République Algérienne Démocratique et Populaire
Ministère de l'enseignement supérieur et de la recherche scientifique
Université A/Mira de Bejaia
Faculté de Technologie
Département de Génie Civil

Mémoire de Fin d'Etudes

En Vue de l'Obtention du Diplôme Master en génie civil Option : Matériaux et Structure (MS)

Thème:

Etude d'un bâtiment R+8 à usage d'habitation et commercial Contreventé par un système mixte Voiles - Portiques

<u>Présenté par : Promoteur : </u>

M^r: BACHIRI Lyes M^r: M. OURTEMACHE

Mr: SAOUDI Nadir

Remerciement

On remercie dieu le tout puissant de nous avoir donné la santé et la volonté d'entamer et de terminer ce mémoire.

Tout d'abord, ce travail ne serait pas aussi riche et n'aurait pas pu avoir le jour sans l'aide et l'encadrement de Mr M. OURTEMACHE, on le remercie pour la qualité de son encadrement exceptionnel, pour sa patience, sa rigueur et sa disponibilité durant notre préparation de ce mémoire.

Nous sommes conscients de l'honneur que nous a fait **Mr N. BELHAMDI** en étant président du jury et **Mr CHIKHI** d'avoir accepté d'examiner ce travail.

Nos remerciements s'adressent également à tous nos professeurs pour leurs générosités et la grande patience dont ils ont su faire preuve malgré leurs charges académiques et professionnelles.

Nos profonds remerciements vont également à toutes les personnes qui nous ont aidés et soutenue de prés ou de loin.

A cœur vaillant rien d'impossible

A conscience tranquille tout est accessible

Quand il y a la soif d'apprendre Tout vient à point à qui sait attendre

Quand il y a le souci de réaliser un dessein Tout devient facile pour arriver à nos fins

Malgré les obstacles qui s'opposent En dépit des difficultés qui s'interposent

Les études sont avant tout Notre unique et seul atout Ils représentent la lumière de notre existence L'étoile brillante de notre réjouissance

Comme un vol de gerfauts hors du charnier natal Nous partons ivres d'un rêve héroïque et brutal

Espérant des lendemains épiques Un avenir glorieux et magique

Souhaitant que le fruit de nos efforts fournis Jour et nuit, nous mènera vers le bonheur fleuri

Aujourd'hui, ici rassemblés auprès des jurys, Nous prions dieu que cette soutenance Fera signe de persévérance Et que nous serions enchantés Par notre travail honoré.

Dédicaces

A ma très chère mère

Affable, honorable, aimable: Tu représentes pour moi le symbole de la bonté par excellence, la source de tendresse et l'exemple du dévouement qui n'a pas cessé de m'encourager et de prier pour moi.

Ta prière et ta bénédiction m'ont été d'un grand secours pour mener à bien mes études.

Aucune dédicace ne saurait être assez éloquente pour exprimer ce que tu mérites pour tous les sacrifices que tu n'as cessé de me donner depuis ma naissance, durant mon enfance et même à l'âge adulte.

Je te dédie ce travail en témoignage de mon profond amour. Puisse Dieu, le tout puissant, te préserver et t'accorder santé, longue vie et bonheur

A mon Père

Aucune dédicace ne saurait exprimer l'amour, l'estime, le dévouement et le respect que j'ai toujours eu pour vous. Rien au monde ne vaut les efforts fournis jour et nuit pour mon éducation et mon bien être. Ce travail est le fruit de tes sacrifices que tu as consentis pour mon éducation et ma formation.

A mes chères Sœurs et Frères

(Farida, Djidji et Rosa) (Mourad, Hakim, Noureddine, Bilal, Salim, Ghanou et Zizou)

Les mots ne suffisent guère pour exprimer l'attachement, l'amour et l'affection que je porte pour vous. Mes anges gardien et mes fidèles compagnons dans les moments les plus délicats de cette vie mystérieuse. Je vous dédie ce travail avec tous mes vœux de bonheur, de santé et de réussite.

A tous les membres de ma famille, petits et grands

Veuillez trouver dans ce modeste travail l'expression de mon affection

A mes chères ami (e)s

Je ne peux trouver les mots justes et sincères pour vous exprimer mon affection et mes pensées, Vous êtes pour moi des frères, sœurs et des amis sur qui je peux compter. En témoignage de l'amitié qui nous uni et des souvenirs de tous les moments que nous avons passé ensemble,

> Je vous dédie ce travail et je vous souhaite une vie pleine de santé et de bonheur

A mon Binôme

J'ai eu le privilège de travailler avec vous et d'apprécier vos qualités et vos valeurs. Votre sérieux, vos compétences et votre sens du devoir m'ont énormément marqués Je vous dédie

ce travail ainsi que toute la famille SAOUDI et je vous souhaite une vie pleine de santé et de bonheur

A mon Promoteur

Un remerciement particulier et sincère pour tous vos efforts fournis. Vous avez toujours été présent. Que ce travail soit un témoignage de ma gratitude et mon profond respect.

Dédicaces

Se dédie ce travail, à mes parents qui m'ont orienté et soutenu dans les choix difficiles...

A mes frères Kabil, Kassim, Kadjim et Kacir A ma sœur, ainsi que sa famille.

A ma grande famille que ce soit du coté paternel ou du coté maternel.

A mon binôme et toute sa famille.

A mes copain de chambre &15

A tous mes amis.

Et à tous ceux qui ont contribué de près ou de loin à l'aboutissement de ce mémoire.

Kadir...

SOMMAIRE

Introduction générale

Chapitre I : Généralités	
I.1. Présentation de l'ouvrage.	1
I.2.Caractéristiques de la structure.	1
I.3. Règlements et normes utilisés.	2
I.4. Etats limites.	2
I.5. Action.	4
I.6. les combinaisons d'actions.	5

I.7. Caractéristiques des matériaux......6

Chapitre II : Pré dimensionnement des éléments

I.2. Pré dimensionnement	9
II.3. Pré dimensionnement des éléments principaux	15
II.4. Evaluation des charges et surcharges (DTR BC 2.2)	18
II.5. Descente de charge.	22
II.6.Conclusion.	28

Chapitre III : Calcul des éléments secondaires

III.1. Calcul des planchers.	30
III.2. Planchers dalles pleines.	49
III. 3.Etude de l'ascenseur (dalle sur 04 appuis)	61
III.4. Etude des escaliers	71
III .5.Etude de la poutre palière	78

Chapitre IV: Etude dynamique

IV.1. Introduction.	84
IV.2. Méthode de calcul.	84
IV.3. Justification vis-à-vis de l'interaction voiles-portiques	93
IV.4.Conclusion	96

SOMMAIRE

Chapitre V : Etude des éléments structuraux	
V.1. Etude des poteaux	97
V.2. Etude des poutres	106
V.3. Etude des voiles	114
Chapitre VI : Etude des fondations	
VI .1.Introduction	128
VI.2. Choix du type des fondations	128
VI .3. Etude des fondations	128
VI.4. Ferraillage du radier	135
Bibliographie	
Annexes	

Tables des figures

FIGURE I.1. Définition des pivots	3
FIGURE I.2. Evaluation de la résistance f_{cj} en fonction de l'âge du béton	7
FIGURE I.3. Diagramme contrainte – déformation du béton à l'ELU	8
FIGURE I.4.Diagramme de déformation de l'acier	9
FIGURE II.1. Coupe transversale de plancher à corps creux	10
FIGURE II.2. Schéma de la disposition des poutrelles	11
FIGURE II.3. Schéma d'escalier à trois volées contrariées avec palier de repos T1	14
FIGURE II.4. Schéma d'escalier à trois volées contrariées avec palier de repos T2	15
FIGURE II.5. Escalier à deux volées contrariées.	16
FIGURE II.6. Coupe de voile en élévation	18
FIGURE II.7. Surface afférente de la toiture pour le poteau B2	24
FIGURE II.8. Surface afférente des étages courant pour le poteau B2	24
FIGURE II.9. Surface afférente des étages de service pour le poteau B2	25
FIGURE III.1. Diagramme des moments des appuis pour une poutre à 2 travées	31
FIGURE III.2. Diagramme des moments des appuis pour une poutre à plus de 2 travées.	31
FIGURE III.3. Diagramme des efforts tranchants pour une poutre à 2 travées	32
FIGURE III.4. Diagramme des efforts tranchants pour une poutre à plus de 2 travées	32
FIGURE III.5. Schéma du 1 ^{er} type de poutrelle	35
FIGURE III.6. Dalle sur trois appuis.	51
FIGURE III.7. Section de la dalle pleine à ferrailler	52
FIGURE III.8. Schéma de ferraillage de la dalle sur trois appuis	56
FIGURE III.9. Dalle sur 4 appuis.	56
FIGURE III.10. Schéma de ferraillage de la dalle sur quatre appuis	60
FIGURE III.11. Dalle sur un seul appui	60
FIGURE III.12. Schéma de ferraillage de la console	62
FIGURE III 13 Dalle sur 4 annuis	63

Tables des figures

FIGURE III.14. Schéma représente la surface d'impact	67
FIGURE III.15. Schéma de ferraillage de la dalle du locale des machines	71
FIGURE III.16. Vue en plan d'escalier d'étage courant	72
FIGURE III.17. Schéma statique d'escalier d'étage courant.	73
FIGURE III.18. Schéma de ferraillage d'escalier d'étage courant	75
FIGURE III.19. Vue en plan d'escalier de service.	76
FIGURE III.20. Schéma statique des escaliers de services.	76
FIGURE III.21. Schéma de ferraillage d'escalier de service.	79
FIGURE III .22. Schémas statique de la poutre palière.	79
FIGURE III.23. Schéma de ferraillage de la poutre palière.	84
FIGURE IV.1. Courbe du spectre de réponse	90
FIGURE IV.2. Plan de disposition des voiles.	91
FIGURE IV.3. Model, Translation suivant l'axe x-x	92
FIGURE IV.4. Mode2, Translation suivant l'axe y-y	92
FIGURE IV.5. Mode 3, Torsion suivant l'axe z-z.	93
FIGURE V.1. La zone nodale.	99
FIGURE V.2. Schéma de ferraillage des poteaux	105
FIGURE V.3. Réduction des sections des poteaux	106
FIGURE V.4. Schéma de ferraillage des poutres principales de 1 ^{er} étage	113
FIGURE V.5. Schéma de ferraillage des poutres secondaires	114
FIGURE V.6. Schéma de ferraillage du voile Vx 4 de RDC	129
FIGURE VI.1. Schéma d'une semelle isolée.	130
FIGURE VI.2. Schéma d'une semelle filante.	130
FIGURE VI.3. Dimensions du radier	132
FIGURE VI.4. Schéma de poinçonnement.	133
FIGUREVI .5. Schéma de ferraillage de radier	138

Tables des figures

FIGUREVI.6 : Schéma statique du débord	.139
FIGUREVI.7 : Schéma de ferraillage de débord	139
FIGUREVI.8: Schéma statique des sollicitations sur les nervures longitudinales x-x	.141
FIGUREVI.9: Schéma statique des sollicitations sur les nervures longitudinales y-y	.141
FIGURE VI.10: Section de la nervure (x-x)	142
FIGURE VI.11. Schéma de ferraillage des nervures	145

Tableau I.1. f_e en fonction de type d'acier	8
Tableau II.1. Escalier a trois volées contrariées avec palier de repos	16
Tableau II.2. Escalier a deux volées contrariées.	16
Tableau II.3. Evaluation des charges de la toiture d'inclinaison de 29%	19
Tableau II.4. Evaluation des charges de plancher inaccessible	20
Tableau II.5. Evaluation des charges de plancher à dalle pleine	20
Tableau II.6. Evaluation des charges des balcons	20
Tableau II.7. Evaluation des charges de plancher à corps creux étage courant	21
Tableau II.8. Evaluation des charges de plancher à corps creux étage de service	21
Tableau II.9. Evaluation des charges des murs intérieurs	22
Tableau II.10. Evaluation des charges des murs extérieurs	22
Tableau II.11. Evaluation des charges de palier d'escalier	22
Tableau II.12. Evaluation des charges de la volée d'escalier	23
Tableau II.13. Evaluation de la descente de charge du poteau B2	26
Tableau II.14. Vérification de la compression simple.	26
Tableau II.15. Résultats des vérifications au flambement	27
Tableau II.16. Vérification de l'effort normal réduit	28
Tableau III.1.Les Types de poutrelles	33
Tableau III.2. Combinaisons d'action	34
Tableau III.3. Calcul des moments isostatique et moment en travée.	37
Tableau III.4. Calcul des moments et effort tranchant au niveau des appuis	37
Tableau III.5. Calcul des moments isostatique et moment en travée	38
Tableau III.6. Calcul des moments et effort tranchant au niveau des appuis	38
Tableau III.7. Calcul des moments isostatique et moment en travée	38
Tableau III.8. Calcul des moments et effort tranchant au niveau des appuis	38
Tableau III.9. Calcul des moments isostatique et moment en travée	39
Tableau III.10. Calcul des moments et effort tranchant au niveau des appuis	39
Tableau III.11. Calcul des moments isostatique et moment en travée	39
Tableau III.12. Calcul des moments isostatique et moment en travée	39
Tableau III.13. Sollicitations maximales aux états limite des différents niveaux	40
Tableau III.14. Calcul des sections d'armatures des poutrelles.	47
Tableau III.15. Armatures longitudinales et transversales a d'optées.	47
Tableau III 16 Vérifications des Armatures lonoitudinales et transversales	48

Tableau III.17. Vérifications des états limite de compression du béton.	48
Tableau III.18. Vérification de la flèche.	49
Tableau III.19. Schéma de ferraillage des poutrelles.	50
Tableau III.20. Ferraillage de la travée dans le sens y-y de la dalle sur 3 appuis	54
Tableau III.21. Ferraillage des appuis dans le sens x-x de la dalle sur 3 appuis	54
Tableau III.22. Ferraillage des appuis dans le sens y-y de la dalle sur 3 appuis	54
Tableau III.23. Ferraillage en travée dans le sens x-x de la dalle sur 4appuis	58
Tableau III.24. Ferraillage en travée dans le sens y-y de la dalle sur 4appuis	58
Tableau III.25. Ferraillage en appuis de la dalle sur 4 appuis	58
Tableau III.26. Vérification de la flèche dalle sur 4 appuis	60
Tableau III.27. Ferraillage dalle en console.	61
Tableau III.28. Ferraillage de la dalle d'ascenseur	64
Tableau III.29. Ferraillage de la dalle pleine.	69
Tableau III.30. Ferraillage d'escalier d'étage courant	73
Tableau III.31. Vérification de la flèche d'escalier d'étage courant.	75
Tableau III.32. Ferraillage d'escalier de service.	76
Tableau III.33. Vérification de la flèche d'escalier de service.	78
Tableau III.34. Ferraillage de la poutre palière.	80
Tableau III.35. Vérification de la contrainte de béton	81
Tableau IV.1. Valeur de q	87
Tableau IV.2. Modes et périodes de vibration et taux de participation des masses	93
Tableau IV.3. Résultats de l'interaction sous charges verticales	94
Tableau IV.4. Résultats de l'interaction sous charges horizontales.	94
Tableau IV.5. Vérification de l'effort normal réduit.	95
Tableau IV.6. Vérification de la résultante des forces sismiques	95
Tableau IV.7. Vérification des déplacements.	96
Tableau IV.8. Vérification de l'effet P-Δ.	97
Tableau V.1. Armatures longitudinales minimales et maximales dans les poteaux	99
Tableau V.2 : Sollicitations dans les poteaux.	100
Tableau V.3. Ferraillage des poteaux	101
Tableau V.4. Armatures transversales des poteaux	101
Tableau V.5. Vérification du flambement	102
Tableau V 6 Várification de l'affort normal ráduit	102

Tableau V.7. Vérification des contraintes dans le béton pour les poteaux	104
Tableau V.8. Vérification aux sollicitations tangentes pour les poteaux	105
Tableau V.9 Ferraillage des poutres principales.	108
Tableau V.10. Ferraillage des poutres secondaires.	109
Tableau V.11: Vérification de l'effort tranchant.	109
Tableau V.12 : Vérification des armatures longitudinales au cisaillement	111
Tableau V.13: Etat limite de compression du béton	112
Tableau V.14: Vérification des conditions de la flèche.	112
Tableau V.15: Moments résistants dans les poteaux	115
Tableau V.16. Moments résistants dans les poutres.	115
Tableau V.17 : Vérification de la zone nodale	116
Tableau V.18. Récapitulation du ferraillage de voile Vx 1	119
Tableau V.19. Récapitulation du ferraillage de voile Vx 2	120
Tableau V.20. Récapitulation du ferraillage de voile Vx 3	121
Tableau V.21 Récapitulation du ferraillage de voile Vx 4.	122
Tableau V.22. Récapitulation du ferraillage de voile Vx 5.	123
Tableau V.23. Récapitulation du ferraillage de voile Vy 1	124
Tableau V.24. Récapitulation du ferraillage de voile Vy 2	125
Tableau V.25. Récapitulation du ferraillage de voile Vy 3	126
Tableau V.26. Vérification des contraintes de cisaillement de voile Vx 1	127
Tableau V.27. Vérification des contraintes de cisaillement de voile Vx 2	127
Tableau V.28. Vérification des contraintes de cisaillement de voile Vx 3	127
Tableau V.29. Vérification des contraintes de cisaillement de voile Vx 4	127
Tableau V.30. Vérification des contraintes de cisaillement de voile Vx 5	128
Tableau V.31. Vérification des contraintes de cisaillement de voile Vy 1	128
Tableau V.32. Vérification des contraintes de cisaillement de voile Vy 2	128
Tableau V.33. Vérification des contraintes de cisaillement Vy 3	128
Tableau VI.1. Ferraillage de la dalle	137
Tableau VI.2. Vérification des contraintes	138
Tableau VI.3. Moments en travées et en appuis selon le sens xx.	141
Tableau VI.4. Moments en travées et en appuis selon le sens yy	142
Tableau VI.5. Résumé des résultats de ferraillage (sens xx).	142
Tableau VI 6 Résumé des résultats de ferraillage (sens vv)	143

Tableau VI.7. Vérification de l'effort tranchant.	.143
Tableau VI.8. Vérification des contraintes dans le béton et dans l'acier	.144
Tableau VI.9. Vérification des contraintes dans le béton et dans l'acier après recalcule	144

Symboles et Notations

A_r: Aire d'une section d'acier de répartition

A_t: Aire d'une section d'acier transversal

A_s: Aire d'une section d'acier

B: la largeur (m).

 $B_{r\,:}$ Section réduite du béton

E_s: Module d'élasticité de l'acier

E_{vi}: Module de déformation différée du béton à l'âge de j jour

E_{ij}: Module de déformation instantanée du béton à l'âge de j jour

f_{ci}: Résistance caractéristique de compression à j jour

f_{tj}: Résistance caractéristique de traction à j jour

f_e: Limite d'élasticité de l'acier

G : Charges permanente

Q: Charges d'exploitation

E: Actions accidentelles

qu: Charges réparties ultime

q_s: Charges réparties de service

I: Moment d'inertie

M_u: Moment de calcul ultime

M_s: Moment de calcul de service

Nu: Effort normal ultime

Ns: Effort normal de service.

V : Effort tranchant

S : Surface plane de la structure

d : Position des armatures tendues par rapport à la fibre la plus comprimée

e: Epaisseur

L : Longueur

L_r: Longueur de recouvrement

l_f: Longueur de flambement

I: Rayon de giration

 Λ : Elancement

μ: Coefficient de frottement

μ_{bu} : Moment ultime réduit

v: Coefficient de poisson

 σ_{bc} : Contrainte du béton à la compression

 σ_s : Contrainte de l'acier à la traction

φ_t : Diamètre des armatures transversales

S_t: Espacement des armatures

ζ: Contrainte tangentielle de cisaillement

 ζ_{se} : Contrainte d'adhérence

η : Coefficient de fissuration

 Ψ_s : Coefficient de scellement

ls: Longueur de scellement

 ξ_{bc} : Raccourcissement relatif du béton

 ξ_s : Allongement relatif de l'acier tendu

γ_b : Coefficient de sécurité de béton

γ_s: Coefficient de sécurité de l'acier

γ : Poids spécifique déjaugé

A : Coefficient d'accélération de zone

 C_T : coefficient fonction du système de contreventement et du type de remplissage

C_u: La cohésion du sol (KN/m²).

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

Fs : Cœfficient de sécurité = 1.5

Q : Facteur de qualité

R : coefficient de comportement global

P: Poids du radier (KN).

N : Charge concentrée appliquée (ELS ou ELU).

 S_r : surface du radier (m²).

S_{bat}: Surface totale du bâtiment (m²).

St : Espacement des armatures.

W: poids propre de la structure.

W_{Oi}: Charges d'exploitation.

W_G: poids du aux charges permanentes et à celles d'équipement fixes éventuels.

Z : bras de levier

f: Flèche

fe: Limite d'élasticité

h_{t:} hauteur total du radier (m).

 $\mathbf{h}_{\scriptscriptstyle N}$: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 σ : Contrainte normale.

φ : Angle de frottement interne du sol (degrés).

 σ_{adm} : Contrainte admissible au niveau de la fondation (bars).

k_c: Coefficient de portance.

 $\mathbf{q}_{\scriptscriptstyle{0}}$: Contrainte effective verticale initiale au niveau de fondation (bars).

 σ_{i} : Contrainte effective finale (bars).

 $\tau_{\mbox{\tiny ulim}}$: Valeur de cisaillement limite donné par le BAEL (MPa).

 τ_u : Contrainte de cisaillement (MPa).

η: Facteur d'amortissement.

 β : Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

h₀: épaisseur de la dalle de radier (cm)

h_t: hauteur de la nervure (cm)

INTRODUCTION

Pour mieux ce protégé contre d'éventuels événements sismiques, il est nécessaire de bien comprendre le phénomène des tremblements de terre qui est à l'origine de mouvements forts de sol.

Le mouvement sismique a pour effets d'induire dans le sol et les ouvrages des forces d'inerties importantes et rapidement variables .Son action s'exercent donc d'une manière fondamentalement dynamique.

L'amélioration de la réglementation technique de la construction se base donc sur une connaissance approfondie du mouvement du sol.

A cet effet l'ingénieur en génie civil est censé de concevoir des édifices de manière à faire face à ce phénomène (construction parasismique), il doit en outre tenir compte de différents facteurs tels que l'économie, l'esthétique, la résistance et surtout la sécurité.

Dans l'analyse et le dimensionnement des structures, l'ingénieur doit appliquer le règlement afin d'assurer le bon fonctionnement de l'ouvrage, son choix du système de contreventement dépend de certaines considérations à savoir la catégorie du site, la hauteur et l'usage de la construction ainsi que les contraintes architecturales.

Le projet qui nous a été confié porte sur l'étude d'un bâtiment multifonctionnel (R+8), il regroupe à la fois commerces et logements d'habitations et il est contreventé par un système mixte (voiles portiques) avec interaction qui repose sur radier général. L'étude de ce bâtiment se fait tout en respectant les réglementations et recommandations en vigueur à savoir (RPA99/2003, BAEL et CBA93) et les documents techniques y afférant (D.T.U 13.2 et le D.T.R. BC 2.33.2).

Le présent travail est organisé comme suit :

Le premier chapitre donne les caractéristiques de la structure ainsi que celles des matériaux utilisés (béton et acier). Un pré dimensionnement des éléments structuraux a ensuite été fait au deuxième chapitre. Le troisième chapitre concerne le calcul des éléments secondaires : les poutrelles, balcons et escaliers, ont été calculés et ferraillés en tenant compte des sollicitations auxquelles ils doivent répondre. Au quatrième chapitre, nous avons fait une étude dynamique de notre structure. Cette dernière à été donc modélisée par le logiciel SAP2000 V14.2.2 et une disposition optimale des voiles à été adoptée. Cette disposition est en accord avec le

règlement parasismique algérien. Dans le chapitre cinq, on a fait le calcul de ferraillage des éléments structuraux avec les sollicitations les plus défavorables qu'on a tirées du model réalisé avec SAP2000 dans le chapitre précédent. Enfin nous avons fait un choix des fondations qui convient à la caractéristique du site ainsi qu'au poids de la structure.

I.1. Présentation de l'ouvrage :

L'ouvrage qui fait l'objet de notre étude est un bâtiment (R+8) implanté à **Bejaïa**, cette structure est destinée à usage d'habitation et commerce, elle est classée d'après le règlement parasismique algérienne «RPA99/version 2003 » dans le groupe d'usage 2, ayant une importance moyenne.

Le terrain réservé à l'ensemble de projet est situé à la route **R.N 9** Sétif-Bejaia, à la sortie de la ville de TICHY, vis-à-vis en face d'une station service.

D'après la classification sismique des wilayas et communes d'Algérie (classification 2003), Bejaia est classée par la zone **Ha** (zone de moyenne sismicité).

I.2. Caractéristiques de la structure :

I.2.1. Caractéristiques géométriques :

- Largeur en plan 14.50m.
- Longueur en plan 20.50m.
- Hauteur du RDC......04.08m.

I.2.2.Données de site :

- L'assiette du projet est un terrain plat, situé à 300.0 mètre de la mer.
- Le sol de notre site est constitué des sables moyenne à fins, légèrement argileux.
- La contrainte admissible du sol $\overline{\sigma}$ = 1,5 bars.
- L'ancrage minimal des fondations : **D=3 m.**

I.2.3. Description structurale:

a. Les planchers :

Constitués de corps creux avec une dalle de compression qui forme un diaphragme horizontal rigide qui assure la fonctionnalité de l'ouvrage et qui permet la transmission des efforts de contreventement.

- Un plancher doit être résistant aux charges verticales et horizontales.
- Un plancher doit assurer une isolation phonique et thermique des différents étages.

b. Les escaliers :

Sont des éléments secondaires réalisés en béton armé coulés sur place, permettant le passage d'un niveau à un autre.

c. Les maçonneries :

les murs extérieurs seront réalisés en doubles cloisons de briques creuses de 25 cm
 Séparées par une lame d'air de 5 cm.

• les murs de séparation intérieure seront construits en une seule paroi de brique de 10 cm

d. Balcons:

Les balcons sont réalisés en dalle pleine.

e. Revêtements:

Ils seront réalisés en :

- carrelage scellé pour les planchers et les escaliers.
- céramique pour les salles d'eau et mortier de ciment pour les murs de façade.
- plâtre pour les cloisons intérieures et les plafonds.

f. L'infrastructure:

Elle assure les fonctions suivantes :

- transmission des charges verticales et horizontales au sol.
- limitation des tassements différentiels

I.2.4. Choix du contreventement :

La structure de notre bâtiment est une ossature en béton armé, selon le règlement parasismique Algérien pour tout ouvrage situé en zone **Ha** et dépassant une hauteur de 14 m, le système doit contenir des voiles pour reprendre les forces horizontales qui sollicitent le bâtiment. Il est donc plus judicieux d'adopter un contreventement mixte (portiques -voiles).

I.3. Règlements et normes utilisés :

Les règlements et normes utilisés sont :

- RPA99 /version 2003. [1]
- CBA93. [2]
- BAEL91/version 99. [3]
- DTR BC 2.2.[4]
- DTR B.C.2.33.2. [5]
- DTR BC2.33.1. [6]

I.4. Etats limites:

Dans le domaine des constructions, un état limite est celui qui satisfait strictement aux conditions prévues sous l'effet des l'actions (force, moment ou couples) qui agissent sur la structure ou l'un de ses éléments.

Les conditions sont : la stabilité, la résistance, la durabilité, la déformation (flèches) non nuisibles pour satisfaire les fonctions techniques d'utilisation des structures et leur confort, on distingue deux types d'état limites.

I.4.1. Etats limites ultimes (ELU):

Le dépassement de cet état conduit à la ruine de la structure. Au-delà de l'état limite ultime, la résistance des matériaux et des aciers sont atteints, la sécurité n'est plus garantie et la structure risque de s'effondrer.

On distingue:

- Etat limite de l'équilibre statique (pas de renversement, pas de glissement).
- Etat limite de résistance de l'un des matériaux (pas de rupture par écrasement ou par allongement excessif).
- Etat limite de stabilité de forme (pas d'instabilité).

I.4.1. Etats limites de service (ELS):

Qui définissent les conditions que doit satisfaire l'ouvrage pour que sont usage normal et sa durabilité soient assurés.

- Etat limite de compression du béton.
- Etat limite d'ouverture des fissures (durabilité des ouvrages).
- Etat limite de déformation (flèche maximale).

* Règle des 3 pivots :

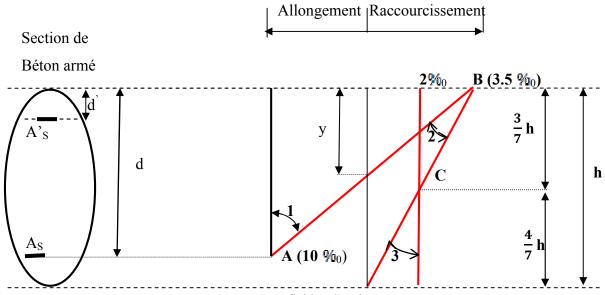


Figure I.1. Définition des pivots

Le diagramme de déformations passera par :

■ Le pivot A:

Correspond à un allongement de 10×10^{-3} de l'armature la plus tendue, supposée concentrée ($y \le 0.2593$ d).

■ Le pivot B:

Correspond à un raccourcissement de 3.5×10^{-3} du béton de la fibre la plus comprimée $(0.2593 \text{ d} \le y \le h)$.

■ Le pivot C:

Correspond à un raccourcissement de $2\times10^{-3}\,$ du béton de la fibre située à 3/7h de la fibre la plus comprimée ($y \ge h$).

I.5. Action:

Les actions sont les forces et les couples dues aux charges appliquées à une structure et aux déformations imposées, on distingue trois catégories d'actions.

I.5.1. Action permanente (G)

Les actions permanentes ont une intensité constante ou très peu variable dans le temps ; elles comprennent :

- Le poids propre de la structure.
- Le poids des cloisons, revêtement.
- Le poids des poussées des terres et des liquides.

I.5.2. Action variables(Qi):

Les actions variables ont une intensité qui varie fréquemment d'une façon importante dans le temps ; elles comprennent :

- Les charges d'exploitations.
- Les charges climatiques.
- Les charges appliquées lors d'exécution.
- Les charges dues à la température.

I.5. 3. Action accidentelles(FA):

Ce sont des actions rares dues à des phénomènes qui se produisent rarement et avec une faible durée d'application, on peut citer :

- Les séismes(E).
- Les explosions.
- Les chocs.

I.6. les combinaisons d'actions : [2]

Les combinaisons d'actions sont les ensembles constitués par les actions de calcule à considères simultanément. Pour tenir compte des risques non mesurables, on associe aux valeurs caractéristiques des actions un coefficient de sécurité pour obtenir les valeurs de calcule des actions. Puis on combine ces valeurs de calcul pour établir le cas de chargement le plus défavorable.

Dans ce qui suit on désigne par :

Gmax: l'ensemble des actions permanentes défavorables.

Gmin: l'ensemble des actions permanentes favorables.

Q₁: action variable de base.

 \mathbf{Q}_{i} (i > 1): action variable d'accompagnement.

I.6.1. Combinaisons d'actions à l'ELU:

a. Situations durables ou transitoires :

On ne tien compte que des actions permanentes et des actions variables, la combinaison utilisée est :

$$1,35G_{\text{max}} + G_{\text{min}} + \gamma_{Q_1}Q1 + \sum 1,3\psi_{0i}Q_{i} \qquad (1)$$

 ψ_{oi} : coefficient de pondération.

 $\psi_{oi} = 0.77$ pour les bâtiments usage courant.

 γ_{Q_1} = 1.5 dans le cas général et 1.35 dans les cas suivants :

- Bâtiment agricoles à faible occupation humaine.
- Charges d'exploitation étroitement bornées ou de caractère particulier.
- La température.

b.Situations accidentelles:

Les situations accidentelles sont considérées avec une faible probabilité de se réaliser.

$$1.35G_{max} + G_{min} + F_A + \psi_{11} Q_1 + \sum \psi_{2i} Q_{i}$$
 (2)

F_A: Valeur nominale de l'action accidentelle.

 ψ_{11} Q₁: valeur fréquente d'une action variable.

 ψ_{2i} Q_i: valeur quasi-permanente d'une autre action variable.

 ψ_{11} , ψ_{2i} : coefficient relatifs aux charges d'exploitation et aux actions climatiques.

 ψ_{11} =0.15 Si l'action d'accompagnement est la neige.

 ψ_{11} =0.5 Si l'action d'accompagnement est l'effet de la température.

 ψ_{11} =0.2 Si l'action d'accompagnement est le veut.

I.6.2. Combinaisons d'actions à l'ELS:

La combinaison d'action est la suivante :

$$G_{max} + G_{min} + Q_1 + \sum \psi_{0i}Q_i$$
 (3)[2]
 $\psi_{0i} = 0.77 \rightarrow \text{vent, neige };$
 $\psi_{0i} = 0.6 \rightarrow 1\text{'effet de la température };$

I.6. 3. Combinaisons de calcul:

Les combinaisons de calcul à considérer pour la détermination des sollicitations et des déformations sont :

Situations durables:

Situations accidentelles :

$$\begin{cases} G+Q\mp E & ... &$$

I.7. Caractéristiques des matériaux : [2] ; [3]

I.7.1. Le béton :

a. Définition:

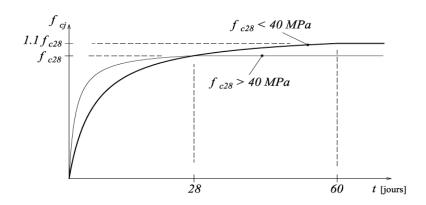
Le béton est un matériau constitué d'un mélange de ciment, de granulats (sable et gravier) et d'eau, il est caractérisé, du point de vue mécanique, par sa résistance à la compression à 28jours.

Cette résistance varie en fonction de la granulométrie, le dosage en ciment, la quantité d'eau de gâchage et l'âge du béton. Ce dernier sera conforme aux règles **BAEL 91** et le **RPA99** modifié en 2003.

- Ses principales caractéristiques sont :
- une bonne résistance en compression simple.
- une mauvaise résistance en traction.
- un poids volumique compris entre 22 et 24 KN/m³ environ pour le béton, et 25 KN/m³ pour le béton armé.
- un coefficient de dilatation thermique identique à celui de l'acier de 10⁻⁵/°C.

b. la résistance caractéristique de béton :

Dans les constructions courantes, le béton est défini, du point de vue mécanique par sa résistance caractéristique à la compression (à 28 jours d'âge noté « f_{c28} »). Cette résistance (f_{cj} en MPa) est obtenue par un grand nombre d'essais de compression jusqu'à rupture sur une éprouvette cylindrique normalisée de 16 cm de diamètre et de 32 cm de hauteur.


Le durcissement étant progressif, f_{cj} est fonction de l'âge du béton. Aussi, la valeur conventionnellement retenue pour le calcul des ouvrages est f_{cj} .

■ Pour des résistances $f_{c28} \le 40 \text{ MPa}$:

$$\begin{cases} f \text{cj} = \frac{j}{4,76 + 0,83j} & f_{c28} \quad \text{si } j \leq 60 \text{ jours} \\ f \text{cj} = 1.1 f c 28 & \text{si } j > 60 \text{ jours} \end{cases}$$

• Pour des résistances $f_{c28} > 40 \text{ MPa}$:

$$\begin{cases} f \text{cj} = \frac{j}{1.4 + 0.95j} \ f_{c28} & \text{si } j \leq 28 \text{jours} \\ f \text{cj} = f c 28 & \text{si } j > 28 \text{jours} \end{cases}$$

Figure I.2. Evaluation de la résistance f_{ci} en fonction de l'âge du béton

• la résistance à la traction f_{ii}

La mesure directe de la résistance à la traction par un essai de traction axiale étant délicate donc on a recours à deux modes opératoires différents :

- ✓ Flexion d'éprouvettes prismatiques non armées.
- ✓ Fendage diamétral d'une éprouvette cylindrique (essai Brésilien)

La résistance caractéristique à la traction du béton à j jours, notée f_{tj} , est conventionnellement définie par les relations : $f_{tj} = 0.6 + 0.06 f_{ej}$ [2]. [Art A.1.2.1.2]

Le diagramme contrainte-déformation du béton utilisé est le diagramme de calcul dit : « parabole – rectangle » ; il comporte un arc de parabole qui s'étend de l'origine des coordonnées jusqu'à son sommet de coordonnées $\mathcal{E}_{bc}=2$ ‰ et $\sigma_{bc}=f_{bu}$ suivi d'un segment de droite parallèle à l'axe des déformations et tangent à la parabole à son sommet.

$$f_{bu} = \frac{0.85}{\theta.\gamma_b}.$$

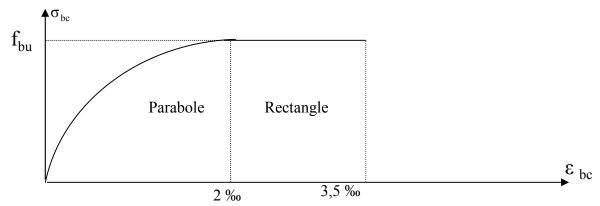


Figure I.2.Diagramme contrainte – déformation du béton à l'ELU

I.7.2. la résistance caractéristique de l'acier :

On définit la résistance caractéristique de l'acier comme étant sa limite d'élasticité : $f_{
m e}$ principales armatures utilisés

	Aciers	ronds	Aciers à	hautes	Treilles soudé	Treilles soudé à	
	liss	ses	adhérences		à fils lisses	hautes adhérences	
Désignation	FeE215	FeE235	FeE400	FeE500	FLE500	FeTE500	
f _e [MPa]	215	235	400	500	500	500	

Tableau1.2.: f_e en fonction de type d'acier

Le diagramme contrainte (σ_s) déformation (ε_s) est conventionnellement définit comme suit:

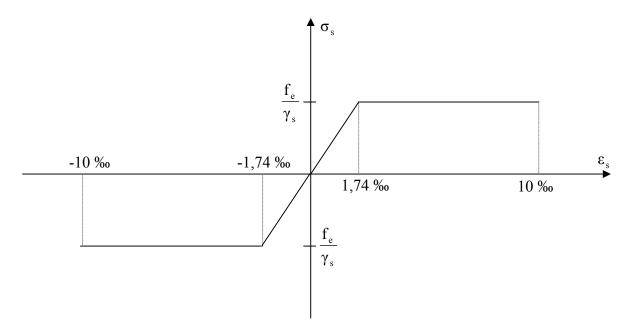
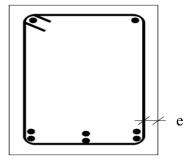



Figure I.2. Diagramme de déformation de l'acier

I.8. Protection des armatures :

Dans le but d'avoir un bétonnage correcte et de prémunir les armatures des effets d'intempéries et d'agents agressifs, nous devons respecter à ce que l'enrobage « e » des armatures et au moins égale à :

- $e \ge 5$ cm \rightarrow les éléments exposés à la mer, aux embruns ou aux brouillards salins.
- $e \ge 3 \text{ cm} \rightarrow \text{les éléments en contact avec un liquide (réservoir, tuyaux, canalisation.}$
- e ≥1cm→ les parois situées dans les locaux condensés.

