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Introduction Générale  

L’eau douce représente une ressource essentielle au développement humain et à l’équilibre des 

écosystèmes, pourtant sa disponibilité se trouve gravement menacée par les pressions 

démographiques, l’urbanisation accélérée et les dérèglements climatiques. Face à cette crise 

hydrique globale, le dessalement des eaux marines s’est imposé comme une solution 

technologique incontournable, particulièrement dans les régions côtières arides. Bien que 

couvrant environ 70% de la surface terrestre, les eaux océaniques, dont la salinité les rend 

impropres à la consommation directe, constituent paradoxalement la réponse la plus prometteuse 

aux pénuries croissantes. Ce paradoxe hydrique place ainsi les procédés de désalinisation au 

cœur des stratégies contemporaines de sécurité hydrique.   

Le dessalement moderne, apparu dans les années 1960, a connu des évolutions technologiques 

majeures, passant des méthodes thermiques énergivores aux systèmes à membrane plus 

efficaces. Cependant, ces avancées ne suffisent pas à résoudre l’équation complexe entre besoins 

croissants en eau potable et impératifs de durabilité. Les défis persistent notamment au niveau de 

la consommation énergétique, de l’impact environnemental des rejets de saumure et de la 

nécessité de maintenir une qualité d’eau constante selon les normes internationales. C’est dans ce 

contexte que notre recherche propose une approche innovante combinant analyse 

conventionnelle de la qualité de l’eau et méthodes avancées d’intelligence artificielle.  

L’émergence récente des technologies numériques dans le domaine de la gestion de l’eau ouvre 

des perspectives inédites pour optimiser les processus de dessalement. L’intelligence artificielle, 

avec ses capacités prédictives et ses algorithmes d’apprentissage automatique, permet 

d’envisager une surveillance plus efficace et proactive des paramètres qualitatifs. Notre étude se 

concentre spécifiquement sur la station de Cap Djinet, où nous appliquons des techniques de data 

science pour évaluer la conformité de l’eau produite aux standards de l’OMS, tout en 

développant des modèles prédictifs capables d’anticiper les variations qualitatives.   

Cette approche duale, à la fois analytique et prospective, répond à un besoin crucial du secteur : 

transformer la gestion des usines de dessalement d’une logique réactive à une logique prédictive. 

En intégrant des outils numériques avancés dans le monitoring quotidien, nous visons à établir 

un nouveau paradigme dans l’exploitation des installations de dessalement, plus efficient et plus 

durable. La méthodologie développée combine ainsi des analyses physico-chimiques 

traditionnelles avec des algorithmes de machine learning implémentés en Python, permettant une 

évaluation complète tant des performances actuelles que des tendances futures.   
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L’originalité de ce travail réside dans son approche intégrée, où la data science vient renforcer les 

protocoles existants de contrôle qualité. D’une part, nous établissons un diagnostic précis de la 

conformité actuelle aux normes OMS à travers une analyse statistique rigoureuse des données 

opérationnelles. D’autre part, nous dépassons le cadre de l’évaluation instantanée en développant 

des modèles capables de projeter l’évolution des paramètres critiques, offrant ainsi aux 

gestionnaires un outil d’aide à la décision inédit. Cette double dimension répond aux exigences 

croissantes de résilience et d’adaptabilité des infrastructures hydrauliques face aux changements 

globaux.   

La pertinence de cette recherche s’inscrit également dans le contexte algérien, où les ressources 

en eau conventionnelles subissent une pression accrue. Le dessalement y joue déjà un rôle 

stratégique dans l’approvisionnement des populations côtières, et son importance ne fera que 

croître dans les décennies à venir. En proposant des méthodes innovantes pour optimiser ces 

installations, notre contribution vise autant l’amélioration technique immédiate que la 

préparation aux défis futurs. Les résultats obtenus pourront servir de référence pour d’autres 

stations similaires en Méditerranée, région particulièrement vulnérable aux stress hydriques.   

Ce mémoire se structure en trois parties principales permettant une progression logique de la 

réflexion. La première partie établit le cadre théorique, présentant à la fois les fondamentaux 

technologiques du dessalement et l’état de l’art des applications de l’IA dans ce domaine. La 

seconde partie détaille la méthodologie originale développée pour cette étude, depuis la collecte 

des données jusqu’aux protocoles d’analyse. Enfin, la troisième partie présente et interprète les 

résultats obtenus, ouvrant sur des perspectives concrètes d’amélioration des pratiques 

industrielles. Cette architecture reflète la démarche scientifique rigoureuse qui sous-tend 

l’ensemble de notre travail.   

Au-delà de son apport académique, cette recherche entend donc proposer des solutions 

opérationnelles aux défis contemporains du dessalement. En démontrant la valeur ajoutée des 

approches numériques avancées dans la gestion quotidienne des usines, nous souhaitons 

contribuer à la transition vers une gestion plus intelligente et durable des ressources en eau. La 

crise hydrique annoncée par les experts nécessite en effet des réponses innovantes, où la 

technologie sert non seulement à produire plus d’eau, mais surtout à le faire de manière plus 

efficace et respectueuse de l’environnement. C’est cette ambition que porte fondamentalement 

notre travail.  
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Chapitre I : Généralités sur le dessalement de l’eau de mer 

I.1. Introduction  

Le dessalement de l’eau, également connu sous le nom de désalinisation, est un processus qui 

permet de transformer l’eau salée ou saumâtre en eau douce potable. Cette technique est devenue 

incontournable dans de nombreuses régions du monde confrontées à une pénurie d’eau douce, 

notamment en raison de la croissance démographique, de l’urbanisation accélérée et des 

changements climatiques. En effet, bien que l’eau couvre environ 70 % de la surface terrestre, 

près de 97 % de cette eau est salée, et seule une faible part de l’eau douce est directement 

accessible pour les besoins humains Elimelech & Phillip (2011). 

Face à cette situation critique, le dessalement s’impose comme une alternative stratégique pour 

répondre à la demande croissante en eau, en particulier dans les zones arides et côtières. 

Toutefois, malgré son utilité indéniable, cette technologie n’est pas sans limites. Elle soulève des 

enjeux environnementaux comme le rejet de saumures et énergétiques tel que la consommation 

élevée d’électricité, ce qui rend sa mise en œuvre complexe et sa durabilité sujette à débat. 

La problématique de ce travail s’inscrit dans ce contexte : comment évaluer la qualité de l’eau 

produite par une station de dessalement et dans quelle mesure cette eau répond-elle aux normes 

internationales de potabilité, notamment celles de l’OMS. Pour y répondre, ce mémoire propose 

une analyse des données issues d’une station de dessalement, à l’aide du langage Python, afin de 

comparer les résultats obtenus aux normes de qualité de l’eau fixées par l’Organisation mondiale 

de la santé (OMS). 

Dans ce chapitre, nous commencerons par une revue de la littérature consacrée aux principales 

approches et technologies de dessalement utilisées dans le monde, en mettant en évidence les 

travaux récents dans ce domaine. Ensuite, nous présenterons des généralités sur le dessalement 

de l’eau de mer, en abordant les définitions clés, les procédés techniques les plus courants, ainsi 

que les avantages, les inconvénients et les principaux défis associés à cette solution. 

I.2. Revue de la littérature 

La présente revue de la littérature a pour objectif de fournir un état des connaissances actuel sur 

le dessalement de l’eau, en mettant en lumière les principales technologies, avancées 

scientifiques, ainsi que les défis et limitations rencontrés dans ce domaine. Cette vision critique 

permettra de situer le contexte de notre étude, d’identifier les lacunes à combler, et de justifier 
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l’approche méthodologique adoptée pour l’analyse des données issues de la station de 

dessalement. 

I.2.1. Historique du dessalement 

Le dessalement, ou désalinisation, est une technique utilisée depuis plusieurs siècles, bien que 

ses formes modernes soient relativement récentes. Les premières pratiques documentées 

remontent à l’Antiquité, où des méthodes simples de distillation étaient employées pour obtenir 

de l’eau douce à partir de l’eau de mer, notamment lors des voyages en mer. 

Le développement industriel du dessalement a réellement commencé au 20ᵉ siècle, avec la mise 

en place des premières usines commerciales dans les années 1950 et 1960, principalement dans 

les pays du Moyen-Orient, confrontés à un manque criant d’eau douce. Depuis, les technologies 

se sont considérablement améliorées, avec des avancées majeures dans les procédés thermiques 

et membranaires, permettant une production d’eau potable plus efficace et à plus grande échelle. 

I.2.2. Principales technologies de dessalement 

Le dessalement de l’eau de mer s’appuie principalement sur deux grandes familles de 

technologies : les procédés thermiques et les procédés membranaires. Chaque catégorie présente 

ses propres mécanismes, avantages et contraintes. 

I.2.2.1. Procédés thermiques 

Les procédés thermiques reposent sur la vaporisation de l’eau salée suivie de la condensation de 

la vapeur pour obtenir de l’eau douce. Les plus courants sont : 

 Distillation multi-étages : L’eau salée est chauffée puis évaporée en plusieurs étapes 

successives à différentes pressions, ce qui permet d’économiser de l’énergie. La vapeur est 

ensuite condensée pour récupérer l’eau douce. 

 Distillation à effet multiple : Ce procédé utilise une série de réservoirs (effets) où la vapeur 

générée dans un effet sert à chauffer le suivant, optimisant ainsi la consommation énergétique. 

 Vaporisation thermique sous vide : Technique plus avancée qui récupère la vapeur et la 

compresse pour réutilisation dans le processus, améliorant ainsi l’efficacité énergétique. 

Les procédés thermiques sont robustes et adaptés aux grandes capacités, mais ils consomment 

généralement beaucoup d’énergie thermique, souvent fournie par des sources fossiles. 
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I.2.2.2. Procédés membranaires 

Les procédés membranaires utilisent une membrane semi-perméable pour séparer l’eau douce 

des sels dissous sous l’effet d’une pression appliquée. Les plus répandus sont : 

 Osmose inverse : C’est la technique la plus utilisée actuellement dans le monde. L’eau salée 

est forcée à travers une membrane qui bloque les sels et laisse passer l’eau douce. Ce procédé 

est plus économe en énergie que les procédés thermiques et peut être adapté à différentes 

capacités. 

 Électrodialyse : Utilise un champ électrique pour déplacer les ions à travers des membranes 

échangeuses d’ions, séparant ainsi l’eau salée de l’eau douce. 

 Nano filtration : Similaire à l’osmose inverse, mais avec des membranes moins fines, utilisée 

notamment pour la réduction partielle de la salinité. 

Les procédés membranaires nécessitent un prétraitement rigoureux de l’eau pour éviter 

l’encrassement des membranes, ce qui représente un défi opérationnel. 

I.2.3. Avancées scientifiques et défis techniques du dessalement de l’eau 

La pénurie d’eau douce constitue aujourd’hui l’un des défis majeurs pour l’humanité. Cette crise 

est principalement due à la croissance démographique rapide, à l’industrialisation accrue et aux 

effets du changement climatique, qui contribuent à la dégradation et à l’épuisement des 

ressources hydriques traditionnelles (Ekwateur, 2025). Face à cette situation critique, le 

dessalement de l’eau de mer et des eaux saumâtres s’impose comme une solution prometteuse 

pour répondre à la demande croissante en eau potable. Toutefois, les technologies actuelles 

présentent encore des limitations en matière de consommation énergétique, de coûts élevés et 

d’impacts environnementaux, justifiant ainsi le besoin d’innovations continues. 

Les efforts de recherche récents se concentrent sur l’amélioration de la performance des 

procédés, la réduction de la consommation énergétique et la diminution des impacts 

environnementaux. L’optimisation énergétique est au cœur de ces innovations, notamment à 

travers l’utilisation de systèmes hybrides combinant des procédés thermiques comme la 

distillation multi-effets (MED) et membranaires comme l’osmose inverse (OI), ainsi que 

l’intégration des énergies renouvelables (solaire, éolien). 

Par exemple, l’étude d’Adda et al. (2016) sur un système de dessalement par OI en Algérie a 

montré qu’un échangeur de pression permet de réduire la consommation spécifique d’énergie à 

environ 2,17–2,27 kWh/m³. En parallèle, Pietrasanta et al. (2023) soulignent, à travers une 



Généralités sur le dessalement de l’eau de mer 

13 
 

analyse bibliométrique, le développement croissant des systèmes de dessalement alimentés par 

des énergies renouvelables, contribuant à diminuer l’empreinte carbone. 

L’intégration des technologies avancées, telles que l’intelligence artificielle (IA) et les 

nanotechnologies, représente un tournant dans le domaine. L’IA, notamment via l’apprentissage 

automatique et les réseaux de neurones, permet d’optimiser les paramètres de fonctionnement 

des usines de dessalement en temps réel, améliorant ainsi leur efficacité et réduisant les coûts 

énergétiques (GWT, 2024 ; Mahadeva et al., 2023). 

