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INTRODUCTION GENERALE



La mécanique des fluides numérique (MFN), plus souvent désignée par le terme
anglais computational fluid dynamics (CFD), consiste a étudier les mouvements d'un fluide, ou
leurs effets, par la résolution numerique des équations régissant le fluide. En fonction des
approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de
représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les

équations résolues peuvent étre les équations d'Euler, les équations de Navier-Stokes.

Comme les études expérimentales sont tres colteuses et prennent plus de temps, notamment dans
le domaine industriel, la modé¢lisation et la simulation numérique s’aveérent étre trés utiles pour
étudier les écoulements turbulents dans différentes situations. Néanmoins on ne peut se passer des
données expérimentales qui servent souvent comme référence afin de valider les constantes

empiriques utilisées dans les modeéles de turbulence.

Les écoulements décollés et recollés ont fait I'objet d'un grand nombre de travaux en raison de
I’importance de leur application dans beaucoup de situations industrielles tels que : les fuselages

d'avions, l'automobile et dans 1’environnement.

L'écoulement sur une marche descendante est un écoulement de séparation et de recollement a
géomeétrie simple, d'ou le grand intérét porté a cette configuration. En effet, en plus des différentes
applications dans les domaines de l'industrie (moteurs a combustion, échangeurs de chaleur,
réacteurs nucléaires, systemes de refroidissement, ...) et du génie civil (batiment, pont, ...) la
marche est la configuration idéale pour tester les modéles de turbulence et pour valider les codes

numériques avant de tenter de les adapter a des géomeétries plus complexes.

Notre travail consiste a déterminer la zone de recirculation en fonction de différentes vitesses d’un

fluide non visqueux (fluide parfait) grace a deux logiciels de simulations (Matlab et Ansys Fluent).

Les résultats obtenus sont ¢galement confrontés a d’autres études numériques. Les chapitres de ce

mémoire sont répartis comme suit :

o Le chapitre 1 comporte la description de notre probléme a savoir 1’écoulement en
aval d’une marche et une revue bibliographique détaillée portant essentiellement sur les

travaux expérimentaux et numériques antérieurs sur I'écoulement en aval d'une marche.

o Le chapitre Il comporte des brefs rappels et définitions sur les notions de la
mécanique des fluide, la modélisation numérique et la présentation des deux logiciels

utiliser dans ce travail.



o Le chapitre 111 comporte la simulation numérique via le méthode des différences

finies

o Le chapitre IV comporte la simulation numérique réalisé grace a (Ansys Fluent),

et rapporte les différents résultats obtenus.

o Le chapitre VV comporte la comparaison des résultats obtenus par les deux

simulations.

Enfin nous terminons notre travail avec une conclusion générale.



Chapitre I : Description du probleme et

bibliographie



Chapitre | Description du probléme et bibliographie

.1 Introduction

Les écoulement décollé et recollé derriere une marche descendante ou I’élargissement brusque se
démarque comme l'un des cas importants de modeles géométriques considérés bidimensionnels
ou tridimensionnels. Quoiqu’étant simple, l'attrait de ce modele géométrique est que les
écoulements sont caractérisés par d'importants phénoménes fondamentaux reliés a la mécanique
des fluides : le développement d'une couche limite sur la paroi horizontale en amont, décollement
et développement d'une couche de cisaillement au coin de la marche, formation d'une zone de
recirculation en aval de la paroi verticale, recollement de la couche de cisaillement sur la paroi

horizontale en aval et redéveloppement d'une couche limite en aval du point de recollement.

Dans ce chapitre on essaye de donner une vue générale sur les écoulements en élargissement
brusque et les écoulements décolles et recolles, on aborde notamment 1’écoulement en aval d’une

marche descendante et une synthese bibliographique dans cet axe de recherche.

1.2 Description du probléme

La marche descendante a été choisie comme géométrie de travail de cette étude, puisque
I'écoulement qui s'y développe présente des caractéristiques proches de celles des écoulements
industriels. La figure (1.1) montre les caracteristiques géométriques et physiques les plus
importantes du probléme. Cette géométrie est I’un des cas test les plus répandus dans le domaine
des recherches fondamentales de la dynamique des fluides, expérimentales et numériques. Il s'agit
d'une géométrie intéressante puisqu’elle génere des écoulements tres instables. De plus, il est facile
d'y maintenir le point ou la ligne de détachement sur une position donnée. Ceci est important quand
on essaye de contrdler certains paramétres qui jouent sur la dynamique de I'écoulement. En outre,
I'écoulement qui se développe en aval de I'expansion garde un grand degré de complexité, étant
donné les instabilités caractéristiques de plusieurs types d'écoulements qu'on y retrouve, comme
I'illustre la figure (1.1) : couche limite en développement (1), détachement de la couche limite (11),
écoulement cisaillé (I11), recirculation (1V), rattachement (V) et redéveloppement de la couche
limite (VI), région d'interaction de la couche de cisaillement et de la couche limite en

développement (VII).
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Figure(l.1): Caractéristiques physiques générales de I’écoulement en aval de la marche

descendante

1.3 ECOULEMENTS DECOLLES ET RECOLLES

Les décollements et recollements sont des eécoulements qui sont créés genéralement par le
changement brusque de la géométrie. Plusieurs problemes réels qui ont un intérét industriel se
composent de régions ou I'écoulement peut étre fortement turbulent avec des séparations,
rattachement et des zones de recirculation.

Il existe plusieurs configurations planes ou axisymétriques d'écoulement caractérisées par des
séparations :

- Elargissement brusque.

- Marche descendante.

- Marche montante.

- Obstacle bidimensionnel.

Nous détaillons dans la suite du chapitre quelques travaux antérieurs concernant certains
écoulements séparés et recollés.

1.3.1 Elargissement brusque
Il existe deux types d’élargissement brusque, symétrique et asymétrique (Figures 1.2 et 1.3). Ce
type d’écoulement pour les deux configurations se caractérise par une zone de recirculation dans

la région de I’élargissement.
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Figure(l.3): Elargissement brusque asymétrique
Runchal A.K. (1970), a présenté les résultats d’une étude expérimentale utilisant la technique
d’¢lectrolyse contrélée par diffusion pour déterminer les flux massiques dans les régions de
séparation et de redéveloppement en aval d’un brusque élargissement d’un tube circulaire. Il a

mené 1’étude pour un nombre de Reynolds compris entre 2500 et 89000.

Il a mis en évidence I’influence des conditions aux limites sur le transfert de masse. Il a montré
également que le transfert de masse dans la zone de rattachement varie par une loi enpuissance
simple du nombre de Reynolds, le point de recollement Xr étant localisé entre 6H et 8H (H est la

hauteur de la marche causée par 1’¢élargissement du tube circulaire).

Hutton A.G. & Smith R.M. (1986) ont proposé une étude numérique d’un ecoulementturbulent
s’écoulant a travers un canal avec un élargissement brusque du coté de la paroi supérieure (cas
asymétrique) pour évaluer la performance des modeles de turbulence a deux équations. La
configuration étudiée est un jet turbulent subissant le phénomeéne de décollement (di a

I’¢largissement brusque) et de recollement générant une zone de recirculation. Le rapport



Chapitre | Description du probléme et bibliographie

d’élargissement étant Er=2.1 et le nombre de Reynolds basé sur le diametre de sortie étant 62000.
Ils ont appliqué les modéles de turbulence a deux équations énergie dissipation K — ¢ et g-f (q
étant la racine carrée de 1’énergie cinétique de la turbulence et f la fréquence des grosses
structures). lls ont comparé leurs résultats aux données expérimentales de Freeman AR. &
Szczepura R.T. (1982). Ils conclurent que la principale source d’erreur est 1’équation de la
dissipation et 1I’équation de la frequence. Pour cela, ils ont propose la modification des constantes
dans les termes sources pour y remédier et avoir un meilleur accord avec les résultats

expérimentaux.

Khalil E.E. (1986) a étudié numériquement les écoulements a zones de recirculation enadoptant la
méthode des différences finies et le modéle K — . Il a comparé ses résultats a des travaux
expérimentaux antérieurs notamment ceux de Baker et al (1974) et ceux de Mobarak et al (1980).
Son travail était destiné a rendre plus économique et plus rapide les designs des diffuseurs. Il s’est
intéressé au phénomene de décollement ou de séparation en se penchant en particulier sur les effets
des différents paramétres tels que 1’inclinaison du plan supérieur, le profil de la vitesse d’entrée et

les conditions aux limites de sortie.

1.3.2 Ecoulement en aval d'une marche

Parmi les écoulements bidimensionnels décollés et recollés, I'écoulement sur une marche a été
largement étudié en raison de sa géometrie simple. La marche peut étre abordée de plusieurs
manieres ; il y a la marche montante et la marche descendante. Il existe aussi la configuration ou
les deux types de marche sont regroupés ; il s’agit de la cavité (marche descendante—marche

montante) et de 1’obstacle (marche montante — marche descendante).

Toutes ces configurations engendrant une ou plusieurs zones de recirculation, trouvent des
applications tres importantes dans le domaine du design des batiments. Dans une étude numérique,
Zhang C.X (1994) s’est penché sur les trois configurations (marche descendante, marche montante
et obstacle) en prenant comme référence I’expérience de Moss W.D. & Baker S. (1980). Il s’est
proposé d’examiner la performance du modele de turbulence k—e pour la simulation de ce type

d’écoulements.
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1.3.3 Marche montante
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Figure(l.4):Ecoulement sur une marche montante

L'écoulement sur une marche montante a été peu etudié contrairement a la marche descendante,
pourtant les applications industrielles sont nombreuses et intéressantes (transport ferroviaire,
l'automobile, le batiment...). D'une maniére générale ce type d'écoulement est composé de deux
zones de recirculation qui sont des zones dépressionnaires, la premiere est localisée au pied de la
marche et la seconde plus volumineuse sur la marche.

On constate la présence d'un décollement au bord d'attaque de la marche a l'origine de la formation
de la deuxieme zone de recirculation

1.3.4 Marche descendante

L'écoulement sur une marche descendante a fait I'objet d'une grande attention de la part de
plusieurs chercheurs, en raison de ses nombreuses applications. En effet, il existe dans lalittérature
beaucoup d’études expérimentales ou numériques sur cette configuration en régime laminaires ou
turbulents. Différentes applications dans l'industrie tels que les diffuseurs, les moteurs a
combustion, le design des véhicules, des trains et des avions et méme dans le design des

constructions (écoulement du vent autour d’un batiment) sont liées a cette configuration.
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Figure(l.5): Marche descendante

Une étude plus détaillée sur cette configuration (figure 1.5) sera développée dans la suite du
chapitre.

1.3.5 L’obstacle

On peut dire que c¢’est la combinaison de la marche montante et de la marche descendante (Figure
1.6). L’écoulement autour de 1’obstacle présente plusieurs zones de recirculation avant la marche
montante, sur 1’obstacle et a son aval. Zhang C.X (1994) a simulé numériquement 1’écoulement
turbulent autour d’un obstacle de hauteur H et de largeur 2H, en appliquant le modele k-g. Les

résultats obtenus sont confrontés a I’expérience de Moss & Baker (1980).

Le point de séparation en amont de 1’ obstacle déterminé numériquement est situé en Xs = —0.79H
alors que la valeur expérimentale est Xs=—H. L’attachement sur le plan vertical de I’obstacle se
produit en Za=—0.54H alors que 1’expérience donne Za= 0.65H. IL n’y a pas de rattachement au-
dessus de I’obstacle mais en aval de ’obstacle Xg= 9.38H comparée a la valeur expérimentale
Xr = 10H. Les profils de la vitesse horizontale sont en bon accord avec I’expérience. Pour le
décalage des profils au-dessus de 1’obstacle, I’auteur soupgonne les conditions d’entrée d’en étre

la cause.

Les vitesses verticales sont correctement déterminées numériquement sauf pour le bord aval de

I’obstacle ou il y a un écart qui peut provenir du vortex qui apparait sur I’obstacle.

10
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Figure(1.6): Ecoulement sur un obstacle
Leclercq D.J.J. & al (2001) ont réalis¢ une étude expérimentale d’un écoulement turbulent
bidimensionnel abordant un obstacle de longueur L, composé de deux marches montante et
descendante de hauteur H=0.05 m avec un nombre de Reynolds Rey=1.7 10°. Cette étude a été

examinée par la suite par Addad & al (2003).

Le bruit aérodynamique étant généré par les structures turbulentes des écoulements sur les
véhicules routiers et les trains. Addad Y. & al (2003) ont réalisé une simulation des grandes
échelles (LES) d’un écoulement turbulent sur un obstacle de hauteur H=50 mm et de longueur
L=10 H constitu¢ d’une marche montante et une autre descendante, la vitesse de I’écoulement
externe étant Us=50 m/s donc un nombre de Reynolds Ren=1.7 10°. L’objectif est de réduire la

propagation du bruit. Leurs résultats sont en bon accord avec ceux de Leclercq & al (2001).

