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Introduction générale

Les matériaux hyper-élastiques occupent une place de plus en plus importante dans les
domaines industriels et biomédicaux, en raison de leur capacité a subir de grandes déformations
réversibles. Ces matériaux, tels que les caoutchoucs ou certains tissus biologiques, se
caractérisent par un comportement mécanique fortement non linéaire, nécessitant des modéles

constitutifs spécifiques pour une description réaliste de leur réponse.

Parmi les geométries fréqguemment rencontrées dans les structures souples, le cylindre
creux soumis & une pression interne ou externe constitue une configuration de référence. On le
retrouve dans de nombreuses applications telles que les tuyaux flexibles, les chambres a air ou
encore les implants médicaux. Dans ce contexte, la modélisation du comportement d’un
cylindre hyper-€élastique sous pression représente un enjeu essentiel pour la conception et

I’optimisation des dispositifs souples.

Plusieurs modéles de comportement sont proposés dans la littérature, notamment ceux
de néo-hookéen et de Mooney-Rivlin, chacun reposant sur des hypothéses propres et répondant

a des domaines de validité spécifiques. Cela souléve une guestion fondamentale :

Quel modele permet de mieux représenter la réalité physique du matériau pour une application

donnée ?
La problématique de ce mémoire peut donc étre formulée comme suit :

Comment les différents modéles de comportement hyper-élastique influencent-ils la

prédiction de la distribution des contraintes dans un cylindre soumis a une pression de ?

L’objectif principal de ce travail est de réaliser une étude comparative de deux modeles
hyper-¢lastiques appliqués a un cylindre creux soumis a une pression, afin d’analyser les
différences de comportement prédites par chaque modele. Pour cela, nous nous appuierons a la
fois sur des approches analytiques et des simulations numériques réalisées a 1’aide d’un logiciel

de calcul par éléments finis.



La démarche adoptée dans ce mémoire s’articule autour des étapes suivantes :

o Présentation des lois de comportement hyper-élastique les plus courantes ;
e Définition du cas d’étude (géométrie, conditions aux limites, chargement) ;
o Résolution analytique du probléme posé ;
« Simulation numérique par éléments finis ;

o Analyse comparative des résultats et discussion des écarts observés.
Ce mémoire est structuré comme suit :

e Le premier chapitre présente des généralités sur les élastomeéres,

o Le deuxieme chapitre expose le cadre théorique des matériaux hyper-élastiques ainsi
que les modeles choisis,

o Le troisieme chapitre est consacré a 1’analyse analytique et numérique, ainsi qu’a la
comparaison des résultats obtenus ;

« Enfin, une conclusion générale résume les principaux résultats obtenus.



Chapitre 1 : Généralités sur les elastomeres
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Introduction

Les élastomeres, appartenant a la famille des polymeres, regroupent I'ensemble des
caoutchoucs, qu'ils soient naturels ou synthétiques, caractérisés par leur élasticité dite
"caoutchoutique”. Dans ce chapitre, nous aborderons les propriétés essentielles de ces

matériaux, qui justifient leur large emploi dans de nombreux secteurs industriels.

I.1. Notion fondamentale [1]

I.1.1. Signification du terme polymere
Etymologiquement, le terme "polymere” provient de deux mots grecs : « polus »,
signifiant "nombreux" ou "plusieurs", et « meros », qui désigne des "parties" ou "unités". En

chimie, ce concept est parfois assimilé & celui de macromolécule [1].

1.1.2. La macro molécularité

D’origine naturelle ou synthétique, les polymeres organiques sont des matériaux
constitués de chaines moléculaires principalement formées d’atomes de carbone. Ces
structures, qualifiées de macromolécules, résultent de la répétition covalente de motifs
moléculaires organiques (monomeéres), conduisant a des édifices polymériques de haute masse

molaire [1].

1.2.Présentation des élastomeres [2] [3]

Elastomere : le préfixe « élasto » rappelle les grandes déformations élastiques possibles, tandis
que le suffixe « mere » évoque leur nature de polymeére et donc leur structure macromoléculaire
[2]

Les élastomeres constitués de longues chaines liées entre elles avec des liaisons
covalentes occasionnelles, des points de réticulations et des points d’enchevétrement. Une
chaine est un assemblage de molécule monomére jointe par un squelette covalent d’atome de
Carbonne.

Elle est généralement composée de milliers de monomeres. A une échelle intermédiaire,
le matériau peut étre vu comme une pelote statistique ou les chaines sont dans une position tres

rempliée et ou les points de jonction (réticulation et enchevétrement) forment des nceuds entre

3
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les chaines. La représentation symbolique d’une chaine et du réseau élastomeére est présenté

dans la figure ci-dessous [3]

monsmene — r\
e
w

squelettecovalent
of aboames de carbonge

Figure 1.1 : Représentation schématique d’une chaine et d’un réseau élastomere [3].

Le caoutchouc naturel non transformé est un hydrocarbure constitué de molécules

d'isoprene (C5H8) répétées.

La vulcanisation est un traitement chimique qui crée des liaisons entre les différentes

chaines de polymeéres, formant ainsi une structure en réseau solide et stable.

Lorsqu'ils sont soumis a des forces extérieures, les élastomeres peuvent s'étirer

considérablement tout en supportant d'importantes déformations sans se rompre.

1.3. Comportement mécanique des élastomeres [4], [5]

Les élastoméres présentent un comportement mécanique complexe dont la modélisation
compléte reste un défi scientifique. Dans ce qui suit, nous analyserons cette complexité et

examinerons l'origine de leurs propriétés caractéristiques.

1.3.1. Elasticité non- linéaire

La propriété fondamentale des élastoméres réside dans leur aptitude a supporter des
déformations exceptionnelles. A titre d'illustration, les caoutchoucs naturels présentent une

extensibilité remarquable, pouvant atteindre un allongement de 1000% avant rupture [4].
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La figure 1.2 illustre le comportement mécanique d'un élastomére soumis a un essai de traction.

