REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieure de la Recherche Scientifique Université Abderhmane MIRA de Bejaia Faculté de la technologie

Département de GENIE CIVIL

Mémoire de fin d'études

En vue de l'obtention du diplôme de Master en génie civil

Option: matériaux et structures

Thème

Etude d'un bâtiment (R +7 +2 Entre sol) à usage multiple contreventé par un système mixte

(Voile - Portiques)

Présenté par :

Mer: Ramtani Youcef

Mer: Benati Farouk

Encadré par :

M^{me}: Sfaksi

MEMBRE DU JURY:

M^{er}: TAHAKORT M^{me}: SELLAMI

Promotion 2015-2016

Remerciements

Avant tout, nous tenons à remercier Dieu le tout puissant pour nous avoir donné la force et la patience pour mener a terme ce travail.

Nous remercions nos familles qui nous ont toujours encouragé et soutenu durant toutes nos études.

Nous adressons notre reconnaissance et nos remerciements à notre promotrice M^{elle} Sfaksi sans oublier Mr Walid qui nous a aidé lors de la modélisation.

Nous remercions les membres de jury qui nous font l'honneur de juger ce travail.

Notre sincère gratitude va vers tous ceux qui ont participé de prés ou de loin à ce travail.

Se dédie humblement ce travail

A mes très chers parents pour le sacrifice et le soutien qu'ils m'ont apporté durant toute ma vie. Que Dieu tout puissant les préserve et leurs accorde santé et bonheur

A mes très chers frères et sœurs SAID, LYASS,

ZUINA, ANISSA

A mes nombreux oncles, tentes et cousins que je remercie pour leur aide et leur encouragement

A ma promotrice \mathcal{M}^{me} SFAKSI

A tout mes amis

A tous ceux qui ont contribué de prés ou de loin à la réalisation de ce mémoire.

R. Youcef

Dédicaces

Se dédie humblement ce travail

A mes très chers parents pour le sacrifice et le soutien qu'ils m'ont apporté durant toute ma vie. Que Dieu tout puissant les préserve et leurs accorde santé et bonheur

A mes très chers frères et sœurs HOUCINE, AHCENE, HAMZA, BILLAL, KIKI, FADILA

A ma grand mère YAMINA

A mes nombreux oncles, tentes et cousins que je remercie pour leur aide et leur encouragement

A ma promotrice Mme SFAKSI

A tout mes amis

A tous ceux qui ont contribué de prés ou de loin à la réalisation de ce mémoire.

B. Farouk

SOMMARE

Introduction générale

Cha	pitre	τ.	Cán	ára	lit	6
Una	Ditre	1:	Cren	era	нu	ť

I.1. Introduction	1
I.2. Présentation de l'ouvrage	1
I.3.Les caractéristiques des matériaux	4
I.4. caractéristique de sol.	9
Chapitre II : Prédimensionnement des éléments	
II.1. Introduction.	10
II.2.Les planchers	10
II.3.Les poutres.	16
II.4.Les voiles.	17
II.5.Les escaliers	18
II.6.Détermination des charges et surcharges	21
II.7.Conclusion.	38
Chapitre III : Calcul des éléments secondaires	
III.1.Etude des planchers	39
III.2.Planchers dalles pleines.	66
III.3.Etude de l'acrotère	86
III.4. Etude des escaliers.	92

III.5. Etude des poutres de chainages	102
III.6. Etude de l'ascenseur.	107
III.7.Conclusion.	116
Chapitre IV : Etude dynamique	
IV.1.Introduction.	117
IV.2.Méthode de calcul.	117
IV.3.Disposition des voiles.	123
IV.5.Interpolation des résultats de l'analyse dynamique	123
IV.6. Conclusion.	134
Chapitre V : Etude des éléments structuraux	
V.1.Introduction.	135
V.2.Etude des poutres	135
V.3 .Etude des poteaux	145
V.4.Etude des voiles	160
V.5.Conclusion.	167
Chapitre VI : Etude des fondations	
VI .1. Introduction.	168
VI.2. Choix du type des fondations.	168
VI.5. Voile périphérique	182
VI.5.Conclusion	186
Conclusion	
Bibliographie	

Annexes

LISTE DES FIGURES

Fig. I.1 : Diagramme contrainte- déformation du béton à ELU	6
Fig. I.2: Diagramme contraintes-déformations de l'acier	9
Fig. II.1 : Plancher à corps creux	11
Fig. II.2: Disposition des poutrelles des différents niveaux	12
Fig. II.3: Schéma d'une poutrelle	13
Fig. II.4: Exemple d'un panneau de dalle	14
Fig. II.5: panneau D ₁	14
Fig. II.6: panneau D ₂	15
Fig. II.7: panneau D ₃	15
Fig. II.8: panneau D ₄	15
Fig. II.9: Coupe verticale d'un voile	18
Fig. II.10: Schéma de l'escalier	19
Fig. II.11: Détail d'un escalier	20
Fig. II.12: Dimension de l'acrotère	25
Fig. II.13: hauteur libre d'étage	27
Fig. II.14: la surface afférents	29
Fig. II.15: La surface afférente	32
Fig. III.1: Dimensions de la poutrelle	39
Fig.III.2 : schéma statique de poutre à deux travées	41
Fig. III.3: schéma statique de poutre à plus deux travées	41
Fig. III.4: Diagramme de l'effort tranchant d'une poutre à deux travées	42
Fig. III.5: Diagramme de l'effort tranchant d'une poutre à plus de deux travées	42
Fig.III.6: Schéma statique d'une poutrelle de type 1	46
Fig. III.7: schéma statique de la poutrelle section en T	50

Fig. III.8: Schéma de ferraillage de la dalle de compression	66
Fig. III.9: panneau de dalle D1	66
Fig. III.10: Section de la dalle pleine	67
Fig. III.11: Schéma de ferraillage Dalle pleine sur quatre appuis	70
Fig. III.12: Schéma d'une dalle sur deux appuis	70
Fig. III.13: schéma de ferraillage de la dalle sur deux appuis	74
Fig. III.14: Panneau D_3	74
Fig. III.15: Section de la dalle pleine a ferraillé	75
Fig. III.16: Schéma du ferraillage du balcon sur trois appuis	80
Fig. III.17: Panneau D_3	80
Fig.III.18: Section de la dalle pleine a ferraillé	81
Fig. III.19: Schéma du ferraillage du balcon sur trois appuis	86
Fig. III.20: Dimension de l'acrotère	86
Fig.III.21: Schéma statique de l'acrotère	87
Fig. III.22: Schéma de ferraillage de l'acrotère	92
Fig. III.23: schéma de chargement	92
Fig. III.24: Schéma de la coupe de l'escalier	92
Fig. III.25: Schéma de ferraillage des escaliers	96
Fig. III. 26: Schéma statique du la poutre palière	97
Fig.III.27: Section creuse équivalente	99
Fig.III.28: Ferraillage de la Poutre palière	101
Fig. III.29: Ferraillage de la Poutre de chainage 1	104
Fig.III.30 : Ferraillage de la Poutre de chainage 2	107
Fig. III.31: Schéma de l'ascenseur	111
Fig.III.32: Schéma de ferraillage de la dalle du locale des machines	115
Fig. IV.1: Spectre de calcul	122

Fig. IV .2: Disposition des voiles
Fig. IV.3: mode 1(translation selon y-y')
Fig. IV.4: mode 2 (translation selon x-x')
Fig. IV.5: mode 3 (rotation au tour de z-z')
Fig. V.1: Disposition constructives des portiques
Fig. V. 2 : zone nodale
Fig. V. 3: Section d'un poteau
Fig. V. 4 : Schéma de ferraillage du voile 1 ^{er} entre sol:
Fig. VI. 1 : Schéma d'une semelle isolée:
Fig. VI .2: Schéma d'une semelle filante
Fig. VI .3: Zone de contact poteau-radier
Fig. VI .4 : Panneau de dalle
Fig. VI. 5 : Schéma de ferraillage de radier
Fig. VI. 6 : Schéma statique du débord
Fig. VI. 7: Schéma de ferraillage du débord
Fig. VI. 8 : Section à ferrailler.
Fig. VI. 9 : Charges sur les nervures
Fig. VI. 10: répartitions des contraintes sur le voile périphérique
Fig. VI. 11: Schéma de ferraillage de voile périphérique

Liste des tableaux

Tab. II.1: Valeur de la charge permanente G du plancher terrasse inaccessible	21
Tab. II.2: Valeur de la charge permanente G de l'étage courant, RDC et 2 ^{eme} entre sol	22
Tab. II.3: Charge du plancher terrasse accessible	22
Tab. II.4: Valeur de la charge permanente G du 1 ^{er} entre sol	23
Tab. II.5: évaluation des charges du balcon	.23
Tab. II.6: Valeur de la charge permanente de la maçonnerie (mur extérieur)	24
Tab .II.7: Valeur de la charge permanente de la maçonnerie (mur intérieur)	25
Tab. II.8: Valeur de la charge permanente de la volée	26
Tab. II.9 : Valeur de la charge permanente du palier	27
Tab. II.10: : poids des poteaux	30
Tab. II.11: Descente de charges (poteau P ₂)	30
Tab. II.12: Descente de charges (poteau P ₁)	32
Tab .II.13: résume les vérifications à la compression à tous les niveaux du poteau(P1)	34
Tab. II.14: résume les vérifications au flambement du poteau (P1) à tous les niveaux :	37
Tab. III.1: Les différentes charges	39
Tab. III.2: Les types de poutrelles	44
Tab. III.3: calcul des sollicitations des différents types de poutrelles	48
Tab. III.4: Les sollicitations maximales des poutrelles	49
Tab. III.5: Calcul du ferraillage	60
Tab.III.6 : Armature longitudinales et transversales adoptées.	.62
Tab. III.7: Vérification des états limites de compression du béton	63
Tab. III.8: Vérification de la flèche	63
Tab. III.9 : Schéma de ferraillage des poutrelles	.64
Tab. III.10 : Calcul de ferraillage de la dalle sur quatre appuis(D1)	68
Tab III.11: contraintes dans le béton de la dalle sur quatre appuis	
Tab. III.12 : Calcul de la flèche sens xx	70
Tab. III.13: Calcul de la flèche selon yy	
Tab. III.14: Calcul de ferraillage de la dalle sur deux appuis(D2)	71
Tab. III.15: contraintes dans le béton de la dalle sur deux appuis	72
Tab. III.16: Calcul de la flèche sens xx	73
Tab. III 17: Calcul de la flèche selon y	71

Tab. III.18: Ferraillage du balcon sur trois appuis	<i>78</i>
Tab. III.19: contraintes dans le béton du balcon sur trois appuis	78
Tab. III.20 : Calcul de la flèche sens xx :	<i>7</i> 9
Tab III.21 : Calcul de la flèche selon yy	80
Tab III.22 : Ferraillage du balcon sur trois appuis	83
Tab. III.23: contraintes dans le béton du balcon sur trois appuis	84
Tab. III.24: Calcul de la flèche sens xx	85
Tab. III.25: Calcul de la flèche selon yy	
Tab. III.26: Les combinaisons d'actions	
Tab. III.27 : Ferraillage de la volée de l'escalier	
Tab. III.28: Vérification des contraintes	
Tab. III.29: calcul de la flèche, escalier	
Tab. III.30: Les sollicitations de la poutre palière	
Tab. III.31: Calcul des armatures principales	
Tab. III.32: Vérification des contraintes à l'E.L.S	
Tab. III.33: vérification des conditions de la flèche	101
Tab. III.34: Section d'armatures longitudinales de la poutre de chainage 1	103
Tab. III.35 : Résultats de calcul des contraintes de béton	104
Tab III.36 : vérification des conditions de la flèche	104
Tab. III.37: Section d'armatures longitudinales de la poutre de chainage 2	105
Tab. III.38 Résultats de calcul des contraintes de béton	106
Tab. III .39 : vérification des conditions de la flèche	107
Tab. III.40 : Résultats de ferraillage de la dalle du locale machines	109
Tab. III.41 : Section de ferraillage de la dalle du local machines	113
Tab. III.42 : vérification des contraintes dans le béton	115
Tab. IV.1: Valeurs des pénalités Pq	119
Tab. IV.2: Période de vibration et taux de participation des masses modales	125
Tab. IV.3: Vérification de l'effort tranchant à la base	127
Tab. IV.4: Vérification de l'interaction sous charges verticales	128
Tab. IV.5: Vérification de l'interaction sous charges horizontales	129
Tab. IV.6: Vérification de l'effort normal réduit	130
Tab. IV.7: Vérification des déplacements pour le sens xx	131
Tab. IV.8: Vérification des déplacements pour le sens yy	132

Tab. IV.9: Vérification a L'effet P - Δ	133
Tab. V. 1: Ferraillage des poutres principales et secondaires	138
Tab. V.2: Vérification des contraintes tangentielles :	141
Tab. V.3: Vérification des armatures longitudinales au cisaillement	142
Tab. V.4: Vérification de l'état limite de compression du béton	142
Tab. V.5: Vérification de la flèche pour les poutres :	143
Tab. V.6: Schéma de ferraillage des poutres de 1 ^{er} entre sol	143
Tab. V.7: Schéma de ferraillage des poutres de 2 ^{eme} entre sol jusqu'à dernier niveaux	144
Tab .V .8: Armatures longitudinales minimales et maximales dans les poteaux	147
Tab. V.9: Sollicitations dans les poteaux	149
Tab. V.10: Ferraillage des poteaux	150
Tab. V.11: Armatures transversales dans les poteaux.	150
Tab. V.12: Vérification du flambement des poteaux	153
Tab. V.13: Vérification des contraintes dans le béton	154
Tab. V.14: Vérification aux sollicitations tangentes pour les poteaux	155
Tab. V.15: Les moments résistants dans les poteaux	157
Tab. V.16: Vérification de la zone nodale	158
Tab. V.17: Schéma de ferraillage des poteaux dans chaque niveau	159
Tab. V.18: Sollicitations de calcul dans le voile V_{xl} dans tous les niveaux	163
Tab. V.19: Sollicitations de calcul dans le voile V_{x2} dans tous les niveaux	164
Tab. V.20: Sollicitations de calcul dans le voile V_{yI} dans tous les niveaux	165
Tab. VI.1: Résumé des résultats du ferraillage	175
Tab. VI.2: Vérification des contraintes	176
Tab. VI.3: Sections d'armatures du débord.	177
Tab. VI.4: Résumé des résultats du ferraillage	179
Tab. VI. 5: Vérification des contraintes	180
Tab. VI.6: Schéma de ferraillage des nervures	181
Tab. VI.7: Section des armatures du voile périphérique.	184
Tab. VI.8: vérification des contraintes pour le voile périphérique	185

Symboles Et Notations

A', Aser: Section d'aciers comprimés et section d'aciers à l'ELS respectivement.

At: Section d'un cours d'armature transversal.

A: Coefficient d'accélération de zone.

a: Epaisseur.

 α : Coefficient de la fibre neutre

B: Aire d'une section de béton.

Br: Section réduite.

B, **b**: la largeur (m).

 \mathbf{C}_T : coefficient fonction du système de contreventement et du type de remplissage

 C_u : La cohésion du sol (KN/m²).

D: Diamètre, dalle

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

E: Module d'élasticité longitudinale, séisme.

E_i: Module d'élasticité instantanée.

E_s: Module d'élasticité de l'acier.

E_d, E_c: Sont les modules de déformation.

e_{v :} épaisseur du voile.

F: Force ou action générale.

 \mathbf{f}_{c28} : Résistance caractéristique à la compression donnée en (MPa).

 \mathbf{f}_{t28} : Résistance caractéristique à la traction donnée en (MPa).

 \mathbf{f}_{ii} : la flèche correspondant à j.

 \mathbf{f}_{gi} : la flèche correspondant à g.

 \mathbf{f}_{qi} : la flèche correspondant à q.

 $\mathbf{f}_{\mathbf{g}\mathbf{v}}$: la flèche correspondant à v.

 Δf_t : la flèche totale.

 $\Delta f_{t \text{ adm}}$: la flèche admissible.

F: Cœfficient de sécurité = 1.5

G: Action permanente.

H: hauteur, la hauteur d'ancrage d'une fondation (m).

ht: hauteur totale du plancher.

ho: épaisseur de la dalle de compression.

he: hauteur libre d'étage.

I: Moment d'inertie (m⁴).

 I_{ji} : Moment d'inertie correspondant à j.

 I_{gi} : Moment d'inertie correspondant à g.

 I_{qi} : Moment d'inertie correspondant à q.

 I_{gv} : Moment d'inertie correspondant à v.

Q: Charge variable.

Q: Facteur de qualité.

 q_u : charge ultime.

 q_s : charge de service.

L: Longueur ou portée.

 L_{max} : La plus grande portée entre deux éléments porteurs successifs (m).

Lx = distance entre nus de poutrelles.

 $L_y =$ distance entre axes d'appuis des poutrelles principales.

l': longueur fictive.

 $l_{g}^{'}$ et $l_{d}^{'}$: Longueurs fictives à gauche et à droite respectivement.

M: Moment en général.

Ma: Moment sur appui.

Mu: Moment de calcul ultime.

Mser: Moment de calcul de service.

Mt: Moment en travée.

 M_0 : moment isostatique.

 M_i : Moment à l'appui i

 M_g et M_d : Moment à gauche et à droite pris avec leurs signes.

 M_i : Moment correspondant à j.

 M_g : Moment correspondant à g.

 $\mathbf{M_q}$: Moment correspondant à q.

Ns: Effort normal de service.

Nu: Effort normal ultime

N: Effort normale du aux charges verticales.

n : est le nombre de marches sur la volée, Coefficient d'équivalence.

 N_{Tot} : Poids total transmis par la superstructure (KN).

P: Charge concentrée appliquée (ELS ou ELU).

 P_g et P_d : Charges uniformes à gauche et à droite respectivement.

R: coefficient de comportement global.

S: Section, surface

 S_r : surface du radier (m²).

St: Espacement des armatures.

T: Effort tranchant.

T₂: période caractéristique, associé à la catégorie du site.

V: Effort tranchant.

W: poids propre de la structure.

 \mathbf{W}_{Oi} : Charges d'exploitation.

W_G: poids du aux charges permanentes et à celles d'équipement fixes éventuels.

X, Y et Z: Coordonnées en général.

Y: Ordonnée de la fibre neutre.

Z: Coordonnée, bras de levier

Z: profondeur au dessous de la fondation (m).

b₀ : Epaisseur brute de l'arme d'une section, largeur de la nervure

d: Hauteur utile.

e: Excentricité, épaisseur.

f: Flèche.

f_{bu}: Contrainte de compression du béton à l'E.L.U.R

fe: Limite d'élasticité.

 f_{cj} : Résistance caractéristique à la compression à « j » jours exprimée en (MPa).

 f_{ij} : Résistance caractéristique à la traction à « j » jours exprimée en (MPa).

 $\mathbf{h_t}$: hauteur total du radier (m).

h_N: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 σ_b : Contrainte de compression du béton.

 σ_s : Contrainte de compression dans l'acier

υ: Coefficient de poison

 σ : Contrainte normale.

 σ_i : Contrainte correspondant à j.

 σ_g : Contrainte correspondant à g.

 σ_q : Contrainte correspondant à q.

 γ_w : Poids volumique de l'eau (t/m³).

 γ_b : coefficient de sécurité.

 γ_s : coefficient de sécurité.

 φ : Angle de frottement interne du sol (degrés).

 σ_{adm} : Contrainte admissible au niveau de la fondation (bars).

q: chargement KN/ml..

 τ_{ultim} : Valeur de cisaillement limite donné par le BAEL (MPa).

 τ_u : Contrainte de cisaillement (MPa).

 η : Facteur d'amortissement.

β: Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

 μ_l : Moment réduit limite.

 μ_u : Moment ultime réduit.

 λ_i : Coefficient instantané.

 λ_v : Coefficient différé.

Introduction Générale

Construire a toujours été l'un des premiers soucis de l'homme et l'une de ses occupations privilégiées. A ce jour, la construction connaît un grand essor dans la plus part des pays et très nombreux sont les professionnelles qui se livrent à l'activité de bâtir dans le domaine du bâtiment ou des travaux publics.

Cependant, si le métier de construire peut être considérer parmi les plus anciens exercés par l'homme, il faut reconnaître qu'il leur a fallu au cours des dernières décades, s'adapter pour tenir compte de l'évolution des constructions, mais surtout des nouvelles techniques qui permettent une fiabilité maximale de la structure vis-à-vis des aléas naturels tel que les séismes.

Une structure doit être calculée et conçue de telle manière qu'elle reste apte à l'utilisation pour laquelle elle a été prévue, compte tenu de sa durée de vie envisagée et de son coût.

• Elle doit résister à toutes les actions et autres influences susceptibles de s'exercer aussi bien pendent l'exécution que durant son exploitation et qu'elle ait une durabilité convenable au regard des coûts d'entretien.

Pour satisfaire les exigences énoncées ci-dessus, on doit choisir convenablement les matériaux, définir une conception, un dimensionnement et des détails constructifs appropriés, et spécifier des procédures de contrôles adaptées au projet considérer, au stade de la conception, et de l'exploitation. Pour ce faire, il faut impérativement respecter les normes et les règles en vigueur qui sont propres à chaque pays.

Le projet qui nous a été confié porte sur l'étude d'un bâtiment à usage parkings et habitations en (R+7+2entre sols) implanté à Bejaia qui est classé d'après le règlement parasismique algérien comme zone de moyenne sismicité (IIa). Donc il y a lieu de déterminer leur comportement dynamique, afin d'assurer une bonne résistance de l'ouvrage à long terme et assurer le confort et la sécurité des vies humaines.

Pour déterminer le comportement du bâtiment lors d'un séisme, on à utiliser le code national « règlement parasismique algérien RPA99 »Version 2003.

I.1: INTRODUCTION:

Le projet en question consiste à étudier et à calculer les éléments résistants d'un bâtiment à usage d'habitation (R+7+2 entre sol). Ce dernier est constitue d'une structure mixte en béton armé (portiques et voiles).

Ce premier chapitre porte sur la présentation globale de l'ouvrage, en l'occurrence, la zone d'implantation, les différentes caractéristiques géométriques de l'ouvrage, les éléments constitutifs et leurs caractéristiques mécaniques ainsi que les caractéristiques du sol.

I.2: PRESENTATION DE L'OUVRAGE:

Le bâtiment comporte :

- > 02 entre sol
- > 01 Rez de chaussée
- > 07 Etages
- ➤ 01 Cage d'escaliers
- > 01 Cage d'ascenseur

I.2.1: La zone d'implantation :

Le bâtiment qui fait l'objet de cette étude, nous a été confié par le bureau d'étude « B .AR. T » dans un cadre pédagogique.

Il sera implanté dans la ville de Bejaia qui est considérée d'après le règlement parasismique algérien comme zone de moyenne sismicité, c'est-à-dire, (zone II a).

I.2.2 : Les caractéristiques géométriques de l'ouvrage :

•	Hauteur totale du bâtiment	30,6 m
•	Longueur totale du bâtiment	25 m

- Largeur totale du bâtiment17,95 m
- Hauteur d'étage courant......3,06 m
- Hauteur du R.D.C.....3,06 m
- Hauteur du entre sol 1......3,06 m
- Hauteur du entre sol 2......3,06 m
- Hauteur de l'acrotère......0,6 m

I.2.3 : Les éléments de l'ouvrage :

Le bloc est composé de deux parties :

- ✓ La superstructure
- ✓ L'infrastructure

1. La superstructure :

C'est la partie de la construction située au dessus du sol : elle contient les éléments suivants :

a) Ossature:

En se référant au RPA 99 version 2003 qui exige que pour toute structure dépassant une hauteur de 14m en zone II, le type de contreventement sera mixte (voiles-portiques), avec justification de l'interaction (les portiques doivent reprendre outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant d'étage). De ce fait l'objet de notre étude doit s'inscrire dans les exigences du RPA.

b) les planchers :

Les planchers sont des éléments horizontaux qui assurent la fonctionnalité de l'ouvrage qui permettent la transmission des efforts aux éléments de contreventement.

Ils assurent une isolation thermique et phonique.

• On a des planchers a corps creux, une dalle de compression reposant sur des poutrelles préfabriqué suivant la petite portée.

c)Les escaliers:

Le bâtiment est munit d'une cage d'escalier, composée de palier et de paillasse, réalisés en béton armé coulé sur place, qui permet le passage d'un niveau à un autre.

d) Les balcons :

Seront réalisés en dalle pleine.

e) Cage d'ascenseur :

Le bâtiment comporte une cage d'ascenseur, elle sera réalisée en béton armé desservant tous les étages.

f) Maçonnerie:

-Les murs extérieurs sont réalisés en double cloisons, en briques de 15et de 10 cm séparées par une lame d'air de 5 cm.

-Les murs intérieurs sont réalisés en simple cloison, en briques creuses de 10 cm.

g) L'acrotère :

C'est un élément en béton armé encastré au niveau du plancher terrasse.

h) Les revêtements :

Les revêtements seront réalisés :

- ➤ En Carrelage scellé pour les planchers et les escaliers.
- > Céramique pour les salles d'eau et les cuisines
- > mortiers de ciment pour les murs de façade.
- ➤ Plâtre pour les cloisons intérieures et les plafonds.

I) La terrasse:

Notre projet comporte une terrasse inaccessible

2. L'infrastructure :

Assure les fonctions suivantes :

- -transmettre les charges verticales et horizontales au sol.
- limite les tassements différentiels.
- -L'encastrement de la structure dans le sol.

Fondations:

Le choix de mode de fondation est fonction de l'importance de l'ouvrage et de la nature de sol à savoir la contrainte admissible.

I.3: LES CARACTERISTIQUES DES MATERIAUX:

Dans notre ouvrage nous allons utiliser deux matériaux essentiels à savoir : le béton et l'acier qui doivent répondre aux règles parasismiques algériennes RPA 99 VERSION 2003 ainsi que les règles de béton armé aux états limites (CBA93,DTR)

I.3.1: LE BETON:

Le béton est un mélange de matériaux inertes (granulats) avec un liant hydraulique (ciment), est de l'eau de gâchage et des adjuvants.

a. La résistance mécanique du béton à la compression :

Le béton est défini de point de vue mécanique par sa résistance à la compression à l'âge de 28 jours, elle est notée fc_{28}

Dans ce calcul elle sera prise à fc₂₈=25 Mpa

Pour j<28 jours la résistance caractéristique à la compression est définit comme suite,

[Art A -2-1-11, BAEL 91]

(1):
$$\begin{cases} f_{cj} = \frac{j}{4,76 + 0.83j} f_{c28} \to f_{c28} \le 40MPa \\ f_{cj} = \frac{j}{1,40 + 0.95j} f_{c28} \to f_{c28} > 40MPa \end{cases}$$

$$f_{cj} = f_{c28} \quad \text{si j} > 28j$$

b. La résistance mécanique du béton à la traction :

La résistance du béton à la traction est faible, elle est de l'ordre de 10% de la résistance à la compression, elle est définie par la relation suivante :

$$f_{ii} = 0.6 + 0.06 \times f_{ci}$$
 (**BAEL 91**)

Pour notre cas $f_{c28} = 25Mpa$ donc $f_{t28} = 2.1Mpa$

c. module de déformation longitudinale :

Le module d'élasticité est le rapport de la contrainte normale et la déformation engendrée.

Selon la durée de l'application de la contrainte, on distingue deux sortes de module :

Module d'élasticité instantané :

Lorsque la contrainte appliquée est inférieure à 24 heures il résulte un module égale à

$$E_{ij} = 11000 \times \sqrt[3]{f_{cj}}$$

Pour : f_{c28} =25Mpa on a E_{ij} = 32164.2 Mpa

* Module d'élasticité différée :

Il permet de calculer la déformation finale du béton (déformation instantanée augmentée du fluage)

$$E_{vj} = 3700 \times \sqrt[3]{f_{cj}}$$

Pour : f_{c28} =25Mpa on a E_{vj} = 10818.87 Mpa

* Module d'élasticité transversale :

Le module d'élasticité transversale G est donnée par :

$$G = \frac{E}{2*(\nu+1)}$$

Avec : E : module de Young

v : Coefficient de poisson

d. Le coefficient de poisson :

C'est le rapport entre la déformation relative transversale et la déformation relative longitudinale :

$$v = \frac{D\acute{e}formation\ transversale}{D\acute{e}formation\ longitudinale}$$

- Pour le calcul des sollicitations, le coefficient de poisson est pris égal à 0 (à l'ELU).
- ➤ Pour le calcul des déformations, le coefficient de poisson est pris égal à 0,2 (à l'ELS).

e. Les états limites :

Ils correspondent aux diverses conditions de sécurité et de bon comportement en service, pour lesquels une structure est calculée, ils se classent en deux catégories :

• Les états limites ultimes :

Ils correspondent à la limite :

- -soit de la perte de stabilité de forme (flambement).
- -soit de la perte de résistance mécanique (rupture) qui conduite à la ruine de l'ouvrage.
- -la contrainte limite ultime de résistance à la compression est donnée par :

$$F_{bu} = \frac{0.85.f_{c28}}{\theta.\gamma_b}$$

Avec : γ_b = coefficient de sécurité

 $\gamma_b = 1.15...$ situation accidentelle

 $\gamma_b = 1.5...$ situation courante

 θ : coefficient de sécurité qui est en fonction de la durée d'application des actions tel que :

 $\theta = 1$si la durée d'application des actions est supérieure à 24 h

 $\theta = 0.9...$ si la durée d'application des actions est entre 1 h et 24 h

 $\theta = 0.85$si la durée d'application des actions est inferieure à 1 h

• 0.85 devient 0.80 quand les conditions de bétonnage deviennent sévères

A 28 j on a: $F_{bu} = 14.2 \text{ Mpa}$

• Diagramme contrainte-déformation du béton à L'ELU : (BAEL/A.4.3.4)

Figure I. 1 : Diagramme contrainte- déformation du béton à ELU

• Les états limites de service :(BAEL/A.4.5.2)

Ils sont les états au delà desquels les conditions normales d'exploitation et de durabilité ne sont pas satisfaites, comprennent les états limites de fissuration et de déformation est donnée comme suit :

$$\overline{\sigma}_{bc}=0.6*f_{c28}=15MPa$$
CBA 93 (Article A.4.5.2).

f. Contrainte de cisaillement du béton :

La contrainte admissible dans le cas des armatures est limitée comme suite :

Dans le cas de la fissuration peu nuisible :

$$\tau_u = \min \left[\frac{0.2.f_{cj}}{\gamma_b}; 5MPa. \right]$$

Pour : f_{cj} =25MPa τ_u =3,33MPa.

Dans le cas de la fissuration nuisible où très nuisible :

$$\tau_u = \min \left[\frac{0.15. f_{cj}}{\gamma_b}; 4MPa. \right]$$

Pour : f_{cj} =25MPa τ_u =2,50MPa

I.3.2 : ACIER :

Leurs rôle est de reprendre les efforts de traction, qui ne peuvent pas être repris par le béton. Les aciers sont caractérisés par leurs limites élastiques f_e et leur module d'élasticité E. On distingue :

- les hautes adhérences (HA).

Selon **RPA99** (Article 7.2.2), les armatures longitudinales doivent être :

- de haute adhérence avec fe ≤ 500 MPa.
- l'allongement total relatif sous charge maximal doit être supérieur ou égale à 5%.
 Dans notre ouvrage en utilise :
 - L'acier a haute adhérence (HA) : feE400 pour les armatures longitudinales.
 - L'acier treilles soudé (TS) : FeE500 pour la dalle de compression.

1. Module d'élasticité longitudinal de l'acier :

Le module d'élasticité longitudinal de l'acier est pris égale à :

Es =
$$2.10^5$$
 Mpa BAEL [**Art a.2.2.1 modifié 99**]

2. Coefficient de poisson des aciers :

Il est pris égale à : v = 0

3. Les contraintes limites :

■ A l'ELU:

$$\sigma_s = f_e/\gamma_s$$
 tel que $\gamma_s = 1,15$ pour situation durable.

 γ_s = 1 pour situation accidentelle.

$$\sigma_s = 348$$
 En situation durable.

 $\sigma_s = 400 \, \text{En}$ situation accidentelle.

• A l'ELS : la valeur de $\overline{\sigma}_s$ est donnée en fonction de la fissuration :

1-fissuration peu nuisible : aucune vérification à faire.

2-fissuration nuisible :
$$\overline{\sigma}_s$$
 =min [(2/3)*fe; 110 $\sqrt{\eta * f_{tj}}$]......BAEL91(article A.4.5,32).

3-fissuration très nuisible :
$$\overline{\sigma}_s$$
=min[0.5*fe; 90 $\sqrt{\eta * f_{ij}}$]......BAEL91(article A.4.5,32).

Avec
$$\eta$$
 coefficient de fissuration : $\eta = \begin{cases} 1......$ Pour les ronds lisses.
 1.6.....pour les HA.
 1.3.....pour les HA de Ø<6mm.

• Diagramme contraintes déformations :

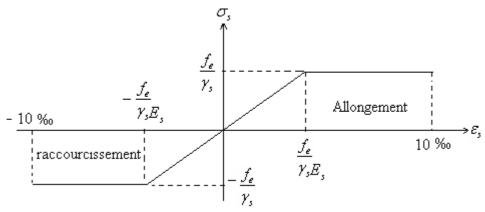


Figure I.2 : Diagramme contraintes-déformations de l'acier

I.4 : Caractéristiques du sol :

D'après le rapport du sol établi par le laboratoire national de l'Habitat et de la construction (LNHC), le sol est homogène de faible résistance, il est constitue d'une couche de remblai de 1.0m suivi d'argile limoneuse de couleur brunâtre à marron puis d'argile brunâtre avec un passage d'argile molle, Le tout repose sur une couche de limon sableux graveleux qui surmonte d'argile marneuse grisâtre.

La contrainte admissible du sol à prendre dans le calcule de fondation est de 1.2bars pour une profondeur d'ancrage 1.0m de profondeur sous la couche de remblai estimée.

II.1: INTRODUCTION:

Le pré dimensionnement a pour but le pré-calcul des différents éléments résistants en utilisant les règlements **RPA99** (version 2003) et **BAEL91** (modifie 99).Dans ce présent chapitre on fera un pré dimensionnement et une descente de charges pour chaque type d'élément.

Ce calcul préliminaire concerne les planchers, les poutres, les poteaux et les voiles.

II.2: LES PLANCHERS:

Selon le CBA93 on doit dimensionner le plancher comme suit :

II.2.1: plancher à corps creux:

Définition:

Le plancher est un élément qui joue un rôle porteur supportant les charges et surcharges et un rôle d'isolation thermique et acoustique et séparateur entre deux étages.

Il est composé de corps creux et de poutrelles et de dalle de compression. Son pré dimensionnement se fait par satisfaction de la condition suivante : $h \ge L_{max}/22.5$

 h_t : La0 hauteur du plancher

L: Longueur Max dans le sens de disposition des poutrelles (entre nus d'appuis)

Pour notre cas $L_{\text{MAX}} = 500-30=470 \text{ cm}$ $\Rightarrow h_t \ge 20.88 \text{cm}$

On adopte une hauteur $h_t=21$ cm,

Soit un plancher (16+5),16cm pour le corps creux, 5cm pour la dalle de compression.

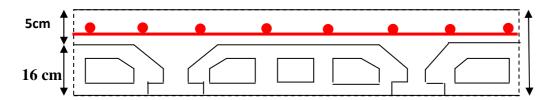


Figure II.1 : Plancher à corps creux

Tel que:

5 cm: hauteur de la dalle de compression

16 cm: hauteur du corps creux

II.2.2: LES POUTRELLES:

Les poutrelles sont des sections en Té en béton armé servant à transmettre les charges réparties ou concentrées vers les poutres principales.

Les poutrelles sont considérées comme poutres continues semi encastrées. Elles seront calculées comme une poutre continue reposant sur plusieurs appuis.

La disposition des poutrelles se fait selon deux critères :

- ➤ Critère de la petite portée : Les poutrelles sont disposées parallèlement à la plus petite portée.
- ➤ Critère de continuité: Si les deux sens ont les mêmes dimensions, alors les poutrelles sont disposées parallèlement au sens du plus grand nombre d'appuis.

Dans notre cas les poutrelles sont disposées selon le premier critère.

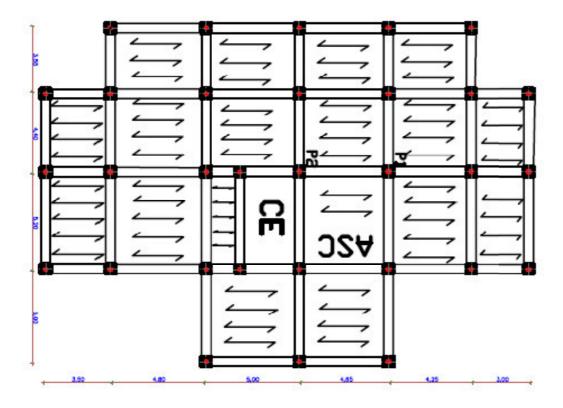


Figure II.2 : Disposition des poutrelles des différents niveaux

La dalle de compression est définie par :

$$\frac{(b-b_0)}{2} \le \min \left[\frac{L_x}{2}; \frac{L_y}{10} \right]$$

b: Largeur de la table de compression.

h: Épaisseur du plancher = 16+5cm.

 L_x : distance maximale entre nus d'appui de deux poutrelles.

 l_{v} : Distance maximale entre nus d'appuis de deux poutres.

$$b_0 = (10 \text{ à } 20\text{cm})$$

Soit: $b_0 = 10$ cm

 $b_1 \le \min(L_x/2, L_y/10)$

CBA93 (article A.4.1.3)

 $L_x = 65-10 = 55$ cm : distance entre deux nervures Successives.

L_v: la distance minimale entre nus d'appuis des poutres secondaires

$$L_v = 300-30 = 270cm$$

 $b_1 \le \min (55/2; 270/10)$

$$b_1 \le \min(27.5; 27)$$

$$b_1 = 27 \text{ cm}$$

$$b = 2b_1 + b_0$$

$$b = 2 \times 27 + 10 = 64$$
 cm

Soit: b = 60 cm

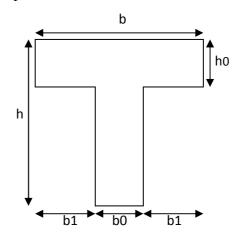


Figure .II :3 : Schéma d'une poutrelle

-Les poutrelles sont calculées en flexion simple, comme des poutres sur plusieurs appuis.

II.2.3: LES DALLES PLEINES:

Une dalle pleine est un élément à contour généralement rectangulaire dont les appuis peuvent être continus (poutres, voiles ou murs maçonnés) ou ponctuels (poteaux).

Son pré dimensionnement se fait en se basant sur les critères suivants :

a) Critère de résistance :

$$\frac{L_x}{35} \le e \le \frac{L_x}{30}$$
 Pour une dalle sur deux appuis.

$$e \ge \frac{L_x}{20}$$
 Pour une dalle sur un seul appui.

$$\frac{L_x}{45} \le e \le \frac{L_x}{40}$$
 Pour une dalle sur 3 ou 4 appuis.

b) Critère de coupe feu :

 $e \ge 7$ cm pour une heure de coupe feu. (CBA93)

 $e \ge 11$ cm pour deux heures de coupe feu.

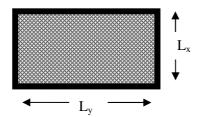
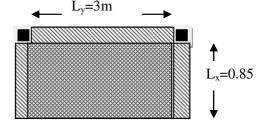


Figure II.4: Exemple d'un panneau de dalle

C) critère d'isolation phonique :


 $e \ge 14cm$ (CBA93)

• Les différents types des panneaux de dalles des balcons :

• Panneau sur 03 appuis (D₁):

$$\frac{L_x}{45} \le e \le \frac{L_x}{40}$$

$$\frac{85}{45} \le e \le \frac{85}{40}$$

Figure II.5: panneau D_1

$$\Rightarrow$$
 e= 2 cm

La condition de l'isolation phonique est la plus défavorable : $e \ge 14$ cm

On prend: e = 15 cm

• Panneau sur 03 appuis (D₂):

$$\frac{L_x}{45} \le e \le \frac{L_x}{40}$$
$$\frac{180}{45} \le e \le \frac{180}{40}$$

$$\Rightarrow$$
 e= 4.5 cm

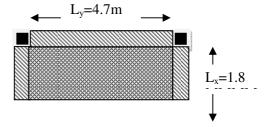


Figure II.6:panneau D₂

La condition de l'isolation phonique est la plus défavorable : e ≥ 14cm

On prend: e = 15 cm

• Panneau sur 04 appuis (D₃):

$$\frac{L_x}{45} \le e \le \frac{L_x}{40}$$
$$\frac{470}{45} \le e \le \frac{470}{40}$$

$$\Rightarrow$$
 e= 11.5 cm

$\frac{0}{100} \le e \le \frac{470}{40}$ $\frac{1}{100} = \frac{1}{100}$ $\frac{1}{100} = \frac{1}{100}$ $\frac{1}{100} = \frac{1}{100}$

Figure II.7: $panneau D_3$

• Panneau sur 02 appuis (D₄):

$$\frac{L_x}{45} \le e \le \frac{L_x}{40}$$

$$\frac{110}{45} \le e \le \frac{110}{40}$$

$$\Rightarrow$$
 e= 2.5 cm

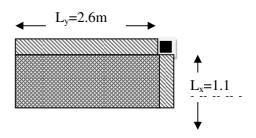


Figure II.8:panneau D₄

La condition de l'isolation phonique est la plus défavorable : $e \ge 14$ cm

On prend : e = 15 cm

La condition de l'isolation phonique est la plus défavorable : $e \ge 14$ cm

On prend : e = 20 cm (parking)

II.3: LES POUTRES:

II. 3.1 : poutres principales : Selon le BAEL91 le pré dimensionnement des poutres se fait en utilisant la condition suivante :

$$L/15 \le h \le L/10$$

- *h* : hauteur de la poutre.
- L: distance maximale entre nus d'appuis (Lmax = 5.20-0.30 = 4.90m)

D'ou:

 $L = 490cm. \Rightarrow 32.66cm \le h \le 49cm$

On prend: b=30cm et h=40cm

On doit vérifier les dimensions adoptées vis-à-vis des exigences du **RPA** qui sont les suivantes :

- $b \ge 20cm$ condition vérifiée.
- $h \ge 30cm$ condition vérifiée.
- h/b = 40/35 = 1.14 < 4 condition vérifiée.

