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Introduction Générale
L’Internet des Objets (IoT) est un réseau permettant à une multitude d’objets physiques et

virtuels d’être interconnectés afin de collecter, d’échanger et de traiter des données de manière
intelligente.

Le Cloud Computing, quant à lui, offre une solution puissante pour le traitement et le
stockage de ces données. Il permet l’accès à des ressources informatiques centralisées et évolu-
tives, tout en assurant une haute disponibilité des services. L’intégration de l’IoT avec le Cloud
permet d’optimiser la collecte et le traitement de données sur de grandes distances.

Cependant, cette architecture centralisée présente des limitations majeures lorsqu’il s’agit
d’applications nécessitant une faible latence, une réactivité en temps réel ou une réduction de
la consommation d’énergie. L’envoi systématique des données vers le Cloud peut engendrer
des délais importants et une surcharge du réseau, ce qui rend cette approche inadaptée pour
certains usages critiques.

C’est dans ce contexte que le Fog Computing a été introduit comme une solution inter-
médiaire entre le Cloud et les objets connecté. Cette technologie étend les capacités du Cloud
vers la périphérie du réseau, en déployant des nœuds de traitement (Fog nodes) à proximité
des sources de données. Le Fog optimise la prise de décision locale, réduit la charge réseau et
améliore la gestion des ressources dans les systèmes distribués.

Cependant, une question centrale subsiste : comment et où exécuter les tâches générées par
les objets IoT ? Faut-il les traiter localement, sur un nœud Fog, ou envoyer certaines d’entre
elles au Cloud ? Ce processus, appelé Task Offloading, est un problème complexe d’optimisation
impliquant plusieurs critères de performances, tels que la latence, la consommation d’énergie,
la capacité des ressources disponibles et la qualité de service (QoS).

Dans ce travail, nous proposons une étude approfondie du Task Offloading dans un en-
vironnement de Fog Computing, en explorant les approches, les classifications, les critères de
décision, ainsi que les algorithmes d’optimisation les plus adaptés. Notre étude s’intéresse parti-
culièrement à l’adaptation de la metaheuristique ABC (Artificial Bee Colony) pour résoudre le
problème de Task Offloading dans l’environnement Fog Computing. Cette algorithme est com-
parer avec une autre metaheuristique PSO (Particle Swarm Optimization), selon leur capacité
à réduire le temps d’exécution et a minimiser la consommation d’énergie globale.

Notre mémoire est structuré en trois chapitres, détaillés comme suit :
Chapitre I «Généralités sur l’IoT, le Fog et le Cloud Computing » Chapitre introduit les

concepts fondamentaux de l’Internet des objets (IoT), du Cloud et du Fog Computing. Il
présente leurs architectures ainsi que leurs principales caractéristiques. Cette mise en contexte
permet de mieux comprendre les enjeux liées à l’évolution des technologies distribuées.

Chapitre II «Task Offloading dans le Fog Computing » traite le Task Offloading dans le Fog

1
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Computing, en présentant ses principes, les acteurs impliqués, les classifications des approches
et les algorithmes existants.

Chapitre III «Proposition et évaluation de performances » présente notre contribution ainsi
que l’évaluation en simulation de ces performances ; nous avons adapter la metaheuristique pour
résoudre problème de Task Offloading et l’algorithme dans l’environnement de Fog Computing.
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Chapitre I
Généralités sur l’IoT, le Fog et le
Cloud Computing



Chapitre I. Généralités sur l’IoT, le Fog et le Cloud Computing

I.1 Introduction
L’Internet des objets (IoT) représente l’une des avancées technologiques majeures de notre

époque. Il connecte des milliards d’appareils à travers le monde. Selon Statista [1], le nombre
d’appareils IoT devrait atteindre 32,1 milliards d’ici 2030. Cette croissance génère une quantité
massive de données, qui nécessitent un traitement rapide et efficace. Cette expansion soulève
des défis importants. Le traitement, le stockage et la gestion des données deviennent critiques,
surtout pour les applications nécessitant une faible latence ou une bande passante optimisée.

Pour répondre à ces contraintes, deux modèles sont souvent utilisés de manière complémen-
taire, le Cloud Computing et le Fog Computing pour optimiser les architectures IoT [2].

Dans ce chapitre, nous présentons les concepts fondamentaux de l’IoT, du Cloud Computing
et du Fog Computing. Nous mettons en avant leurs caractéristiques, leurs avantages et leurs
interactions. Cette base est nécessaire pour comprendre les enjeux techniques et les usages
possibles de ces technologies.

I.2 Internet des objets (IoT)

I.2.1 Définition
L’Internet des objets désigne un réseau d’objets physiques connectés. Ces objets sont équipés

de capteurs, de processeurs et de modules de communication. Ils collectent, échangent et traitent
des données via Internet. Ces objets peuvent interagir entre eux et avec des systèmes centraux.
Ils permettent des services automatisés, en assurant la surveillance, le contrôle et l’optimisation
à distance, en temps réel [3].

L’IoT repose sur des technologies comme l’identification par radiofréquence (RFID), les
réseaux de capteurs sans fil et des protocoles de communication spécifiques. Ces technologies
permettent une interaction fluide entre le monde physique et numérique, ouvrant la voie à des
applications innovantes dans divers domaines [4].

I.2.2 Architecture de l’IoT
L’architecture de l’IoT est structurée en plusieurs couches, chacune jouant un rôle précis

dans la collecte, la transmission et le traitement des données. Cette organisation modulaire et
évolutive permet de gérer efficacement les systèmes IoT, en assurant une interaction fluide entre
les dispositifs physiques, les réseaux de communication et les applications de traitement.

Bien que les architectures IoT puissent varier, elles reposent généralement sur trois couches
principales : la couche perception, réseau et application.

Comme illustré dans la figure I.1, cette structure de base fournit un cadre essentiel pour
comprendre les fonctionnalités clés et les considérations de conception d’un système IoT intégré
[5].

4
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Fig. I.1 : Architecture en couches de l’IoT
[6]

Couche perception (couche physique)

La couche perception, également appelée couche physique, constitue la base de l’architecture
IoT. Elle collecte des données issues de l’environnement physique à l’aide de dispositifs comme
les capteurs, les actionneurs et les étiquettes RFID (Radio Frequency Identification).

Les capteurs mesurent des paramètres physiques comme la température, l’humidité ou le
mouvement. Les actionneurs exécutent des actions physiques en réponse à des commandes
reçues.

Le RFID est l’une des technologies utilisées dans cette couche. Il utilise les ondes radio pour
identifier et suivre des objets à distance. Un système RFID se compose d’une étiquette attachée
à un objet et d’un lecteur qui interroge cette étiquette. Chaque étiquette contient un identifiant
unique appelé EPC (Electronic Product Code).

Couche réseau (couche de communication)

La couche réseau assure la transmission des données collectées par la couche perception
vers la couche application ou vers d’autres dispositifs. Elle utilise une variété de technologies de
communication, notamment les réseaux filaires (comme Ethernet) et les réseaux sans fil (tels
que Bluetooth, Zigbee, et les réseaux cellulaires 4G/5G). Les passerelles jouent un rôle clé dans

5
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cette couche en reliant les capteurs aux réseaux de communication et en assurant la conversion
des protocoles. Cette couche garantit également la sécurité des données lors de la transmission
grâce à des protocoles de chiffrement [7].

Couche application

La couche application traite et analyse les données transmises par la couche réseau afin
de les transformer en informations exploitables [8]. Elle organise ces données et les met à
disposition des utilisateurs sous une forme compréhensible. Elle assure également la gestion
des dispositifs connectés et la coordination de leurs échanges [9]. Cette couche joue un rôle
clé dans l’optimisation du fonctionnement du système en assurant une interprétation efficace
des données et en facilitant l’automatisation des actions en fonction des analyses effectuées [8].
Elle permet une utilisation efficace des informations recueillies et une meilleure exploitation des
objets connectés [10].

I.2.3 Domaines d’application de l’IoT
L’Internet des objets est devenu une technologie essentielle dans plusieurs secteurs. Il pro-

pose des solutions pour améliorer l’efficacité, la productivité et l’automatisation [11]. La Figure
I.2 montre ces différents domaines d’application.

Environnement intelligent

Les environnements intelligents incluent les villes intelligentes (Smart Cities) et les maisons
connectées. L’IoT est utilisé pour améliorer la vie quotidienne, économiser l’énergie et limiter
l’impact sur l’environnement. Dans les villes intelligentes, l’IoT aide à gérer la circulation avec
des feux intelligents et des capteurs de trafic. L’éclairage public s’adapte à la lumière du jour et
à la présence de piétons. Des capteurs dans les poubelles préviennent quand elles sont pleines.
Dans les maisons intelligentes, l’IoT permet de contrôler la sécurité avec les caméras et les
serrures connectées. On peut aussi gérer la consommation d’énergie avec des thermostats ou des
ampoules intelligentes. Les prises connectées permettent d’éteindre ou d’allumer les appareils
à distance. Les assistants vocaux comme Google Home ou Amazon Echo contrôlent la lumière,
la musique, la météo ou une alarme à la voix [7].

Soins de santé

L’IoT a révolutionné la santé en permettant une surveillance continue des patients et une
meilleure gestion des équipements médicaux. La télémédecine permet des consultations à dis-
tance et la surveillance des patients à domiciles, ce qui réduit les déplacements à l’hôpital. Les
dispositifs portables, comme les montres connectées ou les capteurs de santé, mesurent en temps
réel des données comme la fréquence cardiaque ou la tension artérielle. Dans les hôpitaux, l’IoT
aide à suivre des équipements médicaux et à gérer les stocks de médicaments, ce qui rend le
fonctionnement plus efficace [12].
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Agriculture intelligente (Smart Agriculture)

L’agriculture intelligente utilise l’IoT pour mieux gérer les ressources et améliorer la pro-
ductivité. Les capteurs d’humidité dans le sol régulent l’irrigation en fonction des besoins des
plantes, ce qui réduit l’utilisation d’eau. Les drones et les capteurs surveillent la santé des
plantes, détectent les maladies et optimisent l’utilisation des engrais. Dans l’élevage, l’IoT aide
à suivre la santé des animaux et à gérer les troupeaux en temps réel [13].

Transport et logistique

L’IoT transforme le secteur du transport et de la logistique avec des solutions de suivi et
d’optimisation en temps réel. Les véhicules connectés sont équipés de capteurs pour surveiller
leur état et leur localisation, ce qui aide à gérer les flottes et à améliorer la sécurité routière.
En logistique, l’IoT permet de suivre des colis, d’optimiser les chaînes d’approvisionnement et
de gérer les entrepôts, ce qui réduit les coûts et améliorant l’efficacité [14].

Industrie et fabrication

L’IoT joue un rôle central dans la révolution industrielle. La maintenance prédictive utilise
des capteurs pour surveiller l’état des machines et prévenir les pannes. Cela réduit les temps
d’arrêt et les coûts de maintenance. Les usines intelligentes intègrent des robots et des systèmes
connectés pour automatiser les processus de production. Cela améliore l’efficacité et la qualité.
La gestion de la chaîne d’approvisionnement est aussi optimisée. L’IoT permet un suivi en
temps réel des stocks et des livraisons [14].

Fig. I.2 : Synthèse des domaines d’application de l’IoT
[15]

7



Chapitre I. Généralités sur l’IoT, le Fog et le Cloud Computing

I.3 Cloud computing
Le développement rapide du Cloud Computing ces dernières années a créé une situation

typique pour de nombreuses innovations et technologies émergentes. Bien que de nombreuses
entreprises aient entendu parler du Cloud, peu d’entre elles en comprennent véritablement
les enjeux et savent comment l’adopter et en tirer profit. Le Cloud Computing a un impact
considérable sur le domaine de l’informatique. Il offre une nouvelle plateforme pour naviguer
dans un contexte économique complexe [16].

I.3.1 Définition du Cloud Computing
Le Cloud Computing, ou informatique en nuage, désigne un modèle dans lequel la puissance

de calcul et le stockage sont gérés par des serveurs distants, accessibles via une connexion Inter-
net sécurisée. Les utilisateurs peuvent ainsi se connecter à ces ressources depuis un ordinateur,
un téléphone portable, une tablette tactile ou de tout autre appareil connecte. Cela leur permet
d’exécuter des applications et d’accéder à leurs données hébergées sur ces serveurs.

L’un des principaux avantages du Cloud réside dans sa flexibilité. Les fournisseurs peuvent
ajuster dynamiquement les capacités de stockage et de calcul en fonction des besoins des uti-
lisateurs. Pour le grand public, cela se traduit par des services comme Dropbox, OneDrive ou
iCloud, qui permettent de stoker et partager des fichiers accessibles partout et à tout moment
[17].

I.3.2 Caractéristiques du Cloud Computing
Généralement, un service, une solution ou un environnement d’exécution doit satisfaire à

une série de caractéristiques pour être considéré comme du Cloud Computing. Parmi ces carac-
téristiques, certaines sont reconnues comme fondamentales. Par exemple, le National Institute
of Standards and Technology (NIST) définit cinq caractéristiques essentielles qui sont [18] :

Ressources à la demande

Un utilisateur peut allouer unilatéralement des ressources informatiques (serveurs, réseau,
stockage, environnement d’exécution, application) au besoin, de façon automatique et sans
nécessité d’interaction humaine avec chaque fournisseur de services.

Large accès réseau

Les ressources Cloud Computing sont disponibles à travers le réseau et accessibles via des
mécanismes standards qui favorisent leur utilisation à partir des appareils clients hétérogènes,
voire légères comme ordinateurs portables, téléphones, tablettes.

