

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université A. MIRA, - Bejaïa – Faculté de Technologie Département de Génie Civil

Mémoire de fin d'étude

En Vue d'obtention du diplôme De Master II en génie civil **Option :** Matériaux et Structure

Thème

Etude d'un bâtiment (R+8) à usage d'habitation contreventé par un système mixte (voiles-portiques)

<u>Présenté par : Encadre par : M^{ME} HAMOUCHE</u>

M^{ELLE} AMROUCHE SAMIRA

M^{ELLE} AMRANI FADILA

Membres de jury :

M^{me}. Seghir

M^{me}.Laoubi

JUIN 2014

Remerciements

Au terme de ce modeste travail, nous tenons à exprimer notre profonde gratitude et nos vifs remerciements :

Avant tous, nous remercions ALLAH le tout puissant pour nous avoir donné la force et la patience pour mener à terme ce travail.

A nos familles : qui nous ont toujours encouragés et soutenus durant toutes nos études.

A M_{me} OURABAH: notre promotrice, pour avoir acceptée de nous guider sur le bon chemin du travail.

Aux membres de jury : pour avoir acceptés de juger notre travail.

A Mr SAHI BADIS: Ingénieur en génie civil, pour avoir accepté de nous aider, surtout dans la modélisation.

A tous ceux qui ont contribué de près ou de loin à la réalisation de ce mémoire.

Dédicaces

Je dédie du fond du cœur ce modeste travail à ceux que j'aime : A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, ma mère qui m'a soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci infiniment mes parents d'être la à mes cotés durant toutes ces années, que dieu vous garde et vous bénisse.

Mon très cher mari samir ainsi que sa famille

A Ma très chère sœur khoukha, son mari et ses enfants que j'aime beaucoup.

A mes frères salah et said et ma grand-mère safia ainsi à la mémoire de ma grand-mère menoune.

A Sonia et nana farida et ma tente, mon oncle et sa femme ainsi à toute ma famille.

Mes copines de chambre D13, mes amies walida, Lydia, Nora et à tous ceux qui nous sont chères.

Fadila

Dédicaces

Je dédie ce modeste travail à :

- ✓ A mes très chers parents qui ont tant donné pour me voir réussir.
- ✓ A mes très chères sœurs Warda et linda.
- ✓ A mes très chers frères youba et Kousseilla et à toute la famille AMROUCHE et BOUROUF.
- ✓ A mon cher badis et à toute sa famille.
- ✓ A mes copines et tous les gens qui m'aidé de loin ou de prés.

samira

TABLE DES MATIERES

Introduction Générale

CHAPITRE 1: GENERALITES

1-1 :INTRODUCTION	1
1-2 :Présentation de l'ouvrage	1
1-3 : Les caractéristiques géométriques de la structure	1
1-4 :Présentation de la structure	1
1-5 :Caractéristiques du sol d'assise	2
1-6 : Caractéristiques mécaniques des matériaux	2
1-6-1: Le béton	2
1-6-2: Résistance et caractéristique de L'acier	4
CONCLUSION:	5
CHAPITRE2: PRE DIMENSIONNEMENT DES ELEMENT	S
2-1 :INTRODUCTION	6
2-2: Les planchers	6
2-2-1: Plancher à corps creux	6
2-2-2: Les dalles pleines	8
2-3 : Les escaliers	10
2-3-1: Définition	10
2-3-2: Dimensionnement	10
2-3-3:Les différents types d'escaliers	10
2-4 : Les poutres	12
2-4-1: Les poutres principales (PP)	13
2-4-2: Les poutres secondaires (P.S)	13
2-5 : Les voiles	13
2-6: L'acrotère	14
2-7 : Les poteaux	15
2-8 : Evaluation des charges et surcharges	16
2-8-1: Plancher terrasse	16

2-8-2: Plancher étages courants	16
2-8-3: Evaluation des charges sur les balcons	17
2-8-4: Evaluations des charges sur les murs	17
2-8-5: Surcharge d'exploitation	17
2-9 : Descente des charges	18
2-9-1: Poteau1 (poteau intermédiaire)	19
2-9-2: Poteau 2 (poteau de rive)	21
2-9-3: Poteau 3 (niveau de la cage d'escalier)	22
2-9-4: Remarque	22
CONCLUSION:	25
CHAPITRE3: ETUDE DES ELEMENTS NON STRUCTURAUX	
3-1 :INTRODUCTION	26
3-2 : ETUDE DU PLANCHER	26
3-2-1: Les déférents types des poutrelles	26
3-2-2: Calcul des sollicitations	27
3-2-3: Exemple de calcul	27
3-2-4: Ferraillage	32
3-3 : ETUDE DES DALLES PLEINES	41
3-3-1: Panneau sur 4 appuis (entourant la cage d'ascenseur)	41
3-3-2: Dalle sur 2 appuis (balcon)	46
3-3-3: Dalle sur 3 appuis (intérieure de l'habitation FPN)	48
3-3-4: Dalle sur 3apuis (balcon)	52
3-4 : ETUDE DES ESCALIERS	55
3-4-1: Type 1 (escalier une seule volée)	55
3-4-2: Type 2 (escalier a deux volées)	64
3-4-3: Type 3 (escalier 3 volées étage courant)	69
3-5 : Etude de la poutre brisée	76
3-5-1: Calcul de la poutre brisée1 (étage courant)	76
3-5-2: Calcule de la poutre brisée 2 (RDC)	79
3-6 : ETUDE DE L'ASCENSEUR	80
3-6-1: Définition	80
3-6-2: Etude de la dalle de l'ascenseur	81
3-6-3: Etude de la dalle pleine au-dessous de l'ascenseur	85

3-7 : ETUDE DE L'ACROTERE	87
3-7-1: Hypothèse de calcul	87
3-7-2: Evaluation des charges et surcharges	87
3-7-3: Ferraillage	89
3-7-4: Schéma de ferraillage	91
CHAPITRE 4 : ETUDE DYNAMIQUE	
4-1 :INTRODUCTION	92
4-2 : Objectifs et exigences	92
4-3 : Méthodes de calcul	92
4-3-1: Méthode statique équivalente	93
4-3-2: Méthode dynamique modale spectrale	96
4-3-3 Méthode d'analyse par accélérogramme:	97
4-4 : Exigences du RPA99 pour les systèmes mixtes	97
4-5 : Interprétation des résultats de l'analyse dynamique	98
4-5-1: Disposition des voiles	98
4-5-2: Section des poteaux adoptés	98
4-5-4: Comportement de la structure	99
4-5-5: Vérification des résultats vis-à-vis du RPA 99/Version2003	100
4-6 : Conclusion	104
CHAPITRE 5: ETUDE DES ELEMENTS STRUCTURAUX	
5-1: Introduction	105
5-2: Etude des poteaux	105
5-2-1: Recommandations du RPA99 (version 2003)	105
5-2-2: Sollicitations de calcul	107
5-2-3: Calcul du ferraillage	107
5-2-4: Vérifications	110
5-2-5: Schémas de ferraillages des poteaux	112
5-3: Etude des poutres	114
5-3-1: Recommandation du RPA99/2003	114
5-3-2: Calcul de ferraillage	115
5-3-3: Vérifications	116
5-3-4: Vérification à l'ELS	117
5-3-5: Schéma de ferraillage	118

5-4: Vérification des zones nodales	118
5-5: ETUDE DES VOILES	120
5-5-1: Recommandation du RPA	121
5-5-2 Le ferraillage:	122
5-5-3: Disposition des voiles	124
5-5-4: Schéma de ferraillage	127
CHAPITRE 6: ETUDE DE L'INFRASTRUCTURE	
6-1: Introduction	128
6-2: Choix de type des fondations	128
6-2-1: Semelle isolée	128
6-2-2 Les semelles filantes:	129
6-2-3: Radier général	130
6-2-4: Ferraillage du radier	133
6-3: Les nervure	136
6-3-1: Calcul des sollicitations	137
6-3-2: Ferraillage des nervures	139
6-3-3: Vérifications	140
6-3-4: Schémas de ferraillage des nervures	141

conclusion générale

LISTE DES TABLEAUX

Tableau2-1 : pré dimensionnement de l'escalier deux volées	12
Tableau2-2 : pré dimensionnement de l'escalier trois volées étage courant	12
Tableau2-3 : pré dimensionnement des poteaux	15
Tableau2-4: Charges et surcharges du plancher terrasse	16
Tableau2-5 : Charges et surcharges d'étage courant	16
Tableau2-6: Charges et surcharges sur les balcons	17
Tableau2-7: Charges et surcharges sur les murs	17
Tableau2-8 : Surcharges d'exploitation	17
Tableau2-9 : Dégression de charges	18
Tableau2-10 : Poids propre des poteaux	18
Tableau2-11 : Descente de charge poteau1	20
Tableau2-12 : Vérification des poteaux à la compression simple	23
Tableau2-13 : Vérification de critère de stabilité de forme	24
Tableau3-1 : Les différents types des poutrelles	26
Tableau 3-2 : Tableau récapitulatif des sollicitations maximales	32
Tableau 3-3 : Résumé de ferraillage des poutrelles	39
Tableau 3-4 : Evaluation de la flèche	39
Tableau 3-5 : Schéma de ferraillage des poutrelles	40
Tableau 3-6: Ferraillage de panneau sur 4 appuis	42
Tableau 3-7: Vérification des contraintes	43
Tableau 3-8 : Résultats de calcul à la flexion simple et ferraillage de la dalle	47
Tableau 3-9 : Résultats de calcul des contraintes de béton et d'acier	47
Tableau 3-10 : Résultats de calcul à la flexion et ferraillage de la dalle en travée	49
Tableau 3-11 : Résultats de calcul à la flexion et ferraillage de la dalle en appui	49

Tableau 3-12 : Résultats de calcul de la contrainte de béton	50
Tableau 3-13 : Résultats de calcul à la flexion simple et ferraillage de la d	alle en travée 52
Tableau 3-14 : Résultats de calcul à la flexion et ferraillage de la dalle en	appui 53
Tableau 3-15 : Résultats de calcul de la contrainte de béton et l'acier	54
Tableau 3-16 : Evaluation des charges de la volée de l'escalier type1	55
Tableau 3-17 : Evaluation des charges du palier de l'escalier type1	56
Tableau 3-18 : Résultats de calcul à la flexion simple et ferraillage de l'es	calier 57
Tableau 3-19 : Résultats de calcul des contraintes de béton	58
Tableau 3-20 : Ferraillage de la poutre palière à la flexion simple	61
Tableau 3-21 : Résultats de calcul des contraintes de béton	62
Tableau 3-22 : Evaluation des charges de la volée de l'escalier type2	64
Tableau 3-23 : Evaluation des charges de palier de l'escalier type2	64
Tableau 3-24 : Résultats de ferraillage de l'escalier type2 (volée1)	65
Tableau 3-25 : Résultats de calcul des contraintes de béton	66
Tableau 3-26: Les différents cas de chargement de l'escalier type2(Volée	·1) 67
Tableau 3-27 : Résultats de ferraillage de l'escalier type2 (volée2)	67
Tableau 3-28 : Résultats de calcul des contraintes de béton	68
Tableau 3-29 : Evaluation des charges de la volée de l'escalier type3	69
Tableau 3-30: Evaluation des charges du palier de l'escalier type 3	70
Tableau 3-31 : Résultats de ferraillage de l'escalier type3 (1 ^{er} et 3 ^{eme} Vole	ée) 71
Tableau 3-32 : Résultats de calcul des contraintes de béton	72
Tableau 3-33 : Résultats de ferraillage de l'escalier type3 (1 ^{er} et 3 ^{eme} Vole	ée) 74
Tableau 3-34 : Résultats de calcul des contraintes de béton	75
Tableau 3-35 : Résultats de calcul des moments et leurs ferraillages ainsi de cisaillement	·
Tableau 3-36: Moments et ferraillage correspondant	80

Tableau 3-37 : Résultats de calcul	83
Tableau 3-38 : Résultats de calcul	86
Tableau 3-39 : Vérification des contraintes	87
Tableau 3-40 : Sollicitations de calcul sur l'acrotère	88
Tableau 3-41 : Résultats de calcul des armatures longitudinales	90
Tableau 4-1: Valeurs des pénalités pq	94
Tableau 4-2: Les sections des poteaux adoptée	98
Tableau 4-3: Mode de vibration et taux de participation de masse	99
Tableau 4-4: Vérification de l'interaction sous charges verticales	101
Tableau 4-5: Vérification de l'interaction sous charges horizontales	101
Tableau 4-6 : Résumé des résultats	102
Tableau 4-7: Vérification de la résultante des forces sismiques	102
Tableau 4-8: Vérification des déplacements	103
Tableau 4-9 : Vérification des effets p- Δ	104
Tableau 5-1: Armatures longitudinales minimales et maximales dans les poteaux	106
Tableau 5-2 : Sollicitations dans les poteaux	107
Tableau 5-3 : Ferraillage des poteaux	109
Tableau 5-4: Les armatures transversales adoptées pour les poteaux	109
Tableau 5-5 : Justification de l'effort normal ultime	111
Tableau 5-6 : Vérification des contraintes dans le béton	111
Tableau 5-7: Vérification des contraintes tangentielles	112
Tableau 5-8 : Schéma de ferraillage des poteaux	112
Tableau 5-9 : Armatures longitudinales min et max dans les poutres selon le RPA99	115
Tableau 5-10 : Les sollicitations les plus défavorables	115
Tableau 5-11 : Résultats de calculs de ferraillages des poutres	115
Tableau 5-12 : Vérification des contraintes tangentielles	117

Tableau 5-13 : Vérification des armatures longitudinales aux cisaillements	
Tableau 5-14 : Vérification de L'état limite de compression	
Tableau 5-15 : Vérification de la flèche pour les poutres	
Tableau 5-16 : Les moments résistants dans les poteaux	
Tableau 5-17 : Vérification de la zone nodale dans différents étages	
Tableau 5-18 : Ferraillage du voile Vx1=Vx4 124	
Tableau 5-19 : Ferraillage du voile Vx2	
Tableau 5-20 : Ferraillage du voile Vx3	
Tableau 5-21 : Ferraillage du voile Vy1=Vy3	
Tableau 5-22 : Ferraillage du voile Vy2 126	
Tableau 5-23 : Ferraillage du voile Vy4	
Tableau 6-1: Tableau de ferraillage du radier	
Tableau 6-2 : Vérification des contraintes	
Tableau 6-3 : Vérification des contraintes nouvelles	
Tableau 6-4 : Sollicitations sur la nervure dans le sens longitudinal	
Tableau 6-5 : Sollicitations sur la nervure dans le sens transversal	
Tableau 6-6 : Résumé des résultats de ferraillage	
Tableau 6-7 : Vérification de l'effort tranchant	
Tableau 6-8 : Résumé des résultats (Vérification des contraintes)	
Tableau 6-9 : Vérification des contraintes nouvelles 140	

TABLE DES FIGURES

Figure 2-1 : Plancher à coups creux.	6
Figure 2-2 : Schéma d'une poutrelle.	7
Figure 2-3 : Schéma de disposition des poutrelles	8
Figure 2-4: Dalle sur 02 appuis.	9
Figure 2-5 : Dalle sur 03 appuis.	9
Figure 2-6: Panneaux sur 04 appuis.	9
Figure 2-7 : Schéma d l'escalier.	10
Figure 2-8 : Escalier a un seul volé avec un schéma statique	11
Figure 2-9 : Escalier a deux volées perpendiculaires avec un schéma statique	11
Figure 2-10 :Escalier trois volées avec schéma statique	12
Figure 2-11: coupe verticale d'un voile	14
Figure 2-12 :Schéma de l'acrotère.	14
Figure 2-13 :Plan de repérage des poteaux dans la descente de charge	19
Figure 2-14 :Descente de charge poteau1	19
Figure 2-15 :Descente de charge poteau2	21
Figure 2-16 :Descente de charge poteau3	22
Figure 3-1:Schéma statique de la poutrelle type1	27
Figure 3-2 :Schéma statique de la poutrelle type3	29
Figure 3-3 :Schéma de ferraillage de la dalle de compression	41
Figure 3-4 :Panneau sur 04 appuis.	41
Figure 3-5 : Schéma de ferraillage du panneau sur 4 appuis	46
Figure 3-6 :Dalle sur 2 appuis (balcon)	46
Figure 3-7 :Schéma de ferraillage de la dalle sur 2 appuis(balcon)	48
Figure 3-8 :Dalle sur 3 appuis.	48
Figure 3-9 :Schéma de ferraillage de la dalle sur 3 appuis	51
Figure 3-10 :Dalle sur 3appuis (balcon)	52
Figure 3-11 :Schéma de ferraillage de la dalle sur 3 appuis (balcon)	55
Figure 3-12 : Schéma statique de l'escalier type1	56
Figure 3-13 : Schéma de ferraillage l'escalier type1	60
Figure 3-14 : Schéma de ferraillage de la poutre palière	63
Figure 3-15 : Schéma statique de l'escalier type2 (volée1)	64

Figure 3-16 : Schéma de ferraillage de l'escalier type2(volée1)	67
Figure 3-17 :Schéma statique de l'escalier type2 (volée2)	67
Figure 3-18 :Schéma de ferraillage de l'escalier type2 (volée2)	69
Figure 3-19 : Schéma statique de l'escalier type3(1 ^{ere} et 3 ^{eme} volée)	70
Figure 3-20 : Schéma de ferraillage de l'escalier type3(1 ^{er} et 3 ^{eme} volée)	74
Figure 3-21 : Schéma statique de l'escalier type3 (2 ^{eme} volée)	74
Figure 3-22 : Schéma de ferraillage de l'escalier type3 (2 ^{eme} volée)	76
Figure 3-23 :Schéma statique de la poutre brisée1	76
Figure 3-24 : Schéma de ferraillage de la poutre brisée1	79
Figure 3-25 : Schéma statique de la poutre brisée2	79
Figure 3-26 :Schéma de ferraillage de la poutre2	80
Figure 3-27 : Schéma représentant de la surface d'impact	81
Figure 3-28 : Schéma de ferraillage de la dalle du local machine	85
Figure 3-29 : Schéma de ferraillage de la dalle au-dessous de l'ascenseur	87
Figure 3-30 : Schéma statique de l'acrotère.	88
Figure3-31 :section considérée pour le calcul de l'acrotère	89
Figure 3-32 : ferraillage de l'acrotère.	91
Figure 4-1 :vue en 3D de la structure.	93
Figure 4-2 : schéma de disposition des voiles.	98
Figure 4-3: Mode 1, Translation suivant l'axe y-y	99
Figure 4-4: Mode 2, Translation suivant l'axe x-x	100
Figure 4-5: Mode 3, Translation suivant l'axe z-z	100
Figure 5-1 :La zone nodale	106
Figure 5-2 :Section d'un poteau.	111
Figure 5-3 :Schéma de ferraillage des poutre principales et secondaires	118
Figure 5-4 :Zone nodale	119
Figure 5-5 :Disposition des armatures verticales (vue en plan)	121
Figure 5-6 :Schéma d'un voile pleine.	122
Figure 5-7 :Disposition des voiles	124
Figure 5-8 :Schéma de ferraillage du voile	127
Figure 6-1 :Semelle isolée de fondation.	129
Figure 6-2 :Semelle filante	130
Figure 6-3 :Dalle sur quatre appuis.	134
Figure 6-4 :Schéma de ferraillage du radier	136

Figure 6-5 : Sollicitation sur les nervures longitudinales	137
Figure 6-6 :Diagramme des moments sens XX tirés par le sap2000	138
Figure 6-7: Sollicitation sur les nervures transversales.	138
Figure 6-8 :Diagramme des moments sens YY tirés par le sap2000	139
Figure 6-9 :Section à ferrailler	139
Figure 6-10 :Schéma de ferraillage des nervures	142

Symboles Et Notations

A', Aser: Section d'aciers comprimés et section d'aciers à l'ELS respectivement.

Au: Section d'aciers à l'ELU.

At: Section d'armature transversale.

A: Coefficient d'accélération de zone

B: Aire d'une section de béton.

Br: Section réduite.

B: La largeur (m).

C: Constante de compressibilité.

C_T: Coefficient, fonction du système de contreventement et du type de remplissage

C_u: La cohésion du sol (KN/m²).

C_r: Cohésion réduite.

D: Diamètre.

D_e: Hauteur d'ancrage équivalente (m).

D: Facteur d'amplification dynamique moyen.

ELS: Etat limite de service.

ELU: Etat limite ultime.

E: Module d'élasticité longitudinale, Séisme.

E_b : Module de déformation longitudinal de béton.

E_i: Module de déformation instantanée (Eij à l'âge de j jours).

E_s: Module d'élasticité de l'acier.

F: Force.

 \mathbf{F}_{c28} : Résistance caractéristique à la compression donnée en (MPa).

F₁₂₈: Résistance caractéristique à la traction donnée en (MPa).

F: Cœfficient de sécurité = 1.5

G: Action permanente.

H: La hauteur d'ancrage d'une fondation (m).

H_c: La profondeur critique (m).

I: Moment d'inertie (m⁴)

Q: Charge variable (d'exploitation).

Q: Facteur de qualité

L: Longueur ou portée.

L_{max}: La plus grande portée entre deux éléments porteurs successifs (m).

M: Moment en général.

Ma: Moment sur appui.

Mu: Moment de calcul ultime.

Mser: Moment de calcul de service.

Mt: Moment en travée.

 $N_{c\;max}$, $N_{q\;max}$: Termes de portance pour les fondations profondes.

Ns: Effort normal de service.

Nu: Effort normal ultime

 N_r : Poids du radier (KN).

N: Effort normale du aux charges verticales.

N_{Tot}: Poids total transmis par la superstructure (KN).

P: Charge concentrée appliquée (ELS ou ELU).

Pradier: Poids du radier (KN).

Q_P: Résistance de pointe d'un pieu.

 Q_S : Frottement latéral.

Q₁: Charge limite d'un pieu.

R : Coefficient de comportement global.

S: Section.

 S_r : Surface du radier (m²).

 S_t : Surface totale du bâtiment (m²).

St: Espacement des armatures.

T: Effort tranchant.

T₂: Période caractéristique, associé à la catégorie du site.

V: Effort tranchant.

Vser: Effort tranchant vis-à-vis de l'état limite de service.

 V_u : Effort tranchant vis-à-vis de l'état limite ultime.

W: Poids propre de la structure.

 \mathbf{W}_{Oi} : Charges d'exploitation.

W_G: Poids du aux charges permanentes et à celles d'équipement fixes éventuels.

X, Y et Z: Coordonnées en général.

Z: Coordonnée d'altitude, bras de levier

Z : Profondeur au dessous de la fondation (m).

a: Une dimension (en général longitudinale).

b₀ : Epaisseur brute de l'âme de la poutre

d : Distance du barycentre des armatures tendues à la fibre extrême la plus comprimée.

d': Distance du barycentre des armatures comprimée à la fibre extrême la plus comprimée.

e: Excentricité, épaisseur.

f: Flèche

fe: Limite d'élasticité

h_t: Hauteur total du radier (m).

h_N: Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 σ_b : Contrainte de compression du béton.

 σ_s : Contrainte de compression dans l'acier

υ: Coefficient de poison

 σ : Contrainte normale.

 γ_h : Poids volumique humide (t/m³).

 γ_w : Poids volumique de l'eau (t/m³).

φ: Angle de frottement interne du sol (degrés).

 σ_{adm} : Contrainte admissible au niveau de la fondation (bars).

q_{s max}: Frottement latéral unitaire limite

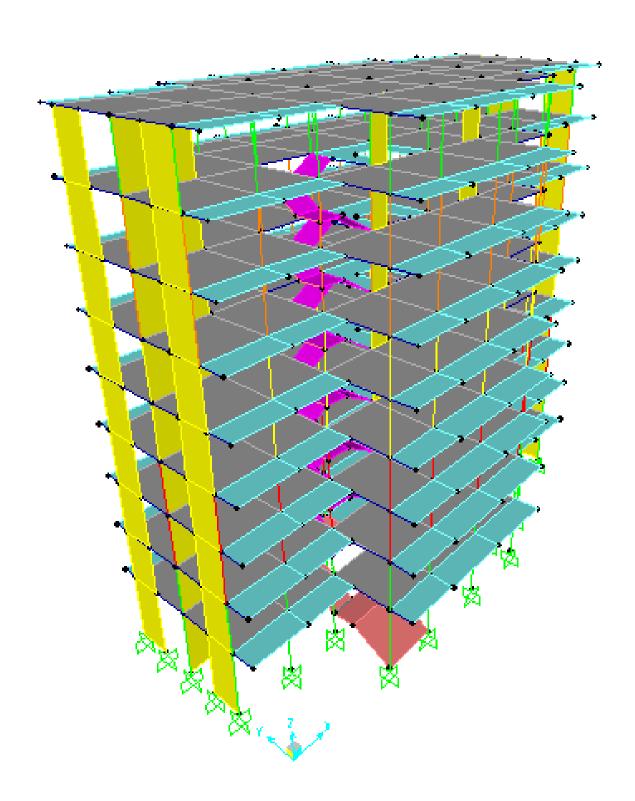
q: Contrainte transmise par la structure au sol (bars).

- **q**_u: Contrainte effective de rupture de la semelle (bars).
- **q**: Contrainte transmise au sol par la structure (bars).
- **k**_c: Coefficient de portance.
- τ_{utin}: Valeur de cisaillement limite donné par le BAEL (MPa).
- α: Coefficient dépendant de la nature de sol.
- τ_u : Contrainte de cisaillement (MPa).
- η: Facteur d'amortissement.
- β: Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.
- σ_v : Contrainte verticale due au sol au niveau de la base de la fondation.
- σ_H : Contrainte totale horizontale au niveau de l'essai.
- σ_v : Contrainte totale verticale au niveau de l'essai.
- q_{ref}: Contrainte de référence appliquée par la semelle au sol
- q_u : Contrainte ultime (limite, de rupture) du sol.
- γ_q : Coefficient de sécurité.

Introduction générale

Les secousses sismiques sont surement l'une des plus dangereuses des catastrophes naturelles ; pour mieux se protéger contre elles, il est nécessaire de bien comprendre le phénomène des tremblements de terre qui est à l'origine des forts mouvements de sol.

Depuis le séisme de BOUMERDES en 2003, le règlement parasismique algérien a été modifié vu le regain d'intérêt pour les constructions parasismiques.


Les ingénieurs en génie civil sont appelés à concevoir des structures dotées d'une bonne rigidité et d'une résistance suffisante vis-à-vis de l'effet sismique, tout en tenant compte des aspects structuraux, fonctionnels, économiques, esthétiques et la viabilité de l'ouvrage.

Toute fois le choix du système de contreventement dépend de certaines considérations à savoir la hauteur du bâtiment, la capacité portante du sol et les contraintes architecturales.

Dans le cadre de ce projet, nous avons procédé au calcul d'un bâtiment R+8 à usage d'habitation dans une zone de moyenne sismicité.

Après avoir présenté le projet et les caractéristiques mécaniques des matériaux en chapitre 1, on a dimensionné les éléments de bâtiment en chapitre 2, en chapitre 3, on a calculé tous les éléments secondaires tel que les planchers, les escaliers, l'acrotère,...etc. l'étude dynamique dans le 4ème chapitre à la recherche d'un bon comportement de notre structure par la mise en place d'une disposition bien choisi des voiles. Une fois que la disposition est adoptée, la structure est soumise au spectre de réponse du RPA99, sa réponse va être calculée en utilisant le logiciel SAP2000-V14.Le calcul du ferraillage des éléments structuraux sera exposé dans le chapitre 5 et en fin le calcul del'infrastructure sera l'objet du chapitre 6.

Tous les calculs ont été menés en utilisant différents codes de calcul et de conception, notamment CBA93, BAEL91, RPA99 version 2003 et d'autres DTR.

CHAPITRE 1: GENERALITES

1.1 INTRODUCTION

L'étude d'un bâtiment en béton armé nécessite des connaissances sur lesquelles l'ingénieur prend appuis, et cela pour obtenir une structure à la fois sécuritaire et économique.

1.2 Présentation de l'ouvrage

L'ouvrage qui fait l'objet de notre étude est un immeuble en(R+8), cette structure est destinée à usage d'habitation, situé sur le territoire de la wilaya de Bejaia au village d'IGHIL EL BERDJ est classé d'après les règles parasismiques algériennes« RPA99 /version 2003 » dans le groupe 2B, ayant une zone de moyenne sismicité IIa.

1.3 Les caractéristiques géométriques de la structure

Les caractéristiques géométriques de la structure à étudier sont :

- La hauteur totale du bâtiment (sans acrotère) est : H= 28.56m
- La longueur en plan est de 29.60m
- La largeur en plan est de 14.20m
- La hauteur du RDC est de 4.08m
- La hauteur de l'étage courant est de 3.06m

1.4 Présentation de la structure

Les planchers sont constitués de dalles en corps creux en partie courante et en dalles pleines pour les balcons.

L'acrotère c'est un élément en béton armé, contournant le bâtiment, encastré à sa base au plancher terrasse qui est accessible.

Les escaliers ce sont des éléments secondaires réalisés en béton armé coulés sur place, permettant le passage d'un niveau à un autre. Notre bâtiment possède trois types d'escaliers (escalier à une seule volée, deux volées et trois volées) et d'un ascenseur.

Les façades et les cloisons les murs extérieurs seront réalisés en doubles cloisons de briques creuses séparées par une lame d'air de 5cm. Les murs de séparation intérieurs seront en une seule paroi de brique de 10cm.

Le contreventement du bâtiment est assuré par des voiles et des portiques dans les deux sens (longitudinale et transversale) et assurant une stabilité au bâtiment vis-à-vis des charges horizontales et verticales, ce qu'il lui confère une grande rigidité à la flexion et à la torsion.

D'après la classification des RPA99 version 2003, le bâtiment est considéré comme un ouvrage d'importance moyenne (groupe d'usage 2) puisque sa hauteur totale ne dépasse pas 48m.

1.5 Caractéristiques du sol d'assise

D'après la base des données géologiques et les résultats investigations des géotechniques du Laboratoire des travaux publics et constructions bâtiments « SOUMMAM AMIZOUR », la capacité portante admissible du sol d'assise retenue est σsol=1.8 bar. Le site se présente sous forme d'un couloir qui représente des facies Marno-Schisteux de l'âge sénonien ; ces schistes sont compactes en profondeur avec de nombreuses lentilles de conglomérats à éléments de taille très variable, sont accompagnés quelquefois de véritables « petites Klippes sédimentaire », d'où la nécessité de faire l'ancrage à 3 m.

Il est à souligner que la région de « Ighil EL Berdj» est classée suivant le RPA99/V2003 en **Zone IIa** (une zone de sismicité moyenne), avec un sol d'assise meuble **S3**.

1.6 Caractéristiques mécaniques des matériaux

1.6.1 Le béton

Le béton choisi est de classe C25, sa composition doit permettre d'obtenir les caractéristiques suivantes :

1.6.1.1 Résistance caractéristique à la compression (Art A.2.1.1.1 CBA93)

Dans les constructions courantes, le béton est défini, du point de vue mécanique par sa résistance caractéristique à la compression (à 28 jours d'âge noté « f_{c28} »).

Le durcissement étant progressif, f_{cj} est fonction de l'âge du béton. Aussi, la valeur conventionnellement retenue pour le calcul des ouvrages est f_{cj} .

• Pour $j \le 28$ jours:

Pour
$$f_{c28} \le 40 \text{ MPa} \Rightarrow f_{ci} = [j/(4,76+0,83j)]f_{c28}$$

Pour
$$f_{c28} > 40 \text{ MPa} \Rightarrow f_{cj} = [j/(1,4+0.95j)]f_{c28}$$

Pour : 28< j<60 jours
$$\implies f_{cj} = f_{c28}$$

• Pour : j >= 60 jours
$$\Rightarrow f_{cj} = 1,1 f_{c28}$$

Pour l'étude on opte pour f_{c28} =25 MPA

1.6.1.2 Résistance caractéristique à la traction

La résistance caractéristique à la traction du béton à j jours, notée f_{tj} , est conventionnellement définie par les relations :

$$ftj = 0.6 + 0.06fcj$$

Pour j=28 jours et fc28 = 25MPA = 5 ft28 = 2.1MPA.

Contrainte limite:

✓ Contrainte de compression à l'Etat Limite Ultime

$$\sigma_{bc} = \frac{0.85 \times f_{c28}}{\theta \times \gamma_b} \quad [\text{MPa}]$$

Avec:

$$\gamma_b = \begin{cases} 1.15 & \text{Situation accidentelle} \\ 1.5 & \text{Situation durable} \end{cases}$$

T : La durée probable d'application de la combinaison d'action considérée.

 θ : Coefficient d'application.

$$\begin{cases} \theta = 1 : \text{Lorsque T} > 24\text{h.} \\ \theta = 0.9 : \text{Lorsque 1h} \le \text{T} \le 24\text{h.} \end{cases}$$

 θ = 0.8 : Lorsque la durée probable d'application de la combinaison d'action<1h.

Dans notre cas T \le 24 heures d'où $\sigma_{bc} = 14.2$ MPa situation durable. $\sigma_{bc} = 18.48$

MPa situation accidentelle.

✓ Contrainte ultime de cisaillement :

La contrainte ultime de cisaillement est limitée par : $\tau \leq \tau_{adm}$

 τ_{adm} = min $(0.2 f_{ci}/\gamma_{b}; 5 \text{Mpa})$ pour la fissuration peu nuisible.

 $\tau_{adm} = \min(0.15 f_{cj}/\gamma_b; 4\text{Mpa})$ pour la fissuration préjudiciable.

Dans notre cas on a f_{c28} =25Mpa donc :

$$\tau_{Adm}$$
=3,33Mpa \rightarrow fissuration peu nuisible. τ_{Adm} =2,5Mpa \rightarrow fissuration préjudiciable.

✓ Etat limite de service :

■ La contrainte de compression $(\overline{\sigma}_{bc})$ à ELS. (CBA 93 art. A.4.5.2)

$$\overline{\sigma_{bc}} = 0.6 \times f_{c28} = 0,6 \times 25 = 15 \text{ MPa}$$

1.6.1.3 Déformation longitudinale du béton

On distingue deux modules de déformation longitudinale du béton ; le module de Young instantané Eij et différé Evj

1.6.1.3.1 Module de déformation longitudinale du béton

a) A court terme E_{ij} :

Sous les contraintes normales d'une durée d'application inférieure à 24h. On admet à défaut de mesures, qu'à l'âge «j» jours le module de déformation longitudinale instantanée du béton Eij est égal à :

$$E_{ij} = 11000 \times (f_{cj})^{1/3}$$
 $T \le 24h$ $f_{c28} = 25MPa \Rightarrow E_{ij} = 32164.2MPa$ (Art A.2.1.2.1 CBA93)

b) A long terme E_{vi} :

Sous des chargements de longue durée (cas courant), le module de déformation longitudinale différé qui permet de calculer la déformation finale du béton (qui prend en compte les déformations de fluage du béton) est donné par la formule: E_{vj} = (1/3) E_{ij} . (Art **A.2.1.2.2 CBA93)**

1.6.2 Résistance et caractéristique de L'acier

1.6.2.1 Définition

Le matériau acier est un alliage Fer et Carbone en faible pourcentage, Le module d'élasticité longitudinal de l'acier est pris égale à : E_s =200 000 MPa.

1.6.2.2 Caractéristiques mécaniques des aciers

- à E.L.U

$$\begin{cases} \sigma_{s} = \frac{f_{e}}{\gamma_{s}} & \text{Pour: } \varepsilon_{se} \leq \varepsilon_{s} \leq 10\% \\ \sigma_{s} = E_{s} \times \varepsilon_{s} & \text{Pour: } \varepsilon_{s} \leq \varepsilon_{se} \end{cases}$$

Avec:
$$\varepsilon_s: \frac{f_e}{\gamma_s \times E_s}$$
; $\gamma_s = \begin{cases} 1,5....$ Pour le cas courant. $1...$ Pour le cas accidentel.

Pour le cas de ce projet: $\sigma_s = \begin{cases} 348 \text{ MPa} & \text{Pour une situation courante.} \\ 400 \text{ MPa} & \text{Pour une situation accidentelle.} \end{cases}$

- à E.L.S

Nous avons pour cet état :

- Fissuration peu nuisible : pas de vérification à faire
- Fissuration préjudiciable : $\sigma_{st} \leq \sigma_{st} = \min(2/3f_e, 110\sqrt{\eta f_{tj}})$
- Fissuration très préjudiciable : $\sigma_{st} \leq \sigma_{bc}^{-} = \min (1/2 f_e, 90 \sqrt{\eta f_{tj}})$

Conclusion

Le calcule d'un bâtiment en béton armé passe par l'application rigoureuse et précise des règles en vigueur. Cependant, chaque ouvrage présente ses propres caractéristiques qui font que le calcul doit être fait avec précautions.

CHAPITRE2: PRE DIMENSIONNEMENT DES ELEMENTS

2.1 Introduction

Pour assurer une bonne stabilité de l'ouvrage, il faut que tous les éléments de la structure soient pré dimensionnés pour résister aux différentes sollicitations :

- Sollicitations verticales : dues aux charges permanentes, surcharges du plancher, poutrelles et poutres ;
- Sollicitations horizontales : dues aux effets du vent et du séisme.

Le pré dimensionnement de chaque élément de la structure est conforme au règlement B.A.E.L 91, R.P.A 99 (version 2003) et du C.B.A 93.Les résultats obtenus ne sont pas définitifs, ils peuvent augmenter après vérifications dans la phase du dimensionnement. La transmission des charges se fait comme suit : Charges et surcharges → planchers → poutrelles → poutres → poteaux → fondations → sol.

2.2 Les planchers

2.2.1Plancher à corps creux

Le plancher est un élément qui joue un rôle porteur supportant les charges et surcharges, et un rôle d'isolation thermique et acoustique et séparateur entre deux étages. Il est composé de corps creux de, poutrelles et de dalle de compression. Son pré dimensionnement se fait par satisfaction de la condition suivante :

ht
$$\geq \frac{Lmax}{22.5}$$
 (CBA93 ART B.6.8.4.2.4)

Avec:

- ht= hauteur totale du plancher.
- L_{max} = distance maximale entre nus d'appuis dans le sens de la disposition des poutrelles L_{max} = 4 .20-0.40=380 cm ce qui donne : **ht≥16.88 cm**

Où 16 cm est la hauteur de corps creux et 4 cm la hauteur de la dalle de compression.

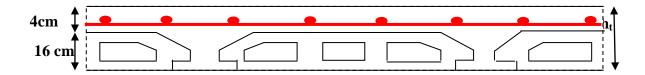


Figure 2-1: Plancher à corps creux.

2.2.1.1 Pré dimensionnement des poutrelles

Les poutrelles sont des sections en Té en béton armé, servant à transmettre les charges réparties ou concentrées aux poutres principales, elles sont calculées en flexion simple. La disposition des poutrelles se fait selon deux

- Critère de la petite portée : Les poutrelles sont disposées parallèlement à la plus petite portée.
 - Critère de continuité : les poutrelles sont disposées selon la travée qui comporte le plus grand nombre d'appuis possibles.

Dans notre projet nous disposons nos poutrelles comme le montre la (figure 2.3).

b: Largeur de la table de compression.

h: Épaisseur du plancher =16+4cm

L_x: Distance maximale entre nus d'appui de deux poutrelles.

L_y: Distance minimale entre nus d'appuis de deux poutres principales.

$$b_0 = (0.4 \text{ à } 0.6) \text{ h} \rightarrow b0 = (8 \text{ à } 12 \text{ cm})$$

Soit: b0 = 10cm

 $b_1 \le min(L_x/2, L_y/10)$ **CBA93 (ARTA.4.1.3)**

 $L_x = 65-10 = 55$ cm

 $L_v = 210 - 40 = 170 \text{cm}$

 $b_1 \le \min(55/2; 170/10)$

 $b_1 \le \min(27.5; 17)$

 $b_1=17cm$

 $b=2b_1+b_0$

b = (2x17) + 10 = 44cm

Soit: b=44cm

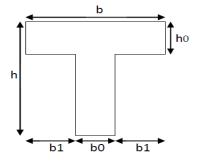


Figure 2-2 : Schéma d'une poutrelle.

Les poutrelles sont calculées en flexion simple, comme des poutres sur plusieurs appuis.

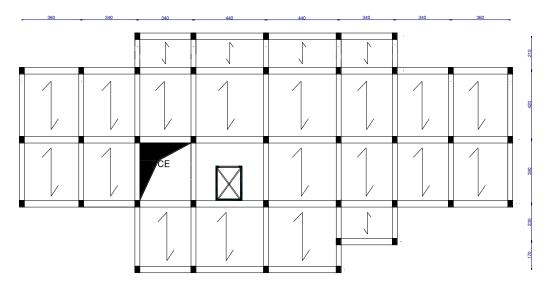


Figure 2-3: Schéma de disposition des poutrelles

2.2.2 Les dalles pleines

2.2.2.1 Définition

Une dalle est un élément horizontal, généralement de forme rectangulaire, dont une des directions (l'épaisseur e) est petite par rapport aux deux autres(les portées lx et ly). On désigne par lx la plus petite des portées. Son pré dimensionnement se fait en se basant sur les critères suivants :

a) Critère de résistance

$$\frac{Lx}{35} \le e \le \frac{Lx}{30}$$
 Pour une dalle sur deux appuis perpendiculaires ou quatre appuis.

$$e \ge \frac{Lx}{20}$$
 Pour une dalle sur un seul appui ou deux appuis parallèles.

$$\frac{Lx}{45} \le e \le \frac{Lx}{40}$$
 Pour une dalle sur 2 appuis perpendiculaires ou 4 appuis et 3 appuis. avec $\rho > 0.4$

Avec
$$\rho = \frac{lx}{ly}$$

b) Critère de coupe-feu

 $e \ge 7$ cm pour une heure de coupe-feu.