Elles seront disposées perpendiculairement aux poutrelles.

II.3.2 : les poutres secondaires : elles sont disposées parallèlement aux poutrelles, leurs

hauteur est donnée par le critère de flèche qui est

 $L/15 \le h \le L/10$

CHAPITRE II

L: portée maximale entre nu d'appuis (L= 500-30=470 cm)

 $L=450cm \Rightarrow 31.33cm \le h \le 47cm$.

On prend: h = 35cm et b = 30cm.

➤ Vérifications selon RPA 99:

Les dimensions de la poutre doivent satisfaire les conditions suivantes :

- $b \ge 20$ cm.
- $h \ge 30$ cm.
- $h/b \le 4.00$

Apres la vérification on adopte les dimensions suivantes :

Poutres principales : $b \times h = (30,40) \text{ cm}^2$

Poutres secondaires : $b \times h = (30,35)$ cm2.

II.4: LES VOILES:

Les voiles sont des éléments rigides en béton armé coulés sur place. Ils sont destinés à assurer la stabilité de l'ouvrage sous l'effet d'un chargement horizontal (séisme...) d'une part, et à reprendre une partie des charges verticales d'autre part.

L'épaisseur minimale d'un voile est de 15 cm, de plus l'épaisseur est en fonction de hauteur libre d'étage (he) et des conditions de rigidité aux extrémités.

Les dimensions des voiles doivent satisfaire les conditions suivantes :

- e > 15 cm
- $e > h_e / 20$
- L > 4 e

h_e: Hauteur libre d'étage.

e : Épaisseur du voile.

L: Longueur du voile.

e ≥ max (266/20;15 cm)
 ⇒ e ≥ 15 cm
 On adopte une épaisseur :e = 20 cm

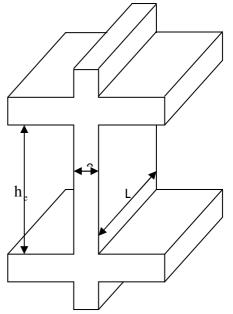


Figure II.9: Coupe verticale d'un voile

II.5: LES ESCALIERS:

-Escaliers du 1^{er} entre sol au dernier niveau : comporte deux volées avec un seul palier intermédiaire.

• Pré dimensionnement :

Pour déterminer les dimensions des marches et des contres marches on utilise la formule de **Blondel** qui est donnée par :

$$60 \le g + 2 \times h \le 65 \dots (1)$$
.

La limite inférieure (59) correspond à des escaliers courants d'appartement et la limite

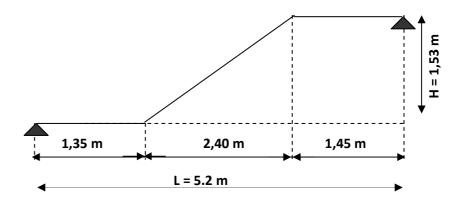
Supérieure (66) correspond à des locaux publics.

Soit (n) le nombre de contre marches et (n-1) le nombre de marche

H: la hauteur de la volée

L : la longueur projetée de la volée

$$H = n \times h \Rightarrow h = H/n$$


$$L=(n-1)\times g \implies g=L/n-1$$

Si
$$g + 2 \times h = 64$$
cm....(2).

On remplace dans (2):

$$L/n - 1 + 2 \times (H/n) = 64$$

n est la solution de l'équation : $64 n^2 - (64 + 2H + L) n + 2 H=0$.

H = 1,53 m

Figure. II.10 : Schéma de l'escalier

$$L = 2.40 \text{ m}$$

$$\Rightarrow$$
 0.64 n²-(0.64 + 2×1.53 + 2.40) n + 2×1.53 = 0

$$\Rightarrow$$
n = 9

Donc : nombre de contre marche (n = 9)

Nombre de marche (n-1) = 8

$$g = L/n-1 = 240/8 = 30 \text{ cm}$$

$$h = H/n = 153/9 = 17 \text{ cm}$$

On opte pour 18 contre marche soit 9 contres marches pour chaque volée.

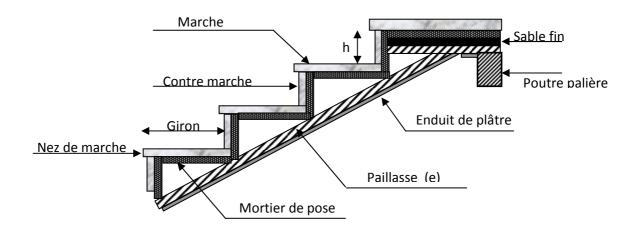


Figure II.11 : Détail d'un escalier

Vérification de la loi BLONDEL

 $60 \, \text{cm} \le \text{g} + 2.\text{h} = 64 \, \text{cm} \le 66 \, \text{cm}$; La formule de « BLONDEL » est vérifiée.

Epaisseur de la paillasse :

Elle est calculée par la relation suivante:

$$L/30 \le e \le L/20$$

$$L_p = (L^2 + H^2)^{1/2} = 284.62 \text{ cm}$$

$$L = 284.62 + 145 = 429.62$$
cm

$$\Rightarrow$$
 13.82cm \leq e \leq 20.73cm

On prend : e = 15cm

Poids de la paillasse :

$$\alpha = tg^{-1}(H/L) = tg^{-1}(153/240) \Rightarrow \alpha = 32.52^{\circ}$$

$$G = \frac{\gamma_b \times e}{\cos \alpha} = \frac{25 \times 0.15}{\cos 32.52^{\circ}} = 4.44 \text{ KN/m}^2.$$

II.6: DETERMINATION DES CHARGES ET SURCHAGES:

Afin de pré dimensionner les élément (planchers,poteaux) on doit d'abord déterminer le chargement .

II.6.1:Les planchers

⇒ Plancher terrasse (inaccessible)

Tableau II .1 : Valeur de la charge permanente G du plancher terrasse inaccessible

N°	Description	Epaisseur (cm)	Densité (KN/m³) "γ"	Poids "G" (KN/m²)
1	Protection lourde en gravier	0.05	20	1,00
2	Etanchéité multicouche	0.02	6	0,12
3	Feuille de polyane	/	2	0,02
4	Forme de pente en béton nègre	0.10	20	2
5	Dalle en plancher corps creux	0.21	/	2,95
6	Enduit en plâtre	0.02	10	0,2
	Total			6.29

La charge permanente totale estimée est : $G = 6.29 \text{ KN/m}^2$.

La charge d'exploitation à prendre dans le cas d'une terrasse inaccessible est estimée à :
 Q = 1.0 KN/m².

⇒ Plancher étage courant et RDC

Tableau II.2 : Valeur de la charge permanente G de l'étage courant , RDC et 2^{eme} entre sol

N°	Description	Epaisseur (m) "e"	Densité (K/m³) ''γ''	Poids "G" (KN/m²)
1	Revêtement en carrelage	0.02	22	0.44
2	Mortier de pose	0.02	20	0.40
3	Lit de sable	0.02	18	0.36
4	Dalle de corps creux (16+5)	0.21	/	2.95
5	Enduit en mortier ciment	0.02	10	0.2
6	Cloisons de distribution	0.10	10	1
	Total	,		5.35

- La charge permanente totale : $G = 5.35 \text{ KN/m}^2$.
- La charge d'exploitation à prendre est : $Q = 1.50 \text{ KN/m}^2$.

Plancher terrasse (accessible) :

Tableau II .3 : Charge du plancher terrasse accessible

Désignation	Poids volumique (KN/m ³)	Epaisseur (m)	Charge (KN/m ²)
Revêtement carrelage	22	0.02	0.44
Mortier de pose	20	0.02	0.4
Lit de sable	18	0.02	0.36
Dalle en corps creux	/	0.21	2.95
Forme de pente	22	0.1	2.2
Enduit de ciment	20	0.02	0.4
	6.75		

 $G_{ter} = 6.75 \text{ KN/m}^2$ $Q_{ter} = 1.5 \text{ KN/m}^2$

⇒Plancher à dalle pleine

Tableau II.4 : Valeur de la charge permanente G du 1^{er} entre sol

N °	Description	Epaisseur (m) "e"	Densité (K/m³) "γ"	Poids "G" (KN/m²)
1	Revêtement en carrelage	0.02	22	0.44
2	Mortier de pose	0.02	20	0.40
3	Lit de sable	0.02	18	0.36
4	Dalle pleine	0.20	25	5
5	Enduit en mortier ciment	0.02	10	0.2
6	Cloisons de distribution	0.10	10	1
	Tota	ıl	1	7.40

- La charge permanente totale est : $G = 7.40 \text{ KN/m}^2$.
- La charge d'exploitation à prendre est : $Q = 5 \text{ KN/m}^2$.

Tableau II.5 : évaluation des charges du balcon

N°	Description	Epaisseur (m) "e"	Densité (KN/m³) ''γ''	Poids "G" (KN/m²)
1	Revêtement en carrelage	0.020	22	0.44
2	Mortier de pose	0.020	20	0.40
3	Lit de sable	0.020	18	0.36
4	Dalle pleine	0.150	25	3.75
5	Enduit ciment	0.015	14	0.21

Total	5.16

• La charge totale estimée est : $G = 5,16 \text{ KN/m}^2$.

• La charge d'exploitation est : $Q = 3.5 \text{ KN/m}^2$.

II.6.2: Maçonnerie

> Murs extérieur

Tableau II.6 : Valeur de la charge permanente de la maçonnerie (mur extérieur)

N°	Description	Epaisseur (m)	Densité (KN/m³) ''γ''	Poids "G" (KN/m²)
1	Enduit ciment	0.02	20	0.40
2	Brique creuse	0.15	09	1.35
3	Ame d'air	0.05	/	/
4	Brique creuse	0.10	09	0.90
5	Enduit plâtre	0.02	10	0.2
	Tot	al	1	2.85

La charge totale des murs extérieur (double cloison) estimée est : $G = 2.85 \text{ Kn/m}^2$.

Mur intérieur :

Tableau II.7 : Valeur de la charge permanente de la maçonnerie (mur intérieur) :

N°	Description	Epaisseur (m) "e"	Densité (KN/m³) "γ"	Poids "G" (KN/m²)
1	Enduit plâtre	0.02	10	0.20
2	Brique creuse	0.10	09	0.90
3	Enduit plâtre	0.02	10	0.20
	Total			1.30

• La charge totale des murs intérieurs est : $G = 1.30 \text{ Kn/m}^2$.

II.6.3: Acrotère:

Définition:

L'acrotère est un élément secondaire, se trouvant au niveau de la terrasse, qui a pour rôle : d'empêcher les filtrations des eaux pluviales entre la forme en en pente et le plancher terrasse.

10 cm
10 cm

***** Evaluation des charges :

- Surface de l'acrotère est : $S_{ac} = S_1 + S_2 + S_3 = (60*10) + (7*10) + 0.5(10*3)$ $S_{ac} = 685cm^2 = 0.0685m^2$

figure : II.12 : Dimension de l'acrotère

S₃

h = 60 cm

- Le volume par mètre linéaire est :

$$V_{ac} = 0.0685m^2 *1m = 0.0685m^3$$

- Le poids propre de l'acrotère est :

$$G_{ac} = 0.0685 * 25 * 1 = 1.71 \ KN / ml$$

- Enduit de ciment :

$$G = \rho * e * 1 = 2000 * 0.02 = 0.4 KN / ml$$

 $\Rightarrow G_t = 2.11 KN / ml$

Q = 1 KN/m

II.6.4: Les escaliers

• La volée

Tableau II .8 : Valeur de la charge permanente de la volée

Eléments	Epaisseur (cm)	Poids en KN/m ²
Poids propre des marches	17	2.125
Poids propre de la paillasse	15	4.447
Carrelage et mortier de pose	6	20*0.06=1.2
Garde corps	/	1
Enduit ciment	2	0.4
	Total	9.172

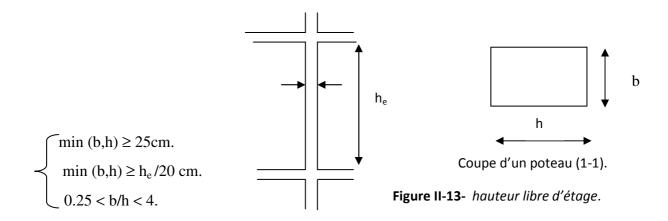
Charge permanente totale $G = 9.172 \text{ KN/m}^2$

Surcharge d'exploitation $Q = 2.5 \text{ KN/m}^2$

• Le palier :

Tableau II.9:	Valeur de la	charge permanente	du palier
---------------	--------------	-------------------	-----------

Elément	Epaisseur (cm)	Poids volumique KN/m ²	Charges KN/m ²
Carrelage et mortier de pose	6	20	1.2
Poids propre du palier	15	25	3.75
Enduit ciment	2	20	0.4


Charge permanente totale $G = 5.35 \text{ KN/m}^2$

Surcharge d'exploitation $Q = 2.5 \text{ KN/m}^2$

II.6.5 : Les poteaux :

Le pré-dimensionnement des poteaux se fera en fonction des sollicitations de calcul en compression simple à l'ELU.

✓ Les dimensions de la section transversale des poteaux selon le RPA99, doivent satisfaire les conditions suivantes pour la zone IIa :

On fixera les dimensions des poteaux après avoir effectuer la descente de charge, tout en vérifiant les recommandations du RPA99 citées ci dessus.

Les dimensions des poteaux supposées :

-
$$1^{\text{er}}$$
 et 2^{eme} sous sol (h, b) = (50,45) cm².

$$-1^{er}$$
 étage et R.D.C : (h, b)= (50, 40) cm².

$$2^{\text{eme}}$$
 et 3^{eme} étage (h, b) = (45, 40) cm².

$$-4^{\text{eme}}$$
 et 5^{eme} étage (h, b) = (45,35) cm²

-
$$6^{\text{eme}}$$
 et 7^{eme} étage: (h, b) = (40,35) cm².

II.6.6 : Descente de charge :

On appelle descente de charges, le principe de distribuer les charges sur les différents éléments qui compose la structure d'un bâtiment.

On commence par le niveau le plus haut (charpente ou toiture terrasse) et on descend au niveau inférieur et cela jusqu'au niveau le plus bas (les fondations).

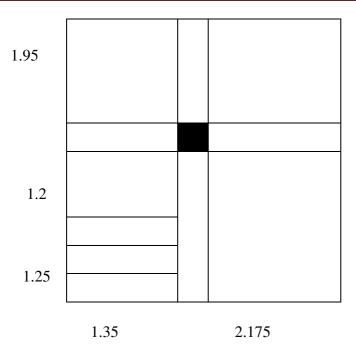
NB: nous appliquons les lois de dégression uniquement pour les étages à usages d'habitation.

• Surcharges différentes selon la loi de dégression :

- Sous la terrasse: Q₀.

- Sous le premier étage à partir du sommet (i=1) : Q0+Q1.

. Sous le deuxième étage (i=2) : Q0+0.95*(Q1+Q2).


. Sous le troisième étage (i=3) : Q0+0.90*(Q1+Q2+Q3).

Pour n étage (n ≥ 5) : Q0+ $\frac{3+n}{2*n}$ *(Q1+Q2+Q3+....+Qn).

II.6.6.1: Charges et surcharges revenants au poteau P2

a) Surface d'influence :

Elle est représentée dans la figure II ci-dessous, elle est calculée comme suit :

figure II.14 : la surface afférents

Pour les étages courants, RDC et 2^{eme} sous sol :

Corps creux:

$$S_{CC} = (1,95x1,35) + (1,95x2,175) + (2,45x2,175) = 12,201 \text{ m}^2$$

Palier:

$$S_{pa} = (1,2x1.35) = 1,62m^2$$

Volée:

$$S_v = (1,25x1,35) = 1,687m^2$$

-Pour la terrasse inaccessible :

Corps creux:

$$S_{cc}$$
=(1,35x2,45)+(1,35x1,95)+(2,175x1,95)+(2,175x2,45)=15,508 m^2

Pour 1^{er} sous sol:

Dalle pleine:

$$S_{DP} = (1,35x2,45) + (2,175x2,45) + (2,175x1,95) + (1,35x1,95) = 15,508m^2$$

> Poids des éléments porteurs :

• Poteaux

Tableau II.10: poids des poteaux

Etage	1 ^{er} sous sol 2 ^{eme} entre sol	RDC 1 ^{er} étage	2 ^{eme} étage 3 ^{eme} étage	4 ^{eme} étage 5 ^{eme} étage	6 ^{eme} étage 7 ^{eme} étage
S (cm) ²	50x45	50x40	45x40	45x35	40x35
G (KN)	17.21	15.3	13.77	12.04	10.71

• Pour les poutres :

 $G_{pp} = (1,95+2,45)x0,30x0,40x25=14,332kn$

 G_{ps} = (1,35+2,175)x0,30x0,35x25=7,05kn

Gp=21,382kn

Tableau II .11: Descente de charges (poteau P₂)

Niveau	Elément	Poids	Surcharges
N0	-Plancher terrasse inaccessible	97.545	
	-poutres	21.382	
	-poteau	10.71	
	Total	129.637	15.508
N1	Y . 1 NO	129.637	
IN I	- Venant de N0	65.275	
	-Plancher étage courant	21.382	
	-poutres	10.71	
	-poteau	27.022	
	-escalier		44.550
	Total	254.026	41.558
N2	- Venant de N1	254.026	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	12.04	
	-escalier	27.022	
	Total	379.745	65.003
N3	- Venant de N2	379.745	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	12.04	
	-escalier	27.022	
	Total	505.464	85.843

N4	- Venant de N3	505.464	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	13.77	
	-escalier	27.022	
	Total	632.913	104.078
N5	- Venant de N4	632.913	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	13.77	
	-escalier	27.022	
	Total	760.362	119.708
N6	- Venant de N5	760.362	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	15.3	
	-escalier	27.022	
	Total	889.341	132.733
N7	- Venant de N6	889.341	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	15.3	
	-escalier	27.022	
	Total	1018.32	145.758
N8	- Venant de N7	1018.32	
	-Plancher étage courant	65.275	
	-poutres	21.382	
	-poteau	17.21	
	-escalier	27.022	
	Total	1149.209	158.783
N9	- Venant de N8	1149.209	
	-Dalle pleine	114.759	
	-poutres	21.382	
	-poteau	17.21	
	-escalier	27.022	
	Total	1329.582	197.553
	Total	1329.582	197.553

NU = 1.35*1329.582 + 1.5*197.553 = 2091.265 KN

II.6.6.2: Charges et surcharges revenants au poteau P1

a) Surface d'influence :

Elle est représentée dans la figure II.4 ci-dessous, elle est calculée comme suit :

$$S = (2.175*2.45)+(2.05*2.175)+(2.05*1.975)+(2.45*1.975) = 18.67 \text{ m}^2$$

 $S_{aff} = 18.67 \text{ m}^2$

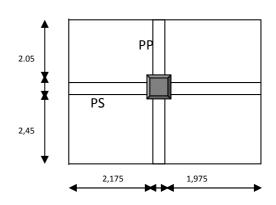


Fig II.15 : La surface afférente

• Poutres

$$G_{pp} = [(2.45+2.05)*0.3*0.4]*25 = 13.5 \text{ KN} \qquad \text{(Poutre principale)}$$

$$G_{ps} = [(2.175+1.975)*0.3*0.35]*25 = 10.89 \text{ KN (Poutre secondaire)}$$

$$G_{p} = 13.5+10.89 = \textbf{24.39 KN}$$

Tableau II .12: Descente de charges (poteau P₁)

Niveau	Elément	Poids	Surcharges
N0	-Plancher terrasse inaccessible	117.4343	
	-poutres	24.39	
	-poteau	10.712	
	Total	152.5343	18.67
N1	- Venant de N0	152.5343	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	10.71	46.675
	Total	287.5143	
N2	- Venant de N1	287.5143	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	12.04	71.8795
	Total	423.8243	7200750
N3	- Venant de N2	423.8243	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	12.04	94.2835
	Total	560.1343	7
N4	- Venant de N3	560.1343	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	13.77	113.887
	Total	698.1743	110,507

N5	- Venant de N4	698.1743	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	13.77	130.69
	Total	836.2143	
N6	- Venant de N5	836.2143	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	15.3	144.6925
	Total	975.7843	
N7	- Venant de N6	975.7843	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	15.3	158.695
	Total	1115.3543	
N8	- Venant de N7	1115.3543	
	-Plancher étage courant	99.88	
	-poutres	24.39	
	-poteau	17.21	172.6975
	Total	1256.8343	
N9	- Venant de N8	1256.8343	
	-Dalle pleine	138.158	
	-poutres	24.39	
	-poteau	17.21	219.3725
	Total	1436.5923	
	Total	1436.5923	219.3725

NU = 1.35*1436.5923 + 1.5*219.3725 = **2268.458 KN**

➤ Le poteau (P1) est le plus sollicité avec : NU= 2268.458KN

Selon le **CBA93** (article **B.8.11**) on doit majorer l'effort normal de compression ultime Nu de 10% tel que : $Nu*=1.1\times(1.35G+1.5Q)$

Donc
$$Nu^* = 1.1 \times 2268.458 = 2495.3038KN$$

Une fois l'effort normal ultime revenant au poteau le plus sollicité est déterminé, on doit vérifier ce dernier à la compression simple et au flambement.

Vérification à la compression simple

On doit vérifier la condition suivante :

$$\frac{N_u}{B}^* \le 0.6 \times f_{c28}$$
 Avec B : section du béton.

$$B \ge \frac{N_u^*}{0.6 \times f_{c28}} \Rightarrow B \ge \frac{2495.3038 \times 10^{-3}}{0.6 \times 25} = 0.151 m^2$$

On a
$$B = 0.50 \times 0.45 = 0.225 m^2$$
.

$$B = 0.225 \text{ m}^2 > 0.151 \text{ m}^2$$
 condition vérifier

Tableau II.13: résume les vérifications à la compression à tous les niveaux du poteau(P1):

			Condition B > B calcule		
Niveaux	Nu*(kn)	Sections			observation
			B(m ²)	B calculé(m ²)	
NO	257.318	40×35	0.14	0.017	vérifiée
N1	503.972	40×35	0.14	0.033	vérifiée
N2	747.980	45×35	0.15	0.049	vérifiée
N3	987.367	45×35	0.15	0.065	vérifiée
N4	1224.702	45×40	0.18	0.081	vérifiée
N5	1457.416	45×40	0.18	0.097	vérifiée

N6	1687.782	50×40	0.2	0.112	vérifiée
N7	1918.145	50×40	0.2	0.127	vérifiée
N8	2151.349	50×45	0.225	0.143	vérifiée
N9	2495.3038	50×45	0.225	0.151	vérifiée

Vérification au flambement

D'après le (CBA 93), on doit faire la vérification suivante :

$$N_{u} \le \alpha \times \left[\frac{B_{r} \times f_{c28}}{0.9 \times \gamma_{b}} + \frac{A_{s} \times f_{e}}{\gamma_{s}} \right]$$
 CBA 93 (Article B.8.2.1)

B_r: Section réduite du béton.

A_s: Section des armatures.

 γ_b : coefficient de sécurité de béton. γ_s : coefficient de sécurité des aciers

 α : Coefficient en fonction de l'élancement λ .

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} \to 0 < \lambda \le 50. \\ 0.6 \times (\frac{50}{\lambda})^2 \to 50 < \lambda \le 70. \end{cases}$$

On calcule l'élancement $\lambda = \frac{l_f}{i}$.

 l_f : Longueur de flambement.

 $l_0:$ Longueur du poteau.

i: Rayon de giration :
$$i = \sqrt{\frac{I}{B}}$$

I:Moment d'inertie :
$$I = \frac{h_1 \times b_1^3}{12}$$

$$l_f = 0.7 \times l_0 = 0.7 \times 2.66 = 1.86m$$
.

$$B = 0.50 \times 0.45 = 0.225 m^2$$
.

$$I = \frac{0.45 \times 0.5^3}{12} = 4.68 \times 10^{-3} \, m^4.$$

$$i = \sqrt{\frac{4.68 \times 10^{-3}}{0.225}} = 0.144m$$

$$\lambda = \frac{1.86}{0.144} = 12.916 < 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \times (\frac{12.916}{35})^2} = 0.82$$

D'après le BAEL91 on doit vérifier :

$$B_{r} \ge \frac{N_{u}}{\alpha \times \left[\frac{f_{c28}}{0.9 \times \gamma_{b}} + \frac{f_{e}}{100 \times \gamma_{s}}\right]}$$

$$B_r \ge \frac{2495.3038 \times 10^{-3}}{0.82 \times \left[\frac{25}{0.9 \times 1.5} + \frac{400}{100 \times 1.15} \right]} = 0.138m^2$$

Or nous avons:

$$B_r = (45-2) \times (50-2) \times 10^{-4} = 0.2064 m^2$$

$$0.2064 \text{ m}^2 > 0.119 \text{ m}^2$$

Donc le poteau ne risque pas de flamber.

Tableau II.14: résume les vérifications au flambement du poteau (P1) à tous les niveaux :

			Condition		
Niveaux	Nu*(kn)	sections			observation
			Br(m ²)	Br calculé(m ²)	
N0	257.318	40×35	0.125	0.014	vérifiée
N1	503.972	40×35	0.125	0.027	vérifiée
N2	747.980	45×35	0.141	0.041	vérifiée
N3	987.367	45×35	0.141	0.054	vérifiée
N4	1224.702	45×40	0.163	0.067	vérifiée
N5	1457.416	45×40	0.163	0.080	vérifiée

N6	1687.782	50×40	0.182	0.093	vérifiée
N7	1918.145	50×40	0.182	0.106	vérifiée
N8	2151.349	50×45	0.206	0.119	vérifiée
N9	2495.3038	50×45	0.206	0.138	vérifiée

II.7: CONCLUSION:

Apres avoir fait les calculs nécessaires, nous sommes arrivés aux résultats suivants :

- **Hauteur du plancher :**ht = 21 cm soit un plancher de (16+5) cm
- Section des poutres principales :(30x40) cm²
- Section des poutres secondaires :(30x35) cm²
- Section des poteaux :

$$-1^{\text{er}}\text{et }2^{\text{eme}}\text{ sous sol} \qquad \qquad \text{Poteaux }(45\text{x}50)\text{ cm}^2$$

$$-\text{ RDC et }1^{\text{er}}\text{ étage} \qquad \qquad \text{Poteaux }(40\text{x}50)\text{ cm}^2$$

$$-2^{\text{eme}}\text{ et }3^{\text{eme}}\text{ étage} \qquad \qquad \text{Poteaux }(40\text{x}45)\text{ cm}^2$$

$$-4^{\text{eme}}\text{ et }5^{\text{eme}}\text{ étage} \qquad \qquad \text{Poteaux }(35\text{x}45)\text{ cm}^2$$

$$-6^{\text{eme}}\text{ et }7^{\text{eme}}\text{ étage} \qquad \qquad \text{poteaux }(35\text{x}40)\text{ cm}^2$$

- **Epaisseur des voiles** : e = 15 cm
- **Epaisseur des dalles pleine** : e = 20 cm pour le 1^{er} entre sol

e = 15 cm pour les balcons

• Escalier :

Volées e = 15 cm
 Palier e = 15 cm
 Marche (17 x 30)

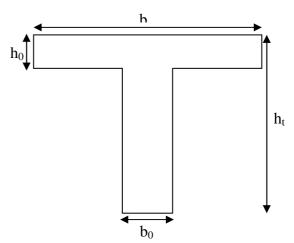
III. 1 ETUDE DE PLANCHERS:

Le choix du type de plancher dépend de son utilisation pour satisfaire les conditions suivantes :

- Résistance mécanique en supportant les sollicitations externes.
- Limitation des flèches pour éviter les désordres dans les cloisons et revêtements.
- L'isolation thermique et acoustique.
- La résistance au feu.

III. 1. 1 Etude des poutrelles :

Les poutrelles sont des sections en Té, elles portent les entrevous, ces derniers servent de coffrage perdu pour la dalle de compression, elles sont calculées en flexion simple en respectant le critère d'inertie constante.


• Données nécessaires :

$$h_t = 21 cm$$

$$h_0 = 5 cm$$

$$b = 60 cm$$

$$b_0 = 10 cm$$

Figure III. 1 : *Dimensions de la poutrelle*

Calcul des sollicitations :

à L'ELU: $Q_U = 1.35G + 1.5Q$ et $P_U = bQ_U$

à L'ELS: $Q_S = G + Q$ et $P_S = bQ_S$

Avec: b = 0.60 m.

Tableau N°III. 1 : Les différentes charges.

Nature	G (KN/m ²)	Q (KN/m ²)	L'ELU		L'ELU L'ELS	
			\mathbf{Q}_{U}	P_{U}	Q_{S}	P_{S}
Terrasse inaccessible	6.29	1	9.99	5.994	7.29	4.374
Etage courant	5.35	1.5	9.472	5.683	6.85	4.11
Terrasse accessible	6.75	1.5	11.362	6.817	8.25	4.95

> Méthode de calcul des sollicitations :

Pour le calcul des moments sur les poutrelles, il existe trois méthodes :

- Méthode forfaitaire.
- Méthode de CAQUOT.
- Méthode des trois moments.

Vu la simplicité et la rapidité, la méthode forfaitaire est préférable pour les bâtiments à usage d'habitation, bureaux, ...etc.

• Conditions d'application de la méthode forfaitaire : (art. B6. 2. 21 0. BAEL)

Cette méthode est applicable si :

- Les planchers sont à surcharge modérée tel que $Q \le \min(2G;5KN/m^2)$
- Les moments d'inertie des sections transversale sont égaux dans les différentes travées.
- La fissuration est considérée comme peu nuisible.
- Le rapport entre deux travée successives (l_i / l_{i+1}) est compris entre 0.8 et 1.25.

• Principe de la méthode :

Définition des grandeurs :

 M_0 : La valeur maximale du moment fléchissant dans la ''travée de comparaison'' c'est-à-dire dans la travée indépendante, de même portée libre que la travée considérée et soumise aux mêmes charges.

 M_g Et M_d : Respectivement les valeurs absolues des moments sur appuis de gauche et de droite.

 M_t : Le moment maximal constaté en travée qui est pris en compte dans le calcul de la travée considérée.

$$\alpha = \frac{Q}{Q+G}$$
: Le rapport de la charge d'exploitation par la somme des charges

permanentes et d'exploitation.

• Exposé de la méthode forfaitaire :

✓ Evaluation des moments :

Les valeurs de M_t, M_g, et M_d doivent vérifier les conditions suivantes :

1)
$$M_t + \frac{/M_g/+/M_d/}{2} \ge \max\{(1+0.3\alpha)M_0; 1.05M_0\}$$

2)
$$\begin{cases} M_t \ge \frac{1 + 0.3\alpha}{2} M_0..... & \text{Pour une travée intermédiaire.} \\ M \ge \frac{1.2 + 0.3\alpha}{2} M_0..... & \text{Pour une travée de rive.} \end{cases}$$

3) La valeur absolue de chaque moment sur appuis intermédiaire :

Poutres à deux travées :

- 0.6 M₀ dans le cas d'une poutre à deux travées.

Figure III. 2 : schéma statique de poutre à deux travées

Poutres à plus de deux travées :

- 0.5 M₀ dans le cas des appuis voisins des appuis de rive d'une poutre à plus de deux travées.
- 0.4 M_0 dans le cas des autres appuis intermédiaires d'une poutre à plus de trois travées.

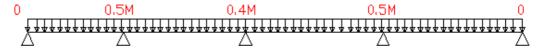


Figure III. 3 : schéma statique de poutre à plus deux travées

• Remarque:

De part et d'autre de chaque appui intermédiaire. On retient pour la vérification des sections la plus grande des valeurs absolues des moments évalués à gauche et à droite de l'appui considéré.

Ainsi que d'après le (BAEL) le moment des appuis de rive égal à 15% du moment isostatique encadrant de l'appui considéré $(0.15M_0)$.

✓ Evaluation des efforts tranchants :

On peut évaluer l'effort tranchant soit :

- par la méthode de RDM, on tenant compte de la continuité :

$$V = V_0 + \frac{M_i + M_{i+1}}{l_i}$$

Forfaitairement en supposant la discontinuité entre les travées, dans ce cas l'effort tranchant hyperstatique est confondu avec l'effort tranchant isostatique, sauf pour le premier appui intermédiaire (voisin de rive) où on tient compte des moments de continuité en majorant l'effort tranchant isostatique V_0 :

BAEL (art B.6.2.11)

1) De 15% si la poutre a deux travées :

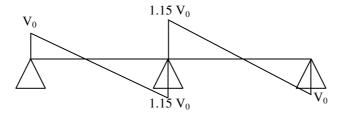


Figure III. 4 : Diagramme de l'effort tranchant d'une poutre à deux travées

2) de 10% si une poutre a plus de deux travées :

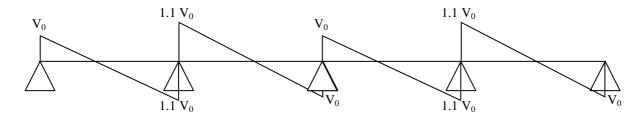


Figure III. 5 : Diagramme de l'effort tranchant d'une poutre à plus de deux travées

A. Méthode de CAQUOT

Elle est applicable si l'une des conditions d'application de la méthode forfaitaire n'est pas vérifiée.

Elle est basée sur la méthode des trois moments, que Caquot a simplifié et corrigé pour tenir compte de l'amortissement des effets de chargement des travées éloignées sur un appui donné, et de la variation du moment d'inertie des travées successives.

Moment sur appuis

$$M_{i} = \frac{q_{g} \times L_{g}^{3} + q_{d} \times L_{d}^{3}}{8.5 \times (L_{g} + L_{d})}$$

Telque:
$$\begin{cases} \vec{L_g} \text{ et } \vec{L_d} \text{ : Longueurs fictives} \\ q_g, q_d \text{ : Chargement à gauche et à droite de l'appui respectivement} \end{cases}$$

$$\vec{L} = \begin{cases} 0.8 \, L : \text{Travée intermédiare} \\ L : \text{Travée de rive} \end{cases}$$

■ Moment en travée

Ils sont déterminés par la méthode de résistance des matériaux.

$$M(X) = M_0(X) + M_g \times \left(1 - \frac{X}{L}\right) + M_d \times \left(\frac{X}{L}\right) = \frac{q_X}{2} \times \left(L - X\right) \times M_g \left(1 - \frac{X}{L}\right) + M_d \times \left(\frac{X}{L}\right)$$

$$\frac{dM}{dX} = 0 \Rightarrow -q \times X + q \times \frac{L}{2} - \frac{M_g}{L} + \frac{M_d}{L} = 0$$

$$H \Rightarrow X = \frac{\frac{q \times L}{2} - \frac{M_g}{L} + \frac{M_d}{L}}{q}$$

$$M_{\text{max}} = M(X)$$

Evaluation des efforts tranchants

$$V = V \circ + \frac{M_g}{L} + \frac{M_d}{L}$$

III.1.2 : Les Différents types de poutrelles : On a cinq types de poutrelles.

Tableau III.2 : Les types de poutrelles

Type	Schéma statique
1 er type	\triangle 4.80 \triangle 4.65
2 eme type	4.65 \(\triangle
3 eme type	△ △ △ △ △ 3.30 5.00 1.80
4 eme type	5.00 \(\triangle \) 4.80 \(\triangle \) 4.65 \(\triangle \) 4.25
5 ^{eme} type	\triangle 3.30 \triangle 5.00 \triangle 4.80 \triangle 4.65 \triangle 4.25 \triangle 3.00 \triangle
6 eme type	\triangle 4.80 \triangle 4.65 \triangle 4.25 \triangle
7 eme type	4.80 \(\triangle
8 eme type	4.65

III.1.3 : Etude de différents poutrelles :

A. Vérification des conditions d'application de la méthode forfaitaire :

- Plancher à surcharge modérée : Q ≤ min(2×G;5)KN/m².
 - → Plancher terrasse inaccessible :

$$G = 6.29 \, KN/m^2$$

→ Q=1.00KN/m \Rightarrow 1.00 \leq min(2×6.29;5)KN/m² Condition vérifiée.

→ Plancher étage courant :

$$G = 5.35 KN/m^2$$

→ Q=1.5KN/m² \Rightarrow 1.5 \leq min(2×5.35;5)KN/m² Condition vérifiée.

Plancher terrasse accessible:

$$G = 6.75 KN/m^2$$

 $Q = 15 KN/m^2 \Rightarrow 1.5 \le \min(2 \times 6.75;5) KN/m^2$ Condition vérifiée

- Le moment d'inertie est constant sur tout le long de la travée. Condition vérifiée.
- Le rapport $0.8 \le \frac{l_i}{l_{i+1}} \le 1.25$

Type 1:
$$0.8 \le \frac{4.8}{4.65} = 1.03 \le 1.25$$

condition vérifiée.

Type 2:
$$0.8 \le \frac{4.65}{4.25} = 1.09; \frac{4.25}{3.00} = 1.41 \le 1.25$$

n'est pas vérifiée.

Type
$$3:0.8 \le \frac{3.3}{5.00} = 0.66; \frac{5.00}{1.80} = 2.77 \le 1.25$$

n'est pas vérifiée.

Type
$$4:0.8 \le \frac{5.00}{4.80} = 1.04; \frac{4.80}{4.65} = 1.03; \frac{4.65}{4.25} = 1.09 \le 1.25$$
 Condition vérifiée.

Type 5:
$$0.8 \le \frac{3.30}{5.00} = 0.66; \frac{5.00}{4.80} = 1.04; \frac{4.80}{4.65} = 1.03; \frac{4.65}{4.25} = 1.09; \frac{4.25}{3.00} = 1.41 \le 1.25$$

n'est pas vérifiée.

Type
$$6:0.8 \le \frac{4.80}{4.65} = 1.03; \frac{4.65}{4.25} = 1.09 \le 1.25$$
 Condition vérifiée.

Type 7:
$$0.8 \le \frac{4.80}{4.65} = 1.03; \frac{4.65}{4.25} = 1.09; \frac{4.25}{3.00} = 1.41 \le 1.25$$
 n'est pas vérifiée.

• Fissuration peu nuisible.

Les conditions d'application de la méthode forfaitaire étant vérifiées pour les types 1, 4 et 6 ; donc on applique la méthode de CAQUOT pour les types 2,3 , 5 et 7.

❖ Poutrelles du Plancher étages courants , RDC et 2^{eme} sous sol:

Poutrelle de type 1:

Moments isostatiques:

À l'ELU:

Travée A-B:
$$M_0^{AB} = \frac{q_u l^2}{8} = \frac{5.684 \times 4.80^2}{8} = 16.37 \text{ KN.m}$$

Travée B-C:
$$M_0^{BC} = \frac{q_u l^2}{8} = \frac{5.684 \times 4.65^2}{8} = 15.363 KN.m$$

Fig. III.6 : *Schéma statique d'une poutrelle* de type 1

À l'ELS:

Travée A-B:
$$M_0^{AB} = \frac{q_s l^2}{8} = \frac{4.11 \times 4.80^2}{8} = 11.837 KN.m$$

Travée B-C:
$$M_0^{BC} = \frac{q_s l^2}{8} = \frac{4.11 \times 4.65^2}{8} = 11.109 KN.m$$

Moments sur appuis :

Appuis de rive :

$$M_A = M_C = 0$$

Sur les appuis de rive, le moment est nul, mais il faut toujours mettre des aciers de fissuration équilibrant un moment égal à $-0.15 \times M_0$

À l'LEU:

$$M_A = M_C = -0.15 \text{x} 16.37 = -2.455 \text{ KN.m}$$

À l'ELS:

$$M_A = M_C = -0.15 \text{x} 11.837 = -1.775 \text{ KN.m}$$

Appuis intermédiaires : on prend le maximum des moments isostatiques.

