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Résumé

Ce mémoire traite de la conception et de I’application d’une commande prédictive guidée par
les données sur un moteur synchrone a aimants permanents, avec pour problématique principale
la difficulté de modéliser précisément ce type de systeme en contexte industriel.

L’objectif consiste a développer une stratégie de commande qui régule efficacement les
courants et la vitesse du moteur sans recourir a un modeéle mathématique explicite, en
s’appuyant uniquement sur les données mesurées.

Apreés avoir étudié la commande prédictive généralisée, ce travail met en ceuvre une approche
basee sur l'identification par moindres carrés des relations entrée-sortie, ce qui permet
d’élaborer une commande optimisée a partir des réponses du systeme.

Les résultats montrent que la commande prédictive guidée par les données assure un bon
suivi des références, une réponse dynamique satisfaisante et une robustesse face aux
perturbations et aux incertitudes du modeéle.

Ces performances valident I’intérét de cette approche pour les systémes difficiles a modéliser
et ouvrent la voie a son application dans des contextes industriels réels.

Ce travail recommande ainsi d’approfondir cette méthode, notamment en I’adaptant aux
systemes a entrées et sorties multiples, en y intégrant des contraintes physiques et en 1’associant
a des techniques d’apprentissage en ligne pour une adaptation continue.

Mot-clé : Commande prédictive, commande prédictive guidée par les données, commande
prédictive généralisée, moteur synchrone a aimants permanents, identification par les données.

Abstract

This thesis focuses on the design and application of data-driven predictive control on a
permanent magnet synchronous motor, with the main challenge being the difficulty of
accurately modelling this type of system in an industrial context.

The aim is to develop a control strategy that effectively regulates motor currents and speed
without using an explicit mathematical model, relying solely on measured data.

After studying generalized predictive control, this work implements an approach based on
least-squares identification of the input-output relationships, which makes it possible to develop
an optimised control based on the system responses.

The results show that the data-driven predictive control provides good reference tracking, a
satisfactory dynamic response and robustness in the face of disturbances and model
uncertainties.

These performances validate the interest of this approach for systems that are difficult to
model and pave the way for its application in real industrial contexts.

This work therefore recommends extending this method, in particular by adapting it to
multiple input multiple output systems, incorporating physical constraints and combining it
with online learning techniques for continuous adaptation.



Keywords : Predictive control, data-driven predictive control, generalized predictive control,
permanent magnet synchronous motor, data identification.
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Nomenclatures

MSAP : Moteur synchrone a aimant permanent.
Q, : Vitesse du champ magnétique crée par le stator.
Q) : Vitesse de rotation du moteur.

P : Nombre de paires de poles.

[Vs] : Vecteur de tensions statoriques.

[®] : Vecteur de flux statorique.

[Zs] : Vecteur de courants statoriques.

[R,] : Matrice des résistances statoriques.

[ L] : Matrice des inductances statoriques.
[@f] : Vecteur des flux rotorique.

0: L’angle électrique.

0,, : Position mécanique du rotor.

[P(6)] : Matrice de Park.

[P(6)]~* : Matrice de Park inverse.

Vas, Vys : Tension d’axe direct en quadrature.
lgs, I4s : Courant d’axe direct en quadrature.
D5, Pys - Flux d’axe direct en quadrature.
Lgs, Lgs - Flux d’axe direct en quadrature.

w : Vitesse angulaire électrique du rotor.
P(t) : Puissance.

P, : Puissance électromagnétique.

C, : Couple électromagnétique.

C, : Couple résistant.

J : Le couple d'inertie des masses tournantes.
f : Coefficients de frottements visqueux.
GPC : Commande Prédictive Généralisée.
w(K) : Consigne.

y (K) : Sortie du processus.

¥ (K) : Sortie prédite.



Nomenclatures

u(k) : Signal de commande appliqué sur le systéeme.

v(Kk) : Signal de perturbation.

q~1: Opérateur retard.

A(g™1): Opérateur différence.

C(q™1). (t) : Perturbations.

Au : Incrément de commande.

N : Horizon de prédiction.

N,, : Horizon de prédiction sur la commande.

G, : Matrice des coefficients de la réponse indicielle du modéle.
H,, : la matrice des coefficients de la réponse impulsionnelle discréte du modele.
p; estlaréponse libre du systeme.

tlope - Solution optimale.

DDC : Commande guidée par les données (Data-Driven Control).
n : Pas du gradient.

[Uk, Y] : Vecteur d’entrées sorties.
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Introduction générale

INTRODUCTION GENERALE

Les machines synchrones a aimants permanents (MSAP) sont devenues le choix le plus
courant pour de nombreuses applications industrielles, en particulier dans les systéemes de
traction, l'aérospatiale et les énergies renouvelables, dans un environnement ou I'efficacité
énergeétique et la précision du systeme électrique sont des enjeux importants. Ils constituent un
choix stratégique en raison de leur grande efficacité et de leur densité de puissance, mais leur
régulation reste difficile, en partie a cause de la nécessité d'optimiser leur comportement
dynamique en temps réel lors des changements de charge et des incertitudes du systeme.

La commande prédictive basée sur modele (Model Predictive Control, MPC) est une stratégie
efficace pour garantir le contréle optimal de systemes dynamiques complexes. Son efficacité
dépend de la précision du modele, qui peut étre difficile a déterminer dans les environnements
industriels ou les processus non linéaires et les perturbations sont monnaie courante. Les
techniques de commande prédictive guidée par les données (Data-Driven MPC) sont en train
de devenir un substitut viable a cette restriction. Sans dépendre d'une modélisation analytique
rigoureuse, elles permettent d'utiliser directement les données mesurables du systeme pour
optimiser le contrdle et apprendre un modele représentatif.

La mise en ceuvre d'une méthode de commande prédictive guidée par les données pour une
machine synchrone a aimants permanents est le sujet principal de cette these. En minimisant la
susceptibilité a l'incertitude du modéle et en maximisant la performance dynamique de la
machine, I'objectif est d'étudier comment I'apprentissage a partir des données du systéeme peut
augmenter la précision et la robustesse de la commande. Pour ce faire, nous utiliserons des
techniques d'optimisation du contréle et des méthodes d'identification de modele, en gardant a
I'esprit les exigences de temps réel et les limitations de traitement qui accompagnent les
systémes embarqués.

La structure de cette étude sera la suivante : nous commencerons par passer en revue les
avantages et les inconvénients des approches de contrble conventionnelles et prédictives
utilisées avec les MSAP. Nous examinerons ensuite les principes fondamentaux de la
commande pilotée par les données et les méthodes qui fonctionnent le mieux pour les systemes
électrotechniques. Enfin, afin d'analyser les performances de la stratégie et de comparer son
efficacité avec les méthodes traditionnelles de contrble prédictif, nous proposerons une
évaluation expérimentale et la mise en ceuvre de la stratégie congue.

Ce mémoire est structuré comme suit :

-La modélisation du moteur synchrone a aimants permanents.

-La présentation de la commande prédictive.

-La présentation de la commande prédictive guidee par les donnees.

-L’application de la commande prédictive guidée par les données & un moteur synchrone a
aimants permanents.



Chapitre |

Modeélisation du moteur synchrone a aimants
permanent



Chapitre | : Modélisation du moteur synchrone a aimants permanents

1.1 Introduction

La modélisation du MSAP est une étape fondamentale pour comprendre son comportement
dynamique, optimiser ses performances et concevoir des stratégies de commande appropriées.
Une modélisation précise peut décrire l'interaction entre les grandeurs électriques (tension,
courant) et les grandeurs mécaniques (vitesse, couple), en tenant compte des spécificités de la
machine telles que la répartition du flux magnétique, les non-linéarités et les pertes.

1.2 Principe de fonctionnement d’un moteur synchrone

Lorsqu'une alimentation triphasee est fournie au stator d'un moteur synchrone a enroulement
triphasé, un champ tournant est Lorsqu'une alimentation triphasée est fournie au stator d'un
moteur synchrone a enroulement triphasé, un champ tournant est créé. Ce champ tourne a une
vitesse synchrone (NS = 60fp). Il est représenté par les poles imaginaires du stator. A un instant
donné, les pdles opposes du stator et du rotor se font face. Comme il existe une force d'attraction
entre eux, un couple est produit dans le rotor. Ainsi, les pdles du rotor sont entrainés par les
poles tournants du stator (par le champ).

Aprés un demi-cycle, la polarité des pdles du stator est inversée alors que les p6les du rotor
ne peuvent pas changer de position en raison de l'inertie. Ainsi, les pbles semblables se font
face et, en raison de la force de répulsion, un couple dans le sens inverse du premier est produit
dans le rotor.

Par conséquent, le couple produit dans un moteur synchrone triphasé n'est pas unidirectionnel
et, de ce fait, ce moteur n'est pas auto démarrant. Cependant, si le rotor d'un moteur synchrone
est mis en rotation par un moyen externe au début, il inverse également sa polarité, car la
polarité des pbles du stator est inversée aprés un demi-cycle. Il existe une force d'attraction
continue entre les péles du stator et du rotor. C'est ce qu'on appelle le verrouillage magnétique.