L ‘écoulement étudié¢ développe trois zones de recirculation autour de 1’obstacle : les points de
séparation et de rattachement avant la marche montante sont en accord avec ceux de Leclercq &
al (2001) et Moss & Baker (1980). L’expérience montre que I’écoulement décolle entre 0.8H
et 1.5H avant la marche et se recolle sur la paroi verticale de la marche alors que les valeurs
retrouvees par la méthode LES sont respectivement 1.2H et 0.6H. La seconde zone de recirculation
atteint 4.7H, ce qui est en accord avec la valeur expérimentale de Moss & Baker, alors que Leclercq
& al (2001) ont observé le recollement de la deuxiéme zone en 3.2H. Au bord de la marche
descendante survient le dernier décollement puis le recollement a une distance de 4H a partir des

calculs par simulation tandis que pour I’expérience de Leclercq & al (2001) la distance est de 3.5H.

11
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.4 ECOULEMENT EN AVAL D’UNE MARCHE DESCENDANTE

Dans ce qui suit, et pour plus de clarté, nous avons choisi d’aborder 1I’écoulement sur une marche
descendante a travers ses caractéristiques générales telles que les parametres importants, la
structure de I’écoulement (les différentes régions) ; les principales interactions entre les différentes
zones de 1’écoulement et les grandes structures associées au processus de séparation et de

recollement. Nous détaillons ces mécanismes a travers une étude bibliographique.

I.4.1 Description générale de I’écoulement

L’écoulement sur une marche descendante est un écoulement décollé et recollé crée par la
marche. Le décollement de la couche limite amont se produit a partir du mur vertical de lamarche,
en développant une nouvelle couche cisaillée.

La séparation est au départ parallele au plan horizontal de la marche ; la ligne de séparation en
aval de la marche est ensuite légerement déviée.

1.4.1.1 Caractéristiques de I’écoulement
La longueur de recollement est la caractéristique la plus importante dont dépend la zone de

recirculation.

En étudiant I’évolution de la longueur de rattachement et sa variation en fonction des conditions
dynamiques et géeometriques, J.K.Eaton & al (1981) ont cité cing paramétres indépendants

importants :

. Les conditions initiales.

« L’épaisseur de la couche limite.

« Laturbulence de I’écoulement extérieur.
« Le gradient de pression.

Trois autres parametres spatiaux indépendants sont définis par BADRI Kusuma (1993) :

> Le rapport d’expansion : (voir figure 1.7)

E, = Yaval (1.1)

Yamont

Westphal & al (1984) ont montré que le coefficient de pression est pratiqguement indépendant de
E,, et ils ont montré que I’effet de ce parameétre sur le processus de recollement est négligeable

comparé aux autres parametres.

> Le nombre de Reynolds basé sur la vitesse de 1’écoulement, la hauteur de la

marche et la viscosité du fluide :

12
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Uy, H
u

(1.2)

ReH =

Il met en évidence I’influence relative de la viscosité sur I’écoulement décollé et recollé. Les effets
du nombre de Reynolds sur la longueur de recollement ont été étudiés par Back & Roshke(1972)
pour le cas de la marche descendante, et par Schichting (1979) pour le cas d’un obstacle
cylindrique. Aux faibles nombres de Reynolds, 1’écoulement est laminaire. Quand le nombre de
Reynolds croit, I’instabilité se développe. Aux grands nombres de Reynolds, 1’écoulementautour
d’un cylindre devient instable et la couche limite devient turbulente. D’aprés Adams & al (1984)
Rey est considéré comme un parametre fondamental pour décrire le régime total de 1’écoulement

sur une marche descendante.

> L t
erapport —
PP H

Ce parametre est représentatif de la condition initiale de la couche cisaillée. [ étant 1’épaisseur de
la couche limite sur la paroi amont Bradshaw (1966) et Birch (1981), ont discuté I’importance de

la condition initiale sur le développement de la couche cisaillée.

1.4.1.2 Structure de I'écoulement

Dans leurs travaux Abbot et Kline en 1961 et Pronchick et Kline en 1983 ont divisé le champ en
régions d'écoulement simple, ce qui permet de mieux comprendre le mécanisme de I'écoulement.
Ainsi I'écoulement turbulent sur une marche pour le cas d'une couche limite incidente est séparé

en cing régions d'apreés I'étude de E.W. Adams et al (1984) (figure 1.7) :

+ Région 1 : couche limite.

+ Région 2 : couche cisaillée libre.

+ Région 3 : zone de recirculation.

+ Région 4 : zone de recollement.

* Région 5 : zone de redéveloppement.

Les profils de vitesse des régions 1 et 5 sont paraboliques, alors que ceux des régions 2, 3 et 4
présentent des interactions elliptiques. Il existe alors plusieurs interactions entre les régions
générées par 1’écoulement ; celles-ci sont surtout fortement dépendantes des parametres spatiaux
(Er, Ren et & /H).

Région 1 : Elle correspond aux conditions d’entrée de I'écoulement en aval de la marche. D'aprés
Birch (1981), la couche cisaillée est trés sensible aux conditions aux limites, ce qui entraine une

influence de la zone 1 sur tout I'écoulement. Bradshaw et Wong (1972) I’ont bien remarqué dans

13
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leurs travaux. Ces derniers ont défini trois régimes de perturbation (dus a la présence de la

marche dans cette région) : Perturbation écrasante (g < 1), forte perturbation (% = )et

faible perturbation (% > 1) Notons que ces critéres n’ont pas éeté validés pour toutes les

configurations d’écoulements incidents (Badri Kusuma, 1993).

Région 2 : C’est une couche cisaillée libre. Elle est située entre le point de décollement au bord
de la marche et la frontiére de la zone recirculation, ou la structure de I'écoulement est trés

influencée par le recollement (zone d'impact).

Région 3 : 1l s’agit d’une zone de recirculation ou 1'écoulement est a flux opposé. D'apres Eaton
& Johnston (1980), Westphal & al 1984 et Adams & al (1984) I'écoulement a une vitesse ne

dépassant pas 20% de la vitesse de référence (Urer) et un coefficient de frottement de 1’ordre de

(C+=0,02). Chandrsuda & Bradshaw (1981) ainsi que Eaton et Johnston (1981) ont conclu que ce

n'est pas une zone *’d'eau morte’’ de faible vitesse.

L'écoulement dans cette zone fut considéré comme laminaire, la corrélation -uv étant trés faible,
malgré les grandes fluctuations crées par l'instabilite de I'¢coulement (Driver & Seegmiller
1982, Pronchick & Kline, 1983 et Adams & al. 1984).

D’aprées I’étude de Chapman (1958), la longueur de recollement correspond & un équilibre entre
I’écoulement entrainé de la zone de séparation par la couche cisaillée libre et 1’écoulement
inverse de la zone de recollement vers la zone de séparation sous I’effet des forts gradients de
pression. Westphal & al. (1984) ont conclu que la croissance de I’entrainement de la couche

cisaillée entraine une diminution de la longueur de recollement.

Région 4 : La zone de recollement qui est caractérisée par un écoulement instable soumis a une

forte interaction avec la paroi. Shandrsuda, 1975 et Kim & al. (1978) ont constaté que I'écoulement

preés de la paroi a l'aval du recollement est fortement intermittent. Eaton & Johnston (1980)
constaterent qu'au début de la zone de recollement le courant est complétement inversé, changeant
de direction vers l'aval. La longueur de recollement est fluctuante d'aprés Abbot & Kline (1961)
et Eaton & Johnston (1980). Le point de recollement fluctue sur une zone de longueur de 2H autour
de sa position moyenne. D'aprés Adams & al. (1984) le processus de recollement constitue une

condition initiale au processus de redéveloppement.

Région 5 : C'est la région de redéveloppement (de restructuration) ou I'équilibre énergétique de

I'écoulement commence a se rétablir pour atteindre les propriétés d'établissement de la zone

14
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aval. Dans cette région la tension de Reynolds diminue rapidement et simultanément une nouvelle
sous couche limite commence a se développer en traversant la couche cisaillée. La partie extérieure
de la couche cisaillée de recollement conserve la caractéristique d'une couche cisaillée libre,
jusqu'a 50H a l'aval du point de recollement (Bradshaw et Wong, 1972, et Smyth, 1979) ; les
grandes structures développées dans la couche cisaillée libre de la séparation persistent (Badri
Kusuma, 1993).
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Figure(l.7): Structure de I’écoulement sur une marche descendante

1.4.2 Références
Les reférences présentées concernent les principaux travaux expérimentaux et numérique réalisés

sur la marche descendante.

1.4.2.1 Etudes expérimentales
Les études expérimentales sur les écoulements détachés et rattachés derriere une marche sont
nombreuses. Elles considerent généralement les effets de la séparation, du rattachement, et du

redéveloppement de la couche limite ainsi que l'influence du nombre de Reynolds.

Eaton et Johnston (1981), ont évalué toutes les données expérimentales disponibles pour des
comparaisons et validations des codes de calculs. 1ls ont également proposeé des critéres pour
qu'une expérience puisse étre considéree comme référence pour les calculs numeriques :
adéquation de l'instrumentation pour accéder aux directions instantanées de I'écoulement dans la
zone de recirculation ; conformité des installations pour assurer la condition de bidimensionnalité,

c'est a dire, que le rapport de la profondeur par la largeur du canal soit supérieur a 10 ;
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établissement précis des parameétres de contrdle de I'écoulement, comme I'épaisseur de la couche
limite en amont du point de détachement, profil de vitesse moyenne, intensité turbulente, etc ; et
finalement, l'accord des grandeurs turbulentes avec le comportement standard des autres
expériences, par exemple que le tenseur de Reynolds croisse de la marche a la région de

rattachement de la couche limite et qu'il décroisse en aval de cette région.

Ils ont présenté ces critéres a la conférence de Stanford (1980-1981) ainsi qu'une analyse complete
des travaux réalisés avant 1980, en concluant qu'il n'existait aucune expérience qui remplisse leurs
conditions. Cependant I'expérience de Kim et al. (1978), présentant des mesures de vitesse

moyenne, tensions de Reynolds et coefficient de pression.

Eaton et Johnston (1980) ont mesuré la composante moyenne de la vitesse longitudinale et
I'intensité turbulente a I'aide d'un anémometre a fil a courant puisé. Ils présentent également la
pression statique et le coefficient de friction sur les parois. Par ailleurs, Pronchick et Kline (1983)
ont utilisé un systéme LDA a deux composantes en déterminant un ensemble de résultats tres
complet. Ils ont également visualisé I'écoulement & I'aide de bulles d'hydrogene, arrivant a la
conclusion que la structure de I'écoulement dans la région de rattachement est dominée par des
grands tourbillons prenant naissance dans la couche cisaillée libre. Leur expérience a aussi montré
que la couche de mélange qui se déclenche en aval de la marche est similaire a une couche de

mélange spatiale libre.

Les instabilités primaires dans un écoulement détaché-rattaché ont été étudiées par Troutt et al
(1984). lls ont mis en évidence I'existence et I'importance des grosses structures dans I'écoulement
en aval de la marche. Roos et Kegelman (1986) ainsi que Isomoto et Honami (1987) ont étudié
I'influence du nombre de Reynolds et I'intensité turbulente en amont de la marche. Otlgen (1991)
a etudié l'influence de la hauteur de la marche sur I'écoulement moyen sur cette géométrie. La
position du point de rattachement et I'intensité tourbillonnaire en aval de la marche sont tres
dépendantes de ces parametres. Les structures cohérentes ont également été mises en évidence

dans les écoulements bidimensionnels de film liquide par Gharib et Derango (19S9).

En 1950 Hsu étudie la conversion de I'énergie en mesurant le champ de la vitesse moyenne et le

champ turbulent de 1I’écoulement en aval d’'une marche descendante.

Une étude expérimentale ayant pour objectif de déterminer le coefficient de transfert de chaleur
local. Le facteur de recouvrement pour les écoulements turbulents bidimensionnels décollés et

recollés a été présenté par R.A.Seban, A. Emery, et A.Levy (1959).
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Ces derniers utilisent deux marches chauffées de hauteurs différentes (Hi= 2.06 cm et H:
=0.64 cm). lls obtiennent un coefficient de transfert de chaleur maximal a x = 5Hy ; c’est le point
ou I’écoulement est recollé, dans le cas de la marche Hi. Pour la deuxiéme marche, le rattachement

se fait & 6H>.

More étudie en 1960 la région de séparation sur une mince couche d'air avec un rapport

i 1. 1l détermine la distribution des pressions sans pouvoir mesurer les grandeurs

turbulentes. Alors que Tani & al. (1961) parviennent a mesurer l'intensité de la turbulence, la
contrainte de cisaillement de la turbulence, les profils de vitesse moyenne et la distribution des
pressions. lls concluent que la distribution de pression n'est pas sensible a la variation de H et de
[1 et que les différentes conditions de la couche limite amont ne créent pas de différence
significative a 'aval de la marche, car I’influence de la turbulence se produit dans la couche de

cisaillement libre prés de la séparation.

Dans la méme année Abbot & Kline (1961) ont visualisé les régions de recirculation et de
recollement. Ils ont effectué des mesures qualitatives sur une double marche descendante (Figure
1.8). lls ont noté que I'écoulement pres du recollement est instable et se divise en trois régions :
écoulement 3D, 2D et" overall length of séparation™ ; I'intensité turbulente et le nombre de
Reynolds n'ont pas d'effet sur la structure de I'¢coulement, aussi la longueur de recollement trouvée

sur chacune des marches est de l'ordre de7H.

