

République Algérienne Démocratique et Populaire

Ministère de l'Enseignement supérieur et de la Recherche Scientifique

Université ABDERRAHMANE MIRA - BEJAIA -

Faculté de Technologie Département de Génie Civil

Mémoire de fin d'étude

En vue de l'obtention d'un diplôme de Master en Génie Civil

Option : Structures

Thème

Etude d'une unité de fabrication motocycle en R+2 en toiture à versant multiple en construction métallique

Réaliser par :

AIT AZOUZ Loucif DJOUAD Walid Promoteur:

Mr. BANOUNE.B

Devant le jury : Mr. GUECHARI Mr. LARABAT ZIANE

PROMOTION : JUIN 2024

REMERCIEMENT

Nous remercions Dieu qui nous a donné la force et la patience nécessaires pour mener à bien ce travail.

Nous exprimons nos sincères remerciements :

A nos familles : qui nous ont toujours encouragés et soutenus durant toutes nos études.

À notre encadreur, Mr. BANOUNE, pour sa disponibilité et sa précieuse collaboration.

Aux membres du jury pour avoir accepté d'évaluer notre travail.

A tous les enseignants du département de Génie Civil pour tout le savoir qu'ils nous ont transmis durant notre formation.

Sans oublier toutes les personnes qui ont contribué de près ou de loin à la réalisation de ce travail et celles qui nous ont honorés en évaluant ce mémoire.

Loucif & Walid

TABLE DES MATIÈRES

J1 INT	RODUCTION GENERALE1
1. CHA	PITRE I
1.1	Introduction :
1.2	Présentation du projet:
1.3	Caractéristique géométrique de l'ouvrage :
1.4	Données géotechnique du site
1.5	Règlement technique4
1.6	Ossature et stabilité de la structure4
1.6.1	Plancher4
1.6.2	Toiture4
1.6.3	Les Façades5
1.6.4	Escaliers
1.7	Matériaux utilisés :
1.7.1	Acier5
1.7	7.1.1 Résistance
1.7	7.1.2 Ductilité
1.7	7.1.3 Caractéristique de l'acier
1.7	V.1.4 Assemblages
1.7.2	Béton6
1.7	V.2.1 Propriétés du béton
1.8	Les actions prises en considérations7
1.9	Les états limites
1.9.1	Etats limite ultime (ELU)7
1.9.2	Etats limite de service (ELS)7
2 Chaj	pitre II8
2.1	Introduction
2.2	Action de la neige
2.2.1	Charge de neige sur le sol8
2.2.2	Coefficient de forme de la toiture8
2.2.3	Calcul les charges de neige sur la toiture9
2.3	Etude au vent
2.3.1	Coefficients de calcul

2.3.1	1 Effet de la région :	9
2.3.1	2 Effet de site :	9
2.3.1	3 Coefficient de topographie	10
2.3.1	4 Coefficient d'exposition	10
2.3.2	Pression dynamique de pointe	10
2.3.3	Détermination des coefficients de pression extérieurs Cpe :	11
2.3.3	1 Vent perpendiculaire au long pan V1 :	11
2.3.3	2 Vent sur le pignon V2 :	14
2.3.4	Coefficient de pression intérieur	16
2.3.4	1 Vent perpendiculaire au long pan V1 :	16
2.3.4	2 Vent perpendiculaire au pignon :	17
2.3.5	Calcul les pressions aérodynamiques agissant sur la structure :	17
2.3.5	1 Vent perpendiculaire au long pan V1 :	17
2.3.5	2 Vent perpendiculaire au pignon V2	18
2.3.6	Effet de frottement :	19
2.3.6	1 Vent perpendiculaire au long-pan :	19
2.3.6	2 Vent perpendiculaire au pignon :	20
2.4 E	ffet de la variation de la température :	20
2.4 E 3 Chapit	ffet de la variation de la température : re III	20
2.4 E 3 Chapit 3.1 E	ffet de la variation de la température : re III ntroduction :	20 21 21
2.4 E 3 Chapit 3.1 I 3.2 E	ffet de la variation de la température : re III	20 21 21 21
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1	ffet de la variation de la température : re III	20 21 21 21 21
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.1	ffet de la variation de la température : re III	20 21 21 21 21 21
2.4 E 3 Chapit 3.1 I 3.2 E 3.2.1 3.2.1 3.2.1	ffet de la variation de la température :	20 21 21 21 21 21 21 21 21
2.4 E 3 Chapit 3.1 I 3.2 E 3.2.1 3.2.1 3.2.1 3.2.1	ffet de la variation de la température :	20 21 21 21 21 21 21 21 21 21 21 21
2.4 E 3 Chapit 3.1 I 3.2 E 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1	ffet de la variation de la température :	20 21 21 21 21 21 21 21 21 21 21 21 21 21
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1	ffet de la variation de la température :	20 21 21 21 21 21 21 21 21 23 23
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1	ffet de la variation de la température :	20 21 21 21 21 21 21 21 22 23 23 23 24
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.2 3.2.3 3.2.3	ffet de la variation de la température :	20 21 22 22 22 22 23 23 23 23 24 24 23
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4	ffet de la variation de la température :	20 21 21 21 21 21 21 22 23 23 23 23 23 25
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.2 3.2.3 3.2.3 3.2.4 3.2.5	ffet de la variation de la température :	20 21 22 22 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.5 3.2.5	ffet de la variation de la température :	20 21 21 21 21 21 21 21 22 23 23 23 23 24 25 25 26 26
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.1 3.2.2 3.2.3 3.2.4 3.2.4 3.2.5 3.2.5 3.2.5	ffet de la variation de la température :	20 21 21 21 21 21 21 22 23 23 23 23 23 24 25 26 26 26
2.4 E 3 Chapit 3.1 E 3.2 E 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.5 3.2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	ffet de la variation de la température : re III ntroduction : tude des pannes : Evaluation des charges et surcharges : 1 Les charges permanentes G : 2 Surcharges d'entretien : 3 Surcharge climatique due au vent : 4 Surcharges de la neige : Décomposition des charges : Les combinaisons d'actions : Pré dimensionnement des pannes : 1 1 Condition de flèche à l'ELS : 1 Vérification à l'ELS (flèche) : 2 Vérification à l'ELU: 3 Vérification au déversement :	20 21 21 21 21 21 21 22 23 23 23 23 23 23 24 25 25 26 26 26 26

3.2.6.	1 Les efforts dans les liernes :	29
3.2.6.	2 Calcul la réaction R au niveau de la lierne :	30
3.2.6.	3 Dimensionnent des liernes :	30
3.2.7	Calcul de l'échantignole :	30
3.2.7.	1 Introduction :	30
3.2.7.	2 Dimensionnement de l'échantignole :	31
3.3 C	alcul les lisses des bardages :	32
3.3.1	Introduction :	32
3.3.2	Coté Pignon :	
3.3.2.	1 Les données :	
3.3.2.	2 Evaluation des charges :	
3.3.2.	3 Pré dimensionnement des pannes :	
3.3.2.	4 Les charges permanentes G :	34
3.3.2.	5 Les combinaisons d'actions :	34
3.3.2.	6 Vérification de la flèche :	34
3.3.2.	7 Vérification à l'ELU:	34
3.3.2.	8 Vérification au déversement :	35
3.3.2.	9 Calcul des liernes dans les lisses de bardages coté pignon :	
3.3.2.	10 Dimensionnent des liernes :	
3.3.3	Coté long pan :	
3.3.3.	1 Les données :	
3.3.3.	2 Evaluation des charges :	
3.3.3.	3 Pré dimensionnement des lisses :	
3.3.3.	4 Les charges permanentes G :	
3.3.3.	5 Les combinaisons d'actions :	
3.3.3.	6 Vérification de la flèche a ELS :	
3.3.3.	7 Vérification à l'ELU:	
3.3.3.	8 Vérification au déversement :	40
3.3.3.	9 Calcul des liernes dans les lisses de bardages coté long pan :	41
3.3.3.	10 Dimensionnent des liernes :	42
3.4 E	tude des escaliers :	42
3.4.1	Définition :	43
3.4.2	Pré dimensionnement de l'escalier :	43
3.4.3	Evaluation de charge :	44
3.4.4	Pré dimensionnement de la cornière :	44

3.4.5	V	Vérification de la résistance :	45
3.4	.5.1	Moment fléchissant :	45
3.4	.5.2	Effort tranchant :	45
3.4.6	E	Etude de limon :	46
3.4	.6.1	Evaluation de charge :	46
3.4	.6.2	Pré dimensionnement de limon :	46
3.4	.6.3	Vérification de la résistance :	47
3.4.7	E	tude de la poutre palière :	48
3.4	.7.1	Pré dimensionnement de la poutre palière :	48
3.4	.7.2	Vérification de la résistance a l'ELU :	49
3.5	Pré	dimensionnement des poteaux :	50
3.5.1	Р	Poteaux principales	50
3.5	5.1.1	Vérification de la condition de résistance :	51
3.5	5.1.2	Vérification du flambement :	51
3.5.2	Р	oteaux intermédiaires :	53
3.5	5.2.1	Vérification du flambement :	53
3.6	Pré	dimensionnement des traverses :	54
3.6.1	E	Evaluation des charges :	54
3.6.2	L	e Pré dimensionnement :	54
3.6.3	L	es combinaisons d'action :	55
3.6.4	V	Vérification de l'effort tranchant :	55
3.6.5	V	Vérification de moment fléchissant :	55
3.7	Pré	dimensionnement de contreventement :	55
3.7.1	Iı	ntroduction :	55
3.7.2	R	côles des contreventements :	55
3.7.3	C	Calcul de la poutre au vent :	56
3.7	7.3.1	Dimensionnement de la diagonale :	57
3.7	7.3.2	Calcul de la section brute :	58
3.7	7.3.3	Vérification de la section nette :	58
3.7.4	V	Vérification des montants de la poutre au vent :	59
3.7	4.1	Détermination des efforts dans les montantes :	59
3.7	.4.2	Vérification de la résistance des montants :	59
3.7.5	C	Calcul de la poutre sablière :	61
3.7	7.5.1	Pré dimensionnement :	61
3.7	.5.2	Vérification au flambement :	61

3.7.5.3	Vérification à la résistance :	62
3.7.6 E	tude de contreventement vertical :	63
3.7.6.1	Détermination des efforts dans les barres :	64
3.7.6.2	Section de la diagonale :	64
3.8 Cond	clusion :	65
4 Chapitre	IV	
4.1 Intro	oduction	66
4.2 Etud	e du plancher collaborant :	66
4.2.1 C	aractéristique des éléments constructifs	66
4.2.2 V	érification des solives en phase de construction	67
4.2.2.1	Les combinaisons de charge :	67
4.2.2.2	Condition de la flèche :	67
4.2.2.3	Vérification à la résistance :	68
4.2.3 V	érification des solives en phase finale	68
4.2.3.1	Les combinaisons de charge :	69
4.2.3.2	Vérification de la résistance :	69
4.2.3.3	Calcul les contraintes de flexion :	72
4.2.3.4	Calcul des contraintes additionnelles de retrait :	72
4.2.3.5	Les contraintes finales :	73
4.2.4 C	alcul des goujons connecteurs :	74
4.2.4.1	Effort de cisaillement	75
4.2.4.2	Nombre de goujons :	75
4.2.4.3	Espacement :	75
4.2.5 V	érification des soudures :	75
4.3 Etud	e de la poutre principale :	76
4.3.1 C	aractéristique du plancher :	76
4.3.2 Pl	hase de construction :	77
4.3.2.1	Le pré dimensionnement :	77
4.3.2.2	Vérification au moment fléchissant :	77
4.3.2.3	Vérification au cisaillement :	78
4.3.3 P	hase finale :	79
4.3.3.1	Vérification du moment fléchissant	79
4.3.3.2	Vérification de l'effort tranchant :	81
4.3.3.3	Vérification de la flèche :	82
4.3.3.4	Calcul les contraintes de flexion :	83

	4.3.3.5	Calcul des contraintes additionnelles de retrait :	83
	4.3.3.6	Les contraintes finales :	84
	4.3.3.7	Vérification des poutres principales au Niveau de la mezzanine :	85
5	Chapitre	V	
	5.1 Intro	duction :	
	5.2 Mod	élisation :	
	5.3 Choi	ix de la méthode de calcul :	86
	5.3.1 M	léthode statique équivalente :	86
	5.3.1.1	Calcul de la force sismique totale :	86
	5.3.1.2	Estimation de la période fondamentale de la structure :	87
	5.3.2 M	léthode dynamique :	
	5.3.2.1	Principe de la méthode modale spectrale :	
	5.3.2.2	Spectre de réponse de calcul :	
	5.3.2.3	Nombre de mode de vibration à prendre :	
	5.3.3 R	ésultats de calcul :	
	5.3.3.1	Pourcentage de participation de masse :	90
	5.3.3.2	Les réponses modales de la structure :	91
	5.3.3.3	Les combinaisons de calcul :	91
	5.3.3.4	Vérification de la résultante de la force sismique à la base :	91
	5.3.3.5	Vérification vis-à-vis des déplacements de niveaux :	92
	5.3.3.6	Effet de deuxième ordre :	92
6	Chapitre	VI	
	6.1 Intro	duction :	94
	6.2 Véri	fication des poteaux :	94
	6.2.1 C	lasse de la section :	94
	6.2.2 V	érification à la résistance :	95
	6.2.2.1	Vérification de l'Effort tranchant :	95
	6.2.2.2	Vérification du moment fléchissant :	95
	6.2.3 V	érification à l'instabilité :	96
	6.2.3.1	Vérification au déversement :	96
	6.2.3.2	Vérification au flambement sans risque de déversement :	96
	6.2.4 C	onclusion :	98
	6.3 Véri	fication des traverses :	98
	6.3.1 C	lasse de la section :	99
	6.3.2 V	érification à la résistance :	99

6.3	3.2.1 Vérification de l'Effort tranchant :
6.3	3.2.2 Vérification du moment fléchissant :
6.3.3	Vérification à l'instabilité :100
6.3	3.3.1 Vérification au déversement :
6.3	3.3.2Vérification du flambement :
6.3.4	Conclusion :
6.4	Vérification des diagonales de palée de stabilité :102
6.4.1	Vérification à la traction :102
6.4.2	Conclusion :
6.5	Vérification des diagonales de la poutre au vent :
6.5.1	Vérification à la traction :103
6.5.2	Conclusion :
7 Chaj	pitre VII
7.1	Assemblage Poteau-Traverse :
7.1.1	Détermination des efforts dans les boulons :105
7.1.2	Distribution de l'effort tranchant :106
7.1.3	Pré dimensionnement des boulons :106
7.1.4	Vérification de la disposition géométrique :106
7.1.5	Vérification de moment résistant effectif de l'assemblage :106
7.1.6	Vérification l'interaction cisaillement et traction de chaque boulon :107
7.1.7	Vérification au poinçonnement :107
7.2	Assemblage Platine-Traverse :
7.3	Assemblage Traverse-Traverse :
7.3.1	Efforts de calcul :
7.3.2	Entraxe des boulons et des pinces :109
7.3.3	Détermination des efforts dans les boulons :109
7.3.4	Vérification des boulons :
7.3.5	Vérification au moment résistant :110
7.3.6	Vérification la Résistance d'un boulon à l'interaction cisaillement-traction : 110
7.3.7	Vérification au poinçonnement :
7.3.8	Vérification à la pression diamétrale :111
7.4	Assemblage poteau-poutre principale:
7.4.1	Les efforts sollicitant :
7.4.2	Dimensionnement de la soudure (platine-poutre):112
7.4.3	Dimensionnement des boulons :

	7.4.4	V	érification à la traction :	112
	7.4.5	R	ésistance au glissement :	113
	7.4.6	D	visposition des boulons :	113
	7.4.7	V	érification de l'interaction (cisaillement et traction) :	114
	7.4.8	V	érification de poinçonnement :	114
7	7.5	Asse	mblage poutre principale-solive :	114
	7.5.1	L	es efforts sollicitant :	115
	7.5.2	D	imensionnement des boulons :	115
	7.5	.2.1	Choix des boulons :	115
	7.5.3	D	visposition des boulons :	116
	7.5	.3.1	Vérification vis-à-vis d'assemblage long :	116
	7.5.4	L	a pression diamétrale :	116
7	7.6	Asse	mblage des contreventements :	116
	7.6.1	А	ssemblage Gousset-Nœuds de portique :	116
	7.6.2	А	ssemblage Gousset-Diagonale :	118
	7.6	.2.1	Dimensionnement des boulons :	118
	7.6	.2.2	Disposition géométrique :	118
	7.6	.2.3	Vérification à la pression diamétrale :	118
	7.6	.2.4	Vérification vis-à-vis d'assemblage long :	119
7	7.7	Calc	ul des pieds de poteau :	119
	7.7.1	Р	ieds de poteau encastré :	119
	7.7	.1.1	Dimensionne des tiges d'ancrages :	119
	7.7	.1.2	Vérification des tiges d'ancrages :	120
	7.7	.1.3	Vérification des contraintes dans le béton et de l'acier :	121
	7.7	.1.4	Calcul l'épaisseur de la platine :	122
	7.7	.1.5	Conclusion :	123
	7.7.2	C	alcul pied de poteaux articulé :	124
	7.7	.2.1	Vérification de la contrainte de compression :	124
	7.7	.2.2	Calcul l'épaisseur de la platine et diamètre de la tige d'ancrage :	124
8	Chap	pitre	VIII	126
8	8.1	Intro	duction :	126
8	8.2	Calc	ul des fondations sous les poteaux :	126
	8.2.1	C	alcul des sollicitations :	126
	8.2.2	Р	ré dimensionnement de la semelle du poteau encastré :	126
9	Chap	oitre	IX	138

	Introduction :1	38
9.2	Détermination des moments renversants :1	38
9.2.1	Cas du vent :1	38
9.2	1.1.1 Vent perpendiculaire au long pan :	38
9.2	.1.2 Vent perpendiculaire au pignon :	39
9.2.2	Calcul du moment reversant sous l'effet sismique :1	40
9.2	2.2.1 Réaction à la base :1	41
9.3	Calcul des moments stabilisants :1	41
9.4	Conclusion :1	42
10 Char	pitre X :	43
		ъJ
10.1	Introduction :1	43
10.1 10.2	Introduction :	43 43
10.1 10.2 10.3	Introduction :	43 43 43
10.1 10.2 10.3 10.3.1	Introduction :	43 43 43 43 44
10.1 10.2 10.3 10.3.1 10.3.2	Introduction :	43 43 43 43 44 45
10.1 10.2 10.3 10.3.1 10.3.2 10.3.3	Introduction : 1 Définition : 1 Facteur influant le phénomène de déversement : 1 Influence de la portée sur le moment critique pour les différentes sections : 1 Influence de type d'appuis sur le moment critique : 1 Influence de la position de la charge sur le moment critique : 1	 43 43 43 43 44 45 45
10.1 10.2 10.3 10.3.1 10.3.2 10.3.3 10.4	Introduction : .1 Définition : .1 Facteur influant le phénomène de déversement : .1 Influence de la portée sur le moment critique pour les différentes sections : .1 Influence de type d'appuis sur le moment critique : .1 Influence de la position de la charge sur le moment critique : .1 Influence de la position de la charge sur le moment critique : .1 Influence de la position de la charge sur le moment critique : .1	43 43 43 43 44 45 45 46

LISTE DES FIGURES

Figure 1-1 : Vue sur maps de projet étudié	2
Figure 1-2 : Vue en 3D	3
Figure 1-3 : Façade principale	3
Figure 1-4 : Plancher mixte à dalle collaborant	4
Figure 1-5 : Diagramme contrainte-déformation de l'acier	6
Figure 2-1 : Coefficient de forme des toitures a versants multiples	9
Figure 2-2 : Hauteurs de référence Ze pour h < b	.10
Figure 2-3 : Répartition de la pression dynamique de pointe	.11
Figure 2-4 : Vue en plan et en élévation des zones de pressions sens V1	.11
Figure 2-5 : Cpe correspond à chaque zone de la paroi Sens V1	.12
Figure 2-6 : Légende pour une toiture à versant multiple Sens V1	.12
Figure 2-7 : Répartition des zones de pression sur la toiture Sens V1	.13
Figure 2-8 : Vue en élévation des zones de pression da la paroi Sens V2	.14
Figure 2-9 : Cpe correspond à chaque zone de la paroi Sens V2	.14
Figure 2-10 : Répartition des zones de pression sur les toitures Sens V2	.15
Figure 2-11 : Les valeurs de Cpi des bâtiments sans face dominante	.16
Figure 2-12 : Schéma des pressions sur la paroi et toiture pour les deux façades sous V1	.18
Figure 2-13 : Schéma des pressions sur la paroi et toiture pour les deux façades sous V2	.19
Figure 3-1 : Disposition des pannes	.21
Figure 3-2 : Schéma statique des pannes sous charges permanentes	.22
Figure 3-3 : Schéma statique de la poutre équivalente	.22
Figure 3-4 : Schéma statique de la panne sous la surcharge du vent	.23
Figure 3-5 : Schéma statique de la panne sous la surcharge de neige	.23
Figure 3-6 : Schéma statique sur les deux plan YY et ZZ	.26
Figure 3-7 : La disposition des liernes sur les pannes	.29
Figure 3-8 : Schéma statique de l'échantignole	.31
Figure 3-9 : La coupe de l'échantignole	.32
Figure 3-10 : Disposition de la lisse sur le poteau	.33
Figure 3-11 : Schéma statique de la lisse de bardage du pignon	.33
Figure 3-12 : la disposition des liernes sur la lisse du pignon	.37
Figure 3-13 : Schéma statique de la lisse de bardage du long pan	.38
Figure 3-14 : Disposition des liernes sur les lisses du long pan	.41
Figure 3-15 : Vue en plan de l'escalier	.43
Figure 3-16 : Schéma statique de l'escalier	.44
Figure 3-17 : Disposition des cornières	.44
Figure 3-18 : Schéma statique du limon	.46
Figure 3-19 : Schéma statique de la charge équivalente revenant au limon	.47
Figure 3-20 : Schéma statique de la poutre palière	.48
Figure 3-21 : Surface afférente du poteau le plus sollicité	.50
Figure 3-22 : La vue en plan du poteau le plus sollicité	.51
Figure 3-23 : Surface afférente du poteau intermédiaire le plus sollicité	.53
Figure 3-24 : Vue en plan de la poutre au vent	.56
Figure 3-25 : Schéma statique de la poutre au vent	.56

Figure 3-26 : Schéma statique s'une partie de la poutre au vent	58
Figure 3-27 : Schéma des efforts sur les montants	59
Figure 3-28 : Schéma statique de la poutre sablière	61
Figure 3-29 : Schéma statique de la palée de stabilité	64
Figure 4-1 : Les composants du plancher mixte	66
Figure 4-2 : Schéma de disposition des solives	67
Figure 4-3 : Largueur de la dalle effective	69
Figure 4-4 : Position de l'axe neutre (Δ)	71
Figure 4-5 : Diagramme des contraintes de flexion simple	72
Figure 4-6 : Diagramme des contraintes finales	74
Figure 4-7 : caractéristique de connecteur	74
Figure 4-8 : Schéma statique de la poutre maitresse	76
Figure 4-9 : La valeur du moment fléchissant après modélisation avec ROBOT	78
Figure 4-10 : La valeur de l'effort tranchant après modélisation avec ROBOT	78
Figure 4-11 : La valeur du moment fléchissant après modélisation avec ROBOT	79
Figure 4-12 : Poutre principale avec jarret donné par ROBOT	80
Figure 4-13 : Les valeurs du moment maximal donné par ROBOT	81
Figure 4-14 : Position de l'axe neutre (Δ)	82
Figure 4-15 : Diagramme des contraintes de flexion simple	83
Figure 4-16 : Diagramme des contraintes finales	85
Figure 5-1 : Schéma statique de réponses suivant X et Y	90
Figure 5-2 : Pourcentage de participation massique	90
Figure 5-3 : Les réponses modales de la structure pour les trois premiers modes	91
Figure 6-1 : Le poteau le plus sollicité	94
Figure 6-2 : Diagramme du poteau le plus sollicité	94
Figure 6-3 : Poteau HEA450 vérifié	98
Figure 6-4 : La traverse la plus sollicité	98
Figure 6-5 : Diagramme de la traverse la plus sollicité	99
Figure 6-6 : La diagonale de la palée de stabilité la plus sollicité	102
Figure 6-7 : La diagonale de la poutre au vent la plus sollicité	103
Figure 7-1 : Représentation de l'assemblage poteau-traverse	105
Figure 7-2 : Représentation de l'assemblage Traverse-Traverse	108
Figure 7-3 : Assemblage Poteau-Poutre en 3D	111
Figure 7-4 : Disposition d'assemblage poteau poutre	113
Figure 7-5 : Assemblage poteau poutre	115
Figure 7-6 : Disposition d'assemblage poutre solive	116
Figure 7-7 : Représentation de l'assemblage Gousset-Nœuds de portique	117
Figure 7-8 : assemblage des diagonales sur gousset.	118
Figure 7-9 : Diagramme du moment et de l'effort tranchant a la base	119
Figure 7-10 : La disposition constructive des tiges et les lignes de pliages	120
Figure 7-11 : Vérification de la section 1-1	122
Figure 7-12 : Vérification de la section 2-2	123
Figure /-13 : Le pied de poteau encastré en 3D	123
Figure /-14 : Assemblage pied de poteau articulé	124
Figure /-15 : Le pied de poteau articulé en 3D	125
Figure 8-1 : Dimension de la semelle sous le poteau	127
Figure 8-2 : Schéma de ferraillage de la semelle au-dessous de poteau	133

Figure 8-3 : Schéma de ferraillage des longrines	135
Figure 8-4 : Section du fut à ferrailler	136
Figure 8-5 : Schéma de ferraillage des futs	137
Figure 9-1 : Résultante totale des pressions agissant sur la structure dans le sens V1	139
Figure 9-2 : Résultante totale des pressions agissant sur la structure dans le sens V2	140
Figure 10-1 : Evaluation du moment critique en fonction de la portée	144
Figure 10-2 : Evaluation du moment critique en fonction de Kz	145
Figure 10-3 : La valeur de Zg par rapport à la direction de la charge	145
Figure 10-4 : Evaluation du Moment critique en fonction de Zg	146

LISTE DES TABLEAUX

Tableau 1-1 : Les valeurs nominales de fy et de fu	5
Tableau 2-1 : Valeurs de coefficient d'exposition	10
Tableau 2-2 : Valeurs de la pression dynamique	10
Tableau 2-3 : Valeurs des Cpe sur la paroi verticale sens V1	12
Tableau 2-4 : Valeurs des Cpe sur la toiture Sens V1	13
Tableau 2-5 : Valeurs des Cpe sur la paroi verticale Sens V2	14
Tableau 2-6 : Valeurs des Cpe sur la toiture sens V2	15
Tableau 2-7 : Les valeurs de pression sur la paroi pour les deux façades sous V1	17
Tableau 2-8 : Les valeurs de pression sur la toiture pour les deux façades sous V1	18
Tableau 2-9 : Les valeurs de pression sur la paroi pour les deux façades sous V2	18
Tableau 2-10 : Les valeurs de pression sur la toiture pour les deux façades sous V2	19
Tableau 2-11 : Différentes variations de température en Algérie	20
Tableau 3-1 : Les différentes combinaisons d'action	24
Tableau 3-2 : Résultats des combinaison a l'ELU	24
Tableau 3-3 : Résultats des combinaisons a l'ELS	24
Tableau 3-4 : Résultats des combinaisons à l'ELU	25
Tableau 3-5 : Résultats des combinaisons à l'ELS	26
Tableau 3-6 : Evaluation des charges sur le poteau	51
Tableau 3-7 : Les valeurs des forces horizontales	57
Tableau 3-8 : Sollicitation et coefficient de calcul pour un HEA180	61
Tableau 4-1 : Caractéristique d'IPE120	68
Tableau 4-2 : Caractéristique du connecteur M18 de classe 4.6	74
Tableau 4-3 : Résumé des résultats pour la poutre principale de la mezzanine	85
Tableau 5-1 : Valeurs du facteur de qualité	88
Tableau 5-2 : Les combinaisons de calcul	91
Tableau 5-3 : Vérification de la résultante de la force sismique à la base	91
Tableau 5-4 : Déplacement relatif de la structure	92
Tableau 5-5 : Vérification des effets $P - \Delta$	93
Tableau 8-1 : Les sollicitations à la base du poteau	126
Tableau 8-2 : Les sollicitations à la base de la semelle du poteau	128
Tableau 8-3 : Vérification des contraintes de sol	129
Tableau 8-4 : Choix de ferraillage pour la semelle du poteau encastré	133
Tableau 8-5 : Résumé du calcul de ferraillage pour la semelle du poteau articulé	133
Tableau 9-1 : Les forces du vent sous V1	139
Tableau 9-3 : Les forces du vent sous V2	140
Tableau 9-5 : Réaction à la base due à l'effet sismique	141
Tableau 9-6 : Vérification au renversement de la structure	141
Tableau 10-1 : Les caractéristiques des profilés choisit	143

Notation :

- **G** : Chargement permanente, poids propre
- \mathbf{Q} : Charge d'exploitation, entretien
- N : Charge de la neige
- W : Charge de vent
- T : Effet de température
- **E** : Action sismique
- A : Section brute d'une pièce
- Anet : Section nette d'une pièce
- $\mathbf{I}_{\mathbf{t}}$: Moment d'inertie de torsion
- $\mathbf{I}_{\mathbf{w}}$: Facteur de gauchissement d'une section
- I_y : Moment d'inertie de flexion maximal
- I_z : Moment d'inertie de flexion minimal
- Wel : Module de résistance élastique
- W_{pl} : Module de résistance plastique
- **a** : Gorge d'un cordon de soudure
- $\mathbf{d_0}$: Diamètre nominal des tiges des boulons
- N_R : Effort normal résistant
- N_{pl} : Effort normal plastique
- V_{pl} : Effort tranchant plastique
- M_{pl} : Moment fléchissant de plastification
- F_P : Force de serrage
- f : Flèche d'un élément
- f_u : Contrainte de rupture d'une pièce
- f_{ub} : Contrainte de rupture d'un boulon
- f_{y} : Contrainte limite d'élasticité d'un acier
- E : Module de Young
- $\boldsymbol{\sigma}$: Contrainte normale
- $\boldsymbol{\beta}_{w}$: Facteur de corrélation
- $\boldsymbol{\beta}_m$: Facteur de de moment uniforme équivalent

- $\boldsymbol{\varepsilon}$: Coefficient de réduction élastique de l'acier
- λ : Elancement réduit
- λ_{lt} : Elancement réduit pour le déversement
- λ_{cr} : Elancement Critique
- \boldsymbol{u} : Coefficient de frottement entre deux pièces en contact
- χ : Coefficient de réduction de flambement
- α : Angle d'inclinaison
- α_{lt} : Facteur d'imperfection pour le déversement
- γ : Coefficient de sécurité
- Ψ_s : Coefficient de scellement relatif à une armature
- *i* : Rayon de giration
- l_k : Longueur de flambement d'un élément
- t : Epaisseur d'une pièce
- t_f : Epaisseur de la semelle d'un profilé
- t_w : Epaisseur de l'âme d'un profilé
- \emptyset : Diamètre d'une section
- **R** : Coefficient de comportement de la structure
- M_v : Moment résistant plastique réduit du fait de l'effort tranchant
- W_v : Module de résistance plastique de l'aire de cisaillement Av

1 INTRODUCTION GENERALE

Parmi les divers modes de construction, la construction métallique a connu un développement notable, touchant différents aspects et domaines, principalement dans l'industrie et le secteur public. Ce progrès est attribuable aux conditions de confort et de sécurité offertes par ce type de conception.

La construction métallique se focalise sur la conception d'ouvrages en métal, spécifiquement en acier, représentant un domaine significatif pour l'utilisation de produits laminés provenant de la forge. Comparée à la construction en béton, la construction en acier présente plusieurs avantages, tels que ses propriétés mécaniques permettant de franchir de grandes portées, offrant ainsi des surfaces libres considérables et une résistance accrue aux séismes. De plus, sa rapidité d'exécution et de montage, ainsi que la flexibilité de modification de la structure, sont notables. Sur le plan environnemental, crucial dans une perspective de développement durable, l'acier est préféré en raison de son caractère entièrement recyclable.

La construction métallique peut être appliquée à des projets de petite ou grande envergure, tels que des bâtiments commerciaux, des complexes industriels, des ponts, des tours de transmission, des toitures et des charpentes de stades. En raison de sa robustesse et de sa durabilité, elle s'avère également être une option écologique, car elle peut être recyclée en fin de vie utile.

C'est dans ce cadre que s'inscrit notre travail, consistant en l'étude et dimensionnement d'une unité de production de motocycle en R+2 Mezzanines avec toiture à versants multiples en charpente métallique, il est implanté à Setif.

L'étude de ce projet se fera en respectant minutieusement les réglementations et recommandations en vigueur à savoir (RPA 99/2003 ; DTR RNV 2013 ; CCM97 et DTR Charge et surcharge) pour cela nous allons suivre les démarches décrite sur le plan de travail suivant :

Chapitre I : Généralités

Chapitre II : Étude Climatique

Chapitre III : Dimensionnement et étude des éléments secondaires

Chapitre IV : Etude des planchers collaborant

Chapitre V : Étude Sismique

Chapitre VI : Vérification des éléments

Chapitre VII : Calcul des assemblages

Chapitre VIII : Étude De L'infrastructure

Chapitre IX : Vérification de l'instabilité globale

Chapitre X : Vérification des poutres au déversement

Enfin nous clôturons cette étude en présentant une conclusion générale.

1. CHAPITRE I Généralités

1.1 Introduction :

Dans le présent mémoire nous appliquerons nos connaissances théorique acquises durant notre cursus au sein de l'université de Bejaïa sur un projet réel, qui consiste à étudier les déférents éléments constituant une ossature métallique, en s'appuyant sur la réglementation en vigueur, afin d'assurer la stabilité global.

1.2 Présentation du projet:

Notre projet de fin d'étude consiste à dimensionner et à étudier une unité de fabrication de motocycles en R+2 avec Mezzanine en charpente métallique avec toiture à versants multiples. L'ossature est formée d'une structure en charpente métallique (Poteaux, Poutres) et de planchers mixtes collaborant (béton – acier). Le projet est implanté dans la wilaya de Sétif plus exactement à Guellal située à 905 d'altitude, est classé selon le RPA comme étant une zone de moyenne sismicité IIa.

Figure 1-1 : Vue sur maps de projet étudié

1.3 Caractéristique géométrique de l'ouvrage :

D'après les plans d'architecture, les dimensions de la structure sont :

Figure 1-2 : Vue en 3D

Figure 1-3 : Façade principale

• Ouverture

Pignon

Façade principale

- 1 Porte (2*2) m²
- 10 Fenêtre (2*1) m²

Façade arrière

- 0 Porte
- 10 Fenêtre (2*1) m²

Long pan

Façade principale

- 2 Porte (4*4) $m^2 + 1$ Porte (3*2) m^2
- 18 Fenêtre (2*1) m^2

Façade arrière

0 Porte
18 Fenêtre (2*1) m²

1.4 Données géotechnique du site

D'après le report de sol fourni avec le projet :

- La contrainte admissible du sol est de *Qadm* = 2 *bars* ;
- Les fondations superficielles ancrées à partir de 1,5 m de profondeur ;

• Classification du site est : S3.

Le site est classé selon RPA dans la zone de moyenne sismicité IIa

Zone de neige : B Zone du vent : II

1.5 Règlement technique

Les règlements techniques utilisés dans cette étude sont :

- DTR BC 2.2 : Charges permanentes et surcharges d'exploitation.
- **RPA99/2003** : Règlement Parasismique Algériennes version 2003.
- DTR C 2-4.7 (RNV) : Règles définissant les effets de la neige et du vent.
- BAEL91-CBA93 : Béton armé aux états limites.
- DTR BC-2.44 : Règles de conception et de calcul des structures en acier CCM 97.
- Eurocode 3 : Calcul des structures en acier.
- Eurocode 4 : Calcul des structures mixtes acier-béton.

1.6 Ossature et stabilité de la structure

La structure est constituée de 10 portiques métalliques. Ces portiques assurent la stabilité transversale de l'ossature. La stabilité longitudinale sera assurée par des palées de stabilités.

1.6.1 Plancher

La structure comporte un plancher collaborant constituer de :

- Une dalle en béton armé
- Une tôle nervurée
- Des solives
- Des goujons connecteurs

Figure 1-4 : Plancher mixte à dalle collaborant

1.6.2 Toiture

La toiture est en charpente métallique à versants multiples. Elle est constituée de bacs de couverture en panneaux sandwichs reposant sur des pannes.

Les panneaux sandwich nous offrent plusieurs avantages, on citera :

- Le pare vapeur.
- L'isolation et l'étanchéité.
- Une bonne capacité portante.
- Un gain de temps appréciable au montage.

1.6.3 Les Façades

Les façades extérieures sont réalisées avec des panneaux sandwichs fixés aux lisses de bardages.

1.6.4 Escaliers

Sont des éléments non structuraux qui permettent de se déplacer entres les deux niveaux de la structure, ils sont en charpente métallique et les marches en tôle.

1.7 Matériaux utilisés :

1.7.1 Acier

L'acier est une combinaison de fer et de carbone, on ne le trouve pas naturellement, c'est le résultat de la transformation de matières premières extraites du sol (dont la teneur en carbone ne dépasse pas 1%).

1.7.1.1 Résistance

Les nuances d'acier courantes et leurs résistances limites sont données par le règlement (Eurocode 03). La nuance choisie pour la réalisation de cet ouvrage est de l'acier S275. Les caractéristiques mécaniques des différentes nuances d'acier sont les suivantes : Limite élastique fy (Mpa) en fonction de l'épaisseur nominale :

Nuance d'acier	Épaisseur (mm)						
		t ≤ 40 mm 40 mm < t ≤ 100 mm					
	f _y (N/m m²)	f _u (N/m m²)	f _y (N/m m²)	f _u (N/m m²)			
fe 360	235	360	215	340			
fe 430	275	430	255	410			
fe 510	355	510	355	490			

Tableau 1-1 : Les valeurs nominales de fy et de fu

1.7.1.2 Ductilité

L'acier de construction choisi doit satisfaire les conditions suivantes :

- Le rapport fu/fy > 1,2
- L'allongement à la rupture εu (correspondant a fu) doit être supérieur à 20 fois l'allongement εy (correspondant à fy).

• L'allongement à la rupture εu doit être supérieur à 15%.

Figure 1-5 : Diagramme contrainte-déformation de l'acier

1.7.1.3 Caractéristique de l'acier

Les valeurs des principales caractéristiques de l'acier sont :

- Module d'élasticité longitudinale : E = 210000 MPA
- Coefficient de poisson : v = 0,3
- Module d'élasticité transversale : $G = \frac{E}{2 \times (1+\nu)} = 80769,23 MPA$
- Coefficient de dilatation thermique : $\alpha = 12 \times 10^{-6} Par \,^{\circ}C$
- La masse volumique : $\rho = 7850 KN/m^3$

1.7.1.4 Assemblages

Les principaux modes d'assemblages sont:

Le boulonnage :

Le boulonnage et le moyen d'assemblage le plus utilisé en construction métallique, du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur site.