Une fois le verrouillage magnétique obtenu, les pbles du rotor sont entrainés par le champ
tournant du stator (p6les imaginaires) et un couple continu est obtenu. Comme les p6les du rotor
sont entrainés par le champ tournant du stator, le rotor tourne a la méme vitesse que le champ
tournant du stator, c'est-a-dire a la vitesse synchrone. Ainsi, un moteur synchrone ne fonctionne
qu'a une vitesse constante appelée vitesse synchrone [1].

Bobines Stator

Arbre
rotorique

Ventilateur el kst

permanents

Figure 1.1 Schéma d’une machine synchrone a aimants permanents.
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1.3 Les types de moteurs synchrones
Malgré la gamme d’application extrémement large des moteurs synchrone, la classification
standard selon la littérature scientifique est divisée en deux grandes familles :

1.3.1 Les moteurs synchrones a rotor bobiné, a p6les saillants ou péles lisses

IIs font appel, plus souvent, a une excitatrice associée a un redresseur tournant, pour éliminer
tout contact glissant le rotor peut étre a pole lisse ou saillant et il est généralement équipé de
circuits amortisseurs. A forte puissance et a grande vitesse on utilise un rotor cylindrique
massif.[3]

1.3.2 Les moteurs synchrones a aimants permanents, avec ou sans piéce polaire

Les moteurs synchrones a aimants permanents sont sans balais et présentent une fiabilité et
un rendement trés élevés. Grace a leur rotor a aimants permanents, ils ont également un couple
plus élevé avec une taille de chassis plus petite et aucun courant de rotor, ce qui constitue un
avantage par rapport aux moteurs a induction a courant alternatif. Grace a leur rapport
puissance/taille éleve, les PMSM peuvent contribuer a réduire la taille de la conception sans
perte de couple.

1.4 structure d’un moteur synchrone a aimants permanents
1.4.1 Le stator

Le stator est composé de trois enroulements identiques décalés de 120° degrés dans 1’espace.
Ces enroulements sont logés dans les encoches du circuit magnétique. Lorsqu’on alimente les
enroulements statoriques par un systeme triphasé équilibré, il y a une création d’un champ
magnétique tournant le long de I’entrefer. La vitesse de rotation du champ magnétique est
proportionnelle au nombre de péles de la machine et a la fréquence des courant statoriques [4].

1.4.2 Le rotor
Le rotor formé d'un assemblage de tbles et d'aimants créant le flux inducteur. L'absence de
contacts glissants améliore la fiabilité. Les aimants utilisés sont les ferrites qui sont peu
colteuses, le samarium cobalt (SmCo5, Sm2Co17), dont les performances du point de vue de
I'énergie spécifique sont exceptionnelles.
Le rotor du moteur peut étre a "aimants déposés"” sans piéce polaire ou a "concentration de
flux". Cette derniere réalisation utilise un plus faible volume d'aimants.

1.5 Les avantages et inconvénients du MSAP

Le moteur synchrone a aimants permanents (MSAP) présente de nombreux avantages qui en
font un choix privilégié dans les applications exigeant efficacité énergétique et haute
performance. L’un de ses principaux atouts est son rendement ¢élevé. En effet, I’absence
d’enroulement au rotor élimine les pertes joules typiques dues aux courants induits, ce qui
permet de limiter les échauffements et d’optimiser les performances globales, notamment a
charge partielle. De plus, grace a I’utilisation d’aimants en terres rares comme le néodyme-fer-
bore (NdFeB), le MSAP offre une densité de puissance importante : il peut délivrer un couple
élevé dans un volume réduit, ce qui le rend particuliérement adapté aux systemes compacts et
performants. A cela s’ajoute une excellente réponse dynamique, permise par la faible inertie

3



Chapitre | : Modélisation du moteur synchrone a aimants permanents

rotorique et la possibilité de moduler le couple tres rapidement, ce qui le rend idéal pour les
applications nécessitant un contrdle précis et réactif. En outre, I’absence de balais et de bagues
collectrices réduit considérablement les besoins en maintenance, tout en éliminant les sources
d’usure mécanique. Enfin, le MSAP peut fonctionner avec un facteur de puissance ¢levé, ce qui
réduit les pertes réactives et améliore 1’efficacité énergétique du systéme.

Cependant, malgré ses nombreux atouts, le moteur synchrone a aimants permanents présente
aussi certaines limites. Le premier frein a son adoption reste son codt relativement élevé. Les
aimants permanents, surtout ceux a base de terres rares, sont onéreux et soumis a une forte
variabilité du marché international. Par ailleurs, ces aimants sont sensibles a la température et
peuvent se démagnétiser en cas de surchauffe ou de surtension prolongée, ce qui nuit a la
durabilité du moteur. Un autre inconvénient concerne la complexité de la commande.
Contrairement aux moteurs asynchrones, le MSAP nécessite un onduleur sophistiqué associé a
une stratégie de commande avancée (commande vectorielle, commande prédictive, etc.) et
I’utilisation fréquente de capteurs de position (codeur incrémental, resolver). Cela implique un
surcoit et une complexité de mise en ceuvre. En fonctionnement générateur ou en cas de
freinage régénératif, la gestion de 1’énergie retournée vers le réseau ou le convertisseur est
également plus délicate. Enfin, bien que les performances thermiques globales soient bonnes,
les propriétés magnétiques des aimants diminuent avec la température, ce qui impose un
contr6le thermique rigoureux pour éviter la perte de performance ou la démagnétisation
irréversible.

1.6 Modélisation du MSAP
Afin de modéliser le MSAP, on adopte les hypotheses simplificatrices usuelles données dans
la majorité des références :

-L’absence de saturation dans le circuit magnétique.

-La distribution sinusoidale de la F.M.M créée par les enroulements du stator.
-L’hystérésis est négligée avec les courants de Foucault et I’effet de peau.
-L’effet d’encochage est négligeable.

-La résistance des enroulements ne varie pas avec la température.

L'excitation étant faite par des aimants permanents, telle que le flux d'excitation est considéré
comme constant, par ailleurs I'aimant est considéré comme un enroulement sans résistance ni
inductance propre ou mutuelle, mais comme source de flux.
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Figure 1.2 Reperes abc et dq associés a la machine synchrone a aimants permanents.

1.6.1 Equation de tension et flux
Les tensions, flux et courants statorique triphasés, sont écrits avec les notations vectorielles

suivantes [V;], [®s], [Is] respectivement.

L'éguation des tensions dans le référentiel du stator s'écrit comme suite :

[V;] = [R,][Ls] +5[] (1.1)
([Ve] = [ Vas Vis VCS]T
[Is] = Uas Ips Ies ]T
Avec : { [®5] = [ Pas Pps (DCS]T (1.2)
R, 0 O
[Rs] = [O Ry 0
\ 0 0 R

Avec R;: résistance de I'enroulement statorique.

Les flux statoriques et rotoriques ont pour expression :

[CDS]:[ Lss][ Is]+[q)f] (|-3)
cos6
2T
[@]= &, |05 —3) (1.4)
cos(6 — 4?”)

Ou:
@¢ Valeur (constante) du flux créé par I'aimants permanents a travers les enroulements
statoriques, 6 est I’angle ¢€lectrique et [ Lgg] la matrice inductances statoriques.
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Dans la machine a péles saillants, la matrice des inductances propre statorique [ L] est
fonction de la position. Elle contient deux termes : [ Lso] qui est constant, et [ Ly, (6)] qui est
fonction de lI'angle 6=pé,,, 6 étant I'angle électrique et 6,, est la position mécanique du rotor

par rapport au stator. On écrit alors :
[ Lss] :[ LSO]+[ LSZ (9)]

Le terme [ Lg,] @ pour expression :

LsO MSO MsO
[Lso]: Mgy Lgo My
Mso My Lgo

Le terme [L,,] s'écrit, dans le cadre de la théorie du premier harmonique :

cos(26) cos 2(0 — 2?”) cos2(6 — 4?”)]

[Ls;(8)] = Lg, | cos2(6 — 2?”) cos2(6 — 4?”) cos(26) |
[cos 2(0 — 4?”) cos(26) cos2(6 — 2?”)J

Les inductances propres et mutuelles Lg,, My, Lg, Sont constantes.

En introduisant (1.3) dans (1.1) on aura :

[Vs] :[Rs][ls]'l'%([ Lss] Us]+ [95])

(1.5)

(1.6)

(1.7)

(1.8)

L’¢équation (I.8) présente un caractere non lin€aire et couplé, ce qui complique son analyse.
Afin de simplifier le systeme, nous introduisons des changements de variables et des
transformations appropriées. En particulier, nous appliquons la transformation de Park, qui
permet de convertir les enroulements statoriques fixes (a, b, ¢) en un repére tournant (d, q)

synchronisé avec le rotor.

1.6.2 Transformée de Park

A l'aide de la transformation de Park, on passe des grandeurs statorique réel tension, flux,

courant, a leurs composantes fictives appelées les composants d-q.

