REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABDERAHMANE MIRA BEJAIA FACULTE DE TECHNOLOGIE DEPARTEMET DE GENIE ELECTRIQUE

OPTION: RESEAUX ELECTRIQUES

Mémoire de Fin d'étude

En vue de l'obtention du diplôme de master en Electrotechnique

Option : Réseaux Electrique

THEME

Etude et redimensionnement de la boucle moyenne tension du complexe CEVITAL

Présenté par :

Encadré par :

HARKAT DAOUD

Mr. A.MEDJDOUB

MASSINISSA BOURDACHE

Mr. A.ARKOUK MALEK

Année universitaire 2016 / 2017

REMERCIEMENT

Au terme de ce travail, nous tenons à exprimer nos remerciements les plus sincères, tout d'abord au «Bon Dieu» pour la patience et la santé qu'il nous a offerte tout au long de nos études.

Nous tenons à exprimer nos profondes gratitudes à notre promoteur M^r: A .MEDJDOUB, pour avoir accepté de diriger ce travail. Nous lui témoignons toute notre reconnaissance pour ses conseils, ses orientations et sa patience. Nous offrons notre gratitude à M^r : A .ARKOUK, pour sa disponibilité, son aide, et d'avoir mis toute la documentation nécessaire, à notre disposition. Ainsi que tous le personnel de la direction technique de CEVITAL (unité énergie et utilités).

Nos vifs remerciements au membre de jurys de bien vouloir accepter d'évaluer notre travail.

Pédicace

Je dédie ce modeste travail :

Pour vous mes très chers parents pour vos encouragement, vos multiples soutiens et votre affection quotidienne. Merci d être présents dans toutes circonstances. Je pris le tout puissant de vous donner une longue vie et nous aider à être toujours votre fierté.

A mes très chères sœurs.

A toute ma famille.

A ma chère Thiziri Chenna

A tous mes ami(e)s.

A tous ceux qui m'ont aidé de prés ou de loin.

BOURDACHE MASSINISSA

Dédicaces

A ma très chère mère a la mémoire de mon père a mes chér(e)s frères et sœur qui ont toujours été la pour moi, et qui m'ont donnée un magnifique modèle de labeur et de persévérance. J'espère qu'ils trouvant dans ce travail toute ma reconnaissance et tout mon amour.

A mes amís qui m'ont soutenu pendant cette magnifique expérience a mon amíe M.Manel qui est toujours là pour moi, ainsi que tous ceux qui ont contribué de prés ou de loin à la réalisation de ce travail.

HARKAT DAOUD

SOMMAIRE

SOMMAIRE	
Introduction générale	1
Chapitre I: Description du réseau MT existant du complexe CEVITAL	
I.1. Introduction	7
I.2. La représentation générale du complexe CEVITAL	7
I.2.1. Historique	7
I.2.2. Situation géographique	7
I.2.3. Principales activités de CEVITAL	9
I.2.4. Organigramme de CEVITAL	10
I.3. Unité énergie et utilités	11
I.3.1. Service énergie	11
I.4. Bilan de source	12
I.5. Alimentation principale du complexe	12
I.5.1. Poste 30kV APL (Ancien Poste de Livraison)	12
I.5.2. Poste 60kV	13
I.5.3. Source de secoures (Centrale groupe diesel)	14
I.5.4. Central cogénération	14
I.6. Les différentes sous stations du complexe CEVITAL	15
I.7. Description des équipements électriques du réseau MT du complexe CEVITAL	22
I.7.1. Description du poste 60kV	22
I.7.2. Jeu de barres de distribution 30kV du poste 60	24
I.7.3. Jeu de barres de distribution 30kV de la cogénération TGHT	31

SOMMAIRE

I.10. La puissance d'une installation industrielle	38
I.10.1. Puissance installée (kW)	38
I.10.2. Puissance absorbée Pa (kVA)	38
I.10.3. Puissance d'utilisation Pu (kVA)	38
I.10.4. Bilan de puissance	38
I.11. Conclusion	40
Chapitre II : Dimensionnement des canalisations et calcul du courant	de court-circuit
II.1. Introduction	41
II.2. Architecture des réseaux électriques	41
II.2.1. Structures types des réseaux	41
II.2.1.1. Réseau radial	41
II.2.1.2. Réseau bouclé	43
II.3.1. Définition du courant de court-circuit	44
II.3.2. Conséquences des défauts de court-circuit	45
II.3.3. Nécessité de calcul de courants de court-circuit	46
II.4.3. Caractéristique des courts-circuits	47
II.5. Méthode de calcul de courant de court-circuit	48
II.5.1. Méthode des impédances	48
II.6. Calcul de section des câbles	51
II.6.1. Principe de la méthode	51
II.6.2. Méthode de calcul de section	51
II.6.3. Contraintes thermiques (détermination de la section S ₂)	53
II.6.4. Contrainte thermique écran (calcul de la section S ₃)	53
II.6.5. Vérification des chutes de tension	54
II.6.6. Choix de la section technique	54
II.7. Exemple de calcul	55
II.7.1 Détermination du courant maximal d'emploi I _B	55

II.7.2. Facteur de correction et choix de section (S_1)	55
II.7.3. Vérification des contraintes thermique (section S ₂)	55
II.7.4. Vérification des chutes de tension	56
II.8. Détermination des courants de court-circuit de chaque partie de l'installation	57
II.8.1. Calcul d'impédance des différents éléments	57
II.8.1.1. Impédances des transformateurs	57
II.8.2. Défaut triphasé et biphasé sur la barre 60kV	61
II.8.3. Résultat de calcul des courants de court-circuit	64
II.9. Calcul des jeux de barres	64
II.9.1. Caractéristiques des jeux de barres	65
II.9.1.1. Caractéristiques électriques des jeux de barres	65
II.9.2. Méthode de calcul	65
II.9.2.1. Choix de la section des barres	65
II.9.2.2. Courant de choc I _p	65
II.10. Conclusion	66
Chapitre III : Choix et réglage des protections et étude de la sélectivité	
III.1. Introduction	
III.2. Protection des liaisons	
III.3. Protections des transformateurs	67
III.3.1. Les fonctions de protection des transformateurs	68
III.3.2. Contraintes d'exploitation d'un transformateur	68
III.3.2.1. La surcharge	68
III.3.2.2. Le court-circuit	69
III.3.2.3. Le défaut à la masse	69
III.3.2.4. Courant d'enclenchement	69
III.4. Présentation et étude des protections	70

III.4.1. Rôle des protections	70
III.4.2. Protection par combinée interrupteur-fusible	70
III.4.3. Disjoncteur moyenne tension	71
III.4.3.1. Pouvoir de coupure assigné en court-circuit (CEI 60 056)	71
III.4.3.2. Pouvoir de fermeture (CEI 60 056)	71
III.4.3.3. Critères de choix d'une courbe de déclenchement	71
III.4.4. Détermination du pouvoir de coupure assigné en défaut d'un disjoncteur MT	72
III.4.5. Réglage des protections	74
III.4.5.1. Choix des transformateurs de mesure	74
III.4.5.1.1. Seuils de réglage de la protection	75
III.5. Mode de sélectivité	75
III.5.1. Les types de sélectivité	76
III.5.1.1. Sélectivité ampèremétrique	76
III.5.1.2. Sélectivité chronométrique	77
III.5.1.3. Sélectivité logique	77
III.6. Réglage de la protection	78
III.6.1. Choix et dimensionnement des disjoncteurs	78
III.6.1.1. Détermination des PdC et PdF des différents disjoncteurs	78
III.6.1.2. Seuils de réglage des protections	81
III.6.1.3. Vérification de la tenue thermique des câbles et des jeux de barres	84
III.7. Conclusion	85
Conclusion générale	86

Liste des figures

Figure I.1. Situation géographique du complexe CEVITAL
Figure I.2. Organigramme du complexe CEVITAL10
Figure I.3. Organigramme de la direction énergie
Figure I.4. Ancien Poste de Livraison (APL)
Figure I.5. Poste 60 (30kV)14
Figure I.6. Sous Station raffinerie de l'huile
Figure I.7. Sous station Osmose16
Figure I.8. Sous Station margarinerie
Figure I.9. Sous Station conditionnement de l'huile
Figure I.10. Sous Station Bouchon
Figure I.11. Sous Station raffinerie sucre 3000T/j
Figure I.12. Sous Station poste de livraison APL 30kV
Figure I.13. Sous Station silos céréales sucres roux neuve
Figure I.14. Sous Station raffinerie sucre 2000T/j20
Figure I.15. Sous Station CDS (1kg/5kg)21
Figure I.16. Conducteur isolé
Figure I.17. Câble unipolaire
Figure I.18. Câble multipolaire
Figure II.1. Schéma d'un réseau en double dérivation
Figure II.2. Schéma d'un réseau en simple alimentation
Figure II.3 . Schéma d'un réseau en double alimentation
Figure II.4. Schéma d'un réseau en boucle
Figure II.5. Courbe type d'un courant de court-circuit
Figure II.6. Protection du circuit par disjoncteur
Figure II.7. Protection du circuit par fusible
Figure II.8. Défaut triphasé
Figure II.9. Défaut biphasé

Liste des figures

Figure II.10. Défaut monophasé	50
Figure II.11. Défaut terre	50
Figure II.12. Logigramme de détermination de la section minimale d'un câble en MT	52
Figure II.13. Schéma unifilaire simplifié pour calcul Icc	60
Figure II.14. Défaut sur la barre 60kV	61
Figure II.15. Défaut sur le jeu de barre 30kV du poste 60	62
Figure III.1. Principe de protection d'un circuit par disjoncteur	72
Figure III.2. Pourcentage de la composante apériodique (% DC) en fonction de l'interv	alle de
temps τ	73
Figure III.3. Système de sélectivité ampèremétrique	76
Figure III.4. Système de sélectivité chronométrique	77
Figure III.5. Système de sélectivité logique	78
Figure III.6. Schéma d'implantation des différents disjoncteurs	79

Liste des tableaux

Tableau I.1. Caractéristiques des câbles HTA utilisés	37
Tableau I.2. Bilan de puissance	39
Tableau I.3. Nouveau bilan de puissance	40
Tableau II.1. Les différents courts-circuits et leurs courants	48
Tableau II.2. Calcul des impédances	51
Tableau II.3. Déférentes Facteur de correction selon le mode de pose	53
Tableau II.4. Sections des câbles entre les sous station	57
Tableau II.5. Impédance des différents éléments	59
Tableau II.6. Les courants de défauts aux différents Jdb	63
Tableau II.7. Résultats de calcul de courant de choc et section des différents Jdb	65
Tableau III.1. Résultats de Détermination des PdC et PdF des disjoncteurs	81
Tableau III.2. Résultats des déterminations CTS, CTR et du t _c des disjoncteurs	83
Tableau III.3. Vérification de la tenue thermique des jeux de barres	84
Tableau III.4. Vérification de la tenue thermique des câbles	84
Tableau III 5 Nouveau matériel à installer pour réaliser ce bouclage	85

Liste des figures

Figure I.1. Situation géographique du complexe CEVITAL
Figure I.2. Organigramme du complexe CEVITAL10
Figure I.3. Organigramme de la direction énergie
Figure I.4. Ancien Poste de Livraison (APL)
Figure I.5. Poste 60 (30kV)14
Figure I.6. Sous Station raffinerie de l'huile
Figure I.7. Sous station Osmose
Figure I.8. Sous Station margarinerie
Figure I.9. Sous Station conditionnement de l'huile
Figure I.10. Sous Station Bouchon17
Figure I.11. Sous Station raffinerie sucre 3000T/j
Figure I.12. Sous Station poste de livraison APL 30kV
Figure I.13. Sous Station silos céréales sucres roux neuve
Figure I.14. Sous Station raffinerie sucre 2000T/j20
Figure I.15. Sous Station CDS (1kg/5kg)
Figure I.16. Conducteur isolé
Figure I.17. Câble unipolaire
Figure I.18. Câble multipolaire
Figure II.1. Schéma d'un réseau en double dérivation
Figure II.2. Schéma d'un réseau en simple alimentation
Figure II.3 . Schéma d'un réseau en double alimentation
Figure II.4. Schéma d'un réseau en boucle
Figure II.5. Courbe type d'un courant de court-circuit
Figure II.6. Protection du circuit par disjoncteur
Figure II.7. Protection du circuit par fusible
Figure II.8. Défaut triphasé
Figure II.9. Défaut biphasé

Liste des figures

Figure II.10. Défaut monophasé.	50
Figure II.11. Défaut terre	50
Figure II.12. Logigramme de détermination de la section minimale d'un câble en MT	52
Figure II.13. Schéma unifilaire simplifié pour calcul Icc	60
Figure II.14. Défaut sur la barre 60kV	61
Figure II.15. Défaut sur le jeu de barre 30kV du poste 60	62
Figure III.1. Principe de protection d'un circuit par disjoncteur	72
Figure III.2. Pourcentage de la composante apériodique (% DC) en fonction de l'interv	alle de
temps τ	73
Figure III.3. Système de sélectivité ampèremétrique	76
Figure III.4. Système de sélectivité chronométrique	77
Figure III.5. Système de sélectivité logique	78
Figure III.6. Schéma d'implantation des différents disjoncteurs	79

Liste des symboles

Liste des symboles

 $\cos \phi$: Facteur d puissance

CTS_{th}: Prise du courant de réglage thermique

CTS_m: Prise du courant de réglage magnétique

 $I_{\mathbf{k}}''$: Valeur efficace du courant de court-circuit

Symétrique initial

I_{asym}: Courant de court-circuit asymétrique

I_n: Courant nominal

 $I_{3\phi}$, I_{K3} : Courant de court-circuit triphasé

Ith: Courant de réglage du seuil thermique

I_m : curant de réglage de seuil magnétique

K_s: Facteur de choc

R_n : Résistance de mise au neutre

R_N : Résistance de limitation

S_{cc} : Puissance de court-circuit

S_b: Puissance de base

U_{cc}: Tension de court-circuit d'un transformateur

X : Réactance

Z_b : Impédance de base

Z_I: Impédance inverse

Z_{Défaut} : Impédance de mise a la terre

τ : Durée d'ouverture du disjoncteur

Z_a: Impédance amont du réseau sure défaut triphasé

φ : Angle de déphasage du réseau sure défaut triphasé

U_b: Tension de base

U_n: Tension nominal

f: Facteur de correction global

f: fréquence

I_B: Courant d'emploi

I_b: Courant de base

 $I_{2\phi}$: Courant de court-circuit biphasé

 I_p : Courant de choc

Icc: Courant de court-circuit

K_s: Facteur de simultanéité

R: Résistance

 S_n : Puissance apparente

S : Section de conducteurs

U_b: Tension de base

 $\mathbf{U_n}$: Tension nominal

 Z_T : Impédance du transformateur

Z_d : Impédance directe

Z₀ : Impédance homopolaire

Z_N : Impédance de mise a la terre

ρ: Résistivité du conducteur

 t_c : Temps de coupure

Liste des abréviations

Liste des abréviations

ALT: Alternateur

APL: Ancien poste de livraison

Anrfs: Ancien raffinerie sucre (2000T/J)

CEI : Comité international d'électrotechnique

Cogé : Cogénération

HT: Haut tension

Jdb: Jeu de barre

Nfrs: Nouvelle raffinerie sucre (3000T/J)

PdC: Pouvoir de coupure de disjoncteur

PdF: Pouvoir de fermeture de disjoncteur

PRC : Polyéthylène de vinyle

RC: Caoutchouc vulcanisé

TGHT: Tableau générale à haut tension

TGBT: Tableau général à basse tension

TCA: Transformateur de courant auxiliaire

TR aux: Transformateur auxiliaire

CTS: Courant de seuil

ALT: Alternateur

APL: Ancien poste de livraison

Anrfs: Ancien raffinerie sucre (2000T/J)

CEI : Comité international d'électrotechnique

Cogé : Cogénération

HT: Haut tension

Jdb: Jeu de barre

Nfrs: Nouvelle raffinerie sucre (3000T/J)

PdC: Pouvoir de coupure de disjoncteur

PdF: Pouvoir de fermeture de disjoncteur

PRC : Polyéthylène de vinyle

ANSI: American national standards

BT: Basse tension

C huile : Conditionnement de huile

CC: Court-circuit

G : Groupe électrogène

Inst: Installé

MT: Moyenne tension

NF: Normalement fermé

PMD: Puissance Mise à disposition

PVC: Polyéthylène réticulé

PE: Rayé vert

S/S: Sous station

TC: Transformateur du courant

TT: Transformateur de tension

TR weg: Transformateur weg

CTR: Rapport du TC

TDS: courbe de temporisation

ANSI: American national standards

BT: Basse tension

C huile : Conditionnement de huile

CC: Court-circuit

G : Groupe électrogène

Inst: Installé

MT: Moyenne tension

NF: Normalement fermé

PMD: Puissance Mise à disposition

PVC: Polyéthylène réticulé

PE : Rayé vert

Liste des abréviations

RC : Caoutchouc vulcanisé S/S : Sous station

TGHT: Tableau générale à haut tension **TC**: Transformateur du courant

TGBT : Tableau général à basse tension **TT** : Transformateur de tension

TCA: Transformateur de courant auxiliaire TR weg: Transformateur weg

TR aux : Transformateur auxiliaire CTR : Rapport du TC

CTS: Courant de seuil **TDS**: courbe de temporisation

INTRODUCTION GENERALE

Introduction générale

Notre monde ne peut se passer d'une alimentation électrique sûre et fiable. Pour cela, le réseau électrique doit assurer la stabilité et la continuité du service à un coût économique convenable. Pour gérer cette énergie électrique il faut un contrôle et une surveillance de tout le réseau électrique à tout moment et ce grâce aux technologies de l'information et de la communication comme les logiciels de contrôle et de supervision.

CEVITAL comme toute autre industrie a besoin de développer son secteur d'activité et de faire des extensions pour ses installations pour augmenter la productivité de ces produits et assurer la continuité de service pour faire face à la concurrence. Ces extensions exigent une demande de puissance supplémentaire que le réseau SONELGAZ ne peut pas fournir, alors elle a opté pour une production autonome de l'énergie électrique en installant la cogénération. Il a été procédé donc à l'installation de deux groupes blocs (turbine-alternateur, transformateur) de 32 MVA de puissance chacun. Cette puissance installée étant largement supérieure au besoin du complexe (25 MVA). CEVITAL envisage de rétrocéder l'excédent au réseau SONELGAZ.

La problématique qui nous a été posée, c'est que les deux unités (conditionnement de l'huile et l'unité margarinerie) sont pas secourues (assurer une meilleure continuité de service) et lors d'une panne les deux unités seront à l'arrêt total. Notre tâche consiste à assurer le fonctionnement permanent des deux unités, dans le cas d'une perturbation ou d'un défaut dans le réseau. Pour ce faire, nous devons intégrer l'alimentation des deux unités à la boucle existante. Pour ce faire, nous avons subdivisé ce travail en trois chapitres :

Le premier chapitre nous allons aborder la présentation du complexe CEVITAL son historique, sa situation géographique, ses différentes directions et ses différentes activités, et la description du réseau électrique MT existant, ses différentes contraintes et la nécessité de bouclage.

Le deuxième chapitre sera réservé au dimensionnement des canalisations, le calcul des courants de défauts et la détermination des contraintes thermique et électrodynamique des équipements.

Apres avoir calculé les courants de défaut et la détermination des contraintes, le troisième chapitre sera consacré pour le choix et le dimensionnement des protections et l'étude de la sélectivité.

Nous terminerons ce travail par une conclusion générale.

Chapitre I

Description du réseau MT existant du complexe CEVITAL

I.1. Introduction

CEVITAL est le premier complexe en Algérie dans le domaine agroalimentaire, ou en va détaillée son évolution historique, ses multiples activités industrielles, principaux objectifs et bien sur l'organigramme de ses différentes direction, et présenter l'organigramme de l'unité énergie et utilités.

Le réseau moyen tension de l'entreprise CEVITAL qui est l'objet de notre travail, présente une certaine complexité du fait que plusieurs unités de productions sont alimentées en MT, à partir de la ligne 60kV de la SONELGAZ et la centrale de production locale cogénération.

L'architecture d'alimentation des différentes sous stations du complexe nécessite une révision urgente, et pour cela il faut la décrire d'abord en citant ces avantages et ces inconvénients, ainsi que le recensement des matériels existants et les liaisons entre sous stations existantes.

I.2. La représentation générale du complexe CEVITAL

I.2.1. Historique

CEVITAL est parmi les entreprises algériennes qui ont vu le jour dès l'entrée de notre pays en économise de marché. Elle a été créée par des fonds privés en 1998.

CEVITAL contribue largement au développement de l'industrie agroalimentaire nationale, et exporter le surplus, en offrant une large gamme de produit de qualité.

En effet les besoins du marché national sont de 1200T/j d'huile l'équivalent de 12 litres par personne et par an. Les capacité actuelle de CEVITAL sont de 1800T/j, sont un excédent commercial de 600T/j

Les nouvelles données économiques nationales dans le marché de l'agroalimentaire, font que les meilleurs sont ceux maitrisent d'une façon efficace et optimale les couts, les charges et ceux qui offrent le meilleur rapport qualité/prix. Ceci est nécessaire pour s'imposer sur le marché que CEVITAL négocie avec les grandes sociétés commerciales internationales telles que CARREFOUR et AUCHAN, OXXO, BRANDT (en France) ROYAL(en suisse) et autre société spécialisée dans l'import-export en Italie, Ukraine, Russe, ces produits se vendent dans différentes ville africaines (Tunis, Niamey, Bamako....).

I.2.2. Situation géographique

Le complexe CEVITAL se situe au niveau du nouveau quai du port de Bejaia à 3 km du sudouest de cette ville et repartie sur une superficie de 45000 m², à proximité de la route nationale Nº 09. L'entreprise a beaucoup profité de cette situation qui lui donne un avantage de proximité économique car se trouve proche du port et de l'aéroport.

Figure I.1. Situation géographique du complexe CEVITAL.

I.2.3. Principales activités de CEVITAL

Lancé en mai 1998, le complexe CEVITAL a débuté son activité par conditionnement d'huile en décembre 1998.

En février 1999, les travaux de génie civil de la raffinerie ont débuté, cette dernière est devenue fonctionnelle en Aout 1999.

L'ensemble des activités de CEVITAL est concentré sur la production et la commercialisation des huiles végétales, de margarine et de sucre et se présente comme suit :

- ➤ Raffinage des huiles (1800 tonnes /jour);
- Conditionnement d'huile (1400 tonnes /jour);
- Production de margarine (600tonnes/jour);
- Fabrication d'emballage (PET) : poly-éthylène-Téréphtalate (9600 unités/heure) ;
- Raffinage du sucre (2000 tonnes/jour et 3000 tonnes/jour);
- ➤ Stockage des céréales (120000 tonnes);
- La cogénération (une capacité de production arrive jusqu'à 64MW);
- ➤ Minoterie et savonnerie en cours d'étude.

