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Résumé

La vérification de lien de parenté à partir d’images faciales suscite un intérêt croissant
parmi les chercheurs et s’impose progressivement comme un enjeu majeur en vision par
ordinateur. Grâce à l’analyse automatique des traits faciaux, il est possible de vérifier si
deux individus sont apparentés. Ce type de vérification offre un large éventail d’applica-
tions, allant de la reconstruction d’arbres familiaux à l’organisation intelligente d’albums
photos, l’annotation d’images, la localisation d’enfants disparus, ou encore l’appui aux
enquêtes judiciaires.

Cet article présente un système performant de vérification de la parenté, qui utilise la
méthode MTCNN à l’étape de prétraitement pour localiser les visages dans les images,
en assurant une détection précise. En outre, nous proposons deux descripteurs texturaux
(LPQ, BSIF). Nous explorons également la complémentarité avec les caractéristiques pro-
fondes (InceptionV3), en les fusionnant au niveau des scores via la méthode de régression
logistique.

Des expérimentations approfondies menées sur deux bases de données de parenté ont
permis d’atteindre des précisions de vérification de 93.75 % et 89.46 % respectivement
sur les ensembles de données Cornell KinFace et UBKinFace.

Mots clés : Vérification de la Parenté, MTCNN, Caractéristiques Profondes, Carac-
téristiques Texturales, TXQEDA+WCCN, Fusion LR.
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Introduction Générale

Contexte et Motivation
La vérification de la parenté par analyse d’images faciales est un domaine de recherche

en pleine expansion dans le champ de la vision par ordinateur. Ce champ s’inscrit dans la
continuité des avancées réalisées en reconnaissance faciale, en particulier avec l’émergence
des réseaux neuronaux profonds, qui ont radicalement transformé la capacité des machines
à interpréter des données visuelles complexes. Introduite de manière formelle à partir
de 2010[8], l’analyse de parenté faciale a depuis évolué pour devenir un sujet central,
mobilisant à la fois des concepts issus de l’apprentissage profond, de l’algèbre multilinéaire
(notamment l’utilisation de tenseurs), ainsi que des techniques avancées de traitement et
d’analyse d’images[9].

Cette technologie vise à déterminer automatiquement l’existence de liens familiaux
entre deux individus à partir de leurs traits faciaux. L’intérêt grandissant pour cette
approche réside dans son potentiel à offrir une alternative rapide, économique et non-
invasive aux méthodes traditionnelles d’identification génétique, comme l’analyse ADN.

Les cas d’usage sont nombreux et variés. Dans un cadre personnel, elle peut faciliter
la gestion intelligente de photos ou la recherche généalogique. Sur le plan institution-
nel, ses applications s’étendent à des domaines sensibles tels que la sécurité nationale,
les enquêtes criminelles, le contrôle aux frontières ou encore l’identification de victimes
de catastrophes. Elle peut également jouer un rôle crucial dans le cadre de procédures
humanitaires, telles que la réunification familiale pour les enfants réfugiés ou disparus.
Dans toutes ces situations, la capacité à effectuer des vérifications fiables en temps réel
est un enjeu déterminant.

Problématique
Malgré les avancées technologiques récentes, la mise en oeuvre de systèmes automati-

sés de vérification de parenté faciale se heurte encore à des défis majeurs. La complexité du
problème réside dans la nature hautement variable et multidimensionnelle de l’apparence
humaine. Là où l’oeil humain est capable de percevoir intuitivement des ressemblances fa-
miliales, les systèmes d’intelligence artificielle doivent apprendre à extraire et interpréter
des indices subtils, souvent masqués par d’importantes variations visuelles.

Parmi les difficultés les plus notables, on distingue :
— Les variations intra-sujets : changements d’angle de prise de vue, expressions

faciales, conditions d’éclairage, ou effets liés au vieillissement.

1



Introduction Générale

— Les différences inter-sujets : écarts d’âge importants (comme entre parents et
enfants), diversité ethnique, ou encore variations morphologiques naturelles.

Dans divers contextes sensibles tels que l’organisation d’albums photo, la recherche
de liens familiaux dans des bases de données publiques, l’analyse de demandes d’asile,
ou encore les enquêtes judiciaires, il est souvent nécessaire d’établir des relations de
parenté entre individus. Actuellement, la méthode la plus fiable pour vérifier une relation
biologique demeure l’analyse ADN. Toutefois, cette solution, bien que précise, présente
des inconvénients majeurs : elle est coûteuse, chronophage et inadaptée aux situations
nécessitant une réponse rapide, notamment lorsque les individus concernés ne sont pas
coopératifs.

Ces facteurs introduisent une forte variabilité dans les données, rendant l’extraction
de caractéristiques discriminantes à la fois stables et pertinentes particulièrement com-
plexe. La problématique centrale de cette recherche est donc de concevoir des algorithmes
robustes, capables de modéliser efficacement les traits héréditaires tout en résistant aux
perturbations visuelles. L’enjeu est d’atteindre un haut niveau de fiabilité, indispensable
pour que ces systèmes puissent être intégrés dans des contextes d’utilisation concrets et
critiques.

Contribution
Ce travail de fin d’études s’inscrit dans la problématique de la vérification de la pa-

renté basée sur des images faciales. Il vise à proposer une approche innovante permettant
d’améliorer la précision et la robustesse des systèmes existants dans ce domaine en com-
binant des techniques d’apprentissage automatique et des outils mathématiques avancés.

La contribution principale de ce projet consiste à concevoir, implémenter et évaluer un
modèle de vérification de parenté capable de capturer efficacement les traits héréditaires
communs, tout en étant robuste face aux variations intra- et inter-individuelles (pose,
âge, expressions, etc.).

Les contributions spécifiques de ce travail sont les suivantes :
— Prétraitement des données : Nous avons utilisé l’algorithme MTCNN (Multi-

task Cascaded Convolutional Networks) pour la détection et le recadrage automa-
tique des visages, assurant ainsi une normalisation efficace des images d’entrée.

— Extraction de caractéristiques : Deux descripteurs d’images à texture locale
ont été évalués : Local Phase Quantization (LPQ) et Binarized Statistical Image
Features (BSIF). Plusieurs échelles ont été testées pour chacun des descripteurs, et
la meilleure configuration a été sélectionnée selon les performances obtenues.

— Méthode proposée : Nous introduisons une nouvelle méthode de classification
pour la vérification de parenté basée sur une approche discriminante tensorielle nom-
mée Tensor Cross-view Quadratic Exponential Discriminant Analysis (TXQEDA).
Cette méthode permet à la fois la réduction de dimensionnalité et l’optimisation
des performances de classification.

— Fusion de scores : Pour améliorer davantage la précision, nous avons mis en
oeuvre une fusion au niveau des scores en utilisant la régression logistique (Logis-
tic Regression). Cette fusion combine les caractéristiques dites ”shallow” (LPQ et
BSIF) avec des descripteurs profonds extraits à l’aide du modèle pré-entraîné In-
ceptionV3. Cette complémentarité entre descripteurs permet d’obtenir de meilleures
performances globales.

2
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— Évaluation expérimentale : Le modèle a été entraîné et testé sur des bases de
données publiques de visages familiaux. Les performances ont été évaluées à l’aide
de métrique standard la précision moyenne, afin de valider son efficacité dans des
scénarios applicatifs concrets.

Organisation du mémoire
Ce mémoire présente une introduction générale dans laquelle nous abordons la pro-

blématique de notre étude sur la vérification de la parenté faciale à l’aide de descripteurs
profonds et de caractéristiques texturales.

Notre mémoire est strucuré en trois chapitres comme suit :

• Chapitre 1: Ce premier chapitre est consacré à l’état de l’art. Il présente une
vue d’ensemble sur la vérification de la parenté faciale, en introduisant le concept,
ses applications, les différents types de relations de parenté, ainsi que les défis
rencontrés. Il expose également les approches classiques et modernes en la matière,
notamment les techniques d’apprentissage automatique et d’apprentissage profond.

• Chapitre 2: Ce deuxième chapitre décrit la méthodologie proposée. Il détaille les
différentes étapes du système conçu, à savoir le prétraitement des images, l’extrac-
tion des caractéristiques à l’aide de descripteurs texturaux (comme LPQ et BSIF) et
de modèles profonds (comme InceptionV3), la réduction de dimension (TXQEDA),
la normalisation (WCCN), ainsi que la mesure de similarité et la prise de décision.

• Chapitre 3: Ce troisième chapitre est dédié aux expérimentations. Il présente
l’environnement de travail, les bases de données utilisées, le protocole expérimental
ainsi que les résultats obtenus. Une discussion comparative avec les travaux exis-
tants est également menée afin d’évaluer les performances de la méthode proposée.
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Chapitre I. Vérification de la parenté faciale : état de l’art

I.1 Introduction
La vérification de la parenté faciale est une tâche spécifique de la vision par ordinateur,

visant à déterminer si deux individus présentent un lien biologique à partir de leurs images
faciales [10]. C’est une thématique de recherche en constante évolution vu son intérêt
croissant dans diverses applications.

Dans ce chapitre, nous présentons un état de l’art détaillé sur cette problématique.
Nous commençons par introduire les concepts fondamentaux liés à la vérification de pa-
renté dans le cadre plus large de la reconnaissance faciale. Nous donnerons une classifica-
tion des différents types de relations de parenté ainsi qu’une analyse des principaux défis
liés à cette tâche, notamment les variations morphologiques et les contraintes contex-
tuelles.

