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Introduction générale  

Les matériaux hyper-élastiques occupent une place de plus en plus importante dans les 

domaines industriels et biomédicaux, en raison de leur capacité à subir de grandes déformations 

réversibles. Ces matériaux, tels que les caoutchoucs ou certains tissus biologiques, se 

caractérisent par un comportement mécanique fortement non linéaire, nécessitant des modèles 

constitutifs spécifiques pour une description réaliste de leur réponse. 

Parmi les géométries fréquemment rencontrées dans les structures souples, le cylindre 

creux soumis à une pression interne ou externe constitue une configuration de référence. On le 

retrouve dans de nombreuses applications telles que les tuyaux flexibles, les chambres à air ou 

encore les implants médicaux. Dans ce contexte, la modélisation du comportement d’un 

cylindre hyper-élastique sous pression représente un enjeu essentiel pour la conception et 

l’optimisation des dispositifs souples. 

Plusieurs modèles de comportement sont proposés dans la littérature, notamment ceux 

de néo-hookéen et de Mooney-Rivlin, chacun reposant sur des hypothèses propres et répondant 

à des domaines de validité spécifiques. Cela soulève une question fondamentale : 

Quel modèle permet de mieux représenter la réalité physique du matériau pour une application 

donnée ? 

La problématique de ce mémoire peut donc être formulée comme suit : 

Comment les différents modèles de comportement hyper-élastique influencent-ils la 

prédiction de la distribution des contraintes dans un cylindre soumis à une pression de ? 

L’objectif principal de ce travail est de réaliser une étude comparative de deux modèles 

hyper-élastiques appliqués à un cylindre creux soumis à une pression, afin d’analyser les 

différences de comportement prédites par chaque modèle. Pour cela, nous nous appuierons à la 

fois sur des approches analytiques et des simulations numériques réalisées à l’aide d’un logiciel 

de calcul par éléments finis. 
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La démarche adoptée dans ce mémoire s’articule autour des étapes suivantes : 

 Présentation des lois de comportement hyper-élastique les plus courantes ; 

 Définition du cas d’étude (géométrie, conditions aux limites, chargement) ; 

 Résolution analytique du problème posé ; 

 Simulation numérique par éléments finis ; 

 Analyse comparative des résultats et discussion des écarts observés. 

Ce mémoire est structuré comme suit : 

 Le premier chapitre présente des généralités sur les élastomères, 

 Le deuxième chapitre expose le cadre théorique des matériaux hyper-élastiques ainsi 

que les modèles choisis, 

 Le troisième chapitre est consacré à l’analyse analytique et numérique, ainsi qu’à la 

comparaison des résultats obtenus ; 

 Enfin, une conclusion générale résume les principaux résultats obtenus. 

 

 

 

 

 

 

 

 

 

 

 

                    

 

 

                 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapitre 1 : Généralités sur les élastomères 
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1                                                  Chapitre 1 : Généralités sur les élastomères 
 

Introduction  
 

Les élastomères, appartenant à la famille des polymères, regroupent l'ensemble des 

caoutchoucs, qu'ils soient naturels ou synthétiques, caractérisés par leur élasticité dite 

"caoutchoutique". Dans ce chapitre, nous aborderons les propriétés essentielles de ces 

matériaux, qui justifient leur large emploi dans de nombreux secteurs industriels. 

 

I.1. Notion fondamentale [1] 

I.1.1. Signification du terme polymère 

Etymologiquement, le terme "polymère" provient de deux mots grecs : « polus », 

signifiant "nombreux" ou "plusieurs", et « meros », qui désigne des "parties" ou "unités". En 

chimie, ce concept est parfois assimilé à celui de macromolécule [1]. 

 

I.1.2. La macro molécularité 

D’origine naturelle ou synthétique, les polymères organiques sont des matériaux 

constitués de chaînes moléculaires principalement formées d’atomes de carbone. Ces 

structures, qualifiées de macromolécules, résultent de la répétition covalente de motifs 

moléculaires organiques (monomères), conduisant à des édifices polymériques de haute masse 

molaire [1]. 

 

I.2.Présentation des élastomères [2] [3] 

Elastomère : le préfixe « élasto » rappelle les grandes déformations élastiques possibles, tandis 

que le suffixe « mère » évoque leur nature de polymère et donc leur structure macromoléculaire 

[2] 

Les élastomères constitués de longues chaines liées entre elles avec des liaisons 

covalentes occasionnelles, des points de réticulations et des points d’enchevêtrement. Une 

chaine est un assemblage de molécule monomère jointe par un squelette covalent d’atome de 

Carbonne. 

Elle est généralement composée de milliers de monomères. A une échelle intermédiaire, 

le matériau peut être vu comme une pelote statistique ou les chaines sont dans une position très 

rempliée et ou les points de jonction (réticulation et enchevêtrement) forment des nœuds entre 
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les chaines. La représentation symbolique d’une chaine et du réseau élastomère est présenté 

dans la figure ci-dessous [3] 

 

 

 

             

 

Le caoutchouc naturel non transformé est un hydrocarbure constitué de molécules 

d'isoprène (C5H8) répétées.  

La vulcanisation est un traitement chimique qui crée des liaisons entre les différentes 

chaînes de polymères, formant ainsi une structure en réseau solide et stable. 

Lorsqu'ils sont soumis à des forces extérieures, les élastomères peuvent s'étirer 

considérablement tout en supportant d'importantes déformations sans se rompre. 

I.3. Comportement mécanique des élastomères [4], [5] 

Les élastomères présentent un comportement mécanique complexe dont la modélisation 

complète reste un défi scientifique. Dans ce qui suit, nous analyserons cette complexité et 

examinerons l'origine de leurs propriétés caractéristiques. 

 

I.3.1. Elasticité non- linéaire 

La propriété fondamentale des élastomères réside dans leur aptitude à supporter des 

déformations exceptionnelles. À titre d'illustration, les caoutchoucs naturels présentent une 

extensibilité remarquable, pouvant atteindre un allongement de 1000% avant rupture [4]. 

Figure I.1 : Représentation schématique d’une chaine et d’un réseau élastomère [3]. 
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La figure I.2 illustre le comportement mécanique d'un élastomère soumis à un essai de traction. 