Mutualisation des ressources

Les ressources informatiques du fournisseur Cloud Computing sont partagées pour servir
plusieurs clients en utilisant un modèle multi-tenant. Ces ressources, physiques ou virtuelles,
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sont allouées et libérées dynamiquement selon la demande du consommateur. L’utilisateur n’a
généralement ni le contrôle ni la connaissance de l’emplacement exact des ressources allouées.
Dans certains cas, il peut choisir une zone géographique large, comme un pays, un continent
ou Data Center.

Élasticité rapide

Les ressources Cloud peuvent être allouées et libérées dynamiquement en fonction des va-
riations de la demande. Cela permet une adaptation automatique et instantanée aux besoins
des utilisateurs, donnant l’impression que les ressources sont illimitées.

Services mesurés

L’utilisation des ressources est surveillée et contrôlée pour mesurer leur consommation,
comme le stockage, la puissance de calcul ou la bande passante. Cela permet une facturation
précise et une gestion optimisée des services Cloud.

I.3.3 Types du Cloud Computing
Cloud Privé

Le Cloud privé se distingue par le fait qu’il s’agit d’une infrastructure Cloud exclusivement
dédiée à une seule organisation. Ce modèle peut être hébergé en interne, au sein des locaux
de l’entreprise, ou externe auprès d’un fournisseur de services. Le Cloud privé se caractérise
par un niveau de contrôle élevé, une sécurité optimisée et une grande flexibilité en termes de
personnalisation. Ces avantages en font une solution privilégiée pour les entreprises manipulant
des données sensibles ou soumises à des exigences strictes en matière de conformité et de sécurité
[19].

Cloud Communautaire (Community Cloud)

Le Cloud Communautaire fonctionne de la même manière qu’un Cloud privé, mais avec ce
modèle, plusieurs clients partagent une instance matérielle dédiée. La combinaison d’utilisa-
teurs n’est pas choisie au hasard, mais plusieurs clients, pour la plupart issus du même secteur
d’activité ou ayant des intérêts similaires, se réunissent de manière ciblée. Le Cloud Commu-
nautaire peut aussi être géré au sein d’une entreprise ou à l’extérieur. L’objectif est de réaliser
des économies par rapport à plusieurs Clouds privés [20].

Cloud Public

Le Cloud public est l’un des modèles de Cloud Computing les plus répandus. Il repose sur
des services fournis via Internet par des prestataires externes tels qu’Amazon Web Services
(AWS), Microsoft Azure ou Google Cloud Platform (GCP). Les utilisateurs partagent une
même plateforme pour accéder aux ressources informatiques, qui sont entièrement gérées par
le fournisseur. Ce modèle est particulièrement apprécié pour sa simplicité d’accès, sa flexibilité
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et son système de paiement à l’usage, qui permet aux entreprises d’éviter des investissements
lourds en infrastructures [19].

Cloud Hybride

Il s’agit d’un modèle qui combine le Cloud privé et le Cloud public. Il permet de stocker
certaines données sensibles en privé tout en utilisant les ressources du Cloud public pour d’autres
besoins. Ce modèle offre plus de flexibilité, une meilleure gestion des coûts et un bon équilibre
entre sécurité et performance [20].

I.3.4 Modèles de service du Cloud
Le marché du Cloud Computing propose plusieurs types de services, comme l’IaaS, le PaaS

et le SaaS, chacun étant adaptés à différents besoins informatiques. Comprendre ces modèles
est essentiel pour les organisations qui souhaitent optimiser leurs opérations, améliorer leur
efficacité et favoriser leur croissance en exploitant les avantages du Cloud [19].

Infrastructure as a Service (IaaS)

Dans le cadre de l’Infrastructure en tant que Service (IaaS), des solutions matérielles com-
plètes sont proposées, incluant la performance des processeurs, l’espace de stockage et la tech-
nologie réseau. Les instances utilisées par l’utilisateur sont entièrement virtualisées et réparties
dans un pool de ressources. Ce modèle peut servir de fondation pour les autres couches du
Cloud, mais il est également disponible en tant que produit autonome [20].

Platform as a Service (PaaS)

Ce modèle se distingue en offrant non seulement une infrastructure matérielle, mais égale-
ment un environnement de développement complet. La Plateforme en tant que Service (PaaS)
cible principalement les développeurs de logiciels. Le fournisseur propose un environnement de
développement préconfiguré dans le cloud, hébergé sur ses serveurs. Cela permet aux dévelop-
peurs de gagner du temps en évitant la configuration et la maintenance de l’environnement
[20].

Software as a Service (SaaS)

Avec le SaaS, les utilisateurs ont accès à un logiciel complet directement depuis le Cloud.
Ce modèle s’adresse principalement aux consommateurs moyens, qui n’ont plus à se soucier
de l’installation ni de la maintenance du logiciel. Ils peuvent également être assurés que les
performances du matériel sont suffisantes pour faire fonctionner le logiciel correctement. L’accès
au logiciel, se fait via un navigateur Web, soit par un programme léger qui charge l’essentiel
des fonctionnalités depuis le Cloud [20].
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Fig. I.3 : Types de service Cloud Computing
[21]

I.3.5 Composants du Cloud Computing
L’architecture du cloud computing repose sur deux éléments clés : le frond-end (côté client)

et le back-end (côté serveur). Le front-end, accessible aux utilisateurs, interagit avec le back-end
via un réseau ou Internet. En revanche, le back-end, bien que caché, communique de manière
sécurisée avec le client grâce à des protocoles établis, comme illustré dans la figure I.4.

Frond-end

Le front-end correspond au côté client dans l’architecture Cloud. Il regroupe tous les élé-
ments avec lesquels l’utilisateur interagit directement. Il sert d’interface entre l’utilisateur et
les ressources Cloud en permettant l’accès, la visualisation et la gestion des services à distance
[21].

Back-end

Dans une infrastructure Cloud, le back-end joue un rôle essentiel en soutenant le front-end.
Celui-ci s’appuie sur des serveurs distants, incluant des ressources matérielles et de stockage,
entièrement supervisées par le fournisseur Cloud. Les composants essentiels d’une architecture
Cloud back-end robuste sont [21] :

Application : L’interface utilisateur, essentielle dans l’architecture applicative, permet aux
clients d’accéder aux données via des services back-end, tout en gérant leurs besoins et requêtes.

Service : Ce service permet la possibilité de réaliser l’ensemble des opérations disponibles
dans le Cloud. Elle inclut notamment des fonctionnalités phares telles que la gestion et le
développement d’applications, le stockage de données, ainsi que des services web, assurant une
exécution optimale et performante des différentes tâches au sein d’un environnement Cloud.

Cloud Runtime : Le terme «Cloud Runtime » désigne le concept d’accessibilité immédiate
des services, c’est un système d’exploitation pour le Cloud, qui utilise la virtualisation pour
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donner accès à un réseau de serveurs. Chacun de ces serveurs fonctionne comme un espace de
stockage indépendant.

Stockage : Le stockage Cloud désigne l’espace où sont conservées les données d’une appli-
cation Cloud. Une partie dédiée du Cloud est généralement réservée à cette fonction.

Infrastructure et architecture : L’infrastructure Cloud regroupe tous les composants
matériels virtualisés (CPU, cartes réseau, accélérateurs) qui sous-tendent les services logiciels.
Son architecture dépend des besoins des utilisateurs et repose sur l’abstraction des ressources
physiques pour assurer mobilité et élasticité.

Gestion : Il gène les ressources selon les besoins de chaque tâche. Si plusieurs activités
concernent différents domaines de l’entreprise, il attribue à chacune des ressources précises
et veille à leur bonne utilisation pour assurer le bon fonctionnement global. Sécurité : La

structure permet un suivi régulier des processus de débogage. Les erreurs sont détectées et
corrigées de façon continue, parfois plusieurs fois par jour.

Fig. I.4 : Architecture du Cloud computing
[22]

I.4 Fog Computing

I.4.1 Définition du Fog Computing
Le Fog Computing est un modèle informatique distribué, proposé par Cisco en 2012, qui

repose sur des nœuds intermédiaires situés entre les dispositifs connectés et le Cloud. Ces nœuds
permettent un traitement local des données, ce qui réduit la latence, optimise l’utilisation du
réseau et améliore la répartition des charges de calcul [23]. Contrairement à une infrastruc-
ture entièrement centralisée, le Fog Computing s’organise de manière hiérarchique. Ses nœuds
peuvent être regroupés selon leur position géographique ou les besoins en latence des applica-
tions, ce qui garantit un traitement accéléré et une gestion optimisée des flux de données grâce
à un équilibre entre ressources locales et serveurs distants [24]. Ce modèle renforce la sécurité

12



Chapitre I. Généralités sur l’IoT, le Fog et le Cloud Computing

en limitant l’exposition des données sensibles vers le Cloud. Il améliore aussi l’interopérabili-
té entre des systèmes en simplifiant les échanges et en réduisant la dépendance exclusive aux
infrastructures centralisées [23].

D’aprés Perrera et al. [25] « Le fog Computing est un scénario dans lequel un nombre consi-
dérable de dispositifs omniprésents et décentralisés hétérogènes (sans fil et parfois autonomes)
communiquent et coopèrent potentiellement entre eux et avec le réseau pour effectuer des tâches
de stockage et de traitement sans l’intervention de tiers. Ces tâches peuvent être destinées à
prendre en charge des fonctions réseau de base ou de nouveaux services et applications s’exé-
cutant dans un environnement en bac à sable. Les utilisateurs qui louent une partie de leurs
appareils pour héberger ces services sont incités à le faire.»

I.4.2 Architecture du Fog Computing
Le Fog Computing repose sur une hiérarchie de traitement distribuée entre les dispositifs

IoT, les nœuds intermédiaires et le Cloud. Cette structure permet de traiter une partie des
données à proximité de leur source, ce qui améliore le temps de réponse et allège le trafic réseau
[26]. La Figure I.5 présente cette architecture en trois couches complémentaires.

Fig. I.5 : Architecture du Fog Computing
[23]

Couche périphérique (Edge layer)

Elle est le premier niveau de l’architecture du Fog Computing. Elle regroupe les disposi-
tifs connectés, tels que les capteurs, les actionneurs et les caméras intelligentes, responsables
de la collecte des données en temps réel. Son rôle principal est d’effectuer un premier traite-
ment des données en assurant la détection d’événements, le filtrage et la réduction du volume
d’informations, ainsi que la prise de décisions locales rapides [27].
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Couche Fog (Fog layer)

Elle représente l’intermédiaire entre la périphérie et le Cloud. Elle repose sur des équipe-
ments tels que les passerelles intelligentes, les routeurs avancés et les micro-datacenters. Son
rôle est d’assurer le filtrage et l’agrégation des données issues de la couche périphérique, de
permettre une analyse locale pour répondre aux besoins des applications sensibles à la latence
et d’optimiser la bande passante en réduisant le volume d’informations envoyées vers le Cloud.
Cette couche est particulièrement utile pour les systèmes nécessitant une prise de décision ra-
pide, comme les applications de ville intelligente, les véhicules autonomes ou les dispositifs
médicaux connectés [28].

Couche Cloud (Cloud Layer)

Elle est le niveau supérieur du Fog Computing. Elle repose sur des datacenters centralisés
qui assurent le stockage massif et les traitements avancés des données. Son rôle est essentiel dans
l’analyse approfondie des informations collectées, l’apprentissage automatique et le traitement
intensif des données, ainsi que dans la gestion des historiques et la sauvegarde à long terme. En
traitant uniquement les données essentielles transmises par les couches Edge et Fog, la couche
Cloud réduit la charge de calcul et améliore l’efficacité globale du système [29].

I.4.3 Domaines d’applications du Fog Computing
Le Fog Computing s’impose comme une solution clé pour de nombreux domaines nécessitant

rapidité, sécurité et traitement local des données. Ses principales applications sont :

Transports intelligents

Le Fog Computing permet d’analyser en temps réel les données des véhicules connectés,
améliore la sécurité routière et optimise la fluidité du trafic. En faciliant la communication
entre véhicules et infrastructures urbaines, il permet une gestion dynamique des routes et des
feux de signalisation, réduisant les embouteillages et les accidents [30].

Villes intelligentes

Le Fog Computing est utilisé dans les infrastructures urbaines pour surveiller le trafic,
réguler les feux de signalisation, optimiser l’éclairage public, suivre la pollution et détecter les
incidents en temps réel. Il permet ainsi aux service municipaux d’intervenir plus rapidement
[30].

Industrie

La maintenance prédictive constitue un des principaux bénéfices du Fog Computing. Les
capteurs installés sur les machines industrielles analysent en continu les vibrations, température
et d’autres indicateurs clé, détectant ainsi les anomalies avant qu’elles ne provoquent des pannes.
Cette approche réduit considérablement les interruptions de production et optimise les coûts
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de maintenance. De plus, elle renforce l’automatisation des processus grâce à une coordination
intelligente entre les machines et les opérateurs [31].

Santé connectée

Les dispositifs médicaux intelligents exploitent le Fog Computing pour traiter localement
les données des patients, permettre une surveillance continue et garantissant une réactivité
immédiate en cas d’urgence. La télémédecine bénéficie également de cette approche en optimi-
sant les échanges entre patients et professionnels de santé, tout en réduisant la charge sur les
Datacenter [32].

Réalité augmentée et Réalité virtuelle (AR/VR)

Le Fog Computing améliore significativement les performances des applications AR/AV en
réduisant la latence du rendu graphique. Cette avancée technologie est particulièrement cruciale
pour les jeux vidéo, les formations immersives et les simulations industrielles complexes, ou une
interaction en temps réel et une synchronisation fluide sont essentielles [33].

I.4.4 Avantages et défis du Fog Computing
Avantages du Fog Computing

1. Réduction de la latence : le Fog Computing traite les données au plus près de leur
source, ce qui permet de réduire les délais de transmission par rapport au Cloud Com-
puting. Cette caractéristique est essentielle pour les applications nécessitant une prise
de décision rapide, comme les véhicules autonomes ou les dispositifs médicaux connectés
[34].