 $e \ge 11$ cm pour deux heures de coupe-feu. (CBA93)

Avec : e= épaisseur de la dalle.

Les différents types des panneaux de dalles des balcons les plus défavorables

• Dalle sur 02 appuis

$$\frac{Lx}{35} \le e \le \frac{Lx}{30}$$
 $\frac{0.4}{35} \le e \le \frac{0.4}{30}$ => 1.1\le e\le 1.33 cm

Donc c'est la condition de coupe-feu qui est la plus

défavorable : $e \ge 11cm$

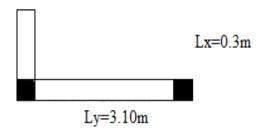


Figure2-4: Dalle sur 02 appuis

On prend : e = 12 cm

• Dalle sur 03 appuis

$$\frac{Lx}{45} \le e \le \frac{Lx}{40}$$

$$\frac{1.10}{45} \le e \le \frac{1.10}{40} \implies 2.4 \le e \le 2.75 \text{ cm}$$

Donc c'est la condition de coupe-feu qui est la plus

défavorable : $e \ge 11cm$

On prend : e = 12 cm

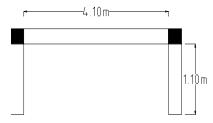


Figure 2-5: Dalle sur 3 appuis.

• Panneau sur 4 appuis

$$\frac{Lx}{45} \le e \le \frac{Lx}{40}$$

$$\frac{3.60}{45} \le e \le \frac{3.60}{40} = 8 \le e \le 9 \text{ cm}$$

Donc c'est la condition de coupe-feu qui est la plus défavorable : e ≥ 11cm

On prend : e = 12 cm

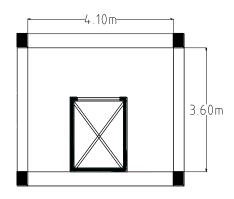


Figure 2-6: panneau sur 4 appuis.

2.3 Les escaliers

2.3.1 Définition

L'escalier est un ouvrage constitué d'une succession régulière de plans horizontaux permettant l'axée au différent niveau, c'est une structure isolée, elle peut être en béton armé, en acier ou en bois. Dans notre cas elles sont réalisées en béton coulé sur place.

Un escalier est déterminé par les paramètres suivant :

- (1) : épaisseur de palier de repos (e)
- (2) : longueur projetée de la volée (L₀).
- (3): Giron (g).
- (4): hauteur de la contre marche (h).
- (5) : hauteur de la volée (H).
- (6) : inclinaison de la paillasse (α).
- (7): emmarchement.

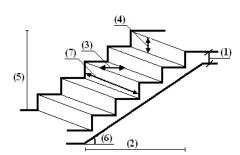


Figure2-7: schéma de l'escalier

2.3.2 Dimensionnement

- la hauteur h des contremarches se situe entre 14 et 18 cm.
- la largeur g se situe entre 25 et 32 cm.

La formule empirique de BLONDEL qui les lie est : 60 \le 2h+g \le 65cm

$$\begin{cases} n = \frac{H}{h} \\ L0 = (n-1)g \end{cases}$$

n : le nombre de contre marche sur la volée.

n-1: le nombre de marche.

H: hauteur de la volée.

L₀ : longueur projeté de la volée.

L_v: longueur de la volée.

L_p: longueur du palier.

L : longueur total de l'escalier ($L=L_V+L_p$).

e : épaisseur de l'escalier.

2.3.3 Les différents types d'escaliers

Dans notre projet on distingue 3 types d'escaliers :

• <u>RDC</u>

Type 1 : escalier droit à une seule volée

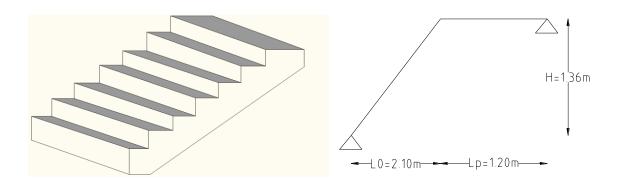


Figure 2-8 : Escalier a une seule volée avec un schéma statique .

$$h = 17 \text{ cm}$$

$$n = \frac{H}{h} = \frac{136}{17} = 8$$

$$60 \le 2h + g \le 65$$
 => g=30cm

$$L_0 = (n - 1) g = > L_0 = 210 cm$$

$$\alpha = tg^{-1} (H/L_0) => \alpha = 32.92^{\circ}$$

$$L=L_v+L_p$$

$$L_v = (136/\sin\alpha) = 250 \text{ cm}$$

$$L = L_v + L_p = 370cm$$

$$L/30 \le e \le L/20 => 12.33 \le e \le 18.5$$

 $e \ge 11cm$ pour deux heures de coupe-feu.

On prend: e=17cm

Type2 : escalier droit à deux volées perpendiculaires avec un pallier intermédiaire

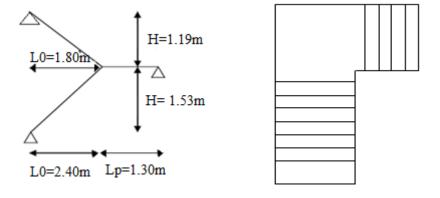


Figure2-9: Escalier a deux volées avec un schéma statique.

volée	H(cm)	h(cm)	n	g(cm)	L ₀ (cm)	L _v (cm)	L _P (cm)	L(cm)	α (°)	e(cm)
1	153	17	9	30	240	285	130	415	32.51	17
2	119	17	7	30	180	215	/	215	33.47	17

Tableau2-1: Pré dimensionnement de l'escalier deux volées

• Etage courant

Type 3 : escalier droit a trois volées

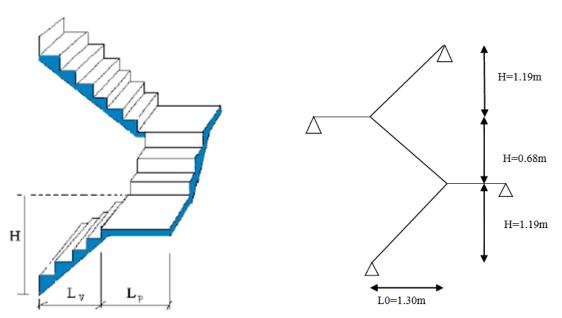


Figure 2-10: Escalier trois volées avec schéma statique

Tableau2-2: Pré dimensionnement de l'escalier trois volées étage courant.

volée	H(cm)	h(cm)	n	g(cm)	$L_0(cm)$	$L_v(cm)$	L _p (cm)	L(cm)	α(°)	e(cm
1	119	17	7	30	180	215	130	345	33.47	14
2	68	17	4	30	90	112	/	112	37.07	14
3	119	17	7	30	180	215	130	345	33.47	14

2.4 Les poutres

Ce sont des éléments porteurs en béton armé à ligne moyenne rectiligne, dont la portée est prise entre nus d'appuis. On distingue deux types ; poutres principales et poutres secondaires.

2.4.1Les poutres principales (PP)

Les poutres principales sont les poutres sur lesquelles les poutrelles prennent appuis. Leur pré dimensionnement se fait en respectant les conditions de la flèche du CBA93 suivantes :

$$L_{\text{max}}/15 \le h \le L_{\text{max}}/10$$

$$0.7h \leq b \leq h$$

L_{max}: distance maximale entre nus d'appuis.

h: hauteur de la poutre.

b: largeur de la poutre.

$$L_{max}$$
= 440-30 = 410cm

$$410/15 \le h \le 410/10 => 27.33 \le h \le 41$$

On prend: h=35cm.

$$0.7x35 < b < 35 \Rightarrow 24.5 < b < 35$$

On prend : b=30cm.

- Vérifications des conditions du RPA 99 (version 2003) :

Selon les recommandations du RPA 99(version2003), on doit satisfaire les conditions

suivantes:
$$\begin{cases} h > 30cm \\ b > 20cm \\ \frac{h}{b} < 4 \end{cases} \begin{cases} h = 35cm > 30cm \\ b = 30cm > 20cm \\ \frac{35}{30} = 1.16 < 4 \end{cases}$$

2.4.2 Les poutres secondaires (P.S):

Ce sont les poutres disposées parallèlement aux poutrelles. Elles sont pré dimensionnées selon la condition de flèche du CBA93.

$$L_{\text{max}} = 420 - 40 = 380 \text{ cm}$$

$$380/15 < h < 380/10 => 25.33 < h < 38$$

On prend pour : h=35 cm.

$$0.7x35 < b < 35 \implies 24.5 < b < 35$$

On prend pour : b=30 cm.

2.5 Les voiles

Élément de contreventement vertical mince et continu, généralement en béton armé, servant de couverture ou d'enveloppe ayant une dimension plus petite que les autres qui est l'épaisseur. Elle est donnée par les conditions du RPA99/2003 suivantes :

$$\alpha \ge \frac{he}{20}$$
 pour les voiles simple

α≥ 15 cm

he: hauteur libre d'étage.

a: épaisseur du voile

RDC h_e=408-20=388cm

Autres niveaux h_e= 306-20=286 cm

Type1

$$\alpha \ge 388/20 \implies \alpha \ge 19.4 \implies \alpha = 20$$
cm

$$\alpha \ge 286/20 \implies \alpha \ge 14.3 \implies \alpha = 15 \text{ cm}$$

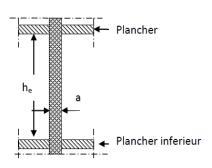


Figure 2-11: coupe verticale d'un voile

Type 2 (au niveau de la cage d'ascenseur)

Comme ce voile n'intervient pas dans le contreventement, alors son épaisseur sera égale à 15cm qui est l'épaisseur minimale exigée par le RPA 99/2003.

2.6 L'acrotère

L'acrotère est un élément secondaire, se trouvant au niveau de la terrasse, il a pour rôle d'empêcher les infiltrations des eaux pluviales entre la forme de pente et le plancher terrasse ainsi qu'un rôle de garde-corps pour les terrasses inaccessibles.

Les dimensions de l'acrotère sont représentées sur la (**figure 2-12**).

- Charges de l'acrotère
- -Surface de l'acrotère est :

$$S_{ac} = S_1 + S_2 + S_3 = (60x10) + (5x7) + (3x5)x0.5$$

$$S_{ac} = 642.5 \text{ cm}^2 = 0.06425 \text{m}^2$$

-Le poids propre de l'acrotère par (ml) est:

$$G_{ac} = 0.06425x25x1 = 1.60KN$$

-Enduit de ciment :

$$G=\rho *e*h= 20x0.015x1.378=0.4 KN$$

$$G_t=1.60 + 0.4= 2 \text{ KN}$$

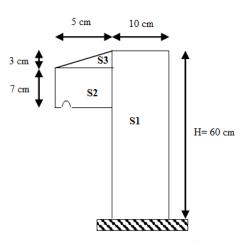


Figure 2-12 : Schéma de l'acrotère

2.7 Les poteaux

Les poteaux sont des éléments structuraux chargés de transmettre les charges verticales aux fondations et du contreventement total ou partiel du bâtiment.

Le pré dimensionnement des poteaux se fait par la vérification à la résistance d'une section choisie intuitivement avec une section d'armatures de 0,1% de la section de béton sous l'action de l'effort normal maximal (le poteau le plus chargé), déterminé par la descente de charges.

L'effort normal maximal obtenu par la descente des charges doit vérifier l'inégalité suivante :

D'après le RPA99/version 2003 :

Min (b1, h1) ≥25cm en zones I et II

D'après l'article B.8.4.1 du CBA 93 :

$$N_u \le \alpha \ \mathbf{x} \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A \times f_e}{\gamma_s} \right)$$

Avec:

Br: section réduite du béton

γ_b= 1.5 : Coefficient de sécurité de béton (cas durable).

 γ_s = 1.15 coefficient de sécurité de l'acier.

 α : Coefficient réducteur qui est fonction de l'élancement λ .

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} & \text{si } \lambda \le 50 \\ \alpha = 0.6 \times \left(\frac{50}{\lambda}\right) & \text{si } 50 \le \lambda \le 70 \end{cases}$$

Tel que :
$$\lambda = \frac{l_f}{i} \text{avec} i = \sqrt{\frac{I}{b \times h}}$$

Cas d'une section rectangulaire : $I = \frac{b \times h^3}{12}$

On adopte préalablement la section des poteaux comme suit :

Tableau 2-3: Pré dimensionnement des poteaux

niveau	Section (cm ²)				
8 ^{eme}	35X35				

7 et 6 ^{eme}	35X40
5 et 4 ^{eme}	40X40
3 et 2 ^{eme}	40X45
RDC et 1 ^{er}	45X45

2.8 Evaluation des charges et surcharges

2.8.1 Plancher terrasse

Tableau 2-4 : Charges et surcharges du plancher terrasse

Plancher	Désignation	Epaisseur (m)	Densités KN/m³	Poids G (KN/m)
	Protection en gravillon roulé	0,04	20	0,8
	Etanchéité multicouche	0,02	6	0,12
	Isolation thermique	0,015	18	0,27
Terrasse	Forme de pente en béton 0,1		22	2,2
inaccessible	Plancher en corps creux	0,2	/	2,85
	Enduit en plâtre	0,02	10	0,2
			Total	6.44

2.8.2 Plancher étages courants

Tableau 2-5 : Charges et surcharges d'étage courant

Plancher	Désignation	Epaisseur (m)	Densités KN/m³	Poids G (KN/m)
	Revêtement en carrelage	0,02	22	0,44
	Mortier de pose	0,02	20	0,40
Etage	Lit de sable	0,03	18	0,54
courant	Dalle en corps creux	0,2	/	2,85
	Enduit en plâtre	0,02	10	0,2
		<u>, </u>	Total	5.43

2.8.3 Evaluation des charges sur les balcons

Tableau 2-6: Charges et surcharge sur les balcons.

N°	Description	Epaisseur (m)	Densité (KN/m3)	Poids ''G'' (KN/m2)
1	Revêtement en carrelage	0,020	22	0,44
2	Mortier de pose	0,020	20	0,40
3	Lit de sable	0,03	18	0,54
4	Dalle pleine	0,12	25	3,00
5	Enduit plâtre	0,02	10	0,20
				∑=4,58

2.8.4 Evaluations des charges sur les murs

Tableau 2-7 : Charges et surcharges sur les murs

N°	Description	Epaisseur (m)	Densité (KN/m3)	Poids '' G'' (KN/m2)
1	Enduit ciment	0,015	20	0,3
2	Brique creuse	0,1	9	0,9
3	Ame d'air	0,1	/	/
4	Brique creuse	0,10	9	0,90
5	Enduit plâtre	0,02	10	0,2
	1			∑=2,3

2.8.5 Surcharge d'exploitation

Tableau 2-8: Surcharges d'exploitation

	Etage courant	Terrasse inaccessible	Balcon	Escalier
Surcharges (KN/m2)	1,5	1	3,5	2,5

2.9. Descente des charges

La descente des charges permet l'évaluation des charges revenant à chaque élément de la structure, on aura à considérer :

- le poids propre de l'élément;
- la charge de plancher qu'il supporte ;
- les éléments secondaires (escalier, acrotère....).

La descente de charge est le chemin suivi par les différentes actions (charges et surcharges) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol, on effectuera la descente de charges pour le poteau le plus sollicité. Pour le calcul de la descente des charges on utilise la règle de dégression donnée par les règlements « D.T.R.B.C.22 » qui recommande « d'appliquer une dégression de la charge d'exploitation lorsque le bâtiment étudié comporte plus de 5 niveaux et que l'occupation des différents niveaux peut être considérée comme indépendante ».

Tableau 2-9: Dégression de charges

Niveau	Dégression	Q cumulée [KN/m²]
Sous la terrasse	Q0	1
Sous le 8 ^{eme}	Q0+Q1	2.5
Sous le 7 ^{eme}	Q0+0.95 (Q1+Q2)	3.85
Sous le 6 ^{eme}	Q0+0.9 (Q1+Q2+Q3)	5.05
Sous le 5 ^{eme}	Q0+0.85 (Q1+Q2+Q3+Q4)	6.1
Sous le 4 ^{eme}	Q0+0.8 (Q1+Q2+Q3+Q4+Q5)	7
Sous le 3 ^{eme}	Q0+0.75 (Q1+Q2+Q3+Q4+Q5+Q6)	7.75
Sous le 2 ^{eme}	Q0+0.71 (Q1+Q2+Q3+Q4+Q5+Q6+Q7)	8.50
1 ^{er}	Q0+0.687(Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8)	9.25

Le calcul du poids propre des poteaux est donné dans le tableau suivant :

Tableau 2-10 : Poids propre des poteaux

Niveau	Section (cm ²)	Poids propre des poteaux G _{pot} (KN)
8 ^{eme}	35x35	(0.35x0.35x3.06) x25=9.371
6 et 7 ^{eme}	35x40	(0.4x0.35x3.06) x25=10.710
4 et 5 ^{eme}	40x40	$(0.4 \times 0.4 \times 3.06) \times 25 = 12.240$
2 et 3 ^{eme}	40x45	(0.45x0.4x3.06) x25=13.770
1	45x45	(0.45x0.45x3.06) x25=15.491
RDC	45x45	(0.45x0.45.4x4.08) x25=20.655

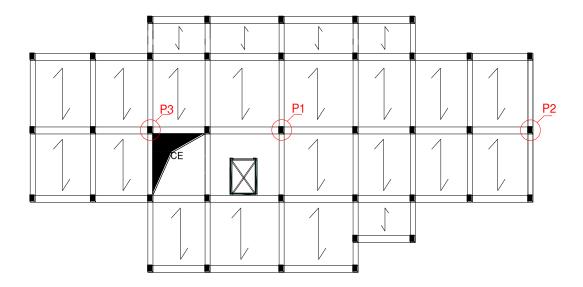


Figure 2-13 : Plan de repérage des poteaux dans la descente de charge.

2.9.1 Poteau1 (poteau intermédiaire)

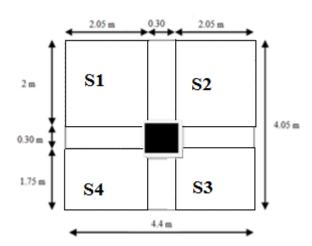


Figure2-14: Descente de charge poteau 1

Exemple de calcul

• Surface du plancher corps creux : $S = S_1 + S_2 + S_3$

$$S = [(2.05x2) x2] + (1.75x2.05)$$

$$S = 11.78 \text{ m}^2$$

• Surface de la dalle pleine S₄:

$$S_4 = (1.75 \times 2.05) = 3.58 \text{m}^2$$

• Surface du plancher terrasse : $S = 4.4 \times 4.05 = 17.82 \text{ m}^2$

Les charges permanentes et d'exploitations

Gcc: Plancher terrasse: Gcc= 6.44 x 11.78= 75.86KN

 G_{DP} : plancher terrasse : G_{DP} = 4.58 x 3.58= 16.39KN

$G_{totales} = 75.86 + 16.39 = 92.25KN$

Q : Plancher terrasse : Q = 17.82 x 1 = 17.82 KN

Gcc: Plancher étage courant: Gcc = 11.78 x 5.43 = 63.96 KN

 G_{DP} : plancher étage courant : G_{DP} = 3.58 x 4.58 = 16.39 KN

$G_{Totales} = 80.35 \text{ KN}$

Q : Plancher étage courant : $Q = 17.82 \times 2.5 = 44.45 \text{ KN}$

G: Poutre principale (niveau 8): G= [0.3x0.35x (4.4-0.3) x25=10.76KN

G: Poutre secondaire (niveau 8): G= [0.3x0.35x (4.05-0.3) x25=9.84 KN

Tableau 2-11 : Descente de charge poteau 1

Niv	Element	G(KN)	NG(KN)	Q(KN)	Nu(KN)
	Plancher	92.25			
Cour lo	Poutre.P	10.76	-		
Sous la Terrasse	Poutre.S	9.84	122.22	17.82	191.72
Terrasse	Poteau	9.371	122.22	17.02	191.72
	Plancher	80.35			
Coug la	Poutre.P	10.76			
Sous le 08eme	Poutre.S	9.84	233.88	44.45	382.413
	poteau	10.71	233.86	44.43	302.413
	Plancher	80.35			
Sous le	Poutre.P	10.76			
7eme	Poutre.S	9.71	345.41	68.61	569.218
/ CITIC	Poteau	10.71	343.41	00.01	307.210
	Plancher	80.35			
Sous le	Poutre.P	10.76			
6eme	Poutre.S	9.71	458.47	89.99	753.919
OCITIC	Poteau	12.24	430.47	07.77	133.717
	Plancher	80.35			
Sous le	Poutre.P	10.63	-		
5eme	Poutre.S	9.71	571.40	108.70	934.440
Jenie	Poteau	12.24	371.40	100.70	734.440
	Plancher	80.35			
Sous le	Poutre.P	10.63			
Sous le 4eme	Poutre.S	9.71	685.860	124.74	1113.021
4eme	Poteau	13.77	003.000	124.74	1113.021
	Plancher	80.35			
Sous le	Poutre.P	10.63	200 170		
3eme	Poutre.S	9.58	800.170	138.10	1287.379

	Poteau	13.77			
	Plancher	80.35			
Sous le	Poutre.P	10.63			
2eme	Poutre.S	9.58	916.220	151.47	1464.102
Zeme	Poteau	15.49	710.220	131.47	1404.102
	Plancher	80.35			
Sous le	Pouter.P	10.5			
1ere	Poutre.S	9.58	1037.30	164.84	1647.615
Tele	Poteau	20.65	1037.30	104.04	1047.013

2.9.2 Poteau 2 (poteau de rive)

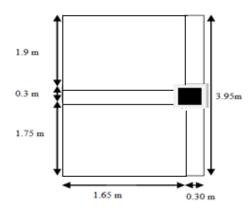


Figure 2-15: Descente de charge poteau 2

Surface du plancher S= $1.65 \text{ x} (3.95-0.3) = 6.01 \text{m}^2$

G: plancher terrasse: G=6.44 x6.01= 38.70 KN

G: plancher courant: G=5.43 x 6.01= 32.63 KN

G: L'acrotère: G=1.9 x 3.95=7.505 KN

G: mur double cloisons étage courant: G=3.06x2.3=7.04 KN

G: mur double cloisons RDC: G=4.08x2.3=9.38KN

Après calcul, on trouve les résultats suivants :

 $N_G = 789.02 \text{ KN}$

 $N_Q = 71.22 \text{ KN}$

Nu= 1172 KN

2.9.3 Poteau 3 (niveau de la cage d'escalier)

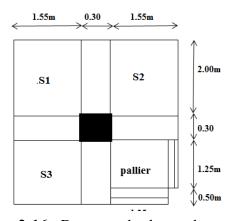


Figure 2-16 : Descente de charge de poteau3

$$S_{cc} = S_1 + S_2 + S_3 = 8.912 \text{m}^2$$

$$S_{P \text{ terrasse}} = 13.77 \text{m}^2$$

$$S_{\text{palier}} = 1.562 \text{m}^2$$

$$S_{velées} = 0.375 + 0.625 = 1 \text{ m}^2$$

Après calcul, on trouve les résultats suivants :

N_G=863.51 KN

 $N_Q = 126.05 KN$

Nu= 1354.81KN

2.9.4 Remarque

Les calculs montrent que le poteau P1 est le plus sollicite sous charges verticales

Il faut vérifier les conditions suivantes

a) Critère de résistance

On doit vérifier que la contrainte limite de compression du béton est inférieure ou égale à la contrainte admissible.

Tel que:

$$\begin{aligned} \sigma_{bc} &= \frac{N_u}{B} \leq \sigma_{adm} \\ \sigma_{adm} &= \frac{0.85 \times f_{c28}}{\theta \times \gamma_b} \\ \sigma_{adm} &= 14.2 Mpa \end{aligned} \} => B \geq \frac{N_u}{\sigma_{bc}}$$

Avec $\theta=1$ pour une durée d'application de la charge supérieur à 24 h, c'est le cas courant.

Et : γ_b =1.5 pour la situation courante.

Nu=1812.37KN =>Bcalculée
$$\geq \frac{1812.376 \times 10^{-3}}{14.2} = 0.12m^2$$

B= $0.45 \times 0.45 = 0.202 \text{m}^2 \ge \text{Bcalcul\'ee} = 0.12 \text{m}^2 \dots \dots \text{condition v\'erifi\'ee}$

Condition B>B_{calculée} Sections (cm²) Nu (KN) **Observations** Niveau bxh $\mathbf{B}(\mathbf{m}^2)$ Bcal (m²) 210.89 0.12 0.01 8 35X35 Vérifiée 7 420.65 35X40 0.14 0.02 Vérifiée 626.13 35X40 0.14 0.04 Vérifiée 6 5 829.31 40X40 0.16 0.06 Vérifiée 4 1027.88 40X40 0.16 0.07 Vérifiée 3 1224.32 40X45 0.18 0.08Vérifiée 2 1416.11 40X45 0.18 0.10 Vérifiée 1 1610.51 45X45 0.20 0.11 Vérifiée

0.20

0.12

Vérifiée

Tableau2-12: Vérification des poteaux à la compression simple.

b) Critère de stabilité de forme

1812.37

Les poteaux doivent être vérifiés aux états limites de déformation (flambement).

45X45

Selon le CBA93 (article B.8.1.1).

• Vérification au flambement

D'après le CBA93 on doit vérifier que :

$$N_u \leq \alpha \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_S \times f_e}{\gamma_S} \right)$$

RDC

Br: section réduit du béton

 $\gamma_b = 1.5$, coefficient de sécurité de béton (cas durable).

 γ_s = 1.15, coefficient de sécurité de l'acier.

 α : coefficient réducteur qui est fonction de l'élancement $\lambda.$

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} \text{ si } \lambda \le 50\\ \alpha = 0.6 \times \left(\frac{50}{\lambda}\right) \text{ si } 50 \le \lambda \le 70 \end{cases}$$

Tel que :
$$\lambda = \frac{lf}{i}$$
 Avec : $i = \sqrt{\frac{I}{b \times h}}$

Cas d'une section rectangulaire : $I = \frac{b \times h}{12}$

D'où : $\lambda = 3.46 \times \frac{lf}{b}$ Avec : 1f : longueur de flambement

Avec : $1f = 0.7 l_0$

 $B_r=(a-2) \times (b-2)$ avec : a :largeur de la section nette.

b : hauteur de la section nette.

A_S: section d'armature.

D'après le **BAEL 91** : $A_{S=} 1\% B_r$

Donc:

$$N_u \le \alpha \times B_r \times \left(\frac{f_{c28}}{0.9 \times \gamma_b} + \frac{f_e}{100 \times \gamma_s}\right)$$

$$f_{c28} = 25 \text{ MPa}$$

$$f_e$$
=400MPa

$$N_U=1.35G+1.5Q$$

On doit vérifier que $:B_r > B_{r-calcul\acute{e}e}$

$$B_{r-calcul\'ee} \ge \frac{N_U}{\alpha \times \left(\frac{\int_{C28}}{0.9 \times \gamma_h} + \frac{\int_{e}}{100 \times \gamma_s}\right)}$$

Il faut vérifier que :

$$B_r \geq B_{r-calcul\acute{e}e}$$

Pour le poteau de RDC:

$$B_r = (0.45 - 0.02)^2 = 0.185 \text{m}^2$$

$$1_f$$
=0.7 1_o =0.7×4.08=2.0856m

$$1_f = 2.0856$$
m

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{h^2}{12}} = \sqrt{\frac{0.45^2}{12}} = 0.13$$

$$\lambda = \frac{2.856}{0.13} = 21.96 \le 50$$

Donc :
$$\alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{21.96}{35}\right)} = 0.78$$

$$B_{r\text{-calcul\'ee}} = \frac{1812.37}{0.78 \times \left(\frac{25 \times 10^3}{0.9 \times 1.5} + \frac{400 \times 10^3}{100 \times 1.15}\right)} = 0.10 \text{ m}^2$$

$$B_r = 0.185m^2 >_{Br-calcul\'ee} = 0.10 \text{ m}^2$$

Donc pas de risque de flambement.

La vérification du critère de stabilité de résumée dans forme est le tableau suivant :

Tableau2-13: Vérification de critère de stabilité de forme

Niveau	λ	α	Nu(KN)	Br (m ²)	$Br_{calcul\acute{e}e}(m^2)$	observation
8	21,42	0,79	210.89	0,10	0 ,01	Vérifiée
7	21,42	0,79	420.65	0,12	0,02	Vérifiée

6	21,42	0,79	626.13	0,12	0,03	Vérifiée
5	18,62	0,80	829.31	0,14	0,05	Vérifiée
4	18,62	0,80	1027.88	0,14	0,06	Vérifiée
3	16,47	0 ,81	1224.32	0,16	0,07	Vérifiée
2	16,47	0,81	1416.11	0,16	0,08	Vérifiée
1	16,47	0,81	1610.51	0,18	0,09	Vérifiée
RDC	21,96	0,78	1812.37	0,18	0,10	Vérifiée

C) vérification des conditions du RPA 99/2003

Selon l'article **7.4**. **1** des règles **RPA**, les dimensions de la sectiontransversale du poteau, doivent satisfaire les conditions suivantes dans la zone **IIa**:

$$\begin{cases} \min(b_1,h_1) \geq 25cm \\ \min(b_1,h_1) \geq \frac{h_e}{20} \\ \frac{1}{4} \leq \frac{b_1}{h_1} \leq 4 \end{cases} \rightarrow \begin{cases} \min(35,35) = 35cm \geq 25cm \dots \text{ V\'erifier.} \\ \min(35,35) = 35cm \geq \frac{388}{20} = 19,4 \dots \text{ V\'erifier.} \\ 0,25 \leq \frac{35}{35} = 1 \leq 4 \dots \text{ V\'erifier.} \end{cases}$$

Conclusion

Après que nous ayons fini le pré dimensionnement des éléments structuraux et que nous ayons fait toutes les vérifications nécessaires, nous avons adopté les sections suivantes :

-poutres principales et secondaires : 30×35 cm²

-poteau RDC, étage $1:45\times45 \text{ cm}^2$

-poteau des étages 2 et 3 : $40 \times 45 \text{cm}^2$

-poteau des étages 4 et 5 : $40 \times 40 \text{cm}^2$

-poteau des étages 6 et $7:35 \times 40 \text{cm}^2$

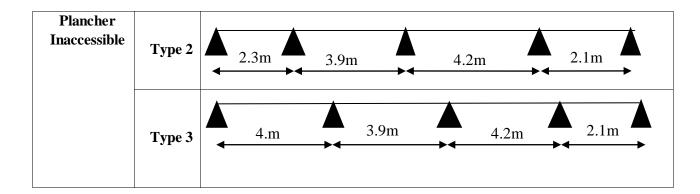
-poteau de l'étage 8 :35×35cm²

CHAPITRE 3 : ETUDE DES ELEMENTS NON STRUCTURAUX

3.1 INTRODUCTION

Dans une structure quelconque on distingue deux types d'éléments :


- Les éléments principaux qui contribuent aux contreventements directs.
- Les éléments secondaires qui ne contribuent pas directement au contreventement.


L'objet de ce chapitre est l'étude des éléments secondaires à savoir : les planchers, l'acrotère et les escaliers ainsi que l'ascenseur.

3.2 ETUDE DU PLANCHER

3.2.1 Les déférents types des poutrelles obtenues sont

Tableau3-1 : Les différents types des poutrelles

3.2.2 Calcul des sollicitations

3.2.2.1 Méthodes de calcul des poutrelles :

Les poutrelles se calculent à la flexion simple comme des sections en T, et le calcul des Sollicitations Peut se faire par les méthodes suivantes :

- Méthode forfaitaire. (Annexe E.1 du BAEL91).
- Méthode de Caquot. (BAEL91art B.6.210).

3.2.2.2 Calcul des charges revenant aux poutrelles

• Plancher terrasse inaccessible

$$G = 6.44 \text{ KN/m}^2 \text{ ; } Q = 1 \text{ KN/m}^2$$

$$qu = (1.35G + 1.5Q) \ l_0 = [(1.35 \times 6.44) + (1.5 \text{ x 1})] \ 0.65 = 6.62 \text{ KN/ml}$$

$$qs = (G + Q) \ l_0 = (6.44 + 1) \times 0.65 = 4.83 \text{ KN/ml}$$

Avec $:l_0:$ Entraxe des poutrelles.

• Plancher étage courant

$$G = 5.43 \text{ KN/m}^2$$

$$Q = 1.5 \text{ KN/m}^2$$

qu = 6.23 KN/ml

qs = 4.50 KN/ml

3.2.3. Exemple de calcul

Pour le calcul des sollicitations on exposera un exemple pour illustrer la méthode forfaitaire (le type 1 du plancher courant) et un autre exemple pour illustrer la méthode de Caquot (le type3 du plancher inaccessible).

Les résultats des autres types seront résumés dans un tableau.

• Etude de la poutrelle type 1

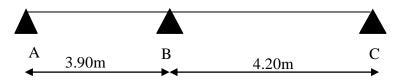


Figure 3.1. Schéma statique de la poutrelle type1

Vérification des conditions d'application de la méthode forfaitaire

- 1. Plancher à surcharge modéré : Q=1,5KN/m² ≤ 5KN/ m².
- 2. $\frac{l_i}{l_{i+1}} = \frac{3.90}{4.20} = 0.92 \epsilon [0.8; 1.25].$
- 3. I=Cst (même corps creux).
- 4. FPN (car elles ne sont pas exposées aux intempéries).

⇒La méthode forfaitaire est applicable.

Calcul des sollicitations

qu = 6.23 KN/ml

qs = 4.50 KN/ml

• Calcul des moments isostatiques:

$$\mathbf{M}_0 = \frac{q_{ul^2}}{8}$$

Travée AB: Mo.u=11.84KN.m

Mo.s=8.55KN.m

Travée BC: Mo.u=13.73KN.m

Mo.s=9.92KN.m

• Calcul des moments aux appuis :

- Appuis de rive :

MA=MC=0 (Le **BAEL 91** préconise de mettre des aciers de fissuration équilibrant un moment fictif égale à (0,15M0)

$$\Rightarrow$$
 MA = MC = -0,15max (M_0^{AB} ; M_0^{BC})

$$M_{A.u} = M_{C.u} = -2.05 \text{KN.m}$$

$$M_{A.S} = M_{C.S} = -1.48 \text{KN.m}$$

- Appui intermédiaire :

$$M_{B} = -0.6 \text{max} \ (M_{0}^{\text{AB}} \ ; \ M_{0}^{\text{BC}}) = -0.6 \ M_{0}^{\text{BC}}$$

$$M_{B.U} = -8.23 \text{ KN.m}$$

$$M_{B.S} = -5.95 \text{ KN.m}$$

• Calcul des moments en travées :

Travée AB (rive):

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+5.43} = 0.216$$

$$\int 1 + 0.3\alpha = 1.064$$

$$1.2 + 0.3\alpha = 1.264$$

$$M_{tAB}^1 + \frac{M_{A+M_B}}{2} \ge \max[(1+0.3\alpha), 1.05]M_{0AB}$$

$$=>M_{tAB}^1 \ge 1.064M_0^{AB} - 0.3 M_0^{BC}$$

$$M_{tAB}^{U1} = 8.47 \text{ KN.m}$$

$$M^2_{tAB}\!\!\geq\!\!(\frac{1.2\!+\!0.3\alpha}{2})M_{0AB}$$

$$M_{tAB}^2 \ge 0.764 M_{0AB}$$

$M_{tAB}^{U2} = 7.48 \text{ KN.m}$

$$M_{tAB} = max (M_{tAB}^1; M_{tAB}^2)$$

$$M^{u}_{tAB} = 8.47 KN.m$$

$$M_{tAB}^{S} = 6.12 \text{ KN.m}$$

Travée BC (rive):

$$M_{tBC}^{1} + \frac{M_{B+M_C}}{2} \ge 1.064 M_{0.BC}$$

$$M_{tBC}^1 \ge 1.064 M_{BC}^U - 0.3 M_{0.BC}$$

$$M_{tBC}^{U} \ge 0.764 M_{0.BC}$$

$$M_{tBC}^2 = (\frac{1.2 + 0.3\alpha}{2}) M_{0.BC}$$

$$M_{tBC}^2 \ge 0.632 \ M_{0.BC}$$

$$M_{tBC} = max (M_{tBC}^1; M_{tBC}^2)$$

$$M_{tBC}^{U} = 10.48 \text{ KN.m}$$

$$M_{tBC}^{S} = 7.57 \text{ KN.m}$$

• Evaluation des efforts tranchants :

Travée AB:

$$V_A = \frac{ql_1}{2} = \frac{6.23 \times 3.90}{2} = 12.14 \text{KN}$$

$$V_B = -1.15 V_A = -13.97 KN$$

Travée BC:

$$V_B = 1.15 \frac{q l_2}{2} = 15.04 \text{ KN}$$

$$V_C = -\frac{ql_2}{2} = -13.08 \text{ KN}$$

• Etude de la poutrelle type 3

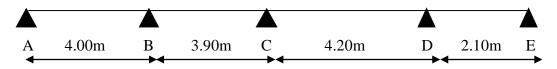


Figure 3-2 : Schéma statique de la poutrelle type 3

Dans ce type de poutrelle, on voit que :

$$\frac{l_i}{l_{i+1}} = \frac{4.20}{2.10} = 2 \notin [0.8; 1.25]$$

⇒ On applique la méthode de Caquot minorée. On minore G de 2/3 pour le calcul des moments aux appuis, puis on revient à G pour le calcul des moments en travées.

Calcul des sollicitations

G'=2/3G=2/3x6.44= 4.29 KN/m²
qu=
$$(1.35G'+1.5Q)*l_0= 4.74$$
 KN/m
qs= $(G'+Q)*l_0= 3.43$ KN/m

• Calcul des moments isostatiques:

$$M_0 = \frac{q_{u l^2}}{8}$$

$$\text{A L'ELU} \begin{cases} M_0^{AB} = 9.48 KN. m \\ M_0^{BC} = 9.01 KN. m \\ M_0^{CD} = 10.45 KN. m \\ M_0^{DE} = 2.61 KN. m \end{cases} ; \quad \text{A L'ELS} \begin{cases} M_0^{AB} = 6.86 KN. m \\ M_0^{BC} = 6.52 \ KN. m \\ M_0^{CD} = 7.56 KN. m \\ M_0^{DE} = 1.89 KN. m \end{cases}$$

• Calcul des moments aux appuis :

-Appuis de rive:

 $M_A = M_E = 0$ (Le **BAEL 91** préconise de mettre des aciers de fissuration équilibrant un moment fictif égale à $0.15M_0$)

A L'ELU: $M_A=M_E=-1,42KN.m$

A L'ELS: $M_A=M_E=-1.02$ KN.m

– Appuis intermédiaires :

$$\begin{split} \mathbf{M_{B}} &= -\frac{q_{g\,l_{g}^{\prime3}\,+\,q_{d\,l_{d}^{\prime3}}}}{8.5(l'_{g}+\,l'_{d})} \\ Avec: &\begin{cases} q_{g} = \,q_{d} = q \\ l'_{g} = \,l'_{g} = 4m \;T.rive \\ l'_{d} = 0.8l_{d} = 3.12m \end{cases} \end{split}$$

A L'ELU: $M_B = -7.39 \text{ KN .m}$

A L'ELS: $M_B = -5.34 \text{ KN .m}$

Même chose pour les appuis C et D; on obtient :

A L'ELU: $M_C = -5.87 \text{ KN .m}$

A L'ELS: $M_C = -4.25$ KN. m

A L'ELU: $M_D = -4.82 \text{ KN .m}$

A L'ELS: $M_D = -3.48 \text{ KN .m}$

• Calcul des moments en travées :

$$M_t(x) = M_0(x) + M_g (1 - \frac{x}{I}) + M_d \frac{x}{I}$$

$$M_0(x) = \frac{qx}{2} \times (l - x)$$

Tel que
$$x = \frac{l_i}{2} - \frac{M_g - M_d}{q l_i}$$

<u>-Travée AB</u>:

A L'ELU: M_t=9.80KN.m

A L'ELS: M_t=7.17KN.m

- Travée BC:

A L'ELU: M_t=5.96KN.m

A L'ELS: M_t=4.35KN.m

- Travée CD:

A L'ELU: M_t=9.25KN.m

A L'ELS: M_t =6.78KN.m

– Travée DE:

A L'ELU: M_t=1.63KN.m

A L'ELS: M_t=1.20KN.m

• Evaluation des efforts tranchants :

$$V = \pm \frac{q_{ul_i}}{2} + \frac{M_{d-}M_g}{l_i}$$

<u>- Travée AB :</u>

V_A=11.39 KN

 $V_B = -15.08 \text{ KN}$

- Travée BC:

 $V_B = 13,29 \text{ KN}$

 $V_C = -12.85 \text{ KN}$

- Travée CD:

 $V_{C} = 14.15 \text{ KN}$

 $V_D = -13.65 \text{ KN}$

- Travée DE:

 $V_D = 9.24 \text{ KN}$

 $V_E = -4.65 \text{ KN}$

Les résultats des autres types de poutrelles des plancher terrasse et plancher étage courant sont représentés dans le (tableau3.2) ci-dessous :

Etage courant									
Tymas da		ELU				Effort			
Types de plles	M _{a.r} (KN.m)	$M_{a.int}$	M_t	M _{a.r} (KN.m)	$M_{a.int}$	M_{t}	tranchant		
plies	W _{a.r} (KIV.III)	(KN.m)	(KN.m)	W _{a.r} (KiN.III)	(KN.m)	(KN.m)	(KN)		
1	-2.05	-8.23	10.48	-1.48	-5.95	7.57	15.04		
2	-0.46	-5.75	8.55	-0.33	-4.05	6.24	13.35		
3	3 -1.39 -7.23		9.10	-0.99	-5.19	6.59	-14.26		
4	-1.53	-7.22	10.36	1.10	-5.18	7.50	-14.80		
5	-1.87	/	12.46	-1.35	/	9.00	12.46		
			naccessible						
1	-2.18	-8.75	10.94	-1.59	-6.39	7.98	15.98		
2 -0.47 -5.87			9.25	-0.34	-4.25	6.78	14.15		
3	-1.42	-7.39	9.80	-1.02	-5.34	7.17	-15.08		

Tableau 3-2 : Tableau récapitulatif des sollicitations maximales.

