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Nomenclature

Grandeur Notation et expression

X,y,zett Coordonnées de I'espace et du temps

g Champ gravitationnel
\ Champ de vitesse
u,v,w Composantes du vecteur vitesse
p Pression
P, Pression atmosphérique
n Vecteur normal a la surface libre
n Indice du comportement non newtonien
Id Matrice identité
D Tenseur des déformations
K Courbure
h Hauteur du film
p Angle d’inclinaison du substrat par rapport a I'horizontale
o Tension superficielle
o Tenseur des contraintes
T Tenseur des contraintes visqueuses
7} La viscosité dynamique du fluide
Ox; = aixl Dérivée partielle par rapport a x;

div, grad | Opérateurs divergence et gradient




Introduction générale

Le probleme des films minces s’écoulant sur un plan incliné est pertinent pour une large
classe de phénomenes naturels (ruissellement des eaux, écoulement de la lave volcanique)
et pour leurs intéréts en mécanique (lubrification, échangeurs de chaleur) et en génie des
procédés (réacteurs chimiques, évaporateurs, condenseurs). L'écoulement d'un film mince
constitue aussi un probleme de référence de la théorie du chaos spatio-temporel, il offre une
solution de base relativement simple permettant d’analyser les phénomeénes de bifurcation
rencontrés dans des situations plus complexes. Ce probléme a fait I'objet d’études intensives
depuis I'article de Nusselt [1] qui a établi une solution stationnaire de I’écoulement laminaire
de film mince liquide sur un plan incliné. Cet écoulement devient instable lorsque les ef-
fets d’'inertie surpassent les effets de pression hydrostatique et se comporte comme un am-
plificateur du bruit ambiant a partir duquel se forment spontanément des trains d’onde ir-
réguliers se propageant vers I'aval. Cette instabilité est d’origine gravitaire, qui se produit a
des nombres de Reynolds modérés. Des modes interfacials (de surface libre) dominés par la
capillarité apparaissent. Les ondes qui en résultent ont une échelle de longueur beaucoup
plus grande que I'épaisseur de film et deviennent rapidement tridimensionnelles. Quoique
d’origine interfaciale, elles s’apparentent aux modes de Herbert (motifs de chevrons) ou de
Klébanoff (instabilité synchrone) décris dans les couches limites. Un autre type d’instabilité
d’origine visqueuse (mode de cisaillement), cette fois-ci, insensible aux effets de la tension
superficielle, apparait a de faibles inclinaisons du plan et a des nombres de Reynolds élevés.
La nature sous critique des bifurcations de Hopf qui s’y produisent confere a I'écoulement

des caractéristiques semblables a celles des couches limites transitionnelles. Cette similitude
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laisse penser que les progres réalisés dans la compréhension de 'apparition du chaos au sein
des films sont autant d’éléments précieux apportés au probleme de la transition vers la tur-
bulence dans les couches limites.

Comme mentionné auparavant, dans le cas des films minces, l'instabilité se produit a faible
nombre de Reynolds, d’ot une grande cohérence de I’écoulement suivant I’épaisseur du film
qui rend sa description possible a ’aide d'un systeme de faible dimension (petit nombre de
variables internes dont les plus pertinentes sont I'épaisseur du film et le débit local). La lit-
térature abonde de travaux consacrés a la recherche de modeéles décrivant le développement
des ondes de surface dans le cas des fluides newtoniens|2][3][4][5].

Trois parametres de base indépendants apparaissent dans les équations sans dimension du
probleme; en plus de I'angle d’inclinaison  qui représente les effets de la gravité, on choi-
sit, par exemple, le nombre de Reynolds R et le nombre de tension superficielle (nombre de
Weber modifié) W qui donnent, respectivement, 'importance relative des effets d’inertie et
de la tension superficielle par rapport a ceux de viscosité. Dans une certaine gamme de ces
parametres, des expériences|references] ont révélé que les ondes de surface présentent sou-
vent un large spectre d’amplitude, longueur et vitesse d’onde. Ces ondes apparaissent, tout
d’abord, comme courtes, périodiques et peuvent évoluer vers un état fortement irrégulier.
Comme décrit par Chang [6] et rapporté par Oron et Gottlieb [7], on distingue dans I’évolu-
tion du film quatre étapes principales :

(i) 'évolution spatio-temporelle de I'instabilité primaire, celle-ci est bidimensionnelle. Le ca-
ractere convectif de cette instabilité a été vérifié expérimentalement par Liu et al.[8] et dé-
montré théoriquement par Joo et Davis[9],

(ii) la saturation de I'amplitude des ondes primaires par des effets faiblement non linéaires
dont la forme demeure quasi-stationnaire sur une distance de quelques longueurs d’onde
(10],

(iii) les ondes saturées subissent une instabilité secondaire 2D conduisant a la formation
d’ondes bidimensionnelles rapides de grande amplitude,

(iv) 'amplification des perturbations transversales pour former une structure essentiellement

tridimensionnelle souvent accompagnée d'une dynamique chaotique.



Table des matieres 6

Ces étapes ont été également observées dans les expériences menées par J.Liu et al. [8][11][12].
Il est établi a la fois a partir de simulations numériques et des expériences que les structures
d’ondes solitaires jouent un role central dans le comportement de I'écoulement. Comme le
montrent les calculs de Malamataris et al. [13], les profils de vitesse au-dessous des ondes
solitaires sont fortement déformés par rapport a la vitesse d’écoulement de base et la dyna-
mique devient complexe. Il est donc utile, pour une compréhension fondamentale de I'écou-
lement, de développer des systémes réduits qui peuvent étre exploités a la fois analytique-
ment et numériquement. Etant donné que l'instabilité se manifeste par des ondes de sur-
face dont la longueur d’onde est, a 'exception de tres faibles inclinaisons, beaucoup plus
grande que 1'épaisseur du film, un développement asymptotique preés de la criticalité a été
mis en évidence en premier par Benney [14]. Une équation dite de Benney (BE) qui permet la
description de I’évolution du film au voisinage de la criticalité est ainsi établie. Les variables
de I’écoulement dépendent alors toutes de la forme locale de I'interface. Méme si I'équation
Benney (BE) contient différents mécanismes physiques et est potentiellement capable de dé-
crire le voisinage du comportement nonlinéaire critique, elle perd sa pertinence physique
lorsque les effets convectifs deviennent significatifs, en raison de la production d’ondes plus
courtes. Afin de surmonter certains des inconvénients associés a I'équation de Benney, plu-
sieurs améliorations ont été récemment proposées. Une équation d’évolution unique, conte-
nant les effets de dissipation de second ordre via une échelle appropriée a été proposée par
Panga et Balakotaiah [15]. Ruyer-Quil et Manneville [16] ont montré que le modele Panga et
Balakotaiah peut étre modifié de telle sorte que ses termes inertiels correspondent a I’équa-
tion de Ooshida [17]. L'échec des modéles de grandes ondes pour décrire correctement les
comportements non linéaires loin de la criticalité est en partie di a leur incapacité a capturer
tous les effets d’inertie. La facon d’améliorer la modélisation, selon Ruyer-Quil et Manneville
[3], serait d’'introduire le débit local qui devient une variable effective juste apres la forma-
tion de 'onde. Un tel modéle a été introduit par Shkadov [18] en utilisant une approche de
couche limite intégrale (IBL). Cette théorie combine I'hypothese de grandes ondes avec la
méthode de I'épaisseur moyenne de type Karman-Polhansen, utilisée en couche limite. En

dépit de son succes pour décrire les régimes non linéaires pour des nombres de Reynolds
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modérés, 'approche IBL ne prédit pas avec précision le comportement de I’écoulement au
voisinage du seuil d’'instabilité comme I’équation de Benney le permet avec succes. Ce défaut
est di, comme nous le verrons plus tard, au fait que I'IBL n’est cohérente que jusqu’a I'ordre
zéro par rapport au parametre de grande onde pres de la criticalité. Une meilleure prise en
compte des premiers termes convectifs pres de la criticalité est donc nécessaire pour élimi-
ner cet inconvénient. Le remeéde a été trouvé par Ruyer-Quil et Manneville [3][19] en utilisant
une approche de couche limite intégrale aux résidus pondérés (WRIBL). Leur modele, dé-
veloppé pour les deux approximations du premier et du second ordre, a corrigé I'incapacité
de 'approche Shkadov a converger au seuil de la stabilité linéaire et a permis de produire
des solutions pour une plus grande gamme de nombres de Reynolds que celle dans le cas de
I’équation de Benney. Il a été démontré [3] que les deux modeles du premier et du second
ordre concordent bien avec les expériences effectuées par Kapitza et Kapitza [20] pour le cas
d’un plan vertical. Cependant, seul le modele du second ordre concorde bien avec les résul-
tats expérimentaux de Liu et al.[8] pour une solution de glycérine a I’eau sur un plan incliné.
L'approche de WRIBL a été étendue aux écoulements non isothermes par Ruyer-Quil et al.[21]

et aux écoulements de deux couches fluides par Amaouche et al.[5].

Dans la présente étude, il s’agira d’'une extension de 'approche (WRIBL) au cas de fluide
non-newtonien, tout en proposant une procédure beaucoup plus appropriée. En effet, il est
important de comprendre comment les effets non-newtoniens affectent la dynamique du
film car ils sont présents dans une large gamme d’applications physiques et technologiques.
Par exemple, ces effets spécifiques sont rencontrés dans des situations telles que la fabrica-
tion de plastique, des procédés de revétement, mouvements fluides biologiques, les flux géo-
logiques... Notre intérét est porté spécialement sur des fluides dont le comportement rhéo-
logique peut étre décrit par un modele de loi de puissance qui est une équation constitutive
relativement simple. Le comportement non newtonien du fluide est caractérisé par un indice
de puissance désigné par "n", le cas newtonien est obtenu pour n = 1.

Dans ce domaine, il y a peu d’édudes contrairement au cas newtonien. Lin et Hwang [22]

ont utilisé la méthode des échelles multiples pour résoudre une équation non linéaire de type
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Benney. Leurs résultats indiquent que I'instabilité sous-critique et une solution explosive se
produisant a faibles indices de loi de puissance. Une région supercritique et une région incon-
ditionnelle stable existent uniquement lorsque cet indice est supérieur a une certaine valeur
critique. Une équation de type Benney a été également utilisée et numériquement intégrée
dans le domaine périodique par Miladinova et al. [23], qui ont montré que la forme et ’ampli-
tude des ondes progressives sont fortement dépendantes des propriétés non-newtoniennes
du fluide. La méthode intégrale de couche limite a été appliquée par Dandapat et Mukho-
padhyay [24] pour obtenir une équation d’évolution pour les ondes connues sous le nom
cinématiques et inertielles. Ils ont constaté, entre autres résultats, que I'exposant de loi de
puissance joue un role de premier plan dans le controle des effets de tension superficielle.
Sisoev et al. [25] présentent une analyse de bifurcation des ondes stationnaires en utilisant
une équation similaire a celle obtenue dans [24]. Des limitations similaires a celles décrites
ci-dessus ont également été rencontrées lors de I'utilisation de la théorie de la lubrification

ainsi que dans la procédure de Shkadov pour les écoulements de film liquide non-newtonien.

Dans ce manuscrit, le premier chapitre est consacré a la formulation mathématique du
probléme objet de I'étude en donnant les équations gouvernantes sous forme dimension-
nelle et adimensionnelle, faisant apparaitre les parametres du probleme. L'analyse de stabilité
linéaire conduit a un systeme de type Orr-Sommelfeld résolu numériquement par la méthode
Runge-Kuta associée a la méthode de Riccati[26]. Dans le deuxieme chapitre, nous dérivons
un ensemble de modeéles en équations d’évolution, afin de décrire la dynamique non linéaire
du film, par la méthode de Galerkin sous I’hypothéese des grandes ondes. Un systeme de deux
équations réduit et régularisé est obtenu en utilisant I’approximation de Padé[21]. Le chapitre
trois est consacré a la validation des modeles élaborés au chapitre précédent. En premier lieu,
une comparaison avec les résultats de la stabilité linéaire, obtenus au premier chapitre, est ef-
fectuée. Par la suite, une étude non linéaire du modeéle réduit régularisé est abordée dans le
cadre des ondes stationnaires afin d’examiner la nature des differentes bifurcations qui appa-

raissent conduisant au chaos.



Chapitre 1

Formulation du probleme et étude de la

stabilité linéaire

Dans ce chapitre, nous développons la stabilité linéaire de I’écoulement d'un film mince,
a surface libre, sur un plan incliné étendu. Cet exemple de configuration a été utilisé par plu-
sieurs auteurs, a commencer par Kapitza, et reste un exemple de base pour toute tentative
d’étude théorique ou expérimentale dans le cas des domaines étendus a surface libre[20].
Dans notre cas, le fluide considéré est non-Newtonien avec une loi de comportement de
type loi de puissance. En premier, on présente la configuration que nous allons étudier, les
équations gouvernantes sous forme adimensionnelle, les équations linéarisées de type Orr-
Sommerfeld. Par la suite, une résolution asymptotique et numérique de ces dernieres est ef-

fectuée.

1.1 Présentation du probleme

Nous considérons un écoulement incompressible d'un film mince liquide non newtonien
sous 'effet de la gravité le long d'un plan incliné, avec un angle d’inclinaison f par rapport a
I'horizontale. Un systeme de coordonnées cartésiennes (x, y, z) est adopté : ’axe des x selon le

sens de I'’écoulement, I'axe des y étant perpendiculaire au plan et ]’axe des z étant la direction
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direction de 1’ecoulement

FIGURE 1.1 — Ecoulement d’'un film sur un plan incliné

transversale de I’écoulement (voir figure 1.1). Dans ce qui suit, les hypotheses suivantes sont

considérées comme telles :

La géométrie du systeme est supposée infinie dans les directions x et z.

On néglige toute circulation d’air au-dessus du film.

La pression de 'air est supposée constante et égale a P,,.

Le milieu considéré est homogene et isotrope.

La tension superficielle entre le fluide et le milieu extérieur o est supposée constante.

1.1.1 Rhéologie du fluide

La plupart des fluides, combinent plusieurs caractéristiques qui ne sont pas entierement
déterminées. Il est donc difficile de comprendre parfaitement les phénomeénes observés. La
détermination des lois qui répondent le plus largement possible a ces caractéristiques s’ins-
crit dans la discipline de la rhéologie. Par ailleurs, les équations régissant les écoulements des

fluides non-newtoniens sur un plan incliné sont fort complexes et n'admettent pas souvent
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Bigham

Plastique

Rhopaississant

Newtonien

Rhofluidifiant

v

FIGURE 1.2 — Relation entre le tenseur des contraintes visqueusesle T et tenseur des taux de

déformation D pour différents types de fluides

de solutions stationnaires par un calcul analytique, ceci rend I’analyse de la stabilité plus dif-
ficile a mener. Parmi les modeles de fluides ot la solution analytique de I’écoulement de base
est envisageable, on cite le cas de fluides en loi de puissance qui fera I’objet de notre étude.

La nature du fluide est représentée par le tenseur de contraintes visqueuses 7. Il dépend du

tenseur taux de déformation D, tel que

Uy (uy + v)l2 (Ug+ wy)l2
D= (uy,+wvy)/2 vy (Vz+wy)/2
(Uz+wy) /2 (vz+wy)/2 w,

La relation entre les tenseurs T et D est souvent complexe (Figure 1.2) et dépend des pro-
priétés constitutives du fluide considéré. Dans notre cas, cette relation s’écrit sous la forme

suivante :

T=2uD

Ou p estla viscosité dynamique du fluide, et est reliée a une puissance du taux de cisaillement

par la formule, appelée "loi de puissance”, donnée par

p=Kiyl"! (1.1)
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avec K est sa consistance (en Pa.s"), considéré constante et indépendante de la température

et y estle second invariant du tenseur des déformations, défini par :
y* =2Tr(D?)

Dans ce qui suit, on note par 7 la quantité :

2

ne (n—1)/2
n=ly" "t = {Z(ui + U5+ W) + (uy + 02)% + (U + w) + (0 + wy)z}

(1.2)
Lindice n est appelé indice d’écoulement, il indique le degré du comportement non Newto-
nien. Il est adimensionnel et vaut 1 pour un fluide Newtonien et 0 pour un solide rigide, plus
il s’éloigne de I'unité, plus les effets non newtonien sont importants.
En effet, 0 < n < 1 correspond au comportement pseudo-plastique et n > 1 représente les
dilatants (un comportement d’épaississement).

