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 Résumé 
   Ce mémoire traite de la conception et de l’application d’une commande prédictive guidée par 

les données sur un moteur synchrone à aimants permanents, avec pour problématique principale 

la difficulté de modéliser précisément ce type de système en contexte industriel.  

    L’objectif consiste à développer une stratégie de commande qui régule efficacement les 

courants et la vitesse du moteur sans recourir à un modèle mathématique explicite, en 

s’appuyant uniquement sur les données mesurées.  

    Après avoir étudié la commande prédictive généralisée, ce travail met en œuvre une approche 

basée sur l'identification par moindres carrés des relations entrée-sortie, ce qui permet 

d’élaborer une commande optimisée à partir des réponses du système.  

    Les résultats montrent que la commande prédictive guidée par les données assure un bon 

suivi des références, une réponse dynamique satisfaisante et une robustesse face aux 

perturbations et aux incertitudes du modèle. 

   Ces performances valident l’intérêt de cette approche pour les systèmes difficiles à modéliser 

et ouvrent la voie à son application dans des contextes industriels réels.  

   Ce travail recommande ainsi d’approfondir cette méthode, notamment en l’adaptant aux 

systèmes à entrées et sorties multiples, en y intégrant des contraintes physiques et en l’associant 

à des techniques d’apprentissage en ligne pour une adaptation continue.  

Mot-clé : Commande prédictive, commande prédictive guidée par les données, commande 

prédictive généralisée, moteur synchrone à aimants permanents, identification par les données. 

 

Abstract 

   This thesis focuses on the design and application of data-driven predictive control on a 

permanent magnet synchronous motor, with the main challenge being the difficulty of 

accurately modelling this type of system in an industrial context.  

   The aim is to develop a control strategy that effectively regulates motor currents and speed 

without using an explicit mathematical model, relying solely on measured data.  

   After studying generalized predictive control, this work implements an approach based on 

least-squares identification of the input-output relationships, which makes it possible to develop 

an optimised control based on the system responses.  

   The results show that the data-driven predictive control provides good reference tracking, a 

satisfactory dynamic response and robustness in the face of disturbances and model 

uncertainties. 

   These performances validate the interest of this approach for systems that are difficult to 

model and pave the way for its application in real industrial contexts.  

   This work therefore recommends extending this method, in particular by adapting it to 

multiple input multiple output systems, incorporating physical constraints and combining it 

with online learning techniques for continuous adaptation. 



 

 

Keywords : Predictive control, data-driven predictive control, generalized predictive control, 

permanent magnet synchronous motor, data identification. 

 

 ملخص

حيث دائم، مغناطيسي متزامن محرك على البيانات إلى المستند التنبؤي التحكم وتطبيق تصميم على الأطروحة هذه تركز   

الصناعي السياق في الأنظمة من النوع لهذا دقيقة نماذج وضع صعوبة في الرئيسي التحدي يتمثل   

مع واضح، رياضي نموذج استخدام دون بفعالية وسرعته المحرك تيارات تنظم تحكم استراتيجية تطوير هو والهدف     

المقاسة البيانات على فقط الاعتماد  

المدخلات بين للعلاقات الصغرى المربعات تحديد على قائمًا نهجًا العمل هذا يطبق المعمم، التنبؤي التحكم دراسة بعد     

النظام استجابات على اءً بن محسن تحكم تطوير الممكن من يجعل مما والمخرجات،   

في ومتانة مرضية ديناميكية واستجابة جيداً مرجعيًا تتبعًا يوفر البيانات إلى المستند التنبؤي  التحكم أن النتائج تظُهر     

النموذج في اليقين عدم وأوجه الاضطرابات مواجهة  

الحقيقية الصناعية السياقات في لتطبيقه لطريقا ويمهد نمذجتها يصعب التي للأنظمة النهج هذا أهمية الأداء هذا يؤكد      

والمخرجات المدخلات متعددة أنظمة مع تكييفها خلال من سيما لا الطريقة، هذه نطاق بتوسيع  العمل هذا يوصي لذلك     

المستمر للتكيف الأونلاين التعلم تقنيات مع ودمجها المادية القيود ودمج المتعددة،  

 الكلمات المفتاحية

التنبؤي، التحكم التنبؤي المستند إلى البيانات، التحكم التنبؤي المعمم، المحرك المتزامن المغناطيسي الدائم، التعرفالتحكم   

 على البيانات
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Nomenclatures 
 

 

 

MSAP : Moteur synchrone à aimant permanent. 

Ω𝑠 : Vitesse du champ magnétique crée par le stator. 

Ω : Vitesse de rotation du moteur. 

P : Nombre de paires de pôles. 

[𝑉𝑠] : Vecteur de tensions statoriques.   

[𝛷𝑠] : Vecteur de flux statorique. 

[𝐼𝑠] : Vecteur de courants statoriques. 

[𝑅𝑠] : Matrice des résistances statoriques. 

[ 𝐿𝑠𝑠] : Matrice des inductances statoriques. 

[𝛷𝑓] : Vecteur des flux rotorique. 

 𝜃: L’angle électrique. 

𝜃𝑚 : Position mécanique du rotor. 

[𝑃(𝜃)] : Matrice de Park. 

[𝑃(𝜃)]−1 : Matrice de Park inverse. 

𝑉𝑑𝑠, 𝑉𝑞𝑠 : Tension d’axe direct en quadrature. 

𝐼𝑑𝑠, 𝐼𝑞𝑠 : Courant d’axe direct en quadrature. 

𝛷𝑑𝑠, 𝛷𝑞𝑠 : Flux d’axe direct en quadrature. 

𝐿𝑑𝑠, 𝐿𝑞𝑠 : Flux d’axe direct en quadrature. 

𝜔 : Vitesse angulaire électrique du rotor. 

P(t) : Puissance. 

𝑃𝑒 : Puissance électromagnétique. 

𝐶𝑒 : Couple électromagnétique. 

𝐶𝑟 : Couple résistant. 

J : Le couple d'inertie des masses tournantes. 

f : Coefficients de frottements visqueux. 

GPC : Commande Prédictive Généralisée. 

w(k) : Consigne. 

y (k) : Sortie du processus. 

𝑦̃ (k) : Sortie prédite. 



Nomenclatures 
 

 

u(k) : Signal de commande appliqué sur le système. 

v(k) : Signal de perturbation. 

𝑞−1: Opérateur retard. 

∆(𝑞−1): Opérateur différence. 

C(𝑞−1). ε(t) : Perturbations. 

∆u : Incrément de commande. 

N : Horizon de prédiction. 

𝑁𝑢 : Horizon de prédiction sur la commande. 

𝐺𝑛 : Matrice des coefficients de la réponse indicielle du modèle. 

𝐻𝑛 : la matrice des coefficients de la réponse impulsionnelle discrète du modèle. 

𝜌𝑗   est la réponse libre du système. 

𝑢̂𝑜𝑝𝑡 : Solution optimale. 

DDC : Commande guidée par les données (Data-Driven Control). 

𝜂 : Pas du gradient. 

[uk, yk] : Vecteur d’entrées sorties.  
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INTRODUCTION GENERALE 

  Les machines synchrones à aimants permanents (MSAP) sont devenues le choix le plus 

courant pour de nombreuses applications industrielles, en particulier dans les systèmes de 

traction, l'aérospatiale et les énergies renouvelables, dans un environnement où l'efficacité 

énergétique et la précision du système électrique sont des enjeux importants. Ils constituent un 

choix stratégique en raison de leur grande efficacité et de leur densité de puissance, mais leur 

régulation reste difficile, en partie à cause de la nécessité d'optimiser leur comportement 

dynamique en temps réel lors des changements de charge et des incertitudes du système. 

 

    La commande prédictive basée sur modèle (Model Predictive Control, MPC) est une stratégie 

efficace pour garantir le contrôle optimal de systèmes dynamiques complexes. Son efficacité 

dépend de la précision du modèle, qui peut être difficile à déterminer dans les environnements 

industriels où les processus non linéaires et les perturbations sont monnaie courante. Les 

techniques de commande prédictive guidée par les données (Data-Driven MPC) sont en train 

de devenir un substitut viable à cette restriction. Sans dépendre d'une modélisation analytique 

rigoureuse, elles permettent d'utiliser directement les données mesurables du système pour 

optimiser le contrôle et apprendre un modèle représentatif. 

 

    La mise en œuvre d'une méthode de commande prédictive guidée par les données pour une 

machine synchrone à aimants permanents est le sujet principal de cette thèse. En minimisant la 

susceptibilité à l'incertitude du modèle et en maximisant la performance dynamique de la 

machine, l'objectif est d'étudier comment l'apprentissage à partir des données du système peut 

augmenter la précision et la robustesse de la commande. Pour ce faire, nous utiliserons des 

techniques d'optimisation du contrôle et des méthodes d'identification de modèle, en gardant à 

l'esprit les exigences de temps réel et les limitations de traitement qui accompagnent les 

systèmes embarqués. 

 

   La structure de cette étude sera la suivante : nous commencerons par passer en revue les 

avantages et les inconvénients des approches de contrôle conventionnelles et prédictives 

utilisées avec les MSAP. Nous examinerons ensuite les principes fondamentaux de la 

commande pilotée par les données et les méthodes qui fonctionnent le mieux pour les systèmes 

électrotechniques. Enfin, afin d'analyser les performances de la stratégie et de comparer son 

efficacité avec les méthodes traditionnelles de contrôle prédictif, nous proposerons une 

évaluation expérimentale et la mise en œuvre de la stratégie conçue. 

 

Ce mémoire est structuré comme suit : 

-La modélisation du moteur synchrone à aimants permanents. 

-La présentation de la commande prédictive. 

-La présentation de la commande prédictive guidée par les données. 

-L’application de la commande prédictive guidée par les données à un moteur synchrone à 

aimants permanents. 
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 I.1 Introduction  

   La modélisation du MSAP est une étape fondamentale pour comprendre son comportement 

dynamique, optimiser ses performances et concevoir des stratégies de commande appropriées. 

Une modélisation précise peut décrire l'interaction entre les grandeurs électriques (tension, 

courant) et les grandeurs mécaniques (vitesse, couple), en tenant compte des spécificités de la 

machine telles que la répartition du flux magnétique, les non-linéarités et les pertes. 

