$$

C- Calcul des Sollicitations:

a. Evaluation des moments :

$$M_{0x} = M_{0y} = \mu x \cdot P \cdot lx^2$$

Avec

(µx=0.0368) selon le tableau **PIGEAUD** pour le calcul des dalles pleine

- $M_{0x} = M_{0y} = 0.0368 * 14.4 * 4.7^2 = 11.7 \text{ KN.m (ELU)}$
- $M_{0x} = M_{0y} = 0.0368 * 10.11* 4.7^2 = 8.21 \text{ KN.m (ELS)}$

En prenant les cas les plus défavorables :

- Mt = 0.85Mo
- Mt=9.94KN .m (ELU)
- Mt= 6.97 KN.m (ELS)
- Ma= 0.5 Mo
- Ma -5.85KN/m (ELU)
- Ma = -4.1KN/m (ELS)

b. Evaluation de l'effort tranchant :

L'effort tranchant aux appuis est donné par la formule suivante :

•
$$V_X = \frac{plx}{2} \frac{ly4}{lx4 + ly4}$$

$$\circ$$
 Vx =Vy =16.92 KN.

Les résultats des autres dalles sont résumés dans le tableau suivant :

A l'ELU:

Tableau III-4 Sollicitations sur les dalles pleines à l'ELU

ELU	Mox (KN)	Mtx (KN.m)	Max (KN.m)	Vx (KN)	Moy (KN.m)	Mty (KN.m)	May (KN.m)	Vy (KN)
Type 1	23,62	/	23,62	19,92	/	/	/	1
Type 2	11,17	9,94	5,85	16,92	11,17	9,94	5,85	16,92
Type 3	3,38	2,87	1,69	8,18	/	/	/	/
Type 4	5,17	4,39	2,85	12,48	1,29	1,1	0,64	1,44
Type 5	4,38	3,72	2,19	9,72	1,09	0,93	0,454	0,86

A l'ELS:

Tableau III-5 Sollicitations sur les dalles pleines à l'ELS

ELS	MoX (KN.m)	MtX(KN.m)	MaX(KN.m)	MoY(KN.m)	MtY(KN.m)	MaY(KN.m)
Type 1	17,2	/	17,2	/	/	/
Type 2	8,21	6,97	4,1	8,21	6,97	4,1
Type 3	2,48	2,1	1,24	/	/	/
Type 4	3,68	3,13	1,84	0,92	0,78	0,46
Type 5	2,66	2,26	1,33	0,66	0,56	0,33

D- Ferraillage des dalles pleines

Les dalles pleines sont ferraillées à la flexion simple

Exemple de ferraillage pour les balcons :

Données:

• b=1m,

• h=12cm,

• FPN : d'= 1cm

• d= 11cm

Calcul:

• Ubu =
$$\frac{0.0236}{0.0121.\text{Fbu}}$$
 avec Fbu= $\frac{0.85 \text{ fc28}}{0.7\text{b}}$ =17 Mpa.

• Ubu =0.114 \leq 0.186 \rightarrow Pivot A.

• $Fs = \text{fe}/_{\gamma} b = \frac{400}{1.15} = 348 \text{Mpa}$

• Donc $\epsilon l = 1.74\%$ et $\alpha l = 0.668$

• $\mu l = 0.392 > Ubu \rightarrow A' = 0$

On peut alors calculer α =0.152 et z=0.103 donc :

•
$$A = \frac{Mu}{z.fst} = \frac{0.02363}{0.1*348} = 6.4cm^2$$

Soit 6HA12 = 6.79 cm² ce qui nous donne un espacement des barres St=15cm.

a. Les armatures de répartition :

Le balcon contient une charge concentré a son extrémité, donc $\mathbf{Ar} = A\mathbf{y} = \frac{A\mathbf{x}}{3}$

 $Ar = 2.26 \text{ cm}^2 \text{ soit 5HA8 avec st} = 20 \text{ cm}$

b. Condition de non-fragilité

Pour e=12cm

f < 0.4 donc Axmin= $f_0 * b * e$

avec $f_{0}=0.0008$ pour des barres HA Fe400

$$Am^{in} = 0.96 \ cm^2 < A_{adopt\acute{e}} = 6.79 \ cm^2$$

Donc la condition de non-fragilité est vérifiée

c. Espacement dans les armatures :

Pour une charge répartie et concentrée sur x :

Min
$$(2^e; 25cm) = Min (24; 25) > St_{adopté} = 15 cm.$$

Donc la condition est vérifiée.

d. Armatures d'âme de l'effort tranchant :

- La dalle est bétonnée sans reprise du bétonnage dans son épaisseur
- Vérification de la contrainte tangente :

$$\tau u = \frac{Vu}{b:d} = \frac{0.0266}{0.11} = 0.24 \text{ Mpa}$$

$$0.07 * \frac{\text{fc28}}{1.5} = 1.4 \text{ Mpa}$$

0.24 MPA < 1.4 Mpa → La condition est vérifiée donc les armatures transversales ne sont pas nécessaires.

e. Vérification de la compression du béton :

Avec I= $1.44 *10^{-4} \text{ m}^{4 \text{ et }} \text{ y} = 0.06 \text{ m} \text{ et Mser} = 0.0172 \text{ MN.m}$

$$\sigma bc = \frac{0.0172}{1.44*10e-4} * 0.06 \le 0.6 \text{ fc}_{28} = 18 \text{ MPA}$$

$$σbc$$
= 7.16≤ 18 MPA

La contrainte à la compression du béton est vérifiée.

Ferraillages:

Les ferraillages des autres types sont résumés dans les tableaux suivants :

X-X Y-Y en travée en appuis en travée en appuis 2,51 Type1 Ar 6,79 Ar Type2 2.1 1.8 2.1 1.8 Type3 1.5 1.5 Ar Ar Type4 1.5 1.5 1.5 1.5 Type5 1.5 1.5 1.5 1.5

Tableau III-6 Ferraillage des dalles pleines

Tableau III-7 Choix des barres

	X-X		Y-Y			
	en travée en appuis		en travée	en appuis		
Type1	Ar	6HA12	Ar	5HA8		
Type2	4HA10	4HA10	4HA10	4HA10		
Type3	4HA10	4HA10	4HA8	4HA8		
Type4	4HA10	4HA10	4HA10	4HA10		
Type5	4HA10	4HA10	4HA10	4HA10		

Schéma de ferraillage Pour la dalle du balcon :

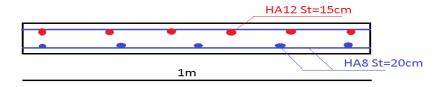


Figure 26 Ferraillage du balcon D.P

III-4- Calcul de l'escalier :

III-4-1- Introduction:

L'étude d'un escalier a pour but de déterminer les sections de ferraillage à lui mettre pour pouvoir résister aux sollicitations auxquelles il est soumis, dans notre projet on dispose de 2 types d'escalier, un escalier à trois des étages courants (H=3.06m) qui contient des paliers de repos, et celle du RDC et du sous-sol 1(H=4.59m) qui contient deux poutres brisée donc elle sera calculée comme une console (la même que celle des autres niveau)

Nous rappelons que les charges sont déjà calculées au chapitre précèdent

- > Palier
- Gp=4,36 KN/m
- Qp=2,5 KN/m
- ➤ Volée
- Gv=6,95 KN/m
- Qv=2.5 KN/m

III-4-2- Etude des escaliers :

III-4-2-1- Volées 1 (Travée isostatique):

A- Chargement:

> ELU:

$$q_v = 1,35G_v + 1,5Q_v = 13.13 \ KN/m$$

 $q_p = 1,35G_p + 1,5Q_p = 9.63 \ KN/m$

 \triangleright ELS:

•
$$q_v = G_v + Q_v = 9,45KN/m$$

•
$$q_p = G_p + Q_p = 6.86 \ KN/m$$

Calcul des réactions d'appuis :

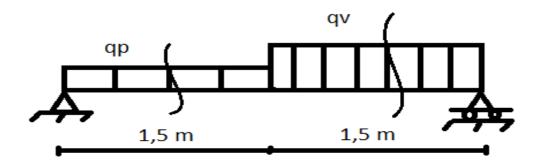


Figure 27 Schéma Statique des escaliers

Elles sont calculées par la méthode RDM et résumé sur le tableau suivant :

(KN)	ELU(KN)	ELS(KN)
VA	15.75	11.25
VB	18.38	13.2
VA+VB	34.14	24.46

B- Calcul des sollicitations :

L'élément étudié est le cas d'une poutre isostatique, alors le calcul des sollicitations sefera avec la méthode RDM (méthode classique).

> ELU

$0 \le X \le 1.5 \text{ m}$:

$$Ty = -q^p .x + Va$$

$$Mz = -q^p .x^2/2$$

$$Ty = 15.57 \ KN$$

$$X=0m:$$

$$Mz = 0 \ KN.m$$

$$X=1.5m$$
: Ty = 1.30 KN
Mz = 12.79 KN.m

$1.5 \le X \le 3 \text{ m}$:

$$\begin{split} Ty &= -q^p * 1.5 - q^v. \; (X\text{-}1.5) \; + Va \\ Mz &= -q^p * 1.5 \; * \; (x \; - \frac{1.5}{2}) - q^v \; * \frac{(x-1.5)2}{2} \; + \; Va \end{split}$$

$$X=1.5m$$
: $Ty = 1.30 \text{ KN}$
 $Mz = 12.79 \text{ KN.m}$

$$X=3m$$
: Ty = -18.38 KN
Mz = 0 KN.m

Le moment maximal se situe là ou l'effort tranchant est nul :

$$Ty=0 \rightarrow -q^p *1.5 - q^v. (X-1.5) + Va = 0KN$$

Donc x=1.6 m

$$X=1.6m:$$
 $Ty = 0 KN$ $Mz = 12.87 KN.m$

On calcule ainsi avec la combinaison ELS pour avoir le moment isostatique maximal : $M_s^{max} = 9.21 \text{ KN.m}$

Les appuis de l'escalier sont partiellement encastrés, le BAEL exige une correction des moments en travée a 0.75 Mo et ceux de l'appui a -0.5Mo.

Les moments sont résumés au tableau suivant

Tableau III-9 Les moments sur les escaliers

	M. isostatique	M travée	M appui
ELU(KN.m)	12.87	9.65	-6,43
ELS(KN.m)	9.21	6.9	-4,6

C- Calcul de ferraillage

Le ferraillage se fait à la flexion simple avec Mt^{max} en travée et Ma^{max} en appuis pour une section (b x e) = (100 x 12) cm².

Les résultats sont récapitulés dans le tableau suivant :

a. Armatures longitudinales:

Tableau III-10 Armatures longitudinales sur l'escalier

Position	Mu (KN.m)	μbu	A	Z(m)	Acal (cm²/ml))	Amin (cm²/ml)	Aadoptée (cm²/ml)	St (cm)
Travée	9.65	0,0469	0.06	0,107	2.59	1,32	4HA10=3.14	25
Appui	6.43	0,031	0,0397	0,108	1.71	1,32	4HA8=4,52	25

b. Armatures de répartitions :

L'escalier ne contient aucune charge concentrée, donc : $(A_{rep}=A_p/4)$

$$A_r = \frac{3.14}{4} = 0.79 \text{ cm}^2 \text{ soit } 4HA8 = 2.01 \dots$$
 Pour la travée et l'appui

Donc St= 25cm

D- Vérifications

c. A l'effort tranchant :

Vmax =VB= 18.38 KN.

La contrainte de cisaillement $\tau u = \frac{Vmax}{b.d} = 0.167Mpa$

Et $(0.07fc_{28}/\gamma b) = 1.4$ Mpa.

0.167Mpa ≤ 1.4 MPA. La résistance a l'effort tranchant est vérifié, inutile de mettre des armatures transversales.

d. Contraintes sur le béton et l'acier :

Comme la fissuration est peu-nuisible, nous n'avons qu'à vérifier que $\delta_{cb} \le \delta_{bc}^-$ Avec $\delta_{bc} = Ms.\frac{y}{I}$ et $\delta_{bc}^- = 0.6fc_{28}$

Les résultats sont résumés dans le tableau suivant :

Tableau III-11 Contraintes a la compression sur l'escalier

Position	Mser (KN.m)	Y cm)	-	σbc	σ̄bc	$\sigma bc \leq \bar{\sigma b}c$
Travée	6.9	2.78	3898.23	4.92	18	Vérifiée
Appui	4.6	2.29	2867.3	3.92	18	Vérifiée

$$\sigma bc = \frac{Nser}{s} + \frac{Mser}{I} Y = 0.85 \text{ Mpa} \le \sigma^{-}bc = 0.6 \text{ Fc28} = 18 \text{ MPA}$$

$$\sigma bc = \frac{1{,}34.10^{-3}}{0{,}1} + \frac{5.10^{-4}}{8{,}3.10^{-5}} \ 0{,}05 = 0.0134 + 0.3 = 0.31 \ mpa$$

$$\sigma^{-}bc = 0.6 \text{ Fc28} = 18 \text{ MPA}$$

e. Etat limite de déformation :

Vérification de la flèche :

Pour que la flèche soit vérifiée il faut que Δ f $\leq f_{adm}$

Et
$$f_{adm} = \frac{L}{500} = \frac{300}{500} = 6 \text{ mm}$$

Avec
$$\Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi}$$

Volée Palier

j (KN/m) = 6.95 / 4.36 (Charges permanentes avant mis en place des cloisons)

g (KN/m)= 6,95/ 4,36 (Charges permanentes après mis en place des cloisons)

 $p \; (KN/m) = \quad 9,45/ \quad 6,86 \quad (Charges \; totales \; (G+Q))$

Après les calculs des moments, des inerties et des contraintes pour chaque chargement, nous avons abouti aux résultats suivants

fgv = 0,444 mm

fji = 0,209mm

fpi = 0,484mm

fgi = 0.209mm

Ce qui nous donne $\Delta f = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 0.51 \text{ mm} \le f^- = 6 \text{ mm}$

La flèche calculée ne dépasse pas la flèche admissible donc elle est vérifiée.

E- Schéma de ferraillage de l'escalier complet

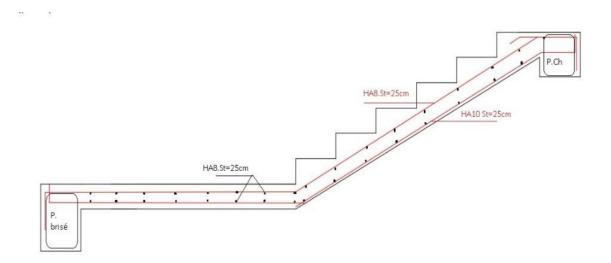


Figure 28 Ferraillage de l'escalier volée 1

III-4-2-2- Volée 2 (consol):

La volée 2 est appuyée d'un seul côté par la poutre brisée donc c'est un consol.

Les chargements sont calculé au chapitre précèdent

Avec
$$qu^{v} = 13.13 \text{ KN.m}$$

$$qs^{v} = 9.45 \text{ KN.m}$$

A- Le moment d'encastrement :

$$Menc = -(ql^2/2)$$

B- L'effort tranchant:

$$Vu = qu^v * 1 = 19.7 KN$$

C- Ferraillage du consol

a. Les armatures longitudinales :

Le calcul du ferraillage est résumé au tableau suivant :

Tableau III-12 Ferraillage de la volée en consol

Position	Mu (KN.m)	μbu	α	(cm)	AcaL (Cm²/ml)	Amin (Cm²/ml)
Encastrement	14.77	0,072	0,093	0,106	4	1,51

On adopte $A=4.52 \text{ cm}^2$

soit 4HA12

St = 25cm

Les armatures de répartition Ar= $\frac{A}{4}$ = 1.13 cm². Soit 4HA8 = 2.01 cm²

a. Vérification a l'effort tranchant :

$$\tau u = (V^{max} / b.d) = 0.146 \text{ MPA } \le (0.07 \text{ fc}_{28} / \gamma b) = 1.4 \text{Mpa}$$

L'effort tranchant est vérifié. Inutile de concevoir des armatures transversales.

D- Vérification a l'ELS:

b. Contraintes sur le béton et l'acier :

Comme la fissuration est peu-nuisible, nous n'avons qu'à vérifier que $\delta_{cb} \le \delta_{bc}^-$ Avec $\delta_{cb} = Ms.\frac{y}{I}$ et $\delta_{bc}^- = 0.6fc_{28}$

Les résultats sont résumés dans le tableau suivant :

Tableau III-13 contraintes a la compression sur la volée

Position	Mser(KN.m)	y (cm)	I (cm4)	σbc (Mpa)	σ̄bc (Mpa)	$\sigma bc \leq \sigma bc$
Encastrement	10.63	3.44	7322.8	4.99	18	Vérifiée

c. Vérification a l'état limite de déformation :

1.
$$e' \ge \max(\frac{1}{16}; \frac{Mt}{10Mo}) \times l \rightarrow e' = 14.5 \text{ cm} \ge 9.37 \text{ cm}....$$
 Vérifié

Ces conditions sont toute vérifiées donc le calcul de la flèche n'est pas nécessaire.

E- Schéma de ferraillage de la volée console :

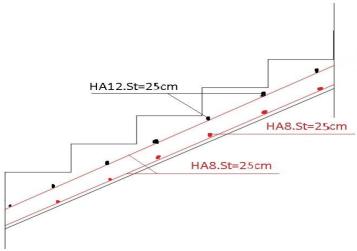


Figure 29 Ferraillage de la volée 2 (consol)

III-5- Etude de la poutre brisée

La poutre brisée est un élément structurel qui sert à appuyer les escaliers.

La participation de la poutre brisée au contreventement est négligeable donc son étude se fera uniquement en combinaison durable.

Nous avons deux poutres brisées au RDC et au 1^{er} sous-sol et une seule pour tous les autres niveaux, elles sont pratiquement identiques.

Nous avons tiré du chapitre précédent :

Le poids du mur qu'elle supporte :

$$g_1 = 2.81 * (H_{mur} = 2.04m) = 5.73 \text{ KN/m}.$$

Le poids propre de la poutre :

$$g_0 = 0.3* \ 0.45*25 = 3.37 \ \text{KN/m} \ \text{(pour h= 45cm)}$$
$$g'_0 = 0.3* \ 0.54*25 = 4.05 \ \text{KN/m} \ \text{(pour h= 54cm)}$$

III-5-1- Calcul la flexion simple :

$$\begin{array}{c} \blacktriangleright \quad ELU: \\ & q_u = 1.35 \; (g_0 + g_1) + R_u A = 28.03 \; KN/m \\ & q_u = 1.35 \; (g'_0 + g_1) + R_u A = 28.95 \; KN/m \\ \\ \blacktriangleright \quad ELS: \\ & q_s = (g_0 + g_1) + R_s A = 20.35 \; KN/m \end{array}$$

$$q_s' = (g'_0 + g_1) + R_s A = 21.03 \text{ KN/m}$$

III-5-1-1- Calcul des moments :

Moment isostatique:

$$M_0 = \frac{q l^2}{8}$$

En utilisant la méthode des sections (RDM) on aura les résultats suivants :

Avec

$$Mt = 0.75 Mo$$

$$Mt = -0.5 Mo$$

Tableau III-14 sollicitations sur la poutre brisée

Sollicitations	RA(KN)	RB(KN)	Mo(KN.m)	Mt(KN.m)	Ma(KN.m)	Vmax(KN)
ELU	66,53	66,59	78,76	59,07	-39,38	66,59
ELS	48,31	48,35	57,2	42,9	-28,60	/

III-5-2- Ferraillage a la flexion simple :

Le ferraillage des armatures longitudinales est résumé dans le tableau suivant :

Tableau III-15 Ferraillage a la flexion simple

Position	M (KN.m)	Pivot	μbu	α	z(m)	AFscal	Amin	AFs > Amincal
Travée	59.07	A	0,062	0,08	0.416	4.08	2.22	Vérifié
Appui	39.38	A	0,0417	0,053	0,42	2.69	2.22	Vérifié

Pour les armatures transversales :

Soit

$$St = 15cm \le min (0.9d = 38, 30) cm$$

$$At \ge \frac{0.4.st}{fe} \longrightarrow At \ge 0.45 \text{ cm}^2$$
 (à la flexion simple)

A- La contrainte de cisaillement :

$$\tau u = (\ V^{max}\ /\ b.d) \ = \frac{0.06659}{0.3*0.43} = 0.516\ Mpa\ .$$

B- Les armatures transversales :

Soit

St=15cm, avec (St
$$\leq$$
 min (0.9d; 30cm))

$$At \ge \frac{0.4b*St}{fe} = 0.45cm^2$$
....(1)

$$At \ge \frac{b*St(\tau u - 0.3ft28)}{0.9fe} = 0 \text{ (valeur négative)} \dots (2)$$

$$At = max (1; 2) = 0.45cm^2$$

III-5-3- Calcule à la torsion :

$$M^{tor} = -Ma*L/2 = 15.11KN.m$$

Avec Ma : (moment en appuis le plus défavorable qui est le moment d'encastrement de la volée 2.)

III-5-4- Calcul du ferraillage:

- $\phi = \min (30; 54) \text{ cm} \rightarrow \phi = 30 \text{ cm}$
- Donc e=30/6=5cm

- $\Omega = (b-e) (h-e) = 1456 \text{cm}^2$
- U=2(b+h) =165cm (périmètre de la section)

III-5-4-1- Armature Longitudinales:

$$Al = \frac{Mtor*U*\gamma s}{2\Omega*fst} = 6.61cm^2$$

Arm. Transversales

Pour St= 15cm At=
$$\frac{\text{Mtor*St*}\gamma s}{2\Omega * \text{fst}} = 0.59 \text{cm}^2$$

A- La contrainte de cisaillement :

Il faut vérifier que :
$$\tau^{\text{totale}} = \sqrt{\tau f s^2 + \tau tor^2} \le \tau^{-1} = \min \left(\frac{0.2 \text{ fcj}}{\gamma b} ; 5 \text{Mpa} \right) = 4 \text{ mpa}$$

Avec
$$\tau fs = 0.516 Mpa$$
 et $\tau tor = \frac{Mtor}{2\Omega e} = 2.38 Mpa$

Donc **τ**^{totale}=2.43Mpa ≤ 4Mpa (la contrainte de cisaillement est vérifiée, pas de risque de rupture par cisaillement)

III-5-5- FERRAILLAGE GLOBALE:

A- Arm. Longitudinale:

- En travé: Alt $^{\text{totale}}$ =Alt $^{\text{fs}}$ +Alt $^{\text{tor}/2}$ = 7.38cm 2 soit 5HA14 =7.7cm 2
- En appuis : $Ala^{totale} = Ala^{fs} + Ala^{tor/2} = 6 \text{ cm}^2 \text{ soit } 3HA14 + 2HA10 = 6.19\text{cm}^2$

B- Arm. Transversales:

$$At^{totale} = At^{fs} + At^{tor} = 1.04 \text{ cm}^2 \text{ soit} : 4\phi6 = 1.13 \text{ cm}^2$$

III-5-6- Vérifications a l'ELS:

Nous devons vérifier que : $\sigma_{bc} = \frac{Mser}{I}$ y $\leq \sigma_{bc}^- = 0.6$ fc₂₈ = 15Mpa. Pour la travée et l'appui.

