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Nomenclature

Grandeur Notation et expression

x,y,z et t Coordonnées de l’espace et du temps

g Champ gravitationnel

v Champ de vitesse

u, v, w Composantes du vecteur vitesse

p Pression

Pa Pression atmosphérique

n Vecteur normal à la surface libre

n Indice du comportement non newtonien

I d Matrice identité

D Tenseur des déformations

K̃ Courbure

h Hauteur du film

β Angle d’inclinaison du substrat par rapport à l’horizontale

σ Tension superficielle

σ Tenseur des contraintes

τ Tenseur des contraintes visqueuses

µ La viscosité dynamique du fluide

∂xi =
∂

∂xi
Dérivée partielle par rapport à xi

div , grad Opérateurs divergence et gradient



Introduction générale

Le problème des films minces s’écoulant sur un plan incliné est pertinent pour une large

classe de phénomènes naturels (ruissellement des eaux, écoulement de la lave volcanique)

et pour leurs intérêts en mécanique (lubrification, échangeurs de chaleur) et en génie des

procédés (réacteurs chimiques, évaporateurs, condenseurs). L’écoulement d’un film mince

constitue aussi un problème de référence de la théorie du chaos spatio-temporel, il offre une

solution de base relativement simple permettant d’analyser les phénomènes de bifurcation

rencontrés dans des situations plus complexes. Ce problème a fait l’objet d’études intensives

depuis l’article de Nusselt [1] qui a établi une solution stationnaire de l’écoulement laminaire

de film mince liquide sur un plan incliné. Cet écoulement devient instable lorsque les ef-

fets d’inertie surpassent les effets de pression hydrostatique et se comporte comme un am-

plificateur du bruit ambiant à partir duquel se forment spontanément des trains d’onde ir-

réguliers se propageant vers l’aval. Cette instabilité est d’origine gravitaire, qui se produit à

des nombres de Reynolds modérés. Des modes interfacials (de surface libre) dominés par la

capillarité apparaissent. Les ondes qui en résultent ont une échelle de longueur beaucoup

plus grande que l’épaisseur de film et deviennent rapidement tridimensionnelles. Quoique

d’origine interfaciale, elles s’apparentent aux modes de Herbert (motifs de chevrons) ou de

Klébanoff (instabilité synchrone) décris dans les couches limites. Un autre type d’instabilité

d’origine visqueuse (mode de cisaillement), cette fois-ci, insensible aux effets de la tension

superficielle, apparaît à de faibles inclinaisons du plan et à des nombres de Reynolds élevés.

La nature sous critique des bifurcations de Hopf qui s’y produisent confère à l’écoulement

des caractéristiques semblables à celles des couches limites transitionnelles. Cette similitude



Table des matières 5

laisse penser que les progrès réalisés dans la compréhension de l’apparition du chaos au sein

des films sont autant d’éléments précieux apportés au problème de la transition vers la tur-

bulence dans les couches limites.

Comme mentionné auparavant, dans le cas des films minces, l’instabilité se produit à faible

nombre de Reynolds, d’où une grande cohérence de l’écoulement suivant l’épaisseur du film

qui rend sa description possible à l’aide d’un système de faible dimension (petit nombre de

variables internes dont les plus pertinentes sont l’épaisseur du film et le débit local). La lit-

térature abonde de travaux consacrés à la recherche de modèles décrivant le développement

des ondes de surface dans le cas des fluides newtoniens[2][3][4][5].

Trois paramètres de base indépendants apparaissent dans les équations sans dimension du

problème ; en plus de l’angle d’inclinaison β qui représente les effets de la gravité, on choi-

sit, par exemple, le nombre de Reynolds R et le nombre de tension superficielle (nombre de

Weber modifié) W qui donnent, respectivement, l’importance relative des effets d’inertie et

de la tension superficielle par rapport à ceux de viscosité. Dans une certaine gamme de ces

paramètres, des expériences[references] ont révélé que les ondes de surface présentent sou-

vent un large spectre d’amplitude, longueur et vitesse d’onde. Ces ondes apparaissent, tout

d’abord, comme courtes, périodiques et peuvent évoluer vers un état fortement irrégulier.

Comme décrit par Chang [6] et rapporté par Oron et Gottlieb [7], on distingue dans l’évolu-

tion du film quatre étapes principales :

(i) l’évolution spatio-temporelle de l’instabilité primaire, celle-ci est bidimensionnelle. Le ca-

ractère convectif de cette instabilité a été vérifié expérimentalement par Liu et al.[8] et dé-

montré théoriquement par Joo et Davis[9],

(ii) la saturation de l’amplitude des ondes primaires par des effets faiblement non linéaires

dont la forme demeure quasi-stationnaire sur une distance de quelques longueurs d’onde

[10],

(iii) les ondes saturées subissent une instabilité secondaire 2D conduisant à la formation

d’ondes bidimensionnelles rapides de grande amplitude,

(iv) l’amplification des perturbations transversales pour former une structure essentiellement

tridimensionnelle souvent accompagnée d’une dynamique chaotique.
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Ces étapes ont été également observées dans les expériences menées par J.Liu et al. [8][11][12].

Il est établi à la fois à partir de simulations numériques et des expériences que les structures

d’ondes solitaires jouent un rôle central dans le comportement de l’écoulement. Comme le

montrent les calculs de Malamataris et al. [13], les profils de vitesse au-dessous des ondes

solitaires sont fortement déformés par rapport à la vitesse d’écoulement de base et la dyna-

mique devient complexe. Il est donc utile, pour une compréhension fondamentale de l’écou-

lement, de développer des systèmes réduits qui peuvent être exploités à la fois analytique-

ment et numériquement. Étant donné que l’instabilité se manifeste par des ondes de sur-

face dont la longueur d’onde est, à l’exception de très faibles inclinaisons, beaucoup plus

grande que l’épaisseur du film, un développement asymptotique près de la criticalité a été

mis en évidence en premier par Benney [14]. Une équation dite de Benney (BE) qui permet la

description de l’évolution du film au voisinage de la criticalité est ainsi établie. Les variables

de l’écoulement dépendent alors toutes de la forme locale de l’interface. Même si l’équation

Benney (BE) contient différents mécanismes physiques et est potentiellement capable de dé-

crire le voisinage du comportement nonlinéaire critique, elle perd sa pertinence physique

lorsque les effets convectifs deviennent significatifs, en raison de la production d’ondes plus

courtes. Afin de surmonter certains des inconvénients associés à l’équation de Benney, plu-

sieurs améliorations ont été récemment proposées. Une équation d’évolution unique, conte-

nant les effets de dissipation de second ordre via une échelle appropriée a été proposée par

Panga et Balakotaiah [15]. Ruyer-Quil et Manneville [16] ont montré que le modèle Panga et

Balakotaiah peut être modifié de telle sorte que ses termes inertiels correspondent à l’équa-

tion de Ooshida [17]. L’échec des modèles de grandes ondes pour décrire correctement les

comportements non linéaires loin de la criticalité est en partie dû à leur incapacité à capturer

tous les effets d’inertie. La façon d’améliorer la modélisation, selon Ruyer-Quil et Manneville

[3], serait d’introduire le débit local qui devient une variable effective juste après la forma-

tion de l’onde. Un tel modèle a été introduit par Shkadov [18] en utilisant une approche de

couche limite intégrale (IBL). Cette théorie combine l’hypothèse de grandes ondes avec la

méthode de l’épaisseur moyenne de type Karman-Polhansen, utilisée en couche limite. En

dépit de son succès pour décrire les régimes non linéaires pour des nombres de Reynolds
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modérés, l’approche IBL ne prédit pas avec précision le comportement de l’écoulement au

voisinage du seuil d’instabilité comme l’équation de Benney le permet avec succès. Ce défaut

est dû, comme nous le verrons plus tard, au fait que l’IBL n’est cohérente que jusqu’à l’ordre

zéro par rapport au paramètre de grande onde près de la criticalité. Une meilleure prise en

compte des premiers termes convectifs près de la criticalité est donc nécessaire pour élimi-

ner cet inconvénient. Le remède a été trouvé par Ruyer-Quil et Manneville [3][19] en utilisant

une approche de couche limite intégrale aux résidus pondérés (WRIBL). Leur modèle, dé-

veloppé pour les deux approximations du premier et du second ordre, a corrigé l’incapacité

de l’approche Shkadov à converger au seuil de la stabilité linéaire et a permis de produire

des solutions pour une plus grande gamme de nombres de Reynolds que celle dans le cas de

l’équation de Benney. Il a été démontré [3] que les deux modèles du premier et du second

ordre concordent bien avec les expériences effectuées par Kapitza et Kapitza [20] pour le cas

d’un plan vertical. Cependant, seul le modèle du second ordre concorde bien avec les résul-

tats expérimentaux de Liu et al.[8] pour une solution de glycérine à l’eau sur un plan incliné.

L’approche de WRIBL a été étendue aux écoulements non isothermes par Ruyer-Quil et al.[21]

et aux écoulements de deux couches fluides par Amaouche et al.[5].

Dans la présente étude, il s’agira d’une extension de l’approche (WRIBL) au cas de fluide

non-newtonien, tout en proposant une procédure beaucoup plus appropriée. En effet, il est

important de comprendre comment les effets non-newtoniens affectent la dynamique du

film car ils sont présents dans une large gamme d’applications physiques et technologiques.

Par exemple, ces effets spécifiques sont rencontrés dans des situations telles que la fabrica-

tion de plastique, des procédés de revêtement, mouvements fluides biologiques, les flux géo-

logiques... Notre intérêt est porté spécialement sur des fluides dont le comportement rhéo-

logique peut être décrit par un modèle de loi de puissance qui est une équation constitutive

relativement simple. Le comportement non newtonien du fluide est caractérisé par un indice

de puissance désigné par "n", le cas newtonien est obtenu pour n = 1.

Dans ce domaine, il y a peu d’édudes contrairement au cas newtonien. Lin et Hwang [22]

ont utilisé la méthode des échelles multiples pour résoudre une équation non linéaire de type
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Benney. Leurs résultats indiquent que l’instabilité sous-critique et une solution explosive se

produisant à faibles indices de loi de puissance. Une région supercritique et une région incon-

ditionnelle stable existent uniquement lorsque cet indice est supérieur à une certaine valeur

critique. Une équation de type Benney a été également utilisée et numériquement intégrée

dans le domaine périodique par Miladinova et al. [23], qui ont montré que la forme et l’ampli-

tude des ondes progressives sont fortement dépendantes des propriétés non-newtoniennes

du fluide. La méthode intégrale de couche limite a été appliquée par Dandapat et Mukho-

padhyay [24] pour obtenir une équation d’évolution pour les ondes connues sous le nom

cinématiques et inertielles. Ils ont constaté, entre autres résultats, que l’exposant de loi de

puissance joue un rôle de premier plan dans le contrôle des effets de tension superficielle.

Sisoev et al. [25] présentent une analyse de bifurcation des ondes stationnaires en utilisant

une équation similaire à celle obtenue dans [24]. Des limitations similaires à celles décrites

ci-dessus ont également été rencontrées lors de l’utilisation de la théorie de la lubrification

ainsi que dans la procédure de Shkadov pour les écoulements de film liquide non-newtonien.

Dans ce manuscrit, le premier chapitre est consacré à la formulation mathématique du

problème objet de l’étude en donnant les équations gouvernantes sous forme dimension-

nelle et adimensionnelle, faisant apparaitre les paramètres du problème. L’analyse de stabilité

linéaire conduit à un système de type Orr-Sommelfeld résolu numériquement par la méthode

Runge-Kuta associée à la méthode de Riccati[26]. Dans le deuxième chapitre, nous dérivons

un ensemble de modèles en équations d’évolution, afin de décrire la dynamique non linéaire

du film, par la méthode de Galerkin sous l’hypothèse des grandes ondes. Un système de deux

équations réduit et régularisé est obtenu en utilisant l’approximation de Padé[21]. Le chapitre

trois est consacré à la validation des modèles élaborés au chapitre précédent. En premier lieu,

une comparaison avec les résultats de la stabilité linéaire, obtenus au premier chapitre, est ef-

fectuée. Par la suite, une étude non linéaire du modèle réduit régularisé est abordée dans le

cadre des ondes stationnaires afin d’examiner la nature des differentes bifurcations qui appa-

raissent conduisant au chaos.



Chapitre 1

Formulation du problème et étude de la

stabilité linéaire

Dans ce chapitre, nous développons la stabilité linéaire de l’écoulement d’un film mince,

à surface libre, sur un plan incliné étendu. Cet exemple de configuration a été utilisé par plu-

sieurs auteurs, à commencer par Kapitza, et reste un exemple de base pour toute tentative

d’étude théorique ou expérimentale dans le cas des domaines étendus à surface libre[20].

Dans notre cas, le fluide considéré est non-Newtonien avec une loi de comportement de

type loi de puissance. En premier, on présente la configuration que nous allons étudier, les

équations gouvernantes sous forme adimensionnelle, les équations linéarisées de type Orr-

Sommerfeld. Par la suite, une résolution asymptotique et numérique de ces dernières est ef-

fectuée.

1.1 Présentation du problème

Nous considérons un écoulement incompressible d’un film mince liquide non newtonien

sous l’effet de la gravité le long d’un plan incliné, avec un angle d’inclinaison β par rapport à

l’horizontale. Un système de coordonnées cartésiennes (x, y, z) est adopté : l’axe des x selon le

sens de l’écoulement, l’axe des y étant perpendiculaire au plan et l’axe des z étant la direction
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xz

y

u

β

direction de l’ecoulement

FIGURE 1.1 – Ecoulement d’un film sur un plan incliné

transversale de l’écoulement (voir figure 1.1). Dans ce qui suit, les hypothèses suivantes sont

considérées comme telles :

- La géométrie du système est supposée infinie dans les directions x et z.

- On néglige toute circulation d’air au-dessus du film.

- La pression de l’air est supposée constante et égale à Pa .

- Le milieu considéré est homogène et isotrope.

- La tension superficielle entre le fluide et le milieu extérieur σ est supposée constante.

1.1.1 Rhéologie du fluide

La plupart des fluides, combinent plusieurs caractéristiques qui ne sont pas entièrement

déterminées. Il est donc difficile de comprendre parfaitement les phénomènes observés. La

détermination des lois qui répondent le plus largement possible à ces caractéristiques s’ins-

crit dans la discipline de la rhéologie. Par ailleurs, les équations régissant les écoulements des

fluides non-newtoniens sur un plan incliné sont fort complexes et n’admettent pas souvent
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Bigham

Rhopaississant

Newtonien

Rhofluidifiant

Plastique

D

τ

FIGURE 1.2 – Relation entre le tenseur des contraintes visqueusesle τ et tenseur des taux de

déformation D pour différents types de fluides

de solutions stationnaires par un calcul analytique, ceci rend l’analyse de la stabilité plus dif-

ficile à mener. Parmi les modèles de fluides où la solution analytique de l’écoulement de base

est envisageable, on cite le cas de fluides en loi de puissance qui fera l’objet de notre étude.

La nature du fluide est représentée par le tenseur de contraintes visqueuses τ. Il dépend du

tenseur taux de déformation D, tel que

D =


ux (uy + vx)/2 (uz +wx)/2

(uy + vx )/2 vy (vz +wy )/2

(uz +wx)/2 (vz +wy )/2 wz


La relation entre les tenseurs τ et D est souvent complexe (Figure 1.2) et dépend des pro-

priétés constitutives du fluide considéré. Dans notre cas, cette relation s’écrit sous la forme

suivante :

τ= 2µD

Où µ est la viscosité dynamique du fluide, et est reliée à une puissance du taux de cisaillement

par la formule, appelée "loi de puissance", donnée par

µ= K |γ̇|n−1 (1.1)
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avec K est sa consistance (en Pa.sn), considéré constante et indépendante de la température

et γ̇ est le second invariant du tenseur des déformations, défini par :

γ̇2 = 2Tr (D2)

Dans ce qui suit, on note par η la quantité :

η= |γ̇|n−1 =
{

2(u2
x + v2

y +w 2
z )+ (uy + vx)2 + (uz +wx)2 + (vz +wy )2

}(n−1)/2
(1.2)

L’indice n est appelé indice d’écoulement, il indique le degré du comportement non Newto-

nien. Il est adimensionnel et vaut 1 pour un fluide Newtonien et 0 pour un solide rigide, plus

il s’éloigne de l’unité, plus les effets non newtonien sont importants.

En effet, 0 < n < 1 correspond au comportement pseudo-plastique et n > 1 représente les

dilatants (un comportement d’épaississement).

Dans le tableau ci-dessous, on donne quelques exemples de fluides en loi de puissance

pour différentes valeur de n.

fluides n K (g r /(cm s2−n)) ρ(g r /cm3) σ(N /m2)

Mélange d’eau et d’éthylène glycol 2 0.00004241 1.226 0.045

Mélange d’eau et d’éthylène glycol 1.8 0.001428 1.238 0.045

Mélange de chaux et d’eau 1.47 2.510−7 1.25 0.076

Mélange d’éthylène glycol, 1.37 0.04583 1.305 0.045

de glycérine et d’eau

Mélange d’éthylène glycol et d’eau 1.18 0.007767 1.222 0.045

sang humain 0.9

pétrole (en général) 0.8

solution de napalm en kérosène 0.52 5.3510−3 0.8 0.026

Tableau 1.1 : Caractéristique physique de quelques exemples de fluides en loi de puissance
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1.1.2 Mise en équations du problème

Le problème est régi par les équations suivantes :

di v v = 0 dans Ω (1.3)

ρ(∂t +v.grad)v = divσ+ρg dans Ω. (1.4)

Où Ω= {(x, y, z, t ) ∈R3 ×R+;0 < y < h(x, z, t )} est le domaine occupé par le film.

L’équation (1.3) est l’équation de continuité dans le cas d’un fluide incompressible (ρ =C st ),

assurant la conservation de la masse. L’équation (1.4) est celle de la conservation de la quan-

tité du mouvement qui découle directement du principe fondamental de la dynamique.

σ étant le tenseur de contraintes de Cauchy qui se décompose en une partie sphérique et une

partie déviatrice sous la forme :

σ=−PId +τ,

où Id est le tenseur identité.

La partie sphérique −PId correspond aux actions de pression qui s’exercent seules en l’ab-

sence de gradient de vitesse. Le scalaire P est appelé pression hydrostatique, le signe négatif

traduit le fait est qu’un fluide au repos est généralement en compression.

1.1.3 Conditions aux limites

Le film fluide étant supposé infini dans le sens de l’écoulement et dans la direction trans-

versale, les seules conditions aux limites du problème sont celles à la paroi (y = 0) et à la

surface libre du film (y = h) :

En y = 0

Le fluide s’écoule sur la paroi avec une condition d’adhérence (non glissement) et de non

perméabilité

v = 0 ⇔ u = v = w = 0 (1.5)

En y = h(x, z, t )

À la surface libre du film, deux conditions doivent être vérifiées :
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– La condition cinématique traduisant l’imperméabilité de l’interface. Elle exprime le fait

que le fluide et la surface libre d’équation y −h = 0, ont la même vitesse normale, d’où

(∂t +v.grad)(h − y) = 0 (1.6)

– La condition de raccordement des contraintes traduit la continuité de la contrainte tan-

gentielle et le saut de la contrainte normale. Ce dernier est dû à la tension superficielle.

Le cisaillement est nul pour l’air dans le cas d’un film à surface libre, d’où l’équation

(pa −p +σdi v n)n+τ ·n = 0 (1.7)

où :

n = (−hx ,1,−hz)t√
1+h2

x +h2
z

étant le vecteur normal unitaire extérieur à la surface libre.

On a :

di v n =−K̃

tel que K̃ est la courbure de l’interface qui s’écrit

K̃ = (1+h2
z)hxx −2hxhzhxz + (1+h2

x)hzz

[(1+h2
x +h2

z)]3/2

La projection de la condition (1.7) par rapport à la normal nous donne la condition normale

suivante :

Pa −P +τ ·n ·n =σK̃ (1.8)

La projection selon les deux vecteurs tangents, tx = (1,hx ,0)t√
1+h2

x

et tz = (0,hz ,1)t√
1+h2

z

, donne lieu aux

deux conditions tangentielles suivantes

τ ·n · ti = 0 i = x, z (1.9)
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FIGURE 1.3 – Influence de l’indice n sur la vitesse du profil de base.

