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Qui demeurerait insensible à la beauté de ces écoulements, à la fois 

permanente et toujours renouvelée, quel chercheur demeurerait insensible au 

défi de leur modélisation ? 

 

(René Moreau, dans la préface de l’ouvrage ‘Turbulence’ de Marcel Lesieur, 1994) 
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La mécanique des fluides numérique (MFN), plus souvent désignée par le terme 

anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou 

leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des 

approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de 

représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les 

équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes. 

Comme les études expérimentales sont très coûteuses et prennent plus de temps, notamment dans 

le domaine industriel, la modélisation et la simulation numérique s’avèrent être très utiles pour 

étudier les écoulements turbulents dans différentes situations. Néanmoins on ne peut se passer des 

données expérimentales qui servent souvent comme référence afin de valider les constantes 

empiriques utilisées dans les modèles de turbulence. 

 Les écoulements décollés et recollés ont fait l'objet d'un grand nombre de travaux en raison de 

l’importance de leur application dans beaucoup de situations industrielles tels que : les fuselages 

d'avions, l'automobile et dans l’environnement. 

 L'écoulement sur une marche descendante est un écoulement de séparation et de recollement à 

géométrie simple, d'où le grand intérêt porté à cette configuration. En effet, en plus des différentes 

applications dans les domaines de l'industrie (moteurs à combustion, échangeurs de chaleur, 

réacteurs nucléaires, systèmes de refroidissement, …) et du génie civil (bâtiment, pont, …) la 

marche est la configuration idéale pour tester les modèles de turbulence et pour valider les codes 

numériques avant de tenter de les adapter à des géométries plus complexes. 

Notre travail consiste à déterminer la zone de recirculation en fonction de différentes vitesses d’un 

fluide non visqueux (fluide parfait) grâce a deux logiciels de simulations (Matlab et Ansys Fluent). 

Les résultats obtenus sont également confrontés à d’autres études numériques. Les chapitres de ce 

mémoire sont répartis comme suit : 

 Le chapitre I comporte la description de notre problème a savoir l’écoulement en 

aval d’une marche et une revue bibliographique détaillée portant essentiellement sur les 

travaux expérimentaux et numériques antérieurs sur l'écoulement en aval d'une marche. 

 

 Le chapitre II comporte des brefs rappels et définitions sur les notions de la 

mécanique des fluide, la modélisation numérique et la présentation des deux logiciels 

utiliser dans ce travail. 
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 Le chapitre III comporte la simulation numérique via le méthode des différences 

finies  

 

 Le chapitre IV comporte la simulation numérique réalisé grâce à (Ansys Fluent), 

et rapporte les différents résultats obtenus. 

 

 Le chapitre V comporte la comparaison des résultats obtenus par les deux 

simulations. 

 

Enfin nous terminons notre travail avec une conclusion générale.  
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bibliographie 
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I.1   Introduction  

Les écoulement décollé et recollé derrière une marche descendante ou l’élargissement brusque se 

démarque comme l'un des cas importants de modèles géométriques considérés bidimensionnels 

ou tridimensionnels. Quoiqu’étant simple, l'attrait de ce modèle géométrique est que les 

écoulements sont caractérisés par d'importants phénomènes fondamentaux reliés à la mécanique 

des fluides : le développement d'une couche limite sur la paroi horizontale en amont, décollement 

et développement d'une couche de cisaillement au coin de la marche, formation d'une zone de 

recirculation en aval de la paroi verticale, recollement de la couche de cisaillement sur la paroi 

horizontale en aval et redéveloppement d'une couche limite en aval du point de recollement.  

Dans ce chapitre on essaye de donner une vue générale sur les écoulements en élargissement 

brusque et les écoulements décolles et recolles, on aborde notamment l’écoulement en aval d’une 

marche descendante et une synthèse bibliographique dans cet axe de recherche.  

I.2    Description du problème  

La marche descendante a été choisie comme géométrie de travail de cette étude, puisque 

l'écoulement qui s'y développe présente des caractéristiques proches de celles des écoulements 

industriels. La figure (I.1) montre les caractéristiques géométriques et physiques les plus 

importantes du problème. Cette géométrie est l’un des cas test les plus répandus dans le domaine 

des recherches fondamentales de la dynamique des fluides, expérimentales et numériques. Il s'agit 

d'une géométrie intéressante puisqu’elle génère des écoulements très instables. De plus, il est facile 

d'y maintenir le point ou la ligne de détachement sur une position donnée. Ceci est important quand 

on essaye de contrôler certains paramètres qui jouent sur la dynamique de l'écoulement. En outre, 

l'écoulement qui se développe en aval de l'expansion garde un grand degré de complexité, étant 

donné les instabilités caractéristiques de plusieurs types d'écoulements qu'on y retrouve, comme 

l'illustre la figure (I.1) : couche limite en développement (I), détachement de la couche limite (II), 

écoulement cisaillé (III), recirculation (IV), rattachement (V) et redéveloppement de la couche 

limite (VI), région d'interaction de la couche de cisaillement  et de la couche limite en 

développement (VII). 
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Figure(I.1):  Caractéristiques physiques générales de l’écoulement en aval de la marche 

descendante   

 

 

I.3     ECOULEMENTS DECOLLES ET RECOLLES 

Les décollements et recollements sont des écoulements qui sont créés généralement par le 

changement brusque de la géométrie. Plusieurs problèmes réels qui ont un intérêt industriel se 

composent de régions où l'écoulement peut être fortement turbulent avec des séparations, 

rattachement et des zones de recirculation. 

Il existe plusieurs configurations planes ou axisymétriques d'écoulement caractérisées par des 

séparations : 

- Elargissement brusque. 

- Marche descendante. 

- Marche montante. 

- Obstacle bidimensionnel.  

Nous détaillons dans la suite du chapitre quelques travaux antérieurs concernant certains 

écoulements séparés et recollés. 

I.3.1    Elargissement brusque 

Il existe deux types d’élargissement brusque, symétrique et asymétrique (Figures I.2 et I.3). Ce 

type d’écoulement pour les deux configurations se caractérise par une zone de recirculation dans 

la région de l’élargissement. 
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Figure(I.2):  Elargissement brusque axisymétrique 

 

 

Figure(I.3):  Elargissement brusque asymétrique 

Runchal A.K. (1970), a présenté les résultats d’une étude expérimentale utilisant la technique 

d’électrolyse contrôlée par diffusion pour déterminer les flux massiques dans les régions de 

séparation et de redéveloppement en aval d’un brusque élargissement d’un tube circulaire. Il a  

mené l’étude pour un nombre de Reynolds compris entre 2500 et 89000. 

Il a mis en évidence l’influence des conditions aux limites sur le transfert de masse. Il a montré                     

également que le transfert de masse dans la zone de rattachement varie par une loi en puissance 

simple du nombre de Reynolds, le point de recollement XR étant localisé entre 6H et 8H (H est la 

hauteur de la marche causée par l’élargissement du tube circulaire). 

Hutton A.G. & Smith R.M. (1986) ont proposé une étude numérique d’un écoulement turbulent 

s’écoulant à travers un canal avec un élargissement brusque du côté de la paroi                   supérieure (cas 

asymétrique) pour évaluer la performance des modèles de turbulence à deux équations. La 

configuration étudiée est un jet turbulent subissant le phénomène de décollement (dû à 

l’élargissement brusque) et de recollement générant une zone de recirculation. Le rapport  
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d’élargissement étant Er=2.1 et le nombre de Reynolds basé sur le diamètre de sortie étant 62000. 

Ils ont appliqué les modèles de turbulence à deux équations énergie dissipation 𝐾 − 𝜀 et q- f (q 

étant la racine carrée de l’énergie cinétique de la turbulence et f la fréquence des grosses 

structures). Ils ont comparé leurs résultats aux données expérimentales de Freeman A.R. & 

Szczepura R.T. (1982). Ils conclurent que la principale source d’erreur est l’équation de la  

dissipation et l’équation de la fréquence. Pour cela, ils ont proposé la modification des constantes 

dans les termes sources pour y remédier et avoir un meilleur accord avec les résultats 

expérimentaux. 

Khalil E.E. (1986) a étudié numériquement les écoulements à zones de recirculation en adoptant la 

méthode des différences finies et le modèle 𝐾 − 𝜀. Il a comparé ses résultats à des travaux 

expérimentaux antérieurs notamment ceux de Baker et al (1974) et ceux de Mobarak et al (1980). 

Son travail était destiné à rendre plus économique et plus rapide les designs des diffuseurs. Il s’est 

intéressé au phénomène de décollement ou de séparation en se penchant en particulier sur les effets 

des différents paramètres tels que l’inclinaison du plan supérieur, le profil de la vitesse d’entrée et 

les conditions aux limites de sortie. 

I.3.2    Ecoulement en aval d'une marche 

Parmi les écoulements bidimensionnels décollés et recollés, l'écoulement sur une marche a été 

largement étudié en raison de sa géométrie simple. La marche peut être abordée de plusieurs 

manières ; il y a la marche montante et la marche descendante. Il existe aussi la configuration où                  

les deux types de marche sont regroupés ; il s’agit de la cavité (marche descendante–marche 

montante) et de l’obstacle (marche montante – marche descendante). 

Toutes ces configurations engendrant une ou plusieurs zones de recirculation, trouvent des 

applications très importantes dans le domaine du design des bâtiments. Dans une étude numérique, 

Zhang C.X (1994) s’est penché sur les trois configurations (marche descendante, marche montante 

et obstacle) en prenant comme référence l’expérience de Moss W.D. & Baker S. (1980). Il s’est 

proposé d’examiner la performance du modèle de turbulence k–ε pour la                    simulation de ce type 

d’écoulements. 
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I.3.3   Marche montante 

 

Figure(I.4):Ecoulement sur une marche montante 

 

L'écoulement sur une marche montante a été peu étudié contrairement à la marche descendante,  

pourtant les applications industrielles sont nombreuses et intéressantes (transport ferroviaire, 

l'automobile, le bâtiment…). D'une manière générale ce type d'écoulement est composé de deux  

zones de recirculation qui sont des zones dépressionnaires, la première est localisée au pied de la  

marche et la seconde plus volumineuse sur la marche. 

On constate la présence d'un décollement au bord d'attaque de la marche à l'origine de la formation 

de la deuxième zone de recirculation 

 

. 

I.3.4 Marche descendante 

L'écoulement sur une marche descendante a fait l'objet d'une grande attention de la part de 

plusieurs chercheurs, en raison de ses nombreuses applications. En effet, il existe dans la littérature 

beaucoup d’études expérimentales ou numériques sur cette configuration en régime laminaires ou 

turbulents. Différentes applications dans l'industrie tels que les diffuseurs, les moteurs à 

combustion, le design des véhicules, des trains et des avions et même dans le design des 

constructions (écoulement du vent autour d’un bâtiment) sont liées à cette configuration. 
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Figure(I.5):  Marche descendante 

Une étude plus détaillée sur cette configuration (figure I.5) sera développée dans la suite du 

chapitre. 

I.3.5 L’obstacle 

On peut dire que c’est la combinaison de la marche montante et de la marche descendante (Figure 

I.6). L’écoulement autour de l’obstacle présente plusieurs zones de recirculation avant la marche 

montante, sur l’obstacle et à son aval. Zhang C.X (1994) a simulé numériquement l’écoulement 

turbulent autour d’un obstacle de hauteur H et de largeur 2H, en appliquant le modèle k-ε. Les 

résultats obtenus sont confrontés à l’expérience de Moss & Baker (1980). 

Le point de séparation en amont de l’obstacle déterminé numériquement est situé en Xs = 0.79H 

alors que la valeur expérimentale est Xs=H. L’attachement sur le plan vertical de l’obstacle se 

produit en Za=0.54H alors que l’expérience donne Za= 0.65H. IL n’y a pas de rattachement au- 

dessus de l’obstacle mais en aval de l’obstacle XR= 9.38H comparée à la valeur expérimentale    

XR = 10H. Les profils de la vitesse horizontale sont en bon accord avec l’expérience. Pour le 

décalage   des profils au-dessus de l’obstacle, l’auteur soupçonne les conditions d’entrée d’en être 

la cause. 

Les vitesses verticales sont correctement déterminées numériquement sauf pour le bord aval de 

l’obstacle où il y a un écart qui peut provenir du vortex qui apparaît sur l’obstacle. 



 

 

Chapitre I                                                                        Description du problème et bibliographie                                                              

11 

 

 

Figure(I.6):  Ecoulement sur un obstacle 

Leclercq D.J.J. & al (2001) ont réalisé une étude expérimentale d’un écoulement turbulent  

bidimensionnel abordant un obstacle de longueur L, composé de deux marches montante et 

descendante de hauteur H=0.05 m avec un nombre de Reynolds ReH=1.7 105. Cette étude a été 

examinée par la suite par Addad & al (2003). 

Le bruit aérodynamique étant généré par les structures turbulentes des écoulements sur les 

véhicules routiers et les trains. Addad Y. & al (2003) ont réalisé une simulation des grandes 

échelles (LES) d’un écoulement turbulent sur un obstacle de hauteur H=50 mm et de longueur  

L=10 H constitué d’une marche montante et une autre descendante, la vitesse de l’écoulement 

externe étant Ue=50 m/s donc un nombre de Reynolds ReH=1.7 105. L’objectif est de réduire la 

propagation du bruit. Leurs résultats sont en bon accord avec ceux de Leclercq & al (2001). 

