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Résumé : 

 

 Ce mémoire étudie l'identification du mélanome à partir d'images dermatoscopiques en 

utilisant des réseaux de neurones convolutifs (CNN). Trois architectures ont été testées : un CNN 

simple, MobileNetV2 et ResNet50, sur la base Melanoma Cancer Dataset (13 879 images). Les 

résultats obtenus montrent des performances limitées (précision de 48% pour ResNet50, 88.7% 

pour MobileNetV2 mais avec une faible AUC de 0.522), révélant des difficultés majeures liées 

au déséquilibre des classes, aux limites du prétraitement des images et aux contraintes 

matérielles. Bien que ces modèles n’atteignent pas une fiabilité suffisante pour une application 

clinique directe, cette analyse met en lumière les défis techniques et propose des pistes 

d’amélioration : rééquilibrage des données, fine-tuning des modèles pré-entraînés et intégration 

de méthodes de segmentation avancées. Ce travail souligne l’importance d’une approche critique 

dans l’application de l’IA au diagnostic médical. 

 

Mots clés : Mélanome, CNN, Limites de L’IA, Déséquilibre de classes, Prétraitement d’images , 

Diagnostic médical. 

 
 Abstract : 

 
 This thesis explores melanoma detection in dermoscopic images using convolutional 

neural networks (CNNs). Three architectures were evaluated: a basic CNN, MobileNetV2, and 

ResNet50, trained on the Melanoma Cancer Dataset (13,879 images). The results revealed 

significant limitations (48% precision for ResNet50, 88.7% accuracy for MobileNetV2 but with 

a low AUC of 0.522), highlighting challenges such as class imbalance, insufficient image 

preprocessing, and hardware constraints. While the models lack reliability for direct clinical use, 

this study identifies key technical hurdles and suggests improvements: data rebalancing, fine-

tuning of pre-trained models, and advanced segmentation techniques. The work emphasizes the 

need for a critical approach when applying AI to medical diagnosis. 

 

Keywords : Melanoma,  CNN, AI limitations, Class imbalance, Image processing, Medical 

diagnosis. 
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1 Introduction générale 

1.1 Contexte Médical 

La peau, organe principal du système tégumentaire, protège le corps et peut être 

atteinte de lésions bénignes ou malignes (cancéreuses). Les cancers cutanés se divisent en 

deux catégories : les mélanomes et les non-mélanomes (carcinomes épidermoïdes et 

basocellulaires). Leur développement dépend de facteurs génétiques (phototype, albinisme, 

vitiligo) et de l'exposition aux UV[1-[2]. La stadification de ces cancers permet d'évaluer leur 

progression et d'adapter le traitement, soulignant l'importance d'un diagnostic précoce pour 

améliorer les chances de guérison. 

Le diagnostic repose d'abord sur un examen visuel analysant la morphologie des lésions 

(taille, forme, couleur, etc.), mais cette évaluation reste subjective en raison des variations de 

perception et des propriétés optiques de la peau[3]. Pour améliorer la précision, la 

dermoscopie permet une visualisation détaillée des structures cutanées invisibles à l'œil nu, 

facilitant la détection précoce des mélanomes [4]. D'autres techniques avancées (microscopie 

confocale, spectroscopie, imagerie multi-spectrale) offrent une analyse plus fine des tissus, 

mais leur complexité et leur temps d'interprétation limitent encore leur utilisation en routine 

clinique[4]. 

 

 

1.2 Problématique 

Le diagnostic manuel des lésions cutanées, bien que reposant sur des méthodes 

éprouvées comme l'examen visuel et la dermoscopie, présente des limites significatives. La 

subjectivité de l'interprétation des critères morphologiques (couleur, forme, asymétrie), la 

ressemblance entre certaines lésions bénignes et malignes aux stades précoces, ainsi que la 

variabilité inter-observateur rendent le diagnostic précoce particulièrement complexe. Dans ce 

contexte, comment les nouvelles technologies d'imagerie et d'intelligence artificielle peuvent- 

elles pallier ces difficultés pour améliorer la précision et la rapidité du diagnostic des cancers 

de la peau ?[5] 

1.3 Objectif du travail 

Dans ce travail, nous avons exploité un réseau de neurones convolutif (CNN), une 

architecture d'apprentissage profond particulièrement efficace pour l'extraction de 

caractéristiques et la classification d'images, grâce à sa capacité à traiter des données visuelles 

avec une haute précision. Notre objectif principal était d'appliquer ces réseaux neuronaux 

convolutifs à l'analyse d'images dermatoscopiques, afin de développer un système automatisé 

pour la classification et la détection précoce du mélanome. 

1.4 Organisation du mémoire 

Ce mémoire est organisé de la sorte : 
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 Chapitre 1 (synthèse bibliographique ) consacré au mélanome (aspects médicaux) et 

l’importance du diagnostic précoce , les bases de données pour la dermatologie, 

l’apprentissage profond en imagerie médicale, les CNNs et les travaux récents sur la 

classification des lésions cutanés 

 Chapitre 2 (Matériel et Méthodologie) présente la base de données Melanoma 

Cancer Dataset utilisée, les prétraitement sur la base de données , les architectures 

avec outils utilisés et la méthodologie d’évaluation 

 Chapitre 3 (Résultats et Discussion) est la partie expérimentale de ce mémoire suivi 

par une discussion des résultats et outils que nous avons utilisé dans notre travail. Le 

mémoire se termine avec une conclusion et quelques perspectives pour des travaux 

futures 
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2 Chapitre I :  Synthèse Bibliographique 

2.1 Le mélanome (aspects médicaux) 

La peau, en tant qu'organe le plus exposé aux agressions extérieures, est 

continuellement confrontée à des risques susceptibles de provoquer des maladies et des 

infections cutanées. Une lésion cutanée se caractérise par une zone de peau présentant une 

croissance ou un aspect anormal en comparaison avec les tissus voisins. Parmi les principaux 

facteurs de risque, l'exposition aux rayons ultraviolets (UV) émis par le soleil joue un rôle 

crucial. Ces radiations peuvent entraîner des modifications cellulaires, pouvant parfois 

déboucher sur le développement d'un cancer de la peau, souvent reconnaissable par 

l'apparition d'une tache pigmentée irrégulière. Le mélanome, qui est la forme la plus agressive 

de cancer cutané, est responsable d'un nombre significatif de décès, en particulier parmi les 

populations à la peau claire. Au cours des dernières décennies, son incidence a connu une 

augmentation constante : il est désormais classé parmi les cancers les plus fréquents dans les 

pays occidentaux, avec un taux de nouveaux cas doublant tous les dix ans depuis 50 ans[6]. 

On distingue trois principaux types de cancer de la peau [6]: 

 le mélanome qui se développe à partir des mélanocytes. il se propage de 

manière horizontale (sur l’´epiderme) ou aussi de manière verticale (dans 

les couches profondes de la peau) . 

 

 le carcinome spinocellulaire qui se développe à partir de l’´epiderme. Il se 

propage très vite à la surface de la peau et peut aussi atteindre d’autres 

organes. le carcinome spinocellulaire est le deuxième cancer de la peau 

le plus mortel. 

 

 le carcinome basocellulaire qui se développe à partir des cellules basales. 

Cette forme de cancer est la plus fréquente mais rarement métastatique et 

moins dangereux que les deux autres. 

 

2.1.1 Le mélanome 

2.1.1.1 Définition : 

Le mélanome est une tumeur maligne des mélanocytes, les cellules responsables de la 

pigmentation cutanée. Dans plus de 90 % des cas, il se développe au niveau de la peau, mais 

peut aussi apparaître, plus rarement, sur les muqueuses, sous les ongles ou dans les yeux. Sur 

la peau, il peut se manifester sous diverses formes (tache marron, bouton, etc.). Représentant 

3 % des cancers humains, c’est celui dont la fréquence augmente le plus, avec une incidence 

croissante de 10 % par an depuis 50 ans. Il touche principalement les peaux claires, et 

l’exposition solaire est un facteur de risque majeur. Il peut se présenter comme une lésion 

pigmentée noire récente sur une peau saine. Bien qu’il soit le cancer de la peau le plus mortel 
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(responsable de 75 % des décès liés à ce type de cancer), une détection et un traitement 

précoces permettent une guérison par simple excision. En revanche, sans intervention rapide, 

il peut s’étendre rapidement à d’autres organes et entraîner le décès [7]. 
 