2. Optimisation de la bande passante : en traitant et en filtrant les données localement
avant de les envoyer vers le Cloud, le Fog Computing limite la surcharge du réseau et évite
une consommation excessive de bande passante. Ce principe est particulièrement utile
pour les environnements où une grande quantité de données est générée en permanence,
comme dans les villes intelligentes ou les usines automatisées [34].

3. Sécurité et confidentialité des données : le traitement local des informations permet
de réduire les risques liés aux cyberattaques et aux fuites de données lors des transmis-
sions vers des serveurs distants. Cette approche est particulièrement importante dans des
domaines sensibles, comme la santé, où la protection des informations personnelles est
une priorité [34].

4. Indépendance vis-à-vis de la connectivité Internet : le Fog Computing peut fonc-
tionner même en cas de défaillance de la connexion Internet, ce qui est essentiel pour les
environnements isolés ou à connectivité intermittente, comme les mines, les plateformes
pétrolières ou les zones rurales. Cela garantit une continuité des services même dans des
conditions réseau difficiles [29].
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5. Scalabilité et flexibilité : le Fog Computing permet une extension progressive des
infrastructures en ajoutant des nœuds Fog selon les besoins, sans nécessiter de modifica-
tions majeures de l’architecture réseau. Cela le rend adapté aux environnements IoT où
le nombre de dispositifs connectés augmente rapidement [35]

6. Réduction des coûts opérationnels : en traitant les données localement et en rédui-
sant la quantité de données envoyées au Cloud, le Fog Computing diminue les coûts de
stockage et de traitement, tout en optimisant l’utilisation des ressources locales [36].

Défis du Fog Computing

Le Fog Computing présente plusieurs défis liés à sa nature distribuée et à sa proximité avec
des dispositifs en périphérie. Ces défis concernent à la fois les aspects techniques, organisation-
nels et économiques.

1. Gestion des ressources distribuées : la répartition géographique des nœuds Fog com-
plique la gestion et l’allocation des ressources, nécessitant des mécanismes sophistiqués
pour coordonner les tâches entre les nœuds périphériques et le Cloud [35].

2. Sécurité des nœuds périphériques : les nœuds Fog, souvent situés dans des environ-
nements non contrôlés, sont vulnérables aux attaques physiques ou logicielles, ce qui exige
des mécanismes de sécurité robustes pour protéger les données et les dispositifs [37].

3. Complexité de la gestion des données : Le Fog Computing nécessite des algo-
rithmes sophistiqués pour décider quelles données traiter localement et lesquelles envoyer
au Cloud, ce qui augmente la complexité de la gestion des données [36].

4. Coûts de déploiement et de maintenance : le déploiement et la maintenance des
infrastructures Fog peuvent être coûteux, en particulier dans les environnements difficiles
d’accès, comme les zones industrielles ou rurales, où les nœuds doivent être installés et
maintenus régulièrement [38].

5. Gestion de l’énergie : les nœuds Fog alimentés par batterie nécessitent une gestion
efficace de l’énergie pour prolonger leur durée de vie, ce qui est un défi dans les environ-
nements où l’accès à l’énergie est limité, comme dans les zones reculées ou les installations
industrielles éloignées [39].

6. Latence déterministe pour les applications critiques bien que le Fog Computing
réduise la latence, garantir une latence déterministe (stable et prévisible) reste un défi
pour certaines applications critiques, comme le contrôle de robots industriels, où des
retards imprévisibles peuvent avoir des conséquences graves [40].

I.4.5 Comparaison entre le Cloud Computing et le Fog Computing
Pour mieux situer le Fog Computing par rapport au modèle classique du Cloud, le tableau

I.1 présente une comparaison de leurs caractéristiques respective.
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Critère Cloud Computing Fog Computing

Calcul et stockage Analyses profondes, calcul et sto-
ckage centralisés

Calcul local, stockage et analyses
décentralisés

Hétérogénéité Interagit avec des sources de don-
nées et environnements hétéro-
gènes

Supporte l’hétérogénéité des
ressources, environnements et
nœuds

Localisation Indépendante de l’emplacement
des utilisateurs

Proximité immédiate avec les uti-
lisateurs et les appareils connectés

Architecture Basée sur des serveurs centralisés Distribuée,s’appuyant sur des
nœuds intermédiaires

Mobilité Peu adapté aux application mo-
biles

Supporte la mobilité

Latence Élevée (quelques secondes à mi-
nutes) en raison de la distance des
serveurs

Faible latence (< 100
ms),optimisée par le traite-
ment local

Bande passante Limitée par la distance et le vo-
lume de données transférées

Optimisation de la bande pas-
sante

Disponibilité Dépend de la connectivité Inter-
net

Fonctionne même avec une
connectivité Internet instable

Nombre de nœuds Des dizaines/centaines de mil-
lions de serveurs dans le cloud

Des milliards de nœuds répartis
géographiquement

Applications Adapté aux applications tolérant
une latence élevée

Idéal pour les applications en
temps réel et sensibles aux délais

Accès aux services Basé sur des centres de données
distants via Internet

Déployé à la périphérie du réseau,
proche des utilisateurs

Tab. I.1 : Comparaison entre le Cloud Computing et le Fog Computing
[41]

I.5 Optimisation

I.5.1 Définition
D’après Chvatal [42], l’optimisation consiste en la recherche méthodique de la solution op-

timale au regard d’un critère prédéfini, au sein d’un ensemble de solutions réalisables. Cette
démarche s’appuie sur des modèles mathématiques structurés visant soit à maximiser (comme
un profit ou une performance), soit à minimiser (un coût ou un risque) une fonction objectif,
tout en respectant un système de contraintes délimitant l’espace des solutions admissibles.

L’optimisation s’impose dans tous les domaines confrontés à des choix complexes, notam-
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ment en ingénierie, en informatique ou en logistique. Elle suit une démarche structurée et
logique qui se décompose en plusieurs étapes.

1. Formuler le problème : il s’agit d’identifier clairement le problème à résoudre. Cela
implique de définir les objectifs, les variables impliquées et les contraintes à respecter.

2. Modéliser le problème : une fois le problème bien défini, il faut le représenter sous
forme mathématique. On traduit la situation réelle en équations ou inégalités qui décrivent
les relations entre les variables.

3. Optimiser le problème : Cette étape consiste à appliquer des méthodes algorithmiques
ou numériques pour trouver la solution qui maximise ou minimise la fonction objectif selon
les contraintes définies.

4. Mettre en œuvre la solution : La solution obtenue est ensuite testée dans la réalité.
Si elle donne les résultats attendus, elle est adoptée. Sinon, le modèle est ajusté, et le
processus recommence.

I.5.2 Problème d’optimisation
La résolution d’un problème d’optimisation combinatoire consiste à déterminer une solution

optimale parmi l’ensemble des solutions réalisables. Pour y parvenir, on met en œuvre des
algorithmes spécifiques visant soit à maximiser (dans le cas d’un problème de maximisation),
soit à minimiser (pour un problème de minimisation) une ou plusieurs fonctions objectifs.

Ces algorithmes doivent tenir compte de contraintes qui limitent l’espace des solutions
possibles en éliminant les configurations non valides.

Bien que la définition des problèmes d’optimisation soit généralement simple, leur résolu-
tion précise devient rapidement complexe, surtout pour les grands problèmes, nécessitant des
ressources importantes en temps et mémoire [43].

On distingue principalement deux types de problèmes :

• Les problèmes dits faciles (classe P), qui peuvent être résolus en temps polynomial.

• Les problèmes dits difficiles (classe NP), pour lesquels aucune méthode connue ne permet
une résolution efficace lorsque la taille augmente.

I.5.3 Notions de base en optimisation
Deux catégories fondamentales d’optimisation sont distingués : des problèmes de minimi-

sation et des problèmes de maximisation. Un problème d’optimisation (de minimisation ou
de maximisation) est défini par un ensemble de données et un ensemble de contraintes. Un
ensemble de solutions S est associé au problème d’optimisation. Parmi les solutions S, un sous-
ensemble X ⊆ S représente des solutions réalisables respectant les contraintes C du problème,
à chaque solution s est associée une valeur f(s) qui représente sa qualité. La résolution du pro-
blème d’optimisation consiste à trouver une solution s∗ ∈ X qui minimise ou maximise la valeur
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f(s). Quelque soit le type du problème d’optimisation, ce dernier est défini par le 6-uplet (D,
C,S, X, f, mode). Où D représente les données du problème, C les contraintes que doit satisfaire
une solution afin d’être admissible, S l’ensemble des solutions possibles du problème traité, X
un sous-ensemble de S représentant les solutions réalisables (admissibles), f une fonction du
coût (aussi appelée fonction « objectif » ou fonction fitness) qui associe à chaque solution s une
valeur numérique f(s) (nombre réel ou entier) représentant la qualité de s, mode indique le
type du problème, il permet de savoir est ce qu’on doit minimiser ou maximiser les valeurs des
solutions de X [43].

I.5.4 Méthodes de résolution
Pour résoudre des problèmes complexes, les chercheurs ont développé différentes méthodes

d’optimisation. Ces méthodes évoluent constamment pour s’adapter à des défis toujours plus
variés, améliorant à la fois la rapidité et la qualité des résultats, comme l’illustré la figure I.6.

Fig. I.6 : Classification des méthodes de résolution
[43]

Méthodes exactes

Les méthodes exactes garantissent la solution optimale en examinant toutes les possibili-
tés, mais elle demandent beaucoup de temps de calcul et mémoire, surtout pour les problèmes
complexes à nombreuses variables. Parmi les principales méthodes, on trouve l’algorithme du
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simplexe (problèmes linéaires), la programmation dynamique (problèmes séquentiels), l’algo-
rithme A* (recherche de chemins), les méthodes de séparation-évaluation (Branch and Bound,
Branch and Cut). Leur coût en terme de temps de calcul qui peut être élevé limite souvent leur
usage aux problèmes de taille modérée [43].

Méthodes approchées

les méthodes approchées représentent une famille d’algorithmes conçus pour résoudre des
problèmes d’optimisation complexes en fournissant des solutions de qualité acceptable dans des
délais raisonnables. Contrairement aux méthodes exactes qui garantissent mathématiquement
la solution optimale mais deviennent rapidement impraticables pour des problèmes de grande
échelle (en raison de leur complexité exponentielle), les méthodes approchées offrent un compro-
mis délibéré entre la qualité de la solution et le temps de calcul. [44]. Les méthodes approchées
sont classées en deux catégories : les heuristiques et les métaheuristiques :

Heuristiques
Une heuristique est une méthode approximative – un algorithme capable de fournir rapi-

dement (en temps polynomial) une solution réalisable, mais pas nécessairement optimale, à
un problème d’optimisation difficile. Contrairement aux approches générales, une heuristique
est souvent spécifiquement conçue pour un problème donné, en exploitant ses particularités
structurelles [43].

Selon [Feigenbaum et Feldman, 1963] [43] «Une méthode heuristique (ou simplement une
heuristique) est une méthode qui aide à découvrir la solution d’un problème en faisant des
conjectures plausibles mais faillible de ce qui est la meilleure chose à faire ».

Métaheuristique
Les métaheuristiques sont des techniques d’optimisation intelligentes, souvent inspirées par

la nature. Plus évoluées que les méthodes heuristiques classiques, elles peuvent s’adapter à
différents types de problèmes complexes. Leur objectif principal est de trouver la meilleure
solution possible tout en évitant de rester bloquées sur des solutions ”moins bonnes” mais
faciles à trouver. Elles se divisent en deux catégories [43] :

• Les Méta-heuristiquement à base de solution unique :

Ce sont des algorithmes d’optimisation qui débutent avec une solution initiale et l’amé-
liorent progressivement en examinant systématiquement ses solutions voisines (appelées
voisinage).

• Les méta-heuristiques à base de solutions multiples :

Également appelées métaheuristiques populationnelles, ces algorithmes démarrent avec
un ensemble de solutions initiales qu’ils font évoluer simultanément. Leur force réside
dans une exploration plus large de l’espace de recherche, améliorant ainsi les chances de
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trouver l’optimum global. Particulièrement efficaces pour les problèmes complexes, elles
offrent une alternative puissante aux méthodes à solution unique.

I.6 Algorithmes d’optimisation
Dans cette section, nous présentons les deux algorithmes PSO (Particle Swarm Optimiza-

tion) [45] [46] et ABC (Artifial Bee Colony) [47].

I.6.1 Algorithme PSO (Particle Swarm Optimization)
Principe général

L’Optimisation par Essaim de Particules est une méthode d’optimisation stochastique ins-
pirée du comportement collectif observé dans la nature, notamment chez les oiseaux en vol ou
les poissons en banc. Proposée en 1995 par Kennedy et Eberhart, elle simule les déplacements
coordonnés d’un groupe de particules dans un espace de recherche multidimensionnel, où chaque
particule représente une solution possible au problème traité .

Le PSO est particulièrement adapté aux problèmes complexes rencontrés en intelligence
artificielle, ingénierie ou recherche opérationnelle, en raison de sa capacité à optimiser des
fonctions non linéaires, non différentiables ou discontinues.