I.2.4. Organigramme de CEVITAL

L'entreprise a pour mission principale de développer la production et d'assurer la qualité et le conditionnement des huiles, des margarines et du sucre a des prix nettement plus compétitifs et cela dans le but et satisfaire le client et le fidéliser.

Les objectifs visés par CEVITAL peuvent se présenter comme suit :

- L'extension de ses produits sure tout le territoire national;
- L'optimisation de ses offres d'emploi sur le marché de travail ;
- ➤ L'encouragement des agriculteurs par des aides financières pour la production local de graines oléagineuses ;
- ➤ La modernisation de ses installations en termes des machines et technique pour augmenter le volume de sa production ;
- Le positionnement de se produits sur le marché étranger pat leur exportation ;
- L'importation de graines oléagineuses pour l'extraction directe des huiles brutes.

L'organigramme suivant donne une vue général sur les différents organes constituants le complexe CEVITAL.

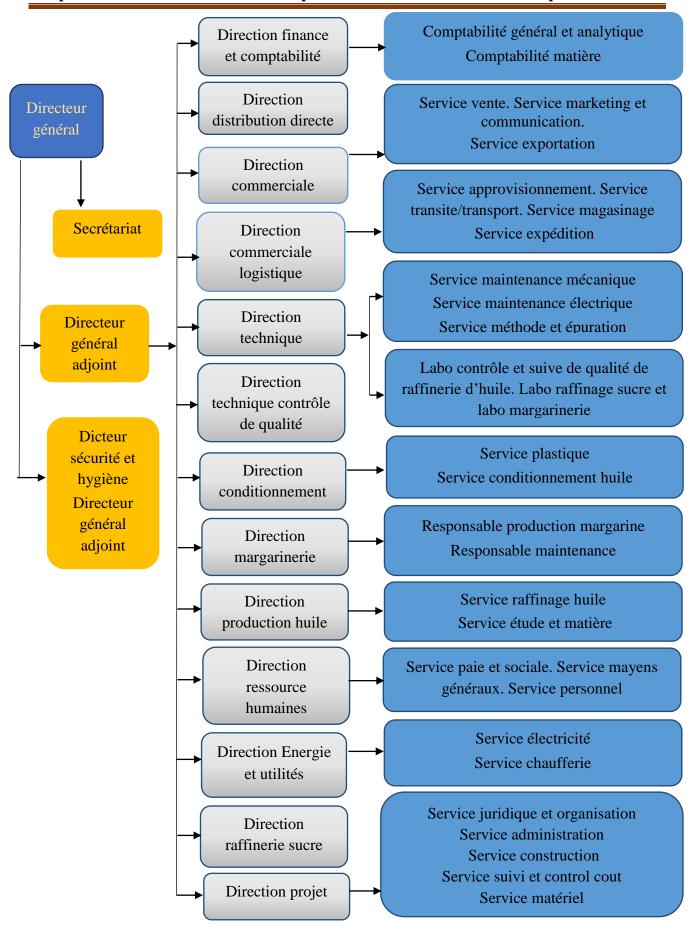


Figure I.2. Organigramme du complexe CEVITAL.

I.3. Unité énergie et utilités

I.3.1. Service énergie

La direction Energie est constituée de deux départements qui sont :

- Département électrique (production et distribution de l'énergie électrique) on distingue :
 - ✓ Le poste 60 kV;
 - ✓ Le poste 30 kV;
 - ✓ La cogénération.
- Département chaufferie (production et distribution de la vapeur).

Les différents départements de la direction Energie sont représentés dans l'organigramme suivant :

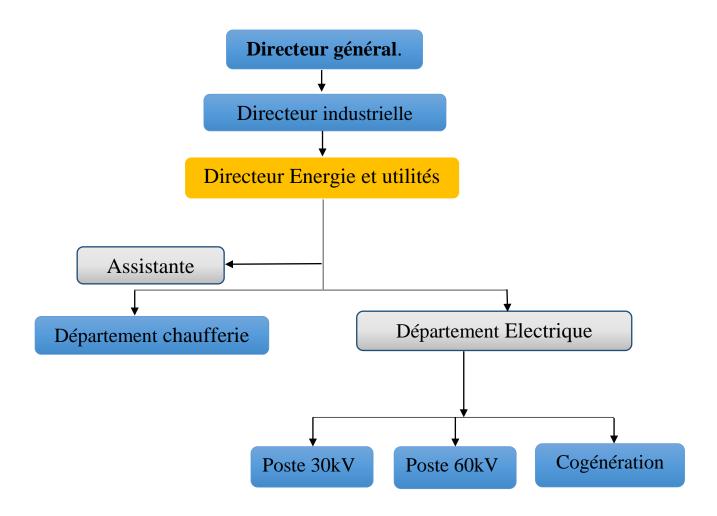


Figure I.3. Organigramme de la direction énergie.

I.4. Bilan de source [1]

Pour satisfaire le besoins du complexe en énergie électrique, ce dernier est actuellement alimenté par une ligne de 60kV depuis la centrale de Darguina, située à 50 km environ.

SONALGAZ a réservé la ligne Darguina – Bougie 2 (Bir-slam) et une liaison câble Bougie2-Bougie1 (Cité tobal) spécialement pour l'alimentation de l'entreprise CEVITAL.

Le system de distribution MT existant actuellement comprend essentiellement les éléments suivant :

- ➤ Un poste 60, étage 30kV à un jeu de barres et trois travées, soit :
 - ✓ Une travée Arrivée lignes 60kV;
 - ✓ Une travée Transformateur T01 60/30kV de 25MVA;
 - ✓ Une travée Transformateur T02 60/30kV de 25MVA.
- ➤ Un tableau 30kV en deux demi-jeux de barres. Chaque transformateur 60/30kValiments un jeu de barres de 30kV. Si un transformateur est indisponible, le deuxième est en mesure d'alimenter, seul, toute l'usine en actionnant le couplage des deux jeux de barres. Les divers consommateurs sont alimentés par des départs issus de ces tableaux ;
- ➤ Sources de secours (Central groupe);
- Les différentes sous stations d'alimentation des unités du complexe ;
- > Centrale de production (cogénération : 50MW environ en cours d'essai).

I.5. Alimentation principale du complexe

Comme il a été mentionné précédemment le complexe industriel CEVITAL est alimenté par le réseau SONELGAZ, il a subit au cours du temps certaines modifications. Au début était alimenté par une ligne de 30kV et par suite de l'extension qu'a connue le complexe les responsables de la société ont été amené à souscrire une nouvelle ligne 60kV.

I.5.1. Poste 30kV APL (Ancien Poste de Livraison)

Au début l'alimentation en énergie électrique du complexe était assurée par une ligne électrique spécialisée 30kV à partir du poste de transformation 60/30kV SONELGAZ bougie1, situé à une distance de 1500m environ.

La tâche principale de la ligne 30kV (la cellule F35) consiste à alimenter en énergie électrique les parties suivantes :

➤ La S/Station raffinerie d'huile par la cellule F31 qui alimente à son tour la S/ Station margarinerie par la cellule F38 ;

- Départ réserve (ancien départ prévu pour l'électrolyseur) par la cellule F32 ;
- ➤ Alimentation des auxiliaires par la cellule F33 ;
- ➤ La S/Station bouche par la cellule F34 qui alimente à son tour la S/Station conditionnement d'huile par la cellule F18.

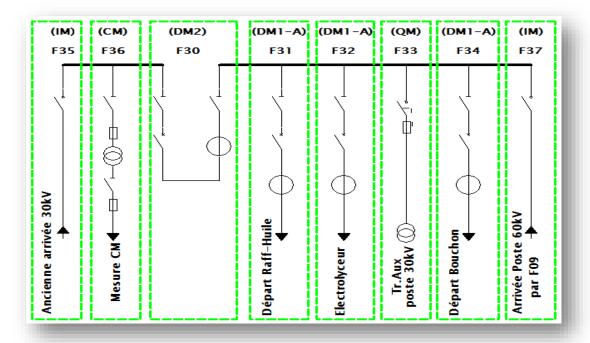


Figure I.4. Ancien Poste de Livraison (APL).

I.5.2. Poste 60kV

Vu l'extension qu'a connu l'entreprise CEVITAL, l'ancienne ligne 30kV n'a pas pu prendre en charge la totalité du complexe en qualité d'énergie électrique, ce qui a poussé les responsables à prévoir une ligne de 60kV qui pourra leur apporter la satisfaction.

La tâche principale de la ligne 60kV est l'alimentation de complexe par :

➤ Le jeu de barres 30kV N°01 par la cellule F06 :

- ✓ Départ vers la S/Station raffinerie de sucre 3500T/J par la cellule F00 ;
- ✓ Alimentation des auxiliaires par la cellule F01 ;
- ✓ Départ vers la nouvelle S/Station raffinerie sucre 2500T/J par la cellule F02 ;
- ✓ Départ vers la S/Station Silos céréales sucre roux neuve par la cellule F03 ;
- ✓ Départ vers la S/Station OSMOSE (affinage, chaufferie) par la cellule F04 ;
- ✓ Arrivée central diesel par la cellule F05.

Le jeu de barres N°01 est couplée au jeu de barres N°02 à travers une cellule de couplage qu'est la cellule F07.

➤ Le jeu de barres 30kV N°02 par la cellule de couplage F08:

- ✓ Départ vers la S/Station APL (30kV) par la cellule F09 ;
- ✓ Départ vers la S/Station raffinerie de sucre 2500T/J par la cellule F10 ;
- ✓ Départ vers la S/Station OSMOSE (affinage, chaufferie) par la cellule F11 ;
- ✓ Départ vers la S/Station conditionnement du sucre (1kg/5kg) par la cellule F12;
- ✓ Alimentation des auxiliaires par la cellule F13.

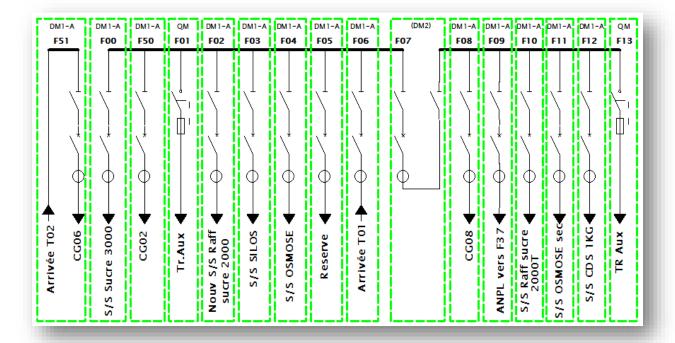


Figure I.5. Etage 30kV (Poste 60).

I.5.3. Source de secoures (Centrale groupe diesel)

Pour remédier au problème majeur qui perturbe le processus de la production, qu'est le problème des coupures d'électricité causées par les surcharges à cause de l'augmentation très rapide de la consommation de la ville de Bejaia et ses environs, CEVITAL s'est équipée d'une centrale groupe composée de sept groupes électrogène totalisant une puissance de 12.8MVA 400V, Et sept transformateurs élévateurs de (400/30kV).

I.5.4. Central cogénération

La cogénération est le principe de production simultané de deux énergies différentes dans le même processus, le cas le plus fréquent est la production d'électricité et de la chaleur, la chaleur étant issue de la production d'électricité ou l'inverse. Ces systèmes ont un haut rendement (de 80% à 90%) et ils sont considérés parmi les techniques les plus efficaces énergétiquement pour l'utilisation des énergies fossiles et renouvelables.

Il a été procédé donc à l'achat et à l'installation de deux groupes blocs (turbine-alternateur, transformateur) de 32 MVA de puissance unitaire.

Cette puissance installée étant largement supérieur au besoin du complexe (25MVA) CEVITAL envisage de rétrocéder l'excédent au réseau SONELGAZ.

La centrale débite sur deux transformateurs de 32MVA chacun, qui alimentent à leur tour un jeu de barres TGHT par les deux cellules CG03 et CG07.

➤ Le jeu de barres TGHT alimente les éléments suivant :

- ✓ Transformateur auxiliaire Tr 1 par la cellule CG04;
- ✓ Transformateur auxiliaire Tr 2 par la cellule CG05;
- ✓ Jdb 30kV N°01 du poste 60 par la cellule CG02;
- ✓ Jdb 30kV N°02 du poste 60 par la cellule CG08;
- ✓ Arrivé du Tr02 (60/30kV) par la cellule CG06;
- ✓ Arrivé groupe électrogène par la cellule CG01.

I.6. Les différentes sous stations du complexe CEVITAL

Pour assurer le minimum de continuité des services des unités de fabrication séparément, le complexe CEVITAL a divisé son réseau en dix (10) sous stations, chacun des sous stations comprend un jeu de barre auquel sont connectées les différentes cellules comme suit :

Jeu de barre S/Station raffinerie de l'huile 2000T/J

Il comprend cinq cellules 30kV Scheider Electrique type SM6-36 suivante :

- ✓ Arrivée d'ancien poste livraison (APL) par la cellule F32 remonté de barre (IM) par la cellule F39 ;
- ✓ Départ vers S/Station margarinerie (DM1-A) par la cellule F38 avec une SEPAM 1000+;
- ✓ Trois départ vers les transformateurs de la raffinerie d'huile 1, 2,3 (DM1-A) avec une SEMAP 2000 chacun.

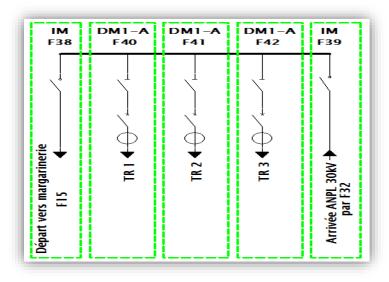


Figure I.6. Sous Station raffinerie de l'huile.

➤ Jeu de barre S/Station Osmose

Il comprendre cinq cellules 30kV Schneider Electric type SM6-36 suivants :

- ✓ Arrivée du poste 60 par la cellule F11 remonté de barre (IM) ;
- ✓ Cellule de mesure et comptage (CM);
- ✓ Départ vers transformateurs osmose (DM1-A) avec une SEPAM 1000+;
- ✓ Départ vers affinage 3000T/J (DM1-A) avec une SEPAM 1000+.

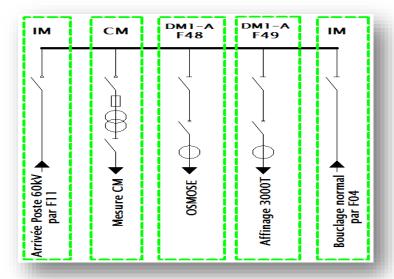


Figure I.7. Sous station Osmose.

> Jeu de barre S/Station margarinerie

Il comprend trois cellules 30kV Schneider électrique type SM6-36 suivantes :

- ✓ Départ réserve pour bouclage de la cellule F14 en cas l'extension (IM) ;
- ✓ Arrivé de la S/Station raffinerie de l'huile 2000T/J par la cellule F15 ;
- ✓ Départ vers le transformateur margarinerie Tr1 (DM1-A) avec une SEPAM 1000+.

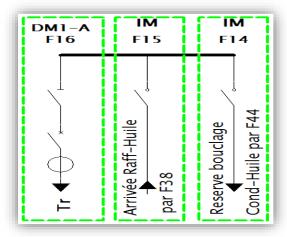


Figure I.8. Sous Station margarinerie.

➤ Jeu de barre S/Station conditionnement de l'huile

Il comprend cinq cellules 30kV Schneider électrique type SM6-36 suivantes :

- ✓ Départ réservé pour bouclage de la cellule F44 en cas d'extension (IM) ;
- ✓ Arrivée de la S/Station bouchon par la cellule F43 (IM) ;
- ✓ Cellule de mesure et comptage F45 (CM);
- ✓ Deux départs transformateurs conditionnements de l'huile 1,2 avec SEPAM 1000+.

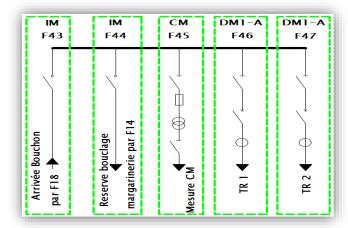


Figure I.9. Sous Station conditionnement de l'huile.

> Jeu de barre S/Station bouchon

Il comprend trois cellules 30kV Schneider Electrique type SM6-36 suivantes :

- ✓ Arrive de la S/Station ancien poste de livraison APL par la cellule F17 remonté de barre(IM);
- ✓ Départ vers la S/Station conditionnement de l'huile par la cellule F18 (IM) par une SEPAM 1000+;
- ✓ Départ vers transformateur bouchon (DM1-A) avec une SEPAM 1000+.

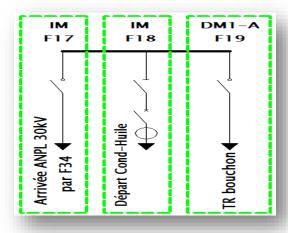
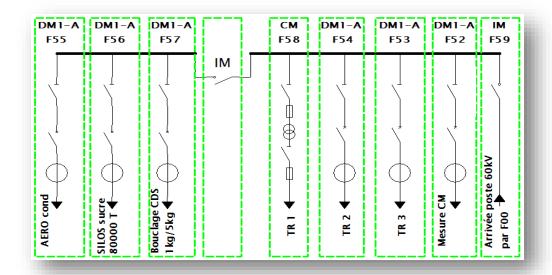



Figure I.10. Sous Station Bouchon.

➤ Jeu de barre S/Station raffinerie du sucre 3500T/J

Il comprend dix cellules 30kV Schneider électrique type SM6-36 suivantes :

- ✓ Arrivée du poste 60 par la cellule F59 remonté de barre (IM) ;
- ✓ Trois départ vers le transformateur de la raffinerie de sucre 1, 2,3 (DM1-A) avec une SEPAM 1000+ chacun ;
- ✓ Cellule de mesure et comptage (CM) F52 ;
- ✓ Départ vers la cellule : GAM (IM) ;
- ✓ Arrivée de cellule : IM (GAM : remonté de barre) ;
- ✓ Départ vers le transformateur silo 80000 (DM1-A) avec une SEPAM 1000+;
- ✓ Départ vers conditionnement de sucre 1kg (DM1-A) avec une SEPAM 1000+;
- ✓ Départ vers transformateur aéro (DM1-A) avec une SEPAM 1000+.

Figure I.11. Sous Station raffinerie sucre 3500T/j.

> Jeu de barre S/Station APL

Il comprend huit cellules 30kVSchneider Electrique type SM6-36 suivantes :

- ✓ Cellule de couplage F30 (DM2) en arrêt ;
- ✓ Départ vers transformateur auxiliaire de la S/Station (APL) cellule de mesure F31
- ✓ Départ vers la S/Station raffinerie de l'huile par la cellule F32 avec une SEPAM 2000 ;
- ✓ Départ vers la S/Station Silos céréale sucre par la cellule F33 avec une SEPAM 2000 ;
- ✓ Départ vers S/Station bouchon par la cellule F34 (DM1-A) avec une SEPAM 2000 ;
- ✓ Ancienne arrivée à 30kV du SONELGAZ par la cellule F35 (IM) en arrêt ;
- ✓ Cellule de mesure et comptage F36 (CM) en arrêt ;
- ✓ Arrivée du poste 60kV par la cellule F37 remonté barre (IM).

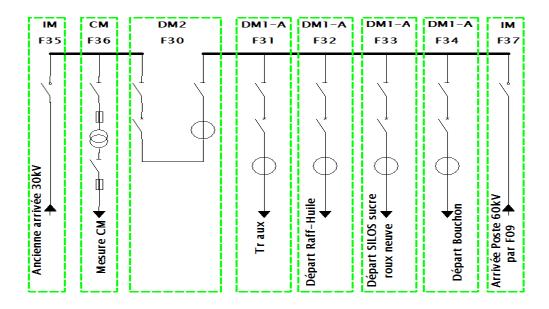


Figure I.12. Sous Station poste de livraison APL 30kV.

➤ Jeu de barre S/Station Silos céréales sucres roux neuve

Il comprend sept cellules 30kVSchneider Electrique type SM6-36 suivantes :

- ✓ Arrivée du poste 60 par la cellule F74 remonté barre (IM) ;
- ✓ Reserve de la cellule F75 remonté barre (IM) ;
- ✓ Arrivée depuis APL par la cellule F33 remonté barre (IM) ;
- ✓ Cellule de mesure et comptage F77 (CM);
- ✓ Départ vers le transformateur SILOS (DM1-A) avec une SEPAM 1000+;
- ✓ Départ vers le transformateur interstrification avec une SEPAM 1000+ (En étude) ;
- ✓ Reserve de la cellule F80 (DM1-A).

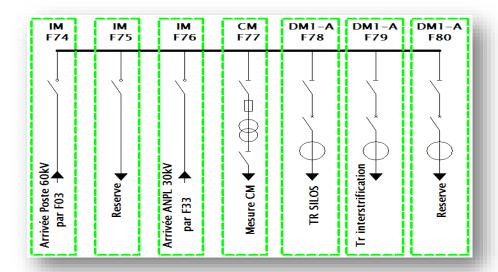
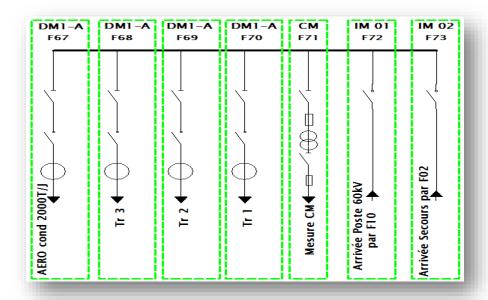



Figure I.13. Sous Station silos céréales sucres roux neuve.

Jeu de barre nouvelle S/Station raffinerie sucre 2500T/j

Il comprend huit cellules 30kV Schneider Electrique type SM6-36 suivantes :

- ✓ Départ vers transformateur aéro condenseurs 2000T/j (DM1-A) avec une SEPAM 1000+;
- ✓ Trois départs vers les transformateurs 1, 2 et 3 de la raffinerie sucre 2000T/j avec une SEPAM 2000 ;
- ✓ Cellule de mesure et comptage (CM) F71 ;
- ✓ Arrivée du poste 60 par la cellule F72 remonté barre (IM01) ;
- ✓ Arrivée secours du poste 60 par la cellule F73 remonté barre (IM02).

Figure I.14. Sous Station raffinerie sucre 2500T/j.

➤ Jeu de barre nouvelle S/Station CDS (1kg/5kg)

Il comprend sept cellules 30kV Schneider Electrique type SM6-36 suivantes :

- ✓ Arrivée secours depuis la raffinerie 3500T/J par la cellule F57remonté barre (IM);
- ✓ Arrivée du poste 60 par la cellule F61 remonté barre (IM) ;
- ✓ Cellule de mesure et comptage (CM) F62 ;
- ✓ Transformateur CO₂ par la cellule F66;
- ✓ Départ vers transformateur conditionnement 1kg avec une SEPAM 1000+;
- ✓ Départ réserve de 2 bac huile brutes de la cellule F64 (en cours d'études) ;
- ✓ Départ vers transformateur sucre roux avec une SEPAM 1000+.