3.2.4 Ferraillage

3.2.4.1 Calcul a l'ELU

Toutes les poutrelles vont être ferraillées avec les sollicitations maximales suivantes :

Mt=12.46KN.m

Ma.int=-8.23KN.m

Ma.r=-2, 05KN.m

V=15.04 KN

• Ferraillage de la poutrelle

Le calcul se fera pour une section en T soumise à la flexion simple.

- Si $Mu \le M_{tu} = b \times h_0 \times f_{bu} \times (d \frac{h_0}{2}) => 1$ 'axe neutre passe par la table de compression, donc la section sera calculée comme une section rectangulaire (bxh).
- Si non l'axe neutre passe par la nervure, donc le calcul se fera pour une section en
 T.

a) Ferraillage en travée

$$M_{max}^{t} = 12.46 \text{ KN.m}$$

Le moment équilibré par la table de compression :

$$M_{tu} = b \times h_0 \times f_{bu} \times (d - \frac{h_0}{2})$$

$$M_{tu}$$
= 0.44 x 0.04x 14.2x10³ (0.18 - $\frac{0.04}{2}$)

$$\Rightarrow$$
 M_{tu}= 39.98KN.m

$$M_{tu} > M_{max}^t = 12.46 \text{ KN .m}$$

-L'axe neutre passe par la table de compression, donc la table n'est pas entièrement comprimée, la section en T sera calculée comme une section rectangulaire : ($h_t x b$) : (20 cm x 44 cm).

$$\mu_{bu} = \frac{M_u}{bd^2f_{bu}} = \frac{12.46 \times 10^{-3}}{0.44 \times (0.18)^2 \times 14.2} = 0.061 = > \mu_{bu} < 0.186$$

Donc On est dans le pivot A :
$$\varepsilon_{st} = 10\%_0 = \int_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348MPa$$

$$\mu_l = 0.8\alpha_l(1 - 0.4) = 0.392 > \mu_{bu} = 0.061 = > A' = 0$$
 pas d'armature comprimée

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.078$$

$$Z=d(1-0.4\alpha)=0.18(1-0.4x0.078)=0.174m$$

$$A_s = \frac{Mu}{z \times f_{ct}} = \frac{12.46 \times 10^{-3}}{0.174 \times 348} = 2.05 \text{cm}^2$$

Vérification de la condition de non fragilité

$$A_{min} = 0.23 \text{xbxdx} \frac{f_{t28}}{f_e} = 0.23 \text{x} 0.44 \text{x} 0.18 \text{x} \frac{2.1}{400} = 0.95 \text{cm}^2 < A_s = 2.05 \text{cm}^2 \dots \text{c'est v\'erifier}.$$

On opte pour : 2HA10+ 1HA8=2.07 cm²

b) Ferraillage en appui

La table de compression se trouve dans la zone tendue car le moment est négatif en appuis, le béton tendu n'intervient pas dans le calcul, donc la section en Té sera calculée comme une section rectangulaire de dimensions $b_0 \times h = (0.1 \times 0.20) \text{ m}^2$.

- Ferraillage de l'appui intermédiaire

Ma.int= -8.23KN.m

$$\mu_{bu} = \frac{M_{int}^a}{b_0 d^2 f_{bu}} = \frac{8.23 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.17$$

$$< 0.186$$

Donc On est dans le pivot A : $\varepsilon_{st}=10\%_0=>f_{st}=\frac{f_e}{\gamma_s}=\frac{400}{1.15}=348MPa$

 $\mu_l = 0.392 > \mu_{bu} = 0.17 = > A' = 0$ pas d'armature comprimée

$$\alpha = 0.234$$
; Z= 0.163m; As= 1.45 cm²

Vérification de la condition de non fragilité

$$A_{min}$$
= 0.23 x b_0 x d $x \frac{f_{t28}}{f_e}$ =0.23x0.1x0.18x $\frac{2.1}{400}$ =0.22cm² < A_s =1.45cm²....c'est vérifier

On opte pour: 1HA8 (filante) +1HA12 (chapeau)=1.63cm²

- Ferraillage de l'appui de rive

$$Ma.r = -2,05KN.m$$

$$\mu_{bu} = \frac{M_{rive}^a}{b_0 d^2 f_{bu}} = \frac{2.05 \times 10^{-3}}{0.1 \times 0.18^2 \times 14.2} = 0.044$$

$$\alpha = 0.056$$
 ; Z=0.176m; A_s= 0.33 cm²

Vérification de la condition de non fragilité

$$A_{min}$$
= 0.22cm² $<$ A_s =0.33cm²....c'est vérifier

On opte pour: 1HA8=0.50cm²

Vérification de l'effort tranchant

V=15.04 KN

$$\tau_u = \frac{V_{max}}{b_0 d} = \frac{15.04 \times 10^{-3}}{0.1 \times 0.18} = 0.835 MPa.$$

La fissuration est peu nuisible et α =90°

$$\overline{\tau_u} = \min\left(0.2 \frac{f_{c28}}{\gamma_b}; 5MPa\right) = \min(3.33; 5MPa) = 3.33MPa.$$

$$\tau_u = 0.835MPa \le \overline{\tau_u} = 3.33MPa \dots \dots \dots \dots v\acute{e}rifi\acute{e}r.$$

Donc pas de risque de cisaillement.

Calcul des armatures transversales

$$\varphi_t \leq \text{Min}(\varphi_{l^{min}}; \frac{h}{35}; \frac{b_0}{10})$$
BAEL91 (article H.III.3)

$$\varphi_t \leq \min\left(8; \frac{20}{35}; \frac{10}{10}\right)$$

On adopte un étrier \emptyset 6 avec At =2 \emptyset 6= 0.57cm²

Calcul de l'espacement

$$S_{t} \!\! \leq \!\! \min \! \begin{cases} (0.9d, 40cm) = 16.2cm \\ \frac{At \times f_{e}}{0.4 \times b_{0}} = \frac{0.57 \times 400}{0.4 \times 10} = 57cm & \textbf{\textit{CBA} 93} (\textit{Article A}. 5.1.2.2) \\ \frac{0.8f_{e}(sin\alpha + cos\alpha) \times A_{t}}{b_{0}(\tau_{u} - 0.3K \times f_{t28})} = 88.97cm \end{cases}$$

 α = 90° flexion simple, armatures droites.

Avec K = 1 (pas de reprise de bétonnage, flexion simple et fissuration peu nuisible).

On adopte: St = 15 cm

Vérification de la contrainte de cisaillement à la jonction table- nervure

$$\begin{split} \tau_u &= \frac{v_u \times b_1}{0.9 \times d \times b \times h_0} & Avec: b_1 = \frac{b - b_0}{2} = 0.18m \\ \tau_u &= \frac{15.04 \times 10^{-3} \times 0.18}{0.9 \times 0.18 \times 0.44 \times 0.04} = 0.94 MPa < \overline{\tau_u} = 3.33 MPa & condition v\'erifi\'ee \end{split}$$

⇒ Pas de risque de cisaillement a la jonction table-nervure.

Vérification des armatures longitudinales vis-à-vis de l'effort tranchant

a) Appui de rive

$$A_l \ge \frac{V_u \times \gamma_s}{f_e} = \frac{15.04 \times 10^{-3} \times 1.15}{400} = 0.43 cm^2$$

Avec
$$A_{l} = A_{trav\acute{e}e} + A_{apuis} = 2.07 + 0.5 = 2.57 \text{cm}^2$$

$$A_1=2.57$$
cm²> 0.43 cm² condition vérifiée.

b) Appui intermédiaire

$$A_{l} \ge \frac{\gamma_{s}}{f_{e}} \left(Vu + \frac{Mu}{0.9d} \right) = \frac{1.15}{400} \left(15.04 \times 10^{-3} - \frac{8.23 \times 10^{-3}}{0.9 \times 0.18} \right) = -1.02 cm^{2} < 0 \dots \dots v \\ \acute{e}rifi\\ \acute{e}e$$

Pas de vérification à faire car l'effort tranchant est négligeable devant l'effort du moment.

Vérification de la bielle

On doit vérifier que : $Vu \le 0.267$ a $b_0 \, f_{c28}$

Avec
$$a \le 0.9d = 0.9 \times 18 = 16.2cm$$

Soit a = min [0.9d; la largeur de l'appui -4cm]=16.2cm

a = 0.162m

$$Vu = 15.04 \text{ KN} \le 0.267 \text{ x } 0.10 \text{ x } 25 \text{ x } 0.162 \text{ x } 10^3 = 108.135 \text{KN}..... \text{ Vérifiée}$$

Vérification de l'adhérence

On doit vérifier que:

$$\tau_{su} = \frac{Vu}{0.9d \times \sum U_i} \le \overline{\tau_u} \text{ tel que:}$$

 $\overline{\tau_u}$: Contrainte limite d'adhérence.

 $\sum U_i$: la somme des périmètres des barres

Vu = 15.04KN

$$\sum Ui = \pi \times (2T10 + 1T12 + 3T8) = 175.84mm$$

$$\tau_{su} = \frac{15.04 \times 10^{-3}}{0.9 \times 0.18 \times 0.175} = 0.52 MPa$$

$$au_{ad} = 0.6 \; \Psi^2 f_{t28} \quad avec \; \Psi = 1.5 \; pour \; HA$$

$$\tau_{ad} = 0.6 \text{x} 1.5^2 \text{x} 2.1 = 2.835 \text{MPa}$$

$$\tau_{su} = 0.52 < 2.835 MPa$$
vérifiée

3.2.4.2 Calcul à l'ELS

- Etat limite d'ouverture des fissures
- La fissuration est peu nuisible, donc la vérification n'est pas nécessaire.
- Etat limite de déformation (évaluation de la flèche).
- Etat limite de compression du béton.

En travée

• Etat limite de compression du béton

Mser=9.00KN.m

 $q_s = (5.43 + 1.5)x0.65 = 4.50KN/ml$

On doit vérifier : $\sigma_{bc} = \frac{M_{Ser}}{I} y \leq \bar{\sigma}_{bc} = 0.6 \text{xfc} 28 = 15 \text{MPa}.$

-) Position de l'axe neutre

$$H = \frac{b \times h_0^2}{2} + 15 \times A' \times (h_0 - d') - 15 \times A \times (d - h_0) \dots \dots BAEL91. L. III.3$$

$$A'=0$$

$$H = \frac{0.44 \times 0.04^{2}}{2} - 15 \times 2.07 \times 10^{-4} (0.18 - 0.04) = -8.27 \times 10^{-5} m^{3}$$

H < 0: L'axe neutre passe par la nervure, le calcul se fera pour une section en T.

-) Détermination de la position de l'axe neutre (y)

$$\frac{b_0}{2}y^2 + [15(A+A') + (b-b_0)h_0]y - 15(Ad+A'd') - (b-b_0)\frac{h_0^2}{2} = 0$$

$$A'=0$$

$$\frac{10}{2}y^2 + [15 \times 2.07 + 44 \times 4]y - 15(2.07 \times 18) - (44 - 10)\frac{4^2}{2} = 0$$

La résolution de cette équation nous donne y=3.68cm

-) Détermination du moment d'inertie

$$I = \frac{b_0}{3}y^3 + \left[(b - b_0) \frac{(y - h_0)^3}{3} \right] + \left[15A(d - y)^2 + 15A'(y - d)^2 \right]$$

I=6532.936cm⁴

-) Les contraintes

$$\sigma_{bc} = \frac{M_{ser}}{I}y = \frac{9.00}{6532.93 \times 10^{-8}} \times 3.68 \times 10^{-5} = 5.07 MPa$$

 $\sigma_{bc}=5.07 MPa<0.6 f_{c28}=15 MPa \ldots \ldots$ condition vérifiée

• Vérification de la flèche

Pour la vérification de la flèche, nous avons opté pour la vérification de la poutrelle la plus défavorable (type 5) car elle est isostatique et d'une travée de 4,00m. Si sa flèche vérifié, ceci veut dire que les autres poutrelles (travées moins importante) vérifient aussi. D'après le BAEL91 et le CBA93, si l'une de ses conditions ci-dessous n'est pas satisfaite la vérification de la flèche devient nécessaire :

$$\begin{cases} \frac{h}{l} \ge \frac{Mt}{15 \times M_0} \\ L \le 8m \\ A_S \le \frac{3.6b_0d}{f_e} \end{cases}$$

Pour notre cas on a: h=20 cm, l=4.00m

$$\frac{h}{l} = 0.05 < \frac{9}{15 \times 9} = 0.066$$

La condition n'est pas satisfaite donc on doit faire une vérification de la flèche.

$$\Delta f_t = f_{gv} + f_{pi} - f_{ji} - f_{gi} \le f_{adm}$$

La flèche admissible pour une poutre inferieur à 5m est de : f_{adm} = L/500=400/500=0.8cm f_{gv} et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 f_{ji} :Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 f_{pi} :Flèche due à l'ensemble des charges appliquées (G + Q).

• Evaluation des moments en travée

 $q_{jser} = 0.65 \text{ x G'} = 0.65 \text{x} 3.85 = 2.50 \text{KN/ml} (la charge permanente qui revient à la poutrelle au moment de la mise en œuvre des cloisons).}$

 q_{gser} = 0.65xG= 0.65x5.43= 3.53KN/m (la charge permanente qui revient à la poutrelle). q_{pser} = 0.65x (G+Q)= 0.65x(5.43+1.5)=4.50KN/ml (la charge permanente et la surcharge d'exploitation).

$$M_{jser} = \frac{q_{jser} \times l^2}{8} = \frac{2.50 \times 4^2}{8} = 5 \text{ KN. } m$$

$$M_{gser} = \frac{q_{gser} \times l^2}{8} = \frac{3.53 \times 4^2}{8} = 7.06 KN. m$$

$$M_{Pser} = \frac{q_{pser} \times l^2}{8} = \frac{4.50 \times 4^2}{8} = 9 \ KN.m$$

Calcul de ρ et λ

$$A_s = 2.07 \text{ cm}^2$$

$$\rho = \frac{A_s}{b_0.d} = \frac{2.07}{10 \times 18} = 0.0115$$

$$\lambda_i = \frac{0.05.f_{t28}}{(2+3\frac{b_0}{b})\rho} = 3.442.$$
 déformation instantanée

$$\lambda_v = 0.4 \lambda_i = 1.376 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$$
déformation différée

• Calcul du moment d'inertie et la position de l'axe neutre I et Y_G

$$Y_{G} = \frac{b_0 \frac{h^2}{2} + (b - b_0) \frac{h_0^2}{2} + n(A \times d + A' \times d')}{b_0 \times h + (b - b_0) h_0 + n(A + A')}$$
 avec: A'=0

$$Y_G = \frac{10\frac{20^2}{2} + (44 - 10)\frac{4^2}{2} + 15(2.07 \times 18)}{10 \times 20 + (44 - 10) \times 4 + 15 \times 2.07} = 7.71 \text{cm}$$

$$I_0 = \frac{b}{3}y_G^3 + b_0 \frac{(h - y_G)^3}{3} - (b - b_0) \frac{(y_G - h_0)^3}{3} + n[A(d - y_G)^2 + A'(y_G - d')^2]$$

$$I_0 = \frac{44}{3}(7.71)^3 + 10\frac{(20 - 7.71)^3}{3} - \left(44 - 10\right)\frac{(7.71 - 4)^3}{3} + 15[2.07(18 - 7.71)^2]$$

 $I_0 = 15618.678 \text{cm}^4$

• Calcul des contraintes σ

$$\sigma_{sj} = \frac{15Mj}{l}(d-y) = 164.39$$
MPa

$$\sigma_{sg} = \frac{15 Mg}{I} (d - y) = 232.12 \text{MPa}$$

$$\sigma_{sp} = \frac{15 Mp}{l} (d - y) = 295.89 \text{MPa}$$

• Inertie fictives (I_f)

$$\mu_{\rm j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}} = 0.61$$

$$\mu_{\rm g} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} = 0.71$$

$$\mu_{\rm p} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}} = 0.75$$

Si
$$\mu < 0$$
 => $\mu = 0$

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} = 5542.79 \text{cm}^4$$

$$If_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} = 4988.80 \text{cm}^4$$

$$If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} = 4797.02 \text{cm}^4$$

$$If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} = 8690.38 \text{cm}^4$$

• Calcul de E

$$E_i = 11000\sqrt[3]{f_{c28}} = 32164.2 \text{ MPa}$$

$$E_v = \frac{E_i}{3} = 10721.4 MPa$$

• Evaluation des flèches

$$f_{ij} = \frac{M_{jser} \times L^2}{10 \times E_i \times Ifij} = 0.008 \text{m}$$

$$f_{ig} = \frac{M_{gser} \times L^2}{10 \times E_i \times Ifig} = 0.008 \text{m}$$

$$f_{ip} = \frac{M_{pser} \times L^2}{10 \times E_i \times Ifip} = 0.009 \text{m}$$

$$f_{gv} = \frac{M_{gser} \times L^2}{10 \times E_v \times Ifgv} = 0.015 \text{m}$$

$$\Delta f_t = 0.015 + 0.009 - 0.008 - 0.008 = 0.008 \text{m}$$

Donc : Δf_t =0.8cm= f_{adm} =0.8cmla flèche est vérifiée.

3.2.4.3 Le résumée des ferraillages et de la flèche des poutrelles plus défavorable:

Tableau 3-3: résumé de ferraillage des poutrelles

			Ferraillage longitudinal							Ferraillage Transversal	
		M KN.m	μ_{bu}	α	Z cm	A _s cm ²	A _{min} cm ²	barres	A _t cm ²	S _t cm	
	travée	12.46	0.058	0.074	0.174	2.05	0.99	2HA10+1HA8 =2.07	2HA6	15	
Etage courant	Appui inter	8.23	0.17	0.234	0.163	1.45	0.22	1HA8+1HA12 =1.63	2HA6	15	
	Appui rive	2.05	0.044	0.056	0.176	0.33	0.22	1HA8=0.50	2HA6	15	
Terrasse	travée	10.94	0.051	0.066	0.175	1.79	0.99	2HA10+1HA8 =2.07	2HA6	15	
Inaccessi- ble	Appui inter	8.75	0.190	0.266	0.160	1.56	0.22	1HA8+1HA12 =1.63	2HA6	15	
	Appui rive	2.18	0.047	0.060	0.175	0.35	0.22	1HA8=0.50	2HA6	15	

Tableau 3-4 : Evaluation de la flèche

	$\Delta \mathbf{f_t}$ (cm)	f _{adm} (cm)	Observation
Etage courant	0.53	0.8	Vérifiée
Terrasse inaccessible	0.12	0.84	Vérifiée

• Ferraillage de la dalle de compression (CBA Art.B6.8.4.2.3)

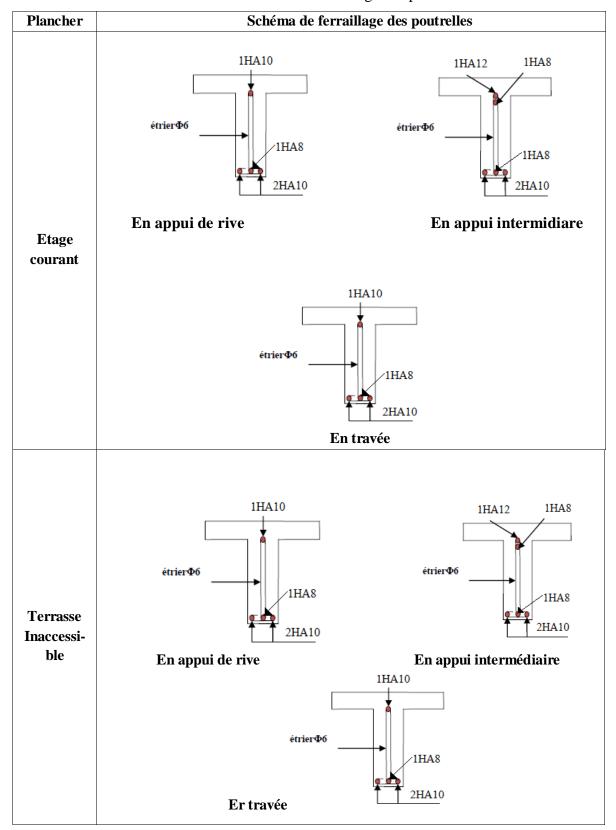
On utilise des barres de type rond lisses de nuance fe = 235MPa.

1) Armatures perpendiculaires aux nervures :

AL=
$$\frac{4 \times l_0}{f_e} = \frac{4 \times 65}{235} = 1.10 \text{ cm}^2/\text{ml}$$

2) Armatures parallèles aux nervures

$$A|| = A \perp /2 = 0.55 \text{cm}^2 / \text{ml}$$


On choisit:

5TS6/ml=1.41cm2 perpendiculaires aux poutrelles →St=20cm≤20cm...Vérifiée.

4TS6/ml=1.13cm2 parallèles aux poutrelles →St=25cm≤30cm...Vérifiée.

Schéma de ferraillage des poutrelles et la dalle de compression:

Tableau 3-5 : Schéma de ferraillage des poutrelles

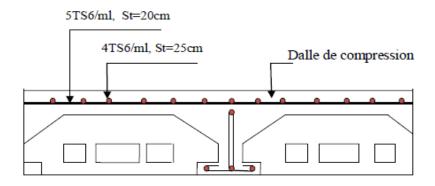


Figure 3-3: Schéma de ferraillage de la dalle de compression.

3.3 ETUDE DES DALLES PLEINES

3.3.1 Panneau sur 4 appuis (entourant la cage d'ascenseur)

 $G = 4.58 KN/m^2$

 $Q=1.5 \text{ KN/m}^2$

Lx = 3.60m;Ly=4.10m

$$\rho = \frac{Lx}{Ly} = \frac{3.60}{4.10} = 0.87 > 0.4$$

=> La dalle travaille suivant les deux sens.

On prend: e=12cm

3.3.1.1 Calcul a L'ELU

$$qu = 1.35G + 1.5Q$$

$$qu = (1.35x4.58) + (1.5x1.5) = 8.43 \text{ KN/m}^2$$

$qu = (1.35x4.58) + (1.5x1.5) = 8.43 \text{ KN}/\text{m}^2$ Calcul de Mx₀ et My₀

Le calcul se fait pour une bande de 1m.

$$M_x = \mu_x \times (q_u \times l_x^2)$$

$$;\mu_{x}=0.0486$$

$$M_y = \mu_v \times M_x$$
;

$$\mu_{\rm v} = 0.7244$$

$$M_x = 5.31 \text{ KN.m}$$

$$M_v = 3.85 KN.m$$

Calcul des moments compte tenu de l'encastrement

En travée :
$$\begin{cases} Mtx = 0.75 \times Mx = 3.98KN.m \\ Mty = 0.75 \times My = 2.88KN.m \end{cases}$$

En appui:
$$M_a^X = M_a^y = -0.5 \text{ Mx} = -2.65 \text{ KN.m}$$

Ferraillage

Le ferraillage est calculé à la flexion simple pour une bande de 1ml (b=1m)

$$M_u = 3.98 \text{ KN.m}$$

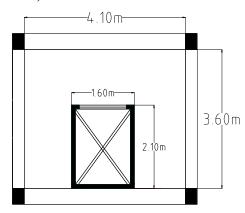


Figure 3-4: Panneau sur 4 appuis.

$$\mu_{bu} = 0.028, \qquad \alpha = 0.035,$$

$$\alpha = 0.035$$

$$Z=0.098$$
,

$$A_s=1.16cm^2/ml$$

Condition de non fragilité "Amin"

On a : $e \ge 12cm$

$$\rho > 0.4$$

$$A_{\min} = \frac{\rho_0}{2} (3-\rho) \times b \times e = \frac{0.0008}{2} (3-0.87) \times 100 \times 12 = 1.022 \text{ cm}^2$$

 $A_s > A_{min}$ la condition vérifiée.

On opte: $4HA8=2.01cm^2/ml$

Vérification de l'espacement

Armatures transversales

$$S_t \le min (3e, 33cm) = min (3*12,33cm)$$

$$S_t \le 33 \text{ cm} => S_t=25 \text{ cm}$$

Armature de répartition

 $S_t \le \min (4e, 45cm) = \min (4*12, 45cm)$

$$S_t \le 45cm => S_t = 25cm$$

D'une manière identique, on fait les calculs selon Ly et au niveau des appuis.

On trouve les résultats présentés dans le (Tableau 3.5).

Tableau 3-6 : Ferraillage de panneau sur 4 appuis

	En travée								
	M	ubu	ubu a		Acal	Amin	Aadop	St	
	(KN.m)	μυα	u	Z(m)	(cm2)	(cm2)	(cm ²)	(cm)	
Sens X	3.98	0.028	0.035	5 0.098 1.16 1.022	0.008	1.022	4HA8=	25	
Sells A	3.70	0.028	0.033		1.022	2.01	23		
SensY	2.88	0.023	0.029	0.090	0.91	0.96	4HA8=	25	
Selis I	2.00	0.023	0.029	0.090	0.91	0.90	2.01	23	
En appuis									
Saney—saney	2.65	0.018	0.023	0.099	0.76	1.022	4HA8=	25	
Sensx=sensy	2.65 0.	0.018	0.023	0.099	0.76	1.022	2.01	25	

Vérification des armatures secondaires

$$A_t^y \ge A_t^x/4$$
 vérifiée.

Vérification de l'effort tranchant

L'effort tranchant max est dans le sens x :

$$V_{x} = \frac{q \times l_{x}}{2} \times \frac{l_{y}^{4}}{l_{x}^{4} + l_{y}^{4}} = 9.51 \text{KN}$$

$$\tau^{max} = \frac{V_x}{b_0 d} = 0.095 MPa < \tau^{adm} = \frac{0.07 \times f_{c28}}{\gamma_b} = 1.16 MPa$$

Pas d'armatures transversales dans la dalle.

3.3.1.2 Vérification à l'ELS

$$q_s = G+Q=6.08KN/ml$$

$$\rho = 0.87 = \begin{cases} \mu_{x} = 0.0556 \\ \mu_{y} = 0.8074 \end{cases}$$

$$M_{0ser}^{x} = \mu_{x} \cdot q_{s}.1^{2} = 0.0556x6.08x3.60^{2} = 4.38KN.m$$

$$M_{0ser}^{y} = \mu_{v}$$
. $M_{0ser}^{x} = 0.8074x4.38 = 3.53KN.m$

En travée:

$$M_{tser}^{x}$$
=0.75x 4.38=3.28KN.m

$$M_{tser}^{y} = 0.75x3.53 = 2.64KN.m$$

En appui:
$$M_{aser}^{X} = M_{aser}^{y} = -0.5 M_{0ser}^{x} = -1.64 KN.m$$

Vérification des contraintes

Comme notre panneau se situe à l'intérieure de la structure (FPN) ⇒on ne vérifie que la contrainte de compression dans le béton.

Sens x-x

$$Ax=2.01cm^2$$
, $b = 100 cm$, $d = 10cm$

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A'_s) \times y - 15 \times (d \times A_s + d' \times A'_s) = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times [A_s \times (d \times y)^2 + A'_s \times (y - d')^2]$$

$$A'_s = 0$$

D'une même manière, on fait les calculs selon Ly et au niveau des appuis.

Les résultats de calcul son résumé dans le tableau suivant :

Tableau3-7: Vérification des contraintes.

	En travée										
	M (KN .m)	Y (cm)	I (cm ⁴)	$\sigma(MPa)$	$\overline{\sigma_b}(MPa)$	observation					
Sens -x	3.28	2.16	2189.11	3.23	15	Pas risque de					
Sens A	3.20	2.10	2107.11	3.23	13	fissuration					
Sens-y	2.64	2.16	2189.11	2.60	15	Pas risque de					
Bens y	2.04	2.10	2107.11	2.00	13	fissuration					
	En appuis										
Sens x	1.64	2.16	2189.11	1.61	15	Pas risque de					
=sens y	1.04	2.10	2107.11	1.01	13	fissuration					

• Etat limite de déformation

Vérification de la flèche :

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas vérifiée :

Sens x-x

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots & (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots & (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots & (3) \end{cases}$$

La première condition n'est pas vérifiée, donc la vérification de la flèche est nécessaire. La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

Avec : f_{ig} et f_{vg} : la flèche de l'ensemble des charges permanentes (instantanée ou différés).

 f_{ij} : La flèche de l'ensemble des charges permanentes avant la mise en œuvre des charges.

 f_{ip} : La flèche de l'ensemble des charges permanentes et surcharge d'exploitation.

Pour une portée inferieur à 5m, la flèche admissible $f_{adm} = \frac{L}{500} cm$

$$=> f_{adm} = \frac{360}{500} = 0.72cm$$

$$y = 2.16 \text{ cm}$$

$$I = 2189.11 \text{cm}^4$$

$$E_I = 32164.2 \text{ MPa}$$

$$E_v = 10721.4 \text{ MPa}$$

$$A_s = 2.01 \text{cm}^2$$

Evaluation des moments en travée

q_{iser} La charge permanente qui revient à la dalle sans la charge de revêtement.

q_{gser} La charge permanente qui revient à la dalle

q_{pser} La charge permanente et la surcharge d'exploitation.

$$q_{iser} = 3KN/m^2$$

$$q_{gser} = 4.58KN/m^2$$

$$q_{pser} = (3+4.58) = 7.58 \text{KN/m}^2$$

$$\begin{cases} M_{ox}^{j} = 0.0556 \times 3 \times 3.6^{2} = 2.16KN.m \\ M_{ox}^{g} = 0.0556 \times 4.58 \times 3.6^{2} = 3.30KN.m \\ M_{ox}^{p} = 0.0556 \times 7.58 \times 3.6^{2} = 5.46KN.m \end{cases}$$

$$M_{iser} = 0.75 \text{ x } M_{0x}^{j} = 1.62 \text{ KN.m}$$

$$M_{gser} = 0.75 \text{ x } M_{0x}^g = 2.47 \text{ KN.m}$$

$$M_{pser} = 0.75 \text{ x } M_{0x}^P = 4.09 \text{ KN.m}$$

$$\Delta f = 0.182 + 0.152 - 0.060 - 0.039 = 0.235 \text{cm}$$

La flèche totale $\Delta f = 0.235 \text{cm} < f_{\text{adm}} = 0.72 \text{cm}$ vérifiée

Sens y-y

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots \dots \dots \dots (1) \\ \frac{h}{L} \ge \frac{M_t}{15 \times M_0} \dots \dots \dots \dots (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots \dots \dots (3) \end{cases}$$

La première condition n'est pas vérifiée, donc la vérification de la flèche est nécessaire. La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

Pour une portée inferieur à 5m, la flèche admissible $f_{adm} = \frac{L}{500} cm$

$$=> f_{\text{adm}} = \frac{410}{500} = 0.82cm$$

Evaluation des moments en travée

$$\begin{cases} M_{oy}^{j} = 0.8074 \times 2.16 = 1.74 KN. m \\ M_{oy}^{g} = 0.8074 \times 3.30 = 2.66 KN. m \\ M_{oy}^{p} = 0.8074 \times 5.46 = 4.40 KN. m \end{cases}$$

$$M_{jser} = 0.75 x M_{0x}^{j} = 1.30 KN.m$$

$$M_{gser} = 0.75 \text{ x } M_{0x}^g = 1.99 \text{KN.m}$$

$$M_{pser} = 0.75 \text{ x M}_{0x}^{P} = 3.30 \text{KN.m}$$

$$\Delta f = 0.190 + 0.105 - 0.063 - 0.041 = 0.191 \text{cm}$$

La flèche totale $\Delta f = 0.191 \text{cm} < f_{\text{adm}} = 0.82 \text{cm}$

vérifiée

Calcul des armatures de renfort autour de l'ascenseur

Dimension de l'ascenseur:

Selon x-x': l = 160cm.

Selon y-y': 1 = 210cm.

La section d'armature Ax selon x-x':

 $Ax=1.60x2.01=3.81cm^2$

On choisit 4HA12=3.21cm².

La section d'armatures Ay selon y-y':

On choisit 4HA12=4.52cm².

3.3.1.3. Schéma de ferraillage

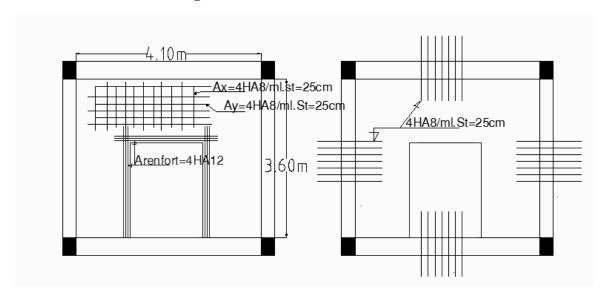


Figure 3-5 : schéma de ferraillage du panneau sur 4 appuis

3.3.2 Dalle sur 2 appuis (balcon)

e= 12cm

 $G = 4.58 KN/m^2$

 $Q=3.5 \text{ KN/m}^2$

Lx=0.30m ;Ly=3.10m

$$\rho = \frac{0.3}{3.1} = 0.09 < 0.4$$

=>La dalle travaille selon un seul sens « Lx »

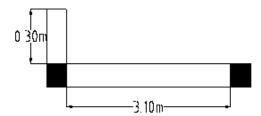


Figure 3-6: Dalle sur 2 appuis (balcon).

3.3.2.1 Calcul a L'ELU

$$\begin{aligned} q_u &= 1.35G + 1.5Q \\ q_u &= (1.35x4.58) + (1.5x3.5) = 11.43 \text{ KN /m}^2 \end{aligned}$$

Après calcul RDM on obtient :

$$M_u = \frac{q_u \times l^2}{2} = 0.51 \text{KN.m}$$

$$V_u = (q_u \times 1) = 3.43 \text{KN}$$

Le tableau suivant illustre les résultats de la flexion simple et les sections d'armatures choisies :

Tableau 3-8: Résultats du calcul à la flexion simple et ferraillage de la dalle

μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)	A _{min} (cm ² /ml)	Aopt(cm ² /ml)	A _r (cm ²)	S _t (cm)
0.0044	0.0056	0.089	0.163	1.086	2HA10=1.57	2HA8=1.01	20

Vérification de l'espacement

 $S_t \le min (2e; 25cm) = min (2x12; 25cm) = 24cm$

 $S_t = 20cm$

Vérification au cisaillement

$$\tau^{max} = \frac{V_u^{max}}{b \times d} \le \tau^{adm} = 0.05 \text{ f}_{c28}$$

$$\tau^{max} = 0.03MPa \le \tau^{adm} = 1.25MPa$$
 Vérifiée.

Vérification des A₁ vis-à-vis de l'effort tranchant

On doit vérifier que : $A_1 \ge \frac{\gamma_s \times V}{f_e}$

Et on a : $A_1=1.57$ cm² et $V_{max}=3.43$ KN

$$=>1.57$$
cm² $\ge \frac{1.15\times3.43}{400}$ 10⁻³ $=0.098$ cm²

condition vérifié.

3.3.2.2 Vérification à l'ELS

$$qs = G+Q=8.08KN/ml$$

Après calcul RDM on obtient :

$$Ms = \frac{q_s \times l^2}{2} = 0.36 KN.m$$

Vérification des contraintes

Le balcon se situe à l'extérieur (FN), donc on doit vérifier la contrainte de compression dans le béton (σ_{bc}) et la contrainte de traction dans l'acier (σ_{st}).

Le tableau 3.12 résume la vérification des contraintes.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

$$\sigma_s = 15\sigma_b \times \frac{d-y}{v} < \overline{\sigma_s} = 201.6$$
MPa

Les résultats de calcul son résumé dans le tableau suivant :

Tableau3-9: Résultats de calcul des contraintes de béton et d'acier

	Y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\overline{\sigma}_{bc}(MPa)$	$\sigma_s(MPa)$	$\overline{\sigma_s}(MPa)$
Travée	1.83	1412.76	0.46	15	27.03	201.6

Etat limite de déformation

Vérification de la flèche

$$\begin{cases} \frac{h}{L} \geq \frac{1}{16} \dots \dots \dots \dots \dots (1) \\ \frac{h}{L} \geq \frac{M_t}{10 \times M_0} \dots \dots \dots \dots (2) \\ \frac{A}{b_0 \times d} \leq \frac{4.2}{f_e} \dots \dots \dots (3) \end{cases} = \begin{cases} 0.4 \geq 0.06 & condition \ v\'{e}rifi\'{e}e \\ 0.0017 \leq 0.0105 & condition \ v\'{e}rifi\'{e}e \end{cases}$$

=>Les trois conditions sont vérifier, la vérification à la flèche n'est pas nécessaire.

3.3.2.3. Schéma de ferraillage

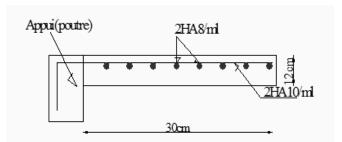


Figure 3-7 : schéma de ferraillage de la dalle sur 2 appuis.

3.3.3 Dalle sur 3 appuis (intérieure de l'habitation FPN)

 $G=4.58KN/m^2$

 $Q=1.5 \text{ KN/m}^2$

Lx= 1.10m; Ly=4.10m

$$\rho = \frac{1.10}{4.10} = 0.26 < 0.4$$

e= 12cm

On aura donc:

A l'ELU : Pu= 1.35G+1.5Q=8.43KN/m²

A l'ELS : $Ps=G+Q=6.08KN/m^2$

On a Lx=1.10m $< \frac{L_y}{2} = 2.05$ alors

$$\begin{cases} M_{0x} = \frac{P \times L_x^2 \times L_y}{2} - \frac{2 \times P \times L_x^3}{3} \\ M_{0y} = \frac{P \times L_x^3}{6} \end{cases}$$

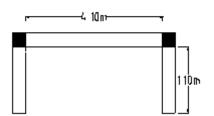


Figure 3-8: Dalle sur 3 appuis.

3.3.3.1 Calcul à l'ELU

$$\begin{cases} M_{0X} = 13.43 KN. m \\ M_{OY} = 1.87 \ KN. m \end{cases}$$

Moment en travées

$$\begin{cases} M_X^t = 0.85 \times M_{0X} = 0.85 \times 13.43 = 11.41 KN.m \\ M_Y^t = 0.75 \times M_{0Y} = 0.75 \times 1.87 = 1.40 \ KN.m \end{cases}$$

Moment en appuis

$$\mathbf{M}^{\mathbf{a}}_{\mathbf{x}} = \mathbf{M}^{\mathbf{a}}_{\mathbf{y}} = \begin{cases} -0.3 \times M_{0x} = -4.03KN.m \\ -0.5 \times M_{0x} = -6.71KN.m \end{cases}$$

Effort tranchant

$$V_{\text{max}} = \frac{Pu \times L \times}{2} = \frac{13.43 \times 1.10}{2} = 7.38 KN$$

• Ferraillage

En travée

Tableau 3-10 : Résultats de calcul à la flexion simple et ferraillage de la dalle en travée

	μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)	A _{min} (cm ² /ml)	A _{opt} (cm²/ml)	S _t (cm)
Sens x-x	0.080	0.1051	0.0958	3.42	1.20	4HA12=4.52	25
Sens y-y	0.0099	0.0124	0.0995	0.404	1.20	3HA8=1.51	25

Espacement (St)

Sens x-x

 $S_t \le min (3e, 33cm) = min (3*12,33cm)$

$$S_t \le 33 \text{ cm} => S_t = 25 \text{ cm}$$

Sens y-y

 $S_t \le \min (4e, 45cm) = \min (4*12, 45cm)$

$$S_t \le 45cm => S_t = 25cm$$

En appuis

Tableau 3-11 : Résultats de calcul à la flexion simple et ferraillage de la dalle en appui

	μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)	A _{min} (cm ² /ml)	A _{opt} (cm²/ml)	S _t (cm)
Sens x-x	0.0351	0.0447	0.0884	1.31	1.08	3HA8=1.51	25
Sens y-y	0.0585	0.0754	0.0873	2.21	1.08	3HA10=2.36	25

Espacement (St)

Sens x-x

 $S_t \le min (3e, 33cm) = min (3*12,33cm)$

$$S_t \le 33 \text{ cm} => S_t=25 \text{ cm}$$

Sens y-y

 $S_t \le min (4e, 45cm) = min (4*12, 45cm)$

$$S_t \le 45cm => S_t = 25cm$$

Vérification au cisaillement

$$au^{max} = \frac{V_u^{max}}{b \times d} \le \tau^{adm} = 0.05 \text{ f}_{c28}$$

$$au^{max} = 0.0738MPa \le \tau^{adm} = 1.25MPa$$

Vérification des A_l vis-à-vis de l'effort tranchant

On doit vérifier que :
$$A_l \ge \frac{\gamma_s \times V}{f_e}$$

Et on a :
$$A_1$$
=4.52cm² et V_{max} =7.38 KN

$$=>4.52$$
cm² $\ge \frac{1.15 \times 7.38}{400} 10^{-3} = 0.212$ cm²

condition vérifié

3.3.3.2 Calcul à l'ELS

$$\begin{cases} M_{0X} = 9.68KN.m \\ M_{OY} = 1.35KN.m \end{cases}$$

Moment en travées

$$\begin{cases} M_X^t = 0.85 \times M_{0X} = 0.85 \times 9.68 = 8.22 KN.m \\ M_y^t = 0.75 \times M_{0Y} = 0.75 \times 1.35 = 1.01 KN.m \end{cases}$$

Moment en appuis

$$\mathbf{M}^{\mathbf{a}}_{\mathbf{x}} = \mathbf{M}^{\mathbf{a}}_{\mathbf{y}} = \begin{cases} -0.3 \times M_{0x} = -2.90KN.m \\ -0.5 \times M_{0x} = -4.84KN.m \end{cases}$$

Vérification des contraintes

Comme notre panneau se situe à l'intérieure de la structure (FPN) ⇒on ne vérifie que la contrainte de compression dans le béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

$$y = \frac{b \times y^2}{2} + 15(A_s + A'_s) \times y - 15 \times (d \times A_s + d' \times A'_s) = 0$$

$$I = \frac{b_0 \times y^3}{3} + 15 \times [A_s \times (d \times y)^2 + A'_s \times (y - d')^2]$$

$$A'_s = 0$$

Tableau 3-12 : Résultats de calcul de la contrainte de béton

	Y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\overline{\sigma_b}(MPa)$	Observation
Travée x-x	3.062	4220.57	5.96	15	vérifiée
Travée y-y	1.913	1714.65	1.12	15	vérifiée
Appuis	2.326	2504.19	4.5	15	vérifiée

Etat limite de déformation

Vérification de la flèche

Sens x-x

Toutes les conditions de BEAL91 sont vérifiées donc la vérification à la flèche n'est pas nécessaire.