Un enrobage minimal est imposé pour assurer :

- une bonne transmission des forces d'adhérence.
- l'absence d'épaufrures.
- une résistance au feu.
- la protection des aciers contre la corrosion.

II.1. Introduction:

Le pré dimensionnement c'est de donner les dimensions des différents éléments de la structure avant l'étude du projet.

Ces éléments doivent avoir une section minimale pour reprendre les efforts sollicitant et pour cela nous nous référons aux recommandations du CBA [2] (A défaut BAEL91 [3]) et du RPA99 (version 2003) [1].

II.2. Pré dimensionnement des éléments secondaires :

II.2.1. Les planchers :

On a deux types de plancher:

a. Plancher à corps creux :

Ils comportent les entrevous, des poutrelles semi-préfabriquées ou coulées sur place et une dalle de compression.

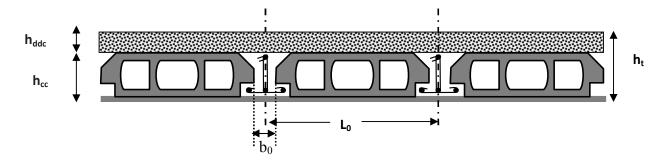


Figure II. 1. Coupe transversale sur un plancher à corps creux

Disposition des poutrelles :

Les poutrelles sont des sections en T en béton armé, servant à transmettre les charges réparties ou concentrées aux poutres principales, elles sont calculées en flexion simple.

La disposition des poutrelles se fait selon deux critères:

Le critère de la petite portée

Le critère de continuité (le sens où il y a plus d'appuis).

Pour notre projet la disposition est effectuée en respectant les deux critères et cela pour tous les planchers comme indiqué sur la figure ci-après :

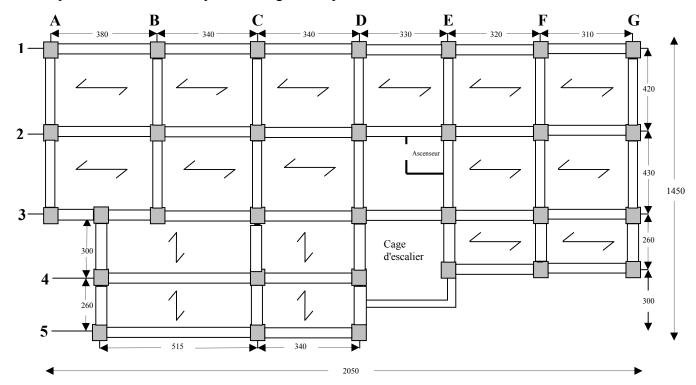


Figure II.2: Schéma de la disposition des poutrelles.

Dimensionnement:

D'après le BAEL [3] la hauteur du plancher doit vérifier la condition suivante:

$$h_t \ge \frac{L_{max}}{22.5} \tag{5}$$

 $\boldsymbol{L_{max}}$: La portée maximale entre nus d'appuis dans le sens de disposition des poutrelles.

 h_t : Hauteur totale du plancher.

Selon la vue en plan on a:

$$L_{max} = 380 - 30 = 350 \ cm$$

$$h_t \ge \frac{350}{22.5} \rightarrow h_t \ge 15.55 \ cm$$

On adopte pour tous les planchers une épaisseur de $h_t = 20cm$

dimensionnement des poutrelles :

Pour ce la on doit déterminer la largeur de la table de compression

$$\frac{b-b_0}{2} \le \min\left(\frac{l_x}{2}, \frac{l_y}{10}\right)...(6)$$

h: Hauteur du plancher = 20cm.

b: Largeur de la dalle de compression.

lx: Distance maximale entre nus de deux poutrelles.

ly: Distance maximale entre nus des poutres perpendiculaires à lx.

$$b_0 = (0.4; 0.8) \times h_t = (6.22; 12.44)cm$$

Soit : $b_0 = 10cm$

$$b_1 \le min\left(\frac{l_x}{2}, \frac{l_y}{10}\right) \to b_1 \le \left(\frac{55}{2}, \frac{230}{10}\right)$$
, soit $b_1 = 23cm$

$$b \le 2 \times b_1 + b_0 = 56cm$$

Soit: b = 55cm.

b. Plancher en dalle pleine :

Ce sont des planchers totalement en béton armé coulé sur place. Elles reposent avec ou sans continuité sur 1, 2, 3 ou 4 appuis constitués par des poutres en béton armé.

On a:

e : c'est l'épaisseur de la dalle pleine.

Le dimensionnement de ce type de plancher dépends de deux critères:

Critère de résistance :

$$\begin{cases} e \geq \frac{l_x}{20} & \rightarrow \text{ Pour une dalle sur un seul ou deux appuis.} \\ \frac{l_x}{35} \leq e \leq \frac{l_x}{30} & \rightarrow \text{ Pour une dalle sur quatre appuis avec} \rho < 0.4. \\ \frac{l_x}{45} \leq e \leq \frac{l_x}{40} & \rightarrow \text{ Pour une dalle sur trois ou quatre appuis avec} \rho \geq 0.4. \end{cases}$$

Coupe-feu:

$$\begin{cases} e \ge 7cm & \to \text{ Pour une heure de coupe-feu.} \\ e \ge 11cm & \to \text{ Pour deux heures de coupe-feu.} \end{cases}$$

Notre projet comporte trois types de dalle pleine :

- Dalle sur 1 ou 2 appuis $e \ge \frac{100}{20} \rightarrow e \ge 5cm$
- Dalle sur 3 appuis $\frac{120}{45} \le e \le \frac{120}{40} \to 2.67 cm \le e \le 3 cm$
- Dalle sur 4 appuis $\rho = \frac{3}{3.9} = 0.79 > 0.4 \rightarrow \frac{300}{45} \le e \le \frac{300}{40} \rightarrow 6.67 cm \le e \le 7.5 cm$

On opte pour une épaisseur : e = 12cm pour toutes les dalles (Critère de coupe-feu).

II.2.2. Les escaliers :

a. Définition:

Un escalier est une succession de marches permettant le passage d'un niveau à un autre, il peut être en béton armé, en acier ou en bois.

Pour qu'un escalier garantisse sa fonction dans les meilleures conditions de confort, on doit vérifier les conditions suivantes :

- la hauteur h des contremarches entre 14 et 18 cm.
- la largeur g (giron) entre 25 et 32 cm.
- La formule empirique de **BLONDEL**: 59 cm $\leq 2h + g \leq 64cm$.

$$g = \frac{L_0}{n-1} \quad et \quad h = \frac{H}{n}$$

H: hauteur de la volée.

L₀: longueur projetée de la volée.

n-1: Nombre de marche.

L : longueur de la volée.

n: nombre de contre marche.

b. Les différents types d'escalier :

Dans notre structure on a trois types d'escaliers, deux de RDC aux étages de services, le troisième pour les étages d'habitations.

❖ Les escaliers de RDC aux étages de services

On a deux types:

Type 1 (T1): Escalier à trois volées contrariées avec palier de repos :

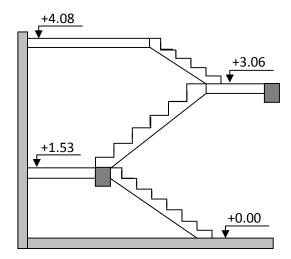


Figure II.3 : Schéma d'escalier à trois volées contrariées avec palier de repos T1

• Première et deuxième volée :

Epaisseur de la paillasse :

$$H = 1.53 \text{ m}$$

$$L_0 = 2.4 \text{ m}.$$

« n » est la solution de l'équation: $0.64 \text{ n}^2 - (0.64 + 2 \text{ H} + \text{L}_0) \text{ n} + 2 \text{ H}$

$$0.64 \text{ n}^2 - (0.64 + 2 \times 1.53 + 2.4) \text{ n} + 3.06$$

 \rightarrow n = 9 (nombre de contre marches).

 \rightarrow n – 1 = 8 (nombre de marches).

$$g = \frac{L_0}{n-1} = \frac{240}{8} = 30 \text{ cm}.$$

$$h = \frac{H}{n} = \frac{153}{9} = 17 \ cm$$

L'épaisseur de la paillasse e est donnée par :

$$\frac{L}{30} \le e \le \frac{L}{20}$$
; tel que : $L = \sqrt{(L_0^2 + H^2)} = \sqrt{(2.4^2 + 1.53^2)} = 2.85 m$

$$\frac{285}{30} \le e \le \frac{285}{20} \implies 9.5 \le e \le 14.25$$

On prend : e = 12 cm.

Inclinaison de la paillasse : $tg(\alpha) = \frac{H}{L_o} = \frac{1.53}{2.4} = 0.637 \Rightarrow \alpha = 32.52^{\circ}$

• <u>La troisième volée</u>:

Epaisseur de la paillasse :

$$H = 1.02 \text{ m}$$
 ; $L_o = 1.5 \text{ m}$.

 \rightarrow n = 6 (nombre de contre marches).

 \rightarrow n – 1 = 5 (nombre de marches).

$$g = \frac{L_o}{n-1} = \frac{150}{5} = 30$$
 cm.

$$h = \frac{H}{n} = \frac{102}{6} = 17 \text{ cm}$$

L'épaisseur de la paillasse e est donnée par :

$$\frac{L}{30} \le e \le \frac{L}{20}$$
; tel que : L= $\sqrt{(L_0^2 + H^2)} = \sqrt{(1.5^2 + 1.02^2)} = 1.81$ m

$$\frac{181}{30} \le e \le \frac{181}{20} \implies 6.03 \le e \le 9.05$$

On prend: e = 12 cm.

Inclinaison de la paillasse :

$$tg(\alpha) = \frac{H}{L_0} = \frac{1.02}{1.5} = 0.68 \implies \alpha = 34.21^{\circ}$$

Type2 (T2): Escalier a trois volées contrariées avec palier de repos :

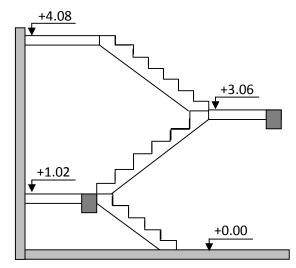


Figure II.4 : Schéma d'escalier à trois volées contrariées avec palier de repos T2

Chapitre II Pré dimensionnement

Volée	Н	L_0	n	n-1	Н	G	α	L	e
1 ^{ere} volée	1.02m	1.5m	6	5	17	30	34.21°	181	20
2 ^{eme} et 3 ^{eme} Volée	1.53m	2.4m	9	8	17	30	32.52°	285	20

Tableau II.1 : Escalier a trois volées contrariées avec palier de repos

❖ Les escaliers des étages d'habitations

On a un seul type:

Type 3 : Escalier à deux volées contrariées avec palier de repos

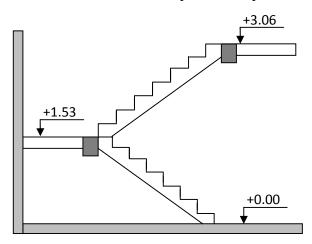


Figure II.5: Escalier à deux volées contrariées

Volée	Н	L ₀	n	n-1	h	G	α	L	e
1 ^{ere} et 2 ^{eme} volée	1.53m	2.40m	9	8	17	30	32.52°	285	12

Tableau II.2: Escalier a deux volées contrariées

II.3. Pré dimensionnement des éléments principaux :

II.3.1. Les poutres :

a. Les poutres principales :

Elles sont disposées perpendiculairement aux poutrelles, leur hauteur est donnée selon la condition de (BAEL93) [3].

$$\frac{L_{max}}{15} \le h \le \frac{L_{max}}{10} \tag{11}$$

 \mathcal{L}_{max} : Portée maximale entre nus d'appuis d'une poutre principale.

$$L_{max} = 515 - 30 = 485cm.$$
 $\frac{485}{15} \le h \le \frac{485}{10} \to 32.33cm \le h \le 48.5cm$ et $0.3h \le b \le 0.7h$ (12)

On adopte pour h = 40cm et b = 30cm

Sachant que:

h: hauteur de la poutre.

b: largeur de la poutre.

Vérifications:

Selon le (RPA99/2003) [1], les poutres doivent respecter les dimensions ci-après,

- $\bullet \quad b \ge 20cm \tag{13}$
- $\bullet \quad h \ge 30cm \tag{14}$
- $\bullet \quad h/b \le 4 \tag{15}$

Alors:

 $b = 30 \ge 20cm$

 $h = 40 \ge 30cm$

$$\frac{h}{h} = 1.33 \le 4$$

Les dimensions trouvées sont : $b \times h = (30 \times 40)cm^2$

b. Les poutres secondaires :

Elles sont disposées parallèlement aux poutrelles, leur hauteur est données par :

$$\frac{L_{max}}{15} \le h \le \frac{L_{max}}{10} \tag{16}$$

 L_{max} : la longueur maximale entre les nus d'appuis.

 $L_{max} = 350cm$

$$\frac{350}{15} \le h \le \frac{350}{10} \to 23.33cm \le h \le 35cm$$

On adopte pour : h = 35cm et b = 30cm

Vérifications:

Selon le (RPA99/2003) [1], les poutres doivent respecter les dimensions ci-après,

- $b \ge 20cm$ (17)
- $\bullet \quad h \ge 30cm \tag{18}$
- $\bullet \quad h/b \le 4 \tag{19}$

Alors:

 $b = 30 \ge 20cm$

h = 35 > 30cm

$$\frac{h}{h} = 1.16 \le 4$$

Les dimensions trouvées sont : $b \times h = (30 \times 35)cm^2$

II.3.2. Les voiles :

L'épaisseur du voile doit être déterminée en fonction de la hauteur libre d'étage et des conditions de rigidité aux extrémités.

Les dimensions des voiles doivent satisfaire les conditions du RPA (article 7.7.1) [1] suivantes :

$$\bullet \quad e \ge 15cm \tag{20}$$

$$\bullet \quad e \ge \frac{h_e}{20} \tag{21}$$

$$\blacksquare \quad L \ge 4e \tag{22}$$

 h_p : hauteur totale de la poutre.

 h_e : hauteur libre d'étage

e : épaisseur du voile.

L: longueur du voile.

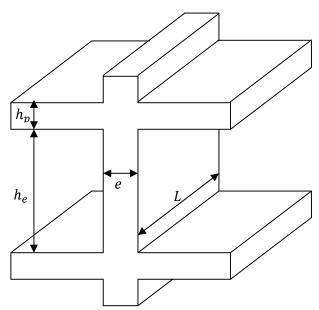


Figure II.6: coupe de voile en élévation

$$e \ge max\left[\frac{363}{20}, 15cm\right]$$
 pour le RDC $\to e \ge 18.15cm$
 $e \ge max\left[\frac{261}{20}, 15cm\right]$ pour les étages courants $\to e \ge 15cm$

On opte pour une épaisseur de :

II.3.3. Les poteaux :

Le pré dimensionnement des poteaux se fera en fonction des sollicitations de calcul en compression centrée selon les règles du BAEL91 [3], tout en respectant les prescriptions du RPA [1].

On fixera les dimensions des poteaux suivantes tout en respectant les exigences cité au part avant.

- RDC 1^{er} étage(b × h) = $50 \times 50 \text{cm}^2$
- $2^{\text{ème}} 3^{\text{ème}} \text{ étage} \dots (b \times h) = 45 \times 50 \text{cm}^2$
- $4^{\text{ème}} 5^{\text{ème}} \text{ étage} \dots (b \times h) = 45 \times 45 \text{cm}^2$
- $6^{\text{ème}}$ $7^{\text{ème}}$ étage(b × h) = $40 \times 45 \text{cm}^2$

II.4. Evaluation des charges et surcharges (DTR BC 2.2) :

II.4.1. Plancher:

a. Plancher à dalle pleine :

Notre structure comporte

1. Toiture avec une inclinaison de 29%:

Eléments	Epaisseur (m)	Poids volumique (KN/m³)	Charges (KN/m²)	
Plancher a dalle pleine (e=12cm)	$\frac{0.12}{\cos{(16)}}$	25	3.12	
Tuiles canal (voliges comprises)	$\frac{0.5}{\cos{(16)}}$	/	0.52	
Mortier de pose	$\frac{0.03}{\cos{(16)}}$	20		
			G = 4.26	
			Q = 1	

Tableau II.3: Evaluation des charges de la toiture d'inclinaison de 29%

2. Plancher de la machine d'ascenseur :

Eléments	Epaisseur (m)	Poids volumique (KN/m³)	Charges (KN/m²)
Plancher a dalle pleine (e=15cm)	0.15	25	3.75
Enduit en plâtre	0.02	10	0.2
			G = 3.95
			Q = 1

Tableau II.4: Evaluation des charges de plancher de la machine d'ascenseur.

3. Plancher étage courant :

Eléments	Epaisseur (m)	Poids volumique <i>KN/m</i> ³	Charges <i>KN/m</i> ²
Revêtement en carrelage	0.02	20	0.4
Mortier de pose	0.02	20	0.4
Couche de sable	0.02	18	0.36
Dalle pleine (e=12cm)	0.12	25	2.8
Enduit de plâtre	0.02	10	0.2
			G = 4.16
			Q = 1.5

Tableau II.5: Evaluation des charges de plancher à dalle pleine.

4. Les balcons:

Eléments	Epaisseur (m)	Poids volumique (KN/m³)	Charges (KN/m^2)	
Garde-corps	/	/	0.6	
Revêtement en carrelage	0.02	22	0.4	
Mortier de pose	0.02	20	0.4	
Couche de sable	0.02	18	0.36	
Dalle pleine en béton	0.12	25	3	
Enduit en mortier ciment	0.02	18	0.36	
			G = 5.12	
			0 = 3.5	

Tableau II.6 : Evaluation des charges des balcons

b. Plancher à corps creux :

1. Pour étage courant :

Eléments	Epaisseur (m)	Poids volumique KN/m³	Charges <i>KN/m</i> ²
Revêtement en carrelage	0.02	20	0.4
Mortier de pose	0.02	20	0.4
Couche de sable	0.02	18	0.36
Dalle en corps creux (16+4)	0.2	14.25	2.85
Enduit de plâtre	0.02	10	0.2
Cloisons de séparation interne	0.1	10	1
			G = 5.21
			Q = 1.5

Tableau II.7 : Evaluation des charges de plancher à corps creux étage courant

2. Pour étage de service :

Eléments	Epaisseur (m)	Poids volumique KN/m³	Charges KN/m ²
Revêtement en carrelage	0.02	20	0.4
Mortier de pose	0.02	20	0.4
Couche de sable	0.02	18	0.36
Dalle en corps creux (20+4)	0.24	14	3.30
Enduit de plâtre	0.02	10	0.2
Cloisons de séparation interne	de séparation interne 0.1		1
			G = 5.66
			Q = 5

Tableau II.8 : Evaluation des charges de plancher à corps creux étage de service

II.4.2.Maçonnerie

a. Murs intérieurs

Ils sont faits en une seule paroi en briques creuses.

Eléments	Epaisseur (m)	Poids volumique (KN/m^3)	Charges (KN/m²)	
Enduit de plâtre	0.02	10	0.2	
Briques creuses	0.1	9	0.9	
Enduit de plâtre	0.02	10	0.2	
			G = 1.3	

Tableau II.9 : Evaluation des charges des murs intérieurs

b. Murs extérieurs

Ils sont faits en doubles parois en briques creuses.

Eléments	Epaisseur (m)	Poids volumique (KN/m³)	Charges (KN/m^2)
Enduit de ciment	0.02	22	0.36
Briques creuses	0.1	9	0.9
Lame d'aire	0.05	/	/
Briques creuses	0.1	9	0.9
Enduit de plâtre	0.02	10	0.2
			G = 2.36

Tableau II.10 : Evaluation des charges des murs extérieurs

II.4.3. Les escaliers

a. Palier

Eléments	Epaisseur (m)	Poids volumique (KN/m³)	Charges (KN/m²)	
Revêtement en carrelage	0.02	20	0.4	
Mortier de pose	0.02	20	0.4	
Couche de sable	0.02	18	0.36	
Dalle pleine en béton	0.12	25	3 0.36	
Enduit en mortier ciment	0.02	18		
	1	'	G = 4.52	
			0 = 2.5	

Tableau II.11: Evaluation des charges de palier d'escalier

b. Volée

Eléments	Eléments Epaisseur Poids volumique (m) (KN/m^3)			
La paillasse (e=12)	0.12/cos (32.52)	25	3.56	
Contre marche	0.17/2	22	1.87	
Carrelage horizontale	0.02	22	0.44	
Mortier de pose horizontal	0.02	20	0.4	
Carrelage vertical	0.02	22	0.44	
Mortier de pose	0.02	20	0.4	
Enduit en plâtre	0.02	10	0.2	
Garde-corps	/	/	0.6	
			G = 7.91	
			Q = 2.5	

Tableau II.12 : Evaluation des charges de la volée d'escalier

II.5. Descente de charge

La descente de charge est le chemin suivi par les différentes actions (charges et surcharges) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol, on effectuera la descente de charge pour le poteau le plus sollicité et qui a souvent la plus grande surface afférente.

Pour notre cas on effectuera la descente de charge pour deux poteaux, le poteau $\bf B2$ qui est le poteau le plus sollicité et le poteau $\bf B1$ qui se trouve au dessous de la galerie qui est le poteau le plus élancé L=7.14m.

II.5.1. La loi de dégression des charges d'exploitation DTR BC2.2 [4]

Soit Q_0 la surcharge d'exploitation sur la terrasse couvrant le bâtiment $Q_1, Q_2, Q_3, \dots, Q_n$ les charges d'exploitation respectives des planchers des étages $1,2,3,\dots, n$ numérotés à partir du sommet du bâtiment.

Q à chaque niveau est déterminé comme suit :

- pour la toiture :Q₀.
- pour le dernier étage R+8: $Q_0 + Q_1$.
- pour l'étage immédiatement inférieur R+7: $Q_0 + 0.95(Q_1 + Q_2)$.
- pour l'étage immédiatement inférieur R+6: $Q_0 + 0.90(Q_1 + Q_2 + Q_3)$.
- Le coefficient $\frac{(3+n)}{2n}$ étant valable pour $n \ge 5$

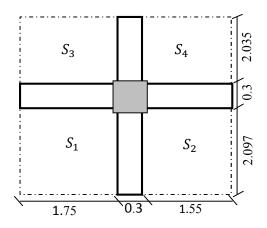
II.5.2. Poteau B2 (Voir la figure II.2 p2.)

a. Les surfaces afférentes et les charges revenant au poteau

• Pour le plancher de la toiture :

le plancher de la toiture est en dalle pleine

$$S_{aff} = \sum_{i=1}^4 S_i$$


$$S_{aff} = 13.64 \text{m}^2$$

$$G_{toit} = S_{aff} \times G$$

$$G_{toit} = 58.11 \, KN$$

$$Q_{toit} = S_{aff} \times Q$$

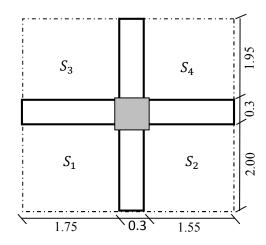
$$Q_{toit} = 13.64 \; KN$$

Figue II.8 : surface afférente de la toiture pour le poteau B2

Pour les étages d'habitation :

Le plancher est en corps creux

$$S_{aff} = \sum_{i=1}^4 S_i$$


$$S_{aff} = 13.035m^2$$

$$G_{hab} = S_{aff} \times G$$

$$G_{hab} = 67.91 \, KN$$

$$Q_{hab} = S_{aff} \times Q$$

$$Q_{hab} = 19.55 \, KN$$

Figue II.9 : surface afférente des étages courant pour le poteau B2

• Pour les étages de service :

le plancher est en corps creux (20+4)

■ Pour le service 02 :

$$S_{aff} = S_1 + S_2 + S_3$$

$$S_{aff} = 8.135m^2$$

$$S_{pal} = 1.925m^2$$

$$S_{vol} = 3.57m^2$$

 $G_{da}=46.05\,KN$

 $G_{esc}=37.05\,KN$

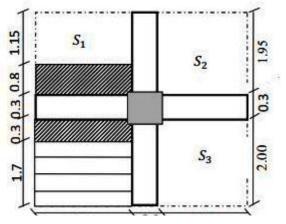
 $G_{ser}=83.10\:KN$

 $Q_{ser}=68.15\,KN$

Pour le service 01 :

 $S_{aff} = 4.34m^2$

 $S_{pal}=1.925m^2$


 $S_{vol} = 3.57m^2$

 $G_{da}=24.56\,KN$

 $G_{esc}=37.05\,KN$

 $G_{ser} = 63.32 \, KN$

 $Q_{ser} = 49.18 \, KN$

Figue II.10 : surface afférente des étages de service pour le poteau B2

b. Descente de charge pour le poteau B2

Niveau	Elément	G (KN)	G _{cum} (KN)	Q (KN)	Q _{cum} (KN)	N _u (KN)	N_u^* (KN)	Section poteaux cm ²
	Plancher	58.11						
N1	poteau	4.2	82.81	13.64	13.64	132.25	145.48	30×30
	poutre	20.50						
	Plancher	0						
N2	Poteau	12.24	115.55	0	13.64	176.45	194.10	30×30
	Poutre	20.50						
	Plancher	67.91						
N3	Poteau	13.77	217.03	19.55	32.22	341.32	375.45	35 × 35
	Poutre	19.80						
	Plancher	67.91						
N4	Poteau	13.77	318.51	19.55	48.83	503.23	553.55	35×35
	Poutre	19.80						
	poteau	67.91						
N5	Poteau	15.49	421.58	19.55	63.50	664.38	730.82	40×40
	Poutre	19.67						
	Plancher	67.91						
N6	poteau	15.49	524.65	19.55	76.20	822.58	904.83	40 × 40
	poutre	19.67						
	Plancher	67.91						
N7	Poteau	17.22	629.3	19.55	86.95	955.65	1095.22	45 × 45
	Poutre	19.52						

Chapitre II Pré dimensionnement

	Plancher	67.91						
N8	Poteau	17.22	771	19.55	97.40	1186.95	1305.65	45 × 45
	Poutre	19.52	//1	17.55	77.40	1100.73	1303.03	43 ^ 43
	Escalier	37.05						
	Plancher	46.05						
N9	Poteau	19.13	892.62	68.16	165.55	1453.36	1598.70	50×50
	Poutre	19.39	672.02	00.10	103.33	1433.30	1376.70	30 × 30
	Escalier	37.05						
	poteau	24.56						
N10	Poteau	25.5	962.07	49.18	214.73	1620.89	1782.99	50×50
	Poutre	19.39						

Tableau II.13: Evaluation de la descente de charge du poteau B2

Avec: $N_u = 1.35G + 1.5Q$ et $N_u^* = 1.1N_u$

c. Vérification:

Vérification à la compression simple :

On doit vérifier la condition suivante :

$$\delta_{bc} = \frac{N_u^*}{B} \le f_{bu} = \frac{0.85 \times f_{c28}}{\gamma_b} = 14.16 \, MPa$$

Ce tableau résume les vérifications à la compression à tous les niveaux :

Niveau	$N_u^*(KN)$	$B(m^2)$	$\delta_{bc}(MPa)$	$\delta_{bc} \leq \overline{\delta}_{bc}$
RDC	1782.99	0.25	7.13	Vérifiée
2 ^{eme} ;3 ^{eme} étage	1305.65	0.2025	6.44	Vérifiée
4 ^{eme} ; 5 ^{eme} étage	904.48	0.18	5.02	Vérifiée
6 ^{eme} ; 7 ^{eme} étage	553.55	0.1225	4.51	Vérifiée
8 ^{eme} étage	194.10	0.090	2.15	Vérifiée

Tableau II.14: vérification de la compression simple

Vérification au flambement :

D'après le CBA [2], on doit faire les vérifications suivantes :

On doit vérifier que l'effort normal ultime :

$$N_u^* \le \alpha \times \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_s} \right] \tag{26}$$

 α : Coefficient tenant compte de l'élancement.

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \to \lambda \le 50 & ... (27) \\ 0.6 \left(\frac{\lambda}{50}\right)^2 \to 50 < \lambda \le 70 & ... (28) \end{cases}$$

On calcule l'élancement $\lambda = \frac{l_f}{i}$ (29)

 l_f : Longueur de flambement.

 l_0 : Longueur du poteau.

i: Rayon de giration : $i = \sqrt{\frac{I}{B}}$ avec : I moment d'inertie : $I = \frac{h \times b^3}{12}$(30)

D'après le BAEL91 on doit vérifier :

$$B_r \ge \frac{N_u}{\alpha \times \left[\frac{f_{c28}}{0.9 \times y_h} + \frac{f_e}{100 \times y_s}\right]} \tag{31}$$

Vérification du poteau le plus sollicité B2

$$l_0 = 4.08m$$
 $l_f = 0.7l_0 = 2.86m$

$$I = 0.005208m^4$$
 $i = 0.1443m$

$$\lambda = 19.79 < 50 \implies \alpha = 0.799$$

$$B_r \ge \frac{1782.99 \times 10^{-3}}{0.799 \frac{25}{0.9 \times 1.5} + \frac{4.00}{100 \times 1.15}} = 0.0975 m^2$$

Or nous avons:

$$B_r = (50 - 2) \times (50 - 2) \times 10^{-4} = 0.2304m^2$$

 $B_r = 0.2304m^2 > 0.0975m^2$ Donc n'y a pas risque de flambement.

Ce tableau résume les vérifications au flambement des poteaux à tous les niveaux :

poteaux	$N_u(KN)$	$B(m^2)$	l_0	l_f	λ	α	$B_{r cal}$	$B_{r adp}$	$B_{radp} \ge B_{rcal}$
RDC	1782.99	0.2500	4.08	2.86	19.79	0.799	0.0957	0.2304	Vérifier
R+2; +3	1305.65	0.2050	3.06	2.14	16.49	0.814	0.0762	0.1849	Vérifier
R+4;R+5	905.48	0.1600	3.06	2.14	16.49	0.814	0.0539	0.1444	Vérifier
R+6;R+7	553.55	0.1225	3.06	2.14	18.55	0.805	0.034	0.0108	Vérifier
R+8	194.10	0.0900	3.06	2.14	18.55	0.805	0.0124	0.0784	Vérifier

Tableau II.15: Résultats des vérifications au flambement

On remarque que la condition est vérifiée donc le poteau ne risque pas de se flamber.

❖ Vérification de l'effort normal réduit

Selon le RPA99/version2003(article.7.4.3.1) il faut vérifier :

$$v = \frac{N_{rd}}{B \times f_{c28}} \le 0.3$$

Ce tableau résume les vérifications de l'effort normal réduit :

Niveau	$N_u(KN)$	$B(m^2)$	υ	Observation
RDC	1620.89	0.2500	0.259	Vérifiée
R+2 - R+3	1186.95	0.2050	0.2316	Vérifiée
R+4 - R+5	822.58	0.1600	0.205	Vérifiée
R+6 - R+7	503.23	0.1225	0.164	Vérifiée
R+8	176.45	0.0900	0.078	Vérifiée

Tableau II.16: Vérification de l'effort normal réduit

❖ Vérification du poteau de galerie B1

Après avoir effectué la descente de charge on a trouvés les résultats suivants:

$$G = 704.58 \, KN$$

$$Q = 128.4 \, KN$$

$$N_u = 1143.78 \, KN \quad \rightarrow \quad N_u^* = 1258.16 \, KN$$

Les calcules montrent que le poteau B2 est le plus sollicité sous la charge verticale, mais on doit vérifier ce poteau au flambement parce qu'il est plus élancé que le poteau B2.

$$l_0 = 7.14m$$
 $l_f = l_0 = 7.14m$ \rightarrow Poteau de rive

$$I = 0.008319m^4$$
 $i = 0.1588m$

$$\lambda = 49.47 < 50 \implies \alpha = 0.607$$

$$B_r \ge \frac{1258.16 \times 10^{-3}}{0.639 \frac{25}{0.9 \times 1.5} + \frac{4.00}{100 \times 1.15}} = 0.0821 m^2$$

Or nous avons:

$$B_r = (50 - 2) \times (50 - 2) \times 10^{-4} = 0.2304m^2$$

 $B_r = 0.2304m^2 > 0.0825m^2$ Donc n'y a pas risque de flambement.

II.6. Conclusion

Etant donné que le pré dimensionnement des éléments structuraux est effectué, et que toutes les exigences réglementaires sont satisfaites, on adopte les dimensions suivantes :

•	Poutres principales : $40 \times 30 \ cm^2$
•	Poutres secondaires : $35 \times 30 \ cm^2$
•	Poteaux RDC et 1^{er} étage :
•	Poteaux $2^{\text{\'eme}}$ et $3^{\text{\'em\'e}}$ étage :
•	Poteaux $4^{\text{\'eme}}$ et $5^{\text{\'eme}}$ étage :
•	Poteaux $6^{\text{\'eme}}$ et $7^{\text{\'eme}}$ étage :
•	poteaux $8^{\text{\'eme}}$ étage et toiture :

III.1. Calcul des planchers:

III.1.1. Introduction:

Les planchers sont des aires, généralement planes qui servent à séparer les différents étages, ses différents rôles sont :

- Rôle de résistance, supporter les charges appliquées.
- Rôle d'isolation thermique et phonique.
- transmission des charges et surcharges aux éléments porteurs.

Il existe plusieurs types de plancher en béton armé :

- plancher à corps creux.
- Plancher à dalle pleine.
- Plancher champignons et /ou plancher dalle.

Le plancher à corps creux est plus utilisé dans les bâtiments courants (habitations, administratifs,...).il est constitué de corps creux qui ne sont des éléments de remplissage (aucun rôle de résistance) et des nervures en béton armé qui constituent l'élément résistant de plancher. L'ensemble est surmonté par une dalle mince (4 à 6 cm) qu'on appelle dalle de compression.

Donc on opte pour des planchers à corps creux.

III.1.2. Etude des poutrelles :

Les poutrelles sont calculées en flexion simple, comme des poutres sur plusieurs appuis.

III.1.2. 1.Méthode de calcul:

Les méthodes utilisées pour le calcul des poutres continues en béton armé sont :

- Méthode forfaitaire.
- Méthode de Caquot.

1. Méthode Forfaitaire :

a. Domaine d'application : (art. B6.210 CBA.)

Pour déterminer les moments aux appuis et en travées, il est possible d'utiliser la méthode forfaitaire si les quatre conditions sont vérifiées :

- plancher à surcharge modérée $(Q \le Min(2G, 5\frac{KN}{m^2}))$
- le rapport entre deux travées successives : $0.8 \le \frac{L_I}{L_{I+1}} \le 1.25$
- le moment d'inertie constant sur toutes les travées.
- fissuration peu nuisible (F.P.N).

b. Application de la méthode :

Valeurs des moments :

Les valeurs des moments en travée Mt et aux appuis Mg et Md doivent vérifier :

- $Mt + \frac{Md + Mg}{2} \ge Max(1.05M_0, (0.3\alpha)M_0)$
- $Mt \ge (1 + 0.3\alpha) \frac{M_0}{2}$ dans une travée intermédiaire.
- $Mt \ge (1.2 + 0.3\alpha) \frac{M_0}{2}$ dans une travée de rive.
- La valeur absolue de chaque moment sur appui intermédiaire doit être au moins égale
 à :
 - 0.6M₀ Pour une poutre à deux travées.
 - $0.5 \mathrm{M}_{\mathrm{0}}$ pour les appuis voisins des appuis de rive d'une poutre à plus de deux travées.
 - $0.4\mathrm{M}_0$ Pour les autres appuis intermédiaires d'une poutre à plus de trois travées.

