

République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique

> Université Abderrahmane Mira-Bejaia Faculté de Technologie Département de Génie Civil

Mémoire de fin d'études

En vue de l'obtention du Diplôme de Master en Génie-Civil Spécialité Matériaux et Structures

Thème

Etude d'un bâtiment (R+10+sous-sol), Contreventée par un système mixte (Voiles-Portiques).

<u>Réalisé par :</u>

Encadré par :

Melle SOUICI Chahinez

M^{me} O. SFAKSI

M^{elle} LAROUI Nadira

Membres de Jury:

M^{me} Chikh Amar

M^{me} Boughamsa

Promotion 2015/2016

Introduction Générale

Introduction Générale

Construire a toujours été l'un des premiers soucis de l'homme et l'une de ses occupations privilégiées. A ce jour, la construction connaît un grand essor dans la plus part des pays et très nombreux sont les professionnelles qui se livrent à l'activité de bâtir dans le domaine du bâtiment ou des travaux publics.

Cependant, si le métier de construire peut être considérer parmi les plus anciens exercés par l'homme, il faut reconnaître qu'il leur a fallu au cours des dernières décades, s'adapter pour tenir compte de l'évolution des constructions, mais surtout des nouvelles techniques qui permettent une fiabilité maximale de la structure vis-à-vis des aléas naturels tel que les séismes.

Une structure doit être calculée et conçue de telle manière qu'elle reste apte à l'utilisation pour laquelle elle a été prévue, compte tenu de sa durée de vie envisagée et de son coût.

Elle doit résister à toutes les actions et autres influences susceptibles de s'exercer aussi bien pendent l'exécution que durant son exploitation et qu'elle ait une durabilité convenable au regard des coûts d'entretien.

Pour satisfaire les exigences énoncées ci-dessus, on doit choisir convenablement les matériaux, définir une conception, un dimensionnement et des détails constructifs appropriés, et spécifier des procédures de contrôles adaptées au projet considérer, au stade de la conception, et de l'exploitation. Pour ce faire, il faut impérativement respecter les normes et les règles en vigueur qui sont propres à chaque pays.

Le projet qui nous a été confié porte sur l'étude d'un bâtiment à usage mixte (commerciale et habitations) en (R+10avec sous-sols) implanté à Bejaia qui est classé d'après le règlement parasismique algérien comme zone de moyenne sismicité (IIa). Donc il y a lieu de déterminer leur comportement dynamique, afin d'assurer une bonne résistance de l'ouvrage à long terme et assurer le confort et la sécurité des vies humaines.

Pour déterminer le comportement du bâtiment lors d'un séisme, on à utiliser le code national « règlement parasismique algérien RPA99 »Version 2003.

Chapitre I : Généralités

L'étude d'un bâtiment en béton armé nécessite la connaissance de certaines bases sur lesquelles l'ingénieur pourrait s'appuyer afin de mener à bien son travail et cela par l'obtention d'une structure à la fois sécuritaire et économique. C'est pour cela que nous avons consacré ce présent chapitre à la description de notre projet d'étude et les différents éléments structuraux qui le composent.

I.1.Description de l'ouvrage :

L'ouvrage faisant l'objet de la présente étude est un bâtiment à usage mixte (habitation-commerce) faisant partie d'un ensemble promotionnel. Sa structure est en R+10+S/SOL, ayant une forme irrégulière et implantée dans la Ville de Bejaïa plus exactement à Ihaddaden (ex-jute). Cette région est classée zone à moyenne sismicité (zone *II.a*) selon le (RPA99/version 2003), règlement parasismique en vigueur en Algérie.

Le projet entre dans le cadre d'une construction qui comprend :

- Les étages courants à usage d'habitation.
- le RDC à usage commerciale.
- le sous-sol comme parking.

I. 2. Caractéristiques de l'ouvrage:

I. 2.1. Caractéristiques géométriques:

 La hauteur du bâtiment 	41.14m.
• La hauteur du sous-sol	3.06m.
• La hauteur de RDC	3.91m.
• La sous pente	3.57m.
• La hauteur de chaque étage	3.06m.
• La longueur du bâtiment	29.25m.
• La largeur du bâtiment	26.15m.

I. 2.2. Caractéristiques du site :

Selon le rapport du sol qui nous a été donnée par le laboratoire de contrôle de qualité du béton, sol et bitume sur le terrain destiné à recevoir ce bloc :

- Contrainte admissible du sol $\sigma = 1,5$ bars
- L'ancrage minimal des fondations : D=2.00m.

I. 2.3. Caractéristiques structurales :

I. 2. 3. 1. Ossature :

Vu la hauteur de notre ouvrage, et d'après le **RPA99/V2003** (article 3.4.A.1.a), tout ouvrage dépassant les 14m de hauteur doit être constitué de portiques et voiles en béton armé (contreventement mixte) avec justification d'interaction voiles –portiques, ou avec voiles porteurs (entièrement contreventé par voiles).

Chapitre I: Généralités

I. 2. 3. 2. Les planchers :

Dans notre projet nous avons adopté des planchers à corps creux (hourdis) avec une dalle de compression en béton armé pour tous les étages et des planchers à dalle pleine pour les balcons et la dalle d'ascenseur.

I. 2. 3. 3. L'acrotère :

C'est un élément en béton armé contournant le bâtiment encastré au niveau du plancher terrasse accessible qui va servir comme garde de corps et empêcher l'infiltration des eaux pluviales.

I. 2. 3. 4. Les escaliers :

Les escaliers sont des éléments secondaires permettant le passage d'un niveau à un autre, ils seront réalisés en béton armé coulé sur place avec deux volées.

I. 2. 3. 5. L'ascenseur :

C'est un élément mécanique, sert à faire monter et descendre les usagers à travers les différents étages du bâtiment sans utiliser les escaliers.

I. 2. 3. 6. La maçonnerie :

- Les murs extérieurs sont réalisés en double cloison de 15/10 cm, séparé d'une lame d'aire de 5cm.
- Les murs intérieurs sont réalisés de cloison de 15cm/10cm, séparés d'une lame d'aire de 5cm pour les séparations entre les logements, en simples cloisons de briques creuses de 10cm pour la séparation des espaces.

I. 2. 4. Caractéristiques mécaniques des matériaux :

Les caractéristiques mécaniques des matériaux utilisés dans la construction de notre projet seront conformes aux règles techniques de conception et de calcul des structures en béton armé (CBA93).

I.2. 4. 1. Le béton :

Il est caractérisé par sa résistance à la compression à l'âge de 28 jours (fc28) Quelque données sur le béton de notre travail sont résumé dans le tableau suivant :

Chapitre I : Généralités

Tableau I. 1. Caractéristiques du béton :

Fc ₂₈ (MPa)	25,0	
Ft ₂₈ (MPa)	2,1	
Ei 28(MPa)	32164,2	
Ev28(MPa)	10818,86	
$\sigma_{ m bc}$ ultime (MPa)	Situation durable	14,2
	Situation accidentelle	18,5
$\sigma_{ m bc}$ service (MPa)	15,0	
τ _u (MPa) : Situation durable	Fissuration peu nuisible	3,33
	Fissuration préjudiciable	2,5
Coefficient de poisson	Etats limites ultime	0
	Etat limites de service	0.2
Dosage en ciment	350	
(kg/m ³)		

I. 2. 4. 2. L'acier : Ils sontutilisés pour le béton armé sont nécessaires généralement pour reprendre les efforts de traction et éventuellement de compression pour limiter les fissurations.

Les aciers utilisés sont résumé dans le tableau suivant :

Tableau I. 2. Les types d'acier utilisé et leurs nuances :

Nature	Utilisation	Nuance	Diamètre (mm)	Fe (MPa)	E(MPa)
Rond lisse	Armature transversales	feE 215	Ø6 et Ø8	215	2,1*105
Barre à haute adhérence	Armature longitudinales	feE400	T ≥10	400	2,1*10 ⁵
Treillis soudé	Table de compression	TLE520	0 ≤ Ø≤6	520	2,1*10 ⁵

Chapitre I: Généralités

I. 3. Les états Limites :

I. 3. 1. Définition:

Dans le domaine des constructions, un état limite est celui qui satisfait strictement aux

Conditions prévues sous l'effet des actions (force, moment ou couples) qui agissent sur la

Structure ou l'un de ses éléments.

Les conditions sont : la stabilité, la résistance, la durabilité, les déformations (flèches) non nuisibles pour satisfaire les fonctions techniques d'utilisation des structures et leur confort.

I. 3. 2. Etat limite ultime (ELU):

Sont des états qui correspondent à la valeur maximale de la capacité portante de l'ouvrage, ils sont relatifs à la stabilité de la structure et à la résistance des matériaux utilisées.

Il existe trois états limites:

- Etat limite de l'équilibre statique.
- Etat limite de résistance de l'un des matériaux.
- Etat limite de stabilité de forme : flambement.

I. 3. 3. Etats limite de service (ELS):

C'est la condition que doit satisfaire un ouvrage pour que son utilisation normale et sa durabilité soient assurées, son dépassement impliquera un désordre dans le fonctionnement de l'ouvrage.

Il y'a trois états limites de services:

- Etat limite d'ouverture des fissures.
- Etat limite de déformation : flèche maximale.
- Etat limite de compression du béton

I. 4. Actions et sollicitations :

I. 4. 1. Les actions :

I. 4. 1. 1. Définitions :

Les actions selon le CBA 93 (art A.3.1.1) sont des forces et des couples dues aux charges appliquées (permanentes, d'exploitations, climatiques, etc....) aux déformations imposées à une construction (variation de température, tassement d'appuis, etc....).

Nous distinguons trois types:

- Des charges permanentes.
- Des charges d'exploitations.
- Des charges climatiques.

Chapitre I : Généralités

I. 4. 1. 2.Les actions permanentes (G):

Les actions permanentes ont une intensité constante ou très peu variable dans le temps ; elles comprennent :

- Le poids propre de la structure.
- Les cloisons, revêtement, superstructures fixes.
- Le poids des poussées des terres ou les pressions des liquides.
- Les déformations imposées à la structure.

I. 4. 1. 3. Les actions variables (Q) :

Les actions variables ont une intensité varie fréquemment d'une façon importante dans le temps ; elles comprennent :

- Les charges d'exploitations.
- Charges appliquées aux cours d'exécution (équipement de chantier).
- Les charges climatiques (neige et vent).
- Les effets thermiques.

I. 4. 1. 4. Les actions accidentelles (E):

Ce sont celles provenant de phénomènes qui se produisant rarement et avec une courte durée d'application, nous pouvons citer :

- Les chocs.
- Les séismes.
- Les explosions.
- Les feux.
- avalanches,.....etc.

I. 4. 2. Les sollicitations :

Les sollicitations de calcul sont des efforts (normaux et tranchants) et des moments (de flexions et de torsion).

I. 4. 2. 1. Les différentes combinaisons d'action données par le RPA :

Pour la détermination des sollicitations de calcul dans les éléments, on utilise les combinaisons suivantes :

• Situation durable:

ELU: 1.35G+1.5Q

ELS: G+Q

• Situation accidentelle:

 $G+Q\pm E$. $0.8G\pm E$.

Chapitre I: Généralités

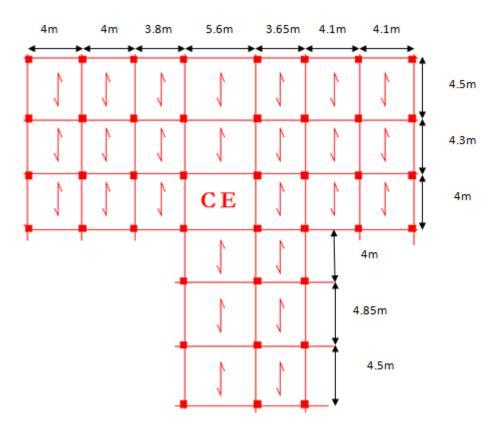
I. 5. Règlements et normes utilisés :

L'étude du projet élaborée suivant les règles de calcul et de conception qui sont mises En vigueur actuellement en Algérie à savoir :

- Le CBA 93(Règle de conception et de calcul des structures en béton armé).
- Le RPA 99 version 2003 (Règlement Parasismique Algérien).
- Le BAEL 91(Béton Armé aux Etats Limites).
- DTR-BC 2.2 (Document Technique Réglementaire Charges et Surcharges).
- DTR-BC 2.331 (Règle De calculs Des Fondations superficielles).

Le pré-dimensionnement est le fait de donner les dimensions aux différents éléments porteurs de la structure avant l'étude du projet. Ces éléments doivent avoir une section minimale pour reprendre les efforts sollicitant et pour cela nous nous référons aux recommandations du RPA 99 version 2003, BAEL 91 et CBA 93.

II.1. Pré dimensionnement des éléments :


Nous commençons par la disposition des poutrelles pour repérer les poutres principales et secondaires.

• Disposition des poutrelles

Afin de définir la disposition des poutrelles nous devons respecter deux critères primordiaux qui sont :

- ➤ Le critère de la petite portée: Les poutrelles sont disposées parallèlement à la plus Petite portée.
- Le critère de continuité: Si les deux sens ont les mêmes dimensions, alors les poutrelles sont disposées parallèlement au sens du plus grand nombre d'appuis.

La disposition des poutrelles et repérage des poutres et des poteaux sont représenté dans les figures suivantes :

Figure II.1: la disposition des poutrelles

II.1.1. Les poutres :

• Condition de flèche

La hauteur des poutres est donnée par l'expression suivante :

$$\frac{L_{max}}{15} \le h \le \frac{L_{max}}{10}$$
 Selon le BAEL91

Avec Lmax: La plus grande portée entre nus d'appuis dans le sens considéré.

• Les conditions du RPA 99

Les dimensions des poutres doivent satisfaire les conditions suivantes :

 $b \ge 20$ cm

 $h \ge 30 \text{ cm}$

 $h / b \le 4.00$

b : largeur de la poutre.

h: hauteur de la poutre.

II.1.1.1 Les poutres principales :

On a
$$L_{max} = (5.6 - 0.55) = 5.05 \text{ m}.$$

Donc,
$$\frac{505}{15} \le h_p \le \frac{505}{10} \Rightarrow 33.67 \ cm \le h_P \le 50.5 \ cm$$

Alors, on prend $\begin{cases} h_p = 40 \text{ cm} \\ b_p = 30 \text{ cm} \end{cases} (b_p, h_p) \text{ dimensions de la poutre principale.}$

• Vérification des conditions du RPA :

$$\rightarrow b_p = 30 \text{ cm} > 20 \text{ cm}$$
, vérifiée.

$$h_p = 40 \text{ cm} > 30 \text{ cm}$$
, vérifiée.

$$\rightarrow \frac{h_p}{b_p} = 1.33 < 4$$
, vérifiée.

II.1.1.2. Poutres secondaires:

On a
$$L_{max} = (4.85-0.55) = 4.30 \text{ m}.$$

Donc,
$$\frac{430}{15} \le h_s \le \frac{430}{10} \Rightarrow 28.66 \ cm \le h_s \le 43 \ cm$$

Alors, on prend $\begin{cases} h_s = 35 \text{ cm} \\ b_s = 30 \text{ cm} \end{cases} (b_s, h_s) : \text{dimensions de la poutre secondaire.}$

• Vérification des conditions du RPA :

- $\rightarrow b_s = 30 \text{ cm} > 20 \text{ cm}$, vérifiée.
- $h_s = 35 \text{ cm} > 30 \text{ cm}$, vérifiée.
- $\rightarrow \frac{h_s}{b_s} = 1.17 < 4$, vérifiée.

II.1.2.Plancher:

Le plancher est une surface plane, destinée à limiter les étages et à supporter les revêtements. Il a plusieurs fonctions :

- Fonction relative à la stabilité : ou il assure la transmission des charges et surcharge aux porteurs verticaux.
- Fonction de stabilité au feu.
- Fonction de séparation entre les niveaux : qui assure l'isolation thermique et acoustique
- Fonction technique : qui est l'installation des gaines de l'électricité.
- Fonction esthétique.

II.1.2.1. Plancher à corps creux :

Le plancher est constitué d'une dalle de compression, les poutrelles et corps creux. Selon les règles du CBA93 la hauteur h_t d'un plancher à corps creux doit satisfaire la condition suivante :

$$h_t \ge \frac{L_{max}}{22,5}$$

Avec:

 h_t : Hauteur total du plancher.

 L_{max} : La plus grande portée entre nus d'appuis dans le sens de disposition des poutrelles.

$$L_{max}$$
=4.85-0.30 = 4.55m $\Rightarrow h_t \ge \frac{455}{22.5}$

Donc: $h_t \ge 20.22 cm$

Alors : on opte pour un plancher [16 + 5],
$$\begin{cases} h_{corps\ creux} = 16\ cm \\ h_{dalle\ de\ compression} = 5\ cm \\ h_{total} = 21\ cm \end{cases}$$

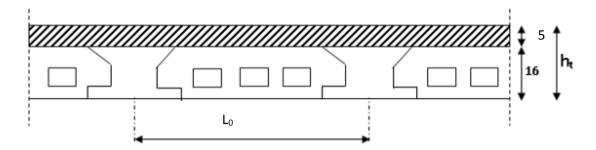


Figure. II.2: Coupe du plancher à corps creux

• Pré dimensionnement des poutrelles :

Les poutrelles sont des éléments du plancher reposant sur les poutres pour transmettre les charges et surcharges à ces dernières.

La longueur de la table de compression(b) est donnée par la formule suivante :

$$\frac{(b-b_0)}{2} \leq Min \left[\frac{L_x}{2}; \frac{L_y}{10} \right]$$

ht: Hauteur du plancher

b : Largeur de la table de compression.

L_x: Distance maximale entre nus de deux poutrelles.

L_y: Distance minimale entre nus d'appuis dans le sens de la disposition des poutrelles.

$$b_0 = (0,4 \ a \ 0,6) * h_t$$

$$h_t = 21 \text{ cm}$$

$$b_0 = (9.6 \text{ à } 14.4) \Rightarrow b_0 = 12cm$$

$$L_x = 65-12=53$$
 cm

$$L_v = 4-0.3 = 3.7 \text{m}$$

$$\frac{(b-b_0)}{2} \le \text{Min} (26.5; 37) \text{ cm}$$

$$\Rightarrow \frac{(b - b_0)}{2} \le 26.5 \qquad \Rightarrow \mathbf{b=65cm}$$

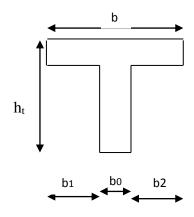


Figure II.3 : Schéma d'une poutrelle

II.1.2.2. Dalle pleine:

La dalle pleine est une plaque qui a une épaisseur relativement faible par rapport à deux dimensions (longueur, largeur). Elle peut reposer avec ou sans continuité sur deux ou plusieurs appuis. Elle se calcule comme un ensemble de panneaux de dalle.

Leurs dimensions doivent satisfaire les conditions suivantes :

• Résistance au feu :

e = 7 cm pour une heure de coupe-feu.

e = 11 cm pour deux heures de coupe-feu.

e = 14 cm pour trois heures de coupe-feu.

e = 17.5 cm pour quatre heures de coupe-feu.

• Isolation phonique

Selon les règles techniques « CBA93 », l'épaisseur du plancher doit être supérieure ou égale à 13 cm pour obtenir une bonne isolation acoustique.

• Résistance à la flexion

Les conditions que doivent vérifier les dalles pleines selon le nombre des appuis sont les suivantes :

Dalle reposant sur un ou deux appuis parallèles : $e \ge \frac{Lx}{20}$

Dalle reposant sur trois appuis : $\frac{Lx}{45} \le e \le \frac{Lx}{40}$

Dalle reposant sur quatre appuis : $\frac{Lx}{45} \le e \le \frac{Lx}{40}$ si $\rho \ge 0.4$

Dalle reposant sur quatre appuis : $\frac{Lx}{35} \le e \le \frac{Lx}{30}$ si $\rho < 0.4$

L_x : le plus petit côté du panneau de la dalle.

• Dalle reposant sur un seul appui:

Type 1

 $L_x=100$ cm

$$e \ge \frac{Lx}{20}$$

$$e \ge \frac{1}{20} \implies e \ge 5 \ cm$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm

Type 2

 $L_x=69cm$

$$e \ge \frac{Lx}{20}$$

$$e \ge \frac{69}{20} \implies e \ge 3.45 \ cm$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm

Type 3

 $L_x=38cm$

$$e \ge \frac{Lx}{20} e \ge \frac{38}{20} = 1.9 \text{ cm}$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm.

Type 4

 $L_x=80cm$

$$e \ge \frac{Lx}{20} e \ge \frac{80}{20} = 4 \text{ cm}$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm.

Type 5

 $L_x=90cm$

$$e \ge \frac{Lx}{20}$$

$$e \ge \frac{90}{20} \implies e \ge 4.5 \ cm$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm.

Type 6

 $L_x=60cm$

$$e \ge \frac{Lx}{20}$$

$$e \ge \frac{60}{20} \implies e \ge 3 \ cm$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm.

• Dalle reposant sur trois appuis : (balcons)

Type 1

 $L_x=150cm$ $L_y=310 cm$

$$\frac{Lx}{45} \le e \le \frac{Lx}{40} \Rightarrow \frac{150}{45} \le e \le \frac{150}{40}$$

$$\Rightarrow 3.33 \le e \le 3.75$$

e = 11 cm pour deux heures de coupe-feu. Donc, e = 12 cm

• Dalle sur 4 appuis

 $L_x = 3.7 \text{ m}$; $L_y = 5.3 \text{m}$

$$\frac{L_x}{45} \le e \le \frac{L_x}{40} \Leftrightarrow \frac{370}{45} \le e \le \frac{370}{40}$$

 $8.22~cm \le e \le 9.25~cm$

e = 14 cm pour trois heures de coupe-feu. Donc, e = 15 cm.

II.1.2.3. Evaluation des charges et surcharges des planchers :

Tableau II.1. Evaluation des charges et surcharges des planchers

					P	Poids (KN/m²)		
Désignation	Densité (kN/m³)	e (cm)	Terrasse accessible	Terrasse inaccessible	Etage courant	Etage commercial	Balcon	
Protection en gravier	20	5	/	1	/	/	/	
Multicouche d'étanchéité	/	2	0.12	0.12	/	/	/	
Isolation thermique	4	4	0.16	0.16	/	/	/	
Forme de pente	22	5	1.1	1.1	/	/	/	
Revêtement en carrelage	20	2	0.4	/	0.4	0.4	0.4	
Mortier de pose	20	2	0.4	/	0.4	0.4	0.4	
Plancher corps creux	/	20	2.85	2.85	2.85	2.85	/	
Dalle pleine	25	12	/	/	/	/	3	
Enduit en mortier	18	1.5	/	0.27	/	/	0.27	
Enduit en plâtre	10	2	0.2	/	0.2	0.2	/	
Lit de sable	18	2	/	/	0.36	0.36	0.36	
Cloison	/	10	/	/	0.9	0.9	0.9	
	ΣG av	reux	5.23	5.5	5.11	5.11	/	
	ΣG avec		/	/	/	/	5.33	
	Q		1.5	1	1.5	5	3.5	

II.1.3. Les escaliers :

Ce sont des éléments en béton armé conçus sur place, ils servent à lier les différents niveaux.

Dans notre cas on va s'intéresser seulement à l'escalier principal en BA. On a deux types :

Pour déterminer les dimensions des marches (g) et des contre marches (h) on utilise la formule de Blondel qui est donné par :

$$59 \le g + 2h \le 64$$

Avec g = L/(n-1)

h = H/n

On pend: $g+2h=64cm \Rightarrow 64n^2 - (64+2H+L) n+2H=0$

H : Hauteur de la volée n : Le nombre de marche,

L : Longueur projetée de la volée

Type1:

Escalier à trois volées à double paliers de repos au niveau du parking, RDC et soupente.

PARKING

La volée I

H=1.53m L=2.4m

 $64n^2 - 614n + 310 = 0$

n=9 marches

g=30cm h=17cm

La volée II:

L=0.85m H=1.2m

 $64n^2$ -389n+240= 0

n=5 marches

g=30cm h=17cm

La volée III:

H=0.68m L=0.9m

 $64n^2 - 290n + 136 = 0$

n= 4 marches

g=30cm h=17cm

Type2:

Escalier a deux volées contrariées avec palier de repos au niveau des étages courants (1^{er} niveau au 9^{eme} niveau)

On pend:
$$g+2h=64cm \Rightarrow 64n^2 - (64+2H+L) n+2H=0$$

$$64n^2$$
-(610) n+306=0

n=9 marches

$$g=30cm$$
 $h=17cm$

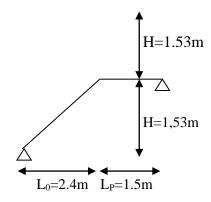


Figure II.4 : Schéma statique de l'escalier à deux volées

II.1.3.1.Epaisseur de la paillasse :

L'épaisseur de la paillasse est donnée par les deux conditions suivantes :

$$-\frac{L}{30} \leq e \leq \frac{L}{20}$$

- $e \ge 11 \ cm$ pour deux heures de coupe-feu.

Parking (volée 1)

$$L_v = \sqrt{(L^2 + H^2)} = 2.85 \text{ m}$$

$$L = L_p + L_v = 2.85 + 1.56 = 4.41 \text{ m}$$

Donc : $14.7 \le e \le 22.05 \ cm$

On prend : e = 18cm

II.1.3.2. Poids de la paillasse :

$$G = \frac{\gamma_b \times e}{\cos \alpha} \alpha = tg^{-1} \left(\frac{H}{L}\right)$$

Le tableau suivant résume le calcul des autres escaliers

Tableau II.2: Récapitulatif du dimensionnement des escaliers

	Volée	H	L	n	h	g	e	α (°)	G
		(m)	(m)		(cm)	(cm)	(cm)		(kn/m^2)
Parking	Volée1	1.53	2.4	9	17	30	18	32.51	5.34
	Volée 2	0.85	1.2	5	17	30	15	35.31	4.6
	Volée 3	0.68	0.9	4	17	30	12	37.07	3.75
RDC	Volée	1.53	2.4	9	17	30	18	32.51	5.34
	1 et 3								
	Volée2	0.85	1.2	5	17	30	15	35.31	4.6
Sous	Volée	1.53	2.4	9	17	30	18	32.51	5.34
pente	1 et 3								
	Volée 2	0.51	0.60	3	17	30	12	40.36	3.94
Etages	Volée	1.53	2.4	9	17	30	18	32.51	5.34
courants	1 et 2								

Pour l'épaisseur de la paillasse nous avons pris le cas le plus défavorable **e=18cm**

Tableau II.3: Evaluation des charges et surcharges de l'escalier

Désignation	ρ (KN/m ³)	e (cm)	Poids (KN/m ²)
Carrelage horizontal	20	2	0.4
Carrelage vertical	20	e*h/g=1.13	0.23
Mortier de pose h	20	2	0.4
Mortier de pose v	20	1.1	0.22
Marche	22	h/2=8.5	1.87
Paillasse	25	e/cosα=21.34	5.34
Enduit en plâtre	10	2.37	0.24
			Gv=8.7 KN/m ²
			Qv=2.5 KN/m ²

Tableau II.4: Evaluation des charges et surcharges du palier

Désignation	ρ (KN/m ³)	e (cm)	Poids (KN/m²)
Carrelage	20	2	0.4
Mortier de pose	20	2	0.4
La dalle	25	18	4.5
Lit de sable	18	2	0.36
Enduit en plâtre	10	2	0.2
			G=5.86 KN/m ²
			Q=2.5 KN/m ²

II.1.4. Acrotère

L'acrotère est un élément placé à la périphérie du plancher terrasse. Cet élément est réalisé en béton armé.

Dans notre structure on a un seul type d'acrotère pour la terrasse accessible (R+9).

On pend H=60cm

 $S=0.0984 \text{ m}^2$ G=2.46 kn/ml

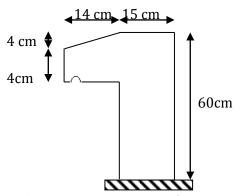


Figure II.5:Schémas de l'acrotère

Tableau II.5 : Evaluation des charges et surcharges de l'acrotère

Désignation	Surface (m ²)	e (cm)	Poids (KN/ml)
Acrotère	0.0984	15	2.46
Enduit en ciment	/	2	0.22
			G=2.68KN/ml
			Q=1 KN/ml

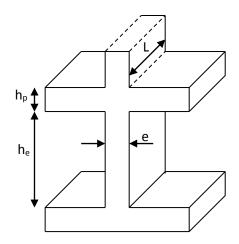
Tableau II.6 : Evaluation des charges des murs extérieurs

Désignation	ρ (KN/m ³)	e (cm)	Poids (KN/m²)
Brique creuses	/	10	0.9
Lame d'air	/	5	/
Brique creuses	/	15	1.30
Enduit en ciment	18	1.5	0.27
Enduit en plâtre	10	2	0.2
	•	•	G=2.67KN/m ²

II.1.5. Les voiles :

L'épaisseur des voiles doit être déterminée en fonction de la hauteur libre d'étage (h_e) , et des conditions de rigidité aux extrémités.

Les dimensions du voile doivent satisfaire les conditions du RPA99 suivantes :


- $\bullet \quad e \geq h_e / \ 20 . \dots (2).$
- $L \ge 4 \text{ e}$(3).

h_p: Hauteur totale de la poutre.

h_e: Hauteur libre d'étage.

e : Epaisseur du voile.

L : Longueur du voile

.Figure II.6 : coupe de voile en élévation

On distingue des hauteurs libres des différents niveaux, selon (2) on aura :

Tableau II.7: la hauteur et l'épaisseur des voiles.

Nature d'étage	he (m)	e > he / 20 (cm)
Parking	3.06 - 0.40 = 2.66	e ≥13.3
DRC	3.91 - 0.40= 3.51	e ≥17.55
Soupente	3.57 - 0.40 = 3.17	e ≥15.85
1 ^{er} au 9 ^{eme} étage	3.06 - 0.40= 2.66	e ≥13.3

Après l'analyse des résultats précédents nous proposons:

e=20cmPour tous les niveaux

Tableau II.8 : Evaluation des charges des voiles

Désignation	ρ (KN/ m ³)	e (cm)	Poids (KN/ m ²)
Murs en béton	25	20	5
arme			
Enduit en plâtre	10	2	0.2
Enduit en ciment	18	1.5	0.27
			$G=5.47 \text{ KN/ } \text{m}^2$

II.1.6. Les poteaux :

Les poteaux sont des éléments du système plancher poutre, ils supportent les charges verticales ils participent à la stabilité transversale et servent aux chaînages verticale. Le pré dimensionnement des poteaux se fait selon les critères suivant :

- Le critère de résistance.
- Le critère de stabilité de forme.
- Les règles de RPA99.

> Le critère de résistance :

Les poteaux sont sollicités en compression simple par un effort Nu.

On doit vérifier que :
$$\sigma_{bc} = \frac{N_u}{B} \le f_{bu}$$

Avec:

N_U: Effort normal pondéré dû aux charges et surcharges.

B : Section transversale du poteau tel que : B = b*h.

f_{bu}: Contrainte admissible du béton à la compression, tel que :

$$f_{\text{bu}} = \frac{0.85 * f_{c28}}{\gamma_b} = \frac{0.85 * 25}{1.5} = 14.20 MPa$$

$$N_{II} = (1.35G + 1.5Q)$$

Avec:

G: La charge permanente.

Q : La charge d'exploitation, calculée après application de la loi de dégression de charge.

> Critère de stabilité de forme :

Pour vérifier le flambement des poteaux, on doit vérifier l'inégalité suivante :

$$N_{U} \leq \alpha \left[\frac{B_{r} f_{c28}}{0.9 \gamma_{b}} + \frac{A_{s} f_{e}}{\gamma_{s}} \right] \Rightarrow B_{r} \geq \frac{N_{u}}{\alpha \times \left(\frac{f_{c28}}{0.9 \times \gamma_{b}} + \frac{A_{s} f_{e}}{B_{r} \times \gamma_{s}} \right)}$$

Avec:

Nu'= 1.1 × Nu L'effort de compression ultime doit être majoré de 10%.

 B_r : Section réduite du poteau : $B_r = (b - 0.02)*(h - 0.02)$ (m²).

 A_s / B_r : Le rapport de la section de l'acier à celle du béton, on prend ; $A_s / B_r = 1\%$

α: Coefficient en fonction de l'élancement λ

 λ : L'élancement définie par ; $\lambda = L_f / i$.

Avec:

L_f: longueur du flambement.

Pour le cas de bâtiment courant : $L_f = 0.7 * l_0$ où :

l₀: Longueur libre du poteau.

$$i = \sqrt{\frac{I}{B}}$$
.

I : moment d'inertie de la section du poteau.

B : section transversale du poteau, tel que : $\mathbf{B} = \mathbf{b} * \mathbf{h}$

$$\begin{cases}
\bullet \quad \mathbf{Si} : 0 < \lambda \le 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \\
\bullet \quad \mathbf{Si} : 50 < \lambda \le 70 \Rightarrow \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2
\end{cases}$$

➤ Règles du RPA99 :

Les dimensions de la section du poteau doivent satisfaire aux conditions suivantes en zone IIa:

$$\min(b, h) \ge 25cm$$

$$\min(b, h) \ge he / 20$$
.

Où h_e: hauteur d'étage

Tableau II.9: sections préalables des poteaux

Etages	Sous-sol,	1 ^{er} et 2 ^{eme}	3 ^{eme} et 4 ^{eme}	5 ^{eme} et	7 ^{eme} et	9 ^{eme} étage,
	RDC+	étages	étages	6 ^{eme} étages	8 ^{eme} étages	N10 et
	soupente					terrasse
Section	55*55	50*50	45*45	40*40	35*35	30*30
(b*h) cm ²						

II.2. Descente des charges:

La descente des charges va être effectuée pour le poteau D3

Pour le pré dimensionnement des poteaux, on fixe les sections suivantes :

II.2.1. Calcul des surfaces afférentes et charges et surcharges

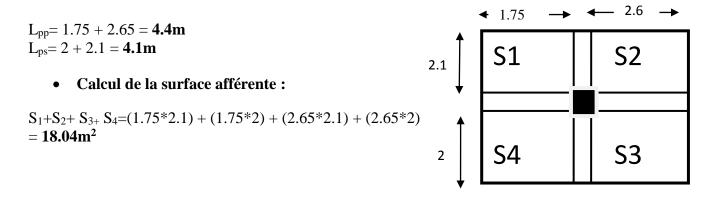


Figure II.7 : Schéma représentant les surfaces afférentes

• Poids des planchers:

- Plancher étage courant et commerciale : G = 15.11 * 18.04 = 92.18 KN

- Plancher terrasse accessible : G = 5.23 * 18.04 = 94.35 KN

• Poids de poutres principales :

G = 25*0.3*0.4*Lpp

G = 25*0.3*0.4*4.4 = 13.2 KN

• Poids de poutres secondaires :

G = 25*0.3*0.4*Lps

G = 25*0.3*0.35*4.1 = 10.76 KN

Tableau II.10: Poids des poteaux

Niveau	G (KN)
Terrasse accessible, N10 et N9	0.3*0.3*25*3.06 = 6.87
N8 et N7	0.35*0.35*25*3.06 = 9.37
N6 et N5	0.4*0.4*25*3.06 = 12.24
N4 et N3	0.45*0.45*25*3.06 = 15.49
N2 et N1	0.5*0.5*25*3.06 = 19.13
Soupente	0.55*0.55*25*3.57 = 27
RDC	0.55*0.55*25*3.91 = 29.57
Sous-sol	0.55*0.55*25*3.06 = 23.14

Tableau II.11: Les surfaces afférentes pour les charges d'exploitation

Niveaux	Surface afférente (m²)	Q (KN)
Terrasse accessible	20.86	20.86 * 1.5 = 31.29
N10 et N9	20.86-(0.3 * 0.3) = 20.77	20.77 * 1.5 = 31.16
N8 et N7	20.86 - (0.35 * 0.35) = 20.74	20.77 * 1.5 = 31.11
N6 et N5	20.86-(0.4 * 0.4) = 20.70	20.70 * 1.5 = 31.05
N4 et N3	20.86-(0.45*0.45)= 20.66	20.66 * 1.5 = 31
N2 et N3	20.86-(0.5 * 0.5)= 20.91	20.91 * 1.5 = 30.92
Sous-sol, RDC et soupente	20.86-(0.55 * 0.55)= 20.56	20.56 * 5 = 102.80

II.2.2.La lois de dégression d'après le DTR:

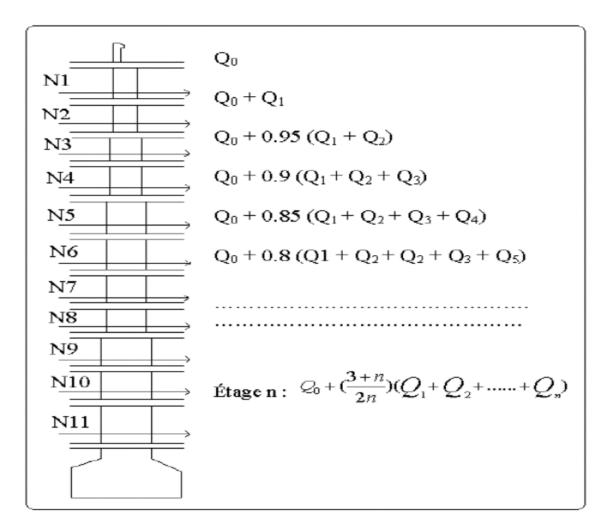


Figure II.8: lois de dégressions de charge

Tableau II.12 : Les résultats de la descente de charge

Niveau	désignation	G (KN)	Q (KN)
Terrasse	Plancher	94.35	31.29
accessible	Pp	13.20	
	Ps	10.76	
	Poteau (30*30)	6.89	
		125.2	31.29
N10	Venant de la Terrasse	125.2	
	accessible		31.29 + 31.16
	Plancher	92.18	
	Pp	13.20	
	Ps	10.76	
	Poteau (30*30)	6.89	
		248.23	62.45
N9	Venant de N10	248.23	62.45+28.04
	Plancher	92.18	
	Pp	13.20	
	Ps	10.76	
	Poteau (30*30)	6.89	
		371.26	90.49
N8	Venant de N9	371.26	90.49+24.89
	Plancher	92.18	
	Pp	13.2	
	Ps	10.76	
	Poteau (35*35)	9.37	
		496.77	115.38
N7	Venant de N8	496.77	115.38 + 21.78
	Plancher	92.18	
	Pp	13.2	
	Ps	10.76	
	Poteau (35*35)	9.37	
		622.28	137.16
N6	Venant de N7	622.28	137.16 + 18.63
	Plancher	92.18	
	Pp	13.2	
	Ps	10.76	
	Poteau (40*40)	12.24	
		750.66	155.79
N5	Venant de N6	750.66	155.79 + 15.52
	Plancher	92.18	
	Pp	13.2	

	Ps	10.76				
	Poteau (40*40)	12.24				
		879.04	171.32			
N4	Venant de N5	789.04	171.32 + 15.5			
	Plancher	92.18	171.52 15.6			
	Pp	13.2				
	Ps	10.76				
	Poteau (45*45)	15.49				
		1010.67	186.82			
N3		1010.67	186.82 + 15.5			
	Venant de N4	92.18	100.02 1 10.0			
	Plancher	13.2				
	Pp	10.76				
	Ps	15.49				
	Poteau (45*45)					
	,	1142.3	202.32			
N2		1142.3	202.32 + 15.46			
	Venant de N3	92.18				
	Plancher	13.2				
	Рр	10.76				
	Ps	19.13				
	Poteau (50*50)					
	, , ,	1277.57	217.78			
N1	Venant de N2	1277.57	217.78 + 15.46			
	Plancher	92.18				
	Pp	13.2				
	Ps	10.76				
	Poteau (50*50)	19.13				
		1412.84	233.24			
Soupente	Venant de N1	1412.84	233.24 + 102.8			
	Plancher	92.18				
	Pp	13.2				
	Ps	10.76				
	Poteau (55*55)	27				
		1555.98	336.04			
RDC	Venant de la soupente	1555.98	336.04 + 102.8			
	Plancher	92.18				
	Pp	13.2				
	Ps	10.76				
	Poteau (55*55)	29.57				
		1701.69	438.84			
Nu = 1.35G	Nu = 1.35Gt + 1.5Qt = 1.35 * 1701.69+ 1.5 * 438.84=2955.54KN					
	Nu' = 1.1*2955.54= 3					

II.3. Vérifications:

II.3.1. Vérification des poteaux à la compression simple :

Les résultats de vérification à la compression simple sont résumés dans le tableau suivant :

Tableau II.13 : Vérification des poteaux à la compression simple

	Nu'	Section	Condition $\sigma_{adm} > \sigma_{cal}$		Observation
	(KN)	(\mathbf{m}^2)	σ _{adm} (Mpa)	$\sigma_{cal} ({ m Mpa})$	
Terrasse accessible,	700.63	0.30*0.30	14.2	7.78	vérifié
N10 et N9					
N8 et N7	1150.4	0.35*0.35	14.2	9.39	
N6 et N5	1588.05	0.40*0.40	14.2	9.93	
N4 et N3	2030.14	0.45*0.45	14.2	10.03	
N2 et N1	2482.91	0.50*0.50	14.2	9.93	
Soupente etRDC	3251.1	0.55*0.55	14.2	10.75	

II.3.2. Vérification du critère de stabilité de forme :

On prend le poteau du N9 comme exemple de calcul.

$$L_f = 0.7 * l_0 = 0.7 * 3.06 = 2.142m$$

$$I=6.75*10^{-4}m^4$$

$$i = \sqrt{\frac{I}{B}} = 8.66 * 10^{-2} \text{m}$$

$$\lambda = \frac{2.142}{0.0866} = 24.73 < 50 \Rightarrow \alpha = \frac{0.85}{1 + 0.2 \left(\frac{24.73}{35}\right)^2} = 0.77$$

D'après le BAEL91on doit vérifier :

$$B_r \ge \frac{0.70063}{0.77 \times \left(\frac{25}{1.35} + \frac{400}{115}\right)} = 0.041 \text{ m}^2$$

Or nous avons

$$Br = (30-2) \times (30-2) \times 10^{-4} = 0.0784 \text{m}^2$$

 $0.0784>0.014\Rightarrow$ le poteau ne risque pas de flamber.

Les résultats de vérification au flambement sont résumés dans le tableau suivant :

Tableau II.14 : Vérification des poteaux au flambement

Niveau	Nu(KN)	L ₀ (L _f (m)	λ	α	Condition Br> Br _{cal}		Section (m ²)
		m)				B _r –calculé	Br	
Terrasse,								
N9 et salle	636.94	2.66	1.862	21.50	0.79	0.040	0.078	0.30*0.30
machine								
N8 et N7	1045.82	2.66	1.862	18.43	0.81	0.065	0.109	0.35*0.35
N6 et N5	1443.68	2.66	1.862	16.13	0.82	0.088	0.144	0.40*0.40
N4 et N3	1845.58	2.66	1.862	14.33	0.82	0.113	0.185	0.45*0.45
N2 et N1	2257.19	2.66	1.862	12.90	0.83	0.136	0.23	0.50*0.50
Soupente	2604.63	3.17	2.219	13.98	0.82	0.144	0.281	0.55*0.55
RDC	2955.54	3.51	2.457	15.48	0.82	0.164	0.281	0.55*0.55

Remarque : La condition est vérifiée pour tous les niveaux, donc il n y a pas risque de flambement des poteaux.