Figure(1.8): Double marche descendante
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En 1966 Krall K.M. & Sparrow E.M. ménent des expériences pour déterminer I’effet de
I’écoulement décollé sur les caractéristiques du transfert de chaleur dans un tube circulaire.
L’écoulement de séparation est produit par un orifice de diametre variable, produisant un
nombre de Reynolds qui varie entre 10000 et 130000. Les mesures obtenues montrent que les
coefficients de transfert de chaleur dans les régions de séparation, de recollement et de
redéveloppement sont nettement plus grands que ceux pour I’écoulement totalement développé.
Par exemple au point de rattachement, les coefficients sont 3 a 9 fois plus grands que ceux
correspondants a I’écoulement pleinement développé. Le point de recollement de 1’écoulement,
qui correspond au maximum de distribution du coefficient de transfert de chaleur, est passé de

1.25D & 2.5D a partir de I’expansion (D étant le diametre de 1’orifice).

Filetti E.G. & Kays W.M. (1966) présentent des résultats expérimentaux concernant le coefficient
de transfert de chaleur dans les régions de séparation, de rattachement et de redéveloppement
derriére une double marche située dans un conduit. Le nombre de Reynolds basé sur le diamétre
du conduit varie de 70000 a 205000. Le maximum de transfert de chaleur (hombre de Nusselt
maximum) est atteint au point de rattachement suivi d’une diminution vers la zone de

I’écoulement de conduit pleinement développé.

L’¢tude expérimentale de D.W. Etheridge & P.H. Kemp (1977) a été réalisée dans un canal de150
mm, muni d’une marche descendante de hauteur H=13.46 mm, située a 750 mm de I’entrée du
canal. L’objectif de leur premiére expérience est de déterminer les conditions de développement
de la couche limite le long du canal et I’expression de son épaisseur. Aussi ont- ils mesuré les
profils des vitesses moyennes et les intensités de la turbulence pour trois sections transversales
distinctes : x=0.44, 0.91 et 1.94 m (x étant la distance a partir de I’entrée du canal). La seconde
expérience a permis de déterminer les profils mesurés en différentes positions en amont de la
marche. Ils ont déduit que les grandeurs passent par le maximum prés de la paroi et que les mesures
de turbulence révélent le développement d’une nouvelle couche cisaillée, qui se divise au point de

rattachement avec le 1/6 de la masse du fluide de 1’écoulement de 1’aval.

Un travail expérimental est réalisé par Tagg, Patrick & Wragg en 1979 pour déterminer les
distributions de transfert de masse en amont d’un jet circulaire injecté dans un conduit circulaire a
partir d’une buse. Pour différents rapports d’expansion, le taux de transfert de masse augmente
pour atteindre une valeur maximale, puis décroit pour obtenir la valeur prédite dans le cas de

I’écoulement développé.
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Kim J. & al. effectuent une étude complete en 1978 sur I'écoulement décollé et recollé au passage
d'une marche descendante ayant comme rapport d’expansion E; = 1/3, une vitesse d’entrée
U=18.2m/s etun nombre de Reynolds base sur la hauteur de la marche Rex = 31000. Ils trouvent

une distance de recollement Xgr=7.0H.

Dans sa thése de doctorat, Badri Kusuma (1993) a présenté une étude expérimentale sur
I'écoulement turbulent décollé et recollé au passage d'une marche descendante. Les expériences
étaient destinées a produire des mesures de référence sur la structure turbulente de ce type
d'écoulement et pour comprendre les effets des rugosités de la paroi et de turbulence extérieure
dans la zone de recirculation et de recollement. Il a réalisé les mesures qualitatives par visualisation
Laser et les mesures quantitatives par anémométrie a fil chaud.Trois configurations d’écoulement
ont été considérées : canal rectangulaire, canal divergeant et jet pariétal, la marche étant a hauteur

réglable entre 0 et 10 cm.

Il a exploité les mesures par trois méethodes : le lissage des gradients de vitesses moyennes pres
des parois pour définir la longueur de recollement, les longueurs caractéristiques de la turbulence
en coordonnées de Westphal pour analyser le comportement des grandes structures,la loi
universelle logarithmique (couche limite) et I'affinité des profils de vitesses moyennes pour

analyser la zone de recollement.

Des données expérimentales ont été obtenues pour I’écoulement turbulent en aval de la marche
descendante par Boizumault F et al. (1999) dans le but d’analyser 1’échange thermique local par
convection sur la paroi située en aval de la marche. La configuration étudiée présente un rapport
d’expansion Er=1.5, la hauteur de la marche étant H=4 mm. Trois conditions de 1’écoulement a
I’amont de la marche sont prises en considération : écoulement uniforme en dehors d’une couche
limite laminaire, celui d’une couche limite turbulente ou le cas d’un écoulement en régime établi.

Ils ont conclu que :

> L’abscisse du point de transfert maximum présente des variations
importantes pour lagamme de nombres de Reynolds étudiée.
> Dans la zone X<Xmax qui comprend la zone de recirculation, ne dépend
que du régimed’écoulement en amont de 1’ élargissement.
> Le transfert de chaleur dans la zone de recollement est régi par 1’épaisseur
de la couche limite d’une part et par la vitesse d’autre part.
Reulet. P, Arnould .H et Millan. P (1999) ont étudié expérimentalement 1’écoulement en aval d’une

marche descendante de hauteur H=50 mm, le rapport d’¢largissement étant E,=1.33. L expérience
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a été réalisée pour deux vitesses d’entrée de 12 m/s et 20 m/s, soit des nombres de Reynolds Ren
de 3.8 x 104 et 6.4 x 104. Leur but était de valider des lois de parois appliquees dans les zones de
tres proche paroi pour des situations complexes telles que la zone de recollement et la zone de

recirculation.

Ils ont trouvé un point de recollement Xr = 7.3H pour le cas ou Ue=12 m/s et pour le cas ou
Ue= 20 m/s.

En faisant une comparaison des résultats expérimentaux avec les lois de paroi correspondantes
dans la zone de recirculée, ils ont montré que la zone logarithmique n’est visible sur les profils que
pour 2.5 < X/H <5. Ils montrent la nécessité de modifier les lois de parois pour mieux représenter

la zone de recirculation.

En 2001 Legrand J. Tihon J., et Legentilhomme P. ont fait une étude expérimentale d’un
écoulement derriére une marche descendante de hauteur H=20mm dans un conduit rectangulaire
de dimensions 220mm de largeur x 70mm de hauteur x 1.6m de longueur. Le rapport d’expansion
étant Er== 1.4 et le nombre de Reynolds basé sur la hauteur de sortie variant de 1200 a 12000. La
technique de mesure utilisée est la méthode de 1’electro-diffusion. Ils déterminerent ainsi la
longueur de rattachement Xg/H = 5.1 en montrant la dépendance de celle- ci avec nombre de
Reynolds et en se basant sur les études antérieures. Cette étude a permis d’identifier
expérimentalement deux zones de recirculation en aval de la marche ; La premiére est le petit
tourbillon au coin de la marche caractérisé par la distance X¢/H=1.75, la deuxiéme est la zone de

recirculation caractérisée par la longueur de rattachement Xg/H = 5.1.
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Tableau (1.1) : Résultats des principales études numeériques antérieures.

Auteurs Er 0/h Ren Xr/H | B/H
(10)
Hsu 1950) 1.67 0.13 25 6.3 4.5
Abbot & Kline (1961) |1.5 0.16a 2a5 | 7al0 | 2-15
1.97
Krall & Sparrow (1966) | 2/3 lal3| 1.25a
a 2.5
1/4
Bradshaw & Wong 0.13 4.2 6.0 30.5
(1972)
Baker (1977) 1.1 0.71 5 57a 18
6.0
Etheridge & Kemp 1.07 2 0.5 5.0 12
(1978)
1.67 0.23 3.9 8 12
Eaton & Johnston(1980) | 1.67 0.23 2.3 8.2 12
1.67 0.18 1.1 7.0 12
Chandrsuda 0.04 11 59 15
& Bradshaw
(1981)
Adams et al (1984) 125 | 0.2-16 | 0.8a [48a6.6| 114
3.6
Seegmiller et al (1985) | 1.13 1.47 3.78 6 12
Otugen & 15a 16 6.3 10.4
Muckenthaler (1991) | 3.13 16
Yul Yoo & Baik 20 6.5 43
(1992)

1.4.2.2 Etudes numériques

Les études numeériques realisées sur cette geometrie sont tres nombreuses. Presque toutes ont été
réalisées a l'aide des modélisations classiques du type fermeture en un point, a I'exception d'une
étude récente réalisée par Arnal et FViedrich (1991) sur la marche descendante, a l'aide de la

simulation des grandes échelles. Dans cette bibliographie on se limitera a en citer quelques-unes.

L’¢tude de A.D.Gosman & al. (1977) fut consacrée a la résolution numérique des équations de

conservation pour des écoulements bidimensionnels a recirculation. Ils utiliserent une méthode
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des volumes finis pour sept configurations distinctes adoptant leurs différentes conditions aux
limites correspondantes, dont celle de la marche descendante de Abbot & Kline (1962), pour
laquelle ils déterminérent une longueur de rattachement Xgr= 9H. Leurs résultats étaient en assez
bon accord avec les résultats expérimentaux d’Abbot & Kline. IlIs conclurent ainsi que le modéle

a deux équations pouvait étre adapté a une multitude de situations industrielles

Demirdzic et al. (1981) ont utilisé un modéele K—e qui sous-évalue la longueur de rattachement.
Un modeéle des tensions de Reynolds a été employé par Celengil et Mellor (1985), mettant en
évidence un écoulement instable avec un comportement a peu prés périodique. Les moyennes
temporelles ont été comparées avec celles de Kim et al (1978). Awa et al. (1988) ont obtenu de
trés bons résultats moyens en faisant des adaptations du modéle K—e pour les différentes zones
de la figure 1.4. Le probleme majeur de cette technique est le manque de généralité. 1l faudrait,
dans ce cas, avoir un modele pour chaque probléme a étudier. Les modeles déja utilisés avec cette
géomeétrie menent a des résultats plus ou moins corrects selon leur degré d'adaptation au probleme

traité.

Driver et Seegmiller (1985) ont utilisé les versions modifiées du modeéle k — ¢ et le modele ASM
(algebraic stress model) de Sindir.M (1983). Ce dernier a présenté une version modifiée du code
TEACH (Gosman, 1977) pour accommoder les modeles de turbulence k — & et (ASM). Ils ont
utilisé une grille de 42x42 pour le maillage. Il a constaté qu’en modifiant le terme de production
dans I’équation du taux de dissipation, il obtient une nette amélioration aux résultats numériques.
La longueur de rattachement et les tensions de Reynolds s’approchaient davantage des valeurs

expérimentales.

N.Toy & K.Ainkaran (1986) ont utilisé le modéle de turbulence a deux équations k —e de
Spalding & Launder (1973). Les calculs ont été menés avec le code CHAMPION de Pun &
Spalding (1976) moyennant l'algorithme SNIP de Spalding (1976) similaire a l'algorithme
SIMPLE de Patankar & Spalding (1972). Leurs résultats montrent que la longueur de rattachement

est affectée considérablement par la géométrie de la marche.

Dans le domaine du transfert thermique, une étude sur le traitement des parois a été proposée par
M.Ciofalo & M.W.Collins (1989) pour les écoulements turbulents générant des recirculations .Le
nombre de Nusselt et le nombre de Sherwood obtenus par I’utilisation des fonctions de paroi
classiques ne sont pas satisfaisantes dans les régions de rattachement et de redéveloppement. Pour
cela ils ont utilisé une autre approche qui consiste a considérer 1’épaisseur adimensionnée de la

sous couche visqueuse comme variable en fonction de I’intensité de la turbulence déduite I’énergie
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cinétique turbulente. En adoptant cette approche et en utilisant le modele k — ¢ avec le code
numériqgue FLOWS3D, ils ont amélioré les résultats pourle cas de plusieurs géométries dont la

marche et la double marche descendante en appliquant les trois méthodes du traitement des parois.

Ceci a permis de montrer que 1’approche proposée aide a améliorer les résultats qui sont en

meilleur accord avec les données expérimentales. Ils ont obtenu dans le cas de la marche
descendante (E=1.25, Ren = 2800) : Xgr~ 5H et pour le cas de la double expansion symétrique

(E=2.125, Rex=5700, H=2.86 cm) : Xr~ 4.5H.

Chang K.C. & al. (1991) développerent un modéle de turbulence k — € hybride, en modifiant les
effets de courbure pour le cas des écoulements générant des zones de recirculation. Ils ont obtenu
une meilleure simulation des écoulements turbulents décollés. 11s ont présenté dans leur article, les
profils de vitesse et de 1’énergie cinétique turbulente et un tableau comparatif des longueurs de
rattachement obtenus par 1’expérience et par le calcul basé sur le modéle k — & standard ainsi que

les versions modifiées.