Dans le tableau ci-dessous, on donne quelques exemples de fluides en loi de puissance

pour différentes valeur de n.

fluides n | K(gri(cms*™) | p(gricm® | o(N/m?
Mélange d’eau et d’éthylene glycol | 2 0.00004241 1.226 0.045
Mélange d’eau et d’éthylene glycol | 1.8 0.001428 1.238 0.045
Mélange de chaux et d’eau 1.47 251077 1.25 0.076
Mélange d’éthylene glycol, 1.37 0.04583 1.305 0.045

de glycérine et d’eau

Mélange d’éthyléne glycol et d’eau | 1.18 0.007767 1.222 0.045
sang humain 0.9
pétrole (en général) 0.8
solution de napalm en kérosene | 0.52 5.351073 0.8 0.026

Tableau 1.1 : Caractéristique physique de quelques exemples de fluides en loi de puissance
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1.1.2 Mise en équations du probleme

Le probléme est régi par les équations suivantes :

divv = 0 dans Q (1.3)

p(0; +v.grad)v dive +pg dans Q. (1.4)

ouQ={xyzHte R3 x R+;0 < y < h(x,z, t)} est le domaine occupé par le film.

L'équation (1.3) est I’équation de continuité dans le cas d'un fluide incompressible (p = Cs¥),
assurant la conservation de la masse. Léquation (1.4) est celle de la conservation de la quan-
tité du mouvement qui découle directement du principe fondamental de la dynamique.

o étant le tenseur de contraintes de Cauchy qui se décompose en une partie sphérique et une
partie déviatrice sous la forme :

o=-Pl;+T,

ou I; estle tenseur identité.
La partie sphérique —PI; correspond aux actions de pression qui s'exercent seules en l'ab-
sence de gradient de vitesse. Le scalaire P est appelé pression hydrostatique, le signe négatif

traduit le fait est qu'un fluide au repos est généralement en compression.

1.1.3 Conditions aux limites

Le film fluide étant supposé infini dans le sens de I'’écoulement et dans la direction trans-
versale, les seules conditions aux limites du probleme sont celles a la paroi (y = 0) et a la
surface libre du film (y = h) :

Eny=0
Le fluide s’écoule sur la paroi avec une condition d’adhérence (non glissement) et de non
perméabilité

v=0cu=v=w=0 (1.5)

En y=h(x,z,1)

A la surface libre du film, deux conditions doivent étre vérifiées :
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— La condition cinématique traduisant I'impermeéabilité de I'interface. Elle exprime le fait

que le fluide et la surface libre d’équation y — h = 0, ont la méme vitesse normale, d’ou
(0;+v.grad)(h—y)=0 (1.6)

— La condition de raccordement des contraintes traduit la continuité de la contrainte tan-
gentielle et le saut de la contrainte normale. Ce dernier est di a la tension superficielle.

Le cisaillement est nul pour 'air dans le cas d'un film a surface libre, d’ot1 I'équation
(pa—p+odivnn+71-n=0 (1.7)

ou:
(_hX) 1v_hz)t
n-—-————

2, 1,2
\/ 1+ h5+ h;
étant le vecteur normal unitaire extérieur a la surface libre.

Ona:

divn=-K
tel que K est la courbure de I'interface qui s’écrit

A+ ) hyy —2hch by, + (1 + W) by,

K=
[(1+ h3 + h2)]3/2

La projection de la condition (1.7) par rapport a la normal nous donne la condition normale
suivante :

P,~P+7t-n-n=0K (1.8)
(1, hy,0) (t. = 0,h,1)"

\/1+h2 o \/1+ h2

La projection selon les deux vecteurs tangents, t, = , donne lieu aux

deux conditions tangentielles suivantes

T-n-t;=0 i=xz (1.9
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FIGURE 1.3 — Influence de I'indice n sur la vitesse du profil de base.

1.1.4 Solution de I’écoulement de base

La solution stationnaire pour un écoulement parallele du film de ce type de probleme,

s’écrit[24] :

n (pgsinp\"" 1. 1+41/n
Up n+1( e ) [ (ho—y) | (1.10)
Vy, = Wp=0 (1I.1D)
P, = Pu+pgcotPlhy—7y) (1.12)

ou hy désigne I'épaisseur du film.

Cette solution stationnaire simple est appelée solution de Nusselt[1]. Elle est sous forme d'une
fonction puissance qui devient parabolique quand le fluide est newtonien (n = 1). La figure
(1.3) indique l'influence de 'indice n sur le profil de vitesse avec une hauteur hy = 1cm et des

propiétés physiques correspondant aux valeurs données dans le tableau 1
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1.1.5 Echelles caractéristiques et équations adimensionnées

La solution de Nusselt précédente donne lieu a un débit total établi a I'entrée de I'écoule-

ment

n (pgsinﬁ)”” 2
0 .

ho
= U, av =
Qo Of vdy =577«

Cela nous permet de définir une vitesse moyennée u,, = (5—::, choisie comme vitesse caracté-
ristique. Par ailleurs, le probleme étudié présente une anisotropie spatial due au domaine non
borné. On fait alors intervenir deux échelles d’espace : 1a longueur d’onde typique [y, pour les
directions longitudinale et transversale, et la hauteur hy = € [ pour la direction normale. L'in-
troduction du petit parametre € vient du fait que les ondes observées sont a grandes longueurs
d’ondes et a petites amplitudes. Une séparation entre I’échelle de variations suivant I'épais-
seur du film y et les échelles de variations en temps ¢ et en espace x, z est imposée.

Ainsi, les échelles caractéristiques sont ly, ho, ho/ un, et Kuy,/ehg pour x et z, y, le temps ¢ et

la pression p, respectivement. A partir de ces échelles caractéristiques, les variables adimen-

sionnelles suivantes sont introduites :
x=xlly, §=ylho,2=1zlly, Gt=ultty, D="viewy, W=wluny, t=—tuylly, P=ePh/(Kul).

En utilisant ces variables adimensionnelles, les équations du mouvement (1.3,1.4) et les

conditions aux limites (1.5,1.6,1.8,1.9) s’écrivent (en omettant le symbole """ ) :

Ux+vy+w;=0 (1.13)

Relus+ uuy + vuy + wugl + Py = G+2€2[T] Uxlx + [n(uy +€2vx)]y +62[17(uz +ewy)l, (1.14)
Res[vt+uvx+ VUy+€E WU ]+Py=—€ GB+¢? [17(1,t),+€2 l/x)]x+2€2[17 vy]y+e3 [nev,+wy)l, (1.15)
Rez[wt +tUuwyx+vwy+eww,l+ P, = ez[n(uz +ewy)lx+emlev, + wylly +2€3[n w;l, (1.16)

tel que la viscosité est donnée par

(n-1)/2
n= {Zez(u]zc + vJZ, +e? wg) + (uy +é? vx)2 +62(uz +e€ wx)2 +€2(€ v, + wy)z} (1.17)

Les conditions aux limites correspondantes sont
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- y=0:

u=v=w=0 (1.18)

- y=h(xz1):

v=h;+uh,+wh, (1.19)
1][2€2hx(vy— Uy) +(1—62(h2)x)(uy+€2 vy)—€2hy(ug+ewy)—€ hhy(e v+ wy)] =0 (1.20)

N2e*h,(vy—w,) +(1-€*(h?),) (wy+€*v,) —€* hy (Ug+€ wy) —€> hyhy (uy+ewy)] = 0 (1.21)

2n

= m{eg(hz)xux +et(h®) qwy+ e hyehy(ug + € wy) —€hy(uy +e2vy) +e vy
X Z

(L +€*h2) hyy —2€*hyhyhy, + A +eh2)hy,)  (1.22)

2
—€“h + —
€ hz(ev, + wy) } A+ 12+ I

n+1

2 n
Avec G = ( ) traduisant I'effet de gravité [27].

Le groupe de nombres adimensionnels qui apparaissent sont :

* le nombre de Reynolds R = ph u> "/ K, mesure 'importance relative des effets inertiels et

visqueux dans I'écoulement.

* le nombre de tension superficielle W = e2RWe, qui est une autre formulation du nombre
de Weber We=0/phy u,zn qui est le nombre de Weber, comparant les effets de la tension

supertficielle o/ hy et les effets d’inertie p ufn

* B =cotf, rapport de la composante de I'accélération gravitationnelle normale au film et de

sa composante dans le sens de I'’écoulement.

1.2 Analyse de la stabilité linéaire

Létude de la stabilité linéaire de I’écoulement de base, représenté par la solution de Nes-
selt, a été suffisamment étudiée par plusieurs auteurs pour le cas d'un film fluide Newtonien

en écoulement sur un plan incliné [28], [29],[4],[30]. Les instabilités sont alors régies par les
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équations d’Orr-Sommerfeld reliant les dérivées spatiales de la fonction du courant au pro-
fil de vitesse de I'état de base. Yih [31] en 1955 a été le premier a établir I'équation d’Orr-
Sommerfeld pour un écoulement a surface libre, interface ou stratification. Benjamin [32],
a par la suite, complété son étude en introduisant la tension de surface et a déterminé les
conditions critiques d’instabilité.

Dans le cas non Newtonien, nous avons tout d’abord vérifié le théoréme de Squire, qui énonce
qu’une perturbation bidimensionnelle précede la perturbation tridimensionnelle. Nous avons
ensuite établi un systeme d’équations linéaires type Orr-Sommerfeld pour un cas de fluides

en loi de puissance, résolu numériquement et asymptotiquement.

1.2.1 Equations aux perturbations linéarisées

La solution de I'’écoulement de base d’eqs (1.10)-(1.12), notée Vy; = (Up, Vy, W)t Ppet H,

une fois adimensionné s’écrit :

2n+1
n+1

t

P,=P,+GB(1-y) (1.23)

H=1
Considérons I'écoulement perturbé par une perturbation infinitésimale v* = (u*, v*, w*)’, p*

et h* deI’écoulement de base. Cette perturbation est définie par :
V' =v—Vp, p*=P—-Py(y), h* =h-1 (1.24)

ouv=(u,v,w), p et hsontles champs perturbés.
Les équations de I’écoulement perturbé sont alors linéarisées, ce qui donne lieu a des équa-

tions aux perturbations linéaires sous forme
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divv* 0 (1.25)

RO;+Vpdx)V' +Uyv ey = —gradp™ +noAv* +19,V" (1.26)
ouv* = (U} + v}, 2v5, v} + w})', o= (U)" " eter = (1,0,0)
Ces équations étant invariantes par translation suivant x, z et ¢, elles admettent une solution
sous forme de modes normaux

v, p*, h*] = [vi, pr(p), hy] €/ @¥ P00 e (1.27)

oltvi = (w1 (y), i), w1 ()"
a et  représente, respectivement, le nombre d’onde dans la direction longitudinale et trans-
versale, et w est la fréquence complexe.

En substituant (1.27) dans le systéme (1.25),(1.26), on obtient

ilau+Bw)+v;=0 (1.28)

aiRuy(U—c)+RuU +iap; = U nu] - (@®+pHuy + (n—Diav'] +
WYY (W, +iav) (1.29)
aiRvi(U-c)+py= U1 - @+ B2 v+ (n—Dia(u) +iav)]+2((UH"H'v) (1.30)
aiRw(U-c)+ifpr=U"N"Hw) - (@®+ BHwi] + (UN"H (wy +iBw) (1.31)
ol la notation "' " désigne la dérivée par rapport a la coordonnée normale y.
¢ = w/a estla vitesse de phase de la perturbation dans la direction de x.

Ainsi, nous avons quatre équations pour déterminer quatre amplitudes inconnues u;, vy, w;

et p; satisfaisant les conditions aux limites suivantes

w0 =v10)=wr(0) = 0 (1.32)
v +ia(c-Uy(1)hy = 0 (1.33)
},En}no[Ugh1+ui+iavl] =0 (1.34)
;Ln}no[w;+iﬂu1] =0 (1.35)

1imln0[p1—GBh1—2u;]+(a2+ﬁ2)w =0 (1.36)
y—>
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Le systéeme (1.28)-(1.36) constitue un probleme aux valeurs propres généralisés qui n’admet
de solution non nulle que si la fréquence w et le vecteur d’onde (a, ) vérifient la relation de
dispersion de la forme

D(a,B,w,R,W,n,..)=0. (1.37)

Cette relation de dispersion (1.37) est a la base de I’étude de la stabilité linéaire. Dans le
cas général, a, et w sont complexes. Pour simplifier, on se limite souvent a 'approche spa-
tiale ou a 'approche temporelle. Dans I'approche spatiale, w est réel et le nombre d’onde
spatial a(ou ) est complexe. Lamplitude de la perturbation, dans ce cas, croit ou diminue
dans 'espace alors que sa fréquence reste inchangée. Lutilisation de ce type d’approche per-
met d’étudier les instabilités convectives ou absolues. Dans 'approche temporelle, a et f sont
des nombres d’onde réels et la fréquence est complexe w = w, + iw;, ®, est la pulsation de la
perturbation et w; est son taux de croissance. Les vitesses de phase dans les directions longi-

wr

. s . Wy
tudinales et transversales sont définies respectivement par ¢y = — et ¢, = —.
a

p

Théoréeme 1.2.1. A tout mode ((a, B),w) instable de taux de croissance temporel w; pour un
nombre de Reynolds R, peut étre associé a un mode bidimensionnel (@, ®) de taux de croissance
temporel ®; = w;&/ a superieur aw;, donc plus instable, pour le nombre de Reynolds R = Ra/ &

inferieur a R.

Le théoreme de Squire [33] permet de réduire le probleme tridimensionnel a un probleme
bidimensionnel équivalent, comme cela a été vérifié dans le cas newtonien. Ici, nous allons
vérifier que ce théoreme reste vrai dans le cas des fluides en loi de puissance [34].

La transformation de Squire consiste a introduire le changement de variables suivant :
=2 _ 2 02 e~ ~_ ~
a-=a“+p°, aR=aR, au=au+pPur, V=11, p=p1,
@ld=wla, Wia=W/a, Bla=Bla

En utilisant la transformation précédente, le systeme a quatre équations (1.28)-(1.31) se

ramene alors en un systeme a trois équations

iau+7v =0 (1.38)
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iRU(AU - @)+ RoU +iap=UN""nd" - & u+(n-1)ia v+ (U Y (@ +iav) (1.39)
iRV@U-@)+p = U 10" -@0+(n-Did @ +iavl+2(U)"H'v (1.40)
Le systeme (1.38)-(1.40) correspond a une perturbation bidimensionnelle avec un nombre de

Reynolds R = gR plus petit que le nombre de Reynolds tridimensionnel du systeme (1.28)-
a

a
(1.31) puisque — < 1. Par conséquent, le théoreme de Squire est vérifié.
a

1.2.2 Equations types d’Orr-Sommerfeld

On considere maintenant que I’écoulement perturbé est bidimensionnel dont la pertur-
bation évolue selon la direction longitudinale. On pose alors, ¢ = ¢, est la vitesse de phase.

On définit la fonction de courant ® de la perturbation, par :
D(x,y, 1) = D(y)e' "+ c.c. (1.41)

vérifiant

u==ao, v=-iad.

Ainsi, I’équation de conservation de la masse (1.38) est automatiquement vérifiée.
En substituant (1.41) dans (1.39) et(1.40), les équations linéaires de type Orr-Sommerfeld,

pour les fluides en loi de puissance, s’écrivent :

l
n

T ia{[R(Up - c)—4ia(U,)" '@’ - RU,® + p*} (1.42)

p* iat,—Ra®>Up—c)® (1.43)

oz, = n(U)" (@ +a’®) et p* = P+2ia(U)"'D',

Les conditions aux limites sont :

®0)=d'(0) = 0, (1.44)
Ta(c=Up) + (U ®ly=1 = 0, (1.45)
Up—0)p* +(@*W +Geot f)®|,=; = 0. (1.46)
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Lutilisation du changement de variable 7, dans les équations, nous a permis d’éliminer les
singularités a I'interface y = 1.

On a utilisé la condition cinématique pour déterminer la valeur de h,, tel que

() d(1 ;
hl :%( (1) ela(x—ct)) —R ;n)+1 eza(x—ct) .
¢=Up =S

En éliminant la pression dans le systéme precédant, on obtient’équation type Orr-Sommerfeld

dansle cas:
a n>1:
Th+a*T, —4a?((U)" @) = ia R{(Up - 0)(@" - a*®) - U @} (1.47)
®0)=d'(0) = 0, (1.48)
T T+l
2n+1 » a’W + Gceot B
aR|c-——|or)-it,(1) - a————P(1) = 0. (1.50)
n+1
b) n=1:
T + a1, —4a*®" = ia R{(Up - 0)(@" — a*®) — U, ®} (1.51)
ou1, ="+ 0.
d0)=d'(0) = o0, (1.52)
1) - ®(1) = 0, 1.53
() = — () (1.53)
. a’W +3cotf
aR(c—S/Z)CI)/(l)—zrl(l):aWCD(l) = 0. (1.54)

avec

=2 o)
c—3/2
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Le systeme d’équations avec les conditions aux limites représente un probleme aux va-
leurs propres avec ¢ comme valeur propre correspondante. L'intégration analytique de ce sys-
teme d’équations est impossible dans le cas général. Elle peut étre effectuée dans des situa-
tions asymptotiques pour les cas des courtes (a >> 1) et grandes (a << 1) longueurs d’ondes.

Par conséquent, nous procédons par la méthode asymptotique, en cherchant une solution
type grande longueur d’onde. Pour la résolution numérique, nous adoptons la méthode de

Ricatti[35].