Figure I.1 : Le mélanome 

 

 

2.1.2 Le développement du mélanome : 

Dans 80 % des cas, les mélanomes cutanés se développent sur une peau saine, sans 

lésion préexistante, se manifestant sous la forme d'une nouvelle tache pigmentée ressemblant 

à un grain de beauté. Les 20 % restants proviennent d’un nævus (grain de beauté) préexistant. 

À ses débuts, les cellules cancéreuses sont peu nombreuses et restent confinées à la surface de 

la peau (épiderme), formant ce qu'on appelle un mélanome in situ, qui s'étend initialement de 

manière horizontale. En l'absence de traitement, la tumeur peut progresser en profondeur, 

franchissant la membrane basale pour envahir le derme, ce qui marque le passage à un 

mélanome invasif. À ce stade, les cellules cancéreuses peuvent se propager via les vaisseaux 

sanguins ou lymphatiques, entraînant la formation de métastases dans d'autres organes [7]. 

La figure ci-dessous illustre un cas où le mélanome se développe à partir d'un grain de beauté 

(nævus) préexistant : 

 

 

Grain de beauté Mélanome 

Figure II.2: Développement du mélanome 
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2.1.2.1 Les types de mélanomes : 

Il existe quatre grands types des mélanomes en fonction de leur aspect clinique et 

leur mode progression (Figure I.3) [8]: 
 

a) Superficiel Extensif b)Nodulaire c)Dubreuilh d)Lentigineux 

Figure I.3 : Types de mélanome 

 

 

 Le mélanome à extension superficielle (SSM : Superficial Spreading Melanoma) 

[Cabarrot, 2006] : 

Le mélanome superficiel extensif est le type le plus courant, représentant 

environ 70 % de l'ensemble des mélanomes. Il se caractérise par une extension 

horizontale sur la surface cutanée et apparaît généralement sous la forme d'une lésion 

plate et mince aux contours irréguliers. Ses couleurs peuvent varier, englobant 

différentes nuances de rouge, bleu, brun, noir, gris et blanc. Parfois, il peut également 

se développer à partir d'un grain de beauté préexistant. (Figure I.3.a) 

 

 mélanome nodulaire [Cabarrot, 2006] : 

Le mélanome nodulaire est le deuxième type le plus courant, représentant 

environ 15 à 20 % de l'ensemble des mélanomes. Contrairement aux autres formes, il 

se développe rapidement en profondeur dans la peau plutôt que de s'étendre à la 

surface. Il se manifeste généralement sous la forme d'une masse surélevée, qui est 

souvent noire, mais peut également être rouge, rose ou de la même couleur que la 

peau. Son évolution rapide en fait l'un des mélanomes les plus agressifs (Figure I.3.b). 

 

 mélanome lentigineux des extrémités (lentigo malin) [Cabarrot, 2006] : 

Le mélanome lentigineux des extrémités affecte principalement les individus à 

la peau foncée, en particulier ceux d'origine africaine, asiatique ou hispanique. 

Contrairement à d'autres formes de mélanome, il n'est pas lié à l'exposition au soleil. 

Représentant moins de 5 % des cas, il se manifeste généralement par une petite tache 

plane, brun foncé ou noire, qui est souvent discrète dans ses phases initiales (Figure 

I.3.c). 

 

 Le mélanome sur mélanose de Dubreuilh [Cabarrot, 2006] : 

Il affecte principalement les personnes âgées et représente entre 10 et 15 % de 

l'ensemble des mélanomes. Il se manifeste généralement par une lésion aux 
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contours irréguliers, de couleur ocre ou brun clair au départ, qui s'assombrit 

progressivement au fur et à mesure de son évolution, affichant des nuances variées de 

brun et de noir. Ce type de mélanome se développe souvent sur des zones 

régulièrement exposées au soleil, comme le visage, et évolue lentement avant de 

devenir invasif (Figure I.3.d). 

 

2.1.3 L’importance du diagnostic précoce 

L'incidence du mélanome chez les populations blanches vivant dans des régions 

ensoleillées double environ tous les dix ans. Dans la plupart des pays européens, on estime 

qu'elle se situe entre 5 et 10 nouveaux cas pour 100 000 habitants chaque année [Lens, 

2004].Toutefois, ce chiffre est bien plus élevé en Australie, où il atteint 40 nouveaux cas pour 

100 000 habitants par an parmi les populations blanches. À l'inverse, l'incidence du mélanome 

demeure très faible dans les pays à majorité noire ou asiatique [Garbe, 2001]. 

En Algérie, une étude rétrospective menée entre 1985 et 1995 sur 116 patients atteints de 

mélanome a mis en évidence une incidence plus élevée dans la région ouest du pays, 

atteignant 53,17 %. Cette pathologie se révèle plus fréquente chez les personnes âgées de 40 à 

50 ans, représentant 33,80 % des cas, et concerne davantage les femmes, qui composent 55,70 

% des patients. La forme nodulaire se présente comme la plus courante (74,31 %), 

principalement localisée sur les membres inférieurs (55,70 %), et une majorité des cas (82,07 

%) se développent de novo. La consultation tardive est également observable, comme en 

témoigne la proportion élevée de mélanomes au stade de Clark V, qui s'élève à 47,91 % 

[Boudghene, 1990]. 

La peau est l'organe humain le plus souvent affecté par le cancer. En vu de ce nombre et de la 

dangerosité de ce cancer, d’où l’intérêt d’un diagnostic précoce et un traitement chirurgical 

efficace pour améliorer le pronostic. Le diagnostic précoce du mélanome permet d'atteindre 

un taux de réussite chirurgicale curative de 80 % lorsque la tumeur est localisée. En revanche, 

lorsque des métastases se développent, le taux de survie à cinq ans diminue de manière 

significative, ne s'élevant qu'à 10 % . L'IA et l'imagerie médicale avancée facilitent 

l'identification automatique des mélanomes, et peuvent prédire la réponse à certains 

traitements. 
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2.2 Intelligence Artificielle, Apprentissage Profond, Imagerie Médicale, 

Apprentissage Profond en Imagerie Médicale 

2.2.1 Intelligence Artificielle 

L'être humain excelle dans la polyvalence et la prise de décision complexe, mais 

montre des limites dans le traitement de grandes quantités de données numériques. À 

l'inverse, les ordinateurs réalisent des calculs complexes rapidement mais peinent à imiter les 

tâches humaines simples sans modélisation préalable. Initialement conçus pour imiter le 

cerveau humain, les réseaux de neurones artificiels ont évolué vers des applications 

spécialisées, s'éloignant de leur inspiration biologique. Aujourd'hui, ils sont largement utilisés 

en vision par ordinateur, reconnaissance vocale, traduction automatique, réseaux sociaux, jeux 

et diagnostic médical [9]. L'intelligence artificielle, grâce à des algorithmes sophistiqués et au 

machine learning, permet désormais aux machines d'accomplir des tâches complexes autrefois 

réservées à l'homme [10]. 

Pour accomplir ses tâches, une machine doit apprendre à interpréter son environnement. C'est 

là qu'intervient le Machine Learning (apprentissage automatique), un ensemble de méthodes 

qui permettent aux systèmes d'acquérir des connaissances à partir de données d'entraînement. 

Grâce à ces données,ce qui permet aux algorithmes de généraliser et de prendre des 

décisions face à de nouvelles informations. 

Parmi les différentes approches du Machine Learning, le Deep Learning (apprentissage 

profond) se distingue en tant que sous-domaine puissant, reposant sur des réseaux de neurones 

artificiels. 