La courbe obtenue met en évidence : 

 Un comportement mécanique non linéaire 

 Une déformation à rupture avoisinant 600% [4] 

 

                   

                                     

 

 

 

 

Deuxième caractéristique : Non-linéarité du comportement le comportement mécanique 

des élastomères présente une non-linéarité prononcée. Comme nous le verrons, les modèles 

physiques permettent d'expliquer et de simuler cette particularité en décrivant l'évolution de la 

conformation des chaînes macromoléculaires. Le durcissement observé aux grandes 

déformations s'explique principalement par deux phénomènes : 

Lorsque les chaînes macromoléculaires présentent une stéréorégularité suffisante 

(comme c'est le cas des caoutchoucs naturels), elles peuvent s'aligner pour former des zones 

cristallines ordonnées appelées cristallites. Ces structures agissent comme des charges 

renforçantes. 

Les chaînes polymères atteignent progressivement leur extension conformationelle 

maximale [4]. 

Troisième caractéristique : Élasticité caoutchoutique 

Figure I.2 : Courbe de traction à rupture [4] 
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La capacité à retrouver quasi-intégralement leur géométrie initiale après déformation constitue 

une propriété fondamentale des élastomères, communément appelée "élasticité 

caoutchoutique". Cependant, cette réversibilité parfaite n'est observée que sous deux conditions 

principales : 

 Pour des élastomères non chargés (sans additifs de renforcement) 

 Lorsque les déformations appliquées restent modérées 

La figure I.3 illustre cette propriété à travers un essai de traction cyclique.  

 

 

 

 

 

 

 

 

 

A l’échelle de la structure microscopique, un élastomère vulcanisé est constitué de 

longues chaînes moléculaires comportant des points de jonctions. Ces macromolécules forment 

ainsi un réseau tridimensionnel dont les segments de chaînes sont orientés de façon aléatoire. 

Outre ces points de jonctions de type liaisons covalentes, il existe des liaisons à très faible 

énergie appelées liaisons secondaires ou enchevêtrements. L’élasticité caoutchoutique est le 

résultat de cette faible interaction entre les macromolécules [5]. Ainsi, sous l’action d’une 

sollicitation mécanique, ces chaînes moléculaires peuvent glisser les unes sur les autres et 

changer ainsi la configuration microstructurale du réseau moléculaire qui passe d’un 

arrangement aléatoire à un arrangement orienté suivant la direction de sollicitation. L’élasticité 

caoutchoutique est donc de nature entropique [5]. 

Figure I.3 : Essai de traction de type charge/décharge [4]. 
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I.3.2 Viscoélasticité [6] 

1. Nature visqueuse et dissipation d'énergie 

Les élastomères présentent un comportement viscoélastique caractérisé par : 

 Une dissipation d'énergie interne significative 

 Une réponse mécanique dépendante du temps 

 Une viscosité intrinsèque liée au tenseur des vitesses de déformation 

Ce comportement se manifeste par : 

 Une mémoire des déformations passées. 

 Une dépendance des contraintes actuelles à l'histoire des sollicitations. 

 Un retard dans la réponse mécanique. 

2. Méthodes expérimentales de caractérisation 

Deux approches complémentaires permettent d'étudier ce comportement : 

a) Essais statiques : 

 Fluage : étude de l'évolution temporelle de la déformation sous charge constante 

 Relaxation : analyse de la diminution des contraintes à déformation imposée 

b) Essais dynamiques : 

 Vibrations : mesure de la réponse en fréquence sous sollicitation cyclique 

 Analyse du module complexe (composantes élastique et visqueuse) 

 

I.3.3 Incompressibilité [3] 

La majorité des élastomères (ou caoutchoucs) sont considérés comme des matériaux 

incompressibles, c’est-à-dire qu’ils se déforment sans variation de volume. On admet ainsi que, 

dans des conditions de sollicitation n’impliquant pas de contraintes hydrostatiques importantes, 

la déformation du matériau s’effectue à volume constant. Il s’agit toutefois d’une approximation 
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idéale, car les essais expérimentaux montrent que les élastomères présentent en réalité une 

certaine compressibilité.  

L’hypothèse d’incompressibilité, dans les conditions mentionnées, présente un grand 

intérêt sur le plan analytique, notamment pour l’interprétation des résultats expérimentaux. En 

revanche, cette hypothèse engendre certaines difficultés bien connues lorsqu’elle est utilisée 

dans des simulations numériques, notamment avec la méthode des éléments finis. 

 

I.3.4 Effet Mullin [6] 

Le comportement mécanique des élastomères chargés évolue après l’application d’une 

première extension. Cette dernière induit une diminution de la rigidité lors des déformations 

ultérieures ainsi qu’une déformation résiduelle figure I.4. Ce phénomène, connu sous le nom 

d’effet Mullins, peut être partiellement réversible : à température ambiante, la récupération se 

fait sur de longues périodes (plusieurs jours), tandis qu’à des températures proches de celle de 

la vulcanisation, elle peut s’effectuer en quelques heures. 

 Cette récupération peut s’accompagner d’une reprise de rigidité liée à la réactivation du 

processus de vulcanisation. 

 

                                

 

 

 

 

 

                         

Figure I.4 : Représentation de l’Effet Mullins. 
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I.3.5 Effet Payne [7] 

Un autre phénomène caractéristique des élastomères, mentionné ici à titre indicatif, est 

la variation du module complexe en fonction de l’amplitude de déformation et du taux de 

charges présentes dans la matrice. Ce comportement est connu sous le nom d’effet Payne. 

Principalement étudié dans le cadre des sollicitations vibratoires, ce phénomène dépasse le 

champ de notre étude et ne sera donc pas approfondi ici. 

 

Conclusion 

Cette première partie nous a permis d’introduire les notions générales relatives au 

comportement mécanique des élastomères. Toutefois, une compréhension approfondie des 

mécanismes régissant ce comportement requiert une connaissance précise de leur 

microstructure ainsi que des procédés de mise en œuvre associés. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

Chapitre 2 : Rappels de la mécanique des milieux continus en grandes 

déformations 
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2 Chapitre 2 : Rappels de la mécanique des milieux continus en grandes déformations 

  Introduction 

          Le comportement des matériaux soumis à de fortes sollicitations mécaniques nécessite 

une approche tenant compte des grandes déformations. En effet, dans le cas de matériaux 

élastomères ou de structures subissant des déformations importantes, l’hypothèse des petites 

déformations n’est plus valable. Ce chapitre présente un rappel théorique sur les grandes 

déformations, en abordant notamment les notions de gradient de déformation, de tenseur des 

déformations finies et de formulation hyper élastique. Ces concepts constituent la base des 

modèles utilisés dans la suite du mémoire pour la modélisation des matériaux hyper élastiques. 