Bissonnette (2008) a démontré que l'association entre IA et nano membranes peut augmenter le 

taux de récupération d’eau de 70 % à plus de 85 %, réduire l’encrassement des membranes de 

40%, et prolonger leur durée de vie de 20 à 30 %. Ces systèmes permettent une maintenance 

prédictive, réduisant les interruptions et les coûts. Les membranes avancées, telles que celles à 

base d’oxyde de graphène ou de nanotubes de carbone, présentent également une perméabilité 

élevée et une excellente sélectivité. Naskar et al. (2020) ont montré que les membranes en 

nanotubes de phénine assurent un rejet complet des sels tout en maintenant un débit élevé. 

Néanmoins, ces membranes restent sensibles à l’encrassement, un problème que l’IA permet 

d’atténuer par une surveillance intelligente. 

Un enjeu environnemental majeur du dessalement est la gestion des rejets de saumure, souvent 

déversés en mer. Ceux-ci peuvent impacter durablement la faune et la flore marines, comme 

l’ont souligné Filali & Bessenasse (2014) et Elimelech (2011). Des solutions innovantes ont été 

proposées. Bouazza (2024) recommande la valorisation des saumures dans une optique de zéro 

rejet liquide (ZLD). Chen et Ng (2023) ont conçu une combinaison de MED, compression 

thermique de vapeur (TVC) et cristallisation évaporative pour produire de l’eau douce tout en 

récupérant des sels commercialisables. De leur côté, Aljundi et al. (2024) et Zuo et al. (2022) ont 

testé des systèmes intégrant distillation membranaire et cristallisation, montrant leur efficacité 

pour transformer les saumures en solides exploitables. 

L’Algérie, fortement touchée par les sécheresses et la raréfaction des ressources 

conventionnelles, a fait du dessalement une priorité stratégique, en particulier pour les zones 

côtières (Merdas & Kardoud, 2017). Des unités performantes ont été installées à Honaine, Ténès 

et Ain Bénain, illustrant la viabilité technique et économique de ces projets. 
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Avec une population côtière appelée à doubler d’ici 2040, la pression sur l’eau augmente. Les 

conditions méditerranéennes (salinité modérée, température relativement basse) sont favorables 

au dessalement par OI, qui y atteint un coût compétitif inférieur à 0,5 €/m³ (Kettab & 

Bessenasse, 2005). L’INRIA (2024) souligne également les progrès permis par l’IA et les 

nanotechnologies dans la surveillance en temps réel et la gestion décentralisée, notamment dans 

les régions isolées. 

Malgré les avancées technologiques dans le domaine du dessalement, plusieurs contraintes 

persistent. La consommation énergétique demeure élevée, notamment pour l’osmose inverse 

(OI), qui nécessite entre 2,5 et 3 kWh/m³, représentant jusqu’à 50 % du coût total de production 

(IFRI, 2021 ; Adda et al., 2016). À cela s’ajoutent des coûts d’investissement et de maintenance 

importants, qui limitent l’adoption de cette technologie dans les pays disposant de faibles 

ressources économiques. Par ailleurs, la qualité de l’eau produite doit répondre à des normes 

strictes, comme celles établies par la directive européenne 2020/2184. Enfin, des obstacles liés à 

la réglementation et à l’acceptabilité sociale peuvent freiner le déploiement de projets de 

dessalement. Pour y remédier, une planification rigoureuse, la formation des acteurs locaux et 

une régulation environnementale stricte sont essentielles. 

Le dessalement s’impose comme une réponse stratégique à la pénurie d’eau, en particulier dans 

les zones arides et côtières. Les progrès technologiques, notamment l’intégration de l’IA, des 

énergies renouvelables et des nanotechnologies, permettent d’améliorer l’efficacité, de réduire 

les coûts et de minimiser l’impact environnemental. Toutefois, pour garantir un développement 

durable de cette filière, il est crucial de relever les défis techniques, économiques, sociaux et 

environnementaux. Une approche intégrée, conjuguant innovation, régulation et participation des 

parties prenantes, permettra d’inscrire le dessalement dans une gestion durable des ressources en 

eau. 

I.2.4. Avantages et inconvénients des différentes techniques 

Le dessalement de l’eau de mer, en particulier par osmose inverse (OI), offre une solution 

efficace pour répondre à la pénurie d’eau dans les régions arides et côtières. Cette technologie 

permet la production d’une eau potable de qualité à partir d’une ressource abondante, en 

garantissant un haut taux de réjection des sels et des contaminants. Toutefois, malgré ces 

avancées, plusieurs contraintes subsistent. La consommation énergétique reste élevée, 

notamment pour l’OI, qui nécessite entre 2,5 et 3 kWh/m³, représentant jusqu’à 50 % du coût 

total de production (IFRI, 2021 ; Adda et al., 2016). À cela s’ajoutent des coûts d’investissement 
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et de maintenance importants, freinant l’adoption de cette technologie dans les pays à faibles 

ressources économiques. En outre, la qualité de l’eau produite doit répondre à des normes 

strictes, telles que la directive européenne 2020/2184, pour garantir sa potabilité. Par ailleurs, les 

projets de dessalement peuvent susciter des résistances d’ordre réglementaire ou social. Une 

planification rigoureuse, la formation des acteurs locaux et la mise en place d’une régulation 

environnementale stricte sont ainsi nécessaires pour assurer leur acceptabilité et leur durabilité. 

I.3. Généralités sur le dessalement de l’eau de mer 

Le processus de dessalement d’eau de mer se fait en quatre étapes :  

1. Le captage d’eau de mer. 

2. Le prétraitement. 

3. Les différents procédés de dessalement. 

4. Le post-traitement ou minéralisation.  

I.3.1. Captage d’eau de mer  

Un système de captage d'eau marine est une installation qui puise l'eau de mer pour différentes 

applications. Elle est employée dans des procédés comme la désalinisation, afin de transformer 

l'eau salée en eau destinée à la consommation. El-Dessouky et al. (2002) 

I.3.2. Le prétraitement  

Le processus de prétraitement est une étape qui consiste à retirer les particules, débris, micro-

organismes, solides en suspension et limon de l'eau de mer avant qu’elle ne soit dirigée vers 

l'étape de séparation par osmose inverse, garantissant ainsi un fonctionnement sûr et rentable. 

Greenlee et al. (2009). 

 

Figure I. 1. Schéma représentatif d’une station de dessalement 
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I.3.2.1. Les étapes clés du prétraitement 

1. Criblage et Filtrage : Le criblage consiste en l’élimination des déchets flottants et des 

particules grossières, tandis que la filtration consiste à l’utilisation de filtres à sable ou à 

cartouche pour éliminer les particules en suspension.  

2. Coagulation et Floculation : Coagulation : Ajout d’agents coagulants pour agglomérer les 

particules fines ; Floculation : Formation de flocs plus gros qui peuvent être facilement 

éliminés par décantation ou filtration. 

3. Flottation à Air Dissous : Utilisée pour éliminer les matières organiques et les particules en 

suspension en faisant flotter les contaminants à la surface. 

4. Ultra filtration (UF) : Utilisation de membranes pour éliminer les particules et les micro-

organismes restants. 

5. Chloration et Déchloration : Chloration : Désinfection pour éliminer les micro-organismes ; 

Déchloration : Élimination du chlore en excès pour éviter la corrosion des membranes. 

6. Dosage d’Antitartre : Ajout de produits tel que (L’acide phosphonique, acide sulfamique, 

acide critique et les polymères) pour prévenir la formation de tartre sur les membranes de 

dessalement. 

7. Ajustement du PH : Ajustement du PH pour optimiser les conditions de traitement et 

protéger les membranes. À l’échelle industrielle, on utilise généralement des acides et des 

bases forts pour faire ajuster le PH. Voici quelques exemples de produits chimiques acides et 

basiques utilisés à l’échelle industrielle : 

 Acides : Acides sulfurique (H2SO4), Acides chlorhydrique (HCL), Acide nitrique 

(HNO3). 

 Bases : Hydroxydes de sodium (NaOH) ; Hydroxydes de potassium (KOH) ; Ammoniaque 

(NH3). 

I.3.3. Les différents procédés du dessalement d’eau de mer  

On identifie deux types de technologies contemporaines pour le dessalement de l'eau : la 

congélation et la distillation d'un côté, et l'osmose inverse et l'électrodialyse de l'autre côté.  Ces 

deux méthodes ont prouvé leur efficacité dans le dessalement, les classant parmi les plus 

couramment utilisées à l'échelle mondiale.  Les étapes de dessalement englobent quatre phases : 

l'obtention de l'eau via une pompe et un filtre, le prétraitement impliquant une filtration plus fine, 

l'ajout de biocides et d'agents anticalcaire, la phase de dessalement proprement dite, suivie d'un 

éventuel post-traitement qui inclut la reminéralisation de l'eau obtenue. Al-Karaghouli & 

Kazmerski (2013) 
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I.3.3.1 Le procédé de l’osmose inverse 

L’osmose inverse est un procédé de dessalement utilisant des membranes semi-perméables sous 

haute pression (54 à 80 bars) pour séparer l’eau des sels dissous, sans changement d’état et à 

température ambiante (Fritzmann et al., 2007). L’eau douce obtenue contient environ 0,5 g/l de 

sels. Ce procédé nécessite principalement de l’électricité pour alimenter les pompes à haute 

pression. Un prétraitement soigné (filtration, biocide, acidification) est indispensable pour éviter 

le colmatage des membranes. La polarisation de concentration près de la membrane augmente 

localement la pression osmotique, favorisant la précipitation de sels peu solubles. Pour y 

remédier, une filtration tangentielle avec récupération d’énergie est utilisée, maintenant un flux 

turbulent qui réduit l’encrassement et améliore le rendement du système (Wenten & Khoiruddin, 

2016). 

 

  Figure I. 2. Osmose et osmose inverse 

I.3.3.2. Le procédé de la distillation  

Le dessalement thermique repose sur le principe de la distillation, qui consiste à chauffer l’eau de 

mer pour en évaporer une partie, puis à condenser la vapeur obtenue pour produire de l’eau 

douce, en reproduisant de manière accélérée le cycle naturel de l’eau (Darwish et al., 2015). 

Parmi les techniques les plus utilisées, la distillation flash à multiples étages (MSF) chauffe l’eau 

jusqu’à 120 °C, puis la détend brusquement dans des chambres à pression décroissante, 

provoquant une vaporisation instantanée. La vapeur se condense sur des tubes froids, tandis que 

l’eau résiduelle passe d’un étage à l’autre, avec récupération de chaleur à chaque phase (El-

Dessouky & Ettouney, 2000). Cette méthode limite l’entartrage, fonctionne avec de la vapeur 

basse pression, mais nécessite une source thermique stable. Le procédé à effets multiples (MED), 

quant à lui, fonctionne à des températures plus basses (70–80 °C) sous pression réduite, avec un 

enchaînement d’évaporations-condensations en cascade sur des surfaces chauffées. Il existe 
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plusieurs variantes, comme les évaporateurs à tubes arrosés ou les systèmes compacts de type 

Easy MED, en cours de développement (Christ et al., 2018). Bien que plus économe en énergie, 

le MED nécessite un contrôle strict pour éviter les dépôts de sels (Ca SO₄, Ca CO₃) liés à 

l’élévation de température. 

I.3.4. Avantages et inconvénients de la distillation 

 Avantages : Fonctionne indépendamment de la qualité de l’eau brute, adaptée aux 

grandes capacités, facile à exploiter, produit une eau à faible TDS. (Ghaffour et al., 2013) 

 Inconvénients : Faible taux de conversion (< 35 %), forte consommation d’énergie (8 à 

25 kW/m³), manque de flexibilité, coût initial élevé. (Zhou & Tol, 2005) 

I.3.5. Avantages et inconvénients de l’osmose inverse 

 Avantages : Taux de conversion élevé ( > 55 %), faible consommation énergétique (3 à 

5 kW/m³), coût d’investissement réduit, installation rapide. (Greenlee et al., 2009) 

 Inconvénients : Sensible à la qualité de l’eau brute, nécessite du personnel qualifié, 

prétraitement complexe, coût de maintenance élevé (renouvellement des membranes tous 

les 7 ans). (Moulin, 2012) 

I.3.6. L’impact environnemental du dessalement des eaux de mer  

Le dessalement de l’eau de mer engendre deux principaux impacts environnementaux négatifs : 

 L’atteinte à la vie marine due au rejet inapproprié de la saumure, un résidu très salé 

pouvant atteindre deux fois la salinité de l’eau de mer. 

 La forte consommation d’énergie, qui contribue au changement climatique. 