Nous y soulignerons également les différences fondamentales entre la vérification
d’identité faciale classique et la vérification de parenté, souvent confondues à tort. Enfin,
nous proposerons un panorama des approches existantes, qu’elles soient traditionnelles ou
basées sur des méthodes récentes d’intelligence artificielle, en vue de situer notre propre
contribution.

I.2 Vérification de la parenté en vision par ordinateur
La vérification de la parenté est un domaine émergent de la vision par ordinateur, qui

vise à déterminer si deux individus ont un lien familial à partir de leurs traits faciaux
uniquement [11]. Contrairement à d’autres modalités biométriques comme la voix, l’iris
ou les empreintes digitales, cette approche repose sur l’exploitation des caractéristiques
physiologiques héritées, visibles dans le visage. Inspirée par l’idée que les traits du visage,
tout comme l’ADN, se transmettent génétiquement, cette méthode permet une vérifi-
cation non invasive, réalisable à distance et sans contact physique. Elle est ainsi bien
adaptée aux applications en sécurité, en identification ou en regroupement familial, tout
en étant rapide, fiable et peu coûteuse. Malgré ses avantages, ce domaine reste encore en
développement. Il doit faire face à des défis majeurs liés aux variations d’âge, de pose, de
luminosité et d’expression, qui compliquent la reconnaissance précise des similarités.

En pratique, un tel système prend en entrée deux images de visages et retourne un
verdict : apparentés (KIN) ou non apparentés (NON-KIN), grâce à une combinaison de
prétraitement, d’extraction de caractéristiques et de classification.

I.3 Catégories de relations de parenté
Les liens de parenté entre deux individus varient en fonction de leur degré de relation

biologique. Dans le domaine de la vérification de la parenté faciale, ces liens sont sou-
vent regroupés en trois catégories principales, couvrant un total de 11 types distincts de
relations, comme présenté dans le tableau I.1 ci-dessous.
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Type de relation Exemples

Parent - Enfant

Père - Fille (F-D)
Père - Fils (F-S)
Mère - Fille (M-D)
Mère - Fils (M-S)

Frères - Sœurs
Frère - Frère (B-B)
Sœur - Sœur (S-S)
Frère - Sœur (B-S)

Grands-parents - Petits-enfants

Grand-père - Petit-fils (GF-GS)
Grand-père - Petite-fille (GF-GD)
Grand-mère - Petit-fils (GM-GS)
Grand-mère - Petite-fille (GM-GD)

Tab. I.1 – Types de relations de parenté utilisées dans les systèmes de vérification faciale

I.4 Application
La reconnaissance automatique des liens de parenté à partir d’images faciales suscite

un fort engouement dans la communauté scientifique. Elle mobilise des expertises variées
issues de disciplines telles que la psychologie, la biométrie, l’intelligence artificielle ou en-
core la vision par ordinateur. Ensemble, ces chercheurs cherchent à concevoir des systèmes
capables de déterminer si deux visages appartiennent à des individus biologiquement liés.
Mais les usages d’une telle technologie dépassent largement ce seul objectif. Elle pourrait
en effet répondre à de nombreux besoins concrets dans différents secteurs [12] , parmi
lesquels on trouve :

• Le soutien aux opérations de recherche d’enfants portés disparus, en facilitant leur
identification via des bases de données visuelles.

• Le renforcement des contrôles dans les aéroports afin de lutter contre le trafic d’en-
fants.

• L’assistance aux autorités de l’immigration et aux services de sécurité frontalière
pour vérifier certains liens familiaux revendiqués.

• L’exploitation dans des recherches historiques ou en généalogie pour établir des
filiations à partir d’archives photographiques.

• Le tri et l’analyse intelligente des milliers de photos publiées quotidiennement sur
les plateformes sociales.

• L’optimisation de la gestion des albums photo numériques grâce à la détection
automatique des membres d’une même famille.

I.5 Défis
La vérification de la parenté faciale présente des défis particuliers qui la distinguent

des tâches classiques de reconnaissance faciale. Ces défis peuvent être regroupés en deux
grandes catégories [13] :
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I.5.1 Défis unique à la vérification de la parenté
La vérification de parenté faciale est une tâche complexe qui diffère de la reconnais-

sance faciale traditionnelle, car elle ne cherche pas à identifier une même personne, mais
plutôt à détecter des similitudes faciales entre deux individus liés biologiquement. Ces
ressemblances proviennent de l’héritage génétique, chaque individu recevant des traits
distincts de ses ancêtres. Contrairement à la reconnaissance faciale, où les caractéris-
tiques sont propres à une seule personne, la vérification de parenté nécessite l’extraction
de traits communs partagés entre différentes personnes. Cette tâche soulève trois défis
majeurs spécifiques, dont l’analyse permet de mieux cerner la complexité du problème et
d’orienter la conception de systèmes de vérification automatisés [14].

• Influence de l’âge et du sexe : Les traits familiaux sont mesurés entre des
individus de sexes et d’âges différents (par exemple, père-fils, père-fille, frère-soeur),
ce qui engendre une grande variabilité morphologique.

• Héritage différencié selon les paires : Chaque paire familiale présente des pro-
priétés spécifiques, car les enfants héritent différemment des traits de leurs parents,
même lorsqu’ils sont du même sexe.

• Caractère stochastique de la parenté : La parenté est fondée sur une combinai-
son aléatoire (stochastique) de traits familiaux, ce qui nécessite une modélisation
probabiliste plutôt que déterministe ; ces traits servent de base à la mesure de la
parenté, généralement abordée comme une tâche de vérification faciale automatique.

Fig. I.1 – Éxemples des défis uniques : a) À travers l’âge Père-Fils, b) À travers le genre
Frère-Sœur, c) À travers l’âge et le sexe Père-Fille.

I.5.2 Défis commun avec la reconnaissance faciale
La vérification de la parenté faciale, bien qu’étant un sous-ensemble de la vérification

faciale automatique, présente des défis uniques liés à la sensibilité des visages apparen-
tés aux variations d’expressions faciales, d’occlusions et de poses. De plus, des facteurs
externes tels que l’éclairage, le flou et la faible résolution des images ont également un
impact considérable sur l’apparence des visages. Ces éléments peuvent altérer les traits
familiaux de manière différente, rendant la tâche de vérification encore plus complexe, et
soulignant ainsi les défis communs rencontrés dans les deux domaines.
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• Variations de pose : Les changements d’orientation du visage, que ce soit sous
différents angles ou inclinaisons, peuvent perturber l’identification et la comparaison
des traits faciaux [15].

Fig. I.2 – Éxemples des variations de pose [1]

• Présence/absence d’éléments structurants ou occlusions : La présence de
lunettes, de coiffures, de mains ou d’autres objets qui couvrent partiellement le
visage peut gêner l’extraction complète des caractéristiques faciales et compliquer
la vérification de la parenté.

Fig. I.3 – Éxemples d’éléments d’occlusions [2]

• Changements d’expressions faciales : Les expressions émotionnelles (sourire,
froncement de sourcils, etc.) modifient la configuration des traits faciaux, ce qui
rend plus difficile la comparaison précise entre deux visages [3].

Fig. I.4 – Éxemples changement d’expression facial [3]
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• Vieillissement du visage : L’évolution des traits au fil du temps (rides, modifi-
cation de la peau, etc.) change l’apparence des individus, ce qui peut rendre plus
difficile la détection de similitudes entre des membres de la même famille à différents
âges .

Fig. I.5 – Éxemple du vieillisement

• Conditions d’éclairage variables : Les variations d’éclairage peuvent provoquer
des ombres et des réflexions sur le visage, ce qui peut altérer l’apparence des traits
et rendre les comparaisons plus complexes.

Fig. I.6 – Éxemples des conditions d’éclairage variables [4]

• Résolution d’image et modalité : Les images de faible résolution ou provenant
de différentes modalités (par exemple, IR, visible, etc.) peuvent perdre des détails
cruciaux des traits du visage, affectant la précision des mesures de similarité [3].

Fig. I.7 – Éxemples des différentes résolutions [3]
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I.6 Vérification faciale et vérification de la parenté
La vérification de parenté faciale peut, à première vue, être confondue avec la vé-

rification faciale classique. Bien que ces deux systèmes présentent certaines similarités,
ils sont en réalité distincts. On pourrait même considérer que la vérification de parenté
représente une forme avancée de la vérification faciale classique [16].

Les deux approches partagent une structure de base similaire, mais diffèrent sur plu-
sieurs aspects, comme le montre le tableau I.2 .

Vérification de parenté Vérification faciale

• Extraction des caractéristiques
de deux personnes différentes

• Vérification du lien de parenté
• Traits différents entre l’image re-

quête 1 et l’image requête 2
• Système de plus haut niveau
• À l’étape de décision : Apparenté

ou non apparenté
• Précision autour de 90 %

• Extraction des caractéristiques
de la même personne

• Vérification ou identification
• Même trait entre l’image requête

1 et l’image requête 2
• Système de bas niveau
• À l’étape de décision : Correspon-

dant ou non correspondant
• La performance de la machine est

globalement aussi bonne que celle
de l’humain

Tab. I.2 – Comparaison entre la vérification de parenté et la vérification faciale

I.7 Système géneral de la verification de la parenté
En raison de la complexité et des défis liés à la vérification de parenté, il est nécessaire

de mettre en place un cadre structuré pour organiser les différentes méthodes existantes.
Ce cadre se compose de quatre étapes principales : le prétraitement, l’extraction des
caractéristiques, classification et la phase de décision comme le montre la figure I.8

• Prétraitement : Cette étape consiste à détecter les visages dans les images, les
recadrer, améliorer leur qualité (par exemple, en appliquant des techniques d’amé-
lioration de contraste ou de normalisation) et les mettre à une même taille et aligne-
ment [17]. L’objectif est de standardiser les images pour faciliter les étapes suivantes.