Figure 1.3 Machine équivalente au sens de Park.
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Dans le systeme d'équations (1.8) effectuons le changement de la variable suivant :

P()][Vaq] =
s [faq) = U1 (9
Avec :
% cos(6) —sin @
[P(8)] = \f % cos(0—3) —sin(6 —3) (1.10)
lﬁ cos(6 — 4?”) —sin(@ — 4?”)]

[P(6)] Etant la matrice de la transformation de Park qui permet le passage des grandeurs
statoriques [Vs], [I5] et [®5] a leur composantes [V,] et [I44]-

L'application de la transformation de Park a I'équation (11.8) donne :
<I>f] dae

[P()][Vaq] = [RIIP(O)][lag] + == ([Lss [PO][1ag]) + 25D (112)
1 0 O
Si on prémultiplie tous ces termes par [P(68)]~! et sachant que [Rs]=R; [0 1 0] les
0 0 1

équations simplifiées des tensions deviennent :

[Vaq = [RAIP@[1ag] + PO (Lol PON[1gg]) + (2AL)) (112

Avec :
L L L
V2 V2 V2
[P(O)] = \E cos(8) cos(f — 2?”) cos(8 — %ﬂ) (1.13)
—sinf —sin(0 — 2?”) —sin(0 — 4?”)

Les equations électriques dans le repere de Park :

d
Vas = Rslgs + Ecpds w¢qs
d (1.14)
Vqs = Rslqs + Ecbqs — WPy,
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Les flux s’écrivent :

{‘pds = Lgslgs + @ (1.15)

Dys = Lgslys

En introduisant (11.15) dans (11.14), on aura le modele €lectrique de la MSAP sous la forme
suivante :

d
Vas = Rslgs + Lgs Elds — wlyslgs

d (1.16)
Vgs = Rslgs + LQSEIQS — wlyslys + 0Pr
11.6.3 Expression de la puissance et du couple électromagnétique
L'expression de la puissance s'écrit comme suit :
P(t):VdsIds + V;[slqs (|-17)

En remplacent Vg, et V,; par leur expression, I’équation (1.17) devient :

d d
P(t):[RS(IdSZ + Iqsz) - (Idsa(pds + Iqsgcpqs) + c’J((pdslqs - ¢qslds)] (|-18)

Le 1°" terme représente la chute de tension ohmique (pertes par effet joule).
Le 2°™ terme représente la variation de I'énergie magnétique emmagasinée.

Le 3°™ terme représente la puissance transférée du stator au rotor a travers l'entrefer (puissance
électromagnétique)

Sachant que :
Pe=C(C,. w
{ . (119)
On trouve :
Ce:p(cpdslqs - Cpqslds) (|-20)
En remplacent @, et @, par leur expression il vient :
3
Ce:Ep [(Lds - qu)lds- Iqs+¢f1qs (I-Zl)
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Avec :
P : nombre de paires de p0les
L'éguation du mouvement de la machine est :
Cor G- T Q=) 22
J : Le couple d'inertie des masses tournantes.
C, : Couple résistant imposeé par la charge mécanique.
C, : Couple électromagnétique.
Q : Vitesse mécanique de rotation.
f : Coefficients de frottements visqueux.

1.7 Schéma fonctionnelle de la MSAP sous MATLAB

D'aprés les équations (11.16), (11.21), (11.22), on obtient le systeme d'équation suivant :

d 1
Elds = s (Vas — Rslgs + “)qulqs)

(
|
d 1
4 -1, =— (Vqs - Rslqs + deSIdS - O)(Df)

dat 95 Lgs
an 31 ¢ f
ac = 57 [Pl(Las = Lgs)las- Igs + Pplos] = =702
1&14
i p
Lri‘, = qu

®, ;(%. :p;®_, y

D, P

Figure 1.4 Schéma bloc d’un MSAP sous MATLAB.

0

(1.22)

(1.23)

——
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1.8 simulation du modele du MSAP

Les paramétres du moteur sont présentés dans I’annexe (A), Les schémas de simulation seront
fournis dans I’annexe (B).

Les résultats de simulation, montrés sur la figure qui suit, représentent le comportement du
moteur synchrone a aimants permanents alimentée en tension a travers un réseau d’alimentation
triphasé (220/380 V). L’essai se caractérise par un démarrage a vide ; a I’instant t =1S, nous
augmentons la charge a 20 Nm.

Allure du couple électromagnétique Allure de la vitesse mécanique

800

200
150 i w00
£
b= =
= 100 e
3 o 400
= —
B o I.h-' If
g w0 { 2 “’ i\"
2 =
£ | W\\w .............................. g 200
2 | 0
5 0 “!"" g =
® P
b}
o g °
g -50 2
L=
O
200 |
-100 ff
-150 ; . 400
0 05 1 15 0 05 1
Temps(s) Temps(s)

Allure du courant direct

Allure du courant quadratique

150 200

i
-

150

100
100

courant direct Id{A)
=

50

courant quadratique Ig{A)

-100

\\\% .

-150
0

Temps(s)

15

Temps(s)
Figure 1.5 Resultats de simulation du MSAP sous Matlab/Simulink.

1.9 Conclusion

Dans ce chapitre, nous avons présenté la machine synchrone a aimants permanents. D’abord,
nous avons commencé par le principe de fonctionnement de la MSAP suivi des différents types
ainsi que sa structure et ses avantages et inconvénients. La modélisation de la MSAP est donnée
dans le repére abc ainsi que dans le repére dq obtenu via la transformation de Park. Des résultats
de simulation en boucle ouverte sont présentes et discutés. Ce chapitre se termine par une
simulation de la MSAP en boucle ouverte. Ce dernier modéle sera utilisé dans les chapitres
suivants pour la synthese, la simulation et la validation de la commande predictive guidee par
les données.
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Chapitre 11 : Commande prédictive

1.1 Introduction :

La commande prédictive est une technique de commande avancée de I’automatique. Elle a
pour objectif de commander des systémes industriels complexes. Le principe de cette technique
est d'utiliser un modéle dynamique du processus a l'intérieur du contrbleur en temps réel afin
d'anticiper le futur comportement du procédé.

Cette technique est particulierement intéressante lorsque les systémes possedent des retards
importants, des réponses inverses et de nombreuses perturbations. Les principaux utilisateurs
de la commande prédictive sont les raffineries de petroles, l'industrie chimique et
agroalimentaire, la métallurgie, I'aérospatiale... [6].

Le but du présent chapitre est de présenter les éléments constitutifs fondamentaux d’un outil
de commande prédictive ainsi que son utilisation pratique.

11.2 Principe de la Commande prédictive

La commande est répétée a chaque pas de temps et assure le passage de la situation actuelle
a l'objectif par une optimisation d’un critére et en respectant des contraintes. D’abord, le calcul
des prévisions des variables contr6lées sur un horizon de temps N2 a l'aide d’un modéle dit
interne au régulateur, suivi de 1’élaboration d’une trajectoire de référence a suivre. Le calcul de
la loi de commande future sera fait afin de 1’appliquer aux variables manipulées sur un nouvel
horizon temporel Nu. Seul le premier élément de la loi de commande calculée est appliqué au
systeme lors du prochain cycle d'horloge. Toutes ces étapes sont ensuite répétées dans le
principe de I'horizon fuyant.

Sortie : yit) 4

Trajectoire de Consigne
référence : rtty) e
~

a7 orties prédites ¢ P + )

Commande optimale u(t+)

a
:

a s » Temps

Passé Présent Futur

Figure I1.1 Principe de I’horizon fuyant.

11.3 La Commande Prédictive généralisée (GPC)

Cette technique de commande prédictive a été inventée en 1987 par D.W. Clarke et ses
collaborateurs. Elle est considérée comme I'une des méthodes de prévision les plus prisées,
notamment en raison de son importance et de son efficacité industrielle. Elle implique la
prédiction du comportement futur du processus, de méme que la commande par rétroaction.

11
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wik)

T arharnin ulk yit)
Technique de {k) prow w(t) SYSTEME CAN
Commande . ’

yik)
) §(t)
MODELEF
E——

Figure 11.2 Principe de fonctionnement de la commande prédictive généralisée.

Avec :

w(k) : consigne.

y (K) : sortie du processus.
¥y (k): sortie prédite.

u(k) : commande appliqué sur le systeme.

11.4 Le modeéle de prédiction

Le modele utilisé en commande prédictive est une représentation mathématique du processus
a contrdler. 1l permet de prédire les sorties futures du systéme en fonction des entrées (variables
manipulées) et des perturbations.

Il existe plusieurs formes parmi lesquelles on trouve le modele sous la forme CARIMA
(Controlled AutoRegressive Integrated Moving Average) :

l v(k)
c(a’)
Alg)
u(k) (k) (k)
—*qt B(q_l) é ﬁ_l) ¥

Figure 11.3 Modele CARIMA
Dans le cas de GPC, le modele de prédiction est donné par :
A(q™Y).y(k) = B(g™").utk—1) + C(qg A Hv(k) (11-1)
Avec :
y(K) : Sortie du processus.
u(k) : Commande appliquée au systéme.

v(K) : signal de perturbation considéré aléatoire et de moyenne nulle.