Environ 50 % de l’eau traitée devient potable, tandis que le reste constitue une saumure 

concentrée. Bien que sa valorisation par évaporation ou cristallisation soit possible pour produire 

des sels industriels ou alimentaires, ces solutions restent peu répandues. La majeure partie de la 

saumure est rejetée en mer après un traitement minimal. Ainsi, le développement de technologies 

permettant la récupération efficace des sels est essentielle pour réduire l’impact environnemental 

du dessalement tout en assurant sa viabilité économique (Rakib et al. 2021). 
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Figure I. 3. La technologie du dessalement hybride 

I.3.7. Les problèmes techniques du dessalement 

Le processus de dessalement rencontre plusieurs problèmes techniques majeurs : 

 Entartrage : Dépôt de sels minéraux (carbonate et sulfate de calcium) sur les membranes 

ou échangeurs de chaleur, réduisant le débit d’eau et augmentant les coûts de 

maintenance (Lénat & Magnin, 2020). 

 Colmatage : Accumulation de particules, colloïdes ou micro-organismes sur les 

membranes, nécessitant des nettoyages fréquents et des désinfections (Hilal & Ogunbiyi, 

2017). 

 Corrosion : Dégradation des équipements due à l’eau salée, souvent aggravée par 

l’entartrage (Keddam & Takenouti, 2019). 

 Encrassement biologique : Développement de micro-organismes sur les surfaces, 

demandant des traitements biocides adaptés. 

 Maintenance fréquente : Entretien régulier indispensable pour assurer la continuité de la 

production (nettoyage, contrôle des pièces, etc.). 

 Forte consommation énergétique : Le dessalement reste énergivore, impactant les coûts 

et les émissions de gaz à effet de serre. 

I.3.8. Solutions techniques proposées 

Pour limiter ces problèmes, plusieurs solutions techniques peuvent être appliquées : 

 Prétraitement de l’eau pour limiter le colmatage et l’entartrage. 

 Utilisation d’antitartres chimiques. 

 Matériaux résistants à la corrosion pour prolonger la durée de vie des installations. 
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 Optimisation énergétique par des procédés plus efficaces (osmose inverse optimisée). 

 Maintenance préventive (inspection et nettoyage réguliers) pour réduire les pannes. 

 

  

Figure I. 4. Effets du colmatage et de la corrosion sur les membranes de dessalement 

I.3.9. Le dessalement en Algérie  

Le dessalement de l’eau de mer est devenu une solution curiale pour répondre aux 

besoins croissants en eau potable en Algérie, face à la raréfaction des ressources hydriques 

traditionnelles. L’Algérie a lancé plusieurs initiatives majeures dans ce domaine.                               

Actuellement, le pays a engagé la construction de cinq nouvelles stations de dessalement dans les 

wilayas d’El Tarf, Béjaïa, Boumerdès, Tipaza et Oran. Ces projets visent à augmenter 

significativement la production d’eau potable et à réduire la dépendance aux eaux superficielles, 

qui sont souvent sujettes à des variations climatiques. À long terme, l’Algérie prévoit d’atteindre 

un objectif ambitieux : d’ici 2030, elle souhaite que 60% de ses besoins nationaux en eau potable 

soient couverts par le dessalement, ce qui positionnerait le pays comme un leader régional dans 

ce domaine. MRE (2022) 

I.3.10. Caractéristiques de la qualité de l’eau dessalée 

I.3.10.1. Caractéristiques physico-chimiques 

 Salinité (conductivité) : La salinité désigne la quantité de sels dissous dans un volume 

d’eau. Lorsqu’elle est à l’état liquide, l’eau contient des sels minéraux issus 

principalement de l’érosion des roches par le ruissellement et les eaux souterraines. Ces 

sels s’accumulent ensuite dans les bassins versants Tessier (2021).  

 Le pH (potentiel hydrogène) : Mesure l’acidité ou l’alcalinité de l’eau. Il influence la 

disponibilité des nutriments et la toxicité des métaux lourds. L’eau de mer a un pH 

moyen de 8,2, donc légèrement basique. Un pH faible nuit à la reproduction et à la 



Généralités sur le dessalement de l’eau de mer 

21 
 

formation des coquilles chez plusieurs espèces marines. Le pH varie selon la géographie, 

la profondeur et l’activité biologique (photosynthèse/respiration). Depuis les années 

1700, une baisse du pH est observée, causée par l’absorption du CO₂, entraînant 

l’acidification des océans. Cela affecte particulièrement les coquillages, coraux, plancton, 

oursins et poissons. Gattuso& Hansson (2011) 

 La dureté de l’eau : Correspond à la concentration en ions calcium et magnésium, 

exprimée en degrés français (°F). Un degré français équivaut à 4 mg/l de calcium, 2,43 

mg/l de magnésium ou 10 mg/l de calcaire (CaCO₃). Par exemple, une eau de 20 °F 

contient environ 200 mg/l de calcaire. Cette dureté résulte de l’interaction entre les 

minéraux dissous et le dioxyde de carbone présent dans l’air (Rodier et al., 2016). 

 Les métaux lourds, définis par une masse volumique supérieure à 5 g/cm³, incluent le 

mercure, le plomb, le cadmium, le cuivre, l’arsenic, etc. Bien que certains soient 

essentiels à l’organisme, tous peuvent devenir toxiques à forte concentration, selon leur 

forme chimique (spéciation). Les plus dangereux sont le plomb, le cadmium et le 

mercure. Leur détection repose sur des analyses normalisées incluant une phase de 

minéralisation suivie de mesures par ICP-MS, AES ou SFA, selon le type d’échantillon et 

les seuils à atteindre (Boudène, 2019). 

I.3.10.2. Paramètres bactériologique 

Les paramètres bactériologiques essentiels pour évaluer la qualité de l’eau incluent les 

coliformes totaux, indicateurs généraux de contamination environnementale, et les coliformes 

fécaux (ou thermotolérants), principalement Escherichia coli, qui signalent une pollution 

d’origine fécale. Les entérocoques complètent ces indicateurs en détectant les contaminations 

fécales plus résistantes, tandis que Clostridium perfringens indique une pollution ancienne ou 

intermittente. Ces bactéries servent à contrôler la sécurité sanitaire de l’eau et l’efficacité des 

traitements.  

I.3.10.3. Autres paramètres 

Les paramètres chimiques importants dans l’eau incluent la concentration en fluorure, un 

élément conservatif dont la teneur varie avec la salinité mais dont le rapport fluorure/chlorure 

reste constant (Warner et al., 1975 ; Truchot, 2016). En eau de mer, le fluorure est autour de 1,3 

mg/L, alors que dans les rivières, il est généralement faible (0,1 à 0,2 mg/L). L’arsenic, présent 

naturellement et via des sources anthropiques, est crucial en milieu marin, s’accumulant dans les 

sédiments et organismes, mais pose des risques toxiques (Migon, 2015). Enfin, les nitrates et 
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nitrites, composés azotés avec des structures moléculaires différentes, jouent des rôles clés dans 

les processus biologiques et environnementaux (Santonja, 2020). 

I.3.11. Normes de potabilité d’une eau de mer après traitement 

Les normes de potabilité de l’eau varient selon les réglementations nationales, mais celles 

définies par l’Organisation mondiale de la santé (OMS) constituent une référence internationale 

largement reconnue. Ces normes fixent des limites précises pour la salinité totale ainsi que pour 

la concentration des différents sels et contaminants dans l’eau destinée à la consommation 

humaine après traitement. Pour plus de détails et les valeurs spécifiques des seuils admissibles, 

se référer à l’annexe 1 où sont présentées les normes complètes de l’OMS (Organisation 

mondiale de la santé, 2008).  

I.3.12. Conclusion 

Le dessalement de l’eau de mer représente une solution essentielle pour répondre aux besoins 

croissants en eau potable, notamment dans les régions arides ou à ressources hydriques limitées. 

Ce procédé complexe nécessite une compréhension approfondie des paramètres physico-

chimiques et microbiologiques de l’eau, ainsi que des défis techniques comme le colmatage des 

membranes et la corrosion. La maîtrise de ces aspects, associée au respect des normes de 

potabilité, est cruciale pour garantir une eau traitée de qualité et sûre pour la consommation. Le 

développement des technologies, notamment l’intégration de l’intelligence artificielle, ouvre de 

nouvelles perspectives pour optimiser la gestion et la surveillance des stations de dessalement. 
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Chapitre II. L’intelligence artificielle appliquée à la gestion de la qualité de 

l’eau en station de dessalement 

II.1. Introduction  

L’intelligence artificielle (IA) est un domaine de l’informatique qui vise à créer des systèmes 

capables de simuler l’intelligence humaine, en effectuant des tâches telles que l’apprentissage, le 

raisonnement, la résolution de problèmes et la prise de décision. Apparue dans les années 1950, 

elle a considérablement évolué au fil des ans, passant de modèles simples à des systèmes 

complexes basés sur l’apprentissage automatique et le traitement de données massives. 

L’IA joue un rôle crucial dans la vie quotidienne, notamment dans les moteurs de recherche, les 

systèmes de recommandation, les véhicules autonomes, les assistants numériques personnels, la 

santé et les transports. Elle est devenue un moteur d’innovation dans de nombreux secteurs. 

Dans le domaine de la gestion de l’eau, l’IA est particulièrement utile pour optimiser les 

processus de traitement et de dessalement des eaux de mer. Par exemple, elle peut être utilisée 

pour prédire la qualité de l’eau en sortie des usines de dessalement, en analysant les données 

environnementales et opérationnelles pour ajuster les paramètres de traitement en temps réel. De 

plus, l’IA aide à détecter les anomalies dans les systèmes de traitement, ce qui permet de réduire 

les interruptions non planifiées et d’améliorer l’efficacité globale des installations. Enfin, elle 

contribue à la surveillance et à la gestion durable des ressources marines, en analysant les 

données environnementales pour prévenir la pollution et protéger la biodiversité marine. 

II.2. Différents types d’IA 

Il existe trois niveaux d’intelligence artificielle, ils sont donnés comme suit :  

II.2.1. Intelligence Artificielle faible 

L’IA faible est une forme d’intelligence artificielle non-sensible qui peut uniquement réaliser les 

tâches pour lesquelles elle a été programmée.  Aujourd’hui, les technologies qui incorporent de 

l’IA sont restreintes à cette application. Les machines réactives et à mémoire limitée représentent 

une forme d’IA faible.  Elles possèdent une aptitude d’apprentissage qui leur permet d’améliorer 

leurs performances en s’appuyant sur les données fournies par l’homme et ses propres résultats 

(apprentissage automatique).  Cependant, cela ne signifie pas qu’elles peuvent décider seules sur 

des questions pour lesquelles elles ne sont pas conçues. Pitrat (2016) 
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II.2.2. L’intelligence Artificielle forte  

L’intelligence artificielle générale, aussi appelée IA forte, est une forme d’intelligence artificielle 

que les chercheurs espèrent développer un jour. Contrairement aux systèmes actuels, elle serait 

capable de comprendre, apprendre et s’adapter à différentes situations, même si elles ne faisaient 

pas partie de sa programmation d’origine. Elle irait donc au-delà du deep learning, qui se limite à 

résoudre des tâches précises grâce aux réseaux de neurones. L’IA forte pourrait prendre des 

décisions de manière autonome, sans pour autant être consciente. Bourgine & Varenne (2021) 

II.2.3. La super intelligence artificielle 

La super intelligence artificielle est une forme hypothétique d’IA, encore inexistante à ce jour. 

Elle représente le niveau le plus avancé que l’IA pourrait atteindre. Cette intelligence aurait une 

conscience d’elle-même et dépasserait largement les capacités intellectuelles humaines, en étant 

capable de penser, de raisonner et de formuler ses propres objectifs. Toutefois, atteindre ce 

niveau pourrait prendre de nombreuses années, voire ne jamais se réaliser. Bostrom (2017) 

I.3. Techniques d’apprentissage automatique   

On distingue essentiellement quatre catégories d’algorithmes d’apprentissage automatique : 

supervisé, semi-supervisé, non supervisé et renforcé.  Selon les spécialistes du machine 

Learning, près de 70 % des algorithmes de machine Learning actuellement en usage sont 

supervisés.  Ils opèrent sur des jeux de données identifiés ou labellisés. Par d’exemple, des 

phrases traduites en différentes langues, où chaque phrase est étiquetée avec sa langue d’origine. 

Hastie et al. (2021) 

II.3.1. Apprentissage automatique supervisé  

L’apprentissage supervisé utilise des ensembles de données étiquetées, c’est-à-dire déjà 

classées et identifiées, pour détecter des motifs et établir des relations entre les données d’entrée 

et les résultats attendus. Par exemple, on peut fournir à l’algorithme une grande base de données 

contenant différents types d’informations, chaque élément étant associé à une catégorie ou une 

valeur cible. L’algorithme apprend alors à faire correspondre les entrées avec les bonnes sorties, 

ce qui lui permet ensuite de prédire correctement les résultats pour de nouvelles données 

similaires. 

II.3.2. Apprentissage automatique non supervisé  

Les algorithmes d’apprentissage automatique non supervisés apprennent sans avoir 

besoin de données déjà classées. Par exemple, dans le cas des courriels, au lieu de leur dire à 

l’avance quels messages sont des spams, on leur fournit simplement un grand nombre de 
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courriels non triés. L’algorithme analyse alors ces messages et cherche lui-même des 

ressemblances ou des motifs répétitifs. En repérant ces motifs, il devient capable de reconnaître 

peu à peu les spams, même sans qu’on lui ait donné des exemples précis au départ. 

