République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane Mira de Bejaia

Université Abderrahmane Mira de Bejaia Faculté de technologie Département de génie civil

Mémoire de sin d'étude

En vue d'obtention du Diplôme master en génie civil Option : Matériaux et structures

Thème

Etude d'un bâtiment R+7à usage D'habitation contreventé par un système mixte (Voile portique)

Encadreur : MIle SELLAMI

Réalisé par :

Membre du jury:

BENHAMOUCHE El djoudi

M^R: OURABAH

TINSALHI Idir

M^{me}: AZEZKI

Remerciements

Avant tous, nous remercions ALLAH le tout puissant pour nous avoir donné la force et la patience pour mener à terme ce travail.

Nous tenons à remercier nos familles pour leurs sacrifices et encouragements durant tous le parcours des études. Sans oublier notre promoteur Melle SELLAMI de nous avoir encadré.

Nous tenons à remercier également l'ensemble des enseignants de département GENIE CIVIL pour leurs rôles importants dans notre formation. En particulier les membres de jury pour avoir accepté de juger notre travail.

En fin, tous nos amis, amies et ceux qui ont contribué de près ou de loin pour achever ce modeste travail.

Dédicaces

Je dédie ce modeste travail :

Tout d'abord a mes parents avec tous mes sentiments de respect, d'amour, de gratitude et de reconnaissance pour tous les sacrifices déployés pour m'élever dignement et assurer mon éducation dans les meilleures conditions.

A tous mes profs sans exception, pour leurs efforts afin de m'assurer une formation solide.

A mes très chers frères et ma chère sœur.

A toute ma famille sans exception.

A tous mes amis sans exception.

A mon cher binôme et sa famille.

Benhamouche El djoudi.

Dédicaces

Je dédie ce modeste travail :

A mes très chers parents, pour tous les sacrifices qu'ils ont faits à mon égard.

Que ceci leurs soit une récompense et un témoignage de ma profonde gratitude.

A mon frère et ma sœur auxquelles je souhait tout le bonheur et le succès dans la vie.

Qu'il trouve ici la récompense de leur effort et un témoignage de mon profond amour.

A mon cher binôme et mes chers amis, pour leur soutien tout au long du projet.

Qu'il trouve ici le témoignage de mon immense affection, l'expression de mon grand attachement.

Tinsalhi Idir

SOMMMAIRE

Chapitre I : Généralités	
I.1.Présentation de l'ouvrage I.2.Caractéristique de la structure I.3.Réglements et normes utilisés I.4.Etats limites I.5.Action est sollicitations I.6.Caractéristique des matériaux I.7.Hypothéses de calcul11	1 1 2 2 2 3 5
Chapitre II : Pré dimensionnement des éléments	
II.1.Introduction II.2.Prédimensionnement des éléments non structuraux II.3.Pré dimensionnement des éléments structuraux II.4.Evaluation des charges « G »et surcharges « Q » II.5.Descente de charge II.6.Conclusion	13 13 23 25 29 40
Chapitre III : Calcul des éléments secondaires	
III.1.Introduction III.2. Calcul des planchers à corps creux III.3.Etude des dalles dalles pleines III.4.Etude de L'ascenseur III.5.Etude des escaliers III.6.Étude de l'acrotère	41 41 66 80 88 102
Chapitre IV Etude Dynamique	
IV.1.Introduction IV.2.Méthode de calcul IV.3.Modélisation de la structure IV.4.Interprétation des résultats de l'analyse dynamique IV.5.Conclusion	109 109 114 117 125

Chapitre V Etude des éléments structuraux	
V.1.Etude des poteaux	126
V.2.Etude des poutres V.3.Etude des voiles	137 147
V.4.Conclusion	151
V.4.Conclusion	131
Chapitre VI Etude de l'infrastructure	
VI.1.Introduction	152
VI.2.Choix de type des fondations	152
VI.3.Combinaisons d'actions à considérer	152
VI.4. Etude des fondations	152
VI.5.Étude des semelles filantes	155
VI.6.Étude des poutres de rigidité	160
VI.7.Les longrines	162
VI .8. Etude du voile périphérique	165
Conclusion	
Bibliographie	
annexes	ļ
	ļ

LISTE DES TABLEAUX

Tableau I.1. f_e En fonction du type d'acier	10
Tableau II.1.Les dimensions des escaliers du bâtiment	22
Tableau II.2. Évaluation des charges et surcharges du plancher terrasse inaccessible	26
Tableau II.3. Évaluation des charges et surcharges du plancher étage courant	27
TableauII.4. Evaluation des charges et surcharges des planchers à dalle pleine	28
Tableau II.5. Evaluation des charges et surcharges des paliers des escaliers	28
Tableau II.6. Evaluation des charges et surcharges des volées	29
Tableau II.7. Evaluation des surcharges « Q » pour le poteau E2	31
Tableau II.8. Calcul de la descente de charge du poteau E2	34
Tableau II.9. L'effort normal ultime « Nu » dans chaque niveau	36
Tableau II.10. Vérification de la résistance (compression simple)	37
Tableau II.11.Vérification au flambement	39
Tableau II.12. Prévérification de l'effort normal réduit	39
Tableau III.1. Différents types de poutrelles	41
Tableau III.2.Combinaisons d'action	42
Tableau III.3.Les moments isostatiques max en travées	44
Tableau III.4. Sollicitations à l'ELU des poutrelles (type 2)	47
Tableau III.5. Sollicitations à l'ELS des poutrelles (type 2)	47
Tableau III.6. Sollicitations à l'ELU des poutrelles (type 3)	48
Tableau III.7. Sollicitations à l'ELS des poutrelles (type 3)	49
Tableau III.8. Sollicitations à l'ELU des poutrelles du local machine (type 1)	49
Tableau III.9. Sollicitations à l'ELS des poutrelles du local machine (type 1)	50
Tableau III.10. Sollicitations à l'ELU des poutrelles (type 3)	50
Tableau III.11. Sollicitations à l'ELS des poutrelles (type 3)	51
Tableau III.12. Ferraillage des poutrelles local machine et terrasse inaccessible	54
Tableau III.13. Ferraillage longitudinal des poutres du plancher d'étage courant,RDC	62
Tableau III.14. Vérification au cisaillement	62
Tableau III.15. Vérification de la contrainte de cisaillement à la jonction table –nervure	63
Tableau III.16. Vérification des armatures longitudinales	63
Tableau III.17. Vérification des armatures longitudinales	64
Tableau III.18. Vérification de la bielle	64
Tableau III.19. Vérification de l'état limite de compression du béton	64
Tableau III.20. Evaluation de la flèche	65
Tableau III.21. Résultats de ferraillage d'une dalle sur trois appuis (balcon)	69
Tableau III.22. Vérification de la contrainte dans le béton d'une dalle sur trois appuis	71
Tableau III.23. Résultats de ferraillage d'une dalle sur trois appuis (loggia)	74
Tableau III.24. Vérification de la contrainte dans le béton d'une dalle sur trois appuis	75
Tableau III.25. Vérification de la flèche sens x	76
Tableau III.26. Résultats de ferraillage d'une dalle sur deux appuis	78
Tableau III.27. Vérification de la contrainte dans le béton d'une dalle sur deux appuis	79

Tableau III.28. Ferraillage de la dalle pleine de l'ascenseur	83
Tableau III.29. Evaluation de la flèche de l'escalier (type 1)	94
Tableau III.30. Résultats de ferraillage du 2eme type d'escalier	96
Tableau III.31. vérification de la contrainte dans le béton de 2éme type d'escalier	97
Tableau III.32. ferraillage de la poutre palière a la flexion	99
Tableau III.33. vérification de la contrainte dans le béton de la poutre palier	101
Tableau III.34.sollicitation surl'acrotère	104
Tableau IV.1. Valeurs des pénalités P_q	112
Tableau IV.2. Vérification de la résultante des forces sismique	116
Tableau IV.3. Vérification de la résultante des forces sismique	117
Tableau IV.4. Modes et Périodes de vibration et taux de participation massique	117
Tableau IV.5. Vérification sous charge verticales	120
Tableau IV.6. Vérification sous charges horizontales	121
Tableau IV.7. Vérification de l'effort normal réduit	122
Tableau IV.8. Vérification du déplacement	122
Tableau IV.9. Vérification de l'effet $(P-\Delta)$	124
Tableau V.1. Armatures longitudinales minimales et maximales dans les poteaux	127
Tableau V.2. Les sollicitations dans les poteaux	128
Tableau V.3. ferraillages des poteaux	130
Tableau V.4.Les Armatures transversale dans les poteaux	131
Tableau V.5. Justification de l'effort normale ultime	132
Tableau V.6. Vérification des contraintes dans le béton	133
Tableau V.7. Vérification des sollicitations tangentes	134
Tableau V.8. Ferraillage des poutres principales et secondaires	139
Tableau V.9. Vérification des contraintes tangentielles	142
Tableau V.10. Vérification des armatures longitudinales au cisaillement	143
Tableau V.11. Vérification de la contrainte limite de béton	143
Tableau V.12. Moment résistant dans les poteaux	145
Tableau V.13. Moment résistant dans les poutres	146
Tableau V.14. Ferraillage du voile sens xx	150
Tableau V.15. Ferraillage du voile sens yy	150
Tableau VI.1. sollicitations agissant sur la poutre de rigidité	161
Tableau VI.2. ferraillage de la poutre de rigidité	161
Tableau VI.3. Ferraillage longitudinal des longrines	164
Tableau VI.4. Section des armatures du voile périphérique	167
1	

Liste des figures

Figure I.1: Evaluation de la résistance f_{cj} en fonction de l'âge du béton	6
Figure I.2 : Diagramme des contraintes du béton	7
Figure I.3. Diagramme des contraintes limite du béton	8
Figure I.4. Diagramme contrainte déformation de l'acier	10
Figure I.5. diagramme des déformations limites de la section	12
Figure II.1. Plancher à corps creux	14
Figure II.6. Disposition des poutrelles dans les planchers	15
Figure II.3. Coupe transversale d'une poutrelle	16
Figure II.4.Détail d'un escalier	18
Figure II.5. Escalier a deux volées	18
Figure II.6.coupe sur L'acrotère	22
Figure II.7. Schéma statique de la poutre palière	23
Figure II.8. Vue en plan d'un voile	23
Figure II.9. Hauteur libre d'étage	25
Figure II.10.Coupe transversale dans Le plancher terrasse inaccessible	26
Figure II.11.Coupe transversale dans le plancher terrasse inaccessible	27
Figure II.12. Coupe transversale dans le plancher à dalle pleine	27
Figure II.13.Surface afférente du poteau E2	30
Figure II.14.Schéma de la descente de charges	33
Figure II.15. Surface afférente du poteau F2	36
Figure III.1.Schéma de ferraillage des poutrelles	65
Figure III.2.Schéma de ferraillage de la dalle de compression	66
Figure III.3. Schéma de ferraillage de la dalle sur trois appuis (balcon)	73
Figure III.4. Schéma de ferraillage de la dalle sur trois appuis (loggia)	76
Figure III.5. Schéma de ferraillage de la dalle sur deux appuis	80
Figure III.6. Cage d'ascenseur	81
Figure III.7. Schéma de ferraillage de la dalle d'ascenseur	87
Figure III.8. Schéma statique d'escalier	88
Figure III.9. Diagramme de l'effort tranchant et moment fléchissant	90
Figure III.10. Schéma de ferraillage de l'escalier type 1	95
Figure III.11. Schéma de ferraillage de l'escalier type 2	98
Figure III.12.Schéma de ferraillage de la poutre palière	102
Figure III.13.Dimension de l'acrotère	102
Figure III.14. Schéma de ferraillage de l'acrotère	108
Figure IV.1.modélisation 3D de la structure	115
Figure IV.2: dispositions des voiles	116
Figure IV.3.1er mode	118
Figure IV.4. 2 ^{éme} mode	118
Figure IV.5. 3 ^{éme} mode	119

127
133
135
136
138
146
146
149
151
153
154
157
159
161
162
165
166
169

Introduction:

Le risque sismique est lié à l'intensité du séisme et à la vulnérabilité de la construction, raison pour laquelle une démarche globale de conception parasismique dans la construction doit être mise en place. Elle doit s'appuyer sur trois points :

- Respect de la réglementation parasismique
- Conception architecturale parasismique
- Mise en œuvre soignée.

L'action sismique subie par une structure est directement proportionnelle à l'accélération qui lui est imposée et à sa masse. La masse peut être réduite en utilisant un matériau ayant non seulement une masse volumique faible mais ce qui est plus performant un matériau possédant une contrainte spécifique élevée (rapport entre la contrainte de rupture et la masse volumique). Le bois arrive en tête devant l'acier et le béton armé.

La limitation de l'accélération peut se faire par une démarche réfléchie en commençant par éviter le risque de résonance avec le sol et d'une manière générale en appliquant les trois principes de base de conception suivante :

- La recherche à maximiser la capacité des constructions à stocker l'énergie.
- La recherche à favoriser la capacité des constructions à dissiper de l'énergie.
- La recherche à favoriser la résistance mécanique.

Le présent travail consiste à étudier un bâtiment R+7 contreventé par un système mixte (voiles-portiques) avec justification de l'interaction, dont la procédure est faite comme suite : Connaître la qualité du sol en place du site d'implantation de notre ouvrage et donc connaître la contrainte et capacité portante du sol.

Le premier chapitre donne les caractéristiques de la structure ainsi que celles des matériaux utilisés (béton et acier). Un pré dimensionnement des éléments structuraux a été fait au deuxième chapitre. Le troisième chapitre concerne le calcul des éléments secondaires : les poutrelles, balcons, escaliers et l'acrotère qui ont été calculés et ferraillés en tenant compte des sollicitations auxquelles ils sont soumis. Au quatrième chapitre nous avons fait une étude dynamique de la structure. Cette dernière a été modélisée par le logiciel Robo. La disposition adoptée des voiles a été faite en respectant les exigences du règlement parasismique algérien. Au cinquième chapitre nous avons fait une étude des éléments principaux (poteaux, poutres et voiles). En fin nous avons fait un choix des fondations qui convient au caractéristique du site ainsi qu'au poids de la structure.

I.1. Présentation de l'ouvrage :

L'ouvrage qui fait l'objet de notre étude est un bâtiment, R+7, cette structure est destinée seulement pour l'usage d'habitation, elle est classée d'après les règles parasismiques algériennes « RPA99 /version 2003 » dans le groupe d'usage 2, ayant une importance moyenne.

L'ouvrage se situe au lieu-dit IBOURASSEN, localité située au niveau de la sortie ouest de la ville de Bejaia, d'après la classification sismique des wilayas et communes d'Algérie (classification 2003), par la zone **IIa** (zone de moyenne sismicité).

I.2. Caractéristique de la structure:

I.2.1. Caractéristiques géométriques:

✓	Largeur en plan	9.65m	
✓	Longueur en plan	23,50m	
✓	Hauteur totale du bâtiment	. 28.56m	(voir annexe)
✓	Hauteur du RDC	04.08m.	
✓	Hauteur des étages courants	.03.06m.	

I.2.2.Données de site :

- ❖ L'ouvrage appartient au groupe d'usage 2 en vertu du RPA 99 version 2003.
- ❖ le site est de catégorie S2, qui concerne les sols fermes
- Contrainte admissible du sol $\sigma = 1.8$ bars

I.2.3.Description structurale:

- ❖ Les planchers : constitués de corps creux avec une dalle de compression qui forme un diaphragme horizontal rigide et assure la transmission des forces agissantes dans son plan aux éléments de contreventement.
- ❖ Les escaliers : sont des éléments secondaires réalisés en béton armé coulés sur place, permettant le passage d'un niveau à un autre.

! Les maçonneries :

- Les murs extérieurs seront réalisés en doubles cloisons de briques creuses de 30 cm
 Séparées par une âme d'air de 5cm.
 - Les murs de séparation intérieure seront en une seule paroi de brique de 10 cm
- ❖ L'acrotère : c'est un élément en béton armé, contournant le bâtiment, encastré à sa base au plancher terrasse qui est inaccessible.

- **Balcons**: Les balcons sont réalisés en dalle pleine.
- **L'infrastructure:**
 - -Elle assure les fonctions suivantes :
 - -Transmission des charges verticales et horizontales au sol.
 - -Limitation des tassements différentiels.

I.2.4.Choix du contreventement :

La structure de notre bâtiment est à ossature en béton armé qui reprend la totalité de l'effort horizontal, le RPA99 version 2003 exige, que pour toute structure dépassant une hauteur de 14 m en zone **IIa**, l'introduction des voiles. Il est donc plus judicieux d'adopter un contreventement mixte (portiques -voiles).

I.3 : Règlements et normes utilisés :

Les règlements et les normes utilisés sont :

- **❖** RPA99 /version 2003.
- **❖** CBA93.
- **❖** DTR B.C.2.2.
- ❖ BAEL91/version 99.
- **❖** DTR BC2.33.2.

I.4. Etats limites: (BAEL91)

- **I.4.1 : Définition :** Un état limite est un état pour lequel une condition requise d'une construction (ou d'un de ces éléments) est strictement satisfaite et cesserait de l'être en cas de variation défavorable des actions appliquées.
- a) Etat limite ultime : Ce sont ceux qui sont associés à la perte de stabilité de la structure ; ils sont directement liés à la sécurité des personnes.

Les phénomènes correspondants sont : la rupture locale ou globale, la perte d'équilibre statique ou dynamique et l'instabilité de forme.

b) Etat limite de service : Ce sont ceux qui sont associés à l'aptitude à la mise en service; ils sont donc liés aux conditions d'exploitation et à la durabilité recherchée pour l'ouvrage.

Les phénomènes correspondants sont : la fissuration, les déformations, . . .

I.4.2.Les hypothèses de calcul :

I.4.2.1 E.L.U: CBA93 (article A.4.3.2)

- 1- conservation des sections planes.
- 2- Il n'y pas de glissement relatif (l'un par rapport à l'autre) entre les armatures et le béton.
- 3- La résistance à la traction du béton est négligeable.
- 4- L'allongement ultime de l'acier est limité à 10%.

Chapitre I Généralités

5- Le raccourcissement ultime du béton est limité à 3,5%; dans le cas de flexion simple ou composée, et à 2% dans le cas de la compression simple.

- 6- Le diagramme contraint déformation $(\sigma; \varepsilon)$ de calcul du béton : on utilise le diagramme parabole rectangle lorsque la section est entièrement comprimée et le diagramme rectangulaire simplifié dans les autres cas
- 7-On peut supposer concentrée en son centre de gravité la section d un groupe de plusieurs barres, tendues ou comprimées, pourvu que l'erreur ainsi commise sur la déformation unitaire ne dépasse pas 15 %.

I.4.2.2 E.L.S : BAEL91 (article IV.1)

- 1- les hypothèses citées précédemment en 1, 2, 3.
- 2- le béton et l'acier sont considérés comme des matériaux linéairement élastiques ($\sigma = E\varepsilon$)
- 3- $n = \frac{E_s}{E_h} = 15$ avec E_s : module de Young de l'acier;

n : coefficient d'équivalence acier-béton.

4- On ne réduit pas dans les calculs, les aires des aciers de l'aire du béton comprimé Une action peut se définir comme un ensemble de forces ou de couples de forces appliquées à la structure ou bien comme une déformation imposée à la structure.

I.5. Actions et sollicitations :

I.5.1.Les actions:

I.5.1.1.Définitions:

Les actions sont les forces et les couples dues aux charges appliquées à une structure et aux déformations imposées, elles proviennent donc

- Des charges permanentes.
- Des charges d'exploitations.
- Des charges climatiques.

I.5.1.2 Valeurs caractéristiques des actions :

Les actions permanentes (G) :

Les actions permanentes ont une intensité constante ou très peu variable dans le temps ; elles comprennent :

- Le poids propre de la structure.
- Cloisons, revêtement, superstructures fixes.
- Le poids des poussées des terres ou les pressions des liquides.
- Les déformations imposées à la structure.

Les actions variables (Q) :

Les actions variables ont une intensité varie fréquemment d'une façon importante dans le temps ; elles comprennent :

- **.** Les charges d'exploitations.
- **!** Les charges climatiques (neige et vent).
- **.** Les effets thermiques.

Les actions accidentelles (FA) :

Ce sont celles provenant de phénomènes qui se produisant rarement et avec une courte durée d'application, on peut citer :

- **!** Les chocs.
- Les séismes.
- Les explosions.
- . Les feux.

I.5.1.3. Valeurs de calcul des actions :

Pour tenir compte des risques non mesurables, on associe aux valeurs caractéristiques des actions un coefficient de sécurité pour obtenir les valeurs de calcul des actions. Puis on combine ces valeurs de calcul pour établir le cas de chargement le plus défavorable.

a) Combinaison d'action à l'ELU:

✓ Situation durable ou transitoire :

On ne tient compte que des actions permanentes et des actions variables, la combinaison utilisée est :

$$1,35G_{\text{max}} + G_{\text{min}} + 1,5Q_1 + \sum 1,3\psi_{0i} Q_i$$

 $\psi_{oi} = 0.77$ pour les bâtiments à usage courant.

ψ_{oi}: Coefficient de pondération.

✓ Situations accidentelles :

$$1,35G_{max}+G_{min}+F_A+\psi_{1i} Q_1+\sum \psi_{2i} Q_i (i>1)$$

F_A: Valeur nominale de l'action accidentelle.

 ψ_{1i} Q₁: Valeur fréquente d'une action variable.

 ψ_{2i} Q_i : Valeur quasi-permanente d'une action variable.

0,15 Si l'action d'accompagnement est la neige.

 Ψ_{1i} = 0,50 Si l'action d'accompagnement est l'effet de la température.

0,20 Si l'action d'accompagnement est le vent.

b) Combinaison d'action à l'ELS:

$$G_{max} + G_{min} + Q_1 + \sum \psi_{0i} Q_i$$

 ψ_{0i} =0,6 pour l'effet de la température.

Avec:

G max: l'ensemble des actions permanentes défavorable.

G_{min}: l'ensemble des actions permanentes favorable.

 Q_1 : action variable de base.

Q i: action variable d'accompagnement.

c) Combinaisons de calcul:

Les combinaisons de calcul à considérer pour la détermination des sollicitations et des déformations sont :

• Situations durables : ELU: 1,35G+1,5Q

ELS: G+Q

• Situations accidentelles : $G+Q\mp E$

 $0.8G\mp E$

I.5.2. Les sollicitations :

Les sollicitations sont les efforts (effort normal, effort tranchant, moment de flexion, moment de torsion) développés dans une combinaison d'action donnée.

I.6. Caractéristique des matériaux :

I.6.1. Le béton :

I.6.1.1. Définition:

Le béton est un matériau constitué par le mélange, dans les proportions convenables de ciment, de granulats (sables et gravillon) et de l'eau et éventuellement de produits d'addition (adjuvant), le mélange obtenu est une pâte qui durcit rapidement.

I.6.1.2. Composition du béton:

Pour un mètre cube du béton courant est composé de :

350 Kg de ciment (CPA 32.5).

400 *l* Sable (0<Dg<5mm).

800 l de Gravillons (5<Dg<15mm). Gravier (15<Dg<25mm). 175 l d'eau de gâchage. Le béton obtenu aura une masse volumique apparente qui varie entre 2200 Kg/m³ et 2500Kg/m³.

I.6.1.3 Résistance mécanique du béton :

a) Résistance mécanique en compression f_{cj} :

Dans les constructions courantes, le béton est défini, du point de vue mécanique par sa résistance caractéristique à la compression (à 28 jours d'âge noté « f_{c28} »). Cette résistance (f_{cj} en MPa) est obtenue par un grand nombre d'essais de compression jusqu'à rupture sur une éprouvette cylindrique normalisée de 16 cm de diamètre et 32 cm de hauteur.

Le durcissement étant progressif, f_{cj} est fonction de l'âge du béton. Aussi, la valeur conventionnellement retenue pour le calcul des ouvrages est f_{cj} .

✓ Pour des résistances $f_{c28} \le 40$ MPa.

$$f_{cj} = \frac{j}{4,76 + 0,83j}$$
 f_{c28} si $j \le 28j$

$$f_{cj} = f_{c28}$$
 si j > 28j

✓ Pour des résistances f_{c28} > 40 MPa.

$$f_{cj} = \frac{j}{1,4+0,95} f_{c28}.$$
 si $j \le 28j$

$$f_{cj} = f_{c28}$$
 si j > 28j

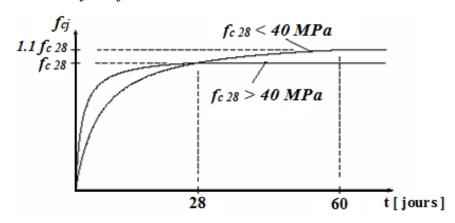


Figure I.1. Evaluation de la résistance f_{cj} en fonction de l'âge du béton.

Pour 1m^3 de béton courant doser à 350 kg de ciment portland artificiel (**CPA32.5**), la résistance moyenne f_{c28} . Comprise entre 22 et 25 *MPa*.

On prend f_{c28} . =25 MPa.

b) Résistance à la traction f_{ii} :

La mesure directe de la résistance à la traction par un essai de traction axiale étant délicate on a recours à deux modes opératoires différents :

- ✓ Flexion d'éprouvettes prismatiques non armées.
- ✓ Fendage diamétral d'une éprouvette cylindrique (essai Brésilien)

La résistance mécanique à la traction du béton à j jours, notée f_{tj} , est conventionnellement définie par les relations :

$$ftj = 0.6 + 0.06fcj$$
 si $fc28 \le 60 MPa$.

$$f$$
tj =0,275 fcj si f c28> 60 M P a .

Pour j=28 jours et fc28. = 25 Mpa ; ft28 = 2.1 Mpa

c) Contrainte limite

c. 1. Etat limite ultime:

✓ Contrainte ultime de compression :

Pour le calcul à l'E.L.U on adopte le diagramme parabole- rectangle suivant :

$$f_{bu} = \frac{0.85 f_{c28}}{\gamma_b}$$

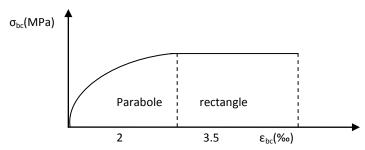


Figure I.2.Diagramme des contraintes du béton.

 $f_{\rm bu}$: contrainte ultime du béton en compression.

 γ_b : Coefficient de sécurité.

 $\gamma_b = 1,5$ en situations durables ou transitoires.

 $\gamma_b = 1,15$ en situations accidentelles.

$$f_{bu} = 14,20 MPa \text{ pour} : \gamma_b = 1,5$$

$$f_{bu} = 18,48 \, MPa \, \text{pour} : \gamma_b = 1,15$$

✓ Contrainte ultime de cisaillement :

La contrainte ultime de cisaillement est limitée par : $\tau \leq \tau_{adm}$

 $\tau_{adm} = \min (0.2 f_{ci}/\gamma_{b}, 5Mpa)$ pour la fissuration peu nuisible.

 $\tau_{Adm} = \min(0.15 f_{cj}/\gamma_b; 4Mpa)$ pour la fissuration préjudiciable.

Dans notre cas on a f_{c28} =25 Mpa donc :

$$\tau_{Adm} = 3,33 \; Mpa$$
 fissuration peu nuisible.

 $\tau_{Adm} = 2,5 \; Mpa$ fissuration préjudiciable.

c .2. Etat limite de service :

Dans le cas de l'ELS on suppose que le diagramme parabole rectangle reste dans le domaine élastique linéaire, est défini par son module d'élasticité

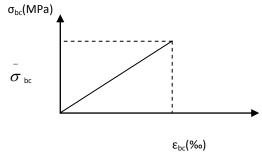


Figure I.3.Diagramme des contraintes limite du béton

La contrainte limite de service en compression du béton est limitée par :

$$\sigma_{bc} \le \sigma_{bc}$$

$$- \sigma_{bc} = 0.6 f_{c28} = 15 \text{ MPa.}$$

Avec:

d) Déformation longitudinale du béton:

On distingue deux modules de déformation longitudinale du béton ; le module de Young instantané Eij et différé Evj

✓ Le module de déformation longitudinale instantané:

Sous les contraintes normales d'une durée d'application inférieure à 24h. On admet à défaut de mesures, qu'à l'âge « j » jours le module de déformation longitudinale instantanée du béton Eij est égal à :

$$E_{ij} = 11000 \sqrt[3]{f_{cj}}$$
, $(f_{cj} = f_{c28} = 25 MPa) d'où : E_{i28} = 32164 MPa$.

✓ Le module de déformation longitudinale différé:

Sous des chargements de longue durée (cas courant), le module de déformation Longitudinale différé qui permet de calculer la déformation finale du béton (qui prend en compte les déformations de fluage du béton) est donné par la formule:

$$E_{vj}$$
= (1/3) Eij .
 E_{ij} = 11000 (f_{c28})^{1/3}.

Pour les vérifications courantes : j > 28 jours on a :

Pour : f_{c28} =25Mpa on a :

✓ Module déformation transversale :

$$G = \frac{E}{2(\nu + 1)}$$
 (Module de glissement).

Avec:

E: module de Young

 ν : Coefficient de poisson

$$G_{ELS} = 18493, 45MPa$$

La déformation longitudinale est toujours accompagnée d'une déformation transversale, le coefficient de poisson **v** par définition est le rapport entre la déformation transversale et la déformation longitudinale.

$$oldsymbol{
u} = rac{ ext{Déformation transversale}}{ ext{Déformation longitudinale}}$$
 $oldsymbol{
u} = rac{\Delta d \, / \, d_{\,\mathrm{O}}}{\Delta L \, / \, L_{\,\mathrm{O}}} = rac{\mathcal{E}_t}{\mathcal{E}_L}$

Avec:

 ξ_t : déformation limite transversale.

 ξ_{l} : déformation limite longitudinale

Pour le calcul des sollicitations (à l'ELU), le coefficient de poisson est pris égal à 0.

Pour le calcul des déformations (à l'ELU), le coefficient de poisson est pris égal à 0,2.

I.6.2 L'acier:

I.6.2.1. Définition:

Le matériau acier est un alliage Fer et Carbone en faible pourcentage, l'acier est un matériau caractérise par une bonne résistance aussi bien en traction qu'en compression ; Sa bonne adhérence au béton, en constitue un matériau homogène.

Le module d'élasticité longitudinal de l'acier est pris égale à : Es=200 000 MPa.

a) Résistance mécanique de l'acier :

On définit la résistance mécanique de l'acier comme étant sa limite d'élasticité : f_e

Principales armatures utilisés

Tableau I.1. f_e En fonction du type d'acier :

	Aciers	s ronds	Aciers	à hautes	Treillis soudé à	Treillis soudés à haute		
	lis	ses	adhé	rences	fils lisses	adhérence		
Désignation	FeE215	FeE235	FeE400 FeE500		TLE500	FeTE500		
f _e [MPa]	215	235	400	500	500	500		

Dans notre cas on utilise des armatures à haute adhérence, un acier de F_eE400 type 1.

b) Contrainte limite:

✓ Etat limite ultime :

Pour le calcul on utilise le diagramme contrainte- déformation suivant :

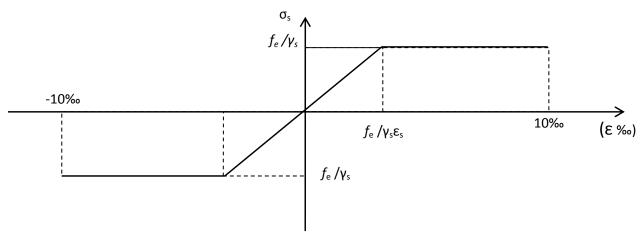


Figure I.4.Diagramme contrainte déformation de l'acier

$$\sigma_s = \frac{f_e}{\gamma_s} \qquad \qquad \begin{cases} \gamma_s = 1 & \text{cas de situations accidentelles.} \\ \\ \gamma_s = 1,15 \text{ cas de situations durable où transitoire.} \end{cases}$$

Avec:

 $E_s = 200\ 000\ MPa$.

 γ_s : Coefficient de sécurité.

✓ Etat limite de service :

Nous avons pour cet état :

- Fissuration peu nuisible.
- Fissuration préjudiciable : $\sigma_{st} \le \bar{\sigma}_{st} = \min(2/3f_e, 110\sqrt{\eta f_{tj}})$
- Fissuration très préjudiciable : $\sigma_{st} \leq \bar{\sigma_{bc}} = \min(1/2 f_e, 90 \sqrt{\eta f_{tj}})$

η : Coefficient de fissuration.

 $\eta = 1$ pour les ronds lisses (RL)

 η =1,6 pour les armatures à hautes adhérence (HA).

I.7 Hypothèses de calcul:

I.7.1 Calcul aux états limites de services :

- Les sections droites restent planes, et il n'y a pas de glissement relatif entre les armatures et le béton.
- La résistance de traction de béton est négligée.
- Le béton et l'acier sont considérés comme des matériaux linéairement élastiques.
- Le rapport des modules d'élasticités longitudinaux de l'acier et de béton est pris égal à 15 ($\eta = \frac{E_s}{E_s}$), η : est appelé coefficient d'équivalence.

I.7.2 Calcul aux états limite ultimes de résistance :

- Les sections droites restent planes, et il n'y a pas de glissement relatif entre les armatures et le béton.
- Le béton tendu est négligé.
- L'allongement relatif de l'acier est limité à : 10‰.
- Le raccourcissement ultime du béton est limité à :

 $\varepsilon_{bc} = 3.5 \%$ en flexion

 $\varepsilon_{hc} = 2 \%$ en compression centrée

• La règle des trois pivots qui consiste à supposer que le domaine de sécurité est défini par un diagramme des déformations passant par l'un des trois pivots A, B ou C définis par la figure suivante :

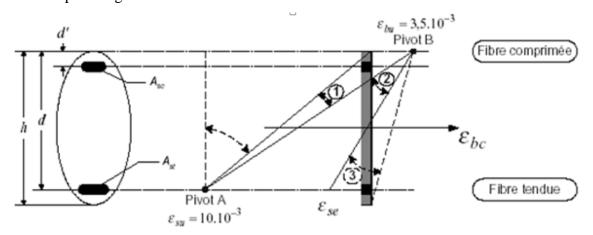


Figure I.5. diagramme des déformations limites de la section règle des trois pivots

Tel que:

A : correspond à un allongement de 10×10-3 de l'armature la plus tendue, supposée concentrée.

B: correspond à un raccourcissement de 3.5×10-3 du béton de la fibre la plus comprimée.

 ${f C}$: correspond à un raccourcissement de 2×10-3 du béton de la fibre située à 3/7h de la fibre la plus comprimée.

Dans notre étude, les hypothèses de calcul adoptées sont :

- ✓ La résistance à la compression à 28 jours fc28 = 25 Mpa.
- ✓ La résistance à la traction ft28 = 2.1 Mpa.
- ✓ Evj = 10721,40 Mpa.
- \checkmark Eij = 32164.20Mpa.
- \checkmark fe = 400 MPa.

II.1.Introduction:

Le pré-dimensionnement a pour but de déterminer l'ordre de grandeur du point du vue coffrage des différents éléments résistants. Ces dimensions sont choisies selon les préconisations du RPA 99/Version 2003, BAEL 91 modifié 99et du CBA93. Les résultats obtenus n'étant pas définitifs, ils peuvent augmenter après vérifications dans la phase du dimensionnement.

II.2. Pré dimensionnement des éléments non structuraux :

II.2.1.Les planchers :

Définition:

Dans une construction, le plancher est une aire plane qui limite les niveaux dont l'épaisseur est faible par rapport aux autres dimensions.et qui jouent un rôle porteur car ils supportent les charge est surcharges. Ils assurent aussi un rôle d'isolation thermique et acoustique. Dans notre projet on trouve :

- Plancher à corps creux.
- Plancher à dalles pleine pour les balcons

a). Plancher à corps creux :

Ce sont des planchers très facile à réaliser utilisé dans les bâtiments d'habitation, et administratifs.

Ce type de plancher et constitué:

- Corps creux « hourdis » : sont des éléments de remplissage, ils n'ont Aucune fonction de résistance.
- Poutrelles : éléments résistants du plancher
- -Dalle de compression : est une dalle mince dont la hauteur varie de 4 à 6 cm.
- Treillis soudé.

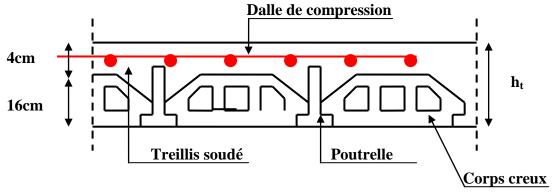


Figure II.1. Plancher à corps creux

Le pré-dimensionnement des planchers à corps creux se fait par satisfaction de la condition de flèche donnée par le **CBA93** (art: 6.8.4.2.4).

$$h_{t} \ge \frac{L_{\text{max}}}{22.5}$$

L_{max} : longueur maximale entre nus d'appuis selon la disposition des poutrelles adoptées.

ht: hauteur total du plancher.

 L_{max} : étant égale à 340 cm \Rightarrow ht \geq 15.11cm.

Donc on adoptera des planchers à corps creux avec une hauteur de (16+4)=20cm.

Avec:

h = 16 cm: hauteur du corps creux.

h0= 4 cm : hauteur de la dalle de compression.

• Les poutrelles

La disposition des poutrelles se fait selon deux critères :

- ✓ La plus petite portée.
- ✓ Critère de continuité.

Pour notre projet la disposition des poutrelles est effectuée selon le premier critère et cela pour tous les planchers comme indiqué sur la figure (fig.II.2)

Le dimensionnement se fait selon les règles mises en œuvre par le CBA 93 (A.4.1.3)

Elles se calculent comme une section en T. La largeur de

La dalle de compression à Prendre est dèfinie par :

$$\frac{b-b_0}{2} \le \min\left(\frac{l_x}{2}; \frac{l_y}{10}\right)$$

Avec:

b : Largeur de la table de compression.

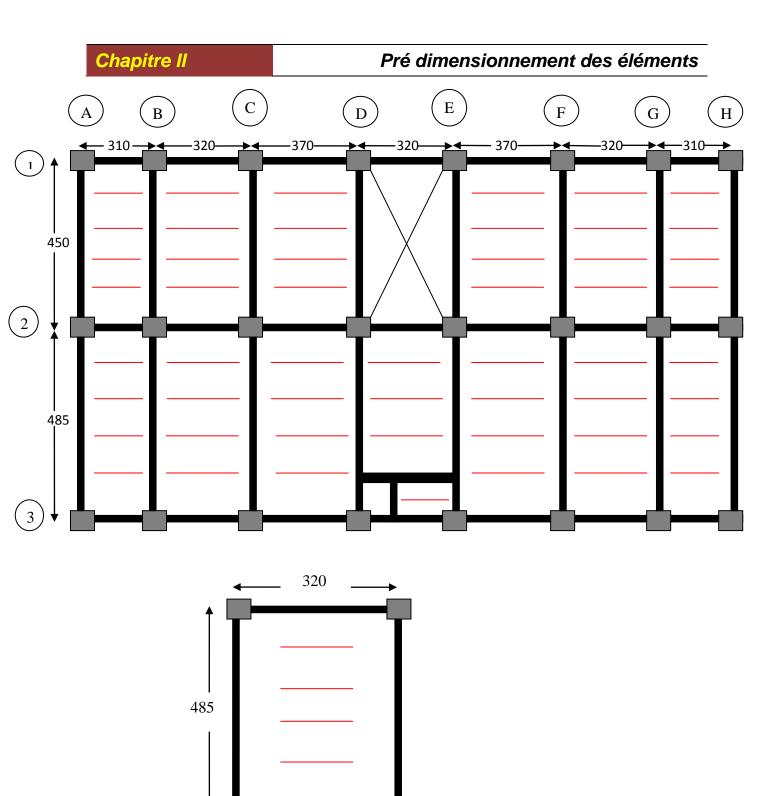


Figure II.2.Disposition des poutrelles dans les planchers

Lx : représente la distance entre nus des deux poutrelles (lx = 55 cm).

Ly : représente la Travée minimale entre nus d'appuis dans le sens de la disposition des poutrelles Ly =280cm.

La valeur de b₀ dépend de la hauteur totale du plancher, elle est prise entre :

$$b_0 = (0.4; 0.6) \text{ ht} \Rightarrow 8 \le b_0 \le 12 \text{ On prend } b_0 = 10 \text{ cm.}$$

$$b_{1} \leq \min\left(\frac{l_{x}}{2}; \frac{l_{y}}{10}\right)$$

$$b1 = 27.5 \text{ cm}$$

$$b = 2 \times b1 + b0 \Longrightarrow b = 2 \times 27.5 + 10 \Longrightarrow b = 65 \text{ cm}$$

Soit: b = 65cm

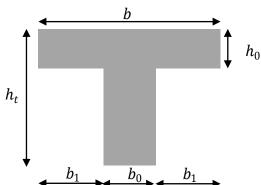


Figure II.3. Coupe transversale d'une poutrelle

b).Les dalles pleines :

Dans notre cas les dalles pleines seront utilisées pour les (balcons, loggia, séchoir).

L'épaisseur des dalles est déterminée à partir des conditions ci-après :

• Résistance au feu :

> e= 7cm pour une heure de coupe-feu.

> e= 11cm pour deux heures de coupe-feu.

• Isolation phonique :

Selon les règles techniques « *CBA93* » en vigueur en l'Algérie l'épaisseur du plancher Doit être supérieur ou égale à 13 cm pour obtenir une bonne isolation acoustique.

• Résistance à la flexion :

Les conditions que doivent vérifier les dalles pleines selon le nombre d'appuis sont les suivantes :

$$\frac{L_x}{35} \le e \le \frac{L_x}{30}$$
 \rightarrow pour une dalle sur quatre appuis avec $\rho < 0.4$

$$\frac{L_x}{45} \le e \le \frac{L_x}{40} \to pour \, une \, dalle \, surtrois \, appuis \, avec \, \rho \ge 0.4$$

$$e \ge \frac{L_x}{20}$$
 \to pour une dalle sur un ou deux appuis

Lx : la petite portée du panneau le plus sollicité (cas le plus défavorable).