Les résultats sont récapitulés au tableau suivant :

Tableau III-16 contraintes a la compression sur la poutre brisée

Position	Mser(KN.m)	y (m)	I(m ⁴)	σbc	σbc	σbc ≤σ¯bc
travée	42.9	0.165	0.00195	3.71	18	Vérifié
appuis	24.15	0.1302	0.00098	3.19	18	Vérifié

a. Vérification a l'état limite de déformation :

$$H \geq max \; (\frac{_1}{_{16}} \; ; \frac{_{Mt}}{_{10Mo}}) \rightarrow H = 0.45 \geq 0.352 \; ... \label{eq:hamma}$$
 Vérifié

$$A \leq \frac{\text{4.2b.d}}{\text{fe}} \quad \rightarrow A = 11.09 \text{ cm}^2 \leq 13.23 \text{ cm}^2 \dots \qquad \qquad V\text{\'erifi\'e}$$

$$L=4.7m \leq 8m.$$
 Vérifié

Toute les conditions sont vérifiées donc inutile de calculer la flèche.

III-5-6-1- Schéma de ferraillage de la poutre brisée :

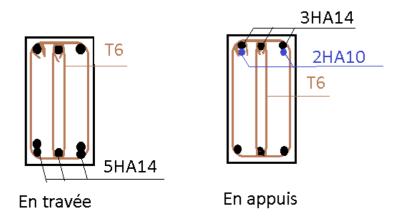


Figure 30 Ferraillage de la poutre brisée

III-6- Poutres de chainage

Nous avons utilisé plusieurs poutres de chainage dans la modélisation du projet, pour tenir des parois en briques et aussi pour diminuer la portée de certains éléments.

Voici un exemple de calcule d'une poutre de chainage, les sollicitations sur la poutre sont directement tiré du logiciel ROBOT

III-6-1- Sollicitations

Tableau III-17 sollicitations sur la poutre de chainage

	M travée	M appui	Effort tranchant
ELU(KN.m)	31.57	-47.64	75.73
ELS(KN.m)	23.1	-34.86	/

III-6-2- Ferraillage a la flexion simple :

Le ferraillage des armatures longitudinales est résumé dans le tableau suivant :

Tableau III-18 Ferraillage de la poutre de chaînage

Position	M (KN.m)	Pivot	μbu	α	z(m)	Acal	Amin	A choisis
Travée	31.57	A	0,073	0,095	0.28	2.82	1.2	3HA12
Appui	47.64	A	0,11	0,146	0,27	4.41	1.2	3HA14

> Armatures transversales :

Soit St = 15cm $\leq min (0.9d=26.1, 30)$ cm

$$At \ge \frac{0.4.st}{fe} \rightarrow At \ge 0.45 \text{ cm}^2 \text{ (à la flexion simple)}$$

III-6-3- Vérifications

A- La contrainte de cisaillement :

$$\tau u = \frac{V^{max}}{b.d} = \frac{0.07573}{0.3*0.29} = 0.87 \text{ MPA} \le \tau^{-1} = \min \left(\frac{0.2 \text{ fcj}}{\gamma b} ; 5 \text{Mpa} \right) = 4 \text{ mpa}$$

B- Les armatures transversales :

Soit St=15cm, avec (St \leq min (0.9d; 30cm))

At
$$\geq \frac{0.4b*St}{fe} = 0.45 \text{cm}^2$$
....(1)

At
$$\geq \frac{b*St(\tau u - 0.3ft28)}{0.9fe} = 0$$
 (valeur négative)(2)

At = max
$$(1; 2) = 0.45$$
cm² soit $4\phi6 = 1.13$ cm²

III-6-3-2- Vérifications à l'ELS:

Nous devons vérifier que : $\sigma_{bc} = \frac{\textit{Mser}}{\textit{I}} \text{ y} \le \sigma^-_{bc} = 0.6 \text{ fc}_{28} = 18 \text{Mpa pour la travée et l'appui.}$

Les résultats sont récapitulés au tableau suivant :

Tableau III-19 contraintes a la compression sur la poutre de chaînage

Position	Mser(KN.m)	y (m)	I(m ⁴)	σbc	σbc	σbc ≤σ¯bc
travée	23.01	0.08	0.000355	5.19	18	Vérifié
appuis	34.86	0.091	0.000473	6.70	18	Vérifié

III-6-4- Schéma de ferraillage dans toute la poutre :

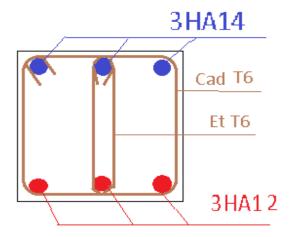


Figure 31 Ferraillage des poutres de chainage

III-7- Etude de l'ascenseur :

L'ascenseur est un appareil mécanique, servant au déplacement vertical des personnes et des chargements vers les différents niveaux de la construction.

Elle se constitue d'une cabine, qui se déplace le long d'une glissière verticale dans l'ascenseur muni d'un dispositif mécanique permettant le déplacement de la cabine L'ascenseur qu'on étudie est pour 06 personnes :

A- Les caractéristiques :

- V = 0.63 m/s : Vitesse de levage.
- Pm = 15 KN : Charge due à la salle de machine.
- Dm = 43 KN: Charge due au poids propre de l'ascenseur.
- Fc = 50 KN : Charge due à la rupture des câbles.
- Course maximale = 48.79 m soit 50m.
- Bs * Ts = (1.8*1.8) m². Dimensions de la gaine.

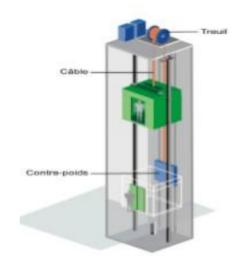


Figure 32 Caractéristiques de l'ascenseur

- le poids propre de l'ascenseur est de 500 Kg Selon les charges on définit un seul type de dalle:
- Dalle de salle machine (locale).

$$P = Pm + Dm + 50 = 15 + 5 + 43 = 63 \ KN$$

B- Dalle de salle machine (locale).

- h0 : épaisseur de la dalle
- h1 : épaisseur de revêtement
- a0 et a sont || à lx
- b0 et b sont || à ly

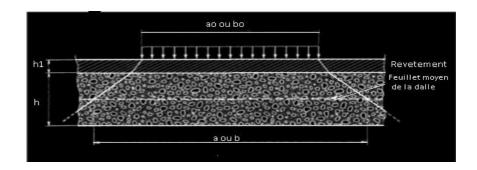


Figure 33 Répartition de la charge

$$u = a + h + \psi h1$$
 et $v = b + h + \psi h1$ $u = v = 0.987$

Avec : $\psi = 0.75$ (le revêtement est moins résistant)

a = b = 80cm (dimensions de la surface de l'impact)

h = 15 cm (épaisseur de la dalle)

h1 = 5cm (épaisseur du revêtement)

III-7-2- Calcule des sollicitations :

Les expressions des moments sont données par :

$$\begin{bmatrix} M_{0X}=P (M_1+\nu M_2) \\ M_{0y}=P (\nu M_1+M_2) & \text{avec } \nu=0.2 \text{ (calcul des sollicitations)} \end{bmatrix}$$

 M_1 et M_2 sont des coefficients donnés par l'abaque de PIGEAUD en fonction de $f = \frac{lx}{ly}$

$$Lx=Ly \rightarrow f=1$$

Donc:
$$\frac{u}{Lx} = \frac{v}{Ly} = 0.548 \rightarrow Ux = 0.0921$$

Soit
$$M_1 = M_2 = 0.058$$

$$q_{\rm u} = 1,35 \ P = 1,35 \times 63 = 85,05 \ KN$$

$$M^1 x = M^1 y = (0.058 + 0.2 * 0.058) * 85.05 \implies M^1 = 5.92 \text{ KN. } m$$

✓ M^2x et M^2y dû aux poids propre de la dalle :

La dalle est d'une forme carrée donc : $M^2x = M^2y = \mu x \times q \times lx^2 = 1.20$ KN.m

Avec
$$Ux = 0.0442$$
 pour $f=1$ et $q = 5.11 *1.35 + 1*1.5 = 8.39 KN/m2$

✓ La superposition des moments nous donne :

$$Mx = My = M^{1}x + M^{2}x = 5.92 + 1.20 = 7.12 \text{ KN.m}$$

Remarque:

Puisque nous avons une charge uniformément repartie sur une dalle carré, sollicitations, les ferraillages et les vérifications sur X sont les mêmes sur Y donc inutile de calculer sur les deux sens

Les appuis ne sont pas articulés, le B.A.E.L exige la correction des moments en travée et en appuis. On aura donc : M_t = 0.85 M_0 = 6.05 KN.m

Et
$$M_a$$
= -0.5 M_0 = -3.56 KN.m

III-7-3- Calcul du ferraillage :

Les armatures se calculent à la flexion simple pour une table de 1m de largeur et 15cm de hauteur. le résultat est résumé au tableau suivant :

Tableau III-20 Ferraillage de la dalle

position	Mu(KN.m)	Ubu	α	Z(m)	Acal(cm ²)	Amin (cm²)	Aadopté(cm²)
travée	6.05	0.021	0.026	0.128	1.18	1.79	4HA10=3.14
appuis	3.56	0.012	0.015	0.129	0.69	1.79	4HA10=3.14

III-7-4- Vérifications :

III-7-4-1- Vérification au poinçonnement :

$$\Rightarrow$$
 $qu \le 0.045 \times Uc \times h \times fc28 / \gamma b$

Avec

Uc: Périmètre du rectangle d'impact $Uc = 2 \times (0.987 + 0.987) = 3.59 \text{m}$

$$85.05 \le 0.045 \times 3.59 \times 0.15 \times 30 \times 10^{3} / 1.5$$

 $\implies 85.05 \text{ KN} \le 484.6$

La condition est vérifiée donc pas de risque de poinçonnement sous charge concentré

III-7-4-2- Vérification a l'effort tranchant :

Les efforts tranchants sont max au voisinage de la charge (milieu), U=V

$$Vu = \frac{qu}{3v} = \frac{85.05}{2.96} = 28.73 \text{KN}$$

$$\tau u = \frac{Vu}{b*d} = \frac{28.73*10^{-3}}{1*0.13} = 0.221 \text{Mpa}$$

$$\tau u = 0.07 \text{fc} 28/\gamma \text{b} = 1.4 \text{Mpa}$$

Donc $\tau u \le \tau \bar{\ } u$ Alors pas de risque de cisaillement

III-7-5- Calcule à l'ELS:

Le moment engendré par le système de levage :

$$q_{\rm s}=P=63~KN$$

$$M^1 x = M^1 y = (0.058 * 63) \Longrightarrow M^1 = 3.65 KN. m$$

 M^2 dû aux poids propre de la dalle

$$M^2 = \mu x \times q \times lx^2 = 0.73 \text{KN.m}$$

Avec
$$Ux = 0.0368$$
 pour $f=1$ et $q = 5.11 + 1 = 6.11 \text{KN/m}^2$

✓ La superposition des moments nous donne :

$$M = M^1 + M^2 = 3.65 + 0.73 = 4.38 \text{ KN.m}$$

On aura donc Mt=0.85Mo = 3.72 KN.m

Et
$$Ma = -0.5 \text{ Mo} = 2.19 \text{ KN.m}$$

III-7-5-1- Vérifications des contraintes dans le béton :

Tableau III-21 Contrainte a la compression sur la dalle

Position	Mser(KN.m)	y (m)	I (m4)	σbc	σ¯bc
travée	3,72	0,032	0,000066	1,8024	18
appuis	2,19	0,032	0,000066	1,0611	18

III-7-5-2- Schéma de ferraillage

Le ferraillage de la dalle est identique sur les deux sens :

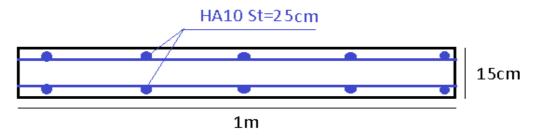


Figure 34 Ferraillage de la dalle de la salle de machine

III-8- Etude de l'acrotère

III-8-1- Introduction

L'acrotère est un élément en béton armé qui se réalise sur le contour d'un bâtiment au niveau de la terrasse inaccessible, il forme une paroi contre toute chute. Il est considéré comme une console verticale encastrée à sa base, soumise à son poids propre (G), à une surcharge horizontale due à la main d'œuvre (Q) et à une force sismique (Fp).

III-8-2- Hypothèses de calculs :

Le calcul se fera pour une bande de 1ml.

- La fissuration est considérée nuisible.
- Le calcul de ferraillage se fera à la flexion composée

III-8-3- Evaluation des charges et surcharges :

La charge permanente :

- Le poids propre (déjà calculé dans le 2^{eme} chapitre : $G = WP = 1.34 \ KN/ml$
- La charge d'exploitation : Q = 1KN/ml
- La force sismique (Fp) : La force sismique est donnée par la formule citée en Art 6.2.3 RPA99V2003 :

$$FP = 4 * A * CP * WP$$

Avec:

- A = 0.15 (Zone IIa): Coefficient d'acceleration de la zone
- Cp = 0.8: Facteur de force horizontale.....
- WP = 1,34KN/ml : Poids propre de l'acrotére.....

Ce qui donne : FP = 0.64 KN

III-8-4- Calcule des sollicitations :

Le calcul du centre de gravité de l'acrotère nous donne X_G = 9,47cm et Y_G = 26,33 cm

L'acrotère est soumis aux sollicitations suivantes :

$$-N_{\rm G} = 1,34 \ KN$$

$$-M_{\rm O} = Q * h = 0.5 \ KN. \ m$$

$$-MF_P = F_P * Y_G = 0.168 \ KN. \ m$$

Tableau III-22 Sollicitations sur l'acrotère

Combinaisons	ELU	ELU acc	ELS
N(KN)	1.8	1.34	1.34
M(KN.m)	0.75	0.668	0.5
V(KN)	1.5	1.33	1

III-8-5- Ferraillage:

On présente le ferraillage obtenu à l'ELU (Situation courante) car cela donne une section d'acier plus défavorable que celle accidentelle.

$$e_1 = \frac{Mu}{Nu} = \frac{0.75}{1.8} = 41.66 \text{ cm}$$
 $et \frac{h}{6} = 8.33 \text{ cm donc } e_1 \ge \frac{h}{6}$

Le centre de pression « C » se trouve à l'extérieur du noyau central \rightarrow Section partiellement comprimée avec N (compression).

Donc le calcul se fait par assimilation à la flexion simple sous le moment Mu = Nu * e. La section est soumise à un effort normale de compression, elle doit se justifier vis-à-vis l'état limite ultime de stabilité de forme (Flambement). **Art 4.4 BAEL91**

Donc le risque de flambement conduit à remplacer e_0 par e tel que : $e = e_0 + e_a + e_2$

Avec : e_a : Excentricités additionnelles traduisant les imperfections géométriques initiales.

e2: Excentricité due aux effets du second ordre, liés à la déformation de la structure

$$e_a = \max (2\text{cm}; \frac{h}{250}) = 2\text{cm}$$

$$e_2 = \frac{3 \times lf^2 \times (2 + \emptyset \times \alpha)}{h_0 \times 10^4}$$
, Avec $\alpha = \frac{MG}{MG + MQ} = 0$

- ϕ : C'est le rapport de déformation finale due au fluage a la déformation instantanée sous la charge considérée, il est généralement pris égal à 2.
- α : Le rapport du moment du premier ordre, du aux charges permanentes et quasi permanentes, au moment total du premier ordre, le coefficient α est compris entre 0 et 1.
- lf: Longueur de flambement; lf = 2*h = 1m
- h_0 : Hauteur de la section qui est égale à 10cm. Donc :

$$\frac{lf}{h_0} \le \max(15; \frac{20 \times e1}{h0}) \longrightarrow \frac{1}{0.1} = 10 \le \frac{20 \times 0.42}{0.1} = 84$$

Donc le calcul se fait en tenant compte de l'excentricité.

$$e_2 = \frac{3 \times 1^2 \times (2+0)}{0.1 \times 10^4} \rightarrow e_2 = 0.006 \text{ m}$$

$$e = e_1 + e_a + e_2 = 0.4426m$$

III-8-5-2- Ferraillage de la section

 $F_{bu} = 17Mpa$

$$f_{st}=348Mpa$$

Nu=1.8 KN

$$MuG = Nu *e = 0.79 KN.m$$

Position du centre de pression C :

$$e_G = \frac{MuG}{Nu} = 0.438 \text{ m}$$

$$e_G > y_G = 0.05 \text{ m}$$

N : effort de compression et C en dehors de la section→ section partiellement comprimée (SPC)

Donc on calcule par assimilation a la flexion simple :

Selon le B.A.E.L:

$$M_{UA} = M_{UG} + N_{U}*(d-\frac{ho}{2}) = 0.862 \text{ KN.m}$$

Tableau de ferraillage dans l'acrotère

Tableau III-23 ferraillage de l'acrotère

Nu(KN)	Mu(KN.m)	Mua(KN.m)	Ubu	α	Z(cm)	A fc(cm ²)	Amin(cm ²)	choix	A rep(cm ²)
1.8	0.79	0.862	0.006	0.0078	0.089	0.27	1.38	4HA8	2.01

III-8-6- Vérifications:

✓ ELU:

Vérifier si

$$\tau u \le \overline{\tau u}$$
 Avec $Vu = 1,5$ KN
$$\tau u = \frac{Vu}{b.d} = 0.016$$
Mpa et $\overline{\tau u} = \min(0.1\text{fc}28 \text{ ; 4Mpa}) = 3$ Mpa

 $\tau u \leq \overline{\tau u}$ la contrainte de cisaillement est vérifiée

✓ ELU accidentel :

$$V~u=Q+FP=1.33~KN$$

$$\tau u=0.014~MPa<\overline{\tau u}=3~MPa~\dots$$
 Vérifiée

✓ -ELS:

Vérification de la contrainte dans le béton et dans l'acier (FN) :

$$\sigma bc = \frac{Nser}{s} + \frac{Mser}{I} Y = 0.85 \text{ Mpa} \le \sigma^- bc = 0.6 \text{ Fc} 28 = 18 \text{ MPA}$$

$$\sigma bc = \frac{1,34.10^{-3}}{0.1} + \frac{5.10^{-4}}{8.3.10^{-5}} 0,05 = 0.0134 + 0.3 = 0.31 \text{ Mpa}$$

$$\sigma^-bc = 0.6 \text{ Fc28} = 18 \text{ MPA}$$

 $\sigma bc \le \sigma \bar{b}c$ donc la contrainte à la compression du béton est largement vérifié

III-8-7- Schéma de ferraillage :

Figure 35 Ferraillage de l'acrotère

III-9- Conclusion:

Dans ce chapitre on a pu ferrailler et vérifiées les éléments secondaires qui ne participent pas au contreventement de la structure, afin de satisfaire la résistance, la stabilité et la durabilité de ces derniers.

Nous avons aussi conçu plusieurs poutres de chainage afin de supporter la charge des parois en brique double cloisons et aussi pour diminuer la longueur de l'escalier pour ainsi diminuer son épaisseur et son poids propre.

Chapitre IV

IV- Chapitre IV

IV-1- Introduction:

Le séisme est un phénomène naturel qui résulte de la libération de l'énergie accumulé causées par les frictions des plaques de la croute terrestre.

Pour parvenir à résister à ce phénomène, la structure doit comporter un système de de stabilisation latérale performant est bien dimensionné.

Ainsi le but de ce chapitre va nous permettre de prévoir le comportement de notre structure visà-vis d'un séisme en fonction du système de contreventement compatible à la structure.

IV-2- Modélisation:

La modélisation est la transformation d'un problème physique réel ayant une infinité de degrés de liberté à un modèle possédant un nombre de DDL fini qui décrit le phénomène étudié d'une manière aussi fiable que possible, autrement dit, ce modèle doit refléter avec une bonne précision le comportement et les paramètres du système d'origine à savoir : la masse, la rigidité, l'amortissement, etc....

La modélisation par la méthode des éléments finis consiste à discrétiser la structure en plusieurs éléments en déterminant les inconnues au niveau des nœuds puis à l'aide des fonctions d'interpolations, on considérant tout élément puis toute la structure.

Cependant, il existe des logiciels de modélisation et de calcul des structures parmi eux : le logiciel ROBOT 2017 qui permet de simplifier le travail et de modifier la structure ou bien le paramètre de calcul à tout moment.

Ce logiciel permet de déterminer automatiquement les caractéristiques dynamiques d'une structure (rigidité, déplacement, effort, etc.) à partir d'une modélisation en trois dimensions préalable et appropriée.

Le modèle adopté est encastré à la base, il ne comporte que les éléments (Poteaux, Poutres, escaliers, planchers et voiles), le reste des éléments sont introduit comme des chargements.

Le chargement vertical est effectué à l'aide des charges gravitaires (G et Q), et le chargement horizontal est obtenu par l'application d'un spectre de réponse (RPA99) dans les deux directions (X et Y) pour avoir respectivement (Vx dyn et Vy dyn).

IV-3- Méthode de calcul des forces sismiques :

Le calcul de la force sismique globale à la base d'un bâtiment peut se faire à l'aide de deux principales méthodes :

A. La méthode statique équivalente :

Dans cette méthode, l'effet dynamique de la force sismique est remplacé par un effet statique qui produit la même réponse (déplacement maximal) que la force dynamique réelle. L'utilisation de cette méthode exige la vérification de certaines conditions définies par le RPA (régularité en plan, régularité en élévation, etc.)

B. La méthode dynamique:

Qui regroupe:

- o La méthode d'analyse modale spectrale.
- o La méthode d'analyse dynamique par accélérogramme.

Dans notre cas, la hauteur totale est supérieure à 23 mètres, donc la méthode statique équivalente est inapplicable RPA99 Art 4.1.2

La méthode d'analyse dynamique par accélérogramme nécessite l'intervention d'un personnel qualifié, donc la méthode qui convient pour notre cas est la méthode d'analyse modale spectrale.

IV-3-1- Présentation de la méthode choisit :

La méthode C.Q.C (combinaison quadratique complète) est, sans doute, la méthode la plus utilisée pour l'analyse sismique des structures, pour cette méthode, on n'a pas besoin de vérifier la condition d'indépendance pour chaque deux modes puisque la méthode elle-même nous permet de faire cette vérification en introduisant un coefficient qui s'appelle le coefficient de corrélation.