1.2.3 Résolution Asymptotique (Onde Longue)

La difficulté consiste a déterminer les valeurs propres ¢ (ou w) ainsi que les fonctions
propres ® et ses dérivées associées au probléme aux valeurs propres qui est définie par le sys-
teme de type Orr-Sommerfeld et les conditions aux limites lorsque a appartient au voisinage

de zéro. La solution est ainsi exprimée en séries de puissances de «[30] :

T, = Tn0+iarn1—azrn2+ ..... (1.55)
® = Op+iad —a’Dy+..... (1.56)
c = co+iacl—a202+ ..... (1.57)

En substituant (1.55)-(1.57) dans (1.47)-(1.50) et en collectant ordre par ordre, on obtient :

Alordre o :
0<y<l:Thy = 0 etTyu=nU,)" ' (1.58)
y=0:dy = 0;=0 (1.59)
y=1l:7,1 = 0 (1.60)
2n+1 Dy (1)
c = +G (1.61)
n+1 Tno(1)
On pose z =1 -y, la solution est
n n1+1/mn 1

@) =

Y'éen+\n+1 n+1)’
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A; est une constante multiplicative arbitraire.

La contrainte tangentielle a la surface libre (1.61) détermine la vitesse de phase

2n+1
Co =

n

et fait apparaitre le caractere interfacial des ondes. Comme ¢ est réel positif alors les ondes se
propagent dans le sens des x croissants et a une méme célérité sans dispersion avec un taux
de croissance nul. Donc, I'axe a = 0 fait partie de la courbe de stabilité marginale et corres-
pond a un saut hydraulique. Ceci est lié au fait que cet ordre d’approximation est sans inertie
et correspond a un équilibre de forces gravité-visqueuse dont le champ des vitesses répond
instantanément a toute perturbation interfacial sinusoidale.

La figure 1.4 montre la variation de la vitesse de phase ¢y par rapport a I'indice du comporte-
ment non newtonien pour le cas limite des grandes ondes. Cette vitesse des ondes diminue
quand 'indice n augmente et prend la valeur 2 comme cas limite. Quand 7 tend vers zéro la

vitesse de phase croit vers I'infini.

Alordre a' :
0<y<l:Th = R{(Up-co)®@y—U Do} ety =nUy)" ‘o (1.62)
y=0:d = ®|=0 (1.63)
Lo 2n+1)? (1.64)
=1:7 - .
Y nl n2(n+1)
entl GO (1.65)
g = ———Tp1— .
1 nn+1) nl 1

La fonction propre @, est considérée comme correction de @, ce qui nous a permis d’annuler

une constante d’intégration, donc on obtient :

B 22n+12R

n n3n+2)G (1.66)

C =

Cette équation montre que, pour a tres proche de zéro, la partie imaginaire de la célérité
change de signe par rapport au nombre de Reynolds R, supérieur ou inférieur a R.[23], au-

dessus duquel des perturbations ne sont pas atténuées :

_n*(Bn+2)G

Re==— PPV ot(f) (1.67)
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FIGURE 1.4 —variation de la vitesse de phase ¢y par rapport a I'indexe n
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On remarque que le film peut étre instable pour de faibles nombres de Reynolds, par exemple
sur un plan vertical (8 =n/2) R, =0.

Alordre a? et a2, on aura :

0<y<1:Tl,—Tn+4[U)"'0) = Rilco—Up®] +c,®)+Ud}  (1.68)

Tz = n(UY)"" (@ - D) (1.69)
y=0: 0, = ®,=0 (1.70)
1R o 0] = L BiGe, - o (1.71)
y=1: Tn2 nm+1) AT T oI A ’
2n+1
Cr = —G(Dg—ClTnl——Tng (1.72)
nn+1)

0<y<l:Ths—Tpm +4((U)" @1 = R{(Up - co) (@) + Dg) — 1@} — c2®ff — U D} (1.73)

T3 =n(Up" (@5 —®1)  (1.74)

y=0: D3=05=0 (1.75)
y=1
dar[ P oo v = PP D opg {W nn+l) . 6B
n3 nn+1) 2 FrorHEL T 2n+1 z on+1 *°
nen+ 1) CZGB}CD LAt D  oBo ]
2n+1)2 1 0" on+y 7T
(1.76)
63:—G(D?,—Cg‘[nl—ClTn2+Tn3(Ub—CO) (1.77)

Les résultats de chaque intégration nous informent, au seuil de la criticalité, sur les méca-

nismes physiques au début de l'instabilité. A I'ordre trois, la célérité c est donnée par :

c=co+iaci—a’c—iatc;+0(ad) (1.78)

avec

2n+1
o= (1.79)
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B 22n+12R
cj=———— (1.80)
n ndBn+2)G

(11213 +260n%+199n+50)2n+1)3R?> (n+1)?B?
nGn+4)@An+3)Bn+2)(n+1)3G2 n22n+1)

(1.81)
2n+1)26n°+8n*-57n>-68n>-32n—-6)RB
Gnt@n+3)3Bn+2) (n+1)>?
n+1 2n+1 4n®-16n-3
c3=dyR*+d, BR*>+d, R>+d;RB*+ 2_{ ) ( ) (1.82)

n2n+1) Gn+Dn = 3n@Bn+1)(=1+2n)
avec

dy = (460800 + 314549120n* + 364307201 + 670864732n° + 6402926941 +3010132407n° +
48442479318 +15302136871'° + 1308806407 + 60825607 + 535513848n° + 58936656711 +
14678992n'% +17109121n'3)2n +1)/(80n’ 3n +2)*(5n +4) (6n +5)(4n +3)(n+1)°
Bn+4)2+n)2n+3)G°)

dy = —-2n+1)3(124032n" +829660n'° + 27323401° + 6803361 1 + 147994671 +
25872826n° + 32838604 1° + 2883760071* + 170090407 + 64387201 + 14169607 + 138240) /
60G°n’Bn+226Grn+4)@dn+3)(n+1)°@Bn+4) 2 +n)@2n+3)BR?

2n+1)3(2812n* + 1087613 + 1499712 + 88581 + 1904)
24n22+n)(n+1)*An+3)6Gn+4)(3n+2)G?

o =

(n-2)(16n3 +47n%+42n+12)2n+1)
6n32+n)(n+1)2Bn+2)G

ds =

La figurel.5 présente la courbe de stabilité marginale, pour différentes valeurs de n, a
'ordre trois. Les solutions sont obtenues en annulant la partie imaginaire dans c. Cette solu-
tion asymptotique présente le méme caractere qualitatif que celui dans le cas newtonien[36].
On constate qu’en s’éloignant légerement du point critique ces derniéres, calculées jusqu’a

'ordre trois, ne traduisent pas convenablement le mécanisme d’instabilité.
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FIGURE 1.5 - Courbe de stabilité marginale donnés par le développement asymptotique pour
différentes valeurs de n dans le cas W = 10 et f = /2 : (b) est un agrandissement de (a)au

voisinage de zéro.
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1.2.4 Résolution numérique

Dans la section précédente, nous avons adopté une méthode asymptotique pour résoudre

le systeme de type Orr-Sommerfeld caractérisant I'instabilité qu’au voisinage du point cri-
tique. Les résultats de la section précédente sont insuffisants pour une étude de stabilité et
pour valider les modeles qu’on aura a développer au chapitre suivant. La résolution numé-
rique s'impose dans ce cas. Il est a noter que 'introduction de la variable 7, n'est pas seule-
ment une astuce numérique pour annuler la singularité liée a la divergence de la viscosité
effective a la surface libre lorsque n < 1, mais aussi a une signification physique. En effet,
T, représente I'amplitude de la perturbation des composantes du tenseur des contraintes de
cisaillement 7, = n(uy + vy), qui doit rester finie non nulle a la surface libre malgré que la
viscosité effective diverge. Le probleme posé par cette singularité a déja été remarqué, mais,
celle-ci n’a pas été correctement traitée dans [25], en exprimant les conditions au niveau de
la surface libre a une surface artificielle tres proche de la surface libre, en utilisant la méthode
de tir qui donne des résultats loin de la solution exacte.
Afin de surmonter les difficultés déja citées, nous utilisons la méthode de Riccati pour cher-
cher une solution numérique du probleme type Orr-Sommerfeld. La théorie générale de cette
méthode a été donnée initialement par Scott [37]. Davey [38] I'a appliqué a I'’équation d’Orr-
Sommerfeld, dans le cas d'une seule couche, pour le cas d'un fluide newtonien. Cette mé-
thode a été aussi utilisée pour le méme probléme par Amaouche et al.[5] dans le cas de deux
fluides superposés entre deux plaques infinies. Cette méthode permet de transformer notre
probléme aux valeurs propres en un probleme non linéaire avec condition initiale (z = 0),
dont les singularités en y = 1 seront traitées sans difficulté.

On considere le systeme d’Orr-Sommerfeld 1.42-1.46, réécrit sous la forme suivante :

d
—X=A1X+A2Y,
dy

d
— Y=B1X+B2Y
dy

(1.83)

ou X' = (@,0), Y =(1,,p"",
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0 1 1 ../ 00 {01
Al = yA2=—(U)) " ,B2=ia
2 n

-a? 0 1 0 10

et
RU! 4ia(UH" = R(U, -0

Bl=-ia b b

—iaR(Up—0) 0

Introduisant maintenant, la matrice de Riccati & a travers la transformation
X=RY. (1.84)

En dérivant I’équation (1.84) par rapport a y, et en utilisant les équations (1.83), il s’en-
suit que £ satisfait I'équation différentielle matricielle non linéaire du premier ordre, appelée

équation de Riccati, suivante :

di% =-ABIR - RB2+ A1ZR + A2 (1.85)
y

du fait que X(0) =0 et Y (0) # 0 on a alors
Z (0)=0, (1.86)

Nous résolvons le probléme aux valeurs initiales (1.85 ) et (1.86) par le schéma de Runge-
Kutta d’ordre quatre. Pour remplir les conditions aux limites en y = 1, la valeur propre c¢ doit

étre variée jusqu’a ce que

wimy'a)
det ¢c—Up(1) P I G (1.87)
a’W + Gcot 8 01 '
it A )
c—Up(1)

La courbe de stabilité marginale de la solution numérique présente la méme allure que
celle du cas newtonien. La figure 1.6 présente une comparaison entre les résultats de la réso-
lution numérique avec les résultats du développement asymptotique pour les petits nombres
d’ondes. Les nombres d’onde en fonction du nombre de Reynolds sont présentés pour deux
classes de fluides représentées par I'indice n (n = 0.8 et n = 1.47) dans le cas d'un plan vertical
B =mn/2 etun W = 10. Les résultats numériques et asymptotiques concordent au voisinage

de la criticalité. Au dela, la solution asymptotique diverge. Ces résultats mettent en évidence
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la validité de la méthode proposée, utilisée pour la résolution numérique du systeme type

Orr-Sommerfeld.

1.3 Conclusion

Dans ce chapitre, nous avons résolu asymptotiquement le probleme linéaire dans le cas
des grandes ondes ce qui nous a permis de donner explicitement le seuil d’instabilité de
I’écoulement. En plus, nous avons aussi résolu numériquement les équations de type Orr-
Sommerfeld en adoptant la méthode de Riccati. Une comparaison des résultats a été effec-
tuée. Comme il est important de signaler que notre résolution numérique nous a permis de
remédier au mauvais traitement de la singularité a la surface libre utilisé par plusieurs au-

teurs.



1.3 Conclusion 32

— — Asymptotique Orr-Sommerfeld

| — — Asymptotique Orr-Sommerfeld |

FIGURE 1.6 — Comparaison entre les résultats donnés par le développement asymptotique et

la résolution numérique du systeme type Orr-Sommerfeld pour différentes valeurs de n.



Chapitre 2

Modélisation et Technique de

Régularisation

L'analyse de stabilité menée au chapitre précédent a permis de déterminer le seuil d'in-
stabilité (apparition d’ondes) ainsi que le nombre d’onde et la vitesse de phase associés. Au-
dela du seuil, les ondes déclenchées par cette instabilité évoluent en aval en raison d’effets
non linéaires, ce qui rend ’hypothése de petites perturbations non valable. Les ondes se pro-
pagent beaucoup plus rapidement que la vitesse de phase calculée par la théorie linéaire.
Dans le cas des domaines étendus de film liquide mince, la simulation de la dynamique non-
linéaire du film est complexe et coliteuse en temps. Il est évident qu’'on voudrait chercher
des modeles a équations simples tout en gardant une bonne concordance avec les équations
exactes. Dans ce chapitre, nous utilisons la modélisation asymptotique aux grandes longueurs
d’ondes, combinée avec la technique des résidus pondérés. Cette méthode est relativement
récente et elle décrit correctement aussi bien le début de l'instabilité que relativement loin du
seuil. Cette approche a été suggérée par Ruyer-Quil et Manneville [39][3] et a été utilisée avec
succes dans le cas des écoulements étendus de fluides newtoniens. Il s’agit alors de généra-
liser cette théorie au cas des fluides non newtoniens tout en introduisant des simplifications
dans|’établissement des modeles. En premier, nous établirons des modeles complets d’ordre

un et deux dans le cas 2D et 3D, ensuite, des modeles simplifiés sont proposés .
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2.1 Equation de couche limite

Pour de faibles nombres de Reynolds a modérés, I'étude linéaire montre que l'instabilité
de I'écoulement de Nusselt est entrainée par une distorsion interfaciale avec des longueurs
d’ondes beaucoup plus grandes que I'épaisseur du film, sauf dans le cas des plans légerement
inclinés (B < 1°)[40], ou bien pour des fluides avec une faible tension superficielle[40]. Nous
ne tiendrons pas compte de ces situations extrémes pour lesquelles I'instabilité devient une
instabilité des ondes courtes.

On considere que I'’écoulement est soumis a une perturbation de grande longueur d’onde A
dans la direction longitudinale. Dans ce cas, on pose € = hy/A (€ << 1).
Ainsi,on a:

0y~ etdy~0,~0;~¢€

Systeme a 'ordre deux:

Le systeme d’équations (1.13)-(1.16) s’écrit a 'ordre * :

Ux+vy+ew; =0 (2.1)

Re[us+ utx+vuy+ewuz |+ Pr=G+(n uy)y+2€2{[17 Ul + M Uxly + [Nuzlz} (2.2)
Py =-eGB+e*{lnuyl.+2Mv,ly}, 2.3)

Re* [w; + uwy + vwy | + P, =elwyly + € {nuzly + v,ly} (2.4)

Léquation (2.2) tient compte des effets provenant des termes de dissipation visqueuse
du second ordre ~ uyy. Ces termes jouent un role important dans I'apparition des ondes de
dispersion observées dans I'expérience. Dans 'équation de conservation de la quantité de
mouvement dans la direction normale a l'interface (2.3), les termes inertiels sont négligés

puisqu’ils sont d’ordres supérieurs.
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Les conditions aux limites correspondantes sont

Eny=0:
u=v=w=0 (2.5)
Eny=h(x,z,1)
v=h;+uhy+why, (2.6)
P==-2nvy—eW(hyx+ hzy), 2.7
nuy =N @uch,— vy) 2.8)
nwy=en(uzhy —2vyh; —v;) (2.9)

Introduction des débits locaux :
Afin de réécrire la condition cinématique en fonction du débit de I’écoulement, on définit les

débits locaux dans la direction de I’écoulement et la direction transversale respectivement
h

h
q:f udy, etﬁ':fwdy
0

0
En intégrant I’équation de continuité (2.1) par rapport a y sur l'intervalle [0, /], on aura
h h

h
f(ux+ vyt wy)dy = fuxdy+ v(h)—v(0)+fwzdy
0 0 0

h h
d d
= E(fudy)—u(h)h)ﬁ v(h)—v(0)+E(f wdy)—w(h)hZ—O

0 0

En utilisant la condition cinématique a la surface libre (2.6) et la condition a la paroi (2.5),

I’équation de continuité peut étre écrite sous une forme intégrale suivante
hi+qy+€G,=0 (2.10)

Elimination de la pression :
Lintégration de I'équation de la quantité de mouvement (2.3) le long de la direction normale
(entre y et h) donne, en vertu de la condition normale a l'interface (2.7), 'expression de la

pression

y
px,y,8) = —€W(hyx+ hzz) +2n(ux+ w;) +eGeotf(h—y) +€2fh (Muy)xdy.
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En remplacant cette expression dans les équations (2.2) et (2.4), on aboutit a I'élimination
de la pression du probléme initial :
Re(us+ uuy + vy + wiz) = G+e(W (hyxx + hzzx) — Geot fhy) + (nuy),

y
+€? (477xux +1yVx +3NuUxx+ Muz)z+he(n uy)x|y:h _fh (n uy)xxdy) . (2.11)

Re?(w; + uw,y + vwyl =€ W(hyxz + hzzz) —€Geotfh, +e(nwy)y,
y
+e? (217 Usz + 20 Uy + M5 Uz + 1)y Uz + R Uy) el y=p —];l @) uy)xzdy) , (2.12)

Finalement, la dynamique du film dans le cas tridimensionnel est régie par (2.1), (2.11) et
(2.12) sous les conditions aux limites (2.5), (2.8), (2.9) et (2.10). Ce systeme est cohérent a
I'ordre €.

