

UNIVERSITE ABDERRAHMANE MIRA DE BEJAIA.

FACULTE DES SCIENCES ECONOMIQUES, COMMERCIALES ET DES SCIENCES GESTION.

Département des Sciences Commerciales

Mémoire de fin de Cycle Pour l'obtention du diplôme de Master en Sciences Commerciales

Option: Finance et Commerce International

Thème

Etude des determinants des Investissements Directs Etrangers au Maghreb:

Application du modèle MCO et VAR

Réalisé par : Encadreur : Dr. TOUATI Karima

Mr. BELMAHDI Mustapha Mlle. GANA Rachida

Devant le Jury composé de :

- 1. CHITTI Mohand
- 2. TOUATI Karima
- 3. ZEGAGH Ali

Promotion 2016-2017

Remerciements

Le grand merci s'adresse au bon DIEU, le Tout Puissant, qui nous a donné le courage, la force et la volonté pour réaliser ce modeste travail.

Nous tenons à adresser nos plus vifs remerciements à tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail.

Tout particulièrement, Dr Touati notre enseignant, et notre promoteur, pour sa disponibilité, ses conseils, son orientation, son suivie et notamment le temps qu'elle nous a accordé.

Aussi nous tenons à remercier nos familles et en particulier nos parents pour tous les efforts qu'ils ont faits pour nous.

Sans oublier nos chers amis que nous avons trouvés à nos côtés pendant les moments difficiles et nous ont encouragés à dépasser ces étapes.

Nous tenons également à remercier le président et les membres du jury pour nous avoir fait l'honneur d'évaluer notre travail.

Notre reconnaissance et notre estime sont également portées à l'attention de tout le corps professoral de l'université de Bejaia pour les enseignements qu'il nous a dispensé.

Dédicaces

Je dédie ce modeste travail fruit de mes études aux êtres les plus chers à mon cœur qui m'ont constamment encouragé et qui se sont imposés pour faire de moi ce que je suis.

à mes très chers parents, à qui je ne manifesterai jamais assez de gratitude qui, en plus de m'avoir offert le plus beau des cadeaux en me donnant la vie, ont porté en ma compagnie le fardeau d'un chemin long et tortueux. Je vous remercie de votre amour et de votre soutien inconditionnels durant toutes mes études.la première de mes motivation a été de vous rendre toujours plus fière de moi. Merci pour les valeurs et Les principes que vous m'avez transmis...

- ♣À mes frères;
- ♣ À mes sœurs;
- ♣À mes amis (es);
- 🖊 À ma chère Ahlem
- ♣ À toute la promotion finance et commerce international 2016/2017

BELMAHDI Mustapha

Je dédié ce modeste travail:

A mes très chers parents, pour leurs soutiens et leurs sacrifices tout au long de ma vie.

Ye dédie ce travail à mon cher père et a la famille Gana.

A mes très chers frère et sœurs, à leur enfants et à la mes belles et beaux frères.

A ma belle famille izem y compris mes beaux parents Djamel et feyza.

A tous mes amis Katia, Koka, zaza,,

Et une spéciale dédicace à mon fiance et bien aimé : Izem Akil.

Liste des abréviations

AADL: Agence nationale de l'amélioration et du développement du logement

ANDI : l'Agence Nationale de Développement de l'Investissements

BM: Banque Mondiale

CEI: Communauté d'États indépendants

CNI: Conseil National de l'Investissement

CNUCED: la conférence des nations unies sur le commerce et le développement

DA: dinars algérien

EX: exportation

FA: fusions acquisitions

FBC: formation brute de capital

FIPA: Foreign Investment Promotion Agency

FMI: Fond Monétaire International

FMN: firmes multinationales

IBS: impôts sur les biens et services

IDE: investissement direct étranger

IGR: impôts global sur le revenu

IRG: impôts sur le revenu global

IS: impôts sur les services

M TND: milliards de dinars tunisien

MCO: Moindres Carrés Ordinaires

Mds: milliards de dollars

Mds MAD: milliards de dollars Maroc

OCDE: l'Organisation de Coopération et de Développement Economique

OMC: organisation mondiale de commerce

PAS: plan d'ajustement structurel

Liste des abréviations

PIB: produit intérieur brut

PIBC: croissance de produit intérieur brut

STN: sociétés transnationales

TAP: Taxes sur l'activité provisionnelle

TCH: Taux de Change

TIN: taux d'inflation

TVA: taxes sur la variable ajuté

UE: union européenne

VAR: Vecteur Auto Régressif

Sommaire

Sommaire

Remerciements

Dédicaces

La liste des abréviations

Sommaire

Introduction Générale1
Chapitre I : Cadre conceptuel des IDE et leurs déterminants3
Introduction:3
Section 01 : généralités sur les IDE
Section 02 : évolution des IDE dans le monde et leurs répartitions géographiques 10
Section 03 : les déterminants d'IDE
Conclusion
Chapitre02 : Etat des lieux des IDE au Maghreb26
Introduction
Section 01 : Cadre règlementaire et évolution des IDE en Tunisie26
Section 02 : Cadre règlementaire et évolution des IDE au Maroc31
Section 03 : Cadre règlementaire et évolution des IDE en Algérie39
Conclusion51
Chapitre 03 : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR
Introduction
Section 01 : Analyse économétrique de l'attractivité des IDE en Tunisie52
Section 02 : Analyse économétrique de l'attractivité des IDE au Maroc65
Section 03 : Analyse économétrique de l'attractivité des IDE en Algérie78

Sommaire

Conclusion	90
Conclusion Générale	92
Bibliographie	
La liste des tableaux et des figures	
Annexes	
Table des matières	
Résumé	

INTRODUCTION GENERALE

L'investissement Direct Etranger (IDE) se montre aujourd'hui comme un facteur clé du développement et de la croissance des pays.

Nous assistons à une vraie chasse et à une concurrence entre les PVD qui se ruent de façon persévérante dans la diversification de leur économie et de mettre en valeur les déterminants susceptibles d'attirer le plus d'investisseurs direct étrangers et profiter ainsi de tous les avantages que véhicule l'IDE. Car, de nos jours, les dirigeants des PVD sont conscients que les IDE sont un véritable transmetteur de croissance et partant contribuent au développement économique du pays.

L'attractivité des IDE est définie comme un ensemble des politiques économiques, fiscales, douanières, et institutionnelles que les autorités ont élaboré afin de rendre le territoire national attractif aux yeux des investisseurs étrangers. La littérature portant sur les IDE a expliqué, par plusieurs théories, la relation entre les IDE et leurs différents déterminants. Le cas du Maghreb est très peu étudié

Les pays du Maghreb sont parmi les pays promouvant les IDE à travers les réformes entreprises des le début des années 1990 ayant visé l'ouverture aux échanges internationaux et le développement de partenariat entre les entreprises nationales et étrangères. Les trois pays sont dotés à partir de 1993 d'un cadre fiscal et institutionnel plus approprié aux IDE. Malgré son fort potentiel (marché domestique conséquent, richesses naturelles, nombreuses opportunités sectorielles...), la région du Maghreb, accepté le Maroc, attire peu d'IDE.

A la lumière de cette brève présentation, l'objectif de cette étude est d'analyser et d'essayer d'identifier les déterminants d'attractivité des IDE dans les pays Maghreb.

Il s'agit précisément de répondre à une question qui mérite d'être posée : quels sont les déterminants des investissements directs étrangers dans les pays Maghreb ?

Il est donc question d'étudier en premier lieu deux notions fondamentales, celle de l'IDE d'un côté puis la notion des déterminants des investissements directs étrangers dans les pays Maghreb dans un autre côté. En deuxième lieu, il s'agit d'analyser les variables qui déterminent les IDE.

Pour apporter certains éléments de réponses à notre question fondamentale. Nous soutenons l'hypothèse selon laquelle : H1 les déterminants des IDE dans la Tunisie, Maroc et l'Algérie seraient liés à certains variables économiques telles que le Produit Intérieur Brut, Exportation, Taux de change, l'investissement national et le taux d'intérêt.

Pour vérifier l'hypothèse et apporter une réponse à la problématique, nous avons procédé par une méthodologie de recherche qui est basée premièrement sur une recherche bibliographique documentaire et une consultation d'ouvrages, revues et textes réglementaires, relatifs à l'investissement, en utilisant les rapports des différents organismes internationaux qui nous a permis de dégager une revue de littérature traitant les déterminants d'attractivité des IDE; deuxièmement, l'Application du modèle MCO et le modèle VAR sur des données annuelles couvrant la période 1970 jusqu'à 2015 afin de vérifier empiriquement le lien existant entre l'IDE et les variables retenues comme déterminantes des IDE.

Afin d'achever notre travail, nous l'avons structuré en trois (3) chapitres. Le premier est intitulé Approche théorique de l'IDE et leurs déterminants, dans lequel on va procéder à la définition des IDE, forme et stratégies des IDE. Nous évoquerons d'autres parts l'évolution des IDE dans le monde et leurs répartitions géographiques ainsi que les déterminants des IDE. Le deuxième chapitre, intitulé « Etat des lieux des IDE au Maghreb », sera consacré à tracer l'évolution du cadre réglementaire dan les trois pays et l'évolution des IDE dans chaque pays et leurs répartition sectorielles. Le troisième chapitre est intitulé « Etude économétrique des déterminants des IDE au Maghreb par l'application de modèle MCO et VAR », nous testons empiriquement les variables qui déterminant les IDE pour chaque pays en utilisant comme outil statistique le modèle MCO et VAR appliqués à des séries des données annuelles tirées da la base de données de la Banque Mondiale.

Chapitre I

Introduction

L'investissement direct étranger est l'un des attributs les plus marquants de la mondialisation, l'un des enjeux majeurs pour les pays développés, comme pour les pays en développement. L'IDE est au centre d'interaction entres les choix de localisation des FMN et les politiques économiques des pays d'accueil. Les entreprises cherchent à s'internationaliser alors que les gouvernements cherchent à attirer de plus en plus les capitaux étrangers.

Ce chapitre, qui pour objectif de présenter le cadre conceptuel des IDE et leurs déterminants, est structuré en trois sections. La première section est consacrée à donner les nations de base sur les IDE. Ensuite, la deuxième section tracera l'évolution des IDE à travers le monde. La dernière sera consacrée à présenter les principaux déterminants des IDE.

Section 1 : Généralités sur les IDE

Les investissements directs étrangers sont considérés comme indispensable à la croissance des pays en voie de développement, les IDE et les FMN représentent deux phénomènes économique très importent et extrêmement liés. Dans cette section, nous allons donner un aperçu général sur les IDE tel que la définition, les formes et les structures.

1) Définition des IDE

La définition de l'IDE diffère d'un pays à l'autre, mais en générale, celles données par les institutions internationales comme le Fond Monétaire International (FMI) et l'Organisation de Coopération et de Développement Economique (OCDE) sont les plus retenues.

1.1 Définition de l'IDE selon FMI

L'IDE est défini par le FMI (1998) comme : « l'investissement direct étranger est effectué dans le but d'acquérir un intérêt durable dans une entreprise exerçant ses activités sur le territoire d'une économie autre que celle de l'investisseur, le but de ce dernier étant d'avoir un pouvoir effectif dans la gestion des entreprise».²

1.2 Définition de l'IDE selon l'OCDE

Selon l'OCEDE, l'investissement direct est définit comme « un type d'investissement transnational effectué par le résident d'une économie «l'investissement directe» afin d'établir un intérêt durable dans une entreprise «l'entreprise d'investissement directe »qui est résidente

¹ OCDE, « L'investissement direct étranger au service du développement », optimiser les avantages, minimiser les coûts, Paris 2002.p.15.

² JACQUEMOT.P: « firme multinationale: une introduction économique », Dunod, paris, 1998,P11.

d'une autre économie que celle de l'investissement directe. L'investissement est motivé par la volonté d'établir avec l'entreprise une relation stratégique durable afin d'exercer une influence significative sur sa gestion. L'existence d'un « intérêt durable » est établie dés lors que l'investissement direct détient au moi 10 % des droits de vote de l'entreprise d'investissement directe. L'investissement direct peut également permettre à l'investisseur d'accéder à l'économie de résidence de l'entreprise d'investissement directe, ce qui pourrait lui être impossible en d'autre circonstance. L'investissement directe n'a donc pas les mêmes finalités que l'investissement de portefeuille, l'investisseur de portefeuille ne cherche généralement pas à influer sur la gestion de l'entreprise»³.

Suivant la Banque d'Algérie, l'investissement direct désigne tout apport effectué par un investisseur afin d'acquérir un intérêt durable dans une entreprise. L'investisseur cherche également à détenir une influence dans la gestion de l'entreprise. Il est alors admis que détenir un minimum de 10% des actions donne ces pouvoirs. Au-dessous de ce seuil, l'apport est classé comme un investissement de portefeuille.⁴

Le point qui revient le plus dans les définitions précédentes est celui relatif à l'intention d'exercer un contrôle sur l'entreprise ciblée.

2. Définition des firmes multinationales (FMN)

Multinationale, transnationale, ...etc, de multiples noms ou qualificatifs ont été donnés à ce type d'entreprise. Mucchielli a donné une définition simple de la firme multinationale en considérant comme multinationale « toute entreprise possédant au moins une unité de production à l'étranger ; cette unité de production sera alors sa filiale »⁵. La logique de la production domine. Une entreprise peut avoir des représentations commerciales à l'étranger, mais elle ne sera vraiment multinationale que si elle produit tout (on parle ainsi d'IDE horizontal) ou une partie (on parle d'IDE vertical) de ses produits à l'extérieur de son territoire national.

Une multinationale est une entreprise qui a son siège dans un pays mais des activités dans de nombreux pays par l'intermédiaire de filiales ou de succursales quelle coordonne en vue d'approvisionner le marché mondial. Les caractéristiques générales de la FMN sont : sa

³ OCDE : définition de référence de l'OCDE des investissements directs internationaux, paris, 4^{eme}Edition 2008,p.17.

⁴ Banque d'Algérie, (2007), "Bulletin Statistique Trimestriel", Septembre 2007.

⁵MucchiellI.J (1998), « *Multinationales et mondialisation* », édition du Seuil (inédit économie), pp.18-19.

présence dans de nombreux pays, son capital social détenu par des actionnaires répartis dans plusieurs pays, nationalités variées des dirigeants.

Michalet (1985) définit la FMN comme étant une entreprise (ou un groupe), le plus souvent de grande taille, qui, à partir d'une base nationale, a implanté à l'étranger plusieurs filiales dans plusieurs pays, avec une stratégie et une organisation conçues à l'échelle mondiale⁶.

3. Les différentes formes d'investissement direct étranger

Les firmes multinationales voulant investir à l'étranger choisissent, généralement, entre les stratégies suivantes: Greenfield, fusion acquisitions, les joint-ventures, les sous-traitances, la succursale, la licence et le franchisage.

3-1-Les Greenfield: « est la création, exnihilo, d'une filiale à l'étranger, avec la mise en place de nouveaux moyens de production, le recrutement de nouveaux employés sur place et l'envoi, par la maison mère, de certains cadre et de techniciens»⁷. Cette stratégie présente les avantages suivants:

- Le contrôle total de l'opération d'internationalisation, ce qui va permet à la firme de maîtriser l'embauche en matière d'âge et de qualification, de s'assurer la mise en place d'outils de production correspondant exactement à ses produits, à ses conditions de fabrication et de distribution⁸.
- Un IDE Greenfield, de sélectionner l'emplacement qui répond le mieux aux besoins de la firme et minimise les coûts d'achat des terrains ou des bâtiments⁹.

3-2-Les fusions acquisitions : «Une fusion acquisition, recouvre les différents aspects de l'achat d'une entreprise¹⁰».

- ✓ Le gain du temps: L'investisseur disposera d'une une capacité de production et de commercialisation, un stock d'équipements et un réseau de distribution fournis clé en main.
- ✓ L'accès à des actifs spécifiques: La FA permet à l'acquéreur d'accéder à des actifs spécifiques intangibles comme l'ensemble de compétences sous formes de brevets, de

⁶Andrefe Wladimiri (1996), « les multinationales globales », Ed la Découvert, Paris, p.30.

⁷Denis Lacoste et Pierre-André Bigues, «Stratégie d'internationalisation des entreprises: menaces et opportunités», De boeck, 2011, P 126.

⁸Christian Milelli et Michel Delapierre, « Les firmes multinationales», Vuibert, 1995, P68

¹⁰Denis Lacoste et Pierre-André Bigues, « Op.cit», P 126.

personnels qualifiés ou d'équipements spécialisés, d'une base de clientèle et d'une image de marque ou simplement une bonne connaissance des conditions locales d'activités.

3-3-Les joint-ventures:

Une joint-venture, appeler aussi une entreprise commune, une entreprise en participation ou une coentreprise, « se rapporte soit à une création en commun, par deux partenaires de nationalité différente, d'une société industrielle ou commerciale, soit à la prise de participation significative dans le capital d'une société étrangère implantée sur le marché d'exportation visé, par une entreprise exportatrice national». 11

✓ Deuxième modalité:

C'est le cas où « la filiale commune est constituée entre le groupe multinational qui s'implante et un partenaire local qui, en fait, ouvre le capital de son entreprise à l'investisseur étranger. Il n'y a donc plus deux sociétés de taille équivalente qui en créent une troisième juridiquement distincte de chacune d'entre elles, mais une grande firme qui prend une participation dans une plus petite»¹².

3.4. Les sous-traitances

Ce type d'investissement a pour principal mérité de permettre à l'entreprise étrangère de bénéficier d'avantage de faibles coûts locaux de production sans prendre elle-même le risque financier de l'investissement, En effet, Dans ce mode d'implantation, un groupe peut répartir entre 10% entre les fournisseurs et leurs usines en s'implantant dans différents pays et lorsque les coûts de production deviennent trop élevés dans un pays la firme cherche d'autre sous-traitants¹³.

3.5. La succursale

Une succursale d'investissement direct est une entreprise non dotée de la personnalité morale dans le pays d'accueil, qui¹⁴:

- Est un établissement stable ou un bureau d'un investisseur direct étranger ;
- Est une société de personnes ou une co-entreprise n'ayant pas la personnalité morale, constituée entre un investisseur direct étranger et des tiers ;

¹¹Morelle, F. «Lexique du commerce international», Edition, Ellupses, 2003, P, 254.

¹² Idem, P 73

¹³HATEM. F.: « La firme multinationale en l'an 2000 », Economica, Paris, 1995, P.27.

¹⁴OCDE, Définition de références de l'OCDE pour les investissements directs internationaux, 3_{eme} édition, P.8-9

- Est un terrain, des bâtiments (sauf ceux appartenant à un organisme public étranger) et du matériel et des objets immeubles situés dans le pays d'accueil et appartenant directement à un résident étranger. Les résidences secondaires et de vacances appartenant à des non-résidents sont donc considérées comme faisant partie des investissements directs, même si, en réalité, il n'y a guère de pays qui fassent figurer ces investissements dans leurs statistiques d'investissement direct;
- Est un équipement mobile (tel que navires, avions, derricks et plates-formes pétrolières), exploité sur le territoire d'un pays pendant un an au moins s'il est comptabilisé séparément par l'opérateur et admis comme tel par les autorités fiscales.
 Ce matériel est considéré comme un investissement direct pratiqué dans une entreprise notionnelle dans le pays d'accueil.

4) la stratégie des IDE

Il y'a plusieurs stratégies dont les investissements directs étrangers dirigent les investissements dans la prise de leurs décisions d'effectuer l'implantation ou pas. Ainsi on peut distinguer trois importantes stratégies d'investissement :

- Une stratégie d'accès aux ressources naturelles du sol et de sous-sol;
- > Une stratégie horizontale ; dite stratégie du marché ;
- ➤ Une stratégie verticale ; ou de minimisation des couts

4.1 Une stratégie d'accès aux ressources naturelles du sol et de sous-sol

La stratégie d'accès aux ressources naturelles «est le premier facteur qui attire les IDE, L'histoire montre que de nombreuses industries se sont implantées à proximité de réserves de matières premières ou de sources d'énergie comme le fer ou le charbon» ¹⁵.

4.2 Stratégie horizontale ; dite stratégie du marché

Cette stratégie est dite « stratégie du marché » Du fait lorsqu'une entreprise réalise un IDE horizontal cela signifie qu'elle réalise la même activité (que dans le pays domestique) dans les zones géographiques ou elle réalise cet IDE. Il existe plusieurs facteurs qui peuvent conduire multinationale a opté pour un tel investissement à savoir ¹⁶:

Les coûts de transport (le moins chère)

¹⁵HARISSON.A, DALKIRAN.E et ELSEY.E : « business international et mondialisation », Boeck, Bruxelles,2004, p325-326.

- Les imperfections existantes sur les marchés locaux, conduisent à l'internationalisation par les firmes multinationale (FMN) des procédés et des modes d'organisation qu'il maîtrise
- Lorsqu'une firme suit ses concurrents
- Lorsqu'un produit atteint sa maturité dans son pays d'origine
- L'avantage spécifique a un lieu donné.

La stratégie peut donc être qualifiée d'horizontale car elle concerne les flux d'investissement croisés Nord-Nord qui se développent entre le États-Unis, l'Europe et le Japon, c'est à dire au sein de la triade. Ces flux constituent les deux tiers du montant total des investissements directs¹⁶. Ces investissements horizontaux sont donc basés essentiellement sur l'investissement intra-branches¹⁷.

4.3 Stratégie verticale ; ou de minimisation des couts

L'IDE a structure vertical : L'IDE vertical par lequel l'investisseur fragmente les différentes étapes de conception de production et de commercialisation de ses produits en implantant dans des pays différents. Il s'agit ici pour l'investisseur de tirer parti des différences de coût des facteurs entre pays. Dans ce cas, l'activité à l'étranger est un complément de l'activité de la maison-mère, car l'une et l'autre ne se situent pas au même niveau de la chaine de production qui, à l'inverse, ne concerne que certains segments de la chaine, pour lesquels les économies d'accueil offrent des avantages absolus de localisation et correspondent davantage à une stratégie d'optimisation des coûts de production pour des firmes organisées globalement¹⁸.

Les investissements directs étrangers sont considérés comme indispensables à la croissance des pays en voie de développement, leur multiples impacte peuvent se traduisent par un développement des compétences et des savoir-faire, et de déboucher sur des utilisations plus efficaces des ressources.

¹⁶BENNACER A. « attractivité aux IDE : quel rôle pour les villes en Algérie ? cas de la ville de Bejaia », mémoire de magistère, université de Bejaia, mars 2011, p.59.

¹⁷KRUGMAN.P ETOBSTFELD.M, « économie internationale 2eme édition française, de Boeck et larcier,1998.

¹⁸Gabriel CUMENGE « les investissements industriels français au Maroc. Une étude empirique sur la décennie quatre-vingt-dix ». P15.

5- Les enjeux des IDE

L'IDE a tendance à accentuer les forces comme les faiblesses de l'environnement économique du pays. le rapport de l'OCDE(2002)¹⁹ cite plusieurs enjeux spécifiques :

5.1 Pour les pays d'accueil

L'existence d'un environnement économique relativement sain dans le pays d'accueil est aussi important pour attirer l'IDE que pour profiter pleinement de ses apports. La transparence et le respect de la règle de droit figurent en tête des préoccupations des investisseurs. Autre facteur qui compte, la taille de l'économie d'accueil. Dans les pays industriels, les IDE peuvent être un moyen de relancer l'activité des régions industrielles en déclin, ce qui incite les Etats et les collectivités locales à développer leur attractivité. Pour les pays en développement les IDE sont un moyen de s'insérer dans la mondialisation et de stimuler les exportations ils sont aussi un moyen de bénéficier des transferts technologiques, les investisseurs étrangers amènent avec eux des procédés de production innovants, des méthodes d'organisation performantes et des savoir-faire qui se diffuseront progressivement à l'ensemble du pays et doperont sa productivité. Le pays d'accueil aura ainsi bénéficié du progrès technique sans avoir eu à le financer²⁰.

5.2. Pour les pays d'origine

Les gouvernements des pays d'origine des investisseurs ont également un rôle important à jouer. Il leur faut notamment prendre en compte les conséquences de leurs politiques économiques nationales pour la capacité d'autres pays d'accueil potentiels à attirer les investisseurs étrangers. Les IDE participent à la construction des avantages comparatifs d'une économie. Il est donc crucial pour les États d'éviter une "déconstruction" de ces avantages comparatifs en favorisant l'ancrage de ces investissements l'ancrage de ces investissements l'ancrage de ces investissements²¹, c'est-à-dire leur durabilité. Cela est possible en incitant à créer des interdépendances entre la firme étrangère et les producteurs locaux (échanges, coopération technologique).

¹⁹ OCDE (2002), op cit, p. 15.

²⁰ Ministère de l'industrie, de la PME et de la promotion de l'investissement, « les investissement directs étrangers dans le monde :banchmarking », direction générale de l'intelligence économique, des études et de la perspective, document n°15/DIEEP, août, 2010, P. 9.

OCDE, « les principes directeurs de l'OCDE a l'intention des entreprises multinationales », 2008.p.40.

Section 02 : Evolution des IDE dans le monde et leurs répartitions géographiques

Cette section a pour objectif d'analyser l'évolution des IDE à partir de leurs apparition jusqu'à nos jours, ainsi leurs répartitions géographiques dans le monde. L'expansion qu'ont connue les IDE juste après la seconde guerre mondiale est considérablement importante mais aussi la période d'avant la première guerre (1800-1914) reste incontestablement l'âge d'or des IDE.

1. Aperçu historique

Contrairement à une idée couramment admise, l'investissement direct étranger n'est pas apparu dans les années 1980. Boualam (2008) note : « C'est un phénomène ancien, lié aux époques coloniales du19ème siècle, lorsque les entreprises britanniques et françaises exploitaient les ressources agricoles et minières des colonies. En effet, il est devenu significatif depuis le 19ème siècle. Plusieurs exemples en témoignent : en 1852, Samuel Colt a réalisé le 1^{er} investissement américain au Royaume-Uni, Bayer s'est installé aux USA en 1865 et Singer s'est implantée en Russie, en 1867. D'où l'estimation, par la CNUCED de 14 milliards de dollars de stock d'IDE mondial en 1914²². »

L'analyse de l'évolution historique de l'IDE fait apparaître trois étapes importantes :

- ❖ La première étape située entre le premier conflit mondial et la veille du second.
- ❖ La deuxième étape se situant après la deuxième guerre mondiale jusqu'au années 70.
- ❖ Le troisième, se situe entre 1973-1984.

1- 1DE 1914 à 1945 : Suprématie du Royaume-Uni

Au cours de cette période, les pays investissant hors de leur pays d'origine étaient des puissances coloniales : le Royaume-Uni, la France, les Etats-Unis et l'Allemagne. Pendant toute la première partie du XIXe siècle, la Grande-Bretagne est pratiquement le seul pays à investir à l'étranger et le capital anglais restera très largement dominant jusqu'en 1914. Le Royaume-Uni détenait la plus grande part du stock mondial d'IDE, 45% en 1914 et 39,8% en 1938. La part des Etats-Unis s'est accrue en 1938 pour atteindre 27,7% contre 18,5% en 1914.Par contre les pays qui ont bénéficié des stocks mondiaux d'IDE sont les pays en

²²BOUALAM.F, « *Les Institutions et Attractivité des IDE* » Colloque International « Ouverture et émergence en Méditerranée », 17 et 18 Octobre 2008 Rabat- Maroc .Université de Montpellier I Sciences Economiques LASER. P.4.

développement, leur part est à 65,7% en 1938, alors que celle des pays développés était de $34,3\%^{23}$.

1-2 De 1945 à 1973 : Hégémonie des Etats-Unis

De 1945 au premier choc pétrolier de 1973, commençait une phase d'expansion de l'investissement international. En effet, les Etats-Unis sont la source unique d'investissement suite aux aides massives distribuées par le canal de l'aide Marshall aux pays européens pour leurs reconstructions après la seconde guerre mondiale1. Au cours des années 1950 et 1960, l'investissement étranger a progressé à un rythme deux fois plus élevé que la croissance mondiale²⁴.

Tableau n° 1 : Stock des IDE américain en 1960 par zone et par secteur d'activité

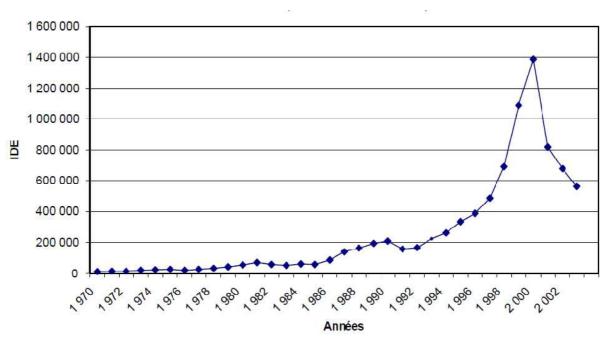
Zone/pay	Manufacturie r		Pétrole Min		nes	es Services publique		Commerc e		Total		
S												
	Mds \$	%	Mds	%	Md	%	Md	%	Md	%	Mds	%
			\$		s \$		s \$		s \$		\$	
Europe	3.80	34.4	1.76	16.	0.05	1.7	0.04	1.6	0.74	30.	6.69	21
				3						8		
Canada	4.83	43.7	2.66	24.	1.32	44.	0.64	25.	0.63	26.	11.1	35.
				6		8		1		2	8	1
Amériqu	1.52	13.8	3.12	28.	1.27	43	1.18	46.	0.78	32.	8.32	26.
e latine				9				3		5		1
Asie	0.29	2.6	1.66	15.	0.02	-	0.10	3.9	0.14	5.8	2.48	7.8
				3								
Afrique	0.12	1.1	0.41	3.8	0.25	-	0.01	-	0.05	2.1	1.07	3.3
Océanie	0.49	4.4	0.37	3.4	0.03	8.5	-	-	0.06	2.5	1.01	3.2
Total	11.05	100	10.8	100	2.95	100	2.55	100	2.40	100	31.8	100
			1								2	

SOURCE: Milelli, C. Delapierre, M. «Les firmes multinationales», Veuibert, Paris, 1995.P. 47.

11

²³BELLON B ET GOUIA R. : « Investissements direct étrangers et développement industriel méditerranéen », Economica. Paris, 1998.

²⁴TERSEN D, BRICOUT J-L.: « L'investissement international », Armand Colin/Masson, Paris, 1996, P.31.


1-3) De 1973 à 1984 : Emergence du Japon et de l'Allemagne

La période 1973-1984 a enregistré un ralentissement des IDE à la suite des deux chocs pétroliers, ce qui a entraîné une baisse de la croissance, de la productivité, de l'investissement des pays industrialisés et la diminution des profits des entreprises²⁵. La part des Etats-Unis dans le stock mondial sortant s'est réduite tandis que celle de l'Allemagne et du Japon a augmenté. L'appréciation du yen et du mark a engendré l'essor des investissements allemands et japonais. Le recul des investissements américains s'explique par la dévaluation du dollar en 1971, l'abandon du système de Bretton-Woods et l'adoption du système de changes flottants. Ces changements ont fait perdre aux Etats-Unis l'avantage d'une monnaie surévaluée.

2. L'évolution récente des IDE

Après une légère baisse au début des années 80, les flux d'IDE ont rebondi à partir de 1986. Selon la CNUCED, de 1986 à 1990, les flux d'IDE ont progressé de 24% l'an, les flux d'IDE ont atteint 209 milliards de dollars en 1990. Cette expansion s'est ralentie en 1991, la valeur des flux d'IDE dans le monde est tombée à 158 milliards de dollars, l'équivalent d'une chute de 25 %. Ce repli a été particulièrement ressenti par les pays développés où les entrées d'IDE ont diminué de 34% (passant de 171 à 113milliards de dollars). De tous les pays industrialisés, les Etats-Unis et le Royaume-Uni étaient les pays les plus affectés par cette baisse (respectivement -53 % et -51% en une année), (CNUCED 1995). Ce déclin est dû à une combinaison de facteurs : les anticipations défavorables de profitabilité de capitaux investis, les perspectives de demande réduite et l'environnement macroéconomique défavorable aux USA sont autant d'éléments qui ont incité les entreprises à ralentir leurs investissements à l'étranger. La baisse de l'IDE enregistrée au cours de cette période pourrait être qualifiée de pause du fait qu'elle n'a duré que deux années. En effet, l'IDE a repris sa croissance dès 1992, l'année qui correspond au début d'une explosion des IDE. Cette période se caractérise par une forte croissance de l'IDE. Avec un taux de croissance annuel moyen de 82 %, les flux sortants d'IDE ont atteint le pic de 1.388 milliards de dollars en 2000 (CNUCED 2003).

²⁵Idem.

Evolution des IDE dans le monde de 1970 à 2003. (En millions de dollars)

Source : CNUCED, base de données sur l'investissement international et les firmes Multinationales.

Entre 2001 2003, les flux de capitaux étrangers ont enregistré une chute importante pour atteindre 832,2 milliards de dollars en 2001, 557,9 milliards de dollars en2003²⁶.Ceci s'applique par une faible croissance enregistrée dans les principales régions du monde, l'effondrement des marchés boursiers et l'achèvement du processus de privatisations dans certains pays²⁷.

Après trois années consécutives de baisse, les flux mondiaux d'IDE en 2004 ont augmenté pour atteindre 710,8 milliards de dollars, en hausse de 2% par rapport à 2003 (CNUCED 2005). « La reprise des IDE en 2004 s'expliquent par : l'accélération de la croissance mondiale, l'accroissement des bénéfices, la hausse des valeurs mobilières, la multiplication des fusions-acquisitions internationales, et la poursuite de la libéralisation et de l'amélioration du climat des affaires²⁸.En 2005, L'IDE marque les mêmes tendances dans toutes les principales sous-régions. »

²⁶CNUCED, rapport sur l'investissement dans le monde 2003, dans www.cnuced.org.

²⁷CNUCED, rapport sur l'investissement dans le monde 2003, dans www.cnuced.org.

²⁸CNUCED, rapport sur l'investissement dans le monde 2005.

Les entrées d'IDE ont atteint 916,3 milliards de dollars et les sorties ont augmenté à778, 7 milliards de dollars²⁹.

Après quatre années consécutives de croissance, les entrées mondiales d'IDE ont augmenté de 30 % pour s'élever à 1 833 milliards de dollars en 2007, dépassant ainsi largement le record historique atteint en 2000³⁰. Malgré la crise financière et la crise du crédit qui sévissent depuis le deuxième semestre de 2007, les entrées d'IDE ont continué de progresser dans les trois grands groupements économiques que sont les pays développés, les pays en développement et les pays en transition de l'Europe du Sud-est et de la Communauté d'États indépendants (CEI). Cette hausse s'explique par la croissance économique relativement élevée et les bons résultats des sociétés enregistrés dans de nombreuses parties du monde³¹.

Avec l'aggravation de la crise économique et financière, les flux mondiaux d'IDE sont tombés d'un niveau historique à 1 milliard 697 millions de dollars en 2008 – en baisse de $14\%^{32}$.

En 2009, le mouvement s'est accentué: selon des données préliminaires portant sur 96 pays, les entrées d'IDE afficheraient un recul de 44 % au premier trimestre de 2009 par rapport à la même période de 2008³³. C'est Le repli des fusions-acquisitions internationales qui a été la principale cause du recul de l'IDE en 2009³⁴. Les flux mondiaux d'investissement étranger direct (IDE) ont commencé à se redresser dans la seconde moitié de 2009³⁵. Pour s'établir à 1 240 milliards de dollars en 2010, ont augmenté de 16 % en2011, dépassant, pour la première fois, le niveau atteint avant la crise sur la période 2005-2007, la progression est expliquée par la hausse des profits des sociétés transnationales(STN) et d'une croissance économique relativement élevée dans les pays en développement au cours de l'année³⁶. Après une baisse en 2012, l'IED mondial est reparti à la hausse en 2013

3) La répartition géographique

En 2015 les flux mondiaux d'IDE ont progressé de 38 % pour atteindre 1762 milliards de dollars. La reprise mondiale s'explique principalement par la forte progression des fusions-

²⁹CNUCED, rapport sur l'investissement dans le monde 2006.

³⁰CNUCED, rapport sur l'investissement dans le monde 2008.

³¹Idam

³²CNUCED, rapport sur l'investissement dans le monde 2009.

³³Idem

³⁴CNUCED, rapport sur l'investissement dans le monde 2010.

³⁵ Idem.

³⁶ Idem.

acquisitions internationales, qui sont évaluées à 721 milliards de dollars, contre 432 milliards de dollars en 2014³⁷.

3.1) Amérique latine et des Caraïbes

En 2014, les flux d'IED à destination des pays de l'Amérique latine et des Caraïbes, ont reculé de 14 % en raison de la baisse de 78 % de la valeur des fusions-acquisitions internationales en Amérique centrale et la chute des cours des matières premières. Les flux à destination de l'Amérique du Sud ont diminué pour la deuxième année d'affilée, perdant 4 % pour s'établir à 121 milliards de dollars, les principaux pays d'accueil, à l'exception du Chili, enregistrant tous une croissance négative de leurs IED. En Amérique centrale et aux Caraïbes, les entrées ont chuté de 36 %, en partie à cause des montants exceptionnellement élevés enregistrés en 2013.

3.2) Les pays développés

Après une forte baisse enregistrée en 2012, les investissements dans les pays développés se sont redressés en 2013, augmentant de 9 %. Les investissements dans l'UE ont été de 246 milliards de dollars (+14). Les entrées d'IED ont considérablement augmenté en Allemagne, qui avait enregistré un montant exceptionnellement faible en 2012, mais elles ont nettement diminué en France et au Royaume-Uni. Cette évolution s'applique par les fortes variations des prêts, les fortes variations des prêts intragroupes ont beaucoup contribué. Les entrées d'IED ont augmenté en Italie et en Espagne, qui est devenue le premier pays européen d'accueil en 2013. En Amérique du Nord, les entrées d'IED sont remontées à 250 milliards de dollars, les États-Unis enregistrant une hausse de 17 %, à 188 milliards de dollars, et se classant au premier rang mondial des bénéficiaires. En 2013, les sorties d'IED des pays développés se sont établies à 857 milliards de dollars. Les investissements européens à l'étranger ont augmenté de 10 %, pour s'élever à 329 milliards de dollars, et la Suisse est devenu le premier investisseur direct de la région. À l'inverse, les sorties d'IED ont chuté en France, en Allemagne et au Royaume-Uni. En Amérique du Nord, elles ont encore regressé de 10 %, à 381 milliards de dollars, en partie en raison du rapatriement par des STN américaines de fonds levés sur des marchés obligataires européens. Au Japon, les sorties d'IED ont progressé pour la troisième année consécutive et se sont élevées à 136 milliards de dollars. Les pays développés ont représenté 39 % des entrées mondiales et 61 % des sorties mondiales d'IED.

_

³⁷ Idem. P, 1.

3.3) En Afrique

En 2015, les IDE en Afrique ont représenté 54 milliards de dollars, accusant une baisse de 7 % par rapport à 2014, les entrées d'IED en Afrique du Nord ont progressé de 9 %, pour s'établir à 12,6 milliards de dollars. Une diminution des investissements en Afrique subsaharienne, les IDE ont baissé a cause de la baisse des prix des produits de base. En Afrique de l'Ouest, les entrées d'IED ont reculé de 18 %, en raison d'un effondrement des investissements étrangers au Nigéria. En Afrique centrale, elles ont chuté de 36 %. En Afrique de l'Est les entrées d'IED se sont chiffrées à 7,8 milliards de dollars, perdant 2 % par rapport à 2014. Ils ont toute fois atteint un pic de 1,4 milliard de dollars au Kenya, du fait d'un regain d'intérêt et de confiance des investisseurs et d'un marché de la consommation intérieure en plein essor. En Afrique australe, les entrées d'IED ont progressé de 2 %, à 17,9 milliards de dollars, principalement grâce au montant record de 8,7 milliards de dollars reçu par l'Angola, en grande partie dans le cadre de prêts intragroupe. En raison de la médiocrité des résultats économiques, de la faiblesse des prix des produits de base et de la hausse du coût de l'électricité, les investissements étrangers en Afrique du Sud sont tombés à 1,8 milliard de dollars - leur valeur la plus basse en dix ans. Les flux d'IED en provenance d'Afrique ont diminué de 25 %, à 11,3 milliards de dollars.

3.4) En Asie

Avec 541 milliards de dollars reçus en 2015, l'Asie en développement a confirmé sa position de première région bénéficiaire de l'IED dans le monde. La hausse des IDE, évaluée à 16 %, a concerné les pays d'Asie de l'Est et d'Asie du Sud. En Asie de l'Est, en raison de prises de participation importantes liées à la restructuration d'une entreprise hongkongaise (Chine) et de flux d'investissement dynamiques vers le secteur chinois des services, l'IED a progressé de 25 %, pour s'établir à 322 milliards de dollars. Les entrées d'IED ont atteint 50 milliards de dollars en Asie du Sud, soit une hausse de 22 % par rapport à 2014. L'Inde est devenue le quatrième pays bénéficiaire dans l'Asie en développement et le dixième pays bénéficiaire dans le monde. En Asie occidentale, la hausse des investissements en Turquie a en partie compensé les effets négatifs de la baisse des prix des produits de base et des tensions géopolitiques pesant sur les investissements dans les pays producteurs de pétrole, en conséquence, les entrées d'IDE dans la région ont baissé que de 2 %, se chiffrant à 42 milliards de dollars. Les données du premier trimestre de 2016 sur les fusions-acquisitions internationales et les annonces d'investissements de création de capacités viennent étayer cette projection à la baisse. Malgré un recul de 17 %, à 332 milliards de dollars. La Chine et la

Thaïlande, ont d'avantage investi à l'étranger. Avec des sorties d'IDE estimées à 128 milliards de dollars, la Chine est restée le troisième pays investisseur au monde. Les investissements de Hong Kong (Chine) à l'étranger, qui avaient augmenté en 2014, ont été réduits de plus de moitié et ramenés à 55 milliards de dollars, en raison d'une importante restructuration d'entreprise. En Asie du Sud-est, les sorties d'IDE ont baissé de 11 %, à 67 milliards de dollars, du fait d'une contraction des investissements Singapouriens. Les sorties d'IDE de l'Inde, principal investisseur de l'Asie du Sud, ont diminué de plus d'un tiers, ce qui a fait chuter de 36 %, à 8 milliards de dollars, les sorties d'IDE de la région dans son ensemble. En Asie occidentale, en revanche, les sorties d'IDE ont bondi de 54 %, à 31 milliards de dollars, principalement en raison d'un changement de politique du Koweït, gros investisseur de la région.³⁸

Section 3 : Les déterminants des investissements directs étrangers

L'attractivité des IDE est définie comme un ensemble des politiques économiques, fiscales, douanières, et institutionnelles que les autorités ont élaboré afin de rendre le territoire national attractif aux yeux des investisseurs étrangers. Il existe plusieurs déterminants des IDE, toutefois pour mieux les cerner, il convient de les regrouper en deux grandes classes. Ainsi, nous distinguerons : les déterminants d'ordre économique et les déterminants d'ordre institutionnel ». ³⁹ Ainsi, la littérature économique distingue :

1-les déterminants d'ordre économiques

Les déterminants les plus importants pour l'implantation de l'IDE sont les considérations économiques qui se manifestent des qu'un cadre propice à l'IDE est en place. Ainsi, les économistes distinguent :

- -les déterminants qui ont trait au climat de l'investissement.
- -Les d déterminants en termes de demandes.
- -Les déterminants en termes d'offre.

