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Introduction Générale

Depuis plusieurs décennies, l’intelligence artificielle (IA) n’a cessé de s’imposer comme un
domaine stratégique dans la recherche scientifique et l’innovation technologique. Elle regroupe
un ensemble de techniques visant à reproduire, simuler ou dépasser certains aspects de l’in-
telligence humaine. L’un des champs les plus prometteurs de l’IA est le Deep Learning ou
apprentissage profond, une technique d’apprentissage automatique basée sur l’utilisation des
réseaux de neurones. Grâce aux progrès matériels (GPU, mémoire), aux volumes massifs des
données disponibles, et à la sophistication des algorithmes, le Deep Learning a atteint des
performances spectaculaires dans plusieurs domaines.

Parmi les architectures les plus performantes du Deep Learning, les réseaux de neurones
convolutifs (CNN) ont démontré une grande efficacité dans des tâches telles que la classification,
la détection et surtout la segmentation d’image. La segmentation d’image est une étape clé
dans de nombreuses applications comme la médecine, la robotique, la surveillance ou encore
la conduite autonome. Elle représente un enjeu majeur pour une meilleure compréhension et
exploitation des données visuelles. En particulier, dans le domaine médical, une segmentation
précise des structures anatomiques peut considérablement faciliter le diagnostic, le suivi des
pathologies et la planification des traitements.

Notre projet de fin d’étude s’inscrit dans cette perspective. Il a pour objectif d’aborder une
architecture avancée de Deep Learning appelée U-Net, spécialement conçue pour la segmen-
tation d’image biomédicale. Ce modèle se distingue par son architecture en forme de U qui
permet une capture efficace des informations contextuelles et par ses performances qui ont été
démontrées même sur des bases de données de petite taille. Toutes ces raisons ont motivé notre
choix pour ce modèle pour accomplir la tâche de segmentation d’image.

Le mémoire débute par une introduction aux concepts fondamentaux de l’IA et du Deep
Learning. Nous présenterons le CNN de manière exhaustive. Ensuite, nous aborderons som-
mairement les méthodes de segmentation classiques et les concepts récents s’y référant. Nous
présenterons en détail l’architecture et le fonctionnement de l’U-Net, et nous l’appliquerons sur
des images médicales, spécifiquement pour la segmentation des vaisseaux rétiniens à partir des
images de la rétine.

L’enjeu de notre travail est double : d’une part, démontrer l’efficacité du modèle U-Net dans
la segmentation d’image, et d’autre part, contribuer à la compréhension et à la vulgarisation
de l’usage du Deep Learning dans le domaine médical.

1
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Chapitre I. Généralités sur l’IA et le Deep Learning

I.1 Introduction

Depuis quelques années, les concepts liés à l’intelligence artificielle inondent particulièrement
les articles scientifiques, et plus généralement notre quotidien. Lorsque nous parlons d’intelli-
gence artificielle, nous faisons très souvent implicitement allusion aux technologies qui y sont
associées à savoir le Machine Learning, Neural Network ou le Deep learning. Deux termes extrê-
mement utilisés avec des applications toujours plus nombreuses, mais généralement pas toujours
bien définis. Nous nous attelons donc dans ce chapitre d’abord à définir et à distinguer ces trois
concepts, puis nous nous attarderons sur le Deep Learning objet de ce chapitre.

I.2 Quelques définitions

I.2.1 Intelligence artificielle (IA)

L’Intelligence Artificielle est un champ de recherche qui regroupe l’ensemble des techniques
et méthodes qui tendent à comprendre et à reproduire le fonctionnement du cerveau humain.
Elle vise à la conception de machines intelligentes qui peuvent penser par elles-mêmes et prendre
leur propre décision afin d’imiter le comportement ou l’intelligence humaine [1]. Marvin Minsky
a défini l’intelligence artificielle comme étant « une science dont le but est de faire réaliser par
une machine des tâches que l’homme accomplit en utilisant son intelligence » [2]. L’intelligence
artificielle trouve application dans la résolution de problèmes à haute complexité logique ou
algorithmique.

I.2.2 Machine Learning (ML)

Le Machine Learning, ou l’appellation francisé Apprentissage Automatique, est un sous-
domaine de l’IA ( figure I.1 ) qui consiste à donner la capacité aux machines (ou systèmes)
d’apprendre automatiquement et de prendre des décisions à partir des données, mais aussi
d’améliorer leurs performances sur une tâche spécifique sans être explicitement programmés
[3]. Contrairement à la programmation qui consiste en l’exécution de règles prédéterminées.
Les algorithmes du ML se basent principalement sur les calculs statistiques.

Figure I.1 – Relation entre IA, ML, RN et DL [4]

L’objectif principal qui était d’imiter l’intelligence humaine, s’est vu ralenti dans un premier
temps en raison des limites de la théorie et de la technologie qui existaient. Machine Learning,
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s’est vu donc réduite sur des tâches spécifiques, ainsi la plupart des algorithmes ML tels qu’ils
existent aujourd’hui se concentrent sur l’optimisation des fonctions, et leur utilisation devient
fréquemment un processus répétitif d’essais et d’erreurs, dans lequel le choix de l’algorithme
parmi les problèmes donne des résultats de performances différents [5][6].

I.2.3 Réseaux Neuronaux

Les réseaux neuronaux artificiels RNA sont une catégorie du ML qui établissent la tâche
d’apprentissage automatique en mimant les actions du cerveau humain. Tout comme le cerveau
ces réseaux sont constitués de neurones artificiels interconnectés les uns aux autres et sont
disposés en plusieurs couches (entrée, cachée, sortie). Ces neurones reçoivent des informations
en entrée qui sont traitées et transmises de couche en couche jusqu’à générer des sorties et
cela sans règles programmées, car essentiellement, un réseau neuronal résout les problèmes par
essais et erreurs [6].

Les réseaux de neurones représentent une approche clé au sein de l’IA et du ML, large-
ment utilisée aujourd’hui dans des domaines variés. Leur structure a servi de fondement au
développement du deep learning [5].

I.2.4 Deep Learning

Le Deep Learning ou l’apprentissage profond, une technique du ML et de l’IA qui repose sur
le modèle des réseaux neurones. C’est en effet une extension plus profonde et sophistiquée des
réseaux neuronaux artificiels, composés de dizaines voire des centaines de couches de neurones,
ce qui confère le caractère « profond » ou « deep » à l’apprentissage via ces réseaux neuronaux,
dits "réseaux de neurones profonds". Plus il y’a de couches, plus l’apprentissage est profond.
Cette extension a été rendue possible par les avancées technologiques récentes, dont deux faits
particulièrement importants :

— L’émergence de grands volumes de données (big data) issus d’internet,

— Et la disponibilité d’une forte puissance de calcul rendant possible l’estimation de millions
de paramètres lors de traitement de dizaines, voire, de centaines de couches de neurones
aux propriétés complexes et variées. Le DL a la particularité d’être gourmand en puissance
et en données.

Le Deep Learning est donc une sorte de sous-catégorie avancée du Machine Learning et qui
contrairement à ce dernier, il n’a pas besoin d’aide humaine pour travailler avec de grandes
quantités de données non structurées, car il peut détecter lui-même des représentations ou
des fonctionnalités. De plus, plus il traite d’informations, plus les résultats qu’il propose sont
raffinés [5].

I.3 Types d’apprentissage pour ML, RN et DL

L’apprentissage est un processus qui permet à un système à base d’un modèle ML, RNA ou
DL de modifier son comportement en fonction des données qu’il reçoit dans le but d’améliorer
ses performances sur une taches spécifique. La modification du comportement se fait en ajustant
les paramètres du modèle pour minimiser l’erreur entre les prédictions et les valeurs réelles [3].
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On distingue deux types d’apprentissage : Apprentissage supervisé et Apprentissage non
supervisé :

I.3.1 Apprentissage Supervisé

En apprentissage supervisé, l’algorithme est guidé avec des connaissances préalables de ce que
devraient être les valeurs de sortie du modèle. Par conséquent, le modèle ajuste ses paramètres
de façon à diminuer l’écart entre les résultats obtenus et les résultats attendus. La marge
d’erreur se réduit ainsi au fil des entraînements du modèle, afin d’être capable de l’appliquer à
de nouveaux cas.

Parmi les algorithmes utilisés dans l’apprentissage supervisé, on site :

— Les Algorithmes de Régression : Gradient Descent, Arbre de decision[7].

— Algorithmes de Classification : Naives Bayes, K plus proches voisins (K-NN), Support
Vector Machine [7].

I.3.2 Apprentissage Non-Supervisé

En revanche, dans l’apprentissage non supervisé le modèle ne dispose pas les valeurs de
sortie possibles du modèle, ce qu’on appelle les « données étiquetées ». Il est alors impossible à
l’algorithme de calculer de façon certaine une erreur ou un score de réussite. L’algorithme doit
donc découvrir par lui-même la structure sous-jacente des données, et de donc de déduire les
regroupements présents dans ces données. Il existe deux principaux domaines de modèles dans
l’apprentissage non-supervisées pour retrouver les regroupements :

• Les méthodes par partitionnement, tels que les algorithmes des k-means, les cartes auto-
organisatrices SOM tel que le réseau neuronal de Kohnen, et la décomposition en valeurs
singulières (SVD)[7].

• Les méthodes de regroupement hiérarchique, telle que la classification ascendante hiérar-
chique (CAH), le regroupement par le voisinage le plus proche [7].

I.4 Les réseaux de neurones

I.4.1 Neurone Artificiel

Comme nous l’avions précédemment dit, un RNA se compose d’au moins deux couches, cha-
cune contenant plusieurs neurones dits également nœuds. D’une couche à l’autre, les neurones
sont liés entre eux. En s’appuyant sur la figure I.2, à chaque neurone sont associées des données
d’entrée (X1, X2, X3, . . . , Xi, . . . , XN), un poids, un seuil bj et une sortie yj, dont la valeur est
le résultat de la somme de ses entrées multipliées chacune par le poids de celle-ci Wji. Cette
somme pondérée est appliquée à une fonction d’activation à seuil : si la somme dépasse une
certaine valeur, la sortie du neurone est 1, sinon elle vaut 0. Ce neurone activé envoie sa sortie
aux neurones de la couche suivante, et ainsi de suite [6].
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Figure I.2 – Neurone artificiel [8]

Au final l’expression de la sortie est :

yj = φ

(
n∑

i=1

WjiXi + bj

)
(I.1)

Il est important de signaler que la fonction d’activation est indispensable pour introduire
de la non-linéarité et permettre l’apprentissage dans les réseaux profonds. Sans elle, le réseau
serait équivalent à un modèle linéaire, même avec plusieurs couches, et ne pourrait pas s’adapter
efficacement. Parmi les fonctions d’activation les plus utilisées, rapportées dans le tableau I.1,
on retrouve : la sigmoïde logistique, la tangente hyperbolique, ReLU et Softmax [6].