Marrano R. (2003) a étudié la marche descendante de Eaton, 1980, dans le cas tridimensionnelen
utilisant la méthode des grandes échelles LES (décrite au chapitre II). L’aspect innovateur de son
étude est de montrer la faisabilité et I’aptitude de la méthode LES pour modéliser un écoulement
turbulent dont le nombre de Reynolds est relativement élevé (Rex=11000 et Rey=39000) sans
recourir a une loi de paroi. Il a validé son code de calcul par comparaison avecles résultats
expérimentaux de 1’écoulement laminaire derriere une marche descendante obtenus par Armaly et
al (1983). La validation du code étant faite, il étudie I’écoulement turbulent et obtient des résultats
relativement proches des valeurs expérimentales de Eaton ; Xg=7.1H alors que Xrexp=7.0H pour
le premier cas et Xr=7.8H alors que Xrexp=8.0H pour le deuxieme cas. Il effectue aussi une
comparaison avec les résultats obtenus par le calcul basé sur le modéle standard k — & pour lequel
Xr=6.2 (Rey=11000) et X,=6.6 (Ren=39000). Il justifie les écarts entreses résultats et I’expérience
d’Eaton par I’insuffisante de la finesse du maillage utilisé. Prés des parois solides et dans la couche

de cisaillement le maillage a été serré car ces zones sont des régions a gradients elevés.

La simulation a grandes échelles (LES) a été utilisée par Campregher R. et al (2004) pour
modéliser un écoulement turbulent sur une marche descendante avec un nombre de Reynolds
Ren=38000. Un maillage non uniforme est utilisé pour serrer les mailles dans les zones ou les
gradients sont importants (derriére la marche et prés de la paroi inférieure). Les différentes
propriétés du fluide ont été étudiées telles que la longueur de rattachement Xr et les profils de la

vitesse.
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Tableau (1.2) : Résultats des principales études numériques antérieures.
Auteurs Er [CL| Ren Xl B/H| Modele Notes
H
Sindir et al (1983) 112 | T 6 k—¢
5 ASM
125 | T | 2800 5 K—¢ Marche descendante
Giofalo et Collins (1989)
212 | T |57000 4.5 Expans. symeét.
5
1/3 | T |132000 6.0 k-¢ Loi paroi 2 couches
Thangam et
Speziale(1991)
6.25 Loi paroi 3 couches
6.90 Viscos.turbo.
anisotrope
Zhang (1994) 111 | T 4.93 k-¢ Ecoulement 3D
ChanD.C. et T |5100
Mittal R.
(1996)
Marrano R. (2003) T 111000 7.1 LES
k-¢
11000 6.2
39000 6.6
Campre T [38000 LES
gher
(2004)
Presente étude 112 | T |37423 3.2 1 k-¢
5 Mono |Loi universelle
logarithmique
5.4 multi

1.4.2.3 Discutions

On arrive alors aux conclusions suivantes :

Les études expérimentales développées sur la marche descendante offrent les éléments de base

(statistiques) pour des validations des modeles numeriques ainsi que quelques éléments pour la

comprehension de la physique de I'écoulement. En revanche, trés peu d'éléments concernant la

transition vers la turbulence sont disponibles.

Du c6té numérique, on s'est limité a essayer de reproduire les éléments statistiques expérimentaux

avec des simulations numériques du comportement moyen de I'écoulement. Méme I'étude de Arnal

et friedrich (1991) en simulation des grandes échelles n'apporte que peu d'information sur le

comportement instationnaire de cet écoulement.
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1.5 Conclusion

Nous venons de constater que les écoulements decollés et recollés et particulierement 1’écoulement
derriere une marche descendante ont intéressé beaucoup de chercheurs. Ce dernier a été exploré
expérimentalement et numériqguement. Nous constatons que les résultats sont de plus en plus
détaillés grace au développement continu des moyens expérimentaux et des modeles numériques
néanmoins des divergences entre certains résultats persistent toujours causées par la région de tres

proche paroi dont 1’étude doit étre approfondie davantage.
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1.1 Introduction
L’étude des écoulements fait partie du domaine de la spécialité de la mécanique des fluides. Quand
on traite de la mécanique des fluides, on procede a ’imagination d’un volume élémentaire se
trouvant a un instant donné dans un espace bien défini et par la suite appliquer les principes
physiques et mécaniques permettant de mettre au point des formulations mathématiques régissant
I’écoulement. Pour ce qui nous concerne, ces principes se résument dans le principe de

conservation de la masse et le principe de conservation de la quantité de mouvement.

1.2 Notations

Dans la présente étude, le fluide considéré est parfait a masse volumique constante (compressible

par conséquent), les équations seront exprimées dans un systeme de coordonnées cartésiennes :

Coordonnées (X, Y, 2).

Vecteurs de base (e;, e, €3).

>
>
> Les composantes de la vitesse instantanée (u’, v’, w’).
> Vecteur tourbillon (wy, wy, wy).

>

Quantités moyennes principales (U, V, W, P).

1.3 Equations gouvernant I’écoulement

Les équations régissant I’écoulement d’un fluide Newtonien sont les équations de la conservation

de la masse et I’équation de la quantité de mouvement.

11.3.1 Equation de continuitée

L’équation de continuité est celle qui décrit le principe de conservation de la masse en mécanique
des fluides. La variation de la masse contenue dans le volume de contrdle est égale au débit

massique entrant moins le débit massique sortant.

dp
E AxAyAz = (pu) (%,,2) AyAz — (pu) (x+Axy,z) AyAz + (p‘U) (xy,2) AxAz (IL. 1)

- (pv)x,y+Ay,zAxAZ + +(pw)x,y,zAxAy - (pw)x,y,z+AzAxAy
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T Wi 4o

Vv, +
X U, D
U, ;1/‘A Vy+dy
® pr—
= Wz €y

Figure 1 : I'ensemble des débits traversant les 6 faces du parallélépipede

En utilisant le développement de Taylor :
9(pu)
(pu)x+Ax,y,z = (pu)y + WAx +@
@ : terme négligeable de I’ordre supérieur

Onaura:

d(pu) , 9(pv)
0x + dy

ap _ [ a(pW)]
o AxAyAz = + e AxAyAz

En simplifiant le volume on obtient :

% _ _ [20w

ov) , 2(pw)
7 o o]

ox dy 0z

Donc I’équation de continuité est :

ap . _
Y + dw(pv) =0

Et en absence d’apport et de perte cette équation peut s’écrire sous la forme :
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9 . _
Y + dw(pv) =0 (11.6)

11.3.2 Equation de conservation de la quantité de mouvement

La quantité de mouvement est égale au produit de la masse par la vitesse. Elle dépend des forces
appliquées sur la particule fluide. Cette équation découle du deuxiéme principe de Newton, qui
stipule que le taux de variation de la quantité de mouvement est égal a la somme des forces

extérieures, a savoir :

o Les forces de surface : viscosité, pression
o Les forces de volume : gravité, Coriolis, centrifuges, électromagnétiques...
Pour établir I’équation de quantité de mouvement on prend en considération que les forces de

gravité, de viscosité et de pression. Ces forces sont définies comme suit :

La force de Pression suivant e,

a 7]
Fp = [p(x,y,z) - px+Ax]AyAZ = [px - (px + %AX)]AYAZ = - ;_Z)AXAYAZ (117)

X

La force de viscosité suivant e,

00w ; 0T | O0Tw
Fy = |52+ 7+ | axaynz (11.8)
La force de gravité :
Fg = mg = pgAxAyAz (1.9)

La variation temporelle de la quantité de mouvement est la différence entre la quantite entrante et
sortante du volume de controle plus les forces qui s’appliquent sur celui-Ci.

On aura:

%AxAyAz = (puw),AyAz — (puu) r 2, AyAz + (puv) ,AxAz — (puv) 40, AxAz +
(puw),AxAy — (puw),, 2, AxAy + Fg + Fy + Fp (11.10)

En utilisant le développement de Taylor, on obtient :
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a(pu) d(puw) | d(puv) , 9(puw) a(p)

2 Axaynz = - | 7o + e |axaynz - 22 axayaz + pg.Axdyz +
00x | 0Ty | OTa
[W+W+ OZ]A xAyAz (n.11)

On simplifie le volume de contréle dans 1’équation (II.11) on obtient 1’équation de quantité de

mouvement suivant (0x) :

(p)

a(pu) + div(puv) = ———+ pg +

0Ty

do. Jt
XX + + zx

ot ot (11.12)

AVeC :

a(pu)

+ div(puv) = p + u(— + div(pu) + pv grad(u) (11.13)

Pour un fluide incompressible aa—’: =0 etdiv(pu) = 0.

On suit les mémes étapes pour établir les équations suivant (oy)et (0z).
D’une maniere générale I’équation de conservation de la quantité de mouvement peut se mettre

sous la forme indicielle comme suit :

o, o
[(“)+( u; . (“)) ———+pgxl+u( ) (11.14)

A B

O0x;0x;

Avec :
A : la variation de la quantité de mouvement par unité de volume.

B: forces associées a la pression par unité de surface.
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C: forces volumiques par unité de volume.

D : contraintes visqueuses par unité de surface

ui: composante de la vitesse suivant la direction i .
gxi : composante de force de gravité.

P : la pression.

p : la masse volumique du fluide.

W : viscosité dynamique

Dans notre travail on néglige les effets de la viscosité et la force de pesanteur et on obtient la

forme finale de 1’équation

9w EUCHEN BN
p |75+ )]_ 2 (11.15)

I1.3.3 Les équations d’EULER

En dynamique des fluides, les équations d'Euler sont un ensemble
d' équations hyperboliques quasi- linéaires régissant les écoulements adiabatiques et non
visqueux . Ils  portent le nom deleonhard Euler.Les équations représentent
les équations de Cauchy de conservation de la masse (continuité) et I'équilibre de la quantité de
mouvement et de I'énergie, et peuvent étre considérées comme des équations de Navier-
Stokes particulieres avec une viscosité nulle et une conductivité thermique nulle. En fait, les
équations d'Euler peuvent étre obtenues par linéarisation de certaines équations de continuité plus
précises comme Equations de Navier-Stokes dans un état d'équilibre local donné par
un maxwellien . Les équations d'Euler peuvent étre appliquées a
I' écoulement incompressible et compressible - en supposant que la vitesse d'écoulement est
un champ solénoide , ou en utilisant une autre équation d'énergie appropriée respectivement (la
forme la plus simple des équations d'Euler étant la conservation de I' entropie spécifique ).
Historiqguement, seules les équations incompressibles ont été dérivées par Euler. Cependant, la
littérature sur la dynamique des fluides se réfere souvent a I'ensemble complet - y compris
I'équation de I'énergie - des équations compressibles plus générales ensemble comme "les

équations d'Euler™.
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Les équations d'Euler sont apparues pour la premiére fois sous forme publiée dans l'article d'Euler
"Principes généraux du mouvement des fluides”, publié dans les Mémoires de I'Académie des
Sciences de Berlin en 1757 (dans cet article, Euler n'a en fait publié que la forme géneérale de
I'équation de continuité et I'équation de la quantité de mouvement ; I'équation du bilan énergétique
serait obtenue un siécle plus tard). Ils ont été parmi les premiéres équations aux dérivées
partielles a étre écrites. Au moment ou Euler a publié son travail, le systeme d'équations se
composait des équations de quantité de mouvement et de continuité, et était donc sous-déterming,
sauf dans le cas d'un fluide incompressible. Une équation supplémentaire, qui devait plus tard étre

appelée la condition adiabatique, a été fourni par Pierre-Simon Laplace en 1816.

Supposons un fluide parfait en écoulement dans un référentiel galiléen. Appliquons le Principe

Fondamentale de la Dynamique a chaque particule de fluide :

o Systeme d'étude : une particule de fluide située en M a l'instant t de masse
dm = p(M,t) dt (11.16)
o Bilan de force
— —ext - —ext o
dF =1, dt +fodt = (f; —Vp(M,0))dr (11.17)

Selon la deuxiéme loi de Newton dm % = dF d’ou I’équation d’Euler

p(M,0) [+ (5.9)3| = ~Tp, ) + £ (1.18)

11.3.3.1 RESOLUTION DE L'EQUATION D'EULER

L'équation d'Euler est une équation aux dérivees partielles du premier ordre. On remarque qu'elle

est non linéaire a cause de la présence du terme convectif (¥.V)v ; c'est ce qui rend les problemes

de mécanique des fluides mathématiquement redoutables...