Le soudage :

Le soudage est une opération qui consiste à joindre deux parties d'un même matériau avec un cordon de la soudure constituée d'un métal d'apport, ce dernier sert de liant entre les deux pièces à assembler.

1.7.2 Béton

Le béton représente un matériau de construction constitué d'un mélange de granulats, de sable et d'eau, liés par un agent hydraulique, généralement du ciment, agissant comme une "colle". Des adjuvants et d'autres composants peuvent être ajoutés pour ajuster ses propriétés. Sa résistance est davantage prononcée en compression qu'en traction, avec la résistance en compression (symbolisée par fc) définissant sa capacité maximale sous contrainte. Cette résistance est mesurée en MPa. L'évaluation de la résistance du béton intervient généralement après une période de 28 jours, durant laquelle il atteint généralement 90% de sa résistance maximale. L'utilisation du béton dans notre projet est pour la réalisation des planchers.

1.7.2.1 Propriétés du béton

Le béton utilisé sera de classe C25 avec :

- Une résistance à la compression à $28j : fc_{28} = 25 MPA$
- La résistance à la traction à $28j : ft_{28} = 2,1 MPA$
- Le poids volumique : $\rho = 25 \ KN/m^3$
- Coefficient de retrait : $\varepsilon = 4 \times 10^{-6}$
- Coefficient de dilatation thermique : $\alpha = 10^{-4} Par °C$

1.8 Les actions prises en considérations

Ce sont l'ensemble des forces et des couples dues aux charges auxquelles l'ouvrage sera soumis :

- Charges permanentes : G
- Charges d'exploitations : **Q**
- Charges climatiques : W (Vent), N (Neige)
- Charges sismiques : **E**
- Température : T

1.9 Les états limites

Un état limite est un état au-delà duquel la structure ne satisfait plus aux exigences pour lesquelles elle a été conçue .On distingue :

1.9.1 Etats limite ultime (ELU)

Les états limites ultimes sont associés à la ruine de la structure, ils comprennent :

- La perte d'équilibre de la structure ou de l'une de ses parties.
- La ruine de la structure ou de l'un de ses éléments.

1.9.2 Etats limite de service (ELS)

Les états limites de service correspondent au dépassement des critères spécifiés d'exploitation, ils comprennent :

- les déformations et les flèches affectant l'aspect ou l'exploitation de la construction, ou provoquant des dommages à des éléments non structuraux.
- les vibrations incommodant les occupants, endommageant le bâtiment ou son contenu.

2 Chapitre II Etude climatique

2.1 Introduction

Ce chapitre a pour but la détermination des différentes sollicitations agissant sur notre structure, produites par la charge dû à la neige d'un côté, et aussi par les actions dû au vent d'un autre côté sur une unité de production en construction métallique. Le règlement sur lequel s'appuie notre étude est le RNV2013.

2.2 Action de la neige

La charge de la neige S par unité de surface en projection horizontale de toiture est donnée selon le RNV2013 par la formule suivante :

$$S = S_k \times \mu$$

Ou :

 S_k : Valeur de la charge de neige sur le sol donnée par le règlement RNV2013 en fonction de site et de l'altitude.

μ : Coefficient de forme, dépend de la forme de la toiture.

2.2.1 Charge de neige sur le sol

La charge de neige sur le sol est en fonction de la localisation géographique et l'altitude du lieu considéré.

Dans notre cas :

- Le projet est implanté à Sétif plus précisément à Guellal classée en zone B selon la classification de RNV2013.
- L'altitude du projet est d'environ 905m.

Donc : S_K est donnée par la formule suivante :

$$S_k = \frac{0.04 * H + 10}{100}$$

 \mathbf{H} : Altitude du site par rapport au niveau de la mer : $\mathbf{H} = 905$ m

Donc :

$$S_k = \frac{0.04 * 905 + 10}{100} = 0.462 \, KN/m^2$$

2.2.2 Coefficient de forme de la toiture

Il est en fonction de la forme de la toiture.

Dans notre cas le projet a une toiture à versants multiples avec une pente de :

$$\alpha = 15^{\circ}$$

On 'a:
$$0 < \alpha = 15^{\circ} < 30$$

D'où :
$$\begin{cases} \mu_1 = 0.8\\ \mu_3 = 0.8 + 0.8 * \left(\frac{\alpha}{30}\right) = 1.2 \end{cases}$$

Figure 2-1 : Coefficient de forme des toitures a versants multiples

2.2.3 Calcul les charges de neige sur la toiture

• Sur les versants 1 et 4 :

$$S = \mu_1 \times S_k = 0.8 \times 0.462 = 0.369 \ KN/m^2$$

• Sur les versants 2 et 3 :

$$S = \mu_3 \times S_k = 1,2 \times 0,462 = 0,554 \, KN/m^2$$

2.3 Etude au vent

On admet que le vent a une direction d'ensemble moyenne horizontale, mais qu'il peut venir de n'importe quel côté. Le calcul doit être effectué séparément pour les deux directions principales du vent, qui sont perpendiculaires aux parois de la construction.

Les calculs seront menés conformément au règlement neige et vent RNV2013.

2.3.1 Coefficients de calcul

2.3.1.1 Effet de la région :

Notre projet est situé à Guellal wilaya de Sétif, classe selon RNV2013 en zone II du vent, donc selon TAB 2.2 de RNV2013, la pression dynamique de référence égale à :

$$q_{ref} = 435 N/m^2$$

2.3.1.2 Effet de site :

Notre structure est implantée au milieu de la ville de Guellal entouré des habitats et des bâtiments, selon les illustrations du règlement RNV2013, le terrain est de catégorie III. Donc selon TAB 2.4 RNV2013 :

 $\begin{cases} Facteur \ de \ terrain: \ K_T = 0,215\\ Le \ parametre \ de \ rugosité: \ Z_0 = 0,3\\ Hauteur \ minimale: \ Z_{min} = 5m \end{cases}$

2.3.1.3 Coefficient de topographie

Ct(z) prend en compte l'accroissement de la vitesse du vent lorsque celui-ci souffle sur des obstacles tels que les collines, les dénivellations isolées, Dans notre cas :

Le site est plat, le coefficient de topographie $C_T = 1$ (formule 2.4 RNV2013)

2.3.1.4 Coefficient d'exposition

On est dans le cas ou $C_T = 1$ le coefficient d'exposition $C_{e(z)}$ est donné par le tableau 2.3 RNV2013 :

	Ct(z)	Z (m)	Ce(z)
Mur	1	13	1,973
Toiture	1	15	1,865

Tableau 2-1 : Valeurs de coefficient d'exposition

2.3.2 Pression dynamique de pointe

La pression dynamique est donnée par la formule 2.1 RNV2013 comme suit

 $q_{p(ze)} = q_{ref} \times C_{e(ze)}$

Avec :

Z(e) : est la hauteur de référence donnée en 2.3.2 RNV2013

Pour notre cas on a :

 $H_{mur} = 13,00m$ $H_{totale} = 15,00m$ b = 30,70m

Figure 2-2 : Hauteurs de référence Ze pour h < b

	$\boldsymbol{q_{ref}}$ (N/m ²⁾	Ce(ze)	$\boldsymbol{q_{dyn}}$ (N/m ²⁾
Mur	435	1,973	858,25
Toiture	435	1,865	811,27

Tableau 2-2 : Valeurs de la pression dynamique

Figure 2-3 : Répartition de la pression dynamique de pointe

2.3.3 Détermination des coefficients de pression extérieurs Cpe :

Les coefficients de pression extérieure Cpe des constructions de type rectangulaire et leurs éléments constitutifs individuels dépendent de la dimension de la surface chargée. Ils sont définis pour des surfaces chargées de 1 m² et 10 m², auxquelles correspondent les coefficients de pression notés respectivement Cpe1 et Cpe10.

Selon RNV2013, Cpe s'obtient à partir des formules suivantes :

$$Cpe = Cpe_1 \qquad Si: S \le 1 m^2$$

$$Cpe = Cpe_1 + (Cpe_{10} - Cpe_1) \times log_{10}(S) \qquad Si: 1m^2 \le S \le 10m^2$$

$$Cpe = Cpe_{10} \qquad Si: S \ge 10m^2$$

2.3.3.1 Vent perpendiculaire au long pan V1 :

- Paroi verticale :

On a: b = 56,30m d = 30,70m h = 13m $\alpha = 15^{\circ}$

$$e = \min(b, 2h) = 26m$$

$$e < d \rightarrow$$
 Selon RNV2013 on divise nos surfaces comme suit :

Figure 2-4 : Vue en plan et en élévation des zones de pressions sens V1

• Exemple de calcul : Zone A

$$S_A = \frac{e}{5} \times h = \frac{26}{5} \times 13 = 67,6 m^2$$
 d'où :

$$S_A > 10m^2 \rightarrow Cpe = Cpe_{10}$$

Les valeurs des surfaces et de Cpe serons résumé dans le tableau ci-dessous

Cpe sur la paroi								
Zone	Α	A B C D E						
Surface (m ²)	67,6	270,4	61,1	732	732			
Сре	Cpe10	Cpe10	Cpe10	Cpe10	Cpe10			
	-1,0	-0,8	-0,5	+0,8	-0,3			

Tableau 2-3 : Valeurs des Cpe sur la paroi verticale sens V1

Figure 2-5 : Cpe correspond à chaque zone de la paroi Sens V1

- Toitures :

Dans notre cas on a une toiture à versants multiples, et selon RNV2013 P90, pour un vent dont la direction et perpendiculaire aux génératrices on prendra les valeurs de Cpe des toitures à deux versants modifiées pour leur position selon la figure suivante

Figure 2-6 : Légende pour une toiture à versant multiple Sens V1

On a : b = 56,30m d = 7,76m h = 15m α = 15°

Avec : \mathbf{d} : longueur projeter du 1^{er} versant

Figure 2-7 : Répartition des zones de pression sur la toiture Sens V1

On a : $e = \min(b, 2h) = 30m$

• Exemple de calcul : Zone F

$$S_F = \frac{e}{4} \times \frac{e}{10} = \frac{30}{4} \times \frac{30}{10} = 22,5 \ m^2$$

On a: $S_F > 10 \ m^2 \rightarrow Cpe = Cpe_{10}$

Le tableau ci-dessous résume le calcul des surfaces et les valeurs de Cpe pour chaque zone

Cpe sur la Toiture								
Zone]	F	G	Ţ	I	I	2 3 versants	4 ^{em} versant
Surface (m ²)	22	2,5	12	24	267	7,98		
Сре	Ср	e10	Сре	e10	Ср	e10	Сре	Сре
	Dep	Sup	Dep	Sup	Dep	Sup		
	-0,9	+0,2	-0,8	+0,2	-0,3	+0,2	-1,0	-0,6

Tableau 2-4 : Valeurs des Cpe sur la toiture Sens V1

2.3.3.2 Vent sur le pignon V2 : Paroi Verticale

On a : b = 30,70m d = 56,30m h = 13m α = 15°

 $e = \min(b, 2h) = 26m$

 $e < d \rightarrow$ Selon RNV2013 on divise nos parois comme suit

Figure 2-8 : Vue en élévation des zones de pression da la paroi Sens V2

Le tableau ci-dessous résume le calcul de déférentes surfaces de la paroi et les valeurs de Cpe pour chaque zone :

Cpe sur La paroi								
Zone	A B C D E							
Surface (m ²)	67,6	270,4	394	399	399			
Сре	Cpe10	Cpe10	Cpe10	Cpe10	Cpe10			
	-1,0	-0,8	-0,5	+0,8	-0,3			

Tableau 2-5 : Valeurs des Cpe sur la paroi verticale Sens V2

Figure 2-9 : Cpe correspond à chaque zone de la paroi Sens V2

- Toiture :

On a une toiture à versants multiples, selon le règlement RNV2013 P90, pour un vent dont la direction est parallèle aux génératrices, les coefficients de pression de chaque versant s'obtiennent en utilisant les valeurs des toitures à un versant pour $\theta = 90^{\circ}$

Avec :

$$b = 7,5m$$
 $d = 56,30m$ $h = 15m$ $\alpha = 15^{\circ}$
 $e = \min(b, 2h) = 7,5m$

Figure 2-10 : Répartition des zones de pression sur les toitures Sens V2

Exemple de calcul :

Fsup: $S = \frac{7.5}{4} \times \frac{7.5}{10} = 1,40m^2$ $1m^2 < S = 1,40m^2 < 10m^2$ $Cpe = Cpe1 + (Cpe10 - Cpe1) \times log10(S)$ Cpe10 = -2,4 Cpe1 = -2,9

D'où :

 $Cpe = -2,9 + (-2,4 + 2,9) \times log10(1,40) = -2,82$

Les résultats des surfaces et les valeurs de Cpe sont résumé dans le tableau ci-dessous

Cpe sur La Toiture									
Zone	Fsup	Fsup Finf G H I							
Surface (m ²)	1,40	1,40	2,81	22,5	394,12				
Сре	1 <cpe<10< th=""><th>1<cpe<10< th=""><th>1<cpe<10< th=""><th>Cpe10</th><th>Cpe10</th></cpe<10<></th></cpe<10<></th></cpe<10<>	1 <cpe<10< th=""><th>1<cpe<10< th=""><th>Cpe10</th><th>Cpe10</th></cpe<10<></th></cpe<10<>	1 <cpe<10< th=""><th>Cpe10</th><th>Cpe10</th></cpe<10<>	Cpe10	Cpe10				
	-2,82	-2,28	-2,23	-0,8	-0,7				

Tableau 2-6 : Valeurs des Cpe sur la toiture sens V2

2.3.4 Coefficient de pression intérieur

2.3.4.1 Vent perpendiculaire au long pan V1 :

façade principale et postérieure:

Le Cpi dépend de la dimension et de la réparation des ouvertures de notre structure et en fonction de l'indice de perméabilité μ p qui est définie par :

$$\mu_P = \frac{\Sigma \text{ des surfaces des ouvertures ou } Cpe \le 0}{\Sigma \text{ aires des ouvertures}}$$

Suite à la présence des planchers en considère juste les ouvertures du dernier niveau.

Notre structure possède dans les deux façades du long pan au dernier niveau au total :

- 12 fenêtre de $(2*1)m^2$

Et possède dans les deux façades du pignon au total :

- 10 Fenêtre de $(2*1)m^2$

D'où :

$$\mu_P = \frac{6 \times (2 * 1) + 10 \times (2 * 1)}{12 * (2 * 1) + 10 \times (2 * 1)} = 0,72$$

Avec un rapport : $\frac{h}{d} = \frac{13}{30,70} = 0,42$

On a: $0,25 \le \frac{h}{d} \le 1 \rightarrow$ On trouve la valeur de Cpi par interpolation

Figure 2-11 : Les valeurs de Cpi des bâtiments sans face dominante

$$\begin{cases} \frac{h}{d} \le 0.25 \to Cpi(\mu_p) = -0.11 \\ \frac{h}{d} > 1 \to Cpi(\mu_p) = -0.2 \end{cases}$$

Par interpolation :

$$Cpi(0,72) = Cpi(0,25) + \frac{Cpi(1) - Cpi(0,25)}{1 - 0,25} \times (\frac{h}{d} - 0,25)$$

On aura :

$$Cpi(0,72) = -0,13$$

2.3.4.2 Vent perpendiculaire au pignon :façade principale et postérieure :

Suite à la présence des planchers en considère juste les ouvertures du dernier niveau.

Notre structure possède dans les deux façades du long pan au dernier niveau au total :

- 12 fenêtre de $(2*1)m^2$

Et possède dans les deux façades du pignon au total :

- 10 Fenêtre de $(2*1)m^2$

D'où

$$\mu_P = \frac{12 \times (2 \times 1) + 5 \times (2 \times 1)}{12 \times (2 \times 1) + 10 \times (2 \times 1)} = 0,77$$

Avec le rapport : $\frac{h}{d} = \frac{13}{56,30} = 0,23$

On a :
$$\frac{h}{d} < 0.25 \rightarrow$$
 On prend la valeur de Cpi pour $\frac{h}{d} \le 0.25$

On aura :

$$Cpi(0,77) = -0,17$$

2.3.5 Calcul les pressions aérodynamiques agissant sur la structure : Les pressions sont calculées à l'aide de cette formule de RNV2013 :

 $Wzj = q_{p(ze)} \times (Cpe - Cpi) \qquad \begin{bmatrix} N/m^2 \end{bmatrix}$

2.3.5.1 Vent perpendiculaire au long pan V1 :

- façade principale et postérieure :

Paroi verticale :

Zone	$q_{p(ze)}$	Сре	Срі	Cpe-Cpi	Wzj $\left[\frac{N}{m^2}\right]$
Α	811,27	-1,0	-0,13	-0,87	-705,80
В	811,27	-0,8	-0,13	-0,67	-543,55
С	811,27	-0,5	-0,13	-0,37	-300,17
D	811,27	+0,8	-0,13	+0,93	754,48
Ε	811,27	-0,3	-0,13	-0,17	-137,91

Tableau 2-7 : Les valeurs de pression sur la paroi pour les deux façades sous V1
Zono	$q_{p(ze)}$	C	Cpe	Cni	Сре-Срі		Wzj $\left[\frac{N}{m^2} \right]$	
Zone		Dep	Sup	Срі	Dep	Sup	Dep	Sup
F	858,25	-0,9	+0,2	-0,13	-0,77	+0,33	-660,85	283,2
G	858,25	-0,8	+0,2	-0,13	-0,67	+0,33	-575,02	283,2
Η	858,25	-0,3	+0,2	-0,13	-0,17	+0,33	-145,90	283,2
2,3 ^{em} versants	858,25	-	1,0	-0,13	-0	,87	-746	,67
4 ^{em} versant	858,25	-(0,6	-0,13	-0,47		-403	,37

Toiture :

Tableau 2-8 : Les valeurs de pression sur la toiture pour les deux façades sous V1

Figure 2-12 : Schéma des pressions sur la paroi et toiture pour les deux façades sous V1

2.3.5.2 Vent perpendiculaire au pignon V2

- façade principale et postérieure :

Paroi verticale :

Zone	$q_{p(ze)}$	Сре	Срі	Сре-Срі	Wzj $\left[\frac{N}{m^2}\right]$
Α	811,27	-1,0	-0,17	-0,83	-673,35
В	811,27	-0,8	-0,17	-0,63	-511,10
С	811,27	-0,5	-0,17	-0,33	-267,72
D	811,27	+0,8	-0,17	0,97	+786,93
Ε	811,27	-0,3	-0,17	-0,13	-105,46

Tableau 2-9 : Les valeurs de pression sur la paroi pour les deux façades sous V2

Zone	$q_{p(ze)}$	Сре	Срі	Cpe-Cpi	Wzj $\left[\frac{N}{m^2} \right]$
Fsup	858,25	-2,82	-0,17	-2,65	-2274,36
Finf	858,25	-2,28	-0,17	-2,11	-1810,90
G	858,25	-2,23	-0,17	-2,06	-1767,99
Н	858,25	-0,8	-0,17	-0,63	-540,69
Ι	858,25	-0,7	-0,17	-0,46	-394,79

Toiture

Tableau 2-10 : Les valeurs de pression sur la toiture pour les deux façades sous V2

Figure 2-13 : Schéma des pressions sur la paroi et toiture pour les deux façades sous V2

2.3.6 Effet de frottement :

Les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) est inférieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent (au vent et sous le vent). **[2.6.3 RNV2013]**

2.3.6.1 Vent perpendiculaire au long-pan :

```
On a :
```

L'air des surfaces parallèle au vent :

 $(30,70 \times 13 \times 2) = 789,2 m^2$

L'air des surfaces perpendiculaire au vent :

 $(56,30 \times 13 \times 2) = 1463,8 m^2$

D'où :

1463,8 $m^2 < 4 \times 789,2 = 3156,8\,m^2$

Donc les effets de frottement du vent sur la surface sont négligés.

2.3.6.2 Vent perpendiculaire au pignon :

On a :

L'air des surfaces parallèle au vent :

 $(56,30 \times 13 \times 2) = 1463,8 m^2$

L'air des surfaces perpendiculaire au vent :

 $(30,70 \times 13 \times 2) = 789,2 m^2$

D'où :

789,2 $m^2 < 4 \times 1463,8 = 5855,2 m^2$

Donc les effets de frottement du vent sur la surface sont négligés.

2.4 Effet de la variation de la température :

Comme tous les matériaux, l'acier se dilate sous l'effet de l'augmentation de la température, plus la température est élevée plus la limite d'élasticité et la résistance à la traction diminuent et plus la plasticité augmente.

Notre projet dépasse les 50 mètre de longueur, Donc on doit prendre en considération l'effet de la variation de la température.

Pour la vérification de la sécurité structurale, la valeur représentative ΔT de la variation uniforme de température dépend de la zone climatique, d'après notre recherche les différentes variations de température se résument dans le tableau ci-dessous :

La région	La variation ΔT
Nord de l'Algérie	$+35^{\circ}C \rightarrow -5^{\circ}C$
Le proche et moyen sud	$+40^{\circ}C \rightarrow 3^{\circ}C$
Extrême sud	$+45^{\circ}C \rightarrow 5^{\circ}C$

Tableau 2-11 : Différentes variations de température en Algérie

Notre hangar se situe à Sétif en nord de l'Algérie, donc la température dans la journée est +35°C et on prend par moyenne la température du soir à +20°C, D'où

 $\Delta T=35-20=15^\circ C$

3 Chapitre III

Etude et dimensionnement des éléments secondaires

3.1 Introduction :

Ce chapitre consiste au dimensionnement et la vérification des éléments secondaires visà-vis les différentes actions et sollicitations agissant sur la structure.

3.2 Etude des pannes :

Les pannes sont des poutres destinées à supporter la couverture et de transmettre les charges et surcharges s'appliquant sur cette dernière à la traverse ou bien à la ferme. Elles sont disposées parallèlement à la ligne de faitage, et elles sont calculées en flexion déviée, sous l'effet des charges permanentes, d'exploitations et climatiques. Elles sont réalisées soit en profilés formés à chaud en (I), ou bien en (U), soit en profilés, formés à froid en (Z), (U), (Σ) ou en treillis pour les portées supérieures à 6m.

Les charges permanentes et la charge de neige sont appliquées dans le sens de gravitation.

Le vent agit perpendiculairement à la face des éléments (axe de grande inertie).

On prend les combinaisons les plus défavorables.

Les données :

- On étudie la panne la plus défavorable qui la panne de portée L=7,8m
- Entraxe des pannes : e = 1,2m
- On dispose de 7 lignes de pannes sur chaque versant de toiture.
- Angle d'inclinaison : $\alpha = 15^{\circ}$
- Les pannes sont en acier S275 : fy=275MPa

Figure 3-1 : Disposition des pannes

3.2.1 Evaluation des charges et surcharges :

3.2.1.1 Les charges permanentes G :

- Poids propre de la couverture : (Panneau sandwich) : $G_{panneau} = 10,45 \frac{Kg}{m^2}$ (Voir la fiche technique à l'Annexe 5)

- Poids des accessoires de pose estimé : $G_{acc} = 2 Kg/m^2$
- Poids propre de la panne estimé (IPE120) : $G_{panne} = 10,4 Kg/ml$

$$G = (G_{panneau} + G_{acc}) \times e + G_{panne}$$

Avec : e = 1,2m

 $G = (0,10 + 0,02) \times 1,2 + 0,10 = 0,253 \, KN/ml$

3.2.1.2 Surcharges d'entretien :

Dans le cas des toitures inaccessible, en considère uniquement dans les calculs une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente deux charges concentrées de 100 Kg chacune située à 1/3 et 2/3 de la portée de la panne.

(D'après le DTR BC 2.2).

Figure 3-3 : Schéma statique de la poutre équivalente

$$M_{max} = \frac{P \times L}{3} = \frac{P_{eq} \times L^2}{8} \to P_{eq} = \frac{8 \times P}{3 \times L} = \frac{8 \times 1}{3 \times 7,8} = 0,341 \text{ KN/ml}$$

3.2.1.3 Surcharge climatique due au vent :

Pour la charge du vent, on prend le cas le plus défavorable qui est le vent perpendiculaire au pignon sur la toiture, mais pour l'économie on va calculer une charge équivalente avec les trois zones les plus défavorable à savoir : F_{sup} F_{inf} G

$$W_{eq}^{-} = \frac{(2,274+1,810) \times 1,875+1,767 \times 3,75}{7,5} = 1,905 \ KN/m^2$$

$$W^{-}=W_{eq}^{-} \times e = -1,905 \times 1,2 = -2,29 \ KN/m$$

 $W^+ = W_{max}^+ \times e = 0,283 \times 1,2 = 0,339 \text{ KN/m}$

3.2.1.4 Surcharges de la neige : S=554 N/m²

$$S = 554 \times cos (15) = 535,12 N/m2$$

 $N = 0,535 \times 1,2 = 0,642 \ KN/m$

3.2.2 Décomposition des charges : → Suivant l'axe ZZ :

$$G_z = 0,253 \times \cos(15) = 0,244 \, KN/ml$$

 $Q_z = 0,341 \times \cos(15) = 0,329 \, KN/ml$

$W_{z}^{+} = 0,339 \ KN/m$	
$W_z^- = -2,29 \ KN/m$	
$N_z = 0,642 \times \cos(15) = 0,620 \ KN/m$	
Suivant l'axe YY :	
$G_y = 0.253 \times \sin(15) = 0.065 KN/m$	
$Q_y = 0,341 \times \sin(15) = 0,088 KN/m$	
$W_y^+ = W_y^- = 0$	
$N_y = 0,642 \times \sin(15) = 0,166 KN/m$	
3.2.3 Les combinaisons d'actions :	
N° (combinaison)	EI

N° (combinaison)	ELU	ELS
Α	1.35G+1,5Q	G+Q
В	1,35G+1,5W+	G+W+
С	1,35G+1,5N	G+N
D	1,35G+1,35(N+W+)	G+0.9 (N+W ⁺)
Ε	G-1,5W ⁻	G-W-

Tableau 3-1 : Les différentes combinaisons d'action

Apres avoir définie les deux charges q_y et q_z de la résultante q on peut les combiner, et les résultats sont portés sur les tableaux suivant :

	charge (KN/m)					Combinaison ELU (KN/m)				
	G	Q	W^+	W-	N	А	В	С	D	Е
q_y	0,065	0,088	0	0	0,166	0,219	0,087	<mark>0,336</mark>	0,311	0,065
q_z	0,244	0,329	0,339	2,29	0,620	0,822	0,838	1,26	1,62	<mark>3,19</mark>

Tableau 3-2 : Résultats des combinaison a l'ELU

	charge (KN/m)					Combinaison ELS (KN/m))
	G	Q	W^+	W	Ν	А	В	С	D	E
q_y	0,065	0,088	0	0	0,166	0,153	0,065	<mark>0,231</mark>	0,214	0,065
q_z	0,244	0,329	0,339	2,29	0,620	0,573	0,583	0,864	1,10	<mark>2,05</mark>

Tableau 3-3 : Résultats des combinaisons a l'ELS

- Selon l'axe ZZ :

Le cas le plus défavorable est :

$q_z^u = 3,19 \ KN/ml$

 $q_z{}^s = 2,05 \ KN/ml$

- Selon l'axe YY :

Le cas le plus défavorable est :

$$q_y^{\ u} = 0,336 \, KN/ml$$

 $q_{v}^{s} = 0,231 \, KN/ml$

3.2.4 Pré dimensionnement des pannes :

Les pannes sont sollicitées à la flexion déviée (flexion bi axiale). Elles doivent satisfaire les deux conditions suivantes :

Condition de flèche (l'ELS) et Condition de résistance (l'ELU).

Généralement, on fait le pré dimensionnement des pannes par l'utilisation de la condition de flèche, puis on fait la vérification de la condition de résistance.

3.2.4.1 Condition de flèche à l'ELS :

La flèche à l'état limite de service se fait avec les charges et surcharges de service (non pondérée): $f \le f_{adm}$

Pour une poutre sur deux appuis uniformément chargée (axe Z-Z) :

$$fz = \frac{5 \times q_z \times L^4}{384 \times E \times Iy} \le f_{adm} = \frac{L}{200}$$

$$Iy \ge \frac{5 \times 200 \times q_z \times L^3}{384 \times E} = \frac{1000 \times 2,05 \times 7800^3}{384 \times 210000} \times 10^{-4} = 1206,39 \ cm^4$$

Ce que nous donne $Iy \ge 1206,39 \ cm^4$ donc on opte pour un **IPE180**

 \rightarrow On recalcule le G on prenant compte du poids propre d'IPE180

 $G = (G_{panneau} + G_{acc}) \times e + G_{panne}$ $G = (0,10 + 0,02) \times 1,2 + 0,188 = 0,33 \text{ KN/ml}$ $G_z = 0,33 \times \cos(15) = 0,32 \text{ KN/ml}$ $G_v = 0,33 \times \sin(15) = 0,09 \text{ KN/ml}$

 \rightarrow On recalcule les combinaisons de charge avec les nouvelles valeures de G:

	charge(KN/m)						Combina	nison EL	U(KN/m)	
	G	Q	W^+	W-	N	А	В	С	D	E
q_y	0,09	0,088	0	0	0,166	0,25	0,12	<mark>0,37</mark>	0,34	0,09
q_z	0,32	0,329	0,339	2,29	0,620	0,92	0,94	1,36	1,73	<mark>3,11</mark>

Tableau 3-4 : Résultats des combinaisons à l'ELU

	charge (KN/m)						Combina	nison ELS	5 (KN/m)	
	G	Q	W^+	W-	N	А	В	С	D	E
q_y	0,09	0,088	0	0	0,166	0,17	0,09	<mark>0,25</mark>	0,23	0,09
q_z	0,32	0,329	0,339	2,29	0,620	0,65	0,66	0,94	1,18	<mark>1,97</mark>

Tableau 3-5 : Résultats des combinaisons à l'ELS

3.2.5 Vérification des pannes :

3.2.5.1 Vérification à l'ELS (flèche) : L'axe (ZZ) :

$$fz = \frac{5 \times q_z \times L^4}{384 \times E \times Iy} = \frac{5 \times 1,97 \times 7800^4}{384 \times 210000 \times 1317 \times 10^4} = 34,33 \text{ mm}$$

 $f_{adm} = \frac{L}{200} = \frac{7800}{200} = 39mm$ $fz < f_{adm}$ Condition vérifié.

L'axe (YY):

$$fy = \frac{5 \times q_y \times L^4}{384 \times E \times Iz} = \frac{5 \times 0.25 \times 7800^4}{384 \times 210000 \times 100.81 \times 10^4} = 56.91 mm$$

$$f_{adm} = 39mm \qquad \qquad fy > f_{adm} \qquad \text{Condition n'est pas vérifiée.}$$

Comme solution on met une lierne à mi- travée et on recalcule la flèche :

$$fy = \frac{2,05 \times q_y \times (\frac{L}{2})^4}{384 \times E \times Iz} = \frac{2,05 \times 0,25 \times 3900^4}{384 \times 210000 \times 100,81 \times 10^4} = 1,45 \text{ mm}$$

 $f_{adm} = \frac{L}{200} = \frac{7800}{200} = 39mm$ $fy < f_{adm}$ Condition vérifié.

3.2.5.2 Vérification à l'ELU:

Vérification à la flexion déviée :

Figure 3-6 : Schéma statique sur les deux plan YY et ZZ

 $\left[\frac{My, sd}{Mpl, yrd}\right]^{\alpha} + \left[\frac{Mz, sd}{Mpl, zrd}\right]^{\beta} \le 1$

Pour les profiles IPE et HEA : $\alpha = 2; \beta = 1$

L'axe (YY) :

Msd,
$$y = \frac{q_z \times L^2}{8} = \frac{3,11 \times 7,8^2}{8} = 23,65 \text{ KN}. m$$

$$Mpl, y = \frac{Wpl, y \times Fy}{\gamma_{m0}} = \frac{166, 4 \times 10^{-3} \times 275}{1,1} = 41,6 \text{ KN. m}$$

$$\to Msd, y < Mpl, y$$

La condition est vérifie

L'axe (ZZ) :

$$Msd, z = \frac{q_y \times L^2}{32} = \frac{0.37 \times 7.8^2}{32} = 0.70 \text{ KN. m}$$
$$Mpl, z = \frac{Wpl, z \times Fy}{\gamma_{m0}} = \frac{34.6 \times 10^{-3} \times 275}{1.1} = 8.65 \text{ KN. m}$$
$$(\frac{23.65}{41.60})^2 + (\frac{0.70}{8.65})^1 = 0.40 < 1 \rightarrow La \text{ condition est vérifié}$$

On retient toujours l'IPE180.

3.2.5.2.1 Vérification de l'effort tranchant :

Pour la vérification au cisaillement on utilise la condition suivante :

 $Vsd, z \leq Vpl, z$ Et $Vsd, y \leq Vpl, y$

L'axe (ZZ) :

Vsd,
$$z = \frac{q_z \times L}{2} = \frac{3,11 \times 7,8}{2} = 12,13 \text{ KN}$$

Vpl, $z = \frac{\text{Avz} \times Fy}{\sqrt{3} \times \gamma_{m0}} = \frac{11,3 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 163,10 \text{ KN}$
Vsd, $z < 0,5 \text{ Vpl}, z \rightarrow$ Condition vérifié.
L'axe (YY) :

$$Vsd, y = 1,25 \times \frac{q_y \times L}{2} = 1,25 \times \frac{0,37 \times 3,9}{2} = 0,90 \ KN$$
$$Vpl, y = \frac{Avy \times Fy}{\sqrt{3} \times \gamma_{m0}} = \frac{15,3 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 220,83 \ KN$$
$$Vsd, y < 0,5 \ Vpl, y \rightarrow$$
 La condition est vérifiée

3.2.5.3 Vérification au déversement :

La semelle supérieure qui est comprimée sous l'action des charges descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture il n'y a donc pas de risque de déversement.

Contrairement à la semelle inferieure qui est comprimée sous l'action du vent de soulèvement, et qui est quant à elle susceptible de déverser du moment qu'elle est libre tout au long de sa portée,

$$M_{b,rd} \ge Msd, y$$

 $q_z = 3.11 \frac{KN}{m}$ Sous $G - 1.5W^{-1}$

$$Msd, y = \frac{q_z \times L^2}{8} = \frac{3,11 \times 7,8^2}{8} = 23,65 \text{ KN. }m$$

$$M_{b,rd} = \chi_{lt} \times \beta_w \times \frac{Wpl, y \times Fy}{\gamma_{m1}}$$

$$\chi_{lt} = \frac{1}{\varphi_{lt} + [\varphi_{lt}^2 - \lambda_{lt}^2]^{0.5}}$$

$$\varphi_{lt} = 0,5[1 + \alpha_l(\lambda_{lt} - 0,2) + \lambda_{lt}^2]$$

$$\lambda_{lt} = (\frac{\lambda_{lt}}{\lambda_1}) \times \sqrt{\beta_w}$$

$$\lambda_1 = \sqrt{\frac{E}{F_y}} \times \pi = \left(\sqrt{\frac{210000}{275}}\right) \times \pi = 86,81$$

Pour une poutre constante et doublement symétrique on peut utiliser la formule approximative ci-après qui place en sécurité.

$$\lambda_{lt} = \frac{L/i_z}{\sqrt{C_1} [1 + \frac{1}{20} (\frac{L/i_z}{h/t_f})^2]^{0.25}}$$

l : longueur de maintien latéral.

$$\begin{split} \lambda_{lt} &= \frac{390/2,05}{\sqrt{1,132}[1 + \frac{1}{20}(\frac{390/2,05}{18/0,8})^2]^{0,25}} = 122,26 \\ \lambda_{lt} &= \left(\frac{\lambda_{lt}}{\lambda_1}\right) \times \sqrt{\beta_w} = \left(\frac{122,26}{86,81}\right) \times \sqrt{1} = 1,40 > 0,4 \ \rightarrow risque \ de \ diversment \\ \varphi_{lt} &= 0,5[1 + \alpha_l(\lambda_{lt} - 0,2) + \lambda_{lt}^2] \\ \alpha_l &= 0,21 \ pour \ les \ profilés \ laminé. \\ \varphi_{lt} &= 0,5[1 + 0,21(1,40 - 0,2) + 1,40^2] = 1,60 \\ \chi_{lt} &= \frac{1}{1,60 + [1,60^2 - 1,40^2]^{0,5}} = 0,42 \\ M_{b,rd} &= 0,42 \times 1 \times \frac{166,4 \times 10^3 \times 275}{1} \times 10^{-6} = 19,22 \ KN.m \\ Msd, y &= 23,65 \ KN.m > M_{b,rd} = 19,22 \ KN.m \end{split}$$

La condition n'est pas vérifiée, comme solution on augmente la section du profilé à **IPE200,** et on revérifie la condition :

$$\begin{split} \lambda_{lt} &= \frac{390/2,24}{\sqrt{1,132} [1 + \frac{1}{20} (\frac{390/2,24}{20/0,85})^2]^{0,25}} = 117,69 \\ \lambda_{lt} &= \left(\frac{\lambda_{lt}}{\lambda_1}\right) \times \sqrt{\beta_w} = \left(\frac{117,69}{86,81}\right) \times \sqrt{1} = 1,35 > 0,4 \ \rightarrow risque \ de \ diversment \\ \varphi_{lt} &= 1,53 \ ; \ \chi_{lt} = 0,44 \\ M_{b,rd} &= 0,44 \times 1 \times \frac{220,6 \times 10^3 \times 275}{1} \times 10^{-6} = 26,69 \ KN. m \\ Msd, y &= 23,95 \ KN. m \ < M_{b,rd} = 26,69 \ KN. m \end{split}$$

La condition est vérifiée, donc on adopte des pannes d'IPE200 pour notre structure.

3.2.6 Calcul des liernes dans les pannes :

Les liernes sont des tirants qui fonctionnent en traction. Elles sont généralement formées de barres rondes ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des pannes.

Figure 3-7 : La disposition des liernes sur les pannes

3.2.6.1 Les efforts dans les liernes :

La combinaison de charge la plus défavorable est :

 $q_y = 1,35$ Gy + 1,5N = 0,37 KN/m

3.2.6.2 Calcul la réaction R au niveau de la lierne : $R = 1,25 \times q_y \times \frac{L}{2} = 1,25 \times 0.37 \times \frac{7,8}{2} = 1,80 \text{ KN}$ $T_1 = \frac{R}{2} = \frac{1,80}{2} = 0,9 \text{ KN}$ $T_n = (2n-1) \times \frac{R}{2}$ $T_5 = (2 \times 5 - 1) \times \frac{1,80}{2} = 8,1 \text{ KN}$ $T_{bretelle} = \frac{T_5 + R}{2 \times \sin(\theta)}$ $tg(\theta) = \frac{e}{L/2} = \frac{1,2}{7,8/2} = 0,30 \rightarrow \theta = tg^{-1}(0,30) = 16,70^{\circ}$ $T_{bretelle} = \frac{8,1 + 1,80}{2 \times \sin(16,70)} = 17,22 \text{ KN}$

3.2.6.3 Dimensionnent des liernes :

Le tronçon le plus sollicité est T_{bretelle}

Condition de vérification à la résistance plastique de la section brute :

$$N_{tsd} \le N_{pl}$$

$$N_{pl} = \frac{A \times F_y}{\gamma_{m0}} \to A \ge \frac{N_{t,sd} \times \gamma_{m0}}{F_y}$$

$$A \ge \frac{17,22 \times 1,1 \times 10^3}{275} = 68,88 \ mm^2$$

$$A = \frac{\pi \times \phi^2}{4} \ge 68,88 \ mm^2$$

Donc :

$$\phi \ge \sqrt{\frac{4 \times 68,88}{\pi}} = 9,36 \ mm$$

On adopte une barre ronde de diamètre $\phi = 10$ mm.