II.3.Conclusion:

Les sections optées pour les éléments structuraux sont résumées dans le tableau suivant :

Tableau II.15: Dimensions des éléments structuraux

Elements	Largeur (cm)	Hauteur (cm)	
Poutres principales	30	40	
Poutres secondaires	30	35	
Poteaux sous-sol, RDC et soupente	55	55	
Poteaux 1+2 ^{eme} Etages	50	50	
Poteaux 3+4 ^{eme} Etages	45	45	
Poteaux 5+6 ^{eme} Etages	40	40	
Poteaux 7+8 ^{eme} Etages	35	35	
Poteaux9 ^{eme} Etages, N10 et terrasse	30	30	
Voiles de contreventement	e =20cm		

Dans ce chapitre on s'intéresse uniquement à l'étude des éléments non structuraux (différents planchers, escalier, acrotère et l'ascenseur). Cette étude se fait en suivant le cheminement suivant : évaluation des charge sur l'élément considéré, calcul des sollicitations les plus défavorables puis, détermination de la section de acier nécessaire pour reprendre les charges en question toutes on respectant la règlementation en vigueur

III.1. Calcul des planchers :

III.1.1. Plancher à corps creux :

Le plancher à corps creux est constitué d'hourdis ainsi qu'une dalle de compression et prend appui sur des poutrelles. Il est généralement utilisé dans les bâtiments courant (à faible surcharge d'exploitation (Q≤5 KN/m²), et présente une bonne isolation thermique et phonique.

Selon la disposition adoptée en les planchers présentent 5 types de poutrelles qui sont résumés dans le tableau suivant :

Tableau III.1 : Les différents types de poutrelles

Type	Schéma statique	
1 ^{er} type		Niveaux:
	Δ 4.5m Δ 4.3m Δ 4m Δ 4m Δ 4.85m Δ 4.5m	1,2,3,4,5,6
2 ^{eme}		Tous les niveaux
type	4.5m 4.3m 4m	
3 ^{eme}		du 1 ^{er} au
type	\triangle \triangle \triangle	6 ^{eme} niveau
	4m 4.85m 4.5m	Sous-sol
		RDC et soupente
4 ^{eme}		1 ^{er} niveau
type	Δ 4.5m Δ 4m Δ 4m	
5 ^{eme}		Tous les niveaux
type	4.5m 4.3m	
6 ^{eme}	<u> </u>	Niveau 7
type	^{1∆} 4.5m ^{1∆}	

III.1.1.1. Evaluation des charges et surcharges revenants aux poutrelles :

A l'ELU : Pu = (1.35G + 1.5Q) lx

A l'ELS : Pu= (G+Q) lx avec l_x : entre axe des poutrelles (l_x =0.65 cm)

Chapitre III:

Tableau III.2: Evaluation des charges et surcharges sur poutrelles

Désignation	G (KN/m ²)	$Q (KN/m^2)$	ELU	ELS
			pu (KN/m)	ps (KN/m)
terrasse accessible	5.23	1.5	6.05	4.37
Plancher étage courant	5.11	1.5	5.95	4.30
Plancher étage commercial	5.11	5	9.36	6.57

III.1.1.2.Méthode de calcul des sollicitations dans les poutrelles :

Pour le calcul des sollicitations sur les poutrelles, il existe deux méthodes :

- Méthode forfaitaire
- Méthode Caquot
- ***** Méthode forfaitaire :
- Condition d'application :

Le plancher soit à surcharge modérée c'est-à-dire : $Q \le \min(2G; 5 \text{ KN/m}^2), \dots (1)$

Le moment d'inertie soit constant sur toutes les travées,......(2)

Que le rapport :
$$0.8 \le \frac{L_i}{L_{i+1}} \le 1.25$$
,...(3)

Une fissuration est peu nuisible,.....(4)

• Principe de la méthode :

A. Définition des grandeurs :

 M_0 : Moment isostatique de la travée considérée

 M_g Et M_d : Respectivement les valeurs absolues des moments sur appuis de gauche et de droite.

 M_t : Le moment maximal constaté en travée qui est pris en compte dans le calcul de la travée considérée.

 $\alpha = \frac{Q}{Q+G}$: Coefficient qui définit le degré de surcharge du plancher.

B. Evaluation des moments :

• Evaluation des moments au niveau des appuis :

Sur les **Appuis de rive** les moments sont nuls cependant le **BAEL** exige de mettre les aciers de fissuration avec une quantité d'acier équilibrant un moment égale à $(-0.15 \times M_0)$.

On calcul M_{0i} (moment isostatique) dans toutes les travées.

$$M_{0i}=p \ L^2/8 \ ; \quad M_{0}=\max \ (M_{0i}, M_{0i+1})$$

$$-0.15M_0 \quad -0.6M_0 \quad -0.15M_0$$

$$-0.15M_0 \quad -0.5M_0 \quad -0.15M_0$$

$$-0.15M_0 \quad -0.5M_0 \quad -0.15M_0$$

$$-0.15M_0 \quad -0.5M_0 \quad -0.15M_0$$

$$-0.15M_0 \quad -0.15M_0 \quad -0.15M_0$$

Figure III. 1 Evaluation des moments au niveau des appuis

Ces moments sont des moments aux appuis intermédiaires :

- $(-0.5 \times M_0)$: Pour les appuis voisin de l'appui de rive.
- $(-0.4 \times M_0)$: Pour les autres appuis intermédiaires.

 $-0.15M_0$

- $(-0.6 \times M_0)$: dans le cas d'une poutre à deux travées.
 - Evaluation des moments au niveau des travées :

En calcule
$$\alpha = \frac{Q}{Q+G}$$

Le moment en travée doit vérifier les deux conditions suivantes :

1)
$$Mt + \frac{|Mg| + |Md|}{2} \ge \max \begin{cases} (1 + 0.3\alpha)M_{0i} \\ (1,05M_{0i}) \end{cases}$$

2) $M_t \ge \frac{(1 + 0.3\alpha)M_{0i}}{2}$ Travée intermédiaire
$$M_t \ge \frac{(1,2 + 0.3\alpha)M_{0i}}{2}$$
 Travée de rive

• Evaluation des efforts tranchants

Forfaitairement en supposant la discontinuité entre les travées, dans ce cas l'effort tranchant hyperstatique est confondu avec l'effort tranchant isostatique, sauf pour le premier appui

intermédiaire (voisin de rive) où on tient compte des moments de continuité en majorant l'effort tranchant isostatique V_{0i} :

1) De 15% si la poutre a deux travées :

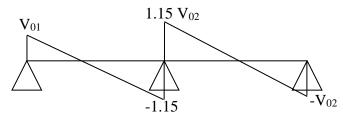


Figure III. 2 : Diagramme de l'effort tranchant d'une poutre à deux travées

2) de 10% si une poutre a plus de deux travées :

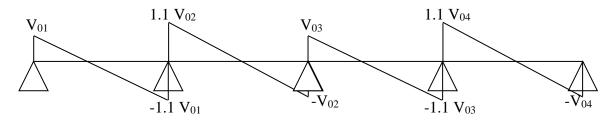


Figure III. 3 : Diagramme de l'effort tranchant d'une poutre à plus de deux travées

Méthode Caquot :

• Condition d'application :

Cette méthode s'applique pour les planchers à surcharge élevée Q> (2G; 5Kn/m²). Mais peut également s'appliquée pour les planchers à surcharge modérée lorsque l'une des conditions de la méthode forfaitaire (2^{éme}, 3^{éme}ou 4^{éme} condition) n'est pas satisfaite, on applique la méthode Caquot minoré, c'est-à-dire on minore G avec un coefficient de 2/3 (**G'=2/3G**) pour le calcul des moments aux appuis seulement.

• Principe de la méthode :

Cette méthode est basé sur la méthode des trois moments que Caquot a simplifie et corrigé pour tenir compte de l'amortissement des effets de chargement des travées éloignées sur un appui donné, et de la variation du moment d'inertie des travées successives.

• Moment aux appuis :

$$M_{i} = \frac{q_{g} \times L_{g}^{3} + q_{d} \times L_{d}^{3}}{8.5 \times (L_{g} + L_{d})}$$

$$\text{Tel que : } \begin{cases} \vec{L_g} \text{ et } \vec{L_d} &: \text{Longueurs fictives} \\ q_g, q_d : \text{Chargement à gauche et à droite de l'appui respectivement} \end{cases}$$

$$L = \begin{cases} 0.8L : \text{Trav\'ee interm\'ediare} \\ L : \text{Trav\'ee de rive} \end{cases}$$

• Moment en travée :

$$\begin{split} M(X) &= M_0(X) + M_g \left(1 - \frac{X}{L} \right) + M_d \left(\frac{X}{L} \right) = \frac{qX}{2} \left(L - X \right) + M_g \left(1 - \frac{X}{L} \right) + M_d \left(\frac{X}{L} \right) \\ \frac{dM}{dX} &= 0 \Rightarrow -qX + q \frac{L}{2} - \frac{M_g}{L} + \frac{M_d}{L} = 0 \\ \Rightarrow X &= \frac{L}{2} - \frac{M_g - M_d}{qL} \\ M_{\text{max}} &= M(X) \end{split}$$

• L'effort tranchant :

$$V = q \frac{L}{2} - \frac{M_g}{L} + \frac{M_d}{L}$$

III.1.1.3. calcul des sollicitations dans les poutrelles :

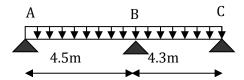


Figure III. 4 : chargement de la poutrelle du type 5

Pour illustrer la méthode forfaitaire. On prendra comme exemple de calcul (le type 3pour un étage courant puis pour un étage commerciale)

A) Etude poutrelles du type 5 :

- Plancher étage commerciale :
- 1. plancher à surcharge modérée ($Q \le min(2G, 5KN/m^2)$). Q=5 $KN/m^2 \le min(10.22, 5KN/m^2)$condition vérifiée.
- 3. le moment d'inertie constant sur toutes les travées........... condition vérifiée.
- 4. fissuration peu nuisible (F.P.N)......condition vérifiée.

• Moments aux appuis :

Appuis de rives :

 $M_A=M_C=0$, mais le BAEL préconise de mettre des aciers de fissuration pour équilibrer un moment fictif. $M=-0.15M_0$ $M_0=\frac{qL^2}{g}$

$$\begin{cases} M_0^U = \frac{9.359 * 4.5^2}{8} = 23.69 \text{KN.} \\ M_0^S = \frac{6.572 * 4.5^2}{8} = 16.635 \text{ KN. m.} \end{cases}$$

$$ELU:M_A^U=M_C^U=-0.15*23.69=-3.554KN.m$$

$$ELS: M_A^S = M_C^S = -0.15*16.635 = -2.5KN.m$$

Appuis intermédiaires:

ELU:
$$M_B^U = -0.6M_0^U = -0.6*23.69 = -14.214KN.m$$

ELS:
$$M_B^S = -0.6 M_0^S = -0.6*16.635 = -9.981 \text{KN.m}$$

• Moments en travées:

Chaque travées est calculer indépendamment, le moment max en travée est déterminé par les deux conditions :

1)
$$M_t + (\frac{M_g + M_d}{2}) \ge [\max(1 + 0.3\alpha, 1.05)] M_{0i}$$

2)
$$M_t \ge +\left(\frac{1.2 + 0.3\alpha}{2}\right) M0i36$$

..... (travée de rive)

$$\alpha = \frac{Q}{G+Q} = 0.495 \implies \begin{cases} 1 + 0.3\alpha = 1.1485 \\ (1.2 + 0.3\alpha)/2 = 0.674 \end{cases}$$

Travée(AB) et Travée (BC) : $M_{t \text{ max}}$ est dans la 1^{ère}condition

ELU
$$M_t^U \ge 1.1485$$
 (23.69)- $(\frac{0+14.214}{2})M_t^U \ge 20.101$ KN.m

ELSM_t^S
$$\geq$$
 1.1485 (16.635)- $(\frac{0+9.981}{2})$ $M_t^S \geq 14.115$ KN.m

• Évaluation de l'effort tranchant :

Travée(AB)
$$\begin{cases} V_A = \frac{qL}{2} = \frac{9.359 * 4.5}{2} = 21.058 \text{ KN} \\ V_B = -1.15 * 20.57 = -24.216 \text{ KN} \end{cases}$$

Travée(BC)
$$\begin{cases} V_B = 23.14 \ KN \\ V_C = -20.122 KN \end{cases}$$

B) Etude poutrelles du type 5 :

- Plancher étage courant :
- 5. plancher à surcharge modérée ($Q \le min (2G, 5KN/m^2)$). Q=1.5KN/m² $\le min (10.22, 5KN/m^2)$. condition vérifiée.le rapport entre deux travées successives : $0.8 \le l_i / l_{i+1} \le 1.25$. condition vérifiée.
- 6. le moment d'inertie constant sur toutes les travées............ condition vérifiée.

- 7. fissuration peu nuisible (F.P.N)......condition vérifiée.
- Moments aux appuis :

Appuis de rives :

 M_A = M_C =0, mais le BAEL préconise de mettre des aciers de fissuration pour équilibrer un moment fictif. M=-0.15 M_0 M_0 = $\frac{qL^2}{8}$

$$\begin{cases} M_0^U = \frac{5.647 * 4.5^2}{8} = 15.053 \text{KN.} \\ M_0^S = \frac{4.297 * 4.5^2}{8} = 10.877 \text{ KN. m.} \end{cases}$$

$$ELU:M_A^U=M_C^U=-0.15*15.053=-$$
 2.258KN.m

$$ELS: M_A^S = M_C^S = -0.15*10.877 = -1.632KN.m$$

Appuis intermédiaires:

ELU:
$$M_B^U = -0.6M_0^U = -0.6*15.053 = -9.032KN.m$$

ELS:
$$M_B^S = -0.6 M_0^S = -0.6*10.877 = -6.526 KN.m$$

Moments en travées:

Chaque travées est calculer indépendamment, le moment max en travée est déterminé par les deux conditions :

1)
$$M_t + (\frac{M_g + M_d}{2}) \ge [\max(1 + 0.3\alpha, 1.05)] M_{0i}$$

2)
$$M_t \ge + \left(\frac{1.2 + 0.3\alpha}{2}\right) M0i (travée de rive)$$

$$\alpha = \frac{Q}{G+Q} = 0.495 \implies \begin{cases} 1 + 0.3\alpha = 1.0681\\ (1.2 + 0.3\alpha)/2 = 0.6341 \end{cases}$$

 $Trav\acute{e}(AB) \ et \ Trav\acute{e}(BC) : M_{t \ max} est \ dans \ la \ 1^{\grave{e}re} condition$

$$\underline{\text{ELU}}\mathbf{M}_t^U \ge 1.0681 \ (15.053) - (\frac{0+9.032}{2})\mathbf{M}_t^U \ge 11.562 \text{KN.m}$$

ELS
$$M_t^S \ge 1.0681(10.877) - (\frac{0+6.526}{2})$$
 $M_t^S \ge 8.355$ KN.m

• Évaluation de l'effort tranchant :

Travée(AB)
$$\begin{cases} V_A = \frac{\text{qL}}{2} = \frac{5.947 * 4.5}{2} = 13.381 \text{ KN} \\ V_B = -1.15 * 13.381 = -15.388 \text{ KN} \end{cases}$$
Travée(BC)
$$\begin{cases} V_B = 14.704 \text{ KN} \\ V_C = -12.786 \text{ KN} \end{cases}$$

Les sollicitations, pour tous les types de poutrelles sont représentées dans les tableaux suivants.

Tableau III.3 : Sollicitation dans les différents types de poutrelles à l'ELU et l'ELS pour le plancher étage commerciale.

	Type	Travé	L (m)	M_0	M	a	Mt	Ef	fort
		e		(KN.m)	(KN	.m)	(KN.m)	tranch	ant(KN)
					Mg	M_d		V_g	V_d
	1	AB	4.5	23.69	-3.553	-11.84	21285	21.058	-23.164
		BC	4.3	21.631	-11.845	-8.652	14.595	22.134	-20.122
		CD	4.00	18.718	-8.652	-7.487	13.428	18.718	-18.718
		DE	4.00	18.718	-7.487	-11.00	12.251	18.718	-18.718
		EF	4.85	27.518	-11.007	-13.75	19.221	22.696	-24.965
		FG	4.5	23.69	-13.759	-3.553	20.328	23.164	-21.058
	2	AB	4.5	23.69	-3.553	-11.84	21.285	21.058	-23.164
ELU		BC	4.30	21.631	-11.845	-10.81	13.513	22.134	-22.134
		CD	4.00	18.718	-10.816	-3.553	16.09	20.59	-18.718
	3	AB	4.00	18.718	-3.553	-13.75	14.618	18.718	-20.59
		BC	4.85	27.518	-13.759	-13.75	17.845	24.965	-24.965
		CD	4.50	23.69	-13.759	-3.553	20.328	23.164	-21.058
	4	AB	4.50	23.69	-3.553	-11.84	21.285	21.058	-23.164
		BC	4.30	21.631	-11.845	-8.652	14.595	22.134	-20.122
		CD	4.00	18.718	-8.652	-9.595	12.492	18.718	-20.59
		DE	4.00	18.718	-9.359	-3.553	16.818	20.59	-18.718
	5	AB	4.50	23.69	-3.553	-14.21	20.101	21.058	-24.216
		BC	4.30	21.631	-14.214	-3.553	17.736	23.14	20.122
ET G	1	AB	4.50	16.635	-2.495	-8.318	14.946		
ELS		BC	4.30	15.19	-8.318	-6.076	10.249		
		CD	4.00	13.144	-6.076	-5.258	9.429		
		DE	4.00	13.144	-5.258	-7.73	8.602		
		EF	4.85	19.324	-7.73	-9.662	13.498		
		FG	4.50	16.635	-9.662	-2.495	14.274		
	2	AB	4.50	16.635	-2.495	-8.318	14.946		
		BC	4.30	15.19	-8.318	-7.595	9.489		
		CD	4.00	13.144	-7.595	-2.495	11.298		
	3	AB	4.00	13.144	-2.495	-9.662	10.265		
		B0C	4.85	19.324	-9.662	-9.662	12.532		
		CD	4.00	13.144	-9.662	-2.495	14.274		
	4	AB	4.50	16.635	-2.495	-8.318	14.946		
		BC	4.30	15.19	-8.318	-6.076	10.249		
		CD	4.00	13.144	-6.076	-6.572	8.772		
		DE	4.00	13.144	-6.572	-2.495	11.81		
	5	AB	4.50	16.635	-2.495	-9.981	14.115		
		BC	4.30	15.19	-9.981	-2.495	12.455		

Tableau III.4: Sollicitation dans les différents types de poutrelles à l'ELU et l'ELS pour le plancher étage courant.

	Type	Travé	L(m)	M_0			Mt	E	ffort
		e		(KN.m)	Ma (KN	.m)	(KN.m)	tranch	ant(KN)
					Mg	M _d		V_g	V _d
	1	AB	4.5	15.053	-2.258	-7.527	12.315	13.38	-14.719
		BC	4.3	13.745	-7.527	-5.498	8.169	14.06	-12.786
		CD	4.00	11.894	-5.498	-4.758	7.576	11.89	-11.894
		DE	4.00	11.894	-4.758	-6.994	6.828	11.89	-11.894
		EF	4.85	17.486	-6.994	-8.743	10.808	14.42	-15.864
		FG	4.5	15.053	-8.743	-2.258	11.707	14.71	-13.381
	2	AB	4.5	15.053	-2.258	-7.527	12.315	13.38	-14.719
		BC	4.30	13.745	-7.527	-6.873	7.481	14.06	-14.065
ELU		CD	4.00	11.894	-6.873	-2.258	9.267	13.08	-11.894
	3	AB	4.00	11.894	-2.258	-8.743	8.332	11.89	-13.083
		BC	4.85	17.486	-8.743	-8.743	9.934	15.86	-15.864
		CD	4.50	15.053	-8.743	-2.258	11.707	14.71	-13.381
	4	AB	4.50	15.053	-2.258	-7.527	12.315	13.38	-14.719
		BC	4.30	13.745	-7.527	-5.498	8.169	14.06	-12.786
		CD	4.00	11.894	-5.498	-5.947	6.981	11.89	-13.083
		DE	4.00	11.894	-5.947	-2.258	9.73	13.08	-11.894
	5	AB	4.50	15.053	-2.258	-9.032	11.562	13.38	-15.388
		BC	4.30	13.745	-9.032	-2.258	10.165	14.70	12.786
ELS	1	AB	4.50	10.877	-1.632	-5.439	8.898		
		BC	4.30	9.931	-5.439	-3.972	5.902		
		CD	4.00	8.594	-3.972	-3.438	5.474		
		DE	4.00	8.594	-3.438	-5.054	4.933		
		EF	4.85	12.635	-5.054	-6.318	7.809		
		FG	4.50	10.877	-6.318	-1.632	8.459		
	2	AB	4.50	10.877	-1.632	-5.439	8.898		
		BC	4.30	9.931	-5.439	-4.966	5.405		
		CD	4.00	8.594	-4.966	-1.632	6.696		
	3	AB	4.00	8.594	-1.632	-6.318	6.02		
		BC	4.85	12.635	-6.318	-6.318	7.177		
		CD	4.00	8.594	-6.318	-1.632	8.459		
	4	AB	4.50	10.877	-1.632	-5.439	8.898		
		BC	4.30	9.931	-5.439	-3.972	5.902		
		CD	4.00	8.594	-3.972	-4.297	5.045		
		DE	4.00	8.594	-4.297	-1.632	7.031		
	5	AB	4.50	10.877	-1.632	-6.526	8.355		
		BC	4.30	9.931	-6.526	-1.632	7.344		

Tableau	III.5 :	Sollicitation	dans	les	différents	types	de	poutrelles	à	l'ELU	et	1'ELS	pour	le
plancher t	terrass	e accessible.												

Type	travée	L(m)	M_0	Ma		Ma		Mt	Ef	fort
			(KN.m)	(KI	V.m)	(KN.m)	tranch	ant(KN)		
				Mg	Md		Vg	Vd		
1	AB	4.50	15.319	-2.298	-7.66	12.514	13.617	14.978		
	BC	4.30	13.988	-7.66	-6.994	7.597	14.313	14.313		
	CD	4.00	12.104	-6.994	-2.298	9.417	13.314	12.104		
2	AB	4.50	15.319	-2.298	-9.191	11.748	13.617	15.66		
	BC	4.30	13.988	-9.191	-2.298	10.328	15.66	13.617		
3	AB	4.50	15.319	-2.298	-2.298	15.319	13.617	-13.617		
1	AB	4.50	11.074	-1.661	-5.537	9.046				
	BC	4.30	10.112	-5.537	-5.056	5.492				
	CD	4.00	8.75	-5.056	-1.661	6.807				
2	AB	4.50	11.074	-1.661	-9.191	8.493				
	BC	4.30	10.112	-6.644	-1.661	7.466				
3	AB	4.50	11.074	-1.661	-1.661	11.074				

III.1.1.4. Ferraillage des poutrelles :

Les poutrelles se calculent à la flexion simple, sont des sections en T en béton armé servant à transmettre les charges reparties ou concentrées aux poutres principales.

$$h_{t} = 21cm$$

$$b_{0} = 12cm$$

$$b = 65cm$$

$$d = 18cm$$

$$h_{0} = 5cm$$

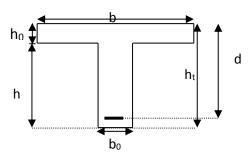


Figure III. 5 : redimensionnement de la poutrelle

On prend comme exemple, le ferraillage de la poutrelle type 5 du plancher étage commercial.

• Calcul à l'ELU:

$$M_{max}^{t} = 20.101KN.m$$
 $M_{max}^{rive} = -3.553KN.m$
 $M_{max}^{int} = -14.214KN.m$
 $V_{max} = -24.216KN$

1. Calcul des Armatures longitudinales :

• Ferraillage en travée :

Le moment équilibré par la table de compression :

$$\begin{split} &M_{tu} = bh_0 f_{bu} (d - \frac{h_0}{2}) \\ &M_{tu} = 0.65*0.05*14.2*(0.18 - \frac{0.05}{2}) \\ &\Rightarrow M_{tu} = 71.53 KN.m \\ &avec: f_{bu} = \frac{0.85*f_{c28}}{\gamma_b} = 14.2 MPa \\ &M_{tu} > M_{max}^t = 20.101 KN.m \end{split}$$

⇒L'axe neutre passe par la table de compression, donc la table n'est pas entièrement comprimée, la section en Té sera calculée comme une section rectangulaire :

$$(h_t * b) : (20 cm * 65 cm).$$

$$\mu_{bu} = \frac{M_{max}^{t}}{bd^{2}f_{bu}} = \frac{20.101*10^{-3}}{0.65*(0.18)^{2}*14.2} = 0.067$$

Le diagramme passe par le pivot « A » et les armatures comprimées ne sont pas nécessaires

$$(A'_{S} = 0) \text{ et } \varepsilon_{S} = 10\%; f_{st} = \frac{f_{e}}{\gamma_{S}} = \frac{400}{1.15} = 348 \text{MPa}$$

$$\Rightarrow \alpha = 1.25 \times (1 - \sqrt{1 - 2\mu_{bu}}) = 0.087$$

$$z = d(1 - 0.4\alpha) = 0.18(1 - (0.4 \times 0.087)) = 0.174$$

$$A_{S} \ge \frac{M_{max}^{t}}{z \times f_{st}} = \frac{20.101 \times 10^{-3}}{0.174 \times 348}$$

$$\Rightarrow A_{S} = 3.32 \text{cm}^{2}$$

On adopte A_s=3HA12=3.39cm²

• Vérification de la condition de non fragilité :

$$A_{\min} = \frac{0.23 \times b \times d \times f_{t28}}{f_e} = \frac{0.23 \times 0.65 \times 0.18 \times 2.1}{400} = 1.41 cm^2$$

$$\Rightarrow A_{\min} = 1.41 cm^2$$

On remarque que : $A_s = 3.32cm^2 \ge A_{\min} = 1.41cm^2$ Condition vérifiée

• Ferraillage en appui :

La table de compression se trouve dans la zone tendue car le moment est négatif en appuis, le béton tendu n'intervient pas dans le calcul, donc la section en Té sera calculée comme une section rectangulaire de dimensions $\mathbf{b_0}$ et \mathbf{h} (0.12 * 0.21) \mathbf{m}^2 .

> Ferraillage de l'appui de rive :

$$\begin{split} M_{max}^{rive} &= 3.553 KN.m \\ \mu_{bu} &= \frac{M_{max}^{rive}}{b_0 \times d^2 \times f_{bu}} = \frac{3.553 \times 10^{-3}}{0.12 \times (0.18)^2 \times 14.2} = 0.064 MPa \\ \mu_{bu} &= 0.064 MPa < 0.186 MPa \Longrightarrow \alpha = 0.083 \ z = 0.174 m \\ A_S^{rive} &= \frac{M_{max}^{rive}}{z \times 348} = \frac{3.553 \times 10^{-3}}{0.174 \times 348} = 0.59 cm^2 \end{split}$$

On prend 1HA10=0.79cm.

- Condition de non fragilité :

$$\begin{split} A_{min} \frac{0.23\times b_0\times d\times f_{t28}}{f_e} &= \frac{0.23\times 0.12\times 0.18\times 2.1}{400} = 0.26 cm^2\\ A_S^{rive} &= 0.79 cm^2 > A_{min} = 0.26 \Longrightarrow Condition \ v\acute{e}rifi\acute{e}e. \end{split}$$

> Ferraillage de l'appui intermédiaire :

$$\begin{split} &M_{max}^{inter} = -14.214 KN.m \\ &\mu_{bu} = \frac{M_{max}^{int}}{b_0 \times d^2 \times f_{bu}} = \frac{14.214 \times 10^{-3}}{0.12 \times (0.18)^2 \times 14.2} = 0.257 MPa \\ &\mu_{bu} = 0.257 MPa \ge 0.186 MPa \Longrightarrow \ \ Pivot \ B \ et \ A' = 0 \,. \\ &\Rightarrow \alpha = 0.379 \quad z = 0.153 m \\ &A_S^{int} = \frac{M_{max}^{int}}{2.348} = \frac{24.214 \times 10^{-3}}{0.153 \times 348} = 2.67 cm^2 \\ &On \ prend \ As = 2HA12 + 1HA8 = 2.76 \ cm^2 \end{split}$$

- Condition de non fragilité :

$$\begin{split} A_{\text{min}} & \frac{0.23 \times b_{_{0}} \times d \times f_{_{128}}}{f_{_{e}}} = \frac{0.23 \times 0.12 \times 0.18 \times 2.1}{400} = 0.26 cm^{^{2}} \\ A_{\text{S}}^{\text{int}} & = 2.04 cm^{^{2}} > A_{\text{min}} = 0.26 \Longrightarrow \quad \text{Condition v\'erifi\'ee}. \end{split}$$

2. Calcul des armatures transversales :

$$\phi_t \le \min\left(\phi_t^{\min}; \frac{h}{35}; \frac{b_0}{10}\right) = 5.7 \, \text{lm} m \Rightarrow \phi_t = 6mm$$
. On choisit un étrier de $\phi 6 \Rightarrow At = 0.57 \, \text{cm}^2$

Donc la section d'armatures transversales sera : At = $2 \phi 6 = 0.57 \text{cm}^2$

Calcul de l'espacement :

St = min
$$\begin{cases} (0.9d, 40cm) = 16.2cm \\ \frac{At * f_e}{0.4 * b_0} = 47.5cm \\ \frac{0.8 * A_t * f_e}{b_0 (\tau_u - 0.3 * K * f_{t28})} = 28.9cm \end{cases}$$

Avec $\tau_u = 1.156$ MPa

Avec K = 1 (pas de reprise de bétonnage, flexion simple et fissuration peu nuisible).

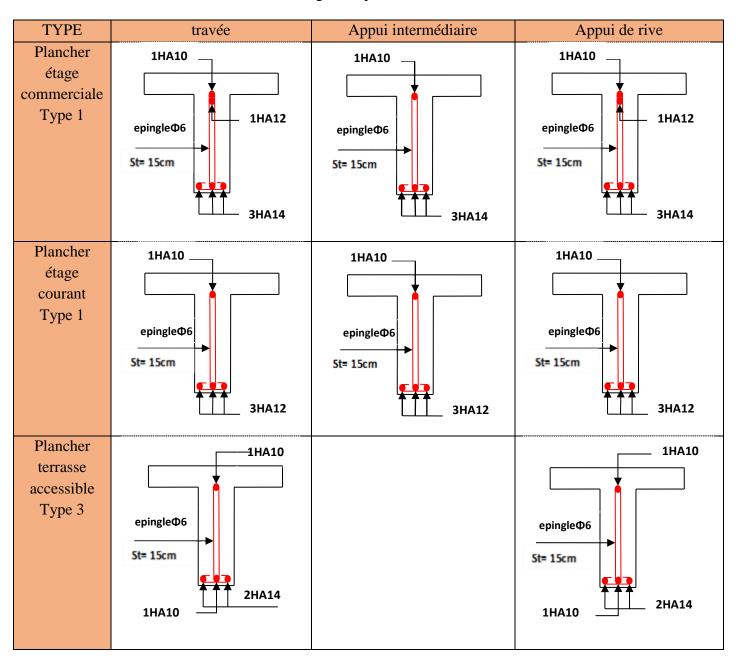
On adopte: St = 15 cm.

Les résultats du ferraillage sont résumés dans le tableau suivant :

Tableau III.6: Ferraillage des poutrelles de différant plancher

	Type	position	µ bu	α	Z (m)	A _{cal} (cm ²)	A _{min} (cm ²)	Aadopté (cm²)	Ferraillage Transversal
	1	Travée	0.070	0.092	0.173	3.50	1.41	2HA12+1HA14=3.8	
		App	0.246	0.359	0.154	2.57	0.26	2HA10+1HA12=3,11	
		int							
		App	0.064	0.083	0.174	0.59	0.26	1HA10=0,79	
Eta		rive							2]
lge	2	Travée	0.071	0.092	0.173	3.54	1.41	2HA14+1HA8= 3,58	HA
Etage commerciale		App	0.214	0.305	0.158	2.15	0.26	3HA10=2,36	2HA6= 0.57cm ²
ıme		int							0.57
ercia		App	0.064	0.083	0.174	0.59	0.26	1HA10=0,79	7cm
ale		rive							\mathbf{l}^2
	3	Travée	0.068	0.88	0.174	3.36	1.41	3HA12=3,39	
		App	0.249	0.365	0.154	2.57	0.26	2HA10+1HA12=2,7	
		int							
		App	0.064	0.083	0.174	0.59	0.26	1HA10=0,79	

Etude des éléments secondaires


		rive						
	4	Travée	0.071	0.092	0.173	3.54	1.41	2HA14+1HA8=3,58
		App	0.214	0.305	0.158	2.15	0.26	3HA10=2,36
		int						
		App	0.064	0.083	0.174	0.59	0.26	1HA10=0,79
		rive						
	5	Travée	0.067	0.087	0.174	3.32	1.41	3HA12=3,39
		App	0.257	0.379	0.153	2.67	0.26	2HA10+1HA12=2.7
		int						
		App	0.064	0.083	0.174	0.59	0.26	1HA10=0,79
		rive						
	1	Travée	0.041	0.051	0.176	2.01	1.41	1HA12+2HA8=2,14
		App	0.158	0.216	0.164	1.53	0.26	2HA8+1HA10=1,8
		int			2.1=			
		App	0.04	0.051	0.176	0.37	0.26	1HA10=0.79
		rive	0.044	0.051	0.151	2.01	1 44	111410 01140 0 11
	2	Travée	0.041	0.051	0.176	2.01	1.41	1HA12+2HA8=2,14
		App	0.025	0.032	0.178	1.22	0.26	3HA10=2,36
		int	0.04	0.051	0.176	0.37	0.26	1HA10=0.79
		App rive	0.04	0.031	0.176	0.37	0.26	1HA10=0.79
_	3	Travée	0.039	0.05	0.176	1.191	1.41	1HA12+2HA8=2,14
Etage courant			0.039	0.03	0.170	1.191	0.26	3HA8=1.51
ge c		App int	0.029	0.037	0.177	1.42	0.20	311A0-1.31
mo		App	0.04	0.051	0.176	0.37	0.26	1HA10=0.79
ant		rive	0.01	0.031	0.170	0.57	0.20	111110-0.79
	4	Travée	0.041	0.051	0.176	2.01	1.41	1HA12+2HA8=2,14
		App	0.025	0.032	0.178	1.22	0.26	3HA10=2,36
		int					0.1_0	_,,_
		App	0.04	0.051	0.176	0.37	0.26	1HA10=0.79
		rive						
	5	Travée	0.039	0.05	0.176	1.89	1.41	1HA8+2HA10=2,07
		App	0.03	0.038	0.177	1.47	0.26	3HA8=1.51
		int						
		App	0.04	0.051	0.176	0.37	0.26	1HA10=0.79
		rive						
	1	Travée	0.042	0.054	0.176	2.04	1.41	3HA10=2,36
Te		App	0.026	0.033	0.178	1.24	0.26	3HA8=1.51
Terrasse accessible		int						
sse ble		App	0.008	0.01	0.179	0.37	0.26	1HA10=0.79
		rive						

Chapitre III:

Etude des éléments secondaires

2	Travée	0.039	0.5	0.176	1.92	1.41	1HA8+2HA10=2.07
	App	0.031	0.39	0.177	1.49	0.26	3HA8=1.51
	int						
	App	0.008	0.01	0.179	0.37	0.26	1HA10=0.79
	rive						
3	Travée	0.051	0.065	0.175	2.52	1.41	2HA12+1HA10=3.05
	App	0.008	0.01	0.179	0.37	0.26	1HA10=0.79
	rive						

Tableau III.7: Schéma de ferraillage des poutrelles :

- Ferraillage de la dalle de compression :
- a) Armatures perpendiculaires aux poutrelles :

Selon le **CBA93** (Article B.6.8.4.2.3)

$$A_{\perp} = \frac{4 \times b}{f_{e}} = \frac{4 \times 65}{235} = 1.106 \,\mathrm{cm}^{2}/\mathrm{ml}$$

On adopte $A_{\perp} = 5 \phi 6 = 1.41 \text{ cm}^2 \perp \text{aux poutrelles}$

Espacement: $S_t = 20 \text{ cm}$

b) Armatures parallèles aux poutrelles :

$$A_{//} = \frac{A_{\perp}}{2} = 0.55 \text{ cm}^2/\text{ml}$$

On adopte:

$$A_{//} = 4 \phi 6 = 1.13 \text{ cm}^2 \perp //\text{aux poutrelles}$$

Espacement: $S_t = 25 \text{ cm}$

> Schéma de ferraillage de la dalle de compression :

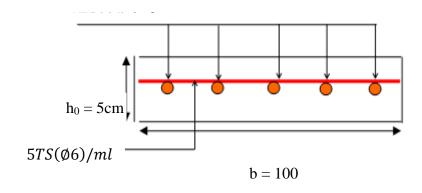


Figure III.6 : Schéma du ferraillage de la dalle de compression

III.1.1.5. Les vérifications :

III.1.1.5.1.Type 1 (étage commerciale) :

• de l'effort tranchant :

$$\tau_{U} = \frac{V_{\text{max}}}{b_{0} \times d} = \frac{24.965 \times 10^{-3}}{0.12 \times 0.18} = 1.156 MPa$$

La fissuration est peu nuisible et $\alpha = 90^{\circ}$

$$\bar{\tau} = min(\frac{0.2}{1.5}f_{c28};5MPa) = min(3.33;5MPa) = 3.33MPa$$
 $\tau_U = 1.156MPa \le \bar{\tau} = 3.33MPa.....Condition vérifiée.$

- Vérification des armatures longitudinales à l'effort tranchant aux voisinages des appuis
- Appui de rive :

$$A_l > \frac{V_u \times \gamma_s}{f_s} = \frac{24.965*10^{-3} \times 1.15}{400} = 0.72 cm^2.$$

$$A_1 = 0.79 + 3.8 = 4.59 \text{cm}^2$$

$$\Rightarrow 4.59 \text{cm}^2 > 0.72 \text{cm}^2$$

condition verifié.

Appui intermédiaire :

$$A_{1} > \left[V_{u} + \frac{M_{a}}{0.9 \times d} \right] \frac{\gamma_{s}}{f_{e}}$$

$$\Rightarrow \left[24.965 \times 10^{-3} + \frac{13.759 \times 10^{-3}}{0.9 \times 0.18} \right] \frac{1.15}{400} = 3.16 \text{cm}^{2}.$$

$$A_{1} = 3.11 + 3.8 = 6.9 \text{ lcm}^{2}$$

$$\Rightarrow 6.9 \, \text{lcm}^2 > 3.16 \, \text{cm}^2$$

condition verifié.

• Vérification de la contrainte de cisaillement à la jonction table- nervure :

$$\tau_{\rm u} \le \tau_{\rm u}^- = \min(\frac{0.2}{1.5}.f_{\rm C28};5{\rm Mpa}) = 3.33{\rm Mpa}.$$

$$\tau_{u} = \frac{V_{u} \times \left(\frac{b - b_{0}}{2}\right)}{0.9 \times b \times d \times h_{0}} = \frac{24.965 \times 10^{-3} \left(\frac{0.65 - 0.12}{2}\right)}{0.9 \times 0.65 \times 0.18 \times 0.04} = 1.57 MPa < 3.33 MPa \cdots condition vérifiée.$$

> Vérification à l'ELS:

Les poutrelles sont à l'intérieur, elles ne sont pas exposées aux intempéries d'où la fissuration est peu nuisible, par conséquent les vérifications à faire sont :

- 1. Etat limite de compression du béton.
- 2. Etat limite de déformation (la flèche).

a) Etat limite de compression du béton :

- En travée :

$$M_{ser}^{t} = 14.946 \, KN.m \quad A_{s} = 3.8 \, cm^{2}$$

On doit vérifier $\sigma_{bc} \le \sigma_{bc}^-$

$$\sigma_{\rm bc} = \frac{\mathbf{M}_{\rm ser}^{\rm t}}{I} \times y \ \sigma_{\it bc}^{\scriptscriptstyle -} = 0.6 \times f_{\it c28} = 15 MPa. \label{eq:sigma_bc}$$

Position de l'axe neutre :

 $H = \frac{bh_0^2}{2} - 15A(d - h_0) = -278$ cm³ H <0 \Rightarrow (alors l'axe neutre passe par la nervure) \Rightarrow calcule comme une section en T.

Calcul y:

$$Calcul\ de\ y\ : b_0/2\ *\ y^2 + [15(A+A') + (b-b_0)\ h_0] *\ y - 15*(\ Ad+\ A'd'\)\ -\ (\ b-b_0)\ h_0^2/2 = 0......(1)$$

Âpres résolution de l'équation (1) : y = 4.81cm

Calcul de I:

$$I = b/3*y^3 + (b-b_0) (y-h_0)^3/3 + 15 A (d-y)^2 + 15A' (d'-y)^2 = 0$$

 $I=12.328 \ 10^3 \ cm^4$.

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{14.946 \times 10^{-3}}{12.328 \times 10^{-5}} \times 0.0481 = 5.83 MPa$$

En appuis intermédiaires :

$$M_{ser} = -9.662KN.m$$

M<0 on calcul avec ($b_0 \times h$) A'=0

$$\frac{b_0}{2} \times y^2 + 15A \times (y-d) = 0.$$

⇒y=8.65 cm.

$$I = \frac{b_0}{3} y^3 + 15A \times (d - y)^2$$

$$\Rightarrow I = 6666,04cm^4$$
.

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{9.662 \times 10^{-3}}{6;67 \times 10^{-5}} \times 0.0856 = 12.411 MPa$$

Les résultats sont résumés dans le tableau suivant :

Tableau III.8: Vérification des contraintes dans le béton.

type	position	M _{ser} (Kn.m)	A _s cm ²	y cm	I cm ⁴	σ _{bc} (Mpa)	$\overline{\sigma}_{bc}$ (Mpa)	vérification
Type 2	travée	14.214	3.8	4.81	12.3310^3	5.83	15	Vérifié
	inter	9.662	3.11	8.56	6.6710^3	12.41	15	

b) Vérification de la flèche :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} & \dots \\ \frac{h}{L} \ge \frac{M_t}{10 \times M_0} & \dots \\ \frac{A}{b_0 \times d} \le \frac{4.2}{f_e} & \dots \end{cases} (3)$$

$$\frac{h}{L} = \frac{21}{450} = 0.047$$

$$\frac{1}{16} = 0.063$$

$$\frac{1}{16} = 0.063 > \frac{h}{L} = 0.041$$

La première condition n'est pas vérifiée, donc la vérification de la flèche est nécessaire.

La flèche totale est définie d'après le **BAEL91** (art B.6.5, 2) comme suit :

$$\Delta f = f_{vg} + f_{ip} - f_{ig} - f_{ij}$$

Avec:

 $f_{\rm ig}\, {\rm et}\, f_{\rm vg}\,$: la flèche de l'ensemble des charges permanentes (instantanée ou différés).

 f_{ij} : la flèche instantanée due à l'ensemble des charges permanentes appliquées au moment de la mise en œuvre des cloisons (poids propre + cloisons).

 f_{ip} : La flèche instantanée de l'ensemble des charges permanentes et surcharge d'exploitation.

Valeur limite de la flèche BAEL91 (art B.6.5, 2);

Pour les éléments reposant sur deux appuis ou plus (poutre et dalle), la flèche est limitée à :

$$\frac{L}{500}$$
 si la portée $1 \le 5$ m.

