République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'**Hydraulique**

MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

Mr. AMEUR Salah

Melle. OUAZZI Saliha

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: Hydraulique Urbaine

INTITULE:

ETUDE DES RESEAUX DE DISTRIBUTION D'EAU POTABLE ET D'ASSAINISSEMENT SEPARATIF D'EAUX USEES DE LA ZONE BASSE DU CHEF-LIEU DE LA COMMUNE DE LARBATACHE (W. BOUMERDES)

Soutenu le 28 /06/2017 devant le jury composé de :

- Président : M^r. BEDJOU. A

- Promoteur : Mr. MERAH. F

- Examinateur (s): M^r. IKNI. T

Année Universitaire: 2016/2017

Remerciement

Au terme de cette étude, nous tenons à remercier le « Dieu » d'avoir donné la force pour accomplir ce travail. Nous tenons à exprimer mes vifs remerciements :

- * A notre promoteur: Monsieur F. MERAH pour ses conseils et ses consultations qui nous a tous aidé à la réalisation de notre projet;
- * Aux membres de jury qui auront à juger et à apprécier ce travail;
- * A tout le corps enseignants et personnel du département d'hydraulique qui ont contribué de près ou de loin à notre formation.
- * Je tiens aussi à remercier Djoudi Boudjemaa et Arab Boudjemaa qui nous ont aidé pendant la réalisation de projet.

Dédicaces

Je dédie ce modeste travail en signe de respect et de reconnaissance à :

- * Ma mère qui n'a pas cessé de me prodiguer.
- * Mon père qui m'a tant aidé et encourager.
- ₩ Mes frères et Mes sœurs.
- *ℜ A tous mes proches.*
- ₩ A toutes et tous mes ami(s) (es).

A. SALAH

Dédicaces

Je dédie ce modeste travail en signe de respect et de reconnaissance à :

- * Ma mère qui n'a pas cessé de me prodiguer.
- * Mon père qui m'a tant aidé et encouragé.
- * Mes frères et Mes sœurs.
- ℜ A tous mes proches.
- ℜ A toutes et tous mes ami(s) (es).

O. SALIHA

TABLE DES MATIERES

Introduction générale	1
Chapitre I	
Présentation de la zone d'étude	
Introduction	2
I.1. Situation géographique	2
I.2.Données naturelles du site	3
I.2.1. Situation topographique	3
I.2.2. Situation climatique	
I.2.2.1. Climat	
I.2.2.3. Vent	
I.2.3. Géologie	4
I.2.4. Séismicité	4
I.3. Situation démographique	4
I.5.1. Situation d'AEP	6
I.5.2. Situation d'Assainissement	6
I.6. Occupation du sol	6
I.6.1. Zone d'habitation	6
I.6.2. Equipement existants	6
Conclusion	7
Chapite II	
Estimation des besoins en eau	
Introduction	
II.1. Dotation	
II.2. Consommation moyenne journalière pour les différents besoins	
II.2.1. Estimation des besoins domestiques	
II.2.2. Estimation des besoins administratifs	
II.2.3. Estimation des besoins sanitaire	
II.2.4. Estimation des besoins scolaires	
II.2.5. Estimation des besoins socioculturels	9
II.2.6. Estimation des besoins industriels	10
II.2.7. Estimation des besoins commerciaux	10
II.2.8. Estimation des besoins de loisirs	10

II.3. Majoration de la consommation moyenne journalière	11
II.4. Variation de la consommation	12
II.5. Variation journalière de la consommation	12
II.5.1. Coefficient d'irrégularité minimum journalière	12
II.5.2. Coefficient d'irrégularité maximum journalière	12
II.6. Détermination des débits journaliers	12
II.6.1. Débit maximal journalier	13
II.6.2. Débit minimal journalier	13
II.7. Variation horaire de la consommation	13
II.7.1. Détermination de K _{max.H}	14
II.7.2. Détermination de K _{min.H}	15
II.7.3. Débit moyen horaire	15
II.8. Régime de consommation de LARBATACHE basse	16
II.9. Répartition des débits horaires	18
II.10. Graphique de consommation et courbe intégrale de la consommation de l'agglome	ération 19
II.11. Besoins en eau pour la lutte contre les incendies	20
Conclusion	21
Chapitre III	
Diagnostic des réseaux existants	22
Introduction	
III.1. Diagnostic du système d'AEP	
III.1.1. Diagnostic des points de captage	
III.1.2. Ouvrages de Transfert	26
III.1.3. Diagnostic des Adductions	27
III.1.4. Ouvrages de Stockage	
III.1.5. Diagnostic du réseau de Distribution III.1.5.1. Quartier NOUADER I et II III.1.5.2. Lotissement BOUMEZIANE III.1.5.3. Lotissement HAY EL DJADID III.1.5.4. Lotissement TAKMILIA	30 30
III.2. Diagnostic du système d'Assainissement	31
III.2.1. Description du réseau d'assainissement de la zone d'étude	31
III.2.2. L'état physique du réseau	32

III.2.2.2. Lotissement TAKMILIA	
III.2.2.3. Domaine BOUMEZIANE	
III.2.2.4. Quartier NOUADER II	
III.2.3. Etat des rejets	
III.2.4. Etat des déversoirs d'orage	
III.2.5. Les anomalies rencontrées	
III.2.6. Situation actuelle de la gestion et l'exploitation du réseau	35
Conclusion	
Chapitre IV	
Les réservoirs	
Introduction	36
IV.1. Fonctions des réservoirs	36
IV.1.1. Régulation de débit	36
IV.1.2. Régulation de la pression	36
IV.1.3. Simplification de l'exploitation	36
IV.1.4. Lutte incendie	36
IV.2. Critères de décision et configurations du système	36
IV.3. Différents types de réservoir	37
IV.3.1. Réservoir sur tour (château d'eau)	37
IV.3.2. Réservoir enterré ou semi-enterré	37
IV.4. Equipements hydrauliques du réservoir	38
IV.4.1. Conduite d'arrivée	38
IV.4.2. Conduite de départ ou de distribution	38
IV.4.3. Conduite de trop-plein	38
IV.4.4. Conduite de décharge ou de vidange	38
IV.4.5. Conduite by-pass	38
IV.5. Organes accessoires - Robinetterie	39
IV.5.1. Clapets de retenue	39
IV.5.2. Crépines	39
IV.5.3. Purgeurs-ventouses	39
IV.5.4. Robinet à flotteur	39
IV.6. Capacité du réservoir	39
IV.6.1. La méthode analytique	40
IV.6.2. La méthode graphique	
IV.7. Dimensionnement du réservoir projeté	43

IV.7.1. Hauteur d'eau dans la cuve	43
IV.7.2. Diamètre du réservoir	43
IV.7.3. Hauteur de la réserve d'incendie	44
Conclusion	44
Chapitre V	
Réseau de distribution d'eau potable	
Introduction	45
V.1. Fonctions du système de distribution	45
V.2. Type des réseaux de distributions	45
V.2.1. Réseau ramifié	45
V.2.2. Réseau maillé	45
V.2.3. Réseaux étagés	45
V.3. Conception d'un réseau	46
V.4. Les principes du tracé du réseau	46
V.5. Mode de distribution	46
V.6. Conditions sur les vitesses et les pressions	46
V.6.1. Vitesse d'écoulement	46
V.6.2. Pressions à satisfaire	47
V.7. Aspects technologiques des réseaux de distribution	47
V.7.1. Les conduites	
V.7.1.1. Nature des conduites	47
V.7.2. Organes accessoires des réseaux	
V.7.2.1. Vannes	
V.7.2.3. Vidange	
V.7.2.4. Réducteur de pression	49
V.8.3. Pièces spéciales	49
V.8.4. Appareils hydrauliques	
V.8.4.1. Bouches et poteaux d'incendies	
V.8.4.3. Mesure du débit	
V.8.5. Mode de pose des conduites	
V.9. Calcul Hydraulique	
V.9.1. Débit de pointe	
V.9.2. Débit Spécifique	
V.9.3. Débit de route	
V.9.4. Débit aux nœuds	
7 1.2 1 1. 1. VOIL WW/L HOWWIND	

V.9.5. Pertes de charge	
V.9.5.1. Pertes de charge linéaire	
V.9.5.3. pertes de charge totale	
V.10. Apport informatique	54
V.11. Présentation du logiciel EPANET	54
V.12. Composants physiques d'EPANET	55
V.13. Simulation du réseau	55
V.14. Résultats de la simulation cas de pointe	59
V.15. Cas de pointe + incendie	59
V.15.1. Les critères d'emplacement de poteau d'incendie	59
V.15.2. L'état du réseau après la simulation	59
V.16. Résultats de la simulation cas de pointe + incendie	62
Conclusion	62
Chapitre VI	
Réseau d'assainissement d'eau usée	
Introduction	63
VI.1. Généralités	63
VI.1.1. Définition d'un système de collecte d'eau usée	63
VI.1.2. Systèmes d'évacuation	63
VI.1.2.1. Systèmes fondamentaux	
VI.1.2.2. Systèmes Pseudo séparatif	
VI.1.2.3. Système composite	
, .	
VI.1.3. Schémas types des réseaux d'évacuation	
VI.1.3.1. Schéma perpendiculaire au cours d'eau	
VI.1.3.2. Schema type « collecteur faterar »	
VI.1.3.4. Schéma type « par zones étagées »	
VI.1.3.5. Schéma type « centre collecteur unique » et le schéma type radial	
VI.1.4. Différents types de réseaux	
VI.1.5. Critères de conception et de dimensionnement du réseau d'assainissement	66
VI.1.6. Facteurs influençant la conception d'un projet d'assainissement	66
VI.1.7. Composition de l'effluent urbain	67
VI.2. Dimensionnement du réseau	
VI.2.1. Calcul des débits	67
VI.2.1.1. Débit moyen d'eaux usées domestiques	
VI.2.1.2. Débits maximaux ou de pointe	68
VI.2.1.3. Débit des sous bassins	
VI.2.1.4. Débit de route	68

VI.2.1.5. Débit moyen entrant	
VI.2.1.7. Débit de reinte autrent	
VI.2.1.7. Débit de pointe entrant	
VI.2.1.9. Débit de pointe au tronçon	
VI.2.2. Conception du réseau d'assainissement	70
L'assainissement d'une agglomération est un problème trop complexe pour se prêter à	une
solution uniforme et relever de règles rigides.	70
VI.2.2.1. Données naturelles du site	
VI.2.2.2. Données relatives au développement futur de l'agglomération	71
VI.2.3. Tracé et conception du réseau d'assainissement separatif d'eaux usées de	
LARBATACHE basse	
VI.2.3.1. Description du réseau d'assainissement projeté	
VI.2.3.2. From en long et pentes des canansations	
VI.2.3.4. Vérification des conditions d'auto curage	
VI.2.3.5. Discussion des résultats obtenus	79
VI.2.4. Détermination du nombre de réservoirs de chasse à placer	79
VI.2.4.1. Calcul de la capacité des réservoirs de chasse	80
VI.2.4.2. Calcul de volume d'eau annuel nécessaire	80
Conclusion	81
Chapitre VII	
Les bassins de décantation	
Introduction	82
VII.1. Généralités	82
VII.1.1. Définition de la décantation	82
VII.1.2. Les différents types de décantation	82
VII.1.3. Principe de la décantation	82
VII.1.4. Les décanteurs horizontaux	83
VII.2. Dimensionnement des bassins de décantation	84
VII.3. Entretien et maintenance des bassins de décantation	86
Conclusion	86
Conclusion générale	87

LISTE DES TABLEAUX

	1.1: Répartition mensuelles des précipitations	
Tableau	I.2: Moyennes mensuelles des températures à LARBATACHE	4
	I.3 : Evolution de la population à différents horizons	
Tableau	I.4: Liste des équipements existants	7
Tableau	II.1: Evaluation des besoins moyens journalière à différents horizons	8
	II.2: Evaluation des besoins administratifs en eau	
	II.3: Evaluation des besoins sanitaires en eau	
Tableau	II.4: Evaluation des besoins scolaires en eau	9
	II.5 : Evaluation des besoins socioculturels en eau	
Tableau	II.6: Evaluation des besoins industriels en eau	10
Tableau	II.7: Evaluation des besoins commerciaux en eau	10
	II.8: Evaluation des besoins de loisirs	
Tableau	II.9: Récapitulation des besoins en eau de la zone d'étude	11
Tableau	II.10 : Majoration de la consommation journalière	11
	II.11: Récapitulatif de calcul des débits journaliers	
	II.12 : β_{max} en fonction du nombre d'habitants	
	II.13 : β _{min} en fonction du nombre d'habitants	
Tableau	II.14: Récapitulatif de calcul des débits horaires	16
	II.15 : Coefficients de répartition des débits horaires de l'agglomération	
	II.16: Régime de consommation de LARBATACHE	
	II.16 : Régime de consommation de LARBATACHE (suite et fin)	
Tableau	II.17: Besoins en eau de LARBATACHE basse	20
Tableau	III.1: Caractéristiques des forages de CHEBACHEB	22
	III.2 : Caractéristiques de la station de reprise	
Tableau	III.2: Caractéristiques de la station de reprise (suite et fin)	.297
Tableau	III.3: Caractéristiques du réservoir de KEHAHLIA 2x250 m ³	29
Tableau	III.3: Caractéristiques du réservoir de KEHAHLIA 2x250 m3 (suite et fin)	29
Tableau	III.3: Caractéristiques du réservoir de KEHAHLIA 2x250 m³ (suite et fin)	30
Tableau	III.4: Caractéristiques des rejets	34
	III.5 : Coordonnées des déversoirs d'orage	
Tableau	IV.1: Détermination du résidu du réservoir de stockage	40
Tableau	IV.2 : Détermination graphique de la capacité du réservoir	42
Tableau	V.1: Débits en route et les débits aux nœuds	54
	V.2: Etat des nœuds du réseau cas de pointe	
Tableau	V.3: Etat des conduites du réseau cas de pointe	56
	V.4 : Etat des nœuds du réseau cas de pointe + incendie	
Tableau	V.4: Etat des nœuds du réseau cas de pointe + incendie (suite et fin)	60
	V.5: Etat des arcs du réseau cas de pointe + incendie	
	VI.1: Estimation du débit moyen futur d'eau usées de LARBATACHE basse	
	VI.2: Caractéristiques des canalisations du sous bassin S ₁	
	VI.2 : Caractéristiques des canalisations du sous bassin S ₁ (suite et fin)	
Tableau	VI.3 : Dimensionnement des conduites et calcul des différents débits du sous bassir	$1S_1$
		74
Tableau	VI.4: Vérification des conditions d'auto-curage du sous bassin S ₁	78
Tableau	VI.5: Nombre de réservoirs de chasse par sous bassins	80
	VII.1 : Temps de chute en fonction de la densité et du diamètre des particules	
Tableau	VII.2 : Dimensions des bassins de décantation	86

LISTE DES FIGURES

Figure I.1 : Situation géographique de la zone d'étude (LARBATACHE BASSE)	2
Figure I.2: La zone d'étude (image satellitaire)	3
Figure I.3 : Situation hydrographique de la zone d'étude	6
Figure II.1: Régime de consommation de LARBATACHE basse	19
Figure II.2 : Courbe intégrale de la consommation de la zone de LARBATACHE basse	20
Figure III.1: Vue extérieure du forage 2	
Figure III.2 : Dégradation et arrêt de manomètre du forage 2	23
Figure III.3 : Vue extérieure d'entrée du forage 3	
Figure III.4: Vue d'une vanne du forage 3	
Figure III.5 : Vue extérieure d'entrée du forage 4	
Figure III.6: Dégradation du toit et la distance non respecté entre l'armoire électrique et l	
du forage 4	
Figure III.7 : Accessoires électromécaniques et électriques du forage 8	
Figure III.8 : Vue extérieure d'entrée du forage 9	
Figure III.9: Fuites au niveau de la ventouse du forage 9	
Figure III.10 : Vue extérieure d'entrée du forage 10	
Figure III.11: Vue intérieure du forage10	
Figure III.12 : Schéma de la chaine d'adduction de LARBATACHE	28
Figure III.13 : Vue intérieure d'un regard de vannes	
Figure III.14: Vue à l'extérieur de la chambre de vannes	
Figure III.15: Conduite de distribution en acier agressée et non sécurisée	
Figure III.16: Vue d'un regard de vanne corrodé	
Figure III.17 : Dégradation des conduites	
Figure III.18: Rejet 01	
Figure III.19: Regard bitumé	
Figure III.20 : Rejet N°02.	
Figure IV.1 : Réservoir semi-entérré	
Figure IV.2 : Réservoir entérré	
Figure IV. 3 : Equipement d'un réservoir de distribution	
Figure IV.4: Variation de la consommation journalière	
Figure V.1 : Schéma d'un réseau ramifié	
Figure V.2 : Schéma d'un réseau maillé	
Figure V.3: Différents type de vannes: a) robinet-vanne, b) robinet à papillon, c) vanne à	
de non-retour, d) vanne de réduction de pression	40
Figure V.4: Types de ventouses : a) ventouse à petites quantités d'air,	49 50
Figure V.5: Schéma d'une bouche d'incendie et de lavage	
Figure V.6: Coupe transversale d'une conduite enterrée	
Figure V.7: Composants physiques d'un système de distribution d'eau	
Figure V.8: Distribution de vitesse	
Figure V.9: Distribution de pression	
Figure V.10 : Simulation du réseau de distribution cas de pointe	
Figure V.11: Etat du réseau après la simulation cas de pointe + incendie	
Figure VI.1: Schémas des différents systèmes d'assainissement	
Figure VI.2: Réseau ramifié	
Figure VI.3 : Réseau maillé	
Figure VI.4: Schémas types des réseaux d'évacuation	
Figure VI.5 : Répartition schématique de la composition de l'effluent urbain	
Figure VII.1: Schéma d'un décanteur horizontal	
Figure VII.2 : Schéma d'un décanteur horizontal Théorie de Hazen	83

LISTE DES SYMBOLES

```
ACL: Agglomération de Chef-Lieu;
ADE: Algérienne Des Eaux;
AEP: Alimentation en l'Eau Potable ;
APC: Assemblée Populaire Communale;
C_m: Consommation moyenne en eau en (1/h/j);
Cp: Coefficient de pointe ;
Cpe: Coefficient de pointe entrant ;
C<sub>ps</sub>: Coefficient de pointe sortant ;
Cr: Cote de l'axe de la pompe (m);
Ctp: Cote de trop plein (m);
CW: Chemin de Wilaya;
D: Diamètre de la canalisation (m);
DN: Diamètre Nominal de la conduite (m);
Dot : Dotation journalière en eau potable en (l/hab/j) ;
D<sub>max</sub>: Distance maximale entre deux réservoirs de chasse (100 m);
Dext : Diamètre extérieur de la conduite (m) ;
D<sub>h</sub>: Densité d'habitant par logement;
D<sub>r</sub>: Diamètre du réservoir (m);
g: Accélération de la pesanteur (m/s²);
H: hauteur d'eaux usées dans la conduite (m);
H<sub>inc</sub>: Hauteur de la réserve d'incendie (m);
H<sub>min</sub>: Profondeur minimale de la tranchée (m);
Hmt: Hauteur manométrique totale (m);
H<sub>r</sub>: Hauteur d'eau dans le réservoir (m);
h: Hauteur du bassin en (m);
I: Pente du tronçon (%);
K: Rugosité de la conduite en (mm);
K<sub>f</sub>: Coefficient de fuite;
K<sub>max,H</sub>: Coefficient de variation de consommation maximum horaire;
K<sub>Max,j</sub>: Coefficient d'irrégularité maximum journalière;
Kmin.H: Coefficient de variation de consommation minimum horaire;
K<sub>Min.j</sub>: Coefficient d'irrégularité minimum journalière ;
L: Longueur du bassin en (m);
Lc: Longueur de la conduite (m);
Li: Longueur du tronçon concerné (m);
Lmin: Largeur minimale de la tranchée (m);
ΣL: Somme des longueurs des tronçons du réseau (m);
\sum L<sub>i</sub>: Somme des longueurs des tronçons du sous bassin (m);
l: Largeur de bassin en (m);
MES: Matières en suspension;
N: Nombre d'usagers pour chaque catégorie de consommateurs ;
NB: Note en Bref;
Nh: Nombre d'habitants;
NLSB: Nombre de logement par sous bassin;
Nr: Nombre de réservoirs dans un sous bassin;
n: Nombre d'années séparant l'année de recensement et l'horizon de calcul;
OMS: Organisation Mondiale de la Santé;
```

```
P: Nombre d'habitants dans « n » années (à l'horizon de 2042);
PEHD: Polyéthylène Haute Densité;
PN: Pression Nominale (bars);
PVC: polychlorure de vinyle;
P<sub>max</sub>: résidu maximal dans le réservoir (%);
P<sub>f</sub>: Pertes futures en eau (30%);
P<sub>0</sub>: Nombre d'habitants actuel :
P%: Pourcentage horaire;
Q: Débit d'eau usée entrant au bassin en (m<sup>3</sup>/s);
Q<sub>c,i</sub>: Débit concentré au nœud « i » en (l/s);
Q<sub>edm</sub>: Débit moyen journalier d'eaux usées domestiques en (1/s);
Q<sub>Max.H</sub>: Débit maximal horaire (m<sup>3</sup>/j);
Q<sub>Max, j</sub>: Consommation maximale journalière (m<sup>3</sup>/j);
Q<sub>me.N</sub>: Débit moyen entrant au nœud « N » (1/s);
Q<sub>Mov.H</sub>: Débit moyen horaire en (m<sup>3</sup>/h);
\mathbf{Q}_{\mathbf{moy,j.maj}}: Débit moyen journalier majoré (m<sup>3</sup>/j);
\mathbf{Q}_{\mathbf{moy,j}}: Débit moyen journalier (m<sup>3</sup>/j);
\mathbf{Q}_{\text{Min, j}}: Consommation minimale journalière (m<sup>3</sup>/j);
Q<sub>Min.H</sub>: Débit minimal horaire (m<sup>3</sup>/h);
Qmin: Débit minimal en (1/s);
Q_{ms.N}: Débit moyen sortant du nœud « N » (1/s);
Q<sub>ni</sub>: Débit au nœud « i » en (l/s);
OP: Débit de pointe (m<sup>3</sup>/h);
QP.E: Débit de pointe entrant en (l/s);
Q<sub>p.i</sub>: Débit de pointe des tronçons « i » en (l/s);
QP.S: Débit de pointe sortant en (l/s);
Q_{ps}: Débit à pleine section (m<sup>3</sup>/s);
Q<sub>P,u</sub>: Débit de pointe d'eaux usées rejetées en (l/s);
QR: Débit de route du sous bassin en (l/s);
O<sub>r</sub>: Débit route (l/s);
Q<sub>r.i</sub>: Débit de route du tronçon « i » d'eau usée en (l/s);
\Sigma O_{ri}: Somme des débits en route des tronçons qui entourent le nœud « i » ;
QSB: Débit moyen journalier d'eaux usées domestiques par sous bassin en (1/s);
Q_{sp}: Débit spécifique (1/s/m);
R: Ride de chaussé;
R<sub>e</sub>: Nombre de Reynolds;
RN: Route Nationale;
R<sup>+</sup>max: Résidu maximum positif (%);
R<sup>-</sup>max: Résidu maximum négatif (%);
r<sub>H</sub>: Rapport de hauteur ;
ro: Rapport de débit;
rv: Rapport de vitesse;
S: Section du réservoir (m<sup>2</sup>);
S<sub>1</sub>: Section longitudinale du bassin en (m<sup>2</sup>);
St: Section transversale du bassin de décantation (m<sup>2</sup>);
T: Durée du jour prise généralement égale à 24 heures ;
Tac: Taux d'accroissement de la population;
Tc: Temps de chute en (mn);
T<sub>séi</sub>: Temps de séjour en (mn);
V: Vitesse moyenne du liquide dans la conduite (m/s);
```

```
V_c: Vitesse de chute en (m/s);
V_e: Vitesse effective (m/s);
V<sub>H</sub>: Vitesse de déplacement de l'eau dans le bassin en (m/s);
V<sub>inc</sub>: Volume de la réserve d'incendie (m<sup>3</sup>);
V_{max}: Résidu maximal (m<sup>3</sup>);
V<sub>min</sub>: Résidu minimal (m<sup>3</sup>);
V_{ps}: Vitesse à pleine section (m/s);
V_r: Volume du réservoir (m<sup>3</sup>);
V<sub>T</sub>: Volume total du réservoir (m<sup>3</sup>);
V_u: Volume utile de stockage pour la consommation (m<sup>3</sup>);
Φ<sub>max</sub>: Coefficient qui dépend du nombre d'habitant;
Ø: Diamètre de la conduite (m);
\Omega_{\text{max}}: Coefficient qui dépend du niveau de vie et du confort ;
a<sub>h,i</sub>: Coefficient horaire de majoration;
λ: Coefficient de perte de charge ;
v : Viscosité cinématique de l'eau ;
ΔH<sub>L</sub>: Perte de charge linéaire (m);
ΔH<sub>s</sub>: Perte de charge singulière (m);
\Delta H_T: Perte de charge totales ;
```


Introduction générale

De tout temps, se procurer une eau saine, en quantité suffisante sans avoir à parcourir une longue distance, a toujours été une priorité absolue pour l'homme. Pour cela, diverses actions sont entreprises dans le but, non seulement d'assurer l'accès à l'eau aux populations, mais surtout d'œuvrer à faire en sorte que les eaux usées soient évacuées en toute sécurité.

C'est dans cet ordre d'idée que nous nous sommes intéressés au « Dimensionnement du réseau de distribution d'eau potable et d'assainissement d'eaux usées de la zone basse de «LARBATACHE », afin d'y assurer une sécurité hydraulique durable aux populations.

La présente étude s'articule autour des points suivants :

En premier lieu, on présentera la zone d'étude, dans le but de décrire la situation géographique, climatique et démographique.

En deuxième lieu, on évaluera les différents besoins en eau à différents horizons, afin d'avoir un dimensionnent efficace des divers organes hydraulique.

Dans le troisième chapitre, on s'intéressera à l'état actuel du système d'AEP et d'assainissement, on établira un diagnostic physique détaillé de l'état réel des réseaux, on se basera sur les données et informations recueillies.

Le quatrième chapitre sera consacré uniquement au dimensionnement du réservoir, afin de compenser les écarts entre production et la consommation.

Le cinquième chapitre, consistera au tracé du réseau de distribution et son dimensionnement ainsi qu'une étude de simulation, à l'aide de logiciel EPANET, pour connaitre le fonctionnement hydraulique du réseau.

Le sixième chapitre aura pour objectif : le dimensionnement du réseau d'assainissement, le calcul hydraulique nécessaire pour l'évaluation des débits de pointes d'eaux usées, la détermination des pentes, le calcul des diamètres ainsi que la vérification des conditions autocurage.

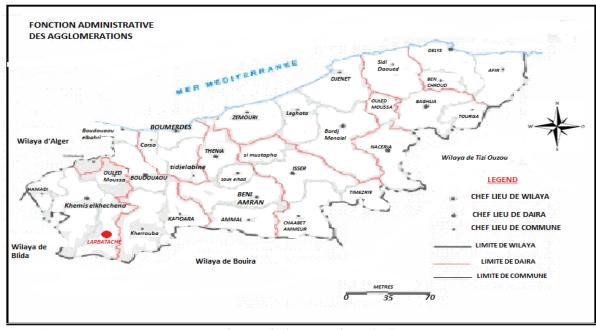
Le dernier chapitre sera réservé au dimensionnement des bassins de décantation, afin de remédier à la charge polluante transportée, la protection de l'environnement et la santé publique seront assurés.

On terminera notre travail par une conclusion générale et des recommandations à prendre en considération.

Chapitre I: Présentation de la zone d'étude

Introduction

Tout projet hydraulique commence par la prospection de la zone d'étude ayant pour but la collecte des données requises pour l'étude hydraulique de la région concernée, ces données servent de base et de guide pour l'étude hydraulique de la zone d'étude.


I.1. Situation géographique

La commune de LARBATACHE est apparue avec le découpage administratif de 1984. Elle est rattachée administrativement à la Daïra de KHEMIS EL KHECHENA, sur la partie méridionale de la wilaya de BOUMERDES. Elle s'étend sur une superficie de 52 Km². Elle est délimitée comme suit :

- Au Nord par la commune d'OULED MOUSSA;
- A l'Est par la commune de KHAROUBA;
- A l'Ouest par la commune de KHEMIS EL KHECHNA;
- Au Sud par la commune de BOUKERAM, wilaya de BOUIRA.

L'étude concerne le centre urbain (Aagglomération de chef-lieu) de la commune de LARBATACHE qui est traversée par la RN 29 (axe KHERROUBA LARBATACHE). La zone d'étude se trouve dans la partie basse de la commune. Elle est distante de 4 Km seulement du chef-lieu de Daïra de KHEMIS EL KHECHENA et de 20 Km du chef-lieu de la Wilaya de BOUMERDES. Elle inclut les localités suivantes :

- ➤ Lotissement TAKMILIA :
- ➤ Hai NOUADER I et II;
- ➤ Hai EL DJADID :
- ➤ Domaine BOUMÉZIANE ;
- ➤ POS1 et POS 12 :
- ➤ Programme en cours de 290 logements ;
- > Programme en cours de 200 logements.

Figure I.1 : *Situation géographique de la zone d'étude (LARBATACHE BASSE)*

Figure I.2 : La zone d'étude (image satellitaire)

I.2.Données naturelles du site

I.2.1. Situation topographique

LARBATACHE est caractérisée par un relief contrasté constitué de plaines et de montagnes qui occupe plus de 75% du territoire communal dans sa partie Sud. Avec une altitude qui atteint 600 à 300 m du sud vers le Nord et de 683 à 258 m d'Est vers l'Ouest.

I.2.2. Situation climatique

I.2.2.1. Climat

Du point de vue climatique, LARBATACHE se caractérise par un climat méditerranéen subhumide, avec un régime très irrégulier de précipitations qui peuvent atteindre les 500 mm/ans [1]. Le tableau (I.1) ci-après nous donne la répartition mensuelle des précipitations pour l'année de 2012 :

Mois	S	0	N	D	J	F	M	A	M	J	J	A	Total
Moyenne (mm)	15,6	12,6	202,7	90,8	63,5	61,4	127,9	3,1	5,8	59,1	0	0	642,5
%	3	2	32	10	14	10	20	0.5	1	10	0	0	100

Tableau I.1 : Répartition moyenne mensuelles des précipitations

I.2.2.2. Température

La température moyenne annuelle est de 17,25°C. Les mois de la période la plus chaude est comprise entre le mois de juin et septembre où les températures moyennes dépassent les 21°C.

La moyenne mensuelle des températures durant la saison froide se prolonge pendant six mois, de Novembre à avril. Les valeurs des températures minimales et maximale sont respectivement de -4°C et de 40°C. Le tableau (I.2) ci-dessous montre les températures moyennes mensuelles à LARBATACHE [1].

Mois S O N J F J J D M A M Α Moyenne 31 19,8 16,9 11,7 8,8 9.8 12,8 15,4 17,7 21,7 35 37 $(^{\circ}C)$

Tableau I.2 : Moyennes mensuelles des températures à LARBATACHE

I.2.2.3. Vent

Une étude statistique de l'US Naval Weather service implanté au large d'Alger (station d'observation : 37° 4' latitude Nord 3° 9' longitude Est) a mis en évidence que les vents dominants sont ceux de l'Ouest et du Nord-Ouest et soufflent en prédominance de Novembre à Avril.

Les vents Est et Nord-Est soufflent en été, les vents du Nord sont plus fréquents et soufflent durant toute l'année. Le sirocco, vent du Sud, chaud et sec de direction Sud-est et Sud-Ouest, souffle avec une faible intensité avec une moyenne de 20 jours/année [2].

I.2.3. Géologie

La région LARBATACHE, faisant partie de la chaine des maghrébines de la grande Kabylie, appartient au domaine tellien de l'Algérie du nord. Avec la chaine calcaire et des nappes flysch.

I.2.4. Séismicité

LARBATACHE est situé sur une zone particulièrement vulnérable à l'aléa sismique car le contexte géodynamique régional a engendré dans le nord de l'Algérie un ensemble de structures tectoniques (pli, failles...) d'activités sismiques élevées comme l'atteste la fréquence des séismes durant le siècle dernier [1].

I.3. Situation démographique

La population totale de la commune de LARBATACHE est estimée à 18515 habitants en 2008, Avec une densité moyenne de 373 habitants / Km² dont 69,98 % de la population est concentrée au niveau de l'ACL [3].

la commune de LARBATACHE est composée de :

- Agglomération chef-lieu : LARBATACHE
- Agglomération secondaire : SIDI MANSOUR et OULED MAAMAR
- La zone Eparse : La zone éparse est divisée en 6 districts.

La population dans LARBATACHE basse est estimée à 6718 habitants. Le taux d'accroissement le plus élevé est enregistré au niveau de l'agglomération chef-lieu d'une valeur de 2.20 %.

Pour l'évaluation de la population à l'horizon de notre projet, soit 25 ans, on utilise le nombre d'habitants recensé en 2008 en tenant compte du coefficient d'accroissement cité cidessus. L'estimation du nombre d'habitants future se fera solen la formule suivante :

$$P = P_{\theta} (1 + T_{ac})^n \tag{I.1}$$

D'où:

▲ P: Nombre d'habitants dans « n » années (à l'horizon de 2042);

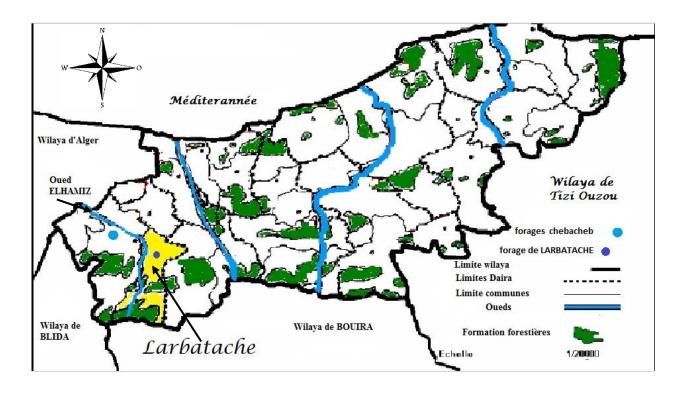
▲ P₀: Nombre d'habitants actuel;

▲ T_{ac}: Taux d'accroissement de la population ;

▲ n : Nombre d'années séparant l'année de recensement et l'horizon de calcul.

Les résultats obtenus sont représentés dans le tableau (I.3) suivant :

Agglomération 2008 2017 2027 2042 LARBATACHE haute 8090 5350 6508 11213 LARBATACHE basse 6718 8171 10157 14078 SIDI MANSOUR 1492 2212 3127 1815 OULED MAAMER 2015 2452 3048 4225


Tableau I.3 : Evolution de la population à différents horizons

Pour notre cas, la partie basse de LARBATACHE atteindra les 14078 habitants à l'horizon de 2042 soit une estimation sur 25 ans.

I.4. Situation hydrographique

La zone d'étude est drainée par des cours d'eau dont le plus important est oued EL HAMIZ qui traverse la ville. Ses eaux déversent dans le barrage HAMIZ.

La commune possède un forage à l'intérieur de son territoire. Le débit du forage est estimé à 12 l/s.

Figure I.3 : *Situation hydrographique de la zone d'étude*

I.5. Situation hydraulique

I.5.1. Situation d'AEP

L'alimentation en eau potable de l'agglomération de LARBATACHE est assurée par dix forages. Ces derniers se situent au champ captant de CHEBACHEB qui se trouve dans la daïra de KHEMIS EL KHECHENA. Ces forages débitent environ 132 l/s [4].

La distribution vers notre zone d'étude est assurée par un réservoir KHAHALIA de (2x250) m³ qui se trouve à KOUDIET EL KAHLA. Ces eaux sont distribuées dans un réseau du type ramifié.

I.5.2. Situation d'Assainissement

L'agglomération chef-lieu de LARBATACHE est dotée d'un réseau d'assainissement du type unitaire évacuant toutes les eaux (eaux usées, eaux pluviales), composé principalement de conduites en diamètre 300 mm raccordées à des collecteurs de diamètre 400 et 600 mm [3].

L'assainissement au niveau de l'ACL se caractérise par un nombre important de rejets, sans aucun traitement préalable, causant un préjudice à l'environnement et constitue une menace sur la santé des habitants.

I.6. Occupation du sol

I.6.1. Zone d'habitation

Le tissu urbain de la zone d'étude est occupé par des habitations individuelles allant d'un (R+1) jusqu'au (R+4). Ces habitations sont éparpillées avec une densité variable.

I.6.2. Equipment existants

Les différents équipements existants dans la zone d'étude, sont décrits dans le tableau (I.4) suivant :

Tableau I.4 : Liste des équipements existants

Eq	Nombre	
Scolaires	Ecole primaire	01
Para - Scolaires	CFPA Crèche	01
Sanitaires	Centre de santé	01
Socioculturels	Mosquée	01 01
Sportifs	Un stade Communale Complexe Omni sport	01 01
Administratifs	Siège d'APC Gendarmerie Siège de la sureté Poste	01 01 01 01
Commerces	Marché	01

Conclusion

Dans ce chapitre, nous avons présenté ses différents angles de notre zone d'étude, en occurrence, LARBATACHE dans lequel, nous avons décrit, la topographie, le climat, la situation : hydrographique, hydraulique et la situation démographique pour un horizon de 25 ans.

Ces différentes informations représentent les données de base pour l'élaboration de notre travail qui est la conception d'un nouveau réseau de distribution d'eau potable et d'assainissement de la zone d'étude (LARBATACHE partie basse) afin de résoudre et de remédier aux difficultés liées à ces derniers.

Introduction

Les besoins de la population en eau sont de plusieurs ordres : les usages artisanaux, industriels, domestiques...etc. Concernant les usages artisanaux et industriels, ils sont relatifs aux restaurants, hôtels, aux petites industries manufacturières, aux imprimeries...etc. Les usages domestiques sont ceux relatifs aux ménages. Ils correspondent donc aux quantités d'eau indispensables à l'ensemble de la population pour les différents usages à domicile.

La consommation domestique d'eau potable est la seule utilisation pour laquelle l'on peut établir un seuil minimum pratique. « Pour rester en bonne santé, l'être humain a besoin d'environ 100 litres d'eau par jour boire, cuisiner et se laver ».

Le seuil tolérable pour la consommation d'eau par jour et par personne est estimé par la Banque Mondiale à 100 litres.

L'estimation de cette consommation est basée sur la consommation journalière moyenne et sera suivie d'une étude des variations des consommations pour des périodes de temps plus brèves, par exemple, un jour ou une heure.

II.1. Dotation

Il est à noter que l'OMS a adopté une valeur de 40 l/habitant/jour pour assurer l'alimentation de petites agglomérations des pays en voie de développement. Cette estimation prévoit toutefois une marge de 50% pour le gaspillage inévitable quand il y a une certaine distance entre le point d'eau et le domicile du consommateur.

En se basant sur les tendances et les recommandations internationales, la dotation moyenne par habitant et par jour est répartie comme suit :

- ✓ Ville de moins de 20000 hab : 150 à 200 l/j/hab.
- ✓ Ville de 20000 à 100000 hab : 200 à 300 l/j/hab.
- ✓ Ville de plus de 100000 hab : 300 à 350 l/j/hab.

Notre zone d'étude est du type urbain qui aura une population de 14078 habitants à l'horizon 2042, par conséquent, la norme de dotation unitaire journalière se situe aux alentours de 200 l/j/hab pour les différents horizons (court, moyen et long terme).

II.2. Consommation moyenne journalière pour les différents besoins

La consommation moyenne journalière est définie comme étant le produit de la dotation moyenne journalière par le nombre de consommateurs, pour répondre à toutes les sortes de consommation. Pour le calcul des besoins moyens journaliers on utilise la formule suivante :

$$\mathbf{Q}_{\text{Moy.J}} = \frac{\text{Dot} \times \mathbf{N}}{1000} \tag{II.1}$$

D'où:

- ✓ $Q_{Moy.J}$: Débit moyen journalier en (m^3/j) ;
- ✓ Dot : Dotation journalière en eau potable en (l/hab/j) ;
- ✓ N : Nombre d'usagers pour chaque catégorie de consommateurs.

II.2.1. Estimation des besoins domestiques

Les besoins en eau de la population sont donnés dans le tableau (II.1) ci-après [3]:

Tableau II.1 : Evaluation des besoins moyens journalier à différents horizons

Horizons	Dotation (l/j/hab)	Population	Besoins moyens (m³/j)
2017	200	8171	1634,2
2027	200	10157	2031,4
2042	200	14079	2816

II.2.2. Estimation des besoins administratifs

Les besoins en eau potable des administrations sont très importants pour assurer l'hygiène et un environnement sain au niveau d'une société où l'utilisation de l'eau est très variée, comme pour la boisson, pour les sanitaires, ou pour d'autres utilisations secondaires comme l'arrosage des jardins. Concernant notre zone d'étude, les besoins administratifs et leurs dotations sont représentés dans le tableau (II.2) ci-dessous [3]:

Dotation **Equipement** Unité Nombre $Q_{\text{moy,j}} (m^3/j)$ (l/j/unité) Siege APC 50 0.75 **Employé** 15 Siège de la 120 25 3 Agent Gendarmerie La sureté Agent 50 25 1,25 La poste **Employé** 20 15 0.30 5,3

Tableau II.2: Evaluation des besoins administratifs en eau

II.2.3. Estimation des besoins sanitaire

Les besoins en eau pour les équipements sanitaires pour LARBATACHE basse sont représentés dans le tableau (II.3) suivant [3]:

Equipement	Unité	Nombre	Dotation (l/j/unité)	$Q_{moy,j}(m^3/j)$
Centre de soins	m^2	400	20	8

Tableau II.3: Evaluation des besoins sanitaires en eau

II.2.4. Estimation des besoins scolaires

Notre zone d'étude possède des équipements scolaires dont les besoins en eau sont définis dans le tableau (II.4) ci-après [3]:

 $Q_{\text{moy.j}}$ (m³/j) **Equipement** Nombre Dotation (l/j/unité) Unité Ecole primaire Elève 855 10 8,55 (LARBATACHE) **CFPA** 950 10 9,5 Apprenti 18,05

Tableau II.4: Evaluation des besoins scolaires en eau

II.2.5. Estimation des besoins socioculturels

Notre zone d'étude est constituée d'une mosquée et d'une crèche dont les besoins en eau sont représentés dans le tableau (II.5) [3]:

8

Equipement	Unité	Nombre	Dotation (l/j/per)	$Q_{\text{moy.j}} (m^3/j)$
Mosquée	Fidèle	600	5	3
Crèche	Enfant	150	10	1,5
	4,5			

Tableau II.5: Evaluation des besoins socioculturels en eau

II.2.6. Estimation des besoins industriels

Certains établissements industriels sont directement alimentés totalement ou partiellement par le réseau de distribution d'eau potable. Quand les modes d'alimentation sont distinctes, ce qui en général le cas pour les industries importantes, les prélèvements autonomes et les rejets peuvent avoir une incidence sur les ressources disponibles pour le réseau public.

D'autre part, l'évaluation des besoins en eau industriels est nécessaire pour l'étude du plan de développement d'une agglomération. Les besoins industriels de notre zone d'étude sont représentés dans le tableau (II.6) ci-dessous [3]:

Tableau II.6 : Evaluation des besoins industriels en eau

Equipement	$Q_{\text{moy,j}}(\mathbf{m}^3/\mathbf{j})$
CHIALI (matériaux de constructions)	2,1
Atelier	2,1
Σ	4,2

II.2.7. Estimation des besoins commerciaux

L'estimation de cette eau est définie par l'eau utilisée dans les zones commerciales comme les marchés, les centres de commerce. Généralement, les consommations en eau sont mesurées dans chaque établissement à l'aide de compteurs.

Les besoins en eau du marché sont généralement destinés aux lavages et entretiens, ils sont résumés dans le tableau (II.7) suivant :

Tableau II.7: Evaluation des besoins commerciaux en eau

Equipement	Unité	Surface	Dotation (l/j/unité)	$Q_{\text{moy,j}}(m^3/j)$
Marché couvert	m^2	700	5	3,5
Couvert	3,5			

II.2.8. Estimation des besoins de loisirs

Les besoins de loisirs estimés sont résumés dans le tableau (II.8) ci-dessous :

Tableau II.8: Evaluation des besoins de loisirs

Equipement	Unité	Surface	Dotation (l/j/unité)	$Q_{\text{moy,j}}$ (m ³ /j)
02 aires de jeux	m^2	800	10	8
Salle de sports	Entrée	50	35	1,75
02 terrains de sports	30			
	39,75			

Les besoins en eau de la zone LARBATACHE basse, sont récapitulés dans le tableau (II.9) suivant :

Secteur	Besoins actuel (m³/j) 2017	Besoins à horizon 2042 (m³/j)
Domestique	1634,2	2816
Administratifs	5,3	5,3
Scolaires	18,05	18,05
Sanitaires	8	8
Loisirs	39,75	39,75
Socioculturels	4,5	4,5
Industriels	4,2	4,2
Commerciaux	3,5	3,5
Totale	1717,5	2899,3

Tableau II.9 : Récapitulation des besoins en eau de la zone d'étude

II.3. Majoration de la consommation moyenne journalière

Les pertes sont dues à un manque d'étanchéité au niveau des joints des canalisations favorisant ainsi les fuites d'eau dans le réseau, mais aussi à des conduites défectueuses du réseau d'alimentation en eau potable. Toutefois, les pertes dans les résidences, dues à un usage abusif ou à une installation intérieure défectueuse, ne sont pas comptabilisées dans les pertes mais plutôt dans la consommation domestique. Les pertes sont difficiles à déterminer de façon précise.

L'ensemble des fuites sur les adductions et le réseau varient suivant le type de canalisation, leur vétusté, la nature de terrain et la qualité de l'entretien.

Compte tenu des quantités d'eau prévues pour les fuites de réseau de distribution, il est à noter que :

- Dans un réseau de distribution bien entretenu, les pertes atteignent les 25 % de la consommation moyenne journalière.
- ➤ Dans un réseau de distribution moyennement entretenu, les pertes sont comprises entre 25 % et 35% de la consommation moyenne journalière.
- > Dans un réseau de distribution mal entretenu, les pertes peuvent dépasser les 50 % de la consommation moyenne journalière.

Pour compenser ces fuites, on effectue une majoration de 20%. Ce qui donne un coefficient de majoration de $K_f = 1,2$

Le débit moyen journalier majoré est donné par la formule suivante :

$$\mathbf{Q}_{\text{moy,j,maj}} = \mathbf{K}_{\mathbf{f}} \times \mathbf{Q}_{\text{moy,j}} \tag{II.2}$$

Avec:

- \checkmark Q_{moy,j,maj}:
- ✓ $Q_{\text{moy},j}$: Débit moyen journalier (m³/j).
- \checkmark K_f: Coefficient de fuite.