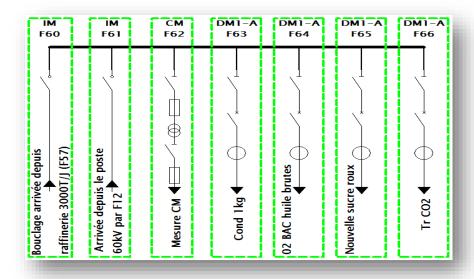


Figure I.15. Sous Station CDS (1kg/5kg).

I.7. Description des équipements électriques du réseau MT du complexe CEVITAL

I.7.1. Description du poste 60kV

- Travée « Arrivée ligne 60kV » elle comprend :
 - > Trois transformateurs de tension (T10)-63000/ $\sqrt{3}$ /100/ $\sqrt{3}$, 30VA C1 0.2 l'alimentation des SEPAM T66 des transformateurs 60/30kV;
 - ➤ Un jeu de parafoudre (F10);
 - ➤ Un condensateur de découplage (F30) ;
 - ➤ Trois transformateurs de courant (T30) 600/5+5A. (30VA C1 0.2 pour le couplage et 15VA 5P15 pour la protection);
 - ➤ Un sectionneur de mise à la terre de travée (Q80);
 - ➤ Un circuit bouchon (F20);
 - ➤ Un disjoncteur débrochable 1250A (Q01) et son système de débrochage (Q10) ;
 - ➤ Un premier comptage type SL7000 d'ACTARIS d'énergie active et réactive reçue électronique avec mesure sure les quatre quadrants ;
 - ➤ Un deuxième comptage type SL7000 d'ACTARIS d'énergie active et réactive reçue électronique avec mesure sure les quatre quadrants ;
 - ➤ Un relais de protection SEPAM L61 pour assurer le fonctionnement :
 - ✓ 50 BF Défaut disjoncteur ;
 - ✓ 50/51 Maximum d'intensité de phase ;
 - ✓ 50N/51N Maximum de courant de terre ;

- ✓ 86 Fonction arrêt;
- ✓ 27-59 Minimum et maximum de tension.
- ➤ Un relais SEPAM S20 assurant le fonctionnement suivant :
 - \checkmark 50/51 Maximum de courant de phase ;
 - ✓ 50N/51N Maximum de courant de terre.
- ➤ Une protection différentielle de ligne assurant la fonction de protection principale installée par SONELGAZ. La liaison inter-poste est assurée par une liaison à fibre optique ;
- ➤ Un sectionneur de mise à la terre de ligne (Q90) ;
- ➤ Un sectionneur tête de ligne (Q91).

• Jeu de barre 60kV

Il est caractérisé par une intensité nominale de 1250MVA, 25MVA/1s. Il ne comprend aucun appareil.

Travée 60kV transformateur T01 60/30kV 25MVA

Equipée comme suite :

- ➤ Un disjoncteur 60kV, 1250A débrochable (Q03);
- ➤ Trois transformateurs de courant (T32) 300/5+5A 5P20 pour la protection différentielle, 15VA 5P15 pour les autres protections ;
- ➤ Un transformateur 60/30kV (T01) de caractéristique suivants :
 - ✓ Puissance ONAN/ONAF 20/25MVA;
 - ✓ Tensions nominales 63/31.5kV;
 - ✓ Plage de réglage en charge ±8×1.5 ;
 - ✓ Indice de couplage YN yn 0 ;
- ➤ Un sectionneur de neutre 60kV (Q82);
- ➤ Un Tore de mesure de courant de neutre 60kV;
- ➤ Une résistance de mise à la terre du neutre 30kV (Ro1) 300A/5s ;
- ➤ Un Tore de mesure de courant à la terre du neutre 30kV ;
- ➤ Une mise l la terre de la cuve du transformateur via un tore de mesure de courant de fuite ;
- > Une SEPAM D21 assurant la fonction 87 « protection différentielle transfo »
- ➤ Un SEPAM T66 assurant les fonctions suivant :
 - ✓ 50 BF Défaut disjoncteur ;
 - ✓ 50/51 Maximum d'intensité de phase à deux jeux de réglage (seuil et temps) ;
 - ✓ 50N/51N Maximum d'intensité de terre à deux jeux de réglage (seuil et temps) ;

```
✓ 86 Fonction d'Arrêt;
✓ 74 Niveau bas d'huile;
✓ 49 Protection de température (alarme et déclenchement);
✓ 94 Protection de surpression cuve;
✓ Protection de masse cuve.
```

• Travée 60kV transformateur T02 60/30kV, 25MVA

Equipée comme suite :

- ➤ Un disjoncteur 60kV ,1250A débrochable (Q04);
- ➤ Trois transformateurs de courant (T33) 300/5+5A 15VA 5P20 pour la protection différentielle, 15VA 5P15 pour les outres protection ;
- ➤ Un sectionneur de neutre 60kV (Q83);
- ➤ Un Tore de mesure de courant de neutre 60kV;
- ➤ Une résistance de mise à la terre de neutre 30kV (Ro2) 300A/5s;
- ➤ Un Tore de mesure de courante à la terre du neutre 30kV ;
- ➤ Une mise à la terre de la cuve du transformateur via un tore de mesure de courant de fuite ;
- ➤ Un SEPAM D21 assurant la fonction 87T (protection différentielle transformateur) ;
- ➤ Un SEPAM T66 assurant les fonctions suivantes :

```
✓ 50BF Refus disjoncteur;
✓ 50/51 Maximum d'intensité de phase à deux jeux de réglage (seuil et temps);
✓ 50N/51N Maximum d'intensité de terre à deux jeux de réglage (seuil et tempes);
✓ 86 Fonction d'Arrêt;
✓ 74 Niveau bas d'huit;
✓ 49 Protection de température (alarme et déclenchement);
✓ 94 Protection de surpression cuve;
✓ Protection de surpression cuve;
```

- ✓ Réglage en charge ;
- ✓ Protection de masse cuve.
- ➤ Un transformateur 60/30kV (T02) de caractéristique suivantes :
 - ✓ Puissance nominale ONAN/ONAF 20/25MVA;
 - ✓ Tension nominale 63/31.5kV;
 - ✓ Plage de réglage en charge ±8×1.5%;
 - ✓ Indice de couplage YN yn0.

I.7.2. Jeu de barres de distribution 30kV du poste 60

Le tableau de 30kV de répartition au poste 60 est divisé en deux parties reliées par une cellule de couplage. Il est constitué de cellule 30kV Schneider Electrique type SM6-36, ses caractéristiques sont :

- > Tension de service 30kV;
- > Tension d'isolement 36kV;
- ➤ Courant nominal 630A;
- ➤ Tenue thermique 16kA/1s.

Ce tableau est divisé en deux jeux de barres :

A) Jeu de barres 30kV N°01 du poste 60, 630A, 16kA/s

Il comprend les neuf cellules arrivées-départ suivantes :

• Cellule F06

Arrivée de transformateur T01 60/30kV de 25MVA, F06 comprend :

- ➤ Un sectionneur de terre têtes de câble ;
- ➤ Un diviseur capacitif pour indication de présence de tension ;
- ightharpoonup Trois TT 3000/ $\sqrt{3}$ /1000/ $\sqrt{3}$ 30VA C1 0.5;
- ➤ Trois TC 600/5+5A, 10VA 5P10pour le SEPAM S02.15VA5P20 pour le SEPAM D21 (protection différentielle transformateur) ;
- ➤ Un disjoncteur débrochable 630A;
- > Un sectionneur de terre cote jeu de barres ;
- ➤ Un relais SEPAM S02 assurant les fonctions suivantes :

```
✓ 50/51 Maximum d'intensité de phase à deux jeux de réglage ;
```

✓ 50N/51N Maximum de courant de terre à deux jeux de réglage ;

✓ 27 Maximum de tension;

✓ 27R Minimum de tension rémanente ;

✓ 59 Maximum de tension.

• La cellule F00

Départ vers la sous tension raffinerie de sucre 3000T/j équipée comme suite :

- ➤ Un sectionneur de barre 630A;
- ➤ Un sectionneur de terre ;
- ➤ Un disjoncteur 630A;
- > Trois transformateurs de courant pour indication de présence de tension ;

- ➤ Un tore de mesure de courant homopolaire dans les câbles ;
- ➤ Un relais SEPAM S02 assurant les fonctions suivantes :

```
✓ 50/51 Maximum courant de phase à deux jeux de réglages ;
```

✓ 50N/51N Maximum courant de terre à deux jeux de réglages ;

✓ 27 Minimum de tension de phase ;

✓ 27R Minimum de tension de Résiduelle ;

✓ 59 Maximum de tension phase.

• La cellule F01

Départe vers transformateur auxiliaires du poste de 100kVA T11 équipée comme suite :

- > Un interrupteur à commande manuelle ;
- > Un sectionneur de mise à la terre ;
- > Trois fusibles de protection (10A);
- > Un sectionneur de terre en aval de fusible ;
- ➤ Un tore de mesures de courant homopolaire ;
- ➤ Un relais de courant homopolaire (51N) type RH110 ;
- ➤ Un diviseur capacitif de tension pour indication de présence de tension.

• La cellule F02

Départ secours vers la sous station raffinerie de sucre 2000T/j équipées comme suite :

- > Sectionneur de barre 630A;
- > Sectionneur de terre ;
- ➤ Disjoncteur;
- Trois transformateurs de courant 200-400/5+5A pour la protection ;
- ➤ Un sectionneur de terre de têtes de câbles ;
- > Un diviseur capacitif pour indiction la présence de tension ;
- ➤ Un tore de mesure de courant homopolaire ;
- ➤ Un relais SEPAM T29 assurant les fonctions suivantes :

	E0/E1	3 / ·		1 1	\ 1	•	1 / 1
~	50/51	Mayımıım	COllrant	de nha	viiah e as	1011V (de réglage :
•	JU/J1	Maximum	Courant	uc biias	sc a ucun	псил с	ac regrage.

✓ 50N/51N Maximum courant de terre à deux jeux de réglage ;

✓ 27 Minimum de tension de phase ;

✓ 27R Minimum de tension résiduelle ;

✓ 49 Image thermique température transformateur ;

✓ 59 Maximum de tension phase;

✓ 38 Température transformateur ;

✓ 39T Température transformateur.

• La cellule F03

Départ vers la sous station Silos sucre roux neuve équipées comme suite :

- ➤ Un sectionneur de barre 630A;
- > Un sectionneur de terre ;
- ➤ Un disjoncteur 630A;
- > Trois transformateurs de courant ;
- > Un sectionneur de terre de tête de câbles ;
- ➤ Un diviseur capacitif pur indiction de présence de tension ;
- ➤ Un tore de mesure de courant homopolaire ;
- ➤ Un relais SEPAM assurant les fonctions suivantes :

✓ 50/51	Maximum d'intensité de phase à deux jeux de réglage ;
✓ 50N/51N	Maximum de courant de terre ;
✓ 27R	Minimum de tension résiduelle ;
√ 27	Minimum de tension de phase;
√ 59	Maximum de tension;
√ 49	Image thermique Température transformateur ;
√ 38	Température transformateur ;
✓ 39T	Température transformateur.

• La cellule F04

Départ vers la sous station Zone énergie OSMOSE équipée comme suite :

- ➤ Un sectionneur de barre 630A;
- > Un sectionneur de terre ;
- ➤ Un disjoncteur 630A;
- > Trois transformateurs de courant 300-600/5+5A;
- ➤ Un diviseur capacitif pour indication de présence de tension ;
- ➤ Un tore de mesure de courant homopolaire dans le câble ;
- ➤ Un relais SEPAM S02 assurant les fonctions suivantes :

✓ 50/51	Maximum d'intensité de phase à deux jeux de réglage;
✓ 50N/51N	Maximum de courant de terre deux jeux de réglage;
✓ 27R	Minimum de tension résiduelle ;
✓ 27	Minimum de tension de phase;
√ 59	Maximum de tension de phase.

• La cellule F05

Arrivée de la centrale diesel, équipée comme suit :

- > Sectionneur de barre 630A;
- > Sectionneur de terre ;
- ➤ Disjoncteur 630A;
- Trois transformateur de courant 300-600/5+5A pour la protection ;
- > Un sectionneur de terre de tête de câble :
- ➤ Un diviseur capacitif pour indication préséance de tension ;
- ➤ Un tore de mesure de courant homopolaire dans les câbles ;
- ➤ Un relais SEPAM S02 assurant les fonctions suivantes :

```
    ✓ 50/51 Maximum de courant à deux jeux de réglage;
    ✓ 27 Minimum de tension de phase;
    ✓ 59 Maximum de tension phase;
    ✓ 50N/51N Maximum de courant de terre à deux jeux de réglage;
    ✓ 27R Minimum de tension résiduelle.
```

• La cellule F50

Arrivée de jeu de barre cogénération à partir de la cellule CG02équipée comme suite :

- ➤ Un sectionneur de terre tête de câbles ;
- ➤ Un diviseur capacitif pour indication de présence de tension ;
- ightharpoonup Trois TT 30000/ $\sqrt{3}/100\sqrt{3}$ 30VA C1 0.5;
- ➤ Un disjoncteur débrochable 630A;
- > Un sectionneur de terre côte de barres jeu de barre ;
- ➤ Unr relais SEPAM S02 assurant les fonctions suivantes :

```
    ✓ 50/51 Maximum d'intensités de phase à deux jeux de réglages;
    ✓ 50N/51N Maximum de courant de terre à deux jeux de réglage;
    ✓ 27 Minimum de tension;
    ✓ 27R Minimum de tension rémanente;
    ✓ 59 Maximum de tension.
```

• La cellule F07

Couplage avec le jeu de barre N°01 équipée comme suite :

- > Un sectionneur de barres ;
- ➤ Un sectionneur de terre ;
- > Trois TC 300-600/5+5;

➤ Un relais SEPAM S01 assurant les fonctions suivantes :

✓ 50/51 Maximum courant de phase à deux jeux de réglage ;

✓ 50N/51N Maximum courant de terre a deux jeux de réglage.

Ce relais SEPAM agit sure le disjoncteur 30kV de la cellule de couplage de jeu de barres N°01.

• La cellule F07D

Couplage avec le jeu de barres N°02, équipée comme suite :

- > Sectionneur de barre 630A;
- > Sectionneur de terre ;
- ➤ Disjoncteur 630A.

Cette cellule ne comporte pas de relais de protection ni de mesure. Les protections sont sure la cellule de couplage du jeu de barres N°02.

B) Jeu de barre 30kV N°02 du poste 60,630A, 16kA/1s

Il a les mêmes caractéristiques que le premier tableau N°01, comporte sept cellules réparties comme suit :

• La cellule F08

Arrivée de jeu de barre cogénération à partir de la cellule CG08 équipée comme suite :

- > Un sectionneur de terre ;
- ➤ Un diviseur capacitif pour indication de présence de tension ;
- Trois TC 600/5+5A, 10VA pour le SEPAM S02;
- ➤ Un disjoncteur débrochable 630A;
- > Un sectionneur de terre coté jeu de barres ;
- ➤ Un régulateur automatique de tension pour réglage de tension 30kV par action sur le commutateur de pris coté 60kV;
- ➤ Un relais SEPAM S02 assurant les fonctions suivantes :

_	50/51	3.7	19	1 1	\ 1	•	1 / 1
~	20/21	Mayımıım	i d'intensité (de nhace	a deliv	1011V (ia raginga .
•	-)(//-) 1	waannun	i u illichsite	uc masc	a ucux	ιιυμλι	ic regrage.

✓ 50N/51N Maximum de courant de terre :

✓ 27R Minimum de tension rémanente ;

✓ 27 Minimum de tension ;

✓ 59 Maximum de tension.

• La cellule F09

Départ vers l'ancien poste de livraison 30kV SONELGAZ équipée comme suite :

➤ Un sectionneur de barre 630kV;

- ➤ Un sectionneur de terre ;
- ➤ Un disjoncteur 630A;
- Trois transformateurs de courant 300-600/5+5A;
- ➤ Un sectionneur de terre de têtes de câbles ;
- ➤ Un diviseur capacitif pour indication présence de tension ;
- ➤ Un tore de mesure de courant homopolaire dans le câble ;
- ➤ Un relais SEPAM S02 assurant les fonctionnes suivantes :

√ 50/51	Maximum d'intensité de phase à deux jeux de réglage;
✓ 50N/51N	Maximum de courant de terre deux jeux de réglage ;
✓ 27R	Minimum de tension résiduelle ;
✓ 27	Minimum de tension de phase;
√ 59	Maximum de tension phase.

• La cellule F10

Départ vers la sous station raffinerie de sucre 2000T/j équipé comme suite :

- > Sectionneur de barre 630A;
- > Sectionneur de terre :
- ➤ Disjoncteur 630A;
- ➤ Trois transformateurs de courant 200-400/5+5A pour la protection ;
- > Un sectionneur de terre de têtes de câbles ;
- ➤ Un diviseur capacitif pour indiction la présence de tension ;
- ➤ Un tore de mesure de courant homopolaire ;
- ➤ Un relais SEPAM T29 assurant les fonctions suivantes :

✓ 50/51	Maximum courant de phase à deux jeux de réglage;
✓ 50N/51N	Maximum courant de terre à deux jeux de réglage ;
√ 27	Minimum de tension de phase;
✓ 27R	Minimum de tension résiduelle ;
√ 49	Image thermique température transformateur;
√ 59	Maximum de tension phase;
√ 38	Température transformateur ;
✓ 39T	Température transformateur.

• La cellule F11

Départ secours vers la sous station Zone énergie OSMOSE équipée comme suite :

- ➤ Un sectionneur de barre 630A;
- ➤ Un sectionneur de terre ;

- ➤ Un disjoncteur 630A;
- Trois transformateurs de courant 300-600/5+5A;
- ➤ Un diviseur capacitif pour indication de présence de tension ;
- ➤ Un tore de mesure de courant homopolaire dans le câble ;
- ➤ Un relais SEPAM S02 assurant les fonctions suivantes :

√ 50/51	Maximum d'intensité de phase à deux jeux de réglage ;
✓ 50N/51N	Maximum de courant de terre deux jeux de réglage;
✓ 27R	Minimum de tension résiduelle ;
√ 27	Minimum de tension de phase;
√ 59	Maximum de tension de phase.

• La cellule F12

Départ vers la sous station conditionnement de sucre (1kg/5kg), équipée comme suite :

- ➤ Un sectionneur de barre 630A;
- ➤ Un sectionneur de terre ;
- ➤ Un disjoncteur 630A;
- > Un diviseur capacitif pour indication de présence de tension ;
- \triangleright Trois transformateurs de courant (200/400/5+5A);
- ➤ Un tore de mesure de courant homopolaire dans le câble ;
- ➤ Un relais SEPAM (S36 T29F) assurant les fonctions suivantes :

√ 50/51	Maximum courant de phase à deux jeux de réglage;
✓50N/51N	Maximum de courant de terre deux jeux de réglage ;
✓27R	Minimum de tension résiduelle ;
√ 27	Minimum de tension de phase;
√ 59	Maximum de tension de phase.

• La cellule F13

Départ vers le transformateur auxiliaire équipé comme suite :

- > Un interrupteur à commande manuelle avec réserve d'énergie de déclenchement à ressort;
- > Un sectionneur de mise à la terre ;
- Trois fusibles de protection 10A avec percuteur pour ouverture de l'interrupteur en cas de fusion fusible;
- Un sectionneur de terre en aval des fusibles ;
- > Un tore de mesures du courant homopolaire ;
- ➤ Un relais de courant homopolaire 51N type RH;

> Un diviseur capacitif de tension pour indication de présence de tension.

Ce départ alimenté un transformateur T12, 30000/400V, 100kVA Dyn 11, Ucc = 4.5% servant à l'alimentation des auxiliaires du poste.

I.7.3. Jeu de barres de distribution 30kV de la cogénération TGHT

Ce tableau ne contient que les équipements HTA à 30kV, ce dernier est composé des cellules 30kV Schneider Electrique type (F400), ses caractéristiques sont :

- > Tension de service 30kV;
- > Tension d'isolement 36kV;
- ➤ Courant nominal 1250A;
- ➤ Tenue thermique 25kA/1s.

Il comprend les neuf cellules arrivée-départs suivantes :

• CG01 « Arrivée » de central diesel, équipée comme suite :

- ➤ Un disjoncteur 1250 A débrochable ;
- ➤ Trois TC 700/1+1 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- ➤ Un sectionneur de mise à la terre ;
- Trois diviseurs capacitifs pour indication de présence de tension ;
- > Trois TT $3000/\sqrt{3}$ $/100/\sqrt{3}/100/\sqrt{3}50$ VA C1 0.5 pour la mesure et 50VA C1 3P pour la protection.

• CG03 « Arrivée » de transformateur de la turbine n°01 équipée comme suite :

- ➤ Un disjoncteur 1250A débrochable ;
- Trois TC 700/1+1A 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- ➤ Un sectionneur de mise à la terre ;
- > Trois diviseurs capacitifs pour indication de présence tension ;
- > Trois TT $3000/\sqrt{3}$ $/100/\sqrt{3}/100/\sqrt{3}50$ VA C1 0.5 pour la mesure et 50VA C1 3P pour la protection.

• CG07 « Arrivée » de transformateur de turbines n°02 équipée comme suite :

- ➤ Un disjoncteur 1250A débrochable ;
- Trois TC 700/1+1A 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- > Un sectionneur de mise à terre ;
- > Trois diviseurs capacitifs pour indication de présence tension ;
- > Trois TT $3000/\sqrt{3}/100/\sqrt{3}/100/\sqrt{3}50$ VA C1 0.5 pour la mesure et 50VA C1 3P pour la protection.

• CG02 « Départ » vers jeu de barre 30kV n°01du poste 60 équipées comme suite :

- ➤ Un disjoncteur 1250A débrochable ;
- Trois TC 700/1+1A 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- > Un sectionneur de mise à terre :
- Trois diviseurs capacitifs pour indication de présence tension ;
- > Trois TT $3000/\sqrt{3}/100/\sqrt{3}/100/\sqrt{3}50$ VA C1 0.5 pour la mesure et 50VA C1 3P pour la protection.

Deux cellules CG04 et CG05 « Départ » vers les deux transformateurs auxiliaires de la cogénération équipée comme suite :

- ➤ Trois TC 100/1+1 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- ➤ Un sectionneur de mise à la terre.

• CG06 « Départ » vers la cellule F51 cellule de couplage avec le transformateur 02 60kV/30kV équipées comme suite :

- ➤ Un disjoncteur 1250A débrochable
- ➤ Trois TC 700/1+1A 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- > Un sectionneur de mise à terre :
- > Trois diviseurs capacitifs pour indication de présence tension ;
- Trois TT $3000/\sqrt{3}/100/\sqrt{3}/100/\sqrt{3}50$ VA C1 0.5 pour la mesure et 50VA C1 3P pour la protection.