3.2.7 Calcul de l'échantignole :

3.2.7.1 Introduction :

L'échantignolle est un dispositif de fixation qui permet fixer les pannes sur les fermes ou les traverses de portique.

L'excentrement t est limité par la condition suivant :

$$2(\frac{b_{panne}}{2}) \le t \le 3(\frac{b_{panne}}{2})$$

Les pannes sont des IPE 180 avec :

b = 9,1 cm; h = 18 cm soit t = 10 cm

Figure 3-8 : Schéma statique de l'échantignole

Le principe de dimensionnement est de déterminer le moment de renversement du au chargement surtout avec l'effort de vent de soulèvement :

La combinaison la plus défavorable est :

$$q_z = 3,08 \ KN/m \ Sous : G - 1,5W^{-1}$$

$$q_{y} = 0.09 \ KN/m \ Sous : G - 1.5W^{-1}$$

Les efforts revenant à l'échantignole intermédiaire sont :

$$R_z = 2(q_{u,z} \times \frac{L}{2}) = 2 \times (3,08 \times \frac{7,8}{2}) = 24,02 \text{ KN}$$
$$R_y = 2(q_{u,y} \times \frac{L}{2}) = 2 \times (0,09 \times \frac{7,8}{2}) = 0,7 \text{ KN}$$

3.2.7.2 Dimensionnement de l'échantignole :

Les efforts R_z et R_y risquent de provoquer le pliage de l'échantignole pour prévenir ce risque, il faut vérifier que :

$$\begin{split} M_{sd} &\leq M_{rd} \\ M_{sd} &= R_z \times t + R_y \times \frac{h}{2} = 24,02 \times 0,10 + 0,7 \times \frac{0,18}{2} \\ M_{sd} &= 2,46 \; KN.m \\ M_{sd} &\leq M_{rd} \rightarrow Wel, y \geq \frac{M_{sd} \times \gamma_{m0}}{F_y} \\ \rightarrow Wel, y \geq \frac{M_{sd} \times \gamma_{m0}}{F_y} = \frac{2,46 \times 10^6 \times 1,1}{275} \\ \rightarrow Wel, y \geq 9,84 \times 10^3 mm^3 \end{split}$$

$$Wel, y = \frac{a \times e}{6}$$

Wel, y: Moment statique de l'échantignole.

a : la largeur de l'échantignole, déterminé après le pré dimensionnement de la traverse.

prenant : $\mathbf{a} = \mathbf{b}$ d'un IPE330 $\rightarrow a = b = 160mm$

$$Wel, y = \frac{135 \times e}{6}$$
$$e = \sqrt{\frac{6 \times Wel, y}{160}} = \sqrt{\frac{6 \times 9,84 \times 10^3}{160}} \to e = 19,20 \text{ mm}.$$

On adopte un échantignole d'épaisseur e = 8mm. Avec raidisseur de 10mm

Figure 3-9 : La coupe de l'échantignole

3.3 Calcul les lisses des bardages :

3.3.1 Introduction :

Les lisses de bardage sont constituées de poutrelles (IPE, UAP, UPN) ou des profils mince pliés disposées horizontalement, elles sont portées par les poteaux de portiques ou éventuellement par les potelets intermédiaires. Les lisses sont destinées à reprendre les efforts du vent sur le bardage.

Figure 3-10 : Disposition de la lisse sur le poteau

3.3.2 Coté Pignon :

3.3.2.1 Les données :

- La portée de la lisse est de : L = 5m.
- Entraxe des lisses : e = 1,5m.
- On dispose de 9 lisses de bardage.
- Les lisses sont en acier S275 : Fy=275MPA.
- La charge du vent la plus défavorable coté pignon est :

 $W_{max} = 0,786 \, KN/m^2$

3.3.2.2 Evaluation des charges :

> Surcharge climatique due au vent :

 $W = W_{max} \times e = 0,786 \times 1,5 = 1,18 \, KN/m$

3.3.2.3 Pré dimensionnement des pannes :

Vérification à l'ELS (flèche) :

Figure 3-11 : Schéma statique de la lisse de bardage du pignon

$$fz = \frac{5 \times q_z \times L^4}{384 \times E \times Iy} \le f_{adm} = \frac{L}{200} \qquad avec \qquad q_z = W^+$$

 $Iy \ge \frac{5 \times 200 \times q_z \times L^3}{384 \times E} = \frac{1000 \times 1,18 \times 5000^3}{384 \times 210000} = 182,91 \text{ cm}^4$

Donc on opte pour un **UPN100.** De $I_y = 206 \ cm^4$

3.3.2.4 Les charges permanentes G :

- Poids propre de la couverture : (Panneau sandwich) : $G_{panneau} = 10.45 \frac{Kg}{m^2}$
- Poids des accessoires de pose estimé : $G_{acc} = 2 Kg/m^2$
- Poids propre de la panne (UPN100) : $G_{panne} = 10,6 Kg/ml$
- $G = (G_{panneau} + G_{acc}) \times e + G_{panne}$

 $G = (0,10+0,02) \times 1,5 + 0,106 = 0,286 \, KN/m$

3.3.2.5 Les combinaisons d'actions : <u>ELU :</u>

- $q_y = 1,35 \times G = 0,386 \, KN/m$
- $q_z = 1.5 \times W = 1.77 \ KN/m$ ELS:
- $\succ q_y = G = 0,286 \, KN/m$
- $→ q_z = W = 1,18 KN/m$

3.3.2.6 Vérification de la flèche :

L'axe (ZZ) :

$$fz = \frac{5 \times q_z \times L^4}{384 \times E \times Iy} = \frac{5 \times 1,18 \times 5000^4}{384 \times 210000 \times 206 \times 10^4} = 22,19 \text{ mm}$$

 $f_{adm} = \frac{L}{200} = \frac{5000}{200} = 25mm \qquad fz < f_{adm} \qquad \text{Condition vérifié.}$

L'axe (YY) :

$$fy = \frac{5 \times q_y \times L^4}{384 \times E \times Iz} = \frac{5 \times 0,286 \times 5000^4}{384 \times 210000 \times 29,3 \times 10^4} = 37,82 \text{ mm}$$

m $fy > f_{adm}$ Condition non vérifié.

 $f_{adm} = 25mm$

Dans ce cas on introduit des liernes à mi- travée :

$$fy = \frac{2,05 \times q_y \times (L/2)^4}{384 \times E \times Iz} = \frac{2,05 \times 0,286 \times (5000/2)^4}{384 \times 210000 \times 29,3 \times 10^4} = 0,97 \ mm$$

 $f_{adm} = \frac{L/2}{200} = \frac{5000/2}{200} = 12,5mm$ fy < f_{adm} Condition vérifié.

3.3.2.7 Vérification à l'ELU:

3.3.2.7.1 Vérification à la flexion déviée :

$$\left[\frac{My, sd}{Mpl, yrd}\right]^{\alpha} + \left[\frac{Mz, sd}{Mpl, zrd}\right]^{\beta} \le 1$$

Selon EC3, Pour les profiles en U : $\alpha = 1$; $\beta = 1$

$$Msd, y = \frac{q_z \times L^2}{8} = \frac{1,77 \times 5^2}{8} = 5,53 \text{ KN. m}$$

$$Mpl, y = \frac{Wpl, y \times Fy}{\gamma_{m0}} = \frac{49 \times 10^{-3} \times 275}{1,1} = 12,25 \text{ KN. } m$$

$$\rightarrow Msd, y < Mpl, y \rightarrow \text{Condition vérifié}$$

L'axe (ZZ) :

$$Msd, z = \frac{q_y \times L^2}{32} = \frac{0,386 \times 5^2}{32} = 0,30 \text{ KN. } m$$

$$Mpl, z = \frac{Wpl, z \times Fy}{\gamma_{m0}} = \frac{16,2 \times 10^{-3} \times 275}{1,1} = 4,05 \text{ KN. } m$$

$$\left(\frac{5,53}{12,25}\right)^1 + \left(\frac{0,30}{4,05}\right)^1 = 0,52 < 1$$

Condition vérifié.

3.3.2.7.2 Vérification de l'effort tranchant :

Pour la vérification au cisaillement on utilise la condition suivante :

 $Vsd, z \leq Vpl, z$ Et $Vsd, y \leq Vpl, y$

L'axe (ZZ) :

$$Vsd, z = \frac{q_z \times L}{2} = \frac{1,77 \times 5}{2} = 4,42 \text{ KN}$$
$$Vpl, z = \frac{\text{Avz} \times Fy}{\sqrt{3} \times \gamma_{m0}} = \frac{6,46 \times 10^2 \times 275}{\sqrt{3} \times 1,1} = 93,24 \text{ KN}$$
$$Vsd, z < 0,5 \text{ Vpl}, z \rightarrow \text{Condition vérifié.}$$

L'axe (YY) :

$$Vsd, y = 1,25 \times \frac{q_y \times L}{2} = 1,25 \times \frac{0,386 \times 2,5}{2} = 0,60 \text{ KN}$$
$$Vpl, y = \frac{\text{Avy} \times Fy}{\sqrt{3} \times \gamma_{m0}}$$

Calcul de Avy :

L'aire efficace de cisaillement Avy dans la direction de l'axe fort est calculée en utilisant l'aire de l'âme du profilé, car c'est là que se concentre la résistance au cisaillement.

Avy = h * tw = 10 * 0,6 = 6 cm²

$$Vpl, y = \frac{6 \times 10^2 \times 275}{\sqrt{3} \times 1,1} = 86,60 KN$$

 $Vsd, y < 0.5 Vpl, y \rightarrow$ Condition vérifié.

3.3.2.8 Vérification au déversement : On doit vérifier la condition suivante :

$$M_{b,rd} \ge Msd, y$$

Msd,
$$y = \frac{q_z \times L^2}{8} = \frac{1,77 \times 5^2}{8} = 5,53 \text{ KN. m}$$

$$M_{b,rd} = \chi_{lt} \times \beta_w \times \frac{Wpl, y \times Fy}{\gamma_{m1}}$$

Pour des sections mono symétriques comme les UPN ont calcul l'élancement réduit comme suit :

$$\lambda_{lt} = \sqrt{\frac{Wply \times fy}{Mcr}} \qquad [Annexe \ F \ a \ EC3]$$

L'équation du moment critique est donné dans l'annexe F de EC3 comme suit :

$$M_{cr} = C_{I} \frac{\pi^{2} E I_{z}}{(k_{z}L)^{2}} \left[\sqrt{\left(\frac{k_{z}}{k_{w}}\right)^{2} \frac{I_{w}}{I_{z}} + \frac{(k_{z}L)^{2} G I_{t}}{\pi^{2} E I_{z}} + (C_{2} z_{g} - C_{3} z_{j})^{2} - (C_{2} z_{g} - C_{3} z_{j}) \right]}$$

On tire direct la valeur du moment critique dans le Logiciel ROBOT :

$$Mcr = 8,91 \, KN. m$$

$$\lambda_{lt} = \sqrt{\frac{49 \times 10^3 \times 275}{8,91 \times 10^6}} = 1,23$$

D'où : $\chi_{lt} = 0.51$ (Courbe **a** Car c'est un Profilé laminé)

On aura :

$$M_{b,rd} = 0.51 \times 1 \times \frac{49 \times 10^3 \times 275}{1} = 6.87 \text{ KN. m}$$

On constate que :

$$Msd, y = 5,53 KN. m < M_{b,rd} = 6,87 KN. m$$

Donc le choix d'UPN100 est satisfait.

3.3.2.9 Calcul des liernes dans les lisses de bardages coté pignon : G = 0,286 KN/m

Le dimensionnement se fait avec cette combinaison :

$$q_{v} = 1,35G$$

 $q_{y} = 1,35 \times 0,286 = 0.386 \, KN/ml$

3.3.2.9.1 Calcul la réaction R au niveau de la lierne :

Figure 3-12 : la disposition des liernes sur la lisse du pignon

$$R = 1,25 \times q_y \times \frac{L}{2} = 1,25 \times 0.386 \times \frac{5}{2} = 1,20 \ KN$$

$$T_1 = \frac{R}{2} = \frac{1,20}{2} = 0,60 \ KN$$

$$T_n = (2n-1) \times \frac{R}{2}$$

$$T_7 = (2 \times 7 - 1) \times \frac{1,20}{2} = 7,8 \ KN$$

$$T_{bretelle} = \frac{T_7 + R}{2 \times sin(\theta)}$$

$$tg(\theta) = \frac{e}{L/2} = \frac{1,5}{5/2} = 0,6 \to \theta = tg^{-1}(0,6) = 30,96^{\circ}$$

$$T_8 = \frac{7,8 + 1,2}{2 \times sin(30,96)} = 8,74 \ KN$$

3.3.2.10 Dimensionnent des liernes :

Le tronçon le plus sollicité est T_{bretelle}

Condition de vérification à la résistance plastique de la section brute :

$$\begin{split} N_{tsd} &\leq N_{pl} \\ N_{pl} &= \frac{A \times F_y}{\gamma_{m0}} \rightarrow A \geq \frac{N_{t,sd} \times \gamma_{m0}}{F_y} \end{split}$$

$$A \ge \frac{9 \times 1.1 \times 10^3}{275} = 36 \ mm^2$$
$$A = \frac{\pi \times \phi^2}{4} \ge 36 \ mm^2$$

Donc :

$$\phi \ge \sqrt{\frac{4 \times 36}{\pi}} = 6,77 \ mm$$

On adopte une barre ronde de diamètre $\phi = 8$ mm

3.3.3 Coté long pan :

3.3.3.1 Les données :

- La portée de la lisse est de L = 7,8m
- Entraxe des lisses e = 1,5m.
- On dispose de 9 lisses de bardage.
- Les lisses sont en acier S275 : Fy=275MPA.
- La charge du vent la plus défavorable coté long pan est : $W_{max} = 0.754 \ KN/m^2$

3.3.3.2 Evaluation des charges :

Surcharge climatique due au vent :

 $W = W_{max} \times e = 0,754 \times 1,5 = 1,131 \, KN/m$

3.3.3.3 Pré dimensionnement des lisses :

Vérification à l'ELS (flèche) :

$$fz = \frac{5 \times q_z \times L^4}{384 \times E \times Iy} \le f_{adm} = \frac{L}{200}$$
 avec $q_z = W$

$$Iy \ge \frac{5 \times 200 \times q_z \times L^3}{384 \times E} = \frac{1000 \times 1,131 \times 7800^3}{384 \times 210000} = 665,57 \ cm^4$$

Donc on opte pour un **UPN160,** de $I_v = 925 \ cm^4$

3.3.3.4 Les charges permanentes G :

- Poids propre de la couverture : (Panneau sandwich) : $G_{panneau} = 10.45 \frac{Kg}{m^2}$
- Poids des accessoires de pose estimé : $G_{acc} = 2 Kg/m^2$
- Poids propre de la panne estimé (UPN160) : $G_{panne} = 18,9Kg/ml$

- $G = (G_{panneau} + G_{acc}) \times e + G_{panne}$ $G = (0,10+0,02) \times 1,5 + 0,189 = 0,37 \ KN/m$
- 3.3.3.5 Les combinaisons d'actions : ELU:
- $q_v = 1,35 \times G = 0,50 \ KN/m$
- $q_z = 1.5 \times W = 1.69 \ KN/m$

ELS:

▶ $q_y = G = 0,37 \ KN/m$ $P q_z = W^+ = 1,131 \, KN/m$

3.3.3.6 Vérification de la flèche a ELS : L'axe (ZZ) :

$$fz = \frac{5 \times q_z \times L^4}{384 \times E \times Iy} = \frac{5 \times 1,131 \times 7800^4}{384 \times 210000 \times 925 \times 10^4} = 28,06 \ mm$$

 $f_{adm} = \frac{L}{200} = \frac{7800}{200} = 39mm$ $fz < f_{adm}$ La Condition est vérifiée.

L'axe (YY):

$$fy = \frac{5 \times q_y \times L^4}{384 \times E \times Iz} = \frac{5 \times 0.37 \times 7800^4}{384 \times 210000 \times 85.3 \times 10^4} = 99.55 \ mm$$

 $f_{adm} = 39mm$ $fy > f_{adm}$ Condition non vérifié.

Dans ce cas on introduit des liernes à mi- travée et on recalcule :

$$fy = \frac{2,05 \times q_y \times (L/2)^4}{384 \times E \times Iz} = \frac{2,05 \times 0,37 \times (7800/2)^4}{384 \times 210000 \times 85,3 \times 10^4} = 2,55 \text{ mm}$$

 $f_{adm} = \frac{L/2}{200} = \frac{7800/2}{200} = 19,5mm$ $fy < f_{adm}$ La Condition est vérifiée.

3.3.3.7 Vérification à l'ELU:

3.3.3.7.1 Vérification à la flexion déviée :

$$\left[\frac{My, sd}{Mpl, yrd}\right]^{\alpha} + \left[\frac{Mz, sd}{Mpl, zrd}\right]^{\beta} \leq$$

Selon EC3, Pour les profiles en U : $\alpha = 1$; $\beta = 1$

L'axe (YY) :

$$Msd, y = \frac{q_z \times L^2}{8} = \frac{1,69 \times 7,8^2}{8} = 12,85 \text{ KN. }m$$
$$Mpl, y = \frac{Wpl, y \times Fy}{\gamma_{m0}} = \frac{138 \times 10^{-3} \times 275}{1,1} = 34,5 \text{ KN. }m$$
$$\rightarrow Msd, y < Mpl, y \quad \text{La Condition est vérifiée.}$$

1

Msd,
$$z = \frac{q_y \times L^2}{32} = \frac{0.50 \times 7.8^2}{32} = 0.95 \text{ KN. m}$$

$$Mpl, z = \frac{Wpl, z \times Fy}{\gamma_{m0}} = \frac{35, 2 \times 10^{-3} \times 275}{1, 1} = 8,8 \text{ KN. } m$$
$$\left(\frac{12,85}{34,5}\right)^{1} + \left(\frac{0,95}{8,8}\right)^{1} = 0,48 < 1$$

La Condition est vérifiée.

3.3.3.7.2 Vérification de l'effort tranchant :

Pour la vérification au cisaillement on utilise la condition suivante :

$$Vsd, z \leq Vpl, z$$
 Et $Vsd, y \leq Vpl, y$

L'axe (ZZ) :

$$Vsd, z = \frac{q_z \times L}{2} = \frac{1,69 \times 7,8}{2} = 6,59 \ KN$$
$$Vpl, z = \frac{Avz \times Fy}{\sqrt{3} \times \gamma_{m0}} = \frac{12,60 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 181,86 \ KN$$
$$Vsd, z < 0,5 \ Vpl, z \rightarrow$$
 La Condition est vérifiée.

$$Vsd, y = 1,25 \times \frac{q_y \times L}{2} = 1,25 \times \frac{0,50 \times 3,9}{2} = 1,22 \text{ KN}$$
$$Vpl, y = \frac{\text{Avy} \times Fy}{\sqrt{3} \times \gamma_{m0}}$$

Calcul de Avy :

L'aire efficace de cisaillement Avy dans la direction de l'axe fort est calculée en utilisant l'aire de l'âme du profilé, car c'est là que se concentre la résistance au cisaillement.

$$Avy = h * tw = 16 * 0,75 = 12 cm^{2}$$
$$Vpl, z = \frac{12 \times 10^{2} \times 275}{\sqrt{3} \times 1,1} = 164,54KN$$

 $Vsd, y < Vpl, y \rightarrow$ La Condition est vérifiée.

3.3.3.8 Vérification au déversement :

On doit vérifier la condition suivante :

$$M_{b,rd} \ge Msd, y$$

$$Msd, y = \frac{q_z \times L^2}{8} = \frac{1,69 \times 7,8^2}{8} = 12,85 \text{ KN. } m$$

$$M_{b,rd} = \chi_{lt} \times \beta_w \times \frac{Wpl, y \times Fy}{\gamma_{m1}} \qquad \lambda_{lt} = \sqrt{\frac{Wply \times fy}{Mcr}}$$

On tire la valeur du moment critique de logiciel ROBOT :

$$Mcr = 15,78 \, KN. \, m$$

$$\lambda_{lt} = \sqrt{\frac{138 \times 10^3 \times 275}{15,78 \times 10^6}} = 1,55$$

$$\lambda_{lt} = 1,55 \rightarrow \chi_{lt} = 0,35$$

On aura :

$$M_{b,rd} = 0.35 \times 1 \times \frac{138 \times 10^3 \times 275}{1} \times 10^{-6} = 13,28 \text{ KN}.$$

On constate que :

 $Msd, y = 12,85 KN. m < M_{b,rd} = 13,28 KN. m$

Donc le choix d'UPN160 est satisfait.

3.3.3.9 Calcul des liernes dans les lisses de bardages coté long pan :

La combinaison de charge est la suivante :

Sous la combinaison : $q_y = 1,35G$

 $q_y = 1,35 \times 0,37 = 0.50 \, KN/ml$

> Calcul la réaction R au niveau de la lierne :

Figure 3-14 : Disposition des liernes sur les lisses du long pan

$$R = 1,25 \times q_y \times \frac{L}{2} = 1,25 \times 0.50 \times \frac{7,8}{2} = 2,43 \text{ KN}$$

$$T_{1} = \frac{R}{2} = \frac{2,43}{2} = 1,21 \text{ KN}$$

$$T_{n} = (2n-1) \times \frac{R}{2}$$

$$T_{7} = (2 \times 7 - 1) \times \frac{2,43}{2} = 15,79 \text{ KN}$$

$$T_{bretelle} = \frac{T_{7} + R}{2 \times \sin(\theta)}$$

$$tg(\theta) = \frac{e}{L/2} = \frac{1,5}{7,8/2} = 0,38 \rightarrow \theta = tg^{-1}(0,38) = 20,81^{\circ}$$

$$T_{bretelle} = \frac{15,79 + 2,43}{2 \times \sin(20,81)} = 25,64 \text{ KN}$$

3.3.3.10 Dimensionnent des liernes :

Le tronçon le plus sollicité est T_{bretelle}

Condition de vérification à la résistance plastique de la section brute :

$$N_{tsd} \le N_{pl}$$

$$N_{pl} = \frac{A \times F_y}{\gamma_{m0}} \rightarrow A \ge \frac{N_{t,sd} \times \gamma_{m0}}{F_y}$$

$$A \ge \frac{25,64 \times 1,1 \times 10^3}{275} = 102,56 \ mm^2$$

$$A = \frac{\pi \times \phi^2}{4} \ge 102,56 \ mm^2$$

Donc :

N 7

$$\phi \ge \sqrt{\frac{4 \times 102,56}{\pi}} = 11,42 \ mm$$

On adopte une barre ronde de diamètre $\phi = 12$ mm

3.4 Etude des escaliers :

Les escaliers, éléments omniprésents dans notre quotidien, sont bien plus que de simples structures pour nous permettre de passer d'un niveau à un autre. . Il est composé d'une succession régulière de plans horizontaux consistant en des marches et des paliers. Dans notre projet les escaliers sont en charpente métallique, elles sont composées de deux volées liées à un palier de repos, ce dernier se compose d'une solive UPN encastrée aux poteaux, et des marches constituées par des cornières de support et de tôle striée.

Figure 3-15 : Vue en plan de l'escalier

3.4.1 Définition :

- **Un palier** : dont la fonction est de permettre un repos pendant la montée, est une aire plane située à chaque étage au départ et à l'arrivée d'une volée d'escaliers.
- Une volée : c'est une partie droite ou courbée d'escalier comprise entre deux paliers successifs
- **Limon** : c'est une partie rampante d'un escalier dans laquelle s'assemblent les marches et contremarches
- **Giron** : c'est la largeur d'une marche d'escalier, mesurée entre l'aplomb de deux contremarches successives.

3.4.2 Pré dimensionnement de l'escalier :

h: Hauteur de la contre marche donné par : $16 \text{cm} \le h \le 18 \text{cm}$

g: Largeur de la marche (giron) donné par : 25cm $\leq h \leq 32$ cm

n: Nombre de contremarche.

H: Hauteur à franchir avec une volée H= 1,44 m

La condition assurant le confort de l'escalier est donnée par la relation de BLONDEL

 $60 \ cm \le g + 2h \le 64 \ cm \ avec \ h \ = \frac{H}{n}$

On prend : h = 16 cm

$$\rightarrow n = \frac{H}{h} = \frac{144}{16} = 9$$
 contre marche

n-1=8 marche

 $60 \le g + 2 \times 16 \le 64$

 $28 \ cm \le g \le 32$

On prend : g = 28 cm

Angle d'inclinaison : $\alpha = \arctan g\left(\frac{1,44}{2,24}\right) = 32,73^{\circ}$

Figure 3-16 : Schéma statique de l'escalier

3.4.3 Evaluation de charge :

Charge permanente :

- Revêtement (e=2cm) : $G_{rev} = 22 \times 0.02 = 0.44 \text{ KN}/m^2$
- Mortier de pose (e=2cm) : $G_{mortier} = 20 \times 0.02 = 0.4 \ KN/m^2$
- Tôle striée (5mm) : $G_{tole} = 78,5 \times 0,005 = 0,39 \ KN/m^2$
- Garde de corps (e=2cm) : $G_{garde} = 78,5 \times 0,02 = 1,57 \ KN/m^2$

 $G = 2,8 KN/m^2$

Charge d'exploitation :

$$Q = 2,5 \ KN/m^2$$

3.4.4 Pré dimensionnement de la cornière :

Figure 3-17 : Disposition des cornières

Chaque cornière reprend la moitié de la charge.

ELU :

$$q_u = (1,35G + 1,5Q) \times \frac{g}{2} = (1,35 \times 2,8 + 1,5 \times 2,5) \times \frac{0,28}{2} = 1,05 \text{ KN/ml}$$

<u>ELS :</u>

$$q_s = (G+Q) \times \frac{g}{2} = (2,8+2,5) \times \frac{0,28}{2} = 0,74 \text{ KN/ml}$$

Condition de flèche :

On a une poutre posé sur deux appuis simple et une charge uniformément repartie donc la flèche est :

$$fz = \frac{5 \times q_s \times l^4}{384 \times E \times Iy} \le \frac{l}{300}$$

 $Iy \geq \frac{1000 \ q_s \ l^3}{384 \ E} = \frac{1500 \times 0.74 \times 1200^3}{384 \times 210000} = 2,378 \ \times 10^4 \ mm^4$

On adopte une cornière à ailes égales de : L35x35x3,5

Avec les caractéristiques suivantes :
$$\begin{cases} I_y = I_z = 2,66 \ cm^4 \\ W_{elz} = W_{ely} = 1,06 \ cm^3 \\ G_{cornière} = 1,84 \ Kg/m \end{cases}$$

On revérifie la flèche en prenant compte du poids propre de la cornière :

$$\begin{aligned} q'_{s} &= q_{s} + G_{cornière} = 0,74 + 0,0184 = 0,758 \ KN/ml \\ fz &= \frac{5 \times q_{s} \times l^{4}}{384 \times E \times Iy} = \frac{5 \times 0,758 \times 1200^{4}}{384 \times 210000 \times 2,66 \times 10^{4}} = 3,66 \ mm \\ f_{adm} &= \frac{l}{300} = \frac{1200}{300} = 4 \ mm \\ fz &= 3,66 \ mm \leq f_{adm} = 4 \ mm \end{aligned}$$

La condition de flèche est vérifiée.

3.4.5 Vérification de la résistance :

3.4.5.1 Moment fléchissant : $a' \times l^2$

$$M_{sd} = \frac{q_u \times t}{8}$$

 $q'_u = q_u + 1,35 \times G_{cornière} = 1,05 + 0,0184 = 1,07 \, KN/ml$

$$M_{sd} = \frac{1,07 \times 1,2^2}{8} = 0,192 \text{ KN.m}$$

$$Wnly \times fy = 1.06 \times 10^{-6} \times 275 \times 10^3$$

$$Mply = \frac{Wply \times fy}{1} = \frac{1,06 \times 10^{-6} \times 275 \times 10^{-6}}{1} = 0,29 \text{ KN. m}$$

 $M_{sd}=0,\!192\,KN.\,m\leq Mply=0,\!29\,KN.\,m$

La condition est vérifiée

3.4.5.2 Effort tranchant :

$$V_{sd} = \frac{q_u' \times l}{2} = \frac{1,07 \times 1,2}{2} = 0,136 \, KN$$

 $V_{plrd} = \frac{fy \times Avz}{\sqrt{3} \times 1}$ $Avz = h \times t = 3,5 \times 35 = 122,5 \, mm^2$
 $V_{plrd} = \frac{275 \times 122,5}{\sqrt{3} \times 1} \times 10^{-3} = 19,45 \, KN$

 $V_{sd} = 0,136 \ KN \le V_{plrd} = 19,45 \ KN$

La condition est vérifiée.

Toutes les conditions sont vérifiées, donc L35x35x3,5 convient comme cornière de support.

3.4.6 Etude de limon :

Le limon est l'élément qui supporte le poids total de l'escalier et qui permet aux marches de prendre appui. La charge revenant au limon est :

Figure 3-18 : Schéma statique du limon

3.4.6.1 Evaluation de charge :

3.4.6.1.1 Charge permanente :

- Volée
 - Revêtement (e=2cm) : $G_{rev} = 22 \times 0.02 = 0.44 \text{ KN/m}^2$
 - Mortier de pose (e=2cm) : $G_{mortier} = 20 \times 0.02 = 0.4 \ KN/m^2$
 - Tôle striée (5mm) : $G_{tole} = 78,5 \times 0,005 = 0,39 \ KN/m^2$
 - Garde de corps (e=2cm) : $G_{garde} = 78,5 \times 0,02 = 1,57 \ KN/m^2$
 - Poids propre de la cornière L35x35x3,5 : $G_{cornière} = 0,0184 KN/ml$
 - Poids estimé de 2 limons UPN140 : $G_{limon} = 2 \times 0,16 = 0,32 \text{ KN/ml}$
- Palier :
 - Revêtements en carrelage (e=2cm) : $G_{rev} = 22 \times 0.02 = 0.44 \text{ KN}/m^2$
 - Mortier de pose (e=2cm) : $G_{mortier} = 20 \times 0.02 = 0.4 \text{ KN}/m^2$
 - Dalle en béton armé (e=10 cm) : $G_{b\acute{e}ton} = 0,1 \times 25 = 2,5 \ KN/m^2$
 - Tôle striée (5mm) : $G_{tole} = 78,5 \times 0,005 = 0,39 \ KN/m^2$

Avec longueur de la marche: Em = 1,2 m

 $G_{v} = (0,44 + 0,4 + 0,39) \times 1,2 + (1,57 \times 1) + 0,018 + 0,32 = 3,38 \text{ KN/ml}$ $G_{p} = (0,44 + 0,4 + 2,5 + 0,39) \times 1,2 = 4,47 \text{ KN/ml}$

3.4.6.1.2 Charge d'exploitation : $Q = 2,5 KN/m^2$

 $Q_v = Q_p = 2,5 \times 1,2 = 3 \ KN/ml$

3.4.6.2 Pré dimensionnement de limon :

La charge revenant au limon est :

$$q_{sv} = \frac{G_v + Q_v}{2} = \frac{3,38 + 3}{2} = 3,19 \text{ KN/ml}$$

$$G_v + Q_v = 4.47 + 3$$

$$q_{sp} = \frac{a_p + Q_p}{2} = \frac{447 + 3}{2} = 3,73 \text{ KN/ml}$$

On va calculer la charge équivalente qui revient au limon :

$$q_{eq}^{s} = \frac{q_{v} \times L_{v} + q_{p} \times L_{p}}{L} = \frac{3,19 \times 2,44 + 3,73 \times (1,34 + 1,20)}{2,44 + 1,34 + 1,20} = 3,46 \text{ KN/ml}$$

Figure 3-19 : Schéma statique de la charge équivalente revenant au limon

Condition de flèche :

$$Iy \ge \frac{300 * 5 * q_{eq} * l^3}{384 * E} = \frac{300 \times 5 \times 3,46 \times 4980^3}{384 \times 210000} = 794,88 \times 10^4 \ mm^4$$

On adopte un UPN160 avec les caractéristiques suivantes :

$$\begin{cases} I_y = 925 \ cm^4 \\ W_{ply} = 138 \ cm^4 \\ G_{UPN} = 18,9 \ Kg/m \end{cases}$$

On revérifie la flèche en prenant compte du poids propre de la cornière :

$$\begin{aligned} q'_{eq} &= q_{eq} + G_{UPN} = 3,46 + 0,189 = 3,65 \ KN/ml \\ fcal &= \frac{5 \times q_{eq}' \times l^4}{384 \times E \times ly} = \frac{5 \times 3,65 \times 4980^4}{384 \times 210000 \times 925 \times 10^4} = 15,04 \ mm \\ f_{adm} &= \frac{l}{300} = \frac{4980}{300} = 16,6 \ mm \\ fcal &= 15,08 \ mm \le f_{adm} = 16,6 \ mm \end{aligned}$$

La condition de flèche est vérifiée.

3.4.6.3 Vérification de la résistance : 3.4.6.3.1 Moment fléchissant :

$$M_{sd} = \frac{q_u^{eq} \times l^2}{8}$$
$$q_{uv} = \frac{1,35G_v + 1,5Q_v}{2} + 1,35G_{UPN} = \frac{1,35 \times 3,38 + 1,5 \times 3}{2} + 1,35 \times 0,18 = 4,77KN/ml$$

$$q_{up} = \frac{1,35G_p + 1,5Q_p}{2} + 1,35G_{UPN} = \frac{1,35 \times 4,47 + 1,5 \times 3}{2} + 1,35 \times 0,81 = 5,51 \text{ KN/ml}$$

$$q_u^{eq} = \frac{q_{uv} \times L_v + q_{up} \times L_p}{L} = \frac{4,77 \times 2,44 + 5,51 \times 2,54}{4,98} = 5,14 \text{ KN/ml}$$

$$M_{sd} = \frac{5,14 \times 4,98^2}{8} = 15,93 \text{ KN.m}$$

$$Mply = \frac{Wply \times fy}{1} = \frac{138 \times 10^{-6} \times 275 \times 10^3}{1} = 37,95 \text{ KN.m}$$

$$M_{sd} = 15,93 \text{ KN.m} \leq Mply = 37,95 \text{ KN.m}$$
La condition est vérifiée
3.4.6.3.2 Effort tranchant :
$$V_{sd} = \frac{q_u^{eq} \times l}{2} = \frac{5,14 \times 4,98}{2} = 12,79 \text{ KN}$$

$$V_{plrd} = \frac{fy \times Avz}{\sqrt{3} \times 1} \qquad Avz = 12,60 \text{ cm}^2$$

$$V_{plrd} = \frac{275 \times 12,60 \times 10^2}{\sqrt{3} \times 1} \times 10^{-3} = 200,05 \, KN$$

$$V_{sd} = 12,79 \ KN \le V_{plrd} = 200,05 \ KN$$

La condition est vérifiée.

Toutes les conditions sont vérifiées, alors UPN160 convient comme limon pour la volée.

3.4.7 Etude de la poutre palière :

C'est une poutre encastré sur la moitié des deux poteaux avec une longueur de 2,5 m

Figure 3-20 : Schéma statique de la poutre palière

On calcul la charge qui revient à la poutre palière :

$$G = (Gv + Gp) \times \frac{2,5}{2} + G_{UPN} = (3,38 + 4,47) \times \frac{2,5}{2} + 0,18 = 10 \text{ KN/ml}$$
$$Q = 2,5 \times \frac{2,5}{2} = 3,125 \text{ KN/ml}$$

3.4.7.1 Pré dimensionnement de la poutre palière : $q_s = G + Q = 10 + 3,125 = 13,125 KN/ml$

$$Iy \ge \frac{300 * 5 * q_s * l^3}{384 * E} = \frac{300 \times 5 \times 13,12 \times 2500^3}{384 \times 210000} = 381,32 \times 10^4 \, mm^4$$

On adopte un IPE160 de caractéristique suivante :

$$\begin{cases} G = 15,8 \ Kg/m \\ W_{ply} = 123,9 \ cm^4 \\ A_{vz} = 9,7 \ cm^2 \end{cases}$$

> On revérifie la flèche on tenant compte du poids propre de l'IPE160 :
 $q_s = (G + G_{IPE}) + Q = (10 + 0,15) + 3,125 = 13,275 \ KN/ml$
 $fcal = \frac{5 \times q_s \times l^4}{384 \times E \times ly} = \frac{5 \times 13,275 \times 2500^4}{384 \times 210000 \times 869,3 \times 10^4} = 3,69 \ mm$
 $f_{adm} = \frac{l}{300} = \frac{2500}{300} = 8,33 \ mm$

 $fcal = 3,69 \ mm \leq f_{adm} = 8,33 \ mm$

3.4.7.2 Vérification de la résistance a l'ELU :

3.4.7.2.1 Moment fléchissant :

On doit vérifier la condition suivante :

$$M_{sd} \leq M_{plrd}$$

Avec :

$$M_{sd} = \frac{q_u \times L^2}{8}$$

$$q_u = 1,35(G + G_{IPE}) + 1,5Q = 1,35(10 + 0,15) + 1,5 \times 3,125 = 18,39 \ KN/ml$$

$$M_{sd} = \frac{q_u \times L^2}{8} = \frac{18,39 \times 2,5^2}{8} = 14,36 \ KN.m$$

$$M_{plrd} = \frac{Wply \times fy}{\gamma_{m0}} = \frac{123,9 \times 10^3 \times 275}{1,1} \times 10^{-6} = 30,97 \ KN.m$$

 $M_{sd} = 14,36 \ KN. \ m \le M_{plrd} = 30,97 \ KN. \ m$

La condition est vérifiée.

3.4.7.2.2 Vérification de l'effort tranchant :

On doit vérifier la condition suivante :

$$V_{sd} \leq V_{plrd}$$

$$V_{sd} = \frac{q_u \times L}{2} = \frac{18,39 \times 2,5}{2} = 22,98 \ KN$$
$$V_{plrd} = \frac{A_{vz} \times fy}{\gamma_{m0} \times \sqrt{3}} = \frac{9,7 \times 10^2 \times 275}{1,1 \times \sqrt{3}} \times 10^{-3} = 140 \ KN$$

 $V_{sd} = 22,98 \ KN \le V_{plrd} = 140 \ KN$

La condition est vérifiée.

Donc le choix de l'IPE160 pour notre poutre palière est justifié.

3.5 Pré dimensionnement des poteaux :

3.5.1 Poteaux principales

Les poteaux sont des éléments verticaux de l'ossature, Ils sont chargés de transférer aux fondations les efforts provenant des actions agissant sur les poutres. Ils sont essentiellement comprimés sous l'action d'un effort axial de compression, sollicités aussi en flexion composée par les charges du plancher et les efforts horizontales.

En principe les poteaux serons encastres en bas et en tête. Ils seront pré dimensionnes à la compression et à la flexion.