12
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q~1: Opérateur retard.
A(g~H=1—g~1: Opérateur différence.
Les polyndmes : A(qg~1), B(qg™1) et C(g™?1) sont définis par :
A@ D =1+ ayq '+ + apeq ™
B(q™") =by+ b+ + bupq ™™
Cl@™ =1+ g+ +cpeq ™
Avec na>nb.

On a aussi une autre modelisation correspondant a 1’équation suivante :

A(@™).y(k) = B(g™") .utk—1) +C(g™). ()

Si nous ne considérons pas le terme lié a la perturbation, on obtient ce résultat final :

Ay(t) = =Xl a; Ay(t — i) + X7 bj Au(t —j — 1)

11.5 La recherche du prédicateur optimal

(I1.2)

(I1.3)
(11.4)

(I1.5)

(11.6)

Dans le contexte de la commande prédictive, le prédicteur optimal est une fonction
mathématique qui fournit une estimation de la sortie future y (t + j | t), a partir des données

disponibles a I’instant présent t. L utilisation du model de convolution nous donne :

y() =XZogiult —1)
Avec : g; la réponse impulsionnelle
Aussi ce modéle peut étre mise sous la forme :

y () = XiZoh; Au(t — i)
Avec : h; la réponse indicielle
Finalement on obtient :

Pt +j10) = Nloghi bult +j = ) + T2 g by Aux (¢4 — 1)
On pose :
pj = Zizjprhi bux (t+j—10)

Ou p; est laréponse libre du systeme et

J ©
9t + 10 =ZhiAu(t+j—i)+ Z hy Au(t + j — 0)
i=0

i=j+1

Est la réponse forcée du systéme.

(I1.7)

(11.8)

(11.9)

(11.10)

On pose que c’est y*(t+]) la réponse libre (entrée nulle). A partir des conditions initiales a

I’instant t, on peut écrire :
pi =y (t+))= X2ohAu(t+j—10)
13
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Avec :
Au*(t+j—i)=0pouri<j
Le calcul de p; se fait comme suit :

po = y(t) (11.12)
pj = pj-1+Ay*(t+)) (1.13)

Avec :
Ay*(t+) =X bidut+j—i—1) X a; Ay*(t+j—1i)  (I1.14)

A partir des équations de prédiction, on peut effectivement exprimer 1’estimée de la sortie sur
un horizon de prédiction donné Np (ou simplement N) sous forme matricielle.

On pose :
y=[t+1)...... y(t+ N)]T (11.15)
Au = [Au(t) .. ... ... Au(t+N -] (11.16)
P=1[pg ... pnlT (1.17)
Avec :

§: La sortie future estimée.
Au : ’incrément de command futur.
Finalement :
¥ = HAu + P (11.17)
Avec :

G, : la matrice des coefficients de la réponse indicielle du modele :

hy 0 . 0
H: hz hl O
hy hy_i o Ry

Avec hy , = hy(kTe) la réponse indicielle discréte.
Le critere a minimiser est donnés sous la forme quadratique suivante :
J=W-P—-HDI(W-P—-Hu)+Ad"d (11.18)
Avec la consigne W (dans le futur) donnée comme suit :
W = [Wepq oo e o wean ]t (11.19)
Finalement, la solution optimale est :
Uope = [HTH + My, ] 7' HT (W — P) (1.22)
Apres simplification, I'incrément de la commande sera :

qa. = hT(W-P)
0Pt T [nTh42]

(11.23)
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Donc la loi de commande sera :

hT (w—
u@® =ut—1) + ﬁ (11.24)

Avec h = [hy h, ....hy]T le vecteur dont les éléments sont la réponse indicielle aux instants
k=1, ..., N.

1.6 Conclusion

Ce chapitre a été consacré a étudier : le principe de fonctionnement de la commande prédictive
en général, et spécialement la commande prédictive généralisée (GPC) dont on a préesenté le
principe ainsi que toutes les équations nécessaires pour la conception et on a terminé avec la loi
de commande obtenue aprés la minimisation du critére quadratique basé sur les prédictions dans
un horizon fuyant dans le futur. Cette loi de commande sera utilisée dans les chapitre suivants
comme élément essentiel dans la conception de la commande prédictive guidée par les données.
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Chapitre 111 : Commande prédictive guidée par les données

I11.1 Introduction

Data-Driven Control (ou commande guidée par les données) représente une nouvelle
approche en plein essor dans le domaine du contréle des systéemes dynamiques. Contrairement
aux méthodes traditionnelles de commande qui s'appuient sur des modeles mathématiques
explicites, cette approche cherche a exploiter directement les données issues des systemes réels
pour concevoir des lois de commande efficaces.

Ce paradigme devient essentiel lorsque les méthodes classiques atteignent leurs limites face
a la complexité, la non-linéarité ou I'incertitude inhérente aux systemes du monde réel.

L’objectif de ce chapitre est d’introduire les bases de la commande guidée par les données,
de comprendre ses motivations et son application au contréle des systémes dynamiques.

111.2 Présentation de la commande guidée par les données

La commande guidée par les données (Data-Driven Control, DDC) est une approche moderne
du controle des systemes dynamiques qui s’affranchit partiellement ou totalement de la
modélisation explicite du systeme sous-jacent.

Contrairement aux méthodes classiques de commande, qui reposent sur un modeéle
mathématique précis (généralement dérivé de principes physiques ou par identification), la
commande guidée par les données exploite directement les données mesurées issues du systéme
pour concevoir les lois de commande.

Elle s'appuie sur des concepts tels que les sous-espaces comportementaux, les représentations
d'état empiriques, ou encore les propriétés de persistance de l'excitation des signaux d'entrée.
Parmi les techniques emblématiques de cette approche, on trouve la méthode de Willems basée
sur des trajets admissibles et les approches en sous-espace pour I’identification directe de
régulateurs.

Cette philosophie permet de concevoir des contréleurs méme lorsque le modele est inconnu,
difficile a identifier ou sujet a des incertitudes, ce qui en fait une solution particulierement
attractive pour les systémes complexes, non linéaires ou fortement couplés.

Disturbance
W

) E Cost
Physical

Actuators system Sensors
b —— s

e

Control
law '

Figure 111.1 Représentation schématique d'un systéme dynamique et de sa commande

Les méthodes de commande classiques reposent sur une démarche en deux étapes : d’abord,
la modélisation explicite du systéme a partir des lois physiques ou via une identification
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paramétrique (souvent sous forme d’équations différentielles ou de modéles d'état), puis la
synthése d’une loi de commande & partir de ce modeéle, en utilisant des outils tels que la
commande optimale, la commande robuste ou la commande adaptative.

Cette approche requiert une connaissance précise ou une estimation fiable de la dynamique
du systeme, ce qui peut étre difficile a obtenir dans le cas de systemes complexes, incertains,
fortement non linéaires ou sujets a des perturbations imprévisibles.

A I’inverse, la commande guidée par les données contourne I'étape de modélisation explicite
elle s'appuie directement sur des données mesurées (entrées, sorties, perturbations,
performances) pour concevoir ou ajuster la loi de commande.

Cette démarche se base souvent sur des techniques issues de 1’apprentissage automatique, de
I’identification en sous-espace ou du comportementalisme (ex. : méthode de Willems), et
permet une adaptation flexible a des systémes mal connus ou en évolution.

En résumé, la ou les approches classiques exigent une compréhension analytique du systéme,
les méthodes de commande guidées par les données exploitent la richesse des données pour
apprendre a piloter le systeme efficacement, souvent avec une meilleure résilience face aux
incertitudes ou aux environnements changeants.

Les deux points importants que la commande guidée par les données est congue pour y
remédier sont :

- La non-linéarité : La non-linéarité reste un défi majeur dans l'analyse et le controle des
systemes dynamiques, donnant lieu a une dynamique globale complexe [5].

- Dynamique inconnue : Un défi peut-étre encore plus important découle de l'absence
d'équations gouvernantes connues pour de nombreux systémes modernes d'intérét. De plus en
plus, les chercheurs s'attaquent a des systémes plus complexes et plus réalistes [5].

111.3 Identification des systemes non linaires pour la commande

L'identification de dynamiques inconnues a partir de données et I'apprentissage de
coordonnées intrinseques permettant la représentation linéaire de systémes non linéaires sont
deux des objectifs les plus urgents des systémes dynamiques modernes.

Tout au long de ce chapitre, nous explorerons ces questions plus en détail et décrirons un
certain nombre de techniques émergentes permettant de relever ces défis.

Deux approches clés définissent les systémes dynamiques modernes pilotés par les données.