• CG08 « Départ » vers jeu de barre 30kV n°02 du poste 60 équipée comme suite :

- ➤ Un disjoncteur 1250A débrochable ;
- Trois TC 700/1+1A 10VA C1 1 pour la mesure et 5VA 5P10 pour la protection ;
- ➤ Un sectionneur de mise à terre ;
- > Trois diviseurs capacitifs pour indication de présence tension ;
- Trois TT $3000/\sqrt{3}/100/\sqrt{3}/100/\sqrt{3}50$ VA C1 0.5 pour la mesure et 50VA C1 3P pour la protection.

• CG09 « Départ » vers cellule de mesure équipée comme suite :

- > Trois TT $30000/\sqrt{3}/100/\sqrt{3}/100\sqrt{3}$.: ces TT installés sans aucune organe de coupure ni protection ;
- > Trois parafoudres;
- Trois diviseurs capacitifs pour l'indication de présence de tension.

Les cellules (F400) de ce jeu de barre comportent un relais de protection de type SEPAM 1000+. A part la cellule de mesure CG09 qui sera inutile d'en avoir un.

La SEPAM 1000+ (S40) est équipée des protections suivantes :

> 50/51 Maximum d'intensité de phase à deux jeux de réglage; > 50N/51N Maximum de courant de terre à deux jeux de réglage ; ➤ 27R Minimum de tension rémanente; > 27/27S Minimum de tension; > 59 Maximum de tension; > 59N Maximum de tension résiduelle ; ➤ 50BF Défaut disjoncteur; > 46 Maximum de courant inverse; ➤ 67N Directionnel de terre; **>** 47 Maximum de tension inverse; ▶ 81 Minimum de fréquence; > 38/49T Surveillance; ➤ 49RMS Image thermique.

I.8. Description des câbles électrique [2]

I.8.1. Conducteur isolé

Un conducteur isolé est un ensemble formé d'une âme conductrice et de son enveloppe isolant. L'enveloppe isolante est souvent recouverte d'une coloration soit monochrome, soit bicolore en fonction des demandes des clients ou normalisation.

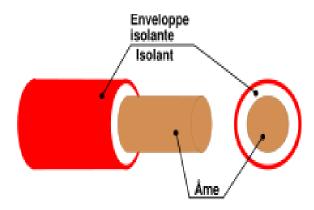


Figure I.16. Conducteur isolé.

I.8.2. Câble unipolaire

Conducteur isolé comportant en plus une ou plusieurs gaines de protection, utilisé pour les fortes puissances.

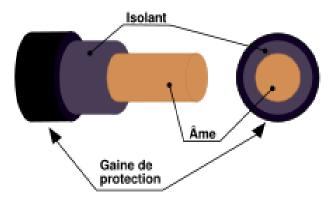


Figure I.17. Câble unipolaire.

I.8.3. Câble multipolaire

C'est un ensemble de conducteurs électriquement différents mais comportant une protection commune.

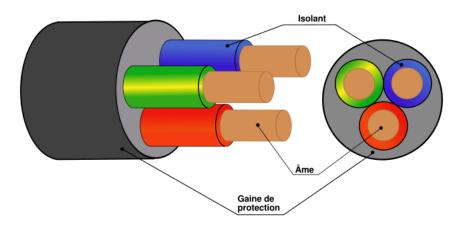


Figure I.18. Câble multipolaire.

I.9. Caractéristique des câbles [2]

A) L'âme

> Caractéristique électrique

L'âme doit présenter une résistivité très faible pour éviter les pertes par effet joule. Pour le cuivre (Cu) $\rho = 1/54 \ \Omega.\text{mm}^2/\text{m}$, pour l'aluminium (Al) $\rho = 1/34 \ \Omega.\text{mm}^2/\text{m}$.

 $R = \rho \frac{L}{S}$. La résistance du conducteur à une température différente de 20°C est donnée par la norme

CEI 60909-0 : R_{θ} = [1 + 0,004(Θ -20°C)] x R20°C

> Caractéristiques mécaniques

Elle doit être assez souple pour suivre les tracés des canalisations. Elle est dite massive lorsqu'elle est constituée d'un seul conducteur; elle est dite câblée quand elle est formée du plusieurs brins en torons.

Les classes de souplesse :

La souplesse d'un câble dépend du nombre de brin pour une même section conduction. Elle est définie 6 classes.

Les âmes les plus rigides : classe 1, Les âmes les plus souples : classe

B) L'enveloppe isolante

Matière entourant l'âme destinée à assurer son isolation elle doit comporter :

- Des propriétés bien précises :
 - Electriques : forte résistivité, rigide diélectrique élevée ;
 - ➤ Physique, chimique : bonne résistance à la chaleur et au froid, tenu au vieillissement, résistance à l'humidité et à la corrosion et au feu ;
 - ➤ Mécanique : bonne résistance à la traction ;
- Matériaux utilisés :
 - > PVC : Polychlorure de vinyle ;
 - > PER : Polyéthylène réticulé ;
 - > RC : Caoutchouc vulcanisé.

C) Gaines extérieures de protection

On emploi comme matériaux de gainage soit des matériaux isolant comme précédemment soit des matériaux métalliques tels que le plomb, l'aluminium ou encore le feuillard d'acier.

D) Couleurs des conducteurs

PE : Rayé vert / jaune. N : Bleu.

Le tableau suivant décrit les longueurs, les sections, les natures, les résistivités, les résistances, impédance direct (X_d) , impédance inverse (X_i) et l'impédance homopolaire (X_0) , de tous les câbles moyenne tension ainsi leurs départs et arrivées du complexe CEVITAL.

Câble	Départ	Arrivée	Section	Nature	Longueu	Résistivité	Résistance	$X_d = Xi$	X_0
	_		(mm ²)	de	r (m)	$(\Omega.\text{mm}^2/\text{m})$	(Ω)		
	11.370.1	- TO 1	` ′	câble	` ′		` ′	4.70.00	7.20 02
1	Alt Nº 1	TRweg 1	3*400	Cu	45	0.0225	8.438e-04	4.50e-03	7.20e-03
2	Alt Nº 2	TRweg 2	3*400	Cu	45	0.0225	8.438e-04	4.50e-03	7.20e-03
3	CG01	F20	1*240	Cu	125	0.0225	1.172e-02	1.25e-02	2.00e-02
4	CG02	F50	1*240	Cu	80	0.0225	7.500e-03	8.00e-03	1.28e-01
5	CG03	TRweg 1	2*240	Cu	50	0.0225	2.344e-03	5.00e-03	8.00e-03
6	CG04	TR Aux	1*95	Cu	20	0.0225	4.737e-03	2.00e-03	3.20e-03
7	CG05	TR Aux	1*95	Cu	20	0.0225	4.737e-03	2.00e-03	3.20e-03
8	CG06	F51	1*240	Cu	85	0.0225	7.969e-03	8,50e-03	1.28e-02
9	CG07	TRweg 2	2*240	Cu	50	0.0225	2.344e-03	5.00e-03	8.00e-03
10	CG08	F08	1*240	Cu	85	0.0225	7.969e-03	8.50e-03	1.36e-02
11	F51	TR 02	1*240	Cu	40	0.0225	3.750e-03	4.00e-03	6.40e-03
12	F06	TR 02	1*240	Cu	40	0.0225	3.750e-03	4.00e-03	6.40e-03
13 14	Poste 60 Poste 60	Rfs 3000	2*240 1*50	Cu	250	0.0225	1.172e-02	2.50e-02	4.00e-02 5.60e-03
15		F01 TR aux	1*50	Cu	35 35	0.0225	1.575e-02	3.50e-03	
16	Poste 60	F13 TR aux Rfs 2000		Cu		0.0225 0.0225	1.575e-02	3.50e-03	5.60e-03
17	Poste 60 Poste 60		1*240	Cu	250		2.344e-02	2.50e-02	1.36e-02
18		Silos S R	1*240 1*240	Al Al	500 130	0.0368	7.666e-02	5.00e-02 1.30e-02	3.74e-02
19	Poste 60 Poste 60	Osmose APL	1*300	Cu	300	0.0368 0.0225	1.993e-02 2.250e-02		2.08e-02 4.80e-02
21	Osmose	Poste 60	1*240	Al	135	0.0223	2.230e-02 2.070e-02	3.00e-02 1.35e-02	2.08e-02
22	Poste 60	CDS 1kg	2*240	Cu	300	0.0308	1.406e-02	3.00e-02	2.08e-02 2.16e-02
23	Rfs 3000	Silos S B	1*95	Cu	234	0.0225	5.542e-02	4.34e-02	3.74e-02
24	Rfs 3000	Aéro	1*95	Cu	35	0.0225	8.289e-03	3.50e-03	5.60e-03
25	Rfs 3000	TR 3150	1*95	Cu	15	0.0225	3.553e-03	1.50e-03	2.16e-02
26	Rfs 3000	TR 3150	1*95	Cu	20	0.0225	4.737e-03	2.00e-03	4.80e-02
27	Rfs 3000	TR 3150	1*95	Cu	25	0.0225	5.921e-03	2.50e-03	1.36e-02
28	Rfs 3000	CDS 1kg	2*240	Cu	100	0.0225	4.688e-03	1.00e-02	1.92e-03
29	CDS 1kg	Cond 1kg	1*95	Cu	100	0.0225	2.368e-03	1.00e-02	2.08e-02
30	CDS 1kg	Sucre Roux	1*95	Cu	50	0.0225	1.184e-02	5.00e-03	1.36e-03
31	CDS 1kg	TR CO ₂	1*95	Cu	120	0.0225	2.842e-02	1.20e-02	4.80e-02
32	Rfs 2000	Poste 60	1*240	Cu	250	0.0225	3.344e-02	3.04e-02	2.08e-02
32	Rfs 2000	TR 3150	1*95	Cu	50	0.0225	1.184e-02	5.00e-03	3.74e-03
33	Rfs 2000	TR 3150	1*95	Cu	55	0.0225	1.303e-02	5.50e-03	4.80e-02
34	Rfs 2000	TR 3150	1*95	Cu	60	0.0225	1.421e-02	6.00e-03	2.40e-02
35	Rfs 2000	Aéro	1*95	Cu	30	0.0225	7.105e-03	3.00e-03	2.40e-03
36	Silos S R	TR 3150	1*95	Cu	10	0.0225	2.368e-03	1.00e-03	4.80e-03
37	Osmose	Affinage	1*95	Cu	135	0.0225	3.197e-02	1.35e-02	2.16e-02
38	APL	Raff huile	1*240	Cu	30	0.0225	2.813e-03	3.00e-03	4.80e-03
39	APL	Bouchon	1*240	Cu	12	0.0225	1.125e-03	1.20e-03	1.92e-03
40	APL	Silos S R	1*240	Al	500	0.0368	7.666e-02	5.00e-02	4.80e-03
41	Raff huil	TR 2000	1*240	Al	8	0.0368	1.226e-03	8.00e-04	1.28e-03
42	Raff huil	TR 2000	1*240	Al	8	0.0368	1.226e-03	8.00e-04	1.28e-03
43	Raff huil	TR 3500	1*240	Al	6	0.0368	9.200e-04	6.00e-04	9.60e-04
44	Raff huil	Margarine	1*240	Al	25	0.0368	3.833e-03	2.50e-03	4.00e-03
45	Bouchon	Con-Huile	1*240	Cu	30	0.0225	2.813e-03	3.00e-03	4.80e-03
46	Bouchon	TR 1600	1*70	Cu	8	0.0225	2.571e-03	8.00e-04	1.28e-03
47	Co-Huile	TR 3150	1*95	Cu	15	0.0225	3.553e-03	1.50e-03	2.40e-03
48	Co-Huile	TR 3150	1*95	Cu	15	0.0225	3.553e-03	1.50e-03	2.40e-03

Tableau I.1. Caractéristiques des câbles HTA utilisés.

I.10. La puissance d'une installation industrielle [3]

Afin de concevoir une installation, il est nécessaire d'estimer le plus justement possible la puissance maximale (puissance d'utilisation) que devra fournir le distributeur d'énergie.

I.10.1. Puissance installée (kW)

La puissance installée (kW) est la somme des puissances nominales de tous les récepteurs de l'installation.

L'indication de la puissance nominale (Pn) est marquée sur la plupart des appareils et équipements électriques.

I.10.2. Puissance absorbée Pa (kVA)

La puissance absorbée Pa par une charge (qui peut être un simple Appareil) est obtenue à partir de sa puissance nominale (corrigée si nécessaire, Comme indiqué ci-dessus pour les appareils d'éclairage, etc...).

I.10.3. Puissance d'utilisation Pu (kVA)

La puissance d'utilisation Pu est la donnée significative pour la souscription d'un contrat de fourniture en énergie électrique à partir d'un réseau public BT ou MT (et dans ce cas, pour dimensionner le transformateur MT/BT).

I.10.4. Bilan de puissance

C'est la première étape essentielle de l'étude de la conception d'un réseau. Elle doit cerner et localiser géographiquement les valeurs des puissances. Il faut :

- ✓ Distinguer les puissances actives, réactives et apparentes
- ✓ Grouper les puissances par zones géographiques (3 à 8 zones) suivant l'étendue du site
- ✓ Identifier par zone les récepteurs "ordinaires" "essentiels" "à temps zéro".

Coefficients d'utilisation et de simultanéité.

PMD: Puissance Mise à Disposition par SONALGAZ est 15MW. [1]

		Puissance installée	P moy (kW)	Cos φ
		(kVA)		
F00	Sucre 1 3000T/j	3150	2350	0,8
	Sucre 2 3000T/j	3150	2340	0,8
	Sucre 3 3000T/j	3150	2410	0,8
	Silos Sucre blanc	3150	1500	0,8
	Cond sucre	3150	2800	0,8
	Aérocondenseur	3150	1530	0,8
F02	Sucre 1 2000T/j	3150	2570	0,8
F03	Sucre 2 2000T/j	3150	2170	0,8
F04	Sucre 3 2000T/j	3150	1490	0,8
F09	Raffinerie huile A	2000	1500	0,8
	Raffinerie huile B	2000	1510	0,8
	Raffinerie huile C	3500	2200	0,8
	Margarine TR	3150	1200	0,8
	Cond huile TR1	3150	2000	0,8
	Cond huile TR2	3150	2000	0,8
	Bouchon TR	1600	1000	0,8
F10	TR CO ₂	3150	1041	0,8
F11	Zone Energie	2500	1500	0,8
	Affinage	3150	686	0,8
F12	Silos Sucre roux	3150	1000	0,8
totale		58850	34797	0,8

Tableau I.2. Bilan de puissance.

Vue que le secteur industriel se développe de jour en jour alors CEVITAL a installé des nouvelles sous stations où le nouveau bilan de puissance et représenté comme suite :

		Puissance installée	P moy (kW)	Cos ϕ
0		(kVA)		
F00	Sucre 1 3000T/j	3150	2350	0,86
	Sucre 2 3000T/j	3150	2340	0,86
	Sucre 3 3000T/j	3150	2410	0,86
	Silos Sucre blanc	3150	1500	0,86
	Cond sucre	3150	2800	0,86
	Aérocondenseur	3150	1530	0,86
F02	Sucre 1 2000T/j	3150	2570	0,86
	Sucre 2 2000T/j	3150	2170	0,86
	Sucre 3 2000T/j	3150	1490	0,86
	Aérocondenseur	3150	1535	0,86
F04	Zone Energie	2500	1500	0,86
	Affinage	3150	686	0,86
F09	Raffinerie huile A	2000	1500	0,86
	Raffinerie huile B	2000	1510	0,86
	Raffinerie huile C	3500	2200	0,86
	Margarine TR	3150	1200	0,86
	Cond huile TR1	3150	2000	0,86
	Cond huile TR2	3150	2000	0,86
	Bouchon TR	1600	1000	0,86
	Silos Sucre roux	3150	1000	0.86
F12	CDS 1kg/5kg	3150	1000	0,86
	Sucre roux	3150	1000	0,86
	TR CO ₂	3150	1000	0,86
Totale		68300	38291	0,86

Tableau I.3. Nouveau bilan de puissance.

Concernent le nouveau transformateur d'interstrification qui sera installée à la nouvelle sous station Silos sa puissance installée est égale à 3150 kVA, et aussi le transformateur de deux bac de l'huile brute qui sera installée à la sous station CDS 1kg/5kg sa puissance installée égale à 3150 kVA pas encore mis en service.

Conclusion

Dans ce chapitre nous avons décrit le réseau HTA du complexe CEVITAL, avec un inventaire détaillé des sources d'alimentations électrique principale : ligne 60 kV, cogénération et les groupes électrogènes de secours, aussi les différents départs, des sous stations et le contenu de chacune d'elle en qualité du matériels.

Cette description va nous permettre d'aborder le dimensionnement et le calcul des courants de défaut et la détermination des contraintes thermique et électrodynamique des équipements en gardant les longueurs existantes.

Chapitre II

Dimensionnement des canalisations et calcul du courant de court-circuit

II.1. Introduction

L'étude d'une installation électrique, ne peut se faire avant de bien connaître la structure du réseau et le niveau de tension. Et comme le court-circuit et l'un des incidents majeur qui peut affecter les réseaux électrique, le calcul des courants de défaut et des contraintes thermique et les forces électrodynamiques en tout point du réseau est essentiel pour dimensionner une installation électrique afin de choisir le matériels à mettre en œuvre, pour la protection des biens et des personnes.

II.2. Architecture des réseaux électriques [4]

L'architecture d'un réseau de distribution électrique industriel est plus ou moins complexesuivant le niveau de tension, la puissance demandée et la sûreté d'alimentation requise. Elle change d'une entreprise à l'autre chaque une opte pour un réseau qui la convient après avoir fait une étude techno-économique. Différentes structures de réseau sont possible, et le choix de ces structures de réseaux sont toujours déterminer sur le plan de la disponibilité de l'énergie et souvent difficile.

La nouvelle norme en vigueur UTE C 18-510 définit les niveaux de tension alternative comme suit :

TBT → Pour une tension composée inférieure ou égale à 50 V

BTA — Pour une tension composée comprise entre 50 V et 500 V

BTB — Pour une tension composée comprise entre 500 V et 1 kV

HTA — Pour une tension composée comprise entre 1 kV et 50 kV

HTB → Pour une tension composée supérieure à 50 kV

II.2.1. Structures types des réseaux [5]

Différentes structures du réseau électrique sont possibles, les plus courantes sont :

II.2.1.1. Réseau radial

Au départ le réseau électrique de CEVITAL est fait en mode radial, malgré ces avenages qui se présente comme sa gestion qui est très simple et ces protections qui sont très faciles à réaliser ainsi que la sélectivité, mais il ne répond pas aux exigences de continuité de service qui sont très faibles. Dans les réseaux électrique industrielles on distingue différentes structures de réseaux moyen tension qui peuvent alimenter les tableaux secondaires et les transformateurs MT/BT, telle que :

• Radial doubles dite « Double dérivation » (manuelle ou automatique)

Préconisée pour les réseaux très étendus avec des extensions futures limitées et nécessitant une bonne continuité d'alimentation.

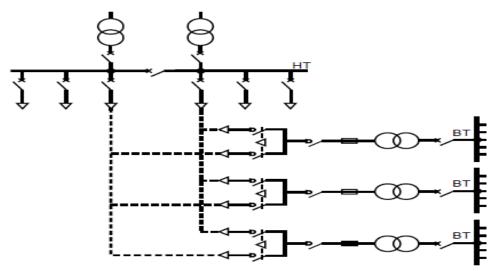


Figure II.1. Schéma d'un réseau en double dérivation.

• Radial dite « Simple alimentation » ou « En antenne »

Préconisée lorsque les exigences de continuité d'alimentation sont faibles. Elle est très souvent retenue pour les réseaux des cimenteries.

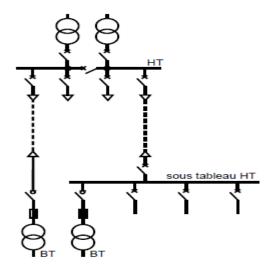


Figure II.2. Schéma d'un réseau en simple alimentation.

• Double alimentation

Préconisée lorsqu'une bonne continuité d'alimentation est demandée ou lorsque les équipes d'exploitation et de maintenance sont peu nombreuses. Elle est très souvent retenue dans les domaines de la sidérurgie et de la pétrochimie.

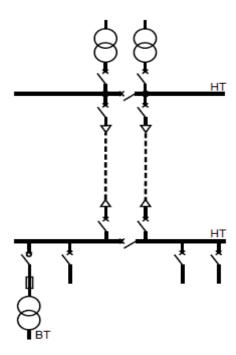


Figure II.3. Schéma d'un réseau en double alimentation.

II.2.1.2. Réseau bouclé

Cette solution est bien adaptée aux réseaux étendus avec des extensions futures importantes, il existe deux possibilités suivant que la boucle est ouverte ou fermée en fonctionnement normal.

• Boucle ouverte ou fermée

Contrairement au réseau radial ce dernier est utilisé lorsque les exigences de continuité de service sont très fortes mais il a des inconvénients comme le cout élevé, la protection difficile à réaliser en temps réel et la complexité de l'entretien.

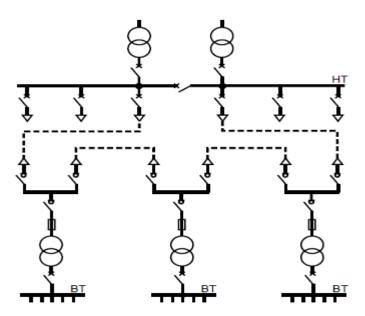


Figure II.4. Schéma d'un réseau en boucle.

II.3. Généralités sur le court-circuit [6]

Comme on a mentionné au début le dimensionnement d'une installation électrique nécessite le calcul des courants de court-circuit en tout point du réseau.

L'objectif poursuivi est de bien faire connaître les méthodes de calcul pour déterminer en toute connaissance de cause les courants de court-circuit, pour faire le meilleur choix du système de protection afin de garantir un réseau fiable et une meilleure disponibilité de l'énergie.

II.3.1. Définition du courant de court-circuit

Un court-circuit est une liaison accidentelle entre conducteurs à impédance nulle (court-circuit franc) ou non (court-circuit impédant). Un court-circuit peut être interne s'il est localisé au niveau d'un équipement, ou externe s'il se produit dans les liaisons.

Le courant de court-circuit en un point d'un réseau s'exprime par la valeur efficace I_{cc} (en kA) de sa composante alternative. La valeur instantanée maximale que peut atteindre le courant de court-circuit est la valeur de crête $\sqrt{2}$ I_{cc} en raison de la composante continue amortie qui peut se superposer à la composante alternative. Cette composante continue aléatoire dépend de la valeur instantanée de la tension à 1' instant initial du court-circuit, et des caractéristiques du réseau.

La puissance de court-circuit, qui résulte lors d'un défaut est donnée par l'expression suivante :

$$S_{cc} = \sqrt{3} \times U_n \times I_{cc} \tag{II.1}$$

Cette solution fictive n'a aucune réalité physique, c'est une grandeur conventionnelle pratique assimilable à une puissance apparente.