II.3.3. Apprentissage automatique semi-supervisé  

Les algorithmes de machine Learning semi-supervisé sont d’abord formés à partir d’un petit 

ensemble de données connues et labellisées.  On les applique par la suite à un lot plus élargi de 

données non labellisées afin de poursuivre leur apprentissage. 

II.3.4. Apprentissage automatique renforcé  

Les algorithmes d’apprentissage par renforcement sont des méthodes d’apprentissage 

automatique dans lesquelles un agent apprend à prendre des décisions en interagissant avec son 

environnement. Contrairement à l’apprentissage supervisé, ils ne reçoivent pas d’exemples 

préalablement étiquetés, mais apprennent par essais et erreurs, recevant des récompenses ou des 

pénalités selon leurs actions. Ce processus permet à l’agent d’adapter progressivement son 

comportement afin d’optimiser une fonction de récompense cumulative. 

II.4. Les algorithmes d’apprentissage automatique 

L’apprentissage automatique repose sur l’analyse de données pour extraire des connaissances et 

apprendre. Pour ce faire, il est essentiel de concevoir des algorithmes capables d’identifier et 

d’extraire des données statistiquement pertinentes. Ces algorithmes peuvent fonctionner selon 

différentes approches : supervisée, non supervisée ou par renforcement. Les ingénieurs en 

données développent des codes informatiques qui forment la base de ces algorithmes, permettant 

ainsi aux machines d’apprendre ou de détecter des motifs dans les données. Parmi les 

algorithmes les plus couramment utilisés, on trouve notamment : 

 La régression linéaire, qui établit une relation entre variables indépendantes et dépendantes en 

représentant graphiquement les données et en traçant une droite correspondant à la tendance 

moyenne. La régression, définie comme une fonction estimant la valeur moyenne d’une 

variable aléatoire en fonction de variables indépendantes données, est également applicable à 

la régression logistique (Lourme, 2022). 

 La régression logistique, ou modèle logit, ressemble à la régression linéaire dans la façon dont 

elle représente les variables sur un graphique, mais la relation entre elles n’est pas linéaire. Au 

lieu de cela, elle utilise une fonction sigmoïde pour modéliser cette relation. 
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Figure II. 1. Exemple d’une régression linéaire Et une régression logistique 

 L’arbre de décision est un algorithme largement répandu dans le domaine de l’apprentissage 

automatique supervisé. Elle est employée afin de trier les données en fonction de variables 

catégorielles et continues. 

 Une machine à vecteurs de support (SVM) crée une frontière appelée hyperplan pour séparer 

les données en fonction des deux points les plus proches appartenant à des classes différentes. 

Cette séparation se fait dans un espace à n dimensions, où n correspond au nombre de 

caractéristiques ou de variables utilisées pour décrire les données. 

  

Figure II. 2. Techniques de classification : Arbre de décision et hyperplan SVM 

II.5. Les domaines d’application de l’intelligence artificielle  

L’intelligence artificielle s’applique dans plusieurs domaines tels que :  

 Dans la santé : Selon les chercheurs scientifiques la valeur du marché de l’IA dans le secteur 

de la santé devrait grimper à 45 milliards de dollars d’ici 2026, comparativement à 4,9 

milliards en 2020. C’est un domaine crucial dans lequel s’implanter pour renforcer son 

avantage compétitif. 

 Dans le finance : L’automatisation des tâches par l’IA a également des effets bénéfiques dans 

le domaine financier 

 Gestion de l’énergie : L’intelligence artificielle prévoit la consommation d’énergie en 

fonction des heures et de la saison, identifie les pannes et minimise les pertes.  
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 Gestion de l’environnement : L’intelligence artificielle analyse les données climatiques 

satellitaires afin d’anticiper les menaces environnementales ou les désastres climatiques.   

II.6. Impact social et économique de l’IA  

II.6.1. Impact social 

L’intelligence artificielle soulève de nombreux enjeux sociaux. Elle transforme le marché de 

l’emploi en supprimant certains postes, en en modifiant d’autres, tout en créant de nouvelles 

professions. Elle peut aussi améliorer l’accès à des services essentiels, comme les soins de santé, 

ce qui lui confère un impact social important. Cardon et al. (2022) 

II.6.2. Impact économique  

L’intelligence artificielle influence l’économie en améliorant la productivité, en transformant les 

emplois et en rendant les outils de production plus efficaces. Elle peut contribuer à la croissance 

économique en aidant à produire plus avec moins de ressources. À court terme, elle peut 

provoquer des pertes d’emplois ou des ajustements difficiles, mais à long terme, elle peut créer 

de nouvelles opportunités et booster la croissance. 

II.7. Avantages et inconvénients de l’intelligence artificielle  

L’intelligence artificielle offre de nombreux avantage et inconvénients et qui sont illustré dans le 

tableau suivant : 

Tableau II.  1. Avantages et inconvénients de l’intelligence artificielle. 

Avantages Inconvénients 

La réduction des erreurs Un coût élevé 

Assistants personnels Manque de contrôle et de transparence 

Accès à l’information dans la vie quotidienne Aucune amélioration avec l’expérience 

Le traitement massif des données Risques éthiques et sociétaux 

Innovation et créativité Le chômage 

Améliorer la qualité de vie Pas de créativité humaine 

Aucune pause Aucune initiative 

II.8. Les meilleurs langages pour l’apprentissage automatique  

Les langages de programmation en apprentissage automatique définissent la façon dont les 

instructions sont rédigées pour permettre aux systèmes d’apprendre à partir des données. Chaque 

langage dispose de bibliothèques dédiées et d’une communauté active facilitant l’assistance et le 

partage de ressources. Selon l’étude GitHub Top 10 de 2019, les langages les plus utilisés dans 

ce domaine sont : Python, C
++

, JavaScript, Java, C
#
, Julia, Shell, R, Type Script et Scala, ce 

dernier étant particulièrement adapté aux applications liées au Big Data (Géron, 2022). 
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II.9. Intégration du langage Python dans l’analyse des données de qualité de 

l’eau 

Dans le cadre de cette étude, le langage de programmation Python a été retenu comme outil 

principal pour l’analyse des données issues de la station de dessalement. Créé en 1989 par Guido 

van Rossum, Python est un langage gratuit, interprété et multiplateforme, qui se distingue par sa 

syntaxe simple, sa lisibilité et sa large communauté d’utilisateurs. Aujourd’hui, il figure parmi 

les langages les plus populaires dans les classements scientifiques et technologiques (TIOBE, 

IEEE), notamment en raison de son efficacité en analyse de données, en modélisation et en 

intelligence artificielle. 

L’utilisation de Python dans ce travail repose sur plusieurs atouts majeurs : 

 Sa richesse en bibliothèques spécialisées telles que pandas, numpy, matplotlib, scikit-

learn et seaborn, qui permettent de manipuler, visualiser et modéliser les données 

environnementales avec rigueur. 

 Sa capacité à intégrer facilement des outils d’intelligence artificielle et d’apprentissage 

automatique, facilitant la détection de tendances, d’anomalies ou de dépassements de seuils dans 

les paramètres de qualité de l’eau. 

 Sa compatibilité avec de nombreuses plateformes (Windows, Linux, MacOS), ce qui le 

rend accessible quel que soit l’environnement de travail du chercheur. 

Concrètement, dans ce mémoire, Python est utilisé pour analyser des données mesurées au 

niveau de la station de dessalement (conductivité, pH, turbidité, salinité, etc.), et les comparer 

aux valeurs guides fixées par l’Organisation Mondiale de la Santé (OMS). Cette démarche 

permet non seulement de vérifier la conformité de la qualité de l’eau produite, mais aussi de 

proposer des pistes d’amélioration ou de contrôle, dans une perspective de durabilité et de santé 

publique. Ainsi, l’intégration de Python s’inscrit pleinement dans une approche scientifique 

moderne, où les outils numériques permettent d’extraire des connaissances à partir de données 

complexes, tout en facilitant la reproductibilité et la transparence des analyses. 

II.10. Conclusion  

Ce chapitre présente l’apport de l’intelligence artificielle (IA) dans l’analyse de la qualité 

de l’eau produite par les stations de dessalement. L’IA permet de traiter efficacement les données 

mesurées (pH, turbidité, conductivité, etc.) et de les comparer aux normes de l’OMS, grâce à des 

algorithmes d’apprentissage automatique. Le langage Python est utilisé pour développer ces 

modèles. L’objectif est d’automatiser l’évaluation de la qualité de l’eau, détecter les anomalies, 

et proposer une gestion plus intelligente et durable des installations de dessalement. 
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Chapitre III : Matériels et méthodes 

III.1. Introduction  

Ce chapitre présente les données utilisées, les outils mobilisés et les différentes étapes 

méthodologiques suivies pour analyser la qualité de l’eau produite par la station de dessalement 

de Cap Djinet. L’objectif principal est d’évaluer la conformité des résultats d’analyse par rapport 

aux normes de l’Organisation Mondiale de la Santé (OMS) à l’aide du langage Python, puis de 

prédire l’évolution de certains paramètres à l’aide de méthodes d’intelligence artificielle. Cette 

démarche vise à renforcer la surveillance de la qualité de l’eau et à proposer un outil d’aide à la 

décision basé sur des approches numériques et prédictives. 

III.2. Matériels et Méthodes 

Les installations de dessalement par osmose inverse ont connu un essor significatif depuis la fin 

des années 1990, évoluant d’une capacité initiale de quelques dizaines de m³/jour pour atteindre 

aujourd’hui des débits impressionnants de 500 000 m³/jour. Cette progression technologique 

s’est accompagnée d’une diversification des modèles contractuels dans le secteur. 

Notre étude se concentre sur l’analyse des données issues de la station de dessalement de Cap 

Djinet, située dans la wilaya de Boumerdès. Pour ce faire, nous avons utilisé des données 

techniques et réelles fournies par les responsables de l’installation, complétées par une 

documentation photographique détaillée illustrant les différents composants et l’architecture 

globale de l’usine. 

La méthodologie adoptée repose sur plusieurs étapes essentielles. Nous avons tout d’abord 

collecté les résultats d’analyses physique et chimique de l’eau, effectuées à la fin de chaque 

semaine pendant une période de quatre semaines consécutives. À chaque point de collecte, nous 

avons pris en compte trois types d’échantillons : l’eau de mer brute, l’eau osmosée (produite), et 

la saumure rejetée. Les paramètres analysés comprennent notamment la température, le pH, la 

conductivité électrique, la salinité, ainsi que divers ions tels que le sodium, le calcium, le 

magnésium, les chlorures, les sulfates, les nitrates, etc. 

Dans une première phase, nous avons comparé les résultats de nos analyses aux normes de 

qualité de l’eau potable définies par l’Organisation Mondiale de la Santé (OMS). Cette 

comparaison a été réalisée à l’aide du langage Python, en développant des scripts automatisés 

permettant de traiter les données et de générer des graphiques simples, clairs et faciles à 

interpréter visuellement. Ces représentations graphiques montrent immédiatement si les valeurs 
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mesurées dépassent ou respectent les seuils recommandés, ce qui facilite la lecture et 

l’interprétation des résultats. 

Dans une deuxième phase, nous avons appliqué des méthodes d’intelligence artificielle (IA) dans 

le but de prédire les résultats de la quatrième semaine à partir des données collectées durant les 

trois premières semaines. Deux approches ont été utilisées : 

 la régression linéaire, une méthode statistique simple qui permet d’estimer une valeur future à 

partir d’une tendance observée ; 

 et le perceptron multicouche (MLP - Multi-Layer Perceptron), un algorithme d’apprentissage 

profond capable de modéliser des relations complexes entre les différents paramètres. 

Ces méthodes d’intelligence artificielle nous ont permis d’explorer leur potentiel en tant 

qu’outils d’aide à la décision pour le suivi de la qualité de l’eau. En particulier, elles nous ont 

aidés à : 

 identifier les paramètres les plus sensibles, c’est-à-dire ceux qui varient le plus et qui peuvent 

sortir des normes ; 

 anticiper les dérives éventuelles en prévoyant les valeurs futures, ce qui permet d’agir 

préventivement. 

Par exemple, si un paramètre montre une tendance à augmenter dangereusement, le modèle peut 

prévoir qu’il dépassera bientôt la limite, et ainsi aider les opérateurs à intervenir à temps. 

En résumé, cette démarche combinant analyse comparative avec les normes OMS et prédiction 

par intelligence artificielle représente une approche innovante et efficace pour renforcer la 

surveillance, la sécurité et la performance des stations de dessalement. 