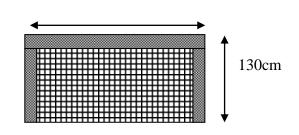
Pour notre cas en a Trois types de dalles pleins

Chapitre II

Pré dimensionnement des éléments

dalle sur trois appuis: 280cm

a)Balcon:


$$1x = 130cm$$

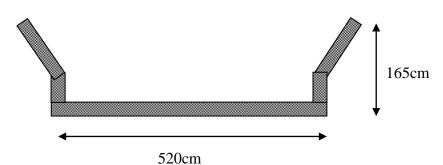
$$1y = 280cm$$

$$\rho = \frac{130}{280} = 0.46 > 0.4$$

$$\frac{L_x}{45} \le e \le \frac{L_x}{40}$$

$$\frac{130}{45} \le e \le \frac{130}{40} \Rightarrow 2.88cm \le e \le 3.25cm$$

b) Loggia:

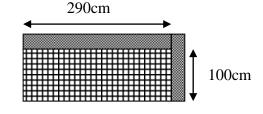

$$1x = 165cm$$

$$1y = 520cm$$

$$\rho = \frac{165}{520} = 0.31 < 0.4$$

$$\frac{L_x}{35} \le e \le \frac{L_x}{30}$$

$$\frac{165}{35} \le e \le \frac{165}{30} \Rightarrow 4.71cm \le e \le 5.5cm$$


Dalle sur deux appuis :

Séchoir

$$1x = 100cm.$$

1y = 290cm.

$$e \ge \frac{L_x}{20} \Rightarrow e \ge \frac{100}{20} \Rightarrow e \ge 5cm$$

$$\rho = \frac{150}{290} = 0.51 > 0.4 \Rightarrow \frac{290}{45} < e < \frac{290}{40} \Rightarrow 6.44cm < e < 7.25cm$$
 290cm

D'après les conditions précédentes, on optera une épaisseur e = 14cm pour toutes les dalles Pleines pour avoir une bonne isolation phonique.

II.2.2.Les escaliers :

L'escalier est un élément en béton armé conçus sur place. Il est constitué d'une succession de marches permettant le passage d'un niveau à un autre.

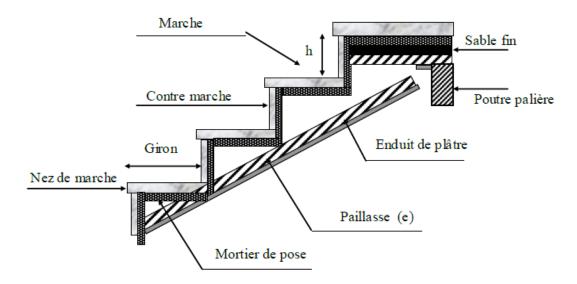


Figure II.4.Détail d'un escalier

On distingue dans notre projet deux types d'escalier :

- ✓ Escaliers droits à deux volées
- ✓ Escaliers trois volées(RDC)

Type 1: Escalier a deux volées (escalier des étages courant) :

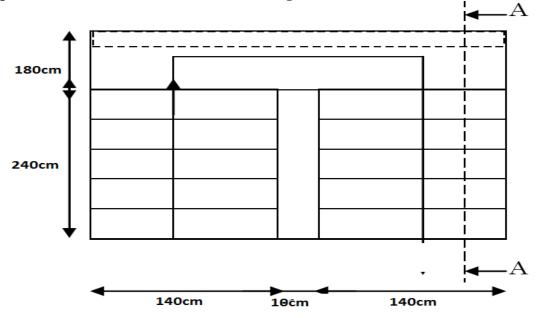


Figure II.5. Escalier a deux volées

Pour déterminer les dimensions des marches et des contre marches « g et h » on utilise la relation de **BLONDEL** : $60 \text{ cm} \le 2h + g \le 65 \text{ cm}$

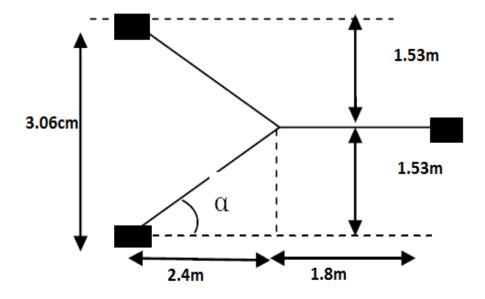
✓ la hauteur h des contremarches se situe entre 14 et 18 cm

- ✓ La largeur g (giron) se situe entre 25 et 32 cm.
- ✓ La formule empirique de BLONDEL: $60 \le 2h + g \le 65cm$

$$g = \frac{L_0}{n-1}$$
 et $h = \frac{H}{n}$

n : nombre de contremarche.

n-1: Nombre de marche


H: hauteur de la volée.

L : longueur de la volée

g: giron.

L₀: longueur projetée de la volée.

Pour pouvoir étudier ce type d'escalier on le partage en 2 volées :

> Epaisseur de la paillasse :

-la langueur développée est : L=Lv+Lp

-L_v: longueur de la volée

-L_p: longueur du palier

$$L = L_P + \sqrt{L_0^2 + H^2} \implies L = 1.8 + \sqrt{2.4^2 + 1.53^2} = 4.64m$$

$$\frac{L}{30} \le e \le \frac{L}{20} \Rightarrow \frac{464}{30} \le e \le \frac{464}{20}$$

15.46cm ≤e≤ 23.2cm

On prend e=18cm

> Calcul du nombre de marche et de contre marche :

On a L_0 = 2.4 m; H=1.53 m.

$$64n^{2} - (64 + 2H + L_{0})n + 2H = 0 \Rightarrow 64n^{2} - (64 + 2 \times 153 + 240)n + 2 \times 153 = 0$$
$$64n^{2} - 610n + 306 = 0$$

Après la résolution, on trouve:

Le nombre de contremarche est : n=9

Le nombre de marche est : n-1=8

> Calcul de giron(g) et la hauteur d'une contre marche :

$$g = \frac{L_0}{n-1} \Rightarrow g = \frac{240}{8} = 30 \Rightarrow g = 30cm.$$

$$h = \frac{H}{n} \Rightarrow h = \frac{153}{9} = 17 \Rightarrow h = 17cm.$$

Donc : Le giron d'une marche est : g = 30cm.

La hauteur d'une contremarche est h = 17cm.

\triangleright Calcul de l'angle α :

Tag
$$\alpha = \frac{H}{L_0} = \frac{153}{240} = 0.63$$

 $\alpha = 32.52^{\circ}$

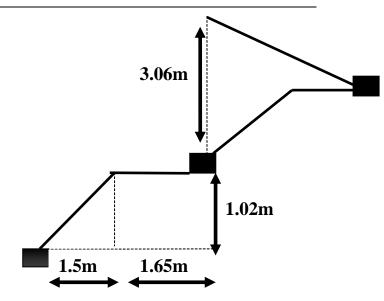
Vérification de la relation de blondel :

$$60 \le 2h + g \le 65cm$$

 $60 \le 2 \times 17 + 30 \le 65 \text{cm} \Rightarrow 60 \le 64 \le 65 \text{cm}$ condition vérifiée.

Type 2 : Escalier a trois volées(RDC) :

• La volée1


$$L = L_P + \sqrt{L_0^2 + H^2}$$

$$L = 1.65 + \sqrt{1.5^2 + 1.02^2} = 3.46m.$$

$$\frac{L}{30} \le e \le \frac{L}{20} \Rightarrow \frac{346}{30} \le e \le \frac{346}{20}$$

11.53cm ≤e≤17.3cm

On prend e=15cm

> Calcul du nombre de marche et de contre marche :

On a L₀= 1.5 m; H=1.02 m.

$$64n^2 - (64 + 2H + L_0)n + 2H = 0 \Rightarrow 64n^2 - (64 + 2 \times 102 + 150)n + 2 \times 102 = 0$$

 $64n^2 - 418n + 204 = 0$
Après la résolution, on trouve:

ripres in resolution, on flouve.

Le nombre de contremarche est : n=6

Le nombre de marche est : n-1=5

> Calcul de giron(g) et la hauteur d'une contre marche :

$$g = \frac{L_0}{n-1} \Rightarrow g = \frac{150}{5} = 30 \Rightarrow g = 30cm.$$

$$h = \frac{H}{n} \Rightarrow h = \frac{102}{6} = 17 \Rightarrow h = 17cm.$$

Donc : Le giron d'une marche est : g = 30cm.

La hauteur d'une contremarche est h = 17cm.

> Calcul de l'angleα:

Tag
$$\alpha = \frac{H}{L_0} = \frac{102}{150} = 0.68 \Rightarrow \alpha = 34.21^{\circ}$$

La 2^{éme} et 3^{éme} volée

Elles sont identiques à celles du 1er type

Cages d'escaliers	volées	Lp (m)	Lv (m)	L0(m)	L(m)	H(m)	n	n-1	g (cm)	h (cm)	α (°)	e (cm)
	1	1.65	1.81	1.5	3.46	1.02	6	5	30	17	34.21	15
RDC	2	1.8	2.84	2.4	4.64	1.53	9	8	30	17	32.51	
	3	1.8	2.84	2.4	4.64	1.53	9	8	30	17	32.51	18
Etages	1	1.8	2.84	2.4	4.64	1.53	9	8	30	17	32.51	
courants	2	1.8	2.84	2.4	4.64	1.53	9	8	30	17	32.51	18

Tableau II.1.Les dimensions des escaliers du bâtiment :

II.2.3.L'acrotère:

L'acrotère est un élément secondaire, se trouvant au niveau de la terrasse, il a pour rôle d'empêcher les infiltrations des eaux pluviales entre la forme de pente et le plancher terrasse ainsi qu'un rôle de garde-corps pour les terrasses accessibles.

Dans notre ca nous avons un type d'acrotère terrasse inaccessible.

Evaluation des charges de l'acrotère :

$$\mathbf{S} = (0.5 \times 0.1) + (0.05 \times 0.15) + (0.05 \times \frac{0.15}{2})$$

 $S = 0.06125 \text{m}^2$

> Charge Permanente:

$$G = \gamma b \times S \times 1$$

Dimensionnement de l'acrotère

$$G = 25 \times 0.06125 \times 1$$

G = 1.53125 KN/ml

Enduit de ciment:

 $Gc = \gamma c \times p \times e$

P : périmètre de l'acrotère

$$P = 0.5 + 0.1 + \sqrt[2]{0.3872 + 0.0025} + 0.05 + 0.15 + 0.1 + 0.4$$

P = 1.4581 m

 $Gc = 18 \times 0.02 \times 1.4581$

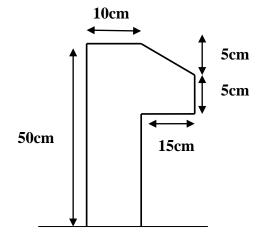
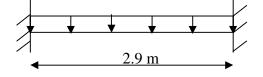


Figure II.6.coupe sur L'acrotère


Gc = 0.52 KN/ml

$$Gt = 0.52 + 1.53125 = 2.0561 \text{ KN/ml}$$

La surcharge d'exploitation : Q = 1KN/ml

II.2.5. poutre palière:

Dimensionnement:

Condition de RPA:

Figure II.7. Schéma statique de la poutre palière

$$\begin{cases} b \ge 20cm \\ h \ge 30cm \text{ [Articl7.5.1] [2]} \\ \frac{h}{b} \le 4.00 \end{cases}$$

Condition de la flèche :

$$\frac{L_{\max}}{15} \le h \le \frac{L_{\max}}{10}$$

 $19.33cm \le h \le 29cm$ On prend h = 30 cm b = 30cm

II.3. Pré dimensionnement des éléments structuraux :

II.3.1 Les voile :

Ce sont des éléments de contreventement vertical mince et continu, généralement en béton armé, servant à reprendre les charges permanentes et d'exploitation apportées par les planchers et participer au contreventement, assurer une isolation acoustique, L'épaisseur est donnée par les conditions du **RPA2003** (art 7.7.1)

✓
$$e \ge Max$$
 (he /20,15 cm).
✓ $I > 4$ e

Pour le RDC :

he=
$$3.88 \text{ m} \Rightarrow e \ge 19.4 \text{ cm}$$
.

On prend e=20 cm.

Figure II.8. Vue en plan d'un voile

> Pour l'étage courant :

$$h_e = 2.86 \text{ m} \implies e \ge 15 \text{ cm}.$$

Finalement on opte pour une épaisseur égale à : e= 20 cm.

II.3.2 Les poutres :

Ce sont des éléments porteurs en béton armé, rectangulaire placée horizontalement elles servent à supporter les charges et les surcharges du plancher, et les transmettre sur le côté aux piliers.

On distingue:

a) les poutres principales :

Les poutres principales servent comme appuis pour les poutrelles. Elles sont disposées perpendiculairement à ces dernières, leur hauteur doit satisfaire les conditions de flèche données par le BAEL 91.

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$

Avec L_{max}: longueur max entre nus d'appuis des poutres principales

$$L_{\text{max}} = 4.55m \Rightarrow 30.33cm \le h \le 45.5cm$$

On prend h = 40 cm et b = 30 cm

Vérifications:

Selon les recommandations du RPA 99(version2003) on doit satisfaire les conditions suivantes :

$$\begin{cases} b \ge 20cm \\ h \ge 30cm \text{ [Articl7.5.1] [2]} \\ \frac{h}{b} \le 4.00 \end{cases}$$

Sachant que b: Largeur de la poutre.

h: Hauteur de la poutre.

$$\begin{cases} b = 30 \text{cm} > 20 \text{cm} \\ h = 40 \text{cm} > 30 \text{cm} \end{cases}$$
 condition vérifié
$$\frac{h}{b} = 1.33 \le 4.00$$

b) les poutres secondaires :

Les poutres secondaires Sont disposées parallèlement aux poutrelles.

 $L_{\text{max}} = 3.7 - 0.30 = 3.4 \text{m}$ (avec les mêmes conditions que les poutres principales on trouve les

dimensions suivantes) : $b \times h = 30 \times 30 \text{ cm}^2$.

II.2.3 les poteaux :

Ce sont des éléments en béton armé, rectangulaire ou circulaire, destiné à transmettre les charges aux fondations, leurs pré dimensionnement se fait à la compression centrée selon les règles du BAEL91 (art B.8.4,1).Une fois la résistance à la compression vérifiée ces poteaux doivent répondre au critère de stabilité de forme exigé par le RPA 99 version 2003.

Les dimensions de la section transversale des poteaux selon le RPA99 (Art 7.4.1), doivent satisfaire les conditions suivantes pour la zone IIa :

$$\begin{aligned} &\min(b_1;h_1) \geq 25cm \\ &\min(b_1;h_1) \geq \frac{h_e}{20} \\ &0,25 < \frac{b_1}{h_1} < 4 \end{aligned}$$

Figure II.9. Hauteur libre d'étage

 h_e : Hauteur libre d'étage, elle est égale à 3.06m pour les étages courant et4.08 Pour le rez de chaussé.

On adopte préalablement la section b1 × h1 des poteaux comme suit :

- $50 \times 50 \text{ cm}^2$ pour (rez de chaussée, 1erétage).
- $45 \times 45 \text{ cm}^2$ pour (2ème et 3èmeétage).
- $40 \times 40 \text{ cm}^2$ pour (4ème, 5èmeétage).
- 35×35 cm² pour (6ème, 7èmeétage et local machine).

II.4.Evaluation des charges « G »et surcharges « Q » :

Les charges permanentes (G) se calcul d'après le volume des matériaux et leurs densité La plus grande dans les conditions d'emplois.

Les surcharges d'exploitations sont données par le DTR charge et surcharge.

II.4.1. Evaluation des charges et des surcharges sur les planchers a corps creux :

> Plancher terrasse inaccessible :

Le plancher terrasse inaccessible est constitué de corps creux, dalle de compression et Protégé par un procédé d'étanchéité et isolation thermique.

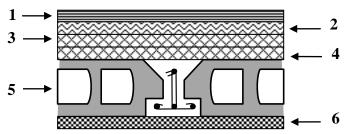


Figure II.10.Coupe transversale dans Le plancher terrasse inaccessible

Tableau II.2. Évaluation des charges et surcharges du plancher terrasse inaccessible :

référent	désignation	Poids volumique (KN/m3)	Epaisseurs (m)	Poids G (KN/m2)	Surcharges Q (KN/m2)
1	Gravillon de protection	20	0.04	0.80	
2	Etanchéité multicouches	6	0.02	0.12	
3	Forme de pente	22	0.065	1.43	
4	Isolation thermique	18	0.015	0.27	1
5	Plancher à corps creux (16+4)	/	0.20	2.85	
6	Enduit de plâtre	14	0.02	0.28	
	_		Total	5.75	

Poids propre : $Gt=5.75KN/m^2$

Surcharges d'exploitation : $Q=1kN/m^2$

Plancher étage courant usage habitation :

Le plancher étage courant est constitué de corps creux, dalle de compression et d'un Revêtement en carrelage.

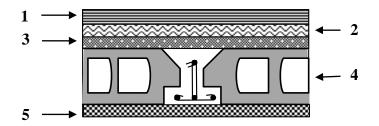


Figure II.11.Coupe transversale dans le plancher terrasse inaccessible Tableau II.3.Évaluation des charges et surcharges du plancher étage courant :

référent	désignation	Poids volumique (KN/m³)	Epaisseurs (m)	Poids G (KN/m²)	Surcharges Q (KN/m ²)
1	Revêtement en carrelage	22	0.02	0.44	
2	Mortier de pose	20	0.02	0.4	
3	Lit de sable	18	0.02	0.36	
4	Plancher à corps creux (16+4)	/	0.20	2.85	1.5
5	Enduit de plâtre	14	0.02	0.28	
6	Cloison de séparation	10	0.1	1	
			Total	5.33	

Poids propre : $G_t = 5.33KN/m^2$

Surcharges d'exploitations à Usage d'habitation $Q=1.5KN/m^2$.

II.4.2. Evaluation des charges et surcharges sur plancher à dalle pleine :

> Plancher à dalle pleine balcon :

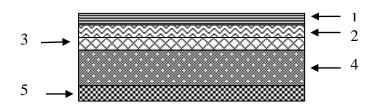


Figure II.12.Coupe transversale dans le plancher à dalle pleine

Tableau II.4. Evaluation des charges et surcharges des planchers à dalle pleine balcon :

Référent	désignation	Poids volumique (KN/m³)	Epaisseurs (m)	Poids G (KN/m²)	Surcharges Q (KN/m²)
1	Revêtement carrelage	22	0.02	0.44	
2	Mortier de pose	20	0.02	0.4	
3	Lit de sable	18	0.02	0.36	3.5
4	Dalle pleine	25	0.14	3.5	
5	Enduit en ciment	20	0.02	0.4	
			Total	5.1	

Poids propre $Gt=5.1 \text{ KN/m}^2$

Surcharges d'exploitation $Q=3.5 \text{ KN/m}^2$

II.4.3. Evaluation des charges et des surcharges des escaliers :

> Les paliers

Tableau II.5. Evaluation des charges et surcharges des paliers des escaliers :

désignation	Poids volumique (KN/m³)	Epaisseurs (m)	Poids G (KN/m ²)	Surcharges Q (KN/m2)
Palier	25	0.18	4.5	
Carrelage	22	0.02	0.44	
Mortier de pose	20	0.02	0.4	2.5
Lit de sable	18	0.02	0.36	
Enduit de plâtre	14	0.02	0.28	
		Total	5.98	

> La volée

Les formules utilisées pour le calcul des charges permanentes sur la volée sont :

- Poids de la paillasse et de la couche d'enduit : γ .e/cos α
- Poids d'une marche : γ .h/2
- Poids du revêtement et du mortier de pose :

- Horizontal: γ.e.

- Vertical: γ .e. (h/g).

- Les résultats de calcul sont résumés dans le tableau qui suit :

Tableau II.6. Evaluation des charges et surcharges des volées :

désignation	Poids volumique (KN/m³)	Epaisseurs (m)	Poids G (KN/m ²)	Surcharges Q (KN/m ²)
Dalle pleine	25	0.18	5.33	
(paillasse)				
Les marches	22	0.17/2	1.87	
Mortier de pose	20	0.02	0.40	
horizontal				
Mortier de pose	20	0.02*0.17/0.3	0.22	
vertical				2.5
Revêtement en	22	0.02	0.44	
carrelage horizontal				
Revêtement en	22	0.02*0.17/0.3	0.25	
carrelage Vertical				
Enduit de plâtre	14	0.02	0.32	
		Total	8.83	

Pour la volée du RDC

Poids propre $Gt=8.03 \ KN/m^2$ Surcharges d'exploitation $Q=2.5 \ KN/m^2$

II.5.Descente de charge :

Afin d'assurer la résistance et la stabilité de l'ouvrage, une distribution de charge et surcharge pour chaque élément s'avère nécessaire.

La descente de charge est le chemin suivi par les différentes actions (charges et surcharges) du niveau le plus haut de la structure jusqu'au niveau le plus bas avant sa transmission au sol. On effectuera la descente de charges pour le poteau le plus sollicité et qui a souvent la plus grande surface afférente.

II.5.1.Loi de dégression :

Étant donné que nous avons plus de 5 niveaux nous appliquant la loi de dégression des charges comme dans notre cas la charge d'exploitation est la même pour tous les étages la loi

de dégression ci-dessus est équivalente à la règle usuelle dans laquelle les charges d'exploitation de chaque étage sont réduites de 10 par étage jusqu' à 0.50Q

Soit Q0 la surcharge d'exploitation sur la terrasse couvrant le bâtiment.

Q1,Q2.....Qn. les charges d'exploitations respectives des planchers des étages 1,2.....n

Pour le dernier étageQ

Pour l'étage immédiatement inférieure......0.8Q

Dans notre cas la descente de charge sera effectuée pour le poteau F2 et E2 (voir la figure)

> Poteau E2

• Calcul des surfaces afférentes

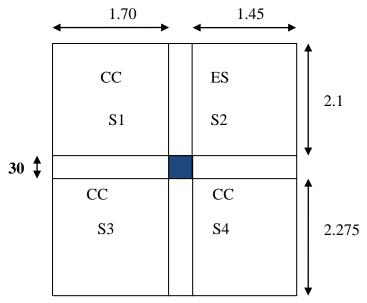


Figure II.13.Surface afférente du poteau E2

a) Local machine:

$$S=S4$$

 $S=(1.45 \times 2.275) = 3.29 \text{m}^2$

b) Terrasse inaccessible:

$$S = S1 + S2 + S3 + S4$$

$$S = (1.7 \times 2.1) + (1.45 \times 2.1) + (1.7 \times 2.275) + (1.45 \times 2.275)$$

$$S = 13.78 \text{m}^2$$

c) Escalier:

On a:

$$L_0$$
 = 210cm; α = 32.51°

Tag
$$\alpha = \frac{H}{L_0} = \frac{H}{210} = 0.63 \Rightarrow H = 133 \text{cm}$$

$$L = \sqrt{133^2 + 210^2}$$

$$L= 248.5cm = 2.485m$$

$$S = 2.48 \times 1.45 = 3.59 \text{m}^2$$

d) étage courant :

$$S = S1 + S3 + S4$$

$$Scc = (1.45 \times 2.275) + (1.7 \times 2.275) + (1.7 \times 2.1)$$

$$Scc=10.73m^{2}$$

- Evaluation des sur charges « Q » pour le poteau d'escalier E2 :
- Surcharge sur terrasse

$$Q_t = q_t \times S_{ttotale}$$

- Surcharge sur escalier

$$Q_{esc} = q_{esc} \times S_{esc}$$

-Surcharge sur les étages courants

$$Q_i = (q_i \times S_{cc}) + Q_{esc}$$

Les résultats de calcul des surcharges « Q » sont résumés dans le tableau suivant :

Tableau II.7. Evaluation des surcharges « Q » pour le poteau E2 :

désignation	q (KN/m2)	S (m2)	Q(KN)
Local machine	1	3.29	3.29
terrasse inaccessible	1	13.76	13.76
escalier	2.5	3.59	8.97
étage courant	1.5	10.72	25.05

• Calcul des poids propre :

- local machine

$$G=5.75 \times 3.29 = 18.91 \text{ KN}$$

-Terrasse inaccessible

$$G = 5.75 \times 13.78 = 79.23 \text{ KN}$$

-Escalier

$$G = 8.83 \times 3.59 = 31.69 \text{ KN}$$

- étage courant (habitation)

$$G = Gcc + Gesc$$

$$Gcc = 10.73 \times 5.33 = 57.19 \text{ KN}$$

$$G = 57.19 + 31.69 = 88.88 \text{ KN}$$

-Poutre principale

$$Gpp = 25 \times 0.3 \times 0.4 \times (2.10 + 2.275) = 13.125KN$$

- poutre secondaire

$$Gps = 25 \times 0.3 \times 0.3 \times (1.70 + 1.45) = 7.08KN$$

- Poteau
 - ➤ Pour le RDC

$$G=0.5 \times 0.5 \times 25 \times 3.06 = 19.125 \text{ KN}$$

➤ Pour le 1er et

$$G = 0.5 \times 0.5 \times 25 \times 3.06 = 19.125 \text{ KN}$$

➤ Pour le 2^{ème} et 3^{éme} étages :

$$G=0.45 \times 0.45 \times 25 \times 3.06 = 15.49 \text{ KN}$$

➤ Pour 4^{éme} et 5^{éme} étages :

$$G=0.4 \times 0.4 \times 25 \times 3.06 = 12.24 \ KN$$

➤ Pour 6^{éme}, 7^{ème} étages et local machine

$$G = 0.35 \times 0.35 \times 25 \times 3.06 = 9.37 \text{ KN}$$

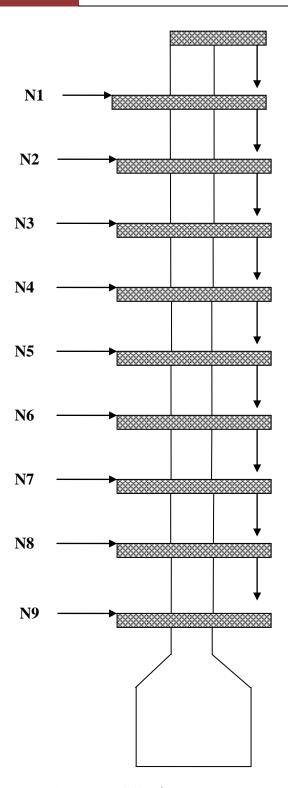


Figure II.14.Schéma de la descente de charges

• Application de la loi de dégression dans le poteau E2 :

Niv 01 : Q0 = 3.29 KN

Niv 02 :Q1=Q0+13.78=17.07KN

Niv 03 :Q2=Q1+0.9×25.05=39.615KN

Chapitre II

Niv 04 :Q3=Q2+0.8×25.05=59.655N

Niv 05 :Q4=Q3+0.7×25.05=77.19KN

Niv 06 :Q5=Q4+0.6×25.05=92.22KN

Niv 07: $Q6=Q5+0.5\times25.05=104.745KN$

Niv 08: Q7=Q6+0.5 \times 25.05=117.27KN

Niv 09: Q8=Q7+12.525=129.795KN

Tableau récapitulatif de la descente de charge dans le poteau E2 :

Tableau II.8. Calcul de la descente de charge du poteau E2 :

	désignation	G (KN)
N1	Dlanchar (local machina)	19.01
NI	Plancher (local machine)	18.91
	Poids des Poutres P	6.825
	$(2.275 \times 0.3 \times 0.4 \times 25)$	2.26
	Poids des Poutres S	3.26
	$(1.45 \times 0.3 \times 0.3 \times 25)$	
	Poids du Poteau	9.37
	Poids de l'Clotaire	8.892
	$G = (2.0561 \times 4.325)$	
	Total	47.257
N2	Venant de N1	47.257
	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	9.37
	Total	165.712
N3	Venant de N2	165.712
	Poids du plancher étage courant	88.88
	Poids des poutres p	13.125
	Poids des poutres s	7.08
	Poids du poteau	9.37
	_	
	Total	284.167

N4	Venant de N3	284.167
	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	12.24
	Total	405.492
N5	Venant de N4	405.492
	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	12.24
	TOTAL	526.817
N6	Venant de N5	526.817
	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	15.49
	TOTAL	651.392
N7	Venant de N6	651.392
	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	15.49
	TOTAL	775.967
N8	Venant de N7	775.967
	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	19.12
	TOTAL	907.172
	Venant de N8	907.172
N9	Poids du Plancher étage courant	88.88
	Poids des Poutres p	13.125
	Poids des Poutres s	7.08
	Poids du Poteau	19.12
	TOTAL	1035.377
	1	

A la base du poteau « E2»:

G base=1035.377 KN

Q base = 129.795 KN

> pour le poteau F2

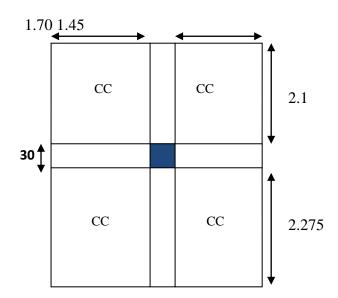


Figure II.15.Surface afférente du poteau F2

Après avoir effectué les mêmes étapes de calcul que le poteau E2, on a obtenu les résultats suivants :

G= 873.83 KN et Q= 116.90 KN

Les calculs montrent que le poteau « E2» de la cage d'escalier est le plus sollicité sous charges verticales.

G = 1035.377 KNQ = 129.795 KN

• Calcul de l'effort normal ultime Nu :

Nu est calculé comme suit: Nu = 1.35 G + 1.5 Q

Tableau II.9.L'effort normal ultime « Nu » dans chaque niveau :

Niveau	G (KN)	Q (KN)	N _u (KN)
N1	47.257	3.29	68.731
N2	165.712	17.07	249.316
N3	284.167	39615	443.047
N4	405.492	59.615	636.836
N5	526.817	77.19	826.987
N6	651.392	92.22	1017.709

N7	775.967	104.745	1204.672
N8	907.172	117.27	1400.587
N9	1035.77	129.795	1592.982

II.5.2. Vérifications :

Les poteaux sont pré dimensionnés selon trois critères :

- Le critère de résistance.
- Le critère de stabilité de forme.
- Les règles du RPA99/2003.

> L'effort normal ultime à la base :

$$N_u = 1.35G + 1.5Q = 1.35(1049.027) \times 1.5 (129.885) = 1611.013 \text{ KN}$$

Pour les poteaux intermédiaires Selon le **CBA93** (article B.8.11) on doit majorer l'effort de compression ultime Nu à 10%, telle que : Nu=1.1 (1.35G+1.5Q)

L'effort normal maximum Nu= 1592.982 KN

Donc:
$$N_u$$
=1.1×1592.982 =1752.280 KN

Vérification à la résistance (compression simple) du poteau le plus sollicité:

On doit vérifier la condition suivante :

$$\sigma_{bc} = \frac{N_u}{B} \le \overline{\sigma_{bc}}$$

$$\overline{\sigma_{bc}} = \frac{0.85 \times f_{c28}}{1.5} = 14.2MPa$$
Avec:

B: section du béton.

$$B \ge \frac{N}{\sigma_{hc}} \Rightarrow B \ge \frac{1752.280 \times 10^{-3}}{14.2} \Rightarrow B \ge 0.123m^2$$

Ce tableau résume les vérifications à la compression à tous les niveaux :

Tableau II.10. Vérification de la résistance (compression simple) :

Niveau	N _U (MN)	B (m ²)	$\sigma_{\rm bc}({ m MPa})$	$\sigma_{\mathbf{bc}} \leq \sigma_{\mathbf{bc}}$
RDC et1 ^{er} etage	1752.280×10 ⁻³	2500×10 ⁻⁴	7.009	Vérifiée
2 ^{éme} et 3 ^{éme} étage	1325.139×10 ⁻³	2025×10 ⁻⁴	6.543	Vérifiée
4 ^{éme} et 5 ^{éme} étage	909.685×10 ⁻³	1600×10 ⁻⁴	5.685	Vérifiée

Chapitre II

Pré dimensionnement des éléments

6 ^{éme} et 7 ^{éme} étage Local machine	487.351×10 ⁻³	1225×10 ⁻⁴	3.978	Vérifiée

> Vérification des conditions du RPA :

$$\begin{aligned} & \min (b_1, h_1) \geq 25 cm. & (1) \\ & \min (b_1, h_1) \geq h_e / 2. & (2) \\ & 1/4 \leq h_1/b_1 \leq 4. & (3) \end{aligned}$$

Les trois conditions sont vérifiées pour les différentes sections des poteaux.

> Vérification au flambement

D'après le (BAEL91 art B.8.4, 1), on doit vérifier que l'effort normal ultime

$$\operatorname{Nu} \leq \overline{\operatorname{Nu}} = \alpha \times \left[\frac{\operatorname{Br} \times \operatorname{fc}_{28}}{0.9 \times \gamma_b} + \frac{\operatorname{As} \times \operatorname{fe}}{\gamma_s} \right]$$

 α : Coefficient tenant compte de l'élancement.

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2}$$
Pour $\lambda \le 50$

$$\alpha = 0.6 \left(\frac{\lambda}{50}\right)^2 \text{ Pour } 50 < \lambda \le 70$$

 γ_b : Coefficient de sécurité du béton =1.5

 γ_s : Coefficient de sécurité de l'acier =1.15

$$\lambda = \frac{l_f}{i}$$

Avec l_f : la longueur de flambement.

$$l_f = 0.7 \times l_0$$
; i : Rayon de giration $i = \sqrt{\frac{I}{B}} I = \frac{b \times h^3}{12}$

 $As \ge 0.8\% \times Br$. On prend $As = 1\% \times Br$.

$$B_{rcal} \ge \frac{Nu}{\alpha \left[\frac{f_{c28}}{0.9 \times \gamma_b} + \frac{fe}{100 \times \gamma_s} \right]} \mathbf{BAEL91} (7-4-2)$$

Br = $(a-2) \times (b-2)$;

Il faut vérifier que : $Br \ge B_{rcal}$

Ce tableau résume les vérifications au flambement :

Tableau II.11. Vérification au flambement :

Type de	В	l ₀	l _f (cm)	λ	α	$\mathbf{B_r}$	N _u (MN)	$\mathbf{B}_{\mathrm{real}}$
poteau	(cm ²)	(cm)				(cm ²⁾		(cm ²)
50×50	2500	408	285.6	19.79	0.798	2304	1752.280×10 ⁻³	1009.56
45×45	2025	306	214.2	16.48	0.813	1849	1325.139×10 ⁻³	741.01
40×40	1600	306	214.2	18.55	0.804	1444	909.685×10 ⁻³	514.388
35×35	1225	306	214.2	21.20	0.791	1089	487.351×10 ⁻³	280.105

D'après le tableau précédent on voie bien que le critère de stabilité de forme est vérifié pour tous les poteaux.

> Pré vérification de l'effort normal réduit :

Selon le RPA (article.7.1.3.3) il faut vérifier :

$$v = \frac{N_d}{B \times f_{c28}} \le 0.3$$

Ce tableau résume les vérifications de l'effort normal réduit

Tableau II.12.Pré vérification de l'effort normal réduit :

Niveau	Type de	B (m ²)	$N_u(MN)$	v	Observation
	poteau				
RDC et 1 ^{er} étage	50×50	2500×10 ⁻⁴	1752.280×10 ⁻³	0.28	Vérifiée
2 ^{éme} et 3 ^{éme} étage	45×45	2025×10 ⁻⁴	1325.139×10 ⁻³	0.26	Vérifiée
4 ^{éme} et 5 ^{éme} étage	40×40	1600×10 ⁻⁴	909.685×10 ⁻³	0.22	Vérifiée
6 ^{éme} et 7 ^{éme} et le dernier	35×35	1225×10 ⁻⁴	487.351×10 ⁻³	0.16	Vérifiée
poteau de local machine					

II.6.Conclusion:

Le pré dimensionnement se fait dans le but d'avoir une estimation des dimensions des éléments structuraux et non structuraux tout en satisfaisant les exigences des différents règlements en vigueur.

Ainsi ; nous avons procédé au pré dimensionnement des poutres en satisfaisant le critère de flèche données par le BAEL 91. Ainsi que les minimums RPA. Les dimensions des poutres ont alors été fixées à :

- * Poutres principales : $(h \times b) = (40 \times 30) \text{ cm}^2$
- * Poutres secondaires : $(h \times b) = (30 \times 30) \text{ cm}^2$

le pré dimensionnement des poteaux se fait à la compression centrée selon les règles du BAEL91 (art B.8.4, 1). Une fois la résistance à la compression vérifiée ; ces poteaux doivent répondre au critère de stabilité de forme exigé par le RPA. Les dimensions des poteaux ont alors été fixées à :

- * Poteaux du RDC et 1^{er} étage : $(h \times b) = (50 \times 50)$ cm²
- * Poteaux des étages 2 et 3 : $(h \times b) = (45 \times 45) \text{ cm}^2$
- * Poteaux des étages 4 et 5 : $(h \times b) = (40 \times 40) \text{ cm}^2$
- * Poteaux des étages 6 et 7 et local machine: $(h \times b) = (35 \times 35) \text{ cm}^2$

Calcul des éléments secondaires

III.1.Introduction:

Les éléments secondaires sont les éléments n'ayant pas de fonction porteuse ou de qui contreventement, leur calcul se fait généralement sous des actions permanentes et surcharges d'exploitations, cependant ils doivent répondre aux dispositions constructives de la réglementation parasismique. Nous citrons les escaliers, les planchers, l'acrotère

III.2.Calcul des planchersà corps creux

Pour les planchers à corps creux le calcule se fait pour les poutrelles et la dalle de compression.

III.2.1.Les poutrelles

Les poutrelles sont calculées en flexion simple, comme des poutres sur plusieurs appuis sous charges permanentes (G) et surcharges d'exploitation (Q), on utilisant l'une des méthodes suivantes :

- Méthode forfaitaire.
- Méthode de Caquot.
- Méthode de la RDM.

• Les différents types de poutrelles

Tableau III.1.Différents types de poutrelles:

types	Schéma statique
	Plancher terrasse inaccessible (local machine)
Type 01	3.20m
	Plancher étage courant et terrasse inaccessible
Type 02	3.1m 3.2m 3.7m
Type 03	3.1m 3.2m 3.7m 3.2m 3.7m 3.1m

• Calcul des charges revenant aux poutrelles :

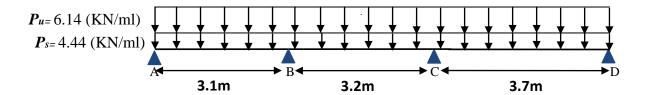
A l'ELU : $q_u = 1.35 \times G + 1.5 \times Q$ et $p_u = b \times q_u$

A l'ELS: $q_s = G + Q$ et $p_s = b \times q_s$

Avec:

b : largeur de la table d'entre-axes des poutrelles.

pu : c'est la charge reprise par une poutrelle à l'état limite ultime.


ps : c'est la charge reprise par une poutrelle à l'état limite de service.

• Combinaisons d'actions et calculs des charges :

Tableau III.2. Combinaisons d'action :

Désignation	G	Q	b	EI	LU	El	LS
	(KN/m^2)	(KN/m ²)	(m)	qu	Pu	qs	Ps
				(KN/m ₂)	(KN/ml)	(KN/m ₂)	(KN/ml)
Terrasse	5.75	1.0	0.65	9.26	6.02	6.75	4.39
inaccessible							
Plancher (RDC) et Etage courant	5.33	1.5	0.65	9.44	6.14	6.83	4.44

- Calcul des sollicitations dans les poutrelles :
- a) Plancher étage courant et (RDC) :
- > 2^{éme} type : poutrelle surquatre appuis

• Méthode Forfaitaire (Annexe E.1 du BAEL 91)

-Domaine d'application (B.6.210)

On utilisant la méthodeforfaitaire Pour déterminer lessollicitations (max) si les quatre conditions suivant sont vérifiées :

- Plancher à surcharge modérée (Q ≤Min (2G, 5(KN/m²)).
- Le rapport entre deux travées successives : 0.8 ≤li/li+1≤1.25.
- Le moment d'inertie constant sur toutes les travées.
- fissuration peu nuisible (F.P.N).
- Vérification des conditions d'application de la méthode forfaitaire :

$$Q \leq Min (2 \times 5.33, 5(KN/m^2)) = 5(KN/m^2)....vérifiée.$$

$$\text{Li / li+1} = 3.1/3.2 = 1.24 \text{ et } 3.2/3.7 = 0.86 \text{ comprisentre } 0.8 \text{ et } 1.25 \dots \text{vérifiée.}$$

Toutes les conditions sont vérifier donc on applique la méthode forfaitaire.

Calcul des moments isostatique :

* A l'ELU:

 M_0 : Moment isostatique :

$$M_0 = \frac{p_u l^2}{8}$$

Travée A-B:
$$M_0 = \frac{6.14 \times (3.1)^2}{8} = 7.37 \, KN.m$$

Travée B-C:
$$M_0 = \frac{6.14 \times (3.2)^2}{8} = 7.85 KN.m$$

Travée C-D:
$$M_0 = \frac{6.14 \times (3.7)^2}{8} = 10.50 \text{ KN.m}$$

❖ À l'ELS:

Travée A-B:
$$M_0 = \frac{4.44 \times (3.1)^2}{8} = 5.33 KN.m$$

Travée B-C:
$$M_0 = \frac{4.44 \times (3.2)^2}{8} = 5.68 KN.m$$

Travée C-D:
$$M_0 = \frac{4.44 \times (3.7)^2}{8} = 7.59 \text{ KN.m}$$

Travée	M ₀ (ELU) (KN.m)	M ₀ (ELS) (KN.m)
A-B	7.37	5.28
В-С	7.85	5.68
C-D	10.50	7.59

Tableau III.3.Les moments isostatiques max en travées :

• Calcule des moments en travées et en appuis :

Les valeurs des moments en travée Mt et aux appuis Mg et M_d doivent vérifier

$$a. Mt + (Md + Mg) / 2 \ge Max (1.05M_0, (1+0.3\alpha)M_0)$$

b. $Mt \ge (1+0.3\alpha) M_0/2$ dans une travée intermédiaire.