Pour une portée inférieur à 5m, la flèche admissible $f_{adm} = \frac{L}{500} \Rightarrow f_{adm} = \frac{450}{500} = 0.9cm$

Les propriétés de la section :

$$y = 4.81 \ cm \ ; \ I = 12.34 \ 10^3 cm^4 \ ; \ A_s = 3.8 cm^2$$

$$E_v = 3700.\sqrt[3]{f_{c28}} = 10818.87 \text{MPa.}$$
; $E_i = 3E_v = 32456.6 \text{MPa.}$

Calcul de I_0 :

$$y_G = \frac{b_0 \frac{h^2}{2} + (b - b_0) \frac{h_0^2}{2} + 15(A \times d + A' \times d')}{b_0 \times h + (b - b_0)h_0 + 15(A + A')} = 0.0756m$$

$$I_0 = \frac{b}{3} y_G^3 - (b - b_0) \; ((y_G - h_0)^3 / 3) + 15 \; [A \; (d - y_G)^2] \; + b_0 \; ((h - y_G)^3 / 3)$$

$$\Rightarrow I_0 = 2.2478 \times 10^{-4} m^4$$

$$\rho = \frac{A_s}{b_0 \times d} = \frac{3.8}{12 \times 18} = 0.0176$$

$$\lambda_{i} = \frac{0.05 \times f_{t28}}{\rho \times (2 + 3 \times \frac{b_{0}}{b})} \Rightarrow \lambda_{i} = \frac{0.05 \times 2.1}{0.0176 \times (2 + 3 \times \frac{12}{65})} \Rightarrow \lambda_{i} = 2.336$$

$$\lambda_{v} = 0.4 \times \lambda_{i} \Rightarrow \lambda_{v} = 0.934$$

• Evaluation des moments en travée :

 $q_{\rm jser} = 0.65 \times G$ La charge permanente qui revient à la poutrelle sans la charge de revêtement.

 $q_{\rm gser} = 0.65 \times G \;\;$ La charge permanente qui revient à la poutrelle.

 $q_{pser} = 0.65 \times (G+Q)$ La charge permanente et la surcharge d'exploitation.

$$q_{iser} = 0.65 \times (2.85 + 0.9) = 2.44 KN / m$$

$$q_{gser} = 0.65 \times 5.11 = 3.32 KN/m$$

$$q_{pser} = 0.65 \times (5.11 + 5) = 6.57 KN/m$$

$$M_{gser} = 0.9 \times \frac{q_g \times L^2}{8} \Rightarrow M_{gser} = 0.9 \times \frac{3.32 \times 4.5^2}{8} = 7.56 \text{ KN.m}$$

$$M_{jser} = 0.9 \times \frac{q_j \times L^2}{8} \Rightarrow M_{jser} = 0.9 \times \frac{2.44 \times 4.5^2}{8} = 5.56 \text{ KN.m}$$

$$M_{pser} = 0.9 \times \frac{q_p \times L^2}{8} \Rightarrow M_{pser} = 0.9 \times \frac{6.57 \times 4.5^2}{8} = 14.97 \text{ KN.m}$$

• Contraintes (σ_{\cdot}) :

$$\sigma_{js} = 15 \times \frac{M_{Jser} \times (d-y)}{I} \quad ; \quad \sigma_{gs} = 15 \times \frac{M_{gser} \times (d-y)}{I} \quad ; \quad \sigma_{ps} = 15 \times \frac{M_{pser} \times (d-y)}{I}$$

$$\sigma_{js} = 15 \times \frac{5.56 \times (0.18 - 0.048 \text{ l}) \times 10^5}{12328} \Rightarrow \sigma_{js} = 89.23 MPa$$

$$\sigma_{gs} = 15 \times \frac{7.56 \times (0.18 - 0.0481) \times 10^5}{12328} \Rightarrow \sigma_{gs} = 121.38MPa$$

$$\sigma_{ps} = 15 \times \frac{14.97 \times (0.18 - 0.048 \text{ l}) \times 10^5}{12328} \Rightarrow \sigma_{ps} = 240.22 MPa$$

Calcul de
$$\mu$$
: $\mu = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_S + f_{t28}}$ Si $\mu \le 0 \Rightarrow \mu = 0$

$$\mu_j = 1 - \frac{1.75 \times 2.1}{4 \times 0.0176 \times 89.23 + 2.1} = 0.561$$

$$\mu_g = 1 - \frac{1.75 \times 2.1}{4 \times 0.0176 \times 121.38 + 2.1} = 0.655$$

$$\mu_p = 1 - \frac{1.75 \times 2.1}{4 \times 0.0176 \times 240.22 + 2.1} = 0.807$$

Calcul des inerties fictives (I_f):

$$I_{fij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} \Rightarrow I_{fij} = \frac{1.1 \times 22478}{1 + 2.336 \times 0.561} = 10695 \text{cm}^4$$

$$I_{fig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} \Rightarrow I_{fig} = \frac{1.1 \times 22478}{1 + 2.336 \times 0.655} = 977273 \text{ cm}^4$$

$$I_{\text{fip}} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} \Rightarrow I_{fip} = \frac{1.1 \times 22478}{1 + 2.336 \times 0.807} = 8570.02 \text{ cm}^4$$

$$I_{\text{fvg}} = \frac{1.1 \times I_0}{1 + \lambda_{\text{v}} \times \mu_{\text{g}}} \Rightarrow I_{\text{fvg}} = \frac{1.1 \times 22478}{1 + 0.934 \times 0.655} = 15339 \text{cm}^4$$

Evaluation des flèches :

$$f_{ijser} = \frac{M_{jser} \times L^2}{10 \times E_i \times I_{fij}} \Rightarrow f_{ijser} = \frac{5.56 \times 4.5^2}{10 \times 324566 \times 10695} \times 10^8 = 3.24 \,\text{mm}$$

$$\mathbf{f}_{igser} = \frac{\mathbf{M}_{gser} \times \mathbf{L}^{2}}{10 \times \mathbf{E}_{i} \times \mathbf{I}_{fig}} \Rightarrow f_{igser} = \frac{7.56 \times 4.5^{2}}{10 \times 324566 \times 9772.73} \times 10^{8} = 4.83 \text{mm}$$

$$\mathbf{f}_{\text{vgser}} = \frac{\mathbf{M}_{\text{gser}} \times \mathbf{L}^{2}}{10 \times \mathbf{E}_{\text{v}} \times \mathbf{I}_{\text{fvg}}} \Longrightarrow f_{\text{igser}} = \frac{7.56 \times 4.5^{2}}{10 \times 1081887 \times 15339} \times 10^{8} = 9.23 \text{mm}$$

$$f_{ipser} = \frac{M_{pser} \times L^2}{10 \times E_i \times I_{fip}} \Rightarrow f_{ipser} = \frac{14.97 \times 4.5^2}{10 \times 32456.6 \times 8570.02} \times 10^8 = 10.9 \text{ mm}$$

La flèche totale Δf :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij} = 9.23 + 10.9 - 4.83 - 3.24 = 12.06 \text{mm} > f_{adm} = 9 \text{ mm}$$

Remarque:

La condition de flèche n'est pas vérifiée c'est pour cela que nous avons redimensionné la section de ferraillage de 2HA12+1HA14 = 3.8cm² à 3HA14+1HA12=5.75cm²

Les résultats de la flèche après augmentation de la section d'armature sont représentés dans le tableau ci-dessous

Tableau III.19 : Réévaluation de la flèche pour l'étage commerciale type 1

Doni (KN/		Mom (KN.1		Cont (MP	traint a)	I _f (cr	n ⁴)	Flèch	e (mm)
J	2.44	Mj	Mj 5.56		60.06	Ifij	14944	fj	2.32
g	3.32	Mg	7.56	σg	81.72	Ifig	13888	fg	3.4
p	6.57	Мр	14.9 7	σр	161.71	I _{fip}	12458	fp	7.5
					Ifvg	19920	fvg	7.11	

La flèche totale Δf :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij} = 7.11 + 7.5 - 3.4 - 2.32 = 8.9 \text{mm} < f_{adm} = 9 \text{ mm}$$

Donc la flèche est vérifiée.

III.1.1.5.2.Type 1 (étage courant):

• Vérification de l'effort tranchant :

$$\tau_U = \frac{V_{\text{max}}}{b_0 \times d} = \frac{15.864 \times 10^{-3}}{0.12 \cdot 0.18} = 0.734 MPa$$

La fissuration est peu nuisible et $\alpha = 90^{\circ}$

$$\bar{\tau} = min(\frac{0.2}{1.5}f_{c28};5MPa) = min(3.33;5MPa) = 3.33MPa$$

 $\tau_{\rm U} = 0.734$ MPa $\leq \bar{\tau} = 3.33$ MPa..... Condition vérifiée.

- Vérification des armatures longitudinales à l'effort tranchant aux voisinages des appuis :
- Appui de rive :

$$A_{l} > \frac{V_{u} \times \gamma_{s}}{f_{e}} = \frac{15.864*10^{-3} \times 1.15}{400} = 0.46 cm^{2}.$$

$$A_1 = 0.79 + 2.14 = 2.93 \text{cm}^2$$

$$\Rightarrow 2.93 \text{cm}^2 > 0.46 \text{cm}^2$$
 condition verifié.

Appui intermédiaire :

$$A_{l} > \left[V_{u} + \frac{M_{a}}{0.9 \times d} \right] \frac{\gamma_{s}}{f_{e}}$$

$$\Rightarrow \left[15.864 \times 10^{-3} + \frac{8.743 \times 10^{-3}}{0.9 \times 0.18} \right] \frac{1.15}{400} = 2.0 \, \text{lcm}^{2}.$$

$$A_{l} = 1.8 + 2.14 = 3.94 \, \text{cm}^{2}$$

$$\Rightarrow 3.94 \, \text{cm}^{2} > 2.0 \, \text{lcm}^{2}$$
 condition verifié.

• Vérification de la contrainte de cisaillement à la jonction table- nervure :

$$\tau_{\rm u} \le \tau_{\rm u}^- = \min(\frac{0.2}{1.5}.f_{\rm C28};5{\rm Mpa}) = 3.33{\rm Mpa}.$$

$$\tau_{u} = \frac{V_{u} \times \left(\frac{b - b_{0}}{2}\right)}{0.9 \times b \times d \times h_{0}} = \frac{15.864 \times 10^{-3} \left(\frac{0.65 - 0.12}{2}\right)}{0.9 \times 0.65 \times 0.18 \times 0.04} = 1MPa < 3.33MPa \cdot \dots \cdot \text{condition v\'erifi\'e}$$

Vérification à l'ELS:

a) Etat limite de compression du béton :

On vérifier la poutrelle la plus défavorable : type 1 (étage courant).

Les résultats sont résumés dans le tableau suivant :

Tableau III.10: Vérification des contraintes dans le béton.

type	position	M _{ser} (Kn.m)	As cm ²	y cm	I cm ⁴	σ _{bc} (Mpa)	$\overline{\sigma}_{bc}$ (Mpa)	vérification
Type 2	travée	8.898	2.14	3.75	7.6610^3	4.36	15	Vérifié
	inter	-6.318	1.8	3.5	6.6110^3	3.35	15	

b) Verification de la fleche:

Les résultats de la flèche sont représentés dans le tableau ci-dessous :

Donn (KN/		Mom (KN.1		Con (MP	traint a)	I _f (cr	m ⁴)	Flèche (mm)		
J	2.44	Mj	5.06	σj	141.29	I _{fij}	6812.4	fj	4.64	
						Ifig	6029.3	fg		
g	3.32	Mg	6.89	σg	192.25				7.13	
						Ifip	5570.6	fp		
p	4.3	Mp	8.93	σp 249					12.142	
				I _{fvg}	10623	fvg	10			

Tableau III.11 : Évaluation de la flèche pour l'étage courant type 1

$$f = 10.37 mm$$
 > $f^{adm} = 9 mm$

Remarque:

La condition de flèche n'est pas vérifiée c'est pour cela que nous avons redimensionné la section de ferraillage de 2HA8+1HA12 = 2.14 cm² à 3HA12=3.39cm²

Les résultats de la flèche après augmentation de la section d'armature sont représentés dans le tableau ci-dessous

Tableau III.12 : Réévaluation de la flèche pour l'étage courant type 1

Doi (KN	nné I/m)		oment (N.m)		ntraint MPa)	I _f (cm ⁴)	Flèche (mm)	
J	2.44	Mj	5.06	σj	90.69	Ifij	1005 7	fj	3.142
G	3.32	M g	6.89	σg	123.4	Ifig	9076	fg	4.737
р	4.3	M p	8.93	σр	159.8	Ifip	.7	fp	8.912
							1447 4	fvg	6.563

$$f = 7.596mm \qquad < \qquad f^{adm} = 9 mm$$

Donc la flèche est vérifiée.

- III.1.1.5.3.Type 3 (terrasse accessible):
- Vérification de l'effort tranchant :

$$\tau_U = \frac{V_{\text{max}}}{b_0 \times d} = \frac{13.617 \times 10^{-3}}{0.12 \cdot 0.18} = 0.63 MPa$$

La fissuration est peu nuisible et $\alpha = 90^{\circ}$

$$\stackrel{-}{\tau} = min(\frac{0.2}{1.5}f_{c28};5MPa) = min(3.33;5MPa) = 3.33MPa$$
 $\tau_U = 0.63 \quad MPa \leq \stackrel{-}{\tau} = 3.33MPa.....$ Condition vérifiée.

- Vérification des armatures longitudinales à l'effort tranchant aux voisinages des appuis :
- Appui de rive :

$$A_{l} > \frac{V_{u} \times \gamma_{s}}{f_{e}} = \frac{13.617*10^{-3} \times 1.15}{400} = 0.39 cm^{2}.$$

$$A_1 = 0.79 + 3.05 = 3.84$$
cm²

$$\Rightarrow$$
 3.84cm² > 0.39cm²

condition verifié.

• Vérification de la contrainte de cisaillement à la jonction table- nervure :

$$\tau_{\rm u} \le \tau_{\rm u}^- = \min(\frac{0.2}{1.5}.f_{\rm C28};5{\rm Mpa}) = 3.33{\rm Mpa}.$$

$$\tau_{u} = \frac{V_{u} \times \left(\frac{b - b_{0}}{2}\right)}{0.9 \times b \times d \times h_{0}} = \frac{13.617 \times 10^{-3} \left(\frac{0.65 - 0.12}{2}\right)}{0.9 \times 0.65 \times 0.18 \times 0.04} = 0.86MPa < 3.33MPa \cdots condition vérifiée$$

Vérification à l'ELS:

a) Etat limite de compression du béton :

On vérifier la poutrelle la plus défavorable : type 1 (étage courant).

Les résultats sont résumés dans le tableau suivant :

Tableau III.13: Vérification des contraintes dans le béton.

type	position	M _{ser} (Kn.m)	A _s cm ²	y cm	I cm ⁴	σ_{bc} (Mpa)	$\overline{\sigma}_{bc}$ (Mpa)	vérification
Type 3	Travée	11.074	3.05	4.38	10.30710^3	4.71	15	Vérifié
	Rive	-1.661	0.79	2.66	3.2410^3	1.36	15	

b) Verification de la fleche:

Commentaire:

La flèche ne sera pas vérifier avec le ferraillage de 2HA12+1HA10=3.05cm² d'après la vérification effectuée pour l'étage courant donc nous allons directement redimensionner la section d'armature avec 2HA14+1HA10 =3.87cm²

Travée:

$$M_{ser}^t = \! 11.074 \, KN.m \quad A_s \! = \! 3.87 \; cm^2$$

On doit vérifier $\sigma_{bc} \leq \sigma_{bc}^{-}$

$$\sigma_{bc} = \frac{M_{ser}^{\tau}}{I} \times y \ \sigma_{bc}^{-} = 0.6 \times f_{c28} = 15 MPa.$$

Les résultats de la flèche après augmentation de la section d'armature sont représentés dans le tableau ci-dessous

Tableau III.14 : Évaluation de la flèche

Donné (KN/m)		Moment (KN.m)		Contraint (MPa)		I _f (cm ⁴)		Flèche (mm)	
J	2.44	Mj	6.17	σj	97.41	I _{fij}	10503	fj	3.67
g	3.4	Mg	8.60 6	σg	135.73	Ifig	9625.8	fg	5.58
p	4.37	Мр	11.0 62	σр	174.45	I _{fip}	9145.7	fp	10.58
					I_{fvg}	15221	fvg	7.55	

La flèche totale Δf :

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ji} = 10.58 + 7.55 - 5.58 - 3.67 = 8.88 \text{mm} < f_{adm} = 9 \text{ mm}$$

Donc la flèche est vérifiée

III.1.2. Etude des dalles pleines :

Une dalle pleine est une plaque horizontale mince en béton armé dont l'épaisseur est relativement faible par rapport aux autres dimensions, cette plaque peut être reposée sur 02 ou plusieurs appuis comme elle peut être assimilée à une console, et elle peut porter dans une ou deux directions.

Dans le cas de notre projet, les balcons sont réalisés en dalles pleines d'épaisseur 12 cm et qu'ils sont définis en trois type :

- 1. Dalle sur un seul appui.
- 2. Dalle sur deux appuis.
- 3. Dalle sur trois appuis.

On appelle:

Lx : la plus petite dimension du panneau.

Ly: la plus grande dimension du panneau.

FigureIII.7: panneau de dalle pleine

III.1.2.1. Dalle sur trois appuis:

Le calcul de ce type se fait selon la théorie des lignes de rupture

$$L_x=1.5m$$

 $L_y=3.1m$

On a
$$\frac{L_y}{2} = 1.55 \text{m} > L_x = 1.5 \text{m}$$

Alors
$$\begin{cases} M_{x} = \frac{PL_{x}^{2}L_{y}}{2} - \frac{2PL_{x}^{3}}{3} \\ M_{y} = \frac{PL_{x}^{3}}{6} \end{cases}$$

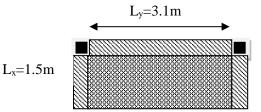


Figure III.8:Panneau D_{1.}

a) Evaluation des charges :

 $G=5.33KN/m^{2}$

 $Q=3.5KN/m^{2}$

On aura donc

A l'ELU :
$$P_U = 1.35G + 1.5Q = 12.45KN/m^2$$

A l'ELS :
$$P_S = G + Q = 8.83KN/m^2$$

A l'ELU:

Le calcul des sollicitations se fait on supposant que la dalle est simplement appuyée.

$$\begin{cases} M_{ox} = 15.41 KN.m \\ M_{oy} = 7 KN.m \end{cases}$$

$$\begin{cases} M_{x}^{t} = 0.85 \times M_{ox} = 13.09 \text{KN.m} \\ M_{y}^{t} = 0.85 \times M_{oy} = 5.95 \text{KN.m} \end{cases}$$

$$M_x^a = M_y^a = 0.5 \times M_{ox} = 7.71 KN.m$$

b) Effort tranchant:

$$V_{x} = \frac{P_{u} \times L_{x}}{2} \times \frac{L_{y}^{4}}{L_{x}^{4} + L_{y}^{4}} = 8.85KN$$

$$\tau_U = \frac{V_{\text{max}}}{b \times d_x} = 0.0885 \text{MPa} < \frac{0.07 \text{fc28}}{\gamma_b} = 1.167 \text{MPa}$$

Les armatures transversales ne sont pas nécessaires

c) Ferraillage:

Le calcul se fait à la flexion simple pour une bande de $(L_y \times e)m$ selon L_x et $(L_x \times e)$ m^2 selon L_y .

Les résultats de ferraillage sont résumés dans le tableau suivant :

Tableau III.15: ferraillage de la dalle sur trois appuis.

Localisation	Le sens	Mu	Acalculée	A _{opt} cm ²	Amin cm ²	St
		(KN.m)	cm ²			(cm)
Travées	Selon x-x	13.1	3.82	14HA8=7.04	1.20	25
	Selon y-y	5.95	1,71	6HA8=3.02	1.20	25
Appuis	Selon x-x	7.71	2.22	6HA8=3.02	1.20	25

A L'ELS:

$$\begin{cases} M_{ox} = 10.927KN.m \\ M_{oy} = 4.967KN.m \end{cases}$$

$$\begin{cases} M_{x}^{t} = 0.85 \times M_{ox} = 9.28 KN.m \\ M_{y}^{t} = 0.85 \times M_{oy} = 4.22 KN.m \end{cases}$$

$$M_x^a = M_y^a = 0.5 \times M_{ox} = 0.546 KN.m$$

d) Etat limite de compression du béton :

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tableau III.16: Les contraintes dans le béton de la dalle sur trois appuis.

Localisation	Le sens	Mser (KN.m)	Y (cm)	I (cm ⁴)	$\sigma_{\!\scriptscriptstyle bc}$	$\overline{\sigma_{_{bc}}}$
					(MPa)	(MPa)
Travées	Selon x-x	9.28	2.29	7518.23	2.83	15
	Selon y-y	4.22	2.17	3288.21	2.17	15
Appuis	Selon x-x	0.546	1.57	3619.13	0.24	15

e) Etat limite de déformation :

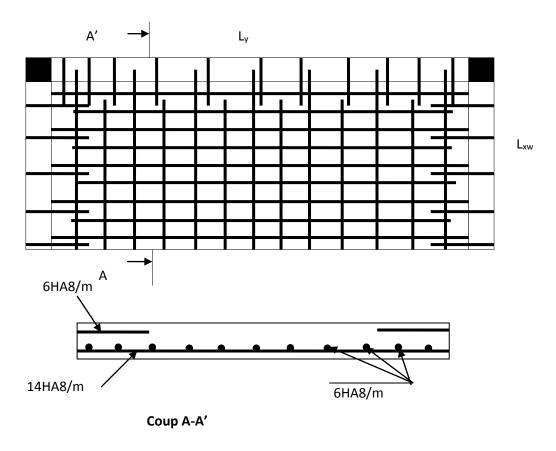
- Vérification de la flèche :

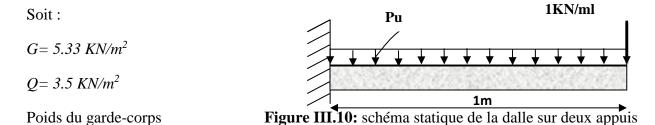
La vérification de la flèche est nécessaire si les conditions suivantes ne sont pas satisfaites

$$e \geq \max\left[\left(\frac{1}{16}, \frac{M_{tx}}{20*M_{0x}}\right)l\right]...(1)$$

$$A_t \le \frac{2*b*d}{f_e}.....(2)$$

Les deux conditions sont vérifiées, la vérification de la flèche est inutile.




Figure N°III. 9: Schéma de ferraillage de la dalle pleine Sur trois appuis

III.1.2.2. Dalle sur 2 appuis : C'est un balcon de type console (dalle sur un seul appui),

On a: Lx = 1m,

$$L_y = 3.7 \text{ m}.$$

Ce type de dalle se calcule comme une console soumise à la flexion simple.

 $q_{mur} = (G_{brique\ creuse} + G_{enduit\ ciment} + G_{enduit\ platre})^* H_{mur}$

$$q_{mur}$$
 =(1.35 + 0.27 + 0.2) * 1.1 = 1.82 * 1.1 = 2.002 KN/m

$$q_u$$
=2.002 * 1.35 * 1 ml = 2.70 KN

a) Calcul des sollicitations :

A l'ELU:

$$Pu = (1,35 G + 1.5 Q)$$

$$Pu = (1.35 \times 5.33 + 1.5 \times 3.5) = 12.45 \text{ KN/m}$$

$$Mu = [(12.45 \times 1^2)/2] + 2.7 \times 1 = 8.925KN.m$$

$$Vu = (12.45 \times 1) + 0.27 = 15.15 \text{ KN}$$

Le calcul se fait à la flexion simple :

$$\mu_{bu} = \frac{8.925 \times 10^{-3}}{1 \times 0.10^{2} \times 14.2} = 0.0623, \quad \mu_{bu} < \mu_{l} = 0.392 \Longrightarrow A' = 0$$

$$\alpha$$
=0.081; Z= 0.0968cm

$$As = (8.925 \times 10^{-3}/0.0968 \times 348) = 2.65 \text{cm}^2/\text{ml}.$$

$$A_{min} = 0.23 \times b \times b_0 \times f_{t28} / f_e = 1.2 \text{ cm}^2 / \text{ml}.$$

$$A_{min} < A_s$$

Donc on adopte $A_t=2.65 \text{cm}^2/\text{ml}$. On choisit4HA10/ml = $3.14 \text{cm}^2/\text{ml}$.

Les armatures de répartition :

$$A_y = (A_t/3) = (3.14/3) = 1.047 cm^2/ml.$$

On choisit $3HA8/ml = 1.51 \text{ cm}^2/ml$.

Vérification de l'espacement :

$$S_t \le \min (2,5h, 25 \text{ cm})$$

$$S_t \le \min (2.5 \times 12, 25 \text{cm})$$

 $S_t \le 25cm$

On a choisi 4HA10, soit $S_t = 100/4 = 25$ cm donc c'est vérifiée.

b) Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} = \frac{15.15 \times 10^{-3}}{1 \times 0.1} = 0.1515 Mpa < 0.07 \times \frac{fc_{28}}{\gamma_b} = 1.16 Mpa.$$

⇒ Les armatures transversales ne sont pas nécessaires.

A l'ELS:

$$P_S = (G+Q)$$

$$Ps = (5.33+3.5) = 8.83 \text{ KN/m}$$

$$Ms = [(8.83 \times 1^2)/2] + 2.002 \times 1 = 6.417 \text{ KN. } m$$

c) Vérification de σ_{bc}:

$$y = 2.63 \text{ cm}$$
 $I = 3164.71 \text{ cm}^4$

d) Calcul de σ_{bc} :

 $\sigma_{bc} = \frac{M_{ser}}{I} y = 5.33 \text{ MPa} < 15 \text{MPa}...$ pas de risque de fissuration du béton.

Vérification de σ_{st} :

$$\sigma_{st} = 15 \times [M_{ser} \times (d_x - y)]/I = 224.16MPa.$$

$$\overline{\sigma}_{st} \le \min\left(\frac{2}{3}fe \; ; \; 110\sqrt{\eta \times f_{t28}}\right) = \min\left(266, 66 \; ; 201, 63\right) = 201, 63 \; MPa \; \dots \; Fissuration \; nuisible$$

Avec: $\eta=1.6$

e) Vérification de σ_{st} :

$$\sigma_{st} = 15 \times [M_{ser} \times (d_x - y)]/I$$

$$\sigma_{st} = [15 \times 6.417 \times 10^{-3} \times (0.1 - 0.0289)]/3780 \times 10^{-8} = 181.04 MPa. < 201.63 MPa$$

f) La flèche

1) La Heche:
$$\frac{h_t}{l} = \frac{0.12}{1} = 0.12 \text{m} > \text{max } \left[\frac{3}{80}, \frac{1}{20}\right] = 0.05 \qquad condition \ v\'{e}rifi\'{e}e$$

$$\frac{A_S}{b*d} = 0.00393 < \frac{2}{f_e} = 0.005 \qquad condition \ v\'{e}rifi\'{e}e$$

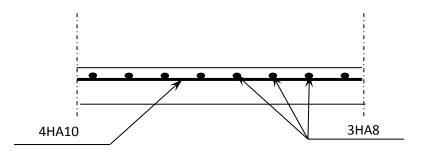


Figure III. 11 : Schéma de ferraillage de la dalle pleine sur un seul appui

III.1.2.3. Dalle sur 3 appuis : c'est une dalle de type console (dalle sur un seul appui)

 $L_x = 0.9 m$

 $L_y = 3.35m$

 $G = 5.33 \text{ KN/m}^2$

 $Q=3.5 \text{ KN/m}^2$

$$\frac{Lx}{L_y}$$
 = 0.27 < 0.4 la dalle travaille comme une console

a) Calcul des sollicitations :

A l'ELU:

$$P_u = (1,35 G + 1.5 Q)$$

$$P_u = (1.35 \times 5.33 + 1.5 \times 3.5) = 12.45 \text{ KN/m}$$

$$M_u = [(12.45 \times 0.9^2)/2] = 10.084 KN.m$$

$$V_u = 12.45 \times 0.9 = 11.21 \text{ KN}$$

Le calcul du ferraillage se fait à la flexion simple :

$$\mu_{bu} = \frac{10.084 \times 10^{-3}}{1 \times 0.10^{2} \times 14.2} = 0.071, \quad \mu_{bu} < \mu_{l} = 0.392 \Longrightarrow A' = 0$$

 α =0.092 ; Z= 0.0963 m

$$A_s = (10.084 \times 10^{-3}/0.0963 \times 348) = 3.01 \text{cm}^2/\text{ml}.$$

$$A_{min} = 0.23 \times b \times b_0 \times f_{t2} = 1.2 \text{ cm}^2/\text{ml}.$$

 $A_{min} < A_s$

Chapitre III:

Etude des éléments secondaires

Donc on adopte $A_t=3.01$ cm²/ml.

On choisit $4HA10/ml = 3.14cm^2/ml$.

Les armatures de répartition :

$$A_y = (A_t/3) = (3.14/3)=1.047 cm^2/ml$$
.

On choisit $3HA8/ml = 1.51 \text{ cm}^2/ml$.

Vérification de l'espacement :

$$S_t \le \min (2,5h, 25 \text{ cm})$$

$$S_t \leq \min(2.5 \times 12, 25 \text{cm})$$

 $S_t \le 25cm$

On a choisi 4HA10, soit $S_t = 100/4 = 25$ cm donc c'est vérifiée.

b) Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} = \frac{11.21 \times 10^{-3}}{1 \times 0.1} = 0.112 Mpa < 0.07 \times \frac{fc_{28}}{\gamma_b} = 1.16 Mpa.$$

⇒ Les armatures transversales ne sont pas nécessaires.

A l'ELS:

$$P_S = (G+Q)$$

$$P_S = (5.33+3.5) = 8.83 \text{ KN/m}$$

$$M_S = [(8.83 \times 0.9^2)/2] = 3.58KN.m$$

c) Vérification de σ_{bc}:

$$y = 2.63 cm$$
 $I = 3164.71 cm^4$

d) Calcul de σ_{bc} :

$$\sigma_{bc} = \frac{M_{ser}}{I} y = 2.975 \text{MPa} < 15 \text{MPa}...$$
 pas de risque de fissuration du béton.

Vérification de σ_{st} :

$$\sigma_{st} = 15 \times [\mathbf{M}_{ser} \times (\mathbf{d}_x - \mathbf{y})]/\mathbf{I} = 125.06MPa$$

$$\bar{\sigma}_{st} \leq \min\left(\frac{2}{3} fe ; 110\sqrt{\eta \times f_{t28}}\right) = \min\left(266, 66 ; 201, 63\right) = 201, 63 MPa \dots$$
 Fissuration nuisible

Avec: $\eta=1.6$

e) La flèche:

$$\frac{h_t}{l} = \frac{0.12}{0.9} = 0.13 \text{m} > \text{max } \left[\frac{3}{80}, \frac{1}{20}\right] = 0.05 \qquad condition \ v\acute{e}rifi\acute{e}e$$

$$\frac{A_S}{b*d} = 0.00314 < \frac{2}{f_e} = 0.005 \qquad condition \ v\acute{e}rifi\acute{e}e$$

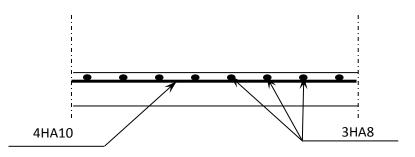


Figure N°III. 12 : Schéma de ferraillage de la dalle pleine sur trois appuis

III.1.2.4. Dalle sur 4 Appuis avec ouverture pour ascenseur:

$$G = 5.33KN / m^2$$

$$Q = 2.5KN/m^2$$

$$L_{x} = 3.7m$$

$$L_{y} = 5.3m$$

$$\Rightarrow r = \frac{l_{x}}{l_{y}} = 0.7 > 0.4$$

On prend: e = 12 cm

La dalle travaille selon les deux sens « lx, ly»

a) Calcul des Sollicitations A l'ELU:

$$qu = 1.35 G + 1.5Q = 10.95 \text{ KN/m}^2$$

$$\mu_{x} = 0.0684$$

$$\mu_y = 0.4320$$

$$M_x^0 = 10.25 KN.m$$
 $M_y^0 = 4.43 KN.m$

• En travée :
$$M_x^t = 8.71 KN.m$$
 $M_y^t = 3.77 KN.m$

• **En appui :**
$$M_a^x = M_a^y = -4.1 KN.m$$

b) Ferraillages:

Tableau III.17: Ferraillages dalle sur 4 appuis

sens		M(KN.m)	μ_{bu}	α	Z(m)	A _{cal} (cm ² /ml)
Travée	XX	8.71	0.036	0.046	0.128	1.96
	уу	3.77	0.016	0.02	0.129	0.84
Appui	XX	4.1	0.017	0.022	0.129	0.91

• la condition de non fragilité :

$$e \ge 12 \text{ cm et } \rho > 0.4 \longrightarrow A_x^{min} = \rho_0 \times \frac{(3-\rho)}{2} \times b \times e \longrightarrow A_x^{min} = 1.38 \text{ cm}^2$$

$$A_y^{min} = \rho_0 \times b \times e \longrightarrow A_y^{min} = 1.2 \text{cm}^2$$

On adopte:

En appuis : $A = 4HA8=2.01cm^2/ml$ En travée : $A_x = 4HA10 = 3.14 \text{cm}^2/\text{ml}$

 $A_y = 4HA8 = 2.01cm^2/ml$

Espacement des armatures :

En travée :

Sens x-x:
$$St_x \le min(3e, 33cm) = 33cm$$
; on adopte $St_x = 25cm$

Sens y-y:
$$St_x \le min (4e, 45cm) = 45 cm$$
; on adopte **St**_y = **25** cm

• En appuis:

 $St \le min (3e, 33cm) = 33 cm$; on adopte St = 25 cm

b) Vérifications à l'ELU:

L'effort tranchant:

On doit vérifier que :
$$\tau_u = \frac{v_u^{max}}{b \times d} \le \tau_{adm} = 0.07 \times \frac{fc_{28}}{\gamma_b} = 1.167 MPa$$

$$\begin{cases} V_u^x = \frac{(p_u \times l_y)}{2} \times \frac{l_x^4}{(l_x^4 + l_y^4)} = 23.45 KN \\ V_u^y = \frac{(p_u \times l_x)}{2} \times \frac{l_y^4}{(l_x^4 + l_y^4)} = 16.37 KN \end{cases}$$

$$\tau_u = \frac{v_u^{max}}{b \times d} = \frac{23.45 \times 10^{-3}}{(\ 1 \times 0.13\)} = -0.18 \text{MPa} < \tau_{adm} = 0.07 \times \frac{fc_{28}}{\gamma_b} = 1.167 MPa \dots \text{v\'erifi\'ee}$$

c) Calcul des Sollicitations A l'ELS:

$$q_s = G + Q = 7.83KN/m$$

$$\begin{cases} \mu_x = 0.0684 \\ \mu_y = 0.4320 \end{cases}$$

$$M_{\rm x}^0 = 7.96 KN.m$$

$$M_y^0 = 4.63KN.m$$

• En travée :
$$M_{xser}^t = 6.77 KN.m$$
 $M_{yser}^t = 3.94 KN.m$

$$M_{vser}^t = 3.94KN.m$$

d) Vérifications à l'ELS:

• État limite de compression du béton :

On a une fissuration peu nuisible \Rightarrow on vérifiée la contrainte de compression dans le béton

$$\sigma_{bc} = \frac{Mt_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \,\mathrm{MPa}$$

Sens x-x:

$$A_x = 3.14 \text{cm}^2/\text{ml}$$
 $b = 100 \text{cm}$ $d = 13 \text{ cm}$
 $I = 5.6087 \times 10^{-5} \text{m}^4$

$$y = 3.06 cm$$

$$\sigma_{bc} = \frac{Mt_{ser} \times y}{I} = 3.69MPa < 15 MPa \dots$$
 Vérifiée

• Sens y-y:

$$A_y = 2.01 \text{ cm}^2$$
 $y = 2.51 \text{cm}$; $I = 3.84 \times 10^{-5} \text{m}^4$.

$$\sigma_{bc} = \frac{Mt_{ser} \times y}{I} = 2.58MPa < 15 MPa \dots$$
 Vérifier

e)Vérification de la flèche :

La vérification de la flèche est nécessaire si l'une des conditions suivantes n'est pas vérifiée Sens x-x:

1.
$$\frac{e}{l_X} > \max \left[\frac{3}{80}; \frac{M_X^t}{20 \times M_{0X}} \right]$$
non vérifiée. **BAEL91 (Art .L.IV, 10)**

Sens y-y:

1.
$$\frac{e}{ly} > \max \left[\frac{3}{80}; \frac{M_y^t}{20 \times M_{0y}} \right]$$
....non vérifiée.

Les conditions de flèche ne sont pas vérifiées dans les deux sens donc on doit la vérifiée Les tableaux suivant illustrent les résultats de la flèche :

$L_{x}(m)$	AS(cm ²)	M _{jser} (KN.m)	Mgser(KN.m)	M _{pser} (KN.m)	I (cm ⁴)	I ₀ (cm ⁴)
3.7	3.14	4.020	4.608	6.770	5608.7	29549.5
y (cm)	I _{fji} (cm ⁴)	I _{fgi} (cm ⁴)	I _{fpi} (cm4)	I _{fgv} (cm ⁴)	f _{ji} (cm)	fgi(cm)
3.06	32505	325050	23712	32505	0.052	0.06
f _{pi} (cm)	f _{gv} (cm)	Δf (cm)	f _{adm} (cm)			
0.12	0.179	0.187	0.74			

Tableau III.18 : résultat de la vérification de la flèche suivant x-x

Tableau III.19: résultat de la vérification de la flèche suivant y-y

L _y (m)	As(cm ²)	M _{jser} (KN.m)	Mgser(KN.m)	M _{pser} (KN.m)	I (cm ⁴)	I ₀ (cm ⁴)
5.3	2.01	2.339	2.68	3.937	3844.81	29037
y (cm)	I _{fji} (cm ⁴)	I _{fgi} (cm ⁴)	$I_{fpi}(cm^4)$	$I_{fgv}(cm^4)$	f _{ji} (cm)	fgi(cm)
2.51	31941	31941	31941	31941	0.063	0.073
f _{pi} (cm)	fgv(cm)	Δf (cm)	f_{adm}			
0.107	0.218	0.189	1.06			

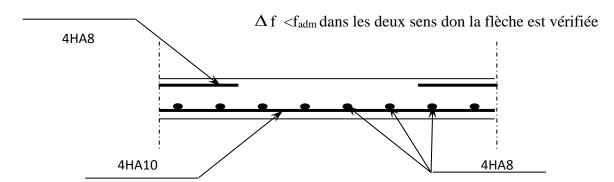


Figure III.13 : Schéma de ferraillage de la dalle pleine sur quatre appuis

III.1.3. Etude de l'ascenseur :

C'est un appareil au moyen duquel on élève ou on descend des personnes aux différents niveaux du bâtiment, il est constitué d'une cabine qui se déplace le long d'une glissière verticale dans la cage d'ascenseur munie d'un dispositif mécanique.

Dans notre structure on utilise un ascenseur pour huit (08) personnes dont les caractéristiques sont les suivantes :

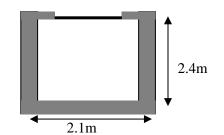
- L_y: Longueur de l'ascenseur=240cm.
- L_x: Largeur de l'ascenseur=210cm.
- H: Hauteur de l'ascenseur=220cm.
- F_c : Charge due à la cuvette = 145KN.
- P_m : Charge due à l'ascenseur = 15KN.
- D_m : Charge due à la salle des machines = 51KN.
- La charge nominale est de 630 kg.
- La vitesse V = 1m/s.

surface

Donc:
$$g = D_m + P_m + P_{personnes} = 51 + 15 + 6.3 = 72.3KN$$
.

III.1.3.1. Etude de la dalle de l'ascenseur :

La dalle du local des machines doit être dimensionnée pour reprendre des charges importantes


donc

une

On a
$$l_x = 2.1m \text{ et}$$
 $l_y = 2.4m$
 $\rho > 0.4 \Rightarrow \frac{l_x}{45} \le e \le \frac{l_x}{40} \Rightarrow 4.67cm \le e \le 6cm$

e≥11cm =>2H de coupe-feu

On prend e=15cm

 $S = 2.1 \times 2.4 = 5.04m^2$.

Figure III.14: Cage d'ascenseur.

III.1.3.2.Evaluation des charges et surcharges :

$$G_1 = 25 \times 0.15 = 3.75 KN/m^2$$
 Poids de la dalle en béton armé.

$$G_2 = 20 \times 0.02 = 0.4 \, \text{KN/m}^2$$
 Poids du revêtement en béton (e=2cm).

$$G' = G_1 + G_2 = 4.15 KN / m^2$$
.

$$G'' = \frac{Fc}{S} = \frac{145}{5.04} = 28.77 KN / m^2$$
. Poids de la machine.

$$G_{totale} = G' + G'' = 32.92 KN / m^2$$
.

$$Q = 1KN/m^2.$$

III.1.3.3.Cas d'une charge répartie :

III.1.3.3.1. Calcul des sollicitations :

• **A l'ELU**:
$$q_u = 1.35 \times G_{totale} + 1.5 \times Q = 45.94 KN / m^2$$
.

$$\rho = \frac{l_x}{l_y} = 0.88 > 0.4 \Rightarrow$$
 La dalle travaille dans les deux sens.

$$\rho = 0.88 \Rightarrow \begin{cases} \mu_x = 0.0476 \\ \mu_y = 0.7438 \end{cases}$$

Sens x-x':
$$M_0^x = \mu_x \times q_u \times l_x^2 \Longrightarrow M_0^x = 9.64 \text{KN.m}$$

Sens y-y':
$$M_0^y = \mu_y \times M_0^x \implies M_0^y = 7,17 \text{KN.m}$$

.III.1.3.3.2.Calcul du moment réel :

- En travée :

Sens x-x':
$$M_t^x = 0.85 \times M_0^x = 8.19 \text{KN.m}$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 6.09 KN.m$$

- En appui:

$$M_a^x = M_a^y = -0.4 \times M_0^x = -3.86 \text{KNm}$$

III.1.3.3.3.Calcul du ferraillage:

On fera le calcul de la dalle pour une bande de 1m de longueur et de 15cm d'épaisseur à la flexion simple avec $d_x \approx d_y = 13cm$.

Tableau20 : ferraillage de la dalle d'ascenseur.

Sens		M (KN.m)	$\mu_{\scriptscriptstyle bu}$	α	Z (m)	A _{cal} (cm ² /ml)	A _{adopt} (cm ² /ml)
Travée	X-X	8.19	0,0341	0,0434	0,1277	1,84	4T10=3,14
	у-у	6.09	0,0254	0,0322	0,1283	1,36	4T10=3,14
appui	X-X	-3,86	0,0161	0,0203	0,1289	0,86	4T8=2.01

• Vérification à l'ELU:

a) Condition de non fragilité :

En travée :

On calcule A_{\min} :

$$\begin{vmatrix} h_0 > 12cm \\ \rho > 0.4 \end{vmatrix} \Rightarrow \begin{cases} A_{\min}^x = \rho_0 \times \frac{3 - \rho}{2} \times b \times h_0 \\ A_{\min}^y = \rho_0 \times b \times h_0 \end{cases}$$

On a des HA
$$f_e E400 \Rightarrow \rho_0 = 0.0008$$

$$h_0 = e = 15cm$$

$$b = 100cm$$

$$\rho = 0.88$$

$$\begin{cases} A_{\min}^{x} = 1.27cm^{2} / ml \\ A_{\min}^{y} = 1.2cm^{2} / ml \end{cases}$$

$$A_t^y = 4T10 = 3,14cm^2 / ml > A_{\min}^y = 1.2cm^2 / ml.$$
 Vérifiée.

$$A_t^y > \frac{A_x^t}{4}$$
Vérifiée.