L ‘écoulement étudié développe trois zones de recirculation autour de l’obstacle : les points de 

séparation et de rattachement avant la marche montante sont en accord avec ceux de Leclercq & 

al (2001) et Moss & Baker (1980). L’expérience montre que l’écoulement décolle entre          0.8H 

et 1.5H avant la marche et se recolle sur la paroi verticale de la marche alors que les valeurs 

retrouvées par la méthode LES sont respectivement 1.2H et 0.6H. La seconde zone de recirculation 

atteint 4.7H, ce qui est en accord avec la valeur expérimentale de Moss & Baker, alors que Leclercq 

& al (2001) ont observé le recollement de la deuxième zone en 3.2H. Au bord de la marche 

descendante survient le dernier décollement puis le recollement à une distance de 4H à partir des 

calculs par simulation tandis que pour l’expérience de Leclercq & al (2001) la distance est de 3.5H. 
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I.4     ECOULEMENT EN AVAL D’UNE MARCHE DESCENDANTE 

Dans ce qui suit, et pour plus de clarté, nous avons choisi d’aborder l’écoulement sur une marche 

descendante à travers ses caractéristiques générales telles que les paramètres importants, la 

structure de l’écoulement (les différentes régions) ; les principales interactions entre les différentes 

zones de l’écoulement et les grandes structures associées au processus de séparation et de 

recollement. Nous détaillons ces mécanismes à travers une étude bibliographique. 

      Description générale de l’écoulement 

L’écoulement sur une marche descendante est un écoulement décollé et recollé crée par la 

marche. Le décollement de la couche limite amont se produit à partir du mur vertical de la marche, 

en développant une nouvelle couche cisaillée. 

La séparation est au départ parallèle au plan horizontal de la marche ; la ligne de séparation en 

aval de la marche est ensuite légèrement déviée. 

I.4.1.1     Caractéristiques de l’écoulement 

La longueur de recollement est la caractéristique la plus importante dont dépend la zone de 

recirculation. 

En étudiant l’évolution de la longueur de rattachement et sa variation en fonction des conditions 

dynamiques et géométriques, J.K.Eaton & al (1981) ont cité cinq paramètres indépendants 

importants : 

 Les conditions initiales. 

 L’épaisseur de la couche limite. 

 La turbulence de l’écoulement extérieur. 

 Le gradient de pression. 

Trois autres paramètres spatiaux indépendants sont définis par BADRI Kusuma (1993) : 

 Le rapport d’expansion : (voir figure I.7) 

                                                                  Er =
Yaval

Yamont
                                                          (I.1) 

 

Westphal & al (1984) ont montré que le coefficient de pression est pratiquement indépendant de                              

Er, et ils ont montré que l’effet de ce paramètre sur le processus de recollement est négligeable 

comparé aux autres paramètres. 

 Le nombre de Reynolds basé sur la vitesse de l’écoulement, la hauteur de la 

marche et la viscosité du fluide : 
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                                                               𝑅𝑒𝐻 =
𝑈𝑒 𝐻

𝜇
                                                           (I.2)        

Il met en évidence l’influence relative de la viscosité sur l’écoulement décollé et recollé. Les effets 

du nombre de Reynolds sur la longueur de recollement ont été étudiés par Back & Roshke (1972) 

pour le cas de la marche descendante, et par Schichting (1979) pour le cas d’un obstacle 

cylindrique. Aux faibles nombres de Reynolds, l’écoulement est laminaire. Quand le nombre de 

Reynolds croit, l’instabilité se développe. Aux grands nombres de Reynolds, l’écoulement autour 

d’un cylindre devient instable et la couche limite devient turbulente.   D’après Adams & al (1984) 

ReH est considéré comme un paramètre fondamental pour décrire le régime total de l’écoulement 

sur une marche descendante. 

 Le rapport    
𝛿

𝐻
 

Ce paramètre est représentatif de la condition initiale de la couche cisaillée.  étant l’épaisseur de 

la couche limite sur la paroi amont Bradshaw (1966) et Birch (1981), ont discuté l’importance de 

la condition initiale sur le développement de la couche cisaillée. 

I.4.1.2    Structure de l'écoulement 

Dans leurs travaux Abbot et Kline en 1961 et Pronchick et Kline en 1983 ont divisé le champ en 

régions d'écoulement simple, ce qui permet de mieux comprendre le mécanisme de l'écoulement. 

Ainsi l'écoulement turbulent sur une marche pour le cas d'une couche limite incidente est séparé 

en cinq régions d'après l'étude de E.W. Adams et al (1984) (figure I.7) : 

 Région 1 : couche limite. 

 Région 2 : couche cisaillée libre. 

 Région 3 : zone de recirculation. 

 Région 4 : zone de recollement.  

 Région 5 : zone de redéveloppement. 

Les profils de vitesse des régions 1 et 5 sont paraboliques, alors que ceux des régions 2, 3 et 4 

présentent des interactions elliptiques. Il existe alors plusieurs interactions entre les régions 

générées par l’écoulement ; celles-ci sont surtout fortement dépendantes des paramètres spatiaux 

(Er, ReH et   𝛿 /H). 

Région 1 : Elle correspond aux conditions d’entrée de l'écoulement en aval de la marche. D'après 

Birch (1981), la couche cisaillée est très sensible aux conditions aux limites, ce qui entraîne une 

influence de la zone 1 sur tout l'écoulement. Bradshaw et Wong (1972) l’ont bien remarqué dans 
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leurs travaux. Ces derniers ont défini trois régimes de perturbation (dus à la présence de la 

marche dans cette région) : Perturbation écrasante   (
𝛿
𝐻
< 1), forte perturbation (

𝛿
𝐻
= 1) et 

faible perturbation (
𝛿
𝐻
> 1) Notons que ces critères n’ont pas été validés pour toutes les 

configurations d’écoulements incidents (Badri Kusuma, 1993). 

Région 2 : C’est une couche cisaillée libre. Elle est située entre le point de décollement au bord  

de la marche et la frontière de la zone recirculation, où la structure de l'écoulement est très 

influencée par le recollement (zone d'impact). 

Région 3 : Il s’agit d’une zone de recirculation où l'écoulement est à flux opposé. D'après Eaton 

& Johnston (1980), Westphal & al 1984 et Adams & al (1984) l'écoulement a une vitesse ne 

dépassant pas 20% de la vitesse de référence (Uref) et un coefficient de frottement de l’ordre de 

(Cf = 0,02). Chandrsuda & Bradshaw (1981) ainsi que Eaton et Johnston (1981) ont conclu que ce 

n'est pas une zone ’’d'eau morte’’ de faible vitesse. 

L'écoulement dans cette zone fut considéré comme laminaire, la corrélation -uv étant très faible, 

malgré les grandes fluctuations crées par l'instabilité de l'écoulement (Driver & Seegmiller 

1982, Pronchick & Kline, 1983 et Adams & al. 1984). 

D’après l’étude de Chapman (1958), la longueur de recollement correspond à un équilibre entre  

l’écoulement entraîné de la zone de séparation par la couche cisaillée libre et l’écoulement 

inverse de la zone de recollement vers la zone de séparation sous l’effet des forts gradients de 

pression. Westphal & al. (1984) ont conclu que la croissance de l’entraînement de la couche 

cisaillée entraîne une diminution de la longueur de recollement. 

Région 4 : La zone de recollement qui est caractérisée par un écoulement instable soumis à une 

forte interaction avec la paroi. Shandrsuda, 1975 et Kim & al. (1978) ont constaté que l'écoulement 

près de la paroi à l'aval du recollement est fortement intermittent. Eaton & Johnston (1980) 

constatèrent qu'au début de la zone de recollement le courant est complètement inversé, changeant 

de direction vers l'aval. La longueur de recollement est fluctuante d'après Abbot & Kline (1961) 

et Eaton & Johnston (1980). Le point de recollement fluctue sur une zone  de longueur de 2H autour 

de sa position moyenne. D'après Adams & al. (1984) le processus de recollement constitue une 

condition initiale au processus de redéveloppement. 

Région 5 : C'est la région de redéveloppement (de restructuration) où l'équilibre énergétique de 

l'écoulement commence à se rétablir pour atteindre les propriétés d'établissement de la zone 
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aval. Dans cette région la tension de Reynolds diminue rapidement et simultanément une nouvelle 

sous couche limite commence à se développer en traversant la couche cisaillée. La partie extérieure 

de la couche cisaillée de recollement conserve la caractéristique d'une couche cisaillée libre, 

jusqu'à 50H à l'aval du point de recollement (Bradshaw et Wong, 1972, et Smyth, 1979) ; les 

grandes structures développées dans la couche cisaillée libre de la séparation persistent (Badri 

Kusuma, 1993). 

 

Figure(I.7):  Structure de l’écoulement sur une marche descendante 

 

 I.4.2   Références  

Les références présentées concernent les principaux travaux expérimentaux et numérique réalisés 

sur la marche descendante. 

I.4.2.1    Etudes expérimentales 

 Les études expérimentales sur les écoulements détachés et rattachés derrière une marche sont 

nombreuses. Elles considèrent généralement les effets de la séparation, du rattachement, et du 

redéveloppement de la couche limite ainsi que l'influence du nombre de Reynolds.  

Eaton et Johnston (1981), ont évalué toutes les données expérimentales disponibles pour des 

comparaisons et validations des codes de calculs. Ils ont également proposé des critères pour 

qu'une expérience puisse être considérée comme référence pour les calculs numériques : 

adéquation de l'instrumentation pour accéder aux directions instantanées de l'écoulement dans la 

zone de recirculation ; conformité des installations pour assurer la condition de bidimensionnalité, 

c'est à dire, que le rapport de la profondeur par la largeur du canal soit supérieur à 10 ; 
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établissement précis des paramètres de contrôle de l'écoulement, comme l'épaisseur de la couche 

limite en amont du point de détachement, profil de vitesse moyenne, intensité turbulente, etc ; et 

finalement, l'accord des grandeurs turbulentes avec le comportement standard des autres 

expériences, par exemple que le tenseur de Reynolds croisse de la marche à la région de 

rattachement de la couche limite et qu'il décroisse en aval de cette région. 

Ils ont présenté ces critères à la conférence de Stanford (1980-1981) ainsi qu'une analyse complète 

des travaux réalisés avant 1980, en concluant qu'il n'existait aucune expérience qui remplisse leurs 

conditions. Cependant l'expérience de Kim et al. (1978), présentant des mesures de vitesse 

moyenne, tensions de Reynolds et coefficient de pression. 

Eaton et Johnston (1980) ont mesuré la composante moyenne de la vitesse longitudinale et 

l'intensité turbulente à l'aide d'un anémomètre à fil à courant puisé. Ils présentent également la 

pression statique et le coefficient de friction sur les parois. Par ailleurs, Pronchick et Kline (1983) 

ont utilisé un système LDA à deux composantes en déterminant un ensemble de résultats très 

complet. Ils ont également visualisé l'écoulement à l'aide de bulles d'hydrogène, arrivant à la 

conclusion que la structure de l'écoulement dans la région de rattachement est dominée par des 

grands tourbillons prenant naissance dans la couche cisaillée libre. Leur expérience a aussi montré 

que la couche de mélange qui se déclenche en aval de la marche est similaire à une couche de 

mélange spatiale libre. 

Les instabilités primaires dans un écoulement détaché-rattaché ont été étudiées par Troutt et al 

(1984). Ils ont mis en évidence l'existence et l'importance des grosses structures dans l'écoulement 

en aval de la marche. Roos et Kegelman (1986) ainsi que Isomoto et Honami (1987) ont étudié 

l'influence du nombre de Reynolds et l'intensité turbulente en amont de la marche. Otûgen (1991) 

a étudié l'influence de la hauteur de la marche sur l'écoulement moyen sur cette géométrie. La 

position du point de rattachement et l'intensité tourbillonnaire en aval de la marche sont très 

dépendantes de ces paramètres. Les structures cohérentes ont également été mises en évidence 

dans les écoulements bidimensionnels de film liquide par Gharib et Derango (19S9). 

En 1950 Hsu étudie la conversion de l'énergie en mesurant le champ de la vitesse moyenne et le 

champ turbulent de l’écoulement en aval d’une marche descendante. 

Une étude expérimentale ayant pour objectif de déterminer le coefficient de transfert de chaleur 

local. Le facteur de recouvrement pour les écoulements turbulents bidimensionnels décollés et 

recollés a été présenté par R.A.Seban, A. Emery, et A.Levy (1959). 
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Ces derniers utilisent deux marches chauffées de hauteurs différentes (H1= 2.06 cm et       H2 

=0.64 cm). Ils obtiennent un coefficient de transfert de chaleur maximal à x = 5H1 ; c’est le point 

où l’écoulement est recollé, dans le cas de la marche H1. Pour la deuxième marche, le rattachement 

se fait à 6H2. 

More étudie en 1960 la région de séparation sur une mince couche d'air avec un rapport 

𝛿

𝐻
= 1. Il détermine la distribution des pressions sans pouvoir mesurer les grandeurs 

turbulentes. Alors que Tani & al. (1961) parviennent à mesurer l'intensité de la turbulence, la 

contrainte de cisaillement de la turbulence, les profils de vitesse moyenne et la distribution des 

pressions.   Ils concluent que la distribution de pression n'est pas sensible à la variation de H et de 

 et que les différentes conditions de la couche limite amont ne créent pas de différence 

significative à l'aval de la marche, car l’influence de la turbulence se produit dans la couche de 

cisaillement libre près de la séparation. 

Dans la même année Abbot & Kline (1961) ont visualisé les régions de recirculation et de 

recollement. Ils ont effectué des mesures qualitatives sur une double marche descendante (Figure 

I.8). Ils ont noté que l'écoulement près du recollement est instable et se divise en trois régions : 

écoulement 3D, 2D et" overall length of séparation" ;   l'intensité turbulente et le nombre de 

Reynolds n'ont pas d'effet sur la structure de l'écoulement, aussi la longueur de recollement trouvée 

sur chacune des marches est de l'ordre de7H. 

 

 

 

Figure(I.8):  Double marche descendante  
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En 1966 Krall K.M. & Sparrow E.M. mènent des expériences pour déterminer l’effet de 

l’écoulement décollé sur les caractéristiques du transfert de chaleur dans un tube circulaire. 