1.1.4 Solution de l’écoulement de base

La solution stationnaire pour un écoulement parallèle du film de ce type de problème,

s’écrit[24] :

Ub = n

n +1

(
ρ g sinβ

K

)1/n [
h1+1/n

0 − (h0 − y)1+1/n]
(1.10)

Vb = Wb = 0 (1.11)

Pb = Pa +ρ g cotβ(h0 − y) (1.12)

où h0 désigne l’épaisseur du film.

Cette solution stationnaire simple est appelée solution de Nusselt[1]. Elle est sous forme d’une

fonction puissance qui devient parabolique quand le fluide est newtonien (n = 1). La figure

(1.3) indique l’influence de l’indice n sur le profil de vitesse avec une hauteur h0 = 1cm et des

propiétés physiques correspondant aux valeurs données dans le tableau 1
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1.1.5 Echelles caractéristiques et équations adimensionnées

La solution de Nusselt précédente donne lieu à un débit total établi à l’entrée de l’écoule-

ment

Q0 =
h0∫

0

Ub(y)d y = n

2n +1

(
ρ g sinβ

K

)1/n

h2+1/n
0 .

Cela nous permet de définir une vitesse moyennée um = Q0

h0
, choisie comme vitesse caracté-

ristique. Par ailleurs, le problème étudié présente une anisotropie spatial due au domaine non

borné. On fait alors intervenir deux échelles d’espace : la longueur d’onde typique l0, pour les

directions longitudinale et transversale, et la hauteur h0 = ϵ l0 pour la direction normale. L’in-

troduction du petit paramètre ϵ vient du fait que les ondes observées sont à grandes longueurs

d’ondes et à petites amplitudes. Une séparation entre l’échelle de variations suivant l’épais-

seur du film y et les échelles de variations en temps t et en espace x, z est imposée.

Ainsi, les échelles caractéristiques sont l0, h0, h0/um et K un
m/ϵhn

0 pour x et z, y , le temps t et

la pression p, respectivement. A partir de ces échelles caractéristiques, les variables adimen-

sionnelles suivantes sont introduites :

x̂ = x/l0, ŷ = y/h0, ẑ = z/l0, û = u/um , v̂ = v/ϵum , ŵ = w/um , t̂ = tum/l0, P̂ = ϵPhn
0 /(K un

m).

En utilisant ces variables adimensionnelles, les équations du mouvement (1.3,1.4) et les

conditions aux limites (1.5,1.6,1.8,1.9) s’écrivent (en omettant le symbole "ˆ" ) :

ux + vy +wz = 0 (1.13)

Rϵ[ut +uux + vuy +wuz]+Px =G +2ϵ2[ηux]x + [η(uy +ϵ2vx)]y +ϵ2[η(uz +ϵwx)]z (1.14)

Rϵ3[vt+uvx+v vy+ϵw vz]+Py =−ϵGB+ϵ2[η(uy+ϵ2 vx )]x+2ϵ2[ηvy ]y+ϵ3[η(ϵvz+wy )]z (1.15)

Rϵ2[wt +uwx + v wy +ϵw wz]+Pz = ϵ2[η(uz +ϵwx)]x +ϵ[η(ϵvz +wy )]y +2ϵ3[ηwz]z (1.16)

tel que la viscosité est donnée par

η=
{

2ϵ2(u2
x + v2

y +ϵ2w 2
z )+ (uy +ϵ2vx)2 +ϵ2(uz +ϵwx )2 +ϵ2(ϵvz +wy )2

}(n−1)/2
(1.17)

Les conditions aux limites correspondantes sont
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– y = 0 :

u = v = w = 0 (1.18)

– y = h(x, z, t ) :

v = ht +uhx +whz (1.19)

η[2ϵ2hx(vy−ux )+(1−ϵ2(h2)x)(uy+ϵ2vx)−ϵ2hz(uz+ϵwx)−ϵ3hxhz(ϵvz+wy )] = 0 (1.20)

η[2ϵ2hz(vy−wz)+(1−ϵ2(h2)z)(wy+ϵ2vz)−ϵ2hx(uz+ϵwx)−ϵ3hxhz(uy+ϵwy )] = 0 (1.21)

P = 2η

(1+h2
x +h2

z)

{
ϵ3(h2)xux +ϵ4(h2)z wz +ϵhxhz(uz +ϵwx)−ϵhx(uy +ϵ2vx)+ϵvy

−ϵ2hz(ϵvz +wy )

}
− W

(1+h2
x +h2

z)3/2
((1+ϵ2h2

z)hxx −2ϵ2hx hzhxz + (1+ϵh2
x )hzz) (1.22)

Avec G =
(

2n +1

n

)n

traduisant l’effet de gravité [27].

Le groupe de nombres adimensionnels qui apparaissent sont :

* le nombre de Reynolds R = ρhn
0 u2−n

m /K , mesure l’importance relative des effets inertiels et

visqueux dans l’écoulement.

* le nombre de tension superficielle W = ϵ2RWe, qui est une autre formulation du nombre

de Weber We =σ/ρh0u2
m qui est le nombre de Weber, comparant les effets de la tension

superficielle σ/h0 et les effets d’inertie ρu2
m .

* B = cotβ, rapport de la composante de l’accélération gravitationnelle normale au film et de

sa composante dans le sens de l’écoulement.

1.2 Analyse de la stabilité linéaire

L’étude de la stabilité linéaire de l’écoulement de base, représenté par la solution de Nes-

selt, a été suffisamment étudiée par plusieurs auteurs pour le cas d’un film fluide Newtonien

en écoulement sur un plan incliné [28], [29],[4],[30]. Les instabilités sont alors régies par les



1.2 Analyse de la stabilité linéaire 18

équations d’Orr-Sommerfeld reliant les dérivées spatiales de la fonction du courant au pro-

fil de vitesse de l’état de base. Yih [31] en 1955 a été le premier à établir l’équation d’Orr-

Sommerfeld pour un écoulement à surface libre, interface ou stratification. Benjamin [32],

a par la suite, complété son étude en introduisant la tension de surface et a déterminé les

conditions critiques d’instabilité.

Dans le cas non Newtonien, nous avons tout d’abord vérifié le théorème de Squire, qui énonce

qu’une perturbation bidimensionnelle précède la perturbation tridimensionnelle. Nous avons

ensuite établi un système d’équations linéaires type Orr-Sommerfeld pour un cas de fluides

en loi de puissance, résolu numériquement et asymptotiquement.

1.2.1 Equations aux perturbations linéarisées

La solution de l’écoulement de base d’eqs (1.10)-(1.12), notée Vb1 = (Ub ,Vb ,Wb)t , Pb et H ,

une fois adimensionné s’écrit :

Vb =
(

2n +1

n +1

[
1− (1− y)1+1/n]

,0,0

)t

Pb = Pa +GB(1− y)

H = 1

(1.23)

Considérons l’écoulement perturbé par une perturbation infinitésimale v∗ = (u∗, v∗, w∗)t , p∗

et h∗ de l’écoulement de base. Cette perturbation est définie par :

v∗ = v−Vb, p∗ = P −Pb(y), h∗ = h −1 (1.24)

où v = (u, v, w), p et h sont les champs perturbés.

Les équations de l’écoulement perturbé sont alors linéarisées, ce qui donne lieu à des équa-

tions aux perturbations linéaires sous forme
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di v v∗ = 0 (1.25)

R(∂t +Vb∂x)v∗+U ′
b v∗e1 = −gradp∗+η0∆v∗+η0y ṽ∗ (1.26)

où ṽ∗ = (u∗
y + v∗

x ,2v∗
y , v∗

z +w∗
z )t , η0 = (U ′

b)n−1 et e1 = (1,0,0)t

Ces équations étant invariantes par translation suivant x, z et t , elles admettent une solution

sous forme de modes normaux

[v∗, p∗,h∗] = [v1, p1(y),h1]e i (αx+βz−ω t ) + c.c. (1.27)

où v1 = (u1(y), v1(y), w1(y))t .

α et β représente, respectivement, le nombre d’onde dans la direction longitudinale et trans-

versale, et ω est la fréquence complexe.

En substituant (1.27) dans le système (1.25),(1.26), on obtient

i (αu1 +βw1)+ v ′
1 = 0 (1.28)

α i Ru1(U − c)+Rv1U ′+ iαp1 = (U ′)n−1[nu′′
1 − (α2 +β2)u1 + (n −1)iαv ′]+

((U ′)n−1)′(u′
1 + iαv1) (1.29)

α i Rv1(U − c)+p ′
1 = (U ′)n−1[v ′′

1 − (α2 +β2)v1 + (n −1)iα (u′
1 + iαv1)]+2((U ′)n−1)′v ′

1 (1.30)

α i Rw1(U − c)+ iβp1 = (U ′)n−1[w ′′
1 − (α2 +β2)w1]+ ((U ′)n−1)′(w ′

1 + iβw1) (1.31)

où la notation " ′ " désigne la dérivée par rapport à la coordonnée normale y .

c =ω/α est la vitesse de phase de la perturbation dans la direction de x.

Ainsi, nous avons quatre équations pour déterminer quatre amplitudes inconnues u1, v1, w1

et p1 satisfaisant les conditions aux limites suivantes

u1(0) = v1(0) = w1(0) = 0 (1.32)

v1(1)+ iα (c −Ub(1))h1 = 0 (1.33)

lim
y→1

η0[U ′′
b h1 +u′

1 + iαv1] = 0 (1.34)

lim
y→1

η0[w ′
1 + iβv1] = 0 (1.35)

lim
y→1

η0[p1 −GBh1 −2v ′
1]+ (α2 +β2)W = 0 (1.36)
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Le système (1.28)-(1.36) constitue un problème aux valeurs propres généralisés qui n’admet

de solution non nulle que si la fréquence ω et le vecteur d’onde (α,β) vérifient la relation de

dispersion de la forme

D(α,β,ω,R,W,n, ...) = 0. (1.37)

Cette relation de dispersion (1.37) est à la base de l’étude de la stabilité linéaire. Dans le

cas général, α, β et ω sont complexes. Pour simplifier, on se limite souvent à l’approche spa-

tiale ou à l’approche temporelle. Dans l’approche spatiale, ω est réel et le nombre d’onde

spatial α(ou β) est complexe. L’amplitude de la perturbation, dans ce cas, croît ou diminue

dans l’espace alors que sa fréquence reste inchangée. L’utilisation de ce type d’approche per-

met d’étudier les instabilités convectives ou absolues. Dans l’approche temporelle, α et β sont

des nombres d’onde réels et la fréquence est complexe ω=ωr + iωi , ωr est la pulsation de la

perturbation et ωi est son taux de croissance. Les vitesses de phase dans les directions longi-

tudinales et transversales sont définies respectivement par cx = ωr

α
et cz = ωr

β
.

Théorème 1.2.1. Â tout mode ((α,β),ω) instable de taux de croissance temporel ωi pour un

nombre de Reynolds R, peut être associé à un mode bidimensionnel (α̃,ω̃) de taux de croissance

temporel ω̃i =ωi α̃/α superieur à ωi , donc plus instable, pour le nombre de Reynolds R̃ = Rα/α̃

inferieur à R.

Le théorème de Squire [33] permet de réduire le problème tridimensionnel à un problème

bidimensionnel équivalent, comme cela a été vérifié dans le cas newtonien. Ici, nous allons

vérifier que ce théorème reste vrai dans le cas des fluides en loi de puissance [34].

La transformation de Squire consiste à introduire le changement de variables suivant :

α̃2 =α2 +β2, α̃ R̃ =αR, α̃ũ =αu1 +βw1, ṽ = v1, p̃ = p1,

ω̃/α̃=ω/α, W̃ /α̃=W /α, B̃/α̃= B/α

En utilisant la transformation précédente, le système à quatre équations (1.28)-(1.31) se

ramène alors en un système à trois équations

i α̃ ũ + ṽ ′ = 0 (1.38)
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i R̃ũ(α̃U − ω̃)+ R̃ ṽU ′+ iα p̃ = (U ′)n−1[nũ′′− α̃2ũ + (n −1)i α̃ ṽ ′]+ ((U ′)n−1)′(ũ′+ i α̃ ṽ) (1.39)

i R̃ ṽ(α̃U − ω̃)+ p̃ ′ = (U ′)n−1[ṽ ′′− α̃2ṽ + (n −1)i α̃ (ũ′+ i α̃ ṽ)]+2((U ′)n−1)′ṽ ′ (1.40)

Le système (1.38)-(1.40) correspond à une perturbation bidimensionnelle avec un nombre de

Reynolds R̃ = α

α̃
R plus petit que le nombre de Reynolds tridimensionnel du système (1.28)-

(1.31) puisque
α

α̃
< 1. Par conséquent, le théorème de Squire est vérifié.

1.2.2 Équations types d’Orr-Sommerfeld

On considère maintenant que l’écoulement perturbé est bidimensionnel dont la pertur-

bation évolue selon la direction longitudinale. On pose alors, c = cx est la vitesse de phase.

On définit la fonction de courant Φ de la perturbation, par :

Φ(x, y, t ) =Φ(y)e iα(x−ct ) + c.c. (1.41)

vérifiant

u =Φ′, v =−iαΦ.

Ainsi, l’équation de conservation de la masse (1.38) est automatiquement vérifiée.

En substituant (1.41) dans (1.39) et(1.40), les équations linéaires de type Orr-Sommerfeld,

pour les fluides en loi de puissance, s’écrivent :

τ
′
n = iα{[R(Ub − c)−4iα(U ′

b)n−1]Φ′−RU ′
bΦ+p∗} (1.42)

p∗′ = iατn −Rα2(Ub −c)Φ (1.43)

où τn = n(U ′
b)n−1(Φ′′+α2Φ) et p∗ = P +2iα(U ′)n−1Φ′.

Les conditions aux limites sont :

Φ(0) =Φ′(0) = 0, (1.44)

τn(c −Ub)+ ((U ′
b)n)′Φ|y=1 = 0, (1.45)

(Ub − c)p∗+ (α2W +G cotβ)Φ|y=1 = 0. (1.46)



1.2 Analyse de la stabilité linéaire 22

L’utilisation du changement de variable τn dans les équations, nous a permis d’éliminer les

singularités à l’interface y = 1.

On a utilisé la condition cinématique pour déterminer la valeur de h1, tel que

h1 =R

(
Φ(1)

c −Ub
e iα(x−ct )

)
=R

(
Φ(1)

c − 2n+1
n+1

e iα(x−ct )

)
.

En éliminant la pression dans le système precédant, on obtient l’équation type Orr-Sommerfeld

dans le cas :

a) n > 1 :

τ′′n +α2τn −4α2[(U ′
b)n−1Φ′]′ = iαR{(Ub − c)(Φ′′−α2Φ)−U ′′

bΦ} (1.47)

Φ(0) =Φ′(0) = 0, (1.48)

τn(1)− G

c − 2n+1
n+1

Φ(1) = 0, (1.49)

αR

(
c − 2n +1

n +1

)
Φ′(1)− iτ′n(1)−α

α2W +G cotβ

c − 2n+1
n+1

Φ(1) = 0. (1.50)

b) n = 1 :

τ′′1 +α2τ1 −4α2Φ′′ = iαR{(Ub −c)(Φ′′−α2Φ)−U ′′
bΦ} (1.51)

où τ1 =Φ′′+α2Φ.

Φ(0) =Φ′(0) = 0, (1.52)

τ1(1)− 3

c −3/2
Φ(1) = 0, (1.53)

αR(c −3/2)Φ′(1)− iτ′1(1) =α
α2W +3cotβ

c −3/2
Φ(1) = 0. (1.54)

avec

h1 =R

(
Φ(1)

c −3/2
e iα(x−ct )

)
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Le système d’équations avec les conditions aux limites représente un problème aux va-

leurs propres avec c comme valeur propre correspondante. L’intégration analytique de ce sys-

tème d’équations est impossible dans le cas général. Elle peut être effectuée dans des situa-

tions asymptotiques pour les cas des courtes (α>> 1) et grandes (α<< 1) longueurs d’ondes.

Par conséquent, nous procédons par la méthode asymptotique, en cherchant une solution

type grande longueur d’onde. Pour la résolution numérique, nous adoptons la méthode de

Ricatti[35].

1.2.3 Résolution Asymptotique (Onde Longue)

La difficulté consiste à déterminer les valeurs propres c (ou ω) ainsi que les fonctions

propres Φ et ses dérivées associées au problème aux valeurs propres qui est définie par le sys-

tème de type Orr-Sommerfeld et les conditions aux limites lorsque α appartient au voisinage

de zéro. La solution est ainsi exprimée en séries de puissances de α[30] :

τn = τn0 + iατn1 −α2τn2 + ..... (1.55)

Φ = Φ0 + iαΦ1 −α2Φ2 + ..... (1.56)

c = c0 + iαc1 −α2 c2 + ..... (1.57)

En substituant (1.55)-(1.57) dans (1.47)-(1.50) et en collectant ordre par ordre, on obtient :

A l’ordre α0 :

0 < y < 1 : τ′′n0 = 0 et τn0 = n(U ′
b)n−1Φ′′

0 (1.58)

y = 0 : Φ0 = Φ′
0 = 0 (1.59)

y = 1 : τ′n0(1) = 0 (1.60)

c0 = 2n +1

n +1
+G

Φ0(1)

τn0(1)
(1.61)

On pose z = 1− y , la solution est

Φ0 = A1
n

G(2n +1)

(
n

n +1
z1+1/n − z + 1

n +1

)
,



1.2 Analyse de la stabilité linéaire 24

A1 est une constante multiplicative arbitraire.

La contrainte tangentielle à la surface libre (1.61) détermine la vitesse de phase

c0 = 2n +1

n

et fait apparaitre le caractère interfacial des ondes. Comme c0 est réel positif alors les ondes se

propagent dans le sens des x croissants et à une même célérité sans dispersion avec un taux

de croissance nul. Donc, l’axe α = 0 fait partie de la courbe de stabilité marginale et corres-

pond a un saut hydraulique. Ceci est lié au fait que cet ordre d’approximation est sans inertie

et correspond à un équilibre de forces gravité-visqueuse dont le champ des vitesses répond

instantanément à toute perturbation interfacial sinusoïdale.

La figure 1.4 montre la variation de la vitesse de phase c0 par rapport à l’indice du comporte-

ment non newtonien pour le cas limite des grandes ondes. Cette vitesse des ondes diminue

quand l’indice n augmente et prend la valeur 2 comme cas limite. Quand n tend vers zéro la

vitesse de phase croît vers l’infini.

A l’ordre α1 :

0 < y < 1 : τ′′n1 = R
{
(Ub −c0)Φ′′

0 −U ′′
bΦ0

}
et τn1 = n(U ′

b)n−1Φ′′
1 (1.62)

y = 0 : Φ1 = Φ′
1 = 0 (1.63)

y = 1 : τ′n1 = B − (2n +1)2

n2(n +1)
(1.64)

c1 = − 2n +1

n(n +1)
τn1 −G Φ1 (1.65)

La fonction propre Φ1 est considérée comme correction de Φ0, ce qui nous a permis d’annuler

une constante d’intégration, donc on obtient :

c1 = B

n
− 2(2n +1)2 R

n3 (3n +2)G
(1.66)

Cette équation montre que, pour α très proche de zéro, la partie imaginaire de la célérité

change de signe par rapport au nombre de Reynolds R, supérieur ou inférieur à Rc [23], au-

dessus duquel des perturbations ne sont pas atténuées :

Rc = n2 (3n +2)G

2(2n +1)2
cot(β) (1.67)
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FIGURE 1.4 – variation de la vitesse de phase c0 par rapport à l’indexe n
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On remarque que le film peut être instable pour de faibles nombres de Reynolds, par exemple

sur un plan vertical (β=π/2) Rc = 0.