Les besoins en eau majoré de la zone d'étude sont représentés dans le tableau (II.10) ci-après :

Tableau II.10 : *Majoration de la consommation journalière*

Horizon	2017	2042
$Q_{\text{moy.j}} (m^3/j)$	1717,5	2899,3
$Q_{\text{moy.j.maj}}$ (m ³ /j)	2061	3479,16

II.4. Variation de la consommation

La demande en eau dans un système d'alimentation en eau potable varie selon l'année, la saison, la journée et même d'une heure à l'autre au cours de la même journée. Cette demande dépend étroitement du niveau de vie qui évolue sans cesse, des conditions météorologiques variables avec la saison et même avec la journée, et de l'heure de la journée à laquelle elle se manifeste [6]. Ainsi la consommation en eau potable des populations varie de façon importante ; elle est très influencée par le type du dispositif d'alimentation en eau, la disponibilité de la pression, les habitudes culturelles, les normes et les modes de vie, l'utilisation qui est faite de l'eau, ainsi que son coût et sa qualité. [7]

II.5. Variation journalière de la consommation

L'étalement de la consommation est plus sensible dans les grandes agglomérations, les pointes ou les pics de consommation se situent normalement au début et en fin de journée. Cette variation est fonction du jour de la semaine.

Dans l'année, il existe une journée la plus chargée où la consommation d'eau est maximale, de même il existe une journée la moins chargée où la consommation est minimale.

Par rapport au débit moyen journalier, on peut déterminer un rapport nous indiquant de combien de fois la consommation maximale dépassera la moyenne de consommation ($Q_{Moy,J}$). Ce rapport est appelé le coefficient d'irrégularité journalière maximum et est noté par $K_{Max,j}$.

De même, il existe un rapport qui nous indique de combien de fois la consommation minimale est inférieure par rapport à la consommation moyenne ; ce rapport est le coefficient d'irrégularité minimum journalière $K_{\text{Min,i}}$.

II.5.1. Coefficient d'irrégularité minimum journalière

$$\mathbf{K}_{\mathbf{Min.j}} = \frac{\mathbf{Q}_{\mathbf{Min.j}}}{\mathbf{Q}_{\mathbf{Mov.i.maj}}} \tag{II.3}$$

Où:

- ✓ $Q_{Moy,j,maj}$: Débit moyen journalier majoré en (m^3/j) ;
- \checkmark Q_{Min.j}: Consommation minimale journalière [m³/j];
- ✓ K_{Min,i}: Coefficient d'irrégularité minimum journalière.

Le coefficient d'irrégularité minimum journalière varie entre 0,7 et 0,9

Pour notre cas, on prendra la valeur moyenne : $K_{Min,j} = 0.8$

II.5.2. Coefficient d'irrégularité maximum journalière

$$\mathbf{K}_{\text{Max,j}} = \frac{\mathbf{Q}_{\text{Max,j}}}{\mathbf{Q}_{\text{Moy,j}}} \tag{II.4}$$

D'où:

- ✓ $Q_{\text{Max,i}}$: Consommation maximale journalière (m³/j).
- ✓ K_{Max,j}: Coefficient d'irrégularité maximum journalière.

Le coefficient d'irrégularité maximum journalière varie entre 1,1 et 1,3

Dans notre cas on prendra la valeur moyenne : $K_{\text{Max,j}} = 1,2$

II.6. Détermination des débits journaliers

La consommation subite différente variations au cours de l'année. On observe 4 types de variations en matière de débit d'eau de consommation, dues à 4 types de phénomènes distincts dont

la superposition des effets nous donne des indications en tant que projeteur et aussi qu'exploitants. Ces derniers peuvent être définis comme Suits :

II.6.1. Débit maximal journalier

Le débit maximal journalier est définit comme étant le débit de la journée de l'année où la consommation atteint un seuil maximal par rapport au débit moyen établi. Sa détermination nous permet de procéder au dimensionnement : des conduites d'adduction, de la station de pompage, du réservoir de stockage. Ce dernier est déterminé par la formule suivante :

$$\mathbf{Q}_{\text{Max,j}} = \mathbf{K}_{\text{Max,j}} \times \mathbf{Q}_{\text{Moy,j}} \tag{II.5}$$

D'où:

✓ $Q_{\text{Max},j}$: Débit maximal journalier (m³/j);

✓ K_{Max.j}: Coefficient d'irrégularité maximum journalière.

II.6.2. Débit minimal journalier

Le débit minimal journalier est définit comme étant le débit de la journée de l'année où la consommation atteint un seuil minimal par rapport au débit moyen établi. Ce dernier est déterminé par la formule suivante :

$$\mathbf{Q}_{\mathbf{Min.j}} = \mathbf{K}_{\mathbf{Min.j}} \times \mathbf{Q}_{\mathbf{Moy.j}} \tag{II.6}$$

Avec:

✓ $Q_{Min,j}$: Débit minimal journalier (m³/j).

✓ K_{Min.j}: Coefficient d'irrégularité minimum journalière.

Les résultats obtenus pour le calcul du débit maximal journalier et le débit minimal journalier sont représentés dans le tableau (II.11) ci-dessous :

Tableau II.11 : Récapitulatif de calcul des débits journaliers

Q _{Moy,j,maj} (m ³ /j)	K _{Max.j}	$Q_{\text{Max.j}} (m^3/j)$	K _{Min.j}	$Q_{\text{Min.j}} (m^3/j)$
3479,16	1,2	4175	0,8	2783,33

II.7. Variation horaire de la consommation

A la conception, la prévision du régime de consommation permet de définir les diamètres des conduites, les volumes de régulation des réservoirs ou les dépenses d'énergie relatives au transport de l'eau. En plus, tous les débits attendus pendant la période de calcul sont pris en compte. A l'exploitation du système d'alimentation en eau potable, la prévision des débits est nécessaire pour de courtes périodes (quelques heures, journées...), mais dans ce cas outre les débits attendus, il faut connaître le temps d'apparition de l'un ou de l'autre débit c'est-à-dire qu'on a besoin de la prévision du graphique de variation de la consommation. Ces graphiques doivent servir de base pour la résolution des problèmes d'exploitation tels que la répartition optimale des débits de pompage [8].

Les données les plus complètes sur l'ensemble des débits horaires peuvent être obtenues si la fonction de répartition de ces débits est connue. Pour se faire, le régime de consommation constitue la base de la conception du système d'AEP. Le débit horaire est utile pour le dimensionnement des prises d'eau, de la première station de pompage, des stations de traitement, des conduites d'eau.

Si dans une agglomération, la consommation industrielle est prépondérante par rapport à la consommation domestique, les consommations moyennes et maximales s'approchent l'une de

l'autre, et par conséquent leur rapport diminue. Par contre si l'inverse s'observe, ce rapport a tendance à augmenter.

Ce dernier, que soit maximum ou minimum ($K_{max.H}$; $K_{min.H}$) tient compte explicitement de l'aménagement des bâtiments, du développement d'équipement sanitaire, du régime de travail et d'autres conditions locales [8].

D'une façon plus précise les coefficients horaires maximum et minimum peuvent être décomposés à leur tour en deux autres coefficients qui dépendent des caractéristiques de l'agglomération à savoir :

- \triangleright Un coefficient α tenant compte de développement industriel, du retard de consommation et des habitudes de la population. Ce dernier varie de 1,2 à 1,4 pour α_{max} et de 0,4 à 0,6 pour α_{min} .
- \triangleright Un coefficient β lié étroitement à l'accroissement de la population. Il prend également des valeurs maximales et minimales.

De façon générale, le coefficient d'irrégularité de la consommation horaire K_H peut s'écrire de la manière suivante :

> Pour le coefficient maximum horaire :

$$\mathbf{K}_{\text{max},\mathbf{H}} = \boldsymbol{\beta}_{\text{max}} \times \boldsymbol{\alpha}_{\text{max}} \tag{II.7}$$

> Pour le coefficient minimum horaire :

$$\mathbf{K}_{\min,H} = \boldsymbol{\beta}_{\min} \times \boldsymbol{\alpha}_{\min} \tag{II.8}$$

II.7.1. Détermination de Kmax.H

Pour notre cas on prend $\alpha_{\text{max}} = 1.3$

Le tableau (II.12) ci-dessous résume les valeurs de β_{max} en fonction du nombre d'habitant : [8]

Habitant X 10 ³	<1	15	2,5	4	6	10	20	50
β_{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15

Tableau II.12 : β_{max} *en fonction du nombre d'habitants*

Le nombre de population pour notre horizon d'étude (25 ans) est de 14079 habitants, le coefficient α_{max} se situe dans l'intervalle [1,2÷1,4]. Pour la détermination du coefficient β_{max} nous utiliserons l'interpolation suivante :

$$\beta_{\text{max}} = \beta_{\text{max}0} + (P_1 - P_0) \frac{(\beta_{\text{max}1} - \beta_{\text{max}0})}{(P_1 - P_0)}$$
 (II.9)

D'où:

- ✓ $\beta_{\text{max}0}$ =1,3 correspondant à P₀= 10000 habitants ;
- ✓ P: Nombre de la population à notre horizon d'étude (14079 Habitants);
- ✓ $\beta_{\text{max}1}$ = 1,2 correspondant à P₁ =20000 habitants.

On obtient:

 $\beta_{\text{max}} = 1,26$

On aura par suite:

 $K_{\text{max.H}} = 1,64$

On prend le $K_{\text{max.H}} = 1,7$ standard (Annexe 2).

Comme cette valeur n'est pas dans tableau de coefficient maximal horaire de la consommation, on prend la valeur la plus proche

II.7.2. Détermination de Kmin.H

Pour notre cas, on prend $\alpha_{\min} = 0.5$

Le tableau (II.13) ci-dessous résume les valeurs de β_{min} en fonction du nombre d'habitant [8] :

Tableau II.13: β_{min} en fonction du nombre d'habitants

Habitant	<1000	1500	2500	4000	6000	10000	20000	50000
$oldsymbol{eta}_{ ext{min}}$	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6

Le nombre de population pour notre horizon d'étude (25 ans) est de 14079 habitants, le coefficient α_{min} se situe dans l'intervalle [0,4÷0,6]. Pour la détermination du coefficient α_{min} , nous utiliserons l'interpolation suivante :

$$\boldsymbol{\beta}_{\min} = \boldsymbol{\beta}_{\min0} + (\mathbf{P}_1 - \mathbf{P}_0) \frac{(\boldsymbol{\beta}_{\min0} - \boldsymbol{\beta}_{\min0})}{(\mathbf{P}_1 - \mathbf{P}_0)}$$
(II.10)

Avec:

✓ $\beta_{\text{min0}} = 0.4$ correspondant à $P_0 = 10000$ habitants;

✓ P: Nombre de la population à notre horizon d'étude (14079 Habitants);

✓ $\beta_{\text{min}1}$ = 0,5 correspondant à P₁ =20000 habitants.

Après calcul on obtient : $\beta_{min} = 0.44$

On aura : $K_{min.H} = 0,22$

II.7.3. Débit moyen horaire

Le débit moyen horaire est utilisé généralement pour le dimensionnement des prises d'eau, de la première station de pompage pour les réseaux d'alimentation en eau potable, des stations de traitement et des conduites de distribution d'eau. Sa valeur est obtenue par la formule suivante :

$$\mathbf{Q}_{\mathbf{Moy.H}} = \frac{\mathbf{Q}_{\mathbf{Max.j}}}{\mathbf{T}} \tag{II.11}$$

Avec:

✓ $Q_{Moy.H}$: Débit moyen horaire en (m^3/h) .

✓ T: Durée du jour prise généralement égale à 20 heures.

On aura:

$$Q_{\text{Moy.H}} = \frac{4175}{20} = 208,75 \text{ m}^3/\text{h}$$

II.7.3.1. Débit maximal horaire

Ce débit joue un rôle très important dans les différents calculs du réseau de distribution, il est déterminé par la relation suivante :

$$\mathbf{Q}_{\text{Max.H}} = \mathbf{K}_{\text{Max.H}} \times \mathbf{Q}_{\text{Mov.H}} \tag{II.12}$$

Avec .

✓ $Q_{\text{Max.H}}$: Débit maximal horaire (m³/j).

II.7.3.2. Débit minimal horaire

C'est la consommation minimale atteinte durant la consommation journalière, elle est déterminée par la relation suivante :

$$\mathbf{Q}_{\mathbf{Min.H}} = \mathbf{K}_{\mathbf{Min.H}} \times \mathbf{Q}_{\mathbf{Mov.H}} \tag{II.13}$$

Avec:

✓ $Q_{Min.H}$: Débit minimal horaire (m³/h).

Le tableau (II.14) ci-dessous résume les valeurs du débit maximal horaire et le débit minimal horaire :

Tableau II.14 : Récapitulatif de calcul des débits horaires

Q _{Moy.H} (m ³ /h)	Кмах.н	Q _{Max.H} (m ³ /h)	K _{Min.H}	Q _{Min.H} (m ³ /h)
208,75	1,64	342,35	0,22	45,93

II.8. Régime de consommation de LARBATACHE basse

Dans tout avant-projet, il est nécessairement utile de connaître le régime de consommation de l'agglomération qui nous donnera un aperçu, non seulement sur le régime de travail de tous les éléments du système d'alimentation, mais également sur leur dimensionnement. Le régime de consommation est variable en fonction des habitudes de la population et de sa vocation. Pour certains consommateurs comme par exemple les unités de production, on détermine tout simplement un régime ou un graphique de consommation car dans ce cas, il est plus exact vu son rapport avec le schéma technologique de production.

Dans le cas des agglomérations, le pronostic du régime de consommation d'eau est plus difficile du fait qu'on ne connait pas avec exactitude les habitudes de la population en divers moments de la journée et de l'année [8].

Le régime de consommation d'eau joue un rôle très important dans les calculs hydrauliques. En effet en fonction de la quantité d'eau nécessaire à la consommation et du choix de ce dernier, nous pouvons déterminer par calcul :

- Les dimensions de certains ouvrages et de certaines installations ;
- La capacité des réservoirs destinés au stockage de l'eau traitée ;
- La hauteur et la capacité des réservoirs ;
- > Et enfin le dimensionnement des canalisations.

La méthode la plus valable pour la détermination du régime de consommation est l'étude d'analyse du fonctionnement du système de distribution d'eau dans les agglomérations existantes. Ainsi par analogie, on adopte un régime de consommation probable d'eau pour l'agglomération étudiée. Le régime de répartition horaire en fonction des agglomérations donne dans annexe 1.

Pour notre cas, l'estimation de la population à l'horizon d'étude qui est de 25 ans, le nombre d'habitants est de 14079, donc le coefficient de répartition des débits se situe entre 10001 et 50000 habitants, ainsi le régime de consommation de notre zone d'étude est représenté dans le tableau (II.15) ci-dessous :

Tableau II.15 : Coefficients de répartition des débits horaires de l'agglomération

W (b)	Coefficient de répartition des débits
Heures (h)	horaires de l'agglomération (%)
0-1	1,5
1-2	1,5
2-3	1,5
3-4	1,5
4-5	2,5
5-6	3,5
6-7	4,5
7-8	5,5
8-9	6,25
9-10	6,25
10-11	6,25
11-12	6,25
12-13	5,00
13-14	5,00
14-15	5,50
15-16	6,00
16-17	6,00
17-18	5,50
18-19	5,00
19-20	4,50
20-21	4,00
21-22	3,00
22-23	2,00
23-24	1,50

II.9. Répartition des débits horaires

Le débit horaire représente la consommation de l'agglomération durant les différentes heures de la journée, en fonction du coefficient de majoration des débits, ce dernier est déterminé comme suit :

$$\mathbf{Q}_{\mathrm{H,i}} = \alpha_{\mathrm{h,i}} \times \mathbf{Q}_{\mathrm{Max,I}} \tag{II.14}$$

Avec:

✓ $Q_{H.i}$: Débit à l'heure i en (m^3/h) .

✓ $\alpha_{h.i}$: Pourcentage horaire de consommation.

Sachant que notre débit maximal journalier est de **4175 m³/j**, les résultats de calcul horaire sont représentés dans le tableau (II.16) ci-dessous :

Tableau II.16 : Régime de consommation de LARBATACHE

Heures (h)	α _{h.i} (%)	Q _{H.i} (m ³ /h)	Coefficient cumulé de répartition horaire α _{h.i} (%)	Q _{H.i} Cumulé (m³/h)	Observation
0-1	1,5	62,625	1,5	62,625	QH.i.min
1-2	1,5	62,625	3,00	125,25	QH.i.min
2-3	1,5	62,625	4,5	187,875	QH.i.min
3-4	1,5	62,625	6	250,5	QH.i.min
4-5	2,5	104,375	8,5	354,875	
5-6	3,5	146,125	12,00	501	
6-7	4,5	187,875	16,5	688,875	
7-8	5,5	229,625	22	918,5	
8-9	6,25	260,9375	28,25	1179,4375	QH.i.max
9-10	6,25	260,9375	34,5	1440,375	QH.i.max
10-11	6,25	260,9375	40,75	1701,3125	QH.i.max
11-12	6,25	260,9375	47	1962,25	QH.i.max
12-13	5,00	208,75	52	2171	
13-14	5,00	208,75	57	2379,75	
14-15	5,50	229,625	62,5	2609,375	
15-16	6,00	250,5	68,5	2859,875	
16-17	6,00	250,5	74,5	3110,375	
17-18	5,50	229,625	80	3340	

Heures (h)	α _{h.i} (%)	Q _{H.i} (m ³ /h)	Coefficient cumulé de répartition horaire $\alpha_{h.i}(\%)$	Q _{H.i} Cumulé (m³/h)	Observation
18-19	5,00	208,75	85	3548,75	
19-20	4,50	187,875	89,5	3736,625	
20-21	4,00	167	93,5	3903,625	
21-22	3,00	125,25	96,5	4028,875	
22-23	2,00	83,5	98,5	4112,375	
23-24	1,5	62,625	100	4175	QH.i.min

Tableau II.16 : Régime de consommation de LARBATACHE (suite et fin)

II.10. Graphique de consommation et courbe intégrale de la consommation de l'agglomération

Le graphique de consommation représente une reproduction simple du régime de consommation de notre zone d'étude sous forme d'histogramme et de courbe. (Figures(II.1), (II.2)).

NB: l'intervalle horaire est représenté par son centre.

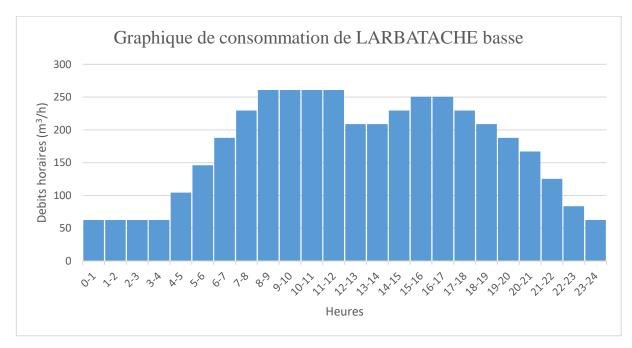


Figure II.1 : Régime de consommation de LARBATACHE basse

La figure (II.1) montre la variation journalière de la consommation de notre zone d'étude. On voit bien que le seuil maximum de la consommation journalière est atteint entre 8 H et 12 H et cela s'explique par l'utilisation de l'eau par les abonnés à ces heures de pointes. La consommation

maximale horaire atteindra **260,9375** m³/h par contre le minimum est de l'ordre de **62,625** m³/h enregistré à des heures creuses par rapport à l'utilisation de l'eau.

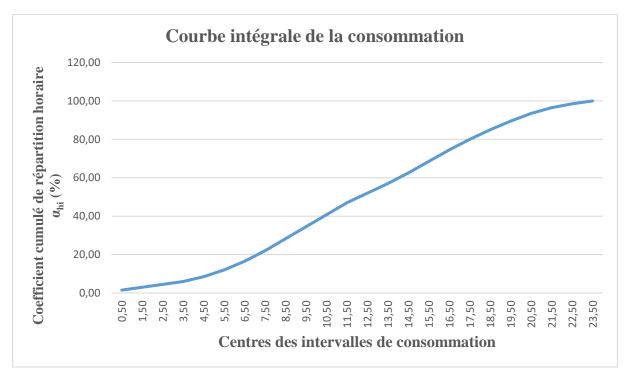


Figure II.2 : Courbe intégrale de la consommation de la zone de LARBATACHE basse

Après avoir estimé les divers besoins de notre zone d'étude à savoir les débits journaliers et les débits horaire et avoir opter pour un régime de consommation de la localité LARBATACHE basse, les résultats des exigences en eau sont récapitulés dans le tableau (II.17) suivant :

Débit moyen journalier majoré en m³/j	3479,16
Débit maximal journalier en m³/j	4175
Débit minimal journalier en m³/j	2783,33
Débit moyen horaire en m³/h	208,75
Débit maximal horaire en m³/h	342,35
Débit minimal horaire en m ³ /h	45,93
Heure de pointe	8 h à 12 h
Heure de faible consommation	23 h à 4 h du matin.

Tableau II.17: Besoins en eau de LARBATACHE basse

II.11. Besoins en eau pour la lutte contre les incendies

La demande en eau pour combattre les incendies a des caractéristiques assez particulières en termes de volume et de débit. En effet, la quantité d'eau requise pour lutter contre les incendies peut paraître faible lorsqu'elle est répartie sur toute l'année. Néanmoins, elle peut se faire sentir sur

des intervalles courts à un taux, ou débit, très élevé. La demande pour incendies varie selon le type de construction et le degré d'exposition à l'incendie. Le débit d'incendie s'ajoute à la journée de consommation maximale, ce qui représente environ 120 % à 200 % de la consommation moyenne journalière. L'évaluation des débits de feux, même s'ils sont concentrés sur une courte période, a une incidence importante sur le dimensionnement du réseau de distribution, d'où la nécessité d'en tenir compte dans les calculs suivants [9] :

- > Répartition des bouches d'incendie.
- Volume des réservoirs (réserve d'incendies).
- > Capacité des stations de pompage.
- Évaluation de la pression résiduelle.

La défense peut être prévue à partir des conduites du réseau de distribution sur lesquelles sont branchées les bouches ou poteaux d'incendie normalisés de 100 mm de diamètre susceptible de débiter 17 l/s sous une pression de 0,6 bar (au minimum) pour un incendie pouvant atteindre une durée de deux (02) heures. La répartition des appareils dépend des risques à défendre, mais en principe l'écartement entre les prises ne doit pas dépasser 200 à 300 mètres [9].

Pour notre cas on prendra un débit de 17 l/s pour un incendie pouvant atteindre une durée maximale de 2 heures.

Conclusion

L'estimation des besoins en eau potable de la partie basse de LARBATACHE nous a conduit à un débit maximum journalier de 4175 m³/j et un débit horaire maximal de 342, 35 m³/h. Cette consommation à l'horizon de 25 ans peut entrainer des contraintes de pression et de débit par rapport aux données actuelles concernant la population et le développement de la région, cette évaluation majorée des besoins en eau peut entrainer soit un surdimensionnement du réservoir en augmentant ainsi le temps de stagnation de l'eau à l'intérieur de ce dernier, soit un surdimensionnement du réseau de distribution engendrant des chutes de pression et une mauvaise répartition du débit.

Pour éviter ces désagréments et avoir un fonctionnement normal et rentable du réseau de distribution, on procède à un diagnostic au préalable du réseau d'alimentation en eau potable de notre zone d'étude à l'état actuel, et ce, pour un dimensionnent efficace des divers organes du système d'approvisionnement d'eau.

Chapitre III : Diagnostic des réseaux existants

Introduction

L'étude de diagnostic tendra à déterminer les voies et les moyens qui nous permettrons de remédier aux difficultés de déficit d'eau du réseau de distribution et les obstacles liés au mauvais fonctionnement du réseau d'assainissement, ces deux genres de difficultés peuvent engendrées des dysfonctionnements sur les réseaux et des aléas néfastes à l'environnement et à la santé humaine.

Dans cette partie de notre travail, nous allons exposer un aperçu du réseau d'Assainissement et celui d'AEP afin d'acquérir une bonne connaissance de l'état et du fonctionnement de ces derniers et des installions les reliant, dans le but de détecter les difficultés et les anomalies que subissent les réseaux. On déterminera aussi les zones d'insuffisance en prévoyant des solutions adéquates et optimales pour satisfaire les besoins de la population à long terme (25 ans dans notre cas), aussi avoir un dimensionnement équilibré du réseau d'assainissement.

III.1. Diagnostic du système d'AEP

III.1.1. Diagnostic des points de captage

La zone basse du chef-lieu de LARBATACHE est alimentée actuellement à partir du champ captant de CHEBACHEB, qui se situe à l'extrême Nord de la commune de KHEMIS EL KHECHNA. Cette chaine est constituée par dix forages, trois d'entre eux, le 5, 6 et 7, sont à l'arrêt (Figure III.7), suite à un rabattement de la nappe. Quant aux sept forages en service (1, 2, 3, 4, 8, 9 et 10), ils refoulent l'eau à l'aide des pompes immergées vers la station de pompage de GOUNI, munie de deux réservoirs jumelés de capacité 2x500 m³, pour un débit total entrant de l'ordre de 132 l/s. Les caractéristiques de ces forages sont indiquées dans le tableau (III.1) suivant [4]:

Forages	1	2	3	4	8	9	10
Hmt (m)	110	110	100	110	170	170	170
Profondeur (m)	92,00	106	120	120	/	/	/
Niveau statique (m)	21,57	/	32,30	42,80	/	/	/
Débit	Théo	40	50	20	40	/	/
(l/s)	Exp	09	14	16	10	32	17

Tableau II.1 : Caractéristiques des forages de CHEBACHEB

Le système d'alimentation en eau potable de LARBATACHE basse est caractérisé par des insuffisances comme montre les figures (III.1), (III.2), (III.3), (III.4), (III.5), (III.6), (III.8), (III.9), (III.10), (III.11), (III.12) et (III.13) ci-dessous, on propose :

- Installation d'un manomètre au niveau du forage 2
- Rénovation du toit et soulèvement de l'armoire électrique par rapport au sol pour le forage 4.
- Réalisation d'une clôture pour le forage 10.
- Réparation de la ventouse pour le forage 9.

> Equipements électromécaniques et électriques, nécessitant des travaux de réfections et peintures pour les forages 3 et 10.

Figure III.1 : *Vue extérieure du forage 2*

Figure III.2 : Dégradation et arrêt de manomètre du forage 2

Figure III.3 : *Vue extérieure d'entrée du forage 3*

Figure III.4 : *Vue d'une vanne du forage 3*

Figure III.5 : Vue extérieure d'entrée du forage 4

Figure III.6 : Dégradation du toit et la distance non respecté entre l'armoire électrique et le sol du forage 4

Figure III.7 : Accessoires électromécaniques et électriques du forage 8

Figure III.8 : Vue extérieure d'entrée du forage 9

Figure III.9 : Fuites au niveau de la ventouse du forage 9

Figure III.10 : *Vue extérieure d'entrée du forage10*

Figure III.11 : *Vue intérieure du forage10*

III.1.2. Ouvrages de Transfert

III.1.2.1. Station de Reprise de GOUNI

La station centrale de KHEMIS EL KHECHENA (station de GOUNI) constituée de deux réservoirs $2x500 \text{ m}^3$ dont la Cr = 92,5 m et Ctp = 95,5 m. Cette station est conçue pour refouler les eaux provenant des forages vers deux directions distinctes, à savoir :

- ➤ Réservoirs alimentant KHEMIS EL KHECHNA (2×500 m³)
- ➤ Réservoirs alimentant LARBATACHE (2×250 m³)

Les caractéristiques de cet ouvrage et son état sont représenté dans le tableau (III.2) ciaprès [4]:

Tableau III.2 : Caractéristiques de la station de reprise

Station de GOUNI							
	Caractéristiques						
Nombre de pompes	Débit nominal (l/s)	Hauteur manométrique totale (m)					
01	100 vers KHEMIS EL KHECHENA 60						
01	57,70 vers LARBATACHE	90					
Comptage	Télégestion Anti-bélier						
Non	Non Non oui						
	Distributi	on					
Ouvrage alimenté		Secteurs desservis					
R KEHAHLIA $(2x250 \text{ m}^3)$		LARBATACHE					
R KHEMIS EL KHECHENA (2x500 m³)	KHEMIS EL KHECHENA						
	Etat et entre	etien					
Voie d'accès	Clôture	Robinetterie (vanne, clapetetc.)					
Piste	oui	Bonne					

Vue extérieure de la station

Tableau II	1.2. Caracteristiques	ae ia sianon ae reprise	(suite et jin)
Etanchéité de la cuve Etat du génie civintérieur		Etat de génie civil extérieur	Lavage annuel
Bonne	Bon	Bon	Oui

Tableau III.2 : Caractéristiques de la station de reprise (suite et fin)

III.1.3. Diagnostic des Adductions

Chambre de pompe

L'acheminement de l'eau à partir des forages s'effectue comme suit [4] :

Une conduite en PEHD DN 160 émerge du forage 10 pour joindre la conduite de mêmes caractéristiques sortant du forage 8 qui continue avec une conduite en PEHD DN 250, cette dernière retrouve la conduite PEHD DN 250 émergeant du forage 9 à une distance de 200 m, la conduite continue en PEHD DN 315 et joint la conduite en acier DN 150 qui émerge du forage 2 jusqu'à la chambre à vanne présenté dans la figure (II.14).

Une conduite en acier DN 168 qui sort du forage 3 et joint la conduite émergeant du forage 6 ; la continuité jusqu'à la chambre de vannes est assurée par une conduite en acier DN 200.

Une conduite en fonte DN 200 émerge du forage 7 joint directement la chambre à vanne.

Une conduite en acier DN 200 qui sort du forage 4 et joint la chambre à vanne

Une conduite en acier DN 200 émerge du forage 1 joint la station de reprise de GOUNI.

A partir de la chambre à vannes, une conduite en amiante ciment DN 300 long de CW 121 qui mène vers KHEMIS EL KHECHENA sur une distance de 6000 m en passant par différents regards de vannes jusqu'à la station de reprise de GOUNI.

Le réseau d'adduction de LARBATACHE basse a besoin d'un entretien et le nettoyage des équipements, la photo (III.15) ci-après montre l'état dégradé de regard de vannes.

Le schéma de la chaine d'adduction illustre dans la figure (III.12) ci-dessous :

Figure III.13 : Vue intérieure d'un regard de vannes

Figure III.14 : Vue à l'extérieur de la chambre de vannes

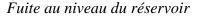
A partir de la station centrale de KHEMIS EL KHECHENA, une conduite de refoulement en amiante ciment d'une longueur de 1500 m alimente les bâches jumelées 2x250 m³ se trouvant à KEHAHLIA.

Après la visite de la quasi-totalité des ouvrages ; regards de vidanges, les ventouses et autres ouvrages et accessoires, nous avons constaté que ces derniers se trouvent en bon état, à l'exception de quelques travaux d'entretien à effectuer.

III.1.4. Ouvrages de Stockage

III.1.4.1. Réservoir KEHAHLIA 2×250 m³

Les caractéristiques de cet ouvrage et de son état sont résumés dans le tableau (III.3) cidessous [4] :


Tableau III.3 : Caractéristiques du réservoir de KEHAHLIA 2x250 m³

Réservoir KEHAHLIA 2x250 m ³						
Caractéristiques						
Capacité (m³) Type de cuve Cote radié (NGA) (NGA)						
2x250	Circulaire Semi-enterré	209,50	212,50			
	Fonctionnement					
Origine Mode Comptage Télégestion						
Station de GOUNI	Refoulement	Non	Non			

Tableau III.3 : Caractéristiques	s du réservoir de KEHAHLIA 2x250 m³ ((suite et fin)
----------------------------------	---------------------------------------	----------------

Réservoir KEHAHLIA 2x250 m ³					
Distribution					
Volume incendie (120 m³) Secteurs desservis					
Oui	Oui LARBATACHE basse, réservoir LARBATACHE (250+300) m ³				
	Etat et e	ntretien			
Voie d'accès	Clôture	Grilles d'aération	Robinetterie		
Piste	Mur en parpaing	Bon état	Bonne		
Etanchéité de la cuve	Etat du génie civil intérieur	Etat du génie civil extérieur	Lavage annuel		
Mauvaise	Bon	Mauvais	Oui		

Vue extérieure des réservoirs

III.1.5. Diagnostic du réseau de Distribution

Le réseau de distribution d'eau potable de LARBATACHE basse est ramifié, conçu en grande partie avec de l'acier galvanisé et quelques tronçons en PEHD [4].

III.1.5.1. Quartier NOUADER I et II

Le réseau de distribution de ce quartier est réalisé en 2005, ce dernier est constitué en majorité d'acier galvanisé avec des diamètres variant entre DN 32 mm et DN 80 mm auquel il s'ajoute un tronçon en PEHD DN63 mm.

III.1.5.2. Lotissement BOUMEZIANE

Le réseau de distribution est réalisé en 2007, il a été conçu avec des conduites en acier galvanisé de diamètre DN 50 mm.

III.1.5.3. Lotissement HAY EL DJADID

Le réseau de distribution est réalisé en 1986 avec des conduites en acier galvanisé de diamètres DN 80 mm auquel il s'ajoute des ramifications en PEHD de DN 50 mm réalisées en 2008.

III.1.5.4. Lotissement TAKMILIA

Le réseau de distribution de ce lotissement est réalisé en 1981 avec l'acier galvanisé, ce dernier est constitué de conduites avec des diamètres variant entre DN 50 mm et DN 80 mm auquel il s'ajoute des ramifications en PEHD de DN 32 mm.

Le réseau de distribution de la zone basse rencontre des fuites importantes. Ces dernières sont enregistrées en majorité au niveau des raccordements des pièces spéciales (coudes, joints, soudures, divers raccords,...etc.) et elles sont engendrées principalement par le vieillissement des conduites d'acier galvanisé (vétusté du réseau). Les figures (III.16) et (III.17) ci-dessous montre l'état dégradé du réseau de distribution.

Figure III.15 : Conduite de distribution en acier agressée et non sécurisée

Figure III.16 : *Vue d'un regard de vanne corrodé*

L'insuffisance d'eau en matière de quantité d'approvisionnement d'après les services gestionnaires de l'ADE, notamment durant la période estivale, constitue un véritable problème pour les abonnées. Pour cela, on va recourir à renforcer cette demande par l'eau du barrage. Nous avons aussi remarqué l'inexistence des bouches d'incendie qui sont d'une grande importance.

III.2. Diagnostic du système d'Assainissement

III.2.1. Description du réseau d'assainissement de la zone d'étude

Le réseau d'assainissement de la zone d'étude est du type unitaire évacuant toutes les eaux (eaux usées et pluviales), composé principalement de conduites en diamètre 300 mm raccordé à des collecteurs de diamètres 400 et 1000 mm [3].

Le rejet de ces eaux usées se fait actuellement dans le milieu naturel sans aucun traitement préalable, causant un préjudice à l'environnement et constitue une menace sur la santé des habitants.

La réalisation du réseau d'assainissement a débuté en 1993 et s'est élargie en fonction de l'extension de la ville. Il est très ancien, son ancienneté et le manque d'entretien ont conduit à sa dégradation progressive au fil du temps (Figure III.18). Son état ne pourra pas supporter

l'évacuation des eaux usées et pluviales pour une population de 14079 habitants à l'horizon de 2042 (horizon de notre étude).

Les réseaux d'égouts existants sont réalisés en béton. La qualité des composants utilisés tel que le ciment est parfois, en certains tronçons médiocres.

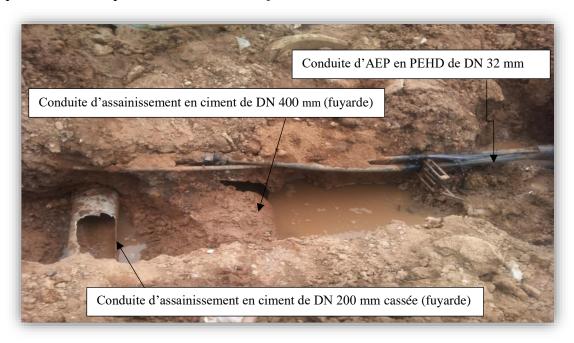


Figure III.17 : Dégradation des conduites

III.2.2. L'état physique du réseau

Le réseau d'assainissement de la zone d'étude se compose de collecteurs circulaires de diamètres variant de 300 à 1000 mm. Il occupe un linéaire d'environ 3857,94 m [3].

Il faut signaler que ce réseau est réalisé sans aucune étude préalable, ce qui a généré une situation critique et la dégradation du milieu naturel par la multitude des rejets des différents collecteurs. Pour mieux décrire ce réseau et faire ressortir ces caractéristiques et défaillances, un état du réseau d'assainissement de chaque partie de LARBATACHE basse a été traité comme suit [3]:

III.2.2.1. Lotissement HAY EL DJADID

Ce domaine se trouve dans la partie Nord-Est de la zone d'étude, les eaux usées et pluviales sont drainées par un collecteur en béton comprimé de diamètre 400 mm et une longueur de 520,75 m, réalisé en 2007, ce dernier se déverse dans un déversoir d'orage (N°02), qui se trouve sur la rive gauche du CW 36 traversant la ville. Ce déversoir est relié à un bassin de décantation avec un collecteur de diamètre 500 mm d'une longueur de 594,24 m.

Nous avons recensé environ 24 regards avec tampon en fonte réalisé et le reste en béton de forme carrée. La profondeur maximale est de 4 m et la distance entre les regards varie de 40 à 80 m sans mettre les regards non identifiés (enterrés).

III.2.2.2. Lotissement TAKMILIA

Ce lotissement se trouve au Nord-Ouest par rapport à la RN 29, il est réalisé en 2008 en ciment comprimé. Les eaux usées et pluviales de ce domaine sont transportées dans un collecteur de diamètre 300 mm d'une longueur de 295,17 m se jetant à ciel ouvert dans le rejet (N°01) sans aucun traitement préalable (Figure III.19). Le collecteur comprend 8 regards, le nombre des

regards identifiés est moins important que les regards non identifiés, ceci est dû au fait que la majorité des regards sont bitumés.

Figure III.18: Rejet 01

III.2.2.3. Domaine BOUMEZIANE

Ce domaine se trouve dans la partie Sud-Ouest de la zone d'étude. Ce dernier n'est pas doté d'un réseau d'assainissement, les eaux usées sont déversées soit dans des fosses septiques soit dans les affluents d'oued qui traversent l'agglomération. Il existe environ 4 fosses individuelles.

III.2.2.4. Quartier NOUADER II

Ce domaine se localise dans le centre de la zone d'étude sur la rive gauche de la RN29. Son réseau d'assainissement est réalisé en 2006, la majorité des conduites sont en ciment comprimé. Les eaux usées de cette partie sont acheminées par le biais d'un collecteur de diamètre 300 mm avec une longueur de 359,15 m vers le rejet (N°02) à ciel ouvert (Figure III.21). Le nombre de regards recensés dans cette partie sont de l'ordre de 14 et d'autres sont asphaltés (goudronnés) (Figure III.20).

Figure III.19 : Regard bitumé **Figure III.20 :** Rejet N°02

III.2.2.5. Quartier NOUADER I

Ce quartier se situe dans le centre de la zone d'étude à la rive droite de la RN29, son réseau d'assainissement est réalisé en 1993 avec du ciment comprimé. Les eaux usées sont transportées

par un collecteur de diamètre 400 mm avec une longueur de 702,46 m et se jettent dans un rejet (N°01) à ciel ouvert d'un effluent d'oued. Il y a environ 15 regards.

Un collecteur de diamètre 600 mm d'une longueur de 345,53 m qui se déverse dans le déversoir d'orage (N°01), qui est relié à un bassin de décantation par un collecteur de diamètre 500 mm d'une longueur de 382,58 m. Il y a environ 14 regards sur ce collecteur.

Un collecteur de diamètre 1000 mm d'une longueur de 658,06 m qui collecte une partie de ce domaine et une partie de la zone haute du chef-lieu de la commune en traversant le CW 36 vers le déversoir d'orage (N°02), qui est relié à un bassin de décantation. Il y a environ 16 regards sur ce collecteur.

III.2.3. Etat des rejets

Nous avons constaté que la totalité des rejets sont à ciel ouvert, ce qui présente un grand danger pour l'environnement et la santé publique en particulier. Les caractéristiques de ces rejets sont données dans le tableau (III.4) ci-après [3] :

Nom	Collecteur de	Point de rejet Nature Coordo		onnées	
Nom	diamètre (mm)	Pollit de Tejet	Nature	X	Y
Rejet N°01	300 et 400	Affluant d'oued EL HAMIZ (TEKMILIA)	Ciel ouvert	11280,7291	12651,1953
Rejet N°02	300	Affluant d'oued EL HAMIZ (NOUADERII)	Ciel ouvert	11374,5678	12283,7605
Bassin de décantation	500	Affluant d'oued EL HAMIZ	Ciel ouvert	11123,55	13128,8569

Tableau III.4 : Caractéristiques des rejets

III.2.4. Etat des déversoirs d'orage

Il existe deux déversoirs d'orage à seuil déversant du type latéral. Les coordonnées des déversoirs sont présentées dans le tableau (III.5) suivant [3] :

N° Déversoir	Co	ordonnées
N Deversoil	X	Y
01	11250,727	12680,0694
02	11649,4323	12710,7205

Tableau III.5 : Coordonnées des déversoirs d'orage

Le rôle prévu de ces déversoirs d'orage est de décharger la partie aval du collecteur ; actuellement ces déversoirs d'orage ne remplissent pas leurs fonctions et cela est dû à l'accumulation des débris solides et végétaux à l'amont du seuil. Il est devenu non identifiable ce qui confirme l'absence totale de l'entretien.

III.2.5. Les anomalies rencontrées

D'après cette étude effectuée sur le réseau d'assainissement existant, on constate que ce dernier souffre de beaucoup de problème, à savoir :

- ➤ Le problème majeur de la zone d'étude est le rejet des eaux usées directement vers le milieu naturel, ce qui provoque la pollution de ce dernier ;
- L'écrasement des conduites ;

- ➤ Rétrécissement des sections internes de certains tronçons.
- Certaines constructions sont réalisées sur les collecteurs ;
- Etat dégradé de certains tampons de regards ;
- > Une grande partie des regards de visite est enterrée et couverte de bitume ;
- Le manque d'aération des regards engendre la fermentation et le dégagement de gaz toxiques ;
- L'obturation des regards par des débris sableux, et des ordures publiques ;
- > Fuites importantes dans le collecteur à cause des cassures et le manque d'entretien ;
- Le problème des regards non identifiés ;
- Le problème des regards qui ne sont pas munis d'échelles ;
- Absence du réseau d'assainissement pour les zones récemment urbanisées.

III.2.6. Situation actuelle de la gestion et l'exploitation du réseau

La gestion des réseaux d'assainissement est inexistante. On remarque l'absence totale de la maintenance préventive par manque de moyens et de personnel. On procède uniquement à la maintenance curative qui concerne toutes les opérations nécessaires pour remettre en état un ouvrage. Il s'agit donc essentiellement d'opérations de nettoyage qui ne sont pas programmables.

Conclusion

Dans ce chapitre, on a établi une mise au point sur l'état, les conditions d'exploitation et le fonctionnement des réseaux existants. On a pu constater que les réseaux sont anciens et mal entretenus ce qui a provoqué leur dégradation.

Nous pouvons conclure que le réseau d'assainissement de la zone d'étude est vétuste, et ne peut pas accueillir les rejets croissants de la population. Ces défauts et dysfonctionnements peuvent engendrer des risques majeurs pour l'environnement et la santé humaine.

Nous avons remarqué aussi que la situation du système d'alimentation en eau potable est caractérisée par des insuffisances et ne peut assurer sa fonction convenablement.

Pour remédier à la situation actuelle des réseaux (AEP et Assainissement) et prévoir un fonctionnement rentable et efficace de ces derniers, le dimensionnement et la réalisation de nouvelles conduites (AEP et Assainissement) s'avère plus que nécessaire, et ce, pour une qualité et continuité de service pour l'alimentation en eau potable, et une hygiène de vie accompagnée d'une diminution du risque de pollution et la dégradation de l'environnement concernant l'évacuation des eaux usées.

Introduction

Le réservoir dans les systèmes de distribution se définit comme une accumulation en un point de quantité d'eau pour résoudre un problème technique et/ou un problème économique (coût de l'énergie). Sur le plan hydraulique, le stockage peut être :

- ▲ Un réservoir : ouvrage posé au sol, semi-enterré, enterré ;
- ▲ Un château d'eau : ouvrage surélevé selon les besoins, dont la hauteur peut atteindre plusieurs dizaines de mètres.

Au niveau du matériau de construction, les réservoirs peuvent être en béton armé, en acier ou en matières plastiques. La conception et le dimensionnement du réservoir doit tenir compte des débits disponibles de la ressource, de l'alimentation continue.

IV.1. Fonctions des réservoirs

Les principales fonctions du réservoir sont décrites ci-dessous :

IV.1.1. Régulation de débit

Le réservoir est un ouvrage régulateur de débit qui permet d'adapter la production à la consommation. Les ouvrages de production sont généralement dimensionnés pour fournir le volume correspondant à la consommation journalière totale de pointe, avec un temps journalier de fonctionnement compris entre 16 et 20 heures. Du point de vue technique et économique, de faire jouer aux réservoirs un rôle d'appoint pour la satisfaction des besoins horaires de pointe. [10]

IV.1.2. Régulation de la pression

Le réservoir est un ouvrage régulateur de pression puisque son niveau conditionne, aux pertes de charge près, la cote piézométrique et donc la pression dans le réseau. Le réservoir permet de garantir la distribution dans l'éventualité d'un accident sur les équipements d'alimentation du réseau d'adduction [10].

IV.1.3. Simplification de l'exploitation

Le réservoir facilite les opérations d'exploitation en permettant les arrêts pour entretien ou séparation de certains équipements : ouvrage de production, station de pompage et canalisation d'adduction [10].

IV.1.4. Lutte incendie

Le réservoir permet de mettre à disposition de l'eau pour la lutte contre l'incendie en accord avec les prescriptions locales. Il convient d'augmenter les réserves de sécurité si le système de distribution sert à la lutte contre l'incendie [10].

IV.2. Critères de décision et configurations du système

Les critères de choix pour la configuration la plus adaptée sont :

- La sécurité de l'alimentation et la qualité de l'eau ;
- Le coût global de la construction, de l'exploitation et de la maintenance ;
- L'intégration dans le système de distribution d'eau ;
- > L'aménagement du territoire ;
- La durabilité de l'ouvrage prenant en compte les comportements des riverains et les aléas (risque sismique, météorologique);

Les critères définis ci-dessus peuvent être respectés pour des réservoirs du réseau au sol, des châteaux d'eau ou pour des réservoirs du réseau de bas service couplés avec des stations de pompage.

IV.3. Différents types de réservoir

IV.3.1. Réservoir sur tour (château d'eau)

Il repose sur un principe de distribution gravitaire de l'eau, la différence de hauteur nécessaire entre l'eau stockée et les postes de distribution étant obtenue par élévation du réservoir sur une tour, sur piliers ou sur une construction existante. Réalisés en générale dans des terrains plats. Le remplissage du réservoir s'effectue généralement par l'intermédiaire d'une station de pompage à partir du lieu de production ou d'une bâche de reprise [10].

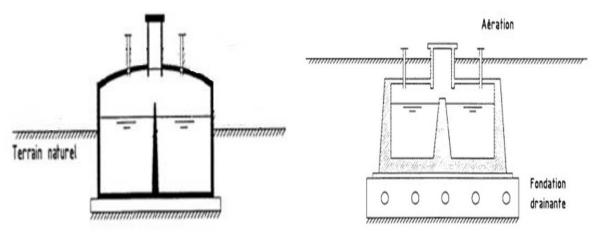
a) Avantage

Création d'un point haut en terrain plat.

b) Inconvénients

- > Stockage limité;
- Coût de construction élevé ;
- > Forte vulnérabilité au risque sismique ;
- ➤ Variation de température journalière et saisonnière peut poser des problèmes de salubrité : l'eau stockée atteignant des températures élevées, accentuant le développement des bactéries.