La courbe obtenue met en évidence :

« Un comportement mécanique non linéaire

e Une déformation a rupture avoisinant 600% [4]

25
T 200 -
=
= 15| a
=
'E
= 10 F .
0
5t -
o k=

1 2 3 4 5 6 7 8
Elongation dans la direction de la traction

Figure 1.2 : Courbe de traction a rupture [4]

Deuxieme caractéristique : Non-linéarité du comportement le comportement mécanique
des élastoméres présente une non-linéarité prononcée. Comme nous le verrons, les modéles
physiques permettent d'expliquer et de simuler cette particularité en décrivant I'évolution de la
conformation des chaines macromoléculaires. Le durcissement observé aux grandes

déformations s'explique principalement par deux phénomenes :

Lorsque les chaines macromoléculaires présentent une stéréorégularité suffisante
(comme c'est le cas des caoutchoucs naturels), elles peuvent s'aligner pour former des zones
cristallines ordonnées appelées cristallites. Ces structures agissent comme des charges
renforgantes.

Les chaines polymeéres atteignent progressivement leur extension conformationelle
maximale [4].

Troisiéme caractéristique : Elasticité caoutchoutique
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La capacité a retrouver quasi-intégralement leur geométrie initiale apres deformation constitue
une proprieté fondamentale des élastoméres, communément appelée "élasticité
caoutchoutique™. Cependant, cette réversibilité parfaite n'est observée que sous deux conditions

principales :

o Pour des élastomeéres non chargés (sans additifs de renforcement)

o Lorsque les déformations appliquées restent modérées

La figure 1.3 illustre cette propriété a travers un essai de traction cyclique.

Sllrl1l
? .
ﬁ -
—_ 5 1
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T
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g 3 |
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]

[
[
LA
[+
I
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"y}
¥V}
LA
-
EN
'-J'I

Elongation dans la direction de traction

Figure 1.3 : Essai de traction de type charge/décharge [4].

A T’échelle de la structure microscopique, un €lastomére vulcanisé est constitué¢ de
longues chaines moléculaires comportant des points de jonctions. Ces macromolécules forment
ainsi un réseau tridimensionnel dont les segments de chaines sont orientés de fagon aléatoire.
Outre ces points de jonctions de type liaisons covalentes, il existe des liaisons a trés faible
énergie appelées liaisons secondaires ou enchevétrements. L’¢élasticité caoutchoutique est le
résultat de cette faible interaction entre les macromolécules [5]. Ainsi, sous I’action d’une
sollicitation mecanique, ces chaines moléculaires peuvent glisser les unes sur les autres et
changer ainsi la configuration microstructurale du réseau moléculaire qui passe d’un
arrangement aléatoire a un arrangement orienté suivant la direction de sollicitation. L’¢élasticité

caoutchoutique est donc de nature entropique [5].
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1.3.2 Viscoélasticité [6]
1. Nature visqueuse et dissipation d'énergie

Les élastomeres présentent un comportement viscoélastique caractérisé par :

o Une dissipation d'énergie interne significative
e Une réponse mécanique dépendante du temps

« Une viscosité intrinséque liée au tenseur des vitesses de déformation

Ce comportement se manifeste par :

e Une mémoire des déformations passées.
« Une dépendance des contraintes actuelles a I'histoire des sollicitations.

e Un retard dans la réponse mécanique.

2. Meéthodes expérimentales de caractérisation

Deux approches complémentaires permettent d'étudier ce comportement :
a) Essais statiques :

o Fluage : étude de I'évolution temporelle de la déformation sous charge constante

« Relaxation : analyse de la diminution des contraintes a déformation imposee
b) Essais dynamiques :

« Vibrations : mesure de la réponse en fréquence sous sollicitation cyclique

e Analyse du module complexe (composantes élastique et visqueuse)

1.3.3 Incompressibilité [3]

La majorité des elastomeres (ou caoutchoucs) sont considerés comme des matériaux
incompressibles, ¢’est-a-dire qu’ils se déforment sans variation de volume. On admet ainsi que,
dans des conditions de sollicitation n’impliquant pas de contraintes hydrostatiques importantes,

la déformation du matériau s’effectue a volume constant. Il s’ agit toutefois d’une approximation
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idéale, car les essais expérimentaux montrent que les élastoméres présentent en réalité une

certaine compressibilité.

L’hypothése d’incompressibilité, dans les conditions mentionnées, présente un grand
intérét sur le plan analytique, notamment pour I’interprétation des résultats expérimentaux. En
revanche, cette hypothése engendre certaines difficultés bien connues lorsqu’elle est utilisée

dans des simulations numériques, notamment avec la méthode des éléments finis.

1.3.4 Effet Mullin [6]

Le comportement mécanique des élastoméres chargés évolue apres ’application d’une
premiére extension. Cette derniére induit une diminution de la rigidité lors des déformations
ultérieures ainsi qu’une déformation résiduelle figure 1.4. Ce phénoméne, connu sous le nom
d’effet Mullins, peut étre partiellement réversible : a température ambiante, la récupération se
fait sur de longues périodes (plusieurs jours), tandis qu’a des températures proches de celle de

la vulcanisation, elle peut s’effectuer en quelques heures.

Cette récupération peut s’accompagner d’une reprise de rigidité liée a la réactivation du

processus de vulcanisation.
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Figure 1.4 : Représentation de I’Effet Mullins.
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1.3.5 Effet Payne [7]

Un autre phénomene caracteristique des élastomeres, mentionné ici a titre indicatif, est
la variation du module complexe en fonction de I’amplitude de déformation et du taux de
charges présentes dans la matrice. Ce comportement est connu sous le nom d’effet Payne.
Principalement étudié dans le cadre des sollicitations vibratoires, ce phénomeéne dépasse le
champ de notre étude et ne sera donc pas approfondi ici.