III.3. Présentation de la station de dessalement  

La station de dessalement de Cap Djinet, d’une capacité de production de 100 000 m³/jour 

utilisant la technologie d’osmose inverse, a été mise en service en août 2012. Cette installation 

stratégique approvisionne en eau potable plusieurs communes (Alger, Borj-Menaïl, Zemmouri, 

Dellys, Afir, Tigzirt et Azefoun) ainsi que les zones urbaines de Boumerdès, couvrant ainsi les 

besoins d’une population d’environ 400 000 habitants. Ce projet d’envergure, représentant un 

investissement de 133 millions de dollars, a été réalisé dans le cadre d’un partenariat entre le 

groupe national Sonatrach et Sonelgaz (détenant conjointement 49% du capital) et deux 

opérateurs espagnols : INIMA et Aqualia (chacun détenant 25,5% de participation). Cette 

coopération internationale a permis la concrétisation d’une infrastructure hydraulique majeure 

pour la région. 
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III.4. Localisation géographique de la station de dessalement de Cap Djinet 

La station de dessalement d’eau de mer étudiée est implantée dans la wilaya de Boumerdès, 

située à environ 45 kilomètres à l’est d’Alger, la capitale du pays. Plus précisément, cette 

infrastructure est localisée dans la région côtière de Cap Djinet, relevant de la commune de 

Djinet. Cette dernière est une petite localité du littoral algérien, rattachée administrativement à la 

daïra de Bordj Menaïel. Elle est délimitée géographiquement par les communes de Sidi Daouad 

et de Lagata, et se trouve à environ 15 kilomètres au nord-est du chef-lieu de daïra, Bordj 

Menaïel. Cette position stratégique sur le littoral méditerranéen confère à la station un accès 

direct à la ressource marine, indispensable pour le processus de dessalement. 

III.5. Le processus de dessalement des eaux de mer de la station Cap Djinet  

Le processus de dessalement de la station Cap Djinet comporte plusieurs étapes : 

III.5.1 Captage de l’eau de mer  

Le processus de captage débute par une tour équipée d’un émissaire de 1800 mm de 

diamètre, immergé à 20 m de profondeur sur 1,8 km, permettant un acheminement gravitaire de 

l’eau de mer vers un réservoir. Cette eau est ensuite pompée vers l’unité de traitement par quatre 

pompes centrifuges horizontales en fonctionnement (plus une de réserve), offrant une capacité 

totale de 222 000 m³/jour, assurant ainsi un débit constant et une sécurité opérationnelle grâce à 

la redondance du système. 

  

Figure III. 1. La station de dessalement avec le système de captage de l’eau de mer 

III.5.2. Le prétraitement 

Cette phase clé du processus de dessalement constitue la deuxième étape de traitement et remplit 

une double fonction essentielle : éliminer les impuretés (solides en suspension, matières 

organiques et micro-organismes) tout en protégeant l'installation contre divers risques 

(détérioration des pompes, incrustations, encrassement et dégradation biologique des membranes 
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d'osmose inverse). Pour répondre à ces objectifs, le système intègre deux approches 

complémentaires de prétraitement. 

III.5.2.1. Prétraitement chimique  

Le prétraitement chimique est appliqué à différents points stratégiques du processus : au niveau 

de la tour de captage d'eau de mer, après le refoulement des pompes et en aval des filtres. Cette 

étape consiste en l'injection contrôlée de plusieurs réactifs chimiques, notamment l'hypochlorite 

de sodium (NaOCl) pour la désinfection, l'acide sulfurique (H2SO4) pour le contrôle du pH, le 

chlorure ferrique (FeCl3) comme coagulant, des polyélectrolytes pour la floculation, le 

permanganate de potassium (KMnO4) comme oxydant, le bisulfite de sodium (NaHSO3) comme 

neutralisant, ainsi qu'un inhibiteur d'incrustations spécifique pour protéger les membranes contre 

les dépôts minéraux. 

A. Traitement à l’hypochlorite de sodium (NaOCl) 

Le système de désinfection utilise deux réservoirs de 50 m³ chacun d'hypochlorite de sodium, 

avec une concentration maximale injectée de 4 ppm. Trois pompes doseuses (dont une de 

secours), d'une capacité unitaire de 150 L/h, assurent l'injection du NaOCl à deux points 

stratégiques : au niveau de la tour de captage d'eau de mer et en aval de la station de pompage. 

Objectifs du traitement est l’élimination des micro-organismes pour prévenir le colmatage 

biologique des membranes. Cette étape critique préserve l'efficacité des membranes d'osmose 

inverse en limitant les dépôts organiques. 

B. Traitement au permanganate de potassium (KMnO₄) 

Le processus d’oxydation repose sur deux réservoirs de dilution de 5 m³ équipés de vannes 

mélangeuses, alimentant trois pompes doseuses (dont une de secours) d’une capacité de 200 L/h 

chacune. Le KMnO₄ est injecté en amont du système de pompage avec une concentration 

maximale de 1 mg/L. Objectifs du traitement est l’oxydation ciblée des matières organiques 

présentes dans l’eau de mer, réduisant ainsi leur potentiel d’encrassement des équipements avals. 

Ce traitement complémentaire optimise l’efficacité du prétraitement chimique en prévenant les 

dépôts organiques dans les circuits. 

C. Traitement à l'acide sulfurique (H₂SO₄) 

L'unité d'injection utilise un réservoir unique de 60 m³ équipé de quatre pompes doseuses (dont 

deux opérationnelles, une de secours et une supplémentaire) d'une capacité de 70 L/h, ainsi 

qu'une pompe de transfert (25 m³/h), pour distribuer l'acide sulfurique avec une concentration 

maximale de 25 ppm au système de pompage d'eau de mer. Ce traitement agit comme catalyseur 
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clé dans les processus de coagulation-floculation, optimisant ainsi l'agrégation des particules en 

suspension et améliorant l'efficacité globale du prétraitement chimique. 

D. Traitement par coagulation-floculation 

Le processus combine l’injection d’un coagulant (chlorure ferrique – FeCl₃) et d’un floculant 

(polyélectrolyte) pour optimiser le prétraitement. Le FeCl₃ est stocké dans un réservoir de 50 m³ 

et injecté à une dose maximale de 9 mg/L via deux pompes doseuses (160 L/h, dont une de 

secours) et une pompe de transfert (25 m³/h). Parallèlement, le polyélectrolyte est préparé dans 

deux cuves de dilution de 2,5 m³ équipées de vannes mélangeuses et distribué à 1 mg/L 

maximum par trois pompes doseuses (200 L/h, dont une redondante). Ce traitement vise à : 

 Éliminer les matières colloïdales en suspension, 

 Prévenir l’entartrage des membranes en inhibant la précipitation du carbonate de calcium, 

 Garantissant ainsi une efficacité accrue du système de dessalement. 

E. Traitement au bisulfite de sodium (NaHSO₃) 

Ce traitement crucial vise à neutraliser le chlore résiduel (avant son contact avec les membranes 

d’osmose inverse) grâce à l’injection de NaHSO₃ à une concentration maximale de 8 ppm, 

assurée par trois pompes doseuses (dont une de secours) d’une capacité de 200 L/h. L’injection 

est réalisée stratégiquement avant et après l’étape de microfiltration (filtration à cartouches) pour 

maximiser le temps de contact. Le NaHSO₃ agit via un double mécanisme : 

 Protection des membranes : Élimination du chlore oxydant par réaction chimique, préservant 

ainsi l’intégrité des membranes. 

 Action biocide indirecte : Réduction de l’oxygène dissous, limitant la respiration et la 

prolifération des micro-organismes. 

F. Traitement par inhibiteur d'incrustations 

Pour protéger les membranes d'osmose inverse contre les dépôts de sels, un inhibiteur 

d'incrustations à base de phosphonate est injecté à une concentration maximale de 3 ppm, avant 

et après l'étape de microfiltration. Ce traitement est assuré par trois pompes doseuses (dont une 

de secours) d'une capacité unitaire de 155 L/h. L'action du phosphonate empêche spécifiquement 

la précipitation des sels minéraux (notamment les carbonates et sulfates), préservant ainsi les 

performances et la longévité des membranes. 

 



Chapitre III : Matériels et méthodes 

36 
 

III.5.2.2. Prétraitement physique  

Ce traitement essentiel élimine les solides en suspension, algues et matières organiques grâce à 

une double filtration : d'abord à travers des filtres multicouches (sable et anthracite), puis via des 

filtres à cartouches. L'eau circule verticalement, entrant par la partie supérieure des filtres et 

traversant les couches granulaires qui retiennent progressivement les impuretés, avant d'être 

collectée dans la partie inférieure par un système de buses. Ce procédé mécanique constitue une 

barrière physique cruciale pour protéger les étapes ultérieures de dessalement. 

A. Filtration à sable et anthracite  

Ce système illustré dans la figure ci-dessous élimine la plupart des particules en suspension, 

huile et graisses qui restent dans l’eau de mer, Il est réparti en deux phases :  

 La première phase : Constituée de 12 filtres horizontaux à sable et anthracite avec un 

diamètre D=4m et une longueur L=24m 

 La deuxième phase : Constituée de 8 filtres horizontaux à sable avec D=4m et L=24m. Un 

système de lavage à contre-courant est déclenché par alarme (manomètre différentiel) 

lorsque le colmatage est détecté. La séquence de nettoyage : isolement hydraulique du filtre, 

abaissement du niveau d’eau, barbotage à l’air comprimé, lavage inversé avec saumure et 

évacuation des résidus vers un bac de stockage dédié. 

B. Filtrations à cartouches  

La microfiltration finale est assurée par 9 filtres à cartouches en position verticale, chacun équipé 

de 360 cartouches en polypropylène à membrane de 25 microns (diamètre 61 mm). Ce système 

constitue la dernière barrière physique avant l'osmose inverse, éliminant efficacement les micro-

organismes résiduels pour protéger les membranes. Le processus est surveillé en continu par un 

manomètre différentiel muni d'un contacteur d'alarme, qui signale la nécessité de remplacer les 

cartouches lorsque la perte de charge devient trop importante (remplacement requis tous 3 à 6 

mois). Cette étape cruciale garantit ainsi la qualité de l'eau alimentant les membranes tout en 

optimisant leur durée de vie. 
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(a) Étape du prétraitement chimique (b) Filtres à sable et anthracite 

  
(c) Filtres à cartouches (d)Pompe à haute pression 

 
Figure III. 2. Les materiaux de prétraitement 

III.5.3. Le procédé d’osmose inverse  

 L’eau pré-filtrée arrive au système de pompage de haute pression puis envoyée vers les 

membranes d’osmose inverse.  

III.5.3.1. Pompe à haute pression  

Avant son admission dans les membranes d'osmose inverse, l'eau prétraitée est acheminée vers 

un système de pompage haute pression fonctionnant typiquement entre 55 et 85 bars. Dans 

l'installation décrite, ce système comprend cinq pompes centrifuges - dont quatre opérationnelles 

en régime normal et une unité de secours - configurées pour délivrer collectivement une pression 

de service nominale de 60 bars. Cette étape cruciale permet d'atteindre la pression osmotique 

nécessaire au processus de séparation membranaire tout en garantissant la continuité de 

production grâce à la redondance du système pompe. La pression précise est optimisée en 

fonction des caractéristiques de l'eau d'alimentation et des membranes utilisées. 
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III.5.3.2. Systèmes de membranes d’osmose inverse  

L’installation se compose de quatre unités, chaque unité est répartie en deux châssis. Chacun de 

ses derniers comporte 152 tubes de pressions avec une pression de 60 bars.  Les tubes de 

pression sont disposés pour avoir un taux de conversion de 45%, Dans chaque tube sont placées 

7 membranes spirales (SW 30 HRLE-400i) en polyamide aromatique avec un diamètre de 200 

mm.  

III.5.3.3. Récupération d’énergie 

A. Système de récupération d’énergie par échangeur de pression (PX) : Avec un taux de 

conversion de 45 %, environ 55 % du débit d’eau de mer introduit dans le système est 

rejeté sous forme de concentrat, qui conserve une énergie hydraulique considérable. Afin 

de valoriser cette énergie, la technologie PX (Pressure Exchanger), développée par la 

société ERI (Energy Recovery Inc.), est intégrée à l’installation. Ce système permet de 

récupérer jusqu’à 95 % de l’énergie contenue dans la saumure sous pression, en la 

transférant directement à l’eau de mer prétraitée, avant son passage dans les membranes. 

Ainsi, la pompe haute pression (HP) ne traite plus l’intégralité du débit brut (soit 222 000 

m³/j), mais uniquement le débit net nécessaire à la production d’eau douce. Cette 

configuration engendre des économies substantielles en termes de consommation 

énergétique. Le fonctionnement du système PX repose sur un échange direct de pression 

entre deux flux (le concentrat sous pression et l’eau d’alimentation), à travers un rotor à 

canaux étanches qui assurent un débit continu. Ce mécanisme peut être comparé à deux 

conduites tournantes dans lesquelles la pression est transférée par l’intermédiaire de 

zones de confinement statiques agissant comme des vannes. 