IV.3.2. Réservoir enterré ou semi-enterré


Ce système repose également sur un principe de mise en pression gravitaire de l'eau stockée. La différence de hauteur est obtenue par l'exploitation d'une dénivelée naturelle du terrain. (Figures (IV.1), (IV.2))

a) Avantages

- Stockage moins limité que le château d'eau ;
- Coût de la construction plus faible que pour un réservoir sur tour ;
- > Intégration plus facile dans le paysage :
- Maintien de la température de l'eau constante ;
- Vulnérabilité plus faible au vandalisme.

b) Inconvénients

L'assujettissement d'un tel système à la topographie du site peut conduire à des surcoûts au niveau de la mise en place et de l'exploitation dans les réseaux de distribution.

Figure IV.1 : Réservoir semi-entérré

Figure IV.2: Réservoir entérré

IV.4. Equipements hydrauliques du réservoir

Les équipèrent du réservoir seront disposés avantageusement, dans une chambre de manœuvre accolée au réservoir, qui leurs permet de remplir les différentes fonctions :

- ▲ Réception de l'adduction ;
- ▲ Départ de l'eau vers la distribution.

IV.4.1. Conduite d'arrivée

C'est la conduite provenant de la source gravitairement ou par refoulement qui tend à remplir le réservoir. Cette arrivée peut avoir différents endroits au niveau de la cuve. On distingue différents cas [10] :

- ▲ Arrivée par le haut en surverse ;
- ▲ Arrivée par le fond ou par le bas ;
- ▲ Arrivée par le haut où la conduite est noyée.

IV.4.2. Conduite de départ ou de distribution

Cette conduite est placée à l'opposé de la conduite d'arrivée à quelques centimètres audessus du radier (15 à 20 cm) pour éviter l'entrée de matières en suspension. L'extrémité est munie d'une crépine [10].

IV.4.3. Conduite de trop-plein

Cette conduite permet d'évacuer l'excès d'eau au réservoir en cas d'un dysfonctionnement inopiné de l'automatisation de la pompe. Si le réservoir est compartimenté, chaque cuve doit avoir une conduite de trop-plein. Ces conduites doivent se réunir dans la chambre de manœuvre pour former un joint hydraulique évitant la pénétration de tout corps étranger [10].

IV.4.4. Conduite de décharge ou de vidange

La conduite de vidange doit bifurquer du point le plus bas du radier. Elle permet la vidange du réservoir en cas de nettoyage ou de réparation. Elle est munie d'un robinet vanne, et se raccorde généralement a la conduite de trop-plein. Le robinet vanne doit être nettoyé après chaque vidange pour éviter les dépôts de sable [10].

IV.4.5. Conduite by-pass

C'est un tronçon de conduite qui relie la conduite d'arrivée et la conduite de départ dans le cas d'un réservoir unique non compartimenté. Cette conduite fonctionne quand le réservoir est isolé pour son entretien ou dans le cas d'un incendie à forte charge.

La figure (IV.3) ci-dessous montre les différents équipements du réservoir :

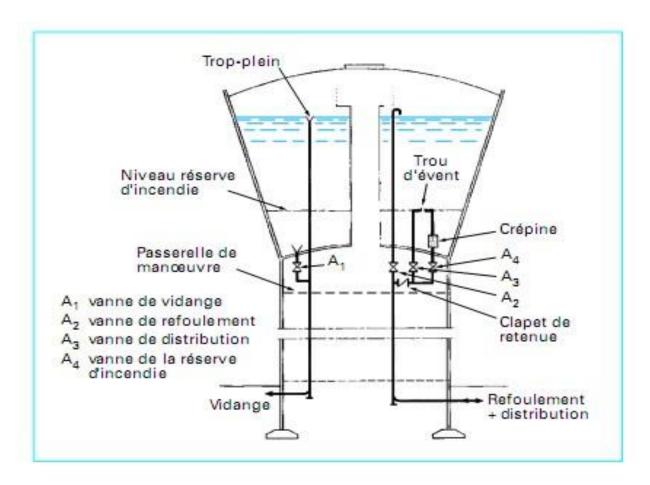


Figure IV. 3 : Equipement d'un réservoir de distribution

IV.5. Organes accessoires - Robinetterie

IV.5.1. Clapets de retenue

Ils sont destinés à empêcher le passage d'un fluide dans certaines conditions. Ils sont surtout utilisés dans les stations de pompage au point bas des canalisations d'aspiration (désamorçage) ou sur la conduite de refoulement (arrêt de la colonne d'eau).

IV.5.2. Crépines

Ce sont des appareils en forme de panier percé de trous, placés à l'extrémité des canalisations d'aspiration, afin d'empêcher l'introduction de corps étrangers dans celle-ci.

IV.5.3. Purgeurs-ventouses

Appareils mis en place aux points hauts de la canalisation et servant à l'évacuation de l'air occlus. L'air compressible, est le pire ennemi des installations.

IV.5.4. Robinet à flotteur

Situé dans les réservoirs, il permet d'arrêter ou d'activer leur alimentation. La commande est transmise par flotteur ou par la pression hydrostatique.

IV.6. Capacité du réservoir

La capacité du réservoir doit être estimée en tenant compte des variations des débits à l'entrée comme à la sortie ; c'est-à-dire d'une part du mode d'exploitation des ouvrages situés en amont et d'autre part de la variation de la demande. Le plus souvent, la capacité est calculée pour satisfaire aux variations journalières de débit de consommation en tenant compte bien entendu du jour de la plus forte consommation et de la réserve d'eau destinée à l'incendie. Il existe deux méthodes pour déterminer la capacité de la cuve :

- ➤ La méthode analytique
- ➤ La méthode graphique

IV.6.1. La méthode analytique

La méthode analytique consiste à calculer, pour chaque heure de la journée, le résidu dans le réservoir, en fonction du rapport entre l'apport et la distribution.

Le volume utile de stockage du réservoir est donné par la formule suivante :

$$\mathbf{V_{u}} = \frac{Pmax \times QMaxJ}{100} \tag{IV.1}$$

D'où:

✓ V_u : Volume utile de stockage pour la consommation (m³);

✓ P_{max}: résidu maximum dans le réservoir (%);

✓ $Q_{Max.J}$: débit maximum journalier (m³/h).

a) Détermination de la valeur Pmax

Tout d'abord on détermine le régime de consommation de la zone d'étude en fonction du coefficient horaire maximum $K_{\text{Max.H}}$, ce dernier nous renseignera sur le régime de distribution du débit journalier (Annexe 2). Pour notre cas $K_{\text{Max.H}} = 1,7$

Pour le calcul de P_{max} on suit les étapes suivantes :

- ▲ On fait une répartition du pompage sur les 20 heures ;
- ▲ On fait la différence entre le pourcentage du débit entrant et le pourcentage du débit sortant dans le réservoir, on aura :

R⁺ : Surplus en eau à différentes heures de la journée, lorsque : Apport > Sortie.

R-: Déficit en eau à différentes heures de la journée, lorsque : Sortie > Apport.

▲ Le résidu total représente le cumul des surplus et déficits.

$$\mathbf{P}_{\max} = |\mathbf{R}^{+}_{\max}| + |\mathbf{R}^{-}_{\max}| \tag{IV.2}$$

Avec:

✓ R⁺_{max}: Résidu maximum positif (%);

✓ R⁻_{max}: Résidu maximum négatif (%).

Les résultats du calcul du résidu sont représentés dans le tableau (IV.1) ci-dessous :

Tableau IV.1 : Détermination du résidu du réservoir de stockage

Heures	Consommation (%)	Apport (%)	Surplus (%)	Déficit (%)	Résidu (%)
0-1	1	5	4		4
1-2	1	5	4		8
2-3	1	5	4		12
3-4	1	5	4		16
4-5	2	5	3		19
5-6	3	5	2		21
6-7	5	5	0		21
7-8	6,5	5		-1,5	19,5
8-9	6,5	5		-1,5	18

Heures	Consommation (%)	Apport (%)	Surplus (%)	Déficit (%)	Résidu (%)
9-10	5,5	5		-0,5	17,5
10-11	4,5	5	0,5		18
11-12	5,5	5		-0,5	17,5
12-13	7	5		-2	15,5
13-14	7	5		-2	13,5
14-15	5,5	5		-0,5	13
15-16	4,5	5	0,5		13,5
16-17	5	5	0		13,5
17-18	6,5	5		-1,5	12
18-19	6,5	5		-1,5	10,5
19-20	5	5	0		10,5
20-21	4,5	0		-4,5	6
21-22	3	0		-3	3
22-23	2	0		-2	1
23-24	1	0		-1	0

Tableau IV.1 : Détermination du résidu du réservoir de stockage (suite et fin)

D'après les résultats obtenus dans le tableau (IV.1) ci-dessus, on aura :

 $P_{max} = 21 \%$

Donc:

$$V_u = \frac{21}{100} \times 4175 = 876,75 \text{ m}^3$$

b) Calcul du volume du réservoir

Pour le volume total du réservoir, la réserve d'incendie sera prise en compte, et ce dernier est déterminée par la formule suivante :

$$V_{T} = V_{u} + V_{inc}$$
 (IV.3)

Avec:

✓ V_T : Volume total du réservoir (m³);

✓ V_{inc} : Volume de la réserve d'incendie ($V_{inc} = 120 \text{ m}^3$).

Le volume total du réservoir est donc :

 $V_T = 876,75 + 120 = 996,75 \text{ m}^3$

IV.6.2. La méthode graphique

On se base sur le même principe que la méthode analytique, à la différence que cette fois nous allons faire le cumul de la production et celui de la consommation et faire après une comparaison graphique. Le volume du réservoir est donné par la somme des valeurs absolues des deux plus grands écarts entre les deux courbes (le plus grand écart positif et le plus grand écart négatif).

$$\mathbf{V}_{\mathbf{u}} = |\mathbf{V}_{\mathbf{max}}| + |\mathbf{V}_{\mathbf{min}}| \tag{IV.4}$$

Avec:

✓ V_{max} : Résidu maximum (m³);

✓ V_{min} : Résidu minimum (m^3).

Les résultats du calcul graphique de la capacité du réservoir sont représentés dans le tableau (IV.2) ci-dessous :

Tableau IV.2 : Détermination graphique de la capacité du réservoir

Heures	Consommation (m³/h)	Apport (m³/h)	Surplus	Déficit	Résidu
0-1	41,75	208,75	167		167
1-2	41,75	208,75	167		334
2-3	41,75	208,75	167		501
3-4	41,75	208,75	167		668
4-5	83,5	208,75	125,25		793,25
5-6	125,25	208,75	83,5		876,75
6-7	208,75	208,75	0		876,75
7-8	271,375	208,75		-62,625	814,125
8-9	271,375	208,75		-62,625	751,5
9-10	229,625	208,75		-20,875	730,625
10-11	187,875	208,75		20,875	751,5
11-12	229,625	208,75		-20,875	730,625
12-13	292,25	208,75		-83,5	647,125
13-14	292,25	208,75		-83,5	563,625
14-15	229,625	208,75		-20,875	542,75
15-16	187,875	208,75	20,875		563,625
16-17	208,75	208,75	0		563,625
17-18	271,375	208,75		-62,625	501
18-19	271,375	208,75		-62,625	438,375
19-20	208,75	208,75	0		438,375
20-21	187,875	0		-187,875	250,5
21-22	125,25	0		-125,25	125,25
22-23	83,5	0		-83,5	41,75
23-24	41,75	0		-41,75	0

La variation de la consommation journalière présente dans la figure (IV.4) ci-dessous :

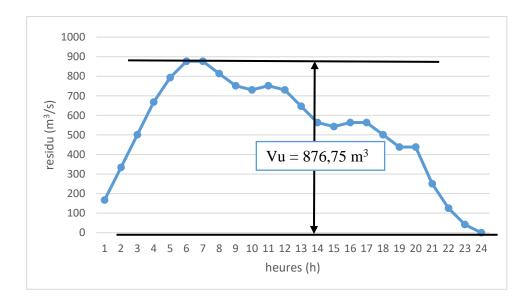


Figure IV.4 : Variation de la consommation journalière

D'après la figure (IV.4), le volume utile du réservoir est de :

$$V_u = 876,75 \text{ m}^3$$

Donc:

 $V_T = 120 + 876,75 = 996,75 \text{ m}^3.$

Après avoir déterminé le volume du réservoir qui est de l'ordre de **996,75 m**³ et vu que la capacité calculée d'un réservoir doit être normalisée aux capacités usuelles des réservoirs pour faciliter sa réalisation, soient : 100, 250, 500, 1000, 1500, 2000, 2500, 5000, 7500, 10000 m³. Par conséquent, le réservoir projeté aura une capacité de stockage de **1000 m**³.

IV.7. Dimensionnement du réservoir projeté

IV.7.1. Hauteur d'eau dans la cuve

La hauteur maximale d'eau dans un réservoir doit être comprise entre 3 et 6 m. Cependant les réservoirs de grande capacité des agglomérations importantes peuvent présenter des hauteurs d'eau de l'ordre de 7 à 8 m, voire 10 m. l'optimum pour les agglomérations de petite ou moyenne importance se situe le plus souvent entre 4 et 5 mètres. Pour notre cas, on opte pour une hauteur de 5 mètre.

IV.7.2. Diamètre du réservoir

En général, les réservoirs d'eau potable sont de forme plus au moins circulaire, le volume de ce type de configuration est donné par la formule suivante :

$$\mathbf{D_r} = \left(\frac{4 \times Vr}{Hr \times \pi}\right)^{1/2} \tag{IV.5}$$

D'où:

✓ V_r : Volume du réservoir (m^3) ;

✓ D_r : Diamètre du réservoir (m)

✓ H_r: Hauteur d'eau dans le réservoir (m).

On aura:

$$D_r = (\frac{4 \times 1000}{5 \times \pi})^{1/2} = 15,96 \text{ m}$$

Donc le diamètre du réservoir projeté sera de 16 m

IV.7.3. Hauteur de la réserve d'incendie

La hauteur de la réserve d'incendie se calcule suivant la formule ci-dessous :

$$\mathbf{H_{inc}} = \frac{\mathbf{Vinc}}{\mathbf{S}} \tag{IV.6}$$

Avec:

✓ H_{inc}: Hauteur de la réserve d'incendie (m);

✓ S : Section du réservoir (m²).

On aura donc: $H_{inc} = \frac{120}{201.06} = 0.59 \text{ m.}$

Conclusion

Le réservoir projeté destiné à alimenter LARBATACHE basse sera implanté au niveau de KEHAHLIA à une altitude de 175 m, qui a été dimensionné avec le débit maximal journalier tout en tenant compte des variations journalières, du résidu maximal et du volume d'eau d'incendie.

Le réservoir projeté est du type circulaire, semi enterre ayant un volume total de 1000 m³, un diamètre de 16 m, et une hauteur de 5 m. Ce dernier recevra la quantité d'eau nécessaire aux besoins de la population à long terme 2042, et c'est par ce biais qu'on évitera d'avoir un manque résultant du développement de la population. Le réservoir actuel sera destiné à alimentation de LARBATACHE haute et environs.

Après avoir dimensionner le réservoir en fonction des besoins en eau, un dimensionnement adéquat et optimal du réseau de distribution s'avère plus que nécessaire, et ce, pour avoir un fonctionnement rentable et régulier des deux principaux organes de la distribution soit, le réservoir et les conduites de distribution.

Chapitre V: Réseau de distribution d'eau potable

Introduction

L'eau stockée dans le réservoir, doit être distribuée à l'aide des canalisations sur lesquelles des branchements seront piqués en vue de satisfaire les consommateurs. Toutefois, une étude préliminaire doit être faite afin d'attribuer un diamètre adéquat à la canalisation, permettant d'assurer le débit maximal à tous les besoins (domestiques, d'arrosage, industriels ou agricoles etc...).

V.1. Fonctions du système de distribution

Le système de distribution est le dernier maillon de la chaîne du système classique d'approvisionnement en eau potable. Son rôle est de transporter l'eau du stockage jusqu'à l'abonné. Quatre exigences sont recherchées :

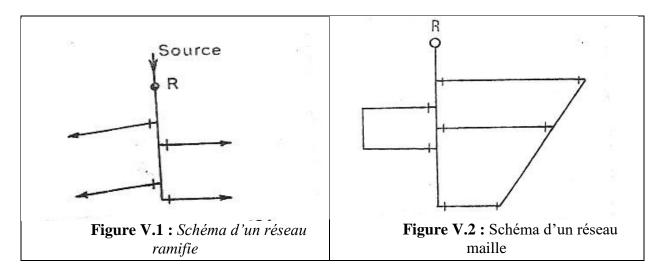
- ✓ L'accessibilité technique et financière aux usagers ;
- ✓ Une qualité de l'eau répondant aux normes de potabilité ;
- ✓ La continuité de service ;
- ✓ Une pression de service suffisante.

V.2. Type des réseaux de distributions

Le système de distribution est souvent décliné en sous-réseaux afin de subdiviser ses fonctions principales pour améliorer ses performances. Ce réseau se compose de conduites principales, secondaires et tertiaires posées dans les rues de l'agglomération concernée pour l'alimentation en eau potable. On distingue les réseaux suivants [12] :

V.2.1. Réseau ramifié

Il est composé de conduites qui vont toujours en se divisant à partir du point d'alimentation sans jamais se refermer. Ce réseau présente l'avantage d'être économique à cause du linéaire réduit des canalisations posées et du nombre moins important des équipements hydrauliques mis en service. Ses principaux inconvénients résultent de l'absence d'une alimentation en retour dans les conduites lorsqu'un arrêt se produit en un point quelconque. (Figure (V.1))


V.2.2. Réseau maillé

Ce réseau est composé de conduites suivant des contours fermés permettant une alimentation en retour. Chaque point du réseau maillé peut être alimenté par deux nœuds. En raison de ces deux degrés de liberté, la sécurité dans la distribution et la qualité du service sont plus grandes. Les risques de perturbation de service sont ainsi réduits. (Figure (V.2))

V.2.3. Réseaux étagés

Dans le cas d'une agglomération présentant des différences de niveau importantes, la distribution assurée par un seul réseau pose d'énormes problèmes d'exploitation de très fortes pressions peuvent être enregistrées dans une partie du réseau.

Il devient nécessaire de prévoir une distribution étagée en constituant deux réseaux indépendants pouvant assurer des pressions limitées. En effet, ce système nécessite l'installation d'un réservoir intermédiaire, alimente par le premier qui permet de régulariser la pression dans le réseau.

V.3. Conception d'un réseau

Pour concevoir un réseau de distribution, nous sommes appelés à prendre en compte un certain nombre de facteur, qui peuvent influencer sur le réseau, parmi lesquels nous avons :

- ✓ l'emplacement des quartiers ;
- ✓ l'emplacement des consommateurs ;
- ✓ le relief :
- ✓ Les routes.
- ✓ le souci d'assurer un service souple et précis ;

V.4. Les principes du tracé du réseau

L'objectif du tracé du réseau de distribution est d'assurer l'accès au réseau des usagers de l'eau dans des conditions économiques optimales tout en prévenant les difficultés d'exploitation et d'entretien. Les principes du tracé d'un réseau sont les suivantes :

- ✓ Optimisation de la longueur du réseau par le choix ces rues qui doivent recevoir les conduites et le choix de leur emplacement dans ces dernières ;
- ✓ Fonctionnement hydraulique simple et efficace ;
- ✓ Continuité de service en évitant la création de points de faiblesse ou en prévoyant des alternatives en cas de rupture ;
- ✓ Equipement minimum afin de faciliter la maîtrise du réseau et son entretien : vannes, vidanges, ventouses.

V.5. Mode de distribution

Le réseau de distribution projeté pour LARBATACHE basse sera du type ramifié d'un linéaire total de 11419 m.

Elle se fera entièrement par gravité à partir d'un réservoir de 1000 m³ de volume, qui se situe à une côte de 175 m.

V.6. Conditions sur les vitesses et les pressions

V.6.1. Vitesse d'écoulement

La vitesse de l'eau dans les conduites doit, en général, être de l'ordre de 0,5 à 2 m/s. En effet une vitesse faible favorise la formation des dépôts et la stagnation de l'eau dans les conduites pouvant entraîner une dégradation de sa qualité, une vitesse forte entraîne d'importantes pertes de charge et donc une chute notable de la pression [12].

En pratique, il faut avoir :

- ✓ Une vitesse maximale de 2 m/s avec le débit de pointe horaire.
- ✓ Une vitesse minimale de 0,5 m/s avec le débit de pointe journalière.

V.6.2. Pressions à satisfaire

Pour l'ensemble des nœuds constituant le réseau, les pressions doivent satisfaire les conditions de pression minimale et de pression maximale [12].

La pression au nœud doit être calculée après le dimensionnement du réseau et comparée à la pression à satisfaire.

- ✓ Pression au nœud = côte piézométrique côte du terrain naturel
- ✓ Pression au nœud > Pression minimale = 10 m
- ✓ Pression au nœud < Pression maximale = 60 m

En tout point du réseau de distribution, la pression ne doit pas dépasser 60 mètres. Si de telles valeurs devraient se manifester, il y aurait lieu, en vue de les diminuer, soit d'envisager une distribution étagée, soit de prévoir l'installation sur le réseau d'appareils réducteurs de pressions

V.7. Aspects technologiques des réseaux de distribution

Les principales technologies utilisées dans les réseaux de distribution d'eau potable concernent :

V.7.1. Les conduites

La sécurité du service est fonction de la qualité de la canalisation, de son aptitude à résister aux atteintes du temps, aux attaques du sol et à celles du fluide transporté, aux chocs et aux variations de température.

V.7.1.1. Nature des conduites

On distingue les conduites suivant le matériau principal qui constitue leur structure :

- ✓ Fonte ductile ;
- ✓ Acier;
- ✓ Béton:
- ✓ Amiante Ciment;
- ✓ Matières Plastiques Synthétiques.

Remarque:

Dans notre projet, nous contentons sur l'utilisation d'une seule variante du matériau les plus couramment utilisé et recommandé dans les réseaux de distribution de l'eau en Algérie, qui est PEHD vu les avantages qui présente :

- ✓ Bonne résistance à la corrosion interne, externe et à l'entartage ;
- ✓ Disponibilité sur le marché ;
- ✓ Facilité de pose (grande flexibilité), Fiabilité au niveau des branchements (réduction de risque de fuite);
- ✓ Possibilité d'enroulement en couronne pour les petits diamètres ;
- ✓ Durée de vie prouvée par l'expérience et le test de vieillissement théoriquement de 50 ans à une température de 20°c.
- ✓ Bonne caractéristique hydraulique (coefficient de rugosité très faible) ;

Les diamètres de PEHD varient entre 10 et 500 mm. L'épaisseur est variable en fonction de la pression de service :

- ✓ 4 bars : Diamètre intérieur de 46 à 460 mm.
- ✓ 6 bars : Diamètre intérieur de 21 à 443 mm.

✓ 10 bars : Diamètre intérieur de 6 à 410 mm.

✓ 16 bars : Diamètre intérieur de 18 à 90 mm.

V.7.2. Organes accessoires des réseaux

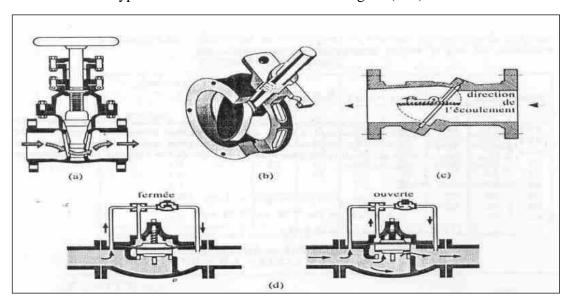
Pour assurer un bon fonctionnement du réseau de distribution, faciliter sa gestion et son exploitation, il doit être équipé de vannes, ventouses, vidanges, réducteurs de pression, pièces spéciales (coudes, tés, cônes,...), appareils hydrauliques (bouches et poteaux d'incendie, branchements particuliers) [12].

V.7.2.1. Vannes

On distingue:

✓ Les robinets vannes à opercule

Ils sont des appareils de sectionnement qui doivent être complètement ouverts ou fermés. Leur encombrement est considérable.


✓ Vannes papillon

Les vannes papillon peuvent servir aussi bien pour le sectionnement que pour le réglage des débits. Elles sont légères et d'un encombrement réduit, le couple de manœuvre est faible.

✓ Clapet de non-retour

Ils sont destinés à empêcher la circulation en retour. Leur emploi est général dans les stations de pompage où ils sont souvent disposés à la sortie même des pompes, entre celles-ci et les robinets de sectionnement. On en trouve également sur les canalisations de distribution.

Les différents types de vanne sont illustrés dans la figure (V.3) suivante :


Figure V.3 : Différents type de vannes : a) robinet-vanne, b) robinet à papillon, c) vanne à clapet de non-retour, d) vanne de réduction de pression

V.7.2.2. Ventouse

Une accumulation d'air peut avoir lieu aux points hauts d'une conduite. La poche d'air provoque les perturbations suivantes qu'il convient d'éviter :

- ✓ Pertes de charge et diminution des pressions ;
- ✓ Réduction de la section ;
- ✓ Arrêt des débits ;
- ✓ Coups de bélier.

L'évacuation de l'air peut s'effectuer par une ventouse (manuelle ou automatique). Les différents types de ventouse sont données dans la figure (V.4) ci-après [12] :

Figure V.4 : *Types de ventouses : a) ventouse à petites quantités d'air, b) ventouse à grandes quantités d'air, c) ventouse universelle*

V.7.2.3. Vidange

Les vidanges sont des robinets placés aux points bas des canalisations afin de permettre leur vidange en cas d'intervention.

V.7.2.4. Réducteur de pression

Les réducteurs de pression sont destinés à maintenir un réseau à une pression de sortie réduite et sensiblement constante en écoulement comme sans débit. Ils garantissent confort et sécurité.

V.8.3. Pièces spéciales

On appelle pièces spéciales les pièces de raccordement qui permettent de réaliser toutes les dispositions. Elles sont fabriquées en fonte. Elles comportent des emboîtements ou des brides permettant de réaliser divers montages. Ces pièces sont normalisées et l'on distingue :

- ✓ Les coudes ;
- ✓ Les tés ;
- ✓ Les cônes ;
- ✓ Les manchons :
- ✓ Les bouts d'extrémité bride-emboitement ou bride-uni.

V.8.4. Appareils hydrauliques

V.8.4.1. Bouches et poteaux d'incendies

Leur diamètre est normalisé à 100 mm. Ils sont destinés à assurer la protection contre l'incendie. Ils sont alimentés par des conduites de même diamètre doivent assurer un débit minimal de 17 l/s sous une pression de 1 bar. Un schéma d'une bouche d'incendie est illustré dans la figure (V.6) ci-après [12] :

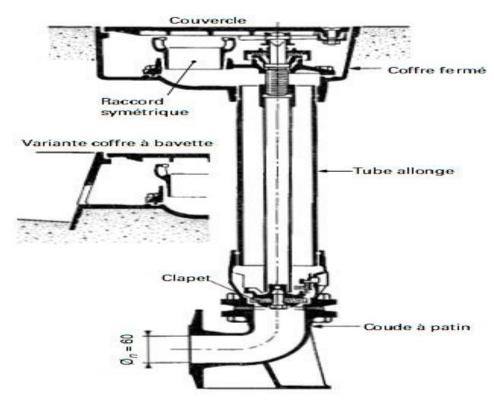


Figure V.5 : Schéma d'une bouche d'incendie et de lavage

V.8.4.2. Branchements particuliers

Un branchement est un « petit ouvrage » qui moyennant un piquage sur la canalisation de distribution permet de desservir un abonné. Il doit assurer plusieurs fonctions [12] :

- ✓ Piquage (dérivation);
- ✓ Arrêt (extérieur de l'immeuble) ;
- ✓ Robinet d'arrêt (intérieur) à l'immeuble ;
- ✓ Comptage.

V.8.4.3. Mesure du débit

On considère la mesure de débit moyen par l'intermédiaire des compteurs. Ces derniers permettent de mesurer un débit moyen. Il y a plusieurs types de compteurs disponibles sur le marché, on distingue [12] :

- ✓ Les compteurs de volume ;
- ✓ Les compteurs de vitesse ;
- ✓ Les compteurs à hélice (Woltmann);
- ✓ Les compteurs proportionnels.

En ce qui concerne la vérification des compteurs, il existe deux sortes de vérification :

- ✓ La vérification dite « primitive ».
- ✓ La vérification sur place.

V.8.5. Mode de pose des conduites

Pour des mesures de sécurité et de commodité, les conduites seront toutes enterrées afin d'éviter l'encombrement des voies de communication ou leur écrasement par les charges trop lourdes. Ce qui évitera du coup le réchauffement de l'eau et l'ensoleillement des conduites qui pourrait leur être préjudiciable. On aura des tranchées de dimensions suivantes [13] :

$$H_{\min} \ge D_{\text{ext}} + 0.5 \text{ m}$$

$$L_{\min} \ge D_{\text{ext}} + 0.4 \text{ m}$$
(V.1)
$$(V.2)$$

Avec:

▲ H_{min}: Profondeur minimale de la tranchée (m);

▲ L_{min}: Largeur minimale de la tranchée (m);

▲ D_{ext} : Diamètre extérieur de la conduite (m).

La pose de la conduite en tranchée est donnée dans la figure (V.7) ci-dessous :

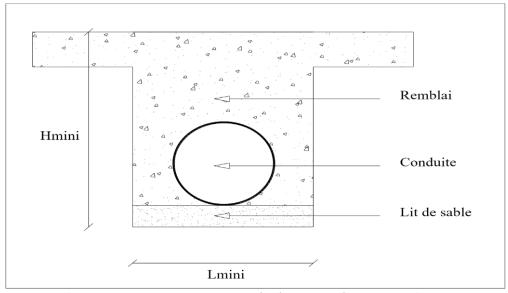


Figure V.6 : Coupe transversale d'une conduite enterrée

V.8.5.1. Précaution de pose

Une couche de sable de 10 cm sera posée au fond du trou avant la pose de la conduite. Un essai de pression confirmera l'étanchéité et la stabilité des conduites avant le remblai. Puis on procèdera au nettoyage et à la désinfection des canalisations [13]:

Les conduites seront lavées intérieurement au moyen de chasses d'eau ou autres procédés adéquats. Ces lavages seront répétés, si nécessaire, afin que la turbidité de l'eau soit inférieure au maximum admis par les normes et règlements en vigueur pour la qualité des eaux destinées à la consommation humaine.

V.9. Calcul Hydraulique

V.9.1. Débit de pointe

Le débit de pointe (Q_P) représente la consommation maximale horaire, avec lequel on fait le dimensionnement et l'analyse de comportement du réseau de distribution. Il se calcul suivant la formule ci-dessous :

$$\mathbf{Q}_{P} = \mathbf{K}_{\text{Max,H}} \times \mathbf{Q}_{\text{Moy,H}} \tag{V.3}$$

Avec:

Arr Q_P: Débit de pointe (m³/h);

Arr Q_{mov,H}: Débit maximal journalier (m³/j);

▲ K_{Max H}: coefficient de variation maximale horaire de la consommation.

On aura donc:

 $Q_P = 342,35 \text{ m}^3/\text{h}$

 $Q_P = 95,10 \text{ l/s}$

V.9.2. Débit Spécifique

Il quantifie la quantité d'eau consommée par mètre linéaire le long des conduites de distribution pendant une seconde. Ce débit est défini comme étant le rapport entre le débit pointe et la somme des longueurs de tous les tronçons. Il se calcul comme suit :

$$\mathbf{Q}_{\mathrm{sp}} = \frac{\mathbf{Qp}}{\sum \mathbf{L}} \tag{V.4}$$

Avec:

▲ Q_{sp}: Débit spécifique (1/s/m);

▲ ΣL : Somme des longueurs des tronçons du réseau (m).

V.9.3. Débit de route

C'est le débit supposé être consommé linéairement le long d'une conduite assurant une route où un service mixte. Pour une conduite de longueur L_i , il est donné par la relation suivante :

$$\mathbf{Q_r} = \mathbf{Q_{sp}} \times \mathbf{L_i} \tag{V.5}$$

Avec:

Arr Q_r: Débit route (l/s);

▲ L_i: Longueur du tronçon concerné (m).

V.9.4. Débit aux nœuds

Le débit au nœud est celui qui est concentré à chaque point de jonction des conduites du réseau, il doit être déterminé à partir de la relation suivante :

$$\mathbf{Q_{ni}} = \mathbf{Q_{ci}} + \mathbf{0.5} \sum \mathbf{Q_{ri}} \tag{V.6}$$

Avec:

▲ Q_{ni}: Débit au nœud « i » en (l/s);

Arr Arr

▲ Q_{ci}: Débit concentré au nœud « i » en (l/s).

Dans notre cas le débit concentré au nœud « i » est nul.

V.9.5. Pertes de charge

Dans un liquide réel, l'écoulement s'accompagne de chocs et de frottements. Ces chocs et glissements absorbent une partie de l'énergie mécanique et la convertissent en énergie calorifique, dissipée dans la masse liquide et le milieu environnant, et non récupérable. Cette conversion partielle de l'énergie mécanique en énergie calorifique se traduit par une diminution de la charge au cours de l'écoulement. Cette diminution de la charge est dite "perte de charge".

V.9.5.1. Pertes de charge linéaire

Les pertes de charge linéaires sont directement proportionnelles au carré de la vitesse du liquide dans le tuyau et à la longueur du tuyau. Elles sont inversement proportionnelles au diamètre du tuyau. En toute généralité, on peut donc écrire :

$$\Delta \mathbf{H}_{L} = \frac{\lambda}{\mathbf{D}} \times \frac{\mathbf{V}^{2}}{2 g} \times \mathbf{L}_{C} \tag{V.7}$$

Avec:

▲ ΔH_L: Perte de charge linéaire (m);

▲ L_C: Longueur de la conduite (m);

▲ D : Diamètre de la canalisation (m) ;

▲ V: Vitesse moyenne du liquide dans la conduite (m/s);

▲ g : Accélération de la pesanteur (m/s²) ;

★ λ: Coefficient de perte de charge, qu'est en fonction de la rugosité de conduite et régime l'écoulement. Afin de déterminer λ on utilise la formule de COLEBROOK- WHITE suivante :

$$\frac{1}{\sqrt{\lambda}} = -2\log \times \left(\frac{K}{3,71 \times D} + \frac{2,51}{Re \times \sqrt{\lambda}}\right) \tag{V.8}$$

Avec:

▲ K: Rugosité de la conduite en (mm);

▲ R_e: Nombre de Reynolds.

Pour les conduites en PEHD:

 $^{\bot}$ K = 0,01mm si D≤ 200 mm,

K = 0.02 mm si D > 200 mm.

Le nombre de Reynolds donné par la formule suivante :

$$\mathbf{R}_{\mathbf{e}} = \frac{\mathbf{V} \times \mathbf{D}}{\mathbf{v}} \tag{V.9}$$

v : Viscosité cinématique de l'eau, donnée par la formule de stockes ci-dessous :

$$v = \frac{0.0178}{1 + 0.0337 \times t + 0.000221 \times t^2}$$
 (V.10)

À $t = 10^{\circ}\text{C}$: v = 0, 0131 STOCKES = 1, 31 × 10⁻⁶ m²/s; À $t = 20^{\circ}\text{C}$: v = 0, 01 STOCKES = 1, 00 × 10⁻⁶ m²/s;

À $t = 30^{\circ}$ C: v = 0.008 STOCKES = 0, 0.08×10^{-6} m²/s;

V.9.5.2. Pertes de charge singulière

Contrairement aux pertes de charge linéaires, les pertes de charge singulières se produisent à des endroits précis de la canalisation. Elles sont dues à des accidents locaux tels que courbes, branchements, changements de section, vannes non complètement ouvertes...etc.

Ces pertes de charge sont estimées à 10% des pertes de charge linéaire, se calculent par une relation de la forme :

$$\Delta \mathbf{H_s} = \mathbf{0.1} \times \Delta \mathbf{H_L} \tag{V.11}$$

Avec: $\Delta H_s = 0.1 \times \Delta H_L$

 \triangle ΔH_s : Perte de charge singulière (m).

V.9.5.3. pertes de charge totale

Elles présentent la somme des pertes de charge linéaire et singulière, pour chaque conduite de longueur L, donné par la formule suivante :

$$\Delta \mathbf{H}_{\mathrm{T}} = \mathbf{1}, \mathbf{10} \times \Delta \mathbf{H}_{\mathrm{L}} \tag{V.12}$$

$$\Delta \mathbf{H}_{\mathrm{T}} = \mathbf{1}, \mathbf{10} \times \frac{\lambda}{D} \times \frac{V^{2}}{2 \, a} \times \mathbf{L}_{\mathrm{C}}$$
 (V.13)

Avec:

 \triangle ΔH_T : Perte de charge totales.

Les résultats des différents débits sont représentés dans le tableau (V.1) ci-après :

N° des	N° de	Longueur	$O_{\rm o}$ (1/s/m)	Qr (l/s)	Q _n (l/s)	
Nœuds	Tronçon	(m)	Q _{sp} (l/s/m)	Q r (1/8)		
	1-R	1074		8,945		
1	1-2	13		0,108	5,251	
	1-4	174		1,449		
	2-1	13		0,108		
2	2-3	115		0,958	1,174	
	2-10	154		1,283		
3	3-2	115		0,958	0,479	
	4-1	174		1,449		
4	4-5	11		0,092	0,991	
	4-7	53		0,441		
	5-4	11	0,00833	0,092		
5	5-71	135		1,124	1,158	
	5-6	132		1,099	, 	
6	6-5	132		1,099	0,550	
	7-4	53		0,441		
7	7-8	90		0,750	1,428	
	7-9	200		1,666		
8	8-7	90		0,750	0,375	
9	9-7	200		1,666	0,833	
	10-2	154		1,283		
10	10-15	154		1,283	2,461	
	10-11	283		2,357		

Tableau V.1: Débits en route et les débits aux nœuds

Les différents résultats du calcul sont présents dans l'Annexe 4.

V.10. Apport informatique

Afin de faciliter le travail de calcul, on opte à l'utilisation de logiciel EPANET, qui nous permet de trouver des solutions optimales.

V.11. Présentation du logiciel EPANET

EPANET est un logiciel de simulation du comportement hydraulique et qualitatif de l'eau sur de longues durées dans les réseaux sous pression. EPANET calcule le débit dans chaque tuyau, la pression chaque nœud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes. [14]

Ce logiciel contient un moteur de calcul hydraulique moderne ayant les caractéristiques suivantes :

- → La taille du réseau étudié est illimitée ;
- + Pour calculer les pertes de charge dues à la friction, il dispose des formules de Hazen-Williams, Darcy-Weisbach, et Chézy-Manning;
- + Il inclut les pertes de charge singulières aux coudes et aux tés ;
- + Il peut modéliser des pompes à vitesse fixe ou variable ;
- + Il peut calculer l'énergie consommée par une pompe et son coût ;
- + Il peut modéliser différents types de vannes, comme des clapets anti-retour, des vannes de contrôle de pression ou débits, des vannes d'arrêt, etc.

- + Les réservoirs peuvent avoir des formes variées (le diamètre peut varier avec la hauteur).
- + Il peut y avoir différentes catégories de demandes aux nœuds, chacune avec une modulation propre ;
- → Le fonctionnement de station de pompage peut être piloté par des commandes simples, (heures de marche/arrêt en fonction du niveau d'un réservoir) ou des commandes élaborées plus complexes.

V.12. Composants physiques d'EPANET

EPANET modélise un système de distribution d'eau comme un ensemble d'arcs reliés aux nœuds. Les arcs représentent des tuyaux, des pompes, et des vannes de contrôle. Les nœuds représentent des nœuds de demande, des réservoirs et des bâches. La figure (V.7) ci-dessous indique les liaisons entre les différents objets formant le réseau. (Annexe 5)

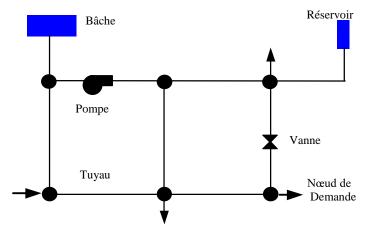


Figure V.7 : Composants physiques d'un système de distribution d'eau

V.13. Simulation du réseau

Après la saisie des données du réseau, on lance la simulation. Le logiciel analyse le comportement de réseau et détermine les différentes grandeurs hydrauliques. Les principaux résultats de la simulation sont résumés dans les tableaux (V.2) et (V.3) ci-dessous :

N° de Nœuds	Altitude (m)	Demande (l/s)	Charge (m)	Pression (m)
1	115,23	5,25	174,92	59,69
2	115,12	1,17	174,9	59,78
3	118,09	0,48	173,14	55,05
4	105,87	0,99	174,12	68,25
5	105,74	1,16	174,09	68,35
6	106,60	0,55	171,52	64,92
7	106,92	1,43	173,47	66,55
8	108,56	0,38	170,56	62
9	110,70	0,83	170,69	59,99
10	118,94	2,46	174,62	55,68
11	135,71	1,5	172,09	36,38
12	130,93	0,57	169,18	38,25

Tableau V.2 : Etat des nœuds du réseau cas de pointe

Les différents résultats obtenus pour les autres nœuds sont présente dans l'Annexe 6.

Tuyau 13

Tuyau 14

Tuyau 15

Tuyau 16

67

409

154

127

Perte de Longueur Dextérieur **Débits** Vitesse **Tronçon** charge (m/s)(m) (mm) (1/s)(m/Km)Tuyau 1 1074 400 90,92 0,72 1,01 Tuyau 2 13 315 67,19 0,86 1,85 Tuyau 3 115 32 0,48 15,25 0,6 Tuyau 4 174 160 18,48 0,92 4,58 14,85 3,08 Tuyau 5 11 0,74 160 Tuyau 6 132 19,48 32 0,55 0,68 53 63 2,64 12,27 Tuyau 7 0,85 Tuyau 8 90 25 0,38 0,76 32,35 200 Tuyau 9 40 13,94 0,83 0,66 315 Tuyau 10 154 65,54 0,84 1,76 Tuyau 11 283 90 0,9 8,95 5,76 Tuyau 12 32 0,57 0,71 21,08 138

Tableau V.3 : Etat des conduites du réseau cas de pointe

Les différents résultats obtenus pour les arcs sont présenté dans l'Annexe 7.

75

50

315

32

Les figures (V.8) et (V.9) ci-dessous, illustrent les pressions dans les nœuds et les vitesses d'écoulement dans les tuyaux.

3,69

1,7

57,32

0,53

0,83

0,87

0,74


0,66

9,66

17,07

1,38

18,18

Figure V.8: Distribution de vitesse

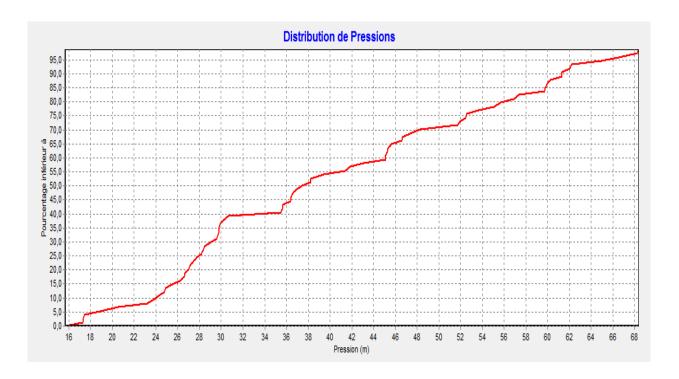


Figure V.9 : Distribution de pression

La modélisation du réseau est illustrée dans la figure (V.10) ci-dessous :

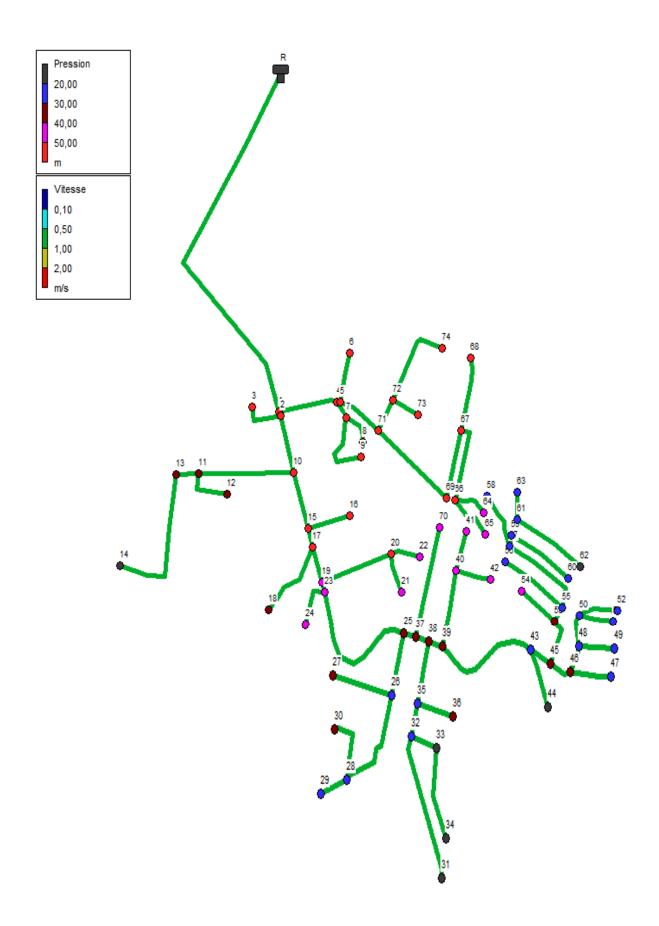


Figure V.10 : Simulation du réseau de distribution cas de pointe

V.14. Résultats de la simulation cas de pointe

D'après les résultats représentés ci-dessus, on remarque que les pressions dans tous les nœuds sont dans la fourchette $[15 \div 68]$ m, et la pression 68 m peut être tolérée puisqu'on utilise le PEHD de PN10 où la conduite peut supporter à une pression de 100 m.

Les vitesses dans les arcs sont acceptables, elles sont comprises entre (0,5 et 1) m/s

Les diamètres des conduites du réseau sont imposés par la simulation pour aboutir à des vitesses acceptables, les diamètres trouvés varient entre 25 et 400 mm.

V.15. Cas de pointe + incendie

Dans ce cas, le calcul se fait de la même manière que le cas précédent mais seulement on doit s'assurer que le débit d'incendie donné par le réservoir (17 l/s) se trouve au nœud : $N^{\circ}25$

Donc:

18

 $Q_{n 25} = 2,319 + 17 = 19,319 \text{ l/s}$

V.15.1. Les critères d'emplacement de poteau d'incendie

L'emplacement de poteau d'incendie se fait en respectant les critères suivants :

- ✓ Le débit de fonctionnement d'un poteau d'incendie doit être égal à 17 l/s pour une durée de 2 heures :
- ✓ La pression fournie doit être supérieure à 1 bar ;
- ✓ La distance maximale entre deux poteaux d'incendie est 400 m;
- ✓ Le diamètre de la conduite d'alimentation du poteau d'incendie doit être supérieur à 100 mm.