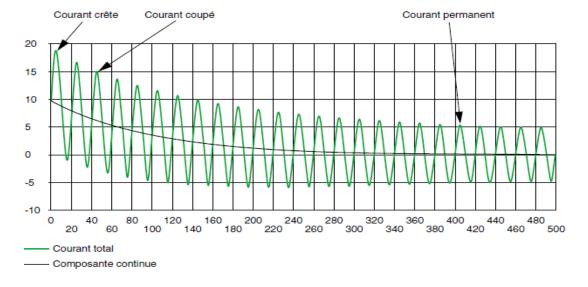


Figure II.5. Courbe type d'un courant de court-circuit. [6]

II.3.2. Conséquences des défauts de court-circuit

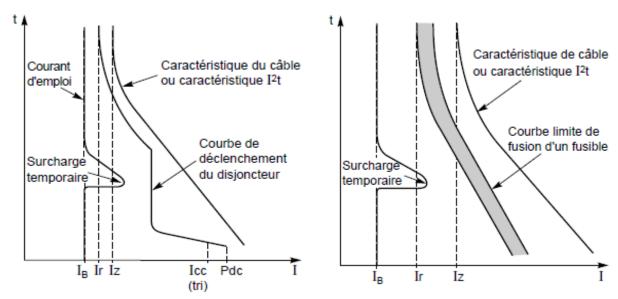
Elles sont variables selon la nature et la durée des défauts, le point concerné de l'installation et l'intensité du courant :

- Au point de défaut, la présence d'arcs de défaut, avec :
 - ✓ Détérioration des isolants ;
 - ✓ Fusion des conducteurs :
 - ✓ Incendie et danger pour les personnes.
- Pour le circuit défectueux :
 - ✓ Les efforts électrodynamiques, avec : déformation des Jdb (jeux de barres) arrachement des câbles.
- Sur-échauffement par augmentation des pertes joules, avec risque de détérioration des isolants.
- > Pour les autres circuits électriques du réseau concerné ou de réseaux situés à proximité
 - ✓ Les creux de tension pendant la durée d'élimination du défaut, de quelques millisecondes à quelques centaines de millisecondes ;
 - ✓ La mise hors service d'une plus ou moins grande partie du réseau suivant son schéma et la sélectivité de ses protections ;
 - ✓ L'instabilité dynamique et/ou la perte désynchronisée des machines ;

✓ Les perturbations dans les circuits de contrôle commandé.

II.3.3. Nécessité de calcul de courants de court-circuit

Le calcule de courant de court-circuit a pour but de choisir et régler convenablement les différents dispositifs de protection d'une installation, on utilise les courbes du courant en fonction du temps.


Deux valeurs du courant de court-circuit doivent être connues :

- ➤ Le courant maximal de court-circuit, il correspond à un court-circuit à proximité immédiate des bornes aval de l'organe de protection. Il doit être calculé avec une bonne précision (marge de sécurité). Et qui détermine :
 - ✓ Le pouvoir de coupure PdC des disjoncteurs,
 - ✓ Le pouvoir de fermeture des appareils,
 - ✓ La tenue électrodynamique des canalisations et de l'appareillage.
- Le courant minimal de court-circuit minimal correspond à un défaut de court-circuit l'extrémité de la liaison protégée lors d'un défaut biphasé et dans les conditions d'exploitation les moins sévères. Il est indispensable au choix de la courbe de déclenchement des disjoncteurs et des fusibles, en particulier quand :
 - ✓ La longueur des câbles est importante et/ou que la source est relativement impédante (générateurs-onduleurs) ;
 - ✓ La protection des personnes repose sur le fonctionnement des disjoncteurs ou des fusibles, c'est essentiellement le cas avec les schémas de liaison à la terre du neutre TN ou IT.

Dans tous les cas, quel que soit le courant de court-circuit (du minimal au maximal), la protection doit éliminer le court-circuit dans un temps (tc) compatible avec la contrainte thermique que peut supporter le câble protégé : $\int i^2 \times dt \le k^2 \times S^2$ (II.2)

 \mathbf{S} : est la section des conducteurs. (mm²)

 ${\bf K}$: constante thermique lié à la nature de conducteur.

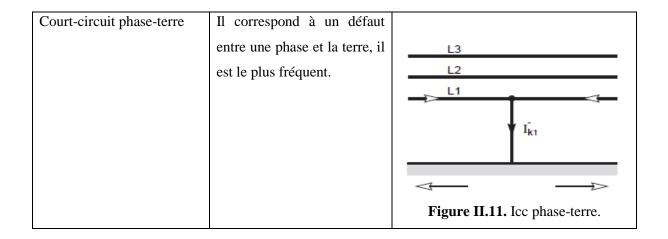

Figure II.6. Protection du circuit par disjoncteur.

Figure II.7. Protection du circuit par fusible.

II.4.3. Caractéristique des courts-circuits

Les types de court-circuit qui peuvent se produire dans un réseau électrique

Type de court-circuit	Contacte des phases	Exemple de type de court-circuit
Court-circuit triphasé	Il correspond au contact simultané des trois phases, il est celui provoque généralement les courants les plus élevés.	Figure II.8. Icc triphasé.
Court-circuit biphasé, isolé	Défaut entre deux phases sous tension composé. Le courant résultant est plus faible que dans le cas du défaut triphasé, sauf lorsqu'il se situe à proximité immédiate d'un générateur.	L3 L2 L1 I _{k2} Figure II.9.Icc biphasé isolé.
Court-circuit biphasé - terre	Il correspond à un défaut entre deux phases et la terre	Figure II.10. Icc biphasé-terre.

Tableau II.11. Les différents courts-circuits et leurs courants. [6]

Courant de court-circuit

Courants de court-circuit partiels dans les conducteurs et la terre.

Pour les calculs ces différents courants (I_K ") sont distingués par des indices. Le sens des flèches figurant les courants est arbitraire.

II.5. Méthode de calcul de courant de court-circuit

Il est nécessaire de déterminer pour chaque circuit ou réseau électrique le courant de courtcircuit dans l'étude d'une installation électrique, que ça soit le court-circuit minimal qui se situe à l'extrémité du circuit ou le courant de court-circuit maximal qui est dans l'origine du circuit.

Il existe déférentes méthodes de calcul des courants de court-circuit. Celle-ci est le plus au moins précise.

II.5.1. Méthode des impédances [6]

La méthode des impédances pour le calcul de l'intensité de court-circuit se résume au calcul de l'impédance Zcc, impédance équivalente à toutes les impédances parcourues par le courant de court-circuit du générateur jusqu'au point de défaut de la source et des lignes c'est en fait l'impédance « directe » par phase :

Pour calculer les courants de court-circuit on applique la formule générale de la méthode des impédances qui est :

$$I_{K} = \frac{\text{c.m.U}_{n}}{Z_{cc}}$$

$$Z_{cc} = \sqrt{\sum (R)^{2} + \sum (X)^{2}}$$
(II.3)

C : Facteur de tension pris selon la norme UTE C 15-105 égal à : [7]

 $c_{max} = 1,05$ pour les courants maximaux.

 $c_{min} = 0.95$ pour les courants minimaux.

m : Facteur de charge pris égal à 1.05, quelle que soit la source (transformateur ou générateur)

• Court-circuit triphasé

C'est le défaut qui correspond à la réunion des trois phases, l'intensité de court-circuit Icc₃ est:

$$I_{cc3} = \frac{U_n}{\sqrt{3} Z_{cc}} \tag{II.4}$$

Avec U_n : tension composée entre phases correspondant à la tension à vide du transformateur, laquelle est supérieure de 3 à 5 % à la tension aux bornes en charge.

Le défaut triphasé est généralement considéré comme celui provoquant les courants de défaut les plus élevés. En effet, le courant de défaut dans le schéma équivalent d'un système polyphasé, n'est limité que par l'impédance d'une phase sous la tension simple du réseau.

Le calcul de courant de court-circuit triphasé est donc indispensable pour choisir les matériels (intensités et contraintes électrodynamiques maximales à supporter).

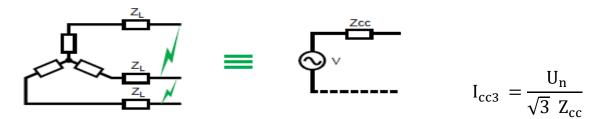


Figure II.8. Défaut triphasé.

• Court-circuit biphasé isolé

Il correspond à un défaut entre deux phases, alimenté sous une tension composée Un. L'intensité I_{cc2} débitée est alors inférieure à celle du défaut triphasé :

$$I_{cc2} = \frac{U_n}{2.Z_{cc}} \tag{II.5}$$

Dans le cas d'un défaut proche des machines tournantes, les impédances de celles-ci sont telles que Icc₂ proche de Icc₃.

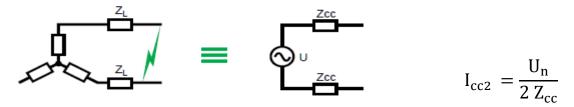


Figure II.9. Défaut biphasé.

• Court-circuit monophasé isolé

Il correspond à un défaut entre une phase et le neutre, alimenté sous une tension simple

$$V = \frac{Un}{\sqrt{3}}$$

L'intensité Icc1 débitée est alors :

$$I_{cc1} = \frac{Un/\sqrt{3}}{Z_{cc} + Z_{LN}}$$
 (II.6)

Dans certains cas particuliers de défaut monophasé l'impédance homopolaire de la source est plus faible que Z_{cc} (par exemple aux bornes d'un transformateur à couplage étoile zig zag ou d'un alternateur en régime su transitoire). L'intensité monophasée peut être alors plus élevée que celle du défaut triphasé.

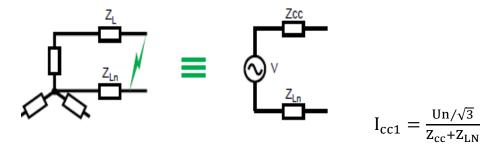


Figure II.10. Défaut monophasé.

• Court-circuit à la terre (monophasé ou biphasé)

Ce type de défaut fait intervenir l'impédance homopolaire Z_0 . Sauf en présence de machines tournantes où l'impédance homopolaire se trouve réduite, l'intensité Icc_0 débitée est alors inférieure à celle du défaut triphasé. Son calcul peut être nécessaire, selon le régime du neutre (schéma de liaison à la terre), pour le choix des seuils de réglage des dispositifs de protection homopolaire (HT) ou différentielle (BT).

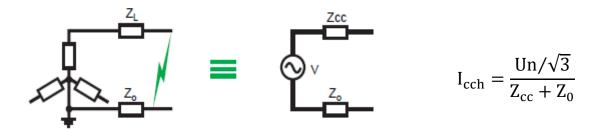


Figure II.11. Défaut terre.

Résolution Tronçon Mode de calcul Impédance (Ω) Réactance (Ω) Résistance (Ω) $Z_A = \frac{U^2}{Scc}$ 1. Réseau amont $X_A = 0.98 \times Z_A$ $R_A = 0.2 \times Z_A$ $R_{A} = \rho \frac{L}{S}$ $X_A = 0.4 \times L$ 2. Ligne aérienne $Z_{A} = \frac{U_{cc}\%}{100} \frac{U^{2}}{S_{n}} \approx X_{A}$ $R_A = 0.1 \times X_A$ 3. Alternateur $R_T = 0.2 \times X_T$ $Z_{T} = \frac{U_{cc}\%}{100} \frac{U^2}{S_n}$ 4. Transformateur $X_L = 0.1 \times L$ 5. Liaison souterraine

Relations de calcul des impédances dans les réseaux HTA résumé dans le tableau suivant :

Tableau II.2. Calcul des impédances. [6]

II.6. Calcul de section des câbles [4]

II.6.1. Principe de la méthode

Le choix de la section des canalisations et du dispositif de protection doit satisfaire plusieurs conditions nécessaires à la sécurité de l'installation.

- ➤ La canalisation doit :
 - ✓ Véhiculer le courant maximal d'emploi et ses pointes transitoires normales ;
 - ✓ Ne pas générer des chutes de tension supérieures aux valeurs admissibles.
- > Le dispositif de protection doit :
 - ✓ Protéger la canalisation contre toutes les surintensités jusqu'au courant Icc ;
 - ✓ Assurer la protection des personnes contre les contacts indirects.

II.6.2. Méthode de calcul de section

La méthode de détermination des sections des conducteurs en moyenne tension représenté par logigramme suivant :

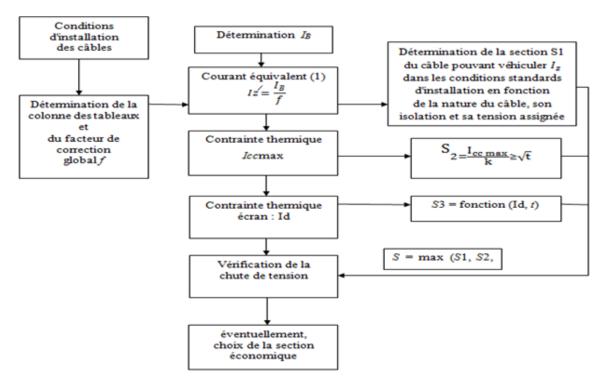


Figure II.12. Logigramme de détermination de la section minimale d'un câble en MT. [4]

I_B: Courant d'emploi du circuit (courant qui circuler dans les conducteurs) qui est en fonction de la charge, le calcul de courant d'emploi du circuit est donné par la formule suivante :

$$I_{B} = \frac{S}{U\sqrt{3}} \tag{II.7}$$

S: Puissance consommée par la charge. (kVA)

U: Tension d'utilisation. (V)

Iz: Courant admissible dans la canalisation en fonction du dispositif de protection,

(Choisir $I_n \ge I_B$), pour notre cas on prend (In = I_B)

$$I_{Z}' = \frac{I_{n}}{f} \tag{II.8}$$

Pour une protection par disjoncteur on prend : $(I_Z = I_n = I_B)$

$$I_{n} = \frac{S_{n}}{U_{n}\sqrt{3}} \tag{II.9}$$

I_n: Courant nominal du dispositif de protection. (A)

- Pour obtenir la section des conducteurs de phases, il faut :
 - ✓ Déterminer une lettre de sélection qui dépond du conducteur utilisé et le mode de pose.
 - ✓ Calculer le facteur de correction global fégal au produit des facteurs de correction. $f = f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6$ (II.10)

Tableau qui montre les coefficients f qui caractérise l'influence des différentes conditions d'installation, est le suivant :

f_0	Prennent en compte le mode de pose
f_1	des températures ambiantes différentes de 30 °C (câbles posée à l'aire libre).
f_2	pour des températures du sol différentes de 20 °C (câbles enterrés).
f_3	pour des résistivités thermiques du sol différentes de 1 km/W 5 (câbles entrées).
f_4	pour groupement de plusieurs canalisations (câbles enterrés).
f_5, f_6	pour groupement de plusieurs circuits ou de plusieurs câbles (câbles posés dans l'aire et à l'abri du rayonnement solaire direct).

Tableau II.3. Déférentes Facteur de correction selon le mode de pose.

II.6.3. Contraintes thermiques (détermination de la section S₂)

La contrainte thermique des conducteurs actifs doit être vérifiée pour le courant de courtcircuit maximal à l'origine du câble. Il est calculé par la méthode des impédances en tenant compte de la participation de l'ensemble des éléments du réseau.

Elle suppose que la température du câble avant le court-circuit est égale à la température admissible en régime permanent.

Dans ce cas, la section du conducteur doit satisfaire la condition suivante :

$$S_2 \ge \frac{I_{cc \max}}{k} \sqrt{t}$$
 (II.11)

$$I_{\text{cc max}} = \frac{1.1 \times U_{\text{n}}}{\sqrt{3} \cdot Z_{\text{cc}}}$$
 (II.12)

 $I_{cc max}$: Courant de court-circuit maximal (kA);

t: Durée du court-circuit (s);

k : Coefficient dont la valeur est donné dans le tableau 5 dans l'annexe.

II.6.4. Contrainte thermique écran (calcul de la section S₃)

La section S₃ est choisi en fonction de I_d et de la durée du court-circuit pris égale au temps le plus long pour éliminer me défaut (par exemple, la temporisation de la protection de secours).

Dans le cas d'un court-circuit phase-écran, la contrainte thermique résultant du passage du courant de défaut I_d pendant un temps t, ne doit pas dépasser la tenue thermique de l'écran du câble.

II.6.5. Vérification des chutes de tension des sections [4]

Les chutes de tension dans les câbles moyenne tension des réseaux industriels sont en général négligeables.

Bien que la norme C 13-220 ne prévoit pas la vérification des chutes de tension et ne fixe pas les valeurs admissibles, il nous semble utile de donner la méthode de calcul pouvant être appliquée notamment pour les canalisations de longueur importante.

Pour un circuit triphasé, la chute de tension (tension simple) est calculée par la formule :

$$\Delta V = (\rho 1 \frac{L}{S} \cos \varphi + \lambda L \sin \varphi) I_{B}$$
 (II.13)

ρ1 : Résistivité du conducteur en service normal, soit 1,25 fois celle à 20 °C

 $\rho 1 = 0.0225 \Omega \cdot \text{mm}^2 / \text{m}$ pour le cuivre ; $\rho 1 = 0.0360 \Omega \cdot \text{mm}^2 / \text{m}$ pour l'aluminium

L: longueur de la canalisation, (m)

S: Section des conducteurs, (mm²)

 $\cos \varphi$: Facteur de puissance, l'indication précise par CEVITAL ($\cos \varphi = 0.86$, $\sin \varphi = 0.51$)

I_B: courant maximal d'emploi en (A)

 λ : Réactance linéique de la canalisation, en (Ω/m)

Les valeurs de λ en HTA sont :

 $\triangleright 0.08 \times 10^{-3} \Omega$ / m pour les câbles tripolaires ;

 \triangleright 0,15× 10⁻³ Ω / m pour les câbles unipolaires.

On définit la chute de tension relative : $\frac{\Delta V}{V_n}$

 V_n : Tension simple nominale (V)

II.6.6. Choix de la section technique

Après le calcul de S_1 , S_2 et S_3 ont fait le choix de la section maximale entre les trois, soit : $S = max (S_1, S_2, S_3)$.

II.7. Exemple de calcul

Plusieurs type de court-circuit apparaissent dans les installations électrique mais pour dimensionner le matériel type MT (appareils de protection jeux de barres, conducteurs ...) il ne sera tenue compte que du courant de court-circuit triphasé, car c'est lui provoque les contraintes thermique et électrodynamique majeures. Néanmoins il sera tenu compte du court-circuit biphasé au bout ligne pour vérifier les systèmes de protection y sont sensibilisés.

II.7.1 Détermination du courant maximal d'emploi IB

La canalisation (Poste 60 – APL- Conditionnement l'huile-Margarine) alimente uniquement les trois transformatrices raffineries de l'huile et celui de unité silos donc quatre aux total qui ont une puissance globale de 10650 kVA.

Le courant I_B est pris égal à I_n courant nominal des transformateurs

$$I_{\rm B} = \frac{S_{\rm n}}{U_{\rm n}\sqrt{3}} = \frac{10650}{30\sqrt{3}} = 204,96A$$

II.7.2. Facteur de correction et choix de section (S_1)

Le mode de pose correspond au mode de pose V (voire le tableau 1 en annexe), les facteurs de corrections de courant admissible doivent être utilisés :

- ✓ Mode de pose (voir le tableau 1 en annexe), $f_0 = 1.1$
- ✓ Température du milieu 45° (voir le tableau 2 en annexe) : $f_1 = 0.79$

Le facteur de correction globale est : $f_g = 1.1 * 0.79 = 0.869$

Le courant équivalent que le câble doit pouvoir véhiculer dans les conditions standards d'installation est :

$$I_z' = \frac{I_B}{f} = \frac{204,96}{0,869} = 235,86A$$

Le tableau 4 en annexe colonne 3 donne section minimale en cuivre $S_1 = 70 \text{ mm}^2\text{qui a un}$ courant admissible $I_0 = 250 \text{ A}$, et une section minimale en aluminium $S_1 = 120 \text{ mm}^2$ pour un courant admissible $I_0 = 270 \text{ A}$.

II.7.3. Vérification des contraintes thermique (section S_2)

En négligeant l'impédance amont au transformateur de source et l'impédance de la liaison transformateur-jeu de barres, le courant de court-circuit maximal à l' origine du câble est égal au courant de court-circuit au jeu de barre.

$$Z_{cc} = \sum Z_{amont} = 1,435 \Omega$$

Le courant de court-circuit maximal est donc :

$$I_{\text{cc max}} = \frac{c_{max} \text{ m} \times \text{U}_{\text{n}}}{\sqrt{3} \times \text{Zcc}}$$
 avce $Z_{\text{CC}} = \sqrt{(\sum (R)^2 + \sum (X)^2)}$

$$I_{\text{cc max}} = \frac{1.1 \times 30}{\sqrt{3} \times 1.435} = 13.277 \text{ kA}$$

$$S_2 \geq \frac{I_{cc\;max}}{k} \sqrt{t} \geq \frac{13277}{115} \sqrt{2} = 163,\!274\;mm^2$$
 , qui nous donne $S_2 = 185\;mm^2$ (voir le

tableau 4 en annexe colonne 3)

La valeur de k (voir le tableau 5 en annexe)

II.7.4. Vérification des chutes de tension

La chute de tension est donnée par la formule :

$$\Delta V = (\rho \frac{L}{S} \cos \phi + \lambda L \sin \phi) \times I_{B}$$
 (II.14)

 $\rho = 0.0225 \ \Omega.mm^2/m.$

 $\lambda = 0, 15 \times 10^{-3} \ \Omega / \ m$ pour les câbles unipolaires

$$L=250\ m,\, S=185mm^2$$
 , $I_B=204{,}96\ A.$

La charge de câbles a un ($\cos \varphi = 0.86$) et un ($\sin \varphi = 0.51$)

$$\Delta V = (0.0225 \times \frac{250}{185} \times 0.86 + 0.15 \times 10^{-3} \times 250 \times 0.51) \times 204.96$$

$$\Delta V = 9,279V$$

La chute de tension relative est :
$$\frac{\Delta V}{V} = \frac{9,279}{\frac{30.10^3}{\sqrt{3}}} * 100\% = 0,054\%$$

La chute tension est acceptable care elle ne dépasse pas les tolérés en moyenne tension 5%La section technique à retenir est donc : $S = 185 \text{ mm}^2$. 15

Poste 60

Câble Résistivité Départ Arrive Section Nature Longueur Résistance Réactance $(\Omega.mm^2/m)$ (m) $X(\Omega)$ (mm^2) $R(\Omega)$ 1 Poste 60 **APL** 240 Cu 300 0,0225 0,0281 0.0450 2 Silos S C Cu APL 185 500 0,0225 0.0608 0.0750 3 Poste 60 Silos S C 240 Cu 500 0,0225 0.0469 0.0750 185 Cu 0,0195 4 Poste 60 Osmose 130 0,0225 0.0158 5 Cu Osmose Poste 60 185 135 0,0225 0.0164 0.0195 6 **APL** Bouchon 185 Cu 12 0,0225 0.0015 0.0018 7 Bouchon Cond-huile 185 Cu 30 0,0225 0.0036 0.0045 8 **APL** Raf-huile 185 Cu 30 0,0225 0.0036 0.0045 9 Cu 25 Raf-huile 185 0,0225 0.0030 0.0038 Margarine 185 250 10 Cond-huile Margarine Cu 0,0225 0,0304 0,0375 Rfs 2500T 11 Poste 60 185 250 0,0225 0.0304 0.0375 Cu Rfs 2500T 12 Poste 60 185 Cu 270 0,0225 0.0328 0.0405 13 Rfs 3500T 300 Poste 60 Cu 250 0,0225 0.0188 0.0375 14 CDS 1kg Rfs 3500T 185 Cu 100 0,0225 0.0150 0.0150

Dans le tableau suivant en donne les résultats de calcul pour les différentes sous stations.