Conclusion

Cette premiere partie nous a permis d’introduire les notions générales relatives au
comportement mécanique des élastoméres. Toutefois, une compréhension approfondie des
mécanismes régissant ce comportement requiert une connaissance précise de leur

microstructure ainsi que des procédés de mise en ceuvre associés.
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Introduction
Le comportement des matériaux soumis a de fortes sollicitations mécaniques nécessite
une approche tenant compte des grandes déformations. En effet, dans le cas de matériaux
élastomeres ou de structures subissant des déformations importantes, 1’hypothése des petites
déformations n’est plus valable. Ce chapitre présente un rappel théorique sur les grandes
déformations, en abordant notamment les notions de gradient de déformation, de tenseur des
déformations finies et de formulation hyper élastique. Ces concepts constituent la base des

modeles utilisés dans la suite du mémoire pour la modélisation des matériaux hyper élastiques.

I1.1 Rappels de la mécanique des milieux continus en grandes deformations

11.1.1 Cinématique [8]

Dans le cadre des transformations finies, il est important de distinguer la configuration
initiale et la configuration actuelle (déformée). Le mouvement d'une particule d'un milieu
continu peut étre decrit soit dans la configuration lagrangienne, soit dans la configuration
eulérienne. Les coordonnées lagrangiennes (ou matérielles) sont celles qui définissent la
position du point matériel P( X; ; X, et X3) du milieu continu (Q2), le repérage se faisant dans
la configuration initiale (ou non déformée). Les coordonnées eulériennes (ou spatiales) sont
celles qui définissent la position du point matériel p(x; ; x, et x3)du milieu continu a l'instant
courant, le repérage se faisant dans la configuration actuelle (ou déformée). Notons que dans le

cas d'une transformation infinitésimale, les deux configurations sont confondues.

11.1.2 Description du mouvement [9]
Considérons un solide déformable S évoluant dans un repére R. Les particules p qui

constituent ce solide occupent, a chaque instant, des positions spécifiques dans I’espace, comme
le montre la figure 11.1. Cela correspond a la configuration du systéme a l'instant t. Nous
adopterons le méme repére pour décrire a la fois la configuration initiale et celle déformée du

systeme.

On considere C, la configuration initiale (ou le solide S occupe le volume ,), et (Ct)

la configuration actuelle a I'instant t (ou deformee), ou le solide S occupe le volume . le vecteur

position de la particule P € S a l'instant initial est noté X . On note % le vecteur position de cette

particule a l'instant t.

Le mouvement du milieu continu est défini par la donnée de la fonction vectorielle :

10
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Co — Ct
X {H 0 (I1.1)
X->X=x(X;t)

Co
f Ce.

X2 X1 X
_}
, €2
-

s 0 '

_>

X 3X1 e X1 X1

Figure 1.1 : Configurations initiale et déformée.

L'équation I1.1 définit la transformation qui permet de passer de la configuration de référence a
la configuration actuelle (Ct). Afin de décrire la déformation pres de la particule, on introduit

I'application linéaire associée au mouvement, ou le tenseur tangent (figure 5).

Prenons un vecteur X dans la configuration initiale, son image dans la configuration actuelle

(Ct) peut étre obtenue a I'aide de la relation (11.2) :

dx = FdX (11.2)

11
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11.1.3 Description des déformations [9]

Pour analyser les changements de forme entre les configurations c, et Cy, il est essentiel
d'examiner les variations de longueur et d'angle, autrement dit, les variations du produit
scalaire. On peut alors calculer le produit scalaire entre deux vecteurs matériels dx et H; puis
étudier son évolution en fonction des vecteurs dans la configuration initiale dX et dY Selon la
configuration de référence choisie, différentes méthodes peuvent étre appliquées pour quantifier

les déformations.

Description lagrangienne

Dans le cadre de la description lagrangienne, on introduit le tenseur de Cauchy-Green
droit C = FFT, qui est un tenseur symétrique et défini positif, permettant de décrire les

dilatations.

Lorsque le milieu ne subit aucune transformation C =1, on a le tenseur de déformation de

Green-Lagrange, qui est entierement lagrangien et symétrique, est en relation avec C par :

E:%(C—l)

Description eulérienne

Dans le cadre de la configuration actuelle, le tenseur de Cauchy-Green gauche, défini
par B = FFT, est introduit. Ce tenseur est symétrique et posséde la propriété d'étre défini positif.
Par ailleurs, le tenseur de déformation correspondant, qui traduit la modification du produit

scalaire, est le tenseur d'Euler-Almansi A.

A=-(1-B)

11.1.4 Description des contraintes [10] :

Dans le cadre de la théorie des grandes déformations, on introduit les tenseurs de
contraintes classiques, notamment le tenseur des contraintes de Cauchy o (de description

eulérienne), défini par la relation :

—+l
Il

a

=1}

(11.3)

12
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Ou t représente le vecteur contrainte, correspondant & la force mesurée par unité de surface

instantanée, appliquée sur un élément de surface df de la configuration initiale, dont la normale

extérieure est n.

La force élémentaire df agissant dans la configuration actuelle peut étre reliée a I'élément de

surface ds de la configuration initiale par la relation :

—

f=Tds (11.4)

Il s'agit ici d'une description mixte. Le vecteur T désigne le vecteur contraint de Piola-
Kirchhoff | (également appelé vecteur de Boussinesq). Le tenseur de contrainte associé est le
premier tenseur de Piola-Kirchhoff 7, qui est un tenseur hybride, ni purement lagrangien ni

purement eulérien, et qui s'exprime par :

—

df=Tds=n-Nds (11.5)

OU N est la normale dans la configuration initiale. Notons que & n'est pas symetrique.

Pour obtenir un tenseur entierement défini en variables lagrangiennes, on transporte la force
df agissant sur le volume actuel vers la configuration initiale non déformée

df, = F1df (11.6)

Efo est une force fictive agissant sur la surface initiale. Le tenseur de Piola Kirchhoff 2 est
Alors défini par :
df,=SN. ds (1L.7)

S est un étre mathématique sans signification physique, mais il présente la particularité d'étre
symétrique.