V.15.2. L'état du réseau après la simulation

130,36

L'état du réseau après la simulation (cas de pointe + incendie) est représenté dans les tableaux (V.4) et (V.5) ci-après :

N° de Nœuds	Altitude (m)	Demande (l/s)	Charge (m)	Pression (m)
1	115,23	5,25	174,52	59,29
2	115,12	1,17	174,48	59,36
3	118,09	0,48	172,73	54,64
4	105,87	0,99	173,72	67,85
5	105,74	1,16	173,69	67,95
6	106,6	0,55	171,12	64,52
7	106,92	1,43	173,07	66,15
8	108,56	0,38	170,16	61,6
9	110,7	0,83	170,28	59,58
10	118,94	2,46	174,07	55,13
11	135,71	1,5	171,54	35,83
12	130,93	0,57	168,63	37,7
13	135,04	1,98	170,89	35,85
14	148,77	1,7	163,9	15,13
15	121,84	1,37	173,73	51,89
16	118,45	0,53	171,42	52,97
17	122,4	2,27	173,62	51,22

1,67

167,06

Tableau V.4 : Etat des nœuds du réseau cas de pointe + incendie

36,7

N° de Nœuds Altitude (m) Demande (l/s) Charge (m) Pression (m) 19 126,71 1,42 173,44 46,73 20 120,04 1,71 170,98 50,94 21 125,85 0,44 166,41 40,56 22 124,05 0,36 168,34 44,29 23 127,63 2,22 173,39 45,76 24 132,67 0,52 171,23 38,56 171,52 **25** 137,5 19,32 34,02

Tableau V.4 : Etat des nœuds du réseau cas de pointe + incendie (suite et fin)

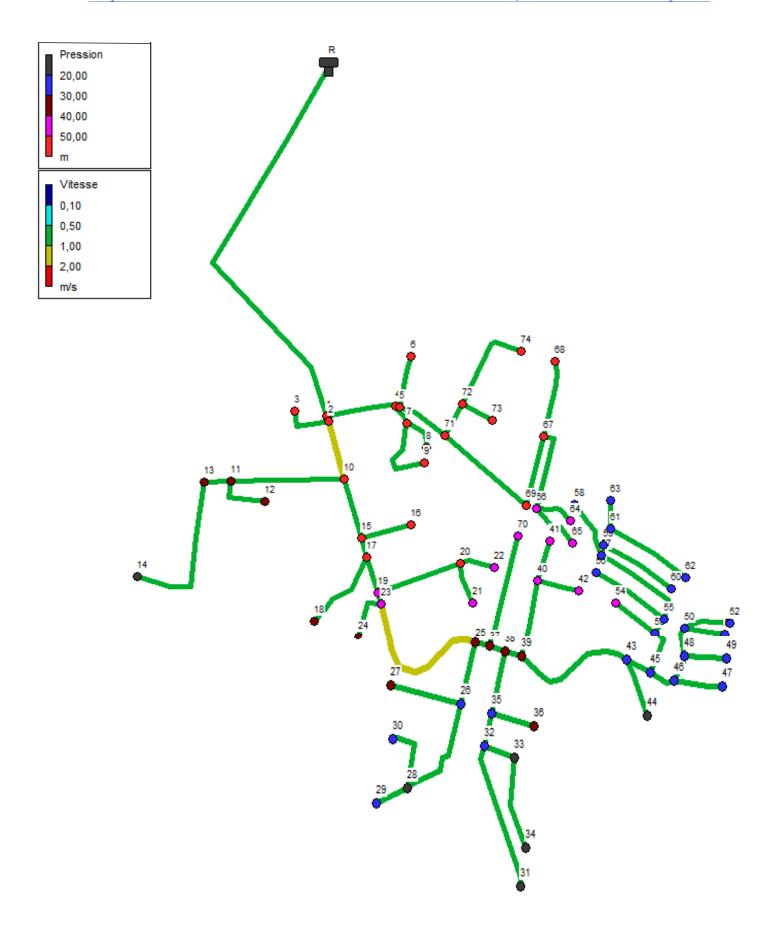

Les différents résultats obtenus pour les autres nœuds sont présenté dans l'Annexe 8.

Tableau V.5 : *Etat des arcs du réseau cas de pointe + incendie*

Tronçon	Longueur (m)	Dextérieur (mm)	Débits (l/s)	Vitesse (m/s)	Perte de charge (m/Km)
Tuyau 1	1074	400	107,92	0,86	1,38
Tuyau 2	13	315	84,19	1,08	2,8
Tuyau 3	115	32	0,48	0,6	15,25
Tuyau 4	174	160	18,48	0,92	4,58
Tuyau 5	11	160	14,85	0,74	3,08
Tuyau 6	132	32	0,55	0,68	19,48
Tuyau 7	53	63	2,64	0,85	12,27
Tuyau 8	90	25	0,38	0,76	32,35
Tuyau 9	200	40	0,83	0,66	13,94
Tuyau 10	154	315	82,54	1,06	2,7
Tuyau 11	283	90	5,76	0,9	8,95
Tuyau 12	138	32	0,57	0,71	21,08
Tuyau 13	67	75	3,69	0,83	9,66
Tuyau 14	409	50	1,7	0,87	17,07
Tuyau 15	154	315	74,32	0,95	2,22
Tuyau 16	127	32	0,53	0,66	18,18
Tuyau 17	49	315	72,42	0,93	2,12
Tuyau 18	400	50	1,67	0,85	16,41
Tuyau 19	95	315	68,49	0,88	1,91
Tuyau 20	218	63	2,51	0,81	11,27
Tuyau 21	106	25	0,44	0,9	43,14
Tuyau 22	87	25	0,36	0,74	30,39
Tuyau 23	28	315	64,55	0,83	1,72
Tuyau 24	124	32	0,52	0,64	17,4
Tuyau 25	381	250	61,82	1,26	4,91

Les différents résultats obtenus pour les autres arcs sont présenté dans l'Annexe 9.

Le schéma du réseau après la simulation est présenté dans la figure (V.11) ci-dessous :

Figure V.11 : Etat du réseau après la simulation cas de pointe + incendie

V.16. Résultats de la simulation cas de pointe + incendie

D'après les résultats représentés ci-dessus, on remarque que les pressions dans tous les nœuds sont dans la fourchette $[15 \div 68]$ m, et la pression 68 m peut être tolérée puisqu'on utilise le PEHD de PN10 où la conduite peut supporter une pression de 100 m.

Les vitesses dans les arcs sont acceptables, elles sont comprises entre (0,5 et 1,5) m/s

Les diamètres des conduites du réseau sont imposés par la simulation pour aboutir à des vitesses acceptables, les diamètres trouvés varient entre 25 et 400 mm.

Conclusion

A travers ce chapitre nous avons dimensionné le réseau de distribution en utilisant le logiciel EPANET. La simulation du réseau à travers ce logiciel, nous a permis de dégager les différents diamètres susceptibles d'assurer un bon fonctionnement du réseau ; en assurant des pressions acceptables dans tous les nœuds. Pour les vitesses, nous avons obtenu des valeurs qui se situent entre la marge de 0,5 à 1,5 m/s.

Le réseau de distribution sera réalisé avec de PEHD de PN 10 bars, sur un linéaire total de 11419 m, où les diamètres des conduites varient entre 25 et 400 mm.

Chapitre VI: Réseau d'assainissement d'eaux usées

Introduction

La conception hydraulique des réseaux d'assainissement constitue une étape clé puis qu'elle conditionne le bon fonctionnement du ces derniers, de manière durable. Ses objectifs principaux sont :

- D'anticiper au mieux les éventuelles extensions du réseau en amont ;
- ➤ D'appliquer les conditions d'auto-curage (vitesse minimale et donc pente minimale) permettant d'éviter les obstructions, la formation d'H₂S et leurs conséquences ;
- D'éviter les mises en charge et les débordements en assurant la protection du milieu contre la pollution selon sa sensibilité.

La conception du réseau doit en effet être telle que le milieu récepteur soit protégé contre le dépassement de sa capacité d'autoépuration. Elle doit prendre en considération les aspects physique, chimique, biochimique, bactériologique, visuel et olfactif [15].

Nous avons vu dans le chapitre III que l'ensemble des collecteurs des eaux d'assainissement de notre zone d'étude en l'occurrence, LARBATACHE basse se jettent dans 2 points de rejets principaux, l'un est situé au lotissement TAKMILIA et l'autre au quartier NOUADER II, ces derniers se jettent sur l'oued EL HAMIZ qui traverse la zone étude.

Notre but dans cette partie de notre travail est de concevoir un réseau d'assainissement adéquat capable de drainer les eaux usées de notre zone d'étude, aussi par le biais de ce dernier, acheminer les eaux polluantes vers des bassins de décantation avant leur rejet dans le milieu naturel.

VI.1. Généralités

VI.1.1. Définition d'un système de collecte d'eau usée

Un système de collecte est un système de canalisations qui recueille et achemine les eaux urbaines résiduaires composées des eaux usées et des eaux de pluie. Un système de collecte comprend également tous les équipements nécessaires au bon fonctionnement du réseau d'assainissement : déversoir d'orage, bassin de rétention...etc [16].

L'établissement d'un réseau d'assainissement d'une agglomération doit répondre à deux préoccupations, à savoir :

- Assurer une évacuation correcte des eaux pluviales de manière à empêcher la submersion des zones urbanisées,
- Assurer l'élimination des eaux usées ménagères et des eaux vannes.

VI.1.2. Systèmes d'évacuation

On distingue Quatre systèmes d'évacuation :

VI.1.2.1. Systèmes fondamentaux

On distingue:

* Système unitaire

L'évacuation de l'ensemble des eaux usées et pluviales est assurée par un seul réseau généralement pourvu de déversoirs d'orages permettant en cas d'orage le rejet direct, par surverse, d'une partie des eaux dans le milieu naturel.

Avantage: Peu coûteux économiquement.

Inconvénient: contamination des eaux pluviales par les eaux usées ce qui génère un débit à traiter trop élevé, d'où l'importance de la taille de la station d'épuration. Ceci a également l'inconvénient de compliquer le fonctionnement de la station en matière de variation de débit. Pour pallier à ce problème, on peut prévoir des déversoirs d'orages qui font transiter un flot suffisamment dilué et le rejettent dans une rivière sans inconvénient majeur.

Système séparatif

Il consiste à réserver un réseau à l'évacuation des eaux usées domestiques (eaux vannes et eaux ménagères) et sous certaines réserves de certains effluents industriels alors que l'évacuation de toutes les eaux météoriques (eaux pluviales) est assurée par un autre réseau.

Avantage: Permet de diminuer la taille de la station d'épuration.

Inconvénient: Double réseau, ceci est économiquement une solution coûteuse.

Système mixte

On appelle communément système mixte, un réseau constitué suivant les zones en partie d'un système unitaire et d'un système séparatif.

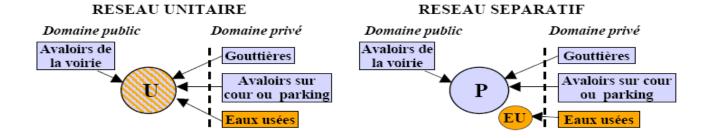
VI.1.2.2. Systèmes Pseudo séparatif

L'usage a prévalu de désigner sous ce vocable des réseaux séparatifs où le réseau d'eaux usées peut recevoir certaines eaux pluviales provenant des propriétés riveraines.

VI.1.2.3. Système composite

C'est une variante du système séparatif qui prévoit, grâce à divers aménagements, une dérivation partielle des eaux les plus polluées du réseau pluvial vers le réseau d'eaux usées en vue de leur traitement.

VI.1.2.4. Systèmes spéciaux


Système sous pression sur la totalité du parcours :

Le réseau fonctionne en charge de façon permanente sur la totalité du parcours.

Système sous dépression :

Le transport de l'effluent s'effectue par mise des canalisations en dépression.

La figure (VI.1) ci-dessous représente les différents systèmes d'assainissement

RESEAU PSEUDO SEPARATIF

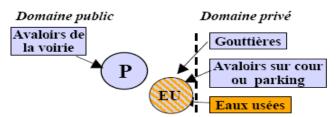


Figure VI.1 : Schémas des différents systèmes d'assainissement

VI.1.3. Schémas types des réseaux d'évacuation

Bien que les réseaux d'évacuation revêtent des dispositions très diverses selon les systèmes choisi, leur schéma se rapproche le plus souvent de l'un des cinq types décrits ci-après (Figure VI.3) :

VI.1.3.1. Schéma perpendiculaire au cours d'eau

C'est souvent celui des villes ou communes rurales qui ne se préoccupent que de l'évacuation par les voies les plus économiques et les plus rapides sans avoir un souci d'un assainissement efficace des eaux rejetées.

VI.1.3.2. Schéma type « collecteur latéral »

Ce schéma oblige parfois à prévoir des stations de relèvement.

VI.1.3.3. Schéma type « collecteur transversal »

Ce schéma permet de reporter par simple gravité l'ensemble des effluents plus loin à l'aval par rapport au schéma précédent.

VI.1.3.4. Schéma type « par zones étagées »

Ce schéma s'apparente au schéma précédent. Le collecteur bas qui doit souvent faire l'objet de relèvement, se trouve soulagé des apports des bassins dominants qui peuvent être évacués gravitairement.

VI.1.3.5. Schéma type « centre collecteur unique » et le schéma type radial

Selon que le réseau converge vers un ou plusieurs points bas où l'on peut reprendre l'effluent pour le relever, on utilise ce type de schéma.

VI.1.4. Différents types de réseaux

On distingue deux types de réseaux, ramifiés ou maillés.

Les réseaux d'assainissement appartiennent généralement au type « ramifié » ce qui est le cas des schémas ci-avant.

En variante, on peut concevoir un réseau de type « maillé » semblable à celui des réseaux d'eau potable. En effet, ce réseau « maillé » permet dans certaines zones urbaines d'obtenir de meilleures conditions d'écoulement, d'auto-curage, de gestion des fortes pluies et d'entretien.

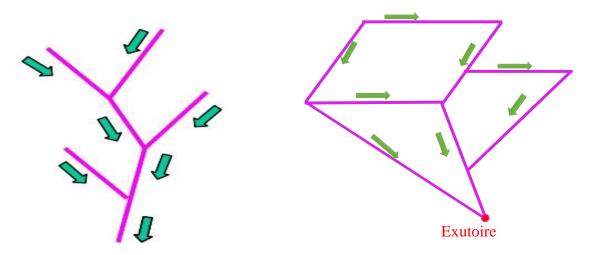


Figure VI.2 : Réseau ramifié

Figure VI.3 : Réseau maillé

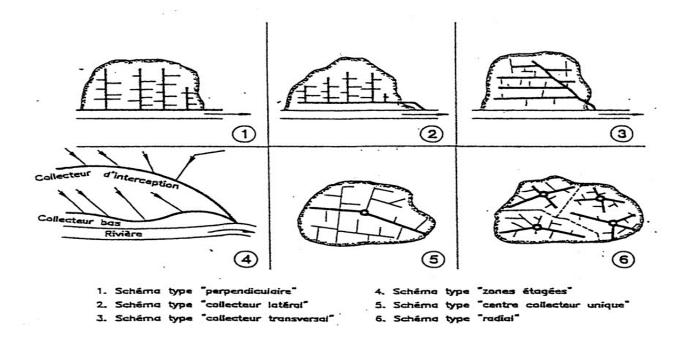


Figure VI.4 : Schémas types des réseaux d'évacuation

VI.1.5. Critères de conception et de dimensionnement du réseau d'assainissement

Le but de l'assainissement est d'évacuer les déchets sans porter préjudice au milieu récepteur. Il s'agit de protéger l'environnement où les écosystèmes contre toute dégradation. En effet les effluents urbains rejetés sont pollués et si des mesures techniques ne sont pas prises, les cours d'eau, les nappes d'eau souterraines, l'air...etc. peuvent subir des conséquences négatives. Du point de vue sanitaire, les réseaux d'assainissement devront assurer :

- L'évacuation rapide des matières fécales hors de l'habitat ;
- Le transport des eaux usées dans des conditions d'hygiène satisfaisante.

La conception d'un réseau d'assainissement se porte sur le :

- Choix du mode d'assainissement ;
- Choix du type de réseau ;
- Localisation des points de rejets ;
- > Type et implantation des ouvrages de stockage ;
- > Implantation des ouvrages de traitement ;
- > Tracé en plan du réseau ;
- > Dimensionnement.

VI.1.6. Facteurs influençant la conception d'un projet d'assainissement

Les divers facteurs influençant la conception d'un projet peuvent se répartir en 4 classes :

- 1. Les données naturelles du site (pente, lithologie...etc.),
- 2. Les données relatives aux agglomérations existantes (population, taux de branchement...),
- 3. Les données relatives au développement urbanistique (plan directeur d'aménagements homologués),
- 4. Les données propres à l'assainissement. (Diamètre des canalisations, tracé des collecteurs, emplacement des regards, choix de l'exutoire...etc.).

VI.1.7. Composition de l'effluent urbain

L'effluent urbain se compose de la manière suivante :

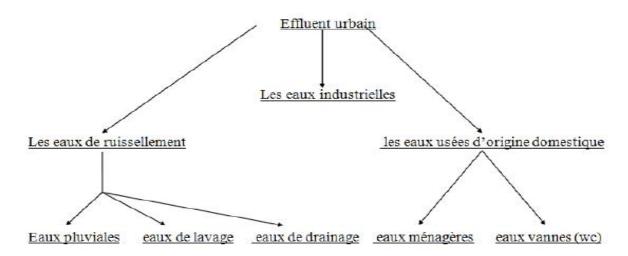


Figure VI.5 : Répartition schématique de la composition de l'effluent urbain

VI.2. Dimensionnement du réseau

VI.2.1. Calcul des débits

Les débits d'eaux usées à considérer dans l'étude des réseaux d'assainissement correspondent essentiellement aux pointes actuelles et/ou futures qui conditionnent la détermination des sections des canalisations en système séparatif et, dans certains cas, en système unitaire, en veillant à respecter les conditions d'auto-curage. L'estimation des débits n'est pratiquement nécessaire que dans le corps des réseaux. Les canalisations disposées en tête des réseaux (les limites inférieures des diamètres étant fixées à 200 mm en système séparatif d'eau usée et à 300 mm en système unitaire pour éviter les risques d'obstruction) sont surabondantes pour l'écoulement des débits.

D'une manière systématique il conviendra d'apprécier, à partir des données relatives à l'alimentation en eau de l'agglomération ou du secteur industriel, le débit qui parviendra au réseau étudié au jour de la plus forte consommation de l'année en distinguant les eaux usées domestiques des eaux usées industrielles dont les caractéristiques peuvent être très différentes. Afin de limiter à un minimum les erreurs de raccordement (eaux claires parasites et inversions de branchement) les autorités organisatrices se doivent de vérifier systématiquement si les ouvrages d'assainissement raccordés aux réseaux publics sont bien conformes aux dispositions règlementaires.

VI.2.1.1. Débit moyen d'eaux usées domestiques

Le débit moyen journalier (Q_m) de rejet d'eaux usées domestiques d'une zone homogène peut être évalué en prenant compte la consommation d'eau par habitant et par vingt-quatre heures correspondant aux plus fortes consommations journalières de l'année estimées ou calculées à partir des volumes d'eau vendus. Il est à noter que l'eau consommée tant par les usagers que par les services publics ne parvient pas en totalité au réseau ; l'eau d'arrosage des jardins et plantations est vouée à l'infiltration dans le sol ou à l'évaporation dans l'atmosphère, l'eau de lavage des espaces publics est recueillie dans les ouvrages pluviaux ou dans les ouvrages unitaires grossissant le débit de temps sec.

Cette consommation moyenne (C_m) , toutes sources confondues, dépend du type d'activités. Les valeurs suivantes sont généralement employées :

- ➤ Zones de logements : de 100 à 150 l/j/personne ;
- > Zones de bureaux : de 30 à 75 l/j/personne ;

> Zones d'activités (artisanat, commerce) : de 70 à 130 l/j/personne.

Le débit moyen d'eaux usées domestiques est exprimé par la formule suivante :

$$Q_{edm} = \frac{C_m(1-Pf)N_h}{86400}$$
 (VI.1)

Où:

lacksquare Q_{edm} : Débit moyen journalier d'eaux usées domestiques en (l/s) ;

 \leftarrow C_m: Consommation moyenne en eau en (1/h/j);

Arr P_f: Pertes futurs en eau (30%);

▲ N_h: Nombre d'habitants.

VI.2.1.2. Débits maximaux ou de pointe

Pour l'évaluation des débits maximaux, on partira des débits moyens calculés précédemment. Le débit à prendre en compte en un point donné du réseau (dénommé point de calcul ou nœud) pour un projet, est une valeur maximale appelée débit de pointe \mathbf{Q}_p . Il est calculé à partir du débit moyen journalier \mathbf{Q}_{edm} multiplié par un coefficient de pointe \mathbf{C}_p . Ce coefficient correspond à la variation de débit entre le jour et la nuit par rapport à la moyenne.

Ce coefficient de pointe est largement influencé par la consommation, le nombre de raccordements et le temps d'écoulement dans le réseau qui dépend en particulier de sa longueur. Le coefficient de pointe qui est compris entre 1,5 (en corps de réseau) et 4 (en tête) peut être évalué selon la formule empirique :

$$C_p = 1, 5 + \frac{2.5}{\sqrt{Q_{edm}}}$$
 (VI.2)

Avec:

 $1, 5 \le C_p \le 4$

Au final, nous avons donc:

$$Q_{p,u} = C_p \times Q_{edm} \tag{VI.3}$$

Où:

▲ Q_{P,u}: Débit de pointe d'eaux usées rejetées en (l/s) ;

▲ Cp : Coefficient de pointe.

VI.2.1.3. Débit des sous bassins

Après avoir découpé la zone d'étude en sous bassins, le débit correspondant à chacun de ces derniers est déterminé en fonction du nombre de logements de chaque sous bassin, de la densité d'habitant par logement, de la dotation en eau potable et des pertes dans le réseau. On peut donc l'exprimer sous la formule suivante :

$$Q_{SB} = \frac{C_m(1-P)N_{LSB} \times D_h}{86400}$$
 (VI.4)

Où:

▲ Q_{SB}: Débit moyen journalier d'eaux usées domestiques par sous bassin en (l/s);

▲ N_{LSB}: Nombre de logement par sous bassin;

▲ D_h: Densité d'habitant par logement.

Pour l'évaluation de la population future nous utilisons l'équation (I.1).

VI.2.1.4. Débit de route

C'est le débit acheminé par l'ensemble des canalisations du réseau d'assainissement, il est obtenu en divisant le débit du sous bassin en question par la somme des longueurs de canalisation constituant ce dernier.

$$Q_R = \frac{Q_{SB}}{\sum L_i} \tag{VI.5}$$

Avec:

Arr Q_R: Débit de route du sous bassin en (l/s)

▲ Q_{SB}: Débit moyen journalier d'eaux usées domestiques par sous bassin en (l/s);

 $ightharpoonup \Sigma L_i$: Somme des longueurs des canalisations du sous bassin en (m).

Pour chaque tronçon de conduite le débit de route est obtenu en multipliant sa longueur par le débit de route du sous bassin :

$$Q_{r,i} = Q_R \times L_i \tag{VI.6}$$

Avec:

▲ Q_{r.i}: Débit de route du tronçon « i » d'eau usée en (l/s) ;

Arr L_i: Longueur du tronçon « i » (m).

VI.2.1.5. Débit moyen entrant

C'est le débit d'eaux usées entrant au nœud « N » ou au regard « R », la quantité d'eau usée entrante peut englobée plusieurs tronçon acheminant cette dernière au même point donnée par la formule suivante :

$$Q_{me.N} = \sum Q_{r.i} \tag{VI.7}$$

Où:

ightharpoonup $Q_{me.N}$: Débit moyen entrant au nœud « N » (l/s);

 $ightharpoonup Q_{r,i}$: La somme des débits de route entrant au nœud « N ».

VI.2.1.6. Débit moyen sortant

Il est défini comme étant la somme du débit moyen entrant au nœud « N » et le débit du tronçon « i ». Il donne par la formule suivante

$$Q_{ms,N} = Q_{me,N} + Q_{r,i} \tag{VI.8}$$

Avec:

Arr Q_{ms,N}: Débit moyen sortant du nœud « N » (1/s).

VI.2.1.7. Débit de pointe entrant

Il est défini par la formule ci-dessous :

$$Q_{P.E} = C_{pe} \times Q_{me.N} \tag{VI.9}$$

Où:

▲ Q_{P.E}: Débit de pointe entrant en (l/s) ;

▲ C_{pe}: Coefficient de pointe entrant défini par la formule :

$$C_{pe} = 1,5 + \frac{2,5}{\sqrt{Q_{me.N}}}$$
 (VI.10)

On a:

$$1,5 \leq C_{pe} \leq 4$$

VI.2.1.8. Débit de pointe sortant

Il est défini par la formule ci-dessous :

$$Q_{P.S} = C_{ps} \times Q_{ms.N} \tag{VI.11}$$

Où:

▲ Q_{P.S}: Débit de pointe sortant en (l/s);

▲ C_{ps}: Coefficient de pointe sortant défini par la formule :

$$C_{ps} = 1,5 + \frac{2,5}{\sqrt{Q_{ms.N}}}$$
 (VI.12)

On a:

$$1,5 \leq C_p \leq 4$$

VI.2.1.9. Débit de pointe au tronçon

C'est la moyenne du débit de pointe entrant et le débit de pointe sortant au nœud, il est défini comme suit :

$$Q_{P,i} = (Q_{P,E} + Q_{P,S})/2$$
 (VI.13)

Où:

▲ Q_{p,i}: Débit de pointe de tronçons « i » en (l/s).

VI.2.2. Conception du réseau d'assainissement

L'assainissement d'une agglomération est un problème trop complexe pour se prêter à une solution uniforme et relever de règles rigides.

Il est commandé par de nombreux facteurs qui peuvent conduire à des conclusions contradictoires entre lesquelles un compromis est à dégager. Les facteurs essentiels pouvant influencés la conception d'un projet d'assainissement sont :

VI.2.2.1. Données naturelles du site

Ces données conrnent:

a) Pluviometre de la regien

Ce parametre doit etre en compte dans le cas de dimensionnement des reseaux d'assainissement unitaire vu le debit important des eaux pluviales qui rentre dans le calcul des sections des canalisation.

b) Topographie

Elle est imposée et son rôle est essentiel. En effet comme il s'agit d'evacuer des eaux aussi rapidement que possible pour éviter les dépôts, l'evacuation sera d'autant plus aisée que le terrain présentera des pentes plus importantes. L'évacuation rapide et continue de tous les déchets fermentescible des canalisation d'eaux usées implique une pente minimum. Pour les ouvrage unitaire ou pluviaux la pente minimum acceptable supérieure la précédente est celle qui devrait permettre l'entrainement des sable pour des débits pluviaux atteints fréquemment. En zones plates ces conditions entrainent d'amont en aval un approfondissement coûteux des ouvrages relayé eventuellement par un relèvement systematique de l'effluent qui préente le double inconvénient d'engendrer des coûts important d'exploitation et de subordonner la desserte à l'emploi de moyens mécaniques.

c) Hydrographie et le regime des nappes souterraines

A l'aval de tout réseau d'assainissement, l'effluent , quel qu'il soit , atteint un millieu récepteur, au besion après un trajet à ciel ouvert dans la cas des eaux pluviales ou via des conduites souterraine pour les eaux usées doméstiques. Ce millieu est constitué normalement, soit par les voies et cours d'eau plus ou moins importants, soit par les étangs ou les lacs, soit par la mer, soit par le sol (épandage). Le rejet dans les étangs ou les lacs peut eventuellement accélérer leur eutrophisation. Il est donc souhaitable de rechercher, dans toute la mesure du possible, une solution comportant la mise en place d'un collecteur de ceinture qui rejettera les effluents traités en aval du lac ou de l'étang.

d) Géologie

pour les ouvrages importants et ceux qui doivent être exécutés en souterrain, une étude géotechnique de la structure des terrains doit etre faite pour tout site susceptible de recevoir des ouvrages importants d'assainissement, notamment des émissaires gravitaires, dont le profil en long conduit à l'adoption de profondeurs locales importantes pour le passage sous des buttes. D'importantes économies pourront résulter du choix d'un profil en long permettant d'éviter les terrains difficiles.

VI.2.2.2. Données relatives au développement futur de l'agglomération

ce développement est néssairement aléatoire et ne peut être prévu avec quelque précisionque s'il est plus ou moins étroitemetn subordonné à une volonté d'urbainisme. Or, comme c'est le cas pour l'ensemble des équipement d'infrastructure, l'assainissement doit précéder l'apparition des besoins qu'entraîne l'urbanisation. Il est donc particulierement indispensable que le développement des réseaux d'assainissement et les phases successives de l'épuration des eaux soient étroitement intégrées dans la planiphication.

VI.2.3. Tracé et conception du réseau d'assainissement separatif d'eaux usées de LARBATACHE basse

Notre zone d'étude LARABATCHE basse se caractérise par deux paties topographique distinctes, au nord le relief du terrain est généralement plat, par contre au sud ce dernier est légerement accidenté séparé par des zones plates. Dans la partie nord le tracer du réseau d'assainissement nous a conduit a adopter des profondeurs plus ou moins importantes vu la nature plate du terrain, néanmoins nous avons pû acheminer les eaux usées de cette parties vers deux exutoires et points de rejets situés à proximité du oued CHAABA qui traversse notre zone d'étude à plusieurs endroits. Dans la partie sud nous avons rencontrés des contre pentes importantes, pour remédier à la situation, nous avons procédé à la conception d'un réseau d'assainissement ayant plusieurs points de rejet, ces derniers se jettent sur le même oued CHAABA qui lui-même se jette sur oued EL HAMIZ.

Après le traçer des canalisation d'assainissement d'eaux usées sur AUTOCAD 2008 en utilisant l'option polylignes, nous avons obtenus sept points de rejets, tous se jettant sur l'oued CHAABA traverssant la zone d'étude (voir planche N°1 en Annexe).

Le découpage en sous bassins de la zone d'étude s'est fait en fonction des points de rejts. 7 sous bassins ont été dégagés, l'estimation de la population et des rejets d'eaux usées sont représentés dans le tableau (VI.1) ci-desssous :

Sous bassins	Nombre de logements	Densité d'habitation	nombre d'habitan ts	Nbre d'habitant à l'horizon de 25 ans	dotation l/hab/j	pertes (%)	QsB (futur) (l/s)
S_1	34	7	238	410	150	30	0,50
S_2	37	7	259	446	150	30	0,54
S ₃	84	7	588	1013	150	30	1,23
S ₄	418	7	2928	5045	150	30	6,13
S ₅	208	7	1456	2509	150	30	3,05
S ₆	215	7	1506	2595	150	30	3,15
S ₇	171	7	1197	2062	150	30	2,51

Tableau VI.1 : Estimation du débit moyen futur d'eau usées de LARBATACHE basse

On voit bien que le sous bassin 4 présente un débit important et ce, vu l'importance du nombre d'habitant qu'il collecte.

VI.2.3.1. Description du réseau d'assainissement projeté

Dans cette partie de notre étude, nous allons procéder au dimensionnement d'un réseau d'assainissement d'eaux usées, ce dernier collectera et acheminera les eaux usées domestiques

vers des points de rejets spécifiques constitués de bassins de décantation. Les caractéristiques de notre réseau sont :

- ▲ Le matériau choisi pour nos canalisations est le bêton vu son faible coût ;
- Après découpage de la zone d'étude et en tenant compte des point de rejet, de la topographie du terrain et de la répartition des habitations nous avons obtenus 7 sous bassins :
- ▲ Le réseau est constitué de 46 collecteurs.

VI.2.3.2. Profil en long et pentes des canalisations

Le profil en long d'une voie est défini par une succession de droites dont on connaît les rampes ou les pentes ainsi que certaines côtes indispensables pour fixer leur position. On raccorde ces droites par des courbes dont les rayons sont fonction des conditions de circulation admises. Le profil en long suit, dans toute la mesure du possible le terrain naturel, dans le cas contraire, la route sera en remblai (au-dessus du terrain naturel) ou en déblai (en dessous du terrain naturel). Pour les voies urbaines, le profil en long diffère assez peu du profil d'une route de rase campagne, mais il est soumis à des contraintes plus sévères car il doit assurer notamment un écoulement correct des eaux de ruissellement et une desserte correcte des propriétés riveraines. Les pentes maximales doivent être limitées à 12 %. Les pentes minimales sont à limiter à 0,20 % [17].

Les profils en long de la zone d'étude ont été réalisés avec le logiciel COVADIS qui est un logiciel complet, simple et interactif de topographie et de conception VRD, il garantit une approche globale ainsi une maîtrise totale de tous les projets d'aménagements. Après avoir tracé les conduites sous AUTOCAD en forme de polylignes nous avons procédé à la conversion de ces dernières en conduite d'assainissement en utilisant le pavé conception VRD de COVADIS (voir planche N°2 en annexe).

Le profil en long des conduites est ainsi déterminé pour chaque tronçon des 7 sous bassins, et par le biais de celui-ci on obtiendra les distances, les distances cumulées et les pentes canalisations. Ci-dessous un exemple de la détermination des caractéristiques principales du sous bassin 1 :

Tableau VI.2 : Caractéristiques des canalisations du sous bassin S₁

	1 ^{er} Collecteur								
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (ml)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite (m)	profondeur du regard (m)	Pente (%)
R146	-	-	-	156,38	154,98	-	154,98	1,40	-
R147	R146- R147	50,97	50,97	152,61	151,21	154,98	151,21	1,40	7,39
R148	R147- R148	47,27	98,24	149,18	147,78	151,21	147,78	1,40	7,25
R149	R148- R149	55,67	153,92	144,48	143,08	147,78	143,08	1,40	8,44

Tableau VI.2 : Caractéristiques des canalisations du sous bassin S_1 (suite et fin)

N° regard	N° de tronçon	distance partielle (m)	distance cumulée (ml)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)	
R150	R149- R150	18,42	172,33	143,27	141,87	(m) 143,08	(m) 141,87	1,40	6,56	
R151	R150- R151	48,06	220,39	139,22	137,82	141,87	137,82	1,40	8,44	
R152	R151- R152	49,40	269,79	135,77	134,47	137,82	134,47	1,30	6,76	
R153	R152- R153	30,73	300,52	135,18	133,88	134,47	133,88	1,30	1,94	
	2 ^{ème} Collecteur									
R154	-	-	-	143,56	142,11	-	142,11	1,45	-	
R155	R154- R155	43,17	43,17	137,35	135,90	142,11	135,90	1,45	14,38	
R156	R155- R156	9,20	52,37	136,14	134,74	135,90	134,74	1,40	12,59	
R153	R156- R153	12,49	64,86	135,18	133,88	134,74	133,88	1,30	6,93	
	3 ^{ème} Collecteur									
R153	-	-	-	135,18	133,88	-	133,88	1,30	-	
BDC- 1-	R153- BDC-1-	3,14	3,14	134,70	133,40	133,88	133,40	1,30	15,04	
Longu eur Totale (m)	368,52									

Ainsi les caractéristiques des conduites des sept sous bassins sont représentés dans l'Annexe 10

VI.2.3.3. Détermination des diamètres des conduites

La détermination des diamètres des canalisations se fait à l'aide de l'abaque de BAZIN, ce dernier représente les débits en fonction des pentes des canalisations dans le cas des réseaux séparatifs, le point d'intersection du débit et la pente, nous donne directement le diamètre à adopter pour notre conduite.

Le tracé de la conduite étant établit, les profils en long des canalisations de notre réseau aussi réalisés (Annexe 10). Un exemple de calcul de diamètre du sous bassin S_1 est représenté dans le tableau (VI.3) :

N° de regard	Li (m)	Qr Unitaire l/s	Q _{r.i} route (l/s)	Qme.N Qms.N (l/s)	Cpe Cps	QPE QPS (l/s)	Q _P (l/s)	I (m/m)	Diamètre (mm)
R 146	50,97	0,001352	0,069	0	0	0	0,138	0,074	200
R 147	30,97	0,001332	0,009	0,068925	4	0,275701	0,138	0,074	200
R 147	47,27	0,001352	0,064	0,068925	4	0,275701	0,404	0,070	200
R 148	47,27	0,001332	0,004	0,132847	4	0,531389	0,404	0,070	200
R 148	55,67	0,001352	0,075	0,132847	4	0,531389	0,682	0,080	200
R 149	33,07	0,001332	0,073	0,208128	4	0,832512	0,682	0,080	200
R 149	18,42	0,001352	0,025	0,208128	4	0,832512	0,882	0,070	200
R 150	10,42	0,001332	0,023	0,233037	4	0,932148	0,882	0,070	200
R 150	48,06	0,001352	0,065	0,233037	4	0,932148	1,062	0,080	200
R 151	46,00	0,001332	0,003	0,298027	4	1,192108	1,002	0,080	200
R 151	49,40	0,001352	0,067	0,298027	4	1,192108	1,326	0,070	200
R 152	49,40	0,001332	0,007	0,364829	4	1,459317	1,320	0,070	200
R 152	30,73	0,001352	0,042	0,364829	4	1,459317	1,542	0,020	200
R 153	30,73	0,001332	0,042	0,406385	4	1,625538	1,342	0,020	200
R 154	43,17	0,001352	0,058	0,000000	4	0,000000	0,117	0,140	200
R 155	43,17	0,001332	0,038	0,058378	4	0,233510	0,117	0,140	200
R 155	9,20	0,001352	0,012	0,058378	4	0,233510	0,258	0,130	200
R 156	9,20	0,001332	0,012	0,070818	4	0,283274	0,238	0,130	200
R 156	12,49	0,001352	0,017	0,070818	4	0,283274	0,317	0,070	200
R 153	12,49	0,001332	0,017	0,087708	4	0,350833	0,317	0,070	200
R 153				0,494093	4	1,976372			
BDC-	3,14	0,001352	0,004	0,498339	4	1,993356	1,985	0,150	200

Tableau VI.3: Dimensionnement des conduites et calcul des différents débits du sous bassin S₁

D'après ce tableau on remarque bien que le diamètre des conduites ne dépasse pas les 200 mm, et ce, suite au faible débit de pointe de nos tronçon.

VI.2.3.4. Vérification des conditions d'auto curage

Dans le cas des réseaux d'eaux usées en système séparatif, où l'on ne bénéficie aucunement des chasses pluviales, il faut prendre en compte les conditions suivantes :

❖ A pleine ou à demi-section, un tuyau circulaire doit assurer une vitesse d'écoulement de 0,70 m/s ;

$$V \ge 0.7 \text{ m/s} \text{ pour } H = \frac{1}{2} \emptyset$$

Où:

▲ Ø : Diamètre de la conduite (m) ;

▲ H: hauteur d'eaux usées dans la conduite (m).

Pour un remplissage égal aux 2/10 du diamètre, la vitesse d'écoulement doit être au moins égale à 0,3 m/s et ce, pour éviter d'éventuel dépôt dans la canalisation.

$$V \ge 0.3$$
 m/s pour $H = \frac{2}{10} \emptyset$

❖ La hauteur de remplissage doit être supérieure ou égale au $(\frac{2}{10})$ du diamètre pour un débit correspondant à (Q_{min})

$$\mathbf{H} = \mathbf{r}_{\mathbf{H}} \times \mathbf{\emptyset} \ge \frac{2}{10} \mathbf{\emptyset}$$

Pour:

$$\mathbf{Q} = \mathbf{Q}_{\min} = \mathbf{Q}_{SB} - \frac{Q_{SB}}{\sum L_i} \times \frac{L_i}{2}$$
 (VI.14)

D'où: $r_H \ge 0.2$

Avec:

▲ Q_{SB futur}: Débit d'eaux usées futur du sous bassin ;

 $ightharpoonup \Sigma L_i$: La somme des longueurs de sous bassin (m) ;

▲ L_i: La longueur du tronçon « i » (m).

a) Détermination des coefficients r_H et r_V à partir de l'abaque de MANNING

On détermine d'abord le débit à pleine section Q_{ps} pour les pentes supérieures à 10 % à l'aide de la formule suivante :

$$\mathbf{Q_{ps}} = \frac{0.3117}{0.012} \times \emptyset^{\frac{8}{3}} \times \sqrt{\mathbf{I}}$$
 (VI.15)

Avec:

Arr Q_{ps}: Débit à pleine section (m³/s);

▲ Ø: Diamètre normalisé (m);

▲ I : Pente du tronçon (%).

On détermine ensuite la vitesse à pleine section qui est donnée par :

$$V_{ps} = \frac{4 \times Q_{ps}}{\pi \times \emptyset^2} \tag{VI.16}$$

Avec:

Arr V_{ps}: Vitesse à pleine section (m/s);

Arr Q_{ps}: Débit à pleine section (m³/s).

On détermine le débit minimal Q_{min} donné par la formule de la 3^{èmé} condition d'auto-curage :

Le rapport des débits (r₀) est calculé ensuite à l'aide de la formule suivante :

$$r_Q = \frac{q_{min}}{q_{ps}} \tag{VI.17}$$

Avec:

▲ r_O: Rapport de débit ;

▲ Q_{min}: Débit minimal en (l/s).

En utilisant l'abaque de Manning, on détermine le rapport des vitesses (r_v).

La vitesse effective (V) sera calculée après avec la formule ci-dessous :

$$Ve = r_V \times V_{ps} \tag{VI.18}$$

Avec:

 \checkmark V_e: Vitesse effective (m/s);

▲ r_V: Rapport de vitesse.

Le rapport des hauteurs (r_H) s'exprime par la formule empirique suivante :

$$r_H = 0,4961 \, r_Q + 0,07861 \, r_Q^2 + 3,65128 \, r_Q^3 - 3,16149 \, r_Q^4$$

$$-0.0612 r_0^5$$
 (VI.19)

Avec:

▲ r_H: Rapport de hauteur.

b) Exemple de calcul

Conduite R146-R147 du sous bassin S1

Caractéristiques de la conduite R128-R129 sont :

$$L_{(R146-R147)} = 14,56 \text{ m}$$

$$I_{(R146-R147)} = 0,0739 \text{ m/m} = 7,39 \%$$

$$\emptyset = 200 \text{ mm}$$

Calcul du débit à pleine section (Qps) :

On a:

$$Q_{ps} = \frac{0.3117}{0.012} \times \emptyset^{\frac{8}{3}} \times \sqrt{I}$$
 (VI.20)

D'où:

$$Q_{ps} = 0$$
, 09659 $m^3/s = 96$, 59 $1/s$

$$V_{ps} = \frac{4 \times 0,09659}{3,14 \times 0,2^2}$$

$$V_{ps} = 3,076 \text{ m/s}$$

> Vérification de la 1ère condition

A partir de l'abaque de Manning:

Pour :
$$r_H = 0.5$$

On a :
$$r_V = 1.02$$

$$V = V_{ns} \times r_V = 3,076 \times 1,02$$

D'où:

V = 3.13 m/s > 0.7 m/s (Condition vérifiée)

➤ Vérification de la 2^{eme} condition

Pour : $r_H = 0.2$

On a : $r_V = 0.6$ (abaque de Manning)

$$V = V_{ps} \times r_V = 3,076 \times 0,6$$

D'où:

V = 1.84 m/s > 0.3 m/s (Condition vérifiée)

➤ Vérification de la 3^{eme} condition

Calcul de Q_{min (R128-R129)}

$$Q_{\min(R146-R147)} = Q_{SB1futur} - \left(\frac{Q_{SB1futur}}{\sum L_{(SB1)}} \times \frac{L_{(R146-R147)}}{2}\right)$$
(VI.21)

$$Q_{min(R146-R147)} = 0.498 - (\frac{0.498}{368.53} \times \frac{50.97}{2})$$

 Q_{min} (R146-R147) = 0, 4638 l/s

Calcul de r_Q:

$$r_{Q} = \frac{Q_{\min(R146-R147)}}{Q_{ps(R146-R147)}}$$
(VI.22)

$$r_Q = \frac{0,4638}{96,59} = 0,0048$$

Calcul de r_H:

$$r_H = (0,4961 \times 0,0048) + (0,07861 \times 0,0048^2) + (3,65128 \times 0,0048^3) - (3,16149 \times 0,0048^4) - 0,0612 \times 0,0048^5)$$
 (VI.23)

$$r_H = 0.00238 < 0.2$$
 (Condition non vérifiée)

L'ensemble des tronçons du sous bassin S_1 sont représentés dans le tableau (VI.4). Concernant les autres sous bassins, les résultats de la vérification des trois conditions d'autocurage sont représentés dans **l'Annexe 11**

Tableau VI.4 : Vérification des conditions d'auto-curage du sous bassin S_I

										condition	ıs d'autocu
		Ø	One	One	Vps	Qmin	rv	rv	1ère	2ème	3èı
(%)	L (m)	(mm)	Qps (l/s)	Qps (m3/s)	(m/s)	(l/s)	(rh=0,5)	(rh=0,2)	condition v(m/s)	condition v(m/s)	rq
,39	50,97	200	96,59569	0,0966	3,076296	0,46388	1,02	0,6	3,1378219	1,8457776	0,0048023
,25	47,27	200	95,67634	0,0957	3,0470172	0,46638	1,02	0,6	3,1079575	1,8282103	0,0048746
,44	55,67	200	103,2302	0,1032	3,287586	0,4607	1,02	0,6	3,3533377	1,9725516	0,0044629
,56	18,42	200	91,00965	0,091	2,8983966	0,48589	1,02	0,6	2,9563646	1,739038	0,0053389
,44	48,06	200	103,2302	0,1032	3,287586	0,46585	1,02	0,6	3,3533377	1,9725516	0,0045128
,76	49,40	200	92,38658	0,0924	2,9422478	0,46495	1,02	0,6	3,0010927	1,7653487	0,0050326
,94	30,73	200	49,49216	0,0495	1,5761834	0,47756	1,02	0,6	1,6077071	0,9457101	0,0096493
4,38	43,17	200	134,7457	0,1347	4,2912651	0,46915	1,02	0,6	4,3770904	2,574759	0,0034818
2,59	9,20	200	126,0806	0,1261	4,0153071	0,49212	1,02	0,6	4,0956132	2,4091842	0,0039032
,93	12,49	200	93,54103	0,0935	2,9790138	0,4899	1,02	0,6	3,0385941	1,7874083	0,0052372
5,04	3,14	200	137,8033	0,1378	4,3886386	0,49622	1,02	0,6	4,4764113	2,6331831	0,0036009

VI.2.3.5. Discussion des résultats obtenus

Nous avons constaté que la troisième condition d'auto curage n'est pas vérifiée pour l'ensemble des sous bassins, par contre les deux premières conditions sont remplies. Pour remédier à la situation plusieurs solutions existent comme :

a) Hydro curage hydrodynamique

L'hydro curage consiste à nettoyer les canalisations à l'aide d'eau sous haute pression comprise entre 50 et 300 bars selon la nature des travaux à réaliser. Une buse spéciale est utilisée avec un jet avant central pour désagréger les boues et des jets latéraux dirigés vers l'arrière qui assurent l'évacuation de celles-ci et l'avancement de la tête. L'auto progression de la buse est de l'ordre de 80 mètre selon l'état d'engorgement et le diamètre de la canalisation

Le curage se poursuit jusqu'à ce que l'écoulement soit clair et sans saccades. Un curage se fait toujours de l'aval vers l'amont, l'entrainement des boues se fait jusqu'au regard aval ou l'on peut pomper.

b) Augmentation de la charge hydraulique dans les canalisations

Cette solution implique la réalisation de liaison entre les gouttières des habitations et le réseau d'assainissement, cela peut fonctionner en rajoutant le débit des eaux de pluie au débit faible d'eaux usées, et par ce biais on pourra augmenter la capacité d'auto-curage de la canalisation. L'inconvénient de cette méthode est qu'elle peut fonctionner qu'en période hivernale.

c) Implantation de réservoirs de chasse

Lorsqu'il n'est pas possible de procéder régulièrement au curage des canalisations par des matériels hydrauliques, il convient de disposer en tête du réseau des dispositifs de chasse susceptibles de pallier la déficience d'autocurage dudit réseau. A cet égard, il y a lieu de notre que que l'action dynamique de ces systèmes ne s'exerce que sur de faibles distances.