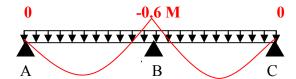


Figure.III.1: Diagramme des moments des appuis pour une poutre à 2 travées

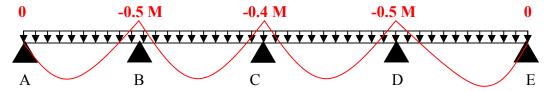


Figure. III.2 : Diagramme des moments des appuis pour une poutre à plus de 2 travées

Avec M₀ la valeur maximale du moment fléchissant dans les travées de référence (travée isostatique) à gauche et à droite de l'appui considéré, et

$$\alpha = \frac{Q}{(G+Q)}$$

Le rapport des charges d'exploitation à la somme des charges non pondérées.

Remarque : Les moments sur les appuis de rive sont nuls (pas de ferraillage) seulement le **BAEL91** préconise de mettre des aciers de fissuration équilibrant un moment fictif égale à : $-0.15M_0$.

Tel que :
$$M_0 = Max (M_0^1, M_0^n)$$

Servaluation de l'effort tranchant :

On évalue l'effort tranchant en supposant une discontinuité entre les travées c'est-à-dire l'effort tranchant hyperstatique est confondu avec l'effort tranchant isostatique sauf pour le premier appui intermédiaire (voisin de rive) où l'on tient compte des moments de continuité en majorant l'effort tranchant isostatique V_0 de :

- 15½ si c'est une poutre à deux travées.
- 10½ si c'est une poutre à plus de deux travées.

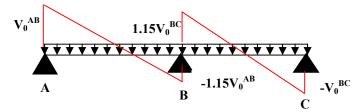


Figure.III.3: Diagramme des efforts tranchants pour une poutre à 2 travées.

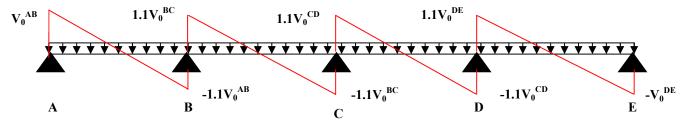


Figure.III.4: Diagramme des efforts tranchants pour une poutre à plus de 2 travées.

2. Méthode de Caquot :

Si le plancher à surcharge élevée $(Q \ge Min(2G, 5\frac{KN}{m^2}))$ on applique la méthode de Caquot. Le principe repose sur la méthode des trois moments simplifiée et corrigée pour tenir compte de :

- La variation des moments d'inerties des sections transversales le long de la ligne moyenne de la poutre.
- L'amortissement des effets de chargement des travées sur les poutres.

Calcul des moments :

Moment en travée :

$$M(x) = M_0(x) + M_g \times \left(1 - \frac{x}{l}\right) + M_d \times \frac{x}{l}; M_0(x) = \frac{Pu \times x}{2} \times (l - x); \ x = \frac{l_i}{2} - \frac{M_g - M_d}{Pu \times l_i}$$

• En appuis :

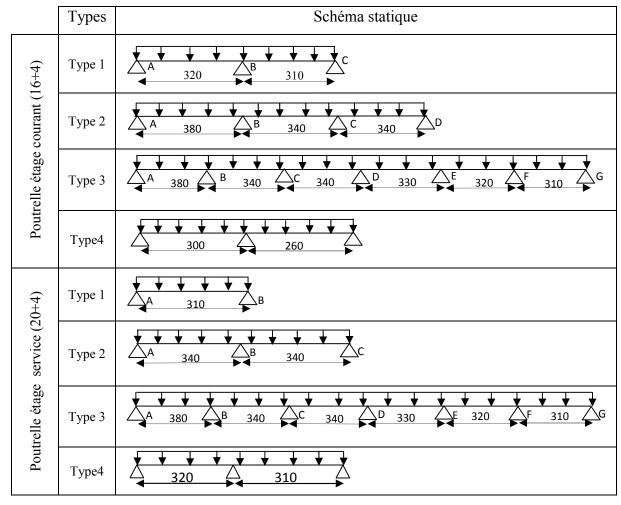
$$M_a = -\frac{P_g \times l_g^3 + p_d \times l_d^3}{8.5 \times (l_g + l_d)}$$
 (BAEL. Art.III,3)

Tel que:

L'g et L'_d: longueurs fictives.

 q_{g} et $q_{\text{d}}\!:$ charge reparties sur les deux travées encadrant l'appui considère.

$$L' = \begin{cases} 0.8L : Travée \text{ intermédiare} \\ L : Travée \text{ de rive} \end{cases}$$


L'effort tranchant :

$$V = \frac{Pu \times l_i}{2} + \frac{M_d - M_g}{l_i}$$
 (BAEL. Art.3.3)

NB: Si l'une des trois autres conditions n'est pas vérifiée, on applique la méthode de Caquot minorée.

III.1.3. Les Différents types de poutrelles :

Le tableau suivant représente les déférents types de poutrelle :

Tableau III.1: Les Types de poutrelles

III.1.3.1. Calcul des charges revenant aux poutrelles :

A I'ELU:
$$p_u = 1.35G + 1.5Q$$
 et $q_u = 0.65 \times P_u$

A l'ELS:
$$p_s = G + Q$$
 et $q_s = 0.65 P_S$

Plancher étage courant :

$$G = 5.21KN/m^2 ; Q = 1.5KN/m^2$$

$$\begin{cases} q_u = (1.35 \times 5.21 + 1.5 \times 1.5) \times 0.65 = 6.034KN/ml. \\ q_s = (5.21 + 1.5) \times 0.65 = 4.362KN/ml. \end{cases}$$

Plancher étage service :

$$G = 5.66KN/m^2; Q = 2.5KN/m^2.$$

$$\begin{cases} q_u = (1.35 \times 5.66 + 1.5 \times 2.5) \times 0.65 = 7.404KN/ml. \\ q_{s=}(5.66 + 2.5) \times 0.65 = 5.304KN/ml. \end{cases}$$

III.1.3.2. Combinaisons d'actions et calculs des charges :

		ELU		U	ELS	
Désignation	G(KN/m)	Q(KN/m)	P_U	q_U	P_{S}	q_S
			(KN/m^2)	(KN/m)	(KN/m^2)	(KN/m)
Plancher étage	5.21	1.5	9.283	6.034	6.71	4.362
courant (16+4)	0.21	1.0	y. 2 05	0.021	0.71	1.502
Plancher étage	5.66	2.5	11.391	7.404	8.16	5.304
commercial (20+4)	2.00	2.5	11.571	7.101	0.10	2.301

Tableau III.2: Combinaisons d'action

III.1.4. Calcul des sollicitations :

Pour le calcul des sollicitations des poutrelles nous avons pris un exemple de calcul pour le type 1(étage courant 16+4), pour les autres types les résultats sont mentionnés dans des tableaux.

1. poutrelle type 1 (16+4):

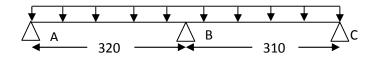


Figure III.5 : Schéma du 1^{er} type de poutrelle

1.1. Exemple de calcul:

a. Vérification des conditions d'application de la méthode forfaitaire :

- $Q \le Min(2 \times 5.21, 5KN/m^2) = 5KN/m^2$ \implies condition vérifiée.
- I = constant $\Rightarrow condition vérifiée.$
- $l_i/l_{i+1} = 3.2/3.1 = 1.03$ compris entre 0.8 et 1.25. \Longrightarrow condition vérifiée.
- F.P.N ⇒ condition vérifiée.

Les conditions d'application de la méthode forfaitaire étant vérifiées ; nous l'appliquons pour le calcul.

• Calcul des moments isostatiques : $m_0 = \frac{p_u l^2}{8}$

Telle que : $m_0 = Max (m_0^1, m_0^2)$

ELU:
$$\begin{cases} m_0^1 = \frac{6.034 \times 3.2^2}{8} = 7.724 \text{KN. } m \\ m_0^2 = \frac{6.034 \times 3.1^2}{8} = 7.248 \text{KN. } m \end{cases}$$

ELS:
$$\begin{cases} M_0^1 = \frac{4.362 \times 3.2^2}{8} = 5.583 KN. m \\ M_0^2 = \frac{4.362 \times 3.1^2}{8} = 5.418 KN. m \end{cases}$$

- * Calcul des moments aux appuis :
 - Appuis de rive (A et C) :

$$M_A = M_C = 0$$

Sur les appuis de rive, le moment est nul, mais il faut toujours mettre des aciers de fissuration équilibrant un moment égal à $0.15\times M_0$

$$\begin{cases} M_A^U = M_C^U = -0.15 \times m_{0_U}^1 \\ M_A^S = M_C^S = -0.15 \times m_{0_S}^1 \end{cases} \rightarrow \begin{cases} M_A^U = M_C^U = -0.15 \times 7.724 = -1.158 KN.m \\ M_A^S = M_C^S = -0.15 \times 5.583 = -0.837 KN.m \end{cases}$$

Appuis intermédiaires (B) :

$$\begin{cases} M_B^U = -0.6 \times m_0 \\ M_B^S = -0.6 \times m_{0_S}^1 \\ M_B^S = -0.6 \times m_{0_S}^1 \end{cases} \rightarrow \begin{cases} M_B^U = -0.6 \times 7.724 = -4.634 KN. m \\ M_B^S = -0.6 \times 5.583 = -3.35 KN. m \end{cases}$$

- Calcul des moments en travées
 - Travée (AB)

On prend le Max entre (1) et (2)

• Calcul de α

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+5.21} = 0.224 \Longrightarrow \begin{cases} 1 + 0.3\alpha = 1.067 \\ 1.2 + 0.3\alpha = 1,267 \end{cases}$$

$$(1) \to M_t^{AB} \ge 1.067 m_0^1 - \frac{M_B}{2}$$

$$\to M_t^{AB} \ge 1.067 m_0^1 - 0.3 m_0^1$$

$$\to M_t^{AB} \ge 0.767 m_0^1$$

$$(2) \to M_t^{AB} \ge \frac{1.267}{2} m_0^1$$

$$\rightarrow M_t^{AB} \ge 0.633 m_0^1$$

Entre (1) et (2) soit : $M_t^{AB} \ge 0.767 m_0^1$

ELU :
$$M_t^{AB} = 0.767 \times 7.724 = 5.926 KN. m$$

ELS:
$$M_t^{AB} = 0.767 \times 5.583 = 4.283 KN.m$$

■ Travée (BC):

$$M_t^{BC} \ge 0.767 m_0^2 \dots (1)$$

$$M_t^{BC} \ge 0.633 \ m_0^2$$
....(2)

Soit : $M_t^{BC} \ge 0.767 \text{ m}_0^2$

ELU:
$$M_t^{BC} = 0.767 \times 7.248 = 5.56$$
KN. m

ELS :
$$M_t^{BC} = 0.767 \times 5.418 = 4.15 \text{KN.} \, \text{m}$$

Calcul des efforts tranchants :

L'effort tranchant isostatique a l'ELU:

$$V = \frac{ql}{2}$$

On calcul V₀ pour chaque travée :

■ Travée (AB):

$$\begin{cases} V_A = \frac{ql_1}{2} = \frac{6.034 \times 3.2}{2} = 9.654KN \\ V_B = \frac{-1.15ql_1}{2} = \frac{-1.15 \times 6.034 \times 3.2}{2} = -11.103KN \end{cases}$$

■ Travée (BC):

$$\begin{cases} V_B = \frac{1.15ql_2}{2} = \frac{1.15 \times 6.034 \times 3.1}{2} = 11.103KN \\ V_C = \frac{ql_2}{2} = \frac{6.034 \times 3.1}{2} = -9.353KN \end{cases}$$

2. Calcul de la poutrelle type 2 (16+4) :

Les tableaux suivant résume les résultats de calcule de la poutrelle type 2 :

	M _{0U} (KN.m)	M _{0S} (KN.m)	M _{tu} (KN.m)	M _{ts} (KN.m)
Travée A-B	10.891	7.873	8.9	6.434
Travée B-C	8.719	6.303	4.652	3.363
Travée C-D	8.719	6.303	7.125	5.151

Tableau III.3 : Calcul des moments isostatique et moment en travée

	M _{AU} (KN.m)	M _{AS} (KN.m)	V _U (KN)
Appui A	-1.633	-1.18	11.465
Appui B	-5.446	-3.937	-12.611
Appui C	-4.36	-3.152	11.284
Appui D	-1.633	-1.18	-10.258

Tableau III.4: Calcul des moments et effort tranchant au niveau des appuis

3. Calcul de la poutrelle type 3 (16+4) :

Les tableaux suivant résume les résultats de calcule de la poutrelle type 3 :

	M _{0U} (KN.m)	M _{0S} (KN.m)	$M_{tu}(KN.m)$	$M_{ts}(KN.m)$
Travée A-B	10.891	7.873	8.09	6.434
Travée B-C	8.719	6.303	4.838	3.498
Travée C-D	8.719	6.303	5.817	4.206
Travée D-E	8.214	5.938	5.379	3.889
Travée E-F	7.724	5.583	4.669	3.375
Travée F-G	7.248	5.24	5.804	4.196

Tableau III.5 : Calcul des moments isostatique et moment en travée

	M _{AU} (KN.m)	M _{AS} (KN.m)	V _U (KN)
Appui A	-1.633	-1.18	11.465
Appui B	-5.446	-3.937	-12.611
Appui C	-3.488	-2.521	10.258
Appui D	-3.488	-2.521	-10.258
Appui E	-3.286	-2.375	-9.956
Appui F	-3.862	-2.792	-10.62
Appui G	-1.633	-1.18	-9.353

Tableau III.6: Calcul des moments et effort tranchant au niveau des appuis

4. Calcul de la poutrelle type 1 (20+4):

Le tableau suivant résume les résultats de calcule de la poutrelle type 1 à ELU :

	$M_{0U}(KN.m)$	M _{0S} (KN.m)	M _{tu} (KN.m)	M _{ts} (KN.m)
Travée A-B	8.894	6.371	8.894	6.371

Tableau III.7 : Calcul des moments isostatique et moment en travée

	$M_{AU}(KN.m)$	M _{AS} (KN.m)	$V_U(KN)$
Appui A	-1.334	-0.955	11.476
Appui B	-1.334	-0.955	-11.476

Tableau III.8: Calcul des moments et effort tranchant au niveau des appuis

5. Calcul de la poutrelle type 2 (20+4):

Les tableaux suivant résume les résultats de calcule de la poutrelle type 2 :

	M _{0U} (KN.m)	M _{0S} (KN.m)	M _{tu} (KN.m)	M _{ts} (KN.m)
Travée A-B	10.699	7.664	8.472	6.069
Travée B-C	10.699	7.664	8.472	6.069

Tableau III.9: Calcul des moments isostatique et moment en travée

	$M_{AU}(KN.m)$	M _{AS} (KN.m)	$V_U(KN)$
Appui A	-1.6	-1.14	12.587
Appui B	-6.419	-4.598	14.475
Appui C	-1.6	-1.14	12.587

Tableau III.10: Calcul des moments et effort tranchant au niveau des appuis

6. Calcul de la poutrelle type 3 (20+4):

Les tableaux suivant résume les résultats de calcule de la poutrelle type 3 :

	M _{0U} (KN.m)	M _{0S} (KN.m)	$M_{tu}(KN.m)$	$M_{ts}(KN.m)$
Travée A-B	13.364	9.574	11.25	8.059
Travée B-C	10.699	7.664	6.2	4.441
Travée C-D	10.699	7.664	7.401	5.302
Travée D-E	10.079	7.22	6.848	4.906
Travée E-F	9.477	6.789	5.961	4.271
Travée F-G	8.894	7.341	7.341	5.258

Tableau III.11: Calcul des moments isostatique et moment en travée

	$M_{AU}(KN.m)$	M _{AS} (KN.m)	V _U (KN)
Appui A	-2.00	-1.436	14.068
Appui B	-6.682	-4.787	-15.474
Appui C	-4.28	-3.066	12.587
Appui D	-4.28	-3.066	-12.587
Appui E	-4.032	-2.888	-12.217
Appui F	-4.739	-3.395	-13.031
Appui G	-2.00	-1.436	-11.476

Tableau III.12 : Calcul des moments isostatique et moment en travée

Le ferraillage des poutrelles ce fait suivant les sollicitations maximales. Ces dernières sont récapitulées dans le tableau suivant :

		Etats limites							
	Type de		El	LU	ELS				
Etage	poutrelle	M _{Max} (KN. m)		M ^{Travée}	Travée Max V _{Max}		(kn.m)	Mtravée Max	
		Rive	Inter	(KN.m)	(KN)	Rive	inter	(KN.m)	
	01	-1.16	-4.63	5.92	11.103	-0.837	-3.35	4.15	
Courant (16+4)	02	-1.633	-5.446	8.09	-12.611	-1.18	-3.937	6.434	
(10.1)	03	-1.633	-5.446	8.09	-12.611	-1.18	-3.937	6.434	
	01	-1.33	-1.33	8.894	11.476	-0.955	/	6.371	
Service (20+4)	02	-1.6	-6.419	8.472	14.475	1.14	4.598	6.069	
	03	-2	-6.682	11.25	-15.474	-1.436	-4.787	8.059	

Tableau III.13 : Sollicitations maximales aux états limite des différents niveaux

III.1.5. Ferraillage des poutrelles :

1. Plancher étage courant (16+4):

a .ferraillage longitudinale:

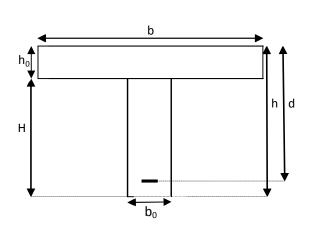
$$\mathbf{A \ L'ELU:} \begin{cases} M_{Trav\acute{e}e}^{Max} = 8.09KN.m \\ M_{Appuis}^{Max} = \begin{cases} -1.633KN.m & \text{(rive)} \\ -5.446KN.m & \text{(inter)} \end{cases}$$

$$V^{Max} = -12.611KN$$

$$\mathbf{A \ L'ELS:} \begin{cases} M_{Trav\acute{e}e}^{Max} = 6.434KN.m \\ M_{Appuis}^{Max} = \begin{cases} -1.18KN.m & \text{(rive)} \\ -3.937KN.m & \text{(inter)} \end{cases}$$

Les caractéristiques de la poutrelle sont:

b=55cm


 $h_0=4cm$

h=20cm

H=16cm

 $b_0=10cm$

d=18cm

Calcul de l'armature en travée:

Le calcul se fera pour une section en T soumise à la flexion simple.

Si $M_u \le M_{tu}$ la table n'est pas entièrement comprimée, l'axe neutre est dans la table de compression .On calcul une section rectangulaire b x h .

Si $M_{tt} > M_{ttt}$ On calcul une section en T

$$M_{tu} = f_{bu} \times b \times h_0 \left(d - \frac{h_0}{2} \right) = 14.2 \times 0.55 \times 0.04 (0.18 - 0.02)$$

$$M_{tu} = 49.984KN.m$$

 $M_u = 8.09kN$. $m < M_{tu} \rightarrow$ le calcule sera muni pour une section rectangulaire b x h.

$$\mu_{bu} = \frac{M_u}{b \times d^2 \times f_{bu}} \tag{32}$$

$$\mu_{bu} = \frac{_{8.09\times 10^{-3}}}{_{0.55\times 0.18^2\times 14.2}} = 0.031 < \mu_l = 0.392 \Longrightarrow A' = 0$$

$$\mu_{bu} < 0.186 \rightarrow pivo \ A : \xi_{st} = 10\%_0 \implies f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348MPa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.039. (33)$$

$$Z = d \times (1 - 0.4\alpha) = 0.18(1 - 0.4 \times 0.039) = 0.177m$$

$$A_{t=\frac{M_u}{z \times f_{st}}} = \frac{8.09 \times 10^{-3}}{0.177 \times 348} = 1.31 cm^2$$

• Vérification de la condition de non fragilité :

$$A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e}.$$
(34)

$$A_{min} = 0.23 \times 0.55 \times 0.18 \times \frac{2.1}{400} = 1.195 cm^2$$

$$A_t > A_{min} \implies \text{Condition vérifiée.}$$

On opte pour 3HA8 Avec $A = 1.51cm^2$

❖ Calcule de l'armature aux appuis intermédiaire :

La table de compression est tendue, un béton tendue $\,$ n'intervient pas dans la résistance donc le calcul se ramène à une section rectangulaire $b_0 \, x \, h$

$$M_{\nu} = 5.446 KN. m$$

$$\mu_{bu} = \frac{M_t}{b_0 \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{5.446 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.118 < \mu_l = 0.392 \rightarrow A' = 0$$

$$\mu_{bu} < 0.186 \rightarrow pivo \ A: \xi_{st} = 10\%_0 \rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 MPa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}\,) = 0.157$$

$$Z = d \times (1 - 0.4\alpha) = 0.18(1 - 0.4 \times 0.157) = 0.168m$$

$$A_{a=}\frac{M_t}{z \times f_{st}} = \frac{5.446 \times 10^{-3}}{0.168 \times 348} = 0.93 \text{cm}^2$$

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} \le A_{calculé}$$

$$A_{\min} = 0.23 \times 0.1 \times 0.18 \frac{2.1}{400} = 0.217 cm^2$$

 $A_a > A_{min} \implies Condition vérifiée.$

On opte pour 2HA8 Avec $A = 1.01cm^2$

❖ Calcule de l'armature aux appuis de rive :

$$M_u = 1.633KN.\,m$$

$$\mu_{bu} = \frac{M_t}{b_0 \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{1.633 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.035 < \mu_l = 0.392 \rightarrow A' = 0$$

$$\mu_{bu} < 0.186 \to pivo \ A: \xi_{st} = 10\%_0 \to f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348 MPa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.044$$

$$Z = d \times (1 - 0.4\alpha) = 0.18(1 - 0.4 \times 0.044) = 0.176m$$

$$A_{a=\frac{M_t}{z \times f_{st}}} = \frac{1.633 \times 10^{-3}}{0.176 \times 348} = 0.266 cm^2$$

• Vérification de la condition de non fragilité :

$$A_{min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{F_e} \le A_{calcul\acute{e}}$$

$$A_{min} = 0.23 \times 0.1 \times 0.18 \frac{2.1}{400} = 0.217 cm^2$$

 $A_a > A_{min} \rightarrow$ Condition vérifiée.

On opte pour 1*HA*8 Avec $A = 0.5cm^2$

Vérification cisaillement :

$$\tau_u = \frac{v_u}{b_0 \times d} \le \overline{\tau_u}$$
 (BAEL)

$$\overline{\tau_u} = min\left(\frac{0.2f_{C28}}{\delta_h}; 5MPa\right) = 3.33MPa$$

$$\tau_u = \frac{12.611 \times 10^{-3}}{0.1 \times 0.18} = 0.7MPa$$

 $\tau_u < \overline{\tau_u}$ \Longrightarrow C'est vérifier (y'a pas de risque de rupture par cisaillement).

b. ferraillage transversal:

Le diamètre ϕ_t des armatures transversales est donne par :

$$\emptyset_t = min\left[\frac{h}{35}; \frac{b_0}{10}; \emptyset_L\right]$$

 \emptyset_L : Diamètre minimal des armatures longitudinale ($\emptyset_L = 8$ mm).

$$\emptyset_t = min\left[\frac{200}{35}; \frac{100}{10}; 8\right] = 5.71mm$$
 On adopte à un étrier \emptyset_6

Donc la section d'armatures transversales sera : $A_t = 2\emptyset_6 = 0.56 \text{cm}^2$.

Sepacement St:

L'espacement des armatures transversales doit satisfaire les conditions suivantes :

$$S_t \leq min \begin{cases} (0.9d, 40cm) \rightarrow S_t \leq 16.2cm \\ \frac{A_t \times f_e}{0.4 \times b_0} = 57cm \\ A_t \frac{0.8 \times f_e \left(\sin \alpha + \cos \alpha \right)}{b_0 (\tau_u - 0.3 \int_{t_j} K)} = 256cm \end{cases} \Rightarrow s_t = 15cm$$

Avec:

 $\alpha = 90^{\circ}$: Flexion simple, armature droites

K=1 : Pas de reprise de bétonnages, flexion simple et fissuration peu nuisible.

❖ Vérification de la contrainte de cisaillement à la jonction table-nervure :

On doit vérifier que :
$$\tau_u = \frac{b_1 \times V_u}{0.9 \times d \times b \times h_0} \le \bar{\tau}$$

$$b_1 = \frac{b - b_0}{2} = \frac{0.55 - 0.1}{2} = 0.225m$$

$$\bar{\tau} = min\left(0.2\frac{f_{c28}}{\gamma_b}; 5\right) MPa \qquad (35)$$

$$\tau_u = \frac{0.225 \times 12.611 \times 10^{-3}}{0.9 \times 0.18 \times 0.55 \times 0.04} = 0.796 < \bar{\tau} = 3.33MPa$$

La condition est vérifiée (y'a pas de rupture par cisaillement)

- Vérification des armatures longitudinales aux voisinages des appuis :
 - Appuis de rive :

On doit vérifier que : $A_s \ge 1.15 \times \frac{V_u}{f_e}$

$$A_s = A_{trav\acute{e}e} + A_{appui} \rightarrow (3HA8) + 1HA8 = 2.01cm^2$$

$$1.15 \frac{12.611 \times 10^{-3}}{400} = 0.36 cm^2$$

$$A_s = 2.01 > 0.36cm^2$$
 \implies Condition vérifiée

• Appuis intermédiaire :

On doit vérifier que :
$$A_s \ge \frac{1.15}{f_e} (V_u - \frac{M_u}{0.9d})$$
(36)

$$A_s = (3HA8) + 2HA8 + 1HA8 = 3.02cm^2$$

$$\frac{1.15}{400} (12.611 \times 10^{-3} - \frac{5.446 \times 10^{-3}}{0.9 \times 0.18}) = -0.603 cm^2$$

$$A_s = 3.02 \text{cm}^2 > -0.603 \text{cm}^2 \implies \text{Condition vérifiée}$$

Vérification de l'effort tranchant dans le béton :

On doit vérifier que :
$$V_u \le 0.267 \times \alpha \times b_0 \times f_{c28}$$
....(37)

Avec
$$\alpha_{max} = 0.9 \times d \to 0.9 \times 0.18 = 0.162 cm$$

$$V_u \le 0.267 \times 0.162 \times 0.1 \times 25 = 108KN \implies \text{Condition vérifiée}$$

❖ Vérification à l'ELS :

Les vérifications à faire sont :

Etat limite d'ouverture des fissures.

Etat limite de déformation.

• Etat limite d'ouverture des fissures :

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma_{bc}} = 0.6 f_{c28}$$
 (38)

On a $M_{tser} = 6.434KN.m$

→ En travée :

Position de l'axe neutre :

$$H = b \frac{h_0^2}{2} - 15A(d - h_0)$$
 (39)

$$H = 0.55 \times \frac{0.04^{2}}{2} - 15 \times 1.51 \times 10^{-4} (0.18 - 0.04) = 0.52 \times 10^{-4} m$$

H > 0 (L'axe neutre passe par la table de compression) \Rightarrow calcule comme une section rectangulaire. b x h

$$b \times y^2 + 30 \times A \times y - 30 \times d \times A = 0$$

$$55y^2 + 45.3y - 815.4 = 0$$

y = 3.46 cm

Calcul de I:

$$I = \frac{b \times y^3}{3} + 15A \times (d - y)^2$$
 (40)

$$I = 5.54 \times 10^3 \text{cm}^4$$

$$\sigma_{bc} = \frac{M_{ser}}{I}y \qquad (41)$$

$$\sigma_{bc} = \frac{6.434 \times 10^{-3}}{5.54 \times 10^{-5}} \, 0.0346 = 4.01 \, \text{MPa}$$

$$\overline{\sigma}_{bc} = 0.6 \, f_{c28} = 15 \text{MPa} > \sigma_{bc} = 4.01 \, \text{MPa}$$
 \implies Condition vérifiée

→ En appuis intermédiaires :

$$M_{ser} = 3.937 KN. m$$

Position de l'axe neutre :

$$H = b \frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = 0.55 \times \frac{0.04^2}{2} - 15 \times 1.01 \times 10^{-4} (0.18 - 0.04) = 2.279 \times 10^{-4} m$$

H > 0 (L'axe neutre passe par la table de compression) \rightarrow calcule comme une section rectangulaire . b x h

$$55y^2 + 30.3y - 545.4 = 0$$

y = 2.88cm

$$I = 3.61 \times 10^3 \text{cm}^4$$

$$\sigma_{bc} = 5.13 MPa$$

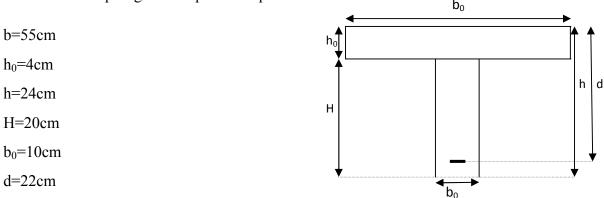
$$\overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa > \sigma_{bc} = 2.48 MPa$$
 \implies Condition vérifiée

Ltat limite de déformation (vérification de la flèche) :

Si les trois conditions suivantes sont vérifiées →la vérification de la flèche n'est pas nécessaire

$$\begin{cases} \frac{h}{l} \ge \frac{1}{16}. & (42) \\ \frac{h}{l} \ge \frac{M_t}{10M_0}. & (43) \\ \frac{A}{bd} \le \frac{4.2}{f_e} & (44) \end{cases}$$

$$\frac{h}{l} \ge \frac{1}{16} \to \frac{20}{380} = 0.0526 \le 0.0625$$


La condition (1) n'est pas satisfaite donc on doit faire une vérification à la flèche.

Les résultats sont récapitulés dans le tableau (Tableau III.18)

2. Plancher étage service :

Remarque : Le calcul des poutrelles à une épaisseur de 20cm (16+4) n'est pas adoptable pour les étages de service vue que la flèche n'est pas vérifiée, alors on a opté pour un plancher de 24 cm (20+4).

Les caractéristiques géométriques de la poutrelle sont :

Les résultats de calcul des poutrelles étage de service sont récapitulés dans les tableaux suivants :

III.1.5.1.Récapitulation de calcul de ferraillage des déférentes poutrelles :

• Les sections d'armature des poutrelles :

		M(KN.m)	μ_{bu}	α	z(m)	$A_{cal}(cm^2)$	$A_{min}(cm^2)$
étage nt	Travée	8.09	0.031	0.039	0.177	1.31	1.195
Plancher ét courant	Appui interm	-5.446	0.118	0.157	0.168	0.93	0.217
Plan ,	Appui de rive	-1.633	0.035	0.044	0.176	0.266	0.217
tage	Travée	11.25	0.0297	0.0376	0.216	1.496	1.46
Plancher étage commercial	Appui interm	-6 .682	0.097	0.127	0.208	0.923	0.265
Pla co	Appui de rive	-2	0.029	0.0367	0.216	0.266	0.241

Tableau III: 14.Calcul des sections d'armatures des poutrelles.

Les armatures longitudinales et transversales adoptées : φ

		Dannes	Section Barres		ransversal
		Darres	(cm ²)	A _t	S _t (cm)
age	Travée	3НА8	1.51		
Plancher étage courant	Appui inter	2HA8	1.01		
Pla	Appui de rive	1HA8	0.5	2T6	15
age al	Travée	3НА8	1.51	210	13
Plancher étage commercial	Appui inter	2HA8	1.01		
Pla ₁	Appui de rive	1HA8	0.5		

Tableau III.15: Armatures longitudinales et transversales a d'optées.

Les vérifications des armatures longitudinales et transversales :

Plancher étage	Influence s	ur le béton	Influence	Jonction table	
	Contrainte La bielle		Appui inter	Appui de rive	nervure
courant	0.7< 3.33	12.611<108	3.43>-0.603	2.3>0.36	0.796<3.33
commercial	0.7<3.33	15.474<132	3.99>-0.525	2.86>0.44	0.8<3.33
observation	Vérifiées	Vérifiées	Vérifiées	Vérifiées	Vérifiées

Tableau III.16 : Vérifications des Armatures longitudinales et transversales.

• Les vérifications des états limitent de compression du béton :

Plancher	Travée			Appui				Obser	
étage	M _t (KN. m)	Y (cm)	I (cm ⁴)	Σ (MPa)	M _t (KN. m)	Y (cm)	I (cm ⁴)	σ (MPa)	
Courant	6.434	3.46	5.54×10^{3}	4.01	-3.937	2.88	3.61×10^{3}	2.48	Vérifiées
commercial	8.059	4.39	1.09 × 10 ⁴	3.24	-4.787	2.31	5.95 × 10 ³	2.58	Vérifiées

Tableau III.17 : Vérifications des états limite de compression du béton.

• Vérification des états limite de déformation (vérification de la flèche) :

	Etage courant	Etage de service
q _{jser} (KN/m)	2.275	2.275
q _{gser} (KN/m)	3.386	3.679
q _{pser} (KN/m)	4.361	6.929
M _{jser} (KN. m)	3.079	3.285
M _{gser} (KN. m)	4.584	5.312
M _{pser} (KN. m)	5.904	10.005
I ₀ (cm ⁴)	38400	29475
ρ	0.01	0.00913
$\lambda_{_{\mathrm{i}}}$	4.125	4.668
λ_{v}	1.65	1.867
$\sigma_{sj}(MPa)$	102.131	79.181
$\sigma_{sg}(MPa)$	152.029	128.048
$\sigma_{sp}(MPa)$	195.800	241.165
μ	0.405	0.2640
μ_{g}	0.550	0.4579
μ_{p}	0.629	0.6632
I f _{ij} (cm ⁴)	157937	1452
I f _{ig} (cm ⁴)	12908	10332
I f _{ip} (cm ⁴)	11736	7914.3
I f _{vg} (cm ⁴)	22126	17476
f _{ji} (mm)	0.875	1.006
∫gi(mm)	1.594	2.287
f _{pi} (mm)	2.258	5.624
f _{gv} (mm)	2.279	4.057
Δf(mm)	2.57	6.387
f _{adm} (mm)	7.6	7.6

Tableau III.18 : Vérification de la flèche

Schéma de ferraillage des poutrelles Plancher En travée Appui intermédiaire Appui de rive 2HA8 1HA8 1HA8 Etage courant ÉpingleT6 Épingle T6 Épingle T6 3HA8 3HA8 3HA8 2HA8 1HA8 1HA8 Etage commercial Épingle T6 Épingle T6 Épingle T6 3HA8 3HA8 3HA8

III.1.5.2.Schéma de ferraillage des poutrelles :

Tableau III.19 : Schéma de ferraillage des poutrelles

II.1.6. Etude de la dalle de compression :

• Armatures perpendiculaires aux nervures :

$$A_{\perp} = \frac{4 \times b}{f_e} = \frac{4 \times 65}{235} = 1.1 \,\text{1cm}^2/\text{ml}$$
 [BAEL 91 Art (B.6.8, 423)]

Armatures parallèles aux nervures

$$A_{//} = \frac{A_{\perp}}{2} = 0.55 \text{ cm}^2/\text{ml}$$

D'après le même article cité ci-dessus les espacements ne doivent pas dépasser :

- 20cm (5 p.m) pour les armatures perpendiculaires aux nervures,
- 33cm (3 p.m) pour les armatures parallèles aux nervures.

Pour faciliter la mise en œuvre ; on prend un treillis soudé $TS\phi 5(150 \times 150)$

III.2. Planchers dalles pleines:

Une dalle est un élément, généralement rectangulaire, dont une dimension (épaisseur) est faible vis-à-vis des deux autres (dimension en plan). Elles reposent sans ou avec continuité sur 1, 2, 3, ou 4 appuis.

Dans un plancher, on appelle « PANNEAUX DE DALLE » les parties de dalle bordées par les poutres-supports (poutrelle et poutres du plancher).

Pour des dalles portant dans un seul sens $\rho < 0.4$

Pour des dalles portant dans les deux sens $\rho \ge 0.4$

$$\rho = \frac{l_x}{l_y}$$

 l_x : La plus petite dimension du panneau.

 l_{ν} : La plus grande dimension du panneau.

III.2.1. L'étude des déférents types de dalles pleines :

a. Types 1: Dalle sur trois appuis (balcon façade principale):

$$L_X = 1.2m \ et \ L_y = 3.5m$$

$$\rho = \frac{1.2}{3.5} = 0.34 < 0.4$$

La dalle porte dans un seul sens.

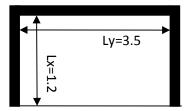


Figure III.6: Dalle sur trois appuis

1. Evaluation des charges :

$$G = 5.12 \ KN/m^2$$
; $Q = 3.5 \ KN/m^2$

$$P_u = 1.35 \times G + 1.5 \times Q = 12.162~KN/m^2$$

$$P_{\rm s} = G + Q = 8.62 \ KN/m^2$$

2. Les sollicitations :

$$L_X = 1.2 m < \frac{l_y}{2} = 1.75 m$$

$$M_0^x = ((P.l_x^2.l_y)/2) - (2Pl_x^3/3) \dots (45)$$

$$M_0^y = \frac{Pl_x^3}{6}$$
 (46)

A L'ELU :
$$\begin{cases} M_0^x = 16.64 \, KN. \, m \\ M_0^y = 3.5 \, KN. \, m \end{cases}$$
A L'ELS :
$$\begin{cases} M_0^x = 11.79 \, KN. \, m \\ M_0^y = 2.48 \, KN. \, m \end{cases}$$

Moments en travées :

$$M_{tu}^{X} = 0.85 \times M_{0}^{x} = 0.85 \times 16.64 = 14.14 \text{ KN.m}$$

 $M_{tu}^{y} = 0.85 \times M_{0}^{y} = 0.85 \times 3.5 = 2.975 \text{ KN.m}$
 $M_{ts}^{X} = 0.85 \times M_{0}^{x} = 0.85 \times 11.79 = 10.02 \text{ KN.m}$

Moments aux appuis :

$$M_{a \ riv}^X = -0.3 \times M_0^X = -0.3 \times 16.64 = -4.99 \ KN. m$$

 $M_{a \ int}^X = -0.5 \times M_0^X = -0.5 \times 16.64 = -8.32 \ KN. m$

Effort tranchant :

$$V_X = \left(\frac{Pl_X}{2}\right) \times \left(\frac{l_y^4}{l_y^4 + l_X^4}\right) = 9.848 \text{ KN}$$

$$V_y = \left(\frac{Pl_y}{2}\right) \times \left(\frac{l_X^4}{l_y^4 + l_X^4}\right) = 0.397 \text{ KN}$$

$$V^{Max} = 9.848 \text{ KN}$$

3. Ferraillage en travée :

Le ferraillage se fait à la flexion simple pour une bande de 1 ml.