IV-3-2- Interprétation

IV-3-2-1- Disposition des voiles :

Après avoir essayé plusieurs façons de disposer les voiles on a conclu à celui-ci qui montre un meilleur comportement (une bonne translation pour les deux premiers modes et une rotation pour le 3ème)

La disposition voiles est comme présenté ci-dessous :

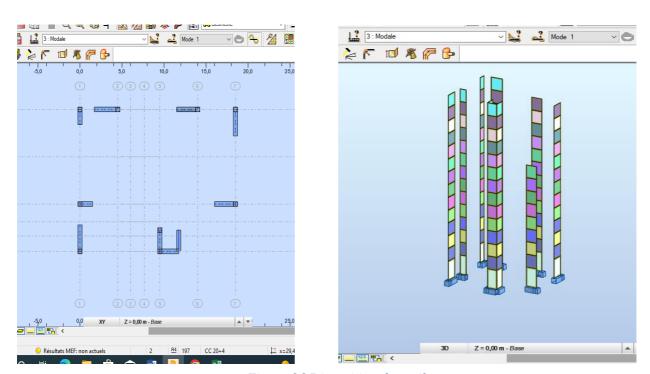


Figure 36 Disposition des voiles

IV-3-2-2- Vibration et participation massique :

_										1,000		-
	Cas/Mod	de	Fréquenc e [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]
Ш	3/	1	0,86	1,17	0,01	67,35	0,00	0,01	67,35	0,00	4377162,23	4377162,23
Ш	3/	2	0,90	1,11	69,04	67,37	0,00	69,03	0,02	0,00	4377162,23	4377162,23
Ш	3/	3	1,14	0,88	69,06	67,61	0,01	0,03	0,23	0,00	4377162,23	4377162,23
Ш	3/	4	2,57	0,39	69,07	83,97	0,02	0,01	16,36	0,01	4377162,23	4377162,23
Ш	3/	5	2,73	0,37	83,96	83,97	0,02	14,89	0,00	0,01	4377162,23	4377162,23
Ш	3/	6	3,43	0,29	84,02	83,97	0,04	0,06	0,00	0,01	4377162,23	4377162,23
Ш	3/	7	5,11	0,20	84,07	89,82	0,09	0,06	5,85	0,06	4377162,23	4377162,23
Ш	3/	8	5,29	0,19	89,87	89,88	0,09	5,80	0,06	0,00	4377162,23	4377162,23
Ш	3/	9	6,36	0,16	90,74	89,90	0,20	0,87	0,02	0,11	4377162,23	4377162,23
Ш	3/	10	6,56	0,15	90,78	91,06	0,75	0,04	1,16	0,55	4377162,23	4377162,23

Figure 37 Vibration, période et participation massique

IV-3-2-3- Système de contreventement et coefficient de comportement :

Nous avons essayés à plusieurs reprises avec différents dispositions et dimensions des voiles de satisfaire l'interaction entre les voiles et le portique tout en gardant une période d'oscillation minimale afin d'aboutir à un système de contreventement mixte, voici donc les interactions des charges par niveau :

❖ Interaction des charges verticale Fz sur les éléments :

	Répart	tition de charge Fz su	ır les éléments		
étages	FZ sur les poteaux [kN]	FZ sur les voiles [kN]	total [kn]	% de charge sur les poteaux	% de charge sur les voiles
RDC	-33434,99	-12908,26	-46343,25	72,15	27,85
Etage 1	-30535,02	-11064,19	-41599,21	73,40	26,60
Etage 2	-27288,48	-10601,38	-37889,86	72,02	27,98
Etage 3	-23878,63	-10393,14	-34271,77	69,67	30,33
Etage 4	-20628,04	-10109,41	-30737,45	67,11	32,89
Etage 5	-17820,58	-9448,28	-27268,86	65,35	34,65
Etage 6	-15161,19	-8678,74	-23839,93	63,60	36,40
Etage 7	-12690,09	-7748,97	-20439,06	62,09	37,91
Etage 8	-10343,36	-6726,13	-17069,49	60,60	39,40
Etage 9	-8122,68	-5527,63	-13650,31	59,51	40,49
Etage 10	-6066,26	-4588,02	-10654,28	56,94	43,06
Etage 11	-4265,48	-3468,14	-7733,62	55,16	44,84
Etage 12	-2711,73	-2201,17	-4912,9	55,20	44,80
Etage 14	-1331,14	-999,05	-2330,19	57,13	42,87
Etage 15	-400,97	0,00	-400,97	100,00	0,00

Les voiles reprennent plus de 20% des charges verticales

* Répartition des efforts tranchants Fx sur les éléments :

	Répartition	des efforts tranchar	nts Fx sur les étages		
étages	FX sur les poteaux [kN]	FX sur les voiles [kN]	total [kn]	% de l'effort sur les poteaux	% de l'effort sur les voiles
RDC	519,88	804,63	1324,51	39,25	60,75
Etage 1	437,16	864,28	1301,44	33,59	66,41
Etage 2	462,09	794,44	1256,53	36,78	63,22
Etage 3	473,06	720,23	1193,29	39,64	60,36
Etage 4	438,95	681,57	1120,52	39,17	60,83
Etage 5	508,61	535,99	1044,6	48,69	51,31
Etage 6	397,12	569,35	966,47	41,09	58,91
Etage 7	393,1	491,08	884,18	44,46	55,54
Etage 8	313,42	482,4	795,82	39,38	60,62
Etage 9	287,04	411,6	698,64	41,09	58,91
Etage 10	180,64	422,13	602,77	29,97	70,03
Etage 11	156,95	331,64	488,59	32,12	67,88
Etage 12	142,28	202,56	344,84	41,26	58,74
Etage 14	110,3	65,47	175,77	62,75	37,25
Etage 15	29,5	0	29,5	100,00	0,00

Les portiques reprennent plus de 25% de l'effort tranchant Fx sur tous les niveaux

***** Répartition des efforts tranchants Fy sur les éléments :

	Répartitio	n des efforts tranchar	nts Fy sur les étages		
étages	FY sur les	FY sur les voiles	total [kn]	% de l'effort sur	% de l'effort
	poteaux [kN]	[kN]		les poteaux	sur les voiles
RDC	617,76	725,64	1343,4	45,98	54,02
Etage 1	623,34	695,01	1318,35	47,28	52,72
Etage 2	662,49	607,01	1269,5	52,19	47,81
Etage 3	669,93	531,05	1200,98	55,78	44,22
Etage 4	640,93	482,05	1122,98	57,07	42,93
Etage 5	620,15	423,19	1043,34	59,44	40,56
Etage 6	593,13	370,71	963,84	61,54	38,46
Etage 7	517,51	365,24	882,75	58,62	41,38
Etage 8	511,83	286,16	797,99	64,14	35,86
Etage 9	387,76	318,16	705,92	54,93	45,07
Etage 10	279,08	335,85	614,93	45,38	54,62
Etage 11	197,47	306,12	503,59	39,21	60,79
Etage 12	183,23	175,49	358,72	51,08	48,92
Etage 14	153,97	29,88	183,85	83,75	16,25
Etage 15	35,45	0	35,45	100,00	0,00

Les portiques reprennent plus de 25% de l'effort tranchant Fy sur tous les niveaux

CONCLUSION

Selon les tableaux ci-dessus, on constate que tous les éléments de la structure participent au contreventement de la structure. Donc on considère que le système de contreventement est mixte (voiles + portiques)

RPA99/2003 art :3.4 A.4.a

IV-3-2-4- Interprétation des résultats obtenus :

Le comportement de la structure représente une translation selon les deux premiers modes et une rotation au troisième mode comme indiqué sur les captures d'écrans suivants :

A- Mode 1 translation selon yy:

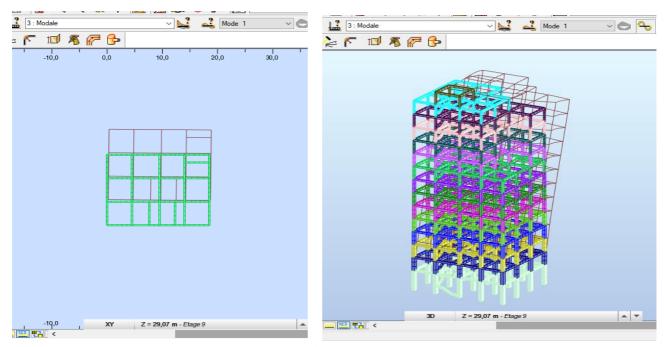


Figure 38 Mode1: translation sur YY

<u>Chapitre IV</u> <u>Etude Dynamique</u>

B- Mode 2 translation selon xx :

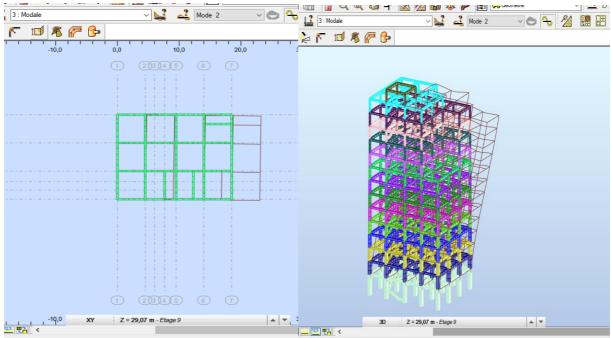


Figure 39 Mode 2 translation sur XX

C- Mode 3 rotation selon z:

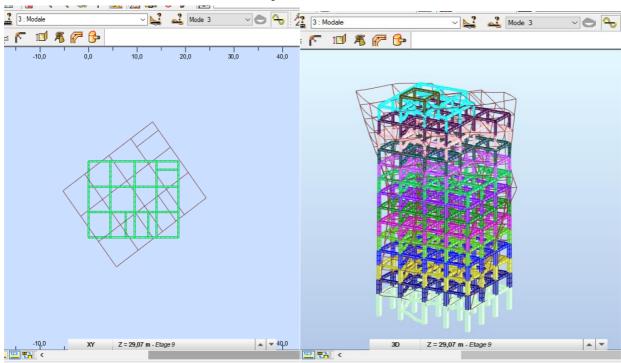


Figure 40 Mode 3 rotation sur Z

IV-3-2-5- Calcul de l'effort tranchant à la base :

Une fois l'effort dynamique est calculé, le RPA prévoit de faire la vérification suivante :

$Vdyn \ge 0$, 8Vst

RPA99V2003 Art 4.3.6

Dans le cas où cette condition n'est pas vérifiée, toutes les réponses obtenues à partir de la méthode dynamique doivent être majorées de : $\frac{Vst}{Vdyn}$

Avec : Vst =
$$\frac{A.D.Q.W}{R}$$

Définitions des paramètres de l'effort tranchant :

Vdyn : Effort tranchant dynamique calculé avec la méthode modale spectrale.

• Vst: Effort tranchant statique à la base Tel que :

o A: Coefficient d'accélération de zone.

o D: Facteur d'amplification dynamique moyen.

o W: Poids total de la structure.

o R : Coefficient de comportement de la structure.

O Q : Facteur de qualité.

Détermination des paramètres de l'effort tranchant :

• A= 0,15 Groupe d'usage 2 Zone sismique IIa

RPA99/V2003 tab4.1

• R= 3.5 Système de contreventement constitué par des voiles porteurs.

• Q= $1+\Sigma 16$ Pq

RPA99/2003 (Formule 4.4)

• Pq : La pénalité à retenir selon que le critère de qualité (q) observé ou non.

A- Vérifications des pénalités P :

b. Condition minimale sur les files de contreventement :

> Suivant X-X:

Tous les niveaux contiennent plus de 3 travées et le rapport entre les portés = 1 < 1.5 donc c'est vérifié ...p_qx =0

> Suivant Y-Y:

Les niveaux supérieurs ne contiennent que 2 travées, la condition n'est pas vérifiée..... pqy =0.05

c. Redondance en plan

Les niveaux supérieurs ne contiennent que 3 et 2 filles de portiques respectivement sur X et Y, la condition n'est pas vérifiée pour les deux sens..... $p_qx = p_qy = 0.05$

d. Régularité en plan

- A1) le bâtiment est symétrique sur les 2 sens
- A2) les voile seront disposés d'une façon visant à satisfaire cette condition.
- A3) -Le rapport (lx/ly) = (18.5/15) m = 1.23 < 4
- La somme des parties saillantes sur X (lx=1.3*2=2.6m).
- Le rapport (1x/LX) = (2.6/18.5) *100 = 14% < 25%.
- Aucune partie entrante ou saillante sur Y.

La régularité en plan est vérifiée pour les deux sens..... $p_qx = p_qy = 0$

e. Régularité en élévation :

- B1) Le système de contreventement ne contient aucun élément porteur verticale discontinu.
- B2) La raideur et la masse diminue progressivement dans les niveaux supérieurs et sans chargement brusque.
- B3) Les décrochement des derniers niveaux sont très important et sur les deux sens. La régularité en élévation n'est pas vérifiée..... $p_q x = p_q y = 0.05$

f. Contrôle de la qualité des matériaux

Des essais seront prévus systématiquement sur les matériaux mis en œuvre comme nous avons précisées sur la note de calcul..... $p_q x = p_q y = 0$

g. Contrôle de la qualité d'exécution

L'importance de cet ouvrage implique la présence permanente d'un suivi des travaux sur chantier..... $p_qx = p_qy = 0$

Résumé des pénalités sur un tableau :

Critères	Pénalités sur x	Pénalités sur y
Conditions minimales sur les files de contreventement	0	0,05
Redondance en plan	0,05	0,05
Régularité en plan	0	0
Régularité en élévation	0,05	0,05
Contrôle de la qualité des matériaux	0	0
Contrôle de la qualité d'exécution	0	0
∑Pqi	0,1	0,15

Le facteur de qualité est déterminé par la formule suivante : $Q=1+\sum Pq$

Ce qui nous donne

$$Qx = 1.10$$

$$Qy = 1.15$$

B- Poids Total de la structure W:

$$\mathbf{W} = \Sigma^{\mathbf{n}} * \text{Wi, avec} : \text{Wi} = \text{WG} + \beta \text{W}$$
 RPA99/2003 (Formule 4.5)

- WGi : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.
- WQi : Charges d'exploitation.
- β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation.

tab 4.5

Dans notre cas : β = 0.2 (bâtiment à usage d'habitation)

W = 43771.62 KN (donné par le résultat de l'analyse)

C- Facteur d'amplification dynamique moyen D :

$$D = \begin{cases} 2.5 \; \eta & 0 \leq T \leq T_2 \\ 2.5 \; \eta (T_2/T)^{0.667} & T_2 \leq T \leq 3.0 s \end{cases}$$

2.5
$$\eta (T_2/T_3)^{0.667} (3.0/T)^{1.667}$$
 $T \ge 3.0s$

-
$$T_2$$
=0.4s pour un sol ferme S_2 (selon le tableau 4.7 RPA99/2003

$$- \eta = \sqrt{7/(2+\xi)} \ge 0.7$$
 RPA99/2003 (Formule 4.5)

Avec ξ (%): Le pourcentage d'amortissement critique en fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Notre structure est contreventée par des voiles. On prend : $\xi = 10\%$ RPA99/V2003 tab4.2

Donc $\eta = 0.763$

• Calcule de la période

• T empirique :

$$T_1 = C_T . h_n^{3/4}$$

Avec : C_T=0.05 (contreventement partielle ou totale par des voiles) tab 4.6 RPA99 2003

 h_n = hauteur totale du bâtiment = 47.23 m

Donc $T_1 = 0.9 \text{ s}$

Nous sommes dans le cas 3 donc on peut utiliser la formule suivante :

-
$$T_{2x} = 0.09h_n / \sqrt{Lx} = 0.97s$$
 (avec Lx = 19.15m)

-
$$T_{2y} = 0.09h_n / \sqrt{Ly} = 1.07s$$
 (avec Ly = 15.75m)

T empirique = min $(T_1 \text{ et } T_2)$

Donc les périodes empiriques :

-
$$Tx emp = 0.9s$$

- Ty emp =
$$0.9s$$

T analytique : est donnée par le logiciel robot :

-
$$T_{x \text{ (analytique)}} = 1.11 \text{ s}$$

-
$$T_{y \text{ (analytique)}} = 1.17 \text{ s}$$

Choix de la période :

$$Tx = Ty = 0.9s$$

Les deux périodes sont dans l'intervalle : $T_2 \le T \le 3.0s$

Donc:
$$Dx = Dy = 2.5 \eta (T_2/T_x)^{0.667} = 1.11$$

On peut donc calculer les efforts tranchants statiques à la base :

On aura

$$Vx_{st} = \frac{0.15*1.11*1.10}{5} * 43771,62 = 1603.35KN$$

•
$$Vx_{st} = \frac{0.15*1.11*1.10}{5} * 43771,62 = 1603.35KN$$

• $Vy_{st} = \frac{0.15*1.11*1.15}{5} * 43771,62 = 1676.23 KN$

Les efforts tranchants à la base donnée par l'analyse sont comme suite :

- $Vx_{dyn} = 1324.02KN \ge 0.8 Vx_{st} = 1282.68 KN$
- $Vy_{dyn} = 1350.63KN \ge 0.8 Vy_{st} = 1340.98 KN$

Donc l'effort tranchant à la base est vérifié.

Spectre de réponse de calcul L'action sismique est représentée par le spectre de calcul suivant :

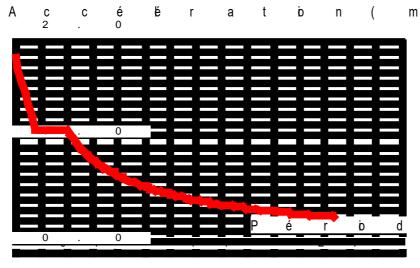


Figure 41 Spectre de réponse

IV-3-3- Vérification

IV-3-3-1- Vérification de l'effort normale réduit :

$$v = \frac{Nd}{Bc.fc28} < 0.3$$
 RPA99 2003 Art 7.4.1.3

Avec:

Nd: l'effort normale de calcule s'exerce sur la section

Bc: la section brute

Les résultats sont résumés dans le tableau suivant :

Tableau IV-1Vérification de l'effort normal réduit

Niveaux	b (Cm)	h (Cm)	B (Cm ²)	N (MN)	v
RDC	65	75	0,4875	3,50784	0,240
1	60	70	0,42	3,16682	0,251
2	55	65	0,3575	2,85948	0,267
3	50	60	0,3	2,55369	0,284
4	45	55	0,2475	2,20993	0,298
5	45	50	0,225	1,98976	0,295
6	40	50	0,2	1,741	0,290
7	40	45	0,18	1,50556	0,279
8	35	45	0,1575	1,28604	0,272
9	35	40	0,14	1,07144	0,255
10	30	35	0,105	0,85178	0,270
11	30	30	0,09	0,6425	0,238
12	30	30	0,09	0,45946	0,170
13	30	30	0,09	0,29089	0,108
14	30	30	0,09	0,12525	0,046

L'effort normal réduit est vérifié pour tous les niveaux.

IV-3-3-2- Vérification de la contrainte de cisaillement

$$\succ \tau_{bu} \leq . \tau_{bu}^{-}$$

RPA99 2003 Art 7.4.1.3

Avec

$$\bullet \quad \tau_{\rm bu} = \frac{Vu}{B\ d}$$

•
$$\tau_{bu} = f \cdot fc_{28}$$

Application:

$$\tau_{bu} = 0.04* \ 30 = 1.2 \ MPA$$

$$\tau_{bu \ x} = \frac{0.242}{0.65* \ 0.73} = 0.51 \le 1.2$$

$$\tau_{bu \ y} = \frac{0.207}{0.63* \ 0.75} = 0.43 \le 1.2$$
(vérifiée)

IV-3-3-3 Justification vis-à-vis du déplacement :

Les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0 % de la hauteur de l'étage. Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à : (RPA99/ version 2003 (Art 5.10))

- $\Delta_{k} = \delta_k \delta_{k-1}$ Avec : $\delta k = R * \delta_{ek}$ Tel que :
- δ_k : Déplacement horizontal à chaque niveau "k" de la structure donné par le RPA99/2003 (Art 4.43).

- δ_{ek} : Déplacement dû aux forces sismiques Fi (y compris l'effet de torsion).
- R : Coefficient de comportement.

Tous les résultats sont regroupés dans le tableau ci-après :

> Selon XX

Tableau IV-2 Vérification des déplacements sur X

Niveau	δk (cm)	δk-1 (cm)	Δk (cm)	Δk / hk (%)	Observation
RDC	0,4	0	0,4	0,111	vérifiée
1	0,8	0,4	0,5	0,139	vérifiée
2	1,4	0,8	0,6	0,167	vérifiée
3	2,1	1,4	0,7	0,194	vérifiée
4	2,8	2,1	0,7	0,194	vérifiée
5	3,6	2,8	0,8	0,222	vérifiée
6	4,4	3,6	0,8	0,222	vérifiée
7	5,1	4,4	0,8	0,222	vérifiée
8	5,9	5,1	0,7	0,194	vérifiée
9	6,6	5,9	0,7	0,194	vérifiée
10	7,3	6,6	0,7	0,194	vérifiée
11	8	7,3	0,7	0,194	vérifiée
12	8,6	8	0,6	0,167	vérifiée
13	9,1	8,6	0,5	0,139	vérifiée
14	9,3	9,1	0,2	0,056	vérifiée

> Selon YY

Tableau IV-3 Vérification des déplacements sur Y

Niveau	δk (cm)	δk-1 (cm)	Δk (cm)	Δk / hk (%)	Observation
RDC	0,4	0	0,4	0,111	Vérifiée
1	0,9	0,4	0,5	0,139	Vérifiée
2	1,5	0,9	0,6	0,167	Vérifiée
3	2,2	1,5	0,7	0,194	Vérifiée
4	3	2,2	0,7	0,194	Vérifiée
5	3,8	3	0,8	0,222	Vérifiée
6	4,7	3,8	0,8	0,222	Vérifiée
7	5,5	4,7	0,8	0,222	Vérifiée
8	6,4	5,5	0,7	0,194	Vérifiée
9	7,2	6,4	0,7	0,194	Vérifiée
10	8,1	7,2	0,7	0,194	Vérifiée
11	8,9	8,1	0,7	0,194	Vérifiée

12	9,7	8,9	0,6	0,167	Vérifiée
13	10,5	9,7	0,5	0,139	Vérifiée
14	11,2	10,5	0,2	0,056	Vérifiée

On constate que tous nos déplacements relatifs sont vérifiés

IV-3-3-4- Justification vis à vis de l'effet P-△:

Selon le <u>RPA99/ version 2003 (Art 5.9)</u>, Les effets du 2° ordre (où effet P - Δ) sont les effets dus aux charges verticales après déplacement. Ils peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\phi = \frac{Pk*\Delta k}{Vk*hk} \le 0.1$$

- V_k : effort tranchant d'étage au niveau k
- P_k : Poids total de la structure et des charges d'exploitation associées au-dessus du Niveau (k-1)
- Δ_k : Déplacement relatif du niveau k par rapport au niveau (k-1).
- h_K: hauteur de l'étage k.