 

 

 

Figure I.4 : IA, ML, DP 
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2.2.2 Apprentissage Profond (Deep Learning) 

D’après Yann LeCun [11], « L’apprentissage profond ou le Deep Learning permet 

aux modèles de calcul composé de plusieurs couches d'apprendre des représentations de 

données avec plusieurs niveaux d'abstraction ». L'apprentissage profond (DL), une sous- 

catégorie de l'apprentissage automatique, se concentre sur l'apprentissage de représentations à 

partir de données brutes. Cela permet à l'algorithme de découvrir automatiquement les motifs 

et caractéristiques sous-jacents nécessaires à des tâches de détection ou de classification. 

Contrairement aux méthodes traditionnelles, qui exigent une extraction manuelle des 

caractéristiques, le DL traite directement les données d'entrée (qu'il s'agisse d'images, de 

textes, de sons, etc.) à l'aide d'architectures de réseaux neuronaux profonds. Ces réseaux sont 

capables de hiérarchiser et d'optimiser ces représentations de manière autonome. Bien que ce 

concept puisse être appliqué à n'importe quelle technologie d'apprentissage automatique, il 

excelle particulièrement dans des domaines complexes tels que la vision par ordinateur, le 

traitement du langage naturel ou la reconnaissance vocale. Son approche end-to-end (de bout 

en bout) permet d'éliminer le besoin d'intervention humaine dans la sélection des 

caractéristiques [11]. 

L'apprentissage en profondeur permet à un modèle informatique d'apprendre directement à 

partir d'images, de textes ou de sons afin d'effectuer des tâches de classification, souvent avec 

une précision dépassant celle des performances humaines. Ces modèles sont formés à l'aide de 

vastes volumes de données étiquetées et d'architectures de réseaux neuronaux multicouches, 

qui extraient progressivement des caractéristiques de plus en plus complexes. Il s’emploie 

dans plusieurs domaines et contextes d’expertise parmi lesquelles on peut citer : 

 Le diagnostic et la recherche médicale 

 La détection des maladies 

 La reconnaissance vocale ou faciale 

 La robotique 

 

 

2.2.3 Imagerie Médicale 

Le diagnostic médical a été facilité par l’introduction de nouvelles technologies et 

principalement l’imagerie médicale et ses outils; qu’ils soient électroniques ou informatiques 

pour mesurer et évaluer le corps humain dans le but de détecter des maladies au stade le plus 

précoce que possible [18]. L'imagerie médicale englobe l'ensemble des techniques et 

technologies utilisées pour acquérir , traiter et interpréter des images du corps humain dans le 

but de poser des diagnostics, de mettre en œuvre des traitements ou de suivre l'évolution des 

patients. Elle inclut plusieurs modalités [12] : 

 Radiographie (rayons X) 

 Échographie (ondes ultrasonores) 

 IRM (Imagerie par Résonance Magnétique) 

 Scanner (tomodensitométrie) 

 Médecine nucléaire (TEP, scintigraphie) 
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Ces méthodes, non invasives ou peu invasives, révèlent la structure, le fonctionnement ou les 

anomalies des tissus et organes, jouant un rôle clé dans la détection précoce, la planification 

chirurgicale et la recherche médicale. 

 

 

2.2.4 Apprentissage Profond en Imagerie Médicale 

L'intelligence artificielle (IA) offre des perspectives prometteuses dans le secteur de la 

santé, en optimisant la prise en charge des patients et en allégeant la charge de travail des 

médecins, tout en préservant une qualité diagnostique élevée. L'explosion des données de 

santé pave la voie à des applications concrètes, telles que le dépistage précoce du cancer. En 

raison de la marge d'erreur inhérente à l'évaluation humaine, les outils d'aide au diagnostic 

basés sur l'IA pourraient contribuer à réduire ces erreurs et à détecter des indices subtils en 

analysant d'importantes bases de données médicales. Pour traiter efficacement ces volumes de 

données, l'IA s'appuie sur des techniques avancées telles que le Deep Learning (apprentissage 

profond) et le Machine Learning (apprentissage automatique), permettant ainsi des analyses 

complexes et précises [13]. 

Les applications d'apprentissage en profondeur pour l'analyse d'images médicales ont émergé 

lors d'ateliers et de conférences avant de se diffuser dans les revues scientifiques. À partir de 

2015 et 2016, le nombre de publications sur ce sujet a connu une croissance rapide, devenant 

un thème dominant dans les grandes conférences, comme en témoigne le premier numéro 

spécial dédié dans IEEE Transactions on Medical Imaging en mai 2016. Aujourd'hui, une 

conférence entièrement consacrée à ce domaine, le Workshop on Machine Learning in 

Medical Imaging (MLMI), se tient même en parallèle de la référence du secteur, Medical 

Image Computing and Computer Assisted Intervention (MICCAI), soulignant l'importance 

croissante de l'apprentissage automatique en imagerie médicale[15-16]. Les prestataires de 

soins de santé génèrent et capturent d'immenses volumes de données, incluant des signaux 

biologiques et des images médicales. Face à cette masse d'informations hétérogènes, 

l'apprentissage automatique s'impose comme une solution efficace pour intégrer, analyser et 

extraire des prédictions pertinentes à partir de ces vastes ensembles de données [17]. 

L'apprentissage profond représente une véritable révolution dans l'analyse automatique des 

images. Cependant, cette approche requiert une quantité considérable de données de 

référence, car la précision de la classification dépend largement de la qualité et de la taille de 

l'ensemble de données utilisées pour l'entraînement. Il est nécessaire de former un 

classificateur avec des milliers, voire des millions d'images annotées par des experts. Par la 

suite, la machine est capable de comprendre ces données par elle-même, sans nécessiter 

d'intervention humaine. Grâce à sa capacité d'apprentissage continu sur de nouvelles images, 

le système peut diagnostiquer certaines maladies avec une précision supérieure à celle de la 

plupart des médecins. 
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2.2.5 Les bases de données pour la dermatologie (focus sur Melanoma Cancer Dataset 

) 

L’un des défis majeurs en intelligence artificielle appliquée à la dermatologie est la 

disponibilité de jeux de données annotés de qualité. Parmi les bases de données publiques 

utilisées pour l’entraînement des modèles de classification, on peut citer [19]: 

 ISIC Archive 

 Melanoma Cancer Dataset 

 HAM10000 

 DermaMNIST 

 SD-198 

 PAD-UFES-20 

 Derm7pt Dataset 

Dans notre approche, Melanoma Cancer Dataset sert de base pour l’entraînement initial des 

modèles, avant un affinage (fine-tuning) sur des données locales ou complémentaires. Son 

utilisation permet d’établir une classification hiérarchique plus précise, en combinant ses 

annotations avec des métadonnées cliniques pour améliorer l’interprétabilité des résultats. 

Cette base, bien qu’imparfaite, reste un pilier pour le développement de solutions IA en 

dermatologie, notamment pour le déploiement clinique de systèmes de diagnostic assisté. 

Nous allons présenter dans le chapitre 2 ses caractéristiques , ses avantages et ses limites. 

 

 

2.2.6 Réseaux des Neurones 

Les réseaux de neurones (RN) sont des systèmes composés de neurones (nœuds) 

interconnectés par des synapses qui transmettent des signaux entre eux, permettant ainsi de 

détecter automatiquement des relations non linéaires complexes entre de nombreuses 

variables, sans nécessiter d'intervention humaine [21]. 