En appui:

$$A_t^x = 4T8 = 2.01cm^2 / ml > A_{\min}^x = 1.27cm^2 / ml.$$

$$A_t^y = 4T8 = 2.01cm^2 / ml > A_{\min}^y = 1.2cm^2 / ml.$$

b) Calcul des espacements :

Sens x-x':
$$S_t \le \min(3e; 33cm) \Rightarrow S_t \le 33cm$$

on adopte $S_t = 25cm$

Sens y-y':
$$S_t \le \min(4e; 45cm) \Rightarrow S_t \le 45cm$$

on adopte $S_t = 25cm$

c)Vérification de l'effort tranchant :

$$\begin{split} \tau_u &= \frac{V_{\text{max}}}{b \times d} \\ \frac{0.07}{\gamma_b} \times f_{c28} &= 1.16 MPa \end{split}$$

 $\rho = 0.8 > 0.4 \Rightarrow$ Flexion simple dans les deux sens :

$$V_x = q_u \times \frac{l_x}{2} \times \frac{l_y^4}{l_y^4 + l_x^4} = 30.41KN$$

$$V_y = q_u \times \frac{l_y}{2} \times \frac{l_x^4}{l_x^4 + l_y^4} = 20.37KN$$

$$\tau_u \leq \bar{\tau} = 3.33MPa$$

(Pas de risque de rupture par cisaillement)

$$\Rightarrow \tau_u = \frac{30.41 \times 10^{-3}}{1 \times 0.13} = 0.23 MPa < 1.16 MPa \dots C'est vérifié (les armatures)$$

transversales sont pas nécessaires)

• Vérification à l'ELS:

$$q_{ser} = G_{totale} + Q = 32.92 + 1 = 33.92 KN / m^2$$

 $v = 0.2$

Sens x-x':
$$M_0^x = \mu_x \times q_{ser} \times l_x^2 \Longrightarrow M_0^x = 8.167 \text{KNm}$$

Sens y-y':
$$M_0^y = \mu_y \times M_0^x \implies M_0^y = 6.710 KNm$$

Sens x-x':
$$M_t^x = 0.85 \times M_0^x = 6.942 KNm$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 5.704 KNm$$

a) Vérification des contraintes :

Sens x-x' y-y':

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

$$y = 3.79cm$$

$$I = 5608.74 \, cm^4$$

$$\sigma_{bc} = 3.79 MPa < \overline{\sigma}_{bc} = 15 MPa.....Vérifiée$$

b) Vérification de la flèche :

On doit vérifier les deux conditions suivantes

Sens x-x

BAEL91 (Art .L.IV, 10)

• Sens y-y:

2.
$$\frac{A_s}{b \times d} = 0.24 \le \frac{2}{f_e} = 0.005$$
 Vérifiée.

Les deux conditions son vérifier Donc le calcul de la flèche est inutile

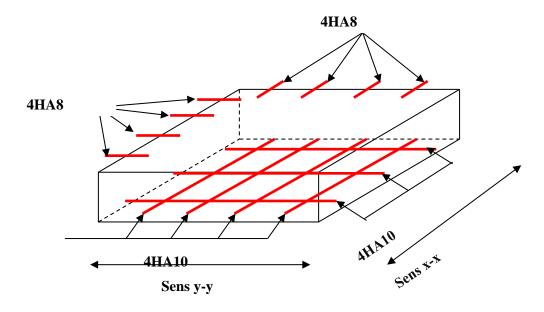
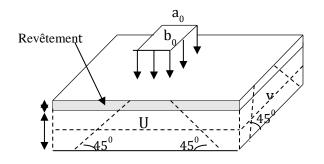


Fig. III.15: Schéma de ferraillage de la dalle de l'ascenseur.

III.1.3.4.Cas d'une charge concentrée :


La charge concentrée q est appliquée à la surface de la dalle sur une aire $a_0 \times b_0$, elle agit uniformément sur une aire $\mathbf{u} \times \mathbf{v}$ située sur le plan moyen de la dalle.

 $a_0 \times b_0$: Surface sur laquelle elle s'applique la charge donnée en fonction de la vitesse.

 $\mathbf{u}\times\mathbf{v}\;$: Surface d'impact.

 a_0 et_u: Dimensions suivant le sens x-x'.

 l_y et_{a₀}: Dimensions suivant le sens y-y'.

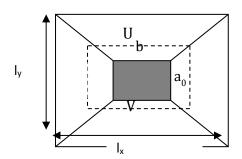


Figure III.16: Schéma représentant la surface d'impact.

On a une vitesse:
$$V = 1m/s \Rightarrow \begin{cases} a_0 = 80cm & u = a_0 + h_0 + 2 \times \xi \times h_1. \\ b_0 = 80cm & v = b_0 + h_0 + 2 \times \xi \times h_1. \end{cases}$$

On a un revêtement en béton d'épaisseur : $h_1 = 2cm \Rightarrow \xi = 1$.

Donc:
$$\begin{cases} u = 80 + 15 + 2 \times 1 \times 2 = 99cm. \\ v = 80 + 15 + 2 \times 1 \times 2 = 99cm. \end{cases}$$

III.1.3.4.1. Evaluation des moments Mx et My du système de levage :

A. Calcul à l'ELU:

• Calcul des sollicitations :

$$\begin{cases} \mathbf{M}_{x1} = \mathbf{Q}_{\mathbf{u}} \times (\mathbf{M}_1 + \mathbf{v} \times \mathbf{M}_2). \\ \mathbf{M}_{y1} = \mathbf{Q}_{\mathbf{u}} \times (\mathbf{M}_2 + \mathbf{v} \times \mathbf{M}_1). \end{cases}$$
 Avec : Coefficient de poisson
$$\begin{cases} \mathbf{v} = \mathbf{0} \to \mathbf{ELU} \\ \mathbf{v} = \mathbf{0}.2 \to \mathbf{ELS} \end{cases}$$

On a:
$$g = D_m + P_m + P_{personnes} = 51 + 15 + 6.3 = 72.3KN$$

$$Q_u = 1.35 \times g = 1.35 \times 72.3 \implies Q_u = 97.605KN$$

Les moments M₁ et M₂ sont donnés en fonction de :

$$\rho = \frac{lx}{ly}$$
; $\frac{u}{lx}$; $\frac{v}{ly}$; $\rho = 0.88$; $\frac{u}{lx} = \frac{99}{210} = 0.471$; $\frac{v}{ly} = \frac{99}{240} = 0.413$

En utilisant l'abaque de **Piguaut** on obtient :

$$M_1 = 0.105$$
; $M_2 = 0.088$

- Evaluation des moments M_{x1} et M_{y1} du système de levage :

$$\begin{cases} M_{x1} = Q_{u} \times M_{1} \\ M_{y1} = Q_{u} \times M_{2} \end{cases} \Rightarrow \begin{cases} M_{x1} = 97.605 \times 0.105 = 10.25 \text{KN.m} \\ M_{y1} = 97.605 \times 0.088 = 8.59 \text{KN.m} \end{cases}$$

- Evaluation des moments dus au poids propres de la dalle a l'ELU :

$$\rho = 0.88 \Rightarrow \begin{cases} \mu_x = 0.0476 \\ \mu_y = 0.7438 \end{cases}$$

$$q = 1.35 G + 1.5 Q$$

$$q_u = 1.35 \times 4.15 + 1.5 \times 1 = 7.1025$$
KN/ml.

$$M_{x2} = \mu_x \times q_u \times l_x^2 \Longrightarrow M_{x2} = 1.49 \text{KNm}$$

$$M_{y2} = \mu_y \times M_{x2} \Rightarrow M_{y2} = 1.108KNm$$

- Superposition des moments Les moments agissant sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 11.74 \text{KNm} \\ M_y = M_{y1} + M_{y2} = 9.698 \text{KNm} \end{cases}$$

• Ferraillage:

Le calcul se fera pour une bande de 1m de longueur et en prenant $d_x \approx d_y = 13 \text{cm}$ et

En travée : $M_t^x = 0.85 \times 11.74 = 9.98 \text{KN.m}$

$$M_t^y = 0.85 \times 9.688 = 8.23 \text{KN.m}$$

En appuis :
$$M_a^y = M_a^x = -0.4 \times 11.74 = -4.7 \text{KNm}$$

Les résultats sont résumés dans le tableau suivant :

Tableau III .21: La section d'armature.

	M _t (KN.m)	M _a (KN.m)	At calculé (cm²/ml)	Aa calculé (cm²/ml)
Sens x-x'	9,98	4,7	2,25	1,05
Sens y-y'	8,23	4,7	1,85	1,05

• Vérification a l'ELU : On a un chargement concentré et FPN

$$St \le \begin{cases} \min(3e; 25cm) \to xx \\ \min(3e; 33cm) \to yy \end{cases} \Rightarrow St = 25cm$$

Chapitre III:

Tableau III .22: Vérification de la section d'acier.

Sens	A _{min} (cm ² /ml)	S _t (cm)	A_t^y	$A_t^x/4$	A _{adop} (cm ² /ml)
X-X	1.27	25	1.2	> 0.3175	en travée et en appui: $A_t^x = 4T10 = 3.14cm^2$
у-у	1.2	25	1.2	- 0.3173	en travée et en appui: $A_t^y = 4T10 = 3.14cm^2$

• Vérification au poinçonnement :

$$Q_{\rm u} \leq 0.045 \times U_{\rm c} \times e \times \frac{f_{\rm c28}}{\gamma_{\rm b}}$$

Avec : Q_u : Charge de calcul à l'état limite.

e:Epaisseur de la dalle.

 $\boldsymbol{U}_{\boldsymbol{c}}$: Périmètre du contour au niveau du feuillet moyen.

$$U_c = 2 \times (u + v) = 2 \times (99 + 99)$$

$$U_c = 396cm.$$

$$Q_u = 97.60KN; \gamma_b = 1.5$$

Après calcul on ne constate que 97,60KN ≤ 445,5KN

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_{\text{max}}}{b \times d} \le \bar{\tau}_u$$

On a $v = u \implies$ au milieu de $u : V_u = \frac{Q_u}{3 \times v} = 32.86KN$

Espacement des barres:

Sens x-x':
$$S_t = 25cm \le \min(2e; 25cm)$$

Sens y-y':
$$S_t = 25cm \le min(3e;33cm)$$

B. Calcul à l'ELS:

Les moments engendrés par le système de levage: $q_{ser} = g = 72.3KN$

$$\begin{cases} M_{x1} = q_{ser} \times (M_1 + \upsilon \times M_2) = 13.89 \text{KNm.} \\ M_{y1} = q_{ser} \times (M_2 + \upsilon \times M_1) = 13.88 \text{KNm.} \end{cases}$$

Les moments dus au poids propre de la dalle : $q_{ser} = 4.15 + 1 = 5.15 KN$

$$M_{x2} = \mu_x \times q_{ser} \times l_x^2 \Longrightarrow M_{x2} = 1.240 \text{KNm}$$

$$M_{y2} = \mu_y \times M_{x2} \Longrightarrow M_{y2} = 1.019 \text{KNm}$$

Superposition des moments :

Les moments en travée et en appuis :

Sens x-x':
$$M_t^x = 0.85 \times 15,13 = 12.86 KN.m$$

Sens y-y':
$$M_t^y = 0.85 \times 14,9 = 12.67 \text{ KN.m}$$

$$M_a^x = M_a^y = -0.4 \times M_0^x = -6.05 KNm$$

• Vérification des contraintes :

Sens x-x'

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

$$Y = 3.06cm$$

$$I = 0.4966 \times 10^4 \, cm^4$$

$$\sigma_{bc} = 7.92 MPa < \overline{\sigma}_{bc} = 15 \ MPa....V\acute{e}rifi\acute{e}e$$

Sens y-y'

$$Y = 3.06cm$$

$$I = 0.4966 \times 10^4 \, cm^4$$

$$\sigma_{bc} = 7.81 MPa < \overline{\sigma}_{bc} = 15 MPa....V\acute{e}rifi\acute{e}e$$

• Vérification de la fléche :

On doit vérifier les deux conditions suivantes

Sens x-x:

Sens y-y:

Les deux conditions de la flèche sont vérifiées. La vérification de la flèche n'est pas nécessaire

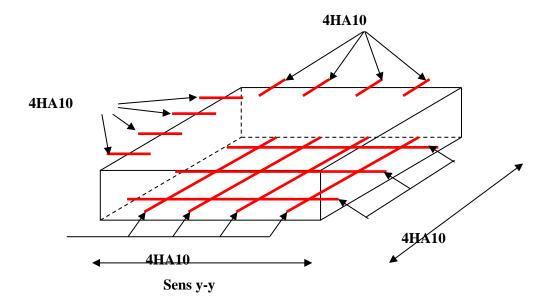


Figure. III.17: Schéma de ferraillage de la dalle pleine de la salle machine

III.2. Calcul de l'acrotère :

C'est un élément en béton armé, encastré au niveau du plancher terrasse et ayant pour rôle d'empêcher l'infiltration des eaux pluviales entre la forme de pente et le plancher terrasse.

III.2.1. Hypothèse de calcul:

- L'acrotère est sollicité en flexion composée.
- La fissuration est considérée comme préjudiciable.
- Le calcul se fera pour une bande de 1m.

III.2.2. Evaluation des charges et surcharges :

> Verticales

Tableau III.23: Charges et surcharges.

Surface (m ²)	G (KN/ml)	Q (KN/ml)
0.0984	2.68	1

Horizontales: (dues au séisme).

D'après le RPA99, l'acrotère est soumis à une force horizontale due au séisme :

Tel que :
$$F_{P} = 4 \times A \times C_{P} \times W_{P}$$

A : Coefficient d'accélération de zone obtenu dans le tableau (4-1) du RPA99pour la zone et le groupe d'usages appropriés.

C_P: Facteur de force horizontale variant entre 0.3 et 0.8 (TAB. 6.1 du RPA99).

W_P: poids de l'élément considéré.

Pour notre cas : - Groupe d'usage 2.

- Zone II_a (Bejaia).

$$\begin{cases} A = 0.15. \\ C_P = 0.8. \\ W_P = 2.68 KN / ml. \end{cases}$$

Donc: $F_p = 4*0.15*0.8*2.68 = 1.29 \text{ KN}$

NB: La section de calcul en flexion composée sera de (100*15) cm², car le calcul se fait pour une bande de un mètre linéaire.

III.2.3. Calcul des sollicitations :

a) Calcul du centre de pression :

$$x_{C} = \frac{\sum A_{i} * x_{i}}{\sum A_{i}}, y_{C} = \frac{\sum A_{i} * y_{i}}{\sum A_{i}}$$

Tel que:

$$\sum A_i = S$$

$$x_C = \frac{60 \times 15 \times (15/2) + 4 \times 14 \times (15 + 14/2) + 0.5 \times 4 \times 14 \times (15 + 14/3)}{0.0984} \times 10^{-6}$$

$$x_C = 0.0867m$$

 $y_C = 0.3214m$

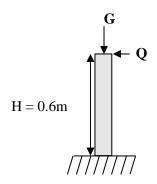


Figure.III.18: Sollicitation sur l'acrotère.

b) Moment engendré par les efforts normaux :

$$\begin{split} N_G &= 2.68 KN / ml \Rightarrow M_G = 0. \\ Q &= 1 KN / ml \Rightarrow M_Q = 1 \times 0.6 \Rightarrow M_Q = 0.6 KN.m. \\ F_P &= 1.29 KN \Rightarrow M_{F_P} = F_P \times y_C = 1.29 \times 0.3214 \\ \Rightarrow M_{F_P} &= 0.41 KN.m. \end{split}$$

NB: La section dangereuse se situe à l'encastrement.

Tableau III. 24: Différentes combinaisons à utiliser.

		Combinaison								
Sollicitation	RPA99	RPA99 ELU ELS								
	G+Q+E	$1,35\times G + 1,5\times Q$	G+Q							
N (KN)	2.68	3.62	2.68							
M (KN)	1.01	0.9	0.6							

c) Calcul de l'excentricité

$$e_1 = \frac{M_u}{N_u} = \frac{0.9}{3.62} = 0,2486m$$

$$\frac{H}{6} = \frac{0.6}{6} = 0.1m$$

$$\Rightarrow e_1 > \frac{H}{6} \Rightarrow \text{La section est partiellement comprimée.}$$

 $e_2 = e_1 + e_a tel que$:

e_a: Excentricité additionnelle.

e₁: Excentricité structurale (résultat des contraintes normales avant application des excentricités additionnelle).

$$e_a = \max(2cm; \frac{H}{250}) = \max(2cm; \frac{60}{250}) = 2cm$$

 $d'où: e_2 = 0.2486 + 0.02 = 0.2686m$

Calcul à la flexion composée, en tenant compte de façon forfaitaire de l'excentricité (e₃) du second ordre due à la déformation.

$$e_3 = \frac{3 \times l_f^2 \times (2 + \alpha \times \phi)}{10^4 \times h} \dots BAEL91$$

Tel que:

 α : Le rapport du moment du premier ordre dû aux charges permanentes et quasi-permanentes au moment total du premier ordre.

φ: Le rapport de la déformation finale dû au fluage à la déformation instantanée sous la charge considérée.

h : La hauteur de la section qui égale à 15 cm.

Lf: Longueur de flambement qui égale à $2 \times l_0$.

$$\alpha = \frac{M_G}{M_G + M_Q} = \frac{0}{0 + 0.6} = 0 \Rightarrow e_3 = \frac{3 \times (2 \times 0.6)^2 \times (2 + 0)}{10^4 \times 0.15} = 0.58cm.$$

$$d'où: e_t = e_2 + e_3 = 26.86 + 0.58 = 27.44cm.$$

Les sollicitations corrigées pour le calcul en flexion composée sont :

$$N_U = 3.62 KN \ et \ M_U = N_U * e_t = 3.62 * 0,2744 = 0,99 \ KN.$$

III.2.4. Ferraillage de l'acrotère :

a) à l'ELU:

$$h = 15 \text{ cm}$$
; $d = 13 \text{ cm}$; $b = 100 \text{ cm}$;

Le ferraillage est calculé à l'ELU, puis



Figure III.19: Section à ferrailler.

La vérification des contraintes se feront à l'ELS.

 $e_1 > \frac{H}{6} \Rightarrow$ La section est partiellement comprimée, le ferraillage se fait par assimilation à la flexion simple pour une section rectangulaire b×h soumise à un moment égal à :

$$M_f = M_u + N_u \times (d - \frac{h}{2}) = 0.99 + 3.62 \times (0.13 - \frac{0.15}{2}) = 1.19 \text{KN.m}$$

$$\mu_{bu} = \frac{M_f}{b \times d^2 \times \sigma_{ba}} = \frac{1.19 * 10^{-3}}{1 \times 0.13^2 \times 14.2} = 0.005 < \mu_l = 0.392 \, d'où : A's = 0.$$

$$\alpha = \frac{1 - \sqrt{1 - 2 \times \mu^{bu}}}{0.8} = \frac{1 - \sqrt{1 - 2 \times 0,005}}{0.8} = 0,0062$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.13 \times (1 - 0.4 \times 0.0118) = 0.13m$$

$$A_l = \frac{M_f}{z \times \sigma_s} = \frac{1.19 \times 10^{-3}}{0.13 \times 348} = 0.26 cm^2$$

Donc, la sectionà la flexion composées era:

$$A_S = A_l - \frac{N_u}{\sigma_{SL}} = 0.26 * 10^{-4} - \frac{3.62 * 10^{-3}}{348} = 0.16 cm^2$$

• condition de non fragilité :

$$A_{min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.57 \text{ cm}^2$$

 $A_{min} > A_s \Rightarrow$ on adopte $A_s = 4HA8 = 2$, 01 cm²/ml.

• Armatures de répartition :

$$A_r = A_u / 4 = 2.01 / 4 = 0.5025 \text{ cm}^2$$

$$A_r = 2.01 / 3 = 0.67 \text{cm}^2 \implies 4 \text{HA8} = 2.01 \text{ cm}^2 / \text{ml}.$$

• Espacement :

- 1. Armatures principale : $S_t \le 100/3 = 33.3$ cm \rightarrow on adopte $S_t = 25$ cm.
- 2. Armatures de répartitions : $S_t \le 60/3 = 20 \text{ cm} \rightarrow \text{on adopte } S_t = 20 \text{ cm}$.

• Vérification au cisaillement :

L'acrotère est exposé aux intempéries (fissuration préjudiciable).

$$\Rightarrow \overline{\tau_u} \le \min(0.1 \times f_{c28}; 3Mpa) \Rightarrow \overline{\tau_u} \le \min(2.5; 3Mpa) \Rightarrow \overline{\tau_u} \le 2.5Mpa$$

$$V_u = F_p + Q = 1.29 + 1 \implies V_u = 2.29 \text{ KN}$$

$$\tau_u = \frac{V_u}{b \times d} = \frac{2.29 \times 10^{-3}}{1 \times 0.13} \Rightarrow \tau_u = 0.018 MPa$$
.

 $\tau_u < \overline{\tau}_u \rightarrow$ Pas de risque de cisaillement

• Vérification de l'adhérence :

$$\tau_{se} = \frac{V_u}{0.9 \times d \times \sum \mu_i}; \sum \mu_i: \qquad \text{ La somme des périmètres des barres}.$$

$$\sum \mu_i = n \times \pi \times \phi = 4 \times \pi \times 0.8 = 10.08cm$$

$$\tau_{se} = \frac{2.29}{0.9 \times 0.13 \times 10.048 \times 10^{-2}} \times 10^{-3} = 0,.19 MPa$$

$$\overline{\tau_s} = 0.6 \times \psi_s^2 \times f_{t28} = 0.6 \times 1.5^2 \times 2.1 = 2.84 MPa$$

 $\Rightarrow \tau_{se} < \overline{\tau_{se}} \rightarrow$ Pas de risque par rapport à l'adhérence.

b) Vérification à l'ELS:

$$d = 0.13 \text{ m}$$
; $N_{ser} = 2.68 \text{ KN}$; $M_{ser} = Q \times h \Rightarrow M_{ser} = 0.6 \text{ KN.m}$; $\eta = 1.6 \text{ pour les HR}$

Vérification des contraintes :

$$\sigma_{\ bc} = N_{ser} \times y_{ser} \ / \mu_t \ ; \quad \sigma_{\ s} = \ 15 \times N_{ser} \times (d-y_{ser}) \ / \ \mu_t \ ; \label{eq:ser_ser_ser}$$

$$\overline{\sigma_s} = \min \left(\frac{2}{3} f_e; 150 \times \eta \right) \implies \overline{\sigma_s} = 240 MPa$$

Position de l'axe neutre :

$$c = \, d - e_1$$

e₁: distance du centre de pression "c" à la fibre la plus comprimée de la section.

$$e_1 = M_{ser}/N_{ser} + (d - h/2) \implies e_1 = (0.6/2.68) + (0.13 - 0.15/2) \implies e_1 = 0.279 \text{ m}$$

 $e_1 > d \implies$ "c" à l'extérieur de section $\Rightarrow c = 0.13 - 0.279 \Rightarrow c = -0.149 \text{ m}.$

Calcul de y_c :

$$y_c^3 + p \times y_c + q = 0$$

$$p = -3 \times c^2 + \frac{(d-c) \times 6 \times n \times A_s}{b} = -3 \times (-0.149)^2 + \frac{(0.13 + 0.149) \times 6 \times 15 \times 2.01 \times 10^{-4}}{1}$$
$$p = -0.062m^2$$

$$q = -2 \times c^{3} - (d - c)^{2} \times \frac{6 \times n \times A_{s}}{b} = -2 \times (-0.149)^{3} - (0.13 + 0.149)^{2} \times \frac{6 \times 15 \times 2.01 \times 10^{-4}}{1}$$
$$q = 0.005m^{2}$$

$$\Delta = q^2 + 4 \times \frac{p^3}{27} = -1,03 \times 10^{-5}$$

 $\Delta < 0 \Rightarrow$ L'equation admet trois solutions:

$$\begin{split} Y_1 &= a\cos(\frac{\varphi}{3}); & Y_2 &= a\cos(\frac{\varphi}{3} + 120); & Y_3 &= a\cos(\frac{\varphi}{3} + 20) \\ &\cos\varphi &= (\frac{3q}{2p})*\sqrt{(\frac{-3}{p})}, & a &= 2*\sqrt{\frac{-p}{3}}, & \varphi &= 147,29^\circ, & a &= 0,29 \\ Y_1 &= 19cm; & Y_2 &= -28.48cm; & Y_3 &= 10.35cm \end{split}$$

On choisit la solution qui vérifiée la condition suivante :

$$0 < Y_{ser} = (Y_c + C) < h = 15cm$$

$$Y_1=19 \text{ cm} \Rightarrow Y_1+C=4.1....Vérifiée.$$

$$Y_2 = -28,48 \text{ cm} \Rightarrow Y_2 + C = -43.38......$$
 N'est pas vérifiée.

$$Y_3=10.35$$
cm $\Rightarrow Y_3+C=-4.55...$ N'est pas vérifiée.

Donc on choisit $Y_C = 19cm \implies Y_{ser} = 4.1cm$

$$\mu_t = \frac{b \times y^2}{2} - 15 \times A \times (d - y) \Rightarrow \mu_t = 0.0202 \text{m}^3.$$

$$\sigma_{bc} = \frac{2.68 \times 10^{-3}}{0.0202} \times 0.041 \Longrightarrow \sigma_{bc} = 0.0054 Mpa < \overline{\sigma_{bc}} = 15 Mpa.$$

$$\sigma_s = 15 \times \frac{2.68 \times 10^{-3}}{0.0202} (0.13 - 0.041) \Rightarrow \sigma_s = 0.1771 Mpa \le \overline{\sigma}_{st} = 240 Mpa$$

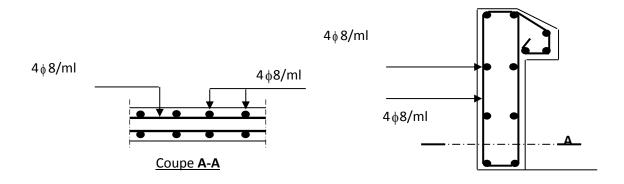


Fig III.20 : Schéma de ferraillage de l'acrotère.

(Terrasse accessible)

III.3. Calcul des escaliers:

$$G_v = 8.7 \ KN/m^2$$

$$G_p = 5.86 \text{ KN/m}^2$$

$$Q=2.5 \text{ KN/m}^2$$

III.3.1. Type 1(étages courants) Escalier à 2 volées:

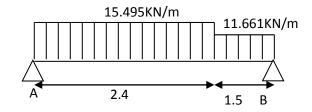


Figure III.21: Schéma statique volée 1.

III.3.1.1.Calcul des solicitations:

Volée

$$q_u$$
=1.35×8.7 +1.5×2.5 = 15.495 KN/m.

$$q_s$$
= 8.7 +2.5=11.2 KN/m.

Palier

$$q_u=1.35\times5.86+1.5\times2.5=11.661~KN/m$$
.

$$q_s$$
= 5.86+2.5=8.35 KN/m.

• Les reactions aux appuis :

Volée I

$$R_A + R_B = 2.4q_{uv} + 1.5q_{up} = 54.095 \text{ KN}$$

$$M/_B = 0 => R_A = \left[\frac{1.5^2}{2} * 11.661 + 2.40 \left(\frac{2.40}{2} + 1.5\right) * 15.495\right]/3.9$$

$$R_A = 29.11 \text{ KN}$$

$$M/_A = 0 => R_B = \left[\frac{2.40^2}{2} * 15.495 + 1.5\left(\frac{1.5}{2} + 2.40\right) * 11.661\right]/3.9$$

$$R_B = 25.57 \text{ KN}$$

Les efforts tranchants:

Tronçon I : $0 \le x \le 2.4 \text{ m}$

$$T(x) = R_A - q_{uv}x = 29.11-15.495x$$

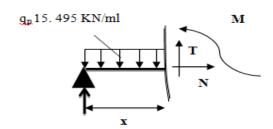


Figure .III.22: schéma statique des sollicitations du 1er tronçon

$$M(x) = R_A x - q_{uv} \frac{x^2}{2} = 29.11x - 7.748x^2$$

Tronçon II: $2.4 \le x \le 3.85$ m

$$T(x) = R_A - 2.4q_{uv}x - q_{up}(x-2.4)$$

$$M(x) = R_A x - 2.4(x - \frac{2.4}{2})q_{uv} - \frac{(x - 2.4)^2}{2}q_{up}$$

$$\frac{\partial M}{\partial x} = 0 = x = 1.87 \text{ m}$$

$$Mt_{max} = M(1.87) = 27.34 \text{ KN.m}$$

 $V_{max} = 25.57KN$

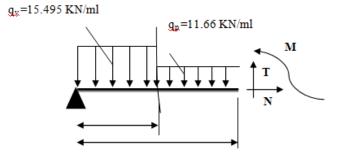


Figure.III.23 : schéma statique des sollicitations du 2em tronçon

• Calcul des moments reels:

 $M_t = 27.34 \text{ KN.m}$

$$M_a = -0.5*32.16 = -16.08 \text{ KN.m}$$

III.3.1.2.Le ferraillage:

Tableau III.25: 5 ferraillages de l'escalier type 1

Sens	M	μ _{bu}	α	Z(m)	A _{cal} (cm ²	A _{chois} (cm ² /ml	Armo	atures de	Espacement
	(KN.m)				/ ml))	repartitions		(cm)
							A_{calcu}	A_{chois}	
							1		
travée	27.34	0.08	0.11	0.143	5.48	5HA12=5.65	1.81	<i>4HA8</i> =	30
		6	2					2.01	
appui	16.08	0.05	0.06	0.146	3.16	4HA12=4.52	1.81	4HA8=	25
			5					2.01	

III.3.1.3Vérification à l'ELU:

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} = \frac{25.57 \times 10^{-3}}{1 \times 0.15} = 0.17 Mpa < 0.07 \times \frac{fc_{28}}{\gamma_b} = 1.16 Mpa...$$
Condition vérifiée.

• Calcul à l'ELS:

D'aprés le calcul RDM, nous avons eu les résultats suivants:

$$X = 1.87 \text{m}$$

$$Mt_{max}$$
=19.72 KN.m

$$M_a = -0.5*32.16 = -16.08 \text{ KN.m}$$

• Calcul de σ_{bc}:

$$\sigma_{bc} = \frac{M_{ser}}{I} y = 6.82 < 15 \text{ MPa}$$

$$y = 4.27$$
 cm

$$I = 1.2353 \ 10^{-4} \, \text{m}$$

• Vérification de la flèche :

$$\frac{e}{l_x} > \max \left[\frac{3}{80}; \frac{M_x^t}{20 \times M_{0X}} \right] => 0.046 > 0.0425.$$
 condition vérifiée.

$$\frac{A}{b \times d} \le \frac{4.2}{f_e} \Leftrightarrow 0.0038 < 0.0105.$$
 condition vérifiée

La vérification de la flèche n'est pas nécessaire.

La volée II:

Elle a les même dimensions que la volée I donc nous allons la ferrailler de la même manière

III.3.2.Type 2(étages commerciale) Escalier à 3 volées :

$$G_v = 8.7 \text{ KN/m}^2$$

$$G_p = 5.86 \text{ KN/m}^2$$

$$Q = 5 \text{ KN/m}^2$$

III.3.1.1. Calcul des solicitations:

Volée

$$q_u=1.35\times8.7 +1.5\times5 = 19.245 \text{ KN/m}.$$

$$q_s = 8.7 + 5 = 13.7 \text{ KN/m}.$$

Palier

$$q_u=1.35\times5.86+1.5\times5=15.411$$
 KN/m.

$$q_s = 5.86 + 5 = 10.86 \text{ KN/m}.$$

• Les reactions aux appuis :

D'aprés le calcul RDM, nous avons eu les résultats suivants:

$$X = 1.89$$
 $Mt_{max} = 34.46$ $V_{max} = 36.42$

• Calcul des moments reels:

 $M_t = 34.46 \text{ KN.m}$

 $M_a\!=\!-0.5\!*\!40.54\!=\!-20.27~KN.m$

III.3.1.2.Le ferraillage:

Tableau III.26 : ferraillages de l'escalier type 2

Sens	M (KN.m)	μ _{bu}	α	Z(m)	A _{cal} (cm ² /ml)	Achois(cm ² /ml		atures de artitions	Espacement (cm)
	(==: (,===)				,)	,	A_{calcu}	A_{chois}	(6.1.5)
							l		
travée	34.46	0.10	0.14	0.141	7.00	5HA14=7.70	1.81	<i>4HA8</i> =	30
		8	3					2.01	
appui	20.27	0.06	0.08	0.145	4.01	4HA12=4.52	1.81	4HA8=	25
		3	2					2.01	

III.3.1.3Vérification à l'ELU:

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b \times d} = \frac{36.42 \times 10^{-3}}{1 \times 0.15} = 0.24 Mpa < 0.07 \times \frac{fc_{28}}{\gamma_b} = 1.16 Mpa.$$
 Condition vérifiée.

• Calcul à l'ELS:

D'aprés le calcul RDM, nous avons eu les résultats suivants:

X = 1.89 m

 $Mt_{max} = 24.5 \text{ KN.m}$

 $M_a = -0.5*28.82 = -14.41 \text{ KN.m}$

• Calcul de σ_{bc}:

$$\sigma_{bc} = \frac{M_{ser}}{I} y = 7.55 < 15 \text{ MPa}$$

y = 4.84 cm

 $I = 1.57.10^{-4} \,\mathrm{m}$

• Vérification de la flèche :

$$\frac{e}{l_x} > \max \left[\frac{3}{80}; \frac{M_x^t}{20 \times M_{0x}} \right] => 0.046 > 0.0.37.$$
 condition vérifiée.

$$\frac{A}{b \times d} \le \frac{4.2}{f_e} \Leftrightarrow 0.005 < 0.0105.$$
 condition vérifiée

La vérification de la flèche n'est pas nécessaire.

La volée III:

Elle a les même dimensions que la volée I donc nous allons la ferrailler de la même manière

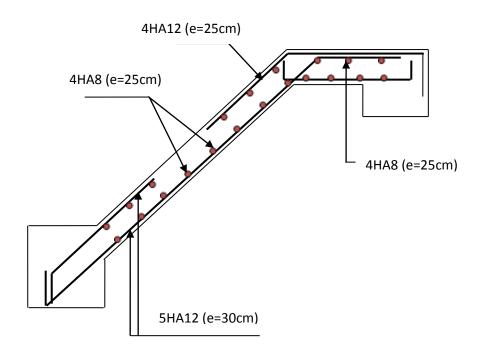


Figure .III.24 : Schémas du ferraillage de l'escalier

III.3.2.2.La deuxième volée :

L = 1.5 m

 $G = 8.7 \text{ KN/m}^2$

 $Q=5 \text{ KN/m}^2$

 $Pu = 19.245 \text{ KN/m}^2$

 $Mu = Pu*l^2/2 = [(19.245 \times 1.5^2)/2] = 21.65 \text{ KN.m}$

$$Vu = Pu * 1 = (19.245 \times 1.5) = 28.87 \text{ KN}$$

Tableau III.27: ferraillage de la volée 2

Mu (KN.m)	$\mu_{{}_{bu}}$	α	Z(m)	A calculé (cm²)	A adopté (cm²)	At (cm ²)	At Adopté (cm²)	Amin (cm ²)	St (cm)
21.65	0.068	0.088	0,145	4.3	5HA12 = 5.65	1.88	4HA8= 2.01	1.81	30

$$\tau_{u} = \frac{V_{u}}{b \times d} = \frac{0.02887}{1 \times 0.15} = 0.19MPa \le 1.17MPa$$

 $Ps = 13.7 \text{ KN/m}^2$

Ms = 15.41 KN.m

Tableau III.28: Vérification de la contrainte dans le béton.

Ms(KN)	A adopté (cm²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa	σ _{bc} adm (MPa)
15.41	5HA12=5.65	4.27	12352.66	5.33	15

• La flèche:

$$\frac{h_t}{l} = \frac{0.18}{1} = 0.18 \text{max } \left[\frac{3}{80}, \frac{1}{20}\right] = 0.05 \qquad condition \text{ vérifiée}$$

$$\frac{A_S}{b*d} = 0.0026 < \frac{2}{f_e} = 0.005 \qquad condition \text{ vérifiée}$$

Pas besoin de vérifier la flèche

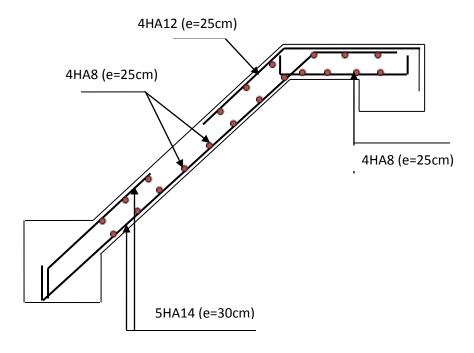


Figure .III.25 : Schémas du ferraillage de l'escalier

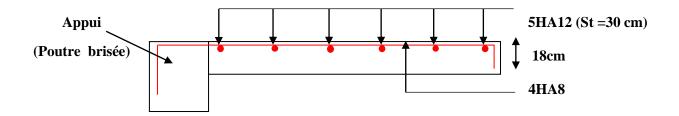


Figure III.26 : Schéma de ferraillage de la console.

III.3.3. Calcul de la poutre palière :

Cette poutre est soumise à son poids propre, aux charges transmises sous effort tranchants qu'on calcul à la flexion simple et aux moments de torsion qu'on calcul à la torsion.

III.3.3.1Dimensionnement:

$$\frac{l}{15} \le h \le \frac{l}{10} \Rightarrow 37.33cm \le h \le 56cm$$

On opte pour h=50 cm, b= 40cm

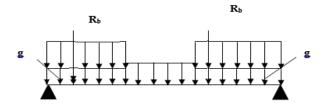


Figure III.27: Schéma isostatique de la poutre palière.

• Vérification des conditions du RPA :

 $b=40Cm \ge 20Cm$... vérifiée.

 $h=50Cm \ge 30Cm$ vérifiée.

III.3.4.2. Calcul à la flexion simple :

La poutre est soumise à son poids propre :

 $g=25\times0.4\times0.5=5$ KN/ml (partie horizontale)

En plus elle est soumise aux charges transmises par l'escalier :

ELU $R_{BU}=25.57KN/ml$.

ELS $R_{BS} = 18.46KN/ml$

Avec:

R_B: la charge ramenée par la volée

• Calcul des sollicitations :

ELU:

$$q_{u1} = q_{u3} = 1.35g + R_{BU} = 32.32KN/m$$

$$q_{u2} = 1.35g = 6.75 \text{ KN/m}$$

ELS:

$$q_{u1} = q_{u3} = g_{+}R_{BS} = 23.46KN/m$$

$$q_{u2} = g = 5KN/m$$

Après le calcul par la méthode de la RDM, on trouve :

Tableau III.29: Les résultats de calcul par la méthode de la RDM

	M ₀ (KN.m)	Ma(KN.m)	M _t (KN.m)	V _u (KN)
ELU	64.98	-32.49	55.23	57.26
ELS	47.49	-23.75	40.37	

III.3.3.4. Calcul de la section d'armature a la flexion simple :

$$b = 40cm$$
 $h = 50cm$ $d = 47cm$ $f_{C28} = 25Mpa$ $f_{bu} = 14,2Mpa$ $f_{st} = 400Mpa$

On résume les calculs dans le tableau ci-après :

Tableau III.30: Calcul des armatures principales

Elément	Moment(KN.m)	μ_{bu}	α	Z (m)	A_{\min}	$A_{flex}^{cal}(cm^2)$	A_t
Travée	55.23	0.044	0.056	0.459	2.27	3.45	0.57
Appui	-32.49	0,026	0,033	0,464	2.27	2.01	0.57

III.3.3.5Vérification à l'ELU:

• l'effort tranchant :

$$Vu=57.26KN \Rightarrow \left\{ \tau_u = \frac{V_U}{b \times d} = \frac{57.26 \times 10^{-3}}{0.4 \times 0.47} = 0.3\text{MPa} \right\}$$

$$\tau^{adm} = min (0.2 \times fc_{28}/\gamma_b; 5 \text{ MPa}) = 3.33 \text{ MPa}$$

C'est vérifiée

III.3.3.6. Calcul de la section d'armature a la torsion :

Le moment de torsion provoquer sur la poutre palière est transmis par le palier et la volée C'est le moment d'appui de l'escalier.

• Calcul du moment de torsion :

$$M$$
 torsions = M encastrement $\times \frac{l}{2} = 16.08 \times \frac{5.6}{2} = 45.02 KN.m$

Selon le *BAEL91*, la contrainte tangente de torsion est donnée par la formule $\tau_u = \frac{M_u}{2 \cdot \Omega \cdot e}$

e =épaisseur de la paroi.

• $M^{torsion}$: Le moment de torsion provoquer sur la poutre palière est transmis par la volée Ω : Air du contour tracer ami épaisseur

$$\Omega = (b-e) \times (h-e)$$
 $\phi = min(b; h)$

$$.e = \frac{b}{6} = \frac{40}{6} = 6,67 \ Cm \rightarrow \Omega = (40-6,67) \times (50-6,67) = 1444.19cm^2$$

• Armature longitudinales :

$$A_{l} = \frac{U \times M^{\text{torsionu}}}{2 \times \Omega \times f_{e}} 1,15; \quad \text{Avec} \quad U : \text{périmètre de } \Omega.$$

$$U = 2[(b-e)+(h-e)] = 2[(40-6,67)+(50-6,67)] = 153.32 \text{cm}$$

$$A_{l} = \frac{45.02 \times 1.5332}{2 \times 0.144419 \times 400} \times 1,15 \cdot 10^{-3} = 6.88 \text{cm}^{2}$$

Section d'armatures finale :

En travée:
$$A^t = A_{flexion} + \frac{A_{Torsion}}{2} \Rightarrow A^t = 3.45 + \frac{6.88}{2} \Rightarrow A^t = 6.89 cm^2$$

Soit :
$$A^t = 4HA16 = 8.04 \text{ cm}^2$$

En appui:
$$A^a = A_{flexion} + \frac{A_{Torsion}}{2} \Rightarrow A^a = 2.01 + \frac{6.88}{2} \Rightarrow A^a = 5.45 \text{cm}^2$$

Soit :
$$A^a = 4HA14 = 6.16 \text{ cm}^2$$

• Vérification de la contrainte de cisaillement : $\tau_u < \tau_u 2$

Avec
$$\tau_u = \sqrt{\tau_{torsion}^2 + \tau_{flexion}^2}$$
 BAEL91

On a
$$V_{\text{max}} = 57.26 \text{ KN}$$
; $\tau_{\text{flexion}} = 0.3 MPa$

$$\tau_{torsion} = \frac{M^{torsions}}{2 \times \Omega \times e} = \frac{52.05 \times 10^{-3}}{2 \times 0.1444 \times 0.0667} = 2.70 MPa$$

D'où :
$$\tau_u = 2.72MPa < \bar{\tau}_u = min (0.2 \frac{f_{c28}}{\gamma b}; 5 MPa) = 3.33MPa$$

Condition est vérifiée

• Calcul des armatures transversales à la torsion :

$$A_t = \frac{\gamma_s \times S_t \times Mt}{2 \times \Omega \times f_s} = 0.52 \text{ cm}^2$$

$$A_t^{tor} = A_{flexion} + A_{flexiotorsion} = 0.57 + 0.52 = 1.09 \text{ cm}^2$$

On choisit:
$$4HA8=2.01 \text{ cm}^2$$

III.3.3.7Vérification à l'E.L.S

• l'état limite de compression de béton :

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau III.31 : Résultats de calcul des contraintes de béton

	M _{ser}	Y	I	σ_{bc}	$\sigma_{bc}^{ m adm}$
	(KN.m)	(cm)	(cm ⁴)	(MPa)	(MPa)
Travée	40.37	14.09	167914.83	3.39	15
Appuis	-23.75	12.61	136014.14	2.20	15

• Etat limite de déformation :

La flèche:

$$\frac{h_t}{l} > \max \left[\frac{3}{80}; \frac{M_x^t}{10 \times M_{0x}} \right] => 0.089 > 0.085.$$
 condition vérifiée.

$$\frac{A}{b \times d} \le \frac{4.2}{f_e} \Leftrightarrow 0.0043 < 0.0105$$
......condition vérifiée.

Donc la vérification de la flèche n'est pas nécessaire.

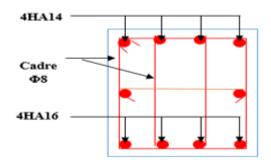


Figure III. 28 : Schéma représentant la poutre palière

III.3.4. Calcul de la poutre brisée :

III.3.4.1. Dimensionnement:

$$\frac{l}{15} \le h \le \frac{l}{10}L = 2.15 + (1.2/\cos 35.31^{\circ}) + 2.25 = 5$$

$$\frac{587}{15} \le h \le \frac{587}{10} \Rightarrow 39.13cm \le h \le 58.7cm$$

Donc soit h = 50 cm et b = 40 cm.