L’écoulement de séparation est produit par un orifice de diamètre variable, produisant un     

nombre de Reynolds qui varie entre 10000 et 130000. Les mesures obtenues montrent que les 

coefficients de transfert de chaleur dans les régions de séparation, de recollement et de 

redéveloppement sont nettement plus grands que ceux pour l’écoulement totalement développé.  

Par exemple au point de rattachement, les coefficients sont 3 à 9 fois plus grands que ceux 

correspondants à l’écoulement pleinement développé. Le point de recollement de l’écoulement,  

qui correspond au maximum de distribution du coefficient de transfert de chaleur, est passé de 

1.25D à 2.5D à partir de l’expansion (D étant le diamètre de l’orifice). 

Filetti E.G. & Kays W.M. (1966) présentent des résultats expérimentaux concernant le coefficient 

de transfert de chaleur dans les régions de séparation, de rattachement et de redéveloppement 

derrière une double marche située dans un conduit. Le nombre de Reynolds basé sur le diamètre 

du conduit varie de 70000 à 205000. Le maximum de transfert de chaleur (nombre de Nusselt 

maximum) est atteint au point de rattachement suivi d’une diminution vers la zone de 

l’écoulement de conduit pleinement développé. 

L’étude expérimentale de D.W. Etheridge & P.H. Kemp (1977) a été réalisée dans un canal de 150 

mm, muni d’une marche descendante de hauteur H=13.46 mm, située à 750 mm de l’entrée du 

canal. L’objectif de leur première expérience est de déterminer les conditions de développement 

de la couche limite le long du canal et l’expression de son épaisseur. Aussi ont- ils mesuré les 

profils des vitesses moyennes et les intensités de la turbulence pour trois sections transversales 

distinctes : x= 0.44, 0.91 et 1.94 m (x étant la distance à partir de l’entrée du canal). La seconde 

expérience a permis de déterminer les profils mesurés en différentes positions en amont de la 

marche. Ils ont déduit que les grandeurs passent par le maximum près de la paroi et que les mesures 

de turbulence révèlent le développement d’une nouvelle couche cisaillée, qui se divise au point de 

rattachement avec le 1/6 de la masse du fluide de l’écoulement de l’aval. 

Un travail expérimental est réalisé par Tagg, Patrick & Wragg en 1979 pour déterminer les 

distributions de transfert de masse en amont d’un jet circulaire injecté dans un conduit circulaire à 

partir d’une buse. Pour différents rapports d’expansion, le taux de transfert de masse augmente 

pour atteindre une valeur maximale, puis décroît pour obtenir la valeur prédite dans le cas de 

l’écoulement développé. 
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Kim J. & al. effectuent une étude complète en 1978 sur l'écoulement décollé et recollé au passage 

d'une marche descendante ayant comme rapport d’expansion Er = 1/3, une vitesse d’entrée 

U=18.2m/s   et un nombre de Reynolds basé sur la hauteur de la marche ReH = 31000. Ils trouvent 

une distance de recollement XR=7.0H. 

Dans sa thèse de doctorat, Badri Kusuma (1993) a présenté une étude expérimentale sur  

l'écoulement turbulent décollé et recollé au passage d'une marche descendante. Les expériences 

étaient destinées à produire des mesures de référence sur la structure turbulente de ce type 

d'écoulement et pour comprendre les effets des rugosités de la paroi et de turbulence extérieure 

dans la zone de recirculation et de recollement. Il a réalisé les mesures qualitatives par visualisation 

Laser et les mesures quantitatives par anémométrie à fil chaud.Trois configurations d’écoulement 

ont été considérées : canal rectangulaire, canal divergeant et jet pariétal, la marche étant à hauteur 

réglable entre 0 et 10 cm. 

 Il a exploité les mesures par trois méthodes : le lissage des gradients de vitesses moyennes près 

des parois pour définir la longueur de recollement, les longueurs caractéristiques de la turbulence 

en coordonnées de Westphal pour analyser le comportement des grandes structures, la loi 

universelle logarithmique (couche limite) et l'affinité des profils de vitesses moyennes pour 

analyser la zone de recollement. 

Des données expérimentales ont été obtenues pour l’écoulement turbulent en aval de la  marche 

descendante par Boizumault F et al. (1999) dans le but d’analyser l’échange thermique local par 

convection sur la paroi située en aval de la marche. La configuration étudiée présente un rapport 

d’expansion ER=1.5, la hauteur de la marche étant H=4 mm. Trois conditions de l’écoulement à 

l’amont de la marche sont prises en considération : écoulement uniforme en dehors d’une couche 

limite laminaire, celui d’une couche limite turbulente ou le cas d’un écoulement en régime établi. 

Ils ont conclu que : 

 L’abscisse du point de transfert maximum présente des variations 

importantes pour la gamme de nombres de Reynolds étudiée. 

 Dans la zone X<Xmax qui comprend la zone de recirculation, ne dépend 

que du régime d’écoulement en amont de l’élargissement. 

 Le transfert de chaleur dans la zone de recollement est régi par l’épaisseur 

de la couche limite d’une part et par la vitesse d’autre part. 

Reulet. P, Arnould .H et Millan. P (1999) ont étudié expérimentalement l’écoulement en aval d’une 

marche descendante de hauteur H=50 mm, le rapport d’élargissement étant E r=1.33. L’expérience 
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a été réalisée pour deux vitesses d’entrée de 12 m/s et 20 m/s, soit des nombres de Reynolds ReH  

de 3.8 × 104 et 6.4 × 104. Leur but était de valider des lois de parois appliquées dans les zones de 

très proche paroi pour des situations complexes telles que la zone de recollement et la zone de 

recirculation. 

Ils ont trouvé un point de recollement XR = 7.3H pour le cas où Ue=12 m/s et pour le cas où                     

Ue= 20 m/s. 

En faisant une comparaison des résultats expérimentaux avec les lois de paroi correspondantes 

dans la zone de recirculée, ils ont montré que la zone logarithmique n’est visible sur les profils que 

pour 2.5 ≤ X/H ≤5. Ils montrent la nécessité de modifier les lois de parois pour mieux représenter 

la zone de recirculation. 

En 2001 Legrand J. Tihon J., et Legentilhomme P. ont fait une étude expérimentale d’un 

écoulement derrière une marche descendante de hauteur H=20mm dans un conduit rectangulaire 

de dimensions 220mm de largeur x 70mm de hauteur x 1.6m de longueur. Le rapport d’expansion 

étant Er== 1.4 et le nombre de Reynolds basé sur la hauteur de sortie variant de 1200 à 12000. La 

technique de mesure utilisée est la méthode de l’electro-diffusion. Ils déterminèrent ainsi la 

longueur de rattachement XR/H = 5.1 en montrant la dépendance de celle- ci avec nombre de 

Reynolds et en se basant sur les études antérieures. Cette étude a permis d’identifier 

expérimentalement deux zones de recirculation en aval de la marche ; La première est le petit 

tourbillon au coin de la marche   caractérisé par la distance Xc/H=1.75, la deuxième est la zone de 

recirculation caractérisée par la longueur de rattachement XR/H = 5.1. 
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Tableau (I.1) : Résultats des principales études numériques antérieures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.4.2.2 Etudes numériques  

Les études numériques réalisées sur cette géométrie sont très nombreuses. Presque toutes ont été 

réalisées à l'aide des modélisations classiques du type fermeture en un point, à l'exception d'une 

étude récente réalisée par Arnal et FViedrich (1991) sur la marche descendante, à l'aide de la 

simulation des grandes échelles. Dans cette bibliographie on se limitera à en citer quelques-unes. 

L’étude de A.D.Gosman & al. (1977) fut consacrée à la résolution numérique des équations de 

conservation pour des écoulements bidimensionnels à recirculation. Ils utilisèrent une méthode 

Auteurs Er /h ReH 

(10-4) 

XR/H B/H 

Hsu 1950) 1.67 0.13 25 6.3 4.5 

Abbot & Kline (1961) 1.5 0.16 a 
1.97 

2 a 5 7 a10 2-15 

Krall & Sparrow (1966) 2/3 
à 

1/4 

 1 a 13 1.25 a 
2.5 

 

Bradshaw & Wong 

(1972) 

 0.13 4.2 6.0 30.5 

Baker (1977) 1.1 0.71 5 5.7 a 

6.0 

18 

Etheridge & Kemp 

(1978) 

1.07 2 0.5 5.0 12 

 
Eaton & Johnston(1980) 

1.67 

1.67 

1.67 

0.23 

0.23 

0.18 

3.9 

2.3 

1.1 

8 

8.2 

7.0 

12 

12 

12 

Chandrsuda 
& Bradshaw 
(1981) 

 0.04 11 5.9 15 

Adams et al (1984) 1.25 0.2-1.6 0.8 a 
3.6 

4.8 a 6.6 11.4 

Seegmiller et al (1985) 1.13 1.47 3.78 6 12 

Otugen & 

Muckenthaler (1991) 

1.5 à 

3.13 

 16 

16 

6.3 10.4 

Yul Yoo & Baik 

(1992) 

  20 6.5 43 
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des volumes finis pour sept configurations distinctes adoptant leurs différentes conditions aux 

limites correspondantes, dont celle de la marche descendante de Abbot & Kline (1962), pour 

laquelle ils déterminèrent une longueur de rattachement XR= 9H. Leurs résultats étaient en assez 

bon accord avec les résultats expérimentaux d’Abbot & Kline. Ils conclurent ainsi que le modèle 

à deux équations pouvait être adapté à une multitude de situations industrielles 

Demirdzic et al. (1981) ont utilisé un modèle K—e qui sous-évalue la longueur de rattachement. 

Un modèle des tensions de Reynolds a été employé par Celengil et Mellor (1985), mettant en 

évidence un écoulement instable avec un comportement à peu près périodique. Les moyennes 

temporelles ont été comparées avec celles de Kim et al (1978). Awa et al. (1988) ont obtenu de 

très bons résultats moyens en faisant des adaptations du modèle K—e pour les différentes zones 

de la figure I.4. Le problème majeur de cette technique est le manque de généralité. Il faudrait, 

dans ce cas, avoir un modèle pour chaque problème à étudier. Les modèles déjà utilisés avec cette 

géométrie mènent à des résultats plus ou moins corrects selon leur degré d'adaptation au problème 

traité. 

Driver et Seegmiller (1985) ont utilisé les versions modifiées du modèle 𝑘 − 𝜀   et le modèle ASM 

(algebraic stress model) de Sindir.M (1983). Ce dernier a présenté une version modifiée du code 

TEACH (Gosman, 1977) pour accommoder les modèles de turbulence 𝑘 − 𝜀   et (ASM). Ils ont 

utilisé une grille de 42x42 pour le maillage. Il a constaté qu’en modifiant le terme de production 

dans l’équation du taux de dissipation, il obtient une nette amélioration aux résultats numériques. 

La longueur de rattachement et les tensions de Reynolds s’approchaient davantage des valeurs 

expérimentales. 

N.Toy & K.Ainkaran (1986) ont utilisé le modèle de turbulence à deux équations 𝑘 − 𝜀   de 

Spalding & Launder (1973). Les calculs ont été menés avec le code CHAMPION de Pun & 

Spalding (1976) moyennant l'algorithme SNIP de Spalding (1976) similaire à l'algorithme 

SIMPLE de Patankar & Spalding (1972). Leurs résultats montrent que la longueur de rattachement 

est affectée considérablement par la géométrie de la marche. 

Dans le domaine du transfert thermique, une étude sur le traitement des parois a été proposée par 

M.Ciofalo & M.W.Collins (1989) pour les écoulements turbulents générant des recirculations .Le 

nombre de Nusselt et le nombre de Sherwood obtenus par l’utilisation des fonctions de paroi 

classiques ne sont pas satisfaisantes dans les régions de rattachement et de redéveloppement. Pour 

cela ils ont utilisé une autre approche qui consiste à considérer l’épaisseur adimensionnée de la 

sous couche visqueuse comme variable en fonction de l’intensité de la turbulence déduite l’énergie 
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cinétique turbulente. En adoptant cette approche et en utilisant le modèle 𝑘 − 𝜀   avec le code 

numérique FLOW3D, ils ont amélioré les résultats pour le cas de plusieurs géométries dont la 

marche et la double marche descendante en appliquant les trois méthodes du traitement des parois. 

Ceci a permis de montrer que l’approche proposée aide à améliorer les résultats qui sont en 

meilleur accord avec les données expérimentales. Ils ont obtenu dans le cas de la marche 

descendante (Er=1.25, ReH = 2800) : XR 5H et pour le cas de la double expansion symétrique 

(Er=2.125, ReH=5700, H=2.86 cm) : XR 4.5H. 

Chang K.C. & al. (1991) développèrent un modèle de turbulence 𝑘 − 𝜀 hybride, en modifiant les 

effets de courbure pour le cas des écoulements générant des zones de recirculation. Ils ont obtenu 

une meilleure simulation des écoulements turbulents décollés. Ils ont présenté dans leur article, les 

profils de vitesse et de l’énergie cinétique turbulente et un tableau comparatif des longueurs de 

rattachement obtenus par l’expérience et par le calcul basé sur le modèle 𝑘 − 𝜀 standard ainsi que 

les versions modifiées. 

Marrano R. (2003) a étudié la marche descendante de Eaton, 1980, dans le cas tridimensionnel en 

utilisant la méthode des grandes échelles LES (décrite au chapitre II). L’aspect innovateur de son 

étude est de montrer la faisabilité et l’aptitude de la méthode LES pour modéliser un écoulement 

turbulent dont le nombre de Reynolds est relativement élevé (ReH=11000 et ReH=39000) sans 

recourir à une loi de paroi. Il a validé son code de calcul par comparaison avec les résultats 

expérimentaux de l’écoulement laminaire derrière une marche descendante obtenus par Armaly et 

al (1983). La validation du code étant faite, il étudie l’écoulement turbulent et obtient des résultats 

relativement proches des valeurs expérimentales de Eaton ; XR=7.1H alors que XRexp=7.0H pour 

le premier cas et XR=7.8H alors que XRexp=8.0H pour le deuxième cas. Il effectue aussi une 

comparaison avec les résultats obtenus par le calcul basé sur le modèle standard 𝑘 − 𝜀 pour lequel 

XR=6.2 (ReH=11000) et Xr=6.6 (ReH=39000). Il justifie les écarts entre ses résultats et l’expérience 

d’Eaton par l’insuffisante de la finesse du maillage utilisé. Près des parois solides et dans la couche 

de cisaillement le maillage a été serré car ces zones sont des régions à gradients élevés. 