Un réseau de neurones est typiquement structuré en couches successives, où chaque couche 

(i) reçoit ses entrées des sorties de la couche précédente. Chacune de ces couches contient Ni 

neurones, connectés aux Ni-1 neurones de la couche antérieure via des poids (W) qui 

déterminent la force de ces connexions. Mathématiquement, cette opération équivaut à 

multiplier le vecteur d'entrée par une matrice de transformation, où chaque neurone effectue 

une combinaison linéaire pondérée de ses entrées. Ainsi, l'empilement des couches revient à 

enchaîner plusieurs transformations matricielles, permettant au réseau de modéliser des 

relations de plus en plus complexes à travers cette composition de fonctions [22]. 
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Figure I.5: Structure d’une neurone artificiel [22] 

 

Les réseaux de neurones (RN) se déclinent en plusieurs architectures, chacune conçue pour 

répondre à des besoins spécifiques. Leur classification repose généralement sur des critères 

tels que la profondeur (nombre de couches entre l'entrée et la sortie), la complexité des 

couches cachées, ou encore la configuration des connexions entre neurones[23]. Dans le 

domaine de la détection d'objets, diverses architectures et méthodes d'apprentissage ont été 

expérimentées, parmi lesquelles les réseaux de neurones convolutionnels (CNN) se sont 

particulièrement distingués par leurs performances. C'est d'ailleurs cette architecture que nous 

avons adoptée comme fondement pour développer notre propre réseau détecteur. 

 

 

2.2.7 Réseaux de neurones convolutif(CNN) 

Figure I.6: Architecture standard d’un CNN 

Les Réseaux de Neurones Convolutionnels (CNN, de l'anglais Convolutional Neural 

Network) sont actuellement les modèles les plus performants pour classer les pixels d'une 

image. Ils se composent de deux parties distinctes : une image en entrée, représentée sous 

forme de matrice (2D pour les niveaux de gris, avec une troisième dimension de profondeur 3 

pour les couleurs RVB), est traitée par une partie convolutive qui extrait des caractéristiques 

via une série de filtres (noyaux de convolution), générant des cartes de convolution. Certains 

filtres réduisent la résolution par un maximum local, et les cartes résultantes sont finalement 

aplaties et concaténées en un vecteur de caractéristiques appelé code CNN[20]. Le code CNN 
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en sortie de la partie convolutive est ensuite transmis à une deuxième partie, composée de 

couches entièrement connectées (un perceptron multicouche), dont le rôle est de combiner ces 

caractéristiques pour classer les pixels ou les images elles-mêmes. La sortie finale est une 

couche comportant un neurone par catégorie, dont les valeurs numériques sont généralement 

normalisées (par exemple via une fonction softmax) pour produire une distribution de 

probabilité entre 0 et 1, avec une somme égale à 1, indiquant la probabilité d'appartenance à 

chaque classe(voire la figure I.5) . 

Une architecture CNN est constituée d'un empilement de couches de traitement distinctes[24] 

: 

 la couche de convolution (CONV) : qui applique des filtres sur des champs 

récepteurs locaux pour extraire des caractéristiques ; 

 la couche de pooling (POOL) : qui réduit la dimension spatiale des cartes de 

caractéristiques par sous-échantillonnage (max-pooling ou average-pooling) ; 

 la couche de correction (ReLU) : qui introduit une non-linéarité via la fonction 

d'activation ReLU (Rectified Linear Unit) ; 

 la couche entièrement connectée (FC) : similaire à un perceptron multicouche, 

qui combine les caractéristiques pour la classification ; 

 et enfin la fonction de perte (LOSS) : qui calcule l'erreur entre les prédictions 

et les véritables labels pour guider l'apprentissage. 

 

 La couche de convolution (CONV) : 

La couche de convolution constitue l'élément central des réseaux de neurones convolutifs. 

Son objectif est d'identifier la présence d'un ensemble de caractéristiques au sein des images 

qui lui sont présentées en entrée[26].Pour ce faire, on effectue un filtrage par convolution : le 

principe consiste à faire glisser une fenêtre, représentant la caractéristique, sur l'image et à 

calculer le produit de convolution entre cette caractéristique et chaque section de l'image 

considérée, ce qui permet de générer une carte de caractéristiques (featuresmap) en sortie[26]. 

Dans les CNN, un filtre et une caractéristique désignent la même chose : un motif à détecter. 

La couche convolutive applique chaque filtre (ou noyau) à toutes les images d'entrée via un 

produit de convolution. Chaque filtre, appris automatiquement, cible une particularité visuelle 

spécifique. Le résultat est une carte d'activation par filtre, où les valeurs élevées indiquent une 

forte correspondance entre la zone analysée et la caractéristique recherchée. Ces cartes 

révèlent ainsi spatialement où et avec quelle intensité chaque motif apparaît dans l'image 

originale [25]. Il est nécessaire de définir certains paramètres qui influencent le calcul de la 

taille des images à la sortie de chaque couche (la carte des caractéristiques). Ces paramètres 

incluent : 

 Le ‘Pas’: détermine le nombre de pixels dont le filtre se décale à 

chaque opération sur la matrice d'entrée. Un Pas ‘élevé’ diminue la 

précision spatiale mais augmente l'efficacité, tandis qu'un ‘Pas’ faible 
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préserve plus de détails au prix d'une complexité accrue. Ce paramètre 

influence directement la taille en sortie de la couche convolutive[27]. 

 'La marge (à 0)' ou 'zéro padding ' : parfois, il est commode de mettre 

des zéros à la frontière du volume d'entrée. La taille de ce 'zero- 

padding' est le troisième hyper paramètre. Cette marge permet de 

contrôler la dimension spatiale du volume de sortie. En particulier, il est 

parfois souhaitable de conserver la même surface que celle du volume 

d'entrée [20]. 

 La 'Profondeur' de la couche : fait référence au nombre de noyaux de 

convolution, ou au nombre de neurones associés à un même champ 

récepteur[20]. 

La figure ci-dessous représente le principe de convolution : 
 

 

 

Figure I.7: Principe de la convolution [28] 

 

 La couche de pooling (POOL) : 

La couche de pooling, souvent insérée entre deux couches de convolution, a pour rôle de 

réduire la taille spatiale des cartes de caractéristiques tout en conservant leurs informations 

essentielles. Elle prend en entrée plusieurs cartes de caractéristiques et applique à chacune une 

opération de sous-échantillonnage, généralement un max-pooling (conservation de la valeur 

maximale par cellule) ou un average-pooling (moyenne des valeurs). En pratique, on utilise 

des fenêtres de petite taille (souvent 2×2 ou 3×3) avec un pas (stride) de 2, ce qui diminue la 

résolution spatiale de moitié tout en évitant une perte excessive d’information. Cette réduction 

permet de limiter le nombre de paramètres et de calculs, améliorant ainsi l’efficacité du réseau 

et réduisant les risques de sur-apprentissage. De plus, le pooling introduit une certaine 

invariance spatiale, rendant le modèle moins sensible aux variations de position ou 

d’orientation des caractéristiques détectées. En sortie, le nombre de cartes de caractéristiques 

reste identique à l’entrée, mais leur dimension est considérablement réduite, favorisant une 

meilleure généralisation du réseau[25]. 

La figure ci-dessous représente la différence entre max pooling et average pooling : 
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Figure I.8: Les types de Pooling [29] 

 

 La couche de correction (ReLu) : 

La convolution étant une opération linéaire, l'ajout d'une fonction d'activation non linéaire 

après chaque couche convolutive est essentiel pour permettre au réseau d'apprendre des 

représentations complexes. La fonction ReLU (Rectified Linear Unit), définie par f(x) = 

max(0, x), est la plus couramment utilisée : elle remplace toutes les valeurs négatives par zéro 

tout en conservant les positives intactes. Cette non-linéarité simple mais efficace améliore 

significativement les performances du réseau en introduisant des transformations non linéaires 

sans compliquer excessivement les calculs. Contrairement aux fonctions saturantes (comme 

sigmoïde ou tanh), ReLU évite le problème du gradient vanishing, accélère la convergence et 

préserve la sensibilité des neurones aux caractéristiques pertinentes, tout en maintenant 

l'efficacité computationnelle. Son implémentation légère et son effet régularisateur 

(sparsification des activations) en font un choix privilégié dans les architectures CNN 

modernes[22]. 