B. Pompe Booster : Chaque unité d’osmose inverse est équipée d'une pompe haute 

pression, de deux châssis de membranes et de deux pompes BOOSTER, toutes reliées à 

un même axe de rotation. Les pompes BOOSTER assurent la compensation des pertes de 

charge induites par les membranes et les échangeurs de pression, en récupérant l’énergie 

hydraulique du concentrat. Cette récupération participe au soutien du système de 

pressurisation principal, tout en réduisant les besoins énergétiques globaux. 
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Figure III. 3. Emplacement des échangeurs de pression ainsi que les pompes booster 

III.5.3.4. Poste de nettoyage chimique des membranes 

III.5.3.4.1. Lavage des membranes 

Le maintien de la performance des membranes d’osmose inverse nécessite un nettoyage 

périodique, destiné à éliminer les dépôts accumulés au fil du fonctionnement, tels que les 

carbonates, hydroxydes métalliques et biofilms microbiens. Ce nettoyage s’effectue par 

recirculation de solutions chimiques, avec une injection prévue à trois points stratégiques : en 

amont de la pompe haute pression, du système de récupération d’énergie et des châssis de 

membranes. 

Le nettoyage est déclenché lorsqu’une diminution de 10 à 15 % du débit normalisé ou une 

augmentation notable de la perte de charge est constatée. 

Conditions de nettoyage : 

 Respect strict des recommandations du fabricant concernant la température et le pH ; 

 Utilisation exclusive de produits chimiques compatibles avec les membranes ; 

 Durée d’exposition limitée pour éviter les détériorations ; 

 Application des débits et pressions optimaux pour une efficacité maximale ; 

 Nettoyage en série des modules pour prévenir la recontamination. 

En cas d’arrêt prolongé (> 24 heures), les membranes doivent être conservées dans une solution 

de stockage contenant un concentrât et des agents antimicrobiens. Un rinçage à l’eau osmosée est 

nécessaire avant la remise en production. 

Procédure de nettoyage : 

 Nettoyage préalable des composants du circuit (bâche, filtre, etc.) ; 

 Préparation et dissolution des produits chimiques avec agitation ; 

 Surveillance des paramètres de la solution (pH, température, concentration) ; 

 Rinçage abondant à l’eau osmosée entre les étapes acide et basique pour revenir à un pH 

neutre ; 
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 Rinçage final avant la reprise de la production ; 

 Rejet de la première production d’eau après nettoyage, pour éliminer toute trace 

résiduelle de produits chimiques. 

III.6. Post-traitement 

L'eau osmosée subit une acidification au CO₂ (25 ppm) abaissant le pH à 5, suivie d’une 

reminéralisation dans une tour contenant 32 lits de calcite (2 m chacun). Elle est ensuite 

désinfectée à l’hypochlorite de sodium (15 L/h) avant son stockage. 

L’eau traitée est acheminée par trois pompes FLOWSERVE (modèle 14LPH34), deux en service 

et une en secours, avec un débit nominal de 2 300 m³/h et une hauteur manométrique de 204 m. 

II.6.1. Prélèvement et échantillonnage 

Le prélèvement des échantillons dans une station de dessalement constitue une étape essentielle 

pour le suivi de la qualité de l’eau tout au long du processus de traitement. De manière générale, 

les échantillons sont prélevés à différents points stratégiques du système afin d’évaluer 

l’efficacité des différentes étapes, depuis l’eau brute jusqu’à l’eau produite, en passant par les 

rejets. Ces points incluent généralement le réservoir d’eau de mer (eau entrante), l’eau avant et 

après prétraitement (par exemple, avant la filtration à cartouche), l’eau avant l’osmose inverse, 

l’eau traitée (eau produite) et enfin la saumure (rejet). Les prélèvements sont réalisés dans des 

contenants propres, souvent en plastique ou en verre, d’une capacité adaptée (généralement entre 

500 mL et 1 L), et selon un protocole rigoureux incluant la purge des conduites et la stabilisation 

du débit pour garantir la représentativité de l’échantillon. Ces analyses permettent de vérifier la 

conformité de l’eau aux normes sanitaires et environnementales, d’optimiser le fonctionnement 

de l’unité de dessalement et de prévenir d’éventuels dysfonctionnements. 

II.6.2. Paramètres physico-chimiques 

L’analyse des paramètres physico-chimiques constitue une étape essentielle dans la 

caractérisation des eaux, notamment dans le cadre du suivi de la qualité environnementale et de 

l’évaluation de la potabilité ou de la compatibilité avec divers usages. Les mesures ont été 

réalisées selon des protocoles normalisés, à l’aide d’instruments de laboratoire adaptés, 

permettant une fiabilité optimale des résultats. 

a. Mesure de la conductivité 

La conductivité électrique, indicateur de la teneur en ions dissous dans l’eau, a été mesurée à 

l’aide d’un appareil multiparamètres de marque HACH, modèle sensION7. Cet instrument de 

précision permet une lecture directe de la conductivité exprimée en microsiemens par centimètre 
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(μS/cm). Le protocole suivi commence par l’allumage et l’étalonnage de l’appareil à l’aide d’eau 

distillée. La sonde est ensuite immergée dans un bécher contenant environ 100 mL d’échantillon, 

sous agitation légère, jusqu’à stabilisation de la valeur mesurée. Il est impératif de rincer 

soigneusement la sonde entre chaque analyse afin d’éviter toute contamination croisée. Ce même 

dispositif a également permis la mesure simultanée de la température et du Total Dissolved 

Solids (TDS), selon un protocole identique. 

b. Mesure de la température 

La température des échantillons a été déterminée directement en laboratoire à l’aide du 

multiparamètre HACH sensION7. Grâce à sa technologie intégrée, l’appareil fournit une lecture 

précise et instantanée de la température, un paramètre influençant de manière significative les 

équilibres chimiques et biologiques des milieux aquatiques. 

c. Mesure du pH 

Le potentiel hydrogène (pH), révélateur de l’acidité ou de l’alcalinité d’un milieu, a été mesuré à 

l’aide d’un pH-mètre à sonde (HACH sensION3). Le protocole appliqué est similaire à celui de 

la conductivité : l’instrument est d’abord étalonné avec des solutions tampons, puis la sonde est 

introduite dans l’échantillon sous agitation douce. La lecture est effectuée après stabilisation, 

suivie d’un rinçage rigoureux de l’électrode. 

d. Mesure des matières en suspension (MES) 

Les matières en suspension (MES) désignent les particules solides non dissoutes, d’origine 

minérale ou organique, présentes dans les eaux naturelles. Elles constituent un paramètre clé 

pour l’évaluation de la turbidité. Le dosage a été effectué par gravimétrie. Il consiste à filtrer un 

litre d’échantillon sur un filtre préalablement pesé (type GF/C), puis à sécher le filtre à l’étuve 

pendant 25 minutes. La différence de masse permet de déterminer la concentration en MES. Ce 

protocole a été mis en œuvre sous une hotte à filtration équipée d’un système d’aspiration, 

garantissant un environnement de travail propre et sécurisé. 

e. Mesure de l’alcalinité 

L’alcalinité d’une eau, représentant sa capacité à neutraliser les acides, a été déterminée selon 

deux types de dosages acido-basiques : le titre alcalimétrique simple (TA) et le titre 

alcalimétrique complet (TAC). 

 Titre alcalimétrique simple (TA) : Ce dosage vise à quantifier la fraction d’alcalinité 

liée aux ions hydroxyles (OH⁻) et carbonates (CO₃²⁻). Il est réalisé par titrage à l’aide 

d’une solution d’acide chlorhydrique (HCl 0,02 N), en présence de phénolphtaléine 

comme indicateur. En présence d’ions basiques, la solution devient rose ; l’ajout 
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progressif de l’acide jusqu’à décoloration complète indique le point d’équivalence. La 

concentration est calculée selon la formule : 

 Titre alcalimétrique complet (TAC) : Il reflète la somme des espèces basiques (HCO₃⁻, 

CO₃²⁻, OH⁻). Le titrage est mené jusqu’au pH 4,5 en utilisant le méthyle orange comme 

indicateur. Le changement de couleur du jaune au rouge orangé permet de déterminer la 

concentration totale en alcalinité. 

Ces résultats permettent également de calculer indirectement les concentrations en bicarbonates 

(HCO₃⁻) et en carbonates (CO₃²⁻), constituants essentiels du pouvoir tampon des eaux naturelles. 

f. Mesure du chlore 

Le chlore, présent dans l’eau sous forme libre, combinée ou totale, a été mesuré par une méthode 

colorimétrique basée sur l’emploi de réactifs DPD (Diéthyl-p-Phénylène-Diamine). Cette 

technique repose sur l’intensité de la coloration rose développée suite à la réaction du DPD avec 

le chlore libre. Deux cuves sont utilisées : la première sert de blanc, la seconde reçoit une pastille 

DPD et l’échantillon, puis est insérée dans le colorimètre. La lecture directe fournit la 

concentration en chlore actif (mg/L), proportionnelle à l’intensité colorée observée. 

g. Mesure de la dureté totale (TH) 

La dureté totale d’une eau, exprimée en °f ou en mg/L de CaCO₃, indique la concentration en 

ions calcium (Ca²⁺) et magnésium (Mg²⁺). Elle est déterminée par titrage complexométrique à 

l’EDTA en milieu tamponné (pH ≈ 10), à l’aide de l’indicateur noir d’Ériochrome T (NET). Le 

virage colorimétrique du rose au bleu indique la fin de la réaction.  

h. Mesure du calcium (Ca²⁺) 

La concentration en calcium a été mesurée séparément, par titrage à l’EDTA en milieu fortement 

alcalin (pH 12-13), permettant de précipiter le magnésium et ainsi de limiter l’analyse aux seuls 

ions Ca²⁺. L’indicateur muréxide, initialement rouge en présence de calcium, vire au violet à 

l’équivalence. Ce dosage fournit une estimation précise du calcium, exprimée en mg/L ou en °f, 

selon la même formule utilisée pour le TH, en tenant compte du volume d’EDTA utilisé. 
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Figure III. 4. Lits de calcite et bâtiment de la saumure 

II.6.3. Paramètres chimiques 

L’évaluation des paramètres chimiques de l’eau traitée par la station de dessalement de Cap 

Djinet a porté sur plusieurs éléments majeurs pouvant avoir un impact sur la santé humaine et la 

qualité de l’eau. Le bore, naturellement présent dans l’eau de mer, est particulièrement surveillé 

en raison de sa toxicité à fortes concentrations. Grâce au procédé d’osmose inverse, sa 

concentration a été réduite à des niveaux compatibles avec les recommandations de l’OMS. Le 

chlorure, principal anion de l’eau de mer, a également été efficacement éliminé, les taux mesurés 

dans l’eau traitée restant largement en dessous du seuil maximal autorisé (250 mg/l selon 

l’OMS). Les nitrites (NO₂⁻) et nitrates (NO₃⁻), indicateurs d’une éventuelle pollution d’origine 

organique ou agricole, ont été détectés à de très faibles concentrations, témoignant d’une absence 

de contamination et d’une bonne performance du système de traitement. Le sulfate (SO₄²⁻), bien 

que naturellement présent dans l’eau de mer, a également été significativement réduit, assurant 

une eau sans risque de troubles digestifs pour les consommateurs sensibles. En ce qui concerne 

les cations, le sodium (Na⁺), élément dominant dans l’eau salée, a été fortement réduit, sans 

toutefois être complètement éliminé, ce qui est typique des eaux dessalées. Le potassium (K⁺), 

essentiel à l’organisme en faible quantité, a été détecté à des niveaux modérés et compatibles 

avec les normes. Enfin, le fer (Fe), dont une présence excessive peut altérer le goût de l’eau et 

provoquer des dépôts dans les conduites, a été mesuré à des concentrations très faibles, 

démontrant l’efficacité du prétraitement et de la filtration. Ces résultats, obtenus à l’aide du 

spectrophotomètre DR 5000 et des cuves tests LCK, confirment que l’eau produite est de qualité 

chimique conforme aux exigences réglementaires et adaptée à la consommation humaine. 
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turbidimètre. Sites de prélèvements 

  
Boite LCK Multi paramètres à sonde 

  
La hotte à filtre Titrage par la solution d’EDTA 

 
Spectrophotomètre DR 5000 

Figure III. 5. Équipements de mesure des paramètres physico-chimiques et chimiques utilisés à 

la station de dessalement de Cap Djinet 
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III.8. Conclusion  

La méthodologie mise en œuvre dans cette étude allie rigueur scientifique et innovation 

technologique. En combinant des analyses physico-chimiques détaillées, menées à partir 

d’échantillons prélevés selon un protocole structuré, avec des outils de traitement de données 

automatisés en Python et des techniques d’intelligence artificielle, nous avons pu assurer une 

évaluation fiable et prédictive de la qualité de l’eau produite par la station de dessalement de Cap 

Djinet. Ce double volet – comparatif et prédictif – constitue un cadre méthodologique robuste 

pour le suivi et l’optimisation des performances des installations de dessalement, tout en offrant 

des perspectives prometteuses en matière de gestion proactive de la ressource en eau. 
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Chapitre IV. Résultats et discussions 