 

Ⅰ.2 Principe de fonctionnement d’un moteur synchrone   

   Lorsqu'une alimentation triphasée est fournie au stator d'un moteur synchrone à enroulement 

triphasé, un champ tournant est Lorsqu'une alimentation triphasée est fournie au stator d'un 

moteur synchrone à enroulement triphasé, un champ tournant est créé. Ce champ tourne à une 

vitesse synchrone (NS = 60fp). Il est représenté par les pôles imaginaires du stator. À un instant 

donné, les pôles opposés du stator et du rotor se font face. Comme il existe une force d'attraction 

entre eux, un couple est produit dans le rotor. Ainsi, les pôles du rotor sont entraînés par les 

pôles tournants du stator (par le champ). 

   Après un demi-cycle, la polarité des pôles du stator est inversée alors que les pôles du rotor 

ne peuvent pas changer de position en raison de l'inertie. Ainsi, les pôles semblables se font 

face et, en raison de la force de répulsion, un couple dans le sens inverse du premier est produit 

dans le rotor.  

   Par conséquent, le couple produit dans un moteur synchrone triphasé n'est pas unidirectionnel 

et, de ce fait, ce moteur n'est pas auto démarrant. Cependant, si le rotor d'un moteur synchrone 

est mis en rotation par un moyen externe au début, il inverse également sa polarité, car la 

polarité des pôles du stator est inversée après un demi-cycle. Il existe une force d'attraction 

continue entre les pôles du stator et du rotor. C'est ce qu'on appelle le verrouillage magnétique. 

   Une fois le verrouillage magnétique obtenu, les pôles du rotor sont entraînés par le champ 

tournant du stator (pôles imaginaires) et un couple continu est obtenu. Comme les pôles du rotor 

sont entraînés par le champ tournant du stator, le rotor tourne à la même vitesse que le champ 

tournant du stator, c'est-à-dire à la vitesse synchrone. Ainsi, un moteur synchrone ne fonctionne 

qu'à une vitesse constante appelée vitesse synchrone [1]. 

 

 
 

Figure Ⅰ.1 Schéma d’une machine synchrone à aimants permanents.         
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I.3 Les types de moteurs synchrones  

   Malgré la gamme d’application extrêmement large des moteurs synchrone, la classification 

standard selon la littérature scientifique est divisée en deux grandes familles :  

 

I.3.1 Les moteurs synchrones à rotor bobiné, à pôles saillants ou pôles lisses 

   Ils font appel, plus souvent, à une excitatrice associée à un redresseur tournant, pour éliminer 

tout contact glissant le rotor peut être à pôle lisse ou saillant et il est généralement équipé de 

circuits amortisseurs. A forte puissance et à grande vitesse on utilise un rotor cylindrique 

massif.[3] 

 

I.3.2 Les moteurs synchrones à aimants permanents, avec ou sans pièce polaire 

   Les moteurs synchrones à aimants permanents sont sans balais et présentent une fiabilité et 

un rendement très élevés. Grâce à leur rotor à aimants permanents, ils ont également un couple 

plus élevé avec une taille de châssis plus petite et aucun courant de rotor, ce qui constitue un 

avantage par rapport aux moteurs à induction à courant alternatif. Grâce à leur rapport 

puissance/taille élevé, les PMSM peuvent contribuer à réduire la taille de la conception sans 

perte de couple. 

 

I.4 structure d’un moteur synchrone à aimants permanents  

I.4.1 Le stator  
    Le stator est composé de trois enroulements identiques décalés de 120° degrés dans l’espace. 

Ces enroulements sont logés dans les encoches du circuit magnétique. Lorsqu’on alimente les 

enroulements statoriques par un système triphasé équilibré, il y a une création d’un champ 

magnétique tournant le long de l’entrefer. La vitesse de rotation du champ magnétique est 

proportionnelle au nombre de pôles de la machine et à la fréquence des courant statoriques [4]. 

 

I.4.2 Le rotor  

  Le rotor formé d'un assemblage de tôles et d'aimants créant le flux inducteur. L'absence de 

contacts glissants améliore la fiabilité. Les aimants utilisés sont les ferrites qui sont peu 

coûteuses, le samarium cobalt (SmCo5, Sm2Co17), dont les performances du point de vue de 

l'énergie spécifique sont exceptionnelles.             

    Le rotor du moteur peut être à "aimants déposés" sans pièce polaire ou à "concentration de 

flux". Cette dernière réalisation utilise un plus faible volume d'aimants. 

 

I.5 Les avantages et inconvénients du MSAP 

   Le moteur synchrone à aimants permanents (MSAP) présente de nombreux avantages qui en 

font un choix privilégié dans les applications exigeant efficacité énergétique et haute 

performance. L’un de ses principaux atouts est son rendement élevé. En effet, l’absence 

d’enroulement au rotor élimine les pertes joules typiques dues aux courants induits, ce qui 

permet de limiter les échauffements et d’optimiser les performances globales, notamment à 

charge partielle. De plus, grâce à l’utilisation d’aimants en terres rares comme le néodyme-fer-

bore (NdFeB), le MSAP offre une densité de puissance importante : il peut délivrer un couple 

élevé dans un volume réduit, ce qui le rend particulièrement adapté aux systèmes compacts et 

performants. À cela s’ajoute une excellente réponse dynamique, permise par la faible inertie 
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rotorique et la possibilité de moduler le couple très rapidement, ce qui le rend idéal pour les 

applications nécessitant un contrôle précis et réactif. En outre, l’absence de balais et de bagues 

collectrices réduit considérablement les besoins en maintenance, tout en éliminant les sources 

d’usure mécanique. Enfin, le MSAP peut fonctionner avec un facteur de puissance élevé, ce qui 

réduit les pertes réactives et améliore l’efficacité énergétique du système. 

 

   Cependant, malgré ses nombreux atouts, le moteur synchrone à aimants permanents présente 

aussi certaines limites. Le premier frein à son adoption reste son coût relativement élevé. Les 

aimants permanents, surtout ceux à base de terres rares, sont onéreux et soumis à une forte 

variabilité du marché international. Par ailleurs, ces aimants sont sensibles à la température et 

peuvent se démagnétiser en cas de surchauffe ou de surtension prolongée, ce qui nuit à la 

durabilité du moteur. Un autre inconvénient concerne la complexité de la commande. 

Contrairement aux moteurs asynchrones, le MSAP nécessite un onduleur sophistiqué associé à 

une stratégie de commande avancée (commande vectorielle, commande prédictive, etc.) et 

l’utilisation fréquente de capteurs de position (codeur incrémental, resolver). Cela implique un 

surcoût et une complexité de mise en œuvre. En fonctionnement générateur ou en cas de 

freinage régénératif, la gestion de l’énergie retournée vers le réseau ou le convertisseur est 

également plus délicate. Enfin, bien que les performances thermiques globales soient bonnes, 

les propriétés magnétiques des aimants diminuent avec la température, ce qui impose un 

contrôle thermique rigoureux pour éviter la perte de performance ou la démagnétisation 

irréversible. 

 

I.6 Modélisation du MSAP  

   Afin de modéliser le MSAP, on adopte les hypothèses simplificatrices usuelles données dans 

la majorité des références : 

-L’absence de saturation dans le circuit magnétique. 

-La distribution sinusoïdale de la F.M.M créée par les enroulements du stator. 

-L’hystérésis est négligée avec les courants de Foucault et l’effet de peau. 

-L’effet d’encochage est négligeable. 

-La résistance des enroulements ne varie pas avec la température. 

 

   L'excitation étant faite par des aimants permanents, telle que le flux d'excitation est considéré 

comme constant, par ailleurs l'aimant est considéré comme un enroulement sans résistance ni 

inductance propre ou mutuelle, mais comme source de flux. 



Chapitre I : Modélisation du moteur synchrone à aimants permanents 
 

5 
 

  

 

    

  

  

 

                     

 

 

Figure Ⅰ.2 Repères abc et dq associés à la machine synchrone à aimants permanents. 

 

I.6.1 Equation de tension et flux   
   Les tensions, flux et courants statorique triphasés, sont écrits avec les notations vectorielles 

suivantes [𝑉𝑠], [𝛷𝑠], [𝐼𝑠] respectivement. 

 

L'équation des tensions dans le référentiel du stator s'écrit comme suite :  

                                                           [𝑉𝑠] = [𝑅𝑠][𝐼𝑠] +
𝑑

𝑑𝑡
[𝛷𝑠]                                                 (I.1) 

 

Avec :                                        

{
  
 

  
 
[𝑉𝑠] =  [ 𝑉𝑎𝑠 𝑉𝑏𝑠 𝑉𝑐𝑠]

𝑇

[𝐼𝑠] =  [𝐼𝑎𝑠 𝐼𝑏𝑠 𝐼𝑐𝑠 ]
𝑇

[𝛷𝑠] =  [ 𝛷𝑎𝑠 𝛷𝑏𝑠 𝛷𝑐𝑠]
𝑇

[𝑅𝑠] = [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

]

                                                    (I.2) 

 

Avec 𝑅𝑠: résistance de l'enroulement statorique. 