Table I.1 – Exemples des fonctions d’activations [9].

Fonction sigmoïde Fonction Tangente Fonction Relu Fonction Softmax

φ(x) = 1
1+e−x

φ(x) = tanh(x) =

=
ex − e−x

ex + e−x

φ(x) = max(x, 0) φ(x) = exi∑
j

exj

I.4.2 Types des réseaux de neurones

Selon l’architecture et le mode de circulation des données, il existe deux types essentiels de
réseaux de neurones :

— Réseaux de Neurones Feedforward : transmission directe des données.

— Réseaux de Neurones Récurrents : réutilisation des résultats internes [10].

I.4.2.1 Les réseaux de neurones feed-forward

Feed-forward veut dire propagation-avant, ce qui signifie que la donnée traverse le réseau
d’entrée à la sortie, dans une seule direction et sans retour en arrière de l’information. Ty-
piquement, dans la famille des réseaux à propagation-avant (Feed-forward), on distingue les
réseaux monocouches dits perceptrons simples et les réseaux multicouches appelés perceptrons
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multicouche. Le premier contient une seule couche cachée et le deuxième en contient plusieurs,
en plus de la couche d’entrée et de la couche de sortie[10].

(a) (b)

Figure I.3 – Réseau de Neurones FeedForward (a) monocouche et (b) multicouches [10]

C’est à base de cette architecture avec une certaine sophistication que sont construits les
réseaux neuronaux profonds comme le réseau neuronal à convolution (Convolutional Neural
Network CNN) et qui trouvent une grande émergence et grands intérêts. Ce réseau neuronal
fera l’objet du chapitre suivant.

I.4.2.2 Les réseaux de neurones récurrents

Les réseaux récurrents ou RNN pour Recurrent Neural Network, sont des réseaux de neurones
dans lesquels l’information peut se propager dans les deux sens, de l’entrée vers la sortie, ou
de la sortie vers l’entrée, et y compris des couches profondes aux premières couches. En cela,
ces réseaux sont plus proches du vrai fonctionnement du système nerveux, qui n’est pas à sens
unique[11].

Figure I.4 – Réseau de neurones récurrent [11]

Grace aux connexions récurrentes qui conserve à un instant t un certain nombre d’états
passés, on dit que les RNNs mémorisent des informations des étapes précédentes. Cela les rend
adaptés pour des tâches comme la reconnaissance vocale car ils peuvent identifier des mots
en tenant compte des sons précédents, la traduction automatique ou l’analyse de texte car ils
établissent des relations entre les mots déjà analysés [11].
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I.5 Conclusion

Ce chapitre était l’occasion de voir les différentes catégories de l’intelligence artificielle, d’in-
troduire particulièrement le deep learning qui trouve de plus en plus intérêt dans la conception
des applications IA, et d’aborder les réseaux neuronaux qui sont la base du DL. Nous pourrons
maintenant aborder le prochain chapitre qui sera consacré à un réseau neuronal type du DL,
en l’occurrence le réseau neuronal à convolution (Convolutional Neural Network CNN).

8



Chapitre II
Le réseau neuronal convolutif CNN



Chapitre II. Le réseau neuronal convolutif CNN

II.1 Introduction

Dans le cas de traitement d’informations plus complexes et très variés, la création de réseaux
de neurones spécialisés doit-être envisagée. Les Convolutional Neural Network (CNN) ou Ré-
seaux de Neurones Convolutifs en français sont conçus pour répondre à ces exigences. Ce sont
les modèles les plus performants du Deep Learning, ils sont puissants et sont principalement
utilisés pour traiter des données structurées en grille, comme les images, ce qui les rend extrê-
mement efficaces dans le domaine du traitement d’images, notamment dans la reconnaissance
faciale et la classification des images. Ce chapitre sera consacré au CNN.

II.2 Avant propos sur les CNN

Le CNN désigne une sous-catégorie des réseaux de neurones, dont l’un des principaux usages
est la classification d’image, d’ailleurs à ce jour un des modèles réputés être les plus performants.
L’autre usage est le traitement naturel du langage, du fait que les CNN sont très efficaces pour
l’analyse sémantique, la modélisation de phrase, la classification ou la traduction. Dans une
moindre mesure, les CNN sont utilisés aussi pour l’analyse vidéo.

Par ailleurs, le CNN reçoit en entrée une image sous la forme d’une matrice de pixels. Celle-ci
dispose de 3 dimensions :

— Deux dimensions désignant la taille de l’image, sa largueur et sa hauteur. La largeur est
associée aux nombre de colonnes N et la hauteur aux nombres des lignes M,

— Une troisième dimension, qui correspond à la profondeur de la matrice image,

— qui est de 1 pour une image à niveau de gris,

— ou de 3 pour une image couleur. Chacune des couleurs fondamentales : Rouge, Vert, Bleu,
est associé à une matrice de taille M×N [6][12].

Figure II.1 – Entrée d’un CNN, (a) image à niveau de gris et (b) image en couleur [13].

II.3 Architecture d’un Convolutional Neural Network-CNN

Contrairement à un modèle à multicouche MLP (Multi Layers Perceptron) classique, consti-
tué d’un ensemble de couches de neurones et dont la tâche principale et la classification, l’ar-
chitecture du Convolutional Neural Network dispose également d’un MLP pour la classification
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qu’on désignera « partie de classification », et en amont de laquelle se trouve « une partie convo-
lutive », composée d’une multitude de couches de neurones, et qui fait la spécificité principale
du CNN. Ce dernier comporte par conséquent deux parties bien distinctes :

• Une partie convolutive : dont l’objectif final est d’extraire les caractéristiques propres à
chaque image. Cette extraction se fait par une succession de convolution avec des filtres
ou noyaux de convolution, créant des nouvelles images appelées cartes de convolution.
Chaque convolution est suivie par une compression de façon à réduire au fur et à mesure
la taille des cartes. Au bout de cette partie, les cartes de convolutions obtenues sont
concaténées dans un vecteur de caractéristiques appelé code CNN appelé également vecteur
de caractéristiques.

• Une partie classification : Le code CNN obtenu en sortie de la partie convolutive est fourni
en entrée d’une deuxième partie, qui est un perceptron multicouches MLP constituée de
couches entièrement connectées, et dont le rôle est de combiner les caractéristiques du code
CNN afin de classer l’image[12].

Figure II.2 – Schéma représentant l’architecture d’un CNN [12].

II.3.1 Partie convolutive

II.3.1.1 La convolution

La convolution est une opération mathématique dont l’effet sur une image s’assimile à un
filtrage. En effet le filtrage d’une image consiste à la convolution de celle-ci avec un filtre. Le
filtre en question généralement approxime la caractéristique pertinente (feature) de l’image
qu’on veut extraire ou accentuer. Il existe des filtres de convolution fréquemment utilisés et
permettant d’extraire des caractéristiques plus pertinentes comme la détection des bords (filtre
dérivateur) ou la détection des forme géométriques. Le choix des filtres par ailleurs se fait
automatiquement par le modèle CNN [6].

On explique dans la suite comment s’effectue la convolution dans le CNN :

— Dans un premier temps, on a la taille de la fenêtre du filtre, étant le filtre est définit
automatiquement,

— La fenêtre du filtre, se déplace progressivement dans l’image de gauche vers droite et
de haut en bas jusqu’à arriver au bout de l’image, comme illustrée sur la figure II.3. Le
déplacement de la fenêtre se fait avec un certain pas dit « stride » qui peut être différent
de 1, égale à un certain nombre de pixels. Ce pas est défini au préalable,

— À chaque portion d’image rencontrée, un calcul de convolution s’effectue. Plus cette
portion ressemble au filtre, plus le résultat de la convolution est élevé. Une fois toute l’image
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est, en sortie on obtient une carte de convolution où sont localisées les caractéristiques
pertinentes dans l’image[12].

Figure II.3 – Schéma du parcours de la fenêtre de filtre sur l’image [12].

La convolution d’une image I de taille (M×N) avec un filtre h de taille (m×n), s’exprime
par la relation suivante :

(I ∗ h)(i,j) =
n−1
2∑

k=−n−1
2

m−1
2∑

l=−m−1
2

h(k, l) · I(i− k, j − l) (II.1)

Où pour chaque pixel I(i,j) avec i=1..M et j=1..N, on considère une portion de l’image de
même taille que le filtre [m,n] et dont il est le centre. On fait la multiplication de tous les pixels
de cette portion avec les éléments du filtre, puis on somme les produits obtenus pour ainsi
résulter au produit de la convolution [6]. Cette explication est illustrée dans la figure II.4.

Figure II.4 – Calcul de la convolution [14].

Pendant la convolution, on est confronté au problème des bords. Pour pourvoir effectuer la
convolution sur les pixels qui se trouvent sur les bords, deux solutions s’offrent à nous :

Remplir de zéros, sur m−1
2

lignes et n−1
2

colonnes, de part et d’autre de l’image. C’est ce
qu’on appelle le « zero-padding ».

Ou dupliquer les pixels du bord, sur m−1
2

lignes et n−1
2

colonnes, de part et d’autre de l’image.
Ceci est appelé effet miroir, et c’est la solution la plus adoptée.

La taille de l’image résultant de la convolution est (N +n−1 × M +m−1), si on considère
le stride noté S, elle serait de [6] :(

N + n− 1

S
× M +m− 1

S

)
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.

II.3.1.2 Pooling

Le Pooling est une opération de sous-échantillonnage, elle est placée entre les couches de
convolution, et son objectif est de réduire la dimension des couches de convolution au fur et à
mesure du traitement. Le sous-échantillonnage est réalisé en remplaçant un bloc de pixels par
une valeur unique selon un certain critère . Trois types de Pooling existent et sont présentées
en figure II.5 où une entrée de taille (4×4) est réduite donc à (2×2), avec une fenêtre-pooling
de taille (2×2) et un stride de 2, et au bout toute région de taille (2×2) est réduite à une seule
valeur selon le type de Pooling utilisé :

• Max pooling :extrait la valeur maximale de la région.

• Mean pooling : calcule la moyenne des pixels de la région.

• Sum pooling : additionne les valeurs des pixels de la région sans diviser par leur nombre
[15].

Figure II.5 – Différents types de Pooling, avec une fenêtre-Pooling de taille (2×2) et un stride de 2 [15].

La figure II.6 illustre l’effet du Pooling sur la couche de convolution dont la taille s’est réduite
de moitié pour une fenêtre de taille (2×2). Généralement, pour une fenêtre-Pooling de taille
(n×n), la taille de la couche de convolution est réduite de n fois.

Figure II.6 – Effet du Pooling [12].