Tableau IV. 1. Les concentrations physico-chimiques des échantillons analysés 
Eléments chlore Dureté solides dissous PH Température Conductivité TAC TA Mg Ca 

Unités ppm mg/l ppm / °C μs/cm ppm ppm mg/l mg/l 

Semaine 1 0.42 69.88 306 8.39 18.6 615 60.21 60.07 9.81 60.07 

Semaine 2 0.43 70.09 326 8.37 18.4 652 60.26 54.31 14.88 55.21 

Semaine 3 0.4 69.61 334 8.37 18.8 668 60.05 59.77 9.88 59.63 

Semaine 4 0.41 69.82 343 8.35 19.7 685 60.2 60.63 9.26 60.55 

Moyenne 0.42 69.85 327 8.37 18.6 655 60.17 58.92 10.96 58.84 

Norme < 5 > 65 (150-500) (6,5-8,5)  <1500 50 à 65  < 150 <75 

Tableau IV. 2. Les concentrations des paramètres chimiques des échantillons analysés 
Eléments Bore Chlorure Nitrites Nitrates Sulfate Sodium Potassium Fer 

Unités ppm mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

Semaine 1 0.8 162 2 33.8 60 40 13 0.1 

Semaine 2 0.82 143 1.9 39.9 63 34 14.9 0.24 

Semaine 3 0.84 152 1.2 36.9 67.8 42 12.6 0.19 

Semaine 4 0.9 169 2.3 38.1 65.3 38 11.7 0.22 

Moyenne 0.84 156.5 1.85 37.17 64.02 38.5 13.05 0.18 

Norme < 1 < 250 < 3 < 50 < 500 < 200 < 20 < 0,3 

Tableau IV. 3. Les concentrations des paramètres de l’eau de mer 

Paramétres  TDS  PH  Conductivité  T  Turbidité  FER  MES  Résidus à 180  °C  Chlore   

Unités  g/l     µs/cm  °C  NTU  mg/l  mg/l  g/l  mg/l  

Semaine 1  35.31  8.18  55.51  15.79  2.46  0.14  9.37  37.8  0.02  

Semaine 2  35.54  8.2  55.87  15.17  1.76  0.13  6.63  38.6  0.02  

Semaine 3  35.96  8.19  56.43  16.19  0.82  0.14  6.34  39.1  0.02  

Semaine 4  36.11  8.19  56.7  16.66  0.95  0.13  7.29  40  0.02  

Moyenne  35.73  8.19  56.13  15.95  1.5  0.14  7.41  38.9  0.02  

Tableau IV. 4. Les concentrations des paramètres de de la saumure 

Paramétres  TDS  PH  Conductivité  T  Turbidité  FER  MES  Résidus à 180  °C Chlore  

Unités  g/l     µs/cm  °C  NTU  mg/l  mg/l  g/l  mg/l  

Semaine 1  68.1  7.93  92.03  16.73  0.54  0.05  2.56  70,31  0.03  

Semaine 2  68.38  7.9  92.41  15.84  0.57  0.05  2.8  70,89  0.04  

Semaine 3  68.61  7.91  92.71  16.17  0.49  0.05  2.96  71,32  0.03  

Semaine4  68.27  7.91  92.26  17.1  0.54  0.05  2.99  71,19  0.03  

Moyenne  68.34  7.91  92.35  16.95  0.53  0.05  2.83  70,93  0.03  
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Figure IV 1. Les concentrations des paramètres physico-chimiques des échantillons analysés par rapport aux normes de l’OMS 

 



Chapitre IV. Résultats et discussions 

49 
 

 
Figure IV 2. Les concentrations des paramètres chimiques des échantillons analysés par rapport aux normes de l’OMS 
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Figure IV 3. L'analyse comparative des modèles de Régression Linéaire (RL) et de Perceptron Multicouche (MLP) pour la prédiction des 

concentrations des paramètres physico-chimiques de l'eau à la Semaine 4 
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Figure IV 4. L'analyse comparative des modèles de Régression Linéaire (RL) et de Perceptron Multicouche (MLP) pour la prédiction des 

concentrations des paramètres chimiques à la Semaine 4 

 



Chapitre IV. Résultats et discussions 

52 
 

 

Figure IV 5. Comparaison des paramètres de l’eau de mer et de la saumure 
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IV. 1. Analyse des Résultats et Discussion 

Cette étude a examiné l'évolution temporelle des paramètres physico-chimiques et chimiques de 

l'eau traitée par un procédé d'osmose inverse sur une période de quatre semaines, et a évalué la 

performance de deux modèles de régression (Linéaire et Perceptron Multicouche) pour la 

prédiction de ces paramètres. 

IV.1.1. Conformité de la Qualité de l'Eau Traitée aux Normes OMS 

Les Figures (IV. 1 et  IV. 2) présentent l'évolution hebdomadaire des paramètres physico-

chimiques et chimiques de l'eau issue de la station de dessalement par osmose inverse, en 

comparaison avec les normes de potabilité établies par l'Organisation Mondiale de la Santé 

(OMS). L'analyse de ces figures révèle que, pour la totalité des paramètres surveillés au cours 

des quatre semaines d'étude, les valeurs mesurées se situent systématiquement en dessous des 

limites maximales recommandées par l'OMS. Spécifiquement, la Figure IV. 1 démontre que les 

paramètres tels que le Chlore, la Dureté, les Solides Dissous, le pH, la Température, la 

Conductivité, le TAC, le TA, le Magnésium et le Calcium, bien que présentant de légères 

fluctuations hebdomadaires, maintiennent des concentrations largement conformes aux normes 

de potabilité. La ligne représentant la moyenne sur la période d'étude confirme également cette 

conformité globale. 

De manière similaire, la Figure IV. 2 met en évidence que les concentrations des éléments 

chimiques tels que le Bore, le Chlorure, les Nitrites, les Nitrates, le Sulfate, le Sodium, le 

Potassium et le Fer restent bien en dessous des seuils normatifs de l'OMS tout au long de la 

période d'échantillonnage. Les variations observées pour certains éléments (par exemple, le 

Chlorure ou le Sodium) reflètent probablement une certaine variabilité dans l'eau d'alimentation 

ou des ajustements mineurs dans le processus de traitement, mais sans compromettre la qualité 

finale de l'eau produite. Ces observations confirment l'efficacité du procédé d'osmose inverse mis 

en œuvre pour produire une eau dont les caractéristiques physico-chimiques et chimiques 

satisfont pleinement les exigences des normes de potabilité de l'OMS. L'eau traitée est donc 

conforme pour une utilisation destinée à la consommation humaine, attestant de la robustesse et 

de la performance du système de dessalement. 

VI.1.2. Évaluation Comparative des Modèles de Prédiction 

Les Figures IV. 3 et  IV. 4 comparent les valeurs réelles des paramètres physico-chimiques et 

chimiques mesurées lors de la quatrième semaine avec les valeurs prédites par deux modèles de 

régression : la Régression Linéaire (RL) et le Perceptron Multicouche (MLP), entraînés sur les 
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données des trois premières semaines. L'objectif de cette analyse était d'évaluer la capacité de 

ces modèles à anticiper l'évolution future des paramètres de qualité de l'eau. 

L'examen de la Figure IV.3 (paramètres physico-chimiques) et de la Figure IV.4 (paramètres 

chimiques) révèle une performance différenciée entre les deux approches de modélisation. Il est 

clairement observable que les prédictions issues du modèle de Régression Linéaire (courbe en 

pointillés bleus/oranges) montrent une meilleure concordance avec les valeurs réelles de la 

Semaine 4 (courbe en ligne pleine bleue) pour la majorité des paramètres. Les écarts entre les 

valeurs prédites par la RL et les valeurs réelles sont généralement faibles, indiquant une bonne 

capacité de ce modèle linéaire à capturer les tendances observées sur les trois premières 

semaines et à les extrapoler à la quatrième semaine. 

En revanche, les prédictions obtenues par le modèle Perceptron Multicouche (courbe en 

pointillés verts) présentent des écarts plus marqués par rapport aux valeurs réelles pour plusieurs 

paramètres. Bien que le MLP soit théoriquement capable de modéliser des relations non-linéaires 

complexes, sa performance dans cette étude semble limitée. Cet écart de performance peut être 

principalement attribué à l'insuffisance de données d'entraînement disponibles. Avec seulement 

trois points de données (les trois premières semaines), le modèle MLP, qui nécessite 

généralement un volume de données plus conséquent pour un apprentissage efficace et pour 

éviter le sur apprentissage, n'a pas pu s'ajuster de manière optimale aux dynamiques sous-

jacentes des paramètres. 

Ces résultats suggèrent que, dans le contexte d'un suivi à court terme avec un nombre limité 

d'observations, des modèles plus simples comme la Régression Linéaire peuvent s'avérer plus 

robustes et fournir des prédictions plus fiables que des modèles non-linéaires complexes tels que 

le MLP. Une investigation future avec une série temporelle de données plus longue permettrait 

de réévaluer la performance du modèle MLP et potentiellement d'explorer d'autres architectures 

de réseaux de neurones ou des modèles de séries temporelles dédiés. En résumé, l'analyse 

confirme la qualité de l'eau produite par le procédé d'osmose inverse en conformité avec les 

normes OMS et met en évidence les défis de la modélisation prédictive avec des ensembles de 

données limités, soulignant la supériorité relative de la Régression Linéaire dans cette étude. 

 

 



Chapitre IV. Résultats et discussions 

55 
 

VI.1.3. Interprétation des variations hebdomadaires des paramètres physico-chimiques de 

l’eau de mer et de la saumure 

Les résultats de la figure IV.5 montrent une nette différence entre l’eau de mer et la saumure. La 

saumure présente des concentrations plus élevées en solides dissous totaux, conductivité et 

résidus à 180 °C, ce qui reflète l’effet de concentration du processus de dessalement. Le pH reste 

globalement stable dans les deux types d’eau, avec une légère acidification dans la saumure. Les 

matières en suspension (MES) et la turbidité sont plus faibles dans la saumure, indiquant une 

élimination partielle des particules. Les concentrations en fer et en chlore restent très faibles et 

stables, témoignant d’une bonne qualité chimique des deux effluents. Globalement, les variations 

hebdomadaires sont faibles, traduisant une stabilité du système de traitement. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

56 
 

 

 

 

 

 

 

Conclusion Générale 

 

 

 

 

 

 

 



Conclusion générale et perspectives 

 

57 
 

Conclusion générale et perspectives 

Le dessalement de l’eau de mer constitue aujourd’hui l’une des solutions les plus prometteuses 

pour pallier la raréfaction des ressources en eau douce, particulièrement dans les régions arides 

ou soumises à un stress hydrique élevé. Ce procédé, bien que techniquement exigeant, offre la 

possibilité de produire une eau potable répondant aux normes de qualité internationales, à 

condition de maîtriser l’ensemble des paramètres physico-chimiques et microbiologiques 

influençant l’efficacité du traitement. 

La performance d’une station de dessalement repose sur plusieurs facteurs clés : la qualité de 

l’eau d’alimentation, le bon fonctionnement des membranes, la prévention du colmatage, la 

gestion de la corrosion et le respect strict des standards de potabilité. C’est dans ce contexte que 

les avancées technologiques, notamment l’intelligence artificielle (IA), apportent une valeur 

ajoutée indéniable. L’intégration de l’IA dans les processus de suivi et d’évaluation de la qualité 

de l’eau permet non seulement d’optimiser le fonctionnement des installations, mais également 

d’anticiper les dysfonctionnements grâce à des modèles prédictifs performants. 

Dans le cadre de ce mémoire, nous avons démontré comment l’utilisation du langage Python et 

des algorithmes d’apprentissage automatique permet d’analyser en temps réel des indicateurs tels 

que le pH, la turbidité, la conductivité ou encore les résidus totaux. Ces données, une fois traitées 

par des modèles intelligents, peuvent être comparées aux recommandations de l’Organisation 

Mondiale de la Santé (OMS), permettant ainsi une évaluation automatisée et fiable de la qualité 

de l’eau produite. En outre, cette approche offre une perspective de gestion durable et intelligente 

des stations de dessalement, en réduisant les interventions manuelles, en améliorant la réactivité 

face aux anomalies, et en contribuant à la préservation des ressources. 

Perspectives et Développements Futurs 

Pour concrétiser pleinement le potentiel de cette approche, plusieurs axes d’amélioration se 

dessinent : 

 Élargissement des données : L’importation de bases de données plus vastes et diversifiées 

permettra d’affiner les prédictions du modèle MLP (Perceptron Multicouche) à long 

terme, en intégrant des variables environnementales ou opérationnelles supplémentaires. 