1.1-Les déterminants du climat d'investissement

Le climat d'investissement constitue un facteur très important pour l'IDE. En effet, « pour choisir le pays hôte, l'investisseur étranger à besoin d'une évolution du climat

³⁸Idem, p 13

³⁹ CNUCED: World investment Report 1998, Trend and Determinants

d'investissement. Le climat d'investissement peut être évalué sur la base du niveau de stabilité des variables macroéconomiques suivantes : le Taux de chômage, la croissance, l'investissement national et le Taux d'inflation ».

1.1.1-Le Taux de chômage

Le taux de change est considéré par plusieurs auteurs comme un déterminant important des IDE. En effet, « le taux de chômage est porteur deux part mauvaises pour l'investisseur étranger. La première part, il déclare une tension sur le marché du travail qui est de nature à provoquer rapidement des augmentations de salaire. Pour deuxième part, il informe sur un état peu avance é des restructurations industrielles, ce que signifie que l'investisseur étranger pourrait faire face à des sureffectifs dans la telle ou telle entreprises locale qu'il rachèterait dans les pays en développement ».

Quant à un taux de chômage élevé, il renseigne sur la stagnation des activités au niveau de ce pays et sur de niveaux peu élevés des salaires ». 41

1.1.2-La croissance

La croissance est identifiée comme un facteur d'attractivité des IDE, la croissance de l'économe hôte détermine la stratégie d'investissement.

Selon la CNUCED(1997), «l'investisseur s'intéresse davantage au potentiel d'une économie qu'à son état présent. Ainsi, Un taux croissance faible montre le manque de dynamisme de la demande et de la taille du marché du pays hôte, d'où une faible profitabilité de l'investissement. Par contre, un développement rapide de l'économie du pays hôte représente une opportunité d'expansion supplémentaire pour l'investisseur, une fois installé ». 42

La croissance d'une économie peut constituer le signal le plus important pour les investisseurs potentiels.

⁴⁰ T.MAYER « les frontière nationales comptent, mais de moins en moins »problème économique, paris. Mars 2002.pp.29-30.

⁴¹T.KACICHAOUCH «les facteurs d'attractivité des investissements directs étrangers en Algérie : Aperçu comparatifs aux autres pays du Maghreb », mémoire de magistère, université, de Tizi-Ouzou, juin, 2012 p.59.

⁴² CNUCED (1997), « sociétés transnationales la structure de marché et la politique de concurrence », world investirent rapport ,1997 New York et Genève, United Nation, p.68.

1.1.3-L'investissement national

Le climat d'investissement est généralement considéré comme déterminant des IDE. En effet, une situation d'instabilité politique ou d'instabilité économique rend les pays d'accueils peu attractifs pour tout type d'IDE.

L'investissement étranger interprète une augmentation de l'investissement national comme un signal de l'existence d'opportunités dans le pays en question. Les pays devraient stimuler les investissements nationaux dans une logique de développement.

En effet, Fatima BOUALAM (2010) note : « Une faible croissance ou une décroissance de l'investissement intérieur incite l'investisseur étranger à la prudence puisqu'elle traduit l'évaluation défavorable portée sur le climat d'investissement du pays hôte par les entreprises locales ».³

L'importance de l'investissement national constitue le reflet du climat d'investissement d'un pays donné. « Un niveau important d'investissement national se traduit par une forte profitabilité, et par conséquent incite les investisseurs étrangers potentiels à s'y implanter ».⁴³

1.1.4-Taux d'inflation

Cet indicateur peut renseigner sur la politique monétaire du pays, il est mesuré par l'indice de prix. En effet, ZINEB et AOUMARI note à ce sujet : « un taux d'inflation élevé conduirait à des restrictions de crédit et donc une politique monétaire anti-inflationniste qui rendent ainsi l'obtention de capitaux localement plus difficile, un taux d'inflation faible et instable rend également difficile l'estimation du prix d'un contrat à long terme il gène de ce faite les anticipations et le calcul économique de l'investisseur étranger et l'oblige à d'incessantes opérations de couverture tout en déprécient rapidement les perspective du profit futur ».⁴⁴

1.2-les déterminants en termes de demande

La taille, l'importance du marché d'accueil, ainsi que ses perspectives de croissance constituent des éléments de la rentabilité des investissements et motivent fortement des

⁴³ Fatima BOUALAM, « L'investissement direct à l'étranger le cas de l'Algérie », école doctorale économie et Gestion université Montpellier I, Juillet 2010.p.112.

⁴⁴ ZINEB et AOUMARI, « Attractivité du canada : L'investissement direct étranger et Dynamique de la croissance »comme exigence partielle de la maitrise en économique université de Québec à Montréal, mars 2009, p.22.

multinationales.. Kravis et Lipsey (1982) ont trouvé une relation positive entre la taille du marché dans les pays d'accueil et la décision d'implantation des multinationales américaines.

La taille du marché :

La taille du marché est un facteur d'attractivité d'un pays d'accueil. Selon, GAELLE, (2009) la taille de marché mesuré par le PIB est un facteur déterminant des IDE. En effet, «l'augmentation du PIB est associée à une augmentation des entrées d'IDE dans les pays d'accueil. L'augmentation des revenus sont un signe d'une augmentation de la taille du marché et le pouvoir d'achat ». 45

Selon Mayer « les pays désirant accueillir des IDE, doivent s'efforcer d'augmenter les niveaux de revenu moyen et à pratique des politique de restauration visant à améliorer de la demande. De même, la croissance du marché, l'accès au marché, régionaux et mondiaux, des préférences de consommateurs locaux et mondiaux, les préférences des marchés constituent également d'autres déterminants importants entrant dans les incitations ». 46

Kravis et Lipsey (1980) ont trouvé une relation positive entre la taille du marché dans les pays d'accueil et la décision d'implantation des multinationales américaines.⁴⁷

1.3-les déterminants en termes de l'offre

Ce sont principalement des facteurs liées à la production, on distingue : « l'accès aux ressources naturelle, le coût et la qualité de main-d'œuvre, les infrastructures de base et système de communication ». ⁴⁸

1.3.1-Accès aux ressources naturelles

L'accès aux ressources qui était un facteur décisif par le passé, l'est beaucoup moins aujourd'hui du fait de la rapidité et la baisse des coûts de transport, mais reste déterminant pour certaines industries telles l'exploitation minière et l'industrie pétrolière.

En ce qui concerne les matières premières, les Travaux de Campos et Kinoshita démontrent que les dotations en ressources naturelles des pays en transition attirent significativement les stocks d'IDE.⁴⁹

⁴⁸ KACICHAOUCH, T « les facteurs d'attractivité des investissements directs étrangers en Algérie : Aperçu comparatifs aux autres pays Maghreb »mémoire de magistère, université, de Tizi-Ouzou, Juin2012, p.62.

⁴⁵ G-M. GAELLE, « Economie Internationale », édition LEXTENSON, paris, 2009, p.55.

⁴⁶T.Mayer, « les frontière nationales comptent.....mais de moins en mois », la lettre du CEPII, problème économique, n2751, paris, mars, 2002, pp.29-32.

⁴⁷http://eco.univ-setif.dz/seminars/Pub_Invstmnt/1-1.pdf

⁴⁹Campos Mauro F., Kinoshita yuko (2003)« Why does FDI go where it goe New Evidence from the Transition Economies» university of Michigan William Davidson .Institute wording papers series, No.2003-573.

D'un point de vue général, l'accès aux ressources n'affecte la décision d'investissement que lorsque les matières premières sont à la base de l'activité de l'entreprise.

1.3.2-le coût et la qualité de la main-d'œuvre

La main-d'œuvre qualifiée est identifiée comme un facteur fortement déterminant des IDE, l'indice de la scolarisation est utilisé comme mesure de la qualité de la main-d'œuvre.

Cependant, les entreprises ne tiennent pas seulement compte du coût des facteurs de production mais également de leur qualité. En effet, dans son travail, Noorbakhsh et Paloni note « les multinationales recherchent de plus en plus de la main –d'œuvre de très bonne qualité dans la mesure où ces entreprises s'intéressent davantage à la production de biens intensifs en capital et en technologie ». ⁵⁰

1.3.3-les infrastructures de base

Les infrastructures de base développées telle que les routes, les aéroports, de l'approvisionnement en eau, de l'amélioration d'énergie non interrompue, des téléphones et l'accès à l'internet attirent fortement les IDE.

En effet, il est de montré qui les pays avec de bonnes infrastructures attirent plus d'IDE « les infrastructures faibles augmentent le cout de faire de activités et réduit le taux de rentabilité. De plus les couts de production sont en général inférieurs dans les pays où sont faible ».⁵¹

Les infrastructures sont généralement mesurées par le nombre de lignes téléphoniques par 1000 habitant dans un pays.

1.3.4-le système de communication

Dans son ouvrage intitulé : « La séduction des nations comment attirer les investissements » C.-A. Michalet affirme qu'il « Il est exclu qu'un pays puisse attirer des investissements étrangers dans le cas où il ne dispose d'un réseau de communication efficace et bon marché avec le reste du monde et qui permet à chaque unité et à chaque filiale d'être reliée 24heures sur 24 et 7 jours sur 7à la maison-mère et aux autres filiales du groupe ». 52

2-les déterminants d'ordre institutionnel

⁵⁰Noorbakhsh et paloni, volume 29 n.9, pp.1594-1595.

⁵¹K.Fiodendji, « La Qualité des Institutions et les Investissements directs Etrangers en Afrique », édition DIAL, paris, 2006, p.16.

⁵² C.A. Michelet, « La séduction des nations ou comment attirer les investissements », Ed. Economico. Paris, p78-79.

Les déterminants d'ordre institutionnel les plus importants pour les IDE sont les suivants : « la stabilité politique et sociale, le degré d'ouverture commerciale, les incitations fiscales, le taux de change, l'environnement juridique et le climat des affaires ». ⁵³

2.1-la stabilité politique et sociale

Elle est considérée comme l'un des déterminants majeur les IDE. Les investisseurs cherchent avant tout un environnement politique et social stable.

LUCAS (1990) affirme que : « l'instabilité politique est une préoccupation des investisseurs étrangers dans les pays en développement. Cette instabilité se manifeste souvent par la confiscation des biens, la dislocation des structures de production, le changement dans la gestion macroéconomique et surtout l'environnement réglementaire ». 54

2.2-le degré d'ouverture commerciale

L'ouverture commerciale est considère comme un facteur d'attraction des IDE. L'ouverture d'une économie mesurée par le niveau des importations et exportation par rapport au PIB, elle tient compte du fait que les économies plus ouvertes tendent à être plus vulnérables à la perte de l'accès au financement extérieur.⁵⁵

Ainsi, FIODENDJI(2006), indique : « la diminution des niveaux de restriction sur les transactions commerciales avec l'extérieur tend à augmenter les IDE horizontaux dans les pays d'accueil .Cependant, les IDE verticaux qui sont considère comme des investissements qui ne cherchent pas le marché, dans ce cas les firmes multinationales préfèrent s'installer dans des économies plus ouvertes ». ⁵⁶

2.3-les incitations fiscales

Leur objectif général est de réduire le taux de pression fiscale globale sur l'investisseur étranger à travers les actions suivantes :

- -la réduction ou l'exonération des taux à l'importation et l'exportation.
- -une accélération de l'amortissement du capital.
- -une réduction des cotisations sociales assises sur le travail.

De plus, la nature des incitations fiscales joue également un rôle. En effet, « une jeune entreprise réagit mieux à l'exonération des taux sur l'équipement ou matériel nécessaire à son

⁵³ T.KACICHAOUCH., « les facteurs d'attractivité des investissements direct étrangers en Algérie : Aperçu comparatifs aux autres pays du Maghreb », mémoire de magistère, université, de Tizi-Ouzou, juin.2012p.62.

⁵⁴Lucas, R.E. (1990). «Hey doesn't capital flow form Rich to poor countries. "The American Economic .Review 80(2):92-96.

⁵⁵Agénor ,P,R, « Benefits and costs of international financial integration: Theory and Facts", policy Research working paper,N°.2699, The World Bank,October,2001,p.35.

⁵⁶ K.FIODENDJI, « La Qualité des Institutions et des Investissement directs Etrangères en Afrique », édition DIAL, paris, 2006, p.15.

Chapitre I : Cadre conceptuel des IDE et leurs déterminants

fonctionnement pour baisser leurs frais initiaux, tandis qu'une entreprise en expansion des exonérations des taxes sur le profit ». ⁵⁷

2.4-le taux de change

Le taux de change constitue une variable importante dans le choix d'implantation des IDE. En effet, « si le taux de change est sujet à des fortes fluctuations ou s'il est constamment dévalué dans un souci de compétitivité, l'investisseur étranger y verra peut être un facteur supplémentaire de risque et d'incertitude dans la mesure où cela a des incidences sur la valeur (en devises) de son investissement ainsi que ses futurs gains et transferts de fonds, préférera un régime qui lui garantisse des taux de change stables ».⁵⁸

2.5-l'environnement juridique

La stabilité du cadre juridique du pays d'accueil et la possibilité de recourir à l'arbitrage international pour le règlement des différends est un facteur important dans l'attraction des IDE. La confiance de l'investisseur étranger est basé sur la fiabilité des appareils juridiques et réglementaires avec l'existence de tribunaux compétents, indépendants, impartiaux et intègres. Par conséquent, la transparence et l'efficacité du système légal, réglementaire et judiciaire correspondent à un aspect important de l'appréciation du climat des investissements.⁵⁹

2.6-le climat des affaires

Plusieurs paramètres sont en considération pour évaluer le climat des affaires d'un pays.

> La bureaucratie

Les frais administratifs et les procédures nécessaires pour l'implantation des investisseurs étrangers varient d'un pays à un autre. Ainsi, Morriset et Neso, qui mènent une analyse de ces facteurs dans une étude sur 32 pays en développement (incluant 20 pays africains et 7 pays d'Europe de l'Est et d'Europe centrale), et sur une période allant de 1997à 2001, montrent que les barrières les plus importantes concernent les procédures d'accès aux terrains.

⁵⁷ C.A., Michalet., « la séduction des nations ou comment attirer les investissements directs étrangers » Cité, p.80.

⁵⁸ R-M.ZAFANIA et R.LOZE « Etude sur la promotion de l'Investissement à Madagascar », édition CREA, 2010, p.24.

⁵⁹T.KACI.chouach, Cité, p65.

⁶⁰J.MorissetetO.Neso,« Administrative barriers to foreign investment in developing countries », policy Research Working paper, n°2848, 2002, PP .4-13.

Chapitre I : Cadre conceptuel des IDE et leurs déterminants

En termes d'importance, la bureaucratie est plus répandue dans les pays en développement que dans les pays développés. En effet, « En Chine par exemple, il faut 41 jours pour créer une entreprise, 241 jours pour la bonne exécution d'un contrat et deux ans et demi pour achever une procédure de faillite. En Inde, on compte 89 jours pour créer une société, 425 jours pour exécuter un contrat, mais le créancier devra attendre dix ans pour voir aboutir un dossier de faillite. En revanche, en France, la création d'une société demande 8 jours uniquement, la bonne exécution d'un contrat, 75 jours, une procédure de dépôt de bilan, environ 18 mois ». 61

> La corruption

La corruption permet aux entreprises résidentes de soudoyer les pouvoirs publics à prendre des décisions en leur faveur. La corruption « consiste à utiliser une charge politique pour son profit personnel. Cela comprend les pots-de-vin et l'extorsion, ainsi que d'autres abus qu'un fonctionnaire peut commettre ». 62

Selon Hellman et Kaufmann, « ce phénomène de captation de l'Etat varie de façon significative selon les pays, notamment des pays en transition. Ainsi, les entreprises captatrices espèrent d'une part une augmentation de leurs performances dans les économies à forte captation et, d'autres part, compenser la faiblesse générale du respect du droit en achetant à l'Etat une protection de leurs droits de propriété ». 63

> La transparence

Un environnement sain, où la transparence règne peut attirer des investisseur, dont le pays profitera de leur de leur bien fait.

Le rapport 2003 de L'OMC⁶⁴, identifie la transparence comme « un des fondements d'un environnement économique stable et prévisible permettant la circulation des capitaux productifs. L'engagement en faveur de politiques améliorant la transparence fournit un signal positif aux investisseurs quant à un environnement commercial propice à l'investissement. La transparence fournit ainsi, aux acteurs économiques des renseignements sur les

⁶¹ La revue, le MOCI, n°1672.14octobre 2004, p.13.

⁶² F MI, revne finances et développement/mars 1998, p.7.

⁶³J.Hellman et D. Kauffman, « la captation de l'état dans les économies en transition : un défi à relever », finances et développement, volume 38, n°3, 2001, pp.31-35.

⁶⁴ OMC, « Transparence », Groupe de travail des liens entre commerce et investissement, Communication du Canada, n°03-1923, Avril 2003, pp.2-4.

Chapitre I : Cadre conceptuel des IDE et leurs déterminants

réglementations régissant le fonctionnement de l'économie ainsi que sur les procédures servant à les administrer.

Ce climat d'investissement transparence profitera à tous les investisseurs, quelle que soient leurs origines.

L'OCDE⁶⁵, dans son document publié en 2002, à travers une analyse des données sur la relation entre transparence et flux d'investissement étranger, montre que : « la transparence, par sa nature même, n'est pas facile à quantifier et que l'on ne peut pas l'isoler des autres politiques qui influencent les IDE. Il faut donc s'intéresser aussi bien, à la nature des règles qui s'appliquent à l'investissement étranger et au degré de transparence de leur mise en œuvre ».

Selon l'OCDE, la transparence est bénéfique non seulement pour attirer les investisseur étrangers, mais également dans le rôle instrumental qu'elle joue pour accroitre le sens des responsabilités dans les milieux des affaires et le gouvernée.

Conclusion:

Ce premier chapitre a présenté une revue générale de la littérature portant sur les déterminants des IDE. On a commencé par une multitude des définitions des IDE, et on a présenté les formes d'IDE ainsi que les stratégies des FMN.

L'analyse de l'évolution historique de l'IDE dans le monde fait apparaître des étapes importantes : La première étape située entre le premier conflit mondial et la veille du second, la deuxième étape se situant après la deuxième guerre mondiale jusqu'au années 70 et le troisième, se situe entre 1973-1984, ainsi que l'évolution récente qui est très importante dans la vie économique montre aussi l'importance que donne les pays développés et en voie de développement pour les IDE ces dernière années.

Afin de pouvoir déterminer les facteurs d'attractivité, nous avons mis en évidence de nombreux travaux, notamment empiriques consacrés essentiellement à mettre en évidence les facteurs déterminants des IDE et à formuler des recommandations sur les meilleurs politiques d'attractivité. L'investisseur étranger semble être influencé par un ensemble de facteurs : le cout et la qualité de la main-d'œuvre, la taille du marché et son degré d'ouverture, la qualité des infrastructures et des institutions, la politique fiscale.

_

⁶⁵ OCDE, « cadre pour la transparence de la politique d'investissement », Direction des affaires financières et des entreprises, Octobre 2003, pp.2-3.

Chapitre II

Introduction

L'investissement direct étranger (IDE), vecteur important de la mondialisation, connaît actuellement un développement considérable. Son essor traduit d'une part, l'intensification par un nombre croissant de sociétés multinationales de leurs activités à l'échelle mondiale sous l'effet de la libéralisation de nouveaux secteurs à l'investissement et, d'autre part, l'existence d'un surplus d'épargne notamment européen en quête de meilleurs placements.

Ce présent chapitre a pour objectif de présenter les principales réformes adoptées par les pays du Maghreb en vue d'attirer les investisseurs étrangers. Ce chapitre est structuré en trois sections, dans la première, on présentera le cadre réglementaire et évolution des IDE en Tunisie, la deuxième section expose les principales mesures prises par les autorités marocaines pour adapter le cadre réglementaire des IDE et on présentera évolution des IDE au Maroc. La dernière sera consacré à présenter le cadre réglementaire et évolution des IDE en Algérie.

Section 1 : Cadre règlementaire et évolution des IDE en Tunisie

Il sera présenté dans cette section la politique d'attractivité des IDE menée par la Tunisie depuis 1993.

1- Le cadre règlementaire des IDE en Tunisie

La Tunisie est un pays en développement, son financement interne ne suffit pas pour assurer une croissance suffisante pour une génération présente et future. Ainsi, des politiques d'attractivité sont menées par l'autorité tunisienne pour renforcer leur attractivité vis-à-vis des IDE.

1.1. Les politiques d'incitations des IDE en Tunisie

Le code régissant l'IDE est promulgué par la loi n°93-120 du 27 décembre 1993, qui renferme un ensemble d'avantages financiers et fiscaux qui tiennent compte des priorités horizontales retenues dans le cadre de la stratégie du développement du pays et qui vise notamment l'accélération du rythme de la croissance et des créations d'emplois.¹

Le code des incitations aux investissements est entré en vigueur en janvier 1994, c'est la loi qui régit aussi bien l'investissement étranger que national. Il consacre la liberté d'investir dans la plupart des secteurs et renforce l'ouverture de l'économie tunisienne l'extérieur. Plusieurs

-

¹ http://WWW.investissement. tni

incitations sont proposées sous forme d'exonérations finales: ² de primes à l'investissement, de prise en charge de frais d'infrastructure et de prise en charge de cotisation patronales.

1.1.1-Incitations communes : il s'agit de :³

- Dégrèvement des revenus ou bénéfices réinvesti dans la limite de 35% de revenus ou bénéfices soumis à l'impôt.
- * Exonération des droits de douane sur les biens localement.
- Suspension de la TVA à l'importation des biens d'équipement non fabriqués localement pour les projets de créations et pour les pour les autres opérations d'investissement.
 - **1.1.2-Incitations spécifiques :** les avantages sont accordés aux entreprises totalement exportatrices sont:⁴
- Exonérations totale de l'impôt sur les bénéfices provenant de l'exportation pendant les 10 premières et payement de l'impôts sur sociétés aux taux réduits de 10% au-delà de cette période.
- **Exonération totale des impôts bénéfices et revenus réinvestis.**
- ❖ Franchise totale des droits et taxes les biens d'équipement y compris le matériel de transport des marchandises, les matières premières, semi-produits et services nécessaires aux activités.
- ❖ Possibilité de mise en vente sur le marché local, de 30% de production industrielle ou agricole avec paiement des droits et exigés. Ce toux est fixé à 50 %jusqu'au 31 décembre 2009.
 - Zone d'encouragement au développement régionale

-Avantage fiscaux et para fiscaux

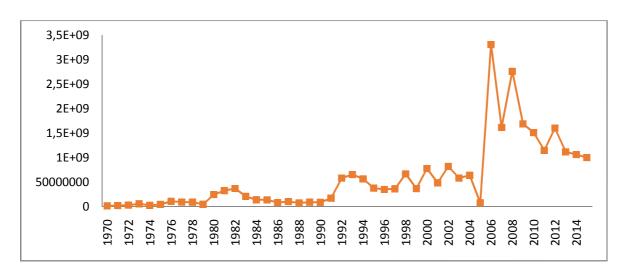
Le code accorde des avantages pour les investissements réalisés dans les zones d'encouragement au développement régional

Exonération totale de l'impôt sur les bénéfices et revenus réinvestis.

Déduction des revenus ou bénéfices provenant des investissements l'assiette de l'impôt sur le revenu des personnes physiques et l'impôt les sociétés et cela dans les secteurs de l'industrie, du tourisme, de l'artisanat et de quelques activités de services, prévus comme suit :⁵

² THAALBI Inés, Titre de la Thèse, « Déterminants et impacts des IDE sur la croissance économique en Tunisie », Université de Strasbourg, décembre 2013, p.143.

³ Idem


⁴ Idem

⁵ THAALBI Inés, Titre de la Thèse, « Déterminants et impacts des IDE sur la croissance économique en Tunisie », Université de Strasbourg, décembre 2013, p146.

- -Totalement pendant les cinq premières années à partir de la date d'entrée en activité effective pour les entreprises établies dans les zones d'encouragement au développement régional du deuxième groupe (loi n°2007-69 du 27/12/2007).
- Totalement pendant les dix premières années à partir de la date d'entrée en activité effective pour les entreprises établies dans les zones d'encouragement au développement régional du deuxième groupe (loi n°2007-69 du 27/12/2007).
- Totalement pendant les dix premières années à partir de la date d'entrée en activité effective pour les entreprises établies dans les zones d'encouragement au développement régional du deuxième groupe (loi n°2007-69 du 27/12/2007).
- Totalement pendant les dix premières années et dans la limité de50 % de ces revenus pendant les dix années surventes, pour les entreprises établies dans les zones d'encouragement au développement régional prioritaires (loi n°2007-69 du 27/12/2007).

2-L'évolution des IDE en Tunisie

La Tunisie dispose de nombreux atouts, tels que proximité de l'Europe, stabilité politique, main d'œuvre qualifiée et compétitive, francophonie, et fiscalité privilégiée, qui ont fait d'elle un site attractif pour les investisseurs étrangers. Les pouvoirs publics ont donné une importance décisive à l'IDE, qui est considéré comme une source principale de financement

Graphe n°1: Evolution des IDE en Tunisie (unité: dollars BDP, \$ US courants)

Source : A partir de données de la banque mondiale.

2.1. L'évolution des IDE en Tunisie (1990 - 2014)

La stabilité économique et politique pendant les années 1990 et 2011, a encouragé les investisseurs étrangers à investir en Tunisie. Ils ont enregistrés un doublement des

investissements directs étrangers (IDE) passant de 402,9 M TND en 1997 à 1015,7 M TND en 2005, soit une augmentation de 152%. La part des IDE dans le PIB (IDE/PIB), a évolué en 2006 et 2008 pour atteindre respectivement 9,42% et 5,89.

La Tunisie a enregistré une diminution depuis la fin des années 2000, alors qu'elle attirait traditionnellement de nombreux investissements directs étrangers dans le domaine des ind1ustries de transformation. Ces dernières années, à l'image de l'exemple français, principal investisseur en Tunisie hors secteur de l'énergie, les investissements ont plutôt concerné des extensions d'entreprises déjà installées.

A partir de l'année 2008, la Tunisie a supporté l'influence de deux crises différentes et successive, le premier est celui de « la crise supprimes » qui a été commencé en 2008, et la deuxième est une crise interne «politique » qui a été déclenché à cause des troubles sociaux.

Suite aux effets de la crise supprimes, le flux des IDE en Tunisie a régresse de 2,36% soit, 3,53% de flux de IDE /PIB en 2009.

En ce qui concerne la crise politique, la Tunisie a connu des troubles sociaux qui ont commencé en décembre 2010 et qui sont guidé par le slogan « démocratie et liberté ». Cette révolution a affecté négativement la stabilité politique et économique du pays.

Selon les statistiques d'investi in Tunisie en 2012 Les flux des IDE enregistrés au cours de l'année 2011 par une baisse de 25,7% par rapport de l'année 2010. Ce qui engendre une cessation d'activité de 182 entreprises étrangères ont été marqués dont 64 entreprises Italiennes, 61 Françaises et 10 Allemandes entrainant une perte de 10930 postes d'emploi.

L'étude de l'évolution des flux des IDE montre que l'instabilité économique et politique à un impact négatif sur les entrées des IDE en Tunisie Toutes fluctuations de ces deux facteurs entraine une diminution de ces flux.⁶

2.2. L'évolution des IDE en Tunisie (2012- 2015)

Les statistiques de stock d'IDE disponibles sont très différentes. En y intégrant l'ensemble des secteurs, les statistiques fournies par les Nations-Unies (CNUCED) recensent, pour 2014, un stock de près de 30 Mds€, soit 65% du PIB ; pourcentage stable depuis la révolution en 2011. A titre de comparaison, au Maroc, le stock d'IDE s'élevait à plus de 50 Mds€ et près de 50% du PIB. La FIPA (*Foreign Investment Promotion Agency*) en charge plus particulièrement des

.

⁶ https://www.tresor.economie.gouv.fr/File/426078

investissements tunisiens dans le secteur industriel a reconstitué des séries statistiques hors énergie, hors services financiers et hors distribution. Elle avance un stock d'IDE de l'ordre de 9,5 Mds€ début mai 2015. ⁷

3-Géographie des IDE en Tunisie par secteur

L'examen de la répartition sectorielle de l'IDE en Tunisie montre que l'investissement étranger est concentré dans les secteurs à fort contenu de valeur ajoutée dont lesquels, la Tunisie dispose d'un avantage comparatif significatif. En effet, le secteur Energie est en première position avec 65,80% de total des IDESuivi par 20,45% pour les industries manufacturés, 12,17% pour l'Agriculture 1 ,41 % en termes de services et autres et 1,15% pour le tourisme et immobilier.

Tableau n°1. Analyse sectorielle du flux des IDE en millions de TND, 2006 à 2011

	2006	2007	2008	2009	2010	2011
Industries	347,4	485,7	641,6	771,6	573 ,6	330,6
manufacturières						
énergie	940 ,3	1359,0	1933 ,9	1233,5	1317,1	1063,4
Tourisme et	18.3	72,0	198,6	85,5	95,0	22,9
immobilier						
Agriculture	14,1	7,7	20,1	16,9	2,8	2,3
Service et autres	3082,8	146,4	604,5	171,2	176,5	196,7
Total ID	44039*	2070,9	3398,7	2278,7	2165,0	1615,9

Source : rapport sur les IDE en Tunisie, Décembre 2011.

Les IDE sont concentrés essentiellement dans le secteur de l'industrie manufacturière et plus précisément dans l'industrie du textile et de l'habillement. En termes d'emplois dont 1617 nouveaux postes d'emplois dont 9372 dans les secteurs de l'industrie manufacturière soit 88,3% du total des emplois crées. La création d'emplois est donc presque années.⁸

Les investissements directs étrangers réalisés en 2015 sont répartis entre projets de création d'une valeur de 159,5MTND et projets d'extension d'une.

Tableau n° 2 : Analyse sectorielle du flux des IDE en millions de TND, 2012à2015.

Unité :	2012	2013	2014	2015	Evolution	Evolution	évolution
MTND					2015/	2015/	2015/

⁷ Ambassade de France au Maroc , service économique régional, Les investissements directs étrangers au Tunisie 2015, mai 2016, p.2.

^{*}dont la privatisation de Tunisie télécom en 2006(35% du capital) soit 2972 millions de TND.

⁸ http://www.institut-numerique.org/chapitre-ii-lanalyse-des-flux-des-ide-en-tunisie-510129d022065

					2014	2013	2012
Energie	886,0	1077,3	891,7	970,3	8,80%	-9,94%	9,51%
Industrie	531,6	507, 7	454,3	563,6	24,08%	11,15%	6,03%
manufactu							
rière							
Services*	1081,8	218 ,0	452,4	421,7	-6,79%	93,43%	-61,02%
Agricultur	4,6	11,3	7,9	9,3	17,67%	-17,94%	102,09%
e							
Total	2504,0	1813,8	1806,4	1964,9	8,78%	8 ,33%	-21,53%

Source: http://www.institut-numerique.org/chapitre-ii-lanalyse-des-flux-des-ide-en-tunisie-510129d022065

L'analyse sectorielle des investissements directs étrangers réalisés fait ressortir ce qui suit :

- 1. Le secteur des énergies semble être affecté par la conjoncture économique Internationale et surtout par la baisse du prix de pétrole. Cependant une reprise est Prévue pour l'année prochaine suite au démarrage d'un grand projet d'exploitation de puits de pétrole. 9
 - 2. L'industrie manufacturière, premier secteur créateur d'emplois, enregistre, pour la première fois après la Révolution, une hausse de l'ordre de 24% par rapport à 2014 et 11% par rapport à 2013.

Pour conclure, En plus de l'amélioration de l'environnement des affaires de 1993, les pouvoirs publics se sont attelés au renforcement de l'attractivité du Maroc, Plusieurs incitations sont proposées sous forme d'exonérations finales : de primes à l'investissement, de prise en charge de frais d'infrastructure et de prise en charge de cotisation patronales. Sectorielles des IDE s'inscrivent dans un contexte d'attraction croissante du secteur les industries manufacturés et l'Agriculture.

Section 2 : Cadre règlementaire et évolution des IDE au Maroc

Au Maroc, les premiers flux d'IDE ont fait leur apparition au début du 20éme siècle avec la mise en place du régime de protectorat. Depuis lors, ces flux ont connu des hauts et des bas en fonction des considérations politiques et économiques, ces investissements ont touché divers secteurs d'activité, mais à des niveaux différents.

_

⁹ Rapport des IDE 2015 et perspectives 2016, p.21.

1-Le cadre règlementaire des IDE au Maroc

L'institution des juridictions de commerce au Maroc constitue une avancée dans la modernisation du système judiciaire du pays. Les tribunaux de commerce s'intègrent dans l'édifice juridique du pays pour sécuriser l'environnement des acteurs économiques nationaux et étrangers et s'adapter aux changements économiques.

1.1.Les Principales mesures adoptées en faveur des investissements au Maroc

En plus de l'amélioration de l'environnement des affaires de 1993, les pouvoirs publics se sont attelés au renforcement de l'attractivité du Maroc vis- à-vis des investisseurs étrangers. Cette volonté s'est concrétisée à travers des mesures d'ordre législatif, institutionnel, organisationnel et fiscal¹⁰.

1.1.1. Les réformes d'ordre législatif

L'assainissement de l'environnement juridique des affaires joue un rôle capital dans la stratégie de promotion de l'économie marocaine et dans l'amélioration de l'image de marque du Maroc. L'action des pouvoirs publics s'est concrétisée dans ce domaine en particulier à travers:¹¹

- ➤ l'encouragement de la créativité par l'adoption de textes de loi sur la protection de la propriété intellectuelle et de la propriété industrielle et sur la création de l'Office Marocain de la Propriété Industrielle et Commerciale.
- ➤ l'adoption de la charte des investissements, en remplacement des codes sectoriels par une législation unique et homogène et donnant lieu à des avantages fiscaux importants en faveur des investissements.
- ➤ la promulgation du décret d'application des articles 17 et 19 de la charte de l'investissement.

Ce texte prévoit la prise en charge par l'Etat d'une partie des coûts de la formation, de la mise en place de l'infrastructure et de l'acquisition des terrains nécessaire à condition que le montant global de l'investissement soit supérieur ou égal à 200 millions de dirhams, qu'il occasionne la création d'au moins 250 emplois et qu'il assure un transfert de technologie ou que le projet soit réalisé dans l'une des régions visées par décret.

¹¹ MARWANE MANSOURI, (2007) « réglementation des investissements directs étrangers au Maroc : réformes », gouvernement du royaune du Maroc, 4septembre 2007.

¹⁰ Adil Dance, Fatima Bernoussi & Mouna Tourkmani (2002), « Diagnostic de l'attractivité du Maroc pour les Investissements Directs Etrangers », Document de Travail n°82, p.9.

- ➤ l'institution d'un régime de convertibilité en faveur des investissements étrangers, financés en devises, permettant aux investisseurs étrangers de réaliser librement des opérations d'investissement au Maroc, de transférer le revenu issu de ces opérations d'investissement et de re-transférer le produit de liquidation ou de cession de leurs investissements.
- ➤ la libéralisation des opérations de financement extérieur, la réforme du système du compte « capital » et l'institution d'un nouveau régime des avoirs liquides en dirhams détenus au

Maroc par des étrangers non-résidents à travers, notamment, le remplacement des comptes «capital » par des « comptes convertibles à terme » qui peuvent être débités pour financer les investissements au Maroc.

1.1.2. Les réformes d'ordre institutionnel

Pour faire face à la complexité des procédures et aux lourdeurs administratives, les pouvoirs publics ont opté pour les mécanismes institutionnels suivants : 12

- ➤ la création d'une commission interministérielle auprès du Premier Ministre chargée de statuer sur les problèmes qui entravent la réalisation de projets d'investissements, d'agréer les conventions liant l'Etat à des investisseurs d'envergure et de mettre en œuvre toute mesure visant à améliorer l'environnement des investissements.
- ➤ la mise en place de centres régionaux d'investissement en vue d'asseoir les fondements de la gestion déconcentrée de l'investissement et ce, conformément à la lettre Royale du 9 Janvier 2002.

1.1.3. Les réformes d'ordre réglementaire et organisationnel

Pour attirer les investissements étrangers, les mesures prises en matière de privatisation et de libéralisation sont : 13

- ➤ la révision de la loi sur la privatisation de manière à en faire un instrument de politique économique qui assoit les règles de transparence, de régula rité et d'équité.
- ➤ la poursuite du processus de désengagement de l'Etat à travers le programme de privatisation (Maroc Telecom) et l'octroi de concessions (production indépendante d'électricité à Jorf Lasfar, parc éolien de Koudia El Beida, distribution d'eau et d'électricité et assainissement liquide au Grand Casablanca, à Rabat-Salé et à Tange Tétouan).
- ➤ la promulgation de la loi sur les zones franches d'exportation et les places financières off shore.

¹² M. DKHISSI SAID, « politique d'attractivité des IDE au marc », université mohammed V-souissi, master Echanges internationaux et OMC 2008/2009 P.7.

¹³ http://www.memoireonline.com/08/09/2565/m_Investissement-Direct-Etranger-au-Maroc-et-politique-dattractivite7.html

1.1.4. Le financement

Les pouvoirs publics ont mis l'accent sur le lien étroit qui existe entre la dette extérieure

publique et l'amélioration des investissements étrangers, et ce :

> en poursuivant le programme de gestion active de la dette qui permet la conversion d'une

partie de la dette extérieure publique en investissements. Le montant converti en

investissements s'élève à 667 millions de dollars.

> mettre en place un certain nombre de lignes de crédit favorisant le partenariat entre les

entreprises nationales et étrangères

1.1.5. Les mesures fiscales

Les pouvoirs publics ont veillé à la mise en place d'un cadre fiscal attrayant en vue d'inciter

davantage les investisseurs étrangers à réaliser leurs projets au Maroc. Il s'agit notamment des

mesures suivantes:

> l'adoption d'un cadre juridique permettant l'octroi d'avantages douaniers et fiscaux aux

programmes d'investissement d'envergure notamment ceux dont le montant dépasse 200

millions de dirhams. L'exonération totale de l'IS et de l'IGR des entreprises installées dans

les zones franches durant les cinq premières années d'exploitation et la réduction du taux

de l'IS de 10 à

8,75% durant les dix années suivantes.

> l'extension de l'exonération de la TVA accordée aux prestations de services et aux travaux

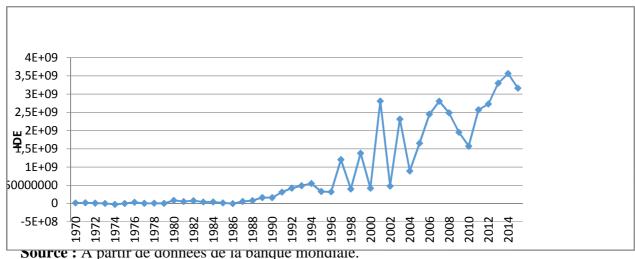
de construction ou de montage dans les zones franches.

➤ le relèvement du plafond de la provision pour investissement, susceptible d'être employée

pour les opérations de recherche et développement ou de restructuration, en la faisant

passer de 2% à 20 % du bénéfice fiscal avant impôt.

la révision du code des douanes en vue de l'aligner sur les standards internationaux, de


mieux définir les responsabilités des divers intervenants, de différencier l'erreur de la

fraude manifeste et d'atténuer le barème des sanctions.

2- L'évolution des IDE au Maroc

Graphe n°2 : Evolution des IDE en Maroc (unité : US courants)

34

2.1. Evolution des IDE au Maroc (1970 à 2006)

Les IDE au Maroc ont connu un essor important dû en grande partie au démarrage du processus de privatisation et à la conversion de la dette extérieure en investissement.

Toutefois, leur évolution est caractérisée par une certaine irrégularité. Après avoir enregistré un niveau élevé en 1997 en liaison avec la concession d'exploitation des centrales thermiques de Jorf Lasfar et la privatisation de la SAMIR, les flux d'IDE à destination du Maroc ont accusé une baisse en 1998 et en 2000. Ils ont atteint un niveau record de 30,6 milliards de dirhams en 2001. En (2002), le Maroc a été, d'après le CNUCED, le deuxième pays destinataire d'IDE sur le continent africain, après l'Afrique du Sud (6,7 milliards de dollars). 14

Ces évolutions s'expliquent en grande partie par le démarrage du processus de privatisation et par la conversion de la dette en investissement.

La prise en considération, dans le projet de loi de finances 2002, de la privatisation de 16% du capital de Maroc Telecom et de la cession des participations de l'Etat dans certains organismes comme la Régie des Tabacs, la SOMACA et la Banque Centrale Populaire.

Les recettes des investissements étrangers se sont établies à 1,6 milliard de dollars en 2004. L'afflux d'IDE au Maroc en 2004 a été marqué essentiellement par la cession en bourse de 14,9% du capital de Maroc Telecom, qui entre dans le cadre de l'accord permettant à Vivendi l'acquisition de 16% supplémentaire de ce groupe.

¹⁴ Adil Dance, Fatima Bernoussi & Mouna Tourkmani Cité, p.8.

Cette cession en bourse a connu un succès historique qui s'est manifesté à travers la forte demande de souscription des actions de Maroc Telecom et qui a totalisé pour la seule bourse de Paris (30% des titres offerts) 156 milliards de dirhams, soit 17,5 fois le montant alloué à cette place, provenant de 57 pays. Les plus fortes demandes des institutionnels à l'étranger émanent du Royaume Uni, des Etats-Unis, de la France, de la Suisse, du Benelux, de l'Allemagne, de l'Italie et des pays arabes du Golfe.

Les pays arabes ont représenté moins de 10% du total des IDE reçu au Maroc en 2006. Le 1er pays arabe investisseur en 2006 demeure le Koweït avec 983,5 Mds d'investissement, soit 3,86% du total des IDE reçu en 2006, suivi par les IDE des Emirats Arabes Unies avec 759 Mds (2,98%) et l'Arabie Saoudite avec 322,1 M Dhs (1,26%).

La légère baisse, en 2006, des flux de l'IDE à destination au Maroc s'explique essentiellement par l'absence d'opérations remarquables de privatisation contrairement à l'année 2005 où ces flux provenaient dans une large mesure de recettes de privatisation.

Le Maroc a drainé un flux d'investissements directs étrangers (IDE) de l'ordre de 2,57 milliards de dollars en 2007 contre 2,4 milliards en 2006, selon le rapport 2008 de la CNUCED sur l'investissement dans le monde.

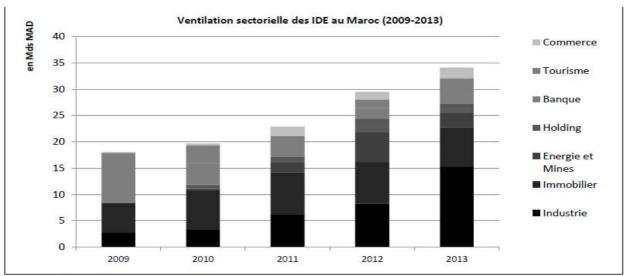
Le flux d'investissement des 13 pays européens qui ont investi au Maroc en 2007 représente 73,5% du total des IDE. Les investissements arabes connaissent, pour leur part, une progression de plus en plus importante, atteignant 19,3% du total des investissements en 2007 contre 9,9% en 2006. ¹⁶

2.2. L'évolution des IDE en Maroc (de 2007à 2016)

Le flux net d'IDE au Maroc s'est inscrit en baisse à 22,8 Mds MAD (-28,2% par rapport à 2015). Cette baisse intervient après cinq années de hausse suivie, mais 2016 restes dans la moyenne des dix dernières années (22,5 Mds MAD).