Tous les résultats sont regroupés dans le tableau suivant :

> Selon XX

Tableau IV-4 Vérification de l'effet du second ordre sur X

Niveau	Pk (t)	Δk (m)	Vk (t)	hk (m)	θ	Observation
RDC	4634,325	0,004	132,451	4,59	0,030491	Vérifiée
1	4159,921	0,005	130,144	3,06	0,052229	Vérifiée
2	3788,986	0,006	125,652	3,06	0,059127	Vérifiée
3	3427,178	0,007	119,329	3,06	0,065700	Vérifiée
4	3073,745	0,007	112,052	3,06	0,062752	Vérifiée
5	2726,885	0,008	104,46	3,06	0,068247	Vérifiée
6	2383,993	0,008	96,648	3,06	0,064488	Vérifiée
7	2043,906	0,008	88,419	3,06	0,060434	Vérifiée
8	1706,949	0,007	79,582	3,06	0,049066	Vérifiée
9	1365,031	0,007	69,864	3,06	0,044696	Vérifiée
10	1065,428	0,007	60,277	3,06	0,040434	Vérifiée
11	773,362	0,007	48,859	3,06	0,036209	Vérifiée
12	491,29	0,006	34,484	3,06	0,027935	Vérifiée
13	233,018	0,005	17,577	3,06	0,021662	Vérifiée
14	38,834	0,002	2,95	2,86	0,009206	Vérifiée

SelonYY

Tableau IV-5 Vérification de l'effet du second ordre sur Y

Niveau	Pk (t)	Δk (m)	Vk (t)	hk (m)	θ	Observation
RDC	4634,325	0,004	134,34	4,59	0,030063	Vérifiée
1	4159,921	0,005	131,835	3,06	0,051559	Vérifiée
2	3788,986	0,006	126,95	3,06	0,058522	Vérifiée
3	3427,178	0,007	120,097	3,06	0,065280	Vérifiée
4	3073,745	0,007	112,298	3,06	0,062614	Vérifiée
5	2726,885	0,008	104,334	3,06	0,068330	Vérifiée
6	2383,993	0,008	96,384	3,06	0,064665	Vérifiée
7	2043,906	0,008	88,275	3,06	0,060533	Vérifiée
8	1706,949	0,007	79,799	3,06	0,048933	Vérifiée
9	1365,031	0,007	70,592	3,06	0,044235	Vérifiée
10	1065,428	0,007	61,493	3,06	0,039635	Vérifiée
11	773,362	0,007	50,359	3,06	0,035130	Vérifiée
12	491,29	0,006	35,871	3,06	0,026855	Vérifiée
13	233,018	0,005	18,385	3,06	0,020710	Vérifiée
14	38,834	0,002	3,545	2,86	0,007661	Vérifiée

On constate donc que le moment de second ordre (Effet P- Δ) peut négliger vu que tous les θ sont inférieur à 0,1

IV-3-3-5- Vérification a la stabilité au renversement :

Selon le <u>RPA99 2003 Art 4.41</u> Le moment stabilisant doit être supérieur au moment de renversement lors d'une action sismique

avec:

Il faut vérifier que : $\sum Fi *hi \le \sum Wi*Li$

- Fi : force sismique au niveau (i).
- Hi : hauteur du niveau (i) par rapport à la base.
- Wi : poids de la structure au niveau (i)
- Li : distance entre le centre de gravité et l'extrémité de bâtiment selon le sens considéré

Les résultats sont résumés dans les tableaux suivants :

Direction xx

Tableau IV-6 Vérification de la stabilité au renversement sur X

ETAGE	Vx KN)	Fi (KN)	h étage	W	Xg	Mr (KN)	Ms (KN)
RDC	1324,51	32,95	4,59	46343,25	9,57	151,2405	443504,903
1	1301,44	64,16	7,65			490,824	
2	1256,52	90,33	10,71			967,4343	
3	1193,29	103,97	13,77			1431,6669	
4	1120,52	108,46	16,83			1825,3818	
5	1044,6	111,6	19,89			2219,724	
6	966,48	117,56	22,95			2698,002	
7	884,19	126,23	26,01			3283,2423	
8	795,82	138,84	29,07			4036,0788	
9	698,64	136,95	32,13			4400,2035	
10	602,77	163,11	35,19			5739,8409	
11	488,59	205,36	38,25			7855,02	
12	344,84	241,52	41,31			9977,1912	
13	175,77	208,97	44,37			9271,9989	
14	29,5	42,14	47,23			1990,2722	
					Σ	5633	8,1213

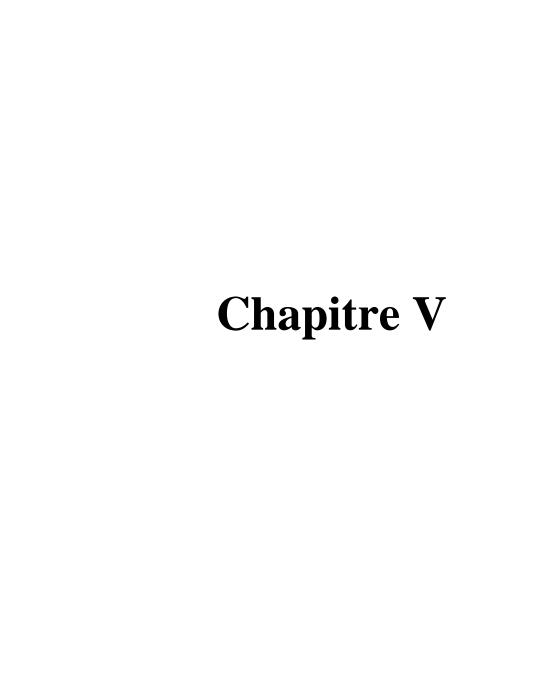
Direction yy

Tableau IV-7 Vérification a la stabilité au renversement sur Y

ETAGE	Vx (KN)	Fi (KN)	h étage	W	Xg	Mr (KN)	Ms (KN)
RDC	1343,4	35,78	4,59	46311,62	7,87	164,2302	364472,45
1	1318,35	69,78	7,65			533,817	
2	1269,5	97,9	10,71			1048,509	
3	1200,97	111,42	13,77			1534,2534	
4	1122,98	113,77	16,83			1914,7491	
5	1043,34	113,57	19,89			2258,9073	
6	963,84	115,84	22,95			2658,528	
7	882,75	121,09	26,01			3149,5509	
8	797,99	131,53	29,07			3823,5771	
9	705,92	129,99	32,13			4176,5787	
10	614,93	159,05	35,19			5596,9695	
11	503,59	206,97	38,25			7916,6025	
12	358,71	249,81	41,31			10319,6511	

Chapitre IV Etude Dynamique

13	183,85	212	44,37		9406,44	
14	50,64	50,64	47,23		2391,7272	
				Σ	56894	,091


Que ce soit sur xx ou bien yy, la loi suivante est vérifié : \sum Fi *hi \leq \sum Wi* Li Donc la stabilité externe du bâtiment est vérifiée.

IV-4- Conclusion

L'objectif de ce chapitre a été l'étude de la structure sous sollicitations dynamiques pour se faire ; nous avons modélisé notre structure grâce au logiciel robot millénium

La disposition des voiles de contreventement a été un véritable challenge, La hauteur du bâtiment nous a rendu la tâche difficile mais après des dizaines de modifications sur les dispositions des voiles, les sections des éléments et même le type du béton (pour $fc_{28} = 30 \text{ MPA}$),

Nous avons abouti à un comportement correct qui satisfait toutes les exigences du RPA 99/2003.

V- Chapitre V

V-1- Introduction:

La superstructure est la partie supérieure du bâtiment, située au-dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (Poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé, leur rôle est d'assuré la résistance et la stabilité de la structure avant et après le séisme, cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

V-2- Étude des poteaux

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les sollicitations (efforts normaux et moments fléchissant) à la base de la structure. Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel ROBOT dans l'ordre suivant : (RPA99/2003).

- 1.35 G + 1.5 Q
- G + O
- G + Q + E
- G + Q E
- 0.8 G +E
- $0.8 \,\mathrm{G} \mathrm{E}$

Les armatures sont déterminées suivant les sollicitations suivantes :

- 1. Effort normal maximal et le moment correspondant : $(N_{\text{max}} \rightarrow M_{corr})$
- 2. Effort normal minimal et le moment correspondant : $(N_{min} \rightarrow M_{corr})$
- 3. Moment maximum et effort normal correspondant : $(M_{max} \rightarrow N_{corr})$
- h. Recommandations du RPA99/2003:
- 1. Les armatures longitudinales : (Article 7.4.2.1)
- 2. Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- 3. Leur pourcentage minimal sera de : 0.8 % ×b₁×h₁ en zone II
- 4. Leur pourcentage maximal sera de :

- 5. 4 % en zone courante.
 - a. 6 % en zone de recouvrement.
 - b. Le diamètre minimum est de 12mm.
- 6. La longueur minimale des recouvrements est de 40 □ en zone IIa.
- 7. La distance entre les barres verticales dans une face du poteau ne doit pas dépasser :
- 8. 25cm en zone (II_a).
- 9. Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).
- 10. La zone nodale est constituée par le nœud poutres-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre

Avec:

- $h' = \max(\frac{he}{6}; b_1; h_1; 60)$
- L': 2h
- he : La hauteur d'étage.
- b1, h1 : Dimensions de la section transversale du poteau.

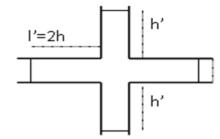


Figure 42 Zone nodale

V-2-1- Sollicitations

L'ensemble des sollicitations sont résumé dans le tableau suivant et pour chaque niveau :

Tableau des sollicitations

Tableau V-1 Sollicitations sur les poteaux

Niv	Combinaison	Nature	NX (KN)	MY (KN.m)	MZ (KN.m)	Vmax (KN)	Nser (KN)	Mser (KN.m)
	Nmax-Mcorr	ELU	4917,88	39,08	37,37			
Sol 2	Nmin-Mcorr	ELU	1138,65	-33,97	-23,75	125,83	3582,61	-65,27
	Mmax-Ncorr	ELU	1413,68	-96,43	-53,55			
Sous-	Nmax-Mcorr	ELU	3306,46	23,34	14,8	90,54	3306,46	134,76
Sol 1	Nmin-Mcorr	ELU	1996,47	-36,23	-37,28	,-	,	, -

	Mmax-Ncorr	ELU	2641,12	134,76	34,95			
	Nmax-Mcorr	ELU	4225,12	126,92	137,65			
RDC D=85	Nmin-Mcorr	ELA	951,6	-166,29	-126,01	43,86	3082,26	20,7
	Mmax-Ncorr	ELA	951,6	-166,29	-126,01			
DD G	Nmax-Mcorr	ELU	3853,49	-86,06	-105,40			
RDC 65x75	Nmin-Mcorr	ELA	-303,21	-138,32	-67,70	-242,48	2814,59	61,16
	Mmax-Ncorr	ELA	3257,92	218,24	0,88			
	Nmax-Mcorr	ELU	3823,44	-93,53	64,72			
E1	Nmin-Mcorr	ELA	-834,29	-46,88	-39,19	-271,1	2788,67	62,68
	Mmax-Ncorr	ELA	1613,59	-141,27	43,41			
	Nmax-Mcorr	ELU	3473,15	-84,97	58,63			
E2	Nmin-Mcorr	ELA	-626,12	44,52	-34,49	276,08	2533,05	45,64
	Mmax-Ncorr	ELA	1415,04	-126,95	-31,44			
	Nmax-Mcorr	ELU	3135,69	0,81	85,63			
E3	Nmin-Mcorr	ELA	-473,21	-0,80	-31,72	269,45	2286,86	49,66
	Mmax-Ncorr	ELA	1381,33	167,32	47,13			
	Nmax-Mcorr	ELU	2810,31	88,10	-54,48			
E4	Nmin-Mcorr	ELA	-395,12	-100,76	-54,41	-215,24	1133,07	-28,61
	Mmax-Ncorr	ELA	1040,70	125,83	-36,39			
	Nmax-Mcorr	ELU	2496,47	86,48	-61,10			
E5	Nmin-Mcorr	ELA	-331,47	-99,01	-69,75	266,02	1820,7	-53,13
	Mmax-Ncorr	ELA	1618,63	117,98	32,96			
	Nmax-Mcorr	ELU	2191,09	95,11	-51,35			
E6	Nmin-Mcorr	ELA	-262,07	-78,33	-57,37	217,18	1598,06	58,52
	Mmax-Ncorr	ELA	1405,07	129,48	29,36			
E7	Nmax-Mcorr	ELU	1892,87	87,12	-53,83	195,51	1380,67	-59,27

	Nmin-Mcorr	ELA	22,92	56,47	12,74			
	Mmax-Ncorr	ELA	1201,22	117,27	32,34			
	Nmax-Mcorr	ELU	1599,38	91,83	42,98			
E8	Nmin-Mcorr	ELA	-15,40	67,88	9,54	180,27	1166,75	61,76
	Mmax-Ncorr	ELA	1006,62	123,64	26,75			
	Nmax-Mcorr	ELU	1315,6	84,89	46,53			
E9	Nmin-Mcorr	ELA	-31,38	-71,94	-46,98	161,35	959,92	-62,88
	Mmax-Ncorr	ELA	822,5	112,47	28,98			
	Nmax-Mcorr	ELU	1039,05	47,26	-68,57			
E10	Nmin-Mcorr	ELA	-9,16	-41,62	-35,01	127,57	759,16	47,03
	Mmax-Ncorr	ELA	646,79	85,00	19,89			
	Nmax-Mcorr	ELU	794,9	34,37	65,79			
E11	Nmin-Mcorr	ELA	1,37	-30,63	-36,43	94,06	580,99	-44,77
	Mmax-Ncorr	ELA	794,9	34,37	65,79			
	Nmax-Mcorr	ELU	575,42	30,63	66,63			
E12	Nmin-Mcorr	ELA	-15,55	-35,55	-19,17	82,55	421,01	-47,01
	Mmax-Ncorr	ELA	575,42	30,63	66,63			
	Nmax-Mcorr	ELU	368,09	24,85	66,85			
E13	Nmin-Mcorr	ELA	-21,62	46,04	-23,87	84,16	269,95	-48,76
	Mmax-Ncorr	ELA	177,78	70,95	17,61			
	Nmax-Mcorr	ELU	159,98	-38,39	-47,76			
E14	Nmin-Mcorr	ELA	61,81	-29,40	-30,70	36,34	117,3	-40,54
	Mmax-Ncorr	ELA	155,41	-43,62	-55,31			

V-2-2- Ferraillage:

Le ferraillage sur les poteaux se calcule à la flexion composée déviée. Pour les deux directions

Voici un exemple de calcule pour le poteau du RDC pour la combinaison Nmax → Mcor. <u>CBA93 ET BAEL91</u>

Donnés:

• N_x max = 3853.49 KN (compression) M_{yy} corr = 290. 1KN.m M_{zz} corr = 172.72 KN.m

- Fissuration préjudiciable $\rightarrow e = 2.5cm$
- b1 = 65 cm
- h1 = 75 cm
- d = 72.5cm
- \triangleright eG = M/N = 7.5 cm < h/2 = 32,5 cm \rightarrow Le centre de pression est à l'intérieur de la section.
- N est un effort de compression, donc la section est partiellement comprimée si la condition suivante est satisfaite :
 - Nu(d-d') -Mua \leq (0.337h 0.81d') b. h. f_{bu}

Avec

o
$$Mu_A = Ne_A = Mu_G + Nu(d - \frac{h}{2}) = 1454.73KN.m$$

Donc : Nu(d-d') -Mua \leq (0.337h – 0.81d') b. h. $f_{bu} \rightarrow 1242.7 \leq 1756.17$ (condition vérifié)

Donc la section est partiellement comprimée. Le calcule se fait par assimilation a la flexion simple avec Mu_A

Revenant à la flexion composée :

$$0 \quad A = A_1 - \frac{Nu}{fst} = 0.006742 - \frac{3.8535}{400} = -0.0028 \text{ m}^2 = -28 \text{cm}^2$$

La valeur de la section est négative. Cela veut dire que le béton seul suffit, le ferraillage de la section se fera avec Amin.

Tableau des ferraillages longitudinal

Tableau V-2 Ferraillage longitudinale des poteaux

Niveau	b (Cm)	h (Cm)	As1 (Cm²)	As2 (Cm²)	As (Cm ²)	A calculé (Cm²)	A min RPA (Cm ²)	A max RPA (Cm²)	A adopté
Sous-	65	75	3,5	2,1	5,6	11,12	39	195	14HA20 =
Sol 2									43.98cm ²
Sous sol1	65	75	3,5	2,1	5,6	11,12	39	195	14HA20 = 43.98cm ²
RDC	65	75	8,3	8,3	16,6	33,2	39	195	14HA20 = 43.98cm ²
RDC D=80	8	5	11	,3	11,3	11,3	45,4	226,9	15HA20 = 47.12cm ²
ETAGE 1	60	70	4,2	2,4	6,6	13,2	33,6	168	10HA20 +4HA16 = 39.46cm ²
ETAGE 2	55	65	5	1,3	6,3	12,6	28,6	143	10HA20 = 31.42 cm ²
ETAGE 3	50	60	1,9	2,5	4,4	8,8	24	120	8HA20 = 25.13 cm ²
ETAGE 4	45	55	1,5	2,5	4	8	19,8	99	10HA16 = 20.11 cm ²
ETAGE 5	45	50	1,1	2,7	3,8	7,6	18	90	10HA16 = 20.11 cm ²
ETAGE 6	40	50	0,9	2,7	3,6	7,2	16	80	$8HA16 = 16.08$ cm^2
ETAGE 7	40	45	5,7	2,7	8,4	16,8	14,4	72	4HA20 +4HA14 = 18.72 cm ²
ETAGE 8	35	45	5,9	3	8,9	17,8	12,6	63	4HA20+4HA14 = 18.72 cm ²
ETAGE 9	35	40	4,9	3,5	8,4	16,8	11,2	56	4HA20 +4*HA14 = 18.72 cm ²
ETAGE 10	30	35	2,8	2,3	5,1	10,2	8,4	42	8HA14 = 12.32 cm ²
ETAGE 11	30	30	3,3	2,4	5,7	11,4	7,2	36	8HA14 = 12.32 cm ²
ETAGE 12	30	30	2,8	3,2	6	12	7,2	36	8HA14 = 12.32 cm ²
ETAGE 13	30	30	2,5	2,7	5,2	10,4	7,2	36	8HA14 = 12.32 cm ²
ETAGE 14	30	30	2,4	2,1	4,5	9	7,2	36	8HA14 = 12.32 cm ²

V-2-2-1- Armatures transversales :

Les armatures transversales des poteaux sont calculées à l'aide de la formule : $\frac{At}{St} = \frac{Vu.\rho}{h1.fe}$

- **Vu**: L'effort tranchant de calcul.
- **He**: Hauteur totale de la section brute.
- **Fe** : Contrainte limite élastique de l'acier d'armature transversale.
- ρa : Coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant, il est pris égal à 2,5 si l'élancement géométrique " λ_g " dans la direction considérée est supérieur ou égal à 5 et à 3,75 dans le cas contraire.
- **S**_t : L'espacement des armatures transversales dont la valeur est déterminée dans la formule précédente ; par ailleurs la valeur max de cet espacement est fixée comme suit :
 - Dans la zone nodale : $S_t \ge Min (10\phi l, 15 \text{ cm})$. En zone IIa.
 - O Dans la zone courante : $S_t \ge 15\phi l$. En zone IIa.

Où: \$\phi\$ lest le diamètre minimal des armatures longitudinales du poteau.

On choisit

- \circ St = 10cm pour la zone nodale et
- O St=15 cm pour la zone courante pour tous les niveaux

La quantité d'armatures transversales minimales : At = b1*St

En % est donnée comme suit

- $A^{\min} = 0.3\% \ (t \times b) \ si \ \lambda > 5$
- $A^{\min} = 0.8\% \ (t \times b) \ si \ \lambda < 3$

Si
$$3 \le \lambda \le 5$$

On doit interpoler entre les deux valeurs limite précédente en utilisant la formule :

$$F(x) = f(x0) [f(x1) - f(x0)] * (x-x0) / (x1-x0)$$

 λ_g : est l'élancement géométrique du poteau $\lambda_g = (\frac{lf}{g} \text{ ou } \frac{lf}{h})$;

Avec:

 a et b, dimensions de la section droite du poteau dans la direction de déformation considérée

■ Lf =longueur du flambement

Les cadres doivent être fermés par des crochets de 135° ayant une longueur droite de 10 ϕ l au minimum

L'ensemble des armatures sont calculé dans le tableau suivant :

Tableau V-3 Les armatures transversales sur les poteaux

Niveaux	Niveaux La section (cm²)		λg	Vu (KN)	ρ	At (cm ²)	At min (cm²)	At opté (cm²)
	b (cm)	h (cm)						
Sous-Sol 2	65	75	3,41	125,83	3,75	2,72	2,25	8 T8 = 4.02
Sous-Sol 1	65	75	5,45	90,54	2,5	1,31	2,25	8 T8 = 4.02
RDC	65	75	5,45	-43,86	2,5	0,63	2,25	8 T8 = 4.02
D=85	8	5	4,81	242,48	3,75	4,01	6,38	6HA10+4T8=6,72
Etage1	60	70	3,66	271,1	3,75	6,35	3,22	8HA10+2T8=7,29
Etage2	55	65	3,94	276,08	3,75	7,06	3,45	10HA10=7,85
Etage3	50	60	4,27	269,45	3,75	7,58	3,66	10HA10+2T8=8,86
Etage4	45	55	4,65	215,24	3,75	6,73	3,91	10HA10=7,85
Etage5	45	50	5,12	266,02	2,5	5,54	1,5	4HA10+6T8=6,16
Etage6	40	50	5,12	217,18	2,5	5,09	1,5	4HA10+4T8=5,15
Etage7	40	45	5,69	195,51	2,5	4,58	1,35	2HA10+6T8=4,59
Etage8	35	45	5,69	180,27	2,5	4,83	1,35	4HA10+4T8=5,15
Etage9	35	40	6,4	161,35	2,5	4,32	1,2	2HA10+6T8=4,59
Etage10	30	35	7,31	127,57	2,5	3,99	1,05	8 T8 = 4.02
Etage11	30	30	8,53	94,06	2,5	2,94	0,9	4HA10=3,13
Etage12	30	30	8,53	82,55	2,5	2,58	0,9	4HA10=3,14
Etage13	30	30	8,53	84,16	2,5	2,63	0,9	4HA10=3,15
Etage14	30	30	7,87	36,34	2,5	1,14	0,9	4T8=2,01

V-2-2- Vérifications :

A- Vérification des armatures transversales

Conformément au RPA99/2003 et au BAEL 91, le diamètre des armatures transversales doit vérifier la condition suivante :

$$\Phi t \ge \frac{\phi l \max}{3} = 5.33 \text{ mm},$$

Tous les diamètres sont vérifiés pour tous les niveaux puisque ϕ min = 6mm

B- Vérification au flambement

Selon le <u>BAEL91 (Article 4. 4. 1)</u>, les éléments soumis à la flexion composée doivent être justifiés vis-à-vis de l'état ultime de stabilité de forme (flambement).