 

Les flux statoriques et rotoriques ont pour expression :  

                                                          [𝛷𝑠]=[ 𝐿𝑠𝑠][ 𝐼𝑠]+[𝛷𝑓]                                                    (I.3) 

 

                                                         [𝛷𝑓]= 𝛷𝑠𝑓 [

cos 𝜃

cos(𝜃 −
2𝜋

3
)

cos(𝜃 −
4𝜋

3
)

]                                              (I.4)                                   

 

Où : 

𝛷𝑠𝑓 Valeur (constante) du flux créé par l'aimants permanents à travers les enroulements 

statoriques, 𝜃 est l’angle électrique et [ 𝐿𝑠𝑠] la matrice inductances statoriques. 
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   Dans la machine à pôles saillants, la matrice des inductances propre statorique [ 𝐿𝑠𝑠] est 

fonction de la position. Elle contient deux termes : [ 𝐿𝑠0] qui est constant, et [ 𝐿𝑠2(𝜃)]  qui est 

fonction de l'angle θ=p𝜃𝑚, θ étant l'angle électrique et 𝜃𝑚 est la position mécanique du rotor 

par rapport au stator. On écrit alors :  

                                                             [ 𝐿𝑠𝑠] =[ 𝐿𝑠0]+[ 𝐿𝑠2(𝜃)]                                             (I.5) 

Le terme [ 𝐿𝑠0] a pour expression : 

 

                         [ 𝐿𝑠0]=[
𝐿𝑠0 𝑀𝑠0 𝑀𝑠0

𝑀𝑠0 𝐿𝑠0 𝑀𝑠0

𝑀𝑠0 𝑀𝑠0 𝐿𝑠0

]                                                      (I.6) 

Le terme [𝐿𝑠2] s'écrit, dans le cadre de la théorie du premier harmonique : 

 

                     [𝐿𝑠2(𝜃)] = 𝐿𝑠2

[
 
 
 
 cos(2𝜃) cos 2(𝜃 −

2𝜋

3
) cos 2(𝜃 −

4𝜋

3
)

cos 2(𝜃 −
2𝜋

3
) cos 2(𝜃 −

4𝜋

3
) cos(2𝜃)

cos 2(𝜃 −
4𝜋

3
) cos(2𝜃) cos 2(𝜃 −

2𝜋

3
)]
 
 
 
 

                   (I.7) 

 

Les inductances propres et mutuelles 𝐿𝑠0, 𝑀𝑠0, 𝐿𝑠2 sont constantes. 

En introduisant (I.3) dans (I.1) on aura : 

 

                                                   [𝑉𝑠] =[𝑅𝑠][𝐼𝑠]+
𝑑

𝑑𝑡
([ 𝐿𝑠𝑠] [𝐼𝑠]+ [𝛷𝑠])                                    (I.8) 

    L’équation (I.8) présente un caractère non linéaire et couplé, ce qui complique son analyse. 

Afin de simplifier le système, nous introduisons des changements de variables et des 

transformations appropriées. En particulier, nous appliquons la transformation de Park, qui 

permet de convertir les enroulements statoriques fixes (a, b, c) en un repère tournant (d, q) 

synchronisé avec le rotor. 

 

I.6.2 Transformée de Park 

    A l'aide de la transformation de Park, on passe des grandeurs statorique réel tension, flux, 

courant, à leurs composantes fictives appelées les composants d-q. 

 

 

 

 

 

Figure Ⅰ.3 Machine équivalente au sens de Park. 
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Dans le système d'équations (I.8) effectuons le changement de la variable suivant : 

 {
[𝑃(𝜃)][𝑉𝑑𝑞] = [𝑉𝑠]

[𝑃(𝜃)][𝐼𝑑𝑞] = [𝐼𝑠]
 (I.9)                             

   

Avec :  

 [𝑃(𝜃)] = √
2

3

[
 
 
 
 
1

√2
cos(𝜃) − sin 𝜃

1

√2
cos(𝜃 −

2𝜋

3
) − sin(𝜃 −

2𝜋

3
)

1

√2
cos(𝜃 −

4𝜋

3
) − sin(𝜃 −

4𝜋

3
)]
 
 
 
 

                                     (I.10) 

  

   

[𝑃(𝜃)] Étant la matrice de la transformation de Park qui permet le passage des grandeurs 

statoriques [𝑉𝑠], [𝐼𝑠] et [𝛷𝑠] à leur composantes [𝑉𝑑𝑞] et [𝐼𝑑𝑞]. 

 

L'application de la transformation de Park à l'équation (II.8) donne :  

                      [𝑃(𝜃)][𝑉𝑑𝑞] = [𝑅𝑠][𝑃(𝜃)][𝐼𝑑𝑞] +
𝑑

𝑑𝑡
([𝐿𝑠𝑠][𝑃(𝜃)][𝐼𝑑𝑞]) + (

𝑑[𝛷𝑓]

𝑑𝜃

𝑑𝜃

𝑑𝑡
) (I.11) 

 

Si on prémultiplie tous ces termes par [𝑃(𝜃)]−1 et sachant que [𝑅𝑠]=𝑅𝑠 [
1 0 0
0 1 0
0 0 1

] les 

équations simplifiées des tensions deviennent :  

 

              [𝑉𝑑𝑞] = [𝑅𝑠][𝑃(𝜃)][𝐼𝑑𝑞] + [𝑃(𝜃)]
−1{

𝑑

𝑑𝑡
([𝐿𝑠𝑠][𝑃(𝜃)][𝐼𝑑𝑞]) + (

𝑑[𝛷𝑓]

𝑑𝜃

𝑑𝜃

𝑑𝑡
)}               (I.12) 

Avec : 

 

                                  [𝑃(𝜃)]−1 = √
2

3

[
 
 
 
 

1

√2

1

√2

1

√2

cos(𝜃) cos(𝜃 −
2𝜋

3
) cos(𝜃 −

4𝜋

3
)

− sin 𝜃 − sin(𝜃 −
2𝜋

3
) − sin(𝜃 −

4𝜋

3
)]
 
 
 
 

 (I.13) 

 

Les équations électriques dans le repère de Park : 

                                                      {
𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 +

𝑑

𝑑𝑡
𝛷𝑑𝑠 −𝜔𝛷𝑞𝑠

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 +
𝑑

𝑑𝑡
𝛷𝑞𝑠 − 𝜔𝛷𝑑𝑠

     (I.14)
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Les flux s’écrivent : 

                                                      {
𝛷𝑑𝑠 = 𝐿𝑑𝑠𝐼𝑑𝑠 + 𝛷𝑓
𝛷𝑞𝑠 = 𝐿𝑞𝑠𝐼𝑞𝑠

 (I.15)

  

En introduisant (II.15) dans (II.14), on aura le modèle électrique de la MSAP sous la forme 

suivante :  

 {
𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 + 𝐿𝑑𝑠

𝑑

𝑑𝑡
𝐼𝑑𝑠 − 𝜔𝐿𝑞𝑠𝐼𝑞𝑠

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 + 𝐿𝑞𝑠
𝑑

𝑑𝑡
𝐼𝑞𝑠 − 𝜔𝐿𝑑𝑠𝐼𝑑𝑠 + 𝜔𝛷𝑓

 (I.16) 

 

II.6.3 Expression de la puissance et du couple électromagnétique  

L'expression de la puissance s'écrit comme suit :  

 P(t)=𝑉𝑑𝑠𝐼𝑑𝑠 + 𝑉𝑞𝑠𝐼𝑞𝑠 (I.17)

  

En remplacent 𝑉𝑑𝑠 et 𝑉𝑞𝑠  par leur expression, l’équation (I.17) devient : 

                P(t)=[𝑅𝑠(𝐼𝑑𝑠
2 + 𝐼𝑞𝑠

2) − (𝐼𝑑𝑠
𝑑

𝑑𝑡
𝛷𝑑𝑠 + 𝐼𝑞𝑠

𝑑

𝑑𝑡
𝛷𝑞𝑠) + 𝜔(𝛷𝑑𝑠𝐼𝑞𝑠 − 𝛷𝑞𝑠𝐼𝑑𝑠)] (I.18) 

 

Le 1er terme représente la chute de tension ohmique (pertes par effet joule). 

Le 2ème terme représente la variation de l'énergie magnétique emmagasinée. 

Le 3ème terme représente la puissance transférée du stator au rotor à travers l'entrefer (puissance 

électromagnétique) 

 

Sachant que : 

 

                                                                 {
𝑃𝑒 = 𝐶𝑒 . 𝜔
𝜔 = 𝑝 . Ω

                                                                (I.19)                                                                     

 

On trouve : 

                                                         𝐶𝑒=p(𝛷𝑑𝑠𝐼𝑞𝑠 − 𝛷𝑞𝑠𝐼𝑑𝑠) (I.20) 

 

En remplacent  𝛷𝑑𝑠 et 𝛷𝑞𝑠 par leur expression il vient : 

 

                                                  𝐶𝑒=
3

2
p [(𝐿𝑑𝑠 − 𝐿𝑞𝑠)𝐼𝑑𝑠. 𝐼𝑞𝑠+𝛷𝑓𝐼𝑞𝑠 (I.21) 

 

 



Chapitre I : Modélisation du moteur synchrone à aimants permanents 
 

9 
 

Avec : 

P : nombre de paires de pôles 

L'équation du mouvement de la machine est : 

                                                            𝐶𝑒- 𝐶𝑟 - f* Ω = 𝐽
𝑑Ω

𝑑𝑡
 (I.22) 

J : Le couple d'inertie des masses tournantes. 

𝐶𝑟 : Couple résistant imposé par la charge mécanique. 

𝐶𝑒 : Couple électromagnétique. 

Ω : Vitesse mécanique de rotation. 

f : Coefficients de frottements visqueux. 

 

I.7 Schéma fonctionnelle de la MSAP sous MATLAB  

D'après les équations (II.16), (II.21), (II.22), on obtient le système d'équation suivant : 

                                   

{
 
 

 
 

𝑑

𝑑𝑡
𝐼𝑑𝑠 =

1

𝐿𝑑𝑠
(𝑉𝑑𝑠 − 𝑅𝑠𝐼𝑑𝑠 + 𝜔𝐿𝑞𝑠𝐼𝑞𝑠)

𝑑

𝑑𝑡
𝐼𝑞𝑠 =

1

𝐿𝑞𝑠
(𝑉𝑞𝑠 − 𝑅𝑠𝐼𝑞𝑠 + 𝜔𝐿𝑑𝑠𝐼𝑑𝑠 − 𝜔𝛷𝑓)

𝑑𝛺

𝑑𝑡
=

3

2

1

𝐽
[p[(𝐿𝑑𝑠 − 𝐿𝑞𝑠)𝐼𝑑𝑠. 𝐼𝑞𝑠 + 𝛷𝑓𝐼𝑞𝑠] −

𝐶𝑟

𝐽
−
𝑓

𝐽
𝛺

 (I.23) 

 

Figure Ⅰ.4 Schéma bloc d’un MSAP sous MATLAB. 
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I.8 simulation du modèle du MSAP  

   Les paramètres du moteur sont présentés dans l’annexe (A), Les schémas de simulation seront 

fournis dans l’annexe (B). 

   Les résultats de simulation, montrés sur la figure qui suit, représentent le comportement du 

moteur synchrone à aimants permanents alimentée en tension à travers un réseau d’alimentation 

triphasé (220/380 V). L’essai se caractérise par un démarrage à vide ; à l’instant t =1s, nous 

augmentons la charge à 20 Nm.  