De plus, de l’intérêt du Pooling qui est de réduire le nombre de paramètres à apprendre, il
réduit ainsi le coût de calcul, et il fournit aussi une invariance par petites translations, si une
petite translation ne modifie pas la moyenne, le maximum ou la somme de la région balayée, la
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moyenne ou le maximum ou le somme de chaque région resteront les mêmes et donc la nouvelle
matrice créée restera identique.

Ceci dit au bout d’un nombre d’opérations de convolution et de pooling, on résulte à une
carte de taille très réduite par rapport à l’image initiale, par contre de profondeur bien plus
élevée. Cette carte comprend les caractéristiques les plus pertinentes de l’image. Elle sera ensuite
concaténée en un vecteur (flatten vector) qu’on appelle « vecteur caractéristique » ou encore «
le code CNN »[12].

II.3.2 Partie Classification

Après la partie convolutive d’un CNN, vient la partie classification qui se base sur le modèle
du réseau de neurones classique feedforword, à savoir le modèle perceptron multicouche (MLP)
vu en chapitre 1 et comme illustré en figure II.7. Souvent dans les CNN, le MLP utilisé à une ou
deux couches cachées. Comme étant les neurones dans le MLP sont entièrement connectés, cette
partie de classification est appelée « Couche entièrement connectée » au bien « Fully Connected
Layer ». Elle reçoit en entrée le code CNN et pour objectif d’en attribuer une étiquette décrivant
sa classe d’appartenance. Pour la mise à jour des poids du MLP, il est souvent utilisé le célèbre
algorithme de descente de gradient [15].

En effet, le MLP, vu son fonctionnement, applique successivement une combinaison linéaire
puis une fonction d’activation afin de classifier le vecteur code CNN à son entrée, et du moment
que ce vecteur correspond aux caractéristiques pertinentes de l’image, il classifie en fait l’image
à l’entrée du CNN. Le MLP renvoie ainsi en sa sortie un vecteur de taille correspondant au
nombre de classes dans lequel chaque composante représente la probabilité d’appartenance de
l’image à une classe [15][16].

Figure II.7 – Couche entièrement connectée de la partie classification [16].

II.3.3 Architecture du CNN

Cette partie a pour but de synthétiser les étapes précédentes pour présenter l’architecture
totale du CNN avec ses différentes couches. Eventuellement quelques couches de mise au forme
sont nécessaires, qui seront ajoutées et expliquées.

Un Convolutional Neural Network est généralement constitué de :
1. Couche de convolution (CONV) : dont le but est d’extraire les caractéristiques pertinentes
de l’image [16].
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2. Couche d’activation ReLU (Rectified Linear Units) : Cette couche vient après chaque couche
de convolution et a pour rôle de remettre à zéro toutes les valeurs négatives reçues en entrée
et résultant de la convolution comme illustré par la figure II.8 . La fonction d’activation Relu
associe à chaque valeur x, la fonction f(x)= max (0,x), comme ça a été vu en chapitre 1. L’intérêt
de ces couches d’activation est de rendre le modèle non linéaire et de ce fait plus complexe [16].

Figure II.8 – effet de la fonction d’activation ReLU [16].

3. Couche de Pooling (POOL) : dont le but est de comprimer la taille des images ou des couches
[15].

4. Couche Fully Connected (FC) : constitué d’un MLP à une ou deux couches cachées et dont
le rôle est la classification [15].

Toutes ces couches sont combinées bout à bout pour former le CNN représenté dans la
figure II.9.

Figure II.9 – Architecture du CNN [12].

II.4 Paramètres du CNN et Ajustement

Le bon paramétrage d’un CNN est essentiel pour optimiser ses performances. En plus des
paramètres standards des réseaux MLP, comme le nombre des couches internes, le nombre des
neurones par couches, les CNN nécessitent des réglages spécifiques tels que :

— Le nombre de filtres, souvent réduit dans les premières couches et plus élevé dans les
couches profondes,

— La taille des filtres, qui varie selon la nature des données. Exemple, (5×5) pour des images
simples comme jusqu’à (15×15) pour des images plus complexes,

— La configuration du pooling, généralement en (2×2), bien que des tailles plus grandes soient
possibles, avec un risque de perte d’information si la réduction est trop agressive [16].
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II.5 Avantages et Inconvénients des CNN :

Table II.1 – Avantages et inconvénients des CNN

Les avantages Les inconvénients

Les CNN apprennent automatiquement à par-
tir des pixels bruts sans nécessiter de prétrai-
tement, ce qui simplifie l’entrée et améliore les
performances [17].

Les CNN nécessitent un grand volume de don-
nées étiquetées pour être efficaces, ce qui rend
leur entraînement coûteux et chronophage [17].

Ils exploitent la structure spatiale des images
pour construire des représentations hiérar-
chiques et généralisables [17].

Ils sont sensibles au surapprentissage et néces-
sitent des techniques de régularisation, ce qui
augmente la complexité du modèle [17].

Les CNN sont particulièrement performants
pour traiter des données visuelles comme les
images et les vidéos [18].

Leur fonctionnement difficile à interpréter en
fait des « boîtes noires », limitant leur utilisa-
tion dans des domaines critiques [17].

II.6 CONCLUSION

Ce chapitre a été consacré au CNN, détaillant son architecture et son fonctionnement. Ces
différentes couches ont été largement décrites en termes de structure et de cheminement des
données et d’opérations que subit l’image brut en entrée jusqu’à aboutir à sa classe en sortie.
La principale application du CNN est la classification, et c’est ce qui l’a rendu célèbre du fait
qu’il réalise les meilleures performances que tous les autres algorithmes existants.

Dans la communauté scientifique on s’est penché sur l’extension de ce réseau neuronal vers la
segmentation proprement dit. Au lieu de résulter vers une classe, on résulte sur une image où les
points sont répartis en plusieurs classes chacune représente une région de l’image à segmenter.
C’est le défi relevé par l’U-Net et qui fera l’objet du chapitre 4, étant dans le chapitre 3 on
donnera un état de l’art sur la segmentation.
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Chapitre III. La Segmentation d’Image

III.1 Introduction

La segmentation d’images est un domaine clé du traitement d’image et dernièrement de
l’apprentissage profond qui lui a conféré d’autres concepts. La segmentation d’images trouve
application dans nombreux domaines et suscite toujours de l’intérêt pour créer de nouveaux al-
gorithmes avec plus de précision et efficacité. Parmi les domaines d’application, on cite l’aide au
diagnostic en imagerie médicale, la conduite autonome et les voitures sans conducteur, l’auto-
matisation de la locomotion en robotique, le suivi d’objet dans la surveillance, et l’identification
d’objets d’intérêt dans les images satellite.

Dans ce chapitre on rappellera les méthodes de segmentation d’images classiques, et on
présentera brièvement celles basées sur l’apprentissage profond.

III.2 Définition

La segmentation d’images consiste à diviser une image en plusieurs régions homogènes et
distinctes. L’homogénéité est définie selon des critères, tels que des similarités entre les pixels
par rapport au niveau du gris, à la couleur, à la textures, ... . Souvent il y’a une labélisation
dite également étiquetage qui vise à annoter aux pixels de chaque région une même étiquette
[19].

Figure III.1 – (a) image originale, (b) image segmentée selon le critère de couleur[20].

III.3 Les approches de la segmentation

Les approches de segmentation peuvent être classées en trois importantes catégorie :

— Approche contour,

— Approche région,

— Approche classification des pixels.

III.3.1 Segmentation d’image fondée sur les contours :

Un contour est défini comme la frontière séparant deux régions homogènes adjacentes d’une
image . Ces méthodes de segmentation visent d’abord à détecter les frontières entre les régions,
autrement dit, à détecter les contours des régions. Une fois que la région est délimitée, les pixels
lui appartenant sont affiliés à une même étiquette. La fermeture du contour est une condition
essentielle pour la réussite de la segmentation.

Parmi les détecteurs de contours, on site les filtres dérivateurs de Sobel, Prewitt, Roberts ou
Canny-Deriche. Toutefois, ces filtres produisent souvent des contours non fermés, entrecoupés
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ou bruités, limitant les performances de ces méthodes . Les contours actifs dits également
modèles déformables, ou encore contours déformables, pallient ces limitent en assurant à coup
sûr un contour fermés.

Un contour actif consiste en une courbe qui se déforme sous l’action de forces basées sur
l’énergie interne inhérente au contour (son élasticité, sa courbure, ...) et l’énergie externe définie
à partir de l’image. La déformation se fait sous la minimisation du total de ces énergies le long
de cette courbe. La figure III.2 illustre la déformation du contour actif, sur l’image finale on
voit la délimitation des régions (objet + arrière-plan), il s’en suivra l’opération d’étiquetage
pour une achever le segmentation [19].

Figure III.2 – Déformation du contour actif[21].

III.3.2 Segmentation fondée sur les régions :

Ces méthodes considèrent les pixels au milieu de leurs voisinages, et les régions homogènes
sont formées par des groupes de pixels connexes partageant les mêmes critères d’homogénéité
spécifiés[19]. On distingue deux principales méthodes :

— La méthode croissance de région,

— La méthode division/fusion.

III.3.2.1 Méthode de croissance de région :

La segmentation par croissance de régions est une méthode ascendante. La croissance à partir
d’un pixel initial appelé « germe », il peut être choisi aléatoirement ou manuellement. C’est
le point de départ de la région à former. Les pixels connexes au germe respectant les critères
d’homogénéité sont ajoutés à la région, ainsi la région croit, jusqu’à ce qu’il n’y ait plus de
pixels aux voisinages qui vérifient les critères d’homogénéité (voir figure III.3). Ainsi de suite
jusqu’à ce que toutes les régions sont détectées ou seules les régions d’intérêt sont détectées[19].

Figure III.3 – Principe de la méthode de Croissance de régions[20].

III.3.2.2 Méthode division/fusion :

C’est une méthode descendante et ascendante à la fois. Dans la première étape, d’abord
l’image ensuite les régions obtenues, subissent une succession de division, généralement en
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quatre, tant qu’un critère d’homogénéité n’est pas respectée, en l’occurrence une variance su-
périeure à un certain seuil. Une fois que se critère est respectée la division s’arrête, aboutissant
à une image souvent sur-segmentée, été dont plusieurs régions sont homogènes entre elles et
peuvent former une seule région. C’est là qu’intervient l’étape de fusion qui rassemble les ré-
gions connexes et similaires en une seule. Cette tâche est répétée jusqu’à ce qu’il n’y ait plus
de régions connexes similaires[19], comme illustré sur la figure III.4.

Figure III.4 – Segmentation par division/fusion. (a) image originale, (b) résultat intermédiaire de division,
(c) division finale, (d) résultat intermédiaire de fusion, (e) fusion finale[22].

III.3.3 Segmentation par classification des pixels :

Ces méthodes regroupent les pixels partageant les mêmes attributs sans tenir compte de leur
connexité. Les ensembles des pixels similaires sont appelés classes, et chaque classe correspond
de ce fait à une région de l’image. Parmi ces méthodes, on distingue les techniques de seuillage
et celles de classification [23][19].