Lorsqu'on pourra prevoir que l'emportance des réseaux ne justifiera pas d'emplio de moyens modernes de curage, des reservoirs de chasse pourront etre admis dans les cas suivants :

Réseaux séparatifs ou pseudo-séparatifs :

en tête des antennes lorsque la pente est inférieure à 2 %;

réseaux unitaires :

en tête des antennes lorsque la pente est inférieure à 1 %;

- lorsqu'il n'y a pas de bouche d'égout avant le premier déversement d'eaux usées;
- dans les régions où l'absence de pluie est constante pendant plusieurs mois.

Leur fonctionnement sera de préférence automatique. Toutefois, en cas d'insuffisance de l'alimentation en eau, on devra prévoir la possibilité d'une manœuvre manuelle notamment à l'occasion d'opérations de curage. Leur capacité sera au minimum de 500 litres et le fonctionnement assuré deux fois par jour.

Il est à noter que l'eau des chasses constitue une lourde charge pour les collectivités et qu'elle peut être une sujétion supplémentaire pour le fonctionnement des petites stations d'épurations.

Pour notre cas, et pour pallier au manque d'entretien des réseaux d'assainissement on optera pour la troisième solution qui est l'implantation de réservoirs de chasse.

VI.2.4. Détermination du nombre de réservoirs de chasse à placer

Le nombre de réservoir de chasse à implanter sur tout notre réseau est déterminé par la formule suivante :

$$\mathbf{N}r = \frac{\sum L_i}{L_{max}} \tag{VI.24}$$

Avec:

▲ N_r: Nombre de réservoirs dans un sous bassin ;

 $ightharpoonup \Sigma L_i$: Somme des longueurs des tronçons du sous bassin (m);

▲ D_{max}: Distance maximale entre deux réservoirs de chasse (100 m).

Le tableau (VI.4) ci-dessous résume le nombre de réservoir de chasse dans chaque sous bassin :

Tableau VI.5 : Nombre de réservoirs de chasse par sous bassins

N° de sous bassins	longueur	Nombre de réservoirs de chasse
S_1	368,52	04
S_2	269,99	03
S_3	501,35	05
S ₄	3408,48	34
S_5	2847,83	28
S_6	935,35	09
S ₇	1285,57	13
TOTAL	9617,09	96

VI.2.4.1. Calcul de la capacité des réservoirs de chasse

La distance maximale entre deux réservoirs de chasse étant fixée à 100 m, la formule nous permettant de calculer la capacité d'un réservoir est comme suit :

Volume d'un réservoir de chasse = $\frac{1}{10}$ du volume à nettoyer.

On aura par suite:

$$V_R = \frac{1}{10} \times \frac{\pi \times \emptyset^2}{4} Dmax \qquad V_R = \frac{1}{10} \times \frac{\pi \times 0.2^2}{4} 100 \qquad (VI.25)$$

$$V_R = 3501$$

VI.2.4.2. Calcul de volume d'eau annuel nécessaire

Pour la détermination du volume annuel nécessaire à notre réservoir de chasse, nous utiliserons la formule suivante :

$$\mathbf{V_T} = \mathbf{Nr} \times \mathbf{V_R} \tag{VI.26}$$

Avec:

 $▲ V_T : Volume total en (L);$

Arr V_R: Capacité du réservoir de chasse en (m³).

Donc:

$$V_T = 96 \times 350 = 336001$$

La fréquence de fonctionnement des réservoirs est à fixer suivant la disponibilité de l'eau dans le réseau d'alimentation en eau potable. Dans notre cas on opte pour un fonctionnement journalier (1 fois par jour) on aura :

$$V_{R(annuel)} = 33600 \times 365$$
 $V_{R(annuel)} = 12264 m^3$

Conclusion

Après avoir tracé le réseau d'assainissement d'eaux usées de LARBATACHE basse, tout en respectant le relief du terrain pour avoir un écoulement gravitaire, le dimensionnement de ce dernier nous a conduit à un diamètre 200 pour l'ensemble des canalisations. Les eaux usées ont été drainées vers sept exutoires distincts composés de bassins de décantation se jetant sur l'oued CHAABA à différents endroits de la zone d'étude ce choix a été fait suivant la topographie de la région. Ceci diminuera la concentration de la pollution dans un seul endroit et ainsi l'impact sur l'environnement. Vu la non vérification de la troisième condition d'auto-curage, nous avons opté pour l'implantation de réservoirs de chasse à différents points du réseau, c'est la solution la plus adéquate vu le manque d'entretien et le mode d'exploitation des réseaux d'assainissement dans la localité.

Chapitre VII: Les Bassins de décantation

Introduction

Après avoir dimensionné le réseau d'assainissement d'eaux usées de la zone d'étude, on a procédé à l'évacuation de ces dernières vers des bassins de décantation. Chaque sous bassin résultant du découpage de la zone d'étude comporte un exutoire de réception du flux accumulé se déversant dans un bassin de décantation avant le rejet dans le milieu naturel qui est le cours d'eau existant. Dans cette partie de notre travail, nous allons procéder au dimensionnement des 07 bassins de décantation tout en respectant les débits d'eaux usées accumulées à chaque exutoire.

VII.1. Généralités

VII.1.1. Définition de la décantation

La décantation, procédé qu'on utilise dans pratiquement toutes les usines d'épuration et de traitement des eaux, a pour but d'éliminer les particules en suspension dont la densité est supérieure à celle de l'eau. Ces particules sont en général des particules de floc ou des particules résultant de la précipitation qui a lieu lors des traitements d'adoucissement ou d'élimination du fer et du manganèse. Les particules s'accumulent au fond du bassin de décantation d'où on les extrait périodiquement. L'eau clarifiée, située près de la surface, est dirigée vers l'unité de filtration [18].

VII.1.2. Les différents types de décantation

Selon la concentration en solide et la nature des particules (densité et forme), on distingue quatre types de décantation :

a) La décantation de particules discrètes

Les particules conservent leurs propriétés initiales (forme, dimension et densité) au cours de leur chute. La vitesse de chute est alors indépendante de la concentration en solide.

b) La décantation de particules floculantes

Ce type de décantation est caractérisé par l'agglomération des particules au cours de leur chute. Les propriétés physiques de ces particules (forme, dimension, densité et vitesse de chute) sont donc modifiées pendant le processus.

c) La décantation freinée

Ce type de décantation est caractérisé par une concentration élevée de particules, ce qui entraîne la formation d'une couche de particules et par conséquent, l'apparition d'une démarcation nette entre les solides décantés et le liquide surnageant.

d) La décantation en compression de boues

Les particules entrent en contact les unes avec les autres et reposent sur les couches inférieures. Etant donné que notre bassin de décantation est indépendant de celui de coagulation, nous supposerons que le régime laminaire du décanteur ne contribue plus à la floculation et que nous sommes dans le cas d'une décantation de particules discrètes.

VII.1.3. Principe de la décantation

Pour que la décantation puisse se faire correctement, il faut que la vitesse de l'eau soit inférieure à la vitesse de sédimentation des particules (Vs). La vitesse de l'eau est appelée charge hydraulique superficielle ou vitesse de Hazen (V_H) et permet de dimensionner les décanteurs :

Lorsque la vitesse de sédimentation des particules (Vs) est inférieure à la vitesse de Hazen (V_H), les particules ne sont pas sédimentées et partent avec l'eau vers la sortie.

Lorsque la vitesse de sédimentation des particules (Vs) est supérieure à la vitesse de Hazen (V_H), les particules sont piégées par le décanteur et s'accumulent au fond du bac.

Par ailleurs, il est important de préciser pour qu'une décantation particulaire soit efficace, l'écoulement de l'eau à l'intérieur du décanteur doit être laminaire. L'écoulement turbulent, utilisé dans les séparateurs à hydrocarbures, est à proscrire.

Il existe deux types de décantations, détaillés ci-après : la décantation statique (décanteurs horizontaux) et la décantation lamellaire (décanteurs lamellaires). Pour notre cas on va utiliser des décanteurs horizontaux vu leur facilité de réalisation et leur moindre coût [19].

VII.1.4. Les décanteurs horizontaux

Le décanteur horizontal est constitué d'une cuve parallélépipédique : l'eau chargée de MES pénètre à une extrémité et l'eau décantée ressort à l'autre suivant un écoulement horizontal. Elle nécessite une surface de bassin de décantation importante avec une vitesse de sédimentation généralement faible.

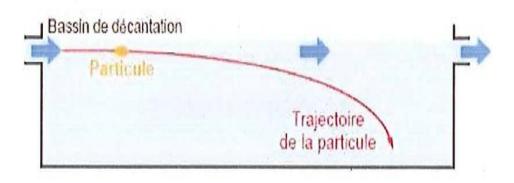


Figure VII.1 : Schéma d'un décanteur horizontal

Le principe de la décantation à flux horizontal est représenté de manière simplifiée par le modèle de Hazen. Selon ce modèle, une particule de vitesse de chute Vc décantant sur une hauteur H est retenue dans un bassin de longueur L et de surface horizontale S traversé par un débit Q si :

 $Vc \ge V_H$ avec V_H (vitesse de Hazen) = Q/S.

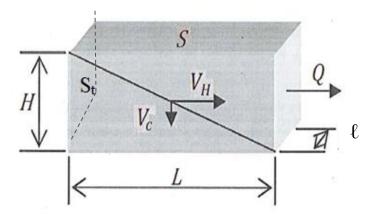


Figure VII.2 : Schéma d'un décanteur horizontal Théorie de Hazen

Théoriquement, l'efficacité d'un décanteur horizontal ne dépend que de sa vitesse de Hazen et non de sa hauteur ou de son temps de rétention (soit de 0,5 à 1,5 m/h). Cependant, les particules contenues dans l'eau floculée entrant dans le décanteur présentent toute une gamme de dimensions. Pendant leur parcours dans l'ouvrage les plus petites peuvent s'agglutiner entres elles, c'est le phénomène de coalescence. Leur taille, et donc la vitesse de sédimentation augmente avec le temps. La trajectoire devient de ce fait curviligne et l'efficacité de la décantation dépend donc aussi du temps de rétention.

VII.2. Dimensionnement des bassins de décantation

La particule, dans le décanteur, est animée par un mouvement uniforme dont le vecteur a pour composante horizontale (V_H) qui est la vitesse de l'eau dans le bassin, et pour composante verticale (V_C) la vitesse de chute (Figure VII.2).

Le dimensionnement du bassin de décantation repose sur la détermination de sa longueur (L), sa largeur (ℓ) et sa hauteur (H), de telle sorte que la condition de la décantation soit vérifiée. Les conditions de décantation se traduisent par :

Le temps de chute (T_C) < temps de séjour (T_{sej})

$$V_C = \frac{H}{T_C}$$

$$V_H = \frac{L}{T_{sej}}$$
 $T_C = \frac{H}{V_C}$

$$T_{sej} = \frac{L}{V_H}$$
(VII.1)

$$V_C = \frac{H}{T_C}$$
 \longrightarrow $T_C = \frac{H}{V_C}$ (VII.1)
$$V_H = \frac{L}{T_{sej}}$$
 \longrightarrow $T_{sej} = \frac{L}{V_H}$

On obtient donc:

$$\frac{H}{V_C} < \frac{L}{V_H}$$
 (VII.3)

Avec:

 \checkmark V_c: Vitesse de chute en (m/s);

▲ V_H: Vitesse de déplacement de l'eau dans le bassin en (m/s);

Arr T_c: Temps de chute en (mn);

Arr $T_{s\acute{e}i}$: Temps de séjour en (mn);

▲ L: Longueur du bassin en (m);

▲ H: Hauteur du bassin en (m).

Le temps de chute varie essentiellement de la taille des particules, le tableau (VII.1) cidessous résume divers temps de chute par mètre en fonction de la densité et de la taille des particules [20].

Tableau VII.1 : Temps de chute en fonction de la densité et du diamètre des particules

Type de	Diamètre (mm)	Temps de chute					
particule	Diametre (iiiii)	Densité de 2,65	Densité de 2,00	Densité de 1,1			
Gravier	10,00	0,013 s	0,02s	0,20 s			
Sable grossier	1,0	1,266 s	2,09s	20,90 s			
Sable fin	0,1	126,66 s	3,48 mn	34,83 mn			
MES (E.U)	0,01	3,52 h	5,80 h	58,00 h			
Bactéries	0,001	14,65 j	24,19 j	241,9 J			
Colloïdales	0,0001	4,12 a	6,66 a	66,59 a			
Colloïdales	0,00001	412,2 a	665,9 a	6659 a			
Colloïdales	0,000001	41222,7 a	66590 a	665905 a			

A partir de tableau (VII.1), on peut tirer la vitesse de chute des matières en suspension contenues dans les eaux usées domestiques, pour des particules ayant un diamètre de 0,01 mm la vitesse de chute est de l'ordre de 0,02 m/h (t= 58 heure).

De la figure (VII.2) on a :

$$\mathbf{S}_{t} = \mathbf{H} \times \ell$$
 (VII.4)

Le débit est exprimé par :

$$Q = V_{H} \times S_{t}$$
 (VII.5)

Donc:

$$V_H = \frac{Q}{H \times \ell} \tag{VII.6}$$

Où:

▲ S_t: Section transversale du bassin de décantation (m²);

Arr Q: Débit d'eau usée entrant(m³/s).

De l'équaion (VII.3) et (VII.6) on aura :

$$\frac{H}{V_C} < \frac{L(H \times \ell)}{Q} \tag{VII.7}$$

D'où:

$$\frac{1}{V_C} < \frac{L \times \ell}{Q}$$
 (VII.8)

La section longitudinale du décanteur s'exprime comme suit :

$$\mathbf{S}_{l} = \mathbf{L} \times \mathbf{\ell}$$
 (VII.9)

On aura donc:

$$\frac{1}{v_c} < \frac{s_l}{q}$$
 \Longrightarrow $S_l > \frac{q}{v_c}$ (VII.10)

La longueur du bassin de décantation est généralement comprise entre 1 à 6 fois sa largeur, et sa hauteur entre 1,5 et 3 mètres, pour notre cas on prendra :

$$L= 3 \times \ell$$
Et $H= 2 m$

Par suite la section longitudinale devient :

$$S_l = 3 \times \ell^2 \tag{VII.11}$$

En remplaçant l'expression de la surface longitudinale dans l'équation (VII.9) on aura :

$$\ell > \sqrt{\frac{Q}{3 V_C}} \tag{VII.12}$$

Les dimensions de nos bassins de décantation sont résumées dans le tableau (VII.2) suivant :

Η Volume Bassin de **Q**_p $\mathbf{V}_{\mathbf{C}}$ l L $\mathbf{V}_{\mathbf{H}}$ Tc Tsej décantation (m^3/s) (m^3) (m/s)(m) (m) (m) (m/s)(h) (h) BDC-1- (S_1) 0,000498 0,0000055 6 18 2 216 0,000042 101,01 120,48 2 $BDC-2-(S_2)$ 0,00054 0,0000055 6 20 240 0,000045 101,01 123,46 0,00123 0,0000055 8 28 2 448 0,000077 101,01 101,17 BDC-3- (S_3) 0,00613 19 2 101,01 $BDC-4-(S_4)$ 0,0000055 64 2432 0,000161 110,20 $BDC-5-(S_5)$ 0,00305 0,0000055 13 44 2 1144 0,000117 101,01 104,19 BDC-6- (S_6) 0,00315 0,0000055 13 48 2 1248 0,000121 101,01 110,05 0,0000055 12 40 2 0,000105 101,01 106,24 $BDC-7-(S_7)$ 0,00251 960

Tableau VII.2 : Dimensions des bassins de décantation

VII.3. Entretien et maintenance des bassins de décantation

L'entretien devrait idéalement être réalisé après chaque 03 mois afin de ne pas réduire l'efficacité du décanteur et d'éviter les relargages. La récupération des boues peut être effectuée par pompage. Ces boues résiduaires seront déshydratées. Celles-ci sont ensuite évacuées directement vers la filière d'élimination (compostage, mise en centre d'enfouissement technique) ou stockées sur le site s'il existe, en vue de leur épandage en agriculture.

Conclusion

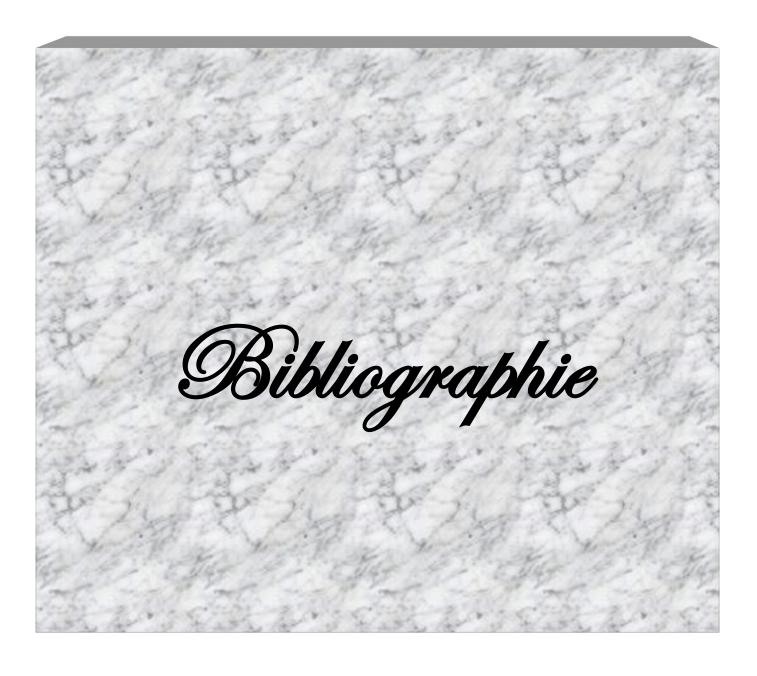
La zone d'étude possède sept bassins de décantation, ces derniers recueillent les eaux usées transportées par les canalisations de chaque sous bassins. On remarque que les dimensions du bassin de décantation du sous bassin S₄ sont les plus importantes et cela est dû au débit important que cette partie présente (Q_{S4}= 0,00613 m³/s), néanmoins la condition des temps de chute et de séjour est bien vérifiée pour l'ensemble des bassins. Certes le choix d'acheminer les eaux usées vers un exutoire jetant sur un oued n'est pas des plus avantageux, mais vu l'absence d'une station d'épuration dans la région, ça nous a imposé de drainer les eaux usées vers les exutoires menant à l'oued CHAABA se jetant sur oued EL HAMIZ. Pour diminuer l'impact direct sur l'environnement et avoir une durée de vie pour les bassins de décantation, un entretien régulier doit être effectué sur ces derniers et c'est par ce biais qu'on aura une meilleure efficacité.

Conclusion générale

Après avoir effectué une mise au point sur l'état du réseau d'alimentation en eau potable et de celui d'assainissement dans le chapitre « diagnostic des réseaux existants ».

Nous avons constaté que ces derniers nécessitent une rénovation par de nouvelles type de canalisations avec les nouvelles technologies vu leur vétusté et leur ancien mode de réalisation, aussi nous avons remarqué que le réservoir existant présente des signes de vieillissement (fissures, fuites ...etc.), sous dimensionné et ne suffira pas à subvenir aux besoins croissant de la communauté.

L'étude du réseau d'AEP effectuée à partir d'un nouveau réservoir projeté ayant une capacité de 1000 m³, nous a conduits à un dimensionnement optimal des canalisations en PEHD de diamètre variant de 25 à 400 mm.


Les conditions de vitesse et de pression ont été simulées avec EPANET et nous avons enregistré des valeurs de fonctionnement acceptables sur l'ensemble du nouveau réseau ; la pression dans les nœuds est situé dans la fourchette $[15 \div 68]$ m, la vitesse dans les tronçons des canalisations est comprise entre 0,5 et 1,5 m/s.

Ainsi, avec ce nouveau réseau de distribution d'une longueur de 11,419 Km. La qualité et la continuité de service seront assurées pleinement à l'horizon d'étude qui est de 25 ans. Vu la situation critique que rencontre le réseau d'assainissement, l'étude de dimensionnement de ce dernier nous a permis d'adopter les recommandations suivantes :

- La réalisation d'un nouveau réseau d'assainissement ;
- Séparer le réseau d'assainissement en plusieurs sous bassins et exutoires ;
- Acheminer les eaux usées vers des exutoires différents composés de bassins de décantation.

Pour remédier à la situation du réseau d'assainissement, nous avons dimensionné le nouveau réseau tout en réévaluant les débits de rejet pour chaque sous bassin et nous avons obtenu des canalisations en béton de diamètre 200 mm pour l'ensemble du réseau et un logeur total de 9,6 Km. A partir du découpage de la zone d'étude qui s'est fait suivant la topographie, la répartition des habitations et les exutoires existants, nous avons pu drainés les eaux usées vers sept (07) bassins de décantation distincts se jetant sur l'effluent d'oued CHAABA qui se jette lui-même sur oued EL HAMIZ. Pour que toutes les conditions d'auto curage soit vérifiées, nous avons préconisé des réservoirs de chasse dimensionnés et implantés dans chaque sous bassin.

Pour une meilleure efficacité du rôle des bassins de décantation, un entretien périodique doit se faire en évacuant les boues décantées. Ce dernier va éviter l'obturation du bassin et par ce biais on aura une évacuation saine et continue vers le milieu récepteur. On a opté pour cette solution à cause du manque d'une station d'épuration à proximité de notre zone d'étude, et par cette dernière on évitera l'impact direct à l'environnement.

Références Bibliographiques

- [1]: Données pluviométriques 2013, station de KADDARA, Bureau d'étude.
- [2]: Annuaire statistique de la wilaya de BOUMERDES, D.P.A.T., 2004, 99p.
- [3]: Service technique de l'APC de LARBATACHE.
- [4]: Algérienne des eaux de KHEMIS EL KHECHNA.
- [5]: Direction des ressources en eau de BOUMERDES.
- [6]: BLANIC, R., "Les besoins en eau des agglomérations urbaines et des industries", *Revue de l'industrie Minérale-Mines*, pp. 732-752, Novembre1971.
- [7]: BACHAROU, T., HOUINOU, G., EDMOND, C. A., et ADJIBOICHA, M., (2012). "Régime de consommation en eau et son utilisation dans le calcul des réseaux d'alimentation en eau potable" Rev. Ivoir. Sci. Technol, 19, P. 159-174.
- [8]: Cours de M^r Salah BOUALEM, Docteur en Hydraulique spécialisé dans les phénomènes de coup de bélier en hydraulique, École Nationale de l'Hydraulique (E.N.S.H), Blida, Algérie.
- [9]: ROBERT, J., G.C.I-20552: Hydraulique urbain, *Université de Laval*, Québec, Canada, pages 28.
- [10]: BONNIN. J., "Hydraulique Urbaine", Tome I: Captage Réseaux d'adduction Réservoirs Réseaux de distribution Equipements Pompes Petites centrales hydraulique, 110 pages, Version 2005.
- [11]: ZOUNGRANA. D., L'Equipement Rural: cours d'approvisionnement en eau potable, BURKINA FASO, novembre 2003.
- [12]: Références web: www.almohandiss.com/chapitre 6/ réseau de distribution
- [13]: TARAR, A., "Projet d'adduction d'eau potable dans la ville d'AMZOER", TCHAD, Mémoire de fin d'étude, Ingéniorat, *Institut International d'Ingénierie de l'Eau et de l'Environnement*, 38 pages, 2012
- [14]: LEWIS, A. R., Manuel de l'utilisateur de l'Epanet 2.0, National Risk Management Research Laboratory, 200 pages, Septembre 2003.
- [15]: Fascicule n° 70 Ce document est disponible à la Direction des Journaux Officiels 26 rue Desaix 75727 PARIS Cedex 15 info@journal-officiel.gouv.fr
- [16]: KERLOC'H Bruno (C.E.T.E. NORD PICARDIE) et MAELSTAF Damien (DDE 80)
- [17]: SANBI, Z. " Etude du réseau de voirie, d'assainissement et d'eau potable du lotissement PLAISANCE dans la nouvelle ville de TAMESNA", Mémoire De Fin d'Etudes, Master Sciences et Techniques, Université Sidi Mohammed Ben Abdellah Faculté des Sciences et Techniques, Maroc, 57 Pages, 2015.

- [18]: Raymond Desjardins, édition de l'école polytechnique de Montréal (Québec) CANADA, le traitement des eaux 2^{ème} édition revue et améliorée, 1997
- [19]: Guide ENR HQE, l'information Haute Qualité Environnementale : Technique classique de dépollution des eaux pluviales / Les décanteurs. Chambéry métropole, http://www.graie.org/graie/graiedoc/reseaux/Racco/racc-biblio-guide-chambery-decanteur-13.pdf
- [20]: BESSEDIK, M., Traitement de l'eau (présentation de cours), https://ft.univ-tlemcen.dz/assets/uploads/pdf/departement/hyd/Traitement%20de%20leau%20M1%20TTE.pdf

Annexe 1 : Répartition des débits horaires en fonction du nombre d'habitants

	Coefficient de répartition des débits horaires de l'agglomération (%)								
Heures	Moins de 10000 Habitants	de 10001 à 50000 Habitants	de 500001 à 100000 Habitants	Plus de 100000 Habitants	Agglomération de type rurale				
0-1	1	1,5	3	3,35	0,75				
1-2	1	1,5	3,2	3,25	0,75				
2-3	1	1,5	2,5	3,3	1				
3-4	1	1,5	2,6	3,2	1				
4-5	2	2,5	3,5	3,25	3				
5-6	3	3,5	4,1	3,4	5,5				
6-7	5	4,5	4,5	3,85	5,5				
7-8	6,5	5,5	4,9	4,45	5,5				
8-9	6,5	6,25	4,9	5,2	3,5				
9-10	5,5	6,25	4,6	5,05	3,5				
10-11	4,5	6,25	4,8	4,85	6				
11-12	5,5	6,25	4,7	4,6	8,5				
12-13	7	5	4,4	4,6	8,5				
13-14	7	5	4,1	4,55	6				
14-15	5,5	5,5	4,2	4,75	5				
15-16	4,5	6	4,4	4,7	5				
16-17	5	6	4,3	4,65	3,5				
17-18	6,5	5,5	4,1	4,35	3,5				
18-19	6,5	5	4,5	4,4	6				
19-20	5	4,5	4,5	4,3	6				
20-21	4,5	4	4,5	4,3	6				
21-22	3	3	4,8	3,75	3				
22-23	2	2	4,6	3,75	2				
23-24	1	1,5	3,3	3,7	1				

Annexe 2 : Coefficient de variation maximale horaire de la consommation

	Coefficient de variation maximale horaire de la consommation (k _{max h})									on (k m	ax h)	
Heures	1,2	1,25	1,3	1,35	1,4	1,45	1,5	1,7	1,8	1,9	2	2,5
0 - 1	3,5	3,35	3,2	3	2,5	2	1,5	1	0,9	0,85	0,75	0,6
1 - 2	3,45	3,25	3,25	3,2	2,65	2,1	1,5	1	0,9	0,85	0,75	0,6
2 - 3	3,45	3,3	2,9	2,5	2,2	1,85	1,5	1	0,9	0,85	1	1,2
3 - 4	3,4	3,2	2,9	2,6	2,25	1,9	1,5	1	1	1	1	2
4 - 5	3,4	3,25	3,35	3,5	3,2	2,85	2,5	2	1,35	2,7	3	3,5
5 - 6	3,55	3,4	3,75	4,1	3,9	3,7	3,5	3	3,85	4,7	5,5	3,5
6 - 7	4	3,85	4,15	4,5	4,5	4,5	4,5	5	5,2	5,35	5,5	4,5
7 - 8	4,4	4,45	4,65	4,9	5,1	5,3	5,5	6,5	6,2	5,85	5,5	10,2
8 - 9	5	5,2	5,05	4,9	5,35	5,8	6,25	6,5	5,5	4,5	3,5	8,8
9 - 10	4,8	5,05	5,4	5,6	5,85	6,05	6,25	5,5	5,85	4,2	3,5	6,5
10 - 11	4,7	4,85	4,85	4,9	5,35	5,8	6,25	4,5	5	5,5	6	4,1
11 - 12	4,55	4,6	4,6	4,7	5,25	5,7	6,25	5,5	6,5	7,5	8,5	4,1
12 - 13	4,55	4,6	4,5	4,4	4,6	4,8	5	7	7,5	7,9	8,5	3,5
13 - 14	4,45	4,55	4,3	4,1	4,4	4,7	5	7	6,7	6,35	6	3,5
14 - 15	4,6	4,75	4,4	4,1	4,6	5,05	5,5	5,5	5,35	5,2	5	4,7
15 - 16	4,6	4,7	4,55	4,4	4,6	5,3	6	4,5	4,65	4,8	5	6,2
16 - 17	4,6	4,65	4,5	4,3	4,9	5,45	6	5	4,5	4	3,5	10,4
17 - 18	4,3	4,35	4,25	4,1	4,6	5,05	5,5	6,5	5,5	4,5	3,5	9,4
18 - 19	4,35	4,4	4,45	4,5	4,7	4,85	5	6,5	6,3	6,2	6	7,3
19 - 20	4,25	4,3	4,4	4,5	4,5	4,5	4,5	5	5,35	5,7	6	1,6
20 - 21	4,25	4,3	4,4	4,5	4,4	4,2	4	4,5	5	5,5	6	1,6
21 - 22	4,15	4,2	4,5	4,8	4,2	3,6	3	3	3	3	3	1
22 - 23	3,9	3,75	4,2	4,6	3,7	2,85	2	2	2	2	2	0,6
23 – 24	3,8	3,7	3,5	3,3	2,7	2,1	1,5	1	1	1	1	0,6

Annexe 3 : Diamètre commercialisé de PEHD de PN10

Diamètre extérieur (mm)	Epaisseur (mm)	Diamètre intérieur (mm)	Pression nominale (bars)
20	2,0	16	10
25	2,0	21	10
32	2,4	27,2	10
40	3,0	34	10
50	3,7	42,6	10
63	4,7	53,6	10
75	5,6	63,8	10
90	5,4	79,2	10
110	6,6	96,8	10
125	7,4	110,2	10
160	9,5	141	10
200	11,9	176,2	10
250	14,8	220,4	10
315	18,7	277,6	10
400	23,7	352,6	10
500	29,7	440,6	10

Annexe 4 : Débits en route et les débits aux nœuds cas de pointe

N° des Nœuds	N° de Tronçon	Longueur (m)	Q _{sp} (l/s/m)	Qr (l/s)	Q _n (l/s)
	11-10	154		1,283	
11	11-12	138	1	1,149	1,495
	11-13	67		0,558	1
12	12-11	138	1	1,149	0,575
13	13-11	67		0,558	1.092
13	13-14	409		3,406	1,982
14	14-13	409		3,406	1,703
	15-10	154		1,283	
15	15-16	127		1,058	1,374
	15-17	49		0,408	
16	16-15	127		1,058	0,529
	17-15	49		0,408	
17	17-18	400		3,331	2,265
	17-19	95		0,791	
18	18-17	400		3,331	1,666
	19-17	95		0,791	
19	19-20	218		1,816	1,420
	19-23	28		0,233	
	20-19	218		1,816	
20	20-21	106	0,00833	0,883	1,711
	20-22	87		0,725	
21	21-20	106		0,883	0,441
22	22-20	87		0,725	0,362
	23-19	28		0,233	ŕ
23	23-24	124		1,033	2,219
	23-25	381		3,173	
24	24-23	124		1,033	0,516
	25-23	381		3,173	
25	25-26	140		1,166	2,319
	25-37	36		0,300	
	26-25	140		1,166	
26	26-27	180		1,499	2,378
	26-28	251		2,090	_,_,
27	27-26	180]	1,499	0,750
	28-26	251]	2,090	
28	28-29	83] [0,691	2,049
	28-30	158]	1,316]
29	29-28	83]	0,691	0,346
30	30-28	158]	1,316	0,658
31	31-32	329]	2,740	1,370

Annexe 4 : Débits en route et les débits aux nœuds cas de pointe (suite)

N° des Nœuds	N° de Tronçon	Longueur (m)	Q _{sp} (l/s/m)	Qr (l/s)	Q _n (l/s)
	32-31	329		2,740	
32	32-33	80	1	0,666	2,007
	32-35	73	1	0,608	
22	33-34	207	1	1,724	1.107
33	33-32	80	1	0,666	1,195
34	34-33	207	1	1,724	0,862
	35-36	111	1	0,924	
35	35-32	73	1	0,608	1,353
	35-38	141	1	1,174	
36	36-35	111	-	0,924	0,462
	37-38	40	-	0,333	5,152
37	37-25	36		0,300	1,528
σ,	37-70	291		2,424	1,828
	38-39	44	1	0,366	
38	38-35	141	1	1,174	0,937
30	38-37	40	1	0,333	0,237
	39-38	44	1	0,366	
39	39-40	196	-	1,632	2,257
3)	39-43	302	-	2,515	2,237
	40-39	196	-	1,632	
40	40-42	106	0,00833	0,883	1,686
40	40-41	103	0,00033	0,858	1,000
41	41-40	103	-	0,858	0,429
42	42-40	106	-	0,883	0,441
72	43-44	136	-	1,133	0,441
43	43-39	302	-	2,515	2,111
43	43-45	69	-	0,575	2,111
44	44-43	136	-	1,133	0,566
44	45-43	69	-	0,575	0,300
45	45-46	66	-	0,575	1,037
43	45-53	114	-	0,949	1,037
	46-45	66	-	0,550	
46	46-48	60	-	0,500	1.020
40			-		1,029
47	46-47	121 121	-	1,008	0.504
4/	47-46	60	-	1,008	0,504
10	48-46		-	0,500	1,004
48	48-49	107	-	0,891	
40	48-50	74	-	0,616	0.446
49	49-48	107	-	0,891	0,446
50	50-48	74	-	0,616	1.240
50	50-51	107	-	0,891	1,249
	50-52	119		0,991	

Annexe 4 : Débits en route et les débits aux nœuds cas de pointe (suite et fin)

N° des	N° de	Longueur	Q _{sp} (l/s/m)	Qr (l/s)	Q _n (l/s)
Nœuds	Tronçon	(m)	Qsp (1/5/111)	Qr (I/S)	Qn (1/5)
51	51-50	107		0,891	0,446
52	52-50	119		0,991	0,496
	53-45	114		0,949	
53	53-55	43		0,358	1,170
	53-54	124		1,033	
54	54-53	124		1,033	0,516
	55-53	43		0,358	
55	55-56	207	1	1,724	2,082
	55-57	250	1	2,082	
56	56-55	207	1	1,724	0,862
	57-55	250	1	2,082	
57	57-58	151	1	1,258	1,782
	57-59	27	1	0,225	·
58	58-57	151	1	1,258	0,629
	59-57	27		0,225	
59	59-60	201	1	1,674	1,141
	59-61	46	1	0,383	
60	60-59	201	1	1,674	0,837
	61-59	46	1	0,383	,
61	61-62	226	1	1,882	1,432
	61-63	72	0,00833	0,600	ĺ
62	62-61	226		1,882	0,941
63	63-61	72	1	0,600	0,300
64	64-66	98	1	0,816	0,408
65	65-66	139	1	1,158	0,579
	66-64	98	1	0,816	,
66	66-65	139		1,158	1,849
	66-67	207	1	1,724	,
	67-66	207	1	1,724	
67	67-68	195	1	1,624	2,428
0.	67-69	181	1	1,507	
68	68-67	195	1	1,624	0,812
	69-67	181	1	1,507	
69	69-71	269	1	2,240	1,874
70	70-37	291	1	2,424	1,212
, 0	71-69	269	1	2,240	1,212
71	71-5	135	1	1,124	2,061
, 1	71-72	91	1	0,758	
	72-71	91	1	0,758	
72	72-73	85	 	0,708	1,757
14	72-74	246	 	2,049	
73	73-72	85	 	0,708	0,354
74	74-72	246	 	2,049	1,024

Annexe 5 : *Composants physiques de l'EPANET*

Nœuds de demande

Les nœuds de Demande sont les points du réseau ou les arcs se rejoignent. Ce sont des points d'entrée ou de sortie d'eau et peuvent également ne pas avoir de débit. Les données d'entrée minimales exigées pour les nœuds de demande sont :

- + L'altitude au-dessus d'un certain plan de référence (habituellement le niveau de la mer) ;
- + La demande en eau (débit prélevé sur le réseau);
- + La qualité initiale de l'eau.

Les résultats calculés aux nœuds de demande, chacun des intervalles de temps d'une simulation sont :

- → La charge hydraulique (ou hauteur piézométrique);
- **→** La pression;
- + La qualité de l'eau.

Réservoirs

Les réservoirs sont des nœuds avec une capacité de stockage, dont le volume d'eau stockée peut varier au cours du temps. Les données de base pour des réservoirs sont les suivantes :

- + L'altitude du radier (ou le niveau d'eau est zéro);
- → Le diamètre (ou sa forme s'il n'est pas cylindrique);
- + Les niveaux initial, minimal et maximal de l'eau;
- → La qualité initiale de l'eau.

Les principaux éléments calculés dans la simulation sont les suivants :

- → La charge (altitude de l'eau);
- → La pression (niveau de l'eau);
- → La qualité de l'eau.

Tuyaux

Les tuyaux sont des arcs qui transportent l'eau d'un point du réseau l'autre. EPANET suppose que tous les tuyaux sont pleins à tout instant. L'eau s'écoule de l'extrémité qui a la charge hydraulique la plus élevée (altitude + pression, ou énergie interne par poids d'eau) celle qui a la charge hydraulique la plus faible. Les données de base pour les tuyaux sont :

- → Les nœuds initial et final;
- + Le diamètre;
- + La longueur;
- + Le coefficient de rugosité (pour déterminer la perte de charge);
- + L'état (ouvert, ferme, ou avec un clapet anti-retour).

Les valeurs calculées pour les tuyaux incluent :

- + Le débit ;
- **→** La vitesse d'écoulement ;
- + La perte de charge;
- **→** Le facteur de friction de Darcy-Weisbach ;
- → La vitesse moyenne de réaction (le long du tuyau) ;
- → La qualité moyenne de l'eau (le long du tuyau).

Vannes

Les vannes sont des arcs qui limitent la pression ou le débit en un point précis du réseau. Leurs principaux paramètres d'entrée sont :

- + Les nœuds d'entrée et de sortie;
- + Le diamètre ;
- **→** La consigne de fonctionnement ;
- **→** L'état de la vanne.

Les éléments calculés en sortie de simulation pour une vanne sont le débit et la perte de charge hydraulique.

Les différents types de vannes qu'offre EPANET sont :

- → Vanne stabilisatrice aval (en anglais PRV);
- **→** Vanne stabilisatrice amont (en anglais PSV);
- ◆ Vanne brise-charge ou réducteur de pression (en anglais PBV) ;
- → Vanne régulatrice de débit ou limiteur de débit (en anglais FCV) ;
- → Vanne diaphragme (en anglais TCV);
- → Vanne d'usage général (en anglais GPV).

Annexe 6 : Etat des nœuds du réseau cas de pointe

N° de Nœuds	Altitude (m)	Demande (l/s)	Charge (m)	Pression (m)
13	135,04	1,98	171,45	36,41
14	148,77	1,7	164,46	15,69
15	121,84	1,37	174,41	52,57
16	118,45	0,53	172,1	53,65
18	130,36	2,27	174,35	51,95
19	126,71	1,67	167,78	37,42
20	120,04	1,42	174,24	47,53
21	125,85	1,71	171,79	51,75
22	124,05	0,44	167,21	41,36
23	127,63	0,36	169,14	45,09
24	132,67	2,22	174,21	46,58
25	137,50	0,52	172,06	39,39
26	145,13	2,32	173,18	35,68
27	128,81	2,38	171,76	26,63
28	151,12	0,75	165,66	36,85
29	144,47	2,05	170,03	18,91
30	136,00	0,35	167,7	23,23
31	150,59	0,66	165,79	29,79
32	144,58	1,37	167,93	17,34
33	150,59	2,01	171,74	27,16
34	150,59	1,2	171,11	20,52
35	144,89	0,86	168,04	17,45
36	133,58	1,35	172,33	27,44
37	137,66	0,46	171,81	38,23
38	137,42	1,53	173,12	35,46
39	136,33	0,94	173,05	35,63
40	125,56	2,26	172,93	36,6
41	120,80	1,69	170,66	45,1
42	120,80	0,43	166,43	45,63
43	142,52	0,44	166,08	45,28
44	152,29	2,11	172,36	29,84
45	141,38	0,57	169,57	17,28
46	141,38	1,04	172,06	30,68
47	141,38	1,03	171,58	30,2
48	141,38	0,5	169,56	28,18
49	141,38	1	171,01	29,63
50	141,38	0,45	166,3	24,92
51	141,38	1,25	170,36	28,98
52	141,38	0,45	165,65	24,27
53	141,38	0,5	168,43	27,05
54	127,29	1,17	171,31	29,93
55	141,38	0,52	169,15	41,86
56	141,38	2,08	171,1	29,72
57	141,38	0,86	168,03	26,65
58	141,38	1,78	169,87	28,49
<u> </u>	141,38	0,63	166,14	24,76

Annexe 6 : Etat des nœuds du réseau cas de pointe (suite et fin)

N° de Nœuds	Altitude (m)	Demande (l/s)	Charge (m)	Pression (m)
60	141,38	0,84	166,88	25,5
61	141,38	1,43	169,13	27,75
62	141,38	0,94	165,21	23,83
63	141,38	0,3	167,56	26,18
64	117,09	0,41	163,75	46,66
65	119,16	0,58	164,47	45,31
66	119,10	1,85	167,44	48,34
67	113,45	2,43	170,33	56,88
68	107,47	0,81	167,73	60,26
69	119,63	1,87	172,12	52,49
70	122,12	1,21	165,19	43,07
71	112,42	2,06	173,76	61,34
72	111,78	1,76	173,1	61,32
73	113,24	0,35	170,62	57,38
74	105,94	1,02	168,14	62,2

Annexe 7 : Etat des conduites du réseau cas de pointe

Tronçon	Longueur (m)	D _{extérieur} (mm)	Débits (l/s)	Vitesse (m/s)	Perte de charge (m/Km)
Tuyau 17	49	315	55,42	0,71	1,3
Tuyau 18	400	50	1,67	0,85	16,41
Tuyau 19	95	315	51,49	0,66	1,13
Tuyau 20	218	63	2,51	0,81	11,27
Tuyau 21	106	25	0,44	0,9	43,14
Tuyau 22	87	25	0,36	0,74	30,39
Tuyau 23	28	315	47,55	0,61	0,98
Tuyau 24	124	32	0,52	0,64	17,4
Tuyau 25	381	250	44,82	0,91	2,71
Tuyau 26	140	90	6,18	0,97	10,18
Tuyau 27	180	32	0,75	0,93	33,85
Tuyau 28	251	75	3,05	0,69	6,89
Tuyau 29	83	25	0,35	0,7	28,05
Tuyau 30	158	32	0,66	0,82	26,8
Tuyau 31	36	250	36,32	0,74	1,81
Tuyau 32	291	40	1,21	0,96	27,23
Tuyau 33	40	250	33,58	0,68	1,56
Tuyau 34	141	110	7,25	0,76	5,15
Tuyau 35	11	25	0,46	0,94	46,87
Tuyau 36	73	90	5,43	0,85	8,07
Tuyau 37	80	63	2,06	0,66	7,86
Tuyau 38	207	40	0,86	0,69	14,81
Tuyau 39	329	50	1,37	0,7	11,57
Tuyau 40	44	200	25,39	0,81	2,77
Tuyau 41	196	63	2,56	0,82	11,61
Tuyau 42	103	25	0,43	0,87	41,07
Tuyau 43	106	25	0,44	0,9	43,14
Tuyau 44	302	200	20,58	0,66	1,89
Tuyau 45	136	32	0,57	0,7	20,5
Tuyau 46	69	160	17,9	0,89	4,33
Tuyau 47	66	90	5,17	0,81	7,38
Tuyau 48	121	32	0,5	0,63	16,69
Tuyau 49	60	75	3,64	0,82	9,45
Tuyau 50	107	25	0,45	0,91	44,01
Tuyau 51	74	63	2,19	0,7	8,8
Tuyau 52	107	25	0,45	0,91	44,01
Tuyau 53	119	32	0,5	0,62	16,22
Tuyau 54	114	125	11,69	0,95	6,59
Tuyau 55	124	32	0,52	0,64	17,4
Tuyau 56	43	125	10,01	0,82	4,97
Tuyau 57	207	40	0,86	0,69	14,81
Tuyau 58	250	110	7,06	0,74	4,91
Tuyau 59	151	32	0,63	0,78	24,73
Tuyau 60	27	90	4,65	0,73	6,09

Annexe 7 : Etat des conduites du réseau cas de pointe (suite et fin)

Tronçon	Longueur (m)	D _{extérieur} (mm)	Débits (l/s)	Vitesse (m/s)	Perte de charge (m/Km)
Tuyau 61	201	40	0,84	0,67	14,06
Tuyau 62	46	63	2,67	0,86	12,58
Tuyau 63	226	40	0,94	0,75	17,32
Tuyau 64	72	25	0,3	0,61	21,81
Tuyau 65	135	160	13,15	0,65	2,47
Tuyau 66	91	75	3,13	0,71	7,22
Tuyau 67	85	25	0,35	0,72	29,21
Tuyau 68	246	40	1,02	0,81	20,14
Tuyau 69	269	110	7,95	0,84	6,08
Tuyau 70	181	90	6,08	0,96	9,87
Tuyau 71	195	40	0,81	0,65	13,32
Tuyau 72	207	63	2,84	0,91	13,99
Tuyau 73	98	25	0,41	0,83	37,57
Tuyau 74	139	32	0,58	0,72	21,34