• Extraction des caractristique : Ici, on extrait des descripteurs visuels qui re-
présentent les traits du visage. Ces descripteurs peuvent être texturaux (comme
LPQ ou BSIF) ou profonds (issus de réseaux de neurones convolutifs comme In-
ceptionV3). Cette représentation numérique permet de comparer les visages à un
niveau plus abstrait [14].

• Classification : Une fois les caractéristiques extraites, on calcule un score de si-
milarité entre deux représentations faciales. Des métriques comme la distance eu-
clidienne ou la distance cosinus sont utilisées pour quantifier la ressemblance [18].
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L’idée est que les visages de personnes apparentées devraient avoir un score de
similarité plus élevé.

• Décision : Enfin, une décision est prise à partir du score de similarité : si celui-ci
dépasse un certain seuil, la relation de parenté est confirmée, sinon elle est rejetée.
Des classificateurs comme la régression logistique [19] peuvent être utilisés pour
renforcer cette étape décisionnelle.

Fig. I.8 – Architecture générale du système de vérification de parenté

I.8 Approches classiques et modernes pour la vérifi-
cation de la parenté faciale

Dans un monde où la reconnaissance faciale est devenue un outil omniprésent, l’idée
d’aller plus loin – jusqu’à détecter des liens de parenté à partir des traits du visage – pose
un défi à la fois passionnant et complexe. Contrairement à l’identification classique d’un
individu, la vérification de parenté cherche à mettre en lumière des ressemblances héritées,
souvent subtiles, parfois floues, entre deux personnes. Cette tâche mobilise des approches
variées qui s’étendent du traitement d’images traditionnel aux modèles profonds inspirés
de la biologie humaine[16], [5], [17].

Au fil des années, la littérature scientifique s’est enrichie de multiples stratégies visant
à formaliser cette tâche. Certaines s’appuient sur des caractéristiques visuelles explicites,
extraites de manière manuelle, tandis que d’autres misent sur la puissance des réseaux
neuronaux pour apprendre des représentations latentes, plus abstraites. Ce chapitre passe
en revue les approches les plus marquantes, classées en deux grandes familles : les mé-
thodes d’apprentissage automatique classiques, et les approches modernes fondées sur
l’apprentissage profond.

I.8.1 Méthodes d’apprentissage automatique (Machine
Learning)

Les premières approches de la vérification de parenté ont exploité des descripteurs
texturals, tels que LPQ ( local phase quantization), LBP (Local Binary Patterns), BSIF
(Binarized Statisitcal Image Features), pour extraire des caractéristiques texturales du
visage.
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Une fois les descripteurs extraits, des classifieurs supervisés comme SVM (Support
Vector Machines), Random Forests, ou K-NN (K-Nearest Neighbors) sont utilisés pour
apprendre un modèle de similarité entre les paires d’images. Certains travaux ont aussi
recours à des apprentissages métriques (metric learning) pour estimer la distance dans
un espace projeté, où les visages apparentés sont plus proches les uns des autres que ceux
non apparentés.

Ces méthodes présentent toutefois des limitations : elles sont souvent sensibles à la
pose, à l’illumination et aux expressions faciales, et leur capacité à généraliser des relations
parentales complexes (parent-enfant, frère-soeur) reste limitée.

I.8.2 Méthodes d’apprentissage profond (Deep Lear-
ning)

L’apprentissage profond (Deep Learning), introduit par Hinton et Salakhutdinov (2006),
désigne une famille de méthodes d’apprentissage automatique s’appuyant sur des réseaux
de neurones profonds (Deep Neural Networks). Ces réseaux sont constitués de multiples
couches de transformations non linéaires permettant de capturer des représentations com-
plexes des données.

Les réseaux de neurones artificiels (ANN), inspirés du cerveau humain, traitent des
données d’entrée (comme des images faciales) et fournissent des sorties pertinentes, telles
que des scores de similarité ou des classifications. Leur efficacité découle du théorème
d’approximation universelle démontré par Cybenko (1989) et Hornik (1991), ainsi que
de l’algorithme de rétropropagation du gradient, proposé par LeCun (1986), permettant
l’apprentissage efficace des poids du réseau.

Dans le cadre de la vérification de la parenté faciale, ces méthodes ont permis de gé-
nérer des représentations profondes, appelées descripteurs profonds, capables de capturer
les similarités génétiques subtiles entre visages. Ils offrent une robustesse accrue face aux
variations d’âge, de pose ou d’éclairage.

L’entraînement de ces réseaux nécessite des bases de données annotées. Il consiste à
ajuster progressivement les paramètres internes du réseau afin de minimiser une fonction
de perte mesurant l’écart entre la prédiction du modèle et la vérité terrain.
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Fig. I.9 – Architecture d’un réseau de neurones.

I.9 Conclusion
Dans ce chapitre, nous avons présenté les concepts fondamentaux liés à la vérification

de la parenté faciale. Nous avons abordé les différentes catégories de relations de parenté,
leurs domaines d’application ainsi que les défis spécifiques et communs avec la reconnais-
sance faciale. Nous avons également exploré les approches classiques et modernes utilisées
dans ce domaine.

Dans le chapitre suivant, nous détaillerons la méthode proposée dans ce travail, en
présentant les étapes de prétraitement, d’extraction de caractéristiques, de réduction de
dimension et de classification.
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II.1 Introduction
La vérification de la parenté est un domaine de recherche émergent qui a suscité un vif

intérêt ces dernières années. Dans ce chapitre, nous allons présenter un résumé des bases
de données les plus connues utilisées dans ce domaine. Nous allons également exposer les
travaux connexes et fournir un aperçu global des différentes approches de vérification de
la parenté. Ces méthodes ont été regroupées en deux grandes catégories : celles reposant
sur des caractéristiques texturales (Shallow feature) et celles basées sur des descripteurs
profonds (deep features), afin de mieux cerner l’état de l’art dans ce domaine.

II.2 Travaux Connexes
La vérification de la parenté faciale a émergé comme un champ de recherche spécifique

au début des années 2010 [8], bien après l’émergence de la reconnaissance faciale classique.
Les premiers travaux notables dans ce domaine ont été motivés par des défis uniques, tels
que la difficulté de détecter des ressemblances entre des visages de personnes apparen-
tées malgré des écarts d’âge, de sexe, d’expression ou d’angle de vue. La publication de
bases de données dédiées comme KinFaceW-I et KinFaceW-II en 2011, a marqué un tour-
nant important, en fournissant une référence commune pour l’évaluation des algorithmes.

Les premières approches ont utilisé des descripteurs façonnés à la main tels que LBP
(Local Binary Patterns), HOG ou SIFT, associés à des classifieurs classiques comme les
SVM. Ces méthodes ont permis de poser les premières bases méthodologiques pour la
tâche de parenté faciale [20].

Avec le succès croissant des modèles d’apprentissage profond dans la reconnaissance
faciale, les chercheurs ont commencé à transférer ces architectures (comme VGG-Face,
FaceNet ou InceptionV3) vers la vérification de la parenté. Cette transition a permis
d’extraire automatiquement des représentations profondes et discriminantes, adaptées à
la reconnaissance de liens familiaux dans des contextes complexes [21], [22].

Par ailleurs, des architectures spécifiques telles que les réseaux siamois et les réseaux
triplet, ont été introduites. Elles permettent d’optimiser la capacité des modèles à ap-
prendre des fonctions de similarité entre paires d’images, en s’appuyant sur des fonctions
de perte comme la ”contrastive loss” ou la ”triplet loss”.

Afin d’améliorer davantage la robustesse des systèmes, des études ont proposé de com-
biner les descripteurs profonds avec des caractéristiques texturales ou morphologiques[10].
Cette approche hybride a permis de tirer parti des avantages des méthodes profondes et
des caractéristiques façonnées à la main, notamment dans des cas de faible quantité de
données.

La mise à disposition de nouvelles bases de données plus complètes, comme FIM
(Families In the Wild)[23], a significativement contribué au développement du domaine.
Cette base offre une grande variété de relations (parent-enfant, fratrie, etc.) et une diver-
sité d’images en conditions réelles, facilitant la généralisation des approches.
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Enfin, face au défi persistant du manque de données annotées, des approches récentes
s’orientent vers l’apprentissage faiblement supervisé ou auto-supervisé, permettant l’en-
traînement de modèles performants à partir de données partiellement étiquetées, voire
non annotées.

II.3 Bases de Données de vérification de la parenté
La reconnaissance des liens de parenté à partir d’images faciales suscite un intérêt

croissant, notamment en raison de ses nombreuses applications abordées précédemment.
Cette dynamique a conduit à la création de plusieurs bases de données dédiées, reflétant
différentes relations familiales. Le visage humain est un objet d’analyse complexe, dont
l’apparence peut être influencée par divers facteurs tels que l’orientation, l’éclairage, l’âge,
les expressions, les accessoires, ou encore les caractéristiques propres à chaque individu.