À l'LEU:

$$M_B = -0.6 \times M_0^{BC} = -0.6 \times 16.37 = -9.822 \text{KN.m}$$

À l'ELS:

$$M_B = -0.6 \times M_0^{BC} = -0.6 \times 11.837 = -7.102 \text{KN.m}$$

Moments en travées :

$$\alpha = \frac{Q}{Q+G} = \frac{1}{1+7.3} = 0.219$$

$$\alpha = 0.219 \implies \begin{cases} 1+0.3\alpha = 1.065 \\ 1.2+0.3\alpha = 1.265. \end{cases}$$

À l'ELU:

$$\begin{cases} M_{t} + \frac{M_{g} + M_{d}}{2} \ge \max[(1+0.3\alpha)M_{0}; 1.05M_{0}] \\ M_{t} \ge \frac{(1.2+0.3\alpha)}{2}M_{0} \end{cases}$$

Travée A-B

$$\begin{cases} M_t \ge 1.065 \times 16.37 - \frac{9.822}{2} = 12.535 \text{KN.m} \\ M_t \ge \frac{1.265}{2} \times 16.37 = 10.354 \text{KN.m} \\ => M_t = 12.535 \text{ KN.m} \end{cases}$$

Travée B-C:

$$\begin{cases} M_t \ge 1.065 \times 15.363 - \frac{9.822}{2} = 11.461 \text{KN.m} \\ M_t \ge \frac{1.265}{2} \times 15.363 = 9.718 \text{KN.m} \\ => M_t = 11.461 \text{ KN.m} \end{cases}$$

À l'ELS:

$$\begin{cases} M_t \ge 1.065 \times 11.837 - \frac{7.102}{2} = 9.064 \text{KN.m} \\ M_t \ge \frac{1.265}{2} \times 11.837 = 7.487 \text{KN.m} \\ => M_t = 9.064 \text{ KN.m} \end{cases}$$

Travée B-C:

$$\begin{cases} M_t \ge 1.065 \times 11.109 - \frac{7.102}{2} = 8.288 KN.m \\ M_t \ge \frac{1.265}{2} \times 11.109 = 7.027 KN.m \\ => M_t = 8.288 KN.m \end{cases}$$

Les efforts tranchants :

À L'ELU:

Travée A-B:

$$V_A = \frac{5.684 \times 4.80}{2} = 13..642KN$$

$$V_B = -1.15 \times V_A = -1.15 \times 13.642 = -15.688KN$$

Travée B-C:

$$V_B = 1.15 \times \frac{5.684 \times 4.65}{2} = 15.197 KN$$
$$V_C = -\frac{5.684 \times 4.65}{2} = -13.215 KN$$

À l'ELS:

Travée A-B:

$$V_A = \frac{4.11 \times 4.80}{2} = 9.864 KN$$

 $V_B = -1.15 \times V_A = -1.15 \times 9.864 = -11.343 KN$

Travée B-C:

$$V_B = 1.15 \times \frac{4.11 \times 4.65}{2} = 10.989 KN$$
$$V_C = -\frac{4.11 \times 4.65}{2} = -9.55 KN$$

III.1.4: calcul des sollicitations:

Les résultats de calcul sont résumés dans le tableau (tab.3.4) suivant :

Tab.III.3.calcul des sollicitations des différents types de poutrelles

Type de	ELU				Effort				
poutrelles	M _t (KN.m)	M _{a rive} (KN.m)	M _{a inter} (KN.m)	M _t (KN.m)	M _{a rive} (KN.m)	M _{a inter} (KN.m)	tranchant(V) (KN)		
			Etage	courant					
1	12.535	-2.455	-9.822	9.064	-1.775	-7.102	15.688		
2	11.336	-1.718	-8.664	8.219	-1.232	-6.213	15.079		
3	11.349	-0.863	-6.827	8.244	-0.620	-4.896	14.375		
4	14.489	-2.664	-8.882	10.477	-1.926	-6.422	15.631		
5	10.515	-0.863	-9.044	7.646	-0.620	-6.486	14.379		
	Terrasse inaccessible								
2	12.11	-1.742	-8.782	8.852	-1.263	-6.369	15.827		

6	13.813	-2.589	-8.633	10.077	-1.889	-6.299	15.827
7	12.792	-1.856	-9.616	9.352	-1.346	-6.973	16.391
8	16.203	-2.430	/	11.822	-1.773	/	13.938
			Terrasse	accessible			
1	14.818	-2.945	-11.782	10.757	-2.138	-8.554	18.818
2	11.336	-1.718	-8.664	8.219	-1.232	-6.213	15.079
3	13.749	-1.019	-8.045	10.022	-0.735	-5.798	17.239
4	17.143	-3.175	-10.653	12.446	-2.320	-7.735	18.75
5	12.766	-1.019	-9.044	9.314	-0.735	-6.516	17.244

1. Sollicitation maximales:

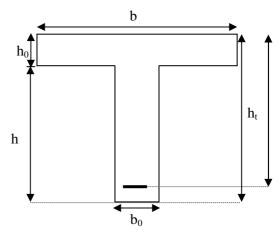
Tabeau.III.4: Les sollicitations maximales des poutrelles

Poutrelles	ELU	ELS
	$M_t^{\text{max}} = 14.489 \text{KNm}$	M _t ^{max} =10.477KNm
2 ^{eme} Entre Sol+	M_a^{max} =-9.822KNm	M_a^{max} =-7.102KNm
RDC+plancher	$V_u^{\text{max}} = 15.688 \text{KN}$	M_a^{rive} =-1.926KNm
étage courant	M_a^{rive} =-2.664KNm	
	$M_t^{\text{max}} = 16.203 \text{KNm}$	M _t ^{max} =11.822KNm
Plancher terrasse	M_a^{max} =-9.616KNm	M_a^{max} =-6.973KNm
inaccessible	$V_u^{\text{max}} = 16.391 \text{KN}$	M _a rive=-1.889KNm
	M_a^{rive} =-2.589KNm	
Plancher terrasse	M_t^{max} =17.143KNm	M_t^{max} =12.446KNm
accessible	$M_a^{\text{max}} = -11.782 \text{KNm}$	M_a^{max} =-8.554KNm
	$V_u^{\text{max}} = 18.818 \text{KN}$	M_a^{rive} =-2.320KNm
	M_a^{rive} =-3.175KNm	

III.1.5: Ferraillage des poutrelles

On prend comme exemple la poutrelle type 1 sur trois appuis du plancher étage courant qui est sollicité par :

$$M_{Trav\acute{e}}^{Max} = 14.489 KN.m$$


$$A \ 1'ELU : M_{Appuis}^{Max} = \begin{cases} -2.455 KN.m(rive) \\ -9.822 KN.m(int \, erne) \end{cases}$$

$$V^{Max} = 15.688 KN$$

$$M_{Trav\acute{e}}^{Max} = 10.477 KN.m$$

$$A \ 1'ELS : M_{Appuis}^{Max} = \begin{cases} -1.775 KN.m(Rive) \\ -7.102 KN.m(int \, erne) \end{cases}$$

Les Caractéristiques géométriques de la poutrelle sont :

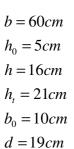


figure : II. 7 : schéma statique de la poutrelle section en T

Le calcul du ferraillage se fait pour une section en T soumise à une flexion simple.

1) Calcul à l'ELU

A. Armatures longitudinales

a. En travée

Le moment équilibré par la table de compression :

$$M_{tu} = b \times h_0 \times f_{bu} \times (d - \frac{h_0}{2})$$

$$M_{tu} = 0.60 \times 0.05 \times 14.2 \times 10^3 \times (0.19 - \frac{0.05}{2})$$

$$M_{tu} = 70.29 KN.m$$

 $M_{tu} > M_{u} = 12.535 KN.m \Rightarrow$ L'axe neutre passe par la table de compression, donc la table n'est pas entièrement comprimée, la section en Té sera calculée comme une section rectangulaire (b×h_t)

$$\mu_{bu} = \frac{M_u}{b \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{14.489 \times 10^{-3}}{0.60 \times 0.19^2 \times 14.2} = 0.04$$

 $\mu_{bu} < \mu_l = 0.392 \Rightarrow$ Le diagramme passe par le pivot « A »

 $\xi_{st} = 10\%c \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348MPa$ et les armatures dans la zone comprimées ne

sont pas nécessaires (A'=0).

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8}$$

$$\alpha = \frac{1 - \sqrt{1 - 2 \times 0.04}}{0.8} = 0.051$$

$$z = d(1 - 0.4\alpha)$$

$$z = 0.19(1 - 0.4 \times 0.051) = 0.186m$$

$$A^{trav\acute{e}} = \frac{M^{trav\acute{e}}}{zf_{st}}$$

$$A^{trav\acute{e}} = \frac{14.489 \times 10^{-3}}{0.186 \times 348} = 2.23cm^{2}$$

Soit: $A_s = 2HA12 + 1HA8 = 2.76cm^2$

Vérification de la condition de non fragilité

$$A_{Min} = \frac{0.23 \times b \times d \times f_{t28}}{F_e}$$

$$A_{Min} = \frac{0.23 \times 0.60 \times 0.19 \times 2.1}{400} = 1.38cm^2$$

 $A_S = 2.76cm^2 > A_{Min} \Rightarrow$ La condition de non fragilité est vérifiée

b. En appuis

Appuis de rives

La table de compression se trouve dans la zone tendue car le moment est négatif en appuis. Le béton tendu n'intervient pas dans le calcul, donc la section en Té sera calculée comme une section rectangulaire de dimensions $(b_0 \times h_t) = (0.10 \times 0.21)m$.

$$M_{Rive}^{a} = -2.455 KN.m$$

$$\mu_{bu} = \frac{M_u}{b_0 \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{2.455 \times 10^{-3}}{0.1 \times 0.19^2 \times 14.2} = 0.048$$

 $\mu_{bu} < \mu_l = 0.392 \Rightarrow$ Le diagramme passe par le pivot « A »

 $\xi_{st} = 10\% c \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348MPa$ et les armatures dans la zone comprimées ne sont

pas nécessaires (A'=0).

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8}$$

$$\alpha = \frac{1 - \sqrt{1 - 2 \times 0.048}}{0.8} = 0.061$$

$$z = d(1 - 0.4\alpha)$$

$$z = 0.19(1 - 0.4 \times 0.061) = 0.185m$$

$$A_a^{Rive} = \frac{M_a^{Rive}}{zf_{st}}$$

$$A_a^{Rive} = \frac{2.455 \times 10^{-3}}{0.185 \times 348} = 0.38cm^2$$

Soit: $A_S = 1HA10 = 0.79cm^2$

Vérification de la condition de non fragilité

$$A_{Min} = \frac{0.23 \times b_0 \times d \times f_{t28}}{F_e}$$

$$A_{Min} = \frac{0.23 \times 0.10 \times 0.19 \times 2.1}{400} = 0.22 cm^2$$

 $A_{\scriptscriptstyle S}=0.79cm^2>A_{\scriptscriptstyle Min}\Longrightarrow$ La condition de non fragilité est vérifiée

Appuis intermédiaires

$$M_{Interne}^{a} = 10.477 \, KN.m$$

La table de compression se trouve dans la zone tendue car le moment est négatif en appuis. Le béton tendu n'intervient pas dans le calcul, donc la section en Té sera calculée comme une section rectangulaire de dimensions $(b_0 \times h_t) = (0.10 \times 0.21)m$.

$$\mu_{bu} = \frac{M_u}{b_0 \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{10.477 \times 10^{-3}}{0.1 \times 0.19^2 \times 14.2} = 0.2$$

 $\mu_{bu} < \mu_l = 0.392 \Rightarrow$ Le diagramme passe par le pivot « A »

 $\xi_{st} = 10\%o \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348MPa$ et les armatures dans la zone comprimées ne sont

pas nécessaires (A'=0).

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8}$$

$$\alpha = \frac{1 - \sqrt{1 - 2 \times 0.2}}{0.8} = 0.28$$

$$z = d(1 - 0.4\alpha)$$

$$z = 0.19(1 - 0.4 \times 0.28) = 0.169m$$

$$A_a^{Interne} = \frac{M_a^{Rive}}{zf_{st}}$$

$$A_a^{Interne} = \frac{10.477 \times 10^{-3}}{0.169 \times 348} = 1.88cm^2$$

Soit : $A_S = 2HA12 = 2.26cm^2$

Vérification de la condition de non fragilité

$$\begin{split} A_{\mathit{Min}} &= \frac{0.23 \times b_0 \times d \times f_{t28}}{F_e} \\ A_{\mathit{Min}} &= \frac{0.23 \times 0.10 \times 0.19 \times 2.1}{400} = 0.23 cm^2 \end{split}$$

 $A_{\rm S} = 2.26 cm^2 > A_{\rm Min} \Longrightarrow$ La condition de non fragilité est vérifiée

Vérification de l'effort tranchant

 $V_{11}=15.688KN$

$$\tau_u = \frac{V_u}{b_0 \times d} = \frac{15.688 \times 10^{-3}}{0.10 \times 0.19} = 0.82 MPa$$

Fissuration peu nuisible

$$\overline{\tau_u} = Min[0.13 f_{c28}; 5MPa] = 3.33MPa$$

 $\tau = 0.82MPa < \ddot{\tau} = 3.33MPa$ Condition vérifiée

Vérification des armatures longitudinales à l'effort tranchant

Appuis de rive

$$A_l \ge \frac{1.15 \times V_u}{f_e}$$
 Avec: $A_l = 0.79 + 2.76 = 3.55 \text{ cm}^2$

$$A_t = 3.55cm^2 \ge \frac{1.15 \times 15.688 \times 10^{-3}}{400} = 0.45cm^2$$
 Est vérifiée

Appui intermédiaire

$$A_{l} \ge \frac{1.15}{f_{e}} \times [V_{u} + \frac{M_{a}}{0.9 \times d}]$$

$$A_l \ge \frac{1.15}{400} \times [15.688 - \frac{9.822}{0.9 \times 0.19}] \times 10^{-3} = -1.20 \text{ cm}^2 \implies A_l \ge -1.20 \text{ cm}^2$$
 aucune vérification à

faire

Vérification du cisaillement à la jonction table nervure

$$\tau_{u} = \frac{v_{u}(b - b_{0})}{1.8 \times d \times b \times h_{0}} = \frac{15.688 \times 10^{-3} \times (0.60 - 0.10)}{1.8 \times 0.19 \times 0.60 \times 0.05} = 0.765 MPa < \overline{\tau} = 3.33 MPa$$

B. Armatures transversales

$$\phi_t \leq Min \left[\frac{h}{35}; \phi_{LMin}; \frac{b}{10} \right] \Rightarrow \phi_t \leq 0.6cm^2$$

On choisit un étrier de $\phi 6 \Rightarrow A_t = 0.57 cm^2$

Éspacement

$$S_t \le min (0.9d ; 40 cm) \Rightarrow S_t \le 17.1 cm(1)$$

$$S_{t} \leq \frac{0.8 \cdot f_{e} \cdot A_{t}}{b_{0}(\tau_{u} - 0.3 \cdot K \cdot f_{t28})}$$
 (2)

K=1 : Flexion simple, ou pas de reprise de bétonnage

 $\alpha = 90$ (Les armatures sont perpendiculaires)

D'où

$$S_t \le \frac{0.8 \times 400 \times 0.57}{10 \times (0.82 - 0.3 \times 1 \times 2.1)} \Rightarrow S_t \le 96cm$$

$$S_{t} \le \frac{A_{t} \cdot f_{e}}{0.4 \cdot b_{o}} \Rightarrow \frac{0.57 \times 400}{0.4 \times 10} \Rightarrow S_{t} \le 57 \text{ cm}....(3)$$

D'ou $S_t=15cm$

- Vérification à l'ELS :

État limite de compression du béton :

La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

En travée : $M_t = 9.064 \text{ KN.m}$

Position de l'axe neutre :

$$H = \frac{b \times h_0^2}{2} + 15 \times A \times (h_0 - d') - 15 \times A \times (d - h_0)$$

$$A' = 0 \Rightarrow H = \frac{b \times h_0^2}{2} - 15 \times A \times (d - h_0) \Rightarrow H = \frac{0.60 \times 0.05^2}{2} - 15 \times 2.76 \times 10^{-4} \times (0.19 - 0.05)$$

 $\Rightarrow H = 1.70 \times 10^{-4} > 0 \Rightarrow \text{L'axe neutre dans la table}$

Calcul de
$$y: \frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$\frac{60 \times y^2}{2} + 15 \times 2.76 \times y - 15 \times 2.76 \times 19 = 0 \implies y = 4.48 \text{ cm}$$

Calcul de
$$I: I = \frac{b \times y^3}{3} + 15 \times A \times (d - y)^2$$

$$I = \frac{60 \times 4.48^3}{3} + 15 \times 2.76 \times (19 - 4.48)^2 \Rightarrow I = 10526.67 \text{ cm}^4$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{9.064 \times 10^{-3}}{10526.67 \times 10^{-8}} \times 0,0448 = 3.85 MPa$$
 CBA93 (CBA93 (Art A.5.3.3)

$$\sigma_{bc} < \overline{\sigma_{bc}} = 15$$
MPa C'est vérifié.

En appuis : $M_a = 7.102 \text{ KN.m}$

Calcul de
$$y: \frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$\frac{60 \times y^2}{2} + 15 \times 2.26 \times y - 15 \times 2.26 \times 19 = 0 \implies y = 4.10 \text{ cm}$$

Calcul de
$$I: I = \frac{b \times y^3}{3} + 15 \times A \times (d - y)^2$$

$$I = \frac{60 \times 4.10^3}{3} + 15 \times 2.26 \times (19 - 4.10)^2 \Rightarrow I = 8904.56 \text{ cm}^4$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{7.102 \times 10^{-3}}{8904.56 \times 10^{-8}} \times 0,0410 = 3.27 \text{ MPa} \frac{\text{CBA93}(\text{CBA93}(\text{Art A.5.3.3}))}{6000}$$

$$\sigma_{bc} = \frac{15 \text{MPa C'est vérifié.}}{10000}$$

Vérification de la flèche :

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3) \end{cases}$$

$$\frac{h}{L} = \frac{21}{480} = 0.043 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Avec : f_{gv} et f_{gi} : la flèche de l'ensemble des charges permanentes (instantanée ou différés).

 $f_{\it ji}$: La flèche de l'ensemble des charges permanentes avant la mise en œuvre des charges

 $\boldsymbol{f}_{\mathit{pi}}$: La flèche de l'ensemble des charges permanentes et surcharge d'exploitation.

La flèche admissible pour une poutre inférieure à 5m est de :

$$f_{adm} = \frac{l}{500} = \frac{480}{500} = 0.96cm$$

 $f_{\rm gv}$ et $f_{\rm gi}$: Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 f_{ij} : Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 $f_{\it pi}$: Flèche due à l'ensemble des charges appliquées (G+Q).

Evaluation des moments en travée :

 $q_{\it jser} = 0.60 \times G$ la charge permanente qui revient à la poutrelle sans la charge de revêtement.

 $q_{\it gser} = 0.60 \times G$ la charge permanente qui revient à la poutrelle.

 $q_{\it pser} = 0.60 \times (G+Q)$ la charge permanente et la surcharge d'exploitation.

$$M_{jser} = \frac{q_{jser} \times l^2}{8}$$

$$M_{gser} = \frac{q_{gser} \times l^2}{8}$$

$$M_{pser} = \frac{q_{pser} \times l^2}{8}$$

Propriété de la section :

Position de l'axe neutre :

$$y = 4.48cm$$

Moment d'inertie:

$$I_0 = \frac{b \times h^3}{12} + 15 \times A_s \times (\frac{h}{2} - d'')^2 = 49296.15cm^4$$

$$I = 10526.67 cm^4$$

$$A_s = 2.76cm^2$$

$$\rho = \frac{A_s}{b_0.d} = \frac{2.76}{10 \times 19} = 0.014$$

$$\lambda_i = \frac{0.05.f_{t28}}{(2+3\frac{b_0}{h})\rho}$$
 Déformation instantanée.

$$\lambda_v = 0.4 \times \lambda_i$$
 Déformation différée.

$$E_i = 32164.2 Mpa$$

$$E_{v} = \frac{E_{i}}{3} = 10721.4 Mpa$$

Contraintes (σ_s) :

$$\sigma_{sj} = \frac{M_{jser}}{A_s \times (d - \frac{y}{2})} \quad ; \sigma_{sg} = \frac{M_{gser}}{A_s \times (d - \frac{y}{2})} \quad ; \sigma_{sp} = \frac{M_{pser}}{A_s \times (d - \frac{y}{2})}$$

Inerties fictives (I_f):

$$\begin{split} \mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}} \quad ; \mu_{g} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} \quad ; \mu_{p} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}} \\ \text{Si } \mu \leq 0 \Rightarrow \mu = 0 \end{split}$$

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} \quad ; \quad If_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} \quad ; \quad If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} \quad ; \quad If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g}$$

Evaluation des flèches :

$$f_{ji} = \frac{M_{jser}.L^2}{10.E_i.If_{ij}} \; ; \; f_{gi} = \frac{M_{gser}.L^2}{10.E_i.If_{ig}} \; ; \; f_{pi} = \frac{M_{pser}.L^2}{10.E_i.If_{ip}} \; ; \; f_{gv} = \frac{M_{pser}.L^2}{10.E_v.If_{gv}}$$

$$q_{jser} = 0.60 \times G = 0.60 \times 2.95 = 1.77 \, KN \, / \, m$$

$$q_{gser} = 0.60 \times G = 0.60 \times 5.35 = 3.21 KN / m$$

$$q_{pser} = 0.60 \times (G + Q) = 0.60 \times (5.35 + 1.5) = 4.11 KN / m$$

$$M_{jser} = \frac{q_{jser} \times l^2}{8} = \frac{1.77 \times 4.80^2}{8} = 5.09 KN.m$$

$$M_{gser} = \frac{q_{gser} \times l^2}{8} = \frac{3.21 \times 4.8^2}{8} = 9.24 \text{KN.m}$$

$$M_{pser} = \frac{q_{pser} \times l^2}{8} = \frac{4.11 \times 4.8^2}{8} = 11.83 \text{KN.m}$$

$$y = 4.48cm$$

$$I_0 = 49296.15cm^4$$

$$I = 10526.67cm^4$$

$$A_s = 2.76cm^2$$

$$\rho = 0.014$$

$$\lambda_i = \frac{0.05 \times 2.1}{(2 + 3 \times \frac{0.1}{0.60}) \times 0.014} = 3$$

$$\lambda_{v} = 0.4 \times 3 = 1.2$$

$$\sigma_{sj} = \frac{5.09 \times 10^{-3}}{2.76 \times 10^{-4} \times (0.19 - \frac{0.0448}{2})} = 110.035 Mpa$$

$$\sigma_{sg} = \frac{9.24 \times 10^{-3}}{2.76 \times 10^{-4} (0.19 - \frac{0.0448}{2})} = 199.75 Mpa$$

$$\sigma_{sp} = \frac{11.83 \times 10^{-3}}{2.76 \times 10^{-4} \times (0.19 - \frac{0.0448}{2})} = 255.74 Mpa$$

$$\mu_j = 1 - \frac{1.75 \times 2.1}{4 \times 0.014 \times 110.035 + 2.1} = 0.56$$

$$\mu_g = 1 - \frac{1.75 \times 2.1}{4 \times 0.014 \times 199.75 + 2.1} = 0.72$$

$$\mu_p = 1 - \frac{1.75 \times 2.1}{4 \times 0.014 \times 255.74 + 2.1} = 0.78$$

$$If_{ij} = \frac{1.1 \times 49296.15}{1 + 3 \times 0.56} = 20233.49cm^4$$

$$If_{ig} = \frac{1.1 \times 49296.15}{1 + 3 \times 0.72} = 17160.05 cm^4$$

$$If_{ip} = \frac{1.1 \times 49296.15}{1 + 3 \times 0.78} = 16235.26cm^4$$

$$If_{vg} = \frac{1.1 \times 49296.15}{1 + 1.2 \times 0.72} = 29091.07 cm^4$$

$$f_{ji} = \frac{5.09 \times 10^{-3} \times 4.8^2}{10 \times 32164.2 \times 20233.49 \times 10^{-8}} = 0.0018m$$

$$f_{gi} = \frac{9.24 \times 10^{-3} \times 4.8^{2}}{10 \times 32164.2 \times 17160.05 \times 10^{-8}} = 0.0038m$$

$$f_{pi} = \frac{11.83 \times 10^{-3} \times 4.8^{2}}{10 \times 32164.2 \times 16235.26 \times 10^{-8}} = 0.0052m$$

$$f_{vg} = \frac{11.83 \times 10^{-3} \times 4.8^{2}}{10 \times 10721.4 \times 29091.07 \times 10^{-8}} = 0.0085m$$

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 0.0085 - 0.0018 + 0.0052 - 0.0038 = 0.0081m$$

III.1.6: calcul du ferraillage:

Les résultats sont groupés dans le tableau (tab.3.5) suivant :

Tab.III.5.Calcul du ferraillage

Type de poutrelle	Zone	A _{cal} (cm ²)	A _{min} (cm ²)	Barres	A (cm ²)
	ı		Etage courant		
	Appui de rive	0.37	2 0.23	1HA8	0.5
1	Appui inter	1.51	0.23	2HA10	1.57
	Travée	1.9	1.38	2HA10+1H A8	2.07
	Appui de rive	0.26	0.23	1HA8	0.5
2	Appui inter	1.33	0.23	2HA10	1.57
	Travée	1.74	1.38	2HA10+1H A8	2.0 7
	Appui de rive	0.13	0.23	1HA8	0.5
3	Appui inter	1.04	0.23	2HA10	1.57
	Travée	1.75	5 1.38	2HA10+1H A8	2.0 7
	Appui de rive	0.40	0.23	1HA8	0.5
4	Appui inter	1.36	0.23	2HA10	1.5 7
	Travée	2.24	1.38	2HA10+HA12	2.7
	Appui de rive	0.13	0.23	1HA8	0.5
5	Appui inter	1.39	0.23	2HA10	1.57
	travée	1.62	1.38	2HA10+1H A8	2.0 7
	•	Te	errasse inaccessib	ole	•
2	Appui de rive	0.26	0.23	1HA8	0.5

	Appui inter	1.34	0.23	2HA10	1.57
	Travée	1.87	1.38	3HA10	2.3 6
	Appui de rive	0.39	0.23	1HA8	0.5
	Appui inter	1.32	0.23	2HA10	1.5 7
	Travée	2.14	1.38	3HA10	2.3 6
	Appui de rive	0.28	0.23	1HA8	0.5
	Appui inter	1.47	0.23	2HA10	1.5 7
	Travée	1.97	1.38	3HA10	2.3 6
	Appui de rive	0.37	0.23	1HA8	0.5
	Appui inter	/	/	/	/
Ī	travée	2.5	1.38	3HA10	2.36
		Terrasse	accessible		
	Appui de rive	0.44	0.23	1HA8	0.5
	Appui inter	1.81	0.23	2HA12	2.2 6
	Travée	2.3	1.38	2HA10+1H A12	2.7
	Appui de rive	0.26	0.23	1HA8	0.5
	Appui inter	1.33	0.23	2HA10	1.5 7
	Travée	1.74	1.38	3HA10	2.3 6
	Appui de rive	0.15	0.23	1HA8	0.5
	Appui inter	1.23	0.23	2HA10	1.5 7
				l ·	

				A12	
	Appui de rive	0.48	0.23	1HA8	0.5
4	Appui inter	1.64	0.23	2HA12	2.2
	Travée	2.67	1.38	2HA12+1HA14	3.80
	Appui de rive	0.15	0.23	1HA8	0.5
5	Appui inter	1.39	0.23	2HA10	1.5 7
	Travée	1.97	1.38	3HA10	2.3 6

Pour tous les types de poutrelles on a les mêmes armatures transversales :

 A_t = étrier $\phi 8 = 1.01 \text{ cm}^2$ avec un espacement S_t = 16 cm.

Tab.III.6. Armature longitudinales et transversales adoptées.

Etages		Barres	Ferraillage transversale		
	-		A_{t}	S_{t}	
	Appuis	<u>1HA10</u>			
Etage	(rive)				
courant	Appuis	2HA10			
	(inter)				
	Travée	2HA10+1HA12			
	Appuis	<u>1HA10</u>	2Ф8	<u>15</u>	
Terrasse	(rive)				
inaccessible	Appuis	2HA10			
	(inter)				
	travée	3HA10			
	Appuis	<u>1HA12</u>			
Terrasse	(rive)				
accessible	Appuis	2HA12			
	(inter)				
	travée	2HA12+1HA14			

Vérifications des contraintes à E.L.S

• Etat limite de compression de béton

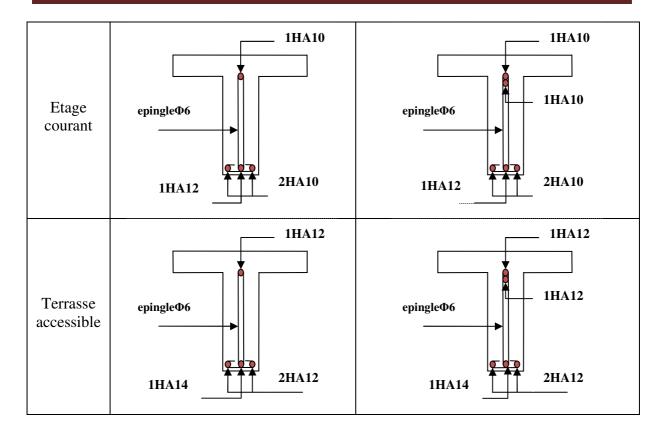
Tableau III.7.: Vérification des états limites de compression du béton.

Plancher	En travée				En appu	i			Observa
	M _t KN.m	y cm)	I(cm ⁴)	σ (Mpa)	$M_{t}(KN.m$	y (cm)	I(cm ⁴)	σ (Mpa)	
RDC+	10.477	6.88	13233.63	5.44	7.102	3.81	7551.32	3.58	Vérifier
Etage									
Plancher	11.822	4.89	12462.43	4.63	6.973	3.81	7551.32	3.51	Vérifier
terrasse									
inaccessible									
Plancher	12.446	4.89	12462.43	4.88	8.554	4.1	8904.55	3.93	Vérifier
terrasse									
accessible									

Etat limite de déformation : $\Delta f \leq f_{adm}$

Tableau III.8: Vérification de la flèche

Planchers	Etage courant	Terrasse	Terrasse accessible
		inaccessible	
q _{jser} (KN/m)	1.77	1.77	1.77
q _{gser} (KN/m)	3.21	3.77	4.05
q _{pser} (KN/m)	4.11	4.37	4.95
M _{jser} (KN.m)	5.531	4.78	5.53
M _{gser} (KN.m)	10.031	10.189	12.65
M _{pser} (KN.m)	12.843	11.811	15.46
I_0 (Cm ⁴⁾	49231.12	49231.12	50423.25
ρ	0.014	0.014	0.02
λ_{V}	1.2	1.2	0.84
λ_{i}	3	3	2.1
σ _{sj} (Mpa)	131.65	106.84	87.90


σ_{sg} (Mpa)	238.76	227.74	201.08
σ_{sp} (Mpa)	305.69	263.99	245.75
μ_{j}	0.61	0.54	0.59
μ_{g}	0.76	0.75	0.79
μ_p	0.80	0.78	0.83
If_{ij} (Cm ⁴⁾	19135.77	20669.55	24772.47
If_{ig} (Cm ⁴)	16510.43	16662.84	20859.56
If_{ip} (Cm ⁴)	15927.71	16213.84	20220.77
If_{vg} (Cm ⁴⁾	28323.34	28502.22	33340.69
f_{ji} (m)	0.0022	0.0015	0.0017
f_{gi} (m)	0.0047	0.0041	0.0047
$f_{pi}(\mathbf{m})$	0.0062	0.0048	0.0059
f_{gv} (m)	0.01	0.0083	0.010
Δf (mm)	9.3	7.5	9.5
f_{adm} (mm)	10	9.3	10

${\bf III.1.7: Sch\'{e}ma}$ de ferraillage :

a) poutrelles:

Tab.III.9: Schéma de ferraillage des poutrelles

	Tab.III.9. Schenia de lena	image des poddenes				
plancher	Schéma de ferraillage des poutrelles					
pranenci	Appuis de rive	Appuis intermédiaire				
Terrasse inaccessib le	1HA10 epingleΦ6 3HA10	1HA10 epingleΦ6 3HA10				

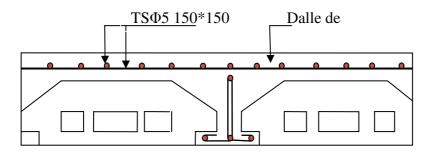
III.1.8 : Etude de la dalle de compression :

Selon le BAEL 91 (B.6.8, 423) la dalle de compression, sera armée par un quadrillage de barres dont les dimensions de mailles ne doivent pas dépasser :

- -20 cm (5 p.m.) pour les armatures perpendiculaires aux nervures.
- -33 cm (3 p.m.) pour les armatures parallèles aux nervures.

D'après le même article cité ci-dessus les sections des armatures sont calculées comme suit :

• ARMATURES PERPENDICULAIRES AUX POUTRELLES:


$$A_{\perp} = \frac{4 \times b}{f_a} = \frac{4 \times 60}{400} = 0.60 \,\text{cm}^2/\text{ml}$$

• ARMATURES PARALLELES AUX POUTRELLES:

$$A_{\parallel} = \frac{A_{\perp}}{2} = 0.30 \text{ cm}^2/\text{ml}$$

D'où on opte : un treillis soudé TS Φ5 150×150

b) dalle de compression :

FigIII.8 : Schéma de ferraillage de la dalle de compression

III.2: PLANCHER DALLES PLEINS:

Les dalles pleines sont classées selon le nombre d'appuis sur lesquels elles reposent ;

- Dalle sur quatre appuis.
- Dalle sur trois appuis.
- Dalle sur deux appuis.
- -Dalle console sur un seul appui

L_x: la plus petite dimension du panneau.

L_v: la plus grande dimension du panneau.

$$\rho = \frac{1_x}{1_y}$$

Si : $\rho \le 0.4 \Rightarrow$ La dalle travail suivant un seul sens (flexion principale suivant l_x).

Si : $\rho > 0.4 \Rightarrow$ La dalle travail suivant les deux sens.

Dans notre cas on a trois types de dalles : dalle sur 4 appuis (D1), dalle sur 3 appuis (D2) et dalle sur 2 appuis (D3)

III.2.1 :Dalle sur quatre appuis (D1)

Calcul du chargement

$$G=7.40KN/m^2$$
; $Q=5KN/m^2$

$$\begin{cases} q_u = 1.35 \times 7.40 + 1.5 \times 5 = 17.49 \text{KN/ml.} \\ q_s = 7.4 + 5 = 12.4 \text{KN/ml.} \end{cases}$$

$$\rho = \frac{L_x}{L_y} = \frac{4.7}{4.9} = 0.95 \Rightarrow \rho > 0.4 \Rightarrow \text{La dalle travail}$$

$$\rho = \frac{x}{L_y} = \frac{1}{4.9} = 0.95 \Rightarrow \rho > 0.4 \Rightarrow \text{ La dalle travai}$$

selon deux sens l_x et l_y

$$v = 0$$
 et $\rho = 0.95$

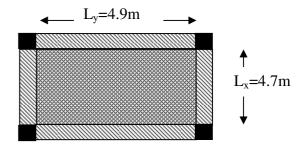


Fig. III.9: panneau de dalle D1

Du tableau (annexe I) on tire la valeur μ_x et μ_y à l'ELU et l'ELS

$$\dot{a} \quad l'ELU \begin{cases} \mu_x = 0.0410 \\ \mu_y = 0.8875 \end{cases} \qquad \dot{a} \quad l'ELS \begin{cases} \mu_x = 0.0483 \\ \mu_y = 0.9236 \end{cases}$$

• Calcul de Mx_0 et My_0

$$\begin{cases} M_{0u}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.0410 \times 17.49 \times 4.7^{2} = 15.84 KN.m/ml \\ M_{0u}^{y} = \mu_{y} \times M_{0}^{x} = 0.8875 \times 15.84 = 14.058 KN.m/ml \\ M_{0ser}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.0483 \times 12.4 \times 4.7^{2} = 13.23 KN.m/ml \\ M_{0ser}^{y} = \mu_{y} \times M_{0}^{x} = 0.9236 \times 13.23 = 12.21 KN.m/ml \end{cases}$$

- Calcul des moments compte tenu de l'encastrement
 - En travée

$$\begin{cases} M_{u}^{x} = 0.85M_{0u}^{x} = 13.46KN.m/ml \\ M_{u}^{y} = 0.85M_{0u}^{y} = 11.94KN.m/ml \\ M_{ser}^{x} = 0.85M_{0ser}^{x} = 11.24KN.m/ml \\ M_{ser}^{y} = 0.85M_{0ser}^{y} = 10.37KN.m/ml \end{cases}$$

- En appuis

$$\begin{cases} M_u^x = M_u^y = -0.5M_{0u}^x = -7.92KN.m/ml \\ M_{ser}^x = M_{ser}^y = -0.5M_{0ser}^x = -6.61.KN.m /ml \end{cases}$$

Effort tranchant

$$V_{u}^{x} = \frac{(p_{u} \times l_{x})}{2} \times \frac{l_{y}^{4}}{(l_{x}^{4} + l_{y}^{4})} = 27,4 \text{Kn}$$

$$V_{u}^{y} = \frac{(p_{u} \times l_{y})}{2} \times \frac{l_{x}^{4}}{(l_{x}^{4} + l_{y}^{4})} = 28,96 \text{Kn}$$

• Ferraillage

Le diamètre des barres utilisées doit êtres $\phi \le \frac{e}{10} = \frac{200}{10} \Rightarrow \phi \le 20mm$ Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

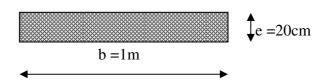


Fig. III.10:Section de la dalle pleine

Sens-x

Sens-v

Sens x, sens y

4HA10=3.14

3HA10=2.36

4HA8=2.01

25

33

25

Le tableau suivant résume le calcul des armatures en travées et en appuis dans les deux sens :

140	1111101 Calcal ac 1	errannage de la dan	e sur quarre appars	(21)
		En travée		
	A calculé (cm²/m _l)	A_{min} (cm ² /m ₁)	A adopté (cm²/m _l)	S _t (cm)

 Tab III.10: Calcul de ferraillage de la dalle sur quatre appuis(D1)

1.63

1.6

En appuis

1.63

$$e \ge 12cm \ et \ \rho > 0, 4 \Longrightarrow \begin{cases} A_x^{\min} = \rho_0 \cdot \frac{(3-\rho)}{2} \cdot b \cdot e \\ A_y^{\min} = \rho_0 \cdot b \cdot e \end{cases} \quad \text{Avec } \rho_0 = 0.0008$$

La condition de non fragilité est vérifiée.

Vérification des espacements

Sens x : $S_t = 25cm \le \min(3.e; 33cm) = 33cm$ condition vérifiée

2.183

1.934

1.276

Sens y : $S_t = 33cm \le \min(4.e; 45cm) = 45cm$ condition vérifiée

Vérification des armatures secondaires

En travée :
$$A_y = 2.36cm^2 > \frac{A_x}{4} = \frac{3.14}{4} = 0.78cm^2$$
 vérifier

Vérification de l'effort

tranchant

$$\tau_{bu}^{\text{max}} = \frac{V_u}{b \times d} = \frac{28.96 \times 10^{-3}}{1 \times 0.2} = 0.16 MPa \le \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa \implies pas \ d'armature \ transversa le$$

Vérification à l'ELS

Vérification des contraintes

Comme notre dalle se situe à l'intérieur (D1), on ne vérifie que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A_s') \times y - 15 \times (d \times A_s + d' \times A_s') = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s' \times (y - d')^2 \right]$$

Le tableau suivant illustre les résultats de calcul

1 0	Tab III. Contraintes dans le beton de la dane sur quade appuis										
Le sens	M (KN.m)	Y(cm)	I(cm ⁴)	σ_{bc} (MPa)	$\sigma_{adm}(MPa)$	remarque					
Selon x-x	11.24	5.48	24296	2.537	15	Vérifiée					
Selon y-y	10.37	4.05	13686	3.077	15	Vérifiée					
Appui	6.61	4.08	13890	1.94	15	Vérifiée					

Tab III.11: contraintes dans le béton de la dalle sur quatre appuis

- Vérification de la flèche :

Sens xx:

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots & \dots & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots & \dots & \dots & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots & \dots & \dots & \dots & \dots \end{cases}$$

$$\frac{h}{L} = \frac{20}{470} = 0.042 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{470}{500} = 0.94 \text{ cm}$

y = 5.48 cm

 $I = 24296 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 6.711 KN.m

 $M_i = 4.534 \text{ KN.m}$

 $M_p = 11.24 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau III.12 : Calcul de la flèche sens xx :

L(m)	A_s (cm ²)	f_{ij} (mm)	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	Δf (mm)	f_{adm} (mm)
4.7	3.14	0.406	0.601	1.803	1.001	1.803	9.4

Sens yy:

$$f_{adm} = \frac{490}{500} = 0.98 \,\mathrm{cm}$$

Les résultats de calcul de la flèche sont résumés dans le tableau suivant :

Tableau III.13 : Calcul de la flèche selon yy

-						J J		
	L(m)	A_s (cm ²)	f_{ij} (mm)	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	Δf (mm)	f_{adm} (mm)
ſ	4.90	2.36	0.408	0.604	1.814	1.013	1.814	9.6

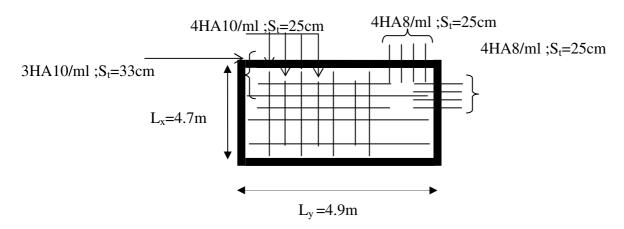


Fig III.11 : Schéma de ferraillage Dalle pleine sur quatre appuis

III.2.2 : Dalle sur deux appuis perpendiculaires (D2)

• Calcul du chargement

$$G=5.16KN/m^2$$
; $Q=3.5KN/m^2$

$$\begin{cases} q_u = 1.35 \times 5.16 + 1.5 \times 3.5 = 12.216 KN/ml. \\ q_s = 5.16 + 3.5 = 8.66 KN/ml. \end{cases}$$

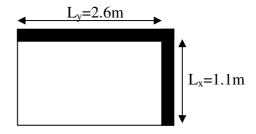


Fig III.12 : Schéma d'une dalle sur deux appuis

$$\rho = \frac{L_x}{L_y} = \frac{1.1}{2.6} = 0.42 \Rightarrow \rho > 0.4 \Rightarrow$$
 La dalle travail selon deux sens l_x et l_y

$$v = 0$$
 et $\rho = 0.42$

$$\dot{a}$$
 $l'ELU$ $\begin{cases} \mu_x = 0.1075 \\ \mu_y = 0.2500 \end{cases}$ \dot{a} $l'ELS$ $\begin{cases} \mu_x = 0.1098 \\ \mu_y = 0.3000 \end{cases}$ (annexe I)

Calcul de Mx₀ et My₀

$$\begin{cases} M_{0u}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.1075 \times 12.216 \times 1.1^{2} = 1.588 KN.m/ml \\ M_{0u}^{y} = \mu_{y} \times M_{0}^{x} = 0.2500 \times 1.588 = 0.397 KN.m/ml \\ M_{0ser}^{x} = \mu_{x} \times q \times l_{x}^{2} = 0.1098 \times 8.66 \times 1.1^{2} = 1.150 KN.m/ml \\ M_{0ser}^{y} = \mu_{y} \times M_{0}^{x} = 0.3000 \times 1.150 = 0.345 KN.m/ml \end{cases}$$

- Calcul des moments compte tenu de l'encastrement :
 - En travée

$$\begin{cases} M^{x}_{u} = 0.85M^{x}_{0u} = 1.35KN.m/ml \\ M^{y}_{u} = 0.85M^{y}_{0u} = 0.337KN.m/ml \\ M^{x}_{ser} = 0.85M^{x}_{0ser} = 0.977KN.m/ml \\ M^{y}_{ser} = 0.85M^{y}_{0ser} = 0.293KN.m/ml \end{cases}$$

- En appuis

$$\begin{cases} M_u^x = M_u^y = -0.5M_{0u}^x = -0.794KN.m/ml \\ M_{ser}^x = M_{ser}^y = -0.5M_{0ser}^x = -0.575.KN.m/ml \end{cases}$$

Effort tranchant

$$V_{u}^{x} = \frac{(p_{u} \times l_{x})}{2} \times \frac{l_{y}^{4}}{(l_{x}^{4} + l_{y}^{4})} = 4,47 \text{Kn}$$

$$V_{u}^{y} = \frac{(p_{u} \times l_{y})}{2} \times \frac{l_{x}^{4}}{(l_{x}^{4} + l_{y}^{4})} = 6,53 \text{Kn}$$

• Ferraillage

Le diamètre des barres utilisées doit êtres $\phi \le \frac{e}{10} = \frac{150}{10} \Rightarrow \phi \le 15 mm$

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

Le tableau suivant résume les résultats de calcul des armatures en travées et en appuis dans les deux sens

Tab III.14: Calcul de ferraillage de la dalle sur deux appuis(D2)

	En travée								
	A calculé (cm²/m _l)	$A_{min} (cm^2/m_l)$	A adopté (cm²/m _l)	S _t (cm)					
Sens-x	0.299	1.54	4HA8=2.01	25					
Sens-y	0.074	1.20	3HA8=1.51	33					
En appuis									
Sens x, sens y	0.175	1.54	4HA8=2.01	25					

$$e \ge 12cm \ et \ \rho > 0, 4 \Longrightarrow \begin{cases} A_x^{\min} = \rho_0 \cdot \frac{(3-\rho)}{2} \cdot b \cdot e \\ A_y^{\min} = \rho_0 \cdot b \cdot e \end{cases} \quad \text{Avec } \rho_0 = 0.0008$$

La condition de non fragilité est vérifiée.