Le Maroc offre aux investisseurs étrangers un environnement économique, institutionnel et réglementaire globalement favorable. Ainsi, dans le contexte régional, le Maroc a bénéficié

 $^{16} \, http://www.memoireonline.com/08/09/2565/m_Investissement-Direct-Etranger-au-Maroc-et-politique-dattractivite 10$

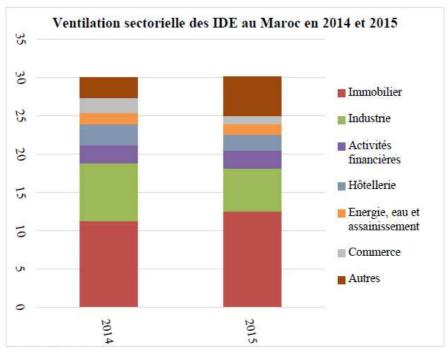

36

¹⁵ Sanae MAHRAZ, « investissement Direct Etranger au Maroc et politique d'attractivité », FSJES Meknes - licence 2008, p.3.

d'un effet de report des investisseurs internationaux, dont la confiance accordée au Royaume semble être restée indemne (comme le montre la hausse tendancielle des IDE au Maroc de 2011 à 2015). La baisse de 28,2% d'IDE en 2016 s'explique notamment par la hausse des remboursements de prêts et d'opérations de fusion-absorption.¹⁷

3-Répartition sectorielle de l'IDE au Maroc

Les évolutions sectorielles des IDE s'inscrivent dans un contexte d'attraction croissante du secteur industriel marocain, au détriment d'autres secteurs traditionnellement. En effet, sur la période 2009-2013, les IDE vers l'industrie ont été multipliés par près de six. ¹⁸


Source : Office des changes du Maroc

_

¹⁷ Ambassade de France au Maroc service économique régional, Les investissements directs étrangers au Maroc, Févire 2017, p.1.

⁴ http://www.tresor.economie.gouv.fr/Pays/maroc

En 2015, malgré le repli de 25% des IDE dans l'industrie par rapport à 2014, le secteur continue à capter une part importante d'IDE (18%). La montée en puissance de certaines activités industrielles telles que l'agroalimentaire, l'automobile, l'aéronautique ou l'électronique, a favorisé la réalisation d'opérations de grande ampleur. 19

Source : SER, d'après Office des Changes

Pour conclure, En plus de l'amélioration de l'environnement des affaires de 1993, les pouvoirs publics se sont attelés au renforcement de l'attractivité du Maroc, concrétisée à travers des mesures d'ordre législatif, institutionnel, organisationnel et fiscal; L'évolution des flux d'IDE est caractérisée par une certaine irrégularité. Les évolution sectorielle s'inscrit dans un contexte d'attraction croissante du secteur industriel immobilier marocain.

-

¹⁹ Ambassade de France au Maroc service économique regional, Les investissements directs étrangers au Maroc, Févire 2017, p.2.

Section 3 : Cadre règlementaire et évolution des IDE en Algérie

La plupart des pays se trouvent confrontés aux problèmes du financement de leur activité économique et manifestent des besoins énormes en matière de capitaux pour à la fois financer le déficit commercial et pour combler l'écart entre l'épargne et l'investissement nécessaires au développement, L'Algérie, après l'indépendance, a cherché à attirer le capital étranger et à l'intégrer au développement économique et social national. Cette section sera répartie en deux parties, nous tracerons l'évolution du cadre réglementaire ainsi que l'évolution des IDE en Algérie depuis l'indépendance.

1- L'évolution du cadre réglementaire des investissements en Algérie

Nous présentons les textes réglementaires depuis 1963 jusqu'à nos jours en traitant, les anciens codes promulgués dès l'indépendance, les nouveaux codes venus après la libéralisation de l'économie, et d'autres nouvelles mesures.

1-1 les anciens codes

1.1.1 Le code de 1963 (L'ordonnance n°63-276 du 26/07/1963): Le premier code des investissements date du 26 juillet 1963. Il définit les garanties générales et particulières accordées aux investissements productifs en Algérie, les droits, obligations et avantages qui s'y rattachent ainsi que le cadre général des interventions de l'Etat dans le domaine des investissements. Les garanties et avantages prévus par ce code s'appliquaient uniquement aux investissements étrangers, « la liberté d'investissement est reconnue aux personnes physique et morales étrangers sous réserves des dispositions d'ordre public et des règles d'établissement ».²⁰

1.1.2 Le code de 1966 (L'ordonnance n°66-284 du 15/09/1966) : C'est l'échec du premier code qui a poussé le gouvernement de l'époque à promulguer un autre code en septembre 1966. Délimite le cadre dans lequel est organisée l'intervention du capital privé dans les diverses branches d'activité économique. Le mérite du code est d'avoir défini la politique gouvernementale en matière d'investissements privés. En effet l'investissement direct peut être tout aussi bien privé que public. Ce texte vise le capital, c'est-à-dire les opérations en capital susceptibles d'être réalisées au profit de l'économie nationale. Mais ce

_

 $^{^{\}rm 20}$ Ordonnance n°63-277-1963, portant code des investissements, journal officiel n° 53,p.774.

nouveau code ressemble un peu au précédent. Les investisseurs étaient obligés de solliciter la commission nationale d'investissements pour obtenir l'agrément.²¹

Le code de 1982 (la loi n°82-13 du 28-08-1982 modifiée et complétée par la loi n°86-13 du 19-08-1986): appelée aussi loi sur les sociétés d'économie mixte, devait attirer les investisseurs étrangers grâce à un ensemble d'avantages introduits dans son textes. Plusieurs clauses régissant les entreprises mixtes et relevant de droit commercial ont été éclaircies par la loi n°86-13bdu 19-08-1986 (champ d'intervention, objet, durée de vie de la société d'économie mixte, engagements et obligation des parties contractantes ...). ²²

1.1.3 Le code de 1988 (La loi n°88-25 du 12/07/1988): Cette loi annule la loi du 21/08/1982, elle n'était pas destinée aux étrangers. La réorientation idéologique, politique et économique de l'Algérie rendait inadaptées les dispositions instaurés depuis le code de 1966. Le code de 1988 a donc instauré de nouvelles règles, en conformités avec les nouvelles orientations de l'Algérie. Cependant, ce texte précise les cas où l'investisseur doit être conformité avec les règles qui donnent une accessibilité aux avantages prévus par la loi. Le but général de ce texte est l'adaptation des règles algériennes avec les nouvelles orientations de l'économie nationale.²³

1-2 Les nouveaux codes

1.2.1 La loi 93-12 du 05 octobre 1993, dite code des investissements

L'année 1993, marque un tournant irréversible de l'économie algérienne vers l'économie de marché. Suite à la chute des prix de pétrole, il était nécessaire de réorienter la doctrine de l'Etat Algérien en matière de diversification des ressources financières par l'ouverture sur le capital étranger. C'est pour cette raison que le texte offre les meilleures conditions en vue d'attirer des flux conséquents²⁴. La loi repose sur les principes suivants :

- La liberté d'investir pour les résidents et non-résidents ;
- Déclaration d'investissement comme procédure simplifiée ;
- Désignation du guichet unique ;

²¹MOURAD .H : « la protection des investissements en Algérie», université de perpignan- D.E.A. 2007, p.48.

²² Loi n° 82-13 du 28-08-1982, journal official de la république algérienne, p.1016.

²³ Khalfallah. S. « l'impact des IDE sur la croissance économique dans les pays : Maroc-Algérie-Tunisie entre la période 1990-2009 », mémoire de magister en analyse économique, université Tlemcen, 2010.

²⁴ La loi n°93-12 du 05octobre 1993, journal officiel de la république algérienne n°64.

- Affirmations des gages de transfert et de rapatriement des fonds investis et leur bénéfice, ainsi que la garantie de recours à l'arbitrage international en cas de litige ;
- Lanon-discrimination entre les personnes morales ou physiques algériennes et étrangères.

1.2.2 L'ordonnance n°01-03 du 20 août 2001 relative au développement de l'investissement

Cette ordonnance reste proche du code des investissements de 1993, elle a élargi le concept d'investissement, en étendant son champ d'application et en renforçant les avantages et les garanties pour les investisseurs, avec la simplification des formalités administratives liées à l'investissement. A travers cette ordonnance les autorités algériennes ont décidées de créer les organisations suivantes :

- Création, attribution, organisation et fonctionnement de l'Agence Nationale de Développement de l'Investissements (ANDI)²⁵;
- Création, composition, organisation et financement du Conseil National de l'Investissement (CNI)²⁶;
- Le guichet unique créé par l'article 23 et le fonds d'appuis à l'investissement par l'article 28 de l'ordonnance 01/03/2001.

1.2.3 L'ordonnance n°06-08 du 15/07/2006

Cette ordonnance est le prolongement de l'ordonnance n°01-03 du 20/08/2001. Elle vise la simplification des procédures et la réduction des délais d'étude des dossiers d'avantages pour les investisseurs qui sont à la charge de l'ANDI²⁷.

A cet effet, l'article 5 de cette ordonnance (c'est l'article 7 de l'ordonnance n° 01-03 du 20 août 2001) est rédigé comme suit : « l'agence ANDI dispose, à compter de la date dépôt de la demande d'avantage, d'un délai maximum :

 De soixante-douze (72) heures pour la délivrance de la décision relative aux avantages prévus au titre de la réalisation;

²⁵Décret législatif n°01-282 du 24 septembre 2001 portant attribution, organisation et fonctionnement de l'agence national du développement des investissements, journal officiel n°55 du 26 septembre 2001.

²⁶Décret législatif n°01-282 du 24 septembre 2001, relatif à la composition, l'organisation, et au financement du conseil national de l'investissement, journal officiel n°55 du 26 septembre 2001.

²⁷ Ordonnance n°06-08 du 15/07/2006 relative au développement de l'investissement, journal officiel de la république Algérienne N°47.

- De dix (10) jours pour la délivrance de la décision relative aux avantages prévus titre de l'exploitation;
- L'agence (ANDI) peut, en contrepartie des fraies de traitement des dossiers, percevoir une redevance versée par les investisseurs. Le montant et les modalités de perception de la redevance sont fixés par voie, réglementaire »

1.2.4 L'ordonnance 09-01 du 22 juillet 2009

La loi de finance complémentaire pour 2009, de l'ordonnance n°09-01 du 22 juillet 2009 a modifié le cadre juridique régissant l'investissement surtout étranger. Cette loi comprend dans l'article 58 :

- L'obligation de la procédure de déclaration auprès de l'agence nationale de développement de l'investissement (ANDI) à tous les investissements directs étrangers;
- Les investissements étrangers ne peuvent être réalisés que dans le cadre d'un partenariat dont l'actionnariat national résident représente 51% au moins du capital social. Par actionnariat national, il peut être entendu l'addition de plusieurs partenaires, le reste doit être détenu par des investisseurs étrangers qui représentent 49% du capital social;
- Les activités de commerce extérieur ne peuvent être exercées par des personnes physiques ou morales étrangères que dans le cadre d'un partenariat dont l'actionnariat national résident est égal au moins à 30% du capital social;
- Tout projet d'investissement étranger direct ou d'investissement en partenariat avec des capitaux étrangers doit être soumis à l'examen préalable du conseil national de l'investissement(CNI).

1.2.5 **La loi de finance 2015**

La loi de finance pour 2015 apporte des modifications à l'ordonnance 01-03 modifiée et complétée, relative au développement de l'investissement et introduit de nouvelles mesures de soutiens et d'encouragement aux activités productives dans certaines activités économiques et d'allègement de la fiscalité des entreprises.

Cette loi stipule : l'octroi d'avantages fiscaux aux investissements qui portent sur les activités relevant de certaines filiales industrielles(sidérurgique et métallurgiques, hydrauliques, électriques et électroménagers, chimie industrielle, mécanique, et automobile, pharmaceutique aéronautique, construction et réparation navales, technologies avancées,

industrie agroalimentaire, textiles, et habillement, cuir et produits dérivés, bois et industrie du meuble). Dans le but de booster l'industrie nationale, les avantages fiscaux octroyés sont les suivants: Exonération temporaire en matière d'impôts sur les biens et services (IBS) ou d'impôts sur le revenu globale (IRG) et de la Taxes sur l'activité provisionnelle (TAP) pour une durée de cinq (5) ans, bonification de 3% du taux d'intérêt applicable aux prêts bancaire²⁸.

1.2.6 **La loi de finance 2016**

La présente loi a pour objet de fixer le régime applicable aux investissements nationaux et étrangers réalisés dans les activités économiques de production de biens et services²⁹.

A cet effet, l'article 4 de cette ordonnance stipule que : « pour bénéficier des avantages prévus par les dispositions de la présente loi, les investisseurs doivent faire préalablement à leur réalisation, l'objet d'un enregistrement auprès de l'agence nationale de développement de l'investissement (ANDI).

L'article 21 de cette loi stipule que les personnes physiques et morales étrangères reçoivent un traitement juste et équitable au regard des droits et obligations attachés à leur investissement, sous réserves des conventions bilatérales, régionales et multilatérales signées par l'Etat algérien.

L'article 24 de ce même code stipule que : « Tout différend né entre l'investisseur étranger et l'Etat algérien résultant du fait de l'investisseur ou d'une mesure prise par l'Etat algérien à l'encontre de celui-ci, sera soumis aux juridictions algériennes territorialement compétentes.

2- L'évolution des IDE en Algérie

2.1 Tendance des IDE en Algérie

En Algérie, les IDE étaient présents depuis les années 70, mais ce n'est qu'au début des années 90, que leur flux commencent à se voir, après que le gouvernement algérien a engagé une politique de réformes structurelles, qui a permis le rétablissement des équilibres macroéconomiques et la libéralisation de l'économie.

En ce qui suit nous allons présenter les différentes étapes de l'évolution des IDE.

²⁸ Article 73, 75 et 77de la loi de finance n° 14-10, portant la loi de finance pour 2015, journal officiel n°78 du 30 décembre 2014.

 $^{^{29}}$ Loi n° 16-09 du 03 août 2016 relatif à la promotion de l'investissement, journal officiel de la république Algérienne N°46.

3 000 000 000

2 000 000 000

1 000 000 000

-1 000 000 000

0.00

1 000 000 000

2 000 000 000

-1 000 000 000

2 000 000 000

3 000 000 000

-1 000 000 000

-2 000 000 000

-3 000 000 000

-4 000 000 000

-5 00 000 000

-6 000 000 000

-7 000 000 000

-8 000 000 000

-8 000 000 000

-8 000 000 000

-9 000 000 000

-1 000 000 000

-1 000 000 000

-1 000 000 000

-2 000 000 000

-3 000 000 000

-4 000 000 000

-5 000 000 000

-7 000 000 000

-8 000 000 000

-8 000 000 000

-9 000 000 000

-1 000 000 000

-1 000 000 000

-1 000 000 000

-1 000 000 000

-1 000 000 000

-1 000 000 000

-1 000 000 000

-2 000 000 000

-3 000 000 000

-4 000 000 000

-5 000 000 000

-5 000 000 000

-6 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

-7 000 000 000

Figure n° 3: Flux des IDE entrants en Algérie (1970-2015) (\$US courant)

Investissements étrangers directs - entrées nettes (\$US courant), Algérie

Sources: Banque mondiale, perspective monde.

http://perspective.usherbrooke.ca/bilan/tend/DZA/fr/BX.KLT.DINV.CD.WD.html, consulté le 21/08/2017 à 23:35

2.1.1 La première période : 1970-1980

Le début de cette période (1971) est caractérisé par une baisse des entrées des IDE, ceci s'explique par le désinvestissement de la part des firmes étrangères à la suite de la décision de la nationalisation partielle des hydrocarbures prise en février 1971.

A la fin de cette année (1971) les flux des IDE ont connu une hausse, suite à la décision reprise par l'Algérie d'ouvrir le secteur de l'industrie des hydrocarbures (Pétrole et Gaz naturel) aux capitaux étrangers. Ceux-ci ont été massivement investis dans le raffinage, l'exportation, la production et le transport du pétrole et du Gaz naturel.

2.1.2 La deuxième période : 1980-1995

Cette période est caractérisée par une quasi-absence des IDE à cause du choc pétrolier accompagné des crises économiques, l'Algérie ne représentait nullement le centre d'intérêt des investissements étrangers³⁰.

_

³⁰ CNUCED, « Examen de la politique de l'investissement –Algérie », 2004, P8.

2.1.3 La troisième période : 1995-2002

Cette période est marquée une reprise des flux des IDE (augmentation). Après la détérioration de l'économie algérienne et la baisse du prix du pétrole, l'Etat ne pouvant plus assumer seul, le financement de l'économie, a adopté un plan d'ajustement structurel (PAS) imposé par le FMI qui encourageait une modernisation et une ouverture de l'économie aux investissements étrangers, cela a permis aux investisseurs de s'intéresser à nouveau au marché algérien.

A partir de 1998, l'Algérie enregistre une nette accélération des flux des IDE entrants, alors qu'ils étaient encore inférieurs à 500 millions USD. Avant 2000, les IDE se sont stabilisés au-dessus de 1 milliards USD en 2001 et 2002. Cette performance remarquable est due essentiellement à la réalisation de certains investissements tels que la sidérurgie, l'énergie et les télécommunications.

2.1.4 A partir de 2002 jusqu'à 2015

Les flux des IDE ont connu durant la période 2002-2015 des fluctuations remarquables : Faible durant la période 2002-2007 ; une hausse durant la période 2008-2011et un recul dans la période 2012-2015 comme le démontre la figure précédente.

Les flux des IDE ont repris le chemin vers la hausse pour atteindre un niveau maximum en 2009, soit 2 754 milliards USD après une baisse enregistré en 2003 avec 663 million USD.

Malgré le fort potentiel de l'Algérie en terme de marché domestique, de richesse naturelles et d'opportunité, le pays reste peu attractif pour les IDE, ça s'explique par un climat des affaires « médiocre » et des contraintes imposées aux investisseurs (avec la règle 49/51%), qui ont fait baisser les flux des IDE au cours des derniers années après un pic du flux à 2,754 million de dollars en 2009³¹.

Flux d'investissements directs étrangers (IDE)

Année	2011	2012	2013	2014	2015
IDE en	5712	4841	6612	1488	4001
million USD	3/12	7071	0012	1400	4001

Source: guide-kpmg-2016-investir-en-Algérie-version-française. P.25.

45

³¹ ANIMA, « Les flux d'investissement étrangers en Algérie plonge dans le rouge à cause de Djezzy », novembre 2016, P04.

En 2015, les flux entrants des IDE en Algérie se sont effondrés, passant d'un investissement étranger net de 1507 million dollars en 2014 à un désinvestissement de 587 million de dollars en 2015. Cette diminution s'explique par prise de partie de participation majoritaire par l'Etat Algérien des actions de Djezzy détenues par VimpelCom en Janvier 2015 pour un montant de 2,6 milliards de dollar. Sans cette opération exceptionnelle les flux entrant d'IDE en Algérie auraient suivi une tendance légèrement haussière par rapport aux deux années précédentes³².

2.2Répartition sectorielle des IDE en Algérie

En général, le continent africain attire encore quelques IDE, même si certains pays d'Afrique du Sud, du Maroc, de la Tunisie ou de l'Egypte sont des exceptions. Pour d'autres pays africains, comme l'Algérie et le Nigéria, l'IDE est principalement concentré dans l'industrie du pétrole et du gaz.

L'Algérie dispose d'un potentiel pétrolier et gazier riche et diversifié qui demeure sousexploré et d'une législation pétrolière claire, souple et offrant de nombreux avantages aux investisseurs. On distingue un certain nombre des secteurs importants en Algérie à savoir, les hydrocarbures et l'énergie, l'industrie, les services, BTPH, le secteur des télécommunications, et les nouvelles technologies de l'information et de la communication (NTIC), etc.

Le tableau n°1 reprend la répartition des projets d'investissement étrangers sur l'ensemble des secteurs d'activité.

<u>Tableau N°3:</u> Répartition des projets d'investissement étrangers déclarés par secteur d'activité période 2002-2016.

	Nombre de	En	En Montant millions de	
	projets	%	DA	%
Agriculture	209	2.91%	67530	3.67%
ВТРН	912	12.69%	92621	5.04%
Industrie	2509	34.92%	1116955	60.74%
Santé	142	1.98%	47525	2.58%
Transport	2061	28.68%	119162	6.48%
Tourisme	298	4.15%	203560	11.07%
Services	1054	14.15%	191691	10.42%
Total	7185	100%	1839045	100%

³²A.Fischaman, « Les investissements directs étrangers en Algérie en 2015 », Ambassade de France en Algérie-service.

Source :http://www.andi.dz/index.php/fr/declaration-d-investissement,consulté le 22/08/2017 à 00:02.

En termes de répartition par secteurs d'activité et sur la période couvrant 2002 à 2016, la prédominance reste à l'industrie avec un montant de 1 116 955 millions de dinars, suivi du tourismes (203 560 millions de dinars), des services (191 691 millions de dinars), du transport (119 162 millions de dinars), du BTPH (92 621 millions de dinars), de l'agriculture (67 530 millions de dinars), et enfin de la santé avec seulement 47 525 millions de dinars.

En termes de nombre de projet, c'est l'industrie qui a attiré le plus avec 2509 projets, puis viennent les secteurs de transport et des services avec respectivement 2061 projets et 1054 projets.

<u>Tableau N°4:</u> Répartition des projets d'investissement étrangers déclarés par secteur juridique période 2002-2016.

	Nbr de projets	%	Montant en M/da	%
Privé	7095	98.75	1685 833	91.67
Public	84	1.17	108 286	5.89
Mixte	6	0.08	44 926	2.44
Total	7185	100	1839 045	100

Source : http://www.andi.dz/index.php/fr/declaration-d-investissement,consulté le 22/08/2017 à 00:25.

On remarque que la répartition par secteur juridique est basé beaucoup plus sur le secteur privé avec un nombre de projets qui est de 7095 et un montant de 1685 833 million de dinars algérien par contre le secteur public, il n'est que de 84 projets avec un montant de 108 286 M/da.

2.3Les investisseurs étrangers en Algérie

Plusieurs investissements étrangers entrent en Algérie et de différentes nationalités, les plus importants sont les suivants :

2.3.1 Les investissements directs français en Algérie

a) Les investissements directs français en Algérie : un tarissement de l'investissement Selon les données de la Banque de France, les flux d'investissements directs français en Algérie se sont établi à -172 M/EUR en 2015. C'est la 3ème année consécutive que la France effectue un désinvestissement net : -32,8 MEUR en 2014 et -109,7 M/EUR en 2013. La France désinvestit en moyenne 105 M/EUR par an depuis 2013, confirmant la rupture de

tendance avec les flux observés les cinq années précédentes (2008-2012), période au cours de laquelle l'investissement direct français moyen en Algérie s'est établit à 250 M/EUR. Au cours de l'exercice 2015, 5 secteurs ont capté la majorité des IDE français à destination de l'Algérie. Il s'agit du poste « Métallurgie, produits métalliques, informatiques, électroniques et optiques » (52% du total des flux entrants à 27,4 M/EUR), des industries extractives (9% à 4,8 M/EUR), des industries de gestion des eaux et des déchets (9% à 4,7 MEUR), des activités immobilières (7% à 3,6 M/EUR) et des activités de cokéfaction et de raffinage (6% à 3,3 M/EU).

b) Le stocks d'IDE français en Algérie a la fin 2015: le stock d'IDE français était estimé à 1,8 Md EUR, en baisse de 13% par rapport à 2014, alors à 2 Mds EUR. Il était principalement composé d'investissements dans les activités financières (hors assurance et caisse de retraites) (41% à 745 MEUR), le secteur automobile (22% à 384 M/EUR), l'industrie pharmaceutique (6% à 103 MEUR) et l'industrie chimique (5% à 98 M/EUR). A noter que les industries extractives ne représentent plus que 3% du stock d'IDE, contre 9% en 2013, suite au retrait massif d'investissements en 2014 dans le secteur (-147,4 M/EUR). Au plan régional en 2015, la France a désinvesti en Egypte (-62 Mds EUR) et a investi en Libye (89 Mds EUR), en Tunisie (137 Mds EUR) et au Maroc (236 Mds EUR). En stock, le Maroc concentre 57% des IDE français en Afrique du Nord (à 9,3 Mds EUR) vient ensuite l'Egypte (22% à 3,5 Mds EUR), l'Algérie (11% à 1,8 Mds EUR), la Libye (5% à 0,9 Md EUR) et la Tunisie (5% à 0,8 Md EUR).

2.3.2 Les investissements directs Allemand en Algérie

Les investissements allemands marquent une forte présence en Algérie dans les années 1970 et 1980, et un certain recul dans les années 90. Depuis le début des années 2000, les entreprises allemandes reviennent et renforcent leur présence dans le pays. Cette dernière est symbolisée par Siemens, un leader mondial de l'électronique et de l'électrotechnique, qui existe en Algérie depuis 1962 et qui a fait preuve d'une adaptation remarquable à l'évolution du marché, avant dans l'électricité, aujourd'hui dans la téléphonie et le métro³⁵.

³³ Ambassade de France en Algérie – Services économique régional : Les investissements directs étrangers en Algérie en 2015 – novembre 2016. P.2 .

³⁵ Y. Farid, Op cit, P180.

2.3.3 Les investissements directs chinois en Algérie

S'il y a encore une dizaine d'années les exportations chinoises vers l'Algérie étaient insignifiantes, aujourd'hui la présence chinoise en Algérie est des plus impressionnantes. Une tendance que le think tank américain Heritage confirme dans un recensement des investissements chinois en Afrique. Pour la première fois, l'Algérie se classe deuxième. Le Nigéria (1er) et l'Afrique du Sud (3ème) complètent le podium. Ce classement prend en compte huit catégories d'investissements : l'énergie, les mines, les transports, l'immobilier, l'agriculture, la finance et les technologies, excluant les prêts, les achats de bons du trésor et autres opérations financières. Tous les secteurs algériens sont une mine d'or pour les Chinois : Travaux publics, bâtiment, tourisme, hydrocarbures, pétrochimie, hydraulique, téléphonie... les Chinois sont absolument partout en Algérie. Depuis 2005, l'Empire du Milieu a investi plus de 10,5 milliards de dollars en Algérie dont 8,8 milliards dans les transports et 1,3 milliard dans l'immobilier. Grâce à des coûts ultra-concurrentiels, les entreprises chinoises réussissent à rafler de nombreux marchés. Parmi eux, la construction de l'hôtel Sheraton, les cités AADL (pour Agence nationale de l'amélioration et du développement du logement) ou encore le nouveau terminal de l'aéroport d'Alger. de faient de les contractions de l'aéroport d'Alger.

2.3.4 Les investissements directs arabes en Algérie

L'Algérie présente désormais une des principales destinations arabes en termes d'investissement. Une très grande partie des investissements directs étrangers provient des pays arabes, avec en tête l'Egypte, suivie des Emirats arabes et du Koweït.

En 2001, l'Egypte, est le premier investisseur hors hydrocarbures en Algérie, elle a investi 4 milliards USD dans trois grands projets. Ces trois projets concernent la production de rond à béton, dans la région de Bellara (Jijel), par le groupe EEZ Industries, la reprise du projet de cimenterie dans la wilaya de Djelfa, par le groupe Asec, et le projet Sorfert de partenariat entre Sonatrach et Orascom pour la production de fertilisants³⁷.

Les Emirats Arabes Unis viennent en quatrième position avec 1,1 milliard USD, juste derrière le Koweït (1,3 milliard USD). Les investissements émiratis en Algérie dépassent 50 milliards USD durant la période 2006-2010³⁸.

³⁶http://www.algerie-focus.com/2013/04/lalgerie-seduit-les-investisseurs-chinois/, consulté le 21/08/2017 à 23:55.

³⁷http://www.djazairess.com/fr/liberte/96140, consulté le 22/04/2017 à 18:00.

³⁸ http://www.djazairess.com/fr/liberte/96140, consulté le 22/04/2017 à 18:00.

En 2013, le Qatar a investi 1,69 milliard d'euros en Algérie, ce qui représente 74,31% de la valeur globale des investissements étrangers en Algérie durant cette période³⁹.

2.3.5 Les investissements directs turcs en Algérie

La Turquie est un des plus importants investisseurs étrangers en Algérie, il existe des sociétés Turques intéressées par le marché algérien dans différents secteurs. C'est désormais vers l'Algérie que les investisseurs turcs tournent leurs regards. Pas moins de 110 entreprises de différents secteurs sont présentes. On citera, entre autres, le holding Hayat Kimya avec ses marques bien connues des consommateurs algériens : Test, Molfix, Molped, Papia et Bingo⁴⁰.

L'austérité mise en place par le gouvernement suite à la chute des prix du pétrole depuis la fin de 2014, n'a pas empêché les opérateurs économiques étrangers de chercher des opportunités d'exportation vers notre pays. Le Conseiller économique de l'ambassade turque en Algérie, Bahadir Erkan a indiqué que le volume des échanges entre l'Algérie la Turquie a atteint les 3 milliards de dollars, tandis que les investissements turcs directs en Algérie avoisinent le 1 milliards de dollars. Selon, notre interlocuteur, il existe 3 genres d'entreprises turques en Algérie, à savoir celles versées dans la construction, import/export et aussi celle installées en Algérie. Environs 250 entreprises turques activant en Algérie.

Malgré son fort potentiel (marché domestique conséquent, richesses naturelles, nombreuses opportunités sectorielles...), l'Algérie attire peu d'IDE : le pays enregistre le plus faible ratio IDE/PIB de la région. Selon le dernier rapport d'Anima intitulé « 10 ans d'investissement étrangers et partenariats d'affaires en Méditerranée 2006-2015 », la frilosité des investisseurs est expliqué par le cadre de l'investissement peu attractif : le climat des affaires reste médiocre (l'Algérie a été classée 163ème sur 189 pays dans le classement Doing Business 2016 de la Banque mondiale) et l'obligation d'association avec un partenaire local (règle 49/51%) complique la mise en œuvre des projets.

³⁹http://www.djazairess.com/fr/latribune/102184, consulté le 22/04/2017 à 19:00.

⁴⁰http://fr.africatime.com/algerie/articles/1.5-milliard-de-dollars-dinvestissements-en-2013-lalgerie-le-nouvel-eldorado-pour-les, consulté le 21/07/2017 à10 :30

⁴¹ Rapport L'Eco-news L'Algérie, un marché potentiel pour les turcs 26 Avril 2017, 14:53.P. 1.

⁴² Selon le rapport d'Anima (voir : http://www.animaweb.org/sites/default/files/mipo 10ans fr a5 0.pdf), consulté le 7/7 2017

⁴³ Idem

Conclusion:

En Tunisie, plusieurs incitations sont proposées telles que l'exonération fiscale, la prise en charge des frais d'infrastructure et la prise en charge de cotisation patronales et l'amélioration du climat des affaires en vue d'améliorer son attractivité vis-à-vis des investisseurs étrangers. Malgré une nette amélioration, les investisseurs restent aujourd'hui frileux en raison de l'instabilité politique et l'insécurité. Le même constat est établit pour l'Algérie.

En revanche, la reforme de l'environnement juridique des affaires a joué un rôle capital dans la politique d'attractivité des IDE au Maroc. En effet, les facilitations accordées telles que la prise en charge par l'Etat d'une partie des coûts de la formation, de la mise en place de l'infrastructure et de l'acquisition des terrains nécessaire ont amélioré l'image du Maroc vis-à-vis des Investisseurs étrangers.

.

Chapitre III

Ce chapitre a pour objectif d'exposer les études qui ont été déjà menées sur l'attractivité des IDE dans les pays de Maghreb dont nous nous sommes inspirés pour le choix des variables de notre étude empirique. Pour estimer empiriquement la relation entre l'IDE et les ses déterminants par le modèle MCO et VAR, nous avons utilisé la base de donnée de la Banque Mondiale.

Section 1 : Analyse économétrique de l'attractivité des IDE en Tunisie

La Tunisie fait partie des pays ayant fourni des efforts considérables en vue de renforcer son attractivité. Plusieurs études ont analysé les déterminants des IDE en adoptant plusieurs approches. Hela Bouras (2017) ¹ analyse l'interaction des facteurs d'attractivité des IDE et le role des télécommunications en utilisant le modèle des MCO. L'objectif est d'établir une étude comparative entre la Tunisie et le Maroc en matière d'attractivité des IDE. . Les résultats montrent que l'infrastructure et la qualité institutionnelle ont une incidence positive sur les flux d'IDE, contrairement à la littérature économique, la taille du marché et les efforts déployés dans l'amélioration de capital humain n'a aucun impact significatif pour le cas du Maroc. La différence est néanmoins très claire entre le Maroc et la Tunisie, marquée par un effet significatif et positif de nombre d'utilisateurs d'internet sur l'attractivité des IDE. L'efficacité de l'action publique, la stabilité politique et les capacités revendicatives et d'expressions ont un impact positif et indirect sur l'attractivité des IDE pour le Maroc. L'étude de Saif Eddine Ayouni sur données tunisiennes allant de 1988-2005 montres que le niveau de développement financier (autre que les facteurs classiques) augmente l'attractivité des IDE en Tunisie. L'étude de Abdallah et al (2009) par un modèle de gravité en données de panel de trois pays d'Afrique (Egypte, Maroc, Tunisie) a montré que la crise de change a un effet négatif sur les flux des IDE.

Avant de présenter nos résultats d'estimation, nous allons donner tout d'abord quelques définitions sur la modélisation.

¹ Hela Bouras (2017) « Déterminants d'attractivité des Investissements Directs Etrangers : Application en données de panel pour la Zone MENA », Forum Hammamet, Tunisie. Disponible sur : http://www.asectu.org/images/PDF-art/Hela Bouras version d%C3%A9finitive.pdf, consulté le 13 /07/2017

Ayouni Saif Eddine. « Développement Financier et Investissement Direct Etranger en Tunisie : une validation Econométrique.» Unité de recherche : Tourisme et Développement FDSEP de Sousse.

³ Kamel ABDELLAH, Dalila NICET-CHENAF, Eric ROUGIER (2009) Entre instabilité externe et instabilité interne : les déterminants des IDE dans les MENA, diponible sur http://www.dsps.unict.it/sites/default/files/files/JMFDIEntre_instabilite_externe_et_instabilite.pdf, consulté le 20/07/2017

1- Définition de régression multiple

Le modèle de régression linéaire multiple est l'outil statistique le plus habituellement mis en œuvre pour l'étude des variations d'une variable endogène associée aux variations de plusieurs variables exogènes. Cas particulier de modèle linéaire, il s'intéresse à modéliser une variable Y en fonction de plusieurs variables explicatives $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_p$. Il constitue la généralisation naturelle de la régression simple. Avec⁴:

$$Y_{t} = \beta_{0} + \beta_{1} X_{1t} + \beta_{2} X_{2t} + ... + \beta_{p} X_{pt} + \epsilon_{t} / t = 1.n$$

Y : La variable endogène à la date t.

X: La première variable explicative à la date t.

X: La deuxième variable explicative à la date t.

 $\mathbf{X}_{\mathbf{pt}}$: La p eme variable explicative à la date t.

$$\beta_0, \beta_1, \beta_2, \ldots, \beta_p$$
 : paramètre du modèle.

 ε_{t} : L'erreur de spécification.

n: le nombre d'observation.

1.1-Le coefficient R²

Le coefficient de détermination (R²) aussi appelé coefficient de corrélation multiple, est un indicateur qui permet de juger la qualité d'une régression linéaire multiple, d'une valeur comprise entre 0 et 1, il mesure l'adéquation entre le modèle et les données observées ainsi, indique le pourcentage de la variabilité de Y expliquée par les variables indépendantes X, X,

..., X. Lorsqu'on ajoute une ou plusieurs variables indépendantes dans le modèle, le coefficient R^2 augmente, deux hypothèses sont possibles à se réaliser :

- Si R2 est proche de 1 alors le modèle est proche de la réalité.
- Si R2 est proche de 0 alors le modèle explique très mal la réalité. Il faut alors trouver un meilleur modèle.

⁴Bazen, S. et Sabatier, M., (2007) « Econometrie des fondements à la modélisation », Ed Vuibert, p48.

1.2- Les tests d'hypothèses

Les tests suivants nous permettent de bien analysé le modèle et d'interpréter les résultats obtenus.

1.2.1-Test de student : Il sert à vérifier si une variable explicative est explicative ceci a un impact sur la variable à réexpliquer. Les p-value des variables sont inférieures à 5%, donc ces variables sont significatives au seuil de 5%. Quant au taux de change effectif réel, sa p-value est supérieure à 5%. Cette variable n'est pas significative au seuil de 5%.

1.2.2- Test de Fisher : Le test de Fisher est appliqué Pour étudier la significativité globale du modèle. Ce test permet de voir si au moins une des variables explicatives du modèle explique la diversification des de ma variable à réexpliquer. Le modèle de long terme est globalement significatif si la probabilité de Fisher (0.00000dans le long terme) obtenue est inférieure à 5%.

1.2.3-Test de normalité des résidus : Le test de Jarque-Bera(TJB) (1980) cherche à déterminer si des données suivent une loi normale. On a :

H0 : les données suivent une loi normale ;

H1 : les données ne suivent pas une loi normale.

La quantité suit asymptotiquement une loi du Khi deux à 2 degrés de liberté, le test s'effectuant sur les résidus. On teste donc l'hypothèse de normalité des résidus, la règle de décision consiste à accepter cette hypothèse si la statistique de JarqueBera JB est inférieure à 5,99.

2-Analyse du lien entre les IDE et les variables (PIB, PIBC, EX, FBC, TCH et TIN.)

2.1- Estimation du modèle

Les résultats de l'estimation du modèle basé sur des données annuelles sont présentés dans le tableau suivant :

Tableau n°1: Résultats de la régression multiple

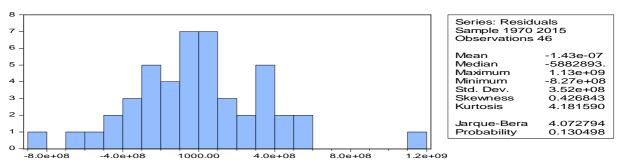
Dependent Variable: IDE Method: Least Squares Date: 06/28/17 Time: 22:16 Sample: 1970 2015 Included observations: 46

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	312364.8	2.09E+08	0.001493	0.9988
PIB	-5.95E-09	1.08E-09	-5.487657	0.0000
PIBC	-0.000416	0.031260	-0.013316	0.9894

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

2.58E-08	4.57E-09	5.651669	0.0000
0.094219	0.036770	2.562372	0.0144
-0.136061	0.115758	-1.175388	0.2470
0.019221	0.018369	1.046330	0.3019
0.756004	Mean depende	ent var	5.81E+08
0.718466	S.D. dependen	t var	7.13E+08
3.78E+08	Akaike info crit	erion	42.47940
5.58E+18	Schwarz criteri	on	42.75767
-970.0263	Hannan-Quinn	criter.	42.58365
20.13979	Durbin-Watson	stat	1.489567
0.000000			
	0.094219 -0.136061 0.019221 0.756004 0.718466 3.78E+08 5.58E+18 -970.0263 20.13979	0.094219	0.094219 0.036770 2.562372 -0.136061 0.115758 -1.175388 0.019221 0.018369 1.046330 0.756004 Mean dependent var 0.718466 S.D. dependent var 3.78E+08 Akaike info criterion 5.58E+18 Schwarz criterion -970.0263 Hannan-Quinn criter. 20.13979 Durbin-Watson stat

Source: construit à partir du logiciel EVIEWS.7.


Le modèle est globalement significatif au seuil de 5 %. R² et R²-ajusté sont très proches. Ainsi 75,60 % des variations des IDE sont expliquées par les variations de la combinaison des variables exogènes PIB, PIBC, FBC, TCH. En utilisant la statistique de Student directement fournie par *Eviews*, les résultats de l'estimation montrent clairement qu'à 5% les variables (EX, PIB, FBC) sont significatives car les probabilités associées sont inferieure à 0,05. Cependant, les signes des coefficients ne sont pas conformes aux prédictions théoriques, exception faite pour le coefficient de la variable Ex qu'est positif.

L'équation s'écrit : IDE = 312364.800115 - 5.95206319074e-09*PIB - 0.000416259116214*PIBC + 2.58272531511e-08*EX + 0.0942188468592*FBC - 0.136060643648*TCH + 0.019220503238*TIN

2.2-Le test de normalité des résidus

Les résultats obtenus du test de normalité des cinq variables seront présentés Dans la figure suivante :

Figure n° 1: Test de normalité des résidus

Source : Figure élaborée par nous-mêmes à partir du logiciel Eviews4.

La table numérique de Khi deux à 2 degré de liberté nous donne la valeur critique de 5,99 à 5% d'erreur. Or dans la figure N°1, la valeur de Jarque-Bera est de 4.07 donc elle est inférieure à la valeur critique (4.07 < 5,99) alors on accepte l'hypothèse Ho. De plus la probabilité de la statistique de Jarque-Bera fournie par Eviews est supérieure au seuil (0,13 > 0,05) ce qui signifie que les résidus issus du modèle suivent la loi normale.

Cependant, d'après les résultats de l'estimation, donnés dans le tableau n°1, la valeur de Durbin Watson est inferieur à 2 ; donc il ya autocréation des erreurs . On est en présence d'une régression fallacieuse, ce qui nous mène à rejeter les résultats de MCO. Ce ci justifie le passage à l'étude du VAR.

3- L'application du modèle VAR sur le modèle basé sur des données mensuelles

Pour stationnariser les séries, on doit se référer aux trois modèles de base constituant le test de Dickey-Fuller augmenté, afin de vérifier la significativité de la tendance et la constante pour identifier la nature de la non stationnarité des séries, c'est-à-dire si elles admettent un processus TS ou DS avant d'appliquer le test racine unitaire.

3.1-Test de stationnarité des séries

Nous allons appliquer le test ADF sur la serie PIB, puis nous allons procéder de la même façon pour le reste des séries.

3.1.1-Test de stationnarité de la série IDE

Tout d'abord on estime le modèle avec constante et tendance [modèle 3], les résultats figurent dans le tableau suivant :

Tableau N°2 : Test de stationnarité IDE (Modèle3)

Null Hypothesis: IDE has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-2.546522	0.3056
Test critical values:	1% level	-4.180911	
	5% level	-3.515523	
	10% level	-3.188259	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE)

Method: Least Squares Date: 06/29/17 Time: 00:00 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IDE(-1) D(IDE(-1)) C @TREND(1970)	-0.464797 -0.394338 -1.14E+08 17767514	0.182522 0.146372 1.65E+08 9197895.	-2.546522 -2.694083 -0.690559 1.931693	0.0148 0.0103 0.4938 0.0605
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.478116 0.438975 4.79E+08 9.17E+18 -939.7601 12.21515 0.000008	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		22243591 6.39E+08 42.89819 43.06039 42.95834 1.820521

Test du trend:

 $H_0: B=0$ $H_1: B\neq 0$

Tb = |1.93| < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Tableau N° 3 : Test de stationnarité IDE (Modèle 2)

Null Hypothesis: IDE has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

			t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-1.610420	0.4689		
Test critical values:	1% level		-3.588509	
	5% level		-2.929734	
	10% level		-2.603064	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/29/17 Time: 00:05 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error t-Statistic Prob	b.
IDE(-1)	-0.187629	0.116509 -1.610420 0.11	002
D(IDE(-1))	-0.533847	0.131486 -4.060098 0.00	
C	1.45E+08	1.00E+08 1.444960 0.15	

R-squared	4.95E+08	Mean dependent var	22243591
Adjusted R-squared		S.D. dependent var	6.39E+08
S.E. of regression		Akaike info criterion	42.94192
Sum squared resid		Schwarz criterion	43.06357
Log likelihood F-statistic Prob(F-statistic)	-	Hannan-Quinn criter. Durbin-Watson stat	42.98703 1.884514

Test de la constante :

 $\begin{cases}
H_0: C=0 \\
H_1: C\neq 0
\end{cases}$

 $Tc = |1.44| < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Tableau N°4: Test de stationnarité IDE (Modèle 1)

Null Hypothesis: IDE has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.857182	0.3390
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/29/17 Time: 00:10 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IDE(-1) D(IDE(-1))	-0.075398 -0.584958	0.087961 0.128269	-0.857182 -4.560406	0.3962 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.400376 0.386099 5.01E+08 1.05E+19 -942.8150 1.902860	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	22243591 6.39E+08 42.94614 43.02724 42.97621

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = \frac{-0.85}{5}$ $T^{ADF}(5\%) = -1.95$ on accepte $H_{0}: \phi = 1$ le processus est non stationnaire

Le non stationnarité est de type DS sans dérive. La meilleure façon de stationnariser la série IDE est la différenciation.