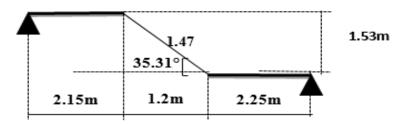


Figure III.29 : Schéma représentant la poutre brisée.

La poutre brisée est soumise à la flexion simple en outre elle est soumise à la torsion.

III.3.4.2. Calcul à la flexion simple :

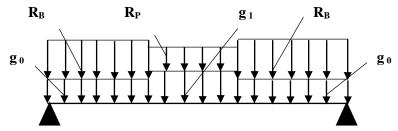


Figure III.30 : Schéma du chargement de la poutre brisée.

La poutre est soumise à son poids propre :

 $g_0=25\times0.4\times0.5=5$ KN/ml (partie horizontale)

g₁=25×0.4×0.5/cos35.31°=6.13 KN/ml (partie inclinée)

En plus elle est soumise aux charges transmises par l'escalier :

ELU $R_{BU}=36.42KN/ml$.

 R_{PU} =28.87 KN/ml.

ELS $R_{BU} = 18.46 \text{ KN/ml}$

 $R_{PU} = 20.55 \text{ KN/ml.}$

Avec:

R_B: la charge ramenée par la volée

R_P: la charge ramenée par la console

• Calcul des sollicitations :

ELU:

$$q_{u1} = q_{u3} = 1.35g_{1} + R_{BU} = 44.7KN/m$$

$$q_{u2} = 1.35g_{1} + R_{PU} = 37.15KN/m$$

ELS:

$$q_{u1} = q_{u3} = g_{1} + R_{BS} = 24.34 \text{ KN/m}$$

$$q_{u2} = g_{1} + R_{PS} = 26.68 \text{ KN/m}$$

Après le calcul par la méthode de la RDM, on trouve :

Tableau III.32: Les résultats de calcul par la méthode de la RDM

	M ₀ (KN.m)	M _a (KN.m)	M _t (KN.m)	V _u (KN)
ELU	192.82	96.41	163.9	120.7
ELS	116.38	58.19	98.92	

III.3.4.3. Ferraillage de la poutre brisée à la flexion simple :

Tableau III.33 : Ferraillage de la poutre brisée en travée et aux appuis

Mu (KN. m)	μ bu	α	Z (m)	A min (cm²)	A calculée (cm²)	A t(cm ²)	
En travée							
163.9	0.012	0.015	0.467	2.28	10.08	0.57	
En appui							
96.41	0.077	0.1	0.451	2.28	6.14	0.57	

• Vérification de la contrainte de cisaillement :

$$\tau_{u} = \frac{V_{u}}{b \times d} = \frac{120.7 \times 10^{-3}}{0.4 \times 0.47} = 0.642MPa$$

$$\overline{\tau_{u}} = \min[0, 2\frac{f_{c28}}{\gamma_{b}}; 5 \text{ MPa}] = 3,33\text{ MPa}$$

$$\tau_u = 0.642 MPa < \overline{\tau_u} = 3,33 MPa \Rightarrow \text{ Condition vérifiée.}$$

III.3.4.4. Calcul à la torsion :

Tableau III.34 : ferraillage de la poutre brisée à la torsion

M ^{torsion}	e (cm)	$\Omega(m^2)$	U(m ²)	A _l (cm ²)
40.35	0.0667	0.1444	1.532	6.16

• Section d'armatures finale :

En travée :
$$A^{t} = A_{flexion} + \frac{A_{Torsion}}{2} \Rightarrow A^{t} = 10.08 + \frac{6.16}{2} \Rightarrow A^{t} = 13.16cm^{2}$$

Soit : $A^{t} = 3HA16 + 3HA20 = 15.45cm^{2}$

En appui :
$$A^a = A_{flexion} + \frac{A_{Torsion}}{2} \Rightarrow A^a = 6.14 + \frac{6.16}{2} \Rightarrow A^a = 9.22 \text{ cm}^2$$

Soit : $A^a = 6\text{HA}16 = 12.06 \text{ cm}^2$

• Vérification de la contrainte de cisaillement : $\tau_u < \overline{\tau}_u$

Avec
$$\tau_u = \sqrt{\tau_{torsion}^2 + \tau_{flexion}^2}$$
 BAEL91

On a
$$V_{\text{max}} = 120.7 \text{KN}$$
; $\tau_{flexion} = 0.64 MPa$

$$\tau_{torsion} = \frac{M^{torsions}}{2 \times \Omega \times e} = \frac{40.35 \times 10^{-3}}{2 \times 0.1444 \times 0.0667} = 2.09 MPa$$

D'où :
$$\tau_u = 2.09 MPa < \overline{\tau}_u = min (0.2 \frac{f_{c28}}{\gamma b}; 5 MPa) = 3.33 MPa$$
 Condition est vérifiée

• Calcul des armatures transversales à la torsion :

$$A_l = \frac{\gamma_s \times S_t \times Mt}{2 \times \Omega \times f_e} = 0.64 \text{ cm}^2$$

$$A_t^{tor} = A_{flexion} + A_{flexiotorsion} = 0.57 + 0.6 = 1.21 \text{ cm}^2$$

On choisit: 4HA8=2.01cm²/ml

III.3.4.5. Vérification à l'E.L.S:

• l'état limite de compression de béton :

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau III.35: Résultats de calcul des contraintes de béton

	M _{ser} Y		I	σ_{bc}	$\sigma_{bc}^{ m adm}$	
	(KN.m)	(cm)	(cm ⁴)	(MPa)	(MPa)	
Travée	98.92	18.25	272601.07	6.62	15	
Appuis	58.19	16.59	228171.005	4.23	15	

• Etat limite de déformation :

La flèche:

$$\frac{h_t}{l} > \max \left[\frac{1}{16}; \frac{M_x^t}{10 \times M_{0X}} \right] => 0.0852 > 0.0850$$
 condition vérifiée.

$$\frac{A}{b \times d} \le \frac{4.2}{f_e} \Leftrightarrow 0.0082 < 0.0105.$$
 condition vérifié

Donc la vérification de la flèche n'est pas nécessaire.

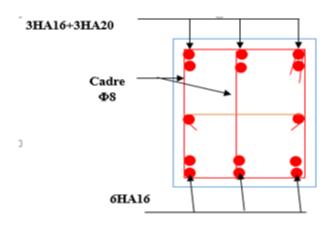


Figure III. 31 : Schéma représentant la poutre brisée

III.5. Etude des Poutres de chainages :

Le chainage est conçu pour reprendre son poids propre ainsi que le poids des cloisons qu'il supporte. Il est calculé (comme une poutre simplement appuyée) en flexion simple, avec vérification de l'effort tranchant au niveau des appuis.

III.5.1.Pré dimensionnement :

On opte :(b x h) = $(30 \text{ x}35)\text{cm}^2$.

III.5.2. Calcul des sollicitations :

Poids propre de la poutre :

$$G = 25 \times 0.35 \times 0.3 = 2.63 KN / m^2$$

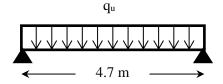


Figure III.32 : Schéma isostatique de la poutre de chainage

Poids du garde-corps

$$q_{mur} = (G_{brique\ creuse} + G_{enduit\ ciment} + G_{enduit\ platre}) + H_{mur}$$
 $q_{mur} = (1.35 + 0.27 + 0.2) + 1.1 = 1.82 + 1.1 = 2.002 \text{ KN/m}$
 $q_u = 1.35 \times (p_p + p_{mur}) = 1.35 \times (2.63 + 2.002) = 6.25 \text{ KN/m}$
 $q_s = p_p + p_{mur} = 2.63 + 2.002 = 4.63 \text{ KN/m}$

• Calcul à l'ELU:

$$M_{v} = \frac{q_{v} \times l^{2}}{8} = \frac{6.25 \times (4.7)^{2}}{8} = 17.26KN..m$$

En travée : $M_t = 0.75 \times 17.26 = 14.67 \text{KN.m}$

En appuis : $M_a = -0.5 \times 17.26 = 8.63 \text{KN.m}$

III.5.3.Le ferraillage:

Tableau III.36: Ferraillage de la poutre de chainage.

Sens	M (KN.m)	A _{cal} (cm ² /ml)	A _{opt} (cm ² /ml)	A _{min} (cm ² /ml)	St (cm)
Travées	14.67	1.3	3HA12=3.39	1.2	15
Appuis	8.63	0.76	3HA12=3.39	1.2	15

• Vérification de l'effort tranchant :

$$V_u = \frac{q_u \times l}{2} = \frac{6.25 \times 4.7}{2} = 14.69$$
KN

$$\tau_u = \frac{V_u}{b \times d} = \frac{14.69 \times 10^{-3}}{0.3 \times 0.33} = 0.15 MPa$$

$$\overline{\tau_u} = \min[0, 2\frac{f_{c28}}{\gamma_b}; 5 \text{ MPa}] = 3,33 \text{ MPa}$$

$$\tau_u = 0.15 MPa < \overline{\tau_u} = 3.33 MPa \Rightarrow \text{ Condition vérifiée}$$

• Armatures transversales :

$$\phi_l \leq \min(\frac{h}{30}; \frac{b}{10}; \phi_l^{\min})$$

$$\phi_l \leq \min(1.17; 3; 0.8)$$

Soit
$$\phi_l = 8mm$$

Soit un cadre de HA8 plus une épingle HA8. On prend At=3HA8=1.51 cm².

• Les espacements :

1) St
$$\leq$$
 min (0.9d, 40cm) \Rightarrow St = 30cm

2)
$$S_t \le \frac{0.8 \times f_e \times A_t}{b \times (\tau_u - 0.3 \times f_{t28})} \Rightarrow \frac{0.8 \times 400 \times 1.51}{30 \times (0.15 - 0.3 \times 2.1)} < 0$$

3)
$$S_t \le \frac{A_t \times f_e}{0.4 \times b} \Rightarrow S_t = \frac{1.51 \times 400}{0.4 \times 30} \Rightarrow S_t \le 50.33cm \Rightarrow S_t = 15cm$$

Pour les armatures longitudinales, le RPA99/version 2003 exige un espacement

$$St < min (h; 25) = 25cm$$
 Soit $St = 10 cm$.

• Calcul a l'ELS:

• Vérification de la contrainte dans le béton :

$$\mathbf{M}_{\text{ser}} = \frac{q_{ser} \times l^2}{8} = \frac{4.63 \times 4.7^2}{8} = 12;78 \text{KN.m}$$

$$M_t = 0.85 M_s = 10.86 KN.m$$

Tableau III.37: Vérification de la contrainte dans le béton.

Mser (KN.m)	A _{opt} (cm ² /ml)	Y (cm)	I (cm ⁴)	$\sigma_{bc}(ext{MPa})$	$\overline{\sigma}_{bc}$	obs
10.86	3.39	9.02	36579.51	2.68	(MPa) 15	vérifiée

• Evaluation de la flèche :

Si l'une de ses conditions ci-dessous n'est pas satisfaite la vérification de la flèche devient nécessaire :

-
$$\frac{h}{1} \ge \frac{1}{16} = >0.074 > 0.0625...(1) \rightarrow vérifiée$$

-
$$\frac{h}{l} \ge \frac{M_{t}}{20 \times M_{0}} = >0.074 > 0.0375...$$
 (2) vérifiée

-
$$\frac{A}{b \times d} \le \frac{4.2}{f_e} = >0.0034 > 0.0105...(3) \rightarrow v\acute{e}rifi\acute{e}e$$

Les trois conditions sont vérifiées, donc la vérification de la flèche n'est pas nécessaire

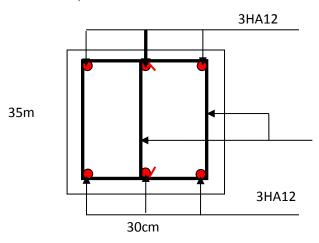


Figure III.33 : Schéma de ferraillage de la poutre de chainage

III.8. CONCLUSION:

Le but de ce chapitre été la détermination des sections d'acier nécessaire pour reprendre les charges revenant aux éléments non structuraux.

Le choix de la disposition des poutrelles s'est fait au chapitre précédent. D'après la disposition adoptée nous avons eu plusieurs types de poutrelles. Ces dernières ont été étudiées et ferraillées.

Notre structure présente deux types d'escalier, ces dernier est à deux et trois volées. Dans ce chapitre, nous les avons étudiés et ferraillés.

L'acrotère est calculé à la flexion composée. Son ferraillage a été déterminé en respectant les règles. En dernier, nous avons fait l'étude de l'ascenseur puis on a ferraillé la dalle de locale des machines.

Les poutres palière et brisé ont été étudiée sous des sollicitations de flexion de torsion ainsi pour la poutre de chainage qui a été étudier en flexion simple.

Notre projet comprend 3 types de dalle pleine, elles ont été étudiées et ferraillées avec les sollicitations les plus défavorables.

Le séisme est un phénomène naturel, qui correspond à un mouvement du sol libérant une énergie de déformation importante. Il peut causer d'importants dégâts ou la ruine des constructions selon son intensité.

Alors les constructions se comportent comme une console, encastrées à la base lors des sollicitations sismique, qui s'applique comme une force d'inertie horizontale sur le plancher avec la transmission des efforts par des éléments verticaux jusqu'aux fondations.

Selon le **RPA99**/ version 2003, tout ouvrage dépassant quatre (5) niveaux ou (17m) de hauteur dans la zone IIa, devra être contreventée par des voiles, c'est le cas de notre structure en se référant à l'article (3.4. A.1.a) du RPA99/ version 2003, la structure sera mixte (voiles portiques), par conséquent elle présente un aspect intéressant du point de vue économique.

IV.1. Méthodes de calcul:

Le règlement parasismique algérien (RPA99) propose trois méthodes de calcul des sollicitations :

- -La méthode statique équivalente.
- -La méthode d'analyse modale spectrale.
- -La méthode d'analyse dynamique par accélérographe.

IV.1.1. La méthode statique équivalente :

Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de force statique fictive dont les effets sont considérés équivalents à ceux de l'action sismique.

• Condition d'application de la méthode :

D'après le RPA 99 (Art 4.1.2), les conditions d'applications de la méthode statique sont :

- le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus de 65m en zone I et II et de 30m en zone III.
- Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant outres les conditions de hauteur énoncées en haut.

> Calcul de la force sismique totale :

La force sismique totale V appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales et orthogonales selon la formule :

$$V = \frac{A*D*Q}{R}*W$$
 (RPA99 Art 4.2.3)

Avec:

• A : coefficient d'accélération de la zone. Suivant la zone sismique et le groupe d'usage du bâtiment. RPA99 (Tableau 4.1)

- Groupe d'usage : groupe 2

- Zone sismique : zone $IIa \Rightarrow A = 0.15$

• R: Coefficient de comportement global de la structure, il est fonction du système de contreventement.

RPA99 (Tableau 4.3)

Dans le cas de notre projet, on adopte pour un système de contreventement mixte portiques-voiles avec justification de l'interaction, donc : R=5

• **D** : facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période de la structure (T).

$$D = \begin{cases} 2.5 * \eta \dots 0 \le T \le T_2 \\ 2.5 * \eta * (\frac{T_2}{T})^{\frac{2}{3}} \dots T_2 \le T \le 3 \sec (\mathbf{RPA99Art 4.2.3}) \\ 2.5 * \eta * (\frac{T_2}{3})^{\frac{2}{3}} * (\frac{3}{T})^{\frac{5}{3}} \dots T \ge 3 \sec \end{cases}$$

Avec:

T₁ ,T₂ : Périodes caractéristiques associées à la catégorie de site et donnée par le RPA99.Tableau 4.7

Dans notre cas le sol est ferme (Site S₃)
$$\Rightarrow$$
 $\begin{cases} T_1 = 0.15 s \\ T_2 = 0.5 s \end{cases}$

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7 \text{ (RPA99 Art 4.2.3)}$$

 ξ (%): pourcentage de l'amortissement critique fonction du matériau constitutif, du type de la structure et de l'importance des remplissages. (RPA99.tableau 4.2)

Portique auto stable $\rightarrow \xi = 7 \%$.

Voiles
$$\rightarrow \xi = 10 \%$$
.

Donc, pour une construction mixte on prend la moyenne: $\xi = 8.5\%$

$$\Rightarrow \eta = \sqrt{\frac{7}{2+8.5}} = 0.82$$

T : période fondamentale de la structure donnée par les deux formules empiriques suivantes :

T = C_T *
$$(h_N)^{3/4}$$

$$T = min T = 0,09. \frac{h_N}{\sqrt{L}}$$

(RPA99 art 4.2.4)

T = 0.81 sec

Avec:

 $h_{\,\mathrm{N}}\,$: hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau

 $h_{N} = 41.14 \text{ m}$

 $C_{\scriptscriptstyle T}$: coefficient fonction du système de contreventement et du type de remplissage

$$\Rightarrow$$
 C_T = 0,05 (tableau 4.6 du RPA 99/2003)

$$T_x = \min (T_x; T) = 0.70 \sec \prec T = 0.81 \sec T_y = \min (T_y; T) = 0.72 \sec \prec T = 0.81 \sec T_y$$

La période fondamentale statique majorée de 30 % donc on a

$$\begin{cases} T_{Sx} = 1.3 \times 0.7 = 0.91s \\ T_{Sy} = 1.3 \times 0.72 = 0.94s \end{cases}$$

• Calcul de D

D= 2.5 *
$$\eta$$
 * $(\frac{T_2}{T})^{\frac{2}{3}}$ car $0.4 \le T \le 3 \sec$

$$D_x = 2.5*0.82*(0.5/0.7)^{\frac{2}{3}} = 1.76$$

$$D_y = 2.5*0.82*(0.5/0.72)^{\frac{2}{3}} = 1.58$$

• **Q** : Facteur de qualité.

Le valeur de Q est déterminée par la formule :

$$Q = 1 + \sum_{l}^{6} Pq$$
 RPA99 (Formule 4.4)

Pq: est la pénalité à retenir selon que le critère de qualité q est satisfait ou non.

Les valeurs à retenir sont dans le tableau suivant :

Tableau IV.1: Valeurs des pénalités Pq

Critère Q	Sens X-X		Sens Y-Y	
	Observé	$\mathbf{P}_{\mathbf{q}}$	Observé	$\mathbf{P}_{\mathbf{q}}$
1- Conditions minimales sur les files	NON	0.05	/	0
de contreventement				
2- Redondance en plan	NON	0.05	/	0
3- Régularité en plan	NON	0.05	NON	0.05
4- Régularité en élévation	NON	0.05	NON	0.05
5- Contrôle de qualité des matériaux	/	0	/	0
6- Contrôles d'exécution	/	0	/	0
Total	$Q_x=1.2$		Q _y =1.1	

• W : Poids total de la structure. La valeur de W comprend la totalité des charges permanentes pour les bâtiments d'habitation. Il est égal à la somme des poids W i ; calculés à chaque niveau (i) :

$$W = \sum_{i=1}^{n} Wi \text{ avec } W_i = W_{Gi} + \beta \times W_{Qi} RPA99 \text{ (Formule 4.5)}$$

 $W_{\text{Gi}}\,$: Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.

W_{Oi}: Charges d'exploitation.

 β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation.

Concernant notre projet on a un seul niveau à usage commercial, donc un coefficient de pondération $\beta=0.60$; et des appartements à usage d'habitation donc un coefficient de pondération $\beta=0.20$.

$$W = \sum_{i=1}^{n} Wi = 64396.6 \text{ KN}$$

La force sismique totale à la base de la structure est : $V_{st} = \frac{A \times D \times Q}{R} \times W$

$$V_{stx} = \frac{0.15 \times 1.76 \times 1.2}{5} \times 643966 = 4080.17KN$$

$$V_{\text{st }y} = \frac{0.15 \times 1.58 \times 1.1}{5} \times 64396.6 = 3357.64 KN$$

IV.1.2. Méthode dynamique modale spectrale :

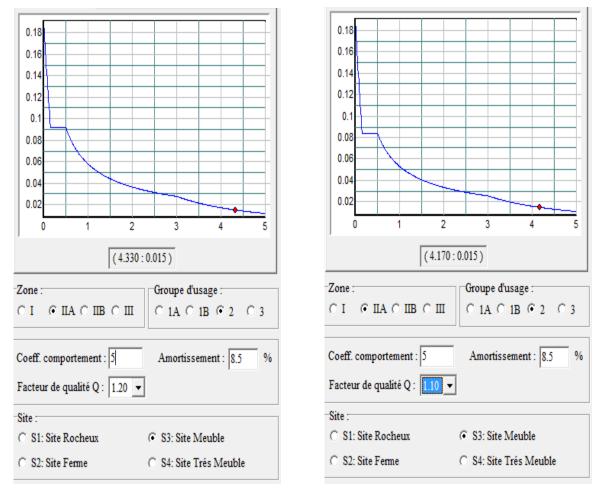
A. Par Accélérogrammes:

Cette méthode peut être utilisée au cas par un personnel qualifié, ayant justifié auparavant le choix des séismes de calcul et des lois de comportement utilisées ainsi que la méthode d'interprétation des résultats et les critères de sécurité à satisfaire.

B. Méthode spectrale modale :

Cette méthode peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

Puisque notre structure est irrégulière la méthode dynamique s'impose.


B.1. Principe:

Il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul.

Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

$$\frac{S_a}{g} = \begin{cases}
1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\
2.5 \times \eta \times (1.25A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\
2.5 \times \eta \times (1.25A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s}
\end{cases}$$
RPA99 (Formule 4-13)

Pour notre étude les spectres de repense utilisés sont représentés dans les figures ci-dessous.

Figure IV.1 : Spectre de réponse (sens x-x)

Figure IV.2 : Spectre de réponse (sens y-y)

B.2. Les hypothèses :

- 1. Les masses sont supposées concentrées au niveau des nœuds principaux (nœuds maitres).
- 2. Seuls les déplacements horizontaux des nœuds sont pris en compte.
- 3. Les planchers et les fondations doivent être rigides dans leurs plans.
- 4. Le nombre de modes à prendre en compte est tel que la somme des taux de participation des masses modales atteint au moins 90% de la masse globale de la structure.

Pour l'application de la méthode dynamique modale spectrale on utilise un logiciel d'analyse qui est le SAP 2000 Version14.2.2.

IV.2. Disposition des voiles :

Après plusieurs essais de disposition des voiles, et de modification des sections des poteaux, ainsi que l'épaisseur de voile on a retenu la disposition représente ci-dessous.

Cette disposition nous a permis d'éviter un mode de torsion au premier mode et répondre favorablement aux conditions du **RPA99 /2003.**

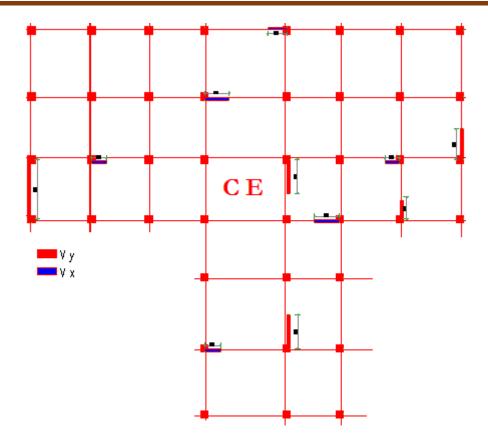


Figure IV.3: Disposition des voiles

IV.3. Vérification et interprétation des résultats de l'analyse dynamique

IV.3.1. Périodes de vibration et taux de participation des masses modales

Le taux de participation massique tel qu'il est exigé par le RPA99 l'article 4.3.4 doit être supérieur à 90% de la masse total du bâtiment.

Le tableau suivant donne la participation massique pour chaque mode :

Tableau IV.2: Période de vibration et taux de participation massique.

	Periode	masse	modale	masse mod	lale cumulée
Mode	sec	UX	UY	UX	UY
Mode1	0.982286	0.57952	0.11795	0.57952	0.11795
Mode2	0.930504	0.14313	0.55289	0.72265	0.67084
Mode3	0.800901	0.02366	0.01665	0.74631	0.68749
Mode4	0.32427	0.10585	0.000005673	0.85216	0.68749
Mode5	0.29957	0.00059	0.11475	0.85275	0.80225
Mode6	0.265401	0.00004058	0.00002371	0.85279	0.80227
Mode7	0.264939	7.595E-07	0.00001701	0.85279	0.80229
Mode8	0.239841	0.00403	0.01487	0.85682	0.81715
Mode9	0.217754	0.00002031	0.00078	0.85684	0.81793
Mode10	0.210439	0.00001302	0.00009265	0.85685	0.81803
Mode11	0.207508	0.00002838	0.00044	0.85688	0.81847
Mode12	0.206844	0.0000437	0.00026	0.85692	0.81873
Mode13	0.205167	1.325E-07	0.000008228	0.85692	0.81873
Mode14	0.203208	0.000004573	0.00004284	0.85693	0.81878
Mode15	0.201858	5.721E-08	8.459E-07	0.85693	0.81878
Mode16	0.190677	0.00163	0.000003461	0.85856	0.81878
Mode17	0.183082	0.03845	0.000001912	0.89701	0.81878
Mode18	0.169378	0.00022	0.04558	0.89723	0.86436
Mode19	0.154981	0.00013	0.00006944	0.89735	0.86443
Mode20	0.124325	0.02056	0.00119	0.91792	0.86563
Mode21	0.115617	0.00152	0.01054	0.91944	0.87617
Mode22	0.114946	0.00006766	0.00009731	0.91951	0.87626
Mode23	0.114062	0.00144	0.00006051	0.92095	0.87632
Mode24	0.109259	0.00227	0.00016	0.92322	0.87649
Mode25	0.108412	0.00027	0.00009829	0.92348	0.87658
Mode26	0.107617	0.00087	0.00021	0.92435	0.8768
Mode27	0.102891	0.00002539	0.03228	0.92438	0.90907

Analyse des résultats :

On constate que la période fondamentale de vibration est inférieure à celle calculée par les formules empiriques du RPA 99.V2003 majorée de 30 % dans le sens Y-Y donc vérifiée par contre dans le sens X-X elle n'est pas vérifiée.

$$(T_y = 0.93s < T_{sy} = 0.94s ; T_x = 0.98s > T_{sx} = 0.91s).$$

La participation modale du 1^{ere} mode suivant le sens X et le 2^{eme} suivant Y sont prépondérantes, ce qui donne des modes de translation suivant le sens X et Y comme montré sur la figure IV-4 et IV-5.par contre le troisième mode représente une rotation autour de l'axe Z comme indiqué surlafigureIV-6.

Nous représentons sur ces trois figures, les trois premiers modes de vibrations de notre structure.

Figure IV.4:1^{er} Mode de vibration (T=0.98229s translation suivant X)

Figure IV.5:2er Mode de vibration (T=0.93050s translation suivant Y)

Figure IV.6: 3^{eme} Mode de vibration (T=0.8009s rotation autour de L'Axe Z)

IV.3.2. Vérification de la résultante des forces sismiques :

En se référant à l'article 4-3-6 du RPA99/Version2003, la résultante des forces sismiques à la base V_{dy} obtenue par combinaison des valeurs modales ne doivent pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente $V_{st.}$, nous avons :

Tableau IV.3: Vérification de l'effort tranchant à la base

	Vdynamique(KN		
)	0.8*Vstatique(KN)	Observation
Sens X-X	3029.148	3264.132783	non vérifier
Sens Y-Y	2833.379	2686.109269	vérifiée

Vue que dans le sens XX la condition n'est pas vérifié, nous avons augmenté pour E_X tous les paramètres de repense de :

0.8*Vst/Vdyn = 1.078

IV.3.3. Vérification de l'interaction voiles portiques :

Les charges horizontales sont reprises conjointement par les voiles et les portiques proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux. Selon le RPA (art 3.4.4.a), l'interaction est vérifiée si les deux conditions suivantes sont satisfaites :

- Les portiques doivent reprendre au moins 25% de l'effort tranchant d'étage.
- Les voiles de contreventement doivent reprendre au plus 20% de l'effort vertical.

• Sous charges verticales :

Pourcentage des charges verticales reprises par les portiques.

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\% \ .$$

Pourcentage des charges verticales reprises par les voiles.

$$\frac{\sum F_{voiles}}{\sum F_{portiques} + \sum F_{voiles}} \le 20\%$$

Les résultats sont présentés dans le tableau suivant

Tableau IV.4: Vérification de l'interaction sous charges verticale.

Niveaux	Charge	s reprises e	en (KN)		iges repris %)	Observation
	Portiques	Voiles	Total	Portiques	Voiles	
sous-sol	52991.54	8580.654	-61572.2	86.06	13.94	vérifiée
RDC	46930.54	7471.882	54402.42	86.27	13.73	vérifiée
soupente	40164.44	6633.472	46797.92	85.83	14.17	vérifiée
Etage 1	34603.58	6287.023	40890.6	84.62	15.38	vérifiée
Etage 2	27545.86	5575.217	33121.08	83.17	16.83	vérifiée
Etage 3	21027.48	4884.591	25912.07	81.15	18.85	vérifiée
Etage 4	18513.98	4081.545	22595.52	81.94	18.06	vérifiée
Etage 5	14368.89	3334.955	17703.84	81.16	18.84	vérifiée
Etage 6	10636.63	2459.631	13096.26	81.22	18.78	vérifiée
Etage 7	5944.419	1651.716	7596.135	78.26	21.74	Non vérifiée
Etage 8	3778.73	541.068	4319.798	87.47	12.53	vérifiée
Etage 9	2440.988	916.333	3357.321	72.71	27.29	Non vérifiée
terrasse	968.959	342.599	626.36	73.87	26.12	Non vérifiée

On remarque que l'interaction portique-voiles sous charges verticales est vérifiée dans tous les étages sauf pour les étages 7 et 9 et terrasse et cela avec un faible pourcentage ce qui peut être négligé.

Tableau IV.5: Vérification de l'interaction sous charges horizontale suivant X-X.

Niveaux	Charges	reprises en	(KN)	pourcenta	ges repris (%)	Observation
wiveaux	Portiques	Voiles	Total	Portiques	Voiles	Observation
sous-sol	1249.039	1167.723	2416.762	51.68	48.32	vérifiée
RDC	1284.561	893.114	2177.675	58.99	41.01	vérifiée
soupente	1464.377	612.169	2076.546	70.52	29.48	vérifiée
Etage 1	1346.582	507.395	1853.977	72.63	27.37	vérifiée
Etage 2	1166.836	479.811	1646.647	70.86	29.14	vérifiée
Etage 3	916.781	458.577	1375.358	66.66	33.34	vérifiée
Etage 4	948.349	383.634	1331.983	71.20	28.80	vérifiée
Etage 5	744.829	421.219	1166.048	63.88	36.12	vérifiée
Etage 6	718.415	275.853	994.268	72.26	27.74	vérifiée
Etage 7	440.065	253.981	694.046	63.41	36.59	vérifiée
Etage 8	314.671	184.195	498.866	63.08	36.92	vérifiée
Etage 9	266.862	172.231	439.093	60.78	39.22	vérifiée
terrasse	59.285	53.16	112.445	52.72	47.28	vérifiée

Tableau IV.6: Vérification de l'interaction sous charges horizontale suivant Y-Y.

Niveaux	Charges	s reprises e	n (KN)	Pourcenta	ges repris (%)	- Observation
Niveaux	Portiques	Voiles	Total	Portiques	Voiles	Observation
sous-sol	804.43	546.689	1351.12	59.54	40.46	vérifiée
RDC	772.541	761.218	1533.76	50.37	49.63	vérifiée
soupente	1079.089	578.94	1658.03	65.08	34.92	vérifiée
Etage 1	1179.015	493.85	1672.87	70.48	29.52	vérifiée
Etage 2	1151.65	427.71	1579.36	72.92	27.08	vérifiée
Etage 3	930.731	425.574	1356.31	68.62	31.38	vérifiée
Etage 4	974.068	333.364	1307.43	74.50	25.50	vérifiée
Etage 5	861.853	301.9	1163.75	74.06	25.94	vérifiée
Etage 6	896.174	217.177	1113.35	80.49	19.51	vérifiée
Etage 7	480.148	156.259	636.407	75.45	24.55	vérifiée
Etage 8	338.553	148.433	486.986	69.52	30.48	vérifiée
Etage 9	378.464	94.619	473.083	80.00	20.00	vérifiée
terrasse	58.358	42.363	100.721	57.94	42.06	vérifiée

On remarque que l'interaction portique-voiles sous charges horizontales est vérifiée dans tous les étages.

IV.3.4. Vérification de l'effort normal réduit :

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble due au séisme, le RPA (article 7.4.3.1) exige que l'effort normal de compression de calcul soit limité par la condition suivante :

$$v = \frac{N_d}{B_c \times f_{c28}} \le 0.30 \Rightarrow N_d \le 0.3 \times B_c \times f_{c28}$$
 Avec:

 N_d : désigne l'effort normale de calcul s'exerçant sur une section de béton.

 B_c : Est l'aire (section brute) de poteau.

 f_{ci} : Est la résistance caractéristique du béton.

Il est à noter que les sections des poteaux ont été augmentées pour tous les niveaux. Ceci a été fait dans le but de vérifier l'interaction voile-portique exigée par leRPA.

Le tableau ci-dessous présente la vérification de l'effort normale réduit dans le poteau le plus sollicité.

Tableau IV.7: Vérification de l'effort normal réduit.

sections	La sec	tion ado	ptée (cm²)	N (KN)	n	Observation
	b	h	aire		ν	
	(cm)	(cm)	(cm ²)			
60*65	65	60	3900	2953.05	0.300	vérifiée
60*55	60	55	3300	1589.53	0.193	vérifiée
55*55	55	55	3025	1118.97	0.148	vérifiée
55*50	55	50	2750	810.36	0.118	vérifiée
50*50	50	50	2500	609.68	0.098	vérifiée
50*45	50	45	2250	343.05	0.061	vérifiée

IV.3.5. Vérification vis-à-vis des déplacements

Le déplacement horizontal à chaque niveau K de la structure est calculé par :

$$\delta_k = R \times \delta_{ek}$$
 RPA99 (Article 4.4.3)

 δ_{ek} : Déplacement dû aux forces F_i

R: Coefficient de comportement (R=5). Le déplacement relatif au niveau K par rapport au niveau K-I est égal à : $\Delta_k = \delta_k - \delta_{k-1}$

Le RPA exige que le déplacement relatif soit inférieur à 1% de la hauteur de l'étage, C.à.d. : $\Delta_k < 1\% \times h_e$. RPA (article 5.10) h_e : Étant la hauteur de l'étage.

Les résultats sont présentés dans les tableaux ci-dessous :

Tableau IV.8: Vérification des déplacements dans le sens X-X

Niveaux	${\mathcal S}_{ek}$	$\delta_{\scriptscriptstyle k}$	δ_{k-1}	Δ_{k}	$h_{\scriptscriptstyle k}$	Δ_k	Observation
	ек	k k	- K-1	— k	K	$/h_k$	
	(cm)	(cm)	(cm)	(cm)	(cm)	(%)	
sous-sol	0.0849	0.4245	0	0.42	306.0	0.108	vérifiée
RDC	0.3289	1.6445	0.4245	1.22	391.0	0.312	vérifiée
soupente	0.5851	2.9255	1.6445	1.28	357.0	0.359	vérifiée
Etage 1	0.7965	3.9825	2.9255	1.06	306.0	0.345	vérifiée
Etage 2	0.9943	4.9715	3.9825	0.99	306.0	0.323	vérifiée
Etage 3	1.1769	5.8845	4.9715	0.91	306.0	0.298	vérifiée
Etage 4	1.3424	6.712	5.8845	0.83	306.0	0.270	vérifiée
Etage 5	1.4907	7.4535	6.712	0.74	306.0	0.242	vérifiée
Etage 6	1.618	8.09	7.4535	0.64	306.0	0.208	vérifiée
Etage 7	1.7292	8.646	8.09	0.56	306.0	0.182	vérifiée
Etage 8	1.827	9.135	8.646	0.49	306.0	0.160	vérifiée
Etage 9	1.9091	9.5455	9.135	0.41	306.0	0.134	vérifiée
terrasse	1.9885	9.9425	9.5455	0.40	306.0	0.130	vérifiée

Tableau IV.9: Vérification des déplacements dans le sens Y-Y

Niveaux	${\mathcal S}_{\it ek}$	δ_k	δ_{k-1}	Δ	h_k	$\frac{\Delta_k}{h_k}$	Observation
						7	
	(cm)	(cm)	(cm)	(cm)	(cm)	(%)	
sous-sol	0.0556	0.278	0	0.28	306.0	0.091	vérifiée
RDC	0.2262	1.131	0.278	0.85	391.0	0.218	vérifiée
soupente	0.4257	2.1285	1.131	1.00	357.0	0.279	vérifiée
Etage 1	0.6118	3.059	2.1285	0.93	306.0	0.304	vérifiée
Etage 2	0.8004	4.002	3.059	0.94	306.0	0.308	vérifiée
Etage 3	0.9867	4.9335	4.002	0.93	306.0	0.304	vérifiée
Etage 4	1.1656	5.828	4.9335	0.89	306.0	0.292	vérifiée
Etage 5	1.3354	6.677	5.828	0.85	306.0	0.277	vérifiée
Etage 6	1.4941	7.4705	6.677	0.79	306.0	0.259	vérifiée
Etage 7	1.6501	8.2505	7.4705	0.78	306.0	0.255	vérifiée
Etage 8	1.8	9	8.2505	0.75	306.0	0.245	vérifiée
Etage 9	1.9386	9.693	9	0.69	306.0	0.226	vérifiée
terrasse	2.0593	10.2965	9.693	0.60	306.0	0.197	vérifiée

IV.3.6. Justification vis-à-vis de l'effet P- Δ :

L'effet P- Δ (effet de second ordre) est l'effet dû aux charges verticales après déplacement. Il est peut être négligé si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{p_K \times \Delta_K}{V_K \times h_k} \le 0.1$$
 RPA99/2003(Article 5.9) Tel que :

 p_k : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau « k » ;

avec:
$$p_k = \sum_{i=k}^n (W_{Gi} + \beta \times W_{Qi})$$

 V_k : Effort tranchant d'étage au niveau « k ».

 Δ_k : Déplacement relatif du niveau « k » par rapport au niveau « k-1 ».

 h_k : Hauteur de l'étage « k ».

- Si $0.1 < \theta_k < 0.2$, l'effet P- Δ peut être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculée au moyens d'une analyse élastique du premier ordre par le facteur $\frac{1}{1-\theta}$.
- Si $\theta_k > 0.2$ la structure est partiellement instable elle doit être redimensionnée. Les résultats sont présentés dans le tableau ci-dessous :

Tableau IV.10: Vérification à L'effet P-Δ selon X-X

	Dans le sens X-X									
Niveaux	h_k	P_k	Δ_k	V_{k}	θ_k	Observation				
	(cm)	(KN)	(cm)	(KN)						
sous-sol	306.0	-61572.198	0.42	-2416.762	0.035	vérifiée				
RDC	391.0	-54402.423	1.22	-2177.675	0.078	vérifiée				
soupente	357.0	-46797.915	1.28	-2076.546	0.081	vérifiée				
Etage 1	306.0	-40890.599	1.06	-1853.977	0.076	vérifiée				
Etage 2	306.0	-33121.076	0.99	-1646.647	0.065	vérifiée				
Etage 3	306.0	-25912.07	0.91	-1375.358	0.056	vérifiée				
Etage 4	306.0	-22595.522	0.83	-1331.983	0.046	vérifiée				
Etage 5	306.0	-17703.843	0.74	-1166.048	0.037	vérifiée				
Etage 6	306.0	-13096.259	0.64	-994.268	0.027	vérifiée				
Etage 7	306.0	-7596.135	0.56	-694.046	0.020	vérifiée				
Etage 8	306.0	-4319.798	0.49	-498.866	0.014	vérifiée				
Etage 9	306.0	-3357.321	0.41	-439.093	0.010	vérifiée				
terrasse	306.0	626.36	0.40	-112.445	-0.007	vérifiée				

Tableau IV.11: Vérification à L'effet P-Δ selon Y-Y

			Dans le sei	ns Y-Y		
Niveaux	h_{k}	P_k Δ_k V_k θ_k				Observation
	(cm)	(KN)	(cm)	(KN)		
sous-sol	306.0	-61572.198	0.28	-1351.119	0.041	vérifiée
RDC	391.0	-54402.423	0.85	-1533.759	0.077	vérifiée
soupente	357.0	-46797.915	1.00	-1658.029	0.079	vérifiée
Etage 1	306.0	-40890.599	0.93	-1672.865	0.074	vérifiée
Etage 2	306.0	-33121.076	0.94	-1579.36	0.065	vérifiée
Etage 3	306.0	-25912.07	0.93	-1356.305	0.058	vérifiée
Etage 4	306.0	-22595.522	0.89	-1307.432	0.051	vérifiée
Etage 5	306.0	-17703.843	0.85	-1163.753	0.042	vérifiée
Etage 6	306.0	-13096.259	0.79	-1113.351	0.031	vérifiée
Etage 7	306.0	-7596.135	0.78	-636.407	0.030	vérifiée
Etage 8	306.0	-4319.798	0.75	-486.986	0.022	vérifiée
Etage 9	306.0	-3357.321	0.69	-473.083	0.016	vérifiée
terrasse	306.0	626.36	0.60	-100.721	-0.012	vérifiée

On remarque d'après les résultat obtenue (θ_k < 0.1) dans tous les niveaux d'où les effets du second ordre (effet P- Δ) peuvent être négligés.

IV.4. Conclusion:

Nous avons opté pour la disposition des voiles qui nous a donné les meilleurs résultats vis-à-vis de l'interaction voiles-portiques (horizontale et verticale) et celle qui vérifient toutes les exigences de l'étude dynamique, selon le RPA99/2003 (le comportement de la structure, L'interaction voiles-portiques, l'effort normal réduit).

La superstructure est la partie supérieure du bâtiment, située au-dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (Poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé, leur rôle est d'assuré la résistance et la stabilité de la structure avant et après le séisme, cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genres de sollicitations.

V.1. Étude des poteaux :

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les sollicitations (efforts normaux et moments fléchissant) à la base de la structure. Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel SAP2000.V14 dans l'ordre suivant :(**RPA99/2003**).

- $1.35 G + 1.5 Q \dots (1)$
- G + Q.....(2)
- G + Q + E....(3)
- G + Q E....(4)
- 0.8 G + E....(5)
- 0.8 G E.....(6)

Les sections d'armatures sont déterminées selon les sollicitations les plus défavorable suivantes :

- 1) Moment maximal avec son effort normal correspondant : $M_{\text{max}} \rightarrow N_{\text{correspondant}}$
- 2) Effort normal avec son moment correspondant : $N_{\max} \rightarrow M_{correspondant}$
- 3) Effort minimal avec son moment correspondant : $N_{\min} \rightarrow M_{correspondant}$

V.1.1 Recommandations du RPA99/Version 2003:

V.1.1.1 Armatures longitudinales (Article 7.4.2.1):

Les Armatures longitudinales doivent être à haute adhérence, droites et sans crochets.

- $A_{min} = 0.8\%$ de la section du béton en zone II.
- $\bullet \quad A_{\text{max}} = 4\% \ \ \text{de la section du béton en zone courante}.$
- $A_{max} = 6\%$ de la section du béton en zone de recouvrement.
- $\bullet \quad \varphi_{\min} = 12mm \ \, (\text{diamètre minimal utilis\'e pour les armatures longitudinales}).$
- La longueur minimal de recouvrement est de $40\phi_l$ en zone II.

• La distance des barres verticales dans une face de poteau ne doit pas dépasser 25cm en zone II.

Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (zone critique).

La zone nodale est définie par l' et h':

$$l' = 2h$$

 $h' = \max(\frac{h_e}{6} ; b_1 ; h_1 ; 60cm)$

Figure. V.1: Zone nodale.