 Généralisation des méthodes : L’adaptation du programme développé à d’autres stations 

de dessalement, locales ou internationales, renforcera sa robustesse et son utilité à grande 

échelle. 
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 Outil opérationnel : Le développement d’une application web dédiée aux gestionnaires de 

stations offrira une interface intuitive pour évaluer en temps réel la qualité de l’eau 

(bonne, moyenne ou mauvaise) et anticiper son évolution sur des échelles de temps 

variées (semaines, mois, années). Cette solution combinera surveillance immédiate et 

prospective stratégique, facilitant ainsi la prise de décision éclairée. 

Ainsi, cette étude met en évidence la complémentarité entre les connaissances scientifiques sur le 

traitement de l’eau et les outils numériques modernes. Elle ouvre la voie à de futures recherches 

axées sur le développement de systèmes de surveillance plus autonomes, capables de s’adapter 

en continu aux variations de la qualité de l’eau et aux contraintes opérationnelles. Le recours à 

l’intelligence artificielle ne se limite plus à un simple outil d’aide à la décision : il devient un 

pilier fondamental pour garantir une production d’eau potable fiable, efficiente et durable dans 

un monde confronté à des enjeux environnementaux et démographiques majeurs. 
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Les Programmes de simulation Python 

1. Paramètres physico-chimiques : évolution, moyenne et normes OMS 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# Création du DataFrame 

df = pd.DataFrame({ 

    "Chlore": [0.42, 0.43, 0.4, 0.41], 

    "Dureté": [69.88, 70.09, 69.61, 69.82], 

    "Solides dissous": [306, 326, 334, 343], 

    "pH": [8.39, 8.37, 8.37, 8.35], 

    "Température": [18.6, 18.4, 18.8, 19.7], 

    "Conductivité": [615, 652, 668, 685], 

    "TAC": [60.21, 60.26, 60.05, 60.2], 

    "TA": [60.07, 54.31, 59.77, 60.63], 

    "Magnésium": [9.81, 14.88, 9.88, 9.26], 

    "Calcium": [60.07, 55.21, 59.63, 60.55] 

}, index=["Semaine 1", "Semaine 2", "Semaine 3", "Semaine 4"]) 

 

# Calcul des moyennes et ajout des normes 

df.loc["Moyenne"] = df.mean() 

df.loc["Norme (max)"] = [5, 65, 500, 8.5, 25, 1500, 65, 150, 75, 75] 

 

# Tracer les graphiques 

plt.figure(figsize=(14, 7)) 

for row in df.index: 

    plt.plot(df.columns, df.loc[row], marker='o', label=row) 

 

plt.xticks(rotation=45) 

plt.ylabel("Valeurs") 

plt.title("Paramètres physico-chimiques : évolution, moyenne et normes OMS") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 
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2. Paramètres chimiques : évolution, moyenne et normes OMS 

import matplotlib.pyplot as plt 

 

# Paramètres chimiques 

elements = ['Bore', 'Chlorure', 'Nitrites', 'Nitrates', 'Sulfate', 'Sodium', 'Potassium', 'Fer'] 

 

# Valeurs mesurées chaque semaine 

semaine1 = [0.8, 162, 2, 33.8, 60, 40, 13, 0.1] 

semaine2 = [0.82, 143, 1.9, 39.9, 63, 34, 14.9, 0.24] 

semaine3 = [0.84, 152, 1.2, 36.9, 67.8, 42, 12.6, 0.19] 

semaine4 = [0.9, 169, 2.3, 38.1, 65.3, 38, 11.7, 0.22] 

moyenne = [0.84, 156.5, 1.85, 37.17, 64.02, 38.5, 13.05, 0.18] 

norme = [1, 250, 3, 50, 500, 200, 20, 0.3] 

 

# Taille du graphique 

plt.figure(figsize=(12, 6)) 

 

# Courbes avec des marqueurs pour chaque semaine 

plt.plot(elements, semaine1, marker='o', label='Semaine 1') 

plt.plot(elements, semaine2, marker='s', label='Semaine 2') 

plt.plot(elements, semaine3, marker='^', label='Semaine 3') 

plt.plot(elements, semaine4, marker='d', label='Semaine 4') 

plt.plot(elements, moyenne, marker='*', linestyle='--', color='black', label='Moyenne') 

plt.plot(elements, norme, marker='x', linestyle=':', color='red', label='Norme OMS') 

 

# Titre et axes 

plt.title('Évolution des concentrations chimiques des échantillons') 

plt.xlabel('Paramètres chimiques') 

plt.ylabel('Concentration (mg/l ou ppm)') 

plt.grid(True, linestyle='--', alpha=0.5) 

plt.legend() 

plt.xticks(rotation=45) 

 

# Affichage 

plt.tight_layout() 

plt.show() 
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3. L'analyse comparative des modèles de Régression Linéaire (RL) et de 

Perceptron Multicouche (MLP) pour la prédiction des concentrations des 

paramètres physico-chimiques de l'eau à la Semaine 4 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

from sklearn.neural_network import MLPRegressor 

 

# Données des semaines 1 à 3 

data = { 

    'chlore': [0.42, 0.43, 0.4], 

    'Dureté': [69.88, 70.09, 69.61], 

    'solides dissous': [306, 326, 334], 

    'PH': [8.39, 8.37, 8.37], 

    'Température': [18.6, 18.4, 18.8], 

    'Conductivité': [615, 652, 668], 

    'TAC': [60.21, 60.26, 60.05], 

    'TA': [60.07, 54.31, 59.77], 

    'Mg': [9.81, 14.88, 9.88], 

    'Ca': [60.07, 55.21, 59.63] 

} 

 

df = pd.DataFrame(data) 

 

# Variables d'entrée : semaines 1 à 3 (X), variable cible : semaine 4 (Y) 

X = df.index.values.reshape(-1, 1)  # semaines 1 à 3 => 0, 1, 2 

results_rl = [] 

results_mlp = [] 

real_values = [0.41, 69.82, 343, 8.35, 19.7, 685, 60.2, 60.63, 9.26, 60.55] 

 

# Analyse paramètre par paramètre 

for i, column in enumerate(df.columns): 

    y = df[column].values 

 

    # Modèle de Régression Linéaire 

    model_rl = LinearRegression() 

    model_rl.fit(X, y) 

    pred_rl = model_rl.predict([[3]])[0]  # prédiction pour semaine 4 (index = 3) 

    results_rl.append(pred_rl) 

 

    # Modèle MLP 

    model_mlp = MLPRegressor(hidden_layer_sizes=(5,), max_iter=5000, random_state=1) 

    model_mlp.fit(X, y) 

    pred_mlp = model_mlp.predict([[3]])[0] 
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    results_mlp.append(pred_mlp) 

 

# Affichage graphique 

parametres = list(df.columns) 

x = np.arange(len(parametres)) 

 

plt.figure(figsize=(12, 6)) 

plt.plot(x, real_values, marker='o', label='Valeurs réelles (Semaine 4)', linewidth=2) 

plt.plot(x, results_rl, marker='s', label='Prédiction Régression Linéaire', linestyle='--') 

plt.plot(x, results_mlp, marker='^', label='Prédiction MLP', linestyle='--') 

plt.xticks(x, parametres, rotation=45) 

plt.xlabel("Paramètres physico-chimiques") 

plt.ylabel("Concentration") 

plt.title("Comparaison des modèles RL et MLP - Semaine 4") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 
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L'analyse comparative des modèles de Régression Linéaire (RL) et de 

Perceptron Multicouche (MLP) pour la prédiction des concentrations des 

paramètres chimiques à la Semaine 4 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

from sklearn.neural_network import MLPRegressor 

 

# Données des semaines 1 à 3 

data = { 

    'Bore': [0.8, 0.82, 0.84], 

    'Chlorure': [162, 143, 152], 

    'Nitrites': [2, 1.9, 1.2], 

    'Nitrates': [33.8, 39.9, 36.9], 

    'Sulfate': [60, 63, 67.8], 

    'Sodium': [40, 34, 42], 

    'Potassium': [13, 14.9, 12.6], 

    'Fer': [0.1, 0.24, 0.19] 

} 

 

df = pd.DataFrame(data) 

 

# Semaine 4 = valeurs réelles pour comparaison 

real_values = [0.9, 169, 2.3, 38.1, 65.3, 38, 11.7, 0.22] 

 

X = df.index.values.reshape(-1, 1)  # Semaines 1 à 3 

 

results_rl = [] 

results_mlp = [] 

 

# Prédictions 

for col in df.columns: 

    y = df[col].values 

 

    # Régression Linéaire 

    model_rl = LinearRegression() 

    model_rl.fit(X, y) 

    pred_rl = model_rl.predict([[3]])[0] 

    results_rl.append(pred_rl) 

 

    # Perceptron Multicouche 

    model_mlp = MLPRegressor(hidden_layer_sizes=(5,), max_iter=5000, random_state=42) 

    model_mlp.fit(X, y) 

    pred_mlp = model_mlp.predict([[3]])[0] 

    results_mlp.append(pred_mlp) 
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# Affichage du graphique 

parametres = list(df.columns) 

x = np.arange(len(parametres)) 

 

plt.figure(figsize=(12, 6)) 

plt.plot(x, real_values, marker='o', label='Valeurs réelles (Semaine 4)', linewidth=2) 

plt.plot(x, results_rl, marker='s', linestyle='--', label='Régression Linéaire') 

plt.plot(x, results_mlp, marker='^', linestyle='--', label='Perceptron Multicouche (MLP)') 

plt.xticks(x, parametres, rotation=45) 

plt.xlabel("Paramètres chimiques de l'eau") 

plt.ylabel("Concentration (mg/l ou ppm)") 

plt.title("Comparaison RL et MLP pour la prédiction des paramètres chimiques – Semaine 4") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.sh 
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Résumé  

Ce mémoire s'intéresse à l'application des techniques d’intelligence artificielle pour évaluer et 

prédire la qualité de l’eau produite par la station de dessalement de Cap Djinet. Les analyses 

physico-chimiques réalisées sur quatre semaines montrent une conformité totale de l’eau traitée 

aux normes de l’OMS. Deux modèles de prédiction ont été comparés : la régression linéaire, 

efficace avec peu de données, et le perceptron multicouche, dont la performance est limitée par 

le faible volume d’entraînement. L’intégration de la data science et de l’analyse conventionnelle 

offre une approche novatrice et complémentaire. Ce travail contribue à renforcer la gestion 

prédictive et durable des stations de dessalement. Il ouvre la voie à l’utilisation de l’IA pour 

anticiper les variations qualitatives et améliorer la prise de décision. L’étude montre que même 

avec un jeu de données restreint, des modèles simples peuvent offrir des résultats fiables. Les 

résultats obtenus peuvent servir de référence pour d’autres stations similaires. 

Mots clés : Dessalement, Intelligence Artificielle, Qualité De L’eau, Prédiction, Normes OMS 

Abstract 

This thesis focuses on applying artificial intelligence techniques to assess and predict the water 

quality produced by the Cap Djinet desalination plant. Physico-chemical analyses over four 

weeks confirm full compliance with WHO standards. Two predictive models were evaluated: 

linear regression, effective with limited data, and multilayer perceptron, whose performance was 

hindered by a small dataset. The integration of data science and conventional analysis offers an 

innovative and complementary approach. This study contributes to advancing predictive and 

sustainable desalination management. It enables anticipation of quality variations and supports 

informed decision-making. Even with a limited dataset, simple models proved reliable. Results 

may serve as a reference for similar facilities. 

Keywords: Desalination, Artificial Intelligence, Water Quality, Prediction, WHO Standards. 

 الملخص 

نخقٍٍى وحىقع خىدة انًٍاه انًنخدت ين يحطت ححهٍت بشج خٍنج. أظهشث  ٌشكز هزا انبحث عهى حطبٍق حقنٍاث انزكاء الاصطناعً

انخحانٍم انفٍزٌائٍت وانكًٍٍائٍت خلال أسبع أسابٍع يطابقت حايت نهًعاٌٍش انخً حذدحها ينظًت انصحت انعانًٍت. حى حقٍٍى نًىرخٍن 

نعصبٍت يخعذدة انطبقاث انخً حأثشث سهباً بضعف حدى حنبؤٌٍن: الانحذاس انخطً، انزي أظهش كفاءة يع انبٍاناث انقهٍهت، وانشبكت ا

ً ويبخكشاً. ٌساهى هزا انعًم فً ححسٍن إداسة يحطاث  انبٍاناث. ًٌثم اندًع بٍن ححهٍم انبٍاناث وانخحانٍم انخقهٍذٌت ينهداً حكايهٍا

ٌسًح بانخنبؤ بخغٍش خىدة انًٍاه ودعى احخار انقشاس. حخى يع بٍاناث يحذودة، أثبخج اننًارج انخحهٍت بشكم حنبؤي ويسخذاو. و

 .انبسٍطت فعانٍخها. ًٌكن اعخًاد اننخائح كًشخع نًحطاث يًاثهت

 ححهٍت انًٍاه، انزكاء الاصطناعً، خىدة انًٍاه، انخنبؤ، يعاٌٍش انصحت انعانًٍت :الكلمات المفتاحية
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