Les trois tenseurs des contraintes sont reliés par la relation suivante :

Jo = m.FT = FSFT (11.8)
n=FS (111.9)
] = detF (11.10)

J : le Jacobien de la transformation présentée.

13
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Tableau 1 : Récapitulatif des différents tenseurs de contraintes et de déformations dans les
deux configurations initiales et actuelle.

Configuration (C,) initiale Configuration actuelle (Ct)

(libre de contraintes)

C : Tenseur des dilatations B : Tenseur des déformations

de Green-Cauchy droit, de Green-Cauchy gauche,
Tenseurs des
symétrique. symétrique.
déformations Y a y a
E: Tenseur des A : Tenseur des
Déformations de Green- Déformations d’Euler-
Lagrange, symétrique. Almansi, symétrique.

S : Tenseur des contraintes o : Tenseur des contraintes

Tenseurs des de Piola-Kirchhoff 2, de Cauchy, symétrique.

contraintes
symétrique.

11.2 Modélisation du comportement [11]

Les élastoméres sont des matériaux caractérisés par de multiples non-linéarités, ce qui
rend la modélisation de leur comportement complexe et toujours d'actualité. De nombreuses

théories ont été développées pour décrire ce comportement de maniere précise.

Les modeles hyper élastiques, par exemple, sont particulierement adaptés pour simuler
des sollicitations quasi statiques ainsi que des déformations a trés haute vitesse, permettant ainsi
de reproduire fidelement le comportement des elastomeres sous grandes déformations. Par
ailleurs, la dépendance a la vitesse de déformation dans le domaine des petites déformations est

bien maitrisée grace a l'utilisation de modeles viscoélastiques linéaires.

Cependant, dans le contexte de notre étude, I'objectif est de modéliser a la fois le
comportement en grandes déformations et la dépendance a la vitesse de déformation, ce qui

représente un défi bien plus complexe. Les modeles employés doivent étre capables de prendre

14
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en compte la dissipation d'énergie. Pour répondre a cette problématique, nous aurons recours a
des modeles viscoélastiques adaptés aux grandes déformations. La Figure 11.2 reprend les
différents cas de chargement possibles et les modéles associés

A

Viscoelastique

an grandes déformations

Elastique lineaire

Figure 11.2 : Domaine d’application de chaque domaine.

11.2.1 Loi de comportement hyper-élastique [12]

Dans I’approche phénoménologique, le matériau est traité comme un milieu continu.
Son comportement mécanique est gouverné par une relation non linéaire qui relie les contraintes
aux déformations. Ces contraintes sont calculées en déerivant un potentiel de déformation, noté
W.

La relation entre la contrainte et la densité d’énergie de déformation est définie par 1I’expression

suivante :

- _ Wo 5 0W g
o=-pl+25 B-25"B (11.11)

2

Ou p représente la pression hydrostatique. Les densités d’énergie de déformation W sont

exprimées en fonction des élongations principales A: ; A2 et As (qui correspondent aux valeurs

15
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propres du tenseur C), ou plus couramment a partir des invariants I, ; I, et I du tenseur des

dilatations de Cauchy-Green gauche B (ou C). Ces invariants sont définis de la maniere suivante

Il = tr (B)
I, = %[Trace B? — (Trace B)?] (1.12)

On postule I'existence d'un potentiel éelastique W, qui représente I'énergie volumique de
déformation ramenée au volume initial. Pour un matériau isotrope, cette énergie de déformation
W dépend uniquement des trois invariants I, (C), I,(C) et I3(C) du tenseur de Cauchy-Green
droit C, ce qui s'exprime par :

W =W(y; I; 13)
De nombreux modeéles hyper élastiques ont été développés et documentés dans la littérature.

Dans ce contexte, nous nous focaliserons sur les modeles les plus couramment intégrés dans les

logiciels de calcul par éléments finis.

11.3 Les modeéles hyper élastiques
11.3.1 Modéle néo-Hookéen (1943) [8]
C’est le modele hyper élastique le plus simple a un seul terme, mais sa justification

repose davantage sur une approche moléculaire que phénoménologique. En s’appuyant sur les

principes de la mécanique statique, il peut étre exprimé sous la forme suivante :

W = ~nkT(A? + 23 + A3 — 3) (11.14)

11.3.2 Modéle de Mooney Rivlin [7]
Ce modeéle, développé par Mooney, repose sur l'observation que le comportement du
caoutchouc présente une linéarité en cisaillement simple. Mooney exprime alors I'énergie de

déformation W sous la forme suivante :
W =C;(I; —3) + C,(I, — 3) (11.13)

Ce modele reste largement privilégié en raison de sa simplicité et de sa capacité a représenter
de maniere adéquate le comportement des élastomeéres pour des niveaux de déformation

atteignant jusqu’a 100 %.

16
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11.3.3 Modéle d’Ogden (1972) [12]

Ce modele est I'un des plus couramment utilisés pour décrire les tres grandes
déformations. Son approche consiste a remplacer les exposants entiers du développement de
Rivlin par une série de puissances reelles des élongations principales. Ces exposants réels
deviennent alors des parametres matériels a déterminer. Contrairement aux formulations
précédentes basées sur les invariants, le modeéle d'Ogden s'exprime directement en fonction des

élongations principales
W= zgzlz—‘;(xg‘n + 25" +A5") (11.15)

Ou les constantes (py; ot )i=1... n SONt les parametres matériaux.A;; A, et A; Sont les valeurs

propres du tenseur de dilatation de Green-Cauchy.

11.3.4 Modéle de Yeoh [13]

La fonction d'énergie de déformation W du modéle de Yeoh s'exprime comme suit :

WYeoh =€, o (Ip — 3) + Cao(ly — 3)? + C30(I; — 3)3 (11.16)

ou Cy, Cyp et C3q sont les paramétres de matériaux du modeéle.