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

La vérification se fait pour le poteau le plus sollicité à chaque niveau (puisque la section des poteaux et l'effort normal varient d'un étage à un autre.

Tableau de vérification du flambement :

Tableau V-4 Vérification au flambement des poteaux

Niveaux	La se	ection	As	Br	Nu	N max	1,1	Observation
	(cr	n²)	(cm ²)	(cm ²)	(KN)	(KN)	Nmax(KN)	
	b	h						
	(cm)	(cm)						
Sous-Sol 2	65	75	36,792	4599	8570,26	4917,88	5409,668	vérifiée
Sous-Sol 1	65	75	36,792	4599	8379,38	3306,46	3637,106	vérifiée
RDC	65	75	36,792	4599	8379,38	4225,12	4647,632	vérifiée
RDC	85	85	55,112	5150,38	9528,88	3853,49	4238,839	vérifiée
Circulaire								
Etage 1	60	70	31,552	3944	7330,99	3823,44	4205,784	vérifiée
Etage 2	55	65	26,712	3339	6186,23	3473,15	3820,465	vérifiée
Etage 3	50	60	22,272	2784	5136	3135,69	3449,259	vérifiée
Etage 4	45	55	18,232	2279	4180,29	2810,31	3091,341	vérifiée
Etage 5	45	50	16,512	2064	3785,92	2496,47	2746,117	vérifiée
Etage 6	40	50	14,592	1824	3319,13	2191,09	2410,199	vérifiée
Etage 7	40	45	13,072	1634	2973,39	1892,87	2082,157	vérifiée
Etage 8	35	45	11,352	1419	2552,59	1599,38	1759,318	vérifiée
Etage 9	35	40	10,032	1254	2255,78	1315,6	1447,16	vérifiée
Etage 10	30	35	7,392	924	1633,34	1039,05	1142,955	vérifiée
Etage 11	30	30	6,272	784	1385,86	794,9	874,39	vérifiée
Etage 12	30	30	6,272	784	1385,86	575,42	632,962	vérifiée
Etage 13	30	30	6,272	784	1385,86	368,09	404,899	vérifiée
Etage 14	30	30	6,272	784	1399,59	159,98	175,978	vérifiée

C- Vérifications aux sollicitations tangentes :

D'après le <u>RPA99/2003 Art 7.4.3.2</u>, la contrainte de cisaillement dans le béton doit être inférieure ou égale à la contrainte de cisaillement ultime

•
$$\tau bu = (\nabla u/b.d) \le \overline{\tau}bu = \rho d \times fc28$$

Avec:

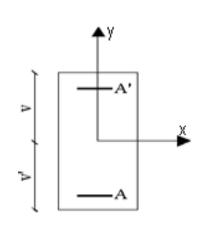
Les résultats sont illustrés dans le tableau suivant

Tableau des sollicitations tangentielles (cisaillement)

Tableau V-5 Vérification au cisaillement des poteaux

Niveaux		ection n ²)	λg	ρd	d (cm)	Vu (KN)	τbu (MPa)	τ̄bu (MPa	Observation
	b (cm)	h (cm))	
Sous-sol 2	65	75	3,41	0,04	58,5	125,83	0,331	1,2	Vérifiée
Sous-sol 1	65	75	4,81	0,04	58,5	90,54	0,238	1,2	Vérifiée
RDC	65	75	5,84	0,075	58,5	-43,86	-0,115	2,25	Vérifiée
D=85	8	5	4,81	0,04	76,5	242,48	0,373	1,2	Vérifiée
Etage 1	60	70	3,66	0,04	54	271,1	0,837	1,2	Vérifiée
Etage 2	55	65	3,94	0,04	49,5	276,08	1,014	1,2	Vérifiée
Etage 3	50	60	4,27	0,04	45	269,45	1,198	1,2	Vérifiée
Etage 4	45	55	4,65	0,04	40,5	215,24	1,181	1,2	Vérifiée
Etage 5	45	50	5,12	0,075	40,5	266,02	1,46	2,25	Vérifiée
Etage 6	40	50	5,12	0,075	36	217,18	1,508	2,25	Vérifiée
Etage 7	40	45	5,69	0,075	36	195,51	1,358	2,25	Vérifiée
Etage 8	35	45	5,69	0,075	31,5	180,27	1,635	2,25	Vérifiée
Etage 9	35	40	6,4	0,075	31,5	161,35	1,463	2,25	Vérifiée
Etage 10	30	35	7,31	0,075	27	127,57	1,575	2,25	Vérifiée
Etage 11	30	30	8,53	0,075	27	94,06	1,161	2,25	Vérifiée
Etage 12	30	30	8,53	0,075	27	82,55	1,019	2,25	Vérifiée
Etage 13	30	30	8,53	0,075	27	84,16	1,039	2,25	Vérifiée
Etage 14	30	30	7,87	0,075	27	36,34	0,449	2,25	Vérifiée

D- Vérification des contraintes limite du béton


Etat limite de compression du béton :

$$bc 1,2 \le \sigma bc = 0.6 fc 28 = 18 Mpa$$

$$ightharpoonup \sigma bc \ 1 = \frac{Nser}{s} + \frac{Mser}{lyy} *V \le \sigma bc$$

Avec:

- $S = b \times h + 15(A+A')$: section homogénéisée.
- MserG =Mser Nser $(\frac{h}{2}$ V)
- $Iyy' = \frac{b}{h} (V^3 + V'^3) + 15A'(V d')^2 + 15A(d V)^2$

•
$$V = \left[\left(\frac{Bh2}{2} + 15(A'd' + Ad) \right] / \left[B + 15(A' + A) \right]$$

et $V' = h - V$

Figure 43 Calcul des contraintes

Tableau des contraintes du béton

Tableau V-6 Vérifications des contraintes à la compression du béton

Niv	La sec (cm		Nser (KN)	Mser (KN.m)	S (Cm ²)	V (Cm)	V' (Cm)	Iyy' (Cm4)	6bc1 Мра	бbc2 Мра	6 bc Mpa
	b	h							_	_	
	(cm)	(c									
		m)									
Sous-	65	75	3582,61	65,3	4980	32,6	42,4	2533086	7,186	7,20	18
Sol 2			, , , , ,	, , , , ,		, , ,	,		, , , , ,	, -	
Sous-	65	75	3306,46	135	4980	32,6	42,4	2533086	6,657	6,617	18
Sol 1			ĺ			,	,		,	,	
RDC	65	75	3082,26	20,7	5124	32,7	42,3	2706133	6,018	6,012	18
D=85	85	5	2814,59	61,2	7564	42,5	42,5	4892452	3,726	3,716	18
Etage 1	60	70	2788,67	62,7	4326	30,1	39,9	1950029	6,456	6,433	18
Etage 2	55	65	2533,05	45,6	3725	27,7	37,3	1479473	6,809	6,789	18
Etage 3	50	60	2286,86	49,7	3057	25,1	34,9	1016707	7,493	7,464	18
Etage 4	45	55	1133,07	28,6	2520	22,6	32,4	712801	4,487	4,509	18
Etage 5	45	50	1820,7	53,1	2283	22,5	27,5	499315	7,951	8,004	18
Etage 6	40	50	1598,06	58,5	2027	20,1	29,9	479669	7,908	7,847	18
Etage 7	40	45	1380,67	59,3	1971	20,2	24,8	382423	6,974	7,043	18
Etage 8	35	45	1166,75	61,8	1752	18	27	371978	6,689	6,615	18
Etage 9	35	40	959,92	62,9	1547	17,7	22,3	239603	6,158	6,263	18
Etage 10	30	35	759,16	47	1134	15,2	19,8	132163	6,749	6,624	18
Etage 11	30	30	580,99	44,8	999	15	15	82968	5,735	5,897	18
Etage 12	30	30	421,01	-47	984	15	15	80625	4,191	4,366	18
Etage 13	30	30	269,95	48,8	1044	15	15	90000	2,504	2,667	18
Etage 14	30	30	117,3	40,5	1008	15	15	84375	1,092	1,236	18

E- Vérification des contraintes dans l'acier

1) État limite de fissuration

La fissuration est préjudiciable, il est nécessaire de vérifier les conditions suivantes :

$$ightharpoonup \sigma s \ 1 = 15 \left[\frac{Nser}{s} + \frac{Mser}{lyy} * (V-d') \le \sigma \overline{s} \right]$$

$$ightharpoonup \sigma s 2 = 15 \left[\frac{Nser}{s} - \frac{Mser}{lyy} * (d-V) \le \sigma \overline{s} \right]$$

Avec:

$$> 10\sqrt{n.ftj}$$
 = min (266; 215.55) = 215.55Mpa

En se servant des paramètres calculés pour la vérification des contraintes dans le béton on résume par le tableau qui suit l'état limite de fissuration dans chaque étage :

Tableau des contraintes sur l'acier

Tableau V-7 Vérifications des contrainte de fissuration des aciers

Niveaux	section	n (cm²)	Nser	V	V'	Iyy' (Cm4)	6s1(MPA)	6s2	
	b (cm)	h (cm)	(KN)	(Cm)	(Cm)			(MPA)	(MPA)
Sous-sol 2	65	75	3583	32,61	42,39	2533086,60	108,03	107,76	215,55
Sous-sol 1	65	75	3306	32,61	42,39	2533086,60	99,83	99,27	215,55
RDC	65	75	3082	32,74	42,26	2706133,75	90,26	90,18	215,55
D=85	85	85	2815	42,50	42,50	4892452,08	55,89	55,74	215,55
Etage1	60	70	2789	30,15	39,85	1950029,25	96,83	96,51	215,55
Etage2	55	65	2533	27,70	37,30	1479473,92	102,12	101,84	215,55
Etage3	50	60	2287	25,09	34,91	1016707,82	112,38	111,97	215,55
Etage4	45	55	1133	22,59	32,41	712801,34	67,57	67,26	215,55
Etage5	45	50	1821	22,54	27,46	499315,48	119,95	119,23	215,55
Etage6	40	50	1598	20,07	29,93	479669,41	118,58	117,76	215,55
Etage7	40	45	1381	20,22	24,78	382423,97	105,49	104,56	215,55
Etage8	35	45	1167	18,01	26,99	371978,30	100,28	99,28	215,55
Etage9	35	40	959,9	17,74	22,26	239603,97	93,68	92,30	215,55
Etage10	30	35	759,2	15,19	19,81	132163,89	101,09	99,49	215,55
Etage11	30	30	581	15,00	15,00	82968,75	88,25	86,22	215,55
Etage12	30	30	421	15,00	15,00	80625,00	63,09	65,27	215,55

Etage13	30	30	270	15,00	15,00	90000,00	39,80	37,77	215,55
Etage14	30	30	117,3	15,00	15,00	84375,00	18,36	16,56	215,55

F- Dispositions constructives:

- La distance entre les barres verticales dans une face du poteau ne doit dépasser 25cm.
- Longueur des crochets : $1 = 10\phi t = 10*1 = 10cm$
- Longueur de recouvrement : $lr \ge 40 \times \emptyset$:
 - Pour $\emptyset = 20 \text{ mm} \rightarrow lr = 40 \times 2 = 80 \text{cm} \implies \text{On adopte} : lr = 80 \text{cm}.$
 - Pour $\emptyset = 16 \text{ mm} \rightarrow lr = 40 \times 1.6 = 64 \text{cm} \implies \text{On adopte} : lr = 65 \text{cm}.$
 - Pour $\emptyset = 14 \text{ mm} \rightarrow lr = 40 \times 1.4 = 56 \text{cm} \implies \text{On adopte} : lr = 60 \text{cm}.$
 - Pour $\emptyset = 12 \text{ mm} \rightarrow lr = 40 \times 1.2 = 48 \text{cm} \implies \text{On adopte} : lr = 50 \text{cm}.$

Schéma de ferraillage poteau RDC

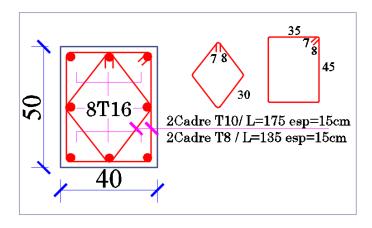


Figure 44 schémas de ferraillage du poteau RDC

V-3- Etude des poutres :

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (M, T), on procède au ferraillage en respectant les prescriptions données par le RPA99/2003 et celles données par le BAEL91.

Les poutres sont étudiées en tenant compte des efforts donnés par le logiciel ETABS, combinés par les combinaisons les plus défavorables données par le RPA99 /2003 suivantes :

- 1.35 G + 1.5 Q
- \blacksquare G + Q
- \blacksquare G + Q + E

RPA99/ 2003 (article 5.2)

- G + Q E
- 0.8 G +E
- $0.8 \, \text{G} \text{E}$

a. Recommandation du RPA99/2003

V-3-1- Coffrage:

Les poutres doivent respecter les dimensions suivantes pour la zone sismique IIa :

- $b \ge 25$ cm
- $h \ge 30$ cm
- $\frac{l}{4} \leq \frac{b}{h} \leq 4$

RPA99/ 2003(article 7.5.1)

V-3-2- Ferraillage

V-3-2-1- Les armatures longitudinales

RPA 99/2003 (article 7.4.2.1)

- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% de la section de la poutre. $A^{min} = 0.5\%$ b * h.
- Le pourcentage total maximum des aciers longitudinaux est de :

- 4% de la section de la poutre en zone courante.
- 6% de la section de la poutre en zone de recouvrement.
- Les poutres supportant de faibles charges verticales et sollicitées principalement par les forces latérales sismiques doivent avoir des armatures symétriques avec une section en travée au moins égale à la moitié de la section sur appui.
- La longueur minimale des recouvrements est de : 40 € En zone IIa.
- Avec : $\emptyset max$: est le diamètre maximal utilisée.
- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de
- Rive et d'angle doit être effectué avec des crochets à 90°.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U superposés formant un carré ou un rectangle (là où les circonstances s'y prêtent, des cadres traditionnels peuvent également être utilisés).
- Les directions de recouvrement de ces U doivent être alternées, néanmoins, il faudra veiller à ce qu'au moins un côté fermé des U d'un cadre soit disposé de sorte à s'opposer à la poussé au vide des crochets droits des armatures longitudinales des poutres.
- On doit avoir un espacement maximum de 10 cm entre deux cadres et un minimum de trois cadres par nœuds.

V-3-2-2- Les minimales et maximales du RPA99/2003 :

Tableau des sections min et max

Tableau V-8 Sections minimales et maximales de l'acier

Poutre	Section	A min	A ma	ax
Foulle	360000	AIIIII	Zone Courante	Zone Nodale
Principale	30 x 50	7,5	60	90
Secondaire	30 x 40	6	48	72

V-3-3- Sollicitations et ferraillage

Le calcul de ferraillage des différentes poutres fait à partir de chaque élément de plancher avec les sollicitations obtenues dans le diagramme des efforts à partir de logiciel ROBOT,

Le calcul est généralisé, se fait uniquement avec les sollicitations les plus défavorables pour l'étage courant et terrasse inaccessible et pour les deux types de poutres (principale et secondaire).

Les sollicitations sont résumées dans le tableau suivant :

Niveaux

Etage courant

Terrasse

inaccessible

Poutres

Principales

Poutres

Secondaires

75,55

75,26

-99,63

-104,62

Tableau des sollicitations

Type de	La natur	e E.L.U	La natur	e E.L.S	La natur	V		
poutre	Mt (KN.m)	Ma (KN.m)	Mt (KN.m)	Ma (KN.m)	Mt (KN.m) Ma (KN.m)		(KN)	
Poutres Principales	80.92	-126,17	58,44	-91,94	-73,59 63,72	-147,18 127,49	137,99	
Poutres Secondaires	86,37	-136,63	62,94	-100,26	127,49	-141,40	117,15	

55,15

52,48

-71,86

-76,86

65,90

-45,10

37,84

-90,20

-90,20

75,68

128,05

116,37

Tableau V-9 Sollicitations sur les poutres

Remarque:

Aux sollicitations accidentelles, les poutres subissent un moment maximal positif et négatif sur l'appui, ami-travée on peut avoir un moment négligeable. Donc pour avoir les moments en travée, on a considéré le moment de X=L/4 qui est égale à la moitié du moment maximale en appuis.

Capture d'une poutre

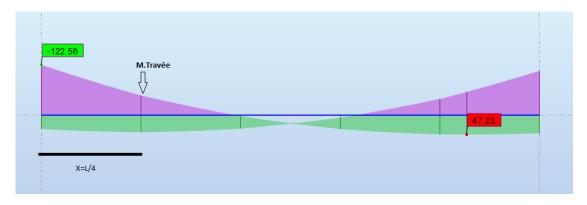


Figure 45 Diagramme des moments

Ainsi on calcule les armatures a la flexion simple et pour chaque zone de la poutre. L'ensemble des armatures sont récapitulé dans le tableau suivant :

Tableau des armatures :

		A min	(cm²)	As1	As2	Armatui	res Calculé
		BAEL	RPA	(cm²)	(cm²)	As1 armatures	As2 armature
						Tendues Choisit	Comprimées Choisit
P.P	En Appuis	1,96	7,5	9,6	11,2	3 HA16 + 3 HA14 =	6HA16 = 12.06cm2
						10.65cm2	
	En travées			5,3	5,4	3HA16 = 6.03cm2	3HA16 = 6.03cm2
P.S	En Appuis	1,55	6	0	12	3HA16 = 6.03cm2	6HA16 = 12.06cm2
	En travées			9,9	0	3HA 16 + 3HA 14	3 * HA16 = 6.03 cm2
						$= 10.65 \text{cm}^2$	
P.P	En Appuis	1,96	7,5	0	6,6	3HA16 = 6.03cm2	3HA16 + 2HA12 =
							8.29cm2
	En travées			11	0	6 HA16 =	3HA16 = 6.03cm2
						12.06cm2	
P.S	En Appuis	1,55	6	6,7	11,6	3HA16 + 2HA 12 =	6HA16 = 12.06cm2
						8.29cm2	
	En travées			5	5,2	3HA16 = 6.03cm2	3HA16 = 6.03cm2

Tableau V-10 Ferraillage des poutres

A- Longueur de recouvrement :

- $Lr > 40 \times \varphi O$
- $\varphi = 16\text{mm} \Rightarrow \text{lr} > 64\text{cm}$
- $\phi = 14$ cm \Rightarrow lr > 56cm

On adopte

- lr = 70 cm pour $\phi = 16mm$
- lr = 60 cm pour $\varphi = 14cm$

B- Calcule de ϕt :

$$\phi \leq \min \left(\phi l; \frac{h}{35}; \frac{b}{10}\right)$$

- poutre principale : $\phi \le \min(1.6; 1.43; 3)$ on prend $\phi = 0.8$ cm
- poutre secondaire : : $\phi \le \min(1.6; 1.14; 3)$ on prend $\phi = 0.8$ cm

Donc pour toute les sections $At = 4T8 = 2.01 \text{ cm}^2$ (un cadre et un étrier).

C- Choix de l'espacement :

On prend

- St = 10 cm pour la zone nodale.
- St = 15 cm pour la zone courante.

D- Vérification des sections d'armature transversale :

$$At^{min} = 0.003 *St * b = 1.35 cm^2 \le At = 2.01 cm^2$$

E- Vérification des contraintes tangentielles

• $\tau u \leq \tau^- u$

Avec

•
$$\tau u = \frac{Vu}{b*d}$$
 et $\tau^- u = \min (0.13 \text{ fc} 28; 4 \text{ MPA}) = 3.9 \text{Mpa}.$

La vérification est résumée dans le tableau suivant :

Tableau des contraintes tangentielles

Tableau V-11 Vérification des contraintes tangentielles

Niveaux	Type de poutre	La section (cm²)		Vmax (KN)	Cu (MPa)	Cu (MPa)	Observation
		b (cm)	h (cm)				
Etage	P. Principale	30	50	137,15	1,01	3,90	vérifiée
courant	P. Secondaire	30	40	117,99	1,09		vérifiée
Etage	P. Principale	30	50	128,05	0,95		vérifiée
courant	P. Secondaire	30	40	116,37	1,08		vérifiée

Toutes les contraintes sont vérifiées

F- Vérification des armatures longitudinales au cisaillement :

- Appuis de rive : Al $\geq \frac{Vu*\gamma s}{fe}$
- Appuis intermédiaires : Al $\geq \frac{\gamma s}{fe} * (Vu \frac{Ma}{0.9 d})$.