Sens y-y

La condition n'est pas vérifiée, donc la vérification de la flèche est nécessaire.

La flèche totale est définie d'après le BEAL91 comme suit :

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

$$\Delta f = 0.073 + 0.040 - 0.024 - 0.016 = 0.073$$
cm

$$\Delta f = 0.073 \text{cm} < f_{\text{adm}} = 0.82 \text{cm}$$

3.3.3 Schéma de ferraillage

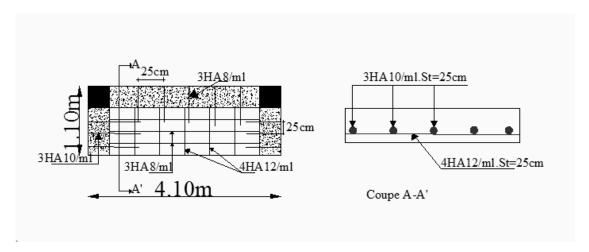


Figure 3-9 : Schéma de ferraillage de dalle sur 3 appuis.

3.3.4. Dalle sur 3apuis (balcon)

$$G=4.58KN/m^2$$

$$Q = 3.5 \text{ KN/m}^2$$

$$Lx= 1.20m$$
 ; $Ly=3.10m$

$$\rho = \frac{1.20}{3.10} = 0.38 < 0.4$$

e= 12cm

On aura donc:

A l'ELU :
$$Pu = 1.35G + 1.5Q = 11.43 \text{ KN/m}^2$$

A l'ELS :
$$Ps = G + Q = 8.08 KN/m^2$$

On a Lx=1.20m
$$< \frac{L_y}{2} = 1.55$$
alors

$$\begin{cases} M_{0x} = \frac{P \times L_x^2 \times L_y}{2} - \frac{2 \times P \times L_x^3}{3} \\ M_{0y} = \frac{P \times L_x^3}{6} \end{cases}$$

3.3.4.1Calcul à l'ELU

$$\begin{cases} M_{0X} = 12.34KN.m \\ M_{OY} = 3.29 \ KN.m \end{cases}$$

Moment en travées

$$\begin{cases} M_X^t = 0.85 \times M_{0X} = 0.85 \times 12.34 = 10.49 KN. m \\ M_Y^t = 0.85 \times M_{0Y} = 0.85 \times 3.29 = 2.8 KN. m \end{cases}$$

Moment en appuis

$$M_{x}^{a} = M_{y}^{a} = \begin{cases} -0.3 \times M_{0x} = -3.70KN.m \\ -0.5 \times M_{0x} = -6.17KN.m \end{cases}$$

Effort tranchant

$$V_{\text{max}} = \frac{Pu \times L \times}{2} = \frac{11.43 \times 1.20}{2} = 6.85 KN$$

• Ferraillage

En travée

Tableau 3-13 : Résultats de calcul à la flexion simple et ferraillage de la dalle en travée

	μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)	$\begin{array}{c} \mathbf{A_{min}} \\ (\mathbf{cm^2/ml}) \end{array}$	A _{opt} (cm²/ml)	S _t (cm)
Sens x-x	0.0914	0.1200	0.0857	3.52	1.08	5HA10=3.93	20
Sens y-y	0.0244	0.0309	0.0889	0.90	1.08	3HA8=1.51	20

Espacement (St)

$$S_t \le min (2e, 25cm) = min (2x12, 25cm) = 24cm$$

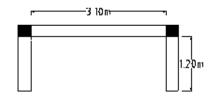


Figure 3-10 : Dalle sur 3 appuis (balcon)

$$S_t \le 24 \text{ cm} => S_t = 20 \text{ cm}$$

En appuis

Tableau 3.14. Résultats de calcul à la flexion simple et ferraillage de la dalle en appui

	μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)	A _{min} (cm ² /ml)	A _{opt} (cm²/ml)	S _t (cm)
Sens x-x	0.0322	0.0410	0.0885	1.20	1.08	3HA8=1.51	20
Sens y-y	0.0538	0.0691	0.0875	2.02	1.08	3HA10=2.36	20

Espacement (St)

$$S_t \le min (2e, 25cm) = min (2x12, 25cm) = 24cm$$

$$S_t \le 24 \text{ cm} => S_t=20 \text{ cm}$$

Vérification au cisaillement

$$\tau^{max} = \frac{V_u^{max}}{h \times d} \le \tau^{adm} = 0.05 \text{ f}_{c28}$$

$$\tau^{max} = 0.076 MPa \le \tau^{adm} = 1.25 MPa$$

Vérification des A_l vis-à-vis de l'effort tranchant

On doit vérifier que : $A_l \ge \frac{\gamma_s \times V}{f_s}$

Et on a : $A_1=3.93$ cm² et $V_{max}=6.85$ KN

$$=>3.93$$
cm² $\ge \frac{1.15\times6.85}{400}10^{-3} = 0.196$ cm²

condition vérifié

3.3.4.2 Calcul à l'ELS

$$M_{0X} = 8.72KN.m$$

 $M_{0Y} = 2.32KN.m$

Moment en travées

$$\begin{cases} M_X^t = 0.85 \times M_{0X} = 0.85 \times 8.72 = 7.41 KN.m \\ M_Y^t = 0.85 \times M_{0Y} = 0.85 \times 2.32 = 1.97 KN.m \end{cases}$$

Moment en appuis

$$M_{x}^{a} = M_{y}^{a} = \begin{cases} -0.3 \times M_{0x} = -2.61KN.m \\ -0.5 \times M_{0x} = -4.36KN.m \end{cases}$$

Vérification des contraintes

On a une fissuration nuisible ⇒on vérifier la contrainte de compression dans le béton et la contrainte de cisaillement de l'acier.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

$$\sigma_s = 15\sigma_b \times \frac{d-y}{y} < \overline{\sigma_s} = 201.6$$
MPa

Tableau 3-15: Résultats de calcul de la contrainte de béton et l'acier

	Y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\overline{\sigma_b}(MPa)$	$\sigma_s(MPa)$	$\overline{\sigma_s}$ (MPa)
Travée x-x	2.72	2995.7	6.72	15	232.72	201.6
Travée y-y	1.80	1368.6	2.59	15	155.4	201.6
Appuis	2.19	1991.8	4.79	15	223.42	201.6

On remarque que:

$$\sigma_s = 232.72 > \overline{\sigma_s} = 201.6$$
 en travée dans le sens x-x

$$\sigma_s = 223.42 > \overline{\sigma_s} = 201.6$$
 en appui

=>La contrainte dans les aciers n'est pas vérifiée donc le calcul se fera à l'ELS :

En travée :

$$A_{ser} = \frac{Mser}{d(1 - \frac{\alpha}{3})\overline{\sigma}} \hspace{1cm} ; \alpha = \sqrt{90\beta(\frac{1 - \alpha}{3 - \alpha})} \hspace{1cm} ; \beta = \frac{Mser}{bd^2\overline{\sigma}}$$

$$\beta = 0.004$$

α: ce calculera par étirassions successives

$$0 < \alpha < 1$$

$$\alpha_1 = 0.30$$
; $\alpha_2 = 0.305$; $\alpha_3 = 0.304$ on prend $\alpha = \alpha_3$

$$A_{ser} = \frac{7.41 \times 10^{-3}}{0.09 \left(1 - \frac{0.304}{3}\right) 201.6} = 4.54 cm^2$$

On adopte: $A_s = 5HA12 = 5.65cm^2$

En appui:

$$\beta = 0.002$$

$$\alpha_1 = 0.30$$
 ; $\alpha_2 = 0.216$; $\alpha_3 = 0.225$; $\alpha_4 = 0.224$ on prend $\alpha = \alpha_4$

$$A_{ser} = 2.58 cm^2$$

On adopte: $A_s = 4HA10 = 3.14cm^2$

Etat limite de déformation

Vérification de la flèche

Sens x-x

$$\begin{cases} \frac{h}{L} \geq \frac{1}{16} \dots \dots \dots \dots (1) \\ \frac{h}{L} \geq \frac{M_t}{10 \times M_0} \dots \dots \dots (2) \\ \frac{A}{b_0 \times d} \leq \frac{4.2}{f_e} \dots \dots (3) \end{cases} = > \begin{cases} 0.1 \geq 0.06 & condition \ v\'erifi\'ee \\ 0.1 \geq 0.08 & condition \ v\'erifi\'ee \\ 0.62 \geq 0.010 & condition \ non \ verifi\'ee \end{cases}$$

La 3^{eme}condition n'est pas vérifiée, donc la vérification à la flèche est nécessaire.

La flèche totale est définie d'après le BEAL91 comme suit :

$$\Delta f = f_{va} + f_{ip} - f_{iq} - f_{ij}$$

$$\Delta f = 0.0427 + 0.044 - 0.018 - 0.0077 = 0.063 \text{ cm}$$

$$\Delta f = 0.063 \text{cm} < f_{\text{adm}} = 0.24 \text{cm}$$

Sens y-y

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots & (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots & (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots & (3) \end{cases}$$

$$\frac{h}{L} = \frac{0.12}{3.10} = 0.038 < 0.06$$

La condition n'est pas vérifiée, donc la vérification de la flèche est nécessaire.

La flèche totale est définie d'après le BEAL91 comme suit :

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

 $\Delta f = 0.0409 + 0.0208 - 0.0136 - 0.0344 = 0.013$ cm

$$\Delta f = 0.013 \text{cm} < f_{\text{adm}} = 0.62 \text{cm}$$

3.3.4.3 Schéma de ferraillage

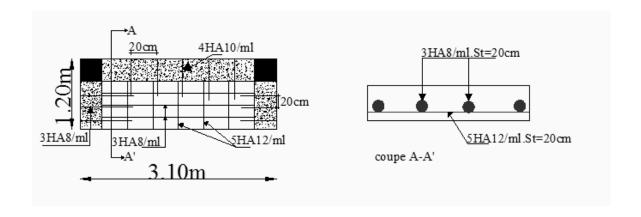


Figure 3-11 : Schéma de ferraillage de dalle sur 3 appuis (balcon).

3.4 ETUDE DES ESCALIERS

3.4.1 Type 1 (escalier une seule volée)

Poids de la volée

Tableau 3-16 : Evaluation des charges de la volée de l'escalier type1

Matériaux	Epaisseur (cm)	Densité (KN/m³)	Poids (KN/m ²)
Carrelage	2	22	0.44
Mortier de pose	2	20	0.40
Lit de sable	2	18	0.36
Marche	17	22	1.87

Paillasse	17	25	5.06
Enduit de ciment	1.5	18	0.27
Gardes corps	//	//	0.1
		Totale	8.50

Le poids propre du palier de repos

Tableau 3-17 : Evaluation des charges du palier de l'escalier type 1

Matériaux	Epaisseur (cm)	Densité (KN/m³)	Poids (KN/m ²)
Carrelage	2	22	0.44
Mortier de pose	2	20	0.40
Lit de sable	2	18	0.36
Poids propre	17	25	4.25
Enduit de ciment	1.5	18	0.27
		Total	5.72

 $Q=2.5KN/m^2$

3.4.1.1 Calcul des Sollicitations

A l'ELU

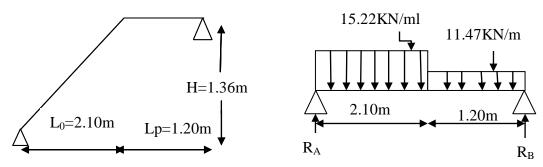


Figure 3-12 : Schéma statique de l'escalier type 1

$$\begin{split} q_{pu} &= 1,35 \text{ G} + 1,50 \text{ Q} = 11.47 \text{KN/m} \\ q_{Vu} &= 1,35 \text{ G} + 1,50 \text{ Q} \ = 15.22 \text{KN/m} \end{split}$$

La poutre est isostatique, pour le calcul des réactions on utilise la méthode de RDM.

$$\sum F = 0 \Rightarrow R_A + R_B = (15.22x2.10) + (11.47x1.20)$$

$$\Rightarrow R_A + R_B = 45.72KN$$

$$\sum \frac{M}{A} = 0 \Rightarrow (15.22x2.10^2/2) + (11.47x1.20x2.7) - (3.3R_B) = 0$$

$$\Rightarrow \begin{cases} R_A = 24.29KN \\ R_B = 21.43KN \end{cases}$$

$$M^{max} = 19.38KN.m$$

$$M_t = 0.75 M_0 = 14.53 KN.m$$

$$M_a = -0.5M_0 = -9.69KN.m$$

3.4.1.2 Ferraillage

Le ferraillage se fera en flexion simple pour une section (bxh) = (100x17) cm².

Tableau 3-18 : Résultats du calcul à la flexion simple et ferraillage de l'escalier

	M (KN.m)	A_{cal} (cm ²)	A_{min} (cm ²)	A _{opt} (cm ²)	St
Travée	14.53	2.85	1.81	4HA10=3.14	25
Appuis	9.69	1.88	1.81	4HA8=2.01	25

• Les armatures de répartition

$$A_{r} = \frac{A_{s}}{4} = \begin{cases} En \ trav\'ee: A_{r} = \frac{3.14}{4} = 0.78cm^{2} \\ En \ appui: A_{r} = \frac{2.01}{4} = 0.50cm^{2} \end{cases}$$

Donc, on adopte : $4HA8/ml = 2.01cm^2/ml$

3.4.1.3 Vérifications à L'ELU

• Vérification à l'effort tranchant

$$\begin{split} &\tau_u = \frac{V}{b \times d} \leq \tau^{adm} = 0.05 \; \mathrm{f_{c28}} \\ &\tau_u = \frac{V}{b \times d} \; \; avec : V = R_A = 24.29 KN \\ &\tau_u = \frac{24.29 \times 10^{-3}}{1 \times 0.15} = 0.161 \; \mathrm{MPa} < \tau^{adm} = 1.25 MPa \ldots v\acute{e}rifi\acute{e}e \end{split}$$

• Vérification des armatures longitudinales au cisaillement

$$A_s \ge \frac{(V + \frac{M_a}{0.9 \times d})}{\frac{f_e}{\gamma_s}}$$

Avec: V=24.29KN

$$M_a = -9.69 KN$$

$$=>A_s \ge (24.29x10^{-3} - \frac{9.69 \times 10^{-3}}{0.9 \times 0.15})/348 = -0.000276cm^2 < 0$$

=> Aucune vérification à faire.

- Vérification des espacements

 $St \le min (3e; 33cm) = 33cm > 25 cm$ vérifiée (armatures longitudinales) $St \le min (4e; 45cm) = 45cm > 25 cm$ vérifiée (armatures transversales)

3.4.1.4 Vérifications à L'ELS

$$\begin{split} q_{pu} &= G + Q = 5.72 + 2.5 = 8.22 KN/m \\ q_{Vs} &= G + Q = 8.50 + 2.5 = 11 KN/m. \end{split}$$

Les sollicitations calculées par la méthode RDM sont

$$R_A = 17.54KN$$

$$R_B = 15.42 \text{ KN}$$

$$M_0 = 13.98 \text{ KN.m}$$

$$M_t = 0.75 M_0 = 10.48 KN.m$$

$$M_a = -0.5 M_0 = -6.99 KN.m$$

• Etat limite d'ouverture des fissures

Etant donné que la fissuration est peu nuisible donc la vérification des contraintes dans les aciers est inutile

Etat limite de compression du béton

Dans ce cas il faut vérifier :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

Tableau 3-19: Résultats de calcul des contraintes de béton

	M _{ser} (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc}(\text{MPa})$	$\overline{\sigma_b}$ (MPa)
Travée	10.48	2.63	7645.3	3.60	15
Appuis	6.99	2.93	5230.9	3.91	15

• Vérification à l'état limite de déformation

Si les 03 conditions suivantes sont vérifiées alors pas de vérification à la flèche :

$$\begin{cases} \frac{h}{L} \geq \frac{1}{16} \dots \dots \dots \dots (1) \\ \frac{h}{L} \geq \frac{M_t}{10 \times M_0} \dots \dots \dots (2) \\ \frac{A}{b_0 \times d} \leq \frac{4.2}{f_e} \dots \dots (3) \end{cases} = > \begin{cases} 0.051 \leq 0.062 \\ 0.051 \leq 0.075 \\ 0.002 \leq 0.0105 \end{cases}$$
 condition non vérifiée condition verifiée

=> La 1ere et 2 eme conditions ne sont pas vérifier. Donc La vérification à la flèche est nécessaire.

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$
$$f_{\text{adm}} = \frac{l}{500} = 0.62 \text{cm}$$

 f_{gi} et $f_{vg}\colon Flèche$ instantanée et différée simultanément due à l'ensemble des charges permanentes.

f_{ii}: flèche instantanée due aux charges permanentes appliquées au moment de la mise en œuvre des revêtements.

f_{qi}: Flèche instantanée due aux charges permanentes supportés par l'élément considéré.

$$f_{gi} = \frac{\textit{M.L}^2}{10\textit{Ei.I}_{fi}} \hspace{0.5cm} \text{; } f_{vg} = \frac{\textit{M.L}^2}{10\textit{Ev.I}_{fv}}$$

$$E_i = 32164.2MPa$$

$$E_i = 32164.2 MPa \hspace{1.5cm} ; \ E_v = 10721.4 \ Mpa$$

- calcul à l'ELS

$$\rho = \frac{As}{b.d} = \frac{3.14}{100 \times 15} = 0.002$$

$$\lambda_i = \frac{0.05.f_{t28}}{(2+3\frac{b_0}{h})\rho} = \frac{0.05 \times 2.1}{0.002 \times (2+3)} = 10.5$$

$$\lambda_{ii} = 0.4\lambda_i = 4.2$$

- Calcul du moment d'inertie I₀

$$I_0 = \frac{b \times h^3}{12} + 15A(\frac{h}{2} - d_0)$$

$$I_0 = 100x17^3/12 + 15x3.14x (8.5-2) = 41247.81cm^4$$

- Les moments

$$\begin{cases} g_v = 8.50 KN/ml \\ g_p = 5.72 KN/ml \end{cases} = g_{eq} = \frac{8.50 \times 2.10 + 5.72 \times 1.20}{3.3} = 7.48 KN/ml$$

$$\begin{cases} j_v = 5.06 + 1.87 = 6.93KN/ml \\ j_p = 4.25KN/ml \end{cases} => j_{eq} = \frac{6.93 \times 2.10 + 4.25 \times 1.2}{3.3} = 5.95KN/ml$$

$$\begin{cases} p_v = 8.5 + 2.5 = 11 KN/ml \\ p_p = 5.72 + 2.5 = 8.22 KN/ml \end{cases} = > P_{eq} = \frac{11 \times 2.10 + 8.22 \times 1.2}{3.3} = 9.98 KN/ml$$

$$M_{J}=0.75x\frac{Jl^{2}}{8}=6.07KN.m$$

$$M_g = 7.63 KN.m$$

$$M_p = 10.18 KN. m$$

- Les contraintes

$$\sigma_{sj} = \frac{15Mj}{l} (d - y) = 144.146 \text{MPa}$$

$$\sigma_{sg} = \frac{15 Mg}{I} (d - y) = 181.182 \text{MPa}$$

$$\sigma_{sp} = \frac{15 Mp}{l} (d - y) = 241.748 \text{MPa}$$

Calcul de μ :

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}}$$

$$\mu_{\rm g} = 0$$
; $\mu_{\rm p} = 0.10$; $\mu_{\rm j} = 0$

Si
$$\mu < 0$$
 => $\mu = 0$

- Les moments d'inertie fictive

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} = 0.0004722 \text{m}^4$$

$$If_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} = 0.0004722 \text{m}^4$$

$$If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} = 0.0002256 \text{m}^4$$

$$If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} = 0.0004722 \text{m}^4$$

$$f_{ij} = \frac{M_{jser} \times L^2}{10 \times E_i \times I_i \times i_j} = 0.0004318 \text{m}$$

$$f_{ig} = \frac{M_{gser} \times L^2}{10 \times E_i \times Ifig} = 0.0005470 \text{m}$$

$$f_{ip} = \frac{M_{pser} \times L^2}{10 \times E_i \times Ifip} = 0.001527 \text{m}$$

$$f_{gv} = \frac{M_{gser} \times L^2}{10 \times E_v \times Ifgv} = 0.001641 \text{m}$$

Schéma de ferraillage

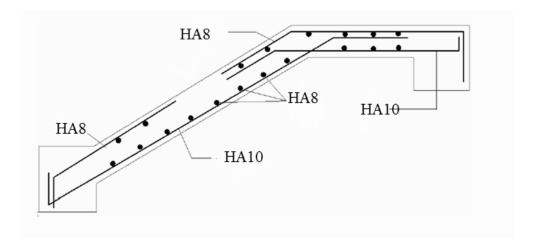


Figure 3-13 : schéma de ferraillage de l'escalier type 1

3.4.1.6Etude de la poutre palière

Cette poutre est soumise à son poids propre, aux charges transmises sous formes de réaction d'appuis et aux moments de torsion.

• Pré dimensionnement

L=3.10m

$$\frac{l}{15} \le h \le \frac{l}{10} = > 20.66 \le h \le 31$$

• Vérification

D'après le RPA99 version 2003, les conditions suivantes doivent être satisfaites :

$$\begin{cases} b \ge 20cm \\ h \ge 30cm \\ \frac{1}{4} \le h \le 4 \end{cases}$$
 => On opte pour une section de (30 * 30) cm²

> Calcul à la flexion simple

Les charges revenant à la poutre palière sont :

Poids propre : G= 0.3x0.3x25=2.25 KN/m

La charge transmise par l'escalier (type I): c'est la réaction d'appui au point B.

ELU: $R_B = 21.29$ KN/ml

ELS: $R_B = 15.42$ KN/ml

• Calcul des sollicitations

A l'ELU

$$q_u = 1.35 \times 2.25 + 21.29 = 24.32 \, KN/ml$$

$$M_0 = \frac{q_u \times l^2}{8} = 29.21 KN/m$$

En travée : M_t = 24.82 Kn.m

En appuis : $M_a = -11.68 \, KN. \, m$

L'effort tranchant : $Vu = \frac{p_u \times l}{2} = 37.70 \text{KN}$

A l'ELS

 $q_s = 17.67 \; KN/ml$

 $M_0 = 21.22 KN/m$

En travée : $M_t = 18.03 \ KN. m$

En appui : $M_a = -8.48 \ KN.m$

L'effort tranchant : Vs= 27.38KN

• Ferraillage

Les résultats du ferraillage longitudinal en travée et en appui sont récapitulés dans le tableau suivant :

Tableau 3-20: Ferraillage de la poutre palière à la flexion simple.

	M (KN.m)	μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)	$\begin{array}{c} A_{min} \\ (cm^2/ml) \end{array}$	A _{opté} (cm ² /ml)
Travée	24.82	0.074	0.096	0.269	2.65	1.01	4HA10=3.14
Appui	11.68	0.035	0.044	0.275	1.22	1.01	3HA10=2.36

• Vérifications

- Vérifications à L'ELU

Condition de non fragilité

$$A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 1.01 \text{cm}^2$$

En travée : $A_{\text{cal}} = 2.65 > A_{min} = 1.01 cm^2$ vérifiée

En appui : A_{cal} = 1.03> A_{min} = 1.01.....vérifiée

Contrainte de cisaillement

Il faut vérifier que $\tau_u \leq \tau_{adm}$

Avec:
$$\tau_u = \frac{V}{b \times d} = \frac{37.70 \times 10^{-3}}{0.3 \times 0.28} = 0.448 MPa$$

Et
$$\tau_{adm} = \min(0.2 \times \frac{f_{c28}}{\gamma_b}; 4MPa) = 3.33MPa.$$

$$\tau_u = 0.448 \; MPa \; \leq \; \tau_{adm} = 3.33 MPa \; Verifi\'ee$$

Vérification des armatures longitudinales au cisaillement

$$A > (Vu + \frac{M_u}{0.9 \times d}) \times \frac{\gamma_s}{f_e} = -0.248 \text{ cm}^2$$

Calcul de l'espacement

 $S_t \le (0.9d, 40cm) => S_t \le 25.2$. On opte pour $S_t=15cm$.

- Vérifications à L'ELU

• Etats limite de compression de béton

La fissuration est peu nuisible donc il faut juste vérifier que la contrainte de compression du béton est inférieure au 'égale à la contrainte admissible du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

Tableau 3-21: Résultats de calcul des contraintes de béton

	$M_{ser}(KN.m)$	Y (cm)	I (cm ⁴)	$\sigma_{bc}(\text{MPa})$	$\overline{\sigma_b}$ (MPa)
Travée	18.03	7.93	23958.88	5.96	15
Appui	8.48	7.03	19041.11	2.66	15

• État limite de déformation

- Vérification de la flèche

La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

=> Donc la vérification à la flèche n'est pas nécessaire.

> Calcul a la torsion

Le moment de torsion provoquer sur la poutre palière est transmis par la volée

$$M_{torsion} = M_a = 11.68 \text{ KN.m}$$

$$e = \emptyset /6 = h/6 = 5 \text{ cm}$$

$$\Omega = [b-e] \times [h-e] = 0.0625 \text{ m}^2$$

$$U = 2 \times [(h-e)+(b-e)] = 1 m$$

Al=
$$\frac{M_{Tu} \times U \times \gamma_s}{2 \times \Omega \times f_e}$$
 = 2.68 cm²

• Choix d'armature

La section totale des armatures à adoptée est :

En travée :
$$A_t = \frac{A_{torsion}}{2} + A_l(flexion) = \frac{2.68}{2} + 3.14 = 4.48 \text{ cm}^2$$

On opte pour: 5HA12=5.65cm²

En appuis:
$$A_t = \frac{A_{torsion}}{2} + A_l(flexion) = \frac{2.68}{2} + 2.36 = 3.70 \text{ cm}^2$$

On opte pour: 3HA14=4.62cm²

• Vérification de la contrainte de cisaillement

$$\tau_u \leq \, \overline{\tau}_u$$

On a
$$V_{\text{max}}$$
= 37.70 KN; $\tau_{flexion}$ = 0.448 MPa

$$\tau_{torsion} = \frac{M_{torsion}}{2 \times \Omega \times e} = \frac{11.68 \times 10^{-3}}{2 \times 0.0625 \times 0.05} = 1.86 MPa$$

$$\tau_{adm} = \min(0.13 f_{c28}; 5MPa) = 3.25MPa$$

$$\Rightarrow \tau_u = 1.91 MPa < \tau_{adm} = 3.25 MPa$$
 condition vérifiée.

Calcul des armatures transversales

Soit St = 15cm en travée et 10cm en appuis

$$A_t^{\text{min}} = 0.003 \times S_t \times b = 0.003 \times 15 \times 30 \Longrightarrow A_t^{\text{min}} = 1.35 cm^2$$

$$At = \frac{M_{Tu} \times St \times \gamma_s}{2 \times \Omega \times f_e} = 0.45 \text{ cm}^2$$

Armature transversales en torsion : D'où $A_t = 1.35 + 0.45 = 1.8 \text{cm}^2$

On opte pour un cadre et un épingle HA8=2.01cm².

Schéma de ferraillage

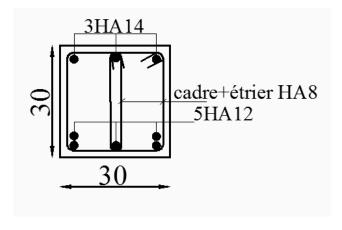


Figure 3.14. Schéma de ferraillage de la poutre palière.

3.4.2 Type 2 (escalier a deux volées)

3.4.2.1Evaluation des charges permanentes des escaliers

Le poids propre des volées

Tableau 3-22 : Evaluation des charges de la volée de l'escalier type 2

Matériaux	Epaisseur (cm)	Densité (KN/m³)	Poids (KN/m ²)
Carrelage	2	22	0.44
Mortier de pose	2	20	0.40
Lit de sable	2	18	0.36
Daillagas	$\frac{17}{\cos \alpha_1}$		5.03
Paillasse	$\frac{17}{\cos \alpha_2}$	25	5.09
Marche	$\frac{h}{2}$	22	1.87
Enduit de ciment	1.5	18	0.27
Garde-corps	//	//	0.1
		Totales	$G_1 = 8.47$
		Totales	$G_2 = 8.53$

Le poids propre du palier de repos

Tableau 3-23: Evaluation des charges du palier de l'escalier type 2

Matériaux	Epaisseur (cm)	Densité (KN/m³)	Poids (KN/m ²)
Carrelage	2	22	0.44
Mortier de pose	2	20	0.40
Lit de sable	2	18	0.36
Poids propre	17	25	4.25
Enduit de ciment	1.5	18	0.27
		Total	5.72

 $Q=2.5KN/m^2$

3.4.2.2. Calcul de la 1^{ere} volée

à L'ELU

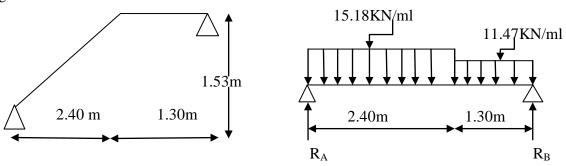


Figure 3-15 : Schéma statique de l'escalier type 2 (volée1)

-Calcul des Sollicitations

$$q_{pu} = 1,35 \text{ G} + 1,50 \text{ Q} = 11.47 \text{KN/m}$$

$$q_{Vu} = 1,35 \text{ G} + 1,50 \text{ Q} = 15.18 \text{KN/m}$$

Par la méthode de RDM on trouve

$$R_A = 27.24KN$$

$$R_B = 24.10KN$$

$$M_0^{\text{max}} = 24.44 \text{KN.m}$$

$$M_t = 0.75M_0 = 18.33KN.m$$

$$M_a = -0.5M_0 = -12.22KN.m$$

- Ferraillage

Le calcul ce fait à la flexion simple pour une bande de 1 ml ;Les résultats de calculs sont résumés dans le tableau suivant

Tableau 3-24 : Résultats de ferraillage de l'escalier type 2 (volée1)

	M (KN.m)	A_{cal} (cm ²)	A_{min} (cm ²)	A_{opt} (cm ²)	St
Travée	18.33	3.62	1.81	5HA12=5.65	25
Appuis	12.22	2.38	1.81	4HA10=3.14	25

• Les armatures de répartition

$$A_{r} = \frac{A_{s}}{4} = > \begin{cases} En\ trav\'ee \colon A_{r} = \frac{5.65}{4} = 1.41cm^{2} \\ En\ appui \colon A_{r} = \frac{3.14}{4} = 0.78cm^{2} \end{cases}$$

Donc, on adopte : $4HA8/ml = 2.01cm^2/ml$

- Vérifications à L'ELU
- Vérification à l'effort tranchant

$$\tau_u = \frac{v}{b \times d} \le \tau^{adm} = 0.05 \text{ f}_{c28}$$

$$Avec: V = R_A = 27.24KN$$

$$\tau_u = \frac{^{27.24 \times 10^{-3}}}{^{1 \times 0.15}} = 0.181 \\ \text{MPa} < \tau^{adm} = 1.25 \\ \textit{MPa} \ldots \ldots \ldots \ldots v \\ \acute{e}rifi\acute{e}e$$

- Vérification des armatures longitudinales au cisaillement

$$A_{s} \ge \frac{(V + \frac{M_{a}}{0.9 \times d})}{\frac{f_{e}}{v_{s}}}$$

Avec: V=27.28KN

$$M_a = -12.22KN$$

$$=>\!A_s\!\ge\!(27.28x10^{\text{-}3}\!-\!\tfrac{12.22\times10^{\text{-}3}}{0.9\times0.15})/348=\text{-}0.000181\text{cm}^2\!<\!0$$

=> Aucune vérification à faire.

- Vérification des espacements

 $St \le min (3e; 33cm) = 33cm > 25 cm$ vérifiée (armatures longitudinales)

 $St \le min (4e; 45cm) = 45cm > 25 cm$ vérifiée (armatures transversales)

• Vérifications à L'ELS

$$q_{pu}\!=\;G+\;Q=8.22KN\!/m$$

$$q_{Vu} = G + Q = 10.97 KN/m$$

Les sollicitations calculées par la méthode RDM sont

$$R_A = 19.67 KN$$

$$R_B = 17.34 KN$$

$$M_0^{\text{max}} = 17.63 \text{KN.m}$$

$$M_t = 0.75M_0 = 13.22KN.m$$

$$M_a = -0.5M_0 = -8.81KN.m$$

- Etat limite d'ouverture des fissures

Etant donné que la fissuration est peu nuisible donc la vérification des contraintes dans les aciers est inutile

- Etat limite de compression du béton

Dans ce cas il faut vérifier :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

Tableau 3-25: Résultats de calcul des contraintes de béton

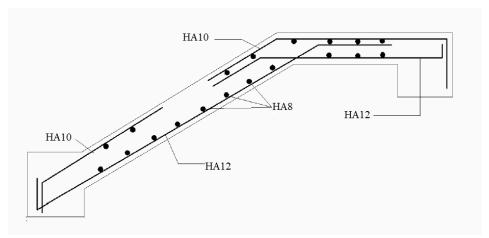
	$M_{ser}(KN.m)$	Y (cm)	I (cm ⁴)	$\sigma_{bc}(\text{MPa})$	$\overline{\sigma_b}$ (MPa)
Travée	13.22	4.26	12352.33	4.56	15
Appuis	8.81	3.31	7645.32	3.81	15

• Vérification à l'état limite de déformation

$$\frac{h}{l} = \frac{0.17}{3.7} = 0.045 < \frac{1}{16} = 0.062$$
....non vérifiée

=>La1^{ere} condition n'est pas vérifiée. Donc La vérification à la flèche est nécessaire.

Tableau 3-26: Les différent cas de chargement de l'escalier type 2(volée 1)


	$J(KN/m^2)$	g (KN/m ²)	$q (KN/m^2)$
Paillasse	6.9	8.47	10.97
Palier	4.25	5.72	8.22

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

$$\Delta f = 0.295 + 0.238 - 0.120 - 0.066 = 0.346 \text{ cm}$$

$$\Delta f_t = 0.346 \text{cm} < f_{\text{adm}} = 0.74 \text{cm}$$
 vérifiée.

Schémas de ferraillage

Figure3-16 : Schéma de ferraillage de l'escalier type2 (volée1)

3.4.2.3. Calcul de la 2^{eme} volée

à L'ELU

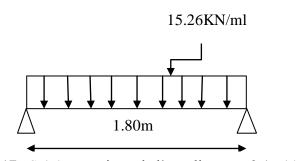


Figure 3-17 : Schéma statique de l'escalier type 2 (volée 2)

$$q_{Vu}$$
 = 1,35 G + 1,50 Q =15.26KN/ml

Tableau 3-27 : Résultats de ferraillage de l'escalier type 2 (volée 2)

	M (KN.m)	A_{cal} (cm ²)	A_{\min} (cm ²)	A_{opt} (cm ²)	St
Travée	4.63	0.89	1.81	4HA8=2.01	25
Appuis	3.09	0.59	1.81	4HA8=2.01	25

• Les armatures de répartition

$$A_r = \frac{A_s}{4} \implies A_r = 2.01/4 = 0.50 \text{ cm}^2/\text{ml}$$

Donc, on adopte : $4HA8/ml = 2.01cm^2/ml$

- Vérifications à L'ELU

- Vérification à l'effort tranchant

$$\tau_u = \frac{V}{b \times d} \le \tau^{adm} = 0.05 \text{ f}_{c28}$$

$$Avec: V = R_A = 13.73KN$$

$$\tau_u = \frac{_{13.73\times 10^{-3}}}{_{1\times 0.15}} = 0.091 \\ \text{MPa} < \tau^{adm} = 1.25 \\ \textit{MPa} \ldots \ldots \ldots \ldots v\'{e}rifi\'{e}e$$

- Vérification des armatures longitudinales au cisaillement

$$A_{s} \ge \frac{(V + \frac{M_{a}}{0.9 \times d})}{\frac{f_{e}}{\gamma_{s}}}$$

Avec : V=13.73KN

$$M_a = -3.09KN$$

$$=>A_s \ge (13.73 \times 10^{-3} - \frac{3.09 \times 10^{-3}}{0.9 \times 0.15})/348 = -0.000026 \text{cm}^2 < 0$$

=> Aucune vérification à faire.

- Vérification des espacements

 $St \le min (3e; 33cm) = 33cm > 25 cm$ vérifiée (armatures longitudinales)

 $St \le min (4e; 45cm) = 45cm > 25 cm$ vérifiée (armatures transversales)

• Vérifications à L'ELS

$$q_{Vu} = G + Q$$

$$q_{Vu}$$
=8.53+ 2.5=11.03KN/ml

- Etat limite d'ouverture des fissures

Etant donné que la fissuration est peu nuisible donc la vérification des contraintes dans les aciers est inutile

- Etat limite de compression du béton

Dans ce cas il faut vérifier :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

Tableau 3-28: Résultats de calcul des contraintes de béton

	M _{ser} (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc}(\text{MPa})$	$\overline{\sigma_b}$ (MPa)
Travée	3.37	2.72	5217.36	1.75	15
Appuis	2.25	2.72	5217.36	1.17	15

• Vérification à l'état limite de déformation

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots & (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots & (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots & (3) \end{cases}$$

Les trois conditions sont vérifiées donc on n'a pas besoin de vérifier la flèche.