 

II.1 Rappels de la mécanique des milieux continus en grandes déformations 
 

II.1.1 Cinématique [8] 

Dans le cadre des transformations finies, il est important de distinguer la configuration 

initiale et la configuration actuelle (déformée). Le mouvement d'une particule d'un milieu 

continu peut être décrit soit dans la configuration lagrangienne, soit dans la configuration 

eulérienne. Les coordonnées lagrangiennes (ou matérielles) sont celles qui définissent la 

position du point matériel P( X1 ;  X2 et X3) du milieu continu (Ω), le repérage se faisant dans 

la configuration initiale (ou non déformée). Les coordonnées eulériennes (ou spatiales) sont 

celles qui définissent la position du point matériel p(x1 ;  x2 et x3)du milieu continu à l'instant 

courant, le repérage se faisant dans la configuration actuelle (ou déformée). Notons que dans le 

cas d'une transformation infinitésimale, les deux configurations sont confondues. 

II.1.2 Description du mouvement [9] 

Considérons un solide déformable S évoluant dans un repère R. Les particules p qui 

constituent ce solide occupent, à chaque instant, des positions spécifiques dans l’espace, comme 

le montre la figure II.1. Cela correspond à la configuration du système à l'instant t. Nous 

adopterons le même repère pour décrire à la fois la configuration initiale et celle déformée du 

système. 

On considère C0 la configuration initiale (ou le solide S occupe le volume Ω1), et (Ct) 

la configuration actuelle à l'instant t (ou déformée), où le solide S occupe le volume ω. le vecteur 

position de la particule P ϵ S à l'instant initial est noté X⃗⃗  . On note x⃗  le vecteur position de cette 

particule à l'instant t. 

Le mouvement du milieu continu est défini par la donnée de la fonction vectorielle : 
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              X ∶  {
C0 → Ct

X⃗⃗ → x⃗ = x(X; t)
                                                                                              (II.1) 

 

 

 

Figure II.1 : Configurations initiale et déformée. . 
                         

L'équation II.1 définit la transformation qui permet de passer de la configuration de référence à 

la configuration actuelle (Ct). Afin de décrire la déformation près de la particule, on introduit 

l'application linéaire associée au mouvement, ou le tenseur tangent (figure 5). 

Prenons un vecteur 𝑥  dans la configuration initiale, son image dans la configuration actuelle 

(Ct) peut être obtenue à l'aide de la relation (II.2) : 

         dx⃗⃗⃗⃗ = 𝐅dX⃗⃗ ⃗⃗                                                                                                                   (II.2) 
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II.1.3 Description des déformations [9] 

Pour analyser les changements de forme entre les configurations c0 et Ct, il est essentiel 

d'examiner les variations de longueur et d'angle, autrement dit, les variations du produit 

scalaire. On peut alors calculer le produit scalaire entre deux vecteurs matériels dx⃗⃗⃗⃗  et dy⃗⃗⃗⃗ , puis 

étudier son évolution en fonction des vecteurs dans la configuration initiale dX⃗⃗ ⃗⃗   et dY⃗⃗ ⃗⃗   Selon la 

configuration de référence choisie, différentes méthodes peuvent être appliquées pour quantifier 

les déformations. 

Description lagrangienne 

Dans le cadre de la description lagrangienne, on introduit le tenseur de Cauchy-Green 

droit 𝐂 = 𝐅𝐅𝐓, qui est un tenseur symétrique et défini positif, permettant de décrire les 

dilatations. 

Lorsque le milieu ne subit aucune transformation 𝐂 = 𝐈, on a le tenseur de déformation de 

Green-Lagrange, qui est entièrement lagrangien et symétrique, est en relation avec 𝐂 par : 

             E=
1

2
( 𝐂 − 𝐈 )                                                                       

Description eulérienne 

Dans le cadre de la configuration actuelle, le tenseur de Cauchy-Green gauche, défini 

par 𝐁 = 𝐅𝐅T, est introduit. Ce tenseur est symétrique et possède la propriété d'être défini positif. 

Par ailleurs, le tenseur de déformation correspondant, qui traduit la modification du produit 

scalaire, est le tenseur d'Euler-Almansi A. 

                A = 
1

2
(𝐈 − 𝐁−1)         

                                                          

II.1.4 Description des contraintes [10] : 

Dans le cadre de la théorie des grandes déformations, on introduit les tenseurs de 

contraintes classiques, notamment le tenseur des contraintes de Cauchy σ (de description 

eulérienne), défini par la relation : 

 

                                       t = 𝛔. n⃗                                                                                            (II.3)                                                                               
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Où t  représente le vecteur contrainte, correspondant à la force mesurée par unité de surface 

instantanée, appliquée sur un élément de surface df⃗⃗  ⃗ de la configuration initiale, dont la normale 

extérieure est n⃗ . 

La force élémentaire df⃗⃗  ⃗ agissant dans la configuration actuelle peut être reliée à l'élément de 

surface ds de la configuration initiale par la relation : 

 

                                      df⃗⃗  ⃗ =T⃗⃗  ds                                                                                          (II.4)        

 

         Il s'agit ici d'une description mixte. Le vecteur T⃗⃗   désigne le vecteur contraint de Piola-

Kirchhoff I (également appelé vecteur de Boussinesq). Le tenseur de contrainte associé est le 

premier tenseur de Piola-Kirchhoff π, qui est un tenseur hybride, ni purement lagrangien ni 

purement eulérien, et qui s'exprime par : 

 

df⃗⃗  ⃗= T⃗⃗  ds = π · N⃗⃗  ds                                                                                                              (II.5) 

 

Où N⃗⃗  est la normale dans la configuration initiale. Notons que π n'est pas symétrique. 

Pour obtenir un tenseur entièrement défini en variables lagrangiennes, on transporte la force 

df⃗⃗  ⃗ agissant sur le volume actuel vers la configuration initiale non déformée 

df0⃗⃗ ⃗⃗  ⃗ = 𝐅−𝟏df⃗⃗  ⃗                                                                                                                        (II.6) 

df⃗⃗  ⃗
0 est une force fictive agissant sur la surface initiale. Le tenseur de Piola Kirchhoff 2 est 

Alors défini par : 

                                                                      df0⃗⃗ ⃗⃗  ⃗=SN⃗⃗ . ds                                                    (II. 7) 

S est un être mathématique sans signification physique, mais il présente la particularité d'être 

symétrique. 

Les trois tenseurs des contraintes sont reliés par la relation suivante : 

         J𝛔 = 𝛑. 𝐅𝐓 = 𝐅𝐒𝐅𝐓                                                                                                       (II.8) 

        𝛑 = 𝐅𝐒                                                                                                                         (III.9) 

        J = det𝐅                                                                                                                       (II.10) 

J : le Jacobien de la transformation présentée. 
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Tableau 1 : Récapitulatif des différents tenseurs de contraintes et de déformations dans les 

deux configurations initiales et actuelle. 