Annexe 8: Etat des nœuds du réseau cas de pointe + incendie

N° de Nœuds	Altitude (m)	Demande (l/s)	Charge (m)	Pression (m)
26	145,13	2,38	170,1	24,97
27	128,81	0,75	164	35,19
28	151,12	2,05	168,37	17,25
29	144,47	0,35	166,04	21,57
30	136,00	0,66	164,13	28,13
31	150,59	1,37	166,27	15,68
32	144,58	2,01	170,08	25,5
33	150,59	1,2	169,45	18,86
34	150,59	0,86	166,38	15,79
35	144,89	1,35	170,67	25,78
36	133,58	0,46	170,15	36,57
37	137,66	1,53	171,46	33,8
38	137,42	0,94	171,39	33,97
39	136,33	2,26	171,27	34,94
40	125,56	1,69	169	43,44
41	120,80	0,43	164,77	43,97
42	120,80	0,44	164,42	43,62
43	142,52	2,11	170,7	28,18
44	152,29	0,57	167,91	15,62
45	141,38	1,04	170,4	29,02
46	141,38	1,03	169,91	28,53
47	141,38	0,5	167,9	26,52
48	141,38	1	169,35	27,97
49	141,38	0,45	164,64	23,26
50	141,38	1,25	168,7	27,32
51	141,38	0,45	163,99	22,61
52	141,38	0,5	166,77	25,39
53	141,38	1,17	169,65	28,27
54	127,29	0,52	167,49	40,2
55	141,38	2,08	169,44	28,06
56	141,38	0,86	166,37	24,99
57	141,38	1,78	168,21	26,83
58	141,38	0,63	164,47	23,09
59	141,38	1,14	168,04	26,66
60	141,38	0,84	165,22	23,84
61	141,38	1,43	167,47	26,09
62	141,38	0,94	163,55	22,17
63	141,38	0,3	165,9	24,52
64	117,09	0,41	163,35	46,26
65	119,16	0,58	164,07	44,91
66	119,10	1,85	167,03	47,93
67	113,45	2,43	169,93	56,48
68	107,47	0,81	167,33	59,86
69	119,63	1,87	171,72	52,09

Annexe 8: Etat des nœuds du réseau cas de pointe + incendie (suite et fin)

N° de Nœuds	Altitude (m)	Demande (l/s)	Charge (m)	Pression (m)
70	122,12	1,21	163,53	41,41
71	112,42	2,06	173,35	60,93
72	111,78	1,76	172,7	60,92
73	113,24	0,35	170,21	56,97
74	105,94	1,02	167,74	61,8

Annexe 9 : Etat des arcs du réseau cas de pointe + incendie

Tronçon	Longueur (m)	Dextérieur (mm)	Débits (l/s)	Vitesse (m/s)	Perte de charge (m/Km)
Tuyau 26	140	90	6,18	0,97	10,18
Tuyau 27	180	32	0,75	0,93	33,85
Tuyau 28	251	75	3,05	0,69	6,89
Tuyau 29	83	25	0,35	0,7	28,05
Tuyau 30	158	32	0,66	0,82	26,8
Tuyau 31	36	250	36,32	0,74	1,8
Tuyau 32	291	40	1,21	0,96	27,23
Tuyau 33	40	250	33,58	0,68	1,57
Tuyau 34	141	110	7,25	0,76	5,15
Tuyau 35	11	25	0,46	0,94	46,87
Tuyau 36	73	90	5,43	0,85	8,07
Tuyau 37	80	63	2,06	0,66	7,86
Tuyau 38	207	40	0,86	0,69	14,81
Tuyau 39	329	50	1,37	0,7	11,57
Tuyau 40	44	200	25,39	0,81	2,77
Tuyau 41	196	63	2,56	0,82	11,61
Tuyau 42	103	25	0,43	0,87	41,07
Tuyau 43	106	25	0,44	0,9	43,14
Tuyau 44	302	200	20,58	0,66	1,89
Tuyau 45	136	32	0,57	0,7	20,5
Tuyau 46	69	160	17,9	0,89	4,33
Tuyau 47	66	90	5,17	0,81	7,38
Tuyau 48	121	32	0,5	0,63	16,69
Tuyau 49	60	75	3,64	0,82	9,45
Tuyau 50	107	25	0,45	0,91	44,01
Tuyau 51	74	63	2,19	0,7	8,8
Tuyau 52	107	25	0,45	0,91	44,01
Tuyau 53	119	32	0,5	0,62	16,22
Tuyau 54	114	125	11,69	0,95	6,59
Tuyau 55	124	32	0,52	0,64	17,4
Tuyau 56	43	125	10,01	0,82	4,97
Tuyau 57	207	40	0,86	0,69	14,81
Tuyau 58	250	110	7,06	0,74	4,91
Tuyau 59	151	32	0,63	0,78	24,73
Tuyau 60	27	90	4,65	0,73	6,09
Tuyau 61	201	40	0,84	0,67	14,06

Annexe 9 : Etat des arcs du réseau cas de pointe + incendie (suite et fin)

Tronçon	Longueur (m)	D _{extérieur} (mm)	Débits (l/s)	Vitesse (m/s)	Perte de charge (m/Km)
Tuyau 62	46	63	2,67	0,86	12,58
Tuyau 63	226	40	0,94	0,75	17,32
Tuyau 64	72	25	0,3	0,61	21,81
Tuyau 65	135	160	13,15	0,65	2,47
Tuyau 66	91	75	3,13	0,71	7,22
Tuyau 67	85	25	0,35	0,72	29,21
Tuyau 68	246	40	1,02	0,81	20,14
Tuyau 69	269	110	7,95	0,84	6,08
Tuyau 70	181	90	6,08	0,96	9,87
Tuyau 71	195	40	0,81	0,65	13,32
Tuyau 72	207	63	2,84	0,91	13,99
Tuyau 73	98	25	0,41	0,83	37,57
Tuyau 74	139	32	0,58	0,72	21,34

Annexe 10: Caractéristiques des canalisations des sous bassins S_2

			1 ^{er}	collecte	ur				
N° regard	N° de tronçon	distance partielle (ml)	distance cumulée (ml)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite (m)	profondeur du regard (m)	Pente (%)
R69	_	_	_	145,10	143,10	_	143,10	2,00	_
R70	R69-R70	55,0 0	55,00	141,05	139,05	143,10	139,05	3,50	7,35
R71	R70-R71	55,0 0	110,00	134,31	130,81	137,55	132,31	3,50	9,53
R72	R71-R72	49,9 7	159,97	128,88	123,88	130,81	126,38	2,50	8,86
			2 ^{èm}	e collecte	eur				
R217	_	_	_	130,30	127,90	_	127,90	2,40	_
R218	R217-R218	36,4 7	36,47	129,10	126,60	127,90	126,60	2,50	3,57
R72	R218-R72	10,7 7	47,24	128,88	126,38	126,60	126,38	2,50	2,05
			3 ^{èm}	e collecte	eur				
R187	_	_	_	134,48	129,98	_	129,98	4,50	_
R72	R187-R72	41,2 5	41,25	128,88	126,38	129,98	126,38	2,50	8,72
			4 ^{èm}	e collecte	eur				
R72	_	_	_	128,88	126,38	_	126,38	2,50	_
R188	R72-R188	12,7 2	12,72	128,50	126,00	126,38	126,00	2,50	2,93
			5 ^{èm}	^{ie} collecte	eur				
R 188	_	_	_	128,50	126,00	_	126,00	2,50	_
BDC-2-	R188-BDC-2-	7,81	7,81	128,43	125,43	125,43	125,43	3,00	7,34
Longueur Totale				26	59,99				

Annexe 10 : Caractéristiques des canalisations des sous bassins S_3

			19	er collecteu	ır				
			_	0022000					
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R50				130,74	128,94		128,94	1,80	
R51	R50-R51	50,00	50,00	127,38	125,58	128,94	125,58	1,80	6,71
R52	R51-R52	50,00	100,	125,78	124,28	125,58	124,28	1,50	2,61
R53	R52-R53	18,26	118,26	125,03	123,53	124,28	123,53	1,50	4,08
R54	R53-R54	50,04	168,29	123,80	122,30	123,53	122,30	1,50	2,45
R55	R54-R55	50,00	218,29	121,80	120,30	122,30	120,30	1,50	4,00
R56	R55-R56	23,43	241,72	120,37	118,87	120,30	118,87	1,50	6,11
R57	R56-R57	54,17	295,9	118,66	116,65	118,87	116,65	2,02	4,10
R58	R57-R58	7,87	303,76	118,52	114,97	116,65	114,97	3,55	21,36
			2 ^è	^{me} collecte	ur				
R140				126,52	124,72		124,72	1,80	
R141	R140-R141	78,42	78,42	123,45	121,65	124,72	121,65	1,80	3,91
R142	R141-R142	49,11	127,53	121,38	119,58	121,65	119,58	1,80	4,21
R143	R142-R143	18,21	145,74	120,43	119,23	119,58	119,23	2,20	1,90
R58	R143-R58	17,51	163,25	118,52	114,97	119,23	114,97	3,55	18,65
			3 ^{èi}	^{me} collecte	ur				
R58				118,52	114,97		114,97	3,55	
BDC-3-	R58-BDC-3-	34,34	34,34	118,25	114,26	114,97	114,26	3,99	2,05
Longueur Totale				50	01,35			•	

Annexe 10 : Caractéristiques des canalisations des sous bassins S₄

				1 ^{er} colle	cteur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R236	_	_	_	150,59	149,59	_	149,59	1,00	_
R237	R236-R237	13,86	13,86	150,59	149,39	149,59	149,39	1,20	1,44
R238	R237-R238	7,63	21,49	150,59	149,29	149,39	149,29	1,30	1,31
R239	R238-R239	46,92	68,41	150,59	149,21	149,29	149,21	1,38	0,17
R240	R239-R240	38,56	106,98	150,59	149,19	149,21	149,19	1,40	0,05
R241	R240-R241	47,91	154,88	150,59	149,16	149,19	149,16	1,42	0,05
R242	R241-R242	46,75	201,64	150,59	149,09	149,16	149,09	1,50	0,16
R243	R242-R243	51,10	252,74	150,59	148,89	149,09	148,89	1,70	0,39
R244	R243-R244	50,00	302,74	150,59	148,59	148,89	148,59	2,00	0,60
R245	R244-R245	49,98	352,71	150,59	148,39	148,59	148,39	2,20	0,40
R246	R245-R246	5,50	358,21	150,61	148,29	148,39	148,29	2,32	1,82
R247	R246-R247	45,90	404,11	150,59	148,09	148,29	148,09	2,50	0,44
R175	R247-R175	27,86	431,97	150,59	147,89	148,09	147,89	2,70	0,72
				2ème colle	ecteur				
R175	_	_	_	150,59	147,89		147,89	2,70	_
R176	R175-R176	44,57	44,57	150,59	147,79	147,89	147,79	2,80	0,22
R177	R176-R177	50,00	94,57	150,59	147,69	147,79	147,69	2,90	0,20
R178	R177-R178	50,00	144,57	150,59	147,59	147,69	147,59	3,00	0,20
R179	R178-R179	50,00	194,57	150,59	147,39	147,59	147,39	3,20	0,40
R180	R179-R180	50,00	244,57	150,59	147,19	147,39	147,19	3,40	0,40
R181	R180-R181	43,01	287,58	150,59	146,99	147,19	146,99	3,60	0,46
R182	R181-R182	15,10	302,68	150,58	146,78	146,99	146,78	3,80	1,33
				3eme colle	ecteur				
R190	_	_	_	152,38	148,58		148,58	3,80	_
R182	R190-R182	49,60	49,60	150,58	147,78	147,78	147,78	3,80	1,61

Annexe 10 : Caractéristiques des canalisations du sous bassin S_4 (suite)

	Aimexe 1	• Carac					Dussiii 54	(suite)	
				4eme colle	ecteur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R182	_	_		150,58	146,78	_	146,78	3,80	
R191	R182-R191	16,46	16,46	150,58	146,58	146,78	146,58	4,00	1,22
R192	R191-R192	50,06	66,52	150,59	146,39	146,58	146,39	4,20	0,40
R193	R192-R193	50,17	116,69	145,11	143,11	146,39	143,11	2,00	6,52
R194	R193-R194	44,23	160,92	142,09	140,09	143,11	140,09	2,00	6,83
R195	R194-R195	50,05	210,97	139,49	137,49	140,09	137,49	2,00	5,21
R196	R195-R196	48,13	259,1	137,57	135,57	137,49	135,57	2,00	3,99
R197	R196-R197	36,72	295,82	137,57	135,57	135,57	135,57	2,00	0,02
R198	R197-R198	33,59	329,41	137,27	135,27	135,57	135,27	2,00	0,89
D100	Ι		Г	5eme colle	,	- T	105.07	2.00	
R198	- -	_	_	137,27	135,27	_	135,27	2,00	
R206	R198-R206	29,99	29,99	136,49	134,49	135,27	134,49	2,00	2,60
R207	R206-R207	25,92	55,91	135,65	133,45	134,49	133,45	2,20	4,02
R208	R207-R208	47,70	103,61	134,07	131,87	133,45	131,87	2,20	3,32
R209	R208-R209	50,59	154,2	132,05	129,85	131,87	129,85	2,20	4,00
R210	R209-R210	26,92	181,12	130,86	128,66	129,85	128,66	2,20	4,42
R211	R210-R211	38,91	220,03	129,71	127,31	128,66	127,31	2,40	3,46
R212	R211-R212	22,77	242,8	128,98	126,58	127,31	126,58	2,40	3,21
R213	R212-R213	50,04	292,83	128,58	126,08	126,58	126,08	2,50	1,01
R186 R20	R213-R186 R186-R20	50,00	334,9 384,9	128,85	125,66 124,66	126,08 125,66	125,66 124,66	3,19	0,98
R214	R20-R214	49,74	434,64	127,86 126,29	123,29	123,66	123,29	3,20 3,00	2,01
R214 R215	R214-R215	50,28	484,92	120,29	123,29	123,29	120,97	2,51	2,76 4,62
R215	R214-R213	25,78	510,7	122,33	120,37	120,97	120,37	2,00	2,47
K210	K213-K210	23,10	310,7	144,33	120,33	120,77	120,33	2,00	<i>∠,</i> + /
				6eme colle	ecteur				
R17	_		_	132,43	130,45	_	130,45	1,98	
R18	R17-R18	50,28	50,18	131,34	129,34	130,45	129,34	2,00	2,22
R19	R18-R19	33,27	83,45	129,13	126,63	129,34	126,63	2,50	8,13
R20	R19-R20	37,88	121,34	127,86	124,66	126,63	124,66	3,20	5,20

Annexe 10 : Caractéristiques des canalisations du sous bassin S_4 (suite)

							Oussin 54		
				7 ^{eme} colle	ecteur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R183	_	_		135,28	133,28	_	133,28	2,00	_
R184	R183-R184	46,88	46,88	133,37	131,37	133,28	131,37	2,00	4,09
R185	R184-R185	54,48	101,36	130,86	128,36	131,37	128,36	2,50	5,51
R186	R185-R186	32,50	133,86	128,85	125,66	128,36	125,66	3,19	8,31
				8eme colle	ecteur				
R219	_	_	_	127,29	125,49	_	125,49	1,80	_
R220	R219-R220	38,25	38,25	124,44	122,94	125,49	122,94	1,50	6,68
R221	R220-R221	11,78	50,03	123,86	122,36	122,94	122,36	1,50	4,93
R222	R221-R222	49,61	99,64	122,64	121,14	122,36	121,14	1,50	2,46
R223	R222-R223	28,12	127,76	122,49	120,99	121,14	120,99	1,50	0,52
R216	R223-R216	11,47	139,23	122,33	120,33	120,99	120,33	2,00	5,80
				9 ^{éme} colle	ecteur				
R216	_	_	_	122,33	120,33	_	120,33	2,00	_
R224	R216-R224	49,53	49,53	121,65	119,65	120,33	119,65	2,00	1,37
R225	R224-R225	43,67	93,2	121,17	118,97	119,65	118,97	2,20	1,55
R226	R225-R226	48,43	141,63	120,29	117,89	118,97	117,89	2,40	2,23
R227	R226-R227	43,06	184,69	119,11	117,11	117,89	117,11	2,00	1,82
R117	R227-R117	15,18	199,87	119,04	116,64	117,11	116,64	2,40	3,12
R 228	R117-R228	50,96	250,83	118,15	116,15	116,64	116,15	2,00	0,95
R 228	R228-R229	49,33	300,16	116,69	114,69	116,15	114,69	2,00	2,97
R 229	R229-R230	32,92	333,08	115,85	113,85	114,69	113,85	2,00	2,53
R 230	R230-R231	22,29	355,37	115,40	113,40	113,85	113,40	2,00	2,02
R 231	R231-R232	10,90	366,27	115,02	112,82	113,40	112,82	2,20	5,40
R 232	R232-R233	39,10	405,37	114,61	112,21	112,82	112,21	2,40	1,56
R 233	R233-R234	46,56	451,93	113,16	110,96	112,21	110,96	2,20	2,67
R 234	R234-BDC-4-	27,18	479,11	112,70	110,30	110,96	110,30	2,40	2,44

Annexe 10: Caractéristiques des canalisations du sous bassin S_4 (suite et fin)

			1	0 ^{éme} colle	ecteur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R104	_	_	_	152,05	152,05	_	152,05	1,80	_
R105	R104-R105	50,00	50	145,80	145,80	152,05	145,80	1,80	12,48
R106	R105-R106	50,00	100,	142,46	142,46	145,80	142,46	1,80	6,70
R107	R106-R107	50,00	150,	139,64	139,64	142,46	139,64	1,50	5,63
R108	R107-R108	50,00	200,	136,10	136,10	139,64	136,10	1,80	7,08
R109	R108-R109	32,14	232,14	134,89	134,89	136,10	134,89	1,50	3,74
R110	R109-R110	26,19	258,32	134,36	134,36	134,89	134,36	1,50	2,04
R111	R110-R111	50,00	308,32	134,07	134,07	134,36	134,07	1,80	0,59
R112	R111-R112	50,00	358,32	132,44	132,44	134,07	132,44	1,76	3,25
R113	R112-R113	50,00	408,32	128,30	128,30	132,44	128,30	1,80	8,28
R114	R113-R114	50,00	458,32	125,39	125,39	128,30	125,39	1,80	5,83
R115	R114-R115	50,00	508,32	122,40	122,40	125,39	122,40	1,80	5,97
R116	R115-R116	50,00	558,32	119,57	119,57	122,40	119,57	2,00	5,66
R117	R116-R117	51,69	610,01	116,64	116,64	119,57	116,64	2,40	5,68
			1	1ème colle	ecteur				
R199				155,25	154,05		154,05	1,20	
R200	R199-R200	33,27	33,27	153,20	151,90	154,05	151,90	1,30	6,46
R201	R200-R201	15,29	48,56	152,02	150,72	151,90	150,72	1,30	7,67
R202	R201-R202	51,13	99,68	148,99	147,79	150,72	147,79	1,20	5,74
R203	R202-R203	50,02	149,7	145,77	144,57	147,79	144,57	1,20	6,44
R204	R203-R204	50,05	199,74	142,30	141,00	144,57	141,00	1,30	7,13
R205	R204-R205	50,02	249,76	139,77	138,47	141,00	138,47	1,30	5,06
R198	R205-R198	50,79	300,56	137,27	135,27	138,47	135,27	2,00	6,28
Longueur Totale				3	3408,48				

Annexe 10 : Caractéristiques des canalisations des sous bassins S_5

				1 ^{er} collect	our				
				1 conect	eur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R98				157,17	155,37		155,37	1,80	
R99	R98-R99	50,00	50,00	152,66	150,86	155,37	150,86	1,80	9,03
R100	R99-R100	50,00	100,00	147,67	145,87	150,86	145,87	1,80	9,97
R101	R100-R101	50,00	150,00	143,84	142,09	145,87	142,09	1,75	7,56
R102	R101-R102	22,91	172,91	142,99	141,24	142,09	141,24	1,75	3,71
R103	R102-R103	15,04	187,94	142,94	141,14	141,24	141,14	1,80	0,67
				2 ^{eme} collec	teur				
R118				144,92	143,12		143,12	1,80	
R103	R118-R103	35,82	35,82	142,94	141,14	143,12	141,14	1,80	5,51
R119	R103-R119	43,89	79,71	140,86	139,06	141,14	139,06	1,80	4,74
R120	R119-R120	44,75	124,46	138,50	136,70	139,06	136,70	1,80	5,27
R121	R120-R121	36,65	161,11	135,68	133,88	136,70	133,88	1,80	7,72
R122	R121-R122	44,61	205,72	134,81	133,01	133,88	133,01	1,80	1,93
R123	R122-R123	34,54	240,26	133,17	131,37	133,01	131,37	1,80	4,77
R59	R123-R59	28,04	268,30	132,58	130,78	131,37	130,78	1,80	2,09
				3 ^{eme} collec	teur				
R157				135,99	134,19		134,19	1,80	
R158	R157-R158	62,91	62,91	133,01	131,21	134,19	131,21	1,80	4,75
R59	R158-R59	9,22	72,13	132,58	130,78	131,21	130,78	1,80	4,61
				4 ^{eme} collec	teur				
R59				132,58	130,78		130,78	1,80	
R60	R59-R60	19,90	19,90	132,87	130,37	130,78	130,37	2,50	2,04
R61	R60-R61	16,20	36,10	131,62	129,82	130,37	129,82	1,80	3,41
R62	R61-R62	42,27	78,38	129,39	127,89	129,82	127,89	1,50	4,57
R63	R62-R63	39,49	117,86	127,96	126,46	127,89	126,46	3,50	3,62
R64	R63-R64	11,02	128,89	125,02	123,52	124,46	123,52	1,50	8,51
R65	R64-R65	14,14	143,03	124,67	122,87	123,52	122,87	1,80	4,58
R66	R65-R66	43,24	186,27	123,76	121,95	122,87	121,95	1,81	2,13
R67	R66-R67	17,50	203,78	123,17	121,37	121,95	121,37	1,80	3,30
R68	R67-R68	50,00	253,78	122,66	120,66	121,37	120,66	2,00	1,43
R15	R68-R15	18,30	272,07	122,46	119,96	120,66	119,96	2,50	3,82

Annexe 10 : Caractéristiques des canalisations du sous bassin S_5 (suite)

				5eme collec	teur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R9				132,00	129,80		129,80	2,20	
R10	R9-R10	49,99	49,99	129,46	127,46	129,80	127,46	2,00	4,67
R11	R10-R11	25,59	75,58	128,15	126,15	127,46	126,15	2,00	5,15
R12	R11-R12	49,72	125,30	126,19	124,39	126,15	124,39	1,80	3,54
R13	R12-R13	13,87	139,17	125,51	123,51	124,39	123,51	2,00	6,32
R14	R13-R14	48,50	187,67	124,32	121,52	123,51	121,52	2,80	4,11
R15	R14-R15	20,56	208,23	122,46	119,96	121,52	119,96	2,50	7,56
R8	R15-R8	27,12	235,35	120,86	118,76	119,96	118,76	2,10	4,44
				6 ^{eme} collec	teur				
R0				141,38	139,58		139,58	1,80	
R1	R0-R1	50,15	50,15	140,68	138,88	139,58	138,88	1,80	1,39
R2	R1-R2	27,33	77,48	137,42	135,62	138,88	135,62	1,80	11,93
R3	R2-R3	50,00	127,48	134,52	132,72	135,62	132,72	1,80	5,78
R4	R3-R4	50,00	177,48	131,00	129,20	132,72	129,20	1,80	7,04
R5	R4-R5	31,36	208,84	127,53	125,73	129,20	125,73	1,80	11,08
R6	R5-R6	50,11	258,95	121,64	119,84	125,73	119,84	1,80	11,75
R7	R6-R7	34,41	293,36	120,08	118,88	119,84	118,88	1,20	2,79
R8	R7-R8	27,36	320,72	120,86	118,76	118,88	118,76	2,10	0,46
				7 ^{eme} collec	teur				
R8				120,86	118,76		118,76	2,10	
R16	R8-R16	20,20	20,20	120,78	118,68	118,76	118,68	2,10	0,63
				8 ^{eme} collec	teur				
R16				120,78	118,68		118,68	2,10	
R130	R16-R130	15,86	15,86	120,90	118,50	118,68	118,50	2,40	1,19
R131	R130-R131	17,72	33,58	120,90	118,43	118,50	118,43	2,47	0,38
R132	R131-R132	24,29	57,88	120,69	118,34	118,43	118,34	2,36	0,38
R133	R132-R133	23,99	81,87	120,14	117,84	118,34	117,84	2,30	2,06
R134	R133-R134	17,12	98,99	120,14	117,74	117,84	117,74	2,40	0,58
R135	R134-R135	22,69	121,68	120,22	117,71	117,74	117,71	2,50	0,12

Annexe 10 : Caractéristiques des canalisations du sous bassin S_5 (suite)

				9 ^{eme} collec	teur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R249				124,43	122,93		122,93	1,50	
R139	R249-R139	26,93	26,93	123,54	122,04	122,93	122,04	1,50	3,28
R250	R139-R250	21,54	48,47	122,51	120,91	122,04	120,91	1,60	5,25
R135	R250-R135	38,25	86,72	120,22	117,66	120,91	117,66	2,56	8,52
R251	R135-R251	9,93	96,64	119,86	117,36	117,71	117,36	2,50	2,95
R252	R251-R252	15,08	111,72	119,27	117,07	117,36	117,07	2,20	1,96
R253	R252-R253	8,41	120,13	119,37	116,87	117,07	116,87	2,50	2,29
R254	R253-R254	41,08	161,21	119,57	116,57	116,87	116,57	3,00	0,74
R255	R254-R255	25,54	186,75	119,11	116,11	116,57	116,11	3,00	1,82
R256	R255-R256	25,74	212,49	119,30	115,80	116,11	115,80	3,50	1,18
				10 ^{eme} colle	cteur				
R257				124,52	122,52		122,52	2,00	
R258	R257-R258	50,02	50,02	122,90	120,90	122,52	120,90	2,00	3,23
R259	R258-R259	50,04	100,06	121,50	119,50	120,90	119,50	2,00	2,81
R260	R259-R260	48,37	148,43	119,75	117,75	119,50	117,75	3,85	3,62
R256	R260-R256	11,11	159,54	119,30	115,80	115,90	115,80	3,50	0,84
R261	R256-R261	50,08	209,62	118,92	115,42	115,80	115,42	3,50	0,76
R262	R261-R262	50,10	259,72	117,99	114,99	115,42	114,99	3,00	0,87
R263	R262-R263	50,03	309,75	116,49	113,99	114,99	113,99	2,50	2,00
R264	R263-R264	50,07	359,82	114,76	112,76	113,99	112,76	2,00	2,44
R265	R264-R265	52,94	412,76	112,97	111,47	112,76	111,47	1,50	2,44
R266	R265-R266	49,76	462,52	110,57	109,07	111,47	109,07	1,50	4,82
R267	R266-R267	35,16	497,68	108,73	107,23	109,07	107,23	1,50	5,25
R268	R267-R268	19,87	517,55	107,32	105,82	107,23	105,82	1,50	7,06
R269	R268-R269	19,70	537,24	106,30	104,80	105,82	104,80	1,50	5,21
R270	R269-R270	27,80	565,04	105,69	104,31	104,80	104,31	1,38	1,74
R168	R270-R168	8,93	573,97	105,79	104,29	104,31	104,29	1,51	0,38
R174	R168-R174	6,33	580,30	105,88	103,88	104,29	103,88	2,00	6,53

Annexe 10 : Caractéristiques des canalisations du sous bassin S_5 (suite)

	Amere								
				11 ^{eme} collec	cteur				
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)
R169				106,29	105,09		105,09	1,20	
R170	R169-R170	19,87	19,87	106,63	104,93	105,09	104,93	1,70	0,78
R171	R170-R171	51,12	70,99	105,68	104,48	104,93	104,48	1,20	0,88
R172	R171-R172	48,53	119,52	105,47	104,27	104,48	104,27	1,20	0,44
R173	R172-R173	23,62	143,14	105,69	104,19	104,27	104,19	1,50	0,35
R174	R173-R174	13,61	156,75	105,88	103,88	104,19	103,88	2,00	2,26
				12 ^{eme} collec	cteur				
R174				105,88	103,88		103,88	2,00	
R279	R174-R279	7,12	7,12	105,97	103,72	103,88	103,72	2,25	2,26
BDC-5-	R279-BDC- 5-	7,07	14,19	106,06	103,56	103,72	103,56	2,50	2,26
				13 ^{eme} collec	cteur				
R271				112,03	110,83		110,83	1,20	
R272	R271-R272	19,43	19,43	112,45	110,45	110,83	110,45	2,00	1,94
R273	R272-R273	12,75	32,18	112,06	110,06	110,45	110,06	2,00	3,03
R274	R273-R274	22,35	54,53	110,89	109,69	110,06	109,69	1,20	1,66
R275	R274-R275	16,91	71,44	109,81	100 01	100 60	10001		
R276		10,71	71,77	107,01	108,81	109,69	108,81	1,00	5,22
K 270	R275-R276	6,18	77,62	109,67	108,51	109,69	108,81	1,00 1,15	5,22 4,70
R277	R275-R276 R276-R277	1							
		6,18	77,62	109,67	108,52	108,81	108,52	1,15	4,70
R277	R276-R277	6,18 33,18	77,62 110,80	109,67 109,12	108,52 107,87	108,81 108,52	108,52 107,87	1,15 1,25	4,70 1,95
R277 R278	R276-R277 R277-R278	6,18 33,18 50,08	77,62 110,80 160,89 182,59	109,67 109,12 107,34	108,52 107,87 106,14 105,70 eteur	108,81 108,52 107,87	108,52 107,87 106,14	1,15 1,25 1,20	4,70 1,95 3,46
R277 R278	R276-R277 R277-R278	6,18 33,18 50,08	77,62 110,80 160,89 182,59	109,67 109,12 107,34 106,90	108,52 107,87 106,14 105,70	108,81 108,52 107,87	108,52 107,87 106,14	1,15 1,25 1,20	4,70 1,95 3,46
R277 R278 R165	R276-R277 R277-R278 R278-R165	6,18 33,18 50,08	77,62 110,80 160,89 182,59	109,67 109,12 107,34 106,90 14 ^{eme} collection	108,52 107,87 106,14 105,70 eteur	108,81 108,52 107,87	108,52 107,87 106,14 105,70	1,15 1,25 1,20 1,20	4,70 1,95 3,46
R277 R278 R165	R276-R277 R277-R278 R278-R165 R159-R160 R160-R161	6,18 33,18 50,08 21,70	77,62 110,80 160,89 182,59 22,78 33,06	109,67 109,12 107,34 106,90 14 ^{eme} collection	108,52 107,87 106,14 105,70 eteur	108,81 108,52 107,87 106,14	108,52 107,87 106,14 105,70	1,15 1,25 1,20 1,20 1,42	4,70 1,95 3,46 1,99
R277 R278 R165 R165 R159 R160	R276-R277 R277-R278 R278-R165 R159-R160 R160-R161 R161-R162	6,18 33,18 50,08 21,70 22,78	77,62 110,80 160,89 182,59 22,78 33,06 43,16	109,67 109,12 107,34 106,90 14 ^{eme} collect 108,65 108,13	108,52 107,87 106,14 105,70 cteur 107,23 106,93	108,81 108,52 107,87 106,14	108,52 107,87 106,14 105,70 107,23 106,93	1,15 1,25 1,20 1,20 1,42 1,42	4,70 1,95 3,46 1,99
R277 R278 R165 R165 R159 R160 R161	R276-R277 R277-R278 R278-R165 R159-R160 R160-R161 R161-R162 R162-R163	6,18 33,18 50,08 21,70 22,78 10,28	77,62 110,80 160,89 182,59 22,78 33,06 43,16 54,99	109,67 109,12 107,34 106,90 14^{eme} collec 108,65 108,13 107,95	108,52 107,87 106,14 105,70 eteur 107,23 106,93 106,75 106,53 106,27	108,81 108,52 107,87 106,14 107,23 106,93	108,52 107,87 106,14 105,70 107,23 106,93 106,75	1,15 1,25 1,20 1,20 1,42 1,20 1,20	1,95 3,46 1,99 1,32 1,74
R277 R278 R165 R165 R159 R160 R161 R162	R276-R277 R277-R278 R278-R165 R159-R160 R160-R161 R161-R162	6,18 33,18 50,08 21,70 22,78 10,28 10,10	77,62 110,80 160,89 182,59 22,78 33,06 43,16	109,67 109,12 107,34 106,90 14^{eme} collec 108,65 108,13 107,95 107,73	108,52 107,87 106,14 105,70 cteur 107,23 106,93 106,75 106,53	108,81 108,52 107,87 106,14 107,23 106,93 106,75	108,52 107,87 106,14 105,70 107,23 106,93 106,75 106,53	1,15 1,25 1,20 1,20 1,42 1,20 1,20 1,20	1,32 1,74 2,14

Annexe 10: Caractéristiques des canalisations du sous bassin S_5 (suite et fin)

15 ^{eme} collecteur										
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite	profondeur du regard (m)	Pente (%)	
R166	R165-R166	14,47	104,96	106,86	105,56	105,70	105,56	1,30	1,02	
R167	R166-R167	32,82	137,78	105,79	104,39	105,56	104,39	1,40	3,56	
R168	R167-R168	4,47	142,25	105,79	104,29	104,39	104,29	1,50	2,14	
R136				124,21	122,61		122,61	1,60		
R137	R136-R137	25,92	25,92	123,88	122,28	122,61	122,28	1,60	1,29	
R138	R137-R138	25,79	51,71	123,46	122,06	122,28	122,06	1,40	0,82	
R139	R138-R139	9,14	60,85	123,54	122,04	122,06	122,04	1,50	0,38	
Longueur Totale	2847,83									

Annexe 10: Caractéristiques des canalisations des sous bassins S_6

	1 ^{er} collecteur										
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite (m)	profondeur du regard (m)	Pente (%)		
R82				112,48	110,68		110,68	1,80			
R83	R82-R83	55,00	55,00	112,19	110,39	110,68	110,39	1,80	0,52		
R84	R83-R84	55,00	110,00	110,48	108,78	110,39	108,78	1,70	2,92		
R85	R84-R85	55,00	165,00	107,27	105,47	108,78	105,47	1,80	6,03		
R86	R85-R86	55,71	220,71	105,37	103,57	105,47	103,57	1,80	3,40		
R87	R86-R87	31,95	252,66	105,11	103,31	103,57	103,31	1,80	0,83		
R88	R87-R88	17,13	269,79	105,08	103,28	103,31	103,28	1,80	0,15		
R89	R88-R89	28,16	297,95	105,72	102,92	103,28	102,92	2,80	1,29		
R90	R89-R90	23,89	321,84	105,94	102,54	102,92	102,54	3,40	1,58		
R91	R90-R91	23,45	345,29	106,42	102,47	102,54	102,47	3,95	0,30		
R92	R91-R92	11,48	356,77	106,52	102,02	102,47	102,02	4,50	3,86		

Annexe 10: Caractéristiques des canalisations des sous bassins S_6 (Suite et fin)

	2 ^{eme} collecteur										
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite (m)	profondeur du regard (m)	Pente (%)		
R124				108,81	105,81		105,81	3,00			
R125	R124-R125	49,47	49,47	108,58	105,38	105,81	105,38	3,20	0,86		
R126	R125-R126	47,09	96,56	107,90	104,90	105,38	104,90	3,00	1,01		
R127	R126-R127	43,64	140,20	107,48	104,28	104,90	104,28	3,20	1,43		
R81	R127-R81	10,89	151,08	107,46	103,96	104,28	103,96	3,50	2,94		
R128	R81-R128	25,20	176,28	106,96	103,46	103,96	103,46	3,50	1,95		
R129	R128-R129	16,54	192,82	106,79	102,99	103,46	102,99	3,80	2,87		
R92	R129-R92	18,86	211,68	106,52	102,02	102,99	102,02	4,50	5,11		
BDC-6-	R92-BDC- 6-	11,92	223,60	106,38	101,56	102,02	101,56	11,92	3,89		
				3eme coll	ecteur						
R 73				118,91	116,91		116,91	2,00			
R74	R73-R74	40,18	40,18	117,66	115,66	116,91	115,66	2,00	3,13		
R75	R74-R75	55,00	95,18	116,34	113,70	115,66	113,70	2,64	3,55		
R76	R75-R76	55,00	150,18	114,00	111,50	113,70	111,50	2,50	4,00		
R77	R76-R77	43,09	193,27	111,94	109,44	111,50	109,44	2,50	4,78		
R78	R77-R78	84,27	277,54	108,86	106,06	109,44	106,06	2,80	4,00		
R79	R78-R79	17,74	295,28	108,67	105,67	106,06	105,67	3,00	2,19		
R80	R79-R80	46,53	341,81	107,47	104,27	105,67	104,27	3,20	3,00		
R81	R80-R81	12,93	354,74	107,46	103,96	104,27	103,96	3,50	2,43		
Longueur Totale(m)					935,10						

Annexe 10 : Caractéristiques des canalisations des sous bassins S₇

1 ^{er} collecteur										
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite (m)	profondeur du regard (m)	Pente (%)	
R28				141,38	139,38		139,38	2,00		
R29	R28-R29	12,67	12,67	141,38	138,88	139,38	138,88	2,50	3,95	
R30	R29-R30	32,63	45,30	141,38	138,58	138,88	138,58	2,80	0,92	
R31	R30-R31	13,95	59,25	141,38	138,40	138,58	138,40	2,98	1,27	
R32	R31-R32	17,21	76,47	141,38	138,18	138,40	138,18	3,20	1,27	
R33	R32-R33	12,83	89,29	141,38	137,98	138,18	137,98	3,40	1,59	
R34	R33-R34	9,55	98,84	141,38	137,77	137,98	137,77	3,60	2,10	
R35	R34-R35	39,78	138,62	141,38	137,58	137,77	137,58	3,80	0,50	
R27	R35-R27	51,68	190,30	141,38	137,38	137,58	137,38	4,00	0,39	
2 ^{eme} collecteur										
R46 R47	R46-R47	50.00	50,00	141,38 141,38	140,18	140 19	140,18 139,98	1,20	0.40	
R47	R40-R47 R47-R48	50,00	100,00	141,38	139,98 139,78	140,18 139,98	139,98	1,40	0,40	
	R47-R48 R48-R49		150,00	141,38	139,78			1,60	0,40	
R49 R22	R49-R22	50,00	200,40	141,38	139,18	139,78 139,18	139,18 138,88	2,20	1,20 0,60	
K22	N49-N22	30,40	200,40	141,36	130,00	139,10	130,00	2,30	0,00	
				3eme coll	ecteur					
R42				141,38	140,18		140,18	1,20		
R43	R42-R43	50,00	50,00	141,38	139,98	140,18	139,98	1,40	0,40	
R44	R43-R44	50,00	100,00	141,38	139,78	139,98	139,78	1,60	0,40	
R45	R44-R45	50,00	150,00	141,38	139,18	139,78	139,18	2,20	1,20	
R23	R45-R23	50,40	200,40	141,38	138,88	139,18	138,88	2,50	0,60	
4 ^{eme} collecteur										
R36				141,38	140,18		140,18	1,20		
R37	R36-R37	50,00	50,00	141,38	139,88	140,18	139,88	1,50	0,60	
R38	R37-R38	51,17	101,17	141,38	139,58	139,88	139,58	1,80	0,59	
R39	R38-R39	22,85	124,01	141,38	139,38	139,58	139,38	2,00	0,88	
R40	R39-R40	35,77	159,79	141,38	138,88	139,38	138,88	2,50	1,40	
R41	R40-R41	43,45	203,23	141,38	138,68	138,88	138,68	2,70	0,46	

Annexe 10: Caractéristiques des canalisations du sous bassin S_7 (suite et fin)

5 ^{eme} collecteur										
N° regard	N° de tronçon	distance partielle (m)	distance cumulée (m)	cote du terrain naturel	cote radier du regard (m)	cote radier amont de la conduite (m)	cote radier avale de la conduite (m)	profondeur du regard (m)	Pente (%)	
R93				141,38	140,18		140,18	1,20		
R94	R93-R94	50,00	50,00	141,38	139,88	140,18	139,88	1,50	0,60	
R95	R94-R95	50,00	100,00	141,38	139,58	139,88	139,58	1,80	0,60	
R96	R95-R96	50,00	150,00	141,38	139,38	139,58	139,38	2,00	0,40	
R97	R96-R97	50,00	200,00	141,38	138,88	139,38	138,88	2,50	1,00	
R24	R97-R24	25,39	225,39	141,38	138,58	138,88	138,58	2,80	1,18	
			(6 ^{eme} colle	cteur					
R21				141,38	139,38		139,38	2,00		
R22	R21-R22	14,56	14,56	141,38	138,88	139,38	138,88	2,50	3,43	
R23	R22-R23	42,75	57,31	141,38	138,78	138,88	138,78	2,60	0,38	
R41	R23-R41	26,50	83,81	141,38	138,68	138,88	138,68	2,70	0,46	
R24	R41-R24	45,99	129,80	141,38	138,58	138,88	138,58	2,80	0,39	
R25	R24-R25	51,22	181,03	141,38	137,88	138,58	137,88	3,50	1,37	
R26	R25-R26	41,28	222,31	141,38	137,58	137,88	137,58	3,80	0,73	
R27	R26-R27	34,44	256,75	141,38	137,38	137,58	137,38	4,00	0,58	
BDC-7-	R27- BDC-7-	9,09	265,84	141,38	136,93	137,38	136,93	4,45	5,24	
Longueur Totale	1285,57									

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₂

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe / Qmfs (I/s)	Cpe / Cps (I/s)	Ope / Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R69	55,00	0,002	0,110000	0	0	0	0,220	0,074	200
R70	22,00	0,002	0,110000	0,110	4	0,440000	0,220	0,071	200
R70	55,00	0,002	0,110000	0,110	4	0,440000	0,660	0,953	200
R71	33,00	0,002	0,110000	0,220	4	0,880000	0,000	0,755	200
R71	49,97	0,002	0,099940	0,220	4	0,880000	1,080	0,089	200
R72	49,97	0,002	0,099940	0,320	4	1,279760	1,000	0,089	200
R217	26.47	0.002	0.072022	0,000	0	0,000000	0.146	0.040	200
R218	36,47	0,002	0,072933	0,073	4	0,291731	0,146	0,040	200
R218	10.77	0.002	0.021547	0,073	4	0,291731	0.225	0.020	200
R72	10,77	0,002	0,021547	0,094	4	0,377919	0,335	0,020	200
R187	12.25	0.002	0.004500	0,414	4	1,657679	1 007	0.000	200
R72	42,25	0,002	0,084500	0,499	4	1,995679	1,827	0,090	200
R72	10.70	0.002	0.025444	0,499	4	1,995679	2.047	0.020	200
R188	12,72	0,002	0,025444	0,524	4	2,097457	2,047	0,030	200
R188	7 01	0.002	0.015611	0,524	4	2,097457	2 120	0.072	200
BDC-2-	7,81	0,002	0,015611	0,540	4	2,159900	2,129	0,073	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S3

$ m N^\circ$ de regard	Li(m)	Qmf Unitaire I/s	Omf route (1/s)	Omfe Omfs (I/s)	Cpe / Cps (I/s)	Ope Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R 50	50,00	0,002	0,122669	0,00	4	0	0,245	0,067	200
R 51	30,00	0,002	0,122007	0,12	4	0,4906752	0,243	0,007	200
R 51	50,00	0,002	0,122669	0,12	4	0,4906752	0,736	0,026	200
R 52	50,00	0,002	0,122009	0,25	4	0,9813504	0,730	0,020	200
R 52	18,26	0,002	0,044799	0,25	4	0,9813504	1,071	0,040	200
R 53	16,20	0,002	0,044799	0,29	4	1,1605449	1,071	0,040	200
R 53	50.04	0,002	0,122767	0,29	4	1,1605449	1 406	0.024	200
R 54	50,04	0,002	0,122767	0,41	4	1,6516126	1,406	0,024	200
R 54	50.00	0,002	0,122669	0,41	4	1,6516126	1 907	0.040	200
R 55	50,00	0,002	0,122009	0,54	4	2,1422878	1,897	0,040	200
R 55	22.42	0,002	0,057483	0,54	4	2,1422878	2.257	0.061	200
R 56	23,43	0,002	0,037483	0,59	4	2,3722182	2,257	0,061	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_3 (suite et fin)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (I/s)	Cpe / Cps (I/s)	Ope Ops (1/s)	Op (Vs)	I (m/m)	diamètre (mm)
R 56	54,17	0,002	0,132899	0,59	4	2,3722182	2,638	0,041	200
R 57	J 4 ,17	0,002	0,132077	0,73	4	2,9038157	2,030	0,041	200
R 57	7,87	0,002	0,019308	0,73	4	2,9038157	2,942	0,210	200
R 58	7,07	0,002	0,019306	0,75	4	2,981048	2,942	0,210	200
R 140	79.42	0,002	0,192394	0,00	4	0	0,385	0.040	200
R 141	78,42	0,002	0,192394	0,19	4	0,7695749	0,383	0,040	200
R 141	40.11	0.002	0.120495	0,19	4	0,7695749	1 011	0.042	200
R 142	49,11	0,002	0,120485	0,31	4	1,2515161	1,011	0,042	200
R 142	10.21	0.002	0.044676	0,31	4	1,2515161	1 2/1	0.010	200
R 143	18,21	0,002	0,044676	0,36	4	1,43022	1,341	0,019	200
R 143	17.51	0.002	0.042050	0,36	4	1,43022	1.516	0.106	200
R 58	17,51	0,002	0,042959	0,40	4	1,6020545	1,516	0,186	200
R 58				1,15	3,83	4,3883206			
BDC- 3-	34,34	0,002	0,084249	1,23	3,75	4,612592	4,500	0,020	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S4

N° de regard	Li (m)	Qmf Unitaire I/s	Omf route (1/s)	Omfe Omfs (I/s)	Cpe / Cps (I/s)	Ope Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R 236	13,86	0,002	0,024931	0,00	4	0	0,050	0,014	200
R 237	13,60	0,002	0,024731	0,02	4	0,0997248	0,030	0,014	200
R 237	7,63	0,002	0,013719	0,02	4	0,0997248	0,127	0,013	200
R 238	7,03	0,002	0,013719	0,04	4	0,1545997	0,127	0,013	200
R 238	46.02	0.002	0.004207	0,04	4	0,1545997	0.222	0.0017	200
R 239	46,92	0,002	0,084387	0,12	4	0,4921489	0,323	0,0017	200
R 239	29.56	0.002	0.060252	0,12	4	0,4921489	0.621	0.0005	200
R 240	38,56	0,002	0,069353	0,19	4	0,7695606	0,631	0,0005	200
R 240	47.01	0.002	0.006150	0,19	4	0,7695606	0.042	0.0005	200
R 241	47,91	0,002	0,086158	0,28	4	1,114194	0,942	0,0005	200
R 241	1675	0.002	0.004002	0,28	4	1,114194	1 202	0.0016	200
R 242	46,75	0,002	0,084083	0,36	4	1,4505278	1,282	0,0016	200
R 242	<i>5</i> 1.10	0.002	0.001002	0,36	4	1,4505278	1 (24	0.0020	200
R 243	51,10	0,002	0,091903	0,45	4	1,8181396	1,634	0,0039	200
R 243	50.00	0.002	0.000012	0,45	4	1,8181396	1 000	0.0060	200
R 244	50,00	0,002	0,089913	0,54	4	2,1777918	1,998	0,0060	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₄ (suite)