Pour permettre le développement d’algorithmes capables de faire face à ces variabi-
lités, il est crucial de disposer des bases de données suffisamment vastes et diversifiées.
Ces ressources permettent non seulement de concevoir des modèles robustes, mais aussi
d’évaluer et de comparer les performances des approches existantes dans des conditions
contrôlées. De plus, l’évolution du domaine a favorisé l’introduction de bases couvrant
des types de relations plus variés, allant au-delà des simples liens parents-enfants.

Dans ce qui suit, nous présentons les bases de données publiques les plus utilisées
pour la vérification de la parenté faciale, tout en mettant en lumière celle retenue dans
le cadre de notre projet.

• KinFaceW-I et KinFaceW-II :
La base de données KinFaceW-I et KinFaceW-II comprend deux sous-ensembles,
contenant des images de personnalités publiques et de leurs proches, collectées à par-
tir d’Internet avec une résolution de 64x64 pixels [24]. Les images ont été capturées
dans des conditions non contrôlées, ce qui signifie qu’il n’y a pas de restrictions sur
la pose, l’éclairage, le fond, l’expression, l’âge, l’ethnie, etc. La principale différence
entre KinFaceW-I et KinFaceW-II réside dans la provenance des images : dans
KinFaceW-I, les images des membres d’une même famille proviennent de photos
différentes, tandis que dans KinFaceW-II, les images proviennent majoritairement
de la même photo. La base couvre quatre relations de parenté : père-fils (F-S),
père-fille (F-D), mère-fils (M-S) et mère-fille (M-D). KinFaceW-I contient respecti-
vement 156, 134, 116 et 127 paires, tandis que pour KinFaceW-II, chaque relation
comporte 250 paires d’images. Ces bases ont été parmi les premières à permettre
une vérification de liens de parenté dans des conditions réalistes avant l’introduc-
tion de la base FIW [23].

• TSKinFace :
La base de données TSKinFace est constituée de triplets familiaux, comprenant des
images de pères, mères et enfants, collectées à partir de scènes de séries télévisées
turques. Les images sont obtenues dans des contextes plus naturels, ce qui ajoute
de la variabilité en termes d’éclairage, de pose et d’expressions faciales. Cette base
de données est composée de 513 triplets, où chaque triplet représente une relation
père-mère-enfant. Elle se distingue des autres bases par son approche triangulaire,
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qui permet de traiter les relations familiales sous un angle différent, en exploitant
la dynamique familiale entre trois membres au lieu de deux. TSKinFace est par-
ticulièrement adaptée pour les méthodes qui évaluent la relation triangulaire et la
similarité entre plusieurs membres d’une même famille [25].

• UB Kinface :
UB Kinface et collectée par des chercheurs de l’universite de Northeastern aux
Etats-Unis. L’ensemble de données contient 600 images de visages (64x64 pixels)
correspondant a 400 personnes différentes reparties en 200 groupes (famille) ; Chaque
groupe ce compose d’images d’enfants, images de parents lorsqu’ils étaient jeunes
et images de parents lorsqu’ils sont vieux. Les images de la base de données sont des
collections du monde réel de personnages publics (célébrités et hommes politiques)
provenant d’Internet. Les images des visages ont été collectées sans restriction en
termes de pose, d’expression, d’éclairage, d’arrière-plan, d’age, de sexe, d’eth nie,
de saturation des couleurs, de qualité d’image, etc... UB Kinface peut être princi-
palement divisé en deux parties selon la race (asiatique et non asiatique), chacune
d’entre elles étant composée de 100 groupes, 200 personnes et 300 images. La ré-
partition des relations est de : 93 paires père- fils (F-S) , 77 paires père- fille (F-D)
, 12 paires mère- fils (M-S) et 18 paires mère fille (M-D)[26].

• FIW (Families In the Wild) :
La base de données FIW est la plus grande et la plus complète en matière de vé-
rification de parenté faciale [24]. Composée de plus de 10 000 images provenant
de plus de 1000 familles issues de sources variées (réseaux sociaux, médias publics,
etc.), FIW est conçue pour refléter la diversité des familles réelles. Elle couvre 11
types de relations familiales différentes, allant de parent-enfant à frères et sœurs, et
comprend également des arbres généalogiques permettant une étude plus approfon-
die de la structure familiale. En raison de sa taille et de sa richesse, FIW est idéale
pour entraîner des modèles de deep learning capables de gérer une grande variété
de situations réelles, notamment les variations dûes à l’âge, à l’ethnie, au genre et
aux conditions d’éclairage.

• Family101 :
La base de données Family101 a été crée pour pallier certaines limitations des bases
précédentes, notamment l’absence de diversité et l’impossibilité d’entraîner des mo-
dèles robustes pour des familles non occidentales. Elle contient 101 familles, avec
des images couvrant une large gamme d’âges, de genres et d’ethnies. Ces images
sont soigneusement sélectionnées pour fournir un ensemble de données équilibré, ce
qui est essentiel pour l’entraînement de modèles capables de généraliser à des po-
pulations variées. Family101 est particulièrement utilisée pour valider des modèles
développés sur d’autres bases plus grandes comme FIW, tout en permettant des
expériences plus ciblées sur des contextes familiaux diversifiés [23].
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• Cornell KinFace :
La base de données Cornell KinFace a été l’une des premières bases spécifiquement
conçues pour la vérification de la parenté faciale. Elle contient des paires d’images
de parent-enfant, obtenues dans des conditions relativement contrôlées, bien que
moins rigoureuses que celles des bases plus récentes. Bien qu’elle soit moins utili-
sée aujourd’hui, elle reste utile pour des tests préliminaires et pour comparer des
approches de détection de similarités faciales sur un ensemble plus restreint. Le
nombre d’images est limité, mais l’ancienne popularité de cette base la rend tou-
jours pertinente pour des expériences comparatives simples dans le domaine de la
parenté faciale.[13]

Base de données Nombre de familles Nombre de personnes Nombre de visages Résolution Variation d’âge Arbre généalogique

CornellKin 150 300 300 100×100 Non Non

UB Kinface 200 400 600 89×96 Oui Non

KinfaceW-I - 533 1066 64×64 Non Non

KinfaceW-II - 1000 2000 64×64 Non Non

TS kinface 787 2589 - 64×64 Oui Oui

Family101 101 607 14816 100×100 Oui Oui

Tab. II.1 – Caractéristiques des bases de données de visages utilisées

Fig. II.1 – Éxemples d’images extraites de bases de données utilisées, comprenant pour
chaque base deux échantillons visuels : un représentant un cas positif et un représentant
un cas négatif [5]
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II.4 Approches pour la vérification de la parenté
Au cours de la dernière décennie, de nombreuses études en physiologie humaine ont

exploré les mécanismes cognitifs impliqués dans la reconnaissance et la vérification fa-
ciale. Ces avancées ont largement influencé les domaines de la vision par ordinateur et de
l’apprentissage automatique, conduisant au développement de diverses méthodes auto-
matiques de reconnaissance faciale, notamment dans le cadre de la vérification de parenté.
Bien que ces approches aient montré des performances prometteuses, leur comparaison
reste complexe en raison de l’hétérogénéité des bases de données utilisées, rendant difficile
l’évaluation objective de leur efficacité respective.

II.4.1 Prétraitement du visage
Le prétraitement facial désigne l’ensemble des techniques utilisées pour préparer les

images de visages en vue d’une analyse ultérieure. Parmi les techniques les plus couram-
ment utilisées, on trouve notamment :

II.4.1.1 Détection du visage (avec MTCNN)
Le réseau neuronal convolutif en cascade multitâches (MTCNN) constitue une mé-

thode efficace et robuste pour la détection et l’alignement automatique de visages dans
les images [6]. L’architecture MTCNN se distingue par sa capacité à accomplir simul-
tanément plusieurs tâches liées au visage, à savoir : la détection précise des visages,
l’estimation de leur position ainsi que la localisation des points caractéristiques faciaux
(appelés landmarks : yeux, nez, bouche).Elle repose sur une architecture composée de
trois réseaux neuronaux convolutifs distincts, chacun effectuant une tâche spécifique :

Ces trois étapes successives, clairement illustrées par la figure II.2, assurent une dé-
tection robuste et efficace des visages, adaptée à une utilisation ultérieure dans des tâches
telles que la vérification de parenté.

À partir d’une image en entrée, celle-ci est d’abord redimensionnée à différentes
échelles afin de construire une pyramide d’images, qui servira d’entrée au cadre en cascade
à trois étapes décrit ci-dessous [6].

• Étape 1 : Le processus débute par l’utilisation du Proposal Network (P-Net), un
réseau convolutif léger chargé de parcourir l’image à différentes échelles pour identi-
fier des zones candidates susceptibles de contenir un visage. Chaque région proposée
est accompagnée d’un vecteur de régression ajustant sa boîte englobante. Pour éli-
miner les doublons ou détections trop proches, une opération de suppression non
maximale (NMS) est appliquée.

• Étape 2 : Les régions conservées sont ensuite transmises au Refine Network (R-
Net), un second réseau plus profond, qui permet de filtrer davantage les fausses
détections. Ce réseau affine les prédictions des boîtes englobantes et applique une
seconde NMS pour conserver uniquement les propositions les plus fiables.