III.3.3.1 Les méthodes de seuillage :

Le seuillage est basé sur l’histogramme est l’une des méthodes de segmentation les plus
simples à mettre en œuvre. L’histogramme permet de représenter la distribution des niveaux
de gris sur l’ensemble de pixels de l’image. Chaque pic identifié dans l’histogramme correspond
à une zone de forte densité, c’est-à-dire, à une plage de niveau de gris partagée par un grand
nombre de pixels correspondant à une région importante, voire un objet prédominant dans
l’image. Il suffit de trouver les seuils qui séparent au mieux ces régions sur l’histogramme, ce
qui n’est pas toujours une tâche aisée[23].

Figure III.5 – Segmentation par seuillage. (a) image originale, (b) histogramme et seuils, (c) segmentation
par seuillage[24].
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III.3.3.2 Méthodes de classification :

Nombreuses méthodes de classifications développées initialement dans le partitionnement
des données dans l’apprentissage automatique (machine learning) trouvent application dans
la segmentation d’image, tel que la méthode des K-means ou K-clusters. C’est une méthode
d’apprentissage non supervisée, qui après un certain nombre d’itération, regroupe des données
d’entraînement non étiquetées en groupes dits également clusters[23]. (voir figure III.6)

Figure III.6 – Classification par la méthode des K-means. (a) données initiales au nombre de 12, (b)
classification en 3 classes[25].

Dans la segmentation d’image, la méthode des K-clusters permet donc de classer les pixels
de l’image en des clusters correspondant chacun à une région homogène de l’image sans avoir au
préalable l’image étiquetée. Toutefois les préalables de cette méthode sont le nombre de classe
(ou clusters) K, et la nécessité d’une initialisation aléatoire des centres des classes.

A chaque itération, chaque pixel de l’image est associé au centre le plus proche pour former
les K-clusters. Ensuite, les centres de classe sont mis à jour en calculant la moyenne des K-cluster
formés. Ce processus se répète jusqu’à atteindre un certain nombre d’itérations ou jusqu’à ce
que les centres de classes se stabilisent[23]. Un résultat de la segmentation au moyen de la
méthode des K-Clusters est illustré dans la figure III.7.

Figure III.7 – Segmentation par la méthode des K-means (a) image originale, résultats de la segmentation
pour (b) K=2 , (c) K=3, (d) K=10[26].

III.4 La segmentation basées sur le deep learning

Avec l’essor du deep learning et ses nombreuses applications en vision par ordinateur, la
segmentation d’images a connu aussi une évolution et de nouveaux concepts sont apparus. En
effet, pour répondre aux exigences spécifiques des applications de la DL en conduite autonome
d’automobile et en médecine pour ne citer que cela, des nouvelles notions de segmentation sont
nées, à savoir, la segmentation sémantique, la segmentation par instance, et la segmentation
panoptique , avec toujours le but de diviser l’image en régions distinctes mais également signifi-
catives. Cette dernière caractéristique est permise grâce au potentiel inhérent de l’apprentissage
profond. On va s’atteler dans la suite à définir ces nouveaux paradigmes.
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III.4.1 La segmentation sémantique :

La segmentation sémantique associe une étiquette à chaque pixel contenu dans une image
selon sa classe sémantique, c’est-à-dire selon le sens dans l’image[15]. Une classe sémantique
peut être désignée par catégorie, comme le montre la figure III.8, où l’image contient quatre
classes sémantiques ou quatre catégories :

— Humain, étiqueté en rouge,

— Arbre (tronc et feuillage), étiquetés en vert foncé,

— Herbe, étiqueté en vert clair,

— Ciel, étiqueté en bleu pour les pièces.

(a) (b)

Figure III.8 – Segmentation Sémantique : (a) image originale, (b) Segmentation en 4 classes sémantiques
(Humain, Arbre, Herbe, Ciel)[27].

III.4.2 La segmentation par instance

Une classe sémantique peut contenir plusieurs objets, dit instances. La segmentation d’ins-
tance se concentre sur une même classe sémantique pour y détecter séparément chacune de
ses instances. Le résultat de la détection se fait par un étiquetage différencié ou par un cadre
entourant chaque instance[15].

Par rapport à l’image de la figure III.9, nous considérons la classe sémantique « Humain »
et les instances sont les « Personnes », la segmentation par instance va donc détecter chaque
personne séparément, et le résultat dans ce cas-ci est fait par un étiquetage différencié. On voit
par ailleurs que seule la classe sémantique à intérêt à savoir « Humain » est représentée, car le
modèle de segmentation par instance dans la pratique ne traite que cette classe.

Figure III.9 – Segmentation par instance. Les différentes « Personnes » (instances) dans la classe sémantique
« Humains » sont détectées séparément[27].
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III.4.3 La segmentation panoptique

La segmentation panoptique combine entre les deux types d’informations, sémantique et
instance. C’est-à-dire, en plus de procéder à une segmentation sémantique, on détecte et seg-
mentent chaque instance dans une classe sémantique. La segmentation panoramique signifie
que toutes les catégories (classes) doivent être détectées et que différents objets (instances) de
la même catégorie doivent être distingués[15].

Par rapport l’image de la figure III.10, il y a segmentation de toutes les classes sémantiques
(Humain, Arbre, Herbe, Ciel), et aussi segmentation de toutes les instances dans la classe
sémantique Humain.

Figure III.10 – Segmentation Panoptique[27].

III.4.4 Modèles de DL pour segmentation d’image

On distingue nombreux modèles, et la figure III.11 présente un diagramme qui illustre la
chronologie des travaux les plus populaires basés sur DL pour la segmentation sémantique,
ainsi que la segmentation d’instance depuis 2014. L’article [Image Segmentation Using Deep
Learning : A Survey, 2020] présente tous ces modèles en termes de fonctionnement, architecture
et résultats de segmentation. Nous nous contentons de les lister quelques-uns :

— Fully Convolutional networks,

— Convolutional Models with Graphical Models,

— Encoder-Decoder Based Models : U-Net, V-Net,

— Multi-Scale and Pyramid Network Based Models,

— R-CNN Based Models (for Instance Segmentation),

— DeepLab Family and Dilated Convolutional Models : Développé par Google en 2015,

— Recurrent Neural Network Based Models,

— Attention-Based Models,

— Generative Models and Adversarial Training,

— CNN Models with Active Contour Models.
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Figure III.11 – La chronologie des algorithmes de segmentation basés sur le DL. Les blocs orange et vert
renvoient respectivement aux algorithmes de segmentation sémantique et d’instance[28].

Pour la segmentation des images médicales, les modèles qui ont été conçus dans ce but
et qui sont les plus connus, on cite le FCN (Fully CNN) et l’U-Net. Ce dernier possède des
caractéristiques particulières, d’où notre choix de l’étudier et ça fera l’objet des prochains
chapitres[28].

III.4.5 Application des algorithmes de Segmentation basés sur le DL

On en peut finir cette partie sans aborder les applications types de segmentation la segmen-
tation, notamment la sémantique, basée sur les modèle DL combinée avec l’IA.

Véhicules autonomes : Les voitures autonomes s’appuient sur la segmentation sémantique
pour voir le monde qui les entoure et réagir en temps réel. La segmentation sémantique divise
en classes ce que voit la voiture, comme la route, les autres véhicules, les panneaux, les feux
de circulation, les intersections, les piétons... etc. Grâce aux informations qui lui sont fournies
par le biais de la segmentation sémantique, la voiture peut circuler jusqu’à destination et est
capable de réagir face aux événements inattendus [28].

Diagnostic médical : Bon nombre de procédures médicales courantes telles que le scanner,
la radiographie et l’IRM, reposent sur l’analyse d’image. Traditionnellement cette tâche est
réalisée par un professionnel de la santé, mais aujourd’hui, l’IA équipée d’une fonctionnalité de
segmentation sémantique permet de faire cette analyse et de détecter les anomalies et même de
suggérer des diagnostics. Il faut tout de même signaler que cette dernière revient toujours aux
professionnels de la santé[28].

Photographie : Les filtres et les fonctionnalités les plus utilisés dans les applications comme
Instagram et TikTok s’appuient sur la segmentation sémantique pour identifier les différents
objets (têtes, yeux, nez, cheveux,... ou encore, voitures, bâtiments, animaux, etc.) et permettre
l’application des filtres ou des effets sélectionnés[28].

Agriculture : En agriculture, l’IA combinée avec l’automatisation et la segmentation sé-
mantique sont utilisées pour détecter les signes d’infestation dans les cultures, et même pour
automatiser la pulvérisation des pesticides. La vision par ordinateur indique à l’agriculteur les
parties du champ infectées ou à risque[28].

III.5 Conclusion

Ce chapitre a passé en revue les principales approches de segmentation d’images, allant des
méthodes classiques basées sur les contours, les régions et la classification des pixels, jusqu’aux
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techniques reposant sur le DL et les nouveaux paradigmes de la segmentation. Le prochain cha-
pitre sera consacré à l’étude de l’un des modèles DL conçu spécifiquement pour la segmentation
d’images médicales, à savoir l’U-Net.
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Chapitre IV. L’U-Net pour la segmentation d’image

IV.1 Introduction

La segmentation d’images médicales est cruciale dans le diagnostic clinique, et les méthodes
basées sur les réseaux de neurones convolutionnels (CNN) ont montré de bonnes performances.
Parmi elles, U-Net s’est imposé comme une architecture de référence pour la segmentation
médicale, grâce à sa capacité à produire des segmentations fines, même avec un nombre limité
d’images d’entrainement.

IV.2 Définition

U-Net est une architecture de réseau de neurones convolutionnels (CNN) spécialement conçue
pour la segmentation d’images. Son appellation U-Net est en lien à sa forme distinctive en "U",
qui est aussi la clé centrale de son fonctionnement. Initialement développée pour la segmen-
tation d’images biomédicales, il s’est rapidement imposé dans de nombreux d’autres domaines
grâce à sa robustesse, notamment dans les situations où les données d’entrainement sont peu
nombreuses[29].

IV.3 Structure de l’UNet

Le réseau U-Net comporte deux chemins, un premier chemin contractant appelé aussi enco-
deur ou chemin descendant ou encore chemin de sous-échantillonnage et un deuxième chemin
symétrique dit chemin d’expansion appelé également décodeur ou chemin ascendant ou encore
chemin de sur-échantillonnage.

L’encodeur (chemin de contraction) réduit les dimensions spatiales (hauteur et largeur de
l’image) et extrait des informations de haut niveau à chaque étape, tandis que le décodeur
(chemin expansif) utilise ces informations pour reconstruire une carte de segmentation détaillée
de l’image.

Nous donnerons à présent une décrire chaque chemin, en plus d’autres aspects du modèle
pour enfin proposer son architecture[29].