 Configuration (𝐂𝟎) initiale 

(libre de contraintes) 

Configuration actuelle (Ct) 

 

 

Tenseurs des 

déformations 

C : Tenseur des dilatations 

de Green-Cauchy droit, 

symétrique. 

𝐄: Tenseur des 

Déformations de Green- 

Lagrange, symétrique. 

B : Tenseur des déformations 

de Green-Cauchy gauche, 

symétrique. 

A : Tenseur des 

Déformations d’Euler- 

Almansi, symétrique. 

                            

Tenseurs des 

contraintes 

S : Tenseur des contraintes 

de Piola-Kirchhoff 2, 

symétrique. 

σ : Tenseur des contraintes 

de Cauchy, symétrique. 

 

II.2 Modélisation du comportement [11] 

Les élastomères sont des matériaux caractérisés par de multiples non-linéarités, ce qui 

rend la modélisation de leur comportement complexe et toujours d'actualité. De nombreuses 

théories ont été développées pour décrire ce comportement de manière précise.  

Les modèles hyper élastiques, par exemple, sont particulièrement adaptés pour simuler 

des sollicitations quasi statiques ainsi que des déformations à très haute vitesse, permettant ainsi 

de reproduire fidèlement le comportement des élastomères sous grandes déformations. Par 

ailleurs, la dépendance à la vitesse de déformation dans le domaine des petites déformations est 

bien maîtrisée grâce à l'utilisation de modèles viscoélastiques linéaires. 

Cependant, dans le contexte de notre étude, l'objectif est de modéliser à la fois le 

comportement en grandes déformations et la dépendance à la vitesse de déformation, ce qui 

représente un défi bien plus complexe. Les modèles employés doivent être capables de prendre 
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en compte la dissipation d'énergie. Pour répondre à cette problématique, nous aurons recours à 

des modèles viscoélastiques adaptés aux grandes déformations.  La Figure II.2 reprend les 

différents cas de chargement possibles et les modèles associés 

 

Figure II.2 : Domaine d’application de chaque domaine. 

 

II.2.1 Loi de comportement hyper-élastique [12] 

Dans l’approche phénoménologique, le matériau est traité comme un milieu continu. 

Son comportement mécanique est gouverné par une relation non linéaire qui relie les contraintes 

aux déformations. Ces contraintes sont calculées en dérivant un potentiel de déformation, noté 

W.  

La relation entre la contrainte et la densité d’énergie de déformation est définie par l’expression 

suivante : 

                           𝛔 = −p𝐈 + 2
∂W

∂I1
𝐁 − 2

∂W

∂I2
𝐁−𝟏                                                             (II.11) 

 

Où p représente la pression hydrostatique. Les densités d’énergie de déformation 𝑊 sont 

exprimées en fonction des élongations principales λ₁ ; λ₂ et λ₃ (qui correspondent aux valeurs 
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propres du tenseur C), ou plus couramment à partir des invariants I1 ; I2 et I3 du tenseur des 

dilatations de Cauchy-Green gauche B (ou C). Ces invariants sont définis de la manière suivante 

: 

                     {

I1 = tr (𝐁)

I2 =
1

2
[Trace 𝐁𝟐 − (Trace 𝐁)2]

I3 = det𝐁

                                                                 (II.12) 

On postule l'existence d'un potentiel élastique W, qui représente l'énergie volumique de 

déformation ramenée au volume initial. Pour un matériau isotrope, cette énergie de déformation 

W dépend uniquement des trois invariants I1(C), I2(C) et I3(C) du tenseur de Cauchy-Green 

droit C, ce qui s'exprime par : 

W = W(I1; I2; I3) 

De nombreux modèles hyper élastiques ont été développés et documentés dans la littérature. 

Dans ce contexte, nous nous focaliserons sur les modèles les plus couramment intégrés dans les 

logiciels de calcul par éléments finis. 

 

II.3 Les modèles hyper élastiques  

II.3.1 Modèle néo-Hookéen (1943) [8] 

C’est le modèle hyper élastique le plus simple à un seul terme, mais sa justification 

repose davantage sur une approche moléculaire que phénoménologique. En s’appuyant sur les 

principes de la mécanique statique, il peut être exprimé sous la forme suivante : 

                            W =
1

2
nkT(λ1

2 + λ2
2 + λ3

3 − 3)                                                               (II.14) 

II.3.2 Modèle de Mooney Rivlin [7] 

Ce modèle, développé par Mooney, repose sur l'observation que le comportement du 

caoutchouc présente une linéarité en cisaillement simple. Mooney exprime alors l'énergie de 

déformation W sous la forme suivante : 

                             W = C1(I1 − 3) + C2(I2 − 3)                                                              (II.13) 

Ce modèle reste largement privilégié en raison de sa simplicité et de sa capacité à représenter 

de manière adéquate le comportement des élastomères pour des niveaux de déformation 

atteignant jusqu’à 100 %. 
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II.3.3 Modèle d’Ogden (1972) [12] 

 

Ce modèle est l'un des plus couramment utilisés pour décrire les très grandes 

déformations. Son approche consiste à remplacer les exposants entiers du développement de 

Rivlin par une série de puissances réelles des élongations principales. Ces exposants réels 

deviennent alors des paramètres matériels à déterminer. Contrairement aux formulations 

précédentes basées sur les invariants, le modèle d'Ogden s'exprime directement en fonction des 

élongations principales 

                              W = ∑
µn

αn

n
n=1 (λ1

αn + λ2
αn + λ3

αn)                                                         (II.15) 

Où les constantes (µn; αn)i=1……n sont les paramètres matériaux.λ1; λ2 et λ3 Sont les valeurs 

propres du tenseur de dilatation de Green-Cauchy. 

 

II.3.4 Modèle de Yeoh [13] 

 

La fonction d'énergie de déformation W du modèle de Yeoh s'exprime comme suit : 

            WYeoh =C10(I0 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3                                         (II.16) 

où C10, C20 𝑒𝑡 C30 sont les paramètres de matériaux du modèle. 

 

Conclusion  

           Ce chapitre a permis de poser les fondations théoriques nécessaires à la compréhension 

des comportements hyper élastiques des élastomères. Les notions de grandes déformations, 

souvent complexes, sont essentielles pour modéliser de manière réaliste les matériaux soumis 

à de fortes sollicitations. 
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3 
Chapitre 3 : Comparaison de deux lois de comportement hyper-élastique pour la 

modélisation de cylindres sous pression 

Introduction  

          Dans ce dernier chapitre, les concepts théoriques développés précédemment sont mis en 

œuvre dans le cadre d’une étude comparative. Deux approches sont adoptées : une approche 

analytique qui permet d’estimer les contraintes et les déformations dans un cylindre soumis à 

une pression, et une approche numérique à l’aide d’un logiciel de simulation, permettant de 

simuler le comportement d’un tube de différentes épaisseurs selon deux modèles hyper-

élastiques. L’objectif est d’évaluer l’impact du choix du modèle de comportement sur 

l’optimisation de l’épaisseur de la structure. 