 $Mt \ge (1.2+0.3\alpha)M_0/2$ dans une travée de rive.

- c. La valeur absolue de chaque moment sur appui intermédiaire doit être au moins égale à :
 - ✓ $0.6M_0$ pour une poutre à deux travées.
 - √ 0.5M₀ pour les appuis voisins des appuis de rive d'une poutre à plus de deux travées.
 - ✓ 0.4M₀ pour les autres appuis intermédiaires d'une poutre à plus de trois travées.

Moments aux appuis :

$$M_A=M_D=0$$

Sur les appuis de rive, le moment est nul, mais il faut toujours mettre des aciers de fissuration équilibrant un moment égal à $-0.15 \times M_0$

❖ À l'LEU:

$$M_A = M_D = -0.15x \ 10.50 = -1.57 KNm$$

$$M_B = -0.5 \times \max(M_0^{AB}, M_0^{BC}) = -0.5 \times \max(7.37, 7.85) = -3.92 \text{KNm}$$

$$M_C = -0.5 \times \max(M_0^{BC}, M_0^{CD}) = -0.5 \times \max(7.85;10.5) = -5.25 KNm$$

❖ À l'LES:

$$M_A = M_D = -0.15x7.59 = -1.13KNm$$

$$M_B = -0.5 \times \max(M_0^{AB}, M_0^{BC}) = -0.5 \times \max(5.33; 5.68) = -2.84 \text{KNm}$$

$$M_C = -0.5 \times \max(M_0^{BC}, M_0^{CD}) = -0.5 \times \max(5.68; 7.59) = -3.79 \text{KNm}$$

• Les moments fléchissant en travées :

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+5.33} = 0.21$$

$$(1+0.3 \alpha)=1+0.3\times0.21=1.06$$

$$\frac{1.2 + 0.3 \times \alpha}{2} = \frac{1.2 + 0.3 \times 0.21}{2} = 0.63$$

* A l'ELU:

-Travée AB:

$$M_t + \frac{0+3.92}{2} \ge \max(1.05(7.37); 1.06(7.37)) \dots (1)$$

$$M_t \ge \frac{1.2 + 0.3 \times 0.21}{2} \times 7.37 \dots$$
 (2)

$$M_t \ge 5.85 \text{KN.m}$$
....(1)

$$M_{t} \ge 4.64 KN.m \tag{2}$$

$$M_t = \max(M_t(1), M_t(2)) = \max(5.85; 4.66) KN.m$$

$$M_{t} = 5.85 KN.m$$

-Travée BC:

$$M_t + \frac{3.92 + 5.25}{2} \ge \max(1.05(7.85); 1.06(7.85)) \dots (1)$$

$$M_t \ge \frac{1 + 0.3 \times 0.21}{2} \times 7.85 \dots (2)$$

$$M_t \ge 3.73 KN.m$$
 (1)

$$M_t \ge 4.16KN.m \tag{2}$$

$$M_t = \max(M_t(1), M_t(2)) = \max(3.73; 4.16) KN.m$$

$$M_{t} = 4.16 KN.m$$

-Travée CD:

$$M_t + \frac{5.25 + 0}{2} \ge \max(1.05(10.5); 1.06(10.5)) \dots (1)$$

$$M_t \ge \frac{1.2 + 0.3 \times 0.21}{2} \times 10.5 \dots (2)$$

$$M_{t} \ge 8.50 \text{KN.m}$$
(1)

$$M_t \ge 6.61 \text{KN.m}$$
(2)

$$M_t = \max(M_t(1), M_t(2)) = \max(8.50, 6.61) KN.m$$

$$M_{t} = 8.50 KN.m$$

• Calcul des efforts tranchants :

Evaluation de l'effort tranchant :

On évalue l'effort tranchant en supposant une discontinuité entre les travées c'est-à-dire l'effort tranchant hyperstatique est confondu avec l'effort tranchant isostatique sauf pour le premier appui Intermédiaire (voisin de rive) où l'on tient compte des moments de continuité en majorant l'effort tranchant isostatique V0 de :

- 15% si c'est une poutre à deux travées.
- − 10% si c'est une poutre à plus de deux travées.

❖ L'effort tranchant isostatique à l'ELU :

On calcul V₀ pour chaque travée :

$$V_0 = \frac{Pu \times l}{2}$$

-Travée AB:

$$V_A = \frac{P_u \times 1}{2} = \frac{6.14 \times 3.1}{2} = 9.51 KN$$

$$V_B = -1.1 \frac{P_u \times 1}{2} = -1.1 \frac{6.14 \times 3.1}{2} = -10.46 KN$$

-Travée BC:

$$V_B = 1.1 \frac{P_u \times l}{2} = 1.1 \frac{6.14 \times 3.2}{2} = 10.80 KN$$

$$V_c = -1.1 \frac{P_u \times 1}{2} = -1.1 \frac{6.14 \times 3.2}{2} = -10.80 KN$$

-Travée CD:

$$V_c = 1.1 \frac{P_u \times 1}{2} = 1.1 \frac{6.14 \times 3.7}{2} = 12.49 KN$$

$$V_D = -\frac{P_u \times 1}{2} = -\frac{6.14 \times 3.7}{2} = -11.35 KN$$

Tableau III.4. Sollicitations à l'ELU des poutrelles (type 2) :

Type de poutrelle	Travée	L (m)	P _u (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 02	AB	3.1	6.14	7.37	0	-3.92	5.85	9.51	-10.46
	BC	3.2	6.14	7.85	-3.92	-5.25	4.16	10.80	-10.80
	CD	3.7	6.14	10.50	-5.25	0	8.50	12.49	-11.35

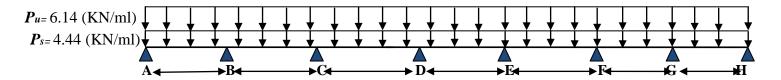
• Récapitulation des sollicitations maximales à l'ELU de la poutrelle type 2 :

-Moment maximal en travée : 8.50 KN.m

-Moment maximal en appui intermédiaire : -5.25 KN.m

-Moment maximale en appui de rive : -1.57 KN.m

-L'effort tranchant maximal : 12.49 KN


Remarque : le calcul des moments fléchissant en travées et des efforts tranchants à l'ELS

Sefait-en suivant la même procédure définie précédemment pour le calcul à l'ELU

Tableau III.5. Sollicitations à l'ELS des poutrelles (type 2) :

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 02	AB	3.1	4.44	5.33	0	-2.84	4.17	6.88	-7.57
	BC	3.2	4.44	5.68	-2.84	-3.79	3.01	7.81	-7.81
	CD	3.7	4.44	7.59	-3.79	0	6.15	9.03	-8.21

> 3^{éme} type : poutrelle sur huit appuis :

• Vérification des conditions d'application de la méthode forfaitaire :

$$-Q \le Min (2 \times 5.33, 5(KN/m^2)) = 5(KN/m^2)$$
 vérifiée
-I = constant vérifiée
-Li / li+1 compris entre 0.8 et 1.25 vérifiée

-F.P.N vérifiée

Toutes les conditions sont vérifier donc on applique la méthode forfaitaire

Les résultats des calculs a l'ELU et a l'ELS sont résumes dans les tableaux suivants :

Tableau III.6. Sollicitations à l'ELU des poutrelles (type 3) :

Type de	Travée	L	$\mathbf{P}_{\mathbf{u}}$	\mathbf{M}_0	\mathbf{M}_{g}	$\mathbf{M}_{\mathbf{d}}$	\mathbf{M}_{t}	V_{g}	V_d
poutrelle		(m)	(KN/ m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN)	(KN)
Type 02	AB	3.10	6.14	7.37	0	-3.92	5.85	9.51	-10.46
	ВС	3.20	6.14	7.85	-3.92	-4.2	4.26	10.80	-10.80
	CD	3.70	6.14	10.50	-4.2	-4.2	6.93	12.49	-12.49
	DE	3.20	6.14	7.85	-4.2	-4.2	4.16	10.80	-10.80
	EF	3.70	6.14	10.50	-4.2	-4.2	6.93	12.49	-12.49
	FG	3.20	6.14	7.85	-4.2	-4.2	4.16	10.80	-10.80
	GH	3.10	6.14	7.37	-3.92	0	5.85	10.46	-9.51

• Récapitulation des sollicitations maximales à l'ELU de la poutrelle type 2 :

-Moment maximal en travée : 6.93 KN.m

-Moment maximal en appui intermédiaire : - 4.2 KN.m

-Moment maximale en appui de rive : -1.10 KN.m

-L'effort tranchant maximal : 12.49 KN

Tableau III.7. Sollicitations à l'ELS des poutrelles (type 3) :

Type de	Travée	L	$\mathbf{P}_{\mathbf{s}}$	\mathbf{M}_0	\mathbf{M}_{g}	$\mathbf{M}_{\mathbf{d}}$	\mathbf{M}_{t}	V_{g}	$\mathbf{V}_{\mathbf{d}}$
poutrelle		(m)	(KN/ m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN)	(KN)
Type 02	AB	3.10	4.44	5.33	0	-2.84	4.22	6.88	-7.75
	ВС	3.20	4.44	5.68	-2.84	-3.03	3.08	7.81	-7.81
	CD	3.70	4.44	7.59	-3.03	-3.03	5.01	9.03	-9.03
	DE	3.20	4.44	5.68	-3.03	-3.03	3.01	7.81	-7.81
	EF	3.70	4.44	7.59	-3.03	-3.03	5.01	9.03	-9.03
	FG	3.20	4.44	5.68	-3.03	-2.84	3.08	7.81	-7.81
	GH	3.10	4.44	5.33	-2.84	0	4.22	7.75	-6.88

B) Plancher terrasse inaccessible:

> 1er type : poutrelle sur deux appuis (local machine) :

-Vérification des conditions d'application de la méthode forfaitaire :

Toutes les conditions sont vérifier donc on applique la méthode forfaitaire

Les résultats des calculs a l'ELU et a l'ELS sont résumes dans les tableaux suivants :

Tableau III.8. Sollicitations à l'ELU des poutrelles du local machine (type 1) :

Type de poutrelle	Travée	L (m)	P _u (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 01	AB	3.2	6.02	7.70	0	0	8.	9.63	-9.63

• Récapitulation des sollicitations maximales à l'ELU de la poutrelle type 1:

-Moment maximal en travée : 8 KN.m

-Moment maximale en appui de rive :-1.15 KN.m

-L'effort tranchant maximal : 9.63 KN

Tableau III.9. Sollicitations à l'ELS des poutrelles du local machine (type 1) :

Type de poutrelle	Travée	L (m)	P _s (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 01	AB	3.2	4.39	5.27	0	0	5.53	7.02	7.02

❖ Les résultats des autres types des poutrelles de plancher terrasse inaccessible sont

Représentés dans les tableaux ci-dessous

Tableau III.10.Sollicitations à l'ELU des poutrelles (type 3) :

Type de	Travée	L	P _u	\mathbf{M}_{0}	$\mathbf{M}_{\mathbf{g}}$	M_d	$\mathbf{M_t}$	$\mathbf{V}_{\mathbf{g}}$	$\mathbf{V}_{\mathbf{d}}$
poutrelle		(m)	(KN/ m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN)	(KN)
Type 02	AB	3.10	6.02	7.23	0	-7.70	4.84	9.33	-10.26
	ВС	3.20	6.02	7.70	-7.70	-4.12	4	10.5 9	-10.59
	CD	3.70	6.02	10.30	-4.12	-4.12	6.69	12.25	-12.25
	DE	3.20	6.02	7.70	-4.12	-4.12	4	10.59	-10.59
	EF	3.70	6.02	10.30	-4.12	-4.12	6.69	12.25	-12.25
	FG	3.20	6.02	7.70	-4.12	-7.70	4	10.59	-10.59
	GH	3.10	6.02	7.23	-7.70	0	4.84	10.26	-9.33

• Récapitulation des sollicitations maximales à l'ELU de la poutrelle type 3 :

-Moment maximal en travée : 6.69 KN.m

-Moment maximal en appui intermédiaire : -7.70 KN.m

-Moment maximale en appui de rive : -1.08 KN.m

-L'effort tranchant maximal: 12.25 KN

Type de poutrelle	Travée	L	\mathbf{P}_{s}	\mathbf{M}_0	\mathbf{M}_{g}	$\mathbf{M}_{\mathbf{d}}$	\mathbf{M}_{t}	\mathbf{V}_{g}	V _d
-		(m)	(KN/ m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN)	(KN)
Type 02	AB	3.10	4.39	5.27	0	-2.80	4.13	6.80	-7.48
	ВС	3.20	4.39	5.61	-2.80	3	2.99	7.72	-7.72
	CD	3.70	4.39	7.51	3	3	4.88	8.93	-8.93
	DE	3.20	4.39	5.61	3	3	2.91	7.72	-7.72
	EF	3.70	4.39	7.51	3	3	4.88	8.93	-8.93
	FG	3.20	4.39	5.61	3	-2.80	2.99	7.72	-7.72
	GH	3.10	4.39	5.27	-2.80	0	4.13	7.48	-6.80

Tableau III.11.Sollicitations à l'ELS des poutrelles(type 3) :

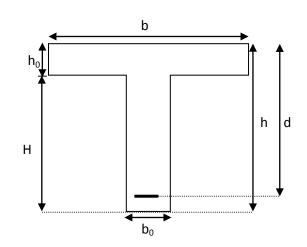
• Ferraillage des poutrelles:

***** Exemple de calcule du ferraillage

Poutrelle du plancher étage courant et RDC

Les Caractéristiques géométriques de la poutrelle sont :

b = 65cm


 $h_0 = 4cm$

h = 20cm

H = 16cm

 $b_0 = 10cm$

d = 18cm

Les sollicitations maximales

$$M_{t}=8.5KN.m$$

$$M_{a}^{int}=-5.25KN.m$$

$$M_{a}^{riv}=-1.57KN.m$$

$$V=12.49 KN$$

a) En travée:

Le calcul se fera pour une section en T soumise à la flexion simple.

$$M_{tu} = f_{bu} \times b \times h_0 \ (d - \frac{h_0}{2})$$

✓ Si $M_u \le M_{tu}$ la table n'est pas entièrement comprimée, l'axe neutre est dans la table de Compression. On calcule une section rectangulaire $(b \times h)$.

✓ Si M_u > M_{tu} On calcule une section en T.

$$M_{tu} = f_{bu} \times b \times h_0 (d - \frac{h_0}{2}) = 0.65 \times 0.04 \times 14.2 \times 10^3 \times (0.18 - 0.02)$$

 $M_{tu} = 59.07 KN.m$

 $M_t < M_{tu} \Longrightarrow Le$ calcul sera mené pour une section rectangulaire (b×h)

$$\mu_{bu} = \frac{M^t}{b \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{8.5 \times 10^{-3}}{0.65 \times 0.18^2 \times 14.2} = 0.028 < \mu_l = 0.392 \Rightarrow A' = 0$$

 $\mu_{bu} < 0.186 \Rightarrow \text{Pivot A}$

$$\xi_{st} = 10\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.035$$

 $z = d (1-0.4 \alpha) = 0.18 (1-0.4 \times 0.035) = 0.177 m.$

$$A_t = \frac{Mt}{Z \times f_{st}} = \frac{8.5 \times 10^{-3}}{0.177 \times 348} = 1.37 \text{ cm}^2$$

• Vérification de la condition de non fragilité :

 $A_{min} = (0.23 \times b \times d \times f_{t28})/f_e \le A_{calculer}$. (ArtA.4.2.1 [1]).

 $A_{min} = 0.23 \times 0.65 \times 0.18 \times 2.1/400 = 1.41 \text{ cm}^2$

Donc on ferraille avec A_{min}

On opte pour $2HA10 = 1.57cm^2$

b) aux appuis intermédiaire

La table de compression se trouve dans la zone tendue car le moment est négatif en appuis. Le béton tendu n'intervient pas dans le calcul, donc la section en Té sera calculée comme une section rectangulaire de dimensions $b_0 \times h$.

$$M_u = 5.25 KN.m$$

$$\mu_{bu} = \frac{M_u}{b_0 \times d^2 \times f_{bu}} = \frac{5.25 \times 10^{-3}}{0.10 \times 0.18^2 \times 14.2} = 0.114$$

$$\mu_{bu} = 0.114 < \mu_l = 0.392 \Longrightarrow A' = 0$$

$$\mu_{hu} < 0.186 \Rightarrow \text{Pivot A}$$

$$\xi_{st} = 10\%$$
 $\Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348MPa$

$$\alpha = \frac{1 - \sqrt{1 - 2\mu_{bu}}}{0.8} \Rightarrow \alpha = \frac{1 - \sqrt{1 - 2 \times 0.114}}{0.8} \Rightarrow \alpha = 0.151$$

$$Z=d (1-0.4\alpha) \Rightarrow z=0.18(1-0.4\times0.151)=0.169 m$$

$$A_a^{Interne} = \frac{Mu}{z \times f_{st}}$$

$$A_a^{Interne} = \frac{5.25 \times 10^{-3}}{0.169 \times 348} = 0.892 \, cm^2$$

• Vérification de la condition de non fragilité

$$A_{\min} = \frac{0.23 \times b_0 \times d \times f_{t28}}{f_0} = \frac{0.23 \times 0.10 \times 0.18 \times 2.1}{400} = 0.217 cm^2$$

 $A_S = 0.892cm^2 > A_{Min} = 0.217cm^2 \Rightarrow$ La condition de non fragilité est vérifiée.

Soit: **2HA10 1.57cm**²

c) aux appuis de rive

$$M_a^{riv}$$
=-1.57KN.m

$$\mu_{bu} = \frac{M_u}{b_0 \times d^2 \times f_{bu}} = \frac{1.57 \times 10^{-3}}{0.10 \times 0.18^2 \times 14.2} = 0.034$$

$$\mu_{bu} = 0.034 < \mu_l = 0.392 \Rightarrow A' = 0$$

$$\mu_{bu} < 0.186 \Rightarrow \text{Pivot A}$$

$$\xi_{st} = 10\%$$
 $\Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 348MPa$

$$\alpha = \frac{1-\sqrt{1-2\mu_{bu}}}{0.8} \Rightarrow \alpha = \frac{1-\sqrt{1-2\times0.034}}{0.8} \Rightarrow \alpha = 0.043$$

 $Z=d (1-0.4\alpha) \Rightarrow z=0.18(1-0.4\times0.043)=0.176 m$

$$A_a^{Rive} = \frac{M_{a \text{ max}}^{Rive}}{z \times f_{st}}$$

$$A_a^{Rive} = \frac{1.57 \times 10^{-3}}{0.176 \times 348} = 0,256cm^2$$

• Vérification de la condition de non fragilité

$$A_{\min} = \frac{0.23 \times b_0 \times d \times f_{t28}}{f_e} = \frac{0.23 \times 0.10 \times 0.18 \times 2.1}{400} = 0.217 cm^2$$

 $A_s = 0.256cm^2 > A_{Min} = 0.217cm^2 \Rightarrow$ La condition de non fragilité est vérifiée.

Soit : $1HA8 = 0.51cm^2$

Tableau III.12. Ferraillage longitudinal des poutres du plancher d'étage courant, RDC :

	M _t (KN.m)	$\mu_{ m bu}$	α	Z (m)	A _s (cm ²)	A _{min} (cm ²)	A choisit (cm ²)
En travée	8.5	0.028	0.035	0.177	1.37	1.41	2HA10 1.57
En appui intermédiaire	5.25	0.114	0.151	0.169	0.862	0.21	2HA10 1.57
En appui de rive	1.57	0.034	0.043	0.176	0.256	0.21	1HA8 0.51

❖ Vérifications à ELU:

• Vérification au cisaillement :

On doit vérifier que :

$$\tau_U = \frac{V_U}{b_0 \times d} \le \overline{\tau_u}$$
 (Art A.5.1.2.1.1 [1]).

$$\overline{\tau_u} = \min \left[0.2 \frac{f_{c28}}{\gamma_b} \right] = 3.33 \text{ MPA}$$

Avec:

$$V^{\max} = 12.49KN$$

$$\tau_U = \frac{V_U}{b_0 \times d} = \frac{12.49 \times 10^{-3}}{0.1 \times 0.18} = 0.692 Mpa$$

(Il n'y'a pas de risque de rupture par cisaillement).

***** Ferraillage transversal:

Le diamètre Φ t des armatures transversales est donne par :

 $\Phi t \le \min \{ ht / 35, b0/10, \Phi L \}$

 ΦL : diamètre minimale des armatures longitudinale (ΦL =8mm).

 $\Phi t \le \min \{200/35, 100/10, 8\} = 5.71 \text{mm}$

On adopte à un étrier Φ 6.

Donc la section d'armatures transversales sera : $At=2\Phi 6=0.57$ cm².

• Espacement S_t :

L'espacement des cours successifs d'armatures transversales doit satisfaire les conditions

Suivantes:

1).St \leq min (0.9d, 40cm) \Rightarrow St \leq 16.2cm

2).
$$St \le A_t \frac{0.8 f_e(\sin \alpha + \cos \alpha)}{b_0(\tau_u - 0.3 f_{ti} K)}$$
 (III-9) (Art A.5.1.2.2) [4]

Flexion simple

Fissuration peut nuisible \Rightarrow K=1

Pas de reprise de bétonnage

 α =90° flexion simple, armatures droites

$$St \le A_t \frac{0.8 \times f_e}{b_0 \times (\tau_u - 0.3 \times f_{t28})} \Rightarrow St = 0.57 \times \frac{0.8 \times 400}{10 \times (0.692 - 0.3 \times 2.1)} = 294.19cm$$

 $St \le 294.91cm$

$$3).St \leq \frac{A_t \times f_e}{0.4 \times b_0} \Longrightarrow \quad St \leq \frac{0.57 \times 10^{-4} \times 400}{0.12 \times 0.4} = 0.47m = 47cm$$

St = min(1; 2; 3)

Soit: St = 15cm.

• Vérification de la contrainte de cisaillement à la jonction table –nervure:

On doit vérifier que :
$$\tau_u = \frac{b_1 \times V_u}{0.9 \times d \times b \times h_0} \le \overline{\tau_u}$$
 (ArtA.5.3.2 [1])

(Il n' y'a pas de risque de rupture par cisaillement).

• Vérification des armatures longitudinales aux voisinages des appuis :

-Appuis de rive :

On doit vérifier que : $As \ge 1.15 \times \frac{V_u}{f_e}$ (Art A.5.1.3.1.2 [1]).

$$A_s = 1.57 + 0.51 = 2.08 cm^2$$
.

$$1.15 \times \frac{12.49 \times 10^{-3}}{400} = 0.35 cm^2$$

-Appuis intermédiaire :

On doit vérifier que :

$$A_S \ge \frac{1.15}{f_e} \times \frac{V_u + M_u}{0.9d}$$
 (Art A.5.1.3.2.1 [1]).

$$A_S=1.57+1.57=3.14cm^2$$

$$\frac{1.15}{400} \times \frac{12.49 - 5.25 \times 10^{-3}}{0.9 \times 0.18} = 1.28 \text{ cm}^2$$

• Vérification de la bielle

On doit vérifier que : $V_u \le 0.267 \times a \times b_0 \times f_{c28}$ (Art A.6.1.3 [1]).

Avec:
$$a=0.9 \times d=0.9 \times 18=16.2cm$$

❖ Vérifications à l'ELS

Les vérifications à faire sont :

- Etat limite de compression du béton
- Etat limite d'ouvertures des fissures
- Etat limite de déformation

• Etat limite d'ouverture des fissures:

La fissuration est peu nuisible, donc la vérification n'est pas nécessaire.

• Etat limite de compression du béton :

Vérification des contraintes :

On doit vérifier que :

$$\sigma_{bc} \leq \overline{\sigma_{bc}}$$

$$\frac{-}{\sigma_{bc}} = 0.6 * \text{fc} 28 = 15 \text{ MPA}$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

-en travée :

$$M_t = 6.15 KN.m$$

Position de l'axe neutre (y) :

$$H = b\frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = \frac{b \times h_0^2}{2} - 15A(d - h_0) = \frac{65 \times 4^2}{2} - 15 \times 1.57(18 - 4) = 190.3cm^3$$

H>0 (l'axe neutre passe par la table de compression) ⇒calcule d'une section b*h

Calcul de y

$$\frac{b}{2} \times y^2 + [(A+A') \times 15] \times y - 15 \times [(Ad+A'd')] = 0$$

$$32.5y^2 + 23.55y - 423.9 = 0$$

Âpres résolution de l'équation (1) : y = 3.26cm

Calcul de I

$$I = \frac{b \times y^{3}}{3} + 15A_{sc} (y - d')^{2} + 15A_{st} (d - y)^{2}$$

$$I = 5867.31 cm^4$$

$$\sigma_{bc} = \frac{6.15 \times 10^{-3}}{5867.3 \times 10^{-8}} \times 0.0326 = 3.41 MPA$$

-En appuis intermédiaires :

$$M_a^{int} = 5.25 KN.m$$

Position de l'axe neutre (y) :

$$H = b\frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = \frac{b \times h_0^2}{2} - 15A(d - h_0) = \frac{65 \times 4^2}{2} - 15 \times 1.57(18 - 4) = 190.3cm^3$$

H>0 (l'axe neutre passe par la table de compression) ⇒calcule d'une section b*h Calcul de y

$$\frac{b}{2} \times y^2 + [(A+A') \times 15] \times y - 15 \times [(Ab+Ab')] = 0$$

$$32.5y^2 + 23.55y - 423.9 = 0$$

Âpres résolution de l'équation (1) : y = 3.26cm

Calcul de I

$$I = \frac{b \times y^{3}}{3} + 15A_{sc} (y - d')^{2} + 15A_{st} (d - y)^{2}$$

 $I = 5867.31 \, cm^4$

$$\sigma_{bc} = \frac{3.79 \times 10^{-3}}{5867.3 \times 10^{-8}} \times 0.0326 = 2.10 MPA$$

• Etat limite de déformation

Tout élément fléchit doit être vérifie a la déformation d'après le BAEL91 et CBA93 on passe à la vérification de la flèche si l'une des conditions suivantes n'est pas satisfaite.

$$\checkmark \quad \frac{h}{L} \ge \frac{1}{16}$$

$$\checkmark \quad \frac{h}{L} \ge \frac{M_t}{10 \times M_0}.$$

$$\checkmark \quad \frac{A}{b_0 \times d} \le \frac{4.2}{f_e}$$

$$\frac{h}{L} = \frac{20}{370} = 0.054 < \frac{1}{16} = 0.0625 \Rightarrow$$
 Non vérifié donc on doit faire une vérification de la flèche

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi}$$

 f_{gv} Et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 f_{ji} : Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 f_{vi} : Flèche due à l'ensemble des charges appliquées (G + Q).

Pour les éléments reposant sur deux appuis ou plus (poutre et dalle), la flèche est limitée à : $\frac{l}{500}$

si la portée 1≤5 m.

$$f_{adm} = (\frac{l}{500}) = \frac{370}{500} = 0.74cm$$

Evaluation des flèches

$$f_{ijser} = \frac{M_{jser} \times L^{2}}{10 \times E_{i} \times I_{fij}} \; ; \\ f_{igser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fig}} \; ; \\ f_{vgser} = \frac{M_{gser} \times L^{2}}{10 \times E_{v} \times I_{fvg}} \; ; \\ f_{ipser} = \frac{M_{pser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{ipser} = \frac{M_{gser} \times L^{2}}{10 \times E_{i} \times I_{fip}} \; ; \\ f_{i$$

• Evaluation des moments en travée :

 $q_{jser} = 0.65 \times G'$: La charge permanente qui revient à la poutrelle au moment de la mise en œuvre descloisons.

 $q_{\rm gser} = 0.65 \times G$: La charge permanente qui revient à la poutrelle.

 $q_{\it pser} = 0.65 \times (G+Q)$: La charge permanente et la surcharge d'exploitation.

$$M_{jser} = 0.7 \times \frac{q_j \times L^2}{8}$$
; $M_{gser} = 0.7 \times \frac{q_g \times L^2}{8}$; $M_{pser} = 0.7 \times \frac{q_p \times L^2}{8}$

$$q_{jser} = 0.65 \times 3.85 = 2.502 KN/m$$

$$q_{gser} = 0.65 \times G = 0.65 \times 5.33 = 3.464 KN / m$$

$$q_{pser} = 0.65 \times (G + Q) = 0.65 \times (5.33 + 1.5) = 4.440 KN / m$$

$$M_{jser} = 0.7 \times \frac{2.502 \times 3.7^2}{8} = 2.99 \text{ KN.m}$$

$$M_{gser} = 0.7 \times \frac{3.464 \times 3.7^2}{8} = 4.14 \text{ KN.m}$$

$$M_{pser} = 0.7 \times \frac{4.440 \times 3.7^2}{8} = 5.31 \text{ KN.m}$$

• Propriété de la section :

$$y = 3.26 \text{ cm}$$
; $I = 5867.3 \text{ cm}^4$

$$A_s = 1.57 \text{ cm}^2$$

 $E_i = 11000.\sqrt[3]{f_{c28}} = 32164.2 MPa$. Module de déformation longitudinale instantanée du béton.

 $E_v = \frac{E_i}{3} = 10721.4$ MPa Module de déformation longitudinale différée du béton.

-Calcul de Io

$$I_0 = 16979 \, cm^4$$

$$\rho = \frac{A_s}{b_0.d} = \frac{1.57}{10 \times 18} = 0.008$$

$$\lambda_i = \frac{0.05 \times f_{t28}}{\rho \times (2 + 3 \times \frac{b_0}{h})} \Rightarrow \lambda_i = \frac{0.05 \times 2.1}{0.008 \times (2 + 3 \times \frac{10}{65})} \Rightarrow \lambda_i = 5.33 \,\text{MPA}....\text{déformation instantanée}$$

$$\lambda_{v} = 0.4 \times \lambda_{i} \Rightarrow \lambda_{v} = 2.13 \text{ MPA}...$$
déformation différée

-Contraintes (σ_s)

$$\sigma_{js} = 15 \times \frac{M_{Jser} \times (d-y)}{I} \; ; \; \sigma_{gs} = 15 \times \frac{M_{gser} \times (d-y)}{I} \; ; \; \sigma_{ps} = 15 \times \frac{M_{pser} \times (d-y)}{I}$$

$$\sigma_{js} = 15 \times \frac{2.99 \times (0.18 - 0.0326) \times 10^5}{5867.3} \Rightarrow \sigma_{js} = 112.67 MPa$$

$$\sigma_{gs} = 15 \times \frac{4.14 \times (0.18 - 0.0326) \times 10^5}{5867.3} \Rightarrow \sigma_{gs} = 156MPa$$

$$\sigma_{ps} = 15 \times \frac{5.31 \times (0.18 - 0.0326) \times 10^5}{5867.3} \Rightarrow \sigma_{ps} = 200.09 MPa$$

-Calcul de
$$\mu$$
: $\mu = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_S + f_{t28}}$ Si $\mu \le 0 \Rightarrow \mu = 0$

$$\mu_j = 1 - \frac{1.75 \times 2.1}{4 \times 0.008 \times 112.67 + 2.1} = 0.35$$

$$\mu_g = 1 - \frac{1.75 \times 2.1}{4 \times 0.008 \times 156 + 2.1} = 0.48$$

$$\mu_p = 1 - \frac{1.75 \times 2.1}{4 \times 0.008 \times 200.09 + 2.1} = 0.56$$

-Calcul des inerties fictives (I_f)

$$I_{fij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} \Rightarrow I_{fij} = \frac{1.1 \times 16979}{1 + 5.33 \times 0.35} = 6517.85 \, cm^4$$

$$I_{fig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} \Rightarrow I_{fig} = \frac{1.1 \times 16979}{1 + 5.33 \times 0.48} = 5248.67 \text{ cm}^4$$

$$I_{fvg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g} \Rightarrow I_{fvg} = \frac{1.1 \times 16979}{1 + 2.13 \times 0.48} = 9235.01 cm^4$$

$$I_{fip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} \Rightarrow I_{fip} = \frac{1.1 \times 16979}{1 + 5.33 \times 0.56} = 4687.03 \, cm^4$$

-Evaluation des flèches

$$f_{ijser} = \frac{M_{jser} \times L^2}{10 \times E_i \times I_{fij}} \Rightarrow f_{ijser} = \frac{2.99 \times 3.7^2}{10 \times 32164.2 \times 6517.85} \times 10^7 = 0.19 cm$$

$$f_{igser} = \frac{M_{gser} \times L^2}{10 \times E_i \times I_{fig}} \Rightarrow f_{igser} = \frac{4.14 \times 3.7^2}{10 \times 32164.2 \times 5248.67} \times 10^7 = 0.33 \, cm$$

$$f_{vgser} = \frac{M_{gser} \times L^2}{10 \times E_v \times I_{fvg}} \Rightarrow f_{igser} = \frac{4.14 \times 3.7^2}{10 \times 10721.4 \times 9235.01} \times 10^7 = 0.57cm$$

$$f_{ipser} = \frac{M_{pser} \times L^2}{10 \times E_i \times I_{fip}} \Rightarrow f_{ipser} = \frac{5.31 \times 3.7^2}{10 \times 32164.2 \times 4687.03} \times 10^7 = 0.48 \, cm$$

-La flèche totale Δf

$$\Delta f = f_{gv} + f_{pi} - f_{gi} - f_{ij} = 0.57 + 0.48 - 0.33 - 0.19 = 0.53 \text{cm} \le f_{adm} = 0.74 \text{ cm}$$

La flèche est vérifiée.

Pour le plancher terrasse inaccessible et local machine, onprocède de la même manière pour le calcul du ferraillage à l'ELU et les vérifications à l'ELS. Les résultats sont présentés dans les tableaux suivants :

Tableau III.13.Ferraillage des poutrelles local machine et terrasse inaccessible:

poutre	elles	M _t (KN.m)	μ _{bu}	α	Z (m)	A _s (cm ²)	A _{min} (cm ²)	A choisit (cm ²)
Local machine	En travée	8	0.026	0.032	0.177	1.37	1.41	2HA10 1.57
	En appuis intermédiaire	7.70	0.167	0.229	0.163	1.35	0.21	2HA10 1.57
	En appuis de rive	1.15	0.024	0.030	0.177	0.186	0.21	1HA8 0.51
Terrasse inaccessible	En travée	6.69	0.022	0.027	0.178	1.08	1.41	2HA10 1.57
	En appuis intermédiaire	7.70	0.167	0.229	0.163	1.35	0.21	2HA10 1.57
	En appuis de rive	1.08	0.023	0.029	0.177	0.175	0.21	1HA8 0.51

❖ Vérifications à l'ELU

• Vérification au cisaillement :

On doit vérifier que :

$$\tau_{U} = \frac{V_{U}}{b_{0} \times d} \leq \overline{\tau_{u}}$$

Tableau III.14. Vérification au cisaillement :

plancher	$V_{\scriptscriptstyle U}$ (MN)	$ au_{\scriptscriptstyle U}$ (MPA)	$\overline{\tau_u}$ (MPA)	Observation
Terrasse inaccessible	12.25×10 ⁻³	0.68	3.33	Vérifiée
Local machine	9.63×10 ⁻³	0.53	3.33	Vérifiée

• Vérification de la contrainte de cisaillement à la jonction table –nervure:

On doit vérifier que :

$$\tau_{\scriptscriptstyle u} = \frac{b_{\scriptscriptstyle 1} \times V_{\scriptscriptstyle u}}{0.9 \times d \times b \times h_{\scriptscriptstyle 0}} \leq \overline{\tau_{\scriptscriptstyle u}}$$

Tableau III.15. Vérification de la contrainte de cisaillement à la jonction table –nervure:

plancher	$V_{\scriptscriptstyle U}$ (MN)	$ au_{\scriptscriptstyle U}$ (MPA)	$\overline{ au_{_{u}}}$ (MPA)	Observation
Terrasse inaccessible	12.25×10 ⁻³	0.79	3.33	Vérifiée
Local machine	9.63×10 ⁻³	0.62	3.33	Vérifiée

Vérification des armatures longitudinales aux voisinages des appuis :

-Appuis de rive :

On doit vérifier que :
$$As \ge 1.15 \times \frac{V_u}{f_e}$$
 Or : $A_s = A_{appui} + A_{travée}$

Tableau III.16. Vérification des armatures longitudinales :

plancher	$V_{\scriptscriptstyle U}$ (MN)	As (cm ²)	$1.15 \times \frac{V_u}{f_e}$ (cm^2)	Observation	
Terrasse inaccessible	12.25×10 ⁻³	2.08	0.35	Vérifiée	
Local machine	9.63×10 ⁻³	2.08	0.27	Vérifiée	

-Appuis intermédiaire :

On doit vérifier que :
$$A_S \ge \frac{1.15}{f_e} \times \frac{V_u - M_u}{0.9d}$$
 Or : $A_s = A_{appui} + A_{travée}$

TableauIII.17.Vérification des armatures longitudinales :

plancher	$V_{_U}$ (MN)	As (cm ²)	$\frac{1.15}{f_e} \times \frac{V_u + M_u}{0.9d}$ (cm^2)	Observation
Terrasse inaccessible	12.25×10 ⁻³	3.14	0.80	Vérifiée
Local machine	9.63×10 ⁻³	3.14	1.70	Vérifiée

• Vérification de la bielle

On doit vérifier que : $V_u \le 0.267 \times a \times b_0 \times f_{c28}$

Tableau III.18. Vérification de la bielle :

plancher	$V_{_U}$ (MN)	$0.267 \times a \times b_0 \times f_{c28}$	Observation
Terrasse inaccessible	12.25×10 ⁻³	0.129	Vérifiée
Local machine	9.63×10 ⁻³	0.129	Vérifiée

❖ Vérifications à l'ELS

• Etat limite de compression du béton :

On doit vérifier que : $\sigma_{bc} \leq \overline{\sigma_{bc}}$

Tableau III.19. Vérification de l'état limite de compression du béton :

Plancher		M	Y (cm)	I (cm ⁴)	Obc (MPA)	— <i>Obc</i> (MPA)	Observation
Terrasse inaccessible	en travée	4.88	3.26	5867.3	2.71	15	Vérifiée
	En appuis intermédiaires	3	3.26	5867.3	1.66	15	Vérifiée
Local	en travée	5.53	3.26	5867.3	3.07	15	Vérifiée

machine				

• Etat limite de déformation

Tableau III.20. Evaluation de la flèche :

Plancher	Y	I	Ifji	Ifgi	Ifpi	Ifgv	Δf	fadm
	(cm)	(cm ⁴)	(cm)	(cm)				
Terrasse	3.26	5867.3	7336.6	5982.3	5470.6	10102	0.25	0.64
inaccessible								
Local machine	3.26	5867.3	5995.2	5136.7	4798.3	9091.2	0.48	0.74

Appuis de rive

La flèche est vérifiée pour les deux planchers.

Appuis intermédiaire

• Schéma de ferraillage des poutrelles

Le ferraillage des poutrelles est identique dans tous les étages

Epingle $\Phi 6$ 2T10 $Epingle \Phi 6$ 2T10 $Epingle \Phi 6$

Figure III.1.Schéma de ferraillage des poutrelles

III.2.2.Etude de la dalle de compression

On utilise des ronds lisses de nuance $f_e = 235$ MPa

• Armatures perpendiculaires aux poutrelles :

$$\perp = \frac{4 \times b}{f_o} = \frac{4 \times 0.65}{235} = 1.1 (\frac{cm^2}{ml})$$

• Armatures parallèles aux poutrelles :

$$A_{\parallel}=A_{\perp}/2=0.55cm^2/ml$$

On choisit treillis soudés à mailles carrées de 150mm

 $7TS6/ml=1.98cm^2$ perpendiculaires aux poutrelles $\rightarrow St=15cm \le 20cm$condition vérifiée

7TS6/ml=1.98cm² parallèles aux poutrelles →St=15cm<30cm.....condition vérifiée.