Le fonctionnement repose sur trois mécanismes fondamentaux :
Mémoire individuelle : chaque particule mémorise la meilleure solution qu’elle a atteinte,

appelée pBest (personal best)
Interaction social : l’ensemble des particules partage cette information pour identifier la

meilleure solution globale, appelée gBest (global best)
Mouvement dynamique : chaque particule ajuste sa trajectoire en combinant :

• Une composante d’inertie (conservation de la vitesse précédente)

• Une composante congntive (retour vers pBest)

• Une composante sociale (attraction vers gBest)

Ces trois forces influencent le déplacement de chaque particule dans l’espace de recherche,
comme illustré dans la figure I.7. Equation de mise à jour : le comportement de chaque
particule est défini par deux équations principales : [48]

Vitesse :

vi(t+ 1) = ω · vi(t) + c1 · r1 · (pBesti − xi(t)) + c2 · r2 · (gBest− xi(t)) (I.1)

Position :
xi(t+ 1) = xi(t) + vi(t+ 1) (I.2)

Où :

• vi(t) : la vitesse de la particule i à l’instant t
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• xi(t) : la position de la particule i à l’instant t

• pBesti : meilleure position personnelle de la particule i

• gBesti : meilleure position globale atteinte par l’essaim

• ω : coefficient d’inertie (influence du mouvement précédent)

• c1, c2 : coefficients d’accélération (facteurs cognitifs et sociaux)

• r1, r2 : variables aléatoires ∈ [0, 1] qui introduisent de la diversité

Fig. I.7 : Illustration du déplacement d’une particule dans l’algorithme PSO
[48]

Ces paramètres ont des rôles bien définis. Le coefficient d’inertie ω contrôle l’exploration,
tandis que c1 et c2 régulent l’équilibre entre recherche individuelle et coopération collective.
Les variables aléatoires r1 et r2 assurent la variabilité du comportement des particules, évitant
ainsi la stagnation dans des optima locaux.

Grâce à cette dynamique, le PSO explore efficacement l’espace des solutions tout en conver-
geant progressivement vers des solutions optimales. Sa simplicité de mise en œuvre, sa robustesse
et sa capacité d’adaptation en font un outil puissant pour une large gamme d’applications, al-
lant de l’optimisation de paramètres en apprentissage automatique à la conception de systèmes
complexes, en passant par la planification et la finance.

Les étapes de l’Algorithme PSO

Initialisation de l’essaim :
On commence par générer une population de N particules. Pour chaque particule i, on

définit aléatoirement :
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• une position initiale xi(0) dans l’espace de recherche

• une vitesse initiale vi(0) fixée dans un intervalle autorisé

Chaque particule connaît également :

• sa meilleure position personnelle pBesti = xi(0)

• la meilleure position globale gBest, définie comme la meilleure position parmi toutes les
particules initiales

Evaluation de la fonction d’aptitude (fitness) :
À chaque itération t, on évalue la fonction objective f à la position actuelle de chaque

particule i :
f(xi(t))⇒ valeur de la fitness (I.3)

Cette évaluation permet de mesurer la qualité de la solution représentée par la particule.
La fonction peut intégrer plusieurs critères selon le problème.

Mise à jour de la meilleure position personnelle (pBest) :
Après l’évaluation, chaque particule compare sa solution actuelle à la meilleure qu’elle a

mémorisée :
f(xi(t)) < f(pBesti)⇒ pBesti = xi(t) (I.4)

Cette mise à jour permet à la particule de conserver les zones prometteuses déjà explorées.
Sinon, la mémoire pBesti reste inchangée.

Mise à jour de la meilleure position globale (gBest) :
Parmi toutes les particules, on identifie celle qui a obtenu la meilleure valeur de fitness, et

on met à jour la solution globale partagée :

gBest = argmin
i

f(pBesti) (I.5)

Cette position sert de référence commune à tout l’essaim et oriente le déplacement des
particules vers les zones les plus prometteuses de l’espace de recherche.

Mise à jour des vitesses et de la position :
Une fois la meilleure position personnelle (pBest) et la meilleure position globale (gBest)

mises à jour, chaque particule ajuste sa vitesse en combinant trois composantes : l’inertie,
l’attraction vers sa propre meilleure position et l’attraction vers la meilleure solution globale.

La vitesse ainsi obtenue oriente la direction du déplacement de la particule dans l’espace de
recherche. À partir de cette vitesse mise à jour, la nouvelle position de la particule est calculée.

Ces ajustements permettent à chaque particule d’explorer de nouvelles zones tout en se
rapprochant progressivement des régions optimales déjà identifiées par l’essaim.

Critère d’arrêt :
L’algorithme PSO s’exécute de manière itérative jusqu’à la satisfaction d’une condition

d’arrêt. Les critères les plus couramment utilisés sont :

• nombre maximal d’itérations atteint, fixé au préalable
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• stabilisation des solutions : les positions des particules ou la valeur de la fonction objectif
ne varient plus de manière significative

• seuil de performance : la valeur de la fonction d’aptitude atteint un niveau jugé satisfaisant
pour le problème étudié

Lorsque l’un de ces critères est rempli, l’algorithme s’interrompt et retourne la meilleure
solution globale trouvée.

I.7 L’algorithme ABC (Artifial Bee Colony)
Une méthaheuristique d’optimisation inspirée du comportement collectif des abeilles melli-

fères lors de la recherche de nourriture. Proposé par D. Karaboğa en 2005. Elle appartient à la
famille des algorithme à intelligence en essaim (Swarm Intelligence). L’ABC repose sur la coopé-
ration entre trois types d’agents artificiels, les abeilles employées, observatrices et éclaireuses,
qui explorent l’espace de recherche pour identifier les solutions optimales ou quasi-optimales à
un problème donné .

I.8 Fonctionnement de l’algorithme ABC
• Une abeille initiale (Beelnit) sélectionne un sommet de départ.

• à chaque sommet de cette zone, une abeille est assignée pour explorer localement ses
voisins (phase d’intensification).

• Chaque abeille identifie la meilleure solution locale et la communique à l’essaim via une
”danse” symbolique.

• Le sommet associé à la meilleure solution globale devient le nouveau sommet de départ,
et une nouvelle zone de recherche est générée.

• Ce processus est répété pendant un nombre fixe d’itérations ou jusqu’à un critère d’arrêt.

I.8.1 Étapes de l’Algorithme ABC
L’algorithme Artificial Bee Colony (ABC) se décompose en trois phases clés reprodui-

sant le comportement collectif des abeilles lors de la recherche de nourriture. Voici ses étapes
fondamentales[49] :

1.Initialisation :
Générer aléatoirement des solutions initiales (sources de nourriture) :

xi,j = xmin,j + rand(0, 1) · (xmax,j − xmin,j) (I.6)

où :
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• xi,j est la j-ème composante de la i-ème solution,

• xmin,j et xmax,j sont les bornes inférieure et supérieure du problème,

• rand(0, 1) est un nombre aléatoire uniformément distribué entre 0 et 1.

2.Phase des Abeilles Employées
Pour chaque solution xi, générer une nouvelle solution candidate vi :

vi,j = xi,j + ϕi,j · (xi,j − xk,j) (I.7)

où :

• ϕi,j est un nombre aléatoire uniformément distribué dans [−1, 1],

• xk est une solution voisine choisie aléatoirement (k ̸= i),

• j représente la j-ème composante de la solution.

Étapes :

• Évaluer la qualité de vi via la fonction objectif f(vi).

• Appliquer une sélection gourmande (méthode du meilleur) :

xi ←

vi si f(vi) ≤ f(xi) (minimisation),
xi sinon.

3.Phase des Abeilles Observatrices
Les abeilles observatrices sélectionnent une solution xi avec une probabilité pi proportion-

nelle à sa fitness :

pi =
fiti∑SN
j=1 fitj

(I.8)

où :

• fiti représente la fitness de la solution xi

• SN est le nombre total de sources de nourriture (solutions)

Calcul de la fitness

Pour un problème de minimisation, la fitness peut être définie par :

fiti =

 1
1+f(xi)

si f(xi) ≥ 0

1 + |f(xi)| si f(xi) < 0
(I.9)
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Mise à jour des solutions

Pour chaque solution sélectionnée :

• Générer une nouvelle solution candidate vi comme dans la phase des abeilles employées :

vi,j = xi,j + ϕi,j · (xi,j − xk,j) (I.10)

• Appliquer la sélection gourmande entre xi et vi

4.Phase des Abeilles Éclaireuses
Une solution xi est abandonnée si elle n’est pas améliorée après un nombre maximal d’essais

(limit) :

Si compteur_échecsi ≥ limit⇒ Abandonner xi (I.11)

Initialisation d’une nouvelle solution

La solution abandonnée est remplacée par une nouvelle solution aléatoire :

xi,j = xmin,j + rand(0, 1) · (xmax,j − xmin,j) (I.12)

où :

• xmin,j et xmax,j sont les bornes du problème pour la dimension j

• rand(0, 1) est un nombre aléatoire uniforme dans [0, 1]

Critères d’arrêt

L’algorithme s’arrête lorsque :

• Le nombre maximal d’itérations (max_iter) est atteint

• La convergence est satisfaisante (|f(xbest)− ftarget| < ϵ)

I.9 Conclusion
Ce chapitre a présenté les concepts clés de l’Internet des objets (IoT), du Cloud et du

Fog Computing, soulignant les limites du Cloud (latence, bande passante) face aux besoins
des applications IoT. Le Fog Computing émerge comme une solution optimale, combinant
proximité, efficacité énergétique et réactivité pour les systèmes critiques. L’optimisation permet
ainsi de trouver le meilleur équilibre entre performance et coût pour ces systèmes. Ces bases
théoriques justifient l’étude du Task Offloading dans le chapitre suivant.
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Chapitre II. Task Offloading dans le Fog Computing

II.1 Introduction
L’émergence d’objets connectés et de services intelligents dans des domaines variés a en-

gendré une croissance exponentielle du volume de données générées à la périphérie du réseau.
Face à cette explosion de données et à la nécessité de traitements rapides, le paradigme du Fog
Computing s’impose comme une alternative pertinente au Cloud Computing traditionnel.

Dans ce contexte, le Task Offloading devient une opération clé pour optimiser l’utilisa-
tion des ressources disponibles, améliorer les performances des applications, et répondre aux
contraintes strictes en matière de temps réel et d’énergie. Il s’agit de décider quelles tâches
doivent être exécutées localement (sur l’appareil utilisateur), et lesquelles peuvent être transfé-
rées vers les nœuds fog ou vers le Cloud.

Ce chapitre est consacré à l’étude approfondie du Task Offloading dans un environnement
de Fog Computing. Il présente les principes de base du Task Offloading, les critères influençant
les décisions d’offloading, ainsi que les différentes approches, techniques et algorithmes proposés
dans la littérature.

II.2 Concepts fondamentaux du Task Offloading

II.2.1 Définition et principes généraux
Le Task Offloading consiste à transférer le traitement de tâches depuis des dispositifs IoT

à ressources limitées, vers des ressources de calcul plus puissantes, comme les nœuds Fog ou
les server Cloud. Cette technique vise à optimiser les performances globales du système en
exploitant les capacités de calcul là où elles sont les plus adaptées.

Le Fog Computing repose sur une architecture hiérarchique où les données sont d’abord
traitées localement par les nœuds Fog. Si nécessaire, ils peuvent ensuite être transmis vers le
Cloud pour un traitement supplémentaire. Cette organisation facilite le Task Offloading en
répartissant intelligemment des charges de calcul selon leur urgence et leur complexité [ ? ].

Dans ce contexte, le Task Offloading est perçu comme un problème d’optimisation multi-
objectif, visant à équilibrer la latence, la consommation d’énergie et la charge réseau, tout en
garantissant un niveau de performance conforme aux exigences des applications concernées.

II.2.2 Acteurs du Task Offloading
Le Task Offloading s’appuie sur la collaboration de trois catégories d’acteurs, intégrés dans

une architecture distribuée typique IoT-Fog-Cloud. Comme l’illustre la figure II.1 [50].
Dispositifs IoT : Il s’agit d’objets connectés (capteur, actionneur, caméra, smartphone,

etc.) qui génèrent les données et lancent les tâches à exécuter. Ces dispositifs ont des ressources
limitées en puissance, mémoire et batterie. Ils ne peuvent pas toujours exécuter localement des
traitements complexes. Leur enjeu est de déléguer intelligemment le traitement pour économiser
l’énergie, réduire le temps de réponse et garantir la continuité du service.

Nœuds Fog : Ce sont des dispositifs intermédiaires situés à la périphérique du réseau
(routeurs, stations de base, passerelles, etc.), proches des dispositifs IoT. Ils offrent une capacité

28



Chapitre II. Task Offloading dans le Fog Computing

de traitement et de stockage local, au plus près des sources de données. Plus puissants que les
capteurs, ils restent limités comparés aux serveurs Cloud. Leur rôle est de traiter localement
les tâches déchargées, avec une fiable latence. En cas de surcharge, un nœud peut coopérer
avec d’autres ou transférer la charge vers le Cloud. Selon Bonomi [27], cette flexibilité réduit
les délais de réponse et diminue la charge du Cloud.

Serveurs Cloud : Ils constituent la couche de traitement centrale, situés dans des centres de
données distants. Ils offrent une capacité élevée de calcul et de stockage. Ils prennent en charge
les tâches complexes ou moins urgentes. Leur principal inconvénient est la latence causée par
la distance réseau, Cela peut poser problème pour les applications temps réel. Malgré cela, le
Cloud reste essentiel dans une stratégie globale de Task Offloading. Il permet un traitement
massif, un stockage à long terme et compense les limites des couches IoT et Fog.

Fig. II.1 : Acteurs du Task Offloading
[51]

II.2.3 Métriques d’évaluation
Dans un environnement Fog Computing, le Task Offloading est souvent modélisé comme

un problème d’optimisation multi-objectifs. Plusieurs critères sont pris en compte en même
temps pour garantir une performance adaptée aux exigences spécifique de chaque application.
Ces métriques servent à évaluer l’efficacité d’une stratégie d’Offloading selon le contexte. Les
principales métriques sont [52] :

Latence totale : Elle désigne le temps nécessaire à l’exécution d’une tâche, depuis sa
soumission jusqu’à la réception du résultat. Elle prend en compte le temps de traitement sur le
nœud, le temps de transmission des données, et le temps d’attente si la tâche est mise en file.