Regardons si nous disposons d'assez d'equations pour traiter un probléme de mécanique des fluides

parfaits.
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o Le fluide est incompressible : Dans ce cas la masse volumique est fixée. Le
probléme présente donc 4 inconnues scalaires : le champ de pression p(M, t) et le champ
de vitesse v(M, t) (3 composantes). Il faut donc 4 équations scalaires ; L'équation d'Euler
n'en donne que 3. La quatriéme est donnée par I'équation de continuité div v = 0

o Le fluide est compressible : La masse volumique peut varier sous l'effet de la
pression mais aussi sous l'effet de la chaleur. En général le fluide posséde une équation
d'état locale p(p,T). Le probléme présente donc 6 inconnues scalaires : le champ de
pression p(M, t), les trois composantes du champ de vitesse v(M,t), la masse

volumique p(M, t) et la température T (M, t). Il faut donc 6 équations scalaires. L'égquation
d'Euler en donne 3, la quatrieme est donnée par I'équation de continuité div(pv) + % =0

la cinquiéme par I'équation d'état du fluide p(p, t) et la derniére par le premier principe de
la thermodynamique.
L'équation d'Euler et de continuité sont des équations différentielles du premier ordre ; leur
intégration va donc produire une constante d'intégration par variable. On déterminera ces

constantes d'intégration par les conditions aux interfaces

1.4 Méthode de résolution

11.4.1 Méthode des différences finies (MDF)

En analyse numérique, la méthode des différences finies est une technique courante de recherche
de solutions approchées d'équations aux dérivées partielles qui consiste a résoudre un systeme de
relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points
suffisamment proches les uns des autres. Cette méthode apparait comme étant la plus simple a

mettre en ceuvre car elle procéde en deux étapes :

1. Discrétisation par différences finies des opérateurs de dérivation/différentiation.

2. Etude de la convergence du schéma

11.4.2 Définition et principe de la MDF

La méthode des différences finies consiste a approximer les dérivées partielles d’une équation au

moyen des développements de Taylor et ceci se déduit directement de la definition de la dérivée.
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Soit f une fonction continue et dérivable dans R. La dérivée partielle premiere de f par rapport a

x est calculée par la formule :

fl(x) = _)0 m”;’—zf(x) (11.19)
Si xy << 1, le développement de Taylor au voisinage de 0 de f(x + x,) donne :
O+ 20) = £O) + 2052+ 0(x0) = F(x) + %02 (11.20)
Avec une erreur de I’ordre de x; :
Of _ [lxtxo)—f(x) (11.21)

0x Xo

Ceci est appelé le schéma avant. De la méme maniére, nous pouvons aussi donner le  schéma

arriere qui est de la forme :

f'(x) = lim T~ (x+%o) (11.22)

Xo—0 X0

Le développement de Taylor donne :

f(x_xo)—f(x)_xoa +9(x0)~f(x)_xoa (11.23)
Avec une erreur de I’ordre de x :

f _ FE)-fx=xo)

o o (11.24)
La somme de ces deux schémas (11.21) et (11.24) nous donne le schéma centré suivant :

0 x+x9)—f(x—x

of _ flx+xo)=f(x=xo) 125

0x 2xg
La derivée seconde f’de f(x) sera alors de la forme :

0% X+x0)=2f(xX)+f(x—x
[ _ F(x+x0)—2f(x)+f(x—=%o) (11.26)

2 T 2
0x X9
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11.4.3 Discrétisation du domaine

Les calculs sont performés sur une grille placée sur le plan (x, t) afin d’obtenir des mailles de
taille(Ax , At) la computation est définie par les pas d’espace et de temps et, respectivement. Le
but est de calculer les valeurs de la vitesse en chaque point du maillage. Les méthodes aux
différences finies sont toutes basées sur les développements de Taylor des fonctions continues et
dérivables. Plus les pas de temps et d’espace sont petits plus les développements limités sont

proches des valeurs exactes.

La figure (11.2) montre une grille de computation typique, la position du nceud est dénotée par

I’indice i et le moment de temps par I’indice j.

U™ = U(ilx, jAt)

lempst
| | | | I | I | final
fop———— ———t————F ———f——————— - ——— f— —— e |
7 I I I I | I I | dinteret
| I I | | I I |
R N EU—— N ——— R N U NN
| | | | | | | |
| | | | | | | I
) | | | | | li de t j+1
G#1) Af p———— r---T----+'—.-.—1+----+'—-—'|—---r--—-r*'g"e =EmE
I I L : : : :
jAff————t—— o ——— ———— 89— —— — - —— — 4 — —— —}— —— —j=—ligNE CE temp5 |
| I, ! i =g | | |
| | | | | | |
R R N = ot B
| | Ax | | | | | |
| | | Ijﬁr I |
r----r---rr--t----+rr---a-"—++--—-
| I I | | I I |
| I I | | I I | distance x
1 1 1 1 1 ] ] 1
i -1y txriAx o (e Ax L

Figure (11.2) : Grille de computation de différences finies
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11.4.4 Convergence d’un schéma

C’est la convergence qui définit I’efficacité du schéma. Selon le théoréme de LAX-Millgram « Si
les équations aux derivées partielles sont approchées par un schéma consistant, alors ce schema

est convergent si et seulement si, il est stable » (Smaoui, 1975).

Soit v(x, t) la valeur approchée déterminée par différence finies de V(x, t) et soit w(x, t) tel

que :
wl =v/ -/ (11.27)

On dit que le schéma converge si wi — 0 lorsque (Ax,At) = 0

Vi] - La solution réelle (exacte).
vij . - La solution numérique.

Wi] . L’erreur globale de calcul.

11.4.5 Les schémas explicites et implicites
On distingue genéralement deux types de schémas d’intégration temporelle : les schémas explicites

et implicites.

11.45.1 Les schémas explicites

Dans un schéma explicite, les variables a un nouveau pas de temps sont évaluées a chaque point
du maillage par des calculs directs a partir des valeurs déja connues, il est considéré comme trés
précis et doté d’une bonne compatibilité avec le Calcul Haute Performance (HPC). Par contre, il
est souvent colteux en temps de calcul. En effet, le pas de temps des méthodes explicites est
fortement limité par une contrainte de stabilité numerique, appelée condition Courant-Friedrich-
Lewy (CFL), définie en chaque cellule et proportionnelle a la vitesse locale de I’écoulement et la

taille de la cellule, et qui assure la stabilité de ces schémas.

Seule la dérivée de U par rapport au temps s’exprime en fonction des valeurs de U au pas de temps
ntl. La différentielle par rapport a x s’exprime en fonction des valeurs de U au pas de temps
précédent de calcul (pas n). On calcule U™*! connaissant les valeurs de f calculées au temps nAt

pour, en général, les pas d’espace(i — 1)y, (D)ax (i + D, (Figure 11.3) Un schéma explicit a
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trois points caractérisé€s par le fait que 1’on puisse exprimer explicitement une valeur inconnue en

fonction de valeurs connues.

At
(n+1)At /l\
At 1 |
(n=-1)A1

(i-1)A%x 1% (i+1 A%

Figure (11.3) : Schéma explicite.

11452 Lesschémas implicites

Pour les méthodes implicites, les variables sont calculées simultanément a un nouveau pas de
temps, par la résolution d'un systeme avec autant d'inconnues que de noeuds du maillage. La
stabilité de ces schémas n"est pas conditionnée par la condition (CFL), mais par la nature de la
solution. En fait, le caractere implicite d’un schéma numérique est li¢ au fait que 1’on ne puisse

pas exprimer explicitement chaque valeur inconnue en fonction uniqguement de valeurs connus.

A
(n+1)AtL
nAtL
(n-1)AL

>

(i-1)AX 1AX (1+1)AX x

Figure (11.4) : Schéma implicite.
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1.5 Le maillage

Pour la methode des différences finies, un maillage est un ensemble de points isolés
(appelés nceuds) situés dans le domaine de définition des fonctions assujetties aux équations aux
dérivées partielles, une grille sur les seuls nceuds de laquelle sont définies les inconnues

correspondant aux valeurs approximatives de ces fonctions.

Le maillage comprend également des nceuds situés sur la frontiere du domaine (ou au moins
« proches » de cette frontiére) afin de pouvoir imposer les conditions aux limites et/ou la condition

initiale avec une précision suffisante.

A priori, la qualité premiére d’un maillage est de couvrir au mieux le domaine dans lequel il se
développe, de limiter la distance entre chaque nceud et son plus proche voisin. Cependant, le
maillage doit également permettre d’exprimer la formulation discréte des opérateurs de
différentiation : pour cette raison, les nceuds du maillage sont le plus souvent situés sur une grille

dont les directions principales sont les axes des variables.

On n’appelle pas du maillage la distance entre deux nceuds voisins situés sur une droite paralléle
a I’'un des axes. Dans ce sens, le pas est une notion a la fois locale et directionnelle. On parlera

de pas global pour désigner le plus grand pas local, une notion qui reste directionnelle.

Bien qu’un pas constant soit le plus souvent retenu (sans qu’il pose de probléme théorique pour la
résolution), il est parfois judicieux d’introduire un pas variable qui sera choisi plus fin dans les
zones ou la solution exacte subit de plus fortes variations : cette astuce permet de réduire le nombre
d’inconnues sans porter atteinte a la précision des résultats. Par contre, la formulation est un peu

plus complexe car la discrétisation des opérateurs différentiels doit en tenir compte.

Pour une équation différentielle concernant une fonction d’une variable dont le domaine (dans R)
est I’intervalle [0 ; 1], un maillage a pas constant est caractérisé par les M +1 nceuds X; =i h, 0
<i <M avec le pas h = 1/M. Ce maillage comprend les deux points frontiére x, et x,, sur lesquels

sont imposées d’éventuelles conditions aux limites.

Considérons une équation aux dérivées partielles concernant une fonction de deux variables
(domaine Q € R?):

+* Si Q est un rectangle [0 ; 1] x [0 ; 1] (dont les cotés sont paralléles aux axes), un maillage
issu d’une grille (X, y;) = (i h,j k), 0 <i<M, 0 <j<Navec les pash = 1/M et k = 1/N est

une simple généralisation du cas précédent.
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+* Si Q est un disque centré a 1’origine et de rayon 1, on considére le maillage constitué par
les nceuds d’une grille qui sont situés dans le disque, soit (Xi, yj) € Q ou (Xi, y;)=(ih,j,k) avec
le pas h= 1/M. Pour imposer d’éventuelles conditions aux limites (par exemple celles de
Dirichlet qui fixent la valeur de la fonction sur 6Q), les rares nceuds se situant exactement sur
la frontiére sont trop peu représentatifs. Il convient alors d’étendre la propriété « étre sur la
frontiére » a d’autres nceuds qui en sont proches, en englobant par exemple tous les nceuds du
maillage qui n’ont pas quatre voisins directs. Les valeurs aux limites a fixer en ces nouveaux
nceuds frontiéres peuvent étre définies de diverses maniéres :
. En prenant la valeur du probléme exact qui est imposée au point de oQ le plus
proche : dans ce cas, les irrégularités géographiques des nceuds frontiéres du maillage
(observées lorsque h diminue) engendrent des perturbations de la solution discréte, au
mieux des anomalies locales n’ayant aucun lien avec la solution exacte.
. En considérant que les valeurs des nouveaux nceuds frontiéres sont des inconnues,
mais en ajoutant des relations différentielles discrétisees supplémentaires reliant
« naturellement » ces inconnues aux valeurs des nceuds voisins et a celles de certains
points de Q. Si I’approche est un peu plus complexe dans sa mise en ceuvre, elle réduit

significativement le défaut de la précédente.
1.6 Conditions initiales et aux limites

Une équation aux dérivées partielles admet d’'une maniére générale, une infinité de solution ; la
solution particuliére désirée est déterminée a partir de quelques conditions imposées. Dans la
majorité des cas, ces conditions portent sur le comportement particulier de la solution sur une
courbe qu’on appelle souvent frontiere ou limite. Afin de pouvoir résoudre ces €quations, on utilise

des conditions initiales et aux limites.
11.6.1 conditions initiales

La notion de conditions initiales est évidemment liée aux conditions qui correspondent au temps
initial t = 0. Afin de commencer les calculs a partir de I’état initial de I’écoulement, les deux
variables h et u devront étre choisies et spécifiées en tout point du domaine de calcul. Dans notre

travail, on a comme conditions initiales :
h(x,t =0) = hy (11.28)

u(x,t =0) = ug (11.29)
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11.6.2 Conditions aux limites

La prise en compte des limites est un aspect trés important lors de 1’utilisation des techniques

numériques dans le but d’obtenir de bons résultats.

Les conditions aux limites sont les plus délicates a fixer : en effet, elles consistent a imposer un
certain comportement du domaine de calcul et d’approximer le domaine irrégulier en domaine

régulier.

h(x =0,t > 0) = h, (11.30)
Et

u(x =L t>0) =u, (1.31)

I1.7 Conclusion

Dans ce chapitre nous avons établi les équations qui gouvernent 1’écoulement qui sont I’équation
de continuité, I’équation de d’Euler et 1’équation de quantit¢é de mouvement pour un fluide
Newtonien. Ensuite, nous avons présenté la méthode utilisée pour la résolution de ces équation (la

méthode des différences finie) et le maillage nous avons présenté les conditions aux limites.
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Chapitre 111 Simulation numérique via la méthode des differents finis

1.1 Introduction

Aujourd’hui, la simulation numérique est utilisée dans de nombreux domaines de recherche et
développement : mécanique, mécanique des fluides, science des matériaux...etc. La simulation
informatique ou numérique désigne I'exécution d'un programme informatique sur un ordinateur ou

réseau en vue de simuler un phénomene physique réel et complexe avec plusieurs scénarios.