Figure Ⅰ.5 Résultats de simulation du MSAP sous Matlab/Simulink. 

I.9 Conclusion 

   Dans ce chapitre, nous avons présenté la machine synchrone à aimants permanents. D’abord, 

nous avons commencé par le principe de fonctionnement de la MSAP suivi des différents types 

ainsi que sa structure et ses avantages et inconvénients. La modélisation de la MSAP est donnée 

dans le repère abc ainsi que dans le repère dq obtenu via la transformation de Park. Des résultats 

de simulation en boucle ouverte sont présentés et discutés. Ce chapitre se termine par une 

simulation de la MSAP en boucle ouverte. Ce dernier modèle sera utilisé dans les chapitres 

suivants pour la synthèse, la simulation et la validation de la commande prédictive guidée par 

les données.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapitre II 
Commande prédictive 
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II.1 Introduction : 

   La commande prédictive est une technique de commande avancée de l’automatique. Elle a 

pour objectif de commander des systèmes industriels complexes. Le principe de cette technique 

est d'utiliser un modèle dynamique du processus à l'intérieur du contrôleur en temps réel afin 

d'anticiper le futur comportement du procédé.  

   Cette technique est particulièrement intéressante lorsque les systèmes possèdent des retards 

importants, des réponses inverses et de nombreuses perturbations. Les principaux utilisateurs 

de la commande prédictive sont les raffineries de pétroles, l'industrie chimique et 

agroalimentaire, la métallurgie, l'aérospatiale... [6]. 

   Le but du présent chapitre est de présenter les éléments constitutifs fondamentaux d’un outil 

de commande prédictive ainsi que son utilisation pratique. 

 

II.2 Principe de la Commande prédictive 

   La commande est répétée à chaque pas de temps et assure le passage de la situation actuelle 

à l'objectif par une optimisation d’un critère et en respectant des contraintes. D’abord, le calcul 

des prévisions des variables contrôlées sur un horizon de temps N2 à l'aide d’un modèle dit 

interne au régulateur, suivi de l’élaboration d’une trajectoire de référence à suivre. Le calcul de 

la loi de commande future sera fait afin de l’appliquer aux variables manipulées sur un nouvel 

horizon temporel Nu. Seul le premier élément de la loi de commande calculée est appliqué au 

système lors du prochain cycle d'horloge. Toutes ces étapes sont ensuite répétées dans le 

principe de l'horizon fuyant. 

 

Figure II.1 Principe de l’horizon fuyant. 

 

II.3 La Commande Prédictive généralisée (GPC) 

   Cette technique de commande prédictive a été inventée en 1987 par D.W. Clarke et ses 

collaborateurs. Elle est considérée comme l'une des méthodes de prévision les plus prisées, 

notamment en raison de son importance et de son efficacité industrielle. Elle implique la 

prédiction du comportement futur du processus, de même que la commande par rétroaction. 
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Figure II.2 Principe de fonctionnement de la commande prédictive généralisée. 

Avec :  

w(k) : consigne. 

y (k) : sortie du processus. 

𝑦̃(𝑘): sortie prédite. 

u(k) : commande appliqué sur le système. 

 

II.4 Le modèle de prédiction 

   Le modèle utilisé en commande prédictive est une représentation mathématique du processus 

à contrôler. Il permet de prédire les sorties futures du système en fonction des entrées (variables 

manipulées) et des perturbations.  

   Il existe plusieurs formes parmi lesquelles on trouve le modèle sous la forme CARIMA 

(Controlled AutoRegressive Integrated Moving Average) : 

 

                                                          Figure II.3 Modèle CARIMA 

Dans le cas de GPC, le modèle de prédiction est donné par : 

A(𝑞−1). y(k)  =  B(𝑞−1) . u(k − 1) + C(𝑞−1)Δ(𝑞−1)v(k)               (II-1)             

Avec : 

y(k) : Sortie du processus. 

u(k) : Commande appliquée au système. 

v(k) : signal de perturbation considéré aléatoire et de moyenne nulle. 
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𝑞−1: Opérateur retard. 

∆(𝑞−1)=1−𝑞−1: Opérateur différence. 

Les polynômes : A(𝑞−1), B(𝑞−1) et C(𝑞−1) sont définis par : 

𝐴(𝑞−1) = 1 + 𝑎1𝑞
−1 +⋯+ 𝑎𝑛𝑎𝑞

−𝑛𝑎                                    (II.2)      

𝐵(𝑞−1) = 𝑏0 + 𝑏1𝑞
−1 +⋯+ 𝑏𝑛𝑏𝑞

−𝑛𝑏                                    (II.3)      

𝐶(𝑞−1) = 1 + 𝑐1𝑞
−1 +⋯+ 𝑐𝑛𝑐𝑞

−𝑛𝑐                                    (II.4)      

Avec    na>nb. 

On a aussi une autre modélisation correspondant à l’équation suivante :  

A(𝑞−1). y(k)  =  B(𝑞−1) . u(k − 1) + C(𝑞−1). ε(t)                                (II.5) 

Si nous ne considérons pas le terme lié à la perturbation, on obtient ce résultat final : 

  ∆𝑦(𝑡) = −∑ 𝑎𝑖 
𝑛
𝑖=1 ∆𝑦(𝑡 − 𝑖) + ∑ 𝑏𝑗

𝑚
𝑗=0 ∆𝑢(𝑡 − 𝑗 − 1)                          (II.6) 

 

II.5 La recherche du prédicateur optimal 

   Dans le contexte de la commande prédictive, le prédicteur optimal est une fonction 

mathématique qui fournit une estimation de la sortie future ŷ (t + j | t), à partir des données 

disponibles à l’instant présent t. L’utilisation du model de convolution nous donne : 

  𝑦 ̂(𝑡) = ∑ 𝑔𝑖
∞
𝑖=0 𝑢(𝑡 − 𝑖)                                                (II.7) 

Avec : 𝑔𝑖 la réponse impulsionnelle  

Aussi ce modèle peut être mise sous la forme : 

    𝑦 ̂(𝑡) = ∑ ℎ𝑖
∞
𝑖=0 ∆𝑢(𝑡 − 𝑖)                                              (II.8) 

Avec : ℎ𝑖 la réponse indicielle  

Finalement on obtient :  

  𝑦̂(𝑡 + 𝑗|𝑡) = ∑ ℎ𝑖
𝑗
𝑖=0 ∆𝑢(𝑡 + 𝑗 − 𝑖) + ∑ ℎ𝑖

∞
𝑖=𝑗+1 ∆𝑢 ∗ (𝑡 + 𝑗 − 𝑖)               (II.9) 

On pose : 

𝜌𝑗 = ∑ ℎ𝑖
∞
𝑖=𝑗+1 ∆𝑢 ∗ (𝑡 + 𝑗 − 𝑖)                                             (II.10) 

Où 𝜌𝑗   est la réponse libre du système et 

𝑦̂(𝑡 + 𝑗|𝑡) =∑ℎ𝑖

𝑗

𝑖=0

∆𝑢(𝑡 + 𝑗 − 𝑖) + ∑ ℎ𝑖

∞

𝑖=𝑗+1

∆𝑢(𝑡 + 𝑗 − 𝑖) 

Est la réponse forcée du système.  

On pose que c’est y*(t+j) la réponse libre (entrée nulle). A partir des conditions initiales à 

l’instant t, on peut écrire : 

                                                𝜌𝑗 = 𝑦∗(𝑡 + 𝑗) =  ∑ ℎ𝑖
∞
𝑖=0 ∆𝑢∗(𝑡 + 𝑗 − 𝑖)                          (II.11)              
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Avec : 

 ∆𝑢∗(𝑡 + 𝑗 − 𝑖) ≡ 0 𝑝𝑜𝑢𝑟 𝑖 ≤ 𝑗 

Le calcul de 𝜌𝑗  se fait comme suit : 

𝜌0 = 𝑦(𝑡)                                                       (II.12)                                      

                                                                     𝜌𝑗 = 𝜌𝑗−1 + ∆𝑦
∗(𝑡 + 𝑗)  (II.13) 

Avec : 

      ∆𝑦∗(𝑡 + 𝑗) = ∑ 𝑏𝑖
𝑛𝑏
𝑖=𝑗 ∆𝑢(𝑡 + 𝑗 − 𝑖 − 1) − ∑ 𝑎𝑖

𝑛𝑎
𝑖=1 ∆𝑦∗(𝑡 + 𝑗 − 𝑖)      (II.14)                                   

   À partir des équations de prédiction, on peut effectivement exprimer l’estimée de la sortie sur 

un horizon de prédiction donné Np (ou simplement N) sous forme matricielle. 

On pose : 

                                               𝑦̂ = [𝑦̂(𝑡 + 1)……… 𝑦̂(𝑡 + 𝑁)]𝑇                                        (II.15) 

                                           Δ𝑢̂ = [∆𝑢(𝑡)………∆𝑢(𝑡 + 𝑁 − 1)]𝑇                                     (II.16) 

Ρ = [𝜌1………𝜌𝑁]
𝑇                                                   (II.17) 

Avec : 

 ŷ: La sortie future estimée. 

Δ𝑢̂ : l’incrément de command futur. 

Finalement : 

ŷ = 𝐻Δ𝑢̂ + Ρ                                                    (II.17) 

Avec : 

𝐺𝑛 : la matrice des coefficients de la réponse indicielle du modèle : 

𝐻 = [

ℎ1 0
ℎ2 ℎ1

… 0
… 0

… …
ℎ𝑁 ℎ𝑁−1

… …
… ℎ1

] 

Avec ℎ1 𝑘 = ℎ1(𝑘𝑇𝑒) la réponse indicielle discrète. 