Conclusion

Ce chapitre a permis de poser les fondations théoriques nécessaires a la compréhension
des comportements hyper élastiques des élastomeéres. Les notions de grandes déformations,
souvent complexes, sont essentielles pour modéliser de maniére réaliste les matériaux soumis

a de fortes sollicitations.
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Chapitre 3 : Comparaison de deux lois de comportement hyper-

élastique pour la modélisation de cylindres sous pression
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modélisation de cylindres sous pression

Introduction

Dans ce dernier chapitre, les concepts théoriques développés précédemment sont mis en
ceuvre dans le cadre d’une étude comparative. Deux approches sont adoptées : une approche
analytique qui permet d’estimer les contraintes et les déformations dans un cylindre soumis a
une pression, et une approche numérique a 1’aide d’un logiciel de simulation, permettant de
simuler le comportement d’un tube de différentes épaisseurs selon deux modeles hyper-
¢lastiques. L’objectif est d’évaluer I’'impact du choix du modéle de comportement sur

I’optimisation de 1’épaisseur de la structure.

I11.1 Etude analytique

Ce chapitre traite de 1’étude des contraintes dans un tube long soumis a des sollicitations
mécaniques, notamment a des pressions interne et externe. Cette analyse est fondamentale pour
comprendre le comportement non linéaire d’un matériau hyper-élastique soumis a un

chargement.

En raison de I’axisymétrie du probleme, seules les composantes radiale, axiale et
circonférentielle des contraintes sont considérées. Ces composantes sont déterminées a partir
des équations d’équilibre et des relations constitutives associées a différents modéles
hyperélastiques, tels que les modeles néo-Hookéen et Mooney-Rivlin, afin de décrire la réponse

mécanique du matériau.

Le matériau est supposé isotrope et incompressible. Dans la configuration de référence,
le tube a un rayon intérieur A et un rayon extérieur B; ces parameétres deviennent respectivement
a et b dans la configuration déformée. Pour décrire le mouvement, deux systéemes de
coordonnées cylindriques sont adoptés, (R, ®, Z) dans la configuration de référence, et (r, 0, z)

dans la configuration déformée.

En raison de I'axisymétrie du probléme, les déformations du cylindre peuvent s'écrire comme :
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Avant déformations :

0<0<2m (In.1)

{ASRSB
0<Z<L

Aprés déformations :

0<6<2n (111.2)

{aSer
0<z<l

Qui est un membre de la famille des solutions universelles proposées par Ericksen [14].

De I'équation précédente le gradient de la déformation peut prend la forme suivante :

dr
A 0 0 |E(: O]|
F=[g /109 f]=|0 ~ 0 (111.3)
= lo o EJ

Q
N

- d ;- . . .
ou é décrit la déformation plane du cylindre creux.

Les lois de comportement hyper-élastique découlent d'un potentiel élastique appelé
densité d'énergie de déformation, souvent notée W, définie par unité de volume non déformé.
Lorsque le matériau possede des propriétés isotropes, la densité d'énergie de déformation s'écrit

en termes des invariants du tenseur de Cauchy-Green B, notes I;(i = 1, 2, 3), soit :

I; =tr(B) =A% + A3 + A3
I, = %[(tr(B))z - tr(BZ)] = A2A2 + A2A2 + A2\2 (111.4)
I, = det(B) = A2A2)2

ou 44,1, et A3 sont les rapports d’étirement et ils sont définis comme les racines carrees des

valeurs propres de B.

Apreés la substitution, les principaux invariants du tenseur de déformations de Cauchy Green

gauche sont :
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[, =22 + A% + A2
I, = A2 + 252 + 152 (111.5)

Dans le cas d’un milieu incompressible, I’hypothése d’incompressibilité s’écrit comme suit :
J=detF=1 Ouencorel; = 1.

Le troisieme invariant principal I; étant & présent connu et la densité d'énergie de
déformation ne dépend plus que des deux premiers invariants : W=W (I,,1,).
Lorsque A, =1 =1,o0naura:

L =A2+25+1
L =A72+22%+1 (111.6)
I3 = (7\r7\e)2

Le tenseur de déformations Cauchy-Green gauche est définie par :

20 0
B=FF'=(0 22 0 (111.7a)
0 0 1
Donc :
A2 0 0
B '=( 0 252 0 (111.7b)
0 0 1
On pose : Q= %
De I’équation 70n a :
dr
)\r = d_ = Q
s » (11.8)
Ae = E = Q
Et sachant que le milieu est incompressible, alors : A =2t
Donc on obtient :
Q2 0 0 Q2 0 0
B =<0 Q2 o] ; B! =< 0 Q* 0 (111.9)
0 0 1 0 0 1

—-1_
Ona: 0= 4 (%) -0

dr_ar r
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. \ . A b
On définit les paramétres suivants : n = 5 A = %, Ap = 5

ounet A, Ay représentent respectivement un parameétre de structure, le rapport d’étirement

au rayon intérieur et au rayon extérieur :

Ona:detF =1 alors:rdr =RdR
Ce qui donne : r? = R? + C, ou C = cte
PourR=A r=a=a?=A%+C
EtpourR=B, r=b=b?=B2+C

Ce qui implique que :

A =1+ (A2 — 1)p? (111.10)

Pour les matériaux incompressibles, la loi de comportement s’exprime comme suit :

o=-pl+2¥ g2 g-1 (111.11a)
a1, al,

L’équation d’équilibre s’écrit :

doyy Orr—090 __
O 4 S000 (I11.11b)
On g fo _ doucdo
dar dQ dr
. d -
ce qui donne : =& = — 2206
dQ Q1@

Apres intégration, on obtient 1’expression de la contrainte radiale :

- _ ’1;1 Orr—0060 -1
Opr = fQ ( 0-1-¢ ) dQ + O_rr(lb ) (|||1lC)
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Modéle de Mooney Rivlin