L'ensemble des vérifications sont résumé au tableau suivant :

Tableau de vérifications des armatures longitudinales au cisaillement

Tableau V-12 Vérification des armatures longitudinales au cisaillement

Niveau x	Type de poutre	d (cm)	Vmax (KN)	Ma (KN.m)	AL opté	Armatures Longitudinales		Observa tion
						A rive	A int	
Etage courant	P. Principale	47,5	178,75	137,15	22,71	4,469	6,75851	Vérifiée
	P. Secondaire	37,5	119,75	117,99	18,09	2,994	4,38896	Vérifiée
Etage courant	P. Principale	47,5	193,79	128,05	14,32	4,845	6,20787	Vérifiée
	P. Secondaire	37,5	129,32	116,37	20,35	3,233	4,65623	Vérifiée

G- Vérification a la contrainte de compression du béton

Etat limite de compression du béton :

:
$$\sigma_{bc} = \frac{Mser}{l} y \le \sigma_{bc}^{-} = 0.6 \text{ fc}_{28} = 18\text{MPA}$$

Les résultats pour les deux poutres (principales et secondaires) sont résumés au tableau suivant :

Tableau des contraintes a la compression

Tableau V-13 Vérification des contraintes a la compression sur les poutres

Poutres	Localisation	Mser (KN.m)	I (Cm ⁴)	Y (Cm)	бbс (MPA)	бbс (MPA)	Observation
P.P	E. courant	100,26	416667	18,135	2,99187134	18	Vérifiée
	T. innacc	91,94	416667	18,011	5,47148272		Vérifiée
P.S	E. courant	62,94	160000	16,045	6,31186225		Vérifiée
	T. innacc	76,86	160000	14,944	9,36398892		Vérifiée

Toutes les contraintes sont vérifiées

H- Vérification a l'état limite de déformation

Nous allons évaluer la flèche selon les règles du BAEL 91(Article B.6.5) et du CBA 93

$$\blacksquare \quad \mathbf{H} \ge \max \left(\frac{1}{16} ; \frac{Mt}{10Mo} \right)$$

$$A \le \frac{4.2b.d}{fe}$$

■ $L=4.7m \le 8m$

> Poutre principale :

- $H=50 \text{ cm} \ge \text{max} (6.25; 3.36)$
- $A = 6.03 \text{cm}^2 \le 14.96 \text{ cm}^2$
- Lmax= 5m < 8m

> Poutres secondaire :

- $H=40 \text{ cm} \ge \text{max} (6.25; 3.36)$
- $A = 8.29 \text{ cm}^2 < 11.81 \text{ cm}^2$
- Lmax= $5m \le 8m$

Toutes les vérifications sont vérifiées donc il est inutile de calculer la flèche

I- Vérification des zones nodales :

Dans le but de permettre la formation des rotules plastiques dans les poutres et non dans les poteaux, le RPA99/2003 (Art.7.6.2) exige que :

$$|M_{\eta}| + |M_{s}| \ge 1.25 \times |M_{w}| + |M_{e}|$$

A. Détermination du moment résistant dans les poteaux

Le moment résistant (MR) d'une section de béton dépend essentiellement :

- ✓ Des dimensions de la section du béton.
- ✓ De la quantité d'armatures dans la section du béton.
- ✓ De la contrainte limite élastique des aciers

$$Mr = Z * As * \sigma s$$

- Z=0.9*h avec (h : La hauteur totale de la section du béton).
- $\sigma s = \frac{fe}{vs} = 348 \text{ Mpa}$

Les résultats obtenus sont donnés dans le tableau ci-dessous :

Les moments résistants dans les poteaux :

		moment ré	sistant dans	les poteaux sui	r XX
niv	h(cm)	z(cm)	A(cm²)	δs(Mpa	Mr (KN.m)
RDC	65	58,5	43,98	348	895,34484
E1	85	76,5	43,98	348	1170,83556
E2	60	54	43,98	348	826,47216
E3	55	49,5	47,12	348	811,68912
E4	50	45	39,46	348	617,9436
E5	45	40,5	31,42	348	442,83348
E6	45	40,5	25,13	348	354,18222
E7	40	36	20,11	348	251,93808
E8	40	36	20,11	348	251,93808
E9	35	31,5	16,08	348	176,26896
E10	35	31,5	18,72	348	205,20864
E11	30	27	18,72	348	175,89312
E12	30	27	18,72	348	175,89312
E13	30	27	12,32	348	115,75872
E14	30	27	12,32	348	115,75872

		moment ré	sistant dans	es poteaux sur	· YY
niv	h(cm)	z(cm)	A(cm²)	δs(Mpa	Mr (KN.m)
RDC	75	67,5	43,98	348	1033,0902
E1	85	76,5	43,98	348	1170,83556
E2	70	63	43,98	348	964,21752
E3	65	58,5	47,12	348	959,26896
E4	60	54	39,46	348	741,53232
E5	55	49,5	31,42	348	541,24092
E6	50	45	25,13	348	393,5358
E7	50	45	20,11	348	314,9226
E8	45	40,5	20,11	348	283,43034
E9	45	40,5	16,08	348	226,63152
E10	40	36	18,72	348	234,52416
E11	35	31,5	18,72	348	205,20864
E12	30	27	18,72	348	175,89312
E13	30	27	12,32	348	115,75872
E14	30	27	12,32	348	115,75872

Les moments résistants dans les poutres :

	Mr poutres principales										
h(cm) z(cm) A(cm²) δs(Mpa Mr (KN.m)											
E.C	50	45	12,06	348	188,8596						
T.I	T.I 50 45 8,29 348 129,821										

	Mr poutres secondaires										
h(cm) z(cm) A(cm²) δs(Mpa Mr (KN.m)											
E.C	40	36	12,06	348	151,08768						
T.I 40 36 8,29 348 103,85											

Vérification de la zone nodale pour le sens X-X :

niv	Mn	Ms	Mn+Ms	Mw	Me	1,25(Mw+Me)	observation
RDC	895,34	895,34	1790,69	188,86	188,86	472,15	vérifiée
E1	1170,84	1170,84	2341,67	188,86	188,86	472,15	vérifiée
E2	826,47	826,47	1652,94	188,86	188,86	472,15	vérifiée
E3	811,69	811,69	1623,38	188,86	188,86	472,15	vérifiée
E4	617,94	617,94	1235,89	188,86	188,86	472,15	vérifiée
E5	442,83	442,83	885,67	188,86	188,86	472,15	vérifiée
E6	354,18	354,18	708,36	188,86	188,86	472,15	vérifiée
E7	251,94	251,94	503,88	188,86	188,86	472,15	vérifiée
E8	251,94	251,94	503,88	188,86	188,86	472,15	vérifiée
E9	176,27	176,27	352,54	188,86	188,86	472,15	vérifiée
E10	205,21	205,21	410,42	188,86	188,86	472,15	vérifiée
E11	175,89	175,89	351,79	188,86	188,86	472,15	vérifiée
E12	175,89	175,89	351,79	129,82	129,82	324,55	vérifiée
E13	115,76	115,76	231,52	129,82	129,82	324,55	non vérifiée
E14	115,76	115,76	231,52	129,82	129,82	324,55	non vérifiée

Vérification de la zone nodale pour le sens Y-Y :

niv	Mn	Ms	Mn+Ms	Mw	Me	1,25(Mw+Me)	observation
RDC	1139,96	1139,96	2279,92	151,09	151,09	377,72	vérifiée
E1	1291,96	1291,96	2583,91	151,09	151,09	377,72	vérifiée
E2	1063,96	1063,96	2127,93	151,09	151,09	377,72	vérifiée
E3	1058,50	1058,50	2117,01	151,09	151,09	377,72	vérifiée
E4	818,24	818,24	1636,49	151,09	151,09	377,72	vérifiée
E5	597,23	597,23	1194,46	151,09	151,09	377,72	vérifiée
E6	434,25	434,25	868,49	151,09	151,09	377,72	vérifiée
E7	347,50	347,50	695,00	151,09	151,09	377,72	vérifiée
E8	312,75	312,75	625,50	151,09	151,09	377,72	vérifiée
E9	250,08	250,08	500,15	151,09	151,09	377,72	vérifiée
E10	258,79	258,79	517,57	151,09	151,09	377,72	vérifiée

E11	226,44	226,44	452,87	151,09	151,09	377,72	vérifiée
E12	194,09	194,09	388,18	103,86	103,86	259,64	vérifiée
E13	127,73	127,73	255,47	103,86	103,86	259,64	non vérifiée
E14	127,73	127,73	255,47	103,86	103,86	259,64	non vérifiée

On voit bien que les moments résistants dans les poteaux sont supérieurs aux moments résistant dans les poutres dans les deux sens sauf pour les deux derniers niveaux qui sont négligeable d'après le RPA99/2003 Art : 7.6.2

Donc la formation des rotules plastiques se fera dans les poutres et non pas dans les poteaux.

Schéma de ferraillage des poutres

Poutre principale étage courant

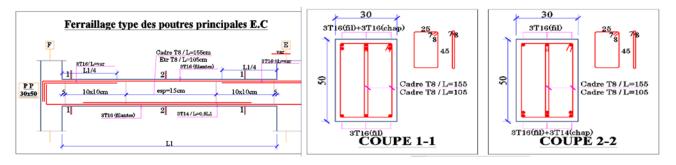


Figure 46 Ferraillage des poutres principales E. courant

Poutre principale terrasse inaccessible

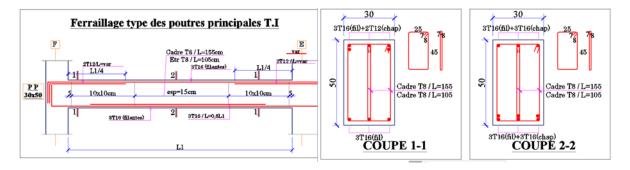


Figure 47 Ferraillage des poutres principales T. inaccessibles

Poutre Secondaire étage courant

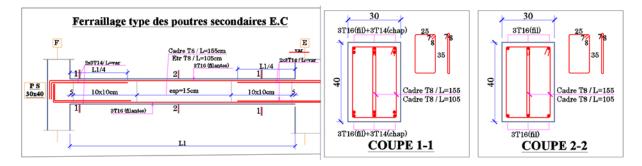


Figure 48 Ferraillage des poutres secondaires E. courant

Poutre Secondaire terrasse inaccessible

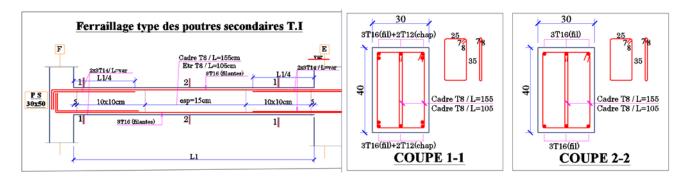


Figure 49 Ferraillage des poutres secondaires T. Inaccessible

V-4- Etude des voiles :

Le RPA 99/2003, exige de mettre des voiles à chaque structure en béton armé dépassant Quatre niveaux ou 14 m de hauteur dans la zone IIa (moyenne sismicité).

Les voiles de contreventement peuvent être définis comme étant des éléments verticaux qui sont destinés à reprendre, outre les charges verticales (au plus 20%), les efforts horizontaux (au plus 75%) grâce à leurs rigidités importantes dans leurs plans. Ils présentent deux plans l'un de faible inertie et l'autre de forte inertie ce qui impose une disposition dans les deux sens (x et y).

Un voile travaille comme une console encastrée à sa base, on distingue deux types de voiles qui ont des comportements différents :

■ Voile élancé : $h/l \ge 1.5$

• Voile court : $h/l \le 1.5$

- Un voile est sollicité en flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de rupture suivants :
- Rupture par flexion.
- Rupture en flexion par effort tranchant.
- Rupture par écrasement ou traction du béton

V-4-1- Recommandation du RPA:

V-4-1-1- Armatures verticales :

Les armatures verticales sont destinées à reprendre les efforts de flexion. Elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :

L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que :

- $Amin = 0.20\% (Lt \ x \ e)$
 - \circ L_t: Longueur de la zone tendue.
 - o e : épaisseur du voile.
- Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement st < e
 - e : épaisseur de voile).
- A chaque extrémité du voile, l'espacement des barres doit être réduit de moitié sur
 - 1/10de la largeur du voile.
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

V-4-1-2- Armatures horizontales:

Les armatures horizontales sont destinées à reprendre les efforts tranchants, Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de $10\Box_{l}$.

V-4-1-3- Armatures transversales :

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement. Elles sont en nombre de quatre épingles par 1m² au moins.

V-4-1-4- Armatures de coutures :

Le long des joints de reprises de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$Aij = 1.1V/fe$$
 avec $V = 1.4Vu$

V-4-1-5- Règles communes (armatures verticales et horizontales) :

Le pourcentage minimum d'armatures (verticales et horizontales) :

- Amin = 0.15% de la section du voile, dans la section globale du voile.
- $A\min = 0.10\%$ de la section du voile, dans la zone courante
- L'espacement : St= min (1.5 e, 30 cm) soit St = 20 cm
- Les deux nappes d'armatures horizontales doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

V-4-1-6- Longueurs de recouvrement :

- 40ϕ : Pour les barres situées dans les zones où le renversement de signe des efforts et possible.
- 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

Sur notre projet nous allons procéder au calcul de deux voiles suivant XX d'épaisseur e=15Cm, e=20Cm et la même chose suivant YY comme indiquer sur la figure ci-dessous :

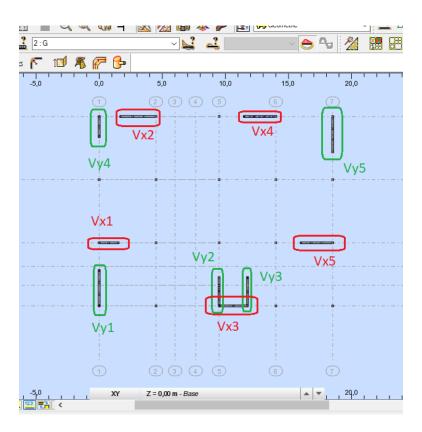


Figure 50 Identification des voiles

V-4-2- Sollicitations

Les sollicitations sur les voiles cités sont résumées dans les tableaux suivants :

Les tableaux des sollicitations

Les sollicitations maximales pour le Voile e=20 Cm :

Voiles VX:

Tableau V-14 Sollicitations des voiles VX du RDC

Voile	Nature	Combinaison	N(KN)	M(KN.m)	V(KN)	6 max (MPA)	6 min (MPA)
Vx1	G+Q+EX	Mmax,Ncorr	1319,88	195,9048	86,9704	3,31292	1,7894
L=1,5 m	G+Q-EX	Nmax, Mcorr	1402,262	1,5548		2,71676	2,70388
	0.8G+EX	Nmin,Mcorr	384,591	194,1476		1,49868	-0,01196
Vx2	G+Q+EX	Mmax,Ncorr	2080,5535	1127,4508	-245,96	8,40604	-0,3634
L=2,8 m	G+Q-EX	Nmax, Mcorr	2030,038	49,6432		4,117	3,7306
	0.8G+EX	Nmin,Mcorr	453,6705	1068,1936		5,03056	-3,27704
Vx3	G+Q+EX	Mmax,Ncorr	1249,602	410,2556	209,1936	4,01028	0,81972
L=2,25 m	G+Q-EX	Nmax, Mcorr	1671,491	2,1528		3,23932	3,22184
	0.8G+EX	Nmin,Mcorr	512,431	405,4532		2,5668	-0,58604
Vx4	G+Q+EX	Mmax,Ncorr	2005,66	787,7592	286,9064	6,93956	0,81328
L=2,5 m	G+Q-EX	Nmax ,Mcorr	1871,768	27,8668		3,726	3,50888
	0.8G+EX	Nmin,Mcorr	361,3095	754,4736		3,63216	-2,2356
Vx5	G+Q+EX	Mmax,Ncorr	1679,243	828,1104	-190,476	6,46576	0,02484
L=2,5 m	G+Q-EX	Nmax ,Mcorr	1622,633	50,8392		3,33408	2,93848
	0.8G+EX	Nmin,Mcorr	296,6925	767,4548		3,55764	-2,41132

Voiles VY:

Tableau V-15 Sollicitations sur les voiles VY du RDC

Voile	Nature	Combinaison	N(KN)	M(KN.m)	V(KN)	6 max (MPA)	6 min (MPA)
Vx1	G+Q+EX	Mmax,Ncorr	2127,04	1289,131	-246,26	9,12456	-0,90252
L=1,5 m	G+Q-EX	Nmax, Mcorr	2203,914	160,126		4,88244	3,63676
	0.8G+EX	Nmin,Mcorr	582,8365	1096,364		5,39028	-3,1372
Vx2	G+Q+EX	Mmax,Ncorr	1874,394	604,4492	-139,69	5,97356	1,27236
L=2,8 m	G+Q-EX	Nmax, Mcorr	1818,49	38,042		3,66252	3,3672
	0.8G+EX	Nmin,Mcorr	404,8975	559,9212		2,95964	-1,39472
Vx3	G+Q+EX	Mmax,Ncorr	1648,124	669,8428	140,043	5,79048	0,58052
L=2,25 m	G+Q-EX	Nmax, Mcorr	1699,430	24,3064		3,37916	3,18964
	0.8G+EX	Nmin,Mcorr	489,6595	641,9116		3,44264	-1,5502
Vx4	G+Q+EX	Mmax,Ncorr	138,125	239,5312	74,3072	1,19876	-0,66424

L=2,5 m	G+Q-EX	Nmax ,Mcorr	926,398	18,3448		1,86208	1,71948
	0.8G+EX	Nmin,Mcorr	-72,2245	234,7104		0,7728	-1,05248
Vx5	G+Q+EX	Mmax,Ncorr	493,374	1144,4064	215,899	5,40408	-3,49692
L=2,5 m	G+Q-EX	Nmax ,Mcorr	1400,519	49,128		2,898	2,5162
	0.8G+EX	Nmin,Mcorr	223,4055	1129,5944		4,82448	-3,96152

Les sollicitations maximales pour le Voile e=15 Cm :

Voiles VX:

Tableau V-16 Sollicitations des voiles VX au 1er étage

Voile	Nature	Combinaison	N(KN)	M(KN.m)	V(KN)	6 max (MPA)	б min (MPA)
Vx1	G+Q+EX	Mmax,Ncorr	956,777	95,8364	64,152	2,2218	1,4766
L=1,5 m	G+Q-EX	Nmax, Mcorr	1212,712	4,508		2,36164	2,32668
	0.8G+EX	Nmin,Mcorr	514,097	91,0984		1,3478	0,6394
Vx2	G+Q+EX	Mmax,Ncorr	1501,508	617,7156	-224,664	5,30472	0,49956
L=2,8 m	G+Q-EX	Nmax, Mcorr	1794,3755	55,8992		3,68552	3,25036
	0.8G+EX	Nmin,Mcorr	733,635	549,8564		3,55672	-0,72036
Vx3	G+Q+EX	Mmax,Ncorr	879,7585	274,7028	234,1416	2,76828	0,63204
L=2,25 m	G+Q-EX	Nmax, Mcorr	1505,0525	12,1072		2,95596	2,86212
	0.8G+EX	Nmin,Mcorr	568,225	270,8572		2,15188	0,04508
Vx4	G+Q+EX	Mmax,Ncorr	1452,344	435,666	-160,6528	4,50156	1,1132
L=2,5 m	G+Q-EX	Nmax ,Mcorr	1648,8385	34,4448		3,3212	3,05256
	0.8G+EX	Nmin,Mcorr	629,595	393,6496		2,74804	-0,31372
Vx5	G+Q+EX	Mmax,Ncorr	1143,1395	441,508	-189,1208	3,92656	0,4922
L=2,5 m	G+Q-EX	Nmax ,Mcorr	1398,1905	52,2928		2,90536	2,49872
	0.8G+EX	Nmin,Mcorr	554,2425	379,6472		2,54748	-0,4048

Voiles VY:

Tableau V-17 Sollicitations des voiles VY au 1er étage

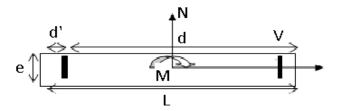
Voile	Nature	Combinaison	N(KN)	M(KN.m)	V(KN)	б max	б min
						(MPA)	(MPA)
Vy1	G+Q+EX	Mmax,Ncorr	1244,6805	703,4872	-254,2936	5,14188	-0,33028
L=1,5 m	G+Q-EX	Nmax, Mcorr	2080,5535	1127,4508		8,40604	-0,3634
	0.8G+EX	Nmin,Mcorr	805,749	675,7952		4,18508	-1,07088
Vy2	G+Q+EX	Mmax,Ncorr	1394,2635	364,7616	-153,9912	4,11332	1,27604
L=2,8 m	G+Q-EX	Nmax, Mcorr	1662,787	36,0732		3,35432	3,07372
	0.8G+EX	Nmin,Mcorr	687,1655	320,3348		2,57416	0,0828
Vy3	G+Q+EX	Mmax,Ncorr	1273,5975	321,1536	116,7848	3,71036	1,21256
L=2,25 m	G+Q-EX	Nmax, Mcorr	1538,058	27,1768		3,07832	2,86672
	0.8G+EX	Nmin,Mcorr	660,9005	287,3988		2,39476	0,16008

Vy4	G+Q+EX	Mmax,Ncorr	338,9035	240,58	97,8208	1,59068	-0,2806
L=2,5 m	G+Q-EX	Nmax ,Mcorr	785,1365	168,1208		2,1712	0,86388
	0.8G+EX	Nmin,Mcorr	167,2205	224,618		1,19692	-0,55016
Vy5	G+Q+EX	Mmax,Ncorr	737,0435	641,0744	231	3,91736	-1,06812
L=2,5 m	G+Q-EX	Nmax ,Mcorr	1208,972	46,6532		2,51804	2,15556
	0.8G+EX	Nmin,Mcorr	500,5225	627,0076		3,40584	-1,47108

Remarque:

Les voiles les plus sollicité sont ceux qui ont la plus importante contrainte à la traction.

Selon les résultats précédents, la plupart des voiles ont une contrainte à la traction négligeable sauf pour les voiles Vx2 et Vy5 qui seront notre exemple de ferraillage


Les autres voiles peuvent être ferraillés ainsi.