IV.3.1 Chemin Contractant ou Encodeur

Il est construit sur le modèle du CNN, et est constitué de plusieurs sous blocs encodeurs
dont le but de chacun est de réduire par 2 la taille de la carte en entrée et d’augmenter par 2
le nombre des canaux (ou la profondeur). Autrement dit, une carte de taille [l,h,p] en entrée, à
la sortie du bloc elle sera de taille [l/2 ,h/2 ,2×p].

Dans chaque bloc sont effectuées :

• Une première Convolution avec des filtres de taille 3×3 suivi d’une activation Relu.Cette
convolution est effectuée sur les p canaux à l’entrée du sous-bloc,

• une deuxième Convolution de taille 3×3 avec activation Relu toujours sur les p canaux,

• un MaxPool de stride 2×2, qui a pour effet de diviser la taille de la carte par 2.

Ainsi le chemin retractant, comme le CNN, permet au bout de quelques sous-blocs encodeur
de diminuer le nombre de pixels, grâce au MaxPooling, et d’augmenter le nombre d’informations
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de chaque pixel grâce au calcul de convolution. Sauf qu’ici, deux convolutions sont effectuées,
et à la différence du CNN, et qu’il n’y a pas de phase de concaténation ni de classification qui
en suivent comme dans le CNN[29].

IV.3.2 Chemin d’expansion ou Décodeur

Il se compose d’une succession de plusieurs sous-blocs décodeurs, dont chacun a pour rôle
exactement l’inverse de sous bloc encodeur. En effet, il multiplie par 2 la taille de la carte en
entrée et réduit par 2 le nombre des canaux. Autrement dit, si une carte en entrée est de taille
[l,h,p], à la sortie elle sera de [2×l, 2×h, p/2].

Chaque sous-bloc décodeur, est connecté au sous bloc encodeur du chemin contractant se
trouvant au même niveau, via une connexion dite de concaténation ou connexion résiduelle
ou encore saut de connexion. Le but étant de prendre une copie de la carte à la sortie du
sous bloc encodeur pour la fusionner avec la carte actuelle du sous bloc décodeur. Cela permet
de combiner les informations importantes, dites globales obtenues au bout du décodage et
qui sont préservées dans les phases du chemin d’expansion, avec les informations perdues lors
de l’encodage (sous-échantillonnage), dits locales et qui sont généralement les détails et les
structures fines.

Cette symétrie entre encodeur et décodeur permet de restituer les détails fins tout en utilisant
les informations contextuelles globales extraites.

Dans chaque sous bloc décodeur sont effectués :

• Un UpSample (sur-échantillonnage) de stride 2×2, qui permet d’augmenter la taille de la
carte par 2,

• Une concaténation de la carte actuelle avec celle provenant de bloc downSample se trouvant
au même niveau, via la connexion résiduelle. Les deux cartes ont la même taille [l,h,p],

• un calcul de Convolution dont le noyau est de taille (2×2)ou (3×3) suivie d’une activation
Relu. Le calcul s’effectue sur p/2 canaux, où p est le nombre de canaux en entrée du
sous-bloc décodeur. Cette convolution permet de pour raffiner les cartes caractéristiques.

Le chemin d’expansion, permet au bout de quelques sous blocs décodeurs d’augmenter le
nombre des pixels et de diminuer le nombre d’informations de chaque pixel[29].

IV.3.3 Goulot d’étranglement

Entre les deux chemins contractant et à expansion, il est inséré un bloc de transition ap-
pelé Goulot d’étranglement dans le but est de ressortir davantage les caractéristiques les plus
abstraites (profondes) capturées par le codeur avant d’être envoyées vers l’encodage.

Dans ce bloc sont effectuées deux Convolutions successives avec des filtres de taille 3×3
suivies d’une activation Relu. Cette convolution est effectuée sur les p canaux à l’entrée du bloc
[29].

IV.3.4 Architecture de l’UNet

Nous pouvons à présent présenter l’architecture de U-Net (voir figure IV.1).
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1. Chemin contractant constitué de N sous blocs encodeurs, où N est un entier indiquant la
profondeur du réseau. Dans la figure IV.1, on a présenté un exemple pour N=3. Cette partie
constitue le chemin de contraction, c’est la branche gauche du U.

2. Chemin d’expansion, constitué de N sous blocs décodeurs. Cette partie constitue le chemin
d’expansion, c’est la branche droite du U.

3. Connexions résiduelles liant les sous bloc décodeurs aux sous blocs encodeur, deux par deux.

4. Entre les deux chemins contractant et à expansion, il est inséré un bloc de transition appelé
« goulot d’étranglement » dans le but est de ressortir davantage les caractéristiques les plus
abstraites (profondes). Elle est constituée de deux couches de convolution suivie d’activation
ReLu.

L’image à l’entrée et la carte à la sortie, peuvent être soumises à des convolutions pour
ajuster la taille ou affiner le contenu.

Figure IV.1 – Schémas représentatif de l’architecture U-Net.

La structure en "U" est non seulement symétrique mais aussi fonctionnelle, car elle permet
la fusion des caractéristiques de contexte à partir du chemin contractant avec des informations
de localisation plus détaillées à partir du chemin d’expansion, grâce aux connexions résiduelles
(sauts de connexion). Cette combinaison de contexte et de localisation est cruciale pour effectuer
une segmentation précise à l’échelle des pixels.

La figure IV.2 représente l’UNet tel qu’il est proposé par Olaf et son équipe dans [Ronne-
berger et al,2015] que nous utiliserons pour segmenter les images médicales en chapitre 5.

Figure IV.2 – l’architecture UNet d’Olaf [29].
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IV.4 Fonction de Coût et Optimisation

La fonction de coût est un élément fondamental dans le processus d’apprentissage du modèle
UNet, c’est elle qui le guide dans la tâche de segmentation.

Comme la segmentation consiste à classifier chaque pixel de l’image comme appartenant à
une classe ou non, et Comme dans le commun des segmentations médicales, il s’agit de classer
les pixels en deux classes : objet (organe, tumeur,..) et arrière-plan, il est donc utilisé une
fonction de perte adaptée à ce type de segmentation, dite binaire, et qui est la Binary Cross-
Entropy (BCE). Cette fonction mesure l’écart entre les valeurs prédites par le modèle et les
valeurs réelles du masque binaire (0 ou 1). Formellement, la BCE est définie par :

BCE = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (IV.1)

Où N : nombre de pixels, yi est l’étiquette binaire (0 ou 1) dans l’image binaire de référence
du ième pixel, et pi est la probabilité prédite de ce ième pixel d’appartenir à la classe 1.

L’entropie croisée binaire mesure la distance entre les étiquettes de classe de référence (0
ou 1) et les probabilités prédites produites par le modèle. Plus la valeur binaire de l’entropie
croisée est faible, meilleures seront les prédictions du modèle pour s’alignent sur les étiquettes
vraies. Cette fonction de coût permet de pénaliser fortement les erreurs de prédiction et de ce
fait permet une détection précise des pixels de l’objet à segmenter[6][29].

Durant l’entraînement, cette fonction de coût est minimisée à l’aide de l’algorithme d’opti-
misation Adam (Adaptive Moment Estimation), qui combine les avantages de deux extensions
de la descente du gradient : le « Momentum » et le « Root Mean Square Propagation » noté
RSMpropo. Les deux méthodes ont pour but d’accélérer la descente du gradient en évitant les
grandes variations qui entrainent la divergence du gradient de la fonction du coût ou les très
faibles variations, notamment au début, qui entrainent à un minimum local. La descente du
gradient avec momentum manie la moyenne du gradient alors que RSMprop la variance du gra-
dient. L’algorithme ADAM qui combine entre les deux méthodes, manie à la fois la moyenne et
la variance du gradient, été ceci dans le but d’assurer la convergence de la descente du gradient
vers un minimum global de manière rapide et stable[6].

Concrètement, à chaque itération d’entraînement, le modèle effectue une passe avant pour
produire une prédiction, puis une rétropropagation (backpropagation) de l’erreur calculée par
la fonction de coût BCE est effectuée pour mettre à jour les paramètres du réseau. Ce processus
est répété pendant plusieurs itérations, permettant au modèle d’apprendre progressivement à
extraire des caractéristiques discriminantes et à améliorer sa capacité de segmentation[29].

Nous présentons dans la suite les étapes de l’algorithme ADAM :
1. Estimation de la moyenne des gradients, notée mt, et est calculée comme suit :

mt = β1mt−1 + (1− β1)gt (IV.2)

Où gt =
∂(BCE)

∂t
est le gradient à l’instant t, β1 est un hyperparamètre qui contrôle le taux de

décroissance de la moyenne du gradient, généralement proche de 0,9.
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2. Estimation de la variance des gradients, notée vt et est calculée comme suit :

vt = β2vt−1 + (1− β2)g
2
t (IV.3)

Où gt =
∂(BCE)

∂t
est le gradient à l’instant t, β2 est un hyperparamètre qui contrôle le taux de

décroissance de la moyenne des carrés du gradient, généralement proche de 0,999.

3. Correction des biais, puisque la moyenne mt et la variance vt sont initialisées à zéro, elles ont
tendance à être biaisées vers zéro surtout pendant les étapes initiales. Pour corriger ces biais,
on calcule des estimations corrigées de la moyenne et de la variance suivant les expressions
suivantes :

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(IV.4)

4. Mise à jour des paramètres, notés wt suivant l’expression suivante :

wt = wt−1 −
m̂t√
v̂t + ϵ

α (IV.5)

Où α est le taux d’apprentissage, généralement égal à 0,001 et ε est une constante positive, de
l’ordre de 10−8, insérée pour éviter la division par zéro [30].

IV.5 Les avantages et les inconvénients de U-Net

IV.5.1 Les avantages de U-Net

— Haute précision avec des données limitées : U-Net atteint d’excellentes performances même
avec des petits ensembles de données de formation grâce à son architecture et à ses stra-
tégies d’augmentation des données[31].

— Localisation précise : la combinaison de fonctionnalités de bas et de haut niveau via des
connexions de saut permet une localisation précise des limites des objets[31].

— Rapide et efficace : l’architecture entièrement convolutive d’U-Net permet un traitement
efficace d’images volumineuses avec des vitesses de segmentation rapides [31].

— Architecture simple et modulaire : :basée sur des auto encodeurs et couches de convolution,
facile à implémenter et à comprendre[31].

— Très utilisée dans le domaine médical : excellente performance pour détecter les anomalies,
tumeurs, etc[31].

— Segmentation précise au niveau de pixel : permet une analyse fine des images [31].

IV.5.2 Les inconvénients de U-Net

— Consommation élevée de ressources : demande beaucoup de calculs et de mémoire, diffici-
lement applicable en temps réel[31].