Le modéle de Mooney Rivlin propose la forme phénoménologique suivante pour la densité
d'énergie de déformation [15] :

Ce modéle admet donc deux parameétres mateériaux, qui doivent vérifier C;,>0 et Cyp; = 0.

ow ow
Ona: _=C10 ; F=C01
2

Les expressions des contraintes sont données par :
Orr = =P +2C10.Q% — 2Co;. Q72
0go = —P + 2C10.Q7% — 2C4.Q? (1.13)
02z = =P +2C;0 — 2Cqq

En utilisant les équations (I11.11c) et (111.13), on obtient :

2 Apt
orr = —2(Cy + Coy) [% + ln(Q)] + oA 111.14)
Q

En appliquant une pression uniforme constante sur les surfaces intérieure et extérieure du cylindre, les

conditions aux limites s’expriment comme suit :

O_rr()\l:_)l) = —Pexts O_rro\;l) = —Pint (III15a)
Ce qui donne :

Q2 At
e = =2(Cao + o) [§ + 1@~ Pus (I1.15b)

Et a partir de ’équation (111.131), on trouve que :
p = 2(:10. QZ - 2C01.Q_2 - O—I'I‘ (“|16)

Ce qui donne pour les contraintes circonférentielles et axiales :
0go = Orr + 2C10- (Q72 — Q%) — 2C41. (Q* — Q%) (111.17a)

Gy = Opr + 2C10(1 = Q%) — 2Coy. (1 — Q72) (111.17b)
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Modéle néo-Hookéen

Le modele hyper-élastique isotrope et incompressible le plus simple est le modéle néo-Hookéen
[16], il est donné par :

W=_C;(I; —3) (111.18)
. ow . ow
Ona: i S 0

Notons que le domaine de validité du modéle de de Mooney Rivlin est plus large que celui du
modele Néo-Hookéen.
Les expressions des contraintes sont données par :
O-I'I‘ == _p + 2C1. QZ
Ogp = —p + 2C;. Q2 (111.19)

0,, = —p+2C;

En utilisant les équations (I11.11c) et (111.19), on obtient :

Q2 Apt
oy = —2C, [5 + ln(Q)] Py (111.20)
Q

Et a partir de ’équation (111.191), on trouve que :
p=2C.Q% — 0y (111.21)
Ce qui donne pour les contraintes circonférentielles et axiales :

0go = Orr +2C1. (Q7* — Q?) (111.22a)

077 = Opr + ch(l - QZ) (|||.22b)

Dans ce qui suit, on s'intéresse a I'évolution de la contrainte radiale dans un cylindre
soumis a une pression interne, en supposant un comportement hyper-élastique régi par le
modele de Mooney-Rivlin. Le taux d’étirement au rayon intérieur est fixé a A, = 1.3 > 1,
valeur choisie pour simuler une expansion sous ’effet de la pression appliquée. Les courbes

sont tracées en fonction de la variable Q~?, pour différentes valeurs du rapport géométrique
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(n= % = 0.5,0.65,0.75,0.9), afin d’évaluer I’influence de I’épaisseur de la paroi. Deux cas

sont examinés : sans pression extérieure Pe = 0 MPa et avec une pression extérieure

Pe = 0.1 MPa. Les figures ci-dessous illustrent ces résultats.

0
-0.02 - J
-0.04 - B
_ P.=0 MPa
©
o
= -0.06 =
bt
-0.08 - B
-0.1 7720.5 -
7=0.65
n=0.75
7n=0.9
-0.12 | I | 1
1.05 1.1 1.15 1.2 1.25 1.3

Q-1

Figure 111.1.a : Distribution de la contrainte radiale en fonction de Q~* pour différentes
valeurs de 1 (ha=1.3, Pe=0 MPa ,C10=0.162MPa, C:=0.0059 MPa )
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-0.1
-0.12 | 5|
014 + -
— Pe=0.1 MPa
©
o
= -0.16 [ T
bt
-0.18 - i
0.2 7=0.5 j
1=0.65
1=0.75
022 =09 I | | I
1.05 1.1 1.15 1.2 1.25 1.3

Q-1

Figure 111.1.b : Distribution de la contrainte radiale en fonction de Q~* pour différentes
valeurs de n (Aa=1.3, Pe=0.1 MPa ,C10=0.162MPa, C0:=0.0059 MPa )

L’analyse des figures obtenues permet de dégager plusieurs tendances caractéristiques

concernant 1’évolution de la contrainte radiale en fonction de Q71 :

- Pour toutes les courbes, la contrainte radiale diminue quand Q! augmente,

- On constate que A, = 1.3 est superieure a Ay,

- Plus n est faible, plus la contrainte radiale est importante en valeur absolue pour
un méme Q 1, cela correspond a des parois plus épaisses,

- A l’inverse, lorsque 1 est proche de 1, la contrainte radiale est moins prononcée,

car le cylindre est plus mince.

On conclut qu’une paroi plus épaisse supporte une contrainte radiale plus importante.

L’ajout d’une pression extérieure rend la contrainte radiale plus compressive sur toute
I’épaisseur du cylindre, elle ajoute donc un effort compressif supplémentaire au bord extérieur,

ce qui se transmet vers 1’intérieur.
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111.2 : Etude Numérique

111.2.1 : Construction du modéle numérique

111.2.1.1 Choix du modéle de comportement
Nous avons choisi deux modéles :
Le modéle de Mooney-Rivlin a deux parametres implémentés dans le code de calcul éléments

finies dont le potentiel hyper-élastique est définit par :

W =Wy, 1) = Co(; — 3) + Cos (I, — 3) + = ( — 2)? (111.23)

West I’énergie de déformation par unité de volume, C;, et Cy; sont les parametres du matériau.
Et le modéle Néo-Hookén incompressible dont le potentiel hyper-¢lastique s’écrit :

W =Cio(ly —3) +7 (- 2)2 (111.24)

111.2.1.2 Présentation de la géométrie

On suppose que le cylindre est infiniment long, c'est-a-dire que sa longueur est grande

devant son diametre. Ainsi les effets de bords sont négligeables. La schématisation du tube est

représentée sur la Figure I11.2.