Vérification de l'espacement

Sens x : $S_t = 25cm \le \min(3.e; 33cm) = 33cm$ condition vérifiée

Sens y : $S_t = 33cm \le \min(4.e; 45cm) = 45cm$ condition vérifiée

Vérification des armatures secondaires

En travée :
$$A_y = 1.51cm^2 > \frac{A_x}{4} = \frac{2.01}{4} = 0.5cm^2$$
 vérifiée

Vérification de l'effort tranchant

$$\tau_{bu}^{\text{max}} = \frac{V_u}{b \times d} = \frac{6.53 \times 10^{-3}}{1 \times 0.13} = 0.050 MPa \le \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa \Rightarrow pas \ d'armature \ transversa le$$

Vérification à l'ELS

Vérification des contraintes

Comme notre dalle se situe à l'intérieur (FPN), alors on ne vérifier que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_{b}} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$y = \frac{b \times y^{2}}{2} + 15(A_{s} + A_{s}^{'}) \times y - 15 \times (d \times A_{s} + d' \times A_{s}^{'}) = 0$$

$$I = \frac{b_{0} \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s}^{'} \times (y - d')^{2}\right]$$

Le tableau suivant illustre les résultats de calcul :

Tab III.15: contraintes dans le béton de la dalle sur deux appuis

Le sens	M (KN.m)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	σ_{adm} (MPa)	Remarque
Selon x-x	0.977	2.51	3844.8	0.63	15	Vérifier
Selon y-y	0.293	2.21	2996.8	0.21	15	Vérifier
Appui	0.575	2.51	3844.8	0.37	15	Vérifier

- Vérification de la flèche :

Sens xx:

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\frac{h_t}{l} \ge \frac{1}{16} \Rightarrow \frac{0.15}{1.1} = 0.136 > \frac{1}{16} = 0.0625 \longrightarrow v\acute{e}rifi\acute{e}e$$

$$\frac{h}{l} \ge \frac{M_t}{10 \times M_0} \Rightarrow 0.136 > 0.061 \rightarrow v\acute{e}rifi\acute{e}e$$

$$\frac{A_s}{b \times d} \le \frac{4.2}{f_e} \Rightarrow 0.015 > 0.010 \rightarrow n'est pas vérifiée$$

La troisième condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{110}{500} = 0.22 \text{ cm}$

y = 2.51 cm

 $I = 3844.8 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 0.582 KN.m

 $M_i = 0.423 \text{ KN.m}$

 $M_p = 0.977 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau III.16 : Calcul de la flèche sens xx

L(m)	$A_s (\text{cm}^2)$	f_{ij} (mm)	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	$\Delta f \text{ (mm)}$	f_{adm} (mm)
1.1	2.01	0.0049	0.0068	0.020	0.0114	0.020	2.2

Sens yy:

$$\frac{h}{L} = \frac{15}{260} = 0.057 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{260}{500} = 0.52 \text{ cm}$

y = 2.21 cm

 $I = 2996.8 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 0.174 KN.m

 $M_i = 0.127 \text{ KN.m}$

 $M_p = 0.293 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau III.17 : Calcul de la flèche selon yy

	L(m)	A_s (cm ²)	$f_{ij}(mm)$	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	Δf (mm)	f_{adm} (mm)
ĺ	2.60	1.51	0.0083	0.011	0.034	0.019	0.033	5.2

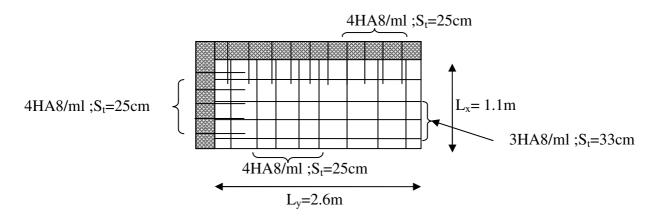
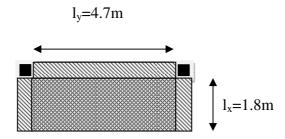



Fig. III.13: schéma de ferraillage de la dalle sur deux appuis

III.2.3 :Panneau D₃ (3 appuis) :

Fig .III.14 : $Panneau D_3$

• Calcul du chargement :

$$\begin{cases} q_u = 1.35 \times 5.16 + 1.5 \times 3.5 = 12.21 KN/ml. \\ q_s = 5.16 + 3.5 = 8.66 KN/ml. \end{cases}$$

• Ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

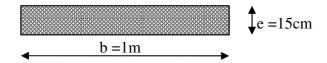


Fig.III.15 :Section de la dalle pleine a ferraillé

On a
$$\frac{L_{\gamma}}{2} = 2.35m > L_{x} = 1.8$$
 alors

$$\begin{cases} M_{ox} = \frac{P \times L_x^2 \times L_y}{2} - \frac{2 \times P \times L_x^3}{3} \\ M_{oy} = \frac{P \times L_x^3}{6} \end{cases}$$

Calcul à l'ELU

Le calcul des sollicitations se fait en supposant que la dalle est simplement appuyée.

$$\begin{cases} M_{ox} = 45.49 KN.m \\ M_{oy} = 11.87 KN.m \end{cases}$$

$$\begin{cases} M_x^t = 0.85 \times M_{ox} = 0.85 \times 45.49 = 38.68 \text{KN.m} \\ M_y^t = 0.85 \times M_{oy} = 0.85 \times 11.87 = 10.09 \text{KN.m} \end{cases}$$

$$M_x^a = M_y^a = -0.4 M_{0x} = -18.2 \text{KN.m}$$

Effort tranchant

$$V_{\text{max}} = \frac{P_U L_x}{2} = \frac{12.21 \times 1.8}{2} = 10.99 \text{ KN}$$

Ferraillage

Le diamètre des barres utilisées doit êtres

$$\phi \le \frac{h}{10} \Rightarrow \phi \le \frac{15}{10} = 1.5cm$$

Le calcul se fait à la flexion simple pour une bande de (1*e)m².

Selon L_x

En travée

$$\begin{cases} \mu_{bu} = \frac{M_u^t}{b \times d^2 \times f_{bu}} = \frac{38.68 \times 10^{-3}}{1 \times (0.13)^2 \times 14.2} = 0.161 \\ \mu_{bu} \le \mu_l \Rightarrow A' = 0 \\ \alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8} \Rightarrow \alpha = 0.221 \\ A_x^t = \frac{M_x^t}{f_{st} \times (1 - 0.4 \times \alpha) \times d_x} = \frac{38.68 \times 10^{-3}}{348 \times (1 - 0.4 \times 0.221) \times 0.0.13} = 9.38cm^2 \end{cases}$$

Soit
$$A_x^t = 9HA12 = 10.18cm^2$$

Espacement (S_t)

$$S_t \le \min(3 \times e; 33cm) = \min(3 \times 15; 33cm) = 33cm$$
$$S_t \le 33cm$$

Soit
$$S_t=10cm$$

Vérification des valeurs minimales

$$e = 15cm > 12cm$$

$$A_x \ge \rho_0 \times b \times e$$

$$avec: \rho_0 = 8 \times 10^{-4} \quad pour \ f_e E400$$

$$A_x \ge 8 \times 10^{-4} \times 100 \times 15$$

$$A_x \ge 1.2 \ cm^2$$

On
$$a: A_x^t = 10.18 > A_{Min}$$

Selon L_y

En travée

$$\begin{cases} \mu_{bu} = 0.042 \\ \mu_{bu} \le \mu_{l} \Rightarrow PivotA \Rightarrow A' = 0 \\ \alpha = 0.053 \\ \Rightarrow A_{y}^{t} = 2.28cm^{2} \end{cases}$$

Soit
$$A_y^t = 4HA10 = 3.14cm^2$$

En appuis

Selon Lx

$$\begin{cases} \mu_{bu} = 0.076 \\ \mu_{bu} \le \mu_{l} \Rightarrow PivotA \Rightarrow A' = 0 \\ \alpha = 0.098 \\ z = 0.124 \\ \Rightarrow A_{x}^{a} = 4.192cm^{2} \end{cases}$$

Soit
$$A_r^a = 4HA12 = 4.52cm^2$$

Selon Ly

$$\begin{cases} \mu_{bu} = 0.019 \\ \mu_{bu} \le \mu_{l} \Rightarrow PivotA \Rightarrow A' = 0 \\ \alpha = 0.025 \\ z = 0.128 \\ \Rightarrow A^{a} = 0.61 cm^{2} \end{cases}$$

Soit
$$A_i^a = 4HA8 = 2.01cm^2$$

Espacement (S_t)

$$S_t \le Min (4 \times e; 45 cm) = Min (4 \times 18; 45 cm) = 45 cm$$

$$S_t \le 45 cm$$

Soit
$$S_t=25cm$$

Vérification des valeurs minimales

$$\begin{split} e &= 15cm \\ A_{y} \geq \rho_{0} \times b \times h \\ avec: \ \rho_{0} &= 8 \times 10^{-4} \quad pour \ f_{e}E400 \\ A_{y} \geq 0.0008 \times 100 \times 15 = 1.2cm^{2} \\ \begin{cases} A_{y}^{t} &= 3.14cm^{2} > 1.2cm^{2} \\ A_{x}^{a} &= 4.52cm^{2} > 1.2cm^{2} \\ A_{y}^{a} &= 2.01cm^{2} > 1.2cm^{2} \end{split}$$

Vérification au cisaillement

$$\tau_{u} = \frac{V_{u}}{b \times d} = \frac{10.99 \times 10^{-3}}{1 \times 0.13} = 0.084 MPa$$

$$\tau_{u} = 0.084 MPa < \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa$$

Les résultats de ferraillage sont résumés dans le tableau suivant :

Tableau III.18: Ferraillage du balcon sur trois appuis

Sens	Localisation	M (KN.m)	A calculée (cm²)/ml	A adoptée/ml
	En travée	38.68	9.38	9HA12=10.18 cm ²
Sens x-x	En appuis	-18.20	4.19	4HA12=4.52 cm ²
	En travée	10.09	2.28	4HA10=3.14 cm ²
Sens y-y	En appuis	-4.74	0.61	4HA8=2.01 cm ²

Vérification à l'ELS

$$\begin{cases} M_{ox} = 32.26KN.m \\ M_{oy} = 8.41KN.m \end{cases}$$

$$M_x^a = M_y^a = -0.4 M_{0x} = -12.9 KN.m$$

Etat limite de compression du béton

Vérification des contraintes

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_{bc}};$$

$$\overline{\sigma_{bc}} = 0.6 f_{c28} = 0.6 \times 25 = 15 MPa$$

$$A' = 0 \Rightarrow \frac{b}{2} \times y^2 + 15 \times A \times y - 15 \times A \times d = 0$$

$$I = \frac{b}{3} \times y^3 + 15 \times A \times (d - y)^2$$

Les résultats de la vérification sont résumés dans le tableau suivant :

Tableau III.19: contraintes dans le béton du balcon sur trois appuis

Le sens	M (KN.m)	Y(cm)	I(cm ⁴)	σ_{bc} (MPa)	σ_{adm} (MPa)	Remarque
Selon x-x	27.42	4.95	13938	9.76	15	Vérifiée
Selon y-y	7.15	3.05	5608.7	3.90	15	Vérifiée
Appui	12.9	3.57	7545.7	6.11	15	Vérifiée

- Vérification de la flèche :

Sens xx:

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\frac{h_t}{l} \ge \frac{1}{16} \Rightarrow \frac{0.15}{1.8} = 0.0833 > \frac{1}{16} = 0.0625 \longrightarrow v\acute{e}rifi\acute{e}e$$

$$\frac{h}{l} \ge \frac{M_t}{10 \times M_0} \Rightarrow 0.0833 < 0.0849 \rightarrow n'estpasvérifiée$$

La deuxième condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ii}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{180}{500} = 0.36 \text{ cm}$

y = 4.95 cm

 $I = 13909 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 16.34 KN.m

 $M_i = 11.87 \text{ KN.m}$

 $M_p = 27.42 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau III.20 : Calcul de la flèche sens xx :

L(m)	A_s (cm ²)	f_{ij} (mm)	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	Δf (mm)	f_{adm} (mm)
1.8	10.18	0.602	0.984	1.996	2.013	2.423	3.6

Sens yy:

$$\frac{h}{L} = \frac{15}{470} = 0.031 < \frac{1}{16} = 0.0625 \dots$$
 condition non vérifié

La première condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{470}{500} = 0.94 \text{ cm}$

y = 3.05 cm

 $I = 5608.7 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 4.26 KN.m

 $M_i = 3.09 \text{ KN.m}$

 $M_p = 7.15 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau III.21 : Calcul de la flèche selon yy

L(m)	A_s (cm ²)	f_{ij} (mm)	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	$\Delta f \text{ (mm)}$	f_{adm} (mm)
4.7	3.14	0.648	0.892	2.677	2.366	3.5	9.4

Schémas de ferraillage

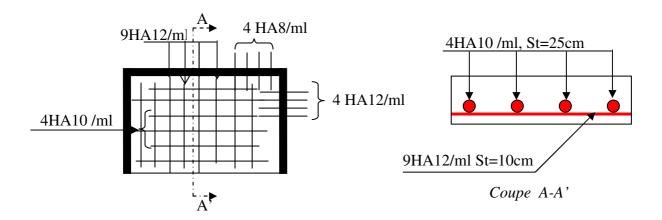


Figure III.16 : Schéma du ferraillage du balcon sur trois appuis

III.2.4 :Panneau D₃ (3 appuis) :

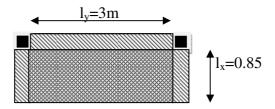


Fig III.17: Panneau D₃

• Calcul du chargement :

$$\begin{cases} q_u = 1.35 \times 5.16 + 1.5 \times 3.5 = 12.21 KN/ml. \\ q_s = 5.16 + 3.5 = 8.66 KN/ml. \end{cases}$$

• Ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.



Fig III.18 :Section de la dalle pleine a ferraillé

On a
$$\frac{L_{\gamma}}{2} = 1.5m > L_{x} = 0.85$$
 alors

$$\begin{cases} M_{ox} = \frac{P \times L_x^2 \times L_y}{2} - \frac{2 \times P \times L_x^3}{3} \\ M_{oy} = \frac{P \times L_x^3}{6} \end{cases}$$

Calcul à l'ELU

Le calcul des sollicitations se fait en supposant que la dalle est simplement appuyée.

$$\begin{cases} M_{ox} = 8.23KN.m \\ M_{oy} = 1.25KN.m \end{cases}$$

$$\begin{cases} M_{x}^{t} = 0.85 \times M_{ox} = 0.85 \times 8.23 = 7 \text{ KN.m} \\ M_{y}^{t} = 0.85 \times M_{oy} = 0.85 \times 1.25 = 1.06 \text{ KN.m} \end{cases}$$

$$M_x^a = M_y^a = -0.4 M_{0x} = -3.29 KN.m$$

Effort tranchant

$$V_{\text{max}} = \frac{P_U L_x}{2} = \frac{12.21 \times 0.85}{2} = 5.19 KN$$

Ferraillage

Le diamètre des barres utilisées doit êtres

$$\phi \le \frac{h}{10} \Rightarrow \phi \le \frac{15}{10} = 1.5cm$$

Le calcul se fait à la flexion simple pour une bande de (1*e)m².

Selon L_x

En travée

$$\begin{cases}
\mu_{bu} = \frac{M_{u}^{t}}{b \times d^{2} \times f_{bu}} = \frac{7 \times 10^{-3}}{1 \times (0.13)^{2} \times 14.2} = 0.029 \\
\mu_{bu} \leq \mu_{l} \Rightarrow A' = 0 \\
\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8} \Rightarrow \alpha = 0.037 \\
A_{x}^{t} = \frac{M_{x}^{t}}{f_{st} \times (1 - 0.4 \times \alpha) \times d_{x}} = \frac{7 \times 10^{-3}}{348 \times (1 - 0.4 \times 0.037) \times 0.13} = 1.57 cm^{2}
\end{cases}$$

Soit
$$A_x^t = 4HA8 = 2.01cm^2$$

Espacement (S_t)

$$S_t \le \min(3 \times e; 33cm) = \min(3 \times 15; 33cm) = 33cm$$
$$S_t \le 33cm$$

Soit $S_t=25cm$

Vérification des valeurs minimales

$$e = 15cm > 12cm$$

$$A_x \ge \rho_0 \times b \times e$$

avec:
$$\rho_0 = 8 \times 10^{-4}$$
 pour $f_e E 400$

$$A_{r} \ge 8 \times 10^{-4} \times 100 \times 15$$

$$A_x \ge 1.2 \ cm^2$$

On
$$a: A_x^t = 2.01 > A_{Min}$$

Selon L_v

En travée

$$\begin{cases} \mu_{bu} = 0.004 \\ \mu_{bu} \le \mu_{l} \Rightarrow PivotA \Rightarrow A' = 0 \\ \alpha = 0.005 \\ \Rightarrow A_{y}^{t} = 0.23cm^{2} \end{cases}$$

Soit
$$A_y^t = 3HA8 = 1.51cm^2$$

En appuis

Selon Lx

$$\begin{cases} \mu_{bu} = 0.013 \\ \mu_{bu} \le \mu_{l} \Rightarrow PivotA \Rightarrow A' = 0 \\ \alpha = 0.017 \\ z = 0.129 \\ \Rightarrow A_{x}^{a} = 0.73cm^{2} \end{cases}$$

$$A=0.73 \text{cm}^2 < A_{\text{min}}=1.2 \text{cm}^2$$
 Soit $A_x^a = 4HA8 = 2.01 \text{cm}^2$

Soit
$$A_r^a = 4HA8 = 2.01cm^2$$

Selon Ly

$$\begin{cases} \mu_{bu} = 0.002 \\ \mu_{bu} \le \mu_{l} \Rightarrow PivotA \Rightarrow A' = 0 \\ \alpha = 0.0026 \\ z = 0.129 \\ \Rightarrow A_{y}^{a} = 0.11cm^{2} \end{cases}$$

Soit
$$A_i^a = 3HA8 = 1.51cm^2$$

Espacement (S_t)

$$S_t \le Min(4 \times e; 45 cm) = Min(4 \times 18; 45 cm) = 45 cm$$

$$S_t \le 45 cm$$

Soit $S_t=33cm$

Vérification au cisaillement

$$\tau_{u} = \frac{V_{u}}{b \times d} = \frac{5.19 \times 10^{-3}}{1 \times 0.13} = 0.039 MPa$$

$$\tau_{u} = 0.039 MPa < \tau_{adm} = 0.05 \times f_{c28} = 1.25 MPa$$

Les résultats de ferraillage sont résumés dans le tableau suivant :

Tableau III.22: Ferraillage du balcon sur trois appuis

Sens	Localisation	M (KN.m)	A calculée (cm²)/ml	A adoptée/ml
	En travée	7	1.57	4HA8=2.01 cm ²
Sens x-x	En appuis	-3.29	1.2	4HA8=2.01 cm ²
	En travée	1.06	0.23	$3HA8=1.51 \text{ cm}^2$
Sens y-y	En appuis	-0.5	0.11	3HA8=1.51 cm ²

Vérification à l'ELS

$$\begin{cases} M_{ox} = 5.83KN.m \\ M_{oy} = 0.88KN.m \end{cases}$$

$$M_x^a = M_y^a = -2.33 KN.m$$

Etat limite de compression du béton

Vérification des contraintes

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_{bc}};$$

$$\overline{\sigma_{bc}} = 0.6 f_{c28} = 0.6 \times 25 = 15 MPa$$

$$A' = 0 \Rightarrow \frac{b}{2} \times y^2 + 15 \times A \times y - 15 \times A \times d = 0$$

$$I = \frac{b}{3} \times y^3 + 15 \times A \times (d - y)^2$$

Les résultats de la vérification sont résumés dans le tableau suivant :

Tableau III.23: contraintes dans le béton du balcon sur trois appuis

Le sens	M (KN.m)	Y(cm)	I(cm ⁴)	σ _{bc} (MPa)	σ_{adm} (MPa)	Remarque
Selon x-x	4.96	2.51	3844.8	3.24	15	Vérifiée
Selon y-y	0.75	2.21	2996.8	0.55	15	Vérifiée
Appui	2.33	2.51	3844.8	1.52	15	Vérifiée

- Vérification de la flèche :

Sens xx:

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\frac{h_{t}}{l} \ge \frac{1}{16} \Rightarrow \frac{0.15}{0.85} = 0.176 > \frac{1}{16} = 0.0625 \longrightarrow v\acute{e}rifi\acute{e}e$$

$$\frac{h}{l} \ge \frac{M_t}{10 \times M_0} \Rightarrow 0.176 > 0.085 \rightarrow v\acute{e}rifi\acute{e}e$$

$$\frac{A_s}{b \times d} \le \frac{4.2}{f_s} \Rightarrow 0.015 > 0.010 \rightarrow n'estpasvérifiée$$

La troisième condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{85}{500} = 0.17 \text{ cm}$

y = 2.51 cm

 $I = 3844.8 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 2.95 KN.m

 $M_i = 2.14 \text{ KN.m}$

 $M_p = 4.96 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau III.24 : Calcul de la flèche sens xx :

L(m)	$A_s (cm^2)$	$f_{ij}(mm)$	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	Δf (mm)	f_{adm} (mm)
0.85	2.01	0.014	0.020	0.061	0.034	0.060	1.7

Sens yy:

$$\frac{h}{L} = \frac{15}{300} = 0.05 < \frac{1}{16} = 0.0625$$
.....condition non vérifié

La première condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij}$$

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{300}{500} = 0.6 \text{ cm}$

y = 2.21 cm

 $I = 2996.8 \text{cm}^2$

 $E_i = 32164.2 \text{ MPa}$

 $E_v = 10721.4 \text{ MPa}$

Mg = 0.44 KN.m

 $M_i = 0.32 \text{ KN.m}$

 $M_p = 0.75 \text{ KN.m}$

Le calcul de la flèche est résumé dans le tableau suivant :

Tableau	III.25	: Calcul	de la flèche	selon vv
1 avicau	111.43	• Carcur	uc ia nicenc	SCIUII V V

L(m)	A_s (cm ²)	f_{ij} (mm)	f_{gi} (mm)	f_{gv} (mm)	$f_{pi}(mm)$	Δf (mm)	f_{adm} (mm)
3	1.51	0.028	0.039	0.11	0.065	0.115	6

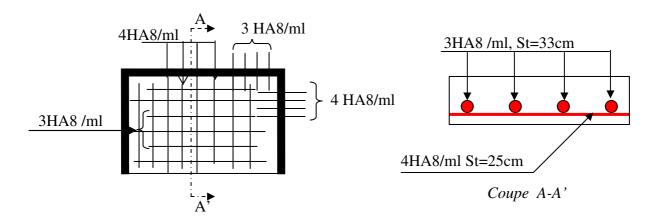


Figure III.19 : Schéma du ferraillage du balcon sur trois appuis

III.3: ETUDE DE L'ACROTERE:

III. 3.1: Définition:

L'acrotère est un élément non structurel placé à la périphérie du plancher terrasse. Il est considéré comme un système isostatique assimilé à un consol encastrée dans le plancher il est conçue pour :

La protection de la ligne de jonction entre lui-même et la forme de pente contre l'infiltration des eaux pluviales.

Il sert à l'accrochage des matériels de travaux de l'entretien des bâtiments.

Hypothèse de calcul:

Le calcul se fait pour une bande de 1 ml

Type de fissuration est préjudiciable.

Il est sollicité à la flexion composée.

L'acrotère est soumis à :

- Son poids propre G.
- à une force latérale due à l'action sismique
- à une charge horizontale Q due à la main courante

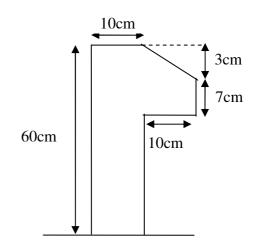


Figure III.20 : Dimension de l'acrotère

Charge et Surcharge:

G = 2.11 KN/ml

Q = 1 KN/ml

Charge horizontale due au séisme qui est de $F_p = 4 A C_p W_p$

A : Cœfficient de l'accélération de la zone (zone IIa, groupe 2) \Rightarrow A = 0.15

 C_p : Facteur de la force horizontale

 W_n : Poids propre de l'acrotère

Avec: A = 0.15 (zone IIa, groupe 2)

 $C_n = 0.8$

 $W_p = 2.11 \text{ KN/m}$

 $F_p = 4 \times 0.15 \times 0.8 \times 2.11 = 1.01 \text{ KN/ml}$

Calcul de centre de graviter de la section :

$$X_G = \frac{\sum X_i A_i}{\sum A_i} = \frac{[(60 \times 10) \times 5 + (10 \times 7) \times 15 + (10 \times 3) \times (1/2) \times 13.33]}{(60 \times 10) + (10 \times 7) + (10 \times 3) \times (1/2)} = 6.20 \text{ cm}$$

$$Y_G = \frac{\sum Y_i A_i}{\sum A_i} = \frac{[(60 \times 10) \times 30 + (10 \times 7) \times 53.5 + (10 \times 3) \times (1/2) \times 58]}{(60 \times 10) + (10 \times 7) + (10 \times 3) \times (1/2)} = 33.01 \,\text{cm}$$

Calcul des sollicitations :

L'acrotère est sollicité par :

Un effort normale dû à son poids propre N = 2.11KN

Un effort normal dû à la surcharge $N_Q = 0$

Un effort dû à l'action sismique $N_F = 0$

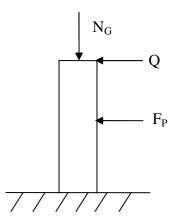


Figure III.21 : Schéma statique de l'acrotère

Les moments engendrés par ces efforts sont :

$$M_G = 0$$

$$M_Q = Q \times h = 1 \times 0.6 = 0.6 \text{ KN.m}$$

$$M_F = F_P \times Y_G = 1.01 \times 0.33 = 0.33 \text{ KN.m}$$

Combinaison d'action:

Le calcule de l'acrotère se fait à la flexion composé pour une bande de 1 ml

Tableau III.26: Les combinaisons d'actions

	RPA 99	ELU	ELS
Sollicitation	G + Q + E	1.35 G + 1.5 Q	G + Q
N(KN)	2.11	2.84	2.11
<i>M</i> (KN .m)	0.936	0.9	0.6

Ferraillage:

Le ferraillage se fait à la flexion composée

Calcul de l'excentricité:

$$e_1 = \frac{M_u}{N_u} = \frac{0.9}{2.84} = 0.32 \,\mathrm{m} \dots (1)$$

$$\frac{h}{6} = \frac{0.6}{6} = 0.1 \,\mathrm{m} \dots (2)$$

 $e_1 > \frac{h}{6} \Rightarrow$ La section est partiellement comprimé \Rightarrow le ferraillage se fait par assimilation à la

flexion simple.

La section soumise à la flexion composée doit être justifié vis-à-vis de l'état limite ultime de stabilité de forme (flambement) et de l'excentricité pour éviter le risque de flambement.

L'excentricité totale de calcul (e) sans tenir compte de l'effet du second ordre e2

$$e = e_1 + e_a$$

Avec e_1 : excentricité structurelle = 0.32 m

 e_a = excentricité accidentelle.

$$e_a = \max(2 \text{ cm}, \frac{h}{250}) \Rightarrow e_a = \max(2 \text{ cm}, \frac{60}{250}) = 2 \text{ cm}$$

$$e = 0.32 + 0.02 = 0.34 \text{ m}$$

Vérification de la condition en tenant compte de l'effet du second ordre e₂ due à la déformation

$$e_2 = \frac{3 l_f^2}{10^4 h_0} (2 + \alpha \phi)$$

Avec : l_f : Longueur de flambement $l_f = 2h = 2 \times 0.6 = 1,2 \text{ m}$

 h_0 : Hauteur de la section $h_0 = 10$ cm

lpha: Rapport du moment du premier ordre dû au charge permanente et quasi permanente au moment total du premier ordre

$$\alpha = \frac{M_G}{M_G + M_O} = \frac{0}{0 + 0.6} = 0$$

 ϕ : Rapport de déformation dû au fluage à la déformation instantanée sous la charge considérée, généralement est égale à 2.

La vérification à faire est :

$$\frac{l_f}{h_0} \le \max(15, \frac{20e_1}{h_0}) \Rightarrow \frac{l_f}{h_0} = \frac{1,2}{0.1} = 12 \le \max(15, \frac{20 \times 0.32}{0.1}) = 64$$

Donc le calcul se fait en tenant compte de l'excentricité e_2

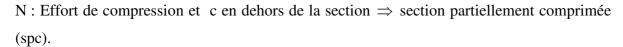
$$e_2 = \frac{3 \times 1.2^2}{0.1 \times 10^4} (2 + 0) = 0.009$$

$$e = e_1 + e_a + e_2 = 0.32 + 0.02 + 0.009 = 0.35 \text{ m}$$

Les sollicitations corrigées sont : $N_u = 2.84$ m

$$M_u = N_u \times e = 2,84 \times 0.35 = 0.994 \text{ KN.m}$$

À l'ÉLU:

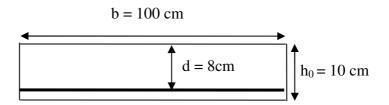

$$Nu = 2.84 \text{ KN}$$

$$Mu = 0.994 \text{ KN.m}$$

Position du centre de pression :

$$e_G = \frac{M_{uG}}{N_u} = \frac{0.994}{2.84} = 0.35 \,\mathrm{cm}$$

$$e_G = 0.35 \text{ m} > y_G = \frac{h_0}{2} = \frac{0.1}{2} = 0.05 \text{ cm} \Rightarrow (\text{ c}) \text{ à l'extérieur}$$



 $spc \Rightarrow Calcul par assimilation à la flexion simple.$

$$M_{ua} = M_{uG} + N_u \times (d - \frac{ho}{2})$$

$$M_{uA} = 1.08 \text{ KN.m}$$

$$\mu_{bu} = \frac{M_u}{b \times d^2 \times f_{bu}} \Rightarrow \mu_{bu} = \frac{1.08 \times 10^{-3}}{1 \times 0.08^2 \times 14.2} = 0.012$$

$$\mu_{bu} < \mu_{l} = 0.392 \implies A' = 0$$

$$\alpha = \frac{1 - \sqrt{1 - 2 \times \mu_{bu}}}{0.8} = 0.015$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.079 \text{ m}$$

$$A_1 = \frac{M_{uA}}{z \times f_{st}} = \frac{1.08 \times 10^{-3}}{348 \times 0.079} = 0.39 \text{ cm}^2$$

$$A = A_1 - \frac{N_u}{f_{st}} \Rightarrow A = 0.39 - \frac{2.84 \times 10^{-3}}{348} = 0.39 \text{ cm}^2$$

Soit : $4T8 = 2.01 \text{ cm}^2$

Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{fe} = 0.23 \times 1 \times 0.0.08 \times \frac{2.1}{400} = 0.97 \text{ cm}^2$$

$$A = 2.01 \,\text{cm}^2 > A_{\text{min}} = 0.97 \,\text{cm}^2$$
.....vérifiée

Armature de répartition :

$$A_r = \frac{A}{4} = \frac{2.01}{4} = 0.5 \text{ cm}^2$$

Soit : $4 \text{ T8} = 2.01 \text{ cm}^2$

L'espacement:

Armature principale:

$$S_t \le \frac{b}{3} = \frac{100}{3} = 33.3 \text{ cm}^2; \text{ soit } S_t = 30 \text{ cm}$$

Armature de répartition :

$$S_t \le \frac{h}{3} = \frac{60}{3} = 20 \text{ cm}^2$$
; soit $S_t = 20 \text{ cm}$

À l'ELS:

Les vérifications à effectue dans le cas de fissuration préjudiciable sont :

- 1. Contrainte limite de l'acier
- 2. Contrainte limite du béton

1. Contrainte limite de l'acier :

$$\sigma_{bc} = \frac{M_{ser} \times y}{\mu_t} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa} \, \sigma_s = 15 \, \frac{M_{ser}}{\mu_t} (d - y) \le \overline{\sigma}_s \quad |$$

Position de l'axe neutre :

$$e_G = \frac{M_{serG}}{N_{cor}} = \frac{0.6}{2.11} = 0.28 \text{ m}$$

$$e_G = \frac{h}{2} = \frac{0.1}{2} = 0.056 \,\mathrm{m}$$

 $e_{\scriptscriptstyle G} \succ \frac{h}{2} \Longrightarrow {\it Section partiellement comprimée}$

$$|c| = e_G - e_y \implies |c| = 0.28 - 0.05 = 0.23 \text{ m}$$

$$y_c^3 + p y_c + q = 0$$

$$P = -3c^{2} - 90\frac{A'}{b}(c - d') + 90\frac{A}{b}(d - c)$$

$$q = -2c^3 - 90\frac{A}{h}(c-d)^2 - 90\frac{A}{h}(d-c)^2$$

$$A' = 0 \Rightarrow$$

$$P = -3c^{2} + 90\frac{A}{b}(d-c) \Rightarrow P = -3 \times 0.23^{2} + 90 \times \frac{2.01 \times 10^{-4}}{1}(0.08 - 0.23) = -0.16141 \,\mathrm{m}^{2}$$

$$q = -2c^{3} - 90\frac{A}{b}(d-c)^{2} \implies q = -2 \times 0.23^{3} - 90 \times \frac{2.01 \times 10^{-4}}{1}(0.08 - 0.23)^{2} = -0.02474 \,\mathrm{m}^{3}$$

$$y_c^3 - 0.15761 \ y_c - 0.02440 = 0$$

$$0 \le y = y_c + c \le h \Rightarrow -c \le y_c \le h - c \Rightarrow -0.23 \le y_c \le -0.13$$

$$y_c = -0.22 \text{ m}$$

$$y = -0.22 + 0.23 = 0.01$$
m

$$\mu_t = \frac{b y^2}{2} + 15 A'(c - d') - 15 A(d - y)$$

$$\mu_t = \frac{1 \times 0.01^2}{2} - 15 \times 2.01 \times 10^{-4} (0.08 - 0.01) = -1.61 \times 10^{-4} \,\mathrm{m}^3$$

$$\sigma_{bc} = \frac{0.6 \times 10^{-3} \times 0.01}{-1.61 \times 10^{-4}} = -0.037 \text{ MPa} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

Fissuration nuisible $\Rightarrow \frac{\sigma}{\sigma_s} \le \min(\frac{2}{3} \times f_e, 150 \times \eta) = 201.6 \text{ MPa}$

$$\sigma_s = 15 \times \frac{2.11 \times 10^{-3}}{-1.61 \times 10^{-4}} (0.08 - 0.01) = -13.76 \text{ MPa} \le \overline{\sigma}_s = 201.6 \text{ MPa}$$

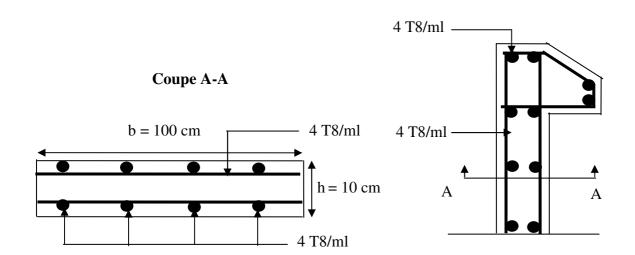


Figure III.22: Schéma de ferraillage de l'acrotère

III.4: ETUDE DES ESCALIERS:

III.4.1: Escalier a deux volée

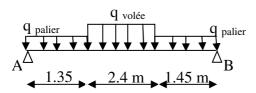


Fig.III.23: schéma de chargement

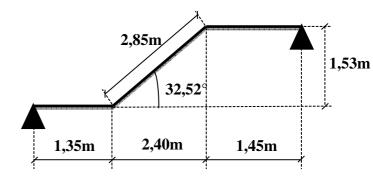


Fig. III.24: Schéma de la coupe de l'escalier

e = 15 cm.(épaisseur de la paillasse)

 $G_v = 9.172 \text{ KN/m}^2$ (charge permanente sur la volée

 $G_p = 5.35 \text{ KN/m}^2$ (charge permanente sur le palier

 $Q_{v,p} = 2.5 \text{ KN/m}^2 \text{ (Charge d'exploitation)}$

a.1) Calcul à l'ELU:

$$q_v = 1.35G_v + 1.5Q_v = 1.35 \times 9.172 + 1.5 \times 2.5 = 16.12KN/ml$$

 $q_p = 1.35G_p + 1.5Q_p = 1.35 \times 5.5.35 + 1.5 \times 2.5 = 10.97KN/ml$

• Les sollicitations :

Les sollicitations sont calculées par la méthode RDM, les résultats trouvés sont les suivant :

- Réactions
$$\begin{cases} R_A=33.19KN. \\ R_B=32.94KN. \end{cases}$$

- Efforts internes

$$M_{t}^{max} = 44.37 \text{ KN.m}$$

 $V_{t}^{max} = 33.19 \text{ KN}$

D'où le moment en travée et en appui suivant :

$$M^{t} = 0.75 M^{max}_{t} = 0.75 *44.37 = 33.28 KN.m$$

 $M^{A} = -0.5 M^{max}_{t} = -0.5 *44.37 = -22.18 KN.m$

Ferraillage:

-Armatures principales:

Tab.III.27: Ferraillage de la volée de l'escalier

Localisation	M (KN.m)	μ_{bu}	α	z (m)	A calculée (cm ²)	A adoptée (cm ²)
En travée	33.28	0.139	0.187	0.120	7.95	8T12 = 9.05
En appui	-22.18	0.092	0.121	0.123	5.15	8T10 = 6.28

-Les armatures de répartition :

En travée:
$$A_r = \frac{A_s}{4} = \frac{9.05}{4} = 2.26 cm^2 / ml$$

Soit :
$$A_r = 5HA8/ml = 2.51cm^2/ml$$
 St=20cm

En appuis

$$A_r^t = \frac{A_t}{4} = \frac{6.28}{4} = 1.57cm^2$$

Soit $A_r^a = 5HA8/ml = 2.51cm^2 \rightarrow S_t = 20cm$

• Vérifications diverse :

a) Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{fe} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.56 \text{ cm}^2$$

En travée : $A_t = 9.05 \text{ cm}^2 > A_{min} = 1.56 \text{ cm}^2$ vérifiée

En appuis : $A_a = 6.28 \text{ cm}^2 > A_{min} = 1.56 \text{ cm}^2$ vérifiée

b) Vérification de l'effort tranchant :

$$\tau_{bu} = \frac{V_u}{h \times d} = \frac{33.19 \times 10^{-3}}{1 \times 0.13} = 0.25 \,\text{MPa}$$

La Fissuration est peu nuisible donc:

$$\overline{\tau_{bu}} = \min(0.13 \times f_{c28}, 4 \text{ MPa}) = 3.25 \text{ MPa}$$

$$\tau_{bu} = 0.25 \text{ MPa} < \overline{\tau}_{bu} = 3.25 \text{ MPa} \rightarrow \text{ Pas de risque de cisaillement}$$

c) <u>Vérification des armatures longitudinales vis-à-vis de l'effort tranchant:</u>

$$A_l \ge \frac{1.15 \times V_u}{f_e}$$
 Avec: $A_l = (9.05 + 6.28) \text{cm}^2$

$$A_1 = 15.33 \text{ cm}^2 \ge 1.15*33.19*10^{-3} / 400 = 0.95 \text{ cm}^2$$
 vérifiée

d) Espacement des armatures :

- Armatures longitudinales :

$$S_t = 12cm \le min (3 e, 33cm) = 33cm$$

- Armatures transversales:

$$S_t = 20cm \le min (4 e, 45cm) = 45cm$$

e) Vérification des contraintes dans le béton :

La fissuration est peu nuisible donc la vérification à faire est :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$q_v = G_v + Q_v = 9.172 + 2.5 = 11.67 \text{KN/ml}$$

$$q_p = G_p + Q_p = 5.35 + 2.5 = 7.85 \text{KN/ml}$$

Apres calcul, on trouve:

$$R_{B} = 23.72 \text{ KN}$$

$$M^{\text{max}} = 32.03 \text{ KN.m}$$

$$V^{\text{max}} = 30.22 \text{KN}$$

$$M^{t}_{\text{ser}} = 27.23 \text{ KN.m}$$

$$M^{a}_{\text{ser}} = 12.81 \text{ KN.m}$$

$$\frac{b \times y^{2}}{2} + 15(A_{s} + A_{s}^{'}) \times y - 15 \times (d \times A_{s} + d^{'} \times A_{s}^{'}) = 0$$

$$I = \frac{b_{0} \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s}^{'} \times (y - d^{'})^{2} \right]$$

 $R_A = 23.91 \text{ KN}$

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tab.III.28 : Vérification des contraintes

Localisation	M _{ser} (KN.m)	I (cm ⁴)	Y (cm)	σ_{bc} (MPa)	σ_{bc} (MPa)
Appuis	12.81	9758.9	4.09	5.37	15
Travées	27.23	12812	4.73	10.06	15

f) <u>Vérification de la flèche : (CBA93.art(B.6.5.3))</u>

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3) \end{cases}$$

$$\frac{h}{L} = \frac{15}{490} = 0.03 < \frac{1}{16} = 0.0625$$
.....condition non vérifié

La première condition n'est pas vérifiée, alors il faux calculer la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

Pour une portée inférieur à 5m, la flèche admissible : $f_{adm} = \frac{490}{500} = 0.98 \,\mathrm{cm}$

$$\rho = \frac{A_s}{b_0.d} = \frac{9.05}{10 \times 13} = 0.069$$

$$y = 4.73 cm$$
, $I = 12811.8 cm^4$; $\rho = 0.0069 \lambda_i = 3.043$; $\lambda_v = 1.210$

Tableau III.29 : calcul de la flèche, escalier.

