République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique Université Abderrahmane MIRA- Bejaia Faculté de Technologie

Département de Génie Civil

Mémoire de fin d'études

En Vue d'Obtention du Diplôme Master en génie civil Option : Matériaux et structures

Thème:

Etude d'un bâtiment (R+10) à usage d'habitation contreventé par un système mixte (Voiles – Portiques)

<u>Présenté par : Promoteur : </u>

M^r AMIMEUR BILLAL M^r KENNOUCHE LYES M^r Brara ALI

Examinateurs:

M^r GUICHARI . L M^{me} CHIKH AMER .H

Promotion 2015-2016

Remerciements

Au terme de ce modeste travail, nous tenons à exprimer notre profonde gratitude et nos vifs remerciements :

Avant tout, nous remercions ALLAH le tout puissant pour nous avoir donné la force et la patience pour mener à terme ce travail.

A nos familles : qui nous ont toujours encouragés et soutenus durant toutes nos études.

A Mr BRARA ALI, notre PROMOTEUR, pour avoir accepté de nous guider sur le bon chemin du travail.

A tous nos enseignants qui ont contribué à notre formation, ainsi que les membres du jury qui nous ont fait l'honneur d'évaluer ce travail.

A tous ceux qui ont contribué de près ou de loin à la réalisation de ce mémoire.

Lyes et Billal

Dédicaces

Je dédie ce travail

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, ma mère qui a été à mes côtés et qui m'a soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci mes parents.

A mes chers grands-parents.

A mes chers frères Yanis et Slimane et A Mes Sœurs Dihia et Katia et à ma futur femme qui m'a apporté a un grand soutiens A toute ma famille sans exception.

A tous mes amis sans exception qui mon aidé de faire ce modeste travail et le club scientifique génie civil.

En fin, je remercie mon ami, mon binôme kennouche lyes qui a contribué à la réalisation de ce travail.

AMIMEUR BILLAL

Dédicaces

Je dédie ce travail

A mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, ma mère qui a été à mes côtés et ma soutenu durant toute ma vie, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci mes parents.

A ma chère grand-mère.

A mon cher frère Nabil et A Ma Sœur Nabila

A toute ma famille sans exception.

A tous mes amis sur tout Jugurta, djamel, amere, Nassim qui ma aidé de faire ce travaille.

En fin, je remercie mon ami mon binôme Amimeur Billal qui a contribué à la réalisation de ce travail.

KENNOUCHE LYES

SOUMAIRE

Intruduction generale

Chapitre I : Généralités

I: Introduction:	1
I.1 : Description de l'ouvrage :	1
I.2 : Rapport du sol	2
I.3 : Hypothèses fondamentales de calcul aux états limite	es
	3
I.4 : Caractéristiques mécaniques des matériaux	4
I.5: Les actions et Les sollicitations	9
Chapitre II : Pré dimensionnement des éléments II.1 : Introduction :	11
II.2 Pré dimensionnement des plancher1	11
II.3 Pré dimensionnement des poutres1	14
II.4 Pré dimensionnement des voiles	16
II.5 Pré dimensionnement des escaliers	17
II.6 Acrotere2	20
II.7 Evaluation des charges et surcharges2	21
II.8 Les poteaux2	24
II.9 Descente de charges2	25

III.1 Introduction	36
III.2 Calcul des planchers	36
III.3 Dalles pleines	69
III.4 Les escaliers	79
III.4.2 Etude de la poutre paliere	86
III.6 Etude de la poutre de chainages	90
III.7 Etude de l'ascenseur	93
III.8 Acrotere	102
III.9 Conclusion	108
Chapitre IV : Etude dynamique IV. Introduction	109
IV.1 Objectifs et exigences	109
IV.2 Methode de calcul	109
IV.3 Exigences du RPA99 pour les systemes mixtes	114
IV.4 Modalisation et resultats	114
IV.5 Conclusion	123
Chapitre V :Etude des elements structuraux	
V Introduction	124
V.1 Etude des poteaux	124
V.2 Etude des poutres	136

V.3 Etude des voiles	144
V.5 Conclusion	156
Chapitre VI :Etude de l'infrastructure	
VI.1 Introduction	157
VI.2 Le choix du type de fondation	157
VI.3 Combinision d'action a consider	157
VI.4Etude des fondation	157
VI.5 La dalle du radier	159
VI.6 Etude des nervures	168
VI.7 Conclusion	175
CONCLUSION GENERALE	