Le critère à minimiser est donnés sous la forme quadratique suivante : 

𝐽 = (𝑊 − Ρ − 𝐻 𝑢̂)𝑇(𝑊 − Ρ − 𝐻 𝑢̂) + λ𝑢̂𝑇𝑢̂                         (II.18) 

Avec la consigne W (dans le futur) donnée comme suit : 

𝑊 = [𝑤𝑡+1………𝑤𝑡+𝑁]
𝑇                                         (II.19) 

Finalement, la solution optimale est : 

  𝑢̂𝑜𝑝𝑡 = [𝐻
𝑇𝐻 + λ𝐼𝑁𝑢]

−1𝐻𝑇(𝑊 − Ρ)                           (II.22) 

Apres simplification, l'incrément de la commande sera : 

𝑢̂𝑜𝑝𝑡 =
ℎ𝑇(𝑊−Ρ)

[ℎ𝑇ℎ+λ]
                                                     (II.23) 
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Donc la loi de commande sera : 

𝑢(𝑡) = 𝑢(𝑡 − 1) +
ℎ𝑇(𝑤−𝜌)

[ℎ𝑇ℎ+λ]
                                            (II.24) 

Avec ℎ = [ℎ1 ℎ2… . ℎ𝑁]
𝑇 le vecteur dont les éléments sont la réponse indicielle aux instants 

k=1, …, N. 

 

II.6 Conclusion  

   Ce chapitre a été consacré à étudier : le principe de fonctionnement de la commande prédictive 

en général, et spécialement la commande prédictive généralisée (GPC) dont on a présenté le 

principe ainsi que toutes les équations nécessaires pour la conception et on a terminé avec la loi 

de commande obtenue après la minimisation du critère quadratique basé sur les prédictions dans 

un horizon fuyant dans le futur. Cette loi de commande sera utilisée dans les chapitre suivants 

comme élément essentiel dans la conception de la commande prédictive guidée par les données. 
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III.1 Introduction  

   Data-Driven Control (ou commande guidée par les données) représente une nouvelle 

approche en plein essor dans le domaine du contrôle des systèmes dynamiques. Contrairement 

aux méthodes traditionnelles de commande qui s'appuient sur des modèles mathématiques 

explicites, cette approche cherche à exploiter directement les données issues des systèmes réels 

pour concevoir des lois de commande efficaces.  

   Ce paradigme devient essentiel lorsque les méthodes classiques atteignent leurs limites face 

à la complexité, la non-linéarité ou l'incertitude inhérente aux systèmes du monde réel. 

   L’objectif de ce chapitre est d’introduire les bases de la commande guidée par les données, 

de comprendre ses motivations et son application au contrôle des systèmes dynamiques. 

 

III.2 Présentation de la commande guidée par les données  

   La commande guidée par les données (Data-Driven Control, DDC) est une approche moderne 

du contrôle des systèmes dynamiques qui s’affranchit partiellement ou totalement de la 

modélisation explicite du système sous-jacent.  

   Contrairement aux méthodes classiques de commande, qui reposent sur un modèle 

mathématique précis (généralement dérivé de principes physiques ou par identification), la 

commande guidée par les données exploite directement les données mesurées issues du système 

pour concevoir les lois de commande.  

   Elle s'appuie sur des concepts tels que les sous-espaces comportementaux, les représentations 

d'état empiriques, ou encore les propriétés de persistance de l'excitation des signaux d'entrée. 

Parmi les techniques emblématiques de cette approche, on trouve la méthode de Willems basée 

sur des trajets admissibles et les approches en sous-espace pour l’identification directe de 

régulateurs.  

   Cette philosophie permet de concevoir des contrôleurs même lorsque le modèle est inconnu, 

difficile à identifier ou sujet à des incertitudes, ce qui en fait une solution particulièrement 

attractive pour les systèmes complexes, non linéaires ou fortement couplés. 

 

Figure III.1 Représentation schématique d'un système dynamique et de sa commande 

    

   Les méthodes de commande classiques reposent sur une démarche en deux étapes : d’abord, 

la modélisation explicite du système à partir des lois physiques ou via une identification 
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paramétrique (souvent sous forme d’équations différentielles ou de modèles d'état), puis la 

synthèse d’une loi de commande à partir de ce modèle, en utilisant des outils tels que la 

commande optimale, la commande robuste ou la commande adaptative.  

   Cette approche requiert une connaissance précise ou une estimation fiable de la dynamique 

du système, ce qui peut être difficile à obtenir dans le cas de systèmes complexes, incertains, 

fortement non linéaires ou sujets à des perturbations imprévisibles.  

   À l’inverse, la commande guidée par les données contourne l'étape de modélisation explicite 

: elle s'appuie directement sur des données mesurées (entrées, sorties, perturbations, 

performances) pour concevoir ou ajuster la loi de commande.  

   Cette démarche se base souvent sur des techniques issues de l’apprentissage automatique, de 

l’identification en sous-espace ou du comportementalisme (ex. : méthode de Willems), et 

permet une adaptation flexible à des systèmes mal connus ou en évolution.  

   En résumé, là où les approches classiques exigent une compréhension analytique du système, 

les méthodes de commande guidées par les données exploitent la richesse des données pour 

apprendre à piloter le système efficacement, souvent avec une meilleure résilience face aux 

incertitudes ou aux environnements changeants.  

   Les deux points importants que la commande guidée par les données est conçue pour y 

remédier sont : 

- La non-linéarité : La non-linéarité reste un défi majeur dans l'analyse et le contrôle des 

systèmes dynamiques, donnant lieu à une dynamique globale complexe [5]. 

- Dynamique inconnue : Un défi peut-être encore plus important découle de l'absence 

d'équations gouvernantes connues pour de nombreux systèmes modernes d'intérêt. De plus en 

plus, les chercheurs s'attaquent à des systèmes plus complexes et plus réalistes [5]. 

 

III.3 Identification des systèmes non linaires pour la commande  

   L'identification de dynamiques inconnues à partir de données et l'apprentissage de 

coordonnées intrinsèques permettant la représentation linéaire de systèmes non linéaires sont 

deux des objectifs les plus urgents des systèmes dynamiques modernes.  

  Tout au long de ce chapitre, nous explorerons ces questions plus en détail et décrirons un 

certain nombre de techniques émergentes permettant de relever ces défis.  

 

Deux approches clés définissent les systèmes dynamiques modernes pilotés par les données. 

 

III.3.1 Représentations théoriques des opérateurs  

   Pour résoudre le problème de la non-linéarité, les approches des systèmes dynamiques 

fondées sur la théorie des opérateurs sont de plus en plus utilisées. Comme nous le montrerons, 

il est possible de représenter les systèmes dynamiques non linéaires en termes d'opérateurs 

linéaires mais de dimension infinie [5].  
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III.3.2 Régression pilotée par les données et apprentissage automatique  

   Comme les données sont de plus en plus abondantes et que nous continuons à étudier des 

systèmes qui ne se prêtent pas à l'analyse des principes premiers, la régression et l'apprentissage 

automatique deviennent des outils vitaux pour découvrir des systèmes dynamiques à partir de 

données.  

   C'est la base de de nombreuses techniques décrites dans ce chapitre, y compris la 

décomposition dynamique du mode (DMD), l'identification éparse des dynamiques non 

linéaires (SINDy), les méthodes de Koopman pilotées par les données [5]. 

   Le but de l'identification du système est d'identifier les modèles d'ordre inférieur qui régissent 

la dynamique d'entrée-sortie. Si l'on peut mesurer l'état complet x du système, cela revient à 

déterminer la dynamique f vérifiant les conditions suivantes : 

  
𝑑

𝑑𝑡
𝑥 = 𝑓(𝑥, 𝑢)                                                      (III.1) 

   Ce problème peut être formulé en temps discret car les données sont généralement collectées 

à des moments discrets et les lois de commande sont généralement implémentées 

numériquement.  

Dans ce cas, la dynamique ressemble à ceci : 

  𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑢𝑘)                                                  (III.2) 

Lorsque la dynamique est approximativement linéaire, le système que nous pouvons identifier 

est le suivant : 

  𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘                                                  (III.3) 

Ce qui est l'approche adoptée dans l'algorithme DMD avec contrôle (DMDc).  

   Il peut également être avantageux d'identifier un ensemble de mesures y = g(x), dans lequel 

la dynamique non linéaire non forcée semble linéaire : 

𝑦𝑘+1 = 𝐴𝑌𝑦𝑘                                                        (III.4) 

 C'est l'approche adoptée dans la méthode de contrôle Koopman.  

   De cette façon, la dynamique non linéaire peut être estimée et contrôlée dans la coordonnée 

intrinsèque y en utilisant la théorie de contrôle linéaire standard. 

 

III.4 Domaines d’application de la commande guidée par les données  

   Il est important de noter que les méthodes de contrôle sans modèle peuvent être appliquées à 

des systèmes numériques ou expérimentaux avec peu de modifications. Toutes ces méthodes 

sans modèle ont une sorte de fonction « objectif », généralement basée sur des mesures de 

capteurs.  

Quelques exemples dans le monde réel dans différentes disciplines incluent : 

La dynamique des fluides : Dans les applications aérodynamiques, l'objectif est souvent une 

combinaison de réduction de la traînée, d'augmentation de la portance et de réduction du bruit, 
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tandis que dans les applications pharmaceutiques et de génie chimique, l'objectif peut être 

d'améliorer le mélange. 

Finances : L'objectif est souvent de maximiser le profit à un niveau donné de tolérance au 

risque, sous réserve de la loi. 

L’épidémiologie : L'objectif peut être de supprimer efficacement une maladie avec des 

contraintes de détection (échantillons de sang, cliniques, etc.…) et l'actionnement 

(vaccins...etc.) 

L’industrie : L'objectif est l'augmentation de la productivité qui doit être mise en balance avec 

plusieurs contraintes, notamment les lois sur la sécurité du travail et du lieu de travail et les 

impacts environnementaux, qui créent souvent une incertitude considérable. 

L'autonomie et la robotique : Les voitures et les robots autonomes visent à accomplir des 

tâches tout en interagissant en toute sécurité avec des environnements complexes, notamment 

en coopérant avec des agents humains. 

 

III.5 Commande prédictive guidée par les données  

III.5.1 Principes de base de la commande prédictive guidée par les données 

   La commande prédictive guidée par les données est basée sur la théorie des systèmes 

comportementaux proposée par Jan C. Willems dans les années 1990, qui considère le système 

comme un ensemble de trajectoires réalisables plutôt que comme un modèle d'état 

paramétrique.  

    En 2005, Willems et ses collaborateurs ont montré que pour un système linéaire, toute 

trajectoire valide peut être représentée comme une combinaison linéaire de trajectoires passées, 

à condition que les données soient générées par une excitation continue.  