Cette métrique est essentielle pour les applications sensibles au temps réel. Une latence trop
élevée peut dégrader la performance perçue. Dans certains cas, comme la réalité augmentée
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ou les véhicules autonomes, une latence <20ms est souvent indispensable pour garantir un
fonctionnement fluide et sécurisé.

Consommation d’énergie : Elle représente l’énergie dépensée par le dispositif pour exé-
cuter une tâche ou la transférer vers un autre nœud. Dans un environnement Fog, ce critère
est crucial, surtout pour les dispositifs IoT alimentés par batterie. L’objectif du Task Offloa-
ding est souvent de réduire cette consommation pour prolonger l’autonomie des appareils sans
compromettre la qualité du service.

Deux sources principales de consommation :

• Exécution locale : l’exécution d’une tâche directement sur le dispositif sollicite son
processeur, et consomme de l’énergie en fonction de la charge de calcul et de la durée du
traitement.

• Transmission : envoyer une tâche ou des données vers un nœud Fog ou Cloud implique
une consommation d’énergie liée à l’utilisation du réseau, en particulier les interfaces
radio pour les objets mobiles ou sans fil.

Puissance de calcul : Elle mesure la capacité d’un dispositif à traiter des tâches selon
ses ressources disponibles, comme le processeur, la mémoire ou la bande passante. Dans un
environnement avec des équipements de capacités différentes, comme le Fog Computing, tous
les nœuds n’offrent pas les mêmes performances. Un capteur possède très peu de ressources,
tandis qu’un serveur Cloud est beaucoup plus puissant. Le Task Offloading permet d’exploiter
cette diversité en confiant les tâches complexes aux nœuds les plus performants. Une stratégie
efficace répartit les traitements en fonction de la capacité de chaque nœud pour éviter les
surcharges et améliorer la performance globale.

Qualité de service (QoS) : Elle représente la performance perçue par l’utilisateur. Elle
dépend de plusieurs facteurs comme la disponibilité, de la stabilité, le débit, le temps de réponse
et de la fiabilité du service. Dans un environnement Fog computing, la qualité de service est
essentielle, surtout pour les applications critiques ou sensibles au délia. Une bonne stratégie
d’offloading doit maintenir une qualité de service constante, même en cas de surcharge des
nœuds ou de perturbation réseau. La continuité du service et la satisfaction de l’utilisateur
reposent directement sur ce critère.

II.3 Classification du Task Offloading
Task Offloading constitue un mécanisme central dans les environnements Fog Computing.

Il vise à améliorer les performances des systèmes IoT en transférant les charges de calcul vers
des nœuds Fog ou Cloud, selon la nature des tâches et des contraintes du système.

II.3.1 Classification selon le niveau de transfert
Offloading total (Full Offloading)

Consiste à transférer l’intégrité d’une tâche depuis un dispositif IoT vers un nœud plus
puissant. Ce modèle convient aux appareils ayant du capacités de calcul limitées, comme ceux
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utilisés dans des applications intensives telles que l’analyse vidéo ou les transports intelligents.
Il permet de libérer complètement le dispositif local de la charge de traitement, améliorant ainsi
son autonomie énergétique. Cependant, ce modèle exige une gestion efficace des ressources du
système Fog Computing, car un trop grand nombre de tâches peut saturer les nœuds intermé-
diaires si l’architecture n’est pas bien optimisée. Des études récentes ont montré que ce modèle
permet d’améliorer à la fois la consommation d’énergie et la qualité du service, surtout dans
des environnements denses en dispositifs [53].

Offloading partiel (Partial Offloading)

Consiste à répartir l’exécution d’une tâche entre le dispositif local et un ou plusieurs nœuds
distants. Une partie est traitée localement, tandis que le reste est transféré vers le Fog ou le
Cloud. Ce modèle optimise l’usage des ressources, limite les transferts de données et réduit la
consommation d’énergie. Il améliore aussi la réactivité du système, surtout lorsque certaines
sous-tâches exigent beaucoup de ressources, et que d’autres peuvent être exécutées localement
avec peu de latence. Cette flexibilité permet d’adapter la répartition selon les contraintes ré-
seau, les besoins du traitements ou la politique de sécurité. Des études récentes montrent qu’il
réduit la charge réseau et équilibre la consommation d’énergie, tout en maintenant de bonnes
performances dans les environnements Fog-Cloud [53].

II.3.2 Classification selon le mode de prise de décision
Offloading statique

Applique des règles fixes définies à l’avance. La décision de transfert ne tient pas compte
de l’état actuel du réseau ou des ressources disponibles. Par exemple, une tâche complexe est
toujours envoyée vers le Cloud, quelle que soit la charge du système. Ce modèle est simple à
mettre en œuvre et peu coûteux en calcul. Il est adapté aux environnements prévisibles où les
charges sont constantes. En revanche, dans des contextes dynamiques comme les systèmes IoT
urbain, il peut entraîner une mauvaise allocation des ressources et une latence plus élevée. Ce
modèle a surtout été utilisé dans les premières recherches sur le Fog Computing [54].

Offloading dynamique

Il repose sur une prise de décision en temps réel. Il tient compte de l’état des ressources
locales et distantes, de la charge réseau, de la latence, de la taille des tâches ou des délais
exigés. L’objectif est d’adapter la stratégie d’offloading pour optimiser la qualité de service. Par
exemple, une tâche peut être traitée localement si le réseau est saturé, puis déléguée vers un
nœud Fog dès que les conditions s’améliorent. Ce modèle améliore la réactivité et la gestion de la
charge. En contrepartie, il demande plus de calculs pour évaluer en continu plusieurs paramètres.
Des études récentes montrent qu’il réduit efficacement la latence dans les architectures Fog-
Cloud, même en cas de forte variabilité des ressources [55].
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Offloading stochastique

Il introduit l’incertitude dans la prise de décision. Il s’appuie sur des modèles probabilistes
pour anticiper les variations de la charge du réseau, la disponibilité des nœuds ou la latence.
Au lieu de suivre des règles fixes ou un état instantané, il évalue la probabilité qu’une décision
améliore les performances. Ce modèle convient aux environnements dynamiques, comme les
réseaux Fog distribués. Il est utile lorsque les informations sont incomplètes ou incertaines.
Il permet des décisions plus robustes, mais exige une modélisation précise des incertitudes
et in suivi continu. Des études récentes montrent qu’il améliore la stabilité et l’efficacité du
l’offloading dans des contextes à forte variabilité de ressources [56].

Offloading hybrid

La méthode hybride a été proposée par Canepa, Lee et al [57]. Une partie de la décision
est prise à partir de spécifications définies par le programmeur et d’outils d’analyse statique,
tandis que l’autre partie est déterminée en temps réel. L’objectif de cette approches dynamique
et statique était de minimiser les effets secondaires du profilage et les temps d’attente (la
surcharge). Cependant, cette solution ne garantit pas toujours de bonnes performances, car le
temps d’exécution sur un appareil mobile est souvent court.

II.4 Architectures décisionnelles dans le Fog Computing
Dans le Fog Computing, la stratégie et l’architecture décisionnelle jouent un rôle essentiel

dans le processus de Task Offloading. Il ne s’agit pas seulement de décider quoi offloader,
mais aussi de déterminer qui prend la décision et comment les ressources sont coordonnées.
L’efficacité du système dépend directement de cette organisation. On distingue principalement
trois approches [58], comme le montre la Figure II.2, l’approche centralisée du Cloud Computing
se différencie nettement de l’approche distribuée du Fog Computing, notamment en termes de
localisation des décisions et de gestion des ressources.

Fig. II.2 : Comparaison entre l’approche centralisée du Cloud Computing et l’approche
distribuée du Fog Computing

[23]
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II.4.1 Approche centralisée
Dans l’approche centralisée, un seul nœud, souvent appelé serveur Fog maître ou contrôleur,

prend en charge toutes les décisions d’Offloading. Il collecte des informations sur l’état du réseau,
la charge des ressources et les tâches en attente. À partir de ces données, il décide où et comment
répartir les traitements. Ce modèle permet une coordination optimale et une vue d’ensemble
du système, ce qui réduit les conflits entre nœuds et assure une répartition rationnelle des
tâches. Cependant, ce type d’organisation présente un inconvénient majeur : un point unique
de défaillance. Si le nœud central est surchargé ou tombe en panne, tout le système qui peut
en être affecté. De plus, la centralisation des décisions peut introduire de la latence, surtout
dans les environnements distribués, à grand échelle. Cette approche a été utilisé dans plusieurs
travaux de recherches, comme celui de Bonnie et al [27].

II.4.2 Approche décentralisée et distribuée
Dans l’approche décentralisée, chaque nœud Fog ou terminal IoT prend ses décisions loca-

lement, sans coordination centrale. Le dispositif analyse son état, la latence, la charge et les
ressources disponibles à proximité, puis décide d’exécuter ou d’offloader une tâche.

Ce modèle réduit la latence, renforce la résilience du système et s’adapte bien aux envi-
ronnements Fog dynamiques, notamment en présence de ressources mobiles, instables ou inter-
mittentes. Cependant, cette autonomie peut provoquer des conflits. Plusieurs nœuds peuvent
tenter d’utiliser simultanément la même ressource, causant une surcharge. Pour éviter cela, des
mécanismes de régulation, de négociation ou de coopération sont introduits. C’est à ce moment
qu’on parle d’approche distribuée.

• La décentralisation concerne la prise de décisions locales par chaque nœud.

• La distribution concerne la répartition physique des ressources et des traitements dans le
système.

Une approche décentralisée et distribuée combine les deux : Les nœuds prennent des déci-
sions locales tout en échangeant des informations entre eux pour équilibrer la charge. Ce modèle
horizontal supprime les points de défaillance uniques, augmente la tolérance aux pannes et amé-
liore la fluidité du système. Il est particulièrement adapté aux architectures Fog à grande échelle,
dans des contextes industriels ou urbains où les objets connectés sont nombreux, mobiles et
fortement répartis [23].

II.4.3 Approche hiérarchique
elle combine les avantages des deux modèles précédents. Elle répartit les décisions d’Of-

floading sur plusieurs niveaux. Les décisions simples et rapides sont prises localement par les
terminaux, tandis que les tâches plus complexes ou sensibles sont remontées vers un niveau
supérieur, comme un nœud Fog ou le Cloud. Cette organisation permet d’optimiser l’allocation
des ressources tout en assurant une bonne réactivité. Elle convient particulièrement aux archi-
tectures IoT–Fog–Cloud à plusieurs couches. Les traitements urgents sont gérés à proximité de

33



Chapitre II. Task Offloading dans le Fog Computing

la source, tandis que et les traitements lourds sont transférés plus haut dans la hiérarchie. Ce
modèle améliore la flexibilité, la performance et la résilience du système.

II.5 Critères de décision pour l’Offloading
Le mécanisme de Task Offloading repose sur des décisions dynamiques, influencées par le

type de tâche, l’état du réseau, la disponibilité des ressources et les exigences de sécurité. Une
stratégie de décision bien conçue permet une répartition efficace de la charge entre les dispositifs
IoT, les nœuds Fog et le Cloud [52].

Priorité des tâches Les tâches sont classées selon leur niveau d’urgence et leur importance
. Les applications sensibles, comme les alertes médicales ou la sécurité industrielle, exigent
une latence très faible. Elles doivent être exécutées localement ou transférées vers un nœud
Fog. En revanche, les tâches moins urgentes, telles que les mises à jour de données ou les
analyses, peuvent être confiées au Cloud. Cela souligne l’importance de la priorité des tâches
pour optimiser les système IoT.

Ressources disponibles La décision d’Offloading dépend de l’état actuel des ressources
locales et distantes. Lorsque le processeur, la mémoire ou la bande passante d’un dispositif
IoT est limité ou saturé, il devient nécessaire de transférer la tâche vers un nœud Fog . Une
surveillance continue des nœuds Fog permet d’adapter le comportement du système aux varia-
tions de charge et d’optimiser la qualité de service. Des recherches ont montré que l’évaluation
dynamique des ressources est crucial pour une allocation efficace des tâches.

Consommation d’énergie L’énergie disponible, particulièrement pour les dispositifs IoT
alimentés par batterie. Si le traitement local consomme trop d’énergie, il peut être préférable de
transférer la tâche afin de préserver l’autonomie du dispositif. Dans ce cas, l’Offloading vers des
nœuds Fog ou Cloud devient une solution efficace pour prolonger la durée de fonctionnement
sans recharge.

Contraintes de sécurité et de confidentialité Le traitement des données sensibles,
comme les informations médicales ou les données personnelles, doit respecter les réglementations
en vigueur. Le Règlement Général sur la Protection des Données (RGPD) impose des obligations
strictes concernant la collecte, le traitement et le transfert de ce type d’information. De plus
la norme ISO/IEC 27001, est un standard international, définit les exigences pour mettre en
place un système de gestion de la sécurité de l’information. Lorsque le transfert des données
présente un risque, l’exécution doit être locale ou limitée à des serveurs certifiés.

Choix de la destination

• Le Fog est recommandé pour les tâches temps réel ou sensibles à la latence en raison de
sa proximité avec les dispositifs. Il permet une réactivité plus élevée.

• Le Cloud est plus adapté aux traitements complexes à forte intensité de calcul ou non
sensibles aux délais, grâce à sa puissance de calcul et sa capacité de stockage élevée.
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II.6 Algorithmes de Task Offloading dans le Fog Com-
puting

Le Fog Computing repose sur des mécanismes intelligents de répartition des tâches pour
optimiser les performances, réduire la latence et économiser l’énergie. Nous classons ces algo-
rithmes en quatre grandes catégories, chacune adaptée à des besoins spécifiques comme illustré
dans la figure II.3 :

Fig. II.3 : Classification des algorithmes de Task Offloading

II.6.1 Algorithmes déterministes
Les algorithmes déterministes sont couramment utilisés dans le Fog Computing pour auto-

matiser le transfert des tâches. Leur comportement est fixe et prévisible, ce qui permet de suivre
des règles prédéfinies selon des critères comme la taille de la tâche, la consommation d’énergie,
la qualité de la connexion ou la distance au nœud cible. Dans des conditions identiques, ils
donnent toujours le même résultat.