La simulation à grandes échelles (LES) a été utilisée par Campregher R. et al (2004) pour 

modéliser un écoulement turbulent sur une marche descendante avec un nombre de Reynolds 

ReH=38000. Un maillage non uniforme est utilisé pour serrer les mailles dans les zones où les 

gradients sont importants (derrière la marche et prés de la paroi inférieure). Les différentes 

propriétés du fluide   ont été étudiées telles que la longueur de rattachement XR et les profils de la 

vitesse.  
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Tableau (I.2) :  Résultats des principales études numériques antérieures. 

Auteurs Er C.L ReH Xr/
H 

B/H Modèle Notes 

Sindir et al (1983) 1.12
5 

T  6  k – ε 
ASM 

 

 1.25 T 2800 5  k – ε Marche descendante 
Giofalo et Collins (1989)       

 2.12
5 

T 57000 4.5  Expans. symèt. 

 1/3 T 132000 6.0  k - ε Loi paroi 2 couches 
Thangam et 

Speziale(1991) 
      

    6.25  Loi paroi 3 couches 

    
6.90 

 
     Viscos.turbo. 

     anisotrope 
Zhang (1994) 1.11 T  4.93  k - ε Ecoulement 3D 

Chan D.C. et 
Mittal R. 
(1996) 

 T 5100     

Marrano R. (2003)  T 11000 7.1  LES  

   

11000 
 

6.2 
k - ε 

  
39000 6.6 

 

Campre
gher 
(2004) 

 T 38000   LES  

Presente étude 1.12
5 

T 37423 3.2 
 
 

5.4 

1 k - ε 

Mono 
 

multi 

 

Loi universelle 

logarithmique 

 

 

I.4.2.3 Discutions  

On arrive alors aux conclusions suivantes : 

 Les études expérimentales développées sur la marche descendante offrent les éléments de base 

(statistiques) pour des validations des modèles numériques ainsi que quelques éléments pour la 

compréhension de la physique de l'écoulement. En revanche, très peu d'éléments concernant la 

transition vers la turbulence sont disponibles.  

Du côté numérique, on s'est limité à essayer de reproduire les éléments statistiques expérimentaux 

avec des simulations numériques du comportement moyen de l'écoulement. Même l'étude de Arnal 

et friedrich (1991) en simulation des grandes échelles n'apporte que peu d'information sur le 

comportement instationnaire de cet écoulement. 
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I.5 Conclusion  

Nous venons de constater que les écoulements décollés et recollés et particulièrement l’écoulement 

derrière une marche descendante ont intéressé beaucoup de chercheurs. Ce dernier  a été exploré 

expérimentalement et numériquement. Nous constatons que les résultats sont de plus en plus 

détaillés grâce au développement continu des moyens expérimentaux et des modèles numériques 

néanmoins des divergences entre certains résultats persistent toujours causées par la région de très 

proche paroi dont l’étude doit être approfondie davantage. 
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Modélisation numérique et équation 
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II.1 Introduction  

L’étude des écoulements fait partie du domaine de la spécialité de la mécanique des fluides. Quand 

on traite de la mécanique des fluides, on procède à l’imagination d’un volume élémentaire se 

trouvant à un instant donné dans un espace bien défini et par la suite appliquer les principes 

physiques et mécaniques permettant de mettre au point des formulations mathématiques régissant 

l’écoulement. Pour ce qui nous concerne, ces principes se résument dans le principe de 

conservation de la masse et le principe de conservation de la quantité de mouvement.  

II.2  Notations  

Dans la présente étude, le fluide considéré est parfait à masse volumique constante (compressible 

par conséquent), les équations seront exprimées dans un système de coordonnées cartésiennes : 

 Coordonnées (x, y, z). 

 Vecteurs de base (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗). 

 Les composantes de la vitesse instantanée (u’, v’, w’).                                        

 Vecteur tourbillon (wx, wy, wz). 

 Quantités moyennes principales (U, V, W, P). 

 

II.3 Equations gouvernant l’écoulement 

Les équations régissant l’écoulement d’un fluide Newtonien sont les équations de la conservation 

de la masse et l’équation de la quantité de mouvement. 

II.3.1     Equation de continuité  

L’équation de continuité est celle qui décrit le principe de conservation de la masse en mécanique 

des fluides. La variation de la masse contenue dans le volume de contrôle est égale au débit 

massique entrant moins le débit massique sortant. 

∂ρ

∂t
∆𝒙∆𝒚∆𝒛 = (𝝆𝒖)(𝒙,𝑦,𝑧)∆𝒚∆𝒛 − (𝝆𝒖)(𝒙+∆𝒙,𝑦,𝑧)∆𝒚∆𝒛 + (𝝆𝒗)(𝑥,𝒚,𝑧)∆𝒙∆𝒛          (II. 1)

− (𝝆𝒗)𝒙,𝒚+∆𝒚,𝑧∆𝒙∆𝒛 + +(𝜌𝑤)𝑥,𝑦,𝑧∆𝑥∆𝑦 − (𝜌𝑤)𝑥,𝑦,𝑧+∆𝑧∆𝑥∆𝑦 
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Figure 1 :  l'ensemble des débits traversant les 6 faces du parallélépipède 

 

En utilisant le développement de Taylor : 

                                       (𝜌𝑢)𝑥+∆𝑥,𝑦,𝑧 = (𝜌𝑢)𝑥 +
𝜕(𝜌𝑢)

𝜕𝑥
∆𝑥 + 𝛷                                           (II.2) 

𝛷 : terme négligeable de l’ordre supérieur 

On aura : 

                        
𝜕𝜌

𝜕𝑡
∆𝑥∆𝑦∆𝑧 = − [

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
]ΔxΔyΔz                     (II.3)    

En simplifiant le volume on obtient :  

                              
𝜕𝜌

𝜕𝑡
= − [

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
]                   (II.4)    

Donc l’équation de continuité est :      

                                           
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣) = 0                                            (II.5) 

Et en absence d’apport et de perte cette équation peut s’écrire sous la forme : 
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𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣) = 0                                               (II.6) 

   

II.3.2   Equation de conservation de la quantité de mouvement 

 

La quantité de mouvement est égale au produit de la masse par la vitesse. Elle dépend des forces 

appliquées sur la particule fluide. Cette équation découle du deuxième principe de Newton, qui 

stipule que le taux de variation de la quantité de mouvement est égal à la somme des forces 

extérieures, à savoir : 

 Les forces de surface : viscosité, pression 

 Les forces de volume : gravité, Coriolis, centrifuges, électromagnétiques... 

Pour établir l’équation de quantité de mouvement on prend en considération que les forces de 

gravité, de viscosité et de pression. Ces forces sont définies comme suit : 

La force de Pression suivant 𝑒𝑥⃗⃗  ⃗: 

             Fp = [p(x,y,z) − px+∆x]∆y∆z = [px − (px +
∂(p)

∂x
Δx)]ΔyΔz = −

∂(p)

∂x
∆x∆y∆z                (II.7) 

 

La force de viscosité suivant 𝑒𝑥⃗⃗  ⃗: 

                                            𝐹𝛾 = [
𝜕𝜎𝒙𝒙

𝜕𝑥
+ 𝜕𝜏𝒚𝒙

𝜕𝑦
+ 𝜕𝜏𝒛𝒙

𝜕𝑧
] ∆𝑥∆𝑦∆𝑧                                             (II.8) 

 

La force de gravité : 

                                                      𝐹𝑔 = 𝑚𝑔 = 𝜌𝑔∆𝑥∆𝑦∆𝑧                                                  (II.9) 

 

La variation temporelle de la quantité de mouvement est la différence entre la quantité entrante et 

sortante du volume de contrôle plus les forces qui s’appliquent sur celui-ci.  

On aura : 

 

𝜕(𝜌𝑢)

𝜕𝑡
∆𝑥∆𝑦∆𝑧 = (𝜌𝑢𝑢)𝑥∆𝑦∆𝑧 − (𝜌𝑢𝑢)𝑥+∆𝑥∆𝑦∆𝑧 + (𝜌𝑢𝑣)𝑦∆𝑥∆𝑧 − (𝜌𝑢𝑣)𝑦+∆𝑦∆𝑥∆𝑧 +

                                     (𝜌𝑢𝑤)𝑧∆𝑥∆𝑦 − (𝜌𝑢𝑤)𝑧+∆𝑧∆𝑥∆𝑦 + 𝐹𝑔 + 𝐹𝛾 + 𝐹𝑝                             (II.10) 

 

En utilisant le développement de Taylor, on obtient : 
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𝜕(𝜌𝑢)

𝜕𝑡
∆𝑥∆𝑦∆𝑧 = − [

𝜕(𝜌𝑢𝑢)

𝜕𝑥
+
𝜕(𝜌𝑢𝑣)

𝜕𝑦
+
𝜕(𝜌𝑢𝑤)

𝜕𝑧
]∆𝑥∆𝑦∆𝑧 −

𝜕(𝑝)

𝜕𝑥
∆𝑥∆𝑦∆𝑧 + 𝜌𝑔𝑥∆𝑥∆𝑦∆𝑧 +

                                                       [
𝜕𝜎𝒙𝒙

𝜕𝑥
+ 𝜕𝜏𝒚𝒙
𝜕𝑦
+ 𝜕𝜏𝒛𝒙

𝜕𝑧
] ∆𝑥∆𝑦∆𝑧                                                      (II.11) 

 

On simplifie le volume de contrôle dans l’équation (II.11) on obtient l’équation de quantité de 

mouvement suivant (ox) : 

 

𝜕(𝜌𝑢)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑢𝑣 ) = −

𝜕(𝑝)

𝜕𝑥
+ 𝜌𝑔 +

𝜕𝜎𝑥𝑥

𝜕𝑥
+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥

𝜕𝑧
                    (II.12) 

 

Avec : 

 

          
𝜕(𝜌𝑢)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑢𝑣 ) = 𝜌

𝜕𝑢

𝜕𝑡
+ 𝑢(

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑢) + 𝜌𝑣 𝑔𝑟𝑎𝑑(𝑢)         (II.13) 

 

Pour un fluide incompressible 
𝜕𝜌

𝜕𝑡
= 0 et 𝑑𝑖𝑣(𝜌𝑢) = 0. 

 

On suit les mêmes étapes pour établir les équations suivant (oy)et (oz). 

D’une manière générale l’équation de conservation de la quantité de mouvement peut se mettre 

sous la forme indicielle comme suit : 

 

                                                                                                                

 𝜌 [
𝜕(𝑢𝑖)

𝜕𝑡
+ (𝑢𝑗 .

𝜕(𝑢𝑖)

𝜕𝑥𝑗
 )]

⏟              
𝐴

= −
𝜕𝜌

𝜕𝑥𝑖⏟
𝐵

+ 𝜌𝑔𝑥𝑖⏟
𝐶

+ 𝜇(
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
)

⏟      
𝐷

  (II.14) 

Avec :  

A : la variation de la quantité de mouvement par unité de volume. 

B: forces associées à la pression par unité de surface. 



Chapitre II                                                                                Modalisation numérique et équation  

31 

 

C: forces volumiques par unité de volume.  

D : contraintes visqueuses par unité de surface 

ui: composante de la vitesse suivant la direction i .  

gxi : composante de force de gravité. 

P : la pression. 

ρ : la masse volumique du fluide. 

𝜇 : viscosité dynamique  

Dans notre travail on néglige les effets de la viscosité et la force de pesanteur et on obtient la 

forme finale de l’équation   

 

 𝜌 [
𝜕(𝑢𝑖)

𝜕𝑡
+ (𝑢𝑗 .

𝜕(𝑢𝑖)

𝜕𝑥𝑗
 )] = −

𝜕𝜌

𝜕𝑥𝑖
  (II.15) 

II.3.3     Les équations d’EULER 

 

En dynamique des fluides , les équations d'Euler sont un ensemble 

d' équations hyperboliques quasi- linéaires régissant les écoulements adiabatiques et non 

visqueux . Ils portent le nom de Leonhard Euler . Les équations représentent 

les équations de Cauchy de conservation de la masse (continuité) et l'équilibre de la quantité de 

mouvement et de l'énergie, et peuvent être considérées comme des équations de Navier-

Stokes particulières avec une viscosité nulle et une conductivité thermique nulle .  En fait, les 

équations d'Euler peuvent être obtenues par linéarisation de certaines équations de continuité plus 

précises comme Équations de Navier-Stokes dans un état d'équilibre local donné par 

un maxwellien . Les équations d'Euler peuvent être appliquées à 

l' écoulement incompressible et compressible - en supposant que la vitesse d'écoulement est 

un champ solénoïde , ou en utilisant une autre équation d'énergie appropriée respectivement (la 

forme la plus simple des équations d'Euler étant la conservation de l' entropie spécifique ). 