III.1 Etude analytique  

Ce chapitre traite de l’étude des contraintes dans un tube long soumis à des sollicitations 

mécaniques, notamment à des pressions interne et externe. Cette analyse est fondamentale pour 

comprendre le comportement non linéaire d’un matériau hyper-élastique soumis à un 

chargement. 

En raison de l’axisymétrie du problème, seules les composantes radiale, axiale et 

circonférentielle des contraintes sont considérées. Ces composantes sont déterminées à partir 

des équations d’équilibre et des relations constitutives associées à différents modèles 

hyperélastiques, tels que les modèles néo-Hookéen et Mooney-Rivlin, afin de décrire la réponse 

mécanique du matériau. 

Le matériau est supposé isotrope et incompressible. Dans la configuration de référence, 

le tube a un rayon intérieur A et un rayon extérieur B; ces paramètres deviennent respectivement 

a et b dans la configuration déformée. Pour décrire le mouvement, deux systèmes de 

coordonnées cylindriques sont adoptés, (R, Θ, Ζ) dans la configuration de référence, et (r, θ, z) 

dans la configuration déformée.  

En raison de l'axisymétrie du problème, les déformations du cylindre peuvent s'écrire comme : 
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Avant déformations : 

                                                                {
A ≤ R ≤ B
0 ≤ θ ≤ 2π
0 ≤ Z ≤ L

                                                  (III.1) 

Après déformations : 

                                                                {
a ≤ r ≤ b

0 ≤ θ ≤ 2π
0 ≤ z ≤ l

                                                 (III.2) 

Qui est un membre de la famille des solutions universelles proposées par Ericksen [14]. 

De l'équation précédente le gradient de la déformation peut prend la forme suivante : 

                                                𝐅 = [

𝜆𝑟 0 0
0 𝜆𝜃 0
0 0 𝜆𝑧

] =

[
 
 
 
 
𝑑𝑟

𝑑𝑅
0 0

0
𝑟

𝑅
0

0 0
𝑑𝑧

𝑑𝑍]
 
 
 
 

                             (III.3) 

où 
𝑑𝑟

𝑑𝑅
 décrit la déformation plane du cylindre creux. 

 

Les lois de comportement hyper-élastique découlent d'un potentiel élastique appelé 

densité d'énergie de déformation, souvent notée W, définie par unité de volume non déformé. 

Lorsque le matériau possède des propriétés isotropes, la densité d'énergie de déformation s'écrit 

en termes des invariants du tenseur de Cauchy-Green B, notés Ii(i = 1, 2, 3), soit : 

{

I1 = tr(𝐁) = λ1
2 + λ2

2 + λ3
3

I2 =
1

2
[(tr(𝐁))

2
− tr(𝐁2)]

I3 = det(𝐁) = λ1
2λ2

2λ3
2

= λ1
2λ2

2 + λ1
2λ3

2 + λ2
2λ3

2                                                  (III.4) 

où  𝜆1, 𝜆2 𝑒𝑡 𝜆3 sont les rapports d’étirement et ils sont définis comme les racines carrées des 

valeurs propres de B. 

Après la substitution, les principaux invariants du tenseur de déformations de Cauchy Green 

gauche sont : 
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                                                 {

I1 = λr
2 + λθ

2 + λz
2

I2 = λr
−2 + λθ

−2 + λz
−2

I3 = λr
2λθ

2λz
2

                                               (III.5) 

Dans le cas d’un milieu incompressible, l’hypothèse d’incompressibilité s’écrit comme suit :  

J = det𝐅 = 1    Ou encore I3 = 1. 

Le troisième invariant principal I3 étant à présent connu et la densité d'énergie de 

déformation ne dépend plus que des deux premiers invariants : W=W (I1,I2). 

Lorsque 𝜆𝑧 = 𝜆 = 1 , on aura : 

                                             {

I1 = λr
2 + λθ

2 + 1

I2 = λr
−2 + λθ

−2 + 1

I3 = (λrλθ)
2

                                                     (III.6) 

Le tenseur de déformations Cauchy-Green gauche est définie par : 

                                             𝐁 = 𝐅𝐅𝐓 = (
λr
2 0 0

0 λθ
2 0

0 0 1

)                                           (III.7a) 

Donc : 

                                               𝐁−𝟏 = (
λr
−2 0 0

0 λθ
−2 0

0 0 1

)                                               (III.7b) 

On pose :           Q =
R

r
 

De l’équation 7 on a : 

                                   {
λr =

ⅆr

ⅆR
= Q

λθ =
r

R
= Q−1

                                                                           (III.8) 

Et sachant que le milieu est incompressible, alors :            λr = λθ
−1 

Donc on obtient : 

                                    𝐁 = (
Q2 0 0

0 Q−2 0
0 0 1

)     ;     𝐁−𝟏 = (
Q−2 0 0

0 Q2 0
0 0 1

)                (III.9)  

On a : 
ⅆQ

ⅆr
=

ⅆ

ⅆr
(
R

r
) =

Q−1−Q

r
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On définit les paramètres suivants : η =
A

B
 , λa =

a

A
,      λb =

b

B
        

où η et  λa, λb représentent respectivement un paramètre de structure, le rapport d’étirement 

au rayon intérieur et au rayon extérieur :                 

 

On a : det𝐅 = 1   alors : rdr = RdR 

Ce qui donne : r2 = R2 + C, où C = cte 

Pour R = A,   r = a ⟹ a2 = A2 + C 

Et pour R = B,   r = b ⟹ b2 = B2 + C 

Ce qui implique que : 

 λb = √1 + (λa
2 − 1)η2                                                   (III.10) 

 

Pour les matériaux incompressibles, la loi de comportement s’exprime comme suit : 

𝛔 = −p𝐈 + 2
∂W

∂I1
. 𝐁 − 2

∂W

∂I2
. 𝐁−𝟏                                                 (III.11a)            

L’équation d’équilibre s’écrit : 

𝑑σrr

𝑑𝑟
+

σrr−σθθ

𝑟
= 0                      (III.11b) 

On a : 
𝑑σrr

𝑑𝑟
=

𝑑σrr

𝑑𝑄

𝑑𝑄

𝑑𝑟
  

ce qui donne : 
𝑑σrr

𝑑𝑄
= −

σrr−σθθ

𝑄−1−𝑄
 

Apres intégration, on obtient l’expression de la contrainte radiale : 

σrr = −∫ (
σrr−σθθ

𝑄−1−𝑄
)𝑑𝑄 + σrr(𝜆𝑏

−1)
𝜆𝑏

−1

𝑄
                                       (III.11c) 
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Modèle de Mooney Rivlin 

Le modèle de Mooney Rivlin propose la forme phénoménologique suivante pour la densité 

d'énergie de déformation [15] : 

                                         W = C10(I1 − 3) + C01(I2 − 3)                                              (III.12) 

Ce modèle admet donc deux paramètres matériaux, qui doivent vérifier 𝐶10>0 et 𝐶01 ≥ 0. 