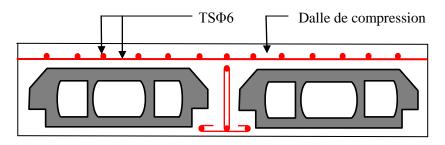


Figure III.2.Schéma de ferraillage de la dalle de compression

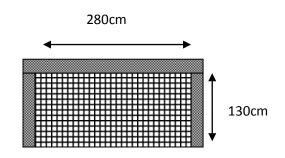

III.3. Etude des dalles dalles pleines :

a) Dalle plein sur trois appuis (balcon)

-Evaluation des charges

Poids propre Gt=5.1 KN/m2

Surcharges d'exploitation Q=3.5 KN/m2


$$Pu = (1.35 \times 5.1 + 1.5 \times 3.5) = 12.13 \text{ KN/m}$$

A L'ELS :
$$P_S = (G+Q)$$

$$Ps = (5.1+3.5) = 8.6 \text{ KN/m}$$

$$L_x = 1.30m$$
 ; $L_y = 2.8m$

 $\rho = 0.46 < 0.4 \Rightarrow$ la dalle travaille dans les deux sens (x-x) et (y-y)

On détermine les moments isostatiques sollicitant comme suit

$$Lx \ge \frac{Ly}{2} \qquad \begin{cases} M_{0y} = \frac{P \times l_y^2}{8} (l_x - \frac{l_y}{2}) + \frac{P \times l_y^3}{48} \\ M_{0x} = \frac{P \times l_y^3}{48} \end{cases}$$

$$Lx \le \frac{Ly}{2} \qquad \begin{cases} M_{0y} = \frac{P \times l_x^3}{6} \\ \\ M_{0x} = \frac{P \times l_x^2 \times l_y}{2} - \frac{2 \times l_x^3 \times pu}{3} \end{cases}$$

On a:
$$1.3 \text{m} < \frac{2.8}{2} = 1.4 \text{ m}$$

$$Lx \le \frac{Ly}{2} \qquad \begin{cases} M_{0y} = \frac{12.13 \times 1.3^{3}}{6} = 4.44 \text{ KN.m} \\ M_{0x} = \frac{12.13 \times 1.3^{2} \times 2.8}{2} - \frac{2 \times 1.3^{3} \times 12.13}{3} = 10.93 \text{ KN.m} \end{cases}$$

• Moment en travée

$$M_x^t = 0.85 \times M_{0x} = 9.29 KN.m$$

$$M_{v}^{t} = 0.85 \times M_{0v} = 3.77 \text{KN.m}$$

• Moment en appuis

$$M_x^a = M_y^a = -0.3 \times M_{0x} = -3.27 \text{ KN.m}$$

• Ferraillage

Le ferraillage se fait à la flexion simple une section ($b \times h$) = (1×0.14)

FN;
$$b = 100cm$$
; $e = 14cm$; $d = 11cm$; $f_{c28} = 25MPA$; $f_{bu} = 14.2MPA$

Le diamètre des barres utilisées doit êtres $\phi \le \frac{e}{10} = \frac{140}{10} \Longrightarrow \phi \le 14mm$

-en travée

> Sens xx

$$\mu_{bu} = 0.054 < \mu_{l} = 0.392 \Rightarrow A' = 0$$

$$\alpha = 0.069$$
; $z = 0.1069$ m

$$A_s = \frac{9.29 \times 10^{-3}}{0.1069 \times 348} = 2.49 \, \text{cm}^2$$

• Condition de non fragilité

$$e > 12cm$$
; $\rho > 0.4$

$$A_{\min} = \rho_0 (3-\rho) b e / 2$$

 $\rho_0 = 0.0008$ pour Fe 400

$$A_{\min} = 0.0008 \times (3-0.46) \times 100 \times 0.14/2 = 1.42 \, cm^2$$

On opte pour 4HA10 avec $A=3.14 \, cm^2/ml$

> Sens yy

$$\mu_{bu} = 0.021 < \mu_l = 0.392 \Longrightarrow A' = 0$$

$$\alpha = 0.026$$
; $z = 0.1088$ m

$$A_s = \frac{3.77 \times 10^{-3}}{0.1088 \times 348} = 0.99 \, cm^2$$

• Condition de non fragilité

$$A_{\min} = \rho_0 \text{ b e} = 0.0008 \times 100 \times 0.14 = 1.12 \text{ cm}^2$$

 $A \le A_{\min}$ donc on ferraille avec A_{\min}

On opte pour 3HA8 avec $A=1.51 cm^2/ml$

-En appuis

> Sens (xx et yy)

$$M_x^a = M_y^a = 3.27 \, KN.m$$

$$\mu_{bu} = 0.019 < \mu_{l} = 0.392 \Rightarrow A' = 0$$

$$\alpha = 0.023$$
; $z = 0.1089$ m

$$A_s = \frac{3.27 \times 10^{-3}}{0.1089 \times 348} = 0.86 \, cm^2$$

• Condition de non fragilité

$$A_{\min} = \rho_0 (3-\rho) b e / 2$$

$$A_{\min} = 0.0008 \times (3-0.46) \times 100 \times 0.14/2 = 1.42 \, cm^2$$

 $A \le A_{\min}$ donc on ferraille avec A_{\min}

On opte pour 3HA8 avec $A=1.51 cm^2/ml$

• Vérification de l'espacement

La Fissuration est nuisible

 $S_t \le min (2e; 25cm)$

 $S_t \le 25cm$

-en travée

Sens x-x: $S_t = (100/4) = 25 \text{cm}$

Sens y-y: $S_t = (100/3) = 33 \text{cm}$.

-En appuis

$$S_t = (100/3) = 33$$
cm.

Les résultats de ferraillage sont récapitulés dans le tableau suivant :

Tableau III.21. Résultats de ferraillage d'une dalle sur trois appuis (balcon):

En travée									
Sens	Mu (KN. m)	μ _{bu}	α	Z(m)	A calculée	A min	A adoptée	St	
					(cm²)	(cm ²)	(cm²/ ml)	(cm)	
X	9.29	0.054	0.069	0.1069	2.49	1.42	4HA10=3.14	25	
Y	3.77	0.021	0.026	0.1088	0.99	1.12	3HA8=1.51	33	
En appui	i								

X et Y	3.27	0.019	0.023	0.1089	0.86	1.42	3HA8=1.51	33

Vérifications

* A l'ELU:

• Vérification à l'effort tranchant :

$$\rho > 0.4$$

Sens x-x

$$\begin{split} V_{u}^{x} &= \frac{P_{u} \times L_{x}}{2} \times \frac{l_{y}^{4}}{l_{x}^{4} + l_{y}^{4}} \\ V_{u}^{x} &= \frac{12.13 \times 1.30}{2} \times \frac{2.80^{4}}{1.3^{4} + 2.80^{4}} = 7.53KN \\ \tau_{u} &= \frac{V_{u}}{b \times d} = \frac{7.53 \times 10^{-3}}{1 \times 0.12} = 0.062MPa \\ \overline{\tau} &= \frac{0.07}{\gamma_{b}} f_{c28} = 1.16MPa \end{split}$$

 $\tau_{\scriptscriptstyle u} = 0.062 \mathrm{MPa} \leq 1,16 \mathrm{MPA} \qquad \qquad \mathrm{condition} \ \mathrm{v\acute{e}rifi\acute{e}e}.$

(Les armatures transversales ne sont pas nécessaires).

Sens y-y

$$V_{u}^{x} = \frac{P_{u} \times L_{y}}{2} \times \frac{l_{x}^{4}}{l_{x}^{4} + l_{y}^{4}}$$

$$V_{u}^{x} = \frac{12.13 \times 2.8}{2} \times \frac{1.3^{4}}{1.3^{4} + 2.80^{4}} = 0.75KN$$

$$\tau_{u} = \frac{V_{u}}{b \times d} = \frac{0.75 \times 10^{-3}}{1 \times 0.12} = 0.0062MPa$$

 $\tau_u = 0.062 \text{MPa} \le 1,16 \text{MPA}$ condition vérifiée.

(Les armatures transversales ne sont pas nécessaires).

* A L'ELS:

$$Ps = 8.6 \, KN/m$$

$$Lx \le \frac{Ly}{2} \begin{cases} M_{0y} = \frac{8.6 \times 1.3^{3}}{6} = 3.14 \text{ KN.m} \\ M_{0x} = \frac{8.6 \times 1.3^{2} \times 2.9}{2} - \frac{2 \times 1.3^{3} \times 8.6}{3} = 7.75 \text{ KN.m} \end{cases}$$

• Calcul des moments réels

- En travées

$$M_x^t = 0.85 \times M_{0x} = 6.58 KN.m$$

$$M_{y}^{t} = 0.85 \times M_{0y} = 2.66 KN.m$$

-Moment en appuis

$$M_x^a = M_y^a = -0.3 \times M_{0x} = -2.32 \text{ KN.m}$$

• La vérification de la contrainte dans le béton

On doit vérifier que : $\sigma_{bc} \leq \sigma_{bc}$

$$\sigma_{bc} = 0.6 * fc28 = 15 \text{ MPA}$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

Tableau III.22. Vérification de la contrainte dans le béton d'une dalle sur trois appuis :

Le sens	M (KN.m)	Y (cm)	I (cm ⁴)	Obc (MPA)	The (MPA)	Observation
Selon x-x	6.58	2.78	3898.63	4.69	15	Vérifiée
Selon y-y	2.66	2.01	2101.26	2.54	15	Vérifiée
Appuis	2.32	2.01	2101.26	2.21	15	Vérifiée

• Vérification de la contrainte dans l'acier

-Sens x-x

On doit vérifier que : $\sigma_s < \overline{\sigma_s}$

$$\overline{\sigma_s} = \min \left[\frac{2}{.3} \times fe ; 110 \sqrt{\eta \times f_{t28}} \right] = 201,63 MPa. \ \eta = 1.6 ; f_{t28} = 0.6 + 0.06 f_{c28}.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) = 208.10 Mpa.$$

On augmente la section de l'acier

Soit :
$$A_S = 5HA10 = 3.93 \, cm^2 / ml$$

Y = 3.05cm; $I = 4671.54cm^4$

$$\sigma_s = 167.96 \text{ MPA} < \overline{\sigma_s} = 201.63 \text{MPA}.$$
 condition vérifiée.

Sens y-y

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) = 170.70 Mpa.$$

• Etat limite de déformation

Vérification de la flèche

La vérification de la flèche est nécessaire c'est l'une des conditions suivantes n'est pas vérifiée.

-Sens x-x

$$\frac{h}{\text{Lx}} > \frac{M_x^t}{20 \times M_{0x}} \Rightarrow 0.10 > 0.04$$
 condition vérifiée.

$$\frac{A}{b \times d} \le \frac{2}{f_e} \Rightarrow 0.0035 < 0.005$$
 condition vérifiée.

Donc la vérification de la flèche n'est pas nécessaire.

-Sens y-y

$$\frac{A}{b \times d} \le \frac{2}{f_e} \Rightarrow 0.0012 < 0.005$$
 condition vérifiée.

Donc la vérification de la flèche n'est pas nécessaire.

• Ferraillage:

$$\begin{cases} A_t^x = 5\text{HA}10/\text{ml} = 3.93\text{cm}^2/\text{ml} & S_t = 20\text{cm.} \\ A_t^y = 3\text{HA}8/\text{ml} = 1.51 \text{ cm}^2/\text{ml } S_t = 33\text{cm.} \\ A_a^x = A_a^y = 3\text{HA}8/\text{ml} = 1.51 \text{ cm}^2/\text{ml } S_t = 33\text{cm.} \end{cases}$$

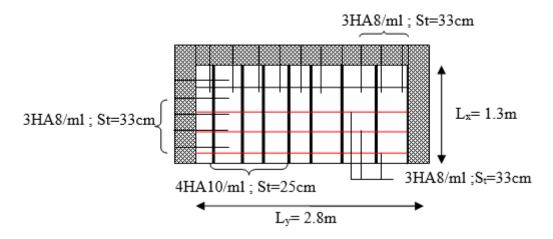
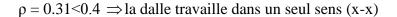


Figure III.3.Schéma de ferraillage de la dalle sur trois appuis (balcon)

b) Dalle plein sur trois appuis (loggia)

Poids propre $Gt=5.1KN/m^2$

Surcharges d'exploitation $Q=3.5 \text{ KN/m}^2$


A L'ELU :
$$Pu = (1,35 G + 1.5 Q)$$

$$Pu = (1.35 \times 5.1 + 1.5 \times 3.5) = 12.13 \text{ KN/m}$$

A L'ELS :
$$P_S = (G+Q)$$

$$Ps = (5.1+3.5) = 8.6 \text{ KN/m}$$

$$L_x = 1.65m$$
 ; $L_y = 5.2m$

On détermine les moments isostatiques sollicitant comme suit

$$1.65 \,\mathrm{m} < \frac{5.2}{2} = 2.6 \,\mathrm{m} \Rightarrow l_x \le \frac{l_y}{2}$$

En suivant la même procédure définie précédemment pour le calcul d'une dalle sur trois appuis ou $L_x \le L_y/2$ on obtient

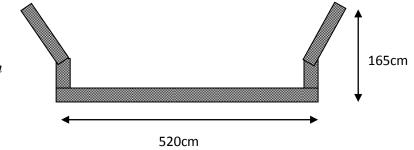


Tableau III.23. Résultats de ferraillage d'une dalle sur trois appuis (loggia) :

	En travée										
Sens	Mu (KN.	μ _{bu}	α	Z(m)	A calculée	A min (cm ²)	A adoptée (cm²/ ml)	St(cm)			
	ŕ				(cm ²)						
X-X	37.16	0.2161	0.308	0.0964	11.07	1.12	10HA12=11.31	10			
Y-Y	7.72	0.0449	0.057	0.1074	2.06	0	5HA8=2.51	20			
				En	appui						
y	14.86	0.0867	0.1135	0.1050	4.07	1.12	6HA10=4.71	16			
X	24.77	0.1445	0.1960	0.1013	7.02	0	9HA10=6.79	10			

Vérifications

❖ A L'ELU:

• Vérification à l'effort tranchant

$$\rho < 0.4$$

$$V_{u}^{x} = \frac{P_{u} \times L_{x}}{2} \times \frac{l_{y}^{4}}{l_{x}^{4} + l_{y}^{4}}$$

$$V_{u}^{x} = \frac{12.13 \times 1.65}{2} \times \frac{5.2^{4}}{1.3^{4} + 5.2^{4}} = 9.96KN$$

$$\tau_{u} = \frac{V_{u}}{b \times d} = \frac{9.96 \times 10^{-3}}{1 \times 0.12} = 0.083MPa$$

$$\bar{\tau} = \frac{0.07}{\gamma_b} f_{c28} = 1.16 MPa$$

 $\tau_{\scriptscriptstyle u} = 0.083 \mathrm{MPa} \leq 1.16 \mathrm{MPA} \qquad \qquad \mathrm{condition} \ \mathrm{v\'erifi\'ee}.$

Chapitre III

❖ A l'ELS:

- La vérification de la contrainte dans le béton
- On doit vérifier que : $\sigma_{bc} \leq \sigma_{bc}$

Tableau III.24. Vérification de la contrainte dans le béton d'une dalle sur trois appuis :

	En travée									
Sens	M (KN.m)	Y (cm)	I (cm ⁴)	Obc (MPA)	Gbc (MPA)	Observation				
X-X	26.34	4.64	10192	11.99	15	vérifiée				
Y-Y	5.47	2.52	3240.86	4.25	15	vérifiée				
			En appui							
X	17.56	3.82	7108.71	9.48	15	vérifiée				
Y	10.5	3.29	5386.76	6.41	15	vérifiée				

• Vérification de la contrainte dans l'acier

-Sens x-x

On doit vérifier que : $\sigma_s < \overline{\sigma_s}$

$$\overline{\sigma_s} = \min \left[\frac{2}{.3} \times fe ; 110 \sqrt{\eta \times f_{t28}} \right] = 201,63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) = 139.55 Mpa.$$

• Etat limite de déformation

Vérification de la flèche

Calcul des éléments secondaires

Donc la vérification de la flèche est nécessaire les résultats obtenus sont récapitulées dans le tableau suivant

Tableau III.25. Vérification de la flèche sens x :

sens	fji (mm)	fgi (mm)	fgv (mm)	fpi (mm)	Δf (mm)	fadm (mm)	Observation
X-X	0.58	0.98	2.02	1.90	2.35	3.3	Vérifiée

• Schéma de ferraillage

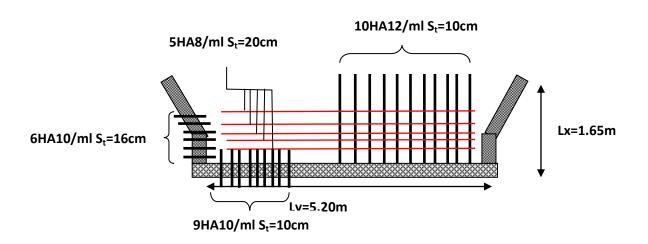


Figure III.4.Schéma de ferraillage de la dalle sur trois appuis (loggia)

c) Dalle sue deux appuis

-Evaluation des charges

Poids propre $Gt=5.1KN/m^2$

Surcharges d'exploitation $Q=3.5 \text{ KN/m}^2$

290cm 100cm

 $Q_g = 1$ KN (la charge concentrée due au poids propre du garde-corps).

$$L_x = 1m$$
 ; $L_y = 2.9m$

 $\rho = 0.34 < 0.4 \Rightarrow$ la dalle travaille dans un seul sens (sens x-x)

• Calcule des sollicitations

A L'ELU :
$$Pu = (1,35 G + 1.5 Q)$$

 $Pu = (1.35 \times 5.1 + 1.5 \times 3.5) = 12.13 \text{ KN/m}$
 $M_U = (12.13 \times 1^2/2) + 1.35 \times 1 = -7.41 \text{ KN.m}$

$$V_U = (12.13 \times 1) + 1.35 = 13.48 \ KN$$

figure. III schéma statique de la dalle du balcon

A L'ELS:
$$P_S = (G+Q)$$

$$Ps = (5.1+3.5) = 8.6 \text{ KN/m}$$

$$M_S = (8.6 \times 1^2/2) + 1.35 = 5.65 \, KN.m$$

• Ferraillage

Le ferraillage se fait à la flexion simple une section ($b \times h$) = (1×0.14)

$$b = 100cm$$
; $e = 14cm$; $d = 11cm$; $f_{c28} = 25MPA$; $f_{bu} = 14.2MPA$

-Sens xx

$$\mu_{bu} = 0.043 < \mu_{l} = 0.392 \Rightarrow A' = 0$$

$$\alpha = 0.054$$
; z = 0.1076m

$$A_s = \frac{7.41 \times 10^{-3}}{0.1076 \times 348} = 1.97 \, cm^2$$

• Condition de non fragilité

$$e > 12cm$$
; $\rho < 0.4$

$$A_{xmin} = \rho_0 \times b \times e$$

$$A_{xmin} = 0.0008 \times 100 \times 14 = 1.12 cm^2$$

On opte pour 3HA10 avec $A = 2.36 \, cm^2 / ml$

• Les armatures de répartition :

 $A_r = (\frac{A_t}{3}) = \frac{2.36}{3} = 0.78 \text{ cm}^2/\text{ml} \Rightarrow \text{ car les charges appliquées comprennent des efforts concentré}$ (cour de béton armé – suivant les règles du BAEL91).

On opte pour 3HA8 avec $A=1.51 cm^2/ml$

- Vérification de l'espacement
- -Sens principal:

 $S_t \le min (2e, 25cm)$

 $S_t \le min(2 \times 14, 25cm)$

 $S_t\!\leq\!25cm$

Soit
$$S_t = \frac{100}{3} = 33cm$$

-Sens secondaire:

 $S_t \le min (3e, 33cm)$

 $S_t \le min(3 \times 14, 33cm)$

 $S_t \leq 33cm$

Soit
$$S_t = \frac{100}{3} = 33cm$$

Les résultats de ferraillage sont récapitules dans le tableau suivant

III.26. Résultats de ferraillage d'une dalle sur deux appuis :

Mu (KN. m)	μ _{bu}	α	Z(m)	A calculée (cm²)	A min (cm²)	A adoptée (cm²/ ml)	A _r (cm ² / ml)
7.41	0.043	0.054	0.1076	1.97	1.12	3HA10=2.36	3HA8=1.51

Vérifications

❖ A l'ELU:

• Vérification à l'effort tranchant

$$\tau_u = \frac{V_u}{b \times d} = \frac{13.48 \times 10^{-3}}{1 \times 0.11} = 0.12 MPa$$

$$\bar{\tau} = \frac{0.07}{\gamma_b} f_{c28} = 1.16 MPa$$

 $\tau_u = 0.12 \text{MPa} \le 1.16 \text{MPA}$ condition vérifiée

Donc les armatures transversales ne sont pas nécessaires

❖ A l'ELS :

• La vérification de la contrainte dans le béton

On doit vérifier que : $\sigma_{bc} \leq \overline{\sigma_{bc}}$

$$\sigma_{bc} = 0.6 * \text{fc} 28 = 15 \text{ MPA}$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

Tableau III.27. Vérification de la contrainte dans le béton d'une dalle sur deux appuis :

Sens	M (KN.m)	Y (cm)	I (cm ⁴)	Obc (MPA)	Obc (MPA)	Observation
Principal	5.65	2.45	3078.03	4.49	15	Vérifiée

• Vérification de la contrainte dans l'acier :

On doit vérifier que : $\sigma_s < \overline{\sigma_s}$

$$\overline{\sigma_s} = \min \left[\frac{2}{.3} \times fe ; 110 \sqrt{\eta \times f_{t28}} \right] = 201,63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y) = 235.41 Mpa.$$

On augmente la section de l'acier

Soit :
$$A_S = 3HA12 = 3.39 \, cm^2 / ml$$

$$Y = 2.87cm$$
; $I = 4149.02cm^4$

• Etat limite de déformation

-Vérification de la flèche

$$\frac{h}{Lx} > \frac{1}{20} \Rightarrow 0.14 > 0.05$$
 condition vérifiée.

$$\frac{A}{b \times d} \le \frac{2}{f_e} \Rightarrow 0.003 < 0.005$$
 condition vérifiée.

La vérification de la flèche n'est pas nécessaire.

$$\begin{cases} A_t^x = 3\text{HA}12 = 3.39 \text{ cm}^2/\text{ml} & \text{S}_t = 33\text{cm} \\ \text{Ferraillage } A_t^y = 3\text{HA}8 = 1.51 \text{ cm}^2/\text{ml} & \text{S}_t = 33\text{cm} \end{cases}$$

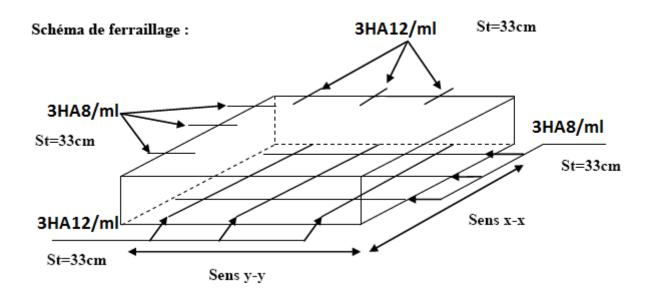


Figure III.5.Schéma de ferraillage de la dalle sur deux appuis

III.4. Etude de L'ascenseur :

III.4.1.Définition:

L'ascenseur est un appareil mécanique, servant au déplacement des personnes vers les différents niveaux. Il se constitue d'une cabine, qui se déplace le long d'une glissière verticale munie d'un dispositif mécanique permettant le déplacement de la cabine.

L'ascenseur qu'on étudie est pour 4 personnes, dont les caractéristiques sont les suivantes :

- > B_s=1,30 m
- $T_s=1.50 \text{ m}$
- \rightarrow H_k=2,20 m
- $ightharpoonup P_M=15KN$
- \triangleright D_M=82 KN
- $F_c=102KN$
- $\mathbf{v} = 1^{m/s}$

Avec: B_s, Ts, H_k sont respectivement la largeur, longueur et la hauteur de la cabine.

F_c : charge accidentelle due à la rupture des câbles de l'ascenseur.

P_M: Charge due à la dalle des machines.

 D_M : charge due à l'ascenseur.

Le poids propre de l'ascenseur est de 630 kg

$$P = P_M + D_M + charge nominale = 15 + 82 + 6.3 = 103.3 \text{ KN}$$

III.4.2. Etude de la dalle pleine de la locale machinerie :

La dalle est appuyée sur quatre appuis donc pour déterminé sont épaisseur on a :

$$\frac{l_x}{50} \le e \le \frac{l_x}{40}$$

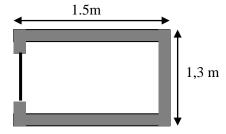


Figure III.6. Cage d'ascenseur.

La dalle reprend une charge importante et le critère de coupe-feu et l'isolation phonique est pré dominant, on prend alors une épaisseur de **h=15 cm**.

On doit calculer la surface d'impact U×V

$$\begin{cases} U = a_0 + h_0 + 2\xi \times h \\ V = b_0 + h_0 + 2\xi \times h \end{cases}$$

$$\begin{cases} a_0, U \to Dimensions // al_x \\ b_0, V \to Dimensions // al_y \end{cases}$$

Avec : $a_0 \times b_0$ surface de charge= (80×80) cm²

h₀: Espacement du revêtement (5cm)

 ϵ : Coefficient qui dépend du type de revêtement (béton armé ϵ =1)

$$\begin{cases} U = 115cm \\ V = 115cm \end{cases}$$

• Evaluation des moments sous charge concentrée :

a) M^{y1} et M^{y1} du système :

M_{x1}, M_{y1} sont les moments dus à la charge concentrée ramenée par la machinerie

Selon le BAEL91:

$$\begin{cases} M_{x1} = (M_1 + \upsilon \times M_2) \times q \\ M_{y1} = (M_2 + \upsilon \times M_1) \times q \end{cases}$$

Avec : V est le coefficient de poisson (ELU=0 ; ELS=0,2)......[ANNEXEI]

M¹ et M² : données par l'abaque de PIGEAUD..... [ANNEXEIII]

$$\alpha = \frac{l_x}{l_y} = 0.86 \quad \frac{U}{l_x} = 0.88 \frac{V}{l_y} 0.76$$

 $D'où: M_1=0,064$

 $M^2 = 0.0724$

$$q^{u} = 1,35 \times P \rightarrow q^{u} = 139.45KN$$

$$M_{x1} = 0.064 \times 139.45 = 8.92 Nm$$

 $M_{y1} = 0.0724 \times 139.45 = 10.10 KNm$

b) M^{x2} et M^{y2} du système :

 M_{x2} , M_{y2} sont dus aux poids propre et la charge d'exploitations d'entretien.

$$\begin{cases} M_{x2} = \mu_x \times q \times l_x^2 \\ M_{y2} = \mu_y \times M_{x2} \end{cases}$$

 ρ =0.86 >0,4 \Longrightarrow la dalle travaille dans les deux sens.

$$\begin{cases} \mu_x = 0.0496 \\ \mu_y = 0.7052 \end{cases}$$
 [Annexe I]

Le poids propre de la dalle et de revêtements (pour un revêtement de 5 cm)

$$G^2 = 25 \times (0.14 + 0.05) = 5KN/m^2$$

$$Q^2 = 1 \text{ KN/m}^2$$
.

$$\Rightarrow q^u = (1, 35 \times 5) + (1, 5 \times 1) = 8.25 \text{ KN/ml}.$$

$$M_{x2} = \mu_x q_u L^2 \implies M_x = 0.0496 \times 8.25 \times 1.3^2 = 0.69 \text{ KN.} m$$

$$M_{v2} = \mu_v M_x \Longrightarrow M_v = 0.7052 \times 0.69 = 0.48 \text{ KN.} m$$

La superposition des moments donne :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 8.92 + 0.69 = 9.61 \text{KN.m} \\ M_y = M_{y1} + M_{y2} = 10.10 + 0.48 = 10.58 \text{KN.m} \end{cases}$$

• Ferraillage:

Le ferraillage se fait pour une longueur unité et une épaisseur de h=15cm.

$$M^{tx} = 0.85 \times M^{x} = 8.16 \text{KN.m}$$

$$M^{ty} = 0.85 \times M^{y} = 9KN.m$$

$$M^{ax} = -0.5 \times M^{x} = -4.08 \text{KN}.$$

Les résultats sont résumés dans le tableau suivant :

Tableau III.28. Ferraillage de la dalle pleine de l'ascenseur :

Sens	M _t (KN.m)	M _a (KN.m)	A ^t calculée (cm ² /ml)	A ^t _{adoptée} (cm ² /ml)	A ^a calculée (cm ² /ml)	A ^a adoptée (cm ² /ml)
X-X	8.16	4.08	1.83	5HA8=2.51	0.90	4T8=2,01
Y-Y	9	4.08	2.02	5HA8=2.51	0.90	4T8=2,01

Vérifications:

• Condition de non fragilité :

$$h > 12 \Rightarrow A_{\min}^x = 0.80 \% \frac{(3-\rho)}{2} \times b \times h$$

$$A_x^{min} = 1.28 \text{ cm}^2 \le A_s = 2.51 \text{ cm}^2$$

$$\rho = 0.86 > 0.4$$

$$e = 15cm$$

$$A_{v}^{\min} = \rho_0 \times b \times e$$

$$\rho_0 = 0.0008...$$
 pour FeE 400

$$A_{v}^{\min} = 0.0008 \times 100 \times 15 = 1.2 cm^{2}$$
.

$$A_v^{\min} \leq A_S$$

• Vérification au poinçonnement :

Aucune armature n'est nécessaire si la charge localisée est éloignée des bords de la dalle, il faut vérifier que :

$$Q_u \le 0.045 \times U_c \times h \times \frac{fc_{28}}{\gamma_h}$$

 Q_u : Charge de calcul à l' ELU

U_c: Périmètre du rectangle d'impact.

$$U_c = 2 \times (U+V) = 2 \times (115+115) = 460$$
cm.

$$q_u = 139.45 \text{KN} \le \frac{0.045 \times 4.60 \times 0.15 \times 25 \times 10^3}{1.5} = 517.5 \text{KN} .$$

• Vérification de l'effort tranchant :

Les efforts tranchants sont max au voisinage de la charge (milieu), U=V

$$V_u = \frac{q_u}{2 \times u} = \frac{139.45}{3 \times 1.15} = 40.42 KN.$$

$$\tau_u = \frac{V_u}{bd} = \frac{40.42 \times 10^{-3}}{1 \times 0.13} = 0.31 MPa \text{ MPa}.$$

$$\tau_u = \frac{V_u}{b d} \prec \tau = 0.05 f_{c28} = 1.25 MPa.$$
 condition vérifiée.

• Espacement des armatures :

Sens xx: $S_t = 25 \text{ cm} \le \min (3 \text{ h}, 33 \text{ cm}) = 33 \text{ cm}; \text{Soit: } St = 20 \text{cm}.$

Sens yy: $S_t = 25 \text{ cm} \le \min(4 \text{ h}, 45 \text{ cm}) = 45 \text{ cm}$; Soit: $S_t = 20 \text{ cm}$.

- **❖** Calcul à l'ELS :
- Moment engendré par le système de levage :

$$Q^{ser} = 103.3 \text{ KN}$$

$$\begin{cases} M_{x1} = (M_1 + \upsilon \times M_2) \times q_{ser} \\ M_{y1} = (M_2 + \upsilon \times M_1) \times q_{esr} \end{cases}$$

$$\Rightarrow \begin{cases} M_{x1} = 8.10 \text{KN.m} \\ M_{y2} = 8.80 \text{KN.m} \end{cases}$$

• Moment dû au poids propre de la dalle :

$$q^{ser} = 5 + 1 = 6 \text{ KN}$$

$$\mu_x = 0.0496$$
KN.m

$$\mu y = 0.7052$$
KN.m

$$M_{x2} = \mu_x q_{ser} L^2_x \Longrightarrow M_x = 0.0496 \times 6 \times 1.3^2 = 0.5 \text{ KN.} m$$

$$M_{y2} = \mu_y M_x \Rightarrow M_y = 0.7052 \times 0.5 = 0.35 \text{ KN.} m$$

• La Superposition des Moments:

$$M^{x} = 8.6KN.m$$

$$M^{y} = 9.15KN.m$$

• Vérification des contraintes dans le béton :

$$M^{tx} = 7.31 \text{KN.m}$$
 $M^{ax} = -4,03 \text{KN.m}$

$$M^{ty} = 7.77 \text{KN.} m$$
 $M^{ay} = -4,03 \text{ KN.} m$

On vérifie $\sigma_{bc} \leq \overline{\sigma}_{bc}$.

$$\sigma_{bc} = \frac{M_{ser}}{I} \times y$$

(On prend $M^t = 7.31 \text{KN.m}$)

Calcul de
$$y : \frac{b \times y^2}{2} + 15(A + A') \times y - 15 \times (d \times A + d' \times A') = 0$$

y = 2.65cm

Calcul de
$$I : I = \frac{b \times y^3}{3} + 15 \times [A \times (d - y)^2 + A \times (y - d')^2]$$

I = 3911.77cm⁴

• Vérification des contraintes dans l'acier:

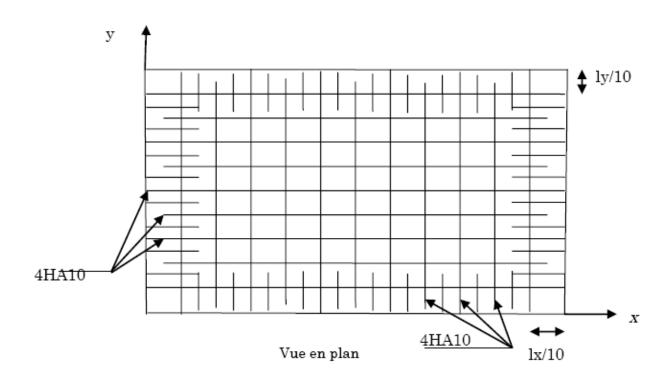
$$\overline{\sigma_s} = \min \left[\frac{2}{.3} \times fe ; 110 \sqrt{\eta \times f_{t28}} \right] = 201,63 MPa. \ \eta = 1.6 ; f_{t28} = 0.6 + 0.06 f_{c28}.$$

$$\sigma_S = \frac{15 \times M_{ser}}{I} \times (d - y) = 290.11 MPa \Rightarrow \sigma_S < \overline{\sigma}_S$$
condition non vérifiée.

On augmente la section d'acier ; on adopte ; $A_{tx} = A_{ty} = 3.93 \text{cm}^2$ (5HA10). Avec $A_a = 3.93 \text{cm}^2$ (5HA10).

Y = 3.21 cm; $I = 5657.26 \text{cm}^4$;

$$\sigma_S = \frac{15 \times M_{ser}}{I} \times (d - y) = 202.85 MPa \Rightarrow \sigma_S < \overline{\sigma}_S$$
condition vérifiée.


• La flèche:

D'après le BAEL91 et CBA93, la vérification à la flèche est inutile si :

$$1.\frac{h_{t}}{l} = \frac{15}{150} = 0.10 > \max\left[\frac{3}{80}; \frac{M_{t}}{20 \times M_{0}}\right] = \max\left[\frac{3}{80}; \frac{8.57}{20 \times 10.08}\right] = 0.042.....$$
 Condition vérifiée.

$$2.\frac{A_s}{b \times d} = \frac{3.39}{100 \times 13} = 0.0026 \le \frac{2}{f_e} = \frac{2}{400}0.005.$$
Condition vérifiée.

• Schéma de ferraillage :

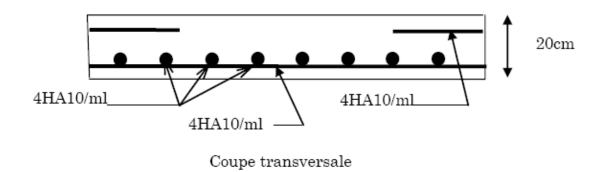


Figure III.7. Schéma de ferraillage de la dalle d'ascenseur

III.5.Etude des escaliers :

III.5.1. Etude de l'escalier type 1 (a 2 volées)

Les escaliers sont calculés à la flexion simple en considérant la section à ferrailler comme une section rectangulaire de largeur 100cm et de hauteur 18cm.

• Escalier E. courant :

Charges et surcharges:

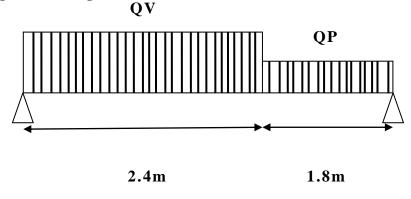


Figure III.8.Schéma statique d'escalier

Pour le Palier : $G = 5.98KN/m^2$

Pour la Volée : $G = 8.83KN/m^2$

 $Q_{escalier} = 2.50 KN / m^2$

• Combinaison de charges :

Pour la volée :

ELU:
$$q_u = q_1 = 1.35G + 1.5Q = 15.6705KN/m$$

ELS:
$$q_s = G + Q = 11.33KN/m$$

Pour le palier :

ELU:
$$q_u = q_2 = 1.35G + 1.5Q = 11.823KN/m$$

ELS:
$$q_s = G + Q = 8.48 KN / m$$

• Calcule des sollicitations :

-Réactions des appuis :

Calcul par la méthode de la RDM

$$\sum F_V = 0 \Rightarrow R_A + R_B = 2.4 \times 15.6705 + 1.8 \times 11.823$$
$$\Rightarrow R_A + R_B = 58.89 \text{KN}$$

$$\sum M /_{B} = 0 \Rightarrow R_{A} = \left[\frac{(1.8)^{2}}{2} 11.823 + 2.4 \left(\frac{(2.4)}{2} + 1.8 \right) 15.67 \right] / 4.2$$

$$\Rightarrow R_{A} = 31.42 \text{ KN}$$

$$\sum M /_{A} = 0 \Rightarrow R_{B} = \left[\frac{(2.4)^{2}}{2} 15.67 + 1.8 \left(\frac{(1.8)}{2} + 2.4 \right) 11.82 \right] / 4.2$$

$$\Rightarrow R_{B} = 27.46 \text{ KN}$$

$$R_B = 58.88 - 31.42 = 27.46 \text{ KN}$$

• Effort tranchant et moment fléchissant :

Calcul par la méthode des sections :

-Tronçon I:

$$0 \le x \le 2.4$$

$$\begin{cases} T(x) = 31.42 - 15.67x & ; T_{\text{max}} = 31.42 \text{ car } T_0 = 31.42 \text{ et } T_{2.4} = -6.188 \text{ KN} \\ M(x) = 31.42 \ x - 15.67 \ \frac{x^2}{2} & ; M_0 = 0 \text{ ; } M_{2.4} = 30.28 \text{ ; } M_{\text{max}} = 31.5 & \text{KN.} m \end{cases}$$

Car x = 2.005 m

-Tronçon II:

$$0 \le x \le 1.8$$

$$\begin{cases} T(x) = 11.82x - 27.46 \\ M(x) = 27.46x - 11.82 & \frac{(x)^2}{2} \end{cases}$$

$$T1.8 = 6.18$$
; $T0 = -27.46$ kN

$$M1.8 = 30.28$$
; $M0=0$; $KN.m$

$$\frac{dM}{dX} = 0 \Rightarrow T_{(x)} = 0$$

donc: x = 2.32m

$$M_{\text{max}} = 31.9 \text{KN.M}$$

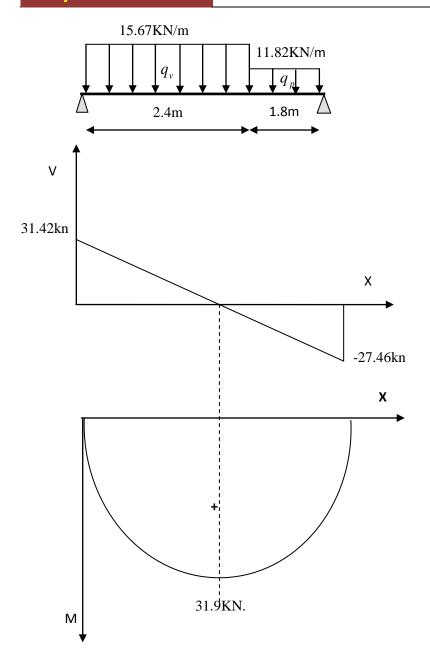
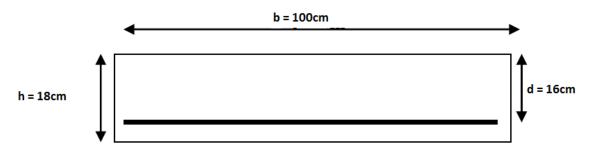


Figure III.9. Diagramme de l'effort tranchant et moment fléchissant

On a:

$$M^{\max} = 31.9 KN.m$$

$$V^{\max} = 31.42KN$$


• Calcul des moments réel :

$$M_t^{\text{max}} = 0.75 \times 31.9 = 23.925 \text{KN.m}$$

$$M_a^{\text{max}} = -0.5 \times 31.9 = -15.95 \text{KN.m}$$

• Ferraillage:

Le calcule se fait à la flexion simple pour une section rectangulaire (b x h)

-En travée :

$$\mu_{bu} = \frac{M_t}{b \times d^2 \times f_{bu}} = \frac{23.92 \times 10^{-3}}{14.2 \times 1 \times 0.16^2} = 0.065$$

$$\mu_{bu}$$
<0.186 \Rightarrow Pivot A

$$\mu_{bu} = 0.065 < \mu_l = 0.392 \Rightarrow A' = 0$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.084$$

$$Z = d[1 - 0.4\alpha] \Rightarrow Z = 0.154m$$

$$A_t = \frac{Mt}{Z \times f_{et}} = \frac{23.92 \times 10^{-3}}{0.154 \times 348} = 4.46 \,\text{cm}^2$$

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times f_{t28} / f_e = 0.23 \times 1 \times 0.16 \times 2.1 / 400 = 1.93 cm^2$$

Donc on ferraille avec A_T

On opte pour 4HA12 avec $A=4.52 cm^2/ml$

-Aux appuis:

$$\mu_{bu} = \frac{M_u}{b_0 \times d^2 \times f_{bu}} = \frac{15.95 \times 10^{-3}}{1 \times 0.16^2 \times 14.2} = 0.043$$

$$\mu_{bu}$$
<0.186 \Rightarrow Pivot A

$$\mu_{bu} = 0.043 < \mu_l = 0.392 \Longrightarrow A' = 0$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu bu}) = 0.054$$

$$Z = d[1 - 0.4\alpha] = 0.156m$$

$$A_a = \frac{M_a}{z \times f_{st}}$$

$$A_a = \frac{15.95 \times 10^{-3}}{0.156 \times 348} = 2.93 cm^2$$

On opte pour : 4HA10 avec A= $3.14 \, cm^2/ml$

• Espacement des barres :

-En Travée:

 $St \le min (3e; 33) cm$

St < 33cm

Soit
$$S_t = \frac{100}{4} = 25cm$$

-En Appuis:

 $St \le min (3e; 33) cm$

 $St \le 33cm$

Soit
$$S_t = \frac{100}{3} = 33cm$$

Vérifications:

❖ À l'ELU:

• Vérification de l'effort tranchant :

$$\overline{\tau_u} = \min \left[0.2 \frac{f_{c28}}{\gamma_b} \right] = 3.33 \text{ MPA}$$

$$\tau_u = \frac{V}{b.d} = \frac{31.42 \times 10^{-3}}{1 \times 0.18} = 0.17 MPa < \overline{\tau}.$$
 condition vérifiée.

• Calcul des armatures de répartition :

-En travée :
$$A_t \ge \frac{A_t}{4} = \frac{4.52}{4} = 1.13 \ cm^2 / ml$$

On opte pour $3HA8/ml = 1.51cm^2/ml$.

-En appuis : Aa
$$\geq \frac{A_a}{4} = \frac{3.39}{4} = 0.84 \ cm^2/ml$$

On opte pour $3HA8/ml = 1.51cm^2/ml$.