M _{jser} (KN.m)	$\mu_{\scriptscriptstyle j}$	f_{ji} (mm)
14.88	0.395	1.161
M _{gser} (KN.m)	$\mu_{_g}$	$f_{gi}\left(mm ight)$
20.85	0.520	1.909
M _{pser} (KN.m)	μ_{p}	f_{pi} (mm)
27.23	0.607	2.748
M _{pser} (KN.m)	$\mu_{\scriptscriptstyle g}$	$f_{gv}(\mathrm{mm})$
27.23	0.520	3.620

$$\Delta f_{t} = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 0.329 \, cm$$

$$f_{adm} = \frac{l}{500} = \frac{490}{500} = 0.98 \, cm$$

$$\Rightarrow \Delta f_{t} < f_{adm}$$
 Vérifier

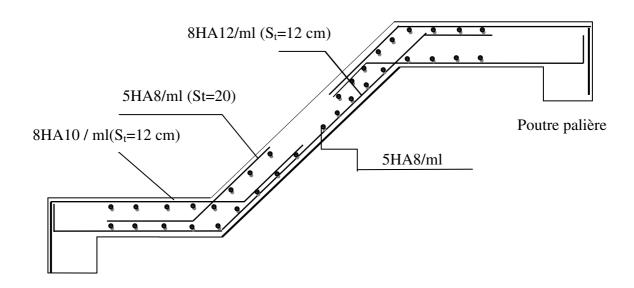


Figure : III.25: Schéma de ferraillage des escaliers

III. 4.2 : Etude de la poutre palière

Cette poutre est soumise à son poids propre, aux charges transmises sous effort tranchants qu'on calcul à la flexion simple et aux moments de torsion qu'on calcul à la torsion.

Dimensionnement

Condition de la flèche :

$$\frac{L}{15} \le h \le \frac{L}{10} \Rightarrow 20 \le h \le 30cm$$

$$\begin{cases} b \ge 20cm \\ h \ge 30cm \\ \frac{1}{4} \le \frac{h}{b} \le 4 \end{cases}$$

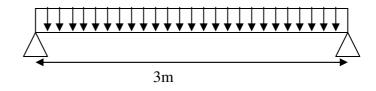


Figure III.26 : Schéma statique du la poutre palière

(RPA.VII.7.5)

On prend: h=30cm; b=30cm.

Les charges sur la poutre

 g_0 : Poids propre de la poutre

$$g_0 = 0.3^2 \times 25 = 2.25KN/m$$

Poids propre du mur : $g_m = 2.85 \times \left(\frac{3.06 - 0.3}{2}\right) = 3.933 KN / ml$

Les sollicitations de la poutre palière

Tab.III.30: Les sollicitations de la poutre palière.

ELU	ELS
$R_B = 32.94 \text{KN}$	$R_B = 23.72 \text{KN}$
$P_u = 1.35 (g_0 + g_m) + R_B$	$P_s = (g_0 + g_m) + R_B$
$P_u = 41.28$ KN/m	$P_s = 29.90 \text{KN/m}$
$M_0 = \frac{P_u \times L^2}{8} = 46.44 \text{KN.m}$	$M_0 = \frac{P_s \times L^2}{8} = 33.63 \text{KN.m}$
$M' = 0.85M_0 = 39.47 KN.m$	$M^{t} = 0.85 M_{0} = 28.58 KN.m$
$M^a = -0.5M_0 = -23.22.KN.m$	$M^a = -0.5M_0 = -16.81.KN.m$
$V_u = \frac{P_u \times L}{2} = 61.92 KN$	$V_s = \frac{P_s \times L}{2} = 44.85KN$

III. 4.2.1 : Ferraillage de la poutre palière en flexion simple

b = 30cm

$$h = 30cm d = 27cm$$

$$f_{C28} = 25 Mpa$$

$$f_{bu} = 14,2Mpa$$

$$f_{st}$$
=400Mpa

On résume les calculs dans le tableau ci après :

Tableau III.31: Calcul des armatures principales

Elément	Moment (KN.m)	$\mu_{\scriptscriptstyle bu}$	α	Z (m)	$A_{flex}^{cal}(cm^2)$	$A \min(cm^2)$
Travée	39.47	0.127	0.170	0.251	4.51	4.5
Appui	23.22	0.074	0.097	0.259	2.05	4.5

Exigence du RPA Art7.5.2.1:

$$A_{\min} = 0.5\% \text{ b} \times \text{h} \Rightarrow A_{\min} = 4.5 \text{cm}^2$$

On ferraille avec la section calculé.

Soit on travée :
$$A^t = 3HA12 + 3HA10 = 5.75 \text{ cm}^2$$

Remarque: la section calculée pour les appuis est inférieur à la section minimale, Alor on ferraille les appuis avec Amin.

$$A^a = 3HA12 + 3HA10 = 5.75 \text{ cm}^2$$

Vérification à l'ELU

• l'effort tranchant

$$\tau_{U} = \frac{61.92 * 10^{-3}}{0.3 * 0.27} = 0,76MPa$$

$$\tau_{U} = 0,76MPa < \overline{\tau_{U}} = 3,25....(V\acute{e}rifi\acute{e}e).$$

• Calcul de l'espacement St

$$S_t \le \min(0.9d, 40cm) \Rightarrow S_t \le 24.3.$$

On adopte :
$$\begin{cases} St=15cm & en travée \\ St=10cm & en appui \end{cases}$$

• Calcul des armatures transversales à la flexion simple

$$\phi \le \min(\frac{h}{30}; \frac{b}{10}; \phi_l^{\min}) \Rightarrow \phi \le 8.57mm$$
; On prend S_t=15cm
$$A_t \ge b \times S_t \times (\tau_u - 0.3 \times f_{tj}) / 0.8 \times 400 = 0.3 \times 0.15 \times (0.76 - 0.3 \times 2.1) / 0.8 \times 400$$

$$A_t \le 0$$

$$A_t \ge 0.4 \times b \times S_t / 400 = 0.4 \times 0.3 \times 0.15 / 400$$

$$A_{t} \ge 0.45$$

On adopte $A_t=0.5$ cm²

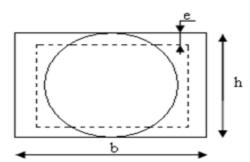
⇒l'effort tranchant n'a aucune influence sur les armatures transversales.

Donc soit un cadre $\phi 8 \Rightarrow A_t = 1.01 \text{ cm}^2$.

III. 4.2.2: Calcul de la section d'armature a la torsion

Le moment de torsion provoquer sur la poutre palière est transmis parle palier et la volée C'est le moment d'appui de l'escalier

$$M^{tortion} = M_b^a = 22.185 KN.m$$


Pour une section pleine on remplace la section réelle par une section creuse équivalente dont l'épaisseur de la paroi est égale au sixième du diamètre du cercle qu'il est possible d'inscrire dans le contour de la section

- U : périmètre de la section
- Ω : air du contour tracer ami hauteur
- e : épaisseur de la paroi
- A₁: section d'acier

$$\Omega = (b - e) \times (h - e)$$

$$e = \frac{b}{6} = \frac{30}{6} = 5cm$$

$$\Omega = (0.30 - 0.05) \times (0.30 - 0.05) = 0.0625 \, m^2$$

$$U = 2 \times [(b-e) + (h-e)]$$

$$U = 2 \times [(0.30 - 0.05) + (0.30 - 0.05)] = 1m$$

Figure III.27 : Section creuse équivalente

$$Al = \frac{M_{Tu} \times U \times \gamma_s}{2 \times \Omega \times f_e} = 5.86cm^2$$

- Section d'armatures finale

•En travée

Soit:
$$A^t = A_{flexion} + \frac{A_{Torsion}}{2} \Rightarrow A^t = 4.51 + \frac{5.86}{2} \Rightarrow A^t = 7.44 \text{cm}^2 > A_{min} = 4.5 \text{cm}^2$$

On ferraille avec A_t, Soit : $A^t = 4HA16 = 8.04cm^2$

•En appui

$$A^a = A_{flexion} + \frac{A_{Torsion}}{2} \Rightarrow A^a = 2.05 + \frac{5.86}{2} \Rightarrow A^a = 4.97 \text{cm}^2 > A_{min} = 4.5 \text{cm}^2.$$

On ferraille avec A_{min} , Soit : $A^a = 4HA14 = 6.16 \text{ cm}^2$

• Vérification de la contrainte de cisaillement : $\tau_u < \overline{\tau_u}$

On a
$$V_{\text{max}}$$
= 61.92 KN; $\tau_{flexion}$ = 0.76 MPa

$$\tau_{torsion} = \frac{M_{Tu}}{2 \times \Omega \times e} = \frac{22.18 \times 10^{-3}}{0.0625 \times 2 \times 0.05} = 3.05 MPa$$

D'où
$$\tau_u = 3.14 Mpa < \overline{\tau}_u = \min(0.2 f_{c28}; 5 Mpa) = 3.25 Mpa$$
.....Condition vérifiée

Calcul des armatures transversales a la torsion

Soit St=15cm en travée et 10cm en appuis

$$A_t^{\mathrm{min}} = 0.003 \times S_t \times b = 0.003 \times 15 \times 30 \Rightarrow A_t^{\mathrm{min}} = 1.35 cm^2$$

$$A_{t} = \frac{M_{Tu} \times St \times \gamma_{s}}{2 \times \Omega \times f_{s}} = \frac{22.18 \times 10^{-3} \times 15 \times 10^{-2} \times 1.15}{2 \times 0.0625 \times 348} \Rightarrow A_{t} = 0.65cm^{2}$$

D'ou $A_t = 1.35 \text{ cm}^2$; on choisit $A_T = 1 \text{ cadre} \% 8 \text{ et une épingle } \% 8 = 2.01 \text{ cm}^2$

❖ Vérification à l'ELS

Etat limite de compression du béton

La fissuration est peu nuisible donc il faut juste vérifier que la contrainte de compression du béton est inferieur au égale à la contrainte admissible du béton. $\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma_{bc}}$

Les résultats sont récapitulés dans le tableau suivant :

Tableau III.32 : Vé	erification des	contraintes à l'E.L.S	ì
----------------------------	-----------------	-----------------------	---

Elément	M_{ser} (KN.m)	y(cm)	I (cm ⁴)	σ_{bc} (MPa)	$-\frac{}{\sigma_{bc}}$ (MPa)	_
Travée	28.58	11.51	48042.02	6.54	15	$\sigma_{bc} < \sigma_{bc}$ vérifiée
Appui	16.81	10.40	39870.46	4.38	15	vermee

- État limite de déformation
- Vérification de la flèche

La vérification de la flèche est nécessaire si l'un des conditions suivantes n'est pas satisfait :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3) \end{cases}$$

Tab.III.33: vérification des conditions de la flèche

Condition(1)	Condition(2)	Condition(3)
0.1≥0.0625	0.1≥0.084	0.009≤0.0105
vérifiée	vérifiée	vérifiée

Les trois conditions sont vérifiées donc la vérification de la flèche n'est pas nécessaire.

.Schéma de ferraillage de la poutre palière

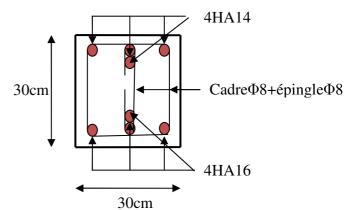


Figure III.28 : Ferraillage de la Poutre palière

III.5 : Etude des poutres de chainages :

III.5.1 Définition

Les poutres de chaînages sont des poutres en béton armé horizontales elles ceinturent les façades à chaque étage au niveau du plancher pour les rendre solidaires à la structure, elles servent de porte à faux.

Type 1:

III.7.2 Dimensionnement:

$$L_{\text{max}} = 4.8m$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \Rightarrow 32cm \le h \le 48cm \text{ Condition de flèche (RPA (Art 9.3.3))}$$

 $h \ge 30cm$; $b \ge 20cm$

On adopte : h = 35 cm ; b = 30 cm.

Calcul des sollicitations :

La poutre de chaînage est considérée comme étant simplement appuyée, soumise à une charge répartie due à son poids propre et au poids propre du mur.

- Poids propre : $G_p=25\times0,35\times0,30=2.62KN/m$.
- Poids du mur : $G_{mur} = 2.85 \times (3.06-0.35) = 7.72 \text{KN/m}$

$$Pu = 1.35 \times (2.62 + 7.72) = 13.96 \text{ KN/m}$$

$$Ps = 2.62 + 7.72 = 10.34 \text{ KN/m}$$

Calcul à l'E.L.U:

$$M_u = P_u \frac{L_{\text{max}}^2}{8} \Rightarrow M_u = 40.2 \text{ KN.m}; \quad M_t = 0.85 M_u \Rightarrow M_t = 34.17 \text{KN.m};$$

$$M_a = -0.5M_u = -20.1KN.m$$

• Ferraillage:

Le calcul des armatures se fait à la flexion simple et les résultats sont résumés dans le Tableau suivant :

Mu α Z $A_{\varsigma}calcul\acute{e}$ A_sadopté A_{min} μ_{bu} (KN.m) (m) (cm^2) (cm^2) (cm^2) 3HA12=3.39 En travée 34.17 0.078 0.102 0.306 3.20 1.15 3HA12=3.39 En appui 20.1 0.046 0.058 0.312 1.85 1.15

Tableau III.34: Section d'armatures longitudinales de la poutre de chainage 1.

Vérifications à l'E.L.U

✓ Effort tranchant

✓ Calcul des armatures transversales :

$$\phi_t \le \min(\frac{h}{35}; \frac{b}{10}; \phi_t) \Rightarrow \phi_t \le 10mm$$

Soit un cadre HA8 plus un étrier HA8 $\Rightarrow A_t = 4HA8 = 2.01cm^2$

✓ L'espacement : (CBA Art A.5.1.2.3)

1) St \leq \text{min (0.9d, 40cm)} \Rightarrow St \leq 28.8cm
2)
$$S_t \leq \frac{A_t \times 0.8 f_e}{b \ (\tau_u - 0.3 f_{t28})} \Rightarrow S_t \leq \frac{1.01 \times 0.8 \times 400}{30(0.348 - 0.3 \times 2.1)} \Rightarrow S_t \leq 0$$

3) $S_t \leq \frac{A_t \times f_e}{0.4 \times b} \Rightarrow S_t \leq \frac{1.01 \times 400}{0.4 \times 30} \Rightarrow S_t \leq 33.66cm$.

Le RPA2003 [1] exige un espacement St \leq min (h; 25cm) = 25 cm,On prend St =15cm

Vérification à l'E.L.S

Vérification de la contrainte dans le béton :

$$M_S = 29.77KN.m.$$

 $M_t^s = 0.85 \times M_S = 25.31KN.m$
 $M_a^s = 0.5 \times M_S = -14.88KN.m$

	M _{ser} (KN.m1)	y (cm)	I (cm ⁴)	σ_{bc} (MPa)	σ _{bc} adm (MPa)
Travée	25.3	8.85	34183.2	6.55	15
Appuis	14.88	7.58	25465.5	4.42	15

Tableau III.35: Résultats de calcul des contraintes de béton

Etat limite de déformation :

• Evaluation de la flèche

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots & \dots & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots & \dots & \dots & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots & \dots & \dots & \dots & \dots \end{cases}$$
(3)

• Tab.III.36 : vérification des conditions de la flèche

Condition(1)	Condition(2)	Condition(3)
0.072 \ge 0.0625	0.072 \ge 0.062	0.0035 \le 0.0105
vérifiée	vérifiée	vérifiée

Les trois conditions sont vérifier implique que la vérification de la flèche n'est pas nécessaire.

- Schéma de ferraillage de la poutre de chainage 1 :

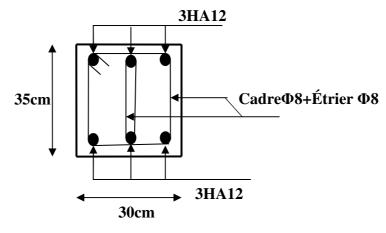


Figure III.29 : Ferraillage de la Poutre de chainage 1

Type 2:

III.7.2 Dimensionnement:

$$L_{\text{max}} = 4.65m$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \Rightarrow 31cm \le h \le 46.5cm \text{ Condition de flèche (RPA (Art 9.3.3))}$$

 $h \ge 30cm$; $b \ge 20cm$

On adopte : h = 35 cm; b = 30 cm.

Calcul des sollicitations :

La poutre de chaînage est considérée comme étant simplement appuyée, soumise à une charge répartie due à son poids propre et au poids propre du mur.

- Poids propre : $G_p=25\times0,35\times0,30=2.62$ KN/m.
- Poids du mur : $G_{mur} = 2.85 \times (3.06-0.35) = 7.72 \text{KN/m}$

$$Pu = 1.35 \times (2.62 + 7.72) = 13.96 \text{ KN/m}$$

$$Ps = 2.62 + 7.72 = 10.34 \text{ KN/m}$$

Calcul à l'E.L.U:

$$M_u = P_u \frac{L_{\text{max}}^2}{8} \Rightarrow M_u = 37.73 \text{ KN.m}; \quad M_t = 0.85 M_u \Rightarrow M_t = 32.07 \text{ KN.m};$$

$$M_a = -0.5M_u = -18.86KN.m$$

• Ferraillage:

Le calcul des armatures se fait à la flexion simple et les résultats sont résumés dans le Tableau suivant :

Tableau III.37: Section d'armatures longitudinales de la poutre de chainage 2.

	Mu (KN.m)	$\mu_{\scriptscriptstyle bu}$	α	Z (m)	A_s calculé (cm^2)	A_{\min} (cm^2)	$A_s adopt \acute{e}$ (cm^2)
En travée	32.07	0.073	0.095	0.307	3	1.15	3HA12=3.39
En appui	18.86	0.043	0.054	0.312	1.73	1.15	3HA12=3.39

Vérifications à l'E.L.U

✓ Effort tranchant

$$\tau_u = \frac{V_u}{b \times d} = 0.338 \text{ MPa; Avec V}_u = 32.45 \text{ KN}$$

$$\overline{\tau}_u = \min \left(\frac{0.2}{v_E} f_{C28}; 5MPa \right) = 3.33MPa \quad \Rightarrow \tau_u < \overline{\tau}_u \dots \quad \text{c'est v\'erifi\'e}$$

✓ Calcul des armatures transversales :

$$\phi_t \le \min(\frac{h}{35}; \frac{b}{10}; \phi_t) \Rightarrow \phi_t \le 10mm$$

Soit un cadre HA8 plus un étrier HA8 $\Rightarrow A_t = 4HA8 = 2.01cm^2$

✓ L'espacement : (CBA Art A.5.1.2.3)

1) St \leq \text{min (0.9d, 40cm)} \Rightarrow St \leq 28.8cm

2)
$$S_t \leq \frac{A_t \times 0.8 f_e}{b \ (\tau_u - 0.3 f_{t28})} \Rightarrow S_t \leq \frac{1.01 \times 0.8 \times 400}{30(0.338 - 0.3 \times 2.1)} \Rightarrow S_t \leq 0$$

3) $S_t \leq \frac{A_t \times f_e}{0.4 \times b} \Rightarrow S_t \leq \frac{1.01 \times 400}{0.4 \times 30} \Rightarrow S_t \leq 33.66cm$.

Le RPA2003 exige un espacement $St \le min(h; 25cm) = 25 cm$, On prend St = 15cm

Vérification à l'E.L.S

Vérification de la contrainte dans le béton :

$$M_S = 27.94KN.m.$$

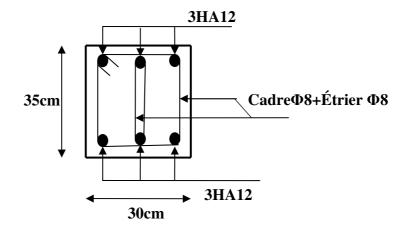
 $M_t^s = 0.85 \times M_S = 23.75KN.m$
 $M_a^s = 0.5 \times M_S = -13.97KN.m$

Tableau III.38 : Résultats de calcul des contraintes de béton

	M _{ser} (KN.m1)	y (cm)	I (cm ⁴)	σ_{bc} (MPa)	σ_{bc}^{adm} (MPa)
Travée	23.75	8.85	34183.2	6.14	15
Appuis	13.97	7.58	25465.5	4.15	15

Etat limite de déformation :

• Evaluation de la flèche


$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3) \end{cases}$$

• Tab.III.39 : vérification des conditions de la flèche

Condition(1)	Condition(2)	Condition(3)
0.075\ge 0.0625	0.075\ge 0.062	0.0035 \le 0.0105
vérifiée	vérifiée	vérifiée

Les trois conditions sont vérifier implique que la vérification de la flèche n'est pas nécessaire.

- Schéma de ferraillage de la poutre de chainage 2 :

Figure III.30 : Ferraillage de la Poutre de chainage 2

III.6 : Étude de l'Ascenseur :

L'ascenseur est un appareille mécanique, servant à déplacer verticalement des personnes ou chargements vers les différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique qui permet de déplacer la cabine.

Dans notre bâtiment on adopte pour un ascenseur de 8 personnes ayant les caractéristiques suivantes :

La cours maximale = 32.8 m

DM: La charge due à l'ascenseur = 82 KN

PM: La charge due à la machine = 15 KN

FC: Poids de la cuvette = 102 KN

La vitesse minimale = 1 m/s

Les dimensions de la cabine BK \times TK \times HK= (110 \times 140 \times 220) cm³

Les dimensions de la gaine : BS = 1 = 180cm

$$TS = L = 210cm$$

III.6.1: Étude de la dalle pleine du locale des machines :

III.6.1.1 : Cas de charges uniformément réparties :

III.6.1.1.1Évaluation des charges et surcharge :

• La dalle reprend des charges importantes, alors on prend une épaisseur e = 15 cm

La charge nominale = 6.3 KN

$$P = PM + DM + charge nominale = 15 + 82 + 6.3 = 103.3 KN$$

• Poids propre de la dalle et des revêtements :

On a un revêtement en béton d'épaisseur (e = 5 cm)

$$\rho = \frac{L_x}{L_y} \Rightarrow \rho = \frac{1.55}{2.10} = 0.74 > 0.4 \Rightarrow \text{La dalle porte dans les deux sens.}$$

$$G = 25 \times 0.15 + 22 \times 0.05 = 4.85 \text{ KN/m}^2$$
; $Q = 1 \text{ KN/m}^2$

$$q_u = 1.35G + 1.5Q = 1.35 \times 4.85 + 1.5 \times 1 = 8.05 \text{ KN/m}$$

$$q_s = G + Q = 4.85 + 1 = 5.85$$
KN/m

III.6.1.1.2 Calcul des sollicitations :

• Calcul à l'ELU : (v = 0)

$$\begin{cases} \mu_x = 0.0633 \\ \mu_y = 0.4938 \\ \text{ANNEXE I} \end{cases}$$

$$M_x = \mu_x q_\mu L^2_x \Rightarrow M_x = 0.0633 \times 8.05 \times 1.55^2 = 1.22 \text{ KN.m}$$

$$M_{v} = \mu_{v} M_{x} \Rightarrow M_{v} = 0.4938 \times 1.22 = 0.60 \text{KN.m}$$

***** Moment en travées :

$$M_t^x = 0.85 M_x = 0.85 \times 1.22 = 1.04 \text{ KN.m}$$

$$M_t^y = 0.85 M_y = 0.85 \times 0.6 = 0.51 \text{ KN.m}$$

❖ Moment en appuis :

$$M_a^x = M_a^y = -0.5 M_x = -0.5 \times 1.22 = -0.61 \text{ KN.m}$$

• Calcul à l'ELS : (v = 0.2)

$$\Rightarrow \begin{cases} \mu_x = 0.0696 \\ \mu_y = 0.6315 \end{cases} \quad \textbf{ANNEXE I}$$

$$M_x = \mu_x q_s L_x^2 = 0.98$$
KN.m

$$M_{v} = \mu_{v} M_{x} = 0.62$$
KN.m

✓ Moment en travées :

$$M_t^x = 0.85 M_x = 0.83$$
 KN.m

$$M_t^y = 0.85 M_y = 0.53 \text{ KN.m}$$

✓ Moment en appuis :

$$M_a^x = M_a^y = -0.5 M_x = -0.49$$
 KN.m

III.6.1.1.3 ferraillage:

Le ferraillage se fait à la flexion simple pour une bande de 1ml

Le diamètre des barres utilisées doit être : $\phi \le \frac{h}{10} \Rightarrow \phi \le \frac{20}{10} = 2 \text{ cm}$

Tableau III.40 : Résultats de ferraillage de la dalle du locale machines

Localisation	M _t (KN.m)	M _a (KN.m)	A _t calculée (cm²/ml)	A _a calculée (cm²/ml)
Sens xx	1.04	-0.61	0.23	0.13
Sens yy	0.51	-0.61	0.11	0.13

III.6.1.1.4 Vérifications:

• l'ELU:

Vérification de la condition de non fragilité :

Pour h > 12 cm et
$$\rho \ge 0.4$$

✓ Sens xx:
$$A_x \ge \rho_0 \left(\frac{3-\rho}{2}\right) b h$$

$$A_x = 0.23 \text{ cm}^2 < A_{min} = 1.35 \text{ cm}^2$$
 n'est pas vérifiée

$$\checkmark$$
 Sens yy: $A_y \ge \rho_0 bh$

$$A_y = 0.11 \text{ cm}^2 < A_{min} = 1.2 \text{ cm}^2 \dots$$
 n'est pas vérifiée

Remarque:

La condition de non fragilité n'est pas vérifier implique quand doit ferraillé avec $A_{min.}$ Les sections adopté en travée et en appuis sont :

4HA8 selon le sens X	4HA8 selon le sens Y
$Ax = 2.01 \text{cm}^2/\text{ml}$	$Ay = 2.01 \text{ cm}^2/\text{ml}$

Espacement des armatures :

Armatures // L_x : $S_t = 25$ cm \leq min (3 h, 33 cm) = 33cm...vérifiée

Armatures // Ly : $St = 25 \text{ cm} \le \min (4 \text{ h}, 45 \text{ cm}) = 45 \text{cm}...\text{vérifiée}$

❖ l'effort tranchant :

On doit vérifier que :
$$\tau_{u} = \frac{v_{u}^{max}}{b \times d} \le \tau_{adm} = 0.05 \text{ f}_{c28} = 1.25 \text{ MPa}$$

$$\rho > 0.4 \rightarrow$$

$$V_{u}^{x} = \frac{(p_{u} \times l_{x})}{2} \times \frac{l_{y}^{4}}{(l_{x}^{4} + l_{y}^{4})} = 4.15Kn$$

$$V_{u}^{y} = \frac{(p_{u} \times l_{y})}{2} \times \frac{l_{x}^{4}}{(l_{x}^{4} + l_{y}^{4})} = 4.55Kn$$

$$\tau_u = \frac{v_u^{max}}{b \times d} = 0.45 \text{MPa} < \tau_{adm} = 0.05 \text{ f}_{c28} = 1.25 \text{ MPa...vérifiée}$$

• l'ELS:

***** État limite de compression du béton :

La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

On a:
$$q_s = G + Q = 5.85 \text{ KN/m}$$

Sens x-x:
$$A_x$$
=2.01 cm^2 b =100 cm d =12 cm

$$\frac{b}{2} \times y^2 + 15 \times A_s \times y - 15 \times A_s \times d = 0 \implies y = 2.4cm.$$

$$I = \frac{b \times y^3}{3} + 15 \times A_s \times (d - y)^2 = 2339.42cm^4$$

$$\sigma_{bc} = \frac{Mt_{ser} \times y}{I} = 0.52\text{MPa} < 15 \text{ MPa} \dots \text{ Vérifier}$$
Sens y-y: $A_y = 2.01cm^2$ y = 2.4cm; $I = 2339.42cm^4$

$$\sigma_{bc} = \frac{Mt_{ser} \times y}{I} = 0.52\text{MPa} < 15 \text{ MPa} \dots \text{ Vérifiée}$$

III.6.1.2 Cas de charges concentrées :

La charge P qui s'applique sur la dalle sur une surface d'impact $(a_0 \times b_0)$ agit sur une aire

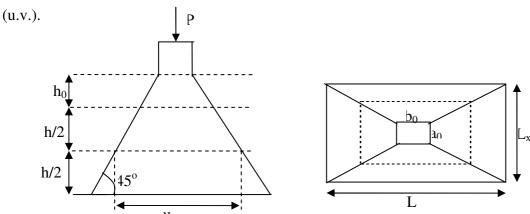


Figure III.31 :Schéma de l'ascenseur

III.6.1.2.1 Calcul du rectangle d'impact (u,v) :

$$u = a_0 + h_0 + 2\xi h$$
$$v = b_0 + h_0 + 2\xi h$$

Avec: a₀ et u: dimension // à L_x

b₀ et v : : dimension // à L_v

(a₀×b₀) surface de la charge concentrée

h : Epaisseur du revêtement

 ξ : Coefficient qui dépend du type de revêtement (cas de béton armé ξ =1)

$$(a_0 \times b_0) = (80 \times 80) \text{ cm}^2$$

$$u = 80 + 15 + 2 \times 1 \times 5 = 105cm$$

$$v = 80 + 15 + 2 \times 1 \times 5 = 105cm$$

III.6.1.2.2: Calcul des moments selon le BAEL 91:

$$M_r = (M_1 + v M_2)q$$

$$M_v = (M_2 + v M_1) q v$$
: coefficient de poisson

$$\begin{cases} v = 0 \text{ à l' ELU} \\ v = 0.2 \text{ à l' ELS} \end{cases}$$

 M_1 et M_2 : sont des valeurs lues à partir des tables de **PIGEAUD**

❖ Calcul à l'ELU:

$$\rho = \frac{L_x}{L_y} \rightarrow \rho = 0.74 > 0.4 \rightarrow \text{La dalle porte dans les deux sens}$$

✓ Moment engendrés par le système de levage :

$$\frac{u}{L_{x}} = 105/155 = 0.7$$

$$\frac{v}{L_{y}} = 105/210 = 0.5 \quad v = 0 \rightarrow \begin{cases} M_{1} = 0.097 \\ M_{2} = 0.030 \end{cases}$$
 Annexe II
$$On \text{ a:G} = 103.3 \text{ KN}$$

$$q_{u} = 1.35\text{G} = 139.45\text{KN}$$

$$M_{x1} = 0.097 \times 139.45 = 13.53\text{KN.m}$$

✓ Moment dû aux poids propre de la dalle :

 $M_{v1} = 0.030 \times 139.45 = 4.18$ KN.m

$$M_{w2} = 1.22$$
KN.m

$$M_{y2} = 0.60 \text{KN.m}$$

✓ La superposition des moments :

$$M_x = M_{x1} + M_{x2} = 13.53 + 1.22 = 14.75 \text{ KN.m}$$

 $M_y = M_{y1} + M_{y2} = 4.18 + 0.6 = 4.78 \text{ KN.m}$

✓ Moment en travées :

$$M_t^x = 0.85 \times M_x = 12.54$$
KN.m

$$M_t^y = 0.85 \times M_v = 4.06 \text{ KN.m}$$

✓ Moment en appuis :

$$M_a^x = -0.5 \times M_x = -7.37 \text{ KN.m}$$

$$M_a^y = -0.5 \times M_v = -2.39 KN.m$$

Calcul à l'ELS : (v = 0.2)

✓ Moment engendrés par le système de levage :

$$q_{ser} = G = 103.3KN$$

$$M_{x1} = (M_1 + vM_2)q_{ser} = (0.097 + 0.2 \times 0.030) \times 103.3 = 10.64 \text{KN.m}$$

$$M_{y1} = (M_2 + vM_1)q_{ser} = (0.030 + 0.2 \times 0.097) \times 103.3 = 5.10 \text{KN.m}$$

✓ Les moments dus aux poids propre de la dalle :

$$q_{ser} = G + Q = 4.85 + 1 = 5.85 \text{ KN/m}^2$$

$$M_{x2} = \mu_x \times q_s \times L_x^2 \rightarrow M_{x2} = 0.0696 \times 5.85 \times 1.55^2 = 0.98 \text{ KN.m}$$

$$M_{y2} = \mu_y \times M_{x2} \rightarrow M_{y2} = 0.6315 \times 0.98 = 0.61 \text{ KN.m}$$

✓ La superposition des moments :

Les moments agissant sur la dalle sont :

$$M_x = M_{x1} + M_{x2} = 10.64 + 0.98 = 11.62$$
 KN.m

$$M_y = M_{y1} + M_{y2} = 5.10 + 0.61 = 5.71 \text{ KN.m}$$

✓ Moment en travées :

$$M_{t}^{x} = 0.85 \times M_{x} = 0.85 \times 11.62 = 9.88 \text{ KN.m}$$

$$M_t^y = 0.85 \times M_y = 0.85 \times 5.71 = 4.85 \text{ KN.m}$$

✓ Moment en appuis :

$$M_a^x = -0.5 \times M_x = -0.5 \times 11.62 = -5.81 \text{ KN.m}$$

$$M_a^y = -0.5 \times M_y = -0.5 \times 5.71 = -2.85 \text{ KN.m}$$

III.6.1.2.3: Ferraillage:

Le ferraillage se fait à la flexion simple pour une longueur unité avec h = 15 cm, le tableau suivant résume les sections d'aciers retenus pour le ferraillage de la dalle plaine.

Tableau III.41 : Section de ferraillage de la dalle du local machines

Localisation	M_{t}	M_a	A _t calculé	A _a calculé	A _t adopté	A _a adopté
	(KN.m)	(KN.m)	(cm ² /ml)	(cm ² /ml)	(cm ² /ml)	(cm ² /ml)
Sens xx	12.54	7.37	3.10	1.82	4HA10=3.14	4HA8=2.01
Sens yy	4.06	2.39	1.00	0.58	4HA8=2.01	4HA8=2.01

III.6.1.2.4: Vérifications:

❖ l'ELU:

• Vérification de la condition de non fragilité :

Pour h >12 cm et $\rho \ge 0.4$:

✓ En travée :

$$\rightarrow$$
 Sens xx: $A_x \ge \rho_0 \left(\frac{3-\rho}{2}\right)bh$

$$A_x = 3.10$$
 cm² $\ge 0.0008 \times (3-0.74/2) \times 100 \times 15 = 1.35$ cm² vérifiée

$$\rightarrow$$
 Sens yy: $A_y \ge \rho_0 bh$

$$A_y = 1.00 cm^2 < A_{min} = 1.2 cm^2 \dots$$
 n'est pas vérifiée

La condition de non fragilité n'est pas vérifier implique quand doit ferraillé avec A_{min.}

✓ En appuis :

$$A_y = 0.58 cm^2 < A_{min} = 1.45 cm^2 \dots$$
 n'est pas vérifiée

La condition de non fragilité n'est pas vérifier implique quand doit ferraillé avec A_{min.}

• Vérification au non poinconnement :

La condition de non poinçonnement est vérifier si :

$$Q_u \leq \frac{0.045 \times U_c \times h \times f_{c28}}{\gamma_b}$$

 Q_u : Charge de calcul à l'ELU h: L'épaisseur totale de la dalle

$$U_c = 2 \times (u + v) = 420cm$$

$$Q_u$$
= 139.45 $\leq \frac{0.045 \times 4.20 \times 0.20 \times 25 \times 10^2}{1.5}$ = 630 KN.....condition vérifiée

• Vérification de la contrainte tangentielle :

Il faut vérifier que :
$$\tau_u = \frac{V_u}{b d} \le \tau^{adm} = 0.07 fc 28/\gamma b = 1.16$$

L'effort tranchant max au voisinage de la charge est :

$$u = v \rightarrow au \text{ milieu de } u : Vu = \frac{q_u}{2u+v} = \frac{q_u}{3u} = \frac{139.45}{3 \times 1.05} = 44.26 \text{ KN}$$

au milieu de v :
$$V_u = \frac{q_u}{2v + u} = \frac{q_u}{3v} = \frac{139.45}{3 \times 1.05} = 44.26 \text{KN}$$

$$\tau_{\rm u} = \frac{V_{\rm u}}{b \times d} = \frac{44.26 \times 10^{-3}}{1 \times 0.12} = 0.36 \text{ MPa} \le t^{adm} = 0.07 fc 28/\gamma b = 1.16 \text{ MPa}.....\text{vérifiée}$$

• Diamètre maximum des barres :

Il faut vérifier que :
$$\phi_{max} \le \frac{h}{10} = 1.5cm \rightarrow \phi_{max} = 12 \text{ mm} < 15 \text{ mm}$$
vérifiée

• Espacement des armatures :

- Sens xx: $S_t \le min (3 \text{ h}, 33 \text{ cm}) = 33 \text{ cm}$; Soit: $S_t = 25 \text{ cm}$.
- Sens yy: $S_t \le min (4 \text{ h}, 45 \text{ cm}) = 45 \text{ cm}$; Soit: St=25cm.

* l'ELS:

• Vérification des contraintes :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_{bc}} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

Calcul de
$$y: \frac{b}{2} \times y^2 + 15 \times (A+A') \times y - 15 \times (d \times A + d' \times A') = 0$$
 avec: A'= 0

Calcul de
$$I : I = \frac{b \times y^3}{3} + 15 \times [A \times (d-y)^2 + A' \times (y-d')^2]$$

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tableau III.42: vérification des contraintes dans le béton

Localisation	Sens	$M_{ser}(KN.m)$	A(cm ²)	Y (cm)	I(cm ⁴)	σ_{bc} (MPa)
Travée	XX	9.88	3.14	2.92	4713.12	6.12
	yy	4.85	2.01	2.40	3239.42	3.59
Appuis	/	5.81	2.01	2.40	3239.42	4.30

Schéma de ferraillage de la dalle du locale des machines :

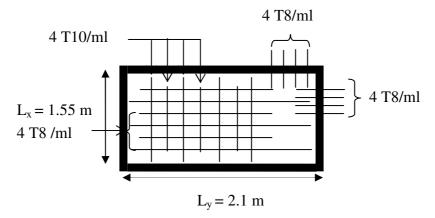


Figure III.32 : Schéma de ferraillage de la dalle du locale des machines

III.7: CONCLUSION

Le but de ce chapitre est la détermination des sections d'acier nécessaire pour reprendre les charges revenant aux éléments non structuraux.