Tableau II.4. Sections des câbles entre les sous station.

300

0,0225

0.0225

0.0450

II.8. Détermination des courants de court-circuit de chaque partie de l'installation

Cu

II.8.1. Calcul d'impédance des différents éléments

300

II.8.1.1. Impédances des transformateurs

CDS 1kg

$$\begin{cases} Z_{T} = \frac{U_{cc}\%}{100} \times \frac{U_{n}^{2}}{S_{n}} \\ R_{T} = \Delta P_{cc} \times \frac{U_{n}^{2}}{S_{n}^{2}} \end{cases} \longrightarrow X_{T} = \sqrt{Z_{T}^{2} - R_{T}^{2}}$$
 (II.15)

Exemple de calcul :

Pour le transformateur T02 (60/30kV) on a les données suivantes sur la plaque signalétique :

$$S_n = 25 \text{MVA}, U_n = 60 \text{ kV} \; ; \\ S_b = 25 \text{ MVA} \; \; ; \\ U_b = 60 \text{ kV}, \; U_{cc} = 11\% \; , \\ P_{cc} = 115 \text{ kW} \; \; \\ On \; prend \; S_b = 25 \text{MVA} \; \; ; \\ On \; prend \; S_b = 25 \text{MVA} \; \; ; \\ On \; prend \; S_b = 25 \text{MVA} \; \; ; \\ On \; prend \; S_b = 25 \text{MVA} \; \; ; \\ On \; prend \; S_b = 25 \text{MVA} \; ; \\ On \; prend \; S_b =$$

A.N:
$$Z_T = \frac{11}{100} \times \frac{(60.10^3)^2}{(25.10^6)} = 15,84 \Omega.$$

$$R_T = 115.10^3 \times \frac{(60.10^3)^2}{(25.10^6)^2} = 0,6624\Omega$$
 $X_T = \sqrt{Z_T^2 - R_T^2} = 15.63\Omega$

On a $\frac{R}{X}$ << alors néglige les résistances, et on récapitule le calcul des impédances des différents tronçons dans le tableau II.5

On prend:

$$\begin{array}{ll} \succeq \underline{\text{Cot\'e 60 kV}}: S_b = 25 \text{ MVA} \; ; \quad U_b = 60 \text{ kV} \\ \\ Z_{b60} = \frac{U^2}{S_b} = \frac{60^2}{25} = 144 \; \Omega \; \; , \quad I_{b60} = \frac{S_b}{\sqrt{3}*U_b} = \frac{25*10^6}{\sqrt{3}*60*10^3} = 240,\!56 \; \text{A} \\ \end{array}$$

$$ightharpoonup$$
 Coté 30 kV : $S_b = 25$ MVA ; $U_b = 30$ kV

$$Z_{b30} = \frac{U^2}{S_b} = \frac{30^2}{25} = 36 \Omega \; ; \quad I_{b30} = \frac{S_b}{\sqrt{3} * U_b} = \frac{25 * 10^6}{\sqrt{3} * 30 * 10^3} = 481.125 \, A$$

Tronçon	Résistance et réactance (Ω)	Impédance (Ω)	$Z_d(\mathbf{pu}) = Z_i(\mathbf{pu})$ $= \frac{Z(\Omega)}{Z_b(\Omega)}$	Z ₀ (pu)
Ligne El-keseur Bejaia	X=0,4*20=8	Z= 8	$Z_{elk 60} = 0.055$	$Z_0 = 3Z_d = 0,166$
	R= 0,247		$Z_{elk 30} = 0.222$	$Z_0 = 3Z_d = 0,666$
Réseau Amont	$X_A = 0.98 Z_A = 7.84$	Z= 8	$Z_{Ra\ 60} = 0.055$	$Z_0 = Z_d = 0.0612$
	$R_A = 0.2 Z_A = 1.6$		$Z_{Ra\ 30} = 0.222$	$Z_0 = 3Z_d = 0,666$
Transformateur	$X_T = 3,96$	$Z_{T30} = 4,038$	$Z_{T30} = 0,1122$	$Z_0 = Z_d = 0.1122$
T01 et T02 (11%)	$R_{\rm T} = 0.792$			
	$X_{\rm T} = 15,84$	$Z_{T60}=16,154$	$Z_{T60} = 0.1122$	$Z_0 = Z_d = 0.1122$
	$R_{\rm T} = 3,168$			
Transformateur	$X_{TCog} = 3,375$	Z = 3,442	$Z_{\text{Tcog }30} = 0.096$	$Z_0 = Z_d = 0.096$
Cogénération 1 et 2 (12%)	$R_{TCog} = 0,675$		$Z_{\text{Tcog }60} = 0.0239$	$Z_0 = Z_d = 0.0239$
Alternateur	$X_{Alt} = 0.522$	Z = 0,525	$Z_{Aler\ B60} = 0.0036$	$Z_0 = 0.5Z_d = 0.0018$
Cogénération G1 et G2 (13,8%)	$R_{Alt} = 0.0522$		$Z_{Aler\ B30} = 0.0146$	$Z_0 = 0.5Z_d = 0.0073$
Transformateur groupe	$X_{TG1} = 36.562$	Z = 37,286	$Z_{Gr345} = 1.036$	$Z_0 = Z_d = 1,036$
diesel 3, 4, 5 (6,5%)	$R_{TG1} = 7.313$			
Transformateur groupe	$X_{TG2} = 31,5$	Z = 31,657	$Z_{Gr1267} = 0.879$	$Z_0 = Z_d = 0.879$
diesel 1, 2, 6,7 (7%)	$R_{TG2} = 3,15$			
Générateur groupe diesel 3, 4, 5 (15%)	$X_{G1} = 84,375$ $R_{G1} = 8,4375$	Z = 84,796	$Z_{G\acute{e}345} = 2,355$	$Z_0 = 0.5Z_d = 1.178$
Générateur groupe	$X_{G2} = 67,5$	Z = 67.837	$Z_{G\acute{e}1267} = 1,884$	$Z_0 = 0.5Z_d = 0.942$
diesel 1, 2, 6, 7 (15%)	$R_{G2} = 6,75$			
Transformateur	$X_{T6\%} = 17,143$	$Z_{6\%}$ =17,482	$Z_{6\%} = 0,486$	$Z_{6\%} = 0,486$
3150 kVA	$R_{T6\%} = 3,429$			
$(U_{cc} = 6\%, 7\%)$	$X_{T7\%} = 20$	$Z_{7\%}=20,396$	$Z_{7\%} = 0,566$	$Z_{7\%} = 0,566$
Transformateur	$R_{T7\%} = 4$ $X_T = 36,562$	Z= 37,286	7 - 1.026	7 - 7 - 1.026
1600 kVA (6,5%)	$R_{\rm T} = 7.312$	Z- 31,200	$Z_{T1600} = 1,036$	$Z_0 = Z_d = 1,036$
Transformateur	$X_T = 27$	Z = 27,534	$Z_{T2000} = 0,765$	$Z_0 = Z_d = 0,765$
2000 kVA (6%)	$R_{\mathrm{T}} = 5.4$			
Transformateur	$X_T = 15.428$	Z = 15,734	$Z_{T3500} = 0,437$	$Z_0 = Z_d = 0.437$
3500kVA (6%)	$R_{\rm T} = 3,086$	7 22 222		
Transformateur 2500 kVA (6%)	$X_{\rm T} = 21.6$ $R_{\rm T} = 4.32$	Z = 22,028	$Z_{T2500} = 0,612$	$Z_0 = Z_d = 0,612$
2300 K V A (070)	N _T — 4.32			

Tableau II.5. Impédance des différents éléments.

Voici le Schéma simplifié pour le calcul des courants de court-circuit :

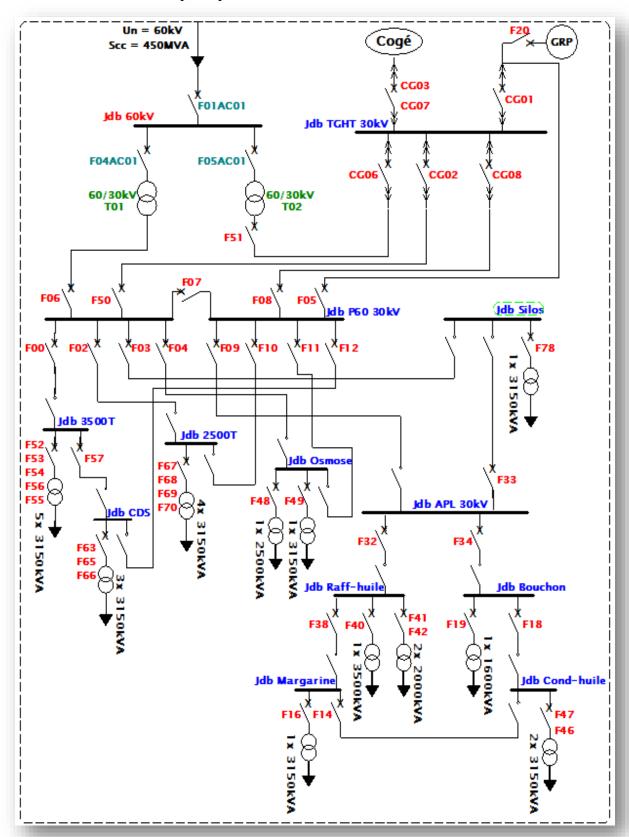


Figure II.13. Schéma unifilaire simplifié pour calcul Icc.

II.8.2. Défaut triphasé et biphasé sur la barre 60kV

Pour un défaut sur le Jdb 60kV le schéma est le suivant :

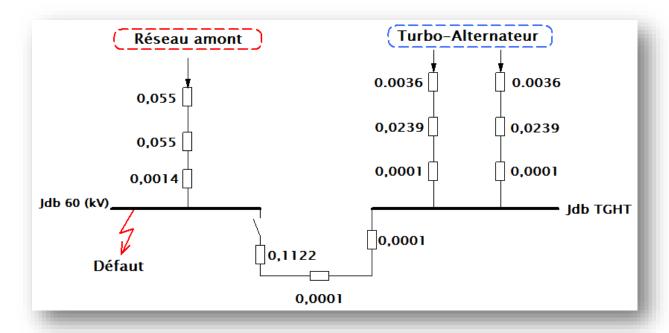


Figure II.14. Défaut sur la barre 60kV.

Calcul de
$$Z_{Défaut}$$
: $Z_{Défaut} = 0,0592 \text{ pu} \longrightarrow U_n = U_b \longrightarrow U_{(pu)} = 1$, $I_{3\phi \text{ défaut}}(pu) = \frac{u_d}{z_d} = \frac{1}{z_d}$

$$I_{3\phi \text{ Défaut}}(pu) = \frac{1}{0,0592} = 16,892 \text{ pu} \longrightarrow I_{3\phi}(kA) = I_{3\phi \text{ Défaut}}(pu) \times I_{b60} = 16,892 \times 240,56$$

$$I_{3\phi}(kA) = 4,064 \text{ kA}$$

$$I_{2\phi \text{ default}}(kA) = \frac{\sqrt{3}}{2} \times I_{3\phi \text{Default}(kA)} \longrightarrow I_{2\phi \text{ default}}(kA) = \frac{\sqrt{3}}{2} \times 4,064 = 3,520 \text{ kA}$$

❖ Pour un défaut sur le Jdb 30 kV du poste 60 le schéma est le suivant :

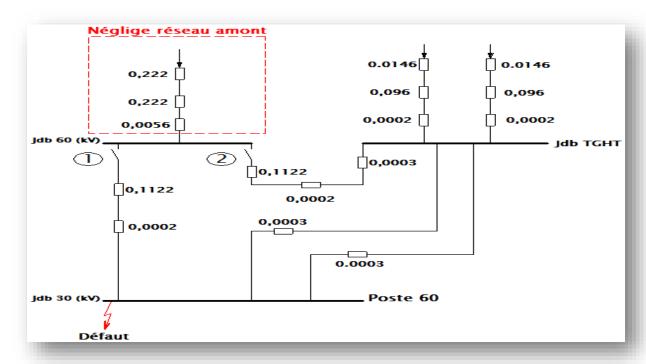


Figure II.15. Défaut sur le jeu de barre 30kV du poste 60.

• La boucle ouverte en (1):

Calcul de $Z_{Défaut 1}$: $Z_{Défaut 1} = 0.0372 \text{ pu}$

$$U_n = U_b \longrightarrow U_{(pu)} = 1 \longrightarrow I_{3\phi \text{ D\'efaut } (pu)} = \frac{U_d}{Z_d} = \frac{1}{Z_d}$$

$$I_{3\phi \text{ Default }}(kA) = \frac{1}{0,0372} = 26,882 \text{ pu} \longrightarrow I_{3\phi}(kA) = I_{3\phi \text{Default }(pu)} \times I_{b30} = 26,882 \times 481,125$$

 $I_{3\phi d1 (kA)} = 12,934 \text{ kA}$

• La boucle est ouverte en (2):

Calcul de $Z_{D\acute{e}faut 2}$: $Z_{D\acute{e}faut 2} = 0.0556$ pu

$$U_{\text{n}} = U_{\text{b}} \quad \longrightarrow \quad U_{\text{(pu)}} = 1 \quad \longrightarrow \quad I_{3\phi \text{ D\'efaut (pu)}} = \frac{U_{\text{d}}}{z_{\text{d}}} = \, \frac{1}{z_{\text{d}}}$$

$$I_{3\phi \ D\text{efaut (pu)}} = \frac{1}{0.0556} = 17,986 \ pu \implies I_{3\phi} \ (kA) = I_{3\phi \ D\text{efaut (pu)}} \times I_{b30} = 17,986 \times 481,125$$

$$I_{3\phi d2 (kA)} = 8,654 kA$$

On a $I_{3\phi~d1}>I_{3\phi~d2}$ donc la boucle sera toujours ouverte en (1) pour le reste des calculs c'est ta dire ;

$$I_{3\phi d1}(kA) = 12,934 kA.$$

$$I_{2\boldsymbol{\phi}} \text{D\'efaut1 (kA)} = \frac{\sqrt{3}}{2} \times I_{3\boldsymbol{\phi}} \text{D\'efaut1 (kA)} \longrightarrow I_{2\boldsymbol{\phi}} \text{D\'efaut1 (kA)} = \frac{\sqrt{3}}{2} \times 12,934 = 11,201 \text{ kA}.$$

II.8.3. Résultat de calcul des courants de court-circuit

• Courant biphasé :
$$I_{K2}^{"} = C \times I_{2\phi}$$
 (II.16)

• Courant triphasé : $I_{K3}^{"} = C \times I_{3\phi}$

 $I_{K}^{"}$: Valeur efficace du courant de court-circuit symétrique.

C : facteur de tension définie par la norme CEI 60909, égale à 1.1 pour Icc_{max}. [8]

Le jeu de barre	Zd _{eq}	I _{cc}	I _{K3}	I _{cc}	I _{K2}
	$= Z_{cc eq}(pu)$	Triphasé	Triphasé	Biphasé	Biphasé
		(kA)	(kA)	(kA)	(kA)
JdB 60 kV	0,0592	4,064	4,470	3,520	3,872
JdB Poste 60 30kV	0,0372	12,934	14,227	11,201	12,321
JdB	0,0370	13,003	14,304	11,261	12,387
Cogénération					
JdB Sucre	0,0384	12,529	13,782	10,850	11,936
3500T/j					
JdB CDS 1kg	0,0386	12,465	13,712	10,795	11,875
JdB Sucre 2500T/j	0,0385	12,497	13,747	11,905	13,096
JdB APL	0,0387	12,432	13,675	10,766	11,842
JdB Osmose	0,0379	12,695	13,965	10,994	12,093
JdB Raf-huile	0,0388	12,400	13,640	10,739	11,813
JdB Silos Sucre céréale	0,0397	12,120	13,332	10,496	11,546
JdB Margarine	0,0389	12,368	13,605	10,711	11,782
JdB Bouchon	0,0424	11,346	12,481	9,826	10,809
JdB Cond-Huile	0,0426	11,294	12,423	9,781	10,759

Tableau II.6. Les courants de défauts aux différents JdB.

II.9. Calcul des jeux de barres [9]

On détermine les dimensions du jeu de barres en tenant compte des conditions normales d'exploitation.

La tension (kV) à laquelle est portée l'installation fixe la distance entre phases et entre phases-masse et détermine la hauteur et la forme des supports.

L'intensité assignée du courant traversant le jeu de barres nous sert à déterminer la section et la nature des conducteurs. On s'assure ensuite que les supports (isolateurs) résistent aux effets

mécaniques et que les barres résistent aux effets mécaniques et thermiques dus aux courants de court-circuit.

II.9.1. Caractéristiques des jeux de barres

II.9.1.1. Caractéristiques électriques des jeux de barres

- Scc : Puissance de court-circuit du réseau (MVA) ;
- Ur : Tension assignée (kV) ;
- ➤ U: Tension de service (kV);
- > Ir : Courant de assigné (A).

II.9.2. Méthode de calcul

Pour pouvoir déterminer les sollicitations thermiques et mécaniques produites par le courant de court-circuit dans les éléments du réseau, il suffit de connaître les grandeurs définies dont la caractéristique représentant l'évolution du courant de court-circuit.

II.9.2.1. Choix de la section des barres

Le courant nominal qui parcoure les conducteurs des jeux de barres est :

$$I_{n} = \frac{S_{n}}{U_{n} \times \sqrt{3}} \tag{II.17}$$

Le courant admissible par les jeux de barres :

$$\mathbf{I}_{ad} = \mathbf{I}_{n} \times \mathbf{1}, \mathbf{2} \tag{II.18}$$

La section qui convient au courant admissible est donnée par le tableau 6 en annexe.

II.9.2.2. Courant de choc I_p

C'est la valeur crête de la première demi-période après apparition du court-circuit

$$I_{p} = K_{p} \times \sqrt{2} \times I_{k3}^{"} \tag{II.19}$$

K_p: Facteur de choc.

> Exemple de calcul :

$$\sum S_{\text{CDS 1kg}} = S_n$$
, $S_n = 9450 \text{ kVA}$.

$$I_n = \frac{S_n}{U_n \times \sqrt{3}} = \frac{9450}{\sqrt{3} \times 30} = 181,865A$$

 $I_{ad}=I_n \times 1,2=181,865 \times 1,2=218,24A$ la section choisie égale : S = 75mm² (voir tableau 6 colonne 4 en annexe).

$$I_p = K_p \times \sqrt{2} \times I_{k3}^{"} = 2 \times \sqrt{2} \times 13,712 = 38,783 \text{ kA}$$

On recapture le calcul des courants de chocs et les sections des jeux de barres dans le tableau suivant :

Les jeux de barres	Sn	I _n	I _{ad}	S	Ι _{K3} 3φ	Kp	I _p (kA)
	(MVA)	(A)	(A)	(mm^2)	(kA)		
Jdb 60 kV	25	481,125	577,350	400	4,470	2	12,643
Jdb P60 30kV	58,85	1127,72	1353,264	1000	14,227	2	40,240
Jdb cogénération	64	1231.68	1478.016	1000	14,304	2	40,459
Jdb Silos S C	3,15	60,62	72,746	24	13,332	2	37,709
Jdb Sucre 3500T/j	15,75	303,109	363.73	400	13,782	2	38,981
Jdb APL	21,7	417.617	501.15	400	13,675	2	38,679
Jdb Osmose	5,65	108,73	130,48	60	13,965	2	39,500
Jdb Raf-Huile	7,5	144,34	173,21	60	13,640	2	38,580
Jdb Margarine	3,15	60,62	72,746	24	13,605	2	38,481
Jdb Bouchon	1,6	30,79	36,95	24	12,481	2	35,302
Jdb Cond-Huile	6,3	121,44	145,49	60	12,423	2	35,138
Jdb Sucre 2500T	12,6	242,49	290,98	150	13,747	2	38,882
Jdb CDS 1kg	9,45	181,87	218,24	75	13,712	2	38,783

Tableau II.7. Résultats de calcul de courant de choc et section des différents Jdb.

Conclusion

Dans ce chapitre nous avons présenté les différentes méthodes de calcul de courant de court-circuit et les courants nominaux qui nous ont permis de choisir les sections des câbles convenables et les jeux de barres nécessaires après vérification de la contrainte thermique.

Apres la détermination des courants de défauts est aussi important pour le dimensionnement des appareils de protection, car c'est avec ces derniers que nous allons pouvoir calculer les différents seuils des disjoncteurs thermique et magnétique, et leurs pouvoirs de coupure et de fermeture.

Chapitre III

Choix et réglage des protections et étude de la sélectivité

III.1. Introduction

Les protections constituent entre elles un ensemble cohérent dépendant de la structure du réseau et de son régime de neutre, choisies dans le but de satisfaire aux objectifs de disponibilité de l'énergie, de sécurité des personnes et des équipements. Elles doivent donc être envisagées sous l'angle d'un système reposant sur le principe de sélectivité, il consiste à isoler le plus rapidement possible la partie du réseau affectée par un défaut et uniquement cette partie, en laissant sous tension toutes les parties saines du réseau.

Dans la pratique une étude de la sélectivité consiste à déterminer les différents réglages (temporisations et seuils du courant) des appareils de protection, tout en vérifiant la compatibilité entre les temps d'intervention définis pour les appareils amont et ceux définis pour les appareils aval.

III.2. Protection des liaisons

On entend par liaison les éléments qui sont chargés de véhiculer l'énergie électrique entre points géographiquement plus ou moins éloignés, de quelques mètres à plusieurs kilomètres.

Les liaisons doivent être protégées de façon spécifique.

➤ Protection contre les courts circuits entre phases

La protection à maximum de courant de phase (ANSI 51) permet d'éliminer le court-circuit, le réglage de la temporisation étant adapté aux protections voisines.

> Protection contre les courts circuits phase-terre

La protection à maximum de courant terre temporisée (ANSI 51N) permet d'éliminer le défaut avec une bonne précision.