La stationnarisation de la série et récupération de l'ordre d'intégration

Tableau N°5:Test de stationnarité IDE différencié

Null Hypothesis: D(IDE) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-13.64979	0.0000
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE,2) Method: Least Squares Date: 06/29/17 Time: 00:20 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IDE(-1))	-1.625079	0.119055	-13.64979	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.812486 0.812486 4.99E+08 1.07E+19 -943.1965 1.934706	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-1556773. 1.15E+09 42.91802 42.95857 42.93306

Test du φ:

$$\begin{cases}
H_0: \varphi = 1 \\
H_1: \varphi < 1
\end{cases}$$

 $T\phi = /-13.64/< T^{ADF}(5\%) = -1.95$ on accepte $H_1 \phi < 1$ le processus est **stationnaire** Le processus IDE est devenu stationnaire avec une seule différenciation. Donc **IDE** \rightarrow **I(1)**

3.1.2-Test de stationnarité pour les séries IDE, PIB, PIBC, EX, FBC, TCH, TIN.

Les résultats des tests d'ADF effectués sur les séries PIB, PIBC, EX, FBC, TCH et TIN sont représentées dans le tableau suivant:

Tableau N°6: la stationnarité des séries IDE, PIB, PIBC, EX, FBC, TCH, TIN.

		Т	est ADF en r	niveau			Test ADF	en différence
Variables		Мо	dèle 3	Мо	dèle 2	Modèle1	Modèle 1	Ordre
	T statistique	T de ADF	Ttrend	T de ADF	Tconst	T de ADF	T de ADF	D'intégration
	T calculée	-2.54	1.93	-1.61	1.44	-0.85	-13.64	
IDE	T tabulée	-3.51	2.78	-2.92	2.54	-1.95	-1.95	I(1)
PIB	T calculée	-0.58	1.64	1.17	0.68	2.22	-9.00	I(1)
	T tabulée	-3.51	2.78	-2.92	2.54	-1.95	-1.95	- '\-'
PIBC	T calculée	-5.51	1.77	-5.14	4.58			1(0)
PIBC	T tabulée	-3.51	2.78	-2.92	2.54			I(0)
	T calculée	-1.50	2.00	0.30	1.16	1.30	-2.23	
EX	T tabulée	-3.51	2.78	-2.92	2.54	-1.95	-1.95	I (1)
	T calculée	-2.65	2.24	-1.39	1.52	-0.17	-5.12	I(1)
FBC	T tabuléé	-3.51	2.78	-2.92	2.54	-1.95	-1.95	
	T calculée	-5.87	2.32	-6.02	4.88			
тсн	T tabulée	-3.51	2.78	-2.92	2.54			I(O)

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

TIN	T calculée	-5.86	0.66	-5.94	5.03		I (0)
	T tabulée	-3.51	2.78	-2.92	2.54		

Source : Construit par nous même à partir des résultats obtenus par le logiciel EVIEWS7.

Les résultats du tableau ci-dessus montrent que les séries PIBC, TCH et TIN sont stationnarisées en niveau I(0), et les séries IDE, PIB, EX et FBC sont sationnarisées après la première différentiation I(1).

3.2-La modélisation du VAR

Après avoir stationnarisé les variables par le test d'ADF, nous allons chercher à modéliser sous la forme VAR (Vecteur Auto Régressive) les IDE. Puis, nous allons estimer le modèle VAR, et d'appliquer les différents tests qui nous seront utiles.

3.2.1- Le choix du nombre de retards

Cette étape repose sur la détermination de l'ordre (P) du processus VAR à retenir. A cette fin, nous avons estimé divers processus VAR pour des ordres de retard allant de 1 à 4. Pour chaque modèle, nous avons calculé les critères d'information d'Akaike et Schwarz comme l'indique le tableau ci-dessous :

Tableau N⁰ 7: Les résultats de la recherche du nombre de retards

L'ordre du VAR	AIC	SC
VAR(1)	379.63	381.95
VAR(2)	379.67	383.97
VAR(3)	378.00	384.37
VAR(4)	375.56	384.04

Source : construit par nous même à partir des résultats obtenus par EVIEWS7.

À partir du tableau présenté ci-dessus, nous concluons que les critères d'information nous mènent à retenir un processus VAR(1).

3.2.2-Estimation du modèle VAR

L'estimation du modèle VAR(1), qui minimise le critère AS, est représentée dans le tableau suivant :

Tableau N°8: Estimation du processus VAR

Vector Autoregression Estimates Date: 06/29/17 Time: 14:58 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments Standard errors in () & t-statistics in []

	D(IDE)	D(PIB)	D(EX)	D(FBC)	PIBC	TCH	TIN
D(IDE(-1))	-0.684415 (0.20010)	44549611 (2.0E+07)	-5206030. (3605243)	0.145690 (0.58914)	0.697756 (0.72654)	0.404121 (0.17769)	-0.509062 (1.28602)
	[-3.42043]	[2.20399]	[-1.44402]	[0.24729]	[0.96039]	[2.27424]	[-0.39584]

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

D(PIB(-1))	-8.51E-10	-0.031765	-0.027697	2.49E-09	4.77E-09	4.79E-09	-8.51E-09
	(2.0E-09)	(0.20403)	(0.03639)	(5.9E-09)	(7.3E-09)	(1.8E-09)	(1.3E-08)
	[-0.42131]	[-0.15569]	[-0.76108]	[0.41790]	[0.65074]	[2.66919]	[-0.65572]
D(EX(-1))	3.15E-09	1.387488	-0.255297	-4.31E-10	-7.89E-09	-7.06E-09	3.56E-08
	(8.1E-09)	(0.82031)	(0.14631)	(2.4E-08)	(2.9E-08)	(7.2E-09)	(5.2E-08)
	[0.38788]	[1.69141]	[-1.74488]	[-0.01803]	[-0.26748]	[-0.97840]	[0.68145]
D(FBC(-1))	-0.010867	-508981.2	487198.0	-0.275702	-0.262901	0.013640	0.405449
	(0.05842)	(5901394)	(1052578)	(0.17200)	(0.21212)	(0.05188)	(0.37546)
	[-0.18601]	[-0.08625]	[0.46286]	[-1.60288]	[-1.23941]	[0.26293]	[1.07986]
PIBC(-1)	0.029900	3028127.	2995565.	-0.013704	0.316272	0.008486	-0.066216
	(0.04361)	(4405401)	(785752.)	(0.12840)	(0.15835)	(0.03873)	(0.28028)
	[0.68561]	[0.68737]	[3.81236]	[-0.10673]	[1.99735]	[0.21913]	[-0.23625]
TCH(-1)	0.116485	-19360800	353966.6	0.448765	-0.579778	0.093382	-0.814830
	(0.17656)	(1.8E+07)	(3181150)	(0.51984)	(0.64107)	(0.15679)	(1.13474)
	[0.65976]	[-1.08552]	[0.11127]	[0.86328]	[-0.90439]	[0.59558]	[-0.71807]
TIN(-1)	0.015737	-651873.8	1013875.	0.033353	-0.079735	0.044590	0.142524
	(0.02626)	(2652894)	(473173.)	(0.07732)	(0.09535)	(0.02332)	(0.16878)
	[0.59925]	[-0.24572]	[2.14272]	[0.43135]	[-0.83620]	[1.91195]	[0.84441]
С	-2.46E+08	1.20E+16	-1.36E+16	-2.84E+08	3.66E+09	3.08E+08	5.19E+09
	(2.4E+08)	(2.4E+16)	(4.4E+15)	(7.1E+08)	(8.8E+08)	(2.2E+08)	(1.6E+09)
	[-1.01668]	[0.49160]	[-3.11605]	[-0.39831]	[4.15916]	[1.42853]	[3.33444]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.427566	0.368218	0.428310	0.105452	0.162742	0.275375	0.066089
	0.316260	0.245372	0.317148	-0.068488	-0.000058	0.134476	-0.115504
	1.01E+19	1.03E+35	3.27E+33	8.72E+19	1.33E+20	7.93E+18	4.16E+20
	5.29E+08	5.34E+16	9.52E+15	1.56E+09	1.92E+09	4.69E+08	3.40E+09
	3.841337	2.997388	3.853032	0.606256	0.999643	1.954414	0.363940
	-941.7941	-1752.749	-1676.896	-989.3083	-998.5316	-936.5699	-1023.657
	43.17246	80.03406	76.58617	45.33219	45.75143	42.93500	46.89348
	43.49686	80.35846	76.91057	45.65659	46.07583	43.25940	47.21788
	22243591	1.29E+16	3.05E+15	1.29E+08	4.15E+09	6.90E+08	5.16E+09
	6.39E+08	6.15E+16	1.15E+16	1.51E+09	1.92E+09	5.05E+08	3.22E+09
Determinant resid covar Determinant resid covar Log likelihood Akaike information criter Schwarz criterion	riance	5.9E+155 1.5E+155 -8297.041 379.6387 381.9545					

Source: Construit par nous même à partir du logiciel EVIEWS7.

Le modèle s'écrit comme suit:

L'observation de nos résultats d'estimation VAR indique que tous les t-statistique associés aux coefficients des variables dans l'équation D (IDE) sont inférieurs à 1.96, sauf la constante. Cela signifie les IDE en Tunisie ne dépendent pas des

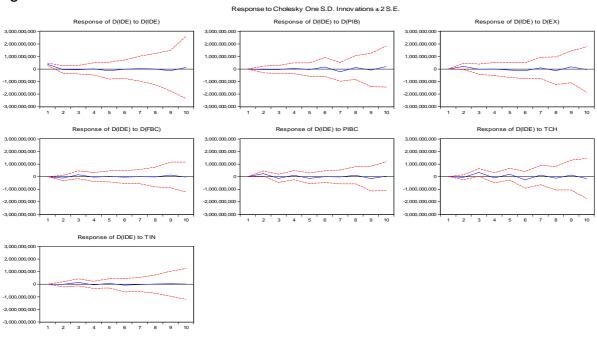
3.2.3- Test de validation du modèle VAR

Pour valider le modèle VAR estimé, nous devons vérifier qu'il est stationnaire au cours de temps.

Inverse Roots of AR Characteristic Polynomial

1.5

1.0
0.5
0.0
-0.5
-1.0
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5


Figure N°2:Les racines inverses des polynômes autorégressifs du modèle VAR

Source : établie à partir des données traitées par EVIEWS7

D'après le graphe, on remarque que l'inverse de la racine unitaire est à l'intérieur du cercle, et tous les modules sont inférieurs à 1, ce qui montre l'absence de la racine unitaire. Le VAR est par conséquent stationnaire, il est donc retenu.

.2.4-Analyse des chocs

On constate que les IDE en Tunisie sont affectés positivement par toutes les variables determinanntes des IDE, mais à un degrés tres faible.

3.2.5-La décomposition de la variance des IDE

La décomposition de la variance nous permettra de voir dans quelle mesure les variables ont une interaction entre elles, et de savoir la variable qui influence le plus aux autres variables.

Tableau N° 9: la décomposition de la variance

Period	S.E.	D(IDE)	D(PIB)	D(EX)	D(FBC)	PIBC	TCH	TIN
1	5.29E+08	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	6.35E+08	96.61077	0.052578	0.531089	0.177173	1.230252	0.737217	0.660922
3	6.76E+08	95.74721	0.208270	1.117575	0.251234	1.122988	0.957540	0.595184
4	6.91E+08	95.30713	0.250809	1.522409	0.310014	1.077159	0.958874	0.573605
5	6.97E+08	95.09131	0.250978	1.718669	0.335946	1.074409	0.958556	0.570129
6	6.98E+08	95.00979	0.250357	1.777134	0.350720	1.079905	0.956555	0.575541
7	6.99E+08	94.98563	0.250093	1.793054	0.356246	1.082200	0.955990	0.576792
8	6.99E+08	94.97894	0.250018	1.797029	0.358136	1.082822	0.955874	0.577184
9	6.99E+08	94.97719	0.250003	1.798038	0.358700	1.082947	0.955855	0.577267
10	6.99E+08	94.97672	0.250000	1.798317	0.358861	1.082968	0.955852	0.577284

Source : établi à partir des données traitées par EVIEWS7

Au cours de la première année, on constate que la variance de l'erreur de la prévision de D(IDE) est expliquée à 100% par ses propres innovations et les innovations des autres variables n'ont aucun effet. Pour les autres années il s'agit, approximativement, du même résultat. Les exportations et la croissance du PIB contribuent faiblement dans l'explication de la variance de l'erreur de la prévision de l'IDE.

3.2.6-Etude de la causalité au sens de Granger

Une des questions que l'on peu se posé à partir d'un VAR est de savoir s'il existe une relation de causalité entre les différentes Variables du Système. Le test de causalité de Granger entre deux variables X, Y permet de connaître si la connaîssance du passé d'une variable améliore la prévision de l'autre. L'idée de base de ce test est d'accepter ou de refuser l'hypothè nulle notée «Ho » selon laquelle la variable X ne cause pas au sens de Granger la variable Y. On accepte « Ho » si la probabilité est supérieure à 5% (0.05), on rejette « Ho » dans

le cas inverse et on accepte l'Hypothèse alternative « H1 »selon la quelle X cause au sens de Granger Y.

Tableau N° 10. Résultats du test de causalité au sens de Granger

Pairwise Granger Causality Tests Date: 09/04/17 Time: 10:24

Sample: 1970 2015

Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
D(PIB) does not Granger Cause D(IDE)	43	0.23653	0.7905
D(IDE) does not Granger Cause D(PIB)		9.26879	0.0005
D(EX) does not Granger Cause D(IDE)	43	0.28652	0.7525
D(IDE) does not Granger Cause D(EX)		1.77625	0.1830
D(FBC) does not Granger Cause D(IDE)	43	0.06614	0.9361
D(IDE) does not Granger Cause D(FBC)		2.30205	0.1138
PIBC does not Granger Cause D(IDE)	43	3.32402	0.0467
D(IDE) does not Granger Cause PIBC		0.19026	0.8275
TCH does not Granger Cause D(IDE) D(IDE) does not Granger Cause TCH	43	0.46500 0.82962	0.6317 0.4440
TIN does not Granger Cause D(IDE) D(IDE) does not Granger Cause TIN	43	0.59985 0.73543	0.5540 0.4860

Source : Réalisé par nous même à partir des résultats du test de causalité sur Eviews7.

D'après les résultats du test de causalité au sens de Granger, seule la croissance du PIB (PIBC) cause, au sens de Granger, les IDE puisque sa probabilité est inférieure a 0.05.

Section 2 : Analyse économétrique de l'attractivité des IDE en Maroc

De nombreuses contributions analysent l'attractivité des IDE au Maroc. Nous citons dans ce mémoire l'étude de *Mohamed AZEROUAL et Mouna CHERKAOUI* (2015)⁵ qui analysent les déterminants des IDE au Maroc en utilisant le Modèle (VECM) sur la période 1980-2012. Les résultats de leurs études montrent qu'à long terme, les variables : capital humain, infrastructures, SMIG, FBCF et taux de change réel ont tous des signes attendus et constituent les principaux déterminants des IDE au Maroc. En revanche, l'ouverture commerciale, la qualité des institutions et le crédit intérieur fourni au secteur privé, affichent

⁵ Mohamed AZEROUAL, Mouna CHERKAOUI (2015) Principaux déterminants des investissements directs étrangers au Maroc (1980-2012), Revue Économie, Gestion et Société, N°4 décembre 2015

des signes négatifs non conformes à ce qui est attendu au moment où la variable PIB réel qui mesure la taille du marché intérieur apparait non significative

1-Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TCH, TIN.

1.1- Estimation du modèle

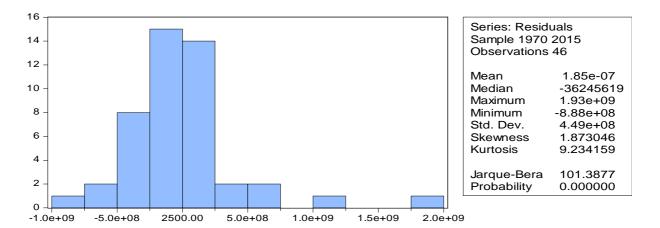
Les résultats de l'estimation du modèle basé sur des données annuelles sont présentés dans le tableau suivant :

Tableau N°11: Test de student et fisher

Dependent Variable: IDE Method: Least Squares Date: 06/28/17 Time: 11:26 Sample: 1970 2015 Included observations: 46

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PIB PIBC EX FBC TCH	-1.82E+08 4.41E-08 0.024091 0.089516 -0.008416 0.020029	2.10E+08 3.58E-08 0.023988 0.043322 0.040779 0.019723	-0.870030 1.232292 1.004261 2.066301 -0.206377 1.015539	0.3896 0.2252 0.3214 0.0455 0.8376 0.3161
TIN	-0.039129	0.030018	-1.303536	0.2000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.844201 0.820232 4.83E+08 9.08E+18 -981.2338 35.22037 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	9.02E+08 1.14E+09 42.96669 43.24496 43.07093 2.436894

Source: construit à partir du logiciel EVIEWS.7.


Le modèle est globalement significatif au seuil de 5 %. R² et R²-ajusté sont très proches. Ainsi, 84,4 % des variations des IDE sont expliquées par les variations de la combinaison des variables exogènes. En utilisant la statistique de Student directement fournie par *Eviews*, les résultats de l'estimation montrent clairement qu'à 5% toutes les variables retenues ne sont pas significatives car les probabilités associées sont supérieurs à 0,05, sauf les EX.

l'équation s'écrit : IDE = -182463730.083 + 4.41150792008e-08*PIB + 0.0240906687407*PIBC + 0.0895164147705*EX - 0.00841588825538*FBC + 0.0200291102079*TCH - 0.0391293611622*TIN

1.2-Le test de normalité des résidus

Les résultats obtenus du test de normalité des cinq variables seront présentés Dans la figure suivante :

Figure n° 4: Test de normalité des résidus

Source: construit à partir du logiciel EVIEWS.7.

La table numérique de Khi deux à 2 degré de liberté nous donne la valeur critique de 5,99 à 5% d'erreur. Or dans la figure N°1, la valeur de Jarque-Bera est de 101.38 donc elle est supérieure à la valeur critique (101.38 >5,99) alors on accepte l'hypothèse H1. De plus la probabilité de la statistique de Jarque-Bera fournie par Eviews est supérieure au seuil (0,00<0,05) ce qui signifie que les résidus issus du modèle ne suivent pas la loi normale.

2-L'application du modèle VAR

Pour stationnariser les séries, on doit se référer aux trois modèles de base constituant le test de Dickey-Fuller augmenté, afin de vérifier la significativité de la tendance et la constante pour identifier la nature de la non stationnarité des séries, c'est-à-dire si elles admettent un processus TS ou DS avant d'appliquer le test racine unitaire.

2.1- Test de stationnarité des séries

2.1.1- Test de stationnarité de la série IDE

Tout d'abord on estime le modèle avec constante et tendance [modèle 3], les résultats figurent dans le tableau suivant :

Tableau N°12 : Test de stationnarité IDE (Modèle3)

Null Hypothesis: IDE has a unit root Exogenous: Constant, Linear Trend

Lag Length: 5 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.538454	0.9773
Test critical values:	1% level	-4.205004	
	5% level	-3.526609	
	10% level	-3.194611	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/28/17 Time: 12:09 Sample (adjusted): 1976 2015

Included observations: 40 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IDE(-1)	-0.105062	0.195118	-0.538454	0.5940
D(IDE(-1))	-1.030057	0.238006	-4.327870	0.0001
D(IDE(-2))	-0.511194	0.247898	-2.062112	0.0474
D(IDE(-3))	-0.767338	0.214989	-3.569202	0.0012
D(IDE(-4))	-0.905468	0.227414	-3.981586	0.0004
D(IDE(-5))	-0.399741	0.177043	-2.257869	0.0309
С	-3.53E+08	2.50E+08	-1.409851	0.1682
@TREND(1970)	31054241	14875323	2.087635	0.0449
R-squared	0.770424	Mean depende	nt var	78932500
Adjusted R-squared	0.720204	S.D. dependen	t var	7.69E+08
S.E. of regression	4.07E+08	Akaike info crit	erion	42.66311
Sum squared resid	5.30E+18	Schwarz criteri	on	43.00089
Log likelihood -845.2622		Hannan-Quinn	criter.	42.78524
F-statistic	15.34102	Durbin-Watson	stat	2.105643
Prob(F-statistic)	0.000000			

Test du trend:

 $H_0: B=0$

 $H_1: B \neq 0$

Tb = $\frac{2.08}{5}$ < T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative.

On passe à l'estimation du modèle 02

Tableau N° 13 : Test de stationnarité IDE (Modèle 2)

Null Hypothesis: IDE has a unit root

Exogenous: Constant

Lag Length: 5 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		2.845358	1.0000
Test critical values:	1% level	-3.605593	
	5% level	-2.936942	
	10% level	-2.606857	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/28/17 Time: 12:14 Sample (adjusted): 1976 2015

Included observations: 40 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IDE(-1)	0.259617	0.091242	2.845358	0.0076
D(IDE(-1))	-1.289362	0.213104	-6.050405	0.0000
D(IDE(-2))	-0.672517	0.247241	-2.720081	0.0103
D(IDE(-3))	-0.891797	0.216813	-4.113216	0.0002
D(IDE(-4))	-0.942760	0.237967	-3.961718	0.0004
D(IDE(-5))	-0.377373	0.185493	-2.034434	0.0500
C	1.36E+08	92280560	1.477088	0.1491
R-squared	0.739157	Mean depende	nt var	78932500
Adjusted R-squared	0.691730	S.D. dependen	t var	7.69E+08
S.E. of regression	4.27E+08	Akaike info crit	erion	42.74080
Sum squared resid	6.02E+18	Schwarz criteri	on	43.03635
Log likelihood	-847.8159	Hannan-Quinn	criter.	42.84766
F-statistic	15.58545	Durbin-Watson	stat	2.041269
Prob(F-statistic)	0.000000			

Test de la constante :

 $H_0: C=0$ $H_1: C\neq 0$

 $Tc = |1.47| < T^{ADF} = 2.52$ donc on accepte $H_0 : C = 0 : C \neq 0$, la constante n'est significative. On passe au model 1 :

Tableau N°14 : Test de stationnarité IDE (Modèle 1)

Null Hypothesis: IDE has a unit root

Exogenous: None

Lag Length: 4 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic 1% level 5% level 10% level	3.402323 -2.622585 -1.949097 -1.611824	0.9997

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/28/17 Time: 12:20 Sample (adjusted): 1975 2015

Included observations: 41 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.

IDE(-1)	0.245104	0.072040	3.402323	0.0017
D(IDE(-1))	-1.081932	0.181393	-5.964567	0.0000
D(IDE(-2))	-0.405348	0.212287	-1.909437	0.0642
D(IDE(-3))	-0.732932	0.208113	-3.521803	0.0012
D(IDE(-4))	-0.572206	0.158524	-3.609579	0.0009
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.694803 0.660892 4.42E+08 7.05E+18 -871.7269 2.298112	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	it var erion on	77627317 7.60E+08 42.76716 42.97614 42.84326

Test du ¢:

$$\begin{array}{c} H_0: \phi = 1 \\ H_1: \phi < 1 \end{array}$$

 $T\phi$ =/ 3.40/ > $T^{ADF}(5\%)$ = - 1.95 on accepte H_0 ϕ =1 le processus est **non stationnaire** Le processus de cette série est processus **« DS sans dérive »** On passe a la première différance

La stationnarisation de la série et récupération de l'ordre d'intégration

Tableau N°15:Test de stationnarité IDE différencié

Null Hypothesis: D(IDE) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full Test critical values:	er test statistic	-16.83810 -2.618579	0.0000
rest critical values.	5% level 10% level	-1.948495 -1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE,2) Method: Least Squares Date: 06/28/17 Time: 12:26 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(IDE(-1))	-1.740039	0.103339	-16.83810	0.0000
R-squared	0.868303	Mean depende	ent var	-9129795.
Adjusted R-squared	0.868303	S.D. depender	ıt var	1.37E+09
S.E. of regression	4.97E+08	Akaike info crit	erion	42.91047
Sum squared resid	1.06E+19	Schwarz criteri	on	42.95102
Log likelihood	-943.0304	Hannan-Quinn	criter.	42.92551

Durbin-Watson stat 1.843215

 $T\phi = /-16.83 /< T^{ADF}(5\%) = -1.95$ on accepte $H_1 \phi < 1$ le processus est **stationnaire** Le processus IDE est devenu stationnaire avec une seule différenciation. Donc **IDE** \rightarrow **I(1)**

2.1.2-Test de stationnarité pour les séries IDE, PIB, PIBC, EX, FBC, TCH, TIN.

Les résultats des tests d'ADF effectués sur les séries PIB, PIBC, EX, FBC, TCHetTIN sont représentées dans le tableau suivant:

Tableau N°16: la stationnarité des séries IDE, PIB, PIBC, EX, FBC, TCH, TIN.

		Test ADF en niveau						en différence
Variables		Mod	dèle 3	Mod	dèle 2	Modèle1	Modèle 1	Ordre
	T statistique	T de ADF	Ttrend	T de ADF	Tconst	T de ADF	T de ADF	D'intégration
IDE	T calculée	-0.53	2.08	2.84	1.47	3.40	-16.83	
IDE	T tabulée	-3.52	2.79	-2.93	2.54	-1.95	-1.95	I(1)
PIB	T calculée	-20.15	1.78	-21.36	1.08	-21.93		I(O)
115	T tabulée	-3.52	2.79	-2.93	2.54	-1.95		
PIBC	T calculée	-2.99	-0.05	-3.04	2.42	-1.75		1/0)
PIBC	T tabulée	-3.51	2.79	-2.92	2.5	-1.95		I(0)
	T calculée	-1.88	2.61	0.60	0.66	1.65	-2.68	
EX	T tabulée	-3.51	2.79	-2.92	2.54	-1.95	-1.95	I(1)
	T calculée	-1.74	1.76	-0.41	1.36	0.94	-6.17	
FBC	T tabulée	-3.51	2.79	-2.92	2.54	-1.95	-1.95	l(1)
	T calculée	-6.03	0.99	-5.95	4.71			
тсн	T tabulée	-3.51	2.79	-2.92	2.54			I(0)
TIN	T calculée	-5.96	-3.31	-1.56	1.09	-1.75		I (0)

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

T tabulée	-3.51	2.79	-2.93	2.54	-1.95	

Source : Construit par nous même à partir des résultats obtenus par le logiciel EVIEWS7.

Les résultats du tableau ci-dessus montrent que les séries PIB, PIBC, TCH et TIN sont stationnaires en niveau $\mathbf{I}(\mathbf{0})$, et les séries IDE, EX et FBC sont stationnairés après la première différentiation $\mathbf{I}(\mathbf{1})$.

3-La modélisation du VAR

Après avoir stationnarisé les variables par le test d'ADF, nous allons chercher à modéliser sous la forme VAR (Vecteur Auto Régressive) l'IDE. Puis, nous allons estimer le modèle VAR, et d'appliquer les différents tests qui nous seront utiles.

3.1- Le choix du nombre de retards

Cette étape repose sur la détermination de l'ordre (P) du processus VAR à retenir. A cette fin, nous avons estimé divers processus VAR pour des ordres de retard allant de 1 à 4. Pour chaque modèle, nous avons calculé les critères d'information d'Akaike et Schwarz comme l'indique le tableau ci-dessous :

Tableau N⁰ 17: Les résultats de la recherche du nombre de retards

L'ordre du VAR	AIC	SC
VAR(1)	347.06	349.33
VAR(2)	347.13	351.43
VAR(3)	345.256	351.63
VAR(4)	336.27	344.76

Source : construit par nous même à partir des résultats obtenus par EVIEWS7.

À partir du tableau présenté ci-dessus, nous concluons que les critères d'information nous mènent à retenir un processus VAR(4).

3.2.-Estimation du modèle VAR (4)

L'estimation du modèle VAR (4), qui minimise le critère AS, est représentée dans le tableau suivant :

Tableau N°18: Estimation du processus VAR (4)

Date: 09/02/17 Time: 19:15 Sample (adjusted): 1975 2015

Included observations: 41 after adjustments Standard errors in () & t-statistics in []

	D(IDE)	D(EX)	D(FBC)	PIB	PIBC	TCH	TIN
D(IDE(-1))	-1.442536	-0.042045	0.326415	27921.03	-5.636219	-4.882484	1.260530
	(0.24919)	(0.97922)	(1.37209)	(54311.3)	(2.57046)	(2.65279)	(1.70198)
D(IDE(-2))	[-5.78887] -0.854872	[-0.04294] -0.612788	[0.23790]	[0.51409]	[-2.19269] -5.797004	[-1.84051] -3.481340	[0.74063] 1.419145
-((-//	(0.38609)	(1.51717)	(2.12587)	(84148.5)	(3.98260)	(4.11017)	(2.63700)
	[-2.21418]	[-0.40390]	[0.56562]	[-0.36857]	[-1.45558]	[-0.84701]	[0.53817]
D(IDE(-3))	-0.708429	-2.012079	0.038182	-53058.19	-2.313156	1.332028	-0.792068
	(0.37942)	(1.49095)	(2.08913)	(82694.1)	(3.91376)	(4.03913)	(2.59142)
	[-1.86715]	[-1.34953]	[0.01828]	[-0.64162]	[-0.59103]	[0.32978]	[-0.30565]
D(IDE(-4))	-0.478819	-1.727629	-1.123794	-10075.67	-1.303451	1.611785	-1.789933
	(0.21799)	(0.85659)	(1.20027)	(47510.1)	(2.24857)	(2.32060)	(1.48885)
	[-2.19656]	[-2.01686]	[-0.93629]	[-0.21207]	[-0.57968]	[0.69456]	[-1.20223]
D(EX(-1))	0.168979	-0.060046	0.607757	40447.26	1.300804	0.893901	-0.670291
	(0.10619)	(0.41729)	(0.58470)	(23144.4)	(1.09538)	(1.13047)	(0.72529)
	[1.59127]	[-0.14390]	[1.03943]	[1.74761]	[1.18753]	[0.79073]	[-0.92417]
D(EX(-2))	0.338087	1.036942	1.236977	-62443.75	1.159175	2.828114	-0.229754
	(0.10534)	(0.41395)	(0.58003)	(22959.5)	(1.08663)	(1.12144)	(0.71949)
	[3.20939]	[2.50497]	[2.13259]	[-2.71973]	[1.06676]	[2.52186]	[-0.31933]
D(EX(-3))	-0.098980	0.226860	0.077240	-60281.98	2.223891	0.050581	-0.608487
	(0.13179)	(0.51789)	(0.72567)	(28724.3)	(1.35947)	(1.40302)	(0.90015)
	[-0.75103]	[0.43805]	[0.10644]	[-2.09864]	[1.63585]	[0.03605]	[-0.67599]
D(EX(-4))	-0.230791	0.180938	-0.263109	18850.51	-1.302254	-1.924811	1.033065
	(0.12996)	(0.51070)	(0.71560)	(28325.6)	(1.34060)	(1.38354)	(0.88765)
	[-1.77581]	[0.35429]	[-0.36768]	[0.66549]	[-0.97140]	[-1.39122]	[1.16382]
D(FBC(-1))	-0.119562	-0.390349	-0.662255	3358.089	-1.388819	-0.562232	0.597939
	(0.08836)	(0.34722)	(0.48652)	(19258.0)	(0.91145)	(0.94064)	(0.60350)
	[-1.35312]	[-1.12422]	[-1.36120]	[0.17437]	[-1.52375]	[-0.59771]	[0.99079]
D(FBC(-2))	-0.181881	-0.801974	-0.856533	41560.90	-0.091723	-1.318256	-0.349932
	(0.09161)	(0.35998)	(0.50440)	(19965.8)	(0.94495)	(0.97522)	(0.62568)
	[-1.98544]	[-2.22784]	[-1.69811]	[2.08160]	[-0.09707]	[-1.35176]	[-0.55929]
D(FBC(-3))	0.108603	0.150367	0.130759	77823.12	-2.088468	0.145220	0.466359
	(0.11139)	(0.43772)	(0.61334)	(24277.9)	(1.14903)	(1.18583)	(0.76081)
	[0.97496]	[0.34352]	[0.21319]	[3.20552]	[-1.81760]	[0.12246]	[0.61298]
D(FBC(-4))	0.219879	0.186282	0.514829	-15150.21	1.418123	1.735056	-1.016076
	(0.11650)	(0.45780)	(0.64147)	(25391.5)	(1.20174)	(1.24023)	(0.79571)
	[1.88735]	[0.40691]	[0.80257]	[-0.59666]	[1.18006]	[1.39898]	[-1.27695]
PIB(-1)	-2.40E-06	-9.28E-06	-1.27E-05	-0.027669	-4.51E-06	-1.22E-05	-1.63E-06
	(1.1E-06)	(4.3E-06)	(6.1E-06)	(0.24112)	(1.1E-05)	(1.2E-05)	(7.6E-06)
	[-2.16717]	[-2.13368]	[-2.09307]	[-0.11475]	[-0.39508]	[-1.03862]	[-0.21547]
PIB(-2)	-9.95E-08	-6.58E-06	-5.76E-06	11.12503	-1.76E-05	-1.24E-05	5.54E-06
	(8.4E-07)	(3.3E-06)	(4.6E-06)	(0.18254)	(8.6E-06)	(8.9E-06)	(5.7E-06)
	[-0.11885]	[-1.99805]	[-1.24816]	[60.9463]	[-2.03918]	[-1.39519]	[0.96934]

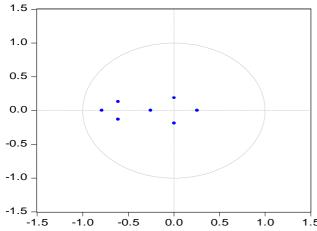
Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

PIB(-3)	2.77E-05	9.63E-05	0.000130	11.11517	5.93E-05	0.000149	8.22E-06
=(0)	(1.2E-05)	(4.9E-05)	(6.8E-05)	(2.70945)	(0.00013)	(0.00013)	(8.5E-05)
	[2.23103]	[1.97171]	[1.90170]	[4.10237]	[0.46207]	[1.12809]	[0.09686]
DID(4)	0.005.05	0.000400	0.000404	100 0017	0.000000	0.000004	0.045.05
PIB(-4)	2.80E-05	0.000166	0.000191	-106.9217	0.000236	0.000261	-3.91E-05
	(1.6E-05)	(6.4E-05)	(9.0E-05)	(3.57313)	(0.00017)	(0.00017)	(0.00011)
	[1.71021]	[2.57985]	[2.12116]	[-29.9239]	[1.39740]	[1.49601]	[-0.34895]
PIBC(-1)	0.025765	-0.011381	0.030268	-3857.093	0.577097	0.194637	-0.020225
	(0.03067)	(0.12051)	(0.16886)	(6683.97)	(0.31634)	(0.32647)	(0.20946)
	[0.84014]	[-0.09444]	[0.17925]	[-0.57707]	[1.82429]	[0.59618]	[-0.09656]
PIBC(-2)	-0.020422	0.261976	0.188172	8404.989	-0.000376	0.223259	0.019080
- ()	(0.02658)	(0.10444)	(0.14634)	(5792.41)	(0.27414)	(0.28293)	(0.18152)
	[-0.76842]	[2.50850]	[1.28589]	[1.45103]	[-0.00137]	[0.78911]	[0.10511]
DIDO(a)	0.00000	0.040070	0.057000	0505.000	0.070040	0.750450	0.000004
PIBC(-3)	0.003200	-0.018278	0.057902	-8585.328	0.272019	-0.753150	-0.292634
	(0.02826)	(0.11104)	(0.15559)	(6158.63)	(0.29148)	(0.30081)	(0.19300)
	[0.11326]	[-0.16461]	[0.37215]	[-1.39403]	[0.93325]	[-2.50371]	[-1.51627]
PIBC(-4)	-0.056334	0.162865	0.118919	-2491.090	-0.306344	0.036084	0.686115
	(0.03227)	(0.12680)	(0.17767)	(7032.63)	(0.33284)	(0.34350)	(0.22038)
	[-1.74587]	[1.28446]	[0.66933]	[-0.35422]	[-0.92039]	[0.10505]	[3.11326]
TCH(-1)	-0.015907	0.200409	0.126857	-200.5707	-0.259434	0.338424	0.058112
,	(0.02474)	(0.09722)	(0.13623)	(5392.36)	(0.25521)	(0.26339)	(0.16898)
	[-0.64294]	[2.06134]	[0.93120]	[-0.03720]	[-1.01655]	[1.28490]	[0.34389]
TCH(-2)	0.019111	-0.134269	-0.104508	-10720.39	0.206270	-0.435987	0.010005
	(0.02545)	(0.09999)	(0.14011)	(5545.94)	(0.26248)	(0.27089)	(0.17380)
	[0.75104]	[-1.34280]	[-0.74591]	[-1.93302]	[0.78585]	[-1.60948]	[0.05757]
TCH(-3)	-0.035982	-0.109535	-0.187863	240.8474	-0.157224	0.055734	-0.007140
()	(0.02603)	(0.10227)	(0.14330)	(5672.31)	(0.26846)	(0.27706)	(0.17776)
	[-1.38257 [°]]	[-1.07104]	[-1.31096]	[0.04246]	[-0.58565]	[0.20116]	[-0.04017]
TCH(-4)	0.034155	-0.066125	-0.025668	10310.48	0.130233	-0.489488	0.010501
1011(-4)	(0.02375)	(0.09332)	(0.13076)	(5175.84)	(0.24496)	(0.25281)	(0.16220)
	[1.43822]	[-0.70860]	[-0.19630]	[1.99204]	[0.53164]	[-1.93619]	[0.06474]
	[1.10022]	[0.7 0000]	[0.10000]	[1.0020 1]	[0.00101]	[1.00010]	[0.00 17 1]
TIN(-1)	-0.021369	-0.179448	-0.125650	-15835.43	0.266428	-0.879039	0.438022
	(0.03590)	(0.14108)	(0.19769)	(7825.13)	(0.37035)	(0.38221)	(0.24522)
	[-0.59518]	[-1.27192]	[-0.63559]	[-2.02366]	[0.71940]	[-2.29987]	[1.78624]
TIN(-2)	-0.054656	-0.185074	-0.277635	1777.695	-0.751607	0.116933	0.280264
,	(0.03892)	(0.15293)	(0.21428)	(8481.85)	(0.40143)	(0.41429)	(0.26580)
	[-1.40445]	[-1.21022]	[-1.29566]	[0.20959]	[-1.87232]	[0.28225]	[1.05442]
TIN(-3)	0.031747	-0.302101	-0.079077	9036.174	0.173127	-0.025495	0.020304
1111(-3)	(0.037747	(0.14562)	(0.20405)	(8076.89)	(0.38226)	(0.39451)	(0.25311)
	[0.85667]	[-2.07453]	[-0.38754]	[1.11877]	[0.45290]	[-0.06462]	[0.08022]
	[0.0000.]	[=.000]	[0.00.0.]	[[00_00]	[0.00 .0_]	[0.000]
TIN(-4)	-0.019881	0.086387	0.047157	12842.17	0.046374	0.667408	-0.210414
	(0.04021)	(0.15801)	(0.22140)	(8763.87)	(0.41478)	(0.42806)	(0.27464)
	[-0.49443]	[0.54672]	[0.21299]	[1.46535]	[0.11180]	[1.55913]	[-0.76615]
С	5.12E+08	2.33E+09	1.76E+09	-2.64E+13	3.06E+09	7.95E+09	4.72E+08
	(3.1E+08)	(1.2E+09)	(1.7E+09)	(6.7E+13)	(3.2E+09)	(3.3E+09)	(2.1E+09)
	[1.66696]	[1.92810]	[1.04190]	[-0.39408]	[0.96751]	[2.43205]	[0.22495]
R-squared	0.935308	0.873598	0.801258	0.999772	0.608797	0.716563	0.790248

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

Adj. R-squared	0.784361	0.578660	0.337527	0.999239	-0.304011	0.055209	0.300828
Sum sq. resids	1.49E+18	2.31E+19	4.53E+19	7.09E+28	1.59E+20	1.69E+20	6.97E+19
S.E. equation	3.53E+08	1.39E+09	1.94E+09	7.69E+13	3.64E+09	3.76E+09	2.41E+09
F-statistic	6.196268	2.961969	1.727849	1877.861	0.666949	1.083479	1.614662
Log likelihood	-839.9247	-896.0346	-909.8652	-1343.898	-935.6031	-936.8958	-918.6991
Akaike AIC	42.38657	45.12364	45.79830	66.97062	47.05381	47.11687	46.22922
Schwarz SC	43.59861	46.33568	47.01034	68.18266	48.26585	48.32891	47.44126
Mean dependent	77627317	7.90E+08	7.04E+08	7.99E+14	3.22E+09	5.06E+09	2.96E+09
S.D. dependent	7.60E+08	2.14E+09	2.39E+09	2.79E+15	3.19E+09	3.86E+09	2.88E+09
Determinant resid cova	ariance (dof						
adj.)	•	7.1E+136					
Determinant resid cova	ariance	1.3E+133					
Log likelihood		-6690.706					
Akaike information crite	erion	336.2784					
Schwarz criterion		344.7626					

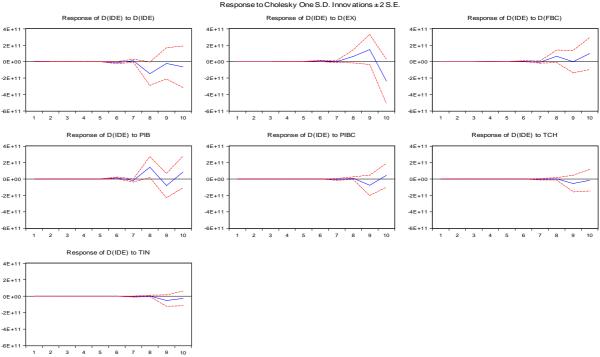
Source : établie à partir des données traitées par EVIEWS7.


À partir du tableau présenté ci-dessus, nous concluons que les critères d'information nous mènent à retenir un processus VAR(4).

3.3- Test de validation du modèle VAR

Pour valider le modèle VAR estimé, nous devons vérifier qu'il est stationnaire au cours de temps.

Figure N°5:Les racines inverses des polynômes autorégressifs du modèle VAR


Inverse Roots of AR Characteristic Polynomial

Source : établie à partir des données traitées par EVIEWS7.

D'après le graphe, on remarque que l'inverse de la racine unitaire est à l'intérieur du cercle, et tous les modules sont inférieurs à 1, ce qui montre l'absence de la racine unitaire. Le VAR est par conséquent stationnaire, il est donc retenu.

3.4-Analyse des chocs

Source : établie à partir des données traitées par EVIEWS7.

D'aprs les resultats, pendant les 5 premiere periode, les pricipaux determiants n'ont aucun effet sur les IDE. A partir de la 6 ime periode jusqu'à la 8 ieme periode, les variables telles que les EX, FBC, PIB influence positivement les IDE, mais l'effet de vient negatif à partir de la 9ime periode. cependant, le taux de croissance, le TC et le TIN affectent négativement les IDE et ce à partir la pendant les 5 premiere periode.