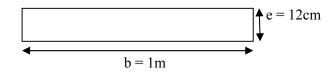


Figure .III.7: Section de la dalle pleine à ferrailler

Sens x-x:

Le calcul des armatures se fait à la flexion simple

$$b=100\ cm$$
 , $f_{bu}=14.2\ MPa$, $d_X=e-c=12-2=10\ cm$, $FPN.$

$$M_t^X = 14.14 \, KN. \, m$$

$$A_t^x = \frac{M_t^X}{Z \times f_{st}}$$

$$\mu_{bu} = \frac{M_t^X}{f_{bu} \times b \times d^2} = 0.0998$$

 $\mu_{bu} < \mu_l = 0.391 \implies$ Les armatures comprimées ne sont pas nécessaire (Á=0).

$$\mu_{bu} < 0.186 \implies \text{Le pivot A}.$$

$$\varepsilon_{st} = 10^{\ 0}/_{00} \Longrightarrow f_{st} = 348 \, MPa$$

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8} = 0.131$$

$$Z = d \times (1 - 0.4\alpha) = 0.0947 \ m$$

$$A^{t} = \frac{M_{t}}{f_{st} \times Z} = 4.29 \ cm^{2}$$

• Condition de non fragilité A_{min} :

$$H \ge 12 \ cm \implies A_X^{min} = \rho_0 \times b_0 \times e = 0.96 \ cm^2 < A^t$$

Soit:
$$A_s = 6HA10 = 4.71 \ cm^2/ml$$
 (soit $S_t = 15 \ cm$)

• Calcul de l'espacement :

La fissuration est peu nuisible :

$$S_t \leq \min(3e; 33) \, cm$$

$$\Rightarrow S_t \leq \min(36;33) cm$$

On a $S_t = 15 \ cm < \min(36; 33) \ cm \implies$ Condition vérifiée.

Sens y - y:

$$M_t^y = 3.5 \, KN.m$$

$$A_t^y = 1.017 \ cm^2/ml \ > \ A_{tx}^{min} = \ 0.96 cm^2/ml$$

Les résultats du ferraillage en travée sont résumés dans le tableau ci-après :

$M_t(KN.m)$	μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calcul\acute{e}}^{y} (cm^2)$	$A_{s \ adopt\acute{e}} \ (cm^2)$	$S_t(cm)$
3.5	0.021	0.0265	0.0989	1.017	3HA8 =1.51	33

Tableau III.20: Ferraillage de la travée dans le sens y-y de la dalle sur 3 appuis

4. Ferraillage aux appuis :

Sens x-x:

$$M_{a \, int}^{X} = 8.32 \, KN.m$$
 $M_{a \, rive}^{X} = 4.99 \, KN.m$ $A_{a \, int}^{X} = 2.46 \, cm^{2}/ml > A_{tx}^{min} = 0.96 cm^{2}/ml$ $A_{a \, rive}^{X} = 1.46 \, cm^{2}/ml > A_{tx}^{min} = 0.96 cm^{2}/ml$

Le tableau suivant illustre les résultats du ferraillage :

$\boldsymbol{M}_{a}(KN.m)$		μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calcul\acute{e}}^{y} (cm^2)$	$A_{s \ adopt\acute{e}} \ (cm^2)$	$S_t(cm)$
Int	8.32	0.058	0.0747	0.0970	2.46	4HA10 =3.14	25
rive	4.99	0.035	0.0356	0.0985	1.46	3HA10=2.36	33

Tableau III.21: Ferraillage des appuis dans le sens x-x de la dalle sur 3 appuis

Sens y-y:

$$M_a^y = 1.05 \, KN. \, m$$

 $A_a^y = 0.50 \ cm^2/ml \ < A_{tx}^{min} = 0.96 cm^2/ml$ Condition non vérifiée on ferraille avec A_{tx}^{min}

$M_a(KN.m)$	μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calcul\'e}^{y} (cm^2)$	$A_{s adopt\acute{e}} (cm^2)$	$S_t(cm)$
1.05	0.012	0.0155	0.0993	0.50	3HA8 =1.51	33

Tableau III.22: Ferraillage des appuis dans le sens y-y de la dalle sur 3 appuis

5. Vérification: (FPN)

Vérification de diamètre des barres :

$$\emptyset \le \frac{e}{10} \implies \emptyset \le 12 \ mm \tag{47}$$

On a $\emptyset = 10$ et $\emptyset = 8$ < $12 \text{ mm} \Rightarrow$ condition vérifiée.

• L'ELU:

L'effort tranchant :

Il faut vérifier que :
$$\tau_u \leq \bar{\tau}$$
(48)

$$\bar{\tau} = \min\left(0.2 \frac{f_{c28}}{\gamma_b}; 5MPa\right) = 3.33 MPa.$$

$$\tau_u = \frac{V_u^{max}}{b \times d} = \frac{9.848}{1 \times 0.1} = 0.09848 \, MPa \, < \, \bar{\tau} \, \Rightarrow \text{Condition v\'erifi\'ee}$$

Donc y'a pas de risque de rupture par cisaillement.

• L'ELS :

$$M_{ts}^{X} = 10.02 \, KN. m$$
 $M_{a}^{X} = 5.89 \, KN. m$

La contrainte dans le béton :

$$\sigma_{bc} = \frac{M_{ts}^{x}}{I} y \leq \bar{\sigma}_{bc} = 0.6 f_{c28}$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$y^2 + (30 \times 4.71) y - (30 \times 4.71 \times 10) = 0$$

$$\Rightarrow$$
 y = 3.11 cm

$$I = b \times \frac{y^3}{3} + 15 \times A(d - y)^2 \implies I = 4.35 \times 10^{-5} m^4$$

$$\sigma_{bc} = 7.16 \, MPa \, < \bar{\sigma}_{bc} = 15 \, MPa \, \implies$$
 Condition vérifiée.

La flèche:

Si les trois conditions suivantes vérifiées donc il n'est pas nécessaire de vérifier la flèche.

1)
$$\frac{h}{l} > \frac{1}{16}$$
 $\Rightarrow \frac{12}{120} = 0.1 > 0.0625$ \Rightarrow Condition vérifiée

$$(2)\frac{h}{l} > \frac{M_t}{10 \times M_0} \implies \frac{12}{120} = 0.1 > 0.0849 \implies \text{Condition vérifiée}$$

$$3)\frac{A}{b\times d} \le \frac{4.2}{f_e}$$
 $\Rightarrow \frac{4.71}{100\times 10} = 4.71\times 10^{-3} < 0.0105$ \Rightarrow Condition vérifiée

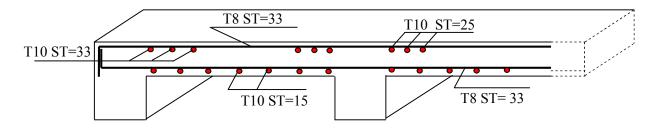


Figure III.8 : Schéma de ferraillage de la dalle sur trois appuis.

b. Type 2 : Dalle sur quatre appuis : (Toiture)

Pour ce type de dalle on étudié le panneau qui est sur la figure **III.9** qui est la dalle la plus défavorable dans la toiture, et ça sera le même ferraillage pour les autres types de dalles pleines dans la toiture.

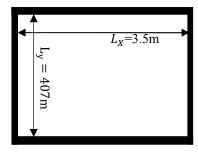


Figure III.9 : Dalle sur 4 appuis

1. Méthode de calcul:

Pour les dalles appuyées sur 4 cotés le calcul se fera comme suit :

Si
$$\begin{cases} \rho \geq 0.4 \Longrightarrow \text{ La dalle porte dans les deux sens.} \\ \rho < 0.4 \Longrightarrow \text{ La dalle porte dans un seul sens.} \end{cases}$$

On calcul les sollicitations max M_0^{max} au centre de la dalle en les supposant simplement appuies

On corrige les moments pour tenir compte des encastrements partiels, d'après le BAEL:

$$M_0^X = \mu_X \times P \times l_X^2$$
 et $M_0^y = \mu_y \times M_0^X$

Les coefficients μ_X et μ_y sont tirés dans le tableau **BARES** (annexes 2) en fonction du rapport de dimension ρ .

2. Evaluation des charges :

$$G = 4.26 \ KN/m^2$$
 $Q = 1 \ KN/m^2$ $P_u = 1.35G + 1.5Q = 7.251 \ KN/m^2$ $Q = 1 \ KN/m^2$ $Q = 1 \ KN/m^2$

3. Les sollicitations :

Le calcul se fait pour une bande de 1m.

$$\rho = \frac{3.5}{4.07} = 0.85 > 0.4 \implies$$
 La dalle porte dans les deux sens.

$$\mu_X = 0.0506$$
 $\mu_Y = 0.6864$

$$M_0^X = \mu_X \times (P_u \times l_X^2)$$

$$M_0^y = \mu_v \times M_0^X$$

$$\text{A L'ELU}: \left\{ \begin{array}{l} M_0^x = 4.49 \, KN. \, m \\ \\ M_0^y = 3.08 \, KN. \, m \end{array} \right.$$

A L'ELS :
$$\begin{cases} M_0^x = 3.26 \, KN. \, m \\ M_0^y = 2.24 \, KN. \, m \end{cases}$$

Moments en travées :

$$M_{tu}^{X} = 0.85 \times M_{0}^{x} = 0.85 \times 4.49 = 3.82 \text{ KN. m}$$

 $M_{tu}^{y} = 0.75 \times M_{0}^{y} = 0.75 \times 3.08 = 2.31 \text{ KN. m}$
 $M_{ts}^{X} = 0.85 \times M_{0}^{x} = 0.85 \times 3.26 = 2.77 \text{ KN. m}$
 $M_{ts}^{y} = 0.75 \times M_{0}^{y} = 0.75 \times 2.24 = 1.68 \text{ KN. m}$

Moments aux appuis :

$$M_{a\,riv}^X = -0.3 \times M_0^X = -0.3 \times 4.49 = -1.35 \, KN. m$$

 $M_{a\,int}^X = M_a^Y = -0.5 \times M_0^X = -0.5 \times 4.49 = -2.24 \, KN. m$

■ L'effort tranchant :

$$V_{ux} = \frac{P_u \times l_x}{2} = 9.97 \text{ KN}$$

$$V_{uy} = \frac{P_u \times l_y}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 10.35 \text{ KN}$$

$$V_u^{max} = 10.35 \text{ KN}$$

3. Ferraillage en travée :

Sens x-x:

$$A_{tx}^{min} = \rho_0 \times \left(\frac{3-\rho}{2}\right) \times b \times e = 1.03 cm^2$$

Les résultats de calcul sont mentionnés dans le tableau suivant :

$M_t(KN.m)$	μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calcul\acute{e}}^{y} (cm^2)$	$A_{s \ adopt\'e} \ (cm^2)$	$S_t(cm)$
3.82	0.0269	0.0340	0.0986	1.11	5HA8 =2.51	20

Tableau III.23 : ferraillage en travée dans le sens x-x de la dalle sur 4appuis.

Sens y-y:

$$A_{ty}^{min} = \rho_0 \times b \times e = 0.96cm^2$$

$M_t(KN.m)$	μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calcul\acute{e}}^{y} (cm^2)$	$A_{s \ adopt\'e} \ (cm^2)$	$S_t(cm)$
2.31	0.0162	0.0205	0.0991	0.67	4HA8 =2.01	25

Tableau III.24 : ferraillage en travée dans le sens y-y de la dalle sur 4appuis.

4. Ferraillage aux appuis:

$$A_{ty}^{min} = 0.96cm^2 .$$

M_a (KN.m)		μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calcul\acute{e}}^{y} (cm^2)$	$A_{s \ adopt\acute{e}} \ (cm^2)$	$S_t(cm)$
Int	2.24	0.0157	0.0197	0.0992	0.65	3HA8 =1.51	33
rive	1.35	0.0095	0.0119	0.0995	0.39	3HA8=1.51	33

Tableau III.25: ferraillage en appuis de la dalle sur 4 appuis

5. Vérifications : (FPN)

Vérification de diamètre des barres :

$$\emptyset \le \frac{e}{10} \implies \emptyset \le 12 \ mm \tag{47}$$

On opte pour un $\emptyset = 8 < 12 \, mm \Rightarrow$ Condition vérifiée.

• L'ELU:

L'effort tranchant :

Il faut vérifier que :
$$\tau_u \leq \bar{\tau}$$
(48)

$$\bar{\tau} = \frac{0.07 \times f_{c28}}{1.5} = 1.16 MPa.$$

$$\tau_u = \frac{V_u^{max}}{b \times d} = \frac{0.01035}{1 \times 0.1} = 0.1035 \, MPa < \bar{\tau} \Rightarrow \text{Condition vérifiée}$$

Donc y'a pas de risque de rupture par cisaillement.

• L'ELS:

$$M_{ts}^{X} = 2.77 \text{ KN.m}$$
 $M_{ts}^{y} = 1.68 \text{ KN.m}$

La contrainte dans le béton :

$$\sigma_{bc} = \frac{M_{ts}^{x}}{I} y \leq \bar{\sigma}_{bc} = 0.6 f_{c28}$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$y^2 + (30 \times 2.51) y - (30 \times 2.51 \times 10) = 0$$

$$\Rightarrow$$
 $y = 2.39 cm$

$$I = b \times \frac{y^3}{3} + 15 \times A(d - y)^2 \implies I = 2.63 \times 10^{-5} m^4$$

$$\sigma_{bc} = 2.51 \, MPa \, < \bar{\sigma}_{bc} = 15 \, MPa$$
 \Longrightarrow Condition vérifiée.

La flèche:

Si les deux conditions suivantes vérifiées donc il n'est pas nécessaire de vérifier la flèche.

1)
$$\frac{h}{l} > \frac{1}{16}$$
 $\Rightarrow \frac{12}{350} = 0.0342 > 0.0625$ \Rightarrow Condition non vérifiée

$$2)\frac{A}{b\times d} \le \frac{4.2}{f_e} \quad \Longrightarrow \frac{2.51}{100\times 10} = 2.51\times 10^{-3} < 0.0105 \qquad \Longrightarrow \quad \text{Condition v\'erifi\'ee}$$

La condition 1 n'est pas vérifiée alors on doit faire le calcul de la flèche selon la méthode exposée à l'article **B.6.5.2** du BAEL 91 [3].

Les résultats de la flèche sont donnés dans le tableau suivant :

Sens	$f_{gi}(mm)$	$f_{gv}(mm)$	$f_{ji}(mm)$	$f_{pi}(mm)$	$\Delta f (mm)$	$f_{adm}(mm)$	Observation
X-X	0.1956	0.5869	0.1432	0.2415	0.4896	5.5	Vérifiée
Y-Y	0.2965	0.8895	0.2171	0.3661	0.7419	8.14	Vérifiée

Tableau III.26 : Vérification de la flèche dalle sur 4 appuis.

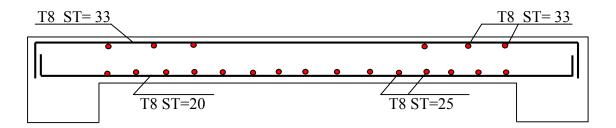


Figure III.10 : Schéma de ferraillage de la dalle sur quatre appuis.

c. Type 3: Dalle sur un seul appui (balcon en console):

1. Evaluation des charges :

$$G = 4.52 \text{ KN.m}$$
 $Q = 3.5 \text{KN.m}$ $P_{gco} = 1.35 (\rho \times e \times H) = 1.35 (25 \times 0.05 \times 0.85) = 1.43 \text{ KN}$

 $P_u = 1.35 \times G + 1.5 \times Q = 11.35 \ KN/m.$

Figure III.11: Dalle sur un seul appui

$$M_u = -P_{gc} \times l_i - P_u \frac{l^2}{2} = -7.11 KN.m$$

$$V_u^{max} = 12.78 \, KN$$

2.Ferraillage:

$$A_s^{min} = 0.96 cm/ml$$

Le tableau suivant illustre le calcul du ferraillage de la dalle en consle et la section d'acier optée :

$M_u(KN.m)$	μ_{bu}	α	$\boldsymbol{Z}(m)$	$A_{t \ calculé}^{x} (cm^2)$	$A_{s \ adopt\'e} \ (cm^2)$	$S_t(cm)$	A_r cm/ml
7.11	0.050	0.0641	0.0974	2.09	5HA8 = 2.51	20	3HA8=1.51

Tableau III.27: Ferraillage dalle en console.

3. Vérification : (FTN)

 $M_u = 7.11 \; KN.m$; $M_s = 4.87 \; KN.m$; $V_u^{max} = 12.78 \; KN$

ELU:

L'effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = 0.05 f_{c28}$$

 $\tau_u = 0.1278 \, MPa < \bar{\tau} = 1.25 \, MPa$ \Longrightarrow Condition vérifiée

ELS:

La contrainte dans le béton :

$$\sigma_{bc} = \frac{M_{ts}^{x}}{I} y \leq \bar{\sigma}_{bc} = 0.6 f_{c28}$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$y^2 + (30 \times 2.51) y - (30 \times 2.51 \times 10) = 0$$

$$\Rightarrow y = 2.39 cm$$

$$I = b \times \frac{y^3}{3} + 15 \times A(d - y)^2 \implies I = 2.63 \times 10^{-5} m^4$$

$$\sigma_{bc} = 4.42 \, MPa \, < \bar{\sigma}_{bc} = 15 \, MPa$$
 \Longrightarrow Condition vérifiée.

La contrainte dans l'acier :

$$\sigma_s = 15 \times \frac{M_s}{I} \times (d - y) \le \bar{\sigma}_s = min\left(\frac{2}{3}f_e; 90\sqrt{nf_{tj}}\right)MPa$$

$$\sigma_s = 211.37 \, MPa > \bar{\sigma}_s = 164.97 \, MPa \implies \text{Condition non vérifiée.}$$

On doit recalculer A_s

On Prend $A_s = 4.71 cm^2$

$$\Rightarrow$$
 y = 3.11 cm \Rightarrow I = 2.07 × 10⁻⁵ m⁴

$$\sigma_s = 137.27 \, MPa \, < \bar{\sigma}_s = 164.97 \, MPa \, \Longrightarrow \, {\rm Condition \ v\'erif\'i\'ee}.$$

La flèche:

Si les trois conditions suivantes vérifiées donc il n'est pas nécessaire de vérifier la flèche.

1)
$$\frac{h}{l} > \frac{1}{16}$$
 $\Rightarrow \frac{12}{100} = 0.12 > 0.0625$ \Rightarrow Condition vérifiée.

$$2)\frac{h}{l} > \frac{M_t}{10 \times M_0} \implies \frac{12}{100} = 0.12 > 0.1 \implies \text{Condition v\'erifi\'ee}.$$

$$3)\frac{A}{b\times d} \le \frac{4.2}{f_e}$$
 $\Rightarrow \frac{3.02}{100\times 10} = 3.02 \times 10^{-3} < 0.0105$ \Rightarrow Condition vérifiée.

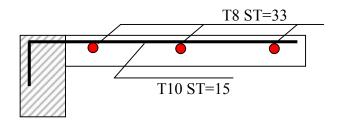


Figure III.12 : Schéma de ferraillage de la console.

III. 3. Etude de l'ascenseur (dalle sur 04 appuis) :

L'ascenseur est un appareille mécanique, servant à déplacer verticalement des personnes ou chargement vers les déférents niveaux du bâtiment, il est constitue d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique qui sert à déplacer la cabine.

Dans notre bâtiment en adopte pour un ascenseur de 8 personnes ayant les caractéristiques suivantes (Annexe 3):

La cours maximale = 32m

DM: la charge due à l'ascenseur =82 KN

PM: la charge due à la machine =15KN

FC: poids de la cuvette =102KN

La charge nominale set de 630Kg.

La vitesse minimale =1 m /s

Les dimensions de la cabine BK \times TK \times HK= $(110\times140\times210)$ cm²

Les dimensions de la gaine : BS =180cm

TS = 210cm

III. 3.1 .Etude de la dalle pleine de local des machines :

La dalle de la cage d'ascenseur doit être épaisse pour qu'elle puisse supporter les charges impotentes (machine+ascenseur), qui sont appliquées sur elle.

On a :
$$L_x = 1.75m$$
 et $L_y = 1.75m$
 $\rightarrow S = 1.75 \times 1.75 = 3.06cm^2$
 $\rightarrow e \ge \frac{l_x}{20} = \frac{175}{20} = 8.75cm$ Soit e=15cm

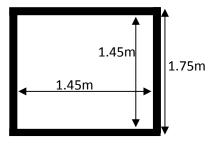


Figure III.13.dalle sur quatre appuis

a. Cas d'une charge répartie :

1. Evaluation des charges et surcharges :

$$G_1 = 3.95 \text{KN/m}^2 \qquad \text{(Poids de la dalle)}$$

$$G_2 = \frac{F_c}{s} = \frac{102}{3.06} = 33.33 \text{KN/m}^2 \text{ (Poids de la machine)}$$

$$G_{total} = 3.95 + 33.33 = 37.28 \text{KN/m}^2$$

$$Q=1 \text{ KN/m}^2$$

2. Calcul des sollicitations :

A L'ELU:

$$\begin{array}{l} q_u = 1.35G + 1.5Q = 1.35 \times 37.28 + 1.5 \times 1 = 51.83 \text{KN/m}^2 \\ \rho = \frac{L_x}{L_y} = 1 > 0.4 \qquad \Longrightarrow \text{La dalle porte dans les deux sens} \\ \rho = 1 \rightarrow \begin{cases} \mu_x = 0.0368 \\ \mu_y = 1.0000 \end{cases} \\ \text{Sens x-x'} : M_0^x = \mu_x \times q_u \times L_x^2 \implies M_0^x = 0.0368 \times 51.83 \times 1.75^2 = 5.84 \text{KN. m} \\ \text{Sens y-y'} \quad M_0^y = \mu_y \times M_0^x \qquad \Longrightarrow M_0^y = 1 \times 4.01 = 5.84 \text{KN. m} \end{array}$$

• moment en travées :

$$M_t^x = M_t^y = 0.85 \times M_0^x = 0.85 \times 5.84 = 4.964 \text{ KN.m}$$

• moment en appuis :

$$M_a^x = M_a^y = 0.3M_0^x = 0.3 \times 5.84 = 1.75$$
KN. m

3. Calcul de ferraillage :

On fera le calcul de la dalle pour une bande de 1m de longueur et de 15 cm d'épaisseur à la flexion simple.

En travée :

$$\mu_{bu} = \frac{M_t^x}{b \times d_x^2 \times f_{bu}} = \frac{4.964 \times 10^{-3}}{1 \times 0.13^2 \times 14.2} = 0.0206$$

$$\alpha=1.25\times\left[1-\sqrt{(1-2\mu_{bu})}\right]=0.026$$

$$Z = d(1 - 0.4 \times \alpha) = 0.128 \text{ m}$$

$$A_t^x = \frac{M_t^x}{Z \times f_{st}} = 1.09 cm^2/ml$$

$$A_t^x = A_t^y = 1.09 \text{cm}^2/\text{ml}$$

En appui :

$$\mu_{\text{bu}}=0.0072$$

$$\alpha = 0.009$$

$$Z = 0.129$$

$$A_a = 0.389 \text{cm}^2/\text{ml}$$

		M _t ^x (KN. m)	M _a (KN. m)	$A_{tcal}(cm^2)$	$A_{acal}(cm^2)$	$A_{tadopt}(cm^2)$	$A_{aadopt}(cm^2)$
Sens	ХХ	4.964	1.74	1.09	0.389	5T8=2.51	5T8=2.51
Sens	уу	4.964	1.74	1.09	0.389	5T8=2.51	5T8=2.51

Tableau III.28 : ferraillage de le dalle d'ascenseur

4. Vérification :

A L'ELU:

Condition de non fragilité :

En travée

$$\begin{cases} h_0 > 12cm \\ \rho > 0.4 \end{cases}$$

$$\begin{cases} A_{\min}^{x} = \rho_0 \times \frac{3-\rho}{2} \times b \times h_0 \\ A_{\min}^{y} = \rho_0 \times b \times h_0 \end{cases}$$

On a des HA $f_e E 400 \rightarrow \rho_0 = 0.0008$

$$h_0 = 15cm$$

$$b = 100cm$$

$$\rho = 0.81$$

$$\begin{cases} A_{min}^{x} = 1.314 \text{cm}^{2}/\text{ml} \\ A_{min}^{y} = 1.2 \text{cm}^{2}/\text{ml} \end{cases}$$

$$A_{t}^{x}=5\mathit{HA8}=2.51>~A_{min}^{x}=1.314cm^{2}/ml~\Longrightarrow Condition~V\'{e}rifi\'{e}.$$

$$A_{t}^{y} = 5HA8 = 2.51 > A_{min}^{x} = 1.2cm^{2}/ml \implies Condition Vérifié.$$

En appui :

$$A_a^x = 5 HA8 = 2.51 > A_{min}^x = 1.314 cm^2/ml \implies Condition Vérifié.$$

$$A_a^y = 5HA8 = 2.51 > A_{\min}^x = 1.2 \text{cm}^2/\text{ml}$$
 \Longrightarrow Condition Vérifié.

Calcul des espacements :

Sens x-x
$$^{'}$$
: $S_t \le min (3e, 33cm) \rightarrow S_t \le 33cm$ on adopte $S_t = 20cm$

Sens y-y :
$$S_t \le min (4e, 45cm) \rightarrow S_t \le 45cm$$
 on adopte $S_t = 20cm$

Vérification de l'effort tranchant :

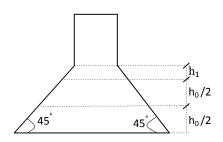
$$\begin{split} &\tau_u = \frac{V_{max}}{b\times d} \\ &\frac{0.07}{\gamma_b} \times f_{c28} = 1.16 \text{MPa} \\ &\rho = 0.8 > 0.4 \to \text{Flexion simple dans les deux sens.} \\ &V_x = V_y = q_u \times \frac{l_x}{2} \times \frac{l_y^4}{l_x^4 + l_y^4} = 22.67 \text{KN} \\ &\tau_u = \frac{22.67 \times 10^{-3}}{1 \times 0.13} = 0.174 < 1.16 \text{MPa} \quad \text{V\'erifi\'e (les armatures transversales sont par)} \\ &\text{n\'ecessaires)} \end{split}$$

A L'ELS:

$$\begin{split} q_{sr} &= G_{total} + Q = 37.28 + 1 = 37.28 \text{KN/m}^2 \\ \vartheta &= 0.2 \\ \text{Sens x-x} : M_0^x = \mu_x \times q_{sr} \times L_x^2 \to M_0^x = 0.0368 \times 37.28 \times 1.75^2 = 4.201 \text{KN. m} \\ \text{Sens y-y} & M_0^y = \mu_x \times M_0^x & \to M_0^y = 1 \times 4.201 = 4.201 \text{KN. m} \\ \to M_t^x = M_t^y = 0.85 \times M_0^x = 0.85 \times 4.201 = 3.57 \text{ KN.m} \end{split}$$

• vérification des contraintes :

b.cas d'une charge concentrée :


La charge concentrée q est appliquée à la surface de la dalle sur une aire $a_0 \times b_0$ elle agit uniformément sur une aire $u \times v$ située sur le plan moyen de la dalle.

 $a_0 \times b_0$: Surface de chargement de la charge concentrée.

 $u \times v$: Surface d'impact

 a_0 et u: Dimensions suivant le sens x-x

b₀ et v : Dimensions suivant le sens y-y

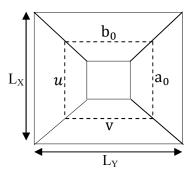


Figure III.14: .schéma représente la surface d'impact

On calcul le rectangle d'impact (u.v.) :

$$\begin{cases} u = a_0 + h_0 + 2\xi h \\ v = b_0 + h_0 + 2\xi h \end{cases}$$
 (BAEL .91)

 ξ : coefficient qui dépend du type de revêtement(béton armé $\xi \!\!=\!\! 1)$

$$(a_0 \times b_0) = (80 \times 80) \text{cm}^2$$

On a un revêtement en béton d'épaisseur h =5cm

Donc:

$$\begin{cases} u = 80 + 15 + 2 \times 1 \times 5 = 105cm \\ v = 80 + 15 + 2 \times 1 \times 5 = 105cm \end{cases}$$

1. Calcul des sollicitations :

$$\begin{cases} M_x = P_u \times (M_1 + v \times M_2) \\ M_y = P_u \times (M_2 + v \times M_1) \end{cases}$$

Avec v : coefficient de poisson $\begin{cases} ELU \Longrightarrow v = 0 \\ ELS \Longrightarrow V = 0.2 \end{cases}$

$$M_1$$
 En fonction de $\frac{u}{l_x}$ et $\rho \frac{u}{l_x} = 0.6$ et $\rho = 1$

$$M_2$$
 En fonction de $\frac{u}{l_y}$ et $\rho \frac{u}{l_y} = 0.6$ et $\rho = 1$

En ce réfère à l'abaque PIGEAU en **Annexe 4**, on trouve $M_1 = 0.076$ et $M_2 = 0.076$

A L'ELU:

Evaluation des moments M_{x1} et M_{v1} du système de levage :

$$\begin{cases} M_{x1} = p_u \times M_1 \\ M_{y1} = p_u \times M_2 \end{cases}$$

On a
$$G=D_m+P_m+P_{personnes}=82+15+6.3=103.3 \text{ KN}$$

$$P_u = 1.35 \times G = 1.35 \times 103.3 = 139.455 \, KN$$

$$M_{\chi 1} = 10.6 \, KN. \, m$$

 $M_{\chi 1} = 10.6 \, KN. \, m$

Evaluation des moments dus au poids propre de la dalle :

$$q_U = 1.35 \times 3.95 + 1.5 \times 1 = 6.83kn$$

$$\begin{cases} M_{x2} = \mu_x \times q_u \times L_x^2 \\ M_{y2} = \mu_y \times M_2^x \end{cases} \Longrightarrow \begin{cases} M_{x2} = 0.77KN.m \\ M_{y2} = 0.77KN.m \end{cases}$$

Superposition des moments :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 10.6 + 0.77 = 11.37 KN. m \\ M_y = M_{y1} + M_{y2} = 10.6 + 0.77 = 11.37 KN. m \end{cases}$$

Moments aux appuis :

$$M_{ax} = M_{av} = 0.3 M_x = 3.41 \text{ KN.m}$$

Moments en travée:

$$\begin{cases} M_{tx} = 0.85 M_x = 0.85 \times 11.37 = 9.66 KN. m \\ M_{ty} = 0.85 M_y = 0.85 \times 11.37 = 9.66 KN. m \end{cases}$$

NB: On voit bien que les moments dans les deux sens sont égaux, alors on fera le calcul pour un seul sens, soit le sens x-x et l'autre sera le même.

2. Ferraillage:

Le calcul ce fera pour une bonde de 1m, les résultats sont résume dans le tableau suivant :

Zone	$M_x(KN.m)$	$A_{calc}(cm^2)$	$A_{min}(cm^2)$	A _{opt} (cm ²)	S _t (cm)
Travée	9.66	2.18	1.2	5T8=2.51	20
Appui	3.41	0.76	1.2	5T8=2.51	20

Tableau III.29: ferraillage de la dalle pleine

3. Vérification:

Vérification de la condition de non fragilité :

On a : $h_0=15$ cm, $\rho=1$

En travée:

$$A_{min}^t = 0.0008 \frac{(3-\rho)}{2} b \times h_0 = 0.0008 \times \frac{(3-1)}{2} \times 1 \times 0.15 = 1.2 cm^2$$

$$A_{min}^t = 1.2 < A_t^x = 5T8 = 2.51$$
 \Longrightarrow Condition Vérifiée

En appui:

$$A_{min}^a = 1.2 < A_a^x = 578 = 2.51$$
 \Longrightarrow Condition vérifiée

• Vérification au poinçonnement :

$$Q_u \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b}$$
 BAEL91

Avec:

Qu: Charge de calcul à l'état limite.

h : épaisseur de la dalle.

U_c:Périmètre du contour au niveau du feuillet moyen.

$$U_c = 2 \times (u + v) = 2 \times (105 + 105)$$

$$U_c = 420cm$$

$$Q_u = 139.455 kn$$

$$0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_h} = 472.5 \text{ KN}$$

$$Q_u = 139.455 \text{kn} < 472.5$$

⇒ Condition vérifiée

Vérification de l'effort tranchant :

$$\tau_{\rm u} \leq \overline{\tau_{\rm u}}$$

$$\tau_{\rm u} = \frac{V_{\rm max}}{h \times d}$$

On a
$$v = u \Longrightarrow T_U = T_V = \frac{p_u}{3 \times U_c}$$

$$\Rightarrow T_U = T_V = \frac{139.455}{3 \times 4.2} = 11.06 \text{KN}$$

Donc:

$$\tau_u = \frac{11.06 \times 10^{-3}}{1 \times 0.13} = 0.08 MPa$$

$$\overline{\tau_u} = 0.05 \times f_{c28} = 1.25 MPa \Longrightarrow \tau_u < \overline{\tau_u} \implies \text{pas d'armature transversales}.$$

A l'ELS:

Evaluation des moments :

Les moments engendrés par le système de levage :

$$q_{ser} = G = 103.3 \text{ KN}$$

$$\begin{cases} M_{x1} = q_{ser} \times (M_1 + v \times M_2) = 9.42KN.m \\ M_{y1} = q_{ser} \times (M_2 + v \times M_1) = 9.42KN.m \end{cases}$$

Les moments dus au poids propre de la dalle :

$$q_{ser} = 3.95 + 1 = 4.95 \text{KN}$$

$$\begin{cases} M_{x2} = \mu_x \times q_u \times L_x^2 \\ M_{y2} = \mu_y \times M_2^x \end{cases} \Longrightarrow \begin{cases} M_{x2} = 0.55KN.m \\ M_{y2} = 0.55KN.m \end{cases}$$

Superposition des moments :

$$\begin{cases} M_x = 9.42 + 0.55 = 9.97 \text{KN.m} \\ M_y = 9.42 + 0.55 = 9.97 \text{KN.m} \end{cases}$$

$$M_{tx} = M_{ty} = 0.85 \times 9.97 = 8.47 KN. m$$

$$M_{ax} = M_{ay} = 0.3 \times 9.97 = 2.99KN.m$$

Verification des contraintes :

Vérification de la contrainte de compression dans le béton :

On vérifie que :
$$\sigma_{bc} \le \overline{\sigma_{bc}}$$

 $y=2.77$ cm
 $I=4.64\times10^3$
 $\sigma_{bc}=5.05$ MPa $<\overline{\sigma_{bc}}=15$ MPa \Longrightarrow vérifiée

Vérification de la contrainte de traction dans l'acier :

Comme la dalle se situe à l'intérieur du bâtiment (FPN). Alors la vérification de la contrainte de traction dans les aciers s'avère inutile.

• Vérification de la flèche :

Les deux conditions suivantes sont vérifiées :

$$\begin{cases} \frac{h}{l_x} \ge \frac{M_t}{20 \times M_x} \to 0.085 > 0.042 \\ \frac{A}{b \times d} \le \frac{4.2}{f_e} \to 0.0019 < 0.0105 \end{cases} \implies \text{Condition V\'erifi\'ee}$$

Donc le calcul de la flèche est inutile

Schéma de ferraillage:

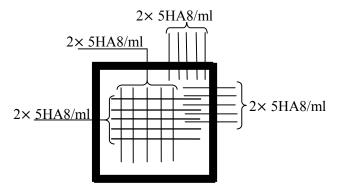


Figure III.15 schéma de ferraillage de la dalle du locale des machines

III.4. Etude des escaliers :

a. Etude des escaliers des étages courants :

Nous avons à étudier dans notre ouvrage un seul type d'escalier, qui constitue de :

- Un palier de repos d'épaisseur 12 cm.
- Deux volées d'épaisseur 12 cm.
- Des girons de 30 cm.
- Des contres marches de 17 cm.

1. Evaluation des charges :

Les escaliers se calculent à la flexion simple en considérant la dalle comme une poutre de portée horizontale uniformément chargé et en tenant compte des types d'appuis sur les quels elles se reposent.

$$G_{\rm V} = 7.91 {\rm KN}/m^2$$

$$G_{\rm P} = 4.52KN/m^2$$

$$Q = 2.5KN/m^2$$

$$P_{mur} = 2.36 \times 0.25 \times 2.86 = 1.68KN$$

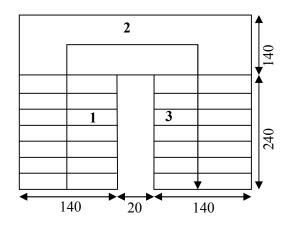
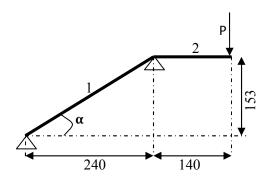



Figure III.16: vue en plan d'escalier d'étage courant.