Historiquement, seules les équations incompressibles ont été dérivées par Euler. Cependant, la 

littérature sur la dynamique des fluides se réfère souvent à l'ensemble complet - y compris 

l'équation de l'énergie - des équations compressibles plus générales ensemble comme "les 

équations d'Euler". 

https://hmn.wiki/fr/Fluid_dynamics
https://hmn.wiki/fr/Differential_equation
https://hmn.wiki/fr/Differential_equation
https://hmn.wiki/fr/Differential_equation
https://hmn.wiki/fr/Differential_equation
https://hmn.wiki/fr/Inviscid_flow
https://hmn.wiki/fr/Inviscid_flow
https://hmn.wiki/fr/Inviscid_flow
https://hmn.wiki/fr/Inviscid_flow
https://hmn.wiki/fr/Leonhard_Euler
https://hmn.wiki/fr/Cauchy_momentum_equation
https://hmn.wiki/fr/Cauchy_momentum_equation
https://hmn.wiki/fr/Navier%E2%80%93Stokes_equations
https://hmn.wiki/fr/Navier%E2%80%93Stokes_equations
https://hmn.wiki/fr/Viscosity
https://hmn.wiki/fr/Thermal_conductivity
https://hmn.wiki/fr/Continuity_equation
https://hmn.wiki/fr/Navier%E2%80%93Stokes_equations
https://hmn.wiki/fr/Maxwell%E2%80%93Boltzmann_distribution
https://hmn.wiki/fr/Compressible_flow
https://hmn.wiki/fr/Compressible_flow
https://hmn.wiki/fr/Compressible_flow
https://hmn.wiki/fr/Flow_velocity
https://hmn.wiki/fr/Solenoidal_field
https://hmn.wiki/fr/Specific_entropy
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Les équations d'Euler sont apparues pour la première fois sous forme publiée dans l'article d'Euler 

"Principes généraux du mouvement des fluides", publié dans les Mémoires de l'Académie des 

Sciences de Berlin en 1757 (dans cet article, Euler n'a en fait publié que la forme générale de 

l'équation de continuité et l'équation de la quantité de mouvement ; l'équation du bilan énergétique 

serait obtenue un siècle plus tard). Ils ont été parmi les premières équations aux dérivées 

partielles à être écrites. Au moment où Euler a publié son travail, le système d'équations se 

composait des équations de quantité de mouvement et de continuité, et était donc sous-déterminé, 

sauf dans le cas d'un fluide incompressible. Une équation supplémentaire, qui devait plus tard être 

appelée la condition adiabatique, a été fourni par Pierre-Simon Laplace en 1816. 

Supposons un fluide parfait en écoulement dans un référentiel galiléen. Appliquons le Principe 

Fondamentale de la Dynamique à chaque particule de fluide : 

 Système d'étude : une particule de fluide située en M à l'instant t de masse  

  

                                                                𝑑𝑚 = 𝜌(𝑀, 𝑡) 𝑑𝜏                                                   (II.16) 

 Bilan de force  

 

 

                          𝑑𝐹⃗⃗⃗⃗  ⃗ =  𝑓𝑣⃗⃗⃗  
𝑒𝑥𝑡
 dτ + 𝑓 𝑝dτ =  ( 𝑓𝑣⃗⃗⃗  

𝑒𝑥𝑡
− ∇⃗⃗ 𝑝(𝑀, 𝑡)) 𝑑𝜏                    (II.17) 

Selon la deuxième loi de Newton   𝑑𝑚
𝐷𝑣

𝐷𝑡
= 𝑑𝐹⃗⃗⃗⃗  ⃗ d’où l’équation d’Euler 

 

                                           𝜌(𝑀, 𝑡) [
𝜕𝑣⃗ 

𝜕𝑡
+ (𝑣 . ∇⃗⃗ )𝑣 ] = −∇⃗⃗ 𝑝(𝑀, 𝑡) + 𝑓𝑣⃗⃗⃗  

𝑒𝑥𝑡
                         (II.18) 

 

 

II.3.3.1         RÉSOLUTION DE L'ÉQUATION D'EULER  

 

L'équation d'Euler est une équation aux dérivées partielles du premier ordre. On remarque qu'elle 

est non linéaire à cause de la présence du terme convectif  (𝑣 . 𝛻⃗ )𝑣   ; c'est ce qui rend les problèmes 

de mécanique des fluides mathématiquement redoutables... 

Regardons si nous disposons d'assez d'équations pour traiter un problème de mécanique des fluides 

parfaits. 

https://hmn.wiki/fr/Partial_differential_equations
https://hmn.wiki/fr/Partial_differential_equations
https://hmn.wiki/fr/Partial_differential_equations
https://hmn.wiki/fr/Adiabatic_process
https://hmn.wiki/fr/Pierre-Simon_Laplace
https://femto-physique.fr/mecanique_des_fluides/fluides-parfaits.php
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 Le fluide est incompressible :  Dans ce cas la masse volumique est fixée. Le 

problème présente donc 4 inconnues scalaires : le champ de pression 𝑝(𝑀, 𝑡) et le champ 

de vitesse 𝑣 (𝑀, 𝑡) (3 composantes). Il faut donc 4 équations scalaires ; L'équation d'Euler 

n'en donne que 3. La quatrième est donnée par l'équation de continuité 𝑑𝑖𝑣 𝑣 = 0 

 Le fluide est compressible : La masse volumique peut varier sous l'effet de la 

pression mais aussi sous l'effet de la chaleur. En général le fluide possède une équation 

d'état locale 𝜌(𝑝, 𝑇). Le problème présente donc 6 inconnues scalaires : le champ de 

pression 𝑝(𝑀, 𝑡), les trois composantes du champ de vitesse 𝑣 (𝑀, 𝑡), la masse 

volumique 𝜌(𝑀, 𝑡) et la température 𝑇(𝑀, 𝑡). Il faut donc 6 équations scalaires. L'équation 

d'Euler en donne 3, la quatrième est donnée par l'équation de continuité 𝑑𝑖𝑣(𝜌𝑣 ) +
∂ρ

∂t
= 0  

la cinquième par l'équation d'état du fluide 𝜌(𝑝, 𝑡) et la dernière par le premier principe de 

la thermodynamique. 

L'équation d'Euler et de continuité sont des équations différentielles du premier ordre ; leur 

intégration va donc produire une constante d'intégration par variable. On déterminera ces 

constantes d'intégration par les conditions aux interfaces 

 

II.4       Méthode de résolution  

II.4.1    Méthode des différences finies (MDF) 

En analyse numérique, la méthode des différences finies est une technique courante de recherche 

de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de 

relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points 

suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à 

mettre en œuvre car elle procède en deux étapes : 

1. Discrétisation par différences finies des opérateurs de dérivation/différentiation. 

2. Etude de la convergence du schéma 

 

II.4.2    Définition et principe de la MDF 

La méthode des différences finies consiste à approximer les dérivées partielles d’une équation au 

moyen des développements de Taylor et ceci se déduit directement de la définition de la dérivée. 
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Soit 𝑓 une fonction continue et dérivable dans ℝ. La dérivée partielle première de 𝑓 par rapport à 

x est calculée par la formule : 

                                          𝑓′(𝑥) = lim
𝑥0→0

𝑓(𝑥+𝑥0)−𝑓(𝑥)

𝑥0
                                                 (II.19) 

Si 𝑥0 << 1, le développement de Taylor au voisinage de 0 de 𝑓(𝑥 + 𝑥0) donne : 

                𝑓(𝑥 + 𝑥0) = 𝑓(𝑥) + 𝑥0
𝜕𝑓

𝜕𝑥
+ 𝜃(𝑥0) ≈ 𝑓(𝑥) + 𝑥0

𝜕𝑓

𝜕𝑥
                           (II.20) 

Avec une erreur de l’ordre de 𝑥0 : 

                                                   
𝜕𝑓

𝜕𝑥
=
𝑓(𝑥+𝑥0)−𝑓(𝑥)

𝑥0
                                                       (II.21) 

Ceci est appelé le schéma avant. De la même manière, nous pouvons aussi donner le    schéma 

arrière qui est de la forme : 

                                          𝑓′(𝑥) = lim
𝑥0→0

𝑓(𝑥)−𝑓(𝑥+𝑥0)

𝑥0
                                                  (II.22) 

Le développement de Taylor donne : 

                𝑓(𝑥 − 𝑥0) = 𝑓(𝑥) − 𝑥0
𝜕𝑓

𝜕𝑥
+ 𝜃(𝑥0) ≈ 𝑓(𝑥) − 𝑥0

𝜕𝑓

𝜕𝑥
                            (II.23) 

Avec une erreur de l’ordre de 𝑥0 : 

                                                   
𝜕𝑓

𝜕𝑥
=
𝑓(𝑥)−𝑓(𝑥−𝑥0)

𝑥0
                                                        (II.24)      

La somme de ces deux schémas (II.21) et (II.24) nous donne le schéma centré suivant : 

                                                   
𝜕𝑓

𝜕𝑥
=
𝑓(𝑥+𝑥0)−𝑓(𝑥−𝑥0)

2𝑥0
                                             (II.25) 

 

La dérivée seconde 𝑓’’de 𝑓(x) sera alors de la forme : 

                                     
𝜕2𝑓

𝜕𝑥²
=
𝑓(𝑥+𝑥0)−2𝑓(𝑥)+𝑓(𝑥−𝑥0)

𝑥0²
                                          (II.26) 
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II.4.3     Discrétisation du domaine 

Les calculs sont performés sur une grille placée sur le plan (x, t) afin d’obtenir des mailles de 

taille(∆𝑥 , ∆𝑡) la computation est définie par les pas d’espace et de temps et, respectivement. Le 

but est de calculer les valeurs de la vitesse en chaque point du maillage. Les méthodes aux 

différences finies sont toutes basées sur les développements de Taylor des fonctions continues et 

dérivables. Plus les pas de temps et d’espace sont petits plus les développements limités sont 

proches des valeurs exactes. 

La figure (II.2) montre une grille de computation typique, la position du nœud est dénotée par 

l’indice 𝑖 et le moment de temps par l’indice 𝑗.  

𝑈𝑖
𝑛 = 𝑈(𝑖∆𝑥, 𝑗∆𝑡) 

 

 

Figure (II.2) : Grille de computation de différences finies 
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II.4.4    Convergence d’un schéma 

C’est la convergence qui définit l’efficacité du schéma. Selon le théorème de LAX-Millgram « Si 

les équations aux dérivées partielles sont approchées par un schéma consistant, alors ce schéma 

est convergent si et seulement si, il est stable » (Smaoui, 1975). 

Soit 𝑣(𝑥, 𝑡) la valeur approchée déterminée par différence finies de 𝑉(𝑥, 𝑡) et soit 𝑤(𝑥, 𝑡) tel 

que :  

                                                                     𝑤𝑖
𝑗
= 𝑉𝑖

𝑗
− 𝑣𝑖

𝑗
                                                 (II.27) 

On dit que le schéma converge si 𝒘𝒊
𝒋
→ 𝟎 lorsque (∆𝒙 , ∆𝒕) → 𝟎 

 

𝑉𝑖
𝑗
 : La solution réelle (exacte). 

𝑣𝑖
𝑗
 : : La solution numérique. 

𝑤𝑖
𝑗
 : L’erreur globale de calcul. 

 

II.4.5 Les schémas explicites et implicites 

On distingue généralement deux types de schémas d’intégration temporelle : les schémas explicites 

et implicites. 

II.4.5.1    Les schémas explicites 

Dans un schéma explicite, les variables à un nouveau pas de temps sont évaluées à chaque point 

du maillage par des calculs directs à partir des valeurs déjà connues, il est considéré comme très 

précis et doté d’une bonne compatibilité avec le Calcul Haute Performance (HPC). Par contre, il 

est souvent coûteux en temps de calcul. En effet, le pas de temps des méthodes explicites est 

fortement limité par une contrainte de stabilité numérique, appelée condition Courant-Friedrich-

Lewy (CFL), définie en chaque cellule et proportionnelle à la vitesse locale de l’écoulement et la 

taille de la cellule, et qui assure la stabilité de ces schémas. 

Seule la dérivée de U par rapport au temps s’exprime en fonction des valeurs de U au pas de temps 

n+1. La différentielle par rapport à x s’exprime en fonction des valeurs de U au pas de temps 

précédent de calcul (pas n). On calcule 𝑈𝑛+1 connaissant les valeurs de f calculées au temps nΔt 

pour, en général, les pas d’espace(𝑖 − 1)∆𝑥, (𝑖)∆𝑥, (𝑖 + 1)∆𝑥 (Figure II.3) Un schéma explicit à 



Chapitre II                                                                                Modalisation numérique et équation  

37 

 

trois points caractérisés par le fait que l’on puisse exprimer explicitement une valeur inconnue en 

fonction de valeurs connues. 

 

Figure (II.3) : Schéma explicite. 

 

II.4.5.2     Les schémas implicites 

Pour les méthodes implicites, les variables sont calculées simultanément à un nouveau pas de 

temps, par la résolution d'un système avec autant d'inconnues que de noeuds du maillage. La 

stabilité de ces schémas n´est pas conditionnée par la condition (CFL), mais par la nature de la 

solution. En fait, le caractère implicite d’un schéma numérique est lié au fait que l’on ne puisse 

pas exprimer explicitement chaque valeur inconnue en fonction uniquement de valeurs connus. 

*-  

 

Figure (II.4) : Schéma implicite. 
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II.5    Le maillage  

Pour la méthode des différences finies, un maillage est un ensemble de points isolés 

(appelés nœuds) situés dans le domaine de définition des fonctions assujetties aux équations aux 

dérivées partielles, une grille sur les seuls nœuds de laquelle sont définies les inconnues 

correspondant aux valeurs approximatives de ces fonctions. 

Le maillage comprend également des nœuds situés sur la frontière du domaine (ou au moins 

« proches » de cette frontière) afin de pouvoir imposer les conditions aux limites et/ou la condition 

initiale avec une précision suffisante. 

A priori, la qualité première d’un maillage est de couvrir au mieux le domaine dans lequel il se 

développe, de limiter la distance entre chaque nœud et son plus proche voisin. Cependant, le 

maillage doit également permettre d’exprimer la formulation discrète des opérateurs de 

différentiation : pour cette raison, les nœuds du maillage sont le plus souvent situés sur une grille 

dont les directions principales sont les axes des variables. 