• Étape 3 : Enfin, les candidats validés sont analysés par le Output Network (O-Net),
qui effectue une vérification plus fine et précise. En plus de confirmer la présence
d’un visage, ce réseau fournit la localisation de cinq points clés du visage (facial
landmarks) : les deux yeux, le nez, et les deux coins de la bouche, essentiels pour
les tâches d’alignement facial.
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Fig. II.2 – Vue d’ensemble des résultats de MTCNN [6]

II.4.2 Extraction de Caractéristiques
Les méthodes d’extraction de caractéristiques se divisent en deux grandes catégo-

ries : celles basées sur des descripteurs texturaux, souvent associées à des techniques
classiques de machine learning (shallow features), et celles reposant sur l’apprentissage
profond (deep learning). L’utilisation de modèles profonds dans la vérification de parenté
a longtemps été limitée, principalement en raison du manque de données suffisantes pour
entraîner efficacement ces architectures.

II.4.2.1 Caractéristiques profondes basées sur un réseau de neu-
rones convolutifs (CNN)

Avec les progrès récents en apprentissage profond, les réseaux de neurones convolutifs
(CNNs) se sont imposés comme des outils fondamentaux dans le domaine de la vision
par ordinateur. Conçus pour exploiter la structure spatiale des images, ces réseaux ont
transformé la manière dont les systèmes automatisés perçoivent et interprètent le contenu
visuel. Depuis leur introduction par LeCun [27], les CNNs ont démontré une efficacité
remarquable dans un large éventail d’applications, allant de la classification d’images à la
détection d’objets, en passant par la reconnaissance faciale et la segmentation d’images.
Leur capacité à extraire automatiquement des représentations hiérarchiques des données
visuelles en fait aujourd’hui une technologie incontournable pour le traitement et l’analyse
d’images.
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II.4.2.1.1 Architecture CNN

De nombreuses architectures de réseaux de neurones convolutifs (CNNs) ont été pro-
posées [28]. L’architecture du modèle joue un rôle essentiel dans l’amélioration des per-
formances selon les tâches visées. Depuis leur apparition en 1989, les CNNs ont connu de
nombreuses évolutions [29], incluant des ajustements structurels, des techniques de régu-
larisation, et des méthodes avancées d’optimisation des paramètres. Toutefois, l’améliora-
tion significative des performances des CNNs résulte en grande partie de la réorganisation
des unités de traitement et de l’introduction de nouveaux blocs d’opérations.

L’étude approfondie des caractéristiques de ces architectures telles que la taille d’en-
trée, la profondeur du réseau ou encore sa robustesse est cruciale pour orienter le choix
du modèle selon l’application ciblée. Classiquement, une architecture CNN se compose de
plusieurs couches : convolutionnelles, de sous-échantillonnage (pooling)[30], d’activation
non linéaire (ReLU)[31], et de couches entièrement connectées. Ces réseaux assurent à la
fois l’extraction de caractéristiques discriminantes et la classification comme illustré dans
la figure II.3[7].

Fig. II.3 – Éxemple de l’architecture CNN [7]

— La couche d’entré (Input) : Chaque image est de dimension [Wi,Hi,Ci] , ou Wi
est sa largeur en pixels, Hi sa hauteur en pixels et Ci le nombre de canaux (1 pour
une image niveau de gris, 3 pour une image en couleurs).

— La couche de convolution : Elle constitue l’élément central des réseaux de neu-
rones convolutifs (CNN), car elle agit comme un extracteur automatique de ca-
ractéristiques. Son principe repose sur le balayage de l’image à l’aide de noyaux
de convolution (appelés filtres), capables de détecter des motifs locaux simples tels
que des bords, des textures ou des courbes. Contrairement aux approches classiques
où ces filtres sont définis manuellement, dans un CNN, les poids des filtres sont
appris directement par le réseau. Ils sont initialement attribués de manière aléa-
toire, puis ajustés progressivement durant l’entraînement à l’aide de l’algorithme de
rétro-propagation du gradient, permettant ainsi au modèle d’optimiser sa capacité
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à capturer des structures visuelles pertinentes.

La couche de convolution possède quatre hyperparamètres
• Le nombre de filtres K : définit la profondeur du volume de sortie.
• La taille F des filtres : chaque filtre est de dimensions F. F. D pixels.
• Le pas (Stride) S : Il désigne le nombre de pixels avec lequel le filtre se

déplace à chaque étape lors de la convolution, il contrôle le chevauchement
entre les fenêtres.

• Le zero-padding P : consiste à ajouter un contour noir (valeurs nulles)
d’épaisseur P pixels autour de l’image d’entrée, afin de préserver ses dimensions
après la convolution et éviter la perte d’information en bordure.

Produit une matrice de dimension [W0, H0, C0 ] : C0 correspond au nombre de
filtres K.

W0 =
Wi− F + 2P

S
+ 1 (II.1)

H0 =
Hi− F + 2P

S
+ 1 (II.2)

ä Opération de convolution de base :

On applique le filtre sur l’entrée, réaliser un produit élément par élément, puis
sommer le résultat.

Fig. II.4 – Éxemple des calculs fondamentaux réalisés à chaque passage dans une couche
convolutionnelle.

On déplace la superposition d’une position vers la droite (ou selon la valeur du
stride), puis répéter le calcul précédent pour obtenir le résultat suivant, et ainsi de
suite.
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Fig. II.5 – Éxemple des calculs réalisés après un pas Stride (S = 1)

Le stride détermine de combien de positions le filtre se déplace dans l’entrée pour
calculer la cellule suivante du résultat.

Fig. II.6 – Éxemple du pas (Stride) pour S = 2

Fig. II.7 – Éxemple du zero-padding
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— La couche d’activation ReLU : C’est la fonction la plus utilisée dans les réseaux
de neurones convolutifs [31]. Elle transforme toutes les valeurs négatives de l’entrée
en zéro, tout en conservant les valeurs positives inchangées. Son principal avantage
réside dans sa simplicité de calcul, ce qui la rend plus rapide et moins coûteuse
en ressources que d’autres fonctions d’activation. Sa définition mathématique est
donnée par la formule suivante :

FReLU (x) = max(0, x) (II.3)

Fig. II.8 – Éxemple de la Couche d’activation ReLu

— La couche pooling : Dans les réseaux de neurones convolutifs (CNN), la couche
de Pooling est généralement placée entre deux couches de convolution. Elle joue
un rôle essentiel en réduisant la dimension spatiale des cartes de caractéristiques
générées par les opérations de convolution, tout en préservant les informations les
plus importantes. Cela permet de limiter le nombre de paramètres, de réduire la
charge computationnelle et de diminuer le risque de sur-apprentissage (overfitting).
Concrètement, l’image est découpée en cellules régulières (patchs), et une opération
statistique est appliquée sur chacune d’elles, comme le maximum (Max-Pooling) [30]
ou la moyenne (Average-Pooling) [30]. Cette technique permet également d’obtenir
des représentations plus robustes, invariantes aux translations, rotations et petites
déformations des objets.
Il existe plusieurs variantes de pooling selon les besoins de la tâche, notamment
le Global Average Pooling (GAP), le Global Max Pooling, le Min-Pooling, le Tree
Pooling, ou encore le Gated Pooling [32]. Ces méthodes peuvent être choisies en
fonction des objectifs du réseau et de la nature des données traitées.
Le choix le plus fréquent est l’utilisation du Max-Pooling avec un filtre de taille
2 × 2 et un stride de 2, ce qui évite le chevauchement entre les régions traitées.La
couche de Pooling possède deux hyperparamètres :

• La taille des patchs F : l’image est découpée en patch carrées de taille FxF
pixels.

• Le pas S : les patchs sont séparées les unes des autres de S pixels.
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Accepte un volume de taille [L1,H1,C1] et produit matrice de dimensions [W2,H2,C2]
où :

W2 =
W1− F

S
+ 1 (II.4)

H2 =
H1− F

S
+ 1 (II.5)

C2 = C1 (II.6)

Fig. II.9 – Éxemple des deux variant max pooling et average pooling

— La couche d’aplatissement (Flatten layer) : Elle joue un rôle de transi-
tion entre les couches convolutionnelles (et de pooling) et les couches entière-
ment connectées dans une architecture de réseau de neurones. Elle a pour fonction
de transformer les cartes de caractéristiques (feature maps) multidimensionnelles
(telles que les tenseurs 3D issus des convolutions) en un vecteur unidimensionnel.
Cette opération est nécessaire, car les couches entièrement connectées attendent une
entrée sous forme de vecteur. Ainsi, la couche Flatten Layer permet de ”linéariser”
les données tout en conservant les informations extraites par les couches précédentes.
Bien qu’elle n’effectue aucun calcul, cette étape structurelle est essentielle pour
préparer les données à la phase de classification finale.

Fig. II.10 – Éxemple de la couche d’aplatissement (Flatten layer)
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— La Couche entièrement connectées (Fully connected layer) : La couche
entièrement connectée, souvent située en fin de réseau convolutif (CNN), joue un
rôle essentiel dans la phase de classification. Contrairement aux couches précédentes
qui traitent des cartes de caractéristiques locales, elle relie chaque neurone à tous
ceux de la couche précédente, permettant une combinaison globale des informations
extraites.
Son objectif est de transformer les représentations spatiales issues des couches
convolutionnelles et de pooling en un vecteur de décision, adapté à la tâche de
classification. Elle agit ainsi comme un classificateur traditionnel.
Dans le cadre de la vérification de parenté faciale, cette couche se termine généra-
lement par un seul neurone de sortie, activé par une fonction sigmoïde, qui renvoie
une probabilité indiquant si les deux individus sont apparentés ou non.