Combinaison	$q_{vol\'ee}(KN/m)$	$q_{palier}(KN/m)$
ELU: $1.35G + 1.5Q$	14.43	9.85
ELS: G+Q	10.41	7.02

2. Les réactions :

$$R_a + R_b = 50.69 \, KN$$

$$R_a = 11.97KN, R_b = 38.72 KN.$$

$$V^{max} = 32.17 KN$$

$$M_t = 4.96 \, KN. m$$

$$M_a = 12.83 \ KN.m$$

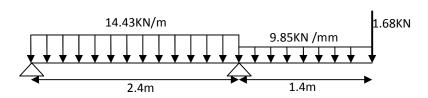


Figure III.17: Schéma statique d'escalier d'étage courant

3. Ferraillage:

Le ferraillage de fait en flexion simple pour une bande de 1m.

Les résultats du ferraillage sont récapitulés dans le tableau suivant:

Localisation	M(KN.m)	μ_{bu}	α	Z(m)	A_{cal} (cm ²)	$A_{adp}(cm^2)$	$A^{min}(cm^2)$	St
En travée	4.96	0.035	0.445	0.098	1.45	4HA8 = 2.01	1.2	25
En appuis	12.83	0.090	0.118	0.095	3.87	4HA12 = 4.52	1.2	25

Tableau III.30: Ferraillage d'escalier d'étage courant.

Les armatures de répartition :

En travée :
$$A_r^t = \frac{A}{4} = \frac{2.01}{4} = 0.5025 \ cm^2$$
 Soit $3HA8 = 1.51 \ cm^2/ml$

En appuis :
$$A_r^a = \frac{A}{4} = \frac{4.52}{4} = 1.13 \ cm^2$$
 Soit $4HA8 = 2.01 \ cm^2/ml$

4. Vérifications :

Espacement:

En travée: $St \le \min(33; 3e) \ cm \implies St = 25 \ cm < (33; 36) \ cm \implies V\text{\'erifi\'ee}.$

En appuis : $St \le \min(33; 3e) \ cm \implies St = 25 \ cm < (33; 36) \ cm \implies V \text{\'erifi\'ee}.$

• L'ELU:

➤ L'effort tranchant :

 $\bar{\tau} = \min(0.1 f_{c28}; 4MPa) = 2.5 MPa.$

$$\tau_u = \frac{V_u^{max}}{b \times d} = \frac{32.17 \times 10^{-3}}{1 \times 0.1} = 0.3217 \, MPa < \bar{\tau} = 2.5 \, MPa \implies \text{Vérifiée}.$$

Les armatures longitudinales au cisaillement :

$$A > \left(V_u + \frac{M_u}{0.9 \times d}\right) \times \frac{\gamma_s}{f_e} \Rightarrow A = \left(32.17 \times 10^{-3} - \frac{12.83 \times 10^{-3}}{0.9 \times 0.1}\right) \times \frac{1.15}{400} = -0.00031 \; cm^2$$

⇒ Condition vérifiée.

■ L'ELS:

$$V^{max} = 23.22 \ KN$$
 $M_0 = 7.49 \ KN.m$ $M_a = 9.23 \ KN.m$ $M_t = 3.59 \ KN.m$

La contrainte d'adhérence :

$$\tau_{ser} = \frac{v_{ser}}{_{0.9 \times d \times \sum U_i}} \leq \bar{\tau}_{ser} = 0.6 \times \psi^2 \times f_{t28}$$

 $\psi = 1.5$ pour les aciers HA

 $\sum U_i$: somme des périmètres des barres.

$$\sum U_i = n \times \emptyset \times \pi = (4 \times 12 + 4 \times 8) \times \pi = 251.32 \, mm$$

$$\tau_{ser} = \frac{23.22 \times 10^{-3}}{0.9 \times 0.1 \times 0.251} = 1.02 \, MPa < \bar{\tau}_{ser} = 0.6 \times 1.5^2 \times 2.1 = 2.83 \, MPa \implies \text{Vérifiée.}$$

La contrainte dans le béton :

En appuis:

$$\sigma_{bc} = \frac{M_s^a}{I} y \le \bar{\sigma}_{bc} = 0.6 f_{c28}$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$y^2 + (30 \times 4.52) y - (30 \times 4.52 \times 10) = 0$$

$$\Rightarrow$$
 y = 3.06 cm

$$I = b \times \frac{y^3}{3} + 15 \times A(d - y)^2 \implies I = 4.22 \times 10^{-5} m^4$$

$$\sigma_{bc} = 6.70 \, MPa \, < \bar{\sigma}_{bc} = 15 \, MPa \quad \Rightarrow \quad \text{Condition vérifiée.}$$

La flèche:

Si les trois conditions suivantes vérifiées donc il n'est pas nécessaire de vérifier la flèche.

1)
$$\frac{h}{l} > \frac{1}{16}$$
 $\Rightarrow \frac{12}{240} = 0.05 < 0.0625$ \Rightarrow Condition non vérifiée

$$2)\frac{h}{l} > \frac{M_t}{10 \times M_0} \implies \frac{12}{240} = 0.05 > 0.0479 \implies \text{Condition v\'erifi\'ee}$$

$$3)\frac{A}{b\times d} \le \frac{4.2}{f_e} \quad \Longrightarrow \frac{2.01}{100\times 10} = 2.01\times 10^{-3} < 0.0105 \qquad \Longrightarrow \quad \text{Condition v\'erifi\'ee}$$

La condition 1 n'est pas vérifiée alors on doit faire le calcul de la flèche.

Le tableau suivant illustre les résultats de la flèche au niveau de la travée et de la console :

Sens	$f_{gi}(mm)$	$f_{gv}(mm)$	$f_{ji}(mm)$	$f_{pi}(mm)$	$\Delta f (mm)$	$f_{adm}(mm)$	Observation
Travée	0.1477	0.2939	0.0291	0.3008	0.4179	4.8	Vérifiée
console	1.3897	2.7496	0.2605	2.3711	3.4704	5.6	Vérifiée

Tableau III.31: Vérification de la flèche d'escalier d'étage courant.

Schéma de ferraillage :

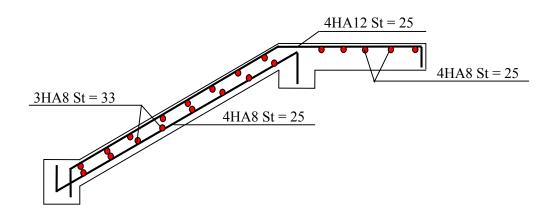


Figure III.18 : Schéma de ferraillage d'escalier d'étage courant.

b. Etude des escaliers des étages de services :

1. Evaluation des charges :

$$G_{\rm V} = 7.91 {\rm KN}/m^2$$

$$G_{\rm P} = 4.52KN/m^2$$

$$Q=2.5KN/m^2$$

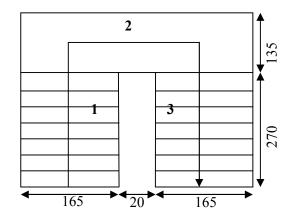


Figure III.19: vue en plan d'escalier de service.

Combinaison	$q_{vol\'ee}(KN/m)$	$q_{palier}(KN/m)$
ELU: 1.35 G + 1.5 Q	14.43	9.85
ELS: G+Q	10.41	7.02

2. Les réactions :

$$R_a + R_b = 52.26 \, KN$$

$$R_a = 28.19 \; KN, \;\; R_b = 24.07 \; KN.$$

$$V^{max} = 28.19 \, KN$$

 $M_0=27.53~KN.\,m$

 $M_t = 20.65 \, KN. m$

 $M_a = 13.76 \, KN. \, m$

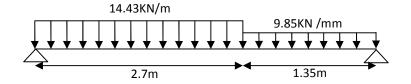


Figure III.20: Schéma statique des escaliers de services.

3. Ferraillage:

Le ferraillage de fait en flexion simple pour une bande de 1m.

Les résultats du ferraillage sont récapitulés dans le tableau suivant:

Localisation	M(KN.m)	μ_{bu}	α	Z(m)	A_{cal} (cm ²)	$A_{adp}(cm^2)$	$A^{min}(cm^2)$	St
En travée	20.65	0.145	0.197	0.092	6.44	6HA12 = 6.79	1.2	15
En appuis	13.76	0.097	0.128	0.094	4.17	4HA12 = 4.52	1.2	25

Tableau III.32: Ferraillage d'escalier de service.

Les armatures de répartition :

En travée :
$$A_r^t = \frac{A}{4} = \frac{6.79}{4} = 1.69 \text{ cm}^2$$
 Soit $4\text{HA8} = 2.01 \text{cm}^2/\text{ml}$

En appuis :
$$A_r^a = \frac{A}{4} = \frac{4.52}{4} = 1.13 \text{ cm}^2$$
 Soit $3\text{HA}8 = 1.51 \text{ cm}^2/\text{ml}$

4. Vérifications :

Espacement:

En travée:
$$St \le \min(33; 3e) \ cm \implies St = 15 \ cm < (33; 36) \ cm \implies V\text{\'erifi\'ee}.$$

En appuis :
$$St \le \min(33; 3e) \ cm \implies St = 25 \ cm < (33; 36) \ cm \implies V \text{\'erifi\'ee}.$$

• L'ELU:

L'effort tranchant :

$$\bar{\tau} = \min(0.2 f_{c28}; 5MPa) = 3.33 MPa.$$

$$\tau_u = \frac{V_u^{max}}{b \times d} = \frac{28.19 \times 10^{-3}}{1 \times 0.1} = 0.2819 \, MPa \, < \bar{\tau} = 3.33 \, MPa \implies \text{V\'erifi\'ee}.$$

Les armatures longitudinales au cisaillement :

$$A > \left(V_u + \frac{M_u}{0.9 \times d}\right) \times \frac{\gamma_s}{f_e} \Rightarrow A = \left(28.19 \times 10^{-3} - \frac{20.65 \times 10^{-3}}{0.9 \times 0.1}\right) \times \frac{1.15}{400} = -0.000578 \ cm^2$$

⇒ Vérifiée.

• L'ELS:

$$V^{max} = 24.59 \; KN$$
 $M_0 = 19.82 \; KN.m$ $M_a = 7.93 \; KN.m$ $M_t = 16.85 \; KN.m$

La contrainte d'adhérence :

$$\tau_{ser} = \frac{v_{ser}}{_{0.9 \times d \times \sum U_i}} \leq \bar{\tau}_{ser} = 0.6 \times \psi^2 \times f_{t28}$$

 $\psi = 1.5$ pour les aciers HA

 $\sum U_i$: somme des périmètres des barres.

$$\sum U_i = n \times \emptyset \times \pi = (6 \times 12 + 4 \times 12) \times \pi = 377 \text{ mm}$$

$$\tau_{ser} = \frac{24.59 \times 10^{-3}}{0.9 \times 0.1 \times 0.377} = 0.72 \, MPa < \bar{\tau}_{ser} = 0.6 \times 1.5^2 \times 2.1 = 2.83 \, MPa \Rightarrow$$
 Condition vérifiée.

La contrainte dans le béton :

$$\sigma_{bc} = \frac{M_S^a}{I} y \le \bar{\sigma}_{bc} = 0.6 f_{c28}$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

En travée:

$$y^2 + (30 \times 6.79) y - (30 \times 6.79 \times 10) = 0$$

$$\Rightarrow$$
 $y = 3.6 cm$

$$I = b \times \frac{y^3}{3} + 15 \times A(d - y)^2 \implies I = 5.72 \times 10^{-5} m^4$$

$$\sigma_{bc} = 10.61 \, MPa \, < \bar{\sigma}_{bc} = 15 \, MPa \quad \Rightarrow \quad \text{Condition vérifiée.}$$

En appuis:

$$y^2 + (30 \times 4.52) y - (30 \times 4.52 \times 10) = 0$$

$$\Rightarrow$$
 $y = 3.06 cm$

$$I = b \times \frac{y^3}{3} + 15 \times A(d - y)^2 \implies I = 4.22 \times 10^{-5} \, m^4$$

$$\sigma_{bc} = 5.76\,MPa\,<\bar{\sigma}_{bc} = 15\,MPa$$

⇒ Condition vérifiée.

La flèche:

Si les trois conditions suivantes vérifiées donc il n'est pas nécessaire de vérifier la flèche.

1)
$$\frac{h}{l} > \frac{1}{16}$$
 $\Rightarrow \frac{12}{270} = 0.044 < 0.0625$ \Rightarrow Condition non vérifiée

$$(2)\frac{h}{l} > \frac{M_t}{10 \times M_0} \implies \frac{12}{270} = 0.044 > 0.085 \implies \text{Condition vérifiée}$$

3)
$$\frac{A}{b \times d} \le \frac{4.2}{f_e}$$
 $\Rightarrow \frac{6.79}{100 \times 10} = 6.79 \times 10^{-3} < 0.0105$ \Rightarrow Condition vérifiée

La condition 1 n'est pas vérifiée alors on doit faire le calcul de la flèche.

Les résultats de la flèche sont résumés dans le tableau suivant :

Sens	$f_{gi}(mm)$	$f_{gv}(mm)$	$f_{ji}(mm)$	$f_{pi}(mm)$	$\Delta f (mm)$	$f_{adm}(mm)$	Observation
Travée	1.3964	2.5277	0.4239	2.1100	2.8174	8.1	Vérifiée

Tableau III.33: Vérification de la flèche d'escalier de service.

Schéma de ferraillage

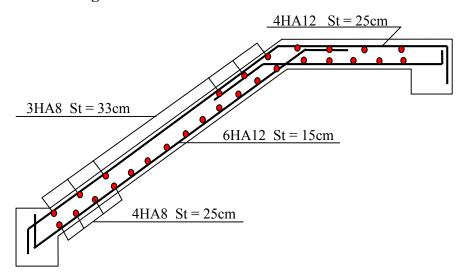


Figure III.21: Schéma de ferraillage d'escalier de service

III .5. Etude de la poutre palière :

1. Calcul à la flexion simple

a. Dimensionnement:

$$\begin{split} &\frac{L_{max}}{15} \leq h \leq \frac{L_{max}}{10} \\ &\frac{300}{15} \leq h \leq \frac{300}{10} \longrightarrow 20 \leq h \leq 30 \longrightarrow 0 \\ &\text{n opte pour } \begin{cases} h = 30 \\ b = 30 \end{cases} \end{split}$$

Les conditions de RPA99 :

$$\begin{cases} b \ge 20 \text{ cm} \\ h \ge 30 \text{ cm} \end{cases} \Rightarrow \text{Toutes les conditions sont vérifiées} \\ \frac{h}{b} \le 4 \end{cases}$$

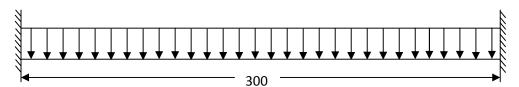


Figure III.22: schémas statique de la poutre palière.

b. Evaluation des sollicitations :

• Poids propre de la poutre :

$$g = 0.3 \times 0.3 \times 25 = 2.25$$
KN. m

• Effort tranchant :

$$T_u = 32.17KN.m, T_s = 23.21KN.m$$

$$\Rightarrow q_u = 1.35 \times g + T_u$$

$$\Rightarrow q_u = 1.35 \times 2.25 + 32.17 = 35.2KN.m$$

Pour une poutre bi-encastrée, les moments en appuis et en travées sont comme suit :

$$M_{tu} = \frac{q_u \times l^2}{24} = 13.2 KN. m ; M_{ts} = 12.92 KN. m$$

$$M_{au} = \frac{q_u \times l^2}{12} = 26.4$$
KN.m; $M_{as} = 19.095$ KN.m

$$V_{\rm u} = \frac{q_{\rm u} \times l}{2} = 52.8 \text{KN}$$

c. Ferraillage:

La poutre palière sera ferraille en flexion simple sous M et V, les résultats de calcul sont résumes dans le tableau suivant :

	M(KN.m)	μ_{bu}	α	z(m)	$A_{calcul\acute{e}}(cm^2)$	$A_{\min}(cm^2)$
Travée	13.2	0.039	0.049	0.274	1.38	1.01
Appuis	26.4	0.067	0.086	0.27	2.8	1.01

Tableau III 34: ferraillage de la poutre palière.

d. Vérification:

A-L'ELU

Condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 1.01 cm^2$$

$$A_t > A_{min} \implies vérifiée$$

$$A_a > A_{min} \implies vérifiée$$

Effort tranchant :

$$\begin{split} &\tau_{\mathrm{u}} = \frac{\mathrm{v}_{\mathrm{u}}}{\mathrm{b} \times \mathrm{d}} = \frac{52.8 \times 10^{-3}}{0.3 \times 0.28} = 0.628 \mathrm{MPa} \\ &\mathrm{F.P.N} \Longrightarrow \ \overline{\tau_{\mathrm{u}}} = \mathrm{min}[0.13 \mathrm{f}_{\mathrm{c28}}; 4 \mathrm{MPa}] = 3.25 \mathrm{MPa} \\ &\tau_{\mathrm{u}} < \overline{\tau_{\mathrm{u}}} \implies \mathrm{v\acute{e}rifi\acute{e}e} \end{split}$$

❖ Influence de l'effort tranchant au voisinage des appuis :

L'influence sur le béton :

$$V_{\rm u} \le 0.267 \times a \times b \times f_{\rm c28}$$
 $T_{\rm q: \ a=0.9 \times d = 0.9 \times 28 = 25.2 cm}$
 $V_{\rm max} = 0.267 \times 0.252 \times 0.3 \times 25 \times 10^3 = 504.63 KN$
 $\Rightarrow V_{\rm u} = 52.8 KN < 504.63 KN \implies vérifiée$

• L'influence sur les armatures inferieures:

Il faut vérifier que :

$$V_{\rm u} - \frac{M_{\rm a}}{0.9 \times {\rm d}} \le 0$$

 $\rightarrow 52.8 - \frac{26.4}{0.9 \times 0.3} = -44.97 < 0 \implies {\rm v\acute{e}rifi\acute{e}e}$

Donc les armatures inférieures ne sont pas soumises à aucun effort de traction.

Armatures transversales:

$$\begin{aligned} &\text{Soit } S_t = 15 cm \\ &A_t = \frac{b \times S_t \times (\tau_u - 0.3 \times f_{tj})}{0.8 \times f_e} = &0.0028 cm^2 \end{aligned}$$

A-L'ELS:

***** Etat limite de compression de béton :

	M _{ser} (KN. m)	Y (cm)	I (cm ⁴)	A (cm ²)	σ _{bc} (MPa)	σ _{adm} (MPa)	Observation
Travée	12.92	5.56	12142.35	1.38	5.91	15	Vérifiée
Appuis	25.81	7.56	21868.14	2.8	8.92	15	Vérifiée

Tableau III35 : Vérification de la contrainte de béton.

***** Etat limite de déformation :

D'après le BAEL et CBA93, la vérification de la flèche est inutile si :

$$\begin{cases} \frac{h_t}{l} > \frac{1}{16} \\ \frac{h_t}{l} > \frac{M_t}{10 \times M_0} \\ \frac{A_S}{b \times d} \le \frac{2.4}{f_e} \end{cases}$$

Toutes les conditions sont vérifiée →la vérification à la flèche est inutile.

2. Calcul à la torsion :

Dans ce cas on calcule les moments de torsion engendrés par les charges ramenés par le palier et la volée

 \Rightarrow $M_{tor} = 12.83 KN. m$ (moment de charge ramenée par le palier et la volée) $V_u = 32.16 KN$

L'expérience montre que pour une section pleine, le noyau de la section ne joue aucun rôle dans l'état ultime de la torsion donc : on considère une section creuse d'épaisseur fictive dont l'épaisseur de la paroi est : $e=\frac{d}{6}$, et en doit vérifier que :

$$\tau_u = \sqrt{(\tau_{cr})^2 + (\tau_v)^2} \le min[0.13 \times f_{C28}; 4MPa] = 3.25MPa \text{ (Art 5.4.3 BAEL page 71)}$$

$$Tq: e = \frac{a}{6} = \frac{b}{6} = \frac{30}{6} = 5cm$$

Ω : L'aire du contour à mi-portée de la paroi D

$$\Rightarrow \Omega = (h - \frac{b}{6}) \times (b - \frac{b}{6}) = 625cm^2$$

$$\tau_{cr} = \frac{M_{tor}}{2 \times \Omega \times b_0} = \frac{12.83 \times 10^{-3}}{2 \times 625 \times 10^{-4} \times 5 \times 10^{-2}} = 2.052 MPa \text{ (Art 5.4.3 BAEL page 69)}$$

$$\tau_v = \frac{v_U}{b \times a} = \frac{32.16 \times 10^{-3}}{0.3 \times 0.28} = 0.38 \, MPa$$

$$\tau_u = \sqrt{2.052^2 + 0.38^2} = 2.08MPa < 3.25MPa \implies \text{Condition vérifiée}$$

a. Ferraillage:

Armatures longitudinales:

La section des armatures longitudinale est transversales set donnée par :

$$\frac{A_t \times f_e}{S_t \times \gamma_s} = \frac{A_t \times f_e}{\mu \times \gamma_s} = \frac{M_t}{2 \times \Omega} \quad (Art A.5.4.4 BAEL)$$

$$A_l = \frac{M_t \times \mu \times \gamma_s}{2 \times f_e \times \Omega}$$
; μ : périmètre de Ω

$$\mu = 2 \times [(b - e) + (h - e)] = 100cm$$

$$A_l = \frac{12.83 \times 10^{-3} \times 1 \times 1.15}{2 \times 625 \times 10^{-4} \times 400} = 2.95 cm^2$$

Armatures transversals:

$$A_t = \frac{M_t \times S_t \times \gamma_s}{2 \times f_e \times \Omega} = \frac{12.83 \times 10^{-3} \times 0.15 \times 1.15}{2 \times 625 \times 10^{-4} \times 400} = 0.43 cm^2$$

Les armatures longitudinales totales :

En travée:

$$A_t = A_{cal} + \frac{A_{tor}}{2} \Longrightarrow A_t = 1.38 + \frac{2.95}{2} = 2.855cm^2$$

On opte pour 3HA12=3.39cm²

En appuis:

$$A_a = A_{cal} + \frac{A_{tor}}{2} \Longrightarrow 2.8 + \frac{2.95}{2} = 4.275 cm^2$$

On opte pour 3HA14=4.62cm²

Les armatures transversales:

$$A^t = 0.0028 + 0.43 = 0.4328cm^2$$

$$A_{min} = 0.003 \times b \times S_t = 0.003 \times 0.3 \times 0.15 = 1.35 cm^2$$

On opte pour $A^t = 4HA8 = 2.01cm^2$ —un cadre + un étrier

b. Schéma de ferraillage :

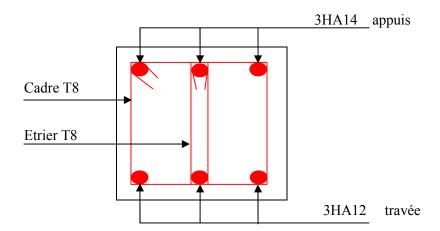


Figure III.23 : Schéma de ferraillage de la poutre palière.

IV.1. Introduction:

L'étude sismique d'une structure vise à assurer une protection acceptable des constructions vis à vis des effets des actions sismiques par une conception et un dimensionnement appropriés toute en satisfaisant les trois aspect essentiels de la conception qui sont : la résistance, l'aspect architectural et l'économie.

Vu l'activité sismique du Nord d'Algérie, les constructions doivent êtres conçues de manière adéquate pour résister aux secousses sismiques, c'est pour cela qu'on fait souvent appel à des modélisations par logiciels à base d'élément finis qui permettent de simplifier suffisamment le problème pour pouvoir l'analyser tout en respectant les recommandations du règlement parasismiques Algérien (RPA99/version 2003).

Il est donc impératif de faire une analyse rigoureuse afin de s'assurer qu'en cas d'un séisme la structure ne subira pas de grandes déformations et que les déplacements resteront dans le domaine limite.

Dans le cadre de notre travail nous avons à étudier et analyser un R+8 contreventé par voileportique avec justification de l'interaction en utilisant le logiciel de calcul de structure qui est le SAP2000 V14.

IV.2. Méthode de calcul:

Selon les règles parasismiques algériennes (RPA99/version 2003), le calcul des forces sismiques peut être mené suivant trois méthodes :

- 1. La méthode statique équivalente.
- 2. La méthode dynamique modale spectrale.
- 3. La méthode de l'analyse dynamique par accélérogramme.

IV.2.1. Méthode statique équivalente :

L'analyse statique équivalente du contreventement des bâtiments peut être effectuée, soit en modèle discontinu, soit en modèle continu. Le premier est plus conforme à la réalité mais nécessite l'emploi d'un ordinateur; le deuxième est mois conforme à la réalité mais permet la résolution approximative du problème avec des moyens de calcul plus modestes.

Le calcul par analyse statique équivalente est utilisé pour les structures de bâtiments considérés comme réguliers.

Les codes parasismiques modernes autorisent de conduire l'analyse de ces ouvrages sous les actions sismiques par des méthodes simplifiées ne prenant en compte que le mode fondamental de

vibration dans deux directions perpendiculaires successives. La forme de ces modes fondamentaux peut être soit spécifiée forfaitairement dans les codes, soit calculée de manière approchée.

L'analyse statique équivalente permet d'avoir des résultats conservatifs (pour les efforts, les contraintes ou les déplacements) par le fait que la masse totale en vibration est intégrée dans le mode fondamental.

On appelle mode fondamental de la structure (ou premier mode) le mode correspondant à la fréquence la plus basse.

Calcul de la force sismique :

D'après le RPA 99 article 4.2.3 page 25, la force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans les deux directions orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W .$$

Avec:

A : Coefficient d'accélération de zone, donné par le tableau 4.1 page 26 du RPA.

Pour notre structure on a :

- Groupe d'usage : groupe 2 - Zone sismique : zone IIa \Rightarrow A= 0.15

R: Coefficient de comportement global de la structure, il est en fonction du système de contreventement et sa valeur est donnée par le tableau 4.3 page 28 du RPA, dans notre cas on a un contreventement mixte avec interaction \Rightarrow R= 5

Q: Facteur de qualité, il est en fonction de :

- La redondance et la géométrie des éléments qui constitue la structure.
- L régularité en plan et en élévation.
- La qualité du contrôle et de la construction.

La valeur de Q est déterminée par la formule : $Q = 1 + \sum_{1}^{6} P_q$

 P_q : est la pénalité à retenir selon que le critère de qualité q est satisfait ou non. Sa valeur est donnée par le tableau 4-4 du RPA99.

Critère q	Observée	P_q/XX	Observée	P_q/yy
1- Conditions minimales sur les files de contreventement.	Non	0	Non	0
2- Redondance en plan.	Non	0	Non	0
3- Régularité en plan.	Non	0.05	Non	0.05
4- Régularité en élévation.	Non	0.05	Non	0.05
5- Contrôle de la qualité des matériaux.	Oui	0	Oui	0
6- Contrôle de la qualité de l'exécution.	Oui	0	Oui	0

Tableau IV.1: Valeur de q.

$$\Rightarrow$$
 $0 = 1.1$

W: Poids total de la structure:

$$W = \sum_{i=1}^{n} W_i$$
 Avec: $W_i = W_{Gi} + \beta \times W_{Qi}$

 W_{Gi} : Poids dû aux charges permanentes totales.

 W_{Oi} : Charge d'exploitation.

β: Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, il est donné par le tableau 4-5 du RPA99.

- $\beta = 0.2 \implies$ Usage d'habitation.
- $\beta = 0.3 \implies$ Usage commercial.

$$\Rightarrow W = 26820.673 \, KN$$

D: Facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

$$\begin{cases} 2.5\eta & \Rightarrow & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{2/3} & \Rightarrow & T_2 \le T \le 3s \\ 2.5\eta (T_2/3)^{2/3} (3/T)^{5/3} & \Rightarrow & T > 3s \end{cases}$$

 T_1 et T_2 : périodes caractéristiques, associées à la catégorie du site et données par le tableau 4.7; d'après le rapport du sol, on peut classer notre sol comme sol meuble (S3) \Longrightarrow

$$\begin{cases} T_1 = 0.15 s \\ T_2 = 0.5 s \end{cases}$$

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7$$

Où ξ est le pourcentage d'amortissement critique fonction du matériau constructif. du type de la structure et de l'importance des remplissages RPA99/2003.

On a un contreventement mixte : $\xi = \frac{7+10}{2} = 8.5\% \implies \eta = \sqrt{\frac{7}{2+8.5}} = \mathbf{0.816}$

T : Période fondamentale de la structure.

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de la formule empirique suivante :

$$T = min \begin{cases} C_T (h_N)^{\frac{3}{4}} \dots (1) \\ 0.09 \frac{h_N}{\sqrt{D}} \dots (2) \end{cases}$$

Avec : h_N est la hauteur mesuré en mètre à partir de la base de la structure jusqu'au dernier niveau.

 $h_N = 30.56 m$.

 C_T : Coefficient en fonction de système de contreventement et du type de remplissage, il est donné par l'article (4.2.4) RPA99/2003.

 $C_T = 0.05$ (Contreventement assuré partiellement ou totalement par des voiles en béton armé).

D : Dimension du bâtiment mesuré à la base dans la direction de calcul considérée.

 $D_X = 20.50 m$

 $D_{\rm v} = 14.50 \ m$

Calcul de la période fondamentale de structure :

$$(1) \Rightarrow T = 0.65 s$$

$$(2) \implies \begin{cases} T_X = 0.608 s \\ T_y = 0.722 s \end{cases}$$

Les périodes à prendre en considération sont :

$$T_X = 0.608 s$$

$$T_{v} = 0.65 s$$

Donc les périodes statiques majorées de 30% sont :

$$T_X = 0.79$$
 Os

$$T_{v} = 0.84 \text{ 5s}$$

> Calcul du facteur d'amplification dynamique " D " :

$$T = 0.5 \, s < T < 3 \, s \implies D = 2.5 \eta \left(\frac{T_2}{T}\right)^{2/3}$$

$$D_X = 1.79 3$$

$$D_{\nu} = 1.713$$

On a:

Facteur	A	R	Q	W(KN)	D_X	D_y
Valeur	0.15	5	1.1	26820.673	1.793	1.713

$$V_X = \frac{0.15 \times 1.793 \times 1.1}{5} \times 26820.673 = 1586.95 \, KN$$

$$V_y = \frac{0.15 \times 1.713 \times 1.1}{5} \times 26820.673 = 1516.14 \, KN$$

IV.2.2. Méthode d'analyse modale spectrale :

Le principe est de chercher le maximum des effets engendrés dans la structure par les forces sismiques représentés par un spectre de réponse de calcul et cela pour chaque mode de vibration; ces effets sont ensuite combinés pour obtenir la réponse de la structure.

a. Calcul de la force sismique totale :

Après modélisation et chargement de la structure, la force sismique est tirée du logiciel SAP2000 V14.2.2.

1. Le spectre de réponse de calcul :

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases}
1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \times \eta \times (1.25 A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\
2.5 \times \eta \times (1.25 A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\
2.5 \times \eta \times (1.25 A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s}
\end{cases}$$

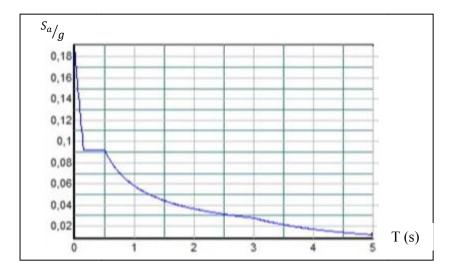


Figure IV.1 : Courbe du spectre de réponse

2. Exigences du RPA99 pour les systèmes mixtes :

- D'après l'article 3.4.4.a, les voiles de contreventements doivent reprendre au plus 20% des sollicitations dues aux charges verticales.
 - Les voiles et les portiques reprennent simultanément les charges horizontales proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.
 - Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins 25% de l'effort tranchant de l'étage.
- D'après l'article 4.2.4, les valeurs de T (périodes) calculées à partir du model SAP2000 ne doivent pas dépasser celles estimées à partir des formules empiriques données par le RPA de plus de 30%.

 D'après l'article 4.3.4, les modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :

- la somme des masses modales effectives pour les modes retenus soit égale à 90% au moins de la masse totale de la structure;
- ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum des modes à retenir est de trois (03) dans chaque direction considérée.

IV.2.3. Interprétation des résultats de l'analyse dynamique donnée par SAP2000 V14.2.2 :

Après plusieurs essais de disposition des voiles, on a opté pour la disposition représentée cidessous. Cette disposition nous donne deux translations suivant X et Y et une torsion de la structure suivant l'axe Z.

1. Disposition des voiles :

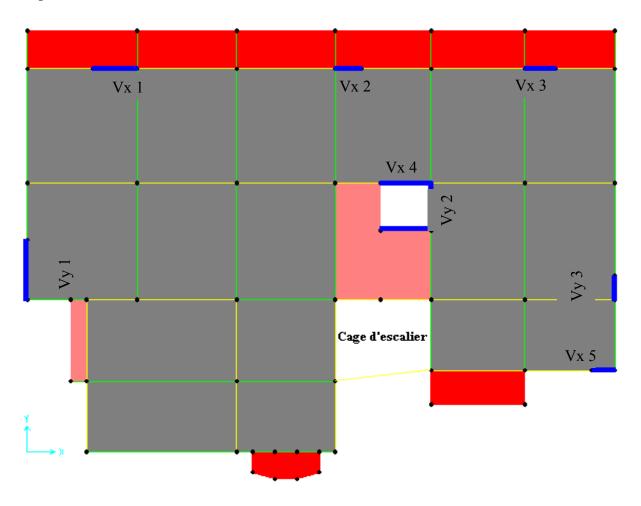
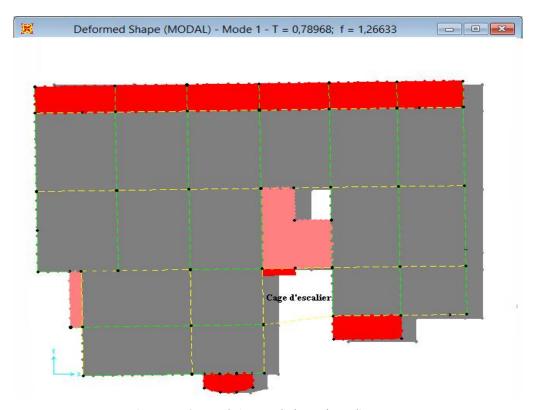
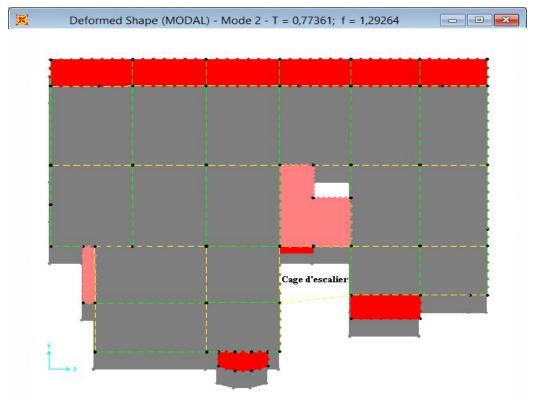




Figure IV.2: Plan de disposition des voiles.

2. Comportement de la structure :

Figure IV.3 : Mode1, Translation suivant l'axe x-x.

Figure IV.4 : Mode2, Translation suivant l'axe y-y.

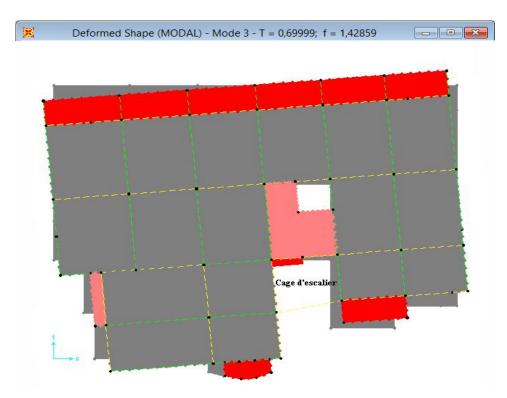


Figure IV.5: mode 3, Torsion suivant l'axe z-z

3. Période de vibration et taux de participation massique :

Mode	Période	Ux	Uy	Uz	Sum Ux	Sum Uy	Sum Uz
1	0.789681	0.77542	0.00335	0	0.77542	0.00335	0
2	0.773608	0.00333	0.77987	0	0.77875	0.78322	0
3	0,699991	0.01761	0.0002	0	0.79636	0.78343	0
4	0,245701	0.10757	0.00157	0	0.90393	0.78499	0
5	0,236605	0.00173	0.11675	0	0.90566	0.90175	0
6	0,215096	0	0.00197	0	0.90566	0.90371	0
7	0,128532	0.00173	0.00061	0	0.9434	0.90432	0
8	0.121458	0.00043	0.03794	0	0.94383	0.94226	0

Tableau IV.2 : Modes et périodes de vibration et taux de participation des masses.

D'après les résultats obtenus, on constate que:

- Les deux premiers modes de vibrations sont des translations avec un facteur de participation massique de 77.54% pour le premier mode (parallèle à X) et de 77.98% pour le deuxième mode (parallèle à Y).
- 90% de la somme des masses modales effectives sont atteinte au 5^{eme} mode.
- La période est vérifiée.