On a :   
∂W

∂I1
= C10      ;      

∂W

∂I2
= C01                                                

Les expressions des contraintes sont données par : 

                            {

σrr = −p + 2C10. Q
2 − 2C01. Q

−2

σθθ = −p + 2C10. Q
−2 − 2C01. Q

2

σzz = −p + 2C10 − 2C01

                                                     (III.13) 

En utilisant les équations (III.11c) et (III.13), on obtient :  

σrr = −2(C10 + C01) [
Q

2

2
+ ln(Q)]

𝑄

λb
−1

+ σrr(λb
−1)                                                            III.14) 

En appliquant une pression uniforme constante sur les surfaces intérieure et extérieure du cylindre, les 

conditions aux limites s’expriment comme suit : 

σrr(λb
−1) = −Pext,    σrr(λa

−1) = −Pint                                              (III.15a) 

Ce qui donne : 

σrr = −2(C10 + C01) [
Q

2

2
+ ln(Q)]

𝑄

λb
−1

− Pext                                                               (III.15b) 

Et à partir de l’équation (III.131), on trouve que : 

p = 2C10. Q
2 − 2C01. Q

−2 − σrr                                             (III.16) 

Ce qui donne pour les contraintes circonférentielles et axiales : 

σθθ = σrr + 2C10. (Q
−2 − 𝑄2) − 2C01. (Q

2 − Q−2)                      (III.17a) 

σzz = σrr + 2C10(1 − 𝑄2) − 2C01. (1 − Q−2)                               (III.17b) 
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Modèle néo-Hookéen 

Le modèle hyper-élastique isotrope et incompressible le plus simple est le modèle néo-Hookéen 

[16], il est donné par : 

                                           W = C1(I1 − 3)                                                          (III.18) 

On a :     
∂W

∂I1
= C1      ;      

∂W

∂I2
= 0                                                     

Notons que le domaine de validité du modèle de de Mooney Rivlin est plus large que celui du 

modèle Néo-Hookéen. 

Les expressions des contraintes sont données par : 

                                   {

σrr = −p + 2C1. Q
2

σθθ = −p + 2C1. Q
−2

σzz = −p + 2C1

                                                                  (III.19) 

En utilisant les équations (III.11c) et (III.19), on obtient :  

σrr = −2C1 [
Q

2

2
+ ln(Q)]

𝑄

λb
−1

− Pext                                                                             (III.20) 

Et à partir de l’équation (III.191), on trouve que : 

𝑝 = 2C1. Q
2 − σrr                                                                (III.21) 

Ce qui donne pour les contraintes circonférentielles et axiales : 

σθθ = σrr + 2C1. (Q
−2 − 𝑄2)                         (III.22a) 

σzz = σrr + 2C1(1 − 𝑄2)                     (III.22b) 

 

Dans ce qui suit, on s'intéresse à l'évolution de la contrainte radiale dans un cylindre 

soumis à une pression interne, en supposant un comportement hyper-élastique régi par le 

modèle de Mooney-Rivlin. Le taux d’étirement au rayon intérieur est fixé à λa = 1.3 > 1, 

valeur choisie pour simuler une expansion sous l’effet de la pression appliquée. Les courbes 

sont tracées en fonction de la variable Q−1, pour différentes valeurs du rapport géométrique 



 

25 
 

3 
Chapitre 3 : Comparaison de deux lois de comportement hyper-élastique pour la 

modélisation de cylindres sous pression 

(η =
A

B
= 0.5, 0.65,0.75,0.9), afin d’évaluer l’influence de l’épaisseur de la paroi. Deux cas 

sont examinés : sans pression extérieure Pe = 0 MPa et avec une pression extérieure               

Pe = 0.1 MPa. Les figures ci-dessous illustrent ces résultats. 

 

Figure III.1.a : Distribution de la contrainte radiale en fonction de 𝑄−1 pour différentes 

valeurs de η (λa=1.3,  Pe=0 MPa ,C10=0.162MPa, C01=0.0059 MPa ) 
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Figure III.1.b : Distribution de la contrainte radiale en fonction de 𝑄−1   pour différentes 

valeurs de η (λa=1.3,  Pe=0.1 MPa ,C10=0.162MPa,  C01=0.0059 MPa ) 

L’analyse des figures obtenues permet de dégager plusieurs tendances caractéristiques 

concernant l’évolution de la contrainte radiale en fonction de 𝑄−1 : 

- Pour toutes les courbes, la contrainte radiale diminue quand 𝑄−1 augmente, 

- On constate que λa = 1.3 est supérieure à λb, 

- Plus 𝜂 est faible, plus la contrainte radiale est importante en valeur absolue pour 

un même 𝑄−1, cela correspond à des parois plus épaisses, 

- À l’inverse, lorsque 𝜂 est proche de 1, la contrainte radiale est moins prononcée, 

car le cylindre est plus mince. 

On conclut qu’une paroi plus épaisse supporte une contrainte radiale plus importante. 

L’ajout d’une pression extérieure rend la contrainte radiale plus compressive sur toute 

l’épaisseur du cylindre, elle ajoute donc un effort compressif supplémentaire au bord extérieur, 

ce qui se transmet vers l’intérieur. 
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III.2 : Etude Numérique  

III.2.1 : Construction du modèle numérique  

III.2.1.1 Choix du modèle de comportement  

Nous avons choisi deux modèles : 

Le modèle de Mooney-Rivlin à deux paramètres implémentés dans le code de calcul éléments 

finies dont le potentiel hyper-élastique est définit par : 

                       W = W(I1, I2) = C10(I1 − 3) + C01(I2 − 3) +
1

D
 (J − 2)2                       (III.23) 

West l’énergie de déformation par unité de volume, C10 et C01 sont les paramètres du matériau. 