1.2 Le modéle géometrique

La figure présente le schema du probleme traité. Il s’agit d’un canal bidimensinnel ou il existe un
¢largissement brusque de la section a I’entrée dont le rapport d’expansion est défini comme ER =
H/(H — h) = 2, avec h =1 cm la hauteur de la marche et H = 2h la hauteur du canal. La
longueur L du canal est définie aussi en fonction de h et, généralement, elle doit etre suffisamment
grande afin de visualiser tous les phénomeénes de recirculation provoqués par I’influence de la

mache
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Figure (111.1) : La geométrie de la marche

1.3 La modélisation numérique

111.3.1 Le maillage

L’étape du maillage est une étape clé pour s’assurer de la validité des simulations. C’est 1’étape de
découpage du volume étudi¢ en petits volume élémentaires. Le maillage en général n’est pas
régulier : les mailles doivent étre plus petites (maillage fin) dans les zones ou les gradients de
vitesse, de température ou de concentration vont étre les plus importants. Si ces zones ne peuvent

pas étre prédites, il convient de faire quelques essais itératifs avec ajustement du maillage.
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Dans le cas d’une étude des frottements ou du transfert thermique en paroi, il faut résoudre les
équations dans la couche limite prés de la paroi : en general, les codes de calculs proposent des

moyens specifiques pour mailler cette zone.

Une étude de sensibilité au maillage doit toujours etre faite. Cela consiste a faire des simulations
avec un nombre de mailles different : si les resultats de simulation dépendent du maillage, il
convient de resserrer celui-ci jusqu’a obtenir une independance entre maillage et solution. Si le
maillage n’est pas assez bon, certains phenomenes locaux ne seront pas capturés (recirculations,

décrochements de 1’écoulement, etc.).

Un maillage peut etre caracterisé par plusieurs éléments :
-sa dimension: 2D ou 3D ;

- son volume ;

- sa finesse : surface ou volume moyen des cellules ;

La géometrie des cellules ;

Le dégré de I’élément, c'est-a-dire le degré du polynome servant a décrire les cotés ou aretes des

¢léments. Nous ne travaillons qu’avec un degré 1, soit avec des aretes rectilignes.
On distingue par ailleurs deux gands types de maillage, aux proprités differentes :

- Le maillage quelconque : il faut dans ce cas définir la position de chaque nceud, on
parle alors de définition explicite ;

- Le maillage régulier ou structuré : il est constitué de polygones identiques et le
compositions des polyédres, danc la position des nceuds du maillage est définie
implicitement par une regle de construction. Il permet notamment un gain de mémoire et

de temps de calcul.

Les définir les caractéristiques du maillage est donc une étape importante d’un projet numerique
puisqu’il conditionne le temps de calcul, la convergence et la précision sur les grandeurs calculées

durant la simulation.

Dans notre cas, nous avons choisi un maillage structuré (ou régulier). Nous avons choisi ce

maillage, car leur génération est simple. Les calculs sont, de plus, généralement plus rapides.
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v 0 p 0
4, -0 v O 0
27100 v 1/p

0 0 pa> v

111.3.3 Conditions aux limites :

(111.4)

Au niveau d’une paroi solide, fixe et imperméable, la composante normale de la vitesse

d’écoulement est nulle.

v.n=0

n est le vecteur normal dirigé vers I’extérieur du domaine de fluide. Par contre, la composante

tangentielle n’est pas nulle et elle verifiée les équations suivantes :

Ju

— =Ty pour 6 <x<1L
ay y:()

v

— = 'l <y <

ox g T, pour 0<y<h
du

— =Ty pour 0 <x<1L
6y y:H

T, est le frottement pariétal local.

(111.5)
(111.6)
(111.7)

A T’entrée du canal, la vitesse est nulle a la paroi du canal, et augmente progressivement pour

atteindre une vitesse maximale au centre du canal.

u(x=0,y,t) = U0(1—;—22)

AvecR=(H —h) et r=y—#

La pression a la sortie du canal est nulle :

P(x=Lyt)=0

111.3.3.1 Conditions initiales :

La vitesse en amont de la marche

2

u(x,y,t)=U0(1—%) pour 0<x<6

AvecR=(H — h) et r=y—HT+h
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on intoduit des differentes vitesses a 1’entrée on commengons par une vitesse faible de 10cm/s et

on ’augmentes jusqu’a 250cm/s passent par S0cm/s, 100cm/s, 150cm/s, 200cm/s,
Et en aval de la marche

ulx,y,t) =U,/3 pour 6<x<1L (111.9)
I11.4 Présentations des résultats obtenus sur matLAB

111.4.1 les champs des vitesses

Ici nous représentons les champs de vitesses pour différentes vitesses allant de 1cm/s a 10 cm/s

. Pour Umax=10 cm/s

=1 cmfs

2.5

2

1.4
1

0.5

0

_|:|5 1 1 1 1 1 1 1 1 1
0

Figure (111.3) : Champs des vitesses & Umax=1cm/s

° Pour Umax=2 cm/s

=2 cmis

rJ
h
1

Figure (111.4) : Champs des vitesses a Umax=2cm/s
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. Pour Umax=3 cm/s

=73 cmis
25

2

1.5

e
SR T

1 A

0.5
0 alld h-_-
_|:|5 | | | | 1 | | | |
0 ) 10 15 20 25 30 35 40
Figure (111.5) : Champs des vitesses a Umax=3cm/s
o Pour Umax=4 cm/s
LI=4cmis
2h -
2

15

1 R

0.5

1]

_DE 1 | | | | | | | 1
a

Figure (111.6) : Champs des vitesses & Umax=4 cm/s

° Pour Umax=5 cm/s

=5 cmis
25

2

1.5

N EEEEEE

1
0.&

OF:

Figure (I111.7) : Champs des vitesses a Umax=5 cm/s
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. Pour Umax=6 cm/s

2458
2
1.5
1
0.5
a
0.4

=5 cmis

HEHTE

° Pour Umax=7 cm/s

25
2
15

0.4

1:
05 E
ol

=7 cmis

Figure (111.8) : Champs des vitesses a Umax=6cm/s

Figure (111.9)

. Pour Umax=8 cm/s

2.5
2
1.5

0.5

I:I e

0.4

1 HH

=8 cmis

: Champs des vitesses a Umax=7 cm/s
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Figure (111.10) : Champs des vitesses a Umax=8 cm/s
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. Pour Umax=9 cm/s

=9 cmis
2.5

2

15

1

0.5

o

0.5
a

e Figure (111.11) : Champs des vitesses a Umax=9 cm/s

° Pour Umax=10 cm/s

=10 cmés

24
2

e

1.5

1 e

0.5

o

_DE 1 1 1 1 1 1 1 1 1

e Figure (111.12) : Champs des vitesses a Umax=13 cm/s

111.4.2 Lalongueur de recirculation

Il s’agit d’une zone de recirculation ou I’écoulement est a flux opposé.
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Tableau (111.1) : La zone de recirculation en fonction de la vitesse

Umax (cm/s) Xr (cm)
1cm/s 11,2 (cm)
2 cm/s 16,8 (cm)
3cm/s 20,4 (cm)
4 cm/s 22,8 (cm)
5cm/s 24,4 (cm)
6 cm/s 25,6 (cm)
7 cm/s 26,4 (cm)
8 cml/s 27,2 (cm)
9 cml/s 27,6 (cm)
10 cm/s 28(cm)

Maintenant, on représente 1’évolution de la taille de la zone de recirculation en fonction de la

vitesse.

30

25

20

15

*R

10

la taille de la zone de recirculation en fonction de Umax

LUrnasx

Figure (111.13) : La taille de la zone de recirculation en fonction de la vitesse
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I11.5 Conclusion

Dans ce chapitre nous avons présenté la géométrie et le maillage utilisées dans Matlab. Ensuit
nous avons présenté le modeéle d’équation d’Euler utilisé ainsi les conditions initiales a I’entrée
(I’équation du profile parabolique et des différentes vitesse Umax) et les conditions aux limites a
la sortie (la pression égale & zéro). Enfin nous avons illustré les différents résultats obtenus grace

a Matlab et nous avons déterminé la taille de la zone de recirculation en fonction de la vitesse.

o1
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Chapitre IV Simulation avec ANSY'S
fluent

1VV.1 Introduction

ANSYS Fluent est le logiciel de dynamique des fluides (CFD) le plus puissant du marché pour
aller plus vite et plus loin dans I’optimisation de la performance. ANSYS Fluent offre des
fonctionnalités éprouvées de modélisation physique d’écoulement fluide, de turbulence, de
transfert de chaleur et de réaction chimique, et fournit des résultats rapides et précis pour une tres

large gamme d’applications CFD et multiphysiques.

Dans ce chapitre, On va présenter au premier lieu, le code de calcul utiliser et les étapes a suivre
pour réaliser une simulation, La géométrie ainsi que la création du maillage de la marche
descendante, puis on verra les procédures utiliser par ANSY'S Fluent pour la résolution et enfin de

présenter les résultats obtenus.
IV.2 Preésentation de code de calcul ANSYS Fluent

ANSYS Fluent est un code de calcul généraliste de la mécanique des fluides. Il est doté de
processeur de calcul numérique trés performant pour la résolution des équations régissant les

divers types d’écoulements.

Tout d’abord, la discrétisation spatiale des solveurs Fluent est basée sur la méthode des volumes

finis qui exploite des approximations d’intégrales pour effectuer les calculs.

d
—fpft-‘d'[f +§;pw.¢4 - 3§rv¢.dﬂ + fs¢dv
at Jy A A v (V1)

Le maillage est alors constitué de volumes finis (ou surfaces finies en 2D et segments en 1D) qui
sont des petits volumes disjoints. L’équation générale du transport est appliquée a chaque cellule
et discrétisée. Les équations discrétisées nécessitent des informations sur les faces et au centre de

chaque cellule. Les équations discrétisées peuvent étre exprimées de la maniére suivante :

ap ‘i’p + z Ay Pnp = bp
nb

(IV.2)

Elles sont résolues itérativement. Les coefficients a, et an, sont des fonctions des variables
solutions. Ces coefficients sont écrits pour utiliser les variables solutions des itérations

précédentes.
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ANSYS permet de prédire avec confiance le succés des produits dans le monde réel. Les
entreprises utilisent ANSY'S pour créer des prototypes virtuels complets de produits et de systéemes
complexes de mecanique, d'électronique, de composants électroniques et de logiciel mettant en

jeu tous les phénoménes physiques qui existent dans la réalité.

Fluent est un solveur trés utilisé dans I'industrie a travers le monde. 11 est souvent considéré comme
une référence dans le domaine de la modélisation fluide. Le paramétrage du modele se fait par une
interface graphique, il dispose d'une interface de scripts pour automatiser les processus de calcul.
L'un des intéréts de ce logiciel de simulation généraliste, est qu'il dispose d'un nombre relativement
important de modeles, pouvant faire face a divers aspects de la mécanique des fluides, Fluent
contient également un outil de visualisation des résultats qui permet d’afficher les champs de

pression, vitesse et autres autour de la paroi.

B simulation - Workbench - b3
Fichier ~ Afficher Qutls Unités Extensions Taches  Aide

(== S Projet

éjlmuurtarm | Reconnecter Acmalwser\apru]et 7 Mettre & jour le projet | 5 Page de démarrage ACT

Schéma de projet LAV B Propriétés de Scher 3 x

[ Uynamiquenigice

- 0 A | B
g Ecoulement desfluides (Fluentavec ma
& 1 Propriété Valeur
Electrique - A
B Exrusion (Palyflovi) ERT 2 e
) Flambage linéaire Mque e 3 Identifiant du Geometry
) Magnétostatiue 3| @ Mailage v . 4 :‘;gigire FFF
Q Mécanique des fluides (CRY) 4 Q Configuration v 4 ;
@ Mécanique des flides (Fluert)
- 5 Solution v
(@ Mécanigue des fluides (Pobfiow) @ 4 6 Notes
[E Mécanique des fluides enturbomachine 5| @ Restats > 7 r
i Modale Mécanique des fluides (Fluent) Licences
€ Moulage par soufflage (Polyios) 8 utlisées ors
) de la dernigre
[E2) Optimisation structurele mise & jour

Répanse harmanique

EE Répanse hydrodynamique C:\lsers\DELL eskiop PFE
: \Users esktop

il Réponsespectie 1 z‘gméd;'m'lﬂ:’ \simulation_fles\dp\FFF DM

[ Statiqueen champ couplé g FFF.agdb

[z Structurestatique BV = Options de géométrie aval

1 Structuretransitoire

% Thermique stationnaire 2 .g“fnealyse e j
% Thermique transitoire Comparer les

() Thermodlectrique 13 piecessurla | Non M|
|@ Transitoire enchamp couplé Mise & Jour

|y Vibration aléatoire

Systémes de composants

Systémes personnalisés

Exploration dea conception

Progression ]
ACT v A
] | : | |

|v Tout afficher /P ‘ [ 1] Statut I Détalls | Progression |v

@ Double-diquez sur le composant 3 éditer., 7% suivi des taches... | [E0Pas de connexion DPS A4 fficher 8 messages

Figure (1V.1) : Interface de ANSYS Fluent 2021 R2.