— Sensibilité au surapprentissage (overfitting) : comme beaucoup de modèles de deep learning,
il peut trop s’ajuster aux données d’entrainement s’il n’est pas bien régularisé[31].
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IV.6 Conclusion

Ce chapitre a été consacré à l’U-Net, sa structure et son fonctionnement ont été largement
détaillés. L’architecture du modèle d’Olaf Ronneberger et al, conçue pour la segmentation
d’image médicale a été présentée, son implémentation et application sur l’objet du chapitre
suivant.
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Chapitre V. IMPLEMENTATION ET RESULTATS EXPERIMENTAUX

V.1 Introduction

Dans ce chapitre, nous allons aborder l’implémentation sous Python du modèle UNet. Nous
l’appliquerons sur deux bases de données d’images biomédicales et nous évaluerons ses per-
formances. Mais avant cela nous décrirons l’environnement de travail et exposerons les biblio-
thèques Python nécessaires pour le fonctionnement du modèle.

V.2 L’environnement de travail

Nous présentons dans ce qui suit l’environnement matériel (hardware) et logiciel nécessaire
à la réalisation de notre travail.

V.2.1 Hardware

Le matériel utilisé pour l’exécution de ce travail est un ordinateur bureautique ALFATRON
des caractéristiques suivantes :

— CPU : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz.

— RAM : 64 Gb.

— Le GPU NVIDIA Quadro P5000 avec 16 Go de mémoire, qui nous a été fourni par SO-
NATRACH à Hassi Messaoud lors de notre stage chez aux.

V.2.2 Software

V.2.2.1 Langage de programmation

Python est le langage de programmation le plus largement utilisé dans le domaine de l’intelli-
gence artificielle, et en particulier dans l’apprentissage profond, car il contient les bibliothèques
les plus fiables et utiles pour l’utilisation des réseaux de neurones et de la vision artificielle.
Nous avons utilisé la version 3.9.0 / 64 bits de python[25].

V.2.2.2 Visual Studio Code

Visual Studio Code est un éditeur de code gratuit et open source de Microsoft, compatible
avec Windows, MacOs et Linux. Léger, personnalisable et extensible, il prend en charge plusieurs
langages de programmation comme « Python » et convient aussi bien aux débutants qu’aux
développeurs expérimentés[25].

V.3 Préparation de l’environnement Software

Nous présentons les bibliothèques de Phyton nécessaires pour l’implémentation et le dérou-
lement du modèle U-Net et pour son application dans la segmentation des images.

— TensorFlow : est un framework open source de calcul numérique développé par Google
et publié en novembre 2015. Il est rapidement devenu l’un des outils les plus utilisés
pour le deep learning, notamment grâce à sa capacité à manipuler des tensors (structures
de données multidimensionnelles). De nombreuses applications de Google, comme Gmail,
Google Photos ou la reconnaissance vocale, reposent aujourd’hui sur TensorFlow[11].
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— Keras : est une API de haut niveau en Python qui permet de créer facilement des modèles de
deep learning. Elle est simple, flexible, et s’appuie principalement sur TensorFlow comme
back-end[11].

— NumPy : est une bibliothèque pour langage de programmation Python, destinée à mani-
puler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques
opérant sur ces tableaux[32].

— OpenCV : est une bibliothèque graphique libre, initialement développée par Intel spécialisée
dans le traitement d’images en temps réel. La société de robotique Willow Garage et la
société ItSeez se sont succédé au support de cette bibliothèque[32].

— Matplotlib : est une bibliothèque du langage de programmation Python destinée à tracer
et visualiser des données sous formes de graphiques. Elle peut être combinée avec les
bibliothèques Python de calcul scientifique NumPy et SciPy[32].

— PIL : la bibliothèque Python Imaging Library ajoute des capacités de traitement d’image à
votre interpréteur Python. Cette bibliothèque offre une prise en charge étendue des formats
de fichier, une représentation interne efficace et des capacités de traitement d’image assez
puissantes. La bibliothèque d’image de base est conçue pour un accès rapide aux données
stockées dans quelques formats de pixel de base[32].

— Le module os : est un module fourni par Python dont le but est d’interagir avec le système
d’exploitation. Il permet ainsi de gérer l’arborescence des fichiers, de fournir des informa-
tions sur le système d’exploitation, processus, variables, systèmes, ainsi que de nombreuses
fonctionnalités du système. Le module os peut être chargé simplement avec la commande :
import os[33].

— Tifffle : est une bibliothèque Python permettant de lire et d’écrire des fichiers TIFF, no-
tamment utilisés en bioimagerie, en stockant des tableaux NumPy et des métadonnées[34].

— Scikit-learn (ou Sklearn) : est une bibliothèque open source de machine learning en Python.
Elle permet d’effectuer des tâches comme la classification, la régression, le clustering et
le prétraitement des données. Elle s’appuie sur les bibliothèques NumPy et Matplotlib,
essentielles pour l’analyse et la visualisation des données[32].

Figure V.1 – ensemble des bibliothèques utilisées
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V.4 Les Bases de Données

Nous avons fait nos tests sur deux bases de données que nous nous sommes procurés à partir
de la plateforme « Kaggle » qui est une plateforme en ligne, filiale de Google, dédiée aux data
scientists et aux spécialistes du machine learning. Elle permet de partager des jeux de données,
de collaborer, de créer des modèles et de participer à des concours. Kaggle propose aussi un
environnement cloud, appelé Kernels, pour coder et analyser en Python.

V.4.1 Base de données Chest-ct-segmentation

La base de données Chest-CT-Segmentation est couramment utilisée pour la segmentation
des images thoraciques issues de scanners (CT scans), notamment dans les travaux récents por-
tant sur l’identification des lésions pulmonaires. Elle contient environ 16 708 paires d’images et
de masques annotés, réparties entre l’entraînement et le test. Chaque image est de taille 512×512
pixels, en niveaux de gris. Les masques associés comportent trois canaux distincts, chacun cor-
respondant à une structure anatomique spécifique : les poumons, le cœur et la trachée. Grace a
son volume important et ses annotations précise, ce dataset permet l’entrainement de modèles
de segmentation profonds et performants, contrairement à d’autres bases plus restreintes.

V.4.2 Base de données DRIVE

La base de données DRIVE est largement utilisé pour la segmentation des vaisseaux rétiniens,
notamment dans les études récentes qui évaluent les performances des modèles. Il contient 20
images d’entraînement et 20 de test, chacune de taille 584×565 pixels, représentant différents
cas pathologiques. Cependant, le nombre limité d’images rend difficile l’obtention de modèles
très performants.

V.5 Prétraitement des images

Le prétraitement des images est une étape essentielle dans le cadre de la segmentation
d’images médicales. Il permet de préparer les images brutes afin de les rendre mieux exploitables
par le modèle et permettre d’améliorer ses performances.

L’ensemble des prétraitements effectués sur les images des bases de données sont :

— Conversion des images couleur en des images niveaux de gris.

— Amélioration du contraste localement en appliquant une égalisation d’histogramme sur
l’image par des petites portions.

— Normalisation centrée réduite suivie d’une remise à l’échelle. La normalisation de l’intensité
des images de la base des données se fait en soustrayant la moyenne puis en divisant par
l’écart type du dataset. Puis une remise à l’échelle entre 0 et 255 est accomplie. Cette
étape est importante car elle permet de stabiliser et d’accélérer l’apprentissage du réseau.

— Transformation gamma pour ajuster la luminance des images. Un gamma supérieur à 1
fait d’éclaircir l’image, ce qui aide à faire ressortir les structures peu visibles comme les
vaisseaux sanguins.
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Toutes ces opérations de prétraitement sont réalisées par la fonction « my_PreProc() » en
annexe 1.

V.6 Construction de l’U-Net

Nous allons implémenter le modèle U-Net de la figure IV.2. Les images en entrée, après
prétraitement, sont de dimensions 584×560×1, correspondant à des images en niveaux de gris.

– Partie encodeur : constitué de 3 blocs :

• Un premier bloc applique :

o deux convolutions avec 16 filtres 3×3 , et chacune suivie d’une activation ReLU.
o un MaxPooling 2×2, réduisant la taille à 292×280×16.

• Le deuxième bloc utilise 32 filtres, et applique la même séquence : deux convolutions
suivie d’une activation Relu et d’un MaxPooling, pour une sortie de 146×140×32.

• Le troisième bloc augmente encore la profondeur avec 64 filtres, pour une sortie de
73×70×64, en réalisant la même séquence.

– Partie goulot (bottleneck) : Au point le plus bas du réseau, les deux couches convolutives
utilisent 128 filtres chacune, en sortie la carte est de dimension 73×70.

– Partie décodeur (chemin ascendant) : par analogie avec la partie encodeur, il est aussi
constitué de trois blocs :

• Un premier bloc applique :

o un Sur échantillonnage 2×2, augmentant la taille de 73×70×128 à 146×140×64,
o Une concaténation avec la carte récupérée, via la connexion de concaténation,
o deux convolutions avec 64 filtres 3×3, et chacune suivie d’une activation ReLU,

donnant une sortie de taille 146×140×64.

• Le deuxième bloc utilise 32 filtres, et applique la même séquence : un sur-échantillonnage,
suivi d’une concaténation puis deux convolutions suivie d’une activation Relu, pour
une sortie de 292×280×32.

• Le troisième bloc augmente la taille et diminue la profondeur avec 16 filtres , pour
une sortie de 292×280×16, en réalisant la même séquence.

– Couche de sortie : où est effectuée une convolution 1×1 avec une fonction d’activation
sigmoïde, qui produit une carte de probabilité binaire pour chaque pixel de l’image. Cette
carte indique la probabilité d’appartenance d’un pixel à la classe d’intérêt. En sortie on
obtient une carte de dimension 584×560×1.

Le code Python d’implémentation de l’UNet sur trouve en Annexe 2.

V.7 Entrainement de l’U-Net

Le modèle est compilé avec l’optimiseur Adam et la fonction de perte Binary Cross Entropy.
L’entraînement du modèle U-Net se fait progressivement sur un lot de 8 images, dit batch,
cette taille est fixée à l’avance. Pour chaque lot, le modèle est entrainé. Au bout d’une itération,

37



Chapitre V. IMPLEMENTATION ET RESULTATS EXPERIMENTAUX

l’ensemble des données d’entrainement sont injectées au modèle. Le nombre d’itération est aussi
fixé à l’avance, dans notre programme, il est de 500 itérations. L’entrainement se fait par la
fonction « model.fit () » en annexe 3.

Le tableau V.1, résume les couches du modèle et les paramètres entrainables à chaque ité-
ration. Il indique que le modèle contient un total de 481 745 paramètres entraînables, et aucun
paramètre non entraînable, ce qui signifie que toutes les couches participent à l’optimisation
durant l’entraînement. La taille mémoire estimée du modèle est de 1,84 MB, ce qui reste rai-
sonnable pour des applications biomédicales, qu’on pourrait donc implémenter sur des GPU
grand public.