 La couche entièrement connectée (FC) : 

La couche entièrement connectée (FC), présente en fin de réseau (CNN ou autre), transforme 

un vecteur d'entrée en un vecteur de sortie via une combinaison linéaire pondérée suivie d'une 

fonction d'activation. Dans un CNN appliqué à la segmentation d'images, sa dernière couche 

FC produit un vecteur de taille N (nombre de classes), où chaque valeur représente la 

probabilité d'appartenance d'un pixel à une classe donnée. Par exemple, pour une 

segmentation binaire (N=2), un vecteur [0.9, 0.1] indique 90% de probabilité pour la classe 1. 

Cette couche opère par multiplication matricielle entre les poids appris (matrice de 

connexions) et les caractéristiques d'entrée, suivie d'une normalisation (softmax pour N>2, 

sigmoïde pour N=2) pour obtenir des probabilités. Son nom "entièrement connectée" vient de 

ce que chaque neurone d'entrée influence tous les neurones de sortie, permettant une décision 

globale basée sur l'ensemble des caractéristiques extraites par le réseau [25]. 

 La fonction de perte (Loss) : 
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La fonction de perte, située en fin de réseau, mesure et pénalise l'écart entre les prédictions du 

modèle et les valeurs réelles du jeu de données d'entraînement. Elle joue un rôle crucial dans 

l'apprentissage en quantifiant l'erreur à minimiser. Les fonctions de perte les plus 

courantes incluent l'entropie croisée (particulièrement adaptée aux problèmes de 

classification, car elle compare la distribution de probabilité en sortie avec la vérité terrain) et 

l'erreur quadratique moyenne (souvent utilisée en régression pour mesurer la différence entre 

valeurs prédites et observées). Le choix de la fonction de perte influence directement la façon 

dont le réseau ajuste ses paramètres lors de la rétropropagation du gradient [20]. 

 La couche de normalisation : 

La normalisation des entrées (centrage-réduction pour une moyenne nulle et un écart-type 

unitaire) est une pratique établie pour accélérer la convergence des réseaux de neurones. 

Étendant ce principe à toutes les couches, la batch normalisation standardise dynamiquement 

les activations entre les couches pendant l'entraînement. Positionnée entre deux couches 

successives, cette technique normalise en temps réel les sorties de chaque couche (en les 

recentrant et les re-échelonnant par batch) avant leur propagation vers la couche suivante. Elle 

stabilise et accélère l'apprentissage en réduisant les variations internes (covariate shift), tout 

en agissant comme un régularisateur léger. Cette approche permet notamment d'utiliser des 

taux d'apprentissage plus élevés et atténue les problèmes d'initialisation des poids [10]. 

 La couche Dropout 

Le Dropout est une technique de régularisation qui consiste à désactiver aléatoirement une 

proportion définie de neurones à chaque itération d'entraînement. Pendant la phase de 

propagation avant, les neurones sélectionnés (par tirage aléatoire) voient leur activation forcée 

à zéro, ce qui revient à les exclure temporairement du réseau. Cette suppression aléatoire 

empêche les mises à jour des poids associés lors de la rétropropagation, brisant ainsi les 

dépendances fortuites entre neurones et évitant la co-adaptation excessive. Le Dropout force 

ainsi le réseau à apprendre des caractéristiques redondantes et robustes, améliorant sa capacité 

de généralisation en réduisant le sur-apprentissage. En test, tous les neurones sont réactivés, 

mais leurs poids sont pondérés par le taux de Dropout pour compenser l'augmentation 

artificielle de l'activité. 

 

 

2.2.8 Les architectures populaires de CNN( LeNet, AlexNet, ResNet, MobileNet,…) 

La figure I.7 illustre l’apparition des différentes méthodes en fonction des années 
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Figure I.9: Histoire évolutive des CNNs montrant les innovations architecturales [30] 

Plusieurs architectures CNNs existent, les plus populaires sont : 

 

 

 

 LeNet 

L'architecture LeNet, version la plus efficace et célèbre développée par Yann LeCun, a 

marqué l'histoire comme le premier véritable réseau de neurones convolutifs (CNN) 

opérationnel. Conçue initialement pour la reconnaissance de chiffres manuscrits et de codes 

postaux, cette architecture pionnière combine intelligemment 4 couches alternées de 

convolution (CONV) et de pooling pour l'extraction hiérarchique de caractéristiques, suivies 

de 3 couches entièrement connectées pour la classification. Sa grande innovation réside dans 

sa capacité à apprendre automatiquement des caractéristiques pertinentes directement à partir 

des pixels bruts, éliminant le besoin d'une extraction manuelle de features. Par son utilisation 

astucieuse des opérations convolutives et de sous-échantillonnage, LeNet parvient à réduire 

drastiquement le nombre de paramètres tout en conservant une excellente capacité de 

reconnaissance, posant ainsi les bases des CNN modernes. Son succès pratique sur des tâches 

réelles de vision par ordinateur a démontré pour la première fois le potentiel des approches 

d'apprentissage profond [30]. 

 

 

Figure I.10: L’architecture LeNet[31] 

 

 AlexNet 
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AlexNet, développé par Alex Krizhevsky, Ilya Sutskever et Geoff Hinton, est la première 

architecture CNN à avoir marqué l'histoire du deep learning en révolutionnant la vision par 

ordinateur. Présenté lors du challenge ImageNet ILSVRC 2012, ce modèle a surpassé de loin 

tous ses concurrents, établissant un nouveau standard de performance. Son architecture 

pionnière combine 5 couches convolutives utilisant des ReLU (introduites comme innovation 

majeure pour accélérer l'apprentissage), 3 couches de max-pooling pour la réduction 

dimensionnelle, et se termine par 3 couches fully-connected pour la classification. AlexNet a 

non seulement démontré l'efficacité des CNN sur des tâches complexes, mais a aussi 

popularisé des techniques clés comme l'utilisation des GPU pour l'entraînement et le dropout 

pour la régularisation. 

 

 

 

Figure I.11: L’architecture AlexNet [32] 

Le résumé de l’architecture AlexNet dans le tableau ci-dessous : 

 

Tableau I.1 : Résumé de l’architecture AlexNet[33] 

 VGGNet 

Le modèle VGG, développé par le Visual Geometry Group d'Oxford sous la direction 

d'Andrea Vedaldi et Andrew Zisserman, a démontré l'importance cruciale de la profondeur du 

réseau pour atteindre des performances élevées en vision par ordinateur. Cette architecture se 

distingue par son empilement systématique de couches convolutives 3×3, permettant une 

augmentation progressive de la complexité des caractéristiques apprises. Cependant, cette 
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profondeur accrue se paie au prix d'une complexité computationnelle élevée : avec ses 140 

millions de paramètres, le réseau VGG exige des ressources importantes en mémoire et en 

puissance de calcul, ce qui en fait un modèle relativement coûteux à entraîner et déployer, 

malgré ses excellentes capacités de représentation visuelle. 

 

 

 

Figure I.12: L’architecture du VGGNet [34] 

Le résume de l’architecture VGGNet dans le tableau ci-dessous : 
 

Tableau I.2: Résumé de l’architecture VGGNet [35] 

 

 

 ResNet 

ResNet (Réseau Résiduel) représente une avancée majeure en apprentissage profond, 

redéfinissant les limites de profondeur des architectures neuronales. Son innovation clé réside 

dans ses modules résiduels, des blocs de construction qui introduisent des connexions skip (ou 

"bypass") permettant à l'information de circuler directement à travers plusieurs couches. Ces 

connexions résiduelles résolvent le problème crucial de la disparition du gradient dans les 

réseaux très profonds, autorisant ainsi l'empilement de centaines voire milliers de couches 

tout en maintenant une convergence stable. L'architecture ResNet, construite par l'assemblage 

répété de ces modules intelligents, a établi de nouveaux records de performance tout en 

devenant une pierre angulaire des modèles modernes de vision par ordinateur [36]. 
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Figure I.13: L’architecture de ResNet[36] 

 MobileNet 

MobileNet est une architecture de réseau de neurones convolutifs (CNN) optimisée pour les 

dispositifs mobiles et embarqués, offrant un équilibre entre performance et efficacité 

computationnelle grâce à son utilisation innovante de convolutions séparables en profondeur. 