Liste des figures

Figure I. 1:Evaluation de la résistance en fonction de l'âge du béton	5
Figure I. 2:Diagramme contraintes-déformations du béton à l'E.L.U	7
Figure I. 3:Diagramme des contraintes déformations pour les aciers.	8
Figure II. 1: Coupe du plancher à corps creux	11
Figure II. 2: Plan de disposition des poutrelles (RDC)	13
Figure II. 3 schema d'une poutrelle	
Figure II. 4:coupe verticale d'un voile	
Figure II. 5:Schéma general d'un escalier	
Figure II. 6:schema d'escalier	18
Figure II. 7:schema de l'escalier d'etage courant	19
Figure II. 8:schema de l'escalier de duplex.	
Figure II. 9:vue en plan d'un acrotere.	20
Figure II. 10:poteau « P1 » de la descente de charges pour les étages courants	26
Figure II. 11:poteau « P2 » de la descente de charges pour les étages courants	29
Figure II. 12:section brute.	33
figure III. 1: évaluation des efforts tranchants	
Figure III. 2:dalle sur deux appuis	70
Figure III. 3:schema de ferraillage de dalle sur deux appuis	73
Figure III. 4:dalle sur trois appuis (balcon)	73
Figure III. 5:vue en coupe du 1 ^{er} type de dalle	78
Figure III. 6:schéma de ferraillage de l'escalier	85
Figure III. 7:Schéma statique de la poutre paliere.	86
Figure III. 8: Schéma de ferraillage de la poutre paliere	90
Figure III. 9:ferraillage de la poutre de chainage	
Figure III. 10:dalle de la cage d'ascenseur	93
Figure III. 11:la surface d'impact	97
Figure III. 12: vue en coupe du ferraillage de la dalle.	
Figure III. 13: schéma du ferraillage de la dalle.	101
Figure III. 14:vue en plan d'un acrotere	102
Figure III. 15: Section à ferrailler	
Figure III. 16:schema de ferraillage de l'acrotere	108

Figure IV. 1:Disposition des voiles	115
Figure IV. 2:1 ^{er} mode (translation suivant Y)	116
Figure IV. 3:2émemode (translation suivant X)	117
Figure IV. 4:3éme mode (torsion autour de Z)	118
Figure V. 1 zone nodale	125
Figure V. 2:section du poteau a etudier	127
Figure V. 3:reduction des sections des poteaux	134
Figure V. 4:.schema de ferraillage de voile	155
Figure VI. 1:schema d'une semelle isolée	158
Figure VI. 2:schema d'une semelle filante	159
Figure VI. 3:schema de rupture de la dalle du radier	164
Figure VI. 4:schema de ferraillage du radier	168
Figure VI. 5: schema transmises aux nerveures principales du radier	169
Figure VI. 6: charges transmises aux nervures transversales du radier	170
Figure VI. 7: section a ferailler	171

Introduction

Le Génie civil représente l'ensemble des techniques concernant les constructions civiles. Les ingénieurs civils s'occupent de la conception, de la réalisation, de l'exploitation et de la réhabilitation d'ouvrages de construction et d'infrastructures urbaines dont ils assurent la gestion afin de répondre aux besoins de la société, tout en assurant la sécurité du public et la protection de l'environnement. Très variées, leurs réalisations se répartissent principalement dans cinq grands domaines d'intervention: structures, géotechnique, hydraulique, transport, et environnement.

Le domaine d'application du génie civil est très vaste; il englobe les travaux publics et le Bâtiment. Il comprend notamment:

- Le gros œuvre en général, quel que soit le type de construction ou de bâtiment, comme les gratte-ciel,
- Les constructions industrielles : usines, entrepôts, réservoirs, etc..;
- Les infrastructures de transport : routes, voies ferrées, ouvrages d'art, canaux, ports, tunnels, etc..;
- Les constructions hydrauliques : barrages, digues, jetées, etc...

Le présent projet entre dans le cadre du gros œuvre, consiste à étudier une tour R + 10 contreventée par un système mixte "voiles-portiques". Le travail a été partagé en 2 parties principales:

La première partie est l'étude de la superstructure, et qui contient:

- généralités sur les matériaux;
- prédimensionnement des éléments, qui est une estimation préliminaire des dimensions des éléments;
- calcul des éléments secondaires (planchers, escaliers,....);
- étude dynamique de la structure (période, interaction,...);
- étude des éléments structuraux (poteaux, poutres,...);

La deuxième partie est l'étude de l'infrastructure, et qui consiste à choisir sur la base du rapport géotéchnique le type de fondation pour la structure, puis la calculer.

Chapitre 1

Généralités

I: Introduction:

La stabilité de l'ouvrage est en fonction de la résistance des différents éléments structuraux (poteaux, poutres, voiles...)aux différentes sollicitations (compression, flexion...). La résistance de ces éléments est en fonction du type des matériaux utilisés et de leurs dimensions et caractéristiques.

Donc pour le calcul des éléments constituants un ouvrage, on se base sur des règlements et des méthodes connues (BAEL91, RPA99 modifié en 2003) qui s'appuie sur la connaissance des matériaux (béton et acier) et le dimensionnement et ferraillage des éléments résistants de la structure.

I.1 :Description de l'ouvrage:

L'ouvrage faisant notre projet de fin d'étude est un bâtiment de **R** + **10** (**Bloc** B, Résidence TALA OURIENE) qui se trouve a TALA OUADA A TALA OURIANE wilaya de Bejaia est situé sur un versant terrassé en gradins.dans la ville de béjaia.

1.1.1 Description architecturale:

Les dimensions du bâtiment sont:

- La largeur 18,85 m
- La longueur 24,00 m
- La hauteur totale H= 33.66 m
- La hauteur du rez-de-chaussée est de 3.06 m
- La hauteur des étages courants est de 3.06 m.