Figure 111.2 : Modeéle étudié.
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111.2.1.3 Le maillage

Dans notre cas, nous avons opté pour une modélisation 2D avec un maillage a éléments
quadratique, assurant une meilleure précision dans la représentation des grandes déformations
et des contraintes. Pour cela nous avons utilisés un élément finis quadratique a intégration
réduits et hybride CPE8RH. Le maillage global de notre géométrie est présentée dans la figure
111.3 ci-dessous ;

Figure 111.3: Modéle maille.

Le tableau ci-dessous illustre le maillage adopté pour les différentes épaisseurs de cylindre.

Tableau 2 : Données utilisées pour la simulation numérique.

Géométrie de cylindre Eléments de maillage
Rayon A en (mm) Rayon B en (mm) Nombre d’¢lément Nombre de nceuds
220 120 2910 8985
220 140 3300 10181
220 160 3930 12113
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111.2.2.4 Chargements et conditions aux limites

En raison de la symétrie de la géométrie et des conditions aux limites appliquées on modélise
seulement un quart de cylindre. Deux cas de chargement ont été considérés : 1’un avec une
pression externe et I’autre avec une pression interne. Pour les conditions aux limites on a bloqué

les déplacements et les translations sur les extrémités comme illustre la figure ci-dessous,

(@) (b)

Figure I111.4 : Chargements et conditions aux limites. (a) Pression externe, (b) pression
interne.

111.2.2.5 : Résultats de la simulation numérique

Pour effectuer cette simulation, nous avons utilisé les parametres matériels des deux

modéles incompressibles néo hookéen et Mooney Rivlin identifié par Gillas Marckmann

Tableau 3 : Parameétres des deux modeles pour les données expérimentales de Treloar.

Type de Model Parametres matériels [MPa]
Neo-hookean C,=0.2
Monney-Rivlin C,=0.162 and C, =5.910"

Les parameétres des matériaux pour les modéles Néo-Hookéen et Mooney Rivlin
utilisées dans cette simulation ont été fournis par Gillas Marckman. Ces parameétres ont été

obtenus par ajustement des données expérimentales de Treloar [17].
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Nous avons déterminé numériquement la distribution des contraintes sur une surface du

cylindre.

Les résultats obtenus pour une épaisseur de 80 mm et une pression interne de 0.1 MPa sont

donnés ci-dessous :

N
ODB! Job-1.0db  Abagus/Standard 6.14-5 Wed Jun 18 19:43:06

Zi ¥ tep-1 T

ODB: Job-1.0db  Abaqus/Standard 6.14-5 ‘Wed Jun 18 1 i AT -0000 2025
Z - X Step: Step-1 T

Figure 111.6 : Distribution des contraintes circonférentielles. (Pi=0.1MPa, e=80mm).
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Figure 111.8 : Distribution des contraintes Von Mises (Pi=0.1MPa, e=80mm).
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Les résultats obtenus pour une épaisseur de 80 mm et une pression externe de 0.1 MPa

sont donnés ci-dessous :

Y 2 -
ODB: Job-1,0db  Abagus/Standard 6.14-5  Wed Ju 1982 GMT-00: 00° 2025

Z X Step: Step-1 -

Figure 111.9 : Distribution des contraintes radiale (Pe=0.1MPa, e=80mm).

0: 00 2025

Figure 111.10 : Distribution des contraintes circonférentielles. (Pe=0.1MPa, e=80mm).

32



Chapitre 3 : Comparaison de deux lois de comportement hyper-élastique pour la R
modélisation de cylindres sous pression

ODB: Job-1.0db  Abagus/Standard 6.14-5 ‘Wed Jun-13 GMT-00: 002025
Ly :

- ¥ Step: Ste
> : ; |
"

ODB: Job-l.0db  Abagus/Standard 6.14-5  ‘Wed Jui 1SRRI GMT-00: 0012028
; T :
| Step-1

Figure 111.12 : : Distribution des contraintes Von Mises (Pi=0.1MPa, e=80mm).

111.2.2.5.1 Pour une pression interne égale a 0.1 MPa

Les figures (111.13.a) a (111.13.d) illustrent les distributions des contraintes radiales,
circonférentielles, axiales et de Von Mises a travers 1’épaisseur d’un cylindre soumis a une
pression interne. Elles permettent une comparaison entre les modeles de Mooney-Rivlin et néo-

hookéen, pour différentes valeurs de I’épaisseur.
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Figure 111.13.a: Distribution des contraintes radiales pour les deux modéles pour une
pression interne Pi=0.1MPa (MR —, NH —.).
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Figure 111.13.b : Distribution des contraintes circonférentielles pour les deux modeles pour
une pression interne Pi=0.1MPa(MR —, NH —.).
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Figure 111.13.c : Distribution des contraintes axiales pour les deux modeéles pour une pression
interne Pi=0.1MPa (MR —, NH —.).
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Figure 111.13.d : Distribution des contraintes de Von Mises pour les deux modeles pour une
pression interne Pi=0.1MPa, (MR —, NH —.).

Les figures (111.13.a) a (111.13.d) présentent la distribution des différentes contraintes
(radiales, circonférentielles, axiales et de Von Mises) a travers 1’épaisseur d’un cylindre soumis
a une pression interne P, = 0.1MPa, pour deux modeéles hyper-élastiques : Mooney-Rivlin et

néo-hookéen.

La figure (111.13.a) montre que la contrainte radiale est négative sur toute 1’épaisseur,
traduisant un état de compression provoqué par la pression interne. Elle atteint sa valeur
maximale (en compression) au rayon interne du cylindre, puis décroit progressivement jusqu’a
s’annuler a la surface externe, conformément aux conditions aux limites. Les deux modéles

donnent des distributions similaires.