You et al. [59] ont formalisé l’un des premiers modèles d’algorithmes déterministes dans
le cadre du Cloud mobile. Leur approche repose sur l’utilisation de seuils. Ils ont conçu un
algorithme qui transfère les tâches uniquement lorsque des limites, telles que la charge CPU ou
la latence, sont dépassées. Les résultats obtenus ont montré une réduction significative de la
consommation d’énergie tout en maintenant une qualité de service acceptable.

Buchholz et al. [60], ont développé un algorithme déterministe nommé Priority and Energy-
based Resource allocation. Leur méthode associe les tâches à des nœuds de calcul selon trois
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critères fixes : la priorité de la tâche, la capacité de traitement du nœud et sa consommation
d’énergie. Les tâches urgentes sont envoyées vers les nœuds les plus puissants et les plus stables,
tandis que les tâches secondaires sont orientées vers des ressources disponibles. Cette stratégie
a permis d’améliorer l’efficacité d’énergie tout en réduisant les délais de traitement.

Yu et al. [61] ont proposé un algorithme déterministe qui coordonne l’allocation des res-
sources radio (sous-porteuses) et des ressources de calcul (temps CPU) dans un système de
Mobile Edge Computing. Leur approche vise à optimiser simultanément l’utilisation des res-
sources de communication et de calcul, ce qui permet de réduire la consommation d’énergie et
d’améliorer l’efficacité du système.

Les algorithmes déterministes sont simples et peu exigeants en ressources. Ils conviennent
à des environnements stables et bien définis. Cependant, leur rigidité et leur manque de ré-
activité aux changements en temps réel les rendent moins adaptés aux contextes mobiles ou
imprévisibles. Ces limites ont conduit au développement de méthodes plus flexibles, comme les
algorithmes heuristiques ou intelligents.

II.6.2 Algorithmes heuristiques
Dans le contexte du Fog Computing, la gestion efficace des tâches est un enjeu central.

Contrairement aux algorithmes déterministes, les algorithmes heuristiques offrent une prise de
décision plus flexible. Leur but n’est pas de trouver la meilleure solution possible, mais une
solution satisfaisante en un temps réduit. Cela les rend adaptés aux environnements distribués,
dynamiques et incertains.

Aazam et al. [62] ont proposé un modèle d’Offloading basé sur la prévision des ressources.
Chaque tâche reçoit une note selon la disponibilité anticipée des ressources et l’historique d’exé-
cution. Le modèle prend en compte les changements dynamiques du réseau et ajuste l’allocation
des tâches en temps réel, selon la situation coûtante. Elle est testée dans un environnement IoT
intelligent et elle a donné de bons résultats sur la latence et le taux de réussite.

Deng et al. [63] ont conçu un algorithme qui répartit les tâches selon leur urgence et la
capacité des nœuds Fog. Le système accorde une priorité élevée aux tâches urgentes et pondère
plusieurs critères pour sélectionner le nœud cible. L’algorithme s’adapte automatiquement aux
variations de charges. Il a amélioré les délais de traitement dans les réseaux surchargés comme
ceux des véhicules connectés.

Yousef et al. [64] ont utilisé une approche First-Fit-Decreasing (FFD) combinée à une stra-
tégie adaptative. Dans FFD, les tâches sont triées par leur taille, puis affectées aux premiers
nœuds Fog capable de les exécuter. La stratégie est dite adaptative car le système surveille en
continu l’état du réseau et réévalue les affectations à chaque nouvelle tâche. Cette méthode a été
appliquée dans un scénario de ville intelligente avec vidéo surveillance. Les résultats montrent
une baisse importante du temps de réponse global.

Rahbari et al. [65] ont proposé un système hybride vise à résoudre le problème d’Offloading
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dans des environnements aux ressources instables (comme les réseaux IoT) en combinant une
approche heuristique et une gestion dynamique des ressources. Pour éviter la surcharge des
nœuds, le modèle utilise des règles heuristiques pour évaluer, avant tout transfert, si l’exécution
d’une tâche sur un nœud cible risquerait de saturer ses ressources (CPU, mémoire, bande
passante). Si le risque est trop élevé, la tâche est exécutée localement ou redirigée vers un autre
nœud. Ensuite, le système intègre une vérification périodique après l’Offloading pour s’assurer
que les conditions initiales (ex. : disponibilité des ressources) restent valides. Si un changement
critique est détecté (ex. : pic de demande imprévu), la tâche peut être migrée dynamiquement
vers un nœud plus stable. Cette double couche de décision (prédictive et réactive) permet
de minimiser les échecs liés à la congestion ou aux fluctuations soudaines, tout en optimisant
l’utilisation des ressources. Les simulations ont été réalisé dans des scénarios de forte variabilité,
les résultats montrent une meilleure résilience face aux perturbations, réduisant les interruptions
de service et améliorant la qualité de l’exécution des tâches critiques.

Les algorithmes heuristiques permettent de prendre des décisions rapides et adaptatives
pour éviter la surcharge des nœuds et exécuter les tâches critiques, malgré l’instabilité des
environnements Fog/IoT.

II.6.3 Algorithme de Machine Learning (ML)
Dans le cadre du Fog Computing, le Machine Learning joue un rôle clé dans la gestion

des tâches distribuées. Ces algorithmes utilisent des données historiques et des informations en
temps réel pour optimiser la répartition des tâches selon l’état du réseau, la charge des nœuds
ou de la latence observée. Contrairement aux méthodes traditionnelles qui suivent des règles
fixes, les algorithmes de ML apprennent et adaptent leurs comportement aux changements de
l’environnement.

Les auteur Chen et al. [66], ont proposé un système qui utilise un algorithme de Machine
Learning pour décider automatiquement où exécuter les tâches. Le traitement peut se faire sur
l’appareil IoT, sur un serveur Fog proche, ou le Cloud. Leur aproche vise à réduire les temps
d’attente et à économiser de l’énergie. Elle est adaptée aux réseaux de capteurs urbains, comme
ceux utilisés pour l’éclairage public ou la gestion de trafic.

Wang et al. [67], ont proposé des méthodes pour protéger les données sensibles pendant le
Task Offloading dans un environnement IoT/Fog. Au lieu d’envoyer les données personnelles,
comme les signaux médicaux, vers un serveur central, chaque appareilles les traître localement.
Ensuite, il partage uniquement les résultats d’apprentissage (mises à jour du modèle d’IA),
sans transmettre les données brutes. Cette approche permet de préserver la confidentialité des
utilisateurs et de réduire la latence de 20 %, car les données ne transitent pas par le Cloud.

Tang et al. [68] ont proposé une méthode basée sur le Machine Learning. Leur modèle est
entraîné pour prédire la latence et la consommation d’énergie en fonction des caractéristiques
des tâches et des nœuds. Ensuite, il décide automatiquement du meilleur lieu d’exécution. Cette
méthode réduit la latence moyenne et améliore l’efficacité énergétique dans les systèmes Fog
denses.
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Liu et al. [69] ont développé une solution de Task Offloading basée sur le Machine Learning,
une forme d’apprentissage par renforcement. L’algorithme observe l’état du système (charge,
bande passante, délai) et apprend à choisir les actions qui optimisent les performances au fil
du temps. Ce modèle évolue avec l’environnement et s’adapte aux changements. Il est efficace
dans les scénarios mobiles ou imprévisibles.

Mao et al. [70] ont proposé un modèle d’optimisation de l’Offloading basé sur l’apprentissage
profond, appliqué au mobile edge computing avec des appareils à énergie récoltée. Ils utilisent
un réseau de neurones profond pour prendre des décisions en temps réel sur l’exécution locale ou
déportée des tâches. Le système s’appuie sur une fonction de coût intégrant plusieurs critères,
comme la latence, la consommation d’énergie et la qualité du canal. Il apprend à s’adapter
automatiquement aux variations de l’environnement (batterie, réseau, charge). Cette approche
est conçue pour des applications sensibles comme les soins de santé, les véhicules autonomes et
l’IoT intelligent.

Les algorithmes de Machine Learning apprennent à partir des données et s’adaptent aux
changements de l’environnement. Ils offrent une meilleure capacité à gérer la complexité et
l’imprévisibilité des systèmes Fog IoT. Contrairement aux méthodes fixes, ils peuvent optimi-
ser la répartition des tâches en temps réel, améliorer la performance et réduire la consommation
d’énergie. Toutefois, ils demandent plus de ressources, de calculs et de données pour être effi-
caces, ce qui peut limiter leur déploiement sur certains appareils.

II.6.4 Algorithmes métaheuristiques
En tant que techniques d’optimisation inspirées de phénomènes naturels, biologiques ou

sociaux, capables d’explorer efficacement un espace de solutions vastes et complexes. Leur
principal avantage est de trouver des solutions proches de l’optimum en un temps raisonnable,
même dans des environnements dynamiques et contraints, comme le Fog Computing. Ces mé-
thodes sont particulièrement adaptées au Task Offloading, car elles permettent d’optimiser
plusieurs critères à la fois (la latence, la consommation d’énergie, la bande passante, etc) dans
des systèmes distribués et hétérogènes [71].

Bandyopadhyay et al. [72] ont proposé une approche centrée sur l’optimisation de Task
Offloading des tâches dans un système Fog–Cloud hétérogène, en s’appuyant sur l’algorithme
Particle Swarm Optimization (PSO). L’environnement modélisé repose sur un ensemble de
tâches générées dynamiquement par des objets IoT, devant être affectées à des nœuds de traite-
ment, soit dans le Fog, soit dans le Cloud. Chaque solution candidate est représentée sous forme
de particule, illustrant une configuration d’assignation des tâches aux ressources disponibles. La
qualité de chaque solution est évaluée à l’aide d’une fonction objectif qui intègre plusieurs para-
mètres clés : la latence globale, la consommation de ressources et les contraintes de capacité des
nœuds de traitement. L’algorithme permet aux particules d’évoluer dans l’espace de recherche
en s’appuyant à la fois sur leur expérience individuelle (meilleure solution personnelle) et sur
celle de l’ensemble de l’essaim, favorisant ainsi une exploration collaborative vers des solutions
efficaces. Cette dynamique facilite une convergence rapide vers des résultats performants. Les
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résultats expérimentaux montrent que l’approche basée sur PSO permet une réduction signifi-
cative du temps de réponse par rapport aux méthodes classiques, tout en assurant une meilleure
répartition de la charge entre les nœuds Fog et Cloud. L’étude met en évidence la capacité du
PSO à réduire les risques de saturation. Elle confirme ainsi la pertinence de cet algorithme
en tant que solution robuste et adaptable pour la gestion dynamique des ressources dans les
environnements distribués soumis à de fortes contraintes.

Sahu et al. [54] ont présenté une version améliorée de l’algorithme ACO, appelée SACO
(Smart Ant Colony Optimization), dans le but de distribuer efficacement les tâches dans une
architecture Fog multi-niveaux. Ici, la construction de la solution s’effectue à travers des agents
intelligents, les “fourmis”, qui sélectionnent les nœuds de traitement en fonction d’un mé-
canisme probabiliste lié au niveau de phéromone accumulé et à une heuristique associée au
temps de traitement. L’algorithme prend en compte les capacités de traitement des nœuds, leur
charge actuelle et la distance réseau. Il permet une prise de décision progressive, améliorée à
chaque itération par une mise à jour des phéromones basée sur la qualité des solutions trouvées.
L’approche SACO est comparée à plusieurs autres méthodes, dont PSO et BLA, et se révèle
particulièrement performante. Elle permet notamment de réduire la latence moyenne de ma-
nière significative, tout en assurant une meilleure stabilité et un meilleur équilibrage des tâches.
Ces résultats mettent en avant l’efficacité d’une stratégie inspirée du comportement collaboratif
des fourmis pour optimiser le traitement décentralisé dans des systèmes Fog–Cloud complexes.

Dans Attalah et al. [73], une stratégie d’optimisation nommée GA Hybrid-Fog est proposée
pour résoudre les défis du Task Offloading dans un environnement Fog hybride dédié à l’Inter-
net des drones (IoD). Leur approche combine des stations Fog fixes (FBSs) et des drones Fog
mobiles (FUAVs) afin de minimiser les délais de transmission et de traitement, tout en tenant
compte des contraintes de ressources. Chaque solution est modélisée sous forme de chromo-
some, où chaque gène représente l’affectation d’une tâche à un nœud Fog ou à un traitement
local. La fonction de fitness évalue le délai total, incluant la latence de transmission et le temps
de traitement. Grâce aux opérateurs génétiques (sélection, croisement, mutation), l’algorithme
explore dynamiquement les solutions possibles en s’adaptant à la mobilité des drones et à la
disponibilité des ressources. Les résultats expérimentaux montrent que cette approche amé-
liore l’efficacité de l’allocation des tâches dans des environnements Fog–Cloud dynamiques et
distribués.

Saif et al. [74] proposent une approche d’optimisation du Task Offloading dans un environ-
nement Edge–Fog–Cloud basée sur un algorithme Firefly multi-objectifs (MFA). Leur méthode
repose sur une stratégie composée de deux étapes : d’abord, un module nommé Enhanced Task
Offloading (ETO) sélectionne dynamiquement la couche de calcul (Edge, Fog ou Cloud) la
plus adaptée à chaque tâche, selon la disponibilité des ressources et l’état de la charge réseau.
Ensuite, le MFA est utilisé pour affecter la tâche à un dispositif de traitement optimal à l’inté-
rieur de la couche choisie. L’algorithme Firefly s’inspire du comportement naturel des lucioles,
où l’intensité lumineuse (fitness) guide le déplacement des agents vers de meilleures solutions.
Dans cette version améliorée, plusieurs critères sont optimisés simultanément, notamment la
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latence, la consommation d’énergie, et le taux d’échec. Les simulations montrent que l’approche
proposée surpasse d’autres méthodes de référence, en améliorant l’utilisation des ressources et
en réduisant les délais de traitement. Ce travail met en évidence la capacité des algorithmes
bio-inspirés, comme le Firefly Algorithm, à résoudre efficacement des problèmes complexes de
Task Offloading dans des environnements distribués et contraints.