A l’ordre α2 et α3, on aura :

0 < y < 1 : τ′′n2 −τn0 +4[(U ′
b)n−1Φ′

0]′ = R{(c0 −Ub)Φ′′
1 + c1Φ

′′
0 +U ′′

bΦ1} (1.68)

τn2 = n(U ′
b)n−1(Φ′′

2 −Φ0) (1.69)

y = 0 : Φ2 = Φ′
2 = 0 (1.70)

y = 1 : τ′n2 +R

(
2n +1

n(n +1)
Φ′

1 +c1Φ
′
0

)
= n +1

2n +1
B(nGΦ1 −c1) (1.71)

c2 = −GΦ2 −c1τn1 − 2n +1

n(n +1)
τn2 (1.72)

0 < y < 1 : τ′′n3 −τn1 +4[(U ′
b)n−1Φ′

1]′ = R{(Ub −c0)(Φ′′
2 +Φ0)−c1Φ

′′
1 −c2Φ

′′
0 −U ′′

bΦ2} (1.73)

τn3 = n(U ′
b)n−1(Φ′′

3 −Φ1) (1.74)

y = 0 : Φ3 =Φ′
3 = 0 (1.75)

y = 1 :

τ′n3 +R

(
2n +1

n(n +1)
Φ′

2 +c2Φ
′
0 + c1Φ

′
1

)
= n(n +1)

2n +1

[
GBΦ2 −

{
W − n(n +1)

2n +1
c2GB

−n2(n +1)2

(2n +1)2
c2

1GB

}
Φ0 + n(n +1)

(2n +1)
c1GBΦn1

]
(1.76)

c3 =−GΦ3 − c2τn1 − c1τn2 +τn3(Ub − c0) (1.77)

Les résultats de chaque intégration nous informent, au seuil de la criticalité, sur les méca-

nismes physiques au début de l’instabilité. A l’ordre trois, la célérité c est donnée par :

c = c0 + iαc1 −α2 c2 − iα3c3 +O (α3) (1.78)

avec

c0 = 2n +1

n
(1.79)
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c1 = B

n
− 2(2n +1)2 R

n3 (3n +2)G
(1.80)

c2 = (112n3 +260n2 +199n +50)(2n +1)3 R2

n3 (5n +4)(4n +3)(3n +2)(n +1)3 G2
− (n +1)2 B 2

n2 (2n +1)

− (2n +1)(26n5 +8n4 −57n3 −68n2 −32n −6)R B

G n4 (4n +3)(3n +2)(n +1)2

(1.81)

c3 = d0 R3+d1 B R2+d2 R2+d3 R B 2+ n +1

n(2n +1)
B 2− (2n +1)

G(n +1)n
W − (4n2 −16n −3)

3n(3n +1)(−1+2n)
(1.82)

avec

d0 = (460800+314549120n4 +36430720n2 +670864732n6 +640292694n7 +301013240n9+
484424793n8 +153021368n10 +130880640n3 +6082560n +535513848n5 +58936656n11+

14678992n12 +1710912n13)(2n +1)/(80n7(3n +2)2(5n +4)(6n +5)(4n +3)(n +1)6

(3n +4)(2+n)(2n +3)G3)

d1 =−(2n +1)3(124032n11 +829660n10 +2732340n9 +6803361n8 +14799467n7+
25872826n6 +32838604n5 +28837600n4 +17009040n3 +6438720n2 +1416960n +138240)/

(60G2n5(3n +2)2(5n +4)(4n +3)(n +1)5(3n +4)(2+n)(2n +3)BR2

d2 =− (2n +1)3(2812n4 +10876n3 +14997n2 +8858n +1904)

24n2(2+n)(n +1)4(4n +3)(5n +4)(3n +2)G2

d3 =− (n −2)(16n3 +47n2 +42n +12)(2n +1)

6n3(2+n)(n +1)2(3n +2)G

La figure1.5 présente la courbe de stabilité marginale, pour différentes valeurs de n, à

l’ordre trois. Les solutions sont obtenues en annulant la partie imaginaire dans c. Cette solu-

tion asymptotique présente le même caractère qualitatif que celui dans le cas newtonien[36].

On constate qu’en s’éloignant légèrement du point critique ces dernières, calculées jusqu’à

l’ordre trois, ne traduisent pas convenablement le mécanisme d’instabilité.
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FIGURE 1.5 – Courbe de stabilité marginale donnés par le développement asymptotique pour

différentes valeurs de n dans le cas W = 10 et β = π/2 : (b) est un agrandissement de (a)au

voisinage de zéro.
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1.2.4 Résolution numérique

Dans la section précédente, nous avons adopté une méthode asymptotique pour résoudre

le système de type Orr-Sommerfeld caractérisant l’instabilité qu’au voisinage du point cri-

tique. Les résultats de la section précédente sont insuffisants pour une étude de stabilité et

pour valider les modèles qu’on aura à développer au chapitre suivant. La résolution numé-

rique s’impose dans ce cas. Il est à noter que l’introduction de la variable τn n’est pas seule-

ment une astuce numérique pour annuler la singularité liée à la divergence de la viscosité

effective à la surface libre lorsque n < 1, mais aussi a une signification physique. En effet,

τn représente l’amplitude de la perturbation des composantes du tenseur des contraintes de

cisaillement τx y = η(uy + vx), qui doit rester finie non nulle à la surface libre malgré que la

viscosité effective diverge. Le problème posé par cette singularité a déjà été remarqué, mais,

celle-ci n’a pas été correctement traitée dans [25], en exprimant les conditions au niveau de

la surface libre à une surface artificielle très proche de la surface libre, en utilisant la méthode

de tir qui donne des résultats loin de la solution exacte.

Afin de surmonter les difficultés déjà citées, nous utilisons la méthode de Riccati pour cher-

cher une solution numérique du problème type Orr-Sommerfeld. La théorie générale de cette

méthode a été donnée initialement par Scott [37]. Davey [38] l’a appliqué à l’équation d’Orr-

Sommerfeld, dans le cas d’une seule couche, pour le cas d’un fluide newtonien. Cette mé-

thode a été aussi utilisée pour le même problème par Amaouche et al.[5] dans le cas de deux

fluides superposés entre deux plaques infinies. Cette méthode permet de transformer notre

problème aux valeurs propres en un problème non linéaire avec condition initiale (z = 0),

dont les singularités en y = 1 seront traitées sans difficulté.

On considère le système d’Orr-Sommerfeld 1.42-1.46, réécrit sous la forme suivante :


d

d y
X = A1 X + A2Y ,

d

d y
Y = B1 X +B2Y .

(1.83)

où X t = (Φ,Φ′)t , Y t = (τn , p∗)t ,
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A1 =
 0 1

−α2 0

, A2 = 1

n
(U ′

b)1−n

 0 0

1 0

, B2 = iα

 0 1

1 0


et

B1 =−iα

 RU ′
b 4iα (U ′

b)n−1 −R(Ub −c)

−iαR(Ub − c) 0

.

Introduisant maintenant, la matrice de Riccati R à travers la transformation

X =RY . (1.84)

En dérivant l’équation (1.84) par rapport à y , et en utilisant les équations (1.83), il s’en-

suit que R satisfait l’équation différentielle matricielle non linéaire du premier ordre, appelée

équation de Riccati, suivante :

d

d y
R =−RB1R−RB2+ A1R+ A2 (1.85)

du fait que X (0) = 0 et Y (0) ̸= 0 on a alors

R (0) = 0, (1.86)

Nous résolvons le problème aux valeurs initiales (1.85 ) et (1.86) par le schéma de Runge-

Kutta d’ordre quatre. Pour remplir les conditions aux limites en y = 1, la valeur propre c doit

être variée jusqu’à ce que

det




(U ′n
b )′(1)

c −Ub(1)
0

−α2W +G cotβ

c −Ub(1)
0

R+
 1 0

0 1


= 0 (1.87)

La courbe de stabilité marginale de la solution numérique présente la même allure que

celle du cas newtonien. La figure 1.6 présente une comparaison entre les résultats de la réso-

lution numérique avec les résultats du développement asymptotique pour les petits nombres

d’ondes. Les nombres d’onde en fonction du nombre de Reynolds sont présentés pour deux

classes de fluides représentées par l’indice n (n = 0.8 et n = 1.47) dans le cas d’un plan vertical

β = π/2 et un W = 10. Les résultats numériques et asymptotiques concordent au voisinage

de la criticalité. Au delà, la solution asymptotique diverge. Ces résultats mettent en évidence
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la validité de la méthode proposée, utilisée pour la résolution numérique du système type

Orr-Sommerfeld.

1.3 Conclusion

Dans ce chapitre, nous avons résolu asymptotiquement le problème linéaire dans le cas

des grandes ondes ce qui nous a permis de donner explicitement le seuil d’instabilité de

l’écoulement. En plus, nous avons aussi résolu numériquement les équations de type Orr-

Sommerfeld en adoptant la méthode de Riccati. Une comparaison des résultats a été effec-

tuée. Comme il est important de signaler que notre résolution numérique nous a permis de

remédier au mauvais traitement de la singularité à la surface libre utilisé par plusieurs au-

teurs.
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FIGURE 1.6 – Comparaison entre les résultats donnés par le développement asymptotique et

la résolution numérique du système type Orr-Sommerfeld pour différentes valeurs de n.



Chapitre 2

Modélisation et Technique de

Régularisation

L’analyse de stabilité menée au chapitre précédent a permis de déterminer le seuil d’in-

stabilité (apparition d’ondes) ainsi que le nombre d’onde et la vitesse de phase associés. Au-

delà du seuil, les ondes déclenchées par cette instabilité évoluent en aval en raison d’effets

non linéaires, ce qui rend l’hypothèse de petites perturbations non valable. Les ondes se pro-

pagent beaucoup plus rapidement que la vitesse de phase calculée par la théorie linéaire.

Dans le cas des domaines étendus de film liquide mince, la simulation de la dynamique non-

linéaire du film est complexe et coûteuse en temps. Il est évident qu’on voudrait chercher

des modèles à équations simples tout en gardant une bonne concordance avec les équations

exactes. Dans ce chapitre, nous utilisons la modélisation asymptotique aux grandes longueurs

d’ondes, combinée avec la technique des résidus pondérés. Cette méthode est relativement

récente et elle décrit correctement aussi bien le début de l’instabilité que relativement loin du

seuil. Cette approche a été suggérée par Ruyer-Quil et Manneville [39][3] et a été utilisée avec

succès dans le cas des écoulements étendus de fluides newtoniens. Il s’agit alors de généra-

liser cette théorie au cas des fluides non newtoniens tout en introduisant des simplifications

dans l’établissement des modèles. En premier, nous établirons des modèles complets d’ordre

un et deux dans le cas 2D et 3D, ensuite, des modèles simplifiés sont proposés .
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2.1 Equation de couche limite

Pour de faibles nombres de Reynolds à modérés, l’étude linéaire montre que l’instabilité

de l’écoulement de Nusselt est entrainée par une distorsion interfaciale avec des longueurs

d’ondes beaucoup plus grandes que l’épaisseur du film, sauf dans le cas des plans légèrement

inclinés (β < 1◦)[40], ou bien pour des fluides avec une faible tension superficielle[40]. Nous

ne tiendrons pas compte de ces situations extrêmes pour lesquelles l’instabilité devient une

instabilité des ondes courtes.

On considère que l’écoulement est soumis à une perturbation de grande longueur d’onde λ

dans la direction longitudinale. Dans ce cas, on pose ϵ= h0/λ (ϵ<< 1).

Ainsi, on a :

∂y ∼ ϵ0 et ∂x ∼ ∂z ∼ ∂t ∼ ϵ1

Système à l’ordre deux :

Le système d’équations (1.13)-(1.16) s’écrit à l’ordre ϵ2 :

ux + vy +ϵwz = 0 (2.1)

Rϵ
[
ut +uux + vuy +ϵwuz

]+Px =G + (ηuy )y +2ϵ2 {
[ηux]x + [ηvx ]y + [ηuz]z

}
(2.2)

Py =−ϵGB +ϵ2 {
[ηuy ]x +2[ηvy ]y

}
, (2.3)

Rϵ2 [
wt +uwx + v wy

]+Pz = ϵ[ηwy ]y +ϵ2 {
[ηuz]x + [ηvz]y

}
(2.4)

L’équation (2.2) tient compte des effets provenant des termes de dissipation visqueuse

du second ordre ∼ uxx . Ces termes jouent un rôle important dans l’apparition des ondes de

dispersion observées dans l’expérience. Dans l’équation de conservation de la quantité de

mouvement dans la direction normale à l’interface (2.3), les termes inertiels sont négligés

puisqu’ils sont d’ordres supérieurs.
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Les conditions aux limites correspondantes sont

En y = 0 :

u = v = w = 0 (2.5)

En y = h(x, z, t )

v = ht +uhx +whz , (2.6)

P =−2ηvy −ϵW (hxx +hzz), (2.7)

ηuy = ϵ2η (4uxhx − vx) (2.8)

ηwy = ϵη (uzhx −2vy hz − vz) (2.9)

Introduction des débits locaux :

Afin de réécrire la condition cinématique en fonction du débit de l’écoulement, on définit les

débits locaux dans la direction de l’écoulement et la direction transversale respectivement

q =
∫ h

0
u d y, et q̃ =

h∫
0

wd y

En intégrant l’équation de continuité (2.1) par rapport à y sur l’intervalle [0,h], on aura

h∫
0

(ux + vy +wz)d y =
h∫

0

uxd y + v(h)− v(0)+
h∫

0

wzd y

= d

d x

 h∫
0

ud y

−u(h)hx + v(h)− v(0)+ d

d z

 h∫
0

wd y

−w(h)hz = 0

En utilisant la condition cinématique à la surface libre (2.6) et la condition à la paroi (2.5),

l’équation de continuité peut être écrite sous une forme intégrale suivante

ht +qx +ϵ q̃z = 0 (2.10)

Elimination de la pression :

L’intégration de l’équation de la quantité de mouvement (2.3) le long de la direction normale

(entre y et h) donne, en vertu de la condition normale à l’interface (2.7), l’expression de la

pression

p(x, y, t ) =−ϵW (hxx +hzz)+2η (ux +wz)+ϵG cotβ(h − y)+ϵ2
∫ y

h
(ηuy )x d y.
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En remplaçant cette expression dans les équations (2.2) et (2.4), on aboutit à l’élimination

de la pression du problème initial :

Rϵ(ut +uux + vuy +wuz) =G +ϵ(W (hxxx +hzzx )−G cotβhx)+ (ηuy )y

+ϵ2
(
4ηxux +ηy vx +3ηuxx + (ηuz)z +hx(ηuy )x |y=h −

∫ y

h
(ηuy )xxd y

)
. (2.11)

Rϵ2[wt +uwx + v wy ] = ϵW (hxxz +hzzz)−ϵG cotβhz +ϵ(ηwy )y

+ϵ2
(
2ηuxz +2ηz ux +ηx uz +ηy vz +hz(ηuy )x |y=h −

∫ y

h
(ηuy )xzd y

)
, (2.12)

Finalement, la dynamique du film dans le cas tridimensionnel est régie par (2.1), (2.11) et

(2.12) sous les conditions aux limites (2.5), (2.8), (2.9) et (2.10). Ce système est cohérent à

l’ordre ϵ2.

L’expression de la viscosité est donnée à l’ordre deux par

η=
{

(uy +ϵ2vx)2 +ϵ2(4u2
x +2w 2

z +u2
z +w 2

y )
}(n−1)/2

. (2.13)

Et si on développe à l’ordre O (ϵ2), (2.13) devient

η= |uy |n−1 +ϵ2(n −1)|uy |n−3(vxuy +2u2
x + (u2

z +w 2
y )/2) si 0 ≤ y < h(x, t ) (2.14a)

et

η|y=h = ϵn−1
(
2u2

x + (u2
z +w 2

y )/2
)(n−1)/2

si y = h(x, t ). (2.14b)

Système bidimensionel :

Dans le cas bidimensionnel, en projetant les équations sur le plan (x, y), fait que la dynamique

du film à l’ordre ϵ2 est régie par

ux + vy = 0 (2.15)

Rϵ(ut +uux + vuy ) =G +ϵ(W hxxx −G cotβhx)+ (ηuy )y

+ϵ2(4ηxux +ηy vx +3ηuxx +hx(ηuy )x |y=h −
∫ y

h
(ηuy )xxd y). (2.16)

avec les conditions aux limites

En y = 0 :

u = v = 0 (2.17)
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En y = h(x, t )

ηuy = ϵ2η (4uxhx − vx) (2.18)

qx +ht = 0. (2.19)

L’équation (2.16) est appelée équation de couche limite [6][41] qui est cohérente à l’ordre

ϵ2. Cette équation à l’ordre ϵ devient

Rϵ(ut +uux + vuy ) =G +ϵ(W hxxx −G cotβhx)+ (ηuy )y . (2.20)

Dans le cas bidimensionnel, l’expression sans dimension de la viscosité s’écrit

η= {
(uy +ϵ2vx)2 +4ϵ2u2

x

}(n−1)/2
. (2.21)

Ou encore

η= |uy |n−1 +ϵ2(n −1)|uy |n−3(vxuy +2u2
x) si 0 ≤ y < h(x, t ) (2.22a)

et

η|y=h = ϵn−1 (2|ux |)n−1 si y = h(x, t ). (2.22b)

On note finalement, que la dynamique du film est régie par (2.1), (2.19) et (2.16) avec les

conditions aux limites (2.5) et (2.7).

Analyse des paramètres :

Rappelant que le paramètre W est une autre formulation assez courante du nombre de Weber.

Il joue un rôle important dans le méchanisme qui produit des ondes plus courtes observables

dans les écoulements de films minces qui sont des ondes de type capillaire-gravité. En effet, le

rapport W /G cotβ, comme le montre l’équation (2.16), caractérise l’équilibre entre les effets

du gradient de pression généré par la tension de superficielle et les effets de gravité, ce qui

nécessite W /G cotβ doit être d’ordre de l’unité ou plus. Ce mécanisme qui empêche l’onde

de rupture est rendu possible car We est généralement élevé. Des situations réelles peuvent

donc exister pour que l’expansion de grande longueur d’onde sur laquelle repose le modèle

actuel s’applique.
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Pour caractériser ces cas réels, il est intéressant d’abord d’exprimer le nombre de Reynolds R

en fonction de ϵ, W , β et les propriétés physiques du fluide, on obtient :

R = (
ϵ2K a/W

) n+2
2n

(
G/sinβ

) 3n−2
2n , (2.23)

où

K a = (σ/ρ)(ρ/K )
4

2+n g
2−3n
2+n

est le nombre de Kapitza.

En variant ϵ2 au dessous d’une certaine borne supérieure, par exemple 0.1, l’expression ci-

dessus permet de déterminer une bande de variation de R, pour un fluide donné et des va-

leurs fixés de W et β. En d’autres termes, les valeurs constantes de W peuvent être obtenues

pour un fluide donné et β fixé, en changeant à la fois R (c’est-à-dire h0) et ϵ.

les figures 2.1 montrent, pour β = π/2 et quelques valeurs représentatives de W , la gamme

de R où le modèle peut être appliqué. Pour cela, nous avons choisi les caractéristiques phy-

siques données dans le tableau 1 du chapitre1. Les figures illustrent bien l’existence de cas

réels d’écoulements pour lesquels les hypothèses de base, modélisation aux grandes ondes,

peuvent être posées.
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W=10W=25

(a)n=0.8

W=1

R
25 50 75 100

e2

0,025

0,050

0,075

0,100

n=0.9 (b)
W=20

W=1

W=5

R
25 50 75 100

e2

0,025

0,050

0,075

0,100

W=10

n=1.47

W=1

W=100
(c)

R
25 50 75 100

e2

0,025

0,050

0,075

0,100

n=1.8W=10

W=1

W=5

(d)

R
5 10 15

e2

0,025

0,050

0,075

0,100

FIGURE 2.1 – le carré de ϵ en fonction du nombre de Reynolds R dans des situations réelles

pour certaines valeurs représentatives de W et pour différentes n.
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2.2 Les équations non-linéaires d’évolution

Dans cette section, on utilise la méthode des résidus pondérés combinée avec l’approche

asymptotique de Benney. Ainsi le champ de vitesse peut s’écrire sous la forme suivante

u(x, y, z, t ) = u∗
0 +ϵu∗

1 + ...+ϵM u∗
M +o(ϵM ) =

i=M∑
i=0

ϵi u∗
i +o(ϵM ) (2.24)

où u∗
i est la solution de notre problème au i ème ordre.