Lexpression de la viscosité est donnée a I’ordre deux par

n= {(uy +€e?vy)? +62(4u§ +2w§ + uﬁ + wjz,)}(n_l)/z. (2.13)
Et si on développe a l'ordre @ (¢?), (2.13) devient
n= Iuyln_1 +e*(n-— 1)|uy|"_3(vxuy + 2u)2C + (ug + sz,)/Z) si0< y<h(x,0) (2.14a)
et
Mly=n=e"" (218 + @2+ wi)/z)(”_m2 si y=h(x, 1. (2.14b)

Systeme bidimensionel :
Dans le cas bidimensionnel, en projetant les équations sur le plan (x, y), fait que la dynamique
du film a I'ordre €? est régie par

Ux+vy=0 (2.15)

Re(us+ uuy +vuy) = G+e(Whyxy — Geotfhy) + (nuy)y
y
+€2(477xux +NyUx+ 3nuxy+hx(n uy)x|y=h - fh ] uy)xde/)- (2.16)
avec les conditions aux limites

Eny=0:
u=v=0 2.17)
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Eny=h(x,1)

nuy:ezn(4uxhx— Uy) (2.18)
qx+hy=0. (2.19)

Léquation (2.16) est appelée équation de couche limite [6][41] qui est cohérente a |’ordre

€®. Cette équation a I'ordre e devient

Re(u; + uuy + viuy) = G+e(Whyyx — Geotf hy) + (nuy)y. (2.20)

Dans le cas bidimensionnel, I'expression sans dimension de la viscosité s’écrit

27 (n=1)/2

n={(uy+€*vy)* +4e* vl (2.21)
Ou encore
n=luyl" ' +e*(n-Dluy" > (vyuy, +2u2) si 0< y<hix1) (2.22a)
et
Ny=h = e 2lu )™t sio y=hix, D). (2.22b)

On note finalement, que la dynamique du film est régie par (2.1), (2.19) et (2.16) avec les
conditions aux limites (2.5) et (2.7).
Analyse des parameétres :

Rappelant que le parametre W est une autre formulation assez courante du nombre de Weber.
Il joue un role important dans le méchanisme qui produit des ondes plus courtes observables
dans les écoulements de films minces qui sont des ondes de type capillaire-gravité. En effet, le
rapport W/Gcot 8, comme le montre I’équation (2.16), caractérise 1'équilibre entre les effets
du gradient de pression généré par la tension de superficielle et les effets de gravité, ce qui
nécessite W/Gcotf doit étre d’ordre de I'unité ou plus. Ce mécanisme qui empéche I'onde
de rupture est rendu possible car We est généralement élevé. Des situations réelles peuvent
donc exister pour que I'expansion de grande longueur d’onde sur laquelle repose le modele

actuel s’applique.
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Pour caractériser ces cas réels, il est intéressant d’abord d’exprimer le nombre de Reynolds R

en fonction de €, W, § et les propriétés physiques du fluide, on obtient :

n+2 3n-2

R=(e’Kal/W) > (G/sing) 2", (2.23)

2-3n

Ka= (U/p)(p/K)ﬁgm

est le nombre de Kapitza.

En variant € au dessous d’une certaine borne supérieure, par exemple 0.1, 'expression ci-
dessus permet de déterminer une bande de variation de R, pour un fluide donné et des va-
leurs fixés de W et . En d’autres termes, les valeurs constantes de W peuvent étre obtenues
pour un fluide donné et § fixé, en changeant a la fois R (c’est-a-dire hy) ete.

les figures 2.1 montrent, pour = /2 et quelques valeurs représentatives de W, la gamme
de R ot le modele peut étre appliqué. Pour cela, nous avons choisi les caractéristiques phy-
siques données dans le tableau 1 du chapitrel. Les figures illustrent bien I'existence de cas
réels d’écoulements pour lesquels les hypotheses de base, modélisation aux grandes ondes,

peuvent étre posées.
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FIGURE 2.1 - le carré de € en fonction du nombre de Reynolds R dans des situations réelles

pour certaines valeurs représentatives de W et pour différentes n.
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2.2 Les équations non-linéaires d’évolution

Dans cette section, on utilise la méthode des résidus pondérés combinée avec I’approche

asymptotique de Benney. Ainsi le champ de vitesse peut s’écrire sous la forme suivante
i=M
u(x,y,2,t) = uy +€uy +... +eMu}kV[ +oeM) = Z e'u + oe™) (2.24)
i=0
ol u; estla solution de notre probleme au i eme ordre.
Comme dans le cas newtonien [18][3], il a été vérifié que la solution de notre probleme au

i®™€ ordre s'écrit sous la forme[42][27]
M;
Ui (x,3,2,6) = ) am(x,2,t) fu(2) (2.25)
m=0

avec {f,,, m = 0..M;} est la famille génératrice du i®™ espace de solution ott M; entier fini
(c’est-a-dire, 'espace de solution a tout ordre est de dimension fini suivant la direction nor-
male y), Z =1-y/h(x, z, t) est une coordonnée réduite de la variable normale y et a,,(x, z, t)

sont des amplitudes a déterminer.

2.2.1 Modéeles bidimensionnels
2.2.1.1 Modele complet d’ordre un
Jusqu'al’ordre o(e), 'expression de u est donnée par
u(x,y,t) = ug +euy +o(e) (2.26)

ol u; estla correction au premier ordre du terme principal u; (d’ordre zéro).
Afin de construire le modele aux résidus pondérés a I’ordre un, premiérement on cherche la
base de I'’espace des solutions d’ordre zéro. En effet, I'introduction de I’expression (2.26) dans

le systeme (2.15) et (2.16), et en collectant ordre par ordre, I’ordre zéro est donné par

(nugy)y+G =0 (2.27)

ug (0)

Il
o

(2.28)

ug,(h) = 0 (2.29)
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Lintégration de I'’équation (2.45), permet de retrouver la famille génératrice {1, Z 1 nz 1+1/n }
de I'epace de solution d’ordre zéro. En utilisant les conditions aux limites (2.46) et (2.47) la
base de 'espace des solutions est réduite 2 une seule fonction fy(z) = 1 — Z'*'/". Par suite, le
profil de vitesse est donné par

u=ax,tfo(2)+eu; (2.30)

Du moment que le débit local g apparait dans I’équation (2.19) comme variable principale
de la méme facon que I'épaisseur du film, on peut prendre, alors, le couple (h, g) comme
inconnue de notre modele. Donc, on transforme le coefficient a en fonction de g et on réécrit

I’équation (2.30) comme suit :

U=uy+eu; (2.31)
ou
2n+lgq
Up = —foZ
7 h+1 th( )
et
2 1 ’
Uy =1u, — n+1fu1dY fo(2).
0
Notons que ug et u; sont tels que
h h
fuody:qet fuldy:O (2.32)
0 0

En multipliant I’équation de couche limite (2.16) par une fonction poids, notée F, et en

intégrant entre 0 et &, on obtient

h
fF(y) {(17 uy)g,l) +G+eWhyyy— Re(us + uuy + vuy)(o) —eGceotf hx} dy=0 (2.33)
0

Les indices supérieurs © etV

indiquent I’ordre de I'approximation de u dans I'expression
correspondante.

On remarque que le terme visqueux est le seul ou la correction doit étre tenue en compte.
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Pour pouvoir simplifier la correction d’ordre un dans (2.33), deux intégrations par parties sont
nécessaires. Ce qui donne

h

fF(y)(nuy)(yU:[ FI§ = [(ug + neuy) uf,  Fylg + f(u0+neu1)(ugy1Fy)ydy (2.34)
0

Ceci est obtenu en utilisant I'équation (2.22a) et le développement u =u] (uoy + neuyy).
A présent, on peut montrer que la correction u; peut étre éliminée du calcul par un simple

choix d'une fonction adéquate F, telle que
Fly=0=0  ug,'Fyly==0  (ug,'F))y=—c(x,1) (2.35)

ol c(x, t) est une fonction indépendante de y qui sera précisée ultérieurement.
Avec les relations (2.32), le membre de droite de I’équation (2.34) se réduit a —¢gc. De la se-

conde et de la troisieme condition dans (2.35), on obtient, d’apres I'expression de u

n+1 Gl-1n g"!

- o Fy = oy (2.36)

n+1 q
Gl 1/n

n “h2n

Ainsi, '’équation (2.33), avec (2.34), prend la forme finale

Cette équation est satisfaite avec ¢ = et par conséquent F = f.

n

%—h{1+e( Ryxx — cOt Bhy))
Re2n+1 11n+6 qqx 2n+1q

+26— + -3 = 2.37
“Gans2 U anes h Sanss ™" (237)

Ajoutée al’équation (2.19), 'équation (2.37) complete notre modele au premier ordre pour
les deux inconnues /& et g. On constate que dans le cas n = 1, pour un fluide newtonien, on
retombe sur le modele obtenu par Ruyer-Quil et Manneville [3, 19].

A présent, on valide notre modele au voisinage de la criticalité par I'équation type Ben-
ney, qui est exacte au point critique. En injectant I'expression q = g + €q; dans I’équation du

modele (2.37), on obtient

q() — h2+1/l’l (2.38)
h2+l/n ReGZ/n—l w
q = " {2 3Bn+2) h1+2/n_00tﬁ)hx+ Ehxxx} (2.39)
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Une fois remplacée dans I'’équation cinématique (2.19) on obtient I’équation de type Benney,

la méme que celle établie par Miladinova et al. [24] :
2R

On remarque que si on remplace n = 1 on retrouve "’équation de Benney dans le cas d'un

W
By + (27 4 %[(Ehm — cot Bh)REm 4

fluide Newtonien [14]. Dans ce cas (2.40) devient
w 6R
ht+{h3+e[(?hxxx—cot,6hx)h3+?ehf’hx]}x:0 2.41)

Finalement, on voit bien que notre modele est un modeéle type Benney au voisinage de la cri-

ticalité.

Par ailleurs, loin du seuil d’instabilité, notre modele garde les avantages de la méthode
intégrale de Shkadov. En effet, Shkadov a utilisé, dans le cas Newtonien, la méthode intégrale
de couche limite [18, 2] en intégrant directement I’équation (2.16) suivant I'épaisseur du film
sans tenir compte de la correction d’ordre un du profil de vitesse u. Ceci correspond dans
notre cas a considérer la fonction poids égale a la fonction constante 1. Par conséquent, on
retombe sur le modele type Shkadov dans le cas non-newtonien[25] donné ci-dessous, asso-
ciée al’équation(2.19) :

q" 2n+1 49 _ 9
h?n 3n+2  h h?

Pour le cas newtonien, il suffit de remplacer n = 1 et on obtient le modele de Shkadov

w R
= {1+ (-2 e = cot fhy)) +eg{qt +2 h)l =0 (2.42)

he = —qx (2.43)

2
5
X

Il reste toujours a signaler que le modele Shkadov ne solutionne pas correctement le point
critique dans le cas non vertical. En effet, on ne retrouve pas I’équation de Benney (2.40) avec

ce dernier modele.

On note toute fois que le modele proposé présente des insuffisances, notamment 1'ab-
sence des termes de dispersion responsables de I'apparition d’ondes solitaires observable

dans I'’expérimentale [20]. Pour cela une théorie a I'ordre deux est nécessaire.
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2.2.1.2 Modéele complet d’ordre deux

On procede de la méme maniere que le paragraphe précédent en tenant compte de I’ordre
deux.
Ona:

u(x,y, 1) = uy +euy +€2u§k +0(%)

uy étant déterminé précédemment, on s'intéresse au calcul de u; dont le systeme est donné

par
n uiky)y = R(ugt + ug)k ugx + v(>)k ugy) +Whyyx— GCOt,B hy (2.45)
up© = 0 (2.46)
ufy(h) =0 (2.47)

On verifie facilement que I'espace de solutions est engendré par ’ensemble des fonctions
tests suivantes :

fl*(Z) -1 _Zl+2/n, fz*(Z) -1 _Zz+2/n, f; (Z)=1 _Zz+3/n et f4*(Z) -1 —Z3+3/n.

D’ot, 'expression

4
ui =) ai(x,0)ff (2) (2.48)
i=1

En remplacant cette expression dans (2.16) et en identifiant les termes d’ordre un, on obtient
a)y =das = 0

Ce qui signifie que deux champs sont requis pour représenter la correction u;, c’est-a-dire,

deux champs formant une base de I'’espace de solutions du premier ordre, soit
uy = ax(x, 1) f, (Z) + as(x, 1) f (Z) (2.49)

De la méme maniére, on peut montrer en utilisant le développement de Taylor, jusqu’a
'ordre €2, pour le terme visqueux dans (2.16) et en tenant compte de la condition de non
glissement, que la correction u, appartient a un sous-espace de fonctions, engendré par la

famille de fonctions tests suivantes :

{fS*,fG*,f7*,f8*,f9*} — {1_Z1/n,1_ZS+4/n,1_Z4+4/n’1 _Z4+5/I’l’1_Z5+5/l’l}.
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Ces projections ne sont pas calculées arbitrairement, mais plutot résultent des profils de vi-
tesse de base et de la premiere correction. Donc, la description cohérente de la dynamique du
film au second ordre exigerait, en plus des variables fondamentales 4 et g, tout au plus, sept
autres inconnues dont deux amplitudes pour la correction du premiere ordre et cinq ampli-
tudes pour le second ordre. On note que les amplitudes du second ordre ne sont pas toutes
indépendantes. Ainsi, la correction d’ordre deux sera éliminée en choisissant des fonctions
poids appropriées.

Par conséquent, le champ de vitesse peut s’écrire de cette facon :
u=apfo+elafy +asfy) +e*u; (2.50)

Cette expression de u peut étre reformulée, en utilisant le débit au lieu du coefficient ay,
comme suit

u:uo+€u1+62ug+€2u§k (2.51)

avec

_2n+lgq

h h
4 =R  up =l - : , 2.52
Tl W (afi+Dbf2), wr=u; (.[0 uzdy/f0 fody)fo (2.52)

Ug

Ou a et b sont utilisés par convention a la place de a, et a4 respectivement, fj et f, sont deux
combinaisons linéaires des fonctions tests données précédemment, elle seront définies dans
la suite pour simplifier I'’étude. On admet que

h

h
fuldy:fugdyzo.
0

0
Par conséquent, a condition que u, soit éliminé, la formulation du modéle complet au se-
cond ordre exigerait quatre inconnues £, ¢, a et b. On aura besoin alors, en plus de I’équation
cinématique (2.19), de trois équations aux résidus. Celles-ci sont obtenues en annulant les
intégrales des résidus sur |’épaisseur du film :

h
fgb,-(y){(n uy)(yz) +G+ Whiyxy — Re(u; + uuy + vuy)V —e Geot Sy +
0

(D1 +(1-6,1)Do)}dy=0 i=0,1,2, (2.53)
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(0)

y
Dy = 4ux77x+77yvx+77(uxx_uxx|y:h)_f(nuy)xxdy
h

et
- 0,
Dl— [n(zuxx+(ux|y:h)x)] ’

Les indices supérieurs ),V et®

indiquent 'ordre de 'approximation de u dans I'expression
correspondante, 6,1 est le symbole de Kronecker et ¢, ¢, et ¢, sont des fonctions poids
linéairement indépendantes, sont choisies de telle maniere a éliminer u, dans les résultats
d’intégration.

1 est important de noter que le terme facteur de e dans (2.53) est écrit comme la somme de
deux parties D, et Dy ; la premiere correspond a la partie newtonienne des termes de diffu-

sion selon la direction de I’écoulement et la seconde représente sa partie non-newtonienne.

On remarque que si n = 1 on aura Dy = 0. Par contre, le calcul de son intégrale est non nulle,

h
f Dy fody #0.
Ea décomposition ci-dessus est donc effectuée pour souligner I'inconvénient généré par la
non-convergence uniforme de la suite a indice réel. En effet, le théoreme d’intégration au
sens de Lebesgue, dans le cas des suites d’indice réel, ne peut pas s’appliquer, en d’autres
termes la limite et 'intégrale ne commutent pas (}Zlinl f ()dy # f Il’li—r}}(.)d y). Ceci explique la

présence du facteur (1 -6 ,) de Dy.