On n’appelle pas du maillage la distance entre deux nœuds voisins situés sur une droite parallèle 

à l’un des axes. Dans ce sens, le pas est une notion à la fois locale et directionnelle. On parlera 

de pas global pour désigner le plus grand pas local, une notion qui reste directionnelle. 

Bien qu’un pas constant soit le plus souvent retenu (sans qu’il pose de problème théorique pour la 

résolution), il est parfois judicieux d’introduire un pas variable qui sera choisi plus fin dans les 

zones où la solution exacte subit de plus fortes variations : cette astuce permet de réduire le nombre 

d’inconnues sans porter atteinte à la précision des résultats. Par contre, la formulation est un peu 

plus complexe car la discrétisation des opérateurs différentiels doit en tenir compte. 

Pour une équation différentielle concernant une fonction d’une variable dont le domaine (dans  ℝ) 

est l’intervalle [0 ; 1], un maillage à pas constant est caractérisé par les M +1 nœuds xi = i h, 0 

≤ i ≤ M avec le pas h = 1/M. Ce maillage comprend les deux points frontière 𝑥0 et 𝑥𝑀 sur lesquels 

sont imposées d’éventuelles conditions aux limites. 

Considérons une équation aux dérivées partielles concernant une fonction de deux variables 

(domaine  Ω ∈ ℝ2) : 

 Si Ω est un rectangle [0 ; 1] × [0 ; 1] (dont les côtés sont parallèles aux axes), un maillage 

issu d’une grille (xi , yj) = (i h, j k), 0 ≤ i ≤ M, 0 ≤ j ≤ N avec les pas h = 1/M et k = 1/N est 

une simple généralisation du cas précédent. 

https://fr.wikipedia.org/wiki/Fronti%C3%A8re_(topologie)
https://fr.wikipedia.org/wiki/Condition_aux_limites
https://fr.wikipedia.org/wiki/Condition_initiale
https://fr.wikipedia.org/wiki/Condition_initiale
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 Si Ω est un disque centré à l’origine et de rayon 1, on considère le maillage constitué par 

les nœuds d’une grille qui sont situés dans le disque, soit (xi , yj) ∈ Ω où (xi , yj)=(ih,j,k) avec 

le pas h= 1/M. Pour imposer d’éventuelles conditions aux limites (par exemple celles de 

Dirichlet qui fixent la valeur de la fonction sur ∂Ω), les rares nœuds se situant exactement sur 

la frontière sont trop peu représentatifs. Il convient alors d’étendre la propriété « être sur la 

frontière » à d’autres nœuds qui en sont proches, en englobant par exemple tous les nœuds du 

maillage qui n’ont pas quatre voisins directs. Les valeurs aux limites à fixer en ces nouveaux 

nœuds frontières peuvent être définies de diverses manières : 

 En prenant la valeur du problème exact qui est imposée au point de ∂Ω le plus 

proche : dans ce cas, les irrégularités géographiques des nœuds frontières du maillage 

(observées lorsque h diminue) engendrent des perturbations de la solution discrète, au 

mieux des anomalies locales n’ayant aucun lien avec la solution exacte. 

 En considérant que les valeurs des nouveaux nœuds frontières sont des inconnues, 

mais en ajoutant des relations différentielles discrétisées supplémentaires reliant 

« naturellement » ces inconnues aux valeurs des nœuds voisins et à celles de certains 

points de ∂Ω. Si l’approche est un peu plus complexe dans sa mise en œuvre, elle réduit 

significativement le défaut de la précédente. 

II.6   Conditions initiales et aux limites 

Une équation aux dérivées partielles admet d’une manière générale, une infinité de solution ; la 

solution particulière désirée est déterminée à partir de quelques conditions imposées. Dans la 

majorité des cas, ces conditions portent sur le comportement particulier de la solution sur une 

courbe qu’on appelle souvent frontière ou limite. Afin de pouvoir résoudre ces équations, on utilise 

des conditions initiales et aux limites. 

II.6.1   conditions initiales  

La notion de conditions initiales est évidemment liée aux conditions qui correspondent au temps 

initial 𝑡 = 0. Afin de commencer les calculs à partir de l’état initial de l’écoulement, les deux 

variables h et 𝑢 devront être choisies et spécifiées en tout point du domaine de calcul. Dans notre 

travail, on a comme conditions initiales : 

                                                               ℎ(𝑥, 𝑡 = 0) = ℎ0                                                    (II.28) 

                                                               𝑢(𝑥, 𝑡 = 0) = 𝑢0                                                   (II.29) 

 

https://fr.wikipedia.org/wiki/Disque_(g%C3%A9om%C3%A9trie)
https://fr.wikipedia.org/wiki/Conditions_aux_limites_de_Dirichlet
https://fr.wikipedia.org/wiki/Conditions_aux_limites_de_Dirichlet
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II.6.2   Conditions aux limites  

La prise en compte des limites est un aspect très important lors de l’utilisation des techniques 

numériques dans le but d’obtenir de bons résultats.  

Les conditions aux limites sont les plus délicates à fixer : en effet, elles consistent à imposer un 

certain comportement du domaine de calcul et d’approximer le domaine irrégulier en domaine 

régulier.                       

 

                                                                ℎ(𝑥 = 0, 𝑡 > 0) = ℎ0                                                    (II.30) 

Et  

                                                               𝑢(𝑥 = 𝐿, 𝑡 > 0) = 𝑢0                                                    (II.31) 

 

II.7   Conclusion  

Dans ce chapitre nous avons établi les équations qui gouvernent l’écoulement qui sont l’équation 

de continuité, l’équation de d’Euler et l’équation de quantité de mouvement pour un fluide 

Newtonien. Ensuite, nous avons présenté la méthode utilisée pour la résolution de ces équation (la 

méthode des différences finie) et le maillage nous avons présenté les conditions aux limites. 



                                                         

 

 

 

 

 

 

 

 

 

 

 
Chapitre III : 

Simulation numérique via les différences 

finies
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III.1   Introduction  

Aujourd’hui, la simulation numérique est utilisée dans de nombreux domaines de recherche et 

développement : mécanique, mécanique des fluides, science des matériaux…etc. La simulation 

informatique ou numérique désigne l'exécution d'un programme informatique sur un ordinateur ou 

réseau en vue de simuler un phénomène physique réel et complexe avec plusieurs scénarios.  

III.2    Le modèle géometrique 

La figure présente le schema du probleme traité. Il s’agit d’un canal bidimensinnel où il existe un 

élargissement brusque de la section à l’entrée dont le rapport d’expansion est défini comme 𝑬𝑹 =

𝑯/(𝑯 − 𝒉) = 𝟐, avec 𝒉 = 𝟏 𝒄𝒎 la hauteur de la marche et 𝑯 = 𝟐𝒉 la hauteur du canal. La 

longueur 𝑳 du canal est définie aussi en fonction de 𝒉 et, généralement, elle doit etre suffisamment 

grande afin de visualiser tous les phénomènes de recirculation provoqués par l’influence de la 

mache 

 

Figure (III.1) : La geométrie de la marche  

III.3    La modélisation numérique  

III.3.1   Le maillage  

L’étape du maillage est une étape clé pour s’assurer de la validité des simulations. C’est l’étape de 

découpage du volume étudié en petits volume élémentaires. Le maillage en général n’est pas 

régulier : les mailles doivent être plus petites (maillage fin) dans les zones où les gradients de 

vitesse, de température ou de concentration vont être les plus importants. Si ces zones ne peuvent 

pas être prédites, il convient de faire quelques essais itératifs avec ajustement du maillage. 
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Dans le cas d’une étude des frottements ou du transfert thermique en paroi, il faut résoudre les 

équations dans la couche limite près de la paroi : en general, les codes de calculs proposent des 

moyens specifiques pour mailler cette zone. 

Une étude de sensibilité au maillage doit toujours etre faite. Cela consiste à faire des simulations 

avec un nombre de mailles different : si les resultats de simulation dépendent du maillage, il 

convient de resserrer celui-ci jusqu’à obtenir une independance entre maillage et solution. Si le 

maillage n’est pas assez bon, certains phenomenes locaux ne seront pas capturés (recirculations, 

décrochements de l’écoulement, etc.). 

Un maillage peut etre caracterisé par plusieurs éléments : 

-sa dimension : 𝟐𝑫 ou 𝟑𝑫 ; 

- son volume ; 

- sa finesse : surface ou volume moyen des cellules ; 

La géometrie des cellules ; 

Le dégré de l’élément, c'est-à-dire le degré du polynome servant à décrire les cotés ou aretes des 

éléments. Nous ne travaillons qu’avec un degré 𝟏, soit avec des aretes rectilignes. 

On distingue par ailleurs deux gands types de maillage, aux proprités differentes : 

- Le maillage quelconque : il faut dans ce cas définir la position de chaque nœud, on 

parle alors de définition explicite ; 

- Le maillage régulier ou structuré :  il est constitué de polygones identiques et le 

compositions des polyèdres, danc la position des nœuds du maillage est définie 

implicitement par une règle de construction. Il permet notamment un gain de mémoire et 

de temps de calcul. 

Les définir les caractéristiques du maillage est donc une étape importante d’un projet numerique 

puisqu’il conditionne le temps de calcul, la convergence et la précision sur les grandeurs calculées 

durant la simulation. 

Dans notre cas, nous avons choisi un maillage structuré (ou régulier). Nous avons choisi ce 

maillage, car leur génération est simple. Les calculs sont, de plus, généralement plus rapides. 
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Figure (III.2) : Le maillage utilisé 

III.3.2  Le modèle mathématique  

Les équations d’Euler peuvent etre écrites sous forme nonconservatives pour un écoulement 

isentropique en fonction de la variable primitive 𝑽 comme : 

                                                            
𝝏𝑽

𝝏𝒕
+ 𝑨𝒊

𝝏𝑽

𝝏𝒙𝒊
= 𝟎                                                          (III.1) 

Avec : 

                             𝑽 = [

𝝆
𝒖
𝒗
𝒑

] = [

𝝆
𝒖
𝒗

(𝜸 − 𝟏) (𝝆𝑬 − 𝝆
(𝒖𝟐+𝒗𝟐)

𝟐
)

]                                  (III.2) 

 

Et : 

                                            𝑨𝟏 = [

𝒖 𝝆   𝟎    𝟎
𝟎
𝟎
𝟎

𝒖
𝟎
𝝆𝒂𝟐

𝟎
𝒖
𝟎

𝟏/𝝆
𝟎
𝒖

]                                        (III.3) 
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                                          𝑨𝟐 = [

𝒗 𝟎  𝝆       𝟎

𝟎
𝟎
𝟎

𝒗
𝟎
𝟎

𝟎
𝒗
𝝆𝒂𝟐

   𝟎
𝟏/𝝆
   𝒗

]                                         (III.4) 

III.3.3    Conditions aux limites : 

Au niveau d’une paroi solide, fixe et imperméable, la composante normale de la vitesse 

d’écoulement est nulle. 

𝒗⃗⃗  . 𝒏⃗⃗ = 𝟎 

𝒏⃗⃗  est le vecteur normal dirigé vers l’extérieur du domaine de fluide. Par contre, la composante 

tangentielle n’est pas nulle et elle verifiée les équations suivantes : 

                                         𝝁 
𝝏𝒖

𝝏𝒚
 |
𝒚=𝟎

= 𝝉𝒘            𝒑𝒐𝒖𝒓  𝟔 ≤ 𝒙 ≤ 𝑳                                     (III.5) 

                                         𝝁 
𝝏𝒗

𝝏𝒙
 |
𝒙=𝟔

= 𝝉𝒘            𝒑𝒐𝒖𝒓  𝟎 ≤ 𝒚 ≤ 𝒉                                     (III.6) 

                                          𝝁 
𝝏𝒖

𝝏𝒚
 |
𝒚=𝑯

= 𝝉𝒘            𝒑𝒐𝒖𝒓  𝟎 ≤ 𝒙 ≤ 𝑳                                    (III.7) 

𝝉𝒘 est le frottement pariétal local. 

A l’entrée du canal, la vitesse est nulle à la paroi du canal, et augmente progressivement pour 

atteindre une vitesse maximale au centre du canal. 

                                          𝒖(𝒙 = 𝟎, 𝒚, 𝒕) = 𝑼𝟎 (𝟏 −
𝒓𝟐

𝑹𝟐
)                                     (III.8) 

Avec 𝑹 = (𝑯 − 𝒉)   et     𝒓 = 𝒚 −
𝑯+𝒉

𝟐
 

La pression à la sortie du canal est nulle : 

                                                                 𝑷(𝒙 = 𝑳, 𝒚, 𝒕) = 𝟎                                                            (III.9) 

 

III.3.3.1      Conditions initiales : 

La vitesse en amont de la marche  

                           𝒖(𝒙, 𝒚, 𝒕) = 𝑼𝟎 (𝟏 −
𝒓𝟐

𝑹𝟐
)            𝒑𝒐𝒖𝒓     𝟎 ≤ 𝒙 ≤ 𝟔                                          (III.9) 

Avec 𝑹 = (𝑯 − 𝒉)   et     𝒓 = 𝒚 −
𝑯+𝒉

𝟐
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on intoduit des differentes vitesses à l’entrée on commençons par une vitesse faible de 10cm/s et 

on l’augmentes jusqu’à 250cm/s passent par 50cm/s, 100cm/s,  150cm/s,  200cm/s,     

Et en aval de la marche  

                                  𝒖(𝒙, 𝒚, 𝒕) = 𝑼𝟎/𝟑          𝒑𝒐𝒖𝒓     𝟔 < 𝒙 ≤ 𝑳                                         (III.9) 

III.4    Présentations des résultats obtenus sur matLAB 

III.4.1   les champs des vitesses 

 Ici nous représentons les champs de vitesses pour différentes vitesses allant de 1cm/s à 10 cm/s  

 

 

 

 Pour Umax=10 cm/s 

 

Figure (III.3) : Champs des vitesses à Umax=1cm/s 

 Pour Umax=2 cm/s 

 

Figure (III.4) : Champs des vitesses à Umax=2cm/s 
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 Pour Umax=3 cm/s 

 

Figure (III.5) : Champs des vitesses à Umax=3cm/s 

 Pour Umax=4 cm/s 

 

Figure (III.6) : Champs des vitesses à Umax=4 cm/s 

 Pour Umax=5 cm/s 

 

Figure (III.7) : Champs des vitesses à Umax=5 cm/s 
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 Pour Umax=6 cm/s 

 

Figure (III.8) : Champs des vitesses à Umax=6cm/s 

 Pour Umax=7 cm/s 

 

Figure (III.9) : Champs des vitesses à Umax=7 cm/s 

 Pour Umax=8 cm/s 

 

Figure (III.10) : Champs des vitesses à Umax=8 cm/s 
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 Pour Umax=9 cm/s 

 

 Figure (III.11) : Champs des vitesses à Umax=9 cm/s 

 Pour Umax=10 cm/s 

 

 Figure (III.12) : Champs des vitesses à Umax=13 cm/s 

 

III.4.2   La longueur de recirculation   

Il s’agit d’une zone de recirculation ou l’écoulement est à flux opposé. 
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Tableau (III.1) : La zone de recirculation en fonction de la vitesse 

Umax (cm/s) Xr (cm) 

1 cm/s 11,2 (cm) 

2 cm/s 16,8 (cm) 

3 cm/s 20,4 (cm) 

4 cm/s 22,8 (cm) 

5 cm/s 24,4 (cm) 

6 cm/s 25,6 (cm) 

7 cm/s 26,4 (cm) 

8 cm/s 27,2 (cm) 

9 cm/s 27,6 (cm) 

10 cm/s 28(cm) 

 

Maintenant, on représente l’évolution de la taille de la zone de recirculation en fonction de la 

vitesse. 