Table V.1 – Construction de l’U-Net

Layer (type) Type complet Output Shape Paramètres Connecté à
Input_2 Input(shape=(584, 560,

1))
(None, 584, 560, 1) 0 []

Conv2D_1 Conv2D(16, 3, relu,
same)

(None, 584, 560, 16) 160 Input_2

Conv2D_2 Conv2D(16, 3, relu,
same)

(None, 584, 560, 16) 2320 Conv2D_1

Max_pooling2D_1 MaxPooling2D() (None, 292, 280, 32) 0 Conv2D_2
Conv2D_3 Conv2D(32, 3, relu,

same)
(None, 292, 280, 32) 4640 Max_Pooling2D_1

Conv2D_4 Conv2D(32, 3, relu,
same)

(None, 292, 280, 32) 9248 Conv2D_3

Max_pooling2D_4 MaxPooling2D() (None, 146, 140, 32) 0 Conv2D_4
Conv2D_5 Conv2D(64, 3, relu,

same)
(None, 146, 140, 64) 18496 Max_pooling2D_2

Conv2D_6 Conv2D(64, 3, relu,
same)

(None, 146, 140, 64) 36928 Conv2D_5

Max_pooling2D_" MaxPooling2D() (None, 73, 70, 64) 0 Conv2D_6
Conv2D_7 Conv2D(128, 3, relu,

same)
(None, 73, 70, 128) 73856 Max_pooling2D_3

Conv2D_8 Conv2D(128, 3, relu,
same)

(None, 73, 70, 128) 147584 Conv2D_7

Conv2D_transpose_1 Conv2DTranspose(64,
2, stride=2,same)

(None, 146, 140, 64) 32832 Conv2D_8

Concat_1 Concatenate() (None, 146, 140, 128) 0 [Conv2D_transpose_1
+ Conv2D_6]

Conv2D_9 Conv2D(64, 3, relu,
same)

(None, 146, 140, 64) 73792 Concat_1

Conv2D_10 Conv2D(64, 3, relu,
same)

(None, 146, 140, 64) 36928 Conv2D_9

Conv2D_Transpose_2 Conv2DTranspose(32,
2, stride=2, same)

(None, 292, 280, 32) 8224 Conv2D_10

Concat_2 Concatenate() (None, 292, 280, 64) 0 [Conv2D_Transpose_2
+ Conv2D_4]

Conv2D_11 Conv2D(32, 3, relu,
same)

(None, 292, 280, 32) 18464 Concat_2

Conv2D_12 Conv2D(32, 3, relu,
same)

(None, 292, 280, 32) 9248 Conv2D_11

Conv2D_Transpose_3 Conv2DTranspose(16,
2, stride=2, same)

(None, 584, 560, 32) 2064 Conv2D_12

Concat_3 Concatenate() (None, 584, 560, 32) 0 [Conv2D_Transpose_3
+ Conv2D_2]

Conv2D_13 Conv2D(16, 3, relu,
same)

(None, 584, 560, 16) 4624 Concat_3

Conv2D_14 Conv2D(16, 3, relu,
same)

(None, 584, 560, 16) 2320 Conv2D_13

Output Conv2D(1, 1, sigmoid) (None, 584, 560, 1) 17 Conv2D_14

V.8 Résultats

Dans les figures V.2et V.3, on présente deux résultats de segmentation pour chacune des
bases de données Chest-ct-segmentation et DRIVE.
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Figure V.2 – Résultats de la segmentation des images de scanner thoracique (CT scan). (a)(d) Image
originale, (b)(e) vérité terrain, (c)(f) segmentation obtenue par l’UNet.

Figure V.3 – Résultats de la segmentation des images rétiniennes. (a) Image originale, (b) vérité terrain, (c)
segmentation obtenue par l’UNet.

Nous ne commenterons par la suite que les résultats de la base DRIVE. Le modèle U-Net
a démontré une bonne capacité à segmenter les vaisseaux sanguins rétiniens, en particulier les
troncs principaux ainsi qu’un grand nombre de branches secondaires. La comparaison entre le
masque réel (vérité terrain) et le masque prédit montre une correspondance globale satisfaisante
dans la structure des vaisseaux.

On note toutefois que les vaisseaux très fins (capillaires), bien visibles dans les annotations
manuelles, sont parfois mal détectés ou absents dans la prédiction, ce qui met en évidence une
sensibilité encore limitée du modèle pour les structures de petite taille.

Par ailleurs, le modèle génère très peu de fausses détections en dehors de la zone vasculaire,
ce qui traduit une bonne gestion du bruit de fond.

V.9 Evaluation des performances du Modèle : Entrainement et Test

V.9.1 Evaluation pendant l’entrainement

Les métriques utilisées pour évaluer les performances du modèle pendant l’entrainement
sont : l’accuracy (précision globale), la sensitivité (capacité à détecter les vaisseaux) et la
spécificité (capacité à ignorer les faux vaisseaux). Ces métriques d’évaluations sont calculées à
partir des indicateurs suivants : les vrais positifs (TP), les vrais négatifs (TN), les faux positifs
(FP), les faux négatifs (FN). Les expressions de calcul sont en annexe 4, et la fonction python
qui permet de les calculer est confusion_matrix() et elle est en Annexe 4.
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Il faut signaler que ces métriques sont calculées sur une image segmentée choisie aléatoi-
rement, et ce n’est pas une moyenne, et qu’elles sont calculées uniquement sur la zone utile
de l’image, définie par le masque FOV. Les métriques de la base DRIVE sont listées dans le
Tableau V.2, et nous les commentons dans la suite :

• TP (Vrais positifs) = 21 655

Ce chiffre élevé traduit une bonne capacité de détection des structures vasculaires princi-
pales et secondaires. Cela montre que le modèle réussit à reproduire fidèlement la majorité
des segments vasculaires présents dans les annotations de référence, en particulier les troncs
et branches bien définis. Ce résultat est essentiel dans le contexte médical, car il reflète la
fiabilité du modèle pour repérer les zones cliniquement pertinentes.

• FP (Faux positifs) = 6 610

Il s’agit des pixels prédits comme vaisseaux alors qu’ils ne le sont pas. Ce nombre, bien
que non négligeable, reste relativement faible par rapport au nombre total des pixels, ce
qui témoigne d’un bon contrôle du bruit de fond.

• FN (Faux négatifs) = 6 563

Ce sont les vaisseaux que le modèle a manqués. On peut supposer que ce sont souvent les
petits vaisseaux très fins ou peu visibles. C’est ici que le modèle montre ses limites : il a
un peu plus de mal à détecter les détails très fins.

• TN (Vrais négatifs) = 292 212

Là, le score est impressionnant. Plus de 292 000 pixels ont bien été reconnus comme "non-
vaisseaux". Cela montre que le modèle est très fiable pour ne pas confondre le fond avec
les vaisseaux, ce qui est essentiel en médecine.

• Accuracy (Précision globale) = 0,9597 (95,97%)

Un taux de précision globale (Accuracy) de 95,97% indique que le modèle U-Net parvient à
bien différencier les pixels vasculaires des pixels de fond dans la grande majorité des cas.Ce
résultat reflète une bonne performance générale. Néanmoins, comme les images médicales
sont très déséquilibrées (avec une forte dominance de pixels appartenant au fond), cette
métrique peut parfois masquer les erreurs de détection sur les vaisseaux, notamment les
plus fins. C’est pourquoi il est important de compléter cette mesure avec d’autres indi-
cateurs, comme la sensibilité et la spécificité, pour obtenir une évaluation plus fiable du
modèle.

• Sensitivité = 0,7674 (76,74 %)

Le score de sensibilité de 76,74% montre que le modèle détecte bien la majorité des vais-
seaux sanguins, en particulier les plus visibles. Toutefois, environ un quart des vaisseaux,
souvent les plus fins ou peu contrastés, ne sont pas détectés. Cela traduit une bonne per-
formance globale, mais avec une marge d’amélioration pour capter les détails plus subtils.

• Spécificité = 0,9779 (97,79 %)

Un score de spécificité de 97,79 % indique que le modèle U-Net est très efficace pour distin-
guer les zones sans vaisseaux (le fond) des structures vasculaires. Cela signifie qu’il commet
très peu de faux positifs, c’est-à-dire qu’il évite de confondre des zones non vasculaires avec
des vaisseaux. Cette capacité à ne pas sur-segmenter est essentielle dans le contexte mé-

40



Chapitre V. IMPLEMENTATION ET RESULTATS EXPERIMENTAUX

dical, car elle réduit les erreurs de diagnostic potentielles en garantissant que seules les
structures réellement présentes soient détectées comme telles.

Table V.2 – Performances du modèle UNet pendant l’entrainement sur la base DIVE

Performances de segmentation dans le FOV Résultats
TP 21655.0000
FP 6610.0000
FN 6563.0000
TN 292212.0000
Accuracy 0.9597
Sensitivity 0.7674
Specificity 0.9779

Le modèle U-Net démontre une excellente performance générale dans la segmentation des
vaisseaux rétiniens. Il réussit à détecter la majorité des structures vasculaires tout en évitant de
générer trop de faux positifs. La sensibilité légèrement inférieure révèle cependant une difficulté
à capter les plus petits capillaires, typique dans ce type de tâche. La spécificité élevée prouve
que le modèle fait très peu d’erreurs sur les zones non vasculaires, ce qui est crucial pour des
applications cliniques fiables.

Nous rapportons à titre indicatif dans le tableau V.3 les performances du modèle UNet sur
la base des données Chest-CT-Segmentation sans pour autant les commenter.

Table V.3 – Performances du modèle

Performances de la segmentation Résultats
TP 358120.0000
FP 21812.0000
TN 3297224.0000
FN 9244.0000
Accuracy 0.9916
Sensitivity 0.9748
Specificity 0.9934

V.9.2 Évaluation du modèle sur les données de test

Après l’entraînement du modèle U-Net, une évaluation sur les données de test est effec-
tuée. Cette étape permet de quantifier la performance finale du modèle sur des données qu’il
n’a jamais vues auparavant, ce qui est crucial pour estimer sa capacité de généralisation. Les
métriques considérées sont : Accuracy (précision) et Perte (Loss). Cette dernière représente
l’erreur globale entre les prédictions du modèle et les véritables annotations des images (les
vérités terrain), plus cette valeur est faible, plus le modèle est performant. La fonction Python
chargée de cette opération est « model.evaluate () » et est en Annexe 6.

Table V.4 – Performances du modèle sur les données Test

Les performances Les résultats
Test Loss 0.1085
Test Accuracy 0.9632

Le tableau V.4 résume ces résultats, que nous commentons dans la suite :
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• Loss (perte) = 0,1085

Une valeur de 0,1085 est considérée comme relativement faible, suggérant une bonne qualité
de prédiction des structures segmentées.