Les poteaux seront pré-dimensionné à L'ELU en compression simple, qui se fera selon la formule suivante :

$$N_{max} = \frac{A \times fy}{\gamma_{m0}}$$

Avec :

N_{max}: Effort normal de compression déterminé par la descente de charges.

A : section du poteau.

fy : Limite d'élasticité de l'acier.

 γ_{m0} : Coefficient partiel de sécurité.

Figure 3-21 : Surface afférente du poteau le plus sollicité

Figure 3-22 : La vue en plan du poteau le plus sollicité

On choisit un poteau au quel revient la plus grande surface estimée a (6.9×15) m²

Les charges appliquées sur le poteau sont concentrées, elles sont représentées dans le tableau suivant :

	Niv +9,52	Niv +6,08	Niv +3,04
Planchers (KN)	429,52	429,52	93,37
Poutre Principale (KN)	36,6	36,6	3,15
Solive (KN)	16,58	16,58	8,29
G _{Totale} (KN)	482,7	482,7	104,81
Q _{Totale} (KN)	258,75	258,75	56,25

 Tableau 3-6 : Evaluation des charges sur le poteau

3.5.1.1 Vérification de la condition de résistance :

On calcule les poteaux à la compression simple à fin de vérifier la résistance de la section. On a :

$$N_{G} = 2 \times 482,7 + 104,81 = 1070,21 \text{ KN}$$

$$N_{Q} = 2 \times 258,75 + 56,25 = 573,75 \text{ KN}$$

$$N_{sd} = 1,35N_{G} + 1,5N_{Q} = 1,35 \times 1070,21 + 1,5 \times 573,75 = 2305,40 \text{ KN}$$

On vérifie :

$$N_{sd} \le \frac{A \times fy}{\gamma_{m0}} \rightarrow A \ge \frac{N_{sd} \times \gamma_{m0}}{fy} = \frac{2305.4 \times 10^3 \times 1}{275}$$

 $A \geq 83,83 \; cm^2$

On adopte un **HEA260**

3.5.1.2 Vérification du flambement : On doit vérifier la condition suivante :

$$N_{max} \le \frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}}$$

Calcul de l'élancement réduit :

$$\begin{split} \lambda_{cr} &= 93, 9\varepsilon = 93, 9 \times 0, 92 = 86, 81 \\ l_{ky} &= l_{kz} = 0, 5 \times l = 0, 5 \times 6, 08 = 3, 04m \\ \lambda_{y} &= \frac{l_{ky}}{i_{y}} = \frac{304}{10,97} = 27, 71 \rightarrow \lambda_{y} = \frac{\lambda_{y}}{\lambda_{cr}} = \frac{27, 71}{86, 81} = 0, 32 > 0, 2 \text{ il } y' a \text{ un risque de flambement} \\ \lambda_{z} &= \frac{l_{kz}}{i_{z}} = \frac{304}{6,50} = 46, 77 \rightarrow \lambda_{z} = \frac{\lambda_{z}}{\lambda_{cr}} = \frac{46, 77}{86, 81} = 0, 54 > 0, 2 \text{ il } y' a \text{ un risque de flambement} \end{split}$$

Choix de la courbe du flambement :

$$\frac{h}{b} = \frac{250}{260} = 0.96 < 1.2$$

$$tf = 12.5mm < 40 mm$$
On a :
$$ZZ \rightarrow Courbe(c) \rightarrow \alpha_z = 0.49$$

$$YY \rightarrow Courbe(b) \rightarrow \alpha_y = 0.34$$

$$\chi_{z} = \frac{1}{\varphi_{z} + [\varphi_{z}^{2} - \lambda_{z}^{2}]^{0.5}} \qquad \chi_{y} = \frac{1}{\varphi_{y} + [\varphi_{y}^{2} - \lambda_{y}^{2}]^{0.5}}$$

$$\varphi_{z} = 0.5[1 + \alpha_{z}(\lambda_{z} - 0.2) + \lambda_{z}^{2}] = 0.73 \rightarrow \chi_{z} = 0.82$$

$$\varphi_{y} = 0.5[1 + \alpha_{y}(\lambda_{y} - 0.2) + \lambda_{y}^{2}] = 0.57 \rightarrow \chi_{y} = 0.95$$

$$\chi_{min} = \min(0.82; 0.95) = 0.82$$

$$\frac{\beta_{a} * fy * A * \chi_{min}}{\gamma_{m1}} = \frac{1 * 27.5 * 86.8 * 0.81}{1} = 1933.47 \, KN$$

$$N_{max} = 2305.40 \, KN > 1933.47 \, KN$$

Condition non vérifié, on augmente la section du profilé à HEA300

$$\chi_{min} = 0.86$$

$$\frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}} = \frac{1 * 27.5 * 112.5 * 0.86}{1} = 2660.62 \text{ KN}$$

$$N_{max} = 2305.40 \text{ KN} < 2660.62 \text{ KN}$$

La condition est vérifiée, Donc on adopte un HEA300 pour nos poteaux principaux.
3.5.2 Poteaux intermédiaires :

Figure 3-23 : Surface afférente du poteau intermédiaire le plus sollicité

On a :

- Les charges permanentes totales revenues des planchers : $N_G = 256,87 \text{ KN}$
- Les charges d'exploitation totales : $N_Q = 124,34 \text{ KN}$

 $N_{sd} = 1,35N_G + 1,5N_Q = 533,28 \, KN$

$$N_{sd} \le \frac{A \times fy}{\gamma_{m0}} \to A \ge \frac{N_{sd} \times \gamma_{m0}}{fy} = \frac{533,28 \times 10^3 \times 1,1}{275}$$

 $A \ge 21,33 \ cm^2$

On adopte un **IPE180.** De $l_y = 1317 \ cm^4$

3.5.2.1 Vérification du flambement :

On doit vérifier la condition suivante :

$$N_{max} \le \frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}}$$

Calcul de l'élancement réduit :

$$\begin{split} \lambda_{cr} &= 93, 9\varepsilon = 93, 9 \times 0, 92 = 86, 81\\ l_{kz} &= 0, 7 \times l = 0, 7 \times 6, 08 = 4, 25m\\ \lambda_z &= \frac{l_{kz}}{i_z} = \frac{425}{2,05} = 207, 31 \rightarrow \lambda_z = \frac{\lambda_z}{\lambda_{cr}} = \frac{207, 31}{86, 81} = 2, 38 \end{split}$$

Choix de la courbe du flambement :

$$\frac{h}{b} = \frac{180}{91} = 1,97 > 1,2$$

$$tf = 10,7mm < 40 mm$$
On a :

$$\chi_z = \frac{1}{\varphi_z + [\varphi_z^2 - \lambda_z^2]^{0.5}}$$

 $\varphi_z = 0.5[1 + \alpha_z(\lambda_z - 0.2) + \lambda_z^2] = 3.70 \rightarrow \chi_z = 0.15$

 $\chi_{min}=0,15$

 $\frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}} = \frac{1 * 27,5 * 23,9 * 0,15}{1} = 98,58 \text{ KN}$

 $N_{max} = 533,28 \ KN > 98,58 \ KN$

Condition n'est pas vérifiée, comme solution on augmente la section du profilé à **IPE330**, et on vérifie :

$$\frac{\chi_{min} = 0,39}{\frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}}} = \frac{1 * 27,5 * 62,6 * 0,39}{1} = 671,38 \text{ KN}$$

 $N_{max} = 533,28 \, KN < 671,38 \, KN$

La condition est vérifiée, donc on adopte des IPE330 pour nos poteaux intermédiaires.

3.6 Pré dimensionnement des traverses :

Les traverses sont des poutres maitresses d'une toiture a deux versants, elles sont constituées généralement en profiles IPE ou HEA.

Les traverses de la toiture servent à supporter les éléments de la couverture et a reprendre les charges et surcharges exercer sur celles-ci.

3.6.1 Evaluation des charges :

a)-Charges permanentes :

- Couverture panneau sandwich $G = 0.15 \ KN/m^2$
- Accessoires de pose $G = 0.03 \ KN/m^2$
- Le poids propre de la panne G = 0,224 KN/m
- Espacement entre pannes e = 1,2m
- La portée de la traverse L = 7,7m

 $G = 7 \times 0.224 + 1.2 \times (0.15 + 0.03) = 1.57 \text{ KN/m}$

b)-Charges climatiques :

 $W = 1,90 \times 3,9 = 7,43 \ KN/m$

 $S = 0,554 \times \cos(15) \times 3,9 = 2,1 \, KN/m$

3.6.2 Le Pré dimensionnement :

ELS: G + W = 1,57 + 7,43 = 9 KN/m

Par condition de flèche on aura

$$I_{y} \ge \frac{5 \times 200 \times q_{Z} \times L^{3}}{384 \times E} = \frac{5 \times 200 \times 9 \times 7760^{3}}{384 \times 2.1 \times 10^{5}} = 5789.8 \ cm^{4}$$

On opte pour un **IPE270** de : $I_y = 11766,9 \ cm^4$

Poids propre réel :

 $G = 7 \times 0.188 + 1.2 \times (0.15 + 0.03) + 0.36 = 1.93 \text{ KN/m}$

3.6.3 Les combinaisons d'action :

ELU:G + 1,5W = 13,07 KN/m

ELS : G + W = 9,36 KN/m

3.6.4 Vérification de l'effort tranchant :

$$V_{sd} = \frac{q_u \times L}{2} = \frac{13,07 \times 7,7}{2} = 50,32 \text{ KN/m}$$
$$V_{pl} = \frac{A_{VZ} \times F_y}{\sqrt{3} \times \gamma_{m0}} = \frac{22,10 \times 10^2 \times 275}{\sqrt{3} \times 1,1} = 318,98 \text{ KN/m}$$
$$V_{sd} = 50,32 < \frac{1}{2}V_{pl} = 159,49 \text{ KN/m}$$

La condition est vérifiée.

3.6.5 Vérification de moment fléchissant :

$$M_{sd} = \frac{q_u \times L^2}{12} = \frac{13,07 \times 7,7^2}{12} = 64,57 \text{ KN. }m$$
$$M_{ply} = \frac{W_{ply} \times F_y}{\gamma_{m0}} = \frac{484 \times 10^3 \times 275}{1,1} = 121 \text{ KN. }m$$

 $M_{sd} = 64,57 \text{ KN}. m < M_{ply} = 121 \text{ KN}. m$

Le choix de l'IPE270 est satisfait.

3.7 Pré dimensionnement de contreventement :

3.7.1 Introduction :

Les contreventements sont des pièces qui ont pour objet d'assurer la stabilité de l'ossature en s'opposant à l'action des forces horizontales : vent, freinages des ponts roulants, effet de séismes, chocs etc. ils sont généralement conçus pour garantir le cheminement des charges horizontales jusqu'aux fondations.

Ils sont disposés en toiture, dans le plan des versants « poutres au vent », et en façade « Palées de stabilité », et doivent reprendre les efforts horizontaux appliqués tant sur les Pignons que sur les longs pans.

3.7.2 Rôles des contreventements :

Les contreventements ont pour fonctions principales de :

- Reprendre et de transmettre jusqu'aux fondations les efforts dus aux actions latérales ou horizontales causées par : le vent, le séisme, les forces de freinage de ponts roulant, les explosions, les chocs de véhicules, la poussée des terres...
- Empêcher de grandes déformations (ou de limiter les déplacements horizontaux) sous l'effet de ces actions.
- Jouer un rôle important vis-à-vis des phénomènes d'instabilité en réduisant les risques de flambement et de déversement. En effet, ils diminuent les longueurs de flambement des poteaux, et ils constituent parfois des appuis latéraux intermédiaires pour les membrures comprimées de poutres et de portiques vis a-vis du déversement.

 Possèdent un rôle important dans les problèmes de vibration de la construction, dans son ensemble ou dans des éléments élancés de cette construction et ce, en modifiant la période fondamentale. Ce qui permet d'éviter le phénomène de résonnance.

3.7.3 Calcul de la poutre au vent :

La transmission des efforts sur le pignon passe successivement du bardage aux lisses, aux potelets puis à la traverse du portique, cette dernière n'est pas rigide transversalement, il est nécessaire de la stabiliser en construisant un dispositif dans le plan de la toiture. La poutre contreventée sera calculée comme une poutre a treillis reposant sur deux appuis et soumise aux réactions horizontales des poteaux.

Figure 3-24 : Vue en plan de la poutre au vent

Figure 3-25 : Schéma statique de la poutre au vent

On a :

$$F_i = 1,5[(W \times S_i) + \frac{F_{fr}}{n}]$$

W: Charge de vent maximal dans le Sens V2 :

$$W = 0,786 \, KN/m^2$$

 F_{fr} : Force de frottement pour la direction de vent V2 avec :

$$F_{fr} = 0$$

n: Nombre de nœuds dans la poutre au vent est :

$$n = 9$$

 S_i : Surface d'application des efforts horizontaux avec :

$$S_{1} = \left[\frac{13}{2} \times 1,875\right] + \left[(13,66 - 13) \times 1,875 \times \frac{2}{2}\right] = 13,43 \ m^{2}$$

$$S_{2} = \left[(13,66 - \frac{14,33}{2}) \times 3,75\right] + \left[(14,66 - 13,66) \times 3,75 \times \frac{2}{2}\right] = 28,10 \ m^{2}$$

$$S_{3} = \left[(14,66 - \frac{15}{2}) \times 3,75\right] + \left[(15 - 14,66) \times 1,875\right] = 27,49 \ m^{2}$$

$$S_{4} = S_{2} = 28,10 \ m^{2}$$

$$S_{5} = S_{1} \times 2 = 26,86 \ m^{2}$$

Les résultats de Fi sont résumés dans le tableau ci-dessous

	1	2	3	4	5		
W	0,786						
<i>S_i</i> (m ²)	13,43	28,10	27,49	28,10	26,86		
F_i (KN)	15,83	33,12	32,41	33,12	31,96		

Tableau 3-7 : Les valeurs des forces horizontales

Les réactions d'appuis :

$$Q = \frac{\sum F}{L} = \frac{F1 + 2F2 + 2F3 + 2F4 + F5}{30} = 8,17 \text{ KN/mb}$$

$$R_a = R_c = 0,375 \times \frac{8,17 \times 15}{2} = 22,98 \text{ KN}$$

$$R_b = 1,25 \times R = 1,25 \times \frac{8,17 \times 15}{2} = 76,59 \text{ KN}$$

3.7.3.1 Dimensionnement de la diagonale :

Dans ce genre de système, seules les diagonales tendues sont prise en compte dans le calcul. D'où on aura à étudier le schéma statique représenté dans la figure suivant.

Figure 3-26 : Schéma statique s'une partie de la poutre au vent

$$\alpha = \arctan\left(\frac{7,8}{5}\right) = 57,34^{\circ}$$

Par la méthode d'isolation des nœuds on aura :

$$N_{tsd} = \frac{Rb - F1}{\sin \alpha} = \frac{76,59 - 15,83}{\sin(57,34)} = 72,17 \, KN$$

3.7.3.2 Calcul de la section brute :

La section brute doit vérifier la résistance suivant

$$N_{tsd} \le N_{plrd} = \frac{A \times fy}{\gamma_{m0}} \to A = \frac{N_{tsd} \times \gamma_{m0}}{fy} = \frac{72,17 \times 1,1}{27,5} = 2,88 \ cm^2$$

Donc on opte pour une simple CAE 60×60×4 avec A =4.667 cm². Avec des boulons M20 de classe 8.8 donc $d_0 = 22mm$

3.7.3.3 Vérification de la section nette :

La vérification à faire est comme suite :

$$N_{tsd} \le N_{urd} = \frac{0.9 \times A_{net} \times F_u}{\gamma_{m2}}$$

On a :

$$A_{net} = A_1 + A_2$$

$$A_1 = (6 \times 0,4) - (2,2 \times 0,4) = 1,52 \ cm^2$$

$$A_2 = (6 - 0,4) \times 0,4 = 2,24 \ cm^2$$

$$A_{net} = 3,76 \ cm^2$$

$$N_{urd} = \frac{0,9 \times 3,76 \times 10^2 \times 430}{1,25} = 116,41 \ KN$$

$$N_{tsd} = 72,17 \ KN \le N_{urd} = 116,41 \ KN$$
La condition est vérifiée.

3.7.4 Vérification des montants de la poutre au vent :

Les pannes (IPE180) sont dimensionnées en flexion déviée seule, elles assurent aussi la fonction de montant de la poutre au vent, donc on doit les vérifier à la flexion bi axiale sous l'effort de soulèvement, plus l'effort normal de compression due aux forces d'entraînement, par contre la poutre sablière ne reçoit pas des charges verticales et assure aussi la fonction de montant, on doit la vérifier au flambement simple sous un effort de compression.

3.7.4.1 Détermination des efforts dans les montantes :

Figure 3-27 : Schéma des efforts sur les montants

 $N_{tsd} = 76,59 \ KN$

3.7.4.2 Vérification de la résistance des montants :

Les montants sont soumis à la flexion bi-axiale plus un effort normal donc la vérification à faire et comme suit :

On calcul :

$$\lambda_{lt} = \frac{L/i_z}{\sqrt{C_1} [1 + \frac{1}{20} (\frac{L/i_z}{h/t_f})^2]^{0.25}} = \frac{390 \div 2.24}{\sqrt{1.132} + [1 + \frac{1}{20} (\frac{390 \div 2.24}{20 \div 0.85})^2]^{0.25}} = 117,69$$

$$\lambda_{lt} = \frac{117,69}{86,81} = 1,35 > 0,4 \rightarrow Ya \text{ un risque de deversement}$$

On doit vérifier :

$$\frac{Nsd}{\chi_{min} \times Nply} + \frac{K_{lt} \times My}{\chi_{lt} \times Mply} \leq 1$$

Dans le chapitre 3 on a :

$$My = 23,42 \text{ KN. }m$$

 $Mply = 55,15 \text{ KN. }m$
 $Npl = 783,75 \text{ KN}$
 $\chi_{lt} = 0,42$

On calcul les élancements réduits puis en détermine χ_{min} :

 $l_{kz} = 0.5 \ l = 0.5 \times 7.8 = 3.9m$ $l_{ky} = l = 7.8m$ $\lambda_y = \frac{l_{ky}}{i_y} = \frac{780}{8.26} = 94.43 \rightarrow \lambda_y = \frac{\lambda_y}{\lambda_{cr}} = \frac{94.43}{86.81} = 1.08$

1,08 > 0,2 il y'a un risque de flambement

$$\lambda_z = \frac{l_{kz}}{l_z} = \frac{390}{2,24} = 174,10 \rightarrow \lambda_z = \frac{\lambda_z}{\lambda_{cr}} = \frac{174,10}{86,81} = 2$$

2 > 0,2 il y'a un risque de flambement

Choix de la courbe du flambement :

$$\frac{h}{b} = \frac{200}{100} = 2 > 1,2$$

$$tf = 8,5 mm < 40 mm$$

$$ZZ \rightarrow Courbe(b) \rightarrow \alpha_z = 0,34$$

$$YY \rightarrow Courbe(a) \rightarrow \alpha_y = 0,21$$

On a :

$$\chi_z = \frac{1}{\varphi_z + [\varphi_z^2 - \lambda_z^2]^{0.5}} \qquad \chi_y = \frac{1}{\varphi_y + [\varphi_y^2 - \lambda_y^2]^{0.5}}$$
$$\varphi_z = 0.5[1 + \alpha_z(\lambda_z - 0.2) + \lambda_z^2] = 2.80 \rightarrow \chi_z = 0.21$$
$$\varphi_y = 0.5[1 + \alpha_y(\lambda_y - 0.2) + \lambda_y^2] = 1.17 \rightarrow \chi_y = 0.61$$
$$\chi_{min} = \min(0.21; 0.61) = 0.21$$

• Calcul K_{lt} :

$$K_{lt} = 1 - \frac{\mu_{lt} \times N_{st}}{\chi_z \times Npl}$$

$$\mu_{lt} = 0.15 \times \lambda_z \times \beta_{mlt} - 0.15$$

$$\lambda_z = 2 \qquad \beta_{mlt} = 1.3$$

$$\mu_{lt} = 0.15 \times 2 \times 1.3 - 0.15 = 0.24$$

$$\chi_z = 0.21 \qquad N_{sd} = 76.59 \ KN \qquad Npl = 783.75 \ KN$$

$$\Rightarrow K_{lt} = 1 - \frac{0.24 \times 76.59 \times 10^3}{0.21 \times 783.75 \times 10^3} = 0.88 \le 1$$

On vérifie :

$$\frac{Nsd}{\chi_{min} \times Nply} + \frac{K_{lt} \times My}{\chi_{lt} \times Mply} \le 1$$
$$\frac{76,59 \times 10^3}{0,21 \times 783,75 \times 10^3} + \frac{0,88 \times 23,42}{0,42 \times 55,15} = 1,35 > 1$$

La condition n'est pas vérifié, on doit augmenter la section des montantes à HEB200

Les résultats seront résumés dans le tableau ci-dessous :

My (KN.m)	Mply (KN.m)	Npl (KN)	X _{lt}	X min	K _{lt}
20,38	160,62	1952,5	0,89	0,62	0,99

Tableau 3-8 : Sollicitation et coefficient de calcul pour un HEA180

On vérifie :

 $\begin{aligned} \frac{Nsd}{\chi_{min} \times Nply} + \frac{K_{lt} \times My}{\chi_{lt} \times Mply} &\leq 1\\ \frac{76,59 \times 10^3}{0,62 \times 1952,5 \times 10^3} + \frac{0,99 \times 20,38}{0,89 \times 160,62} = 0,20 > 1 \end{aligned}$

On voit bien que la condition de résistance est vérifiée donc on opte sur un **HEB200** pour les montants de la poutre au vent.

3.7.5 Calcul de la poutre sablière :

La poutre sablière est considérée comme une barre de contreventement verticale, donc elle est soumise à un effort horizontal et son poids propre, d'où la vérification se fera en flexion composée.

Figure 3-28 : Schéma statique de la poutre sablière

La poutre sablière reçoit la réaction de la poutre au vent de pignon calculé précédemment

 $N_{tsd} = 76,59 \, KN$

3.7.5.1 Pré dimensionnement :

Le pré dimensionnement se fait en compression simple :

$$N_{tsd} \le N_{plrd} = \frac{A \times fy}{\gamma_{m0}} \to A = \frac{N_{tsd} \times \gamma_{m0}}{fy} = \frac{76,59 \times 1,1}{27,5} = 3,06 \ cm^2$$

On opte pour un IPE120 de A=13,2cm²

3.7.5.2 Vérification au flambement :

On doit vérifier la condition suivante :

$$N_{max} \le \frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}}$$

Calcul de l'élancement réduit :

$$\lambda_{cr} = 93,9\varepsilon = 93,9 \times 0,92 = 86,81$$
$$l_{ky} = l_{kz} = l = 7,8m$$
$$\lambda_{y} = \frac{l_{ky}}{i_{y}} = \frac{780}{4,90} = 159,18 \rightarrow \lambda_{y} = \frac{\lambda_{y}}{\lambda_{cr}} = \frac{159,18}{86,81} = 1,83$$

1,83 > 0,2 il y'a un risque de flambement

$$\lambda_z = \frac{l_{kz}}{l_z} = \frac{780}{1,45} = 537,93 \rightarrow \lambda_z = \frac{\lambda_z}{\lambda_{cr}} = \frac{537,90}{86,81} = 6,19$$

6,19 > 0,2 il y'a un risque de flambement

Choix de la courbe du flambement :

$$\frac{h}{b} = \frac{120}{64} = 1,87 > 1,2$$

$$Triangle triangle t$$

On a :

$$\chi_{z} = \frac{1}{\varphi_{z} + [\varphi_{z}^{2} - \lambda_{z}^{2}]^{0.5}} \qquad \chi_{y} = \frac{1}{\varphi_{y} + [\varphi_{y}^{2} - \lambda_{y}^{2}]^{0.5}}$$

$$\varphi_{z} = 0.5[1 + \alpha_{z}(\lambda_{z} - 0.2) + \lambda_{z}^{2}] = 20.67 \rightarrow \chi_{z} = 0.024$$

$$\varphi_{y} = 0.5[1 + \alpha_{y}(\lambda_{y} - 0.2) + \lambda_{y}^{2}] = 2.34 \rightarrow \chi_{y} = 0.26$$

$$\chi_{min} = \min(0.024; 0.26) = 0.024$$

$$\frac{\beta_{a} * fy * A * \chi_{min}}{\gamma_{m1}} = \frac{1 * 27.5 * 13.2 * 0.024}{1} = 8.71 \text{ KN}$$

$$N_{tsd} = 76.59 \text{ KN} > 8.71 \text{ KN}$$

Condition non vérifié, on augmente la section du profilé à HEA180

$$\begin{split} \chi_{min} &= 0,21 \\ \frac{\beta_a * fy * A * \chi_{min}}{\gamma_{m1}} = \frac{1 * 27,5 * 45,3 * 0,21}{1} = 261,60 \ KN \\ N_{tsd} &= 76,59 \ KN < 261,60 \ KN \end{split}$$

La condition est vérifiée.

3.7.5.3 Vérification à la résistance :

La Vérification à faire est comme suit :

On calcul :

$$\lambda_{lt} = \frac{L/i_z}{\sqrt{C_1} [1 + \frac{1}{20} (\frac{L/i_z}{h/t_f})^2]^{0.25}} = \frac{390 \div 4,52}{\sqrt{1,132} + [1 + \frac{1}{20} (\frac{390 \div 4,52}{17,1 \div 0,95})^2]^{0.25}} = 130,78$$

$$\lambda_{lt} = (\frac{\lambda_{lt}}{\lambda_1}) = \frac{130,78}{86,81} = 1,51 > 0,4 \rightarrow Ya \text{ un risque de deversement}$$

On doit vérifier :

$$\frac{Nsd}{\chi_{min} \times Nply} + \frac{K_{lt} \times My}{\chi_{lt} \times Mply} \le 1$$

$$M_{y} = \frac{1,35G_{HEA180} \times L^{2}}{8} = \frac{1,35 \times 0,35 \times 7,8^{2}}{8} = 3,59 \text{ KN. m}$$

$$M_{ply} = \frac{Wply \times fy}{\gamma_{m0}} = 81,22 \text{ KN. m}$$

$$\chi_{lt} = \frac{1}{\varphi_{lt} + [\varphi_{lt}^{2} + \lambda_{lt}^{2}]^{0.5}}; \quad \varphi_{lt} = 0,5[1 + \alpha_{l}(\lambda_{lt} - 0,2) + \lambda_{lt}^{2}]$$

$$\varphi_{lt} = 1,78; \quad \chi_{lt} = 0,37$$
• Calcul K_{lt} :
$$K_{lt} = 1 - \frac{\mu_{lt} \times N_{st}}{\chi_{min} \times Npl}$$

$$\mu_{lt} = 0,15 \times \lambda_{lt} \times \beta_{mlt} - 0,15$$

$$\lambda_{lt} = 1,51 \qquad \beta_{mlt} = 1,3$$

$$\mu_{lt} = 0,15 \times 1,51 \times 1,3 - 0,15 = 0,14$$

$$\chi_{min} = 0,21 \qquad N_{sd} = 76,59 \text{ KN} \qquad Npl = 1132,5 \text{ KN}$$

$$\Rightarrow K_{lt} = 1 - \frac{0,14 \times 76,59 \times 10^{3}}{0,21 \times 45,3 \times 10^{2} \times 275/_{1,1}} + \frac{0,95 \times 3,59}{0,37 \times 81,22} = 0,43 \le 1$$

La condition est vérifiée. Donc le choix de HEA180 est satisfait.

3.7.6 Etude de contreventement vertical :

Le contreventement vertical a pour rôle de transmettre les efforts horizontaux longitudinaux dus à la réaction de la poutre au vent du pignon vers les fondations.

On ne fait travailler que les diagonales tendues, comme dans le cas de la poutre au vent.

3.7.6.1 Détermination des efforts dans les barres :

Figure 3-29 : Schéma statique de la palée de stabilité

$$\alpha = tang^{-1}\left(\frac{6,08}{7,8}\right) = 37,93^{\circ}; \beta = tang^{-1}\left(\frac{3,44}{7,8}\right) = 23,79^{\circ}$$
$$\theta = tang^{-1}\left(\frac{3,48}{7,8}\right) = 24,04^{\circ}$$

R : La réaction à l'appui

 \mathbf{F} : La force du vent au nœud

$$N\cos(\alpha) = R - F_1$$
$$N = \frac{R - F_1}{\cos(\alpha)} = \frac{76,59 - 15,43}{\cos(37,93)} = 77,54 \text{ KN}$$

3.7.6.2 Section de la diagonale :➢ Calcul de la section brute :

La section brute doit vérifier la résistance suivant

$$N_{max} \le N_{plrd} = \frac{A \times fy}{\gamma_{m0}} \to A = \frac{N_{max} \times \gamma_{m0}}{fy} = \frac{77,54 \times 1,1}{27,5} = 3,10 \ cm^2$$

Donc on opte pour une simple cornière CAE 60×60×4 avec A =4.45 cm². Avec des boulons M20 de classe 8.8 donc $d_0 = 22mm$

3.7.6.2.1 Vérification de la section nette :

La vérification à faire est comme suite :

$$N_{tsd} \le N_{urd} = \frac{0.9 \times A_{net} \times F_u}{\gamma_{m2}}$$

On a :

 $\begin{aligned} A_{net} &= A_1 + A_2 \\ A_1 &= (6 \times 0,4) - (2,2 \times 0,4) = 1,52 \ cm^2 \\ A_2 &= (6 - 0,4) \times 0,4 = 2,24 \ cm^2 \\ A_{net} &= 3,76 \ cm^2 \\ N_{urd} &= \frac{0,9 \times 3,76 \times 10^2 \times 430}{1,25} = 116,41 \ KN \\ N_{tsd} &= 77,54 \ KN \le N_{urd} = 116,41 \ KN \end{aligned}$

La condition est vérifiée.

3.8 Conclusion :

Pour minimiser les déplacements de notre structure, on opte pour nos éléments de contreventement :

- Des Double cornières 2CAE120x120x12 Pour les diagonales de la palée de stabilité
- Des Cornières CAE100x100x10 Pour les diagonales de la poutre au vent

4 Chapitre IV Etude du plancher mixte

4.1 Introduction

Dans le monde de la construction, l'association de l'acier et du béton est la combinaison la plus fréquemment utilisée. Bien que de nature différente, ces deux matériaux peuvent être complémentaires :

- Le béton résiste en compression et l'acier en traction
- Le béton peut empêcher le voilement.
- Le béton assure à l'acier une protection contre la corrosion et une isolation thermique aux températures élevées (augmentation de la résistance au feu).
- Sous réserve d'une disposition appropriée, l'acier permet de rendre la structure ductile.

Figure 4-1 : Les composants du plancher mixte

4.2 Etude du plancher collaborant :

Dans notre cas les dimensions les plus défavorables pour le dimensionnement des éléments du plancher sont montré sur la figure.... ci-après :

- Entraxe entre les solives est de : e = 1,25m
- La longueur des solives est de : L = 7,8 m

4.2.1 Caractéristique des éléments constructifs

- Dalle en béton armé d'épaisseur : t = 12 cm
- Coefficient d'équivalence (Acier/Béton) : $n = \frac{210000}{30500} = 6,88$
- Coefficient de retrait du béton : $\varepsilon = 2 \times 10^{-4}$
- La limite élastique de traction de l'acier : $f_y = 275MPA$
- La contrainte admissible du béton : $fc_{28} = 25MPA$

Figure 4-2 : Schéma de disposition des solives

Méthode de calcul

Le calcul du plancher mixte se fait en deux phases :

- Phase de construction
- Phase finale

4.2.2 Vérification des solives en phase de construction

Le profilé d'acier travail seul et les charges de la phase de construction sont :

- Poids propre de la tôle (Cofrastra
40) : $G_{tole}=0,15\;KN/m^2$
- Poids propre du béton frais : $G_{b\acute{e}ton} = 2,5 \ KN/m^2$
- Surcharge d'exploitation (ouvrier) : $Q = 1 KN/m^2$

4.2.2.1 Les combinaisons de charge :

Dans notre cas on a un entraxe des solives : e = 1,25m

<u>ELU</u>

 $q_u = (1,35G + 1,5Q) \times e_{solive} = [1,35(0,15 + 2,5) + 1,5 \times 1] \times 1,25 = 6,34 \text{ KN/ml}$

ELS

 $q_s = (G + Q) \times e_{solive} = [(0,15 + 2,5) + 1] \times 1,25 = 4,56 \text{ KN/ml}$

4.2.2.2 Condition de la flèche :

On adopte un étaiement à mi travée, donc $l = \frac{7,8}{2} = 3,9 m$

$$\begin{split} f_{cal} &\leq f_{adm} \rightarrow \frac{5 \times q_s \times l^4}{384 \times E \times Iy} \leq \frac{l}{250} \\ &\rightarrow Iy \geq \frac{2,05 \times 250 \times 4,56 \times 3900^3}{384 \times 210000} = 171,91 \times 10^4 \ mm^4 \end{split}$$

Soit on adopte un IPE120 de caractéristique :

G (KN/m)	Aa (cm ²)	Iy (cm ⁴)	Wply (cm ³)	Avz (cm ²)			
0,104	0,104 13,2 31		60,7	6,3			
Tableau 4-1 : Caractéristique d'IPE120							

Les valeurs des combinaisons en prenant compte le poids propre d'IPE120 :

 $q_u = 6,48 \, KN/ml$

 $q_s = 4,66 \, KN/ml$

4.2.2.3 Vérification à la résistance :> Vérification du moment fléchissant :

On doit vérifier la condition suivante :

$$M_{sd} \le M_{pld}$$

$$M_{sd} = \frac{q_u \times l^2}{32} = \frac{6,48 \times 3,9^2}{32} = 3,08 \text{ KN. } m$$

$$M_{plrd} = \frac{Wply \times fy}{\gamma_{m0}} = \frac{60.7 \times 10^{-6} \times 275 \times 10^{3}}{1.1} = 15,07 \text{ KN. m}$$

Donc : $M_{sd} = 3,08 \text{ KN}. m \le M_{plrd} = 15,07 \text{ KN}. m$

La condition est vérifiée.

Vérification du cisaillement :

On doit vérifier la condition suivante :

$$V_{sd} \le \frac{1}{2} V_{plrd}$$

$$V_{sd} = 1,25 \times \frac{q_u \times l}{2} = 1,25 \times \frac{6,48 \times 3,9}{2} = 15,79 \ KN$$
$$V_{plrd} = \frac{Avz \times fy}{\sqrt{3} \times \gamma_{m0}} = \frac{6,3 \times 10^{-4} \times 275 \times 10^3}{\sqrt{3} \times 1,1} = 90,93 \ KN$$

Donc: $V_{sd} = 15,79 \ KN \le \frac{1}{2} V_{plrd} = 45,46 \ KN$

La condition est vérifiée.

4.2.3 Vérification des solives en phase finale

Le béton ayant durci, donc la section mixte (le profilé et la dalle) travaille ensemble, on doit tenir compte des chargements suivants :

- Poids propre du profilé IPE120 : $G_{profilé} = 0,104 \text{ KN/ml}$
- Poids propre de la tôle (Cofrastra40) : $G_{tole} = 0.15 \ KN/m^2$
- Poids propre du béton sec : $G_{béton} = 2,5 \ KN/m^2$
- Poids du revêtement, carrelage, et accessoires : $G_{rev} = 1.5 \ KN/m^2$

- Surcharge d'exploitation : $Q = 2.5 KN/m^2$
- 4.2.3.1 Les combinaisons de charge : <u>ELU</u>

$$q_u = (1,35G + 1,5Q) \times e_{solive} = 1,35 \times 0,104 + [1,35(4,15) + 1,5 \times 2,5] \times 1,25$$
$$q_u = 11,83 \ KN/ml$$

<u>ELS</u>

$$q_s = (G + Q) \times e_{solive} = 0,104 + [(0,15 + 2,5 + 1,5) + 2,5] \times 1,25$$

 $q_s = 8,41 \, KN/ml$

4.2.3.2 Vérification de la résistance :> Vérification du moment fléchissant

On vérifie avec un calcul plastique la condition suivante :

$$M_{sd} \leq M_{pld}$$

Avec :

$$M_{sd} = \frac{q_u \times l^2}{8} = \frac{11,83 \times 7,8^2}{8} = 89,96 \text{ KN. m}$$

 $M_{pld} = Fa \times \left(\frac{ha}{2} + t - \frac{Za}{2}\right)$

Calcul de largueur efficace du béton :

 $b_{eff} = 2 \times \min\left(\frac{Li}{8}; \frac{bi}{2}\right)$ Avec : $\begin{cases} Li : longueur de la solive \\ bi: entraxe des solives \end{cases}$

$$b_{eff} = 2 \times \min\left(\frac{7,8}{8}; \frac{1,25}{2}\right) = 2 \times 0,625 = 1,25m$$

Figure 4-3 : Largueur de la dalle effective

Position de l'axe neutre plastique :

On doit calculer la résistance du profilé en traction Fa, et la résistance de la dalle de compression Fc, et les comparer, d'où :

$$Fa = \frac{A \times fy}{\gamma_{m0}} = \frac{13,2 \times 10^{-4} \times 275 \times 10^{3}}{1,1} = 330 \text{ KN}$$

$$Fc = beff \times hc \times \frac{0,85 \times fc_{28}}{\gamma_{b}} = 1,25 \times 0,12 \times \frac{0,85 \times 25 \times 10^{3}}{1,5} = 2125 \text{ KN}$$

$$Fa < Fc \rightarrow Axe \text{ neutre plastique passe dans la dalle}$$

On calcul la distance entre l'axe neutre plastique et la face supérieure de la dalle de compression :

$$Z = \frac{Fa}{beff \times \frac{0,85 \times fc_{28}}{\gamma_b}} = \frac{330}{125 \times \frac{0,85 \times 2,5}{1,5}} = 1,86 \ cm < hc$$

On calcule le moment plastique :

$$M_{pld} = 330 \times \left(\frac{0.12}{2} + 0.12 - \frac{0.0186}{2}\right) = 56.33 \text{ KN. m}$$

D'où : $M_{sd} = 89,96 \ KN. \ m > M_{pld} = 56,33 \ KN. \ m$

La condition n'est pas vérifiée, comme solution on augmente la section des profilés à IPE180. Et on recalcule :

$$q_u = 11,94 \text{ KN/ml}$$
; $q_s = 8,52 \text{ KN/ml}$
 $M_{sd} = 90,80 \text{ KN.m}$

$$M_{pld} = 597,5 \times \left(\frac{0,18}{2} + 0,12 - \frac{0,0337}{2}\right) = 115,40 \text{ KN. m}$$

D'où : $M_{sd} = 90,80 \ KN. \ m < M_{pld} = 115,40 \ KN. \ m$

Vérification de l'effort tranchant :

Soit de vérifié cette condition :

Soit de vérifié cette condition :

$$V_{sd} \le \frac{1}{2} V_{plrd}$$

$$V_{sd} = \frac{q_u \times l}{2} = \frac{11,94 \times 7,8}{2} = 46,56 \ KN$$
$$V_{plrd} = \frac{Avz \times fy}{\sqrt{3} \times \gamma_{m0}} = \frac{11,3 \times 10^{-4} \times 275 \times 10^3}{\sqrt{3} \times 1,1} = 163,10 \ KN$$
$$Donc: \ V_{sd} = 46,56 \ KN \le \frac{1}{2} V_{plrd} = 81,55 \ KN$$

La condition est vérifiée.