Le choix de la disposition des poutrelles s'est fait au chapitre précédent. D'après la disposition adoptée nous avons eu plusieurs types de poutrelles. Ces dernières ont été étudiées et ferraillées.

Notre structure présente un seul type d'escalier, ce dernier est à deux volées. Dans ce chapitre il a été procédé à son étude et son ferraillage.

L'acrotère est calculé à la flexion composée. Son ferraillage a été déterminé en respectant les règles. En dernier, nous avons fait l'étude de l'ascenseur puis on a ferraillé la dalle du locale des machines.

La poutre palière a été étudiée sous des sollicitations de flexion de torsion ainsi pour la poutre de chainage qui a été étudier en flexion simple.

Notre projet comprend 3 types de dalle pleine, elle ont été étudié et ferraillé avec les sollicitations les plus défavorables.

IV.1: INTRODUCTION

L'étude sismique d'une structure vise à assurer une protection acceptable des constructions vis à vis des effets des actions sismiques par une conception et un dimensionnement appropriés toute en satisfaisant les trois aspects essentiels de la conception qui sont : la résistance, l'aspect architectural et l'économie.

Cet objectif ne peut être atteint qu'avec un calcul adéquat tout en respectant la réglementation en vigueur.

IV.2: METHODES DE CALCUL

Selon les règles parasismiques Algériennes (RPA99/version2003) l'étude peut être menée suivant trois méthodes :

- 1. Par la méthode statique équivalente ;
- 2. Par la méthode d'analyse modale spectrale ;
- 3. Par la méthode d'analyse dynamique par accélérogrammes ;

Pour ce qui est de notre structure, les conditions d'application de la méthode statique équivalente ne sont pas réunis pour cause de sa hauteur qui dépasse largement les 23m à coté du fait qu'elle soit irrégulière en plan et en élévation, se situe en zone IIa et appartient au groupe d'usage 2. Selon les exigences du RPA99/version2003, la méthode à utiliser dans ce cas est celle de l'analyse modale spectrale, avec calcul de l'effort sismique à la base par la méthode statique équivalente pour une vérification ultérieure (RPA99/version2003 article 4.3.6).

IV.2.1: ANALYSE SISMIQUE DE LA STRUCTURE:

La méthode retenue pour l'analyse du comportement sismique de notre structure est la méthode d'analyse modale spectrale.

L'analyse dynamique se prête probablement mieux à une interprétation réaliste du comportement d'un bâtiment soumis à des charges sismiques que le calcul statique prescrit par les codes. Elle servira surtout au calcul des structures dont la configuration est complexe ou non courante et pour lesquelles la méthode statique équivalente reste insuffisante ou inacceptable ou autre non- conforme aux conditions exigées par le RPA 99/version2003 pour un calcul statique équivalent.

Pour les structures symétriques, il faut envisager l'effet des charges sismiques séparément suivant les deux axes de symétrie, pour les cas non symétriques l'étude doit être menée pour les deux axes principaux séparément.

Pour mener à bien la méthode de calcul par analyse modale spectrale le calcul de la force sismique totale est demandé. Ainsi ; cette force sismique est calculée par la méthode statique équivalente.

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont similaires à ceux de l'action sismique.

➤ Calcul de la force sismique totale RPA99 (Article 4.2.3)

La force sismique V; appliquée à la base de la structure, doit être calculée successivement dans les deux directions horizontales et orthogonales selon la formule :

$$V_{st} = A \times D \times Q \times \frac{1}{R} \times W$$

• A : Coefficient d'accélération de la zone. C'est un coefficient numérique dépendant de la zone sismique ainsi que du groupe d'usage.

Pour notre cas on a : groupe d'usage 2, zone IIa \Rightarrow A = 0.15 selon le tableau 4.1 (**RPA99/version2003**).

• *R* : Coefficient de comportement global de la structure, il est fonction du système de contreventement. Il est donné dans le tableau 4.3 (RPA99/version2003).

Dans le cas de notre projet, on a opté pour un système de contreventement mixte portiquesvoiles avec justification de l'interaction, donc : R = 5.

• Q : Facteur de qualité.

La valeur de Q est déterminée par la formule 4.4 donnée au RPA :

$$Q = 1 + \sum_{l}^{6} Pq$$

Pq est la pénalité à retenir selon que le critère de qualité q est satisfait ou non.

Les valeurs à retenir pour les deux sens (x et y) sont dans le tableau suivant :

Tableau IV.1 : Valeurs des pénalités *Pq*.

"Critère q	Observé	Non observé
1- Conditions minimales sur les files de contreventement		0.05
2- Redondance en plan		0.05
3- Régularité en plan		0.05
4- Régularité en élévation	0	
5- Contrôle de qualité des matériaux	0	
6- Contrôles d'exécution	0	

$$Q_x = Q_y = 1.15$$

• W: Poids total de la structure.

La valeur de W comprend la totalité des charges permanentes pour les bâtiments d'habitation.

Il est égal à la somme des poids Wi; calculés à chaque niveau (i):

$$W = \sum_{i=1}^{n} Wi \qquad \text{avec} \quad W_i = W_{Gi} + \beta \times W_{Qi} \qquad \text{RPA99 (Formule 4.5)}$$

 W_{Gi} : Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.

 W_{Oi} : Charges d'exploitation.

 β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation donné par le tableau 4.5 (RPA99).

Concernant notre projet on a des niveaux à usage d'habitation, donc le coefficient de pondération est $\beta = 0.20$.

Le poids total de la structure a été calculé en utilisant le logiciel SAP2000 la valeur trouvé est :

W = 42210.465 KN

• D : Facteur d'amplification dynamique. Il est donné par l'expression suivante :

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (\frac{T_2}{T})^{\frac{2}{3}} & T_2 \le T \le 3s \\ 2.5\eta (\frac{T_2}{3})^{\frac{2}{3}} (\frac{3}{T})^{\frac{5}{3}} & T \ge 3s \end{cases}$$

 η : Facteur de correction de l'amortissement, donné par la formule $\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7$

 ξ : Pourcentage d'amortissement critique (Tableau 4.2 RPA99/version 2003).

$$\xi = 8.5\%$$

$$\eta = \sqrt{\frac{7}{2 + 8.5}} = 0.81$$

T1 et T2 : période caractéristique relative au sol.

Selon le rapport de sol, le sol d'implantation de notre structure est classé : site S3.

Ce qui nous donne les périodes caractéristiques : $\begin{cases} T1 = 0.15s \\ T2 = 0.5s \end{cases}$ tableau 4.7 (RPA99).

T : période fondamentale de la structure.

Pour une structure contreventée partiellement par des voiles en béton armé, la période fondamentale est donnée par le minimum des deux expressions du RPA99 (art 4.2.4) suivantes :

$$\begin{cases} T = C_T \times h_N^{\frac{3}{4}} \\ T_{x,y} = \frac{0.09 \times h_N}{\sqrt{L_{x,y}}} \end{cases}$$

 $h_{\scriptscriptstyle N}$: Hauteur mesurée à partir de la base de la structure jusqu'au dernier niveau $h_{\scriptscriptstyle N}=30.6m$.

 C_T : Coefficient fonction du système de contreventement, du type de remplissage donnée par le tableau 4.6 du RPA99 version 2003.

Le contreventement étant assuré partiellement par des voiles en béton armé, $C_T = 0.05$.

$$T = 0.05 \times 30.6^{\frac{3}{4}} = 0.650s$$

 $L_x=25 \text{ m}$; étant la dimension projeté du bâtiment selon le sens x.

L_y= 17.95 m; étant la dimension projeté du bâtiment selon le sens y.

$$T_x = \frac{0.09 \times 30.6}{\sqrt{25}} = 0.55s$$

$$T_{y} = \frac{0.09 \times 30.6}{\sqrt{17.95}} = 0.65s$$

$$T_x = Min(T; T_x) = 0.55s$$

$$T_{v} = Min(T; T_{v}) = 0.65s$$

$$0.5 \le T_x \le 3s \Rightarrow D_x = 2.5 \times 0.81 \times (\frac{0.5}{0.55})^{\frac{2}{3}} = 1.90$$

$$0.5 \le T_y \le 3s \Rightarrow D_y = 2.5 \times 0.81 \times (\frac{0.5}{0.65})^{\frac{2}{3}} = 1.70$$

Le RPA préconise de majorer la période fondamentale statique de 30% (art 4.2.4)

$$\begin{cases} T_{Sx} = 1.3 \times 0.55 = 0.72s \\ T_{Sy} = 1.3 \times 0.65 = 0.85s \end{cases}$$

La force sismique totale à la base de la structure est :

$$V_{st} = \frac{A \times D_{x,y} \times Q}{R} \times W$$

$$V_{\text{st }x} = \frac{0.15 \times 1.9 \times 1.15}{5} \times 42210.465 = 2766.89 \text{KN}$$

$$V_{\text{st }y} = \frac{0.15 \times 1.7 \times 1.15}{5} \times 42210.465 = 2475.64 KN$$

IV.2.2: Méthode d'analyse dynamique:

Modale spectrale

Cette méthode peut être utilisée dans tout les cas, et en particulier, dans le cas ou la méthode statique équivalente n'est pas permise.

Principe de la méthode :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

$$\frac{S_a}{g} = \begin{cases}
1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\
2.5 \times \eta \times (1.25A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s}
\end{cases}$$
RPA99 (Formule 4-13)

Après calcul ; le spectre obtenu est représenté sur la figure (IV.1) représenté sous forme de courbe :

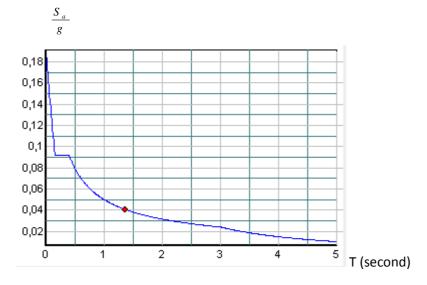


Figure IV.1: Spectre de calcul.

IV. 3: DISPOSITION DES VOILES

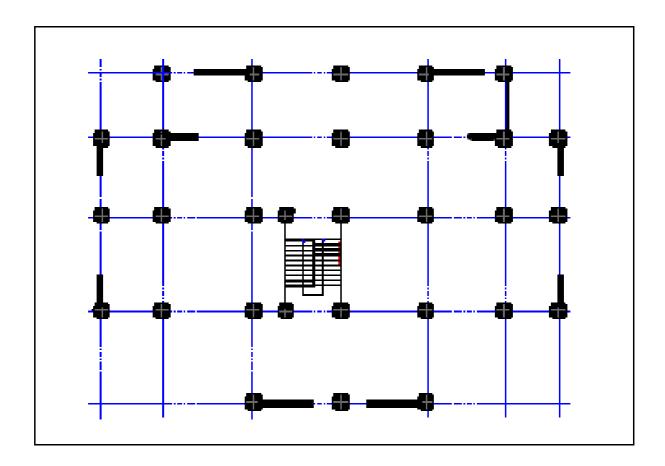
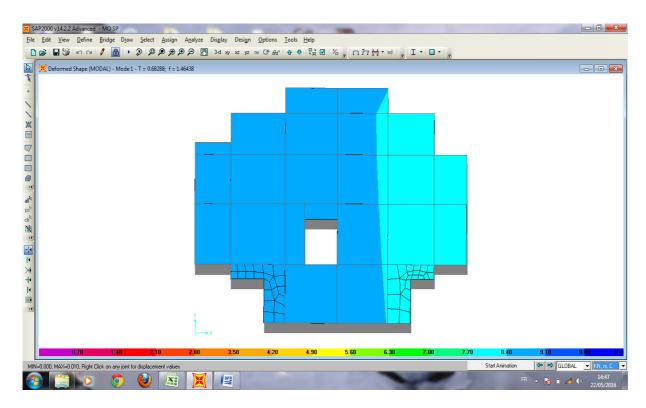
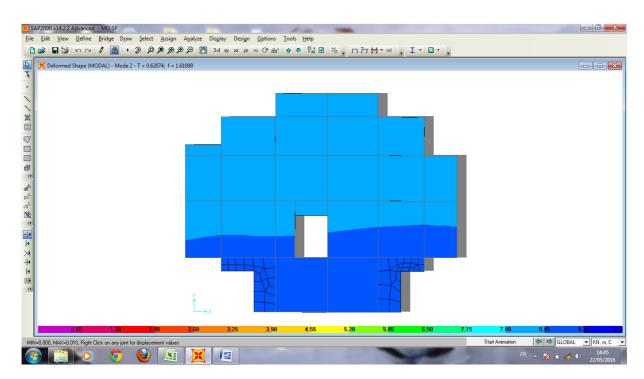



Figure IV.2: Disposition des voiles


IV.4: VERIFICATION ET INTERPRETATION DES RESULTATS DE L'ANALYSE DYNAMIQUE

IV.4.1: Mode de vibration et taux de participation des masses

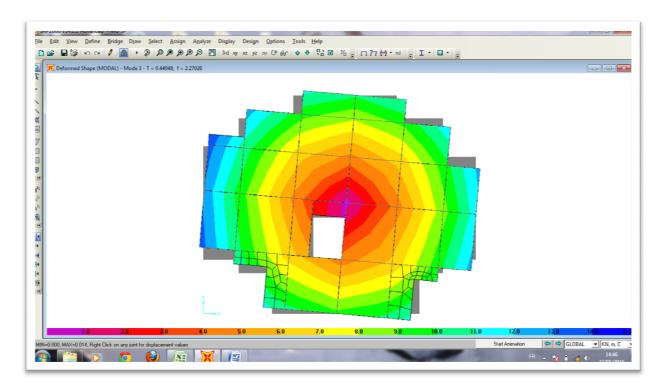

Nous représentons sur ces trois figures, les trois premiers modes de vibrations de notre structure.

Figure IV.3 : mode 1(translation selon y-y')

Figure IV.4: $mode\ 2$ (translation selon x-x')

Figure IV.5: mode 3 (rotation au tour de z-z')

Le RPA (art 4.3.4,a) exige que le nombre de mode de vibration à retenir dans chacune des deux directions d'excitation soit comme suit :

La somme des masses modales effectives pour les modes retenus soit égale à 90% au moins de la masse totale de la structure.

Le tableau suivant donne la participation massique pour chaque mode :

Tableau IV.2: Période de vibration et taux de participation des masses modales

Modes	Périodes (s)	INDIVIDUAL MODE (PERCENT)			CUMULATIVE SUM (PERCENT)		
		UX UY UZ			UX	UY	UZ
1					9.377E-		
	0.842058	9.377E-08	0.65685	9.19E-08	08	0.65685	9.19E-08
2	0.7162	0.64877	0.000007696	1.205E-07	0.64877	0.65686	2.124E-07
3	0.544849	0.00246	0.00399	1.879E-07	0.65123	0.66085	4.003E-07
4	0.25776	0.00002941	0.1391	0.000005626	0.65126	0.79995	0.000006026
5	0.212435	0.15289	0.00001182	0.000000273	0.80414	0.79996	0.000006299
6	0.160254	0.00017	0.00211	0.000009413	0.80431	0.80206	0.00001571
7	0.134141	0.000002682	0.05982	0.00027	0.80431	0.86188	0.00028
8	0.120926	0.00003302	0.00492	0.01206	0.80435	0.8668	0.01234
9	0.113248	0.0000335	0.00041	0.01498	0.80438	0.86721	0.02732

10	0.108808	0.00003301	0.0005	0.00273	0.80441	0.86771	0.03005
11	0.106129	0.029	0.00087	0.00658	0.83341	0.86858	0.03663
12	0.105929	0.04113	0.00037	0.00064	0.87454	0.86895	0.03727
13	0.104285	0.00008242	0.00098	0.00083	0.87462	0.86993	0.0381
14	0.102483	2.543E-07	0.00038	0.00088	0.87462	0.87031	0.03898
15	0.101323	0.00005053	0.000007352	0.00001135	0.87467	0.87032	0.039
16	0.100487	0.0024	0.00054	0.18752	0.87707	0.87086	0.22651
17	0.100297	0.00016	0.00135	0.03196	0.87722	0.87221	0.25847
18	0.098096	0.00091	0.00043	0.00311	0.87813	0.87264	0.26158
19	0.091251	0.000000563	0.02107	0.00215	0.87813	0.89372	0.26373
20	0.090108	0.00026	0.00027	0.03079	0.87839	0.89399	0.29452
21	0.08947	0.00016	0.01017	0.00015	0.87855	0.90416	0.29467
22	0.085834	0.00006838	0.00003177	0.03964	0.87862	0.90419	0.33431
23	0.083932	0.00012	0.00071	0.00197	0.87874	0.9049	0.33629
24	0.083553	0.00015	0.00047	0.02275	0.8789	0.90537	0.35904
25	0.082342	0.00002459	0.00001983	0.00167	0.87892	0.90539	0.36071
26	0.082075	3.133E-08	0.00022	0.000009717	0.87892	0.90561	0.36072
27	0.081804	0.00018	0.00057	0.00012	0.8891	0.90618	0.36084
28	0.081669	2.795E-08	0.000008685	0.00216	0.9031	0.90619	0.363
29	0.081498	0.00005317	0.00001093	0.00185	0.90715	0.9062	0.36485
30	0.081097	0.000004261	0.00021	0.00088	0.90916	0.90641	0.36573

NB: Concernant les modes à retenir, nous avons constaté que le pourcentage de participation modale attient plus de 90% à partir du vingt- un (21) mode (sens y-y) ce qui vérifie la condition du RPA99/2003.

IV 4.2 : Vérification de la période

Le RPA (art 4.2.4) recommande que la période dynamique soit inférieure à celle calculé par la formule empirique majoré de 30%;

$$T_{dx}$$
=0.716 s < T_{st} =0.72 s

$$T_{dy}=0.842 \text{ s} < T_{st}=0.85 \text{ s}$$

IV 4.3. Vérification de la résultante des forces sismiques

En se référant à l'article 4-3-6 du RPA99/Version2003, qui stipule que la résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V_{st} , nous avons :

Forces sismiques	V statique	0.8Vstatique	V dynamique	Observation
	(KN)	(KN)	(KN)	
Sens xx	2766.89	2213.512	2197.229	Non vérifiée
Sens yy	2475.64	1980.512	2028.221	Vérifiée

Tableau IV.3: Vérification de l'effort tranchant à la base

On remarque que la condition n'est pas vérifiée suivant le sens x donc on doit augmenter tout les paramètres de la réponse en les multipliant par le rapport $0.8V_{st}/V_{dy}=1.007$

IV 4.4 : Vérification de l'interaction voiles portiques

Les charges horizontales et verticales sont reprises conjointement par les voiles et les portiques proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.

Selon le RPA (art 3.4.4.a), l'interaction est vérifiée si les deux conditions suivantes sont satisfaites :

- Les portiques doivent reprendre au moins 25% de l'effort tranchant d'étage.
- Les voiles de contreventement doivent reprendre au plus 20% de l'effort vertical.

a) Sous charges verticales

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\% \text{ Pourcentage des charges verticales reprises par les portiques.}$$

$$\frac{\sum F_{\textit{portiques}}}{\sum F_{\textit{portiques}} + \sum F_{\textit{voiles}}} \leq 20\% \text{ Pourcentage des charges verticales reprises par les voiles.}$$

Charge reprise (KN) Pourcentage repris (%) Niveaux **Portiques** Voiles **Portiques** Voiles 39888.626 8468.174 84.4881423 17.51185769 1^{er}entre sol 32290.144 7111.433 84.9514001 18.04859993 2^{eme} entre sol 27724.955 6750.081 83.4203801 19.57961990 RDC 24195.395 6003.951 83.118937 19.88106299 1^{er}étage 19606.728 5395.31 83.005192 21.57948084 2^{ème}étage 15913.698 4516.025 82.89483 22.10517 3^{ème}étage 12127.937 3729.164 82.4826875 23.51731253 4^{ème}étage 8685.462 2712.145 81.2042594 23.79574063 5^{ème}étage 5254.337 1683.236 80.737394 24.26260596 6^{ème}étage 80.9004848 19.09951521 2126.699 502.085 7^{ème}étage

Tableau IV.4: Vérification de l'interaction sous charges verticales

b) Sous charges horizontales

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 25\% \text{ Pourcentage des charges horizontales reprises par les portiques.}$$

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \le 75\% \text{ Pourcentage des charges horizontales reprises par les voiles.}$$

		Se	ens x-x			Se	ens y-y	
	Portiqu es	Voiles			Portiq ues	Voiles		
Niveaux	(KN)	(KN)	P(%)	V (%)	(KN)	(KN)	P(%)	V (%)
1 ^{er} entre sol	715.419	1361.464	34.4467647	65.5532353	845.282	1052.964	44.5296342	55.4703658
2 ^{eme} entre sol	832.731	1200.013	40.965857	59.0341430	919.26	894.2	50.6909444	49.3090556
RDC	580.905	1323.711	30.4998488	69.5001512	689.232	1018.67	40.3554771	59.6445229
1 ^{er} étage	738.625	1076.161	40.7003911	59.2996088	787.999	800.545	49.6051101	50.3948899
2 ^{ème} étage	631.393	1032.839	37.9390013	62.0609987	681.413	763.99	47.143461	52.856539
3 ^{ème} étage	676.326	802.428	45.7362076	54.2637923	710.729	563.381	55.7823893	44.2176107
4 ^{ème} étage	510.545	736.601	40.9370675	59.0629324	542.148	536.43	50.2650712	49.7349288
5 ^{ème} étage	513.08	477.219	51.8106148	48.1893852	532.823	331.229	61.6656173	38.3343827
6 ^{ème} étage	369.634	334.682	52.4812726	47.5187273	384.493	226.332	62.9465068	37.0534932
7 ^{ème} étage	276.212	128.833	68.1929168	31.8070831	281.487	101.637	73.4715131	26.5284869

Tableau IV.5: Vérification de l'interaction sous charges horizontales

Les résultats obtenus montrent que l'interaction voile portique est vérifiée sous chargement horizontale.

IV 4.5 : Vérification de l'effort normal réduit

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble due au séisme, le RPA (art 7.4.3.1) exige que l'effort normal de compression de calcul soit limité par la condition suivante :

$$v = \frac{N_d}{B_c \cdot f_{c28}} < 0.30$$
 (Formule 7.2)

Avec:

 N_d : désigne l'effort normale de calcul s'exerçant sur une section de béton

 B_c : Est l'aire (section brute) de cette dernière

 f_{ci} : Est la résistance caractéristique du béton

Il est à noter que les sections des poteaux ont été revues à la hausse pour tous les niveaux. Ceci à été fait dans le but de vérifier l'interaction voile-portique exigée par le RPA. La vérification de l'effort normal réduit donne Les résultats obtenus par le logiciel SAP2000 sont résumés dans le tableau suivant :

Niveau	B (cm ²)	N (KN)	Nrd	Remarque
1 ^{er} entre sol	60*60	2218.969	0.24655211	vérifiée
2 ^{eme} entre sol	60*60	1866.268	0.20736311	vérifiée
RDC	55*55	1635.406	0.21625203	vérifiée
1 ^{er} étage	55*55	1408.168	0.18620403	vérifiée
2 ^{ème} étage	50*50	1182.737	0.18923792	vérifiée
3 ^{ème} étage	50*50	965.313	0.15445008	vérifiée
4 ^{ème} étage	45*45	752.676	0.14867674	vérifiée
5 ^{ème} étage	45*45	552.588	0.10915319	vérifiée
6 ^{ème} étage	40*40	355.923	0.08898075	vérifiée
7 ^{ème} étage	40*40	167.542	0.0418855	vérifiée

Tableau IV.6.. Vérification de l'effort normal réduit.

On remarque que l'effort ne dépasse pas la valeur de 0.3. Donc les sections des poteaux choisies sont suffisantes.

IV 4.6 : Vérification vis-à-vis des déplacements

Le déplacement horizontal à chaque niveau K de la structure est calculé par :

 $\delta_k = R \times \delta_{ek}$ RPA99/version2003 (Article 4.4.3)

 δ_{ek} :Déplacement dû aux forces F_i (y compris l'effet de torsion).

R : Coefficient de comportement(R=5).

Le déplacement relatif au niveau K par rapport au niveau K-l est égal à : $\Delta_k = \delta_k - \delta_{k-1}$

Le RPA (art 5.10) exige que le déplacement relatif soit inférieur à 1% de la hauteur de l'étage C à d $\Delta_k < 1\% \times h_k$.

 h_k : Étant la hauteur de l'étage.

Les résultats obtenus sont résumés dans le tableau suivant :

Tableau IV.7 : Vérification des déplacements pour le sens xx.

		C				
		Sens x x		Τ	1	T
Niveaux	$oldsymbol{\mathcal{\delta}_{ek}}$ (m)	$oldsymbol{\delta}_{k}$ (m)	$oldsymbol{\mathcal{\delta}}_{k-1}$ (m)	$\Delta_{_k}$ (m)	h_{k} (m)	$\Delta_{{\scriptscriptstyle{K}}} / h_{{\scriptscriptstyle{K}}}^{(\%)}$
1 ^{er} entre sol	0.0005	0.0025	0	0.0025	3.06	0.00081699
2 ^{eme} entre sol	0.0015	0.0075	0.0025	0.005	3.06	0.00163399
RDC	0.0029	0.0145	0.0075	0.007	3.06	0.00228758
1 ^{er} étage	0.0046	0.023	0.0145	0.0085	3.06	0.00277778
2 ^{ème} étage	0.0063	0.0315	0.023	0.0085	3.06	0.00277778
3 ^{ème} étage	0.008	0.04	0.0315	0.0085	3.06	0.00277778
4 ^{ème} étage	0.0096	0.048	0.04	0.008	3.06	0.00261438
5 ^{ème} étage	0.0112	0.056	0.048	0.008	3.06	0.00261438
6 ^{ème} étage	0.0126	0.063	0.056	0.007	3.06	0.00228758
7 ^{ème} étage	0.0136	0.069	0.063	0.006	3.06	0.00196078

		G				
		Sens y y	-			-
	$\delta_{\!\scriptscriptstyle ek}$	c	c		$h_{_k}$	
	(m)	$oldsymbol{\delta}_{\scriptscriptstyle k}$	δ_{k-1}	Δ_k	n_k	Δ_{K}/h_{K}
Niveaux	,	(m)	(m)	(m)	(m)	$/h_{K}$
1 ^{er} entre		0.00019	0	0.00019		6.2092E-05
sol	0.000038				3.06	
2 ^{eme} entre		0.0005	0.00019	0.00031		0.00010131
sol	0.0001				3.06	
		0.001	0.0005	0.0005		0.0001634
RDC	0.0002				3.06	
1 ^{er} étage	0.0004	0.002	0.001	0.001	3.06	0.0003268
2 2382	0.000.	0.0025	0.002	0.0005	2.00	0.0001634
2 ^{ème} étage	0.0005				3.06	
		0.0035	0.0025	0.001		0.0003268
3 ^{ème} étage	0.0007				3.06	
		0.004	0.0035	0.0005		0.0001634
4 ^{ème} étage	0.0008				3.06	
>		0.005	0.004	0.001		0.0003268
5 ^{ème} étage	0.001				3.06	
-àma .		0.0055	0.005	0.0005		0.0001634
6 ^{ème} étage	0.0011				3.06	
7 ^{ème} étage	0.0012	0.006	0.0055	0.0005	3.06	0.0001634

Tableau IV.8: Vérification des déplacements pour le sens yy.

On voit bien à travers ces deux tableaux que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage.

IV 4.7: Justification vis-à-vis de l'effet P-Δ (RPA99/version 2003(Art 5.9))

L'effet P- Δ (effet de second ordre) est l'effet dû aux charges verticales après déplacement. Il peut être négligé si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{p_k \times \Delta_k}{V_k \times h_k} \le 0.1$$
; Tel que:

 p_{k} : Poids total de la structure et des charges d'exploitations associées au dessus du

niveau « k »; avec :
$$p_k = \sum_{i=1}^n (W_{Gi} + \beta \times W_{Qi})$$

 V_k : Effort tranchant d'étage de niveau « k ».

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 ».

 h_k : Hauteur de l'étage « k ».

- Si $0.1\langle\theta_k\langle0.2,\$ l'effet P- Δ peut être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculée au moyens d'une analyse élastique du premier ordre par le facteur $\frac{1}{1-\theta_k}$.
- Si θ_k >0,2 la structure est partiellement instable elle doit être redimensionnée. Les résultats sont regroupés dans le tableau ci-dessous :

Tableau IV.9: Vérification a L'effet P-Δ.

Niveaux	h _k	P _k (KN)		Sens x-x	,		Sens y-y	,
Miveaux	(m)	Γ_k (KIV)	$\Delta_{k}\left(m\right)$	$V_{k}(KN)$	$\theta_k(m)$	$\Delta_{k}\left(m\right)$	$V_{k}\left(KN\right)$	$\theta_k(m)$
1 ^{er} entre sol	3.06	34926.356	0.0025	2076.883	0.01373915	0.00019	1898.246	0.00114244
2 ^{eme} entre sol	3.06	29546.549	0.005	2032.744	0.02375049	0.00031	1813.46	0.00165059
RDC	3.06	26286.279	0.007	1904.616	0.03157172	0.0005	1707.902	0.00251487
1 ^{er} étage	3.06	22127.354	0.0085	1814.786	0.03386894	0.001	1588.544	0.00455207
2 ^{ème} étage	3.06	18093.363	0.0085	1664.232	0.03019972	0.0005	1445.403	0.0020454
3 ^{ème} étage	3.06	14059.103	0.0085	1478.754	0.02640944	0.001	1274.11	0.00360603
4 ^{ème} étage	3.06	10137.907	0.008	1247.146	0.02125199	0.0005	1078.578	0.00153584
5 ^{ème} étage	3.06	6216.248	0.008	990.299	0.01641083	0.001	864.052	0.00235108
6 ^{ème} étage	3.06	2438.856	0.007	704.316	0.00792128	0.0005	610.825	0.00065241
7 ^{ème} étage	3.06	0	0.006	405.045	0	0.0005	380.124	0

On remarque que les valeurs de θ_k inferieur a 0.1 donc l'effet **P-\Delta** n'a pas d'influence sur la structure.

IV5: CONCLUSION

Lors de la modélisation l'exigence qui a conditionnée les dimensions des poteaux, poutres et même la disposition des voiles a été la condition de l'interaction voile-portique. En vérifiant cette interaction ; les autres conditions du RPA se retrouvent vérifiées d'elles même (période de vibration, taux de participation massique, effet P-Δ et effort normal réduit).

Les sections des poteaux et des poutres déjà définies par le pré dimensionnement ont été augmentées et ont les nouvelles sections suivantes :

Les poteaux :

- -1^{er} et 2^{eme} entre sol :(b×h) = (60×60) cm²,
- RDC et 1^{er} étage :(b×h) = (55×55) cm²,
- $-2^{\text{eme}} \text{ et } 3^{\text{eme}} \text{ étages : (b×h) = (50x50) cm}^2$,
- -4^{eme} et 5^{eme} étages :(b×h) = (45x45) cm²,
- -6^{eme} et $7^{\text{ème}}$ étages :(b×h) = (40x40) cm².

Les poutres :

Poutre principale :($b \times h$) = (30×40) cm².

Poutre secondaire :($b \times h$) = (30×35) cm².

V.1: INTRODUCTION

Une construction parasismique en béton armé demeure résistante avant et après séisme grâce à ces éléments principaux (voiles, poteaux, poutres). Cependant ces derniers doivent être bien armé et bien disposé pour qu'ils puissent reprendre tous genre de sollicitations.

V.2: Etude des poutres:

V.2.1: Introduction:

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (*M*, *N*, *T*) on procède au ferraillage en respectant les prescriptions données par le **RPA99 Version 2003** et celles données par le **BAEL91**.

Les poutres sont étudiées en tenant compte des efforts données par le logiciel SAP2000, combinés par les combinaisons les plus défavorables données par le **RPA99 Version 2003** suivantes :

- 1). 1.35*G*+1.5*Q*
- 2). G+Q
- 3). G+Q+E
- 4). G+Q-E
- 5). 0.8G+E
- 6). 0.8G-E

V.2.2: Recommandations du RPA99 / (version 2003)

a). Armatures longitudinales: RPA 99/2003 (art 7.5.2.1)

Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de

0.5% en toute section.

Le pourcentage total maximum des aciers longitudinaux est de :

- -4% en zone courante,
- 6% en zone de recouvrement.

La longueur minimale de recouvrement est de 40Φ en zone IIa.

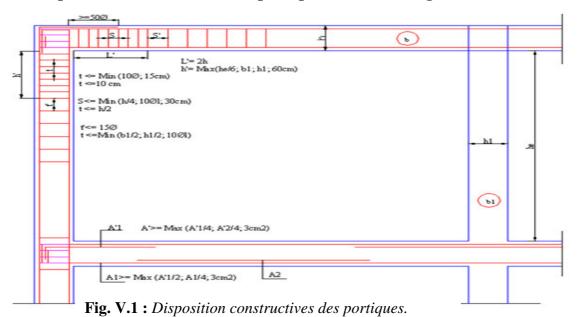
Avec : Φ_{max} : le diamètre maximal d'armature dans la poutre.

- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué conformément à la **figure V.1**, avec des crochets à 90°. Cette même figure comporte les autres dispositions constructives et quantités minimales d'armatures.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U superposés formant un carré ou un rectangle (là où les circonstances s'y prêtent, des cadres traditionnels peuvent également être utilisés).
- Les directions de recouvrement de ces U doivent être alternées Néanmoins, il faudra veiller à ce qu'au moins un coté fermé des U d'un cadre soit disposé de sorte à s'opposer à la poussé au vide des crochets droits des armatures longitudinales des poutres.
- On doit avoir un espacement maximum de 10 cm entre deux cadres et un minimum de trois cadres par nœuds.

b). Armatures transversales :RPA 99/2003 (art 7.5.2.2)

La quantité d'armatures transversales minimale est donnée par :

 $A_t = 0.003 \times St \times b$


St: espacement maximum entre les armatures transversales donné comme suit :

- -St ≤ min(h/4;12Φ₁) en zone nodale,
- -St ≤h/2 en dehors de la zone nodale.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de

L'encastrement.

La valeur du diamètre ϕ_l des armatures longitudinales à prendre est le plus petit diamètre utilisé, et dans le cas d'une section en travée avec armatures comprimées. C'est le diamètre le plus petit des aciers comprimés.

V.2.3: Dispositions constructives des portiques: RPA 99 (Figure 7.5)

V .2.4 : Ferraillage des poutres

A. Les armatures longitudinales

Le ferraillage des poutres est obtenu par le logiciel Sap2000. Les sections adoptées doivent respecter la condition minimale d'armatures (A_{min}) édictée par le RPA99/ Version 2003.

Les Résultats de sollicitations maximales et de ferraillages des poutres sont résumés dans le tableau qui suit :

Tableau V.1. Ferraillage des poutres principales et secondaires :

Niveau	Type de	section	localis	M	V	A calcul	A _{min} (Aadopté	N ^{bre} de
	poutre			(KN.m)	(KN)	(cm ²)	cm ²)	(cm ²)	barres
1 ^{er} entre	Poutre	30×40	Appuis	127.84	119.37	11.42		12.06	3T16+3T16
sol	principale		Travée	71.02		5.92	6	6.03	3T16
	Poutre secondaire	30×35	Appuis	110.99	110.69	9.78		10.65	3T16+3T14
	secondance		Travée	65.54		5.47	5.25	6.03	3T16
	Poutre principale	30×40	Appuis	108.29	126.23	9.43		10.65	3T16+ 3T14
2 ^{eme} entre sol	principale		Travée	51.60		4.21	6	6.03	3T16
301	Poutre secondaire	30×35	Appuis	50.31	57.77	4.13		6,88	3T14+2T12
	secondaire		Travée	48.81		4	5.25	6,88	3T14+2T12
	Poutre principale	30×40	Appuis	130.9	125	11.74		12.06	3T16+3T16
RDC et 1 ^{er} étage	principale		Travée	51.20		4.18	6	6.03	3T16
ctage	Poutre secondaire	30×35	Appuis	58.38	67.21	4.83		6.88	3T14+2T12
	secondanc		Travée	57.74		4.78	5.25	6.88	3T14+2T12
2 et 3 ^{éme} étage	Poutre principale	30×40	Appuis	128.04	126.44	11.44		12.06	3T16+3T16
ctuge	principale		Travée	51.70		4.22	6	6.03	3T16
	Poutre secondaire	30×35	Appuis	70.1	72.24	5.88		6.88	3T14+2T12
	secondanc		Travée	63.27		5.18	5.25	6.88	3T14+2T12
	Poutre principale	30×40	Appuis	125.85		11.21		12.06	3T16+3T16
4 et 5 ^{éme}	principale		Travée	52.12	127.62	4.26	6	6.03	3T16
étage	Poutre secondaire	30×35	Appuis	72.88	65.06	6.13		6.88	3T14+2T12
			Travée	64.72		5.39	5.25	6.88	3T14+2T12
	Poutre	30×40	Appuis	124.49		11.07		12.06	3T16+3T16

6 et 7 ^{éme}	principale		Travée	52.81	128.05	4.32	6	6.03	3T16
étage	Poutre secondaire	30×35	Appuis	72.66	56.85	6.11		6.88	3T14+2T12
	secondane		Travée	65.23		5.44	5.25	6.88	3T14+2T12

V.2.5: Vérification des armatures selon le RPA 99:

Pourcentage maximum des armatures longitudinales :

En zone courante : $A_{max} = 4\%b \times h = 0.04 \times 30 \times 40 = 48 \text{ cm}^2 > \text{A}$ adopté

En zone de recouvrement: $A_{max} = 6\%b$. $h = 0.06 \times 30 \times 40 = 72$ cm² > Aadopté

• Les longueurs de recouvrement :

$$l_r > 40 \times \phi$$

$$\phi = 16mm \Rightarrow l_r > 64cm$$

$$\phi = 14mm \Rightarrow l_r > 56cm$$

$$\phi = 12mm \Rightarrow l_r > 48cm$$

- Les armatures transversales $\phi \le \min \left(\phi_l; \frac{h}{35}; \frac{b}{10} \right)$
 - -Poutres principales

$$\phi \le \min\left(1.2; \frac{40}{35}; \frac{30}{10}\right) = \min(1.2; 1.14; 3) = 1.14cm.$$

-Poutres secondaires

$$\phi \le \min\left(1.2; \frac{35}{35}; \frac{30}{10}\right) = \min(1.2; 1; 3) = 1cm.$$

Donc on prend $\phi_t = 10mm \Rightarrow A_t = 4T10 = 3,14cm^2$ (un cadre et un étrier)

pour toutes les poutres

• Calcul des espacements des armatures transversales

Selon le BAEL91:

$$S_{t}=\min \begin{cases} \frac{A_{t} \times f_{e}}{0.4 \times b} \\ \min(0.9 \times d; 40cm) \end{cases}$$

$$\frac{0.8 \times f_{e} \times A_{t}}{b_{0} \times (\tau_{u} - 0.3 \times f_{t28})}$$

$$S_{t}=\min \begin{cases} 104.66cm \\ 34.20cm \end{cases}$$

Selon RPA99 Art (7.5.2.2):

45.88*cm*

$$S_t \leq \min(\frac{h}{4}, 12 \times \phi_l)$$

✓ Zone nodale :

$$S_t \le \min(10; 13.2) = 10 \text{cm}$$

Soit: $S_t=10 \text{ cm}$

✓ **Zone courante :** $S_t \le h/2 = 40/2 = 20 cm$.

Soit $S_t = 15cm$

L'espacement adopté pour les armatures transversales est le minimum des espacements calculés par les formules du RPA et BAEL. Ce qui correspond à : S_t =10cm en zone nodale et S_t =15cm en zone courante.

Vérification des sections d'armatures transversales :

$$A_t^{\text{min}} = 0.003 \times S_t \times b = 1.35 \text{ cm}^2.$$
Or: $A_t = 3.14 \text{ cm}^2 > A_{t \text{ min}} = 1.35 \text{ cm}^2.$

V.2.6: Vérification à l'ELU:

a). Condition de non fragilité :

BAEL91(Art F.IV.2)

b). Contrainte tangentielle maximale :

Vérification de l'effort tranchant :

Il faut vérifier que:

Fissuration peu nuisible $\Rightarrow \bar{\tau}_u = \min(0.133 \times f_{c28}; 5MPa) \Rightarrow \bar{\tau}_u = 3.33MPa$.