3.5-La décomposition de la variance de l'IDE

La décomposition de la variance nous permettra de voir dans quelle mesure les variables ont une interaction entre elles, et de savoir la variable qui influence le plus aux autres variables.

Tableau N°19 : la décomposition de la variance

Period	S.E.	D(IDE)	D(EX)	D(FBC)	PIB	PIBC	TCH	TIN
1	3.53E+08	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	5.44E+08	90.63924	0.174747	6.079082	1.006365	0.181448	1.663831	0.255286
3	6.00E+08	81.85391	1.124918	6.724300	1.821547	0.257640	7.958567	0.259120
4	8.09E+08	66.32467	2.658865	21.37979	1.002033	0.227477	8.037522	0.369640
5	8.82E+08	60.43126	2.721018	26.98825	0.875742	0.438221	7.937269	0.608234
6	2.08E+10	41.93045	17.10199	6.781984	34.15023	0.005123	0.027527	0.002689
7	3.22E+10	29.31031	7.165049	6.069045	48.75482	3.884522	2.046795	2.769458
8	2.27E+11	41.70671	8.106796	8.361235	41.46139	0.252352	0.041377	0.070139
9	3.04E+11	23.78874	28.03343	4.672736	30.24997	6.647707	3.473317	3.134096
10	4.16E+11	15.06845	47.64897	8.098964	20.41546	4.663820	2.003285	2.101056

Source : Réalisé par nous même à partir des résultats du test de causalité sur Eviews7

Au cours de la première année, on constate que la variance de l'erreur de la prévision de l'IDE est expliquée à 100% par ses propres innovations et les innovations des autres variables n'ont aucun effet, Pour le deux années 90.63%, les 3 années81.85% Pour les autres années, il s'agit, approximativement, du même résultat tous les variables contribuent faiblement dans l'explication la variance de l'erreur de la prévision de l'IDE.

3.6-Etude de la causalité au sens de Granger

Les résultats du test sont donnés dans le tableau ci-après :

Tableau N°20 : Résultats du test de causalité au sens de Granger

Pairwise Granger Causality Tests Date: 09/04/17 Time: 22:21

Sample: 1970 2015

Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
D(EX) does not Granger Cause D(IDE)	43	0.80389	0.4551
D(IDE) does not Granger Cause D(EX)		0.16251	0.8506
D(FBC) does not Granger Cause D(IDE)	43	1.83317	0.1738
D(IDE) does not Granger Cause D(FBC)		0.41684	0.6621
PIB does not Granger Cause D(IDE)	43	0.82599	0.4455
D(IDE) does not Granger Cause PIB		1.76314	0.1852
PIBC does not Granger Cause D(IDE)	43	0.37665	0.6887
D(IDE) does not Granger Cause PIBC		0.50532	0.6073
TCH does not Granger Cause D(IDE)	43	1.76748	0.1845
D(IDE) does not Granger Cause TCH		0.13910	0.8706
TIN does not Granger Cause D(IDE) D(IDE) does not Granger Cause TIN	43	1.68729 0.32153	0.1986 0.7270

Source : Réalisé par nous même à partir des résultats du test de causalité sur Eviews7

D'après les résultats du test de causalité au sens de Granger, aucune variable ne cause au sens de Granger les IDE puisque la probabilité est supérieure à 5%.

Section 3 : Analyse économétrique de l'attractivité des IDE en Algérie

1-Analyse du lien entre les IDE et les variables (PIB, PIBC, EX, FBC, TCH et TIN.)

1.1- Estimation du modèle

Les résultats de l'estimation du modèle basé sur des données annuelles sont présentés dans le tableau suivant :

 $Tableau\ N^{\circ}21: \text{R\'esultats de la r\'egression multiple}$

Dependent Variable: IDE Method: Least Squares

Date: 06/29/17 Time: 12:05

Sample: 1970 2015 Included observations: 46

Variable	Coefficien	Std. Error	t-Statistic	Prob.
	t			
С	4.17E+08	1.06E+09	0.395199	0.6948
PIB	-2.27E-07	1.85E-07	-1.227792	0.2269
PIBC	-0.142665	0.104209	-1.369028	0.1788
EX	0.007019	0.037577	0.186786	0.8528
FBC	0.067913	0.040104	1.693406	0.0984
TCH	0.049670	0.105376	0.471363	0.6400
TIN	0.167690	0.090811	1.846590	0.0724
R-squared	0.171844	Mean depe	endent var	1.68E+0
•		-		9
Adjusted R-squared	0.044435	S.D. deper	ndent var	1.95E+0
_		_		9
S.E. of regression	1.91E+09	Akaike inf	o criterion	45.71401
Sum squared resid	1.42E+20	Schwarz c	riterion	45.99229
Log likelihood	-1044.422	F-statistic		1.348759
Durbin-Watson stat	1.429787	Prob(F-sta	tistic)	0.259451

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

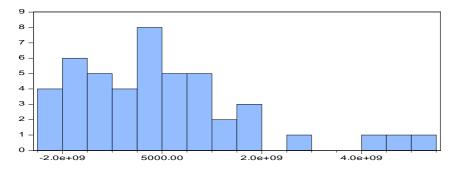
$$\begin{split} IDE &= 417280453.084 - 2.26959588585e - 07*PIB - 0.142665036026*PIBC + \\ &0.00701882765155*EX + 0.0679131553623*FBC + 0.0496704679737*TCH + \\ &0.167689849821*TIN \end{split}$$

Le modèle est globalement non significatif au seuil de 5 %. R² et R²-ajusté sont très proches de 0. 17,1 % le seuil des variations des IDE sont expliquées par les variations de la combinaison des variables exogènes. En utilisant la statistique de Student directement fournie

par *Eviews*, *l*es résultats de l'estimation montrent clairement qu'à 5% toutes les variables retenues ne sont pas significatives car les probabilités associées sont supérieurs à 0,05.

Tableau N°22 : Résultats de la régression multiple Modèle sans constante

Dependent Variable: IDE Method: Least Squares Date: 09/04/17 Time: 10:41 Sample: 1970 2015 Included observations: 46


Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB PIBC EX FBC TCH TIN	-2.81E-07 -0.128138 0.014108 0.078165 0.073670 0.176418	1.23E-07 0.096476 0.032668 0.030260 0.085204 0.087150	-2.277342 -1.328178 0.431872 2.583122 0.864635 2.024310	0.0282 0.1916 0.6682 0.0136 0.3924 0.0497
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.168527 0.064593 1.89E+09 1.42E+20 -1044.514 1.427813	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	nt var t var erion on	1.68E+09 1.95E+09 45.67453 45.91305 45.76388

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

1.2-Le test de normalité des résidus

Les résultats obtenus du test de normalité des cinq variables seront présentés Dans la figure suivante :

Figure n° 6: Test de normalité des résidus

Series: Residuals
Sample 1970 2015
Observations 46

Mean 6.43e-07
Median -2.54e+08
Maximum 5.09e+09
Minimum -2.24e+09
Std. Dev. 1.77e+09
Skewness 1.189465
Kurtosis 4.258817

Jarque-Bera 13.88420
Probability 0.000966

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

La table numérique de Khi deux à 2 degré de liberté nous donne la valeur critique de 5,99 à 5% d'erreur. Or dans cette figure, la valeur de Jarque-Bera est de 13. 88 donc elle est supérieure à la valeur critique (13.8 > 5,99) alors on accepte l'hypothèse H1. De plus la

probabilité de la statistique de Jarque-Bera fournie par Eviews est supérieure au seuil (0,17 > 0,05) ce qui signifie que les résidus issus du modèle ne suivent pas la loi normale.

D-W est < 2, cela signifier qu'il ya une auto-corrélation des erreurs ce qui justifier l'utilisation du VA.

1.3 Test de stationnarité des séries

1.3.1 Test de stationnarité de la série IDE

Tout d'abord on estime le modèle avec constante et tendance [modèle 3], les résultats figurent dans le tableau suivant :

Tableau n° 23: Test de stationnarité de la série IDE

Null Hypothesis: IDE has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.255111	0.0081
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/29/17 Time: 13:32 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IDE(-1)	-0.607258	0.142713	-4.255111	0.0001
C	1.05E+09	5.92E+08	1.780125	0.0823
@TREND(1970)	-493112.5	21260477	-0.023194	0.9816
R-squared	0.303703	Mean dependent var		-475300.1
Adjusted R-squared	0.270546	S.D. dependent var		2.16E+09
S.E. of regression	1.84E+09	Akaike info criterion		45.57097
Sum squared resid	1.43E+20	Schwarz criterion		45.69141
Log likelihood	-1022.347	Hannan-Quinn criter.		45.61587
F-statistic	9.159541	Durbin-Watson stat		1.841339
Prob(F-statistic)	0.000500			

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

Test du trend:

 $H_0: B=0$ $H_1: B\neq 0$

Tb = -0.023 < T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative. On passe à l'estimation du modèle 02

Tableau n° 24: Test de stationnarité IDE (Modèle 2)

Null Hypothesis: IDE has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.330642	0.0012
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(IDE) Method: Least Squares Date: 06/29/17 Time: 13:34 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IDE(-1) C	-0.607597 1.04E+09	0.140302 3.63E+08	-4.330642 2.872612	0.0001 0.0063
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.303694 0.287501 1.82E+09 1.43E+20 -1022.347 18.75446 0.000087	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-475300.1 2.16E+09 45.52654 45.60683 45.55647 1.840779

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

Test de la constante :

$$H_0: C=0$$

H₁: C≠0

 $Tc = 2.87 > T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est significative.

On passe au test de Ø.

Test de Ø:

 $H_0: \emptyset = 1$

 $H_1: \emptyset < 1$

T \emptyset = -4.33 < -2.92 donc on rejette H0: \emptyset = 1 et on accepte l'hypothèse aléatoire. Le processus est donc stationnaire.

1.3.2 Test de stationnarité de la série PIB

Tout d'abord on estime le modèle avec constante et tendance [modèle 3], les résultats figurent dans le tableau suivant :

Tableau N°25 : Test de stationnarité PIB (Modèle3)

Null Hypothesis: PIB has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.438129	0.8357
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/29/17 Time: 13:37 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1)	-0.085419	0.059396	-1.438129	0.1578
C	-6.94E+14	6.79E+14	-1.022424	0.3124
@TREND(1970)	5.98E+13	3.26E+13	1.831626	0.0741
R-squared	0.074554	Mean dependent var		3.66E+14
Adjusted R-squared	0.030485	S.D. dependent var		2.00E+15
S.E. of regression	1.97E+15	Akaike info criterion		73.33523
Sum squared resid	1.63E+32	Schwarz criterion		73.45567
Log likelihood	-1647.043	Hannan-Quinn criter.		73.38013
F-statistic	1.691757	Durbin-Watson stat		1.776941
Prob(F-statistic)	0.196505			

Source : établie à partir des données traitées par EVIEWS.7.

Test du trend:

 $H_0: B=0$

 $H_1: B \neq 0$

Tb = $1.83 < T^{ADF}$ = 2.78 donc on accepte H₀: B=0, la tendance est non significative.

On passe à l'estimation du modèle 02

Tableau n° 26 : Test de stationnarité PIB (Modèle 2) :

Null Hypothesis: PIB has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.164845	0.9354
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/29/17 Time: 13:39 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1) C	-0.006967 3.92E+14	0.042261 3.39E+14	-0.164845 1.154764	0.8698 0.2546
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000632 -0.022610 2.02E+15 1.76E+32 -1648.772 0.027174 0.869839	Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr Durbin-Watson s	ar rion i iter.	3.66E+14 2.00E+15 73.36763 73.44793 73.39757 1.764531

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

Test du trend:

 $H_0: B=0$ $H_1: B\neq 0$

Tb = 1.15 < T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative.

On passe à l'estimation du modèle 01.

Tableau n° 27 : Test de stationnarité PIB (Modèle 1) :

Null Hypothesis: PIB has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.409075	0.7972
Test critical values:	1% level	-2.617364	
	5% level	-1.948313	
	10% level	-1.612229	

^{*}MacKinnon (1996) one-sided p-values.

Dependent Variable: D(PIB) Method: Least Squares Date: 06/29/17 Time: 13:40 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1)	0.015420	0.037695	0.409075	0.6845
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.030360 -0.030360 2.03E+15 1.81E+32 -1649.459 1.747193	Mean dependent var S.D. dependent var Akaike info criterio Schwarz criterion Hannan-Quinn crit	on	3.66E+14 2.00E+15 73.35373 73.39388 73.36869

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

Test du 6:

$$\begin{cases} H_0: \phi = 1 \\ H_1: \phi < 1 \end{cases}$$

 $T\phi = 0.40 > T^{ADF}(5\%) = -1.95$ on accepte $H_0 \phi = 1$ le processus est non stationnaire

La non stationnarité est de type DS sans dérive. La meilleure façon de stationnariser la série PIB est la différenciation.

La stationnarisation de la série et récupération de l'ordre d'intégration

Tableau n° 28 : Test de stationnarité PIB différencié

Null Hypothesis: D(PIB) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.592395	0.0000
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB,2) Method: Least Squares Date: 06/29/17 Time: 13:42 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

D(PIB(-1))	-0.912886	0.163237	-5.592395	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.420048 0.420048 2.05E+15 1.81E+32 -1613.237 1.877667	Mean dependent var S.D. dependent var Akaike info criterio Schwarz criterion Hannan-Quinn crite	n	-1.12E+14 2.69E+15 73.37441 73.41495 73.38944

Source : Elaboré par nous même à partir des résultats d'Eviews 7.0

Test du ϕ :

$$\begin{cases} H_0 : \phi = 1 \\ \end{bmatrix}$$

 $T\phi = -5.59 < T^{ADF}(5\%) = -1.95$ on accepte $H_1: \phi < 1$ le processus est stationnaire.

Le processus PIB est donc intégré d'ordre 1, car elle est devenue stationnaire après sa première différentiation. PIB \rightarrow I(1)

1.3.3-Test de stationnarité pour les séries IDE, PIB, PIBC, EX, FBC, TCH, TIN.

Les résultats des tests d'ADF effectués sur les séries PIB, PIBC, EX, FBC, TCH et TIN sont représentées dans le tableau suivant:

Tableau n° 29 : la stationnarité des séries, IDE, PIB, PIBC, EX, FBC, TCH, TIN

		Те	Test ADF en différence						
Variables		Modèle 3		Modèle 2		Modèle1	Modèle 1	Ordre	
	Tstatistique	T de ADF	Ttrend	T de ADF	Tconst	T de ADF	T de ADF	D'intégratio n	
IDE	T calculée	-4.25	-0.02	-4.33	2.87				
IDE	T tabulée	-3.51	2.79	-2.92	2.54			I(0)	
PIB	T calculée	-1.44	1.83	-0.16	1.15	0.40	-5.59	I(1).	
	T tabulée	-3.51	2.79	-2.92	2.54	-1.94	-1.94	<u> </u>	
PIBC	T calculée	-5.92	-0.21	-6.03	4.14			I(0)	
	T tabulée	-3.51	2.79	-2.92	2.54				

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

EX	T calculée	-2.06	1.55	-1.36	1.43	-0.49	-6.63	I(1)
	T tabulée	-3.51	2.79	-2.92	2.54	-1.94	-1.94	
FBC	T calculée	-7.68	5.74					I(0)
	T tabulée	-3.52	2.79					
ТСН	T calculée	-6.10	0.13	-6.17	4.95			I(0)
	T tabulée	-3.51	2.79	-2.92	2.54			
TIN	T calculée	-6.17	-1.18	-6.06	3.56			I(0)
	T tabulée	-3.51	2.79	-2.92	2.54			

Source: Construit par nous même à partir du logiciel EVIEWS7.

Les résultats du tableau ci-dessus montrent que les séries IDE, PIBC, FBC, TCH, et TIN sont stationnarisées en niveau **I(0)**, et les séries PIB et EX sont sationnarisées après la première différentiation **I(1)**.

1.4- La modélisation du VAR

Après avoir stationnarisé les variables par le test d'ADF, nous allons chercher à modéliser sous la forme VAR (Vecteur Auto Régressive) les IDE. Puis, nous allons estimer le modèle VAR, et d'appliquer les différents tests qui nous seront utiles.

1.4.1 Le choix du nombre de retards

Pour déterminer de l'ordre (P) du processus VAR à retenir, nous allons estimer divers processus VAR pour des ordres de retard allant de 1 à 4. Pour chaque modèle

Tableau N⁰ 30 : Les résultats de la recherche du nombre de retards

L'ordre du VAR	AIC	SC
VAR(1)	282.9883	285.2591
VAR(2)	286.9054	291.4927
VAR(3)	287.0651	293.7261
VAR(4)	284.6765	293.4533

Source : construit par nous même à partir des résultats obtenus par EVIEWS7.

À partir du ce tableau, nous concluons que les critères d'information nous mènent à retenir un processus VAR(1).

1.4.2. Estimation du modèle VAR

L'estimation du modèle VAR(1), qui minimise le critère AS, est représentée dans le tableau suivant :

Tableau N° 31: Estimation du processus VAR

Vector Autoregression Estimates Date: 08/29/17 Time: 23:17 Vector Autoregression Estimates Date: 09/04/17 Time: 10:15 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments Standard errors in () & t-statistics in []

	IDE	D(PIB)	PIBC	D(EX)	FBC	TCH	TIN
IDE(-1)	0.379412	-7214.235	-0.324265	0.136329	-0.214919	-0.086604	0.259456
	(0.16241)	(180228.)	(0.21741)	(0.73829)	(0.36008)	(0.25088)	(0.29466)
	[2.33608]	[-0.04003]	[-1.49149]	[0.18465]	[-0.59687]	[-0.34521]	[0.88052]
D(PIB(-1))	9.92E-08	-0.004492	8.08E-08	1.23E-06	3.07E-07	1.60E-07	1.73E-07
	(2.4E-07)	(0.26365)	(3.2E-07)	(1.1E-06)	(5.3E-07)	(3.7E-07)	(4.3E-07)
	[0.41734]	[-0.01704]	[0.25397]	[1.13911]	[0.58367]	[0.43573]	[0.40038]
PIBC(-1)	0.058127	57712.07	0.203517	0.723138	0.407802	-0.108591	0.083614
	(0.11657)	(129353.)	(0.15604)	(0.52988)	(0.25843)	(0.18006)	(0.21148)
	[0.49865]	[0.44616]	[1.30427]	[1.36471]	[1.57798]	[-0.60309]	[0.39537]
D(EX(-1))	-0.011605	24595.94	-0.067636	-0.341733	0.061215	0.023161	-0.023521
	(0.05462)	(60609.2)	(0.07311)	(0.24828)	(0.12109)	(0.08437)	(0.09909)
	[-0.21247]	[0.40581]	[-0.92509]	[-1.37639]	[0.50553]	[0.27453]	[-0.23736]
FBC(-1)	-0.000513	891.5465	-0.002305	-0.115805	1.040608	0.011487	-0.044974
	(0.01322)	(14670.6)	(0.01770)	(0.06010)	(0.02931)	(0.02042)	(0.02399)
	[-0.03879]	[0.06077]	[-0.13026]	[-1.92697]	[35.5032]	[0.56249]	[-1.87504]
TCH(-1)	-0.046007	-89056.97	0.023076	0.041403	-0.251416	-0.036957	0.073845
	(0.10981)	(121858.)	(0.14700)	(0.49918)	(0.24346)	(0.16962)	(0.19923)
	[-0.41896]	[-0.73083]	[0.15698]	[0.08294]	[-1.03268]	[-0.21787]	[0.37065]
TIN(-1)	0.039666	-32639.27	0.102848	0.187227	0.313384	-0.198597	-0.050818
	(0.10586)	(117467.)	(0.14170)	(0.48120)	(0.23469)	(0.16351)	(0.19205)
	[0.37472]	[-0.27786]	[0.72581]	[0.38909]	[1.33533]	[-1.21456]	[-0.26460]
C	9.96E+08	6.17E+14	2.60E+09	6.95E+08	62943290	4.64E+09	2.64E+09
	(7.9E+08)	(8.7E+14)	(1.1E+09)	(3.6E+09)	(1.7E+09)	(1.2E+09)	(1.4E+09)
	[1.26351]	[0.70487]	[2.46355]	[0.19401]	[0.03601]	[3.80649]	[1.84734]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.162536	0.029591	0.134899	0.147634	0.976323	0.092056	0.099980
	-0.000304	-0.159099	-0.033315	-0.018103	0.971719	-0.084489	-0.075024
	1.39E+20	1.71E+32	2.48E+20	2.86E+21	6.81E+20	3.31E+20	4.56E+20
	1.96E+09	2.18E+15	2.63E+09	8.92E+09	4.35E+09	3.03E+09	3.56E+09
	0.998135	0.156825	0.801950	0.890771	212.0661	0.521429	0.571303
	-999.5010	-1611.963	-1012.333	-1066.125	-1034.532	-1018.632	-1025.711
	45.79550	73.63467	46.37877	48.82388	47.38783	46.66511	46.98685
	46.11990	73.95906	46.70316	49.14828	47.71223	46.98951	47.31125
	1.75E+09	3.74E+14	2.82E+09	6.70E+08	2.76E+10	3.93E+09	2.38E+09
	1.96E+09	2.02E+15	2.58E+09	8.84E+09	2.59E+10	2.91E+09	3.43E+09

Determinant resid covariance (dof adj.)

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

Determinant resid covariance Log likelihood	6.7E+143 -7722.931
Akaike information criterion	353.5878
Schwarz criterion	355.8586

Source: Construit par nous même à partir du logiciel EVIEWS7.

Le modèle s'écrit comme suit

IDE = 0.37941225222*IDE (-1) + 9.91556692647e-08*D(PIB(-1)) + 0.0581267964361*PIBC(-1) - 0.0116046624834*D(EX(-1)) - 0.000512852462939*FBC(-1) - 0.0460071880952*TCH(-1) + 0.0396663391825*TIN(-1) + 996192972.496

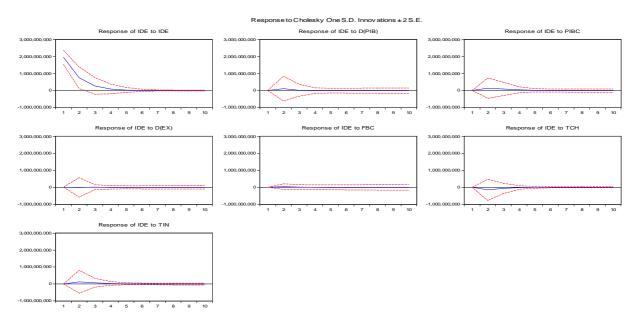
Les résultats de l'estimation montrent qu'un grand nombre de coefficients associés à chaque variable sont non significatifs d'un point de vue statistique dans l'équation (IDE). Les résultats indiquent que les IDE n'est pas significativement influencé par d'autres variable sauf par les IDE(-1) de $\mid 2.33 \mid > 1.96 \mid$, par contre les autres variables sont toutes inferieure à 1.96.

1.4.3La décomposition de la variance des IDE

La décomposition de la variance nous permettra de voir dans quelle mesure les variables ont une interaction entre elles, et de savoir la variable qui influence le plus aux autres variables.

Tableau n° 32 : La décomposition de la variance

Period	S.E.	IDE	D(PIB)	PIBC	D(EX)	FBC	TCH	TIN
1	1.96E+09	100.0000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	2.12E+09	98.43143	0.261380	0.398516	0.002431	0.024420	0.527879	0.353944
3	2.14E+09	98.04040	0.260165	0.581486	0.002757	0.026695	0.629296	0.459196
4	2.14E+09	97.97012	0.260952	0.619081	0.005242	0.026871	0.636506	0.481232
5	2.14E+09	97.96183	0.263217	0.621194	0.006251	0.028342	0.636870	0.482295
6	2.14E+09	97.95596	0.265768	0.621162	0.007472	0.030553	0.636827	0.482259
7	2.14E+09	97.94913	0.268309	0.621681	0.008549	0.033068	0.636871	0.482391
8	2.14E+09	97.94157	0.270906	0.622513	0.009674	0.035750	0.636961	0.482627
9	2.14E+09	97.93358	0.273578	0.623486	0.010822	0.038553	0.637067	0.482914
10	2.14E+09	97.92524	0.276348	0.624524	0.012016	0.041469	0.637180	0.483221


Source : Construit par nous même à partir du logiciel EVIEWS7.

La variance de l'erreur de la prévision de l'IDE est expliquée à 100% par ses propres innovations et les innovations des autres variables n'ont aucun effet. Dans la deuxième période la variance IDE est expliqué a 98.43% par elle même, et les autres variables ne

participe que faiblement le TCH seulement à 0.52%, le PIBC à 0.39% et le TIN 0.35%. Pour les autres années, il s'agit approximativement du même résultat, toutes les variables contribuent faiblement dans l'explication la variance de l'erreur de la prévision de l'IDE.

4.4-Analyse des chocs

Figure n° 8: Analyse des chocs

Source : établie à partir des données traitées par EVIEWS.7

4.5-Etude de la causalité au sens de Granger

Tableau n° 33 Résultats du test de causalité au sens de Granger

Pairwise Granger Causality Tests Date: 09/04/17 Time: 10:35

Sample: 1970 2015

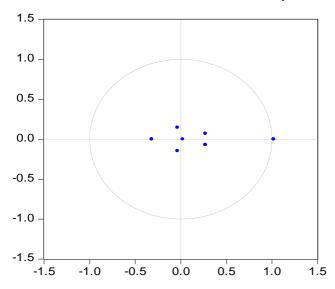
Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
D(PIB) does not Granger Cause IDE IDE does not Granger Cause D(PIB)	43	0.03845 0.03420	0.9623 0.9664
PIBC does not Granger Cause IDE IDE does not Granger Cause PIBC	44	0.46960 1.63895	0.6287 0.2073
D(EX) does not Granger Cause IDE IDE does not Granger Cause D(EX)	43	0.19750 0.10052	0.8216 0.9046
FBC does not Granger Cause IDE IDE does not Granger Cause FBC	44	0.00981 0.12465	0.9902 0.8832
TCH does not Granger Cause IDE	44	0.37440	0.6901

Chapitre III : Etude économétrique des déterminants des IDE au Maghreb par l'application du modèle MCO et VAR

IDE does not Granger Cause TCH		0.18052	0.8355
TIN does not Granger Cause IDE IDE does not Granger Cause TIN	44	0.18227 0.85574	0.8341 0.4328

Source: établie à partir des données traitées par EVIEWS.7.


Selon les résultats du test, on accepte l'hypothèse nulle pour toutes les variables, car leurs probabilités sont supérieures à 0.05. donc d'après les résultats aucune variable ne cause, au sens de Granger, 1'IDE.

1.4.4 Test de validation du modèle VAR

Pour valider le modèle VAR estimé, nous devons vérifier qu'il est stationnaire au cours de temps.

Figure N° 9: Les racines inverses des polynômes autorégressifs du modèle VAR

Inverse Roots of AR Characteristic Polynomial

Source : établie à partir des données traitées par EVIEWS.7.

D'après le graphe, on remarque que l'inverse de la racine unitaire est à l'intérieur du cercle, et tous les modules sont inférieurs ou égaux à 1, ce qui montre l'absence de la racine unitaire. Le VAR est par conséquent stationnaire, il est donc retenu.

Conclusion

L'objectif de ce chapitre était d'étudier et tester les variables qui déterminent les IDE dans le pays de Maghreb. en appliquant les MCO, les résultats trouvés pour la Tunisie montrent que trois variables exogènes expliquent les IDE en Tunisie ces variables sont EX, PIB et FBC. Par contre au Maroc, seulement les Ex explique les IDE. En Algérie,

toutes les variables exogènes n'expliquent pas le modèle (toutes les probabilités sont inférieures à 0.05).

Pour la modélisation VAR, après avoir testé l'existence de racines unitaires en Tunisie, on a trouvé qu'il y'a trois variable qui sont PIBC, TCH et TIN qui sont intégrées d'ordre 0, et les autres variable (PIB, EX, FBC) ne sont pas stationnaires elle sont donc intégrées d'ordre 1.

Apres avoir appliqué le test ADF sur les données du Maroc, on a trouvé qu'il y'a quatre variables à savoir le PIB, PIBC, TCH, TIN qui sont intégrées d'ordre 0, et les autres variables (EX, FBC) ne sont pas stationnaires elles sont donc intégrées d'ordre 1.

En Algérie il y'a l'IDE, PIBC, FBC, TCH, TIN qui sont intégrées d'ordre 0, alors que les autres variables (PIB, EX) ne sont pas stationnaires de type DS dont on a dû les différencier une fois pour les rendre stationnaires, elles sont donc intégrées d'ordre 1.

Après avoir choisi le nombre de retard optimal, et après l'estimation du modèle VAR(1) pour la Tunisie, on a conclu que l'IDE est expliqué par sa propre valeur passée. Et le même cas pour l'Algérie qui est expliqué par sa propre valeur passée IDE (-1), par contre on remarque que au Maroc avec le modèle VAR(4) les IDE sont expliqué par IDE (-1)(-2) (-4), et par EX(-2), FBC (-3).

Les résultats obtenus du test de causalité au sens de Granger en Tunisie indiquent que seule la variable PIBC qui cause, au sens de Granger, les IDE. Au Maroc on a trouvé qu'il n ya aucune variable qui cause l'autre. Et le même cas pour l'Algérie au on trouve qu'il n ya aucune variable qui cause l'autre.

Conclusion générale

Conclusion générale

L'objectif de ce mémoire était d'étudier et d'analyser théoriquement et empiriquement les déterminants des investissements directs étrangers dans les pays du Maghreb (l'Algérie, la Tunisie et le Maroc). En se basant sur le modèle des MCO et le modèle VAR estimés sur données annuelles allant de (1970- 2015), on a pu mener une repense à notre problématique.

Le premier chapitre est consacré a un bref rappel des concepts théoriques des IDE ainsi leurs déterminants. En passant d'abord par un ensemble de définitions, formes et stratégies des IDE, en deuxième lieu nous avons présenté l'évolution des IDE dans le monde. Enfin nous avons abordé les déterminants des IDE selon les différentes approches théoriques.

Dans le deuxième chapitre, on a présenté l'évolution de cadre réglementaire dans les trois pays (l'Algérie, Tunisie et Maroc) et l'évolution des IDE dans chaque pays et leurs répartitions sectorielles ainsi les différent IDE entrant dans les trois pays. Nous avons remarqué que l'Algérie a déployé pas mal d'efforts pour améliorer son attractivité à travers des organismes chargés de l'investissement tels que l'ANDI et le CNI, cependant, tous cela ne lui a pas permis d'atteindre le niveau d'attractivité enregistré en la Tunisie et le Maroc.

Le troisième chapitre nous a permis d'analyser les variables qui déterminent les IDE dans chaque pays, on a choisi six variables (PIB, PIBC, EX, FBC, TCH, TIN). En utilisant le modèle MCO et VAR, on a pu démontrer lesquelles de ces variables déterminent et expliquent les IDE dans chaque pays.

Au vu des résultats obtenus à l'issue de l'étude empirique basée sur le modèle MCO et le VAR, nous avons pu répondre a notre hypothèse comme suite :

• Par les MCO

En Tunisie, le modèle est globalement significatif au seuil de 5 %. Ainsi 75,60 % des variations des IDE sont expliquées par les variations de la combinaison des variables exogènes PIB, PIBC, FBC, TCH. Les variables (EX, PIB, FBC) sont significatives car les probabilités associées sont inferieure à 0,05.

Au Maroc Le modèle est globalement non significatif au seuil de 5 %. Ainsi, 84,4 % des variations des IDE sont expliquées par les variations de la combinaison des variables

exogènes. Les résultats de l'estimation montrent clairement qu'à 5% toutes les variables retenues ne sont pas significatives car les probabilités associées sont supérieurs à 0,05, sauf les EX.

En Algérie Le modèle est globalement non significatif au seuil de 5 %. 17,1 % le seuil des variations des IDE sont expliquées par les variations de la combinaison des variables exogènes. *Les* résultats de l'estimation montrent clairement qu'à 5% toutes les variables retenues ne sont pas significatives car les probabilités associées sont supérieurs à 0,05.

• Par le VAR

En Tunisie, les résultats du test ADF montrent que les séries PIBC, TCH et TIN sont stationnarisées en niveau **I(0)**, et les séries IDE, PIB, EX et FBC sont sationnarisées après la première différentiation **I(1)**. Au Maroc, les résultats du la stationnarité montrent que les séries PIB, PIBC, TCH et TIN sont stationnaires en niveau **I(0)**, et les séries IDE, EX et FBC sont stationnarités après la première différentiation **I(1)**. Tandis qu'en Algerie Les résultats du test la stationnarité montrent que les séries IDE, PIBC, FBC, TCH, et TIN sont stationnarisées en niveau **I(0)**, et les séries PIB et EX sont sationnarisées après la première différentiation **I(1)**.

Les résultats de l'estimation montrent qu'un grand nombre de coefficients associés à chaque variable sont non significatifs d'un point de vue statistique dans l'équation (IDE). En Tunisie Les résultats indiquent que les IDE n'est pas significativement influencé par d'autres variable sauf par son passé IDE(-1). En revanche, au Maroc les IDE sont significativement influencé par IDE (-1)(-2) (-4), et par EX(-2), FBC (-3). En Algérie Les résultats indiquent que les IDE n'est pas significativement influencé par d'autres variable sauf par son passé IDE (-1). D'après les résultats de la causalité aucune variable ne cause, au sens de Granger l'IDE.

Les résultats du test de Granger indiquent que la croissance de PIB (PIBC) est la seule variable causale de l'IDE au Maroc, or que la Tunisie et l'Algérie n'ont aucune variable qui cause l'IDE.

Bibliographie

Bibliographie

Ouvrages

- 1. Agénor ,P,R, « Benefits and costs of international financial integration: Theory and Facts", policy Research working paper,N°.2699, The World Bank,October,2001
- 2. Andrefe Wladimiri (1996), « les multinationales globales », Ed la Découvert, Paris,
- 3. Bazen,S. et Sabatier,M.,(2007) « Econometrie des fondements à la modélisation », Ed Vuibert
- 4. BELLON B ET GOUIA R. : « Investissements direct étrangers et développement industriel méditerranéen », Economica. Paris, 1998
- 5. C.A. Michelet, « La séduction des nations ou comment attirer les investissements », Ed. Economico. Paris
- 6. Christian Milelli et Michel Delapierre, « Les firmes multinationales», Vuibert, 1995
- 7. Denis Lacoste et Pierre-André Bigues, «Stratégie d'internationalisation des entreprises: menaces et Opportunités, De Boeck, 2011
- 8. G-M. GAELLE, « Economie Internationale », édition LEXTENSON, paris, 2009
- 9. -HARISSON.A, DALKIRAN.E et ELSEY.E : « business international et mondialisation », Boeck, Bruxelles, 2004, p325-326
- 10. HATEM. F.: « La firme multinationale en l'an 2000 », Economica, Paris, 1995.
- 11. -JACQUEMOT.P: « firme multinationale: une introduction économique », Dunod, paris, 1998;
- 12. KRUGMAN.P ETOBSTFELD.M, « économie internationale 2eme édition française, de Boeck, 1998
- 13. K. Fiodendji, « La Qualité des Institutions et les Investissements directs Etrangers en Afrique », édition DIAL, paris, 2006.
- OCDE : définition de référence de l'OCDE des investissements directs internationaux, paris, 4^{eme}Edition 2008.
- 14. OCDE, Définition de références de l'OCDE pour les investissements directs internationaux, 3eme édition
- 15. -R-M.ZAFANIA et R.LOZE « Etude sur la promotion de l'Investissement à Madagascar », édition CREA, 2010

Articles et communications

- -Adil Dance, Fatima Bernoussi & Mouna Tourkmani (2002), « Diagnostic de l'attractivité du Maroc pour les Investissements Directs Etrangers », Document de Travail n°82
- Ayouni Saif Eddine. « Développement Financier et Investissement Direct Etranger en Tunisie : une validation Econométrique.»Unité de recherche : Tourisme et Développement FDSEP de Sousse
- 3. BENNACER A. « attractivité aux IDE : quel rôle pour les villes en Algérie ? cas de la ville de Bejaia », mémoire de magistère, université de Bejaia, mars 2011, p.59.
- 4. BOUALAM.F, « Les Institutions et Attractivité des IDE » Colloque International « Ouverture et émergence en Méditerranée », 17 et 18 Octobre 2008 Rabat- Maroc, Université de Montpellier I Sciences Economiques
- 5. Gabriel CUMENGE « les investissements industriels français au Maroc. Une étude empirique sur la décennie quatre-vingt-dix ». .
- 6. -J.Hellman et D. Kauffman, « la captation de l'état dans les économies en transition : un défi à relever », finances et développement, volume 38, n°3, 2001, pp.31-35.
- 7. Lucas, R.E. (1990). «Hey doesn't capital flow form Rich to poor countries. " The American Economic .Review 80(2):92-96.
- 8. Mansouri Marwane, « réglementation des investissements directs étrangers au Maroc : réformes », gouvernement du royaume du Maroc, 4septembre 2007
- 9. MAYER T « les frontière nationales comptent, mais de moins en moins »problème économique, paris. Mars 2002.
- 10. Mohamed AZEROUAL, Mouna CHERKAOUI (2015) Principaux déterminants des investissements directs étrangers au Maroc (1980-2012), Revue Économie, Gestion et Société, N°4 décembre 2015
- MOURAD .H : « la protection des investissements en Algérie», université de perpignan- D.E.A. 2007

Theses et memoires

 Campos Mauro F., Kinoshita yuko (2003)« Why does FDI go where it goe New Evidence from the Transition Economies» university of Michigan William Davidson .Institute wording papers series, No.2003-573

- 2. Fatima BOUALAM, « L'investissement direct à l'étranger le cas de l'Algérie », école doctorale économie et Gestion université Montpellier I, Juillet 2010.
- 3. KACICHAOUCH, T « les facteurs d'attractivité des investissements directs étrangers en Algérie : Aperçu comparatifs aux autres pays Maghreb »mémoire de magistère, université, de Tizi-Ouzou, Juin2012.
- 4. Khalfallah. S. « l'impact des IDE sur la croissance économique dans les pays : Maroc-Algérie-Tunisie entre la période 1990-2009 », mémoire de magister en analyse économique, université Tlemcen, 2010.
- M. DKHISSI SAID, « politique d'attractivité des IDE au marc », université
 Mohammed V-Soussi, master Echanges internationaux et OMC 2008/2009
- 6. MAHRAZ Sanae, « investissement Direct Etranger au Maroc et politique d'attractivité », FSJES Meknes Licence 2008.
- 7. Morisset et O.Neso,« Administrative barriers to foreign investment in developing countries », policy Research Working paper, n°2848, 2002
- 8. THAALBI Inés, T, « Déterminants et impacts des IDE sur la croissance économique en Tunisie », Université de Strasbourg, décembre 2013.
- 9. T.KACICHAOUCH «les facteurs d'attractivité des investissements directs étrangers en Algérie : Aperçu comparatifs aux autres pays du Maghreb », mémoire de magistère, université, de Tizi-Ouzou, juin, 2012.
- 10. ZINEB et AOUMARI, « Attractivité du canada : L'investissement direct étranger et Dynamique de la croissance »comme exigence partielle de la maitrise en économique université de Québec à Montréal, mars 2009.

Rapports

- A.Fischaman, « Les investissements directs étrangers en Algérie en 2015 »,
 Ambassade de France en Algérie-service
- 2. Ambassade de France au Maroc service économique régional, Les investissements directs étrangers au Maroc, Févire 2017.
- 3. Ambassade de France au Maroc service économique regional, Les investissements directs étrangers au Maroc, Févire 2017.
- 4. Ambassade de France au Maroc service économique régional, Les investissements directs étrangers au Tunisie 2015, mai 2016.

- 5. ANIMA, « Les flux d'investissement étrangers en Algérie plonge dans le rouge à cause de Djezzy », novembre 2016.
- 6. CNUCED (1997), « sociétés transnationales la structure de marché et la politique de concurrence », world investirent rapport ,1997 New York et Genève, United Nation
- 7. CNUCED: World investment Report 1998, Trend and Determinant
- 8. CNUCED, rapport sur l'investissement dans le monde 2003, dans www.cnuced.org.
- 9. CNUCED, rapport sur l'investissement dans le monde 2005.
- 10. CNUCED, rapport sur l'investissement dans le monde 2006.
- 11. CNUCED, rapport sur l'investissement dans le monde 2008.
- 12. CNUCED, rapport sur l'investissement dans le monde 2009.
- 13. CNUCED, rapport sur l'investissement dans le monde 2010.
- 14. CNUCED, « Examen de la politique de l'investissement Algérie », 2004
- 15. F MI, revne finances et développement/mars 1998.
- 16. OCDE, « les principes directeurs de l'OCDE a l'intention des entreprises multinationales », 2008.p.40.
- 17. OCDE, « cadre pour la transparence de la politique d'investissement », Direction des affaires financières et des entreprises, Octobre 2003.
- 18. OMC, « Transparence », Groupe de travail des liens entre commerce et investissement, Communication du Canada, n°03-1923, Avril 2003
- 19. Rapport L'Eco-news L'Algérie, un marché potentiel pour les turcs 26 Avril 2017.
- 20. Rapport des IDE 2015 et perspectives 2016.

Textes juridiques

- 1. Loi n° 82-13 du 28-08-1982, journal official de la république algérienne.
- 2. La loi n°93-12 du 05octobre 1993, journal officiel de la république algérienne n°64.
- 3. Loi n° 16-09 du 03 août 2016 relatif à la promotion de l'investissement, journal officiel de la république Algérienne N°46
- 4. Loi n° 82-13 du 28-08-1982, journal official de la république algérienne.
- 5. La loi n°93-12 du 05octobre 1993, journal officiel de la république algérienne n°64.
- 6. Loi n° 16-09 du 03 août 2016 relatif à la promotion de l'investissement, journal officiel de la république Algérienne N°46
- 7. Ordonnance n°63-277-1963, portant code des investissements, journal officiel n° 53

8. Ordonnance n°06-08 du 15/07/2006 relative au développement de l'investissement, journal officiel de la république Algérienne N°47.