Schémas de ferraillage

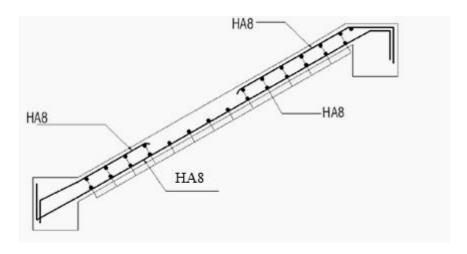


Figure3-18 : Schéma de ferraillage de l'escalier type2 (volée2)

3.4.3. Type 3 (escalier 3 volées étage courant)

3.4.3.1 Evaluation des charges permanentes des escaliers

Le poids propre de la volée

Tableau 3-29 : Evaluation des charges de la volée de l'escalier type 3

Matériaux	Epaisseur (cm)	Densité (KN/m³)	Poids (KN/m ²)
Carrelage	2	22	0.44
Mortier de pose	2	20	0.40
Lit de sable	2	18	0.36
Deillease	$\frac{14}{\cos \alpha_1}$		4.19
Paillasse	$\frac{14}{\cos \alpha_2}$	25	4.38
Marche	$\frac{h}{2}$	22	1.87
Enduit de ciment	1.5	18	0.27
Garde-corps	//	//	0.1
		Totales	$G_1 = 7.63$
		Totales	$G_2 = 7.82$

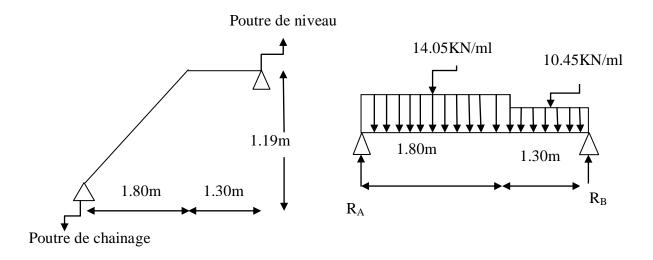

Le poids propre du palier de repos

Tableau 3-30: Evaluation des charges du palier de l'escalier type 3

Matériaux	Epaisseur (cm)	Densité (KN/m³)	Poids (KN/m ²)
Carrelage	2	22	0.44
Mortier de pose	2	20	0.40
Lit de sable	2	18	0.36
Poids propre	14	25	3.50
Enduit de ciment	1.5	18	0.27
		Total	4.97

3.4.3.2 Calcul de la 1^{ere} et 3^{eme} volée

A L'ELU

Figure 3-19 : Schéma statique de l'escalier type $3(1^{\text{ere}} \text{ et } 3^{\text{eme}} \text{ volée})$

$$\begin{split} q_{pu} &= 1,\!35~G + 1,\!50~Q = (1.35x4.97) + (1.5x2.5) = 10.45KN/m \\ q_{Vu} &= 1,\!35~G + 1,\!50~Q = (1.35x~7.63) + (1.5x~2.5) = 14.05KN/m \end{split}$$

La poutre est isostatique, pour le calcul des réactions on utilise la méthode de RDM.

$$\sum F = 0 \Rightarrow R_A + R_B = (14.05x1.8) + (10.45x1.30)$$

$$\Rightarrow R_A + R_B = 38.875KN$$

$$\sum \frac{M}{A} = 0 \Rightarrow (14.05x1.80^2/2) + (10.45x1.30x2.45) - (3.1R_B) = 0$$

$$\Rightarrow \begin{cases} R_A = 20.80KN \\ R_B = 18.07KN \end{cases}$$

 $M_0 = 15.40 \text{KN.m}$

$$M_t = 0.75M_0 = 11.55KN.m$$

$$M_a = -0.5M_0 = -7.7KN.m$$

- Ferraillage

Le calcul ce fait à la flexion simple pour une bande de 1 ml

Les résultats de calculs sont résumés dans le tableau suivant

Tableau 3-31: Résultats de ferraillage de l'escalier type 3 (1 er et 3 eme volée)

	M (KN.m)	$A_{cal}(cm^2)$	A_{\min} (cm ²)	A _{opt} (cm ²)	St
Travée	11.55	2.85	1.44	4HA10=3.14	25
Appuis	7.70	1.88	1.44	4HA8=2.01	25

• Les armatures de répartition:

$$A_{r} = \frac{A_{s}}{4} = \begin{cases} Entrav\acute{e}: A_{r} = \frac{3.14}{4} = 0.78cm^{2} \\ Enappui: A_{r} = \frac{2.01}{4} = 0.50cm^{2} \end{cases}$$

Donc, on adopte : $4HA8/ml = 2.01cm^2/ml$

- Vérifications à L'ELU
- Vérification à l'effort tranchant

$$\begin{split} \tau_u &= \frac{v}{b \times d} \leq \tau^{adm} {=} 0.05 \; \mathrm{f_{c28}} \\ Avec &: V = R_A = 20.80 KN \\ \tau_u &= \frac{20.80 \times 10^{-3}}{1 \times 0.12} {=} \; 0.173 \mathrm{MPa} < \tau^{adm} = 1.25 MPa \ldots v\acute{e}rifi\acute{e}e \end{split}$$

- Vérification des armatures longitudinales au cisaillement

$$A_{s} \ge \frac{(V + \frac{M_{a}}{0.9 \times d})}{\frac{f_{e}}{v_{c}}}$$

Avec : V=20.80KN

$$M_a = -7.70 KN$$

$$=>A_s \ge (20.80 \times 10^{-3} - \frac{7.70 \times 10^{-3}}{0.9 \times 0.12})/348 = -0.000145 \text{cm}^2 < 0$$

=> Aucune vérification à faire.

- Vérification des espacements

 $St \le min (3e; 33cm) = 33cm > 25 cm$ vérifiée (armatures longitudinales) $St \le min (4e; 45cm) = 45cm > 25 cm$ vérifiée (armatures transversales)

• Vérifications à L'ELS

$$\begin{aligned} q_{pu} &= G + \ Q = 4.97 + 2.5 = 7.47 KN/m \\ q_{Vu} &= G + Q = \ 7.63 + \ 2.5 = 10.13 KN/m \end{aligned}$$

- Etat limite d'ouverture des fissures

Etant donné que la fissuration est peu nuisible donc la vérification des contraintes dans les aciers est inutile

- Etat limite de compression du béton

Dans ce cas il faut vérifier :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

Tableau 3-32: Résultats de calcul des contraintes de béton

	$M_{ser}(KN.m)$	Y (cm)	I (cm ⁴)	$\sigma_{bc}(\text{MPa})$	$\overline{\sigma_b}(MPa)$
Travée	8.29	2.92	4713.10	5.13	15
Appuis	5.53	2.40	3239.40	4.09	15

• Vérification à l'état limite de déformation

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots & (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots & (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots & (3) \end{cases}$$

$$\frac{h}{l} = \frac{0.14}{3.1} = 0.045 < \frac{1}{16} = 0.062$$
....non vérifiée

=>La1^{ere} condition n'est pas vérifiée. Donc La vérification de la flèche est nécessaire.

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

$$f_{\text{adm}} = \frac{l}{500} = 0.62 \text{cm}$$

 f_{gi} et f_{vg} : Flèche instantanée et différée simultanément due à l'ensemble des charges permanentes.

 f_{ji} : flèche instantanée due aux charges permanentes appliquées au moment de la mise en œuvre des revêtements.

 f_{qi} : Flèche instantanée due aux charges permanentes supportés par l'élément considéré.

$$f_{gi} = \frac{M.L^2}{10Ei.I_{fi}}$$
; $f_{vg} = \frac{M.L^2}{10Ev.I_{fv}}$

$$E_i = 32164.2MPa$$

;
$$E_v = 10721.4 \text{ MPa}$$

- calcul à l'ELS

$$\rho = \frac{As}{b.d} = \frac{3.14}{100 \times 12} = 0.00261$$

$$\lambda_i = \frac{0.05.f_{t28}}{(2+3\frac{b_0}{h})\rho} = \frac{0.05 \times 2.1}{0.00261 \times (2+3)} = 8.04$$

$$\lambda_v = 0.4\lambda_i = 3.21$$

- Calcul du moment d'inertie I₀

$$I_0 = \frac{b \times h^3}{12} + 15A(\frac{h}{2} - d_0)$$

$$I_0 = 100x14^3/12 + 15x3.14x (7-2) = 23102.16cm^4$$

- Les moments

$$\begin{cases} g_v = 7.63KN/ml \\ g_p = 4.97KN/ml \end{cases} = g_{eq} = \frac{7.63 \times 1.8 + 4.97 \times 1.3}{3.1} = 6.51KN/ml$$

$$\begin{cases} j_v = 4.19 + 1.87 = 6.06KN/ml \\ j_p = 3.50KN/ml \end{cases} => j_{eq} = \frac{6.25 \times 1.8 + 3.5 \times 1.3}{3.1} = 4.98KN/ml \\ \begin{cases} p_v = 7.63 + 2.5 = 10.13KN/ml \\ p_p = 4.97 + 2.5 = 7.47KN/ml \end{cases} => P_{eq} = \frac{10.13 \times 1.8 + 7.47 \times 1.3}{3.1} = 9.01KN/ml \\ M_J = 0.75x \frac{Jl^2}{8} = \frac{4.98 \times 3.1^2}{8} = 4.48KN.m \\ M_g = 0.75x \frac{6.51 \times 3.1^2}{8} = 5.86KN.m \\ M_p = 0.75x \frac{9.01 \times 3.1^2}{8} = 8.11KN.m \end{cases}$$

- Les contraintes

$$\sigma_{sj} = \frac{15Mj}{I}(d-y) => \sigma_{sj} = 15x \frac{4.48(0.12-0.0292)}{4713.10} \times 10^5 = 129.463 \text{MPa}$$

$$\sigma_{sg} = \frac{15Mg}{I}(d-y) => \sigma_{sg} = 15x \frac{5.86(0.12-0.0292)}{4713.10} \times 10^5 = 169.343 \text{MPa}$$

$$\sigma_{sp} = \frac{15Mp}{I}(d-y) => \sigma_{sp} = 15x \frac{8.11(0.12-0.0292)}{4713.10} \times 10^5 = 234.364 \text{MPa}$$

Calcul de μ :

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sj} + f_{t28}}$$

$$\mu_{g} = 1 - \frac{1.75 \times 2.1}{4 \times 0.00261 \times 169.343 + 2.1} = 0.05$$

$$\mu_{p} = 1 - \frac{1.75 \times 2.1}{4 \times 0.00261 \times 234.364 + 2.1} = 0.192$$

$$\mu_{j} = 1 - \frac{1.75 \times 2.1}{4 \times 0.00261 \times 129.463 + 2.1} = 0$$
Si $\mu < 0 = \mu = 0$

- Les moments d'inertie fictive

$$If_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} = 0.000264 \text{m}^4$$

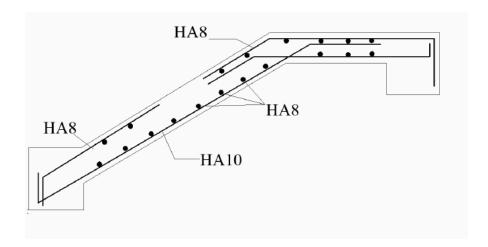
$$If_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} = 0.000187 \text{m}^4$$

$$If_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} = 0.000103 \text{m}^4$$

$$If_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} = 0.000227 \text{m}^4$$

$$f_{ij} = \frac{M_{jser} \times L^2}{10 \times E_i \times If_{ij}} = 0.000517 \text{m}$$

$$f_{ig} = \frac{M_{gser} \times L^2}{10 \times E_i \times If_{ij}} = 0.000932 \text{m}$$


$$f_{ip} = \frac{M_{pser} \times L^2}{10 \times E_i \times If_{ip}} = 0.00233 \text{m}$$

$$f_{gv} = \frac{M_{gser} \times L^2}{10 \times E_v \times If_{ij}} = 0.00231 \text{m}$$

 $\Delta f_t = 0.231 + 0.233 - 0.0932 - 0.0517 = 0.319 \text{m}$

Donc : Δf_t =0.319cm $< f_{\text{adm}}$ =0.62cmla flèche est vérifiée.

3.4.3.3Schéma de ferraillage

Figure 3-20 : Schéma de ferraillage de l'escalier type 3 (1 er et 3 eme volée)

3.4.3.4 Calcul de la 2eme volée

Nous allons l'étudier comme une console encastrée.

- Calcul des Sollicitations

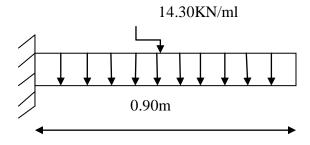


Figure 3-21: Schéma statique de l'escalier type 3 (2eme volée)

 q_{Vu} =1.35x7.82+1.5x2.5=14.30KN/ml

Tableau 3-33 : Résultats de ferraillage de l'escalier type 3 (2eme volée)

M (KN.m)	$A_{cal}(cm^2)$	A_{\min} (cm ²)	A_{opt} (cm ²)	St
5.80	1.41	1.44	4HA10=3.14	25

• Les armatures de répartition

$$A_{r} = \frac{A_{s}}{4} = \frac{3.14}{4} = 0.78cm^{2}$$

Donc, on adopte : $4HA8/ml = 2.01cm^2/ml$

- Vérifications à L'ELU

- Vérification à l'effort tranchant

$$\tau_u = \frac{V}{b \times d} \le \tau^{adm} = 0.05 \text{ f}_{c28}$$

$$Avec: V = 12.87KN$$

$$\tau_u = \frac{_{12.87\times 10^{-3}}}{_{1\times 0.12}} = 0.10 \\ \text{MPa} < \tau^{adm} = 1.25 \\ \text{MPa} \ldots \ldots \ldots \ldots v \\ \text{\'erifi\'ee}$$

- Vérification des espacements

$$St \le min (3e; 33cm) = 33cm > 25 cm$$
 vérifiée (armatures longitudinales)

$$St \le min (4e; 45cm) = 45cm > 25 cm$$
 vérifiée (armatures transversales)

• Vérifications à L'ELS

$$q_{Vu} = G + Q$$

$$q_{Vu}$$
=7.82+ 2.5=10.32KN/ml

- Etat limite d'ouverture des fissures

Etant donné que la fissuration est peu nuisible donc la vérification des contraintes dans les aciers est inutile

- Etat limite de compression du béton

Dans ce cas il faut vérifier :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

Tableau 3-34: Résultats de calcul des contraintes de béton

M _{ser} (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc}(\text{MPa})$	$\overline{\sigma_b}$ (MPa)
4.17	2.92	4713.10	2.58	15

• Vérification à l'état limite de déformation

Les trois conditions sont vérifiées donc on n'a pas besoin de vérifier la flèche.

3.4.3.5Schéma de ferraillage

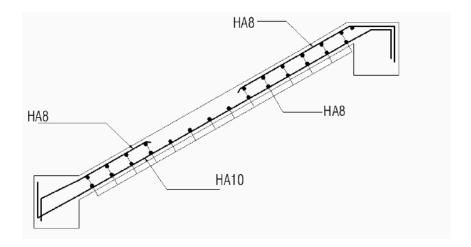
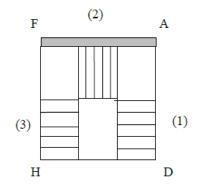


Figure 3-22 : Schéma de ferraillage de l'escalier type 3 (2éme volée)

3.5 Etude de la poutre brisée


3.5.1Calcul de la poutre brisée1 (étage courant)

Dimensionnement:

$$\frac{L}{15} \le h \le \frac{L}{10}$$

Soit: h=35cm et b=30cm

Elle est soumise à la flexion simple, en outre elle est soumise à la torsion

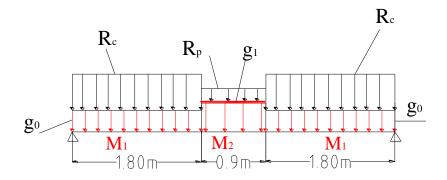


Figure3-23 : Schéma statique de la poutre brisée1

a) Calcul à L'ELU

• Calcul à la flexion simple

La poutre est soumise à son poids propre :

 $g_0 = 25 \times 0.3 \times 0.35 = 2.625 \text{ KN/ml}$ (poids propre de la partie horizontale).

 $g_1 = 25 \times 0.35 \times 0.30 / \cos 37.07 = 3.28 \text{ KN/ml}$ (poids propre de la partie inclinée).

En plus elle est soumise aux charges transmises par l'escalier;

$$R_c$$
= 18.07KN/ml et R_p = 6.435KN/ml

Avec:

- Rc : charge ramenée par la partie DA et HF.

- Rp: charge ramenée par la volée (2)

$$R_A = R_B = 43.79 \text{ KN}$$

$$M_0 = 44.90 \text{KN.m}$$

$$Vu=R_A = 43.79KN$$

$$M_t = 0.75.M_0 = 33.67 KN.m$$

$$M_a = -0.5.M_0 = -22.45KN.m$$

Le tableau 3.35 résume le calcul des moments et leurs ferraillage correspondant ainsi la contrainte de cisaillement.

Tableau 3-35 : Résultats de calcul des moments et leurs ferraillages ainsi que la contrainte de cisaillement

	Moment (KN.m)	$A_{cal}(cm^2)$	$ au_{fs}$
En travée	33.67	3.04	0.44
En appui	22.45	2.00	0.44

• Calcul à la torsion

La poutre est soumise à trois moments de torsion uniformément réparties dus aux différentes parties de l'escalier.

-
$$M_1 = 7.70 \text{ KN.m}$$

-
$$M_2 = 0.72 \text{ KN.m}$$

Le moment de torsion max est concentré aux extrémités.

$$M_T^{max} = 2 \times M_1 \times 1.80 + M_2 \times 0.9 = 28.36 KN. m$$

Ferraillage

$$A_l = \frac{M_T \times U \times \gamma_s}{2 \times \Omega \times f_e}$$

$$Ω = (b-e)x (h-e) = 0.075 cm2$$
 Avec: $e = \frac{b}{6} = 5cm$

$$U = \frac{4}{3}b + 2h = 1.1m$$

$$A_l = 5.97cm^2$$

$$\tau^T = \frac{M_T}{2 \times 0 \times e} = 3.78 MPa$$

Pour le ferraillage longitudinal on procède comme suit :

$$A_s = A_{flexion} + \frac{1}{2} A_{torsion}$$

$$\begin{cases} En\ trav\'ee: A = 6.03cm^2 \end{cases}$$

$$soit: 4HA14 = 6.16cm^2$$

$$\{En\ trav\'ee: A = 6.03cm^2 \ Soit: 4HA14 = 6.16cm^2 \ En\ appui: A = 4.98cm^2 \ Soit: 2HA16 + 1HA12 = 5.15cm^2 \$$

Vérification vis-à-vis de l'effort tranchant

$$\tau = \sqrt{\tau_{fs}^2 + \tau_T^2} = 3.80 MPa > 33 MPa$$
 pas vérifiée

Risque de rupture par cisaillement ; on doit augmenter les dimensions de la section

$$(b*h)=(35x40) \text{ cm}^2$$

Les nouveaux résultats sont résumés dans le tableau ci-dessous :

Vu (KN)	$\tau_u(MPa)$	$\tau^T(MPa)$	$\tau = \sqrt{\tau_{fs}^2 + \tau_T^2} (MPa)$	$ au_{adm}$ (MPa)
46.58	0.350	2.45	2.47	3.33

⇒ Pas risque de rupture par cisaillement.

Armature longitudinales en flexion simple

En travée : $At = 2.80 \text{ cm}^2$

En appui: Aa=1,85 cm²

Armature longitudinales à la torsion

$$A_l = \frac{M_T \times U \times \gamma_s}{2 \times \Omega \times f_e}$$

$$A_1 = 5.18 \text{ cm}^2$$

Armature transversales en torsion

$$A_t = \frac{M_T \times St \times \gamma_S}{2 \times \Omega \times f_0}$$

Soit St =
$$20 \text{cm} => A_t = 0.82 \text{ cm}^2$$

Armature transversales en flexion simple

$$A_t \ge \frac{0.4 \times b \times S_t}{fe} \rightarrow A_t \ge 0.7 cm^2$$

$$A_t \geq \frac{b \times St(\tau - 0.3f_{t28})}{0.8 \times f_e} \quad \rightarrow A_t < 0$$

Conclusion

- Armatures transversales :
$$A_t = A_t^{torsion} + A_t^{F.simple}$$

$$A_t = 0.82 + 0.7 = 1,52 \text{cm}^2$$
; St=20cm

- Armatures longitudinales :

$$A_s = A_{flexion} + \frac{1}{2} A_{torsion}$$

 $\begin{cases} En\ trav\'ee: A = 5.39cm^2 & soit: 3HA16 = 6.03cm^2 \\ En\ appui: A = 4.44cm^2 & soit: 2HA16 + 1HA12 = 5.15cm^2 \end{cases}$

Pour A_t on choisit 1 cadre HA8+1 étrier HA8 =1.51cm²

Schéma de ferraillage :

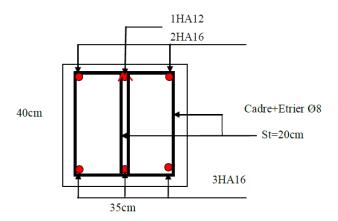


Figure 3-24: Schéma de ferraillage de la poutre brisée 1

3.5.2 Calcule de la poutre brisée 2 (RDC)

Même travail que précédemment.

Dimensionnement:

On opte pour une pour une poutre de :

(bxh) = (30x30) cm2

 $g_0 = 2.25 KN/ml$

 $g_1 = 2.69 KN/ml$

Les charges transmises par les volés :

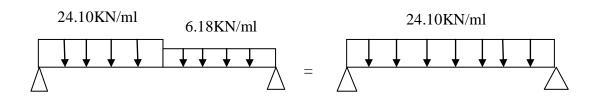


Figure 3-25 : Schéma statique de la poutre brisée2

 $Pu = 1.35(g_0+g_1)+24.10=30.77KN/ml$

Le tableau 3.36 résume les différents résultats.

	Flexion simple		Torsion	Choix des armatures
	En travée	En appui		(cm ²)
Moments (KN.m)	27.72	18.48	12.22	
Armatures	4.37	3.35	2.81	En travée
longitudinales				3HA14=4.62
(cm ²)				
Armatures	0.6	/	0.56	En appui
transversales (cm ²)				2HA14+1HA10=3.87
Contraintes de	0.68	0.68	3.03	Armature transversal
cisaillements				1cadre HA8+1epingleHA4=1.51
(MPa)				

Tableau 3-36: Moments et ferraillage correspondant

Schéma de ferraillage

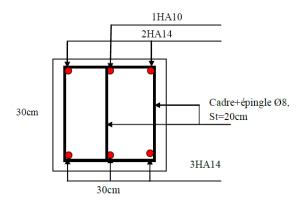


Fig3.26 : Schéma de ferraillage de la poutre brisée 2

3.6 ETUDE DE L'ASCENSEUR

3.6.1Définition

C'est un appareil au moyen duquel on élève ou on descend des personnes aux différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique.

Dans notre structure on utilise un ascenseur pour huit (08) personnes dont les caractéristiques sont les suivantes :

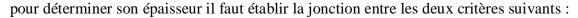
- L: Longueur de l'ascenseur=210cm.
- 1: Largeur de l'ascenseur=160cm.
- -H: Hauteur de l'ascenseur220cm.
- F_c : Charge due à la cuvette = 145KN

- P_m: Charge due à l'ascenseur =15KN
- D_m: Charge due à la dalle des machines = 51KN
- La charge nominale est de 630 kg.
- La vitesse V=1m/s

$$G = P_m + D_m + 6.3 = 72.3 \text{KN}$$

3.6.2 Etude de la dalle de l'ascenseur

La dalle du local des machines doit être dimensionnée pour reprendre des charges importantes.


On a
$$l_x = 1.60 m$$

$$l_v = 2.10m$$

Donc une surface : $S = 1.60x2.10 = 3.36m^2$

$$\rho > 0.4$$

La dalle pleine est appuyée sur 4 appuis donc

$$\frac{l_x}{45} \le e \le \frac{l_x}{40}$$

Si la dalle pleine est sur 3 ou 4 appuis

 $e \ge 11cm$

pour 2h de coupe-feu.

Donc
$$\frac{160}{45} \le e \le \frac{160}{40}$$

$$\Rightarrow$$
 3.55cm \leq e \leq 4cm

On prend: e=15 cm

• Détermination de la surface d'impact

On a le schéma représentant la surface d'impact :

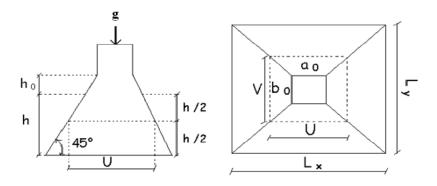
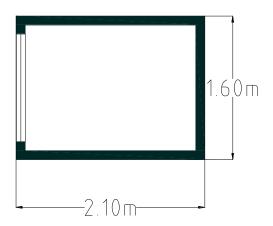



Figure 3-27 : schéma représentant de la surface d'impact

$$\begin{cases} U = a_0 + h_0 + 2\zeta h_1 \\ V = b_0 + h_0 + 2\zeta h_1 \end{cases}$$
 (BAEL91)

Avec:

a₀ et U sont les dimensions parallèle à Lx

b₀ et V sont les dimensions parallèle à Ly

a₀*b₀=80*80 est la surface du chargement.

h₀ est l'épaisseur de la dalle pleine

h₁est l'épaisseur du revêtement moins rigide

$$\zeta = 0.75$$
 $h_1 = 5$ cm

On aura donc:

$$U = 80 + 15 + (2x0.75x5) = 102.5cm$$

$$V = 80 + 15 + (2x0.75x5) = 102.5cm$$

1/ Etude à l'ELU

◆Calcul des sollicitations

Sous charge concentrée (due au système de levage) :

On a selon le B A E L:

$$\begin{cases} M_x = Pu \times (M_1 + \vartheta \times M_2) \\ M_y = Pu \times (M_2 + \vartheta \times M_1) \end{cases}$$
 Avec ϑ : Coefficient de poisson
$$\begin{cases} \vartheta = 0 \to ELU \\ \vartheta = 0.2 \to ELS \end{cases}$$

$$M_1$$
 En fonction de $\frac{u}{l_x}$ et ρ $\frac{u}{l_x} = 0.64$ et $\rho = 0.76$

$$M_2$$
 En fonction de $\frac{v}{l_y}$ et ρ $\frac{v}{l_y} = 0.48$ et $\rho = 0.76$

En se référant à l'abaque PIGEAU (Annexe II), on trouve M₁=0.09 et M₂=0.069

$$\begin{cases} M_{X1} = Qu \times M_1 \\ M_{Y1} = Qu \times M_2 \end{cases}$$

$$(M_{X1} = 8.78KN.m)$$

$$M_{V1} = 6.73KN.m$$

Evaluation des moments dus au poids propre de la dalle:

$$M_{X2} = \mu_x \times Pu \times l_x^2$$

$$M_{v2} = \mu_v \times M_{x2}$$

On a
$$\rho$$
=0.76 => μ_x = 0.0608 et μ_y = 0.5274(**Annexe I**)

$$G = (25x0.15) + (22x0.05) = 4.85KN/m^2$$

$$Q=1KN/m^2$$

$$Pu = 1.35x4.85 + 1.5x1 = 8.04KN/m$$

 $M_{x2} = 1.25 KN.m$

 $M_{y2} = 0.66 KN.m$

<u>Superposition des moments</u>:

Les moments agissants sur la dalle sont :

$$\begin{cases} M_x = M_{X1} + M_{X2} = 10.03KN. m \\ M_Y = M_{y1} + M_{y2} = 7.39 KN. m \end{cases}$$

S'agissant d'une travée intermédiaire et d'appuis intermédiaires donc la correction des moments se fait par les coefficients 0.75 et 0.5

$$M_{tx} = 0.75x10.03 = 7.52KN.m$$

$$M_{tv} = 0.75x7.39 = 5.54KN.m$$

> Ferraillage

Le ferraillage se fait pour une bande de 1 mètre et d'épaisseur 15 cm ($dx \cong dy = 13cm$).

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau 3-37 : Résultats de calculs

Sens		M(KN.m)	$A_{cal}(cm^2)$	$A_{min}(cm^2)$	Aopte(cm ²)
travée	X-X	7.52	1.69	1.34	4HA8= 2.01
	у-у	5.54	1.24	1.20	4HA8= 2.01
appuis	x-x=y-y	5.01	1.12	1.34	4HA8= 2.01

• Vérification à l'ELU

Vérifications des espacements des armatures

Selon Lx: $St \le min(3h_0; 33cm) = 33cm => St = 25cm$

Selon Ly: $St \le min (4h_0; 45cm) = 45cm = > St = 25cm$

Vérification au poinçonnement :

$$Qu \le 0.045 x U_c x h x f_{c28}/\gamma_b$$

Avec

P_U: Charge de calcul à l'état limite ultime.

h : Epaisseur de la dalle pleine en béton armé

U_c: Périmètre du contour au niveau du feuillet moyen.

$$U_c = 2x (U+V) = 2x(102.5+102.5)=410cm$$

g=72.3KN

Qu = 1.35*g = 97.60KN

Donc on aura:

 $0.045 \times 4.10 \times 0.15 \times 25 \times 10^{3} / 1.5 = 461.25 \text{KN} > 97.60 \text{KN}$ vérifiée.

Il n'y a pas risque de poinçonnement.

Vérification de l'effort tranchant

$$0.07 f_{c28}/\gamma_b = 1.17 MPa$$

Et on a U=V=102.5cm=1.025m,

$$T_u^{\text{max}} = T_v^{\text{max}} = \frac{Qu}{3 \times U} = \frac{97.60}{3 \times 1.025} = 31.74 KN \text{ (effort tranchant due à la charge concentré)}$$

$$\tau u^{max} = \frac{Tu}{b \times d} = \frac{31.74^{-3}}{1 \times 0.13} = 0.24 \text{ MPa} < 1.17 \text{MPa}$$

Il n'y a pas lieu de prévoir des armatures transversales.

2/ Etude l'ELS

On a $q_s = g = 72.3KN$

• Evaluation des moments M_{x1} et M_{y1} du système de levage

$$\begin{cases} M_{x1} = q_{ser} \times (M_1 + \vartheta \times M_2) = 72.3 \times (0.09 + 0.2 \times 0.069) = 7.50KN.m \\ M_{v1} = q_{ser} \times (M_2 + \vartheta \times M_1) = 72.3 \times (0.069 + 0.2 \times 0.09) = 6.29KN.m \end{cases}$$

• Evaluation des moments M_{x2} et M_{y2} dus aux poids propre et à la surcharge $P_{s=}$ G+Q=4.85+1=5.85KN

On aura donc:

$$M_{X2} = \mu_x \times q_{ser} \times l_x^2 = 0.91 \text{KN.m}$$

$$M_{y2} = \mu_v \times M_{x2} = 0.48 \text{KN.m}$$

• Superposition des moments

Les moments agissants sur la dalle sont :

$$\begin{cases} M_X = M_{X1} + M_{X2} = 7.50 + 0.91 = 8.41 \text{KN.} m \\ M_Y = M_{y1} + M_{y2} = 6.29 + 0.48 = 6.77 \text{ KN.} m \end{cases}$$

On doit corriger les moments pour tenir compte de l'encastrement de la dalle dans ses appuis :

$$M_{tx}$$
= 0.75x8.41= 6.31KN.m

$$M_{ty} = 0.75x6.77 = 5.07KN.m$$

• Vérification des contraintes

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

$$\sigma_{bc} = \frac{6.31 \times 10^{-3}}{3239.42 \times 10^{-3}} (0.0240) = 4.67 MPa \le 15 MPa$$
vérifiée

On va vérifier la contrainte de traction dans l'acier :

On a F.N:

$$\sigma_s = 15\sigma_b \times \frac{d-y}{y} < \overline{\sigma_s} = 201.6 \text{MPa}$$

$$\overline{\sigma_s} = \min(\frac{2}{3} \times f_e; 110\sqrt{\eta f_{t28}}) = 201.6 \text{MPa}$$

$$\sigma_s = 330.28 \text{ MPa} > \overline{\sigma_s} = 201.6$$

Il faut recalculer les armatures à l'ELS.

$$\begin{split} A_{\text{ser}} = & \frac{\textit{Mser}}{\textit{d}(1 - \frac{\alpha}{3})\overline{\sigma}} \qquad ; \ \alpha = \sqrt{90\beta \left(\frac{1 - \alpha}{3 - \alpha}\right)} \qquad ; \ \beta = \frac{\textit{Mser}}{\textit{bd}^2\overline{\sigma}} \\ \beta = & 0.00185 \ ; \ \alpha = 0.233 \ ; \ A_{\text{ser}} = 2.61 \ \text{cm}^2/\text{ml} \end{split}$$

On choisit 4HA10=3.14cm²/ml

• Vérification de la flèche

$$\begin{cases} \frac{h}{L} \geq \frac{1}{16} \dots \dots \dots \dots (1) \\ \frac{h}{L} \geq \frac{M_t}{10 \times M_0} \dots \dots \dots (2) = > \begin{cases} 0.093 \geq 0.062 & condition \ v\'erifi\'ee \\ 0.093 \geq 0.074 & condition \ v\'erifi\'ee \\ 0.0037 \leq 0.010 & condition \ verifi\'ee \end{cases}$$

Les trois conditions sont vérifier ; la vérification à la flèche n'est pas nécessaire.

-Le schéma de ferraillage

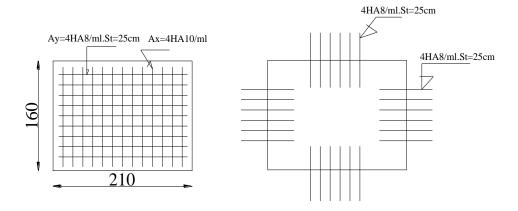


Figure 3-28 : Schéma de ferraillage de la dalle du local machine.

3.6.3 Etude de la dalle pleine au-dessous de l'ascenseur :

1/ Etude à l'ELU

- Le poids propre de la dalle et du revêtement :

$$\begin{split} G_1 &= 25x0.15 {=} 3.75 \text{KN/m}^2 \\ G_2 &= 22x0.05 {=} 1.1 \text{KN/m}^2 \\ G^{'} &= G_1 {+} G_2 {=} 4.85 \text{KN/m}^2 \end{split}$$

- Le poids propre de l'ascenseur :

$$G'' = \frac{F_c}{S} = \frac{145}{3.36} = 43.15 \text{KN/m}^2$$

Donc
$$G_{totale} = G' + G'' = 48KN/m^2$$

$$Q=1KN/m^2$$

$$Pu = 1.35xG_{tot} + 1.5Q = 66.3KN/m^2$$

$$\rho = 0.76 > 0.4 = > \mu_x = 0.0608$$
 et $\mu_y = 0.5274$

Donc la dalle pleine travaille suivant les deux sens Lx et L y

• Evaluation des moments

$$M_{X2} = \mu_x \times Pu \times l_x^2 = 10.31 \text{KN.m}$$

$$M_{y2} = \mu_v \times M_{x2} = 5.44 \text{KN.m}$$

On doit corriger les moments pour tenir compte du semi encastrement de la dalle pleine en béton armé sur ses appuis.

$$M_{tx} = 0.75x10.31 = 7.73KN.m$$

$$M_{ty} = 0.75x5.44 = 4.08KN.m$$

$$Max=May= -0.5x10.31= -5.15KN.m$$

> Le ferraillage

Tableau 3-38 : Résultats de calculs

Sens		M(KN.m)	$A_{cal}(cm^2)$	$A_{min}(cm^2)$	Aopte(cm ²)
travée	X-X	7.73	1.88	1.34	4HA8= 2.01
	у-у	4.08	0.98	1.20	4HA8= 2.01
appuis	x-x=y-y	5.15	1.25	1.34	4HA8= 2.01

2/ Etude à l'ELS

$$P_s = G_{tot} + Q = 49KN/m^2$$

$$M_x=8.42KN.m$$

$$M_v=5.54KN.m$$

On va corriger les moments :

$$M_{tx}$$
=0.75x8.42=6.31KN.m

$$M_{ax}=M_{ay}=-0.5x8.42=4.21KN.m$$

• Vérification des contraintes :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

 Tableau 3-39 : Vérification des contraintes

	Sens	σ_{bc} (MPa)	$\overline{\sigma_b}(MPa)$	Observation
Travée	X-X	4.67	15	Vérifiée
	у-у	3.07	15	Vérifiée
Appui	x-x=y-y	3.12	15	Vérifiée

• Vérification de la flèche

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \dots & (1) \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots & (2) \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots & (3) \end{cases}$$

Les trois conditions sont vérifier ; la vérification à la flèche n'est pas nécessaire.

> Le schéma de ferraillage

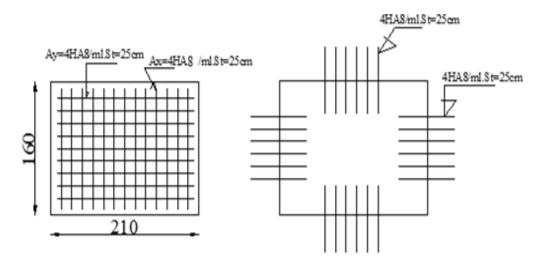


Figure 3-29 : Schéma de ferraillage de la dalle au-dessous de l'ascenseur

3.7 ETUDE DE L'ACROTERE

3.7.1 Hypothèse de calcul

- Le calcul se fait pour une bande de 1 ml
- Fissuration nuisible.
- Le calcul se fait à la flexion composée

3.7.2 Evaluation des charges et surcharges

Poids propre : G = 2 KN/ml

Charge horizontale due à la main courant : Q = 1 KN/m

• La force sismique : (RPA Art 6.2.3)

F_P: Donnée selon le RPA99 : Fp= 4.A.Cp.Wp. Avec :

- A :Coefficient d'accélération de zone donné par le tableau 4.1 du RPA99
 A= 0,15.
- C_p: Facteur de force horizontale donné par le tableau 6.1 du **RPA99**: Cp = 0,8.
- W_p:Poids de l'acrotère Wp= 2KN.

D'où Fp = 4x0,15x 0,8x 2 = 0.96KN.

• Le centre de gravité de la section

$$X_{G} = \frac{\sum Xi.Ai}{\sum Ai} = 0.0548 \text{m}$$

$$Y_G = \frac{\sum Yi.Ai}{\sum Ai} = 0.316m$$

• Calcul des sollicitations

L'acrotère est sollicité par :

NG= 2KN. (Effort normal due au poids propre)

NQ = 0. (Effort normal due à Q)

NF= 0. (Effort normal due à la force sismique)

Les moments engendrés par ces efforts sont :

$$MG = 0$$

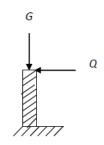
$$MQ = Q.L = 0.6x 1 = 0.6KN.m.$$

$$MF = Fp \times Y_G = 0.96 \times 0.316 = 0.303 \text{ KN.m.}$$

- Le calcul de l'acrotère se fait en flexion composé pour une bonde de 1 ml

Tableau 3-40: Sollicitations de calcul sur l'acrotère

	RPA99	ELU	ELS
Sollicitations	G+Q+E	1.35G+1.5Q	G+Q
N(KN)	2	2.7	2
M(KN.m)	0.9	0.9	0.6


• Calcul de l'excentricité : (BAEL91 Art 4.4)

$$e_1 = \frac{Mu}{Nu} = \frac{0.9}{2.7} = 0.33$$
m

$$\frac{h}{6} = \frac{0.6}{6} = 0.10$$
m

 \Rightarrow e₁ > h/6 => section partiellement comprimée.

- Pour la justification vis à vis de l'état limite ultime de stabilité de forme, il faut remplacer **e**₁par **e** (excentricité réelle de calcul).
- Avec:

 $e_T = e_1 + e_a + e_2$

e1 = excentricité du premier ordre

ea = excentricité additionnelle.

e2 = excentricité due au second ordre.

D'après

 $e_a = max (2cm ; L/250) = max (2cm ; 60/250) = 2cm$

 $e_2 = 3l_f^2 x (2 + \alpha. \varphi) / 10000.h$

Avec :
$$\alpha = \frac{M_G}{M_G + M_Q} = 0$$
. (car M_G=0)

 φ : Le rapport de déformation due au fluage, à la d'formation instantanée sous la charge.

$$(\varphi = 2)$$

 l_f : longueur de flambement : l_f = $2l_0$ = 2x0.6=1.2m

 $e_2 = 3x1.2^2x(2+0)/10000x0.6 = 0.00144 = 0.144cm$.

$$e_T = e_1 + e_a + e_2 = 0.46 + 0.02 + 0.00144 = 48.14$$
cm

Donc : l'acrotère sera ferraillé sous :

Nu = 2.7KN

 $Mu = Nu. e_T = 2.7x0.481 = 1.298KN.m$

3.7.3. Ferraillage

3.7.3.1 Calcul à l'ELU

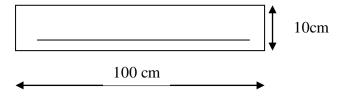


Figure 3-31 : section considérée pour le calcul de l'acrotère

Nu = 2.7KN.

Mu= 1.298 KN. m.

h = 10 cm.

d= 8cm.

b = 100 cm.

L'acrotère est soumis à M et N, il est sollicité en flexion composée, mais le calcule se fera en flexion simple sous $M_{\rm ftq}$:

 $M_f = Mu + Nu (d-h/2)$

 $M_f = 1.298 + 2.7(0.08 - 0.1/2) = 0.43 \text{KN.m}$

Tableau 3-41: Résultats de calcul des armatures longitudinales.

μ_{bu}	α	Z (cm)	Acal (cm ² /ml)
0.0047	0.0059	0.0798	0.154

• Vérification de la condition de non fragilité

 $As \ge 0.23 \text{ b.d.} f_{c28}/f_e \implies As \ge 0.23 \times 0.08 \times 1 \times 2.1/400 = 0.966 \text{cm}^2$

 $Acal=0.154 < 0.966cm^2 => on adopte A_{min}= 0.966 cm^2$

Soit : As= 4HA8= 2.01 cm²

• Armature de répartition

$$A_r = \frac{A_s}{4} = \frac{2.01}{4} = 0.5 \ cm^2$$

Soit : $A_s = 4HA6 = 1.13cm^2$

Les espacements :

 $St \le \frac{100}{3} = 33$ cm (dans les deux sens); soit St = 25 cm.

3.7.3.2 Calcul à l'ELS

- La combinaison d'action à considérer est : G + Q.
- Nser= 2 KN.
- Moment de renversement : Mser=0,6KN.m.

• Vérification des armatures

$$\rho = 100 \cdot \frac{A}{b.d} = \frac{100 \times 2.01}{100 \times 8} = 0.251 = \begin{cases} \beta = 0.920 \\ k_1 = 0.021 \end{cases}$$
 (Annexe III)

$$\sigma_S = \frac{Ms}{\beta.d.A} = \frac{0.6 \times 10^3}{0.920 \times 8 \times 2.01} = 40.55 \text{MPa}$$

La fissuration préjudiciable :

$$\overline{\sigma_s} = \min(\frac{2}{3}f_e; 110\sqrt{\eta.f_{t28}}) = 201.6 \text{ MPa}$$

 $\sigma_S = 40.55 \text{ MPa} < \overline{\sigma_S} = 0201.6 \text{ MPa} \dots \text{condition vérifiée.}$

• Vérification de la contrainte dans le béton

$$\sigma_b = K. \, \sigma_s = 0.021 \, \text{x} \, 40.55 = 0.851 \, \text{MPa}.$$

$$\sigma_{bc} = 0.6 \times f_{c28} = 0.6 \times 25 = 15 \text{ MPa}$$

 $\sigma_b = 0.851 \text{ MPa} < \sigma_{bc} = 15 \text{ MPa}$condition vérifiée.