Ce résultat fondamental constitue la base des méthodes de contrôle basées uniquement sur des 

données mesurées.  

Entre 2016 et 2018, des chercheurs ont formalisé cette idée sous forme algorithmique 

   Dans de nombreux cas, il est plus pratique d'apprendre les politiques de commande 

directement à partir des données plutôt que d'apprendre d'abord un modèle de système.  

   L'une des méthodes les plus largement adoptées pour le suivi de trajectoire est la commande 

prédictive à horizon glissant, qui est appréciée pour sa capacité à incorporer des considérations 

de sécurité directement dans la conception de la commande. 

   La commande prédictive guidée par les données est une stratégie de commande qui prévoit et 

optimise le comportement futur d'un système en utilisant des données d'entrée-sortie historiques 

plutôt que des modèles mathématiques explicites.  

   Pour calculer les actions de commande qui permettent d'atteindre les performances souhaitées 

tout en satisfaisant aux contraintes, cette technique de commande formule et résout un problème 

d'optimisation à chaque pas de temps en utilisant les trajectoires historiques du système.  
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   Tant que les données recueillies sont suffisamment riches d'enseignements pour capturer le 

comportement du système, cette méthode fonctionne particulièrement bien pour les systèmes 

dont la dynamique est compliquée ou inconnue, car elle évite la nécessité d'une modélisation 

poussée. 

 

Figure III.2 Schéma fonctionnel de la commande prédictive guidée par les données. 

 

III.5.2 Approches utilisées 

Dans ce chapitre nous introduirons deux approches pour la commande prédictive guidée par les 

données :  

- La commande prédictive guidée par les données qui effectue une identification du 

modèle dynamique du système ensuite applique la méthode classique de la commande 

prédictive. 

- La commande prédictive guidée par les données qui évite l’utilisation d’un modèle 

paramétrique, elle formule directement la commande à partir de données 

expérimentales. 

 

III.5.3 Structure de la commande prédictive guidée par les données 

Le régulateur comporte plusieurs parties : 

- L’algorithme de la commande prédictive proprement dite.  

- La base de données (historiques en plus de quelques informations ou signaux). 

- L’apprentissage de nouvelles informations (dynamiques, signaux…). 

- Les algorithmes de choix des données à utiliser depuis la base de données 

 

III.5.3.1 Génération de la base de données  

   Pour aboutir à une commande guidée par les données, la construction d’une base de données 

riche et variée est cruciale et qui se répercutera directement sur la qualité de régulation. 

   On aura besoins de créer plusieurs fichiers contenant certaines données qui seront regroupées 

de la façon suivante pour l’entièreté des étapes :   
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𝐷𝑎𝑡𝑎 =  

[
 
 
 
𝑢𝑘 𝑦𝑘 ℎ1,𝑘 ⋯ ℎ𝑁,𝑘 𝜌1,𝑘 ⋯ 𝜌𝑁,𝑘 

𝑢𝑘−1 𝑌𝑘−1 ℎ1,𝑘−1 ⋯ ℎ𝑁,𝑘−1 𝜌1,𝑘−1 ⋯ 𝜌𝑁,𝑘−1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑢𝑘−𝑚 𝑦𝑘−𝑚 ℎ1,𝑘−𝑚 ⋯ ℎ𝑁,𝑘−𝑚 𝜌1,𝑘−𝑚 ⋯ 𝜌𝑁,𝑘−𝑚]
 
 
 
         (III.5) 

Avec u est le signal de commande provenant du régulateur et y est la valeur de sortie recueillie 

du système et h est la réponse indicielle discrète du système et les valeurs 𝜌 sont les données 

utilisées dans la formule de la commande prédictive (les valeurs futures prédites dans l’horizon 

de prédiction).  

   La matrice d’information contenant les données nécessaires au régulateur aura un nombre 

colonnes qui dépendra de l’horizon de prédiction n et un nombre de lignes qui est le nombre 

d’échantillons m, pour des considérations pratiques ne pas choisir un nombre d’échantillons qui 

est énorme.  

 

-  Les données initiales :  

   Initialiser les valeurs de la matrice d’informations, affecter des valeurs pseudo-aléatoires pour 

les valeurs d’entrée u et y, la réponse indicielle h sont des données facilement obtenables à 

partir du système, et les valeurs d’apprentissage 𝜌 sont initialisés à 0. 

 

- Les données d’apprentissage : 

   Durant le fonctionnement du système, des échantillons sont directement injectés dans le bloc 

responsable de l’apprentissage. 

   Si l’option d’apprentissage est activée, alors un calcul itératif, pour toute la longueur de 

l’horizon de prédiction N, et une mise à jour de la base des données est effectuée. Il est 

préférable de poser une limite sur l’apprentissage pour empêcher le sur-apprentissage de 

l’algorithme. 

 

- Les données à utiliser : 

   On a le choix entre utiliser les données initiales ou les données apprises, mais au premier 

usage du régulateur les données utilisées seront les données initiales, ensuite on active 

l’apprentissage automatique.  

 

III.5.3.2 Algorithme d’apprentissage automatique 

   L’objectif de cet algorithme est de mettre en œuvre un mécanisme d’apprentissage en ligne 

permettant de capter la dynamique locale d’un système physique à partir de données brutes 

d’entrée et de sortie.  

   Cet apprentissage repose uniquement sur les données mesurées, sans recours à un modèle 

mathématique explicite, ce qui en fait une approche guidée par les données adaptée aux 

systèmes complexes ou mal modélisés. 
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La logique du programme repose sur plusieurs étapes clés : 

- Réception des valeurs d’entrées/sorties : 

   Les données sont recueillies directement à partir du système sous commande et organisées 

sous forme de vecteurs. Leurs nombres sont arbitraires. Pour notre travail, nous choisissons 6 

et ça se fera comme suit : 

                                     {
𝑢 = [𝑢𝑘 𝑢𝑘−1 𝑢𝑘−2 𝑢𝑘−3 𝑢𝑘−4 𝑢𝑘−5]
𝑦 = [𝑦𝑘 𝑦𝑘−1 𝑦𝑘−2 𝑦𝑘−3 𝑦𝑘−4 𝑦𝑘−5]

                            (III.6) 

 

- Formules pour la prédiction (1ère approche) : 

Dans l’approche de la commande prédictive, on a : 

   

{
 
 

 
 
𝜌0 = 𝑦𝑘                      
𝜌1 = 𝜌0 + ∆𝑦𝑘+1

∗       

𝜌2 = 𝜌1 + ∆𝑦𝑘+2         
∗

⋮
𝜌𝑁 = 𝜌𝑁−1 + ∆𝑦𝑘+𝑁

∗

                                            (III.7) 

En plus, on a le modèle de prédiction suivant :  

𝑦𝑘 = −𝑎1𝑦𝑘−1 + 𝑏1𝑢𝑘−1 + 𝑏2𝑢𝑘−2                                       (III.8) 

Appliquant ce modèle pour k, …, k-3, conduit à  

                                           {
𝑦𝑘 = −𝑎1𝑦𝑘−1 + 𝑏1𝑢𝑘−1 + 𝑏2𝑢𝑘−2

⋮
𝑦𝑘−3 = −𝑎1𝑦𝑘−4 + 𝑏1𝑢𝑘−4 + 𝑏2𝑢𝑘−5

                                    (III.9) 

   A partir de ce système d’équation, on trouve le modèle liant les incréments de l’entrée et les 

incréments de la sortie en posant ∆𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘−1 et ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 et en effectuant une 

identification par la méthode des moindres carrés pour trouver les paramètres a1, b1 et b2 comme 

suit : 

[

∆𝑦𝑘
∆𝑦𝑘−1
∆𝑦𝑘−2

] = [

−∆𝑦𝑘−1 ∆𝑢𝑘−1 ∆𝑢𝑘−2
−∆𝑦𝑘−2 ∆𝑢𝑘−2 ∆𝑢𝑘−3
−∆𝑦𝑘−3 ∆𝑢𝑘−3 ∆𝑢𝑘−4

] [

𝑎1
𝑏1
𝑏2

]                               (III.10) 

 

𝑌 = 𝛷. 𝜃                                                             (III.11) 

Le vecteur des paramètres  𝜃 est calculé comme suit : 

𝜃 = 𝛷−1. 𝑌                                                            (III.12) 

A partir de ce moment on posera : 

∆𝑦𝑘
∗ = ∆𝑦𝑘 = 𝑦𝑘 − 𝑦𝑘−1                                           (III.13) 

Comme c’est un système du premier ordre, le deuxième terme et le troisième terme s’annulent. 

Ainsi, on trouve :  
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   {
∆𝑦𝑘+1

∗ = −𝑎1∆𝑦𝑘
∗

⋮
∆𝑦𝑘+𝑁

∗ = −𝑎1
𝑁∆𝑦𝑘+𝑁−1

∗
                                             (III.14) 

   Tous les éléments nécessaires pour permettre à l’algorithme d’effectuer le calcule de 𝜌 sont 

obtenus pour un horizon de prédiction de N=2. 

On aura à partir des équations (III.7), (III.13) et (III.14) :  

   {
𝜌1 = 𝑦𝑘 − 𝑎1∆𝑦𝑘

∗ = 𝑦𝑘 − 𝑎1(𝑦𝑘 − 𝑦𝑘−1) = (1 − 𝑎1)𝑦𝑘 + 𝑎1𝑦𝑘−1
𝜌2 = 𝜌1 +−𝑎1

2∆𝑦𝑘+2
∗ = (1 − 𝑎1 − 𝑎1

2)𝑦𝑘 + (𝑎1 − 𝑎1
2)𝑦𝑘−1          

         (III.15)    

 

- Formules pour la prédiction (2ème approche) : 

Dans cette approche, on utilise les données mesurées directement sans identifier le système.  

Ainsi, on prend directement :         

   {
𝜌1 = ∆𝑦𝑘−1
𝜌2 = ∆𝑦𝑘−2

                                                          (III.16)    

 

- Calcul et mise à jour de la réponse indicielle h (1ère approche) : 

   Dans cette approche, on calcul la réponse indicielle à partir de la réponse impulsionnelle 

obtenue par identification en utilisant la convolution et la déconvolution numérique.  