Les résultats sont donnés dans le tableau suivant :

Tableau V.2 : Vérification des contraintes tangentielles :

Poutres	Vu (KN)	$ au_{bu}$ (MPa)	$\overline{\tau}_{(MPa)}$	Observation
principales	128.05	1.123	3.33	Vérifiée
secondaires	72.24	0.633	3.33	Vérifiée

Donc Pas de risque de cisaillement et cela pour tout type de poutre.

c). Vérification des armatures longitudinales au cisaillement

✓ Appuis de rives
$$A_l > \frac{V_u \times \gamma_s}{f_e}$$
.....(1). BAEL91 (Art H.IV.2)

✓ Appuis intermédiaires
$$A_l \ge \frac{\gamma_s}{f_e} \times (V_u - \frac{M_a}{0.9 \times d})$$
.....(2)

$$\gamma s = 1.15, fe = 400MPa$$

Les vérifications sont résumées dans le tableau ci-après :

Poutres	A _l (cm ²)	V _u (KN)	M _a (KN.m)	$A_1^{rive}(cm^2)$	A ₁ ^{int} (cm ²)	Observation
Principales	12.06	128.05	130.9	3.68	-7.32	Vérifiée
Secondaires	6.88	72.24	72.88	2.07	-4.04	Vérifiée

Tableau.3. Vérification des armatures longitudinales au cisaillement :

V.2.7: Vérification à l'ELS:

a). Etat limite de compression du béton :

$$\frac{b}{2}y^{2} + 15A_{s}y - 15dA_{s} = 0; \qquad \sigma_{bc} = \frac{M_{ser}}{I}y; \qquad \overline{\sigma}_{bc} = 0.6f_{c28} = 15MPa \qquad \textbf{BAEL91 (Art E.III.1)}$$

$$I = \frac{b \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s}^{'} \times (y - d')^{2} \right]$$

Les vérifications sont résumées dans le tableau ci-après :

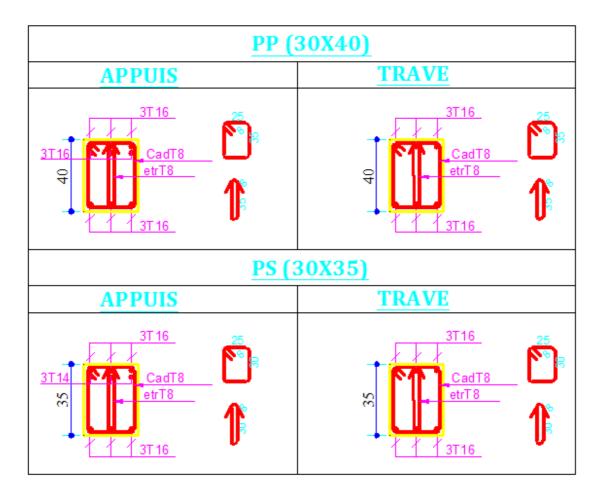
Tableau V.4. Vérification de l'état limite de compression du béton :

Poutres	Localisation	Mser (KN. m)	I (cm ⁴)	Y (cm)	σ _{bc} (MPa)	σ_{bc} (MPa)	Observation
Poutres principales	Appuis	91.73	128486.12	16.21	11.57	15	vérifiée
	Travées	37.77	78343.41	12.41	5.98	15	vérifiée
Poutres secondaires	Appuis	48.14	86795.78	13.9	7.7	15	vérifiée
	Travées	30.74	86795.78	13.9	4.92	15	vérifiée

b). Etat limite de déformation (évaluation de la flèche)

D'après le BAEL91 et le CBA93 la vérification à la flèche est inutile si :

	h _t	b cm	L (cm)	A _s (cm ²)	$\frac{h_{l}}{l}$	$\frac{M_t}{10 \times M_0}$	$\frac{A_{S}}{b_{0} \times d}$	$\frac{4.2}{f_e}$	$\frac{h_i}{l} > \frac{1}{16}$	$\frac{h_t}{l} > \frac{M_t}{10M_0}$	$\frac{A_{s}}{b_{0} \times d} \le \frac{4.2}{f_{e}}$
PP	40	30	520	12.06	0.076	0.033	0.009	0.01	Vérifiée	Vérifiée	Vérifiée
PS	35	30	500	6.88	0.07	0.028	0.006	0.01	Vérifiée	Vérifiée	Vérifiée


Tableau V.5 : Vérification de la flèche pour les poutres :

Donc : La vérification de la flèche n'est pas nécessaire car toutes les conditions sont vérifiées.

V.2.8 : Schéma de ferraillage des Poutres :

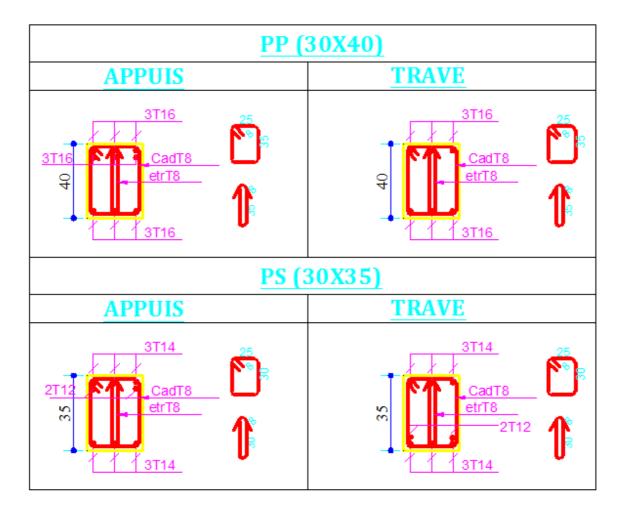

a) ferraillage des poutres de 1^{er} entre sol

Tableau V. 6 : Schéma de ferraillage des poutres de 1^{er} entre sol

b) ferraillage des poutres de $2^{\rm eme}$ entre sol jusqu'à dernier niveaux :

Tableau V. 7 : Schéma de ferraillage des poutres de 2^{eme} entre sol jusqu'à dernier niveaux

V. 3: ETUDE DES POTEAUX

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les charges à la base de la structure. Ils sont soumis à des efforts normaux et moments fléchissant en tête et à la base dans les deux sens. Leurs ferraillages se fait à la flexion composée selon les sollicitations les plus défavorables suivantes :

- Moment maximal et un effort normal correspondant $(M_{max} \rightarrow N_{corr})$
- Effort normal maximal avec le moment correspondant $(N_{\max} \to M_{corr})$
- Effort normal minimal avec le moment correspondant $(N_{\min} \rightarrow M_{corr})$

Les combinaisons utilisées pour la détermination des sollicitations sont :

- 1) 1.35G+1.5Q
- 2) G+Q
- 3) G+Q+E

RPA99 /version2003 (Article 5.2)

- 4) G+Q-E
- 5) 0.8G+E
- 6) 0.8G-E

Pour notre structure, nous avons cinq types de poteaux à étudier :

- -1^{er} et 2^{eme} entre sol :(b×h) = (60×60) cm²,
- RDC et 1^{er} étage :(b×h) = (55×55) cm²,
- $-2 \text{ et } 3^{\text{eme}} \text{ étages : (b×h) = (50×50) cm}^2,$
- $-4 \text{ et } 5^{\text{ème}} \text{\'etages :} (b \times h) = (45 \times 45) \text{ cm}^2,$
- $-6 \text{ et } 7^{\text{ème}} \text{\'etages :} (b \times h) = (40 \times 40) \text{ cm}^2.$

V.3.1: Recommandations du RPA99

a) Les armatures longitudinales

- Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- Leur pourcentage minimal sera de : 0.8 % de la section du poteau en zone IIa
- Leur pourcentage maximal sera de :
 - 4 % de la section du poteau en zone courante.
 - 6 % de la section du poteau en zone de recouvrement
- Le diamètre minimum des armatures longitudinales est de 12 mm
- La longueur minimale des recouvrements est $l_r = 40 \phi$ En zone IIa.
- La distance entre les barres verticales dans une face du poteau ne doit pas dépasser :
 25cm en zone IIa.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).
- La zone nodale est constituée par le nœud poutres-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre sont données dans la figure V.2:

h'= Max (
$$\frac{h_e}{6}; b_1; h_1; 60 \text{ cm}$$
)

 $l' = 2 \times h$

 h_{e} : est la hauteur de l'étage

Coupe 1-1

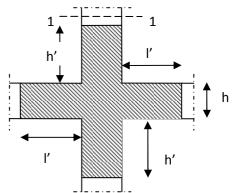


Figure .V.2 : zone nodale

Les valeurs numériques des armatures longitudinales relatives aux prescriptions du RPA99 sont illustrées dans le tableau ci-dessous :

Tableau V.8 : Armatures longitudinales minimales et maximales dans les poteaux exigées par le RPA.

Niveau	Section du	A _{min} (cm ²)	A_{max} (cm ²)	A_{max} (cm ²) zone
	poteau (cm ²)		zone courante	de recouvrement
1 ^{er} et 2 ^{eme} entre sol	60×60	28.8	144	216
RDC et 1 ^{er} étage	55×55	24.2	121	181.5
2 et 3 ^{eme} étages	50×50	20	100	150
4 et 5 ^{ème} étages	45×45	16.2	81	121.5
6 et 7 ^{ème} étages	40×40	12.8	64	96

b) Armatures transversales

• Les armatures transversales des poteaux sont calculées à l'aide de la formule :

$$\frac{A_{t}}{t} = \frac{\rho_{a} V_{u}}{h_{1} \cdot f_{e}}$$
 RPA99/version2003 (Art 7.4.2.2) Avec :

 V_{u} : L'effort tranchant de calcul.

 h_1 : Hauteur totale de la section brute.

 $f_{\scriptscriptstyle e}$: Contrainte limite élastique de l'acier d'armature transversale.

 ρ_a : Coefficient correcteur qui tient compte du mode de rupture fragile par effort tranchant; il est pris égal à 2,5 si l'élancement géométrique λ_g dans la direction considérée est supérieur ou égal à 5 et à 3,75 dans le cas contraire.

t : L'espacement des armatures transversales dont la valeur est déterminé dans la formule précédente; par ailleurs la valeur max de cet espacement est fixée comme suit pour la zone IIa :

- Dans la zone nodale : $t \le Min (10 \phi_t, 15 cm)$

- Dans la zone courante : $t \le 15 \phi_i$

Où : ϕ_t est le diamètre minimal des armatures longitudinales du poteau.

La quantité d'armatures transversale minimale : $\frac{A_t}{t \cdot b_1}$ en % est donnée comme suit :

$$-A_t^{\min} = 0.3\% \ (t \times b_1) \ si \ \lambda_g \ge 5$$

$$-A_t^{\min} = 0.8\% (t \times b_1) \ si \ \lambda_g \le 3$$

si: $3 < \lambda_{g} < 5$ Interpoler entre les valeurs limites précédentes.

 λ_{g} : est l'elencement géométrique du poteau

 $\lambda_g = \left(\frac{l_f}{a} \text{ ou } \frac{l_f}{b}\right)$; Avec a et b, dimensions de la section droite du poteau dans la

direction de déformation considérée, et $l_{\scriptscriptstyle f}$: longueur de flambement du poteau.

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\phi_{i}$ minimum;

Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants (ϕ cheminées > 12 cm) pour permettre une vibration correcte du béton sur toute la hauteur des poteaux.

V.3.2 : Sollicitations dans les poteaux

Les sollicitations dans les poteaux sont extraites du logiciel Sap2000 qui a été utilisé dans la modélisation au chapitre IV.

Les résultats ainsi obtenus sont résumés dans le tableau suivant :

	N _{max} → M _{cor}			M _{max} → N _{cor}			N min — M cor			V
Niveau	N (KN)	M (KN.m)	com	M (KN.m)	N (KN)	com	N (KN)	M (KN.m)	com	(KN)
1 ^{er} et 2 ^{eme} entre sol	3146.6	6.0221	1	115.99	201.11	3	665.55	18.065	5	66.28
RDC et 1 ^{er} étage	2269.2	5.37	1	134.24	566.49	3	232.58	13.56	5	87.40
2 et 3 étages	1668.1	14.08	1	123.14	325.26	3	23.97	36.15	5	78.58
4 et 5 ^{ème} étages	1092.5	12.04	1	90.36	161.91	5	28.66	6.18	3	65.05
6 et 7 ^{ème} étages	634.37	10.20	1	88.38	68.34	5	44.07	29.63	3	51.86

Tableau V.9: Sollicitations dans les poteaux

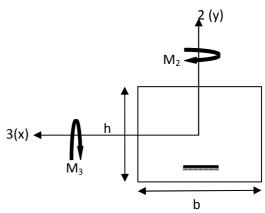
> Exemple de calcul

Soit les poteaux du sous-sol 01 :

b = 60cm, h = 60cm

$$d = 55cm, d' = 5cm$$

$$f_{c28} = 25 \text{ Mpa}$$


acier Fe E400

$$f_{bu} = 14.2Mpa$$

$$N^{max} = 3146.6$$
KN $\Rightarrow M^{cor} = 6.022$ KN. m

$$e_G = \frac{M_u}{N_u} = \frac{6.022}{3146.6} = 0.19cm < \frac{h}{2} = \frac{60}{2} = 30cm$$

c à l'intérieur de la section

Α

$$A=N_{U}(d-d')-M_{UA}$$

 $B=(0.337h-0.81d')b.h.f_{hu}$

Avec :
$$M_{UA} = M_U + N_U \left(d - \frac{h}{2} \right) = 792.67 KN. m$$

$$A = 780.63KN.m$$

$$B = 826.61KN.m$$

A < B Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

Calcul de
$$\mu_{bu}: \mu_{bu} = \frac{M_U}{f_{bu} \times d^2 \times b} = \frac{6.022 \times 10^{-3}}{14,2 \times 0,55^2 \times 0,6} = 0,023 < \mu_l = 0,391 \Rightarrow A' = 0$$

$$\mu_{bu} > 0.186 \Rightarrow \text{pivot B} \Rightarrow \varepsilon_{st} = \frac{3.5}{1000} (\frac{1-\alpha}{\alpha})$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) = 0.029 \Rightarrow \varepsilon_{st} = 4.290 \times 10^{-3} \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = 348 MPa.$$

$$z = d(1 - 0.4\alpha) = 0.543m$$
.

$$A_l = \frac{M_{UA}}{z \times f_{ct}} = \frac{6.022 \times 10^{-3}}{0.543 \times 348} = 3.18cm^2$$

$$A_s = A_l - \frac{N}{f_e} = 3.18 - \frac{3146.6 \times 10^{-3}}{400} = -3.17 cm^2 < 0$$

$$A_s = 0cm^2$$

V.3.3: Ferraillage des poteaux:

a) Armatures longitudinales

Le tableau résume le calcul des armatures pour les différents poteaux des différents niveaux.

Tableau V.10 : Ferraillage des poteaux :

Niveau	sections	A	A _{RPA}	Aadap	barres
		(cm ²)	(cm ²)	(cm ²)	
1 ^{er} et 2 ^{eme} entre sol	60x60	16.64	28.8	32.17	16HA16
RDC et 1 ^{er} étage	55x55	5.59	24.2	28.40	8HA16+8HA14
2 et 3 ^{eme} étages	50x50	2.79	20	20.36	4HA16+8HA14
4 et 5 ^{ème} étages					
	45x45	3.55	16.2	18.47	12HA14
6 et					4HA14+8HA12
7 ^{ème} étages	40x40	5.43	12.8	15.21	

b) Armatures transversales

Les armatures transversales sont déterminées grâce aux formules du RPA

Les résultats de calcul sont donnés sur le tableau suivant :

Tableau V.11: Armatures transversales dans les poteaux.

Niveaux	1 ^{er} et 2 ^{eme}	RDC et 1 ^{er}	2 et 3 ^{eme}	4 et	6 et
	entre sol	étage	étages	5 ^{ème} étages	7 ^{ème} étages
Section (cm ²)	60x60	55x55	50x50	45x45	40x40
ϕ_l^{\max} (cm)	1.6	1.6	1.6	1.4	1.4
ϕ_l^{\min} (cm)	1.6	1.4	1.4	1.4	1.2
l_r (cm)	64	64	64	56	56

l_f (cm)	214.2	214.2	214.2	214.2	214.2
$\lambda_{_g}$	3.57	3.89	4.28	4.76	5.35
$ ho_{\scriptscriptstyle a}$	3.75	3.75	3.75	3.75	2.5
V_{U} (KN)	66.28	87.40	78.58	65.05	51.86
t zone nodale (cm)	10	10	10	10	10
t zone courante (cm)	15	15	15	15	15
A_t (cm ²)	1.55	2.23	2.21	2.03	1.21
$A_t^{\min} (\text{cm}^2)$	2.7	2.47	2.26	2.02	1.8
$A_t^{adopt\acute{e}e}$ (cm ²)	8T8 = 4.02	8T8 =4.02	6T8 = 3.02	6T8 = 3.02	6T8 = 3.02

Conformément au RPA et au BAEL 91, le diamètre des armatures transversales doit vérifier la condition suivante : $\phi_t \ge \frac{\phi_l^{\text{max}}}{3}$

Ce qui est vérifié pour notre cas, puisque nous avons $\phi_t \ge \frac{16}{3} = 5.33 mm$.

V.3. 4: Vérification

a) Vérification au flambement :

Selon BAEL91, (art 4.4.1) : les éléments soumis à la flexion composée doivent être justifiés vis-à-vis de l'état limite ultime de stabilité de forme (flambement).

L'effort normal ultime est définit comme étant l'effort axial que peut supporter un poteau sans subir des instabilités de forme par flambement.

La vérification se fait pour le poteau le plus sollicité et le plus élancé à chaque niveau.

Critère de la stabilité de forme :

D'après le BAEL91 on doit vérifier que :

$$N_{\text{max}} \le N_u = \alpha * \left[\frac{Br * fc_{28}}{0.9 * \gamma_b} + \frac{As * fe}{\gamma_c} \right]$$
 (BAEL91 art B.8.4, 1)

Avec : B_r : Section réduite du béton

 $\gamma_b = 1.5$: Cœfficient de sécurité de béton (cas durable).

 $\gamma_s = 1.15$ coefficient de sécurité de l'acier.

lpha: Coefficient réducteur qui est fonction de l'élancement $\lambda_{\scriptscriptstyle g}$.

A_s: section d'acier comprimée prise en compte dans le calcul.

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} & \text{si: } \lambda \le 50 \\ \alpha = 0.6 \times \left(\frac{50}{\lambda}\right) & \text{si: } 50 \le \lambda \le 70 \end{cases}$$

Tel que :
$$\lambda = \frac{l_f}{i}$$
 avec $i = \sqrt{\frac{I}{b \times h}}$

Cas d'une section rectangulaire : $I = \frac{b \times h^3}{12}$

D'où : $\lambda = 3.46 \times \frac{l_f}{b}$ avec l_f : longueur de flambement

Avec :
$$l_f = 0.7 \times l_0$$

$$B_r = (a-2) \times (b-2)$$
 avec : $\begin{cases} a : \text{largeur de la section nette} \\ b : \text{hauteur de la section nette} \end{cases}$

A_s: Section d'armature.

Les résultats de vérification des poteaux au flambement sont résumés dans le tableau suivant :

Niveaux Section L_0 λ B_r N_{ul} N_{max} As (cm^2) (cm²)(cm²)(KN) (KN) (m) (m) 1^{er} et 2^{eme} 60*60 2.142 12.35 0.829 6091.97 32.17 3146.6 entre sol 3.06 3364 RDC et 1^{er} 55*55 2.142 13.47 0.825 5106.48 28.40 2269.2 étage 3.06 2809 2 et 3^{eme} étages 14.82 50*50 2.142 0.820 4079.36 20.36 1668.1 3.06 2304 4 et 5^{ème}étages 45*45 2.142 16.46 0.813 3306.07 18.47 1092.5 3.06 1849 40.*40 6 et 7^{ème}étages 2.142 18.52 0.804 2575.3 15.21 634.37 3.06 1444

Tab V.12: Vérification du flambement des poteaux

On voit bien que N_{max} <Nu pour tous les niveaux, donc il n'y pas de risque de flambement.

b) Vérification des contraintes de compression

La fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression du

béton seulement, cette vérification sera faite pour le poteau le plus sollicité à chaque niveau.

$$\sigma_{bc} = \frac{N}{S} + \frac{M_{ser} \times v}{I_{gg}} \le \frac{-}{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$I_{gg} = \frac{b}{3} \times (v^3 + v^3) + 15 \times A_s \times (v - d^3)^2 + 15 \times A_s \times (d - v)^2$$

$$A' = 0 \Rightarrow I_{gg} = \frac{b}{3} \times (v^3 + v^{'3}) + 15 \times A_s \times (d - v)^2$$

$$v = \frac{1}{B} \times (\frac{b \times h^2}{2} + 15 \times A_s \times d)$$

$$v' = h - v \quad \text{Et} \quad d = 0.9 \times h$$

$$S = B = b \times h + 15 \times A_s$$

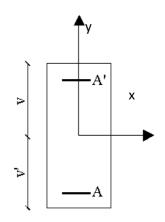


Figure V.3: Section d'un poteau

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.13: Vérification des contraintes dans le béton

Nivoovy	Section	d	As	v	v'	I_{gg}	N_{ser}	M_{ser}	$oldsymbol{\sigma}_{bc}$	$\overset{-}{\pmb{\sigma}}_{bc}$
Niveaux	(cm ²)	(cm)	(cm ²)	(cm)	(cm)	(m4)	(KN)	(KN.m)	(MPa)	(MPa)
1 ^{er} et 2 ^{eme} entre sol	60*60	54	32.17	32.83	27.17	0.13	2282.14	67.43	5.75	15
RDC et 1 ^{er} étage	55*55	49.5	28.4	30.21	24.79	0.082	1648.47	51.40	4.96	15
2 et 3 ^{eme} étages	50*50	45	20.36	27.17	22.83	0.048	1212.12	53.13	4.61	15
4 et 5 ^{ème} étages	45*45	40.5	18.45	24.66	20.34	0.042	794.46	53.56	3.76	15
6 et 7 ^{ème} étages	40*40	36	15.21	21.99	18.01	0.026	389.50	64.31	2.64	15

On voit bien que $\sigma_{bc} < \sigma_{bc}$ dans les poteaux pour tous les niveaux, donc la contrainte de compression dans le béton est vérifiée.

c) Vérification aux sollicitations tangentes

Selon le RPA99/version2003 (Art7.4.3.2), la contrainte de cisaillement conventionnelle de calcul dans le béton τ_{bu} sous combinaison sismique doit être inférieure ou égale à la valeur limite suivante :

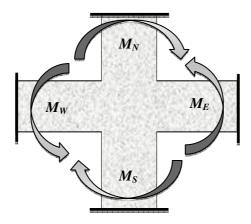
$$\tau_{bu} \le \overline{\tau}_{bu}$$
 Tel que : $\overline{\tau}_{bu} = \rho_d \times f_{c28}$ avec : $\rho_d = \begin{cases} 0.075 \text{ si } \lambda_g \ge 5\\ 0.04 \text{ si } \lambda_g < 5 \end{cases}$

$$\lambda_g = \frac{l_f}{a} ou \, \lambda_g = \frac{l_f}{b}$$

$$\tau_{bu} = \frac{V_u}{b_0 \times d}$$

Les résultats de calculs effectués sont représentés dans le tableau suivant :

Tableau V.14: Vérification aux sollicitations tangentes pour les poteaux


	Section	l_{f}	_		d	$V_{\rm u}$	τ	$ au_{adm}$
Niveaux	(cm ²)	(m)	$\lambda_{_g}$	$ ho_{_d}$	(cm)	(KN)	(MPa)	(MPa)
1 ^{er} et 2 ^{eme}	60*60	2.142	3.57	0.04	54	66.28	0.2	1.00
entre sol								
RDC et 1 ^{er}	55*55	2.142	3.89	0.04	49.5	87.4	0.32	1.00
étage								
2 et 3 ^{eme} étages	50*50	2.142	4.28	0.04	45	78.58	0.34	1.00
4 et 5 ^{ème} étages	45*45	2.142	4.76	0.04	40.5	65.05	0.35	1.00
6 et 7 ^{ème} étages	40*40	2.142	5.35	0.075	36	51.86	0.36	1.87

d). Vérification des zones nodales :

Dans le but de faire en sorte que les rotules plastiques se forment dans les poutres plutôt que dans

les poteaux, le RPA99 (Art 7.6.2) exige de vérifier :

 $|M_N| + |M_S| \ge 1.25 \times (|M_W| + |M_E|)$

d-1). Détermination du moment résistant dans les poteaux :

Le moment résistant (MR) d'une section de béton dépend essentiellement :

- des dimensions de la section du béton,
- de la quantité d'armatures dans la section,
- de la contrainte limite élastique des aciers.

$$M_R = z \times A_s \times \sigma_s$$

 $avec: z = 0.9 \times h$ et $\sigma_s = \frac{f_s}{\gamma_s} = 348MPa$.

Les résultats de calcul des moments résistants dans les poteaux sont donnés dans les tableaux suivants :

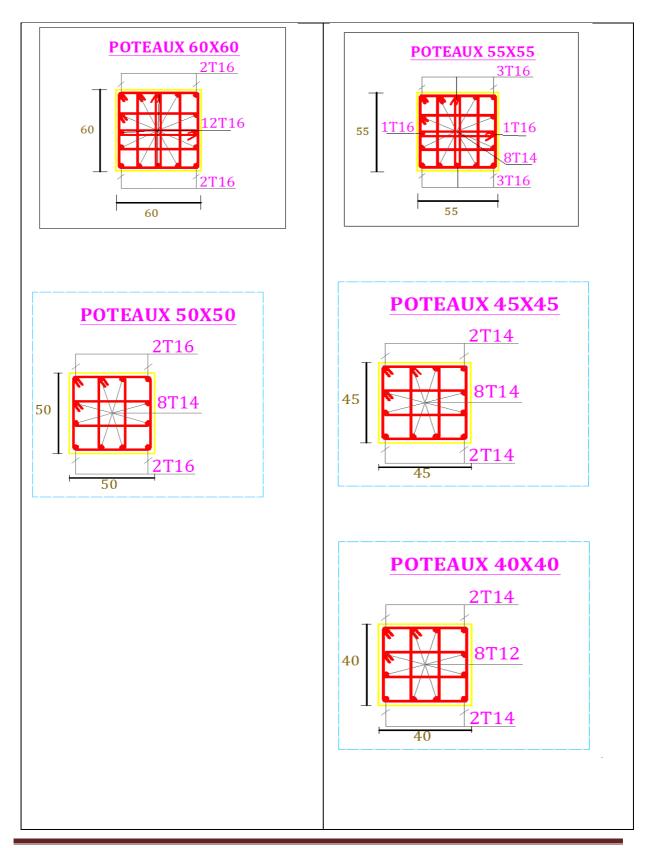
Tableau V.15: Les moments résistants dans les poteaux :

Niveau	Section (cm ²)	Z(cm)	$As(cm^2)$	MR(KN.m)
1 ^{er} et 2 ^{eme} entre sol	60*60	54	32.17	604.53
RDC et 1 ^{er} étage	55*55	49.5	28.4	489.21
2 et 3 ^{eme} étages	50*50	45	20.36	318.83
4 et 5 ^{ème} étages	45*45	40.5	18.45	260.03
6 et 7 ^{ème} étages	40*40	36	15.21	190.55

d-2). Détermination des moments résistants dans les poutres :

Les moments résistants dans les poutres sont calculés de la même manière que dans les poteaux ;

les résultats de calcul sont injectés directement dans le tableau de vérification des zones nodales


Tableau V.16: Vérification de la zone nodale :

Niveau	M_N	M_S	M_N+M_S	M_W	M_E	1.25 $(M_W + M_E)$	Obs
Entre sol 1	571	571	1142	142.7	107	312.1	vérifiée
Entre sol 2	571	571	1142	142.7	107	312.1	vérifiée
RDC	462	462	924	142.7	107	312.1	vérifiée
Etage 1	462	462	924	142.7	107	312.1	vérifiée
Etage 2	420	420	840	142.7	107	312.1	vérifiée
Etage 3	420	420	840	142.7	107	312.1	vérifiée
Etage 4	378	378	756	142.7	107	312.1	vérifiée
Etage 5	378	378	756	142.7	107	312.1	vérifiée
Etage 6	336	336	672	142.7	107	312.1	vérifiée
Etage 7	336	336	672	142.7	107	312.1	vérifiée

• Conclusion :La vérification des zones nodales est justifiée ; donc les rotules plastiques se forment dans les poutres plutôt que dans les poteaux

• Schémas de ferraillage :

Tableau V.17 : Schéma de ferraillage des poteaux dans chaque niveau :

V.4: ETUDE DES VOILES

V.4.1: Introduction:

Le RPA99 version 2003 (3.4.A.1.a) exige de mettre des voiles de contreventement pour chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur dans la zone IIa.

Les voiles sont considérés comme des consoles encastrées à leur base, leurs modes de rupture sont:

- ✓ Rupture par flexion.
- ✓ Rupture en flexion par effort tranchant.
- ✓ Rupture par écrasement ou traction du béton.

D'où, les voiles seront calculés en flexion composée avec effort tranchant, avec les sollicitations issues des combinaisons suivantes :

- 1).1.35G+1.5Q
- 2). $G+Q\pm E$
- 3). $0.8G\pm E$

V.4.2: Recommandations du RPA99:

a) Les armatures verticales

Elles sont destinées à reprendre les effets de flexion, elles sont disposées en deux nappes parallèles aux faces des voiles. Ces armatures doivent respecter les prescriptions suivantes :

- $A_{\min} = 0.2\% \times L_{t} \times e$
- L_t : longueur de zone tendue.
- e: épaisseur du voile
- les barres verticales des zones extrêmes doivent être ligaturées avec des cadres horizontaux (S_t<e)
- A chaque extrémité du voile, l'espacement des barres doit être réduit de $\frac{1}{2}$ sur $\frac{l}{10}$ de la longueur du voile.
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

b) Les armatures horizontales

Elles sont destinées à reprendre les efforts tranchants, disposées en deux nappes vers l'extrémité des armatures verticales pour empêcher leur flambement et elles doivent respecter les recommandations suivantes :

- Les barres horizontales doivent être munies de crochets à 135° avec une longueur $10 \times \phi$
- Le pourcentage minimal d'armatures est de :

✓
$$A_{\min} = 0.15\% \times b \times h$$
 dans la zone extrême de voile.

✓
$$A_{\min} = 0.10\% \times b \times h$$
 dans la zone courante du voile.

$$\checkmark \quad \phi \leq \frac{1}{10} \times e$$

- On doit vérifier pour les armatures verticales et horizontales les conditions suivantes :
 - ✓ l'espacement $S_t = \min(1.5 \times a; 30cm)$ avec a: épaisseur du voile.
 - ✓ les deux nappes d'armatures doivent être reliées avec au moins 4 épingles par m².
- Les armatures transversales sont destinées essentiellement à empêcher les barres verticales de flamber, elles sont disposées en nombre de 4 épingles par m².

V.4.3: Ferraillage des voiles

Armatures verticales

Le calcul des armatures verticales se fait en flexion composée sous M et N pour une section $(b \times h)$.

Armatures horizontales

Les résultats du ferraillage sont représentés dans le tableau ci-dessous avec :

- $A_{\nu}^{\text{min}} = 0.15\% \times B \times L$: section d'armatures verticales minimale dans le voile.
- A_v^{cal} : section d'armature calculée dans l'élément.

- A_{v}^{adop} : section d'armature adoptée pour une seule face de voile.
- S_t : espacement.
- $A_h^{\text{min}} = 0.15\% \times B \times h$: section d'armature horizontale minimale dans le voile.
- $A_h^{calc} = \frac{A_v^{adp}}{4}$: section d'armature calculée
- A_h^{adop} : section d'armature adoptée.
- N^{bre} : nombre de barre adoptée.

Les sollicitations permettant le calcul du ferraillage sont directement déduites de celle obtenue suite à la modélisation par le logiciel Sap2000.

Les résultats obtenus sont résumés dans les tableaux suivants

Tableau V.18 : Sollicitations de calcul dans le voile V_{x1} dans tous les niveaux :

Niveau	1 ^{er} et 2 ^{eme}	RDC et 1 ^{er}	2 et 3 ^{eme}		6 et
1111000	entre sol	étage	étages	4 et 5 ^{ème} étages	7 ^{ème} étages
	entre sor	ctage	ctages		retuges
Section (m ²)	0.15×2.00	0.15×2.00	0.15×2.00	0.15×2.00	0.15×2.00
M(KN)	132.5	112.5	102.5	65.7	45.7
N(KN)	1305.22	1025	944.8	788.1	568.21
section	Entièrement	Partiellement	Entièrement	Partiellement	Partiellement
	comprimée	comprimée	comprimée	comprimée	comprimée
V (KN)	307.69	253.92	223.1	182.6	135.6
τ(MPa)	1.59	1.31	1.15	0.94	0.7
$\overline{\tau} = 0.2f_{c28}(MPa)$	5	5	5	5	5
A_{v}^{cal} (cm2)	21.61	17.16	15.79	12.74	9.15
A_{ν}^{\min} (cm ²)	6	6	6	6	6
A_{v}^{adop} (cm ²)	23.09	19.42	16.96	13.85	11.78
N ^{bre} /par face	15HA14	4HA14+11H A12	15HA12	4HA12+11HA 10	15HA10
S _t (cm)	15	15	15	15	15
A_h^{cal} (cm ²)	1.5	1.23	1.08	0.89	0.66
A_h^{\min} (cm ²)	0.45	0.45	0.45	0.45	0.45
A_h^{adop} (cm ²)	1.57	1.57	1.57	1.01	1.01
N ^{bre} /par Plan	2HA10	2HA10	2HA10	2HA8	2HA8
S _t (cm)	20	20	20	20	20

Tableau V.19 : Sollicitations de calcul dans le voile V_{x2} dans tous les niveaux :

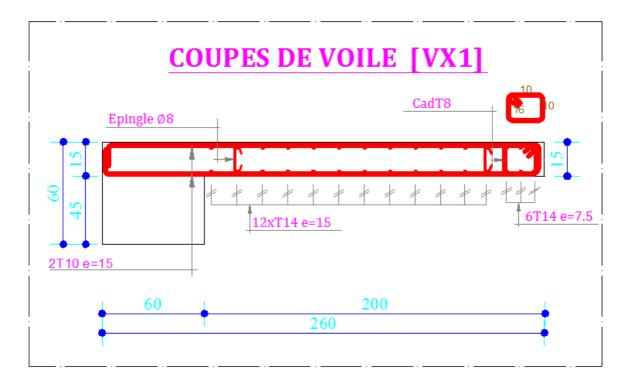

Niveau	1 ^{er} et 2 ^{eme}	RDC et 1 ^{er}	2 et 3 ^{eme}	4 et	6 et
	entre sol	étage	étages	5 ^{ème} étages	7 ^{ème} étages
Section (m ²)	0.15×3.00	0.15×3.00	0.15×3.00	0.15×3.00	0.15×3.00
M(KN)	251.5	230.7	141.6	103.2	80.5
N(KN)	2019.12	1886.5	1609.9	1364.56	1020.3
section	Entièrement	Entièrement	Partiellement	Partiellement	Entièrement
	comprimée	comprimée	comprimée	comprimée	comprimée
V (KN)	1060.4	1075.6	822.9	569.78	256.5
τ(MPa)	1.74	1.55	1.30	0.96	0.87
$\overline{\tau} = 0.2f_{c28}(MPa)$	5	5	5	5	5
A_{v}^{cal} (cm2)	32.63	30.43	25.17	21.09	15.82
A_{ν}^{\min} (cm ²)	9	9	9	9	9
A_{v}^{adop} (cm ²)	33.87	33.87	27.33	24.88	17.28
N ^{bre} /par face	22HA14	22HA14	6HA14+16H A12	22HA12	22HA10
S _t (cm)	15	15	15	15	15
A_h^{cal} (cm ²)	1.55	1.4	1.32	0.99	0.82
A_h^{\min} (cm ²)	0.45	0.45	0.45	0.45	0.45
A_h^{adop} (cm ²)	1.57	1.57	1.57	1.01	1.01
N ^{bre} /par Plan	2HA10	2HA10	2HA10	2HA8	2HA8
S _t (cm)	20	20	20	20	20

Tableau V.20 : Sollicitations de calcul dans le voile $V_{\rm yl}$ dans tous les niveaux :

Niveau	1 ^{er} et 2 ^{eme}	RDC et 1 ^{er}	2 et 3 ^{eme}	4 et 5 ^{ème} étages	6 et
	entre sol	étage	étages	4 et 5 etages	7 ^{ème} étages
Section (m ²)	0.15×2.50	0.15×2.50	0.15×2.50	0.15×2.50	0.15×2.50
, ,					
M(KN)	290.3	232.5	206.6	156.6	102.31
N(KN)	1489.01	1137.9	1082.25	862.1	686.58
section	Entièrement	Entièrement	Entièrement	Entièrement	Partiellement
	comprimée	comprimée	comprimée	comprimée	comprimée
V (KN)	1056.28	1039.94	762.93	534.9	224.63
τ(MPa)	1.38	1.31	1.16	1.05	0.93
$\overline{\tau} = 0.2f_{c28}(MPa)$	5	5	5	5	5
A_{v}^{cal} (cm2)	26.41	20.36	19.11	15.09	11.63
A_{ν}^{\min} (cm ²)	7.5	7.5	7.5	7.5	7.5
A_{v}^{adop} (cm ²)	27.71	22.81	22.81	16.21	14.14
N ^{bre} /par face	18HA14	6HA14+12H	6HA14+12H	6HA12+12HA	18HA10
, pur ruce		A12	A12	10	
S _t (cm)	15	15	15	15	15
A_h^{cal} (cm ²)	1.44	1.25	1.08	0.97	0.87
A_h^{\min} (cm ²)	0.45	0.45	0.45	0.45	0.45
A_h^{adop} (cm ²)	1.57	1.57	1.57	1.01	1.01
N ^{bre} /par Plan	2HA10	2HA10	2HA10	2HA8	2HA8
S _t (cm)	20	20	20	20	20

V.4.4 : Schémas de ferraillage

On prend comme exemple de ferraillage le voile Vx1 au niveau de 1^{er} entre sol $(L \times e = 200 \times 15 cm^2)$:

Figure. V.4 : Schéma de ferraillage du voile 1^{er} entre sol

V.5: CONCLUSION

Les éléments principaux constituent les éléments qui assurent le contreventement de la structure.

Au terme de ce chapitre, nous avons étudié ces différents éléments principaux.

Les poteaux ont été calculés et ferraillé. Le ferraillage adopté est le ferraillage maximum obtenu par deux logiciels de calcul (Sap, Socotec) et celui donnée par le RPA. Il est noter que le ferraillage minimum du RPA est souvent plus important que celui obtenu par les deux codes de calcul utilisé. On en déduit que le RPA favorise la sécurité avant l'économie.

Les poutres quand a elles ont été ferraillé en utilisant les sollicitations obtenus par le logiciel Sap2000.

Les voiles de contreventement on été calculé à la flexion composée grâce au deux logiciel (Sap2000 et Socotec).

Les ferraillages adoptés respectent les recommandations du RPA et le BAEL.

VI.1: INTRODUCTION

L'infrastructure est l'une des parties essentielles d'un bâtiment, car elle est en contact direct avec le sol d'assise Elle assure la transmission des charges apportées par la superstructure vers le sol, et avec sa bonne stabilité et sa bonne résistance elle assure :

- -un bon encastrement de la structure dans le sol.
- -une bonne transmission des efforts apportés par la superstructure au sol d'assise.
- -une bonne limitation des tassements différentiels

VI.2: CHOIX DU TYPE DES FONDATIONS

D'une manière générale, les fondations doivent répondre à la relation suivante :

$$\frac{P}{S} \leq \overline{\sigma}_{sol}$$

Avec:

P : Poids totale de l'ouvrage en fonctionnement.

S: Surface d'appui sur le sol.

 σ_{sol} : La capacité portante du sol.

Afin de déterminer le choix de fondations à adopter pour notre structure, on procède tout d'abord à la vérification des semelles isolées puis les semelles filantes. Si ces deux fondations ne sont pas adéquates, on passera au radier général.

VI.2.1: Vérification des semelles isolées

Les poteaux de notre structure sont carrés à la base de section $(a \times b)$ d'où les semelles sont carrées $(A \times B)$.

Soit:

N : effort normal transmis par la semelle au sol.

Le poteau le plus sollicité dans notre structure donne un effort normal de l'ordre :

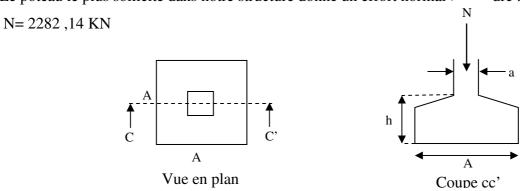


Figure VI.1 : Schéma d'une semelle isolée:

$$A^{2} \ge \frac{N}{\overline{\sigma}_{\text{sol}}}$$

$$A \ge \sqrt{\frac{N}{\overline{\sigma}_{\text{sol}}}} = \sqrt{\frac{2,28214}{0.12}} = 4.36m$$

D'après le résultat, et en tenant compte des distances entre les poteaux dans les deux directions, on remarque que l'utilisation des semelles isolées ne convient pas pour notre cas à cause du chevauchement des semelles voisines, ce qui nous a conduits à vérifier les semelles filantes.

VI.2.2: Vérification des semelles filantes

On Choisit une semelle filante de largeur B et de longueur L, située sous un portique de 4 poteaux.

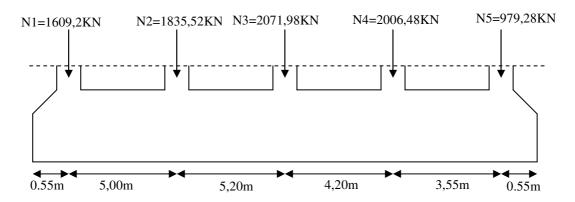


Figure VI.2 : Schéma d'une semelle filante

$$N = \sum N_i = 8502,48KN$$

 $L = 19.05m$

La vérification à faire est :
$$\frac{1}{\sigma_{sol}} \ge \frac{N}{S} = \frac{N}{B \times L} \Rightarrow B \ge \frac{N}{\sigma_{sol} \times L}$$

$$B \ge \frac{N}{\sigma_{sol} \times L} = \frac{8,50248}{0.12 \times 19.05} = 3,71m$$

Vu la distance entre les axes des deux portiques adjacents, on remarque qu'il y a chevauchement entre les deux semelles filantes, d'où l'emploi des semelles filantes est impossible, donc on passe au radier général

VI.2.3: Radier général:

Le radier travaille comme un plancher renversé.