 $(h_1 \times b_1)$: Section du poteau.

 h_e : Hauteur d'étage.

Le tableau suivant résume le ferraillage minimal et maximal des poteaux selon le RPA :

Tableau V.1: Armatures longitudinales minimales et maximales dans les poteaux.

Niveaux	Section du poteau (cm²)	A _{min} (cm ²)	A _{max} (cm ²) (zone courante)	A _{max} (cm ²) (zone de recouvrement)
Ss, RDC et Sp	65*60	31.2	156	234
1 ^{eme} et 2 ^{eme} étage	60*55	26.4	132	198
3 ^{eme} et 4 ^{eme} étage	55*55	24.2	121	181.5
5 ^{eme} et 6 ^{eme} étage	55*50	22	110	165
7 ^{eme} et 8 ^{eme} étage	50*50	20	100	150
9eme et 10eme étage	50*45	18	90	135

V.1.1.2 Armatures transversales (Article 7.4.2.2):

Les armatures transversales des poteaux sont calculées à l'aide de la formule : $\frac{A_t}{t} = \frac{\rho_a \times V_u}{h_1 \times f_e}$

 V_{u} : L'effort tranchant max dans le poteau.

 h_1 : Hauteur totale de la section brute.

 f_{ϵ} : Contrainte limite élastique de l'acier d'armature transversale.

 ρ a: est un coefficient correcteur qui tient compte du mode fragile de la rupture par effort tranchant; il est pris égale à :

$$\left\{ \begin{array}{ll} 2.5 & {\rm Si} \; \lambda_g {\geq} \; 5 \\ \\ 3.75 & {\rm Si} \; \lambda_g {<} \; 5 \end{array} \right. \qquad (\lambda_g : \mbox{l'élancement géométrique}).$$

Avec : $\lambda_g = l_f/a$ ou $\lambda_g = l_f/b$ (a et b sont les dimensions de la sections droite du poteau dans la direction de déformation considérée), et l_f longueur de flambement du poteau.

t: L'espacement des armatures transversales dont la valeur est déterminé dans la formule précédente; par ailleurs la valeur max de cet espacement est fixée comme suit :

- Dans la zone nodale : $t \le Min (10\phi_l, 15 cm)$. (zone IIa)
- Dans la zone courante : $t' \le 15\phi_I$. (zone IIa)

Où : ϕ_1 est le diamètre minimal des armatures longitudinales du poteau.

La quantité d'armatures transversales minimales : $\frac{A_t}{t.b_1}$ En % est donnée comme suit :

$$A_t^{\min} = 0.3\% \ (t \times b_1) \ si \lambda_g \ge 5$$

$$A_t^{\min} = 0.8\% \ (t \times b_1) \ si \lambda_g \le 3$$

si: $3 < \lambda_g < 5$ Interpoler entre les valeurs limites précédentes.

- Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de 10ϕ , minimum.
- Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants (φ cheminées > 12 cm) pour permettre une vibration correcte du béton sur toute la hauteur des poteaux.

V.1.2. Sollicitations dans les poteaux :

Les sollicitations dans les poteaux sont extraites du logiciel Sap2000 qui a été utilisé dans la modélisation au chapitre étude au séisme

Les résultats ainsi obtenus sont résumés dans le tableau suivant :

Tableau V.2 : Sollicitations dans les poteaux

Niveaux	N _{max} e	t M _{cor}	N _{min} et	Mcor	M _{max}	et N _{cor}
	KN	KN.m	KN	KN.m	KN.m	KN
Ss, RDC et Sp	2953.051	141.214	-280.524	21.1465	146.1525	1971.751
combinaison		G+Q+EX		0.8G-EX	G+Q+EX	
1 ^{eme} et 2 ^{eme} étage	1899.648	5.33	-209.076	9.64	141.985	536.602
combinaison		ELU		0.8G-EY	G+Q+EX	
3 ^{eme} et 4 ^{eme} étage	1474.603	5.3436	-104.68	15.699	120	459.902
combinaison		ELU		0.8G-EX	G+Q+EX	
5 ^{eme} et 6 ^{eme} étage	1066.316	5.571	-75.578	20.0119	88.3495	278.353
combinaison		ELU		0.8G-EY	G+Q+EX	
7 ^{eme} et 8 ^{eme} étage	672.503	6.4284	-71.911	13.4874	80.3149	116.98
combinaison		ELU		0.8G-EX	G+Q+EX	
9eme et 10eme étage	343.047	43.4417	-49.579	7.708	18.81	214
Combinaison		G+Q+EX		0.8G-EX	G+Q+EX	

V.1.3. Calcul du ferraillage:

V.1.3.1. Ferraillage longitudinal:

Le calcul du ferraillage se fera pour un seul poteau comme exemple de calcul et les autres seront résumés dans un tableau.

Le ferraillage des poteaux est donné par la sollicitation la plus défavorable.

• Exemple de calcul:

Soit les poteaux du sous-sol, RDC et soupente :

$$b = 60cm; h = 65cm$$

$$d = 60cm, d' = 5 cm$$

$$f_{c28} = 25 \text{ Mpa}$$

acier Fe E400

$$f_{bu}=18.48\ MPa$$

❖
$$N^{max} = 2953.051 \text{KN} \Rightarrow M^{cor} = 141.214 \text{KN. m}$$

$$e_G = \frac{M_u}{N_{co}} = 0.0478m < \frac{h}{2} = \frac{0.65}{2} = 0.325cm$$

c à l'intérieur de la section

$$A = (0.337 \text{ h} - 0.81 \text{ d}') \text{ .b .h . } f_{bu}$$

$$B = Nu (d-d') - M_{ua}$$

Avec :
$$M_{UA} = M_U + N_U \left(d - \frac{h}{2} \right) = 953 \text{ KN. m}$$

$$A = 1.287 \, MN. \, m$$

$$B = 0.671 \, MN. \, m$$

A > B Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

Calcul de
$$\mu_{bu}$$
: $\mu_{bu} = \frac{M_{ua}}{f_{bu} \times d^2 \times b} = \frac{953 \times 10^{-3}}{18.48 \times 0.6^2 \times 0.6} = 0.239 < \mu_l = 0.391 \Rightarrow A' = 0$

$$\mu_{bu} > 0.186 \Rightarrow \text{pivot B} \Rightarrow \varepsilon_{st} = \frac{3.5}{1000} (\frac{1-\alpha}{\alpha})$$

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu_{bu}}) = 0.346 \Rightarrow \varepsilon_{st} = 6.616 \times 10^{-3} \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = 400 MPa.$$

$$z = d(1 - 0.4\alpha) = 0.517m.$$

$$A_l = \frac{M_{UA}}{z \times f_{st}} = \frac{953 \times 10^{-3}}{0.517 \times 400} = 46.10 \text{ cm}^2$$

$$A_s = A_l - \frac{N}{f_e} = 46.1 \times 10^{-4} - \frac{2953.051 \times 10^{-3}}{400} = -27.73 cm^2 < 0$$

$$A_s=0cm^2$$

♦ $M^{max} = 146.15$ KN $\Rightarrow N^{cor} = 1971.75$ KN. m

$$e_G = \frac{M_u}{N_u} = 0.074m < \frac{h}{2} = \frac{0.65}{2} = 0.325cm$$

c à l'intérieur de la section

$$A = (0.337 \text{ h} - 0.81 \text{ d}') \text{ .b .h .} f_{bu} = 1.29$$

$$B = Nu (d-d') - M_{ua} = 0.396$$

Avec :
$$M_{UA} = M_U + N_U \left(d - \frac{h}{2} \right) = 688.38 \text{ KN. } m$$

A > B Donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

Calcul de
$$\mu_{bu}$$
: $\mu_{bu} = \frac{M_{ua}}{f_{bu} \times d^2 \times b} = \frac{688.38 \times 10^{-3}}{18.48 \times 0.6^2 \times 0.6} = 0.172 < \mu_l = 0.391 \Rightarrow A' = 0$

 μ_{bu} <0,186 \Rightarrow pivot A

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu_{bu}}) = 0.238 \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = 400 MPa.$$

$$z = d(1 - 0.4\alpha) = 0.543m$$
.

$$A_l = \frac{M_{UA}}{z \times f_{St}} = \frac{688.38 \times 10^{-3}}{0.543 \times 400} = 31.68cm^2$$

$$A_s = A_l - \frac{N}{f_e} = 31.68 \times 10^{-4} - \frac{1971.75 \times 10^{-3}}{400} = -17.61 cm^2 < 0$$

$$A_s = 0cm^2$$

$$♦$$
 $N^{min} = -280.524 \text{KN} \Rightarrow M^{cor} = 21,147 \text{KN. m}$

$$e_G = \frac{M_u}{N_u} = 0.075m < \frac{h}{2} = \frac{0.65}{2} = 0.325cm$$

N de traction et c à l'intérieur donc la section est entierement tendue

$$A_1 = \frac{N_u \times e_2}{f_{s10}(d-d')} \text{ et } A_2 = \frac{N_u \times e_1}{f_{s10}(d-d')} \text{ tels que}:$$

$$\begin{cases} f_{s10} = \frac{f_e}{\gamma_s} = 400 \text{ MPA} \\ e_1 = \left(\frac{h}{2} - d'\right) + e_G = 0.35 \text{ m} \\ e_2 = (d - d') - e_1 = 0.2 \text{ m} \end{cases} \text{ donc:} \begin{cases} A_1 = \frac{N_u \times e_2}{f_{s10}(d - d')} = \frac{280.524.10^{-3} \times 0.2}{400(0.60 - 0.05)} = 2.55 \text{ cm}^2 \\ A_2 = \frac{N_u \times e_2}{f_{s10}(d - d')} = \frac{280.524.10^{-3} \times 0.35}{400(0.60 - 0.05)} = 4.46 \text{ cm}^2 \end{cases}$$

$$A_{\min}^{\text{BAEL}} = \frac{\text{B. f}_{\text{t28}}}{\text{f}_{\text{a}}} \text{ avec B} = (0.60 \times 0.65) = 0.39 \text{ cm}^2 \text{ donc} : A_{\min}^{\text{BAEL}} = 20.47 \text{ cm}^2$$

$$A_1 + A_2 = 2.55 + 4.46 = 7.01 \text{cm}^2$$

$$A_1 + A_2 < A_{\min}^{BAEL}$$

 $A_1+A_2=2.55+4.46=7.01cm^2$ $A_1+A_2< A_{min}^{BAEL}$ On ferraille alors avec A_{min}^{BAEL} On va alors ferrailler avec :

$$\max (0; 0; 20.47; A_{\min}^{RPA}) = 31.2 \text{ cm}^2$$

Aadp(cm²) N(KN.m) Niveau section M(KN) A (cm²) Amin (cm^2) 65*60 -280.524 31.2 16HA16 = 32.17Ss, RDC 21.147 20.92 et sp 1+2^{eme} 60*55 -209.076 9.64 3.30 12HA14+4HA16=26.51 26.4 étage 3+4eme 55*55 -104.68 15.699 2.22 24.2 16HA14=24.63 étage 5+6^{eme} -75.578 4HA12+12HA14=22.99 55*50 20.019 2.04 22 étage 7+8eme 50*50 -71.911 13.487 1.75 20 8HA12+8HA14=21,37 étage 9+10eme 50*45 -49.579 7.708 1.12 18 12HA14=18,47 étage

Tableau V.3: Ferraillage des poteaux.

V.1.3.2. Ferraillage transversal:

• Exemple de calcul :

On prend pour exemple de calcul du poteau (65×60) cm²:

• Soit:
$$\frac{A_t}{t} = \frac{\rho_a V_u}{h_1 \cdot f_e}$$

$$\lambda_g = \left(\frac{l_f}{h} \text{ ou } \frac{l_f}{b}\right) = \left(\frac{0.7 \times 2.61}{0.65}\right) = 2.81 \Rightarrow \rho_a = 3.75$$

$$A_t = \frac{3,75 \times 68.661 \times 10^{-3} \times 0,10}{0.65 \times 400} = 0.99cm^2$$

• Longueur de recouvrement :

$$L_r = 40 \phi_{max}$$

• Espacement :

-Dans la zone nodale : $t \le \min(10\phi_l, 15 \text{ cm}) = \min(12; 15) \implies t = 10 \text{cm}$

- Dans la zone courante : $t \le 15\phi_l = 15 \times 1.2 = 18$ cm $\Rightarrow t = 15$ cm

• Quantité d'armature minimale :

$$\begin{array}{ll} \lambda_{g} \!\! \geq \!\! 5 & , A_t^{min} = 0.3\%(t \times b) \\ \lambda_{g} \!\! \leq \!\! 3, & A_t^{min} = 0.8\%(t \times b) \end{array} \label{eq:lambda_g_spectrum}$$

On a $A_t^{min} = 4.8 \text{ cm}^2$

On prend par exemple sous-sol, On a:

> Résultats de ferraillage des armatures transversales :

Les résultats de ferraillage des armatures transversales des différents types de poteaux sont résumés dans le tableau suivant :

Tableau V.4: Les Armatures transversales dans les poteaux.

Niveau	S-sol	RDC	SP	1+2 ^{em}	3+4 ^{em}	5+6 ^{em}	7+8em	9+10 ^{em}
				étage	étage	étage	étage	étage
Section	65*60	65*60	65*60	60*55	55*55	55*50	50*50	50*45
(cm ²)								
ϕ_l^{\min} (cm)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
l_f (cm)	182.7	242,2	218,4	182,7	182,7	182,7	182,7	182,7
λg	2,81	3,73	3.36	3.05	3,32	3,32	3,65	3,65
Vu (KN)	68.66	85,37	100,33	90.03	76.1	55.21	51.84	46.53
l_r (cm)	64	64	64	64	56	56	56	56
l_r adopté	70	70	70	70	60	60	60	60
(cm)								
t zonenodal	10	10	10	10	10	10	10	10
(cm)								
t zone courante	10	10	10	10	10	10	10	10
(cm)								
A_{t} (cm ²)	0.99	1.23	1.45	1.41	1.3	0.94	0.97	0.87
A_t^{\min} (cm ²)	4.8	3.71	4.5	4.33	3.95	2.44	3.19	2.87
A_{t} adopté	5.5	3.93	4.71	4.71	3.93	3.93	3.93	3.93
(cm ²)								
Barre	28	28	28	28	28	28	28	71
	=0.	=0.	=0.	=0.	=0.	=0.	=0.	<u></u> 4.
	8HA10=6.28	8HA10=6.28	8HA10=6.28	8HA10=6.28	8HA10=6.28	8HA10=6.28	8HA10=6.28	6HA10=4.71
	8H′	8H'	7H8	8H"	8H°	8H'	8H'	'H9

Vu que les sections d'armatures transversales sont très importantes nous avons opté pour un espacement de $t=t'=10 \, \mathrm{cm}$

Conformément aux règles du RPA 99/03 et au BAEL 91, le diamètre des armatures transversales doit être supérieur au tiers du maximum des diamètres des armatures longitudinales.

$$\phi_t \ge \frac{\phi_l^{\text{max}}}{3} = \frac{16}{3} = 5.33 \Rightarrow condition \ v\'{e}rifi\'{e}e.$$

V.1.4. Vérifications :

V.1.4.1. Vérification au flambement (effort normal ultime) :

Selon le **CBA93** (art **B.8.2.1**), les éléments soumis à la flexion composée doivent être justifiés vis à vis de l'état limite ultime de stabilité de forme.

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

Exemple de calcul

• Poteau du RDC:

$$N_{u} = \alpha \times \left(\frac{B_{r} \times f_{c28}}{0.9 \times \gamma_{b}} + A_{s} \times \frac{f_{e}}{\gamma_{s}} \right)$$

 α : Coefficient fonction de l'élancement λ .

 B_r : Section réduite du béton

A_s: Section d'acier comprimée prise en compte dans le calcul.

$$\alpha = \begin{cases} \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} & \text{si } \lambda < 50 \\ 0.6 \times \left(\frac{\lambda}{35}\right)^2 & \text{si } \lambda > 50 \end{cases}$$

$$\lambda = \frac{l_f}{i}$$

$$l_f = 0.7 \times l_0 = 2,42m$$

(Longueur de flambement).

$$i = \sqrt{\frac{I}{A}} = 0.1876m$$

(Rayon de giration).

D'où:
$$\lambda = \frac{2.42}{0.1876} = 12.897 \Rightarrow \alpha = 0.828$$

$$B_r$$
=0.3654 m^2 (Section réduite).

Donc:

$$N_u = 0.827 \times \left(\frac{0.3654 \times 25}{0.9 \times 1.5} + 31.42 \times 10^{-4} \times \frac{400}{1.15}\right) = 6499.98KN$$

On a $N_{max} = 2953.05 \text{ KN} < N_u$ condition vérifiée ; donc pas de risque de flambement.

Le tableau suivant résume les résultats des autres vérifications :

Tableau V.5: Vérification du flambement des poteaux

Niveau	Section	lo	lf	i(cm)	λ	α	As	Br.(cm ²)	N _u (KN)	N _{max}
	(cm ²)	(cm)	(cm)				(cm ²)			(KN)
Sous-sol	65*60	261	182,7	18,76	9,737	0,837	32,17	3654	6600,27	2953.05
RDC	65*60	346	242,2	18,76	12,9	0,828	32,17	3654	6529,3	2507.07
Soupente	65*60	312	218,4	18,76	11,642	0,832	32,17	3654	6560,84	2129.63
1 ^{er} niveau	60*55	261	182,7	17,32	10,548	0,835	26,51	3074	5523,26	1899.65
2 ^{eme} niveau	60*55	261	182,7	17,32	10,548	0,835	26,51	3074	5523,26	1685.58
3 ^{eme} niveau	55*55	261	182,7	15,88	11,507	0,832	24,63	2809	5040,82	1474.6
4 ^{eme} niveau	55*55	261	182,7	15,88	11,507	0,832	24,63	2809	5040,82	1268.22
5 ^{eme} niveau	55*50	261	182,7	15,88	11,507	0,832	22.99	2544	4584.96	1066.32
6 ^{eme} niveau	55*50	261	182,7	15,88	11,507	0,832	22.99	2544	4584.96	868.46
7 ^{eme} niveau	50*50	261	182,7	14,43	12,658	0,828	21,37	2304	4148,26	672.50
8 ^{eme} niveau	50*50	261	182,7	14,43	12,658	0,828	21,37	2304	4148,26	505.84
9 ^{eme} niveau	50*45	261	182,7	14,43	12,658	0,828	18,47	2064	3696,74	343.05
10 ^{eme} niveau	50*45	261	182,7	14,43	12,658	0,828	18,47	2064	3696,74	194.12

On voit bien que N_{max}<N_u pour tous les niveaux, donc il n'y pas de risque de flambement.

V.1.4.2. Vérification des contraintes de compression

La fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression du béton seulement, cette vérification sera faite pour le poteau le plus sollicité àchaque niveau.

$$\sigma_{bc} \le \overline{\sigma}_{bc}$$
; $\sigma_{bc} = \frac{N_{ser}}{S} + \frac{M_{ser}}{I_{gg}} \times v$

$$\overline{\sigma}_{bc} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

$$I_{gg} = \frac{b}{3} \times (v^3 + v'^3) + 15 \times A \times (d - v)^2 + 15 \times A' \times (v - d')^2$$

$$v = \frac{\frac{b \times h^2}{2} + 15 \times (A \times d + A' \times d')}{b \times h + 15 \times (A + A')}$$
; et $v' = h - v$;

On a:
$$A' = 0 \Rightarrow I_{gg} = \frac{b}{3} \times (v^3 + v'^3) + 15 \times A \times (d - v)^2$$

$$v = \frac{\frac{b \times h^2}{2} + 15 \times A \times d}{b \times h + 15 \times A}$$

Les résultats sont résumés dans le tableau suivant :

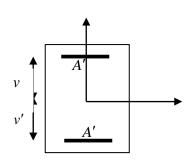


Fig.V.2. Section d'un poteau

Tableau V.6: Vérification des contraintes dans le béton

Niveaux	Section (cm ²)	d (cm)	As (cm ²)	V (cm)	V' (cm)	Igg (cm ⁴)	N _{ser} (KN)	M _{ser} (KN.m)	M _{sG} (KN.m)	Q (MPa)	Q (MPa)
s-sol, RDC et soopente	65*60	60	32.17	35.53	29.54	1697872.2	1800.84	38.40	533.63	14.72	15
1 ^{eme} et 2 ^{eme} étage	60*55	55	26.51	32.69	27.31	1211803.9	1383.9	35.04	381.02	14.47	15
3 ^{eme} et 4 ^{eme} étage	55*55	50	24.63	29.95	25.05	929229.4	1074.21	38.72	280.42	12.6	15
5 ^{eme} et 6 ^{eme} étage	55*50	50	22.99	30.01	24.90	848383.2	776.78	34.73	209.51	10.26	15
7 ^{eme} et 8 ^{eme} étage	50*50	45	21.37	27.27	22.73	634481.41	489.96	29.96	127.95	7.46	15
9 ^{eme} et 10 ^{me} étage	50*45	45	18.47	27.19	22.81	567420.4	244.05	44.37	93.18	5.55	15

Du tableau ci-dessus on remarque que $\sigma < \overline{\sigma}$; donc la contrainte de compression dans le béton est vérifiée

V.1.4.3. Vérification aux sollicitations tangentes :

Selon le RPA 99 (Art: 7.4.3.2):

$$\tau_{bu} \leq \overline{\tau}_{bu} \quad \text{Tel que}: \quad \overline{\tau}_{bu} = \rho_d \cdot f_{c28} \quad \text{avec}: \quad \rho_d = \begin{cases} 0,075 \, si \, \lambda_g \geq 5 \\ 0,04 \, si \, \lambda_g < 5 \end{cases} \quad \lambda_g = \frac{l_f}{a} ou \, \lambda_g = \frac{l_f}{b}$$

 $au_{bu} = rac{V_u}{b_0 \cdot d}$ (La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique)

Tableau V.7: Vérification des contraintes tangentielles.

Niveaux	Section	lf	λ_g	ho d	d	Vu	$ au_{ m bu}$	$- au_{ m bu}$
	(cm ²)	(cm)			(cm)	(KN)	(MPa)	(MPa)
SS	65*60	182,7	2.81	0.04	60	68.66	0.191	1
RDC	65*60	242,2	3,73	0.04	60	85.37	0,237	1
SP	65*60	218,4	3,36	0.04	60	100.33	0,279	1
1 ^{eme} et 2 ^{eme} étage	60*55	182,7	3.05	0.04	55	90.03	0.298	1
3 ^{eme} et 4 ^{eme} étage	55*55	182,7	3.32	0.04	50	76.1	0.277	1
5 ^{eme} et 6 ^{eme} étage	55*50	182,7	3.32	0.04	50	55.21	0.221	1
7 ^{eme} et 8 ^{eme} étage	50*50	182,7	3.65	0.04	45	51.84	0.230	1
9 ^{eme} et 10 ^{eme} étage	50*45	182,7	3.65	0.04	45	46.53	0.230	1

Du tableau ci-dessus, on déduit que la condition exigée par le RPA99/2003 sur les sollicitations tangentielles est vérifiée pour tous les étages.

V.1.5. Disposition constructive des poteaux :

Longueur des crochets :

$$L=10\times\phi_t=10\times1=10cm$$

La zone nodale est définie par h' tel que : h' = $\max(\frac{h_e}{6}, b_1, h_{1,60cm})$.

h_e: hauteur d'étage. (b₁, h₁): section de poteau.

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.8:Zones nodales dans les poteaux

Niveaux	he (cm)	b ₁ (cm)	h ₁ (cm)	h_e	h'(cm)
				6	
s-sol	261	60	65	43.5	65
RDC	346	60	65	57.67	65
SP	312	60	65	52	65
1 ^{er} et 2 ^{eme} étage	261	55	60	43.5	60
3 ^{eme} et 4 ^{eme} étage	261	55	55	43.5	55
5 ^{eme} et 6 ^{eme} étage	261	50	55	43.5	55
7 ^{eme} et 8 ^{eme} étage	261	50	50	43.5	50
9 ^{eme} étage et	261	45	50	43.5	50
terrasse					

Sous-sol, RDC et Soupente	1 et 2 ^{éme} étage
HA10Cadre	3HA14/face 2HA16/face Cadre HA10
Poteau (65×60)	Poteau (60×55)
3 et 4 ^{éme} étage	5 et 6 ^{éme} étage
SHA14/face Cadre HA10	3HA14/face 2HA12/face Cadre HA10
Poteau (55×55)	Poteau (55×50)

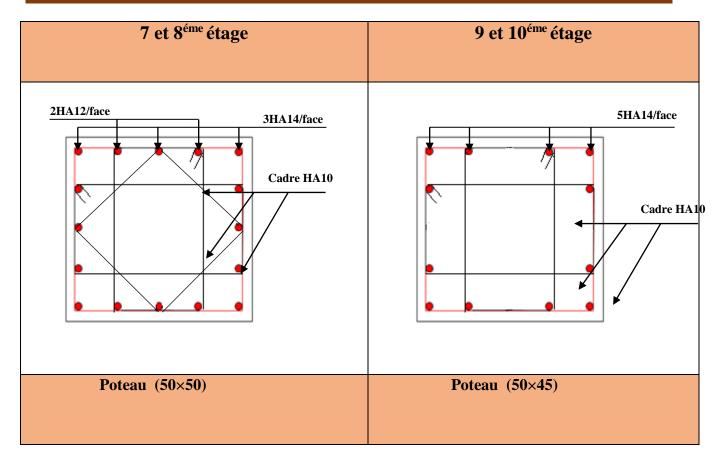


Figure V.3 : Schéma de ferraillage des poteaux dans chaque niveau.

V.2. Etude des poutres :

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (M ,V), on procède au ferraillage en respectant les prescriptions données par le RPA99/2003et celles données par le BAEL91.

Les poutres sont étudiées en tenant compte des efforts données par le logiciel SAP2000, combinés par les combinaisons les plus défavorables données par le RPA99 /2003suivantes :

- 1) $1.35 \times G + 1.5 \times Q$
- G + Q
- 3) G+Q+E
- 4) G+Q-E
- 5) $0.8 \times G + E$
- 6) $0.8 \times G E$

RPA99/ 2003 (article 5.2)

V.2.1. Recommandation du RPA99/2003:

V.2.1.1.Les armatures longitudinales :

- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% de la section totale du béton, c'est à dire, $A_1^{min} = 0.5\% \times b \times h$.
- Le pourcentage total maximum des aciers longitudinaux est de :
 - 4% de la section de béton en zone courante.
 - 6% de la section de béton en zone de recouvrement.
- La longueur minimale de recouvrement est de $40 \times \phi_{\text{max}}$ (zone IIa).
- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué à 90°.

V.2.1.2. Les armatures transversales :

- La quantité d'armatures transversales minimales est donnée par : $A_t = 0.003 \times S \times b$.
- L'espacement maximum entre les armatures transversales est déterminé comme suit :
 - $S \le \min(\frac{h}{4}; 12\phi_l)$, Zone nodale (Zone II).
 - $S \le \frac{h}{2}$, Zone courante (Zone II).
- La valeur du diamètre ϕ_l des armatures longitudinales à prendre est le plus petit diamètre utilisé, et dans le cas d'une section en travée avec armatures comprimées. C'est le diamètre le plus petit des aciers comprimés.
- Les premières armatures transversales doivent être disposées à 5cm au plus du nu d'appui ou de l'encastrement.

V.2.2.Ferraillage des poutres :

$V.2.2.1.Les\ armatures\ longitudinales:$

Tableau V.9 : Armatures longitudinales des poutres.

Dalle	Type de poutre	Section	Local	M (KN.m)	combinaisons	V (KN)	A calcul (Cm ²)	Amin (Cm ²)	Aadopté (Cm ²)	N ^{bre} de barres
RDC	Poutre	201145	Appui	-217,31	G+Q+EX	207.55	14,82		15.45	3НА20+3НА16
(commerciale)	principale	30*45	Travée	134,3	G+Q+EX	385,66	8,63	6.75	10.05	5 HA16
	Poutre	30*45	Appui	-98,36	G+Q+EY	115,82	6,23	6.75	6,79	6 HA12
	secondaire	30.43	Travée	99,01	G+Q+EY	113,62	6,23	0.75	0,79	6 HA12
	Poutre		Appui	-232,38	G+Q+EX	397,58	16,05	6.75	18.85	6HA20
SOUPENRE	principale	30*45	Travée	187,24	G+Q+EX	391,36	12,48	0.73	13.44	3HA20+2HA16
SOUP	Poutre		Appui	-159,01	G+Q+EX	184,41	10,39	6.75	10,65	3НА16+3НА14
	secondaire	30*45	Travée	154,24	G+Q+EX	104,41	10,39	0.75	10,65	3HA16+3HA14
e (habita	Poutre principale	30*45	Appui	-198,45	G+Q+EX	402,05	13,34	6.75	13.44	3HA20+2HA16
étag	principale		Travée	177,09	G+Q+EX		11,72		12,06	6 HA16
I ^{re} au 6 ^{eme} étage _{(habita}	Poutre secondaire	30*45	Appui	169,66	G+Q+EY	196,51	11,17	6.75	12,06	6 HA16
1re	seconduire		Travée	169,25	G+Q+EX		11,17		12,06	6 HA16
ibitat)	Poutre	30*45	Appui	-198,45	G+Q+EX	402,05	13.34	6.75	13.44	3HA20+2HA16
étage _{(ha}	principale	30 43	Travée	177,01	G+Q+EX	402,03	11.72	0.75	13.44	3HA20+2HA16
7re au 8 ^{eme} étage _(habitat)	Poutre	30*45	Appui	-110,97	G+Q+EX	100 06	7.03	6 75	8.01	3HA12+3HA14
7re ;	secondaire	30 43	Travée	94,35	G+Q+EX	108,06	5,92	6.75	6,79	6 HA12
9 ^{re} au 10 ^{eme}	Poutre	30*45	Appui	112,16	G+Q+EX	102,48	7,12	6.75	8.01	3HA12+3HA14
étage	principale	30.43	Travée	52,48	G+Q+EY	102,48	3,22	0.73	5.65	5 HA12

• Longueur de recouvrement :

V.2.2.2. Les armatures transversales :

Le diamètre minimal doit vérifier la condition du BAEL:

$$\phi \le \min\left(\phi_l; \frac{h}{35}; \frac{b}{10}\right)$$
BAEL91 (article H.III.3)

Le diamètre minimal doit vérifier la condition du BAEL :

• Poutres principales :

$$\emptyset_t$$
\frac{450}{35}; $\frac{300}{10}$) mm, donc on prend \emptyset_t < 12mm

Donc on adopte un cadre et un étrier de Ø8 d'où $A_t = 4T8 = 2.01 \text{ cm}^2$.

• Poutres secondaires:

$$\emptyset_t < min(12; \frac{450}{35}; \frac{300}{10})$$
 mm, donc on prend $\emptyset_t < 12mm$

Donc on adopte un cadre et un étrier de Ø8 d'où $A_t = 4T8 = 2,01 \text{cm}^2$.

• Espacement St d'armatures transversales :

1-Selon le BAEL91 (Article H.III.3)

 $S_t \le \min(S_{t1}, S_{t2}, S_{t3})$, avec:

$$\begin{cases} S_{t1} = \min(0.9 \times d; 40cm) = 37,8cm \\ S_{t2} \le \frac{A_t \times f_e}{0.4 \times b} \Rightarrow S_{t2} \le 67cm \\ St_3 \le \frac{0.8 \times A_t \times f_e}{b \times (\tau_u - 0.3 \times f_{t28})} \Rightarrow St_3 \le 6.07cm \end{cases}$$
 On prend $S_{t=}$ 6cm

Chapitre V:

2-Selon le RPA99:

- Poutres principales :

Zone nodale : $S_t \le min (h/4, 12\emptyset_{min}) = 11.25 \text{ cm soit } S_t = 11\text{cm}.$

Zone courante : $S_t \le h/2 = 22,5$ cm. Soit $S_t = 18$ cm.

- Poutres secondaires:

Zone nodale : $S_t \le min (h/4, 12\emptyset_{min}) = 11.25 \text{ cm soit } S_t = 11 \text{ cm}.$

Zone courante : $S_t \le h/2 = 22.5$ cm. Soit $S_t = 18$ cm.

V.2.2.3. Vérification des sections d'armatures transversales :

 $A_t > 0.003 \times S_t \times b$.

V.2.3. Vérification à l'ELU:

V.2.3.1. Condition de non fragilité :

$$A_{\min} = 0.23*b*d*\frac{f_{t28}}{f_e}$$

Tableau V.10 : Vérification de la section minimale.

Poutres	A _{min} (cm ²)	Aadop (cm ²)	Observation
Principales	1.52	2.01	Vérifiée
Secondaires	1.52	2.01	Vérifiée

V.2.3.2.Contrainte tangentielle maximale :

Fissuration peu nuisible $\Rightarrow \bar{\tau}_u = \min(0.13 \times f_{c28}; 4MPa) \Rightarrow \bar{\tau}_u = 3.25MPa$.

Tableau V.11: Vérification des contraintes tangentielles.

Poutres	V _{max} (MN)	$ au_{\mathrm{max}}$ (MPa)	Observation
Principales	0.402	3.19	Vérifiée
Secondaires	0.197	1.56	Vérifiée

.3. Vérification des armatures longitudinales au cisaillement aux voisinages des appuis

-Appuis de rives :
$$A_l > \frac{V \max \times \gamma_s}{f_e}$$
.

-Appuis intermédiaires :
$$A_l \ge \frac{\gamma_s}{f_e} \times (V \max - \frac{M_a}{0.9*d})$$
.

Tableau V.12 : Vérification des armatures longitudinales au cisaillement

Poutres	A _L (cm ²)	V _{max} (KN)	Ma (KN.m)	A ₁ ^{rive} (cm ²)	A ₁ ^{int} (cm ²)	Observation
Principale	13.44	402.05	198,45	11.56	-3.53	Vérifiée
Secondaires	12.06	196.51	169.66	5.67	-7.28	Vérifiée

V.2.3.4.1 Etat limite de compression du béton :

$$\frac{b}{2}y^{2} + 15A_{s}y - 15dA_{s} = 0; \qquad \sigma_{bc} = \frac{M_{ser}}{I}y; \qquad \overline{\sigma}_{bc} = 0.6f_{c28} = 15MPa$$

$$I = \frac{b \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s}^{'} \times (y - d')^{2} \right]$$

Tableau V.13: Vérification de l'état limite de compression

Poutres	Localisation	Mser	Y	I	σ_{bc} (MPa)	Observation
		(KN.m)	(cm)	(cm ⁴)	DC C SS	
Poutres	Appuis	124,36	18,89	191176.79	12.29	Vérifiée
principales	Travées	64,75	16.13	142857.01	7.31	Vérifiée
Poutres	Appuis	50,47	13,83	107275,44	6,51	Vérifiée
secondaires	Travées	18,72	17,27	162141,83	1,99	Vérifiée

V.2.3.5. Etat limite de déformation (évaluation de la flèche)

D'après le **BAEL91** et le **CBA93** la vérification à la flèche est inutile si : [1],[2] et [3] sont verifiées.

$$\frac{h_t}{l} > \frac{1}{16};$$
 $\frac{h_t}{l} > \frac{M_t}{10 \times M_0};$ $\frac{A_s}{b_0 \times d} \le \frac{4.2}{f_e}..$ **BAEL 91(Article B.6.5)**

Tableau V.14 : Vérification de la flèche pour les poutr	es
--	----

Poutre	Position	ht	b	l	$\mathbf{A}_{\mathbf{s}}$	Mser	Condition	Condition	Condition
		(cm)	(cm)	(cm)	(cm ²)	(KN.m)	(1)	(2)	(3)
principale	RDC	45	30	560	9.24	64,75	Vérifiée	Vérifiée	Vérifiée
secondaire	étage	45	30	485	12.06	18,72	Vérifiée	Vérifiée	Vérifiée
	courant								

Toutes les conditions sont vérifiées donc pas besoin de vérifier la flèche.

V.2.3.6. Vérification des zones nodales :

Dans le but de permettre la formation des rotules plastiques dans les poutres et non dans les poteaux, le **RPA99**(Article 7.4.2.2) exige que : $|_{M}|$

$$|M_n| + |M_s| \ge 1.25 \times |M_w| + |M_e|$$

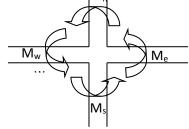


Figure V.4: La zone nodale

Cependant cette vérification est facultative pour les deux derniers niveaux (bâtiments supérieurs à R+2).

1- Détermination du moment résistant dans les poteaux :

Le moment résistant (M_R) d'une section de béton dépend essentiellement :

- Des dimensions de la section du béton.
- De la quantité d'armatures dans la section du béton.
- De la contrainte limite élastique des aciers.

$$M_R = z \times A_s \times \sigma_s$$
 Avec : $z = 0.85 \times h$ (h : La hauteur totale de la section du béton).

$$\sigma_s = \frac{f_s}{\gamma_s} = 348 \,\mathrm{MPa}$$

Les résultats obtenus sont donnés dans le tableau ci-dessous :

Tableau V.15: Moments résistant dans les poteaux

Niveaux	Section (cm ²)	Z (cm)	A_{s} (cm ²)	M _r (KN.m)
S-sol, RDC et	65*60	55.25	32.17	618.53
soupente				
1 ^{eme} et 2 ^{eme}	60*55	51	26.51	470.5
étage				
3eme et 4eme	55*55	46.75	24.63	400.71
étage				
5 ^{eme} et 6 ^{eme}	55*50	46.75	24.63	400.71
étage				
7 ^{eme} et 8 ^{eme}	50*50	42.5	21.37	316.06
étage				
9eme et 10eme	50*45	42.5	18.47	273.17
étage				

2- Détermination du moment résistant dans les poutres

Les moments résistants dans les poutres sont calculés de la même manière que dans les poteaux

Tableau V.16: Moments résistant dans les poutres

Niveaux	Poutres	principales (J	plan YY)	Poutres secondaires (plan XX)			
	Z (cm)	A_s (cm ²)	M _r (KN.m)	Z (cm)	A_s (cm ²)	M _r (KN.m)	
RDC	38.25	15.45	205.65	38.25	6.79	90.38	
Soupente	38.25	18.85	250.91	38.25	10.65	141.76	
1 ^{eme} au	38.25	13.44	178.9	38.25	12.06	160.53	
6 ^{eme} étage							
7 ^{eme} au	38.25	13.44	178.9	38.25	8.01	106.62	
8 ^{eme} étage							
9 ^{eme} au	38.25	8.01	106.62	38.25	6.79	90.38	
10 ^{eme}							
étage							

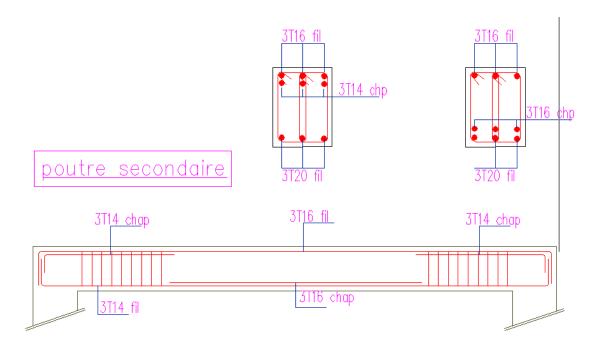


Figure V.5 : Ferraillage d'une poutre secondaire de la soupente

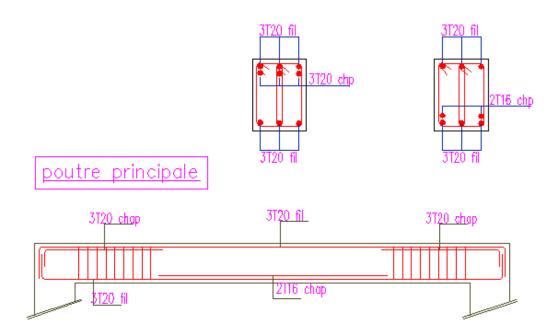


Figure V.6 : Ferraillage d'une poutre principale de la soupente

Niveaux	\mathbf{M}_{s}	Mn	M_s+M_n	$\mathbf{M}_{\mathbf{w}}$	Me	1.25	Observation
Plan						(M_w+M_e)	
RDC	618.53	618.53	1237.06	205.65	205.65	514.125	Vérifiée
soupente	618.53	618.53	1237.06	250.91	250.91	627.28	Vérifiée
1 ^{eme} étage et 2 ^{eme} étage	470.5	470.5	941	178.9	178.9	447.25	Vérifiée
3 ^{eme} étage et 4 ^{eme} étage	400.71	400.71	801.42	178.9	178.9	447.25	Vérifiée
5 ^{eme} étage et 6 ^{eme} étage	400.71	400.71	801.42	178.9	178.9	447.25	Vérifiée
7 ^{eme} étage et 8 ^{eme} étage	316.06	316.06	632.12	178.9	178.9	447.25	Vérifiée
9 ^{eme} étage et 10 ^{eme} étage	273.17	273.17	546.34	106.62	106.62	266.55	Vérifiée

Tableau V.17 : Vérification des zones nodales

V.3. Etude des voiles

Le RPA/99/version 2003 (3.4.A.1.a), exige de mettre des voiles à chaque structure en béton armé dépassant quatre niveaux ou 14m de hauteur dans la zone IIa (moyenne sismicité).

Les voiles de contreventement peuvent être définis comme étant des éléments verticaux qui sont destinés à reprendre, outre les charges verticales (au plus 20%), les efforts horizontaux (au plus 75%) grâce à leurs rigidités importantes dans leurs plan. Ils présentent deux plans l'un de faible inertie et l'autre de forte inertie ce qui impose une disposition dans les deux sens (x et y).

Un voile travaille comme une console encastré à sa base, on distingue deux types de voiles qui ont des comportements différents :

✓ Voiles élancés :
$$\frac{h}{l} > 1.5$$
 ; Voiles courts : $\frac{h}{l} < 1.5$

Les voiles sont sollicités à la flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de rupture suivants :

Chapitre V:

- Rupture par flexion
- Rupture en flexion par effort tranchant.
- Rupture par écrasement ou traction du béton.

Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel SAP2000 dans l'ordre suivant :

V.3.1.Recommandation du RPA

A. Armatures verticales

Les armatures verticales sont destinées à reprendre les efforts de flexion. Elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :

• Le pourcentage minimal sur toute la zone tendue est de 0.20%.

$$A_{min} = 0.20\% (L_t x e)$$

L_t: Longueur de la zone tendue.

e : épaisseur du voile.

- Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement S_t< e (e : épaisseur de voile).
- A chaque extrémité du voile, l'espacement des barres doit être réduit de moitié sur L/10 de la largeur du voile.
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

B. Armatures horizontales

Les armatures horizontales sont destinées à reprendre les efforts tranchants, Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de $10\phi_i$.

C. Armatures transversales

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement. Elles sont en nombre de quatre épingles par 1 m² au moins.

E. Règles communes (armatures verticales et horizontales)

• Le pourcentage minimum d'armatures (verticales et horizontales) :

 $A_{\min} = 0.15 \% b \times h$dans la section globale de voile.

 $A_{\min} = 0.10 \% b \times h$dans la zone courante.

$$\phi_l \leq \frac{1}{10} \times e$$
.

- L'espacement : S_t =min (1.5*e; 30 cm).

- Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

- Longueurs de recouvrement :

 40ϕ : Pour les barres situées dans les zones où le renversement de signe des efforts et possible.

 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

F. La contrainte limite de cisaillement dans le béton

La contrainte limite de cisaillement dans le béton est limitée comme suit :

$$\tau_{\rm u} = \frac{V}{e \times d} < \tau_{\text{adm}} = 0.2 \times f_{_{c28}} = 5 \text{ Mpa}.$$

e : épaisseur du voile.

d: hauteur utile (d=0.9*h).

h: hauteur totale de la section.