 

- Calcul et mise à jour de la réponse indicielle h (2ème approche) : 

   Parmi tant de méthodes utilisables pour mettre à jour la valeur de la réponse indicielle, nous 

choisirons la méthode du gradient. En règle générale, ça se fait comme suit :  

ℎ𝑛𝑒𝑤 = ℎ𝑜𝑙𝑑 + 𝜂. Δ𝑢                                                 (III.17) 

   Avec 𝜂 est le pas du gradient. Si 𝜂 est trop petit, l'algorithme converge lentement, si 𝜂 est trop 

grand, l'algorithme oscille autour du minimum ou diverge.  

   A chaque pas de calcul l’algorithme met à jour la matrice de valeurs apprises, rendant le, un 

peu plus fiable au fur et à mesure de son fonctionnement. 

 

III.5.3.3 Utilisation de la base de données : 

   On utilise le principe du plus proche voisin dans une fenêtre locale. L’idée est d’identifier, 

parmi un sous-ensemble de données historiques, le vecteur entrée-sortie [u, y] qui est le plus 

similaire à la situation actuelle du système, représentée par le vecteur [uk, yk].  

   Pour cela, on définit une fenêtre d’indices autour d’un point central, qui le meilleur courant, 

afin de restreindre la recherche à une région temporelle ou contextuelle pertinente.  
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   Dans cette fenêtre, on mesure une distance entre le vecteur courant et chaque donnée dans la 

fenêtre considérée dans la base de données. On prend la distance minimale, et on utilise les 

données correspondantes.  

   Le but est de retrouver une condition passée similaire, que l’on peut ensuite utiliser pour 

adapter un modèle local, guider une décision de commande, ou sélectionner une estimation 

dynamique pertinente.  

 

III.6 Conclusion 

   Dans ce chapitre, nous avons présenté le principe de la commande prédictive généralisée dans 

un cadre guidé par les données. En s’appuyant sur le fondement de la commande prédictive, 

nous avons remplacé le modèle explicite par des prédictions construites directement à partir des 

données. La loi de commande obtenue, issue de la minimisation d’un critère quadratique, 

constitue un élément central qui sera utilisé dans le chapitre suivant pour concevoir une 

commande prédictive entièrement basée sur les données appliquées à la commande de la 

machine synchrone à aimants permanents. 
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IV.1 Introduction  

   L'étude du comportement d'un moteur électrique est une tâche difficile qui nécessite, avant 

tout, une bonne connaissance de son modèle dynamique afin de bien prédire, par voie de 

simulation, son comportement dans les différents modes de fonctionnement envisagés. Le 

modèle doit être capable de représenter fidèlement les différentes dynamiques présentes.  

   Dans ce qui suit, nous allons présenter l’application des lois de commande développées dans 

le chapitre précédent. 

 

IV.2 Présentation du modèle de la MSAP  

Pour procéder au dimensionnement des régulateurs on a partagé le modèle de MSAP sous forme 

de trois sous-systèmes interconnectes Selon la figure suivante : 

-  sous-systèmes électrique. 

-  sous-systèmes électromagnétique. 

-  sous-systèmes mécanique. 

 

 

Figure IV.1 Modèle de la MSAP 

 

IV.2.1 Sous-systèmes électrique  

Elle se décompose en deux parties :   

- Partie concernant le courant 𝐼𝑑𝑠 .   

- Partie concernant le courant 𝐼𝑞𝑠. 

Ce sous-système prend en entrée les tensions 𝑉𝑑𝑠 et 𝑉𝑞𝑠 tandis que le flux 𝛷𝑓et la vitesse Ω sont 

considérés comme des perturbations. 

Posons : 

 

𝑉𝑑𝑠1=𝑉𝑑𝑠+PΩ𝐿𝑞𝑠𝐼𝑞𝑠                                                   (IV.1) 

  

𝑣𝑞𝑠1 = 𝑉𝑞𝑠 − 𝑃𝛺𝐿𝑑𝑠𝐼𝑑𝑠 − 𝑃𝛺𝛷𝑓                                       (IV.2) 
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Avec ce changement de variable de commande on obtient le modèle pour 𝐼𝑑𝑠 : 

 

  
𝐼𝑑𝑠(𝑠)

𝑉𝑑𝑠1(𝑠)
=

1

𝐿𝑑𝑠𝑠+𝑅𝑠
                                                      (IV.3) 

Ensuite le modèle pour 𝐼𝑞𝑠 : 

 

  
𝐼𝑞𝑠(𝑠)

𝑉𝑞𝑠1(𝑠)
=

1

𝐿𝑞𝑠𝑠+𝑅𝑠
                                                       (IV.4) 

 

IV.2.2 Sous-systèmes électromagnétique  

   Ce sous-système concerne le calcul du couple à partir des courants 𝐼𝑑𝑠 et 𝐼𝑞𝑠 du flux 𝛷𝑓 

constant. Le couple est donné par la relation suivante : 

 

𝐶𝑒 = 𝑃[(𝐿𝑑𝑠 − 𝐿𝑞𝑠)𝐼𝑑𝑠𝐼𝑞𝑠 +𝛷𝑠𝐼𝑞𝑠]                                          (IV.5) 

 

IV.2.3 Sous-systèmes mécanique  

Ce sous-système se présente comme suit : 

𝑑𝛺

𝑑𝑡
=

1

𝑗
[𝐶𝑒 − 𝐶𝑟 − 𝑓𝛺]                                             (IV.6) 

 

IV.3 Structure de la régulation 

   La figure IV.2 présente la structure de la régulation adoptée. On y trouve les différentes 

boucles :  

- Boucle des courants (figure IV.3 et figure IV.4) 

- Boucle de la vitesse (figure IV.5).  

 

Figure IV.2 Structure de la régulation 
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Figure IV.3 Boucle de régulation du courant 𝐼𝑑𝑠. 

 

 

 

Figure IV.4 Boucle de Régulation du courant 𝐼𝑞𝑠. 

 

 

 

 

 

 

Figure IV.5 Boucle de Régulation de la vitesse.  

 

Le couple électromagnétique Ce couple doit suivre un certain couple désiré  𝐶𝑒
∗, qui est lié aux 

courants désires  𝐼𝑑𝑠
∗  𝑒𝑡 𝐼𝑞𝑠

∗ . 

On a: 

𝐶𝑒 = 𝑃[(𝐿𝑑𝑠 − 𝐿𝑞𝑠)𝐼𝑑𝑠𝐼𝑞𝑠 +𝛷𝑓𝐼𝑞𝑠]                                          (IV.7) 

Et :  

𝐶𝑒
∗ = 𝑃[(𝐿𝑑𝑠 − 𝐿𝑞𝑠)𝐼𝑑𝑠

∗ 𝐼𝑞𝑠
∗ + 𝛷𝑓𝐼𝑞𝑠

∗ ]                                          (IV.8) 

 

Le couple maximal est atteint lorsque :  𝐼𝑑𝑠
∗ = 0  

Et : 𝐼𝑞𝑠
∗  est calculé à partir du couple 𝐶𝑒

∗ 

  𝐼𝑞𝑠
∗ =

𝐶𝑒
∗

𝑃𝛷𝑓
                                                           (IV.9) 
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IV.4 Application de la GPC guidée par les données 

La figure IV.6 présente l’approche de commande par la GPC guidée par les données. 

 

 

Figure IV.6 Schémas bloc du réglage de la MSAP par la GPC guidée par les données. 

 

IV.5.1 Réglage de la vitesse : 

   Nous allons concevoir un régulateur GPC guidée par les données pour la commande de la 

vitesse. La fonction de transfert continue couple-vitesse issue de l’équation mécanique peut être 

représentée par : 

𝐹(𝑠) =
Ω(𝑠)

𝐶𝑒(𝑠)
=

1

𝐽𝑠+𝑓
                                                      (IV.10) 

 

   La discrétisation de la fonction de transfert (IV.10) à la période d’échantillonnage 𝑇𝑒 = 3𝑚𝑠 

nous donne le modèle discret suivant : 

 

Ω(𝑞−1)

𝐶𝑒(𝑞−1)
= 𝑞−1

0.6233

1+0.9947𝑞−1
                                               (IV.11) 
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La loi de commande est :  

  𝐶𝑒
∗(𝑡) = 𝐶𝑒

∗(𝑡 − 1) + [𝐻1
𝑇𝐻1 + 𝜆1]

−1𝐻1
𝑇(𝑤1 − 𝜌1)                         (IV.12)   

      

Avec les paramètres suivants :  

𝑁𝑢1 = 2,  𝜆1 = 1200 et les éléments de la matrice de réponses impulsionnelles discrète 𝐻1 de 

dimension 𝑁𝑢1 × 𝑁𝑢1seront retrouvés par l’algorithme de recherche par indexe, mais 

initialement on pose : 

𝐻1 = [
0.2081 0
0.4159 0.2081

] 

 

IV.5.2 Réglage des courants : 

- Courant 𝑰𝒅𝒔 : 

La fonction de transfert continue courant 𝐼𝑑𝑠-tension 𝑉𝑑𝑠1est donnée par : 

   
𝐼𝑑𝑠(𝑠)

𝑉𝑑𝑠1(𝑠)
=

1

𝐿𝑑𝑠𝑠+𝑅𝑠
                                                      (IV.13) 

 

La discrétisation de la fonction de transfert (IV.13) à la période d’échantillonnage 𝑇𝑒 = 3𝑚𝑠 

nous donne le modèle discret suivant : 

  
𝐼𝑑𝑠(𝑞

−1)

𝑉𝑑𝑠1(𝑞
−1)

= 𝑞−1
2.633

1+0.5425𝑞−1
                                               (IV.14) 

 

La loi de commande est :  

𝑉𝑑𝑠1(𝑡) = 𝑉𝑑𝑠1(𝑡 − 1) + [𝐻2
𝑇𝐻2 + 𝜆2]

−1𝐻2
𝑇(𝑤2 − 𝜌2)                         (IV.15) 

        

Avec les paramètres suivants :  

𝑁𝑢2 = 2,  𝜆2 = 300 et les éléments de la matrice de réponses impulsionnelles discrète 𝐻2 de 

dimension 𝑁𝑢2 × 𝑁𝑢2seront retrouvés par l’algorithme de recherche par indexe, mais 

initialement on pose : 

𝐻2 = [
1.0613 0
1.9269 1.0613

] 
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- Courant 𝑰𝒒𝒔: 