Huang et al. [75] ont utilisé une approche par algorithmes génétiques. Leur méthode encode
les différentes possibilités d’allocation de tâches dans des chromosomes. À chaque itération, les
combinaisons les plus efficaces sont conservées et croisées pour générer de nouvelles solutions.
Le processus continue jusqu’à atteindre une performance satisfaisante. Ce système est utilisé
dans des réseaux Fog industriels avec des contraintes strictes.

Les algorithmes métaheuristique exploitent des mécanismes d’inspiration naturel pour trou-
ver des solutions proches de l’optimum sans explorer tout l’espace possible. Ils sont efficaces
dans les environnements Fog Cloud hétérogènes, dynamiques et contraints. Leurs forces réside
dans leur capacité à gérer plusieurs critères simultanément comme la latence, la consommation
d’énergie, la bande passante ou les ressources. Contrairement aux approches fixes ou aux heu-
ristiques simples, ces méthodes s’adaptent aux changements du système et offrent une bonne
robustesse face à l’incertitude.

Une synthèse comparative des différents algorithmes étudiés de Task Offloading est présentée
dans le tableau II.1.

40



Chapitre II. Task Offloading dans le Fog Computing

Catégorie Travaux Techniques Latence Énergie Ressources Coût

Déterministes You et al. [59] Algorithme à
Seuils × ×

Buchholz et al. [60] Algorithme PIER × ×

Yu et al. [61] Optimisation
Conjointe × × ×

Heuristiques Aazam et al. [62] Prévision
dynamique × ×

Deng et al. [63] Priorisation
intelligente × ×

Yousef et al. [64] First-Fit-
Decreasing × ×

Rahbari et al. [65] Anti-saturation × ×

Machine
Learning Chen et al. [66] IA (lo-

cal/Fog/Cloud) × × × ×

Wang et al. [67] Apprentissage
fédéré × ×

Tang et al. [68] Réseaux de
neurones × × ×

Liu et al. [69] Q-Learning × × ×

Mao et al. [70] ML × × ×

Méta-
heuristiques Bandyopadhyay et al. [72] PSO × × × ×

Sahu et al. [54] SACO (fourmis) × × ×

Attalah et al. [73] GA (drones) × × ×

Huang et al. [75] GA × × × ×

Saif et al. [74] Firefly Algorithm
(MFA) × × ×

Tab. II.1 : Comparaison des algorithmes de Task Offloading selon les critères de performance.

II.7 Contraintes défis et limitations du Task offloading
Le offloading dans le Fog Computing transfère le traitement des données des appareils IoT

vers des nœuds Fog plus puissants, améliorant la réactivité et réduisant la charge, mais générant
des contraintes importantes.

II.7.1 Gestion de la latence et de la fiabilité
Le Task Offloading vise à réduire la latence. Pourtant, cet objectif est compromis si la

tâche est dirigée vers un nœud distant, indisponible ou surchargé. Dans le Fog Computing,
la qualité de service dépend de la proximité, de la capacité de calcul et de la stabilité du
nœud. Un mauvais routage augmente les délais de traitement et détériore les performances. La
fiabilité reste une limite majeure. Les nœuds Fog sont souvent mobiles, instables et exposés
à des interruptions. Cette variabilité rend difficile la continuité de service. Dans un système
temps réel, une défaillance ponctuelle peut causer l’échec total d’une application [76].
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II.7.2 Consommation d’énergie
L’offloading peut réduire la consommation locale d’énergie, mais cela dépend des décisions

prises par le système. Chaque transfert implique une dépense énergétique pour la transmission
et le traitement. Si l’économie espérée est mal évaluée, la consommation totale peut augmenter.
Ce problème touche directement les dispositifs IoT alimentés par batterie. Une stratégie d’of-
floading mal calibrée peut entraîner une décharge rapide, sans l’autonomie des capteurs, drones
ou objets intelligents. Dans certains cas, une mauvaise allocation augmente la consommation de
plus de 40%. À l’inverse, les algorithmes adaptatifs permettent de réduire cette consommation
jusqu’à 28% , en tenant compte de l’état de la batterie et de la priorité des tâches [77].

II.7.3 Sécurité et confidentialité
Le Task Offloading expose les données à des risques (interception, accès non autorisé),

notamment en raison de la diversité des équipements et des failles de sécurité. Pour les protéger,
des mécanismes comme le chiffrement, l’authentification et le contrôle d’accès sont essentiels.
[78].

II.7.4 Scalabilité et interopérabilité
Le Fog Computing doit gérer un grand nombre d’appareils connectés. Quand ce nombre aug-

mente vite, le système peut devenir lent ou moins efficace. C’est le problème de la scalabilité. Le
système doit rester rapide, même avec plus de données et plus de connexions. L’interopérabilité
est un autre problème. Les appareils viennent de marques différentes. Ils n’utilisent pas les
mêmes systèmes ou les mêmes façons de communiquer. Pour qu’ils puissent bien fonctionner
ensemble, il faut des règles communes. On utilise pour cela des standards, des interfaces de
programmation souples, et une structure qui permet de s’adapter facilement [79].

II.7.5 Tolérance au pannes
Dans le Fog Computing, les coupures sont fréquentes. Un nœud peut tomber en panne,

perdre la connexion ou être déplacé. Ces problèmes peuvent bloquer le traitement des tâches. Le
système doit donc détecter ces incidents, rediriger les tâches et relancer les opérations sans délai.
Pour cela, il faut des mécanismes de secours. Par exemple, avoir une copie des données, surveiller
les nœuds en temps réel et redémarrer automatiquement en cas d’erreur. Si ces protections ne
sont pas bien mises en place, le système peut devenir instable, surtout dans les domaines
sensibles, comme la santé ou l’industrie.

II.8 Conclusion
Dans ce chapitre, nous avons présenté les fondements du Task Offloading dans le Fog Compu-

ting, en détaillant ses principales approches, les classes d’algorithmes existants et les métriques
utilisées pour en évaluer les performances.
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Cette étude nous permis de mettre en évidence les avantages et limites de chaque méthode,
notamment en termes de latence, de consommation énergétique et d’adaptabilité. Ces éléments
constituent une base essentielle pour orienter la conception de notre propre proposition, qui
sera présentée dans le chapitre suivant, accompagnée d’une évaluation comparative.
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III.1 Introduction
Dans le domaine du Fog Computing, l’offloading des tâches représente un défi majeur.

L’objectif est d’assigner les tâches aux ressources de calcul de manière optimale, afin de réduire
le temps de réponse tout en maintenant une qualité de service (QoS) élevée pour les utilisateurs.

Dans cette optique, nous proposons une approche fondée sur la métaheuristique ABC (Ar-
tifial Bee Colony) pour résoudre le problème de Task Offloading dans un environnement Fog.
Afin d’évaluer les performances d’ABC, nous le comparerons à une autre métaheuristique bien
connue : PSO (Particle Swarm Optimization).

III.2 Modélisation du problème de Task Offloading dans
le Fog Computing

Cette section présente la modélisation formelle de notre contribution. L’objectif principal est
d’optimiser deux métriques clé de qualité de services : Le temps d’exécution et la consommation
d’énergie. Nous modélisons efficacement le processus de Task Offloading dans un environne-
ment Fog. On suppose les taches ne peuvent pas être exécutés localement et sont directement
offloadées vers une machine virtuelle (VM) du Fog. Le système détermine la VM optimale
pour chaque tâche afin d’améliorer la performance globale du réseau, tout en respectant les
contraintes matérielles.

III.2.1 Les métriques QoS
→ Temps d’exécution
Le temps d’exécution représente la durée nécessaire à une machine virtuelle pour traiter

une tâche Ti. Il dépend de deux facteurs principaux : la taille de la tâche et la capacité de
traitement de la VM choisie. L’équation est donner comme suite :

T exec
i =

Li

fr
(III.1)

Ou :

• T exec
i : temps d’exécution de la tâche ti (en secondes).

• Li : taille de la tâche ti (en millions d’instructions, MI)

• fr : capacité de traitement de la VM r (en MIPS - Millions d’Instructions Par Seconde)

Cette équation permet de calculer, le temp d’execution de la tache i dans la machine virtuelle
(MVr).
→ Consommation d’énergie :
L’énergie consommée par un nœud Fog dépend de la charge totale de traitement qui lui est

assignée. Cette consommation est modélisée par la fonction suivante[74] :
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P fog
j = a · (Y fog

j )2 + b · Y fog
j + c (III.2)

Où :

• P fog
j : énergie consommée par le nœud Fog j pour le traitement de toutes les tâches qui

lui sont affectées.

• Y fog
j : charge totale affectée au nœud Fog j, calculée comme suite :

Y fog
j =

∑
i∈Tj

Li

où Li est la taille de la tâche ti (en millions d’instructions) et Tj l’ensemble des tâches
affectées au nœud j.

• a > 0, b ≥ 0, c ≥ 0 : coefficients représentant respectivement la consommation quadra-
tique, linéaire et statique du nœud Fog.

Cette formulation permet de capturer l’effet de surcharge sur un nœud Fog. En effet, une
affectation déséquilibrée des tâches peut entraîner une augmentation rapide de la consommation
d’énergie, ce qui motive la recherche d’un offloading optimal.

Etotal =
M∑
j=1

P fog
j (III.3)

avec M le nombre total de nœuds Fog dans le système.

III.2.2 Fonction objectif (fitness)

F(P ) = ·
N∑
i=1

w1.T
exec
i + w2 · Etotal (III.4)

Où :

• F(P ) : valeur de la solution P

• w1, w2 : poids associés au temps d’exécution et à la consommation d’énergie qui sont
entre 0 et 1.

•
∑N

i=1 T
exec
i : somme des temps d’exécution de toutes les tâches

• Etotal : énergie totale consommée par les nœuds Fog

III.2.3 Problème de Task Offloading
Chaque solution est représentée par un vecteur de décision ou chaque position corres-

pond à une tâche, et chaque valeur indique la ressource assignée à cette tâche. Il s’agit d’af-
fecter un ensemble de tâches t = {t1, t2, . . . , tN} à un ensemble de ressources disponibles
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M = {m1,m2, . . . ,mk}, comprenant des dispositifs Fog. L’objectif est de déterminer la res-
source optimale pour chaque tâche, afin de minimiser à la fois le temps d’exécution totale et la
consommation d’énergie globale du système.

Le système Fog est modélisé comme un ensemble de machines physiques noté :

dFog = {MP1,MP2, . . . ,MPNpm} (III.5)

où chaque machine physique MPi (avec i = 1,2 …,Npm) représente un dispositif Fog, et peut
être décrite comme suit :

MPi = {VM1, V M2, . . . , V MNvm} (III.6)

Chaque machine physique contient plusieurs machines virtuelles (VM), et chaque machine vir-
tuelle est caractérisée par :

VMk = [IDVMk
,MIPSk] (III.7)

ou :

• IDVMk
: désigne l’identifiant unique de la VM

• MIPSk : représente sa capacité de traitement en millions d’instructions par seconde
(MIPS)

L’ensemble des tâches à offloader est représenté par :

T = {T1, T2, . . . , TNtsk} (III.8)

Chaque tâche est définie comme suit :

Ti = [IDTi
, T lengthi, ECTi] (III.9)

ou :

• IDTi
: l’identifiant de la tâche Ti

• T lengthi : la taille de la tâche (en millions d’instructions)

• ECTi : le temps d’exécution estimé

Chaque solution possible est représentée sous forme d’un vecteur de décision, dans lequel
chaque position du vecteur correspond à une tâche, et la valeur indique la machine Fog (VM)
qui lui est assignée. L’algorithme ABC est utilisé pour explorer l’espace de recherche et trouver
une répartition optimale des tâches, tout en respectant les contraintes matérielles.

III.2.4 Motivation
Le Task Offloading est devenu cruciale avec l’essor des objets connectés et la croissance

massive des données. Les méthodes exactes, efficaces dans des cas simples, échouent face à la
complexité des environnements Fog.
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Les métaheuristiques proposent des solutions adaptée et explorent efficacement l’espace de
recherche pour affecter les tâches aux bonnes ressources, en tenant compte du temps d’exécu-
tion, de l’énergie consommée.

Elles produisent de bons résultats en un temps raisonnable et s’adaptent à divers objectifs
comme la réduction du temps d’exécution ou de la consommation d’énergie. Elles peuvent aussi
être combinées à l’apprentissage automatique pour améliorer leur efficacité.