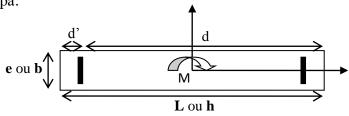


Figure V.7 : Schéma d'un voile pleine

V.3.2.ferraillage des voiles

Le calcul des armatures verticales se fait à la flexion composée sous (M et N) pour une section ($e \times L$)

Les résultats de ferraillages sont récapitulés dans les tableaux ci-dessous avec :

- A_{ν}^{cal} / face: Section d'armature verticale pour une seule face de voile.
- $A_{v \min}^{RPA}$: Section d'armature verticale minimale dans le voile complet.
- A_v^{adap} / face : Section d'armature verticale adaptée par face.
- N^{bre}/face : nombre de barres adaptées par face.
- S_t : Espacement.
- A_H^{\min} : Section d'armature horizontale minimale dans le voile complet.
- A_H^{cal} : Section d'armature horizontale pour 1 mètre linéaire.
- A_H^{adap} /ml : Section d'armature horizontale adaptée pour 1 mètre linéaire.
- $\bullet \qquad A_H^{cal} = \frac{A_v^{adpt}}{4}$
- A_H /ml : Section d'armature adoptée par mètre linéaire.

1. Les sollicitations dans les voiles

Le SAP 2000, nous donne les sollicitations (N, M et V) dans chaque voile.

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

❖ Calcul du ferraillage

On va exposer un seul exemple de calcul et les autres seront résumés dans un tableau.

Prenons l'exemple de calcul du voile $V_x = 1.3m$ du Sous-sol

Armatures verticales

Le calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section $(e \times l)$. La section trouvée (A) sera répartie sur toute la zone tendue de la section en respectant les recommandations du RPA99.

Exemple de calcul:

$$L = 1.30 \, m, d = 1.25 \, m, e = 0.2 \, m$$

$$N = -55.812 \, KN(traction), M = 660.9 \, KN.m$$

$$e_G = \frac{M}{N} = \frac{660.9}{55.812} = 11.84 \text{ m et } \frac{l}{2} = \frac{1.3}{2} = 0.65$$

 \rightarrow Le centre de pression est à l'exterieur de la section

⇒ La section est partiellement comprimée.

$$\sigma_{max} = \frac{N}{B} + \frac{M}{I} \times y = \frac{-55.812}{0.20 \times 1.30} + \frac{660.9}{0.037} \times 0.65 = 11.4 MPa$$

$$\sigma_{min} = \frac{N}{B} - \frac{M}{I} \times y = -11.83 MPa$$

Soit L_t la longueur de la partie tendue.

$$L_t = \frac{\sigma_{min} \times L}{\sigma_{min} + \sigma_{max}} = 0.66 \ m$$

$$\Rightarrow \mu_{bu} = \frac{627.41}{18.48 \times 1.25^2 \times 0.2} = 0.109 \rightarrow \alpha = 0.145 \rightarrow z = 1.178m$$

$$A_1 = \frac{627.41 \times 10^{-3}}{1.18 \times 400} = 13.32 \ cm^2 \Rightarrow A = A_1 - \frac{N}{f_{st}} = 13.32 \times 10^{-4} + \frac{55.81 \times 10^{-3}}{400}$$

$$A = 14.72cm^2$$

La quantité d'armatures minimales dans la zone tendue est :

$$A_{min}^{RPA} = 0.2\% \times (e \times L_t) = 2.56 \text{ cm}^2$$

$$A_{min}^{BAEL} = 0.23 \times [e \times (L_t - d')] \times \frac{f_{t28}}{f_e} = 1.43 \text{ cm}^2$$

On opte pour : $A_V^{ZT} = 10HA14 = 15.39 cm^2$ (dans la zone tendue)

La quantité d'armatures minimales dans la zone courante est :

$$A_{min} = 0.1\% \times e \times (L - L_t) = 0.1\% \times 0.2 \times (1.30 - 0.64) = 1.32 \ cm^2$$

On opte pour : $A_V^{ZC} = 4HA8 = 2.01cm^2$

Armatures horizontales

Leurs sections sont calculées selon la formule suivante :

$$\frac{A_h}{e \times S_h} \ge \frac{\tau_u}{0.8 \times f_e}$$

$$\tau_u = \frac{1.4 \times V}{e \times d} = \frac{1.4 \times 245.61}{0.2 \times 1.25} = 1.375 MPa$$

Soit : $S_h = 25 \ cm \Rightarrow A_h = 2.15 \ cm^2$

$$A_h^{min} = 0.15\% \times e \times S_h = 0.75cm^2$$

On adopte alors : $A_h = 12HA8 = 6.03 cm^2$

Le calcul du ferraillage des voiles //xx est résumé dans les tableaux suivants, avec :

 $A_v^{calcul\'ee}$: Section d'armatures verticales calculée

 $A_h^{calcul\'ee}$: Section d'armatures horizontales calcul\'ee

 L_t :Longueur de la zone tendue

 $\boldsymbol{A_{min}^{ZT}}$: Section d'armatures verticales minimales dans la zone tendue

 A_{min}^{ZC} : Section d'armatures verticales minimales dans la zone comprimée

 S_v : Espacement des armatures verticales

 S_h : Espacement des armatures horizontales

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

Les résultats de calcul sont récapitulés dans les tableaux qui suivent :

Chapitre V:

	Tableau V	7.18. Ferrail	llage des vo	iles V_{x2} et V_{x2}'			
Niveaux	SS	1 ^{er}	3 ^{éme}	5 ^{éme}	7 ^{éme}	9 ^{éme}	
Longueur			1	lm			
N (KN)	1506.25	1028.49	839.13	631.42	401.95	170.22	
M(KN.m)	359.72	59.06	60.44	64.93	69.39	133.11	
combinaisons	G+Q+EX	ELU	ELU	ELU	ELU	G+Q+EX	
$A_v^{calcul\'ee}$ (cm^2)	< 0	< 0	< 0	< 0	< 0	< 0	
Section	SEC	SEC	SEC	SEC	SEC	SEC	
$A_{min}^{ZC}(cm^2)$	2	2	2	2	2	2	
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	4HA8 =2.01	4HA8 =2.01	4HA8 =2.01	4HA8 =2.01	4HA8 =2.01	4HA8 =2.01	
$S_v(cm)$	25	25	25	25	25	25	
V(KN)	153	124.1	120.04	116.18	94.98	100.85	
$\tau_u(MPa)$	1.13	0.91	0.88	0.86	0.7	0.74	
$\overline{\tau_b}(MPa)$	5	5	5	5	5	5	
$A_h^{calcul\'ee}(cm^2)$	1.77	1.42	1.38	1.09	1.09	1.16	
$A_h^{min}(cm^2)$	0.75						
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03	6.03	
N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8	12HA8	
$S_h(cm)$				25			

	Tabled	au V.19. Ferrailla	ge des voiles V _{x3} e	etV_{x3}'					
Niveaux	SS	1 ^{er}	3 ^{éme}	5 ^{éme}	7 ^{éme}				
Longueur		1.1m							
N (KN)	1352.40	809.78	588.12	347.30	103.45				
M(KN.m)	423.6	97.21	91.64	86.51	88.58				
Combinaisons	G+Q+EX	ELU	ELU	ELU	G+Q+EX				
$A_v^{calcul\'ee}$ (cm^2)	< 0	< 0	< 0	< 0	< 0				
Sections	SEC	SEC	SEC	SEC	SEC				
$A_{min}^{ZC}(cm^2)$	1.74	2.2	2.2	1.9	1.34				
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	4HA10=3.14	4HA10=3.14	4HA10=3.14	4HA10=3.14	4HA10=3.14				
$S_{v}(cm)$	25	25	25	25	25				
V(KN)	181.17	83.26	80.1	75.52	62.87				
$ au_u(MPa)$	1.21	0.56	0.53	0.50	0.42				
$\overline{\tau_b}(MPa)$	5	5	5	5	5				
$A_h^{calcul\'ee}(cm^2)$	1.89	0.88	0.83	0.78	0.66				
$A_h^{min}(cm^2)$		•	0.75	•	•				
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03				
N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8				
$S_h(cm)$			25						

	Tableau V.	20. Ferrail	lage des vo	piles V_{x4} et V_{x4}	,	
Niveaux	SS	1 ^{er}	3 ^{éme}	5 ^{éme}	7 ^{éme}	9 ^{éme}
Longueur		1.7m	l			
N (KN)	3089.94	1973.28	1673.96	1277.51	980.32	453.03
M(KN.m)	1148.91	109.23	91.47	83.08	72.97	28.97
Combinaisons	G+Q+EX	ELU	ELU	ELU	ELU	ELU
$A_v^{calcul\'ee}$ (cm^2)	< 0	< 0	< 0	< 0	< 0	< 0
Section	SEC	SEC	SEC	SEC	SEC	SEC
$A_{min}^{ZC}(cm^2)$	3.4	3.4	3.4	3.4	3.4	3.4
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	6HA10 =4.71	6HA10 =4.71	6HA10 =4.71	6HA10 =4.71	6HA10 =4.71	6HA10 =4.71
•						
$S_v(cm)$	25	25	25	25	25	25
V(KN)	355.5	161.72	145.09	139.67	98.69	59.59
$\tau_u(MPa)$	1.51	0.69	0.62	0.59	0.42	0.25
$\overline{\tau_b}(MPa)$	5	5	5	5	5	5
$A_h^{calcul\acute{e}e}(cm^2)$	2.36	1.08	0.97	0.92	0.66	0.39
$A_h^{min}(cm^2)$	0.75					
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03	6.03
N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8	12HA8
$S_h(cm)$				25		

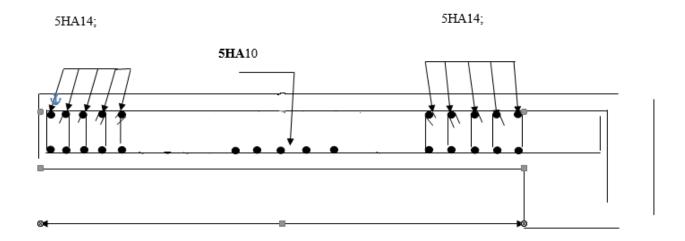
	Tableau V.21. Ferraillage des voiles V_{y1} et V_{y1} '									
Niveaux	SS	1 ^{er}	3 ^{éme}	5 ^{éme}	7 ^{éme}	9 ^{éme}				
Longueur			2.3	3m						
N (KN)	2742.89	2101.17	1660.96	1262.14	823.85	418.18				
M (KN. m)	844.04	332.01	8.2	46.56	56.95	144.91				
Combinaisons	G+Q+EX	G+Q+EX	ELU	ELU	ELU	G+Q+EX				
$A_v^{calcul\'ee} (cm^2)$	< 0	< 0	< 0	< 0	< 0	< 0				
Sections	SEC	SEC	SEC	SEC	SEC	SEC				
$A_{min}^{ZC}(cm^2)$	4.6	4.6	4.6	4.6	4.6	4.6				
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	9HA10=7.07	9HA10=7.07	9HA10=7.07	9HA10=7.07	9HA10=7.07	9HA10=7.07				
$S_v(cm)$	25	25	25	25	25	25				
V(KN)	376.36	271.56	253.08	204.43	191.87	158.11				
$\tau_u(MPa)$	1.17	0.84	0.79	0.64	0.6	0.49				
$\overline{\tau_b}(MPa)$	5	5	5	5	5	5				
$A_h^{calcul\'ee}(cm^2)$	1.83	1.31	1.23	1.00	0.94	0.77				
$A_h^{min}(cm^2)$			0.	75						
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03	6.03				

Etude des éléments structuraux

Chapitre V:

N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8	12HA8
$S_h(cm)$			2	5		

	Tableau V.22. Ferraillage des voiles V_{y2}							
Niveaux	SS	1 ^{er}	3 ^{éme}	5 ^é m e	7 ^{éme}	9 ^{éme}		
Longueur			4	m				
N (KN)	2711.131	2112.36	1713.27	1264.05	823.85	418.18		
M(KN.m)	10.09	41.42	55.75	59.46	56.95	65.67		
Combinaisons	ELU	ELU	ELU	ELU	ELU	ELU		
$A_v^{calcul\'ee} (cm^2)$	< 0	< 0	< 0	< 0	< 0	< 0		
Section	SEC	SEC	SEC	SEC	SEC	SEC		
$A_{min}^{ZC}(cm^2)$	8	8	8	8	8	8		
$A_{adopt\'ee}^{ZC}(cm^2)$	16HA10 =12.57	16HA10 =12.57	16HA10 =12.57	16HA10 =12.57	16HA1 0 =12.57	16HA10 =12.57		
$S_v(cm)$	25	25	25	25	25	25		
V(KN)	764.55	577.23	472.72	310.4	191.86	179.88		
$\tau_u(MPa)$	1.35	1.02	0.84	0.55	0.34	0.32		
$\overline{\tau_b}(MPa)$	5	5	5	5	5	5		
$A_h^{calcul\'ee}(cm^2)$	2.11	1.59	1.31	0.86	0.53	0.5		
$A_h^{min}(cm^2)$	0.75							
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03	6.03		
N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8	12HA8		
$S_h(cm)$			7	25				


	Tableau V.23. Ferraillage des voiles V_{y3}								
Niveaux	SS	SS 1 ^{er} 3 ^{éme} 5 ^{éme} 7 ^{éme}							
Longueur			1.5m						
N (KN)	1084.07	811.75	634.59	414.88	162.37				
M(KN.m)	136.71	41.42	55.75	59.46	181.33				
Combinaisons	G+Q+EY	G+Q+EY	G+Q+EY	G+Q+EY	G+Q+E Y				
$A_v^{calcul\'ee} (cm^2)$	< 0	< 0	< 0	< 0	< 0				
Section	SPC	SEC	SEC	SEC	SPC				
$A_{min}^{ZC}(cm^2)$	2.32	3	3	3	1.84				

ΔZC (am^2)	6HA10	6HA10	6HA10	6HA10	6HA8		
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	=4.71	=4.71	=4.71	=4.71	=3.02		
$S_v(cm)$	25	25	25	25	25		
V(KN)	154.71	113.59	87.58	70.93	127.83		
$\tau_u(MPa)$	0.75	0.55	0.42	0.34	0.62		
$\overline{\tau_b}(MPa)$	5	5	5	5	5		
$A_h^{calcul\'ee}(cm^2)$	1.17	0.86	0.66	0.53	0.97		
$A_h^{min}(cm^2)$			0.75				
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03		
N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8		
$S_h(cm)$	25						

	Tableau V.2	4. Ferraillage o	des voiles V _{y4}	
Niveaux	SS	1^{er}	3 ^{éme}	5 ^{éme}
Longueur		2.	1m	
N (KN)	1606.67	958.75	715.21	418.052
<i>M</i> (<i>KN</i> . <i>m</i>)	1172.63	8.38	229.77	207.92
Combinaison s	G+Q+EY	ELU	G+Q+EY	G+Q+EY
$A_v^{calcul\'ee}$ (cm ²	< 0	< 0	< 0	< 0
Section	SPC	SEC	SPC	SPC
$A_{min}^{ZC}(cm^2)$	3.1	4.2	4.2	4.2
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	8HA10=6.28	8HA10=6.28	8HA10=6.28	8HA10=6.28
$S_v(cm)$	25	25	25	25
V(KN)	303.16	199.97	147.18	110.9
$\tau_u(MPa)$	1.04	0.68	0.50	0.38
$\overline{\tau_b}(MPa)$	5	5	5	5
$A_h^{calcul\'ee}(cm^2)$	1.63	1.06	0.78	0.59
$A_h^{min}(cm^2)$		0	.75	
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03
N ^{bre} de barre	15HA8	12HA8	12HA8	12HA8
Sh (cm)		2	25	

	Tableau V.25. Ferraillage des voiles V_{x1}							
Niveaux	SS	1 ^{er}	3 ^{éme}	5 ^é <i>me</i>	7 ^{éme}	9 ^{éme}		
Longueur			1.	3m				
N (KN)	- 55.812	1169.14	970.31	736.23	473.26	294.26		
<i>M</i> (<i>KN</i> . <i>m</i>)	660.9	65.01	43.72	38.68	32.22	40.07		
combinaisons	0.8G-EX	ELU	ELU	ELU	ELU	G+Q+EX		
$A_v^{calcul\'ee}$ (cm^2)	14.72	< 0	< 0	< 0	< 0	< 0		
Section	SEC	SEC	SEC	SEC	SEC	SEC		
$A_{min}^{ZC}(cm^2)$	1.32	2.6	2.6	2.6	2.6	2.6		
$A_{adopt\acute{e}e}^{ZC}(cm^2)$	5HA10	5HA10	5HA10	5HA10	5HA10	5HA10		
Aadoptée (CM)	=2.51	=3.91	=3.91	=3.91	=3.91	=3.91		
$S_v(cm)$	25	25	25	25	25	25		
V(KN)	245.61	126.49	116.76	111.84	78.35	122.79		
$\tau_u(MPa)$	1.38	0.71	0.65	0.63	0.44	0.69		
$\overline{\tau_b}(MPa)$	5	5	5	5	5	5		
$A_h^{calcul\'ee}(cm^2)$	2.16	1.11	1.02	0.98	0.69	1.08		
$A_h^{min}(cm^2)$	0.75							
$A_h^{adopt\acute{e}e}(cm^2)$	7.54	6.03	6.03	6.03	6.03	6.03		
N ^{bre} de barres	15HA8	12HA8	12HA8	12HA8	12HA8	12HA8		
$S_h(cm)$				25				

On prend comme exemple le voile Vx= 1.3 sous-sol

Figure.V.8 : Schéma de ferraillage du voile Vx=1.3m du sous-sol

V.3. Conclusion:

Au terme de ce chapitre, nous avons étudié les différents éléments principaux, après cette étude nous avons conclu que :

- Pour les poteaux, les poutres et les voile, les sollicitations adoptées pour le calcul de ferraillage sont extraite du SAP2000.
- Les différents ferraillages adoptés pour les éléments structuraux respectent les recommandations du RPA99/2003 et du BAEL.

L'infrastructure est l'ensemble des éléments qui ont pour rôle de supporter les charges de la superstructure et les transmettre au sol, de façon à assurer la stabilité de l'ouvrage, limiter les tassements différentiels et les déplacements sous l'action des forces horizontales.

VI.1 Choix du type de fondation:

Le choix du type de fondation dépend essentiellement des facteurs suivants :

- Capacité portante du sol d'assise.
- Le poids de la structure.
- La distance entre axes des poteaux.
- La profondeur du bon sol
- D'après le rapport du sol, le terrain représente une capacité moyenne.la fondation devrait être encrée à 2m du niveau de la base.
- La capacité portante moyenne est estimée de 1.5 bars.

D'après le **RPA 99(article 10.1.4.1)**, les fondations superficielles sont calculées selon les combinaisons d'action suivantes :

- G + Q + E
- 0.8G <u>+</u> E

VI.2. Etude des fondations :

VI.2.1. calcul de la surface des fondations :

.N: l'effort normal transmis par la structure.

S_{bat}:surface du bâtiment.

S: surface des fondations.

 σ_{sol} : Contrainte admissible du sol.

 σ_{sol} =1.5bar.

 $S_{bat} = 545,09 \text{ m}^2$.

$$S \ge \frac{N}{\sigma_{sol}} \Rightarrow S \ge \frac{73144,65}{150}$$

 $S \ge 487,63m^2$.

La surface des fondations représente 89% de la surface du bâtiment alors on utilise un radier générale avec une surface S_{rad} =545,09 m².

VI. 3. Radier général:

VI. 3. 1. Définition :

Le radier est une fondation superficielle travaillant comme un plancher renversé, la dalle prend appuis sur des nervures qui prennent-elles-même comme appuis les paliers ou les murs de l'ossature. La charge à prendre en compte sera dirigée de bas en haut et sera égale à la réaction du sol. Le radier général assure une bonne répartition des charges sous le sol donc il représente une bonne solution pour éviter le tassement différentiel.

VI. 3. 2. Pré dimensionnement :

A. La condition de coffrage :

 $L_0=5.6$ m : la plus grande portée entre axe.

$$L_{\text{max}} = 5.6 - 0.6 = 5 \text{ m}$$

> Nervure:

$$h_{t} \ge \frac{L_{\max}}{10} = \frac{500}{10} \Longrightarrow h_{t} \ge 50cm$$

▶ Dalle:

$$h_r \ge \frac{l_{\text{max}}}{20} = \frac{500}{20} = 25cm$$
 . On prend $h_r = 30cm$.

- h_t : hauteur de la nervure.
- h_r : hauteur du radier.

B. Vérification de condition de rigidité :

$$\begin{cases} L_{\text{max}} \leq \frac{\pi}{2} L_{\text{e}}.....(1). \\ L_{\text{e}} = \sqrt[4]{\frac{4 \times E \times I}{K \times b}}....(2). \end{cases}$$

E : module d'élasticité du béton E = 3.2164×10^4 MPa.

I : inertie de la section du radier I = $\frac{b \times h_t^3}{12}$.

K : module de résistance du sol. (On a un sol moyen donc K=4×10⁴KN/m³).

b : largeur de radier, on prend une bande de 1 m.

On
$$a: I = \frac{b*ht^3}{12} \Rightarrow ht \ge \sqrt[3]{\frac{48*L_{max}^4*K}{\pi^4*E}} = >h_{t=72.67cm}$$
(b)

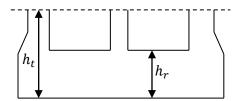


Figure VI.1:Dimensions du radier.

A partir des deux conditions (a) et (b) on prend :

- ✓ La hauteur de la nervure h_t =80cm
- ✓ La hauteur du radier. $h_r = 30cm$.

C. La surface du radier :

$$\frac{N_{ser}}{S_{rad}} \le \sigma_S \to S_{rad} \ge \frac{N_{ser}}{\sigma_S} = \frac{73144.65}{150}$$
$$\Rightarrow S_{rad} \ge 487.63m^2$$

La surface du bâtiment est : S_{bât}= 545.09m²

Donc on considère que $S_{rad} = S_{b\hat{a}t}$ => pas besoin de débord

VI.3.3. les Vérifications nécessaires :

A. Vérification au poinçonnement :

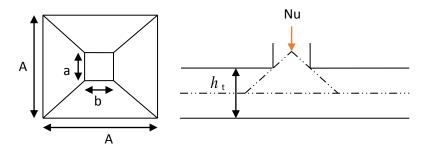


Figure VI.2: Présentation de zone d'impact de la charge compactée

Il faut vérifier que : $N_U \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b}$ **CBA93** (article A.5.2.4.2) N_U : L'effort normal max à l'ELU du poteau.

 $U_{c}\,$: Le périmètre du contour cisaillé projeté sur le plan moyen du radier.

$$U_c = 2 \times (A + B)$$

$$\begin{cases} A = a + ht = 0.6 + 0.8 = 1.4m \\ B = b + ht = 0.65 + 0.8 = 1.45m \end{cases}$$

On trouve $U_c = 5.7 \text{ m}$

$$N_U = 2,95305MN < 0.045*5.7*0.8*\frac{25}{1.5}$$

 $\Rightarrow N_U = 2,95305MN < 3.42MN.$

La condition est vérifiée donc pas de risque de poinçonnement.

B. Vérification au cisaillement :

$$au_u = rac{V_u}{b*d} \leq ar{ au}_u = rac{0.07 \; f_{c28}}{\gamma_b} = 1.52 \; MPa$$
CBA 93 (A.5.1.2.1.1).

On considère une bande de b = 1 m, de longueur d = $0.9 *h_t = 0.77 \text{ m}$.

$$\begin{split} V_U &= \frac{N_U * L_{\text{max}}}{2 * S} = \frac{100705.76 * 5}{2 * 487.63} = 516,3 KN \\ \tau_U &= \frac{516,3 * 10^{-3}}{1 * 0.77} = 0.67 MPa \langle 1.52 MPa......Condition v\'erifi\'ee \end{split}$$

C. Vérification de la contrainte du sol :

Cette vérification de la contrainte du sol consiste à satisfaire la condition suivante dans le sens longitudinal et transversal.

D'après le programme **SOCOTEC** on a les caractéristiques suivantes :

$$\begin{split} \sigma_{m} &= \frac{3 * \sigma_{\text{max}} + \sigma_{\text{min}}}{4} \langle \sigma_{Sol} \\ \sigma_{x,y} &= \frac{N}{S} \pm \frac{M}{I} (x, y) \\ I_{y} &= 32049.03 m^{4} \quad et \quad Y_{G} = 16.06 m. \\ I_{x} &= 24030.27 m^{4} \quad et \quad X_{G} = 14.28 m. \end{split}$$

Avec:

 $\sigma_{ ext{max}}$ et $\sigma_{ ext{min}}$: Contrainte maximale et minimale dans les deux extrémités du radier.

 $N_{\it ELS}$: Effort dû aux charges verticales.

 M_y et M_x : Moment sismique à la base.

• Sens X-X:

$$N = 73144.65KN$$
 et $M_x = 1500.68KN.m$

$$\sigma_{\text{max}} = \frac{N}{S_{rad}} + \frac{M_X}{I_X} * Y_G = 135,19 \text{KPa} \prec \sigma_{Sol} = 150 \text{KPa}$$

$$\sigma_{\min} = \frac{N}{S_{rad}} - \frac{M_X}{I_X} * Y_G = 133,19 \text{KPa} \prec \overline{\sigma}_{Sol} = 150 \text{KPa}$$

$$\sigma_{moy} = \frac{3 * \sigma_{\max} + \sigma_{\min}}{4} \prec \overline{\sigma}_{Sol}$$

$$\sigma_{moy} = 134.69 \text{KPa} \prec \overline{\sigma}_{Sol} = 150 \text{KPa}$$

La contrainte est vérifiée dans le sens xx.

• Sens Y-Y:

$$N = 73144.65KN \ et \ M_{y} = 357.65KN.m$$

$$\sigma_{\text{max}} = \frac{N}{S_{rad}} + \frac{M_{Y}}{I_{Y}} * X_{G} = 134.35KPa \prec \overset{-}{\sigma}_{Sol} = 150KPa$$

$$\sigma_{\text{min}} = \frac{N}{S_{rad}} - \frac{M_{Y}}{I_{Y}} * X_{G} = 134.03KPa \prec \overset{-}{\sigma}_{Sol} = 150KPa$$

$$\sigma_{moy} = \frac{3*\sigma_{\text{max}} + \sigma_{\text{min}}}{4} \prec \overset{-}{\sigma}_{Sol}$$

$$\sigma_{moy} = 134.27KPa \prec \overset{-}{\sigma}_{Sol} = 150KPa$$

La contrainte est vérifiée dans le sens YY.

D. Vérification de la stabilité au renversement :

Selon le RPA99, on doit vérifier que :
$$e = \frac{M}{N} \le \frac{B}{4}$$

• Sens X-X:

• Sens Y-Y:

E. Vérification de la poussé hydrostatique :

Il faut s'assurer que :

$$N \geq F_{\scriptscriptstyle S} * H * S_{\scriptscriptstyle rad} * \gamma_{\scriptscriptstyle W}$$

Avec:

N = 100705.76KN

H = 2m, (la hautaeur de la partie encrée du bâtiment).

 $F_s = 1.5$ (coefficient de sécurité).

 $S_{rad} = 495m^2$ (srface du radier).

 $\gamma_{W} = 10KN/m^{3}$ (poids volumique de l'eau).

On trouve : $N \ge 14850KN$Condition vérifiée.

VI.4. Ferraillage du radier :

VI.4.1. La dalle du radier :

Le radier sera calculé comme une dalle pleine renversée et sollicitée à la flexion simple causée par la réaction du sol, il faut considérer le poids propre du radier comme une charge favorable. On calculera le panneau le plus sollicité et on adoptera le même ferraillage pour tout le radier.

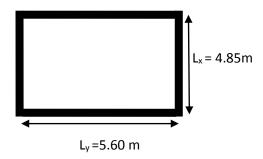


Figure VI.3: Dalle sur quatre appuis

• Calcul des sollicitations :

$$Q_U = \frac{N_U}{S_{rad}} + 1.35G_0 = \frac{100705.76}{545,09} + 1.35(25*0.3) = 194.88KN / m^2$$

$$Q_{ser} = \frac{N_{ser}}{S_{rad}} + G_0 = \frac{73144.65}{545,09} + (25*0.3) = 141.69 KN / m^2$$

> A L'ELU:

$$\rho = \frac{L_{\scriptscriptstyle X}}{L_{\scriptscriptstyle Y}} = \frac{4.85 - 0.3}{5.6 - 0.3} = \frac{4.55}{5.3} = 0.86 > 0.4 \Rightarrow La \ dalle \ travaille \ dans \ les \ deux \ sens.$$

$$\Rightarrow ELU \begin{cases} \mu_X = 0.0496 \\ \mu_Y = 0.7052 \end{cases}$$

$$M_0^X = \mu_X * L_X^2 * Q_U = 200.11KN.m$$

$$M_0^Y = \mu_Y * M_0^X = 141.12KN.m$$

Sachant que:

$$\begin{cases} En\ trav\'ee: M_X^t = 0.75*M_0^X = 150.08KN.m \\ En\ appui: M_X^a = -0.5M_0^X = -100.06KN.m \\ \end{cases}$$

$$\begin{cases} En\ trav\'ee: M_Y^t = 0.75*M_0^Y = 105.84KN.m \\ En\ appui: M_Y^a = 0.5M_0^Y = 70.56KN.m \end{cases}$$

Le ferraillage se fait pour une section $b * h = (1 * 0.3) m^2$.

• Condition de non fragilité :

En travée:

Pour une dalle d'épaisseur e \geq 12 cm et $\rho > 0.4$

La valeur minimale des armatures est :

$$\begin{split} A_{\min}^{X} &= \frac{\rho_0 * (3 - \rho) * b * h_r}{2} \\ A_{\min}^{Y} &= \rho_0 * h_r * e \\ \rho_0 &= 0.0008 \quad pour \ des \ aciers \ de \ haute \ adhérence \ FeE 400 \\ \begin{cases} A_{\min}^{X} &= 2.57 cm^2 \\ A_{\min}^{Y} &= 2.4 cm^2 \end{split}$$

En appuis :
$$A_{min} = 0.23 * b * d * \frac{f_{t28}}{f_e}$$

Le tableau ci-après résume les résultats du calcul de ferraillage :

Tableau VI. 1: Ferraillage du radier

		M (KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adop} (cm ²)	Choix /ml	St (cm)
Sens X-X	Travées	150.08	17.34	2.57	21.99	7HA20	15
	Appuis	100.06	11.22	3.26	14.07	7HA16	15
Sens Y-Y	Travées	105.84	14.36	2.4	16.08	8HA16	10
	Appuis	70.56	7.94	3.26	10.78	7HA14	15

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b*d} \le \bar{\tau}_u = \frac{0.07 f_{c28}}{\gamma_b} = 1.52 MPa$$

$$V_{u}^{x} = \frac{q_{u*l_{x}}}{2} * \frac{l_{y}^{4}}{l_{y}^{4} + l_{x}^{4}} = 302.43 \text{ KN}$$

$$V_{u}^{y} = \frac{q_{u*l_{y}}}{2} * \frac{l_{x}^{4}}{l_{y}^{4} + l_{x}^{4}} = 196.47 \text{ KN}$$

$$\Rightarrow V_{max} = 302.43 \text{ KN}$$

$$\tau_u = \frac{302.43 \times 10^{-3}}{1 \times 0.27} \Rightarrow \tau_u = 1.120 MPa < 1.52 MPa \dots c'est vérifiée$$

⇒Pas risque de cisaillement suivant les deux sens.

> A L'ELS

$$\rho = \frac{L_x}{L_y} \Rightarrow \rho = 0.86 \Rightarrow \begin{cases} \mu_x = 0.0566 \\ \mu_y = 0.7933 \end{cases}$$

Sens x-x': $M_0^x = \mu_x \times qs \times l_x^2 \Longrightarrow M_0^x = 166.03 \text{KN.m}$

Sens y-y':
$$M_0^y = \mu_v \times M_0^X \implies M_0^y = 131.71 \text{KN.m}$$

- En travée

Sens x-x':
$$M_t^x = 0.75 \times M_0^x \implies M_t^x = 124.52 \text{KN.m}$$

Sens y-y':
$$M_t^y = 0.75 \times M_0^y \implies M_t^y = 98.78 \text{KN.m}$$

- En appui:

$$M_a^x = M_a^y = -0.5 \times M_0^x \implies M_a^x = -83.02 \text{KNm}$$

On doit vérifier que :
$$\sigma_{bc} = \frac{Mser}{I} \times y \le \frac{-}{\sigma_{adm}} = 0.6 \times f_{c28} = 15 MPa$$
.

- Vérification à l'ELS:

Il faut vérifier que :

$$\overline{\sigma_s} = \min \left[\frac{2}{3} \times fe ; 110 \sqrt{\tau f_{t28}} \right] = 201.63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) < 201.63MPA$$

Tableau VI.2: Vérification des contraintes

Sens	Moment	Valeurs(KN	Aadop	y (cm)	I(cm ⁴)	$\sigma_{bc}(MPa)$	$\sigma_s(MPa)$
	S	m)	(cm ² /ml)				
X-X	M_{t}	134.52	21.99	10.45	128385.61	10.95	260.11
	Ma	83.02	14.07	8.77	92623.06	7.86	245.1
у-у	M_t	98.78	16.08	9.25	102374.85	8.93	256.9
	Ma	65.86	10.78	7.87	75981.45	6.82	248.73

On remarque que la condition $\sigma_s < \overline{\sigma_s}$ dans les deux sens n'est pas vérifiée. Donc il faudrait augmenter la section d'acier.

TableauVI.3: Revérification des contraintes

Sens	Moment	Valeurs(KN	y (cm)	I (cm ⁴)	σ_{bc} (MPa	σ_s (MPa)
	S	m)				
X-X	M_{t}	134.52	12.31	173401.16	9,55	170.94
	Ma	83.02	10.99	140865.64	6.48	141.53
у-у	M_{t}	98.78	12.3	173401.69	7.01	125.61
	Ma	65.86	10.45	128385.61	5.36	127.35

Les deux conditions : $\sigma_s < \overline{\sigma_s}$ e t $\sigma_{bc}(MPa) < \sigma_s(MPa)$ sont vérifiées

Sections d'armatures adoptées :

Sens x-x : En travée : $A = 7HA25 = 34.36 \text{ cm}^2$

En appui : $A = 7HA20=21.99 \text{ cm}^2$

Sens y-y : En travée : $A = 7HA25 = 34.36 \text{ cm}^2$

En appui : A =7HA20= 21.99 cm²

Espacement des armatures :

• Espacement des armatures :

$$S_t = 15 \text{ cm} \le \min (2e, 25 \text{ cm}) = 25 \text{ cm}$$

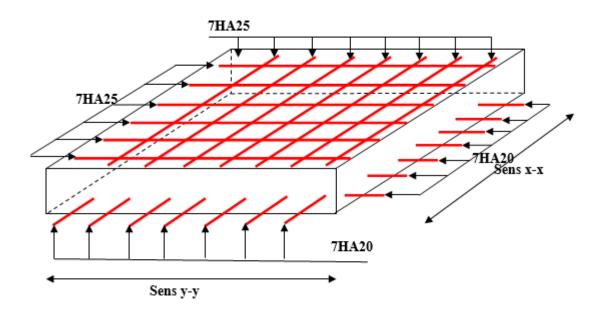


Figure VI.4 : schéma de ferraillage du radier.

VI.4.2. Calcul des nervures :

VI.4.2.1. Les sollicitations sur les nervures :

Les sollicitations sur les nervures sont déduites en utilisant la méthode de Caquot car on a des charges modérées et la fissuration est préjudiciable.

On a des $\rho > 0.4$ dans les deux sens l_x et l_y donc la transmission des charges sera subdivisée en deux charges (trapézoïdales et triangulaires).

- Charge triangulaire:

 $P_u = \frac{q_u \times l_x}{3}$ Avec P charge équivalente produisant le même moment que la charge triangulaire.

- Charge trapézoïdale :

$$P_{\rm u}=(1-\frac{\rho^2}{3})\times\frac{q_{\rm u}\times l_{\rm x}}{2} \mbox{ Avec P charge \'equivalente produisant le même moment que la charge trapézoïdale.}$$

$$q_{\rm u}=213.68 \mbox{KN/m}^2 \ q_{\rm s}=157.9 \mbox{KN/m}^2$$

• Moments aux appuis :

$$M_{a} = \frac{P_{g} \times l_{g}^{'3} + P_{d} \times l_{d}^{'3}}{8.5 \times (l_{g}^{'} + l_{d}^{'})} Avec :$$

Les longueurs fictives : l'= [l (travée de rive) ; 0.8×l (travée intermédiaire)]

Pour l'appui de rive, on a : $M_a = 0.15 \times M_0$, avec : $M_0 = \frac{q \times L^2}{8}$

• Moment en travée :

$$M_{t}(x) = M_{0}(x) + M_{g}(1 - \frac{x}{L}) + M_{d}(\frac{x}{L}); \quad M_{0}(x) = \frac{q \times x}{2}(L - x); \quad x = \frac{L}{2} - \frac{M_{g} - M_{d}}{q \times L};$$

 M_g et M_d : moments sur appuis de gauch q at draite respectivement.

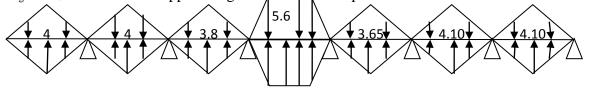
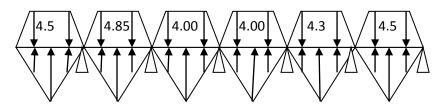



Figure VI.5: Charges transmise aux nervures transversales

Figure VI.6: Charges transmise aux nervures longitudinales.

Tableau VI.4: Charges transmises aux nervures longitudinales (X-X)

travée	L(m)	P _s (KN/m)	Pu	M _a (K	(N.m)	X (m)	M _t (KN.	Vu(KN)
			(KN/m	Mg	Md		m)	
)					
AB	3.35	352.64	477.22	-67.35	-754.57	1.605	614.44	1143.082
BC	3.35	352.64	477.22	-754.57	-532.51	2.116	314.129	898.926
CD	3.15	331.59	448.73	-532.51	-1106.93	1.563	15.697	1813.138
DE	4.95	477.88	646.70	-1106.93	-1093.61	2.804	1434.795	1808.382
EF	3.00	315.80	427.36	-1093.61	-530.98	2.186	72.801	937.871
FG	3.45	363.17	491.46	530.98	-816.425	1.908	363.911	1206.621
GE	3.45	363.17	491.46	816.425	-67.35	2.455	664.809	808.365

Tableau VI.5: Charges transmises aux nervures transversales (Y-Y)

Travée	L(m)	Ps	Pu	M _a (K	(N.m)	X (m)	M _t (KN.m)	Vu(KN)
		(KN/m)	(KN/m)	Mg	M_d			
A-B	3.85	391.46	529.74	-81.13	-1022.06	1.821	878.563	1419.04
В-С	3.65	375.87	508.66	-1022.06	-641.25	2.324	351.694	1005.06
C-D	3.35	349.22	472.59	-641.25	-569.33	2.038	340.231	927.2
D-E	3.35	349.22	472.59	-569.33	-806.50	1.875	260.982	1302.98
E-F	4.2	418.11	565.81	-806.50	-1141.68	2.303	693.785	1445.62
F-G	3.85	391.46	529.74	-1141.68	-81.13	2.729	830.816	938.21

VI.4.2.2. Ferraillage:

Le ferraillage se fera pour une section en Té en flexion simple.

 $h=0.80m; h_0=30cm; b_0=65cm; d=75cm.$

Selon X-X

$$b_1 \le \min(\frac{l_y}{10}; \frac{l_x}{2}) \Rightarrow b_1 \le \min(\frac{365}{10}; \frac{300}{2})$$

 $b_1 \le \min(36.5; 150)$
 $Soit: b_1 = 36.5cm$

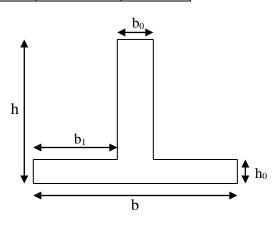


Figure.VI.7: Section à ferrailler

Donc
$$b_x = b_1 \times 2 + b_0 = 138cm$$

Selon Y-Y

$$b_1 \leq \min(\frac{l_y}{10}; \frac{l_x}{2}) \Rightarrow b_1 \leq \min(\frac{335}{10}; \frac{300}{2})$$

 $b_1 \le \min(35.5;150)$

 $Soit: b_1 = 35.5cm$

Donc $b_y = b_1 \times 2 + b_0 = 132cm$

On opte pour b = 140 cm

Tableau VI.6: ferraillage des nervures.

sens	localisation	M _u (KN.m)	A _{cal} (cm ²)	A _{min} (cm ²)	A _{adopte} (cm ²)
X-X	Travée	1434.795	54.83	13.52	4HA16+6HA32=56.29
	appuis	1106.93	44.41	13.52	8HA25+2HA20=45.55
Y-Y	Travée	878.56	32.73	13.52	8HA20+2HA25=34.95
	appuis	1141.68	56.6	13.52	6HA25+4HA32=61.29

- Armatures de peau:

Nous disposons d'une nervure de hauteur importante, h=85cm nous devons alors disposer des armatures de peau le long du parement vertical. Ces armatures sont de l'ordre de 1cm2/ml Nous prenons alors : 2HA8 par face

- Vérification de l'effort tranchant :

$$V_X = \frac{q \times l}{2} + \frac{M_g + M_d}{l} \Rightarrow V_{\text{max}} = 1813.14KN.$$

$$V_Y = \frac{q \times l}{2} + \frac{M_g + M_d}{l} \Rightarrow V_{\text{max}} = 1445.62KN$$

$$V_{\text{max}} = \max(V_X; V_Y) \Rightarrow V_{\text{max}} = 1813.14KN$$

$$\tau_u = \frac{V_{\text{max}}}{b \times d} = 1.62MPa < 2.5MPa.$$

- Armatures transversales :

$$\phi_t \le \min(\frac{h}{35}; \frac{b_0}{10}; \phi_l) = 20mm$$
 Soit $\phi_t = 10mm$.

- Espacement des aciers transversaux :

$$St \le \min(\frac{h}{4}; 12; 10\phi_{l\min}) \Rightarrow St = 12cm$$

On prend St=10cm en zone nodale et 15cm en travée.

Chapitre VI:

- Vérification à l'ELS:

Il faut vérifier que
$$\overline{\sigma_s} = \min \left[\frac{2}{3} \times fe ; 110 \sqrt{t_{t28}} \right] = 201.63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) < 201.63MPA$$

$$\sigma_{bc} \le \overline{\sigma} = 0.6 * f_{c28} = 15MPa$$

Tableau VI.7: Vérification des contraintes dans les nervures.