En intégrant ce terme par parties, on obtient
h _h h
fo (Muy)ypi(y)dy =1In uy(/),-]§:0 - fo nuypiydy. (2.54)
En utilisant (2.22a), le second terme dans le c6té droit de (2.54) devient

h h h
fonuyq),-ydy:fo Iuyln_luy(,b,-ydy+(n—l)€2fo oyl > (oxUoy +2u5 ) UoyPiydy, (2.55)

N

ou

1
-1 -1 2 2 -3 2
[ty "™y = gyl (toy + ne Uy + ne ugy)+5n(n—1)€ lugy!" Uoy U7 (2.56)
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Maintenant, revenant a (2.54), et en concordance avec (2.55) et (2.56), on obtient aprés inté-

gration par parties le terme qui contient uz)

h
=h _ =h
fo (1) ypi(Ndy = [nuypi]) =g = [(to + ne ur + ne® uz) oy "~ piy |39
h
+f (up + ne uy + ne®up) (uoy " iy)ydy
0
2 (" n-3 2 oo

Le premier terme et le second terme du membre de droite de (2.57) peuvent s’écrire indé-

pendamment de u,, en imposant simplement

Pily=0=0, (uoy" " Piy)ly=p =0, (2.58)

Enraison de la condition d’adhérence ala paroi y = 0, de la condition d’équilibre des contraintes
tangentielles (2.18) et de I'expression (2.22b) du développement de la viscosité a l'interface,
on peut écrire

nuyPily=n = € 2lugx) " uoxhy — vox) il y=p- (2.59)

Ainsi, les deux premier termes se réduisent a |’expression (2.59).

La premiere intégrale du second membre de (2.57) est maintenant 'unique terme qui reste a
examiner. De méme, la correction u, peut étre éliminée en utilisant le méme argument que
dans la formulation du premier ordre en posant ¢y = fy ou bien en imposant I'orthogonalité

de uy par rapport a (| u0y|”‘1¢,-y)y, i = 1,2, au sens de la norme L?(0, h).
Construction des fonctions tests :
Une simplification intéressante peut étre obtenue par une construction appropriée des

fonctions tests f; et f>, comme il a été mentionné précédemment.

En effet, la fonction test f; est déterminée comme combinaison de fj et f," :

f1:f2*+clfo
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tout en vérifiant la condition de nullité au sens de la moyenne

h
| ray=o
0
Ce qui conduit a
2n+1
=ff-2—f. 2.60
h=f 3n+2f0 (2.60)

De méme, la fonction test f, est déterminée comme combinaison linéaire de fp, f;" et f;" :

ou c2 et ¢3 sont deux constantes arbitraires.
h

En supposant que f> est nulle au sens de la moyenne, f fody =0,

0
h

et en imposant I'orthogonalité de f, par rapport a fy, f fofody =0,
0

on obtient

. .3n+2 ., _(B3n+2)@2n+1)
L=fi-3—7f+

5n+47%2 P Gn+a@n+3)""

(2.61)

Cette procédure doit étre poursuivie pour la construction des autres fonctions tests afin de les
annuler au sens de la moyenne et en imposant la condition d’orthogonalité suivante :

h

ffkfjdy=0, sij#k-letj#k+1
y 0

h
ffkfjdy;éo, sinon
0

pour un k =1 donné.

Contrairement a ce qui a été adopté dans les travaux précédents[3][4], dans cette présente
étude, il apparait que I'orthogonalisation compléete n’est pas nécessaire pour éliminer la cor-
rection de second ordre de la vitesse de I’écoulement. Ceci peut étre réalisé avec une ortho-
gonalisation partielle réduisant significativement les calculs. Cela s’explique par le fait que la
cohérence jusqu’a 'ordre deux n’est pas liée a une certaine forme particuliere de la base de

projection. Formellement, elle doit seulement étre développée, étape par étape, a partir du
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profil de vitesse de base et vérifiée les conditions aux limites.
Choix des fonctions poids:

L'élimination de la correction d’ordre deux de la vitesse et, par conséquent, la réduction
de la dimensionnalité du probleme est garantie par un choix convenable de fonctions poids.
Rappelons le choix déja adopté de la fonction poids ¢ = fp. Par ailleurs, la fonction poids ¢,

est obtenue en résolvant I’équation

((toy)" " p1y)y = fo + co,

afin de satisfaire la condition a la limite (2.58). La constante ¢y est déterminée de tel sorte a
satisfaire I'orthogonalité entre ¢ et fp.

D’ou
nn+1)

¢r=ht G ant 3’ (2.62)

De la méme maniére la fonction poids ¢, est obtenue en résolvant I'équation

(toy)" ' pay)y = i+ cifo+ca

Les constantes c; et ¢, sont déduites en imposant I'’orthogonalité de ¢, par rapport a fy et fi.

On deduit
2n+1(n+1)

6n+506Bn+4) " "

Po=fo+2 (2.63)

Finalement, avec la procédure de simplification précédente, I’équation 2.53 donne lieu au

systeme d’équations aux résidus suivant

t

o(qn aw ) =0 a B) (2.64)

ol Q, A et B sont des opérateurs différentiels non linéaires donnés dans I’annexe.

La matrice «/ est donnée par
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~ n(n+1)>? 0
Bn+2)4n+3)2n+1)
4 =R| ¢ R 3 (n+1)(2n+1)
(6n+5)(5n+4)
0 0 Rh

2.2.2 Modeéeles tridimensionnels
2.2.2.1 Modele complet d’ordre un

Les équations et les conditions aux limites au premier ordre sont données par

Ux+vy+ew, = 0 (2.65)

e{Re(u; + uuy + vuy) + Geot fhy — Whyyy) = (uJ’})y+G, (2.66)
(Mow,)y = Bhy—W(hye +hy) (2.67)

u|y:0 = V|y=0 = wly:O =0 (2.68)
Mouy)ly=n=Mowy)ly=p = 0 (2.69)

En prenant, de la méme maniere que le cas bidimensionnel,

2n+1
u= q

—f(Z
n+1 th( It
avec
h
fuldy:O
0

Alors la solution de I’équation (2.67) est

1-n

w=G""(Bhy— W(h,+hp)) (%) fol2) (2.70)

Lintégration de I’équation (2.70) par rapport a y, entre 0 et i, donne I'’expression de g :

- n+1
1= o1

th
G " "(Bhy— W(h,:2 +h,3)) (F) 2.71)
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En substituant (2.71) dans I’équation cinématique (2.10), on obtient

n+

hi+qg,+e
£ 4x 2n+

1 Ien hzn
lG (BhZ_W(hzxz + I’lz3)) F =0 (2.72)
Z

De la méme maniére que le cas 2D, ’équation aux résidus d’ordre un en 3D est donnée par

n
w
% —hil +€(E(hxxx + h,,2) —cot fhy)}
Re2n+1 11n+6qqx_32n+1q2

+26— + —
Gani2 " ez n 4n+3 h2

hy}=0 (2.73)

Finalement, le modeéle tridimensionnel d’ordre un est constitué des deux équations (2.72) et

(2.73) pour les champs £ et g.

2.2.2.2 Modele complet d’ordre deux

Rappelons les équations a I'ordre deux et les conditions aux limites correspondantes :

Ux+Vy+ew, =0 (2.74)

Re(us+ uuy + vy + wiz) = G+e(W (hyyx + hzzx) — Geot fhy) + (nuy)y,

y
+€2(4nxux+nyvx+317uxx+(nuz)z+hx(nuy)x|y=h—fh (nuy)xxdy). (2.75)

Re?(w; + uw,y + vwyl =€ W(hyxz + hzzz) —€Geotfh, +e(mwy)y,

y
+ez(znuxz+2nzux+nxuz+nyvz+hz(nuy)x|y:h—fh (nuy)xzdy), (2.76)
u|y:0 = V|y=0 = W|y:0 =0 (2.77)
N (uy— € (Auchy —v)ly=p = 0 (2.78)
en(wy —e(uzhy —2vyh = v))ly=p = 0 (2.79)

Construction des fonctions tests

Lobtention du modéle tridimensionnel d’ordre deux se fait avec le méme raisonnement que
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le cas bidimensionnel. On garde le méme choix des fonctions tests pour le profil de vitesse u,

c’est-a-dire

2n+1q(x,z,t) 2 %
= 2-
u L hx.z.0 f0+€(a(x,z, 0Hfi+bx,z, L‘)fg)+€ U, (2.80)

Avec fy, fi et [, définies dans la section précédente.

Le profil de vitesse w est de |'ordre €, et s’écrit comme
w:ew1+62wz+@’(62) (2.81)

En examinant I’équation (2.76), associée aux conditions aux limites, ordre par ordre, on

montre que le terme d’ordre un w, est engendré par la seule fonction test f, comme suit :

2n+1gq
= —foZ
Wi n+1 th( )

La correction w, est, par contre, engendrée par quatre fonctions tests fi, f,', f; et f,° véri-

h
f wody =0.
0

Ainsi, on constate que seule une variable inconnue suplémentaire est nécessaire par rap-

fiant :

port au cas bidimensionnel, il s’agit du débit transversal 4.

Choix des fonctions poids :
En plus de I'’équation cinématique, on aura besoin de quatre équations aux résidus nécessi-
tant quatre fonctions poids. Etant donné que les trois premiéres équations aux résidus sont
déduites de I’équation de u (2.75), on garde alors les méme que le cas bidimentionnel, fonc-

tions poids pour celles-ci.

Pour déterminer la quatriéeme équation aux résidus, on intégre sur I’épaisseur du film le
produit de ’équation (2.76) avec un chois de la fonction poids. Le choix de cette fonction
poids est pris égale a fj, puisque w; et w, sont traités de la méme maniere que uy et u; effec-
tuée dans le cas bidimentionnel a I’ordre un, respectivement.

En intégrant, sur I'épaisseur du film, le produit de I'équation (2.76) par la fonction poids fj et
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en suivant la méme procédure , on obtient :

h
ffO {E(R[wt +UWy + Uwy] —W(hyxz+ hzzz) + GCOtIB hz) _GZ(DI -1 _6n1)D0)} dy
0

_ Gn+1) n g
= u('?yl(uzhx—zlzyhz— Vz)ly:h+—2n+1 (%) % (2.82)
ou
~ y
Do =2nzux+nxuz+nyv;+hz(n uy)x|y:h_j;l (Muy)xdy
et
Dl = 21] Uyz
Nous obtenons finalement le modele aux résidus suivant
— Y _ t
d( de an by 4y ) :( Q3a» Asa» Bsa, Qsa ) (2.83)

ol Qs34, A3g et Bsq sont des opérateurs différentiels non linéaires donnés dans ’annexe.

Et la matrice </ est donnée par

nn+ 1)2 0 0
Bn+2)dn+3)2n+1)
n+1)(2n+1)
—~ 0 Rh -2
o =R (6n+5)(6n+4)
0 0 Rh 0
0 0 0 1
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2.3 Simplification du modele complet 2D d’ordre deux

Le modele complet bidimensionnel du second ordre, obtenu dans la section précédente,
est de grande taille et par conséquent a peu d’intérét pratique. Ainsi, un modele simplifié, qui
doit préserver les caractéristiques de la dynamique du film, lesquelles sont présentes dans le
modele en taille réelle, est a chercher.

Ce modele simplifié devrait étre asymptotique a I'équation unique de type Benney pres de la
criticalité, et devrait décrire avec précision la dynamique des écoulements a des nombres de
Reynolds les plus modérés possibles. Suite au travail de Ruyer-Quil ez al. [12], on peut montrer
que, dans le présent travail, seuls les champs g et & jouerons un role pertinent. Tandis que les
autres champs les suivront dans leurs dynamique, au moins, pour une certaine gamme de

nombres de Reynolds.

2.3.1 Modele simplifié type simplification adiabatique

Un modéle beaucoup plus simple peut étre obtenu en supposant que les champs a et b
peuvent étre au moins du second ordre. Cette hypothése conduit a I’élimination adiabatique
dans la premieére équation résiduelle, ce que nous appelons le modele simplifié (SM). Ce mo-
deéle capte d'une maniere satisfaisante tous les mecanismes physiques de I’écoulement. Dans
ce cas, il suffit d’annuler les coefficients a et b dans la premiere équation aux résidus, on ob-

tient un systeme de deux équations a deux inconnues h et g :

he = —gx (2.84)

R(q:—Qn) Qo+ Qa1+ Hp1Q; + (1= 6,11)Qan + (n—1)Qqo. (2.85)

Ceci peut étre obtenu en appliquant la procédure de Galerkin avec une seule fonction poids,

soit ¢y, et en admettant que le profil de vitesse est donné a I’ordre zéro u = uy.

2.3.2 Modele réduit

Une autre approche de réduction du modele complet peut étre obtenue en gardant les

champs a et b. Premierement, nous observons que, en raison du choix particulier des fonc-
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tions tests f et f>, les champs a et b ne figurent que dans la partie droite de la premiere
équation du systeme (2.64) a travers les termes de second ordre Qj, et Qg2 (voir annexe).

Le terme d’inertie Qj, et le terme de diffusion Qg , sont associés a I’advection, par I"écoule-
ment de base, de la correction du premier ordre du profil de vitesse pour le premier et au
caractere non linéaire de la loi de conportement du fluide (non newtonien) pour le deuxieme.
Par conséquent, on peut éliminer a et b de la premiere équation du (2.64), car ils sont déja
connus jusqu’au premier ordre.

En effet, en annulant les coefficients du terme d’ordre un de I’équation de la couche limite

(2.16) on obtient

_2n+1 h_z)n_l( L2t (34, )) (2.86)
T 26m+1z\ g GO a T\ ")) '
@2n+1)° R2\" (g2
_ n ., _ _ 2.
3G(n+1)3(3n+2)(q) {hhx 2n+1qqx} (2.87)

On note que ces expressions, fonctionnelles de h et g, ne sont pas uniques en raison de leurs
dépendance par rapport aux fonctions tests. Une autre famille de fonctions tests conduirait
a des expressions formellement différentes. Mais tout en gardant a I'esprit que I'unicité de la
premiere correction du profil de vitesse est vérifiée, quel que soit le choix des fonctions tests.
En insérant ces expressions dans le terme de diffusion Q,; et le terme d’inertie

2
+ it ) R’ha
Bn+2)4n+3)2n+1)

0J7)

ce qui permet de les transformer en fonctions de £, g et de leurs dérivées spatiales et tempo-

relles, on obtient

~ 1n@n+3)tg\l-n( ,  , 2n+1

Q=G sz ) a0t g (1706t -5)aa

_44n°-50n-39 )+ 2n+l (—6(180n3—176n2—477n—180) 2
2n+1 D9 | an+3)6n+5)6Gn+4) 49x

2 3
+4(552n° —332n* - 1150n —435)%hqu -8(22n+17)2n+1)(3n- 5)%;;)%

3
+12(70n% + 931 +30)G* grx — 12(22n+ 17) 21 + 1)%%1“)}(2.88)
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~ 1 nn-1) q l—n{ hzq? 2n+1
S 4 16hqy —12qh
Quaz G4(3n+2)(3+4n)( ) 7t anya(1Ohax-12qhdq:
42n+1)? ) P, q° )}
77+ 60 2022n+17L 12 —268n+45 L1, . (2.89
+(3+4n)(6n+5)(5n+4)(( n+60)qq; +2@2n+17)3 5 0~ 20581 +45)7 - hx | 1 - (2.89)

Avec ces approximations, on obtient ainsi une équation plus simple en / et g. Un modele

réduit (MR) qui gouverne la dynamique non linéaire de '’écoulement est contruit :

R(g:-Qn) = Qo+Qu+H,1Q +R°Qp2

+(1=8,1)Qun + (n—1)(Quo + R*Qu2) (2.90)

o1 Q2 et Qo sont exprimés ci-dessus, tandis que les expressions de Qq, Qu0, Qr1, Qa1 Q et
Qa5 sont données dans I’annexe.

Dans le cas d’'un fluide newtonien (n = 1), (2.90) prend la forme :

9¢q 17 q q w
th = (7h2h _7ﬁq) (h—ﬁ—cotﬂhhx+—hhxxx)
(41112 ~qxhx thhxx+ 5 +R2(—hqn+ U hqqxe—— qhx%+
h2 2h 210 630 105
1 6 g° 653 386 104 ¢ , 78 q°
h a4 = 227 Lo —Tp 291
Axdr =537 Ty Melx ™ 8085% 8085q Axex ¥ 5695 12"~ 2695 1 xx|(291)

Afin de comparer le modele ci-dessus simplifié avec le modele réduit donné par’équation
(5.5a) dans Ruyer-Quil et al. [21] pour un fluide newtonien, nous avons d’abord transformé

cette équation en effectuant le changement de variables suivant :
(4, h,x,1,T) = (Rq, BB b, BR)x, (R19) 1, W (R*/3)!)

et en considérant le cas Ma = 0. Nous remarquons que seuls les termes d’ordre zéro et un qui
sont concernés par ce changement de variables. La version transformée de I"équation (5.5a),

oulle terme Ine, est donné par (6.3a)[21], coincide avec le modele (2.91).
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2.3.3 Régularisation du modele réduit

Du fait que Qp» et Qg, sont facteurs du nombre de Reynolds au carré dans I’équation
du modele réduit ci-dessus, invalide clairement 'hypothese de base du role perturbatif de
I'inertie pour des nombres de Reynolds suffisamment élevés. Le développement aux grandes
ondes résultant peut étre alors d'une faible convergence ou carrémant divergent. Dans le cas
d’un fluide newtonien, Scheid et al. [43] ont utilisé 'approximation de Padé afin d’obtenir une
version affinée de leur modele réduit qui est capable de capturer I'apparition d’écoulement
inverse au niveau du front des ondes solitaires. La condition nécessaire de convergence est
naturellement d’assurer la réduction de I'ordre de grandeur des termes Q2 et Qo comparé
aux termes d’inertie du premier ordre. Une facon simple d’y parvenir est, selon Ruyer-Quil
et al. [21], est d’exprimer ces termes sous une forme aussi proche que possible de I'ordre
de grandeur du terme d’inertie du premier ordre. Pour n = 1 ceci est rendu possible grace a
I’équivalence, a I'ordre zéro, entre g et h*™1'". Pour les fluides en loi de puissance, tandis que
I'aproximation de Qg comparée au terme d’inertie de premier ordre peut étre obtenue de
la méme maniére, ceci ne peut étre pleinement atteint pour Q;» en raison de la présence du
terme proportionnel a /i, dans ce cas précis.