Vérification de la flèche :

On doit satisfaire la condition suivante :

$$f_{cal} \leq f_{adm}$$

$$f_{cal} = \frac{5 \times q_s \times l^4}{384 \times E \times Im} \le f_{adm} = \frac{l}{250}$$

Calcul de l'inertie mixte :

Figure 4-4 : Position de l'axe neutre (Δ)

Avec :

v_s: Position de la fibre la plus tendue de l'acier par rapport à l'axe neutre (Δ). *v_i*: Position de la fibre la plus tendue du béton par rapport à l'axe neutre (Δ).
d: la distance entre l'axe neutre (Δ) et l'axe neutre de la solive.

$$Im = Ia + Aa \times d^{2} + \frac{beff \times t^{3}}{12 \times n'} + \frac{beff \times t}{n'} \times f^{2}$$

$$n' = 2 \times n = 2 \times 6,88 = 13,76$$

$$S = Aa + \frac{beff \times t}{n'} = 23,9 + \frac{125 \times 12}{13,76} = 132,91 \text{ cm}^{2}$$

$$d = \frac{beff \times t}{n'} \times \frac{t + ha}{2S} = \frac{125 \times 12}{13,76} \times \frac{12 + 18}{2 \times 132,91} = 12,30 \text{ cm}$$

$$f = \frac{t + ha}{2} - d = \frac{12 + 18}{2} - 12,30 = 2,7 \text{ cm}$$

D'où :

$$Im = 1317 + 23,9 \times 12,30^{2} + \frac{125 \times 12^{3}}{12 \times 13,76} + \frac{125 \times 12}{13,76} \times 2,7^{2}$$

 $Im = 7035,66 \ cm^4$

On calcul :

$$f_{cal} = \frac{5 \times 8,52 \times 7800^4}{384 \times 210000 \times 5503.72 \times 10^4} = 27,79 \ mm > f_{adm} = \frac{7800}{250} = 31,2 \ mm$$

~

4.2.3.3 Calcul les contraintes de flexion :

- Contrainte dans la poutre d'acier :
- Fibre inferieure :

$$\sigma_{ai} = \frac{Mmax}{I} v_i$$
 Avec: $v_i = \frac{ha}{2} + d = \frac{18}{2} + 12,30 = 21,30 \text{ cm}$

 $\sigma_{ai} = \frac{-90,80 \times 10^{-3}}{7035,66 \times 10^{-8}} \times 0,21 = -271,02 \, MPa$

- Fibre supérieure :

$$\sigma_{as} = \frac{Mmax}{I} (v_s - t) \quad Avec: \quad v_s = \frac{ha}{2} + t - d = 8,7 \text{ cm}$$
$$\sigma_{as} = \frac{90,80 \times 10^{-3}}{7035,66 \times 10^{-8}} (0,087 - 0,12) = -42,58 \text{ MPa}$$

- Contrainte dans la dalle en béton :
- Fibre supérieure :

$$\sigma_{bs} = \frac{Mmax}{n' \times I} v_s = \frac{90,80 \times 10^{-3}}{13,76 \times 7035,66 \times 10^{-8}} \times (0,087) = 8,16 MPa$$

- Fibre inferieure :

 $\sigma_{bi} = \frac{Mmax}{n' \times I} (v_s - t) = \frac{90,80 \times 10^{-3}}{13,76 \times 7035,66 \times 10^{-8}} \times (0,087 - 0,12) = -2,8 MPa$

Figure 4-5 : Diagramme des contraintes de flexion simple

4.2.3.4 Calcul des contraintes additionnelles de retrait :

$$\beta = \frac{ha+t}{2} = \frac{18+12}{2} = 15 \ cm$$

Calcul β :

-

Calcul α

$$\alpha = \frac{la}{Aa \times \beta} = \frac{1317}{23,9 \times 15} = 3,67 \ cm$$

- Calcul K :

$$K = \frac{Ac. Ea. \varepsilon. \beta. Aa}{n'. Ia. Aa + Ac. Ia + Ac. Aa. \beta^2}$$

$$K = \frac{(1,25 \times 0,12) \times 2,1 \times 10^5 \times 2 \times 10^{-4} \times 0,15 \times 23,9 \times 10^{-4}}{(13,76 \times 1317 \times 10^{-8} \times 23,9 \times 10^{-4}) + (1,25 \times 0,12 \times 1317 \times 10^{-8}) + (1,25 \times 0,12 \times 23,9 \times 10^{-4} \times 0,15^2)}$$

 $K = 215,61 MN/m^3$

- Calcul Y₁

$$Y_1 = \frac{ha}{2} + \alpha = \frac{18}{2} + 3,67 = 12,67 \ cm$$

- Calcul Y₂

 $Y_2 = Y_1 + t = 12,67 + 12 = 24,67 \ cm$

Les contraintes dans l'acier :

- Fibre inferieure :

 $\sigma_{ai} = K \times (ha - Y_1) = 215,61 \times (0,18 - 0,12) = 12,93 MPa$

- Fibre supérieure :

 $\sigma_{as} = K \times Y_1 = 215,61 \times 0,12 = 25,87 MPa$

Les contraintes dans le béton :

- Fibre supérieure :

$$\sigma_{bs} = \frac{1}{n'} (Ea.\varepsilon - K.Y_2) = \frac{1}{13,76} (2,1 \times 10^5 \times 2 \times 10^{-4} - 215,61 \times 0,24) = -0,70 MPa$$

- Fibre inferieure :

$$\sigma_{bi} = \frac{1}{n'} (Ea. - K. Y_1) = \frac{1}{13,76} (2,1 \times 10^5 \times 2 \times 10^{-4} - 215,62 \times 0,14) = 0,90 MPa$$

4.2.3.5 Les contraintes finales :

4.2.3.5.1 Dans l'acier $\begin{cases} \sigma_{ai} = -271,02 + 12,67 = -258,35 MPa \\ \sigma_{as} = -42,58 + 25,87 = -16,71 MPa \end{cases} \leq 275 MPa$

4.2.3.5.2 Dans le béton $\{\sigma_{bi} = -2,8 + 0,90 = -1,90 \ MPa \le 2,1 \ MPa$ $\{\sigma_{bs} = 8,16 - 0,70 = 7,46 \ MPa \le 14,2 \ MPa$

Figure 4-6 : Diagramme des contraintes finales

4.2.4 Calcul des goujons connecteurs :

Ce sont des éléments métalliques soudés sur la semelle supérieure de la solive. Ils ont pour rôle d'assurer la liaison et l'adhérence entre la dalle du béton et la solive.

On choisit des connecteurs de diamètre Ø18.

Figure 4-7 : caractéristique de connecteur

On choisit des boulons de type M18 de classe 4.6

d (mm)	d ₀	A	As	Ø _{rondelle}	Ø _{elé}	d _m	f _{ub}	<i>f_{γb}</i>
	(mm)	(mm ²)	(mm ²)	(mm)	(mm)	(mm)	(Mpa)	(Мра)
18	20	254	192	34	51	29.1	400	240

Tableau 4-2 : Caractéristique du connecteur M18 de classe 4.6

$$\frac{h}{d} > 4 \rightarrow h > 4 \times d = 4 \times 18 = 72mm$$

On adopte : h = 80mm

La résistance de calcul au cisaillement d'un connecteur vaut :

 $Prd = \min(Prd_1; Prd_2)$

$$\begin{cases} Prd_1 = 0.8 \frac{Fu}{\gamma_v} \cdot \frac{\pi \cdot d^2}{4} \\ Prd_2 = \frac{0.29\alpha \cdot d^2}{\gamma_v} \sqrt{Fck \cdot Ecm} \end{cases}$$

Avec :

- d : diamètre du goujon.
- Fu : résistance du goujon en traction, égale à 400MPA
- Fck : la résistance caractéristique du béton, égale à 25MPA
- Ecm : la valeur moyenne du module sécant du béton, égale à 30500MPA
- γ_{ν} : Coefficient de sécurité pris égale à 1,25.
- α : Facteur de correction

$$\frac{h}{d} > 4 \rightarrow \frac{80}{18} = 4,44 > 4 \quad d'ou: \ \alpha = 1$$

On aura :

$$\begin{cases} Prd_1 = 0.8 \frac{400}{1.25} \cdot \frac{3.14 \times 18^2}{4} \times 10^{-3} = 65.11 \text{ KN} \\ Prd_2 = \frac{0.29 \times 1 \times 18^2}{1.25} \sqrt{25 \times 30500} \times 10^{-3} = 65.63 \text{ KN} \end{cases}$$

Alors :

$$Prd = 65,11 \, KN$$

 $\begin{cases} d = 18 \ mm < 20 \ mm \\ hp = 40 \ mm < 85 \ mm \end{cases} \rightarrow Prd' = 1 \times Prd = 65,11 \ KN$

4.2.4.1 Effort de cisaillement

$$V_{lf} = \min(\frac{Aa fy}{\gamma_{m0}}; 0.85. beff. \frac{t \times fck}{\gamma_b})$$
$$V_{lf} = \min\left(\frac{28.5 \times 27.5}{1.1}; 0.85 \times 125 \times \frac{12 \times 2.5}{1.5}\right) = 712.5 KN$$

4.2.4.2 Nombre de goujons : $N \ge \frac{V_{lf}}{Prd} = \frac{712,5}{65,11} = 10,94 \rightarrow On \ prend \ 11 \ goujons$

Soit 11 goujons sur une distance de L/2. Donc 22 goujons sur toute la distance.

4.2.4.3 Espacement :
$$L_{cr} = \frac{L}{2} = \frac{7,8}{2} = 3,9m$$

L'entraxe longitudinal maximal des connecteurs sur la longueur critique ne doit pas dépasser 6 fois l'épaisseur totale de la dalle (t) ou 800 mm conformément à l'EC4

$$S_t < \min(6 \times t; 800mm) = \min(720; 800)$$

$$S_t < 720 \, mm$$

L'espacement est donné par :

$$S_t = \frac{L_{cr}}{N} = \frac{390}{11} = 35,45 \ cm \rightarrow 0n \ prend \ S_t = 40 \ cm$$

4.2.5 Vérification des soudures : *a*: *la gorge* $a < \min(d; t_f) = \min(18; 8,5) = 8,5 mm$

Soit : a = 8 mm

Longueur de cordon de soudure circulaire :

 $l = \pi \times \theta = \pi \times 18 = 56,55 mm$

Effort résistant du cisaillement :

$$S275 \rightarrow \begin{cases} \beta_w = 0.85\\ \gamma_{mw} = 1.3\\ Fu = 430 MPc \end{cases}$$

 $F_{wrd} = a \times l \times \frac{Fu}{\beta_w \times \gamma_{mw} \times \sqrt{3}} = 8 \times 56,55 \times \frac{430 \times 10^{-3}}{0,85 \times 1,3 \times \sqrt{3}} = 101,64 \text{ KN}$

Effort sollicitant est donnée par :

$$F_{sd} = \frac{V_{lf}}{N} = \frac{712,5}{11} = 64,11 \text{ KN}$$

Quelle que soit la direction de l'effort sollicitant F_{sd} par rapport au cordon, on a :

 $F_{sd} = 64,11 \ KN < F_{wrd} = 101,64 \ KN \rightarrow C'est \ verifié$

4.3 Etude de la poutre principale :

Les poutres porteuses, également connues sous le nom de sommiers, sont des composants structuraux conçus pour soutenir les charges des planchers et les transférer aux poteaux. Elles sont sollicitées principalement par un moment de flexion.

4.3.1 Caractéristique du plancher :

- Portée de la poutre : L=15m
- Entre axe des poutres : $e_{sommier} = 6,9m$
- Entre axe des solives : $e_{solive} = 1,25m$
- Charges permanentes du plancher : $G = 4,15 \text{ KN}/m^2$
- Surcharges d'exploitation (Stockage) : $Q = 2.5 KN/m^2$
- Poids de la solive : $P_{solive} = 0,225 KN/ml$

D'où :
$$G_{solive} = \frac{P_{solive}}{e_{solive}} \times n = \frac{0,224}{1} \times 15 = 3,36 \text{ KN/ml}$$

Figure 4-8 : Schéma statique de la poutre maitresse

4.3.2 Phase de construction :

Le profilé d'acier travail seul donc les charges de la phase de construction sont :

- Le poids propre du béton frais : $G_{béton} = 2.5 \ KN/m^2$
- Le poids propre de la tôle : $G_{tole} = 0,15 \ KN/m^2$
- Le poids propre de la solive (IPE180) : $G_{solive} = 0,188 \text{ KN/ml}$
- Surcharge d'exploitation (ouvrier) : $Q = 1 KN/m^2$

$$G_{solive} = \frac{P_{solive}}{e_{solive}} \times n = \frac{0,188}{1,25} \times 12 = 1,80 \text{ KN/ml}$$

On aura :

 $G = (2,5+0,15) \times e_{sommier}) + G_{solive}$

 $G = 20,08 \, KN/ml$

 $Q = 1 \times e_{sommier} = 6,9 \ KN/ml$

<u>ELU</u>

$$q_u = 1,35G + 1,5Q = 1,35 \times 20,08 + 1,5 \times 6,9 = 37,45 \text{ KN/ml}$$

ELS

 \leftrightarrow

 $q_s = G + Q = 20,08 + 6,9 = 26,98 \, KN/ml$

4.3.2.1 Le pré dimensionnement :

On adopte un étaiement à mi- travée donc : $\frac{L}{2} = 7,5 m$

Le pré dimensionnement se fait par la condition de flèche :

$$f = \frac{q_s \, l^4}{384 \, E \, Iy} \le f_{adm} = \frac{l}{250} \to Iy \ge \frac{250 \times q_s \times l^3}{384 \times E}$$
$$Iy \ge \frac{250 \times 26,98 \times 7500^3}{384 \times 210000} = 3528,70 \times 10^4 \, mm^4$$

Soit un IPE240 de classe I.

Les valeurs des combinaisons en prenant compte le poids propre d'IPE240 :

$$q_u = 37,86 \, KN/ml$$

$q_s = 27,28 \ KN/ml$

4.3.2.2 Vérification au moment fléchissant :

On vérifie la condition suivante :

$$M_{sd} \leq M_{plrd}$$

La valeur du moment fléchissant sera directement prise dans logiciel ROBOT après modélisation de la poutre :

Figure 4-9 : La valeur du moment fléchissant après modélisation avec ROBOT

$$\begin{split} M_{sd} &= 191,\!10\,KN.\,m \\ M_{plrd} &= \frac{Wply \times fy}{1,\!1} = \frac{366,\!6 \times 10^3 \times 275}{1,\!1} \times 10^{-6} = 91,\!65\,KN.\,m \end{split}$$

Donc : $M_{sd} = 191,10 \text{ KN}. m > M_{plrd} = 91,65 \text{ KN}. m \rightarrow c'est pas vérifié$

On augmente la section de profilé à IPE360

Les valeurs des combinaisons en prenant compte le poids propre d'IPE360 :

$$q_u = 38,22 \ KN/ml$$

$$q_s = 27,55 \ KN/ml$$

Vérification au moment fléchissant :

$$M_{sd} \leq M_{plrd}$$

$$\begin{split} M_{sd} &= 192,91 \, KN. \, m \\ M_{plrd} &= \frac{W p l y \times f y}{1,1} = \frac{1019 \times 10^3 \times 275}{1,1} \times 10^{-6} = 254,75 \, KN. \, m \\ \text{Donc}: \quad M_{sd} &= 192,91 \, KN. \, m < M_{plrd} = 254,75 \, KN. \, m \rightarrow c'est \, v\acute{e}rifi\acute{e} \end{split}$$

$$V_{sd} \le \frac{1}{2} V_{plrd}$$

Figure 4-10 : La valeur de l'effort tranchant après modélisation avec ROBOT $V_{sd} = 148,82 \text{ KN}$

$$V_{plrd} = \frac{A_{vz} \times fy}{\sqrt{3} \times 1,1} = \frac{35,14 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 507,20 \text{ KN}$$
$$V_{sd} = 148,82 \text{ KN} \le \frac{1}{2} \times 507,20 = 253,6 \text{ KN} \quad \rightarrow c'est \text{ vérifié}$$

4.3.3 Phase finale :

Le béton ayant durci, donc la section mixte (le profilé et la dalle) travaillant ensemble donc les charges de la phase finale sont :

- Poids propre du profilé IPE360 : G_{profilé} = 0,57 KN/ml
- Poids propre de la tôle (Cofrastra40) : $G_{tole} = 0,15 \ KN/m^2$
- Poids propre du béton sec : $G_{b\acute{e}ton} = 2,5 \ KN/m^2$
- Poids du revêtement, carrelage, et accessoires : $G_{rev} = 1.5 \ KN/m^2$
- Poids propre de la solive IPE180 : G_{solive} = 0,188 KN/ml
- Surcharge d'exploitation : $Q = 2.5 KN/m^2$

Avec : $e_{sommier} = 6,9m$

$$G_{solive} = \frac{P_{solive}}{e_{solive}} \times n = \frac{0,188}{1,25} \times 12 = 1,80 \text{ KN/ml}$$

D'où :

$$G = (4,15 \times e_{sommier}) + G_{solive} + 0,57 = 31 KN/ml$$

 $Q = 2,5 \times e_{sommier} = 17,25 \text{ KN/ml}$

<u>ELU</u>

 $q_u = 1,35G + 1,5Q = 67,72 \ KN/ml$

ELS

 $q_s = G + Q = 48,25 \ KN/ml$

4.3.3.1 Vérification du moment fléchissant

On vérifie avec un calcul plastique la condition suivante :

 $M_{sd} \leq M_{plrd}$

Figure 4-11 : La valeur du moment fléchissant après modélisation avec ROBOT

Avec :

 $M_{sd} = 1269,75 \text{ KN. } m$ $M_{pld} = Fa \times (\frac{ha}{2} + t - \frac{Za}{2})$

> Calcul de largueur efficace du béton :

$$b_{eff} = 2 \times \min\left(\frac{Li}{8}; \frac{bi}{2}\right)$$
 Avec :
 $\begin{cases} Li : largueur de la poutre \\ Bi: entraxe des poutres \end{cases}$

$$b_{eff} = 2 \times \min\left(\frac{15}{8}; \frac{7.8}{2}\right) = 2 \times 1,875 = 3,75 m$$

> Position de l'axe neutre plastique :

On doit calculer la résistance du profilé en traction Fa, et la résistance de la dalle de compression Fc, et les comparer, d'où :

$$Fa = \frac{A \times fy}{\gamma_{m0}} = \frac{72.7 \times 10^{-4} \times 275 \times 10^{3}}{1.1} = 1817.5 \text{ KN}$$

$$Fc = beff \times hc \times \frac{0.85 \times fc_{28}}{\gamma_{b}} = 3.75 \times 0.12 \times \frac{0.85 \times 25 \times 10^{3}}{1.5} = 6375 \text{ KN}$$

$$Fa < Fc \rightarrow Axe \text{ neutre plastique passe dans la dalle}$$

On calcul la distance entre l'axe neutre plastique et la face supérieure de la dalle de compression :

$$Z = \frac{Fa}{beff \times \frac{0,85 \times fc_{28}}{\gamma_b}} = \frac{1817,5}{375 \times \frac{0,85 \times 2,5}{1,5}} = 3,42 \text{ cm} < hc$$

On calcule le moment plastique :

$$M_{pld} = 1817,5 \times \left(\frac{0,36}{2} + 0,12 - \frac{0,0342}{2}\right) = 514,17 \text{ KN. } m$$

D'où : $M_{sd} = 1269,75 \text{ KN. } m > M_{plrd} = 514,17 \text{ KN. } m$

La condition n'est pas vérifiée. Comme solution on augmente la section du profilé à **IPE500** avec jarrets.

 $q_u = 1,35G + 1,5Q = 68,17 \ KN/ml$

$q_s = G + Q = 48,58 \ KN/ml$

Figure 4-13 : Les valeurs du moment maximal donné par ROBOT

$$\begin{split} M_{sd} &= 1363,84 \ KN. m \\ Fa &= \frac{A \times fy}{\gamma_{m0}} \quad \to A = 176,50 \ cm^2 \ (\ Air \ totale \ de \ section \ Profilés + jarrets) \\ Fa &= \frac{176,50 \times 10^{-4} \times 275 \times 10^3}{1,1} = 4412,5 \ KN \\ Fc &= beff \times hc \times \frac{0,85 \times fc_{28}}{\gamma_b} = 3,75 \times 0,12 \times \frac{0,85 \times 25 \times 10^3}{1,5} = 6375 \ KN \end{split}$$

 $Fa < Fc \rightarrow Axe$ neutre plastique passe dans la dalle

On calcul la distance entre l'axe neutre plastique et la face supérieure de la dalle de compression :

$$Z = \frac{Fa}{beff \times \frac{0,85 \times fc_{28}}{\gamma_b}} = \frac{4412,5}{375 \times \frac{0,85 \times 2,5}{1,5}} = 8,30 \ cm < hc$$

On calcule le moment plastique :

$$M_{pld} = 4412,5 \times \left(\frac{0,80}{2} + 0,12 - \frac{0,0830}{2}\right) = 2111,38 \text{ KN. } m$$

D'où : $M_{sd} = 1363,84 \text{ KN. } m < M_{plrd} = 2111,38 \text{ KN. } m$

La condition est vérifiée.

4.3.3.2 Vérification de l'effort tranchant :

Soit de vérifié cette condition :

$$V_{sd} \leq V_{ply}$$

$$Vsd = \frac{q_u \times l}{2} = 511,27 \ KN$$
$$V_{ply} = \frac{Avz \times fy}{\sqrt{3} \times 1,1} = \frac{59,9 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 864,58 \ KN$$
$$Vsd = 511,27 \ KN < V_{ply} = 864,58 \ KN$$

La condition est vérifiée.

4.3.3.3 Vérification de la flèche :

On doit satisfaire la condition suivante :

$$f_{cal} \leq f_{adm}$$

$$f_{cal} = \frac{q_s \times l^4}{384 \times E \times Im} \le f_{adm} = \frac{l}{250}$$

> Calcul de l'inertie mixte :

$$Im = Ia + Aa \times d^{2} + \frac{beff \times t^{3}}{12 \times n'} + \frac{beff \times t}{n'} \times f^{2}$$

$$n' = 2 \times n = 2 \times 6,88 = 13,76$$

$$S = Aa + \frac{beff \times t}{n'} = 115,5 + \frac{375 \times 12}{13,76} = 442,53 \ cm^{2}$$

$$d = \frac{beff \times t}{n'} \times \frac{t + ha}{2S} = \frac{375 \times 12}{13,76} \times \frac{12 + 50}{2 \times 442,53} = 22,91 \ cm$$

$$f = \frac{t + ha}{2} - d = \frac{12 + 50}{2} - 22,91 = 8,09 \ cm$$
D'où :

$$Im = 48198,5 + 115,5 \times 22,91^{2} + \frac{375 \times 12^{3}}{12 \times 13,76} + \frac{375 \times 12}{13,76} \times 8,09^{2}$$

 $Im = 134148,99 \ cm^4$

On calcul :

$$f_{cal} = \frac{48,58 \times 15000^4}{384 \times 210000 \times 134148,99 \times 10^4} = 22,73 \ mm \le f_{adm} = \frac{15000}{250} = 60 \ mm$$

La condition est vérifiée.

- 4.3.3.4 Calcul les contraintes de flexion :Contrainte dans la poutre d'acier :
- Fibre inferieure :

$$\sigma_{ai} = \frac{Mt}{l} v_i \qquad Avec: \quad v_i = \frac{ha}{2} + d = \frac{50}{2} + 22,91 = 47,91 \text{ cm}$$

$$\sigma_{ai} = \frac{-553,44 \times 10^{-3}}{134148,99 \times 10^{-8}} \times 0,47 = -193,90 \text{ MPa}$$

Fibre supérieure :

-

$$\sigma_{as} = \frac{Mt}{I} (v_s - t) \qquad Avec: \quad v_s = \frac{ha}{2} + t - d = \frac{50}{2} + 12 - 22,91 = 14,09 \text{ cm}$$

$$\sigma_{as} = \frac{553,44 \times 10^{-3}}{134148,99 \times 10^{-8}} \times (0,14 - 0,12) = 8,25 \text{ MPa}$$

- Contrainte dans la dalle en béton :
- Fibre supérieure :

$$\sigma_{bs} = \frac{Mt}{n' \times I} v_s = \frac{553,44 \times 10^{-3}}{13,76 \times 134148,99 \times 10^{-8}} \times (0,14) = 4,19 MPa$$

- Fibre inferieure :

$$\sigma_{bi} = \frac{Mt}{n' \times I} (v_s - t) = \frac{553,44 \times 10^{-3}}{13,76 \times 134148,99 \times 10^{-8}} \times (0,14 - 0,12) = 0,60 MPa$$

Figure 4-15 : Diagramme des contraintes de flexion simple

4.3.3.5 Calcul des contraintes additionnelles de retrait :

- Calcul β : $\beta = \frac{ha + t}{2} = \frac{50 + 12}{2} = 31 \ cm$

- Calcul α

$$\alpha = \frac{Ia}{Aa \times \beta} = \frac{48198,5}{115,5 \times 31} = 13,46 \ cm$$

- Calcul K :

$$K = \frac{Ac. Ea. \varepsilon. \beta. Aa}{n'. Ia. Aa + Ac. Ia + Ac. Aa. \beta^2}$$
$$\kappa = \frac{(3.75 \times 0.12) \times 2.1 \times 10^5 \times 2 \times 10^{-4} \times 0.31 \times 115.5 \times 10^{-4}}{(13.76 \times 48198.5 \times 10^{-8} \times 115.5 \times 10^{-4}) + (3.75 \times 0.12 \times 48198.5 \times 10^{-8}) + (3.75 \times 0.12 \times 115.5 \times 10^{-4} \times 0.31^2)}$$

 $K = 85,33 MN/m^3$

- Calcul Y₁

$$Y_1 = \frac{ha}{2} + \alpha = \frac{50}{2} + 13,46 = 38,46 \text{ cm}$$

- Calcul Y₂

$$Y_2 = Y_1 + t = 38,46 + 12 = 50,46 \ cm$$

Les contraintes dans l'acier :

- Fibre inferieure :

$$\sigma_{ai} = K \times (ha - Y_1) = 85,33 \times (0,50 - 0,38) = 10,24 MPa$$

- Fibre supérieure :

$$\sigma_{as} = K \times Y_1 = 85,33 \times 0,38 = 32,42 MPa$$

Les contraintes dans le béton :

- Fibre supérieure :

$$\sigma_{bs} = \frac{1}{n'} (Ea. \varepsilon - K. Y_2) = \frac{1}{13,76} (2,1 \times 10^5 \times 2 \times 10^{-4} - 85,33 \times 0,50) = 0 MPa$$

- Fibre inferieure :

$$\sigma_{bi} = \frac{1}{n'} (Ea.\varepsilon - K.Y_1) = \frac{1}{13,76} (2,1 \times 10^5 \times 2 \times 10^{-4} - 70,61 \times 0,38) = 0,69 MPa$$

4.3.3.6 Les contraintes finales :

- Dans l'acier

 $\begin{cases} \sigma_{ai} = -193,\!90 + 10,\!24 = -184,\!66\,MPa \\ \sigma_{as} = 8,\!25 + 32,\!42 = 40,\!67\,MPa \end{cases} \leq 275\,MPa$

- Dans le béton

 $\begin{cases} \sigma_{bs} = 4,19 + 0 = 4,19 \ MPa \\ \sigma_{bi} = 0,70 + 0,69 = 1,39 \ MPa \end{cases} \le 14,2 \ MPa$

Figure 4-16 : Diagramme des contraintes finales

4.3.3.7 Vérification des poutres principales au Niveau de la mezzanine :

Les résultats sont résumés dans le tableau suivant :

Eléments	Profilés	L (m)	e (m)	<i>q_u</i> (KN/m)	<i>q_s</i> (KN/m)	M _{sd} (KN.m)	<i>M_{ply}</i> (KN.m)
Poutre principale	IPE270	5	5	48,27	34,37	100,56	133,11

Tableau 4-3 : Résumé des résultats pour la poutre principale de la mezzanine

5 Chapitre V Etude sismique

5.1 Introduction :

L'étude sismique d'une structure vise à assurer une protection acceptable des constructions vis à vis des effets des actions sismiques par une conception et un dimensionnement appropriés toute en satisfaisant les trois aspects essentiels de la conception qui sont : la résistance, l'aspect architectural et l'économie.

Cet objectif ne peut être atteint qu'avec un calcul adéquat tout en respectant la réglementation en vigueur.

5.2 Modélisation :

La modélisation est la transformation d'un problème physique réel ayant une infinité de degrés de liberté (DDL) à un modèle possédant un nombre de DDL fini qui décrit le phénomène étudié d'une manière aussi fiable que possible, autrement dit, ce modèle doit refléter avec une bonne précision le comportement et les paramètres du système d'origine à savoir : la masse, la rigidité, l'amortissement, etc.

Parmi les méthodes de modélisations qui existe, on trouve la modélisation en éléments finis, cette méthode consiste à discrétiser la structure en plusieurs éléments, on détermine les inconnues au niveau des nœuds puis à l'aide des fonctions d'interpolation on balais tout l'élément puis toute la structures ; mais cela prend énormément de temps à la main, c'est pourquoi on se sert du logiciel ROBOT V2025 afin de simplifier les calculs.

Le logiciel ROBOT, conçu pour le calcul et la conception des structures d'ingénieries, il se base sur la méthode d'analyse par éléments finis pour étudier les structures planes et spatiales en acier, en bois, en béton armé ou mixte.

5.3 Choix de la méthode de calcul :

D'après le RPA la détermination de la réponse d'une structure et son dimensionnement peuvent se faire par trois méthodes de calcul :

- Méthode statique équivalente
- Méthode d'analyse modale spectrale
- Méthode d'analyse dynamique par accélérogramme

Vue la particularité de notre structure et d'après le règlement RPA99V2003, le calcul se fera par la méthode statique équivalente.

5.3.1 Méthode statique équivalente :

Dans cette méthode, l'effet dynamique de la force sismique est remplacé par un effet statique qui produit la même réponse (déplacement maximal) que la force dynamique réelle. L'utilisation de cette méthode exige la vérification de certaines conditions définies par le RPA (régularité en plan, régularité en élévation, etc).

5.3.1.1 Calcul de la force sismique totale :

Tout bâtiment sera conçu et construit de telle sorte qu'il résiste à la force sismique totale V appliquées à la base, et qui doit être calculée successivement dans deux directions horizontale et orthogonale selon la formule suivante : $V_{st} = \frac{A.D.Q.W}{R}$

A : coefficient d'accélération de zone, donnée par le tableau (4.1) de RPA en fonction de la zone sismique et du groupe d'usage du bâtiment. Dans notre cas on est dans la zone IIa groupe d'usage 2 nous trouverons :
A= 0.15

D: facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure.

$$\checkmark D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\ 2.5\eta \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T > 3.0 \text{ s} \end{cases}$$

Avec :

T1, T2 : Périodes caractéristiques associées à la catégorie du site et données par le tableau 4.7 du [RPA99/version 2003].

Selon le rapport géotechnique relatif à cet ouvrage, le sol est de catégorie S3

$$\rightarrow \begin{cases} T_1 = 0.15s \\ T_2 = 0.50s \end{cases}$$

 η : Facteur de correction de l'amortissement, donné par la formule $\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7$

Avec $\xi(\%)$ le pourcentage d'amortissement critique fonction du matériau constructif, du type de structure et de l'importance des remplissages. Les valeurs de ξ sont données dans le tableau 4.2 du RPA

L'ossature de la structure est constitué de portiques en acier avec remplissage dense, donc on aura : $\xi = 5\%$ d'où $\eta = 1$

5.3.1.2 Estimation de la période fondamentale de la structure :

La période fondamentale de la structure constitue un paramètre majeur dans la conception parasismique. Pour cela le RPA 99/2003 nous donne la possibilité d'estimer la valeur de la période (T) à partir de formules empiriques ou la calculer par des méthodes analytiques ou numériques. La formule empirique à utiliser est donnée par la formule (4.6) :

$$T = C_T \times H_N^{3/4}$$

 H_N : Hauteur mesuré à partir de la base jusqu'au sommet de la structure, $H_N = 15m$

 C_T : Coefficient, fonction du système de contreventement, du type de remplissage, $C_T = 0.05$ donné par le tableau 4.6 de RPA/2003.

D'où :

$$T = 0.05 \times 15^{3/4} = 0.38s$$

Pour notre cas, on peut utiliser la formule (4.7) de RPA/2003 :

$$\mathrm{T_{x,y}} = \frac{0.09 \times H_N}{\sqrt{\mathrm{L_{x,y}}}}$$

 $L_{x,y}$: est la dimension du bâtiment mesurée à sa base dans la direction de calcul considéré. D'où

 $\begin{cases} L_x = 30,70m \\ L_y = 56,30m \end{cases} \to \begin{cases} T_x = 0,24s \\ T_y = 0,18s \end{cases}$

D'après le RPA/2003 il faut utiliser la valeur la plus petite des deux directions.

 $T_x = min(T; T_x) = 0.24 s$ $T_y = min(T; T_y) = 0.18 s$

On a T_x et T_y sont inferieur à $T_2 = 0.5$ s.

Donc :

 $D_{x,y} = 2,5\eta = 2,5$

R : Coefficient de comportement global de la structure, sa valeur est retirée à partir de tableau (4.3) de RPA en fonction de système de contreventement.

Rx = Ry = 4 (Ossature contreventée par palées triangulées en X suivant les deux sens de calcul).

Q : Facteur de qualité qui est Q est déterminé par la formule suivante :

 $Q = 1 + \sum_{1}^{6} P_q$

« Critère q »	Observé	Pq/xx	Observé	Pq/yy
1-Condition minimale sur les	Oui	0	Non	0,05
files de contreventement				
2- Redondance en plan	Non	0,05	Oui	0
3- Régularité en plan	Oui	0	Oui	0
4- Régularité en élévation	Oui	0	Oui	0
5- Contrôle de qualité des	Oui	0	Oui	0
matériaux				
6- Contrôles de qualité	Oui	0	Oui	0
d'exécution				

Tableau 5-1 : Valeurs du facteur de qualité

D'où :

$$\begin{cases} q_x = 1,05 \\ q_y = 1,05 \end{cases}$$

W : Poids total de la structure, est donné par la formule suivante :

 $W = \sum_{i=1}^{n} W_i$ avec $W_i = W_{Gi} + \beta \times W_{Qi}$

 \mathbf{W}_{Gi} : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.

W_{0i}: Charges d'exploitation.

 β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation donné par le **RPA99 (tableau 4.5**)

Entrepôts, hangars $\rightarrow \beta = 0.5$

W = 21265,52 KN (Donné par Logiciel ROBOT2025)

$$Vx = Vy = \frac{A.D.Q}{R} \times W = \frac{0.15 \times 2.5 \times 1.05}{4} \times 21265,52 = 2093,32 \text{ KN}$$

5.3.2 Méthode dynamique :

5.3.2.1 Principe de la méthode modale spectrale :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure. Cette méthode est applicable pour les constructions suivantes :

- Les structures régulières en plan comportant des planchers rigides.
- Les structures irrégulières en plan, sujettes à la torsion et comportant des planchers rigides.
- Les structures régulières ou non comportant des planchers flexibles.

5.3.2.2 Spectre de réponse de calcul :

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{Sa}{g} = \begin{cases} 1,25A(1+\frac{T}{T_1}\left(2,5\eta\frac{Q}{R}-1\right)\right) & 0 \le T \le T_1 \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right)\left(\frac{T_2}{T}\right)^{\frac{2}{3}} & T_2 \le T \le 3s \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right)\left(\frac{T_2}{T}\right)^{\frac{2}{3}}\left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 3s \end{cases}$$

Avec les coefficients A, T_1 , T_2 , η , Q, R, sont déjà déterminée.

5.3.2.3 Nombre de mode de vibration à prendre :

Selon le RPA99, pour les structures représentées par des modèles plans dans deux directions orthogonales, le nombre de modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :

- La somme des masses modales effectives pour les modes retenus soit égale à 90 % au moins de la masse totale de la structure.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure. Le minimum de modes à retenir est de trois (03) dans chaque direction considérée.

5.3.3 Résultats de calcul :

- Schématisation du spectre de réponses suivant X et Y

Figure 5-1 : Schéma statique de réponses suivant X et Y

Cas/N	lode	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]
7/	1	1,86	0,54	91,40	0,01	0,0	91,40	0,01
7/	2	2,45	0,41	91,40	89,41	0,0	0,00	89,41
7/	3	3,43	0,29	91,46	89,46	0,0	0,05	0,04
7/	4	4,20	0,24	91,46	94,10	0,0	0,00	4,64
7/	5	5,20	0,19	92,17	94,10	0,0	0,71	0,00
7/	6	5,21	0,19	92,87	94,10	0,0	0,70	0,00
7/	7	5,73	0,17	92,88	94,10	0,0	0,00	0,00
7/	8	5,85	0,17	92,91	94,10	0,0	0,03	0,00
7/	9	5,89	0,17	93,53	94,10	0,0	0,62	0,00
7/	10	6,34	0,16	94,07	95,95	0,0	0,54	1,85

Figure 5-2 : Pourcentage de participation massique

A partir de ce tableau, on remarque que le taux de participation de la masse dépasse le seuil de 90% à partir du mode 2, sont suffisant pour représenter un bon comportement de la structure. Dans les trois premiers modes on a :

- 1^{er} Mode on a une Translation suivant l'axe XX
- 2^{em} Mode on a une Translation suivant l'axe YY
- 3^{em} Mode on a une rotation autour de l'axe ZZ

Figure 5-3 : Les réponses modales de la structure pour les trois premiers modes

5.3.3.3	Les c	ombinaisons	de	calcul	:
---------	-------	-------------	----	--------	---

ELU	ELS	ELA
1,35G+1,5Q	G+Q	$G + Q \pm EX$
1,35G+1,5N	G+N	$G + Q \pm EY$
G+1,5W	G+W	$0,8G \pm EX$
1,35G+1,35(Q+W)	G+0,9(Q+W)	$0,8G \pm EY$
1,35G+1,35(Q+N)	G+0,9(Q+N)	
1,35G+1,35(Q+T)	G+0,9(Q+T)	

5.3.3.4 Vérification de la résultante de la force sismique à la base :

Le RPA99/2003 exige de vérifier la relation suivante $Vdyn \ge 0.8$ Vst Les résultats sont présentés dans le tableau suivant :

Forces sismique	Vdyn (KN)	0,8*Vstat (KN)	Observation
Sens XX	1967,62	1674,66	Vérifié
Sens YY	2315,59	1674,66	Vérifié

Tableau 5-3 : Vérification de la résultante de la force sismique à la base

Remarque :

Dans le cas où l'effort tranchant à la base n'est pas vérifié, toutes les réponses obtenues à partir de la méthode modale spectrale vont être majorées de (0,8Vst/Vdyn).

5.3.3.5 Vérification vis-à-vis des déplacements de niveaux :

Selon le RPA99/2003 (Art 5.10), les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage.

Avec : $\delta k = R \times \delta e k$

 δk : Déplacement horizontal à chaque niveau "K" de la structure donné par le RPA99/2003 (Art4.43).