Fig. II.11 – Éxemple de la couche entièrement connecté (fully connected layer)

II.4.2.1.2 Modèle pré-entraîné

• InceptionV3 :
C’est un réseau de neurones convolutif développé par Google pour la classification
d’images. Il a été entraîné sur la base de données ImageNet, contenant plus d’un
million d’images réparties sur 1000 catégories, ce qui lui permet d’apprendre des
représentations visuelles efficaces et généralisables.

Ce modèle fait partie de la famille des architectures Inception, connues pour leur
bon équilibre entre précision et efficacité computationnelle. Il utilise des modules
qui combinent plusieurs tailles de filtres (1x1, 3x3, 5x5), afin de capturer l’informa-
tion à différentes échelles. Il intègre également des techniques modernes comme la
batch normalization [33] et la réduction de dimensions.

Dans notre projet, nous utilisons une version pré-entraînée d’InceptionV3. Les
couches finales de classification sont supprimées, et nous extrayons les caractéris-
tiques profondes depuis la couche de moyenne globale (avg-pool). Le résultat est un
vecteur de 1000 valeurs qui décrit le contenu visuel du visage de manière détaillée.
Ce vecteur sert ensuite à comparer les visages entre eux, afin de vérifier s’il existe
un lien de parenté.
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Fig. II.12 – Exemple de l’architecture du modèle InceptionV3

II.4.2.2 Descripteurs texturaux
Les descripteurs texturales désignent des caractéristiques extraites à l’aide de mé-

thodes classiques, sans apprentissage automatique. Ils reposent sur des mesures statis-
tiques ou texturales calculées directement à partir des pixels de l’image. Simples à mettre
en œuvre et peu coûteux en calcul, ces descripteurs permettent de capturer des informa-
tions locales utiles, en complément des descripteurs profonds, dans des tâches telles que
la vérification de parenté.

• Quantification de phase locale (LPQ)
En complément des descripteurs profonds extraits par des modèles CNN comme
InceptionV3, l’utilisation de descripteurs texturaux (ou Shallow) permet d’exploiter
des informations locales et texturales importantes, parfois négligées par les modèles
profonds.
Le descripteur LPQ (Local Phase Quantization) a été initialement proposé par
Ojansivu et Heikkilä comme opérateur de description de texture [34]. Il repose sur
la propriété d’invariance au flou du spectre de phase de Fourier. Pour ce faire, LPQ
extrait l’information de phase locale à l’aide de la transformée de Fourier à court
terme bidimensionnelle (2D-STFT), appliquée sur un voisinage rectangulaire centré
autour de chaque pixel de l’image, comme présenté dans l’équation suivante.

Fu(X) =
∑
m∈Nx

h(m− x)f(m) exp−2jπuTm = ET
u fx (II.7)

où Eu, de taille 1M2, est un vecteur de base de la transformée de Fourier discrète
bidimensionnelle (2DWFT) associé à la fréquence u, et fx, de taille M2×N , est un
vecteur contenant les valeurs des pixels de l’image dans Nx à chaque position x. La
fonction fenêtre h(x) est une fonction rectangulaire.
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(a) Image (b) R = 1 (c) R = 2 (d) R = 3 (e) R = 4

(f) R = 5 (g) R = 6 (h) R = 7 (i) R = 8

(j) R = 9 (k) R = 10

Fig. II.13 – Exemple de la Quantification de phases locales (LPQ) avec différents rayons
R= 1 à 10

Dans la méthode de Local Phase Quantization (LPQ), seuls quatre coefficients
complexes correspondant à des fréquences bidimensionnelles spécifiques sont pris en
compte. Dans nos expériences, nous avons utilisé la version originale du code fournie
par les auteurs de LPQ. Cette méthode se déroule en quatre étapes principales. Tout
d’abord, l’opérateur LPQ est appliqué à l’image d’entrée afin de produire une image
étiquetée. Ensuite, cette image est divisée en petites régions locales. Pour chacune
d’elles, un histogramme des valeurs d’étiquettes est calculé afin de constituer un
vecteur de caractéristiques locales. Enfin, ces histogrammes sont concaténés pour
former un vecteur global représentant l’ensemble de l’image.

Fig. II.14 – Éxemple des étapes nécessaires à la génération du vecteur de caractéristiques
par la méthode LPQ (Local Phase Quantization),
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• Caractéristiques statistiques binarisées d’image (BSIF)

Le descripteur BSIF (Binarized Statistical Image Features), introduit par Kannala
et Rahtu [35], repose sur un ensemble de filtres linéaires appris automatiquement
à partir de patchs d’images naturelles à l’aide de l’Analyse en Composantes In-
dépendantes (ICA). Les réponses obtenues par convolution sont ensuite binarisées
afin de produire une représentation compacte des textures locales. Contrairement
à des méthodes comme LPQ, qui s’appuient sur le calcul de statistiques de labels
dans les voisinages de pixels, BSIF encode directement les motifs locaux à partir de
réponses filtrées statistiquement apprises.

Soit une image X de taille l× l, et un ensemble de n filtres Wi. La réponse du filtre
Si est calculée par :

si =
∑
u,v

Wi(u, v)X(u, v) = wT
i x (II.8)

Soit un ensemble de n filtres linéaires. On peut empiler ces filtres dans une seule
matrice Wi pour calculer toutes les réponses simultanément.
Dans la dernière étape, on introduit la notation vectorielle : les vecteurs w et x
représentent respectivement les pixels du filtre Wi et de la région d’image X.
La fonction binarisée bi est alors définie par :

bi =

{
1 si si > 0

0 sinon
(II.9)

Chaque pixel est ainsi représenté par un code binaire de n bits. L’image peut ensuite
être décrite globalement à l’aide d’un histogramme des codes binaires, facilitant
l’analyse de texture pour des tâches telles que la reconnaissance faciale.

(a) Image (b) 3x3 (c) 5x5 (d) 7x7 (e) 9x9

(f) 11x11 (g) 13x13 (h) 15x15

Fig. II.15 – Exemple de Caractéristiques BSIF avec différents filtres de 3x3 à 15x15.
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II.4.3 Classification
Dans le cadre de la vérification de parenté faciale, la classification vise à déterminer si

deux visages partagent un lien de parenté, à partir des caractéristiques extraites. Après
fusion et réduction de dimension par TXQEDA, suivie d’une normalisation intra-classe
via WCCN.

II.4.3.1 Réduction de dimension par TXQEDA
La méthode TXQEDA (Tensor Cross-view Quadratic Exponential Discriminant Ana-

lysis) est une extension tensorielle avancée de l’approche XQDA[36], intégrant les prin-
cipes discriminatifs de XQEDA tout en exploitant la structure multi-dimensionnelle (ten-
sorielle) des données issues de l’extraction de caractéristiques faciales. Dans le contexte
de la vérification de parenté, cette méthode se révèle particulièrement pertinente, car
elle permet de mieux modéliser la complexité des relations héréditaires tout en réduisant
efficacement la dimensionnalité des descripteurs.

Contrairement aux méthodes vectorielles classiques, TXQEDA opère directement sur
des tenseurs d’ordres supérieurs, préservant ainsi les corrélations entre les différentes di-
mensions des caractéristiques extraites. Son objectif est de maximiser la séparation entre
les classes (parenté vs non-parenté) tout en minimisant la variance intra-classe dans un
espace projeté de plus faible dimension, afin d’améliorer la capacité de discrimination du
système.

TXQEDA utilise des tenseurs d’entraînement d’ordre 3 pour représenter les descrip-
teurs extraits des images faciales. Ces tenseurs X et Y ∈ RI1×I2×I3 , chaque mode du
tenseur a une signification précise :

— I1 correspond aux différentes échelles d’extraction
— I2 contient les valeurs des histogrammes
— I3 représente les échantillons de visages
Il apprend ensuite un espace réduit qui sépare mieux les paires apparentées des non-

apparentées, tout en conservant les relations importantes entre les données. Cela permet
d’améliorer la vérification de parenté.

II.4.3.2 Normalisation par la Covariance Intra-classe (WCCN)
La méthode WCCN (Within-Class Covariance Normalization) est utilisée comme

technique de réduction de la variance intra-classe, dans le but d’améliorer la séparabilité
entre les classes. Dans notre système, nous appliquons WCCN [37] avant le calcul de si-
milarité afin de rendre l’espace des caractéristiques plus discriminant pour la vérification
de parenté.

La matrice de normalisation WCCN, notée (B), est obtenue à partir de la décompo-
sition de Cholesky :

BBT = W−1 (II.10)
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La matrice de covariance intra-classe (W ), est estimée à partir des vecteurs de carac-
téristiques wi centrés autour de leur moyenne de classe, comme suit :

W =
1

S

s∑
s=1

ns∑
i=1

(
AT (ws

i − w̄s)
) (

AT (ws
i − w̄s)

)T (II.11)

Enfin, chaque vecteur wi est transformé selon :

w̃i = B−1wi (II.12)

Fig. II.16 – Exemple de WCCN

II.4.3.3 Similarité cosinus
C’est une mesure utilisée pour évaluer la similarité entre deux vecteurs de caractéris-

tiques, ici notés u et v. Elle s’appuie sur l’angle entre les deux vecteurs, indépendamment
de leur longueur. Elle est particulièrement adaptée aux représentations issues de réseaux
neuronaux profonds ou de descripteurs texturaux normalisés.