3.7.4 Schéma de ferraillage

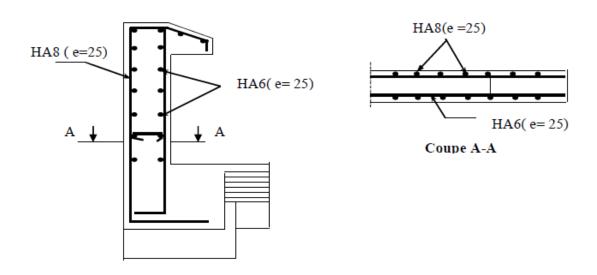


Figure 3-32 : Ferraillage de l'acrotère

CHAPITRE 4: ETUDE DYNAMIQUE

4.1 Introduction

Le Nord de l'Algérie est une région où de violents séismes peuvent se produire. Ainsi il est utile de souligner que lors de la dernière décennie pas moins de 03 séismes de magnitude supérieure ou égale à 5.5 sur l'échelle de Richter ont eu lieu. Ces séismes qui ont touché aussi bien les régions du centre que les régions ouest du pays, ont provoqué d'importants dégâts matériels, et occasionné la perte de nombreuses vies humaines, à moins que les constructions ne soient conçues et construites de manière adéquates pour résister aux secousses sismiques. On comprend par « manière adéquate » la conformité de la construction vis à vis des normes parasismiques en vigueur (RPA99/version 2003).

4.2 Objectifs et exigences

Les premières exigences, lors de la conception d'une structure, sont données par les normes de construction dans le cas de situations non sismiques. A celles-ci, viennent s'ajouter des normes assignées à la construction de structures en zone sismique. En effet, la conception parasismique ne se limite pas au seul dimensionnement, mais met en jeu de nombreux facteurs comme la rigidité, la capacité de stockage ou la dissipation d'énergie.

4.3 Méthodes de calcul

Selon les règles parasismiques Algériennes (**RPA99/version2003**) le calcul des forces sismiques peut être mené suivant trois méthodes :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par accélérogramme.

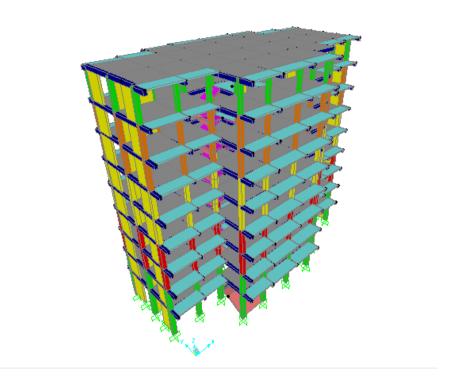


Figure4-1 : vue en 3D de la structure

4.3.1 Méthode statique équivalente

Le règlement parasismique Algérien permet sous certaines conditions (**Art 4.2 du RPA 99/2003**) de calculer la structure par une méthode pseudo dynamique qui consiste à remplacer les forces réelles dynamiques qui se développent dans la construction par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

• Vérification de la résultante des forces sismique de calcul totale RPA99 (Article 4.2.3)

La force sismique V; appliquée à la base de la structure, doit être calculée successivement dans les deux directions horizontales et orthogonales selon la formule :

$$V_{st} = A.D.Q.\frac{1}{R}.W$$

- **A :** Coefficient d'accélération de la zone. (**RPA99** Tableau4.1)

Le coefficient A représenté l'accélération du sol et dépend de l'accélération maximale possible de la région, de la période de vie de la structure, et du niveau de risque que l'on veut avoir. L'accélération maximale dépend de la période de retour que l'on se fixe ou en d'autre termes de la probabilité que cette accélération survienne dans l'année. Il suffit donc de se fixer une période de calcul et un niveau de risque.

Cette accélération ayant une probabilité plus au moins grande de se produire. Il dépend de deux paramètres :

- Groupe d'usage : groupe 2

- Zone sismique : zone $\mathbf{Ha} = A = 0.15$

 R : Coefficient de comportement global de la structure, il est fonction du système de contreventement. (RPA99 Tableau4.3)

Dans le cas de notre projet, on adopte un système mixte portiques voiles avec interaction, donc : R=5

- **Q**: Facteur de qualité de la structure déterminé par la formule suivante :

$$Q = 1 + \sum_{1}^{6} P_q$$
 (**RPA99** Formule 4.4)

Pq : est la pénalité à retenir selon que le critère de qualité q est satisfait ou non.

Critère q Observée Observée Pq/yy Pq/xx 1-Conditions minimales sur les files de contreventement 0.05 0.05 Non Non 0.05 0.05 2-Redondance en plan Non Non 3- Régularité en plan Non 0.05 Non 0.05 4- Régularité en élévation Oui 0 Oui 0 5- Contrôle de qualité des matériaux Oui 0 Oui 0 6- Contrôle de qualité d'exécution Oui 0 Oui 0

Tableau 4-1: Valeurs des pénalités Pq.

Donc : $Q_x = Q_y = 1.15$.

- **W**: poids total de la structure.

La valeur de W comprend la totalité des charges permanentes pour les bâtiments d'habitation.

Il est égal à la somme des poids W_i; calculés à chaque niveau (i) :

$$W = \sum_{i=1}^{n} W_i \qquad Avec: W_i = W_{Gi} + \beta \times W_{Qi}$$

 W_{Gi} :Poids du aux charges permanentes totales.

 W_{Qi} : Charges d'exploitation.

 β :Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation, il est donné par le tableau (4-5 du RPA99).

 $\beta = 0.2$ Pour usage d'habitation.

- **D**: Facteur d'amplification dynamique moyen :

Le coefficient D est le facteur d'amplification dynamique moyen, il est fonction de la période fondamentale de la structure (T), de la nature du sol et du facteur de correction d'amortissement (η). On comprendra aisément qu'il devrait y avoir une infinité, mais pour simplifier on est amené à prendre des courbes enveloppes et à supprimer la partie descendante de la courbe vers les valeurs faibles de la période de la structure T (ceci pour tenir compte des formules forfaitaires de la période qui donnent des valeurs faibles de T).

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta & (^{T_2}/_T)^{^2/_3}T_2 \le T \le 3s \\ 2.5\eta & (^{T_2}/_3)^{^2/_3} & (^3/_T)^{^5/_3} \end{cases} \qquad T \ge 3s$$
RPA99 (Formule 4-2)

T₂: Période caractéristique, associée à la catégorie du site. (**RPA 99** Tableau 4.7) Puisque le sol a une capacité portante de 1,8MPa et d'après le tableau 3.2 du RPA99, ontrouve que les caractéristiques correspondent à un site de catégorie S3, donc on aura :

$$=> \begin{cases} T_1 = 0.15s \\ T_2 = 0.5s \end{cases}$$

Calcul de la période fondamentale de la structure :

Le facteur de correction d'amortissement η est donné par :

$$\eta = \sqrt{\frac{7}{(2+\zeta)}} \ge 0.7$$

Ou ζ % est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

On prend : $\zeta = \frac{7+10}{2} = 8.5\%$ pour un contreventement mixte.

Donc $\eta = 0.81 > 0.7$

$$T_c = C_T h_N^{3/4} (\text{RPA99} \text{Formule 4-6})$$

h_N: Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 $h_N = 28.56$ m (hauteurs totales de la structure)

 C_T : Coefficient, fonction du système de contreventement du type de remplissage et donnée par le type de système de contreventement :

Pour le contreventement mixte portique voiles avec interaction qui est notre cas :

$$C_T = 0.05$$

$$T_c = 0.05 \times (28.56)^{\frac{3}{4}} = 0.62s$$

On peut également utiliser aussi la formule suivante :

$$T = 0.09 h_N / \sqrt{L}$$
 (RPA99 Formule 4-7)

L : Dimension du bâtiment mesurée à la base dans les deux directions.

$$L_x$$
= 29.60 m, L_y = 14.20m.

$$\Rightarrow \begin{cases} T_x = 0.472s \\ T_y = 0.682s \end{cases}$$

$$T_x = \min(T_x, T_c) = 0.47s < T_2 = 0.5s$$
 $T_y = \min(T_y, T_c) = 0.62s > T_2 = 0.5s$

$$\Rightarrow D_x = 2.5\eta \quad car : 0 \le 0.47 \le 0.5s$$

$$D_x = 2.04$$

$$=>D_y = 2.5\eta \ (^{T_2}/_T)^{2/_3} \quad car : 0.5 \le 0.62 \le 3s$$

$$D_y = 1.77$$

Remarque:

Selon l'article 4.2.4(4) RPA99/V2003, la période fondamental doit être majoré de 30%

$$T_{sx} = 1.3 \times 0.472 = 0.62s$$

 $T_{sy} = 1.3 \times 0.62 = 0.803s$

La force sismique totale à la base de la structure est : $V_{st} = \frac{A \times D \times Q}{R} w$

$$V_{stx} = \frac{0.15 \times 2.04 \times 1.15}{5} \times 34758.44 = 2446.29$$
KN
 $V_{sty} = \frac{0.15 \times 1.77 \times 1.15}{5} \times 34758.44 = 2122.52$ KN

4.3.2 Méthode dynamique modale spectrale

L'analyse dynamique se prête probablement mieux à une interprétation réaliste du comportement d'un bâtiment soumis à des charges sismiques que le calcul statique prescrit par les codes. Elle servira surtout au calcul des structures dont la configuration est complexe ou non courante et pour lesquelles la méthode statique équivalente reste insuffisante ou inacceptable ou autre non- conforme aux conditions exigées par le RPA 99/version2003 pour un calcul statique équivalent.

Pour les structures symétriques, il faut envisager l'effet des charges sismiques séparément suivant les deux axes de symétrie, pour les cas non symétriques l'étude doit être menée pour les deux axes principaux séparément.

Par cette méthode, il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse decalcul suivant :

$$\frac{s_{a}}{g} = \begin{cases} 1.25 \times A \times \left(1 + \frac{T}{T_{1}} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \leq T \leq T_{1} \\ 2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) T_{1} \leq T \leq T_{2} & \text{RPA99 (Form4-13)} \\ 2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_{2}}{T}\right)^{2/3} T_{2} \leq T \leq 3s \\ 2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_{2}}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} T > 3s \end{cases}$$

4.3.3 Méthode d'analyse par accélérogramme

Cette méthode peut être utilisée au cas par cas par un personnel qualifie, ayant justifié auparavant le choix des séismes de calcul et des lois de comportement utilisées ainsi que la méthode d'interpolation des résultats et des critères de sécurité à satisfaire.

4.4 Exigences du RPA99 pour les systèmes mixtes

1. D'après l'article 3.4.4.a, les voiles de contreventement doivent reprendre au plus 20% des sollicitations dues aux charges verticales.

Les voiles et les portiques reprennent simultanément les charges horizontales proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultantes de leurs interactions à tous les niveaux.

Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins

25% de l'effort tranchant de l'étage.

- 2. D'après l'article 4.2.4, les valeurs de T (périodes) calculées à partir du logiciel SAP2000 ne doivent pas dépasser celles estimées à partir des formules empiriques données par le RPA de plus de 30%.
- 3. D'après l'article 4.3.4, les modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :
- la somme des masses modales effectives pour les modes retenus soit égale à 90% au moins de la masse totale de la structure;

 ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum des modes à retenir est de trois (03) dans chaque direction considérée.

4.5 Interprétation des résultats de l'analyse dynamique

Plusieurs dispositions ont été modélisées afin d'arriver à satisfaire toutes les exigences du RPA.

On a dû augmenter les sections des poteaux (voir tableau 4.2), et les sections des poutres principales et secondaires de $30 \times 35 \text{cm}^2$ à $30 \times 40 \text{cm}^2$, avec réduction du nombre de voiles.

4.5.1 Disposition des voiles

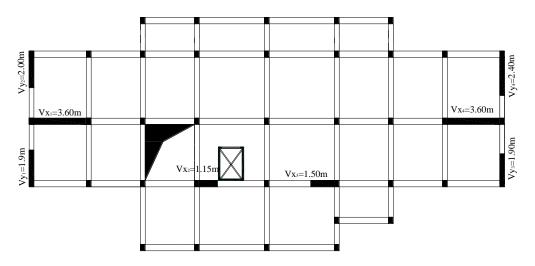


Figure 4-2 : Schéma de disposition des voiles.

4.5.2 Section des poteaux adoptés

Les sections des poteaux choisis dans le chapitre 2 ne satisfait pas les exigences du **RPA** vis-à-vis du comportement de la structure.

Alors on a augmenté les sections qui sont résumées dans le tableau suivant :

Tableau 4-2 : Les Sections des poteaux adoptées

poteaux	section
RDC+1 ^{er} étage	50x50
2 ^{eme} +3 ^{eme} étage	45x50
4 ^{eme} +5 ^{eme} étage	45x45
6 ^{eme} +7 ^{eme} étage	40x45
8 ^{eme} étage	40x40

4.5.3 Mode de vibration et taux de participation des masses

Les résultats sont résumés dans le tableau suivant :

Mode	Dáriada	Période Individual mode (percent)			Cumulatives sum (percent)		
Mode	Periode	UX	UY	UZ	UX	UY	UZ
1	0.72	0.28 10 ⁻³	0.761	0.23 10 ⁻⁵	$0.28 \ 10^{-3}$	0.76	0.23 10 ⁻⁵
2	0.62	0.72	$0.22\ 10^{-3}$	0.51 10 ⁻⁵	0.72	0.76	0.75 10 ⁻⁵
3	0.58	0.01	0.48 10 ⁻⁵	0.11 10 ⁻⁵	0.74	0.76	0.86 10 ⁻⁵
4	0.22	0.59 10 ⁻⁴	0.130	0.29 10 ⁻⁴	0.74	0.89	0.37 10 ⁻⁴
5	0.18	0.14	0.64 10 ⁻⁴	0.15 10 ⁻⁴	0.88	0.89	0.52 10 ⁻⁴
6	0.17	0.36 10 ⁻³	0.89 10 ⁻³	4.81 10 ⁻⁸	0.88	0.89	0.52 10 ⁻⁴
7	0.11	0.57 10 ⁻⁵	0.048	0.21 10 ⁻⁴	0.88	0.94	0.74 10 ⁻⁴
8	0.08	0.05	$0.20\ 10^{-4}$	0.29 10 ⁻⁴	0.94	0.94	0.1 10 ⁻³
9	0.08	$0.32\ 10^{-3}$	0.81 10 ⁻³	0.14 10 ⁻³	0.94	0.94	0.25 10 ⁻³
10	0.08	$0.18 \ 10^{-4}$	0.79 10 ⁻⁴	0.40	0.94	0.94	0.40
11	0.08	8.58 10 ⁻⁸	0.00014	0.05	0.94	0.94	0.45
12	0.07	$0.53 \ 10^{-4}$	0.17 10-4	0.03	0.94	0.94	0.48

Tableau 4-3: Mode de vibration et taux de participation des masses

D'après les résultats obtenus dans le tableau ci-dessus, on constate que les exigences de RPA sont vérifiées.

4.5.4 Comportement de la structure

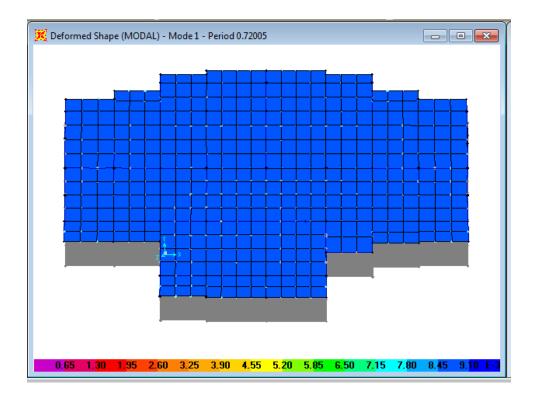
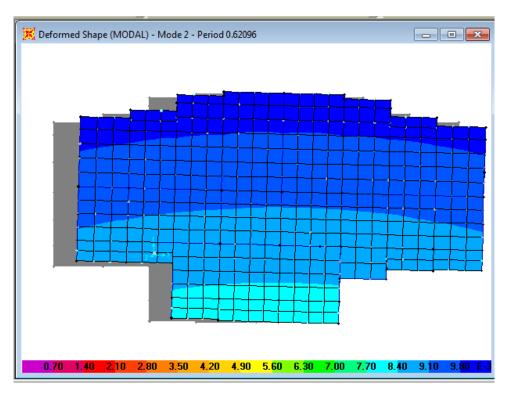



Figure 4-3: Mode 1, Translation suivant l'axe y-y.

Figure 4-4: Mode 2, Translation suivant l'axe x-x.

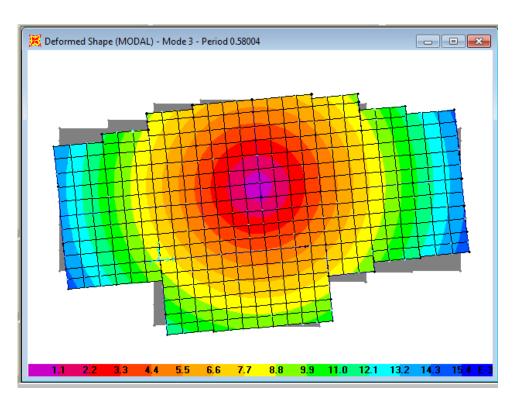


Figure 4-5: Mode 3, Rotation suivant l'axe z-z.

4.5.5 Vérification des résultats vis-à-vis du RPA 99/Version2003

4.5.5.1 Justification de l'interaction voiles-portiques

a) Sous charges verticales

 $\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\% \text{Pourcentage des charges verticales reprises par les portiques}.$

 $\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \leq 20\% \text{Pourcentage des charges verticales reprises par les voiles}.$

Les résultats de calcule sont résumés dans le tableau ci-dessous :

Tableau 4-4: Vérification de l'interaction sous charges vertical

	Charge re	prise (KN)	Pourcentage repris (%)		
Niveaux	Portiques	Voiles	Portiques	Voiles	
RDC	30770.24	6205.239	83.21	16.78	
1 ^{ére} étage	27316.072	5778.191	82.54	17.45	
2 ^{eme} étage	23442.056	4959.843	82.53	17.46	
3 ^{eme} étage	20042.631	4047.183	83.19	16.80	
4 ^{eme} étage	16463.174	3677.234	81.74	18.25	
5 ^{eme} étage	13118.739	2948.408	81.64	18.35	
6 ^{eme} étage	9711.274	2262.522	81.10	18.89	
7 ^{eme} étage	6488.462	1295.718	83.35	16.64	
8 ^{eme} étage	3302.242	724.307	82.01	17.98	

b) Sous charges horizontales

 $\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 25\% \text{ Pourcentage des charges horizontales reprises par les portiques.}$

 $\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 75\% \text{ Pourcentage des charges horizontales reprises par les voiles}.$

Tableau 4-5: Vérification de l'interaction sous charges horizontale

Niveaux	Sens x-x		Sens y-y					
	Portiques	Voiles	P(%)	V(%)	Portiques	Voiles	P(%)	V(%)
	(kn)	(Kn)			(kn)	(Kn)		
RDC	387.982	977.175	28.42	71.57	494.238	1272.61	27.97	72.02
1 ^{ére} étage	784.3	663.223	54.18	45.81	1064.468	726.095	59.44	40.55
2 ^{eme} étage	719.712	665.278	51.96	48.03	1006.087	658.365	60.44	39.55
3 ^{eme} étage	809.32	546.125	59.70	40.29	1026.961	498.211	67.33	32.66
4 ^{eme} étage	750.714	499.654	60.03	39.96	827.765	538.886	60.56	39.43
5 ^{eme} étage	751.187	358.258	67.70	32.29	770.81	400.147	65.82	34.17
6 ^{eme} étage	558.418	340.252	62.13	37.86	610.695	331.939	64.78	35.21
7 ^{eme} étage	514.665	193.183	72.70	27.29	495.37	138.963	78.09	21.90
8 ^{eme} étage	478.596	193.183	71.24	28.75	351.287	101.716	77.54	22.45

4.5.5.2 Vérification de l'effort normal réduit

Il est exigé de faire la vérification à l'effort normal réduit pour éviter l'écrasement de la section du béton après modélisation et cela par la formule suivante :

$$N_{r_d} = \frac{N}{B \times f_{c28}} \le 0.3$$
 (RPA99 Art 7.4.3.1)

Tel que : N : L'effort normal maximal de calcul s'exerçant sur une section de béton.

B: Section du béton.

 f_{c28} : Résistance caractéristique du béton à la compression

Tableau 4-6 : Résumé des résultats.

Niveaux	B (m ²)	N (kn)	N_{rd}	Remarque
RDC+1 ^{er} étage	0.50*0.50	1672.32	0.268	vérifiée
2 ^{eme} +3 ^{eme} étage	0.45*0.50	1265.451	0.225	vérifiée
4 ^{eme} +5 ^{eme} étage	0.45*0.45	904.97	0.179	vérifiée
6 ^{eme} +7 ^{eme} étage	0.40*0.45	558.635	0.124	vérifiée
8 ^{eme} étage	0.40*0.40	221.694	0.055	vérifiée

4.5.5.3 Vérification de la résultante des forces sismiques

En se référant à l'article **4-3-6 du RPA99/Version2003**, qui stipule que la résultante des forces sismiques à la base V_{dyn} obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V_{st} pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Tableau 4-7 : Vérification de la résultante des forces sismigues

Sens	V _{dy} (KN)	V _{st} (KN)	$0.8V_{st}$	Remarque
X-X	2093.11	2447.79	1958.230172	Vérifiée
Y-Y	1931.62	2125.99	1700.792386	Vérifiée

4.5.5.4 Calcul des déplacements :

Le déplacement horizontal à chaque niveau K de la structure est calculé par :

$$\delta_k = R \times \delta_{ek}$$
(RPA99 Article 4.4.3)

Avec : $\delta_{kx} = R \times \delta_{ekx}$

 $\boldsymbol{\delta_{ek}}$: Déplacement dû aux forces F_i (y compris l'effet de torsion).

R: Coefficient de comportement.

Le déplacement relatif au niveau K par rapport au niveau K-l est égal à : $\Delta_k = \delta_k - \delta_{k-1}$

Avec : $\Delta_k < 1\% \times h_e$ (**RPA99** Article 5.10)

	Sens x-x										
niveau	δ_{ek} (m)	$\delta_k(\mathbf{m})$	$\delta_{k-1}(\mathbf{m})$	$\Delta_{k}(\mathbf{m})$	hk(m)	$\frac{\Delta_k}{h_k}$ (%)	observation				
RDC	0.0008	0.004	0	0.0040	4.08	0.10	Vérifiée				
1	0.0018	0.009	0.004	0.0050	3.06	0.16	Vérifiée				
2	0.0031	0.0155	0.009	0.0065	3.06	0.21	Vérifiée				
3	0.0045	0.0225	0.0155	0.0070	3.06	0.23	Vérifiée				
4	0.0059	0.0295	0.0225	0.0070	3.06	0.23	Vérifiée				
5	0.0072	0.036	0.0295	0.0065	3.06	0.21	Vérifiée				
6	0.0084	0.042	0.036	0.0060	3.06	0.20	Vérifiée				
7	0.0096	0.048	0.042	0.0060	3.06	0.20	Vérifiée				
8	0.0106	0.053	0.048	0.0050	3.06	0.16	Vérifiée				

Tableau 4-8: Vérification des déplacements

	Sens y-y										
niveau	δ_{ek} (m)	$\delta_k(\mathbf{m})$	$\delta_{k-1}(\mathbf{m})$	$\Delta_k(\mathbf{m})$	hk(m)	$\frac{\Delta_k}{h_k}$ (%)	observation				
RDC	0.0011	0.0055	0	0.0055	4.08	0.13	Vérifiée				
1	0.0026	0.013	0.0055	0.0075	3.06	0.25	Vérifiée				
2	0.0043	0.0215	0.013	0.0085	3.06	0.28	Vérifiée				
3	0.006	0.03	0.0215	0.0085	3.06	0.28	Vérifiée				
4	0.0077	0.0385	0.03	0.0085	3.06	0.28	Vérifiée				
5	0.0092	0.046	0.0385	0.0075	3.06	0.25	Vérifiée				
6	0.0106	0.053	0.046	0.0070	3.06	0.23	Vérifiée				
7	0.0117	0.0585	0.053	0.0055	3.06	0.18	Vérifiée				
8	0.0127	0.0635	0.0585	0.0050	3.06	0.16	Vérifiée				

4.5.5.5 Justification vis-à-vis de l'effet P- Δ

Les effets de second ordre (ou effet $P-\Delta$) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_K \cdot \Delta_K}{V_K \cdot h_K} \le 0.10$$
 (**RPA99** Article 5.9)

 P_K : Poids total de la structure et des charges d'exploitation associes au-dessus du niveau(k).

$$P_K = \sum_{i=K}^n (W_{Gi} + W_{Qi})$$

 V_K : Effort tranchant d'étage au niveau k

Δ_K: déplacement relatif du niveau k par rapport au niveau k-1

H_K: hauteur d'étage (k)

Si $0.10 < \theta_k < 0.20$: Les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur $\frac{1}{(1-\theta_k)}$.

Niveau	eau h _k (m) Pk (KN)			Sens x-x			Sens y-y		
Niveau	h _k (m)		Δk (m)	Vk(KN)	θ	Δk (m)	Vk(KN)	θ	
RDC	4.08	34264.07	0.0040	1365.157	0.025	0.0055	1766.855	0.026	
1	3.06	30677.23	0.0050	1447.523	0.035	0.0075	1790.563	0.042	
2	3.06	26402.63	0.0065	1384.99	0.040	0.0085	1664.452	0.044	
3	3.06	22649.26	0.0070	1355.445	0.038	0.0085	1525.172	0.041	
4	3.06	18823.57	0.0070	1250.368	0.034	0.0085	1366.651	0.038	
5	3.06	15068.45	0.0065	1109.445	0.029	0.0075	942.634	0.039	
6	3.06	11313.77	0.0060	898.67	0.025	0.0070	634.333	0.041	
7	3.06	7446.757	0.0060	707.848	0.021	0.0055	453.003	0.030	
8	3.06	3985.65	0.0050	671.779	0.010	0.0050	1766.855	0.004	

Tableau 4-9 : Vérification des effets $P-\Delta$

La condition $\theta \le 0.1$ est satisfaite, d'où les effets de second ordre ou effet P- Δ peuvent être négligés.

4.6 Conclusion

Les voiles présentent, généralement, une grande résistance vis-à-vis des forces horizontales. Leur disposition était un véritable obstacle vu la non symétrie, les décrochements que présente la structure et les contraintes architecturales.

Plusieurs dispositions ont été modélisées afin d'arriver à satisfaire toutes les exigences du RPA.On a dû augmenter les sections des poteaux, poutres principale et secondaires, et l'épaisseur des voiles dans les étages courants, nous sommes arrivés à une disposition qui nous donne un bon comportement dynamique de la structure et qui satisfait l'interaction (voile-portique). Nous avons vérifié les déplacements horizontaux ainsi que l'effet du second ordre (effet P-delta).

CHAPITRE 5: ETUDE DES ELEMENTS STRUCTURAUX

5.1 Introduction

Une construction résiste aux séismes grâce à ces éléments porteurs principaux. Pour cela ces éléments doivent être suffisamment dimensionnés, armés (ferraillés) et bien disposés pour qu'ils puissent reprendre toutes les sollicitations.

5.2 Etude des poteaux

Le rôle des poteaux dans une construction est la transmission des charges de la super structure vers la fondation, ces poteaux sont sollicités en flexion composée. Leur ferraillage se fait selon les combinaisons de sollicitations suivantes :

- 1) 1.35G+1.5Q
- 2) G+Q
- 3) G+Q+E
- 4) G+Q-E \rightarrow (RPA99 Article 5.2)
- 5) 0.8G+E
- 6) 0.8G-E

Les sections d'armatures sont déterminées selon les sollicitations suivantes :

Nmin _____ M correspondant

Mmax _____N correspondant

5.2.1 Recommandations du RPA99 (version 2003)

5.2.1.1 Les armatures longitudinales : (RPA99/2003 Art7.4.2.1)

Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.

Amin= 0.8% de la section de béton (en zone IIa),

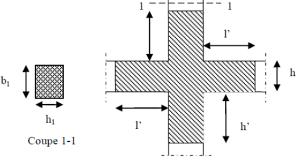
Amax= 4% de la section de béton (en zone courante),

Amax= 6% de la section de béton (en zone de recouvrement),

Φmin= 12mm (diamètre minimal utilisé pour les barres longitudinales)

La longueur minimale de recouvrement est de 40Φ en zone IIa.

La distance ou espacement (St) entre deux barres verticales dans une face de poteau ne doit pas dépasser 25cm (zone IIa)


Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (zone critique).

La zone nodale est définie par l' et h' tel que :

$$1' = 2h$$

$$h' = \max(\frac{h_e}{6}, b_1, h_1, 60cm)$$

h_e: hauteur d'étage.

Figure 5.1. La zone nodale

Les valeurs numériques des armatures longitudinales relatives aux prescriptions du **RPA99** sont illustrées dans le tableau ci-dessous :

Tableau 5-1: Armatures longitudinales minimales et maximales dans les poteaux

	Section du	A _{min} RPA	A _{max} R	A _{max} RPA (cm ²)		
Niveau	poteau (cm²)	(cm ²)	Zone courante	Zone de recouvrement		
RDC et 1 ^{er} étage	50x50	20	100	150		
2 et 3 ^{éme} étage	45x50	18	90	135		
4 et 5 ^{éme} étage	45x45	16.2	81	121.5		
6 et 7 ^{éme} étage	40x45	14.4	72	108		
8 ^{éme} étage	40x40	12.8	64	96		

5.2.1.2 Les armatures transversales : (RPA99 Article7.4.2.2)

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante :

$$\frac{A_t}{t} = \frac{\rho \times V_u}{h_l \times f_e}$$

Où : Vu : effort tranchant de calcul.

 h_1 : hauteur total de la section brute.

fe : contrainte limite élastique de l'acier d'armature transversales.

t : espacement entre les armatures transversales telle que :

 $-t \le \min(10 \times \phi_l, 15cm)$ (zone nodale).

 $-t \le 15 \times \phi_l$ (zone courante).

 $(\phi_1$: Diamètre minimum des armatures longitudinales du poteau)

ρ: Coefficient correcteur qui tient compte du mode de rupture par effort tranchant.

$$-\rho = 2.5 \ si \ \lambda_g \ge 5.$$

- $\rho = 3.75 \, si \, \lambda_g < 5$; (λ_g élancement géométrique).

Avec:
$$\lambda_g = \frac{l_f}{b_l}$$
 ou $\lambda_g = \frac{l_f}{h_l}$

 l_f : Longueur de flambement du poteau. (0.7* l_0), l_0 : hauteur libre d'étage = (h - h_{poutre})

La quantité d'armatures transversales minimales $\frac{A_t}{b \times b_t}$ en pourcentage est :

$$A_t^{\min} = 0.3\%$$
 (t. b_1) si $\lambda_q \ge 5$

$$A_t^{min} = 0.8\%$$
 (t. b_l) si $\lambda_g \le 3$

-interpoler entre les valeurs limites précédentes si $3 < \lambda_g < 5$.

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10\phi_l$ minimum;

5.2.2 Sollicitations de calcul

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du logiciel SAP2000, les résultats sont résumés dans le tableau suivant :

Niveau	com	N _{min} ,	M_{corr}	com	M _{max}	; N _{corr}	com	N _{max} ; N	M_{corr}	$V_{\rm u}$
		N (KN)	M		M	N(KN)		N(KN)	M	(KN)
			KN.m		KN.m				KN.m	
RDC et	1	628.22	9.54	3	121.12	1485.27	5	1672.16	3.29	156.40
1 ^{er}										
étage										
2,3 ^{eme}	1	123.42	10.65	3	101.67	598.54	5	1264.73	21.15	158.28
étage										
4,5 ^{éme}	1	3.20	10.17	3	81.84	494.63	5	904.64	13.48	137.98
étage										
6 ,7 ^{éme}	1	59.69	34.08	3	70.45	220.22	5	558.28	12.05	107.68
étage										
8 ^{éme}	1	39.42	26.75	3	53.38	108.76	5	221.59	13.26	32.61
étage										

Tableau 5-2: Sollicitations dans les poteaux

5.2.3 Calcul du ferraillage

5.2.3.1 Ferraillage longitudinal

Le calcul du ferraillage se fera pour un seul poteau et les autres seront résumés dans un tableau.

• Exemple de calcul

Soit à calculer le poteau rectangulaire le plus sollicité du RDC, avec les sollicitations suivantes :

-Nmin = 628.22KN Mcor = 9.54KN.m

-Mmax = -121.12KN.m Ncor = -1485.27KN

-Nmax = -1672.16KN Mcor = 3.29KN.m

a) Calcul sous Nmax et Mcor:

d = 0.9 h = 0.45m; d' = 0.05 m

 $N = 1672.16 \, KN$

 $M = 3.29KN.m \Rightarrow e_G = M/N = 0.0019m$

 $e_G < h/2 = 0.50/2 = 0.25m \Rightarrow$ le centre de pression est à l'intérieur de la section entre les armatures (AA').

Il faut vérifier la condition suivante :

$$N (d-d') - MA \le (0.337h - 0.81d') b.h. f_{bu}$$
 (1)

$$MA = M+N \times (d-h/2) = 3.29 + 1672.16 \times (0.45-0.25) = 337.73KN.m$$

(I)
$$\Rightarrow$$
 1672.16×10⁻³× (0.45–0.05) -337.73×10⁻³ \leq (0.337×0.50–0.81×0.05) × 3.55

0.33 MN.m ≤0.45MN.m vérifiée.

Donc la section est partiellement comprimée. Le calcul se fait par assimilation à la flexion simple

$$\mu_{bu} = \frac{M_A}{b \times d^2 \times f_{bu}} = \frac{337.73 \times 10^{-3}}{0.5 \times 0.45^2 \times 14.2} = 0.235$$

$$\mu_{bu}=0.235~<\mu_l=0.3916~\rightarrow A'=0$$

$$\mu_{bu} > 0.186 \rightarrow pivot B$$
 $\varepsilon_{bc} = 3.5\%$

$$\alpha = 0.34 \; ; \; z = 0.387 \text{m} \rightarrow Al = \frac{M_A}{z \times f_{st}} = 25.07 \text{cm}^2$$

$$A = Al - \frac{N}{f_{st}} = -22.98cm^2 < 0 \rightarrow A = 0cm^2$$

b) Calcul sous Mmax et Ncor

$$M = 121.12KN.m$$
, $N = 1485.27KN \Rightarrow e_G = 0.081m$

(I) \Rightarrow 0.175MN.m < 0.45MN.m \Rightarrow calcul d'une section partiellement comprimée.

$$M_A=418.18KN \Rightarrow \mu_{bu}=0.29 < \mu_l=0.3916 \Rightarrow A'=0$$

$$\alpha = 0.44 \Rightarrow z = 0.370 \text{m} \Rightarrow \text{A1} = 32.5 \text{cm}^2 \Rightarrow \text{A} = -10.28 \text{cm}^2 < 0 \rightarrow A = 0 \text{cm}^2$$

c) Calcul sous Nmin et Mcor

$$M = 9.54KN.m$$
, $N = 628.224KN \Rightarrow e_G = 0.015m$

On a le centre de pression est à l'intérieur de la section.

 $(I) \Rightarrow 0.116 \le 0.45 \Rightarrow$ calcul d'une section partiellement comprimée.

$$M_A = 135.184 \text{KN} \Rightarrow \mu_{bu} = 0.094 < \mu l \Rightarrow A' = 0$$

 $\alpha = 0.12 \Rightarrow z = 0.43m \Rightarrow A1 = 9.03cm^2 \Rightarrow A = -9.02cm^2 < 0 \rightarrow A = 0cm^2$

Le tableau résume le calcul des armatures pour les différents poteaux des différents niveaux.

A' A Niveau Sections A_{RPA} (cm²) $A_{\text{opté}} (\text{cm}^2)$ Nombre des barres (cm²)(cm²)RDC, 1^{er} étage 20 22.24 50x50 0 0 8HA16+4HA14 2,3^{éme} étage 0 45x50 0 18 20.36 4HA16+8HA14 4,5^{éme} étage 0 8HA14+4HA12 45x45 0.68 16.2 16.84 6,7^{éme} étage 0 40x45 2 14.4 15.21 4HA14+8HA12 8^{éme} étage 40x40 0 4.44 12HA12 12.8 13.57

Tableau 5-3: Ferraillage des poteaux

5.2.3.2 Sections des armatures transversales dans les poteaux

Les armatures transversales dans les poteaux servent à reprendre, les efforts tranchants et évitent le flambement des barres verticales, Le tableau ci-dessous comporte les sections calculées et les minimums préconisés par le **RPA99/2003**.

Les résultats de calcule sont résumé dans le tableau ci-après :

Tableau 5-4 : Les armatures transversales adoptées pour les poteaux

Niveau	RDC	1 ^{er} étage	2,3 ^{éme} étage	4,5 ^{éme} étage	6,7 ^{éme} étage	8 ^{éme} étage
Sections (cm ²)	50x50	50x50	45x50	45x45	40x45	40x40
ϕ_l^{max} (cm)	1.6	1.6	1.6	1.4	1.4	1.2
ϕ_l^{min} (cm)	1.4	1.4	1.4	1.2	1.2	1.2
l_f (cm)	257.6	186.2	186.2	186.2	186.2	186.2
λ_g	5.152	3.724	3.724	4.137	4.137	4.655
Vu (KN)	156.40	156.40	158.28	137.98	107.68	32.61
St (zone nodale) (cm)	10	10	10	10	10	10
St (zone courante) (cm)	15	15	15	15	15	15
$A_t (cm^2)$	2.93	4.39	4.45	4.02	3.36	1.14
A _t ^{min} (zone nodale)	1.50	4	3.60	1.35	1.20	1.20
A _t ^{min} (zone courante)	2.25	6	5.40	2.02	1.80	1.80
A ^t _{opté} (cm ²)	6HA8=3.02	6HA12=6.79	6HA12=6.79	6HA10=4.71	6HA10=4.70	6HA8=3.02
Nombre de cadre	3	3	3	3	3	3

Conformément aux règles du **RPA 99/03** et au **BAEL 91**, le diamètre des armatures transversales doit être supérieur au tiers du maximum des diamètres des armatures longitudinales. ($\phi_1 \ge 1/3x\phi_1^{max}$) .Ce qui est vérifiée dans notre cas.

5.2.4 Vérifications

5.2.4.1 Vérification à l'état limite ultime de stabilité de forme

Selon le (BAEL99 Art4.4.1) Les éléments soumis à la flexion composée, doivent être justifiés vis-à-vis du flambement, l'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

On doit vérifier que :

$$N_u = \alpha \times \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + A_s \times \frac{f_e}{\gamma_s}\right) \ge N_{max}$$
 CBA 93 (Article B. 8.4.1)

 α : Coefficient en fonction de l'élancement λ .

B_r: Section réduite du béton

As : Section d'acier comprimée prise en compte dans le calcul.

Lf : longueur de flambement.

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2} \dots \dots \dots \dots Si \ \lambda < 50 \\ 0.6 \times (\frac{\lambda}{35})^2 \dots \dots \dots \dots \dots Si \ \lambda > 50 \end{cases}$$

Si plus de la moitié des charges est appliquée avant 90 jours, alors on remplace α par $\alpha/1.10$.

L'élancement mécanique est donné par :

 λ =3.46 l_f/b pour les sections rectangulaires,

Le poteau le plus élancé dans ce projet se situe au niveau du R.D.C, avec une longueur de $l_0 = 3.68m$ et un effort normal égal à : 1672.32KN.

L_f=0.7xl₀=2.576m (Longueur de flambement).

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{h^2}{12}} = 0.144m$$

$$\lambda = 17.92 < 50 \implies \alpha = 0.807$$

$$Br = (50-2)^2 = 2304 cm^2$$
 (Section réduite).

$$N_u = 0.807 \times \left(\frac{0.2304 \times 25}{0.9 \times 1.5} + 22.24 \times 10^{-4} \times \frac{400}{1.15}\right) = 4071.95KN$$

On a
$$N_{max} = 1672.32 \text{KN} < \text{Nu} = 4071.95 \text{KN}.$$

Condition vérifiée

Donc pas de risque de flambement. Le tableau ci-dessous résume les calculs effectués.

Niveau	Section	L_0	$\mathbf{L_f}$	i (cm)	λ	α	As	$\mathbf{B_r}$	N _{max}	N_{ultime}
	(cm ²)	(cm)	(cm)				(cm ²)	(cm ²)	(KN)	(KN)
RDC	50x50	408	257.6	14.4	17.92	0.807	22.24	2304	1672.32	4071.95
1 ^{er} étage	50x50	306	186.2	14.4	12.88	0.827	22.24	2304	1672.32	4168.27
2,3 ^{éme}	45x50	306	186.2	14.4	14.31	0.822	20.36	2064	1265.451	3723.98
étage										
4,5 ^{éme}	45x45	306	186.2	12.99	14.31	0.822	16.84	1849	904.97	3296.06
étage										
6,7 ^{éme}	40x45	306	186.2	12.99	16.10	0.815	15.21	1634	558.635	2897.30
étage										
8 ^{éme}	40x40	306	186.2	11.54	16.10	0.815	13.57	1444	221.694	2564.05
étage										

Tableau 5-5 : Justification de l'effort normal ultime

Du tableau ci-dessus on ne constate que Nmax < Nu

Donc pas de risque de flambement.

5.2.4.2 Vérification des contraintes

Étant donné que la fissuration est peu nuisible, on va entamer la vérification des poteaux les plus sollicités à chaque niveau, à la contrainte de compression du béton seulement, et pour cela nous allons procéder comme suit :

$$\begin{split} &\sigma_{bc} \leq \overline{\sigma_{bc}} \ ; \sigma_{bc} = \frac{Nser}{S} + \frac{Mser}{Igg} \times V \qquad \overline{\sigma_{bc}} = 0.6 \times f_{c28} \\ &Igg = \frac{b}{3} \times \left(V^3 + {V'}^3 \right) + 15 \times A \times (d - V)^2 + 15 \times A' \times (V - d')^2 \\ &V = \frac{\frac{b \times h^2}{2} + 15 \times (A \times d + A' \times d')}{b \times h + 15 \times (A + A')} \ ; \ \text{et } \ V' = \text{h-v} \ ; \ \text{d=0.9.h} \end{split}$$

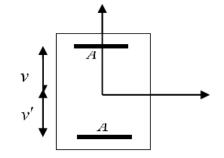


Figure 5-2: Section d'un poteau

On a A'=0.