 δek : Déplacement dû aux forces sismiques Fi

R : Coefficient de comportement dynamique, Avec R=4

Sens X-X									
Niveaux	δ _{ek} (cm)	δ _k (cm)	δ _{k-1} (cm)	$\Delta_{ m k}$	h _k (cm)	OBS			
+6,08	0,52	2,1	0	2,1	6,08	Vérifié			
+15	1,07	4,3	2,1	2,2	8,92	Vérifié			
Sens Y-Y									
Niveaux	δ _{ek} (cm)	δ _k (cm)	δ _{k-1} (cm)	$\Delta_{\mathbf{k}}$	h _k (cm)	OBS			
+6,08	0.35	1,4	0	1,4	6,08	Vérifié			
+15	1.05	4,2	1,4	2,8	8,92	Vérifié			

Il s'agit de vérifier le point le plus haut de la toiture par rapport au sol.

Tableau 5-4 : Déplacement relatif de la structure

5.3.3.6 Effet de deuxième ordre :

Les effets de seconde d'ordre ou (effet $P - \Delta$) peuvent être négligé si la condition suivante est vérifiée

$$\theta = \frac{P_K \times \Delta_K}{V_K \times H_K} \le 0,1$$

Avec :

 P_K : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau «K».

 V_K : Effort tranchant d'étage au niveau « K »

 Δ_K : Déplacement relatif du niveau « K » par rapport au niveau « K-1 ».

H_K: Hauteur de l'étage « K ».

- Si $0,1 \le \theta \le 0,2$, les effets $P \Delta$ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du ler ordre par le facteur $\frac{1}{1-\theta_K}$
- Si $\theta_K > 0,2$ la structure est potentiellement instable et doit être redimensionnée.

Nimon	III (am)	Sens x-x'				Sens y-y'		
Iniveau	пк (СШ)	P_k (KIN)	$\Delta_{\mathbf{k}}$	V _k (KN)	$ heta_k$	$\Delta_{\mathbf{k}}$	V _k (KN)	$ heta_k$
+6,08	6,08	21265,52	0.021	1965,37	0.03	0.014	2310,27	0.02
+15	8,92	10492,83	0.022	1246,95	0.02	0.028	1458,15	0.02

Tableau 5-5 : Vérification des effets $P - \Delta$

On constate que dans les deux sens :

 $\theta \leq 0,1$ Donc les effets $P - \Delta$ peuvent être négligés.

6 Chapitre VI Vérification des éléments

6.1 Introduction :

L'étude des éléments structuraux partir du logiciel ROBOT, qui servent également au calcul des assemblages et nécessite l'évaluation de toutes les charges (permanentes, d'exploitations, sismique et climatique variables), leur vérification est basée sur les sollicitations obtenues à l'étude de l'infrastructure.

6.2 Vérification des poteaux :

On doit vérifier le poteau le plus sollicité sous la combinaison la plus défavorable,

Le poteau le plus sollicité est illustré dans la figure suivante :

Figure 6-1 : Le poteau le plus sollicité

Figure 6-2 : Diagramme du poteau le plus sollicité

Les efforts sollicitant avec la combinaison la plus défavorable **ELU** calculés par le logiciel robot sont :

 $\begin{cases} N_{sd} = 454,15 \ KN \\ M_{ysd} = -600,18 \ KN. \ m \\ M_{zsd} = -18,97 \ KN. \ m \\ V_z = -340,09 \ KN \end{cases}$

6.2.1 Classe de la section :

- La classe de l'âme en flexion composée :

$$\alpha = \frac{1}{d} \times \left(\frac{d - d_c}{2}\right) \le 1 \qquad Avec \qquad d_c = \frac{N_{sd}}{tw \times fy} = \frac{454,15 \times 10^3}{8,5 \times 275} = 194,29mm$$

D'où :

$$\alpha = \frac{1}{208} \times \left(\frac{208 - 194,29}{2}\right) = 0,03 \le 1$$
$$\frac{d}{tw} \le \frac{396\varepsilon}{(13\alpha - 1)} \to \frac{208}{8,5} = 24,47 > \frac{396 \times 0,92}{(13 \times 0,03 - 1)} = -597,24$$

L'âme est de classe 2.

- Classe de la semelle (comprimé) :

$$\frac{b}{2 \times tf} \le 33\varepsilon \quad \to \frac{300}{2 \times 14} = 10,71 \le 33 \times 0,92 = 30,36$$

La semelle est de classe 1.

Donc : le profilé est de classe 2.

6.2.2 Vérification à la résistance :

6.2.2.1 Vérification de l'Effort tranchant :

$$V_{plz} = \frac{A_{vz} \times fy}{\sqrt{3} \times 1,1} = \frac{37,3 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 538,38 \, KN$$

 $V_z = 402,62 \ KN > 0,5 V_{plz} = 269,19 \ KN$

La condition n'est pas vérifiée, on doit prendre en compte l'interaction avec le moment résistant.

6.2.2.2 Vérification du moment fléchissant :

$$M_{sd} \leq M_v = \frac{[Wply - W_v \times \rho] \times fy}{\gamma_{m0}}$$

Avec : $W_v = \frac{h \times t w^2}{4} = \frac{290 \times 8.5^2}{4} = 5238,12 \ mm^3$

$$\rho = \left(\frac{2V}{Vpl} - 1\right)^2 = \left(\frac{2 \times 402,62}{538,38} - 1\right)^2 = 0,24$$
$$M_v = \frac{[1383,3 \times 10^3 - 5238,12 \times 0,24] \times 275}{1.1} = 345,51 \, KN. \, m$$

 $M_{ysd} = 600,\!18\,KN > M_v = 345,\!51\,KN.\,m$

La condition n'est pas vérifiée.

Comme solution on augmente la section du profilé à HEA450.

Les nouveaux efforts donnés par ROBOT sont :

 $\begin{cases} N_{sd} = 484,48 \ KN \\ M_{ysd} = 721,28 \ KN. \ m \\ M_{zsd} = -19,21 \ KN. \ m \\ V_z = 419,82 \ KN \end{cases}$

> Effort tranchant :

$$V_{plz} = \frac{A_{vz} \times fy}{\sqrt{3} \times 1,1} = \frac{65,8 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 949,74 \text{ KN}$$
$$V_z = 419,82 \text{ KN} < 0.5 V_{plz} = 474,58 \text{ KN}$$

La condition est vérifiée, donc y'a pas d'interaction

Moment fléchissant :

$$M_{pld} = \frac{Wply \times fy}{1,1} = \frac{3215,9 \times 10^3 \times 275}{1,1} = 803,97 \text{ KN. }m$$
$$M_{sd} = 721,28 \text{ KN. }m < M_{pld} = 803,97 \text{ KN. }m$$

La condition est vérifiée.

6.2.3 Vérification à l'instabilité :

6.2.3.1 Vérification au déversement :

$$\begin{split} \lambda_{lt} &= \left(\frac{\lambda_{lt}}{\lambda_1}\right) \times \sqrt{\beta_w} \le 0.4\\ \lambda_1 &= \sqrt{\frac{E}{F_y}} \times \pi = \left(\sqrt{\frac{210000}{275}}\right) \times \pi = 86.81\\ \lambda_{lt} &= \frac{L/i_z}{\sqrt{C_1} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f}\right)^2\right]^{0.25}} \end{split}$$

L : longueur de maintien latéral.

Le poteau le plus sollicité est de longueur 3,42m d'où la longueur du maintien latérale est :

$$L = 0.5 \times 3.42 = 1.71 m$$

$$\lambda_{lt} = \frac{171/7.29}{\sqrt{1.132} [1 + \frac{1}{20} (\frac{171/7.29}{44/2.1})^2]^{0.25}} = 21.71$$

$$\lambda_{lt} = (\frac{21.71}{86.81}) \times \sqrt{1} = 0.25 < 0.4$$

Y'a pas de risque de déversement.

6.2.3.2 Vérification au flambement sans risque de déversement :

On doit satisfaire la condition suivante :

$$\frac{Nsd}{\chi_{min} \left(\frac{A + fy}{\gamma_{m1}}\right)} + \frac{Ky * Mysd}{Wply \left(\frac{fy}{\gamma_{m1}}\right)} + \frac{Kz * Mzsd}{Wplz \left(\frac{fy}{\gamma_{m1}}\right)} \le 1$$
Calcul de l'élancement réduit :
 $\lambda_{cr} = 93.9\varepsilon = 93.9 \times 0.92 = 86.81$
 $l_{ky} = 1.5m$ (entraxe des lisses)
 $l_{kz} = 0.5 \times l = 0.5 \times 3.42 = 1.71m$
 $\lambda_y = \frac{l_{ky}}{l_y} = \frac{150}{18.92} = 7.93 \rightarrow \lambda_y = \frac{\lambda_y}{\lambda_{cr}} = \frac{7.93}{86.81} = 0.09$
 $\lambda_y = 0.09 < 0.2 \rightarrow Y'a pas de risque de flambement$
 $\lambda_z = \frac{l_{kz}}{l_z} = \frac{171}{7.29} = 23.45 \rightarrow \lambda_z = \frac{\lambda_z}{\lambda_{cr}} = \frac{23.45}{86.81} = 0.27$
 $\lambda_z = 0.27 > 0.2 \rightarrow ll y'a un risque de flambement$
Choix de la courbe du flambement :
 $\frac{h}{b} = \frac{440}{300} = 1.46 > 1.2$ $\longrightarrow ZZ \rightarrow Courbe (b) \rightarrow a_z = 0.34$
 $YY \rightarrow Courbe (a) \rightarrow a_y = 0.21$
 $tf = 21mm < 40 mm$
On a :
 $\chi_z = \frac{1}{\varphi_x + [\varphi_z^2 - \lambda_z^2]^{0.5}}$ Avec $\varphi_z = 0.5[1 + \alpha_z(\lambda_z - 0.2) + \lambda_z^2]$
 $\chi_y = \frac{1}{\varphi_y + [\varphi_y^2 - \lambda_z^2]^{0.5}}$ Avec $\varphi_y = 0.5[1 + \alpha_y(\lambda_y - 0.2) + \lambda_z^2]$
 $\chi_z = 0.99 ; \chi_y = 1$
a) Calcul Kz et Ky:
 $Kz = 1 - \frac{\mu_z \times Nsd}{\chi_x \times A \times fy} \le 1.5$
 $Ky = 1 - \frac{\mu_y \times Nsd}{\chi_y \times A \times fy} \le 1.5$
 $\mu_z = \lambda_z(2 \times \beta_{my} - 4) + \frac{Wply - Wely}{Wely}$; $\mu_y = \lambda_y(2 \times \beta_{my} - 4) + \frac{Wply - Wely}{Wely}$
 $\beta_{my} = 1.8 - 0.7\Psi$

$$\Psi = \frac{M_{min}}{M_{max}} = \frac{715,67}{721,28} = 0,99 \quad \rightarrow \beta_{my} = 1,8 - 0,7 \times 0,99 = 1,10$$

 $Wply = 3215,9 \ cm^3$ $Wely = 2896,4 \ cm^3$

D'où :

$$\begin{split} \mu_{z} &= -0.37 \; ; \; \mu_{y} = -0.05 \\ Kz &= 1.03 \; ; \; Ky = 1 \\ \frac{Nsd}{\chi_{min}(^{A * fy}/\gamma_{m1})} + \frac{Ky * Mysd}{Wply(^{fy}/\gamma_{m1})} + \frac{Kz * Mzsd}{Wplz(^{fy}/\gamma_{m1})} \leq 1 \\ &\rightarrow \frac{484.48 \times 10^{3}}{0.99(^{178} \times 10^{2} \times 275/_{1})} + \frac{1 \times 721.28 \times 10^{6}}{3215.9 \times 10^{3}(^{275}/_{1})} + \frac{1.03 \times 19.21 \times 10^{6}}{965.5 \times 10^{3}(^{275}/_{1})} = 0.99 \leq 1 \end{split}$$

La condition est vérifiée, donc y'a pas de risque de flambement.

6.2.4 Conclusion :

On constate que toutes les conditions sont vérifiées donc le choix de HEA500 est satisfait.

Le logiciel ROBOT effectue les vérifications suivantes :

Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
160	K POT 450	S 275	2.22	23.45	0.97	11 ELU

Figure 6-3 : Poteau HEA450 vérifié

6.3 Vérification des traverses :

La traverse la plus sollicitée est illustré dans la figure suivant :

Figure 6-4 : La traverse la plus sollicité

Figure 6-5 : Diagramme de la traverse la plus sollicité

Les efforts sollicitant avec la combinaison la plus défavorable **1,35G+1,5(Q+N)** calculés par le logiciel robot sont :

$$\begin{cases} N_{sd} = 122,71 \text{ KN} \\ M_{ysd} = -40,28 \text{ KN}.m \\ V_z = 34,73 \text{ KN} \end{cases}$$

6.3.1 Classe de la section :

- La classe de l'âme en flexion composée :

$$\alpha = \frac{1}{d} \times \left(\frac{d - d_c}{2}\right) \le 1 \qquad Avec \qquad d_c = \frac{N_{sd}}{tw \times fy} = \frac{122,71 \times 10^3}{6,6 \times 275} = 67,61mm$$

D'où :

$$\alpha = \frac{1}{219,6} \times \left(\frac{219,6-67,61}{2}\right) = 0,34 \le 1$$
$$\frac{d}{tw} \le \frac{396\varepsilon}{(13\alpha - 1)} \to \frac{219,6}{6,6} = 33,27 \le \frac{396 \times 0,92}{(13 \times 0,34 - 1)} = 106,52$$

L'âme est de classe 1.

- Classe de la semelle (comprimé) :

$$\frac{b}{2 \times tf} \le 33\varepsilon \quad \to \frac{135}{2 \times 10,2} = 6,61 \le 33 \times 0,92 = 30,36$$

La semelle est de classe 1.

Donc : le profilé est de classe 1.

6.3.2 Vérification à la résistance : 6.3.2.1 Vérification de l'Effort tranchant : $V_{plz} = \frac{A_{vz} \times fy}{\sqrt{3} \times 1,1} = \frac{22,1 \times 10^2 \times 275}{\sqrt{3} \times 1,1} \times 10^{-3} = 318,98 \text{ KN}$ $V_z = 34,73 \text{ KN} < 0.5 V_{plz} = 159,49 \text{ KN}$

La condition est vérifiée. Y'a pas d'interaction

6.3.2.2 Vérification du moment fléchissant :

$$M_{plrd} = \frac{Wply \times fy}{1,1} = \frac{484 \times 10^3 \times 275}{1,1} \times 10^{-6} = 121 \text{ KN. m}$$

 $M_{ysd} = 40,28 \text{ KN. } m < M_{plrd} = 121 \text{ KN. m}$

La condition est vérifiée.

6.3.3 Vérification à l'instabilité :

6.3.3.1 Vérification au déversement :

$$\lambda_{lt} = \left(\frac{\lambda_{lt}}{\lambda_1}\right) \times \sqrt{\beta_w} \le 0.4$$

$$\lambda_1 = \sqrt{\frac{E}{F_y}} \times \pi = \left(\sqrt{\frac{210000}{275}}\right) \times \pi = 86.81$$

$$\lambda_{lt} = \frac{L/i_z}{\sqrt{C_1} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f}\right)^2\right]^{0.25}}$$

L : longueur de maintien latéral.

$$L = 0.5 \times 7.76 = 3.88m$$

$$\lambda_{lt} = \frac{388/3.02}{\sqrt{1.132} [1 + \frac{1}{20} (\frac{388/3.02}{27/1.02})^2]^{0.25}} = 99.40$$

$$\lambda_{lt} = (\frac{99.40}{86.81}) \times \sqrt{1} = 1.14 > 0.4$$

Y'a un risque de déversement.

6.3.3.2 Vérification du flambement :

 $\frac{Nsd}{\chi_{min} \times Nply} + \frac{K_{lt} \times My}{\chi_{lt} \times Mply} \leq 1$

On met des bracons attaché de la semelle inferieur de la traverse à la panne pour minimiser l'élancement de la traverse.

$$l_{kz} = 0.7 \times \frac{L}{2} = 0.7 \times \frac{7.76}{2} = 2.71 m$$

$$\lambda_z = \frac{l_{kz}}{i_z} = \frac{271}{3.02} = 89.73 \rightarrow \lambda_z = \frac{\lambda_z}{\lambda_{cr}} = \frac{89.73}{86.81} = 1.03$$

$$\lambda_z = 1.03 > 0.2 \rightarrow Il \ y'a \ un \ risque \ de \ flambement$$

Choix de la courbe du flambement :

$$\begin{cases} \frac{h}{b} = \frac{270}{135} = 2 > 1.2 \\ tf = 10,2mm < 40 mm \end{cases} \rightarrow ZZ \rightarrow Courbe (b) \rightarrow \alpha_z = 0.34 \\ \text{On a :} \\ \chi_z = \frac{1}{\varphi_z + [\varphi_z^2 - \lambda_z^2]^{0.5}} \qquad Avec \qquad \varphi_z = 0.5[1 + \alpha_z(\lambda_z - 0.2) + \lambda_z^2] \\ \varphi_z = 1.17 \\ \chi_z = 0.58 \\ \text{Profilé laminé : } courbe (a) \rightarrow \chi_{lt} \\ \text{On tire } \chi_{lt} \text{ à partir du tableau } 5.5.2 \text{ EC3 :} \\ \lambda_{lt} = 1.14 \rightarrow \chi_{lt} = 0.56 \\ \bullet \quad \text{Calcul } K_{lt} : \\ K_{lt} = 1 - \frac{\mu_{lt} \times N_{st}}{\chi_z \times Npl} \\ \mu_{lt} = 0.15 \times \lambda_z \times \beta_{mlt} - 0.15 \\ \lambda_z = 1.03 \qquad \beta_{mlt} = 1.3 \\ \mu_{lt} = 0.15 \times 1.03 \times 1.3 - 0.15 = 0.05 \\ \chi_z = 0.58 \qquad N_{sd} = 122.71 \text{ KN } \qquad Npl = A \times fy \\ \Rightarrow K_{lt} = 1 - \frac{0.05 \times 122.71 \times 10^3}{0.58 \times 45.9 \times 10^2 \times 275} = 0.99 \\ Mply = \frac{Wply \times fy}{1.1} = 121 \text{ KN} \cdot m \\ \text{On vérifié :} \end{cases}$$

 $\frac{122,71 \times 10^3}{0,58 \times 45,9 \times 10^2 \times 275} + \frac{0,99 \times 40,28 \times 10^6}{0,664 \times 121 \times 10^6} = 0,68 \le 1$

La condition est vérifiée.

6.3.4 Conclusion :

On adopte des **IPE270** Pour nos traverses avec des bracons attaché aux pannes pour minimiser l'élancement de la traverse.

6.4 Vérification des diagonales de palée de stabilité :

La diagonale la plus sollicitée est illustrée dans la figure suivante :

Figure 6-6 : La diagonale de la palée de stabilité la plus sollicité

On a l'effort de traction max sous G+Q+EX:

$$\begin{split} N_{sd} &= 441,32 \, KN \\ \textbf{6.4.1 Vérification à la traction :} \\ N_{sd} &\leq N_{rd} = \frac{A \times fy}{\gamma_{m0}} \\ A &= 55,08 \, cm^2 \quad 2CAE120 \times 120 \times 12 \\ N_{rd} &= \frac{55,08 \times 10^2 \times 275}{1,1} \times 10^{-3} = 1377 \, KN \\ N_{sd} &= 441,32 \, KN < N_{rd} = 1377 \, KN \\ \text{La condition est vérifiée.} \end{split}$$

6.4.2 Conclusion :

Le choix des **2CAE120** × **120** × **12** est satisfait pour nos diagonales de palée de stabilité.

6.5 Vérification des diagonales de la poutre au vent :

La diagonale la plus sollicitée est illustrée dans la figure suivante :

On a l'effort de traction max sous 1,35G+1,5(Q+T) :

 $N_{sd} = 67,85 \ KN$

6.5.1 Vérification à la traction :

$$\begin{split} N_{sd} &\leq N_{rd} = \frac{A \times fy}{\gamma_{m0}} \\ A &= 19,15 \ cm^2 \quad CAE100 \times 100 \times 10 \\ N_{rd} &= \frac{19,15 \times 10^2 \times 275}{1} \times 10^{-3} = 526,62 \ KN \\ N_{sd} &= 67,85 \ KN < N_{rd} = 526,62 \ KN \end{split}$$

La condition est vérifiée.

6.5.2 Conclusion :

Le choix des $CAE100 \times 100 \times 10$ Est satisfait pour nos diagonales de la poutre au vent.

7 Chapitre VII

Calcul des assemblages

7.1 Assemblage Poteau-Traverse :

- L'assemblage poteau traverse est réalisé à l'aide d'une platine soudée à la traverse et boulonnée au poteau.
- L'assemblage est sollicité par un moment fléchissant, effort tranchant et un effort normal.

Figure 7-1 : Représentation de l'assemblage poteau-traverse

Les efforts max trouvé sous la combinaison 1,35G+1,35(Q+N) sont :

 $\begin{cases} M_{sd} = 39,13 \ KN. \ m \\ V_{sd} = 24,82 \ KN \\ N_{sd} = 115,34 \ KN \end{cases}$

On prend 10 boulons de classe 8.8

7.1.1 Détermination des efforts dans les boulons : On a :

$$d_{1} = 180mm \quad d_{2} = 135mm \quad d_{3} = 90mm \quad d_{4} = 45mm$$

$$N_{i} = \frac{Msd \times di}{\Sigma di^{2}}$$

$$\sum di^{2} = 0,18^{2} + 0,135^{2} + 0,09^{2} + 0,045^{2} = 0,06 m^{2}$$

$$N_{1} = \frac{39,13 \times 0,18}{0,06} = 117,39 KN$$

$$N_{2} = \frac{39,13 \times 0,135}{0,06} = 88,04 KN$$

$$N_{3} = \frac{39,13 \times 0,09}{0,06} = 58,69 KN$$

7.1.2 Distribution de l'effort tranchant :

L'effort tranchant repris par un seul boulon est :

$$F_{vsd} = \frac{Vsd}{n}$$

Avec :

n: Nombre de boulon egale a 10 boulon

$$F_{vsd} = \frac{24,82}{10} = 2,48 \ KN$$

7.1.3 Pré dimensionnement des boulons : On a :

$$N_1 \leq n_r \times F_P$$

Avec : $F_P = 0,7 \times A_s \times F_{ub}$

 n_r : Nombre de rongé de boulon egale a 2

D'où :

$$A_s \ge \frac{N_1}{0.7 \times n_r \times F_{ub}} = \frac{117,39 \times 10^3}{0.7 \times 2 \times 800} = 104,81 \ mm^2$$

Soit des boulons M14 de $A_s = 115 mm^2$

7.1.4 Vérification de la disposition géométrique : On a : $d_0 = 13mm$

 $e_1 = 32,5mm > 1,5d_0 = 22,5mm$ $e_2 = 40mm > 1,2d_0 = 18mm$ $P_1 = 45mm > 2,2d_0 = 33mm$ $P_2 = 70mm > 3d_0 = 45mm$

7.1.5 Vérification de moment résistant effectif de l'assemblage : On doit vérifier que :

$$M_{sd} \leq M_R$$

$$M_{R} = \frac{F_{p} \times \sum d_{i}^{2}}{d_{1}}$$
$$F_{pcd} = 0.7 \times A_{s} \times F_{ub} = 0.7 \times 115 \times 800 \times 10^{-3} = 64,40 \text{ KN}$$

On a deux rangers donc :

$$64,4 \times 2 = 128,8 KN$$

$$M_R = \frac{F_p \times \sum d_i^2}{d_1} = \frac{128,8 \times 0,06}{0,180} = 42,93 \text{ KN. } m$$

 $M_{sd} = 39,13 \ KN < M_R = 42,93 \ KN$

La condition est vérifiée.

7.1.6 Vérification l'interaction cisaillement et traction de chaque boulon : On doit vérifier que :

$$F_{vsd} \leq F_{srd}$$

$$F_{vsd} = \frac{24,82}{10} = 2,48 \ KN$$

$$F_{tsd} = \frac{N}{2} = \frac{115,34}{2} = 57,67 \ KN$$

$$F_{srd} = K_s \times n \times \mu \times (Fp - 0,8F_{tsd})/\gamma_{mb}$$

$$\begin{cases} K_s = 1 \ (Trous \ nominale) \\ \mu = 0,3 \\ n = 1 \end{cases}$$
D'où :

 $F_{srd} = 1 \times 1 \times 0.3 \times (64.4 - 0.8 \times 57.67) / 1.25 = 4.38 \text{ KN}$ $F_{vsd} = 2.48 \text{ KN} < F_{srd} = 4.38 \text{ KN}$

La condition est vérifiée.

7.1.7 Vérification au poinçonnement :

On doit vérifier que :

$$F_{tsd} \le B_{prd}$$

$$F_{tsd} = \frac{N}{2} = \frac{115,34}{2} = 57,67 \ KN$$

$$B_{prd} = 0,6\pi \times d_m \times t_p \times F_u / \gamma_{mv}$$

$$\begin{cases} d_m = 23,7mm \\ t_p = 10,2 \ mm \ (tf \ de \ IPE270) \\ \gamma_{mv} = 1,5 \end{cases}$$

$$B_{prd} = 0,6 \times 3,14 \times 23,7 \times 10,2 \times \frac{430}{1,25} = 156,67KN$$

$$F_{tsd} = 57,67 \ KN \le B_{prd} = 156,67 \ KN$$

La condition est vérifiée.

7.2 Assemblage Platine-Traverse :

Cette liaison se fera au moyen de cordon de soudure

- gorge reliant l'âme:

 $3mm \le a \le 0,5tw$

 $3mm \le a \le 0,5 \times 6,6 = 3,3mm$

On prend : a = 3mm

- gorge reliant la semelle :

 $3mm \le a \le 0,5tf$

 $3mm \le a \le 0.5 \times 10.2 = 5.1mm$

On prend : a = 5mm

Distribution des efforts sur les différents cordons :

- Cordon âme platine :

Chaque cordon reprend : $V/_2 = \frac{24,82}{2} = 12,41 \text{ KN}$

- Cordon semelle :

L = 2b - tw = 263,4 mm

$$N = \frac{M}{L} = \frac{39,13}{0,263} = 148,78 \, KN$$

Vérification cordon semelle-platine :

$$L = \frac{N \times \sqrt{3} \times \beta_w \times \gamma_{mv}}{a \times fu} \quad (EC3)$$
$$L = \frac{148,78 \times \sqrt{3} \times 1,3 \times 1,25}{5 \times 430} = 194,76 \ mm$$

L = 263,4 mm > 194,76 mm c'est vérifiée.

7.3 Assemblage Traverse-Traverse :

L'assemblage traverse - traverse est réalisé par l'intermédiaire d'une platine boulonnée

Figure 7-2 : Représentation de l'assemblage Traverse-Traverse

7.3.1 Efforts de calcul :

Les efforts max trouvé sous la combinaison 1,35G+1,5N sont :

 $\begin{cases} M_{sd} = -60,93 \text{ KN. m} \\ V_{sd} = 42,13 \text{ KN} \\ N_{sd} = 126,61 \text{ KN} \end{cases}$

On choisit des boulons M14 de classe 8.8, Avec $d_0 = 15 mm$

Nombre de boulon : 10

7.3.2 Entraxe des boulons et des pinces :

On a : $d_0 = 15mm$

 $e_1 \ge 1,2d_0 = 18mm \rightarrow 0n \text{ prend} : e_1 = 50mm$

 $e_2 \ge 1,5d_0 = 22,5mm \rightarrow 0n \text{ prend} : e_2 = 45mm$

 $P_1 \ge 2,2d_0 = 33mm \rightarrow 0n \text{ prend} : P_1 = 90mm$

 $P_2 \ge 3d_0 = 45mm \rightarrow 0n \text{ prend} : P_2 = 70 mm$

7.3.3 Détermination des efforts dans les boulons :

Nous considérons uniquement les boulons tendus, c'est à dire les 3 rangés supérieures des boulons. Puis en détermine les bras de leviers de chaque boulon par rapport au boulon comprimé.

On a :

$$d_{1} = 315mm \qquad d_{2} = 225mm \qquad d_{3} = 135mm$$

$$\sum di^{2} = 0.315^{2} + 0.225^{2} + 0.135^{2} = 0.17 m^{2}$$

$$N_{1} = \frac{60.93 \times 0.315}{0.17} = 112.90 KN$$

$$N_{2} = \frac{60.93 \times 0.225}{0.17} = 80.64 KN$$

$$N_{3} = \frac{60.93 \times 0.135}{0.17} = 48.38 KN$$
7.3.4 Vérification des boulons :

7.3.4 Vérification des boulons : On a :

 $N_1 \leq n_r \times F_P$

Avec : $F_P = 0.7 \times A_s \times F_{ub}$

 n_r : Nombre de rongé de boulon egale a 2

D'où :

$$A_s \ge \frac{N_1}{0.7 \times n_r \times F_{ub}} = \frac{112.9 \times 10^3}{0.7 \times 2 \times 800} = 100.81 \, mm^2$$

Soit des boulons M14 de $A_s = 115 mm^2$

7.3.5 Vérification au moment résistant : On doit vérifier que :

$$M_{sd} \leq M_R$$

$$M_R = \frac{F_P \times \sum d_i^2}{d_1}$$

$$F_P = 0.7 \times A_s \times F_{ub} = 0.7 \times 115 \times 800 \times 10^{-3} = 64,40 \text{ KN}$$

Pour 2 rongé :

$$F_P = 2 \times 64,40 = 128,8 \text{ KN}$$

 $M_R = \frac{128,8 \times 0,17}{0,315} = 69,51 \text{ KN. }m$

 $M_{sd} = 60,93 \; KN. \, m \leq M_R = 69,51 \; KN. \, m$

La condition est vérifiée.

7.3.6 Vérification la Résistance d'un boulon à l'interaction cisaillement-traction : On doit vérifier que :

$$F_{vsd} \leq F_{srd}$$

$$F_{vsd} = \frac{42,13}{10} = 4,21 \ KN$$

$$F_{srd} = K_s \times n \times \mu \times (Fp - 0.8F_{tsd})/\gamma_{mb}$$

$$F_{tsd} = \frac{N_1}{n_r} = \frac{112.9}{2} = 56,45 \ KN$$

$$\begin{cases} K_s = 1 \ (Trous \ nominale) \\ \mu = 0.3 \\ n = 1 \end{cases}$$
D'où :

 $F_{srd} = 1 \times 1 \times 0.3 \times (64.4 - 0.8 \times 56.45) / 1.25 = 4.62 \text{ KN}$ $F_{vsd} = 4.21 \text{ KN} < F_{srd} = 4.62 \text{ KN}$

La condition est vérifiée.

7.3.7 Vérification au poinçonnement :

On doit vérifier que :

$$F_{pcd} \le B_{prd}$$

$$\begin{split} F_P &= 0.7 \times A_s \times F_{ub} = 0.7 \times 115 \times 800 \times 10^{-3} = 64,40 \; KN \\ B_{prd} &= 0.6\pi \times d_m \times t_p \times F_u / \gamma_{mv} \end{split}$$

$$\begin{cases} d_m = 24,58mm\\ t_p = 30 mm \ (epaisseur \ de \ deux \ platine)\\ \gamma_{mv} = 1,5 \end{cases}$$
$$B_{prd} = 0.6 \times 3,14 \times 24,58 \times 30 \times \frac{430}{1,25} = 477,90KN$$

 $F_{pcd} = 64,40 \ KN \le B_{prd} = 477,90 KN$

La condition est vérifiée, donc y'a pas de risque de poinçonnement.

7.3.8 Vérification à la pression diamétrale :

On doit vérifier que :

$$F_{vsd} \le F_{brd} = 2,5 \alpha F_u d t_p / \gamma_{mb}$$

$$F_{vsd} = \frac{42,13}{10} = 4,21 \ KN$$

$$\alpha = \min\left(\frac{e_1}{3d_0}; \frac{P_1}{3d_0} - \frac{1}{4}; \frac{F_{ub}}{F_u}; 1\right) = \min\left(\frac{70}{3 \times 18}; \frac{90}{3 \times 18} - \frac{1}{4}; \frac{800}{430}; 1\right)$$

$$\alpha = 1$$

$$F_{brd} = 2,5 \times \alpha \times F_u \times t_p \times \frac{d}{1,25} = 2,5 \times 1 \times 430 \times 30 \times \frac{16}{1,25} = 412,80 \text{ KN}$$

$$F_{vsd} = 4,21 \text{ KN} \le F_{brd} = 412,80 \text{ KN}$$

Donc y'a pas de risque de rupture par pression diamétrale.

7.4 Assemblage poteau-poutre principale:

Figure 7-3 : Assemblage Poteau-Poutre en 3D

Notre objectif est de dimensionner la soudure de la platine avec la poutre et ce dernier est fixé par boulonnage sur la semelle du poteau.

7.4.1 Les efforts sollicitant :

Les efforts max donné à ELU par logiciel ROBOT sont :

 $M_{sd} = 1028,28 \ KN. m$

 $V_{sd} = 375,47 \, KN$

7.4.2 Dimensionnement de la soudure (platine-poutre): Semelle : $0.7t_f$ avec : $t_f(IPE500) = 16mm$.

 $0,7t_f = 0,7 \times 16 = 11,2mm$. On prend : $a_s = 15 mm$.

Ame : $0.7t_w$ avec : $t_w(IPE500) = 10.2 mm$.

 $0,7t_w = 0,7 \times 10,2 = 7,14mm$. On prend : $a_m = 10mm$.

Boulons : 16 boulons de classe 10.9.

Platine : t = 15mm.

7.4.3 Dimensionnement des boulons :

$$\begin{split} &d_1 = 660mm. \ d_2 = 570mm. \ d_3 = 480mm. \ d_4 = 390mm. \ d_5 = 300mm. \\ &d_6 = 180mm. \ d_7 = 90mm \\ &\sum d_i{}^2 = (0,66^2 + 0,57^2 + 0,48^2 + 0,39^2 + 0,3^2 + 0,18^2 + 0,09^2) = 1,27mm^2. \\ &N_1 = \frac{M \times d_1}{\Sigma \ d_i{}^2} = \frac{1028,28 \times 0,66}{1,27} = 534,38 \ KN \\ &N_2 = \frac{M \times d_2}{\Sigma \ d_i{}^2} = \frac{1028,28 \times 0,57}{1,27} = 461,51 \ KN \\ &N_3 = \frac{M \times d_3}{\Sigma \ d_i{}^2} = \frac{1028,28 \times 0,48}{1,27} = 388,64 \ KN \\ &N_4 = \frac{M \times d_4}{\Sigma \ d_i{}^2} = \frac{1028,28 \times 0,39}{1,27} = 315,77 \ KN \\ &N_5 = \frac{M \times d_5}{\Sigma \ d_i{}^2} = \frac{1028,28 \times 0,3}{1,27} = 242,90 \ KN \\ &A_s \geq \frac{N_1}{0,7 \times f_{ub} \times n} = \frac{534,38 \times 10^3}{0,7 \times 1000 \times 2} = 381,7 \ mm^2 \\ &\text{On prend M27} \rightarrow A_s = 459 \ mm^2. \end{split}$$

7.4.4 Vérification à la traction : $F_{t,sd} \leq F_{t,rd}$ $F_{t,sd} = \frac{N_1}{n'}$ avec n': nombre de colonne $F_{t,sd} = \frac{534,38}{2} = 267,19 \, KN$

$$F_{t,rd} = \frac{0.9 \times A_s \times f_{ub}}{\gamma_{mb}} \quad avec: \gamma_{mb} = 1.5$$
$$F_{t,rd} = \frac{0.9 \times 459 \times 10^{-3} \times 1000}{1.5} = 275.4 \text{ KN}$$

 $F_{t,sd} = 267,19 \ KN \ < F_{t,rd} = 275,4 \ KN$

La condition est vérifiée.

7.4.5 Résistance au glissement :

Il fait vérifier la condition suivante :

$$F_{v,sd} \le F_{srd} = \frac{K_s \times n \times u \times F_{p,cd}}{\gamma_{ms}}$$

$$F_{v,sd} = \frac{V}{n \times p} \quad avec \ p = nombre \ de \ plan = 1$$

$$F_{v,sd} = \frac{375,47}{16 \times 1} = 23,46 \ KN$$

$$F_{p,cd} = 0,7 \times f_{ub} \times A_s = 0,7 \times 1000 \times 459 \times 10^{-3} = 321,3 \ KN$$

$$F_{srd} = \frac{1 \times 1 \times 0,3 \times 321,3}{1,25} = 77,11 \ KN$$

 $F_{v,sd} = 23,46 \ KN \le F_{srd} = 77,11 \ KN$ Condition vérifiée

7.4.6 Disposition des boulons :

Figure 7-4 : Disposition d'assemblage poteau poutre

Figure: Disposition d'assemblage poteau-poutre.

✓ $2,2d_0 \le p_1 \le \min(14t;200)mm$

- $\checkmark \quad 3d_0 \le p_2 \le \min(14t; 200)mm$
- ✓ $1,2d_0 \le e_1 \le \min(12t;200)mm$
- ✓ $1,5d_0 \le e_2 \le \min(12t; 200)mm$

Avec $t = min(t_w(poutre); t_w(poteau)) = min(10,2; 11,5) mm = 11,5mm$

$$d_0 = 30mm (M27)$$

- $\checkmark \quad 66 \leq p_1 \leq 161mm \ \rightarrow p_1 = 90mm$
- ✓ $90 \le p_2 \le 161$ mm $\rightarrow p_2 = 100$ mm
- ✓ $36 \le e_1 \le 138$ mm $\rightarrow e_1 = 70$ mm
- ✓ $45 \le e_2 \le 138mm$ → $e_2 = 50mm$

7.4.7 Vérification de l'interaction (cisaillement et traction) :

Il faut vérifier la condition suivante :

$$\begin{split} F_{vsd} &\leq F_{srd} = \frac{K_s \times n \times u \times (F_{pcd} - 0.8F_{tsd})}{\gamma_{ms}} \\ F_{v,sd} &= \frac{V_{sd}}{n \times p} \ avec \ p = nombre \ de \ plan = 1 \\ F_{v,sd} &= \frac{375.47}{16 \times 1} = 23.46 \ KN \\ F_{t,sd} &= \frac{534.38}{2} = 267.19 \ KN \\ F_{p,cd} &= 0.7 \times f_{ub} \times A_s = 0.7 \times 1000 \times 459 \times 10^{-3} = 321.3 \ KN \\ F_{s,rd} &= \frac{K_s \times n \times u \times (F_{p,cd} - 0.8F_{t,sd})}{\gamma_{ms}} \ avec: \gamma_{ms} = 1.25 (ELU). \\ F_{s,rd} &= \frac{0.3 \times 1 \times 1 \times (321.3 - 0.8 \times 267.19)}{1.25} = 25.81 \ KN \end{split}$$

 $F_{vsd} = 23,46KN < F_{s,rd} = 25,81 KN$ Condition vérifié.