En effet, apres quelques étapes élémentaires, on obtient

12 —

q NP B
GrGnsHan+s) p2) |\ D q4(q: = Qnhy | +0()

- 22n+1)?%@n+2)7! ( q )1—n( 3 n(20n?+5n—16)
42n+1)

(n-1)@2n+1) tﬁ
4Gn(3n+2)(4n+3) \h?

3
En raison de la présence du terme (n—1) % hyy dans I'expression de Qjp2, celui-ci ne peut pas

~ 1-n
Qa2 = ) q(q:—Qn)hy+0(€)

étre en facteur du terme d’inertie du premier ordre gq; — Qy;. Ainsi, a I'exception des fluides
newtoniens, une régularisation complete n’est pas possible.

La substitution des expressions ci-dessus dans (2.90) conduit a un autre modele réduit dé-
nommé le modeéle partiellement régularisé (PMR). Une simplification suplémentaire consis-

tant a supprimer directement le terme indésirable (~ Hyy) qui empéche la régularisation
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complete, ce qui donne un modele réduit régularisé (RRM)

(2n+1)(35n°+11n—-28) R q\l-n ~
4n(Bn+2)(6n+4)4n+3) G (hZ) th) = Qo+ Qan
+Hp1Q + (1=6,11)Qan + (n=1)Quo (2.92)

R(g:—Qn){1-

Nous observons que ce modele coincide, en dehors de la mise a I’échelle, avec le modele
régularisé donné dans [21] lorsque n = 1. En plus, on retrouve le modele simplifié (SM) en
éliminant les termes facteur de R?.

Nous constatons que les deux équations (2.92) et (2.85) ne different 'une de I'autre que par
leurs termes d’inertie. Cependant, ces termes coincident au stade linéaire, dii au terme qua-
dratique (g; — Q1) qhy. Par conséquent, les modeles précédents reproduisent correctement
le seuil de stabilité linéaire comme dans le cas d'un fluide newtonien. On note que, le modele
complet, modele réduit et modele partiellement régularisé reproduisent correctement 1'ex-
pression asymptotique du débit en fonction de I'épaisseur du film jusqu’a @ (e?). Toutefois, le

modeéle simplifié et le modele régularisé (pour n # 1) sont mis en défauts.

2.4 Conclusion

Dans ce chapitre, on a mis en évidence des modeéles basés sur I’approche asymptotique
de Benney combinée avec la technique des résidus pondérés permetant de décrire la dyna-
mique non linéaire d’'un écoulement de film mince d'un fluide en loi de puissance sur un plan
incliné. Un modele complet a I'ordre deux, de quatre équations d’évolution dans le cas bidi-
mensionnel et de cinq équations d’évolutions dans le cas tridimensionnel, sont établis. Aussi,
des modéeles simplifiés de deux équations d’évolutions dans le cas bidimensionnel sont re-

trouvés. Ces modeles dérivés tiennent compte de la plupart des effets physiques importants.



Chapitre 3

Validation des modeles par analyse de

stabilité

Ce chapitre sera consacré a la validation des modeles élaborés au chapitre précédent. En
premier lieu, une comparaison avec les résultats de la stabilité linéaire, obtenus au premier
chapitre, sera effectuée. Par la suite, une étude non linéaire de ces modeles sera abordée afin

de rechercher’existence de solutions d’ondes stationnaires comparables aux cas newtoniens.

3.1 Stabilité linéaire

Dans cette premieére partie, deux approches, temporelle et spatio-temporelle de stabilité
linéaire, sont utilisées afin de tester les modeles proposés dans le chapitre précedent, une
comparaison au spectre linéaire de la résolution numérique du systeme d’Orr-Sommerfeld

établi initialement sera effectuée.

3.1.1 Approche temporelle

Pour évaluer la validité des modeles proposés, nous comparons les résultats de la stabi-
lité linéaire de I'’écoulement de base obtenus par ces modeéles a ceux fournis par la résolution

numérique du probleme d’Orr-Sommerfeld. On sait qu’il y a a priori, une infinité de modes
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(w, @), solutions non triviales du systeme (1.85). On s’'intéresse pour l'instant a I’étude d’in-
stabilité temporelle, qui détecte la naissance des premiers modes déstabilisant la solution de
base et donne aussi le seuil d’instabilité en fonction des parametres du probleme. 11 suffit de
supposer que

aeERetw=w,+iw; €C.

Lorsque la perturbation n’est ni amplifiée ni atténuée, nous sommes dans les conditions de

stabilité marginale qui sont atteintes pour w; = 0.

L'écoulemnt de base est donné pour les modeéles simplifiés de deux équations par h =
g = 1, tandis que pour le modéle complet de quatre équations il est donné par h = g =1 et

a=b=0.Nous présentons les perturbations sous forme des modes normaux comme
(h,q,a,b) - (1,1,0,0) = (H,Q, A, B)e'**~" 3.1)

Ou H, Q, A et B sont des amplitudes des perturbations initiales, a est le nombre d’onde,
w = ca est la fréquence, ¢ étant la célérité complexe. Sa partie réelle représente la vitesse de
phase et sa partie imaginaire représente le taux d’amplification des perturbations.
En substituant ces perturbations (3.1) dans les équations linéarisées et apres élimination des
amplitudes on aura comme conséquence la relation de dispersion pour le modele correspon-
dant, notée par

D(a,w) =0.

La relation de dispersion correspondant au modele complet d’ordre deux est excessivement
longue. A titre illustratif, on se limite ici a la présentation de celle du modele régularisé(RRM) ;

s’écrivant sous la forme

3 2 (351 =
a):——(1+—(—R—cot,6)ia)5n1a3+Zajaf+0(a4) (3.2)
4\ "3\35 ]

ou:
_@n+1)
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_(2(2n+1)2§_cotﬂ)
““\@Gn+2n3 G n
4 (n+2)@2n+1) 2n+1)(5n*+14n+6) (5n%+14n+6)2n+1)° ,
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3n@Bn+1)2n-1) Gn3(4n+3)(3n+2)
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o 25n* +172n3 +320n% + 210n + 45)2n + 1)* e

n'G3(3n+2)34n+3)2

cot B+
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. iw
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nG

Les résolutions numériques sont effectuées pour diverses inclinaisons du substrat. Les ré-
sultats ci-dessous sont présentés pour deux cas d’angles d’inclinaison représentatifs, a savoir
B=mnl/2etm/18.

Dans la figure 3.1, la vitesse de phase c;, et le facteur d’amplification « c;, sont tracés en fonc-
tion du nombre d’onde dans les mémes conditions que celles utilisées par Sisoev et al. [25],
correspondanta f=n/2, R=4,69, W =6,25n=2et R=1,93, W =2.57 pour n =0, 8.

Nous observons que les prédictions, a la fois, du modéle de second ordre complet et sa ver-
sion réduite régularisée sont en bon accord avec les résultats numériques exacts (OS) pour un
fluide dilatant (n = 2) aussi bien que pour un fluide pseudo-plastique (n = 0,8). Les courbes
en tirets dans la figure 3.1 obtenues par I'application du modele type Shkadov, dérivé par
Dandapat et al. [24], coincidant avec celles données par Sisoev et al. [25], divergent significa-
tivement de celles obtenues avec une solution numérique du probleme Orr-Sommerfeld (OS)

et avec nos modeles, en particulier loin du point critique.
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FIGURE 3.1 - Vitesse de phase (a), (c) et le taux d’amplification temporel (b), (d) en fonction
du nombre d’onde pour f = /2, et'ensemble de parameétres: (a, b) R = 4.69 et W = 6.25 pour
n=2;(c,d) R=1.93, W =2.57pour n = 0.8. (-) représente le modele complet du second ordre,
(++++++) la solution numérique du systeme type Orr-Sommerfeld, (- - - -) le modele intégrale

de Shkadov, et (-« ) le modele simplifier régularisé(confondu avec le modele complet).
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Figure 3.2 montre la variation du nombre d’onde marginal en fonction du nombre de Rey-
noldsdansle cas f = n/2 et n = 1,47, pour deux valeurs distinctes de W, (W =1et W = 10). Les
courbes séparent la zone instable U de la zone stable S. Une comparaison du modele complet
et ses versions réduites (RM, PRM, RRM) a la solution numérique exacte(lignes croisées) est
représentée. Alors que le modele complet suit d’assez pres la solution Orr-Sommerfeld a de
nombres de Reynolds modérés, en particulier lorsque le nombre de Weber est assez grand,
les modeéles réduits RM et PRM divergent pour des nombres de Reynolds au-dela d’environ
R = 20. Par contre, le modéle MRR, qui asymptote le modele SM au stade linéaire, présente
la méme tendance que la solution OS. Contrairement aux deux autres modeles réduits, le
RRM ne divergence pas rapidement ; son écartement de la solution exacte et du modele com-
plet est relativement progressif et lent. Comme prévu, I’accord du modele complet et le RRM
avec la solution numérique exacte est mieux pour les grandes valeurs de W. En outre, on
peut observer que, en gardant tout les parametres fixés, I'effet de 'augmentation de W est
de réduire la région instable. Il apparait clairement que le modele type Shkadov prédit avec
précision le comportement d’écoulement seulement a proximité de la criticalité et diverge de
maniere significative de la solution numérique exacte lorsque le nombre de Reynolds aug-
mente, quelque soit le nombre de Weber.

La figure 3.3 indique, pour n = 0,8, des résultats similaires a ceux de la figure 3.2, mais sans
les spectres des modeles RM et PRM qui souffrent de la divergence rapide, comme il est indi-
qué ci-dessus. On peut remarquer que la diminution de I'indice n conduit a la réduction de la

zone d’instabilité, en d’autres termes la décroissance de n a un effet stabilisant.

/4
Pour un angle d’inclinaison f = Tt la figure 3.4 présente des résultats similaires a ceux de
/2
la figure 3.2 et 3.3 pour f = > sauf pour le cas du modeéle de Shkadov ne prédit pas correcte-

ment le point critique.
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FIGURE 3.2 — Courbes de stabilité marginale dans le plan (R, @) pour n = 1.47 et = n/2; (a)

W =1, (b) W = 10. (-)représente le modele complet du second ordre, (++++++)la solution

numérique du systeme type Orr-Sommerfeld, (—-)le modéle intégrale de Shkadov, et (-------- )

les modeles RM (1), PRM (3) RRM et SM (2).
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FIGURE 3.3 — Courbes de stabilité marginale dans le plan (R,a) pour n =0.8 et f = n/2; (a)

W =1, (b) W = 10. (-)représente le modele complet du second ordre, (++++++)la solution

numérique du systeme type Orr-Sommerfeld, (—-)le modéle intégrale, et (------- ) RRM et SM.
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FIGURE 3.4 — Courbes de stabilité marginale dans le plan (R, @) pour f=n/18 et W =10; (a)
n = 1.47, (b)n = 0.8. (-)représente le modele complet du second ordre, (++++++)la solution

numérique du systeme type Orr-Sommerfeld, (—-)le modéle intégrale, et (------ ) RRM et SM.
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La figure 3.5, illustre I'effet de la variation de 7 sur les courbes de stabilité marginale pour
W =1 pres de la criticalité. On peut remarquer que, tres proche de la criticalité, I’augmenta-
tion de n produit une diminution du nombre d’onde marginal. Cela signifie que, dans cette
gamme de petits nombres de Reynolds, le comportement rhéofluidifiant favorise 1'instabi-
lité alors que le comportement rhéoépaississant est plutot stabilisant. Ce phénomene est ai-
sément déduit du fait que la viscosité effective est réduite en diminuant n pour les fluides
pseudo-plastiques alors qu’elle est susceptible de croitre avec 'augmentation de n pour les
fluides dilatants. Une tendance inverse, illustrée dans la figure 3.5b, se produit loin de la cri-
ticalité quand l'inertie devient suffisamment importante. En effet, au nombre de Reynolds
suffisamment élevé, I’augmentation de n accroit la gamme des nombres d’ondes instables,
ce qui est un effet déstabilisant. Ce résultat semble suggérer que 'impact de la variation de n
sur la stabilité de I'’écoulement est non uniforme. La figure 3.5a est en réalité un agrandisse-

ment au voisinage de la criticalité de la figure 3.5b.

Alors que I’écoulement est toujours instable dans le cas vertical, 'instabilité se manifeste,
pour B # n/2, seulement au-dela d'un certain nombre de Reynolds critique

1\"2(3
Rc:(2+—) (En+1)cot[3

n

qui est déja trouvé par Miladinova et al. [23] en utilisant une approche asymptotique. Comme
en témoigne la figure 3.6 , 'impact de la variation de n sur les nombres d’'ondes marginaux
est qualitativement le méme que pour le cas du plan vertical. En effet, en diminuant 7 les
nombres d’ondes marginaux augmentent pour des faibles nombres de Reynolds alors qu'’ils
diminuentlorsquel'inertie devient importante. Au méme temps, diminuer n réduit les nombres
de Reynolds critiques synonyme d’'un effet déstabilisant. Alors que |'effet de la diminution de
n est soit déstabilisant pour les petits nombres de Reynolds (R moins d’environ 20) ou stabi-
lisant lorsque 'inertie devient importante (R plus d’environ 100), cet effet est non uniforme

dans la zone intermédiaire des nombres de Reynolds.
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FIGURE 3.5 — Effet de la variation de n sur les courbes de stabilité marginale pour W =1 et

B =m/2. (a) proche de la criticalité, (b) au-dela de la criticalité.
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FIGURE 3.6 - Méme que la figure 3.5 avec f =7/18.
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3.1.2 Approche spatio-temporelle

Dans la section précédente notre intérét s’est porté sur I’évolution temporelle des pertur-
bations, considérées spatialement périodiques. Mais, la plupart des dispositifs expérimen-
taux concus pour les écoulements ouverts a surface libre fonctionnent par le biais de systeme
de forcage, c’est-a-dire, en imposant une perturbation périodique de fréquence donnée, on
observe son évolution spatiale. Il apparait donc nécessaire de compléter I'étude de la stabilité

linéaire par une approche spatiale. Dans ce cas, on a

a=a,+ia;eCetw=w,+iw; €C.

Cette approche met en évidence analytiquement une transition d’'une instabilité de type convec-
tif & une instabilité de type absolu, utilisé pour la premiere fois dans le cadre de '’hydrodyna-
mique par Huerre et Monkewitz [44]. Toute perturbation localisée génére un paquet d’ondes
qui peut progresser a la fois vers 'amont et vers I'aval. Lorsque ce paquet d’ondes s’accroit
localement et contamine tout le domaine de I’écoulement, I'instabilité est appelée absolue et
une dynamique auto-entretenue intrinseque ou ” mode global ” peut s’installer, I'écoulement
se comporte ainsi comme un oscillateur. En revanche, lorsque le paquet d’ondes est convecté
en aval par I'’écoulement principal, 'instabilité est appelée convective et le systeme se com-
porte comme un amplificateur de bruit.

A une position donnée, le comportement du paquet d’ondes est dominé par ’onde corres-
pondant a une vitesse de groupe nulle,

ow
Vg = e =0,
qui définit le nombre d’onde absolue a et la fréquence wy.
Dans le a-plan complexe, la condition vg = 0 se produit au point col qui doit également ré-
sulter, selon le critere de collision de Briggs-Bers, de la collision de deux branches spatiales
provenant des cotés opposés de I'axe réel ([45],[44]). Si le taux d’amplification absolue S(wq)

est positif (négatif) l'instabilité est dite absolue (convective). Ce critere est nécessaire mais

pas suffisant pour décrire la nature de l'instabilité : le nombre d’onde absolu et la fréquence,
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(ag, wp), doivent aussi s’associés au pincement des deux branches de la relation de dispersion
a’(w) et a” (w) provenant respectivement du demi a-plan complexe inferieur et supérieur
(cf. [44]).