 

Figure (III.13) : La taille de la zone de recirculation en fonction de la vitesse 
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III.5     Conclusion 

Dans ce chapitre nous avons présenté la géométrie et le maillage utilisées dans   Matlab. Ensuit 

nous avons présenté le modèle d’équation d’Euler utilisé ainsi les conditions initiales à l’entrée 

(l’équation du profile parabolique et des différentes vitesse Umax) et les conditions aux limites à 

la sortie (la pression égale à zéro). Enfin nous avons illustré les différents résultats obtenus grâce 

à Matlab et nous avons déterminé la taille de la zone de recirculation en fonction de la vitesse.



                                                      

 

  

 

 

 

  
Chapitre IV : 

Simulation avec ANSYS Fluent 
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IV.1   Introduction  

ANSYS Fluent est le logiciel de dynamique des fluides (CFD) le plus puissant du marché pour 

aller plus vite et plus loin dans l’optimisation de la performance. ANSYS Fluent offre des 

fonctionnalités éprouvées de modélisation physique d’écoulement fluide, de turbulence, de 

transfert de chaleur et de réaction chimique, et fournit des résultats rapides et précis pour une très 

large gamme d’applications CFD et multiphysiques. 

Dans ce chapitre, On va présenter au premier lieu, le code de calcul utiliser et les étapes à suivre 

pour réaliser une simulation, La géométrie ainsi que la création du maillage de la marche 

descendante, puis on verra les procédures utiliser par ANSYS Fluent pour la résolution et enfin de 

présenter les résultats obtenus.  

IV.2    Présentation de code de calcul ANSYS Fluent  

ANSYS Fluent est un code de calcul généraliste de la mécanique des fluides. Il est doté de 

processeur de calcul numérique très performant pour la résolution des équations régissant les 

divers types d’écoulements.  

Tout d’abord, la discrétisation spatiale des solveurs Fluent est basée sur la méthode des volumes 

finis qui exploite des approximations d’intégrales pour effectuer les calculs. 

                 (IV.1) 

Le maillage est alors constitué de volumes finis (ou surfaces finies en 2D et segments en 1D) qui 

sont des petits volumes disjoints. L’équation générale du transport est appliquée à chaque cellule 

et discrétisée. Les équations discrétisées nécessitent des informations sur les faces et au centre de 

chaque cellule. Les équations discrétisées peuvent être exprimées de la manière suivante :  

                                       (IV.2) 

Elles sont résolues itérativement. Les coefficients 𝑎𝑝 et 𝑎nb sont des fonctions des variables 

solutions. Ces coefficients sont écrits pour utiliser les variables solutions des itérations 

précédentes. 
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ANSYS permet de prédire avec confiance le succès des produits dans le monde réel. Les 

entreprises utilisent ANSYS pour créer des prototypes virtuels complets de produits et de systèmes 

complexes de mécanique, d'électronique, de composants électroniques et de logiciel mettant en 

jeu tous les phénomènes physiques qui existent dans la réalité. 

 

Fluent est un solveur très utilisé dans l'industrie à travers le monde. Il est souvent considéré comme 

une référence dans le domaine de la modélisation fluide. Le paramétrage du modèle se fait par une 

interface graphique, il dispose d'une interface de scripts pour automatiser les processus de calcul. 

L'un des intérêts de ce logiciel de simulation généraliste, est qu'il dispose d'un nombre relativement 

important de modèles, pouvant faire face à divers aspects de la mécanique des fluides, Fluent 

contient également un outil de visualisation des résultats qui permet d’afficher les champs de 

pression, vitesse et autres autour de la paroi. 

 

Figure (IV.1) : Interface de ANSYS Fluent 2021 R2. 

 

IV.2.1    Couplage vitesse pression 

Les équations de Navier-Stokes en version fluide incompressible présentent deux difficultés 

majeures. Premièrement, elles sont quasi-non linéaires et ensuite elles sont faiblement couplées. 

La non-linéarité est contournée par un calcul itératif. En choisissant un schéma numérique. Le 

problème du couplage se manifeste par l’apparition des variables de pression dans les équations 
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de quantité de mouvement, il n’existe aucune équation de transport pour déterminer la pression. 

En d’autres termes, si le gradient de pression est connu, on peut calculer le champ vitesse qui dans 

ce cas vérifie bien l’équation de continuité (Chung.2010) . 

Cette particularité des équations rend nécessaire l’utilisation d’un algorithme de couplage 

pression-vitesse. L'algorithme le plus universel et le plus utilisé est l’algorithme SIMPLE de 

Patankar et Spalding (1972). On suppose un champ de pression initial qu’on injecte dans les 

équations de quantité de mouvement. On résout le système pour trouver un champ de vitesse 

intermédiaire. L’équation de continuité est transformée pour devenir une équation de correction 

de pression. Elle est résolue pour trouver une correction de pression qui permettra de réinjecter 

une nouvelle pression dans les équations de quantité de mouvement. Le cycle est répété autant de 

fois que nécessaire jusqu’à l’obtention d’une correction de pression nulle, signe de la convergence 

de l’algorithme.  

"FLUENT" propose quatre algorithmes pour le couplage pression-vitesse, Les deux premiers, très 

similaires, sont la méthode "SIMPLE" (Semi-Implicit Method for a Pressure Linked Equations) et 

la méthode "SIMPLEC" (SIMPLE Consistent). Cette dernière méthode se différencie de la 

première par le fait qu’on peut lui assigner un facteur de relaxation (correction) de pression proche 

de 1, ce qui accélère la convergence dans la plupart des cas, mais peut conduire à des instabilités 

de la solution.et pour les écoulements non stationnaires et compressibles l’algorithme PISO est 

mieux adaptés, il est similaire à SIMPLE mais avec une amélioration qui consiste à faire deux 

corrections successives au lieu d’une seul, le quatrième algorithme est "Coupled" qui résout 

l’équation de continuité et l’équation de pression ensemble en utilisant un schéma implicite, c’est 

un algorithme robuste mais lourd en terme de calcul (ANSYS Fluent 2021 R2). 

IV.2.2   Méthode de résolution   

La méthode de résolution adaptée par ANSYS Fluent est la méthode des volumes finis. C’est une 

technique de discrétisation, elle est composée de :  

1. Division du domaine en volumes de contrôle discrets en utilisant une grille de calcul 

(maillage). 

2. Intégration des équations de conservation aux dérivées partielles sur les volumes de 

contrôle individuels (figure IV.2), et les convertir en équations algébriques, ce qui donne 

une équation discrète des inconnus telles que les vitesses, la pression, la température et 

conservée scalaire. 
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3. La linéarisation des équations discrétisées et la solution du système d'équations 

linéaire résultant pour donner Les valeurs mises à jour des variables dépendantes. 

 

Figure (IV.2) : Volume de contrôle 

 

Avec : 

P : le nœud principal. 

(E, W) et (N, S) présentent respectivement les volumes de contrôle voisins dans les directions x 

et y. 

(e, w) et (n, s) : les faces de volume de contrôle respectivement dans la direction x et y. 

L’équation générale de transport d’une variable 𝛷 s’écrit comme suit : 

 

                                                                                                                     (IV.3) 

 

Avec : 

1 : représente le terme transitoire. 

2 : transport par convection. 
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3 : transport par diffusion. 

4 : terme source de variable 𝛷. 

𝛷 : quantité scalaire. 

𝛤𝛷  : coefficient de diffusion.  

 

L’équation (IV.1) s’écrit en coordonnées cartésiennes, bidimensionnelles comme suit : 

  

          

(IV.4) 

 

Cette équation peut s’écrit en cas stationnaire sous la forme suivante : 

  

(IV.5) 

 

 

On pose : {
𝑗𝑥 = (𝜌𝑢𝛷 − 𝛤𝛷

𝜕𝛷

𝜕𝑥
)

𝑗𝑦 = (𝜌𝑢𝛷 − 𝛤𝛷
𝜕𝛷

𝜕𝑦
)
 

Où 𝑗𝑥, 𝑗𝑦  sont respectivement les flux totaux (par convection et diffusion) par unité de surface 

suivant les direction x et y. 

L’équation (IV.3) devienne : 

                                                      
𝜕𝑗𝑥

𝜕𝑥
+
𝜕𝑗𝑦

𝜕𝑦
= 𝑆𝛷                                                       (IV.6) 

 

IV.3      La résolution numérique par Fluent 

D’une manière générale, suit les étapes suivantes : 

1. Création de la géométrie sous ANSYS-Design modeler. 

2. Choix de maillage sous ANSYS-Meching. 

3. Définition des conditions aux limites sous Fluent. 

4. Calcul avec FLUENT pour les différents cas retenus. 

5. Analyse des résultats obtenus. 
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IV.3.1    La géométrie 

Elle consiste à dessiner le domaine d’écoulement en utilisant ANSYS design modeler.  

La géométrie étudiée est composée respectivement de : 

De deux rectangles A(1*6)cm et B(2*40)cm 

 

En ajustant l’union de deux rectangles : 

 

Figure (IV.3) : La géométrie 

Les cotes de la géométrie utilisée sont : 

 

Figure (IV.4) : Cotes de la géométrie 

IV.3.2     Le maillage  

Le maillage est la subdivision de domaine d’étude en sous-domaine appelé volume de contrôle. 

Il est caractérisé par : 

 La dimension des mailles :2D ou 3D. 

 Le nombre de maille. 

 La distance entre les mailles. 
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 La géométrie des mailles : triangulaire et quadrilatérale (2D), tétraédrique et 

hexaédrique (3D).  

Le maillage adopté dans notre cas, est un maillage quadratique structuré (ou régulier). Composé 

de 2371 nœuds et 2150 éléments. 

Le maillage de notre cas est représenté dans la figure ci-dessous :  

 

Figure (IV.5) : Maillage utilisé 

 

IV.3.3     Les conditions aux limites 

Pour le code Fluent, les types disponibles des conditions aux limites sont classes comme suite : 

  

a. Conditions d'entrée et de sortie de l'écoulement : 

 

 Pression d'entrée (pressure Intel). 

 Vitesse de l'entrée (Velocity Intel). 

 Débit massique à l'entrée (mass flow Intel). 

 Pression de sortie (pressure outlet). 

 Sortie (outflow). 

 

b. . Mur et conditions du pole : 

 

 Mur (Wall). 

 Axe de symétrie (axis). 

 Plan de symétrie (symétrie). 
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c. Cellules des zones internes : 

 

 Fluide. 

 Solide. 

Les conditions initiales imposées dans notre cas sont présentées dans le tableau ci-après. 

Tableau (IV.1) : les conditions à l’entrée et à la sortie de la conduite pour le fluide. 