Les résultats sont résumés dans le tableau ci-dessous :

Tableau 5-6 : Vérification des contraintes dans le béton

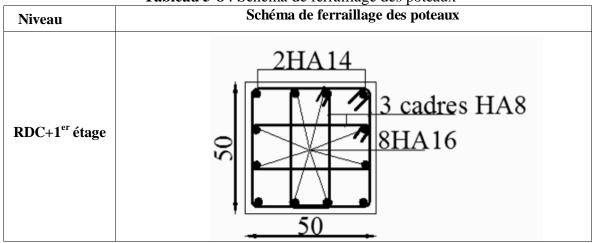
niveau	d (cm)	A (cm ²)	V (cm)	V' (cm)	Igg (m ⁴)	Nser (KN)	Mser (KN.m)	σ _{bc} (MPa)	observation
RDC, 1er étage	45	22.24	27.35	22.64	0.00638	1218.518	29.766	6.15	Vérifier
2,3 ^{éme} étage	45	20.36	27.39	22.61	0.00576	920.923	24.061	5.03	Vérifier
4,5 ^{éme}	40	16.84	24.44	20.78	0.00453	659.741	27.673	4.42	Vérifier

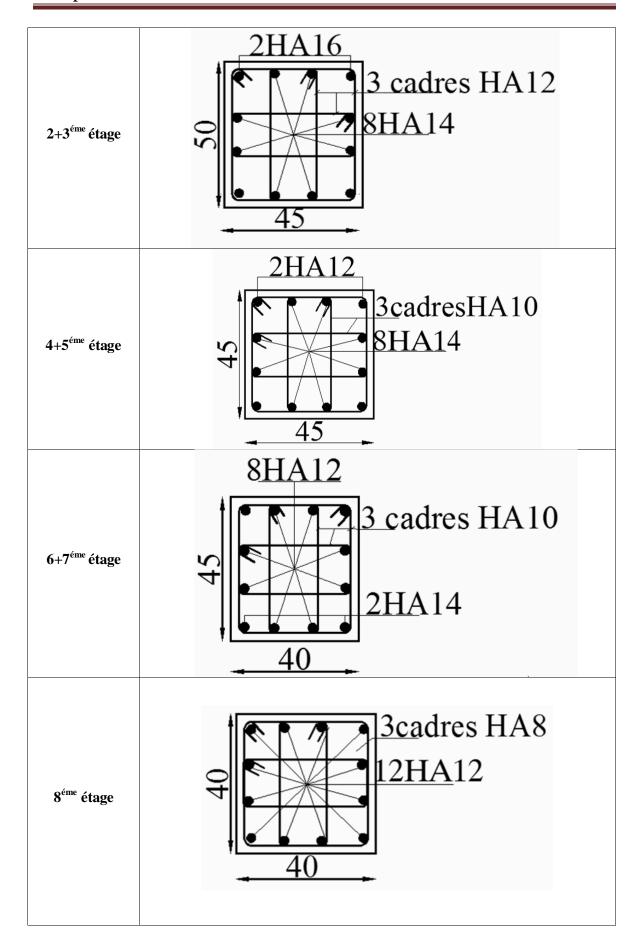
étage									
6,7 ^{éme} étage	40	15.21	24.46	20.54	0.00365	407.466	24.752	3.92	Vérifier
8 ^{éme} étage	35	13.57	21.69	18.31	0.00253	162.291	33.089	3.85	Vérifier

5.2.4.3 Vérification aux sollicitations tangentielles

Selon le **RPA 99** (Art: 7.4.3.2):

$$\tau_{bu} \leq \overline{\tau_{bu}} \text{ tel que}: \overline{\tau_{bu}} = \rho_d \times f_{c28} \quad avec: \rho_d = \begin{cases} 0.075 & si \ \lambda g \geq 5 \\ 0.04 & si \ \lambda g < 5 \end{cases}$$


 $\tau_{bu} = \frac{vu}{b_0 \times d}$ (La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique).


Tableau 5-7: Vérification des contraintes tangentielles

niveau	Section	$\lambda_{ m g}$	$ ho_d$	d(cm)	Vu (KN)	τ (MPa)	T (MPa)	Observation
RDC	50x50	5.152	0.075	45	156.40	0.69	1.875	vérifier
1er étage	50x50	3.724	0.04	45	156.40	0.69	1	vérifier
2,3 ^{éme} étage	45x50	3.724	0.04	45	158.28	0.781	1	vérifier
4,5 ^{éme} étage	45x45	4.137	0.04	40	137.98	0.766	1	vérifier
6,7 ^{éme} étage	40x45	4.137	0.04	40	107.68	0.673	1	vérifier
8 ^{éme} étage	40x40	4.655	0.04	35	32.61	0.233	1	vérifier

5.2.5 Schémas de ferraillages des poteaux :

Tableau 5-8 : Schéma de ferraillage des poteaux

5.3 Etude des poutres

Les poutres seront étudiées en tenant compte des efforts données par le logiciel SAP2000, qui sont tiré des combinaisons les plus défavorables exigées par le RPA 99/03 qui sont :

- 1) 1.35*G*+1.5*Q*
- 2) G+Q
- 3) G+Q+E
- 4) G+Q-E
- 5) 0.8G+E
- 6) 0.8*G*–*E*

Les poutres sont calculées en flexion simple, elles sont sollicitées par des moments fléchissant et des efforts tranchants.

5.3.1Recommandation du RPA99/2003

5.3.1.1 Armatures longitudinales: (RPA99-2003 Art 7.5.2.1)

- Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.
- Le pourcentage total maximum des aciers longitudinaux est de :
- -4% en zone courante
- 6% en zone de recouvrement.
- La longueur minimale de recouvrement est de 40Φen zone IIa.
- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué à 90°.

5.3.1.2 Armatures transversales : (RPA99/2003 Art 7.5.2.2)

La quantité d'armatures transversales minimale est donnée par : $A_t = 0.003 \times S_t \times b$ Avec :

b : largeur de la poutre.

 S_t : espacement maximum entre les armatures transversales donné comme suit :

- -St ≤ min (h/4;12Φlmin) en zone nodale,
- -St ≤ h/2 en dehors de la zone nodale.
- Φl : valeur du plus petit diamètre des armatures longitudinales utilisé et dans le cas d'une section en travée avec armatures comprimées, c'est le diamètre le plus petit des aciers comprimés.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.

Les sections minimales et maximales préconisées par le RPA99V2003

Tableau 5-9: Armatures longitudinales min et max dans les poutres selon le RPA99

Type de poutres	Section	A _{min}	A_{max} (cm ²)				
	(cm ²)	(cm ²)	zone courante	zone de recouvrement			
Principale	30×40	6	48	72			
Secondaire	30×30	6	48	72			

5.3.2Calcul de ferraillage

Le ferraillage adopté doit respecter les exigences du RPA.

5.3.2.1 Sollicitations de calculs

Tableau 5-10: Les sollicitations les plus défavorables

	Po	outre principa	ıle	Poutre secondaire			
niveau	M _{travée} (KN.m)	M _{appui} (KN.m)	V (KN)	M _{travée} (KN.m)	M _{appui} (KN.m)	V (KN)	
Etage courant	25	-57.62	94.13	14.21	-21.22	25.92	
Terrasse	28.55	-79.25	108.88	25.38	-57.98	97.04	

5.3.2.2 Ferraillage longitudinal

Le ferraillage des poutres est déduit de la modélisation du SAP2000. Les sections adoptées doivent respecter la condition minimale d'armatures (Amin) du RPA.

Les résultats sont regroupés dans le tableau suivant :

Tableau 5-11 : Résultats de calculs de ferraillages des poutres

niveau	type	section	Localisa t-ion	A _{cal} (cm ²)	A _{min} (cm ²)	A _{opté} (cm ²)	N ^{bre} de barres
Etage	PP	30x40	Travée	4.41	6	6.03	3HA16
courant			Appui	9.40		10.65	3HA16+3HA14
	PS	30x40	Travée	9.18	6	10.65	3HA16+3HA14
			Appui	9.76		10.65	3HA16+3HA14
	PP	30x40	Travée	2.72	6	6.03	3HA16
Terrasse			Appui	8.08		9.42	3HA16+3HA12
	PS	30x40	Travée	3.29	6	6.03	3HA16
			Appui	5.04		6.03	3HA16

5.3.2.3 Les armatures transversales

$$\phi \le \min (\phi_l; \frac{h}{35}; \frac{b}{10})$$
 $\phi \le \min (1.2; \frac{40}{35}; \frac{30}{10}) = \min (1.2; 1.14; 3)$
 $\Rightarrow \phi = 8 \text{mm}$
(BAEL91 Art H.III.3)

Donc on prend A_t= 4T8 =2.01cm² (un cadre et un étrier)

5.3.2.4 Calcul des espacements des armatures transversales

$$\begin{split} S_{t1} & \leq \frac{A_t \times f_e}{0.4 \times b} \to S_{t1} \leq 67cm \\ S_{t2} & \leq \min(0.9d; 40cm) = 33.3cm & \text{BAEL91 (Article H.III.3)} \\ S_{t3} & = \frac{0.9 \times f_e \times A_t}{b_0 \times \gamma_s \times (\tau_u - 0.3 \times f_{t28})} \to S_{t3} \leq 96.21cm \end{split}$$

Selon le **RPA99** Art (7.5.2.2):

• Zone nodale:

$$S_t \le \min(\frac{h}{4}; 12\phi_l^{min}) = 10 \text{cm} \rightarrow S_t = 10 \text{cm}$$

• Zone courante:

$$S_t \le \frac{h}{2} = 20cm \rightarrow S_t = 15cm$$

5.3.2.5 Les longueurs de recouvrement

D'après le **RPA99** (Art 7.4.2.1)

Lr> 40 \phi en zone II

$$\label{eq:continuous} \begin{split} \varphi = &12mm & Lr > 40 \text{ x} 1.2 = 48 \text{ cm on adopte Lr} = 50 \text{ cm} \\ \varphi = &14mm & Lr > 40 \text{ x} 1.4 = 56 \text{ cm on adopte Lr} = 60 \text{ cm} \\ \varphi = &16mm & Lr > 40 \text{ x} 1.6 = 64 \text{ cm on adopte Lr} = 65 \text{ cm} \end{split}$$

5.3.2.6 Vérification des sections armatures transversales :

$$A_t^{min}$$
= 0.003xS_txb= 0.003x15x30=1.35cm² (**RPA99 Art 7.5.2.2**)
 A_t^{min} =1.35cm²< A_t = 2.01cm² verifier

5.3.3 Vérifications

5.3.3.1 Vérification des contraintes tangentielles

La vérification à faire vis-à-vis de la contrainte tangentielle maximale est celle relative à la fissuration peu nuisible suivante :

$$\tau_u = \frac{V}{b \times d} \le \tau^{adm} = \min(0.13 \text{xf}_{c28}; 5\text{MPA}) = 3.33\text{MPa}$$
BAEL91 (Art H.III.1)

Tableau 5-12: Vérification des contraintes tangentielles

Poutres	Vu (KN)	$\tau_u (MPa)$	$ au^{adm}(MPa)$	Observation
Principales	94.13	0.848	3.33	Vérifiée
Secondaires	25.92	0.233	3.33	Vérifiée

5.3.3.2 Vérification des armatures longitudinales au cisaillement

-Appuis de rives : $A_l > \frac{Vu \times \gamma_s}{f_e}$

-Appuis intermédiaires : $A_l \ge \frac{\gamma_s}{f_e} \times (Vu + \frac{Ma}{0.9 \times d})$

Les vérifications sont résumées dans le tableau ci-après :

Tableau 5-13: Vérification des armatures longitudinales au cisaillement

poutres	$A_L (cm^2)$	Vu (KN)	Ma (Kn.m)	A_l^{rive} (cm ²)	$A_l^{int} (cm^2)$	Observation
Principales	10.65	94.13	-57.62	2.70	-2.26	vérifiée
Secondaires	10.65	25.92	-21.22	0.74	-1.08	vérifiée

Donc pas de risque de cisaillement et cela pour tout type de poutre.

5.3.4 Vérification à l'ELS

5.3.4.1 Etat limite de compression du béton

$$\frac{b_0}{2}y^2 + 15Ay - 15dA = 0 \quad ; \sigma_{bc} = \frac{M_{ser}}{I}y \; ; \bar{\sigma}_{bc} = 0.6 \text{xfc} 28 = 15 \text{MPa}.$$

$$I = \frac{b_0}{3}y^3 + 15 \times A(d-y)^2$$

Les vérifications sont résumées dans le tableau ci-après :

Tableau 5-14: Vérification de l'état limite de compression

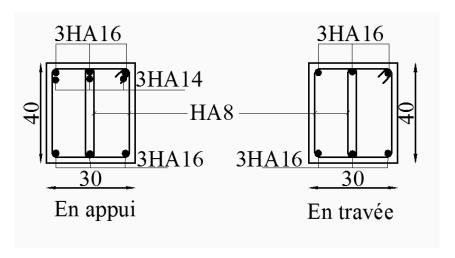
Poutres	Localisation	Mser (KN.m)	Y (cm)	I (m ⁴)	σ_{bc} (Mpa)	Observation
Principales	Travée	19.14	12.22	0.00073	3.20	Vérifiée
Fincipales	Appui	56.46	15.22	0.0011	7.81	Vérifiée
Secondaires	Travée	19.71	15.22	0.0011	2.73	Vérifiée
Secondaires	Appui	25.46	15.22	0.0011	3.52	Vérifiée

5.3.4.2 Etat limite de déformation (évaluation de la flèche)

D'après le BAEL91 et le CBA93 la vérification à la flèche est inutile si :

$$\frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots \dots \dots (3)$$

	h	b	L	As	h	M_t	As	4.2	$h \downarrow 1$	$h M_t$	A < 4.2
	cm	cm	cm	cm ²	\overline{l}	$\overline{10 \times M_0}$	$\overline{b_0 \times d}$	f_e	$\overline{L} \ge \overline{16}$	$\overline{L} \ge \overline{10 \times M_0}$	$\overline{b_0 \times d} \leq \overline{f_e}$
PP	40	30	440	6.03	0.09	0.075	0.005	0.010	vérifiée	vérifiée	vérifiée
PS	40	30	390	10.65	0.10	0.075	0.009	0.010	vérifiée	vérifiée	vérifiée


Tableau 5-15 : Vérification de la flèche pour les poutres

Donc les 3 conditions de flèches étant satisfaites, le calcul des flèches s'avère inutile.

5.3.5 Schéma de ferraillage

On va illustrer les schémas de ferraillage des poutres du plancher étage courant

• Poutre principale

• Poutre secondaire

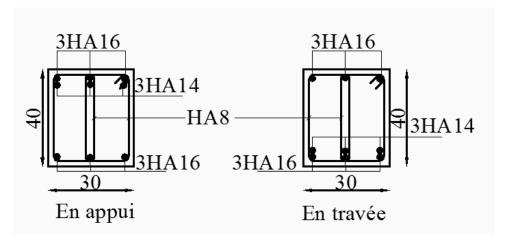


Figure 5-3 : Schémas de ferraillage des poutres principales et secondaires

5.4 Vérification des zones nodales

Il convient de vérifier pour les portiques participant au système de contreventement et pour chacune des orientations de l'action sismique que la somme des moments résistants ultimes des extrémités de poteaux ou montants aboutissant au nœuds est au moins égale en valeur absolue à la somme des valeurs absolues des moments résistants ultimes des extrémités des poutres ou traverses affectés d'un coefficient de majoration de :1,25. Cette disposition tend à faire en sorte que les rotules plastiques dans les poutres et non dans les poteaux.

$$|M_n| + |M_s| \ge 1.25(M_w + M_e)$$
 RPA99 (Art 7.6.2)

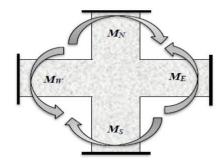


Figure 5-4 : Zone nodale

5.4.1 Détermination des moments résistants

Le moment résistant « Mr » d'une section de béton dépend essentiellement :

- Des dimensions de la section;
- De la quantité d'armatures dans la section ;
- De la contrainte limite élastique des aciers.

$$M_R = Z \times As \times \left(\frac{f_e}{\gamma_c}\right)$$
 Avec : Z= 0.9.h (h : La hauteur totale de la section du béton).

5.4.1.1 Poteaux

Tableau 5-16: les moments résistant dans les poteaux

Niveau	Section (cm ²)	Z (cm)	As (cm ²)	M_R (KN.m)	
RDC, 1er étage	50x50	45	22.24	348.27	
2,3 ^{éme} étage	45x50	45	20.36	318.83	
4,5 ^{éme} étage	45x45	40.5	16.84	237.22	
6,7 ^{éme} étage	40x45	40.5	15.21	214.26	
8 ^{éme} étage	40x40	36	13.57	169.92	

5.4.1.2 Poutre

Les moments résistants dans les poutres sont calculés de la même manière que dans les poteaux ; les résultats de calcul sont injectés directement dans le tableau de vérification des zones nodales (Tab5.16). On effectue la vérification de la zone nodale pour le nœud central:

5.4.1.3 Vérification des zones nodales

Tableau 5-17: Vérification de la zone nodale dans différent étage

Niveau	Plan	Ms	Mn	Mw=Me	$1.25 \left(Mw + Me \right)$	Mn+Ms	Observation	
Niveau	Flaii	(KN.m)	(KN.m) (KN.m) (KN		(KN.m)	(KN.m)	Observation	
1 ^{er} étage	PP	348.27	348.27	133.42	333.55	696.54	Vérifiée	
1 ctage	PS	348.27	348.27	133.42	333.55	696.54	Vérifiée	
2 ^{éme}	PP	348.27	318.83	133.42	333.55	667.10	Vérifiée	
étage	PS	348.27	318.83	133.42	333.55	667.10	Vérifiée	
3 ^{éme}	PP	318.83	318.83	133.42	333.55	637.66	Vérifiée	
étage	PS	318.83	318.83	133.42	333.55	637.66	Vérifiée	
4 ^{éme}	PP	318.83	237.22	133.42	333.55	556.05	Vérifiée	
étage	PS	318.83	237.22	133.42	333.55	556.05	Vérifiée	
5 ^{éme}	PP	237.22	237.22	133.42	333.55	474.44	Vérifiée	
étage	PS	237.22	237.22	133.42	333.55	474.44	Vérifiée	
6 ^{éme}	PP	237.22	214.26	133.42	333.55	451.48	Vérifiée	
étage	PS	237.22	214.26	133.42	333.55	451.48	Vérifiée	
7 ^{éme}	PP	214.26	214.26	133.42	333.55	428.52	Vérifiée	
étage	PS	214.26	214.26	133.42	333.55	428.52	Vérifiée	
8 ^{éme}	PP	214.26	169.92	118.01	295.02	384.18	Vérifiée	
étage	PS	214.26	169.92	75.54	188.85	384.18	Vérifiée	

Conclusion

La vérification des zones nodales est justifiée ; donc les rotules plastiques se forment dans les poutres plutôt que dans les poteaux.

5.5 ETUDE DES VOILES

Le RPA/99/version 2003 (3.4.A.1.a), exige de mettre des voiles à chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur dans la zone IIa (moyenne sismicité).

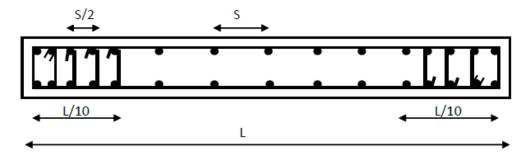
Les voiles de contreventement peuvent être définis comme étant des éléments verticaux qui sont destinés à reprendre, autre les charges verticales (au plus 20%), les efforts horizontaux (au plus 75%) grâce à leurs rigidités importantes dans leurs plan. Ils présentent deux plans l'un de faible inertie et l'autre de forte inertie ce qui impose une disposition dans les deux sens (x et y).

Un voile travaille comme une console encastré à sa base, on distingue deux types de voiles qui ont des comportements différents :

Voiles élancés : $\frac{h}{l} > 1.5$

Voiles courts : $\frac{h}{l}$ < 1.5

Un voile est sollicité en flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de rupture suivants :


- Rupture par flexion
- Rupture en flexion par effort tranchant.
- Rupture par écrasement ou traction du béton.

5.5.1 Recommandation du RPA

a) Armatures verticales

Les armatures verticales sont destinées à reprendre les efforts de flexion. Elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :

- L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que : A_{min}: 0.2% x L_t x e
- Lt: Longueur de la zone tendue.
- e : épaisseur du voile.
- Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement St < e (e : épaisseur de voile).
- A chaque extrémités du voile, l'espacement des barres doit être réduit de moitié sur de la largeur du voile. 1/10
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

Figure 5-5: Disposition des armatures verticales (vue en plan)

b) Armatures horizontales

Les armatures horizontales sont destinées à reprendre les efforts tranchants.

Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de. $10 \phi_1$.

c) Armatures transversales

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement. Elles sont en nombre de quatre épingles par 1 m² au moins.

d) Armatures de coutures

Le long des joints de reprises de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{Vj} = 1.1 \times \frac{V}{f_e}$$
; $avec: V = 1.4 \times Vu$

e) Règles communes (armatures verticales et horizontales)

- Le pourcentage minimum d'armatures (verticales et horizontales) :
- A_{min}= 0.15% de la section du voile, dans la section globale du voile
- $A_{min} = 0.10\%$ de la section du voile, dans la zone courante
- $\phi_l \leq \frac{1}{10} \times e$ (Exception faite pour les zones d'about).
- L'espacement : $St \leq \min(1.5 \times e, 30cm)$
- Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur
- Longueurs de recouvrement :
- 40ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.
- 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

5.5.2 Le ferraillage

Le calcul des armatures verticales se fait à la flexion composée sous

(M et N) pour une section (e x L) selon la sollicitation la plus défavorable de ce qui suit :

 $N_{max} \rightarrow M$ correspondant.

 $N_{min} \rightarrow M$ correspondant.

 $M_{max} \rightarrow N$ correspondant

$$d=0.9.h; d'=0.1h$$

$$A_{min}^{BAEL} = 0.23 \times d \times e \times f_{t28}/f_e$$



Figure 5-6: Schéma d'un voile pleine

$$A_{min}^{RPA} = 0.0015 \times h \times e$$

$$A = \max(A^{cal}, A_{min}^{BAEL}, A_{min}^{RPA})$$

5.5.2.1 Armatures horizontales

$$\frac{A_t}{e \times St} \ge \frac{\tau_u - 0.3 \times f_{t28} \times K}{0.8 \times f_e \times (cos\alpha + sin\alpha)} K = 0 \text{ (pas reprise de betonnage); } \alpha = 90^{\circ}$$

$$St \leq \min(1.5 \times e, 30cm)$$

$$\tau_u = \frac{1.4 \, v_u}{e \times d} < 0.2 \times f_{c28} = 5MPa$$

$$A_{min}^{RPA} = 0.0015 \times e \times St$$

• La longueur de recouvrement

$$L_r = \begin{cases} 40\phi \dots \\ 20\phi L_r \dots \\ \text{one comprime sous toutes les combinaisons.} \end{cases}$$

• Règles communes

$$A_{min} = \begin{cases} 0.15 \% \dots \dots voile \ complet \\ 0.10\% \dots \dots zone \ courante. \end{cases}$$

• Diamètres des barres

 $\phi < \alpha/10...$ zone courante.

• Espacement des barres horizontales et verticales

$$St \leq 1.5 \times e$$

$$St \leq 30cm$$

Les résultats de ferraillages sont récapitulés dans les tableaux ci-dessous avec :

 A_{ν}^{cal} / face: Section d'armature verticale pour une seule face de voile.

 $A_{V \min}^{BAEL}$: Section d'armature verticale minimale dans le voile complet

 $A_{v\min}^{RPA}$: Section d'armature verticale minimale dans le voile complet.

 A_V^{adap} / face : Section d'armature verticale adaptée par face.

N^{bre}/face : nombre de barres adaptées par face.

 S_t : Espacement.

 A_H^{\min} /face: Section d'armature horizontale minimale dans le voile complet.

 A_H^{cal} /face : Section d'armature horizontale pour 1 mètre linéaire.

 A_H^{adap}/ml : Section d'armature horizontale adaptée pour 1 mètre linéaire.

$$A_H^{cal} = \frac{A_v^{adpt}}{4}$$

 A_{v}^{adpt} / ml : Section d'armature adoptée par mètre linéaire.

5.5.3 Disposition des voiles

Figure 5-7: Disposition des voiles

- Voile Vx1=Vx4

Tableau 5-18 : ferraillage du voile Vx1=Vx4

Niveau	RDC	Etage 1, 2,3	Etage 4, 5,6	Etage 7,8
Section (m ²)	0.2×3.60	0.2×3.60	0.2×3.60	0.2×3.60
M(KN.m)	47.213	191.901	250.871	214.928
N(KN)	2125.402	1867.778	1267.038	530.451
section	Entièrement	Entièrement	Entièrement	Entièrement
Section	comprimée	comprimée	comprimée	comprimée
V(KN)	698.746	607.948	408.32	203.88
τ (MPa)	1.51	1.31	0.88	0.44
$\overline{\tau}$ (MPa)	5	5	5	5
$A_v^{cal}(cm^2)$	31.1	29.14	21.21	10.20
$A_v^{min}(cm^2)$	14.4	14.4	14.40	14.4
$A_v^{adop}(cm^2)$	32.16	29.34	22.18	16.04
N ^{bre} /par face	16HA16	10HA16+6HA14	10HA14+6HA12	10HA12+6HA10
St (cm)	20	20	20	20
$A_h^{cal}(cm^2)$	8.04	7.33	5.54	4.01
$A_h^{min}(cm^2)$	10.8	10.8	10.8	10.8
$A_h^{adop}(cm^2)$	11.30	11.30	11.30	11.30
N ^{bre} des barres	14HA10	14HA10	14HA10	14HA10
St (cm)	25	20	20	20

- Voile Vx2

Tableau 5-19: ferraillage du voile Vx2

Niveau	RDC	Etage 1, 2,3	Etage 4, 5,6	Etage 7,8
Section (m ²)	0.2×1.15	0.2×1.15	0.2×1.15	0.2×1.15
M(KN.m)	-17.602	26.330	16.795	10.490

N(KN)	1199.609	1052.767	717.926	282.92
section	Entièrement	Entièrement	Entièrement	Entièrement
Section	comprimée	comprimée	comprimée	comprimée
V(KN)	108.61	44.63	88.08	55.172
$\tau (MPa)$	0.73	0.302	0.59	0.33
$\overline{\tau}$ (MPa)	5	5	5	5
$A_v^{cal}(cm^2)$	17.90	16.12	10.95	4.46
$A_v^{min}(cm^2)$	4.60	4.60	4.60	4.60
$A_v^{adop}(cm^2)$	18.10	18.10	13.86	7.11
N ^{bre} /par face	9HA16	9HA16	9HA14	9HA10
St(cm)	12	12	12	12
$A_h^{cal}(cm^2)$	4.52	4.52	3.46	1.77
$A_h^{min}(cm^2)$	3.45	3.45	3.45	3.45
$A_h^{adop}(cm^2)$	4.52	4.52	4.52	5.53
N ^{bre} /par face	4HA12	4HA12	4HA12	11HA8
St(cm)	25	25	25	25

- Voile Vx3

Tableau 5-20: ferraillage du voile Vx3

Niveau	RDC	Etage 1, 2,3	Etage 4, 5,6	Etage 7,8
Section (m ²)	0.2×1.5	0.2×1.5	0.2×1.5	0.2×1.5
M(KN.m)	1.121	-54.688	-48.426	-37.343
N(KN)	1309.134	1146.198	786.621	335.71
section	Entièrement	Entièrement	Entièrement	Entièrement
Section	comprimée	comprimée	comprimée	comprimée
V(KN)	161.827	71.961	103.318	67.995
$\tau (MPa)$	0.83	0.37	0.53	0.35
$\overline{\tau}$ (MPa)	5	5	5	5
$A_v^{cal}(cm^2)$	18.85	18.04	12.70	5.89
$A_v^{min}(cm^2)$	6	6	6	6
$A_v^{adop}(cm^2)$	20.11	20.11	15.39	7.85
N ^{bre} /par face	10HA16	10HA16	10HA14	10HA10
St(cm)	10	10	10	15
$A_h^{cal}(cm^2)$	5.02	5.02	3.84	1.96
$A_h^{min}(cm^2)$	4.5	4.5	4.5	4.5
$A_h^{adop}(cm^2)$	5.65	5.65	5.53	5.53
N ^{bre} /par face	5HA12	5HA12	11HA8	11HA8
St(cm)	20	20	25	25

- Voile Vy1=Vy3

Tableau 5-21: ferraillage du voile Vy1=Vy3

Niveau	RDC	Etage 1,2, 3	Etage 4, 5,6	Etage 7,8
Section (m ²)	0,2X1, 9	0,2X1, 9	0,2X1, 9	0,2X1, 9
M (KN .m)	910,456	375,695	-160,527	-68,874
N(KN)	187,422	302,801	691,153	300,449
Section	Partiellement	Partiellement	Entièrement	Entièrement
	comprimée	comprimée	comprimée	comprimée
V(KN)	329,373	163 ,654	119,271	46 ,905
τ(MPa)	1,34	0,67	0,48	0,192
₹(MPa)	5	5	5	5
$A_{\rm v}^{\rm cal}({\rm cm}^2)$	11,34	2,142	11,80	5,115
$A_v^{min}(cm^2)$	5,70	5,70	7,60	7,60
A _v ^{adop} (cm ²)	12,32	6.28	12.32	9.05
N ^{bre} /par face	8HA14	8HA10	8HA14	8HA12
S _t (cm)	12.5	23	12.5	23
$A_h^{cal}(cm^2)$	3.08	1.57	3.08	2.26
$A_h^{min}(cm^2)$	5.7	5.7	5.7	5.7
$A_h^{adop}(cm^2)$	6.03	6.03	6.03	6.03
N ^{bre} /par plan	12HA8	12HA8	12HA8	12HA8
S _t (cm)	25	22	22	22

- voile Vy2:

Tableau 5-22: ferraillage du voile Vy1=Vy3

Niveau	RDC	Etage 1,2, 3	Etage 4, 5,6	Etage 7,8
Section (m ²)	0,2X2	0,2X2	0,2X2	0,2X2
M (KN .m)	1047,316	398,678	-154,234	-64,125
N(KN)	177,444	333,107	655,021	308,713
Section	Partiellement	Partiellement	Entièrement	Entièrement
Section	comprimée	comprimée	comprimée	comprimée
V(KN)	327,031	164,588	117,378	42,651
τ(MPa)	1,27	0,64	0,45	0,166
₹(MPa)	5	5	5	5
$A_v^{cal}(cm^2)$	12,70	1,84	11,08	5,061
$A_{v}^{min}(cm^{2})$	6	6	8	8
A _v ^{adop} (cm ²)	15,40	7.85	11,30	11.30
N ^{bre} /par face	10HA14	10HA10	10HA12	10HA12
S _t (cm)	10	20	10	20
$A_h^{cal}(cm^2)$	3.85	1.96	2.82	2.82
$A_h^{min}(cm^2)$	6	6	6	6
$A_h^{adop}(cm^2)$	7.04	7.04	7.04	7.04
N ^{bre} /par plan	14HA8	14HA8	14HA8	14HA8
S _t (cm)	25	19	19	19

- voile Vy 4:

Tableau 5-23: ferraillage du voile Vy4

Niveau	RDC	Etage 1,2, 3	Etage 4, 5,6	Etage 7,8
Section (m ²)	0,2X2, 4	0,2X2, 4	0,2X2, 4	0,2X2, 4
M (KN .m)	1540,53	656,847	-218,993	-100,298
N(KN)	397,224	289,899	789,123	362,191
Section	Partiellement	Partiellement	Entièrement	Entièrement
Section	comprimée	comprimée	comprimée	comprimée
V(KN)	405,374	249,294	175,811	66,1
τ(MPa)	1,31	0,808	0,57	0,214
₹(MPa)	5	5	5	5
$A_{\rm v}^{\rm cal}({\rm cm}^2)$	13,52	4,411	13,28	6,095
$A_{v}^{min}(cm^{2})$	7,20	7,20	9,60	9,60
A _v ^{adop} (cm ²)	15.39	11.31	13,35	11.31
N ^{bre} /par face	10HA14	10HA12	5HA14+5HA12	10HA12
S _t (cm)	10	24	10	24
$A_h^{cal}(cm^2)$	3.84	2.82	3.33	2.82
$A_h^{min}(cm^2)$	7.2	7.2	7.2	7.2
$A_h^{adop}(cm^2)$	7.54	7.54	7.54	7.54
N ^{bre} /par plan	15HA8	15HA8	15HA8	15HA8
S _t (cm)	25	18	18	18

5.5.4 Schéma de ferraillage

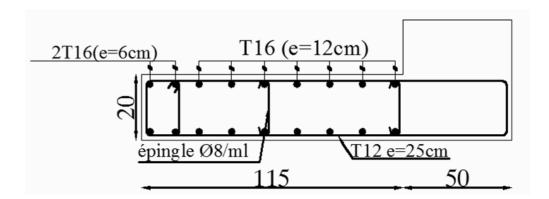


Figure 5-8 : Schéma de ferraillage du voile

CHAPITRE 6: ETUDE DE L'INFRASTRUCTURE

6.1 Introduction

L'infrastructure est l'une des parties essentielles d'un bâtiment, car elle est en contact direct avec le sol d'assise, elle assure la transmission des charges apportées par la superstructure vers le sol, et avec sa bonne stabilité et sa bonne résistance elle assure :

- -Un bon encastrement de la structure dans le sol.
- -Une bonne transmission des efforts apportés par la superstructure au sol d'assise.
- -Une bonne limitation des tassements différentiels.

6.2 Choix de type des fondations

Le choix de type des fondations dépend essentiellement des facteurs suivants :

La capacité portante du sol d'assise.

L'importance de l'ouvrage.

La distance entre axes des poteaux.

La profondeur du bon sol.

Selon le rapport du sol, qui situe la contrainte du sol à 1.8bars le type de fondations suggéré est superficiel, ancrées à -3m, du niveau de base. Le choix du type de fondation est conditionné par la stabilité de l'ouvrage et l'économie. On vérifie dans l'ordre suivant : les semelles isolées, les semelles filantes et le radier général et enfin on opte pour le choix qui convient.

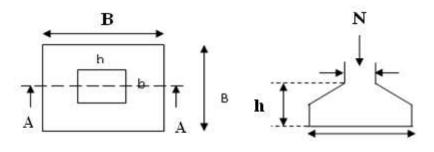
D'après le *RPA99* (Article 10.1.4.1) les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

- \bullet G+Q+E
- $0.8G \mp E$

Ainsi que les combinaisons citées par le BAEL91 :

- 1.35G+1.5Q
- G+Q

6.2.1 Semelle isolée


La vérification à faire est : $\frac{N}{S} \leq \overline{\sigma_{sol}}$

Pour cette vérification on prend la semelle la plus sollicitée.

N: l'effort normal agissant sur la semelle obtenu par le SAP 2000V14.

S: surface d'appui de la semelle. S=A×B

 $\overline{\sigma_{sol}}$: Contrainte admissible du sol.

Vue en plan

Figure 6 -1 : Semelle isolée de fondation

N= 1672.158KN;
$$\overline{\sigma_{sol}} = 1.8bars$$

$$\sigma = \frac{N}{A \times B} \le \overline{\sigma_{sol}} = >A \times B \ge \frac{N}{\overline{\sigma_{sol}}}.....(1)$$

Semelle et poteau homothétiques :

$$\frac{A}{a} = \frac{B}{b} = A = \frac{a}{b} B \dots \dots \dots \dots (2)$$
 Avec a, b dimensions du poteau

On remplace (2) dans (1); on aura:

$$B \ge \sqrt{\frac{50 \times 1672.158 \times 10^2}{50 * 1.8}} = > B \ge 3.05 \text{m} = > B = 3.10 \text{m}$$

La distance entre axes des poteaux dans le sens x-x' varie entre 3.4m et 4.4m et selon y-y' l'entraxe varie entre 1.7et 4,2 On remarque qu'il y a chevauchement entre les semelles. Donc le choix des semelles isolées dans notre cas ne convient pas.

6.2.2 Les semelles filantes

Nous allons faire le calcul de la semelle sous poteaux comme suit :

$$\overline{\sigma_{sol}} \ge \frac{N}{S} = \frac{N}{B \times L} \to B \ge \frac{N}{\overline{\sigma_{sol}} \times L}$$

Avec:

 N_i : l'effort normal provenant du poteau « i ».

B: largeur de la semelle.

L : Longueur de la semelle.

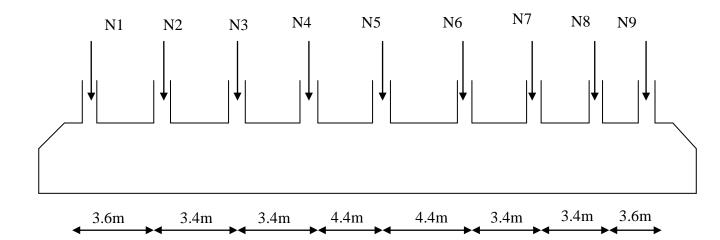


Figure 6-2: Semelle filante

$$\sum Ni = 11998.64KN$$

$$\sum L_i = 29.90m$$

$$B_2 \ge \frac{11998.64 \times 10^{-2}}{1.8 \times 29.9} = 2.22m$$

Remarque

Vu la distance existante entre les axes de deux portiques parallèles, on constate qu'il y a un chevauchement entre les deux semelles. Ce choix ne convient pas, alors on va opter pour un radier général,

6.2.3 Radier général

La surface de l'ensemble des semelles est donnée par la formule suivante :

$$S \ge \frac{N}{\overline{\sigma_{SOl}}} \rightarrow S \ge \frac{53570.164 \times 10^{-2}}{1.8}$$

 $S \ge 297.61m2$

On a la surface du bâtiment est $S_{bat} = 345.35m^2$

$$S_{rad} = 297.61m2 < S_{bat} = 345.35m^2$$

La surface des fondations représente 86% de la surface du bâtiment alors on utilise un radier générale avec une surface $S_{rad} = S_{bat} = 345.35m^2$, donc on n'a pas besoin de débord

a. Pré dimensionnement

• Condition de coffrage

 h_n : Hauteur de la nervure.

 h_d : Hauteur de la dalle.

 L_{max} : La plus grande portée entre deux éléments porteurs successifs.

$$\begin{cases} h_n \ge \frac{L_{max}}{10} = \frac{440}{10} = 44cm \\ h_d \ge \frac{L_{max}}{20} = \frac{440}{20} = 22cm \end{cases}$$
 (a)

• Condition de rigidité

$$\frac{\pi}{4} \times L_e \ge L_{max}$$

 L_e : La longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible).

$$L_e \ge \sqrt[4]{rac{4 imes E imes I}{K imes b}}$$

Avec:

E: Module d'élasticité du béton $E = 3.216 \times 10^7 KN/m^2$.

I: Inertie de la section de radier.

K: Coefficient de réaction du sol, pour un sol moyen $K = 4 \times 10^4 KN/m^3$.

b: La largeur de la semelle.

On a:

$$I = \frac{bh^3}{12} \to h \ge \sqrt[3]{\frac{48L_{max}^4 K}{\pi^4 E}} \to h \ge 0.61m$$
 (b)

A partir des deux conditions (a) et (b) on prend :

- La hauteur de la nervure h = 70 cm.
- La hauteur de la dalle du radier hd= 25cm.

6.2.3.1 Les Vérifications nécessaires

6.2.3.1.1 Vérification de la poussée hydrostatique

Il faut s'assurer que : $N \ge F_s \times H \times S_{rad} \times \gamma_{\omega}$

N = 53570.164KN

Fs= 1.5 (coefficient de sécurité)

H= 3m, la hauteur d'ancrage du bâtiment

 S_{rad} = 345.35 m^2 (surface totale du radier).

 $\gamma = 10 \text{KN/m}^3$

 $N=53570.164 \mathrm{KN} \geq F_s \times H \times S_{rad} \times \gamma_\omega = 15540.75 KN \ v\'{e}rifi\'{e}e$

6.2.3.1.2 Vérification au poinçonnement

$$N_u \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_h}$$

Il faut vérifier que :

Nu: L'effort normal sur le poteau le plus sollicité : N = 1672.158KN

U_c: Le périmètre du contour cisaillé projeté sur le plan moyen du radier :

$$U_c = 2 \times (A + B)$$

 $A = a + h$
 $A = B = 50 + 70 = 120 \text{cm}$
 $A = b + h$

$$U_c = 4.80 m$$

$$0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b} = 0.045 \times 4.8 \times 0.5 \times \frac{25}{1.5} = 1800 \text{KN}$$

$$N_u = 1672.158KN < 1800 \ KN$$

condition vérifiée

Pas de risque de poinçonnement

6.2.3.1.3 Vérification au cisaillement

$$\tau_u = \frac{V_u}{b \times d} \le \frac{0.07}{\gamma_h} f_{c28} = 1.17 MPa$$
 Avec d=0.9h

On considère une bande de largeur b =1m

$$V_u = \frac{N_u \times L_{max}}{2 \times S_{rad}} = 341.26 \text{KN}$$

$$\tau_u = 0.54 MPa < 1.17 Mpa$$

vérifiée

La Condition est vérifiée donc on a pas besoins d'armatures transversales.