V-4-2-1- Exemple de ferraillage :

A- Armatures verticales:

Le calcul des armatures verticales se fait à la flexion composée sous (M et N) pour une section (e* L) selon la sollicitation la plus défavorable de ce qui suit :

- N max → M correspondant
- N min → M correspondant
- M max → N correspondant

Voici un exemple de ferraillage pour le voile Vx2 ep=20cm avec le cas le plus défavorable :

Figure 51 Sollicitations sur les voiles

Donnés:

- N min = 435,67 KN.
- M corr= 1068, 19KN.m
- V max= 245.96 KN
- Combinaison : 0.8G + Ex (accidentelle)
- L= 2.8m
- d= 2.52m

- d'=0.28m
- $e_G = \frac{M}{N} = 2.175 \text{ m} \ge L/2 = 1.4 \text{m}$

Nu (d-d') - $M_{Ua} \le (0.337h - 0.81d')$ b h $F_{bu} \rightarrow -5.63 \le 0.688$

- o Nu (compression)
- o eg est à l'extérieur de la section

Donc la section est partiellement comprimée (S.P.C) et

○ Nu (d-d') -M_{Ua}
$$\leq$$
 (0,337h - 0,81d') b h F_{bu} \rightarrow -5,63 \leq 0,688

Le calcul de ferraillage se feras par assimilation a la flexion simple avec :

- $M_{uA} = M + Nu*(d \frac{h}{2}) = 1161, 08 + 533,73 (2.52 1.4) \text{ donc} : M_{uA} = 1758.85 \text{KN.m}$
- $Ubu = \frac{MuA}{b.d^2.fbu} = \frac{1,75885}{0.2.6.35.22.17} = 0.062$
- Ubu< μ l=0.392(Fe400) →le diagramme passe par le pivot « A » →A'=0
- \rightarrow fst= $(fe/\gamma s) = (400/1) = 400 \text{ MPA}$
- $\alpha = 1.25 (1 \sqrt{1 2Ubu}) = 0.064$
- = Z=d(1-0.4 α) =2.45m

$$A1 = \frac{MuA}{z*fst} = \frac{1,75885}{2,45*400} = 17.95 \text{cm}^2$$

On revient à la flexion composée :

$$A = A1 - (Nu/fst) = 0.001795 - 0.001334 = 0,000465m^2$$

$$A = 4.65 \text{ cm}^2$$

a. Détermination des longueurs (comprimé et tendus) :

$$L_t = \left(\frac{\sigma \min * l}{\sigma max + \sigma min}\right)$$

et
$$(l_c = L - 2l_t)$$

Avec:

- l_t: Longueur de la zone tendue (partie tendue du voile).
- l_c: Longueur de la zone comprimée (partie comprimée du voile)

 $\sigma = \frac{N}{S} \pm \frac{M}{I}$. Y On auras deux contraintes :

•
$$\sigma 1 = 5.468 \text{ MPA}$$

on aura donc : $l_t = 1.104 \text{ m}$

•
$$\sigma 2 = -3.56 \text{ MPA}$$

$$l_c = 0.59 \text{ m}$$

b. Armature minimales en zone tendus et comprimé :

- $A_{min} = 0.2\%$ (e*Lt) = 4,41 cm² (en zone tendus)
- $A_{min} = 0.1\%$ (e*Lc) = 1,18 cm²(en zone comprimé)
 - c. Armature minimales dans tout le voile :

•
$$A_{min} = 0.15\% (e*L) = 8.4 cm^2$$

RPA99/V2003

- d. Espacement des barres verticales :
 - St \leq min (1.5e; 30cm) soit St= 20cm

B- Armatures horizontale:

La section des armatures horizontales est calculée selon la formule suivante :

$$Ah = \frac{\tau u * e * St}{0.8 fe} \quad avec$$

$$\tau u = \frac{1.4 \, Vu}{e * d} = 0,776 \, \text{MPA}$$

$$\bar{\tau} u = 0.2 \, \text{fc} 28 = 6 \, \text{MPA}$$

$$\bar{\tau}u = 0.2 \text{ fc} 28 = 6 \text{ MPA}$$

Donc

$$Ah = 0.97 \text{ Cm}^2$$

Les tableaux suivants résument les ferraillages et les vérifications nécessaires sur les voiles :

Tableau de ferraillage des voiles :

Voiles avec e=20cm:

Tableau V-18 Ferraillage et vérification des voiles du RDC

Sens	Vx2	Vy5
Section (m ²)	0,2 x 2,8	0,2 x 2,8
I(m4)	0,36	0,36
M(KN.m)	1068,19	1129,6
N(KN)	453,67	223,4
V(KN)	-245,96	215,89
σ max(MPA)	5,03	4,82
σ min (MPA)	-3,27	-3,96
Lt(m)	1,104	1,25
Sollicitations	SPC	SPC
τ(MPA)	0,776	0,68
τ¯(MPA)	6	6
Av Cal(cm²)	4,65	8,95
Av Min(cm²)	4,33	4,33
AvOpté(cm²)	6,28	11,3
N barre/face	4HA10	5HA12
St (cm)	25	25
Ah Cal (cm²)	0,7	0,85
Ah Min (cm²)	5,03	5,03
Ah Opté (cm²)	7,86	7,86
Nbarre/face	5T10	5T10
St (cm)	20	20

Voiles avec e=15cm:

Tableau V-19 Ferraillage et vérification des voiles du 1er étage

Niveau	Vx2	Vy5
Section (m2)	(0,15*2,8)	(0,15*2,8)
I (m4)	0,274	0,274
M(KN.m)	549,8	627,52
N(KN)	733,6	500,5
V(KN)	224,6	231
σ max(MPA)	3,55	3,4
σ min (MPA)	-0,72	-1,47
Lt(m)	0,168	0,3
Sollicitations	SPC	SPC
τ(MPA)	0,945	0,97
τ¯(MPA)	6	6
Av Cal (cm2)	-4,84	-0,93
Av Min (cm2)	2,43	2,43
Av Opté (cm2)	6,28	6,28
N barre /face	4HA10	4HA10
St (cm)	25	25
Ah Cal (cm2)	0,88	0,9
Ah Min (cm2)	2,23	2,23
Ah Opté (cm2)	4,02	4,02
Nbarre/face	4T8	4T8
St (cm)	25	25

Remarque:

Le calcul de la section d'acier de certains voiles nous donne une valeur négative, cela est dû à l'effort normal subit par le voile qui est plus important que le moment sollicitant. Dans ces cas on ferraille avec le Amin = max (Amin RPA; Amin B.A.E.L)

Schéma de ferraillage des voiles :

Schéma de ferraillage Vx2:

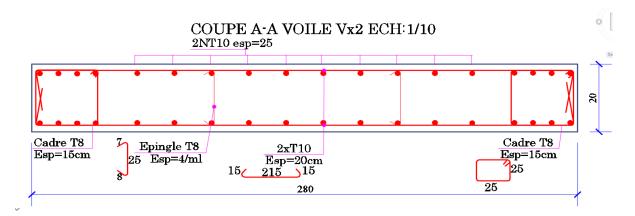


Figure 52 Ferraillage du voile Vx2

Schéma de ferraillage VY5:

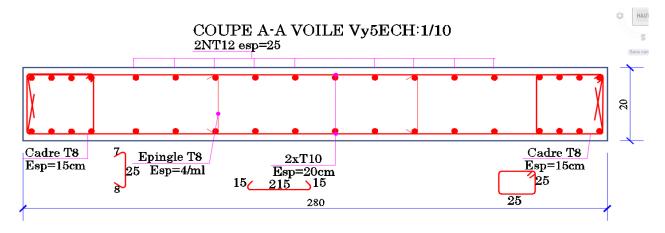


Figure 53 Ferraillage du voile Vy5

V-5- Conclusion:

Au terme de ce chapitre, nous avons étudié les différents éléments principaux. Les poteaux ont été calculés et ferraillé (Flexion Composé). Il est noté que le ferraillage minimum du **RPA99/2003** est souvent plus important que celui calculé par le **CBA93 et BAEL91/99**. Les poutres (Flexion Simple) ainsi Les voiles de contreventement (Flexion Composé) sont ferraillées en utilisant les sollicitations obtenues par le logiciel **ROBOT STRUCTURAL ANALYSIS** et **ROBOT EXPERT** pour le calcul des armatures.

Les ferraillages adoptés respectent les recommandations du RPA99/2003, CBA93 et le BAEL91/99.

Chapitre VI

VI- Chapitre VI: Etude de l'infrastructure

VI-1- Introduction:

On appelle infrastructure, la partie inférieure d'un ouvrage reposant sur un terrain d'assise auquel sont transmises toutes les charges supportées par l'ouvrage, soit directement (cas des semelles reposant sur le sol ou cas des radiers) soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

Donc elles constituent la partie essentielle de l'ouvrage.

Il existe plusieurs types de fondations, le choix se fait selon les conditions suivantes :

- La capacité portante du sol;
- ➤ La charge à transmise au sol;
- ➤ La dimension des trames ;
- ➤ La profondeur d'ancrage.

On distingue:

- Fondation superficielle (Semelle isolée, Semelle filante, Radier général)
- ➤ Les fondations semi-profondes
- > Fondation profonde (semelle sous pieux)

VI-2- Combinaisons de calcul

Le dimensionnement des fondations superficielles, selon la réglementation parasismique Algérienne (RPA99 version 2003, Article 10.1.4.1), se fait sous les combinaisons suivantes :

- \triangleright ELS \rightarrow G+Q
- \gt *ELU* \rightarrow 1,35*G* + 1,5*O*
- \triangleright $G + Q \pm E$
- \triangleright 0.8 $G \pm E$

VI-3- Reconnaissance du sol

Pour projeter correctement une fondation, Il est nécessaire d'avoir une bonne connaissance de l'état des lieux au voisinage de la construction à étudier, mais il est surtout indispensable d'avoir des renseignements aussi précis que possible sur les caractéristiques géotechniques des différentes couches qui constituent le terrain.

Le taux de travail du sol retenu pour le calcul des fondations est de 2.87 bar correspondant à un tassement maximal admissible est l'ordre de 50mm pour une profondeur d'ancrage de 1,2 après décapage de 4m.

VI-4- Calcul de l'infrastructure :

VI-4-1- Choix du type de fondation

On calcule la surface totale des semelles nécessaires :

- $Sf \ge \frac{Nser}{\sigma^{-}s} = \frac{4491.85}{287} = 15.65 \text{m}^2$
- $\frac{a}{b} = \frac{A}{B} \rightarrow A = 0.866 \text{ B}.$

Avec a et b : dimensions du poteau et A et B démentions minimale de la semelle

On aura B = 4.24 m et A = 3.67 m (dimensions de chaque semelles)

- $ightharpoonup S_{totale des semelles} \le 80\% S_{totale du bâtiment}$
 - S_{totale} des semelles = $S_f * N_{bre}$ pot = $313m^2 \ge 80\%$ S_{totale} du bâtiment = $241m^2$

Avec S_{total} bâtiment = 301,25m²

 N_{bre} Poteaux = 20 Poteaux

La condition n'est pas vérifiée, donc on opte pour une fondation superficielle de type Radier générale

VI-4-2- Etude du Radier général

C'est le type de fondation qui convient le mieux pour notre structure, sachant qu'il possède plusieurs avantages comme suit :

- L'augmentation de la surface de la semelle qui minimise la forte pression apportée par la structure
- La réduction des tassements différentiels ;
- La facilité d'exécution.

VI-4-2-1- Caractéristiques géométriques du radier

Le radier est considéré comme infiniment rigide, donc on doit satisfaire les conditions suivantes :

A- Condition de coffrage :

• ht : Hauteur des nervures.

• H_r: Hauteur de la dalle.

• Lmax : La plus grande portée entre deux éléments porteurs successifs. L_{max} = 5m

• $h_r \ge \frac{L}{20} = \frac{5}{20} = 0.25 \text{ m}$ soit 35cm

• $h_t \ge \frac{L}{10} = \frac{5}{10} = 0.5$ m soit 60cm

B- Condition de raideur :

Pour qu'un radier soit rigide il faut que Lmax $\leq \frac{\pi}{2}$ Le

Avec Le $\geq \sqrt[4]{(4. E. I)/(K. b)}$

Avec

- Le : est la longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible)
- K : coefficient de raideur du sol K= 12×10^4 KN/m³ d'après (<u>la bibliographie Grekow et al...,1964, fuentes, 1983</u>) pour un très bon sol $\sigma = 2.87$ bar ≥ 2 bar
- E : module d'élasticité du béton : E =3,4×10⁷ KN/m² (pour fc_{28} = 30Mpa)
- b : largeur de la semelle

Avec : $I = (b.h_t^3/12)$: Inertie de la semelle.

 $\bullet \quad h_t \! \geq \! \sqrt[3]{\frac{48 \text{Lmax}^4.\text{K}}{\pi^4.\text{E}}} \! = \! \sqrt[3]{\frac{48.12.10^4.5^4}{\pi^4.3.4.10^7}} = 1.02 \text{ m} \quad \text{on prend } h_t \! = 1.1 \text{ m}$

Ce qui nous donne le moment d'inertie I= 0.554 m⁴

La longueur élastique : Le = $\sqrt[4]{\frac{4.3,4.10^7.0,554}{12.10^45}}$ \rightarrow Le = 3.34 m

• Lmax = $5 \text{m} \le \frac{\pi}{2} \text{Le} = 5.25 \text{ m}$

La condition de raideur est vérifiée,

C- Calcule de la largeur de la nervure :

Puisque nous avons des poteaux rectangulaires nous aurons deux largeurs selon les deux sens :

- $XX : bx = b_{pot x} + 10cm = 85cm$
- $YY : by = b_{pot y} + 10cm = 75cm$

Donc les dimensions finales du radier

- $h_t = 1.10 \text{ m}$
- $h_r = 50cm$
- $h_n = 60 cm$
- d' = 5cm (Enrobage)
- $S_{rad} = 324.55 \, m$ (La surface du radier)

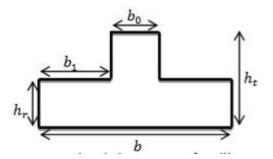


Figure 54 Dimensions de la nervure

D- Vérifications des contraintes dans le sol

Les contraintes du sol sont calculées avec les formules suivantes :

•
$$\sigma^+ = \frac{N}{S_{rad}} + \frac{M_{xx}}{I_{xx}} * X_G$$
 et $\sigma^- = \frac{N}{S} - \frac{M_{xx}}{I_{xx}} * X_G$ suivant X-X

•
$$\sigma^+ = \frac{N}{S_{rad}} + \frac{M_{yy}}{I_{yy}} * Y_G$$
 et $\sigma^- = \frac{N}{S} - \frac{M_{yy}}{I_{yy}} * Y_G$ suivant Y-Y

Nous travaillons avec le logiciel d'analyse ROBOT, inutile de calculer les contraintes puisqu'il nous donne directement les valeurs des contraintes maximales et minimales sur la cartographie du radier :

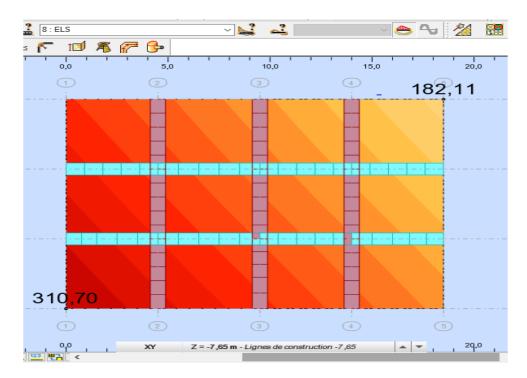


Figure 55 Contraintes a l'ELS

On remarque que les deux contraintes sont positives, cela veut dire que la charge répartie est

Une charge trapézoïdale

Donc

- $\sigma_{max} = 3.10bar$
- $\sigma_{min} = 1.82bar$
- $\sigma_{moy} = \frac{3\sigma max + \sigma min}{4} = 2.78bar$
- $\sigma_{\text{moy}} = 2.78 \text{ bar} \le \sigma_{\text{sol}}^- = 2.87 \text{ bar}.$

La contrainte moyenne est à peine vérifier donc nous avons opté pour des débords afin d'éviter tout risque de tassement et aussi pour alléger les charges subites par le radier et les nervures.

Voici les figures ci-dessous montrant les valeurs des contraintes pour toutes les combinaisons

> Contraintes à l'ELS:

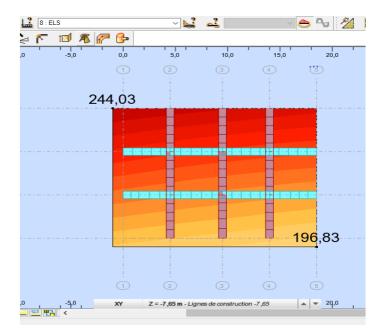


Figure 56 Contrainte a l'ELS (avec débords)

Donc

- $\sigma_{max} = 2.44bar$
- $\sigma_{min} = 1.96bar$
- $\sigma_{moy} = \frac{3\sigma max + \sigma min}{4} = 2.32bar$
- $\sigma_{moy} = 2.43bar \le \sigma$ -sol = 2.87bar

> Contraintes à l'ELU:

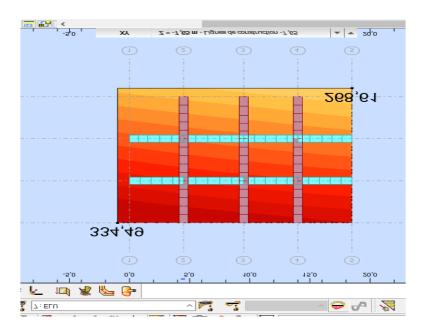


Figure 57 Contrainte à l'ELU

Donc

- $\sigma_{max} = 3.34bar$
- $\sigma_{min} = 2.68bar$
- $\sigma_{\text{moy}} = \frac{3\sigma \text{max} + \sigma \text{min}}{4} = 3.175 \text{bar}$
- $\sigma_{\text{moy}} = 3.175 \text{bar} \le \sigma \text{-sol} (ELU) = 2.87 * \frac{3}{2} = 4.305 \text{bar}$

Contraintes à l'ELA :

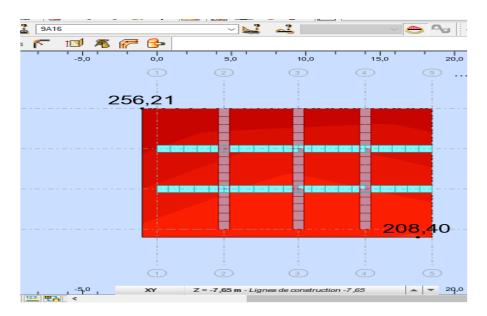
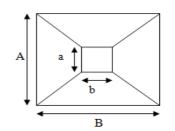


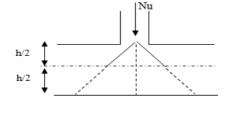
Figure 58 Contraintes a l'ELA

Donc

- $\sigma_{max} = 2.56bar$
- $\sigma_{min} = 2.08bar$
- $\sigma_{\text{moy}} = \frac{3\sigma_{\text{max}} + \sigma_{\text{min}}}{4} = 2.44 \text{bar}$
- $\sigma_{\text{moy}} = 2.44 \text{bar} \le \sigma^{-} \text{sol} (ELU) = 2.87 * \frac{3}{2} = 4.305 \text{bar}$

Les sollicitations les plus défavorables sur le Radier :


		ELU		ELS		ELA	Vu	
Sens	Position	Travée	Appuis	Travée	Appuis	Travée	Appuis	468,18
X-X	Moment	269,89	-361,28	197,13	-264,41	198,42	-182,17	
Sens	Position	Travée	Appuis	Travée	Appuis	Travée	Appuis	486,44
Y-Y	Moment	337,21	-459,12	247,12	-338,01	250,39	-250,79	


Tableau VI-1 Sollicitations sur le radier

E- Vérification au poinçonnement :

Il faut vérifier que:

Nu \leq 0.045.Uc .h. $\frac{fc28}{\gamma b}$ Avec :

• Nu : effort normal dans le poteau

Figure 59 Zone d'impact poinçonnement

• Uc : Le périmètre du contour cisaillé projeté sur le plan moyen du radier.

○
$$Uc = (a+b+2ht) *2 \rightarrow Uc = 7.2 \text{ m}$$

BAEL99 ART.3.2, 5

•
$$Nu = 6154.63 \text{ KN} \le 0.045*7.2*1.1*30/1.5 = 9720 \text{ KN}$$

Donc la résistance au poinçonnement est vérifiée

F- Vérification au cisaillement :

•
$$\tau = \frac{Vu}{b.d} \le \tau^- = \min (0.15 \frac{fc28}{\gamma b}; 4 \text{ MPA}) \dots \text{CBA } 93 \text{ (A.5.1.2.1.1)}.$$

On considère une bande de 1m de largeur et de d=0.9ht= 0.99m de hauteur

•
$$Vu = \frac{Nu*Lmax}{2*S} = \frac{6154.63*5}{2*277.5} = 55.45 \text{ KN}$$

•
$$\tau = \frac{0.0586}{1*0.99} = 0.056 \text{ MPA } \leq \tau^- = 3 \text{ MPA}$$

La condition est vérifiée donc pas de risque de rupture par cisaillement.

VI-4-3- Calcule de ferraillage :

Les armatures longitudinales sur le radier se calculent a la flexion simple

Les moments les plus défavorables sont tirés du logiciel de calcule ROBOT.

Voici des tableaux qui résument l'ensemble de l'armature longitudinale sur le radier :

Tableau VI-2 Ferraillage du radier

		M(KN.m)	A Cal (Cm ²)	A min(Cm ²)	A choisit(Cm²)	St(Cm)
Travée	Sens x-x	269,89	18	4,74	6 * HA 20 = 18.85cm ²	15
	Sens y-y	337,21	22,7		$5 * HA 25 = 24.54 cm^2$	20
Appui	Sens x-x	-361,28	24,4	6,21	5 * HA 25 = 24.54cm ²	20
	Sens y-y	-459,12	31,6		7 * HA 25 = 34.36cm ²	14

Avec:

$$A_{\min} \stackrel{\text{trav\'ee}}{=} \frac{\rho o}{2} (3-f) * b * hr$$

•
$$e \ge 12cm \rightarrow f = 0.63$$

• Fe400
$$\rightarrow$$
 fo = 0.0008

$$Arr$$
 A_{min} en appuis = 0.23.b.d. $\frac{ft28}{Fe}$ = 6.21 cm²

Remarque:

Les débords du radier sont des consoles qui travaille à la flexion simple et qui sont soumis au moments d'appuis, donc ils auront le même ferraillage avec les sections en appuis du radier.

A- Vérification de l'effort tranchant :

•
$$\tau = \frac{Vu}{b.d} \le \tau^- = \frac{0.07 fc28}{\gamma b} = 1.4 \text{Mpa}$$

$$\circ \quad \tau_x = \frac{468.18*10^{-3}}{1*0.45} = 1.04 \; Mpa \leq \tau^- = 1.4 Mpa \; v\acute{e}rifi\acute{e}$$

$$\circ \quad \tau_y = \frac{^{486.44 \ .10^{-3}}}{^{1*0.45}} = 1.08 \ Mpa \leq \tau^- = 1.4 Mpa \ v\acute{e}rifi\acute{e}$$

Pas de risque de cisaillement donc inutile de concevoir des armatures transversales.

B- Vérification des contraintes du béton et de l'acier :

On doit vérifier :

•
$$\sigma_{bc} = \frac{Mser}{I} y \le \sigma_{bc}^{-} = 0.6 \text{ fc}_{28} = 18 \text{Mpa}$$

•
$$\sigma_s = \frac{15Mser}{I} (d-y) \le \sigma_s = 215.55Mpa$$

Avec

$$\circ \quad \sigma_{s}^{-} = \min(\frac{3}{2} fe; 110 \sqrt{\eta f t J})$$

Les contraintes maximales sont résumées dans le tableau suivant :

Tableaux des contraintes

Tableau VI-3 Vérifications des contraintes

	Localisation	Mser (KN.m)	I (Cm4)	Y (Cm)	бbс (MPA)	б Бс (MPA)	бs (MPA)	68 (MPA)	Observation
Sens xx	En Appuis	264,41	0,00394	0,176	11,812	18	275,756	215,55	Non Vérifiée
Cong	En Annuis	197,13	0,004848	0,194	7,893		156,071		Vérifiée Non Vérifiée
Sens yy	En Appuis En travées	338,01 247,12	0,004848	0,194	13,533 8,654		267,608 137,562		Vérifiée

Les contraintes de fissurations en appuis ne sont pas vérifiées, on doit augmenter la section d'acier afin de les vérifier. Voici le ferraillage final du radier :

Tableau VI-4 Ferraillage final du radier

Localisati	ion	M (KN.m)	6s(MPA)	68(MPA)	A choisit(Cm²)	St(Cm)
Sens XX	Appui	264,41	209,338	215,55	7 * HA 25 = 34.36cm ²	15
	Travée	197,13	156,071		5 * HA 25 = 24.54cm ²	20
Sens YY	Appui	338,01	188,157		7 * HA 25 = 34.36cm ²	15
	Travée	247,12	137,562		5 * HA 25 = 24.54cm ²	20

Schémas de ferraillage du radier

Schémas de ferraillage du radier XX

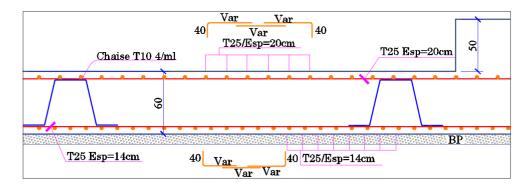


Figure 60 Ferraillage de radier selon X-X

Schémas de ferraillage du radier YY

Figure 61 Ferraillage du radier selon Y-Y

VI-4-4- Etude des nervures :

Les nervures sont des poutres de section en T noyées dans le radier. Elles sont calculées à la flexion simple.