Comme dans le cas newtonien [18][3], il a été vérifié que la solution de notre problème au

i ème ordre s’écrit sous la forme[42][27]

u∗
i (x, y, z, t ) =

Mi∑
m=0

am(x, z, t ) fm(Z ) (2.25)

avec { fm , m = 0..Mi } est la famille génératrice du i ème espace de solution où Mi entier fini

(c’est-à-dire, l’espace de solution à tout ordre est de dimension fini suivant la direction nor-

male y) , Z = 1− y/h(x, z, t ) est une coordonnée réduite de la variable normale y et am(x, z, t )

sont des amplitudes à déterminer.

2.2.1 Modèles bidimensionnels

2.2.1.1 Modèle complet d’ordre un

Jusqu’à l’ordre o(ϵ), l’expression de u est donnée par

u(x, y, t ) = u∗
0 +ϵu∗

1 +o(ϵ) (2.26)

où u∗
1 est la correction au premier ordre du terme principal u∗

0 (d’ordre zéro).

Afin de construire le modèle aux résidus pondérés à l’ordre un, premièrement on cherche la

base de l’espace des solutions d’ordre zéro. En effet, l’introduction de l’expression (2.26) dans

le système (2.15) et (2.16), et en collectant ordre par ordre, l’ordre zéro est donné par

(ηu∗
0y )y +G = 0 (2.27)

u∗
0 (0) = 0 (2.28)

u∗
0y (h) = 0 (2.29)
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L’intégration de l’équation (2.45), permet de retrouver la famille génératrice {1, Z 1/n , Z 1+1/n}

de l’epace de solution d’ordre zéro. En utilisant les conditions aux limites (2.46) et (2.47) la

base de l’espace des solutions est réduite à une seule fonction f0(z) = 1− Z 1+1/n . Par suite, le

profil de vitesse est donné par

u = a(x, t ) f0(Z )+ϵu∗
1 (2.30)

Du moment que le débit local q apparaît dans l’équation (2.19) comme variable principale

de la même façon que l’épaisseur du film, on peut prendre, alors, le couple (h, q) comme

inconnue de notre modèle. Donc, on transforme le coefficient a en fonction de q et on réécrit

l’équation (2.30) comme suit :

u = u0 +ϵu1 (2.31)

où

u0 = 2n +1

n +1

q

h
f0(Z )

et

u1 = u∗
1 −

2n +1

n +1

1∫
0

u∗
1 dY

 f0(Z ).

Notons que u0 et u1 sont tels que

h∫
0

u0d y = q et

h∫
0

u1d y = 0 (2.32)

En multipliant l’équation de couche limite (2.16) par une fonction poids, notée F , et en

intégrant entre 0 et h, on obtient

h∫
0

F (y)
{

(ηuy )(1)
y +G +ϵW hxxx −Rϵ(ut +uux + vuy )(0) −ϵG cotβhx

}
d y = 0 (2.33)

Les indices supérieurs (0) et (1) indiquent l’ordre de l’approximation de u dans l’expression

correspondante.

On remarque que le terme visqueux est le seul où la correction doit être tenue en compte.
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Pour pouvoir simplifier la correction d’ordre un dans (2.33), deux intégrations par parties sont

nécessaires. Ce qui donne

h∫
0

F (y)(ηuy )(1)
y = [un

y F ]h
0 − [(u0 +nϵu1)un−1

0y Fy ]h
0 +

∫ h

0
(u0 +nϵu1)(un−1

0y Fy )y d y (2.34)

Ceci est obtenu en utilisant l’équation (2.22a) et le développement un
y = un−1

0y (u0y +nϵu1y ).

À présent, on peut montrer que la correction u1 peut être éliminée du calcul par un simple

choix d’une fonction adéquate F , telle que

F |y=0 = 0 un−1
0y Fy |y=h = 0 (un−1

0y Fy )y =−c(x, t ) (2.35)

où c(x, t ) est une fonction indépendante de y qui sera précisée ultérieurement.

Avec les relations (2.32), le membre de droite de l’équation (2.34) se réduit à −qc. De la se-

conde et de la troisième condition dans (2.35), on obtient , d’après l’expression de u0

n +1

n
G1−1/n qn−1

h2n
Fy = c f0y (2.36)

Cette équation est satisfaite avec c = n +1

n
G1−1/n qn−1

h2n
et par conséquent F = f0.

Ainsi, l’équation (2.33), avec (2.34), prend la forme finale

qn

h2n
−h{1+ϵ(

W

G
hxxx −cotβhx)}

+2ϵ
Re

G

2n +1

3n +2
{qt + 11n +6

4n +3

qqx

h
−3

2n +1

4n +3

q2

h2
hx} = 0 (2.37)

Ajoutée à l’équation (2.19), l’équation (2.37) complète notre modèle au premier ordre pour

les deux inconnues h et q . On constate que dans le cas n = 1, pour un fluide newtonien, on

retombe sur le modèle obtenu par Ruyer-Quil et Manneville [3, 19].

À présent, on valide notre modèle au voisinage de la criticalité par l’équation type Ben-

ney, qui est exacte au point critique. En injectant l’expression q = q0 +ϵq1 dans l’équation du

modèle (2.37), on obtient

q0 = h2+1/n (2.38)

q1 = h2+1/n

n
{(2

ReG2/n−1

(3n +2)
h1+2/n −cotβ)hx + W

G
hxxx} (2.39)
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Une fois remplacée dans l’équation cinématique (2.19) on obtient l’équation de type Benney,

la même que celle établie par Miladinova et al. [24] :

ht + {h2+1/n + ϵ

n
[(

W

G
hxxx −cotβhx)h2+1/n + 2Re

3n +2
G2/n−1h3/n+3hx]}x = 0 (2.40)

On remarque que si on remplace n = 1 on retrouve l’équation de Benney dans le cas d’un

fluide Newtonien [14]. Dans ce cas (2.40) devient

ht + {h3 +ϵ[(
W

3
hxxx −cotβhx)h3 + 6Re

5
h6hx]}x = 0 (2.41)

Finalement, on voit bien que notre modèle est un modèle type Benney au voisinage de la cri-

ticalité.

Par ailleurs, loin du seuil d’instabilité, notre modèle garde les avantages de la méthode

intégrale de Shkadov. En effet, Shkadov a utilisé, dans le cas Newtonien, la méthode intégrale

de couche limite [18, 2] en intégrant directement l’équation (2.16) suivant l’épaisseur du film

sans tenir compte de la correction d’ordre un du profil de vitesse u. Ceci correspond dans

notre cas à considérer la fonction poids égale à la fonction constante 1. Par conséquent, on

retombe sur le modèle type Shkadov dans le cas non-newtonien[25] donné ci-dessous, asso-

ciée à l’équation(2.19) :

qn

h2n
−h{1+ϵ(

W

G
hxxx −cotβhx)}+ϵ

Re

G
{qt +2

2n +1

3n +2
(2

qqx

h
− q2

h2
hx)} = 0 (2.42)

Pour le cas newtonien, il suffit de remplacer n = 1 et on obtient le modèle de Shkadov

ht = −qx (2.43)

qt = 5

2
h − 5

2

q

h2
−R

(
q2

h

)
x
− 5

6
h(W hxxx −3Bhx) (2.44)

Il reste toujours à signaler que le modèle Shkadov ne solutionne pas correctement le point

critique dans le cas non vertical. En effet, on ne retrouve pas l’équation de Benney (2.40) avec

ce dernier modèle.

On note toute fois que le modèle proposé présente des insuffisances, notamment l’ab-

sence des termes de dispersion responsables de l’apparition d’ondes solitaires observable

dans l’expérimentale [20]. Pour cela une théorie à l’ordre deux est nécessaire.
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2.2.1.2 Modèle complet d’ordre deux

On procède de la même manière que le paragraphe précédent en tenant compte de l’ordre

deux.

On a :

u(x, y, t ) = u∗
0 +ϵu∗

1 +ϵ2u∗
2 +o(ϵ2)

u∗
0 étant déterminé précédemment, on s’intéresse au calcul de u∗

1 dont le système est donné

par

(ηu∗
1y )y = R(u∗

0t +u∗
0 u∗

0x + v∗
0 u∗

0y )+W hxxx −G cotβhx (2.45)

u∗
1 (0) = 0 (2.46)

u∗
1y (h) = 0 (2.47)

On verifie facilement que l’espace de solutions est engendré par l’ensemble des fonctions

tests suivantes :

f ∗
1 (Z ) = 1−Z 1+2/n , f ∗

2 (Z ) = 1−Z 2+2/n , f ∗
3 (Z ) = 1−Z 2+3/n et f ∗

4 (Z ) = 1−Z 3+3/n .

D’où, l’expression

u∗
1 =

4∑
i=1

ai (x, t ) f ∗
i (Z ) (2.48)

En remplaçant cette expression dans (2.16) et en identifiant les termes d’ordre un, on obtient

a1 = a3 = 0

Ce qui signifie que deux champs sont requis pour représenter la correction u∗
1 , c’est-à-dire,

deux champs formant une base de l’espace de solutions du premier ordre, soit

u∗
1 = a2(x, t ) f ∗

2 (Z )+a4(x, t ) f ∗
4 (Z ) (2.49)

De la même manière, on peut montrer en utilisant le développement de Taylor, jusqu’à

l’ordre ϵ2, pour le terme visqueux dans (2.16) et en tenant compte de la condition de non

glissement, que la correction u∗
2 appartient à un sous-espace de fonctions, engendré par la

famille de fonctions tests suivantes :

{
f ∗

5 , f ∗
6 , f ∗

7 , f ∗
8 , f ∗

9

}= {
1−Z 1/n ,1−Z 3+4/n ,1−Z 4+4/n ,1−Z 4+5/n ,1−Z 5+5/n}

.
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Ces projections ne sont pas calculées arbitrairement, mais plutôt résultent des profils de vi-

tesse de base et de la première correction. Donc, la description cohérente de la dynamique du

film au second ordre exigerait, en plus des variables fondamentales h et q , tout au plus, sept

autres inconnues dont deux amplitudes pour la correction du première ordre et cinq ampli-

tudes pour le second ordre. On note que les amplitudes du second ordre ne sont pas toutes

indépendantes. Ainsi, la correction d’ordre deux sera éliminée en choisissant des fonctions

poids appropriées.

Par conséquent, le champ de vitesse peut s’écrire de cette façon :

u = a0 f0 +ϵ(a2 f ∗
2 +a4 f ∗

4 )+ϵ2u∗
2 (2.50)

Cette expression de u peut être reformulée, en utilisant le débit au lieu du coefficient a0,

comme suit

u = u0 +ϵu1 +ϵ2u2 +ϵ2u∗
2 (2.51)

avec

u0 = 2n +1

n +1

q

h
f0, u1 = R

(
a f1 +b f2

)
, u2 = u∗

2 −
(∫ h

0
u∗

2 d y/
∫ h

0
f0d y

)
f0, (2.52)

Où a et b sont utilisés par convention à la place de a2 et a4 respectivement, f1 et f2 sont deux

combinaisons linéaires des fonctions tests données précédemment, elle seront définies dans

la suite pour simplifier l’étude. On admet que

h∫
0

u1d y =
h∫

0

u2d y = 0.

Par conséquent, à condition que u2 soit éliminé, la formulation du modèle complet au se-

cond ordre exigerait quatre inconnues h, q , a et b. On aura besoin alors, en plus de l’équation

cinématique (2.19), de trois équations aux résidus. Celles-ci sont obtenues en annulant les

intégrales des résidus sur l’épaisseur du film :

h∫
0

ϕi (y){(ηuy )(2)
y +G +W hxxx −Rϵ(ut +uux + vuy )(1) −ϵG cotβhx +

ϵ2(D1 + (1−δn1)D0)}d y = 0 i = 0,1,2, (2.53)
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où

D0 =
4uxηx +ηy vx +η (uxx −uxx |y=h)−

y∫
h

(ηuy )xx d y

(0)

et

D1 =
[
η(2uxx + (ux |y=h)x)

](0) ;

Les indices supérieurs (0),(1) et(2) indiquent l’ordre de l’approximation de u dans l’expression

correspondante, δn1 est le symbole de Kronecker et ϕ0, ϕ1 et ϕ2 sont des fonctions poids

linéairement indépendantes, sont choisies de telle manière à éliminer u2 dans les résultats

d’intégration.

Il est important de noter que le terme facteur de ϵ2 dans (2.53) est écrit comme la somme de

deux parties D1 et D0 ; la première correspond à la partie newtonienne des termes de diffu-

sion selon la direction de l’écoulement et la seconde représente sa partie non-newtonienne.

On remarque que si n = 1 on aura D0 = 0. Par contre, le calcul de son intégrale est non nulle,
h∫

0

D0 f0d y ̸= 0.

La décomposition ci-dessus est donc effectuée pour souligner l’inconvénient généré par la

non-convergence uniforme de la suite à indice réel. En effet, le théorème d’intégration au

sens de Lebesgue, dans le cas des suites d’indice réel, ne peut pas s’appliquer, en d’autres

termes la limite et l’intégrale ne commutent pas

(
lim
n→1

∫
(.)d y ̸=

∫
lim
n→1

(.)d y

)
. Ceci explique la

présence du facteur (1−δn1) de D0.

En intégrant ce terme par parties, on obtient∫ h

0
(ηuy )yϕi (y)d y = [ηuyϕi ]y=h

y=0 −
∫ h

0
ηuyϕi y d y. (2.54)

En utilisant (2.22a), le second terme dans le côté droit de (2.54) devient∫ h

0
ηuyϕi y d y =

∫ h

0
|uy |n−1uyϕi y d y + (n −1)ϵ2

∫ h

0
|u0y |n−3(v0xu0y +2u2

0x)u0yϕi y d y, (2.55)

où

|uy |n−1uy = |u0y |n−1(u0y +nϵu1y +nϵ2u2y )+ 1

2
n(n −1)ϵ2|u0y |n−3u0y u2

1y . (2.56)
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Maintenant, revenant à (2.54), et en concordance avec (2.55) et (2.56), on obtient après inté-

gration par parties le terme qui contient u2y

∫ h

0
(ηuy )yϕi (y)d y = [

ηuyϕi
]y=h

y=0 − [
(u0 +nϵu1 +nϵ2u2)|u0y |n−1ϕi y

]y=h
y=0

+
∫ h

0
(u0 +nϵu1 +nϵ2u2)(|u0y |n−1ϕi y )y d y

−(n −1)ϵ2
∫ h

0
|u0y |n−3(v0xu0y +2u2

0x +
n

2
u2

1y )u0yϕi y d y. (2.57)

Le premier terme et le second terme du membre de droite de (2.57) peuvent s’écrire indé-

pendamment de u2, en imposant simplement

ϕi |y=0 = 0, (|u0y |n−1ϕi y )|y=h = 0, (2.58)

En raison de la condition d’adhérence à la paroi y = 0, de la condition d’équilibre des contraintes

tangentielles (2.18) et de l’expression (2.22b) du développement de la viscosité à l’interface,

on peut écrire

ηuyϕi |y=h = ϵn+1(2|u0x |)n−1(4u0xhx − v0x)ϕi |y=h . (2.59)

Ainsi, les deux premier termes se réduisent à l’expression (2.59).

La première intégrale du second membre de (2.57) est maintenant l’unique terme qui reste à

examiner. De même, la correction u2 peut être éliminée en utilisant le même argument que

dans la formulation du premier ordre en posant ϕ0 = f0 ou bien en imposant l’orthogonalité

de u2 par rapport à (|u0y |n−1ϕi y )y , i = 1,2, au sens de la norme L2(0,h).

Construction des fonctions tests :

Une simplification intéressante peut être obtenue par une construction appropriée des

fonctions tests f1 et f2, comme il a été mentionné précédemment.

En effet, la fonction test f1 est déterminée comme combinaison de f0 et f ∗
2 :

f1 = f ∗
2 + c1 f0
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tout en vérifiant la condition de nullité au sens de la moyenne

h∫
0

f1d y = 0

Ce qui conduit à

f1 = f ∗
2 −2

2n +1

3n +2
f0. (2.60)

De même, la fonction test f2 est déterminée comme combinaison linéaire de f0, f ∗
2 et f ∗

4 :

f2 = f ∗
4 + c2 f ∗

2 +c3 f0

où c2 et c3 sont deux constantes arbitraires.

En supposant que f2 est nulle au sens de la moyenne,

h∫
0

f2d y = 0,

et en imposant l’orthogonalité de f2 par rapport à f0,

h∫
0

f2 f0d y = 0,

on obtient

f2 = f ∗
4 −3

3n +2

5n +4
f ∗

2 +3
(3n +2)(2n +1)

(5n +4)(4n +3)
f0, (2.61)

Cette procédure doit être poursuivie pour la construction des autres fonctions tests afin de les

annuler au sens de la moyenne et en imposant la condition d’orthogonalité suivante :

h∫
0

fk f j d y = 0, si j ̸= k −1 et j ̸= k +1

h∫
0

fk f j d y ̸= 0, si non

pour un k ≥ 1 donné.

Contrairement à ce qui a été adopté dans les travaux précédents[3][4], dans cette présente

étude, il apparaît que l’orthogonalisation complète n’est pas nécessaire pour éliminer la cor-

rection de second ordre de la vitesse de l’écoulement. Ceci peut être réalisé avec une ortho-

gonalisation partielle réduisant significativement les calculs. Cela s’explique par le fait que la

cohérence jusqu’à l’ordre deux n’est pas liée à une certaine forme particulière de la base de

projection. Formellement, elle doit seulement être développée, étape par étape, à partir du
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profil de vitesse de base et vérifiée les conditions aux limites.

Choix des fonctions poids :

L’élimination de la correction d’ordre deux de la vitesse et, par conséquent, la réduction

de la dimensionnalité du problème est garantie par un choix convenable de fonctions poids.

Rappelons le choix déjà adopté de la fonction poids ϕ0 = f0. Par ailleurs, la fonction poids ϕ1

est obtenue en résolvant l’équation

((u0y )n−1ϕ1y )y = f0 +c0,

afin de satisfaire la condition à la limite (2.58). La constante c0 est déterminée de tel sorte à

satisfaire l’orthogonalité entre ϕ1 et f0.

D’où

ϕ1 = f1 + n(n +1)

(3n +2)(4n +3)
f0 (2.62)

De la même manière la fonction poids ϕ2 est obtenue en résolvant l’équation

((u0y )n−1ϕ2y )y = f1 +c1 f0 + c2

Les constantes c1 et c2 sont déduites en imposant l’orthogonalité de ϕ2 par rapport à f0 et f1.

On deduit

ϕ2 = f2 +2
(2n +1)(n +1)

(6n +5)(5n +4)
ϕ1. (2.63)

Finalement, avec la procédure de simplification précédente, l’équation 2.53 donne lieu au

système d’équations aux résidus suivant

A
(

qt , at , bt

)t
=

(
Q, A, B

)t
(2.64)

où Q, A et B sont des opérateurs différentiels non linéaires donnés dans l’annexe.

La matrice A est donnée par
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A = R


1 − n(n +1)2

(3n +2)(4n +3)(2n +1)
Rh 0

0 Rh −2
(n +1)(2n +1)

(6n +5)(5n +4)
Rh

0 0 Rh

 .

2.2.2 Modèles tridimensionnels

2.2.2.1 Modèle complet d’ordre un

Les équations et les conditions aux limites au premier ordre sont données par

ux + vy +ϵwz = 0 (2.65)

ϵ{Re(ut +uux + vuy )+G cotβhx −W hxxx} = (un
y )y +G , (2.66)

(η0wy )y = Bhz −W (hzx2 +hz3 ) (2.67)

u|y=0 = v |y=0 = w |y=0 = 0 (2.68)

(η0uy )|y=h = (η0wy )|y=h = 0 (2.69)

En prenant, de la même manière que le cas bidimensionnel,

u = 2n +1

n +1

q

h
f0(Z )+u1

avec
h∫

0

u1d y = 0

Alors la solution de l’équation (2.67) est

w =G1−n(Bhz −W (hzx2 +hz3 ))

(
q1−n

h1−2n

)
f0(Z ) (2.70)

L’intégration de l’équation (2.70) par rapport à y , entre 0 et h, donne l’expression de q̃ :

q̃ = n +1

2n +1
G1−n(Bhz −W (hzx2 +hz3 ))

(
h2n

qn−1

)
(2.71)
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En substituant (2.71) dans l’équation cinématique (2.10), on obtient

ht +qx +ϵ

(
n +1

2n +1
G1−n(Bhz −W (hzx2 +hz3 ))

(
h2n

qn−1

))
z
= 0 (2.72)

De la même manière que le cas 2D, l’équation aux résidus d’ordre un en 3D est donnée par

qn

h2n
−h{1+ϵ(

W

G
(hxxx +hxz2 )−cotβhx )}

+2ϵ
Re

G

2n +1

3n +2
{qt + 11n +6

4n +3

qqx

h
−3

2n +1

4n +3

q2

h2
hx} = 0 (2.73)

Finalement, le modèle tridimensionnel d’ordre un est constitué des deux équations (2.72) et

(2.73) pour les champs h et q .