Afin d’étudier I'influence de I'indice n de loi de puissance sur la nature de l'instabilité, nous
considérons d’abord le cas correspondant a I'expérience réalisée par Liu et al. [8] pour un
fluide newtonien. La condition de pincement a été recherchée pour de larges gammes des
nombres Weber et de Reynolds. La partie imaginaire de wg est négative dans I’ensemble du
domaine, ce qui est en accord avec I'affirmation de Brevdo et al.[46] qu'un film fluide s’écou-
lant le long d’'un plan incliné est convectivement instable. Afin de comparer avec leurs ré-
sultats (les mémes conditions d’écoulement sont considérées) nous avons représenté dans
la Fig. 3.7 la solution de I'équation de dispersion correspondant au modele complet du se-
cond ordre. La bonne concordance entre la figure. 3.7 et celle obtenue par Brevdo et al.[25]
est remarquable. Dans la Fig. 3.7a, ol la partie imaginaire de la fréquence complexe est posée
égale a 0,03, la solution est composée de trois branches dans le demi plan supérieur et deux
branches dans le demi plan inferieur. La figure 3.7b est un agrandissement, a |'origine, de la
figure 3.7a qui montre que la branche, proche de ’axe de aR, est en fait entierement incluse
dans le demi plan supérieur. En diminuant la partie imaginaire de la fréquence vers zéro, au-
cun pincement entre les branches n’est observé, voir figure 3.7c. Ceci montre que le modele
complet de second ordre décrit avec précision la stabilité linéaire de I'écoulement.

Une analyse similaire a été effectuée pour n = 1,47 et n = 0,8(voir figures 3.8 et 3.9). Une va-
riation de I'indice n parait n’avoir aucune influence sur le signe de la fréquence absolue qui
reste négatif indépendamment de n. De plus, aucun pincement entre les branches dans le
a-plan n’est observé, comme le montre les figures 3.8 et 3.9, ce qui suggere que l'indice n ne

modifie pas le caractére convectif de I'instabilité.
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FIGURE 3.7 — Solution de la relation de dispersion dans le plan complexe a-plan avec n =1
(@) S(w) = 0.03, (b) agrandissement de (a), (c) S(w) = 0, (d) agrandissement de (c). Pour les

parametres W = 124.38, R = 26.67, correspondant aux mémes conditions que dans [46]
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FIGURE 3.8 - Méme que la figure3.7 avec n = 1,47
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3.2 Stabilité non linéaire : Ondes stationnaires

Dans cette section, nous nous intéressons a la résolution des systemes non linéaires (2.19
et 2.90) établi au chapitre 2. Dans ce cas, les termes non linéaires seront pris en compte dans
le but de rechercher des solutions sous forme d’ondes progressives qui ne se déforment pas
dans un référentiel se mouvant a une vitesse constante c. Ce choix d’espace de solutions nous
permet de réduire d'une dimension notre probleme initial et le transformer a un systéme
dynamique. L'étude de ce systeme va permettre d’analyser le scénario de la transition vers le

chaos.

3.2.1 Formulation du systéme dynamique

Introduisons le changement de variables { = x — c t et T = ¢, ou £ est une variable d’espace
dans le référentiel en mouvement, dans le cadre des ondes qui se propagent a une vitesse
constante c. Dans ce nouveau référentiel, le probleme aux dérivées partielles (2.90) et (2.19),
se transforme en un probléeme aux équations différentielles ordinaires. Il est bien de noter
gu'un nouveau parametre c est a prendre en considération. Les dérivées se transforment de

maniere suivante

o 0 ot 0 c 0
dx o0& ot  0¢
L'équation cinématique (2.19) devient
q: — Chg =0 (3.3)
En intégrant I’équation ci-dessus, nous obtenons
q-ch=qo (3.4)

Ou qp est une constante d’intégration dépendante de la vitesse de phase c, qui représente le
débit circulant sous I'’onde dans son repére en mouvement. Ainsi gy est généralement négatif
car la vitesse des ondes observées a la surface du film est plus grande que la vitesse moyenne
du liquide [28]. L'équation (3.4) montre que dans ce référentiel en mouvement, le débit g et

I’épaisseur du film £, sont linéairement dépendants.
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La constante ¢ est déterminée par une condition au limite (on impose par exemple I'épais-

h2+1/n

seur du film au bord amont ou aval), c-a-d gy est fixée par la solution de base g = , Soit

solution de I’équation

h2+1/n —ch= qo.

Cette derniere équation non linéaire admet plusieurs solutions, qui montre |’existence d’ondes
en forme de ressaut hydraulique, c-a-d, I'existence de bifurcations hétéroclines.

Si on impose Elim h(&) = 1(solution de base adimensionnelle), on obtient
—+o00

qgo=1-c¢, (3.5)

par suite

g=1+c(h-1). (3.6)

En remplacant par I'expression (3.4) dans ’équation (2.90) et en posant
Hi=h, H, = hf, Hj = hff

on obtient le systéme dynamique suivant :

M _ eH o 3.7)
—_— = ,C .
dé
ouH = (Hy, Hy, H3)!, F = (H, H3, F1)".
Ou bien sous la forme
dH, -
ac 2
aHy _ H 3.8)
ac 3 '
dH;
- = Fl(Hl)HZ)H?nC)B)R) W)n)
dé
avec
3In+2W
- —HIF1=F
2n+1 2
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1+c(3H1+1 2 — 1-n
1+ (323 )) qHz)(l_ (2n+1)(351% + 111 - 28) R( q ) HZ)

(4n+3) H1? 4n(3n+2)(5n+4)(4n+3)5 H1?

3n+2)4n+1)7'G n1
Grnt2)dn+l (i) {—(36n3+31n2—1)H1H3
2n-1)3Bn+1)n+1)\H1 6
cH1?H3 96n5+90n4—n2—5n3+5n+1H22+36n3+31n2—1cH1H2H3}
3n@2n+1) 3 q
3n+2 (.2n+1(cH2 qH2\\"'(, 2n+1(2cH2> qH3 _qH2?
-1 2 —~ c*H3 + - -2
2n+1)\" n+1 \ HI  HI12 n+1 \ Hl1 H1 H12
Bn+2)G (q )n{12n5+88n4—37n3—115n2—11n+3 cH1H?2? Czn(n 1)(2n + 15) H22
@2n-1)@4n+1) \Hl 6(1+3n)(n+1) q 12
124n7+164n6—166n5—331n4—9n3+25n2—5n+IHZZ} (n-1)Bn+2)2n+1)G

6 nn+1)@Bn+12n+1) 122n-1)3Bn+1)@n+1)

n
(%) {@n® +4n%—3n-1)c>qgH12 H3 — (4813 + 40n% + 8n) ¢ H2?}

F=R|c*H2+(6n+3)

+

32:?;(5{ —(#)n—cotﬁHlHZ)+

—én(8n+5)(3n+ 1)

+(1=6n1)

La valeur de g est donnée par la ralation (3.6).

3.2.2 Les points fixes

Les points fixes d'un systeme dynamique, par définition, sont ses solutions stationnaires

vérifiant
dH _
dé

Ces solutions représentent les états d’équilibre du systeme physique, par exemple : le point

0 (3.9

fixe H;(1,0,0) représente I’écoulement de base dans notre cas.
Les points fixes du systeme dynamique (3.8) sont déterminés alors en annulant son membre

de droite, soit

H, = 0,H3=0
F1 = H*Y"-cHi—qp =0 (3.10)
On remarque que I'équation (3.10) correspond a I’équation (3.4) pour un débit g pris dans

le cas ou I'épaisseur du film est uniforme. Comme on I'a déja précisé, chaque point fixe cor-

respond a un film d’épaisseur uniforme, ceci nous donne la possibilité de prendre le cas de
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n=1.47/ n=1/n=0,

points fixes

0.5

FIGURE 3.10-Schéma représentant les points fixes H; et H;; en fonction de la vitesse de phase

¢, pour différentes valeurs de 'indice n

I’écoulement de Nusselt (c-a-d H; = 1). Par conséquent, ¢ est fixé par la relation (3.5).
Ainsi, les autres points prennent la forme H;(r,0,0) avec r est le zéro de la fonction g définie
par

gx)=x*"V"_cx+c-1, (3.11)

avec

cx—c+1=0

En plus du point fixe trivial H; = (1,0,0), la solution d’onde stationnaire présente un autre
point fixe Hy;(r2,0,0) qui dépend de c et de 'indice n. Avec r, est le deuxieme zéro de la
fonction g, dont on possede une signification physique seulement si ¢ > 1(voir la figure 3.10).

On peut montrer facilement en utilisant les théoremes élémentaires d’analyse, que

O<rp<l1, sil<c<cy=2+1/n;
rp=1, si ¢ =¢y (les deux points fixes sont confondus);

rp>1, si ¢>cy.
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3.2.3 Stabilité et bifurcation des points fixes

Le systeme dynamique (3.8) est maintenant considéré pour localiser les régions de 'es-
pace des parametres dans lequel le mouvement périodique et chaotique peut se produire.
L'étude complete du systeme dynamique nécessite une résolution numérique, en raison de
sa non-linéarité, mais quelques indications sur le comportement de 1'écoulement peuvent
étre obtenues a partir d'une analyse linéaire au voisinage des points fixes. Nous remarquons
que, du fait des propriétés d’'invariance du systeme dynamique, il est possible de se limiter
aux propriétés de stabilité du point fixe en amont Hj. Le passage d'une solution du point fixe

Hjal'autre point fixe Hy; peut étre alors obtenu en faisant le changement de variables suivant
(6) h)C;R; W) = (HZE,:, r2h, I‘ZZC,R/TS, W/rg).

La linéarisation est justifiée pour les petites perturbations dont on peut négliger les produits

issus des termes non linéaires, ce qui conduit alors a :

dH

d_f =JH (3.12)

ou J est la matrice Jacobienne calculée au point fixe H; donnée par

0 1 0O
J= 0 0 1
e e e3

Les éléments e, e; et es sont dépendants du modele. Les valeurs propres de la matrice J
déterminent la stabilité linéaire du point fixe et sont données par la résolution de I'équation

caractéristique det(J — A I;) =0, donnée par

A3+ e3A%+ el +e; =0 (3.13)



3.2 Stabilité non linéaire : Ondes stationnaires 80

avec les coefficients :

2@n+1)@n+1)7t (1, ) 1 G 1 , 3
e3 — —36n°+31n“—-1)—-n@Bn+5@Bn+1) —+d,1— (" + =)
2n-DBr+D(n+1) (6 6 w w 2
(n—n@n+1ﬂen3+mﬁ—3n—1)662
62n-1)3Bn+1)4n+1) w
@2n+1) (-6n-3+c(11n+6) ,) G
eo = 2RIW —c“|+—cotf
Bn+2) 4n+3 w
n(c-2)-1
egp = ———
w

Le polynome caractéristique est de troisieme ordre et a coefficients réels constants, il admet
donc soit 3 racines réelles (1g, 11, A2 € R), soit une racine réelle et deux racines complexes
conjuguées(Ag, Air+iAy;, A1r—iAy;). Le caractere stable ou instable de notre systeme linéa-
risé dépend de ces trois valeurs propres solution de (3.13). Si les parties réelles des valeurs
propres sont toutes négatives, le point fixe est asymptotiquement stable. En revanche, il suf-
fit que 'une des valeurs propres ait une partie réelle positive, c.-a-d. traverse 1’axe imaginaire,
pour que le point fixe soit instable. Dans chacun des deux cas le point fixe est dit hyperbolique.
Une situation particuliére est celle ol les valeurs propres sont toutes a partie réelle négative
sauf une ou plusieurs dont la partie réelle est nulle. Dans cette situation le point fixe est dit
non Hyperbolique et |’étude de stabilité linéaire ne permet pas de conclure quand a la stabi-
lité du point fixe. Si pour certaines valeurs fixées des parameétres (c, R, W) le point fixe est non
hyperbolique on dit que le systeme subit une bifurcation du point fixe pour ces valeurs cri-
tiques des parametres. Donc la bifurcation associée a I'instabilité intervient lorsqu’une valeur
propre réelle ou bien deux valeurs propres complexes conjuguées franchissent 1’axe imagi-
naire.

Afin d’illustrer I'influence de tous les parametres sur I’apparition des attracteurs complexes
par une procédure numérique, les propriétés qualitatives des valeurs propres sont représen-
tées dans le plan (cot(f)/R, ¢) a travers la figures (3.11), pour différentes valeurs de R et W
dans deux cas illustratifs n = 0.8 et n = 1.47. Nous pouvons limiter notre analyse au cas ol le
film est linéairement instable, soit :

22n+1)>?

tf/IR< —————.
cotp <n2(3n+2)G
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Par exemple, on a

cotB/R <1.869981683, sin=0.8

cotfB/R<3, sin=1

cotB/R < 0.5261466098, sin=1.47
Bifurcations transcritiques :
Cette bifurcation associée a 'instabilité intervient lorsqu’'une valeur propre réelle franchit
I’axe imaginaire. Dans notre cas, lorsque ¢ = 2 + 1/n, les deux points fixes sont confondus
et une racine du polyndome caractéristique (3.13) est nulle (car e; = 0). Quand cette valeur
critique est franchie par une valeur propre réelle, les deux points fixes échangent de stabilité,
il se produit alors une bifurcation transcritique. Dans le cas ¢ < 2 + 1/n, le point fixe Hj est
stable et le point fixe Hjj est instable, et inversement si ¢ > 2 + 1/n. Physiquement cette bi-
furcation donne naissance a une onde stationnaire de type saut hydraulique. Le lieu de cette
bifurcation est représenté par la courbe (T) sur les figure3.11
Bifurcations Hopf :
Si la valeur critique est franchie par deux valeurs propres complexes conjuguées il s’agit d'une
bifurcation de Hopf. A I'occurrence de celle-ci, un cycle limite apparait autour du point fixe,
ce qui signifie qu’'une solution périodique peut bifurquer a partir d'un écoulement uniforme
sous certaines conditions.

En substituant 1; » = iwy dans I’équation caractéristique (3.13), nous donne
2 3 _
—e1+wpes =0 et wy+woez =0

En éliminant wy, on constate qu'une bifurcation de Hopf aura lieu sauf si on satisfait les trois
conditions suivantes :

e <0, e3<0 et exes+e; =0. (3.14)

ol wy est la période d’amplitude de Hopf nul. Dans la condition de Hopf (3.14), on pose hy =1
sic<2+1/nethy=rysic>2+1/n.Légalité dans (3.14) est représentée par la courbe (H) sur
les figure3.11. Il est a noter que cette courbe n’est rien d’autre que la courbe de stabilité mar-
ginale dans le cas particulier des ondes stationnaires. En outre, les deux premieres conditions

sont satisfaites seulement dans le régime d’instabilité linéaire (R > Rc).
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Attracteurs périodiques:

Il est intéressant encore d’identifier dans le plan (cot /R, c) les zones d’existence d’attrac-
teurs issus d’écoulement périodique, lorsque la ligne de Hopf est franchie. On considere le
cas ou la partie imaginaire des deux valeurs propres complexes conjuguées est nulle. On aura
alors deux valeurs propres double 1, » = a en plus de la valeur réelle A3 = b et 'équation ca-
ractéristique prend forme :

A-a)?A-b) =0

Ce qui nous conduit a la relation suivante
4(e5+3ep) (€5 — eres) — (e2e3+9e1)° =0 (3.15)

qui est représentée par la courbe (B) sur les figure3.11. Les frontieres de la courbe (B) corres-
pond a une bifurcation nceud-col du point fixe H;. Ce passage correspond quelquefois dans
I'espace physique a la disparition des oscillations capillaires précédant les ondes solitaires.
Nous avons également tracé la courbe (S), dans le cas d'un point fixe col-spiral, le long du-
quel la somme de la valeur propre réelle et de la partie réelle des valeurs propres complexes

s’annule, conduisant a la relation, donnée par Amaouche et al.[4], suivante
2e3+(e1—ejex) =0 (3.16)

Cette courbe correspond a la frontiere ot le chaos homocline a la Shilnikov peut avoir lieu.
Franchir cette courbe peut conduire au chaos homocline selon le théoreme de Shilnikov qui
énonce que 'existence d'une orbite homocline générée par un point fixe col-spirale implique
|'existence de trajectoires non périodiques sila grandeur de la partie réelle de la valeur propre
complexe est inferieur a celle de la valeur propre réelle.

La figure (3.11)(a) représente les propriétés qualitatives des valeurs propres pour W =5 et
R =10, dans le cas n = 0.8. Les courbes des lieux de bifurcations séparent le plan (cot /R, ¢)
en différentes régions. La région délimitée par les deux courbes (T) et (H), c-a-d ¢, < c < 13/4
ol ¢y, indique la valeur critique de ¢ pour que se produise la bifurcation de Hopf, montre que
le point fixe H; est stable alors que le point fixe Hj; est instable, pour une valeur donnée de

cotf/R. En augmentant c, le point fixe H; perd sa stabilité lorsque c¢ franchi la courbe (T)
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et subit une bifurcation transcritique. Par contre, lorsque la courbe de Hopf est franchie en
diminuant c, un cycle limite bifurque a partir du point fixe H;. Des bifurcations encore plus
compliquées peuvent exister si ¢ est encore diminué tout en restant au-dessus d'une valeur
limite c;j, située sur la courbe (B). En constate que la position de la frontiere (B) est fortement
dépendante du nombre de Reynolds pour un nombre de Weber donné. La figure (3.11(b)) pré-
sente les mémes caractéristiques qualitatives des courbes de bifurcations pour le cas n = 1.47.
Néanmoins, en constate que 'augmentation de 'indice n conduit a la réduction de la zone
de stabilité du premier point fixe (entre les courbes T et H) et a I'élargissement de la zone
d’existence des ondes périodiques pour des faibles valeurs de cot 8/R.