Sites internet

- -http://www.animaweb.org/sites/default/files/mipo_10ans_fr_a5_0.pdf, consulté le 7/7 2017 http://www.asectu.org/images/PDF-art/Hela_Bouras_version_d%C3%A9finitive.pdf, consulté le 13 /07/2017
- -http://WWW.investissement
- https://www.tresor.economie.gouv.fr/File/426078
- -http://www.algerie-focus.com/2013/04/lalgerie-seduit-les-investisseurs-chinois/, consulté le 21/08/2017 à 23 :55.
- -http://www.djazairess.com/fr/liberte/96140, consulté le 22/04/2017 à 18:00.
- -http://www.djazairess.com/fr/liberte/96140, consulté le 22/04/2017 à 18:00.
- -http://www.djazairess.com/fr/latribune/102184, consulté le 22/04/2017 à 19:00.
- -<u>http://fr.africatime.com/algerie/articles/1.5-milliard-de-dollars-dinvestissements-en-2013-lalgerie-le-nouvel-eldorado-pour-les</u>, consulté le 21/07/2017 à10 :30
- -http://www.institut-numerique.org/chapitre-ii-lanalyse-des-flux-des-ide-en-tunisie-510129d022065
- $-http://www.memoireonline.com/08/09/2565/m_Investissement-Direct-Etranger-au-Maroc-et-politique-dattractivite 10\\$
- -http://www.memoireonline.com/08/09/2565/m_Investissement-Direct-Etranger-au-Maroc-et-politique-dattractivite7.htm
- -http://www.tresor.economie.gouv.fr/Pays/maroc
- <u>http://www.dsps.unict.it/sites/default/files/files/JMFDIEntre_instabilite_externe_et_instabilite_npdf,</u> consulté le 20/07/2017

Liste des tableaux

Tableau n° 1 : Stock des IDE américain en 1960 par zone et par secteur d'activité11
Tableau n°2: Analyse sectorielle du flux des IDE en millions de TND, 2006 à 201130
Tableau n°3 : Analyse sectorielle du flux des IDE en millions de TND, $2012\grave{a}201531$
Tableau n°4: Répartition des projets d'investissement étrangers déclarés par secteur
d'activité période 2002-2016.
Tableau n°5: Répartition des projets d'investissement étrangers déclarés par secteur juridique
période 2002-2016
Tableau n° 6: Stock des IDE américain en 1960 par zone et par secteur d'activité51
Tableau n°7: Résultats de la régression multiple
Tableau N°8 : Test de stationnarité IDE (Modèle3)56
Tableau N°9: Test de stationnarité IDE (Modèle 2)57
Tableau N°10 : Test de stationnarité IDE (Modèle 1)
Tableau N°11: Test de stationnarité IDE différencié
Tableau N°12: la stationnarité des séries IDE, PIB, PIBC, EX, FBC, TCH, TIN60
Tableau N ⁰ 13 : Les résultats de la recherche du nombre de retards
Tableau N°14: Estimation du processus VAR
Tableau N° 15: la décomposition de la variance
Tableau N° 16: Résultats du test de causalité au sens de Granger65
Tableau N°17 : Test de student et fisher
Tableau N°18 : Test de stationnarité IDE (Modèle3)
Tableau N° 19: Test de stationnarité IDE (Modèle 2)68 Tableau N°20 : Test de stationnarité IDE (Modèle 1)69
Tableau N°21: Test de stationnarité IDE différencié70
Tableau N°22: la stationnarité des séries IDE, PIB, PIBC, EX, FBC, TCH, TIN71
Tableau N23: Estimation du processus VAR (4)
Tableau N°24: la décomposition de la variance
Tableau N°25 : Résultats du test de causalité au sens de Granger
Tableau N°26 : Résultats de la régression multiple

Tableau N°227: Résultats de la régression multiple Modèle sans constante79	
Tableau n° 28: Test de stationnarité de la série IDE80	
Tableau n° 29: Test de stationnarité IDE (Modèle 2)81	
Tableau N°230: Test de stationnarité PIB (Modèle3)82	
Tableau n° 31: Test de stationnarité PIB (Modèle 2)82	
Tableau n° 32: Test de stationnarité PIB (Modèle 1)83	
Tableau n°33 : Test de stationnarité PIB différencié	
Tableau n° 34 : la stationnarité des séries, IDE, PIB, PIBC, EX, FBC, TCH, TIN85	
Tableau N⁰ 35 : Les résultats de la recherche du nombre de retards	
Tableau N° 36: Estimation du processus VAR	
Tableau n° 37 : la décomposition de la variance	
Tableau n° 38: Résultats du test de causalité au sens de Granger89	

Liste des figures

Figure n° 1: Test de normalité des résidus du Tunisie.	55
Figure N°2:Les racines inverses des polynômes autorégressifs du modèle VAR du Tunis	ie.63
Figure N°3: analyse des chocs du Tunis	63
Figure n° 4: Test de normalité des résidus du Maroc	63
Figure N°5:Les racines inverses des polynômes autorégressifs du modèle VAR du Marod	c.75
Figure N°6: analyse des chocs du Maroc.	67
Figure n° 7: Test de normalité des résidus du Algérie	.79
Figure N°8 : analyse des chocs du Algérie	89
Figure N° 9: Les racines inverses des polynômes autorégressifs du modèle VAR du	
Algérie	90

année	IDE	PIB	EX	FBC	TCH	croissance	TIN
1970	16000000	1,7312E+11	1,9422E+10	304380952	0,525	8,0087937	4,30690494
1971	23000000	1,8019E+11	1,9863E+10	362593230	0,52291667	4,98484847	3,41352952
1972	33000000	1,9133E+11	2,3406E+10	508279187	0,47708333	2,26240055	5,22769804
1973	58000000	2,2801E+11	3,2122E+10	581119545	0,42159583	4,97384906	15,5437061
1974	28000000	2,925E+11	5,2853E+10	915005727	0,43650833	5,37263749	16,6675157
1975	45000000	3,2423E+11	5,2262E+10	1212776535	0,40226667	4,21158743	8,75629305
1976	109620000	3,5111E+11	6,0958E+10	1381996269	0,428775	5,9063694	10,1287156
1977	93250000	4,021E+11	7,4435E+10	1560606061	0,42895	6,84212831	10,6633485
1978	91310000	4,4983E+11	7,5461E+10	1835655935	0,41617083	4,02588354	9,03488409
1979	49210000	5,117E+11	1,0089E+11	2115375154	0,4064625	1,95367308	13,587705
1980	246480000	6,358E+11	1,335E+11	2567300568	0,40495417	5,74094553	14,2479219
191	327220000	6,7114E+11	1,2981E+11	2724787363	0,49380417	2,83102278	9,73633275
1982	370690000	6,773E+11	1,1536E+11	2580497715	0,5906875	2,86580244	8,0231835
1983	209220000	6,6221E+11	1,1376E+11	2796994697	0,67876667	3,53087984	8,55285961
1984	141480000	6,5947E+11	1,1502E+11	2963439753	0,77683333	2,91244613	10,19072
1985	138920000	6,9453E+11	1,0971E+11	2536728580	0,83449583	3,78745534	6,25197917
1986	85930000	7,2317E+11	1,0315E+11	2398866499	0,79402917	3,12536087	7,02482606
1987	102760000	7,9621E+11	1,1931E+11	2277060456	0,8286625	2,61516431	7,99853485
1988	76760000	8,3105E+11	1,3038E+11	2090930287	0,85780417	6,03260254	8,65084961
1989	91840000	8,4186E+11	1,5142E+11	2415569367	0,94932083	5,29114393	8,38739106
1990	88700000	9,0212E+11	1,6243E+11	3326818182	0,87833333	3,97618139	9,96402383
1991	172800000	8,652E+11	1,719E+11	3397934783	0,92462083	1,35816315	13,0165782
1992	583600000	9,1159E+11	1,8211E+11	4524310267	0,88443333	2,59992181	9,19948645
1993	656200000	9,2356E+11		4271595098	1,00374167	2,30720833	11,6746741
1994	566400000	1,0061E+12	2,0558E+11	3852510874	1,01155417	3,07778124	11,7222782
1995	377500000			4453737972	0,94575	4,74157132	
1996	351100000		2,7251E+11	4899527430	0,97340833	5,83621765	8,9000045
1997	365300000	1,2801E+12	2,929E+11	5074328601	1,10590833	3,89059839	8,92446882
1998	668100000	1,1579E+12	2,685E+11	5432774216	1,138725	0,4856698	7,5260369
1999	367900000	•	•	5648794470	*	4,54925615	
2000	779175300	1,3291E+12	•		1,37068333		
2001				5776742893	1,4387125		
2002	820831000			5510304565	•	3,88844334	•
2003	583642500			6402949166			
2004	639116200			7258932156			
2005	78306600			6996608602	*		
2006	3307989000			8061307288	•	7,41250881	
2007					1,28135833		
2008	2758615000			1,1637E+10			
2009	1687811000	•	9,119E+11	1,0862E+10	*	5,01872548	3,5432992
2010	1512505000		1,196E+12	1,1767E+10	•	7,42322742	•
2011	1147836000			1,0693E+10		5,41163714	
2012	1603186000			1,1123E+10			
2013	1117157000		1,4911E+12	1,0639E+10			4,13260476
2014	1063216000		1,5047E+12	1,1327E+10	*	5,52137474	
2015	1001718000	5,8603E+12	1,3399E+12	9309900082	1,961625	5,44440389	2,18051224

année	IDE	PIB	EX	FBC	tin	croissance	tch
1970	20000000	3956328426	697776900	731350657	3,46769843	4,71346038	5,06049
1971	23100000	4356633663	738594059	781782178	4,06519747	5,59689366	5,04995885
1972	13000000	5074117545	942466528	775299948	3,58421994	2,43723735	4,59248032
1973	5490000	6242177798	1300664735	1052618764	6,039393	3,55931083	4,10692083
1974	-20400000	7675408486	2115085359	1570323585	23,8982358	5,59604994	4,36976667
1975	5020000	8984824183	2019148674	2281061073	0,93131596	7,55822156	4,0524875
1976	38020000	9584323309	1717036635	2798406988	4,97659389	10,8127813	4,4193125
1977	7990000	1,105E+10	1866986432	3592254569	10,7709665	6,05916768	4,50334583
1978	11760000	1,3237E+10	2166990664	3366693066	8,41721328	2,23266339	4,16667083
1979	7180000	1,5912E+10	2706675900	3897309636	7,34460906		3,89913417
1980	89420000	2,1729E+10	4201460651	6595438449	33,0231314	3,64216481	3,93664583
1981	58580000	1,7788E+10	4032793921	5642209655	9,47047691	1,74343493	5,17229583
1982	79530000	1,7692E+10	3822384194	5914288228	6,2983525	8,95737202	6,0230225
1983	46120000	1,6251E+10	3697970835	4282025790	6,97019804	1,38656958	7,11132333
1984	46990000	1,4825E+10	3800197492	4612395891	6,20115344	6,41838632	8,81053583
1985	19980000	1,4991E+10	3824760012	4599017788	8,95364432	6,00765207	10,0624942
1986	550000	1,9462E+10	4258784763	5348625829	7,49074949	9,27110577	
1987	59570000	2,1765E+10	4893103407	5466780194		0,32500408	8,359225
1988	84540000	2,5705E+10	6425436406	6283355423	3,67059655	11,875236	8,20915
1989	167060000	2,6314E+10	5935155863	7965528616	2,91997906	2,84620258	8,48817
1990	165000000	•	7412029409	9374031520	7,69435962	3,41181223	
191	317000000	•	7205700273	8821066088		7,21608816	8,70655
1992	424000000	3,3711E+10	7474470602	9341462169	4,58787833	2,09773876	8,537875
1993	491000000	3,1655E+10	6983435853	8380531885	3,03498246	0,74059169	•
1994 1995	551000000 332000000	3,5604E+10 3,903E+10	7454973378 8849422717	9138682603 9911328454	0,65534024	10,5880004	9,202715
1995	322000000	4,3161E+10	9424723781	1,0562E+10	0,43548856	5,40544787 12,3728763	8,54023583 8,71587583
1997	1204710000	3,9148E+10	9365776215	9756294216	0,71339165	1,56070236	9,52710667
1998	400242500	4,1806E+10		1,1624E+10	0,39132128	7,23855269	9,60441583
1999	1380418000	4,1632E+10	1,0472E+10	1,0755E+10	0,56954637	1,08133256	•
2000	421962100	3,8857E+10	1,0409E+10	1,0733E+10	•	1,91287298	10,6256362
2001	2807060000	3,946E+10	1,1131E+10	1,0897E+10	0,65231754	•	11,302975
2002	480690700	4,2237E+10	1,2214E+10	1,1493E+10		3,12144966	
2003		5,2064E+10	1,432E+10	1,5117E+10		5,96116215	
2004	894562700	5,9626E+10	1,6759E+10	1,8445E+10		4,79701836	
2005	1653986000	6,2343E+10	1,9276E+10	1,8877E+10	1,19054061	3,29163968	
2006	2449446000	6,8641E+10	2,2484E+10	2,1212E+10	1,54803076	7,57463164	•
2007	2804501000	7,9042E+10	2,7326E+10	2,6783E+10	3,5950548	3,53191393	•
2008	2487094000	9,2507E+10	3,3064E+10	3,616E+10		5,92295053	7,750325
2009	1951707000	9,2897E+10	2,6014E+10	3,2557E+10	0,14691223	4,24375732	8,0571
2010	1573856000	9,3217E+10	3,0047E+10	3,1763E+10	0,97562169	3,81571792	8,41715833
2011		1,0137E+11	3,5176E+10	3,6267E+10	0,69098056	5,2456973	8,089875
	2728361000	9,8266E+10	3,4324E+10	3,4412E+10	0,36933523	3,00996126	•
2013	3298102000	1,0683E+11	3,5015E+10	3,7042E+10	1,30726365	4,53545349	8,40550392
2014	3560931000	1,0988E+11	3,7725E+10	3,5356E+10	0,31130448	2,55104467	8,40633669
2015	3162320000	1,0059E+11	3,4498E+10	3,0422E+10	1,74884176	4,50848746	9,76434828

année	IDE	PIB	EX	FBC	TCH	Croissance	tin
197	0 80120000	4863487493	1073504628	1782422880	4,93706	8,86265711	4,94044573
197	1 600000	5077222367	936367708	1791312136	4,91263834	-11,3317192	17,1519638
197	2 41490000	6761786387	1382755698	2319461171	4,48051495	27,4239695	-4,60646101
197	3 51000000	8715105930	2222671247	3510810340	3,96249541	3,8131763	9,62761164
197	4 358000000	1,321E+10	5118637701	5286069843	4,18075	7,4949177	48,8965904
197	5 119000000	1,5558E+10	5241302552	7064364283	3,94940833	5,04534161	5,91402211
197	6 187000000	1,7728E+10	5860031462	7685287478	4,163825	8,38675648	10,8405927
197	7 178452647	2,0972E+10	6414584619	9838912414	4,14675833	5,25858599	11,9270994
197	8 135152172	2,6364E+10	6732393454	1,3767E+10	3,9659	9,2148357	10,0851211
197	9 25692486	3,3243E+10	1,0355E+10	1,4144E+10	3,85326667	7,47782655	13,9878379
198	0 348669038	4,2345E+10	1,4541E+10	1,6547E+10	3,83745	0,79060697	25,8620388
198	1 13207259,4	4,4349E+10	1,5339E+10	1,6405E+10	4,31580833	2,99999609	14,3539995
198	2 <mark>-53569192,6</mark>	4,5207E+10	1,398E+10	1,6855E+10	4,59219167	6,40000412	1,93979421
198	3 417641,163	4,8801E+10	1,3636E+10	1,8334E+10	4,7888	5,40000302	6,80479589
198	4 802668,874	5,3698E+10	1,3806E+10	1,8883E+10	4,983375	5,59999653	8,43350556
198	5 397788,297	5,7938E+10	1,3664E+10	2,0029E+10	5,0278	3,69999725	4,9725264
198	6 5316528,38	6,3696E+10	8188005040	2,1374E+10	4,70231667	0,400001	2,40534325
198	7 3711537,9	6,6742E+10	9525773299	1,8392E+10	4,84974167	-0,69999752	8,84202042
198	8 13018265	5,9089E+10	9163454470	1,6332E+10	5,91476667	-1,00000549	9,06096348
198		5,5631E+10	1,0369E+10	1,673E+10	7,60855833	4,40000216	16,0113735
199	0 334914,564	6,2045E+10	1,4546E+10	1,7738E+10	8,95750833	0,80000058	30,2595985
19	1 11638686,5	4,5715E+10	1,3311E+10	1,4556E+10	18,472875	-1,20000058	53,7886042
199	2 30000000	4,8003E+10	1,2154E+10	1,4765E+10	21,836075	1,8000023	21,9261145
199		4,9946E+10	1,088E+10	1,453E+10	23,3454067	-2,10000076	13,6244247
199		4,2543E+10	9585149853	1,2797E+10	35,0585008	-0,89999655	29,0776473
199		4,1764E+10	1,094E+10	1,2909E+10	47,6627267	3,79999479	28,5770375
199		4,6941E+10	1,397E+10	1,2054E+10	54,7489333	4,09999847	24,0219041
199		4,8178E+10	1,489E+10	1,0814E+10	57,70735	1,09999994	7,00196305
199		4,8188E+10	1,088E+10	1,3082E+10	58,7389583	5,10000361	-3,1310887
199		4,8641E+10	1,3692E+10	1,2767E+10	66,573875	3,20000155	10,856323
200		5,479E+10	2,305E+10	1,2911E+10	75,2597917	3,81967849	22,6547675
200			2,0085E+10		77,2150208		-0,48150798
200		5,676E+10	2,0152E+10	1,7399E+10	79,6819	5,60932319	1,31148811
200		6,7864E+10	2,5957E+10	2,059E+10	77,394975	7,20187224	8,32883573
200		8,5325E+10	3,4175E+10	2,8382E+10	72,06065	4,30162426	12,2458758
200		1,032E+11	4,8715E+10	3,2669E+10	73,2763083	5,90779127	16,1168187
200		1,1703E+11	5,7122E+10	3,5308E+10	72,6466167	1,68448832	10,5635601
200		1,3498E+11	6,3531E+10	4,6526E+10	69,2924	3,37287515	6,42326175
200		1,71E+11	8,2035E+10	6,3866E+10	64,5828	2,36013486	15,3554801
200		1,3721E+11	4,8534E+10	6,432E+10	72,6474167	1,63224384	-11,1897935
201		1,6121E+11	6,1975E+10	6,6789E+10	74,3859833	3,63414535	16,0817171
201		2,0001E+11	7,7581E+10	7,6111E+10	72,9378833	2,891866	18,2373593
201		2,0905E+11	7,7123E+10	8,1852E+10	77,5359667	3,37476865	7,47859968
201		2,0972E+11	6,9659E+10	9,1057E+10	79,3684	2,76763887	-0,07170079
201		2,1398E+11	6,5186E+10	9,7554E+10	80,5790167	3,78912121	-0,19403123
201	5 58731496	1,6478E+11	3,8829E+10	8,4271E+10	100,691433	3,76346696	-7,26372727

Tunisie

Annexe N° 1 : tests de stationnarisation des données du modèle annuel

Test de stationnarité de la série PIB

LE Modèle3

Null Hypothesis: PIB has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-0.588956	0.9748
Test critical values: 1% level		-4.180911	
5% level		-3.515523	
	10% level	-3.188259	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/29/17 Time: 00:56 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1) D(PIB(-1)) C @TREND(1970)	-0.057361 -0.386545 -1.76E+16 1.87E+15	0.097394 0.156705 1.96E+16 1.14E+15	-0.588956 -2.466714 -0.896685 1.641017	0.5592 0.0180 0.3753 0.1086
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.215383 0.156537 5.65E+16 1.27E+35 -1757.516 3.660096 0.020160	Mean depender S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	1.29E+16 6.15E+16 80.06890 80.23110 80.12905 2.155657

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = |1.64| < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: PIB has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic	1.178706 -3.588509	0.9975
	5% level 10% level	-2.929734 -2.603064	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/29/17 Time: 01:09 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1) D(PIB(-1)) C	0.070392 -0.440885 8.17E+15	0.059720 0.156296 1.20E+16	1.178706 -2.820831 0.682643	0.2453 0.0073 0.4987
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.162560 0.121709 5.76E+16 1.36E+35 -1758.949 3.979363 0.026336	Mean depender S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	nt var erion on criter.	1.29E+16 6.15E+16 80.08860 80.21025 80.13371 2.184691

Test de la constante :

 $H_0: C=0$

 $H_1: C \neq 0$

 $Tc = |0.68| < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: PIB has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	2.221255	0.9928

Test critical values:	1% level	-2.618579
	5% level	-1.948495
	10% level	-1.612135

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/29/17 Time: 01:12 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1) D(PIB(-1))	0.097742 -0.454808	0.044003 0.153971	2.221255 -2.953852	0.0318 0.0051
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.153042 0.132876 5.72E+16 1.38E+35 -1759.198 2.193342	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	1.29E+16 6.15E+16 80.05444 80.13554 80.08452

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = \frac{2.22}{>} T^{ADF} (5\%) = -1.95$ on accepte H_0 : $\phi = 1$ le processus est non stationnaire

Le non stationnarité est de type DS sans dérive. La meilleure façon de stationnariser la série IDE est la différenciation.

La stationnarisation de la série et récupération de l'ordre d'intégration

Null Hypothesis: D(PIB) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-9.008070	0.0000
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Dependent Variable: D(PIB,2) Method: Least Squares Date: 06/29/17 Time: 01:16 Sample: 1970 2015 IF IDE Included observations: 44

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(PIB(-1))	-1.307262	0.145121	-9.008070	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.653632 0.653632 5.98E+16 1.54E+35 -1761.641 2.020317	Mean dependent S.D. dependent Akaike info criter Schwarz criterior Hannan-Quinn c	var ion n	-1.15E+13 1.02E+17 80.12006 80.16061 80.13510

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = \frac{-9.00}{5}$ T^{ADF} (5%) = -1.95 on accepte H₁ $\phi < 1$ le processus est **stationnaire** Le processus ide est devenu stationnaire avec une seule différenciation. Donc **PIB** \rightarrow **I(1)**

Test de stationnarité de la série PIBC

Le Modèle 3

Null Hypothesis: PIBC has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-5.516001	0.0002
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 11:59 Sample (adjusted): 1971 2015

Variable	Coefficient	Std. Error	t-Statistic	Prob.

PIBC(-1)	-0.770291	0.139647	-5.516001	0.0000
C	2.34E+09	7.38E+08	3.174274	0.0028
@TREND(1970)	37235509	21025582	1.770962	0.0838
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.424294 0.396880 1.80E+09 1.36E+20 -1021.241 15.47697 0.000009	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-56986440 2.31E+09 45.52182 45.64226 45.56672 2.047509

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = 1.77 < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: PIBC has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.147915	0.0001
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 12:09 Sample (adjusted): 1971 2015

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIBC(-1)	-0.722854 3.00E+09	0.140417 6.54E+08	-5.147915 4.585045	0.0000 0.0000
R-squared	0.381304	Mean depende	ent var	-56986440

Adjusted R-squared S.E. of regression	1.84E+09	S.D. dependent var Akaike info criterion	2.31E+09 45.54939
Sum squared resid Log likelihood	-1022.861	Schwarz criterion Hannan-Quinn criter.	45.62969 45.57933
F-statistic Prob(F-statistic)	26.50103 0.000006	Durbin-Watson stat	1.999036

Test de la constante :

 $\begin{cases}
H_0: C=0 \\
H_1: C\neq 0
\end{cases}$

Tc= |4.58| >T^{ADF}= 2.52 donc on accepte H₁: C \neq 0 la constante est significative. Ou passe au

Test du φ:

 $\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$

Ou constatn que T ϕ = -5.14<-2.92 d'on accepte H₁ ϕ < 1, le processus est **stationnaire.**

Donc PIBC \rightarrow I(0)

Test de stationnarité de la série EX

Le Modèle 3

Null Hypothesis: EX has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fulle Test critical values:	er test statistic 1% level 5% level 10% level	-1.507119 -4.175640 -3.513075 -3.186854	0.8124

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 12:21 Sample (adjusted): 1971 2015

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1)	-0.100476	0.066667	-1.507119	0.1393
C	-4.15E+15	3.97E+15	-1.046412	0.3014
@TREND(1970)	4.68E+14	2.34E+14	2.003705	0.0516
R-squared	0.089169	Mean dependent var		2.98E+15
Adjusted R-squared	0.045796	S.D. dependent var		1.14E+16

S.E. of regression Sum squared resid Log likelihood F-statistic	5.21E+33 -1725.017 2.055864	Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	76.80074 76.92119 76.84564 2.372780
Prob(F-statistic)	0.140668	Duibin-watson stat	2.372700

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb=/2.00/< T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative. On estime en conséquence le model avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

LE Modèle 2

Null Hypothesis: EX has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	0.300908	0.9758
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 12:24 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1) C	0.011351 2.57E+15	0.037723 2.20E+15	0.300908 1.168729	0.7649 0.2490
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.002101 -0.021106 1.15E+16 5.71E+33 -1727.071 0.090546 0.764935	Mean depende S.D. dependen Akaike info crite Schwarz criteric Hannan-Quinn Durbin-Watson	t var erion on criter.	2.98E+15 1.14E+16 76.84759 76.92789 76.87753 2.415439

Test de la constante :

 H_0 : C=0

H₁: C≠0

 $Tc = 1.16 < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: EX has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		1.309599	0.9498
Test critical values:	1% level	-2.617364	
	5% level	-1.948313	
	10% level	-1.612229	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 12:32 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1)	0.038810	0.029635	1.309599	0.1971
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.029598 -0.029598 1.16E+16 5.89E+33 -1727.774 2.404749	Mean depender S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn	t var erion on	2.98E+15 1.14E+16 76.83442 76.87457 76.84939

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = \frac{1.30}{5}$ TADF (5%) = -1.95 on accepte H_{0:} $\phi = 1$ le processus est non stationnaire

La non stationnarité est de type DS sans dérive. La meilleure façon de stationnariser la série IDE est la différenciation.

La stationnarisation de la série et récupération de l'ordre d'intégration

Null Hypothesis: D(EX) has a unit root

Exogenous: None

Lag Length: 2 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.239874	0.0258
Test critical values:	1% level	-2.621185	
	5% level	-1.948886	
	10% level	-1.611932	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX,2) Method: Least Squares Date: 06/29/17 Time: 12:39 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EX(-1)) D(EX(-1),2) D(EX(-2),2)	-0.617941 -0.521444 -0.473264	0.275882 0.220394 0.145290	-2.239874 -2.365962 -3.257380	0.0309 0.0230 0.0023
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.654026 0.636284 1.10E+16 4.72E+33 -1609.368 2.042981	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn	it var erion on	-3.92E+14 1.82E+16 76.77945 76.90357 76.82495

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = -2.23 < T^{ADF}(5\%) = -1.95$ on accepte $H_1 \phi < 1$ le processus est **stationnaire** Le processus ide est devenu stationnaire avec une seule différenciation. Donc **EX** \rightarrow **I(1)**

Test de stationnarité de la série FBC

Le Modèle 3

Null Hypothesis: FBC has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.657369	0.2584
Test critical values:	1% level	-4.175640	_
	5% level	-3.513075	

10% level -3.186854

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/29/17 Time: 12:50 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FBC(-1) C @TREND(1970)	-0.277019 2.91E+08 57112000	0.104246 4.39E+08 25467506	-2.657369 0.662551 2.242544	0.0111 0.5112 0.0303
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.145501 0.104810 1.41E+09 8.35E+19 -1010.303 3.575792 0.036808	Mean depender S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	1.39E+08 1.49E+09 45.03567 45.15611 45.08057 2.194617

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = 2.24 < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: FBC has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.393104	0.5773
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/29/17 Time: 12:56 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FBC(-1) C	-0.096504 6.50E+08	0.069273 4.27E+08	-1.393104 1.520541	0.1707 0.1357
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.043184 0.020933 1.47E+09 9.35E+19 -1012.847 1.940738 0.170749	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	1.39E+08 1.49E+09 45.10432 45.18462 45.13425 2.349419

Test de la constante :

 $H_0 : C=0$

H₁: C≠0

 $Tc = |1.52| < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: FBC has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.170889	0.6190
Test critical values:	1% level	-2.617364	
	5% level	-1.948313	
	10% level	-1.612229	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/29/17 Time: 12:58 Sample (adjusted): 1971 2015

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FBC(-1)	-0.006180	0.036165	-0.170889	0.8651
R-squared	-0.008262	Mean depende	ent var	1.39E+08
Adjusted R-squared	-0.008262	S.D. depender	t var	1.49E+09
S.E. of regression	1.50E+09	Akaike info crit	erion	45.11225

Sum squared resid	9.85E+19	Schwarz criterion	45.15240
Log likelihood	-1014.026	Hannan-Quinn criter.	45.12722
Durbin-Watson stat	2.438854		

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = \frac{10.17}{5} T^{ADF}(5\%) = -1.95$ on accepte $H_{0:} \phi = 1$ le processus est non stationnaire

Le non stationnarité est de type DS sans dérive. La meilleure façon de stationnariser la série IDE est la différenciation.

La stationnarisation de la série et récupération de l'ordre d'intégration

Null Hypothesis: D(FBC) has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.124957	0.0000
Test critical values:	1% level	-2.619851	
	5% level	-1.948686	
	10% level	-1.612036	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC,2) Method: Least Squares Date: 06/29/17 Time: 13:11 Sample (adjusted): 1973 2015

Included observations: 43 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
D(FBC(-1)) D(FBC(-1),2)	-1.269402 0.000286	0.247690 -5.124957 0.156993 0.001823		0.0000 0.9986
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.628968 0.619918 1.48E+09 8.93E+19 -967.8242 1.988930	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-80783620 2.39E+09 45.10810 45.19002 45.13831

Test du φ:

$$\int_{0}^{\infty} H_{0}: \varphi = 1$$

H₁: φ < 1

 $T\phi = /-5.12/< T^{ADF}(5\%) = -1.95$ on accepte $H_1 \phi < 1$ le processus est **stationnaire** Le processus ide est devenu stationnaire avec une seule différenciation. Donc **FBC** \rightarrow **I(1)**

Test de stationnarité de la série TCH

Modèle 3

Null Hypothesis: TCH has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.874726	0.0001
Test critical values:	1% level	-4.180911	
	5% level	-3.515523	
	10% level	-3.188259	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TCH) Method: Least Squares Date: 06/29/17 Time: 13:22 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TCH(-1) D(TCH(-1)) C @TREND(1970)	-1.395415 0.366268 6.06E+08 15364213	0.237529 0.163949 1.76E+08 6620211.	-5.874726 2.234030 3.439008 2.320804	0.0000 0.0311 0.0014 0.0255
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.535214 0.500355 4.80E+08 9.21E+18 -939.8529 15.35368 0.000001	Mean dependent S.D. dependent Akaike info criter Schwarz criterio Hannan-Quinn of Durbin-Watson s	var rion n riter.	-11839887 6.79E+08 42.90241 43.06460 42.96256 2.006290

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb=/2.32/ < $T^{ADF}=$ 2.78 donc on accepte H_0 : B=0, la tendance est non significative. On estime en consquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: TCH has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.024853	0.0000
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Dependent Variable: D(TCH) Method: Least Squares Date: 06/29/17 Time: 13:35 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

•				
Variable	Coefficient	Std. Error t-Statistic		Prob.
TCH(-1) C	-0.915373 6.28E+08	0.151933 -6.024853 1.28E+08 4.889361		0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.457747 0.445137 5.03E+08 1.09E+19 -964.4913 36.29885 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		43580.00 6.76E+08 42.95517 43.03546 42.98510 1.943058

Test de la constante :

$$\int H_0 : C=0$$

H₁: C≠0

Tc= |4.8| >T^{ADF}= 2.52 donc on accepte H₁: C \neq 0 la constante est significative.

Ou passe au test de φ:

$$\int H_0: \varphi = 1$$

 $H_1: \phi < 1$

 $T\varphi=/\text{-}6.02/\!<\text{-}2.92$ on accepte H_1 $\varphi<1.Dance la séré TCH est <math display="inline">\textbf{stationnaire}$ en niveau TCH(0)

Test de stationnarité de la série TIN

Le Modèle 3

Null Hypothesis: TIN has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.868966	0.0001
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Dependent Variable: D(TIN) Method: Least Squares Date: 06/29/17 Time: 13:44 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
TIN(-1) C @TREND(1970)	-0.912139 4.61E+09 2498136.	0.155417 -5.868966 1.24E+09 3.723948 37414175 0.066770		0.0000 0.0006 0.9471
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.451241 0.425110 3.25E+09 4.44E+20 -1047.929 17.26817 0.000003	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-47253171 4.29E+09 46.70797 46.82841 46.75287 1.965906

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = 0.06 < T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: TIN has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-5.945614 -3.584743 -2.928142 -2.602225	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Dependent Variable: D(TIN) Method: Least Squares Date: 06/29/17 Time: 13:52 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
TIN(-1) C	-0.911487 4.67E+09	0.153304 -5.945614 9.27E+08 5.037547		0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.451183 0.438420 3.22E+09 4.45E+20 -1047.932 35.35032 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-47253171 4.29E+09 46.66363 46.74393 46.69356 1.966869

Test de la constante :

$$\begin{array}{c}
H_0: C=0 \\
H_1: C\neq 0
\end{array}$$

Tc= |5.03| >T^{ADF}= 2.52 donc on accepte H₁: C \neq 0 la constante est significative.

Ou passe au test de φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = /-5.94/< -2.92$ on accepte H_1 $\phi < 1.D$ ance la séré TIN est **stationnaire** en niveau TIN(0).

Annexe N° 2 : Recherche de nombre de retard pour le modèle mensuel.

Tableau VAR (1)

Vector Autoregression Estimates Date: 06/29/17 Time: 14:58 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments Standard errors in () & t-statistics in []

	D(IDE)	D(PIB)	D(EX)	D(FBC)	PIBC	TCH	TIN
D(IDE(-1))	-0.684415 (0.20010)	44549611 (2.0E+07)	-5206030. (3605243)	0.145690 (0.58914)	0.697756 (0.72654)	0.404121 (0.17769)	-0.509062 (1.28602)
	[-3.42043]	[2.20399]	[-1.44402]	[0.24729]	[0.96039]	[2.27424]	[-0.39584]

D(PIB(-1))	-8.51E-10	-0.031765	-0.027697	2.49E-09	4.77E-09	4.79E-09	-8.51E-09
	(2.0E-09)	(0.20403)	(0.03639)	(5.9E-09)	(7.3E-09)	(1.8E-09)	(1.3E-08)
	[-0.42131]	[-0.15569]	[-0.76108]	[0.41790]	[0.65074]	[2.66919]	[-0.65572]
D(EX(-1))	3.15E-09	1.387488	-0.255297	-4.31E-10	-7.89E-09	-7.06E-09	3.56E-08
	(8.1E-09)	(0.82031)	(0.14631)	(2.4E-08)	(2.9E-08)	(7.2E-09)	(5.2E-08)
	[0.38788]	[1.69141]	[-1.74488]	[-0.01803]	[-0.26748]	[-0.97840]	[0.68145]
D(FBC(-1))	-0.010867	-508981.2	487198.0	-0.275702	-0.262901	0.013640	0.405449
	(0.05842)	(5901394)	(1052578)	(0.17200)	(0.21212)	(0.05188)	(0.37546)
	[-0.18601]	[-0.08625]	[0.46286]	[-1.60288]	[-1.23941]	[0.26293]	[1.07986]
PIBC(-1)	0.029900	3028127.	2995565.	-0.013704	0.316272	0.008486	-0.066216
	(0.04361)	(4405401)	(785752.)	(0.12840)	(0.15835)	(0.03873)	(0.28028)
	[0.68561]	[0.68737]	[3.81236]	[-0.10673]	[1.99735]	[0.21913]	[-0.23625]
TCH(-1)	0.116485	-19360800	353966.6	0.448765	-0.579778	0.093382	-0.814830
	(0.17656)	(1.8E+07)	(3181150)	(0.51984)	(0.64107)	(0.15679)	(1.13474)
	[0.65976]	[-1.08552]	[0.11127]	[0.86328]	[-0.90439]	[0.59558]	[-0.71807]
TIN(-1)	0.015737	-651873.8	1013875.	0.033353	-0.079735	0.044590	0.142524
	(0.02626)	(2652894)	(473173.)	(0.07732)	(0.09535)	(0.02332)	(0.16878)
	[0.59925]	[-0.24572]	[2.14272]	[0.43135]	[-0.83620]	[1.91195]	[0.84441]
С	-2.46E+08	1.20E+16	-1.36E+16	-2.84E+08	3.66E+09	3.08E+08	5.19E+09
	(2.4E+08)	(2.4E+16)	(4.4E+15)	(7.1E+08)	(8.8E+08)	(2.2E+08)	(1.6E+09)
	[-1.01668]	[0.49160]	[-3.11605]	[-0.39831]	[4.15916]	[1.42853]	[3.33444]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.427566 0.316260 1.01E+19 5.29E+08 3.841337 -941.7941 43.17246 43.49686 22243591 6.39E+08	0.368218 0.245372 1.03E+35 5.34E+16 2.997388 -1752.749 80.03406 80.35846 1.29E+16 6.15E+16	0.428310 0.317148 3.27E+33 9.52E+15 3.853032 -1676.896 76.58617 76.91057 3.05E+15 1.15E+16	0.105452 -0.068488 8.72E+19 1.56E+09 0.606256 -989.3083 45.33219 45.65659 1.29E+08 1.51E+09	0.162742 -0.000058 1.33E+20 1.92E+09 0.999643 -998.5316 45.75143 46.07583 4.15E+09 1.92E+09	0.275375 0.134476 7.93E+18 4.69E+08 1.954414 -936.5699 42.93500 43.25940 6.90E+08 5.05E+08	0.066089 -0.115504 4.16E+20 3.40E+09 0.363940 -1023.657 46.89348 47.21788 5.16E+09 3.22E+09
Determinant resid covarian Determinant resid covarian Log likelihood Akaike information criterion Schwarz criterion	ce	5.9E+155 1.5E+155 -8297.041 379.6387 381.9545					

Tableau VAR (2)

Vector Autoregression Estimates

Date: 06/29/17 Time: 15:33 Sample (adjusted): 1973 2015

Included observations: 43 after adjustments Standard errors in () & t-statistics in []

R-squared	0.619895	0.630667	0.523628	0.263996	0.319500	0.424871	0.138777
Adj. R-squared	0.429843	0.446000	0.285442	-0.104006	-0.020750	0.137306	-0.291835
Sum sq. resids	6.68E+18	5.97E+34	2.72E+33	7.04E+19	1.05E+20	6.27E+18	3.83E+20
S.E. equation	4.88E+08	4.62E+16	9.85E+15	1.59E+09	1.94E+09	4.73E+08	3.70E+09

F-statistic	3.261705	3.415166	2.198402	0.717376	0.939016	1.477478	0.322278
Log likelihood	-912.0806	-1701.752	-1635.321	-962.7225	-971.3736	-910.7198	-999.1437
Akaike AIC	43.12003	79.84893	76.75914	45.47546	45.87784	43.05674	47.16947
Schwarz SC	43.73440	80.46330	77.37351	46.08984	46.49221	43.67111	47.78384
Mean dependent	22528326	1.36E+16	3.12E+15	98304842	4.20E+09	6.95E+08	5.16E+09
S.D. dependent	6.47E+08	6.20E+16	1.17E+16	1.51E+09	1.92E+09	5.09E+08	3.25E+09
Determinant resid covari	iance (dof adj.)	2.8E+155					
Determinant resid covari	, ,,	1.4E+154					
Log likelihood		-8057.969					
Akaike information criter	ion	379.6730					
Schwarz criterion		383.9736					

Tableau VAR (3)

Vector Autoregression Estimates Date: 06/29/17 Time: 15:52 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments Standard errors in () & t-statistics in []

R-squared	0.824146	0.809642	0.724748	0.455714	0.608348	0.613832	0.418600
Adj. R-squared	0.639499	0.609765	0.435734	-0.115786	0.197114	0.208356	-0.191870
Sum sq. resids	3.09E+18	3.08E+34	1.57E+33	5.19E+19	6.04E+19	4.18E+18	2.51E+20
S.E. equation	3.93E+08	3.92E+16	8.85E+15	1.61E+09	1.74E+09	4.57E+08	3.54E+09
F-statistic	4.463358	4.050715	2.507657	0.797399	1.479323	1.513856	0.685701
Log likelihood	-875.1769	-1648.745	-1586.229	-934.4013	-937.5917	-881.5222	-967.5117
Akaike AIC	42.72271	79.55928	76.58236	45.54292	45.69484	43.02487	47.11960
Schwarz SC	43.63292	80.46949	77.49256	46.45313	46.60505	43.93507	48.02981
Mean dependent	22469476	1.34E+16	3.19E+15	83302491	4.18E+09	7.01E+08	5.25E+09
S.D. dependent	6.55E+08	6.28E+16	1.18E+16	1.52E+09	1.94E+09	5.14E+08	3.24E+09
Determinant resid covari	ance (dof adj.)	4.1E+154					
Determinant resid covari	ance	2.3E+152					
Log likelihood		-7784.101					
Akaike information criter	ion	378.0048					
Schwarz criterion		384.3763					

Tableau VAR (4)

Vector Autoregression Estimates Date: 09/02/17 Time: 16:44 Sample (adjusted): 1975 2015

Included observations: 41 after adjustments Standard errors in () & t-statistics in []

	D(IDE)	D(PIB)	D(EX)	D(FBC)	PIBC	TCH	TIN
Daguarad	0.005090	0.000509	0.057454	0.047550	0.700000	0.604035	0.560909
R-squared Adj. R-squared	0.905989 0.686630	0.909598 0.698660	0.857454 0.524845	0.847559 0.491862	0.709092 0.030308	0.694935 -0.016882	-0.463637
Sum sq. resids	1.65E+18	1.46E+34	8.10E+32	1.29E+19	4.44E+19	3.28E+18	1.84E+20

C.F. agreetian	2.745.00	2.405.40	0.005.45	4.045.00	4.005.00	E 00E : 00	2.045.00
S.E. equation	3.71E+08	3.49E+16	8.22E+15	1.04E+09	1.92E+09	5.23E+08	3.91E+09
F-statistic	4.130161	4.312152	2.577967	2.382812	1.044650	0.976283	0.547471
Log likelihood	-841.9921	-1594.712	-1535.429	-884.0774	-909.4703	-856.0585	-938.5805
Akaike AIC	42.48742	79.20544	76.31362	44.54036	45.77904	43.17359	47.19905
Schwarz SC	43.69946	80.41748	77.52566	45.75240	46.99108	44.38562	48.41109
Mean dependent	23749220	1.36E+16	3.27E+15	3898605.	4.15E+09	7.08E+08	5.34E+09
S.D. dependent	6.63E+08	6.35E+16	1.19E+16	1.45E+09	1.95E+09	5.19E+08	3.23E+09
Determinant resid covaria	ince (dof adi.)	8.2E+153					
Determinant resid covaria	` ',	1.5E+150					
Log likelihood		-7496.090					
Akaike information criterio	on	375.5654					
Schwarz criterion		384.0497					
Log likelihood Akaike information criterio	ince	1.5E+150 -7496.090 375.5654					

Annexe : test de causalité de Granger

Pairwise Granger Causality Tests Date: 09/04/17 Time: 22:21

Sample: 1970 2015

Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
D(EX) does not Granger Cause D(IDE)	43	0.80389	0.4551
D(IDE) does not Granger Cause D(EX)		0.16251	0.8506
D(FBC) does not Granger Cause D(IDE) D(IDE) does not Granger Cause D(FBC)	43	1.83317 0.41684	0.1738 0.6621
PIB does not Granger Cause D(IDE)	43	0.82599	0.4455
D(IDE) does not Granger Cause PIB		1.76314	0.1852
PIBC does not Granger Cause D(IDE)	43	0.37665	0.6887
D(IDE) does not Granger Cause PIBC		0.50532	0.6073
TCH does not Granger Cause D(IDE) D(IDE) does not Granger Cause TCH	43	1.76748 0.13910	0.1845 0.8706
TIN does not Granger Cause D(IDE)	43	1.68729	0.1986
D(IDE) does not Granger Cause TIN		0.32153	0.7270
D(FBC) does not Granger Cause D(EX)	43	2.27522	0.1166
D(EX) does not Granger Cause D(FBC)		1.33246	0.2759
PIB does not Granger Cause D(EX)	43	1.26895	0.2928
D(EX) does not Granger Cause PIB		1.03360	0.3655
PIBC does not Granger Cause D(EX)	43	0.39225	0.6782
D(EX) does not Granger Cause PIBC		0.46459	0.6319
TCH does not Granger Cause D(EX)	43	2.04226	0.1437
D(EX) does not Granger Cause TCH		1.45836	0.2453
TIN does not Granger Cause D(EX)	43	1.84074	0.1726
D(EX) does not Granger Cause TIN		0.12263	0.8849
PIB does not Granger Cause D(FBC)	43	2.96439	0.0636

D(FBC) does not Granger Cause PIB		1.23718	0.3016
PIBC does not Granger Cause D(FBC) D(FBC) does not Granger Cause PIBC	43	1.29165 0.20313	0.2866 0.8170
TCH does not Granger Cause D(FBC) D(FBC) does not Granger Cause TCH	43	1.54996 0.12192	0.2254 0.8856
TIN does not Granger Cause D(FBC) D(FBC) does not Granger Cause TIN	43	1.22513 0.29088	0.3051 0.7493
PIBC does not Granger Cause PIB PIB does not Granger Cause PIBC	44	0.26140 0.20945	0.7713 0.8119
TCH does not Granger Cause PIB PIB does not Granger Cause TCH	44	2.03868 0.84505	0.1438 0.4372
TIN does not Granger Cause PIB PIB does not Granger Cause TIN	44	1.31359 0.12841	0.2805 0.8799
TCH does not Granger Cause PIBC PIBC does not Granger Cause TCH	44	0.40731 1.09588	0.6682 0.3443
TIN does not Granger Cause PIBC PIBC does not Granger Cause TIN	44	1.18182 1.02840	0.3175 0.3671
TIN does not Granger Cause TCH TCH does not Granger Cause TIN	44	1.55647 1.22089	0.2237 0.3060

Maroc

Annexe N° 1 : tests de stationnarisation des données du modèle annuel

Test de stationnarité de la série PIB

LE Modèle3

Null Hypothesis: PIB has a unit root Exogenous: Constant, Linear Trend

Lag Length: 3 (Automatic - based on SIC, maxlag=3)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level		-20.15867	0.0000
Test critical values:	1% level	-4.192337	
	5% level	-3.520787	
	10% level	-3.191277	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/30/17 Time: 20:10 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1) D(PIB(-1)) D(PIB(-2)) D(PIB(-3)) C @TREND(1970)	-77.87052 76.76731 87.19936 99.01664 -6.63E+13 4.23E+12	3.862880 4.015786 4.098750 2.633370 5.94E+13 2.37E+12	-20.15867 19.11638 21.27462 37.60073 -1.115794 1.783312	0.0000 0.0000 0.0000 0.0000 0.2719 0.0830
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.991925 0.990803 1.60E+14 9.26E+29 -1430.126 884.4397 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	2.40E+14 1.67E+15 68.38696 68.63520 68.47795 2.000052

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = |1.78| < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: PIB has a unit root

Exogenous: Constant

Lag Length: 3 (Automatic - based on SIC, maxlag=3)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-21.36382	0.0001
Test critical values:	1% level	-3.596616	
	5% level	-2.933158	
	10% level	-2.604867	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB)
Method: Least Squares
Date: 06/30/17 Time: 20:11
Sample (adjusted): 1974 2015

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.