• Espacement des armatures de répartition

St
$$\leq$$
 min (4e; 45) cm

-En travée et en appuis

Soit
$$S_t = \frac{100}{3} = 33cm$$

❖ Vérification a L'ELS

Les vérifications à faire sont :

- > Etat limite de compression du béton
- > Etat limite d'ouvertures des fissures
- > Etat limite de déformation
- Etat limite d'ouverture des fissures:

La fissuration est peu nuisible car les escaliers sont à l'abri des intempéries, donc la vérification n'est pas nécessaire

• Vérification de l'état limite de compression du béton :

On doit vérifier que :

$$\sigma_{bc} \leq \overline{\sigma_{bc}}$$

$$\frac{--}{\sigma_{bc}} = 0.6*\text{fc}28 = 15\text{MPA}$$

-En travée :

$$Ra = 22.69KN$$
; $Rb = 19.75KN$; $Mser = 23KN.m$; $X = 2.32m$

$$\sigma_{bc} = \frac{M_{ser.t}}{I} \times y$$
 tel que: $M_{Ser.t} = 0.75 \times 23 = 17.25 KN.m$

$$\frac{b}{2}y^2 + 15 \times A \times y - 15 \times A \times d = 0$$

$$y = 3.55cm$$
;

$$I = \frac{b}{3} \times y^3 + 15 \times A \times (d - y)^2$$

$$I = 6846.5cm^4$$

$$\sigma_{bc} = 8.94MPa$$

$$\sigma_{bc} = 8.94 < \overline{\sigma} = 15MPa$$
.....condition vérifiée.

-Aux appuis:

$$\sigma_{bc} = \frac{M_{ser.a}}{I} \times y$$
 tel que: $M_{Ser.a} = -0.5 \times 23 = 11.5 KN.m$

$$y = 2.86cm$$
; $I = 4539.1cm^4$

$$\sigma_{bc} = 7.24 MPa$$

$$\sigma_{bc} = 7.24 < \overline{\sigma} = 15MPa$$
condition vérifiée.

• Vérification de l'état limite de déformation:

$$\frac{h}{L} = \frac{18}{420} = 0.042 < \frac{1}{16} = 0.0625$$

La condition 1 n'est pas vérifiée, alors on doit vérifier la flèche

Tableau III.29. Evaluation de la flèche de l'escalier (type 1) :

L(m)	Y	Ifji	Ifgi	Ifpi	Ifgv	Δf	fadm
	(cm)	(cm4)	(cm4)	(cm4)	(cm4)	(cm)	(cm)
4.2	3.26	100868	78400	64738	110517	0.53	0.84

• Schéma de ferraillage :

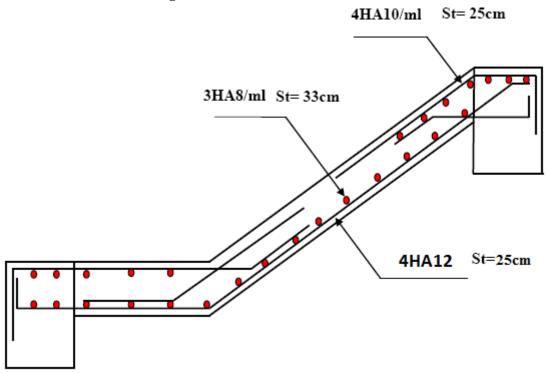


Figure III.10. Schéma de ferraillage de l'escalier type 1

III.5.2. Etude de 2^{éme} type d'escalier :

Dans ce cas, nous allons calculer la 1^{ere} volée (les volets 2 et 3 sont identique au 1^{er} type d'escalier).

-1^{ere} volée du RDC

• Charges et surcharges :

Pour la Volée : $G = 8.03 \text{ KN/m}^2$

$$Q_{escalier} = 2.50 KN / m^2$$

• Combinaison de charges :

Pour la volée :

-ELU :
$$q_u = 1.35G + 1.5Q = 14.59 \ KN/m$$

-ELS:
$$q_s = G + Q = 10.53 KN/m$$

• Calcule des sollicitations :

* A L'ELU

Par la méthode de RDM on trouve :

 $R_A = 10.94 \ KN$

$$R_B = 10.94 \ KN$$

$$M_0 = 4.10 \text{ KN.} m$$

• Calcul des moments réels :

$$M_t^{max} = 0.75 M_0 = 3.07 KN.m$$

$$M_a = -0.5 M_0 = -2.05 KN.m$$

* A l'ELS

$$R_A = 7.89 \ KN$$

$$R_B = 7.89 \ KN$$

$$M_0 = 2.96 \text{ KN.}m$$

$$M_t^{max} = 0.75 \ M_0 = 2.22 \ KN.m$$

$$M_a = -0.5 M_0 = -1.48 KN.m$$

• Ferraillage:

En suivant la même procédure définie précédemment pour le calcul du 1^{ere} type d'escalier on obtient

Tableau III.30.Résultats de ferraillage du 2^{eme} type d'escalier :

	M(KN.m)	$\mu_{ m bu}$	α	Z (m)	A _s (cm ²)	A _{min} (cm ²)	A choisit (cm ²)	St (cm)
En travée	3.07	0.012	0.016	0.129	0.68	1.56	4HA8= 2.01	25
En appui	2.05	0.0085	0.010	0.129	0.45		4HA8= 2.01	25

❖ Vérification A L'ELU:

• Vérification de l'effort tranchant :

On doit vérifier que :

$$\tau_U = \frac{V_U}{b_0 \times d} \le \overline{\tau_u}$$

$$\overline{\tau_u} = \min [0.2 \frac{f_{c28}}{\gamma_b}; 5\text{MPa}] = 3.33 \text{ MPA}$$

$$\tau_u = \frac{V}{b.d} = \frac{10.94 \times 10^{-3}}{1 \times 0.13} = 0.084 MPa < \overline{\tau}$$
. (Les armatures transversales ne sont pas nécessaires)

• Calcul des armatures de répartition :

En travée :
$$A_t \ge \frac{A_t}{4} = \frac{2.01}{4} = 0.5 \text{ cm}^2/\text{ml}$$

On opte pour $3HA8 = 1.51cm^2/ml$

En appuis : Aa
$$\geq \frac{A_a}{4} = \frac{2.01}{4} = 0.50 \text{ cm}^2/\text{ml}$$

On opte pour $3HA8 = 1.51 \text{ cm}^2/\text{ml}$

❖ Vérification a L'ELS:

• Vérification de l'état limite de compression du béton :

On doit vérifier que :

$$\sigma_{bc} \leq \overline{\sigma_{bc}}$$

$$\sigma_{bc} = 0.6 * \text{fc} 28 = 15 \text{MPA}$$

Tableau III.31. vérification de la contrainte dans le béton de $2^{\text{\'e}me}$ type d'escalier :

	M (KN.m)	Y (cm)	I (cm ⁴)	Obc (MPA)	— <i>Obc</i> (MPA)	Observation
En travée	2.22	2.51	3844.81	1.44	15	Vérifiée
En appui	1.48	2.51	3844.81	0.96	15	Vérifiée

• Vérification de l'état limite de déformation:

Les trois conditions sont vérifiées donc le calcul de a flèche n'est pas nécessaire

• Schéma de ferraillage :

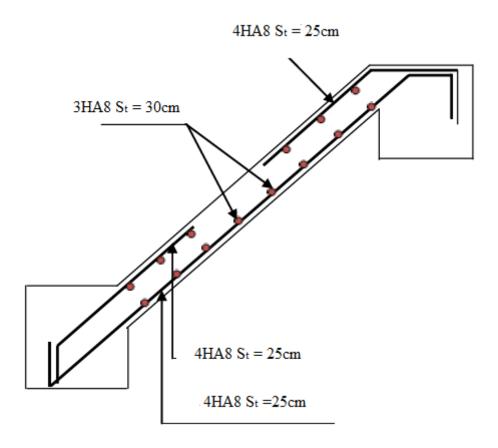
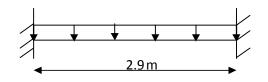



Figure III.11. Schéma de ferraillage de l'escalier type 2

III.5.3. Calcul de la poutre palière :

-Dimensionnement

On a
$$h = 30 \text{ cm}$$
 $b = 30 \text{ cm}$

La poutre palière est soumise à la flexion simple, en outre elle est soumise à la torsion

• Calcul à la flexion simple :

La poutre est soumise à son poids propre

$$g_0 = 25 \times 0.3 \times 0.3 = 2.25 \text{KN/ml}$$

g_m poids du mur sur la poutre

$$g_m = 2.93 (1.53 - 0.3) = 3.60 \text{ KN/ml}$$

En plus elle est soumise aux charges transmises par l'escalier.

ELU:
$$R_B = 27.46 \text{ KN/m}$$

ELS: $R_B = 19.75 KN/m$

• Calcul des sollicitations :

$$Q_u = 1.35 (g_m + g_0) + R_B = 35.35 \text{ KN/m}$$

En travée : Mt =
$$\frac{q_u \times l^2}{24} = \frac{35.35 \times 2.9^2}{24} = 12.38 \text{ KN.m}$$

En appuis :
$$M_a = -\frac{q_u \times l^2}{12} = -\frac{35.35 \times 2.9^2}{12} = -24.77 \text{ KN.m}$$

$$V_{u} = \frac{q_{u} \times l}{2} = \frac{35.35 \times 2.9}{2} = 51.25 \, KN$$

• Ferraillage:

On a : b = 30cm ; d = 28cm ; f_{c28} = 25MPA ; f_e = 400 MPA

Le tableau suivant résume le ferraillage de la poutre palière a la flexion ainsi la contrainte de cisaillement

Tableau III.32.ferraillage de la poutre palière a la flexion :

	M (kn.m)	μ _{bu}	α	Z(m)	A calculée (cm²)
En travée	12.38	0.037	0.047	0.274	1.29
En appuis	24.77	0.074	0.096	0.269	2.64

• Exigence du RPA :

$$A_{min} = 0.5\% b \times h = 4.5cm^2$$

Les sections calculées sont inférieurs à la section minimale, on ferraille avec Amin

• Calcul a la torsion :

Le moment de torsion uniformément répartie Mt est engendrée par les charges ramenées par le palier et la volée, il est égal au moment aux extrémités (aux appuis).

$$M_t = Ma = 15.95 KN.m$$

$$M_{\text{tmax}} = \frac{M_t \times l}{2} = \frac{15.95 \times 2.9}{2} = 23.12 \text{ KN.m}$$

• Ferraillage:

$$A_{l} = \frac{\gamma \times M_{T} \times U}{2 \times \Omega \times f_{e}}$$

$$\Omega = (b-e) \times (h-e) = 0.062m^2$$

Avec
$$e = h/6 = 0.05m$$

$$\mu = 2 \times [(h-e) + (b-e)] = 1m$$

$$A_1 = 3.69cm^{2 \le}$$

• Choix des armatures :

Ferraillage longitudinal

$$A_s = A_{fmexion} + A_{tortion}$$

-En travée : A_t = 4.5+3.69/2 = 6.34cm² on opte pour 6HA12= 6.79cm²

-En appuis : $A_a = 4.5 + 3.69/2 = 6.34 \text{cm}^2$ on opte pour 6HA12= 6.79 cm²

Donc on adopte 6HA12 pour toute la section.

On doit vérifier la condition suivante

• Vérification de la contrainte de cisaillement

On doit vérifier que $\tau_u \leq \bar{\tau}$

$$\tau = \sqrt{\tau_{FS}^2 + \tau_T^2}$$
 BAEL91 (article I.III)

On a
$$V_{max} = 31.42 \text{ KN}$$

$$\tau_{flexion} = \frac{V_u}{b \times d} = \frac{31.42 \times 10^{-3}}{0.3 \times 0.28} = 0.37 MPa$$

$$\tau_{tortion} = \frac{M_t}{2 \times \Omega \times e} = 2.57 \text{ MPA}$$

D'où $\tau_u = 2.59 \text{ MPA} < \overline{\tau} = \min \left(0.2 \frac{f_{c28}}{\gamma_b}; 5 \right) MPa = 3.33 \text{ MPA} \dots \text{condition vérifié.}$

• Calcul des espacements

$$S_t \le \frac{A_t \times f_e}{0.4 \times b} = \frac{6.79 \times 10^{-4} \times 400}{0.4 \times 0.30} = 226cm$$

$$S_t \le \min(0.9 \times d; 40cm) = 25.2cm$$

On prend : St = 15cm en travée

 $S_t = 10cm en appuis$

• Calcul des armatures transversales

-Flexion simple

$$A_{t} \le \frac{0.4 \times b \times S_{T}}{f_{e}} = \frac{0.4 \times 0.3 \times 0.15}{f_{e}} = 0.45 \text{ cm}^{2}$$

-Torsion

$$A_{T} = \frac{M_{t} \times S_{t} \times \gamma s}{2 \times \Omega \times f_{e}} = \frac{15.95 \times 10^{-3} \times 0.15 \times 1.15}{2 \times 0.062 \times 400} = 0.55 cm^{2}$$

$$A_{tmin} = 0.003 \times S_t \times b = 0.003 \times 15 \times 30 = 1.35 cm^2$$

D'ou At =
$$1.35 + 0.45 = 1.8 \text{cm}^2$$
 on opte pour 4HA8= 2.01cm^2

***** Vérification a ELS

• Vérification de l'état limite de compression de béton

On doit vérifier que :

$$\sigma_{bc} \leq \overline{\sigma_{bc}}$$

$$\sigma_{bc} = 0.6 * \text{fc} 28 = 15$$

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

Tableau III.33. vérification de la contrainte dans le béton de la poutre palière

	M (KN.m)	Y (cm)	I (cm4)	Obc (MPA)	$\overline{\mathcal{O}_{bc}}$ (MPA)	Observation
En travée	8.97	10.40	42797.696	2.17	15	vérifiée
En appui	17.94	10.4	42797.696	4.35	15	vérifiée

• Vérification de l'état limite de déformation :

$$L = 16$$

$$\checkmark \frac{h}{L} \ge \frac{M_t}{10 \times M_0} \Rightarrow 0.10 > 0.033...$$
 condition vérifié

$$\checkmark$$
 $\frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \Rightarrow 0.008 < 0.0105$condition vérifié

Donc le calcul de la flèche n'est pas nécessaire

Ferraillage final
$$\begin{cases} A_t = 6\text{HA}12 = 6.79\text{cm}^2/\text{ml.} \\ A_a = 6\text{HA}12 = 6.79\text{cm}^2/\text{ml.} \\ A_{transversales} = 4\text{HA}8 = 2.01\text{cm}^2/\text{ml.} \end{cases}$$

Schéma de ferraillage :

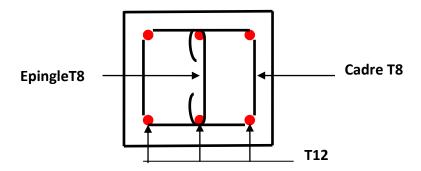


Figure III.12.Schéma de ferraillage de la poutre palière

III.6.Étude de l'acrotère :

• Hypothèse de calcul :

L'acrotère est sollicité en flexion composée.

La fissuration est considérée comme préjudiciable.

Le calcul se fera pour une bande de 1m.

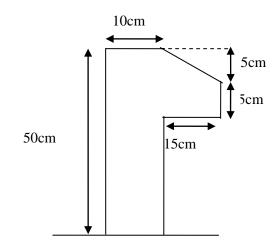


Figure III.13.Dimension de l'acrotère

• Evaluation des charges et surcharges :

Poids de l'acrotère : G = 1.53125 KN / m

Charge d'exploitation : Q = 1KN/m

Charge sismique:

$$F_P = 4 \times A \times C_P \times W_P \dots RPA (Article 6.2.3)$$

A: Coefficient d'accélération de zone obtenu dans le tableau (4-1) du RPA99

 C_P : Facteur de force horizontale varie entre 0,3 et 0,8 (Tableau 6-1 de RPA99)

 W_P : Poids de l'élément considéré

Pour notre cas : Groupe d'usage 2, zone IIa Donc:

$$W_P = 1.53125 KN / m$$

$$A = 0.15$$

$$c_p = 0.8$$

$$F_p = 0.735 \text{ KN}.$$

A Calcul des sollicitations:

• Calcul du centre de pression :

$$\begin{cases} X_G = \frac{\sum A_i.X_i}{\sum A_i} \\ Y_G = \frac{\sum A_i.Y_i}{\sum A_i} \end{cases}$$

$$Xg = \frac{(50 \times 10) \times 5 + (15 \times 5) \times 17.5 + \left(5 \times \frac{15}{2}\right) \times 16}{500 + 45 + 22.5} = 7.2cm$$

$$Yg = \frac{(50 \times 10) \times 25 + (15 \times 5) \times 42.5 + \left(5 \times \frac{15}{2}\right) \times 46.66}{567.5} = 28.46cm$$

• Moment engendré par les sollicitations :

$$\begin{split} N_G &= 1.53125KN \Rightarrow M_G = 0 \\ Q &= 1KN/ml \Rightarrow M_Q = 1\times0.5 \Rightarrow M_Q = 0.5KN.m \\ F_P &= 0.735KN \Rightarrow M_{F_P} = F_P \times Y_g \Rightarrow M_{F_P} = 0.735\times0.2846 \Rightarrow M_{F_P} = 0.209KN.m \end{split}$$

NQ= 0. (Effort normal due à Q)

NF= 0. (Effort normal due à la force sismique)

Tableau III.34.sollicitation sur l'acrotère :

	Combinaison					
	ELA	ELU	ELS			
Sollicitation	G+Q+E	1.35G+1.5Q	G+Q			
N(KN)	1.53125	2.067	1.53125			
M(KN.m)	0.5+0.209=0.709	0.709	0.5			

• Calcul de l'excentricité :

$$e_1 = \frac{Mu}{Nu} = \frac{0.709}{2.067} = 0.34m$$
La

.....La section est partiellement comprime.

$$e_1 > \frac{H}{6} \to \frac{H}{6} = \frac{0.5}{6} = 0.083m$$

 $e_1 > \frac{H}{6} \Rightarrow$ Le centre de pression se trouve à l'extérieur de la section et N_u est effort de compression donc la section est entièrement comprimée.

Le Calcul se fera par assimilation a la flexion à la simple soumise à un moment $M_{ua} = N_u \times e$, les éléments soumis à la flexion composée doivent être justifié vis –à- vis de l'état limite ultime de stabilité de forme (flambement).

On remplace l'excentricité réelle $e = \frac{Mu}{Nu}$ par une excentricité totale du calcul.

$$e = e_1 + e_a + e_2$$

 e_a : L'excentricité additionnelle traduisant les imperfections géométriques initiales.

 e_1 :Excentricite (dite de premier ordre) de la résultante des contraintes normales, avant l'application des excentricités additionnelles définis ci- après.

e₂: Excentricité due aux effets de deuxième ordre, liés à la déformation de la structure.

$$e_a = \max(2cm; \frac{L}{250})$$

L: portée de l'élément = 50cm

$$e_a = \max(2cm; \frac{50}{250}) = 2cm$$

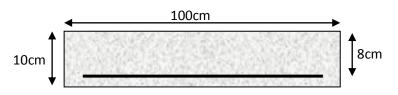
$$e_2 = \frac{3 \times l_f^2 \times (2 + \phi \times \alpha)}{h_0 \times 10^4}$$
 (Article A.4.3.5)

 ϕ : Rapport de la déformation finale due au fluage a la déformation instantanée sous la charge Considérée.

Considérée.
$$\alpha = \frac{M_G}{M_G + M_Q}, M_G = 0 \Rightarrow \alpha = 0.$$

 $l_{\scriptscriptstyle f}$: longueur de flambement.

$$l_f = 2 \times l_0 = 0.5 \times 2 = 1m$$


$$\Rightarrow e_2 = \frac{3 \times 1^2 \times 2}{10^4 \times 0.1} = 0.006m$$

D'où: e=0.34+0.02+0.006=0.366m

Les sollicitations de calcule devient :

$$N_u = 2.067 KN$$

$$M_u = N_u \times e = 2.067 \times 0.366 = 0.756 KN.m$$

- Ferraillage de l'acrotère:
- * Calcul a l'ELU:

h=10cm.

d=8cm.

b = 100 cm.

On calcul les armatures a l'ELU, puis on effectuera la vérification a l'ELS.

$$M_f = M_u + N_u (d - \frac{h}{2}) = 0.756 + 2.067(0.08 - \frac{0.10}{2}) = 0.818KN.m$$

$$\mu_{bu} = \frac{M_{ua}}{b \times d^2 \times f_{bu}} \Rightarrow \mu_{bu} = \frac{0.818 \times 10^{-3}}{1 \times 0.08^2 \times 14.2}$$

$$\Rightarrow (\mu_{bu} = 0.009) < (\mu_l = 0.3916) \Rightarrow A' = 0$$

$$\alpha = 1.25 \times \left[1 - \sqrt{(1 - 2\mu_{bu})}\right] \Rightarrow \alpha = 0.01$$

$$z = d \times (1 - 0.4 \times \alpha) \Rightarrow Z = 0.0796m$$

$$A_1 = \frac{M_{ua}}{z \times f_{st}} = \frac{0.818 \times 10^{-3}}{0.0796 \times 348} = 0.29 \text{ cm}^2$$

$$A_s = A_1 - \frac{N_u}{f_{ct}} = 0.29 \times 10^{-4} - \frac{2.067 \times 10^{-3}}{348} = 0.23 cm^2$$

Vérification a l'ELU:

• La condition de non fragilité :

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} \Longrightarrow A_{\min} = 0.23 \times 1 \times 0.08 \times \frac{2.1}{400} \Longrightarrow A_{\min} = 0.97 cm^2$$

A_{min}> A_s donc on ferraillé avec A_{min}

Soit: $A_s = 4HA8 = 2,01 \text{ cm}^2/\text{ml}$.

• Vérification au cisaillement :

L'acrotère est exposé aux intempéries (fissuration préjudiciable).

$$V_u = F_p + Q = 0.735 + 1 = 1.735 \text{ KN}$$

$$\tau_u = V_u \! / \! (\ b {\times} d) = 1.735 \ x \ 10^{\text{--}3} \! / \! (1 \ x \ 0.08) = 0.0216 \ MPa \ .$$

$$\overline{\tau_u} < \text{Min } (0.15 \text{ f}_{c28}/v_b; 4 \text{ MPa}) \Rightarrow \tau_u < \text{min } (2.5; 4) \text{ MPa.} = 2.5 \text{ MPa}$$

$$\tau_u = 0.024MPa < \overline{\tau_u} = 2.5MPa.....$$
condition vérifiée...

• Armatures de répartition :

$$A_r = \frac{A_s}{4} \implies A_r = \frac{2.01}{4} \implies A_r = 0.5025cm^2 \implies A_r = 4\Phi6 = 1.13cm^2/ml$$

• Espacement:

- 1. armatures principale: $S_t \le \frac{100}{4} = 25 cm \ on \ adopte \ S_t = 25 cm$
- 2. armature de répartition : $S_t \le \frac{50}{4} = 12.5cm$ on adopte $S_t = 12.5cm$

• Vérification de l'adhérence :

$$\zeta_{se} = V_u \; / \; \; (0.9 \times d \times \Sigma \mu_i) (RPA. \; Article. \; A.6.1.3). \label{eq:separation}$$

 $\Sigma \mu_i$: La somme des périmètres des barres.

$$\Sigma \mu_i = n \times \pi \times \Phi \Rightarrow \Sigma \mu_i = 4 \times 3.14 \times 8 \Rightarrow \Sigma \mu_i = 10.048 \ cm$$

$$\zeta_{es} = 1.735 \times 10^{-3} / (0.9 \times 0.08 \times 0.10048) \Rightarrow \zeta_{es} = 0.239 MPa$$

$$0.6 \times \psi_s^2 \times \text{ft28} = 0.6 \times 1.5^2 \times 2.1 = 2,835 \text{MPa}$$
 (RPA Article. A.6.1, 21)

 Ψ_s : est le coefficient de scellement.

 ζ_{es} < 2,835MPa \Rightarrow Pas de risque par rapport à l'adhérence.

❖ Vérification a l'ELS :

d = 0.08 m; Nser = 1.53125 KN; Mser = $Q \times h \Rightarrow$ Mser = 0.5 KN.m; η =1.6 pour les HR

• Vérification des contraintes :

$$\overline{\sigma_s} = \min \left[\frac{2}{.3} \times fe ; 150 \times \eta \right] = 240 MPa.$$

• Position de l'axe neutre :

$$C = d - e_a$$

Tel que e_a : distance du centre de pression C a la fibre la plus comprimée B de la section.

$$e_A = M_{ser}/N_{ser} \Rightarrow e_A = (0.5/1.53125) \Rightarrow e_A = 0.326 \text{ m}$$

 $e_A > h/6 = 0.016 \Rightarrow$ section partiellement comprimée.

$$\Rightarrow$$
c=h/2-ea=0.05-0.326=-0.276=-27.6cm

$$y_{ser} = y_c + c$$

$$y_c^3 + p \times y_c + q = 0$$

Tel que:

$$P = -3 \times (c)^{2} - (d'-c) \times \frac{6 \times n \times A'}{b} + \frac{6 \times n \times A \times (d-c)}{b}$$

$$P = -3 \times (-27.6)^2 - (8 + 27.6) \times \frac{6 \times 15 \times 2.01}{100} = -2349.68$$

$$q = -2 \times (c)^{3} - (d'-c)^{2} \times \frac{6 \times n \times A'}{b_{0}} + \frac{6 \times n \times A \times (d-c)^{2}}{b_{0}}$$

$$q = -2 \times (-21.3)^3 - (8 + 21.3)^2 \times \frac{6 \times 15 \times 2.01}{100} = 17774.18$$

$$\rightarrow \Delta = q^2 + \frac{4 \times p^3}{27} = (39756.86)^2 + \frac{4 \times (-2349.68)^3}{27} = -34125 \times 10^4$$

 $\rightarrow \Delta < 0 \Rightarrow l'$ équation admet trois solution :

$$Y_1 = a\cos(\frac{\varphi}{3}); Y_2 = a\cos(\frac{\varphi}{3} + 120); Y_3 = a\cos(\frac{\varphi}{3} + 20);$$

$$\cos \varphi = a(\frac{3q}{2p}) \times \sqrt{(\frac{-3}{p})}; \ a = 2 \times \sqrt{(\frac{-p}{3})}; \ \varphi = 112.12^{\circ}; \ a = 0.4342m$$

$$Y_1 = 34.50cm$$
, $Y_2 = -40.07cm$, $Y_3 = 23.41cm$,

On choisit la solution qui vérifie la condition suivante :

$$0 < y_{ser} = (Y_c + C) < h = 10cm$$

$$Y_1 = 34.50cm \Longrightarrow Y_1 + C = 13.2cm$$

$$Y_2 = -40.07cm \Rightarrow Y_2 + C = -61.37cm$$

$$Y_3 = 23.41cm \Rightarrow Y_3 + C = 2.11cm....vérifiée.$$

Donc on choisit $Y_c = 23.41cm$

$$Y_{ser} = 2.11cm$$

• Calcule des contraintes :

$$\mu_{t} = \frac{b y^{2}}{2} + 15 A'(c - d') - 15 A(d - y)$$

$$\mu_t = \frac{1 \times 0.0211^2}{2} - 15 \times 2.01 \times 10^{-4} (0.08 - 0.0211) = 4.5 \times 10^{-5} \,\mathrm{m}^3$$

$$\sigma_{bc} = \frac{0.5 \times 10^{-3} \times 0.0211}{4.5 \times 10^{-5}} = 0.24 \,\text{Mpa} < \overline{\sigma}_{bc} = 0.6 f_{c28} = 0.6 \times 25 = 15 MPa$$

Fissuration nuisible)
$$\overline{\sigma_s} = \min \left[\frac{2}{.3} \times fe ; 150 \times \eta \right] = 240 MPa.$$

Tel que : n=1.6(les aciers sont de haute adhérence).

$$\sigma_s = 15 \times \frac{1.53125 \times 10^{-3}}{4.5 \times 10^{-5}} (0.08 - 0.0211) = 30.06 MPa \le \overline{\sigma}_s = 240 \text{ MPa}$$

• Schéma de ferraillage de l'acrotère :

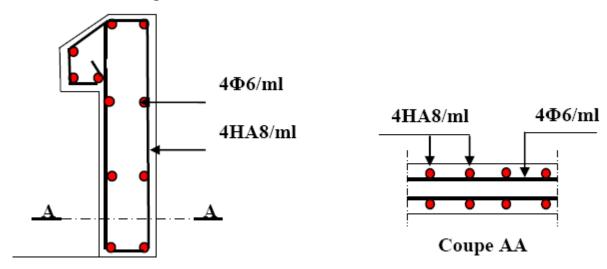


Figure III.14.Schéma de ferraillage de l'acrotère

IV.1.Introduction:

Toutes les structures sont susceptibles d'être soumises pendant leur durée de vie à des chargements variables dans le temps. Ces actions peuvent être dues au vent, séisme ou aux vibrations des machines, ce qui signifie que le calcul sous l'effet des chargements statiques parait insuffisant, d'où la nécessité d'une étude dynamique qui nous permet de déterminer les caractéristiques dynamiques d'une structure afin de prévoir son comportement (déplacement et période) sous l'effet du séisme.

IV.2.Méthode de calcul:

Selon les règles parasismiques Algériennes (RPA99/version2003), le calcul des forces sismiques peut être mené suivant trois méthodes :

- > Par la méthode statique équivalente.
- ➤ Par la méthode d'analyse modale spectrale.
- Par la méthode d'analyse dynamique par accélérogrammes.

IV.2.1. Méthode statique équivalente :

L'analyse statique équivalente du contreventement des bâtiments peut être effectuée, soit en modèle discontinu, soit en modèle continu.

Le premier est plus conforme à la réalité mais nécessite l'emploi d'un ordinateur ; le deuxième est moins conforme à la réalité mais permet la résolution approximative du problème avec des moyens de calcul plus modestes.

Le calcul par analyse statique équivalente est utilisé pour les structures de bâtiments considérés comme réguliers.

Les codes parasismiques modernes autorisent de conduire l'analyse de ces ouvrages sous les actions sismiques par des méthodes simplifiées ne prenant en compte que le mode fondamental de vibration dans deux directions perpendiculaires successives.

L'analyse statique équivalente permet d'avoir des résultats conservatifs (pour les efforts, les contraintes ou les déplacements) par le fait que la masse totale en vibration est intégrée dans le mode fondamental.

On appelle mode fonda mental de la structure (ou premier mode) le mode correspondant à la fréquence la plus basse.

a) Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

b) Calcul de la force sismique totale : (Article 4.2.3) RPA 99V2003 :

La force sismique totale V, appliquée à la base de la structure doit être calculée successivement dans deux directions horizontale et orthogonale, selon la formule

$$V = \frac{A \times D \times Q}{R} \times W \dots RPA99.Art (4.2.3)$$

A : Coefficient d'accélération de zone pris suivant la zone sismique et le groupe d'usage du

bâtiment.
$$\begin{cases} groupe\,d\text{'}usage\,2\\ zone\,II_a \end{cases} \Rightarrow A = 0.15$$

D: Facteur d'amplification dynamique moyen, il est fonction de la catégorie de site, du facteur de correction d'amortissement ($^{\eta}$) et de la période fondamentale de la structure (T).

$$\begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \binom{T_2}{T}^{2/3} & T_2 \le T \le 3.0 \text{ s} \dots RPA (formule 4 - 2) \\ 2.5\eta \binom{T_2}{3.0}^{2/3} (3.0)^{5/3} & T \ge 3.0 \text{ s} \end{cases}$$

AvecT1, T2 : Période caractéristique, associée à la catégorie du site.

La structure à étudie est située dans un site meuble (S2)

$$\Rightarrow \begin{cases} T_1 = 0.15s \\ T_2 = 0.40s \end{cases} RPA 99(Tableau 4.7)$$

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/(2+\zeta)} \ge 0.7$$

Où ζ : est le pourcentage (%) d'amortissement critique en fonction du matériau constitutif, du type de la structure et de l'importance des remplissages (tableau 4.2).RPA99/V2003.

On a un contreventement mixte:

$$\zeta = \frac{7+10}{2} = 8.5\% \Rightarrow \eta = \sqrt{\frac{7}{2+8.5}} = 0.816 \ge 0.7$$

T : Période fondamentale de la structure.

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de la formule empirique suivante :

$$\begin{cases} T_c = C_T h_t^{3/4} \\ T = 0.09 H / \sqrt{L} \end{cases}$$
(Article 4.2.4) RPA99/2003

Avec:

ht : est la hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau ht =28.56m.

 C_T : Coefficient, fonction du système de contreventement, du type de remplissage, il est donné par (**Tableau 4.6**) **RPA 99V2003.**

 $C_T = 0.05$

L: Dimension du bâtiment mesurée à la base dans la direction de calcul considérée.

Lx=23.5m

Ly=9.65m

$$\begin{cases} T_c = 0.05 \times (28.56)^{3/4} = 0.618s \\ T_x = 0.09 \times 28.56 / \sqrt{23.50} = 0.53s \\ T_y = 0.09 \times 28.56 / \sqrt{9.65} = 0.82 \end{cases}$$

Sachant que:

$$\begin{cases} T_x = \min(T_x; T_C) = 0.53s > T_2 = 0.4s \\ T_y = \min(T_y; T_c) = 0.618s > 0.4s \end{cases}$$

$$\Rightarrow D = 2.5\eta (T_2/T)^{2/3}$$
 $car T_2 \le T \le 3s$

$$\begin{cases} D_x = 2.5 \times 0.816 \times (0.4/0.53)^{2/3} = 1.692 \\ D_y = 2.5 \times 0.816 \times (0.4/0.61)^{2/3} = 1.53 \end{cases}$$

Selon l'article 4.2.4 (4) R.P.A99/v2003, la période doit être majorée de 30%

Donc:

$$\begin{cases} T_{Sx} = 1.3 \times 0.53 = 0.689s \\ T_{Sy} = 1.3 \times 0.61 = 0.803s \end{cases}$$

On a un contreventement mixte $\Rightarrow R=5$

Q : Facteur de la qualité de la structure il est fonction de :

- La redondance et de la géométrie des éléments qui la constituent.

- La régularité en plan et en élévation.
- La qualité du contrôle de la construction.

La valeur de Q est déterminée par la formule suivante : RPA99/2003 (formule 4-4).

$$Q = 1 + \sum_{q}^{6} P_{q}$$
 avec:

 P_q : Pénalité à retenir selon que le critère de qualité "q" est satisfait ou non, sa valeur est donnée par le tableau IV.1 :

Tableau IV.1. Valeurs des pénalités \boldsymbol{P}_q :

Critère q	observé	P _q /xx	observé	P _q /yy
1-conditions minimales sur les files de contreventement	Non	0.05	Oui	0
2-redondance en plan	Oui	0	Non	0.05
3-régularité en plan	Oui	0	Oui	0
4-régularité en élévation	Oui	0	Non	0
5-contrôle de qualité de matériaux	Non	0.05	Non	0.05
6-contrôles de qualité des d'exécution	Non	0.1	Non	0.1

Donc:

$$Qx = 1.2$$
, Qy = 1.2

W: Poids total de la structure

$$W = 1 + \sum_{i=1}^{n} W_{i}$$
 avec: $W_{i} = W_{Gi} + \beta W_{Qi}$

 W_{Gi} : Poids dû aux charges permanentes totales.

 W_{oi} : Poids du aux Surcharge d'exploitation.

 β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation il est donné par le Tableau (4-5 du RPA).

La valeur du poids total donnée sous le logiciel robot est de :

$$W = 20187.46 \text{ KN}$$

On a: La force sismique à la base de la structure est:

$$V_{st} = \frac{A \times D \times Q}{R} \times W$$

$$V_x = \frac{0.15 \times 1.692 \times 1.2}{5} \times 20187.46 \Rightarrow V_x = 1229.65 KN$$

$$Vy = \frac{0.15 \times 1.53 \times 1.2}{5} \times 20187.46 \Rightarrow Vy = 1111.92KN$$

IV.2.2.Méthode dynamique modale spectrale:

L'analyse dynamique se prête probablement mieux à une interprétation réaliste du comportement d'un bâtiment soumis à des charges sismiques que le calcul statique prescrit par les codes. Elle servira surtout au calcul des structures dont la configuration est complexe ou non courante et pour lesquelles la méthode statique équivalente reste insuffisante ou inacceptable ou autre non- conforme aux conditions exigées par le RPA 99/version2003 pour un calcul statique équivalent.

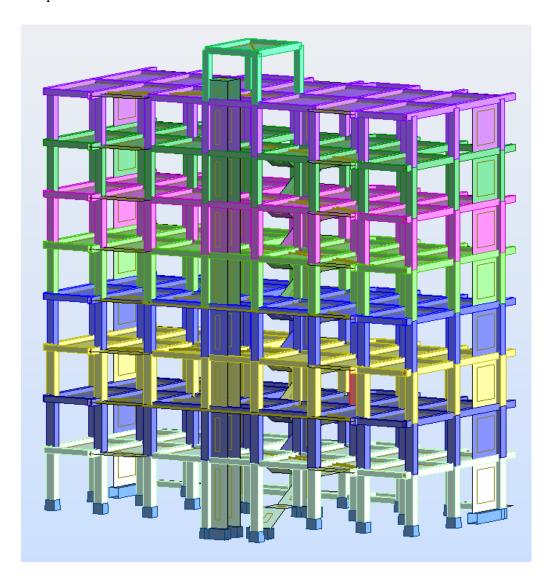
Pour les structures symétriques, il faut envisager l'effet des charges sismiques séparément suivant les deux axes de symétrie, pour les cas non symétriques l'étude doit être menée pour les deux axes principaux séparément.

Par cette méthode, il est recherché, pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1.25 \times A \times \left(1 + \frac{T}{T_1} \left(2.5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\ 2.5 \times \eta \times (1.25 A) \times \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\ 2.5 \times \eta \times (1.25 A) \times \left(\frac{Q}{R}\right) \times \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0 \text{ s} \\ 2.5 \times \eta \times (1.25 A) \times \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} \times \left(\frac{Q}{R}\right) & T > 3.0 \text{ s} \end{cases}$$

$$RPA99 (Formule 4-13)$$

Ce spectre de réponse étant intégré dans le logiciel robot structural analysis avec lequel nous avons modélisé la structure, les données correspondantes à notre projet sont :


- La zone IIa.
- ➤ Groupe d'usage 2.
- Facteur de la qualité de la structure (Qx=1.2Qy=1.2)
- ➤ Coefficient de comportement global de la structure R=5.
- > Site meuble : S2.

Le pourcentage (%) d'amortissement critique $\zeta = 8.5$

IV.3.Modélisation de la structure par le logiciel Autodesk Robot Structural AnalysisProfessional:

Robot est un logiciel de calcul des structures de génie civil (bâtiments, châteaux d'eau....) et des travaux publics (ponts, tunnels...). Il offre de nombreuses possibilités d'analyse des effets statiques et dynamiques avec des compléments de conception. Il permet aussi la vérification des structures en béton armé ou en charpente métallique.

L'interface graphique disponible facilite, considérablement, la modélisation et l'exploitation des résultats.

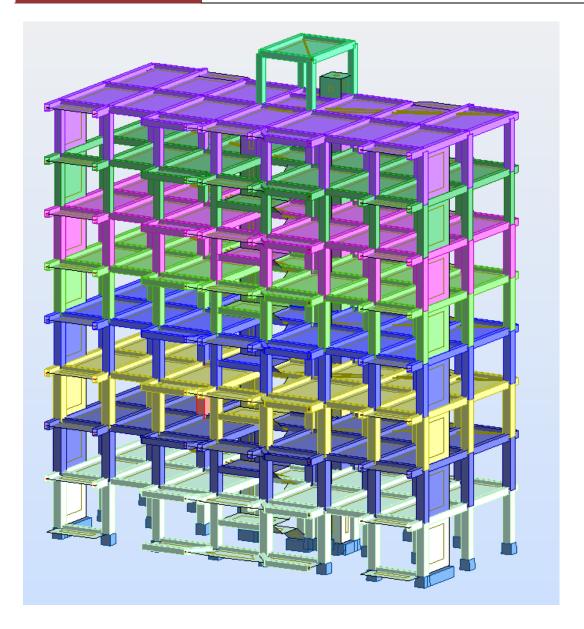


Figure IV.1.modélisation 3D de la structure

VI.3.1Dispositions des voiles de contreventement :

L'aspect architectural de notre structure dans le sens principal (x-x) présente une insuffisance d'emplacements disponible pour la disposition des voiles, ce qui nous a complique le choix de la disposition. Nous avons essayé plusieurs disposition qui ont abouti soit à un mauvais comportement de la structure soit à la non vérification de l'interaction voiles-portiques.la disposition retenue est la suivante :

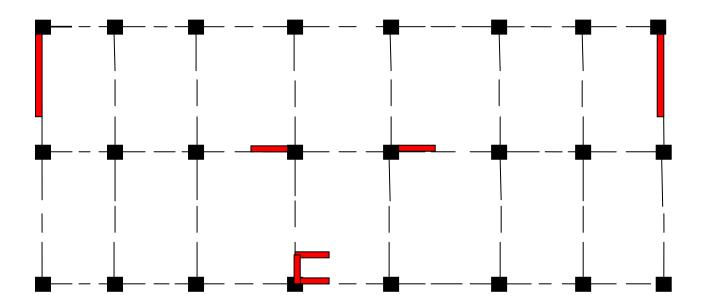


Figure IV.2.Dispositions des voiles

VI.3.2. Vérification de la résultante des forces sismiques :

Selon l'article **4.3.6** de **l'RPA/2003**, la résultante des forces sismiques à la base V_{dyn} obtenue par combinaisons des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismique déterminée par la méthode statique équivalant V_{st} .

Si V_{dyn} <0,8V, il faudra augmenter tous les paramètres de la réponse (forces, déplacements, moments,.....) dans le rapport $0.8V_{st}/V_{dy}$.