La Figure (3.12) indique, pour deux cas illustratifs n = 0.8 et n = 1.47 , l'effet du parametre
W sur le seuil de la bifurcation de Hopf. Cette courbe converge naturellement vers le point

critique :

(cotB/R,c) = (1.869981683,3.250000000) pour n=0.8

et

(cotf/R) = (0.5261466098,2.680272109) pour n =1.47

Elle se trouve dans une région, notée V, qui est délimitée par les courbes (T) et la courbe (C),
d’équation e; = 0, et ou les deux inégalités dans (3.14) sont vérifiées. On voit que, quand W
est diminué, la courbe de Hopf converge vers la limite (C). Quand W tend vers zéro, la courbe
de Hopf sort de la région V. Ceci, signifie que le nombre de Weber doit dépasser une certaine

valeur minimale W,,, pour I'existence d'une bifurcation de Hopf.
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FIGURE 3.11 - Comportement des valeurs propres dans le plan (cotf/R, ¢) pour le cas du point

fixe H].
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FIGURE 3.12 - Lieu des bifurcations de Hopf, pour différentes valeurs de .
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3.2.4 Résolution numérique

Afin de pouvoir comprendre la dynamique spatio-temporelle du systeme (2.19 et 2.90) au
dela du seuil d’instabilité, c.-a-d, au stade non linéaire, une résolution numérique est néces-
saire. On a fait varier ses conditions en imposant une faible perturbation arbitraire d’environ
0,01 de la solution de Nusselt, au voisinage du point fixe H;. La résolution est réalisée par
'utilisation de la bibliotheque du logiciels Maple 14.

Dans ce qui suit nous nous limitons toujours au valeurs de n = 0.8 et n = 1,47. La recherche
d’attracteur est effectuée par variation continue de la vitesse de phase c. Comme c’est men-

tionné précédemment, I’analyse de stabilité linéaire suggere également de prendre I'inclinai-
2@2n+1)?

- Ceci a était confirmé, a travers des tests numeé-
n“Bn+2)G

22n+1)>2
n2Bn+2G’

son 3 de sorte que 0 < cotf3/R <

riques, qu'aucun attracteur non linéaire n'existe quand cot f/R >

Trajectoires hétéroclines :

Considérons d’abord la bifurcation transcritique de H; a Hyj lorsque la vitesse de phase
critique ¢ = 2+ 1/n est franchie. Par conséquent, une ligne réguliére peut relier les deux points
fixes, a condition que c reste en dessous de sa valeur critique. Les Figures (3.13) et (3.14)
montrent la forme de la surface libre lorsque H; correspond a une orbite hétérocline allant
de Hj vers Hjy quant W =5, R =10, cotf/R = 0.4, avec ¢ = 3.5 pour n = 0.8, et ¢ = 2.7 pour
n = 1.47. Des résultats similaires peuvent étre obtenus pour d’autres valeurs de cotf/R et c.
Conformément aux résultats de I'analyse linéaire, il n'y a pas d’orbite hétérocline au-dela de

la valeur critique de c.

Cascade de doublement de période :
Nous considérons maintenant la dynamique plus complexe résultant de la premiere brisure
de symétrie via une bifurcation de Hopf. Afin d’illustrer les principales caractéristiques des
scénarios de bifurcation au-dela des seuils de Hopf on présente, dans les figures (3.15) et

(3.16), les attracteurs obtenus pour certaines valeurs de c et cot f/R. Dans le cas, par exemple
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FIGURE 3.13 — Orbite hétérocline joignant H; = (1,0,0) a H;; = (1.06652451375046,0,0). La

transition s’effectue au voisinage de ¢ = 3.5 pour n=0.8 avec W =5, R=10 et cotf = 4.



3.2 Stabilité non linéaire : Ondes stationnaires 88

1.008
LOO7;
LOO6;
LOOSL
LOO4;
L003;
LOO2;
LOOIL

L L L L L L
0 100 200 300 400 500 600 700 800

g

FIGURE 3.14 - Orbite hétérocline joignant H; = (1,0,0) a H;; = (1.00874364537,0,0). La tran-

sition s’effectue au voisinage de ¢ = 2.7 pour n = 1.47 avec W =5, R =10, cot § = 4.
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de n=0.8 avec cot0/R=0.1, W =10 et R =10, la figure 3.15 indique que le premier point fixe
subit une bifurcation de Hopf a ¢; = 2,065, ceci génere un cycle limite dont la période est de
I'ordre T =9.5. Quand c est diminué encore, 'amplitude et la longueur d’onde du cycle limite
augmentent jusqu’a ce qu'une seconde valeur critique ¢ = 1,99 est atteinte, ou un autre cycle
limite de période 2T aura lieu. Par conséquent, au lieu d'un seul maximum et minimum, le
signal contiendra deux maxima et deux minima. Les solutions restent 2 T-périodique quand
la vitesse de phase décroit jusqu’a qu'une nouvelle bifurcation de doublement de période se
produit a environ c3 = 1,984, la solution étant maintenant périodique de période 4T dont le
signal contient quatre maxima et quatre minima. Il a été établi qu'en diminuant davantage
la vitesse de I'onde la route vers le chaos par dédoublement de période dicte la dynamique
non linéaire du film selon le scénario Feigenbaum. Ce scénario de route vers le chaos a été
aussi retrouvé dans le cas de fluides newtoniens [5][19]. Le diagramme de bifurcation est re-
présenté sur la figure (3.17) ou le maximum de la hauteur de I'onde y est illustré en fonction

du parametre c.
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FIGURE 3.15 — Cascade de doublement de période pour W =10, R =10, cotf/R=0.1etn =
0.8. (a) : ¢ =2.065, (b) c =1.9845 et (c) c = 1.98122.
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FIGURE 3.16 — Cascade de doublement de période pour W =5, R =10, cotf/R=0.2 et n =

1.47. (@) :¢c=2.045,(b):c=1.985et (c) : c=1.970.
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FIGURE 3.17 — Diagramme de bifurcation, h,, en fonction de ¢, pour R =10, W =10etcotff =1

dansle cas n=0.8 et pour R=10, W =5 et cotf =2 dans le cas n = 1.47.

Ondes solitaires :

Les figures (3.18)..(3.22) montrent des attracteurs constitués par de séries d’ondes solitaires

formant un train d’ondes périodiques avec des périodes trés longues, obtenues pour diffé-

rentes valeurs de cot 3/ R. Ces ondes sont caractérisées par un ou plusieurs pics importants,

une faible pente du c6té amont et un front d’'onde raide da a la gravité, et précédés par des

ondulations capillaires. Ces formes particuliéres se manifestent pres des bifurcations homo-

clines. En diminuant cotf/R, la dynamique devient de plus en plus complexe et un chaos

homocline est attendu en diminuant d’avantage cot f/R.
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FIGURE 3.18 — Profil d’onde solitaire simple, qui précede le chaos homocline, se produisant

pour ¢ = 1.9868 dans le cas n = 0.8. Les autres parametres sont W =5, R =10, cot /R =0.2.
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FIGURE 3.19 - Profil d’'onde solitaire, qui précede le chaos homocline, se produisant pour ¢ =

2.145 dans le cas n = 0.8. Les autres parametres sont W =10, R =10, cot /R = 0.3.
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FIGURE 3.20 - Profil d’onde solitaire simple, qui précede le chaos homocline, se produisant

pour ¢ = 2.5095 dans le cas n = 1.47. Les autres parametres sont W =5, R =10, cot /R = 0.4.
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FIGURE 3.21 - Profil d’onde solitaire a trois bosses, qui préceéde le chaos homocline, se pro-

duisant pour ¢ = 2.1263 dans le cas n = 1.47. Les autres parametres sont W =5, R = 10,

cotf/R=0.135.
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FIGURE 3.22 — Profil d’'onde solitaire, qui précéde le chaos homocline, se produisant pour ¢ =

2.074 dans le cas n = 1.47. Les autres parameétres sont W =5, R =10, cot /R =0.1.



Conclusion générale

Le présent travail de these traite de la modélisation d’'un écoulement par gravité de film
liquide non-newtonien, décrit par une loi de comportement type loi puissance, sur un plan
incliné pour de faibles a modérés nombres de Reynolds. L'objectif principal de I’étude est la
dérivation des équations d’évolution qui régissent la dynamique non linéaires du film.

La procédure de modélisation consiste en une combinaison de la théorie des grandes ondes
(théorie de lubrification) et de I’approche des résidus pondérés. Une nouvelle maniére de
choisir les fonctions tests et poids, différente de celle proposée par Ruyer-Quil et al. pour le
cas newtonien, est introduite permettant une réduction significative de la dimension du pro-
bleme tout en gardant la cohérence du modele a tout ordre. En effet, contrairement a ce qui
a été fait dans des études précédentes dans la construction de modeles, I'orthogonalisation
compléte des fonctions tests n’est pas nécessaire pour éliminer la correction de la vitesse de
I’écoulement. Ainsi, une série de modeles est proposée pour décrire le comportement non
linéaire de I'’écoulement. La cohérence des modeles proposés est assurée avec une orthogo-
nalisation partielle permettant une réduction de la complexité de la procédure et par consé-
quent une simplification des calculs.

En effet, nous avons établi un modele complet d’ordre deux de quatre équations d’évolution
de la dynamique du film. Vu la taille du modele complet, des simplifications sont effectuées
et des modeles réduits (simplifiés) a deux équations, de I’épaisseur du film et du débit, sont
proposés. Un premier modele simplifié (SM) est obtenu par le moyen d’une élimination adia-
batique de la premiere correction du champs de vitesse. Du fait que ce modéle ne tient pas

compte correctement des termes non linéaires, un modele réduit (RM) a été établi en gardant
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le champs de vitesse jusqu’a |’ordre deux. Néanmoins, ce modele diverge du modele complet
a partir d'une certaine valeur du nombre de Reynolds relativement faible. Une procédure de
régularisation partielle, par une technique a la Padé, a été ensuite effectuée pour y remédier.
Le modele réduit régularisé (RRM) résultant donne un spectre linéaire identique a celui ob-
tenu par le modele simplifié (SM).

L'analyse de stabilité linéaire du modéle complet de deuxieme ordre montre une assez bonne
concordance avec la solution numérique du probleme Orr-Sommerfeld pour de faibles a mo-
dérés nombres de Reynolds. Ce modele complet et ses formes réduites ont tous I'avantage du
modele type Benney au voisinage de la criticalité. Loin du seuil d’instabilité, le modele com-
plet continue a suivre la solution Orr-Sommerfeld jusqu’a un assez grand nombre de Reynolds
et donne de meilleures prévisions que le modele type Shkadov. Le modele réduit régularisé
(RRM) pourrait étre préféré dans la pratique au modele complet en raison de sa relative sim-
plicité, au moins au stade initial du régime non linéaire.

Les résultats de la stabilité linéaire des modeles proposés font apparaitre que, pour de trés
faibles nombres de Reynolds, 'augmentation de I'indice de la loi de comportement n réduit
d’'une maniére réguliere la zone d’instabilité jusqu’a une certaine valeur critique du nombre
de Reynolds. Cet effet s’'inverse au-dela d'une autre valeur critique plus grande du nombre de
Reynolds mais reste relativement faible. On retrouve cet effet sur la stabilité dans le cas d'un
comportement rhéoépaississant(n>1). Par contre, un effet contraire est observé dans le cas
d’'un comportement rhéofluidifiant (n<1). On a également constaté que le caractere convectif
de l'instabilité est insensible a la variation de I'indice de loi de puissance.

Les aspects non linéaires de I'’écoulement du film sont ensuite examinés en utilisant une ver-
sion simplifiée (RRM) du modéle complet tout en conservant ses principales caractéristiques
et en tenant compte des états asymptotiques caractérisés par des ondes stationnaires. Dans
le sous-espace relativement limité de parameétres que nous avons exploré, les solutions pré-
sentent les mémes comportements qualitatifs que ceux du cas newtonien. Néanmoins, une
influence de l'indice de loi de puissance sur les valeurs critiques d’apparition des bifurcations
et de la transition vers le chaos a été observée.

Une poursuite d’investigation dans ce domaine parait intéressante particulierement sur le
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plan d’exploitation du modele tridimensionnel, établi dans ce travail, afin d’étudier les insta-
bilités tridimensionnelles succédant les instabilités bidimensionnelles. Dans le but d’élargir le
domaine d’application du travail de modélisation effectué, la recherche de modéles est néces-
saire pour |’étude de la dynamique non linéaire de film fluides non newtoniens de différentes
lois de comportement. Enfin, une extension de |’étude effectuée est envisageable pour une
superposition de deux ou plusieurs couches de fluides a surface libre, a d’autres géométrie du
substrat (cylindre, sphere, cone...) et a des problemes ol interviennent des effets spécifiques :
- Les effets non locaux intervenant via la transformée de Hilbert et induits par I'application
d'un champ électrique. -les effets thermiques pouvant induire, soit une stratification de la
viscosité qui est susceptible d’entrainer des comportements surprenants, ou bien, des forces
thermocapillaires et thermogravitaires susceptibles de conduire a I'émergence d'une grande

variété d’écoulements.
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Résumé

Le présent travail est consacré a la modélisation d'un écoulement par gravité de film non-newtonien en loi de puissance sur un plan
incliné pour de faibles a modérés nombres de Reynolds. nous avons établi un modéle complet d'ordre deux de quatre équations
d'évolution de la dynamique du film en présence des effets non-newtoniens. En plus, des modéles réduits (simplifiés) d'évolution & deux
équations, de I'épaisseur du film et du débit, sont proposés; Le premier modéle (RM) a été obtenue en remplacant les champs $a$ et
$b$, corrections du débit local, par leurs approximations de premier ordre. Ce modéle diverge du modéle complet relativement a de
faibles nombres de Reynolds. Une procédure de régularisation partielle a été ensuite effectuée pour y remédier. Le modéle
résultant(RRM) asymptote, au stade linéaire, a celui obtenu par une élimination adiabatique de la correction de vitesse du premier ordre
(SM). La procédure de modélisation de ces derniéres consiste en une combinaison de la théorie des grandes ondes (théorie de
lubrification) et I'approche des résidus pondérés en utilisant une base de projection appropriée. L'analyse de stabilité linéaire du modéle
complet de deuxiéme ordre et modéle régularisé réduit (RRM) montre une assez bonne concordance avec le spectre du probleme Orr-
Sommerfeld pour de faibles & modérés nombres de Reynolds. L'aspect non linéaires de I'écoulement du film est ensuite examiné en
utilisant une version simplifiée du modeéle (RRM) qui conserve toutefois ses principales caractéristiques et en tenant compte des états
asymptotiques caractérisées par des ondes stationnaires. Dans le sous-espace relativement limité de parametres que nous avons
explorés, les solutions présentent les mémes comportements qualitatifs que ceux du cas newtonien. Quantitativement, une influence de
l'indice de loi de puissance sur les valeurs critiques d'apparition des bifurcations et la transition vers le chaos.

Abstract

This work deals with modeling of a power-law fluid film flowing down an inclined plane for small to moderate Reynolds
numbers. A model, accurate up to second order [first order] for dilatant [pseudoplastic] fluids is proposed to describe the
nonlinear behavior of the flow. The modeling procedure consists of a combination of the lubrication theory and the weighted
residual approach using an appropriate projection basis. A suitable choice of weighting functions allows a significant reduction of
the dimension of the problem. The resulting model is naturally unique, i.e., independent of the particular form of the trial
functions. Reduced models are proposed for the evolution of the local film thickness and flow rate; their linear spectra are
compared to that obtained from the full Orr—Sommerfeld numerical solution. To obtain the latter, a new formulation of the
eigenvalue problem is proposed to overcome the classical divergence of the apparent viscosity at the free surface. The full
model and its reduced forms all have the advantage of the Benney like model close to criticality. Far from the instability
threshold the full model continues to follow the Orr—Sommerfeld solution up to sufficiently large Reynolds numbers and gives
better predictions than the depth averaging model. An incomplete regularization procedure is performed to cure the rapid
divergence of the reduced two-equation model. Due to its relative simplicity the latter might be preferred in practice to the full
model, at least at the initial stage of the nonlinear regime. It is also shown that the convective nature of the instability is not
affected by the variation of the power law index. The nonlinear study of the film flow is then examined using a simplified version of the
model (RRM) which, however, retains its main features and taking into account the asymptotic states characterized by traveling waves. In the
relatively small subspace parameters we have explored, the solutions have the same qualitative behavior than those of the Newtonian case.
Quantitatively, an influence of the power law index on the critical values of the occurrence of bifurcations and transition to chaos.
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