PIB(-1) D(PIB(-1))	-80.14782 79.12542	3.751569 3.901950	-21.36382 20.27843	0.0000
D(PIB(-2))	89.64283	3.975128	22.55093	0.0000
D(PIB(-3)) C	100.6982 2.90E+13	2.530162 2.68E+13	39.79911 1.082133	0.0000 0.2862
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.991212 0.990262 1.65E+14 1.01E+30 -1431.904 1043.280 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	2.40E+14 1.67E+15 68.42400 68.63086 68.49982 1.992137

Test de la constante :

 $H_0: C=0$

H₁: C≠0

 $Tc = 1.08 < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: PIB has a unit root

Exogenous: None

Lag Length: 3 (Automatic - based on SIC, maxlag=3)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-21.93663	0.0000
Test critical values:	1% level	-2.621185	
	5% level	-1.948886	
	10% level	-1.611932	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIB) Method: Least Squares Date: 06/30/17 Time: 20:17 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIB(-1)	-80.93127	3.689321	-21.93663	0.0000
D(PIB(-1))	79.93686	3.837828	20.82867	0.0000
D(PIB(-2))	90.48261	3.907402	23.15672	0.0000
D(PIB(-3))	101.2717	2.479598	40.84198	0.0000

R-squared	0.990934	Mean dependent var	2.40E+14
Adjusted R-squared	0.990218	S.D. dependent var	1.67E+15
S.E. of regression	1.65E+14	Akaike info criterion	68.40754
Sum squared resid	1.04E+30	Schwarz criterion	68.57303
Log likelihood	-1432.558	Hannan-Quinn criter.	68.46820
Durbin-Watson stat	1.985782		

Test du φ: $H_0: φ = 1$

 $H_1: \phi < 1$

111. Ψ \ ±

 $T\phi$ =-21.93< T^{ADF} (5%) = -1.95 on accepte H_{0} : ϕ =1 le processus est stationnaire

Test de stationnarité de la série PIBC

Le Modèle 3

Null Hypothesis: PIBC has a unit root Exogenous: Constant, Linear Trend

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.990637	0.1463
Test critical values:	1% level	-4.180911	
	5% level	-3.515523	
	10% level	-3.188259	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 22:18 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIBC(-1) D(PIBC(-1)) C	-0.585869 -0.324399 1.94E+09	0.195901 0.149312 1.22E+09	-2.990637 -2.172622 1.586469	0.0047 0.0358 0.1205
@TREND(1970)	-2005658.	35993078	-0.055723	0.9558
R-squared	0.493514	Mean depende	nt var	-24736504
Adjusted R-squared	0.455528	S.D. dependen	t var	4.07E+09
S.E. of regression	3.01E+09	Akaike info crit	erion	46.57159
Sum squared resid	3.61E+20	Schwarz criteri	on	46.73379
Log likelihood	-1020.575	Hannan-Quinn	criter.	46.63174
F-statistic	12.99187	Durbin-Watson	stat	2.047690
Prob(F-statistic)	0.000005			

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb=/-0.05/< T^{ADF}= 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: PIBC has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.046881	0.0383
Test critical values:	1% level	-3.588509	_
	5% level	-2.929734	
	10% level	-2.603064	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 22:20 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIBC(-1) D(PIBC(-1)) C	-0.584429 -0.325157 1.88E+09	0.191812 0.146872 7.78E+08	-3.046881 -2.213880 2.421261	0.0040 0.0325 0.0200
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.493475 0.468767 2.97E+09 3.61E+20 -1020.577 19.97185 0.000001	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-24736504 4.07E+09 46.52622 46.64787 46.57133 2.049007

Test de la constante :

 $H_0 : C=0$

H₁: C≠0

 $Tc = |2.42| < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: PIBC has a unit root

Exogenous: None

Lag Length: 1 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.754872	0.0753
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 22:22 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIBC(-1) D(PIBC(-1))	-0.204575 -0.516617	0.116576 0.130737	-1.754872 -3.951583	0.0866 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.421048 0.407264 3.14E+09 4.13E+20 -1023.517 2.202172	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	it var erion on	-24736504 4.07E+09 46.61441 46.69551 46.64448

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \end{cases}$$

 $T\phi = -1.75 < T^{ADF}(5\%) = -1.95$ on accepte H_{0} : $\phi = 1$ le processus est stationnaire

Test de stationnarité de la série EX

Le Modèle 3

Null Hypothesis: EX has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.888098	0.6441
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/28/17 Time: 13:12 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1) C @TREND(1970)	-0.115816 -1.05E+09 1.32E+08	0.061340 7.45E+08 50234406	-1.888098 -1.403837 2.619976	0.0659 0.1677 0.0122
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.147669 0.107082 2.31E+09 2.23E+20 -1032.457 3.638307 0.034896	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	6.12E+08 2.44E+09 46.02032 46.14077 46.06522 2.311839

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = |2.61| < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

Le Modèle 2

Null Hypothesis: EX has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful		0.602372	0.9883
Test critical values:	1% level 5% level 10% level	-3.584743 -2.928142 -2.602225	
	1078 level	-2.002223	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX)

Method: Least Squares Date: 06/28/17 Time: 13:17 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1) C	0.020760 3.66E+08	0.034464 5.48E+08	0.602372 0.667611	0.5501 0.5079
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.008368 -0.014693 2.46E+09 2.60E+20 -1035.863 0.362852 0.550090	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	6.12E+08 2.44E+09 46.12726 46.20755 46.15719 2.268902

Test de la constante :

 $H_0: C=0$

H₁: C≠0

 $Tc = |0.66| < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: EX has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic	Prob.*
1.653840 -2.617364 -1.948313	0.9744
	1.653840 -2.617364

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 22:02 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.

EX(-1)	0.037869	0.022898	1.653840	0.1053
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001911 -0.001911 2.44E+09 2.63E+20 -1036.095 2.283629	Mean depende S.D. dependen Akaike info crite Schwarz criterio Hannan-Quinn	t var erion on	6.12E+08 2.44E+09 46.09312 46.13327 46.10809

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = \frac{1.65}{>} T^{ADF}(5\%) = -1.95$ on accepte $H_0: \phi = 1$ le processus est non stationnaire

La non stationnarité est de type DS sans dérive. La meilleure façon de stationnariser la série IDE est la différenciation.

La stationnarisation de la série et récupération de l'ordre d'intégration

Null Hypothesis: D(EX) has a unit root

Exogenous: None

Lag Length: 2 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-2.689063	0.0084
Test critical values:	1% level	-2.621185	
	5% level	-1.948886	
	10% level	-1.611932	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX,2) Method: Least Squares Date: 06/29/17 Time: 22:04 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EX(-1)) D(EX(-1),2) D(EX(-2),2)	-0.622044 -0.376937 -0.357703	0.231324 0.188727 0.131373	-2.689063 -1.997256 -2.722814	0.0105 0.0528 0.0096
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.628100 0.609028 2.12E+09 1.75E+20 -959.9826 2.049170	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	1.17E+08 3.39E+09 45.85631 45.98043 45.90181

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = -2.68 < T^{ADF}(5\%) = -1.95$ on accepte $H_1 \phi < 1$ le processus est **stationnaire** Le processus ide est devenu stationnaire avec une seule différenciation. Donc $EX \rightarrow I(1)$

Test de stationnarité de la série FBC

LE Modèle 3

Null Hypothesis: FBC has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.740900	0.7163
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/28/17 Time: 12:36 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FBC(-1) C @TREND(1970)	-0.127752 -2.25E+08 1.08E+08	0.073382 8.64E+08 61341172	-1.740900 -0.260048 1.765547	0.0890 0.7961 0.0847
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072789 0.028636 2.67E+09 3.00E+20 -1039.110 1.648574 0.204525	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	nt var erion on criter.	6.60E+08 2.71E+09 46.31602 46.43646 46.36092 1.602921

Test du trend:

 $H_0: B=0$ $H_1: B\neq 0$

Tb = /1,76 /< T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative.

On passe à l'estimation du modèle 02

LE Modèle 2

Null Hypothesis: FBC has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-0.414181 -3.584743 -2.928142	0.8978
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/28/17 Time: 12:38 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FBC(-1) C	-0.015579 8.56E+08	0.037613 6.25E+08	-0.414181 1.369428	0.6808 0.1780
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.003974 -0.019190 2.74E+09 3.23E+20 -1040.721 0.171546 0.680801	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	6.60E+08 2.71E+09 46.34316 46.42346 46.37310 1.668841

Test de la constante :

 $H_0: C=0$

 $H_1: C \neq 0$

Tc =1,36| < T^{ADF}= 2.52 donc on accepte H₀ : C=0 : C \neq 0, la constante n'est significative. On passe au model 1 :

LE Modèle 1

Null Hypothesis: FBC has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	0.943074	0.9055
Test critical values:	1% level	-2.617364	
	5% level	-1.948313	
	10% level	-1.612229	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/28/17 Time: 12:41 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
FBC(-1)	0.023410	0.024823	0.943074	0.3508
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.039466 -0.039466 2.77E+09 3.37E+20 -1041.682 1.665757	Mean dependent S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn	var erion on	6.60E+08 2.71E+09 46.34141 46.38156 46.35637

 $T\phi = /0.94 /> T^{ADF}(5\%) = -1.95$ on accepte $H_0 \phi = 1$ le processus est **non stationnaire** Le processus de cette série est processus « **DS sans dérive** »

La stationnarisation de la série et récupération de l'ordre d'intégration

Null Hypothesis: D(FBC) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.177181	0.0000
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC,2) Method: Least Squares Date: 06/28/17 Time: 12:49 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(FBC(-1))	-0.897887	0.145355	-6.177181	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.466968 0.466968 2.60E+09 2.90E+20 -1015.740 1.844155	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-2.73E+08 3.56E+09 46.21544 46.25599 46.23048

 $T\phi = -6.17 / < T^{ADF}(5\%) = -1.95$ on accepte $H_1 \phi < 1$ le processus est **stationnaire** Le processus fbc est devenu stationnaire avec une seule différenciation. Donc **FBC** \rightarrow **I(1)**

Test de stationnarité de la série TCH

LE Modèle3

Null Hypothesis: TCH has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-6.031546 -4.175640 -3.513075 -3.186854	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TCH) Method: Least Squares Date: 06/29/17 Time: 22:37 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TCH(-1)	-0.949602	0.157439	-6.031546	0.0000
C	3.65E+09	1.28E+09	2.843366	0.0069
@TREND(1970)	44229980	44372620	0.996785	0.3246
R-squared	0.464628	Mean depende		-90756782
Adjusted R-squared	0.439134	S.D. dependen		5.05E+09
S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	3.78E+09 6.00E+20 -1054.696 18.22504 0.000002	Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	on criter.	47.00870 47.12914 47.05360 1.961800

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = |0.99| < T^{ADF} = 2.78 donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

LE Modèle 2

Null Hypothesis: TCH has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic

Prob.*

r test statistic	-5.954981	0.0000
1% level	-3.584743	
5% level	-2.928142	
10% level	-2.602225	
	1% level 5% level	1% level -3.584743 5% level -2.928142

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TCH) Method: Least Squares Date: 06/29/17 Time: 22:39 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TCH(-1) C	-0.916908 4.50E+09	0.153973 9.55E+08	-5.954981 4.712684	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.451963 0.439218 3.78E+09 6.15E+20 -1055.222 35.46180 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-90756782 5.05E+09 46.98764 47.06793 47.01757 1.979081

Test de la constante :

H₀: C=0

H₁: C≠0

Tc= $\left| 4.71 \right|$ >T^{ADF}= 2.52 donc on accepte H₁: C \neq 0 la constante est significative.

Test de stationnarité de la série TIN

LE Modèle3

Null Hypothesis: TIN has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.967000	0.0001
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TIN) Method: Least Squares Date: 06/29/17 Time: 22:57 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TIN(-1) C @TREND(1970)	-0.910839 5.25E+09 -1.07E+08	0.152646 1.13E+09 32384487	-5.967000 4.631748 -3.316882	0.0000 0.0000 0.0019
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.458869 0.433100 2.37E+09 2.36E+20 -1033.705 17.80758 0.000003	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var erion on criter.	-38196815 3.15E+09 46.07578 46.19623 46.12068 2.054315

Test du trend:

 $H_0: B=0$

H₁: B≠0

Tb = $\left| -3.31 \right| < T^{ADF} = 2.78$ donc on accepte H₀: B=0, la tendance est non significative. On estime en conséquence le modèle avec constante, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

LE Modèle 2

Null Hypothesis: TIN has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.567300	0.4904
Test critical values:	1% level	-3.592462	
	5% level	-2.931404	
	10% level	-2.603944	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TIN) Method: Least Squares Date: 06/29/17 Time: 22:59 Sample (adjusted): 1973 2015

Included observations: 43 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TIN(-1) D(TIN(-1)) D(TIN(-2)) C	-0.272960 -0.608084 -0.271280 7.25E+08	0.174159 0.189529 0.156035 6.62E+08	-1.567300 -3.208391 -1.738593 1.095498	0.1251 0.0027 0.0900 0.2800
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.462888 0.421571 2.45E+09 2.34E+20 -988.5502 11.20350 0.000019	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-42683213 3.22E+09 46.16513 46.32896 46.22554 1.922539

Test de la constante :

 $H_0 : C = C$

H₁: C≠0

 $Tc = 1.09 < T^{ADF} = 2.52$ donc on accepte H_0 : C=0, la constante est non significative. On estime en conséquence le modèle sans constante ni tendance [modèle 1] dont les résultats sont donnés dans le tableau suivant :

Le Modèle 1

Null Hypothesis: TIN has a unit root

Exogenous: None

Lag Length: 2 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic	-1.171024	0.2168
Test critical values:	1% level	-2.619851	
	5% level	-1.948686	
	10% level	-1.612036	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TIN) Method: Least Squares Date: 06/29/17 Time: 23:00 Sample (adjusted): 1973 2015

Included observations: 43 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TIN(-1) D(TIN(-1)) D(TIN(-2))	-0.115581 -0.722310 -0.326451	0.098700 0.158666 0.148053	-1.171024 -4.552399 -2.204964	0.2485 0.0000 0.0333
R-squared	0.446360	Mean dependent var		-42683213

Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	2.46E+09 2.41E+20 -989.2019	S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.	3.22E+09 46.14892 46.27180 46.19424
Durbin-Watson stat	1.942029		

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = /-1.17 < T^{ADF}(5\%) = -1.95$ on accepte $H_0: \phi = 1$ le processus est stationnaire

Annexe N° 2 : Recherche de nombre de retard pour le modèle mensuel.

Tableau VAR (1)

Vector Autoregression Estimates Date: 09/02/17 Time: 19:04 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments Standard errors in () & t-statistics in []

Standard errors in () & t-	statistics in []						
	D(IDE)	D(EX)	D(FBC)	PIB	PIBC	TCH	TIN
D(IDE(-1))	-0.800818 (0.10172)	0.012338 (0.51998)	0.117589 (0.52663)	-43993.23 (363833.)	-0.579134 (0.69257)	-0.213976 (0.80641)	0.004963 (0.57540)
	[-7.87250]	[0.02373]	[0.22328]	[-0.12092]	[-0.83621]	[-0.26534]	[0.00863]
D(EX(-1))	0.082534	-0.290463	0.127785	-34372.68	0.321499	-0.469562	0.036225
	(0.04569) [1.80652]	(0.23354) [-1.24375]	(0.23653) [0.54026]	(163408.) [-0.21035]	(0.31105) [1.03358]	(0.36218) [-1.29648]	(0.25843) [0.14017]
D(FBC(-1))	-0.063970	0.104095	-0.046341	-86961.38	-0.302721	0.247783	-0.066964
	(0.04191) [-1.52645]	(0.21422) [0.48593]	(0.21696) [-0.21359]	(149890.) [-0.58017]	(0.28532) [-1.06098]	(0.33222) [0.74583]	(0.23705) [-0.28248]
PIB(-1)	-1.13E-08	-1.81E-07	-4.90E-07	0.890549	8.10E-08	-1.39E-07	-3.06E-08
	(3.3E-08) [-0.33982]	(1.7E-07) [-1.06380]	(1.7E-07) [-2.84487]	(0.11910) [7.47717]	(2.3E-07) [0.35741]	(2.6E-07) [-0.52466]	(1.9E-07) [-0.16225]
PIBC(-1)	-0.001358	0.038140	0.016258	2582.113	0.209526	-0.303713	0.146615
	(0.02431) [-0.05587]	(0.12427) [0.30692]	(0.12586) [0.12917]	(86952.6) [0.02970]	(0.16552) [1.26588]	(0.19273) [-1.57589]	(0.13752) [1.06616]
TCH(-1)	0.019118	0.247474	0.202773	92573.24	0.015809	0.139664	-0.221503
	(0.02015) [0.94882]	(0.10300) [2.40272]	(0.10432) [1.94384]	(72068.0) [1.28453]	(0.13718) [0.11524]	(0.15973) [0.87435]	(0.11398) [-1.94342]
TIN(-1)	-0.042396	-0.219024	-0.119611	-114232.0	0.203218	-0.438258	0.374955
	(0.02638) [-1.60698]	(0.13486) [-1.62409]	(0.13659) [-0.87572]	(94362.2) [-1.21057]	(0.17962) [1.13136]	(0.20915) [-2.09544]	(0.14923) [2.51252]

С	1.74E+08	1.39E+08	3886450.	2.61E+14	1.89E+09	6.79E+09	2.54E+09
	(1.7E+08)	(8.6E+08)	(8.7E+08)	(6.0E+14)	(1.2E+09)	(1.3E+09)	(9.6E+08)
	[1.02755]	[0.16150]	[0.00444]	[0.43164]	[1.64410]	[5.06693]	[2.65917]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.653063	0.200808	0.237108	0.671999	0.098997	0.185677	0.250221
	0.585603	0.045410	0.088768	0.608221	-0.076198	0.027337	0.104431
	8.02E+18	2.09E+20	2.15E+20	1.03E+32	3.72E+20	5.04E+20	2.57E+20
	4.72E+08	2.41E+09	2.44E+09	1.69E+15	3.21E+09	3.74E+09	2.67E+09
	9.680732	1.292216	1.598406	10.53654	0.565066	1.172646	1.716306
	-936.8011	-1008.588	-1009.148	-1600.759	-1021.200	-1027.896	-1013.045
	42.94550	46.20856	46.23400	73.12540	46.78180	47.08618	46.41113
	43.26990	46.53296	46.55840	73.44979	47.10620	47.41058	46.73553
	71345909	6.16E+08	5.14E+08	7.44E+14	3.27E+09	4.91E+09	3.03E+09
	7.33E+08	2.47E+09	2.56E+09	2.70E+15	3.10E+09	3.79E+09	2.82E+09
Determinant resid covariar Determinant resid covariar Log likelihood Akaike information criterior Schwarz criterion	nce	4.0E+141 9.9E+140 -7579.414 347.0643 349.3351					

Tableau VAR (2)

Vector Autoregression Estimates Date: 09/02/17 Time: 19:06 Sample (adjusted): 1973 2015

Included observations: 43 after adjustments Standard errors in () & t-statistics in []

	D(IDE)	D(EX)	D(FBC)	PIB	PIBC	TCH	TIN
R-squared	0.828904	0.444702	0.496206	0.771771	0.262891	0.307446	0.352057
Adj. R-squared	0.743356	0.167053	0.244309	0.657657	-0.105663	-0.038830	0.028086
Sum sq. resids	3.95E+18	1.44E+20	1.42E+20	7.12E+31	3.04E+20	4.14E+20	2.21E+20
S.E. equation	3.76E+08	2.27E+09	2.25E+09	1.60E+15	3.29E+09	3.85E+09	2.81E+09
F-statistic	9.689353	1.601668	1.969876	6.763139	0.713304	0.887863	1.086691
Log likelihood	-900.7993	-978.1616	-977.7596	-1557.036	-994.1314	-1000.829	-987.3569
Akaike AIC	42.59532	46.19357	46.17486	73.11794	46.93635	47.24786	46.62125
Schwarz SC	43.20969	46.80794	46.78923	73.73231	47.55072	47.86224	47.23562
Mean dependent	73240000	5.83E+08	5.27E+08	7.62E+14	3.29E+09	5.02E+09	3.01E+09
S.D. dependent	7.42E+08	2.49E+09	2.59E+09	2.73E+15	3.13E+09	3.77E+09	2.85E+09
Determinant resid covaria	ance (dof adi.)	2.1E+141					
Determinant resid covaria	, , ,	1.0E+140					
Log likelihood	u1100	-7358.419					
Akaike information criteri	on	347.1358					
Schwarz criterion		351.4364					

Tableau VAR (3)

Vector Autoregression Estimates Date: 09/02/17 Time: 19:09 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments

Standard errors in () & t-statistics in []

	D(IDE)	D(EX)	D(FBC)	PIB	PIBC	TCH	TIN
R-squared	0.868189	0.570969	0.622489	0.942500	0.441113	0.550279	0.534330
Adj. R-squared	0.729788	0.120486	0.226101	0.882125	-0.145718	0.078073	0.045377
Sum sq. resids	3.04E+18	7.83E+19	8.60E+19	1.79E+31	2.30E+20	2.69E+20	1.55E+20
S.E. equation	3.90E+08	1.98E+09	2.07E+09	9.46E+14	3.39E+09	3.67E+09	2.78E+09
F-statistic	6.272981	1.267461	1.570406	15.61081	0.751687	1.165336	1.092804
Log likelihood	-874.8606	-943.0464	-945.0276	-1492.330	-965.6898	-968.9514	-957.3687
Akaike AIC	42.70765	45.95459	46.04893	72.11095	47.03285	47.18816	46.63660
Schwarz SC	43.61785	46.86480	46.95914	73.02115	47.94306	48.09837	47.54681
Mean dependent	75162619	7.90E+08	6.99E+08	7.80E+14	3.28E+09	5.04E+09	2.94E+09
S.D. dependent	7.51E+08	2.11E+09	2.36E+09	2.76E+15	3.17E+09	3.82E+09	2.85E+09
Determinant resid covaria	nce (dof adj.)	2.5E+140					
Determinant resid covaria	, , ,	1.4E+138					
Log likelihood		-7096.638					
Akaike information criterio	n	345.2685					
Schwarz criterion		351.6399					

Tableau VAR (4)

Vector Autoregression Estimates Date: 09/02/17 Time: 19:15 Sample (adjusted): 1975 2015

Included observations: 41 after adjustments Standard errors in () & t-statistics in []

**							
	D(IDE)	D(EX)	D(FBC)	PIB	PIBC	TCH	TIN
R-squared	0.935308	0.873598	0.801258	0.999772	0.608797	0.716563	0.790248
Adj. R-squared	0.784361	0.578660	0.337527	0.999239	-0.304011	0.055209	0.300828
Sum sq. resids	1.49E+18	2.31E+19	4.53E+19	7.09E+28	1.59E+20	1.69E+20	6.97E+19
S.E. equation	3.53E+08	1.39E+09	1.94E+09	7.69E+13	3.64E+09	3.76E+09	2.41E+09
F-statistic	6.196268	2.961969	1.727849	1877.861	0.666949	1.083479	1.614662
Log likelihood	-839.9247	-896.0346	-909.8652	-1343.898	-935.6031	-936.8958	-918.6991
Akaike AIC	42.38657	45.12364	45.79830	66.97062	47.05381	47.11687	46.22922
Schwarz SC	43.59861	46.33568	47.01034	68.18266	48.26585	48.32891	47.44126
Mean dependent	77627317	7.90E+08	7.04E+08	7.99E+14	3.22E+09	5.06E+09	2.96E+09
S.D. dependent	7.60E+08	2.14E+09	2.39E+09	2.79E+15	3.19E+09	3.86E+09	2.88E+09
Determinant resid covar	riance (dof adj.)	7.1E+136					
Determinant resid covar	`	1.3E+133					
Log likelihood		-6690.706					
Akaike information crite	rion	336.2784					
Schwarz criterion		344.7626					

Annexe : test de causalité de Granger

Pairwise Granger Causality Tests Date: 09/02/17 Time: 19:48 Sample: 1970 2015

Lags: 1

Lags: 1			
Null Hypothesis:	Obs	F-Statistic	Prob.
PIB does not Granger Cause IDE	45	0.62716	0.4329
IDE does not Granger Cause PIB		4.52472	0.0393
EX does not Granger Cause IDE	45	34.5045	6.E-07
IDE does not Granger Cause EX		1.60511	0.2122
FBC does not Granger Cause IDE IDE does not Granger Cause FBC	45	22.5144 2.72448	2.E-05 0.1063
TCH does not Granger Cause IDE	45	0.34267	0.5614
IDE does not Granger Cause TCH		0.07354	0.7876
TIN does not Granger Cause IDE	45	3.80269	0.0579
IDE does not Granger Cause TIN		5.86161	0.0199
PIBC does not Granger Cause IDE	45	0.62741	0.4328
IDE does not Granger Cause PIBC		0.00260	0.9596
EX does not Granger Cause PIB PIB does not Granger Cause EX	45	7.29553 1.08811	0.0099 0.3029
FBC does not Granger Cause PIB	45	6.38245	0.0154
PIB does not Granger Cause FBC		5.65028	0.0221
TCH does not Granger Cause PIB	45	1.57967	0.2158
PIB does not Granger Cause TCH		0.02001	0.8882
TIN does not Granger Cause PIB	45	1.17559	0.2844
PIB does not Granger Cause TIN		0.48835	0.4885
PIBC does not Granger Cause PIB	45	0.04535	0.8324
PIB does not Granger Cause PIBC		0.04627	0.8307
FBC does not Granger Cause EX	45	0.52423	0.4731
EX does not Granger Cause FBC		4.71568	0.0356
TCH does not Granger Cause EX EX does not Granger Cause TCH	45	3.62829 0.10557	0.0637 0.7469
TIN does not Granger Cause EX	45	1.02368	0.3174
EX does not Granger Cause TIN		6.22338	0.0166
PIBC does not Granger Cause EX	45	0.10120	0.7520
EX does not Granger Cause PIBC		0.03983	0.8428
TCH does not Granger Cause FBC FBC does not Granger Cause TCH	45	2.26788 0.21675	0.1396 0.6439
TIN does not Granger Cause FBC	45	0.27100	0.6054
FBC does not Granger Cause TIN		5.78543	0.0206
PIBC does not Granger Cause FBC	45	0.26811	0.6073
FBC does not Granger Cause PIBC		0.00204	0.9642
TIN does not Granger Cause TCH	45	3.18674	0.0815

TCH does not Granger Cause TIN		5.03046	0.0302
PIBC does not Granger Cause TCH TCH does not Granger Cause PIBC	45	2.15429 0.13041	0.1496 0.7198
PIBC does not Granger Cause TIN TIN does not Granger Cause PIBC	45	1.61981 1.21254	0.2101 0.2771

Algérie

Annexe N° 1: modèle mensuel

Test de stationnarité des sériés de l'Algérie

la série PIBC

Le modèle 3

Null Hypothesis: PIBC has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.927244	0.0001
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 13:43 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIBC(-1) C @TREND(1970)	-0.864459 2.50E+09 -6470513.	0.145845 9.59E+08 30791313	-5.927244 2.606728 -0.210141	0.0000 0.0126 0.8346
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.458779 0.433006 2.65E+09 2.95E+20 -1038.741 17.80113 0.000003	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	nt var erion on criter.	-1.13E+08 3.52E+09 46.29959 46.42003 46.34449 1.739600

Test du trend:

$$\begin{cases} H_0 : B=0 \\ H_1 : B\neq 0 \end{cases}$$

Tb = $\left| -0.21 \right| < T^{ADF} = 2.78$ donc on accepte H_0 : B=0, la tendance est non significative. On estime en conséquence le modèle avec constate, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant :

model2:

Null Hypothesis: PIBC has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.030464	0.0000
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(PIBC) Method: Least Squares Date: 06/29/17 Time: 13:45 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
PIBC(-1) C	-0.859867 2.34E+09	0.142587 5.64E+08	-6.030464 4.144277	0.0000 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.458210 0.445610 2.62E+09 2.96E+20 -1038.764 36.36649 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-1.13E+08 3.52E+09 46.25620 46.33649 46.28613 1.746423

Test de la constante :

$$\begin{array}{c}
H_0:C=0\\
H_1:C\neq 0
\end{array}$$

Tc= |4.14| > T^{ADF}= 2.52 donc on accepte H₀ :C=0, la constante est significative. **PIBC** \rightarrow **I(0)**

le test Ø:

H0: Ø = 1

 $H1: \emptyset < 1$

 $T\emptyset = -6.03 < -2.92$. on accepte H1, le processeur PIBC est stationnaire en niveau, donc PIBC(0) est intégré d'ordre 0.

La série EX

Le modèle 3

Null Hypothesis: EX has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.065583	0.5503
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 13:46 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1) C @TREND(1970)	-0.198928 -5.97E+08 2.69E+08	0.096306 2.78E+09 1.74E+08	-2.065583 -0.214580 1.550870	0.0451 0.8311 0.1284
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.093574 0.050410 8.59E+09 3.10E+21 -1091.610 2.167903 0.127053	Mean depender S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	it var erion on criter.	8.39E+08 8.81E+09 48.64935 48.76980 48.69425 1.829948

Test du trend:

 $H_0 : B = 0$

H₁: B≠0

Tb = |1.55| < T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative. On estime en conséquence le modèle avec constate, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant

model 2:

Null Hypothesis: EX has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.367302	0.5898
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 13:47 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1) C	-0.075988 2.66E+09	0.055575 1.86E+09	-1.367302 1.428170	0.1786 0.1605
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.041666 0.019379 8.73E+09 3.27E+21 -1092.863 1.869516 0.178636	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	8.39E+08 8.81E+09 48.66059 48.74089 48.69053 1.928317

Modèle 1:

Null Hypothesis: EX has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-0.490045	0.4982
Test critical values:	1% level	-2.617364	
	5% level	-1.948313	
	10% level	-1.612229	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX) Method: Least Squares Date: 06/29/17 Time: 13:49 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EX(-1)	-0.019278	0.039340	-0.490045	0.6265
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.003792 -0.003792 8.83E+09 3.43E+21 -1093.906 1.938157	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	8.39E+08 8.81E+09 48.66249 48.70264 48.67746

La stationnarisation de la série et récupération de l'ordre d'intégration

Null Hypothesis: D(EX) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.633040	0.0000
Test critical values:	1% level	-2.618579	
	5% level	-1.948495	
	10% level	-1.612135	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(EX,2) Method: Least Squares Date: 06/29/17 Time: 13:50 Sample (adjusted): 1972 2015

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(EX(-1))	-1.114587	0.168036	-6.633040	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.503730 0.503730 8.82E+09 3.34E+21 -1069.532 1.744879	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn	t var erion on	-7.87E+08 1.25E+10 48.66053 48.70108 48.67557

Test de stationnarité de la série FBC

Le modèle 3

Null Hypothesis: FBC has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 6 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-7.680311	0.0000
Test critical values:	1% level	-4.211868	
	5% level	-3.529758	
	10% level	-3.196411	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(FBC) Method: Least Squares Date: 06/29/17 Time: 13:51 Sample (adjusted): 1977 2015

Included observations: 39 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
FBC(-1)	-0.409266	0.053288	-7.680311	0.0000
D(FBC(-1))	0.414779	0.143651	2.887409	0.0071
D(FBC(-2))	-0.205955	0.157863	-1.304641	0.2019
D(FBC(-3))	0.658256	0.161733	4.070014	0.0003
D(FBC(-4))	0.592580	0.197928	2.993915	0.0055
D(FBC(-5))	0.747679	0.160631	4.654636	0.0001
D(FBC(-6))	1.096224	0.201140	5.450056	0.0000
С	-1.21E+09	1.08E+09	-1.121441	0.2710
@TREND(1970)	3.41E+08	59372978	5.749265	0.0000
R-squared	0.795320	Mean depende	nt var	1.96E+09
Adjusted R-squared	0.740739	S.D. dependen	t var	4.81E+09
S.E. of regression	2.45E+09	Akaike info crit	erion	46.27523
Sum squared resid	1.80E+20	Schwarz criterion		46.65913
Log likelihood	-893.3669	Hannan-Quinn criter.		46.41297
F-statistic	14.57130	Durbin-Watson stat		1.991162
Prob(F-statistic)	0.000000			

Test du trend:

 $H_0 : B = 0$

H₁: B≠0

Tb = |5.74| > T^{ADF} = 2.78 donc on accepte H₀ :B=0, la tendance est significative.

le test Ø:

H0: Ø = 1

 $H1: \emptyset < 1$

 $T\emptyset = -7.68 < -3.52$. On accepte H1, le processeur FBC est stationnaire.

Test de stationnarité de la série TCH

Le modèle 3

Null Hypothesis: TCH has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.105434	0.0000
Test critical values:	1% level	-4.175640	
	5% level	-3.513075	
	10% level	-3.186854	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TCH) Method: Least Squares Date: 06/29/17 Time: 13:53 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error t-Statisti		Prob.
TCH(-1) C @TREND(1970)	-0.952637 3.66E+09 4487997.	0.156031 -6.10543 1.07E+09 3.41924 33844649 0.13260		0.0000 0.0014 0.8951
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.470424 0.445206 2.94E+09 3.64E+20 -1043.447 18.65439 0.000002	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-87336570 3.95E+09 46.50876 46.62921 46.55366 1.955439

Test du trend:

 $H_0 : B = 0$

H₁: B≠0

Tb = |0.13| < T^{ADF} = 2.78 donc on accepte H_0 : B=0, la tendance est non significative. On estime en conséquence le modèle avec constate, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant

model 2:

Null Hypothesis: TCH has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic	Prob.*

Augmented Dickey-Fuller test statistic		0.0000
1% level	-3.584743	
5% level		
10% level	-2.602225	
	1% level 5% level	1% level -3.584743 5% level -2.928142

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TCH) Method: Least Squares Date: 06/29/17 Time: 13:53 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
TCH(-1) C	-0.951577 3.76E+09	0.154036 -6.177630 7.59E+08 4.953467		0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.470203 0.457882 2.91E+09 3.64E+20 -1043.457 38.16311 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteric Hannan-Quinn Durbin-Watson	t var erion on criter.	-87336570 3.95E+09 46.46474 46.54503 46.49467 1.956085

Test de la constante :

 $H_0:C=0$

H₁: C≠0

Tc= |2.78| >T^{ADF} = 2.52 donc on accepte H₁: C≠0, la constante est significative. $TCH \rightarrow I(0)$

le test Ø:

 $H0: \emptyset = 1$

 $H1: \emptyset < 1$

 $T\emptyset = -6.17 < -2.92$. on accepte H1, le processeur TCH est stationnaire.

Test de stationnarité de la série TIN

Le modèle 3

Null Hypothesis: TIN has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic		-6.179319	0.0000
Test critical values:	1% level	-4.175640	
5% level		-3.513075	
	10% level	-3.186854	
Test critical values:	5% level	-3.513075	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TIN)
Method: Least Squares
Date: 06/29/17 Time: 13:55
Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error t-Statistic		Prob.
TIN(-1) C @TREND(1970)	-1.038837 3.54E+09 -46680123	0.168115 -6.179319 1.17E+09 3.036916 39446630 -1.183374		0.0000 0.0041 0.2433
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.478201 0.453353 3.42E+09 4.91E+20 -1050.162 19.24536 0.000001	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	nt var erion on criter.	-2.71E+08 4.62E+09 46.80719 46.92764 46.85209 1.843522

Test du trend:

 $H_0 : B = 0$

H₁: B≠0

Tb = $\left| -1.18 \right| < T^{ADF} = 2.78$ donc on accepte H_0 : B=0, la tendance est non significative. On estime en conséquence le modèle avec constate, sans tendance [modèle 2] dont les résultats figurant dans le tableau suivant

model2 :

Null Hypothesis: TIN has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=9)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-6.062028	0.0000
Test critical values:	1% level	-3.584743	
	5% level	-2.928142	
	10% level	-2.602225	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(TIN) Method: Least Squares Date: 06/29/17 Time: 13:55 Sample (adjusted): 1971 2015

Included observations: 45 after adjustments

Variable	Coefficient	Std. Error t-Statisti		Prob.
TIN(-1) C	-1.018476 2.42E+09	0.168009 -6.062028 6.77E+08 3.568493		0.0000 0.0009
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.460803 0.448263 3.43E+09 5.07E+20 -1050.900 36.74819 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	-2.71E+08 4.62E+09 46.79555 46.87584 46.82548 1.813756

Test de la constante :

H₀ :C=0

H₁: C≠0

Tc= 3.57 >T^{ADF}= 2.52 donc on accepte H₁: C≠0, la constante est significative. On passe au test du φ :

Test du φ:

$$\begin{cases} H_0: \varphi = 1 \\ H_1: \varphi < 1 \end{cases}$$

 $T\phi = -6.06 < T^{ADF}(5\%) = -2.93$ on accepte $H_1: \phi < 1$ le processus est stationnaire.

Le processus TIN est donc intégré d'ordre 0. $TIN \rightarrow I(0)$

Vector Autoregression Estimates Date: 09/06/17 Time: 16:53 Sample (adjusted): 1973 2015

Included observations: 43 after adjustments Standard errors in () & t-statistics in []

	IDE	D(PIB)	PIBC	D(EX)	FBC	TCH	TIN
IDE(-1)	0.438551	-13058.90	-0.211625	0.194929	-0.095158	-0.059245	0.143094
	(0.19362)	(221071.)	(0.25198)	(0.85773)	(0.36073)	(0.29250)	(0.28783)
	[2.26505]	[-0.05907]	[-0.83984]	[0.22726]	[-0.26379]	[-0.20255]	[0.49714]
IDE(-2)	-0.260868	-38282.30	-0.146182	0.204730	0.058927	-0.152103	0.388302
	(0.20016)	(228539.)	(0.26049)	(0.88670)	(0.37292)	(0.30238)	(0.29756)
	[-1.30331]	[-0.16751]	[-0.56117]	[0.23089]	[0.15801]	[-0.50301]	[1.30496]
D(PIB(-1))	7.60E-08	0.008186	1.59E-07	1.68E-06	5.41E-07	2.13E-08	2.53E-07
	(2.9E-07)	(0.32583)	(3.7E-07)	(1.3E-06)	(5.3E-07)	(4.3E-07)	(4.2E-07)

	[0.26618]	[0.02512]	[0.42739]	[1.33096]	[1.01769]	[0.04940]	[0.59612]
D(PIB(-2))	9.91E-08	0.054625	8.18E-08	7.25E-07	7.97E-07	-4.59E-07	4.21E-07
	(2.7E-07)	(0.31161)	(3.6E-07)	(1.2E-06)	(5.1E-07)	(4.1E-07)	(4.1E-07)
	[0.36298]	[0.17530]	[0.23031]	[0.60000]	[1.56797]	[-1.11245]	[1.03888]
PIBC(-1)	0.026723	46170.61	0.167195	0.752614	0.501089	-0.085262	0.038624
	(0.14304)	(163323.)	(0.18616)	(0.63367)	(0.26650)	(0.21610)	(0.21265)
	[0.18682]	[0.28270]	[0.89813]	[1.18770]	[1.88024]	[-0.39456]	[0.18164]
PIBC(-2)	-0.082302	93071.62	0.041852	0.237405	-0.205473	-0.177767	-0.075450
	(0.14167)	(161753.)	(0.18437)	(0.62758)	(0.26394)	(0.21402)	(0.21060)
	[-0.58096]	[0.57539]	[0.22700]	[0.37828]	[-0.77848]	[-0.83062]	[-0.35826]
D(EX(-1))	0.000641	32874.79	-0.126382	-0.383437	-0.027854	0.093350	-0.044422
	(0.08060)	(92031.8)	(0.10490)	(0.35707)	(0.15017)	(0.12177)	(0.11983)
	[0.00795]	[0.35721]	[-1.20479]	[-1.07384]	[-0.18548]	[0.76661]	[-0.37072]
D(EX(-2))	-0.037175	17067.07	-0.029692	-0.137953	0.003455	0.038048	-0.035005
	(0.07128)	(81387.9)	(0.09277)	(0.31578)	(0.13281)	(0.10769)	(0.10597)
	[-0.52153]	[0.20970]	[-0.32006]	[-0.43687]	[0.02602]	[0.35332]	[-0.33034]
FBC(-1)	-0.021611	-65879.70	0.132345	-0.469931	1.296037	-0.102168	0.039182
	(0.16945)	(193480.)	(0.22053)	(0.75068)	(0.31571)	(0.25600)	(0.25191)
	[-0.12754]	[-0.34050]	[0.60011]	[-0.62601]	[4.10512]	[-0.39910]	[0.15554]
FBC(-2)	0.025076	72134.84	-0.153353	0.361610	-0.314866	0.143845	-0.121389
	(0.19052)	(217536.)	(0.24795)	(0.84401)	(0.35497)	(0.28783)	(0.28323)
	[0.13162]	[0.33160]	[-0.61848]	[0.42844]	[-0.88703]	[0.49977]	[-0.42859]
TCH(-1)	-0.056030	-100032.9	-0.003839	-0.301409	-0.316376	-0.032042	0.042195
	(0.14375)	(164131.)	(0.18708)	(0.63681)	(0.26782)	(0.21716)	(0.21370)
	[-0.38978]	[-0.60947]	[-0.02052]	[-0.47331]	[-1.18130]	[-0.14755]	[0.19745]
TCH(-2)	-0.072338	54899.45	0.198637	0.704746	0.573292	-0.190673	0.471269
	(0.12523)	(142991.)	(0.16298)	(0.55479)	(0.23333)	(0.18919)	(0.18617)
	[-0.57763]	[0.38394]	[1.21875]	[1.27030]	[2.45704]	[-1.00782]	[2.53135]
TIN(-1)	0.047384	-42133.65	0.076452	-0.069970	0.268289	-0.183813	-0.146201
	(0.12237)	(139727.)	(0.15926)	(0.54212)	(0.22800)	(0.18487)	(0.18192)
	[0.38721]	[-0.30154]	[0.48004]	[-0.12907]	[1.17671]	[-0.99426]	[-0.80364]
TIN(-2)	0.045881	88232.93	-0.157923	-0.324746	-0.080437	0.064477	-0.126431
	(0.12274)	(140143.)	(0.15974)	(0.54374)	(0.22868)	(0.18543)	(0.18247)
	[0.37381]	[0.62959]	[-0.98864]	[-0.59725]	[-0.35175]	[0.34773]	[-0.69291]
С	1.81E+09	5.07E+13	2.64E+09	72548190	-1.19E+09	5.45E+09	2.07E+09
	(1.1E+09)	(1.3E+15)	(1.5E+09)	(5.1E+09)	(2.1E+09)	(1.7E+09)	(1.7E+09)
	[1.58796]	[0.03890]	[1.77559]	[0.01434]	[-0.55714]	[3.16129]	[1.21788]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.225419	0.066235	0.257378	0.247701	0.984462	0.210635	0.391177
	-0.161872	-0.400647	-0.113932	-0.128449	0.976693	-0.184048	0.086765
	1.26E+20	1.64E+32	2.13E+20	2.47E+21	4.37E+20	2.87E+20	2.78E+20
	2.12E+09	2.42E+15	2.76E+09	9.39E+09	3.95E+09	3.20E+09	3.15E+09
	0.582041	0.141867	0.693162	0.658517	126.7165	0.533682	1.285026
	-975.2073	-1574.976	-986.5369	-1039.209	-1001.965	-992.9489	-992.2570
	46.05616	73.95239	46.58311	49.03297	47.30068	46.88135	46.84916
	46.67053	74.56676	47.19748	49.64734	47.91505	47.49572	47.46353
	1.79E+09	3.83E+14	2.83E+09	8.71E+08	2.82E+10	3.92E+09	2.55E+09
	1.97E+09	2.05E+15	2.61E+09	8.84E+09	2.59E+10	2.94E+09	3.30E+09

Determinant resid covariance (dof adj.)