III.3. Protections des transformateurs [10]

Les transformateurs jouent un rôle important dans les installations industrielles. Ils minimisent les pertes par effet joule, en effet, une élévation de tension de 10 diminue les pertes à un facteur de 100. Comme ils minimisent les chutes de tension au niveau des lignes et assure une séparation galvanique entre réseau de même tension.

Il est nécessaire de le protéger efficacement contre tous les défauts susceptibles de l'endommager, qu'ils soient d'origine interne ou externe. Le choix d'une protection dépend souvent de considérations technico-économiques liées à sa puissance.

Cette partie présente les types de défauts auxquelles les transformateurs sont soumis en exploitation, les conséquences de ces défauts, et les différentes protections qui peuvent être utilisées.

III.3.1. Les fonctions de protection des transformateurs [10]

***** 50/51

Afin de protéger efficacement le transformateur et ses câbles de liaison, il est recommandé d'installer un relais à maximum de courant côté primaire de celui-ci. Ce relais doit assurer les fonctions 50/51.

- ➤ La fonction (51) peut-être à plusieurs seuils. Elle est temporisée et doit détecter les surcharges et garantir la sélectivité avec les relais situés en aval.
- ➤ La fonction (50) normalement une action rapide et si possible instantanée. Elle doit être réglée de façon à ne pas déclencher pour un défaut situé au secondaire du transformateur (réglage préconisé : 1,2 fois la valeur du courant de court-circuit triphasé secondaire) et doit agir très rapidement pour éliminer un court-circuit interne ou sur la liaison primaire.

❖ 49 RMS:

Les transformateurs de puissance peuvent être affectés par des surcharges de faibles amplitudes mais prolongées. Elles provoquent l'échauffement des bobinages, de l'isolant (huile) et des circuits magnétiques (fer). Ces surcharges sont détectées par la fonction de surcharge thermique RMS49.

❖ 51N/51G:

Protection contre les défauts à la terre, cette fonction n'est sensible qu'aux défauts phase terre situés dans le transformateur ou sur les liaisons amont et aval.

III.3.2. Contraintes d'exploitation d'un transformateur

Les principaux défauts qui peuvent affecter un transformateur sont :

- ✓ La surcharge;
- ✓ Le court-circuit ;
- ✓ Le défaut à la masse.

III.3.2.1. La surcharge

La surcharge peut être due à l'augmentation du nombre de charges alimentées simultanément ou à l'augmentation de la puissance absorbée par une ou plusieurs charges.

Elle se traduit par une surintensité de longue durée qui provoque une élévation de température préjudiciable à la tenue des isolants et à la longévité du transformateur.

III.3.2.2. Le court-circuit

Le court-circuit peut être interne au transformateur ou externe.

- Interne : il s'agit d'un défaut entre conducteurs de phases différentes ou d'un défaut entre spires du même enroulement. L'arc de défaut dégrade le bobinage du transformateur et peut entraîner un incendie. Dans un transformateur à huile, l'arc provoque l'émission de gaz de décomposition, si le défaut est faible, il y a un petit dégagement gazeux, et l'accumulation de gaz devient dangereuse. Un court-circuit violent provoque des dégâts très importants qui peuvent détruire le bobinage mais aussi la cuve en répandant l'huile enflammée.
- Externe : il s'agit d'un défaut entre phases dans les liaisons en aval. Le courant de courtcircuit aval provoque dans le transformateur des efforts électrodynamiques susceptibles d'affecter mécaniquement les bobinages et d'évoluer ensuite sous forme de défaut interne.

III.3.2.3. Le défaut à la masse

Le défaut à la masse est un défaut interne. Il peut se produire entre bobinage et cuve ou entre bobinage et noyau magnétique.

Pour un transformateur à huile, il provoque un dégagement gazeux. Comme le court-circuit interne, il peut entraîner la destruction du transformateur et l'incendie.

L'amplitude du courant de défaut dépend du régime de neutre des réseaux amont et aval, elle dépend aussi de la position du défaut dans le bobinage :

- Dans un couplage étoile, le courant à la masse varie entre 0 et la valeur maximum selon que le défaut est à l'extrémité neutre ou phase de l'enroulement.
- Dans un couplage triangle, le courant à la masse varie entre 50 % et 100 % de la valeur maximum selon que le défaut est au milieu ou à une extrémité de l'enroulement.

III.3.2.4. Courant d'enclenchement

La mise sous tension d'un transformateur provoque une pointe de courant transitoire d'enclenchement pouvant atteindre jusqu'à 20 fois le courant nominal avec des constantes de temps de 0.1 à 0.7 seconde, ce phénomène est dû à la saturation du circuit magnétique qui provoque l'apparition d'un courant magnétisant important, la valeur crête du courant est maximale lors d'un enclenchement effectué au passage à zéro de la tension et avec une induction rémanente maximale sur la même phase.

III.4. Présentation et étude des protections [11]

Les dispositifs de protection surveillent en permanence l'état électrique des éléments d'un réseau et provoquent leur mise hors tension (par exemple l'ouverture d'un disjoncteur), lorsque ces éléments sont le siège d'une perturbation indésirable (court-circuit, défaut d'isolement), l'association de ces dispositifs constitue le système de protection, il dépend de la structure du réseau, de son régime de neutre et des matériels installés.

III.4.1. Rôle des protections

Les buts visés par les dispositifs de protection sont multiples :

- ✓ Participer à la protection des personnes contre les dangers électriques ;
- ✓ Eviter les détériorations des matériels (un court-circuit triphasé sur un jeu de barres HTA peut faire fondre jusqu'à 50 kg de cuivre en une seconde, la température de l'arc peut dépasser en son centre 10 000 °C);
- ✓ Limiter les contraintes thermiques, diélectriques et mécaniques auxquelles sont soumis ces matériels :
- ✓ Préserver la stabilité et la disponibilité de l'énergie du réseau ;
- ✓ Protéger les installations voisines (par exemple, réduire les tensions induites par un défaut dans les circuits proches).

Pour atteindre ces objectifs le système de protection d'un réseau associant ces dispositifs doit avoir des qualités de rapidité, de fiabilité et permettre la sélectivité. Cependant, il faut être conscient des limites des protections elles ne peuvent pas empêcher les perturbations, mais seulement limiter leurs effets et leur durée. De plus, leur choix est souvent un compromis technico-économique qui dépend, au-delà des impositions réglementaires, du niveau de sécurité et de disponibilité de l'alimentation en énergie électrique souhaité.

III.4.2. Protection par combinée interrupteur-fusible [10]

Les fusions intempestives, par vieillissement ou sur phénomène transitoire, sont la principale cause des situations de fonctionnement avec manque d'une phase MT.

La séparation monophasée est évitée par l'utilisation d'un appareillage combiné interrupteur fusibles, dans lequel les fusibles mis en œuvre sont dotés d'un percuteur. Dans ce type d'appareillage, le premier fusible sollicité actionne, par son percuteur, le mécanisme de l'interrupteur et entraı̂ne l'ouverture de celui-ci.

La coupure d'alimentation est donc réalisée en triphasé quelle que soit la raison de la fusion du fusible.

Ce mode de fonctionnement permet également de faire couper par l'interrupteur les courants de défaut de faibles valeurs situés dans la zone interdite du fusible (entre le courant minimal de fusion et le courant minimum de coupure). Le risque associé au non coupure du fusible est ainsi supprimé.

III.4.3. Disjoncteur moyenne tension [9]

Le disjoncteur est un appareil qui assure la commande et la protection d'un réseau. Il est capable d'établir, de supporter et d'interrompre les courants de service ainsi que les courants de court-circuit. Le circuit principal doit supporter sans dommage :

- ✓ le courant thermique = courant de court-circuit pendant 1 ou 3 seconde ;
- ✓ le courant de charge permanent ;
- ✓ le courant électrodynamique :

 $2.5 \times I_{cc}$ pour 50 Hz (CEI)

 $2.6 \times I_{cc}$ pour 60 Hz (CEI)

 $2.7 \times I_{cc}$ (ANSI), pour constante de temps particulier (CEI)

Un disjoncteur étant la plupart du temps en position "fermé", le courant de charge doit circuler sans emballement thermique pendant toute la durée de vie de l'appareil.

III.4.3.1. Pouvoir de coupure assigné en court-circuit (CEI 60 056)

Les pouvoir de coupure assigné en court-circuit est la valeur la plus élevée du courent que le disjoncteur doit être capable de couper sous sa tension assignée.

III.4.3.2. Pouvoir de fermeture (CEI 60 056)

Le pouvoir de fermeture est la valeur maximal qu'un disjoncteur est capable d'établir et de maintenir sur une installation de court-circuit. Il doit être supérieur ou égal à la valeur crête du courant de courte durée assigné.

III.4.3.3. Critères de choix d'une courbe de déclenchement

Les protections à maximum de courant interviennent lorsque la valeur d'un courant dépasse une valeur déterminée pendant un temps déterminé. Les protections dites « à temps dépendant », pour lesquelles la durée de déclanchement dépend de la valeur du courant qui

circule, sont les plus utilisées. En effet, permettent d'associer des temporisations importantes dans les zones de courant faible (surcharge ou défaillance interne) avec une intervention rapide en cas de défaut majeur.

La courbe courant-temps du relais assure également le non déclenchement lors de phénomènes transitoires comme les courants d'enclenchement. La figure représentée ci-dessous donne le principe de la protection d'un circuit par disjoncteur.

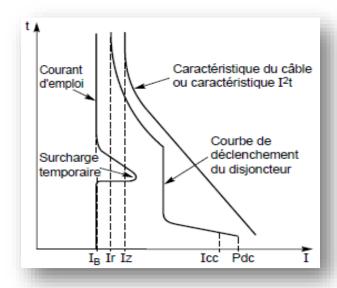


Figure III.1. Principe de protection d'un circuit par disjoncteur.

Icc: Courant de court-circuit triphasé.

PdC: Pouvoir de coupure assigné du disjoncteur.

Ir : Courant de réglage de la protection thermique.

III.4.4. Détermination du pouvoir de coupure assigné en défaut d'un disjoncteur MT [9]

Le pouvoir de coupure d'un disjoncteur est caractérisé par deux valeurs :

- ✓ La valeur efficace de sa composante périodique, dénommée par l'abréviation : "pouvoir de coupure assigné en court-circuit" ;
- ✓ Le pourcentage de la composante apériodique correspondant à la durée d'ouverture du disjoncteur à laquelle on ajoute une demi-période de la fréquence assignée. La demi-période correspond au temps minimal d'activation d'une protection à maximum de courant, soit 10 ms à 50 Hz. Suivant la CEI, le disjoncteur doit couper la valeur efficace de

la composante périodique du court-circuit (égal son pouvoir de coupure nominal) avec le pourcentage d'asymétrie défini par les courbes ci-dessous.

Figure III.2. Pourcentage de la composante apériodique (% DC) en fonction de l'intervalle de temps τ .

 τ : Durée d'ouverture du disjoncteur (top), augmenté d'une demi-période à la fréquence Industrielle Tr.

En standard la CEI définit les équipements MT pour un %DC (%d'asymétrie ou composante apériodique) de 30%, pour une valeur crête du courant maximal égale à $(2.5 \times I_{cc})$ en 50 Hz ou $(2.6 \times I_{cc})$ en 60 Hz, dans ce cas utiliser la courbe $\tau 1$.

Pour les circuits faiblement résistifs comme les arrivées générateurs, %DC peut être plus grande, avec une valeur crête du courant maximal égale à $(2,7 \times I_{cc})$. Dans ce cas utiliser la courbe $\tau 4$.

• Valeurs de pouvoir de coupure assigné en court-circuit :

Courant de court-circuit symétrique(en kA) :

$$I_{K}^{"} = \frac{I_{AC}}{\sqrt{2}}$$
 (III.1)

I_{AC}: Valeur de crête de composant périodique (I_{cc}crête)

Courant de court-circuit asymétrique(en kA) :

$$I_{asym}^{2} = I_{AC}^{2} + I_{DC}^{2}$$

$$I_{asym} = I_{K}^{"} \sqrt{1 + 2(\frac{\%DC}{100})^{2}}$$
(III.2)

I_{DC}: Valeur de la composante apériodique.

Le pouvoir de coupure PdC (kA)

Le pouvoir de coupure d'un disjoncteur doit être supérieur ou égal au courant asymétrique avec un facteur de sécurité.

$$PdC (kA) \ge K_S \times I_{ASYM}$$
 (III.3)

K_S: Facteur de sécurité qui tient compte de toutes les hypothèses et approximations utilisées dans le calcul des courants de court-circuit, K_S varie entre 1,2 à 2,5.

➤ Le pouvoir de fermeture PdF (kA)

Le pouvoir de fermeture d'un disjoncteur doit être supérieur ou égal à Ip, la valeur de crête de la première demi alternance du courant de court-circuit avec un facteur de sécurité.

$$PdF(kA) \ge K_S \times PdC$$
 (III.4)

Ip : Valeur de crête de la première demi alternance de courant de court-circuit.

III.4.5. Réglage des protections

La surveillance permanente des grandeurs électriques du réseau, par des capteurs fiables et bien dimensionnés alimentant des relais de protection, permet un isolement rapide de la zone en défaut. Ces relais doivent ignorer une perturbation fugitive et normale et agir sans défaillance quand il s'agit d'un défaut destructif à éliminer.

III.4.5.1. Choix des transformateurs de mesure

Les systèmes de protections sont alimentés par des transformateurs de mesure (transformateur de tension et de courant). Les transformateurs de mesure sont destinés à réduire les tensions et les courants sur les circuits électriques à des valeurs plus faibles à mesurer, utilisé pour alimenter les dispositifs de protections électriques. Ils ont pour but d'isoler les circuits électriques, de normaliser les grandeurs électriques, d'assurer des fonctions annexes.

A. Transformateur de courant (TC)

Les transformateurs de courant sont utilisés pour fournir l'information aux relais de protection et/ou de mesure du courant, de la puissance, de l'énergie. Pour cela ils doivent délivrer un courant secondaire proportionnel au courant primaire qui les traverse. Rapport de transformation des TC. Le courant primaire et secondaire est normalisé, ces valeurs sont discrètes.

Le courant assigné sera toujours supérieur ou égal au courant de service de l'installation, et les valeurs normalisées : 10 -12,5 - 15 - 20 - 25 - 30 - 40 - 50 - 60 - 75 A et leurs multiples et sousmultiples. Courant secondaire assigné (nominal) est égal à 1 ou 5 A.

B. Transformateur de tension (TP)

Ils ont le même principe que les transformateurs de puissance, mais les tensions primaires et les tensions secondaires sont en phase. La tension secondaire est normalisée (100 V) entre phase. Ils sont caractérisés par le rapport de transformation, la classe de précision, la puissance d'échauffement.

III.4.5.1.1. Seuils de réglage de la protection

1) Seuil de réglage magnétique (I_m)

Le seuil de réglage de la protection contre les surintensités les doit être supérieur à $(2 \times I_n)$:

$$I_{\rm m} \ge 2 \times I_{\rm n}$$
 (III.5)

I_n: Courant nominal correspond au courant nominal de l'application.

2) Seuil de réglage thermique (Ith)

Le seuil de réglage de la protection contre les surcharges doit être :

$$I_{\rm n} \le I_{\rm th} \le 1.2 \times I_{\rm n}$$
 (III.6)

3) Détermination de la prise du courant de seuil (CTS)

✓ Le CTS thermique se calcule avec la relation suivante : CTS
$$_{th} \ge 1.2 \times I_{Rn}$$
 (III.7)

✓ Le CTS magnétique situé dans l'intervalle :
$$1,2 \times I_{Rn} \le CTS_m \le \frac{I_{Rcc}}{3}$$
 (III.8)

Avec : I_{Rcc} : courant de court-circuit au secondaire du TC.

I_{Rn}: Courant nominal au secondaire du TC.

III.5. Mode de sélectivité [12]

La sélectivité des protections est un élément essentiel qui doit être pris en compte dès la conception d'une installation, afin de garantir aux utilisateurs la meilleure disponibilité de l'énergie. On distingue deux modes de sélectivité :

> Sélectivité total

La sélectivité entre deux dispositifs de protection est dite totale lorsque pour tout courant de défaut inférieur ou égal au pouvoir de coupure du dispositif aval, le dispositif de protection directement en amont du défaut déclenche seul.

> Sélectivité partielle

La sélectivité entre deux dispositifs de protection est dite partielle lorsque les deux dispositifs fonctionnent simultanément à partir de certaines valeurs de courants de défaut (court-circuit franc).

III.5.1. Les types de sélectivité [13]

Différents moyens peuvent être mis en œuvre pour assurer une bonne sélectivité dans la protection d'un réseau électrique, et on distingue par met ces type de sélectivité :

III.5.1.1. Sélectivité ampèremétrique

Elle est basée sur le fait que dans un réseau, le courant de défaut est d'autant plus faible que le défaut est plus éloigné de la source. Une protection ampèremétrique est disposée au départ de chaque tronçon, son seuil est réglé à une valeur inférieure à la valeur de court-circuit minimal provoqué par un défaut sur la section surveillée, et supérieure à la valeur maximale du courant provoqué par un défaut situé en aval (au-delà de la zone surveillée). Ainsi réglée, chaque protection ne fonctionne que pour les défauts situés immédiatement en aval de sa position, et est insensible aux défauts apparaissant au-delà. Cependant, en pratique, il est difficile de définir les réglages de deux protections en cascade (tout en assurant une bonne sélectivité) lorsque le courant ne décroît pas de façon notable entre deux zones voisines (ce qui est le cas en moyenne tension). Par contre, pour des tronçons de lignes séparés par un transformateur, ce système est avantageusement utilisé car simple, de coût réduit et rapide (déclenchement sans retard).

$$I_{cc A} > I_r \ge I_{cc B}$$

 I_r = intensité de réglage.

 I_{ccB} : Image au primaire du transformateur du courant de $I_{cc\,max}$ au secondaire.

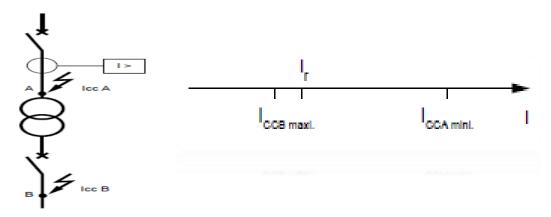


Figure III.3. Système de sélectivité ampèremétrique.

III.5.1.2. Sélectivité chronométrique

La sélectivité chronométrique consiste à temporiser le déclenchement du disjoncteur amont afin de privilégier celui en aval. Cette technique permet d'obtenir une sélectivité au-delà du courant de réglage du disjoncteur/fusible amont.

Le disjoncteur c'est un disjoncteur à action rapide, tandis que les autres disjoncteurs sont à action retardé (le disjoncteur B à 0.3s, le disjoncteur A à 0.6s) la différence des temps de fonctionnement **t** entre deux protections consécutives constituent l'intervalle de sélectivité. Il doit prendre en compte du temps de coupure du circuit Tc, les tolérances sur la temporisation dt, le temps de retour au repos de la protection tr.

Le temps t vérifie de ce fait la relation t = Tc + tr + 2dt. Etant donné les performances actuelles des dispositifs de coupure et des relais, la valeur qui utilisée pour t se situe entre 200 et 300ms pour deux disjoncteurs consécutifs.

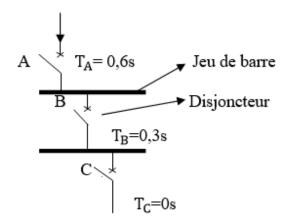


Figure III.4. Système de sélectivité chronométrique.

III.5.1.3. Sélectivité logique

Ce principe est utilisé lorsque l'on souhaite obtenir un temps d'élimination de défaut court. L'échange d'informations logiques entre protections successives permet la suppression des intervalles de sélectivité. En effet, dans un réseau en antenne, les protections situées en amont du point de défaut sont sollicitées, celles en aval ne le sont pas cela permet de localiser sans ambiguïté le point de défaut et le disjoncteur à commander.

Chaque protection sollicitée par un défaut envoie :

- ✓ Un ordre d'attente logique à l'étage amont (ordre d'augmentation de la temporisation propre du relais amont)
- ✓ Un ordre de déclenchement au disjoncteur associé sauf s'il a lui-même reçu un ordre d'attente logique de l'étage aval. Un déclenchement temporisé est prévu en secours.

➤ Avantage

Le temps de déclenchement est indépendant de la position du défaut dans la cascade de sélectivité.

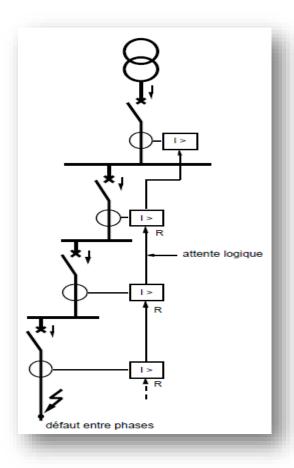


Figure III.5. Système de sélectivité logique.

III.6. Réglage de la protection

III.6.1. Choix et dimensionnement des disjoncteurs

Le dimensionnement des appareils de protections et les disjoncteurs en particulier et leurs choix se fait par le calcul des PdC et PdF (pouvoir de coupure et pouvoir de fermeture).

III.6.1.1. Détermination des PdC et PdF des différents disjoncteurs

La figure suivante nous montre la position des différents disjoncteurs dans le réseau pour faciliter leurs dimensionnements.

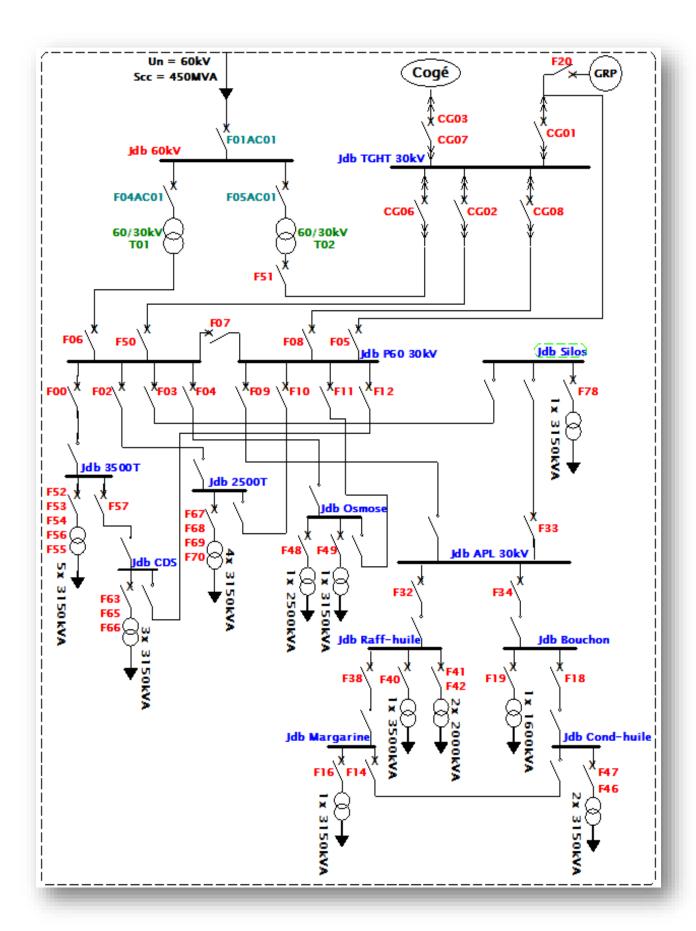


Figure III.6. Schéma d'implantation des différents disjoncteurs.