IV.2.1 Couplage vitesse pression

Les équations de Navier-Stokes en version fluide incompressible présentent deux difficultés
majeures. Premiérement, elles sont quasi-non linéaires et ensuite elles sont faiblement couplées.
La non-linéarité est contournée par un calcul itératif. En choisissant un schéma numérique. Le

probléme du couplage se manifeste par 1’apparition des variables de pression dans les équations

54



Chapitre IV Simulation avec ANSY'S
fluent

de quantité de mouvement, il n’existe aucune équation de transport pour déterminer la pression.
En d’autres termes, si le gradient de pression est connu, on peut calculer le champ vitesse qui dans

ce cas vérifie bien I’équation de continuité (Chung.2010) .

Cette particularit¢ des équations rend nécessaire 1’utilisation d’un algorithme de couplage
pression-vitesse. L'algorithme le plus universel et le plus utilisé est 1’algorithme SIMPLE de
Patankar et Spalding (1972). On suppose un champ de pression initial qu’on injecte dans les
équations de quantité de mouvement. On résout le systeme pour trouver un champ de vitesse
intermédiaire. L’équation de continuité est transformée pour devenir une équation de correction
de pression. Elle est résolue pour trouver une correction de pression qui permettra de réinjecter
une nouvelle pression dans les équations de quantité de mouvement. Le cycle est répété autant de
fois que nécessaire jusqu’a 1’obtention d’une correction de pression nulle, signe de la convergence

de I’algorithme.

"FLUENT" propose quatre algorithmes pour le couplage pression-vitesse, Les deux premiers, tres
similaires, sont la méthode "SIMPLE" (Semi-Implicit Method for a Pressure Linked Equations) et
la méthode "SIMPLEC" (SIMPLE Consistent). Cette derniéere méthode se différencie de la
premiére par le fait qu’on peut lui assigner un facteur de relaxation (correction) de pression proche
de 1, ce qui accélére la convergence dans la plupart des cas, mais peut conduire a des instabilités
de la solution.et pour les écoulements non stationnaires et compressibles 1’algorithme PISO est
mieux adaptés, il est similaire a SIMPLE mais avec une amélioration qui consiste a faire deux
corrections successives au lieu d’une seul, le quatriéme algorithme est "Coupled" qui résout
I’équation de continuité et I’équation de pression ensemble en utilisant un schéma implicite, c’est

un algorithme robuste mais lourd en terme de calcul (ANSY'S Fluent 2021 R2).
IV.2.2 Méthode de résolution

La méthode de résolution adaptée par ANSYS Fluent est la méthode des volumes finis. C’est une

technique de discrétisation, elle est composée de :

1. Division du domaine en volumes de contrdle discrets en utilisant une grille de calcul
(maillage).
2. Intégration des équations de conservation aux derivées partielles sur les volumes de

contrdle individuels (figure 1V.2), et les convertir en équations algébriques, ce qui donne
une équation discréte des inconnus telles que les vitesses, la pression, la température et

conservée scalaire.
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3. La linéarisation des équations discrétisées et la solution du systéeme d'équations

linéaire résultant pour donner Les valeurs mises a jour des variables dépendantes.

9
o | =eqr=a=
Y Ji
ST (T
0y | ~=4===-
e
i

Figure (1V.2) : Volume de contrdle

Avec :
P : le nceud principal.

(E, W) et (N, S) présentent respectivement les volumes de contréle voisins dans les directions x

ety.
(e, w) et (n, s) : les faces de volume de contréle respectivement dans la direction x et y.
L’équation générale de transport d’une variable @ s’écrit comme suit :

d
dx;

ks

a(d:'}+ (pu, @) = g T. 0P + 5
dt_p g Uy - _axi[ '1?6..[.?:]{ .__f

L.

(IV.3)

1 2 2
AvVec :

1 : représente le terme transitoire.

2 : transport par convection.
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3 : transport par diffusion.
4 : terme source de variable @.
& : quantité scalaire.

Iy : coefficient de diffusion.
L’équation (IV.1) s’écrit en coordonnées cartésiennes, bidimensionnelles comme suit :

0 o)+ (oud) + > (ov0) = 2 (1 22) + 2 (1. 2%) 4 s
gt P Ty PTGy WY __ax('$ﬂx) 6y('$ﬁy) ® (IV.4)

Cette équation peut s’écrit en cas stationnaire sous la forme suivante :

J ( ud —T M’)+ 5 ( p® — T
dx P ®ax Sy Pt ®

mT) = Ss (IV.5)

. o
Jx = (pu® — I )
On pose : { Py
Jy = (pu® — I 32)
OU jy, jy sont respectivement les flux totaux (par convection et diffusion) par unité de surface

suivant les direction x et y.

L’équation (I'V.3) devienne :

0Jx | Oy _
or T oy = So (IV.6)

IV.3  Larésolution numérique par Fluent
D’une maniere générale, suit les étapes suivantes :
1. Creation de la géométrie sous ANSY S-Design modeler.
Choix de maillage sous ANSY S-Meching.
Définition des conditions aux limites sous Fluent.

2
3
4. Calcul avec FLUENT pour les différents cas retenus.
5

Analyse des résultats obtenus.
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IV.3.1 Lagéométrie

Elle consiste a dessiner le domaine d’écoulement en utilisant ANSYS design modeler.
La géométrie étudiée est composée respectivement de :

De deux rectangles A(1*6)cm et B(2*40)cm

—

En ajustant 'union de deux rectangles :

0,000 10,000 20,000 {cm)
[ R i) I

5,000 15,000
Figure (1V.3) : La géométrie
Les cotes de la géomeétrie utilisée sont :

Cotes: 5

[ 1H& 40 cm
[TH7 &cm
[Tv1o 1cm
[Tva 2om
[T vo 0,5 cm

Figure (1V.4) : Cotes de la géométrie
IV.3.2 Le maillage
Le maillage est la subdivision de domaine d’étude en sous-domaine appelé volume de contréle.

Il est caractérisé par :

> La dimension des mailles :2D ou 3D.
> Le nombre de maille.

> La distance entre les mailles.
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> La géométrie des mailles : triangulaire et quadrilatérale (2D), tétraédrique et

hexaédrique (3D).

Le maillage adopté dans notre cas, est un maillage quadratique structuré (ou régulier). Composé

de 2371 nceuds et 2150 éléments.

Le maillage de notre cas est représenté dans la figure ci-dessous :

0,00 50,00 100,00 {mm)
]

25,00 75,00

Figure (1V.5) : Maillage utilisé

1V.3.3 Les conditions aux limites

Pour le code Fluent, les types disponibles des conditions aux limites sont classes comme suite :

a. Conditions d'entrée et de sortie de I'écoulement :

Pression d'entrée (pressure Intel).

Vitesse de I'entrée (Velocity Intel).

Débit massique a I'entrée (mass flow Intel).
Pression de sortie (pressure outlet).

Sortie (outflow).

b. . Mur et conditions du pole :

o Mur (Wall).
o Axe de symétrie (axis).
o Plan de symétrie (symétrie).
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C. Cellules des zones internes :
. Fluide.
° Solide.

Simulation avec ANSYS

Les conditions initiales imposées dans notre cas sont présentées dans le tableau ci-apres.

Tableau (1V.1) : les conditions a I’entrée et a la sortie de la conduite pour le fluide.

Conditions Entrée Sortie
. . Y 2
Vitesse de I'entrée Uy * (1 — (ﬁ) ) I
Pression de sortie 1 0 Pa
Pour le profile parabolique en utilise 1’équation de vitesse suivante :
7 \2
U=Upgx*(1— (E) ) (1V.5)
Avec :
U nax - 12 vitesse maximale.
y : la position par rapport a ’axe « y »
R : rayon de conduite H/2.
la-vi -I-
X Velooty [ma] Ansys
| — o
-0.2 -0.15 -0.11 -0.071 0.011 0.053 0.094 0.14 0.18 0.22 STUDENT
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Figure (1V.6) : Le profil parabolique a I’entrée (Umax=10cm/s)

Dans notre cas nous introduirons des différentes vitesses maximales « U,,,,» allant de 1 cm/s a
10 cm/s
Le matériau utilisé dans cette simulation est I’eau « water-liquide », qui a la formule chimique
H-0, avec une densité de (997.2 kg/m?)
IV.4  Présentations des résultats obtenus sur Ansys Fluent

IV.4.1 Le profil et le champ des vitesses

a. Pour Umax=1 cm/s

contour-12
X Velosity [ ms] A“SYS
2021 R2

-0.00084  0.0001 5 00032 00023 004 0.0045 0.0056 0.00EE 0.00F7 0.0088 0.0099 STUDENT

Figure (1V.7) : Le profil des vitesses a Umax=1 cm/s

vector-8

X Velocity [ mis] Ansys
[ TR 5
0001 92805 00012 0008  00G4 00045 00055 00066 00077 00088  0.0099 STUDENT

e B B B B B R R R R I i e g
A A A A A A A A A A A A A A A A A A A A A A A A e

ot kS A ol

...........

Figure (1V.8) : Le champ des vitesses a Umax=1 cm/s
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b. Pour Umax=2 cm/s
oo tour -1
R MAnsys
——————— E— 207172
-0L002 B e -0 [l n o] OLO0dS 0L DT [N n =] ooi o3 ooE oo1g ooz ﬂum
——.
D ——
Figure (1V.9) : Le profil des vitesses 8 Umax=2 cm/s
vector-1
X Veocity [ mis] Aﬂsys
s — ‘ R
-0.0022 -4.5e-05 0.0022 0.0044 0.0066 0.0088 0.011 0.013 0015 0018 002 STUDENT

-
A A AT CE LA GAS

T e S e e S P S

Figure (1V.10) : Le champ des vitesses & Umax=2 cm/s

C. Pour Umax=3 cm/s
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con tour 3
X Veloclty [m/s] Ansys
e — m— B
-0.0063 -23e0-00 0.0063 0.0006 0.0059 0013 oo1s o2 0023 0.026
contour-3
X Velocity
—
Figure (1V.11) : Le profil des vitesses a Umax=3 cm/s
weohor-2
Welocity Megnitude [ s | AI'ISYS
e E— | 20aR2
1.5e-06 0.03 0.0053 0,003 oma 0ms 0.oe 0.021 0.024 0.027 [Nz STUDENT

Figure (1V.12) : Le champ des vitesses a Umax=3 cm/s

d. Pour Umax=4 cm/s
contou r-4
¥ Velocity [ mis | ﬁ.ﬂSYS
E— s s
0.0047 000025 0.0042 0.0086 0.013 07 0.022 0.05% 0.E 0.035 0.04 STUDENT

ﬁ

Figure (1V.13) : Le profil des vitesses & Umax=4 cm/s
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vector3
X Velocity [ mis] ,\nsys
2021 R2
-0.0048 4005 0.0049 0.0098 0.015 0.02 0.024 0.020 0.034 004 STUDENT

Figure (1VV.14) : Le champ des vitesses a Umax=4cm/s

e. Pour Umax=5 cm/s
o MAnsys
A B 2oaRe
000 0LCO0E 00045 oo oo o] ooET oeEs nEs 004 oods  STUDEMNT

Figure (1V.15) : Le profil des vitesses a Umax=5 cm/s

Figure (1V.16) : Le champ des vitesses a Umax=5 cm/s

f. Pour Umax=6 cm/s
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contou r-5

¥ Velocity [ mis] A“SYS
[ | Sl
00097 00028 0004 0011 0018 0025 0032 0039 0048 0058 0.05 STUDENT

————

Figure (1VV.17) : Le profil des vitesses @ Umax=6 cm/s

wector3
X Velocity [ ms] A“SYS
[ |
0011 0.0@E  00m@4 001 0017 0024 0081 0.038 0.045 D052 0050 STUDENT

Figure (1V.18) : Le champ des vitesses a Umax=6 cm/s

g. Pour Umax=7 cm/s

contour-7
¥ Velocity [ m's ] ﬁl’ISYS
[ T 20e1R2

0014 -0.0038 0.0025 0.01 0.0 0.028 0.036 0.044 0.053 0.081 008 STUDENT

T e —

Figure (1VV.19) : Le profil des vitesses a Umax=7 cm/s

veclor-4
X velety [m 21 Ansys
m— G
-0.015 -0.007 0.0015 0.0088 0018 0.7 0.@s 0.044 0.052 0.001 oo STUDENT

Figure (1V.20) : Le champ des vitesses a Umax=7 cm/s
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h. Pour Umax=8 cm/s

contour-8
¥ Velocity [ mis | AI’ISYS
| ] "2
003 002 001 0.00 0.02 0.03 0.4 0.6 0.06 0.07 008  STUDENT

q—-"—"—"
[ —

B .

Figure (1V.21) : Le profil des vitesses @ Umax=8 cm/s

vector-5
® Velooity [ m's] AI’ISYS
[ B | 20n e

.02 0s 00073 0.00335 0014 0.025 0.036 0.047 0.058 0.058 0079  STUDENT

Figure (1V.22) : Le champ des vitesses a Umax=8 cm/s

i. Pour Umax=9 cm/s

sontour-2
K Veocity [ m's] A“SYS
[ [
40.034 0.022 00053 0.003 0015 0.0 0.04 0.052 0.064 0.077 0080 STUDENT

—— ::_._

Figure (1V.23) : Le profil des vitesses a Umax=9 cm/s
Ansys
| B LA

0.035 Q0 0.01 ooo2 o014 nozv 0039 0.052 0.0c4 0.077 o0.cs2 srum

Figure (1V.24) : Le champ des vitesses a Umax=9 cm/s
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j. Pour Umax=10 cm/s

contour-10
X Velocity [ m's] A“SYS
[ I
0034 0.0 0.0073 0005 0018 0.033 0.046 0.059 n.o7ve 0.086 0.000 STUDENT

e I ——

e — —

Figure (1V.25) : Le profil des vitesses & Umax=10 cm/s

e o T

e s Mnsys

Figure (1V.26) : Le champ des vitesses a Umax=10 cm/s

1V.4.2 La longueur de recirculation

Il s’agit d’'une zone de recirculation ou 1’écoulement est a flux opposé.