III.3 Algorithme d’optimisation ABC pour le Task Of-
floading

Algorithme1: ABC (Artifial Bee Colony) pour le Task Offloading
Input : Entrées

• n_tasks : Nombre de tâches

• n_machines : Nombre de machines disponibles

• machines_speed : Vitesse des machines

• task_sizes : Tailles des tâches

• data_sizes : Données à transférer

• a, b, c : Paramètres énergétiques

• max_iter : Nombre maximal d’itérations

• limit : Limite d’échecs sans amélioration

• SN : Nombre de solutions (sources de nourriture)

Output : Sorties

• Meilleure solution

• Temps d’exécution total

• Énergie consommée totale

Générer SN solutions aléatoires
Évaluer chaque solution
Sauvegarder la meilleure solution trouvée
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Algorithm 1 : Algorithme ABC (Artifial Bee Colony) pour le Task Offloading
1 for t← 1 to max_iter do
2 Phase des abeilles employées for chaque solution xi do
3 Générer une solution candidate vi (Formule I.6)
4 Évaluer vi
5 if fitness(vi) > fitness(xi) then
6 xi ← vi (Formule I.7)
7 Réinitialiser le compteur d’échecs de xi

8 Mettre à jour la meilleure solution si nécessaire

9 else
10 Incrémenter le compteur d’échecs de xi

11 end if

12 end for

13 Phase des abeilles observatrices Calculer les probabilités pi (Formule I.8)
14 for chaque abeille observatrice do
15 Sélectionner une solution xi selon pi

16 Générer une solution candidate vi (Formule I.9)
17 Évaluer vi
18 if fitness(vi) > fitness(xi) then
19 xi ← vi (Formule I.10)
20 Réinitialiser le compteur d’échecs
21 Mettre à jour la meilleure solution si nécessaire

22 else
23 Incrémenter le compteur d’échecs

24 end if

25 end for

26 Phase des abeilles éclaireuses for chaque solution xi do
27 if compteur d’échecs xi ≥ limit then
28 Remplacer xi par une nouvelle solution aléatoire (Formule I.11)
29 Réinitialiser le compteur d’échecs
30 Évaluer la nouvelle solution
31 Mettre à jour la meilleure solution si nécessaire

32 end if

33 end for

34 end for
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III.4 Réalisation et évaluation de performance
L’implémentation des algorithmes a été réalisée à l’aide du logiciel MATLAB (MathWorks,

2023), en appliquant l’algorithme ABC au problème de Task Offloading. Afin d’évaluer ses
performances, nous le comparons à un autre algorithme d’optimisation PSO. L’objectif est
de déterminer lequel des deux fournit de meilleurs résultats en termes de temps d’exécution,
consommation d’énergie et la valeur de la fonction objectif.

Les paramètres expérimentaux utilisés sont présentés dans tableau III.1
Nous définissons deux expériences. Dans la première expérience, le nombre de machines

virtuelles est maintenu constant à 30, tandis que le nombre de tâches augmente progressivement
de 100 à 1000 (pas de 200).

Dans la deuxième expérience, le nombre de tâches est fixe (500), alors que le nombre de
machines virtuelles varie de 10 à 60, avec un pas de 10.

Paramètre Expérience 1 Expérience 2
CPU vitesse du Processeur [500, 2000] MIPS
Taille des tâches [2000, 50000] MI
Taille de la population 40
Nombre d’itération 150
Nombre de tâches [100, 300, 500, 700, 900, 1000] 500
Nombre de machines virtuelles 30 [10, 20, 30, 40, 50, 60]

Tab. III.1 : Ensemble de paramètres d’expérimentation

III.5 Résultats et discussions
Les résultats obtenus sont regroupés dans les tableaux III.2 III.3, ils sont analysés et com-

parés dans la section suivante :

III.5.1 Résultats de la première expérience

La première expérience
Nb. tâches PSO TO-ABC

Temps d’execution (s) Énergie Fitness Temps d’execution (s) Énergie Fitness
100 1995.05 6.91 1000.98 1733.48 6.58 870.03
300 6849.07 1.63 3432.71 6588.19 1.55 3301.85
500 11802.71 2.57 5914.20 11208.19 2.64 5617.28
700 16640.74 4.01 8340.43 16452.06 3.85 8245.31
900 22670.25 5.65 11363.38 22516.12 5.35 11284.81
1000 25126.11 6.02 12593.16 24041.26 6.02 12050.71

Tab. III.2 : Ensemble des résultats obtenus dans la première expérience

Dans cette expérience, les résultats montrent que l’algorithme TO-ABC est meilleure que
PSO sur tous les critères évalués. En de temps d’exécution et d’énergie. ABC offre de meilleures
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performances, notamment lorsque le nombre de tâches augmente, ce qui démontre sa robustesse
dans des scénarios complexes. Concernant le temps d’exécution, ABC est significativement plus
rapide que PSO, ce qui est crucial pour les applications en temps réel nécessitant une réactivité
élevée. Enfin, aux attentes initiales, ABC surpasse également PSO en terme de consommation
d’énergie, offrant ainsi une solution globale plus efficace et économique.

Comme attesté par les figures III.1 III.2 III.3

Fig. III.1 : Temps d’exécu-
tion : TO-ABC vs PSO

Fig. III.2 : Consommation
d’énergie : TO-ABC vs PSO

Fig. III.3 : Fitness : TO-ABC vs
PSO
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III.5.2 Résultats de la deuxième expérience

La deuxième expérience
Nb. machines PSO ABC

Temps (s) Énergie Temps (s) Énergie
10 10125.55 3.49 9920.07 3.43
20 12420.32 2.51 12442.26 2.56
30 12617.74 2.31 12358.90 2.27
40 11813.79 2.39 11822.29 2.38
50 12012.90 2.51 12152.88 2.57
60 14162.62 2.58 13921.11 2.55

Tab. III.3 : Ensemble des résultats obtenus dans la deuxième expérience

La deuxième expérience confirme les résultats de la première expérience. L’algorithme TO-
ABC donne de meilleurs résultats que PSO, notamment en termes de temps d’exécution le
grand nombres de machines important.

De plus, contrairement aux observations initiales, ABC montre une meilleurs efficacité
d’énergie que PSO dans ces nouveaux tests. Cette amélioration, ses avantages combinés à
la rapidité et la qualité des solutions, font d’ABC le choix incontournable pour les applications
exigeantes où la performance globale et l’optimisation des ressources sont cruciales.

Les figures III.4 III.5 illustrent les résultat de tableau

Fig. III.4 : Temps d’exécution :
TO-ABC vs PSO

Fig. III.5 : Consommation
d’énergie : TO-ABC vs PSO

III.6 Synthèse
Les résultats des deux expériences montrent que l’algorithme Artificial Bee Colony (ABC)

surpasse Particle Swarm Optimization (PSO) pour le Task Offloading dans un environnement
Fog Computing. L’amélioration globale moyenne est de 15.83%.

L’analyse des résultats confirme la supériorité de l’algorithme ABC.
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• Temps d’exécution : To-ABC est plus rapide. Pour 1000 tâches, le gain est de 4.31%.
Cette tendance se retrouve dans les autres cas.

• Consommation d’énergie : TO-ABC consomme moins d’énergie. Pour 100 tâches, la
réduction atteint 4.77%.

• Fitness : TO-ABC fournit des solutions plus optimales. Pour 100 tâches, la valeur de
fitness est 13.08% inférieure à celle obtenue par PSO.

ABC est donc plus adapté. Il combine rapidité, économie d’énergie et qualité de solution,
même avec un grand nombre de tâches.

III.7 Conclusion
L’analyse comparative entre les algorithme ABC et PSO pour le Task Offloading le Fog

montre que ABC est globalement plus performant. Il offre un temps d’exécution plus court,
une meilleure efficacité d’énergie et une meilleure qualité de solution. Ces résultats font de
l’algorithme ABC un choix préférable pour les systèmes nécessitant rapidité et optimisation
des ressources.
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Conclusion Générale
À travers ce mémoire, nous avons exploré l’une des problématiques clés liées à l’évolution

des système distribués modernes : le Task Offloading dans un environnement Fog Computing.
Notre travail s’est concentré sur l’optimisation du processus d’offloading des tâches générées
par les objets IoT, dans le but de réduire à la fois le temps d’exécution et la consommation
d’énergie.

Pour cela, nous avons adapté la metaheuristique ABC pour résoudre le problème de Task
Offloading dans le Fog Computing en suit nous a vous réalisé une étude comparative avec la
metaheuristique PSO, connu et largement utilisé dans la littérature, les deux méthodes ont été
implémentées sous MATLAB et évaluée à travers deux séries d’expériences.

Les résultats obtenus ont montré que l’algorithme TO-ABC est plus performant que PSO.
Il se distingue par une meilleure consommation d’énergie, un temps d’exécution plus court
et une meilleure qualité de solution (fitness), en particulier lorsque le nombre de tâches aug-
mente. Cette comparaison monte que ABC est plus adapté dans les scénarios exigeant efficacité
d’énergie, temps d’exécution et performance globale.

Ce travail nous a permis de mieux comprendre les enjeux techniques du Fog Computing
et d’apporter une contribution concrète à la résolution d’un problème complexe lié au Task
Offloading.

Comme perspectives futures, il serait pertinent d’approfondir cette étude en testant d’autres
méthaheuristiques, en explorant des approche hybrides ou en intégrant des techniques d’ap-
prentissage automatique afin d’adapter de manière dynamiquement la stratégie d’Offloading en
fonction de l’évolution des paramètres réseau et système.
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اिऻڪٌۘ
ا୒ୖڎف .۰ਃಸ؇༲اܳފ واࠍ੆ިݿٴ۰ ا৙৑ނ٭؇ء ೑಻ଫଐَإ ඔ൹ً وݿ٭ޚ۰ ّگٷ٭۰ ሒሃو ،۰ਃಸ؇اܳݯٴ اࠍ੆ިݿٴ۰ ݿ٭؇ق ሒᇭ ا۳ৎ৊؇م لؐ ّڰݠ আॻ༟ اܳٴۜت ۱ڍا ஼ߵணߌ
اᄴᄟراݿ۰ ّگڎم .۰༚ڰݠوৎ৊ا ۳గጻዧ؇م ۰ً؇༶ݿٺ৖৑ا وز݆݁ ۰੊أ؇ࠍৎ৊ا وڢب ّگܹ٭ܭ ఈః༠ل ݆݁ ۰༟ިزৎ৊ا ఋዳዧَޙ۰݄ اܳأ؇م ا৙৑داء ඔ൹ފොູ ި۱ ๴ཏ྘ཬීෂا
ا৖৑ݿٺܝލ؇ف ّگٷ٭؇ت ሌᇿإ ً واݿྥٷ؇دا ًܝڰ؇ءة. ا۳ৎ৊؇م لؐ ਐಸڰݠ اৎ৊ٺأܹگ۰ ඔ൹اܳٺۜފ ᄭႍၽ݁ލ ࠍ੆ܭ ᆙᆗُ݄ب ABC، ሌᇼُࣖࣁ ༥ڎࢴࣖة ۊިارز݁٭۰
༇຀؇اܳٷٺ ّޙ۳ُݠ ا৙৑داء. ݁ޝ๤ཇات ݆݁ ۰༟ިᆇ୞୘ ً؇ݿٺ༱ڎام PSO، اৎ৊أݠوڣ۰ ً؇ࠍ੅ިارز݁٭۰ ݁گ؇ر۰َ TO-ABC ۊިارز݁٭۰ ّگ٭ࡗࡲ ቕቆ اܳٺߺࠊي،
۱ڍا لଫଊُز ا۳ৎ৊؇م. لؐ ّڰݠ ෠ຶ؇ح ݁أڎل ඔ൹ފොູو ۰ً؇༶ݿٺ৖৑ا وز݆݁ اܳٺٷڰ٭ڍ وڢب ّگܹ٭ܭ ሒᇭ ༠؇ݬ۰ ABC، ۊިارز݁٭۰ ਲ਼ਦال؇ اܳٺ۠ݠ཯ྟ٭۰

.۰ਃಸ؇اܳݯٴ ً؇ࠍ੆ިݿٴ۰ اࠍ੅؇ݬ۰ اܳٺ༲ڎل؇ت ݁ިاۏ۰۳ ሒᇭ TO-ABC ۊިارز݁٭۰ ڣ؇༟ܹ٭۰ اৎ৊گ؇رن اܳٺ༲ܹ٭ܭ

ABC PSO، ل۰، اܳٺޚިر اࠍ੅ިارز݁٭؇ت ،ඔ൹ފොູ ا۳ৎ৊؇م، لݥ ّڰި ،۰ਃಸ؇اܳݯٴ اࠍ੆ިݿٴ۰ : اिऻء׫ոؼמ١ اڤոஈ࿦࿮ت
Résumé

Ce mémoire porte sur le Task Offloading dans le contexte du Fog Computing, une technologie
intermédiaire entre l’Internet des Objets (IoT) et le Cloud Computing. L’objectif principal est
d’optimiser les performances globales des systèmes distribués en minimisant à la fois le temps de
traitement et le taux de latence des tâches offloadées. L’étude introduit un nouvel algorithme,
nommé ABC, conçu pour résoudre efficacement le problème d’optimisation lié à l’offloading
des tâches. Inspiré des approches métaheuristiques, l’algorithme TO-ABC est évalué par com-
paraison avec l’algorithme bien établi PSO, en s’appuyant sur un ensemble de paramètres de
performance. Les résultats expérimentaux démontrent les avantages de l’algorithme ABC, no-
tamment en termes de réduction du temps d’exécution, de latence et d’amélioration du taux de
réussite des offloadings. Cette analyse comparative met en lumière la pertinence de l’algorithme
TO-ABC face aux défis spécifiques du Fog Computing.

Mots clés : Fog Computing, Task Offloading, Optimisation, Métaheuristique, PSO, ABC

Abstract

This thesis explores Task Offloading in the context of Fog Computing, a bridging technolo-
gy between the Internet of Things (IoT) and Cloud Computing. Its main goal is to enhance
the overall performance of distributed systems by reducing both processing time and latency
of offloaded tasks. The study presents a new algorithm, named ABC, designed to efficient-
ly solve the optimization problem associated with Task Offloading. Inspired by metaheuristic
techniques, the TO-ABC algorithm is assessed against the well-known PSO algorithm using
a set of performance metrics. Experimental results highlight the advantages of ABC, particu-
larly in reducing execution time and latency, and in improving task offloading success rates.
This comparative analysis demonstrates the effectiveness of TO-ABC in addressing specific Fog
Computing challenges.

Keywords : Fog Computing, Task Offloading, Optimization, Metaheuristic, PSO, ABC
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