La formule de la similarité cosinus est donnée par :

Similarité cosinus(u, v) = u · v
∥u∥ ∥v∥ =

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

(II.13)

où :
— u = (u1, u2, . . . , un) et v = (v1, v2, . . . , vn) sont les vecteurs de caractéristiques de

dimension n,
— u · v représente le produit scalaire entre u et v,
— ∥u∥ =

√∑n
i=1 u

2
i est la norme euclidienne du vecteur u,

— ∥v∥ =
√∑n

i=1 v
2
i est la norme euclidienne du vecteur v.
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La valeur de la similarité cosinus varie entre −1 et 1, où 1 indique une forte similarité
entre les visages, les deux individus sont probablement apparentés, 0 indique une faible
similarité, les visages sont plutôt différents, et −1 indique une opposition, les visages sont
très différents, donc probablement non apparentés.
En pratique, un seuil de décision est fixé : si la similarité est supérieure ou égale à ce
seuil, la paire est classée comme apparenté, sinon non-apparenté

Fig. II.17 – Éxemple de Similarité cosinus

II.4.4 Décision
La tâche de décision dans les systèmes de vérification consiste à déterminer si une

paire d’images faciales sont apparentés ou non. Pour prendre cette décision, une mesure
de similarité est utilisée afin d’évaluer la proximité entre les vecteurs de caractéristiques
extraits. Dans notre système, nous utilisons la similarité cosinus. Si la valeur de cette
similarité dépasse un seuil de décision prédéfini, la paire est considérée comme apparentée,
sinon elle est jugée non apparentée.

Afin de garantir la fiabilité de l’évaluation, une validation croisée à 5 plis (5-fold cross-
validation) est appliquée. Elle permet de tester le système sur différentes subdivisions des
données.

Enfin, pour renforcer la décision, les différentes informations issues des descripteurs
(profonds et texturaux) sont fusionnées au moyen d’un classifieur par régression logistique.
Ce dernier apprend à discriminer les paires apparentées des non-apparentées en exploitant
la complémentarité entre les descripteurs, et permet ainsi d’améliorer la précision finale
du système.
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II.5 Architecture générale du système
La reconnaissance des relations de parenté à partir d’images faciales repose sur l’ex-

traction de caractéristiques robustes et discriminantes. Dans ce contexte, nous proposons
une approche combinant un descripteur profond (InceptionV3), et des descripteurs tex-
turaux (LPQ, BSIF), fusionnés à l’aide d’une technique puissante (fusion LR). Cette
combinaison permet de capturer des informations complémentaires facilitant la vérifica-
tion des liens biologiques entre individus.

Fig. II.18 – Schéma du système proposé de vérification de la parenté faciale

II.6 Conclusion
Dans ce chapitre, nous avons détaillé la méthode proposée pour la vérification de la

parenté faciale, en exposant les différentes étapes du processus : prétraitement des images,
extraction de caractéristiques à l’aide de descripteurs profonds et texturaux, réduction
de dimension, normalisation et classification. L’ensemble de ces modules constitue l’ar-
chitecture complète de notre système.

Dans le chapitre suivant, nous procéderons à l’évaluation expérimentale de cette mé-
thode, en analysant ses performances sur différentes bases de données et en la comparant
aux approches existantes.
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III.1 Introduction
Les chercheurs en vision par ordinateur à travers le monde s’efforcent continuelle-

ment d’optimiser les performances des systèmes de vérification de la parenté faciale, en
explorant et en développant de nouvelles approches et techniques adaptées à cette tâche
complexe.
Dans ce dernier chapitre, nous procédons à l’implémentation complète de notre système
de vérification de parenté faciale en combinant deux types d’extraction de caractéris-
tiques : les caractéristiques texturales (shallow feature) BSIF et LPQ, et le descripteur
profond (deep feature) InceptionV3. Dans le but d’optimiser les performances de notre
système, une série d’expérimentations est menée sur deux bases de données de parenté
bien connues, à savoir Cornell KinFace et UB KinFace, en explorant plusieurs configura-
tions et paramètres. Nous utilisons une méthode récente et performante de réduction de
la dimension intitulée Tensor Cross-View Quadratic Exponential Discriminant Analysis
(TXQEDA), une stratégie de fusion par régression logistique (Logistic Regression Fusion)
est appliquée pour combiner les meilleurs scores issus de chaque descripteur.

III.2 Environnement de travail
Le langage de programmation utilisé dans ce travail est MATLAB, exécuté dans l’en-

vironnement de développement du même nom (dans notre cas MATLAB R2024a) et
développé par The MathWorks. MATLAB permet une mise en oeuvre rapide et efficace
des algorithmes, la réalisation de tâches nécessitant une puissance de calcul élevée, la
manipulation et l’affichage de courbes, ainsi que la conception d’interfaces graphiques.

Les expériences ont été réalisées sur un ordinateur équipé d’un processeur Intel(R)
Core(TM) i5-12400F cadencé à 2,5 GHz, d’une carte graphique NVIDIA GeForce RTX
3080, et de 16 Go de mémoire vive (RAM).

Nous avons utilisé l’environnement Deep Learning Toolbox Model pour la mise en
œuvre des réseaux de neurones convolutifs (CNN).

III.3 Protocole de travail
Dans le cadre de notre travail, nous avons utilisé la technique de validation croisée

à 5 plis (5-fold cross-validation), qui consiste à diviser aléatoirement la base de données
en cinq sous-ensembles de taille égale. Cette méthode permet d’entraîner et de tester le
modèle sur différentes partitions du base de données, dans le but d’assurer une bonne
capacité de généralisation et de limiter le risque de sur-apprentissage.Le principe repose
sur l’exécution de cinq itérations : à chaque itération, l’un des sous-ensembles est utilisé
comme ensemble de test, tandis que les quatre autres servent à l’entraînement. Ce proces-
sus est répété cinq fois, en faisant varier à chaque fois le fold de test, de sorte que chaque
sous-ensemble soit utilisé exactement une fois pour l’évaluation. Les performances finales
sont obtenues en calculant la moyenne des scores obtenus sur les cinq itérations.
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Fig. III.1 – Éxemple de la validation croisée K-fold, avec K=5

III.4 Expérimentations et Résultats
Nous menons plusieurs expériences pour évaluer la méthode utilisée :
• Pour les caractéristiques texturales, nous utilisons deux descripteurs texturaux

(LPQ, BSIF)
a. Nous fixons le nombre de blocs à 12 pour LPQ et la valeur du rayon est

modifiée de manière itérative avec les valeurs : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
b. Pareil avec BSIF nous fixons le nombre de blocs à 12 et la taille du filtre

est modifiée de manière itérative avec les valeurs : 3x3, 5x5 7x7, 9x9, 11x11,
13x13, 15x15.

• Pour les caractéristiques profondes, nous utilisons le modèle pré-entraîné Incep-
tionV3.
a. Dans InceptionV3, une seule échelle de caractéristiques est extraite à partir de

la couche avg-pool, qui génère un vecteur de 2048 dimensions juste avant la
couche de classification.

• Le meilleur paramétrage de BSIF et LPQ est déterminé, puis fusionné avec le score
du modèle InceptionV3.

III.4.1 Éxpérimentations sur la base de données Cor-
nell kinFace

Nous présentons ici les résultats de nos expériences sur la base de données Cornell
kinFace. Le Tableau III.1 illustre la précision moyenne du descripteur LPQ, pour laquelle
nous avons fait varier le rayon (R = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), ainsi que celle de l’approche
BSIF selon ses différents filtres (3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15), et en fixant le
nombre de blocs d’histogrammes à 12.

Ensuite, les expériences ont été menées avec l’extraction de caractéristiques profondes
à partir des images originales, en utilisant InceptionV3. Les résultats sont présentés avec
les meilleurs scores des descripteurs texturaux (LPQ et BSIF) dans le Tableau III.2 .
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Enfin, la fusion au niveau des scores entre les meilleurs résultats précédents est illustrée
dans le Tableau III.3.

Descripteurs texturaux Échelles Précision moyenne (%)

LPQ

R=1 91.29
R=2 90.32
R=3 90.69
R=4 90.65
R=5 90.29
R=6 88.89
R=7 89.17
R=8 89.27
R=9 89.69
R=10 89.23

BSIF

F=3*3 87.38
F=5*5 89.52
F=7*7 90.55
F=9*9 90.94
F=11*11 91.67
F=13*13 91.66
F=15*15 92.42

Tab. III.1 – Précision moyenne (%) des descripteurs texturaux LPQ et BSIF sur la base
de données Cornell kinFace

Descripteurs Texturaux et profonds Précision moyenne (%)

LPQ 91.29

BSIF 92.42

InceptionV3 71.34

Tab. III.2 – La précision moyenne (%) des meilleures scores de chaque descripteurs sur
la base de données Cornell kinFace
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Fusion Précision moyenne (%)

LR fusion 93.75

Tab. III.3 – Résultat final après la fusion des meilleurs résultats de chaque descripteur
(Texturaux et profond) avec la régression logistique (LR)

III.4.2 Expérimentations sur la base de données de
UB KinFace

La même expérience est menée sur la base de données UB KinFace. Nous présentons les
résultats comme suit : le tableau III.4 montre la précision moyenne (%) des descripteurs
texturaux LPQ et BSIF sur la base de données UB KinFace et le tableau III.5, la précision
moyenne (%) des meilleures scores de chaque descripteurs sur la base de données UB
KinFace et enfin le tableau III.6 montre le résultat final après la fusion des meilleurs
scores de chaque descripteur (Textural et profond) avec la régression logistique (LR).