Determinant resid covariance	7.8E+142
Log likelihood	-7501.056
Akaike information criterion	353.7701
Schwarz criterion	358.0707

Vector Autoregression Estimates Date: 09/06/17 Time: 16:56 Sample (adjusted): 1974 2015

Included observations: 42 after adjustments Standard errors in () & t-statistics in []

IDE	·				·	
IDE	D(PIB)	PIBC	D(EX)	FBC	TCH	TIN
0.335186	-182149.0	-0.376355	-0.327847	-0.086142	-0.258833	0.014885
(0.25069)	(217423.)	(0.26690)	(0.85036)	(0.31730)	(0.33817)	(0.33426)
[1.33705]	[-0.83776]	[-1.41011]	[-0.38554]	[-0.27148]	[-0.76539]	[0.04453]
-0.223738	5458.916	-0.036802	0.317517	0.041445	-0.177997	0.459688
(0.25195)	(218517.)	(0.26824)	(0.85464)	(0.31890)	(0.33987)	(0.33594)
[-0.88801]	[0.02498]	[-0.13720]	[0.37152]	[0.12996]	[-0.52371]	[1.36837]
-0.152194	-113252.7	-0.143522	-0.403132	0.096397	0.139680	0.030771
(0.25622)	(222216.)	(0.27278)	(0.86910)	(0.32430)	(0.34563)	(0.34163)
[-0.59400]	[-0.50965]	[-0.52614]	[-0.46385]	[0.29725]	[0.40414]	[0.09007]
-5.49E-08	-0.251176	4.09E-08	1.80E-06	5.73E-07	-6.61E-08	4.16E-07
(3.9E-07)	(0.34017)	(4.2E-07)	(1.3E-06)	(5.0E-07)	(5.3E-07)	(5.2E-07)
[-0.13991]	[-0.73839]	[0.09800]	[1.35600]	[1.15455]	[-0.12494]	[0.79548]
-6.00E-08	-0.257150	5.47E-09	5.11E-07	6.31E-07	-6.68E-07	5.84E-07
(3.7E-07)	(0.31819)	(3.9E-07)	(1.2E-06)	(4.6E-07)	(4.9E-07)	(4.9E-07)
[-0.16365]	[-0.80818]	[0.01400]	[0.41026]	[1.35963]	[-1.34978]	[1.19484]
3.40E-08	0.220145	-6.55E-07	2.68E-06	1.12E-06	-2.74E-07	-3.16E-07
(3.6E-07)	(0.31205)	(3.8E-07)	(1.2E-06)	(4.6E-07)	(4.9E-07)	(4.8E-07)
[0.09461]	[0.70548]	[-1.71033]	[2.19614]	[2.45343]	[-0.56393]	[-0.65944]
0.062697	167843.4	0.056267	1.041719	0.565749	0.013225	0.093320
(0.17528)	(152023.)	(0.18662)	(0.59457)	(0.22186)	(0.23645)	(0.23371)
[0.35769]	[1.10407]	[0.30151]	[1.75204]	[2.55003]	[0.05593]	[0.39929]
-0.153020	54568.48	-0.254082	0.482781	0.079594	-0.400972	0.018653
(0.19982)	(173303.)	(0.21274)	(0.67780)	(0.25292)	(0.26955)	(0.26643)
[-0.76578]	[0.31487]	[-1.19434]	[0.71227]	[0.31471]	[-1.48756]	[0.07001]
-0.008822	78802.37	0.490633	-0.113583	0.112280	0.062648	-0.289162
(0.18224)	(158055.)	(0.19402)	(0.61817)	(0.23066)	(0.24583)	(0.24299)
[-0.04841]	[0.49857]	[2.52877]	[-0.18374]	[0.48677]	[0.25484]	[-1.19003]
0.024226	76445.85	-0.250655	-0.379670	0.027261	0.032617	-0.091212
(0.11951)	(103652.)	(0.12724)	(0.40539)	(0.15127)	(0.16122)	(0.15935)
[0.20270]	[0.73752]	[-1.96996]	[-0.93655]	[0.18022]	[0.20232]	[-0.57240]
0.005462	143768.6	-0.126921	0.111102	0.160923	0.006827	-0.100976
(0.11046)	(95799.6)	(0.11760)	(0.37468)	(0.13981)	(0.14900)	(0.14728)
[0.04944]	[1.50072]	[-1.07927]	[0.29653]	[1.15102]	[0.04582]	[-0.68562]
	(0.25069) [1.33705] -0.223738 (0.25195) [-0.88801] -0.152194 (0.25622) [-0.59400] -5.49E-08 (3.9E-07) [-0.13991] -6.00E-08 (3.7E-07) [-0.16365] 3.40E-08 (3.6E-07) [0.09461] 0.062697 (0.17528) [0.35769] -0.153020 (0.19982) [-0.76578] -0.008822 (0.18224) [-0.04841] 0.024226 (0.11951) [0.20270] 0.005462 (0.11046)	0.335186 -182149.0 (0.25069) (217423.) [1.33705] [-0.83776] -0.223738 5458.916 (0.25195) (218517.) [-0.88801] [0.02498] -0.152194 -113252.7 (0.25622) (222216.) [-0.59400] [-0.50965] -5.49E-08 -0.251176 (3.9E-07) (0.34017) [-0.13991] [-0.73839] -6.00E-08 -0.257150 (3.7E-07) (0.31819) [-0.16365] [-0.80818] 3.40E-08 0.220145 (3.6E-07) (0.31205) [0.09461] [0.70548] 0.062697 167843.4 (0.17528) (152023.) [0.35769] [1.10407] -0.153020 54568.48 (0.19982) (173303.) [-0.76578] [0.31487] -0.008822 78802.37 (0.18224) (158055.) [-0.04841] [0.49857] 0.024226 76445.85 (0.11951) (103652.) [0.20270] [0.73752] 0.005462 143768.6 (0.11046) (95799.6)	0.335186 -182149.0 -0.376355 (0.25069) (217423.) (0.26690) [1.33705] [-0.83776] [-1.41011] -0.223738 5458.916 -0.036802 (0.25195) (218517.) (0.26824) [-0.88801] [0.02498] [-0.13720] -0.152194 -113252.7 -0.143522 (0.25622) (222216.) (0.27278) [-0.59400] [-0.50965] [-0.52614] -5.49E-08 -0.251176 4.09E-08 (3.9E-07) (0.34017) (4.2E-07) [-0.13991] [-0.73839] [0.09800] -6.00E-08 -0.257150 5.47E-09 (3.7E-07) (0.31819) (3.9E-07) [-0.16365] [-0.80818] [0.01400] 3.40E-08 0.220145 -6.55E-07 (3.6E-07) (0.31205) (3.8E-07) [0.09461] [0.70548] [-1.71033] -0.062697 167843.4 0.056267 (0.17528) (152023.) (0.18662) [0.35769] [1.10407] [0.30151] -0.153020 54568.48 -0.254082 (0.19982) (173303.) (0.21274) [-0.76578] [0.31487] [-1.19434] -0.008822 78802.37 0.490633 (0.18224) (158055.) (0.19402) [-0.04841] [0.49857] [2.52877] -0.024226 76445.85 -0.250655 (0.11951) (103652.) (0.12724) [0.20270] [0.73752] [-1.96996] -0.005462 143768.6 -0.126921 (0.11046) (95799.6) (0.11760)	0.335186	0.335186 -182149.0 -0.376355 -0.327847 -0.086142 (0.25069) (217423.) (0.26690) (0.85036) (0.31730) [1.33705] [-0.83776] [-1.41011] [-0.38554] [-0.27148] -0.223738 5458.916 -0.036802 0.317517 0.041445 (0.25195) (218517.) (0.26824) (0.85464) (0.31890) [-0.88801] [0.02498] [-0.13720] [0.37152] [0.12996] -0.152194 -113252.7 -0.143522 -0.403132 0.096397 (0.25622) (222216.) (0.27278) (0.86910) (0.32430) [-0.59400] [-0.50965] [-0.52614] [-0.46385] [0.29725] -5.49E-08 -0.251176 4.09E-08 1.80E-06 5.73E-07 (3.9E-07) (0.34017) (4.2E-07) (1.3E-06) (5.0E-07) [-0.13991] [-0.73839] [0.09800] [1.35600] [1.15455] -6.00E-08 -0.257150 5.47E-09 5.11E-07 6.31E-07 (3.7E-07)	0.335186 -182149.0 -0.376355 -0.327847 -0.086142 -0.258833 (0.25069) (217423.) (0.26690) (0.85036) (0.31730) (0.33817) [1.33705] [-0.83776] [-1.41011] [-0.38554] [-0.27148] [-0.76539] -0.223738 5458.916 -0.036802 0.317517 0.041445 -0.177997 (0.25195) (218517.) (0.26824) (0.85464) (0.31890) (0.33987) [-0.8801] [0.02498] [-0.13720] [0.37152] [0.12996] [-0.52371] -0.152194 -113252.7 -0.143522 -0.403132 0.096397 0.139680 (0.25622) (222216.) (0.27278) (0.86910) (0.32430) (0.34563) [-0.59400] [-0.50965] [-0.52614] [-0.46385] [0.29725] [0.40414] -5.49E-08 -0.251176 4.09E-08 1.80E-06 5.73E-07 -6.61E-08 (3.9E-07) (0.34017) (4.2E-07) (1.3E-06) (5.0E-07) (5.3E-07) [-0.13991] [-

D(EX(-3))	-0.002685	28445.77	-0.007202	-0.273834	0.049976	-0.074593	-0.070434
	(0.08526)	(73944.4)	(0.09077)	(0.28920)	(0.10791)	(0.11501)	(0.11368)
	[-0.03150]	[0.38469]	[-0.07934]	[-0.94686]	[0.46312]	[-0.64858]	[-0.61959]
FBC(-1)	0.022658	10597.84	0.661870	-0.825417	0.940597	0.241579	0.081751
	(0.26911)	(233397.)	(0.28651)	(0.91283)	(0.34062)	(0.36302)	(0.35881)
	[0.08420]	[0.04541]	[2.31014]	[-0.90424]	[2.76146]	[0.66547]	[0.22784]
FBC(-2)	-0.033310	-218501.2	-0.755112	0.129214	-0.243002	-0.090947	-0.045232
	(0.41656)	(361278.)	(0.44349)	(1.41299)	(0.52724)	(0.56192)	(0.55541)
	[-0.07996]	[-0.60480]	[-1.70267]	[0.09145]	[-0.46089]	[-0.16185]	[-0.08144]
FBC(-3)	0.026241	263698.0	0.049044	0.708090	0.347799	-0.121961	-0.111156
	(0.23906)	(207331.)	(0.25451)	(0.81089)	(0.30257)	(0.32247)	(0.31874)
	[0.10977]	[1.27187]	[0.19270]	[0.87323]	[1.14946]	[-0.37820]	[-0.34873]
TCH(-1)	-0.079161	-149687.2	0.132507	-0.619345	-0.366287	-0.096763	-0.088129
	(0.17522)	(151969.)	(0.18655)	(0.59436)	(0.22178)	(0.23637)	(0.23363)
	[-0.45177]	[-0.98498]	[0.71030]	[-1.04203]	[-1.65157]	[-0.40937]	[-0.37721]
TCH(-2)	-0.061312	-19960.41	0.341718	0.307316	0.259991	0.011332	0.520694
	(0.16902)	(146588.)	(0.17994)	(0.57332)	(0.21393)	(0.22800)	(0.22536)
	[-0.36275]	[-0.13617]	[1.89903]	[0.53603]	[1.21533]	[0.04970]	[2.31053]
TCH(-3)	-0.227822	-623222.2	-0.146870	-1.675774	-0.546889	-0.576585	-0.146122
	(0.20141)	(174684.)	(0.21443)	(0.68320)	(0.25493)	(0.27170)	(0.26855)
	[-1.13111]	[-3.56770]	[-0.68492]	[-2.45282]	[-2.14524]	[-2.12215]	[-0.54411]
TIN(-1)	0.123830	139980.2	0.310359	0.003681	0.209518	0.027734	0.008759
	(0.18770)	(162788.)	(0.19983)	(0.63668)	(0.23757)	(0.25319)	(0.25026)
	[0.65973]	[0.85989]	[1.55311]	[0.00578]	[0.88192]	[0.10954]	[0.03500]
TIN(-2)	0.052512	67365.58	-0.215052	-0.352513	-0.110671	0.070066	-0.083028
	(0.15244)	(132211.)	(0.16230)	(0.51709)	(0.19295)	(0.20564)	(0.20325)
	[0.34448]	[0.50953]	[-1.32507]	[-0.68173]	[-0.57358]	[0.34073]	[-0.40849]
TIN(-3)	0.037638	-18848.71	-0.022573	-0.401526	-0.437215	-0.057553	-0.052695
	(0.16657)	(144462.)	(0.17733)	(0.56500)	(0.21082)	(0.22469)	(0.22209)
	[0.22596]	[-0.13048]	[-0.12729]	[-0.71067]	[-2.07383]	[-0.25614]	[-0.23727]
С	2.67E+09	1.68E+15	2.11E+09	9.18E+09	1.51E+09	7.00E+09	2.65E+09
	(1.7E+09)	(1.5E+15)	(1.8E+09)	(5.8E+09)	(2.2E+09)	(2.3E+09)	(2.3E+09)
	[1.56309]	[1.13631]	[1.16043]	[1.58284]	[0.69668]	[3.03500]	[1.16449]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.280093	0.508447	0.545385	0.597924	0.993315	0.426268	0.497017
	-0.475809	-0.007683	0.068040	0.175744	0.986295	-0.176150	-0.031115
	1.15E+20	8.63E+31	1.30E+20	1.32E+21	1.84E+20	2.09E+20	2.04E+20
	2.40E+09	2.08E+15	2.55E+09	8.12E+09	3.03E+09	3.23E+09	3.19E+09
	0.370542	0.985114	1.142538	1.416277	141.5096	0.707595	0.941085
	-951.0788	-1525.350	-953.7097	-1002.379	-960.9755	-963.6507	-963.1616
	46.33709	73.68335	46.46237	48.77995	46.80836	46.93575	46.91245
	47.24730	74.59356	47.37257	49.69016	47.71856	47.84596	47.82266
	1.84E+09	3.92E+14	2.80E+09	8.72E+08	2.88E+10	3.92E+09	2.38E+09
	1.97E+09	2.07E+15	2.64E+09	8.95E+09	2.59E+10	2.98E+09	3.15E+09
Determinant resid covadj.) Determinant resid cov Log likelihood Akaike information cr Schwarz criterion	variance	3.6E+143 2.0E+141 -7249.935 352.5684 358.9398					

Vector Autoregression Estimates Date: 09/06/17 Time: 16:57 Sample (adjusted): 1975 2015

Sample (adjusted): 1975 2015
Included observations: 41 after adjustments
Standard errors in () & t-statistics in []

	IDE	D(PIB)	PIBC	D(EX)	FBC	TCH	TIN
IDE(-1)	0.231472	-198734.6	-0.436072	-0.337823	-0.071046	-0.486823	-0.232709
	(0.39800)	(207807.)	(0.33811)	(0.83806)	(0.41797)	(0.46298)	(0.48620)
	[0.58159]	[-0.95634]	[-1.28973]	[-0.40310]	[-0.16998]	[-1.05150]	[-0.47863]
IDE(-2)	-0.167976	-25745.23	-0.004249	0.398981	0.159556	-0.446632	0.363560
	(0.38513)	(201086.)	(0.32718)	(0.81095)	(0.40445)	(0.44801)	(0.47048)
	[-0.43616]	[-0.12803]	[-0.01299]	[0.49199]	[0.39450]	[-0.99693]	[0.77274]
IDE(-3)	-0.241414	-150510.6	-0.097169	-0.554449	0.039476	-0.036606	-0.176850
	(0.37514)	(195869.)	(0.31869)	(0.78991)	(0.39396)	(0.43638)	(0.45827)
	[-0.64354]	[-0.76842]	[-0.30490]	[-0.70191]	[0.10020]	[-0.08389]	[-0.38591]
IDE(-4)	0.040350	-17792.83	-0.020008	0.300480	0.120675	-0.187294	0.025991
	(0.34956)	(182515.)	(0.29696)	(0.73606)	(0.36710)	(0.40663)	(0.42703)
	[0.11543]	[-0.09749]	[-0.06738]	[0.40823]	[0.32873]	[-0.46060]	[0.06087]
D(PIB(-1))	-8.29E-08	-0.770932	3.73E-07	2.11E-07	7.63E-07	-5.35E-07	-7.47E-07
	(7.2E-07)	(0.37509)	(6.1E-07)	(1.5E-06)	(7.5E-07)	(8.4E-07)	(8.8E-07)
	[-0.11545]	[-2.05531]	[0.61067]	[0.13918]	[1.01147]	[-0.64076]	[-0.85099]
D(PIB(-2))	1.37E-08	-0.938435	5.75E-07	-1.38E-06	5.46E-07	-1.27E-06	-3.50E-07
	(6.9E-07)	(0.35919)	(5.8E-07)	(1.4E-06)	(7.2E-07)	(8.0E-07)	(8.4E-07)
	[0.01995]	[-2.61267]	[0.98426]	[-0.95488]	[0.75581]	[-1.59091]	[-0.41625]
D(PIB(-3))	6.69E-08	-0.754814	-5.47E-07	-1.08E-06	4.97E-07	-3.80E-07	-1.44E-06
	(7.4E-07)	(0.38785)	(6.3E-07)	(1.6E-06)	(7.8E-07)	(8.6E-07)	(9.1E-07)
	[0.09010]	[-1.94614]	[-0.86708]	[-0.69003]	[0.63747]	[-0.44032]	[-1.58909]
D(PIB(-4))	2.14E-07	-1.548997	6.33E-07	-6.56E-06	-9.99E-07	5.40E-07	-1.33E-06
	(7.8E-07)	(0.40847)	(6.6E-07)	(1.6E-06)	(8.2E-07)	(9.1E-07)	(9.6E-07)
	[0.27310]	[-3.79220]	[0.95309]	[-3.98155]	[-1.21591]	[0.59338]	[-1.38791]
PIBC(-1)	0.061378	-89967.58	0.229469	-0.130812	0.358610	-0.059141	-0.159378
	(0.28487)	(148741.)	(0.24201)	(0.59985)	(0.29917)	(0.33139)	(0.34801)
	[0.21546]	[-0.60486]	[0.94819]	[-0.21807]	[1.19870]	[-0.17847]	[-0.45797]
PIBC(-2)	-0.093736	-311075.9	-0.135584	-1.207618	-0.369826	-0.167190	-0.055145
	(0.33199)	(173340.)	(0.28203)	(0.69905)	(0.34864)	(0.38619)	(0.40556)
	[-0.28235]	[-1.79460]	[-0.48074]	[-1.72750]	[-1.06076]	[-0.43292]	[-0.13597]
PIBC(-3)	-0.004987	-119037.8	0.664678	-0.831212	-0.036001	-0.206082	-0.510698
	(0.28533)	(148980.)	(0.24240)	(0.60081)	(0.29965)	(0.33192)	(0.34857)
	[-0.01748]	[-0.79902]	[2.74211]	[-1.38348]	[-0.12015]	[-0.62088]	[-1.46514]
PIBC(-4)	0.174408	-181490.2	-0.438559	-0.646662	-0.293066	0.215006	0.152705
	(0.33441)	(174607.)	(0.28409)	(0.70416)	(0.35119)	(0.38901)	(0.40853)
	[0.52154]	[-1.03942]	[-1.54371]	[-0.91834]	[-0.83449]	[0.55269]	[0.37379]
D(EX(-1))	0.009464	164780.3	-0.375912	-0.140090	-0.073751	0.091442	0.118030
	(0.21272)	(111069.)	(0.18071)	(0.44792)	(0.22339)	(0.24745)	(0.25987)
	[0.04449]	[1.48359]	[-2.08015]	[-0.31275]	[-0.33014]	[0.36953]	[0.45419]

D(EX(-2))	-0.033643	215093.8	-0.145548	0.065402	0.089868	0.190565	0.033813
	(0.20082)	(104854.)	(0.17060)	(0.42286)	(0.21090)	(0.23361)	(0.24533)
	[-0.16753]	[2.05136]	[-0.85314]	[0.15467]	[0.42613]	[0.81574]	[0.13783]
D(EX(-3))	0.040179	42583.74	-0.006472	-0.346575	-0.138872	-0.097614	0.183763
	(0.17968)	(93815.0)	(0.15264)	(0.37834)	(0.18869)	(0.20901)	(0.21950)
	[0.22362]	[0.45391]	[-0.04240]	[-0.91604]	[-0.73597]	[-0.46702]	[0.83720]
D(EX(-4))	0.023616	103177.2	-0.070334	0.397514	-0.080677	-0.126452	0.250488
	(0.14529)	(75861.4)	(0.12343)	(0.30594)	(0.15258)	(0.16901)	(0.17749)
	[0.16254]	[1.36008]	[-0.56983]	[1.29933]	[-0.52875]	[-0.74817]	[1.41126]
FBC(-1)	-0.064763	762930.8	0.565831	2.509068	1.867645	-0.059272	0.388128
	(0.62195)	(324736.)	(0.52836)	(1.30961)	(0.65315)	(0.72349)	(0.75978)
	[-0.10413]	[2.34939]	[1.07092]	[1.91588]	[2.85945]	[-0.08193]	[0.51084]
FBC(-2)	0.112543	-757312.0	-1.108640	-2.249524	-1.237215	0.336998	0.136804
	(0.84907)	(443327.)	(0.72131)	(1.78787)	(0.89167)	(0.98771)	(1.03725)
	[0.13255]	[-1.70825]	[-1.53698]	[-1.25821]	[-1.38752]	[0.34119]	[0.13189]
FBC(-3)	-0.285442	527930.7	0.743142	1.552499	1.201547	0.010438	-0.762411
	(0.63931)	(333800.)	(0.54311)	(1.34617)	(0.67138)	(0.74369)	(0.78099)
	[-0.44649]	[1.58158]	[1.36831]	[1.15327]	[1.78967]	[0.01404]	[-0.97621]
FBC(-4)	0.277665	-555382.3	-0.248683	-2.208288	-0.954303	-0.205822	0.216165
	(0.37087)	(193644.)	(0.31507)	(0.78094)	(0.38948)	(0.43143)	(0.45307)
	[0.74868]	[-2.86805]	[-0.78930]	[-2.82774]	[-2.45019]	[-0.47707]	[0.47711]
TCH(-1)	-0.037993	-116683.4	0.060982	-0.365893	-0.341546	-0.362992	-0.071488
	(0.26138)	(136473.)	(0.22205)	(0.55037)	(0.27449)	(0.30405)	(0.31930)
	[-0.14536]	[-0.85500]	[0.27464]	[-0.66481]	[-1.24429]	[-1.19385]	[-0.22389]
TCH(-2)	-0.067370	90745.29	0.120006	0.823473	0.432790	-0.032344	0.478296
	(0.23580)	(123118.)	(0.20032)	(0.49651)	(0.24763)	(0.27430)	(0.28806)
	[-0.28571]	[0.73706]	[0.59908]	[1.65851]	[1.74774]	[-0.11791]	[1.66042]
TCH(-3)	-0.334807	-403307.7	-0.146495	-0.702279	-0.219341	-0.519210	-0.178895
	(0.28812)	(150434.)	(0.24476)	(0.60668)	(0.30257)	(0.33516)	(0.35197)
	[-1.16206]	[-2.68097]	[-0.59852]	[-1.15759]	[-0.72493]	[-1.54916]	[-0.50827]
TCH(-4)	-0.023026	-109268.8	-0.182214	0.001762	0.272672	-0.642224	-0.671047
	(0.41727)	(217870.)	(0.35449)	(0.87864)	(0.43821)	(0.48540)	(0.50975)
	[-0.05518]	[-0.50153]	[-0.51403]	[0.00201]	[0.62224]	[-1.32308]	[-1.31643]
TIN(-1)	0.283944	90017.47	0.321139	-0.087858	0.139478	-0.027771	0.218978
	(0.33849)	(176736.)	(0.28756)	(0.71275)	(0.35547)	(0.39376)	(0.41351)
	[0.83885]	[0.50933]	[1.11678]	[-0.12327]	[0.39237]	[-0.07053]	[0.52956]
TIN(-2)	0.032776	160958.3	-0.360902	-0.311985	-0.290757	0.425954	0.221570
	(0.31411)	(164006.)	(0.26685)	(0.66141)	(0.32987)	(0.36540)	(0.38372)
	[0.10435]	[0.98142]	[-1.35247]	[-0.47169]	[-0.88143]	[1.16573]	[0.57742]
TIN(-3)	-0.032816	230151.8	-0.002666	0.425723	-0.220552	0.076052	0.104383
	(0.24360)	(127191.)	(0.20694)	(0.51294)	(0.25582)	(0.28337)	(0.29759)
	[-0.13471]	[1.80950]	[-0.01288]	[0.82996]	[-0.86213]	[0.26838]	[0.35077]
TIN(-4)	-0.022247	142249.6	-0.372798	0.185736	0.068739	0.220274	0.064279
	(0.23594)	(123193.)	(0.20044)	(0.49682)	(0.24778)	(0.27447)	(0.28823)
	[-0.09429]	[1.15469]	[-1.85989]	[0.37385]	[0.27742]	[0.80255]	[0.22301]
С	2.40E+09	2.32E+15	5.49E+09	1.22E+10	2.42E+09	8.97E+09	3.91E+09

	(3.1E+09) [0.77545]	(1.6E+15) [1.43276]	(2.6E+09) [2.08493]	(6.5E+09) [1.87243]	(3.3E+09) [0.74442]	(3.6E+09) [2.48817]	(3.8E+09) [1.03274]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.359969 -1.133435 1.01E+20 2.90E+09 0.241039 -926.2273 46.59645 47.80849 1.87E+09 1.98E+09	0.843697 0.478989 2.74E+31 1.51E+15 2.313353 -1466.020 72.92779 74.13983 4.02E+14 2.09E+15	0.724550 0.081835 7.26E+19 2.46E+09 1.127326 -919.5412 46.27030 47.48234 2.69E+09 2.57E+09	0.864011 0.546704 4.46E+20 6.10E+09 2.722948 -956.7572 48.08572 49.29776 8.22E+08 9.05E+09	0.995881 0.986271 1.11E+20 3.04E+09 103.6283 -928.2343 46.69435 47.90639 2.93E+10 2.59E+10	0.625940 -0.246867 1.36E+20 3.37E+09 0.717157 -932.4280 46.89893 48.11096 3.91E+09 3.02E+09	0.623894 -0.253686 1.50E+20 3.54E+09 0.710926 -934.4345 46.99681 48.20885 2.32E+09 3.16E+09
Determinant resid covariance (dof adj.) Determinant resid covariance Log likelihood Akaike information criterion Schwarz criterion		1.5E+143 2.8E+139 -6989.833 350.8699 359.3542					

Pairwise Granger Causality Tests Date: 09/04/17 Time: 10:35

Sample: 1970 2015 Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
D(PIB) does not Granger Cause IDE	43	0.03845	0.9623
IDE does not Granger Cause D(PIB)		0.03420	0.9664
PIBC does not Granger Cause IDE IDE does not Granger Cause PIBC	44	0.46960 1.63895	0.6287 0.2073
D(EX) does not Granger Cause IDE	43	0.19750	0.8216
IDE does not Granger Cause D(EX)		0.10052	0.9046
FBC does not Granger Cause IDE IDE does not Granger Cause FBC	44	0.00981 0.12465	0.9902 0.8832
TCH does not Granger Cause IDE IDE does not Granger Cause TCH	44	0.37440 0.18052	0.6901 0.8355
TIN does not Granger Cause IDE IDE does not Granger Cause TIN	44	0.18227 0.85574	0.8341 0.4328
PIBC does not Granger Cause D(PIB)	43	0.39987	0.6732
D(PIB) does not Granger Cause PIBC		0.16798	0.8460
D(EX) does not Granger Cause D(PIB)	43	0.32643	0.7235
D(PIB) does not Granger Cause D(EX)		0.03001	0.9705
FBC does not Granger Cause D(PIB)	43	0.27363	0.7621
D(PIB) does not Granger Cause FBC		2.55465	0.0910

TCH does not Granger Cause D(PIB)	43	0.41048	0.6662
D(PIB) does not Granger Cause TCH		1.12733	0.3345
TIN does not Granger Cause D(PIB)	43	0.31602	0.7309
D(PIB) does not Granger Cause TIN		0.31824	0.7293
D(EX) does not Granger Cause PIBC	43	0.45692	0.6367
PIBC does not Granger Cause D(EX)		0.46210	0.6335
FBC does not Granger Cause PIBC	44	0.09309	0.9113
PIBC does not Granger Cause FBC		1.04055	0.3629
TCH does not Granger Cause PIBC PIBC does not Granger Cause TCH	44	1.08466 0.39355	0.3480 0.6773
TIN does not Granger Cause PIBC PIBC does not Granger Cause TIN	44	1.43492 0.87306	0.2504 0.4257
FBC does not Granger Cause D(EX)	43	1.86144	0.1693
D(EX) does not Granger Cause FBC		1.24745	0.2987
TCH does not Granger Cause D(EX)	43	0.94152	0.3989
D(EX) does not Granger Cause TCH		0.48081	0.6220
TIN does not Granger Cause D(EX)	43	0.64946	0.5280
D(EX) does not Granger Cause TIN		0.14555	0.8650
TCH does not Granger Cause FBC FBC does not Granger Cause TCH	44	5.36101 0.37010	0.0088 0.6931
TIN does not Granger Cause FBC	44	1.82255	0.1751
FBC does not Granger Cause TIN		1.59551	0.2158
TIN does not Granger Cause TCH	44	0.63868	0.5334
TCH does not Granger Cause TIN		2.30770	0.1129

Table des matières

Remerciements.

Dédicaces.

La liste des abréviations

Sommaire.

Introduction Générale	1
Chapitre I : Cadre conceptuel des IDE et leurs déterminants	3
Introduction:	3
Section 01 : généralités sur les IDE	3
Introduction:	3
1. définition des IDE	3
1.1.definition de l'IDE selon FMI	3
1.2. Définition de l'IDE selon l'OCDE	3
2. définition des firmes multinationales (FMN)	4
3. les différentes formes d'investissement direct étranger	5
3.1. Les Greenfield	
3.2. Les fusions acquisitions	5
3.3. Les joint-ventures	6
3.4. Les sous-traitances	6
3.5. La succursale	6
4. la stratégie des IDE	7
4.1. Une stratégie d'accès aux ressources naturelles du sol et de sous-sol	7
4.2. Stratégie horizontale ; dite stratégie du marché	7
4.3. Stratégie verticale ; ou de minimisation des couts	8
5. Les enjeux des IDE	9
5.1. Pour les pays d'accueil	9
5.2. Pour les pays d'origine	9
Section 2: Evolution des IDE dans le monde et leurs répartitions introduction	
géographiques	10
Introduction	10
1. Aperçu historique	10
1.1. 1DE 1914 à 1945 : Suprématie du Royaume-Uni	10
1.2. De 1945 à 1973 : Hégémonie des Etats-Unis	11
1. 3. De 1973 à 1984 : Emergence du Japon et de l'Allemagne	12
2. L'évolution récente des IDE	12
3. la répartition geographique	14
3.1. Amérique latine et des Caraïbes	15
3.2. Les pays développés	15
3.3. En Afrique	16
3.4. En Asie	16

Section 3 : les déterminants des investissements directs étranger	17
Introduction	17
1. les déterminants d'ordre économiques	17
1.1. Les déterminants du climat d'investissement	17
1.1.1. Le Taux de chômage	18
1.1.2. La croissance	18
1.1.3. L'investissement national	19
1.1.4. Taux d'inflation	19
1.2. les déterminants en termes de demande	19
1.3. les déterminants en termes de l'offre	
1.3.1. Accès aux ressources naturelles	
1.3.2. le coût et la qualité de la main-d'œuvre	21
1.3.3. les infrastructures de base	21
1.3.4. le système de communication	21
2. les déterminants d'ordre institutionnel	22
2.1. la stabilité politique et sociale	22
2.2. le degré d'ouverture commerciale	22
2.3. Les incitations fiscales	22
2.4. le taux de change	23
2.5. l'environnement juridique	23
2.6. le climat des affaires	
Conclusion	25
Chapitre 2: Etat des lieux des IDE au Maghreb	26
Introduction	
Section 1: Cadre règlementaire et évolution des IDE en Tunisie	26
1. Le cadre règlementaire des IDE en Tunisie	26
1.1. Les politiques d'incitations à l'IDE en Tunisie	
1.1.1 Incitations communes	27
1.1.2. Incitations spécifiques	27
2. L'évolution des IDE en Tunisie	
2.1. L'évolution des IDE en Tunisie 1990 à 2014	28
2.2. L'évolution des IDE en Tunisie (2012 à 2015)	29
3. Géographie des IDE en Tunisie par secteur	
Section 2 : Cadre règlementaire et évolution des IDE au Maroc	
Introduction	
1. Le cadre règlementaire des IDE au Maroc	
1.1. Les Principales mesures adoptées en faveur des investissements au Maroc	32
1.1. Les Principales mesures adoptées en faveur des investissements au Maroc 1.1.1. Les réformes d'ordre législatif	
1.1. Les Principales mesures adoptées en faveur des investissements au Maroc 1.1.1. Les réformes d'ordre législatif	32
1.1.1. Les réformes d'ordre législatif	32

1.1.4. Le financement	. 34
1.1.5. Les mesures fiscales	. 34
2. L'évolution des IDE au Maroc	34
2.1. Evolution des IDE au Maroc (1970 à 2006)	. 35
2.2. L'évolution des IDE en Maroc (de 2007à 2016)	. 36
3. Répartition sectorielle de l'IDE au Maroc	. 37
Section 3: Cadre règlementaire et évolution des IDE en Algérie	
Introduction	
1. L'évolution du cadre réglementaire des investissements en Algérie	
1.1. les anciens codes	
1.1.1. Le code de 1963 (L'ordonnance n°63-276 du 26/07/1963)	
1.1.2. Le code de 1966 (L'ordonnance n°66-284 du 15/09/1966)	
1.1.3. Le code de 1988 (La loi n°88-25 du 12/07/1988)	
1.2. Les nouveaux codes	. 40
1.2.1. La loi 93-12 du 05 octobre 1993, dite code des investissements	. 40
1.2.2. L'ordonnance n°01-03 du 20 août 2001 relative au développement	de
l'investissement	. 41
1.2.3. L'ordonnance n°06-08 du 15/07/2006	. 41
1.2.4. L'ordonnance 09-01 du 22 juillet 2009	
1.2.5. La loi de finance 2015	
1.2.6. La loi de finance 2016	
2. L'évolution des IDE en Algérie	
2.1. Tendance des IDE en Algérie	
2.1.1. La première période : 1970-1980	
2.1.2. La deuxième période : 1980-1995	. 44
2.1.3. La troisième période : 1995-2002	. 45
2.1.4. A partir de 2002 jusqu'à 2015	. 45
2.2 Répartition sectorielle des IDE en Algérie	. 46
2.3. Les investisseurs étrangers en Algérie	. 47
2.3.1. Les investissements directs français en Algérie	. 47
2.3.2. Les investissements directs Allemand en Algérie	. 48
2.3.3. Les investissements directs chinois en Algérie	. 49
2.3.4. Les investissements directs arabes en Algérie	. 49
2.3.5. Les investissements directs turcs en Algérie	. 50
conclusion	. 51
Chapitre 3: étude économétrique des déterminants des IDE au Maghreb l'application du modèle MCO et VAR	
IntroductionIntroduction	
	. 04

Section 1: Analyse économétrique de l'attractivité des IDE en Tunisie	52
Introduction	
1. Définition de régression multiple	53
1.1. Le coefficient R ²	53
1.2. Les tests d'hypothèses	54
1.2.1. Test de student	54
1.2.2. Test de Fisher	54
1.2.3. Test de normalité des résidus	54
2. Analyse du lien entre les IDE et les variables (PIB, PIBC, EX, FBC,	TCH et
TIN.)	
2.1. Estimation du modèle	54
2.2. Le test de normalité des résidus	55
3. L'application du modèle VAR sur le modèle basé sur des données mensuel	lles 56
3.1. Test de stationnarité des séries	
3.1.1. Test de stationnarité de la série IDE	56
3.1.2. Test de stationnarité pour les séries IDE, PIB, PIBC, EX, FBC	C, TCH,
TIN	60
3.2. La modélisation du VAR	61
3.2.1. Le choix du nombre de retards	61
3.2.2. Estimation du modèle VAR	61
3.2.3 Test de validation du modèle VAR	62
3.2.4. Analyse des chocs	63
3.2.5. La décomposition de la variance des IDE	64
3.2.6. Etude de la causalité au sens de Granger	73
Section 2: Analyse économétrique de l'attractivité des IDE en Maroc.	65
. Section 2. Analyse econometrique de l'attractivité des IDE en Maroc.	
· · · · · · · · · · · · · · · · · · ·	
Introduction	65
· · · · · · · · · · · · · · · · · · ·	65
Introduction	65 H, TIN.
Introduction	65 H, TIN. 66
Introduction	65 H, TIN 66
Introduction 1. Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TC 1.1 Estimation du modèle	65 H, TIN 66 66
Introduction	65 H, TIN 66 67
Introduction	65 H, TIN 66 67 67
Introduction 1. Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TC 1.1 Estimation du modèle	65 H, TIN 66 67 67 67
Introduction 1. Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TC 1.1 Estimation du modèle	65 H, TIN 66 67 67 67 TIN.71
Introduction 1. Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TC 1.1 Estimation du modèle	65 H, TIN 66 67 67 67 TIN.71 72
Introduction	65 H, TIN 66 67 67 67 TIN.71 72 72
Introduction	65 H, TIN66676767 TIN.717272
Introduction	65 H, TIN66676767 TIN.71727272
Introduction 1. Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TC 1.1 Estimation du modèle	65 H, TIN66676767 TIN.7172727272
Introduction	65 H, TIN66676767 TIN.717272727576
Introduction 1. Analyse du lien entre le IDE et les quatre variables PIB, PIBC, EX, FBC, TC 1.1 Estimation du modèle	65 H, TIN66676767 TIN.71727272727576

1.1. Estimation du modèle	78
1.2-Le test de normalité des résidus.	79
1.3. Test de stationnarité des séries	80
1.3.1. Test de stationnarité de la série IDE	80
1.3.2. Test de stationnarité de la série PIB	82
1.3.3. Test de stationnarité pour les séries IDE, PIB, PIBC, EX, FBC, TCH, TIN	85
1.4. La modélisation du VAR	86
1.4.1 Le choix du nombre de retards	86
1.4.2. Estimation du modèle VAR	87
1.4.3. La décomposition de la variance des IDE	88
1.4.4. Analyse des chocs	89
1.4.5. Etude de la causalité au sens de Granger	89
3.3. Test de validation du modèle VAR	90
conclusion	
conclusion générale	92
bibliographie	94
liste des tableaux et figure	•••••
Annexes	
table des matières	•••••
résumé	•••••

Résumé

Nous avons essayé dans ce travail d'identifier les déterminants des IDE dans les pays du Maghreb. L'estimation économétrique repose sur deux modèles : le modèle des (MCO) et le modèle (VAR), estimés sur des données annuelles couvrant la période (1970-2015). D'après le modèle MCO, les résultats obtenus montrent qu'au Maroc les IDE sont significativement influencés par les Exportations (EX). En Tunisie, les EX, le PIB, et FBC affectent significativement les IDE. En revanche, les IDE en Algérie ne sont expliqués par aucune variable. Cependant ces résultats n'ont été validés par les tests d'autocréation des erreurs c'est pourquoi on a passé à la modélisation VAR. D'après les résultats du VAR, les IDE, en Algérie et la Tunisie, sont significativement influencés par leurs propres passés. Par contre, au Maroc, les IDE (-1) (-2) (-4), et par EX(-2), FBC (-3). Par ailleurs, Les résultats du test de Granger indiquent que la croissance du PIB (PIBC) est la seule variable causale de l'IDE au Maroc, or que la Tunisie et l'Algérie n'ont aucune variable qui cause l'IDE.

Mots clés: IDE, attractivité, déterminants, FMN.

Abstract

We have tried in this work to identify the determinants of foreign direct investisments (FDI) in the maghreb contries. The economic estimation relaxes in two models: the MCO type and the VAR one, they are instimated by the yearly data between the period 1970 and 2015. According to the MCO model, the results show that in morocco the foreign direct investiments (FDI) are influenced by the export (EX). In tunisia the exportations, the PIB and FBC affect the (FDI) in Algerian ara explained by any variable. White these results are not validated by the autocreation of erreurs that's why we have moved to VAR modelisation. According to the VAR results, the (FDI) in Algeria, tunisia are influenced by their past. But in Morocco the (FDI) (-1) (-2) (-4) are influenced by Exports (EX), FBC (-3). Othervise, the results of Granger test indicates that the improvent of PIB (PIBC) is the only causale variable in the (FDI) in Morocco, but in Tunisia and Algeria there isn't any variable that causes the (FDI).

Key words: FDI, attraction, determinants, FMI.