Sens	Moments	Valeurs (KNm)	y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\sigma_s(MPa)$	Observation
X-X	M _t	1060.24	25.61	3281671.66	8.27	383.24	Non vérifiée
	Ma	817.97	31.82	2284096.5	11.4	258.8	Non vérifiée
у-у	Mt	649.23	21.02	2257093.21	6.05	254.48	Non vérifiée
	M _a	843.66	35.49	2789884.51	10.73	201.29	vérifiée

On remarque que la condition $\sigma_s < \overline{\sigma_s}$ dans les deux sens n'est pas vérifiée. Donc il faudrait augmenter la section d'acier

TableauVI.8: Revérification des contraintes

sense	Moments	Valeurs	y (cm)	I (cm ⁴)	$\sigma_{bc}(MPa)$	$\sigma_{s}(MPa)$	Observation
		(KNm)				Ü	
X-X	Mt	1060.24	29.58	3696385.85	8.48	195.42	vérifiée
	Ma	817.97	32.72	2405018.5	8.83	191.45	vérifiée
y-y	Mt	649.23	21.89	2439069.6	6.07	185.71	vérifiée

Sections d'armatures adoptées :

Sens x-x : En travée : $A = 10HA32 = 80.42 \text{ cm}^2$

En appui : $A = 10HA25=49.09 \text{ cm}^2$

Sens y-y : En travée : A= 6HA20+ 4HA25=38.49 cm²

En appui: A=6HA20+4HA32=51.02

Espacement des armatures :

Armateures //Lx: $S_t = 20 \text{ cm} \le \min (2e, 25 \text{ cm}) = 25 \text{ cm}$

Armateures //Ly: $S_t = 15 \text{ cm} \le \text{min} (2e, 25 \text{ cm}) = 25 \text{ cm}$

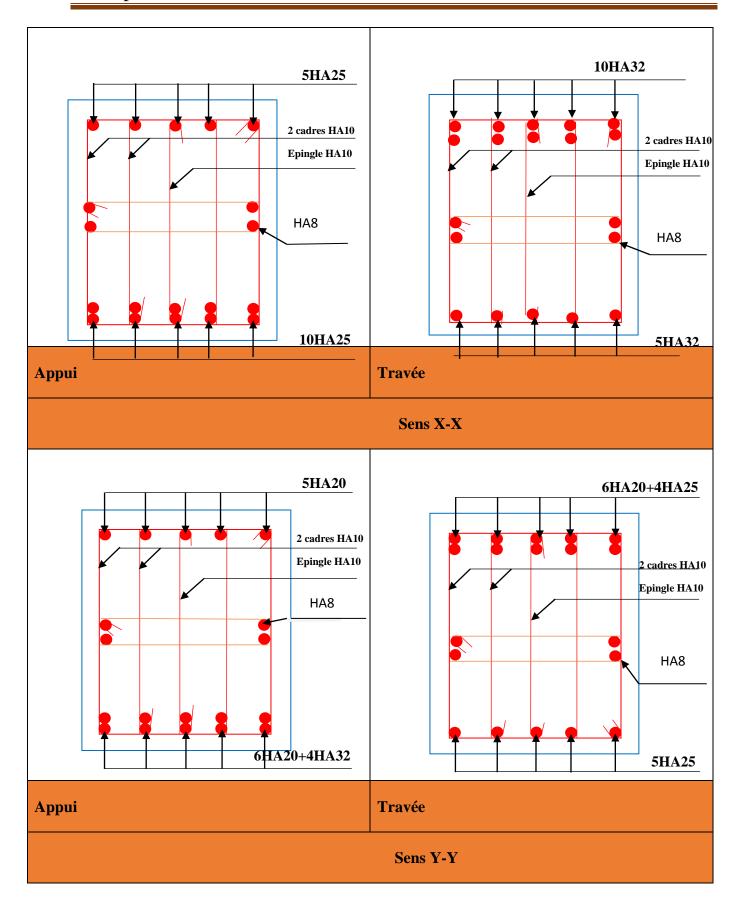
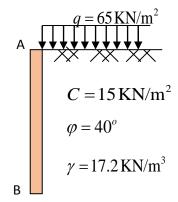


Figure VI.8 : Schéma de ferraillage de la nervure

Chapitre VI:


VI.5. Etude du mur adossé :

Le mur adosséest un ouvrage réalisé en béton armé, destiné à soutenir l'action des poussées des terres en équilibre stable.

Dans notre cas le mur adossé est soumis à la poussée des terres et la surcharge (q) qui est due au poids de la route qui passe juste à côté de la structure.

VI.5.1. Caractéristiques géotechniques du sol:

- L'angle de frottement interne : $\varphi = 40^{\circ}$
- La cohésion : $C = 15KN/m^2$
- Poids volumique des terres : $\gamma = 17.2 \text{KN/m}^3$
- La surcharge : $q = 65 \text{ KN/m}^2$

VI.5.2. Combinaison de calcul:

Le calcul se fait à l'ELU selon la combinaison d'action fondamentale suivante :

$$1,35 G_{max} + G_{min} + 1,5 Q$$

Avec: G_{max}: actions permanentes dont l'effort est défavorable.

G_{min}: actions permanentes dont l'effort est favorable.

Q : la surcharge (due à la route).

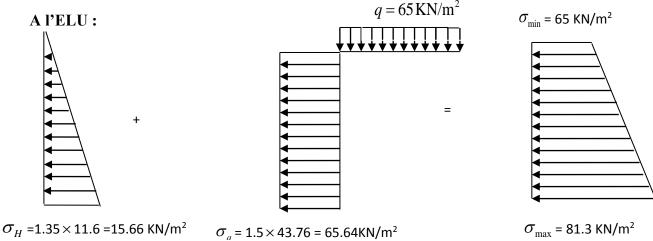
VI.5.3. Calcul des contraintes :

a) Calcul de la poussée des terres sur le rideau :

A la base du rideau : la pression $\sigma = A \times \gamma \times h$

A : est le coefficient de poussée donnée par le tableau de Caquot-Kérisel

$$A = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 0.22$$


 φ : est l'angle de frottement interne.

 γ : Poids spécifique des terres.

$$\sigma_H = 0.22 \times 17.2 \times 3.06 = 11.6 \,\text{KN/m}^2$$

b) Calcul de la poussée des terres due à la surcharge q sur le sol :

$$\sigma_q = A \times q \times h = 0.22 \times 65 \times 3.06 = 43.76 \text{ KN/m}^2$$

FigureVI.10 : La répartition des contraintes sur le mur

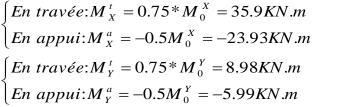
$$\sigma_{\text{moy}} = \frac{3\sigma_{\text{max}} + \sigma_{\text{min}}}{4} = 77.39 \text{ KN/m}^2$$
$$q_u = \sigma_{\text{moy}} \times 1 \text{ ml} = 77.39 \text{ KN/ml}$$

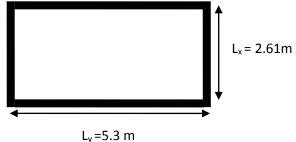
VI.5.4. Le ferraillage du mur :

Pour le ferraillage du mur on prend le panneau le plus défavorable.

Le voile périphérique se calcule comme un panneau de dalle sur quatre appuis, uniformément chargé d'une contrainte moyenne

A L'ELU


Le ferraillage se fait à la flexion simple pour une bande de 1m


$$\rho = \frac{L_X}{L_Y} = \frac{2.61}{5.3} = 0.49 > 0.4 \Rightarrow La \ dalle \ travaille \ dans \ les \ deux \ sens.$$

$$\Rightarrow ELU \begin{cases} \mu_X = 0.0980 \\ \mu_Y = 0.2500 \end{cases}$$

$$M_0^X = \mu_X * L_X^2 * qu = 0.0908 * 2.61^2 * 77.39 = 47.87 KN.m$$

$$M_0^Y = \mu_Y * M_0^X = 0.2500 * 47.87 = 11.97 KN.m$$
Sachant que:
$$\begin{cases} En \ trav\'ee: M_X^t = 0.75 * M_0^X = 35.9 KN.m \\ En \ appui: M_X^a = -0.5 M_0^X = -23.93 KN.m \end{cases}$$

FigureVI.11: Dalle sur quatre appuis

Les résultats du ferraillage sont résumés dans le tableau suivant :

Tableau VI.9. Tableau de ferraillage de mur adossé

Localisation	M _t (KN.m)	M _a (KN.m)	At calculée (cm²)	A _a calculée (cm ²)	At adoptée (cm²)	A _a adoptée (cm ²)
Sens xx	35.9	-23.93	5.96	3.93	6HA12 = 6.79	4T12 = 4.52
Sens yy	8.98	-5.99	3.86	0.96	4HA12=4.52	4HA12=4.52

c) Vérification à l'ELU:

• Condition de non fragilité :

• En travée:

Pour une dalle d'épaisseur e \geq 12 cm et $\rho > 0.4$

La valeur minimale des armatures est :

$$A_{\min}^{X} = \frac{\rho_0 * (3 - \rho) * b * h}{2}$$

$$A_{\min}^{Y} = \rho_0 * h * b$$

 $\rho_0 = 0.0008$ pour des aciers de haute adhérence FeE400

$$\begin{cases} A_{\min}^{X} = 2.01cm^{2} \\ A_{\min}^{Y} = 1.6cm^{2} \end{cases}$$

En appuis :
$$A_{min} = 0.23 * b * d * \frac{f_{t28}}{f_e}$$

$$A_{\min} = 2.17 \text{cm}^2$$

d) Vérification à l'ELS:

- État limite de compression du béton :

La fissuration est nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa}$$

- Les contraintes dans l'acier :

La fissuration est préjudiciable donc la contrainte de traction des armatures est limitée, c'est le cas des éléments exposés aux intempéries.

$$\overline{\sigma_s} = \min \left[\frac{2}{3} \times fe ; 110 \sqrt{\tau f_{t28}} \right] = 201.63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) \prec 201.63MPA$$

$$\sigma_{max} = 1\sigma_H + 1\sigma_q = 11.6 + 43.76$$

$$\sigma_{\text{max}} = 55.36 \,\text{KN/m}^2$$

$$\sigma_{min} = 1\sigma_q$$

$$\sigma_{\min} = 43.76 \,\mathrm{KN/m^2}$$

$$q_s = (\sigma_{\text{max}} + \sigma_{\text{min}}) \times 1 \,\text{ml} = 99.12 \,\text{KN/ml}$$

> A L'ELS

$$\Rightarrow ELS \begin{cases} \mu_{x} = 0.1013 \\ \mu_{y} = 0.3580 \end{cases}$$

$$M_0^X = \mu_X * L_X^2 * q_U = 0.1013*2.61^2 * 99.12 = 68.4 \text{KN.m}$$

$$M_0^Y = \mu_Y * M_0^X = 0.358*68.4 = 24.49KN.m$$

Sachant que:

$$\begin{cases} En\ trav\acute{e}e:M_X^t = 0.75*M_0^X = 51.3KN.m \\ En\ appui:M_X^a = -0.5M_0^X = -34.21KN.m \end{cases}$$

$$\begin{cases} En\ trav\acute{e}e:M_Y^t = 0.75*M_0^Y = 18.37KN.m \\ En\ appui:M_Y^a = -0.5M_0^Y = -12.25KN.m \end{cases}$$

- Calcul des contraintes :

Calcul de
$$y : \frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d \times A_s) = 0$$

Calcul de
$$I: I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tableau VI.10: Vérification des contraintes

Localisation	Sens	M _{ser} (KN.m)	A(cm ²)	Y (cm)	I(cm ⁴)	σ_{bc} (MPa)	σ_s (MPa)
Travée	XX	51.3	6.79	5.12	21370.27	12.29	463.78
	уу	18.37	4.52	4.31	15375.58	5.15	245.34
Appui	XX	-34.21	4.52	4.31	15375.58	9.59	456.89
	уу	-12.25	4.52	4.31	15375.58	3.43	163.6

Les nouvelles valeurs des armatures A, Y, I, et σ_s pour que les contraintes admissibles soient vérifiées sont résumées dans le tableau suivant :

TableauVI.11: Revérification des contraintes

Localisation	Sens	M _{ser} (KN.m)	A (cm ²)	Y (cm)	I(cm ⁴)	σ_{bc} (MPa)	σ_s (MPa)
appui	XX	-34.21	18.85	7.65	45212.12	5.79	117.47
Travée	XX	51.3	21.99	8.09	50043.11	8.29	152.38
	уу	18.37	5.65	4.74	16953.75	7.8	198.02

Sections d'armatures adoptées :

Sens x-x : En travée : A =7HA20=21.99 cm²

En appui : $A = 6HA = 20 = 18.85 \text{ cm}^2$

Sens y-y : En travée : $A = 5HA12 = 5.65 \text{ cm}^2$

En appui : $A = 4HA12 = 4.52 \text{ cm}^2$

Espacement des armatures :

Armatures //Lx: $S_t = 14$ cm \leq min (2e, 25 cm) = 25 cm

Armatures //Ly: $S_t = 20 \text{ cm} \le \min (2e, 25 \text{ cm}) = 25 \text{ cm}$

Vérification au cisaillement :

$$\tau_u = \frac{V_u}{h \times d} \le \bar{\tau} = \min(0.1 f_{c28}; 3 \text{ MPa}) = 2.5 \text{ MPa}$$

Vérification de l'effort tranchant :

• Vérification de l'effort tranchant :

$$\tau_u = \frac{V_u}{b * d} \le \bar{\tau}_u = \frac{0.07 f_{c28}}{\gamma_h} = 1.52 MPa$$

$$V_{u}^{x} = \frac{q_{u*l_{x}}}{2} * \frac{l_{y}^{4}}{l_{y}^{4} + l_{x}^{4}} = 95.38 \, KN$$

$$V_{u}^{y} = \frac{q_{u*l_{y}}}{2} * \frac{l_{x}^{4}}{l_{y}^{4} + l_{x}^{4}} = 11.39 KN$$

$$\Rightarrow V_{max} = 95.38 \, KN$$

$$\tau_u = \frac{95.38 \times 10^{-3}}{1 \times 0.18} \Rightarrow \tau_u = 0.53 MPa < 1.52 MPa \dots c'est vérifiée$$

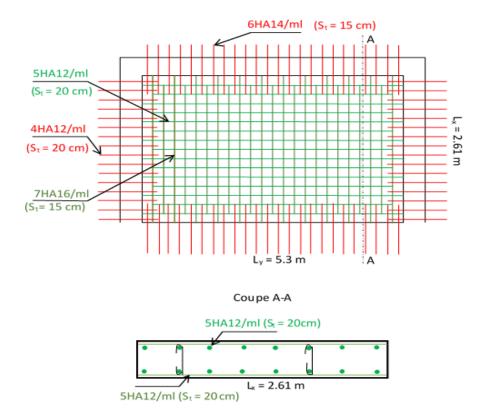


Figure VI.12: schéma de ferraillage du mur périphérique

VI.6.Conclusion:

L'étude de l'infrastructure constitue une étape importante dans le calcul d'ouvrage.

Le choix de la fondation dépend de plusieurs paramètres liés aux caractéristiques du sol en place ainsi que les caractéristiques géométriques de la structure, dans notre cas nous avons un type de fondation.

Dans un premier temps nous avons essayé d'utiliser des semelles isolées puis filantes. Et enfin nous avons opté pour un radier ce qui convient le mieux à notre structure.

Conclusion générale

Conclusion:

Tout au long de notre projet de fin d'étude, on a pu apprendre toute la démarche à mettre en place sur un projet concret : de la lecture des plans architecturaux à la conception d'une note de calcul en passant par la modélisation sous sap2000 V14.2.2.

D'autre part cette étude nous a permis d'aboutir à certaines conclusions qui sont :

La disposition des voiles en respectant l'aspect architectural du bâtiment, est souvent un obstacle majeur pour l'ingénieur du Génie Civil, ces contraintes architecturales influence directement sur le bon comportement de la structure vis-à-vis des sollicitations extérieures, telles que les séismes. L'intensité des forces sismiques agissant sur un bâtiment lors d'un tremblement de terre est conditionnée non seulement par les caractéristiques du mouvement sismique, mais aussi par la rigidité de la structure sollicitée. Lors des tremblements de terre sévères, il a été constaté que de nombreux bâtiments à voiles en béton armé ont bien résisté sans endommagement exagéré (cas de Boumerdes). Mis à part leur rôle d'éléments porteurs vis-à-vis des charges verticales, les voiles correctement dimensionnés et disposés, peuvent être particulièrement efficaces pour assurer la résistance aux forces horizontales, permettant ainsi de réduire les risques. Notons, pour cela, les avantages importants que présente leur utilisation par rapport aux constructions en portiques :

L'utilisation du système mixte peut apporter aussi des avantages économiques. La modélisation des escaliers dans la superstructure influe directement Sur la nature des modes de vibration, et elles peuvent engendrer des modes de torsion non négligeables.

Il est apparu que la vérification de l'interaction entre les voiles et les portiques dans les constructions mixtes vis-à-vis des charges verticales et horizontales est indispensable et dans la plus part des cas est déterminant pour le dimensionnement des éléments structuraux.

Les structures mixtes sont de plus en plus utilisées en construction, car elles offrent une bonne rigidité, et cela à des coûts moyens

Pour garantir une stabilité totale de la structure vis-à-vis des déplacements horizontaux, nous avant vérifier les effets du second ordre (effet P-delta). L'effet P-Delta dépend des charges verticales et du déplacement latéral subi par la structure. Il est donc à priori évident, que les bâtiments de grande hauteur de par leur souplesse et de par la forte concentration de contraintes sous l'effet des charges verticales, sont particulièrement sensibles à cet effet.

Pour éviter la formation des rotules plastique aux niveaux des poteaux, on doit impérativement vérifier les moments résistant aux niveaux des zones nodales.

Outre la résistance, l'économie est un facteur très important qu'on peut concrétiser en jouant sur le choix de la section du béton et d'acier dans les éléments résistants de l'ouvrage, tout en respectant les sections minimales requises par le règlement en vigueur.

Annexe 1

$\alpha = \frac{L_X}{}$	ELU	v = 0	ELS 1	v = 0.2
$L_{_{ m Y}}$	μ_{x}	$\mu_{\rm v}$	μ_{x}	$\mu_{\rm v}$
0.40	0.1101	0.2500	0.0121	0.2854
0.41	0.1088	0.2500	0.1110	0.2924
0.42	0.1075	0.2500	0.1098	0.3000
0.43	0.1062	0.2500	0.1087	0.3077
0.44	0.1049	0.2500	0.1075	0.3155
0.45	0.1036	0.2500	0.1063	0.3234
0.46	0.1022	0.2500	0.1051	0.3319
0.47	0.1008	0.2500	0.1038	0.3402
0.48	0.0994	0.2500	0.1026	0.3491
0.49	0.0980	0.2500	0.1013	0.3580
0.50	0.0966	0.2500	0.1000	0.3671
0.51	0.0951	0.2500	0.0987	0.3758
0.52	0.0937	0.2500	0.0974	0.3853
0.53	0.0922	0.2500	0.0961	0.3949
0.54	0.0922	0.2500	0.0948	0.4050
0.55	0.0894	0.2500	0.0936	0.4050
0.55	0.0894	0.2300	0.0930	0.4130
0.56	0.0880	0.2500	0.0923	0.4254
0.57	0.0865	0.2582	0.0910	0.4357
0.58	0.0851	0.2703	0.0897	0.4456
0.59	0.0836	0.2822	0.0884	0.4565
0.60	0.0822	0.2948	0.0870	0.4672
0.61	0.0808	0.3075	0.0857	0.4781
0.62	0.0808	0.3205	0.0844	0.4892
0.63	0.0779	0.3338	0.0831	0.5004
0.64	0.0765	0.3472	0.0819	0.5117
0.65	0.0751	0.3613	0.0805	0.5235
0.66	0.0737	0.3753	0.0792	0.5351
0.67	0.0723	0.3895	0.0780	0.5469
0.68	0.0710	0.4034	0.0767	0.5584
0.69	0.0697	0.4181	0.0755	0.5704
0.70	0.0684	0.4320	0.0743	0.5817
0.71	0.0671	0.4451	0.0721	0.5040
0.71	0.0671	0.4471	0.0731	0.5940
0.72	0.0658	0.4624	0.0719	0.6063
0.73	0.0646	0.4780	0.0708	0.6188
0.74	0.0633	0.4938	0.0696	0.6315
0.75	0.0621	0.5105	0.0684	0.6447
0.76	0.0608	0.5274	0.0672	0.6580
0.77	0.0596	0.5440	0.0661	0.6710
0.78	0.0584	0.5608	0.0650	0.6841
0.79	0.0573	0.5786	0.0639	0.6978
0.80	0.0561	0.5959	0.0628	0.7111
0.81	0.0550	0.6135	0.0617	0.7246
0.82	0.0539	0.6313	0.0607	0.7381
0.83	0.0528	0.6494	0.0956	0.7518
0.84	0.0517	0.6678	0.0586	0.7655
0.85	0.0506	0.6864	0.0576	0.7794
0.86	0.0496	0.7052	0.0566	0.7932
0.87	0.0486	0.7244	0.0556	0.8074
0.88	0.0476	0.7438	0.0546	0.8216
0.89	0.0476	0.7635	0.0537	0.8358
0.90	0.0456	0.7834	0.0528	0.8502
0.91	0.0447	0.8036	0.0518	0.8646
0.92	0.0437	0.8251	0.0509	0.8799
0.93	0.0428	0.8450	0.0500	0.8939
0.94	0.0419	0.8661	0.0491	0.9087
0.95	0.0410	0.8875	0.0483	0.9236
0.96	0.0401	0.9092	0.0474	0.9385
0.97	0.0392	0.9322	0.4065	0.9543
0.98	0.0384	0.9545	0.0457	0.9694
0.99	0.0376	0.9771	0.0449	0.9847
1.00	0.0368	1.0000	0.0441	0.1000
1.00	0.0500	1.000	0.0111	0.1000

Annexe 2

Table de PIGEAUD

M1 et M2 pour une charge concentrique P=1 s'exerçant sur une surface réduite $u \times v$ au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension

$$Lx \times Ly$$
Avec $Lx < Ly$.
$$\rho = 0.9$$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0	/	0.254	0.187	0.154	0.131	0.115	0.102	0.090	0.081	0.073	0.067
	0.1	0.302	0.235	0.183	0.152	0.130	0.114	0.101	0.089	0.080	0.073	0.067
	0.2	0.260	0.214	0.175	0.148	0.128	0.112	0.099	0.088	0.079	0.072	0.066
	0.3	0.227	0.196	0.164	0.142	0.124	0.109	0.097	0.086	0.078	0.070	0.065
	0.4	0.202	0.178	0.153	0.134	0.118	0.105	0.093	0.083	0.075	0.068	0.063
	0.5	0.181	0.160	0.141	0.126	0.113	0.100	0.089	0.080	0.073	0.066	0.060
	0.6	0.161	0.146	0.130	0.118	0.106	0.095	0.085	0.077	0.069	0.063	0.057
	0.7	0.144	0.133	0.121	0.110	0.098	0.088	0.079	0.072	0.065	0.058	0.054
	0.8	0.132	0.123	0.113	0.102	0.092	0.083	0.074	0.067	0.061	0.055	0.049
	0.9	0.122	0.114	0.103	0.093	0.084	0.076	0.068	0.062	0.057	0.051	0.046
	1.0	0.112	0.102	0.093	0.084	0.075	0.068	0.062	0.057	0.051	0.046	0.042
Valeur de M2	0.0	/	0.310	0.200	0.167	0.149	0.134	0.122	0.110	0.098	0.088	0.081
	0.1	0.253	0.208	0.173	0.151	0.136	0.123	0.110	0.099	0.089	0.081	0.074
	0.2	0.202	0.175	0.152	0.137	0.123	0.110	0.100	0.089	0.082	0.074	0.067
	0.3	0.167	0.150	0.135	0.123	0.110	0.099	0.088	0.081	0.074	0.067	0.061
	0.4	0.143	0.132	0.122	0.110	0.098	0.088	0.081	0.074	0.067	0.061	0.056
	0.5	0.128	0.118	0.108	0.097	0.088	0.080	0.073	0.067	0.062	0.056	0.051
	0.6	0.114	0.106	0.096	0.087	0.079	0.073	0.067	0.062	0.056	0.052	0.047
	0.7	0.102	0.094	0.086	0.078	0.073	0.067	0.062	0.057	0.052	0.047	0.043
	0.8	0.09	0.083	0.077	0.072	0.066	0.062	0.056	0.052	0.047	0.043	0.038
	0.9	0.081	0.076	0.071	0.066	0.061	0.056	0.052	0.047	0.043	0.038	0.035
	1.0	0.073	0.069	0.065	0.060	0.055	0.050	0.047	0.043	0.038	0.035	0.032

Annexe 3

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.7	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

Bibliographie

- ✓ Règles de conception et de calcul des structures en béton armé (CBA93).
- ✓ Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites (B. A. E. L 91).
- ✓ Règles parasismiques algériennes (RPA 99/ version 2003).
- ✓ Document technique réglementaire (D.T.R), charges et surcharges d'exploitations.
- ✓ DTR B.C.2.331 (Règle de calcul des fondations superficielles. édition 1992)
- ✓ M. Belazougui (calcul des ouvrages en béton armé).

Autres documents consultés :

- Cahier de cours de cursus.
- Mémoires de fin d'études.

Liste des figures

Figure II.1 : la disposition des poutrelles	09
Figure. II.2 : Coupe du plancher à corps creux	12
Figure II.3 : Schéma d'une poutrelle	12
Figure II.4 : Schéma statique de l'escalier à deux volées	18
FigureII.5 : Schémas de l'acrotère	20
Figure II.6 : coupe de voile en élévation.	
Figure II.7 : Schéma représentant les surfaces afférentes	23
Figure II.8: lois de dégressions de charge	25
Figure III. 1 Evaluation des moments au niveau des appuis	32
Figure III. 2 : Diagramme de l'effort tranchant d'une poutre à deux travées	33
Figure III. 3 : Diagramme de l'effort tranchant d'une poutre à plus de deux travées	33
Figure III. 4 : chargement de la poutrelle du type 5	34
Figure III. 5 : Redimensionnement de la poutrelle	39
Figure III.6 : Schéma du ferraillage de la dalle de compression	45
Figure III.7 : panneau de dalle pleine	57
Figure III.8 : Panneau D ₁	57
Figure III. 9 : Schéma de ferraillage de la dalle pleine sur trois	60
Figure III.10 : schéma statique de la dalle sur deux appuis	60
Figure III. 11 : Schéma de ferraillage de la dalle pleine sur un seul appui	63
Figure III. 12 : Schéma de ferraillage de la dalle pleine sur trois appuis	65
Figure III.13 : Schéma de ferraillage de la dalle pleine sur quatre appuis	68
Figure III.14 : Cage d'ascenseur.	69
Fig. III.15 : Schéma de ferraillage de la dalle de l'ascenseur	73
Figure III.16 : Schéma représentant la surface d'impact	74
Fig. III.17.Schéma de ferraillage de la dalle pleine de la salle machine	78
Figure.III.18 : Sollicitation sur l'acrotère.	80

Figure III.19 : Section à ferrailler	81
Figure III.20 : Schéma de ferraillage de l'acrotère.	84
Figure III.21 : Schéma statique volée 1	85
Figure .III.22 : schéma statique des sollicitations dans la première volée	85
Figure .III.23 : schéma statique des sollicitations dans la deuxième volée	86
Figure .III.24 : Schémas du ferraillage de l'escalier	89
Figure .III.25 : Schémas du ferraillage de l'escalier	91
Figure III.26 : Schéma de ferraillage de la console	91
Figure III.27 : Schéma isostatique de la poutre palière	91
Figure III.28 : Schéma représentant la poutre palière	95
Figure III.29 : Schéma représentant la poutre brisée	95
Figure III.30 : Schéma du chargement de la poutre brisée	96
Figure III.31 : Schéma représentant la poutre brisée	99
Figure III.32 : Schéma isostatique de la poutre de chainage	99
Figure III.33 : Schéma de ferraillage de la poutre de chainage	101
Figure IV.1 : Spectre de réponse (sens x-x)	108
Figure IV.2 : Spectre de réponse (sens y-y)	108
Figure IV.3 : Disposition des voiles	109
Figure IV.4:1 ^{er} Mode de vibration (T=0.98229s translation suivant X)	111
Figure IV.5 :2 ^{er} Mode de vibration (T=0.93050s translation suivant Y)	111
Figure IV.6 : 3 ^{eme} Mode de vibration (T=0.8009s rotation autour de L'Axe Z)	112
Figure. V.1 : Zone nodale	120
Fig.V.2. Section d'un poteau	129
Figure V.3 schéma de ferraillage des poteaux dans chaque niveau	133
Figure V.4 : La zone nodale	139
Figure V.5 : Ferraillage d'une poutre secondaire de la soupente	141
Figure V.6 : Ferraillage d'une poutre principale de la soupente	141
Figure V.7 : Schéma d'un voile plein	144

Figure V.8 schéma de ferraillage du voile Vx2 de l'entre sole 2	152
Figure VI.1 : Dimensions du radier	155
Figure VI.2 : Présentation de zone d'impact de la charge compactée	156
Figure VI.3 : Dalle sur quatre appuis	159
Figure VI.4 : Schéma de ferraillage de radier	162
Figure.VI.5 : Charges transmise aux nervures transversales	163
Figure VI.6 : Charges transmise aux nervures longitudinales	163
Figure.VI.7 : Section à ferrailler	164
Figure VI.8 : Schéma de ferraillage de la nervure	167
Figure VI.9 : Schéma du mur adossé	168
FigureVI.10 : La répartition des contraintes sur le mur	169
FigureVI.11 : Dalle sur quatre appuis	169
Figure VI.12 : Schéma du ferraillage du mur périphérique	173

Liste des tableaux

Tableau I. 1.Caractéristiques du béton	
Tableau I. 2. Les types d'acier utilisé et leurs nuances	. 05
Tableau II.1. Evaluation des charges et surcharges des planchers	. 16
Tableau II.2 : Le tableau suivant résume le calcul des autres escaliers	
Tableau II.3 : Evaluation des charges et surcharge de l'escalier	19
Tableau II.4 : Evaluation des charges et surcharge du palier	19
Tableau II.5 : Evaluation des charges et surcharge de l'acrotère	20
Tableau II.6 : Evaluation des charges des murs extérieurs	20
Tableau II.7 : la hauteur et l'épaisseur des voiles.	21
Tableau II.8 : Evaluation des charges des voiles	21
Tableau II.9 : sections préalables des poteaux	23
Tableau II.10 : Poids des poteaux	24
Tableau II.11: Les surfaces afférentes pour les charges d'exploitation	24
Tableau II.12 : Les résultats de la descente de charge	26
Tableau II.13: Vérification des poteaux à la compression simple	28
Tableau II.14: Vérification des poteaux au flambement	29
Tableau II.15 : Dimensions des éléments structuraux	29
Tableau III.1 : Les différents types de poutrelles	30
Tableau III.2 : Evaluation des charges et surcharges sur poutrelles	31
Tableau III.3 : Sollicitation dans les différents types de poutrelles à l'ELU et l'ELS pour le	plancher
étage commerciale.	37
Tableau III.4 : Sollicitation dans les différents types de poutrelles à l'ELU et l'ELS pour le	e plancher
étage courant.	38
Tableau III.5 : Sollicitation dans les différents types de poutrelles à l'ELU et l'ELS pour le	e plancher
terrasse accessible.	39
Tableau III.6 : Ferraillage des poutrelles de différant plancher	42
Tableau III-7 : Schéma de ferraillage des poutrelles	44
Tableau III.8 : Vérification des contraintes dans le béton.	48
Tableau III.9 : Réévaluation de la flèche pour l'étage commercial type 1	52
Tableau III.10 : Vérification des contraintes dans le béton.	53
Tableau III.11 : Évaluation de la flèche pour l'étage courant type 1	.54
Tableau III.12 : Réévaluation de la flèche pour l'étage courant type 1	54
Tableau III.13 : Vérification des contraintes dans le béton	55
Tableau III.14 : Evaluation de la flèche	.56
Tableau III.15 : Ferraillage de la dalle sur trois appuis	58
Tableau III.16: Les contrainte dans le béton de la dalle sur trois appuis	.59

Tableau III.17 : ferraillage de la dalle sur 4 appuis	66
Tableau III.18 : Résultat de la vérification de la flèche suivant X-X	68
Tableau III.19 : Résultat de la vérification de la flèche suivant X-X	68
Tableau III.20 : ferraillage de la dalle d'ascenseur	70
Tableau III.21: La section d'acier.	75
Tableau III.22 : Vérification de la section d'acier.	76
Tableau III.23 : Charges et surcharges.	79
Tableau III.24 : Différentes combinaisons à utiliser.	80
Tableau III.26 : Ferraillages de l'escalier type 2	88
Tableau III.27 : ferraillage de la volée 2	90
Tableau III.28 : Vérification de la contrainte dans le béton.	90
Tableau III.29 : Les résultats de calcul par la méthode de la RDM	92
Tableau III.30 : Calcul des armatures principales	93
Tableau III.31 : Résultats de calcul des contraintes de béton	94
Tableau III.32 : Les résultats de calcul par la méthode de la RDM	97
Tableau III.33 : Ferraillage de la poutre brisée en travée et aux appuis	97
Tableau III.34 : Ferraillage de la poutre brisée à la torsion	97
Tableau III.35 : Résultats de calcul des contraintes de béton	98
Tableau III.36 : Ferraillage de la poutre de chainage.	100
Tableau III.357: Vérification de la contrainte dans le béton.	101
Tableau IV.1 : Valeurs des pénalités Pq	106
Tableau IV.2 : Période de vibration et taux de participation massique	
Tableau IV.3 : Vérification de l'effort tranchant à la base	112
Tableau IV.4 : Vérification de l'interaction sous charges verticale.	113
Tableau IV.5 : Vérification de l'interaction sous charges horizontale suivant X-X	114
Tableau IV.6: Vérification de l'interaction sous charges horizontale suivant Y-Y	114
Tableau IV.7 : Vérification de l'effort normal réduit.	115
Tableau IV.8 : Vérification des déplacements dans le sens X-X	116
Tableau IV.9 : Vérification des déplacements dans le sens Y-Y	116
Tableau IV.10 : Vérification à L'effet P-Δ selon X-X	117
Tableau IV.11 : Vérification à L'effet P-Δ selon Y-Y	118
Tableau V.1: Armatures longitudinales minimales et maximales dans les poteaux	120
Tableau V.2 : Sollicitations dans les poteaux	122
Tableau V.3 : Ferraillage des poteaux.	125
Tableau V.4 : Les Armatures transversales dans les poteaux.	126
Tableau V.5 : Vérification du flambement des poteaux	128

Tableau V.6 : Vérification des contraintes dans le béton	130
Tableau V.7 : Vérification des contraintes tangentielles.	131
Tableau V.8 : Zones nodales dans les poteaux	131
Tableau V.9 : Armatures longitudinales des poutres	135
Tableau V.10 : Vérification de la section minimale.	137
Tableau V.11 : Vérification des contraintes tangentielles.	137
Tableau V.12 : Vérification des armatures longitudinales au cisaillement	138
Tableau V.13 : Vérification de l'état limite de compression	138
Tableau V.14 : Vérification de la flèche pour les poutres	139
Tableau V.15 : Moments résistant dans les poteaux	140
Tableau V.16 : Moments résistant dans les poutres	140
Tableau V.17 : Vérification des zones nodales	142
Tableau V.18. Ferraillage des voiles V _{x2} etV _{x2} '	148
Tableau V.19. Ferraillage des voiles V _{x3} etV _{x3} '	148
Tableau V.20. Ferraillage des voiles V _{x4} et V _{x4} '	
Tableau V.21. Ferraillage des voiles V _{y1} et V _{y1} '	149
Tableau V.22. Ferraillage des voiles V _{y2}	150
Tableau V.23. Ferraillage des voiles V _{y3}	150
Tableau V.24. Ferraillage des voiles V _{y4}	151
Tableau V.25. Ferraillage des voiles V _{x1}	152
Tableau VI. 1 : Ferraillage du radier	160
Tableau VI.2 : Vérification des contraintes	161
TableauVI.3 : Revérification des contraintes	162
Tableau VI.4 : Charges transmises aux nervures longitudinales (X-X)	164
Tableau VI.5 : Charges transmises aux nervures transversales (Y-Y)	164
Tableau VI.6 : ferraillage des nervures.	165
Tableau VI.7 : Vérification des contraintes dans les nervures.	166
TableauVI 8 : Revérification des contraintes	166

Tableau VI.9 : Tableau de ferraillage de mur adossé	170
Tableau VI.10 : Vérification des contraintes.	171
TableauVI.11: Revérification des contraintes	172

Chapitre I : Généralités

I .1.Description de l'ouvrage	03
I. 2. Caractéristiques de l'ouvrage	03
I. 2.1. Caractéristiques géométriques	03
I. 2.2. Caractéristiques du site	03
I. 2.3. Caractéristiques structurales	03
I. 2. 3. 1. Ossature :	03
I. 2. 3. 2. Les planchers	04
I. 2. 3. 3. L'acrotère	04
I. 2. 3. 4. Les escaliers	04
I. 2. 3. 5. L'ascenseur	04
I. 2. 3. 6. La maçonnerie	04
I. 2. 4. Caractéristiques mécaniques des matériaux	04
I.2. 4. 1. Le béton	04
I. 2. 4. 2. L'acier	05
I. 3. Les états Limites	06
I. 3. 1. Définition	06
I. 3. 2. Etat limite ultime (ELU)	06
I. 3. 3. Etats limite de service (ELS)	06
I. 4. Actions et sollicitations	06
I. 4. 1. Les actions	06
I. 4. 1. Définitions	06
I. 4. 1. 2.Les actions permanentes (G)	07
I. 4. 1. 3. Les actions variables (Q)	07
I. 4. 1. 4. Les actions accidentelles (E)	07
I. 4. 2. Les sollicitations	07
I 4 2 1 Les différentes combinaisons d'action, données par le RPA	07

I. 5. Règlements et normes utilisés	
Chapitre II : Pré-dimensionnement des éléments	
II.1. Pré dimensionnement des éléments	09
II.1.1. Les poutres	10
II.1.1.1 Les poutres principales	10
II.1.1.2. Poutres secondaires	10
II.1.2.Plancher	11
II.1.2.1. Plancher à corps creux	11
II.1.2.2. Dalle pleine	13
II.1.2.3. Evaluation des charges et surcharges des planchers	16
II.1.3. Les escaliers	16
II.1.3.1.Epaisseur de la paillasse	18
II.1.3poids de la paillasse	18
II.1.4. Acrotère	20
II.1.5. Les voile	20
II.1.6. Les poteaux	21
II.2. Descente des charges	23
II.2.1.Calcul des surfaces afférentes et charge et surcharge	23
II.2.2.La lois de dégression	25
II.3.Vérifications	28
II.3.1. Vérification des poteaux à la compression simple	28
II.3.2. Vérification du critère de stabilité de forme	28
II.3.Conclusion	29
Chapitre III : étude des éléments secondaire	
III.1. Calcul des planchers	30
III.1.1. Plancher à corps creux	30
III.1.1.1 Evaluation des charges et surcharges revenants aux poutrelles	30

III.1.1.2.Méthode de calcul des sollicitations dans les poutrelles	31
III.1.1.3. calcul des sollicitations dans les poutrelles	34
III.1.1.4. Ferraillage des poutrelles	39
III.1.1.5. Les vérifications	45
III.1.1.5.1.Type 1 (étage commerciale)	45
III.1.1.5.2.Type 1 (étage courant)	52
III.1.1.5.3.Type 3 (terrasse accessible)	55
III.1.2. Etude des dalles pleines	57
III.1.2.1. Dalle sur trois appuis	
III.1.2.3. Dalle sur 3 appuis	63
III.1.2.4. Dalle sur 4 Appuis avec ouverture pour ascenseur	65
III.1.3.Etude de l'ascenseur	68
III.1.3.1. Etude de la dalle de l'ascenseur	69
III.1.3.2.Evaluation des charges et surcharges	69
III.1.3.3.Cas d'une charge répartie	69
III.1.3.3.1.Calcul des sollicitations	69
.III.1.3.3.2.Calcul du moment réel	70
III.1.3.3.3.Calcul du ferraillage	70
III.1.3.4.Cas d'une charge concentrée	73
III.1.3.4.1.Evaluation des moments M _x et M _y du système de levage	74
III.2. Calcul de l'acrotère	79
III.2.1.Hypothèse de calcul	79
III.2.2. Evaluation des charges et surcharges	79
III.2.3. Calcul des sollicitations	79
III.2.4. Ferraillage de l'acrotère	81
III.3. Calcul des escaliers	85
III.3.1. Type 1(étages courants) Escalier à 2 volées	85

III.3.1 .1calcul des sollicitations	85
III.3.1.2.Le ferraillage	86
III.3.1.3Vérification à l'ELU	86
III.3.2.Type 2(étages commerciale) Escalier à 3 volées	87
III.3.2.1. Calcul des sollicitations.	87
III.3.2.2 Le ferraillage	88
III.3.2.3Vérification à l'ELU	88
III.3.2.2.La deuxième volée	89
III.3.3. Calcul de la poutre palière	91
III.3.3.1Dimensionnement	91
III.3.4.2. Calcul à la flexion simple	92
III.3.3.4.Calcul de la section d'armature a la flexion simple	92
III.3.3.5Vérification à l'ELU	
III.3.3.7Vérification à l'E.L.S	94
III.3.4.Calcul de la poutre brisée	95
III.3.4.1. Dimensionnement	95
III.3.4.2. Calcul à la flexion simple	96
III.3.4.3. Ferraillage de la poutre brisée à la flexion simple	97
III.3.4.4. Calcul à la torsion	97
III.3.4.5. Vérification à l'E.L.S	98
III.5. Etude des Poutres de chainages	99
III.5.1.Pré dimensionnement	99
III.5.2.Calcul des sollicitations	99
III.5.3.Le ferraillage	100
III.8. CONCLUSION	102
Chapitre IV : Etude dynamique	

IV.1. Méthodes de calcul	103
IV.1.1. La méthode statique équivalente	103
IV.1.2. Méthode dynamique modale spectrale	107
IV.2. Disposition des voiles	108
IV.3. Vérification et interprétation des résultats de l'analyse dynamique	109
IV.3.1. Périodes de vibration et taux de participation des masses modales	109
IV.3.2. Vérification de la résultante des forces sismiques	112
IV.3.3. Vérification de l'interaction voiles portiques	
IV.3.5. Vérification vis-à-vis des déplacements	115
IV.3.6.Justification vis-à-vis de l'effet P-Δ	117
IV.4. Conclusion	118
Chapitre V : Etude des éléments structuraux	
V.1.Etude des poteaux	119
V.1.1 Recommandations du RPA99/Version 2003	119
V.1.1.1 Armatures longitudinales (Article 7.4.2.1)	119
V.1.1.2 Armatures transversales (Article 7.4.2.2)	120
V.1.2. Sollicitations dans les poteaux	121
V.1.3. Calcul du ferraillage	122
V.1.3.1. Ferraillage longitudinal	122
V.1.3.2. Ferraillage transversal	125
V.1.4. Vérifications	127
V.1.4.1.Vérification au flambement (effort normal ultime) :	127
V.1.4.2.Vérification des contraintes de compression	129
V.1.4.3.Vérification aux sollicitations tangentes	130
V.1.5. Disposition constructive des poteaux	131
V.2. Etude des poutres	133

V.2.1. Recommandation du RPA99/2003134	
V.2.1.1.Les armatures longitudinales	
V.2.1.2. Les armatures transversales	
V.2.2.Ferraillage des poutres	
V.2.2.1.Les armatures longitudinales	
V.2.2.2. Les armatures transversales	
V.2.2.3. Vérification des sections d'armatures transversales	
V.2.3. Vérification à l'ELU	
V.2.3.1. Condition de non fragilité	
V.2.3.4.1 Etat limite de compression du béton	
V.2.3.5.Etat limite de déformation (évaluation de la flèche)	
V.2.3.6.Vérification des zones nodales	
V.3. Etude des voiles	
V.3.1.Recommandation du RPA	
V.3.2.ferraillage des voiles	
V.4.Conclusion	
Chapitre VI: Etude des infrastructures	
VI.1 Choix du type de fondation	
VI.2. Etude des fondations	
VI. 2.1 Calcul de la surface de la fondation	
VI. 3. Radier général	
VI. 3. 1. Définition	
VI. 3. 2. Pré dimensionnement	
VI.3.3. les Vérifications nécessaires	
VI.4. Ferraillage du radier	
VI.4.1. La dalle du radier	

VI.4.2. Calcul des nervures	163
VI.4.2.1. Les sollicitations sur les nervures	163
VI.4.2.2. Ferraillage	164
VI.5. Etude du mur adossé	168
VI.5.1. Caractéristiques géotechniques du sol	168
VI.5.2. Combinaison de calcul	168
VI.5.3. Calcul des contraintes	168
VI.5.4. Le ferraillage du mur	169
VI.6. Conclusion	173
Conclusion générale	