2.2.2.2 Modèle complet d’ordre deux

Rappelons les équations à l’ordre deux et les conditions aux limites correspondantes :

ux + vy +ϵwz = 0 (2.74)

Rϵ(ut +uux + vuy +wuz) =G +ϵ(W (hxxx +hzzx )−G cotβhx)+ (ηuy )y

+ϵ2
(
4ηxux +ηy vx +3ηuxx + (ηuz)z +hx(ηuy )x |y=h −

∫ y

h
(ηuy )xxd y

)
. (2.75)

Rϵ2[wt +uwx + v wy ] = ϵW (hxxz +hzzz)−ϵG cotβhz +ϵ(ηwy )y

+ϵ2
(
2ηuxz +2ηz ux +ηx uz +ηy vz +hz(ηuy )x |y=h −

∫ y

h
(ηuy )xzd y

)
, (2.76)

u|y=0 = v |y=0 = w |y=0 = 0 (2.77)

η (uy −ϵ2(4uxhx − vx))|y=h = 0 (2.78)

ϵη(wy −ϵ(uzhx −2vy hz − vz))|y=h = 0 (2.79)

Construction des fonctions tests

L’obtention du modèle tridimensionnel d’ordre deux se fait avec le même raisonnement que
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le cas bidimensionnel. On garde le même choix des fonctions tests pour le profil de vitesse u,

c’est-à-dire

u = 2n +1

n +1

q(x, z, t )

h(x, z, t )
f0 +ϵ

(
a(x, z, t ) f1 +b(x, z, t ) f2

)+ϵ2u∗
2 (2.80)

Avec f0, f1 et f2 définies dans la section précédente.

Le profil de vitesse w est de l’ordre ϵ, et s’écrit comme

w = ϵw1 +ϵ2w2 +O (ϵ2) (2.81)

En examinant l’équation (2.76), associée aux conditions aux limites, ordre par ordre, on

montre que le terme d’ordre un w1 est engendré par la seule fonction test f0 comme suit :

w1 = 2n +1

n +1

q̃

h
f0(Z )

La correction w2 est, par contre, engendrée par quatre fonctions tests f1, f ∗
2 , f ∗

3 et f ∗
4 véri-

fiant : ∫ h

0
w2d y = 0.

Ainsi, on constate que seule une variable inconnue suplémentaire est nécessaire par rap-

port au cas bidimensionnel, il s’agit du débit transversal q̃ .

Choix des fonctions poids :

En plus de l’équation cinématique, on aura besoin de quatre équations aux résidus nécessi-

tant quatre fonctions poids. Étant donné que les trois premières équations aux résidus sont

déduites de l’équation de u (2.75), on garde alors les même que le cas bidimentionnel, fonc-

tions poids pour celles-ci.

Pour déterminer la quatrième équation aux résidus, on intègre sur l’épaisseur du film le

produit de l’équation (2.76) avec un chois de la fonction poids. Le choix de cette fonction

poids est pris égale à f0, puisque w1 et w2 sont traités de la même manière que u0 et u1 effec-

tuée dans le cas bidimentionnel à l’ordre un, respectivement.

En intégrant, sur l’épaisseur du film, le produit de l’équation (2.76) par la fonction poids f0 et
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en suivant la même procédure , on obtient :

h∫
0

f0
{
ϵ(R[wt +uwx + v wy ]−W (hxxz +hzzz)+G cotβhz)−ϵ2(D̃1 − (1−δn1)D̃0)

}
d y

= un−1
0y (uzhx −2vy hz − vz)|y=h + G(n +1)

2n +1

( q

h2

)n q̃

h2
(2.82)

où

D̃0 = 2ηz ux +ηx uz +ηy vz +hz(ηuy )x |y=h −
∫ y

h
(ηuy )xzd y

et

D̃1 = 2ηuxz

Nous obtenons finalement le modèle aux résidus suivant

Ã
(

qt , at , bt , q̃t

)t
=

(
Q3d , A3d , B3d , Q̃3d

)t
(2.83)

où Q3d , A3d et B3d sont des opérateurs différentiels non linéaires donnés dans l’annexe.

Et la matrice Ã est donnée par

Ã = R



1 − n(n +1)2

(3n +2)(4n +3)(2n +1)
Rh 0 0

0 Rh −2
(n +1)(2n +1)

(6n +5)(5n +4)
Rh 0

0 0 Rh 0

0 0 0 1


.
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2.3 Simplification du modèle complet 2D d’ordre deux

Le modèle complet bidimensionnel du second ordre, obtenu dans la section précédente,

est de grande taille et par conséquent a peu d’intérêt pratique. Ainsi, un modèle simplifié, qui

doit préserver les caractéristiques de la dynamique du film, lesquelles sont présentes dans le

modèle en taille réelle, est à chercher.

Ce modèle simplifié devrait être asymptotique à l’équation unique de type Benney près de la

criticalité, et devrait décrire avec précision la dynamique des écoulements à des nombres de

Reynolds les plus modérés possibles. Suite au travail de Ruyer-Quil et al. [12], on peut montrer

que, dans le présent travail, seuls les champs q et h jouerons un rôle pertinent. Tandis que les

autres champs les suivront dans leurs dynamique, au moins, pour une certaine gamme de

nombres de Reynolds.

2.3.1 Modèle simplifié type simplification adiabatique

Un modèle beaucoup plus simple peut être obtenu en supposant que les champs a et b

peuvent être au moins du second ordre. Cette hypothèse conduit à l’élimination adiabatique

dans la première équation résiduelle, ce que nous appelons le modèle simplifié (SM). Ce mo-

dèle capte d’une manière satisfaisante tous les mecanismes physiques de l’écoulement. Dans

ce cas, il suffit d’annuler les coefficients a et b dans la première équation aux résidus, on ob-

tient un système de deux équations à deux inconnues h et q :

ht = −qx (2.84)

R(qt −QI 1) = Q0 +Qd1 +Hn−1Q∗
d1 + (1−δn1)Qdn + (n −1)Qd0. (2.85)

Ceci peut être obtenu en appliquant la procédure de Galerkin avec une seule fonction poids,

soit ϕ0, et en admettant que le profil de vitesse est donné à l’ordre zéro u = u0.

2.3.2 Modèle réduit

Une autre approche de réduction du modèle complet peut être obtenue en gardant les

champs a et b. Premièrement, nous observons que, en raison du choix particulier des fonc-



2.3 Simplification du modèle complet 2D d’ordre deux 55

tions tests f1 et f2, les champs a et b ne figurent que dans la partie droite de la première

équation du système (2.64) à travers les termes de second ordre QI 2 et Qd2 (voir annexe).

Le terme d’inertie QI 2 et le terme de diffusion Qd2 sont associés à l’advection, par l’écoule-

ment de base, de la correction du premier ordre du profil de vitesse pour le premier et au

caractère non linéaire de la loi de conportement du fluide (non newtonien) pour le deuxième.

Par conséquent, on peut éliminer a et b de la première équation du (2.64), car ils sont déjà

connus jusqu’au premier ordre.

En effet, en annulant les coefficients du terme d’ordre un de l’équation de la couche limite

(2.16) on obtient

a = 2n +1

2G(n +1)2

(
h2

q

)n−1 (
hqt +8

2n +1

5n +4
q

(
qx − 3q

4h
hx

))
, (2.86)

b = (2n +1)3

3G(n +1)3(3n +2)

(
h2

q

)n−1 {
q2

h
hx − n

2n +1
qqx

}
. (2.87)

On note que ces expressions, fonctionnelles de h et q, ne sont pas uniques en raison de leurs

dépendance par rapport aux fonctions tests. Une autre famille de fonctions tests conduirait

à des expressions formellement différentes. Mais tout en gardant à l’esprit que l’unicité de la

première correction du profil de vitesse est vérifiée, quel que soit le choix des fonctions tests.

En insérant ces expressions dans le terme de diffusion Qd2 et le terme d’inertie

QI 2 + n(n +1)2

(3n +2)(4n +3)(2n +1)
R2hat

ce qui permet de les transformer en fonctions de h, q et de leurs dérivées spatiales et tempo-

relles, on obtient

Q̃I 2 = 1

G

n(4n +3)−1

2(3n +2)

( q

h2

)1−n
{

h2qt t − (n −1)
h2

q
q2

t +
2n +1

5n +4

(
17hqqt x +6(4n −5)qqt hx

−44n2 −50n −39

2n +1
hqt qx

)
+ 2n +1

(4n +3)(6n +5)(5n +4)

(
−6(180n3 −176n2 −477n −180)qq2

x

+4(552n3 −332n2 −1150n −435)
q2

h
hx qx −8(22n +17)(2n +1)(3n −5)

q3

h2
h2

x

+12(70n2 +93n +30)q2qxx −12(22n +17)(2n +1)
q3

h
hxx

)}
(2.88)
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Q̃d2 =
1

G

n(n −1)

4(3n +2)(3+4n)

( q

h2

)1−n
{

h2q2
t

q
+ 2n +1

5n +4

(
16hqx −12qhx

)
qt

+ 4(2n +1)2

(3+4n)(6n +5)(5n +4)

(
(77n +60)qq2

x +2(22n +17)
q3

h2
h2

x −2(58n +45)
q2

h
hx qx

)}
. (2.89)

Avec ces approximations, on obtient ainsi une équation plus simple en h et q . Un modèle

réduit (MR) qui gouverne la dynamique non linéaire de l’écoulement est contruit :

R(qt −QI 1) = Q0 +Qd1 +Hn−1Q∗
d1 +R2Q̃I 2

+(1−δn1)Qdn + (n −1)(Qd0 +R2Q̃d2) (2.90)

où Q̃I 2 et Q̃d2 sont exprimés ci-dessus, tandis que les expressions de Q0, Qd0, QI 1, Qd1 , Q∗
d1 et

Qdn sont données dans l’annexe.

Dans le cas d’un fluide newtonien (n = 1), (2.90) prend la forme :

Rqt = R

(
9

7

q2

h2
hx − 17

7

q

h
qx

)
+ 5

2

(
h − q

h2
−cotβhhx + W

3
hhxxx

)
+

(
4

q

h2
h2

x −
9

2h
qxhx −6qhhxx + 9

2
qxx

)
+R2

(
1

210
hqt t + 17

630
hqqxt − 1

105
qhx qt+

1

42
hqx qt − 26

231

q2

h
hx qx + 653

8085
qq2

x +
386

8085
q2qxx + 104

2695

q3

h2
h2

x −
78

2695

q3

h
hxx

)
(2.91)

Afin de comparer le modèle ci-dessus simplifié avec le modèle réduit donné par l’équation

(5.5a) dans Ruyer-Quil et al. [21] pour un fluide newtonien, nous avons d’abord transformé

cette équation en effectuant le changement de variables suivant :

(q,h, x, t ,Γ) → (Rq, (3R)1/3h, (3R)1/3x, (R/9)−1/3t ,W (R2/3)1/3)

et en considérant le cas M a = 0. Nous remarquons que seuls les termes d’ordre zéro et un qui

sont concernés par ce changement de variables. La version transformée de l’équation (5.5a),

où le terme Ineq est donné par (6.3a)[21], coïncide avec le modèle (2.91).
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2.3.3 Régularisation du modèle réduit

Du fait que Q̃I 2 et Q̃dn sont facteurs du nombre de Reynolds au carré dans l’équation

du modèle réduit ci-dessus, invalide clairement l’hypothèse de base du rôle perturbatif de

l’inertie pour des nombres de Reynolds suffisamment élevés. Le développement aux grandes

ondes résultant peut être alors d’une faible convergence ou carrémant divergent. Dans le cas

d’un fluide newtonien, Scheid et al. [43] ont utilisé l’approximation de Padé afin d’obtenir une

version affinée de leur modèle réduit qui est capable de capturer l’apparition d’écoulement

inverse au niveau du front des ondes solitaires. La condition nécessaire de convergence est

naturellement d’assurer la réduction de l’ordre de grandeur des termes Q̃I 2 et Q̃d2 comparé

aux termes d’inertie du premier ordre. Une façon simple d’y parvenir est, selon Ruyer-Quil

et al. [21], est d’exprimer ces termes sous une forme aussi proche que possible de l’ordre

de grandeur du terme d’inertie du premier ordre. Pour n = 1 ceci est rendu possible grâce à

l’équivalence, à l’ordre zéro, entre q et h2+1/n . Pour les fluides en loi de puissance, tandis que

l’aproximation de Q̃d2 comparée au terme d’inertie de premier ordre peut être obtenue de

la même manière, ceci ne peut être pleinement atteint pour Q̃I 2 en raison de la présence du

terme proportionnel à hxx dans ce cas précis.

En effet, après quelques étapes élémentaires, on obtient

Q̃I 2 = 2(2n +1)2(3n +2)−1

Gn2(5n +4)(4n +3)

( q

h2

)1−n
(
(n −1)

q3

h
hxx − n(20n2 +5n −16)

4(2n +1)
q(qt −QI 1)hx

)
+O (ϵ)

Q̃d2 =
(n −1)(2n +1)

4Gn(3n +2)(4n +3)

( q

h2

)1−n
q(qt −QI 1)hx +O (ϵ)

En raison de la présence du terme (n−1)
q3

h2
hxx dans l’expression de Q̃I 2, celui-ci ne peut pas

être en facteur du terme d’inertie du premier ordre qt −QI 1. Ainsi, à l’exception des fluides

newtoniens, une régularisation complète n’est pas possible.

La substitution des expressions ci-dessus dans (2.90) conduit à un autre modèle réduit dé-

nommé le modèle partiellement régularisé (PMR). Une simplification suplémentaire consis-

tant à supprimer directement le terme indésirable (∼ Hxx) qui empêche la régularisation
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complète, ce qui donne un modèle réduit régularisé (RRM)

R(qt −QI 1)

(
1− (2n +1)(35n2 +11n −28)

4n(3n +2)(5n +4)(4n +3)

R

G

( q

h2

)1−n
qhx

)
=Q0 +Qd1

+Hn−1Q∗
d1 + (1−δn1)Qdn + (n −1)Qd0 (2.92)

Nous observons que ce modèle coïncide, en dehors de la mise à l’échelle, avec le modèle

régularisé donné dans [21] lorsque n = 1. En plus, on retrouve le modèle simplifié (SM) en

éliminant les termes facteur de R2.

Nous constatons que les deux équations (2.92) et (2.85) ne diffèrent l’une de l’autre que par

leurs termes d’inertie. Cependant, ces termes coïncident au stade linéaire, dû au terme qua-

dratique (qt −QI 1)qhx . Par conséquent, les modèles précédents reproduisent correctement

le seuil de stabilité linéaire comme dans le cas d’un fluide newtonien. On note que, le modèle

complet, modèle réduit et modèle partiellement régularisé reproduisent correctement l’ex-

pression asymptotique du débit en fonction de l’épaisseur du film jusqu’à O (ϵ2). Toutefois, le

modèle simplifié et le modèle régularisé (pour n ̸= 1) sont mis en défauts.

2.4 Conclusion

Dans ce chapitre, on a mis en évidence des modèles basés sur l’approche asymptotique

de Benney combinée avec la technique des résidus pondérés permetant de décrire la dyna-

mique non linéaire d’un écoulement de film mince d’un fluide en loi de puissance sur un plan

incliné. Un modèle complet à l’ordre deux, de quatre équations d’évolution dans le cas bidi-

mensionnel et de cinq équations d’évolutions dans le cas tridimensionnel, sont établis. Aussi,

des modèles simplifiés de deux équations d’évolutions dans le cas bidimensionnel sont re-

trouvés. Ces modèles dérivés tiennent compte de la plupart des effets physiques importants.



Chapitre 3

Validation des modèles par analyse de

stabilité

Ce chapitre sera consacré à la validation des modèles élaborés au chapitre précédent. En

premier lieu, une comparaison avec les résultats de la stabilité linéaire, obtenus au premier

chapitre, sera effectuée. Par la suite, une étude non linéaire de ces modèles sera abordée afin

de rechercher l’existence de solutions d’ondes stationnaires comparables aux cas newtoniens.

3.1 Stabilité linéaire

Dans cette première partie, deux approches, temporelle et spatio-temporelle de stabilité

linéaire, sont utilisées afin de tester les modèles proposés dans le chapitre précèdent, une

comparaison au spectre linéaire de la résolution numérique du système d’Orr-Sommerfeld

établi initialement sera effectuée.

3.1.1 Approche temporelle

Pour évaluer la validité des modèles proposés, nous comparons les résultats de la stabi-

lité linéaire de l’écoulement de base obtenus par ces modèles à ceux fournis par la résolution

numérique du problème d’Orr-Sommerfeld. On sait qu’il y a à priori, une infinité de modes
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(ω,α), solutions non triviales du système (1.85). On s’intéresse pour l’instant à l’étude d’in-

stabilité temporelle, qui détecte la naissance des premiers modes déstabilisant la solution de

base et donne aussi le seuil d’instabilité en fonction des paramètres du problème. Il suffit de

supposer que

α ∈R et ω=ωr + iωi ∈C.

Lorsque la perturbation n’est ni amplifiée ni atténuée, nous sommes dans les conditions de

stabilité marginale qui sont atteintes pour ωi = 0.

L’écoulemnt de base est donné pour les modèles simplifiés de deux équations par h =
q = 1, tandis que pour le modèle complet de quatre équations il est donné par h = q = 1 et

a = b = 0 . Nous présentons les perturbations sous forme des modes normaux comme

(h, q, a,b)− (1,1,0,0) = (H ,Q, A,B)e i (αx−ω t ) (3.1)

Où H , Q, A et B sont des amplitudes des perturbations initiales, α est le nombre d’onde,

ω = cα est la fréquence, c étant la célérité complexe. Sa partie réelle représente la vitesse de

phase et sa partie imaginaire représente le taux d’amplification des perturbations.

En substituant ces perturbations (3.1) dans les équations linéarisées et après élimination des

amplitudes on aura comme conséquence la relation de dispersion pour le modèle correspon-

dant, notée par

D(α,ω) = 0.

La relation de dispersion correspondant au modèle complet d’ordre deux est excessivement

longue. A titre illustratif, on se limite ici à la présentation de celle du modèle régularisé(RRM) ;

s’écrivant sous la forme

ω=−3

4

(
1+ 2

3

(
351

35
R −cot β

)
iα

)
δn1α

3 +
j=4∑
j=1

a jα
j +o(α4) (3.2)

où :

a1 = (2n +1)

n
,
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a2 =
(

2(2n +1)2

(3n +2)n3

R

G
− cot β

n

)
i ,

a3 =−4

3

(n +2)(2n +1)

n(3n +1)(2n −1)
+2

(2n +1)(5n2 +14n +6)

Gn3(4n +3)(3n +2)
R cotβ−4

(5n2 +14n +6)(2n +1)3

G2n5(4n +3)(3n +2)2
R2

a4 =
[

4
(25n4 +204n3 +384n2 +252n +54)(2n +1)2

(4n +3)2(3n +2)2n5G2
R2 + (7+2n)(2n +1)

3n(2n −1)(4n +1)

]
i cot β+[−2(128n4 +648n3 +944n2 +467n +69)(2n +1)2

3n3G(3n +2)(4n +3)(3n +1)(4n +1)(2n −1)
−

8
(25n4 +172n3 +320n2 +210n +45)(2n +1)4

n7G3(3n +2)3(4n +3)2
R2

]
i R − iW

nG
.