Ces convolutions divisent le processus traditionnel en deux étapes : une convolution spatiale 

indépendante par canal (depthwise) suivie d'une convolution 1×1 (pointwise) pour fusionner 

les caractéristiques, réduisant ainsi drastiquement le nombre de paramètres et les coûts de 

calcul. MobileNet introduit également des hyperparamètres ajustables (comme le width 

multiplier pour contrôler la largeur du réseau et un facteur de résolution pour adapter la taille 

des entrées), permettant une personnalisation fine en fonction des contraintes matérielles. Les 

versions ultérieures (MobileNetV2/V3) améliorent encore ses performances avec des blocs 

résiduels inversés (inverted residuals) et des fonctions d'activation comme h-swish, tout en 

maintenant une faible empreinte mémoire. Idéal pour les applications temps réel 

(reconnaissance d'objets, segmentation, etc.) sur smartphones ou appareils IoT, MobileNet 

allie rapidité d'inférence et précision, même avec des ressources limitées [37]. 

 

 

 

Figure I.14: L’architecture du MobileNet [37] 
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 GoogleNet 

GoogleNet (ou Inception v1), développé par Christian Szegedy et son équipe chez Google, a 

remporté le challenge ILSVRC 2014 en introduisant une architecture révolutionnaire basée 

sur des modules Inception. Ces blocs innovants exploitent des convolutions parallèles avec 

des noyaux de différentes tailles (1×1, 3×3, 5×5) pour capturer des motifs à multiples échelles 

spatiales, dont les sorties sont concaténées pour une représentation riche. Le réseau se 

distingue également par son remplacement des couches fully-connected traditionnelles par un 

pooling moyen global, réduisant drastiquement les paramètres de 60 millions à seulement 4 

millions. Cette optimisation, combinée à l'utilisation stratégique de convolutions 1×1 pour la 

réduction de dimensionnalité, permet à GoogleNet d'allier efficacité computationnelle et 

performances élevées, tout en minimisant les risques de sur-apprentissage. Son succès a 

popularisé les architectures multi-branches et inspiré une série de modèles Inception ultérieurs 

[30]. 

 

 

 

 

Figure I.15: L’architecture de GooleNet 

 

 
2.2.9 Travaux récents sur la classification des lésions cutanées 

L’introduction de la dermoscopie a marqué un progrès significatif dans le diagnostic 

précoce du mélanome, grâce à son éclairage homogène qui améliore le contraste entre la 

lésion et son arrière-plan. Cependant, son utilisation reste limitée en pratique clinique, 

principalement en raison d’un manque de formation des médecins, qui privilégient souvent 

l’examen à l’œil nu, ainsi que des inégalités d’accès aux soins dans certaines régions, où les 

dermatologues sont trop peu nombreux ou mal répartis. Face à ces défis, les experts plaident 

pour le développement de systèmes d’aide au diagnostic, tels que des applications mobiles ou 

des outils informatiques basés sur le traitement d’images, afin de démocratiser l’accès à un 

dépistage précoce et fiable. Ces solutions automatisées, s’appuyant sur des algorithmes 

avancés, pourraient combler les lacunes du système de santé en permettant une analyse rapide 

et accessible des lésions cutanées, même en l’absence de spécialistes [38]. 

a) Applications mobiles : 

Pour améliorer le dépistage précoce des mélanomes, plusieurs applications mobiles Android 

ont été développées, servant à la fois d'outils d'aide au diagnostic et de pont entre les patients 

et les médecins. Parmi celles-ci, on trouve des solutions comme SkinVision, Miiskin ou 
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DermEngine, qui utilisent des algorithmes d'analyse d'images et parfois l'IA pour évaluer les 

lésions cutanées à partir de photos prises par smartphone. Certaines applications comparent  

les lésions à des bases de données médicales, tandis que d'autres suivent leur évolution dans le 

temps, alertant l'utilisateur en cas de changement suspect. Bien que ces outils ne remplacent 

pas un diagnostic médical complet, ils facilitent une première évaluation et encouragent une 

consultation précoce chez un spécialiste, notamment dans les régions où l'accès aux 

dermatologues est limité. Leur principe repose souvent sur une combinaison de traitement 

d'image, de machine learning et, pour les plus avancées, de réseaux neuronaux convolutifs 

(CNN) spécialisés en dermatologie. 

 FotoVision 

Développée en 2014 par les dermatologues Sergio Pedro Jaen et Vaño en collaboration avec 

WakeAppHealth et ISDIN, l'application FotoSkin vise à détecter précocement les lésions 

cutanées cancéreuses. Elle permet de différencier les tumeurs bénignes des tumeurs suspectes 

en analysant les changements de couleur, de forme des grains de beauté ou l'apparition de 

nouvelles taches, tout en appliquant la règle ABCD (Asymétrie, Bordure, Couleur, Diamètre) 

pour guider l'évaluation. Gratuite sur Android, l'application propose cinq sections clés : Ma 

Peau (suivi des lésions), Mon Conseil (recommandations), Je Commande (achat de produits), 

Mon Environnement (facteurs de risque) et Informations Médicales (ressources éducatives). 

FotoSkin sert ainsi d'outil d'alerte pour les utilisateurs et d'aide à la décision pour les 

dermatologues, facilitant un diagnostic rapide sans remplacer une consultation spécialisée 

[39]. 

 

 

 

Figure I.16: Application FotoSkin[39] 

 

 

 Doctor Mole 

Développée en 2012 par Mark Shippen, l'application Doctor Mole utilise la réalité augmentée 

pour analyser les grains de beauté et détecter d'éventuelles anomalies de forme, de couleur ou 

de texture. Après la capture photo d'une lésion, l'application attribue un niveau de risque 
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(indiqué par un code couleur) pour chaque caractéristique examinée. Elle offre également une 

fonctionnalité d'archivage et de comparaison des données, permettant de suivre l'évolution des 

grains de beauté dans le temps - un aspect crucial puisque leur modification peut signaler un 

mélanome malin. Bien qu'utile pour un premier dépistage, Doctor Mole ne remplace pas un 

diagnostic médical professionnel, mais sert plutôt d'outil préliminaire pour alerter les 

utilisateurs sur des changements cutanés potentiellement préoccupants [40]. 
 

Figure I.17: Application Doctor Mole[40] 

 

 

 SkinVision 

SkinVision utilise un algorithme d'évaluation des risques innovant combinant l'analyse 

d'images en niveaux de gris avec la théorie fractale, plus précisément basée sur le calcul de 

dimensions fractales locales. Testé sur un ensemble de lésions mélanocytaires photographiées 

avec un iPhone 4S (équipé d'un appareil photo autofocus 8 mégapixels), cet algorithme a 

démontré des performances cliniquement pertinentes : une sensibilité de 73% (détection 

correcte des lésions malignes), une spécificité de 83% (rejet approprié des lésions bénignes) et 

une précision globale de 81%. Cette approche mathématique originale permet d'objectiver 

l'évaluation des motifs cutanés complexes, bien que ces résultats indiquent qu'un examen 

dermatologique complémentaire reste nécessaire pour les cas limites [41]. 
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Figure I.18: Application SkinVision[41] 

 

 

b) Systèmes associés par ordinateur pour l’aide au diagnostic 

L'aspect visuel des lésions cutanées rend leur diagnostic difficile, pouvant conduire à 

confondre tumeurs malignes et bénignes. D'où l'utilité des systèmes informatiques exploitant 

le traitement d'image avancé pour les analyser et les classer avec précision [42]. Le diagnostic 

assisté par ordinateur (DAO) du mélanome améliore la précision et la reproductibilité des 

diagnostics en fournissant aux dermatologues, notamment aux moins expérimentés, une 

analyse objective des images dermoscopiques. Ce système permet non seulement une 

détection précoce des lésions malignes - augmentant ainsi les chances de guérison et 

favorisant des traitements plus adaptés - mais aussi une réduction des erreurs humaines, des 

coûts et des délais d'interprétation, optimisant ainsi la prise en charge d'un grand nombre de 

patients [43]. 
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3 Chapitre II : Données, Outils et Méthodologie 

3.1 Présentation de la base de données Melanoma Cancer Dataset 

La base de données utilisée dans ce travail est Melanoma Cancer Dataset sur Kaggle. 