IV.3. Justification vis-à-vis de l'interaction voiles-portiques :

IV.3.1. Sous charges verticales:

Le tableau suivant illustre les résultats de l'interaction sous charges verticales obtenus par le logiciel SAP2000 V14.2.2 :

Niveau	Charge rep	orise (KN)	Pourcentag	e repris (%)
TVIVedu	Poteau	Voile	Poteau	Voile
RDC	28040.544	3462.935	89.00777	10.99223
1 ^{er} étage	23768.182	4109.115	85.25999	14.740005
2 ^{eme} étage	20292.643	3770.031	84.33245	15.667548
3 ^{eme} étage	17276.192	3295.694	83.97962	16.020378
4 ^{eme} étage	14230.239	2859.488	83.26780	16.732204
5 ^{eme} étage	11312.693	2356.501	82.7605	17.239502
6 ^{eme} étage	8390.744	1857.179	81.87751	18.122492
7 ^{eme} étage	5585.033	1302.116	81.09354	18.906459
8 ^{eme} étage	2844.79	702.035	80.20666	19.793336

Tableau IV.3: Résultats de l'interaction sous charges verticales.

IV.3.2. Sous charges horizontales:

Le tableau suivant illustre les résultats de l'interaction sous charges horizontales obtenus par le logiciel SAP2000 V14.2.2 :

		Sen	S X-X			Sen	s y-y	
Niveaux	Portiques	Voiles	Portiques	Voiles	Portiques	Voiles	Portiques	Voiles
	(KN)	(KN)	(%)	(%)	(KN)	(KN)	(%)	(%)
RDC	880.301	450.156	66.16531	33.83469	819.462	493.708	62.40334	37.59666
1 ^{er} étage	816.689	487.231	6263337	37.36663	709.081	492.324	59.02098	40.97902
2 ^{eme} étage	910.608	397.332	69.62154	30.37846	846.182	391.604	68.36254	31.63746
3 ^{eme} étage	926.469	275.894	77.05402	22.94598	839.836	302.509	73.5186	26.4814
4 ^{eme} étage	820.847	252.676	76.46292	23.53708	733.057	291.768	71.52997	28.47003
5 ^{eme} étage	736.47	183.362	80.06571	19.93429	667.504	219.097	75.28798	24.71202
6 ^{eme} étage	565.024	176.752	76.17178	23.82822	541.374	179.357	75.11457	24.88543
7 ^{eme} étage	450.108	97.287	82.22728	17.77272	418.84	117.086	78.15258	21.84742
8 ^{eme} étage	359.358	65.931	84.49737	15.50263	369.415	72.77	83.54309	16.45691

Tableau IV.4 : Résultats de l'interaction sous charges horizontales.

On n'a pu vérifier simultanément toutes les exigences du RPA avec les multiples dispositions qu'on a étudiées. Alors on a décidé d'adopter cette disposition qui nous a donnée les meilleurs résultats.

IV.3.3. Vérification de l'effort normal réduit :

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme. Le RPA99 (7.4.3.1) exige de vérifier l'effort normal de compression de calcul qui est limité par la condition suivante :

Niveau	$N_d(KN)$	B_c (cm ²)	N_{rd}	Observation
RDC	1773.042	55×55	0.234	Vérifiée
2 ^{eme} étage	1248.553	50×55	0.181	Vérifiée
4 ^{eme} étage	698.801	50×50	0.111	Vérifiée
6 ^{eme} étage	518.284	45×50	0.092	Vérifiée

 $\frac{N_d}{B_c \times f_{c28}} \le 0.3$

Tableau IV.5: Vérification de l'effort normal réduit.

IV.3.4. Vérification de la résultante des forces sismiques :

Selon l'article 4.3.6 de l'RPA99, la résultante des forces sismiques à la base Vdyn obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente Vst.

Sens	$V_{dyn}(KN)$	$V_{st}(KN)$	V_{dyn}/V_{st} (%)	Observation
х-х	1459.606	1586.95	91.97	Vérifiée
у-у	1464.113	1516.14	96.56	Vérifiée

Tableau IV.6 : Vérification de la résultante des forces sismiques.

IV.3.5. Justification vis-à-vis des déformations :

Selon le RPA99 (Art 5.10), les déplacements relatifs latéraux d'un étage par apport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage. Le déplacement relatif au niveau "k" par rapport au niveau "k-1" est égale à :

$$\Delta_K = \delta_K - \delta_{K-1}$$

Avec:

$$\delta_K = R \times \delta_{eK}$$

 δ_K : déplacement horizontal à chaque niveau "K" de la structure donné par le RPA (Art 4.43)

 δ_{eK} : déplacement dû aux forces sismiques Fi (y compris l'effet de torsion)

R : coefficient de comportement (R=5).

Les résultats sont regroupés dans le tableau suivant :

				Sens x-	X		Sens y-y				
Niveau	h_K	$\delta_{eK} \ (ext{m})$	δ_K (m)	δ_{K-1} (m)	Δ_K (m)	Δ_K/h_K (%)	δ_{eK} (m)	δ_K (m)	δ_{K-1} (m)	Δ_K (m)	$\Delta_K/h_K \ (\%)$
1	4.08	0.0016	0.008	0	0.008	0. 0019	0.0013	0.0065	0	0.0065	0.0015
2	3.06	0.0036	0.018	0.008	0.01	0.0032	0.0028	0.014	0.0065	0.0075	0.0024
3	3.06	0.0057	0.0285	0.018	0.0105	0.0034	0.0047	0.0235	0.014	0.0095	0.0031
4	3.06	0.0077	0.0385	0.0285	0.01	0.0032	0.0066	0.033	0.0235	0.0095	0.0031
5	3.06	0.0095	0.0475	0.0385	0.009	0.0029	0.0084	0.042	0.033	0.009	0.0029
6	3.06	0.0112	0.056	0.0475	0.0085	0.0027	0.0101	0.0505	0.042	0.0085	0.0027
7	3.06	0.0126	0.063	0.056	0.007	0.0022	0.0115	0.0575	0.0505	0.007	0.0022
8	3.06	0.0137	0.0685	0.063	0.0055	0.0017	0.0127	0.0635	0.0575	0.006	0.0019
9	3.06	0.0145	0.0725	0.0685	0.004	0.0013	0.0136	0.068	0.0635	0.0045	0.0014

Tableau IV.7: Vérification des déplacements.

On voit bien à travers ce tableau que les déplacements relatifs des niveaux sont inférieurs au centième de la hauteur d'étage.

IV.3.6. Justification vis-à-vis de l'effet $P-\Delta$:

Les effets du 2ième ordre (ou effet $P-\Delta$) sont les effets dus aux charges verticales après déplacement. Ils peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_K \times \Delta_K}{V_K \times h_K} \le 0.10$$

 P_K : Poids total de la structure et des charges d'exploitation associées au dessus du niveau "K".

$$P_K = \sum_{i=K}^n (W_{gi} + \beta W_{qi})$$

 V_K : Effort tranchant d'étage au niveau "K".

Δ_K: Déplacement relatif du niveau "K" par rapport au niveau "K-1".

 h_K : Hauteur de l'étage "K".

Si $0.1 \le \theta_K \le 0.2$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculé au moyen d'une analyse de 1^{er} ordre par le facteur $1/(1-\theta_K)$.

Si $\theta_K > 0.2$, la structure est potentiellement instable et doit être redimensionnée.

Les résultats sont regroupés dans le tableau suivant :

Niveau	h_K	P_K		Sens x-x		Sens y-y			
TVIVCUU			Δ_K	V_K	θ_K	Δ_K	V_K	θ_K	
1	4.08	23773.847	0.008	1330.457	0.0350	0.0065	1313.17	0.0288	
2	3.06	20839.618	0.01	1303.92	0.0522	0.0075	1201.405	0.0425	
3	3.06	17847.208	0.0105	1307.94	0.0468	0.0095	1237.786	0.0447	
4	3.06	14862.824	0.01	1202.363	0.0403	0.0095	1142.345	0.0403	
5	3.06	11939.481	0.009	1073.523	0.0327	0.009	1024.825	0.0342	
6	3.06	9015.43	0.0085	919.832	0.0272	0.0085	886.601	0.0282	
7	3.06	6151.497	0.007	741.776	0.0189	0.007	720.731	0.0195	
8	3.06	3298.801	0.0055	547.395	0.0108	0.006	535.926	0.0120	
9	3.06	2278.336	0.004	425.289	0.0070	0.0045	442.185	0.0075	

Tableau IV.8: Vérification de l'effet P-Δ.

D'après les résultats obtenus dans le tableau IV.8, les effets P-Δ peuvent être négligés.

IV.4. Conclusion:

La satisfaction de toutes les exigences de l'étude dynamique n'est pas une chose facile pour tous type de structure, car des contrainte architecturales peuvent entravée certains étapes.

Pour notre structure on a pu vérifier toutes les exigences de l'étude dynamique, selon le RPA99/2003 à savoir :

La vérification de la période, le comportement de la structure, l'interaction voilesportiques, l'effort normal réduit. Les éléments structuraux, poteaux, poutres et voiles assurent la stabilité à la fois vis à vis des charges horizontales et verticales. Les efforts les plus défavorables pour chaque élément ont été triés depuis le logiciel SAP2000. Le ferraillage se fera avec les combinaisons du RPA 99/2003, qui donne les sollicitations les plus défavorables.

V.1. Etude des poteaux :

L es poteaux sont des éléments verticaux soumis à des efforts normaux et des moments fléchissant en tête et à la base dans les deux sens, leur ferraillage se fait à la flexion composée avec une fissuration peu nuisible, les armatures sont déterminées suivant les couples de sollicitations suivantes (contreventement mixte) :

1.
$$1.35G + 1.5Q$$

2. $G + Q$
3. $G + Q + E$
4. $G + Q - E$
5. $0.8G + E$
6. $0.8G - E$

Les sections d'armatures sont déterminées selon les sollicitations suivantes :

 $N_{max} \implies M_{correspondant}$

 $N_{min} \implies M_{correspondant}$

 $M_{max} \implies N_{correspondant}$

V.1.1. Recommandations du RPA 99/2003 :

a. Les armatures longitudinales :

Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.

- $-A_{min} = 0.8 \%$ de la section de béton (en zone IIa).
- $-A_{max} = 4 \%$ de la section de béton (en zone courante).
- $-A_{max} = 6 \%$ de la section de béton (en zone de recouvrement).
- $-\phi_{min} = 12 \ mm$ (diamètre minimal utilisé pour les barres longitudinales).
- La longueur minimale de recouvrement (L_{min}) est de 40 ϕ en zone IIa.
- La distance ou espacement (S_t) entre deux barres verticales dans une face de poteau ne doit pas dépasser 25 cm (zone IIa).

Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (zone critique).

La zone nodale est définie par l' et h'

$$\begin{cases} l' = 2h \\ h' = \max\left(\frac{h_e}{6}; b_1; h_1; 60cm\right). \end{cases}$$

Figure V.1: La zone nodale.

Le tableau suivant illustre les valeurs numériques des armatures longitudinales relatives aux prescriptions du RPA 99/2003 :

Niveau	Section poteau (cm²)	$A_{min}(cm^2)$	$A_{max}(cm^2)$ zone courante	$A_{max}(cm^2)$
RDC et R+1	55 × 55	24.2	121	181.5
R+2 et R+3	50 × 55	22	110	165
R+4 et R+5	50 × 50	20	100	150
R+6 - R+7 - R+8	45 × 50	18	90	135

Tableau V.1: Armatures longitudinales minimales et maximales dans les poteaux.

b. Les armatures transversales :

Les armatures transversales des poteaux sont calculées à l'aide de la formule :

 $-V_u$: L'effort tranchant de calcul.

 $-h_1$: Hauteur totale de la section brute.

- f_e : Contrainte limite élastique de l'acier d'armatures transversales.

 $-\rho_a$: Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant; il est pris égale à :

$$\rho_a = \begin{cases} 2.5 & si \quad \lambda_g \ge 5\\ 3.75 & si \quad \lambda_g < 5 \end{cases}$$

 λ_q : l'élancement géométrique

 $\lambda_g = l_f/a$ ou $\lambda_g = l_f/b$ avec : (a et b sont les dimensions de la droite du poteau dans la direction de déformation considérée), et l_f longueur de flambement du poteau.

t : est l'espacement des armatures transversales dont la valeur est déterminée dans la formule (1); Par ailleurs la valeur maximum de cet espacement est fixée comme suit :

Dans la zone nodale : $t \le \min(10\emptyset_l^{min}; 15cm)$ en zone IIa.

Dans la zone courante : $t \le 15\emptyset_l^{min}$ en zone IIa.

 \emptyset_l^{min} est le diamètre des armatures longitudinales du poteau.

La quantité d'armatures transversales monomales A_t ; t; b_1 en (%) pourcentage est de :

$$\begin{cases} Si & \lambda_g \geq 5 \implies 0.3\% \\ Si & \lambda_g < 3 \implies 0.8\% \\ Si & 3 < \lambda_g < 5 \implies \text{Interpoler entre les valeurs précédentes}. \end{cases}$$

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite au minimum de 10ϕ .

V.1.2. Sollicitations de calcul:

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du logiciel SAP2000 avec majoration de 10%, les résultats sont résumés dans les tableaux ci-après :

Niveaux	N ^{max} -	→ M ^{corr}	M ^{max} -	$\rightarrow N^{corr}$	$N^{min} o M^{corr}$		
Tuvodax	N (KN)	M(KN)	M(KN)	N (KN)	N (KN)	M(KN)	
RDC	2175.135	118.875	128.875	- 248.624	-342.003	88.49	
2 ^{eme} étage	1360.349	43.876	102.3794	672.48	16.783	8.942	
4 ^{eme} étage	935.359	1.76	83.3418	424.535	78.495	20.184	
6 ^{eme} étage	523.511	2.596	63.97	219.589	6.382	3.798	

Tableau V.2 : Sollicitations dans les poteaux.

V.1.3. Ferraillage des poteaux :

a. Les armatures longitudinales :

Le tableau suivant résume le calcul des armatures des poteaux pour tous les niveaux à l'aide de l'application de ferraillage SOCOTEC :

Niveaux	Section	M(KN.m)	N (KN)	A_{inf}	A face	A section	A_{RPA}	A_{adap}	barres
RDC	55×55	128.8757	248.624	10.09	12.57	37.7	24.2	37.70	12T20
2 ^{eme} étage	50×55	8.942	16.783	0.29	4.52	13.57	22	24.89	4T20+8T14
4 ^{eme} étage	50×50	20.184	78.495	0.06	4.52	13.57	20	20.36	4T16+8T14
6 ^{eme} étage	45×50	63.97	219.589	1.35	4.52	13.57	18	20.36	4T16+8T14

Tableau V.3: Ferraillage des poteaux.

b. Armatures transversales:

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents poteaux des différents niveaux.

Caption	ϕ_l^{min}	l_f	1	V_d	l_r	t zone	t zone	A_t	A_t^{min}	₄opt	n^{bre} de
Section	cm	cm	λ_g	KN	cm	courante	nodale	cm ²	cm ²	A_t^{opt}	barres
55×55	1.4	2.85	5.19	138.71	56	15	10	0.23	2.47	4.71	6T10
50×55	1.4	2.14	3.89	105.97	56	15	10	2.71	4.53	4.71	6T10
50×50	1.4	2.14	4.28	89.49	56	15	10	2.51	4.12	4.71	6T10
45×50	1.4	2.14	4.28	64.71	56	15	10	1.81	4.12	4.71	6T10

Tableau V.4: Armatures transversales des poteaux.

c. Vérifications :

1. Vérification au flambement :

Selon le BAEL99 (Art 4.4.1), les éléments soumis à la flexion composée doivent être justifiés vis-à-vis de l'état limite ultime de stabilité de forme.

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

On doit vérifier que :

$$N_d \le N_u = \alpha \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_h} + A_s \times \frac{f_e}{\gamma_s} \right]$$

As : est la section d'acier comprimée prise en compte dans le calcul ;

Br: est la section réduite du poteau obtenue en déduisant de sa section réelle un centième d'épaisseur sur toute sa périphérie ;

$$\gamma_b = 1.5 \qquad \gamma_s = 1.15$$

 α : est un coefficient fonction de l'élancement mécanique λ qui prend les valeurs:

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \qquad \text{Pour } \lambda \le 50$$

$$\alpha = 0.60 \left(\frac{50}{\lambda}\right)^2 \qquad \text{Pour } 50 < \lambda \le 70$$

Si plus de la moitié des charges sont appliquées avant 90 jours, alors on remplace α par $\alpha/1.10$.

L'élancement mécanique est donné par :

$$\begin{cases} \lambda = 3.46 \times l_f/b & \text{Pour les sections rectangulaires,} \\ \lambda = 4 \times l_f/\phi & \text{Pour les sections circulaires.} \end{cases}$$

 $l_f = 0.7 l_0$ Longueur de flambement.

La vérification se fait pour le poteau le plus sollicité chaque niveau.

$$N_d = 2175.135 \ KN$$

$$l_f = 286 \ cm \rightarrow \lambda = 17.99 < 50 \implies \alpha = 0.807$$

$$B_r = (0.55 - 0.02) \times (0.55 - 0.02) = 0.2809 \ m^2$$

$$N_u = 0.807 \times \left[\frac{0.2809 \times 25}{1.35} + 37.7 \times 10^{-4} \times \frac{400}{1.15} \right] = 5.25 \ MN$$

$$N_d = 2.175 \ MN < 5.25 \ MN \implies \text{Pas de risque de flambement.}$$

Le tableau V.5 montre les résultats de la vérification au flambement :

Niveau	Section	l_0 (cm)	l_f (cm)	λ	α	A_s (cm ²)	B_r (m ²)	N _u (MN)	N _d (MN)	Obs.
RDC	55×55	408	286	17.99	0.807	37.70	0.2809	5.25	2.175	Vérifiée
2 ^{eme} étage	50×55	306	214	13.49	0.825	24.89	0.2544	4.6	1.36	Vérifiée
4 ^{eme} étage	50×50	306	214	14.84	0.820	20.36	0.2304	4.08	0.935	Vérifiée
6 ^{eme} étage	45×50	306	214	16.49	0.814	20.36	0.2064	3.68	0.523	Vérifiée

Tableau V.5: Vérification du flambement

2. Vérification de l'effort normal réduit

Selon le RPA99/version2003(article.7.4.3.1) il faut vérifier :

$$v = \frac{N_{rd}}{B \times f_{c28}} \le 0.3$$
 Avec: $N_{rd} = 1.35G + 1.5Q$

Le tableau V.6 résume les vérifications de l'effort normal réduit :

Niveau	$N_{rd}(KN)$	$B(m^2)$	υ	Observation
RDC	2175.135	0.3025	0.287	Vérifiée
R+2 - R+3	1360.349	0.2750	0.197	Vérifiée
R+4 - R+5	935.359	0.2500	0.149	Vérifiée
R+6 - R+7 -R+8	523.511	0.225	0.093	Vérifiée

Tableau V.6: Vérification de l'effort normal réduit.

3. Vérification des contraintes.

Comme la fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression dans le béton seulement, cette vérification sera faite pour le poteau le plus sollicité à chaque niveau là où il y a réduction de section.

On doit vérifier que :

$$\sigma_{bc1,2} \leq \overline{\sigma}_{bc}$$
 Tel que :
$$\sigma_{bc1} = \frac{N_{ser}}{S} + \frac{M_{serG}}{I_{yy'}}V$$
 Béton fibre supérieure
$$\sigma_{bc2} = \frac{N_{ser}}{S} - \frac{M_{serG}}{I_{yy'}}V'$$
 Béton fibre inférieure

$$S = b \times h + 15(A + A') \rightarrow \text{Section homogène.}$$

$$M_{serG} = M_{ser} - N_{ser}(\frac{h}{2} - V)$$

$$V = \frac{b \times h^{2}}{2} + 15(A' \times d' + A \times d)$$
 et $V' = h - V$

$$I_{yy\prime} = \frac{b}{3} (V^3 + V^{\prime 3}) + 15 A^{\prime} (V - d^{\prime})^2 + 15 A (d - V)^2$$

Tous les résultats de calcul sont résumés dans le tableau suivant :

Niveaux	RDC	2 ^{eme} étage	4 ^{eme} étage	6 ^{eme} étage
Section cm ²	55×55	50×55	50×50	45×50
d (m)	0.52	0.52	0.47	0.47
$A(m^2)$	37.70×10 ⁻⁴	24.89×10 ⁻⁴	20.36×10 ⁻⁴	20.36×10 ⁻⁴
V (m)	0.2896	0.3043	0.2739	0.2763
V'(m)	0.2603	0.2457	0.2260	0.2237
$I_{yy'}(m^4)$	0.0087	0.0089	0.0065	0.00598
$S(m^2)$	0.3217	0.3123	0.28054	0.25554
$N_{ser}(KN)$	1283.1	980.248	674.925	379.093
$M_{ser}(KN.m)$	7.94	31.209	1.2825	1.8856
M_{serG} (KN.m)	42.45	59.93	17.41	11.85
σ_{bc1} (MPa)	4.25	4.20	2.46	1.57
σ_{bc2} (MPa)	3.75	2.27	2.36	1.41
$ar{\sigma}_{bc}$	15	15	15	15
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.7 : Vérification des contraintes dans le béton pour les poteaux.

4. Vérification aux sollicitations tangentes :

D'après le RPA99/2003 article 7.4.3.2, la contrainte de cisaillement conventionnelle de calcul dans le béton τ_{bu} sous combinaison sismique doit être inférieure ou égale à la valeur limite suivante :

$$\bar{\tau}_{bu} = \rho_d \times f_{c28}$$
 Avec:
$$\rho_d = \begin{cases} 0.075 & \text{si } \lambda_g \ge 5 \\ 0.04 & \text{si } \lambda_g < 5 \end{cases} \qquad \tau_{bu} = \frac{V_d}{b_0 \times d}$$

Les résultats de calcul sont représentés dans le tableau suivant :

Niveau	Section	l_f	λ_g	$ ho_d$	d	V_d	$ au_{bu}$	$ar{ au}_{bu}$	Obs.
RDC	55×55	286	5.19	0.075	52	138.712	0.485	1.875	Vérifiée
1	55×55	214	5.19	0.075	52	104.054	0.363	1.875	Vérifiée
2	50×55	214	3.89	0.04	52	105.97	0.407	1	Vérifiée
3	50×55	214	3.89	0.04	52	100.87	0.388	1	Vérifiée
4	50×50	214	4.28	0.04	47	89.49	0.38	1	Vérifiée
5	50×50	214	4.28	0.04	47	79.14	0.336	1	Vérifiée
6	45×50	214	4.28	0.04	47	64.71	0.305	1	Vérifiée
7	45×50	214	4.28	0.04	47	51.693	0.244	1	Vérifiée
8	45×50	214	4.28	0.04	47	42.354	0.20	1	Vérifiée

Tableau V.8: Vérification aux sollicitations tangentes pour les poteaux.

V.1.4. Schéma de ferraillage :

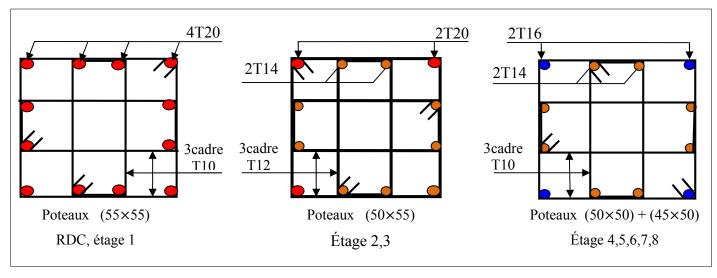


Figure V.2 : Schéma de ferraillage des poteaux.

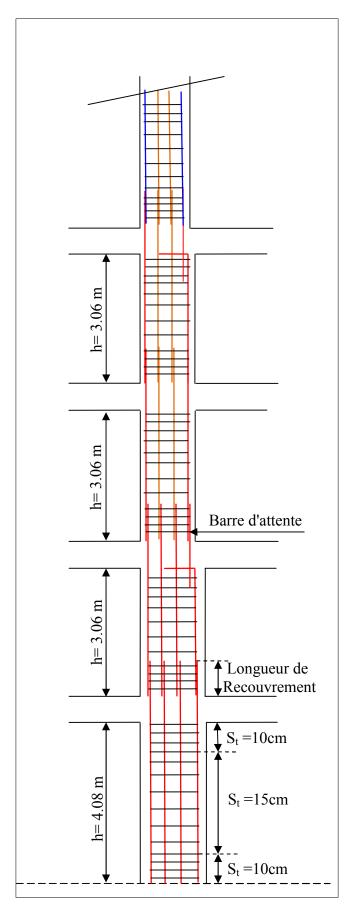


Figure V.3: Réduction des sections des poteaux.

V.2. Etude des poutres :

V.2.1. Introduction:

L'étude des poutres sera menée en tenant compte des efforts internes (donnés par le SAP2000), en tenant compte des sollicitations les plus défavorables qui résultent des combinaisons du RPA99/2003 et du BAEL91 qui sont :

- 1. 1.35G + 1.5Q
- 2. G + Q
- 3. G + Q + E
- 4. G + Q E
- 5. 0.8G + E
- 6. 0.8G E

Les poutres sont calculées en flexion simple, elles sont sollicitées par des moments fléchissant et des efforts tranchants. On a deux types de poutres à étudier :

- Poutres principales (30×40) ,
- Poutres secondaires (30×35) .

V.2.2. Recommandations du RPA99/2003:

a. Les armatures longitudinales :

Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.

Le pourcentage total maximum des aciers longitudinaux est de :

- 4% en zone courante,
- 6% en zone de recouvrement.

Les poutres supportent de faibles charges verticales et sollicitées principalement par les forces latérales sismiques doivent avoir des armatures symétriques avec une section en travée au moins égale à la moitié de la section sur appui.

La longueur minimale de recouvrement est de 40φ en zone IIa.

b. Armatures transversales:

La quantité d'armatures transversales minimale est donnée par :

$$A_t = 0.003 \times S_t \times b$$

 S_t : Espacement maximum entre les armatures transversales donné comme suit :

- $-S_t$ ≤ min $(h/4; 12φ_l)$ en zone nodale.
- $S_t \le h/2$ en dehors de la zone nodale.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.

V.2.3. Calcul de ferraillage:

❖ Méthode de calcul des armatures à l'ELU (Flexion Simple) :

Le ferraillage est calculé pour une section rectangulaire b×h en flexion simple à partir des sollicitations les plus défavorables déduites du logiciel SAP2000.

T 4 1 1	. ,	4	1 1	1 1	C '11	1 1	1: 00/	4
Les tableaux	cilivante r	egraiment	ie calci	บาลค	terrail	lage des	ditterentes	noutres
Les tableaux	Survaints r	cgroupent.	ic care	ıı uc	Torrair	iage acc	differences	pounes.

Niveau	M_t	M_a	A_t^{cal}	A_a^{cal}	A_t^{opt}	A_a^{opt}	<i>N^{bre}</i> barres	<i>N^{bre}</i> barres	V
Niveau	KN.m	KN.m	cm ²	cm ²	cm ²	cm ²	En travée	En appuis	KN
RDC	65.38	83.70	5.39	7.05	5.56	8.01	1T14+2T16	3T12+3T14	166.26
Etage 1	38.83	77.82	3.12	6.51	3.39	8.01	3T12	3T12+3T14	118.47
Etage 2	29.25	53.78	2.33	4.39	3.39	4.62	3T12	3T14	83.57
Etage 3	27.88	53.33	2.22	4.35	3.39	4.62	3T12	3T14	84.66
Etage 4	22.49	55.75	1.78	4.56	3.39	4.62	3T12	3T14	85.53
Etage 5	22.63	55.91	1.79	4.57	3.39	4.62	3T12	3T14	86.47
Etage 6	30.83	57.34	2.46	4.69	3.39	5.09	3T12	2T14+1T16	86.87
Etage 7	33.06	60.14	2.64	4.94	3.39	5.09	3T12	2T14+1T16	88.74
Etage 8	20.13	33.42	1.59	2.67	3.39	3.39	3T12	3T12	34.80
Toiture	29.65	55.74	2.36	4.56	3.39	4.62	3T12	3T14	85.53

Tableau V.9: Ferraillage des poutres principales.

 $A_{min}^{RPA} = 0.5 \times 40 \times 30 = 6 \text{ cm}^2$ En toute section pour les poutres principales.

Niveau	M_t	M_a	A_t^{cal}	A_a^{cal}	A_t^{opt}	A_a^{opt}	<i>N^{bre}</i> barres	<i>N^{bre}</i> barres	V
Niveau	KN.m	KN.m	cm ²	cm ²	cm ²	cm ²	En travée	En appuis	KN
RDC	6.15	13.49	0.55	1.23	3.39	3.39	3T12	3T12	26.76
Etage 1	7.04	10.87	0.63	0.99	3.39	3.39	3T12	3T12	22.71
Etage 2	9.76	19.09	0.88	1.75	3.39	3.39	3T12	3T12	33.25
Etage 3	12.74	20.79	1.16	1.91	3.39	3.39	3T12	3T12	39.97
Etage 4	14.57	22.08	1.33	2.03	3.39	3.39	3T12	3T12	40.42
Etage 5	17.06	23.24	1.56	2.14	3.39	3.39	3T12	3T12	40.8
Etage 6	18.89	23.88	1.73	2.20	3.39	3.39	3T12	3T12	40.93
Etage 7	20.30	25.39	1.86	2.35	3.39	3.39	3T12	3T12	42.77
Etage 8	17.96	26.08	1.64	2.41	3.39	3.39	3T12	3T12	39.04
Toiture	11.87	21.72	1.08	2.00	3.39	3.39	3T12	3T12	32.79

Tableau V.10: Ferraillage des poutres secondaires.

 $A_{min}^{RPA} = 0.5 \times 35 \times 30 = 5.25 \ cm^2$ En toute section pour les poutres secondaires.

V.2.4. Vérifications à l'ELU:

a. Condition de non fragilité :

$$A > A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 1.34 \text{ cm}^2$$

Donc la condition de non fragilité est vérifiée.

b. Contrainte tangentielle maximale:

On vérifie les poutres les plus défavorables de chaque types.

$$\tau_{bu} = \frac{V_u}{b_0 \times d} \le \bar{\tau}_{bu} = \min (0.13 f_{c28}, 4MPa) = 3.25 MPa$$

Poutres	$V_u(KN)$	$ au_{bu}$ (MPa)	Observation
Poutres principales	166.26	1.49	Vérifiée
Poutres secondaires	42.77	0.44	Vérifiée

Tableau V.11: Vérification de l'effort tranchant.

 $\tau_{bu} < \bar{\tau}_{bu} = 3.25 \, MPa \implies \text{Donc pas de cisaillement.}$

c. Les armatures transversales :

1. Calcul de ϕ_t :

Le diamètre des armatures transversales est donnée par :

$$\phi_t = \min\left(\frac{h}{35}; \frac{b}{10}; \phi_{Lmin}\right) \implies \phi_t = \min\left(1.14; 3; 1.2\right)$$

$$\phi_t \le 1.14 \ cm \implies \text{ on prend } \phi_t = 8 \ mm$$

$$A_t = 4\text{T8} = 2.01 \text{ cm}^2$$

Soit : 1 cadre + 1 étrier pour toutes les poutres.

2. Calcul de l'espacement :

Selon le RPA:

En zone nodale : $S_t \leq \min\left(\frac{h}{4}; 12\phi_{min}; 30 \ cm\right)$,

- Poutres principales :

$$S_t \le \min (10; 14.4; 30 cm)$$
 Soit $S_t = 10 cm$

— Poutres secondaire :

$$S_t \le \min (8.75; 14.4; 30 cm)$$
 Soit $S_t = 8 cm$

En zone courante : $S_t \le \frac{h}{2}$

Poutres principales :

$$S_t \le 20 \ cm$$
 Soit $S_t = 15 \ cm$

— Poutres secondaires :

$$S_t \le 17.5 \ cm$$
 Soit $S_t = 15 \ cm$

3. Vérification de la section minimale de A_t :

$$A_t^{min} = 0.003 \times S_t \times b \implies A_t^{min} = 0.003 \times 15 \times 30 = 1.35 \ cm^2$$

$$A_t = 2.01 \ cm^2 < A_t^{min} = 1.35 \ cm^2$$

d. Vérification des armatures longitudinales :

1. Longueur de recouvrement :

$$l_r \ge 40 \times \phi_l$$

$$\phi = 16mm \rightarrow l_r \ge 40 \times 1.6 = 64 \ cm$$
; On adopte $l_r = 70 \ cm$

$$\phi = 14mm \rightarrow l_r \ge 40 \times 1.4 = 56 \ cm$$
; On adopte $l_r = 60 \ cm$

$$\phi = 12mm \rightarrow l_r \ge 40 \times 1.2 = 48 \ cm$$
; On adopte $l_r = 50 \ cm$

2. Cisaillement:

$$A_l \ge \frac{1.15}{400} \times \left(V_u - \frac{M_a}{0.9 \times d}\right) \dots (1)$$
 Travée

$$A_l \ge \frac{V_u}{0.9 \times d}$$
(2) Appui

Les résultats sont résumés dans le tableau suivant :

Poutres	$A_l (cm^2)$	$M_a(KN.m)$	V (KN. m)	$(1) \text{ cm}^2$	$(2) \text{ cm}^2$	Observation
Principales	8.01	83.70	166.26	-2.4	4.77	Vérifiée
Secondaires	3.39	25.39	42.77	-1.3	1.48	Vérifiée

Tableau V.12: Vérification des armatures longitudinales au cisaillement.

V.2.5. Vérifications à l'ELS:

a. Etat limite d'ouverture des fissures :

La fissuration est peu nuisible, donc aucune vérification à faire.

b. Etat limite de compression du béton :

Il faut vérifier que :
$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \leq \bar{\sigma}_{bc} = 0.6 f_{c28} = 15 \, MPa$$

y : est la racine de la solution de l'équation :

$$\frac{b}{2} \times y^2 + 15 \times (A'_s + A_s) \times y - 15 \times (A'_s \times d + A_s \times d') = 0$$

Le moment d'inertie de la section fissurée par rapport à l'axe neutre est donné par :

$$I = \frac{b}{3} \times y^3 + 15 \times A_s \times (d - y)^2 + 15 \times A'_s \times (y - d')^2$$

 $M_{ser}(KN.m)$ $I(m^4)$ $\sigma_{bc}(MPa)$ Poutres Zone Y(m) $\sigma_{bc} \leq \bar{\sigma}_{bc}$ 55.11 0.118 Vérifiée Appuis 0.000693 4.69 Principales Travées 26.87 0.1360.000909 8.28 Vérifiée Appuis 18.03 0.088 Vérifiée 0.000341 3.816 secondaires Travées 14.73 Vérifiée 0.088 0.000341 4.761

Les résultats de calcul sont illustrés dans le tableau suivant :

Tableau V.13: Etat limite de compression du béton.

c. Etat limite de déformation (Flèche) :

Selon le BAEL99, la vérification de la flèche n'est pas nécessaire si les trois conditions suivantes sont vérifiées :

$$\frac{h}{l} \ge \frac{1}{16} \dots (1)$$

$$\frac{h}{l} \ge \frac{M_t}{10M_0}....(2)$$

$$\frac{A}{bd} \le \frac{4.2}{f_e} \quad(3)$$

	Condition (1)		Condit	tion (2)	Condit		
Poutres	h	1	h	M_t	Α	4.2	Observation
	\overline{l}	16	\overline{l}	$\overline{10M_0}$	\overline{bd}	f_e	
Principales	0.0776	0.0625	0.0776	0.0760	5×10 ⁻³	0.0105	Vérifiée
Secondaires	0.1060	0.0625	0.1060	0.1010	3.5×10 ⁻³	0.0105	Vérifiée

Tableau V.14 : Vérification des conditions de la flèche.

V.2.6. Schéma de ferraillage :

> Poutres Principales :

Comme exemple de schéma de ferraillage on va prendre les poutres principales de 1^{er} étage, et c'est idem pour toutes les poutres.

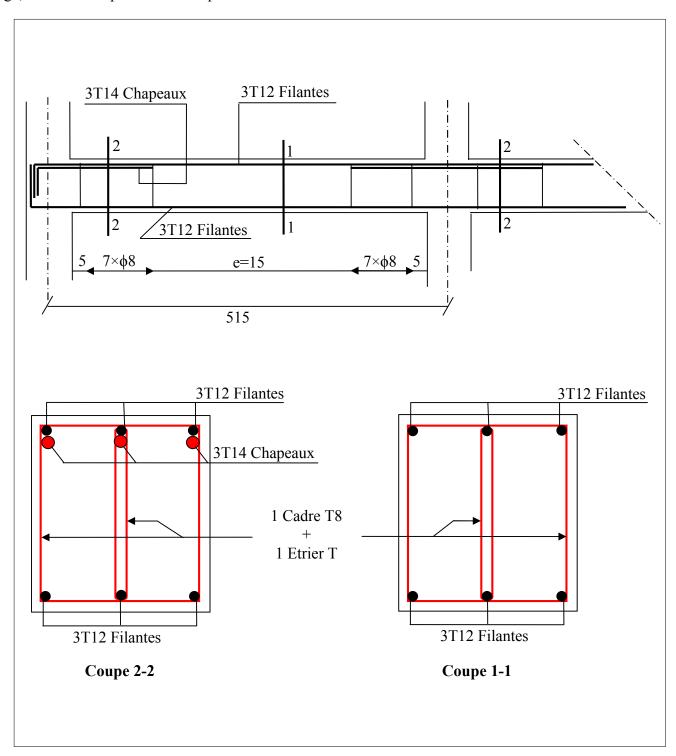


Figure V.4 : Schéma de ferraillage des poutres principales de 1^{er} étage.