Tableau IV.2. Vérification de la résultante des forces sismique :

Sens	V_{dyn}	$0.8\mathrm{V}_{\mathrm{st}}$	Observation
Sens x-x	979.03	983.72	Non vérifiée
Sens y-y	959.09	889.54	vérifiée

On remarque que la condition n'est pas vérifiée suivant le sens x-x donc on doit augmenter tous les paramètres de la réponse en les multipliant par le rapport 0.8Vst/Vdy.=1.0047

Après majorations des paramètres de réponses suivant x-x nous obtenons les résultats suivants :

Tableau IV.3. Vérification de la résultante des forces sismique :

Sens	V_{dyn}	$0.8 m V_{st}$	Observation	
Sens x-x	983.92	983.72	vérifiée	
Sens y-y	959.09	889.54	vérifiée	

IV.4.Interprétation des résultats de l'analyse dynamique :

Résultantes obtenus :

• Périodes de vibration et participation massique :

Tableau IV.4. Modes et Périodes de vibration et taux de participation massique :

Mode	Fréquence	Période[sec]	Masses Cumulées (%)			Masse Modal [%]		
	[Hz]		UX	UY	UZ	UX	UY	UZ
1	1.41	0.71	74.72	0.2	0	74.72	0.2	0
2	1.47	0.68	74.91	69.53	0	0.2	69.34	0
3	1.92	0.52	75	69.54	0	0.09	0	0
4	4.4	0.23	86.77	69.55	0.01	11.77	0.01	0
5	5.36	0.19	86.78	84.98	0.01	0.01	15.43	0.01
6	7.11	0.14	86.79	84.99	0.01	0	0.01	0
7	8.22	0.12	91.39	85	0.02	4.6	0.01	0.01
8	9.69	0.1	91.48	86.26	0.02	0.09	1.26	0
9	10.61	0.09	92.29	86.49	0.07	0.81	0.24	0.06
10	12.29	0.08	92.31	91.58	0.1	0.03	5.09	0.02
11	13.09	0.08	92.31	91.58	39.52	0.01	0	39.42
12	13.53	0.07	92.32	91.58	39.81	0	0	0.29

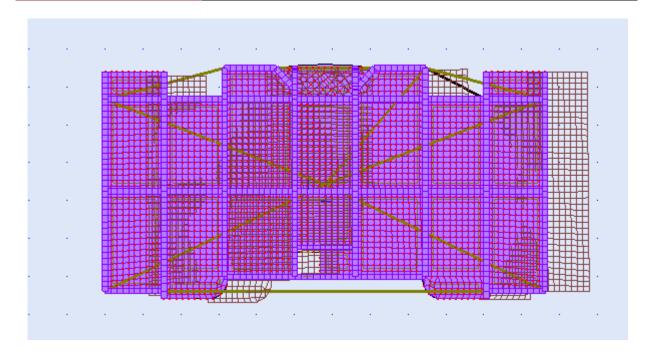


Figure IV.3.1er mode avec T=0.71s

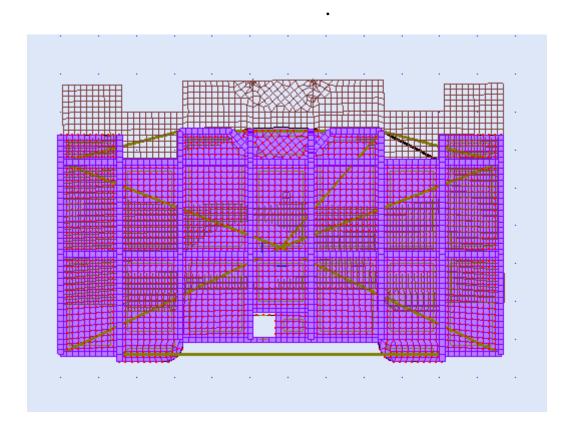


Figure IV.4.2eme mode avec T=0.68s

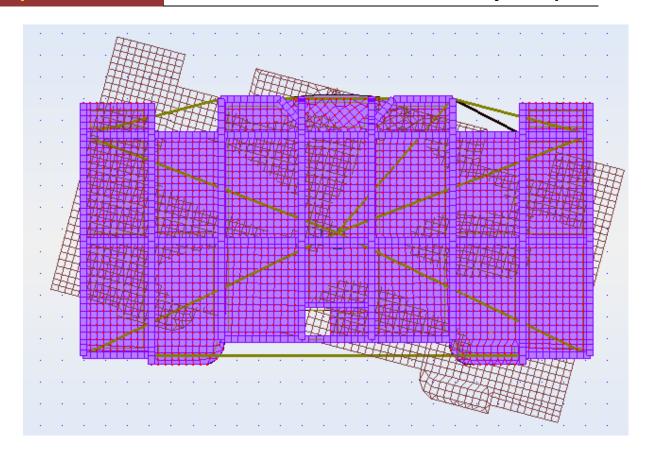


Figure IV.5. 3eme mode avec T=0.52s.

• Analyse des résultats :

La participation modale du premier mode suivant la direction x est prépondérante (Ux=75.72%), ce qui donne un mode de translation selon cette direction tel que montre sur la figure précédente.

La même remarque est faite pour le deuxième mode suivant la direction y (Uy=69.34%).

On constate aussi que la participation massique modale a atteint les 90% de la masse totale du bâtiment selon x en mode 7, selon y en mode 10.

• Justification de l'interaction voiles -portique :

Les tableaux IV3 ; IV4 illustrent respectivement la justification de l'interaction sous charges verticales et horizontales.

a)L'interaction sous charges verticales :

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \ge 80\% \text{ Pourcentage des charges verticales reprises par les}$$

portiques.

$$\frac{\sum F_{portiques}}{\sum F_{portiques} + \sum F_{voiles}} \le 20\% \ \ \text{Pourcentage des charges verticales reprises par les voiles}.$$

Tableau IV.5. Vérification sous charge verticales :

Etage	Charges reprises(KN)		Pourcentage repris(%)		
	Portique	Voile	Portique	Voile	
RDC	17532.75	3735.41	82.436	17.563	
1	15075,17	3239,62	82.311	17.688	
2	12663,13	2768,96	82.057	17.942	
3	10254,53	2349,13	81.361	18.638	
4	8022,58	1786,27	81.789	18.210	
5	5834,34	1181,03	83.165	16.834	
6	3514,19	778,47	81.865	18.134	
7	1941,52	480,26	80.169	19.830	
Local	107,67	0	100	0	
machine					

b) Sous charges horizontales:

$$\frac{\sum F_{\textit{portiques}}}{\sum F_{\textit{portiques}} + \sum F_{\textit{voiles}}} \geq 25\% \ \ \text{Pourcentage des charges horizontales reprises par les portiques}$$

$$\frac{\sum F_{\textit{portiques}}}{\sum F_{\textit{portiques}} + \sum F_{\textit{voiles}}} \leq 75\% \; \; \text{Pourcentage des charges horizontales reprises par les voiles}.$$

Tableau IV.6. Vérification sous charges horizontales :

	Selon x-x				
Etage	Charges rep	rises(KN)	Pourcentage repris(%)		
S	Portique	Voile	Portique	Voile	
RDC	501,08	478,02	51.177	48.822	
1	510,34	440,73	53.659	46.340	
2	563,82	323,3	63.556	36.443	
3	470,17	324,44	59.169	40.830	
4	433,76	253,68	63.098	36.902	
5	377,77	181,17	67.588	32.413	
6	242,9	162,6	59.901	40.098	
7	238,4	48,68	83.043	16.956	
Local	25,87	0	100	0	
machine					
Etage	Selon y-y				
RDC	252,45	709,03	26.256	73.743	
1	261,79	670,14	28.091	71.908	
2	347,66	522,75	39.942	60.057	
3	315,95	477,2	39.835	60.165	
4	324,88	370,44	46.723	53.275	
5	313,19	260,27	54.614	45.385	
6	239,84	201,18	54.383	45.616	
7	274,3	105,46	72.229	27.770	
Local machine	29,7	0	100	0	

On remarque que l'interaction sous charges vertical et horizontal est vérifiée dans tous les niveaux.

• Vérification de l'effort normal réduit :

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme. Le **RPA** (7.4.3.1) exige de vérifier l'effort normal de compression de calcul qui est limite par la condition suivante :

$$v = \frac{N_d}{B \times f_{c28}} \le 0.3$$

Ou B est l'aire de la section transversale du poteau considéré.

Type de Niveau $N_d(KN)$ observation v poteau RDC1^{er} et 1507.64 0.219 55×50 vérifiée 2em 3eme4eme 60×45 929.01 0.165 Vérifiée et5^{eme} 6^{eme} 7^{eme} 372.70 0.083 45×40 vérifiée Local 50.06 0.054 40×35 vérifiée Machine

Tableau IV.7. Vérification de l'effort normal réduit :

• Justification vis-à-vis des déformations :

Selon le RPA 99 /2003(5.10), les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage .le déplacement relatif au niveau (*K*) par rapport au niveau (K-1) est égale a :

$$\Delta K = \delta_K - \delta_{K-1}$$
 Avec: $\delta_K = R \times \delta e_K$

 δ_K : Déplacement horizontal à chaque niveau (K) de la structure donne par **RPA99/2003** (art4.43)

 δe_K : Déplacement du aux forces sismiques F_i

R : coefficient de comportement (R=5)

Tous les résultats sont regroupés dans le tableau suivant :

Tableau IV.8. Vérification du déplacement :

Niveau	Sens x-x						
Miveau	δeK(cm)	δK(cm)	δ K-1 (cm)	$\Delta K(cm)$	Hk(cm)	Δκ/Ηκ (%)	
RDC	0.1	0.5	0	0.5	306	0.163	
1 ^{er}	0.2	1	0.5	0.5	306	0.163	
2 ^{eme}	0.4	2	1	1	306	0.327	
3 ^{eme}	0.6	3	2	1	306	0.327	
4 ^{eme}	0.7	3.5	3	0.5	306	0.163	
5 ^{eme}	0.9	4.5	3.5	1	306	0.327	
6 ^{eme}	1	5	4.5	0.5	306	0.163	
7 ^{eme}	1.1	5.5	5	0.5	306	0.163	
Local	1.2	6	5.5	0.5	306	0.163	

machine							
Niveau	Sens y-y						
Miveau	δeK(cm)	δK(cm)	δK-1(cm)	$\Delta K(cm)$	Hk(cm)	Δκ/Ηκ (%)	
RDC	0.1	0.5	0	0.5	306	0.139	
1 ^{er}	0.2	1	0.5	0.5	306	0.163	
2 ^{eme}	0.3	1.5	1	0.5	306	0.163	
3 ^{eme}	0.5	2.5	1.5	1	306	0.327	
4 ^{eme}	0.6	3	2.5	0.5	306	0.139	
5 ^{eme}	0.8	4	3	1	306	0.327	
6 ^{eme}	0.9	4.5	4	0.5	306	0.163	
7 ^{eme}	1	5	4.5	0.5	306	0.163	
Local	1.1	5.5	5	0.5	306	0.139	
machine							

Ce tableau nous montre bien que le déplacement relatif sur la hauteur d'étage est inférieur à 1%, et ce pour x-x et y-y.

• Justification vis-à-vis de l'effet P-Δ: [RPA (5.9)]

Les effets de deuxième ordre (ou $P-\Delta$) sont les effets dus aux charges verticales après déplacement .ils peuvent être négliges dans le cas des bâtiments si la condition suivante est satisfaite a tous les niveaux :

$$\theta = \frac{P_{\scriptscriptstyle K} \times \Delta_{\scriptscriptstyle K}}{V_{\scriptscriptstyle K} \times h_{\scriptscriptstyle K}} \le 0.10$$

P_k: Poids total de la structure et des charges d'exploitation associées au-dessus du niveau (K).

$$P_{k} = \sum_{i=k}^{n} (W_{Gi} + \beta W_{Qi})$$

 V_K : Effort tranchant d'étage au niveau (k).

 $\Delta \kappa$: Déplacement relatif du niveau(k) par rapport au niveau (k-1).

 h_K : Hauteur de l'étage (k).

Si $0.1 \le \Theta K \le 0.2$ les effets (P- Δ) peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calcule au moyen d'une analyse élastique du 1er ordre par le facteur (1/(1-qK).

Si Θ K> 0.2 la structure est potentiellement instable et doit être redimensionnée.

Les résultats sont regroupés dans le tableau suivant :

Tableau IV.9. Vérification de l'effet (P- Δ):

Niveau			Sens x-x		
Niveau	h _k (cm)	P _k (KN)	Δk (cm)	V _k (KN)	$\Theta_{\mathbf{k}}$
RDC	306	21268.16	0.5	979.1	0.035
1 ^{er}	306	18314.79	0.5	951.07	0.031
2 ^{eme}	306	15432.09	1	887.12	0.057
3 ^{eme}	306	12603.66	1	794.61	0.052
4 ^{eme}	306	9808.86	0.5	687.43	0.023
5 ^{eme}	306	7015.36	1	558.93	0.041
6 ^{eme}	306	4292.66	0.5	405.5	0.017
7 ^{eme}	306	4221.78	0.5	287.08	0.014
Local	306	107.67	0.5	25.87	0.007
machine					
Niveau			Sens y-y		
RDC	306	21268.16	0.5	961.48	0.036
1 ^{er}	306	18314.79	0.5	931.93	0.032
2 ^{eme}	306	15432.09	0.5	870.41	0.029
3 ^{eme}	306	12603.66	1	793.14	0.052
4 ^{eme}	306	9808.86	0.5	695.33	0.023
5 ^{eme}	306	7015.36	1	573.46	0.04
6 ^{eme}	306	4292.66	0.5	441.02	0.016
7 ^{eme}	306	4221.78	0.5	379.76	0.01
Local	306	107.67	0.5	29.7	0.006
machine					

D'après les résultats obtenus dans ce tableau, les effets P-Δ peuvent être négligés.

IV.5.Conclusion:

Nous avons opté pour la disposition des voiles qui nous a donné les meilleurs résultats vis a-vis de l'interaction voiles-portiques (horizontale et verticale).

Toutes les étapes de l'étude dynamique à savoir la vérification de la période, le Comportement de la structure, l'interaction voiles-portiques, l'effort normal réduit, et elles Découlent toutes de la disposition des voiles.

La satisfaction de toutes les exigences de l'étude dynamique n'est pas une chose aisée Pour tout type de structures, car des contraintes architecturales peuvent entravée certaines étapes.

V.1.Etude des poteaux :

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les sollicitations, (efforts normaux et moments fléchissant) à la base de la structure. Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel robot dans l'ordre suivant :

- 1).1.35G+1.5Q
- 2). G+Q
- 3). $G+Q\pm E$
- 4). $0.8G\pm E$

Les armatures sont déterminées suivant les couples de sollicitations :

- 1. (Nmax \longrightarrow Mcor).
- $2.(Nmin \longrightarrow Mcor).$
- 3. ($Mmax \longrightarrow Ncor$).

V.1.2. Recommandations du RPA99:

a) Les armatures longitudinales :

- Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.
- Leur pourcentage minimal sera de : 0.8 %b1×h1 en zone IIa.
- Leur pourcentage maximale sera de :
 - ✓ 4 % en zone courante
 - ✓ 6 % en zone de recouvrement
- Le diamètre minimum est de 12mm
- La longueur minimale des recouvrements est de $^{40\phi}$ En zoneIIa.
- La distance entre les barres verticales dans une face du poteau ne doit pas dépasser : 25cm en zoneIIa.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zones critiques).
- La zone nodale est constituée par le nœud poutres-poteaux proprement dit et les extrémités des barres qui y concourent. Les longueurs à prendre en compte pour chaque barre sont données dans la figure (V.1.).

$$h' = Max(\frac{h_e}{6}; b; h; 60cm)$$

$$l' = 2 \times h$$

Etude des éléments structuraux

 h_e : est la hauteur de l'étage

 b_1 ; h_1 : Dimensions de la section transversale du poteau.

Les valeurs numériques relatives aux prescriptions du

RPA99/2003 Sont apportées dans le tableau suivant :

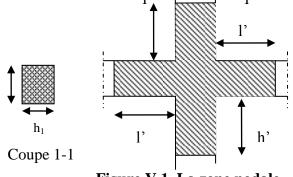


Figure V.1. La zone nodale

Tableau V.1.Armatures longitudinales minimales et maximales dans les poteaux :

	Coation du	Amin	AmaxRPA (cm ²)		
Niveau	Section du poteau	RPA (cm ²)	Zone courante	Zone de recouvrement	
RDC1 ^{er} et 2 ^{éme} étage	55×50	22	82.5	165	
3 ^{eme} 4 ^{éme} et5 ^{eme} étage	50×45	18	67.5	135	
6 ^{éme} et7 ^{eme} étage	45×40	14.4	54	108	
Local machine	35×35	9.8	49	73.5	

b) Les Armatures transversales :

Les armatures transversales des poteaux sont calculées à l'aide de la formule :

$$\frac{A_{t}}{t} = \frac{\rho_a V_u}{h_1 \cdot f_e}$$

Avec:

Vu : L'effort tranchant de calcul.

h1: Hauteur totale de la section brute.

fe: Contrainte limite élastique de l'acier d'armature transversale.

 ρ_a : Coefficient correcteur qui tient compte du mode de rupture fragile par effort

$$\begin{cases} 2.5 \, si \, \lambda_g \geq 5 & (\lambda_g : l' \'{e}lancement \ g\'{e}om\'{e}trique) \\ \\ \text{tranchant, il est pris \'{e}gal \`{a}} : \end{cases}$$

t : L'espacement des armatures transversales dont la valeur est déterminée dans la formule précédente, par ailleurs la valeur max de cet espacement est fixé comme suit :

✓ Dans la zone nodale : $t \le Min (10\Phi Lmin, 15 cm)$ en zone IIa

✓ Dans la zone courante : t≤15ΦLmin (en zones IIa).

Où \emptyset_i : est le diamètre minimal des armatures longitudinales du poteau.

• La quantité d'armatures transversales minimales :

 $rac{A_{r}}{}$ en % et donnée comme suit :

$$A_t^{\min} = 0.3\% (t \cdot b_1) \ si \lambda_g \ge 5$$

$$A_t^{\min} = 0.8\% (t \cdot b_1) \ si \lambda_g \le 3$$

si: $3 < \lambda_g < 5$ Interpoler entre les valeurs limites précédentes.

 $\lambda_{_{g}}$: est l'elencement géométrique du poteau.

$$\lambda_g = \left(\frac{l_f}{a} \operatorname{ou} \frac{l_f}{b}\right)$$

Avec : a et b, dimensions de la section droite du poteau dans la direction de déformation considérée.

 L_f : Longueur de flambement du poteau.

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de (10Φt minimum).Les cadres et les étriers doivent ménager des cheminées verticales en nombre et diamètre suffisants (Φ cheminées >12cm) pour permettre une vibration correcte du béton sur toute la hauteur des poteaux.

V.1.3.Les sollicitations dans les poteaux :

Les Résultats de sollicitations maximales des poteaux sont résumés dans le tableau qui suit :

Niveau	$(N_{max} \rightarrow$	M _{cor})	$(M_{\text{max}} \rightarrow N)$	(cor)	$(N_{\min} \longrightarrow M_{cor})$	
Niveau	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)
RDC, 1 ^{er} et 2 ^{éme} étage	1574.64	6.79	80.57	1447.84	-586.91	52.23
3 ^{eme} , 4 ^{éme} et 5 ^{eme} étage	929.01	10.15	72.84	343.3	-84	1.48
6 ^{éme} et 7 ^{eme} étage	372.7	2.14	66.27	11.88	-323.47	4.83
Local	50.06	2.23	20.10	10.20	-1.56	2.77

Tableau V.2.Les sollicitations dans les poteaux :

V.1.4.Ferraillage des poteaux :

a) Les armatures longitudinales :

Le calcul du ferraillage se fera pour un seul poteau comme exemple suivant les sollicitations les plus défavorables, et les autres seront résumés dans un tableau. Le logiciel expert robot nous sert de vérification aux valeurs calculer analytiquement.

• Exemple de calcul:

Soit le poteau de RDC,1er et $2^{\text{éme}}$ étage $Nmax = 1574.64KN \rightarrow Mcor = 6.79KN.m$

$$Mmax = 80.57KN.m \rightarrow Ncor = 1447.84 KN$$

$$Nmin = 586.91KN \rightarrow Mcor = 52.23KN.m$$

> Calcul sous :Nmax, Mcor

$$M = 6.79 \text{ KN.m} \rightarrow eG = M/N = 0.0043m$$

eG < h/2 = 0.55/2 = 0.275m Le centre de pression est à l'intérieur de la section.

On a:

$$a = (0.337h - 0.81 \times d') b \times h \times fbu$$
.

$$b = N (d-d') - Mua$$

$$Mua = M + N \times (d - h/2) = 6.79 + 1574.64 \times (0.5 - 0.55/2) = 355.82 KN.m$$

$$a = [(0.337 \times 0.55) - (0.81 \times 0.05)] \times 0.50 \times 0.55 \times 14.2 = 0.56$$

$$b=1574.64\times10-3\times(0.5-0.05)-355.82\times10-3=0.35$$

a > b: donc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

$$\mu_{bu} = \frac{M_{UA}}{b \times d^2 \times f_{bu}} = \frac{6.79 \times 10^{-3}}{0.5 \times 0.5^2 \times 14.2} = 0.0038$$

$$\mu_{bu} = 0.0038 < \mu_1 = 0.392 \Rightarrow A' = 0$$

$$\mu_{bu} < 0.186 \Rightarrow \text{ pivot a}$$

$$\alpha = 1.25 (1 - \sqrt{1 - 2 \times 0.0038}) = 0.0047$$

$$Z = d \times (1 - 0.4 \times 0.\alpha) = 0.5 \times (1 - 0.4 \times 0.0047) = 0.49m$$

$$A_l = \frac{M_{UA}}{z. f_{st}} = \frac{6.79 \times 10^{-3}}{0.49 \times 348} = 0.39 cm^2$$

$$A_{s} = A_{l} - \frac{N}{f_{st}} = 0.39.10^{-4} - \frac{1574.64 \times 10^{-3}}{348} = -44.85cm^{2}$$

$$\Rightarrow$$
A=0cm²

> Calcul sous : Mmax ; Ncor

$$M = 80.57KN.m$$
, $N = 1447.84KN \Rightarrow eG = 0.055 < h/2 = 0.275m$

Donc le centre de pression se trouve entre la section des armatures.

$$Mua = M+N \times (d-h/2) = 80.57+1447.84 \times (0.5-0.55/2) = 343.89$$
KN.m

$$a = [(0.337 \times 0.55) - (0.81 \times 0.05)] \times 0.5 \times 0.55 \times 18.48 = 0.730$$

$$b=1447.84\times10-3\times(0.5-0.05)-343.89\times10-3=0.307$$

a > b: calcul d'une section partiellement comprimée.

$$M_{ua} = 80.57 \text{ KN.m} \Rightarrow \mu_{bu} = 0.034 < \mu_{l} \Rightarrow A' = 0$$

$$\alpha = 0.043 \Rightarrow z = 0.49m \Rightarrow A_l = \frac{M_{UA}}{z.f_{st}} = \frac{80.57 \times 10^{-3}}{0.49 \times 348} = 4.72cm^2$$

$$A_S = A_l - \frac{N}{f_{st}} = 4.72 \times 10^{-4} - \frac{1447.84 \times 10^{-3}}{348} = -36.88cm^2 \le 0 \implies A = 0$$

> Calcul sous Nmin; Mcor:

N = 586.91KN; M = 52.23 KN.m, $\Rightarrow e_G = 0.088 < h/2 = 0.275m$ Donc le centre de pression se trouve entre la section des armatures.

$$M_{ua} = M + N \times (d - h/2) = 52.23 + 586.91 \times (0.5 - 0.55/2) = 143.80 \text{KN.m}$$

$$a = [(0.337 \times 0.55) - (0.81 \times 0.05)] \times 0.5 \times 0.55 \times 18.48 = 0.730$$

$$b = -586.91 \times 10^{-3} \times (0.5 - 0.05) - 143.80 \times 10^{-3} = -0.407$$

 $a > b \Rightarrow$ calcul d'une section partiellement comprimée

$$Mua = 52.23$$
KN.m $\Rightarrow \mu_{bu} = 0.022 < \mu_{l} \Rightarrow A' = 0$

$$\alpha = 0.028 \Rightarrow z = 0.49m \Rightarrow A_l = \frac{M_{UA}}{z \cdot f_{st}} = \frac{52.23 \times 10^{-3}}{0.49 \times 348} = 3.06cm^2$$

$$A_S = A_I + \frac{N}{f_{St}} = 3.06 \times 10^{-4} + \frac{586.91 \times 10^{-3}}{348} = 19.92 cm^2 \ge 0$$

Les Résultats de ferraillages des poteaux sont résumés dans le tableau suivant :

Tableau V.3.ferraillages des poteaux :

Niveau	sections	A' (cm²)	A (cm ²)	A _{RPA} (cm ²)	Aadap (cm²)	barres
RDC, 1er et 2éme étage	55×50	0	19.92	22	24.12	12HA16
3eme, 4éme et 5eme étage	50×45	0	2.5	18	18.47	12HA14
6éme et 7eme étage	45×40	0	9.63	14.4	15.39	10HA14
Machine Locale	35×35	0	1.29	9.8	12.32	8HA14

b) Armatures transversale:

Le tableau ci-après résume les résultats de calcul des armatures transversales pour les différents niveaux.

 Φ_{l}^{min} Vd t zone Amin t zone At barres $\lambda_{\mathbf{g}}$ **Section** (cm²)(cm²)Cm (KN) nodale courante (cm^2) (cm^2) 55×50 1.6 125.70 10 15 5.19 2.14 2.25 3.02 **6HA8** 50×45 1.4 10 47.65 15 4.28 1.34 2.5 3.02 **6HA8** 45×40 1.4 62.70 10 15 4.76 1.95 2.16 3.02 **6HA8** 35×35 1.4 10 2.01 13.33 15 6.12 0.35 1.57 **4HA8**

Tableau V.4.Les Armatures transversale dans les poteaux :

V.1.5. Vérification au flambement :

Selon BAEL91, (art 4.4.1): les éléments soumis à la flexion composée doivent être justifiés vis-à-vis de l'état limite ultime de stabilité de forme (flambement).

L'effort normal ultime est définit comme étant l'effort axial que peut supporter un poteau sans subir des instabilités par flambement.

La vérification se fait pour le poteau le plus sollicité à chaque niveau et le plus élancé.

D'après le CBA93 on doit vérifier que :

$$N_d \le N_u = \alpha \times \left[\frac{Br \times fc_{28}}{0.9 \times \gamma_b} + \frac{As \times fe}{\gamma_s} \right]$$

Avec

Br: Section réduite du béton

γb: Cœfficient de sécurité de béton (cas durable).

 $\gamma b = \begin{cases} 1.5 \text{ pour les situation courantes.} \\ 1.15 \text{ pourles situations accidentelles.} \end{cases}$

 γS : Coefficient de sécurité de l'acier $\gamma S = \begin{cases} 1.15 \text{ pour les situation courantes.} \\ 1 \text{ pour les situations accidentelles.} \end{cases}$

 α : Coefficient réducteur qui est fonction de l'élancement λ .

 A_s : Section d'acier comprimée prise en compte dans le calcul.

Tel que:

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \dots pour \ \lambda \le 50.$$

$$\alpha = 0.6 \left(\frac{\lambda}{50}\right)^2 \dots pour 50 < \lambda \le 70.$$

$$\lambda = l_f / i$$
 avec $i = \sqrt{\frac{I}{b \times h}}$

Cas d'une section rectangulaire :

$$I = bh^3/12$$

D'où l_f (Longueur de flambement)

Avec : $l_f = 0.7 \times l_0$ (Longueur de flambement).

$$B_{r.} \text{= (a-2)} \times \text{ (b-2)} \qquad \text{avec:} \begin{cases} \text{a: Largeur de la section nette} \\ \text{b: Hauteur de la section nette} \end{cases}$$

A_s: Section d'armature.

Les résultats de vérification des poteaux au flambement sont résumés dans le tableau suivant :

Tableau V.5. Justification de l'effort normale ultime :

Niveaux	Section	$\mathbf{L_0}$	$\mathbf{l_f}$	λ	α	As	$\mathbf{B_r}$	Nmax	N _u	Observation
	(cm ²)	(m)	(m)			(cm ²)	(cm ²)	(KN)	(KN)	
RDC, 1er et	55×50	4.08	2.85	17.95	0.807	24.12	2544	1574.64	4478.90	Vérifiée
2éme étage								13/4.04		
3eme, 4éme	50×45	3.06	2.142	14.84	0.820		2064		3661.01	Vérifiée
et 5eme						18.47		929.01		
étage										
6éme et	45×40	3.06	2.142	16.48	0.813		1634		2895.28	Vérifiée
7eme						15.39		372.7		
étage										
Local	35×35	3.06	2.142	21.20	0.791	10.00	1089		1934.14	Vérifiée
machine						12.32		50.06		
macimic										

 $N_{max} < N_{u} \Rightarrow Pas risque de flambement$

V.1.6. Vérification des contraintes :

La fissuration est peu nuisible, donc la vérification se fait pour la contrainte de compression du béton seulement.

Cette vérification sera faite pour le poteau le plus sollicité à chaque niveau. On doit vérifier que :

$$\sigma_{bc1,2} \leq \overline{\sigma}_{bc} = 0.6 \text{*fc28} = 15\text{MPa}$$

$$\sigma_{bc1} = \frac{N_{ser}}{S} + \frac{M_{ser}}{I_{gg}} \times v \le \overline{\sigma}_{bc} = 0.6 \times f_{c28} \dots$$
Béton fibre sup.

$$\begin{split} &\sigma_{bc2} = \frac{N_{ser}}{S} - \frac{M_{ser}}{I_{gg}} \times v' \leq \overset{-}{\sigma}_{bc} = 0.6 \times f_{c28} \dots \text{Béton fibre Inf.} \\ &M_G^{ser} = M^{ser} - N^{ser} (h/2 - V) \\ &I_{gg} = b/3(v^3 + v'^3) + 15A'(v - d')^2 + 15A(d - v)^2 \\ &v = \frac{b \times h^2}{2} + 15 \times \left(A \times d + A' \times d'\right) \\ &b \times h + 15 \times \left(A + A'\right) \; ; \; \text{Et} \; v' = h - v \; ; \; d = 0.9 \times h \end{split}$$

 $S = b \times h + 15(A + A')$ (section homogène).

$$v = \frac{\frac{b \times h^2}{2} + 15 \times A \times d}{b \times h + 15 \times A}$$

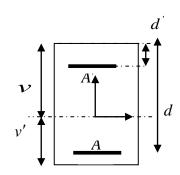


Figure V.2. Section d'un poteau

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.6. Vérification des contraintes dans le béton :

Niveaux	RDC, 1 ^{er} et 2 ^{éme} étage	3 ^{eme} , 4 ^{éme} et 5 ^{eme} étage	6 ^{éme} et 7 ^{eme} étage	Local machine
Section (cm ²)	55×50	50×45	45×40	35×35
d (cm)	49.5	45	40.5	31.5
A' (cm2)	8.04	6.16	4.52	4.52
A (cm2)	8.04	6.16	4.52	4.52
<i>v</i> (cm)	29.70	27.5	24.51	17.5
v'(cm)	25.3	22.5	20.5	17.5
I_{gg} (m ⁴)	0.081	0.054	0.032	0.0150
$N_{ser}(\mathbf{KN})$	490.05	155.01	270.40	26.3
$M_{ser}(\mathbf{KN.m})$	20.17	22.73	36.79	10.22
σ _{bc1} (MPa)	1.86	0.80	1.78	0.33
σ _{bc2} (MPa)	1.71	0.59	1.26	0.095
σ_{bc} (MPa)	15	15	15	15
observation	Vérifiée	Vérifiée	Vérifiée	Vérifiée

V.1.7. Vérification aux sollicitations tangentes :

Selon le RPA 99 (Art: 7.4.3.2):

$$\tau_{bu} \le \overline{\tau}_{bu}$$
 Tel que : $\overline{\tau}_{bu} = \rho_d \times f_{c28}$ avec : $\rho_d = \begin{cases} 0.075 \text{ si } \lambda_g \ge 5 \\ 0.04 \text{ si } \lambda_g < 5 \end{cases}$

$$\lambda_g = \frac{l_f}{a} ou \, \lambda_g = \frac{l_f}{b}$$

5eme étage

6éme et

7eme

étage Machine

Locale

 $\tau_u = \frac{V_u}{h \times d}$ (La contrainte de cisaillement conventionnelle de calcul dans le béton sous

combinaison sismique).

Tous les résultats de calculs effectués sont représentés dans le tableau suivant :

0.075

Niveaux Section V_{u} $\mathbf{l_f}$ d $\tau_{\rm bu}$ ρ_d τ_{bu} (cm^2) (cm) (cm) (KN) (MPa) (MPa) RDC, 1er et 55×50 285 0.075 50 0.50 1.875 5.19 125.70 2éme étage 3eme, 50×45 214.2 0.04 45 0.235 1 4émeet 4.28 47.65

30

Tableau V.7. Vérification des sollicitations tangentes :

 λ_g **Observation** Vérifiée Vérifiée 40 Vérifiée 45×40 214.2 0.04 0.39 1

62.70

13.33

0.12

1.875

Vérifiée

V.1.8. Dispositions constructives:

214.2

35×35

Longueur des crochets :

$$L = 10\phi_t$$

 $L = 10\phi_t = 10 \times 0.8 = 8 \text{ cm}$

• Longueur de recouvrement :

$$L_r \ge 40 \times \phi$$
:
 $\phi = 16mm \rightarrow L_r = 40 \times 1.6 = 64cm$.
On adopte: $L_r = 70cm$.
 $\phi = 14mm \rightarrow L_r = 40 \times 1.4 = 56$
On adopte: $L_r = 60cm$.

4.76

6.12

Détermination de la zone nodale :

La détermination de la zone nodale est nécessaire car c'est à ce niveau qu'on disposera les armatures transversales de façon à avoir des espacements réduits. Ceci se fait car cet endroit est très exposé au risque du cisaillement.

Les jonctions par recouvrement doivent être faites si possible à l'extérieur de ces zones nodales sensibles (selon le RPA).

Les dimensions de la zone nodale sont données comme suit :

$$h' = Max(\frac{h_e}{6};b;h;60cm) ; l' = 2 \times h$$

> RDC, 1^{ere}et 2^{éme} étage :

$$L' = 2 \times 40 = 80 \text{cm}$$

h'=max (51; 50; 55; 60cm)=60cm

➤ 3^{éme}, 4émeet5^{éme}étage

$$L' = 2 \times 40 = 80 \text{cm}$$

h'=max (51; 50; 45; 60cm) = 60cm

➤ 6^{éme}et7^{éme}étage

 $L' = 2 \times 40 = 80 \text{cm}$

h' = max (51; 45; 40; 60cm) = 60cm

➤ Local machine

 $L' = 2 \times 40 = 80 \text{cm}$

h' = max (51; 35; 35; 60cm) = 60cm

Schémas de ferraillage :

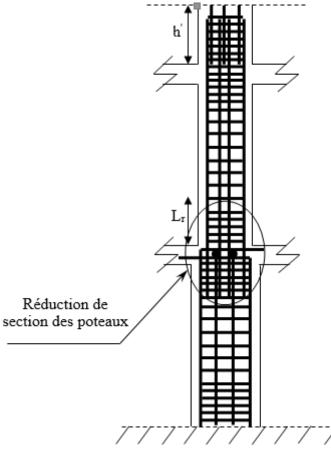


Figure V.3. coupe longitudinale

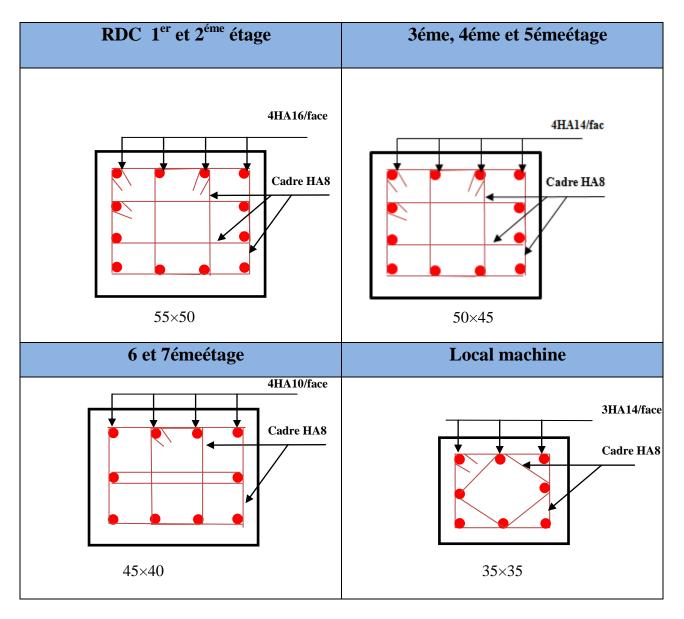


Figure V.4.Schéma de ferraillage des poteaux

V.2.Etude des poutres :

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort Tranchant. Le moment fléchissant permet la détermination des dimensions des armatures Longitudinales. L'effort tranchant permet de déterminer les armatures transversales.

On distingue deux types de poutres, les poutres principales qui constituent des appuis aux poutrelles, les poutres secondaires qui assurent le chaînage.

Après détermination des sollicitations (M, N, T) on procède au ferraillage en respectant les prescriptions données par le **RPA99 Version 2003** et celles données par le **BAEL91.**

Les poutres sont étudiées en tenant compte des efforts données par le logiciel robo, combinés par les combinaisons les plus défavorables données par le **RPA99 Version 2003** suivantes :

- 1). 1.35G+1.5Q
- 2). G+Q
- 3). $G+Q\pm E$
- 4). $0.8G\pm E$

V.2.1.Ferraillage:

a). Armatures longitudinales: RPA 99/2003 (art 7.5.2.1)

- ➤ Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de0.5% en toute section.
- Le pourcentage total maximum des aciers longitudinaux est de :
 - ✓ 4% en zone courante.
 - ✓ 6% en zone de recouvrement.
- \triangleright La longueur minimale de recouvrement est de $40\Phi_{\text{max}}$ en zone IIa.

Avec : Φ_{max} : le diamètre maximal d'armature dans la poutre.

- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué conformément à la **figure V.5**, avec des crochets à 90°. Cette même figure comporte les autres dispositions constructives et quantités minimales d'armatures.
- Les cadres du nœud disposés comme armatures transversales des poteaux, sont constitués de 2U superposés formant un carré ou un rectangle (là où les circonstances s'y prêtent, des cadres traditionnels peuvent également être utilisés).

- Les directions de recouvrement de ces U doivent être alternées Néanmoins, il faudra veiller à ce qu'au moins un coté fermé des U d'un cadre soit disposé de sorte à s'opposer à la poussé au vide des crochets droits des armatures longitudinales des poutres.
- On doit avoir un espacement maximum de 10 cm entre deux cadres et un minimum de trois cadres par nœuds.

b). Armatures transversales: RPA 99/2003 (art 7.5.2.2)

La quantité d'armatures transversales minimale est donnée par :

 $At = 0.003 \times St \times b$

St : espacement maximum entre les armatures transversales donné comme suit :

- St ≤min (h/4;12 Φ l) en zone nodale.
- St ≤h/2 en dehors de la zone nodale.
 - Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.
 - La valeur du diamètreΦ_L des armatures longitudinales à prendre est le plus petit diamètre utilisé, et dans le cas d'une section en travée avec armatures comprimées.
 C'est le diamètre le plus petit des aciers comprimés.

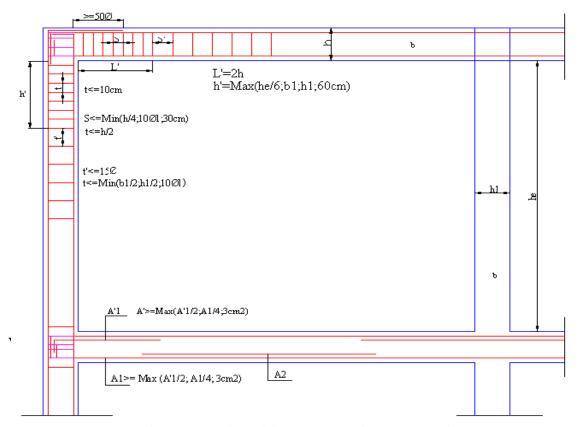


Figure V.5.Disposition constructives des portiques

V.2.2. Calcul du ferraillage :

A). Méthode de calcul des armatures à l'ÉLU (flexion simple) :

Le ferraillage est calculé à partir des sollicitations déduites du logiciel Robo.

• Calcul du moment réduit ultime :

$$\begin{split} \mu_{bu} &= \frac{M_u}{b \times d^2 \times f_{bu}} \\ f_{bu} &= \frac{0.85 \times fc_{28}}{\gamma_b} = \begin{cases} 14.2MPa & situation courante \ (\gamma_b = 1.5) \\ 18.48MPa & situation accidentelle \ (\gamma_b = 1.15) \end{cases} \\ &\rightarrow Si \ \mu_{bu} \leq \mu_l = 0.3916 \quad alors: \\ A_s' &= 0 \quad et \quad A_s = \frac{M_u}{f} \end{split}$$

$$A_s' = 0$$
 et $A_s = \frac{M_u}{z \times \frac{f_e}{\gamma_s}}$

 $avec: \quad \gamma_s = \begin{cases} 1.15 & pour \, les \, situations \, courantes. \\ 1 & pour \, les \, situations \, accidentelles. \end{cases}$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu_{bu}}\right) \rightarrow z = d\left(1 - 0.4\alpha\right)$$

$$\rightarrow Si \ \mu_{bu} > \mu_{l} = 0.3916 \ alors$$

$$A_{s}' = \frac{M_{u} - M_{l}}{\left(d - d'\right) \times \frac{f_{e}}{\gamma_{s}}} \quad et \ A_{s} = \frac{M_{l}}{z \times \frac{f_{e}}{\gamma_{s}}} + A_{s}'$$

 $Avec: M_l = \mu_l \times b \times d^2 \times f_{bu}$

Le tableau suivant regroupe le calcul de ferraillage des différentes poutres.