					(Suite	· /		1	$\overline{}$
$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe Qmfs (I/s)	Cpe / Cps (I/s)	Ope Ops (I/s)	Op (Vs)	I (m/m)	diamètre (mm)
R 244	49,98	0,002	0,089878	0,54	4	2,1777918	2,358	0,0040	200
R 245	42,20	0,002	0,009070	0,63	4	2,5373057	2,336	0,0040	200
R 245	5,50	0,002	0,009884	0,63	4	2,5373057	2,557	0,0180	200
R 246	3,30	0,002	0,007004	0,64	4	2,576843	2,337	0,0100	200
R 246	45,90	0,002	0,082549	0,64	4	2,576843	2,742	0,0043	200
R 247	43,70	0,002	0,002347	0,73	4	2,9070382	2,742	0,0043	200
R 247	27,86	0,002	0,050110	0,73	4	2,9070382	3,007	0,0071	200
R 175	27,00	0,002	0,030110	0,78	4	3,1074777	3,007	0,0071	200
R 175	44,57	0,002	0,080150	0,78	4	3,1074777	3,268	0,0220	200
R 176	44,37	0,002	0,080130	0,86	4	3,4280795	3,208	0,0220	200
R 176	50,00	0,002	0,089920	0,86	4	3,4280795	3,608	0,0020	200
R 177	30,00	0,002	0,009920	0,95	4	3,7877601	3,000	0,0020	200
R 177	50,00	0,002	0,089920	0,95	4	3,7877601	3,944	0,0020	200
R 178	30,00	0,002	0,007720	1,04	3,96	4,1009485	3,744	0,0020	200
R 178	50,00	0,002	0,089920	1,04	3,96	4,1009485	4,222	0,0040	200
R 179	30,00	0,002	0,007720	1,13	3,86	4,3439182	4,222	0,0040	200
R 179	50,00	0,002	0,089920	1,13	3,86	4,3439182	4,463	0,0040	200
R 180	30,00	0,002	0,007720	1,22	3,77	4,5826543	4,403	0,0040	200
R 180	43,01	0,002	0,077356	1,22	3,77	4,5826543	4,684	0,0046	200
R 181	75,01	0,002	0,077330	1,29	3,7	4,7849996	,00-	0,0040	200
R 181	15,10	0,002	0,027149	1,29	3,7	4,7849996	4,820	0,0133	200
R 182	13,10	0,002	0,027147	1,32	3,67	4,8554009	4,020	0,0133	200
R 190	49,60	0,002	0,089201	0,00	0	0	0,178	0,0160	200
R 182	47,00	0,002	0,007201	0,09	4	0,3568031	0,176	0,0100	200
R 182	16,46	0,002	0,029600	1,41	3,61	5,0846226	5,122	0,0122	200
R 191	10,40	0,002	0,027000	1,44	3,58	5,1600154	3,122	0,0122	200
R 191	50,06	0,002	0,090022	1,44	3,58	5,1600154	5,274	0,0040	200
R 192	50,00	0,002	0,070022	1,53	3,52	5,3874009	3,414	0,0040	200
R 192	50,17	0,002	0,090232	1,53	3,52	5,3874009	5,500	0,0652	200
R 193	50,17	0,002	0,090232	1,62	3,46	5,6126264	3,300	0,0052	200
R 193	44,23	0,002	0,079549	1,62	3,46	5,6126264	5,711	0,0683	200
R 194	++,23	0,002	0,017347	1,70	3,42	5,809131	5,711	0,0003	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₄ (suite)

$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Qmf route (1/s)	Qmfe Qmfs (1/s)	Cpe / Cps (I/s)	Qpe Qps (I/s)	Op (J/s)	I (m/m)	diamètre (mm)
R 194 R 195	50,05	0,002	0,090006	1,70 1,79	3,42 3,37	5,809131 6,0293205	5,919	0,0521	200
R 195				1,79	3,37	6,0293205			
R 196	48,13	0,002	0,086558	1,88	3,33	6,2390779	6,134	0,0399	200
R 196	2 - 72	0.002	0.055040	1,88	3,33	6,2390779	c 210	0.0002	200
R 197	36,72	0,002	0,066042	1,94	3,29	6,3978866	6,318	0,0002	200
R 197	22.50	0.002	0.060400	1,94	3,29	6,3978866	<i>c</i> 470	0.0000	200
R 198	33,59	0,002	0,060408	2,00	3,27	6,5422635	6,470	0,0089	200
R 199	33,27	0,002	0,059830	0,00	0	0	0,120	0,0646	200
R 200	33,27	0,002	0,039630	0,06	4	0,2393202	0,120	0,0040	200
R 200	15,29	0,002	0,027491	0,06	4	0,2393202	0,294	0,0767	200
R 201	13,27	0,002	0,027471	0,09	4	0,3492862	0,274	0,0707	200
R 201	51,13	0,002	0,091946	0,09	4	0,3492862	0,533	0,0570	200
R 202	31,13	0,002	0,071740	0,18	4	0,7170688	0,333	0,0370	200
R 202	50,02	0,002	0,089949	0,18	4	0,7170688	0,897	0,0640	200
R 203	30,02	0,002	0,007717	0,27	4	1,0768647	0,077	0,0010	200
R 203	50,05	0,002	0,090002	0,27	4	1,0768647	1,257	0,0710	200
R 204	30,03	0,002	0,00002	0,36	4	1,4368716	1,237	0,0710	200
R 204	50,02	0,002	0,089955	0,36	4	1,4368716	1,617	0,0500	200
R 205	30,02	0,002	0,007733	0,45	4	1,7966924	1,017	0,0300	200
R 205	50,79	0,002	0,091348	0,45	4	1,7966924	1,979	0,0628	200
R 198	30,77	0,002	0,071310	0,54	4	2,1620844	1,575	0,0020	200
R 198	29,99	0,002	0,053940	2,54	3,07	7,8019833	7,863	0,0260	200
R 206		0,002	0,022710	2,60	3,05	7,9249495	7,002	0,0200	200
R 206	25,92	0,002	0,046611	2,60	3,05	7,9249495	7,978	0,0400	200
R 207		0,002	0,010011	2,64	3,04	8,0308588	7,570	0,0.00	
R 207	47,70	0,002	0,085784	2,64	3,04	8,0308588	8,128	0,0330	200
R 208	.,,,,	0,002	0,000701	2,73	3,01	8,2249547	0,120	0,000	
R 208	50,59	0,002	0,090976	2,73	3,01	8,2249547	8,327	0,0400	200
R 209		-,		2,82	2,99	8,4296861	-,	,,,,,,	
R 209	26,92	0,002	0,048419	2,82	2,99	8,4296861	8,484	0,0440	200
R 210		2,002	2,2.0.12	2,87	2,98	8,5381987	-,	2,3.10	
R 210	38,91	0,002	0,069971	2,87	2,98	8,5381987	8,616	0,0340	200
R 211		5,552	3,3377.1	2,94	2,96	8,6944805	5,510	3,32.0	
R 211	22,77	0,002	0,040953	2,94	2,96	8,6944805	8,740	0,0320	200
R 212	,	,	,	2,98	2,95	8,7856671	, -		-

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₄ (suite)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe Qmfs (I/s)	Cpe / Cps (I/s)	Ope Ops (I/s)	Op (I/s)	I (m/m)	diamètre (mm)
R 212	50,04	0,002	0,089985	2,98 3,07	2,95	8,7856671 8,9853184	8,885	0,0100	200
R 213				3,07	2,93 2,93	8,9853184			
R 186	42,07	0,002	0,075654	3,15	2,91	9,1524433	9,069	0,0098	200
R 183				0,00	0	0			
R 184	46,88	0,002	0,084307	0,08	4	0,3372286	0,169	0,0410	200
R 184				0,08	4	0,3372286			
R 185	54,48	0,002	0,097982	0,18	4	0,7291547	0,533	0,0550	200
R 185	22.50	0.000	0.050440	0,18	4	0,7291547	0.046	0.0020	200
R 186	32,50	0,002	0,058440	0,24	4	0,9629138	0,846	0,0830	200
R 186	50.00	0.002	0.000020	3,39	2,86	9,68007	0.770	0.0201	200
R 20	50,00	0,002	0,089920	3,48	2,84	9,8756302	9,778	0,0201	200
R 17	50.20	0.002	0.000425	0,00	0	0	0.101	0.0220	200
R 18	50,28	0,002	0,090425	0,09	4	0,3616992	0,181	0,0220	200
R 18	33,27	0,002	0,059837	0,09	4	0,3616992	0,481	0,0813	200
R 19	33,27	0,002	0,039637	0,15	4	0,6010491	0,461	0,0813	200
R 19	37,88	0,002	0,068132	0,15	4	0,6010491	0,737	0,0520	200
R 20	37,00	0,002	0,000132	0,22	4	0,8735763	0,737	0,0320	200
R 20	49,74	0,002	0,089452	3,69	2,8	10,347409	10,443	0,0276	200
R 214	77,77	0,002	0,007432	3,78	2,79	10,539411	10,443	0,0270	200
R 214	50,28	0,002	0,090425	3,78	2,79	10,539411	10,636	0,0462	200
R 215	30,20	0,002	0,000 123	3,87	2,77	10,73281	10,030	0,0102	200
R 215	25,78	0,002	0,046360	3,87	2,77	10,73281	10,782	0,0247	200
R 216		0,002	3,01000	3,92	2,76	10,831702	10,702	0,0217	
R 219	38,25	0,002	0,068787	0,00	0	0	0,138	0,0668	200
R 220		- ,	, , , , , , , , ,	0,07	4	0,2751483		- ,	
R 220	11,78	0,002	0,021182	0,07	4	0,2751483	0,318	0,0493	200
R 221	,	,	,	0,09	4	0,3598754	,	,	
R 221	49,61	0,002	0,089225	0,09	4	0,3598754	0,538	0,0246	200
R 222	-			0,18	4	0,7167755			
R 222	28,12	0,002	0,050575	0,18	4	0,7167755	0,818	0,0052	200
R 223				0,23	4	0,9190746			
R 223	11,47	0,002	0,020628	0,23	4	0,9190746	0,960	0,0580	200
R 216				0,25	4	1,0015848			

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₄ (suite)

		- r	T		(SUITE	<i>:)</i>			
N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (1/s)	Qmfe Qmfs (I/s)	Cpe / Cps (1/s)	Qpe Qps (I/s)	Op (I/s)	I (m/m)	diamètre (mm)
R 216 R 224	49,53	0,002	0,089073	4,17 4,26	2,72 2,71	11,362919 11,550756	11,457	0,0137	200
R 224				4,26	2,71	11,550756			
R 225	43,67	0,002	0,078534	4,34	2,7	11,7159	11,633	0,0155	200
R 225	40.40	0.002	0.007101	4,34	2,7	11,7159	11.007	0.0222	200
R 226	48,43	0,002	0,087101	4,43	2,69	11,89856	11,807	0,0223	200
R 226	12.06	0.002	0.077440	4,43	2,69	11,89856	11.000	0.0102	200
R 227	43,06	0,002	0,077442	4,50	2,68	12,060536	11,980	0,0182	200
R 227	15 10	0.002	0.027200	4,50	2,68	12,060536	12.000	0.0212	200
R 117	15,18	0,002	0,027298	4,53	2,67	12,117539	12,089	0,0312	200
R 104	50.00	0.002	0.000020	0,00	0	0	0.100	0.1249	200
R 105	50,00	0,002	0,089920	0,09	4	0,3596806	0,180	0,1248	200
R 105	50,00	0,002	0,089920	0,09	4	0,3596806	0.540	0.0670	200
R 106	30,00	0,002	0,089920	0,18	4	0,7193611	0,540	0,0670	200
R 106	50,00	0,002	0,089920	0,18	4	0,7193611	0,899	0,0563	200
R 107	30,00	0,002	0,089920	0,27	4	1,0790417	0,099	0,0303	200
R 107	50,00	0,002	0,089920	0,27	4	1,0790417	1,259	0,0708	200
R 108	30,00	0,002	0,009920	0,36	4	1,4387223	1,239	0,0708	200
R 108	32,14	0,002	0,057793	0,36	4	1,4387223	1,554	0,0374	200
R 109	32,14	0,002	0,031173	0,42	4	1,6698928	1,334	0,0374	200
R 109	26,19	0,002	0,047092	0,42	4	1,6698928	1,764	0,0204	200
R 110	20,17	0,002	0,047072	0,46	4	1,8582619	1,704	0,0204	200
R 110	50,00	0,002	0,089920	0,46	4	1,8582619	2,038	0,0059	200
R 111	50,00	0,002	0,007720	0,55	4	2,2179425	2,030	0,0037	200
R 111	50,00	0,002	0,089920	0,55	4	2,2179425	2,398	0,0325	200
R 112		0,002	0,000/20	0,64	4	2,5776231		0,0020	
R 112	50,00	0,002	0,089920	0,64	4	2,5776231	2,757	0,0828	200
R 113		-,		0,73	4	2,9373037		-,,,,,,	
R 113	50,00	0,002	0,089920	0,73	4	2,9373037	3,117	0,0583	200
R 114	,	, - "		0,82	4	3,2969842		,	
R 114	50,00	0,002	0,089920	0,82	4	3,2969842	3,477	0,0597	200
R 115	,		,	0,91	4	3,6566648	·	,	
R 115	50,00	0,002	0,089920	0,91	4	3,6566648	3,834	0,0566	200
R 116				1,00	3,99	4,0112322			
R 116	51,69	0,002	0,092962	1,00	3,99	4,0112322	4,138	0,0568	200
R 117				1,10	3,89	4,2640745			

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₄ (suite et fin)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (1/s)	Cpe / Cps (I/s)	Qpe Qps (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R 117	50,96	0,002	0,091644	5,63	2,55	14,372467	14,465	0,0095	200
R 228	30,70	0,002	0,071044	5,72	2,55	14,558026	14,403	0,0073	200
R 228	49,33	0,002	0,088714	5,72	2,55	14,558026	14,648	0,0297	200
R 229	47,33	0,002	0,000714	5,81	2,54	14,737287	14,040	0,0277	200
R 229	32,92	0,002	0,059202	5,81	2,54	14,737287	14,797	0,0253	200
R 230	32,92	0,002	0,039202	5,87	2,53	14,856717	14,/9/	0,0233	200
R 230	22.20	0,002	0,040093	5,87	2,53	14,856717	14 907	0.0202	200
R 231	22,29	0,002	0,040093	5,91	2,53	14,937512	14,897	0,0202	200
R 231	10.00	0.002	0.010506	5,91	2,53	14,937512	14.057	0.0540	200
R 232	10,90	0,002	0,019596	5,93	2,53	14,976976	14,957	0,0540	200
R 232	20.10	0.002	0,070324	5,93	2,53	14,976976	15,048	0,0156	200
R 233	39,10	0,002	0,070324	6,00	2,52	15,118463	13,048	0,0136	200
R 233	16.56	0.002	0.092725	6,00	2,52	15,118463	15 202	0.0267	200
R 234	46,56	0,002	0,083735	6,08	2,51	15,286657	15,203	0,0267	200
R 234				6,08	2,51	15,286657			
BDC- 4-	27,18	0,002	0,048882	6,13	2,51	15,384708	15,336	0,0244	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S5

$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (1/s)	Cpe / Cps (I/s)	Qpe Qps (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R98	50,00	0,001	0,053550	0,000	0	0	0,107	0,0903	200
R99	50,00	0,001	0,033330	0,054	4	0,2141982	0,107	0,0703	200
R99	50,00	0,001	0,053550	0,054	4	0,2141982	0,321	0,10	200
R100	30,00	0,001	0,033330	0,107	4	0,4283964	0,321	0,10	200
R100	50,00	0,001	0,053550	0,107	4	0,4283964	0,535	0,0755	200
R101	30,00	0,001	0,033330	0,161	4	0,6425945	0,333	0,0733	200
R101	22,91	0,001	0,024536	0,161	4	0,6425945	0,692	0,0371	200
R102	22,91	0,001	0,024336	0,185	4	0,7407401	0,092	0,0371	200
R102	15.04	0.001	0,016108	0,185	4	0,7407401	0.772	0.0067	200
R103	15,04	0,001	0,010108	0,201	4	0,805171	0,773	0,0067	200
R118	35,82	0,001	0,038368	0,000	4	0	0,077	0,0551	200
R103	33,62	0,001	0,036308	0,038	4	0,1534712	0,077	0,0331	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_5 (suite)

$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe Qmfs (I/s)	Cpe /Cps (1/s)	Ope Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R103	43,89	0,001	0,047006	0,240	4	0,9586421	1,053	0,0474	200
R119	15,07	0,001	0,017000	0,287	4	1,1466653	1,033	0,0171	200
R119	44,75	0,001	0,047927	0,287	4	1,1466653	1,243	0,0527	200
R120	,,,	0,001	0,017727	0,335	4	1,3383727	1,2 .5	0,0227	
R120	36,65	0,001	0,039252	0,335	4	1,3383727	1,417	0,0771	200
R121	30,03	0,001	0,037232	0,374	4	1,4953799	1,117	0,0771	200
R121	44,61	0,001	0,047777	0,374	4	1,4953799	1,591	0,0193	200
R122	11,01	0,001	0,017777	0,422	4	1,6864876	1,571	0,0173	200
R122	34,54	0,001	0,036992	0,422	4	1,6864876	1,760	0,0476	200
R123	3 1,3 1	0,001	0,030772	0,459	4	1,8344557	1,700	0,0170	200
R123	28,04	0,001	0,030031	0,459	4	1,8344557	1,895	0,0209	200
R59	20,01	0,001	0,030031	0,489	4	1,954578	1,075	0,0207	200
R157	62,91	0,001	0,067376	0,000	4	0	0,135	0,0475	200
R158	02,71	0,001	0,007370	0,067	4	0,2695041	0,133	0,0473	200
R158	9,22	0,001	0,009875	0,067	4	0,2695041	0,289	0,0461	200
R59		0,001	0,007073	0,077	4	0,3090023	0,207	0,0101	200
R59	19,90	0,001	0,021313	0,566	4	2,2635803	2,306	0,0204	200
R60	17,70	0,001	0,021313	0,587	4	2,3488312	2,300	0,0201	200
R60	16,20	0,001	0,017350	0,587	4	2,3488312	2,384	0,0341	200
R61	10,20	0,001	0,017550	0,605	4	2,4182314	2,501	0,0311	200
R61	42,27	0,001	0,045271	0,605	4	2,4182314	2,509	0,0456	200
R62	12,27	0,001	0,015271	0,650	4	2,5993145	2,507	0,0150	200
R62	39,49	0,001	0,042293	0,650	4	2,5993145	2,684	0,0362	200
R63	37,17	0,001	0,012273	0,692	4	2,7684882	2,001	0,0302	200
R63	11,02	0,001	0,011802	0,692	4	2,7684882	2,792	0,0851	200
R64		5,001	5,011002	0,704	4	2,8156975		5,5551	
R64	14,14	0,001	0,015144	0,704	4	2,8156975	2,846	0,0458	200
R65	1 .,1 .	0,001	0,010111	0,719	4	2,8762728	2,0.0	0,0120	
R65	43,24	0,001	0,046310	0,719	4	2,8762728	2,969	0,0213	200
R66	10,41	0,001	3,0 10310	0,765	4	3,0615113		0,0213	
R66	17,50	0,001	0,018742	0,765	4	3,0615113	3,099	0,0330	200
R67	17,50	0,001	0,010/42	0,784	4	3,1364807	3,077	0,0330	200
R67	50,00	0,001	0,053550	0,784	4	3,1364807	3,244	0,0142	200
R68	20,00	0,001	0,00000	0,838	4	3,3506789	<i>⊃</i> ,∠ ⊤ ⊤	0,0172	200
R68	18,30	0,001	0,019599	0,838	4	3,3506789	3,390	0,0382	200
R15	10,50	0,001	0,017077	0,857	4	3,4290754		0,0302	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_5 (suite)

$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Qmf route (1/s)	OmfeQmfs (I/s)	Cpe /Cps (I/s)	Ope Ops (I/s)	Op (I/s)	I (m/m)	diamètre (mm)
R9	49,99	0,001	0,053539	0,000	4	0	0,107	0,0467	200
R10	12,22	0,001	0,033337	0,054	4	0,2141553	0,107	0,0107	200
R10	25,59	0,001	0,027407	0,054	4	0,2141553	0,269	0,0515	200
R11	20,00	0,001	0,027.107	0,081	4	0,323782	0,20	0,0010	
R11	49,72	0,001	0,053250	0,081	4	0,323782	0,430	0,0354	200
R12	12,72	0,001	0,033230	0,134	4	0,5367806	0,130	0,0331	200
R12	13,87	0,001	0,014855	0,134	4	0,5367806	0,566	0,0632	200
R13	10,07	0,001	0,011000	0,149	4	0,5961992	0,200	0,0022	
R13	48,50	0,001	0,051943	0,149	4	0,5961992	0,700	0,0411	200
R14	10,50	0,001	0,051715	0,201	4	0,8039714	0,700	0,0111	200
R14	20,56	0,001	0,022020	0,201	4	0,8039714	0,848	0,0756	200
R15	20,50	0,001	0,022020	0,223	4	0,8920497		0,0750	200
R15	27,12	0,001	0,029045	1,080	4	4,3211252	4,379	0,0444	200
R8	27,12	0,001	0,027043	1,109	4	4,4373063	7,577	0,0444	200
R0	50,15	0,001	0,053710	0,000	4	0	0,107	0,0139	200
R1	30,13	0,001	0,033710	0,054	4	0,2148408	0,107	0,0137	200
R1	27,33	0,001	0,029270	0,054	4	0,2148408	0,273	0,1190	200
R2	21,33	0,001	0,027270	0,083	4	0,3319215	0,273	0,1170	200
R2	50,00	0,001	0,053550	0,083	4	0,3319215	0,439	0,0578	200
R3	30,00	0,001	0,055550	0,137	4	0,5461197	0,437	0,0376	200
R3	50,00	0,001	0,053550	0,137	4	0,5461197	0,653	0,0704	200
R4	30,00	0,001	0,033330	0,190	4	0,7603179	0,033	0,0704	200
R4	31,36	0,001	0,033586	0,190	4	0,7603179	0,827	0,1100	200
R5	31,30	0,001	0,033300	0,224	4	0,894663	0,027	0,1100	200
R5	50,11	0,001	0,053667	0,224	4	0,894663	1,002	0,1170	200
R6	50,11	0,001	0,033007	0,277	4	1,1093324	1,002	0,1170	200
R6	34,41	0,001	0,036853	0,277	4	1,1093324	1,183	0,0280	200
R7	37,71	0,001	0,030033	0,314	4	1,2567436	1,103	0,0200	200
R7	27,36	0,001	0,029302	0,314	4	1,2567436	1,315	0,0046	200
R8	27,30	0,001	0,027302	0,343	4	1,3739528	1,313	0,0040	200
R8	20,20	0,001	0,021634	1,453	3,57	5,1925413	5,220	0,0063	200
R16	20,20	0,001	0,021034	1,474	3,56	5,2473452	3,220	0,0003	200
R16	15,86	0,001	0,016986	1,474	3,56	5,2473452	5,269	0,0119	200
R130	13,00	0,001	0,010900	1,491	3,55	5,2902598	5,209	0,0119	<u> </u>
R130	17,72	0,001	0,018978	1,491	3,55	5,2902598	5,314	0,0038	200
R131	17,72	0,001	0,010976	1,510	3,53	5,3380901	3,314	0,0056	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₅ (Suite)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe Qmfs (I/s)	Cpe /Cps (I/s)	Ope Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R131	24,29	0,001	0,026014	1,510	3,53	5,3380901	5,371	0,0038	200
R132				1,536	3,52	5,4034579			
R132	23,99	0,001	0,025693	1,536	3,52	5,4034579	5,436	0,0206	200
R133				1,562	3,5	5,4678002			
R133	17,12	0,001	0,018335	1,562	3,5	5,4678002	5,491	0,0058	200
R134				1,580	3,49	5,5135874			
R134 R135	22,69	0,001	0,024301	1,580	3,49	5,5135874	5,544	0,0012	200
R136				1,605 0,000	3,47	5,5741087			
R137	25,92	0,001	0,027760	0,000	4	0,1110403	0,056	0,0128	200
R137				0,028	4	0,1110403			
R138	25,79	0,001	0,027621	0,028	4	0,2215238	0,166	0,0082	200
R138				0,055	4	0,2215238			
R139	9,14	0,001	0,009789	0,065	4	0,2606792	0,241	0,0038	200
R249				0,000	4	0			
R139	26,93	0,001	0,028842	0,029	4	0,1153671	0,058	0,0328	200
R139	21.71	0.001	0.0220.66	0,094	4	0,3760463	0.400	0.0525	200
R250	21,54	0,001	0,023066	0,117	4	0,4683096	0,422	0,0525	200
R250	20.25	0.001	0.040065	0,117	4	0,4683096	0.550	0.0050	200
R135	38,25	0,001	0,040965	0,158	4	0,6321712	0,550	0,0852	200
R135	0.02	0.001	0.010625	1,763	3,38	5,9634596	5.076	0.0205	200
R251	9,93	0,001	0,010635	1,773	3,38	5,9894095	5,976	0,0295	200
R251	15,08	0,001	0,016151	1,773	3,38	5,9894095	6,009	0,0196	200
R252	13,08	0,001	0,010131	1,790	3,37	6,0287606	0,009	0,0190	200
R252	8,41	0,001	0,009007	1,790	3,37	6,0287606	6,040	0,0229	200
R253	0,11	0,001	0,007007	1,799	3,36	6,0506768	0,010	0,022)	200
R253	41,08	0,001	0,043996	1,799	3,36	6,0506768	6,104	0,0074	200
R254	.1,00	0,001	0,0 .0>> 0	1,843	3,34	6,1574307		0,007	
R254	25,54	0,001	0,027353	1,843	3,34	6,1574307	6,190	0,0182	200
R255	7-	, ,	, :	1,870	3,33	6,2235561	,	, - '	
R255	25,74	0,001	0,027567	1,870	3,33	6,2235561	6,257	0,0118	200
R256	, ,		,	1,898	3,31	6,2900142	, -	, -	
R257	50,02	0,001	0,053571	0,000	4	0	0,107	0,0323	200
R258				0,054	4	0,2142839			
R258	50,04	0,001	0,053592	0,054	4	0,2142839	0,321	0,0281	200
R259				0,107	4	0,4286534			

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_5 (Suite)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe Qmfs (I/s)	Cpe/Cps (I/s)	Ope Ops (I/s)	Op (1/s)	I (m/m)	diamètre (mm)
R259	48,37	0,001	0,051804	0,107	4	0,4286534	0,532	0,0362	200
R260	+0,57	0,001	0,03100+	0,159	4	0,6358687	0,332	0,0302	200
R260	11,11	0,001	0,011899	0,159	4	0,6358687	0,660	0,0084	200
R256	11,11	0,001	0,0110))	0,171	4	0,6834635		0,0001	200
R256	50,08	0,001	0,053635	2,068	3,24	6,6980221	6,761	0,0764	200
R261		0,001	0,000000	2,122	3,22	6,8247937		0,0701	
R261	50,10	0,001	0,053657	2,122	3,22	6,8247937	6,888	0,0087	200
R262		,,,,,,		2,176	3,19	6,9510338		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
R262	50,03	0,001	0,053582	2,176	3,19	6,9510338	7,014	0,0199	200
R263		,,,,,,		2,229	3,17	7,0765379		0,0-22	
R263	50,07	0,001	0,053625	2,229	3,17	7,0765379	7,139	0,0244	200
R264	,		,	2,283	3,15	7,2016025		,	
R264	52,94	0,001	0,056698	2,283	3,15	7,2016025	7,267	0,0244	200
R265		,	,	2,340	3,13	7,3332693		ŕ	
R265	49,76	0,001	0,053293	2,340	3,13	7,3332693	7,395	0,0481	200
R266			,	2,393	3,12	7,4565149		ŕ	
R266	35,16	0,001	0,037656	2,393	3,12	7,4565149	7,500	0,0525	200
R267				2,431	3,1	7,543309			
R267	19,87	0,001	0,021281	2,431	3,1	7,543309	7,568	0,0706	200
R268				2,452	3,1	7,5922553			
R268	19,70	0,001	0,021099	2,452	3,1	7,5922553	7,616	0,0521	200
R269				2,473	3,09	7,64071			
R269 R270	27,80	0,001	0,029774	2,473 2,503	3,09	7,64071 7,7089662	7,675	0,0174	200
R270				2,503	3,08	7,7089662			
R168	8,93	0,001	0,009564	2,512	3,08	7,7308618	7,720	0,0038	200
R271				0,000	4	0			
R272	19,43	0,001	0,020809	0,021	4	0,0832374	0,042	0,0194	200
R272				0,021	4	0,0832374			
R273	12,75	0,001	0,013655	0,034	4	0,1378579	0,111	0,0303	200
R273				0,034	4	0,1378579			
R274	22,35	0,001	0,023937	0,058	4	0,2336045	0,186	0,0165	200
R274				0,058	4	0,2336045			
R275	16,91	0,001	0,018110	0,077	4	0,3060464	0,270	0,0522	200
R275				0,077	4	0,3060464			
R276	6,18	0,001	0,006619	0,083	4	0,3325213	0,319	0,0469	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_5 (Suite)

$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Omf route (I/s)	Qmfe Qmfs (I/s)	Cpe /Cps (I/s)	Ope Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R276	33,18	0,001	0,035535	0,083	4	0,3325213	0,404	0,0195	200
R277	33,10	0,001	0,033333	0,119	4	0,4746632		0,0175	200
R277	50,08	0,001	0,053635	0,119	4	0,4746632	0,582	0,0346	200
R278	50,00	0,001	0,055055	0,172	4	0,6892041	0,502	0,0510	200
R278	21,70	0,001	0,023241	0,172	4	0,6892041	0,736	0,0199	200
R165	21,70	0,001	0,023211	0,196	4	0,7821661	0,750	0,0177	200
R159	22,78	0,001	0,024397	0,000	4	0	0,049	0,0132	200
R160	22,70	0,001	0,021377	0,024	4	0,0975887	0,017	0,0132	200
R160	10,28	0,001	0,011010	0,024	4	0,0975887	0,120	0,0174	200
R161	10,20	0,001	0,011010	0,035	4	0,1416278	0,120	0,0174	200
R161	10,10	0,001	0,010817	0,035	4	0,1416278	0,163	0,0214	200
R162	10,10	0,001	0,010017	0,046	4	0,1848959	0,103	0,0214	200
R162	11,83	0,001	0,012670	0,046	4	0,1848959	0,210	0,0219	200
R163	11,65	0,001	0,012070	0,059	4	0,2355752	0,210	0,0219	200
R163	19,57	0,001	0,020959	0,059	4	0,2355752	0,277	0,0184	200
R164	19,37	0,001	0,020939	0,080	4	0,3194123	0,277	0,0104	200
R164	15,93	0,001	0,017061	0,080	4	0,3194123	0,354	0,0129	200
R165	13,93	0,001	0,017001	0,097	4	0,3876559	0,334	0,0129	200
R165	14,47	0,001	0,015497	0,292	4	1,1698219	1,201	0,0102	200
R166	14,47	0,001	0,015497	0,308	4	1,2318109	1,201	0,0102	200
R166	32,82	0,001	0,035150	0,308	4	1,2318109	1,302	0,0355	200
R167	32,62	0,001	0,033130	0,343	4	1,3724106	1,302	0,0333	200
R167	4,47	0,001	0,004787	0,343	4	1,3724106	1,382	0,0214	200
R168	4,47	0,001	0,004767	0,348	4	1,3915599	1,362	0,0214	200
R168	6,33	0,001	0,006779	2,860	2,98	8,5181649	8,526	0,0653	200
R174	0,33	0,001	0,000117	2,867	2,98	8,5333418	0,520	0,0033	200
R169	19,87	0,001	0,021281	0,000	4	0	0,043	0,0078	200
R170	17,67	0,001	0,021201	0,021	4	0,0851224	0,043	0,0076	200
R170	51,12	0,001	0,054749	0,021	4	0,0851224	0,195	0,0087	200
R171	31,12	0,001	0,00+149	0,076	4	0,3041186	0,193	0,0067	200
R171	48,53	0,001	0,051975	0,076	4	0,3041186	0,408	0,0044	200
R172	+0,33	0,001	0,031713	0,128	4	0,5120193		0,0044	200
R172	23,62	0,001	0,025297	0,128	4	0,5120193	0,563	0,0034	200
R173	23,02	0,001	0,043497	0,153	4	0,6132065	0,505	0,0034	200
R173	13,61	0,001	0,014576	0,153	4	0,6132065	0,642	0,0226	200
R174	13,01	0,001	0,014370	0,168	4	0,6715113	0,042	0,0220	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_5 (suite et fin)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (1/s)	Cpe /Cps (I/s)	Qpe Qps (I/s)	(J/s) dO	I (m/m)	diamètre (mm)
R174	7,12	0,001	0,007625	3,035	2,94	8,9073312	8,916	0,0226	200
R279	7,12	0,001	0,007023	3,042	2,93	8,9242375	0,910	0,0220	200
R279	7,07	0,001	0,007572	3,042	2,93	8,9242375	8,933	0,0226	200
BDC-5-	7,07	0,001	0,007372	3,050	2,93	8,9410183	0,933	0,0220	200

Annexe 11: Dimensionnement des conduites et calcul des différents débits du sous bassin S₆

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (Vs)	Cpe / Cps (I/s)	Ope Ops (I/s)	Op (1/s)	I (m/m)	diamètre (mm)
R73	40,18	0,003	0,135350	0,000	0	0	0,271	0,0313	200
R74	10,10	0,003	0,133330	0,135	4	0,5413994	0,271	0,0313	200
R74	55,00	0,003	0,185272	0,135	4	0,5413994	0,912	0,0355	200
R75	33,00	0,003	0,103272	0,321	4	1,2824887	0,712	0,0333	200
R75	55,00	0,003	0,185272	0,321	4	1,2824887	1,653	0,0400	200
R76	33,00	0,003	0,103272	0,506	4	2,023578	1,055	0,0400	200
R76	43,09	0,003	0,145152	0,506	4	2,023578	2,314	0,0478	200
R77	43,09	0,003	0,143132	0,651	4	2,6041877	2,314	0,0478	200
R77	84,27	0,003	0,283871	0,651	4	2,6041877	3,172	0,0400	200
R78	04,27	0,003	0,2030/1	0,935	4	3,7396713	3,172	0,0400	200
R78	17,74	0,003	0,059759	0,935	4	3,7396713	3,863	0,0219	200
R79	1/,/4	0,003	0,039739	0,995	4,01	3,9853517	3,803	0,0219	200
R79	46,53	0,003	0,156740	0,995	4,01	3,9853517	4,198	0,0300	200
R80	40,33	0,003	0,130740	1,151	3,83	4,4097279	4,190	0,0300	200
R80	12,93	0,003	0,043556	1,151	3,83	4,4097279	4,468	0,0243	200
R81	12,93	0,003	0,043330	1,195	3,79	4,5253294	4,400	0,0243	200
R124	49,47	0,003	0,166644	0,000	0	0	0,333	0,0086	200
R125	49,47	0,003	0,100044	0,167	4	0,6665761	0,333	0,0080	200
R125	47.00	0.002	0.159627	0,167	4	0,6665761	0.094	0.0101	200
R126	47,09	0,003	0,158627	0,325	4	1,3010833	0,984	0,0101	200
R126	12 61	0.002	0.147005	0,325	4	1,3010833	1 505	0.0142	200
R127	43,64	0,003	0,147005	0,472	4	1,889104	1,595	0,0143	200
R127	10,89	0,003	0,036684	0,472	4	1,889104	1,962	0,0294	200
R81	10,69	0,003	0,030084	0,509	4	2,0358396	1,902	0,0294	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S_6 (suite et fin)

$ m N^\circ$ de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (1/s)	Cpe / Cps (I/s)	Ope Ops (I/s)	Qp (I/s)	I (m/m)	diamètre (mm)
R81 R128	25,20	0,003	0,084888	1,704 1,789	3,42 3,37	5,8192684 6,0269021	5,923	0,0195	200
R128						6,0269021			
R129	16,54	0,003	0,055716	1,789 1,845	3,37 3,34	6,1621501	6,095	0,0287	200
R129				1,845	3,34	6,1621501			
R92	18,86	0,003	0,063532	1,908	3,31	6,3154255	6,239	0,0511	200
R82			0,185272	0,000	0	0			
R83	55,00	0,003	0,185272 0,185272	0,185	4	0,7410893	0,371	0,00516	200
R83	77 00	0.002	0.105050	0,185	4	0,7410893	1 110	0.02020	200
R84	55,00	0,003	0,185272	0,371	4	1,4821786	1,112	0,02920	200
R84	55.00	0.002	0.195272	0,371	4	1,4821786	1 052	0.06020	200
R85	55,00	0,003	0,185272	0,556	4	2,2232679	1,853	0,06030	200
R85	55 71	0,003	0,187664	0,556	4	2,2232679	2,599	0,03400	200
R86	55,71	0,003	0,18/004	0,743	4	2,9739239	2,399	0,03400	200
R86	31,95	0,003	0,107626	0,743	4	2,9739239	3,189	0,00830	200
R87	31,93	0,003	0,107020	0,851	4	3,4044294	3,109	0,00830	200
R87	17,13	0,003	0,057704	0,851	4	3,4044294	3,520	0,00150	200
R88	17,13	0,003	0,037704	0,909	4	3,6352451	3,320	0,00130	200
R88	28,16	0,003	0,094859	0,909	4	3,6352451	3,823	0,01290	200
R89	20,10	0,003	0,074037	1,004	4	4,0100902	3,023	0,01270	200
R89	23,89	0,003	0,080476	1,004	4	4,0100902	4,120	0,01580	200
R90	23,07	0,003	0,000+70	1,084	3,9	4,229278	7,120	0,01300	200
R90	23,45	0,003	0,078993	1,084	3,9	4,229278	4,335	0,00300	200
R91	23,43	0,003	0,070773	1,163	3,82	4,4409332	,555	0,00500	200
R91	11,48	0,003	0,038671	1,163	3,82	4,4409332	6,757	0,03860	200
R92	11,10	0,003	3,030071	3,110	2,92	9,0735332	0,737	3,03000	
R 92	11,92	0,003	0,040154	3,110	2,92	9,0735332	9,118	0,03890	200
BDC-6-	,-2	0,000	3,0.0121	3,150	2,91	9,1621341	,,,,,	3,02070	

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S7

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Omfe Omfs (I/s)	Cpe / Cps (1/s)	Ope Ops (I/s)	Op (I/s)	I (m/m)	diamètre (mm)
R46 R47	50,00	0,002	0,097622	0,0000	0 4	0,3904883	0,195	0,0040	200
R47	7 0.00		0.00= 400	0,0976	4	0,3904883	0.=04	0.0040	• • • •
R48	50,00	0,002	0,097622	0,1952	4	0,7809765	0,781	0,0040	200
R48	50.00	0.002	0.007622	0,1952	4	0,7809765	1 267	0.0120	200
R49	50,00	0,002	0,097622	0,2929	4	1,1714648	1,367	0,0120	200
R49	50.40	0.002	0.009402	0,2929	4	1,1714648	1.054	0.0060	200
R22	50,40	0,002	0,098403	0,3913	4	1,5650764	1,954	0,0060	200
R21	14,60	0,002	0,028506	0,0000	4	0	0,057	0,0343	200
R22	14,60	0,002	0,028300	0,0285	4	0,1140226	0,037	0,0343	200
R42	50,00	0,002	0,097622	0,0000	4	0	0,195	0,0040	200
R43	30,00	0,002	0,097022	0,0976	4	0,3904883	0,193	0,0040	200
R43	50,00	0,002	0,097622	0,0976	4	0,3904883	0,781	0,0040	200
R44	30,00	0,002	0,097022	0,1952	4	0,7809765	0,781	0,0040	200
R44	50,00	0,002	0,097622	0,1952	4	0,7809765	1,367	0,0012	200
R45	30,00	0,002	0,097022	0,2929	4	1,1714648	1,307	0,0012	200
R45	50,40	0,002	0,098403	0,2929	4	1,1714648	1,954	0,0060	200
R23	30,40	0,002	0,096403	0,3913	4	1,565077	1,934	0,0000	200
R22	42,80	0,002	0,083564	0,4198	4	1,6790989	2,686	0,0038	200
R23	42,60	0,002	0,063304	0,5033	4	2,0133569	2,080	0,0038	200
R36	50,00	0,002	0,097622	0,0000	0	0	0,195	0,0060	200
R37	30,00	0,002	0,097022	0,0976	4	0,3904883	0,193	0,0000	200
R37	50,80	0,002	0,099184	0,0976	4	0,3904883	0,784	0,00600	200
R38	30,00	0,002	0,077104	0,1968	4	0,7872243	0,704	0,00000	200
R38	22,85	0,002	0,044613	0,1968	4	0,7872243	1,270	0,00880	200
R39	22,03	0,002	0,044013	0,2414	4	0,9656775	1,270	0,00000	200
R39	35,77	0,002	0,069839	0,2414	4	0,9656775	1,588	0,01400	200
R40	33,77	0,002	0,007037	0,3113	4	1,2450328	1,500	0,01400	200
R40	43,45	0,002	0,084834	0,3113	4	1,2450328	2,037	0,00460	200
R41	13,13	0,002	0,001031	0,3961	4	1,5843671	2,037	0,00100	200
R23	26,62	0,002	0,051974	0,8946	4	3,5784339	5,472		200
R41	20,02	0,002	0,001777	0,9466	4	3,7863298	5,772		200
R93	50,00	0,002	0,097622	0,0000	4	0	0,195	0,00600	200
R94	50,00	0,002	0,071022	0,0976	4	0,3904883	0,173	0,00000	200
R94	50,00	0,002	0,097622	0,0976	4	0,3904883	0,781	0,00600	200
R95	50,00	0,002	0,071022	0,1952	4	0,7809765	0,701	0,00000	200

Annexe 11 : Dimensionnement des conduites et calcul des différents débits du sous bassin S₇ (suite et fin)

N° de regard	Li (m)	Qmf Unitaire I/s	Qmf route (I/s)	Qmfe Qmfs (I/s)	Cpe / Cps (I/s)	Ope Ops (I/s)	Op (1/s)	I (m/m)	diamètre (mm)
R95	50,00	0,002	0,097622	0,1952	4	0,7809765	1,367	0,00400	200
R96	20,00	0,002	0,0077022	0,2929	4	1,1714648	1,507	0,00.00	200
R96	50,00	0,002	0,097622	0,2929	4	1,1714648	1,952	0,01000	200
R97		,,,,,		0,3905	4	1,5619531		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
R97	25,4	0,002	0,049592	0,3905	4	1,5619531	2,442	0,01180	200
R24	- ,	-,		0,4401	4	1,7603211	,	-,-	
R41	45,99	0,002	0,089793	1,3427	3,66	4,9108568	7,481	0,00390	200
R24	,	<i>'</i>	,	1,4325	3,59	5,1408433	,	ĺ	
R24	51,23	0,002	0,100026	1,8725	3,33	6,2298471	9,465	0,01360	200
R25		Í	,	1,9726	3,28	6,4700693	,	ŕ	
R25	41,30	0,002	0,080636	1,9726	3,28	6,4700693	9,801	0,00726	200
R26		,	,	2,0532	3,24	6,6620707	,	,	
R26	34,48	0,002	0,067320	2,0532	3,24	6,6620707	10,073	0,00580	200
R27				2,1205	3,22	6,8213044			
R28	12,71	0,002	0,024818	0,0000	0	0	0,050	0,03940	200
R29				0,0248	4	0,0992738			
R29	32,64	0,002	0,063731	0,0248	4	0,0992738	0,276	0,00920	200
R30				0,0885	4	0,3541963			
R30	13,95	0,002	0,027237	0,0885	4	0,3541963	0,586	0,01270	200
R31				0,1138	4	0,4631425			
R32	17,21	0,002	0,033602	0,1138	4	0,5975486	0,762	0,01270	200
R32				0,1494	4	0,5975486			
R33	12,83	0,002	0,025050	0,1744	4	0,6977479	0,946	0,01580	200
R33				0,1744	4	0,6977479			
R34	9,55	0,002	0,018646	0,1931	4	0,7723311	1,084	0,02100	200
R34				0,1931	4	0,7723311			
R35	39,80	0,002	0,077707	0,2708	4	1,0831598	1,314	0,00500	200
R35		0.000	0.1005.1	0,2708	4	1,0831598		0.00555	• • • • • • • • • • • • • • • • • • • •
R27	51,70	0,002	0,100941	2,4923	3,08	7,6851155	4,926	0,00390	200
R 27	0.00	0.002	0.0155.10	2,4923	5	12,461305	16001	0.052.10	200
BDC-7-	9,09	0,002	0,017748	2,5100	3,08	7,7257646	16,324	0,05240	200

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 01

										conditions	d'auto-cı	ırage	
N°	T	L	Ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$\mathbf{V}_{\mathbf{p}\mathbf{s}}$	Qmin	rv	rv	1ère	2ème	3èı	ne condit	ion
Tronçon	(%)	(m)	(mm)	(m^3/s)	(m/s)	(l/s)	$(r_H=0,5)$	$(r_{H}=0,2)$	condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R146-R147	7,39	50,97	200	0,0966	3,08	0,4639	1,02	0,6	3,13782	1,84578	0,00480	0,00238	0,00048
R147-R148	7,25	47,27	200	0,0957	3,05	0,4664	1,02	0,6	3,10796	1,82821	0,00487	0,00242	0,00048
R148-R149	8,44	55,67	200	0,1032	3,29	0,4607	1,02	0,6	3,35334	1,97255	0,00446	0,00222	0,00044
R149-R150	6,56	18,42	200	0,091	2,90	0,4859	1,02	0,6	2,95636	1,73904	0,00534	0,00265	0,00053
R150-R151	8,44	48,06	200	0,1032	3,29	0,4659	1,02	0,6	3,35334	1,97255	0,00451	0,00224	0,00045
R151-R152	6,76	49,40	200	0,0924	2,94	0,4649	1,02	0,6	3,00109	1,76535	0,00503	0,00250	0,00050
R152-R153	1,94	30,73	200	0,0495	1,58	0,4776	1,02	0,6	1,60771	0,94571	0,00965	0,00480	0,00096
R154-R155	14,38	43,17	200	0,1347	4,29	0,4692	1,02	0,6	4,37709	2,57476	0,00348	0,00173	0,00035
R155-R156	12,59	9,20	200	0,1261	4,02	0,4921	1,02	0,6	4,09561	2,40918	0,00390	0,00194	0,00039
R156-R157	6,93	12,49	200	0,0935	2,98	0,4899	1,02	0,6	3,03859	1,78741	0,00524	0,00260	0,00052
R153-BDC-1-	15,04	3,14	200	0,1378	4,39	0,4962	1,02	0,6	4,47641	2,63318	0,00360	0,00179	0,00036

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 02

										conditions	d'auto-cu	ırage	
N°	т	L	ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$ m V_{ps}$	Qmin	rv	rv	1ère	2ème	3èı	ne condit	ion
Tronçon	(%)	(m)	(mm)	(m^3/s)	(m/s)	(l/s)	(r _H =0,5)	(r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H(m)
R69-R70	7,35	55,00	200	0,0963	3,07	0,4850	1,02	0,6	3,12932	1,84078	0,00503	0,00250	0,00050
R70-R71	9,53	55,00	200	0,1097	3,49	0,4850	1,02	0,6	3,56330	2,09606	0,00442	0,00220	0,00044
R71-R72	8,86	49,97	200	0,1058	3,37	0,4900	1,02	0,6	3,43576	2,02104	0,00463	0,00230	0,00046
R217-R218	3,57	36,47	200	0,0671	2,14	0,5035	1,02	0,6	2,18092	1,28290	0,00750	0,00373	0,00075
R218-R72	2,05	10,77	200	0,0509	1,62	0,5292	1,02	0,6	1,65266	0,97215	0,01040	0,00517	0,00103
R187-R72	8,72	41,25	200	0,1049	3,34	0,4987	1,02	0,6	3,40851	2,00500	0,00475	0,00236	0,00047
R72-R188	2,93	12,72	200	0,0608	1,94	0,5273	1,02	0,6	1,97579	1,16223	0,00867	0,00431	0,00086
R188-BDC-2-	7,34	7,81	200	0,0963	3,07	0,5322	1,02	0,6	3,12719	1,83952	0,00553	0,00275	0,00055