111.3.1 Représentations théoriques des opérateurs

Pour résoudre le probléme de la non-linéarité, les approches des systemes dynamiques
fondées sur la théorie des opeérateurs sont de plus en plus utilisées. Comme nous le montrerons,
il est possible de représenter les systemes dynamiques non linéaires en termes d'opérateurs
linéaires mais de dimension infinie [5].
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111.3.2 Régression pilotée par les données et apprentissage automatique

Comme les données sont de plus en plus abondantes et que nous continuons a étudier des
systemes qui ne se prétent pas a I'analyse des principes premiers, la régression et I'apprentissage
automatique deviennent des outils vitaux pour découvrir des systemes dynamiques a partir de
données.

Cest la base de de nombreuses techniques décrites dans ce chapitre, y compris la
décomposition dynamique du mode (DMD), l'identification éparse des dynamiques non
linéaires (SINDy), les méthodes de Koopman pilotées par les données [5].

Le but de l'identification du systeme est d'identifier les modeles d'ordre inférieur qui régissent
la dynamique d'entrée-sortie. Si lI'on peut mesurer I'état complet x du systeme, cela revient a
déterminer la dynamique f vérifiant les conditions suivantes :

%xzf(x,u) (111.1)

Ce probleme peut étre formulé en temps discret car les données sont généralement collectées
a des moments discrets et les lois de commande sont généralement implémentées
numériquement.

Dans ce cas, la dynamique ressemble a ceci :

X1 = F (X, ug) (111.2)

Lorsque la dynamique est approximativement linéaire, le systeme que nous pouvons identifier
est le suivant :

X1 = Axk + Buk (|”3)
Ce qui est I'approche adoptée dans I'algorithme DMD avec contr6le (DMDc).

Il peut également étre avantageux d'identifier un ensemble de mesures y = g(x), dans lequel
la dynamique non linéaire non forcée semble linéaire :

Yiev1 = AyYi (111.4)
C'est I'approche adoptée dans la méthode de contr6le Koopman.

De cette fagon, la dynamique non linéaire peut étre estimée et contrdlée dans la coordonnée
intrinséque y en utilisant la théorie de contrdle linéaire standard.

I11.4 Domaines d’application de la commande guidée par les données

Il est important de noter que les méthodes de contr6le sans modéle peuvent étre appliquées a
des systemes numériques ou expérimentaux avec peu de modifications. Toutes ces méthodes
sans modele ont une sorte de fonction « objectif », généralement basée sur des mesures de
capteurs.

Quelques exemples dans le monde réel dans différentes disciplines incluent :

La dynamique des fluides : Dans les applications aérodynamiques, I'objectif est souvent une
combinaison de réduction de la trainée, d'augmentation de la portance et de réduction du bruit,
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tandis que dans les applications pharmaceutiques et de génie chimique, I'objectif peut étre
d'améliorer le mélange.

Finances : L'objectif est souvent de maximiser le profit & un niveau donné de tolérance au
risque, sous réserve de la loi.

L’épidémiologie : L'objectif peut étre de supprimer efficacement une maladie avec des
contraintes de détection (échantillons de sang, cliniques, etc....) et Iactionnement
(vaccins...etc.)

L’industrie : L'objectif est I'augmentation de la productivité qui doit étre mise en balance avec
plusieurs contraintes, notamment les lois sur la sécurité du travail et du lieu de travail et les
impacts environnementaux, qui créent souvent une incertitude considérable.

L'autonomie et la robotique : Les voitures et les robots autonomes visent a accomplir des
taches tout en interagissant en toute securité avec des environnements complexes, notamment
en coopérant avec des agents humains.

111.5 Commande prédictive guidée par les données
111.5.1 Principes de base de la commande prédictive guidée par les données

La commande prédictive guidée par les données est basée sur la théorie des systemes
comportementaux proposée par Jan C. Willems dans les années 1990, qui considére le systéme
comme un ensemble de trajectoires réalisables plutdt que comme un modéle d'état
paramétrique.

En 2005, Willems et ses collaborateurs ont montré que pour un systéme linéaire, toute
trajectoire valide peut étre représentée comme une combinaison linéaire de trajectoires passées,
a condition gue les données soient générées par une excitation continue.

Ce résultat fondamental constitue la base des méthodes de contréle basées uniquement sur des
données mesurées.

Entre 2016 et 2018, des chercheurs ont formalisé cette idée sous forme algorithmique

Dans de nombreux cas, il est plus pratique d'apprendre les politigues de commande
directement a partir des données plutdt que d'apprendre d'abord un modéle de systeme.

L'une des méthodes les plus largement adoptées pour le suivi de trajectoire est la commande
prédictive a horizon glissant, qui est appréciée pour sa capacité a incorporer des considérations
de sécurité directement dans la conception de la commande.

La commande prédictive guidée par les données est une stratégie de commande qui prévoit et
optimise le comportement futur d'un systéme en utilisant des données d'entrée-sortie historiques
plutét que des modéles mathématiques explicites.

Pour calculer les actions de commande qui permettent d'atteindre les performances souhaitées
tout en satisfaisant aux contraintes, cette technique de commande formule et résout un probléme
d'optimisation a chaque pas de temps en utilisant les trajectoires historiques du systéme.
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Tant que les données recueillies sont suffisamment riches d'enseignements pour capturer le
comportement du systéme, cette méthode fonctionne particuliérement bien pour les systémes
dont la dynamique est compliquée ou inconnue, car elle évite la nécessité d'une modélisation
poussée.

commande prédictive
fuidés par les donnes

Reférence commands commands _ zortie
. » systéme -

Z prédictive
T

identificaton

du systéme

donnszs

Figure I11.2 Schéma fonctionnel de la commande prédictive guidée par les données.

111.5.2 Approches utilisées

Dans ce chapitre nous introduirons deux approches pour la commande prédictive guidée par les
données :

- La commande prédictive guidée par les données qui effectue une identification du
modele dynamique du systéme ensuite applique la méthode classique de la commande
prédictive.

- La commande prédictive guidée par les données qui évite 'utilisation d’un modele
paramétrique, elle formule directement la commande a partir de données
expéerimentales.

111.5.3 Structure de la commande prédictive guidée par les données
Le régulateur comporte plusieurs parties :

- L’algorithme de la commande prédictive proprement dite.

La base de données (historiques en plus de quelques informations ou signaux).
L’apprentissage de nouvelles informations (dynamiques, signaux...).

Les algorithmes de choix des données a utiliser depuis la base de données

111.5.3.1 Génération de la base de données

Pour aboutir a une commande guidée par les données, la construction d’une base de données
riche et variée est cruciale et qui se répercutera directement sur la qualité de régulation.

On aura besoins de créer plusieurs fichiers contenant certaines données qui seront regroupées
de la fagon suivante pour I’entiereté des étapes :
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Uy Yk hl,k hN,k P1k PNk
Data = uk:—l Yk:—l hl,ic—l hN,:k—l P1,l:c—1 pN,:k—l (111.5)
luk—m Yik-m hl,k—m hN,k—m Pik-m pN,k—mJ

Avec u est le signal de commande provenant du régulateur et y est la valeur de sortie recueillie
du systeme et h est la réponse indicielle discréte du systéme et les valeurs p sont les données
utilisées dans la formule de la commande prédictive (les valeurs futures prédites dans 1’horizon
de prédiction).

La matrice d’information contenant les données nécessaires au régulateur aura un nombre
colonnes qui dépendra de I’horizon de prédiction n et un nombre de lignes qui est le nombre
d’échantillons m, pour des considérations pratiques ne pas choisir un nombre d’échantillons qui
est énorme.

- Les données initiales :

Initialiser les valeurs de la matrice d’informations, affecter des valeurs pseudo-aléatoires pour
les valeurs d’entrée u et y, la réponse indicielle h sont des données facilement obtenables a
partir du systéme, et les valeurs d’apprentissage p sont initialisés a 0.

- Les données d’apprentissage :

Durant le fonctionnement du systeme, des échantillons sont directement injectés dans le bloc
responsable de I’apprentissage.

Si option d’apprentissage est activée, alors un calcul itératif, pour toute la longueur de
I’horizon de prédiction N, et une mise a jour de la base des données est effectuée. Il est
préférable de poser une limite sur 1’apprentissage pour empécher le sur-apprentissage de
’algorithme.

- Les données a utiliser :

On a le choix entre utiliser les données initiales ou les données apprises, mais au premier
usage du régulateur les données utilisées seront les données initiales, ensuite on active
I’apprentissage automatique.

I11.5.3.2 Algorithme d’apprentissage automatique

L’objectif de cet algorithme est de mettre en ceuvre un mécanisme d’apprentissage en ligne
permettant de capter la dynamique locale d’un systéme physique a partir de données brutes
d’entrée et de sortie.