Tableau (1V.2) : La zone de recirculation en fonction de la vitesse

Umax (cm/s) Xr (cm)
1cm/s 4,2 (cm)
2 cmls 6,2 (cm)
3cmls 7,7 (cm)
4 cm/s 8,7 (cm)
5cml/s 9,7 (cm)
6 cm/s 10,7 (cm)
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7 cmls 11,2 (cm)
8 cml/s 11,6 (cm)
9 cm/s 12 (cm)

10 cm/s 14,2 (cm)

Maintenant, on représente 1’évolution de la taille de la zone de recirculation en fonction de la

vitesse.

Xr (cm)

16
14
12
10

o N B O o

La taille de la zone de recirculation

1 2 3 4 5 6 7 8 9 10

Umax (cm/s)

Figure (111.27) : La taille de la zone de recirculation en fonction de la vitesse

IV.5 Conclusion

Dans ce chapitre nous avons présenté le logiciel Ansys Fluent, la géométrie et le maillage utilisées
dans Ansys Fluent. Ensuite les conditions aux limites a la sortie (la pression égale a zéro). Enfin
nous avons illustré les différents résultats (le profil et le champ de vitesse et le profil de la pression)
obtenus grace a Ansys Fluent et nous avons determiné la taille de la zone de recirculation en

fonction de la vitesse.
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Chapitre V discussion des résultats

V.1  Introduction
L’augmentation des performances des calculateurs ne cesse d’ouvrir de nouvelles perspectives au

calcul scientifique en général, et a la simulation numérique des phénoménes physiques complexes en

particulier. Parmi ceux-ci, la simulation numérique des écoulements a 1’¢largissement brusques.

Dans ce chapitre nous avons choisi d’utiliser La méthode des différences finies et les équations
d’Euler pour simuler le phénomeéne avec Matlab et la méthode des volumes finies et les équations de

Navier-stocks avec Ansys fluent.

Les simulations numériques obtenus par les deux logiciels de simulation « matlab et Ansys fluent »
seront comparées entre elles par rapport a les deux zones de recirculations en fonction des vitesses
utilisées

V.2  Fluide parlait

En mécanique des fluides, un fluide est dit parfait s'il est possible de décrire son mouvement sans
prendre en compte les effets de viscosité et de conduction thermique. Le mouvement du fluide

est donc adiabatique, décrit par les équations d'Euler.

Tous les fluides ont une viscosité (sauf un superfluide, ce qui en pratique ne concerne guére que
I'nélium a tres basse température et I'intérieur d'une étoile a neutrons). Le fluide parfait ne peut
donc étre qu'une approximation pour une viscosité tendant vers zéro. Cela revient a faire tendre

le nombre de Reynolds vers l'infini.

V.2.1 Théorie

Puisque nous avons un écoulement a travers une marche descendante donc pour pouvoir réaliser
cette simulation nous allons utiliser le modéle qui utilise les équations de Navier-Stokes

incompressibles stationnaires sur ansys fluent et les équations d’Euler sur Matlab.

Ce modeéle calcul les composantes de vitesse du fluide u dans les directions x et y et dans la

région définie par la géométrie de la conduite.
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V.2.3 Hypothése

Dans notre simulation, Nous nous sommes appuyes sur les hypotheses suivantes :

0
Ecoulement stationnaire : E =0

Fluide incompressible : p = cte

0
Ecoulement bidimensionnel :a— =0
VA

Forces de pesanteur négligeables :pf = 0
Fluide parfait :u = 0
V.3 Résultats

Les résultats obtenus par les deux simulations numériques « matlab et Ansys Fluent » sont

illustrés dans le tableau ci-dessous

Tableau (V.1) : La taille de la zone de recirculation par les deux logiciels en fonction des

vitesses
Xr (cm)

Vitesse (cm/s) Résultats de Matlab Résultats d’Ansys fluent
1 11,2 4,2
2 16,8 6,2
3 20,4 17
4 22,8 8,7
5 24,4 9,7
6 25,6 10,7
7 26,4 11,2
8 27,2 11,6
9 27,6 12
10 28 14,2
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—&— Résultats de Matlab Résultats d’Ansys fluent
30
o —
25
20
S
L 15
o
=
10
5
0
1 2 3 4 5 6 7 8 9 10
UMAX (CM/S)

Figure (V.1) : La taille de la zone de recirculation avec les deux simulations

V.4  Discussion

D’aprés les deux simulations réalisées par Matlab et Ansys Fluent, pour un fluide parfait nous

observons que la zone de recirculation augmente en fur et a mesure.

La différences de la taille de la zone de recirculation entre les deux simulations du a les condition

au limite qu’on a utilisé et les équation qu’on a utilisé et celle qui utilise le logiciel ansys fluent.

On déduit donc, pour un fluide parfait, la taille de la zone de recirculation dépend de la vitesse de
I’écoulement, c’est-a-dire ; qu’a chaque fois que la vitesse grandie la taille de la zone de

recirculation augmente.
V.5 Exemple de I’écoulement de la marche descendante (Fluide réel)

Les deux mécanismes fondamentaux de transport dans les fluides par une expérience de laboratoire
réalisée dans un tunnel hydrodynamique : I’écoulement de la marche descendante. Le nombre de
Reynolds pour cet écoulement est calculé a partir de la vitesse de I’écoulement amont U, la hauteur

de la marche h = Icm, et la viscosité cinématique de ’eau v = 10~2 cm?/s (voir la figure V.2)

72



Chapitre V discussion des résultats

L’injection de colorant nous permet de visualiser la zone de recirculation derriére la marche. Ils
ont reporté dans la figure (V.3) la longueur XR de cette zone de recirculation en fonction de U.
Pour des nombres de Reynolds inférieurs a 350, I’écoulement est stationnaire et la longueur de la
zone de recirculation croit assez linéairement avec U. Au-dessus de Re =350, I’écoulement devient
instationnaire et la longueur moyenne de la zone e recirculation décroit jusqu’a atteindre une valeur
constante de saturation. Le changement brutal qui s’opére correspond au passage du mode de
transport diffusif dominant au mode de transport convectif dominant dans la direction verticale.
On peut d’ailleurs a partir des temps caractéristiques des transports retrouver simplement les
comportements asymptotiques de la figure (V.3). Pour le transport diffusif, la vitesse U au-dessus

de la marche est transportée verticalement vers le sol derriere la marche pendant un temps

2 2
T, X h; et atteindra donc le sol a I’abscisse Xrx %U(pendant la diffusion verticale vers le bas, il

y a un transport convectif vers I’aval a une vitesse que I’on suppose étre U). Avec cet argument
simple on trouve que le mode diffusif impose une augmentation linéaire de Xr avec U, ce qui est

effectivement confirmeé par I’expérience tant que Re < 350.

Au-dessus de Re = 350, il y a des tourbillons (clairement observables a Re = 1500) qui vont
transporter la vitesse U au-dessus de la marche vers le sol derriere la marche. Si on suppose que la
vitesse périphérique de rotation des tourbillons est proportionnelle a U et qu’ils ont une taille

proportionnelle a h, alors le temps pour transporter la vitesse U verticalement vers le sol derriere

la marche est 1 = e Avec le transport convectif vers 1’aval a la vitesse U, la vitesse U qui était

. . h? ..
au dessus de la marche atteindra le sol en une abscisse Xgr — U =h. Ontrouve ici que la longueur

de recirculation est indépendante de la vitesse de 1’écoulement, c’est ce qu’on trouve
expérimentalement puisque pour les grandes vitesses, la longueur de la recirculation sature a une

valeur constante.
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Figure (V.2) : Visualisation de I’évolution de la recirculation derriére la marche
descendante en fonction du nombre de Reynolds. L’écoulement devient instationnaire pour
Ren = 350.
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Figure (V.2) : Mesure de la longueur de recirculation Xr en fonction de la vitesse U. Les
cercles blancs correspondent a I’écoulement stationnaire, et les ronds noirs a I’écoulement

instationnaire.
V.6 Conclusion

En comparant les résultats obtenus avec les deux simulations pour un fluide parfait on déduire

que :
La taille de la zone de recirculation Xr augmente a chaque fois la vitesse d’entrée U augmente.

Par contre Par contre, pour un fluide réel, on observe que la longueur de la zone de recirculation
est indépendante de la vitesse de 1’écoulement, c’est ce qu’on observe aussi expérimentalement
puisque pour les grandes vitesses, la longueur de la zone de recirculation sature a une valeur

constante.
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Ce travail a été consacré a la modélisation numérique de 1’écoulement incompressible et
bidimensionnel confiné en aval d’une marche descendante. Cette configuration engendre un
écoulement du type décollé et recollé qui présente des complexités dues a la présence de zones de

recirculation et de rattachement.

Plusieurs études numériques et expérimentales ont été menees sur les écoulements en aval d’une
marche descendante pour connaitre et définir ses avantages afin d'en bénéficier dans le domaine

industriel.

Dans notre travail, nous nous sommes intéressés a I’écoulement en aval d’une marche descendante.
Et nous avons étudié par une simulation numérique un écoulement incompressible en régime

permanent.

Nous avons observé une formation d’une zone de recirculation (zone de séparation) en aval de la

marche.

Nous avons aussi observé aussi que pour un fluide parfait, la taille de la zone de recirculation
augmente a chaque fois que la vitesse a I’entré augmente. Contrairement a un fluide réel ou la

longueur de la zone de recirculation sature a une valeur constante pour des grande vitesses

Nous avons aussi €tudié I’influence de I’¢élargissement sur le champ de vitesses et nous avons
constaté que pour chague nombre de Reynolds, le champ de vitesses est constant sur la longueur

de la marche en amont. Ce champ diminue lorsque la section de la conduite agrandit.

L augmentation dans le volume de la zone de recirculation peut étre considérée comme un
avantage pour celui qui veut faire une détente ou séparer entre un liquide et un gaz, et aussi peut

étre considérée comme un inconvénient a cause de la grosse perte d'énergie.
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Résumé :

Dans le cadre de ce travail, nous nous sommes intéressés a la modélisation numérique d’un
écoulement bidimensionnel en aval d’une marche descendante en utilisant un fluide parfait,
pour déterminer la longueur de la zone de recirculation. Pour cela, nous avons élaboré des
modéles en utilisant le logiciel de simulation. Ansys Fluent basé sur la méthode de volumes
finis et les équations de Navier-stokes, et la méthode des différences finis pour la

modélisation et la discrétisation les équations d’Euler.

Mots clés : marche descendante, modalisation, volumes finis, différences finis, équations de

Navier-stokes, équations d’Euler

Summary :

In the framework of this work, we ara interested in numerical modeling of 2D flow
downstream of a descending skp, using an ideal fluid to determine the length of the
recirculation region, for this we developed models using ANSYS Fluent simulation
software,based on finite volume méthod, Navier_Stokes equations and finite difference

méthod. To model and estimate Euler's equations.

The Key words: Step down, formation, limited, sizes, limited differences méthods,

Navier_Stokes equations, Euler's equations



	LISTE DES FIGURES
	Chapitre I : Description du problème et bibliographie
	I.1    Introduction

	I.2    Description du problème
	Figure(I.1):   Caractéristiques physiques générales de l’écoulement en aval de la marche descendante
	I.3     ECOULEMENTS DECOLLES ET RECOLLES
	I.3.1    Elargissement brusque
	Figure(I.2):   Elargissement brusque axisymétrique
	Figure(I.3):   Elargissement brusque asymétrique
	I.3.2    Ecoulement en aval d'une marche
	I.3.3   Marche montante

	Figure(I.4): Ecoulement sur une marche montante
	I.3.4 Marche descendante

	Figure(I.5):   Marche descendante
	I.3.5 L’obstacle

	Figure(I.6):   Ecoulement sur un obstacle

	I.4     ECOULEMENT EN AVAL D’UNE MARCHE DESCENDANTE
	I.4.1       Description générale de l’écoulement
	I.4.1.1      Caractéristiques de l’écoulement
	I.4.1.2     Structure de l'écoulement

	Figure(I.7):   Structure de l’écoulement sur une marche descendante

	I.4.2   Références
	I.4.2.1    Etudes expérimentales
	Figure(I.8):   Double marche descendante
	Tableau (I.1) : Résultats des principales études numériques antérieures.
	I.4.2.2 Etudes numériques
	I.4.2.3 Discutions


	I.5 Conclusion

	II.1 Introduction
	II.3.2   Equation de conservation de la quantité de mouvement
	II.3.3     Les équations d’EULER