Tableau V.8.Ferraillage des poutres principales et secondaires :

Niveau	Type de poutre	section	localise	M (KN.m)	V (KN)	A calcul (cm ²)	A _{min} (cm ²)	A _{adopté} (cm ²)	N ^{bre} de barres
RDC 1 ^{er} et 2 ^{éme} étage	Poutre principale	30×40	Appuis	73.05	122.30	5.2	6	6.88	3HA14+2H A12
			Travée	13.77		1.2		6.79	6HA12
	Poutre secondaire	30×35	Appuis	68.21	70.22	5.5		6.79	6НА12
			Travée	55.97		4.5	5.25	6.76	6HA12
	Poutre principale	30×40	Appuis	76.12	90.26	5.3	6	6.88	3HA14+2H A12
3,4 et 5 ^{éme} étage			Travée	80.83		5.6	, and the second	6.76	6НА12

	Poutre secondaire	30×35	Appuis	63.15	70.18	5.1		6.76	6HA12
			Travée	53.24		4.2	5.25	6.76	6HA12
6 et 7 ^{éme} étage	Poutre principale	30×40	Appuis	70.13	74.47	5.1	6	6.88	3HA14+2H A12
, , , , , , , , , , , , , , , , , , ,			Travée	62.09		4.3		6.76	6HA12
	Poutre secondaire	30×35	Appuis	67.62	50.12	5.4		6.76	6HA12
			Travée	58.13		4.7	5.25	6.76	6HA12
Local machine	Poutre principale	30×40	Appuis	22.16	24.08	1.5	6	6.88	3HA14+2H A12
			Travée	6.89		1.2		6.76	6HA12
	Poutre secondaire	30×35	Appuis	12.80	11.86	1.1		6.76	6HA12
			Travée	7.850		1.1	5.25	6.76	6HA12

V.2.3. Vérification des armatures selon le RPA 99 :

- Pourcentage maximum des armatures longitudinales :
 - > Poutre principale

En zone courante : $Amax = 4\% b \times h = 0.04 \times 30 \times 40 = 48 \text{cm}^2 > Aadopté.$

En zone de recouvrement: $Amax = 6\% b \times h = 0.06 \times 30 \times 40 = 72 \text{cm}^2 > Aadopté.$

> Poutre secondaire

En zone courante : $Amax = 4\% b \times h = 0.04 \times 30 \times 35 = 42 \text{cm}^2 > Aadopté.$

En zone de recouvrement: $Amax = 6\% b \times h = 0.06 \times 30 \times 35 = 63 \text{cm}^2 > Aadopté.$

• Les longueurs de recouvrement :

 $L_r \ge 40 \times \phi$:

$$\phi = 14mm \rightarrow L_r = 40 \times 1.4 = 56cm.$$

On adopte: $L_r = 60cm$.

$$\phi = 12mm \rightarrow L_r = 40 \times 1.2 = 48$$

On adopte: $L_r = 50cm$.

V.2.4. Les armatures transversales :

a). Calcul de Φ_t :

Le diamètre des armatures transversales pour les poutres principales et secondaires est donnée par :

> Poutre principale

$$\phi \leq min \left(\phi_1; \frac{h}{35}; \frac{b}{10} \right)$$

$$\phi \le \min\left(1.2; \frac{40}{35}; \frac{30}{10}\right)$$

$$\phi_t \le \min(1,2;1.42;3)cm$$

$$\phi_t \le 1,2cm \Longrightarrow \text{Soit } \phi_t = 8mm$$

Donc on opte pour $A_t = 4T8 = 2.01$ cm²

> Poutre secondaire

$$\phi \leq min \! \left(\varphi_1; \frac{h}{35}; \frac{b}{10} \right)$$

$$\phi \le \min\left(1.2; \frac{35}{35}; \frac{30}{10}\right)$$

$$\phi_t \leq \min(1,2;1;3)cm$$

$$\phi_t \le 1cm \text{ Soit } \phi_t = 8mm$$

Donc on opte pour $A_t = 4T8 = 2.01$ cm²

Soit: 1 cadre + 1 étrier de T8 pour toutes les poutres.

$\ b). Calcul\ des\ espacements\ des\ armatures\ transversales:$

Selon RPA99 Art (7.5.2.2):

-Zone nodale :

$$S_t \leq \min(\frac{h}{4}; 12 \times \phi_{l\min})$$

-Zone courante : $S_t \le h/2 = 45/2 = 22.5 cm$.

> Poutre principale

-Zone nodale

$$S_t \le \min(10;14.4)$$

Soit:
$$S_t = 10cm$$

-Zone courante :
$$S_t \le h/2 = 40/2 = 20cm$$
.

Soit:
$$S_t = 15cm$$

> Poutre secondaire

Zone nodale

 $S_t \le \min(8.75;14.4)$

Soit : $S_t = 5cm$

Zone courante : $S_t \le h/2 = 35/2 = 17.5 cm$

Soit : $S_t = 15cm$

c). Vérification des sections d'armatures transversales :

V.2.5. Vérification à l'ELU:

a) Contrainte tangentielle maximale :

Vérification de l'effort tranchant :

Il faut vérifier que :

$$\tau_{u} \leq \overline{\tau}_{u}$$

$$Tel que: \tau_{u} = \frac{V_{u}}{b \times d}$$
BAEL91 (Art H.III.2)

Fissuration peu nuisible
$$\overline{\tau_u} = \min \left[0.2 \frac{f_{c28}}{\gamma_h}; 5\text{MPa}\right] = 3.33 \text{ MPA}$$

Les résultats sont donnés dans le tableau suivant :

Tableau V.9. Vérification des contraintes tangentielles :

Poutres	Vu (KN)	$ au_{bu}(\mathbf{MPa})$	¯ ⁷ (MPa)	Observation
principales	122.3	1.07	3.33	Vérifiée
secondaires	70.18	0.70	3.33	Vérifiée

DoncPas de risque de cisaillement et cela pour tout type de poutre.

b) Vérification des armatures longitudinales au cisaillement :

✓ Appuis de rives
$$A_l > \frac{V_u \times \gamma_s}{f_e}$$
.....(1) BAEL91 (Art H.IV.2)

✓ Appuis intermédiaires
$$A_l \ge \frac{\gamma_s}{f_a} \times (V_u - \frac{M_a}{0.9 \times d})$$
.....(2)

$$\gamma s = 1.15$$
 $fe = 400MPa$

Les vérifications sont résumées dans le tableau ci-après :

Poutres A_1 (cm²) $V_{u}(KN)$ M_a (KN.m) A_1^{rive} (cm²) **Observation** A_1^{int} (cm²) **Principales** Vérifiée 6.88 122.3 76.12 3.50 -2.88**Secondaires** 70.18 6.76 67.62 2.01 -4.52Vérifiée

Tableau V.10. Vérification des armatures longitudinales au cisaillement :

❖ À l'ELS

a) L'Etat limite d'ouvertures des fissures

Aucune vérification à faire car la fissuration est peu nuisible.

b) État limite de compression du béton

La fissuration est peu nuisible donc il faut juste vérifier que la contrainte de compression du béton est inférieure ou égale à la contrainte admissible du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \, MPa$$

Les résultats de calcul sont résumés dans le tableau suivant :

TableauV.11. Vérification de la contrainte limite de béton :

Poutres	Localisation	Mser	Y	I	$\sigma_{\!\scriptscriptstyle bc}$	σ_{bc}	Observation
		(KN.m)	(cm)	(cm ⁴)	(MPa)	(MPa)	
Poutres	Appuis	47.15	11.65	92689.79	5.92	15	Vérifiée
principales	Travées	18.84	11.57	91483.34	2.38	15	Vérifiée
Poutres	Appuis	-23.26	11.30	65429.6	4.01	15	Vérifiée
secondaires	Travées	17.61	10.62	89989.95	2.07	15	Vérifiée

c) Etat limite de déformation (évaluation de la flèche)

D'après le BAEL91, la vérification de la flèche est inutile si les conditions suivantes sont satisfaites :

$$\begin{cases}
\frac{h}{L} \ge \frac{1}{16} \dots (1) \\
\frac{h}{L} \ge \frac{M_t}{10 \times M_0} \dots (2) \\
\frac{A}{b_0 \times d} \le \frac{4.2}{f_e} \dots (3)
\end{cases}$$

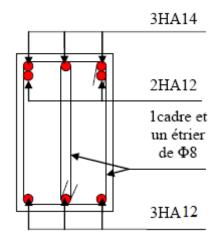
-Poutres principales

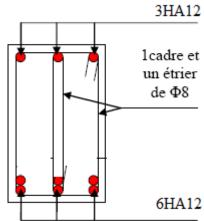
$$\frac{A}{b \times d} = \frac{6.76 \times 10^{-4}}{0.4 \times 0.38} = 0.0044 \le \frac{4.2}{f_e} = 0.06$$
 condition vérifiée

Donc : La vérification de la flèche n'est pas nécessaire.

-Poutres secondaires

$$\frac{h}{L} = \frac{35}{370} = 0.094 \ge \frac{1}{16} = 0.0625$$
 condition vérifiée


$$\frac{h}{L} = 0.094 \ge \frac{M_t}{10 \times M_0} = \frac{9.9}{10 \times 12.11} = 0.08$$
 condition vérifiée


$$\frac{A}{b \times d} = \frac{6.88 \times 10^{-4}}{0.35 \times 0.33} = 0.0059 \le \frac{4.2}{f_e} = \frac{4.2}{400} = 0.06$$
 condition vérifiée

Donc : La vérification de la flèche n'est pas nécessaire.

V.2.6. Schémas de ferraillage des poutres

Comme exemple de ferraillage, on va prendre les poutres principales. Le même ferraillage sera adopté pour les autres types de poutres.

En appui

En travée

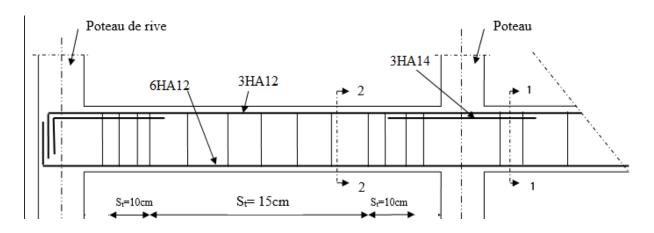


Figure V.6 Schéma de ferraillage des poutres secondaires

V.2.7. Vérification des zones nodales :

Dans le but de permettre la formation des rotules plastiques dans les poutres et non dans les poteaux, le RPA99 (Article 7.6.2) exige que :

$$|M_n| + |M_s| \ge 1.25 \times |M_w| + |M_e|$$

Cependant cette vérification est facultative pour les deux derniers Niveaux (bâtiments supérieurs à R+2).

1) Détermination du moment résistant dans les poteaux

Le moment résistant (M_R) d'une section de béton dépend essentiellement

- Des dimensions de la section du béton
- De la quantité d'armatures dans la section du béton
- De la contrainte limite élastique des aciers

$$M_R = z \times A_s \times \sigma_s$$
 Avec : $z = 0.9 \times h$ (h : La hauteur totale de la section du béton).

$$\sigma_s = \frac{f_s}{\gamma_s} = 348 \,\mathrm{MPa}$$

Les résultats obtenus sont donnés dans le tableau ci-dessous:

Mm Me Ms

Figure V.7.La zone nodale

Niveaux	Section (cm ²)	Z (cm)	A _s (cm ²)	M _R (KN.m)
RDC, 1ereet 2 ^{éme} étage	55×50	49.5	24.12	415.49
3,4et ,5 ^{ème} étage	50×45	45	18.47	289.24

Chapitre V

Etude des éléments structuraux

6,7 ^{eme} étage	45×40	40.5	15.39	216.90
Local machine	35×35	31.5	12.32	135.05

2)Détermination du moment résistant dans les poutres

Les résultats obtenus sont donnés dans le tableau ci-dessous :

Tableau V.13. Moment résistant dans les poutres :

Niveau	Sens	$M_{_W}$	M_{e}	$1.25 \times (M_{\scriptscriptstyle W} + M_{\scriptscriptstyle e})$
		(KN.m)	(KN.m)	(KN.m)
RDC, 1ereet	Poutre principale	86.19	86.19	215.47
2 ^{éme} étage	Poutre secondaire	82.33	82.33	205.82
3,4et ,5 ^{ème} étage	Poutre principale	86.19	86.19	215.47
	Poutre secondaire	82.33	82.33	205.82
6 ,7 ^{eme} étage	Poutre principale	86.19	86.19	215.47
	Poutre secondaire	82.33	82.33	205.82
Local machine	Poutre principale	86.19	86.19	215.47
	Poutre secondaire	82.33	82.33	205.82

On voit bien que les moments résistants dans les poteaux sont supérieurs aux moments résistant dans les poutres dans les deux sens donc la formation des rotules plastiques se fera dans les poutres et non pas dans les poteaux.

V.3. Etude des voiles

Le RPA/99/version 2003 (3.4.A.1.a), exige de mettre des voiles à chaque structure en béton armé dépassant quatre niveaux ou 14 m de hauteur dans la zone IIa (moyenne sismicité).

V.3.1.Définition:

Les voiles ou murs de contreventement peuvent être définis comme étant des éléments verticaux qui sont destinés à reprendre, outre les charges verticales (au plus 20%), Les efforts horizontaux (au plus 75%) grâce à leurs rigidités importantes dans leurs plan.

Ils présentent deux plans l'un de faible inertie et l'autre de forte inertie ce qui impose une disposition dans les deux sens (x et y).

Un voile travail comme une console encastré à sa base, on distingue deux types de voiles qui ont un comportement différent :

- ✓ Voiles élancés : $(\frac{h}{l} > 1,5)$
- ✓ Voiles courts : $(\frac{h}{l} < 1, 5)$

Un voile est sollicité en flexion composée avec un effort tranchant, d'où on peut citer les principaux modes de ruptures dans un voile élancé causé par ces sollicitations :

- ✓ Rupture par flexion
- ✓ Rupture en flexion par effort tranchant.
- ✓ Rupture par écrasement ou traction du béton.

V.3.2.Recommandation du RPA:

a) Armatures verticales:

- Les armatures verticales sont destinées à reprendre les efforts de flexion, elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes :
- L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que : $A_{\min} = 0, 2 \cdot L_t \cdot e$

 L_t : Longueur de la zone tendue.

e : épaisseur du voile.

Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement st <e (e : épaisseur de voile).

- ➤ A chaque extrémités du voile, l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile.
- Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

b)Les armatures horizontales :

Les armatures horizontales sont destinées à reprendre les efforts tranchants,

Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de $10\phi_{i}$.

c)Les armatures transversales :

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement, elles sont en nombre de quatre épingles par 1m² au moins.

d)Les armatures de coutures :

Le long des joints de reprises de coulage, l'effort tranchantdoit être pris par les aciers de couture dont la section doit être calculéeavec la formule :

$$A_{Vj} = 1, 1 \cdot \frac{V}{f_e}$$
; avec: $V = 1, 4 \cdot V_u$

e)Règles communes (armatures verticales et horizontales) :

Le pourcentage minimum d'armatures (verticales et horizontales) :

$$A_{\min} = 0.15 \% b \cdot h.$$
....dans la section globale de voile.
 $A_{\min} = 0.10 \% b \cdot h.$...dans la zone courante.

- $ightharpoonup \phi_l \le \frac{1}{10}e$ (Exception faite pour les zones d'about).
- \triangleright L'espacement : $s_t = \min(1, 5a; 30 cm)$;
- Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.
- ➤ Longueurs de recouvrement :
 - 40ϕ : Pour les barres situées dans les zones où le renversement de signe des efforts et possible.
 - 20ϕ : Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

V.3.3.Le ferraillage:

a) Les armatures verticales :

Le calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section $(b \times h)$.

La section trouvée (A) sera répartie sur toute la moitié de la section en respectant toujours les recommandations du RPA99, addenda 2003

b) Les armatures horizontales :

Leurs sections sont calculées selon la formule suivante :

$$\frac{A_{t}}{b \cdot S_{t}} \ge \frac{\tau - 0.3 \cdot f_{tj} \cdot k}{0.9 \cdot \frac{f_{e}}{\gamma_{s}} \cdot (\sin \alpha + \cos \alpha)}$$

Elle doit aussi respecter les conditions du RPA.

Les résultats de ferraillages seront récapitulés dans le tableau ci-après où :

 A_V^{\min} /_{voile}: Section d'armature verticale minimale dans le voile complet

$$(A_{\min} = 0.15\%b \cdot l)$$

 $A_V^{\text{calculée}}/_{\text{face}}$: Section d'armature calculée pour une seule face de voile.

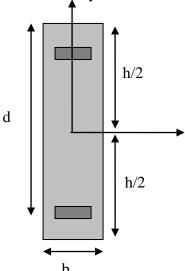
 $A_V^{\text{adoptée}}/_{\text{face}}$: Section d'armature adoptée pour une seule face de voile.

 S_t : Espacement.

 A_h^{\min} /_{voile} : Section d'armature horizontale minimale dans le voile complet $(A_{\min} = 0,15\%b\cdot l)$

 $A_h^{\text{calculée}}/_{\text{face}}$: Section d'armature calculée $(A_V^{\text{adoptée}}/4)$.

 $A_h^{\text{adoptée}}/_{\text{ml}}$: Section d'armature adoptée pour un mètre linière.


 $N^{bre}/_{ml}$: Nombre de barres adopté par un mètre linière.

• Calcul du ferraillage du voile :

Le logiciel Autodesk Robot, nous donne les sollicitations (N, M et V) dans chaque voile.

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

Les résultats de calcul sont récapitulés dans les tableaux qui suivent :

FigureV.8.Section du voile

Voile sens xx: (Vx)

Tableau V.14. Ferraillage du voile sens $\boldsymbol{x}\boldsymbol{x}$:

Niveau	RDC, 1 ^{er} et 2 étages	3,4 et 5 ^{eme} étage	6 et 7 ^{eme} étage
Section (cm ²)	130x20	130x20	130x20
N (KN)	1247.07	615.94	234.72
M (KN.m)	249.64	4.47	254.80
V (KN)	422.79	272.48	80,74
Amin (RPA) (cm ²)	3.9	3.9	3.9
A calculée/ face (cm²)	31.92	23.1	11.72
A adopté / face (cm²)	30.91	24,13	13,57
Nombre de barres/face	6T16+6T20	12T16	12T12
St (cm)	15	15	15
A _h calculée (cm²)	3.952	2.547	0.755
A _h min /ml (cm ²)	0.45	0.45	0.45
A _h adoptée (cm²)	4.52	3.14	2.01
Nombre de barre/face/ml	4T12	4T10	4T8
St (cm)	25	25	25

Voile sens yy : (Vy)

Tableau V.15. Ferraillage du voile sens yy :

	RDC, 1 ^{er} et		
Niveau	2 ^{eme} étage	3,4 et 5 ^{eme} étage	6 et 7 ^{eme} étage
Section (cm ²)	285x20	285x20	258x20
N (KN)	1098.28	765.90	350.28
M (KN.m)	1272.13	113.10	45.62
V (KN)	435.89	303.29	253.58
Amin (RPA) (cm ²)	8.55	8.55	8.55
Acalculée/ face (cm ²)	41.19	27.27	13.14
A adopté / face (cm²)	43,98	28.15	14.07
Nombre de barres/face	14T20	14T16	7T16
St (cm)	20	20	20
A _h calculée (cm ²)	1.487	1.035	0.865
A _h min /ml (cm ²)	0.6	0.6	0.6
A _h adoptée (cm²)	1.57	1.57	1.57

Nombre de			
barre/face/ml	2T10	2T10	2T10
St (cm)	20	20	20

• Exemple d'un schéma de ferraillage de voile (Vy) : Niveau RDC, 1^{er} et 2^{eme}étage

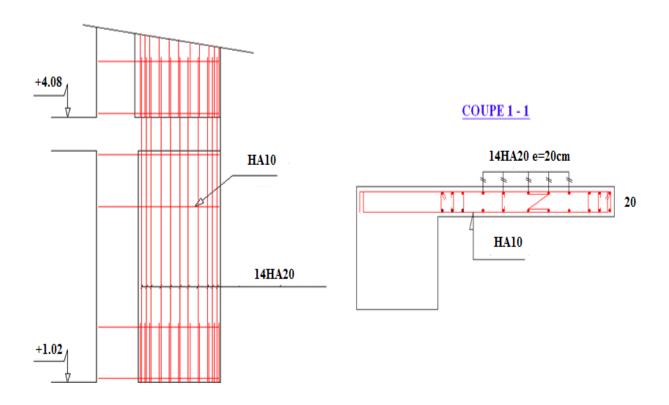


Figure V.9. Schéma de ferraillage de voile (Vy)

V.4. Conclusion:

Les éléments principaux jouent un rôle prépondérant vis-à-vis la résistance et la transmission des sollicitations donc ils doivent être correctement dimensionnés et bien armés ; d'ailleurs nous avons constaté que la section minimale d'armature exigé par le RPA99/2003 sont importante car il favorise la sécurité avant l'économie.

VI.1.Introduction:

Les fondations sont des éléments de l'infrastructure situés au-dessous de la base dont le rôle est d'assurer la transmission des charges et surcharges au sol provenant de la superstructure; elles forment une assise rigide Elles doivent assurer deux fonctions essentielles :

- > Reprendre les charges et surcharges supportées par la structure.
- > Transmettre ces charges et surcharges au sol dans de bonnes conditions, de façon à assurer la stabilité de l'ouvrage.

VI.2. Choix de type des fondations :

Le choix de type des fondations dépend des facteurs suivant :

- La capacité portante du terrain de fondation, sa nature et son homogénéité.
- La charge totale transmise au sol.
- La distance entre axes des poteaux.
- L'économie et la facilité de réalisation.

Pour le choix du type de fondation, la vérification se fait dans l'ordre suivant : les semelles isolées, les semelles filantes, le radier général et enfin on opte pour le choix qui convient.

Selon le rapport du sol, la contrainte admissible est 1.8 bar à une profondeur de 2.38 m.

VI.3. Combinaisons d'actions à considérer :

D'après le RPA99 (Article 10.1.4.1), les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

- \triangleright $G+Q\pm E$
- \triangleright $0.8G \pm E$

VI.4. Etude des fondations :

Vérification des semelles isolées :

La vérification à faire est : $\frac{N}{S} \leq \overline{\sigma_{sol}}$

Pour cette vérification on prend la semelle la plus sollicitée.

N: L'effort normal agissant sur la semelle, obtenu par le logiciel Robot Autodesk

S: Surface d'appui de la semelle.

 σ_{sol} : Contrainte admissible du sol.

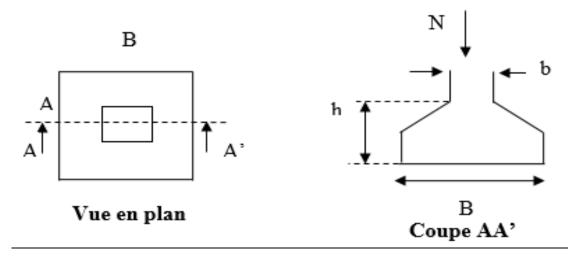


Figure VI.1.Semelle isolée

Les poteaux de notre structure sont rectangulaires à la base ($a \times b$), donc les semelles sont Rectangulaires ($A \times B$).

N = 1639.30 KN

 $N ext{ (infrastructures)} = N ext{ (longrine)} + N ext{ (dallage)} + N ext{ (avant poteau)} + N ext{ (semelle)} + N ext{ (terre)}.$

Les charges revenant à cette semelle sont comme suit :

 $N \text{ (longrine)} = \gamma_b \times S \times \sum li;$

 $N \; (\text{dallage}) = \gamma_b \, \times \big(B - 0.3\big) \!\! \times \!\! A \!\! \times \!\! e$

Avec:

B=largeur de la semelle.

A=longueur de la semelle.

e=épaisseur de la dalle flottante.

 $S = 30 \times 40 \ cm^2$: surface transversale de la longrine.

N (longrine) = $25 \times 0.4 \times 0.3 \times 10.85 = 32.55$ KN

N (dallage) = $25 \times (1.53 - 0.3) \times 9.35 \times 0.12 = 34.50 \text{ KN}$

N (avant poteau) = $\gamma_b \times S \times h \times n$.

Avec:

S: surface transversale de l'avant-poteau ;

 $S=55\times50=2750 \ cm^2$

h: hauteur de l'avant-poteau ; h = 2.38 m.

n: nombre de poteaux revenant à la semelle ; n = 3 poteaux.

N (avant-poteau) = $25 \times 0.55 \times 0.5 \times 2.38 \times 3 = 49.08$ KN

N (semelle) = $\gamma_b \times S \times ht$

N (semelle) = $25 \times 16.6 \times 0.2 = 83$ KN.

N (terre) = $\gamma_h \times S_{\text{semelle}} \times h$.

 γ_h : Poids spécifique du sol ; γ_h =20.4 KN/m3

N (terre) = $20.4 \times 16.6 \times 2 = 677.28$ KN.

 $N ext{ (infrastructure)} = 876.41 ext{ KN}.$

Ntotal = Nsup + Ninf = 1639.30 + 876.41 = 2515.71 KN.

$$\Rightarrow \frac{N}{S} \le \overline{\sigma_{sol}} \Rightarrow A \times B \ge \frac{N}{\overline{\sigma_{sol}}} \text{ ,on a: } \frac{a}{A} = \frac{b}{B} \text{ (Semelle et pôteau hom odhétiques)} \Rightarrow B = \sqrt{\frac{b \times N}{a \times \overline{\sigma_{sol}}}}$$

AN: B=3.92m

On remarque qu'il y a chevauchement entre les semelles, on tenant compte des entres axes des poteaux dans les deux sens, donc le choix des semelles isolées dans notre cas ne convient pas.

Vérification des Semelles filantes :

On Choisit une semelle filante de largeur B et de longueur L, située sous un portique de 3 poteaux

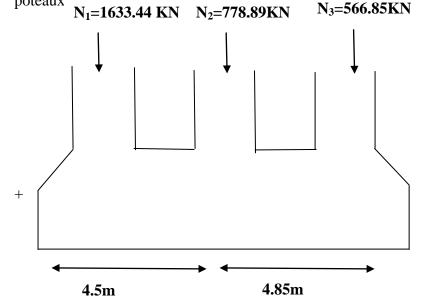


Figure VI.2.Semelle filante

$$N = \sum N_i = 2979.18KN$$

La vérification à faire est :
$$\frac{-}{\sigma_{sol}} \ge \frac{N}{S} = \frac{N}{B \times L} \Rightarrow B \ge \frac{N}{\sigma_{sol} \times L}$$

$$B \ge \frac{N}{\sigma_{sol} \times L} = \frac{2.97918}{0.18 \times 10.85} = 1.52m$$

Donc le type de fondations adéquates pour notre structure sera les semelles filantes.

VI.5. Étude des semelles filantes :

- > Dimensionnement (coffrage):
- Calcul de la largeur de la semelle (B) :

$$S = \frac{\sum N}{\overline{\sigma}_{sol}} = \frac{2.97918}{0.18} = 16.55 \ m^2$$

S: surface de la semelle.

$$S = L_{total} \times B$$
.

$$L = \sum li + 2 \times L_{d\acute{e}bordement}$$

$$L_{d\acute{e}bordement} = 0.75 \text{ m}.$$

$$L = 10.85 \text{ m}.$$

$$B \ge \frac{16.55}{10.85} = 1.52$$
m; soit: $B = 1.55$ m.

• Calcul de la hauteur totale de la semelle (ht) :

La hauteur totale de la semelle (ht) est déterminée par l'équation suivante :

ht = d + c

Avec:

c : enrobage des armatures ; c = 5 cm.

d : hauteur utile doit vérifier la condition suivante :

$$d \ge Max \begin{cases} B - a/4 \\ B - b/4 \end{cases}$$

$$(a \times b) = (55 \times 50) \ cm^2$$

$$d=0.35m \Rightarrow ht=0.05+0.35=0.4m \Rightarrow ht =0.4 m$$

Remarque:

Avec le choix de $d \ge B - b$ /4 , les conditions de non poinçonnement de compression Maximale du béton dans les bielles et de cisaillement maximal sont vérifiés.

Les vérifications :

• Vérification au poinçonnement :

Selon le BAEL99 (article A.5.2, 41), il faut vérifier la résistance de la dalle au poinçonnement Par effort tranchant, cette vérification s'effectue comme suit :

$$Nd \leq \ 0.045 \times Uc \times h \times_{\overline{\gamma_b}}^{f_{cj}} \ (A.5.2, 42).$$

Nd: effort normal de calcul.

h: hauteur totale de la semelle.

Uc : périmètre du contour au niveau du feuillet moyen.

• Sous poteaux le plus sollicité :

Le poteau le plus sollicité est le poteau rectangulaire (55×50) cm \times cm, le périmètre d'impact Uc

Est donné par la formule suivante : $Uc = 2 \times (A+B)$

$$\begin{cases} A = a + h = 0.55 + 0.40 = 0.95 \\ B = b + h = 0.50 + 0.40 = 0.9 \end{cases} \Rightarrow Uc = 3.7 \text{ m}$$

$$\Rightarrow$$
 $Nd = 0.876$ MN $\leq 0.045 \times 3.7 \times 0.4 \times \frac{25}{1.5} = 1.11$ MN.....condition vérifiée.

• Vérification de la contrainte dans le sol :

$$\sigma_{min} = 1.5 \times Q \Rightarrow \sigma_{min} = 5.62 \text{ KN/}m^2$$

$$\sigma_{max} = 1.35\text{G} + 1.5 \times \text{Q} = 49.67 \text{ KN/}m^2$$

$$\sigma_m = \frac{3 \times \sigma_{max} + \sigma_{min}}{4} = 38.65 \text{ KN/}m^2$$

$$\sigma_m \le \sigma_{sol} = 180 \text{ KN/}m^2$$
; La contrainte est vérifiée.

• Charges agissantes sur la semelle :

Les charges revenant à la semelle sont exposées dans figure ci-dessous :

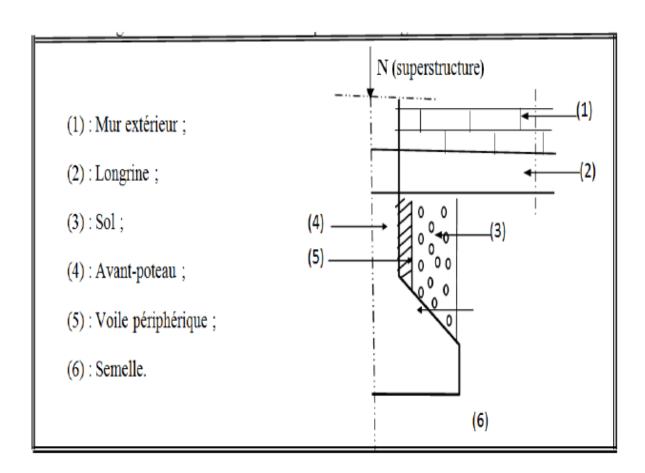


Figure VI.3.Différentes charges agissant sur la semelle

NTotal = N (superstructure) + N (infrastructure).

Avec:

N (superstructure) = $\sum_{i=1}^{N} i$; Ni : effort normal ramené par le poteau « i ». N (superstructure) = 2979.18 KN. N (infrastructure) = 876.41 KN.

N Total = 3855.59 KN

• Calcul de la surface de la semelle (S) :

La surface de la semelle est déterminée à partir de la condition suivante :

$$S \ge \frac{NTotal}{\overline{\sigma}_{sol}} = \frac{3855.59}{180} = 21.41m^2$$

 $S=L\times B$.

$$\begin{split} L = & \sum l_{i} + 2 \times L_{d\acute{e}bordement}; \ L_{d\acute{e}bordement} = 0.75 \ m. \\ L = 10.85 \ m \end{split}$$

$$B \ge \frac{21.41}{10.85} = 1.97 \ m$$
; soit : $B = 2 \ m$.

• Calcul de la hauteur totale de la semelle (ht) :

$$d \ge Max \begin{cases} B - a / 4 \\ \Rightarrow d \ge 0.375 \text{ m.} \\ B - b / 4 \end{cases}$$

On prend:

 $d = 0.4 \text{ m} \implies ht = 0.05 + 0.4 = 0.45 \text{ m}.$

• Vérification de la poussée hydrostatique :

On doit vérifier que :

$$N \ge fs \times S_{semelle} \times \gamma_w$$

Avec:

Fs = 1.15 (coefficient de sécurité).

 $\gamma_w = 10 KN/m3$ (poids volumique de l'eau).

 $S_{\text{semelle}} = 21.41 m^2$ (surface de la semelle filante).

H = 2.38m (hauteur de l'avant poteaux).

$$N = 876.41 \text{ KN} > 1.15 \times 10 \times 2.38 \times 21.41 = 585.99 \text{KN}$$

Le Ferraillage :

• Aciers principaux (A//B):

$$A/\!/B = \frac{\text{Nu } \times (\text{B} - \text{b})}{8 \times d \times \overline{\sigma}_{st}}$$

Avec:

Nu : effort ultime sollicitant la semelle ;

 σ st : contrainte d'acier ; $\bar{\sigma}_{st} = \text{fe}/\sigma \text{s} = 400/1 = 400 \, MPa$.

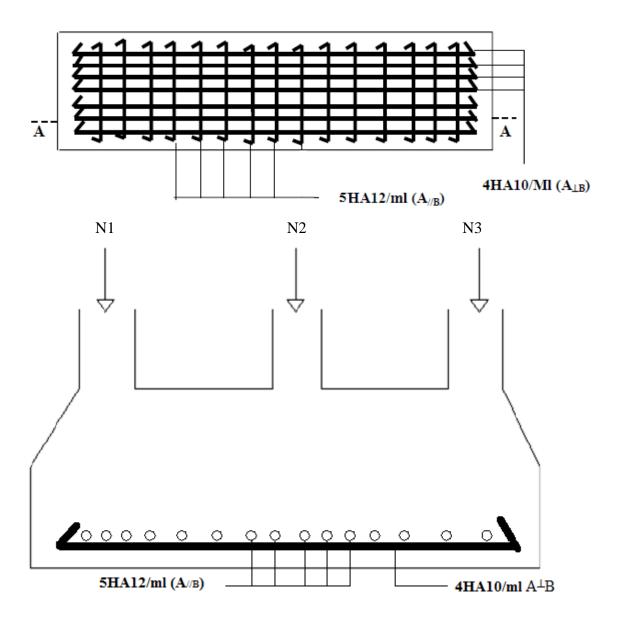
D'après Robot Autodesk on a : Nu=2095.06 KN

• Aciers de répartition $(A^{\perp}B)$:

$$A \perp B = \frac{A//B}{3}$$

Application numérique :

B = 2 m; Nu = 2095.06 KN; b = 60 cm; d = 20 cm


$$A//B = \frac{2095.06 \times 10^{-3} \times (2 - 0.6)}{8 \times 0.2 \times 400} = 4.58 \text{ cm}^2/\text{ml}$$

On adopte : 5HA12/ml = 5.65 cm2 avec un espacement de 20cm.

$$A^{\perp}B = \frac{4.58}{3} = 1.52 \ cm^2/ml$$

On adopte : $4\text{HA}10/\text{ml} = 3.16 \text{ } cm^2$; avec un espacement de 15cm.

• Schéma de ferraillage :

Coupe A-A

Figure VI.4.Schéma de ferraillage de la semelle filante sous poteau

VI.6.Étude des poutres de rigidité :

• Définition :

C'est une poutre disposée le long de la semelle. Elle est nécessaire pour reprendre les efforts ramenés par les poteaux et les répartir sur toute la semelle. La poutre de rigidité est généralement noyée dans la semelle.

• Dimensionnement:

La hauteur (h) de la poutre de rigidité est déterminée à partir de la formule suivante :

$$\frac{L}{9} \le h \le \frac{L}{6}$$

L : étant la plus grande distance entre axe de deux poteaux dans la semelle.

$$L = 4.85 \text{ m} \implies \frac{4.85}{9} \le h \le \frac{4.85}{6} \implies 53.88 \le h \le 80.83 \text{ (cm)}$$

Soit: h = 70 cm.

 $b = bavant poteau \implies b = 55cm.$

• Calcul des charges agissantes sur la poutre de rigidité :

$$Q = \frac{\sum Ni}{L}$$

$$Ni=2979.18, L=10.85m \implies Q = 274.57KN/ml$$

• Calcul des sollicitations :

-Méthode de calcul:

La poutre de rigidité est calculée comme une poutre continue renversée soumise à la réaction du sol et appuyée sur les poteaux.

Pour le calcul des sollicitations (moment fléchissant et effort tranchant), on applique la méthode Caquot.

Apres calcule avec la méthode de Caquot on a trouvé les résultats suivant :

Tableau VI.1. sollicitations agissant sur la poutre de rigidité :

Travées	L(m)	X ₀ (m)	M ₀ (KN.m)	Q (KN/m)	M _t (KN.m)	M _g (KN.m)	M _d (KN.m)
AB	4.5	1.67	688.74	274.57	651.65	0	480.02
BC	4.85	2.95	800.04	274.57	795.75	480.02	0

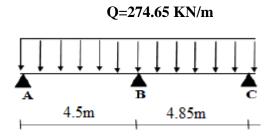
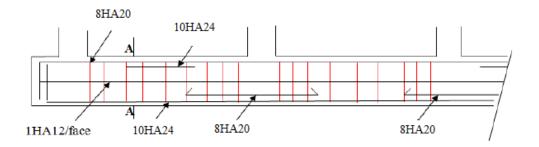


Figure VI.6.Schéma statique de la poutre de rigidité

• Calcul des armatures :


Le ferraillage se fera pour une section rectangulaire (b×h) à la flexion simple.

Les résultats de calcul sont récapitulés dans les tableaux suivant :

$$\mathbf{A_{\min}} = \frac{0.23 \times b \times d \times f_{t28}}{f_e} = \frac{0.23 \times 0.3 \times 0.35 \times 2.1}{400} = 1.27 \ cm^2$$

Tableau VI.2.ferraillage de la poutre de rigidité :

	\mathbf{M}_{t}	$\mathbf{M}_{\mathbf{a}}$	A _{tc}	A_{ac}	$A_{t \text{ adopt\'e}} (cm^2/m)$	A _a adopté
	(KN.m/m)	(KN.m/m)	(cm ² /m)	(cm ² /m)		(cm ² /m)
AB	651.65	480.02	32.4	23.1	10HA22=38.01	8HA20=25.13
BC	795.75	480.02	41	23.1	10HA24=45.24	8HA20=25.13

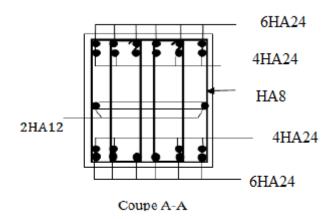


Figure VI.7.Schéma de ferraillage de la poutre de rigidité

VI.7.Les longrines:

• Définition :

Les longrines sont des poutres de chaînage, de section rectangulaire, situées au niveau de l'infrastructure reliant les semelles.

Rôle des longrines :

Elles ont pour rôle de :

- Porter les murs de façades ;
- Limiter les dallages;
- Solidariser les points d'appui d'un même bloc en s'opposant à leurs déplacements relatifs dans le plan horizontal.

• Dimensions minimales de la section transversale des longrines :

La hauteur h des longrines est définie par la formule suivante :

$$\frac{\text{Lmax}}{15} \le h \le \frac{\text{Lmax}}{10}$$
 [1] (Art IV.2. 3)

Avec:

L_{max}: longueur maximale entre axes des longrines.

$$L_{max} = 4.85 \text{m}.$$

$$\frac{485}{15} \le h \le \frac{485}{10} \Rightarrow 32.33 \le h \le 48.5 \text{ (cm)};$$

Soit : h = 40 cm; b = 30 cm.

Les dimensions adoptées pour les longrines sont : $(b \times h) = (30 \times 40) \text{ cm}^2$

• Calcul des longrines :

Les longrines doivent être calculées pour résister à la traction sous l'action d'une force égale à :

$$F = \frac{N}{\alpha} \ge 20 \text{ KN}.$$

Avec:

N : C'est la valeur maximale des charges verticales de gravité apportées par les points d'appuis solidarisés (poteaux) :

 $\alpha\,$: Coefficient fonction de la zone sismique et de catégorie du site considéré :

Site : S
$$\alpha = 15$$
Zone : IIa

• Calcul des armatures :

Le calcul des armatures en traction simple sera conduit selon les règles [B.A.E.L91] :

Les armatures longitudinales(Al) :

$$Al \ge (A (ELU); A (ELS)).$$
 BAEL (Art. A.4. 5. 33)

Avec:

A(ELU) : section d'armatures calculée à l'état limite ultime : A(ELU) = $\frac{\text{FELU}}{\overline{\sigma}_s}$

 $FELU = \frac{NUmax}{a}$; avec : N_{Umax} : effort normal dans le poteau le plus sollicité à L'ELU.

 $\overline{\sigma}_s$ = 400 MPa : contrainte limite ultime de l'acier.

A(ELS): section d'armatures calculée à l'état limite de service : A(ELS) = $\frac{\text{FELS}}{\overline{\sigma}_s}$

$$Fels = \frac{Nsmax}{\alpha}$$

Avec:

Nsmax : Effort normal dans le poteau le plus sollicité à L'Els.

 $\sigma_s = 202 \text{ MPa}$: Contrainte limite de service de l'acier.