Les résolutions numériques sont effectuées pour diverses inclinaisons du substrat. Les ré-

sultats ci-dessous sont présentés pour deux cas d’angles d’inclinaison représentatifs, à savoir

β=π/2 et π/18.

Dans la figure 3.1, la vitesse de phase cr , et le facteur d’amplification αci , sont tracés en fonc-

tion du nombre d’onde dans les mêmes conditions que celles utilisées par Sisoev et al. [25],

correspondant à β=π/2, R = 4,69, W = 6,25 n = 2 et R = 1,93, W = 2.57 pour n = 0,8.

Nous observons que les prédictions, à la fois, du modèle de second ordre complet et sa ver-

sion réduite régularisée sont en bon accord avec les résultats numériques exacts (OS) pour un

fluide dilatant (n = 2) aussi bien que pour un fluide pseudo-plastique (n = 0,8). Les courbes

en tirets dans la figure 3.1 obtenues par l’application du modèle type Shkadov, dérivé par

Dandapat et al. [24], coïncidant avec celles données par Sisoev et al. [25], divergent significa-

tivement de celles obtenues avec une solution numérique du problème Orr-Sommerfeld (OS)

et avec nos modèles, en particulier loin du point critique.
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(a)n=0.8

a
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FIGURE 3.1 – Vitesse de phase (a), (c) et le taux d’amplification temporel (b), (d) en fonction

du nombre d’onde pour β=π/2, et l’ensemble de paramètres : (a, b) R = 4.69 et W = 6.25 pour

n = 2 ; (c, d) R = 1.93, W = 2.57 pour n = 0.8. (-) représente le modèle complet du second ordre,

(++++++) la solution numérique du système type Orr-Sommerfeld, (- - - -) le modèle intégrale

de Shkadov, et (········) le modèle simplifier régularisé(confondu avec le modèle complet).
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Figure 3.2 montre la variation du nombre d’onde marginal en fonction du nombre de Rey-

nolds dans le casβ=π/2 et n = 1,47, pour deux valeurs distinctes de W , (W = 1 et W = 10). Les

courbes séparent la zone instable U de la zone stable S. Une comparaison du modèle complet

et ses versions réduites (RM, PRM, RRM) à la solution numérique exacte(lignes croisées) est

représentée. Alors que le modèle complet suit d’assez près la solution Orr-Sommerfeld à de

nombres de Reynolds modérés, en particulier lorsque le nombre de Weber est assez grand,

les modèles réduits RM et PRM divergent pour des nombres de Reynolds au-delà d’environ

R = 20. Par contre, le modèle MRR, qui asymptote le modèle SM au stade linéaire, présente

la même tendance que la solution OS. Contrairement aux deux autres modèles réduits, le

RRM ne divergence pas rapidement ; son écartement de la solution exacte et du modèle com-

plet est relativement progressif et lent. Comme prévu, l’accord du modèle complet et le RRM

avec la solution numérique exacte est mieux pour les grandes valeurs de W . En outre, on

peut observer que, en gardant tout les paramètres fixés, l’effet de l’augmentation de W est

de réduire la région instable. Il apparaît clairement que le modèle type Shkadov prédit avec

précision le comportement d’écoulement seulement à proximité de la criticalité et diverge de

manière significative de la solution numérique exacte lorsque le nombre de Reynolds aug-

mente, quelque soit le nombre de Weber.

La figure 3.3 indique, pour n = 0,8, des résultats similaires à ceux de la figure 3.2, mais sans

les spectres des modèles RM et PRM qui souffrent de la divergence rapide, comme il est indi-

qué ci-dessus. On peut remarquer que la diminution de l’indice n conduit à la réduction de la

zone d’instabilité, en d’autres termes la décroissance de n a un effet stabilisant.

Pour un angle d’inclinaison β= π

18
, la figure 3.4 présente des résultats similaires à ceux de

la figure 3.2 et 3.3 pour β= π

2
, sauf pour le cas du modèle de Shkadov ne prédit pas correcte-

ment le point critique.
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FIGURE 3.2 – Courbes de stabilité marginale dans le plan (R,α) pour n = 1.47 et β = π/2 ; (a)

W = 1, (b) W = 10. (-)représente le modèle complet du second ordre, (++++++)la solution

numérique du système type Orr-Sommerfeld, (—-)le modèle intégrale de Shkadov, et (········)

les modèles RM (1), PRM (3) RRM et SM (2).
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FIGURE 3.3 – Courbes de stabilité marginale dans le plan (R,α) pour n = 0.8 et β = π/2 ; (a)

W = 1, (b) W = 10. (-)représente le modèle complet du second ordre, (++++++)la solution

numérique du système type Orr-Sommerfeld, (—-)le modèle intégrale, et (········) RRM et SM.
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FIGURE 3.4 – Courbes de stabilité marginale dans le plan (R,α) pour β = π/18 et W = 10 ; (a)

n = 1.47, (b)n = 0.8. (-)représente le modèle complet du second ordre, (++++++)la solution

numérique du système type Orr-Sommerfeld, (—-)le modèle intégrale, et (········) RRM et SM.
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La figure 3.5a illustre l’effet de la variation de n sur les courbes de stabilité marginale pour

W = 1 près de la criticalité. On peut remarquer que, très proche de la criticalité, l’augmenta-

tion de n produit une diminution du nombre d’onde marginal. Cela signifie que, dans cette

gamme de petits nombres de Reynolds, le comportement rhéofluidifiant favorise l’instabi-

lité alors que le comportement rhéoépaississant est plutôt stabilisant. Ce phénomène est ai-

sément déduit du fait que la viscosité effective est réduite en diminuant n pour les fluides

pseudo-plastiques alors qu’elle est susceptible de croître avec l’augmentation de n pour les

fluides dilatants. Une tendance inverse, illustrée dans la figure 3.5b, se produit loin de la cri-

ticalité quand l’inertie devient suffisamment importante. En effet, au nombre de Reynolds

suffisamment élevé, l’augmentation de n accroît la gamme des nombres d’ondes instables,

ce qui est un effet déstabilisant. Ce résultat semble suggérer que l’impact de la variation de n

sur la stabilité de l’écoulement est non uniforme. La figure 3.5a est en réalité un agrandisse-

ment au voisinage de la criticalité de la figure 3.5b.

Alors que l’écoulement est toujours instable dans le cas vertical, l’instabilité se manifeste,

pour β ̸=π/2, seulement au-delà d’un certain nombre de Reynolds critique

Rc =
(
2+ 1

n

)n−2 (
3

2
n +1

)
cotβ

qui est déjà trouvé par Miladinova et al. [23] en utilisant une approche asymptotique. Comme

en témoigne la figure 3.6 , l’impact de la variation de n sur les nombres d’ondes marginaux

est qualitativement le même que pour le cas du plan vertical. En effet, en diminuant n les

nombres d’ondes marginaux augmentent pour des faibles nombres de Reynolds alors qu’ils

diminuent lorsque l’inertie devient importante. Au même temps, diminuer n réduit les nombres

de Reynolds critiques synonyme d’un effet déstabilisant. Alors que l’effet de la diminution de

n est soit déstabilisant pour les petits nombres de Reynolds (R moins d’environ 20) ou stabi-

lisant lorsque l’inertie devient importante (R plus d’environ 100), cet effet est non uniforme

dans la zone intermédiaire des nombres de Reynolds.
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FIGURE 3.5 – Effet de la variation de n sur les courbes de stabilité marginale pour W = 1 et

β=π/2. (a) proche de la criticalité, (b) au-delà de la criticalité.
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FIGURE 3.6 – Même que la figure 3.5 avec β=π/18.
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3.1.2 Approche spatio-temporelle

Dans la section précédente notre intérêt s’est porté sur l’évolution temporelle des pertur-

bations, considérées spatialement périodiques. Mais, la plupart des dispositifs expérimen-

taux conçus pour les écoulements ouverts à surface libre fonctionnent par le biais de système

de forçage, c’est-à-dire, en imposant une perturbation périodique de fréquence donnée, on

observe son évolution spatiale. Il apparaît donc nécessaire de compléter l’étude de la stabilité

linéaire par une approche spatiale. Dans ce cas, on a

α=αr + iαi ∈C et ω=ωr + iωi ∈C.

Cette approche met en évidence analytiquement une transition d’une instabilité de type convec-

tif à une instabilité de type absolu, utilisé pour la première fois dans le cadre de l’hydrodyna-

mique par Huerre et Monkewitz [44]. Toute perturbation localisée génère un paquet d’ondes

qui peut progresser à la fois vers l’amont et vers l’aval. Lorsque ce paquet d’ondes s’accroit

localement et contamine tout le domaine de l’écoulement, l’instabilité est appelée absolue et

une dynamique auto-entretenue intrinsèque ou ” mode global ” peut s’installer, l’écoulement

se comporte ainsi comme un oscillateur. En revanche, lorsque le paquet d’ondes est convecté

en aval par l’écoulement principal, l’instabilité est appelée convective et le système se com-

porte comme un amplificateur de bruit.

A une position donnée, le comportement du paquet d’ondes est dominé par l’onde corres-

pondant à une vitesse de groupe nulle,

vg = ∂ω

∂α
= 0,

qui définit le nombre d’onde absolue α0 et la fréquence ω0.

Dans le α-plan complexe, la condition vg = 0 se produit au point col qui doit également ré-

sulter, selon le critère de collision de Briggs-Bers, de la collision de deux branches spatiales

provenant des côtés opposés de l’axe réel ([45],[44]). Si le taux d’amplification absolue ℑ(ω0)

est positif (négatif) l’instabilité est dite absolue (convective). Ce critère est nécessaire mais

pas suffisant pour décrire la nature de l’instabilité : le nombre d’onde absolu et la fréquence,
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(α0,ω0), doivent aussi s’associés au pincement des deux branches de la relation de dispersion

α+(ω) et α−(ω) provenant respectivement du demi α-plan complexe inferieur et supérieur

(cf. [44]).

Afin d’étudier l’influence de l’indice n de loi de puissance sur la nature de l’instabilité, nous

considérons d’abord le cas correspondant à l’expérience réalisée par Liu et al. [8] pour un

fluide newtonien. La condition de pincement a été recherchée pour de larges gammes des

nombres Weber et de Reynolds. La partie imaginaire de ω0 est négative dans l’ensemble du

domaine, ce qui est en accord avec l’affirmation de Brevdo et al.[46] qu’un film fluide s’écou-

lant le long d’un plan incliné est convectivement instable. Afin de comparer avec leurs ré-

sultats (les mêmes conditions d’écoulement sont considérées) nous avons représenté dans

la Fig. 3.7 la solution de l’équation de dispersion correspondant au modèle complet du se-

cond ordre. La bonne concordance entre la figure. 3.7 et celle obtenue par Brevdo et al.[25]

est remarquable. Dans la Fig. 3.7a, où la partie imaginaire de la fréquence complexe est posée

égale à 0,03, la solution est composée de trois branches dans le demi plan supérieur et deux

branches dans le demi plan inferieur. La figure 3.7b est un agrandissement, à l’origine, de la

figure 3.7a qui montre que la branche, proche de l’axe de αR, est en fait entièrement incluse

dans le demi plan supérieur. En diminuant la partie imaginaire de la fréquence vers zéro, au-

cun pincement entre les branches n’est observé, voir figure 3.7c. Ceci montre que le modèle

complet de second ordre décrit avec précision la stabilité linéaire de l’écoulement.

Une analyse similaire a été effectuée pour n = 1,47 et n = 0,8(voir figures 3.8 et 3.9). Une va-

riation de l’indice n parait n’avoir aucune influence sur le signe de la fréquence absolue qui

reste négatif indépendamment de n. De plus, aucun pincement entre les branches dans le

α-plan n’est observé, comme le montre les figures 3.8 et 3.9, ce qui suggère que l’indice n ne

modifie pas le caractère convectif de l’instabilité.
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(a) (b)

(c) (d)

FIGURE 3.7 – Solution de la relation de dispersion dans le plan complexe α-plan avec n = 1

(a) ℑ(ω) = 0.03, (b) agrandissement de (a), (c) ℑ(ω) = 0, (d) agrandissement de (c). Pour les

paramètres W = 124.38, R = 26.67, correspondant aux mêmes conditions que dans [46]
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FIGURE 3.8 – Même que la figure3.7 avec n = 1,47
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FIGURE 3.9 – Même que la figure3.7 avec n = 0,8



3.2 Stabilité non linéaire : Ondes stationnaires 75

3.2 Stabilité non linéaire : Ondes stationnaires

Dans cette section, nous nous intéressons à la résolution des systèmes non linéaires (2.19

et 2.90) établi au chapitre 2. Dans ce cas, les termes non linéaires seront pris en compte dans

le but de rechercher des solutions sous forme d’ondes progressives qui ne se déforment pas

dans un référentiel se mouvant à une vitesse constante c. Ce choix d’espace de solutions nous

permet de réduire d’une dimension notre problème initial et le transformer à un système

dynamique. L’étude de ce système va permettre d’analyser le scénario de la transition vers le

chaos.

3.2.1 Formulation du système dynamique

Introduisons le changement de variables ξ= x −c t et τ= t , où ξ est une variable d’espace

dans le référentiel en mouvement, dans le cadre des ondes qui se propagent à une vitesse

constante c. Dans ce nouveau référentiel, le problème aux dérivées partielles (2.90) et (2.19),

se transforme en un problème aux équations différentielles ordinaires. Il est bien de noter

qu’un nouveau paramètre c est à prendre en considération. Les dérivées se transforment de

manière suivante
∂

∂x
= ∂

∂ξ
et

∂

∂ t
=−c

∂

∂ξ

L’équation cinématique (2.19) devient

qξ− chξ = 0 (3.3)

En intégrant l’équation ci-dessus, nous obtenons

q − ch = q0 (3.4)

Où q0 est une constante d’intégration dépendante de la vitesse de phase c, qui représente le

débit circulant sous l’onde dans son repère en mouvement. Ainsi q0 est généralement négatif

car la vitesse des ondes observées à la surface du film est plus grande que la vitesse moyenne

du liquide [28]. L’équation (3.4) montre que dans ce référentiel en mouvement, le débit q et

l’épaisseur du film h, sont linéairement dépendants.
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La constante q0 est déterminée par une condition au limite (on impose par exemple l’épais-

seur du film au bord amont ou aval), c-à-d q0 est fixée par la solution de base q = h2+1/n , soit

solution de l’équation

h2+1/n − ch = q0.

Cette dernière équation non linéaire admet plusieurs solutions, qui montre l’existence d’ondes

en forme de ressaut hydraulique, c-à-d, l’existence de bifurcations hétéroclines.

Si on impose lim
ξ→±∞

h(ξ) = 1(solution de base adimensionnelle), on obtient

q0 = 1−c, (3.5)

par suite

q = 1+ c(h −1). (3.6)

En remplaçant par l’expression (3.4) dans l’équation (2.90) et en posant

H1 = h, H2 = hξ, H3 = hξξ

on obtient le système dynamique suivant :

dH

dξ
= F(H,c) (3.7)

où H = (H1, H2, H3)t , F = (H2, H3,F 1)t .

Ou bien sous la forme
d H1

dξ
= H2

d H2

dξ
= H3

d H3

dξ
= F 1(H1, H2, H3,c,B ,R,W,n)

(3.8)

avec

−3n +2

2n +1

W

2
H1F 1 = F

où
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F = R

(
c2H2+ (6n +3)

(1+ c( 5n+3
6n+3 H1+1))

(4n +3)

q H2

H12

)(
1− (2n +1)(35n2 +11n −28)

4n(3n +2)(5n +4)(4n +3)

R

G

( q

H12

)1−n
q H2

)
+3n +2

2n +1

G

2

(
H1−

( q

H12

)n
−cotβH1H2

)
+ (3n +2)(4n +1)−1G

(2n −1)(3n +1)(n +1)

( q

H1

)n
{

1

6
(36n3 +31n2 −1)H1H3

−1

6
n(8n +5)(3n +1)

cH12H3

q
−96n5 +90n4 −n2 −5n3 +5n +1

3n(2n +1)
H22 + 36n3 +31n2 −1

3

cH1H2H3

q

}
+Hn−1

3n +2

2(n +1)

(
2

2n +1

n +1

(
cH2

H1
− q H2

H12

))n−1 (
c2H3+ 2n +1

n +1

(
2cH22

H1
− q H3

H1
−2

q H22

H12

))
+ (1−δn1)

(3n +2)G

(2n −1)(4n +1)

( q

H1

)n
{

12n5 +88n4 −37n3 −115n2 −11n +3

6(1+3n)(n +1)

cH1H22

q
− c2

12
n(n −1)(2n +15)H22

−1

6

24n7 +164n6 −166n5 −331n4 −9n3 +25n2 −5n +1

n(n +1)(3n +1)(2n +1)
H22

}
− (n −1)(3n +2)(2n +1)G

12(2n −1)(3n +1)(4n +1)( q

H1

)n {
(2n3 +4n2 −3n −1)c2q H12H3− (48n3 +40n2 +8n)c2H22}

La valeur de q est donnée par la ralation (3.6).

3.2.2 Les points fixes

Les points fixes d’un système dynamique, par définition, sont ses solutions stationnaires

vérifiant
d H

dξ
= 0 (3.9)

Ces solutions représentent les états d’équilibre du système physique, par exemple : le point

fixe HI (1,0,0) représente l’écoulement de base dans notre cas.

Les points fixes du système dynamique (3.8) sont déterminés alors en annulant son membre

de droite, soit

H2 = 0, H3 = 0

F 1 = H 2+1/n
1 − cH1 −q0 = 0 (3.10)

On remarque que l’équation (3.10) correspond à l’équation (3.4) pour un débit q pris dans

le cas où l’épaisseur du film est uniforme. Comme on l’a déjà précisé, chaque point fixe cor-

respond à un film d’épaisseur uniforme, ceci nous donne la possibilité de prendre le cas de
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FIGURE 3.10 – Schéma représentant les points fixes HI et HI I en fonction de la vitesse de phase

c, pour différentes valeurs de l’indice n

l’écoulement de Nusselt (c-à-d H1 = 1). Par conséquent, q0 est fixé par la relation (3.5).

Ainsi, les autres points prennent la forme Hi (r,0,0) avec r est le zéro de la fonction g définie

par

g (x) = x2+1/n − cx +c −1, (3.11)

avec

cx −c +1 ≥ 0

En plus du point fixe trivial HI = (1,0,0), la solution d’onde stationnaire présente un autre

point fixe HI I (r2,0,0) qui dépend de c et de l’indice n. Avec r2 est le deuxième zéro de la

fonction g , dont on possède une signification physique seulement si c > 1(voir la figure 3.10).

On peut montrer facilement en utilisant les théorèmes élémentaires d’analyse, que
0 < r2 < 1, si 1 < c < c0 = 2+1/n;

r2 = 1, si c = c0 (les deux points fixes sont confondus);

r2 > 1, si c > c0.



3.2 Stabilité non linéaire : Ondes stationnaires 79

3.2.3 Stabilité et bifurcation des points fixes

Le système dynamique (3.8) est maintenant considéré pour localiser les régions de l’es-

pace des paramètres dans lequel le mouvement périodique et chaotique peut se produire.

L’étude complète du système dynamique nécessite une résolution numérique, en raison de

sa non-linéarité, mais quelques indications sur le comportement de l’écoulement peuvent

être obtenues à partir d’une analyse linéaire au voisinage des points fixes. Nous remarquons

que, du fait des propriétés d’invariance du système dynamique, il est possible de se limiter

aux propriétés de stabilité du point fixe en amont HI . Le passage d’une solution du point fixe

HI à l’autre point fixe HI I peut être alors obtenu en faisant le changement de variables suivant

(ξ,h,c,R,W ) = (H2ξ,r2h,r 2
2 c,R/r 3

2 ,W /r 8
2 ).