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 03

											s d'auto-cu	rage	
N°	Ι	L	Ø	Qps	$\mathbf{V}_{\mathbf{p}\mathbf{s}}$	Qmin	rv	$\mathbf{r}_{\mathbf{V}}$	1 ^{ère}	2 ^{ème}	3èn	ne conditi	on
Tronçon	(%)	(m)	(mm)	(m ³ /s)	(m/s)	(l/s)	$(r_{H}=0,5)$	$(r_H=0,2)$	condition V (m/s)	condition V (m/s)	rq	r _H	H(m)
R50-R51	6,71	50,00	200	0,0920	2,93	1,1687	1,02	0,6	2,989973	1,758808	0,012697	0,00632	0,00126
R51-R52	2,61	50,00	200	0,0574	1,83	1,1687	1,02	0,6	1,864775	1,096926	0,020358	0,01016	0,00203
R52-R53	4,08	18,26	200	0,0718	2,29	1,2076	1,02	0,6	2,331504	1,371473	0,016825	0,00839	0,00168
R53-R54	2,45	50,04	200	0,0556	1,77	1,1686	1,02	0,6	1,806713	1,062772	0,021012	0,01049	0,0021
R54-R55	4,00	50,00	200	0,0711	2,26	1,1687	1,02	0,6	2,308533	1,357961	0,016445	0,0082	0,00164
R55-R56	6,11	23,43	200	0,0878	2,80	1,2013	1,02	0,6	2,853164	1,678332	0,013677	0,00681	0,00136
R56-R57	4,10	54,17	200	0,0719	2,29	1,1636	1,02	0,6	2,337211	1,37483	0,016172	0,00806	0,00161
R57-R58	21,36	7,87	200	0,1642	5,23	1,2203	1,02	0,6	5,334659	3,138035	0,007431	0,00369	0,00074
R140-R141	3,91	78,42	200	0,0703	2,24	1,1338	1,02	0,6	2,282414	1,342597	0,016137	0,00804	0,00161
R141-R142	4,21	49,11	200	0,0729	2,32	1,1698	1,02	0,6	2,368357	1,393151	0,016044	0,008	0,0016
R142-R143	1,90	18,21	200	0,0490	1,56	1,2077	1,02	0,6	1,591046	0,93591	0,024657	0,01233	0,00247
R143-R58	18,65	17,51	200	0,1535	4,89	1,2085	1,02	0,6	4,984774	2,93222	0,007876	0,00391	0,00078
R58-BDC-3-	2,05	34,34	200	0,0509	1,62	1,1879	1,02	0,6	1,652658	0,972152	0,023349	0,01167	0,00233

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins 04

										conditions	s d'autocu	rage	
N°	ī	L	Ø	0	$ m V_{ps}$	Qmin	MX7	rv	1ère	2ème	3èı	ne condit	ion
Tronçon	(%)	(m)	(mm)	Q _{ps} (m ³ /s)	(m/s)	(l/s)	rv (r _H =0,5)	$(r_{H}=0,2)$	condition V (m/s)	condition V (m/s)	\mathbf{r}_{Q}	\mathbf{r}_{H}	H(m)
R236-R237	1,44	13,86	200	0,1323	4,21	6,1175	1,02	0,6	4,29768	2,52805	0,04624	0,02346	0,00469
R237-R238	1,31	7,63	200	0,0981	3,13	6,1231	1,02	0,6	3,18801	1,87530	0,06239	0,03210	0,00642
R238-R239	0,17	46,92	200	0,2434	7,75	6,0878	1,02	0,6	7,90681	4,65106	0,02501	0,01251	0,00250
R239-R240	0,05	38,56	200	0,2207	7,03	6,0953	1,02	0,6	7,16795	4,21644	0,02762	0,01384	0,00277
R240-R241	0,05	47,91	200	0,2459	7,83	6,0869	1,02	0,6	7,98935	4,69962	0,02475	0,01238	0,00248
R241-R242	0,16	46,75	200	0,243	7,74	6,088	1,02	0,6	7,89256	4,64268	0,02506	0,01254	0,00251
R242-R243	0,39	51,10	200	0,254	8,09	6,0841	1,02	0,6	8,25139	4,85376	0,02395	0,01198	0,00240
R243-R244	0,60	50,00	200	0,2512	8,00	6,0851	1,02	0,6	8,16158	4,80093	0,02422	0,01211	0,00242
R244-R245	0,40	49,98	200	0,2512	8,00	6,0851	1,02	0,6	8,16000	4,80000	0,02422	0,01212	0,00242
R245-R246	1,82	5,50	200	0,0833	2,65	6,1251	1,02	0,6	2,70605	1,59180	0,07353	0,03826	0,00765
R246-R247	0,44	45,90	200	0,2407	7,67	6,0887	1,02	0,6	7,82020	4,60012	0,02529	0,01266	0,00253
R247-R175	0,72	27,86	200	0,1876	5,97	6,105	1,02	0,6	6,09290	3,58406	0,03255	0,01635	0,00327
R175-R176	0,22	44,57	200	0,2372	7,55	6,0899	1,02	0,6	7,70576	4,53280	0,02567	0,01285	0,00257
R176-R177	0,20	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,16190	4,80112	0,02422	0,01211	0,00242
R177-R178	0,20	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,16190	4,80112	0,02422	0,01211	0,00242
R178-R179	0,40	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,16190	4,80112	0,02422	0,01211	0,00242
R179-R180	0,40	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,16190	4,80112	0,02422	0,01211	0,00242
R180-R181	0,46	43,01	200	0,233	7,42	6,0913	1,02	0,6	7,57024	4,45308	0,02614	0,01309	0,00262
R181-R182	1,33	15,10	200	0,1381	4,40	6,1164	1,02	0,6	4,48477	2,63810	0,04430	0,02244	0,00449
R190-R182	1,61	49,60	200	0,2502	7,97	6,0854	1,02	0,6	8,12883	4,78167	0,02432	0,01216	0,00243
R182-R191	1,22	16,46	200	0,1442	4,59	6,1152	1,02	0,6	4,68281	2,75460	0,04242	0,02146	0,00429

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 04 (suite)

								0 1		conditions	s d'auto-cu	rage	
N°	I	L	Ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$\mathbf{V_{ps}}$	Qmin	rv	rv	1ère	2ème	3èn	ne conditi	on
Tronçon	(%)	(m)	(mm)	(m^3/s)	(m/s)	(l/s)	(r _H =0,5)	$(r_{H}=0,2)$	condition V (m/s)	condition V (m/s)	rQ	r _H	H(m)
R191-R192	0,40	50,06	200	0,2514	8,01	6,085	1,02	0,6	8,166539	4,803847	0,024204	0,01211	0,00242
R192-R193	6,52	50,17	200	0,2517	8,02	6,0849	1,02	0,6	8,176023	4,809425	0,024176	0,01209	0,00242
R193-R194	6,83	44,23	200	0,2363	7,53	6,0902	1,02	0,6	7,676772	4,515748	0,025771	0,0129	0,00258
R194-R195	5,21	50,05	200	0,2514	8,01	6,085	1,02	0,6	8,165781	4,8034	0,024207	0,01211	0,00242
R195-R196	3,99	48,13	200	0,2465	7,85	6,0867	1,02	0,6	8,007862	4,710507	0,024691	0,01235	0,00247
R196-R197	0,02	36,72	200	0,2153	6,86	6,097	1,02	0,6	6,994783	4,114578	0,028315	0,01419	0,00284
R197-R198	0,89	33,59	200	0,2059	6,56	6,0998	1,02	0,6	6,689758	3,935152	0,029619	0,01486	0,00297
R198-R206	2,60	29,99	200	0,1946	6,20	6,103	1,02	0,6	6,321462	3,718507	0,031362	0,01575	0,00315
R206-R207	4,02	25,92	200	0,1809	5,76	6,1067	1,02	0,6	5,876368	3,456687	0,033757	0,01697	0,00339
R207-R208	3,32	47,70	200	0,2454	7,82	6,0871	1,02	0,6	7,971959	4,689388	0,024804	0,01241	0,00248
R208-R209	4,00	50,59	200	0,2527	8,05	6,0845	1,02	0,6	8,209695	4,829232	0,024075	0,01204	0,00241
R209-R210	4,42	26,92	200	0,1844	5,87	6,1058	1,02	0,6	5,989232	3,523078	0,033116	0,01665	0,00333
R210-R211	3,46	38,91	200	0,2216	7,06	6,095	1,02	0,6	7,199814	4,235184	0,027499	0,01378	0,00276
R211-R212	3,21	22,77	200	0,1696	5,40	6,1095	1,02	0,6	5,508154	3,240091	0,036031	0,01814	0,00363
R212-R213	1,01	50,04	200	0,2513	8,00	6,085	1,02	0,6	8,164834	4,802844	0,024209	0,01211	0,00242
R213-R186	0,98	42,07	200	0,2305	7,34	6,0922	1,02	0,6	7,486489	4,403817	0,026434	0,01324	0,00265
R186-R20	2,01	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R20-R214	2,76	49,74	200	0,2506	7,98	6,0853	1,02	0,6	8,140623	4,788602	0,024283	0,01215	0,00243
R214-R215	4,62	50,28	200	0,252	8,02	6,0848	1,02	0,6	8,184766	4,814568	0,02415	0,01208	0,00242
R215-R216	2,47	25,78	200	0,1804	5,75	6,1068	1,02	0,6	5,860488	3,447346	0,033849	0,01702	0,0034
R17-R18	2,22	50,28	200	0,252	8,02	6,0848	1,02	0,6	8,184768	4,814569	0,02415	0,01208	0,00242

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 04 (suite)

										condition	s d'autocu	rage	
N°	Ī	L	Ø		T 7	0.	 -		1ère	2ème	3èn	ne conditi	on
Tronçon	(%)	(m)	(mm)	Q _{ps} (m ³ /s)	V _{ps} (m/s)	Qmin (l/s)	rv (rh=0,5)	r _V (rh=0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H(m)
R18-R19	8,13	33,27	200	0,205	6,53	6,1001	1,02	0,6	6,658083	3,91652	0,029762	0,01493	0,00299
R19-R20	5,20	37,88	200	0,2187	6,97	6,0959	1,02	0,6	7,104565	4,179156	0,027872	0,01397	0,00279
R183-R184	4,09	46,88	200	0,2433	7,75	6,0879	1,02	0,6	7,90305	4,648853	0,025023	0,01252	0,0025
R184-R185	5,51	54,48	200	0,2623	8,35	6,081	1,02	0,6	8,519903	5,011708	0,023185	0,01159	0,00232
R185-R186	8,31	32,50	200	0,2026	6,45	6,1008	1,02	0,6	6,579863	3,870508	0,030119	0,01511	0,00302
R219-R220	6,68	38,25	200	0,2198	7,00	6,0956	1,02	0,6	7,138648	4,199205	0,027738	0,0139	0,00278
R220-R221	4,93	11,78	200	0,1219	3,88	6,1194	1,02	0,6	3,961355	2,330209	0,050181	0,02554	0,00511
R221-R222	2,46	49,61	200	0,2503	7,97	6,0854	1,02	0,6	8,130289	4,782523	0,024314	0,01216	0,00243
R222-R223	0,52	28,12	200	0,1884	6,00	6,1047	1,02	0,6	6,121101	3,600648	0,032397	0,01628	0,00326
R223-R216	5,80	11,47	200	0,1203	3,83	6,1197	1,02	0,6	3,909186	2,299521	0,050853	0,02589	0,00518
R104-R105	12,48	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R105-R106	6,70	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R106-R107	5,63	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R107-R108	7,08	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R108-R109	3,74	32,14	200	0,2014	6,42	6,1011	1,02	0,6	6,543329	3,849017	0,030289	0,0152	0,00304
R109-R110	2,04	26,19	200	0,1818	5,79	6,1065	1,02	0,6	5,906599	3,47447	0,033583	0,01689	0,00338
R110-R111	0,59	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R111-R112	3,25	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R112-R113	8,28	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R113-R114	5,83	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R114-R115	5,97	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 04 (suite)

										conditions	s d'auto-cu	rage	
N°	I	L	ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$\mathbf{V}_{\mathbf{ps}}$	Qmin	$\mathbf{r}_{\mathbf{V}}$	$\mathbf{r}_{\mathbf{V}}$	1 ^{ère}	2ème	3èn	ne conditi	on
Tronçon	(%)	(m)	(mm)	(m^3/s)	(m/s)	(l/s)	(r _H =0,5)	(r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R115-R116	5,66	50,00	200	0,2513	8,00	6,0851	1,02	0,6	8,161896	4,801115	0,024218	0,01211	0,00242
R116-R117	5,68	51,69	200	0,2555	8,14	6,0835	1,02	0,6	8,298802	4,881648	0,023813	0,01191	0,00238
R199-R200	6,46	33,27	200	0,2050	6,53	6,1001	1,02	0,6	6,65767	3,916277	0,029764	0,01493	0,00299
R200-R201	7,67	15,29	200	0,1389	4,42	6,1163	1,02	0,6	4,512962	2,654684	0,044025	0,02229	0,00446
R201-R202	5,74	51,13	200	0,2541	8,09	6,084	1,02	0,6	8,253311	4,854889	0,023946	0,01198	0,0024
R202-R203	6,44	50,02	200	0,2513	8,00	6,085	1,02	0,6	8,163204	4,801885	0,024214	0,01211	0,00242
R203-R204	7,13	50,05	200	0,2514	8,01	6,085	1,02	0,6	8,165599	4,803293	0,024207	0,01211	0,00242
R204-R205	5,06	50,02	200	0,2513	8,00	6,085	1,02	0,6	8,163487	4,802051	0,024214	0,01211	0,00242
R205-R198	6,28	50,79	200	0,2532	8,07	6,0843	1,02	0,6	8,226443	4,839084	0,024025	0,01202	0,0024
R216-R224	1,37	49,53	200	0,2501	7,96	6,0855	1,02	0,6	8,123359	4,778447	0,024335	0,01217	0,00243
R224-R225	1,55	43,67	200	0,2348	7,48	6,0907	1,02	0,6	7,627672	4,486866	0,025939	0,01298	0,0026
R225-R226	2,23	48,43	200	0,2473	7,88	6,0865	1,02	0,6	8,032918	4,725246	0,024613	0,01231	0,00246
R226-R227	1,82	43,06	200	0,2332	7,43	6,0913	1,02	0,6	7,574448	4,455558	0,026123	0,01308	0,00262
R227-R117	3,12	15,18	200	0,1384	4,41	6,1164	1,02	0,6	4,497088	2,645346	0,044181	0,02238	0,00448
R117-R228	0,95	50,96	200	0,2537	8,08	6,0842	1,02	0,6	8,239744	4,846908	0,023986	0,012	0,0024
R228-R229	2,97	49,33	200	0,2496	7,95	6,0857	1,02	0,6	8,106967	4,768804	0,024385	0,0122	0,00244
R229-R230	2,53	32,92	200	0,2039	6,49	6,1004	1,02	0,6	6,622615	3,895656	0,029923	0,01501	0,003

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 04 (suite et fin)

										condition	s d'autocu	rage	
NTO	т	т	Ø	0	▼ 7	0.			1ère	A òmo	3èn	ne conditi	on
N° Tronçon	(%)	(m)	Ø (mm)	Qps (m ³ /s)	V _{ps} (m/s)	Qmin (I/s)	rv (r _H =0,5)	rv (r _H =0,2)	condition V (m/s)	2ème condition V (m/s)	rQ	r _H	H(m)
R230-R231	2,02	22,29	200	0,1678	5,34	6,11	1,02	0,6	5,450035	3,205903	0,036417	0,01834	0,00367
R231-R232	5,40	10,90	200	0,1173	3,74	6,1202	1,02	0,6	3,81019	2,241288	0,052178	0,0266	0,00532
R232-R233	1,56	39,10	200	0,2222	7,08	6,0948	1,02	0,6	7,217964	4,245861	0,02743	0,01374	0,00275
R233-R234	2,67	46,56	200	0,2425	7,72	6,0881	1,02	0,6	7,876169	4,633041	0,02511	0,01256	0,00251
R234-BDC-4-	2,44	27,18	200	0,1853	5,90	6,1056	1,02	0,6	6,01777	3,539865	0,032958	0,01656	0,00331

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 05

										conditions	d'autocu	rage	
N°	т	т	Ø	0	X 7	0.	M	10	1ère	2éme	3èı	ne condit	ion
Tronçon	(%)	(m)	(mm)	Q _{ps} (m ³ /s)	V _{ps} (m/s)	Q _{min} (I/s)	r _V (r _H =0,5)	r _V (r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R98-R99	9,03	50,00	200	0,1068	3,40	3,0232	1,02	0,6	3,46813	2,04007	0,02832	0,01419	0,00284
R99-R100	9,97	50,00	200	0,1122	3,57	3,0232	1,02	0,6	3,64437	2,14375	0,02695	0,01350	0,00270
R100-R101	7,56	50,00	200	0,0977	3,11	3,0232	1,02	0,6	3,17316	1,86656	0,03095	0,01554	0,00311
R101-R102	3,71	22,91	200	0,0684	2,18	3,0377	1,02	0,6	2,22328	1,30781	0,04438	0,02248	0,00450
R102-R103	0,67	15,04	200	0,0291	0,93	3,0419	1,02	0,6	0,94494	0,55585	0,10457	0,05654	0,01131
R118-R103	5,51	35,82	200	0,0834	2,66	3,0308	1,02	0,6	2,70957	1,59387	0,03634	0,01830	0,00366
R103-R119	4,74	43,89	200	0,0774	2,46	3,0265	1,02	0,6	2,51353	1,47855	0,03911	0,01974	0,00395

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 05 (suite)

										conditions	d'autocu	rage	
N°	I	L	Ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$\mathbf{V_{ps}}$	Qmin	$\mathbf{r}_{\mathbf{V}}$	$\mathbf{r}_{\mathbf{V}}$	1ère	2éme	3èı	ne condit	ion
Tronçon	(%)	(m)	(mm)	(m^3/s)	(m/s)	(l/s)	(r _H =0,5)	(r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H(m)
R119-R120	5,27	44,75	200	0,0816	2,60	3,026	1,02	0,6	2,64997	1,55880	0,03709	0,01869	0,00374
R120-R121	7,72	36,65	200	0,0987	3,14	3,0304	1,02	0,6	3,20622	1,88601	0,03070	0,01541	0,00308
R121-R122	1,93	44,61	200	0,0494	1,57	3,0261	1,02	0,6	1,60499	0,94411	0,06125	0,03148	0,00630
R122-R123	4,77	34,54	200	0,0776	2,47	3,0315	1,02	0,6	2,52054	1,48267	0,03907	0,01971	0,00394
R123-R59	2,09	28,04	200	0,0514	1,64	3,035	1,02	0,6	1,66926	0,98192	0,05906	0,03029	0,00606
R157-R158	4,75	62,91	200	0,0774	2,47	3,0163	1,02	0,6	2,51499	1,47941	0,03896	0,01966	0,00393
R158-R59	4,61	9,22	200	0,0763	2,43	3,0451	1,02	0,6	2,47910	1,45830	0,03990	0,02015	0,00403
R59-R60	2,04	19,90	200	0,0508	1,62	3,0393	1,02	0,6	1,65036	0,97080	0,05982	0,03070	0,00614
R60-R61	3,41	16,20	200	0,0657	2,09	3,0413	1,02	0,6	2,13300	1,25471	0,04632	0,02350	0,00470
R61-R62	4,57	42,27	200	0,0759	2,42	3,0274	1,02	0,6	2,46712	1,45125	0,03986	0,02013	0,00403
R62-R63	3,62	39,49	200	0,0676	2,15	3,0289	1,02	0,6	2,19596	1,29174	0,04480	0,02270	0,00454
R63-R64	8,51	11,02	200	0,1037	3,30	3,0441	1,02	0,6	3,36775	1,98103	0,02936	0,01473	0,00295
R64-R65	4,58	14,14	200	0,0761	2,42	3,0424	1,02	0,6	2,47091	1,45348	0,04000	0,02020	0,00404
R65-R66	2,13	43,24	200	0,0519	1,65	3,0268	1,02	0,6	1,68482	0,99107	0,05836	0,02991	0,00598
R66-R67	3,30	17,50	200	0,0645	2,06	3,0406	1,02	0,6	2,09683	1,23343	0,04711	0,02391	0,00478
R67-R68	1,43	50,00	200	0,0424	1,35	3,0232	1,02	0,6	1,37868	0,81099	0,07123	0,03698	0,00740
R68-R15	3,82	18,30	200	0,0695	2,21	3,0402	1,02	0,6	2,25646	1,32733	0,04377	0,02216	0,00443
R9-R10	4,67	49,99	200	0,0768	2,44	3,0232	1,02	0,6	2,49334	1,46667	0,03939	0,01988	0,00398
R10-R11	5,15	25,59	200	0,0807	2,57	3,0363	1,02	0,6	2,62013	1,54125	0,03764	0,01898	0,00380
R11-R12	3,54	49,72	200	0,0668	2,13	3,0234	1,02	0,6	2,17075	1,27691	0,04524	0,02293	0,00459
R12-R13	6,32	13,87	200	0,0893	2,85	3,0426	1,02	0,6	2,90201	1,70707	0,03406	0,01713	0,00343

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 05 (suite)

										conditions	d'autocu	rage	
N°	I	L	Ø	Qps	Vps	Qmin	rv	rv	1 ère	2ème	3èı	ne condit	ion
Tronçon	(%)	(m)	(mm)	(m3/s)	(m/s)	(l/s)	(rh=0,5)	(rh=0,2)	condition v(m/s)	condition v(m/s)	rq	rh	H(m)
R13-R14	4,11	48,50	200	0,0721	2,30	3,024	1,02	0,6	2,34097	1,37704	0,04196	0,02122	0,00424
R14-R15	7,56	20,56	200	0,0977	3,11	3,039	1,02	0,6	3,17372	1,86689	0,03111	0,01562	0,00312
R15-R8	4,44	27,12	200	0,0749	2,39	3,0355	1,02	0,6	2,43291	1,43112	0,04053	0,02047	0,00409
R0-R1	1,39	50,15	200	0,0420	1,34	3,0231	1,02	0,6	1,36321	0,80189	0,07204	0,03743	0,00749
R1-R2	11,93	27,33	200	0,1227	3,91	3,0354	1,02	0,6	3,98619	2,34482	0,02474	0,01237	0,00247
R2-R3	5,78	50,00	200	0,0854	2,72	3,0232	1,02	0,6	2,77558	1,63269	0,03538	0,01781	0,00356
R3-R4	7,04	50,00	200	0,0943	3,00	3,0232	1,02	0,6	3,06343	1,80202	0,03206	0,01610	0,00322
R4-R5	11,08	31,36	200	0,1183	3,77	3,0332	1,02	0,6	3,84164	2,25979	0,02565	0,01284	0,00257
R5-R6	11,75	50,11	200	0,1218	3,88	3,0232	1,02	0,6	3,95597	2,32704	0,02482	0,01242	0,00248
R6-R7	2,79	34,41	200	0,0594	1,89	3,0316	1,02	0,6	1,92821	1,13424	0,05107	0,02601	0,00520
R7-R8	0,46	27,36	200	0,0242	0,77	3,0354	1,02	0,6	0,78547	0,46204	0,12553	0,06996	0,01399
R8-R16	0,63	20,20	200	0,0282	0,90	3,0392	1,02	0,6	0,91617	0,53892	0,10776	0,05852	0,01170
R16-R130	1,19	15,86	200	0,0388	1,24	3,0415	1,02	0,6	1,25989	0,74111	0,07842	0,04103	0,00821
R130-R131	0,38	17,72	200	0,0219	0,70	3,0405	1,02	0,6	0,71154	0,41855	0,13881	0,07897	0,01579
R131-R132	0,38	24,29	200	0,0219	0,70	3,037	1,02	0,6	0,71154	0,41855	0,13865	0,07886	0,01577
R132-R133	2,06	23,99	200	0,0510	1,62	3,0372	1,02	0,6	1,65668	0,97452	0,05955	0,03056	0,00611
R133-R134	0,58	17,12	200	0,0271	0,86	3,0408	1,02	0,6	0,87887	0,51698	0,11239	0,06143	0,01229
R134-R135	0,38	22,69	200	0,0219	0,70	3,0379	1,02	0,6	0,71154	0,41855	0,13869	0,07889	0,01578
R249-R139	3,28	26,93	200	0,0644	2,05	3,0356	1,02	0,6	2,09063	1,22978	0,04717	0,02394	0,00479
R139-R250	5,25	21,54	200	0,0814	2,59	3,0385	1,02	0,6	2,64534	1,55608	0,03731	0,01881	0,00376
R250-R135	8,52	38,25	200	0,1037	3,30	3,0295	1,02	0,6	3,36919	1,98188	0,02921	0,01465	0,00293

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 05 (suite)

										conditions	d'auto-cu	ırage	
N°	I	L	Ø	0	X 7	0.	M	30	1ère	2éme	3èr	ne condit	ion
Tronçon	(%)	(m)	(mm)	Q _{ps} (m ³ /s)	V _{ps} (m/s)	Qmin (l/s)	r _V (r _H =0,5)	r _V (r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R135-R251	2,95	9,93	200	0,0610	1,94	3,0447	1,02	0,6	1,98252	1,16619	0,04989	0,02538	0,00508
R251-R252	1,96	15,08	200	0,0498	1,59	3,0419	1,02	0,6	1,61774	0,95161	0,06108	0,03139	0,00628
R252-R253	2,29	8,41	200	0,0538	1,71	3,0455	1,02	0,6	1,74635	1,02726	0,05665	0,02899	0,00580
R253-R254	0,74	41,08	200	0,0305	0,97	3,028	1,02	0,6	0,99045	0,58262	0,09931	0,05332	0,01066
R254-R255	1,82	25,54	200	0,0479	1,53	3,0363	1,02	0,6	1,55552	0,91501	0,06341	0,03266	0,00653
R255-R256	1,18	25,74	200	0,0386	1,23	3,0362	1,02	0,6	1,25485	0,73815	0,07860	0,04113	0,00823
R257-R258	3,23	50,02	200	0,0639	2,03	3,0232	1,02	0,6	2,07524	1,22073	0,04732	0,02403	0,00481
R258-R259	2,81	50,04	200	0,0595	1,90	3,0232	1,02	0,6	1,93322	1,13719	0,05080	0,02586	0,00517
R259-R260	3,62	48,37	200	0,0676	2,15	3,0241	1,02	0,6	2,19732	1,29254	0,04471	0,02265	0,00453
R260-R256	0,84	11,11	200	0,0325	1,04	3,044	1,02	0,6	1,05702	0,62178	0,09355	0,04985	0,00997
R256-R261	0,76	50,08	200	0,0311	0,99	3,0232	1,02	0,6	1,00928	0,59370	0,09730	0,05210	0,01042
R261-R262	0,87	50,10	200	0,0331	1,05	3,0232	1,02	0,6	1,07444	0,63202	0,09140	0,04857	0,00971
R262-R263	2,00	50,03	200	0,0502	1,60	3,0232	1,02	0,6	1,63130	0,95959	0,06020	0,03091	0,00618
R263-R264	2,44	50,07	200	0,0556	1,77	3,0232	1,02	0,6	1,80480	1,06165	0,05441	0,02779	0,00556
R264-R265	2,44	52,94	200	0,0555	1,77	3,0217	1,02	0,6	1,80355	1,06091	0,05442	0,02780	0,00556
R265-R266	4,82	49,76	200	0,0780	2,48	3,0234	1,02	0,6	2,53331	1,49018	0,03877	0,01956	0,00391
R266-R267	5,25	35,16	200	0,0815	2,59	3,0312	1,02	0,6	2,64600	1,55647	0,03721	0,01875	0,00375
R267-R268	7,06	19,87	200	0,0944	3,01	3,0394	1,02	0,6	3,06756	1,80445	0,03219	0,01617	0,00323
R268-R269	5,21	19,70	200	0,0811	2,58	3,0395	1,02	0,6	2,63423	1,54955	0,03748	0,01889	0,00378
R269-R270	1,74	27,80	200	0,0469	1,49	3,0351	1,02	0,6	1,52371	0,89630	0,06471	0,03337	0,00667
R270-R168	0,38	8,93	200	0,0219	0,70	3,0452	1,02	0,6	0,71154	0,41855	0,13902	0,07912	0,01582

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 05 (suite)

										conditions	d'auto-cu	ırage	
> 10	T	_	σ	0	T 7				43	•	3èı	ne condit	ion
N° Tronçon	I (%)	L (m)	Ø (mm)	Qps (m ³ /s)	V _{ps} (m/s)	Qmin (l/s)	rv (r _H =0,5)	rv (r _H =0,2)	1 ^{ère} condition V (m/s)	2 ^{éme} condition V (m/s)	rQ	r _H	H (m)
R168-R174	6,53	6,33	200	0,0908	2,89	3,0466	1,02	0,6	2,95018	1,73540	0,03355	0,01687	0,00337
R169-R170	0,78	19,87	200	0,0314	1,00	3,0394	1,02	0,6	1,02043	0,60026	0,09675	0,05177	0,01035
R170-R171	0,88	51,12	200	0,0333	1,06	3,0226	1,02	0,6	1,08255	0,63680	0,09070	0,04816	0,00963
R171-R172	0,44	48,53	200	0,0236	0,75	3,024	1,02	0,6	0,76581	0,45048	0,12827	0,07178	0,01436
R172-R173	0,35	23,62	200	0,0209	0,67	3,0374	1,02	0,6	0,67938	0,39963	0,14523	0,08349	0,01670
R173-R174	2,26	13,61	200	0,0534	1,70	3,0427	1,02	0,6	1,73580	1,02106	0,05694	0,02915	0,00583
R271-R272	1,94	19,43	200	0,0495	1,58	3,0396	1,02	0,6	1,60918	0,94657	0,06136	0,03154	0,00631
R272-R273	3,03	12,75	200	0,0619	1,97	3,0432	1,02	0,6	2,01047	1,18263	0,04917	0,02500	0,00500
R273-R274	1,66	22,35	200	0,0458	1,46	3,038	1,02	0,6	1,48695	0,87467	0,06637	0,03428	0,00686
R274-R275	5,22	16,91	200	0,0812	2,59	3,0409	1,02	0,6	2,63839	1,55199	0,03744	0,01887	0,00377
R275-R276	4,70	6,18	200	0,0770	2,45	3,0467	1,02	0,6	2,50149	1,47146	0,03956	0,01997	0,00399
R276-R277	1,95	33,18	200	0,0496	1,58	3,0322	1,02	0,6	1,61217	0,94833	0,06110	0,03140	0,00628
R277-R278	3,46	50,08	200	0,0661	2,11	3,0232	1,02	0,6	2,14733	1,26314	0,04573	0,02319	0,00464
R278-R165	1,99	21,70	200	0,0501	1,60	3,0384	1,02	0,6	1,62832	0,95784	0,06061	0,03113	0,00623
R159-R160	1,32	22,78	200	0,0408	1,30	3,0378	1,02	0,6	1,32461	0,77918	0,07450	0,03881	0,00776
R160-R161	1,74	10,28	200	0,0469	1,49	3,0445	1,02	0,6	1,52380	0,89635	0,06490	0,03347	0,00669
R161-R162	2,14	10,10	200	0,0520	1,66	3,0446	1,02	0,6	1,69028	0,99428	0,05851	0,02999	0,00600
R162-R163	2,19	11,83	200	0,0526	1,67	3,0437	1,02	0,6	1,70708	1,00417	0,05792	0,02967	0,00593
R163-R164	1,84	19,57	200	0,0482	1,54	3,0395	1,02	0,6	1,56695	0,92174	0,06301	0,03244	0,00649
R164-R165	1,29	15,93	200	0,0404	1,29	3,0415	1,02	0,6	1,31280	0,77224	0,07526	0,03924	0,00785
R165-R166	1,02	14,47	200	0,0359	1,14	3,0423	1,02	0,6	1,16616	0,68598	0,08474	0,04467	0,00893

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 05 (suite et fin)

										conditions	d'auto-cu	ırage	
N°	т	т	Ø	0	₹7	0 .	10 · ·	14v ·	1ère	2éme	3èr	ne condit	ion
Tronçon	(%)	(m)	(mm)	Q _{ps} (m ³ /s)	V _{ps} (m/s)	Qmin (l/s)	rv (r _H =0,5)	rv (r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R166-R167	3,56	32,82	200	0,0670	2,13	3,0324	1,02	0,6	2,17655	1,28033	0,04526	0,02294	0,00459
R167-R168	2,14	4,47	200	0,0520	1,66	3,0476	1,02	0,6	1,68970	0,99394	0,05859	0,03004	0,00601
R136-R137	1,29	25,92	200	0,0403	1,28	3,0361	1,02	0,6	1,30957	0,77034	0,07531	0,03927	0,00785
R137-R138	0,82	25,79	200	0,0322	1,03	3,0362	1,02	0,6	1,04588	0,61523	0,09430	0,05030	0,01006
R138-R139	0,38	9,14	200	0,0219	0,70	3,0451	1,02	0,6	0,71154	0,41855	0,13902	0,07912	0,01582
R174-R279	2,26	7,12	200	0,0535	1,70	3,0462	1,02	0,6	1,73670	1,02159	0,05698	0,02917	0,00583
R279-BDC-5-	2,26	7,07	200	0,0535	1,70	3,0462	1,02	0,6	1,73670	1,02159	0,05698	0,02917	0,00583

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 06

										conditions	d'auto-cu	ırage	
N°	T	т	Ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$ m V_{ps}$	Qmin	rv	rv	1,	2éme	3èr	ne conditi	ion
Tronçon	(%)	(m)	(mm)	(m3/s)	(m/s)	(l/s)	(r _H =0,5)	_ ,	lère condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R124-R125	0,86	49,47	200	0,2599	7,96	3,0667	1,02	0,6	8,11885	4,77579	0,01227	0,00611	0,00122
R125-R126	1,01	47,09	200	0,2438	7,77	3,0707	1,02	0,6	7,92082	4,65931	0,01259	0,00627	0,00125
R126-R127	1,43	43,64	200	0,2347	7,48	3,0765	1,02	0,6	7,62490	4,48524	0,01311	0,00652	0,00130
R127-R81	2,94	10,89	200	0,1172	3,73	3,1317	1,02	0,6	3,80829	2,24017	0,02671	0,01338	0,00268
R81-R128	1,95	25,20	200	0,1884	5,68	3,1076	1,02	0,6	5,79423	3,40837	0,01742	0,00869	0,00174
R128-R129	2,87	16,54	200	0,1445	4,60	3,1221	1,02	0,6	4,69365	2,76097	0,02161	0,01079	0,00216

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 06 (suite et fin)

			-							condition	s d'auto-cı	ırage	
N°	т	L	Ø	0	1 7	0.	10	10	1 ère	2éme	3èr	ne condit	ion
Tronçon	(%)	(m)	(mm)	Q _{ps} (m ³ /s)	V _{ps} (m/s)	Q _{min} (l/s)	r _V (r _H =0,5)	r _V (r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H (m)
R129-R92	5,11	18,86	200	0,1543	4,91	3,1182	1,02	0,6	5,01306	2,94886	0,02021	0,01009	0,00202
R73-R74	3,13	40,18	200	0,2252	7,17	3,0823	1,02	0,6	7,31701	4,30412	0,01368	0,00681	0,00136
R74-R75	3,55	55,00	200	0,2635	8,39	3,0574	1,02	0,6	8,560269	5,035452	0,011602	0,00577	0,00115
R75-R76	4,00	55,00	200	0,2635	8,39	3,0574	1,02	0,6	8,560269	5,035452	0,011602	0,00577	0,00115
R76-R77	4,78	43,09	200	0,2333	7,43	3,0774	1,02	0,6	7,577226	4,457192	0,013193	0,00657	0,00131
R77-R78	4,00	84,27	200	0,3262	10,39	3,0081	1,02	0,6	10,59583	6,23284	0,009222	0,00458	0,00092
R78-R79	2,19	17,74	200	0,1497	4,77	3,1201	1,02	0,6	4,861691	2,859818	0,020848	0,01041	0,00208
R79-R80	3,00	46,53	200	0,2424	7,72	3,0716	1,02	0,6	7,873265	4,631332	0,012673	0,00631	0,00126
R80-R81	2,43	12,93	200	0,1278	4,07	3,1282	1,02	0,6	4,150567	2,44151	0,024483	0,01225	0,00245
R82-R83	0,52	55,00	200	0,2635	8,39	3,0574	1,02	0,6	8,560269	5,035452	0,011602	0,00577	0,00115
R83-R84	2,92	55,00	200	0,2635	8,39	3,0574	1,02	0,6	8,560269	5,035452	0,011602	0,00577	0,00115
R84-R85	6,03	55,00	200	0,2635	8,39	3,0574	1,02	0,6	8,560269	5,035452	0,011602	0,00577	0,00115
R85-R86	3,40	55,71	200	0,2652	8,45	3,0561	1,02	0,6	8,615649	5,068029	0,011523	0,00573	0,00115
R86-R87	0,83	31,95	200	0,2008	6,40	3,0962	1,02	0,6	6,523968	3,837628	0,015417	0,00768	0,00154
R87-R88	0,15	17,13	200	0,1471	4,68	3,1211	1,02	0,6	4,77704	2,810024	0,021224	0,0106	0,00212
R88-R89	1,29	28,16	200	0,1886	6,01	3,1026	1,02	0,6	6,125185	3,60305	0,016454	0,0082	0,00164
R89-R90	1,58	23,89	200	0,1737	5,53	3,1098	1,02	0,6	5,64192	3,318776	0,017905	0,00893	0,00179
R90-R91	0,30	23,45	200	0,1721	5,48	3,1105	1,02	0,6	5,589419	3,287893	0,018077	0,00902	0,0018
R91-R92	3,86	11,48	200	0,1204	3,83	3,1307	1,02	0,6	3,911539	2,300905	0,025999	0,01302	0,0026
R92-BDC-6-	3,89	11,92	200	0,1227	3,91	3,1299	1,02	0,6	3,985146	2,344203	0,025513	0,01277	0,00255

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 07

								0 1	conditions d'auto-curage					
N°	I	L	Ø	$\mathbf{Q}_{\mathbf{p}\mathbf{s}}$	$\mathbf{V}_{\mathbf{p}\mathbf{s}}$	Qmin	rv	\mathbf{r}_{V}	1ère	2éme	3ème condition			
Tronçon	(%)	(m)	(mm)	(m^3/s)	(m/s)	(l/s)	(r _H =0,5)	(r _H =0,2)	condition V (m/s)	condition V (m/s)	rQ	r _H	H(m)	
R28-R29	3,95	12,67	200	0,0706	2,25	2,4976	1,02	0,6	2,29304	1,34885	0,03538	0,01781	0,00356	
R29-R30	0,92	32,63	200	0,0341	1,08	2,4782	1,02	0,6	1,10667	0,65098	0,07274	0,03782	0,00756	
R30-R31	1,27	13,95	200	0,0401	1,28	2,4964	1,02	0,6	1,30188	0,76581	0,06229	0,03204	0,00641	
R31-R32	1,27	17,21	200	0,0401	1,28	2,4932	1,02	0,6	1,30188	0,76581	0,06221	0,03200	0,00640	
R32-R33	1,59	12,83	200	0,0448	1,43	2,4975	1,02	0,6	1,45417	0,85540	0,05579	0,02853	0,00571	
R33-R34	2,10	9,55	200	0,0514	1,64	2,5007	1,02	0,6	1,67117	0,98304	0,04861	0,02470	0,00494	
R34-R35	0,50	39,78	200	0,0252	0,80	2,4712	1,02	0,6	0,81815	0,48126	0,09812	0,05259	0,01052	
R35-R27	0,39	51,68	200	0,0221	0,70	2,4596	1,02	0,6	0,71806	0,42239	0,11127	0,06072	0,01214	
R46-R47	0,40	50,00	200	0,0225	0,72	2,4612	1,02	0,6	0,73002	0,42942	0,10952	0,05962	0,01192	
R47-R48	0,40	50,00	200	0,0225	0,72	2,4612	1,02	0,6	0,73002	0,42942	0,10952	0,05962	0,01192	
R48-R49	1,20	50,00	200	0,0389	1,24	2,4612	1,02	0,6	1,26444	0,74379	0,06323	0,03256	0,00651	
R49-R22	0,60	50,40	200	0,0274	0,87	2,4608	1,02	0,6	0,89054	0,52385	0,08976	0,04760	0,00952	
R42-R43	0,40	50,00	200	0,0225	0,72	2,4612	1,02	0,6	0,73002	0,42942	0,10952	0,05962	0,01192	
R43-R44	0,40	50,00	200	0,0225	0,72	2,4612	1,02	0,6	0,73002	0,42942	0,10952	0,05962	0,01192	
R44-R45	1,20	50,00	200	0,0389	1,24	2,4612	1,02	0,6	1,26444	0,74379	0,06323	0,03256	0,00651	
R45-R23	0,60	50,40	200	0,0274	0,87	2,4608	1,02	0,6	0,89054	0,52385	0,08976	0,04760	0,00952	
R36-R37	0,60	50,00	200	0,0275	0,88	2,4612	1,02	0,6	0,89409	0,52594	0,08942	0,04740	0,00948	
R37-R38	0,59	51,17	200	0,0272	0,87	2,4601	1,02	0,6	0,88288	0,51934	0,09051	0,04805	0,00961	
R38-R39	0,88	22,85	200	0,0333	1,06	2,4877	1,02	0,6	1,08170	0,63629	0,07471	0,03893	0,00779	
R39-R40	1,40	35,77	200	0,0420	1,34	2,4751	1,02	0,6	1,36462	0,80272	0,05892	0,03021	0,00604	
R40-R41	0,46	43,45	200	0,0241	0,77	2,4676	1,02	0,6	0,78316	0,46068	0,10235	0,05517	0,01103	

Annexe 12 : Vérification des trois conditions d'auto-curage pour les différents sous bassins Vérification des trois conditions d'auto-curage pour le sous bassin 07 (suite et fin)

	I (%)	L (m)	Ø (mm)	Q _{ps} (m ³ /s)	V _{ps} (m/s)	Qmin (I/s)	rv (r _H =0,5)	rv (r _H =0,2)	conditions d'autocurage				
N° Tronçon									1ère condition V (m/s)		3ème condition		
										2ème condition V (m/s)	rQ	rн	H (m)
R93-R94	0,60	50,00	200	0,0275	0,88	2,4612	1,02	0,6	0,89409	0,52594	0,08942	0,04740	0,00948
R94-R95	0,60	50,00	200	0,0275	0,88	2,4612	1,02	0,6	0,89409	0,52594	0,08942	0,04740	0,00948
R95-R96	0,40	50,00	200	0,0225	0,72	2,4612	1,02	0,6	0,72964	0,42920	0,10957	0,05966	0,01193
R96-R97	1,00	50,00	200	0,0355	1,13	2,4612	1,02	0,6	1,15451	0,67912	0,06925	0,03588	0,00718
R97-R24	1,18	25,39	200	0,0386	1,23	2,4852	1,02	0,6	1,25466	0,73803	0,06434	0,03317	0,00663
R21-R22	3,43	14,56	200	0,0658	2,10	2,4958	1,02	0,6	2,13896	1,25821	0,03790	0,01911	0,00382
R22-R23	0,38	42,75	200	0,0219	0,70	2,4683	1,02	0,6	0,71154	0,41855	0,11268	0,06162	0,01232
R23-R41	0,46	26,50	200	0,0241	0,77	2,4841	1,02	0,6	0,78316	0,46068	0,10304	0,05559	0,01112
R41-R24	0,39	45,99	200	0,0222	0,71	2,4651	1,02	0,6	0,72084	0,42402	0,11109	0,06061	0,01212
R24-R25	1,37	51,22	200	0,0415	1,32	2,46	1,02	0,6	1,34932	0,79372	0,05922	0,03038	0,00608
R25-R26	0,73	41,28	200	0,0303	0,96	2,4697	1,02	0,6	0,98397	0,57880	0,08153	0,04281	0,00856
R26-R27	0,58	34,44	200	0,0271	0,86	2,4764	1,02	0,6	0,87959	0,51740	0,09146	0,04860	0,00972
R27-BDC-7-	5,24	9,09	200	0,0813	2,59	2,5011	1,02	0,6	2,64224	1,55426	0,03075	0,01543	0,00309

ETUDE DES RESEAUX DE DISTRIBUTION D'EAU POTABLE ET D'ASSAINISSEMENT SEPARATIF D'EAU USEE DE LA ZONE BASSE DE CHEFLIEU DE LA COMMUNE DE LARBATACHE (W. BOUMERDES)

ملخص:

الهدف من هذا المشروع هو دراسة الري لمنطقة الأربعطاش التابعة لدائرة خميس خشنة، و لاية بومرداس، هذه الدراسة مكونة من سبعة أجزاء. استعراض للمنطقة المدروسة تم تنفيذه مع تقييم كميات المياه الصالحة للشرب المحتاجة. تشخيص للشبكات المتواجدة للماء الصالح للشرب وأيضا قنوات الصرف الصحي تم تنفيذه أيضا. بعد هذا التشخيص لحضنا ان إعادة تقييس شبكة المياه المستعملة تم حساب المياه الصالحة للشرب وشبكة الصرف الصحي كان ضروري. لإيجاد الحل المناسب للصرف الصحي للمياه المستعملة تم حساب وتعيين خزانات الترسيب لمياه شبكات الصرف الصحى المجمعة في أماكن مختلفة لهذه الشبكات.

الكلمات المفتاحية: الشبكة، التشخيص، التقييس، المياه الصالحة للشرب، الصرف الصحي، خزان الترسيب

Résumé:

Ce présent travail a pour but l'étude hydraulique de la localité LARBATACHE rattachée à la Daïra de KHEMIS EL KHECHENA, Wilaya de BOUMERDES. Une présentation du site d'étude a été faite, ainsi qu'une estimation des besoins en eau. Un diagnostic physique des réseaux existant d'alimentation en eau potable et d'assainissement a été élaboré. Sur la base de ce diagnostic un redimensionnement des deux réseaux s'est avéré nécessaire. Pour remédier à la charge polluante évacuée par les réseaux d'assainissement, des bassins de décantation ont été projetés dans plusieurs endroits aux exutoires des sous réseaux.

Mot clés: réseau, diagnostique, dimensionnement, eaux potables, assainissement, bassin de décantation.

Abstract:

Our Work has for goal the hydraulic study of the locality of LARBATACHE, which is attached to the Daïra of KHEMIS EL KHECHENA, Wilaya of BOUMERDES. A presentation of the sector of study has been made thus an estimate of the needs of water supply. Physics diagnostic of the existing networks of supply drinking water and the wastewater network have been elaborated. Focused on the diagnostic it's proved that a resizing of the two networks is necessary. To cure to the polluting load evacuated by the wastewater network tailings pond have benne projected in several places of the wastewaters discharge system.

Key words:

Network, diagnostic, sizing, drinking water, sewage, tailings pond.