• Condition de non-fragilité :

Amin = b.d.
$$\frac{f_{t28}}{f_e} = 30 \times 35 \times \frac{2.1}{400} = 5.51 \text{ cm}^2$$
 BAEL (Art.A.4.2.1)

Minimum d'armature exigé par le RPA:

Amin = 0, 6 %.b.d =
$$0.6 \% 30 \times 40 = 7.2 \text{ cm}^2$$
 RPA (Art.10.1.1.b)

Les résultats sont résumés dans le tableau suivant :

Tableau VI.3.Ferraillage longitudinal des longrines :

Numax (KN)	FELU (KN)	A(ELU) (cm²)	NSmax (KN)	FELS (KN)	A(ELS)	Aı (cm²)	Amin(B.A.E.L91) (cm²)	Aadoptée (cm²)
1507.64	100.51	2.51	1094.45	72.96	3.61	3.61	7.2	6T12=6.79

Les armatures transversales (At) :

 $\Phi t \le \min \{h / 35, b0/10, \Phi L\};$

Donc:

 $\Phi t \le \min \{40/35, 30/10, 1.2\} = 1.2cm.$

 $\Rightarrow \Phi t \leq 12 \text{ mm} \Rightarrow \Phi t = 8 \text{ mm}$

On va choisir un cadre et un étrier

Donc, on adoptera $2HA8 \Rightarrow At = 1.01 \text{ cm} 2$

• Espacement :

St \leq min [20cm; 15 Φ 1min] **RPA** (Art.10.1.1.b)

 $St \le min [20cm; 15 \times 1, 2 min] = min [20cm; 18 min] = 18cm$

Soit: st=15cm.

• Schéma de ferraillage des longrines :

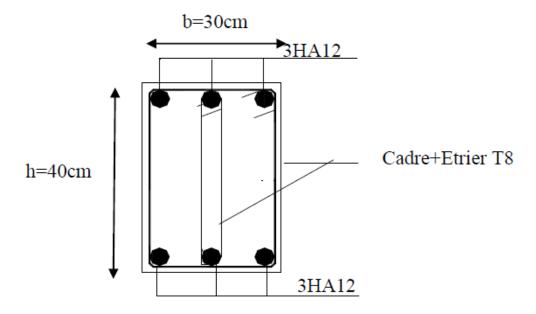


Figure VI.8.Schéma de ferraillage des longrines

VI .8.Étude du voile périphérique :

Le voile périphérique est un panneau vertical en béton armé entourant une partie ou la totalité de l'immeuble, il est destiné à soutenir l'action des poussées des terres et les transmettre aux poteaux.

• Dimensionnement :

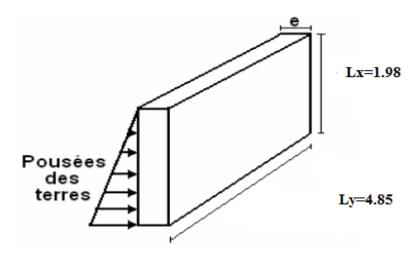


Figure VI.9: Voile périphérique.

Selon le RPA 99/version 2003(article 10.1.2):

 $e \ge 15$ cm; On prend e = 20cm.

• Caractéristiques géotechniques du sol :

D'après le rapport de sol on a :

- Le poids spécifique $\gamma_h = 20.4 KN / m^3$
- -L'ongle de frottement $\varphi = 27^{\circ}$
- -La cohésion c=0.39 bar

Évaluation des charges et surcharges :

-La poussée des terres sur le rideau :

$$G = h \times (\gamma \times tg^{2}(\frac{\pi}{4} - \frac{\varphi}{2}) - 2 \times c \times tg(\frac{\pi}{4} - \frac{\varphi}{2}))$$

$$G = 1.98 \times (20.4 \times tg^{2}(\frac{\pi}{4} - \frac{27}{2}) - 2 \times 39 \times tg(\frac{\pi}{4} - \frac{40}{2})) = 32.63 \ KN/ml$$

- Surcharges accidentelle : $q=10 \text{ KN/} m^2$

$$Q = q \times tg^2(\frac{\pi}{4} - \frac{\varphi}{2})$$

Q = 3.75 KN/ml

• Ferraillage du voile :

Le voile s'appuie sur la structure (poteau – poutre) et la transmission des charges se fait Comme une dalle pleine sur quatre appuis.

$$\begin{split} &\sigma_{\min} = 1.5 \times \mathrm{Q} \implies \sigma_{\min} = 5.62 \; \mathrm{KN / m^2} \\ &\sigma_{\max} = 1{,}35 \times G + 1{,}5 \times Q = 49.67 \; \mathrm{KN / m^2} \\ &\sigma_{moy} = \frac{3 \times \sigma_{\max} + \sigma_{\min}}{4} = 38.65 \; \; \mathrm{KN / m^2} \end{split}$$

$$\alpha = \frac{L_x}{L_y} = 0.408 \succ 0.4 \rightarrow \text{ La dalle porte dans les deux sens.}$$

* A l'ELU:

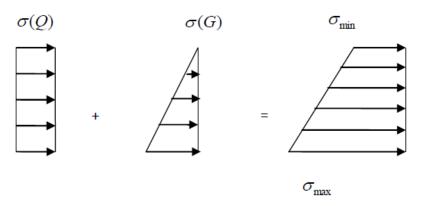


Figure VI.10. Répartition des contraintes sur le voile

Pour le ferraillage on prend le plus grand panneau dont les caractéristiques sont :

Pour le ferraillage on prend le plus grand panneau dont les caractéristiques sont :

$$L_x = 1.98 \ m$$
 b = 100 cm

$$L_{y} = 4.85 \ m$$
 h = 20 cm

$$\alpha = 0.408 \Rightarrow ELU: \begin{cases} \mu_x = 0.1088 \\ \mu_y = 0.2500 \end{cases}$$
 [Annexe I]

$$M_{0x} = \mu_x \times L_x^2 \times q_u$$

$$M_{0y} = M_{0x} \times \mu_{y}$$

$$M_{0x} = 21.18 \, KN.m.$$

$$M_{\dot{a}v} = 5.29 \, KN.m$$

$$M_{ty} = 0.85 \times M_{0y} = 4.5 \, KN.m$$

$$M_{tx} = 0.85 \times M_{dx} = 18.003 \text{ KN.m}$$

$$M_{ap} = 0.3 \times M_{0x} = 6.35 \text{ KN.m}$$

Les sections d'armatures sont récapitulées dans le tableau ci-dessous :

Avec : $A_{min} = 0.1\%$ $b \times h$ condition exigée par le RPA.

Tableau VI.4. Section des armatures du voile périphérique :

	Sens	M (KN*m)	$\mu_{_{bu}}$	α	Z (m)	A (cm²)	A _{min} (cm ²)	A _{adopté} (cm²)
travée	Xx	18.003	0.002	0.0025	0.179	2.87	2	5T12=5.65
	Yy	4.5	0.0011	0.0014	0.179	0.48	2	5T12=5.65
Appui		6.35	0.0009	0.0012	0.179	1.005	2	4T8=2.01

• Vérification de l'effort tranchant :

On doit vérifier que :

$$\tau_u = \frac{V}{h*d} \le \bar{\tau} = \min(0.1*f_{c28}; 3MPa) = 2.5 MPa$$
, fissuration nuisible.

On a
$$V_u = \frac{q_u * L}{2} = \frac{38.65 * 4.85}{2} = 93.72 \text{ KN}$$

♦ A l'ELS :

$$\begin{split} \sigma_{\min} &= 1 \times Q = 3.75 \ KN / m^2 \\ \sigma_{\max} &= 1 \times G = 32.63 \ KN / m^2 \\ q_s &= \sigma_{\min} + \sigma_{\max} = 36.38 KN / m^2 \\ ELS &\Rightarrow \begin{cases} \mu_x = 0.1038 \\ \mu_y = 0.3402 \end{cases} \end{split}$$

$$M_{0x} = 6.7 \text{ KN.m}$$

 $M_{\dot{a}y} = 2.28 \text{ KN.m}$
 $M_{tx} = 5.69 \text{ KN.m}$
 $M_{ty} = 1.93 \text{ KN.m}$

 $M_{ap} = 2.01 \ KN.m$

• Vérification des contraintes :

-Contraintes dans le béton :

y = 4.73 cm

$$I = 18451 \text{ cm}^4$$

 $\sigma_{bc} = \frac{M_{ser}}{I} \times y = 1.73 \text{ MPa} \times \overline{\sigma_{bc}} = 15 \text{ MPa} \Rightarrow \text{ La contrainte dans le béton est vérifiée.}$

-Contraintes dans l'acier :

$$\sigma_{s} = 15 * \frac{M_{ser}}{I} (d - y) = 73.03 MPa$$

$$\overline{\sigma_{s}} = \min \left[\frac{2}{.3} \times fe ; 110 \sqrt{\eta \times f_{t28}} \right] = 201,63 MPa._{\eta=1.6}; f_{t28} = 0.6 + 0.06 f_{c28}.$$

La fissuration est considérée nuisible

$$\sigma_s \prec \overline{\sigma_s} \rightarrow condition \ v\'erifi\'ee$$

• Schéma de ferraillage du voile périphérique :

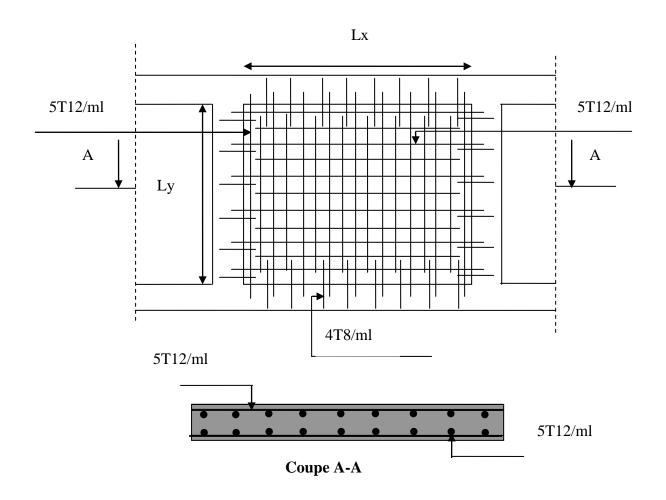


Figure VI.11.Schéma de ferraillage du voile périphérique

Conclusion générale:

Cette étude nous a permis d'enrichir les connaissances requises le long de notre cursus, et d'en faire un certain nombre de conclusions. Parmi lesquelles on a pu retenir ce qui suit :

- ✓ Une bonne disposition des voiles permet d'avoir une bonne répartition des charges entre les portiques et les voiles (interaction) et de limiter les effets de torsions (moment de torsion).
- ✓ Dans le but de vérifier l'effort normal réduit et l'interaction horizontale ; les sections des poteaux déjà définies par le pré dimensionnement ont été augmentées.
- ✓ Pour garantir une stabilité totale de la structure vis-à-vis des déplacements horizontaux, nous avons vérifié les effets du second ordre (effet P-delta).
- ✓ Nous avons vérifié les moments résistants ultimes dans les poteaux et les poutres au niveau des zones nodales et nous avons constaté qu'il n'ya pas de risque de formation de rotules plastiques dans les poteaux avant les poutres.
- ✓ Outre la résistance, l'économie est un facteur très important qu'on peut concrétiser en faisant le choix adéquat des sections de béton et d'acier dans les éléments résistants de l'ouvrage, tout en respectant les sections minimales requises par le règlement en vigueur.

Bibliographie

- ✓ Règles de conception et de calcul des structures en béton armé (C.B.A 93).
- ✓ Règles techniques de conception et de calcul des ouvrages et construction en béton armé suivant la méthode des états limites (**B.A.E.L 91**).
- ✓ Règles Parasismiques Algériennes (R.P.A 99/ version 2003).
- ✓ Document technique règlementaire (**D.T.R**), charges et surcharges d'exploitations.
- ✓ Autres documents consultés :

Cahiers de cours de cursus. Mémoires de fin d'études.

$\alpha = L_x$	ELU	υ = 0	ELS υ = 0.2				
L_{Y}	μ _x	μ_{y}	μχ	μ_{y}			
0.40	0.1101	0.2500	0.0121	0.2854			
0.41	0.1088	0.2500	0.1110	0.2924			
0.42	0.1075	0.2500	0.1098	0.3000			
0.43	0.1062	0.2500	0.1087	0.3077			
0.44	0.1049	0.2500	0.1075	0.3155			
0.45	0.1036	0.2500	0.1063	0.3234			
0.46	0.1022	0.2500	0.1051	0.3319			
0.47	0.1008	0.2500	0.1038	0.3402			
0.48	0.0994	0.2500	0.1026	0.3491			
0.49	0.0980	0.2500	0.1013	0.3580			
0.50	0.0966	0.2500	0.1000	0.3671			
0.51	0.0951	0.2500	0.0987	0.3758			
0.52	0.0937	0.2500	0.0974	0.3853			
0.53	0.0922	0.2500	0.0961	0.3949			
0.54	0.0908	0.2500	0.0948	0.4050			
0.55	0.0894	0.2500	0.0936	0.4150			
0.56	0.0880	0.2500	0.0923	0.4254			
0.57	0.0865	0.2582	0.0910	0.4357			
0.58	0.0851	0.2703	0.0897	0.4456			
0.59	0.0836	0.2822	0.0884	0.4565			
0.60	0.0822	0.2948	0.0870	0.4672			
0.61	0.0808	0.3075	0.0857	0.4781			
0.62	0.0794	0.3205	0.0844	0.4892			
0.63	0.0779	0.3338	0.0831	0.5004			
0.64	0.0765	0.3472	0.0819	0.5117			
0.65	0.0751	0.3613	0.0805	0.5235			
0.66	0.0737	0.3753	0.0792	0.5351			
0.67	0.0723	0.3895	0.0780	0.5469			
0.68	0.0710	0.4034	0.0767	0.5584			
0.69	0.0697	0.4181	0.0755	0.5704			
0.70	0.0684	0.4320	0.0743	0.5817			
0.71	0.0671	0.4471	0.0731	0.5940			
0.72	0.0658	0.4624	0.0719	0.6063			
0.73	0.0646	0.4780	0.0708	0.6188			
0.74	0.0633	0.4938	0.0696	0.6315			
0.75	0.0621	0.5105	0.0684	0.6447			
0.76	0.0608	0.5274	0.0672	0.6580			
0.77	0.0596	0.5440	0.0661	0.6710			
0.78	0.0584	0.5608	0.0650	0.6841			
0.79	0.0573	0.5786	0.0639	0.6978			
0.80	0.0561	0.5959	0.0628	0.7111			
0.81	0.0550	0.6135	0.0617	0.7246			
0.82	0.0539	0.6313	0.0607	0.7381			
0.83	0.0528	0.6494	0.0956	0.7518			
0.84	0.0517	0.6678	0.0586	0.7655			
0.85	0.0506	0.6864	0.0576	0.7794			
0.86	0.0496	0.7052	0.0566	0.7932			
0.87	0.0486	0.7244	0.0556	0.8074			
0.88	0.0476	0.7438	0.0546	0.8216			
0.89	0.0466	0.7635	0.0537	0.8358			
0.90	0.0456	0.7834	0.0528	0.8502			
0.91	0.0447	0.8036	0.0518	0.8646			
0.92	0.0437	0.8251	0.0509	0.8799			
0.93	0.0428	0.8450	0.0500	0.8939			
0.94	0.0419	0.8661	0.0491	0.9087			
0.95	0.0410	0.8875	0.0483	0.9236			
0.96	0.0401	0.9092	0.0474	0.9385			
0.97	0.0392	0.9322	0.4065	0.9543			
0.98	0.0384	0.9545	0.0457	0.9694			
0.99	0.0376	0.9771	0.0449	0.9847			
1.00	0.0368	1.0000	0.0441	0.1000			

Annexe II

Table de PIGEAUD

M1 et M2 pour une charge concentrique P=1 s'exerçant sur une surface réduite u*v au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimension Lx*Ly Avec Lx < Ly.

$$\rho = 0.6$$

	u/lx v/ly	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Valeur de M ₁	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.310 0.255 0.220 0.197 0.177 0.160 0.144 0.131 0.119 0.109	0.273 0.249 0.224 0.200 0.180 0.162 0.148 0.135 0.123 0.112 0.102	0.217 0.208 0.193 0.176 0.162 0.149 0137 0.124 0.114 0.104 0.095	0.183 0.178 0.168 0.158 0.148 0.137 0.126 0.114 0.106 0.097 0.088	0.162 0.158 0.152 0.144 0.135 0.125 0.115 0.106 0.098 0.090 0.081	0.143 0.141 0.137 0.130 0.122 0.113 0.106 0.098 0.090 0.083 0.075	0.127 0.126 0.122 0.117 0.110 0.103 0.097 0.090 0.083 0.076 0.068	0.114 0.113 0.110 0.106 0.100 0.094 0.088 0.082 0.076 0.069 0.063	0.104 0.103 0.100 0.097 0.092 0.087 0.081 0.075 0.069 0.063 0.057	0.094 0.093 0.092 0.088 0.078 0.074 0.068 0.063 0.057 0.053	0.087 0.086 0.084 0.080 0.077 0.072 0.067 0.062 0.057 0.053 0.049
Valeur de M ₂	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	/ 0.170 0.110 0.084 0.064 0.049 0.044 0.038 0.033 0.028 0.023	0.320 0.160 0.109 0.083 0.064 0.049 0.044 0.038 0.033 0.028 0.023	0.232 0.150 0.107 0.082 0.063 0.049 0.044 0.038 0.033 0.028 0.023	0.200 0.144 0.103 0.080 0.062 0.048 0.044 0.038 0.033 0.028 0.023	0.181 0.136 0.100 0.078 0.060 0.048 0.043 0.037 0.032 0.027 0.022	0.163 0.127 0.096 0.074 0.057 0.047 0.042 0.036 0.030 0.026 0.021	0.150 0.118 0.088 0.070 0.053 0.046 0.040 0.034 0.029 0.024 0.019	0.136 0.107 0.083 0.065 0.050 0.044 0.038 0.033 0.028 0.023 0.018	0.120 0.098 0.076 0.059 0.048 0.042 0.037 0.031 0.026 0.022 0.017	0.103 0.087 0.069 0.053 0.046 0.039 0.034 0.028 0.024 0.019 0.016	0.095 0.079 0.061 0.049 0.043 0.037 0.031 0.026 0.021 0.018 0.015

Annexe III

Performances & Raffinement

Ligne Building

Table dimensionnelle T30

ascenseurs de personnes machinerie supérieure entraînement électrique

Charge nominale en kg		Vitesse nominale en m/s	Entraîn. (1)	Nombre niveaux maxi	Course maxi	Dimensions de cabine	Passage libre de porte	Dimensions de gaine	Profor de cuv	The state of the s
	H.					BK x TK x HK	BT x HT	BS x TS	(2) HSG	一樣接
630	6	1.00	2 v	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140
8 pers.			DyS	12	32	110 x 140 x 220	80 × 200	180 x 210	135	140
		200	ACVF	12	32	110 x 140 x 220	80 x 200	180 x 210	135	140
		1,60	Dy S	18	50	110 x 140 x 220	80 x 200	180 x 210 +	150	160
			ACVF	18	50	110 x 140 x 220	80 x 200	180 x 210	15C	160
800	12	1.00	2 V		24	185, 000 F20	80×200		2000	
ltija e			Dy Sys			FG 11 (15 - 27)	7005			
			No.			THE STREET			7.	
		100	D.			44	1.4			
			Alter-			OS COMMO	10.00			
		200	DAME.	31.11		455, 100, 200	200		- 35	
160			10 Kr.			Sec. 16. 15. 19.	(40) (20)	· Surger	3.57	
1000	6	1,00	2 v	12	32	160 x 140 x 230	110 x 210	240 × 230	140	140
3 pers		770000	DyS	12	32	160 x 140 x 230	110 × 210	240 × 230	140	140
		A STATE OF THE STA	ACVF	12	32	160 x 140 x 230	110 x 210	240 × 230	140	140
		1.60	DyS	18	50	160 x 140 x 230	110 x 210	240 x 230	155	160
			ACVF	18	50	160 x 140 x 230	110 x 210	240 x 230	155	160
	100	2.50	Dy MV	28	80	160 x 140 x 230	110 × 210	240 × 230	180	220
			TD 2	31	80	160 x 140 x 230	110 x 210	240 x 230	180	220
		4.00	TD 2	31	80	160 x 140 x 230	110 x 210	240 × 230	320	
250	6	1.00	Dy S .	12	32	195 x 140 x 230	110 x 210	260 x 230	140	160
6 pers			ACVF	12	32	195 x 140 x 230	110 x 210	260 x 230	140	160
		1.60	DyS	18	50	195 x 140 x 230	110 × 210	260 × 230	155	160
			ACVF	18	50	195 x 140 x 230	110 x 210	260 × 230	155	160
		2 50	Dy MV	28	80	195 x 140 x 230	. 110 × 210	260 < 230	180	220
			TD 2	31	80	195 x 140 x 230	110 x 210	260 / 230	180	220
		4 00	TD 2	31	80	195 x 140 x 230	110 - 210	260 < 230	320	
600	is	:,00 -	DyS	12	32	195 x 175 x 230	110 x 210	_260 × 260	140	160
1 pers.			ACVF	12	32	195 x 175 x 230	110 x 210	260 x 260	140	160
		1,60	DyS	18	50	195 x 175 x 230	110 x 210	260 x 260	155	160
		100	ACVF	18	50	195 x 175 x 230	110 x 210	260 x 260	155	160
		: 50	Dy MV	28	80	195 x 175 x 230	110 × 210	260 x 260	180	220
			TD 2	31	80	195 × 175 × 230	110 x 210	260 x 260	180	220
		= 00	TD 2	31	80	195 x 175 x 230 .	110 x 210	260 x 260	320	-

Note: Journal sectors sont exprimees on commerce seal infections contraines.

[2] Les profondeurs de cavente et hauteurs post cale sont processon y contraines of the contrained of the contrain

Caractéristiques générales

Desposition.

en simplex (pour les dispositions en batterie.

consulter la table T31)

Etumbre de faces de service Distance mini entre niveaux simple acces 255 cm Alabertageve

Poutes automatiques

collective descenta sélective, à analyse permanente de trafic à ouverture centrale trafic intense

Hauteur Dimensions mini (EN 81-1) sous dalle local des machines		Passage libre		té pour 5 père		chái	More than the second second second	Puissance Réaction ma		
HSK	(A) [1] (A)	trappe	TRI 220	O Va	TRI 3	30 V Id	absorbée (3) en kVA		local des machines	
355 380 355 380	180 380 200 · · ·	120 x 100	36	94	21	54	26	10200	8200 1500	
355 380	180 420 200	120 x 100	28	70 -	21 16	50	25.	10200	8200 1500	
365 400	180 400 200	140 × 100	42	99	24	40	19 -	10200	8200 1500 5100 1500	
365 400	180 420 200	120 x 100	36	90	21	53	26	14500	5100 1500 5100 1500	

7.												avii i i	
i ku												130 f	
	=07		(U)	(24)				Ŧ					
365	420	240	390	200	140 x 100	54	179	31	104	40			
365	420	240	400	200	120 x 100	49	117	28	67	33	25000	8400	1 500
365	420	240	440	200	120 x 100	31	78	18	45	22	25000	8400	1 500
375	420	240	400	200	140 x 100	59	142	34	82	40	25000	8400	1 500
375	420	240	440	200	140 x 100	49	123	29	73	36	25500	9000	1 500
435	520	240	460	- 210 -	180 x 100	123	391	71	226	96	25500	9000	1 500
465	520	240	460	220	150 x 100	# #	T	T	7	75	27000	10500	2 000
490		240	500	240	140 x 120	7	T	75	T	75	28000	11000	2000
400	440	260	400	200	140 x 100	59	142	34	82		30 000	12500	3000
400	440	260	400	200	120 x 100	49	123	29	73	40	29000	3500	1 500
410	440	260	400	200	160 x 100	Be 1		52	127	36	29000	9500	1 500
416	440	260	400	200	140 x 100	59	148	34	85	62	30,000	11,600	1500
435	540	260	460	220	200 x 120	141	451	32	262	41	30 100	11000	1 500
465	540	260	460	220	150 x 120	7	2	3	TT	111	31 000	12,000	2 000
530		260	500	240	160 x 120	3	27	77	<u> </u>	<u> </u>	32,000	12.30%	2 500
400	440	260	430	200	140 × 100	59	142	34	82		33.000	14060	3000
400	440	260	430	200	120 × 100	49	123	29	73	40	33 000	11000	1 500
410	440	260	430	200	170 x 100	DW.		52	127	36	33 000	11000	1 500
410	440	260	430	200	140 x 100	66	165	38;	95	62	33 500	12500	1500
460	240	260	520	210	210 x 120	166	530	96	307	46	33 500	12500	1500
540	40	260	520	220	150 x 120	π		T	707	130	35 000	13500	2500
590		260	520	240	200 x 120	- 2		T	7		36 000	14000	3000
.,50		260	520	280	230 × 140	T	a /	7		4	38000	18000	5000

Sylines aureus par le Comité National de Llaison pour de pedicipitanon des Handscapés lautorisation de amplion, d'Oll'. Les appareils sont conformés à la Nome NF P. 91-201 et ... accessibles aux handscapés circulent en lauteut forsame un propriét de Nome NF P. 91-201 et ...

Tr. II. est pes possiblé de forme des veleurs precises ders le confecte d'un document gené
S'estaite d'instilletions' à prés hautes performances. Il est vivement conseilé de prendre
contact avec votre correspondent Schinder habitues:

Tableau des Armatures (En cm²)

Φ	5	6	8	10	12	14	16	20	25	32	40
1	0.20	0.28	0.50	0.79	1.13	1.54	2.01	3.14	4.91	8.04	12.57
2	0.39	0.57	1.01	1.57	2.26	3.08	4.02	6.28	9.82	16.08	25.13
3	0.59	0.85	1.51	2.36	3.39	4.62	6.03	9.42	14.73	24.13	37.70
4	0.79	1.13	2.01	3.14	4.52	6.16	8.04	12.57	19.64	32.17	50.27
5	0.98	1.41	2.51	3.93	5.65	7.70	10.05	15.71	24.54	40.21	62.83
6	1.18	1.70	3.02	4.71	6.79	9.24	12.06	18.85	29.45	48.25	75.40
7	1.37	1.98	3.52	5.50	7.92	10.78	14.07	21.99	34.36	56.30	87.96
8	1.57	2.26	4.02	6.28	9.05	12.32	16.08	25.13	39.27	64.34	100.53
9	1.77	2.54	4.52	7.07	10.18	13.85	18.10	28.27	44.18	72.38	113.10
10	1.96	2.83	5.03	7.85	11.31	15.39	20.11	31.42	49.09	80.09	125.66
11	2.16	3.11	5.53	8.64	12.44	16.93	22.12	34.56	54.00	88.47	138.23
12	2.36	3.39	6.03	9.42	13.57	18.47	24.13	37.70	58.91	96.51	150.80
13	2.55	3.68	6.53	10.21	14.7	20.01	26.14	40.84	63.81	104.55	163.36
14	2.75	3.96	7.04	11.00	15.83	21.55	28.15	43.98	68.72	112.59	175.93
15	2.95	4.24	7.54	11.78	16.96	23.09	30.16	47.12	73.63	120.64	188.50
16	3.14	4.52	8.04	12.57	18.10	24.63	32.17	50.27	78.54	128.68	201.06
17	3.34	4.81	8.55	13.35	19.23	26.17	34.18	53.41	83.45	136.72	213.63
18	3.53	5.09	9.05	14.14	20.36	27.71	36.19	56.55	88.36	144.76	226.20
19	3.73	5.37	9.55	14.92	21.49	29.25	38.20	59.69	93.27	152.81	238.76
20	3.93	5.65	10.05	15.71	22.62	30.79	40.21	62.83	98.17	160.85	251.33

· Caractéristiques chimiques

Pour en savoir plus sur le sol, notamment son agressivité, on a soumis un échantillon à des essais chimiques et minéralogiques qui indiquent une *agressivité nulle* du sol, selon les normes NF P 18 011 du 06/92.

INTERPRETATIONS GEOTECHNIQUES

Portance du sol

✓ A partir des résultats obtenus sur site :

Les résistances en pointe R_p étant obtenues suite aux essais au pénétromètre dynamique lourd «PDL», d'où on déduit la contrainte admissible du sol en utilisant la formule empirique :

 $Q = R_p/20$ avec un coefficient de sécurité de 3 (Règles du D.T.U 13.1)

Pour los résistances en pointe les plus défavorables, on aura une contrainte admissible du sol égale à 2.0 bars pour un ancrage min de -1 m.50 par rapport à la surface du sol.

✓ A partir des résultats obtenus au laboratoire :

Densité humide de 20.4 kN/m³;

Angle de frottement $\varphi_u = 21^\circ$;

Cohésion C = 0.27 bar, qu'on supposera nulle dans nos calculs.

On aura après calculs, une contrainte admissible σ = 2.342 bars pour un ancrage pris égal à 1^m.00.

CONCLUSION ET RECOMMANDATIONS

Le terrain choisi pour recevoir des logements, en sept blocs en R+7 au lieu dit Ibourassen dans la commune de Oued Ghir, au profit de la coopérative immobilière « Lumière », est sur un terrain en pente moyenne, constitué d'argiles limoneuses graveleuses altérées avec passage de galets et pierres d'origine calcaire, ainsi que l'émergence de blocs rocheux calcaire par endroit.

Le terrain choisi pour recevoir les 07 blocs en R+7 au lieu dit Ibourassen dans la commune de Oued Ghir, au profit de la coopérative immobiliere « Lumière », est sur un terrain en pente moyenne, constitué d'argiles Ilmoneuses graveleuses altérées avec passage de galets et pierres d'origine calcaire, ainsi que l'émergence de blocs rocheux calcaire par endroit.

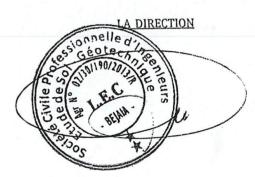
Les essais pénétromètriques réalisés sur le terrain indiquent globalement une certaine homogénéité du terrain en dessous de la couche superficielle (à partir de 1^m.50 de profondeur). Cette couche est constituée d'éboulis de pente et de remblais générés par le charriage des fines par les eaux superficielles. Il est constaté aussi, des changements brusques et importants des résistances en profondeur, qui sont dus à une présence accrue de galets et pierres de différents diamètres en profondeur.

6

Du point de vue géotechnique et par rapport à la réalisation des fondations de l'ouvrage, on préconisera l'emploi de fondations superficielles.

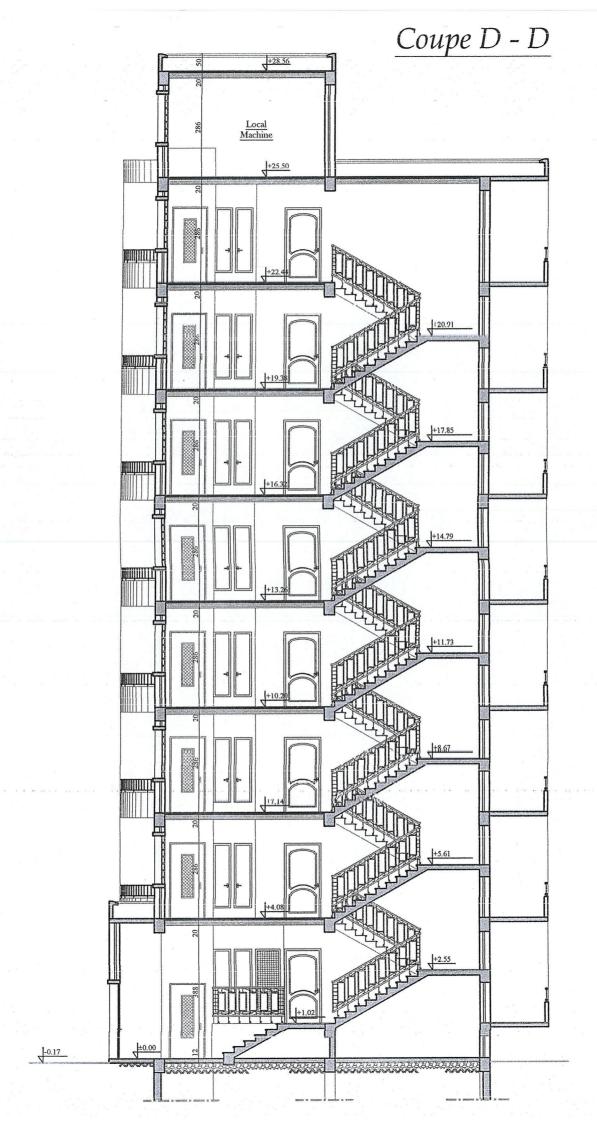
- La profondeur de l'ancrage des fondations sera prise en fonction de la hauteur des blocs : H/12.
- Le taux de travail préconisé sera de 1.80 bars.
- Les caractéristiques mécaniques du sol : Ø= 27° C = 0.39 bars et γ_h = 20.4 kN/m³ au niveau des blocs B2, C, D et E.
- Les caractéristiques mécaniques du sol : \emptyset = 21° C = 0.27 bars et γ_h = 20.1 kN/m³ au niveau des blocs A et B1. En effet, les sols au niveau des assises de ces blocs sont plus altérés et les parois des fouilles de fondation peuvent présenter des instabilités pendant la réalisation.
- Une présence d'humidité est constaté à partir de «8™ 00 de profondeur.
- Les sols ne présentent aucune agressivité vis-à-vis des bétons.

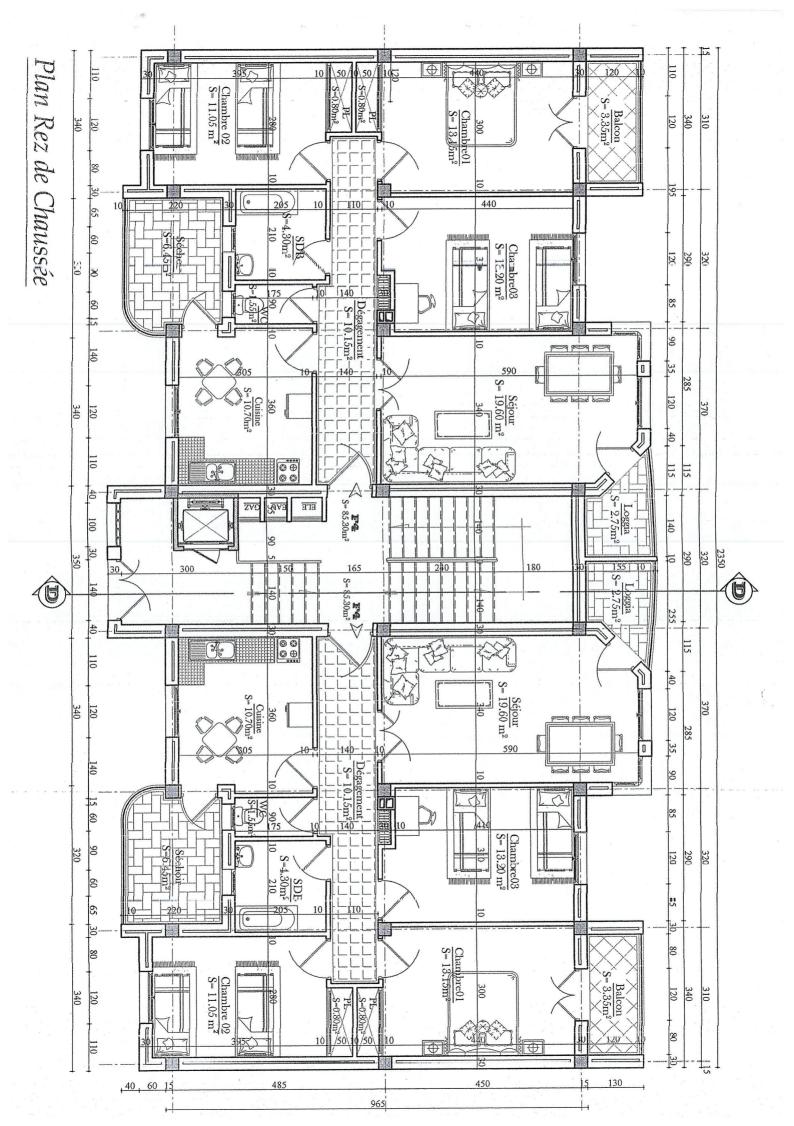
Aussi, on conseille:

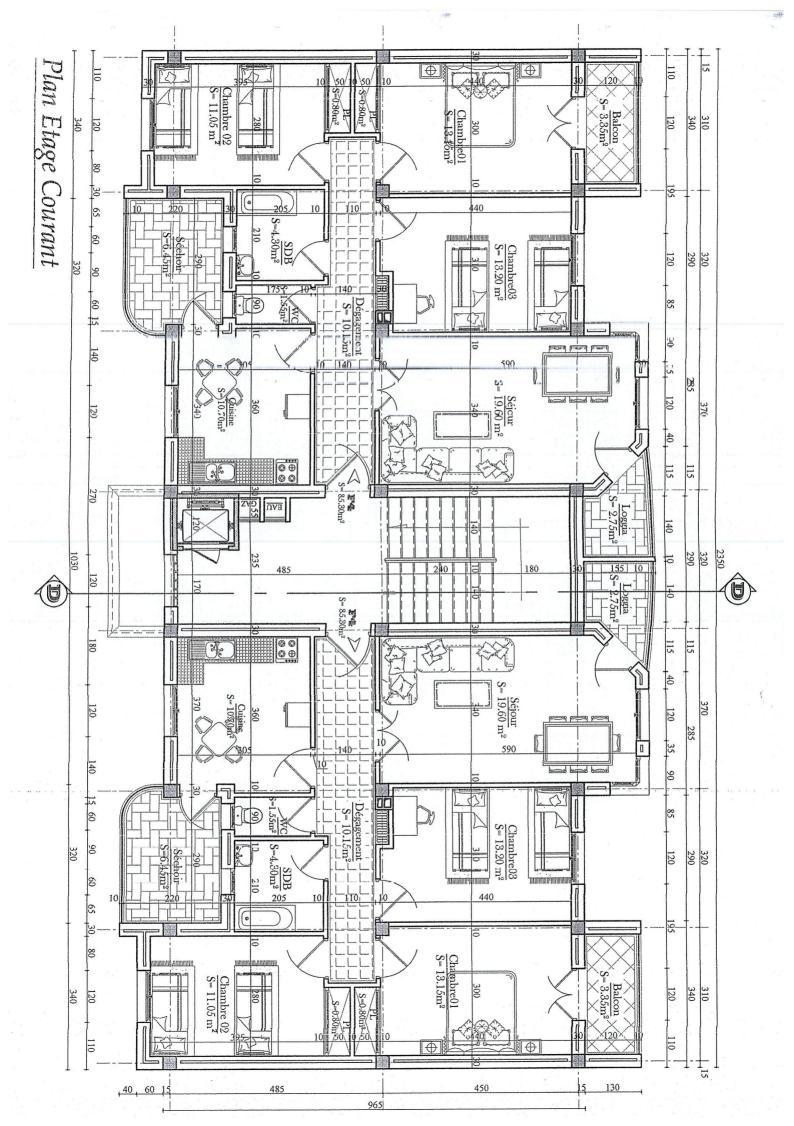

- ✓ Concevoir et réaliser d'une manière très efficace, un système de drainage des eaux superficielles ainsi que les eaux d'infiltration souterraines en amont des murs de soutènement.
- ✓ Procéder au reboisement consciencieux du terrain afin de permettre l'évapotranspiration du sous sol et sa stabilité à long terme, essentiellement le long du talweg.

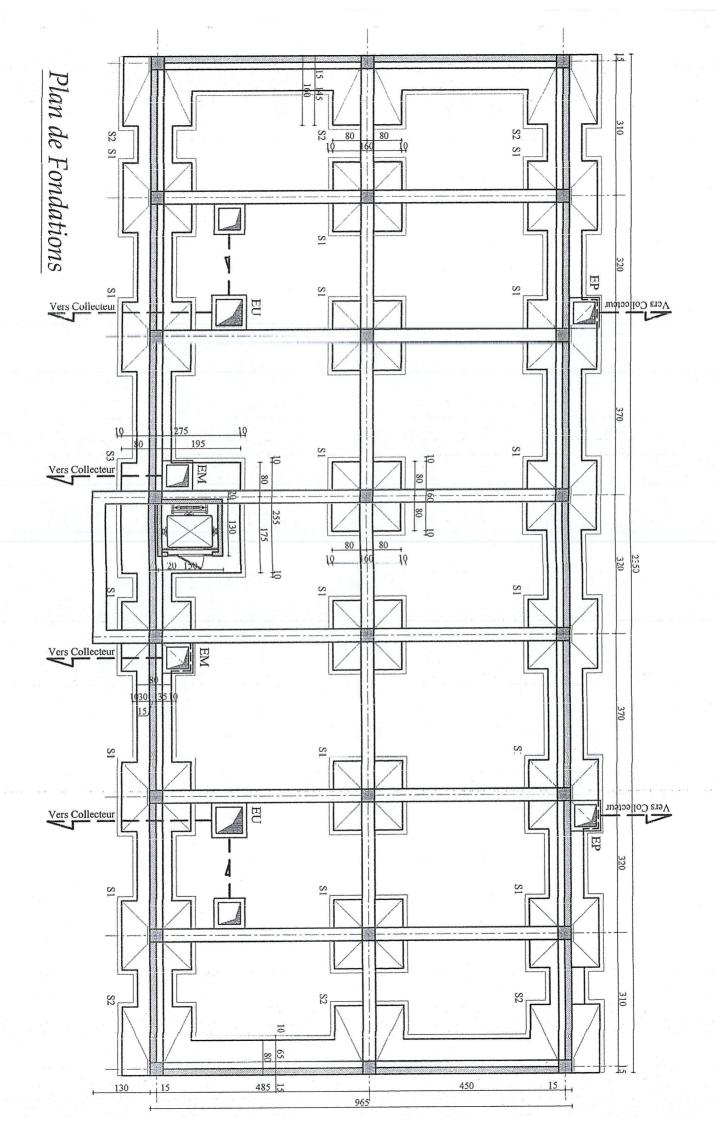
L'INGENIEUR CHARGE DE L'ETUDE

Ingenieur Charge D'études


DIEDIIG


SOR ILEC PICARIO




Facade Principale