La figure (111.13.b) illustre la contrainte circonferentielle, qui est positive. Le modele de
Mooney-Rivlin prédit des valeurs légerement plus élevées que le modéle de néo-hookéén, en

particulier pour les géométries plus minces.
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La figure (I11.13.c) présente la contrainte axiale, qui reste positive sur toute 1’épaisseur.
Bien que sa valeur soit inférieure & celle de la contrainte circonférentielle, elle demeure
significative. Le modéle de Mooney-Rivlin tend a prédire des contraintes légérement plus

élevées que celles du modele neo-hookéen, notamment dans le cas de parois plus minces.

Enfin, la figure (111.13.d) montre la contrainte équivalente de VVon Mises, qui permet
d’évaluer I’état global de sollicitation du matériau. Cette contrainte atteint généralement son
maximum a I’intérieur du cylindre, 1a ou la combinaison des efforts est la plus critique. Le
modele Mooney-Rivlin tend a produire des contraintes de Von Mises légerement plus élevées

que le modele néo-hookéen.

En résumé, bien que les deux modeles décrivent qualitativement les mémes tendances,
le modéle de Mooney-Rivlin prédit globalement des contraintes légerement plus importantes,
surtout en traction. Cette différence devient plus marquée lorsque ’épaisseur de la paroi
diminue, ce qui souligne I’'importance du choix du modéle constitutif dans les analyses de

structures soumises a des sollicitations internes.

111.2.2.5.2 Pour une pression externe égale a 0.1 MPa

Les figures (Ill.14.a) a (l111.14.d) présentent la répartition des contraintes radiales,
circonférentielles, axiales et de Von Mises a travers 1’épaisseur d’un cylindre soumis a une
pression externe. Elles permettent de comparer les prédictions des modeles hyper-élastiques de

Mooney-Rivlin et néo-hookéen pour différentes valeurs de I’épaisseur.
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Figure 111.14.a: Distribution des contraintes radiales pour les deux modéles pour une
pression externe Pe=0.1MPa, (MR —, NH —.).
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Figure 111.14.b : Distribution des contraintes circonférentielles pour les deux modeles pour
une pression externe Pe =0.1MPa, (MR —, NH —.).
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Figure 111.14.c : Distribution des contraintes axiales pour les deux modeles pour une pression
externe Pe =0.1MPa, (MR —, NH —.).
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Figure 111.14.d : Distribution des contraintes de VVon Mises pour les deux modéles pour une
pression externe Pe =0.1MPa, (MR —, NH —.).

Il ressort de 1’analyse des résultats (figures 111.14) que le modéle néo-hookéen prédit
généralement des contraintes légérement plus élevées que le modele de Mooney-Rivlin.
Cependant, cette différence entre les deux modeles tend a s’atténuer lorsque I’épaisseur du
cylindre augmente. En effet, pour les parois plus épaisses, les contraintes calculées selon les

deux lois de comportement deviennent presque superposables, ce qui traduit une réponse
mécanique globalement similaire.

Conclusion

On observe que sous pression interne, la différence entre les modeles de Mooney-Rivlin
et de néo-hookeéen est significative, en particulier pour les parois minces, en raison des fortes
déformations générées. En revanche, sous pression externe seule, les différences entre les deux
modeles sont beaucoup moins marquées.
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Conclusion générale

Ce mémoire a permis de comparer deux modeles hyper-élastiques, Mooney-Rivlin et
néo-hookéen, appliqués a 1’analyse mécanique de cylindres soumis a des pressions. L’étude a
été menée a la fois par des approches analytiques et numériques, en mettant en évidence

I’influence du type de sollicitation et de 1’épaisseur sur la distribution des contraintes.

Dans le cas d’une pression interne, les contraintes sont plus importantes, surtout pour
les parois minces, ce qui amplifie les différences entre les deux modeles. Le modéle de Mooney-
Rivlin tend a prédire des contraintes plus élevées dans ce régime, du fait de sa formulation plus

compléte.

En revanche, sous pression externe seule, les contraintes sont plus modérées et la
différence entre les deux modéles devient beaucoup moins marquée. Un écart subsiste

néanmoins lorsque 1’épaisseur du cylindre est faible.

En conclusion, le choix du modéle hyper-élastique est d’autant plus critique que la
structure est soumise a des sollicitations internes importantes et présente une paroi mince, ce

qui souligne I’intérét d’une modélisation adaptée aux conditions réelles de chargement.
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Résumé

Ce mémoire de fin d’étude porte sur 1’étude comparative des modeéles hyper-élastiques
dans le but d’optimiser 1’épaisseur des cylindres soumis a des pressions internes. Le travail a
commence par une présentation des généralités sur les élastomeres, mettant en évidence leurs
propriétés non linéaires et leur comportement caoutchoutique. Ensuite, un rappel des principes
de la mécanique des milieux continus en grandes déformations a été présenté, afin d’établir un
cadre théorique solide pour la modélisation. Enfin, deux lois de comportement hyper-élastique
ont été comparées pour simuler le comportement mécanique du cylindre sous pression, dans le

but de déterminer la loi la plus adaptée a une optimisation de 1’épaisseur.

Mots-clés : Elastoméres, Hyper-élasticité, Optimisation, Epaisseur, cylindre, Pression,

Modélisation.
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Abstract in English

This Master’s thesis focuses on the comparative study of hyperelastic models to
optimize the thickness of cylinders subjected to internal pressure. The study begins with a
general overview of elastomers, highlighting their nonlinear characteristics and rubber-like
elasticity. It then provides a theoretical reminder of continuum mechanics under large
deformations, essential for accurate modeling. Finally, two hyperelastic constitutive laws were
compared to simulate the mechanical behavior of the pressurized cylinder, aiming to identify

the most suitable model for thickness optimization.

Keywords: Elastomers, Hyperelasticity, Optimization, Thickness, Cylinder, Pressure,
Modeling.

45