Cet ensemble de données, composé de 13 879 images de taille 224x224 soigneusement 

sélectionnées, constitue une ressource précieuse pour faire progresser la dermatologie et le 

diagnostic assisté par ordinateur. Les images sont divisées en deux parties , 11 878 images 

pour l’entrainement (6 289 images de non-mélanomes et 5 590 images de mélanomes ) et 

2 000 images pour le test des architectures (1 000 images de non-mélanomes et 1 000 images 

de mélanomes). 

3.2 Prétraitement sur la base de données 

Le prétraitement consiste à modifier les images de notre base de données pour les 

améliorer, tandis que l'augmentation des données vise à accroître leur nombre en appliquant 

des transformations aléatoires, évitant ainsi que le modèle ne voie deux fois la même image. 

Cette technique réduit le risque de sur-apprentissage et améliore la généralisation du modèle. 

Dans Keras, cela est réalisé grâce à la classe ImageDataGenerator, un outil fourni par 

TensorFlow et Keras qui permet une augmentation des données en temps réel pendant 

l'entraînement. Plutôt que de stocker les images transformées, ImageDataGenerator applique 

des modifications aléatoires juste avant leur utilisation, tout en permettant de configurer les 

transformations et la normalisation souhaitées. Il génère ensuite des lots d'images augmentées 

(et leurs étiquettes) pour l'apprentissage. Les valeurs des pixels sont normalisées pour 

accélérer la convergence des modèles (valeurs initiales entre 0 et 255) 

3.3 Présentation des architectures utilisées 

Dans notre travail , on a développé trois modèles de réseaux de neurones CNN pour 

classer les différentes images de notre base de données Melanoma Cancer Dataset: 

 Un CNN personnalisé (simple) 

 MobileNetV2 (transfer learning) 

 ResNet50 (transfer learning) 

 

Parmi les modèles que nous avons proposés, deux modèles dépendent de l’apprentissage par 

transfert (Transfer Learning). 

3.3.1 Modèle CNN personnalisé 

Le modèle CNN personnalisé développé dans ce travail est un réseau de neurones 

convolutif conçu spécifiquement pour la classification des lésions cutanées. L'architecture se 

compose de trois blocs principaux Conv2D + MaxPooling2D + Dropout, suivis de couches 

entièrement connectées. 

3 couches convolutives (Conv2D) avec des filtres de tailles 32, 64, 128 utilisant une fonction 

d'activation ReLU. Chaque couche est suivie d'un MaxPooling2D(2,2) pour réduire la 
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dimension spatiale et d'un Dropout (30%) pour limiter le surapprentissage, Une 

couche Flatten pour aplatir les données et deux couches Dense (512 et 1 neurones) avec une 

activation sigmoid en sortie pour prédire la classe (mélanome ou non-mélanome). 

3.3.2 MobileNetV2 

Le modèle MobileNetV2 est un réseau pré-entraîné sur ImageNet, optimisé pour une 

efficacité computationnelle tout en maintenant de bonnes performances. Les principales 

étapes sont les suivantes : 

On a utilisé des poids pré-entraînés (ImageNet), procédé avec gel des couches pour 

conserver les caractéristiques apprises. On a ajouté une Global Average Pooling pour réduire 

la dimensionnalité, une couche Dense(1024) avec ReLU, un Dropout (50%) pour la 

régularisation et une couche de sortie Dense(1, sigmoid) pour la binaire. 

3.3.3 ResNet50 

Le modèle ResNet50 est une architecture profonde (50 couches) utilisant 

des connexions résiduelles (skip connections) pour faciliter l'apprentissage des features 

hiérarchiques. On a effectué le processus que MobileNetV2 pour l’extraction des 

caractéristiques et la classification. 

3.4 Environnement de travail 

Cette section présente les matériels et l’environnement utilisés pour notre projet. 

a) Matériel 

Pour la réalisation du projet , Nous avons utilisé un ordinateur avec les caractéristiques 

suivantes : 

 Processeur : Intel(R) Celeron(R) CPU N3060 @ 1.60GHz 

 Mémoire (RAM) : 4Go 

 Système d’exploitation : Microsoft Windows 10 (64 bits). 

b) Langage de programmation(Python) 

Python est un langage de programmation open source, gratuit et multiplateforme, 

privilégiant la lisibilité et la simplicité d'utilisation. Python est fonctionnel sur les systèmes 

Mac, Windows et Unix. 

c) La plateforme Kaggle 

Kaggle est une plateforme web interactive qui propose des compétitions d'apprentissage 

automatique en science des données. La plateforme fournit des bases de données, des 

notebooks et des didacticiels gratuits dont les scientifiques de données ont besoin pour réaliser 

leurs projets d'apprentissage automatique [44]. 
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Figure II.1: Interface de Kaggle 

d) Les bibliothèques 

 Tensorflow : TensorFlow, framework open source développé par Google en 2015, est 

une plateforme puissante pour le deep learning basée sur des tenseurs (tableaux 

multidimensionnels). Très populaire dans les milieux académiques et industriels, il 

combine flexibilité et évolutivité pour la recherche avancée et le déploiement de 

modèles en production [45]. 

 Keras : Keras est une API haut niveau pour le deep learning, conçue pour 

TensorFlow, qui simplifie le prototypage rapide et le déploiement de modèles 

complexes grâce à une syntaxe intuitive et modulaire. Ses blocs configurables 

permettent de créer facilement des architectures avancées et des couches 

personnalisées avec un minimum de code, accélérant ainsi la recherche et la mise en 

production [45]. 

 NumPy : NumPy est une bibliothèque Python essentielle pour le calcul scientifique, 

offrant des opérations performantes sur des tableaux multidimensionnels et des 

fonctions avancées en algèbre linéaire et traitement numérique. Devenue la base de 

l'écosystème scientifique Python, elle alimente de nombreuses autres bibliothèques 

comme Pandas et Scikit-learn grâce à sa rapidité et sa simplicité d'utilisation. 

 Pandas : Pandas est une bibliothèque Python open source offrant deux structures 

principales - les DataFrames pour les données tabulaires et les Series pour les séries 

temporelles - permettant une manipulation et analyse efficace des données. Avec ses 

fonctionnalités avancées de nettoyage, transformation et visualisation, elle constitue 

l'outil indispensable des data scientists pour la préparation des données avant analyse 

ou modélisation. 

3.5 Métriques et protocole d’évaluation 

L'évaluation d'un modèle de deep learning (DL) pour la classification du mélanome à 

partir de notre base de données(Melanoma Cancer Dataset) nécessite une méthodologie 

rigoureuse pour garantir des résultats fiables. Sur ce , on a séparé les données(train_generator 

et test_generator) en stratifiant pour conserver la distribution des classes (mélanome vs non- 

mélanome). Pour un problème de cette dernière , les métriques clés sont : 

-Accuracy : une métrique de base qui mesure le taux de prédictions correctes par rapport au 

total des prédictions. 
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-Précision : Éviter les faux positifs (diagnostiquer un mélanome à tort). 

-Sensibilité (Recall) : capacité à détecter tous les vrais mélanomes (éviter les faux négatifs). 

-F1-Score : Moyenne harmonique de la précision et du rappel, utile pour les classes 

déséquilibrées 
 

Figure II.2: Les formules de métriques clés utilisés 

 

 TP (True Positives) : Mélanomes correctement détectés. 

 TN (True Negatives) : Lésions bénignes correctement classées. 

 FP (False Positives) : Faux diagnostics de mélanome (bénignes classées 

comme malignes). 

 FN (False Negatives) : Mélanomes manqués (classés à tort comme bénins). 