> Poutres secondaires :

Comme exemple de schéma de ferraillage on va prendre les poutres de 1^{er} étage, et c'est le même ferraillage pour toutes les poutres secondaires.

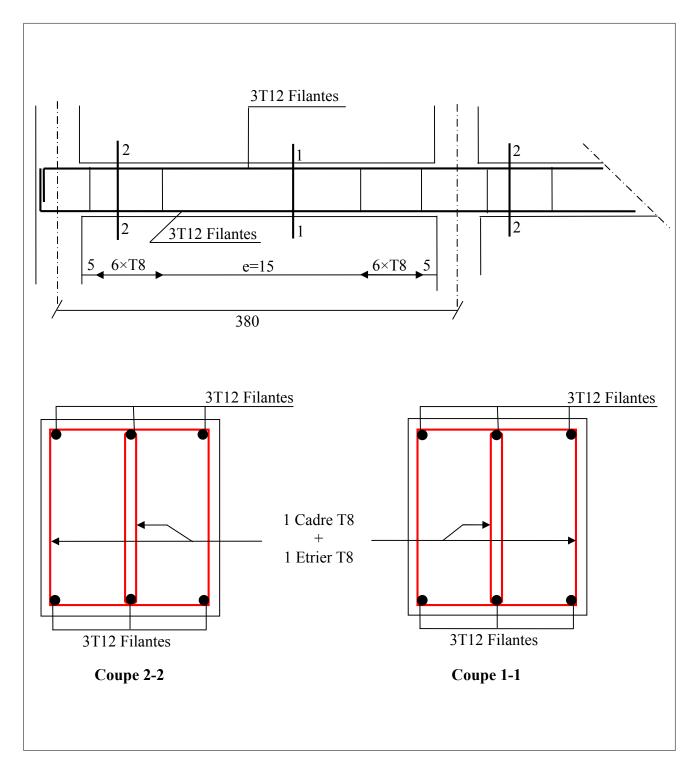


Figure V.5 : Schéma de ferraillage des poutres secondaires.

V.2.7. Vérification des zones nodales :

Dans le but de faire en sorte que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux, le RPA99 (Art 7.6.2) exige de vérifier :

$$|M_n| + |M_s| \ge 1.25 \times (|M_w| + |M_e|)$$

a. Détermination du moment résistant dans les poteaux :

Le moment résistant M_R d'une section du béton dépend essentiellement :

- des dimensions de la section du béton.
- de la quantité d'armatures dans la section.
- de la contrainte limite élastique des aciers.

$$M_R = z \times A_s \times \sigma_s$$
 Avec: $z = 0.9h$ et $\sigma_s = \frac{f_s}{v_s} = 348$ MPa.

Les résultats de calcul des moments résistants dans les poteaux sont illustrés dans le tableau suivant :

Niveau	Section (cm ²)	Z (cm)	$A_s (cm^2)$	M_R (KN.m)
RDC - étage 1	55×55	49.5	37.7	649.42
Etage 2 - 3	50×55	49.5	24.89	338.81
Etage 4 - 5	50×50	45	20.36	229.05
Etage 6 - 7 - 8	45×50	45	20.36	206.14

Tableau V.15: Moments résistants dans les poteaux.

b. Détermination du moment résistant dans les poutres :

Les moments résistants dans les poutres sont calculés de la même manière que dans es poteau.

Niveau	Section (cm ²)	Z (cm)	$A_s (cm^2)$	$M_R(KN.m)$
RDC - étage 1	P.P (30×40)	36	8.01	132.64
	P.S (30×35)	31.5	3.39	37.14
Etage 2 - 5	P.P (30×40)	36	4.62	57.85
Etage 2	P.S (30×35)	31.5	3.39	37.14
Etage 6 - 7	P.P (30×40)	36	5.09	63.73
Etage v	P.S (30×35)	31.5	3.39	37.14
Etage 8	P.P (30×40)	36	3.39	42.44
Zinge 0	P.S (30×35)	31.5	3.39	37.14

Tableau V.16: Moments résistants dans les poutres.

Niveau plans	nlong	M_n	M_{S}	$M_n + M_s$	M_w	M_e	$1.25(M_n + M_s)$	Observation
	pians	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	Observation
RDC - 1 ^{er}	PP	649.42	649.42	1298.84	132.64	132.64	331.6	Vérifiée
2 - 3 ^{eme}	PP	338.81	338.81	677.62	57.85	57.85	144.625	Vérifiée
4 - 5 ^{eme}	PP	229.05	229.05	458.1	57.85	57.85	144.625	Vérifiée
6 - 7 - 8 ^{eme}	PP	206.14	206.14	412.28	63.73	63.73	159.325	Vérifiée

Tableau V.17: Vérification de la zone nodale.

La vérification des zones nodales est justifiée ; donc les rotules plastiques se forment dans les poutres plutôt que dans les poteaux.

V.3. Etude des voiles :

V.3.1. Introduction:

L'intensité de forces sismiques agissantes sur un bâtiment lors d'un tremblement de terre est conditionnée non seulement par les caractéristiques du mouvement sismique, mais aussi par la rigidité de la structure sollicitée.

Il a été constaté que de nombreux bâtiments à voiles en béton armé ont bien résisté sans endommagements exagérer.

Le RPA99 version 2003 (3.4.A.1.a) exige de mettre des voiles de contreventement pour chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur dans la zone IIa. Les voiles sont considérés comme des consoles encastrées à leur base, leurs modes de rupture sont :

- Rupture par flexion,
- Rupture en flexion par effort tranchant,
- Rupture par écrasement ou traction du béton.

D'où, les voiles seront calculés en flexion composée avec effort tranchant, avec les sollicitations issues des combinaisons suivantes :

- 1. 1.35G + 1.5Q
- 2. $G + Q \pm E$
- 3. $0.8G \pm E$

V.3.2. Recommandations du RPA99:

Les voiles comportent des :

a. Aciers verticaux : [7.7.4.1]

Ils reprennent les efforts de flexion. Ils sont calculés en flexion composée, et disposés en deux nappes parallèles aux faces des voiles.

Le pourcentage minimum des armatures verticales sur toute la zone tendue sous l'action des forces verticales et horizontales pour reprendre l'effort de traction en totalité est :

$$A_{min} = 0.2\% \times l_t \times e$$

 l_t : Longueur de la zone tendue,

e: Épaisseur du voile.

Les barres verticales des zones extrêmes doivent être ligaturées avec des cadres horizontaux dont l'espacement $S_t < e$.

A chaque extrémité du voile, l'espacement des barres doit être réduit de moitié sur 1/10 de la longueur du voile.

Les barres du dernier niveau doivent être munies de crochets à la partie supérieure. Toutes les autres barres n'ont pas de crochets (jonction par recouvrement).

b. Aciers horizontaux : [7.7.4.2]

Ils sont destinés à reprendre les efforts tranchant, et maintenir les aciers verticaux, et les empêcher de flamber, donc ils doivent être disposés en deux nappes vers l'extérieur des armatures verticales.

Les barres horizontales doivent être munies de crochets à 130° ayant une longueur de 10¢

c. Règles communes :

Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :

- Globalement dans la section du voile 0,15 %

- En zone courante 0.10 %

L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux (2) valeurs suivantes :

$$S \le 1.5 \text{ a} (1)$$

$$S \le 30cm \dots (2)$$

Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré. Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.

Les longueurs de recouvrement doivent être égales à :

- 40Ø pour les barres situées dans les zones où le renversement du signe des efforts est possible ;
- 20Ø pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.

Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{vj} = 1.1 \frac{V}{f_e} \quad \text{avec}: \quad V = 1.4 V_u$$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

V.3.3. Calcul du ferraillage:

A l'aide du logiciel SAP2000 V14.2.2, on a tiré les sollicitations (N, M et V) dans chaque voile. Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons citées auparavant.

Les résultats de calcul sont récapitulés dans les tableaux ci-après :

a. Voile Vx 1:

NIVEAU		RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme}
		RDC	1 clage	2-3 clage	4-3 clage	étage
Sectio	n (m ²)	1.55×0.2	1.55×0.15	1.55×0.15	1.55×0.15	1.55×0.15
N (I	KN)	713	-860.929	909.59	678.80	439.05
M (K	N.m)	132.9	128.55	13.71	1.49	2.81
V (1	KN)	105	128.6	86.14	53.63	37.65
Largeur	tendue	0.775	0.775	0.775	0.775	0.775
Largeur c	omprimée	0	0	0	0	0
A_{min}^{Zt}	cm^2	6.2	4.65	4.65	4.65	4.65
A_{min}^{Zc}	cm^2	1.20	1.33	0.135	0.001	0.057
A_{min}^{ZE}	cm^2	4.65	3.4875	3.4875	3.4875	3.4875
A calculé dans	Z.tendue (cm ²)	13.94	15.95	13.45	9.80	6.39
A ^{adpt} par face	Z. tendue (cm ²)	15.83	16.65	13.57	13.57	9.42
Nombre	de barres	14T12	2T14+12T12	12T12	12T12	12T10
Espacement	Extrémité	5	5	5	5	5
St (cm)	milieu	14	14	18	18	18
A_h calcu	A_h calculé (cm ²)		0.80	0.54	0.33	0.23
$A_h \min (\text{cm}^2)$		4.65	3.48	3.48	3.48	3.48
A_h adapté(cm ²)		4.71	3.93	3.93	3.93	3.93
Nombre de barres		6T10	5T10	5T10	5T10	5T10
S_h α	cm^2	15	20	15	15	15

Tableau V.18 : Récapitulation du ferraillage de voile Vx 1.

b. Voile Vx 2:

NIVEAU		RDC	1 er 640 co	2 2eme 640.00	4-5 ^{eme} étage	6-7-8 ^{eme}
		KDC 1 ctag	1 ^{er} étage	2-3 ^{eme} étage	4-3 clage	étage
Section	on (m ²)	0.9×0.2	0.9×0.15	0.9×0.15	0.9×0.15	0.9×0.15
N (KN)	-635.85	-626.12	-586.6	-443.05	-292.2
M (K	(N.m)	77.07	5.54	2.37	7.01	6.75
V (.	KN)	30.65	46.01	45.34	36.69	27.49
Largeu	r tendue	0.45	0.45	0.45	0.45	0.45
Largeur c	omprimée	0	0	0	0	0
A_{min}^{Zt}	cm ²	3.6	2.7	2.7	2.7	2.7
A_{min}^{Zc}	cm ²	1.45	0.079	0.036	0.14	0.20
A_{min}^{ZE}	cm ²	2.7	2.025	2.025	2.025	2.025
A calculé dans	Z.tendue (cm ²)	12.83	9.26	8.54	6.70	4.53
A ^{adpt} par face	Z. tendue (cm ²)	12.95	11.31	9.05	7.66	6.79
Nombre	de barres	4T14+6T12	10T12	8T12	4T12+4T10	6T12
Espacement	Extrémité	5	5	5	5	15
St (cm)	milieu	10	10	15	15	
A_h calculé (cm ²)		0.33	0.49	0.49	0.39	0.22
$A_h \min (cm^2)$		2.7	2.025	2.025	2.025	2.025
A_h adapté (cm ²)		3.02	2.51	2.51	2.51	2.51
Nombre de barres		6T8	5T8	5T8	5T8	5T8
S_h	cm^2	15	20	20	20	20

Tableau V.19 : Récapitulation du ferraillage de voile Vx 2.

c. Voile Vx 3:

NIVEAU		RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme}
INIVEAU		RDC	1 clage	2-3 etage	4-3 clage	étage
Section	on (m ²)	1.05×0.2	1.05×0.15	1.05×0.15	1.05×0.15	1.05×0.15
N ()	KN)	-657.75	-624.77	-586.6	-445.119	-287.62
M (K	(N.m)	111.84	1.97	0.764	2.211	3.75
V ()	KN)	30.65	59.11	45.35	38.34	24.45
Largeur	r tendue	0.525	0.525	0.525	0.525	0.525
Largeur c	omprimée	0	0	0	0	0
A_{min}^{Zt}	cm^2	4.2	3.15	3.15	3.15	3.15
A_{min}^{Zc}	cm^2	0.24	0.028	0.011	0.044	0.11
A_{min}^{ZE}	cm ²	3.15	2.36	2.36	2.36	2.36
A calculé dans	Z.tendue (cm ²)	14.04	9.06	8.46	6.49	4.29
A ^{adpt} par face	Z. tendue (cm ²)	15.39	11.31	9.05	7.66	6.28
Nombre	de barres	10T14	10T12	8T12	4T12+4T10	8T10
Espacement	Extrémité	5	5	5	5	5
St (cm)	milieu	12	12	18	18	18
A_h calcu	A_h calculé (cm ²)		0.54	0.42	0.35	0.22
$A_h \min (\text{cm}^2)$		3.05	2.36	2.36	2.36	2.36
A_h adapté (cm ²)		3.14	2.51	2.51	2.51	2.51
Nombre de barres		4T10	5T8	5T8	5T8	5T8
S_h	cm^2	25	20	20	20	20

 $\textbf{Tableau V.20:} \ \text{R\'ecapitulation du ferraillage de voile Vx 3.}$

d. VOILE Vx 4:

NIVEAU		RDC	1 er / ,	a geme //	4-5 ^{eme} étage	6-7-8 ^{eme}
		KDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 etage	étage
Sectio	n (m ²)	1.75×0.2	1.75×0.15	1.75×0.15	1.75×0.15	1.75×0.15
N (1	KN)	-1628.3	-1458.83	-1331.11	-1010.45	-654.45
M (K	(N.m)	157.678	109.19	92.006	76.007	58.89
V ()	KN)	292.532	204.34	166.16	81.07	65.01
Largeur	r tendue	0.875	0.875	0.875	0.875	0.7932
Largeur c	omprimée	0	0	0	0	0
A_{min}^{Zt}	cm^2	7	3.93	3.93	3.93	3.93
A_{min}^{Zc}	cm^2	1.64	0.095	0.008	0.099	0.245
A_{min}^{ZE}	cm^2	5.25	5.25	5.25	5.25	5.25
A calculé dans	Z.tendue (cm ²)	27.29	23.66	21.40	16.39	10.85
A ^{adpt} par face	Z. tendue (cm ²)	28.15	24.13	21.55	16.84	12.9
Nombre	de barres	14T16	6T16+8T16	14T14	8T14+4T12	10T12+2T10
Espacement	Extrémité	5	5	5	5	5
St (cm)	milieu	15	15	15	20	20
A_h calculé (cm ²)		1.62	1.13	0.92	0.45	0.36
$A_h \min (cm^2)$		5.25	3.93	3.93	3.93	3.93
A_h adapté (cm ²)		5.50	4.02	4.02	4.02	4.02
Nombre de barres		7T10	8T8	8T8	8T8	8T8
S_h	cm^2	14	12	12	12	12

Tableau V.21 : Récapitulation du ferraillage de voile Vx 4.

e. Voile Vx 5:

NIVEAU		RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme}
		TLD C	1 ctuge	23 chage	13 ctage	étage
Section	on (m ²)	0.8×0.2	0.8×0.15	0.8×0.15	0.8×0.15	0.8×0.15
N (KN)	-343.45	-249.52	-204.25	-151.21	-90.9
M (K	(N.m)	18.9	2.43	3.09	5.25	6.61
V (KN)	33.11	44.53	48.79	42.46	34
Largeur	r tendue	0.4	0.370	0.354	0.2958	0.1818
Largeur c	omprimée	0	0.0584	0.090	0.2083	0.436
A_{min}^{Zt}	cm^2	3.2	2.4	2.4	2.4	2.4
A_{min}^{Zc}	cm^2	0.75	0.087	0.13	0.31	0.65
A_{min}^{ZE}	cm ²	2.4	1.8	1.8	1.8	1.8
A calculé dans	Z.tendue (cm ²)	5.95	3.71	3.10	2.45	1.66
A ^{adpt} par face	Z. tendue (cm ²)	6.28	6.28	6.28	6.28	6.28
Nombre	de barres	8T10	8T10	8T10	8T10	8T10
Espacement	Extrémité	4	4	4	4	4
St (cm)	milieu	14	14	14	14	14
A_h calculé (cm ²)		0.40	0.54	0.59	0.51	0.41
$A_h \min (\text{cm}^2)$		2.4	1.8	1.8	1.8	1.8
A_h adapté (cm ²)		2.51	2.01	2.01	2.01	2.01
Nombre de barres		5T8	4T8	4T8	4T8	4T8
S_h	cm^2	20	25	25	25	25

Tableau V.22 : Récapitulation du ferraillage de voile Vx 5.

f. Voile Vy 1:

NIVEAU		RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme}
					S	étage
Section	on (m ²)	2.2×0.2	2.2×0.15	2.2×0.15	2.2×0.15	2.2×0.15
N (KN)	-908.355	-717.97	-639.92	-483.2	-335.96
M (K	(N.m)	2.164	3.39	8.35	2.37	3.39
V (KN)	250.789	191.10	151.11	119.47	76
Largeur	r tendue	1.0928	1.085	1.06	1.08	1.069
Largeur c	omprimée	0.0142	0.0283	0.0782	0.0294	0.0605
A_{min}^{Zt}	cm^2	8.8	6.6	6.6	6.6	6.6
A_{min}^{Zc}	cm^2	0.028	0.042	0.117	0.044	0.09
A_{min}^{ZE}	cm^2	6.6	4.95	4.95	4.95	4.95
A calculé dans	Z.tendue (cm ²)	13.09	10.38	9.36	6.99	4.89
A ^{adpt} par face	Z. tendue (cm ²)	14.14	12.57	12.57	11	11
Nombre	de barres	18T10	16T10	16T10	14T10	14T10
Espacement	Extrémité	8	8	8	10	10
St (cm)	milieu	12	15	15	20	20
A_h calculé (cm ²)		1.10	0.84	0.66	0.52	0.33
$A_h \min (\text{cm}^2)$		6.6	4.95	4.95	4.95	4.95
A_h adapté (cm ²)		7.07	5.5	5.5	5.5	5.5
Nombre de barres		9T10	7T10	7T10	7T10	7T10
S_h	cm^2	11	14	14	14	14

Tableau V.23 : Récapitulation du ferraillage de voile Vy 1.

g. Voile Vy 2:

NIV	EATI	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme}
INIV	EAU	KDC	1 etage	2-3 etage	4-5 etage	étage
Sectio	n (m ²)	1.75×0.2	1.75×0.15	1.75×0.15	1.75×0.15	1.75×0.15
N (I	KN)	-713.87	-804.126	-671.39	-515.53	352.86
M (K	N.m)	7.28	31.89	25.21	23.55	18.14
V (I	KN)	250.363	258.59	160.30	104.94	58.58
Largeur	tendue	0.875	0.875	0.875	0.875	0.875
Largeur c	omprimée	0	0	0	0	0
A_{min}^{Zt}	cm^2	7	3.93	3.93	3.93	3.93
A_{min}^{Zc}	cm^2	0.12	0.356	0.337	0.41	0.46
A_{min}^{ZE}	cm^2	5.25	5.25	5.25	5.25	5.25
A calculé dans	Z.tendue (cm ²)	10.44	12.34	10.27	8	5.52
A^{adpt} par face	Z. tendue (cm ²)	14.45	14.45	11	11	9.42
Nombre	de barres	10T12+4T10	10T12+4T10	14T10	14T10	12T10
Espacement	Extrémité	5	5	5	5	5
St (cm)	milieu	15	15	15	15	22
A_h calcu	ılé (cm²)	1.39	1.43	0.89	0.583	0.32
A_h min	$A_h \min (cm^2)$		3.93	3.93	3.93	3.93
A_h adap	té (cm²)	5.50	3.93	3.93	3.93	3.93
Nombre	de barres	7T10	5T10	5T10	5T10	5T10
S_h α	cm^2	14	20	20	20	20

Tableau V.24 : Récapitulation du ferraillage de voile Vy 2.

h. Voile Vy 3:

NIV	EAU	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme}
						étage
Section	on (m ²)	0.8×0.2	0.8×0.15	0.8×0.15	0.8×0.15	0.8×0.15
N (KN)	-561.20	-353.19	-271.34	-214.82	140.03
M (K	N.m)	13	35.18	18.78	11.83	11.54
V (KN)	59.44	50.09	49.04	40.13	31.17
Largeur	r tendue	0.4	0.4	0.4	0.4	0.4
Largeur c	omprimée	0	0	0	0	0
A_{min}^{Zt}	cm^2	3.2	2.4	2.4	2.4	2.4
A_{min}^{Zc}	cm^2	0.80	0.087	0.13	0.31	0.65
A_{min}^{ZE}	cm ²	2.4	1.8	1.8	1.8	1.8
A calculé dans	Z.tendue (cm ²)	8.80	6.97	4.91	3.72	2.63
A ^{adpt} par face	Z. tendue (cm ²)	9.05	9.05	6.28	6.28	6.28
Nombre	de barres	8T12	8T12	8T10	8T10	6T10
Espacement	Extrémité	4	4	4	4	4
St (cm)	milieu	14	14	14	14	14
A_h calcu	ılé (cm²)	0.72	0.60	0.59	0.48	0.36
A_h mix	$A_h \min (\text{cm}^2)$		1.8	1.8	1.8	1.8
A_h adap	oté (cm²)	2.51	2.01	2.01	2.01	2.01
Nombre	de barres	5T8	4T8	4T8	4T8	4T8
S_h (cm)	20	25	25	25	25

Tableau V.25: Récapitulation du ferraillage de voile Vy 3.

V.3.4. Vérification au cisaillement :

Selon le RPA99 (Art 7.7.2), la contrainte de cisaillement dans le béton est limitée comme suit :

$$\tau_b \le \bar{\tau}_b = 0.2 \times f_{c28} = 5MPa$$

Où:
$$\tau_b = \frac{\overline{V}}{b_0 d}$$
 avec $\overline{V} = 1.4 V_u$

Les résultats sont résumés dans les tableaux suivants :

a. Voile Vx 1:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	147	180.04	120.6	75.08	52.17
$\tau_b (MPa)$	0.48	0.79	0.528	0.33	0.23
$\bar{\tau}_b (MPa)$	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.26 : Vérification des contraintes de cisaillement.

b. Voile Vx 2:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	42.91	64.41	63.47	51.36	38.48
$\tau_b (MPa)$	0.246	0.493	0.486	0.393	0.294
$\bar{\tau}_b$ (MPa)	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.27 : Vérification des contraintes de cisaillement.

c. Voile Vx 3:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	42.91	82.75	63.49	53.67	34.23
$\tau_b (MPa)$	0.21	0.54	0.415	0.35	0.223
$\bar{\tau}_b (MPa)$	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.28 : Vérification des contraintes de cisaillement.

d. Voile Vx 4:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	409.54	286.08	232.62	113.5	91.01
$\tau_b (MPa)$	1.19	1.10	0.90	0.44	0.35
$\bar{\tau}_b (MPa)$	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.29 : Vérification des contraintes de cisaillement.

e. Voile Vx 5:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	46.35	62.34	68.30	59.44	47.6
$\tau_b (MPa)$	0.3	0.54	0.59	0.515	0.41
$\bar{\tau}_b (MPa)$	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.30 : Vérification des contraintes de cisaillement.

f. Voile Vy 1:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	351.10	267.54	211.56	167.26	106.4
$\tau_b (MPa)$	0.81	0.82	0.65	0.51	0.33
$\bar{\tau}_b (MPa)$	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.31: Vérification des contraintes de cisaillement.

g. Voile Vy 2:

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	350.50	362.02	224.42	146.91	82.01
$\tau_b (MPa)$	1.02	1.4	0.87	0.57	0.32
$\bar{\tau}_b$ (MPa)	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.32 : Vérification des contraintes de cisaillement.

h. Voile Vy 3:

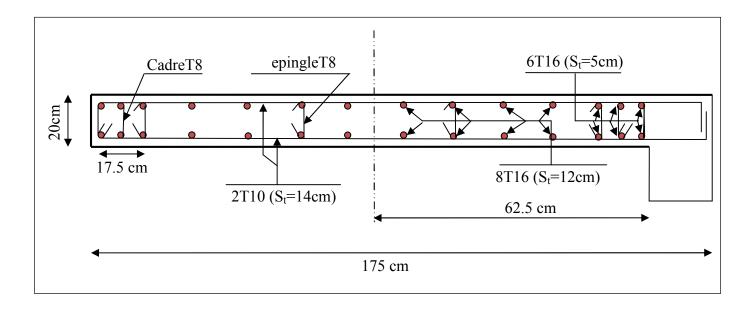

Niveaux	RDC	1 ^{er} étage	2-3 ^{eme} étage	4-5 ^{eme} étage	6-7-8 ^{eme} étage
$\bar{V}(KN)$	83.21	70.12	68.65	56.18	43.64
$\tau_b (MPa)$	0.49	0.54	0.53	0.43	0.33
$\bar{\tau}_b (MPa)$	5	5	5	5	5
Observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée	Vérifiée

Tableau V.33: Vérification des contraintes de cisaillement.

D'après les tableaux précédents on voit bien que la contrainte de cisaillement dans le béton est vérifiée, donc pas de risque de cisaillement.

VI.3.5 : Schémas de ferraillage

On prend comme exemple de ferraillage le voile Vx 4 au niveau de RDC

Figure V.6 : Schéma de ferraillage du voile Vx 4 de RDC

VI. Etude des fondations

VI .1.Introduction:

Les fondations sont des éléments de l'infrastructure qui ont pour objectif de supporter les charges de la superstructure et de les transmettre au sol.

Elles constituent un ensemble rigide capable de répondre aux fonctions suivantes :

- Réaliser l'encastrement de la structure.
- Transmettre la totalité des charges apportées par la superstructure au sol d'assise
- Limiter les tassements différentiels et le déplacement horizontal relatif des fondations qui pourraient réduire la résistance et la rigidité du système structural.

VI.2. Choix du type des fondations :

Le choix du type des fondations dépend essentiellement, des facteurs suivants :

- La capacité portante du sol.
- Les Charges transmises au sol.
- La distance entre axes des poteaux.
- La profondeur du bon sol.

Pour le choix de type de fondation, on vérifie d'abord pour les semelles isolées, puis pour les semelles filantes. Si les deux choix ne conviennent pas on passe au radier général.

D'après le **RPA99** (Article 10.1.4) les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

$$\begin{cases} G + Q \pm E \\ 0.8G \pm E \end{cases}$$

VI .3. Etude des fondations :

VI .3.1. Vérification des semelles isolées :

Les poteaux de notre structure sont carrés à la base $(a \times a)$, donc les semelles sont carrées $(A \times A)$

La vérification à faire est $\frac{N}{S} \le \overline{\sigma}_{adm}$

Pour cette vérification on prend la semelle la plus sollicités avec :

- S : surface d'appuis de la semelle
- N: effort normal agissant sur la semelle calculée selon la combinaison les plus défavorables données par le RPA.

• $\overline{\sigma}_{sol}$: Contrainte admissible du sol.

Le poteau le plus sollicité à :

- Une section de (55×55) cm² d'où la surface de la semelle : S = A × A
- Un effort normal N = 2175,135KN

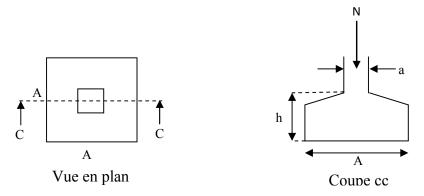


Figure VI.1: Schéma d'une semelle isolée

On a:
$$\frac{N}{A \times A} \le \overline{\sigma}_{sol}$$
......(1) tel que : $\overline{\sigma}_{sol} = 1.5 \ bar$

$$\frac{a}{a} = \frac{A}{A}(2)$$
(1) et (2) $\Rightarrow A = \sqrt{\frac{a \times N}{a \times \overline{\sigma}}} \Rightarrow B = \sqrt{\frac{0.55 \times 2175,135}{0.55 \times 150}} = 3.80 \ m$

On tenant compte des axes des poteaux dans les deux sens (L_{min} = 2.6m) on remarque qu'il y' a un chevauchement entre les semelles, d'où l'utilisation des semelles isolées est impossible.

VI. 3.2. Vérification des semelles filantes :

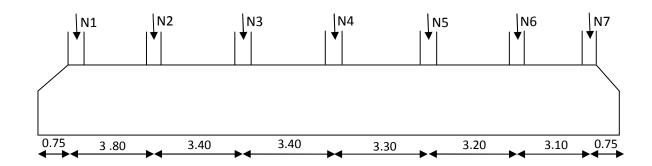


Figure VI.2 : Schéma d'une semelle filante

Nous allons faire le calcul de la semelle filante comme suite :

$$B \ge \frac{N}{\overline{\sigma}_{sol \times L}}$$

Avec:

B: largeur de la semelle.

L : longueur de la semelle.

On a:

Le portique le plus sollicité:

N_i: l'effort normal provenant du poteau (i).

N_s: poids estimé de la semelle.

$$\begin{array}{l} N_1 = 964.192 \; \text{KN} \\ N_2 = 1157.41 \; \text{KN} \\ N_3 = 2175.136 \; \text{KN} \\ N_4 = 1515.145 \; \text{KN} \\ N_5 = 1313.245 \; \text{KN} \\ N_6 = 1329.639 \; \text{KN} \\ N_7 = 1144.944 \; \text{KN} \\ \end{array} \\ \begin{array}{l} \Longrightarrow \sum N_i = 9599.712 \; \text{KN} \\ \end{array} \\ N_S = \left(25 \times 0.45 \times 1.5 \times 21.7\right) + 7 \times \left(25 \times 0.55 \times 0.55 \times 1.5\right) = 445.593 \text{KN} \\ N = N_s + \sum N_i = 445.593 + 9599.712 = 10045.305 \; \text{KN} \\ \sum L_i = 21.7 m \\ \Longrightarrow B \geq \frac{N}{\overline{\sigma}_{SDI\times L}} \implies B \geq \frac{10045.305 \times 10^{-3}}{21.7 \times 0.15} = 3.08 \; \text{m} \end{array}$$

On à l'entre axe enter deux portiques précèdent est de 2,6m, donc le choix des semelles filantes ne convient pas pour cette structure, alors on va opter pour un radier général, ce qui à été recommandé par le rapport du sol.

VI. 3. 3. Vérification du radier général :

Le radier est une fondation superficielle travaillant comme un plancher renversé, il est choisi selon ces trois principales caractéristiques :

- un mauvais sol.
- Charges transmises au sol sont importantes.
- Les poteaux rapprochés (petites trames).

a. Pré dimensionnement :

1. La condition de coffrage :

h_t: hauteur des nervures

h_r: hauteur de la dalle

 L_{max} : La plus grande portée entre deux éléments porteurs successifs ($L_{max} = 5.15 \text{ m}$).

$$\begin{cases} h_t \geq \frac{L_{max}}{10} = \frac{515}{10} = 51.5 \text{ cm} \\ h_r \geq \frac{L_{max}}{20} = \frac{515}{20} \geq 25.75 \text{cm} \end{cases}$$

Figure VI.3: Dimensions du radier.

2. La condition de rigidité :

Cette vérification nous permet de déterminer la nature du radier (rigide ou flexible)

$$L_{max} \leq \frac{\pi \times l_e}{2}$$

le : Longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible)

$$l_e = \sqrt[4]{\frac{4 \times EI}{K \times b}}$$

$$K = \begin{cases} 0.5 \text{kg/cm}^3 \text{ Très mauvais sol.} \\ 4 \text{kg/cm}^3 \text{ sol moyen.} \\ 12 \text{kg/cm}^3 \text{ très bon sol.} \end{cases}$$

K : coefficient de raideur du sol. Pour un sol moyen $K = 4 \times 10^4 \text{ KN/m}^3$.

I : moment d'inertie de l'élément considéré sur 1ml.

E : Module de Young du béton $.E = 3,216 \times 10^7 \text{ KN/m}^2$.

On a:
$$I = \frac{b \times h_t^3}{12} \Longrightarrow h_t \ge \sqrt[3]{\frac{48 \times L_{max}^4 \times K}{\pi^4 \times E}} = 0.75 \text{ m}$$

D'après les deux conditions, on opte :

$$h_t = 80 \text{ cm}$$

$$h_r = 40 \text{ cm}$$

3. La surface du radier :

$$\frac{N_{\rm T}}{S_{\rm rad}} \le \sigma_{\rm S}$$

 N_T : L'effort normal transmis à la base.

 $N_T = 31644 \text{ KN}$

$$\Rightarrow S_{rad} \ge \frac{N_T}{\sigma_S} = \frac{31644}{150} = 210.96 \text{m}^2$$

$$\Rightarrow$$
S_{rad} \geq 210.96 m²

La surface du bâtiment est : $S_{bat} = 297.25m^2$

 $S_{rad} < S_{bat} \implies$ On opte pour une surface de radier égale a la surface du bâtiment, donc la surface de bâtiment suffit pour le radier, pour cela les débords sont inutiles.

b. Vérifications :

1. Vérification au poinconnement :

Le calcul ce fait pour le poteau le plus sollicité.

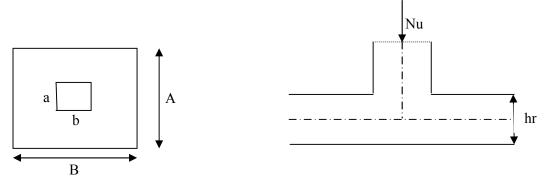


Figure VI.4 : Schéma de poinçonnement.

La condition de non poinçonnement est vérifiée si :

$$N_d \le 0.045 \times U_c \times h_t \times \frac{f_{c28}}{\gamma_h}$$
 BAEL99 (art A.5.2, 41)

N_d : Charge de calcul pour le poteau le plus sollicité.

U_c : Le périmètre du contour cisaillé projeté sur le plan moyen du radier.

$$U_c = 2 \times (A + B)$$

 $A = a + h_t = 0.55 + 0.8 = 1.35 \text{ m}$
 $B = b + h_t = 0.55 + 0.8 = 1.35 \text{ m}$
 $\Rightarrow U_c = 5.4 \text{m}$

$$N_d = 2.175 \text{ MN} \le 0.045 \times 5.4 \times 0.8 \times \frac{25}{1.5} = 3.24 \text{ MN}$$

⇒ Il n y'aura pas de risque de rupture du radier par le poinçonnement.

2. Vérification au cisaillement :

On doit vérifier que :

$$\tau_{\rm u} = \frac{V_{\rm u}}{b \times d} \le \bar{\tau} = \min \left(0.1 f_{\rm c28}; 3\text{MPa}\right) = 2.5 \text{ MPa}$$

$$V_u = \frac{N_u \times L_{max}}{2 \times S} \times b$$
. Avec

- L_{max} : La plus grande portée entre deux éléments porteurs successifs $\Longrightarrow L_{max} = 5.15 \text{ m}$
- S: surface de radier \Rightarrow S_{rad} = 297.25 cm²
- b: choix d'une bande de largeur b=1m
- $d: 0.9h = 0.9 \times 0.80 = 0.72 \text{ m}$
- $N_{II} = 31644 \text{ KN}$

$$\Rightarrow V_{u} = \frac{N_{u} \times L_{max}}{2 \times S} \times b = \frac{31644 \times 5.15}{2 \times 297.25} \times 1 = 274.12 \text{ KN}$$

D'où:

$$\tau_{\rm u} = \frac{274.12}{1\times0.72} = 0.38 \, \text{MPa} < 2.5 \, \text{MPa} \implies \text{Condition vérifiée}$$

3. Vérification de la poussée hydrostatique :

On doit vérifier que :

$$N \ge f_s \times H \times S_r \times \gamma_w$$

Avec:

$$f_s = 1.15$$
 (Coefficient de sécurité)

$$\gamma_w = 10 \text{ KN/m}^3 \text{ (poids volumique de l'eau)}$$

$$S_{rad} = 297.25 \text{ cm}^2$$

H = 3 m (hauteur de la partie enterrée du bâtiment)

$$N = 31644 \text{ KN}$$

$$\Longrightarrow$$
 $f_s \times H \times S_r \times \gamma_w = 1.15 \times 3 \times 297.25 \times 10 = 10255.125 \text{ KN}$

$$\Rightarrow$$
 N = 31644 KN > 10255.125 KN \Rightarrow Condition vérifiée.

4. Vérification de la stabilité au renversement :

On doit vérifier que : $e = \frac{M}{N} \le \frac{B}{4}$ selon le : RPA99 (art .10-1-5)

Sens x-x:

$$e_x = \frac{M_y}{N} = \frac{28897}{31644} = 0.913 \text{ m} < \frac{20.5}{4} = 5.125 \text{ m} \implies \text{Condition vérifiée.}$$

Sens y-y:

$$e_y = \frac{M_x}{N} = \frac{29234}{31644} = 0.923 \text{m} < \frac{14.5}{4} = 3.625 \text{ m} \implies \text{Condition vérifiée.}$$

5. Vérification des contraintes dans le sol :

La formule suivante doit être vérifiée :

$$\sigma_{moy} = \frac{3 \times \sigma_{max} + \sigma_{min}}{4} \le \overline{\sigma_{sol}}$$

$$\sigma_{x,y} = \frac{N}{S} \pm \frac{M}{I}(x,y)$$

$$I_x = 5208,06 \text{ m}^4$$
, et $X_G = 10.25 \text{m}$

$$I_y = 10409.94 \text{ m}^4$$
, et $Y_G = 7.25 \text{ m}$

 σ_{moy} : Contrainte du sol à B/4 sous le radier

 σ_{max} , σ_{min} : Contrainte maximale et minimale respectivement aux deux sens d'extrémités du radier.