La linéarisation est justifiée pour les petites perturbations dont on peut négliger les produits

issus des termes non linéaires, ce qui conduit alors à :

d H

dξ
= J H (3.12)

où J est la matrice Jacobienne calculée au point fixe HI donnée par

J =


0 1 0

0 0 1

e1 e2 e3


Les éléments e1, e2 et e3 sont dépendants du modèle. Les valeurs propres de la matrice J

déterminent la stabilité linéaire du point fixe et sont données par la résolution de l’équation

caractéristique det (J −λ Id ) = 0, donnée par

−λ3 +e3λ
2 +e2λ+e1 = 0 (3.13)
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avec les coefficients :

e3 = − 2(2n +1)(4n +1)−1

(2n −1)(3n +1)(n +1)

{
1

6
(36n3 +31n2 −1)− 1

6
n(8n +5)(3n +1)

}
G

W
+δn1

1

W
(c2 + 3

2
)

− (n −1)(2n +1)2(2n3 +4n2 −3n −1)

6(2n −1)(3n +1)(4n +1)

G

W
c2

e2 = 2R/W
(2n +1)

(3n +2)

(−6n −3+c(11n +6)

4n +3
− c2

)
+ G

W
cotβ

e1 = n(c −2)−1

W

Le polynôme caractéristique est de troisième ordre et à coefficients réels constants, il admet

donc soit 3 racines réelles (λ0, λ1, λ2 ∈ R), soit une racine réelle et deux racines complexes

conjuguées(λ0, λ1r +iλ1i , λ1r −iλ1i ). Le caractère stable ou instable de notre système linéa-

risé dépend de ces trois valeurs propres solution de (3.13). Si les parties réelles des valeurs

propres sont toutes négatives, le point fixe est asymptotiquement stable. En revanche, il suf-

fit que l’une des valeurs propres ait une partie réelle positive, c.-à-d. traverse l’axe imaginaire,

pour que le point fixe soit instable. Dans chacun des deux cas le point fixe est dit hyperbolique.

Une situation particulière est celle où les valeurs propres sont toutes à partie réelle négative

sauf une ou plusieurs dont la partie réelle est nulle. Dans cette situation le point fixe est dit

non Hyperbolique et l’étude de stabilité linéaire ne permet pas de conclure quand à la stabi-

lité du point fixe. Si pour certaines valeurs fixées des paramètres (c, R, W ) le point fixe est non

hyperbolique on dit que le système subit une bifurcation du point fixe pour ces valeurs cri-

tiques des paramètres. Donc la bifurcation associée à l’instabilité intervient lorsqu’une valeur

propre réelle ou bien deux valeurs propres complexes conjuguées franchissent l’axe imagi-

naire.

Afin d’illustrer l’influence de tous les paramètres sur l’apparition des attracteurs complexes

par une procédure numérique, les propriétés qualitatives des valeurs propres sont représen-

tées dans le plan (cot(β)/R,c) à travers la figures (3.11), pour différentes valeurs de R et W

dans deux cas illustratifs n = 0.8 et n = 1.47. Nous pouvons limiter notre analyse au cas où le

film est linéairement instable, soit :

cotβ/R < 2(2n +1)2

n2 (3n +2)G
.
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Par exemple, on a 
cotβ/R < 1.869981683, si n = 0.8

cotβ/R < 3, si n = 1

cotβ/R < 0.5261466098, si n = 1.47

Bifurcations transcritiques :

Cette bifurcation associée à l’instabilité intervient lorsqu’une valeur propre réelle franchit

l’axe imaginaire. Dans notre cas, lorsque c = 2+ 1/n, les deux points fixes sont confondus

et une racine du polynôme caractéristique (3.13) est nulle (car e1 = 0). Quand cette valeur

critique est franchie par une valeur propre réelle, les deux points fixes échangent de stabilité,

il se produit alors une bifurcation transcritique. Dans le cas c < 2+ 1/n, le point fixe HI est

stable et le point fixe HI I est instable, et inversement si c > 2+1/n. Physiquement cette bi-

furcation donne naissance à une onde stationnaire de type saut hydraulique. Le lieu de cette

bifurcation est représenté par la courbe (T) sur les figure3.11

Bifurcations Hopf :

Si la valeur critique est franchie par deux valeurs propres complexes conjuguées il s’agit d’une

bifurcation de Hopf. A l’occurrence de celle-ci, un cycle limite apparait autour du point fixe,

ce qui signifie qu’une solution périodique peut bifurquer à partir d’un écoulement uniforme

sous certaines conditions.

En substituant λ1,2 = iω0 dans l’équation caractéristique (3.13), nous donne

−e1 +ω2
0e3 = 0 et ω3

0 +ω0e2 = 0

En éliminant ω0, on constate qu’une bifurcation de Hopf aura lieu sauf si on satisfait les trois

conditions suivantes :

e2 < 0, e3 < 0 et e2e3 +e1 = 0. (3.14)

où ω0 est la période d’amplitude de Hopf nul. Dans la condition de Hopf (3.14), on pose h0 = 1

si c < 2+1/n et h0 = r2 si c > 2+1/n. L’égalité dans (3.14) est représentée par la courbe (H) sur

les figure3.11. Il est à noter que cette courbe n’est rien d’autre que la courbe de stabilité mar-

ginale dans le cas particulier des ondes stationnaires. En outre, les deux premières conditions

sont satisfaites seulement dans le régime d’instabilité linéaire (R > Rc).
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Attracteurs périodiques :

Il est intéressant encore d’identifier dans le plan (cotβ/R,c) les zones d’existence d’attrac-

teurs issus d’écoulement périodique, lorsque la ligne de Hopf est franchie. On considère le

cas où la partie imaginaire des deux valeurs propres complexes conjuguées est nulle. On aura

alors deux valeurs propres double λ1,2 = a en plus de la valeur réelle λ3 = b et l’équation ca-

ractéristique prend forme :

(λ−a)2(λ−b) = 0

Ce qui nous conduit à la relation suivante

4
(
e2

3 +3e2
)(

e2
2 −e1e3

)− (e2e3 +9e1)2 = 0 (3.15)

qui est représentée par la courbe (B) sur les figure3.11. Les frontières de la courbe (B) corres-

pond à une bifurcation nœud-col du point fixe HI . Ce passage correspond quelquefois dans

l’espace physique à la disparition des oscillations capillaires précédant les ondes solitaires.

Nous avons également tracé la courbe (S), dans le cas d’un point fixe col-spiral, le long du-

quel la somme de la valeur propre réelle et de la partie réelle des valeurs propres complexes

s’annule, conduisant à la relation, donnée par Amaouche et al.[4], suivante

2e3
3 + (e1 −e1e2) = 0 (3.16)

Cette courbe correspond à la frontière où le chaos homocline à la Shilnikov peut avoir lieu.

Franchir cette courbe peut conduire au chaos homocline selon le théorème de Shilnikov qui

énonce que l’existence d’une orbite homocline générée par un point fixe col-spirale implique

l’existence de trajectoires non périodiques si la grandeur de la partie réelle de la valeur propre

complexe est inferieur à celle de la valeur propre réelle.

La figure (3.11)(a) représente les propriétés qualitatives des valeurs propres pour W = 5 et

R = 10, dans le cas n = 0.8. Les courbes des lieux de bifurcations séparent le plan (cotβ/R,c)

en différentes régions. La région délimitée par les deux courbes (T) et (H), c-à-d ch < c < 13/4

où ch indique la valeur critique de c pour que se produise la bifurcation de Hopf, montre que

le point fixe HI est stable alors que le point fixe HI I est instable, pour une valeur donnée de

cotβ/R. En augmentant c, le point fixe HI perd sa stabilité lorsque c franchi la courbe (T )
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et subit une bifurcation transcritique. Par contre, lorsque la courbe de Hopf est franchie en

diminuant c, un cycle limite bifurque à partir du point fixe HI . Des bifurcations encore plus

compliquées peuvent exister si c est encore diminué tout en restant au-dessus d’une valeur

limite c1b située sur la courbe (B). En constate que la position de la frontière (B) est fortement

dépendante du nombre de Reynolds pour un nombre de Weber donné. La figure (3.11(b)) pré-

sente les mêmes caractéristiques qualitatives des courbes de bifurcations pour le cas n = 1.47.

Néanmoins, en constate que l’augmentation de l’indice n conduit à la réduction de la zone

de stabilité du premier point fixe (entre les courbes T et H) et à l’élargissement de la zone

d’existence des ondes périodiques pour des faibles valeurs de cotβ/R.

La Figure (3.12) indique, pour deux cas illustratifs n = 0.8 et n = 1.47 , l’effet du paramètre

W sur le seuil de la bifurcation de Hopf. Cette courbe converge naturellement vers le point

critique :

(cotβ/R,c) = (1.869981683,3.250000000) pour n = 0.8

et

(cotβ/R) = (0.5261466098,2.680272109) pour n = 1.47

Elle se trouve dans une région, notée V , qui est délimitée par les courbes (T) et la courbe (C ),

d’équation e2 = 0, et où les deux inégalités dans (3.14) sont vérifiées. On voit que, quand W

est diminué, la courbe de Hopf converge vers la limite (C ). Quand W tend vers zéro, la courbe

de Hopf sort de la région V . Ceci, signifie que le nombre de Weber doit dépasser une certaine

valeur minimale Wm pour l’existence d’une bifurcation de Hopf.
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FIGURE 3.11 – Comportement des valeurs propres dans le plan (cotβ/R,c) pour le cas du point

fixe HI .
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FIGURE 3.12 – Lieu des bifurcations de Hopf, pour différentes valeurs de W .
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3.2.4 Résolution numérique

Afin de pouvoir comprendre la dynamique spatio-temporelle du système (2.19 et 2.90) au

delà du seuil d’instabilité, c.-à-d, au stade non linéaire, une résolution numérique est néces-

saire. On a fait varier ses conditions en imposant une faible perturbation arbitraire d’environ

0,01 de la solution de Nusselt, au voisinage du point fixe HI . La résolution est réalisée par

l’utilisation de la bibliothèque du logiciels Maple 14.

Dans ce qui suit nous nous limitons toujours au valeurs de n = 0.8 et n = 1,47. La recherche

d’attracteur est effectuée par variation continue de la vitesse de phase c. Comme c’est men-

tionné précédemment, l’analyse de stabilité linéaire suggère également de prendre l’inclinai-

son β de sorte que 0 ≤ cotβ/R ≤ 2(2n +1)2

n2 (3n +2)G
. Ceci a était confirmé, à travers des tests numé-

riques, qu’aucun attracteur non linéaire n’existe quand cotβ/R > 2(2n +1)2

n2 (3n +2)G
.

Trajectoires hétéroclines :

Considérons d’abord la bifurcation transcritique de HI à HI I lorsque la vitesse de phase

critique c = 2+1/n est franchie. Par conséquent, une ligne régulière peut relier les deux points

fixes, à condition que c reste en dessous de sa valeur critique. Les Figures (3.13) et (3.14)

montrent la forme de la surface libre lorsque HI correspond à une orbite hétérocline allant

de HI vers HI I quant W = 5, R = 10, cotθ/R = 0.4, avec c = 3.5 pour n = 0.8, et c = 2.7 pour

n = 1.47. Des résultats similaires peuvent être obtenus pour d’autres valeurs de cotθ/R et c.

Conformément aux résultats de l’analyse linéaire, il n’y a pas d’orbite hétérocline au-delà de

la valeur critique de c.

Cascade de doublement de période :

Nous considérons maintenant la dynamique plus complexe résultant de la première brisure

de symétrie via une bifurcation de Hopf. Afin d’illustrer les principales caractéristiques des

scénarios de bifurcation au-delà des seuils de Hopf on présente, dans les figures (3.15) et

(3.16), les attracteurs obtenus pour certaines valeurs de c et cotβ/R. Dans le cas, par exemple
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FIGURE 3.13 – Orbite hétérocline joignant HI = (1,0,0) à HI I = (1.06652451375046,0,0). La

transition s’effectue au voisinage de c = 3.5 pour n = 0.8 avec W = 5, R = 10 et cotβ= 4.
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FIGURE 3.14 – Orbite hétérocline joignant HI = (1,0,0) à HI I = (1.00874364537,0,0). La tran-

sition s’effectue au voisinage de c = 2.7 pour n = 1.47 avec W = 5, R = 10, cotβ= 4.
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de n = 0.8 avec cotθ/R = 0.1, W = 10 et R = 10, la figure 3.15 indique que le premier point fixe

subit une bifurcation de Hopf à c1 = 2,065, ceci génère un cycle limite dont la période est de

l’ordre T = 9.5. Quand c est diminué encore, l’amplitude et la longueur d’onde du cycle limite

augmentent jusqu’à ce qu’une seconde valeur critique c = 1,99 est atteinte, où un autre cycle

limite de période 2T aura lieu. Par conséquent, au lieu d’un seul maximum et minimum, le

signal contiendra deux maxima et deux minima. Les solutions restent 2T -périodique quand

la vitesse de phase décroît jusqu’à qu’une nouvelle bifurcation de doublement de période se

produit à environ c3 = 1,984, la solution étant maintenant périodique de période 4T dont le

signal contient quatre maxima et quatre minima. Il a été établi qu’en diminuant davantage

la vitesse de l’onde la route vers le chaos par dédoublement de période dicte la dynamique

non linéaire du film selon le scénario Feigenbaum. Ce scénario de route vers le chaos a été

aussi retrouvé dans le cas de fluides newtoniens [5][19]. Le diagramme de bifurcation est re-

présenté sur la figure (3.17) où le maximum de la hauteur de l’onde y est illustré en fonction

du paramètre c.
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(a)
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(b)
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(c)

FIGURE 3.15 – Cascade de doublement de période pour W = 10, R = 10, cotβ/R = 0.1 et n =
0.8. (a) : c = 2.065, (b) c = 1.9845 et (c) c = 1.98122.
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(a)
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(b)
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(c)

FIGURE 3.16 – Cascade de doublement de période pour W = 5, R = 10, cotβ/R = 0.2 et n =
1.47. (a) : c = 2.045, (b) : c = 1.985 et (c) : c = 1.970 .
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FIGURE 3.17 – Diagramme de bifurcation, hm en fonction de c, pour R = 10, W = 10 et cotβ= 1

dans le cas n = 0.8 et pour R = 10, W = 5 et cotβ= 2 dans le cas n = 1.47.

Ondes solitaires :

Les figures (3.18)..(3.22) montrent des attracteurs constitués par de séries d’ondes solitaires

formant un train d’ondes périodiques avec des périodes très longues, obtenues pour diffé-

rentes valeurs de cotβ/R. Ces ondes sont caractérisées par un ou plusieurs pics importants,

une faible pente du côté amont et un front d’onde raide dû à la gravité, et précédés par des

ondulations capillaires. Ces formes particulières se manifestent près des bifurcations homo-

clines. En diminuant cotβ/R, la dynamique devient de plus en plus complexe et un chaos

homocline est attendu en diminuant d’avantage cotβ/R.
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FIGURE 3.18 – Profil d’onde solitaire simple, qui précède le chaos homocline, se produisant

pour c = 1.9868 dans le cas n = 0.8. Les autres paramètres sont W = 5, R = 10, cotβ/R = 0.2.
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FIGURE 3.19 – Profil d’onde solitaire, qui précède le chaos homocline, se produisant pour c =
2.145 dans le cas n = 0.8. Les autres paramètres sont W = 10, R = 10, cotβ/R = 0.3.
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FIGURE 3.20 – Profil d’onde solitaire simple, qui précède le chaos homocline, se produisant

pour c = 2.5095 dans le cas n = 1.47. Les autres paramètres sont W = 5, R = 10, cotβ/R = 0.4.
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FIGURE 3.21 – Profil d’onde solitaire à trois bosses, qui précède le chaos homocline, se pro-

duisant pour c = 2.1263 dans le cas n = 1.47. Les autres paramètres sont W = 5, R = 10,

cotβ/R = 0.135.
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FIGURE 3.22 – Profil d’onde solitaire, qui précède le chaos homocline, se produisant pour c =
2.074 dans le cas n = 1.47. Les autres paramètres sont W = 5, R = 10, cotβ/R = 0.1.



Conclusion générale

Le présent travail de thèse traite de la modélisation d’un écoulement par gravité de film

liquide non-newtonien, décrit par une loi de comportement type loi puissance, sur un plan

incliné pour de faibles à modérés nombres de Reynolds. L’objectif principal de l’étude est la

dérivation des équations d’évolution qui régissent la dynamique non linéaires du film.

La procédure de modélisation consiste en une combinaison de la théorie des grandes ondes

(théorie de lubrification) et de l’approche des résidus pondérés. Une nouvelle manière de

choisir les fonctions tests et poids, différente de celle proposée par Ruyer-Quil et al. pour le

cas newtonien, est introduite permettant une réduction significative de la dimension du pro-

blème tout en gardant la cohérence du modèle à tout ordre. En effet, contrairement à ce qui

a été fait dans des études précédentes dans la construction de modèles, l’orthogonalisation

complète des fonctions tests n’est pas nécessaire pour éliminer la correction de la vitesse de

l’écoulement. Ainsi, une série de modèles est proposée pour décrire le comportement non

linéaire de l’écoulement. La cohérence des modèles proposés est assurée avec une orthogo-

nalisation partielle permettant une réduction de la complexité de la procédure et par consé-

quent une simplification des calculs.

En effet, nous avons établi un modèle complet d’ordre deux de quatre équations d’évolution

de la dynamique du film. Vu la taille du modèle complet, des simplifications sont effectuées

et des modèles réduits (simplifiés) à deux équations, de l’épaisseur du film et du débit, sont

proposés. Un premier modèle simplifié (SM) est obtenu par le moyen d’une élimination adia-

batique de la première correction du champs de vitesse. Du fait que ce modèle ne tient pas

compte correctement des termes non linéaires, un modèle réduit (RM) a été établi en gardant
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le champs de vitesse jusqu’à l’ordre deux. Néanmoins, ce modèle diverge du modèle complet

à partir d’une certaine valeur du nombre de Reynolds relativement faible. Une procédure de

régularisation partielle, par une technique à la Padé, a été ensuite effectuée pour y remédier.

Le modèle réduit régularisé (RRM) résultant donne un spectre linéaire identique à celui ob-

tenu par le modèle simplifié (SM).

L’analyse de stabilité linéaire du modèle complet de deuxième ordre montre une assez bonne

concordance avec la solution numérique du problème Orr-Sommerfeld pour de faibles à mo-

dérés nombres de Reynolds. Ce modèle complet et ses formes réduites ont tous l’avantage du

modèle type Benney au voisinage de la criticalité. Loin du seuil d’instabilité, le modèle com-

plet continue à suivre la solution Orr-Sommerfeld jusqu’à un assez grand nombre de Reynolds

et donne de meilleures prévisions que le modèle type Shkadov. Le modèle réduit régularisé

(RRM) pourrait être préféré dans la pratique au modèle complet en raison de sa relative sim-

plicité, au moins au stade initial du régime non linéaire.

Les résultats de la stabilité linéaire des modèles proposés font apparaitre que, pour de très

faibles nombres de Reynolds, l’augmentation de l’indice de la loi de comportement n réduit

d’une manière régulière la zone d’instabilité jusqu’à une certaine valeur critique du nombre

de Reynolds. Cet effet s’inverse au-delà d’une autre valeur critique plus grande du nombre de

Reynolds mais reste relativement faible. On retrouve cet effet sur la stabilité dans le cas d’un

comportement rhéoépaississant(n>1). Par contre, un effet contraire est observé dans le cas

d’un comportement rhéofluidifiant (n<1). On a également constaté que le caractère convectif

de l’instabilité est insensible à la variation de l’indice de loi de puissance.

Les aspects non linéaires de l’écoulement du film sont ensuite examinés en utilisant une ver-

sion simplifiée (RRM) du modèle complet tout en conservant ses principales caractéristiques

et en tenant compte des états asymptotiques caractérisés par des ondes stationnaires. Dans

le sous-espace relativement limité de paramètres que nous avons exploré, les solutions pré-

sentent les mêmes comportements qualitatifs que ceux du cas newtonien. Néanmoins, une

influence de l’indice de loi de puissance sur les valeurs critiques d’apparition des bifurcations

et de la transition vers le chaos a été observée.