Cet apprentissage repose uniguement sur les données mesurées, sans recours a un modele
mathématique explicite, ce qui en fait une approche guidée par les données adaptée aux
systemes complexes ou mal modélisés.
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La logique du programme repose sur plusieurs étapes clés :
- Réception des valeurs d’entrées/sorties :

Les donnees sont recueillies directement a partir du systéme sous commande et organisées
sous forme de vecteurs. Leurs nombres sont arbitraires. Pour notre travail, nous choisissons 6
et ¢a se fera comme suit :

{u = [Ux Ug-1 Ug-2 Ug-3 Ug—g Uk_5] (11.6)
y=[Yk Yk-1 Yk-2 Yk-3 VYk-4 Yk-5] '
- Formules pour la prédiction (1¢¢ approche) :
Dans I’approche de la commande prédictive, on a :
(Po = Yk
p1 = Po + AYisq
P2 =p1+ BV (11.7)
LON = pn-1+ BVisn
En plus, on a le modéle de prédiction suivant :
Yk = —Q1Yk-1 + biUp—1 + bouy—; (111.8)
Appliguant ce modeéle pour £, ..., k-3, conduit a
Yk = —@1Yk-1 + byUp—1 + bouy—
: (111.9)
V-3 = —Q1YVg-4 + D1ty + Doy s

A partir de ce systeme d’équation, on trouve le modéle liant les incréments de 1’entrée et les
incréments de la sortie en posant Ay, = yi, — Vi—1 et Auy, = u, — uy_, et en effectuant une
identification par la méthode des moindres carrés pour trouver les parametres ai, bi et b comme

suit :
Ayy —Ayg-1 Bug—1 Aup_][%
[Ayk_l = [—Ayk_z Aup_y, Auy_s [bll (111.10)
AYy-2 —Ayp_z Az Awy_yllby
Y =0.6 (m.112)
Le vecteur des parametres 6 est calculé comme suit :
0 =oply (111.12)
A partir de ce moment on posera :
Ay = Ay = Vi — V-1 (111.13)

Comme c’est un systéme du premier ordre, le deuxiéme terme et le troisiéme terme s’annulent.
Ainsi, on trouve :
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AYiy1 = —a;Ayy
: (1n.14)

* _ N *
Ayen = —a1 AYryn-1

Tous les éléments nécessaires pour permettre a 1’algorithme d’effectuer le calcule de p sont
obtenus pour un horizon de prédiction de N=2.

On aura a partir des equations (I11.7), (111.13) et (111.14) :

{pl =V — Ay = Vi — a1 (Vg — Vk-1) = (1 — ap))yx + a1Yi-1
p2 = p1+—aiAyi ., =1 —a; —ad)ye + (a; — a®)yi_4

(111.15)
- Formules pour la prédiction (2°™ approche) :
Dans cette approche, on utilise les données mesurées directement sans identifier le systéeme.

Ainsi, on prend directement :

p1 = Ayr_1
111.16
{Pz = Ayy_» ( )

- Calcul et mise a jour de la réponse indicielle h (1°"¢ approche) :

Dans cette approche, on calcul la réponse indicielle a partir de la réponse impulsionnelle
obtenue par identification en utilisant la convolution et la déconvolution numérigue.

- Calcul et mise a jour de la réponse indicielle h (2é™ approche) :

Parmi tant de méthodes utilisables pour mettre a jour la valeur de la réponse indicielle, nous
choisirons la méthode du gradient. En regle générale, ca se fait comme suit :

New = hota + 1. Au (111.17)

Avec n est le pas du gradient. Si n est trop petit, I'algorithme converge lentement, si n est trop
grand, lI'algorithme oscille autour du minimum ou diverge.

A chaque pas de calcul I’algorithme met a jour la matrice de valeurs apprises, rendant le, un
peu plus fiable au fur et a mesure de son fonctionnement.

111.5.3.3 Utilisation de la base de données :

On utilise le principe du plus proche voisin dans une fenétre locale. L’idée est d’identifier,
parmi un sous-ensemble de données historiques, le vecteur entrée-sortie [u, y] qui est le plus
similaire a la situation actuelle du systeme, représentée par le vecteur [ux, Y«].

Pour cela, on définit une fenétre d’indices autour d’un point central, qui le meilleur courant,
afin de restreindre la recherche a une région temporelle ou contextuelle pertinente.
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Dans cette fenétre, on mesure une distance entre le vecteur courant et chaque donnée dans la
fenétre considérée dans la base de données. On prend la distance minimale, et on utilise les
données correspondantes.

Le but est de retrouver une condition passée similaire, que I’on peut ensuite utiliser pour
adapter un modele local, guider une décision de commande, ou sélectionner une estimation
dynamique pertinente.

I111.6 Conclusion

Dans ce chapitre, nous avons présenté le principe de la commande prédictive généralisée dans
un cadre guidé par les données. En s’appuyant sur le fondement de la commande prédictive,
nous avons remplacé le modéle explicite par des prédictions construites directement a partir des
données. La loi de commande obtenue, issue de la minimisation d’un critére quadratique,
constitue un élément central qui sera utilisé dans le chapitre suivant pour concevoir une
commande prédictive entierement basée sur les données appliquées a la commande de la
machine synchrone a aimants permanents.
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Chapitre 1V : Application de la commande prédictive guidée par les données

IV.1 Introduction

L'étude du comportement d'un moteur électrique est une tache difficile qui nécessite, avant
tout, une bonne connaissance de son modéle dynamique afin de bien prédire, par voie de
simulation, son comportement dans les différents modes de fonctionnement envisagés. Le
modéle doit étre capable de représenter fidélement les différentes dynamiques présentes.

Dans ce qui suit, nous allons présenter 1’application des lois de commande développées dans
le chapitre précédent.

1.2 Présentation du modeéle de la MSAP

Pour procéder au dimensionnement des régulateurs on a partagé le modéle de MSAP sous forme
de trois sous-systémes interconnectes Selon la figure suivante :

- sous-systémes électrique.
- sous-systémes électromagnétique.

- sous-systemes meécanique.

Vds Ids A ) Q
—> Partie > Partie Partie 1
Vas slectri Igs | électromagnétique *| mécanique
® | Clectrique > gneuq q

Q P G

Figure 1V.1 Modele de la MSAP

IV.2.1 Sous-systemes électrique
Elle se décompose en deux parties :
- Partie concernant le courant I .
- Partie concernant le courant /.

Ce sous-systeme prend en entrée les tensions Vg, et V,; tandis que le flux @yet la vitesse Q sont
considérés comme des perturbations.

Posons :
Vas1=VastPQL4s 4 (IvV.1)

Vgs1 = Vigs — P0Lgglgs — PO®; (IV.2)
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Avec ce changement de variable de commande on obtient le modele pour I :

Igs(s) 1

Vasi(s) - Lgss+Rs (IV3)
Ensuite le modele pour I, :

Iqs(s) _ 1 (|V4)

Vgs1(s) Lgss+Rs

1V.2.2 Sous-systémes électromagnétique

Ce sous-systeme concerne le calcul du couple a partir des courants I, et I, du flux @
constant. Le couple est donné par la relation suivante :

Ce = P[(Lds - qu)ldslqs + (pslqs] (IV-5)

IV.2.3 Sous-systemes mécanique

Ce sous-systeme se présente comme suit :

an

dt = %[Ce -G - f.()] (IVG)

IV.3 Structure de la régulation

La figure 1V.2 présente la structure de la régulation adoptée. On y trouve les différentes
boucles :

- Boucle des courants (figure 1V.3 et figure 1V.4)

- Boucle de la vitesse (figure 1V.5).

Tf Tf
Q* C; I;s_ v Va‘.s - i’ds ; Ce Parti
Reégulateur Calcul de * Reégulateur [ Partic Partie rarue Q
| de vitesse Lioet Iy | Ins | decourant |Vps| électrique |[gq électromagnétique »| mécanique
> —~ Ty
Fy

Figure V.2 Structure de la régulation
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1 és Vas1 I ds
—3| Régulateur > 1 >
de courant La.(s) + R,

Figure 1V.3 Boucle de régulation du courant /.

I; Vo1 I
—L» Régulateur de “ 1 “

courant g Lqs(s) + R

y
A\ J

Y

Figure IV.4 Boucle de Reégulation du courant /.

0 o Régulateur de

vitesse

L J

Y

_—
+
=

Figure 1V.5 Boucle de Régulation de la vitesse.

Le couple électromagnétique Ce couple doit suivre un certain couple désiré C;, qui est lié aux
courants desires ;s et Igs.

Ona:

Co = P[(Las — Lgs)laslys + ®flys] (IV.7)
Et:

C; = P[(Las — Lgs)Iislys + @615 (1V.8)

Le couple maximal est atteint lorsque : I, =0
Et : I3 est calculé a partir du couple C;

o= te (1V.9)
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V.4 Application de la GPC guidée par les données

La figure 1V.6 présente 1’approche de commande par la GPC guidée par les données.

Ias »| Régulateur GPC Ce
guidé par les
. données du courant 9}
Igs=0 —» Lo
MSAP
Il
_ﬂ: Régulateur GPC ) ) Régulateur GPC ds
guidé par les Ce L |1 qs guidé par les Vis1 I’I;s I
L — |—»] . 2L s
données de la Pq;f données du courant + g
(9] vitesse ‘rqs Ioe

7 Bloc
—| d’apprentissage

Figure IV.6 Schémas bloc du réglage de la MSAP par la GPC guidée par les données.