Et le modèle Néo-Hookén incompressible dont le potentiel hyper-élastique s’écrit : 

                                     W = 𝐶10(I1 − 3 ) +
1

D
 (J − 2)2                                                    (III.24)                                                           

III.2.1.2 Présentation de la géométrie  

On suppose que le cylindre est infiniment long, c'est-à-dire que sa longueur est grande 

devant son diamètre. Ainsi les effets de bords sont négligeables. La schématisation du tube est 

représentée sur la Figure III.2. 

 

Figure III.2 : Modèle étudié. 
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III.2.1.3 Le maillage  

Dans notre cas, nous avons opté pour une modélisation 2D avec un maillage à éléments 

quadratique, assurant une meilleure précision dans la représentation des grandes déformations 

et des contraintes. Pour cela nous avons utilisés un élément finis quadratique à intégration 

réduits et hybride CPE8RH. Le maillage global de notre géométrie est présentée dans la figure 

III.3 ci-dessous ;  

 

 

      

 

 

 

 

           

                                           

Le tableau ci-dessous illustre le maillage adopté pour les différentes épaisseurs de cylindre. 

Tableau 2 : Données utilisées pour la simulation numérique. 

           Géométrie de cylindre                      Eléments de maillage  

  Rayon A en (mm)  Rayon B en (mm)         Nombre d’élément   Nombre de nœuds  

          220        120       2910    8985 

          220       140         3300    10181 

          220        160         3930     12113 

                       

 

 

Figure III.3: Modèle maillé. 
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III.2.2.4 Chargements et conditions aux limites  

En raison de la symétrie de la géométrie et des conditions aux limites appliquées on modélise 

seulement un quart de cylindre. Deux cas de chargement ont été considérés : l’un avec une 

pression externe et l’autre avec une pression interne. Pour les conditions aux limites on a bloqué 

les déplacements et les translations sur les extrémités comme illustre la figure ci-dessous, 

 

  
 

                           (a)                                                                               (b) 
 

Figure III.4 : Chargements et conditions aux limites. (a) Pression externe, (b) pression 

interne. 

           

III.2.2.5 : Résultats de la simulation numérique  

Pour effectuer cette simulation, nous avons utilisé les paramètres matériels des deux 

modèles incompressibles néo hookéen et Mooney Rivlin identifié par Gillas Marckmann   

 

Tableau 3 : Paramètres des deux modèles pour les données expérimentales de Treloar. 

Type de Model   Paramètres matériels  [MPa] 

Neo-hookean  

 

Monney-Rivlin 

10 0.2C   

  

10 0.162C    and   3

01 5.910C   

 
 

Les paramètres des matériaux pour les modèles Néo-Hookéen et Mooney Rivlin 

utilisées dans cette simulation ont été fournis par Gillas Marckman. Ces paramètres ont été 

obtenus par ajustement des données expérimentales de Treloar [17].       
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Nous avons déterminé numériquement la distribution des contraintes sur une surface du 

cylindre.  

Les résultats obtenus pour une épaisseur de 80 mm et une pression interne de 0.1 MPa sont 

donnés ci-dessous : 

 

 

 

 

Figure III.5 : Distribution des contraintes radiale (Pi=0.1MPa, e=80mm). 

 

 

Figure III.6 :  Distribution des contraintes circonférentielles. (Pi=0.1MPa, e=80mm). 
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Figure III.7 :  Distribution des contraintes Axiales (Pi=0.1MPa, e=80mm). 

Figure III.8 :  Distribution des contraintes Von Mises (Pi=0.1MPa, e=80mm). 
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Les résultats obtenus pour une épaisseur de 80 mm et une pression externe de 0.1 MPa 

sont donnés ci-dessous : 

 

 

Figure III.10 :  Distribution des contraintes circonférentielles. (Pe=0.1MPa, e=80mm). 

 

Figure III.9 :  Distribution des contraintes radiale (Pe=0.1MPa, e=80mm). 
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Figure III.11 :  Distribution des contraintes Axiales (Pe=0.1MPa, e=80mm). 

 

III.2.2.5.1 Pour une pression interne égale à 0.1 MPa 

Les figures (III.13.a) à (III.13.d) illustrent les distributions des contraintes radiales, 

circonférentielles, axiales et de Von Mises à travers l’épaisseur d’un cylindre soumis à une 

pression interne. Elles permettent une comparaison entre les modèles de Mooney-Rivlin et néo-

hookéen, pour différentes valeurs de l’épaisseur. 

Figure III.12 : : Distribution des contraintes Von Mises (Pi=0.1MPa, e=80mm). 
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Figure III.13.a : Distribution des contraintes radiales pour les deux modèles pour une 

pression interne Pi=0.1MPa (MR —, NH —.). 
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Figure III.13.b :  Distribution des contraintes circonférentielles pour les deux modèles pour 

une pression interne Pi=0.1MPa(MR —, NH —.). 
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Figure III.13.c :  Distribution des contraintes axiales pour les deux modèles pour une pression 

interne Pi=0.1MPa  (MR —, NH —.). 
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Figure III.13.d :  Distribution des contraintes de Von Mises pour les deux modèles pour une 

pression interne Pi=0.1MPa,  (MR —, NH —.). 

                                             

Les figures (III.13.a) à (III.13.d) présentent la distribution des différentes contraintes 

(radiales, circonférentielles, axiales et de Von Mises) à travers l’épaisseur d’un cylindre soumis 

à une pression interne Pi = 0.1MPa, pour deux modèles hyper-élastiques : Mooney-Rivlin et 

néo-hookéen. 

La figure (III.13.a) montre que la contrainte radiale est négative sur toute l’épaisseur, 

traduisant un état de compression provoqué par la pression interne. Elle atteint sa valeur 

maximale (en compression) au rayon interne du cylindre, puis décroît progressivement jusqu’à 

s’annuler à la surface externe, conformément aux conditions aux limites. Les deux modèles 

donnent des distributions similaires. 

La figure (III.13.b) illustre la contrainte circonférentielle, qui est positive. Le modèle de 

Mooney-Rivlin prédit des valeurs légèrement plus élevées que le modèle de néo-hookéén, en 

particulier pour les géométries plus minces. 
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La figure (III.13.c) présente la contrainte axiale, qui reste positive sur toute l’épaisseur. 

Bien que sa valeur soit inférieure à celle de la contrainte circonférentielle, elle demeure 

significative. Le modèle de Mooney-Rivlin tend à prédire des contraintes légèrement plus 

élevées que celles du modèle néo-hookéen, notamment dans le cas de parois plus minces. 