VI.2.3.1: Pré dimensionnement

A. Condition de coffrage

$$h_t \ge \frac{L_{max}}{10}$$

 $L_{\mbox{\tiny max}}$: La plus grande portée entre deux éléments porteurs successifs.

$$L_{\text{max}} = 520 \text{cm}.$$

Ce qui donne: $h_t \ge 52$ cm.

On opte pour une hauteur $h_t = 60cm$.

Pour la dalle
$$h_0 \ge \frac{l \max}{20} \Rightarrow h_0 \ge 26 cm$$
.

On opte pour une hauteur $h_0 = 30cm$.

B. La condition de raideur (rigidité) :

Pour un radier rigide, il faut que $L_{\text{max}} \le \frac{\pi \times l_e}{2}$ (1)

$$l_e = \sqrt[4]{\frac{4 \times EI}{K \times b}} \qquad (2)$$

 $l_{\scriptscriptstyle e}$: Longueur élastique.

E: Module de Young.

I: Moment d'inertie de l'élément considéré sur 1ml.

K : coefficient de raideur du sol.

$$K = \begin{cases} 0.5 \text{ Kg/cm}^3 & \text{Très mauvais sol} \\ 4 \text{ Kg/cm}^3 & \text{Sol moyen} \\ 12 \text{ Kg/cm}^3 & \text{Très bon sol} \end{cases}$$

Dans notre cas on a un sol moyen donc $K = 4 Kg/cm^3$.

$$E = 3.21 \times 10^7 \, KN / m^2$$
.

b : Largeur de l'élément considéré par ml.

$$I = \frac{b \times h_t^3}{12} \dots \tag{3}$$

De (1), (2) et (3),
$$h_t \ge \sqrt[3]{\frac{48 \times L_{\text{max}}^4 \times K}{\pi^4 \times E}}$$

Donc:
$$h_t \ge \sqrt[3]{\frac{48 \times (5.2)^4 \times 4 \times 10^4}{\pi^4 \times 3.21 \times 10^7}} \Rightarrow h_t \ge 0.44m.$$

On prend : $h_t = 0.60m$ Pour les nervures du radier.

 $h_r = 0.30m$. Pour le radier.

C. Surface du radier

$$\frac{N_{ser}}{S_{rad}} \le \frac{-}{\sigma_{sol}} \Rightarrow S_{rad} \ge \frac{N_{ser}}{\overline{\sigma_{sol}}} = \frac{58265.55}{120} = 485.54m^2.$$

Or la surface du bâtiment est : $S_{bat} = 448.61m^2$.

$$D \ge \max(\frac{h_r}{2}; 30cm)$$
 On prend $D = 100cm$ et $P = 91.95m$.

Avec:

D: Débord. P: est le périmètre de la structure.

$$S_{rad} = S_{bat} + D \times P = 448.61 + 1 \times 91.95 = 540.56m^2.$$

$$S_{rad} = 540.56m^2$$
.

VI.2.3.2: Vérifications

A. Vérification au cisaillement

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(0.1 \times f_{c28}; 3 \text{ MPa}) = 2.5 \text{ MPa}$$

On considère une bande de largeur b =1m

$$N_U = 66524.1 KNm$$
.

$$V_{u} = \frac{N_{u} \times L_{\text{max}} \times b}{2S}$$

$$V_u = \frac{66524.1 \times 5.2}{2 \times 540.56} = 319.96 KN$$

$$d = 0.9h = 0.9 \times 30 = 27cm$$
.

$$\tau_U = \frac{319.96 \times 10^{-3}}{0.27 \times 1} = 1.18 MPa < \overline{\tau}.$$
Vérifiée.

B. Vérification au poinçonnement

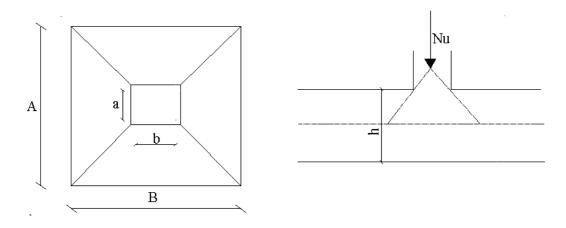


Figure VI .3 : Zone de contact poteau-radier.

Il faut vérifier que : $N_U \le 0.045 \times U_c \times h_t \times \frac{f_{c28}}{\gamma_h}$

 N_U : L'effort normal sur le poteau.

 U_c : Le périmètre du contour cisaillé projeté sur le plan moyen du radier.

$$U_c = 2 \times (A + B)$$

$$\begin{cases} A = a + h \\ B = b + h \end{cases} \Rightarrow \begin{cases} A = 60 + 60 = 120cm \\ B = 60 + 60 = 120cm \end{cases}$$

On trouve Uc = 4.8m.

$$\mathrm{Nu} = 3243.36 \leq 0.045 \times U_c \times h_t \times \frac{f_{c28}}{\gamma_b} = 3360 \mathrm{KN}.$$
 vérifiée.

C. Vérification des contraintes dans le sol

Il faut vérifier que :

$$\sigma_{moy} = \frac{3\sigma_1 + \sigma_2}{4} \le \sigma_{sol}$$

A partir du programme **Socotec** on trouve :
$$\begin{cases} X_g = 12.52m.; I_{xx} = 10805.32m^4 \\ Y_g = 8.6m.; I_{yy} = 20685.77m^4 \\ S_{rad} = 540.56m^2 \end{cases}$$

• **Sens X-X :** N' = 48422.2 KN et $M_x = 43964.88$ KN.m

$$\begin{split} &\sigma_{\max} = \frac{N'}{S} + \frac{M_X}{I_X} \times y_G \Rightarrow \sigma_{\max} = 0.124 MPa \\ &\sigma_{\min} = \frac{N'}{S} - \frac{M_X}{I_X} \times y_G \Rightarrow \sigma_{\min} = 0.054 MPa \\ &\sigma_{moy} = \frac{3 \times \sigma_{\max} + \sigma_{\min}}{4} \Rightarrow \sigma_{moy} = 0.106 MPa < \overline{\sigma_s} = 0.12 MPa.....C'est vérifiée. \end{split}$$

Sens Y-Y : N' = 48422.2KN; $M_y = 64042.59$ KN.m.

$$\begin{split} &\sigma_{\max} = \frac{N'}{S} + \frac{M_y}{I_y} \times x_G \implies \sigma_{\max} = 0.128 MPa \\ &\sigma_{\min} = \frac{N'}{S} - \frac{M_y}{I_y} \times x_G \implies \sigma_{\min} = 0.050 MPa \\ &\sigma_{moy} = \frac{3 \times \sigma_{\max} + \sigma_{\min}}{4} \implies \sigma_{moy} = 0.108 MPa < \overline{\sigma_s} = 0.12 MPa.....C'est vérifiée. \end{split}$$

D. Vérification de la stabilité au renversement :

Selon le RPA99, on doit vérifier que :
$$e = \frac{M}{N} \le \frac{B}{4}$$

 $\sqrt{\text{Sens X-X}}$:

 $\sqrt{\text{Sens Y-Y}}$:

E. Vérification de la poussé hydrostatique :

Il faut s'assurer que:

$$N \geq F_S * H * S_{rad} * \gamma_W$$

Avec:

N = 48422.2KN

H = 1m, (la hautaeur de la partie encrée du bâtiment).

 $F_s = 1.5$ (coefficient de sécurité).

 $S_{rad} = 540.56m^2$ (srface du radier).

 $\gamma_w = 10 KN / m^3$ (poids volumique de l'eau).

On trouve : $N \ge 8108.4KN$Condition vérifiée.

VI.2.3.3: Dalle du radier

Le radier sera calculé comme une dalle pleine renversé, appuyé sur les nervures vers le haut en flexion simple, sachant que la fissuration est préjudiciable. Le calcul se fera pour le panneau le plus défavorable et on adoptera pour le même ferraillage pour tout le radier de dimension $l_x = 5.00m$ et $l_y = 5.20m$

Soit : G_0 le poids propre du radier.

$$G_0 = \rho \times e = 25 \times 0.4 = 10 KN / m^2$$
.

A. Calcul des sollicitations

$$\begin{split} q_u &= \frac{N_u}{S_{rad}} + 1.35 \times G_0 \\ q_u &= \frac{66524.1}{540.56} + 1.35 \times 10 = 136.56 \, KN \, / \, m^2. \\ q_{ser} &= \frac{N_{ser}}{S_{rad}} + G_0 \\ q_{ser} &= \frac{48422.2}{540.56} + 10 = 99.57 \, KN \, / \, m^2. \end{split}$$

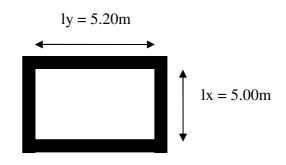


Figure VI .4 : Panneau de dalle.

 $\rho = \frac{l_x}{l_y} = 0.96 > 0.4 \Rightarrow$ La dalle travaille dans les deux sens.

$$\mathbf{L'ELU}: \rho = 0.96 \Rightarrow \begin{cases} \mu_x = 0.0401 \\ \mu_y = 0.9092 \end{cases}$$
 Annexe 1

Sens x-x: $M_0^x = \mu_x \times q_u \times l_x^2 \Rightarrow M_0^x = 136.90 KNm$

Sens y-y:
$$M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = M_0^x = 124.47 \text{ KNm}$$

> En travée :
$$\begin{cases} Sens \ xx : M_t^x = 0.85 \times M_0^x = 116.36 KN.m. \\ Sens \ yy : M_t^y = 0.85 \times M_0^y = 105.79 KN.m. \end{cases}$$

ightharpoonup En appui : $M_a^x = M_a^y = 0.5 \times M_0^x = 68.45 \, KN.m.$

• L'ELS:
$$\rho = 0.96 \Rightarrow \begin{cases} \mu_x = 0.0474 \\ \mu_y = 0.9385 \end{cases}$$
 Annexe1

Sens x-x: $M_0^x = \mu_x \times q_x \times l_x^2 \Rightarrow M_0^x = 117.99 \text{ KN.m.}$

Sens y-y:
$$M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = M_0^x = 110.73 \text{KN.m.}$$

> En travée :
$$\begin{cases} Sens \ xx : M_t^x = 0.85 \times M_0^x = 100.29 \ KN.m. \\ Sens \ yy : M_t^y = 0.85 \times M_0^y = 94.12 \ KN.m. \end{cases}$$

 \triangleright En appui : $M_a^x = M_a^y = 0.5 \times M_0^x = 58.99 KN.m.$

Le ferraillage se fera pour une section : $b \times h_r = (1 \times 0.4)m^2$.

Les résultats du ferraillage sont résumés dans le tableau suivant :

Tableau VI .1 : Résumé des résultats du ferraillage.

		$\mu_{\scriptscriptstyle bu}$	α	Z(m)	$A (\text{cm}^2/\text{ml})$	A (cm²/ml) adopté
En travée	Sens-x	0.059	0.077	0.358	9.33	5T16 = 10.05
	Sens-y	0.054	0.069	0.359	8.46	6T14= 9.24
En appu	i	0.035	0.044	0.363	5.14	5T12= 5.65

B. Espacement des barres

Sens $xx: S_t \le \min(3 \times h_t; 33) = 33cm$.

Sens $yy: S_t \le \min(4 \times h_r; 45) = 45cm$.

Or, d'après notre choix des armatures dans les deux sens xx et yy; nous avons :

$$\begin{cases} Sens \ xx : S_t = 20cm. \\ Sens \ yy : S_t = 16cm. \end{cases}$$

✓ Vérification à l'ELU

• Condition de non fragilité

On calcule A_{\min} :

$$\begin{vmatrix} h_r > 12cm \\ \rho > 0.4 \end{vmatrix} \Rightarrow \begin{cases} A_{\min}^x = \rho_0 \times \frac{3-\rho}{2} \times b \times h_r \\ A_{\min}^y = \rho_0 \times b \times h_r \end{cases}$$

 $h_r = e = 40cm$

$$b = 100cm$$

$$\rho = 0.96$$

$$\begin{cases} A_{\min}^x = 3.26cm^2 / ml \prec A_{cal}^x \\ A_{\min}^y = 3.2cm^2 / ml \prec A_{cal}^y \end{cases}$$
 Vérifiée

Vérification de l'effort tranchant

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = 0.05 \times f_{c28} = 1.25 MPa.$$

$$V_{u} = \max \begin{cases} V_{x} = \frac{q_{u} \times l_{x}}{3} = 227.6KN. \\ V_{y} = \frac{q_{u} \times l_{x}}{2} \times \frac{1}{\left(1 + \frac{\rho}{2}\right)} = 230.67KN. \end{cases}$$

✓ Vérification à l'ELS

On doit vérifier que : $\sigma_b = \frac{M}{I} \times y \le \overline{\sigma}_{adm} = 0.6 \times f_{c28} = 15MPa$.

$$\sigma_s = 15 \times \frac{M}{I} \times (d - y) \le \overline{\sigma}_s = \min(\frac{2}{3} \times f_e; 150 \times \eta) = 240MPa.$$

Les résultats de calcul des contraintes sont résumés dans le tableau ci-dessous :

Tableau VI.2: Vérification des contraintes.

		M _{ser} (KN.m)	A (cm ²)	Nombre de barres	Y (cm)	I (cm ⁴)	σ_b (MPa)	σ_{st} (MPa)
Travée	Sens x-x	100.29	10.05	5T16	9.16	142460.31	6.44	293.98
	Sens y-y	94.12	9.24	6T14	8.83	132934.72	6.25	299.17
Ap	pui	58.99	5.65	5T12	7.11	87697.52	4.78	301.58

On remarque que la contrainte dans les aciers n'est pas vérifiée donc on augmente la section de ferraillage.

Les résultats sont résumés dans le tableau ci-dessous :

		M _{ser} (KN.m)	A (cm ²)	Nombre de barres	Y (cm)	I (cm ⁴)	σ_b (MPa)	σ_{st} (MPa)	S _t (cm)
Travée	Sens x-x	100.29	16.08	8T16	11.16	207381.55	5.39	187.44	12.5
	Sens y-y	94.12	12.32	8T14	9.99	168052.44	5.59	226.90	12.5
A	pui	58.99	7.92	7T12	8.26	116912.65	4.16	217.51	14

On remarque que toutes les contraintes sont vérifiées.

8HA14 8HA12 Sens y-y Sens y-y

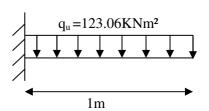

C. Schéma de ferraillage du radier

Fig.VI.5 : Schéma de ferraillage de radier.

VI.2.3.4 : Ferraillage des débords

Le débord est assimilé à une console de 1m de longueur soumis à la flexion simple.

On a
$$\begin{cases} q_u = 123.06KN/m^2 \\ q_s = 89.57KN/m^2 \end{cases}$$
$$M_u = q_u \times \frac{l^2}{2} = 123.06 \times \frac{1^2}{2} = 61.53KNm.$$

Figure VI.6 : *Sch*éma statique du *débord*.

Tableau VI.3: Sections d'armatures du débord.

M	Acal(cm²/m)	Amin	A adoptée	_	St(cm)	$Ar(cm^2/m)$	$A_r^{\ adopt\'ee}$
(KN.m)				(m)			
61.53	4.85	4.46	5.65	5HA12	20	1.88	3HA10=2.36

• Condition de non fragilité

$$A_{\min} = 0.23bd \times \frac{f_{t28}}{f_e} = 4.46cm^2$$
 Vérifiée.

• Vérification au cisaillement

Vérification de la contrainte de cisaillement:

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau}_u = \min(0.1 \times f_{c28}; 3MPa) = 2.5MPa$$

Sachant que:

$$V_{u} = q_{u} \times l = 123.06 \times 1 = 123.06 KN.$$

$$\tau_u = \frac{123.06 \times 10^{-3}}{1 \times 0.37} = 0.33 MPa < 2.5 MPa$$
 Vérifiée.

• Schéma de ferraillage.

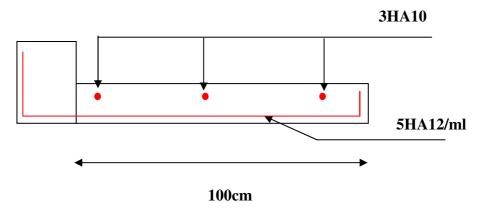


Figure. VI.7 : Schéma de ferraillage du débord.

VI.2.3.5: Etude des nervures

Les nervures sont des poutres de section en Té, noyées dans le radier. Elles sont calculées à la flexion simple.

A. Dimensionnement de la nervure

$$h = 0.80m$$

$$h_0 = 0.40 m$$

$$b_0 = 0.60 \text{m}$$

$$d = 0.75m$$

$$b_1 \le \min(\frac{l_y}{10}; \frac{l_x}{2}) \Longrightarrow b_1 \le \min(0.52; 2.5)$$

 $soit: b_1 = 0.52m.$

Donc $b = b_1 \times 2 + b_0 = 1.64m$.

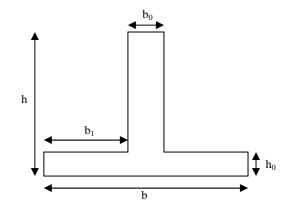


Figure VI.8 : Section à ferrailler.

B. Charges sur les nervures

:

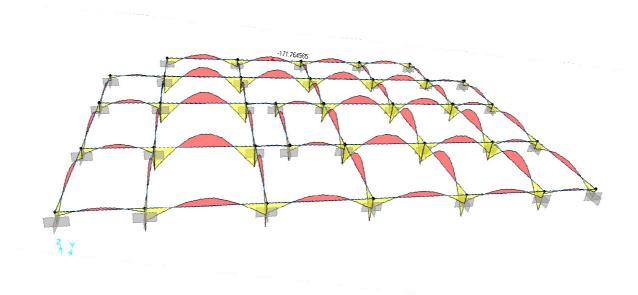


Figure VI.9: Charges sur les nervures

Les résultats du ferraillage sont récapitulés dans le tableau suivant :

Tableau VI.4: Résumé des résultats du ferraillage.

Sens	Localisation	M_u (KNm)	A_{cal} (cm ²)	$A_{adopt\acute{e}}~({ m cm}^2)$
X-X	Travée	457.84	17.98	12T16=24.13
	Appui	801.17	32.87	7T25+3T20=36.72
у-у	Travée	496.29	19.58	5T20+5T16=25.76
	Appui	877.22	36.37	5T25+5T20=40.25

✓ Vérification à l'ELU

• Condition de non fragilité

$$A_{\min} = 0.23bd \times \frac{f_{t28}}{f_e} = 9.05cm^2 \dots$$
 Vérifiée.

• Vérification de l'effort tranchant

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(0.1 f_{c28}; 3 \text{ MPa}) = 2.5 \text{ MPa}$$

✓ Vérification à l'ELS

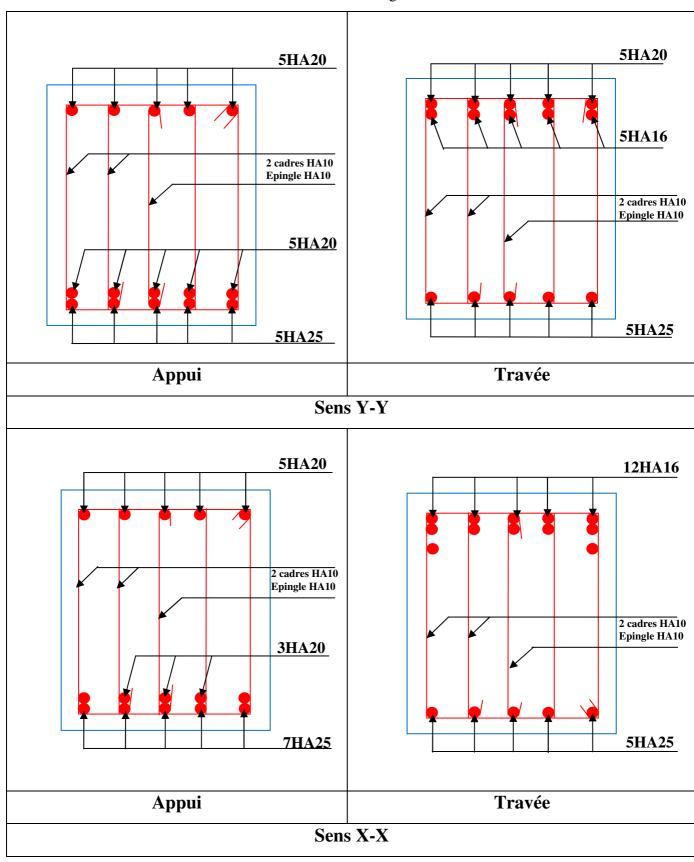
Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tableau VI .5 : Vérification des contraintes.

Localisation	Sens	M _{ser}	A	Y	I	σ_{bc}	σ_{bc}	σ_{s}	$\overline{\sigma}_{s}$
		(KN.m)	(cm ²)	(cm)	(cm ⁴)	(MPa)	(Mpa)	(MPa)	(Mpa)
Travées	X-X	333.24	24.13	16.12	1483818.57	3.62	15	198.35	240
	у-у	361.22	25.76	16.59	1567901.60	3.82	15	203.47	240
En appuis	X-X	583.13	36.72	19.33	2101848.49	5.36	15	231.67	240
	у-у	638.49	40.25	20.10	2263634.72	5.66	15	232.27	240

La contrainte est ainsi vérifiée dans les deux sens au niveau de l'appui.

Armatures transversales


$$\phi_t \le \min(\frac{h}{35}; \frac{b_0}{10}; \phi_t) = \min(\frac{800}{35}; \frac{600}{10}; 25) = 22.8mm$$
; Soit $\phi_t = 10mm$.

• Espacement des aciers transversaux

$$S_t \leq \min(\frac{h}{4};12;\phi_{t\min}) \Rightarrow S_t = \min(\frac{800}{4};12;25) = 12cm \text{ ; Soit } S_t = 10cm.$$

C .Schémas de ferraillage des nervures :

Tableau VI .6 : Schéma de ferraillage des nervures.

VI. 3: VOILE PERIPHERIQUE

VI.3.1: Introduction

Selon le **RPA99**, les ossatures au dessus du niveau de base du bâtiment, doivent comporter un voile périphérique contenu entre le niveau des fondations et le niveau de base, il doit satisfaire les exigences minimales suivantes :

- L'épaisseur minimale est de 15 cm.
- Il doit contenir deux nappes d'armatures.
- Le pourcentage minimal des armatures est de 0.1% dans les deux sens.
- Les ouvertures dans le voile ne doivent pas réduire sa rigidité d'une manière importante.

VI.3.2: Dimensionnement des voiles

La hauteur h=3.06 m; La longueur L=5.2 m; L'épaisseur e=15 cm

VI.3.3 : Caractéristiques du sol

 $\gamma_h = 18 KN / m^3$: Le poids spécifique ; L'ongle de frottement $\varphi = 22^\circ$.

La cohésion $c=0 \text{ KN/} m^2$

VI.3.4 : Evaluation des charges et surcharges : Le voile périphérique et soumis à

a) La poussée des terres

$$G = h \times (\gamma \times tg^{2}(\frac{\pi}{4} - \frac{\varphi}{2})) - 2 \times c \times tg(\frac{\pi}{4} - \frac{\varphi}{2}) \Rightarrow G = 3.06 + \times (18 \times tg^{2}(\frac{\pi}{4} - \frac{22^{\circ}}{2})) \Rightarrow G = 25.05KN/m^{2}$$

b) Surcharge accidentelle : $q = 10 \text{ KN/} m^2$

$$Q = q * tg^{2}(\frac{\pi}{4} - \frac{\varphi}{2}) \Rightarrow Q = 10 \times tg^{2}(\frac{\pi}{4} - \frac{22^{\circ}}{2}) \Rightarrow Q = 4.55KN/m^{2}$$

VI.3.5: Ferraillage du voile

Le voile périphérique sera calculé comme une dalle pleine sur quatre appuis uniformément chargée, l'encastrement est assuré par le plancher, les poteaux et les fondations.

♣ A l'ELU :

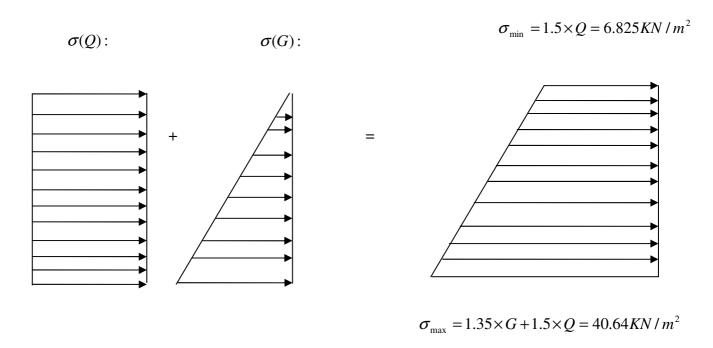


Figure VI.10 : répartitions des contraintes sur le voile périphérique

$$\sigma_{moy} = \frac{3 \times \sigma_{max} + \sigma_{min}}{4} = 32.18 \ KN / m^2 \Rightarrow q_u = \sigma_{moy} = 32.18 \ KN / m^2$$

Pour le ferraillage on prend le plus grand panneau dont les caractéristiques sont :

$$L_x = 3.06 \, m; L_y = 5.2 \, m$$
; b = 100 cm; h = 15 cm

 $\alpha = \frac{L_x}{L_y} = 0.58 > 0.4 \rightarrow \text{ La dalle porte dans les deux sens.}$

$$M_{0x} = \mu_x \times L_x^2 \times q_u;$$
 $M_{0y} = M_{0x} \times \mu_y$

$$\alpha = 0.58 \Rightarrow ELU: \begin{cases} \mu_x = 0.0851 \\ \mu_y = 0.2703 \end{cases}$$
 [Annexe I]

$$M_{0x} = 25.64 \text{ KN} \times m.; M_{0y} = 6.93 \text{ KN} \times m$$

$$M_{ty} = 0.85 \times M_{0y} = 5.89 \ KN.m$$

$$M_{tx} = 0.85 \times M_{ax} = 21.80 \ KN.m$$

$$M_{ap} = 0.3 \times M_{0x} = 7.69 \ KN.m$$

Les résultats de calcul sont représentés dans le tableau suivant :

Tableau VI.7 : Section des armatures du voile périphérique.

	Sens	M (KN.m)	$\mu_{\scriptscriptstyle bu}$	α	Z (m)	A (cm²)	A_{\min} (cm ²)	A_{adp} (cm ²)	St (cm)
travée	XX	21.8	0.090	0.119	0.123	5.09	1.5	6T12=6.79	16.66
	YY	5.89	0.024	0.031	0.128	1.32	1.5	4T10=3.14	25
Appui		7.69	0.032	0.040	0.127	1.73	1.5	4T10=3.14	25

Vérifications à l'E.L.U

Avec $A_{\min} = 0.1\% \ b \times h \dots$ condition exigée par le RPA.

Les espacements

Armatures // L_x : St \leq min (3e, 33 cm) = 33 cm

Armatures // L_v : St \leq min (4e, 45 cm) = 45 cm

Vérification de l'effort tranchant

On doit vérifier que $\tau_u = \frac{V}{b \times d} \le \bar{\tau} = \min(0.1 \times f_{c28}; 3MPa) = 2.5 \text{ MPa}$, fissuration nuisible.

On a
$$V_y = \frac{q_u \times l_x}{2} \times \frac{1}{(1 + \frac{\rho}{2})} = 38.16 KN.$$

$$V_x = \frac{q_u \times l_x}{3} = 32.82 KN.$$

Vérifications à l'E.L.S

$$\sigma_{\min} = Q = 4.55KN/m^2; \quad \sigma_{\max} = Q + G \Rightarrow \sigma_{\max} = 25.05 + 4.55 \Rightarrow \sigma_{\max} = 29.6KN/m^2$$

$$.q_s = \sigma_{moy} = \frac{3 \times \sigma_{\max} + \sigma_{\min}}{4} = 23.33KN/m^2$$

$$\mu_{x} = 0.0884; \mu_{y} = 0.4565$$
 (Annexe I)

$$M_x = \mu_x \times q_x \times l_x^2 \Rightarrow M_x = 0.0884 \times 23.33 \times 3.06^2 = 19.31 KN.m$$

$$M_y = \mu_y M_x \Rightarrow M_y = 0.4565 \times 19.31 = 8.81 \text{KN.m}$$

$$M_{0x} = 19.31 \, \text{KN.m}; M_{\dot{a}y} = 8.81 \, \text{KN.m}; M_{tx} = 16.41 \, \text{KN.m}; M_{ty} = 7.48 \, \text{KN.m}; M_{ap} = 5.73 \, \text{KN.m}; M_{ty} = 16.41 \,$$

Vérification des contraintes

• Dans le béton : $\sigma_{bc} = \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0.6 f_{c28} = 15 MPa$.

• Dans l'acier : La fissuration est considérer nuisible.

$$\sigma_s = 15 \times \frac{M_{ser}}{I} (d - y) < \overline{\sigma_s} = \min \left(2 \times \frac{f_e}{3} \right), \max(240; 110 \sqrt{\eta \times f_{t28}}) = 240 MPa$$

Tableau VI.8: vérification des contraintes pour le voile périphérique.

		M(KN.m)	Y (cm)	I(cm ⁴)	$\sigma_b(MPa)$	$\sigma_s(MPa)$	Observation
Travée	XX	16.41	4.22	10356.50	6.68	208.68	Vérifier
	YY	7.48	3.05	5608.77	4.06	199.04	Vérifier
		7.10	3.03	3000.77	1.00	177.01	Verifier
Appuis		7.73	3.05	5608.77	4.2	205.69	Vérifier

VI.3.6) Schéma de ferraillage du voile périphérique

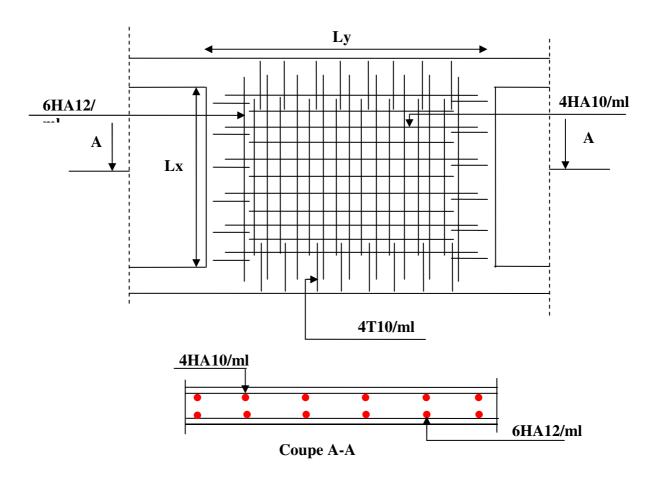


Figure VI.11 : Schéma de ferraillage de voile périphérique.

VI.4: CONCLUSION

Les fondations ont pour rôle de transmettre les charges au sol. Elles sont choisies selon les critères suivants :

- La capacité portante du sol d'assise.
- La distance entre axes des poteaux.
- Les charges transmises au sol.
- La profondeur du bon sol.

Pour connaître le type de fondation qui convient à notre structure, nous avons procédé à un calcul avec semelles isolées. Ces dernières ne convenaient pas à cause du chevauchement qu'elles engendraient. Le même calcul a été mené avec des semelles filantes. Ces dernières ne convenaient pas non plus pour les mêmes raisons.

Nous sommes ensuite passé à un calcul avec fondation sur radier général. Ce dernier a été calculé comme un plancher renversé. Le ferraillage adopté a été vérifié et s'est avéré satisfaisant.

Le calcul du voile périphérique a aussi fait l'objet de ce chapitre. Notre voile périphérique est en fait un mur qui reprend comme charges uniquement les poussées des terres. Il a été calculé comme des panneaux de dalle pleine délimitée par le système poteau-poutre de la structure. Notre voile périphérique s'est ferraillé avec un ferraillage minimum.

Conclusion

Ce projet nous a permis d'une part d'acquérir de nouvelles connaissances, de se familiariser avec tous les règlements en vigueur ainsi que les outils numériques de calcul et surtout de nous faire prendre consciences des difficultés, des contraintes et de la complexité d'une étude faite dans les règles de l'art.

D'autre part cette étude nous a permis d'aboutir à certaines conclusions qui sont :

- ❖ L'étude de la structure doit être menée a bien car sa modélisation ; son calcul ; son dimensionnement et même sa mise en œuvre permettent d'assurer un bon comportement en cas de séisme.
- ❖ Les poteaux sont ferraillés avec le minimum du RPA 99, cela est dû au surdimensionnement de leurs sections.
- ❖ La vérification de l'effort normal réduit conduit à une augmentation substantielle des sections des poteaux et cette vérification ne doit pas être négligée.
- ❖ La disposition des voiles en respectant l'aspect architectural du bâtiment, est souvent un obstacle majeur pour l'ingénieur du Génie Civil, ces contraintes architecturales influe directement sur le bon comportement de la structure vis-à-vis des sollicitations extérieures,
- ❖ L'utilisation du logiciel SAP2000.V14 nous a permet de faciliter les calculs, d'avoir une simulation proche de la réalité et un gain de temps important dans l'analyse de cette structure.

En fin. Je souhaite que ce modeste travail soit bénéfique pour nous ainsi les promotions à venir.

Bibliographie

- ✓ Règles de conception et de calcul des structures en béton armé (CBA93).
- ✓ Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites (B. A. E. L 91).
- ✓ Règles parasismiques algériennes (RPA 99/ version 2003).
- ✓ Document technique réglementaire (D. T. R), charges et surcharges d'exploitations.

Autres documents consultés :

- Cahier de cours de cursus.
- Mémoires de fin d'études.

Logiciels utilisés:

- SAP 2000/Version 14
- SOCOTEC
- Autocade 2008.

ANNEXE I

DALLES RECTANGULAIRES UNIFORMÉMENT CHARGEES ARTICULÉES SUR LEUR CONTOUR

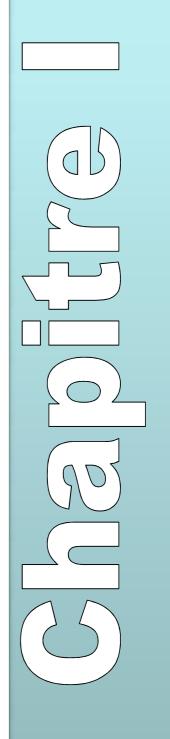
$\alpha = \frac{l_x}{l_y}$	ELU	v = 0	ELS v	= 0.2	$\alpha = \frac{L}{L}$	ELU	v = 0	ELS	= 0.2
1	μ_x	$\mu_{\mathbf{y}}$	μ_{x}	μ_{ν}	+	μ_x	μ,	μ_{x}	μ_{v}
0.40	0.1101	0.2500	0.1121	0.2854	0.71	0.0671	0.4471	0.0731	0.5940
0.41	0.1088	0.2500	0.1110	0.2924	0.72	0.0658	0.4624	0.0719	0.6063
0.42	0.1075	0.2500	0.1098	0.3000	0.72	0.0646	0.4780	0.0708	0.6188
0.43	0.1062	0.2500	0.1087	0.3077	0.74	0.0633	0.4938	0.0696	0.6315
0.44	0.1049	0.2500	0.1075	0.3155	0.75	0.0621	0.5105	0.0684	0.6647
0.45	0.1036	0.2500	0.1063	0.3234	0.76	0.0608	0.5274	0.0672	0.6580
0.46	0.1022	0.2500	0.1051	0.3319	0.77	0.0596	0.5440	0.0661	0.6710
0.47	0.1008	0.2500	0.1038	0.3402	0.78	0.0584	0.5608	0.0650	0.6841
0.48	0.0994	0.2500	0.1026	0.3491	0.78	0.0573	0.5786	0.0639	0.6978
0.49	0.0980	0.2500	0.1013	0.3580	0.80	0.0573	0.5959	0.0628	0.7111
0.50	0.0966	0.2500	0.1000	0.3671	0.81	0.0550	0.6135	0.0628	0.7246
0.51	0.0951	0.2500	0.0987	0.3758	0.82	0.0530	0.6313	0.0607	0.7381
0.52	0.0937	0.2500	0.0974	0.3853	0.83	0.0539	0.6494	0.0007	0.7518
0.53	0.0922	0.2500	0.0961	0.3949	0.84	0.0528	0.6678	0.0586	0.7655
0.54	0.0908	0.2500	0.0948	0.4050	0.85	0.0506	0.6864	0.0576	0.7794
0.55	0.0894	0.2500	0.0936	0.4150	0.86	0.0300	0.7052	0.0576	0.77933
0.56	0.0880	0.2500	0.0923	0.4254	0.87	0.0496	0.7244	0.0556	0.7933
0.57	0.0865	0.2582	0.0910	0.4357	0.88	0.0476	0.7438	0.0546	0.8216
0.58	0.0851	0.2703	0.0897	0.4462	0.89	0.0466	0.7635	0.0537	0.8358
0.59	0.0836	0.2822	0.0884	0.4565	0.90	0.0456	0.7834	0.0528	0.8502
0.60	0.0822	0.2948	0.0870	0.4672	0.91	0.0430	0.8036	0.0518	0.8646
0.61	0.0808	0.3075	0.0857	0.4781	0.91	0.0437	0.8251	0.0518	0.8799
0.62	0.0794	0.3205	0.0844	0.4892	0.92	0.0437	0.8450	0.0500	0.8939
0.63	0.0779	0.3338	0.0831	0.5004	0.93	0.0428	0.8661	0.0300	0.8939
0.64	0.0765	0.3472	0.0819	0.5117	0.94	0.0419	0.8875	0.0491	0.9087
0.65	0.0751	0.3613	0.0805	0.5235	0.95	0.0410	0.8873	0.0483	0.9230
0.66	0.0737	0.3753	0.0792	0.5351	0.90	0.0401	0.9322	0.0474	0.9543
0.67	0.0723	0.3895	0.0780	0.5469	0.97	0.0392	0.9545	0.0457	0.9543
0.68	0.0710	0.4034	0.0767	0.5584	0.98	0.0384		0.0437	0.9847
0.69	0.0697	0.4181	0.0755	0.5704	1.00	0.0376	0.9771	0.0449	1.0000
0.70	0.0684	0.4320	0.0743	0.5817	1.00	0.0308	1.0000	0.0441	1.0000

ANNEXE II

TAB. 6.4 – Valeurs de M_1 (M_2) pour $\rho = 1$

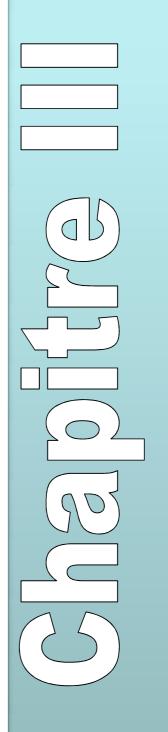
U/l_x	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
V/l_y	Š.			10000000			enervises available	- Amorton control			Company and a
0.0	1	0.224	0.169	0.14	0.119	0.105	0.093	0.083	0.074	0.067	0.059
0.1	0.3	0.21	0.167	0.138	0.118	0.103	0.092	0.082	0.074	0.066	0.059
0.2	0.245	0.197	0.16	0.135	0.116	0.102	0.09	0.081	0.073	0.064	0.058
0.3	0.213	0.179	0.151	0.129	0.112	0.098	0.088	0.078	0.071	0.063	0.057
0.4	0.192	0.165	0.141	0.123	0.107	0.095	0.085	0.076	0.068	0.061	0.056
0.5	0.175	0.152	0.131	0.115	0.1	0.09	0.081	0.073	0.066	0.058	0.053
0.6	0.16	0.14	0.122	0.107	0.094	0.085	0.076	0.068	0.062	0.054	0.049
0.7	0.147	0.128	0.113	0.099	0.088	0.079	0.072	0.064	0.057	0.051	0.047
0.8	0.133	0.117	0.103	0.092	0.082	0.074	0.066	0.059	0.053	0.047	0.044
0.9	0.121	0.107	0.094	0.084	0.075	0.068	0.061	0.055	0.049	0.044	0.04
1.0	0.11	0.097	0.085	0.077	0.069	0.063	0.057	0.05	0.047	0.041	0.03

 \mathbf{NOTA} : Pour avoir les valeurs de M_2 ; il suffit de permuter U et V.

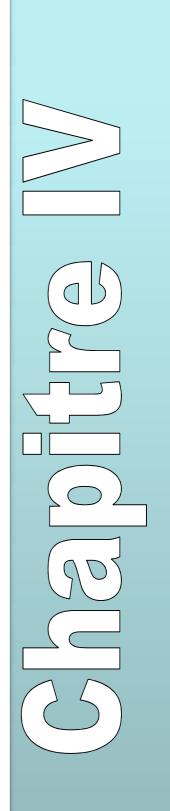

ANNEXE III

SECTIONS RÉELLES D'ARMATURES

Section en cm^2 de N armatures de diamètre ϕ en mm.


φ:	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	154	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.42	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.8
13	2.55	3.68	6.53	10.21	14.70	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.5
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	2036	27.71	36.19	56.55	88.36	144.76	226.2
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

Généralités

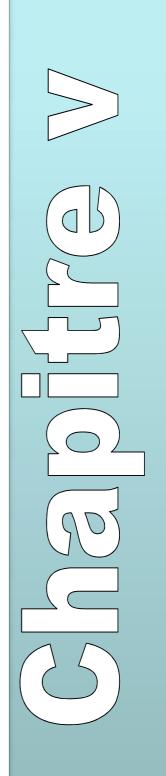


Prédimensionnement des éléments

Etude des éléments secondaires

Etude dynamique

<


<u>as</u> 005 (015

Q15

Etude des

éléments

structuraux

Etude des fondations