IV.5.1 Réglage de la vitesse :

Nous allons concevoir un régulateur GPC guidée par les données pour la commande de la
vitesse. La fonction de transfert continue couple-vitesse issue de 1’équation mécanique peut étre

représentée par :

_ Q(s) 1
F(S) = o5 = 7o (IV.10)

La discrétisation de la fonction de transfert (IV.10) a la période d’échantillonnage T, = 3ms
nous donne le modéle discret suivant :

Qq™YH _ 1 06233
Ce(a™ 1+0.9947¢1 (Iv.11)
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La loi de commande est :

C;(t) = C;(t —1) + [H{ Hy + A7 "H (w1 — py) (IV.12)

Avec les paramétres suivants :

Ny, =2, A; = 1200 et les élements de la matrice de réponses impulsionnelles discrete H; de
dimension N, X N, seront retrouvés par I’algorithme de recherche par indexe, mais
initialement on pose :

_ [0.2081 0

Hy = 0.4159 0.2081

IV.5.2 Réglage des courants :
- Courant I, :

La fonction de transfert continue courant I;,-tension V., est donnée par :

las®) _ __ 1 (IV.13)

Vas1(s) Lgss+Rs

La discrétisation de la fonction de transfert (IV.13) a la période d’échantillonnage T, = 3ms
nous donne le modéle discret suivant :

das@® _ 1 2633
Vasi(@™) q 140.5425¢q~1 (1V.14)
La loi de commande est :
Vas1(t) = Vas1 (t = 1) + [H3 Hy + 4,17 H (wy — p2) (IVv.15)

Avec les paramétres suivants :

Ny, =2, A, =300 et les éléments de la matrice de réponses impulsionnelles discrete H, de
dimension N,, X N, seront retrouvés par I’algorithme de recherche par indexe, mais
initialement on pose :

1.0613

Hy = [1.9269 1.0%13]
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- Courant I :

La fonction de transfert continue courant I,¢-tension V¢, est donnée par :

Igs(s) _ 1
Vgs1(s) LgsS+Rs

(IV.16)
La discrétisation de la fonction de transfert (IV.16) a la période d’échantillonnage T, = 3ms
nous donne le modeéle discret suivant :

sq@h) _ o1 _ 2633
Vs1(q™D) 1+0.5425q~1

(IV.17)

La loi de commande est :

Vgs1(t) = Vg1 (t — 1) + [H3 Hz + A3] 7" Hi (w3 — p3) (1v.18)

Avec les paramétres suivants :

Ny, = 2, A3 = 300 et les éléments de la matrice formeée de la réponse indicielle discréte H, de
dimension N, X N, seront retrouvés par l’algorithme de recherche par indice, mais
initialement on pose :

0.9606 0

Hs = [1.7608 0.9606

Malgré qu’il reste possible de commencer avec des valeurs approximatives ou erronées pour
H ou p, le régulateur vas s’auto corriger au long de son fonctionnement et il mettra a jour ses
matrices d’information pour mieux performer lors des usages ultérieurs.

1VV.5.3 Résultats de la simulation :

Pour illustrer les performances de la commande prédictive généralisée guidée par les données
on a effectué les tests suivants :

- un démarrage a vide et a I’instant t =7s, on augmente la charge a 5 Nm.
- test de changement de consigne de vitesse.

- test de robustesse.

- test de I’influence du facteur de pondération A.

Les schémas de simulations et les programmes seront disponibles a la consultation dans
I’annexe B.
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Figure 1V.7 Démarrage a vide pour une consigne de vitesse 100 rad/s puis augmentation de la
charge a 5 N.m a I’instant t=7s.
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Figure 1V.8 Essaie a vide pour une consigne variable entre 100 rad/s et -100rad/s.
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Figure IV.9 Test de robustesse (Variation d’inertie J).
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Chapitre 1V : Application de la commande prédictive guidée par les données
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Figure 1V.10 Test de robustesse (Variation de Ry).
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Chapitre 1V : Application de la commande prédictive guidée par les données
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Figure IV.11 Influence du facteur de pondération A, (Réglage de vitesse).

IV.5.4 Interprétation des résultats de simulation :

La figure 1VV.7 montre les caractéristiques au moment du démarrage a vide de la MSAP pour
une consigne échelon de vitesse de 100 rd/s, on remarque que l'allure de la vitesse suit bien sa
consigne malgré le dépassement avec un temps de réponse extrémement rapide, on peut
totalement avoir le control sur la poursuite qu’on verra dans les figures a venir.

On remarque aussi que le courant statorique direct I; est nul et le courant statorique
quadratique I, est I'image du couple électromagnétique.

Aprés application de la charge C,=5 N.m a t=7s, cette charge entraine une perte de vitesse
qui est vite rétablie. Le couple électromagnétique compense le couple de charge.
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Chapitre 1V : Application de la commande prédictive guidée par les données

La figure 1V.8 montre I’application d’une consigne de vitesse variable (entre 100 rd/s a -100
rd/s). En réponse a ce changement, le moteur suit parfaitement la consigne avec une légére
marge d’erreur de poursuite au maximum de 3.25% qui reste excellent vu la variation rapide de
la vitesse, on peut remarquer la forme du couple en réponse au changement de la vitesse

La figure IV.9 montre I'effet de la variation de I'inertie. On remarque que cette variation influe
Iegerement sur le comportement de la MSAP (régime dynamique, transitoire) d'ou la robustesse
de la commande vis-a-vis des variations de I'inertie.

La figure 1V.10 montre que la variation de la résistance statorique, n'a pas une grande
influence sur I'allure de la vitesse qui suit toujours la consigne avec un léger dépassement. La
commande est robuste vis-a-vis les variations de la résistance statorique, on peut confirmer
grace a ces tests que le régulateur est robuste, performant et adaptif face au changement de la
dynamique du systeme a réguler. 1l peut étre intégré dans des environnements industriels ou les
perturbations sont présentes et obstruent le fonctionnement des régulateurs classiques.

La figure 1V.11 montre I'influence de I'augmentation du facteur de pondération, on remarque
qu’on doit toujours trouver une valeur optimale via essais et erreurs. Plus on argumente ou on
diminue la valeur de A, cela se traduit par I’apparition de grandes erreurs de poursuite comme
on peut le constater dans le premier essai.

1VV.6 Conclusion

Dans ce chapitre on a appliqué la commande prédictive guidée par les données au moteur
synchrone a aimants permanents, plus précisément la commande prédictive généralisée
implémentée avec une approche guidée par les données.

On a commencé par la présenter le modele du MSAP, puis on a réalise les différentes boucles
de régulation pour la GPC et I’algorithme d’apprentissage pour la méthode guidée par les
données, et enfin on a effectué les simulations sur le MSAP.

Les résultats ont montré que la méthode de commande implémentée est treés efficace dans les
différentes conditions de tests que ce soit variation de consigne de vitesse ou variation de
parameétres électriques, ou méme lors des erreurs de mesures, le régulateur analyse et prend en
considération toujours les changements de la dynamique du systéme.
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Conclusion générale

CONCLUSION GENERALE

Dans ce mémoire, nous avons étudié I’application de la commande prédictive guidée par les
données, appliquée a un moteur synchrone a aimants permanents. C’est une approche qui est
différente des méthodes de régulation classiques par le fait qu’elle ne requiert pas un modele
mathématique explicite du systéme a réguler, elle s’appuie purement sur les données collectées
durant le fonctionnement du systéme, qui permet a la commande d’étre tres utile pour piloter
des systemes complexes, mal modélisés.

Le modele de la machine synchrone a aimants permanents a été formulé dans le repére de
Park, ce qui a permis de travailler avec des grandeurs continues et découplées.

Nous avons ensuite présente les principes fondamentaux de la commande prédictive guidée
par les données. L approche consiste a utiliser des bases de données construites a partir de
mesures passees (courants I, ,I, et vitesse o) afin de synthétiser la loi de commande.
Contrairement aux méthodes classiques, cette technique permet de prédire 1’évolution du
systeme et de générer une commande optimale en se basant uniquement sur les données
mesurées.

Les résultats de simulation ont montré 1’efficacité de la commande pour différents scénarios,
notamment le suivi de consignes en régime dynamique, les variations de charge et les
perturbations. La robustesse de la méthode a également été vérifiée face a des variations de
paramétres de la machine, comme I’inertie J ou la résistance R,. De plus, I’effet des paramétres
de réglage de la méthode utilisée a été analysé, mettant en évidence leur influence sur la
stabilité, la précision du suivi et le rejet des perturbations.

L’une des contraintes principales de cette méthode est la complexité computationnelle liée a
I’apprentissage en ligne et la nécessité de disposer de données de qualité pour garantir la
convergence des algorithmes. Les travaux futurs pourraient explorer I’intégration de techniques
d’apprentissage automatique approfondi (deep learning) ou d’optimisation hybride pour
renforcer I’efficacité de cette approche.