• Accuracy (précision) = 0,9632

Cela signifie que 96,32% des pixels ont été correctement classifiés par le modèle (comme
appartenant ou non aux vaisseaux sanguins dans le contexte d’un dataset comme DRIVE).
Cette métrique globale indique que le modèle a appris à bien différencier les régions d’in-
térêt des autres parties de l’image.
Donc, ces résultats montrent que le modèle est capable de produire une segmentation
précise avec un faible taux d’erreur, ce qui témoigne de la robustesse de l’architecture
U-Net appliquée à la segmentation des images médicales.

V.9.3 Courbes d’apprentissage

Les courbes d’apprentissage permettent de visualiser l’évolution de la perte (loss) et de la
précision (accuracy) du modèle U-Net au cours de l’entraînement. Elles comparent les perfor-
mances sur tous les ensembles d’entraînement et de validation (test).

Pendant l’entrainement, ces courbes aident à évaluer la qualité de l’apprentissage, détecter
un éventuel surapprentissage et guider les ajustements du modèle. Elles sont essentielles pour
comprendre la dynamique de l’apprentissage et optimiser les performances du réseau.

Figure V.4 – Les courbes d’apprentissage (perte et précision)

La figure ci-dessus présente les courbes de la perte (loss) et de la précision (accuracy) pour
l’entraînement et la validation d’un modèle sur 500 époques. On observe que la perte diminue
rapidement dans les premières phases, ce qui indique un bon apprentissage dès les premières
itérations. Cependant, à partir d’environ 200 époques, la perte de validation cesse de diminuer
et commence même à légèrement augmenter quand le nombre d’époque s’approche de 500,
tandis que la précision de validation stagne. En revanche, les performances sur les données
d’entraînement continuent à s’améliorer, en perte et en précision. Cela révèle un phénomène de
surapprentissage (overfitting) au-delà de 200-250 époques. Pour améliorer la généralisation du
modèle, une stratégie d’arrêt anticipé (early stopping) aurait été bénéfique. Le modèle atteint
tout de même une précision de validation satisfaisante autour de 96%.

Nous indiquons qu’il nous faut exactement 10 minutes pour entrainer le modèle sur 500
itérations avec le GPU NVIDIA Quadro P5000.
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Chapitre V. IMPLEMENTATION ET RESULTATS EXPERIMENTAUX

V.10 Conclusion

Ce chapitre a présenté la mise en œuvre du modèle U-Net pour la segmentation des vaisseaux
rétiniens à partir du jeu de données DRIVE. Les étapes de prétraitement, d’entraînement
et d’évaluation ont permis d’obtenir des résultats globalement satisfaisants. Le modèle s’est
montré performant dans la détection des structures vasculaires principales, tout en révélant
quelques limites dans la détection des vaisseaux très fins. Ces résultats confirment l’efficacité
et la pertinence de l’architecture U-Net pour des applications en imagerie médicale.
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Conclusion Générale

À travers ce travail, nous avons étudié une architecture de réseau neuronal convolutif, l’U-
Net, pour assurer la segmentation des images médicales. Après avoir abordé son architecture et
son fonctionnement, nous avons dédié tout un chapitre à son implémentation sous Python, son
application sur des images médicales provenant de deux bases de données, DRIVE et Chest-ct-
segmentation, ainsi qu’à l’évaluation de ses performances.

Nous avons consacré une attention particulière à l’analyse des résultats obtenus sur la base
DRIVE, et nous affirmons sans conteste que cette architecture offre des performances remar-
quables dans la segmentation des vaisseaux rétiniens, une tâche cruciale dans le diagnostic
ophtalmologique, malgré la petite taille de la base de données. Une précision atteignant 96% et
une fonction de perte faible, témoignent de la capacité du modèle, d’un côté à bien généraliser
sur des images jamais vues, et d’un autre côté, à bien apprendre et à capturer les informations
contextuelles à partir d’une petite base de données.

Toutefois, certaines limitations persistent, notamment dans la détection des capillaires très
fins, souvent mal identifiés ou absents dans les prédictions obtenues. Nous expliquons cette
limitation par la sensibilité du modèle au surapprentissage, mais éventuellement à la taille
relativement réduite de la base des données. L’extension de cette base pour augmenter sa taille
par des outils qui existent pourrait remédier à ces faiblesses.

En somme, ce mémoire confirme que l’intelligence artificielle appliquée à la vision par or-
dinateur représente une avancée majeure pour la segmentation d’images médicales, et que des
solutions comme l’UNet peuvent jouer un rôle essentiel dans l’aide au diagnostic et à la décision
clinique.
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Annexe A
Interface graphique

A.1 Annexe 1 :
Les fonctions de prétraitement
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A.2 Annexe 2 :
Le code d’implémentation de l’UNet

A.3 Annexe 3 :
Entraînement du modèle U-Net

L’entraînement du modèle a été effectué en utilisant la fonction fit() fournie par la biblio-
thèque Keras. Cette méthode constitue l’élément central du processus d’apprentissage dans
TensorFlow/Keras. Elle permet d’ajuster les poids du modèle en le faisant apprendre à partir
d’un ensemble de données d’entraînement (X_train, y_train) au cours de plusieurs époques. À
chaque itération, les poids sont mis à jour de manière à minimiser l’erreur entre les prédictions
générées et les valeurs réelles (étiquettes).

Voici le programme correspondant à cette fonction :
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A.4 Annexe 4 :
calcul des métriques à partir de la matrice de confusion

Pour obtenir les valeurs des Vrais Positifs (TP), Faux Positifs (FP), Faux Négatifs (FN)
et Vrais Négatifs (TN), nous avons utilisé la fonction confusion_matrix de la bibliothèque
scikit-learn. Le code suivant a été utilisé :

Cette fonction prend en entrée :

• y_true_flat : les étiquettes réelles (aplaties),

• y_pred_flat : les prédictions binaires du modèle (aplaties également),

Et retourne une matrice 2x2 sous la forme : [[TN, FP], [FN,TP]]
L’utilisation de .ravel() permet de "déplier" cette matrice pour récupérer directement les

valeurs dans l’ordre : TN, FP, FN, TP.

A.5 Annexe 5 :
Métriques d’évaluation de performance

A.5.1 Matrice de confusion :

La matrice de confusion ou tableau de contingence est un outil utilisé pour mesurer les
performances d’un modèle d’apprentissage automatique en vérifiant spécifiquement l’exactitude
de son problème de prédiction et de classification par rapport à la situation réelle. C’est une
matrice de taille égale au nombre de classes qui permet la génération des performances de
chaque classe prise individuellement[16].



Annexe A. Interface graphique

Figure A.1 – Matrice de confusion [16].

• TP (True Positive) signifie le pixel de vaisseau est correctement identifié[35].

TP =
number of pixels correctly as vessel pixel
number of pixels actually in vessel region

(A.1)

• TN (True Négative) signifie le pixel non-vaisseau est aussi correctement identifié[35].

FP =
number of pixels wrongly detected as vessel pixel

number of pixels actually in vessel region
(A.2)

• FP (faux positif) signifie le pixel de vaisseau mal identifié[35].

FP =
number of pixels wrongly detected as vessel pixel

number of pixels actually in vessel region.
(A.3)

• FN (faux négatif) signifie le pixel non-vaisseau mal identifié[35].

FN =
number of pixels wrongly detected as non-vessel pixel

number of pixels actually in non-vessel region
(A.4)

De ces quatre événements, il ressort les mesures suivantes :

— La Précision[35] :

ACC =
number of correctly classified pixel

number of pixel in image FOV
=

TP + TN

TP + TN + FP + FN
(A.5)

— La Sensibilité[35] : Mesure la capacité à détecter les pixels des vaisseaux et indique les
performances d’un bon algorithme pour classer correctement les pixels des vaisseaux.

SEN =
TP

TP + TN
(A.6)

— Spécificité [35] : Elle mesure la capacité à détecter les pixels non-vaisseaux.

SPE =
TN

TP + TN
(A.7)



 

Ce mémoire explore l'application des techniques d'apprentissage profond—en particulier les réseaux de 

neurones convolutionnels (CNN)—à la segmentation d'images médicales. L'accent principal est mis sur 

la mise en œuvre d’un modèle U-Net pour la segmentation automatique des vaisseaux sanguins rétiniens 

à partir du jeu de données DRIVE. Après avoir exploré les fondements du deep learning et les méthodes 

classiques de segmentation, l’étude détaille l’architecture U-Net, son entraînement, et son évaluation. 

Le modèle atteint une précision de 96 %, montrant une capacité robuste à détecter les structures 

vasculaires principales, bien que des limites subsistent pour les capillaires fins. Ce travail confirme 

l’efficacité de U-Net dans les tâches de segmentation médicale et propose des pistes pour améliorer ses 

performances futures. 

Mots-clés : Apprentissage profond, CNN, U-Net, Segmentation d’images médicales, Vaisseaux 

sanguins rétiniens, DRIVE, Précision, Évaluation de modèle. 

 

 

This thesis explores the application of deep learning techniques—particularly convolutional neural 

networks (CNNs)—to medical image segmentation. The main focus is on implementing a U-Net model 

for the automatic segmentation of retinal blood vessels using the DRIVE dataset. After examining the 

fundamentals of deep learning and classical segmentation methods, the study details the U-Net 

architecture, its training process, and its evaluation. The model achieves an accuracy of 96%, 

demonstrating strong capability in detecting major vascular structures, although some limitations remain 

with fine capillaries. This work confirms the effectiveness of U-Net in medical segmentation tasks and 

suggests avenues for improving its future performance. 

Keywords : Deep Learning, CNNs, U-Net, Medical Image Segmentation, Retinal Blood Vessels, 

DRIVE Dataset, Accuracy, Model Evaluation. 

 

 

في عملية تقسيم الصور الطبية  (CNN )— و خاصة الشبكات العصبية الالتفافية — يستكشف تطبيق تقنيات التعلم العميقهذا البحث 

 DRIVEقاعدة البيانات للأوعية الدموية في شبكية العين باستخدام للتقسيم التلقائي   U-Netتنفيذ نموذج . يركز العمل بشكل أساسي على 

،تدريبه و تقييمه . و قد حقق   U-Net، يفصل البحث بنية نموذج بعد استعراض أسس التعلم العميق و الأساليب التقليدية للتقسيم 

،رغم إستمرار بعض تحديات في تحديد الشعيرات  قوية في كشف البنى الوعائية الرئيسية،مما يدل على قدرة  96%النموذج دقة بلغت 

 مستقبلا.في مهام تقسيم الصور الطبية و تقترح سبلا لتحسين أدائه   U-Netالدموية الدقيقة . تأكد هذه الدراسة فعالية نموذج 

                     الدقة ، تقييم النموذج.، DRIVEالأوعية الدموية الشبكية ، الطبية ،،تقسيم الصور  CNN  ، U-Netالتعلم العميق، الكلمات المفتاحية:
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