VI-4-4-1 Calcule de la largeur efficace :

$$\frac{b-b0}{2} \le \text{Min}\left(\frac{Lx}{2}; \frac{Ly}{10}\right)....(CBA93. Art.4.1.3)$$

Dans notre cas, on a ce qui suit :

- ht = 1.10 m
- hr = 0.50 m
- b0 = 0.85 m/0.75 m
- \blacktriangleright b1≤min (5/10;5/2) \rightarrow b1≤ (0.5;2.5) cm;

Soit b1=0.5m

Donc

- \triangleright beff= 2b1+b0 = 1.85m sur XX
- ➤ beff= 2b1+b0 =1.75m sur YY

VI-4-4-2- Sollicitations sur les nervures :

Les sollicitations sont tiré du logiciel ROBOT. Elles sont résumées dans le tableau suivant :

Tableau VI-5 Sollicitation sur les nervures

		ELU		ELS		Vu
XX	Position	Travée	Appuis	Travée	Appuis	1515,97
	Moment	-1434,41	1337,4	-1048,03	978,06	
YY	Position	Travée	Appuis	Travée	Appuis	2020,11
	Moment	-1887,23	1646,23	-1387,23	1206,16	

VI-4-4-3- Ferraillage des nervures :

Le ferraillage des nervures se fait à la flexion simple pour une section rectangulaire

$$b*h = (85/75)cm * 110 cm$$

Les résultats sont résumés au tableau suivant :

Tableau VI-6 Ferraillage des nervures

		M(KN.m)	A Cal (Cm ²)	A min (Cm ²)	A choisit (Cm²)
Sens x-x	Appui	1337,4	38,3	11,61	$5HA25 + 5HA 20 = 40.25cm^2$
	Travée	-1434,41	41,2		$7\text{HA}25 + 3\text{HA}\ 20 = 43.78\text{cm}^2$
Sens y-y	Appui	1646,23	48,1	10,24	$10\text{HA}25 = 49.09\text{cm}^2$
	Travée	-1887,23	55,7		$8 \text{ HA25} + 2\text{HA32} = 55.35\text{cm}^2$

VI-4-4-4 Vérifications:

A- Vérification à l'effort tranchant :

•
$$\tau = \frac{Vu}{hd} \le \tau^- = \min(0.1 fc_{28}; 4\text{Mpa})$$

$$\tau_{x} = \frac{1515.97*10^{-3}}{0.85*0.99} = 1.80 \text{ Mpa} \le \tau^{-} = 3 \text{Mpa vérifié}$$

•
$$\tau_y = \frac{1530.59.10^{-3}}{0.75*0.99} = 2.06 \text{ Mpa } \le \tau^- = 3 \text{Mpa vérifié}$$

B- Vérification a la jonction table-nervure : source ??

•
$$\tau_{x} = \frac{Vux*0.5*10^{-3}}{0.9d*bx*h0} = 1.668 \text{ Mpa} \le \tau^{-} = 3\text{Mpa vérifié}$$

•
$$\tau_y = \frac{Vuy*0.5*10^{-3}}{0.9d*by*h0} = 2.51 \text{Mpa} \le \tau^- = 3 \text{Mpa vérifié}$$

Donc la jonction table et nervure est vérifiée

C- Vérification des contraintes du béton et de l'acier :

Avec:

•
$$\sigma_{bc} = \frac{Mser}{l} y \le \sigma_{bc} = 0.6 \text{ fc}_{28} = 18 \text{Mpa}$$

•
$$\sigma_s = \frac{15Mser}{r} (d-y) \le \sigma_s = 215.55Mpa$$

Avec
$$\sigma_s^- = \min\left(\frac{3}{2}fe; 110\sqrt{\eta ftJ}\right)$$

L'ensemble des contraintes sur les nervures est résumé dans le tableau suivant :

Localisation **Observation** Mser I Y бьс σbc 6s(MPA) $6\overline{s}(MPA)$ (KN.m) (Cm^4) (**Cm**) (MPA) (MPA) 978,06 0,0379 0,3110 8,026 18 215,55 Non Vérifiée Sens XX En 263,27 **Appuis** En 1048,03 0,0404 0,3210 8,333 260,01 Non Vérifiée travées Sens YY En 1206,16 0,0446 0,3540 9,570 258,44 Non Vérifiée **Appuis** En Non Vérifiée 1387,23 0,0488 0,3700 10,526 264,14 travées

Tableau VI-7 Vérification des contraintes sur les nervures

On constate que les contraintes sur l'acier ne sont pas vérifiées. Donc on doit augmenter la section d'acier pour aboutir aux armatures finales qui sont résumés sur le tableau suivant

Tableau	VI-8 ferra	illage finale	des nervures

Localisati	ion	M (KN.m	6s(MPA)	б s (MPA)	A choisit
Sens XX	Appui	1337,4	193,35155	215,55	$8 \text{ HA25} + 2 \text{HA32} = 55.35 \text{cm}^2$
	Travée	-1434,41	207,183838		$8 \text{ HA}25 + 2\text{HA}32 = 55.35\text{cm}^2$
Sens YY	Appui	1646,23	196,817449		5 HA 32 + 5 HA 25 = 64.76cm2
	Travée	-1887,23	206,745813		3 HA 25 + 7 HA 32 = 71.02cm2

D- Les armatures transversales :

$$\phi t \le \min(\frac{ht}{35}; \frac{b0}{10}; l_{max}) = 31.4 \text{mm}; 85 \text{mm}; 32 \text{mm}$$
Soit $\phi t = 10 \text{mm}$

E- Espacement des aciers transversaux :

Nous avons disposé 3cadre $\phi_{10} = 6\phi_{10} = 4.71$ cm²

• $S_{t1} \leq \frac{A_t \times fe}{0.4 \times h0}$

- $S_{t1} = 62.8 \text{ cm}$
- $S_{t2} \le \min (0.9d; 40cm)$
- $S_{12} = 40 \text{cm}$
- $\bullet S_{t3} \leq \frac{0.9 fe \times A_t}{b0 \times \gamma s \times (\tau u 0.3 ft_{28})}$
- $S_{t3} = 16 \text{ cm}$

Donc l'espacement entre les armatures transversales sur les nervures est de 15cm

F- Les armatures de peaux :

Les nervures sont des poutres avec une hauteur très importantes qui dépasse 55cm.

Donc le <u>CBA93 (Art A.7.3)</u> de mettre des armatures de peau qui seront calculé comme suite :

- Ap = 0.2% (b0*h)
- $Ap = 0.002 (85*60) \text{ cm} = 10.2 \text{ cm}^2 \text{ soit } 2HA16+HA14 = 5.56\text{cm}^2 \text{ pour chaque coté}$

Schémas de ferraillage nervures

Schémas de ferraillage nervures XX:

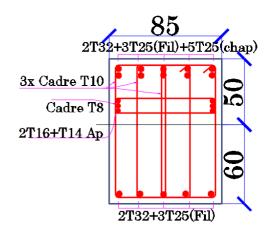


Figure 63 Ferraillage de la nervure XX en travée

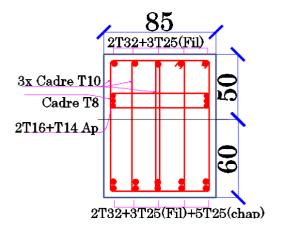


Figure 62 Ferraillage de la nervure XX en appuis

Schémas de ferraillage nervures YY

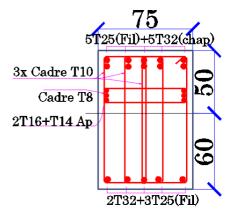


Figure 65 Ferraillage de la nervure YY en travée

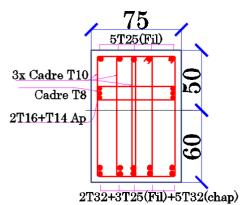


Figure 64 Ferraillage de la nervure YY en appuis

VI-5- Conclusion:

L'étude de l'infrastructure constitue une étape importante dans le calcul d'ouvrage ainsi

Le choix de fondation dépond de plusieurs paramètres liés aux caractéristiques du sol en place ainsi que les charges transmises pour ce dernier.

Nous avons procédé au calcul des semelles isolées mais vu le chevauchement qu'elles engendraient dans le sol nous avons opté pour le calcul d'un radier général ce dernier a été calculé comme un plancher renversé soumis à la réaction du sol, le ferraillage adopté a été vérifié et avéré satisfaisant.

Un voile périphérique est prévu pour supporter l'action de la poussée de terre exercées sur ce mur il est calculé comme un panneau de dalle plein sur quatre appuis soumis à son poids propre et aux charge horizontales réparties du a la poussé des terres.

Conclusion générale

VII- Conclusion générale

Au terme de ce travail, nous pensons avoir réussi à avoir un aperçu général, sur la majorité des parties étudiées. Cette étude nous a permis d'enrichir nos connaissances sur les différentes étapes de calcul d'une structure en béton armé.

D'après l'étude qu'on a faite, il convient de souligner que pour la conception parasismique, il est très important que l'ingénieur civil et l'architecte travaillent en étroite collaboration dès le début du projet, pour éviter toutes les conceptions insuffisantes et pour arriver à une sécurité parasismique réalisée sans surcout important.

L'ensemble des dimensionnements ainsi que les ferraillages ont été vérifiées par rapport aux exigences des règlements algériens notamment RPA 2003 ainsi que le BAEL99. L'étude sismique qui consiste à la vérification des exigences de RPA ont été approuvées.

L'étude de l'infrastructure est conçue en radier général comme une fondation, du fait la faible portance du sol support et l'importance de la structure et cela pour bien reprendre les charges transmises par la structure au sol. Enfin, le travail que nous avons présenté est le couronnement de cinq années d'étude. Il nous permit de faire une rétrospective de nos connaissances accumulées pendant notre cursus universitaire. Nous espérons avoir atteint nos objectifs et ce qui nous permettra à l'avenir d'exploiter ces connaissances dans la vie professionnelle.

Références bibliographiques

Références bibliographiques

Bibliographie:

- RPA, (2003). Règlement Parasismiques Algériennes.
- CBA, (1993). Règles de conception et de calcul des structures en béton armé.
- BAEL, (1991). Béton Armé Aux Etats Limites.
- DTR.B.C.2.2. Document technique règlementaire.
- *Grekow et al...,1964, fuentes,1983*

LOGICIELS

- AUTODESK ROBOT STRUCTURAL ANALYSIS PROFISSIONEL 2017
- ROBOT EXPERT
- AUTO CAD 2016
- EXCEL 2016
- Word 2016

VIII- Annexes

Annexe 1 : tableau de Pigeaud pour le calcul des dalles pleines

7	1/2	0,0	0,1	9,2	0,3	0,4	9,5	0,6	0,7	9,8	0,9	1,0
	00		0.260	0.200	0.476	0.452	A /7C	A /21	0.400	0.000	0.000	
	0,0	0.702	9,260	0,208	0,175	0,152	0,135	0,121	0,109	0,098	0,088	0,080
	0,1	0,302	0,242	0,200	0,171	0,149	0,133	0,120	0,108	0,098	9088	0,079
Tr	0,2	0,260	0,220	0,189	0,164	0,144	0,129	0,117	0,106	0,096	0,086	0,078
de	0,3	0,200	0,180	0,175	0,155	0,138	0,124	0,113	0,103	0,093	0,084	0,077
190	0,4	9182	,	0,162	0,146	0,131	0,118	0,108	0,098	0,089	0,081	0,074
Urs	0,5	0,165	0,166	0,150	0,137	0,123	0,112	0,103	0,093	0,085	0,077	0,070
Valeurs	0,6			0,139	0,126	0,115	0,105	0,097	0,088	0,080	0,073	0,066
7,	0,7	0,151	0,139	0,127	0,116	0,107	0,098	0,090	9,082	0,074	0,067	0,061
0	0,8	0,138		0,116	0,107	0,098	0,090	0,083	0,076	0,068	0,062	0,057
	0,9	0,125	9,115	0,106	0,098	0,090	0,083	0,076	0,068	0,063	0,057	0,053
	1,0	0,113	0,105	0,097	0,089	0,082	0,076	0,068	0,063	0,057	0,053	0,048
	0,0	_	0,283	0,232	0,202	0,180	0,162	0,148	0,133	9121	0,109	0,100
	0,1	0,189	0,176	0,164	0,152	0,141	0,130	0,120	0,110	0,100	0,093	0,085
	0,2	0,132	0,128	0,123	0,118	0,112	0,105	0,099	0,091	0,084	0,078	0,070
Es	0,3	0,103	0,101	0,098	0,095	0,091	0,086	0,081	0,076	0,070	0,064	9059
	0,4	0,084	0,083	0,081	0,078	0,076	0,072	0,068	0,063	0,059	0,054	9,049
200	0,5	0,070	0,069	0,068	0,066	0,063	0,060	0,057	0,054	0,050	0,046	0,042
Valeurs de	0,6	0,060	0,059	0,058	0,057	0,054	0,052	0,049	0,047	0,043	0,039	0,037
0/10	0,7	0,052	0,051	0,050	0,048	0,047	0,046	0,043	0,040	0,037	0,034	0,032
۷	0,8	0,045	0,045	0,044	0,043	0,042	0,039	0,037	0,035	0,033	0,029	0,027
	0,9	0,039	0,039	0,038	0,037	0,036	0,034	0,033	0,030	0,028	0,026	0,023
	1,0	0,035	0,035	0,034	0,033	0,032	0,030	0,028	0,027	0,024	0,023	0,021

Annexe 2 : valeurs de ux et uy en fonction des dimensions de la dalle

$a = L_x$	ELU	υ=0	ELS	υ=0,2	$\rho = \frac{L_x}{L_x}$	ELU	υ=0	ELS	υ=0,2
$\rho = \frac{\lambda}{L_y}$	$\mu_{\scriptscriptstyle X}$	μ_y	$\mu_{\scriptscriptstyle X}$	μ_y	L_y	μ_{x}	μ_y	μ_{x}	μ_y
0,40	0,1101	0,2500	0,1121	0,2854	0,71	0,0671	0,4471	0,0731	0,594
0,41	0,1088	0,2500	0,1110	0,2924	0,72	0,0658	0,4624	0,0719	0,6063
0,42	0,1075	0,2500	0,1098	0,3000	0,73	0,0646	0,4780	0,0708	0,6188
0,43	0,1062	0,2500	0,1087	0,3077	0,74	0,0633	0,4938	0,0696	0,6315
0,44	0,1049	0,2500	0,1075	0,3155	0,75	0,0621	0,5105	0,0684	0,6447
0,45	0,1036	0,2500	0,1063	0,3234	0,76	0,0608	0,5274	0,0672	0,658
0,46	0,1022	0,2500	0,1051	0,3319	0,77	0,0596	0,5440	0,0661	0,671
0,47	0,1008	0,2500	0,1038	0,3402	0,78	0,0584	0,5608	0,0650	0,6841
0,48	0,0994	0,2500	0,1026	0,3491	0,79	0,0573	0,5786	0,0639	0,6978
0,49	0,0980	0,2500	0,1013	0,3580	0,80	0,0561	0,5959	0,0628	0,7111
0,50	0,0966	0,2500	0,1000	0,3671	0,81	0,0550	0,6135	0,0617	0,7246
0,51	0,0951	0,2500	0,0987	0,3758	0,82	0,0539	0,6313	0,0607	0,7381
0,52	0,0937	0,2500	0,0974	0,3853	0,83	0,0528	0,6494	0,0596	0,7518
0,53	0,0922	0,2500	0,0961	0,3949	0,84	0,0517	0,6678	0,0586	0,7655
0,54	0,0908	0,2500	0,0948	0,4050	0,85	0,0506	0,6864	0,0576	0,7794
0,55	0,0894	0,2500	0,0936	0,4150	0,86	0,0496	0,7052	0,0566	0,7932
0,56	0,0880	0,2500	0,0923	0,4254	0,87	0,0486	0,7244	0,0556	0,8074
0,57	0,0865	0,2582	0,0910	0,4357	0,88	0,0476	0,7438	0,0546	0,8216
0,58	0,0851	0,2703	0,0897	0,4462	0,89	0,0466	0,7635	0,0537	0,5358
0,59	0,0836	0,2822	0,0884	0,4565	0,90	0,0456	0,7834	0,0528	0,8502
0,60	0,0822	0,2948	0,0870	0,4672	0,91	0,0447	0,8036	0,0518	0,8646
0,61	0,0808	0,3075	0,0857	0,4781	0,92	0,0437	0,8251	0,0509	0,8799
0,62	0,0794	0,3205	0,0844	0,4892	0,93	0,0428	0,8450	0,0500	0,8939
0,63	0,0779	0,3338	0,0831	0,5004	0,94	0,0419	0,8661	0,0491	0,9087
0,64	0,0765	0,3472	0,0819	0,5117	0,95	0,0410	0,8875	0,0483	0,9236
0,65	0,0751	0,3613	0,0805	0,5235	0,96	0,0401	0,9092	0,0474	0,9385
0,66	0,0737	0,3753	0,0792	0,5351	0,97	0,0392	0,9322	0,0465	0,9543
0,67	0,0723	0,3895	0,0780	0,5469	0,98	0,0384	0,9545	0,0457	0,9694
0,68	0,0710	0,4034	0,0767	0,5584	0,99	0,0376	0,9771	0,0449	0,9847
0,69	0,0697	0,4181	0,0755	0,5704	1	0,0368	1	0,0441	1
0,70	0,0684	0,4320	0,0743	0,5817					

 $\underline{\textbf{Annexe 3}: \textbf{Tableau des sections réelles d'armatures}} \ [\textbf{Sections en (cm²), \emptyset(mm)}]$

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0,2	0,28	0,5	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,70
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,63	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,70	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,53
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,10
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,66
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,23
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,8
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,55	163,36
14	2,75	3,96	7,04	11,00	15,83	21,55	28,15	43,98	68,72	112,59	175,93
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,64	188,50
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	128,68	201,06
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,72	213,63
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,76	226,20
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	93,27	152,81	238,76
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,85	251,33

Annexe 4 : rapport géotechnique du sol

ETUDE DE	GEOTECHNIQUE - FINALE
	Description
Objet:	ETUDE GEOTECHNIQUE "Mission G2"
Projet:	Promotion immobilière 153 logements -(4 Tours en R+13 & R+15)
Localisation:	GUENDOUZA-AKBOU
Wilaya:	BEJAIA
Maitre d'ouvrage :	HAMIMI
Maitre d'oeuvre/BET :	LTEC
Entreprise de réalisation :	/
Partenaire contractant :	LTEC
	Modifications
A0 22/08/2019 Etud	e Finale R.MED BAKOUCHE 57
	cription Etabl. Vérif. Approb. Page
. Référence :	
0 6 M B R E	T D T C H R A P 0 2 1 A 0
Code Emeteur P	hase Déscipline Type de doc N°déffusion Ind Rev

Etude de géotechnique-Finale

<u>Projet: Promotion immobilière 153 logements –</u> (4 Tours en R+13 & R+15)

Localisation: GUENDOUZA-AKBOU-W-BEJAIA

<u>Partenaire</u>
<u>contractant</u>
LTEC

Application:

Dans les conditions statiques, les tassements instantané et de fluage ont été estimés dans la présente étude en considérant le cas le plus défavorable le cas d'un radier général de 15m×25m de dimension, uniformément chargé.

La charge à prendre est égale à la contrainte de service donnée par le client est à **2.75bars** et ancré au niveau de la éboulis très hétérogène . Soit à une profondeur minimale de **1.20m après décapage de 4m**, les tassements obtenus sont résumés ci-dessous ;

Charge appliquée	Tassement instantané S	Tassement de fluage Sf (mm)		
(Kpa)	(mm)			
275	17.65	T=10 ans	T=50 ans	T=100 ans
273		19.07	20.97	21.79

Le tassement total de fluage à fait augmenter le tassement instantané de 8%. Ces tassements sont admissibles (pour charge de 275 KPa) selon Terzaghi - Peck et Skempton - MacDonald. Selon Eurocode 7-1 (1994), le tassement maximal admissible est de l'ordre de 50mm.

Les tassements obtenus sont admissible pour la contrainte de <u>≤2.75 bars</u> à la profondeur d'ancrage de <u>1.20m après décapage de 4m</u>.

Suite aux résultats obtenus, et en considérant;

- ✓ le caractère sismique de la région;
- ✓ et les paramètres intrinsèque du sol support ;
- ✓ le tassement des fondations

nous retenons pour la suite ces critères de dimensionnement :

- ✓ les fondations devraient être de type *superficielle radier général*.
- ✓ la formation **d'éboulis de pente** , sera la formation d'assise des fondations.
- ✓ Les semelles seront ancrées à une profondeur à partir de ≥ 1.20m après décapage de 4m de terrain
- ✓ La contrainte admissible <u>à retenir</u> à ce niveau d'ancrage est de l'ordre de **2.87bars <u>pour un</u>** <u>tassement admissible</u>
- /1/ Conclusions et recommandations

Etude de géotechnique-Finale

<u>Projet: Promotion immobilière 153 logements –</u> (4 Tours en R+13 & R+15)

Localisation: GUENDOUZA-AKBOU-W-BEJAIA

Partenaire
<u>contractant</u>
<u>LTEC</u>

Suite aux données géologiques et aux et des résultats géotechniques obtenus, nous concluons que le terrain pour le futur projet de la promotion immobilière sise à AKBOU dans la wilaya de Béjaia, est de point de vue:

- 1. <u>LITHOLOGIE</u>: La succession lithologique du terrain est comme suit;
- Une couche superficielle de terre arable de 0.20 à 1.50m d'épaisseur
- Une couche de grande puissance, très hétérogène, constituée d'éboulis de pente, constitués d'intercalation de sable fin , lâche à des niveaux de blocs grésifiés, massif, fracturé à trace d'oxydationtaille de taille variable, la dispposition des différents facies est aléatoire sans aucune stratification, de couleur brun grisâtre; plus de 8m d'épaisseur
- En outre selon le profil géophysique il ressort que le terrain de recouvrement trouvant dans un état décomprimé est d'une épaisseur variable de 0.5 à 2.30m.
- 2. <u>SISMICITÉ</u>: En vu du risque sismique qui menace la zone d'étude et pour garantir la pérennité de l'ouvrage;
 - Il est à souligner que la région de « AKBOU» se situe en zone sismique « IIa » (sismicité moyenne), de ce fait il est impératif de tenir compte des paramètres parasismiques établis par le CGS dans l' ADDENDA 2003 au RPA 99.
 - selon le RPA, le site est de classe S2 (site ferme), avec Vs moyen varie de 526m/s.

3. PORTANCE:

De ce qui précède nous retenons ces critères de dimensionnement :

- les fondations devraient être de type radier général.
- les formations d'assise des fondations sont des <u>éboulis de pente (Intercalation de blocs grèseux</u>
 à des niveaux de sable brunâtre),
- Les semelles seront ancrées à 1,20m de profondeur après décapage de 4m de terrain et la contrainte admissible à retenir à ce niveau est de 2,87 bars.

Annexe 6 plans