Enfin, la figure (III.13.d) montre la contrainte équivalente de Von Mises, qui permet 

d’évaluer l’état global de sollicitation du matériau. Cette contrainte atteint généralement son 

maximum à l’intérieur du cylindre, là où la combinaison des efforts est la plus critique. Le 

modèle Mooney-Rivlin tend à produire des contraintes de Von Mises légèrement plus élevées 

que le modèle néo-hookéen. 

En résumé, bien que les deux modèles décrivent qualitativement les mêmes tendances, 

le modèle de Mooney-Rivlin prédit globalement des contraintes légèrement plus importantes, 

surtout en traction. Cette différence devient plus marquée lorsque l’épaisseur de la paroi 

diminue, ce qui souligne l’importance du choix du modèle constitutif dans les analyses de 

structures soumises à des sollicitations internes. 

 

III.2.2.5.2 Pour une pression externe égale à 0.1 MPa 

Les figures (III.14.a) à (III.14.d) présentent la répartition des contraintes radiales, 

circonférentielles, axiales et de Von Mises à travers l’épaisseur d’un cylindre soumis à une 

pression externe. Elles permettent de comparer les prédictions des modèles hyper-élastiques de 

Mooney-Rivlin et néo-hookéen pour différentes valeurs de l’épaisseur. 
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Figure III.14.a : Distribution des contraintes radiales pour les deux modèles pour une 

pression externe Pe=0.1MPa, (MR —, NH —.). 
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Figure III.14.b :  Distribution des contraintes circonférentielles pour les deux modèles pour 

une pression externe Pe =0.1MPa, (MR —, NH —.). 
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Figure III.14.c :  Distribution des contraintes axiales pour les deux modèles pour une pression 

externe Pe =0.1MPa, (MR —, NH —.). 
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Figure III.14.d : Distribution des contraintes de Von Mises pour les deux modèles pour une 

pression externe Pe =0.1MPa, (MR —, NH —.). 

Il ressort de l’analyse des résultats (figures III.14) que le modèle néo-hookéen prédit 

généralement des contraintes légèrement plus élevées que le modèle de Mooney-Rivlin. 

Cependant, cette différence entre les deux modèles tend à s’atténuer lorsque l’épaisseur du 

cylindre augmente. En effet, pour les parois plus épaisses, les contraintes calculées selon les 

deux lois de comportement deviennent presque superposables, ce qui traduit une réponse 

mécanique globalement similaire. 

Conclusion  

On observe que sous pression interne, la différence entre les modèles de Mooney-Rivlin 

et de néo-hookéen est significative, en particulier pour les parois minces, en raison des fortes 

déformations générées. En revanche, sous pression externe seule, les différences entre les deux 

modèles sont beaucoup moins marquées. 
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Conclusion générale 
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Conclusion générale  

Ce mémoire a permis de comparer deux modèles hyper-élastiques, Mooney-Rivlin et 

néo-hookéen, appliqués à l’analyse mécanique de cylindres soumis à des pressions. L’étude a 

été menée à la fois par des approches analytiques et numériques, en mettant en évidence 

l’influence du type de sollicitation et de l’épaisseur sur la distribution des contraintes. 

Dans le cas d’une pression interne, les contraintes sont plus importantes, surtout pour 

les parois minces, ce qui amplifie les différences entre les deux modèles. Le modèle de Mooney-

Rivlin tend à prédire des contraintes plus élevées dans ce régime, du fait de sa formulation plus 

complète. 

En revanche, sous pression externe seule, les contraintes sont plus modérées et la 

différence entre les deux modèles devient beaucoup moins marquée. Un écart subsiste 

néanmoins lorsque l’épaisseur du cylindre est faible. 

En conclusion, le choix du modèle hyper-élastique est d’autant plus critique que la 

structure est soumise à des sollicitations internes importantes et présente une paroi mince, ce 

qui souligne l’intérêt d’une modélisation adaptée aux conditions réelles de chargement. 
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Résumé 

Ce mémoire de fin d’étude porte sur l’étude comparative des modèles hyper-élastiques 

dans le but d’optimiser l’épaisseur des cylindres soumis à des pressions internes. Le travail a 

commencé par une présentation des généralités sur les élastomères, mettant en évidence leurs 

propriétés non linéaires et leur comportement caoutchoutique. Ensuite, un rappel des principes 

de la mécanique des milieux continus en grandes déformations a été présenté, afin d’établir un 

cadre théorique solide pour la modélisation. Enfin, deux lois de comportement hyper-élastique 

ont été comparées pour simuler le comportement mécanique du cylindre sous pression, dans le 

but de déterminer la loi la plus adaptée à une optimisation de l’épaisseur. 

Mots-clés : Elastomères, Hyper-élasticité, Optimisation, Epaisseur, cylindre, Pression, 

Modélisation. 

                          

 ملخص باللغة العربية
 

يتناول هذا العمل دراسة سلوك أسطوانة مصنوعة من مادة مطاطیة عند تعرضها لضغط داخلي، وذلك من خلال مقارنة بین عدة نماذج 

فائقة المرونة. تهدف الدراسة إلى تحديد النموذج الأنسب لتمثیل تشوه السماكة بدقة في حالة التشوهات الكبیرة. تم الاعتماد على النماذج 

الرياضیة الشهیرة التي تصف سلوك المواد المطاطیة، مع التركیز على خصائص هذه المواد واستجابتها المیكانیكیة تحت تأثیر الأحمال. 

كما تم استخدام المحاكاة العددية لتحلیل سلوك الأسطوانة واستخراج نتائج تساعد على مقارنة فعالیة كل نموذج في تمثیل الظاهرة 

المدروسة. وقد أظهرت النتائج اختلافات واضحة بین النماذج من حیث الدقة والاستقرار العددي، مما يسمح باختیار النموذج الأكثر 

 ملاءمة حسب نوع التطبیق الهندسي المراد

 الكلمات المفتاحية

 .الإيلاستوميرات، المرونة الفائقة، التحسين، السماكة، الأسطوانة، الضغط، النمذجة

Abstract in English 

This Master’s thesis focuses on the comparative study of hyperelastic models to 

optimize the thickness of cylinders subjected to internal pressure. The study begins with a 

general overview of elastomers, highlighting their nonlinear characteristics and rubber-like 

elasticity. It then provides a theoretical reminder of continuum mechanics under large 

deformations, essential for accurate modeling. Finally, two hyperelastic constitutive laws were 

compared to simulate the mechanical behavior of the pressurized cylinder, aiming to identify 

the most suitable model for thickness optimization. 

Keywords: Elastomers, Hyperelasticity, Optimization, Thickness, Cylinder, Pressure, 

Modeling.  