 

-Matrice de confusion 

La matrice de confusion est un tableau qui résume les prédictions d'un modèle par rapport aux 

vraies étiquettes (ground truth). 

 

Figure II.3: Matrice de confusion 



 Chapitre III : Résultats et Discussion  

28 

 

 

 

 

4 Chapitre III : Résultats et Discussion 
Ce chapitre présente les résultats de notre travail basé sur l’utilisation des réseaux 

convolutifs avec les architectures citées précédemment. 

4.1 Résultats de l’entrainement 

Afin de montrer les résultats obtenus , nous présentons ci-dessous les résultats en 

termes de précision et d’erreur d’apprentissage. 

a. Le taux de précision et de perte 

 

Figure III.1: CNN 

 À la fin de l'entraînement, le modèle CNN personnalisé atteint une accuracy de 90 % 

sur l’ensemble d'entraînement et environ 88 % sur l’ensemble de validation, ce qui 

montre une bonne performance générale. La fonction de perte à l’entrainement 

diminue jusqu'à environ 0.15–0.30, tandis que le validation loss se stabilise autour de 

0.33–0.36, indiquant une bonne généralisation sans surapprentissage notable. 
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Figure III.2: Mobilenet 

 Le modèle MobileNet atteint une accuracy de validation stable autour de 84 % à 87 %, 

tandis que l’accuracy d'entraînement varie entre 83 % et 90 %, avec quelques chutes 

ponctuelles. Le training loss est instable, oscillant fortement entre 0.30 et 0.55, tandis 

que le validation loss reste stable autour de 0.32 à 0.36. Malgré les fluctuations du 

loss, la performance en validation est bonne, indiquant une bonne capacité de 

généralisation. 

 

Figure III.3: Resnet 

 Le modèle ResNet montre une progression régulière de l’accuracy, atteignant 85 % en 

entraînement et environ 75 % en validation à la fin. Le training loss diminue de 0.66 à 

0.45, et le validation loss de 0.66 à environ 0.52, avec quelques variations. Le modèle 

généralise moins bien que MobileNet, mais reste stable et améliore ses performances 

au fil des epochs. 

b. Matrice de Confusion 
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Les matrices de confusion obtenues après l’expérimentation sont présentées dans la figure ci- 

desous : 
 

a)  CNN Simple b) MobilenetV2 c) Resnet50 

Figure III.4: Matrices de confusion 

c. Tableau comparatif des performances de chaque modèle : Accuracy, Precision, 

Recall, F1-Score, AUC 

 

 

 

 

Tableau III.1: Tableau de comparaison des performances 

4.2 Discussion sur les résultats obtenus 

Les résultats obtenus révèlent des performances contrastées entre les différentes 

architectures testées. MobileNetV2 se distingue par une accuracy élevée (88.7%), nettement 

supérieure à celle du CNN Simple et de ResNet50 (74.65% chacun). Cependant, cette 

performance apparente doit être nuancée par l'analyse d'autres métriques clés. En effet, l'AUC 

(Area Under Curve) de MobileNetV2 (0.522), bien que légèrement meilleure que celle des 

autres modèles, reste proche de 0.5, ce qui indique une capacité de discrimination à peine 

supérieure au hasard. Cette contradiction entre accuracy et AUC suggère que MobileNetV2 

pourrait souffrir de surapprentissage ou que les données présentent des biais non pris en 

compte. Les scores F1 similaires et faibles (autour de 49%) pour les trois architectures 

confirment cette difficulté à correctement classer les deux catégories. 

Plusieurs facteurs peuvent expliquer ces résultats mitigés. Tout d'abord, le déséquilibre 

potentiel entre les classes n'a probablement pas été suffisamment corrigé, comme en témoigne 

le nombre élevé de faux négatifs (entre 520 et 528 selon les modèles). Ensuite, les 

prétraitements appliqués aux images pourraient être insuffisants ou inadaptés. L'absence 

d'augmentation de données ou de normalisation poussée a certainement limité la capacité des 

modèles à généraliser. Par ailleurs, la complexité des architectures n'a pas montré d'avantage 

décisif : ResNet50, pourtant plus sophistiqué, n'a pas performé mieux qu'un simple CNN, ce 

qui interroge sur l'adéquation entre la complexité du modèle et la nature du problème. 
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Les perspectives d'amélioration sont nombreuses et prometteuses. Un fine-tuning plus poussé 

de MobileNetV2, en dégelant les dernières couches et en ajustant le taux d'apprentissage, 

pourrait permettre d'exploiter pleinement son potentiel. L'introduction de techniques de 

rééquilibrage des classes, comme la focal loss ou l'oversampling, devrait réduire le nombre de 

faux négatifs. L'enrichissement du jeu de données par augmentation (rotations, miroirs, 

changements de contraste) améliorerait probablement la robustesse des modèles. Enfin, 

l'expérimentation d'architectures plus récentes comme EfficientNet ou les Vision 

Transformers, combinée à une validation croisée rigoureuse, pourrait permettre d'atteindre des 

performances satisfaisantes pour une application clinique, avec une AUC cible supérieure à 

0.8. Ces améliorations devront s'accompagner d'une analyse plus fine des erreurs pour 

identifier les cas difficiles et adapter le modèle en conséquence. 
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5 Conclusion générale 
La classification d’images médicales constitue un enjeu majeur en vision par 

ordinateur, car elle vise à doter les machines de la capacité à reconnaître des motifs visuels et 

à s’adapter à divers environnements d’imagerie. Elle joue un rôle essentiel dans la 

reconnaissance rapide et le diagnostic médical. Ce processus consiste à attribuer 

automatiquement une classe à une image à l’aide d’un système de classification. Avec l’essor 

de l’intelligence artificielle et de l’apprentissage automatique, les réseaux de neurones 

convolutifs (CNN) se sont imposés comme les algorithmes les plus performants pour le 

traitement et la classification d’images au cours des dernières années. 

Dans ce mémoire, nous nous sommes intéressés à la détection des mélanomes dans les 

images médicales utilisant une méthode basée sur l’apprentissage profond. Trois architectures 

ont été testées : un CNN simple, MobileNetV2 (avec transfer learning), et ResNet50. 

L’objectif était de comparer leur capacité à discriminer les lésions bénignes des mélanomes, 

en utilisant la base de données Melanoma Cancer Dataset (13 879 images). Les modèles ont 

été évalués sur des métriques clés comme l’accuracy, l’AUC, et le F1-score… 

MobileNetV2 a montré la meilleure accuracy (88.7%), mais avec une AUC faible (0.522), 

ResNet50 et le CNN simple ont eu des performances similaires (~75% accuracy, AUC ≈ 0.5), 

suggérant une limite fondamentale dans l’extraction de caractéristiques discriminantes. 

Plusieurs problèmes ont été identifiés, notamment un déséquilibre des classes, un 

prétraitement des données insuffisant, ainsi que des limitations matérielles qui ont restreint les 

possibilités d’expérimentation. Face à ces constats, plusieurs axes d’amélioration ont été 

proposés. Il s’agirait d’intégrer des techniques de segmentation (ex. U-Net) pour mieux isoler 

la lésion, d’enrichir les données d’entrée par des informations cliniques pertinentes, ou encore 

d’optimiser les modèles via des stratégies de fine-tuning et de rééquilibrage (ex. Focal Loss). 

Le développement d’une application mobile dotée d’un système explicatif et connecté à des 

professionnels de santé est également envisagé, afin de rendre l’outil accessible, surtout dans 

les zones médicalement sous-dotées. 

En conclusion, ce travail met en évidence le potentiel des CNN dans le dépistage automatisé 

du mélanome, tout en soulignant leurs limites actuelles, notamment en matière de fiabilité, 

d’interprétabilité et d’adaptabilité aux données cliniques réelles. À long terme, l’objectif serait 

de concevoir un système hybride, associant l’intelligence artificielle à l’expertise humaine, 

capable d’apprendre continuellement et de s’adapter aux spécificités de chaque population. 
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