Dans le sens X-X:

$$N_u = 31644 \text{ KN}$$

$$M_x = 29234KN.m$$

$$\sigma_{max} = \frac{N}{S} + \frac{M_x}{I_X} \times y_G = \frac{31644}{297.25} + \frac{29234}{5208.07} \times 7.25 = 147.15 \text{ KPa}$$

$$\sigma_{min} = \frac{N}{S} - \frac{M_x}{I_X} \times y_G = \frac{31644}{297.25} - \frac{29234}{5208.07} \times 7.25 = 65.76 \text{ KPa}$$

$$\sigma_{moy} = \frac{3 \times 147.15 + 65.76}{4} = 126.80 \text{ KPa} < \overline{\sigma_{sol}} \implies \text{La contrainte est vérifiée dans le sens x-x}$$

Dans le sens Y-Y

$$N_u = 31644 \text{ KN}$$

$$M_v = 28897 \text{ KN.m}$$

$$\sigma_{max} = \frac{N}{S} + \frac{M_y}{I_y} \times X_G = \frac{31644}{297.25} + \frac{28897}{10409.95} \times 10.25 = 134.90 \text{ KPa}$$

$$\sigma_{\min} = \frac{N}{S} - \frac{M_y}{I_y} \times X_G = \frac{31644}{297.25} - \frac{28897}{10409.95} \times 10.25 = 78 \text{ KPa}$$

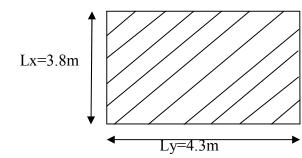
$$\sigma_{moy} = \frac{3 \times 134.9 + 78}{4} = 120.67 \text{ KPa} < \overline{\sigma_{sol}} \implies \text{La contrainte est vérifiée dans le sens y-y}$$

VI.4. Ferraillage du radier :

VI.4.1. Ferraillage de la dalle :

La dalle du radier se ferraille comme une dalle pleine renversé s'appuyant sur les nervures qui sont à sa partie supérieur et soumis à la réaction de sol.

Le calcul de ferraillage se fera en flexion simple pour le panneau de dalle le plus défavorable et on adoptera le même ferraillage pour tout le radier.


Les dimensions du panneau le plus sollicité sont :

$$L_{x} = 3.8 m$$

$$L_v = 4.3 m$$

$$\rho = \frac{L_x}{L_y} = \frac{380}{430} = 0.88 > 0.4$$

⇒ La dalle porte dans les deux sens

$$P_{u} = \frac{N_{u} + Q_{r}}{S_{total}}$$

$$N_{11}$$
=43607 KN

$$Q_{\rm r} = 297.25 \times 0.4 \times 25 = 2972.5$$
 KN Poids propre du radier

S : surface du radier

$$\Rightarrow P_u = \frac{43607 + 2972.5}{297.25} = 156.70 \text{KN/m}^2$$

a. Calcul des sollicitations :

On a :
$$\rho = \frac{L_x}{L_y} = 0.88 \Longrightarrow$$
 D'après annexe 2

$$\mu_{\rm x} = 0.0476$$

$$\mu_{\rm v} = 0.7438$$

$$M_0 = 2262.75 \text{ KN. m}$$

$$M_{0x} = 107.70 \text{ KN. m}$$

$$M_{0v} = 80.1 \text{ KN. m}$$

$$\label{eq:Travée} \text{Travée} \; \left\{ \begin{array}{l} M_{\rm tx} = 0.85 \times M_{\rm 0x} = 0.85 \times 107.7 = 91.54 \; \text{KN.} \, \text{m} \\ \\ M_{\rm ty} = 0.85 \times M_{\rm 0y} = 0.85 \times 80.1 = 68.09 \; \text{KN.} \, \text{m} \end{array} \right.$$

Appui
$$M_{ax} = M_{ay} = 0.5M_{0X} = 0.5 \times 107.7 = 53.85 \text{ KN} \cdot \text{m}$$

b. Ferraillage:

Le ferraillage ce fait en flexion simple pour une section rectangulaire (b \times h) = (1 \times 0.4) m². Le tableau VI.4 montre les sections d'armatures optées pour le ferraillage la dalle.

		M(KN.m)	A _{calculé} (cm ²)	A _{min} (cm ²)	A _{adopré} (cm ²)	Choix /ml	St(cm)
Travée	х-х	91.54	7.4	3.38	10.78	7HA14	14
Travee	у-у	68.09	5.54	3.2	5.65	5HA12	20
Appuis	х-х	53.85	6.1	3.39	7.70	5HA14	20
	у-у	40	3.23	3.2	4.52	4HA12	25

Tableau VI.1: Ferraillage de la dalle.

c. Vérifications :

1. Condition de non fragilité :

Pour une dalle d'épaisseur e >12 cm, et $\rho > 0.4$ la valeur minimale des armatures est :

$$A_x = \frac{\rho_0 \times (3-\rho) \times b \times h}{2}$$

$$A_y = \rho_0 \times b \times h$$

Pour les armatures de haute adhérence FeE400, $\rho_0 = 0.0008$

$$A_x = \frac{0.0008 \times (3 - 0.88) \times 1 \times 0.4}{2} = 3.39 \text{ cm}^2$$

$$A_v = 0.0008 \times 1 \times 0.4 = 3.2 \text{ cm}^2$$

2. Effort tranchant:

$$\tau_u = \frac{V_u}{h \times d} \le \bar{\tau}_b = 0.05 \times f_{c28} = 1.25 MPa$$

•
$$V_y = \frac{q_u \times l_x}{2} \times \frac{1}{(1 + \frac{\rho}{2})} = 206.75 \text{ KN}$$

$$\tau_u = \frac{206.75 \times 10^{-3}}{1 \times 0.36} = 0.57 \, MPa < 1.25 \implies \text{V\'erifi\'ee}$$

•
$$V_{\rm x} = \frac{q_u \times l_x}{3} = 198.48 \, KN$$

$$\tau_u = \frac{198.48 \times 10^{-3}}{1 \times 0.36} = 0.55 \, MPa < 1.25 \implies \text{V\'erifi\'ee}$$

3. L'ELS:

On doit vérifier:

$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \le \overline{\sigma_{bc}} = 0.6 \times f_{c28} = 15 \text{ MPa } \implies \text{B\'eton}$$

$$\sigma_{s} = \frac{_{15\times M_{ser}}}{_{I}} \times (d-y) \leq \overline{\sigma_{S}} = \min\left(\frac{_{2}}{_{3}} \times f_{e}; 110 \times \sqrt{\mu \times f_{ij}}\right) = 201.63 \text{ MPa} \implies \text{Acier}$$

Le Tableau suivant résume les résultats de la vérification des contraintes béton-acier.

Sens	moment	Valeur	$\sigma_{ m bc}$	$\sigma_{\rm s}$	$\overline{\sigma_{bc}}$	$\overline{\sigma_{s}}$	observation
X-X	M_t	68	4.44	191.8	15	201.63	Vérifiée
	M_a	50.58	3.27	193.51	15	201.63	Vérifiée
***	M_t	40	3.77	197.22	15	201.63	Vérifiée
у-у	M_a	29.76	2.77	194.33	15	201.63	Vérifiée

Tableau VI.2: Vérification des contraintes.

4. Schéma de ferraillage du radier :

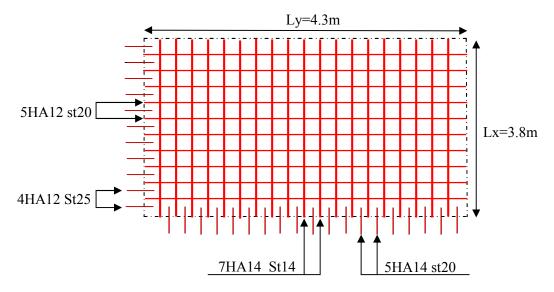


Figure VI .5. Schéma de ferraillage de radier

VI.4.2. Ferraillage du débord :

Il est assimilé à une console de 1 m de largeur.

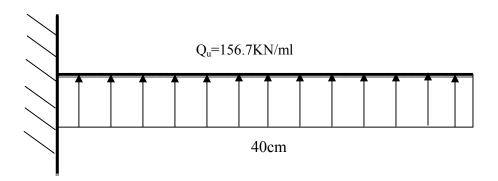


Figure VI.6 : Schéma statique du débord.

$$M_U = 12.53 \text{ KN.m}$$

Les résultats de calcule sont résume dans le tableau suivant :

M (KN.m)	Acal(cm ² /m)	Amin	Aadoptée	choix par (m)	St (cm)	$A_r^{adopt\acute{e}e}$	
12.53	1.03	4.22	5.65	5HA12	20	4HA8=2.01	

• Vérification de la contrainte de cisaillement :

$$b=1m$$
, $d = 0.4 m$

$$\tau_{\mathrm{u}} = \frac{v_{\mathrm{u}}}{\mathrm{bd}} \leq \bar{\tau} \ = 0.05 f_{\mathrm{c}28} = 1.25 \ \text{MPa}$$

$$v_u = Q_u \times L = 156.7 \times 0.4 = 62.68 \text{KN} \Longrightarrow \tau_u = 0.156 \text{MPa} \le 1.25 \text{MPa}$$

⇒pas d'armatures transversales.

• Schéma de ferraillage.

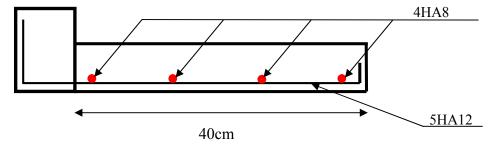


Figure VI.7 : Schéma de ferraillage du débord.

VI.4.3. Ferraillage des nervures :

Les nervures sont des poutres servant d'appuis pour la dalle du radier, la répartition des charges sur chaque travée est triangulaire ou trapézoïdale selon les lignes de ruptures, mais pour simplifier les calculs, on remplace par des charges équivalentes uniformément reparties.

P_m: charge uniforme qui produise le même moment maximum que la charge réelle.

p_v : charge uniforme qui produise le même effort tranchant maximal que la charge réelle.

Charge trapézoïdale	Charge triangulaire
$p_{m} = \frac{Q_{u}}{2} \left[\left(1 - \frac{\rho_{d}^{2}}{3} \right) \times L_{xg} + \left(1 - \frac{\rho_{g}^{2}}{3} \right) \times L_{xd} \right]$ $p_{v} = \frac{Q_{u}}{2} \left[\left(1 - \frac{\rho_{g}}{3} \right) \times L_{xg} + \left(1 - \frac{\rho_{d}}{3} \right) \times L_{xd} \right]$	$p_{m} = \frac{2}{3}Q_{u} \times L_{x}$ $p_{v} = \frac{1}{2} \times L_{x}$

Avec :
$$\rho_d = \frac{L_{xd}}{L_y} \; ; \quad \rho_g = \frac{L_{xg}}{L_y} \label{eq:rhoden}$$

$$Q_u = 156.09 \text{KN/m}^2 ; Q_S = 106.42 \text{KN/m}^2$$

Moment en appuis :

$$M_a = \frac{p_g \times L_g^{'3} + P_d \times L_d^3}{8.5 \times (L_g + L_d)}$$

Tel que : L' = L Pour la travée de rive.

 $L' = 0.8 \times L$ Pour la travée intermédiaire.

Moment en travée (art E.2.2.1 BAEL)

$$M_t = \frac{P \times X}{2} (L_x - x) + M_g \left(1 - \frac{x}{L_x} \right) + M_d(\frac{x}{L_x})$$

Tel que : $x = \frac{L_x}{2} + \frac{M_g - M_d}{P \times L_x}$

Avec:

 $M_{\rm g}$ et $M_{\rm d}$: moment d'appuis de gauche et de droite respectivement de la poutre considérée.

a. Calcul de sollicitation :

Nous effectuons le calcul pour deux types de nervures

1. Sens longitudinal (x-x):

La nervure comporte 6 travées dans le sens (xx), elle est représentée dans la figure suivant :

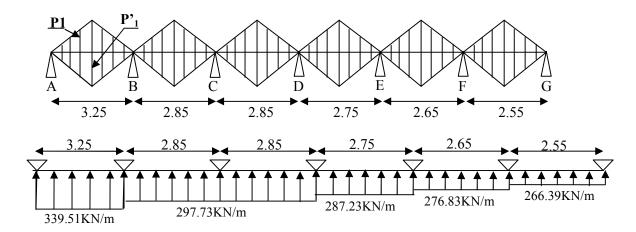


Figure VI.8 : Schéma statique des sollicitations sur les nervures longitudinales x-x

Le calcul des sollicitations est récapitulé dans le tableau suivant :

Localisation	Moment	travée	appuis	$V_{\rm u}({\rm KN})$
X-X	M _u (KN. m)	301.3	-323.02	651.05
	M _s (KN. m)	204.62	-219.37	031.03

Tableau VI.3. Moments en travées et en appuis selon le sens xx

2. Sens transversal (y-y):

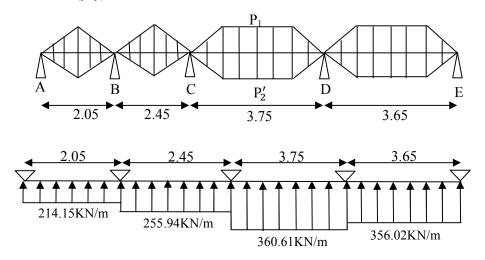


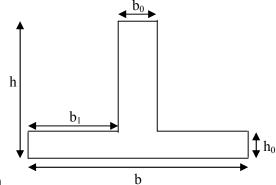
Figure VI.9: Schéma statique des sollicitations sur les nervures longitudinales y-y

Le calcul des sollicitations est récapitulé dans le tableau suivant :

Localisation	Moment	travée	appuis	V _u (KN)	
у-у	M _u (KN. m)	377.76	-478.52	700.04	
<i>y y</i>	M _s (KN. m)	350.9	-443.58	780.84	

Tableau VI.4: Moments en travées et en appuis selon le sens yy

b. Calcul de ferraillage:


Sens x-x:

h = 0.8 m

 $h_0 = 0.4 \text{ m}$

 $b_0 = 0.55 \text{ m}$

d = 0.75 m

)m

 $b_1 \le \min\left(\frac{L_y}{10}, \frac{L_x}{2}\right) \Longrightarrow b_1 \le \min\left(0.43; 1.9\right) m$

Figure VI.10: Section de la nervure (x-x)

$$\implies$$
 b₁ ≤ 0.43 m

On prend : $b_1 = 40 \text{cm}$

Donc: $b = 2 \times b_1 + b_0 = 1.35m$

Les résultats de ferraillage sont récapitulés dans le tableau ci-dessous :

sens	localisation	M _u (KN. m)	$A_{cal}(cm^2)$	$A_{\min}(cm^2)$	A _{adopré} (cm ²)	choix
X-X	Travée	301.29	11.97	12.22	13.35	5T14+5T12
AA	Appui	323.3	12.87	4.98	15.39	10T14

Tableau VI.5 : Résumé des résultats de ferraillage (sens xx)

Sens y-y:

Le ferraillage se fera pour une section en T en flexion simple.

$$h = 0.8 \text{ m}$$

$$h_0 = 0.4 \text{ m}$$

$$b_0 = 0.55 \text{ m}$$

$$d = 0.75 \text{ m}$$

$$\begin{aligned} b_1 &\leq \min\left(\frac{L_y}{10}, \frac{L_x}{2}\right) \Longrightarrow b_1 \leq \min\left(0.43 \; ; \; 1.9\right) \; m \\ &\Longrightarrow b_1 \leq 0.43 \; m \end{aligned}$$

On prend : $b_1 = 0.4$ cm

Donc: $b = 2 \times b_1 + b_0 = 1.35 \text{ m}$

Les résultats de ferraillage sont récapitulés dans le tableau ci-dessous :

se	ens	localisation $M_u(KN. m)$ $A_{cal}(cm^2)$ $A_{min}(cm^2)$		$A_{\min}(cm^2)$	A _{adopré} (cm ²)	choix	
v	v	Travée	377.76	14.49	12.22	17.75	5T16+5T14
,	J	Appui	478.52	18.73	4.98	20.11	10T16

Tableau VI.6: Résumé des résultats de ferraillage (sens yy).

c. Vérifications :

1. A L'ELU:

Condition de non fragilité:

En travée:

$$A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 135 \times 75 \times \frac{2.1}{400} = 12.22 \text{ cm}^2$$

En appuis:

$$A_{min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 55 \times 75 \times \frac{2.1}{400} = 4.98 \text{ cm}^2$$

Vérification de l'effort tranchant :

On utilise la méthode de la RDM:

$$V = \frac{p_u \times l_i}{2} + \frac{M_i - M_{i-1}}{l_i}$$

$$\tau_{\rm u} = \frac{v_{\rm u}}{h \times d} \le \bar{\tau} = \min \ (0.1 f_{\rm c28}; 3 \text{ MPa}) = 2.5 \text{ MPa}$$

Les résultats sont récapitulés dans le tableau ci-dessous :

Sens	v _u (KN)	τ _{bu} (MPa)	τ̄(MPa)	observation
YY	780.84	0.77	2.5	Vérifier
XX	651.05	0.64	2.5	Vérifier

Tableau VI.7: Vérification de l'effort tranchant.

A L'ELS: (FN)

On doit vérifier:

$$\sigma_{bc} = \frac{M_{ser}}{I} \times y \le \overline{\sigma_{bc}} = 0.6 \times f_{c28} = 15 MPa \implies Béton$$

$$\sigma_{S} = \frac{_{15\times M_{ser}}}{_{I}} \times (d-y) \leq \overline{\sigma_{S}} = min\left(\frac{_{2}}{_{3}} \times f_{e}; 110 \times \sqrt{\mu \times f_{ij}}\right) = 201.63 \; MPa \implies Acier$$

Les résultats sont récapitulés dans le tableau suivant :

Sens	momen t (KN)	Valeur	σ _{bc} (MPa)	σ _{bc} (MPa)	Observation	σ _s (MPa)	$\overline{\sigma_S}$ (MPa)	Observation	
V-V	M_t	204.62	5.44	15	Vérifiée	224.3	201.63	Non vérifiée	
X-X	M_a	219.37	5.52	15	Vérifiée	209.86	201.63	Non vérifiée	
у-у	M_t	350.90	10.10	15	Vérifiée	279.88	201.63	Non vérifiée	
	M_a	443.58	12.24	15	Vérifiée	314.30	201.63	Non vérifiée	

Tableau VI.8: Vérification des contraintes dans le béton et dans l'acier

On remarque que pour les nervures les contraintes dans les aciers ne sont pas vérifiées, donc on doit recalculer le ferraillage à L'ELS ,les résultats sont résumés dans le tableau VI.9 :

Sens		M _s (KN)	Choix	A_{S}	σ _{bc} (MPa)	σ _{bc} (MPa)	σ _s (MPa)	$\overline{\sigma_S}$ (MPa)
х-х	Travée	204.62	8T16	16.08	5.07	15	187.71	201.63
	Appuis	219.37	8T16	16.08	5.43	15	201.25	201.63
	Travée	350.90	4T25+4T16	27.68	7.17	15	192.01	201.63
у-у	Appuis	443.58	6T25+4T12	33.97	8.47	15	199.98	201.63

Tableau VI.9 : Vérification des contraintes dans le béton et dans l'acier après recalcule.

<u>Armatures transversales:</u>

$$\emptyset_{t} \le \min\left(\frac{h}{35}; \frac{b_{0}}{10}; \emptyset_{t}\right) \Longrightarrow \emptyset_{t} \le \min\left(20,55,25\right) \Longrightarrow \emptyset_{t} \le 20 \text{ mm}$$

Soit : $\emptyset_t = 10 \text{ mm}$

Espacement des aciers transversaux :

$$S_t \le \min\left(\frac{h}{4}; 12\right) cm$$

 \Rightarrow S_t \leq 12 cm

 $Soit: S_t = 10 \text{ cm}$

Les armatures de peau :

Comme la poutre à une hauteur de 80cm, le **BAEL** préconise de mettre des armatures de peau de section $A_p = 3 \text{ cm}^2$ /ml de hauteur, donc : $A_p = 3 \times 0.8 = 2.4 \text{ cm}^2$

On opte pour 4HA10 = 3.14 cm²

Schémas de ferraillage des nervures :

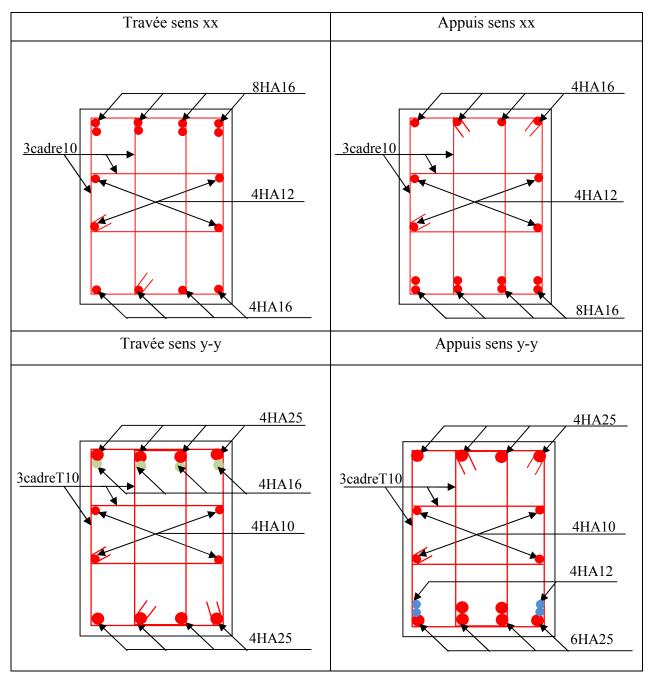


Figure VI.11 : Schéma de ferraillage des nervures

Conclusion

Dans l'ensemble de ce travail, on a pu prendre connaissances de majeures étapes à suivre pour manager à bien un projet de construction,

Cette étude nous à permis d'appliquer toutes nos connaissances déjà acquises durant le cursus universitaire ainsi que les approfondir d'avantage concernant le domaine de bâtiment et la connaissance de nouvelle méthode de calcul par logiciel comme (SAP2000), tout en respectant la règlementation en vigueur, et d'en faire un certain nombre de conclusions.

Parmi celles-ci, on cite:

- L'intensité des forces sismiques agissant sur un bâtiment lors d'un tremblement de terre est conditionnée non seulement par les caractéristiques du mouvement sismique, mais aussi par la rigidité de la structure sollicitée.
- L'irrégularité en plan et en élévation de notre structure ainsi que les contraintes architecturales rendent difficile la recherche d'un bon comportement dynamique (disposition des voiles).
- ➤ Pour le contreventement et la disposition des voiles, on a constaté que la disposition des voiles est un facteur beaucoup plus important que la quantité des voiles a mettre dans une structure et a un rôle déterminant dans le comportement de cette dernière visà-vis du séisme.
- ➤ Il est apparu que la vérification de l'interaction entre les voiles et les portiques dans les constructions mixtes vis-à-vis des charges verticales et horizontales est indispensable et dans la plus part des cas est déterminante pour le dimensionnement des éléments structuraux
- Les sections des poteaux choisis au chapitre pré dimensionnement ont été augmentées afin de vérifier l'interaction voiles portiques.

- ➤ Dans l'étude des éléments porteurs, on a constaté que les poteaux sont ferraillés avec le minimum du RPA99, cela est dû au surdimensionnement, et que le RPA99 valorise la sécurité avant l'économie.
- Afin d'éviter toute altération de la zone nodale, avec la formation des rotules plastiques aux niveaux des poteaux, on doit impérativement vérifier les moments résistants aux niveaux des zones nodales.
- ➤ Le radier est le type de fondation choisi, vu les charges importantes et les petites trames qu'on a dans notre structure.

Outre que la résistance, l'économie est un facteur très important qu'on peut concrétiser par le choix des sections de béton et d'acier dans les éléments porteurs de l'ouvrage, tout en respectant les sections minimales imposées par le règlement.

De ce fait, cette étude constitue la première expérience pour notre métier d'avenir, à savoir l'apprentissage des différents règlements à suivre et à respecter, ainsi que le contacte avec les entreprises qui nous permet d'avoir des solutions économiques et rationnelles pour les problèmes rencontrés.

Bibliographie

- 1. Règles parasismiques algériennes (RPA 99/ version 2003).
- 2. Règles de conception et de calcul des structures en béton armé (CBA93).
- 3. Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites (B. A. E. L. 91).
- 4. Document technique réglementaire (DTR BC 2.2), charges et surcharges d'exploitations.
- 5. Document technique réglementaire (DTR BC 2.33.1), Règles de calcul des fondations superficielles
- 6. M. Belazougui (calcul des ouvrages en béton armé).
- 7. Autres documents consultés :
 - Cahiers de cours de cursus.
 - Mémoires de fin d'études: $\begin{cases}
 624MAS/108 (2013), \\
 624MAS/255 (2014), \\
 624N/91 (2005).
 \end{cases}$

ANNEXE 1

Tableau des Armatures (en cm²)

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.7	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

Annexe 2
Dalles rectangulaires uniformément chargées articulées sur leur contour

$\alpha = L_X$	ELU	v = 0	ELS 1	D = 0.2
L _Y	μ _x	μ_{v}	μ _x	μ_{v}
0.40	0.1101	0.2500	0.0121	0.2854
0.41	0.1088	0.2500	0.1110	0.2924
0.42	0.1075	0.2500	0.1098	0.3000
0.43	0.1062	0.2500	0.1087	0.3077
0.44	0.1049	0.2500	0.1075	0.3155
0.45	0.1036	0.2500	0.1063	0.3234
0.46	0.1022	0.2500	0.1051	0.3319
0.47	0.1008	0.2500	0.1038	0.3402
0.48	0.0994	0.2500	0.1026	0.3491
0.49	0.0980	0.2500	0.1013	0.3580
0.50	0.0966	0.2500	0.1000	0.3671
0.51	0.0951	0.2500	0.0987	0.3758
0.52	0.0937	0.2500	0.0974	0.3853
0.53	0.0922	0.2500	0.0961	0.3949
0.54	0.0908	0.2500	0.0948	0.4050
0.55	0.0894	0.2500	0.0936	0.4150
0.56	0.0880	0.2500	0.0923	0.4254
0.57	0.0865	0.2582	0.0910	0.4357
0.58	0.0851	0.2703	0.0897	0.4456
0.59	0.0836	0.2822	0.0884	0.4565
0.60	0.0822	0.2948	0.0870	0.4672
0.61	0.0808	0.3075	0.0857	0.4781
0.62	0.0794	0.3205	0.0844	0.4892
0.63	0.0779	0.3338	0.0831	0.5004
0.64	0.0765	0.3472	0.0819	0.5117
0.65	0.0751	0.3613	0.0805	0.5235
0.66	0.0737	0.3753	0.0792	0.5351
0.67	0.0723	0.3895	0.0780	0.5469
0.68	0.0710	0.4034	0.0767	0.5584
0.69	0.0697	0.4181	0.0755	0.5704
0.70	0.0684	0.4320	0.0743	0.5817
0.71	0.0671	0.4471	0.0731	0.5940
0.72	0.0658	0.4624	0.0719	0.6063
0.73	0.0646	0.4780	0.0708	0.6188
0.74	0.0633	0.4938	0.0696	0.6315
0.75	0.0621	0.5105	0.0684	0.6447
0.76	0.0608	0.5274	0.0672	0.6580
0.77	0.0596	0.5440	0.0661	0.6710
0.78	0.0584	0.5608	0.0650	0.6841
0.79	0.0573	0.5786	0.0639	0.6978
0.80	0.0561	0.5959	0.0628	0.7111
0.81	0.0550	0.6135	0.0617	0.7246
0.82	0.0539	0.6313	0.0607	0.7381
0.83	0.0528	0.6494	0.0956	0.7518
0.84	0.0517	0.6678	0.0586	0.7655
0.85	0.0506	0.6864	0.0576	0.7794
0.86	0.0496	0.7052	0.0566	0.7932
0.87	0.0486	0.7244	0.0556	0.8074
0.88	0.0476	0.7438	0.0546	0.8216
0.89	0.0466	0.7635	0.0537	0.8358
0.90	0.0456	0.7834	0.0528	0.8502
0.91	0.0447	0.8036	0.0518	0.8646
0.92	0.0437	0.8251	0.0509	0.8799
0.93	0.0428	0.8450	0.0500	0.8939
0.94	0.0419	0.8661	0.0491	0.9087
0.95	0.0410	0.8875	0.0483	0.9236
0.96	0.0401	0.9092	0.0474	0.9385
0.97	0.0392	0.9322	0.4065	0.9543
0.98	0.0384	0.9545	0.0457	0.9694
0.99	0.0376	0.9771	0.0449	0.9847
1.00	0.0368	1.0000	0.0441	0.1000

ANNEXE 3

Caractéristiques générales

Distance in in entre niveaux

Printed School

en sintolex locur les dispositions en battere, consulter la table T31+

itombre de faces de servica Simple acces 255 cm

Process sucomatiques

collective descento selective, à analyse permanente de trads. à ouverture centrale trafic intense

Hauteur sous dalle		nsions mir Ses machi	ni (EN 81-1)	Passage Rore		ensité pour 50 Hz Ampère			Puissance	Réaction maxi en daN.		
HSK	BO	r pol. To	hauteur HO	troppe	TRI 220	And the last of th	JRI 3	80 V	absorbée 20 ± en XVA	cuvette FC	local des	machines
355 <i>380</i>	180	360	200	120 x 100	36	94	21	54	26	10200	B200	PM
355 380	180	380	200	120 × 100	37	87	21	18 50 Kill	25	10200	ARTON CO.	1500
355 390	180	420	200	120 × 100	28	70	16	40	19	A CONTRACTOR OF THE PARTY OF TH	8200	1 500
365 400	180	400	200	140 × 100	42	99	24	57	28	10200	8200	11500
365 400	180	420	200	120 x 100	36	90	21	ATTRACTOR OF THE		14500	5100	1500
2362.200M		學等機能	STUDENCE .	Service Control	MANUAL PROPERTY.	SECTION .	13000000	53	26	14500	5100	1500

17.5						建一种产品	100		21-76	45	0.00		1	
					500		140 x 100	Thorn.						
~1.						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2.7					
						4-16		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		-1-				
3.5							+(0)							
建 级别	1200	200		EV.	22									
365	420	31.10	240	390	200	140 x 100	54	179	31	104	43	25,000	8400	1500
365	420		240	400	200	120 x 100	49	117	28	67	NAME OF THE OWNER, THE	227	8400	1 500
365	420	A pro- Fig.	240	440	200	120 x 100	31	78	18	45	CONTROL OF THE PARTY OF THE PAR	1	8400	1500
375	420	-	240	400	200	140 x 100	59	142	34	82	Section 1	100	9000	1500
375	420	-	240	440	200	140 x 100	49	123	29	73		-	9000	1500
435	520		240	460	210	180 x 100	123	391	71	226		-	10500	1500
465	520	-	240	460	220	150 x 100	п	T	u			The Property of the Party of th	11000	2000
490			240	500	240	140 x 120		и	75	T		-	12500	2000
400	440	-	260	400	200	140 x 100	59	142	34	82	an			3000
400	440		260	400	200	120 x 100	49	123	29	1000			3800	3 500
410	440	-	60	400	200	160 x 100	112		52	127	-	-	9500	1500
410	140	_	60	400	200	140 x 100	59	148	34	85			11.000	1,500
465	540	_	60	480	220	290 x 120	141	451	92	262		The same of the sa	11000	1500
130	3-0	_	60	460	220	150 x 120	2	*	77			-	12305	2000
≠00	240		60	500	240	160 x 120	a.	20	T T	T.	-		14665	2500
400	640	_	60	430	500	140 x 100	59	142	34	82	10	Television.		
410	440	-	80	430	200	120 x 100	49	123	29	73	-	-	11000	1 500
410	440	-	50	430	500	170 x 100		4	52	127	62	33500	12506	1 500
460	>40		60 60	430	200	140 x 100	66	165	38:	95	46	33500	12500	1500
=70	140	_	60	520	210	210 x 120	166	530	96	307	130	35,000	13500	2500
540	-	-	50	520	220	150 x 120	U	27	ш	T	U	38000	14000	3000
590		-	50	520	240	200 x 120	T T	tt	t	ш	π	J8000	18000	5000
100	Symbolis		0.00		and a light	230 x 140	4	# 4	77	- tr	=	38000	19500	7,000

Performances & Raffinement

Ligne Building

Table dimensionnelle T30

ascenseurs de personnes machinerie supérieure entraînement électrique

Charge nominale en kg		Vicesse nominale eo m/s	Entrain. (1)	Nombre niveaux mad	Course maxi en.m	Dimensions de cabine	Passage libre to de porte	Omensions 7 de gaine 147 25 c	Profondeur de cuvette		
ti.z		1,00				BK x TK x HK	BTXHT	B9 x T3 12 1	HSG.	() ()	
630	6	1.00	24	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140	
B pers.	(Concession)		DyS	12 9	328	110×140×220	/ 44 80 ¥ 200 T	180 x 210	135	140	
		T = inter	PACVE	12	32	110 x 140 x 220	80 x 200	180×210	135	140	
		1.60	DyS	18	50	110 x 140 x 220	80 x 200	180 x 210 h	150	# 160 M EMP MED	
			ACVE	18	50	110 x 140 x 220	80 x 200	180 x 210	150	160	
900 110						367 (19 32) 1	i e				
							1 X 0 3			Ta Nê	
000			THE REAL PROPERTY.	A TOP AND		SALES COMPANY	高麗語歌歌	CONTRACTOR OF THE PERSON OF TH			
1000 (3 pers	(9)	1,00	2 v .	12	32	160 x 140 x 230	110 × 210	240 x 230	140	140	
	21.0		Dy S	12	32	160 x 140 x 230	110 x 210	240 x 230	140	140	
	-500	CT 214-	ACVF	12	32	160 x 140 x 230	110 2 710	240 x 230	140	140	
	36	1 60	DyS	18	50	160 x 140 x 230	110 × 210	740 × 230	155	160	
	THE	O DESCRIPTION OF THE PERSON NAMED IN	ACVF	18	50	160 x 140 x 230	110 x 210	240 x 230	155	160	
		2.50	Dy MIV	28	80	160 x 140 x 230	110 x 210	240 x 230	180	220	
	-10	3150	1D 2	31.	80	160 s 140 x 230	110 x 210	240 × 230	180	220	
		4,00	TD 2	31	80	160 x 140 x 230	110 x 210	240 × 230	320		
1250	6	1.00	Dy 5	12	32	195 x 140 x 230	110 x 210	250 x 230	140	160	
16 pers	36170	-1286	ACVF	12	32	195 x 140 x 230	110 x 210	260 x 230	140	160	
		1.50	Dy S	18	50	195 x 140 x 230	110 x 210	200 + 230	155	180	
			ACVF	18	50	195 × 140 × 230	110 x 210	260 + 230	155	160	
		2.50	Dy MV	28	90	196 x 140 x 236	- 110 x 210	₹60 4 230	180	220	
			ID 2	31	80	195 x 140 × 230	110 x 215	280 x 320	180	220	
		4 00	7D2	31	80	195 x 140 × 230	110 - 210	260 + 230	320		
1600 21 pera	6	1,00	bys	12	32	195 x 175 x 230	116 s 210	260 × 260	140	760	
			ACVF	12	32	195 x 175 x 230	110×210	760 x 260	140	760	
		1,90	Dy S	18	50	195 x 175 x 230	110 4 210	260 x 760	155	160	
		194	ACVF	18	50	195 x 175 x 230	110×210	1 260 x 260	155	160	
		- 0	Dy MV	28	80	195 x 175 x 230	110 x 210	265 × 260	180	220	
		-27-21	TD 2	31	30	195 x 175 x 730	110 x 21G	260 x 260	180	220	
		4.40	TD:2	31	60	195 × 175 × 730	110 x 210	260 x 260	320		
		6.30	TD-2	31	80	196 × 175 × 230	110 x 210	265 × 260	400	. 57	

Herita Chatter par character and experience on confirmation and relations management. [2] Line professions de complete in heateurs going date part of finding description of the confirmation of the line of the l

ANNEXE 4

TAB. 6.4 – Valeurs de M_1 (M_2) pour $\rho = 1$

U/l_x	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
V/l_y											
0.0	1	0.224	0.169	0.14	0.119	0.105	0.093	0.083	0.074	0.067	0.059
0.1	0.3	0.21	0.167	0.138	0.118	0.103	0.092	0.082	0.074	0.066	0.059
0.2	0.245	0.197	0.16	0.135	0.116	0.102	0.09	0.081	0.073	0.064	0.058
0.3	0.213	0.179	0.151	0.129	0.112	0.098	0.088	0.078	0.071	0.063	0.057
0.4	0.192	0.165	0.141	0.123	0.107	0.095	0.085	0.076	0.068	0.061	0.056
0.5	0.175	0.152	0.131	0.115	0.1	0.09	0.081	0.073	0.066	0.058	0.053
0.6	0.16	0.14	0.122	0.107	0.094	0.085	0.076	0.068	0.062	0.054	0.049
0.7	0.147	0.128	0.113	0.099	0.088	0.079	0.072	0.064	0.057	0.051	0.047
0.8	0.133	0.117	0.103	0.092	0.082	0.074	0.066	0.059	0.053	0.047	0.044
0.9	0.121	0.107	0.094	0.084	0.075	0.068	0.061	0.055	0.049	0.044	0.04
1.0	0.11	0.097	0.085	0.077	0.069	0.063	0.057	0.05	0.047	0.041	0.03

NOTA : Pour avoir les valeurs de M_2 ; il suffit de permuter U et V.