Les relations sont les suivantes : Set1 : paires parent-enfant avec un grand écart d’âge.
Set2 : paires parent-enfant avec un écart d’âge plus réduit.

Descripteurs texturaux Échelles Set1 Set2 Précision moyenne(%)

LPQ

R=1 85.94 88.52 87.23
R=2 85.66 87.75 86.70
R=3 84.96 86.79 85.87
R=4 85.40 86.25 85.82
R=5 84.40 85.77 85.08
R=6 84.9 86.27 85.61
R=7 85.20 87.29 86.24
R=8 82.97 85.78 84.37
R=9 81.94 83.53 82.73
R=10 81.70 83.30 82.5

BSIF

F=3*3 80.45 82.27 81.36
F=5*5 81.22 84.82 83.02
F=7*7 84.17 86.56 85.36
F=9*9 83.47 85.55 84.51
F=11*11 83.18 85.02 84.10
F=13*13 83.13 84.73 83.93
F=15*15 82.90 84.02 83.46

Tab. III.4 – Précision moyenne (%) des descripteurs texturaux LPQ et BSIF sur la base
de données UB KinFace
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Descripteurs Texturaux Set1 Set2 Précision moyenne(%)

et Profonds

LPQ 85.94 88.52 87.23

BSIF 84.17 86.56 85.36

InceptionV3 63.96 65.96 64.96

Tab. III.5 – La précision moyenne (%) des meilleures scores de chaque descripteurs sur
la base de données UB KinFace

Fusion Set1 (%) Set2 (%) Précision moyenne (%)

LR Fusion 87.90 91.03 89.46

Tab. III.6 – Résultat final après la fusion des meilleurs scores de chaque descripteur
(Textural et profond) avec la régression logistique (LR)

III.5 Synthèse des performances obtenues
Les expériences que nous avons menées en utilisant l’approche proposée, à savoir la

fusion par régression logistique basée sur TXQEDA de deux types de caractéristiques
(LPQ, BSIF, InceptionV3) sur deux base de données (Cornell KinFace et UB KinFace),
nous amènent à conclure ce qui suit :

• L’efficacité des caractéristiques texturales : Nous avons appliqué deux des-
cripteurs, LPQ et BSIF. Pour le descripteur BSIF, nous avons obtenu la meilleure
précision moyenne de 92.42 % avec le filtre 15x15 et 85.36 % avec le filtre 7x7, et
pour LPQ, la meilleure précision moyenne atteinte est de 91.29 % (lorsque R =
1) et 87.23 % (lorsque R = 1) avec les bases de données Cornell KinFace et UB
KinFace, respectivement.

• L’efficacité du descripteur profond : Nous avons employé le modèles CNN
pré-entraînés InceptionV3. Après simulation, nous avons constaté que les résultats
obtenus n’étaient pas aussi performants que ceux issus des caractéristiques textu-
rales : par exemple la précision moyenne était de 71.34 % avec Cornell KinFace
et de 64.96 % avec UB KinFace, Cependant, nous savons que les caractéristiques
extraites ne sont pas identiques, c’est pourquoi nous les conservons afin d’exploiter
leur complémentarité.

• L’efficacité de la fusion par régression logistique opérée au niveau des
scores : Nous utilisons l’approche LR pour combiner, au niveau des scores, les
meilleurs résultats issus des différents types de caractéristiques (LPQ, BSIF et
InceptionV3). Il est impressionnant de constater que la méthode de fusion par ré-
gression logistique affiche d’excellentes performances, atteignant des précisions de
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93.75 % sur la base de données Cornell KinFace et de 89.46 % sur UB KinFace
(voir Tableau III.3 et III.6). Ces résultats démontrent que la fusion par régression
logistique permet de booster significativement la précision.

III.6 Comparaison avec les travaux connexes
Les résultats les plus performants de notre méthode, obtenus par la fusion des scores

des descripteurs LPQ, BSIF, InceptionV3, combinés à la technique de réduction de dimen-
sion TXQEDA+WCCN, ont été comparés à ceux de méthodes récentes dans le Tableau
III.7, en se basant sur les bases de données Cornell KinFace et UB KinFace. Les travaux
de comparaison sont sélectionnés en fonction des algorithmes utilisés.

Travail Année Algorithme Base de données Cornell Base de données UB

Bessaoudi & al [38] 2019 MSIDA 86.87 83.34

Zhang & al. [39] 2021 AdvKin 81.40 75.00

Mukherjee & al. [40] 2022 BC2DA 83.07 83.30

Goyal & al. [41] 2023 MLDPL 84.16 87.90

Proposé 2025 Fusion 93.75 89.46

Tab. III.7 – Comparaison des performances des méthodes de vérification de parenté sur
les bases de données Cornell et UB

Les performances données sur le tableau ci-dessus, montrent que notre approche sur-
passe les techniques les plus récentes sur les deux bases de données considérées.

III.7 Conclusion
Dans ce dernier chapitre, nous avons exposé les résultats obtenus suite à la mise en

oeuvre de nos architectures présentées dans le chapitre précédent. Tout d’abord, nous
avons détaillé la mise en oeuvre de notre système, en présentant l’environnement de dé-
veloppement sur lequel le système a été réalisé. Ensuite, nous avons analysé les résultats
de chaque expérience en calculant les métriques d’évaluation, facilitant ainsi la compa-
raison entre les différentes expérimentations.

Les résultats obtenus ont permis de démontrer l’efficacité de la stratégie de fusion
adoptée, confirmant sa capacité à améliorer la performance de notre système de vérifica-
tion de la parenté faciale.
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Le travail réalisé dans ce mémoire consiste à mettre en place un système de véri-
fication de la parenté faciale. L’objectif principal était de maitriser les diverses étapes
de traitement : prétraitement, extraction de caractéristiques, calcul des scores et fusion.
Nous avons ensuite cherché comment améliorer les performances du système en intégrant
de nouvelles techniques.

Pour de tels systèmes, l’environnement ainsi que les différentes sources de variabi-
lité ont une influence majeure sur les performances. Le système de base, que nous avons
développé, utilise MTCNN pour la détection des visages. Pour l’extraction des caractéris-
tiques basés sur des descripteurs texturaux (shallow features), nous avons proposé deux
descripteurs spécifique LPQ et BSIF. Nous avons ensuite appliqué une méthode optimi-
sée appelée TXQEDA+WCCN pour la réduction de dimension et la compensation des
variabilités.

L’évaluation des performances de notre système a été réalisée sur deux bases de don-
nées : Cornell KinFace et UB KinFace. Nous avons testé les descripteurs LPQ et BSIF
à différentes échelles, et obtenu des taux de vérification corrects de 91.29 % et 87.23 %
pour LPQ, et de 92.42 % et 85.36 % pour BSIF, respectivement sur les bases Cornell et
UB KinFace.

Par la suite, nous avons remplacé nos descripteurs texturaux par une autre méthode
d’extraction de caractéristiques basée sur des caractéristiques profondes (deep features),
utilisant l’architecture InceptionV3 avec diverses configurations du système. Le même
protocole a été conservé afin d’assurer une comparaison objective avec les descripteurs
texturaux. Cette méthode a été appliquée aux mêmes bases de données. Les résultats
obtenus étaient respectivement de 71.34 % pour Cornell KinFace, et 64.96 % pour UB
KinFace.

Afin de tirer parti des avantages complémentaires des deux approches (profondes et
texturaux), nous avons appliqué une fusion des scores au niveau du système. En utili-
sant une fusion par régression logistique (LR) avec trois extracteurs (InceptionV3, LPQ,
BSIF), nous avons atteint des taux de vérification correcte de 93.75 % et 89.46 % respec-
tivement pour les bases Cornell et UB KinFace.

En conclusion, nous estimons avoir développé un système répondant à nos objec-
tifs initiaux. L’utilisation de la fusion de scores entre deux méthodes d’extraction de
caractéristiques (profondes et texturales) permet d’obtenir une meilleure robustesse et
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d’améliorer significativement les performances du système de vérification de parenté.
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Perspectives

Les travaux menés dans le cadre de ce projet représentent un bon début pour plusieurs
autres expérimentations futures qui doivent être poursuivies afin de parvenir à un système
encore plus robuste et performant.

À partir de ce projet, nous prévoyons de poursuivre nos recherches dans le domaine
de la vérification de la parenté faciale, en explorant de nouvelles approches plus avancées
telles que l’utilisation de réseaux neuronaux plus profonds, des techniques d’apprentissage
auto-supervisé, ainsi que des méthodes de fusion plus intelligentes basées sur des modèles
d’ensembles. Par ailleurs, nous envisageons d’étendre l’évaluation du système sur des
bases de données plus variées, incluant des images dans des conditions réelles et non
contrôlées.
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