Conditions Entrée Sortie 

Vitesse de l'entrée 𝑼𝒎𝒂𝒙 ∗ (𝟏 − (
𝒚

𝟎. 𝟓
)
𝟐

) // 

Pression de sortie // 0 Pa 

 

Pour le profile parabolique en utilise l’équation de vitesse suivante : 

 

                                                         𝑼 = 𝑼𝒎𝒂𝒙 ∗ (𝟏 − (
𝒚

𝟎.𝟓
)
𝟐
)                                             (IV.5) 

Avec : 

𝑼𝒎𝒂𝒙 : la vitesse maximale. 

y : la position par rapport à l’axe « y » 

R :  rayon de conduite H/2. 
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Figure (IV.6) : Le profil parabolique a l’entrée (Umax=10cm/s) 

 

Dans notre cas nous introduirons des différentes vitesses maximales « 𝑼𝒎𝒂𝒙» allant de 1 cm/s à 

10 cm/s    

Le matériau utilisé dans cette simulation est l’eau « water-liquide », qui a la formule chimique 

H2O, avec une densité de (997.2 kg/m2)  

 

IV.4      Présentations des résultats obtenus sur Ansys Fluent 

 

          IV.4.1   Le profil et le champ des vitesses  

a. Pour Umax=1 cm/s 

 
 

Figure (IV.7) : Le profil des vitesses à Umax=1 cm/s 

 

 
 

Figure (IV.8) : Le champ des vitesses à Umax=1 cm/s 
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b. Pour Umax=2 cm/s 

 

Figure (IV.9) : Le profil des vitesses à Umax=2 cm/s 

 

 Figure (IV.10) : Le champ des vitesses à Umax=2 cm/s 

 

c. Pour Umax=3 cm/s 
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 Figure (IV.11) : Le profil des vitesses à Umax=3 cm/s 

 

 

Figure (IV.12) : Le champ des vitesses à Umax=3 cm/s 

 

d. Pour Umax=4 cm/s 

 
 

Figure (IV.13) : Le profil des vitesses à Umax=4 cm/s 
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Figure (IV.14) : Le champ des vitesses à Umax=4cm/s 

 

 

 

 

 

 

 

 

 

e. Pour Umax=5 cm/s 

 

Figure (IV.15) : Le profil des vitesses à Umax=5 cm/s 

 

 

Figure (IV.16) : Le champ des vitesses à Umax=5 cm/s 

 

f. Pour Umax=6 cm/s 
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Figure (IV.17) : Le profil des vitesses à Umax=6 cm/s 

 

 

 

 

Figure (IV.18) : Le champ des vitesses à Umax=6 cm/s 

g. Pour Umax=7 cm/s 

 

Figure (IV.19) : Le profil des vitesses à Umax=7 cm/s 

 

 
 

Figure (IV.20) : Le champ des vitesses à Umax=7 cm/s 
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h. Pour Umax=8 cm/s 

 

Figure (IV.21) : Le profil des vitesses à Umax=8 cm/s 

 

 

Figure (IV.22) : Le champ des vitesses à Umax=8 cm/s 

i. Pour Umax=9 cm/s 

 

Figure (IV.23) : Le profil des vitesses à Umax=9 cm/s 

 

 
 

Figure (IV.24) : Le champ des vitesses à Umax=9 cm/s 
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j. Pour Umax=10 cm/s 

 

Figure (IV.25) : Le profil des vitesses à Umax=10 cm/s 

 

 

 

Figure (IV.26) : Le champ des vitesses à Umax=10 cm/s 

IV.4.2 La longueur de recirculation     

 

Il s’agit d’une zone de recirculation ou l’écoulement est à flux opposé. 

Tableau (IV.2) : La zone de recirculation en fonction de la vitesse 

Umax (cm/s) Xr (cm) 

1 cm/s 4,2 (cm) 

2 cm/s 6,2 (cm) 

3 cm/s 7,7 (cm) 

4 cm/s 8,7 (cm) 

5 cm/s 9,7 (cm) 

6 cm/s 10,7 (cm) 
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7 cm/s 11,2 (cm)  

8 cm/s 11,6 (cm)  

9 cm/s 12 (cm) 

10 cm/s 14,2 (cm) 

 

 

Maintenant, on représente l’évolution de la taille de la zone de recirculation en fonction de la 

vitesse. 

² 

Figure (III.27) : La taille de la zone de recirculation en fonction de la vitesse 

 

IV.5     Conclusion  

Dans ce chapitre nous avons présenté le logiciel Ansys Fluent, la géométrie et le maillage utilisées 

dans Ansys Fluent. Ensuite les conditions aux limites à la sortie (la pression égale à zéro). Enfin 

nous avons illustré les différents résultats (le profil et le champ de vitesse et le profil de la pression) 

obtenus grâce à Ansys Fluent et nous avons déterminé la taille de la zone de recirculation en 

fonction de la vitesse.
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V.1      Introduction  

L’augmentation des performances des calculateurs ne cesse d’ouvrir de nouvelles perspectives au 

calcul scientifique en général, et à la simulation numérique des phénomènes physiques complexes en 

particulier. Parmi ceux-ci, la simulation numérique des écoulements à l’élargissement brusques. 

Dans ce chapitre nous avons choisi d’utiliser La méthode des différences finies et les équations 

d’Euler pour simuler le phénomène avec Matlab et la méthode des volumes finies et les équations de 

Navier-stocks avec Ansys fluent. 

Les simulations numériques obtenus par les deux logiciels de simulation « matlab et Ansys fluent » 

seront comparées entre elles par rapport à les deux zones de recirculations en fonction des vitesses 

utilisées  

V.2     Fluide parlait  

En mécanique des fluides, un fluide est dit parfait s'il est possible de décrire son mouvement sans 

prendre en compte les effets de viscosité et de conduction thermique. Le mouvement du fluide 

est donc adiabatique, décrit par les équations d'Euler. 

Tous les fluides ont une viscosité (sauf un superfluide, ce qui en pratique ne concerne guère que 

l'hélium à très basse température et l'intérieur d'une étoile à neutrons). Le fluide parfait ne peut 

donc être qu'une approximation pour une viscosité tendant vers zéro. Cela revient à faire tendre 

le nombre de Reynolds vers l'infini. 

V.2.1    Théorie  

Puisque nous avons un écoulement à travers une marche descendante donc pour pouvoir réaliser 

cette simulation nous allons utiliser le modèle qui utilise les équations de Navier-Stokes 

incompressibles stationnaires sur ansys fluent et les équations d’Euler sur Matlab.  

Ce modèle calcul les composantes de vitesse du fluide u dans les directions x et y et dans la 

région définie par la géométrie de la conduite. 

 

 

 

 

 

 

https://fr.wikipedia.org/wiki/M%C3%A9canique_des_fluides
https://fr.wikipedia.org/wiki/Viscosit%C3%A9
https://fr.wikipedia.org/wiki/Conductivit%C3%A9_thermique
https://fr.wikipedia.org/wiki/Adiabatique
https://fr.wikipedia.org/wiki/%C3%89quations_d%27Euler
https://fr.wikipedia.org/wiki/Superfluide
https://fr.wikipedia.org/wiki/H%C3%A9lium
https://fr.wikipedia.org/wiki/%C3%89toile_%C3%A0_neutrons
https://fr.wikipedia.org/wiki/Nombre_de_Reynolds
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V.2.3   Hypothèse  

Dans notre simulation, Nous nous sommes appuyés sur les hypothèses suivantes : 

Ecoulement stationnaire : 
𝜕

𝜕𝑡
= 0 

Fluide incompressible : 𝜌 = 𝑐𝑡𝑒 

Ecoulement bidimensionnel : 
𝜕

𝜕𝑧
= 0 

Forces de pesanteur négligeables :𝜌𝑓 = 0 

Fluide parfait :𝜇 = 0 

V.3     Résultats 

Les résultats obtenus par les deux simulations numériques « matlab et Ansys Fluent » sont 

illustrés dans le tableau ci-dessous   

Tableau (V.1) : La taille de la zone de recirculation par les deux logiciels en fonction des 

vitesses 

 

Vitesse (cm/s) 

Xr (cm) 

Résultats de Matlab  Résultats d’Ansys fluent 

1 11,2 4,2 

2 16,8 6,2 

3 20,4 7,7 

4 22,8 8,7 

5 24,4 9,7 

6 25,6 10,7 

7 26,4 11,2 

8 27,2 11,6 

9 27,6 12 

10 28 14,2 
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Figure (V.1) : La taille de la zone de recirculation avec les deux simulations 

 

V.4      Discussion  

D’après les deux simulations réalisées par Matlab et Ansys Fluent, pour un fluide parfait nous 

observons que la zone de recirculation augmente en fur et à mesure. 

La différences de la taille de la zone de recirculation entre les deux simulations du a les condition 

au limite qu’on a utilisé et les équation qu’on a utilisé et celle qui utilise le logiciel ansys fluent.  

On déduit donc, pour un fluide parfait, la taille de la zone de recirculation dépend de la vitesse de 

l’écoulement, c’est-à-dire ; qu’à chaque fois que la vitesse grandie la taille de la zone de 

recirculation augmente. 

V.5    Exemple de l’écoulement de la marche descendante (Fluide réel)  

Les deux mécanismes fondamentaux de transport dans les fluides par une expérience de laboratoire 

réalisée dans un tunnel hydrodynamique : l’écoulement de la marche descendante. Le nombre de 

Reynolds pour cet écoulement est calculé à partir de la vitesse de l’écoulement amont U, la hauteur 

de la marche h = 1cm, et la viscosité cinématique de l’eau  𝑣 = 10−2 cm2/s (voir la figure V.2) 
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L’injection de colorant nous permet de visualiser la zone de recirculation derrière la marche. Ils 

ont reporté dans la figure (V.3) la longueur XR de cette zone de recirculation en fonction de U. 

Pour des nombres de Reynolds inférieurs à 350, l’écoulement est stationnaire et la longueur de la 

zone de recirculation croît assez linéairement avec U. Au-dessus de Re = 350, l’écoulement devient 

instationnaire et la longueur moyenne de la zone e recirculation décroît jusqu’à atteindre une valeur 

constante de saturation. Le changement brutal qui s’opère correspond au passage du mode de 

transport diffusif dominant au mode de transport convectif dominant dans la direction verticale. 

On peut d’ailleurs à partir des temps caractéristiques des transports retrouver simplement les 

comportements asymptotiques de la figure (V.3). Pour le transport diffusif, la vitesse U au-dessus 

de la marche est transportée verticalement vers le sol derrière la marche pendant un temps            

τν ∝
ℎ2

𝑣
 et atteindra donc le sol à l’abscisse XR∝

ℎ2

𝑣
𝑈(pendant la diffusion verticale vers le bas, il 

y a un transport convectif vers l’aval à une vitesse que l’on suppose être U). Avec cet argument 

simple on trouve que le mode diffusif impose une augmentation linéaire de XR avec U, ce qui est 

effectivement confirmé par l’expérience tant que Re < 350. 

Au-dessus de Re = 350, il y a des tourbillons (clairement observables à Re = 1500) qui vont 

transporter la vitesse U au-dessus de la marche vers le sol derrière la marche. Si on suppose que la 

vitesse périphérique de rotation des tourbillons est proportionnelle à U et qu’ils ont une taille 

proportionnelle à h, alors le temps pour transporter la vitesse U verticalement vers le sol derrière 

la marche est τC =
ℎ

𝑈
. Avec le transport convectif vers l’aval à la vitesse U, la vitesse U qui était 

au dessus de la marche atteindra le sol en une abscisse XR ∝
ℎ2

𝑣
𝑈 = h. On trouve ici que la longueur 

de recirculation est indépendante de la vitesse de l’écoulement, c’est ce qu’on trouve 

expérimentalement puisque pour les grandes vitesses, la longueur de la recirculation sature à une 

valeur constante. 
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Figure (V.2) : Visualisation de l’évolution de la recirculation derrière la marche 

descendante en fonction du nombre de Reynolds. L’écoulement devient instationnaire pour 

Reh = 350. 
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Figure (V.2) : Mesure de la longueur de recirculation Xr en fonction de la vitesse U. Les 

cercles blancs correspondent à l’écoulement stationnaire, et les ronds noirs à l’écoulement 

instationnaire. 

V.6   Conclusion  

En comparant les résultats obtenus avec les deux simulations pour un fluide parfait on déduire 

que : 

La taille de la zone de recirculation XR augmente à chaque fois la vitesse d’entrée U augmente.  

Par contre Par contre, pour un fluide réel, on observe que la longueur de la zone de recirculation 

est indépendante de la vitesse de l’écoulement, c’est ce qu’on observe aussi expérimentalement 

puisque pour les grandes vitesses, la longueur de la zone de recirculation sature à une valeur 

constante.
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Ce travail a été consacré à la modélisation numérique de l’écoulement incompressible et 

bidimensionnel confiné en aval d’une marche descendante. Cette configuration engendre un 

écoulement du type décollé et recollé qui présente des complexités dues à la présence de zones de 

recirculation et de rattachement. 

Plusieurs études numériques et expérimentales ont été menées sur les écoulements en aval d’une 

marche descendante pour connaître et définir ses avantages afin d'en bénéficier dans le domaine 

industriel. 

Dans notre travail, nous nous sommes intéressés à l’écoulement en aval d’une marche descendante. 

Et nous avons étudié par une simulation numérique un écoulement incompressible en régime 

permanent. 

Nous avons observé une formation d’une zone de recirculation (zone de séparation) en aval de la 

marche. 

Nous avons aussi observé aussi que pour un fluide parfait, la taille de la zone de recirculation 

augmente à chaque fois que la vitesse à l’entré augmente. Contrairement a un fluide réel où la 

longueur de la zone de recirculation sature à une valeur constante pour des grande vitesses  

Nous avons aussi étudié l’influence de l’élargissement sur le champ de vitesses et nous avons 

constaté que pour chaque nombre de Reynolds, le champ de vitesses est constant sur la longueur 

de la marche en amont. Ce champ diminue lorsque la section de la conduite agrandit. 

L’augmentation dans le volume de la zone de recirculation peut être considérée comme un 

avantage pour celui qui veut faire une détente ou séparer entre un liquide et un gaz, et aussi peut 

être considérée comme un inconvénient à cause de la grosse perte d'énergie. 
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Résumé : 

 

Dans le cadre de ce travail, nous nous sommes intéressés à la modélisation numérique d’un 

écoulement bidimensionnel en aval d’une marche descendante en utilisant un fluide parfait, 

pour déterminer la longueur de la zone de recirculation. Pour cela, nous avons élaboré des 

modèles en utilisant le logiciel de simulation. Ansys Fluent basé sur la méthode de volumes 

finis et les équations de Navier-stokes, et la méthode des différences finis pour la 

modélisation et la discrétisation les équations d’Euler. 

 

Mots clés : marche descendante, modalisation, volumes finis, différences finis, équations de 

Navier-stokes, équations d’Euler 

 

Summary : 

 

In the framework of this work, we ara interested in numerical modeling of 2D flow 

downstream of a descending skp, using an ideal fluid to determine the length of the 

recirculation region, for this we developed models using ANSYS Fluent simulation 

software,based on finite volume méthod, Navier_Stokes equations and finite difference 

méthod. To model and estimate Euler's equations.  

 

The Key words: Step down, formation, limited, sizes, limited differences méthods, 

Navier_Stokes equations, Euler's equations 
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