7.4.8 Vérification de poinçonnement :

 $F_{t,sd} \leq B_{prd}$ (Boulons HR)

$$B_{prd} = \frac{0.6 \times \pi \times d_m \times t_p \times f_u}{\gamma_{mb}} \quad avec : \gamma_{mb} = 1.5$$

$$B_{prd} = \frac{0.6 \times 3.14 \times 44.2 \times 15 \times 430}{1.5} \times 10^{-3} = 358,07 \, KN$$

$$F_{t,sd} = 267,19 \ KN \le B_{prd} = 279,63 \ KN$$

La condition est vérifiée

7.5 Assemblage poutre principale-solive :

Les solives sont articulées aux poutres par des cornières d'attache.

Figure 7-5 : Assemblage poteau poutre

7.5.1 Les efforts sollicitant :

L'effort tranchant V repris par l'assemblage est celui que transmit la solive à la poutre

$V_{sd} = 56, 24KN.$

On prend une double cornière de section $L \times 60 \times 60 \times 6$.

On prend des boulons de classe 6.8

7.5.2 Dimensionnement des boulons :

7.5.2.1 Choix des boulons :

$$F_{v,rd} \ge F_{v,sd}$$

$$F_{v,sd} = \frac{V_{sd}}{n \times p}$$

$$F_{v,rd} = \frac{0.6 \times A_s \times f_{bu}}{\gamma_{mb}} \quad avec: \gamma_{mb} = 1.25$$

Avec : **n**: nombre de boulons = 2

P : nombre de plan de cisaillement =2

$$F_{v,sd} = \frac{56,24}{2 \times 2} = 14,06KN.$$

$$A_s \ge \frac{\gamma_{mb} \times F_{v,sd}}{0,6 \times f_{bu}} = \frac{1,25 \times 14,06 \times 10^3}{0,6 \times 600} = 48,82mm^2$$

On prend des boulons M12 classe 8.8.

Remarque : on prend les mêmes boulons pour côté de la poutre principale.

7.5.3 Disposition des boulons :

Avec: $t = min(t_w(poutre); t_w(solive)) = min(10,2; 5,3) mm = 5,3mm$

- ✓ 28,6 ≤ p_1 ≤ 78,4 $mm \rightarrow p_1$ = 50mm.
- ✓ $18 \le e_1 \le 63,6mm \rightarrow e_1 = 30mm$.
- ✓ 19,5 ≤ e_2 ≤ 63,6mm → e_2 = 40mm

7.5.3.1 Vérification vis-à-vis d'assemblage long : $Si \ 15d \le L \rightarrow$ Assemblage long.

$$L = (n-1) \times p_1 = (2-1) \times 50 = 50mm.$$

 $15d = 15 \times 12 = 180mm \rightarrow 15d > L$

L'assemblage n'est pas trop long.

7.5.4 La pression diamétrale :

Il faut vérifier la condition suivante : $F_{v,sd} \leq F_{b,rd}$

$$F_{b,rd} = \frac{2,5 \times \alpha \times t_p \times d \times f_{bu}}{\gamma_{mb}} \quad avec : \gamma_{mb} = 1,25$$

$$\alpha = min\left(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1\right) = min(0,76; 1,03; 1,86; 1) \rightarrow \alpha = 0,76$$

$$F_{v,sd} = \frac{2,5 \times 0,76 \times 6 \times 12 \times 600}{1,25} = 65,66 \ KN$$

 $F_{v,sd} = 14,06 \text{ KN} \le F_{b,rd} = 65,66 \text{ KN} \rightarrow \text{La Condition est vérifiée.}$

7.6 Assemblage des contreventements :

7.6.1 Assemblage Gousset-Nœuds de portique :

L'assemblage est sollicité par un effort de traction : $N_{tsd} = 441,32 \text{ KN}$

Pré dimensionnement du gousset :

L'épaisseur du gousset dépend de l'effort appliqué, On a :

 $N_{tsd} = 441,32 \ KN \rightarrow e = 10 \ mm$

> Calcul de la gorge :

Elle est donnée par la formule suivante :

 $3mm < a < 0.5tf \rightarrow 3mm < a < 0.5 \times 21 = 10.5mm$

On prend : a = 5mm

> La longueur du cordon de soudure :

$$L \ge \frac{\beta_w \times \gamma_{mv} \times N\sqrt{3}}{2 \times a \times fu} \dots \dots \dots \dots (1)$$

Il faut décomposer l'effort N en deux composante Ny et Nz :

$$\alpha = tang^{-1} \left(\frac{Lz}{Ly}\right) = tang^{-1} \left(\frac{6,08}{15}\right) = 22,06^{\circ}$$

$$\begin{cases} N_y = N \times \cos(\alpha) = 441,32 \times \cos(22,06) = 409,01 \ KN \\ N_z = N \times \sin(\alpha) = 441,32 \times \sin(22,06) = 165,75 \ KN \end{cases}$$

A partir de l'équation (1) on aura :

$$\begin{cases} L_y = 18,20 \ cm \\ L_z = 7,3 \ cm \end{cases} \xrightarrow{} \begin{cases} L_y = 20 \ cm \\ L_z = 8 \ cm \end{cases}$$

7.6.2 Assemblage Gousset-Diagonale :

Figure 7-8 : assemblage des diagonales sur gousset.

Pour ce type d'assemblage, on choisit des boulons HR de classe8.8 et on dispose 3 boulons dans chaque rangée

> Distribution de l'effort normale sur les boulons :

 $F_{vsd} = \frac{V_{sd}}{n p}$

Avec : **n**: nombre de boulons =3

P : nombre de plan de cisaillement =2

$$F_{vsd} = \frac{441,32}{3\times 2} = 73,55 \, KN$$

7.6.2.1 Dimensionnement des boulons :

$$F_{vsd} \le F_{v,rd} = \frac{0.6 \times A_s \times f_{bu}}{\gamma_{mb}}$$

$$A_s \ge \frac{\gamma_{mb} \times F_{v,sd}}{0.6 \times f_{bu}} = \frac{1.25 \times 73,55 \times 10^3}{0.6 \times 800} = 191,53mm^2$$

Soit des boulons de M18, As=192mm²

7.6.2.2 Disposition géométrique : On a : $d_0 = 20mm$

- $e_1 = 40mm \geq 1{,}5d_0 = 30mm$
- $e_2 = 50mm \ge 1,5d_0 = 30mm$
- $P_1 = 60mm \ge 2,2d_0 = 44mm$

7.6.2.3 Vérification à la pression diamétrale : On doit vérifier que :

$$F_{vsd} \le F_{brd} = 2,5\alpha F_u d t_p / \gamma_{mb}$$
$$F_{vsd} = 73,55 KN$$

$$\alpha = \min\left(\frac{e_1}{3d_0}; \frac{P_1}{3d_0} - \frac{1}{4}; \frac{F_{ub}}{F_u}; 1\right) = \min\left(\frac{40}{3 \times 18}; \frac{60}{3 \times 18} - \frac{1}{4}; \frac{800}{430}; 1\right)$$

$$\alpha = 0,74$$

 $t_p = e_{gousset} + e_{courniere} = 17mm$

$$F_{brd} = 2,5 \times 1 \times 430 \times 18 \times \frac{17}{1,25} = 263,16 \text{ KN}$$

$$F_{vsd} = 73,55 \ KN \le F_{brd} = 263,16 \ KN$$

Donc y'a pas de risque de rupture par pression diamétrale.

7.6.2.4 Vérification vis-à-vis d'assemblage long :

 $L = (n-1)P_1 < 15d$

 $L = (n-1)P_1 = (3-1) \times 60 = 120mm$

 $15d = 15 \times 18 = 270mm$

L = 120mm < 270mm

Donc l'assemblage n'est pas long.

7.7 Calcul des pieds de poteau :

7.7.1 Pieds de poteau encastré :

Le poteau est sollicité par :

- Effort de traction max sous (0,8G-EX) : $N_t = -282,28 \text{ KN}$
- Moment fléchissant sous (0,8G-EX): M = 51,64 KN. m

7.7.1.1 Dimensionne des tiges d'ancrages :

On à des poteaux HEA450 donc en prend les dimensions de la platine :

$$a = 800mm$$
 $b = 600mm$

Figure 7-9 : Diagramme du moment et de l'effort tranchant a la base

Figure 7-10 : La disposition constructive des tiges et les lignes de pliages

Les tiges seront dimensionnées avec l'effort de traction le plus défavorable :

$$N_{t} = -282,28 \text{ KN}$$

$$d = 520m \text{ (distance Par rapport a l'axe de rotation)}$$

$$F = \frac{N_{t}}{6} + \frac{M_{y}}{3 \times d} = \frac{282,28}{6} + \frac{51,64}{3 \times 0,52} = 80,15 \text{ KN}$$

$$F \le \frac{\pi \, \emptyset^{2} f y}{4} \rightarrow \emptyset \ge \sqrt{\frac{4F}{\pi \times f y}} = \sqrt{\frac{4 \times 80,15}{\pi \times 27,5}} = 1,92 \text{ cm}$$

On prend : $\emptyset = 30mm$

7.7.1.2 Vérification des tiges d'ancrages :

L'effort admissible par scellement, dans le cas des goujons avec crosse, fixé par les règles :

$$\frac{N_t}{6} \le N_a = 0.1(1 + \frac{7 \times g_c}{1000}) \frac{\emptyset}{\left(1 + \frac{\emptyset}{d_1}\right)^2} (l_1 + 6.4r + 3.5l_2)$$

$$g_{c} = 350 \text{ Kg/m}^{3} \quad (Le \text{ dosage en ciment})$$

$$d_{1} = 300 \text{ mm} \quad (enrobage)$$

$$\begin{cases} l_{1} = 20\emptyset = 60 \text{ cm} \\ r = 3\emptyset = 9 \text{ cm} \\ l_{2} = 2\emptyset = 6 \text{ cm} \end{cases}$$

$$N_{a} = 0.1 \left(1 + \frac{7 \times 350}{1000}\right) \frac{3}{\left(1 + \frac{3}{30}\right)^{2}} (60 + 6.4 \times 9 + 3.5 \times 6) = 118.55 \text{ KN}$$

$$F = 80.15 \text{ KN} \le N_{a} = 118.55 \text{ KN}$$

7.7.1.3 Vérification des contraintes dans le béton et de l'acier :

On a :

$$e = \frac{M}{N_t} = \frac{51,64}{282,28} = 0,18m > \frac{D}{6} = \frac{0,600}{6} = 0,10m$$

Donc le centre de poussée se trouve hors de tiers central de la section, et la platine est soulevée à gauche (les boulons de gauche étant sollicités en traction).

On a utilisé des boulons M24 de $As=3,53cm^2$

On a :

$$A = 3 \times 3,53 = 10,59 cm^2$$

$$l = 30 + 18 = 48cm$$

h = 80 - 10 = 70cm

b = 60cm

L'équation de 3^{eme} degré de **h**' s'écrit :

$$h'^{3} + 3(l-h)h'^{2} + 90A\frac{l}{b}h' - 90A\frac{l}{b}h = 0$$

$$\rightarrow h'^{3} + 3(48 - 70)h'^{2} + 90 \times 10,59 \times \frac{48}{60}h' - 90 \times 10,59 \times \frac{48}{60} \times 70 = 0$$

$$\rightarrow h'^{3} - 66h'^{2} + 762,48h' - 53373,6 = 0$$

La résolution de l'équation donne :

h' = 66,58cm

- La contrainte de compression sur le béton est alors :

$$\sigma_b = \frac{2 Nl}{bh'(h - \frac{h'}{3})} \le f_{bu} = 14,2 MPa$$

$$\sigma_b = \frac{2 \times 282,28 \times 10^{-3} \times 0,48}{0,6 \times 0,66(0,70 - \frac{0,66}{3})} = 1,42MPa \le 14,2 MPa$$

La condition est vérifiée.

- Vérification des goujons à la traction :

$$\begin{split} \sigma_a &= \frac{N}{A} \times \frac{l - h + \frac{h'}{3}}{h - \frac{h'}{3}} \leq fy = 275 MPa \\ \sigma_a &= \frac{0.282}{10.59 \times 10^{-4}} \times \frac{0.48 - 0.70 + \frac{0.66}{3}}{0.70 - \frac{0.66}{3}} = 0 \ MPa \end{split}$$
7.7.1.4 Calcul l'épaisseur de la platine : > Vérification de la section 1-1 :

Le moment dans la section 1-1 est obtenu grâce au diagramme trapézoïdal des contraintes situé à droite de la section, que l'on peut décomposer en un diagramme rectangulaire (1) et un diagramme triangulaire (2).

Figure 7-11 : Vérification de la section 1-1

Les moments correspondants, pour une bande de largeur unité (=1 cm) et d'épaisseur t, sont :

$$M_{1} = 1,42 \times 0,18 \times \frac{0,18}{2} \times 10 = 0,2 \text{ KN. } m$$
$$M_{2} = \frac{0,38 \times 0,18}{2} \times \frac{0,18}{3} \times 10 = 0,02 \text{ KN. } m$$
$$M = M_{1} - M_{2} = 0,2 - 0,02 = 0,18 \text{ KN. } m$$

Le module d'inertie de la platine pour b = 1 cm est:

$$\frac{I}{V} = \frac{\frac{bt^3}{12}}{\frac{t}{2}} = \frac{bt^2}{6}$$

La contrainte de flexion dans la section 1-1 est :

$$\frac{M}{Wel} \le fy \quad donc \qquad t \ge \sqrt{\frac{6M}{fy}} = \sqrt{\frac{6 \times 0.18 \times 10^2}{27.5}} = 1.98cm$$

Vérification de la section 2-2 :

Figure 7-12 : Vérification de la section 2-2

Le même raisonnement conduit au Moment max :

$$M = 1,42 \times 0,15 \times \frac{0,15}{2} \times 10 = 0,16 \text{ KN. } m$$

D'où :

$$t \ge \sqrt{\frac{6M}{fy}} = \sqrt{\frac{6 \times 0,16 \times 10^2}{27,5}} = 1,86cm$$

Vérification de la section 3-3 :

Du coté tendu, la platine est soumise à un moment : M = 0,1T

$$T = A \times \sigma_a = 1059 \times 0 = 0 N$$

$$M = 0$$

7.7.1.5 Conclusion :

On opte pour une platine d'épaisseur t = 20mm (section 1-1 la plus défavorable), avec raidisseurs.

Figure 7-13 : Le pied de poteau encastré en 3D

7.7.2 Calcul pied de poteaux articulé :

On prend les dimensionnent de la platine comme suit

$$a = 0,5m$$
; $b = 0,4m$.

7.7.2.1 Vérification de la contrainte de compression : On a: $N_c = 566,48KN$; $N_t = -222,45KN$

il faut vérifier que : $\sigma_c = \frac{N_c}{a \times b} \le f_{bu}$ $\sigma_t = \frac{N_t}{a \times b} \le f_{t28}$ $f_{bu} = 0.85 \times \frac{f_{c28}}{\gamma_b} = 0.85 \times \frac{25}{1.5} = 14,2MPa$ $f_{t28} = 0.6 + 0.06f_{c28} = 2,1 MPa$ $\sigma_c = \frac{566,48 \times 10^{-3}}{0.5 \times 0.4} = 2,83 MPa$ $\sigma_t = \frac{222,45 \times 10^{-3}}{0.5 \times 0.4} = 1,11MPa$ $\sigma_c = 2,83 MPa < f_{bu} = 14,2MPa$. La Condition est vérifiée.

 $\sigma_c = 1,11 MPa < f_{c28} = 2,1 MPa$. La Condition est vérifiée.

7.7.2.2 Calcul l'épaisseur de la platine et diamètre de la tige d'ancrage :a) -L'épaisseur de la platine :

Soit :

$$t \ge u \times \sqrt{\frac{3\sigma_c}{fy}} = 85 \times \sqrt{\frac{3 \times 2,83}{275}} = 14,93mm$$

b) - Diamètre de la tige d'ancrage :

$$\begin{split} N_{tige} &= \frac{V}{2} = \frac{222,45}{2} = 111,22KN.\\ N_a &= 0,1(1 + \frac{7 \times g_c}{1000}) \frac{\emptyset}{\left(1 + \frac{\emptyset}{d_1}\right)^2} (l_1 + 6,4r + 3,5l_2) \ge \frac{V}{2}\\ N_a &= 0,1(1 + \frac{7 \times g_c}{1000}) \frac{\emptyset}{\left(1 + \frac{\emptyset}{d_1}\right)^2} (20\emptyset + 19,2\emptyset + 7\emptyset) \ge 111,22 \end{split}$$

Après simplification on tire :

 $4,66\emptyset^2 - 4,04\emptyset - 60,63 \ge 0$

Ce qui nous donne :

 $\emptyset \ge 4cm$ On prend : $\emptyset = 45mm$

Figure 7-15 : Le pied de poteau articulé en 3D

8 Chapitre VIII

Etude de l'infrastructure

8.1 Introduction :

Un ouvrage quelle que soit sa forme et sa destination, prend toujours appui sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre l'ouvrage et le sol s'appelle fondations. Le dimensionnement de la fondation est conditionné par le site d'implantation.

- La contrainte admissible du sol site S3 : $\sigma_{sol} = 2 \ bar$
- La profondeur d'ancrage : D = 1,5 m

8.2 Calcul des fondations sous les poteaux :

8.2.1 Calcul des sollicitations :

Les fondations seront calculées suivant les deux sens, longitudinal et transversal, sous les combinaisons suivantes :

$$\begin{cases} G + Q \pm E \\ 0,8G \pm E \end{cases}$$
 (Art 10.1.4.1 RPA99/2003)

Ainsi que les combinaisons citées par le BAEL91 :

 $\begin{cases} ELU: & 1,35G+1,5Q\\ ELS: & G+Q \end{cases}$

Compte tenu de l'application à la résistance ultime du sol q_u d'un coefficient de sécurité de 2. Les sollicitations les plus défavorables sont données dans le tableau ci-dessous:

Sollicitation	Situation accidentelle	Situation durable			
	G+Q+EX	1,35G+1,35(Q+N)	G+0,9(Q+N)		
N _{max} (KN)	1437,34	1993,07	1423,15		
M_y (KN.m)	-105	-45,75	-32,70		
V_z (KN)	66,65	63,95	45,73		

Tableau 8-1 : Les sollicitations à la base du poteau

8.2.2 Pré dimensionnement de la semelle du poteau encastré :

Les dimensions de la semelle sont choisies de manière qu'elles soient homothétiques avec celle du pied de poteau, les poteaux de notre structure sont rectangulaires à la base (h*b), donc les semelles sont rectangulaires (H*B)

h et b : Dimension des futs du poteau considéré. (HEA450)

H et B: Dimension de la semelle.

 $h_t = d + c$; *Avec* c = 10cm (Béton de propreté)

d : hauteur utile de la semelle est donné par :

$$d = Max \begin{cases} \frac{B-b}{4} \\ \frac{H-h}{4} \end{cases} (BAEL91)$$

Figure 8-1 : Dimension de la semelle sous le poteau

8.2.3 Le critère de non poinçonnement :

 $\sigma_m < 2\sigma_{sol}$: Situation accidentelle

 $\sigma_m < 1,33\sigma_{sol}$: Situation durable

 σ_m : : Contrainte maximale dans la semelle donnée par la formule suivante :

$$\sigma_m = \frac{N}{HB} \times (1 + \frac{6e_0}{H})$$

On a :

$$h = 90cm \quad b = 70cm \quad e_0 = \frac{M}{N}$$
$$H = \frac{h}{b}B = 1,29B$$

8.2.4 Dimensionnement de la semelle sous poteau encastré :

- Situation accidentelle :

$$\sigma_m < 2\sigma_{sol}$$

$$\sigma_m = \frac{N}{HB} \times (1 + \frac{6e_0}{H})$$

$$e_0 = \frac{105}{1437,34} = 0,073m$$

$$\sigma_m = \frac{1437,34}{1,29B^2} \times (1 + \frac{6 \times 0,073}{1,29B}) \le 2 \times 200$$

$$400B^3 - 1114,22B - 378,32 \ge 0$$

Ça nous donne :

B = 1,81m

- Situation durable :

 $\sigma_m < 1,33\sigma_{sol}$

$$\sigma_m = \frac{N}{HB} \times (1 + \frac{6e_0}{H})$$

$$e_{0} = \frac{45,75}{1993,07} = 0,023m$$

$$\sigma_{m} = \frac{1993,07}{1,29B^{2}} \times (1 + \frac{6 \times 0,023}{1,29B}) \le 1,33 \times 200$$

$$266B^{3} - 1545,02B - 165,28 \ge 0$$

Ça nous donne : $B = 2,46m$
 $B = Max(1,81;2,46) = 2,46m$

On prend : B = 2,5m

Donc : H = 1,29B = 3,23m

Les dimensionnes de notre semelle est : $B \times H = 2,5 \times 3,3 m^2$

$$d = Max \begin{cases} \frac{2,5-0,7}{4} = 0,45\\ \frac{3,3-0,9}{4} = 0,6m \end{cases} (BAEL91)$$

$$d = 0,6m \rightarrow h_t = 0,7m$$

- La hauteur de l'amorce de poteau :

$$l_1 = D - h_t$$

D : la profondeur d'ancrage

 $l_1 = 1,5 - 0,7 = 0,8m$

- Poids de la semelle :

 $P = H \times B \times h_t \times f_{c28} = 3,3 \times 2,5 \times 0,7 \times 25 = 144,38 \text{ KN}$

 $N_t = P + N = 144,38 + 1993,07 = 2137,45 \ KN$

- Moment a la base :

$$M_{by} = M_y + (V_z \times D)$$

Les sollicitations à la base de la semelle sont regroupées dans le tableau ci-dessous

Sollicitation	Situation accidentelle	Situation durable			
N _{max} (KN)	G+Q+EX	1,35G+1,35(Q+N)	G+0,9(Q+N)		
N _{max} (KN)	1437,34	1993,07	1423,15		
M_{by} (KN.m)	-5,03	50,17	35,89		
V_z (KN)	66,65	63,95	45,73		

Tableau 8-2 : Les sollicitations à la base de la semelle du poteau

8.2.5 Vérification des contraintes :

Les contraintes dans les semelles excentrées sont données par les expressions suivantes :

$$\begin{cases} \sigma_{max} = \frac{N}{HB} \times (1 + \frac{6e_0}{B}) \\ \sigma_{min} = \frac{N}{HB} \times (1 - \frac{6e_0}{B}) \leq \begin{cases} 1,33\sigma_{sol} \text{ situation durable} \\ 2\sigma_{sol} \text{ situation accidentelle} \end{cases}$$

Avec : $e_0 = \frac{M_{by}}{N}$

Pour les semelles entièrement comprimé on a :

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} \le \sigma_{sol}$$

Les résultats de calcul des contraintes sont regroupés dans le tableau suivant :

Combinaison	e_0 (m)	σ_{min} (bar)	σ_{max} (bar)	σ_{moy} (bar)	σ_{sol} (bar)	OBS
ELU	0,03	2,26	2,56	2,5	2	N.V
ELS	0,03	1,60	1,85	1,78	2	V
ACC	0,003	1,73	1,75	1,75	2	V

Tableau 8-3 : Vérification des contraintes de sol

- Vérification :

 $\sigma_{min} = 2,24 \text{ bar} < 1,33\sigma_{sol} = 2,66 \text{ bar}$

 $\sigma_{min} = 1,,60 \ bar < 1,33 \sigma_{sol} = 2,66 \ bar$

 $\sigma_{min} = 1,73 \ bar < 2\sigma_{sol} = 4 \ bar$

 $\sigma_{moy}^{U} = 2,5 \ bar < \sigma_{sol} = 2 \ bar$

On ne constate que la contrainte moyenne à l'ELU est supérieure à celle du sol, donc elle n'est pas vérifiée, on doit augmenter les dimensions de la semelle a $B \times H = 2, 8 \times 3, 7 m^2$

On revérifie à l'ELU :

$$\sigma_{min} = \frac{N}{HB} \times \left(1 - \frac{6e_0}{B}\right) = 1,82 \ bar$$
$$\sigma_{max} = \frac{N}{HB} \times \left(1 + \frac{6e_0}{B}\right) = 2,02 \ bar$$
$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} = 1,97 \le \sigma_{sol} = 2bar$$

Toutes les contraintes sont vérifiées.

8.2.6 Vérification de la stabilité au renversement :

Dans le cas accidentel, il faut vérifier que

$$e_0 = 0,003m \le \begin{cases} \frac{H}{4} = \frac{3,7}{4} = 0,925 \ m \\ \frac{B}{4} = \frac{2,8}{4} = 0,7 \ m \end{cases}$$

La stabilité est vérifiée.

8.2.7 Détermination des armatures de la semelle :

$$d = Max \begin{cases} \frac{2,8-0,7}{4} = 0,52\\ \frac{3,7-0,9}{4} = 0,7m \end{cases} (BAEL91)$$

 $d = 0.7m \rightarrow h_t = 0.8m$

8.2.7.1 Situation durable :

- Armature parallèle à H=3,7m :

On doit vérifier c'est deux condition :

$$e_0 = \frac{M_{by}}{N} \le \begin{cases} \frac{h}{6} \\ \frac{H}{24} \end{cases}$$

On a :

$$e_0 = 0.03m \le \begin{cases} \frac{h}{6} = \frac{0.9}{6} = 0.15m \\ \frac{H}{24} = \frac{3.7}{24} = 0.15m \end{cases}$$

D'où :

$$N' = N \times \left(1 + \frac{3e_0}{H}\right) = 1993,07 \times \left(1 + \frac{3 \times 0,03}{3,7}\right) = 2041,55 \ KN$$
$$A_s = \frac{N'(H-h)}{8 \times d \times fst} = \frac{2,041 \times (3,7-0,9)}{8 \times 0,7 \times 348} \rightarrow A_s = 29,32 \ cm^2$$

- Armature parallèle à B=2,8m :

On doit vérifier c'est deux condition :

$$e_0 = \frac{M_{by}}{N} \le \begin{cases} \frac{b}{6} \\ \frac{B}{24} \end{cases}$$

On a :

$$e_0 = 0.03m \le \begin{cases} \frac{b}{6} = \frac{0.7}{6} = 0.11m\\ \frac{B}{24} = \frac{2.8}{24} = 0.12m \end{cases}$$

D'où :

$$N' = N \times \left(1 + \frac{3e_0}{B}\right) = 1993,07 \times \left(1 + \frac{3 \times 0,03}{2,8}\right) = 2057,13 \text{ KN}$$
$$A_s = \frac{N'(B-b)}{8 \times d \times fst} = \frac{2,057 \times (2,8-0,7)}{8 \times 0,7 \times 348} \to A_s = 22,16 \text{ cm}^2$$

8.2.7.2 Situation Accidentelle :

- Armature parallèle à H=3,7m :

On doit vérifier c'est deux condition :

$$e_0 = \frac{M_{by}}{N} \le \begin{cases} \frac{h}{6} \\ \frac{H}{24} \end{cases}$$

On a :

$$e_0 = 0,003m \le \begin{cases} \frac{h}{6} = \frac{0.9}{6} = 0,15m\\ \frac{H}{24} = \frac{3.7}{24} = 0,15m \end{cases}$$

D'où :

$$N' = N \times \left(1 + \frac{3e_0}{H}\right) = 1437,34 \times \left(1 + \frac{3 \times 0,003}{3,7}\right) = 1440,84 \text{ KN}$$
$$A_s = \frac{N'(H-h)}{8 \times d \times fst} = \frac{1,44 \times (3,7-0,9)}{8 \times 0,7 \times 400} \to A_s = 18 \text{ cm}^2$$

- Armature parallèle à B=2,8m :

On doit vérifier c'est deux condition :

$$e_0 = \frac{M_{by}}{N} \le \begin{cases} \frac{b}{6} \\ \frac{B}{24} \end{cases}$$

On a :

$$e_0 = 0,003m \le \begin{cases} \frac{b}{6} = \frac{0,7}{6} = 0,11m\\ \frac{B}{24} = \frac{2,8}{24} = 0,12m \end{cases}$$

D'où :

$$N' = N \times \left(1 + \frac{3e_0}{B}\right) = 1437,34 \times \left(1 + \frac{3 \times 0,003}{2,8}\right) = 1441,96 \ KN$$
$$A_s = \frac{N'(H-h)}{8 \times d \times fst} = \frac{1,441 \times (2,8-0,7)}{8 \times 0,7 \times 400} \rightarrow A_s = 13,51 \ cm^2$$

Alors on choisit :

Selon H $\rightarrow A_s = 29,32 \ cm^2$

Selon B $\rightarrow A_s = 22,16 \ cm^2$

8.2.7.3 Condition de non fragilité :

$$A_{min}{}^{H} = \frac{0,23 H h_t f_{t28}}{fe} = \frac{0,23 \times 3,7 \times 0,8 \times 2,1}{400} = 35,74 cm^2$$
$$A_{min}{}^{B} = \frac{0,23 B h_t f_{t28}}{fe} = \frac{0,23 \times 2,8 \times 0,8 \times 2,1}{400} = 27,05 cm^2$$

8.2.7.4 Calcul de l'espacement

$$S_t^{\ H} \le \frac{370}{10} = 37cm \rightarrow S_t^{\ H} = 30cm$$

 $S_t^{\ B} \le \frac{280}{10} = 28cm \rightarrow S_t^{\ B} = 20cm$

8.2.7.5 La disposition constructive :

Les armatures seront munies des crochets si la longueur de scellement ls est :

$$\begin{cases} l_{s} > \frac{H}{4} \rightarrow sens \ H\\ l_{s} > \frac{B}{4} \rightarrow sens \ B \end{cases}$$

Avec :

$$l_{s} = \frac{\emptyset f e}{4 \times 0.6\Psi_{s}^{2} \times f_{t28}} \quad Avec: \ \Psi_{s} = 1.5 \ Pour \ les \ armatures \ HA$$

 ϕ : Diametre des boulons

- Suivant H :

$$l_s = \frac{2 \times 400}{4 \times 0.6 \times 1.5^2 \times 2.1} = 70,54 \text{ cm} < \frac{370}{4} = 92,5 \text{ cm}$$

Nos armatures ne seront pas munies de crochet suivant le Sens H.

- Suivant B :

$$l_s = \frac{2 \times 400}{4 \times 0.6 \times 1.5^2 \times 2.1} = 70,54 \text{ cm} > \frac{280}{4} = 70 \text{ cm}$$

Nos barres doivent être prolongé jusqu'à l'extrémité de la semelle avec des crochets.

Les résultats sont regroupés dans le tableau suivant :

Sens	As (cm ²)	Amin (cm ²)	Choix de barre	As (cm ²)	St (cm)
Н	29,32	35,74	12HA20	37,70	20
В	22,16	27,05	9HA20	28,27	20

Tableau 8-4 : Choix de ferraillage pour la semelle du poteau encastré

8.2.8 Dimensionnement de la semelle du poteau articulé :

Le poteau est soumis à un effort : N = 566,48KN

Les résultats des calculs seront résumés dans le tableau suivant :

B (m)	H (m)	$h_t(m)$	$A_s^{\parallel H}(\mathrm{cm}^2)$	$A_s^{\parallel B}(cm^2)$	$A_{min}^{\parallel H}(cm^2)$	$A_{min}^{\parallel B}(cm^2)$
1	1,4	0,25	6,71	5,22	4,22	3,02

Tableau 8-5 : Résumé du calcul de ferraillage pour la semelle du poteau articulé

8.2.8.1 Choix de ferraillage pour la semelle du poteau articulé :

$$\begin{cases} Sens H \rightarrow 4HA16 = 8,04 \ cm^2 \\ Sens H \rightarrow 4HA14 = 6,16 \ cm \end{cases}$$

8.3 Calcul des longrines :

Les longrines sont des éléments appartenant à l'infrastructure et qui servent à rigidifier l'ensemble des semelles. Elles sont soumises à des forces axiales de traction.

8.3.1 Pré dimensionnement :

Les dimensions minimales de la section transversale des longrines d'après le RPA99vs2003 :

 $25 \times 30 \ cm^2$: Site de categorie S2 et S3

 $30 \times 30 \ cm^2$: Site de categorie S4

Pour notre on opte pour des longrines de Section : $35 \times 30 \ cm^2$

8.3.2 Ferraillage des longrines :

Les longrines doivent être calculées pour résister à l'action d'une force de traction qui est égale:

$$F = \frac{N}{a} \ge 20KN \qquad [RPA99/2003]$$

Avec :

N : Effort normale ultime du poteau le plus sollicité.

<u>ELU</u>: *N* = 1993,07 *KN*

<u>ELS</u>: N = 1423,15 KN

a : Coefficient fonction de la zone sismique et de la catégorie de site considéré

a = 12 (Zone sismique IIa et categorie S3)

On a :

<u>ELU</u> :

$$N_u = \frac{N}{a} = \frac{1993,07}{12} = 166,10 \text{ KN} > 20 \text{ KN}$$

<u>ELS</u> :

$$N_s = \frac{N}{a} = \frac{1423,15}{12} = 118,60 \text{ KN} > 20 \text{ KN}$$

8.3.2.1 Calcul des armatures :

On a :

 $A_{s} = \frac{N}{Fst}$ <u>ELU</u>: $A_{s} = \frac{166,10}{348} = 4,77 \ cm^{2}$ <u>ELS</u>: $A_{s} = \frac{118,6}{348} = 3,41 \ cm^{2}$

8.3.2.2 Calcul le Amin :

$$A_{min} = 0,6\% \ b \times h = \frac{0,6}{100} \times 30 \times 35 = 6,3 \ cm^2$$

On ferraille avec le A_{min}

Soit : $4HA12 + 2HA10 = 8,42 \ cm^2$

8.3.2.3 Ferraillage transversale :

Soit des cadres de diamètre ϕ_8 dont l'espacement maximal sont donnés par le RPA :

$$St \le \min\left(\frac{b}{2}; \frac{h}{2}; 15\phi_L\right) = \min(15; 17, 5; 12) = 12cm$$

Soit : $St \le 12 \ cm$

Les cadres sont espacés de 12 cm en travée et de 10 cm en zone nodale.

Figure 8-3 : Schéma de ferraillage des longrines

8.4 Calcul des futs :

Les fondations sont ancrées à D = 1,5m, l'assemblage platine massif doit être au-dessus du sol, donc on prévoit un poteau en acier (fût) de dimension $1 \times 0,7 m^2$ Le fût est soumis à un effort normal et un effort tranchant plus un moment .il est sollicité en flexion composée.

Le fût est soumis à des sollicitations suivantes :

 $N_t = 1993,07 \ KN$

M = -45,75KN.m

8.4.1 Ferraillages des futs :

On a :

h = 0.9m b = 0.7 d = 0.85m d' = 0.05m

Figure 8-4 : Section du fut à ferrailler

$$e = \frac{M}{N} = \frac{45,75}{1993,07} = 0,02m < \frac{h}{6} = 0,15m$$

Donc : La section est entièrement comprimée

$$\begin{split} M_{ua} &= M_u + N_u \left(d - \frac{h}{2} \right) = 45,75 + 1993,07 \left(0,85 - \frac{0,9}{2} \right) = 842,98 \ KN. \ m \\ N_u (d - d') - M_{ua} &= 1993,07 (0,85 - 0,05) - 842,98 = 751,47 \ KN. \ m \end{split}$$
(I)
$$(0,337d - 0,81d')b \ h \ fbu &= 2200,26 \ KN. \ m \end{aligned}$$
(II)
$$(I) < (II) \rightarrow A = 0 \\ A' &= \frac{N_u - \Psi \times b \times h \times fbu}{fst} \end{split}$$

Avec :

$$\Psi = \frac{0,357 + \frac{N_u(d-d') - M_{ua}}{b \times h^2 \times fbu}}{0,857 - \frac{d'}{h}} = \frac{0,357 + \frac{1993,07(0,85 - 0,05) - 842,98}{0,7 \times 0,9^2 \times 14,2 \times 10^3}}{0,857 - \frac{0,05}{0,9}}$$

 $\Psi = 0,473$

D'où :

$$A' = \frac{1,993 - 0,473 \times 0,7 \times 0,9 \times 14,2}{348} = -64,32 \ cm^2 < 0$$

On ferraille Avec $A_{s min}$

Selon l'EC2 la section minimale d'armature longitudinale d'un fut de poteau est :

$$A_{s min} = 0,2\% \ b \ h = \frac{0,2}{100} \times 70 \times 90 = 12,60 \ cm^2$$

Choix de ferraillage est : $4HA16 + 4HA14 = 14,2 \ cm^2$

8.4.1.1 Armature transversale :

Soit trois cadres $\Phi 10$ et des épingles de diamètre $\Phi 8$ dont l'espacement max est donné par le RPA :

- Dans la zone nodale :

 $St \leq 10cm$ soit : St = 10cm

- Dans la zone courante :

$$St \le \min\left(\frac{b}{2}; \frac{h}{2}; 10\phi_L\right) = \min(35; 45; 20) = 20cm$$

Soit : $St \le 20 \ cm$

Figure 8-5 : Schéma de ferraillage des futs

9 Chapitre IX

Vérification l'instabilité de l'ensemble

9.1 Introduction :

Après le dimensionnement et la vérification des éléments de la structure,

On doit vérifier la stabilité d'ensemble sous l'action du vent et du séisme. La stabilité de la structure est assurée si :

$$\sum$$
 Moment stabilisants $> \sum$ Moment renversant

9.2 Détermination des moments renversants :

9.2.1 Cas du vent :

L'action de vent est décomposée en deux composantes, qui provoquent un moment de renversement de la structure, ces dernières sont :

- Une composante horizontale F_H
- Une composante verticale F_V

Cette force résultante est donné par :

$$F = \sum (Wzj \times Sj) + \sum F_{fr}$$

Ou :

Wzj: La pression aérodynamique du vent qui s'exerce sur un élément de surface

Sj : L'aire de l'élément de surface

 F_{fr} : Les forces de frottements

Dans notre cas les forces de frottements sont nulles donc :

$$F = \sum (Wzj \times Sj)$$

9.2.1.1 Vent perpendiculaire au long pan :Façade principale et postérieure :

Tous les résultats de calcul sont dans le tableau qui suit

Zone	Wzj	S (m²)	F_H (KN)	F_V (KN)	Point	d'applica	tion
	(KN/m²)				X (m)	Y (m)	Z (m)
D	0,754	732	551,93	0	0	D	0,754
Е	0,137	732	100,28	0	30	Е	0,137
F1	0,660	22,5	0	14,85	1,5	F1	0,660
F2	0,660	22,5	0	14,85	1,5	F2	0,660
G	0,575	124	0	71,30	1,5	G	0,575
Н	0,145	267,98	0	38,85	3,75	Н	0,145
2	0,746	422,25	0	315	11,25	2	0,746
3	0,746	422,25	0	315	18,75	3	0,746
4	0,403	422,25	0	170,16	26,25	4	0,403
		$\sum F_H$	652,21	/	3,23	28,15	
				0.40.04	1 . 1 .	20.15	
		$\sum F_V$	/	940,01	15,16	28,15	7,45

Tableau 9-1 : Les forces du vent sous V1

Pour le calcul des coordonnées des points d'application des résultants des F_H et F_V on applique ces formules :

Figure 9-1 : Résultante totale des pressions agissant sur la structure dans le sens V1

- Calcul du M_R :

Pour le vent perpendiculaire à la façade principale et postérieure on a :

 $M_R = F_H \times 6.5 + F_V \times (30 - 15) = 652.2 \times 6.5 + 940.01 \times (30 - 15) = 18339.4 \text{ KN. } m$

9.2.1.2 Vent perpendiculaire au pignon :Façade principale et postérieure :

Tous les résultats de calcul sont dans le tableau qui suit :

Zone	Wzj	S (m²)	F_H (KN)	F_V (KN)	Point d'application			
	(KN/m ²)				X (m)	Y (m)	Z (m)	
D	0,786	399	313,61	0	15	0	6,5	
E	0,105	399	41,89	0	15	56,30	6,5	
Fsup	2,274	1,40	0	3,18	6,56	0,375	8,25	
Fsup	2,274	1,40	0	3,18	8,43	0,375	8,25	
Fsup	2,274	1,40	0	3,18	21,56	0,375	8,25	
Fsup	2,274	1,40	0	3,18	23,43	0,375	8,25	
Finf	1,810	1,40	0	2,53	0,937	0,375	6,75	
Finf	1,810	1,40	0	2,53	14,06	0,375	6,75	
Finf	1,810	1,40	0	2,53	15,93	0,375	6,75	
Finf	1,810	1,40	0	2,53	29,06	0,375	6,75	

G1	1,767	2,81	0	4,96	3,75	0,375	7,5
G2	1,767	2,81	0	4,96	11,25	0,375	7,5
G3	1,767	2,81	0	4,96	18,75	0,375	7,5
G4	1,767	2,81	0	4,96	26,25	0,375	7,5
H1	0,540	22,5	0	12,15	3,75	2,25	7,5
H2	0,540	22,5	0	12,15	11,25	2,25	7,5
H3	0,540	22,5	0	12,15	18,75	2,25	7,5
H4	0,540	22,5	0	12,15	26,25	2,25	7,5
I1	0,394	394,12	0	155,28	3,75	30,02	7,5
I2	0,394	394,12	0	155,28	11,25	30,02	7,5
I3	0,394	394,12	0	155,28	18,75	30,02	7,5
I4	0,394	394,12	0	155,28	26,25	30,02	7,5
		$\sum F_H$	355,5	/	15	3	6,5
		$\sum F_V$	/	712,40	15	26,5	7,5

Tableau 9-2 : Les forces du vent sous V2

- Calcul du Moment renversant M_R :

Pour le vent perpendiculaire à la façade principale et postérieure on a :

 $M_R = F_H \times 6.5 + F_V \times (56.30 - 26.5)$

 $M_R = 355,5 \times 6,5 + 712,40 \times (56,30 - 26,5) = 23540,27 \text{ KN. } m$

9.2.2 Calcul du moment reversant sous l'effet sismique :

Le moment de renversement qui peut être causé par l'action sismique doit être calculé par rapport au niveau de contacte sol-fondation.