La fonction de transfert continue courant 𝐼𝑞𝑠-tension 𝑉𝑞𝑠1est donnée par : 

  
𝐼𝑞𝑠(𝑠)

𝑉𝑞𝑠1(𝑠)
=

1

𝐿𝑞𝑠𝑠+𝑅𝑠
                                                      (IV.16) 

La discrétisation de la fonction de transfert (IV.16) à la période d’échantillonnage 𝑇𝑒 = 3𝑚𝑠 

nous donne le modèle discret suivant : 

   
𝐼𝑠𝑞(𝑞

−1)

𝑉𝑠1(𝑞−1)
= 𝑞−1

2.633

1+0.5425𝑞−1
                                               (IV.17) 

 

La loi de commande est :  

𝑉𝑞𝑠1(𝑡) = 𝑉𝑞𝑠1(𝑡 − 1) + [𝐻3
𝑇𝐻3 + 𝜆3]

−1𝐻3
𝑇(𝑤3 − 𝜌3)                         (IV.18) 

        

Avec les paramètres suivants :  

𝑁𝑢3 = 2,  𝜆3 = 300 et les éléments de la matrice formée de la réponse indicielle discrète 𝐻2 de 

dimension 𝑁𝑢3 × 𝑁𝑢3seront retrouvés par l’algorithme de recherche par indice, mais 

initialement on pose : 

𝐻3 = [
0.9606 0
1.7608 0.9606

] 

 

   Malgré qu’il reste possible de commencer avec des valeurs approximatives ou erronées pour 

H ou ρ, le régulateur vas s’auto corriger au long de son fonctionnement et il mettra à jour ses 

matrices d’information pour mieux performer lors des usages ultérieurs.  

 

IV.5.3 Résultats de la simulation : 

   Pour illustrer les performances de la commande prédictive généralisée guidée par les données 

on a effectué les tests suivants :  

- un démarrage à vide et à l’instant t =7s, on augmente la charge à 5 Nm. 

- test de changement de consigne de vitesse. 

- test de robustesse. 

- test de l’influence du facteur de pondération 𝜆. 

Les schémas de simulations et les programmes seront disponibles à la consultation dans 

l’annexe B. 
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Figure IV.7 Démarrage à vide pour une consigne de vitesse 100 rad/s puis augmentation de la 

charge à 5 N.m à l’instant t=7s. 
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Figure IV.8 Essaie à vide pour une consigne variable entre 100 rad/s et -100rad/s. 
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Figure IV.9 Test de robustesse (Variation d’inertie J). 
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Figure IV.10 Test de robustesse (Variation de 𝑅𝑠). 
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Figure IV.11 Influence du facteur de pondération 𝜆1 (Réglage de vitesse). 

 

IV.5.4 Interprétation des résultats de simulation : 

   La figure IV.7 montre les caractéristiques au moment du démarrage à vide de la MSAP pour 

une consigne échelon de vitesse de 100 rd/s, on remarque que l'allure de la vitesse suit bien sa 

consigne malgré le dépassement avec un temps de réponse extrêmement rapide, on peut 

totalement avoir le control sur la poursuite qu’on verra dans les figures à venir.  

   On remarque aussi que le courant statorique direct 𝐼𝑑 est nul et le courant statorique 

quadratique  𝐼𝑞 est l'image du couple électromagnétique.  

   Après application de la charge 𝐶𝑟=5 N.m à t=7s, cette charge entraine une perte de vitesse 

qui est vite rétablie. Le couple électromagnétique compense le couple de charge. 
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   La figure IV.8 montre l’application d’une consigne de vitesse variable (entre 100 rd/s à -100 

rd/s). En réponse à ce changement, le moteur suit parfaitement la consigne avec une légère 

marge d’erreur de poursuite au maximum de 3.25% qui reste excellent vu la variation rapide de 

la vitesse, on peut remarquer la forme du couple en réponse au changement de la vitesse 

   La figure IV.9 montre l'effet de la variation de l'inertie. On remarque que cette variation influe 

légèrement sur le comportement de la MSAP (régime dynamique, transitoire) d'où la robustesse 

de la commande vis-à-vis des variations de l'inertie. 

   La figure IV.10 montre que la variation de la résistance statorique, n'a pas une grande 

influence sur l'allure de la vitesse qui suit toujours la consigne avec un léger dépassement. La 

commande est robuste vis-à-vis les variations de la résistance statorique, on peut confirmer 

grâce à ces tests que le régulateur est robuste, performant et adaptif face au changement de la 

dynamique du système à réguler. Il peut être intégré dans des environnements industriels ou les 

perturbations sont présentes et obstruent le fonctionnement des régulateurs classiques.  

   La figure IV.11 montre l'influence de l'augmentation du facteur de pondération, on remarque 

qu’on doit toujours trouver une valeur optimale via essais et erreurs. Plus on argumente ou on 

diminue la valeur de 𝜆1, cela se traduit par l’apparition de grandes erreurs de poursuite comme 

on peut le constater dans le premier essai. 

 

IV.6 Conclusion 

   Dans ce chapitre on a appliqué la commande prédictive guidée par les données au moteur 

synchrone à aimants permanents, plus précisément la commande prédictive généralisée 

implémentée avec une approche guidée par les données. 

   On a commencé par la présenter le modèle du MSAP, puis on a réalisé les différentes boucles 

de régulation pour la GPC et l’algorithme d’apprentissage pour la méthode guidée par les 

données, et enfin on a effectué les simulations sur le MSAP. 

   Les résultats ont montré que la méthode de commande implémentée est très efficace dans les 

différentes conditions de tests que ce soit variation de consigne de vitesse ou variation de 

paramètres électriques, ou même lors des erreurs de mesures, le régulateur analyse et prend en 

considération toujours les changements de la dynamique du système.   
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CONCLUSION GENERALE 

   Dans ce mémoire, nous avons étudié l’application de la commande prédictive guidée par les 

données, appliquée à un moteur synchrone à aimants permanents. C’est une approche qui est 

différente des méthodes de régulation classiques par le fait qu’elle ne requiert pas un modèle 

mathématique explicite du système à réguler, elle s’appuie purement sur les données collectées 

durant le fonctionnement du système, qui permet à la commande d’être très utile pour piloter 

des systèmes complexes, mal modélisés.  

   Le modèle de la machine synchrone à aimants permanents a été formulé dans le repère de 

Park, ce qui a permis de travailler avec des grandeurs continues et découplées.  

   Nous avons ensuite présenté les principes fondamentaux de la commande prédictive guidée 

par les données. L’approche consiste à utiliser des bases de données construites à partir de 

mesures passées (courants 𝐼𝑑 ,𝐼𝑞 et vitesse ω) afin de synthétiser la loi de commande.     

Contrairement aux méthodes classiques, cette technique permet de prédire l’évolution du 

système et de générer une commande optimale en se basant uniquement sur les données 

mesurées. 

   Les résultats de simulation ont montré l’efficacité de la commande pour différents scénarios, 

notamment le suivi de consignes en régime dynamique, les variations de charge et les 

perturbations. La robustesse de la méthode a également été vérifiée face à des variations de 

paramètres de la machine, comme l’inertie J ou la résistance 𝑅𝑠. De plus, l’effet des paramètres 

de réglage de la méthode utilisée a été analysé, mettant en évidence leur influence sur la 

stabilité, la précision du suivi et le rejet des perturbations. 

   L’une des contraintes principales de cette méthode est la complexité computationnelle liée à 

l’apprentissage en ligne et la nécessité de disposer de données de qualité pour garantir la 

convergence des algorithmes. Les travaux futurs pourraient explorer l’intégration de techniques 

d’apprentissage automatique approfondi (deep learning) ou d’optimisation hybride pour 

renforcer l’efficacité de cette approche. 

   En conclusion, la commande prédictive guidée par les données se positionne comme une 

solution prometteuse pour la régulation des MSAP, combinant flexibilité, performance et 

adaptabilité. Son déploiement à plus grande échelle pourrait révolutionner les systèmes 

d’entraînement électrique, en particulier dans les applications nécessitant une grande précision 

et une forte résilience, telles que les véhicules électriques, les robots industriels ou les énergies 

renouvelables. 
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ANNEXE A 

Paramètres du MSAP : 

Les paramètres du moteur synchrone à aimant permanent sont : 

𝑃𝑛=12.55 KW. 

Vitesse nominale : N=3000 tr/min. 

Tension nominale : V/U=135/233.82 V. 

Courant nominal : I=31 A. 

Les paramètres électriques :  

𝑅𝑠 =173.77×10−3Ω. 

𝐿𝑑𝑠=0.8524×10−3H. 

𝐿𝑞𝑠=0.9515×10−3H. 

Φ𝑓 =0.9515×10−3Wb. 

Nombre de paires de pôles : P=4. 

Les paramètres mécaniques : 

Moment d’inertie : J=48×10−4Kg.𝑚2. 

Coefficient de frottement visqueux : f=0.0085 Nm/rd/s. 
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ANNEXE B  

Figure B.1 Modèle du MSAP utilisé 

Figure B.2 Schémas de simulation sous Matlab/Simulink de la commande prédictive guidée 

par les données. 
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Figure B.3 Schémas de simulation du régulateur prédictif. 
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Figure B.4 Schémas des données nécessaires pour la fonction d’apprentissage de 𝐼𝑑𝑠, 𝐼𝑞𝑠 et 𝜔. 
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Figure B.5 Programme d’initialisation des matrices d’informations pour 𝐼𝑑𝑠, 𝐼𝑞𝑠 et 𝜔 

respectivement 
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Figure B.6 Fonctions d’apprentissage pour 𝐼𝑑𝑠, 𝐼𝑞𝑠 et 𝜔 respectivement 
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Figure B.7 Programme des régulateurs 𝐼𝑑𝑠, 𝐼𝑞𝑠 et 𝜔 respectivement. 

 

 

Figure B.8 Programme de recherche et d’acquisition de données des régulateurs de 𝐼𝑑𝑠, 𝐼𝑞𝑠 et 

𝜔. 
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Figure B.9 Programme de l’usage des données apprises. 

 

Figure B.10 Programme de l’usage des données initiales. 

 

 

 

Figure B.11 Programme de configuration de la recherche, apprentissage et création des 

matrices d’information et lancement de simulation. 
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