Une poursuite d’investigation dans ce domaine paraît intéressante particulièrement sur le
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plan d’exploitation du modèle tridimensionnel, établi dans ce travail, afin d’étudier les insta-

bilités tridimensionnelles succédant les instabilités bidimensionnelles. Dans le but d’élargir le

domaine d’application du travail de modélisation effectué, la recherche de modèles est néces-

saire pour l’étude de la dynamique non linéaire de film fluides non newtoniens de différentes

lois de comportement. Enfin, une extension de l’étude effectuée est envisageable pour une

superposition de deux ou plusieurs couches de fluides à surface libre, à d’autres géométrie du

substrat (cylindre, sphère, cône...) et à des problèmes où interviennent des effets spécifiques :

- Les effets non locaux intervenant via la transformée de Hilbert et induits par l’application

d’un champ électrique. -les effets thermiques pouvant induire, soit une stratification de la

viscosité qui est susceptible d’entraîner des comportements surprenants, ou bien, des forces

thermocapillaires et thermogravitaires susceptibles de conduire à l’émergence d’une grande

variété d’écoulements.



Annexe

Expressions de Q, A, et B

On note

CQ0 =
h∫

0

{
ϕi (y)(G +W hxxx −ϵG cotβhx)+ (u0 +nϵu1 +nϵ2u2)(|u0y |n−1ϕi y )y

}
d y

C (qt − n(n +1)2

(3n +2)(4n +3)(2n +1)
Rhat −RQI 1 +R2QI 2) =

h∫
0

ϕi (y){−Rϵ(ut +uux + vuy )}d y,

CQd1 =
∫ h

0
ϕi (y)D1d y

CQ∗
d1 = ϵn+1(2|u0x |)n−1(4u0x hx − v0x)ϕi |y=h

CQdn =
∫ h

0
ϕi (y)D0d y

C (Qd0 +R2Qd2) =−(n −1)ϵ2
∫ h

0
|u0y |n−3(v0xu0y +2u2

0x +
n

2
u2

1y )u0yϕi y d y

avec C est le coefficient de qt .

On peut écrire

Q =Q0+RQI 1+R2QI 2+Qd1+Hn−1Q∗
d1+ (1−δn1)Qdn + (n−1)(Qd0+R2Qd2)

A = A0 +R AI 1 +R2 AI 2 + (Ad1 +Hn−1 A∗
d1)+ (1−δn1)Adn + (n −1)(Ad0 +R2 Ad2)

B = B0 +R2BI 2 + (Bd1 +Hn−1B∗
d1)+ (1−δn1)Bdn + (n −1)(Bd0 +R2Bd2)
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où

Q0 = 3n +2

2n +1

G

2

(
h −

( q

h2

)n
−cotβhhx + W

G
hhxxx

)

QI 1 = 1

4n +3

q
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)
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3
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{
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h2
hx

)
AI 2 = (2n +1)

(6n +5)

{
10n +3

3n +2

(
14n +9

10n +3
a

hx

h
− 4(3n +1)

10n +3

aqqx

h
+qax

)
+

(n +1)(2n +1)

(5n +4)(4n +3)(7n +6)

(
−(43n +30)bq

hx

h
+6

3n +2

2n +1
bqx + (65n +42)qbx

)}
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Ad1 =
Gn(n +1)(3n +1)−1(3n +2)−1

3(2n −1)(4n +1)(4n +3)(5n +2)(2n +1)

( q

h2

)n
{

(3n +2)(264n4 +170n3 −143n2 −107n −16)hhxx

−((3n +2)(2n +1)(3n +1)(32n2 −7n −18)
h2

q
qxx)

− 2

n
(1008n6 +1446n5 +189n4 −559n3 −332n2 −68n −4)h2

x

+2(3n +2)(264n4 +170n3 −143n2 −107n −16)
h

q
hx qx

}
A∗

d1 =
2n(n +1)

(4n +3)(3n +2)
Q∗

d1

Adn = G(5n +4)(3n +2)(2n +1)(4n +3)

18n(2n −1)(5n +2)(3n +1)(4n +1)(n +1)3

( q

h2

)n
{

(42n5 −67n4 −89n3 −51n2 +19n +6)
h2

q
qxx

−2n +1

2
(168n6 −100n5 −502n4 −315n3 +55n2 +58n +6)hhxx

−168n7 +644n6 −286n5 −575n4 +372n3 +294n2 +19n −6

2n +1
q2

x

+504n8 +2052n7 +154n6 −2031n5 −23n4 +1130n3 +482n2 +46n −4

(3n +2)(2n +1)
hx qx

+1

2
n(n −1)(n +1)(3n +1)(14n2 +41n −48)h2h2

x

}
Ad0 =

G(5n +4)(4n +3)

36n(5n +2)(3n +1)(4n +1)(n +1)2

( q

h2

)n
{

((3n +2)(108n3 +176n2 +67n +6)hhxx

−(3n +2)(2n +1)(27n2 +37n +6)
h2

q
qxx − −3240n5 −6492n4 −4060n2 −786n2 +64n +24

2n −1
h2

x

− 24n(3n +2)(2n +1)(3n +4)(3n +1)

2n −1
h2q2

x −
(3n +2)(648n4 +1180n3 +510n2 +41n −6)

2n −1

h

q
hx qx

}

Ad2 =
G(n +1)2

(2n +1)2

(
h

q

)( q

h2

)n
{

n(11n +8)

3(3n +2)2
a2 + 3(31n +24)(3n +2)(2n +1)

(6n +5)(7n +6)(4n +3)(5n +4)2
b2 − (3n +1)(n +1)

(6n +5)(5n +4)
ab

}

B0 = (7n +6)(6n +5)(5n +4)(2n +1)

12(3n +2)(n +1)3

{
Q0 + G(n +1)2

2n +1

( q

h2

)n−1
(
2a +9

(n +1)(3n +2)

(5n +4)(4n +3)(2n +1)
b

)}

BI 2 = −1

(n +1)

{
aqx + (2n +1)2

(3n +2)

(
(4n +3)

(2n +1)

qa

h
hx −qax

)}
+ (3n +2)(5n +1)

(5n +4)(8n +7)

{
3bqx

+ (2n +1)

(4n +3)(3n +2)(5n +1)

(
(7n +5)(17n +13)

qb

h
hx − (97n2 +130n +43)qbx

)}

Bd2 =− (n −1)(n +1)G

(2n +1)2

(
h

q

)( q

h2

)n
{

(7n +6)(6n +5)(5n +4)

12(3n +2)2(7n +4)−1
a2 − 2(6n2 +n −3)(n +1)

(4n +3)
ab

+3(3n +2)(592n3 +1178n2 +789n +180)

4(4n +3)2(8n +7)(5n +4)(n +1)−2
b2

}
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Bd1 =
Gn(n +1)2((5n +4)(6n +5)(3n +1))−1

3(2n −1)(2n +1)(4n +1)(5n +3)(5n +2)

( q

h2

)n
{

(600n5 −800n4 −1114n3 +671n2

+727n +138)hhxx − (5n +3)(2n +1)(3n +1)(20n3 −36n2 +n +24)
h2

q
qxx

− 2(2n +1)

(4n +3)(3n +2)
(3600n7 −3900n6 −16110n5 −6136n4 +7553n3 +5983n2

+1224n +36)h2
x +2(600n5 −800n4 +1114n3 +671n2 +727n +138)

h

q
hx qx

}
B∗

d1 =
(5n +4)(6n +5)

(4n +3)(2n +1)
A∗

d1

Bdn = G(5n +4)(3n +2)(2n +1)(4n +3)(7n +6)(6n +5)

288n(2n +1)2(2n −1)(3n +1)(4n +1)(5n +2)(n +1)4

( q

h2

)n
{

(600n5 −860n4 −1114n3 +671n2

+727n +138)
h2

q
qxx −2

600−100n6 +374n5 +2201n4 +1307n3 −319n27−259n −24

5n +3
hhxx

−1200n8 +1000n7 −5192n6 −2518n5 +1409n5 −1940n4 −1509n2 −58n +48

5n +1
hx qx

+(7200n10 +16200n9 −18932n8 −63030n7 −46905n6 −19315n5 −15923n4 −10331n3

−1910n2 +378n +108
) 1

(3n +2)(2n +1)
h2h2

x + (20n3 −12n2 −63n −64)h2q2
x

}
Bd0 =

G(4n +3)(6n +5)(7n +6)(5n +4)(3n +2)

288n(n +1)3(4n +1)(5n +2)(3n +1)(2n +1)3

( q

h2

)n
{

576
n(3n +1)(n +1)

(2n −1)
q2

x

− (302n3 +453n2 +174n +16)

(2n +1)

h2

q
qxx + (1370n3 +1919n2 +650n +48)

(5n +3)
hhxx

+ (91680n6 +259364n5 +278776n4 +138919n3 +29660n2 +1044n −288)

(3n +2)(4n +3)(5n +3)(2n −1)
h2h2

x

+2
(11380n4 +19172n3 +9173n2 +1174n −48)

(2n −1)(5n +3)
hx qx

}

.0.4.1 Expressions de Q3d , A3d , B3d et Q̃3d

Q3d = Q̃0+RQI 1+R2QI 2+Q̃d1+Hn−1Q∗
d1+(1−δn1)Q̃dn +(n−1)(Q̃d0+R2Qd2)

A3d = Ã0 +R AI 1 +R2 ÃI 2 + (Ãd1 +Hn−1 A∗
d1)+ (1−δn1)Ãdn + (n −1)(Ãd0 +R2 Ad2)

B3d = B̃0 +R2B̃I 2 + (B̃d1 +Hn−1B∗
d1)+ (1−δn1)Bdn + (n −1)(Bd0 +R2Bd2)

Q̃3d = Q̃3d0 +RQ̃3d I 2 +Q̃3dd1 +Hn−1Q̃∗
3dd1 + (1−δn1)Q̃3ddn

Où :
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Q̃0 =Q0 + 3n +2

2n +1

W

2
hhzzx

Q̃I 2 = Q̃I 2+3(2n +1)

4n +3

p

h
qz− (72n4 +200n3 +212n2 +101n +18)

6(4n +3)(n +1)3

qp

h2
hz

Q̃d1 = Qd1 +
Gn(3n +2)

3(4n +1)(2n −1)

( q

h2

)n−1
{

qzz + 216n5 +852n4 +778n3 +379n2 +104n +11

4(2n +1)(n +1)2(3n +1)(3n +2)
hhz qz

+3(24n3 +16n2 +5n +1)(2n2 +7n +1)

4(2n +1)(n +1)2(3n +1)(3n +2)

[ q

h2
hhzz −2

q

h2
h2

z

]}

Q̃dn = Qdn + G(3n +2)

3(4n +1)(2n −1)

( q

h2

)n−1
{

n(1−n)
q2

z

q
− (48n5 −96n4 −2n3 +9n2 −3n −1)

2n(3n +1)(2n +1)

qh2
z

h2

+ (48n3 −76n2 −5n +1)

4(3n +1)
hhz qz

}

Q̃d0 +R2Q̃d2 = Qd0 +R2Qd2 −
G

6

( q

h2

)n (n −1)(n +1)

(2n −1)(4n +1)

{
(48n3 +8n2 −4n −1)

(2n +1)(1+3n)
h2

z

= +2n

(
hqz

q

)2

− 24n2 −1

3n +1

hhzqz

q

}

Ã0 = A0 + (5n +4)(4n +3)

3(n +1)2

W

2
hhzzx

ÃI 2 = AI 2 + (2n +1)2

24G(n +1)2

{
(24n3 +36n2 +11n −2)(2n +1)

(n +1)4

pq

h2
hz −24

p

h
qz

}

Ãd1 = Ad1 +
n(n +1)2

3(5n +2)(4n +3)(4n +1)(2n −1)

( q

h2

)n
{

6(n −1)
h2

q
qzz − 72n3 −16n2 −30n −5

(2n +1)(3n +1)(
hhzz +2

h

q
hz qz

)
+2

324n5 +192n4 −79n3 −94n2 −26n −2

(2n +1)(3n +1)(3n +2)
h2

z

}

Ãdn = Adn + (n +1)2

6(5n +2)(4n +3)(4n +1)(2n −1)

( q

h2

)n
{

864n6 −48n5 +208n4 +430n3 +129n2 −4n −4

(3n +1)(3n +2)(2n +1)
h2

z

−288n5 −272n4 +176n3 +140n2 −11n −6

(2n +1)(3n +1)

h

q
hz qz +12(n −1)n

(
hqz

q

)2}
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Ãd0 = Ad0 +
(n −1)(n +1)2

6(2n −1)(4n +3)(4n +1)(5n +2)

( q

h2

)n
{

1296n5 +2328n4 +1148n3 +45n2 −80n −12

(2n +1)(3n +1)(3n +2)
h2

z

−432n4 +712n3 +234n2 −7n −6

(2n +1)(3n +1)

h

q
hz qz +6n(3n +4)

(
hqz

q

)2

− 3n(2n −1)(4n +1)(5n +2)

(2n +1)(3n +2)
q2q̃2

}

B̃0 = B0 + (7n +6)(6n +5)(5n +4)

24(n +1)3
W hhzzx

B̃I 2 = BI 2 + (4n +3)(3n +2)(2n +1)2(6n +5)(5n +4)(7n +6)

240(n +1)8

pq

h2
hz

B̃d1 = Bd1 +
(4n +3)(5n +4)(6n +5)(7n +6)(3n +2)

9(5n +2)(4n +1)(2n −1)(2n +1)(n +1)3

( q

h2

)n
{

(n −1)
h2

q
qzz − (820n3 −116n2 −407n −90)

32(5n +3)(3n +1)(
hhzz +2

h

q
hz qz

)
+ (2n +1)(6960n5 +6620n4 −1936n3 −3463n2 −900n −36)

16n(4n +3)(3n +2)(2n −1)(3n +1)
h2

z

}

B̃dn = Bdn + (6n +5)(4n +3)(3n +2)(7n +6)(5n +4)

9(2n −1)(2n +1)(5n +2)(4n +1)(n +1)3

( q

h2

)n
{

(n −1)2
(

hqz

q

)2

+9840n7 +17108n6 +19192n5 +16161n4 +5626n3 −841n2 −828n −108

16n(4n +3)(3n +2)(3n +1)
h2

z

−1780n5 −40n4 +1653n3 +617n2 −182n −48

32n(5n +3)(1+3n)

h

q
hz qz

}

B̃d0 = Bd0 +
(n −1)(n +1)2

6(2n −1)(4n +3)(4n +1)(5n +2)

( q

h2

)n
{

1296n5 +2328n4 +1148n3 +45n2 −80n −12

(2n +1)(3n +1)(3n +2)
h2

z

−432n4 +712n3 +234n2 −7n −6

(2n +1)(3n +1)

h

q
hz qz +6n(3n +4)

(
hqz

q

)2

− 3n(2n −1)(4n +1)(5n +2)

(2n +1)(3n +2)
q2q̃2

}

Q̃3d0 =
(3n +2)

2(2n +1)

{
G

( q

h2

)n−1 q̃

h2
+W (hhxxz +hhzzz)+G cotβhhz

}

Q̃3d I 2 =−3
2n +1

4n +3

{
qq̃hx

h2
− qq̃x

h
−3

5n +3

2n +1

q̃qx

h

}
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Q̃3dd1

Q̃3dd1 = 2Gn(3n +2)

3(4n +1)(2n −1)

( q

h2

)n−1
{

qxz + 24(n −1)(n +1)

9(3n +1)
(hhz qx +hhx qz + q

h
hxz)

−72n4 −8n3 −6n2 +4n +1

(3n +1)

q

h2
hzhx

}

Q̃3ddn = G(3n +2)

12(4n +1)(2n −1)

( q

h2

)n−1
{
−(2n2 +5n −1)qxz + 12n4 +52n3 −61n2 −8n +2

3n +1

qzhx

h

+(1−n)(2n +11)n
qx qz

q
+ 12n4 +52n3 −89n2 −11n +3

3n +1

hz qx

h

−2
24n6 +92n5 −162n4 −5n3 +12n2 −7n −2

n(2n +1)(3n +1)

qhzhx

h2

}
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  ملخص

لعملاينها الجاذبية. قمنا باقتراح نماذج رياضية من بناول دراسة جريان مائع لا نيوتوني على سطح مائل بتأثير يت     هذا 

الطويلة. تمت مقارنة صلاحية النتائج عن طريق دراسة  الأمواجنموذج كامل حتى الدرجة الثانية باستعمال نظرية 

.                      المقترحة تتقارب مع الحلول الرقمية لمعادلة لاحظنا آن النماذج .لا خطيةالاستقرار الخطى و أخرى 

رجة للاستقرار و كمي ملحوظا على القيم الح تأثير أنمقارنة بالمائع النيوتونى غير  النوعينفس السلوك  تظهرالنتائج 

                                            ظهور الاضطرابات و الحالة العشوائية 

 

Résumé 

 Le présent travail est consacré à la modélisation d'un écoulement par gravité de film non-newtonien en loi de puissance sur un plan 

incliné pour de faibles à modérés nombres de Reynolds. nous avons établi un modèle complet d'ordre deux de quatre équations 

d'évolution de la dynamique du film en présence des effets non-newtoniens. En plus, des modèles réduits (simplifiés) d'évolution à deux 

équations, de l'épaisseur du film et du débit, sont proposés; Le premier modèle (RM) a été obtenue en remplaçant les champs $a$ et 

$b$, corrections du débit local,  par leurs approximations de premier ordre. Ce modèle diverge du modèle complet relativement à de 

faibles nombres de Reynolds. Une procédure de régularisation partielle a été ensuite effectuée pour y remédier. Le modèle 

résultant(RRM) asymptote, au stade linéaire, à celui obtenu par une élimination adiabatique de la correction de vitesse du premier ordre 

(SM). La procédure de modélisation de ces dernières consiste en une combinaison de la théorie des grandes ondes (théorie de 

lubrification) et l'approche des résidus pondérés en utilisant une base de projection appropriée. L'analyse de stabilité linéaire du modèle 

complet de deuxième ordre et modèle régularisé réduit (RRM) montre une assez bonne concordance avec le spectre du problème Orr-

Sommerfeld pour de faibles à modérés nombres de Reynolds.  L'aspect non linéaires de l'écoulement du film est ensuite examiné en 

utilisant une version simplifiée du modèle (RRM) qui conserve toutefois ses principales caractéristiques et en tenant compte des états 

asymptotiques caractérisées par des ondes stationnaires. Dans le sous-espace relativement limité de paramètres que nous avons 

explorés, les solutions présentent les mêmes comportements qualitatifs que ceux du cas newtonien. Quantitativement, une influence de 

l'indice de loi de puissance sur les valeurs critiques d'apparition des bifurcations et la transition vers le chaos. 

 
 
 
 
Abstract  
 

This work  deals with modeling of a power-law fluid film flowing down an inclined plane for small to moderate Reynolds 
numbers. A model, accurate up to second order [first order] for dilatant [pseudoplastic] fluids is proposed to describe the 
nonlinear behavior of the flow. The modeling procedure consists of a combination of the lubrication theory and the weighted 
residual approach using an appropriate projection basis. A suitable choice of weighting functions allows a significant reduction of 
the dimension of the problem. The resulting model is naturally unique, i.e., independent of the particular form of the trial 
functions. Reduced models are proposed for the evolution of the local film thickness and flow rate; their linear spectra are 
compared to that obtained from the full Orr–Sommerfeld numerical solution. To obtain the latter, a new formulation of the 
eigenvalue problem is proposed to overcome the classical divergence of the apparent viscosity at the free surface. The full 
model and its reduced forms all have the advantage of the Benney like model close to criticality. Far from the instability 
threshold the full model continues to follow the Orr–Sommerfeld solution up to sufficiently large Reynolds numbers and gives 
better predictions than the depth averaging model. An incomplete regularization procedure is performed to cure the rapid 
divergence of the reduced two-equation model. Due to its relative simplicity the latter might be preferred in practice to the full 
model, at least at the initial stage of the nonlinear regime. It is also shown that the convective nature of the instability is not 
affected by the variation of the power law index. The nonlinear study of  the film flow is then examined using a simplified version of the 

model (RRM) which, however, retains its main features and taking into account the asymptotic states characterized by traveling waves. In the 

relatively small subspace parameters we have explored, the solutions have the same qualitative behavior than those of the Newtonian case. 
Quantitatively, an influence of the power law index on the critical values of the occurrence of bifurcations and transition to chaos. 

 

Orr–Sommerfeld 
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