> Détermination des PdC des disjoncteurs

Exemple: (F16), au niveau de la sous station Margarine.

En standard la CEI, définit les équipements MT pour un DC 30% en prend la courbe τ_1 :

Pour $\tau=45 ms$. %DC= 30%; sachant que: $I_{sym}=I_K^{"}$ (cas d'un court-circuit éloigné de l'alternateur).

Pour un court-circuit $30kV : I_{K3}^{"} = 13,605 \text{ kA}$

$$I_{asym} = I_{sym} \sqrt{1 + 2(\frac{\%DC}{100})^2} = 13,605 \times \sqrt{1 + 2(\frac{30}{100})^2} = 14,779 \text{ kA}$$

%DC=100×
$$e^{\frac{-(Top+Tr)}{\tau_1}}$$

Avec : $\tau_1 = 45$ ms (Constant de temps normalisée),

Top + Tr = 50 ms (Valeur normalisée donnée par la CEI),

Valeur de pouvoir de coupure assigné en court-circuit (selon CEI) :

$$PdC \ge Ks \times I_{ASYM}$$

Ks : Facteur de sécurité qui tient compte de toutes les hypothèses et approximation utilisée dans le calcul des courants de court-circuit compris entre 1,2 et 2,5.

On prend Ks = 1,9.

$$PdC \ge Ks \times I_{ASYM} = 1, 9 \times 14,779 = 28,080 \text{ kA}.$$

PdC = 31.5 kA (voir tableau 7 en annexe).

> Détermination des PdF des disjoncteurs

Le pouvoir de fermeture de disjoncteur doit être supérieur ou égal au courant de crête :

$$PdF \ge Ks \times PdC = 2, 1 \times 31, 5 = 66, 15 \text{ kA}.$$

 $PdF \ge 66,15 \text{ kA}$ (voir tableau 8 en annexe)

Disjoncteurs	I _{asym} (kA)	PdC calculé (kA)	PdC Choisi (kA)	PdF (kA)
F46/ F47	13,495	25,640	31,5	66,15
F16	14,779	28,080	31,5	66,15
F14/ F18	13,495	25,640	31,5	66,15
F19	13,558	25,760	31,5	66,15
F38	14,779	28,080	31,5	66,15
F40/ F41/ F42	14,817	28,152	31,5	66,15
/F32				
F34	14,644	27,824	31,5	66,15
F33	14,482	27,516	31,5	66,15
F67 F70	14,607	27,754	31,5	66,15
F48/ F49	15,170	28,823	31,5	66,15
F78/ F80	14,482	27,516	31,5	66,15
F52 F65	14,971	28,445	31,5	66,15
F63/ F65/ F66	14,895	28,301	31,5	66,15
F00/ F02/ F03				66,15
F04/ F50/ F06	15,454	29,364	31,5	
F07/ F08/ F09				
F10/ F11/ F12				
F57	14,895	28,301	31,5	66,15
F51/ F20	15,538	29,523	31,5	66,15
CG03/ CG07				
CG01/ CG02				
CG06/ CG08				

Les résultats des PdC et PdF sont récapitulés dans le tableau ci-dessous.

Tableau III.1. Résultats de Détermination des PdC et PdF des disjoncteurs.

III.6.1.2. Seuils de réglage des protections

Pour le disjoncteur (F16 de margarine), qui reçoit l'ordre à partir du relais SEPAM

$$I_n = \frac{S_n}{Un\sqrt{3}} = \frac{3.15 \cdot 10^6}{30 \cdot 10^3 \sqrt{3}} = 60.62A.$$

• Choix des CTR (rapports des TC)

Les CTR disponible:

Alors CTR = 75/5 (selon les calibre normalisés donnés par la norme CEI 60 185).

• Le seuil thermique

$$I_{th} = 1.2 \times I_n = 1.2 \times 60.62 = 72.744 \text{ A}.$$

• Détermination de la prise de courant de seuil thermique (CTS_{th})

$$CTS_{th} \ge F \times I_{Rn} \longrightarrow CTS_{th} \ge 1,2 \times I_{Rn}$$
; $CTS_{th} \ge \frac{I_{th}}{CTR}$

F: Facteur de surcharge.

$$\frac{I_{th}}{CTR} = \frac{72,744}{75} \times 5 = 4,8496 \text{ A.} \implies CTS_{th} = 5 \text{ A.}$$

• Le seuil de réglage thermique du relais est :

$$I_{th} = CTS_{th} \times CTR = 5 \times \frac{75}{5} = 75 \text{ A}.$$

• Le seuil magnétique

Pour les circuits terminaux: Im = $8 \times$ In et $10 \times$ In pour les circuits intermédiaires et les circuits proches des alternateurs.

$$I_m = 3 \times In = 3 \times 60,62 = 181,86 A.$$

• La prise de courant du seuil magnétique (CTS_m)

$$CTS_{m} \ge \frac{I_{m}}{CTR} \implies \frac{I_{m}}{CTR} = \frac{181,86 \times 5}{75} = 12,124 \text{ A}$$

$$\implies CTS_{m} = 13 \text{ A}.$$

• Le seuil de réglage magnétique du relais est :

$$I_{\rm m} = CTS_{\rm m} \times CTR = 13 \times \frac{75}{5} = 195 \text{ A}$$

• Temporisation des disjoncteurs (sélectivité chronométrique)

Pour choisir les temps de déclanchements des disjoncteurs MT on doit prendre en considération la temporisation des disjoncteurs BT, et dans notre cas ce dernier s'est arrêté à 0,2s et avec un pas de 0,3s on règle les disjoncteurs d'une façon à avoir une sélectivité chronométrique meilleure.

Les CTR choisis et les CTS déterminés sont regroupés dans le tableau suivant :

F00/ F12 484,974 600 1500 500/5 6 15 F02/ F10 242,487 300 780 300/5 5 13 F03 417,61 600 1300 500/5 6 13 F04 108,734 150 330 150/5 5 11 F07 420,7 600 1300 500/5 6 13 F09 417,61 600 1300 500/5 6 13 F11 108,734 150 330 150/5 5 11 F57 303,104 400 960 400/5 5 12 F32/ F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F41/ F42 38,49 50 120 50/5 5 12	0.0
F03 417,61 600 1300 500/5 6 13 F04 108,734 150 330 150/5 5 11 F07 420,7 600 1300 500/5 6 13 F09 417,61 600 1300 500/5 6 13 F11 108,734 150 330 150/5 5 11 F57 303,104 400 960 400/5 5 12 F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06	0,8
F04 108,734 150 330 150/5 5 11 F07 420,7 600 1300 500/5 6 13 F09 417,61 600 1300 500/5 6 13 F11 108,734 150 330 150/5 5 11 F57 303,104 400 960 400/5 5 12 F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 <th>0,8</th>	0,8
F07 420,7 600 1300 500/5 6 13 F09 417,61 600 1300 500/5 6 13 F11 108,734 150 330 150/5 5 11 F57 303,104 400 960 400/5 5 12 F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 <th>1,7</th>	1,7
F09 417,61 600 1300 500/5 6 13 F11 108,734 150 330 150/5 5 11 F57 303,104 400 960 400/5 5 12 F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F05-AC01 240,56 500 1300 300/5 5 13	0,8
F11 108,734 150 330 150/5 5 11 F57 303,104 400 960 400/5 5 12 F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13	2
F57 303,104 400 960 400/5 5 12 F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13	1,4
F32/F34 357 480 1120 400/5 6 14 F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	0,8
F33 357 480 1120 400/5 6 14 F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	0,8
F48 48,11 60 150 50/5 6 15 F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	1,1
F40 67,36 90 225 75/5 6 15 F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	1,4
F41/F42 38,49 50 120 50/5 5 12 F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	0,5
F19 30,79 40 100 50/5 4 10 F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	0,5
F06 481,13 600 1500 500/5 6 15 F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	0,5
F50/F08 615,84 800 1920 800/5 5 12 F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	0,5
F51 481,13 600 1500 500/5 6 15 F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	2
F05-AC01 240,56 500 1300 300/5 5 13 F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	2
F04-AC01 240,56 300 780 300/5 5 13 F01-AC01 481,12 360 900 500/5 6 15	2,6
F01-AC01 481,12 360 900 500/5 6 15	2,7
	2,7
	2,9
CG06 481,12 60 150 500/5 6 15	2,3
CG02/ CG08 615,84 800 1920 800/5 5 12	2,3
CG07/ CG03 615,84 800 1920 800/5 5 12	2,6
CG01 246,34 360 780 300/5 6 13	2,6
F20 246,34 360 780 300/5 6 13	2,9
F38 212,657 300 660 300/5 5 11	0,8
F18 326,198 400 1040 400/5 5 13	0,8
F14 204,958 300 660 300/5 5 11	0,8
F78/ F67/ F68 F69/ F70/ F63 F65/ F66/ F46 F47/ F49/ F16 F52/ F53 /F54 F55/ F56	0,5

Tableau III.2. Résultats des déterminations CTS, CTR et du t_c des disjoncteurs.

III.6.1.3. Vérification de la tenue thermique des câbles et des jeux de barres

Les efforts thermiques sont dus aux dégagements de la chaleur par effet joule pendant le régime de court-circuit.

La tenue thermique du jeu de barres vérifie par rapport à la relation : $I^2 \times t \le C^{\text{cte 2}}$

La tenue thermique des câbles vérifie par rapport à la relation : $I_{cc}^2 \times t \leq S^2 \times K^2$

1) Tenue thermique des jeux barres

Dans la partie dimensionnement on a calculé la section des jeux de barres convenables, et dans ce qui suit on va vérifier la tenue thermique de ce derniers en se référant à ceux existence.

La tenue thermique des jeux de barres donnée pas le constructeur est :

- 25 kA.s. Pour le jeu de barre 60 kV et le jeu de barre cogénération (TGHT) 30 kV
- 16 kA.s. Pour les autres jeux de barres de distribution de 30 kV.

$$t = \frac{\text{tenu thermique}^2}{I_{K_3}^{"}^2} = \frac{16^2}{14,227^2} = 1,26 \text{ s}$$
 (III.9)

Jeu de barre	Tenu thermique	$I_{K3}^{\prime\prime}(kA)$	Durée de CC (s)	Vérification
Jdb 60kV	25kA.s	4,470	31,2	Vérifie
Jdb 30kV	16kA.s	14,227	1,26	Vérifie
Jdb TGHT	25kA.s	14,304	3,05	Vérifie

Tableau III.3. Vérification de la tenue thermique des jeux de barres.

2) Tenue thermique des câbles

Le courant de défaut maximum : $I_{K3max}^{\prime\prime}$ = 14,304 kA

$$t \times I_{cc}^2 \le S^2 \times K^2 \tag{III.10}$$

Vérification de la tenue thermique des câbles du complexe CEVITAL pour les nouvelles sections trouvées, (185mm², 240mm² et 300mm²).

Pour les câbles de 185mm² on a les caractéristiques suivantes :

Tenue thermique de l'âme du câble						
Câble de	Durée du défaut en (s)	$t \times I_{cc}^2$	$S^2 \times K^2$	La condition		
185mm ² Cu	2	4,092. 10 ⁸	4,526. 10 ⁸	Vérifie		

Tableau III.4. Vérification de la tenue thermique des câbles.

Remarque : Si la section minimale vérifie le courant de court-circuit maximal, alors quel que soit le courant de court-circuit la tenue thermique des sections est vérifiée.

3) Tableau récapitulatif

Les solutions que nous avons proposées pour améliorer la continuité de service des deux unités concernées.

Exemple 1: L'ensemble de nouveau matériel à installer pour réaliser ce bouclage et ces caractéristiques sont recensées dans le tableau ci-dessous.

DESIGNATION	QTE
> Poste S/S margarine, raffinerie de l'huile et bouchon	
• Cellule disjoncteur SF6 simple sectionnement de type DM1-A avec relais de protection type	03
SEPAM S50 communique	
Protection type SEPAM S50 communiquant	03
> P60 vers APL	
• Câble par phase en Cu, isolé en PE de 240mm ² , L = 300m	01
> Raffinerie de l'huile vers margarinerie	
• Câble par phase en Cu, isolé en PE de 185mm ² , L = 25m	01
Bouchon vers Conditionnement de l'huile	
• Câble par phase en Cu, isolé en PE de 185mm ² , L =30m	01
> P60 vers Silos S C	0.1
• Câble par phase en Cu, isolé en PE de 240mm ² , L = 500m	01
➢ Silos S C vers APL	01
• Câble par phase en Cu, isolé en PE de 185mm ² , L = 500m	01
> APL vers Bouchon	01
• Câble par phase en Cu, isolé en PE de 185mm², L = 12m	01
> APL vers Raffinerie de l'huile	01
• Câble par phase en Cu, isolé en PE de 185mm², L = 30m	01
Margarine vers Conditionnement de l'huile	01
• Câble par phase en Cu, isolé en PE de 185mm ² , L = 250m	O1
➤ <u>Jdb Raffinerie sucre 2500T/j</u>	
• Section $S = 150 \text{mm}^2$	01
> <u>Jdb Condition de l'huile</u>	01
• Section $S = 60 \text{mm}^2$	01
> Jdb CDS 1kg/5kg	
• Section $S = 75 \text{mm}^2$	01

Tableau III.5. Nouveau matériel à installer pour réaliser ce bouclage.

Conclusion

Dans ce chapitre nous avons défini les fonctions de protection utilisées, les règles de choix de dispositif pour protéger les transformateurs, et dimensionné les différents disjoncteurs. Nous avons aussi présenté la stratégie de sélectivité adoptée et les règles suivies pour le réglage des protections. Ainsi, toutes les données sont présentes pour réaliser un plan de protection conformément aux normes en vigueur au sein de l'entreprise.

CONCUSION GENERALE

Conclusion générale

Cette étude a porté sur le réseau moyen tension de l'entreprise CEVITAL. Le redimensionnement de la structure réseau qui est en boucle avec l'intégration des deux unités de production à la boucle existante va permettre de palier aux problèmes fréquents de coupure et arriver à garantir une sureté d'alimentation meilleure et une continuité de service maximale.

Le travaille réalisé au sein de l'entreprise nous a permis d'acquérir des informations et des connaissances sur le réseau électrique le matériel utilisé et les techniques adoptées. Aussi, à travers ce travail, nous avons amélioré largement nos connaissances concernant la méthodologie de conception des réseaux industriels moyenne tension.

Le bouclage du site a modifié la structure d'alimentation des différentes sous-station de productions, ce qui nous a amené à recalculer la consommation de chaque unité et les courants de défaut et les contraintes thermiques et électrodynamiques exercées sur les câbles et les jeux de barres après nous avons vérifié leurs conformité aux normes, ainsi que le redimensionnement du plan de protection en lui déterminant ces différents seuils thermique et magnétique avec une stratégie de sélectivité convenable.

Comme résumé, un tableau récapitulatif a été fait où nous avons ressemblé la totalité du nouveau matériel à installer avec ses caractéristiques techniques.

BIBLIOGRAPHIE

- [1] Document CEVITAL sur le réseau moyen tension existant de complexe CEVITAL
- [2] Sélec câble, « câbles moyenne tension HTA », édition janvier, 2006.
- [3] Schneider Electric Guide de l'installation électrique 2010
- [4] Christophe PREVE et robert JEANNOT, « guide de conception de réseaux électrique industrielle », Schneider Electrique n° : 68883 427/A février, 1997.
- [5] Georges THOMASSET, « la conception des réseaux industriels en haute tension », Merlin Gerin n° 169 octobre, 1993
- [6] Benoit de METZ-NOBLA, Frédéric DUMAS, Christophe poulain, «calcul du courant de court-circuit», CT158 édition septembre, 2005.
- [7] La norme UTE C 15-105.
- [8] La norme CEI 60909.
- [9] Guide technique Merlin Gerin Moyenne tension ART86204 mars 2000.
- [10] Didier FULCHIRON, « Protection des transformateurs de poste MT/BT », Schneider Electric n°: 192 avril 1998.
- [11] Schneider Electric, « Compléments techniques distribution électrique BT et HTA », 2012
- [12] Jacques VERSCHOORE, «Protection des installations industrielles et tertiaires», techniques de l'ingénieur, D 4820
- [13] Merlin Gerin, « Guide de la protection », édition janvier 1996

ANNEXES

• Mode de pose

Le tableau 1 indique, pour chaque mode de pose, la colonne des tableaux des courants admissibles à utiliser pour le choix de la section des conducteurs (voir tableau 4).

Le facteur f0 correspond au mode de pose, les facteurs f1 jusqu'à f6 sont explicités ci-après (voire tableaux 2 et 3).

Tableau 1. Mode de pose

Mode de pose	Colonne des tableaux	f0	Facteur de correction à appliquer		ìà
L3 pose directe dans caniveaux ouverts ou ventilés	(3)	0,90	f1		f5
V poses directes dans caniveaux fermés	(3)	1,1	f1		f5

• Facteur de correction pour des températures f1

<u>Tableau 2.</u> Facteurs de correction pour des températures ambiants différentes d 30°C (Câbles posés dans l'air)

Température	Nature d	e l'isolant
	PVC, PE	EPR
10	1,22	1,15
15	1,17	1,12
20	1,12	1,08
25	1,06	1,04
30	1,00	1,00
35	0,94	0,96
40	0,87	0,91
45	0,79	0,87
50	0,71	0,82
55	0,61	0,76

• Facteurs de correction pour groupement de plusieurs circuits ou de plusieurs câbles (Câble posés dans l'air et à l'abri du rayonnement solaire direct) : f5 et f6

<u>Tableau 3.</u> Facteur de correction pour groupement de plusieurs circuits ou de plusieurs câbles

Mode de	1			ou de câl	ou de câbles	
pose		multiconducteurs				
		2	3	4	5	> 9
f5	Sur tablettes horizontales non perforées	0,85	0,80	0,75	0,70	0,70
f6	Sur tablettes horizontales perforées ou sur	0,90	0,80	0,80	0,75	0,75
	corbeaux					

• Courant admissibles dans les câbles constitués par trois câbles unipolaires de tension assignée supérieure à 6/6 (7,2) kV et inférieure ou égale à 8/30 (36kV)

<u>Tableau 4.</u> Courant admissible dans les câbles constitués par trois câbles unipolaires de tension assignée supérieure 6/6 (7,2) et inférieure ou égale à 8/30 (36) kV.

	Isolé PE*		Section nominal (mm^2)			
(1)	(2)	(3)*	Cuivre	(1)	(2)	(3)*
110	125	105	16	125	140	130
140	160	135	25	165	185	170
170	195	165	35	195	220	200
200	230	200	50	230	260	245
250	280	250	70	280	320	305
295	335	300	95	335	385	375
335	385	350	120	385	440	425
375	430	395	150	430	495	485
425	490	455	185	490	560	560
490	560	530	240	560	650	660
550	640	610	300	640	730	750
630	720	710	400	720	830	870
700	810	810	500	810	940	1000
790	920	930	630	910	1060	1150
870	1010	1050	800	1010	1170	1300
960	1100	1180	1000	1110	1280	1470
1010	1170	1270	1200	1180	1360	1590
1070	1240	1360	1400	1240	1440	1700
1110	1290	1430	1600	1290	1500	1790
(1)	(2)	(3)	Aluminium	(1)	(2)	(3)
86	96	81	16	98	110	99
110	125	105	25	125	140	130
130	150	130	35	150	170	160
155	180	155	50	180	205	190
190	220	190	70	220	250	235
230	260	235	95	260	300	290
260	300	270	120	300	340	330
290	335	305	150	335	385	375
330	380	355	185	380	435	430
385	445	420	240	440	510	510
435	500	480	300	500	570	590
495	570	560	400	570	660	680
560	650	750	500	640	740	790
640	740	860	630	740	850	930
720	830	990	800	830	960	1060
800	930	1090	1000	930	1070	1230
860	1000	1170	1200	1000	1160	1350
920	1060	1240	1400	1060	1230	1450
960	1110	1240	1600	1110	1290	1540

• Valeurs de coefficient K

<u>Tableau 5.</u> Valeurs du coefficient K.

	Isolants					
	PVC	PR				
	PE	EPR				
Conducteurs actif						
En cuivre	115	143				
En aluminium	74	94				

<u>Tableau 6.</u> Caractéristique électrique mécanique pour barres en cuivre de section rectangulaire.

L*e	Section	Poids	Courant alternatif en Ampère (f=40 a 60HZ) 30°C						Valeur statique pour une barre					
(mm)	(mm^2)	linéique	Conducteurs peints			Conducteurs nus								
		(Kg/m)	Nombre des conducteurs			Nombre des conducteurs							1	
			1	2	3	4	1	2	3	4	\mathbf{F}		∱F	
											↑ '			
12*2	24	0,065	100	180	-	-	80	140	-	-	I/V	I	I/V	I
											(cm^3)	(cm^4)	(cm^3)	(cm^4)
20*3	60	0,162	195	340	-	-	145	270	-	-	0,048	0,028	0,008	0 ,045
25*3	75	0,202	240	410	-	-	180	330	-	-	0,200	0,200	0,030	0,005
30*3	90	0,243	280	480	-	-	205	385	-	-	0,321	0,390	0,037	0,007
30*5	150	0,405	360	625	-	-	270	500	-	-	0,450	0,675	0,045	0,031
40*10	400	1,08	670	1200	1650	2250	515	975	1350	1800	0,750	1,125	0,125	0,333
80*10	400	2,16	1230	2100	2760	3680	930	1650	2300	3100	10,66	42,6	1,33	0,666
100*10	100	2,90	1500	2450	3200	4300	1100	1950	2700	3700	16,66	83,3	1,666	0,833

• Pouvoir de coupure.

<u>Tableau 7.</u> Valeurs du pouvoir de coupure assigné en court-circuit maximale (kA).

	Va	aleurs du	pouvoir	de coupu	re assign	é en cou	rt-circuit	maximal	(kA)	
PdC	6,3	8	10	12,5	16	20	25	31,5	40	50

• Pouvoir de coupure et de fermeture.

<u>Tableau 8.</u> Valeurs du PdF en fonction du PdC.

PdC	PdF			
$4.5 \text{ kA} < \text{PdC} \le 6 \text{ kA}$	$1.5 \times PdC$			
$6 \text{ kA} < \text{PdC} \le 10 \text{ kA}$	$1.7 \times PdC$			
$10 \text{ kA} < \text{PdC} \le 50 \text{ kA}$	$2 \times PdC$			
$20 \text{ kA} < \text{PdC} \le 50 \text{ kA}$	$2,1 \times PdC$			
50 kA < PdC	$2,2 \times PdC$			