En conclusion, la commande prédictive guidée par les données se positionne comme une
solution prometteuse pour la régulation des MSAP, combinant flexibilité, performance et
adaptabilité. Son déploiement a plus grande échelle pourrait révolutionner les systémes
d’entrainement électrique, en particulier dans les applications nécessitant une grande précision
et une forte résilience, telles que les véhicules électriques, les robots industriels ou les énergies
renouvelables.
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ANNEXE A
Parametres du MSAP :

Les paramétres du moteur synchrone & aimant permanent sont :
P,=12.55 KW.

Vitesse nominale : N=3000 tr/min.
Tension nominale : V/U=135/233.82 V.
Courant nominal : 1=31 A.

Les paramétres electriques :

R, =173.77x1073Q.
L45=0.8524x1073H.
L45=0.9515x1073H.

@ =0.9515x1073Wh.

Nombre de paires de poles : P=4.

Les paramétres mécaniques :

Moment d’inertie : J=48x10~*Kg.m?2.

Coefficient de frottement visqueux : f=0.0085 Nm/rd/s.
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function data initial = data initializationl(data samples size)
data initial = zeros(data samples size, 6);% ins:u, y, outs: hl, hZ, rhol, rhoZ
h = [ 1.0613 1.9269];
rho = [0 0]:
for i = l:data samples size
data initial(i, 1:2) = 2*rand(l,2)-1:
data initial(i, 3:6) = [h, rho]l:
end
function data initial = data initializationZ(data samples size)
data initial = zeros(data samples size, 6);% ins:u, y, outs: hl, h2Z, rhol, rhoZ
h =1 0.9606 1.7608];
rho = [0 0];
for 1 = l:data samples size
data initial(i, 1:2) = 100*(2*rand(1,2)-1);
data_initial(i, 3:6) = [h, rho];
end
function data initial = data initialization3(data samples size)
data initial = zeros(data samples size, €);% ins:u, y, outs: hl, hZ, rhel, rho2
h = [ 0.2081 0.4159];
rho = [0 0];
for i = l:data_samples size
data initial(i, 1:2) = 100*(2*rand(1l,2)-1);
data initial(i, 3:6) = [h, rhol;
end

Figure B.5 Programme d’initialisation des matrices d’informations pour I, [55 €t @
respectivement
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[-lfunction data learnl (uy)
global data learnedl
global data samples size
global L1

global learning

if learning

u = uy(l:6);
y = uy(7:12);
% calculate du

du = -diff(u):
% calculate dy
dy = -diff(y):

% calculte h

eta = 10;
hl = du(l);
h2 = du(2):

hl = 1.0613 - eta * hl ;

h2 = 1.9269 - eta * h2 ;

% calculte rhd

PHI = [ -dy(2) du(2) du(3):
-dy (3) du(3) du(4):
-dy(4) du(4) du(5)]:

Y = [dy(1): dy(2): dv(3)]:

d = 1:
theta = (d*eye(size (PHI))+PHI)\Y;
al = thetal(l):

rhol = (-al)*y(1) + al*y(2);

a= al*(1l-al):

rho2 = (-a)*y(l) + a*y(2);

% update data learned

Ll = mod((L1 + 1), data samples size);

%data learnedl (L1+1,:) = [u(l) y(1) hl h2 rhol rho2];
data learnedl(L1+41,:) = [u(3) vy(3) hl h2 dy(l) dy(2)]:
end

—end
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[-lfunction data learn2 (uy)
global data learnedZ2
global data samples size
global L2

global learning

if learning

u = uy(l:6);

vy = uy(7:12);

% calculate du

du = —-diff (u);

% calculate dy
dy = —-diff(y):
% calculte h

eta = 10;
hl = du(l):
h2 = du(2):

hl = 0.9606 - eta * hl ;

h2 = 1.7608 - eta * h2 ;

% calculte rho

PHI = [ -dy(2) du(2) du(3):
-dy (3) du(3) du(4):
-dy (4) du(4) du(5)]:

Y = [dy(1l):; dy(2); dy(3)]:

d = 1;

theta = (d*eye(size (PHI))+PHI)\Y;

al = thetal(l):

rhol = (-al)*y(1) + al*y(2);

a= al*(1l-al):

rho2 = (-a)*y(1) + a*y(2);

% update data learned

L2 = mod((L2Z + 1), data samples size);

%data learned2 (L2+1,:) = [u(l) y(1) hl h2 rhol rho2];
data learnedz(L2+1,:) = [u(3) y(3) hl h2 dy(l) dy(2)]:
end

- end
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function data learn3 (uy)

global data learned3
global data samples size
global L3

global learning
if learning

u = uy(l:6);

vy = uy(7:12);
% calculate du
du = -diff(u):
% calculate dy
dy = -diff(y):
% calculte h
eta = 10;

hl = du(l):

h2 = du(2):;

hl = 0.2081 - eta * hl ;

h2 = 0.4159 - eta * h2 ;

% calculte rho

PHI = [ —-dy(2) du(2) du(3):
—-dy(3) du(3) du(4d):
—-dy(4) du(4) du(5)]:

Y = [dy(1); dy(2); dy(3)]:

d=1;

theta = (d*eye(size (PHI))+PHI)\Y;

al = theta(l):

rhol = (-al)*y(l) + al*y(2):

a= al*(1-al):

rho2 = (-a)*y(l) + a*y(2):

% update data learned

L3 = mod((L3 + 1), data samples size):

$data learned3(L3+41,:) = [u(l) y(1) hl h2Z rhol rho2]:
data learned3(L3+41,:) = [u(3) y(3) hl h2 dy(l) dy(2)]:
end

end

Figure B.6 Fonctions d’apprentissage pour I, I;5 €t w respectivement
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—end

N

W

~end

index
index

0

Eﬂfunction delta u = pred cont subsystl (wuy)
global data samples size

global data usedl

global index pl

wuay (1) ;

wuay (2) ;

wuy (3) ;

2

lambda

= 300;

w*ones (N, 1)

= get index(wuy,data usedl, index pl):
pl = index;

get h(index, data usedl);
= get RHO(y, index, data usedl):

delta u = h'*(W-RHO)/ (h'*h+lambda) ;

[Ifunction delta u = pred cont subsyst2 (wuy)
global data samples size

global data usedZ

global index pZ

wuy (1) ;

wuy (2) ;

wuy (3) 7

2:

lambda

index

index |
h = get h(index, data used2);
RHO

= 300;

w*ones (N, 1) ;
= get_index (wuy,data used2, index p2):
pZ2 = index;

get RHO(y, index, data used2);

delta u = h'* (W-RHO)/ (h'*h+lambda);



Annexes

function delta u = pred cont subsyst3(wuy)
global data_ samples size
global data used3
global index p3

w = wuy(l);
u = wuy(2):
y = wuy(3);
N = 2;

lambda = 1200;

W = w*ones (N,1):;

index = get index(wuy,data used3, index p3);
index p3 = index;

h = get _h(index, data used3):

RHO = get RHO(y, index, data used3);

delta u = h'* (W-RHO) / (h'*h+lambda) ;
end

Figure B.7 Programme des régulateurs I, I, et w respectivement.

function index = get index(wuy,data used, index p)

global data samples size

global index width

uy = wuy(2:3);

index = index p;

dist min = inf;

i min = 1+ (index p - index width)*((index p - index width)>0);

i max = data samples size * ((index p + index width)>=data samples size) +(inc
for 1 = 1 min:i max
uy = data used(i,1l:2).';

distance = sum(abs(uy - uy )):
if distance <=dist min
dist min = distance;
index =1 ;
end
end
index = index ;
end

function h = get h(index, data used)

h = data used(index, 3:4).';
end

function RHO = get RHO(y,index, data used)

RHO = data used(index, 5:6).';
RHO = y + RHO ;
end

Figure B.8 Programme de recherche et d’acquisition de données des régulateurs de I, 145 €t
.
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data usedl = data learnedl;
data used2 = data learned2;
data used3 = data learned3;

Figure B.9 Programme de I'usage des données apprises.

data usedl = data initiall;
data usedZ = data initial2;
data used3 = data initial3;

Figure B.10 Programme de 1’'usage des données initiales.

clear, clc

global data initiall data initial2 data initial3
global data usedl data used2 data used3
global data learnedl data learned2 data learned3

global learning

global data samples size

global L1 L2 L3

global index pl index pZ index p3
global index width

% apprentissage désactivé est l'option par defaut

learning = false;

% pour la recherche
index pl = 1;
index p2 = 1;
index p3 = 1;

index width = 10;

[+

% pour l'apprentissage

Ll = -1;

Lz = -1;

L3 = -1;

% nombre de lignes de données
data samples size = 100000;

% creation de des données initiales avec le nombre data sample size

data initialization

% pour activer 1l'apprentissage supprimer le
%learn data

data samples size = size(data learnsdl):
data samples size = data samples size (1);

% utiliser les données initiales ou apprises
use initial data, %learn data

%use learned data
sim('msap ped control.slx'")

=8

]

Figure B.11 Programme de configuration de la recherche, apprentissage et création des
matrices d’information et lancement de simulation.
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