Mode		Réaction									
	Fx (KN)	Fy (KN)	Fz (KN)	Mx (KN.m)	My (KN.m)	Mz (KN.m)					
CQC	189,03	174,95	1626,17	33,19	206,81	3,21					

9.2.2.1 Réaction à la base :

Tableau 9-3 : Réaction à la base due à l'effet sismique

CQC : combinaison quadratique complète.

 $M_{R/xx} = M_{xx} + F_z \times Y_G$

 $M_{R/yy} = M_{yy} + F_z \times X_G$

Avec :

 Y_G ; X_G : Coordonnée de centre de gravité de la structure avec la prise en compte des masses statiques globales

 $Y_G = 27,66m$ $X_G = 14,91m$

D'où :

 $M_{R/xx} = 33,19 + 1626,17 \times 27,66 = 45013,05 \text{ KN. } m$

 $M_{R/yy} = 206,81 + 1626,17 \times 14,91 = 24453 \text{ KN. } m$

9.3 Calcul des moments stabilisants :

On a le poids de la structure :

 $P_T = 21265,52KN$ (Voir Chapitre 5)

D'où :

 $M_{st/xx} = P_T \times Y_G = 21265,52 \times 27,66 = 588204,28 \text{ KN}. m$

 $M_{st/yy} = P_T \times X_G = 21265,52 \times 14,91 = 317068,90 \text{ KN. }m$

- Vérification globale :

Toutes les vérifications seront résumées dans le tableau ci-dessous :

			M_R (I	KN.m)	M _{st} (KN.m)	OBS
			/XX	/YY	/XX	/YY	
	Vent	Principale	/	18339,4	/	317068	V
Cas	Perpendiculaire	et					
du	Au long pan	postérieure					
Vent	Vent	Principale	23540,27	/	588204	/	V
	Perpendiculaire	et					
	Au Pignon	postérieure					
					0,8Mst	0,8Mst	V
	Cas du séisme			24453	470563	253655	

Tableau 9-4 : Vérification au renversement de la structure

Tous les moments résistants (Stabilisateurs) sont supérieurs aux moments renversants,

Donc il n'y'a pas de risque au renversement et la stabilité de l'ensemble est vérifiée.

9.4 Conclusion :

Notre structure est stable.

10 Chapitre X :

Comportement des poutres au déversement

10.1 Introduction :

Dans le cadre de notre étude sur les structures, nous avons rencontré des difficultés significatives lors de la vérification du déversement pour la majorité de nos éléments notamment les traverses. Afin de mieux comprendre et résoudre ces problèmes, ce chapitre est spécifiquement dédié à l'étude du comportement au déversement des poutres fléchies. Nous allons analyser en détail les facteurs influençant le déversement, les méthodes de vérification employées et les défis rencontrés. À la fin de ce chapitre, nous présenterons une conclusion générale qui synthétisera nos observations et nos recommandations concernant le choix des profils à utiliser et les liaisons appropriés pour une résistance suffisante à moindre coût.

10.2 Définition :

Le déversement est un phénomène de perte de stabilité latérale-torsionnelle des poutres soumises à des charges de flexion, il est aussi définit comme étant le flambement latérale de la partie comprimée. Lorsqu'une poutre subit une flexion, elle peut se déformer non seulement dans le plan de la charge, mais également se tordre et se déplacer latéralement. Ce phénomène est particulièrement critique dans les poutres longues et minces, où la résistance à la torsion et à la flexion latérale est moindre. Le déversement peut entraîner une défaillance structurelle soudaine, d'où l'importance de le vérifier et de le prévenir dans la conception et l'analyse des structures

10.3 Facteur influant le phénomène de déversement :

Ce phénomène d'instabilité se produit généralement si :

- La barre fléchie présente une faible inertie à la flexion transversale et à la torsion (Iy/Iz) est très grand et le moment de la torsion est faible ;
- La distance entre appuis empêchant le déplacement dans la direction perpendiculaire au plan de flexion est importante.

Nous disposons de traverses en IPE330 et avons opté pour vérifier trois facteurs influant le déversement. Les évaluations incluent : le moment critique en fonction de la portée, et en fonction du type d'appuis Kz, et le point d'application de la charge sur la section Zg. L'influence de la nature de la section est aussi considérée pour étudier la variation du moment critique Mcr en fonction du rapport Iy/Iz ainsi que la grandeur du moment d'inertie à la torsion. Pour ceci nous avons aussi étudié les profilés HEA240 et HEB220,

• Dans nos calculs nous avons utilisé le logiciel éléments finis Robot structure pour l'évaluation du moment critique Mcr. Les caractéristiques des profilés choisis :

	<i>Iy</i> (<i>cm</i> ⁴)	<i>Iz</i> (<i>cm</i> ⁴)	Iy/Iz	<i>It</i> (<i>cm</i> ⁴)	$A(cm^2)$	G (Kg)
IPE330	11769,9	788	14,93	28,15	62,6	49,1
HEA240	7763,2	2768,9	2,80	41,55	76,8	60,3
HEB220	8091	2842,7	2,84	76,57	91	71,5

Tableau 10-1 : Les caractéristiques des profilés choisit

Nous procèderons au calcul du moment critique avec la prise en compte des :

- Imperfections des appuis de poutre
- Conditions de chargement

Allure des moments fléchissant.

L'élancement critique est en fonctionne du Moment critique :

$$\lambda_{lt} = \sqrt{\frac{Wply \times fy}{Mcr}} \qquad [Annexe \ F \ a \ EC3]$$

Le moment critique de déversement est défini dans l'Eurocode 03 [Annexe F]:

$$M_{cr} = C_{I} \frac{\pi^{2} E I_{z}}{(k_{z}L)^{2}} \left[\sqrt{\left(\frac{k_{z}}{k_{w}}\right)^{2} \frac{I_{w}}{I_{z}} + \frac{(k_{z}L)^{2} G I_{t}}{\pi^{2} E I_{z}} + (C_{2} Z_{g} - C_{3} Z_{j})^{2}} - (C_{2} Z_{g} - C_{3} Z_{j}) \right]$$

10.3.1 Influence de la portée sur le moment critique pour les différentes sections :

Dans cette vérification, on considère la section de notre traverse IPE330, avec d'autres profilés de sections différentes à savoir un HEA240 et un HEB220, l'objectif est de déterminer l'évolution de Mcr en fonction de la portée et des caractéristiques de la section, notamment Iy/Iz

A l'aide du graphe ci-dessous, nous présentons les différents courbes du moment critique en fonction de la portée de 5 m jusqu'à 10 mètre pour ces profilés.

Figure 10-1 : Evaluation du moment critique en fonction de la portée

Ce graphe met en évidence les différentes courbes du moment critique en fonction de la portée, allant de 5 mètres à 10 mètres, pour divers profilés. Il ressort de cette analyse que, indépendamment de la section des profilés, une augmentation de la portée entraine systématiquement une diminution du moment critique, cela signifie que le risque de déversement des profilés augmente avec la longueur de la portée. Le rapport Iy/Iz influe considérablement le moment critique. En effet la valeur de Mcr est inversement proportionnelle au rapport Iy/Iz. Il faut alors soulignant l'importance d'un meilleur choix des sections de travers lors du dimensionnement des structures pour assurer leur stabilité et sécurité sans négliger l'aspect économique.

10.3.2 Influence de type d'appuis sur le moment critique :

Dans cette étude, nous analysons la traverse IPE330 pour évaluer l'influence des types d'appuis sur le moment critique, un facteur clé pour la stabilité des structures en acier. En comparant différentes configurations d'appuis simplement appuyés, encastrés et mixtes nous utilisons un graphique pour illustrer comment chaque type affecte le moment critique.

Figure 10-2 : Evaluation du moment critique en fonction de Kz

Notre analyse montre que lorsque la traverse IPE330 est encastrée à ses extrémités, le moment critique augmente, réduisant ainsi le risque de déversement. En revanche, avec des appuis articulés aux extrémités, le moment critique diminue, ce qui accroît le risque de déversement. Ces observations soulignent l'importance de choisir des conditions de support adéquates pour garantir la stabilité et la sécurité des structures en acier.

10.3.3 Influence de la position de la charge sur le moment critique :

Figure 10-3 : La valeur de Zg par rapport à la direction de la charge

Dans cette étude, nous comparons la traverse IPE330 avec les profils HEA240 et HEB220 en évaluant le moment critique en fonction de la position de la charge Zg. Nous considérons deux cas : des poutres bi-articulées et bi-encastrées avec Zg > 0 et Zg < 0 correspondant respectivement au cas de charge sur semelle supérieur et charge sur semelle inferieur. Pour chaque type de support, nous analysons comment la position de la charge influence le moment critique. Cette analyse nous permet de comprendre les effets de la position de la charge sur la stabilité des différents profils, fournissant des informations essentielles pour optimiser le choix des poutres en fonction des conditions de charge et des exigences de stabilité structurelle.

Figure 10-4 : Evaluation du Moment critique en fonction de Zg

Dans ce graphe nous pouvons conclure que lorsque la position de la charge Zg se rapproche de la semelle comprimée, le moment critique diminue, ce qui augmente le risque de déversement. Cette tendance est observée pour les profils IPE330, HEA240 et HEB220. Elle est valable pour les poutres bi-articulées et bi-encastrées. Ces résultats soulignent l'importance de considérer la position de la charge pour garantir la stabilité et la sécurité des structures en acier.

10.4 Conclusion :

En conclusion de notre chapitre sur le déversement, nous avons analysé les traverses IPE330, et des HEA240 et HEB220 en utilisant le logiciel ROBOT. Nous avons évalué le moment critique en fonction de la portée, du type d'appuis et de la position de la charge Zg. Les résultats obtenus montrent que le moment critique varie significativement avec ces paramètres : il augmente avec des appuis encastrés et diminue à mesure que la charge se rapproche de la semelle comprimée, augmentant ainsi le risque de déversement. Ces analyses fournissent des informations essentielles pour optimiser le choix des profilés et des configurations de support afin de garantir la stabilité et la sécurité des structures en acier.

Toutes fois d'autres solutions existent concernant le choix des profilés de poutre toutes en respectant l'aspect économique. En peut par exemple bloquer le flambement latéral de la semelle comprimé par des bracons. Cette solution est d'ailleurs adoptée dans le cas de notre traverse en IPE330.

Conclusion générale

Cette étude de projet nous a permis, d'une part, de mettre en pratique et d'approfondir les connaissances acquises durant notre cursus, et d'autre part, de nous familiariser avec les règlements en vigueur. La complexité des calculs en génie civil nécessite inévitablement l'utilisation d'outils numériques, qui nous font gagner en temps, en précision et en fiabilité. La nécessité d'un logiciel de calcul nous a conduits à acquérir certaines compétences sur le logiciel ROBOT STRUCTURAL ANALYSIS.

Par ailleurs, cette étude nous a permis d'arriver à certaines conclusions :

- Les actions du vent sont particulièrement défavorables pour les structures métalliques, mais la présence d'un plancher mixte rend la structure également sensible aux actions sismiques.
- Les efforts engendrés par l'action du vent sont proportionnelle à la hauteur de la structure.
- La disposition des contreventements joue un rôle crucial dans le comportement global de la structure.
- Vu l'importance des charges et surcharges sollicitant la structure, nous avons augmenté la rigidité des éléments porteurs et contreventement afin de répondre aux différentes vérifications en vigueur.
- La modélisation d'un plancher mixte comme un diaphragme infiniment rigide est extrêmement efficace pour la transmission des charges.
- Une conception adéquate des assemblages est essentielle pour assurer la stabilité des structures métalliques.
- La modélisation doit être aussi proche que possible de la réalité, pour avoir les meilleurs résultats possibles.

Enfin, notre objectif ultime dans cette étude est de concevoir un ouvrage qui soit à la fois résistant et sécurisé. Il s'agit de s'assurer que la structure puisse supporter les différentes charges et contraintes auxquelles elle sera soumise tout au long de sa durée de vie. En garantissant la solidité de l'ouvrage, nous visons à protéger non seulement la vie des personnes qui l'utiliseront, mais aussi leurs biens.

Les références bibliographiques

- (1) BAEL 91, Béton Armé aux Etats Limites,
- (2) EUROCODE 3 ; Calcul des éléments résistants d'une construction métallique.
- (3) DTR.C- 2-47, Règlement neige et vent « RNV Version 2013 ».
- (4) DTR.B.C-2-48, Règles Parasismiques Algériennes « RPA99 Version 2003 », Centre National de Recherche Appliquée en Génie Parasismique, Alger
- (5) EUROCODE 1, Bases de calcul et action sur les structures.
- (6) Jean Morel : Calcul des Structures métalliques selon EC3
- (7) Cours de 1^{er} année master et 3^{eme} année Génie civil.

ø	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1.51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,70
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,70	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,5
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,1
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,7
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,2
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,8
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,6	163,4
14	2,75	3,96	7,04	11,00	15,83	21,55	28,15	43,98	68,72	112,6	175,9
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,6	188 5
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	125,7	201,1
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,7	213,6
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,8	226,2
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	92,27	152,8	238,8
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,8	251,3

Annexe 1 : Table des armatures

Annexe 2 : Choix de la courbe du flambement

Type de Section	limites	axe de flambement	courbe de flambement
Sections en I laminées			
•	h / b > 1,2 :		
^t f	t _f ≤ 40 mm	у-у	a
		z - z	b
T T T	40 mm < t∉ ≤ 100 mm	y - y	ь
h yy		z-z	c
	h/b≤1,2:		
	t _f ≤ 100 mm	v - v	b
. b .		z-z	c
1.6.8 555	t _f > 100 mm	V - V	d
		y-y	d

Diagramme des moments	Facteur de moment uniforme équivalent $\beta_{\mathbf{M}}$
Moments d'extrémité $M_1 \qquad \qquad$	$\beta_{\rm M,\psi}=1.8-0.7\psi$
Moment crée par des forces latérales dans le plan	$\beta_{M,Q} = 1,3$
↓ M _Q	$\beta_{M,Q} = 1,4$
Moment créé par des forces latérales dans le plan et des moments d'extrémité	
	$\beta_{M} = \beta_{m,\psi} \psi + \frac{M_{Q}}{\Delta M} \left(\beta_{M,Q} - \beta_{M,\psi} \psi \right)$
	$M_Q = MaxM $ dû aux charges transversales seulement
\uparrow	max M pour diagrammes de moment sans
NTTRITTA K	changement de signe
MI AM	$\Delta M = \begin{cases} \\ \max M + \min M \text{ pour diagrammes} \end{cases}$
Mat	de moment avec
	changement de signe

Annexe 3 : Le facteur de moment uniforme équivalent β_m

utrelles	and a strength of the	Concest.	1.11	10.110	1821	1.00	1.5.22	1	251
MATIÉRE	Les nuances de bas d'après la norme NF	e utilisées er EN 10025.	n constru	ction mé	tallique so	ont les ac	iers S 23	5, S 275	et S 35
			Masse par mètre	Aire de la sectio					
	1.11	n	ъ	4		e.	h ₁	р	A
		ħ	b	6	t _i	r	d	P	A
	1-4-1-	mm	mm	mm	mm	mm	mm	kg/m	cm²
	IPE 80	80,0	46	3,8	5,2	5	59,6	6,0	7,6
	IPE 100	100,0	55	4,1	5,7	7	74,6	8,1	10,3
	IPE 120	120,0	64	4,4	6,3	7	93,4	10,4	13,2
51.5	IPE 140	140,0	73	4.7	6,9	7	112,2	12,9	16,4
	IPE 160	160,0	82	5.0	7,4	9	127,2	15,8	20,1
	IPE 180	180,0	91	5,3	8,0	9	146,0	18,8	23,9
PE	IPE 200	200,0	100	5,6	8,5	12	159,0	22,4	28,5
	IPE 220	220,0	110	5,9	9,2	12	177,6	26,2	33,4
	IPE 240	240,0	120	6,2	9,8	15	190,4	30,7	39,1
	IPE 270	270,0	135	6,6	10,2	15	219,6	36,1	45,9
	IPE 300	300,0	150	7,1	10,7	15	248,6	42,2	53,8
	IPE 330	330,0	160	7,5	11,5	18	271,0	49,1	62,6
	IPE 360	360,0	170	8,0	12,7	18	298,6	57,1	72,7
	IPE 400	400	180	8,6	13,5	25	331,0	65,3	84,5
	IPE 450	450,0	190	9,4	14,6	21	378,8	77,6	98,8
	IPE 500	500,0	200	10,2	16,0	21	426,0	90,7	115,5
	IPE 550	550,0	210	11,1	17,2	24	457,6	105,5	134,4
	IPE 600	600,0	220	12,0	19,0	24	514,0	122,4	156,0

Annexe 4 : Tableau des profilés utilisé

NORMES DE RÉFÉRENCE	Produits siderurgiques – formes, dimensions, caractéris Dimensions : NF A 45-205 Tolérances : NF EN 10034										suques	
100 (101-	TH.		Caractéristiques de calcul									
	h y y d	I,	I ₂ /V ₂	ç	-	+	1 _q	l/v _r	4	-	-	J
	1	ų.	W _{al.y}	4	W _{pky}	A _d	1 _e	$W_{\theta L I}$	ij.	W _{pla}	A.,	łı.
	1 1 1	om4	cm ³	cm	cm ³	cm²	cmi	cm ³	cm	cm ³	cm ²	cm4
	PE 80	80,1	20,0	3,24	23,2	3.6	8,48	3,69	1,05	5,8	6,1	0,70
	IPE 100	171,0	34,2	4,07	39,4	5,1	15,91	5,78	1,24	9,1	6,7	1,20
	IPE 120	317,8	58,0	4,90	60,7	63	27,65	8,64	1,45	13,0	8,6	1,74
	IPE 140	541,2	17,3	5,74	88,3	7,8	44,90	12,30	1,65	19,2	10,6	2,45
	IPE 160	869,5	108,7	6,58	123,9	9,7	68,28	16,65	1,84	26,1	12,8	3,60
	IPE 180	1317,0	146.3	7,42	166,4	11,3	100,81	22,16	2,05	34,6	15,3	4,79
IPE	IPE 200	1943,2	194,3	8,26	229,6	14,0	142,31	28,46	2,24	44,8	18,0	6,98
(suite)	IPE 220	2771,8	252,0	9,11	285,4	15,9	204,81	37,24	2,48	58,1	21,3	9,07
	IPE 240	3891,6	324,3	9,97	396,8	19,1	263,58	47,26	2,69	73,9	24,8	12,88
	IPE 270	5789,8	428,9	11,23	484,0	22,1	419,77	62,19	3,02	97,0	29,0	15,94
	IPE 300	8356,1	557,1	12,46	628,4	25,7	603,62	60,48	3,35	125,2	33,7	20,12
	#PE 330	11766,9	713,1	13,71	804,3	30.8	786,00	96,50	3,55	153,7	38,7	28,15
	IPE 300	16265,6	903,6	14,95	1010,1	35,1	1043,20	122,73	3,79	191,1	45,2	37,32
	IPE 400	23128,4	1156,4	16,55	1307,1	42,7	1317,58	145,40	3,95	229,0	51,1	51,08
	FE 450	33742,9	1499,7	18,48	1701,8	50,8	1675,35	176,35	4,12	276,4	58,3	66,87
	IPE 500	48198,5	1927,9	20,43	2194,1	59,9	2140,90	214,09	4,30	335,9	67,2	89,29
	IPE 550	67116,5	2440,6	22,35	2787,0	72,3	2666,49	253,95	4,45	400,5	76,1	123,24
	IPE 600	92083,5	3069,4	24,30	3512,4	83,8	3385,78	307,80	4,66	485,6	87,9	165,42

Poutrelles	at the state	1000	110.0	in the s	22.5	1	1000	1000	100
MATIÈRE	Les nuances de base d'après la norme NF	e utilisées e EN 10025.	n constru	ction mét	allique so	nt les ac	iers S 23	5, S 275 (it S 355
	- b			Dime	nsions			Masse par mètre	Aire de la section
	J. PE.	h	b			. 1	ħ	Р	A
	L'EL	b.	b	t,	4		d	P	A
	h z	mm	mm	mm	mm	mm.	mm	kg/m	cm ²
	HEA 100	96	100	5,0	8	12	.56	16,7	21,2
	HEA 120	114	120	5,0	8	12	74	19,9	25,3
	HEA 140	133	140	5,5	8,5	12	92	24,7	31,4
	HEA 160	152	160	6,0	9	15	104	30,4	38,8
	HEA 180	171	180	6,0	9,5	15	122	35,5	45,3
	HEA 200	190	200	6,5	10	18	134	42,3	53,8
	HEA 220	210	220	7,0	11	18	152	50,5	64,3
	HEA 240	230	240	7,5	12	21	164	60,3	76,8
-	HEA 260	250	260	7,5	12,5	24	177	68,2	86,5
-	HEA 280	270	280	8,0	13	24	196	76,4	97,3
	HEA 300	290	300	8,5	14	27	208	88,3	112,5
	HEA 320	310	300	9,0	15,5	27	225	97,6	124,4
	HEA 340	330	300	9,5	16,5	27	243	104,8	133,5
	HEA 360	350	300	10,0	17,5	27	261	112,1	142,8
	HEA 400	390	300	11,0	19	27	298	124,8	159,0
	HEA 450	440	300	11,5	21	27	344	139,8	178,0
	HEA 500	490	300	12,0	23	27	390	155,1	197,5
	HEA 550	540	300	12,5	24	27	438	106,2	211,8
	HEA 600	590	300	13,0	25	27	486	177,8	226,5
	HEA 650	640	300	13,5	26	27	534	189,7	241,6
	HEA 700	690	300	14,5	27	27	582	204,5	260,5
	HEA 800	790	300	15,0	28	30	674	224,4	285,8
	HEA 900	890	300	16	30	30	770	251,6	320,5
	HEA 1000	990	300	16,5	31	30	868	272,3	346,8

Produits sidérurgiques - formes, dimensions, caractéristiques												
NORMES DE NÉFÉRENCE	Dimensions : NF A 45-201 Tolérances : NF EN 10034											
	b z	Caractéristiques de calcul										Moment d'inertie de torsion
	1	I,	$l_{\rm s}/v_{\rm s}$	4		-	ly.	44,	4	-	-	J
		ų	Weiy	4	Wpty	Aa	l,	Wela	ų.	W _{p6.2}	A.,	ų
	\$ i	cm4	cm ³	cm	cm ³	cm ²	cm4	cm ³	cm	cm ³	cm ²	cm4
	HEA 100	349,2	72,8	4.05	83,0	7,6	135,8	26,8	2,51	41,1	16,9	5,24
	HEA 120	606,2	106,3	4,89	119,5	8,5	230,9	38,5	3,02	58,9	20,1	5,99
	HEA 140	1033,1	155,4	5,75	173,5	10,1	389,3	55,6	3,52	84,8	24,8	8,13
	HEA 160	1673,0	220,1	6,57	245,1	13,2	615,5	76,9	3,98	117,6	30,1	12,19
	HEA 180	2510,3	293,6	7,45	324,9	14.5	924,6	102,7	4,52	156,5	35,5	14,80
	HEA 200	3692,2	388,6	8,29	429,5	16,1	1335.6	133,6	4,98	203,8	41,6	20,98
	HEA 220	5409,7	515,2	9,17	588,5	20,7	1954,5	177,7	6,51	270,6	50,2	28,46
	HEA 240	7763,2	675,1	10,05	744,6	25,2	2768,9	290,7	6,00	351,7	59,7	41,55
HEA	HEA 260	10455,0	836,4	10,97	919,8	28,8	3668,2	282,2	6,50	430,2	£7,4	52,37
(suito)	HEA 200	13673,3	1012,8	11,86	1112,2	31,7	4760,0	340,2	7,00	518,1	75,4	62,10
	HEA 300	18263,5	1259,63	12,74	1383,3	37,3	6310,5	420,7	7,49	641,2	87,0	65,17
	HEA 320	22928,6	1479,3	13,58	1628,1	41,1	6965.8	465,7	7,49	709,7	96,2	107,97
	HEA 340	27693,1	1678,4	14,40	1850,5	45,0	7436,3	495,8	7,46	756,9	102,5	127,20
	HEA 360	33089,8	1890,8	15,22	2088,5	49,0	7896,8	525,8	7,43	802.9	108,7	148,82
	HEA 400	45069,4	2911,3	16,04	2561,8	57,3	8563,1	570,9	7,34	872,9	118,2	189,04
	HEA 450	63721,6	2896,4	18,92	3215,9	65,8	9464,2	630,9	7,29	965,5	130,4	245,76
	HEA 500	86974,8	3550,0	20,98	3948,9	74,7	10365,6	691,0	7,24	1058,5	142,7	309,27
	H#64.580	111032,2	4145,6	22,99	4621,8	85,7	10817,2	721,1	7,15	1106,6	148,9	351,54
	HEA 600	141206,1	4786,7	24,97	5350,4	93,2	11268,1	751,3	7,05	1155,7	155,2	397,81
	HEA 650	175178,2	5474,3	26,90	6136,3	100,2	11721,3	781,4	6,96	1204,8	161,5	445,30
	HEA 700	215301,4	6240,6	28,75	7031,8	117,0	12176,5	811,7	6,84	1256,7	168,0	513,89
	HEA 800	303442,6	7682,1	32,58	8699,5	138,8	12634,7	842,3	8,65	1312,3	174,8	596,87
	HEA 900	422075,0	9484,8	36,29	10811,0	163,3	13542,4	902,8	6,50	1414,5	187,4	736,77
	HEA 1000	553846,2	11108,8	39,96	12824,4	184,6	13998,9	933,3	6,35	1460,7	190,7	822,41
1 dan dinga	Les nuances de	base u	tiloles	en cor	structio	on mét	allique	sont le	s aciers	S 235. 5	S 275 e	rt S 35
-------------	--	---------	---------	--------	----------------------------	---------------------------------	----------------	---------	--------------------------	-----------------	-----------------------------	--------------------
MATIÉRE	d'après la norm	e NF EN	10025	i,								
			y	,	clinaiso h ≤ 3 h > 3	n des a 00 : 8 % 00 : 5 %	les : i	20				
	Dimensions Masse de la section mètre section								Aire de la section	Por du de s	sition centre pravité	
	Profils	h.	b			К.	r _t	hţ	P	A	ø	d ₂ = 1
		h	b	4	ţ,	1	η.	d	P	A	dţ	d ₂ =
		mm	mm	mm	mm	mm	mm	mm	kg/m	cm ^z	cm	cm
UPN	UPN BO	80	45	6,0	8,0	8,0	4,00	47	8,7	11,0	1,45	3,05
	UPN 100	100	50	6,0	8,5	8,5	4,50	64	10,6	13,5	1,55	3,45
	UPN 120	120	55	7,0	9,0	9,0	4,50	82	13,3	17,0	1,61	3,89
	UPN 140	140	60	7,0	10,0	10,0	5,00	98	16,0	20,4	1,76	4.24
	UPN 160	160	65	7,5	10,5	10,5	5,50	116	18,9	24,0	1,84	4,66
	UPN 180	180	70	8,0	11,0	11,0	6,00	133	21,9	27,9	1,92	5,08
	UPN 200	200	75	8,5	11,5	11,5	6,50	151	25,2	32,2	2,01	5,49
	UPN 220	220	80	9,0	12,5	12,5	6,50	167	29,4	37,4	2,14	5,86
	UPN 240	240	85	9,5	13,0	13,0	7,00	185	33,2	42,3	2,23	6,27
	UPN 260	260	90	10,0	14,0	14,0	7,50	201	37,9	48,3	2,36	6,64
	UPN 280	280	95	10,0	15,0	15,0	8,00	216	41,9	53,4	2,53	6,97
	UPN 300	300	100	10,0	16,0	16,0	8,00	231	46,1	58,8	2,70	7,30

Produits sidérurgiques – formes, dimensions, caractéristiques											
NORMES DE Référence	Dimensions : N Tolérances : Né	F A 45-20 F A 45-21	0								
	di terretaria di		у	Ind	inalson d h ≤ 300 h > 300 :	es alles : 8 % 5 %					
		Caractéristiques de calcul									
	Profils	t,	1,/4,	4	-	-	Ļ,	1,/v,	4	-	7
		1 _y	Waty	4	$W_{pl \mu}$	A _d	l _a	Welz	ł.	W _{pla}	I,
UPN		cm ⁴	cm ³	om	cm ³	cm²	cm4	cm ³	ст	cm ³	cm4
(series)	UPN 80	106	26,5	3,1	31,8	5,10	19,4	6,4	1,33	12,1	2,16
	LIPN 100	206	41,2	3,9	49,0	6,46	29,3	8,5	1,47	16.2	2,81
	UPN 120	364	60,7	4,6	72,6	8,80	43,2	11,1	1,59	21,2	4,15
	UPN 140	605	86,4	5,5	103,0	10,41	62,7	14,8	1,75	28,3	5,68
	UPN 160	925	116,0	6,2	138,0	12,60	85,3	18,3	1,89	35,2	7,39
	UPN 180	1350	150,0	7,0	179,0	15,09	114,0	22,4	2,02	42,9	9,55
	UPN 200	1910	191,0	7,7	228,0	17,71	148,0	27,0	2,14	51,8	11,90
	UPN 220	2690	245,0	8,5	292,0	20,62	197,0	33,6	2,30	64,1	16,00
	UPN 240	3600	300,0	9,2	358,0	23,71	248,0	39,6	2,42	75,7	19,70
	UPN 260	4820	371,0	10,0	442,0	27,12	317,0	47,7	2,56	91,6	25,50
	UPN 280	6280	448,0	10,9	532,0	29,28	399,0	57,2	2,74	109,0	31,00
	UPN 300	8030	535,0	11,7	632,0	31,77	495,0	67,8	2,90	130,0	37,40

MATIÈRE	Les nuances de d'après la norme	NF E	tilisée 4 1002	s en o 15.	onstru	ction r	métalliqu	e sont k	is acie	rs S 23	5, S 275, et	\$ 355	
201.343								Aire de la section	Caractéristiques de calcul				
	TT	Dimensions					par mètre		Axe yy = Axe zz				
	4		а	•	. 1	<i>r</i> 1	p	A	d	$l_{\chi}\!\!=l_{y}$	$I_g/d_{\chi} = I_g/d_{\chi}$	4=4	
		a.,		1	1	r 3	P	A	d	$I_y = I_2$	$W_{al.y} = W_{al.x}$	iy = 1	
		mm	mm	mm	mm	mm	kg/m	om²	cm	cm4	cm ³	cm	
	L 60 x 60 x 4	60	60	4	5	2,5	3,66	4,67	1,63	16,11	3,68	1,86	
	L 60 x 60 x 5	60	60	5	6	3	4,54	5,79	1,66	19,61	4,52	1,8	
	L 60 x 60 x 6	60	60	6	8	4	5,42	6,91	1,69	22,79	5,29	1,80	
	L 60 x 60 x 7	60	60	7	8	4	6,26	7,98	1,73	26,05	6,10	1,81	
	L 60 x 60 x 8	60	60	8	8	4	7,09	9,03	1,77	29,15	6,89	1,80	
	Lx60x10	60	60	10	12	6	8,76	11,15	1,83	34,26	8,21	1,7	
	L 65 x 65 x 5	65	65	5	7	3,5	4,95	6.30	1.78	25.07	5,31	1,96	
	L65x65x6	65	65	6	8	4	5,89	7,51	1,81	29,36	6,26	1,90	
	L65 x 65 x 7	65	65	7	8	4	6,81	8,68	1,85	33,60	7,23	1,9	
	L 65 x 65 x8	85	65	8	8	4	7,72	9,83	1,89	37,66	8,18	1,9	
	L 65 x 65 x 9	65	65	9	9	4,5	8,62	10,98	1,93	41,37	9,05	1,9	
CORNIÈRES	L70x70x5	70	70	5	6	3	5,33	6,79	1,91	31,76	6,24	2,16	
A AILES	L70x70x6	70	70	6	9	4,5	6,38	8,13	1,93	36,88	7,27	2,11	
(suite)	L70 x 70 x 7	70	70	7	9	4,5	7,38	9,40	1,97	42,30	8,41	2,12	
a deside inte	L 70 x 70 x9	70	70	9	9	4,5	9,32	11,88	2,05	52,47	10,60	2,1	
	L 75×75×5	75	75	5	8	3	5,72	7,29	2,04	39,37	7,20	2,95	
	L75 x 75 x 6	75	75	6	9	4,5	6,85	8,73	2,05	45,83	8,41	2,2	
	L75 x 75 x 7	75	75	7	9	4,5	7,93	10,10	2,10	52,61	9,74	2,21	
	L 75 x 75 x 8	75	75	8	9	4,5	8,99	11,45	2,14	59,13	11,03	2,2	
	L 75 x 75 x 10	75	75	10	10	5	11,07	14,11	2,21	71,17	13,46	2,25	
	L 80 x 80 x 5	80	80	5	6	3	6,11	7,79	2,16	48,11	8,24	2,41	
	L 80 x 80 x 5,5	80	80	5,5	10	5	6,75	8,60	2,14	51,52	8,80	2,45	
	L 80 x 80 x 6	80	80	6	10	5	7,34	9,35	2,17	55,82	9,57	2,44	
	L 80 x 80 x 6,5	80	80	6,5	10	5	7,92	10,08	2,19	60,04	10,34	2,44	
	L 80 x 80 x 8	80	60	8	10	5	8,63	12,27	2,20	72,29	12,58	2,43	
	L 80 x 80 x 10	80	80	10	10	5	11,86	15,11	2,34	87,50	15,45	2,4	
	L 90 x 90 x 6	90	90	6	11	5,5	8,30	10,57	2,41	80,31	12,18	2,70	
	L 90 x 90 x 7	90	90	7	11	5,5	9,61	12,24	2,45	92,55	14,13	2,75	
	L 90 x 90 x 8	90	90	8	11	5,5	10,90	13,89	2,50	104,38	16,05	2,74	
	L 90 x 90 x 9	90	90	9	11	5,5	12,18	15,52	2,54	115,83	17,93	2,73	
	L 90 x 90 x 10	90	90	10	11	5,5	13,45	17,13	2,58	126,91	19,77	2,72	
	L 90 x 90 x 11	90	90	11	11	5,5	14,70	18,72	2,62	137,64	21,57	2,71	
	L 90 x 90 x 12	90	90	12	11	5,5	15,93	20,29	2,66	148,03	23,34	2,70	

EPAISSEUR DE PANNEAU mm	Kcal/m ² h C	NSMITION THERMIQUE Watt / m ² K	POIDS DE PANNEAU AVEC TÔLES EN ACIER EXTERNE ET INTERNE 0,5 mm kg / m ²
30	0.47	0.54	9.65
40	0.38	0.44	10.05
50	0.31	0.36	10.45
60	0.27	0.31	10.85
80	0.21	0.24	11.65
100	0.17	0.19	12.45
120	0.14	0.16	13.25

Annexe 5 : Fiche technique du panneau sandwich

Annexe 6 : les valeurs des sollicitation dans l'EC3

	1. Sollicitations dans le plan d	l'inertie maximale
Réactions d'appuis		0,375 pℓ 1,25 pℓ 0,375 pℓ
Moment de flexion maximum	$M_{\text{max}} = \frac{p \ell^2}{8}$	$M = \frac{9}{128} p \ell^2$
Fièches maximum	$f_0 = \frac{5}{384} \frac{p \ell^4}{El} < \frac{\ell}{200}$	$y = \frac{1}{EI} \left[\frac{p \ell^3 x}{48} - \frac{p \ell x^3}{16} + \frac{p x^4}{24} \right]$ $y_{\text{max}} \text{ pour } x = \frac{3}{8} \ell, \text{ soit}$ $\ell_0 = \frac{2,05}{384} \frac{p \ell^4}{EI} = 0.41 \ell_0 < \frac{\ell}{200}$
	2. Sollicitations dans le plan	d'inertie minimale
Panne sans lierne		$M_{\max} = \frac{p' \ell^2}{8}$
Panne avec une lierne à mi-portée		$M_{\max} = -\frac{p'\ell^2}{32}$
Panne avec deux liernes aux tiers de la portée		$M_{\rm max} = -\frac{p' \ell^2}{72}$

Epaisseurs (mm)					ace	Axe neutre		
Z275	Optigal AMC ZM175	Nue	Poids (daN/m²)	Section A _p (mm²/m)	Volume des vides V (cm ³ /m ²)	Section effic A _{pe} (cm²/m)	Elastique (mm)	Plastique (mm)
0,75	0,74	0,71	9,8	1183	106	1013	10,61	1,65
0,88	0,87	0,84	11,5	1400	106	1099	10,61	1,65
1,00	0,99	0,96	13,1	1600	106	1370	10,61	1,65

Annexe 07 : Caractéristique de la tôle (COFRASTRA40)

LES PLANS D'ARCHITECTEURS ET LE RAPPORT DU SOL