6.2.3.1.4 Vérification des contraintes dans le sol

Calcul des contraintes sous le radier :

• Sens xx

$$\sigma_{moy} = \frac{3\sigma_{max} + \sigma_{min}}{4} \le \overline{\sigma_{sol}}$$

Avec:

$$\sigma_{min}^{max} = \frac{N}{S_{rad}} \pm \frac{M}{I} \left(X_G, Y_G \right)$$

N: L'effort normale du aux charges verticales.

My: Moment sismique à la base

D'après le programme **SOCOTEC** on a les caractéristiques suivantes :

$$Ix=4640.1651m^4$$
; $X_G=-0.10m$

$$Iy=20742.5956m^4$$
; et $Y_G=0.44m$

$$M_x$$
=328511.15KN.m; My = 615750.09KN.m

N=53570.164KN

$$\sigma_x^{max} = \frac{N}{S_{rad}} + \frac{M_y}{Iy} X_G = 0.15 \text{Mpa}$$

$$\sigma_x^{min} = \frac{N}{S_{rad}} - \frac{M_y}{I_y} X_G = 0.15 \text{Mpa}$$

 σ_x^{max} et σ_x^{min} Son supérieur de zéro donc répartition trapézoïdale des contraintes, il faut vérifier que

$$\sigma_{moy} = 0.15 MPa < \overline{\sigma_{sol}}$$

Donc: La contrainte est vérifiée dans le sens xx

• Sens yy:

$$\sigma_y^{max} = \frac{N}{S_{rad}} + \frac{M_x}{Ix} Y_G = 0.18 \text{ Mpa}$$

$$\sigma_y^{min} = \frac{N}{S_{rad}} - \frac{M_x}{Ix} Y_G = 0.12 \text{ Mpa}$$

$$\sigma_{moy} = 0.16 MPa < \overline{\sigma_{sol}}$$

Donc : La contrainte est vérifiée dans le sens yy

6.2.4 Ferraillage du radier

Le radier sera calculé comme une dalle pleine renversée, et sollicité à la flexion simple causée par la réaction du sol, il faut considérer le poids propre du radier comme une charge favorable. On calculera le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier.

Calcul des sollicitations :

$$Q_u = \frac{N_u}{S_{rad}} + P_u$$

Avec : Nu est l'effort normal ramené par la superstructure, et Pu le poids propre du radier Nu=53570.164KN

Calcul de Pu:

Poids propre du radier = $0.25*25=6.25 \text{ KN/m}^2$

$$\Rightarrow$$
 Pu=1,35* 6.25 = 8.44 KN/m²

Donc:

$$Q_u = \frac{N_u}{S_{rad}} + P_u = \frac{53570.164}{345.35} + 8.44 = 163.55KN/m^2$$

Pour faciliter l'exécution et homogénéiser le ferraillage, il est préférable de calculer le panneau le plus sollicité.

Lx=4.20m; Ly=4.40m

$$\rho = \frac{Lx}{Ly} = 0.95 > 0.4 \rightarrow alors\ la\ dalle\ travaille\ selon\ deux\ sens$$

A l'ELU

$$\mu_x = 0.0410$$
 ; $\mu_y = 0.8875$
 $M_x = \mu_x q_u l_x^2 = 118.28 \text{ KN.m}$

$$M_{\chi} = \mu_{\chi} q_u \iota_{\overline{\chi}} = 118.28 \text{ KN.fr}$$

$$M_y = \mu_y M_x = 104.97 \text{KN.m}$$

- Moment en travées

$$M_{tx} = 0.75 \times M_x = 88.71 KN. m$$

 $M_{ty} = 0.75 \times M_y = 78.72 KN. m$

- Moment en appuis

$$M_{ax} = M_{ay} = 0.5Mx = 59.14KN.m$$

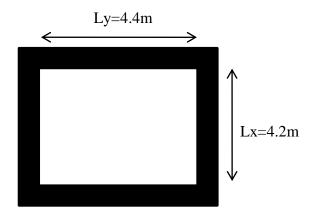


Figure 6-3: Dalle sur quatre appuis

Le ferraillage se fait pour une section $b \times h = (1 \times 0.25) \text{ m}^2$

Condition de non fragilité

Pour une dalle d'épaisseur e>12cm et $\rho \ge 0.4$ la valeur minimale des armatures est :

$$A_{\min x} = \rho_{0x} \frac{(3-\rho)}{2} \times b \times h = 0.0008 \times (3-0.95) \times 100 \times \frac{25}{2} = 2.05 \ cm^{2}$$
$$A_{\min y} = \rho_{0} \times b \times h = 0.0008 \times 100 \times 25 = 2cm^{2}$$

Les résultats du ferraillage sont résumés dans le tableau ci-dessous :

Tableau 6-1: Tableau de ferraillage du radier

Localis	sation	Mt (KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adop} (cm ²)	Choix /ml (cm²)
Travée	X-X	88.71	12.13	2.05	14.07	7HA16
Travee	у-у	78.72	10.68	2	10.78	7HA14
App	ui	59.14	7.89	2.05	9.24	6HA14

Espacement des armatures

Armatures // Lx : $St=25cm \le min (3h, 33cm) = 33cm$

Armatures //Ly: $St= 25cm \le min (4h, 45cm) = 45cm$

6.2.4.1 Vérification

A l'ELU

- Vérification au cisaillement

$$\tau_u = \frac{V_u}{b \times d} \le \tau^{adm} = \frac{0.07 f_{c28}}{\gamma_b}$$

$$V_{ux} = \frac{qu \times Lx}{2} \times \frac{L_y^4}{L_x^4 + L_y^4} = 183.7 \text{KN}$$

$$V_{uy} = \frac{qu \times Ly}{2} \times \frac{L_x^4}{L_x^4 + L_y^4} = 167.37 \text{KN}$$

$$\tau_u = \frac{V_u}{h \times d} = 0.81 \text{MPA} = \tau^{adm} = 1.16 MPa$$
 vérifiée.

Pas risque de cisaillement suivant les deux sens

• Al'ELS

$$\mu_x = 0.0483$$
 ; $\mu_y = 0.9236$

N=39081.06KN le poids propre du radier est : Ps=6.25KN/m

$$Q_s = \frac{N_s}{S_{rad}} + Ps = 119.41 KN / m^2$$

$$M_x = \mu_x Q_s l_x^2 = 101.73 \text{KN.m}$$

$$M_{v} = \mu_{v} M_{x} = 93.96 \text{KN.m}$$

$$M_{tx} = 76.05KN.m$$

$$M_{ty} = 70.47KN.m$$

$$M_{ax} = M_{ay} = -50.86KN.m$$

- Etat limite de compression du béton

$$\sigma_{bc} = \frac{Mser \times y}{I} \le \bar{\sigma}_b = 0.6 \times f_{c28} = 15 \text{MPa}$$

-Les contraintes dans l'acier

$$\sigma_S = \frac{15M_{Sser}}{I}(d - Y) \le \bar{\sigma}_S = \min(\frac{2}{3} \times f_e; 110\sqrt{\mu f_{c28}}) = 201.6 \text{MPa} \dots (\text{FN} = > \mu = 1.6 \text{Acier HA})$$

Tableau 6-2: Vérification des contraintes

Localisation		M _{ser} (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\sigma_{S}(MPa)$
Trovác	XX	76.05	7.85	61420.63	9.71	272.09
Travée —	YY	70.47	7.06	50278.08	9.89	324.61
Ap	pui	-50.86	6.63	44621.83	7.55	271.32

On remarque que la contrainte dans les aciers n'est pas vérifiée donc on va recalculer les armatures à l'ELS.

Les résultats sont résumés dans le tableau ci-dessous :

Tableau 6-3: Vérification des contraintes nouvelle

Localisa	tion	Mser (KN.m)	β	α	A _{cal} (cm ²)	Choix /ml (cm ²)	Section (cm ²)	St (cm)
Travée	XX	76.05	0.0074	0.393	19.29	7HA20	21.98	20
Travee	YY	70.47	0.0069	0.382	17.80	7HA20	21.98	20
Appı	ıi	-50.86	0.0049	0.332	12.60	7HA16	14.07	20

6.2.4.2 Schéma de ferraillage du radier

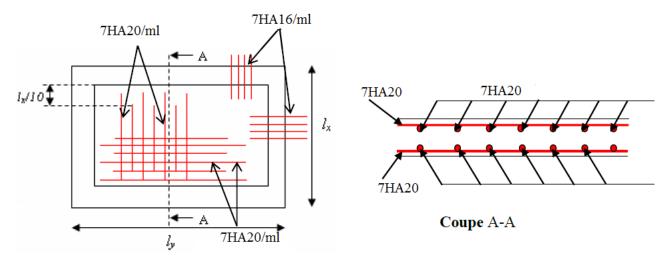


Figure 6.4 : Schéma de ferraillage du radier.

6.3 Les nervure

Les nervures sont des poutres servant d'appuis pour la dalle du radier cependant la répartition des charges sur travée est triangulaire ou trapézoïdale, ceci est fortement dépendant des lignes de ruptures mais on procède à une simplification des calculs en les remplaçant par des charges équivalentes uniformément reparties.

 $-\,q_m$: charge uniforme produisant le même moment maximum que la charge réelle.

- q_v : charge produisant le même effort tranchant maximal que la charge réelle.

Charges trapézoïdales

$$\begin{cases} q_M = \frac{q}{2} \left[(1 - \frac{\rho_g^2}{3}) l_{xg} + (1 - \frac{\rho_d^2}{3}) l_{xd} \right] \\ q_V = \frac{q}{2} \left[(1 - \frac{\rho_g}{2}) l_{xg} + (1 - \frac{\rho_d}{2}) l_{xd} \right] \end{cases}$$

Charges triangulaires

 \checkmark $q_M = q_V = \frac{q}{2} \times \frac{\sum l_{xi}^2}{\sum l_{xi}}$ Si la poutre sur deux appuis support plusieurs charges

$$\checkmark q_M = \frac{2}{3} P l_x \text{ et } P_V = \frac{P}{2} l_x$$
 si la poutre à une travée

Avec

 $l_{{\scriptscriptstyle xd}}$: La plus petite portée du panneau de dalle qui se situe à droite de la nervure.

 $l_{\scriptscriptstyle yd}$: La plus grande portée du panneau de dalle qui se situe à droite de la nervure.

 l_{xg} : La plus petite portée du panneau de dalle qui se situe à gauche de la nervure.

 l_{yg} : La plus grande portée du panneau de dalle qui se situe à gauche de la nervure.

$$\rho_g = \frac{l_{xg}}{l_{yg}} \qquad et \qquad \qquad \rho_d = \frac{l_{xd}}{l_{yd}}$$

$$q_u = 163.55 \text{KN/m}^2 \qquad \qquad q_s = 119.41 \text{KN/m}^2$$

6.3.1 Calcul des sollicitations

• Moments aux appuis

$$Ma = \frac{P_g \times l_g'^3 + P_d \times l_d'^3}{8.5 \times (l_g' + l_d')}$$

 $\text{Avec: les longueurs fictives: } l' = \left\{ \begin{matrix} l & \textit{si c'est une travée de rive} \\ 0.8 \times l & \textit{si c'est une travée intermidiare} \end{matrix} \right.$

Pour l'appui de rive, on a : $M_a = -0.15*M_0$

Moment en travée

$$\begin{split} M_l(x) &= M_0(x) + M_g \, (1 - \frac{x}{l}) + M_d \big(\frac{x}{l}\big) \\ M_0(x) &= \frac{qx}{2} \times (l - x) \\ \text{Tel que } x &= \frac{l}{2} - \frac{M_g - M_d}{al} \end{split}$$

Mg et Md: moments sur appuis de gauche et droite respectivement.

Sens longitudinal (x-x):

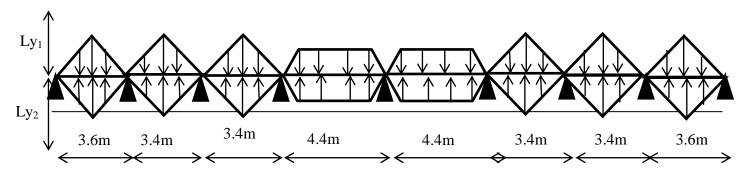


Figure 6-5: Sollicitations sur les nervures longitudinales

Tableau 6-4: Sollicitations sur la nervure dans le sens longitudinal

Travée	Travée P (KN/m)		$M_a(KN.m)$		
Travec	r (KIV/III)	\mathbf{M}_{g}	M_d	$M_t(KN.m)$	
A-B	785.04	-855.40	-855.40	427.70	
В-С	741.42	-720.97	-720.97	338.41	
C-D	741.42	-720.97	-720.97	338.41	
D-E	476.73	-780.42	-780.42	375.75	
E-F	476.73	-780.42	-780.42	375.75	

F-G	741.42	-720.97	-720.97	338.41
G-H	741.42	-720.97	-720.97	338.41
H-I	785.04	-855.40	-855.40	427.70

$$\mbox{Moment max}: \begin{cases} \label{eq:max} M_a = -855.40 \mbox{KN.m} \\ M_t \!\!=\!\! 427.70 \mbox{KN.m} \end{cases}$$

 $V^{max} = 1425.67KN$

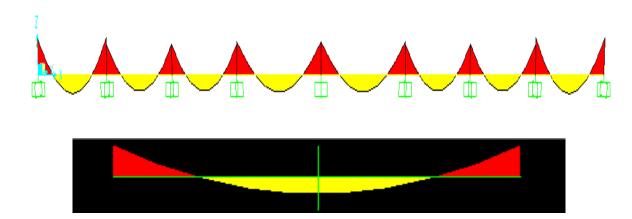


Figure6-6: Diagramme des moments sens XX tirés par le SAP 2000.

Sens transversal (y-y):

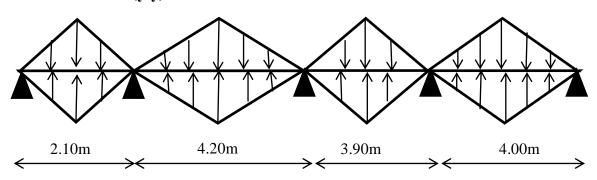


Figure 6-7: Sollicitations sur les nervures transversales

Tableau	6.5 : Sol	llicitations	s sur la	nervure	dans	le sens	transversal	Э

Travée	P (KN/m)	M _a (K	$M_t(KN.m)$	
Travee	r (KIV/III)	$M_{\rm g}$	$M_{\rm d}$	WI _t (IXIV.III)
A-B	457.94	-170.87	-170.87	72.56
В-С	915.88	-1356.63	-1356.63	653.19
C-D	850.46	-1086.83	-1086.83	543.41
D-E	872.26	-1172.34	-1172.34	586.17

$$\label{eq:max} \text{Moment max}: \begin{cases} M_a = -1356.63 KN.m \\ \\ M_t = 653.19 KN.m \end{cases}$$

$$V^{max} = 1938.05 KN$$

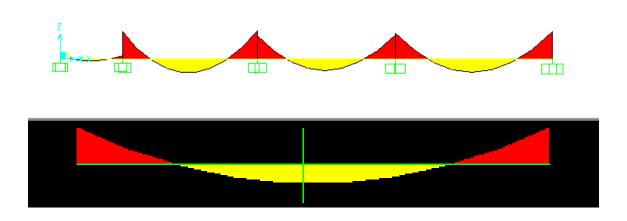


Figure6-8: Diagramme des moments sens YY tirés par le SAP 2000

6.3.2 Ferraillage des nervures

Le ferraillage se fera pour une section en Té en flexion simple.

$$h_0 = 0.25 m$$

 $b_0 = 0.5 m$

$$d = 0.65m$$

h = 0.7 m

$$b_1 \le \min\left(\frac{L_y}{10}; \frac{L_x}{2}\right) \to b_1 \le \min(0.41; 1.95)$$

 $\Rightarrow b_1 \le 0.41 \text{m}$

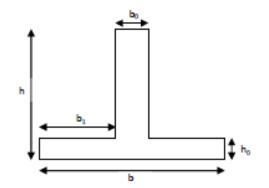


Figure 6-9: Section à ferrailler

On prend b_1 =40cmDonc : b=2 b_1 + b_0 = 1.30m

Les résultats du ferraillage sont récapitulés dans le

tableau ci-après:

Tableau 6-6: Résumé des résultats de ferraillage.

Sens	localisation	M _u (KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	$A_{adopt\acute{e}}$ (cm ²)	Choix
X-X	Travée	427.70	19.46	10.20	25.76	5HA20+5HA16
Λ-Λ	Appui	-855.40	40.18	10.20	40.25	5HA25+5HA20
Y-Y	Travée	653.19	30.21	10.20	30.41	9HA16+8HA14
1-1	Appui	-1356.63	66.41	10.20	67.54	8HA25+9HA20

6.3.3 Vérifications

6.3.3.1 A L'ELU

• Vérification de l'effort tranchant

$$au_u = rac{V_u}{b imes d} \leq au^{adm} = \min(rac{0.15 f_{c28}}{\gamma_b}$$
,4 MPa) = 2.5MPa

Les résultats sont présentés dans le tableau ci-dessous :

Tableau 6-7: Vérification de l'effort tranchant.

Sens	Vu (KN)	$\tau_u (MPa)$	τ^{adm} (MPa)	Observation
X-X	1425.67	1.68	2.5	Vérifiée
Y-Y	1938.05	2.29	2.5	Vérifiée

• A l'ELS

- État limite de compression du béton

$$\sigma_{bc} = \frac{_{Mser \times y}}{_{I}} \le \bar{\sigma}_{b} = 0.6 \times f_{c28} = 15 \text{MPa}$$

-Les contraintes dans l'acier

$$\sigma_S = \frac{15M_{Sser}}{I}(d - Y) \le \bar{\sigma}_S = \min(\frac{2}{3} \times f_e; 110\sqrt{\mu f_{c28}}) = 201.6\text{MPa}$$

Les résultats sont récapitulés dans le tableau suivant :

Tableau 6-8 : Résumé des résultats (vérification des contraintes).

	Sens	M _{ser} (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\overline{\sigma_{bc}}(MPa)$	$\sigma_s(MPa)$	$\overline{\sigma_s}(MPa)$
Х-	Travée	313.28	16.90	1103140.62	4.79	15	204.89	201.6
X	Appui	-626.57	20.36	1568836.1	8.13	15	267.42	201.6
Y-	Travée	478.23	18.13	1260304.14	6.87	15	266.77	201.6
Y	Appui	-993.26	24.97	2298041.1	10.79	15	351.45	201.6

On remarque que la contrainte dans les aciers n'est pas vérifiée donc on recalcule la section des aciers à L'ELS.

Les résultats sont résumés dans le tableau ci-dessous :

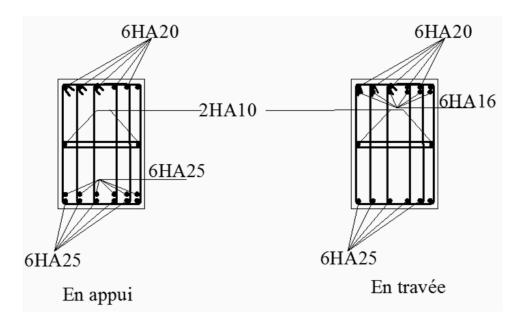
Tableau 6-9: Vérification des contraintes nouvelles

loca	lisation	M _{ser} (KN.m)	β	α	A_{cal} (cm^2)	Choix (cm ²)	$A_{\text{opté}}$ (cm ²)
vv	Travée	313.28	0.0028	0.260	26.17	6HA20+6HA16	30.91
X-X	Appui	-626.57	0.0056	0.351	54.15	12HA25	58.90
Y-Y	Travée	478.23	0.0043	0.314	40.76	6HA25+6HA20	48.30
1-1	Appui	-993.26	0.0089	0.423	8	12HA32	96.51

• Armatures transversales:

$$\phi_t \le \min\left(\frac{h_t}{35}, \frac{b_0}{10}, \phi_l^{max}\right) \rightarrow \phi_t \ge (2,5,32)$$

Soit $\phi_t = 10mm$


• Espacements des aciers transversaux :

 $A_t = 3 \text{ cadres } \phi_{10} = 6\phi_{10} = 4.74 \text{cm}^2$

- 1) $St \le min (0.9d;40cm) \rightarrow St \le 40cm$
- 2) $St \le (A_t, f_e)/(0.4.b_0) \rightarrow St \le 94.8cm$
- 3) $\text{St} \le (0.8 \,\text{A}_t.\text{f}_e)/\left[b_0.\left(\tau_u 0.3 f_{t28}\right)\right] \to \text{St} \le 18.69 \,\text{cm}$ Soit $\text{St} = 15 \,\text{cm}$

6.3.4 Schémas de ferraillage des nervures

Sens X-X

Sens Y-Y

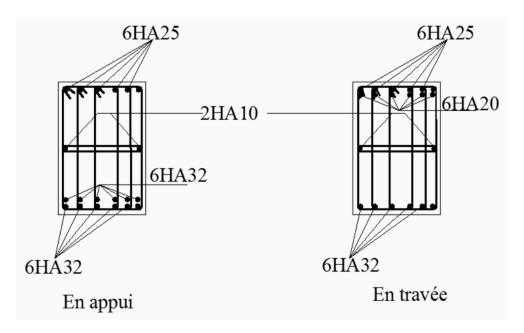


Figure 6-10: Schéma de ferraillage des nervures

Conclusion

L'expérience dans le domaine de projet de fin d'étude nous a incités non seulement à connaître toutes les étapes de calcul d'un bâtiment, mais aussi à se documenter et à enrichir nos connaissances et D'utiliser les moyens de conceptions et de modélisations sur machine à savoir: AUTO CAD, SAP2000, et quelques applications sans oublier les différentes étapes à suivre pour l'étude génie civil afin de réaliser une construction dans les normes.

Le projet nous a aussi permis de constater une difficulté particulière dans le choix de la disposition des voiles, et cela est principalement dû aux ouvertures dans la bâtisse. Plusieurs dispositions ont été testées dans le but d'avoir une bonne répartition de charges entre les portiques et les voiles, ainsi qu'un bon comportement de la structure afin d'éviter les effets de torsion. La vérification de la condition d'interaction entre les voiles et les portiques exigée par le Règlement Parasismique Algérien pour le contreventement mixte a conduit à l'augmentation de la section des poteaux ainsi que la réduction des efforts internes et donc le ferraillage avec le minimum réglementaire donné par le Règlement Parasismique Algérien. Le radier est le type de fondation choisi, vu les charges importantes et les petites trames qui induisent des chevauchements pour le choix des semelles isolées ou filantes.

L'objectif primordial, pour l'ingénieur est dans la meilleure maîtrise du rapport coût/sécurité, par une conception optimale qui satisfait les exigences architecturales.

Bibliographie

- Règles BAEL 91 modifiées 99, Edition Eyrolles, Troisième édition 2000.
- Règles Parasismiques Algériennes, Edition CGS, RPA 99 / version 2003.
- DTR B.C.2.2, charges permanentes et charges d'exploitations, Edition CGS, Octobre 1988.
- Règles de conception et de calcul des structures en béton armé (CBA 93), Edition CGS, Décembre 1993.
- Cours de béton armé, 31ème et 41ème année Génie Civil.
- Anciens mémoires de fin d'étude.

ANNEXE I

DALLES RECTANGULAIRES UNIFORMÉMENT CHARGEES ARTICULÉES SUR LEUR CONTOUR

$\alpha = \frac{l_c}{L}$	ELU	v = 0	ELS v	= 0.2	$\alpha = \frac{L}{L}$	ELII	w — 0	FLSv	-02
7	μ_x	μ_{ν}	μ_{x}	μ_{ν}	u – <u>t</u>				
0.40	0.1101	0.2500	0.1121	0.2854		μ_x	μ_y	μ _x 0.0731	μ _y 0 5940
0.41	0.1088	0.2500	0.1110	0.2924	0.71	0.0671	0.4471		
0.42	0.1075	0.2500	0.1098	0.3000	0.72	0.0658	0.4624	0.0719	0.6063
0.43	0.1062	0.2500	0.1087	0.3077	0.73	0.0646	0.4780	0.0708	0.6188
0.44	0.1049	0.2500	0.1075	0.3155	0.74	0.0633	0.4938	0.0696	0.6315
0.45	0.1036	0.2500	0.1063	0.3234	0.75	0.0621	0.5105	0.0684	0.6647
0.46	0.1022	0.2500	0.1051	0.3319	0.76	0.0608	0.5274	0.0672	0.6580 0.6710
0.47	0.1008	0.2500	0.1038	0.3402	0.77	The form of the first of the fi	0.5440	0.0661	
0.48	0.0994	0.2500	0.1026	0.3491	0.78	0.0584	0.5608	0.0650	0.6841
0.49	0.0980	0.2500	0.1013	0.3580	0.79	0.0573	0.5786	0.0639	0.6978
0.50	0.0966	0.2500	0.1000	0.3671	0.80	0.0561	0.5959	0.0628	0.7111
0.51	0.0951	0.2500	0.0987	0.3758	0.81	0.0550	0.6135	0.0671	0.7246
0.52	0.0937	0.2500	0.0974	0.3853	0.82	0.0539	0.6313	0.0607	0.7381
0.53	0.0922	0.2500	0.0961	0.3949	0.83	0.0528	0.6494	0.0596	0.7518
0.54	0.0908	0.2500	0.0948	0.4050	0.84	0.0517		0.0586	0.7655
0.55	0.0894	0.2500	0.0936	0.4150	0.85	0.0506	0.6864	0.0576	0.7794
0.56	0.0880	0.2500	0.0923	0.4254	0.86	0.0496	0.7052	0.0566	0.7933
0.57	0.0865	0.2582	0.0910	0.4357	0.87	0.0486	0.7244	0.0556	0.8074
0.58	0.0851	0.2703	0.0897	0.4462	0.88	0.0476	0.7635	0.0537	0.8216 0.8358
0.59	0.0836	0.2822	0.0884	0.4565	0.89	0.0466	0.7834	0.0538	0.8508
0.60	0.0822	0.2948	0.0870	0.4672	0.90	0.0450	0.8036	0.0528	0.8502
0.61	0.0808	0.3075	0.0857	0.4781					
0.62	0.0794	0.3205	0.0844	0.4892	0.92	0.0437	0.8251	0.0509	0.8799
0.63	0.0779	0.3338	0.0831	0.5004	0.93	0.0428	0.8450	0.0500	0.8939
0.64	0.0765	0.3472	0.0819	0.5117	0.94		0.8661	0.0491	0.9087
0.65	0.0751	0.3613	0.0805	0.5235	0.95	0.0410	0.8875	0.0483	0.9236
0.66	0.0737	0.3753	0.0792	0.5351	0.96	0.0401	0.9092	0.0474	0.9385
0.67	0.0723	0.3895	0.0780	0.5469			0.9545		
0.68	0.0710	0.4034	0.0767	0.5584	0.98	0.0384		0.0457	0.9694
0.69	0.0697	0.4181	0.0755	0.5704	0.99	0.0376	0.9771	0.0449	0.9847
0.70	0.0684	0.4320	0.0743	0.5817	1.00	0.0308	1.0000	0.0441	1.0000

Section en cm2 de 1 à 20 armatures de diamètre en mm

Annexe

Ø	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,70
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,70	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,5
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,1
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,7
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,2
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,8
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,6	163,4
14	2,75	3,96	7,04	11,00	15,83	21,55	28,15	43,98	68,72	112,6	175,9
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,6	188 5
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	125,7	201,1
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,7	213,6
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,8	226,2
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	92,27	152,8	238,8
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,8	251,3

Annexe II

p = 0.8

r	7 7 12	0,0	0,1	0,2	0,5	0,4	0,5	0,6	0,7	9,8	49	1,0
	9,0		9,250	0,200	0,168	9144	0,126	0,110	0,099	9,089	9081	9077
	91	0,320	0,235	0,194	0,166	0,143	0,125	0,109	0,098	9.088	0,081	0,077
	0,2	0,257	0,216	0,184	0,160	0,140	0,123	0,108	0,097	9,088	9.079	0,075
£,	0,3	0,225	0,198	0,172	9.152	0,134	0,118	0,104	0,094	0,086	0,078	0,073
ý	0,4	0,203	0,181	0,160	0,142	0,126	0,112	0,100	0,090	0,082	0,076	9,069
2	0,5	0,184	0,166	0,148	0,132	0,117	0,105	0,095	0,086	0,078	0,073	9,066
Ś	96	0,167	0,151	0,135	0,122	0,109	0,098	0,089	0,082	0,074	0,068	0,061
Valeurs de	0,7	0,150	0,137	0,123	9112	0,101	0,093	0,084	0,076	0,069	0,063	0,057
	0,8	0,135	0,124	0,113	0,103	0,094	0,086	0,078	0,071	0,064	0,058	0,053
	0,9	0,124	0,114	0,104	0,095	0,087	0,079	0,072	0,065	0,059	0,054	0,049
	1,0	0,113	0,105	0,096	0,087	0,079	0,072	0,066	0,059	0,054	0,049	0,045
			<u> </u>	! I			<u></u>	<u> </u>				
	0,0	_	0,282	9,231	0,199	0,175	0,156	0,141	9129	0,116	0,105	0,095
	0,1	0,227	0,196	0,174	0,159	0,145	0,133	0,121	0,111	0,102	0,093	0,083
	0,2	0,160	0,150	0,139	0,129	0,120	0,109	0,103	0,096	0,087	0,079	0,070
Ę	0,3	0,128	0,122	0,114	0,107	0,101	0,094	0,068	0,082	0,075	0,058	9.06
å	0,4	0,107	0,102	0,097	0,091	0,086	0,081	0,076	0,071	0,066	0,059	0,058
Ŋ	95	0,090	0,087	0,083	0,078	0,074	0,071	9067	0,06%	0,057	0,053	0,047
Valeurs de	9,6	0,079	0,076	0,073	0,069	0,066	0,063	9058	0,055	0,051	0,047	0,043
2	0,7	0,069	0,067	0,064	0,062	0,058	0,056	0,052	0,048	0,045	0,042	9038
	9,8	0,062	0,059	0,057	0,054	0,052	0,049	0,046	0,043	0,040	0,037	0,033
	ġg	0,055	0,053	0,051	0,048	0,046	0,044	0,042	0,038	0,036	0,033	0,029
	1,0	0,049	0,047	0,046	0,044	9,041	0,038	0,036	0,034	0,032	0,028	0,021

Performances & Raffinement

Ligne Building

Table dimensionnelle T30

ascenseurs de personnes machinerie supérieure entraînement électrique

Charge nomina en kg	la	Vitesse nominale en m/s	Entraîn. (1)	Nombre niveaux maxi	Course maxi en m	Dimensions de cabine	Passage libre de porte	Dimensions de gaine	Profor de cuv	ette AAAAA
1						BK×TK×HK	BT x HT	BS×TS	HSG:	15萬度量
630	6	1,00	2 v	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140
8 pers.			DyS	12	32	110 x 140 x 220	80 × 200	180 x 210	135	140
		4 1 4	ACVF	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140
		1,60	DyS	18	50	110 x 140 x 220	80 x 200	180 x 210 =	150	160
			ACVF	18	50	110 x 140 x 220	80 x 200	180 x 210	15C	160
800	10 B	EL-00	2 V		120	ES 200 720	80×200 4		2017	
10 persi			Dyska			G15500000000	13.200			
			Acti			THE STATE OF			7.0	
		0.00	0.	1		General Control	7 7 X			
			Atus	- 6		Sept. Sint of	1.00	11.04		
		200	Dy Mile	1		View of the Control	10.0			
			10/5			100 100	20,700	**************************************	357	
1000	6	1,00	2 v	12	32	160 x 140 x 230	110 x 210	240 x 230	140	140
13 pers		7	DyS	12	32 .	160 x 140 x 230	110 × 210	240 x 230	140	140
			ACVF	12	32	160 x 140 x 230	110 x 210	240 x 230	140	140
		1,60	Dy S	18	50	160 x 140 x 230	110 × 210	240 x 230	155	160
			ACVF	18	50	160 x 140 x 230	110 x 210	240 × 230	155	160
		2.50	Dy MV	28	80	160 x 140 x 230	110 x 210	240 x 230	180	220
		No.	TD 2	31	80	160 × 140 x 230	110 x 210	240 x 230	180	220
		4.00	TD 2	31	80	160 x 140 x 230	110 x 210	240 × 230	320	
1250	[à]	1.00	DyS .	12	32	195 x 140 x 230	110 x 210	260 x 230	140	160
16 pers	190	400	ACVF	12	32	195 x 140 x 230	110 x 210	260 x 230	140	160
		1.60	Dy S	18	50	195 x 140 x 230	110 × 210	260 × 230	155	160
			ACVF	18	50	195 x 140 x 230	110 x 210	260 x 230	155	160
		2 50	Dy MV	28	80	195 x 140 x 230	. 110 × 210	260 < 230	180	220
			TD 2	31	80	195 x 140 x 230	110 x 210	260 × 230	180	220
		4 00	TD 2	31	80	195 x 140 x 230	110 - 210	260 < 230	320	16258.5
1600	5	:.00 -	DyS	12 _	32	195 x 175 x 230	110 x 210	-260 × 260	140	160
21 pers.	-		ACVF	12	32	195 x 175 x 230	110 x 210	260 x 260	140	160
		1,60	Dy S	18	50	195 x 175 x 230	110 x 210	260 x 260	155	160
		134	ACVF	18	50	195 x 175 x 230	110 x 210	260 × 260	155	160
		: 50	Dy MV	28	80	195 x 175 x 230	110 x 210	260 x 260	180	220
			TD 2	31	80	195 × 175 × 230	110 x 216	260 x 260	180	220
		÷ 00	TD 2	21	80	195 x 175 x 230 .	110 x 210	260 x 260	320	
		6 30	TD 2	31	80	195 x 175 x 230	110 x 210	260 × 260	400	1.710
Note: Toyler (1) Entrainer	ries cotes ent: 2 v =	sont exprimees		trea saul indica	-		urs de caverté et hauter rouvent en italique les v		vant la nor	700 (75 to 10)

Caractéristiques générales

Desposition

en simplex (pour les dispositions en batterie, consulter la table T31)

Hombre de faces de service simple acces Distance mini entre niveaux

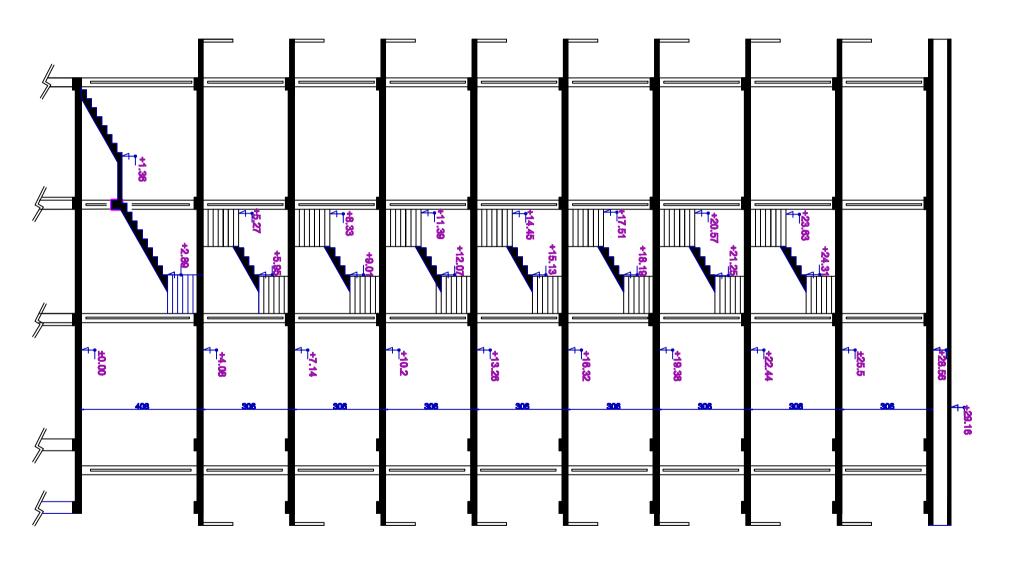
255 cm

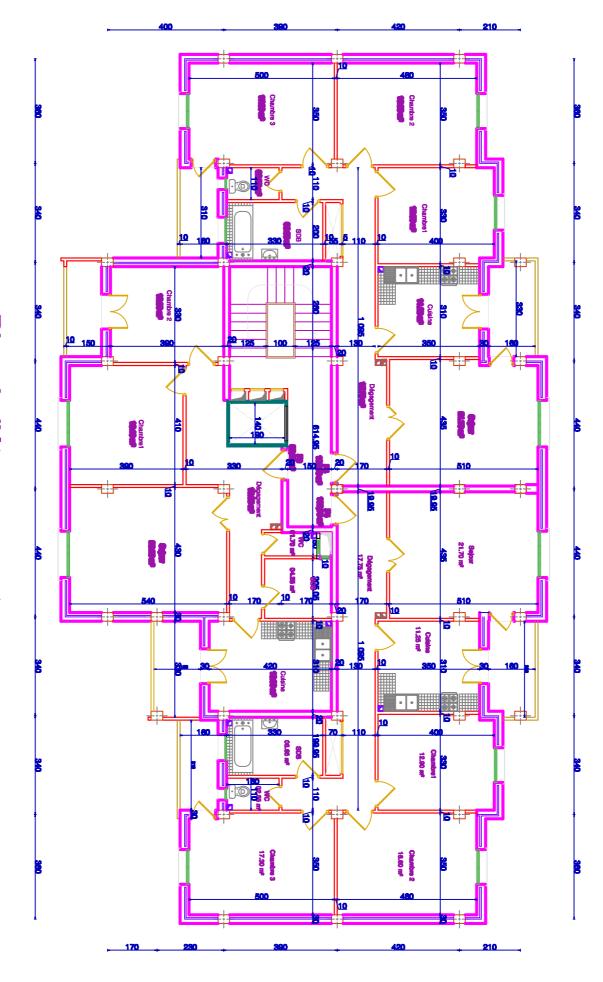
Portes automatiques

collective descente sélective, à analyse permanente de trafic à ouverture centrale trafic intense

Hauteur :	Dimensions mini (EN 81-1)	Passage libre	Intensite en Amp		0 Hz	z wźr	Puissance	: Réaction	maxi en daN
(2) HSK	largeur prof. hauteur. BO TO HO	trappe	TRI 220		TRI 38	ov M	absorbée (3) en kVA	cuvette	local des machines
355 380	180 360 200	120 x 100	36	94	21	54	26	10200	8200 1500
355 <i>380</i>	180 380 200	120 x 100	37	87	21	50	25	10200	8200 1500
365 400	180 400 200	120 x 100	28 42	70 -	16	40	ANGLES TO STATE OF THE PARTY OF	10200	8200 1500
365 400	180 420 200	120 x 100	36	99	24	57	28	14500	5100 1500
363 380			Mary Street		GLOS SERVICE	ASSESSMENT OF THE PARTY OF THE	26	14500	5100 1500

17.						1.0	All .	Ži.				adiii.	
					A	3.							
	-01 ∓		, ei						22.5				12
365	420	240	390	200	110						2.20		
365	420	240	400	200	140 x 100	54	179	31	104	43	25000	8400	1500
365	420 .	240	440	200	120 x 100	49	117	28	67	33	25000	8400	1 500
375	420	240	400	AND THE RESERVE	120 × 100	31	78	18	45	22	25000	8400	1500
375	420	240	440	200	140 x 100	59	142	34	82	40	25500	9000	1 500
435	520	240	17/10/10/12	200	140 x 100	49	123	29	73	36	25500	9000	1 500
465	520	240	460	- 210	180 x 100	123	391	71	226	96	27000	10500	2000
490	320		460	220	150 x 100	7	T	T	4	T	28000	11000	2000
d al		240	500	240	140 x 120	8	T	17	7	75	30000	12500	3000
400	440	260	400	200	140 x 100	59	142	34	82	40	29000		
400	440	260	400	200	120 x 100	49	123	29	73	36	29000	9500	1 500
410	440	260	400	200	160 x 100	The gard		52	127	62		9500	1500
416	440	260	400	200	140 x 100	59	148	34	85	41	30,000	11.000	1 500
435	540	260	460	220	200 × 120	141	451	32	262	111	30 100	11000	1 500
465	540	260	460	220 -	150 x 120	=	2	7	25	77	31000	12000	2 000
530		260	500	240	160 x 120	3	77	77	- T		32 000	12.30%	2500
400	440	260	430	200	140 x 100	59	142	34 -		2	337.20	1-000	3000
400	440	260	430	200	120 x 100	49	123		82	40	33 000	11000	1 500
410	440	260	430	200	170 x 100	Date	125	29	73	36	33 000	11000	1 500
410	440	260	430	200	140 x 100	66	165	52	127	62	33 500	12500	1500
460	540	260	520	210	210 x 120	166	530	38:	95	46	33 500	12500	1 500
470	340	260	520	220	150 x 120	100	230	96	307	130	35 000	13500	2500
540		260	520	240	200 x 120			17	#	t	36 000	14000	3000
590	200 01140 005144	260	520	280	230 × 140	<u> </u>		D	<u> </u>	π	38000	18000	5000
120	Symbole attra- lautorisation of accessioles air	be per le C	omits Nat	ional de Unita	No. Read Stanoa des	7	σ .	T	T	12	38000	19500	7 000


Conclusion Générale


Introduction

Bibliographie

Annexes

Coupe A-A ECH1/50

Plan de l'étage courant sur 08 niveaux

Plan de terrasse