Le bâtiment est à usage d'habitation.

1.1.2 Description structurale:

Les planchers:

Les planchers utilisés sont de corps creux.

L'acrotère:

C'est un élément en béton armé; contournant le bâtiment encastré au niveau du plancher terrasse.

Les escaliers:

Les escaliers sont des éléments secondaires permettant le passage d'un niveau à un autre,

ils seront réalisés en béton armé coulé sur place avec trois volées, et deux volées.

La maçonnerie:

- Les murs extérieurs et les murs de séparation entre les appartements en doubles parois de brique creuse, avec une lame d'air de 5 cm.
- Les murs de séparation intérieur seront en une seule paroi en brique creuse de 10 cm d'épaisseur.

1.2 Rapport du sol:

Le terrain réservé pour la réalisation d'une promotion immobilière au lieu-dit tala ouada a Tala ouriane, Wilaya de Bejaia .

Le sous-sol du site est constitué par des argiles beiges limoneuses des marnes argileuses a débris de marnes et des marnes schisteuses a marnes compactes évoluant vers des marnocalcaire.

Compte-tenu de la nature des formations rencontrées, il est recommandé de faire des fondations superficielles, qu'il y a lieu d'd'ancrer à partir de 1.5 m de profondeur et de prendre une contrainte admissible Qadm=1.30 bars

Le versant est constitué par des terrains meubles, exposes aux phénomènes d'érosion dû aux ruissellements diffus et aux infiltrations des eaux pluviales.

Pour parer contre ces phénomènes, il y'a lieu d'effectuer des dispositifs de confortement et d'intercepter les venues d'eau et d'opter pour un drainage efficace des eaux.

Afin d'assurer la stabilité du site il y'a lieu de prendre en considération les facteurs suivants à savoir

Drainage des eaux pluviales afin d'éviter toute infiltration d'eau.

Capter toutes les venues d'eau et les drainer hors du site.

Construire des dispositifs de confortements au niveau des talus crées lors des terrassements.

Les caractéristiques géotechniques à prendre en considération pour la construction d'un mur de soutènement sont :

```
Qadm=1.3 bars 0.33 < \text{Cuu bars} < 0.52 2.81 < \varphi \text{ uu}^{\circ} < 8.73
```

Les analyses chimiques indiquent que ces sols ne présentent aucune agressivité pour le béton hydraulique durci de l'infrastructure.

1.3 Hypothèses fondamentales de calcul aux états limites:

On appelle un état limite, un état particulier au-delà duquel une structure cesse de remplir les fonctions pour lesquelles elle a été conçue. Les ouvrages et les éléments d'ouvrages doivent être conçus et calculés de manière à pouvoir résister avec une sécurité appropriée à toutes les sollicitations prévues et à présenter une durabilité satisfaisante durant toute la période d'exploitation. Un état limite est donc atteint lorsqu'une condition requise d'une construction est strictement satisfaite et cesserait de l'être en cas de modification dans le sens défavorable d'une des actions agissant sur elle; on distingue:

1.3.1 États Limites de Service(ELS):

Sont ceux qui mettent en cause le comportement de la construction en exploitation, on distingue deux cas:

- Ouverture des fissures
- Déformation des éléments.

1.3.2 États Limites Ultimes (ELU) :

Sont ceux qui mettent en cause la sécurité de l'ouvrage. Ils ne désignent pas nécessairement effondrement, mais la plastification des matériaux et les grandes déformations résultantes sont souvent considérées comme une ruine. On distingue:

- Équilibre statique
- Résistance d'un élément de la construction
- Stabilité de forme (flambement)
- la fatigue.

Hypothèses fondamentales de calcul aux états limites:

1er àl'ELU:

Les principales hypothèses du calcul des sections en BA aux ELU sont les suivantes:

- $\sqrt{}$ Les sections planes restent planes après déformation,
- $\sqrt{\text{Il n'y a pas de glissement à l'interface béton-armatures}}$
- $\sqrt{}$ le béton tendu est négligé,
- $\sqrt{\text{L'aire des aciers n'est pas déduite de celle du béton,}}$
- $\sqrt{\text{L'aire des aciers est concentrée en son centre de gravité}}$
- $\sqrt{}$ le comportement de l'acier est défini par le diagramme contrainte-déformation De calcul (fig. 1.3),
- $\sqrt{}$ Pour le comportement du béton, on adoptera le diagramme rectangulaire simplifie (fig. 1 .2) (car la section n'est que partiellement comprimée).

2ième à l'ELS:

L'ELS est dimensionnant par rapport à l'ELU lorsque la fissuration est considérée comme très préjudiciable à la tenue de l'ouvrage dans le temps (FTP) et parfois lorsqu'elle est préjudiciable (FP). Dans ce dernier cas, on dimensionnera à l'ELU et on vérifiera que la section d'acier est suffisante pour l'ELS. En FTP, il faut faire le calcul de la section d'acier directement à l'ELS.

Les principales hypothèses du calcul des sections en BA aux ELS sont les suivantes:

- $\sqrt{}$ Les sections planes restent planes après déformation,
- $\sqrt{\text{Il n'y a pas de glissement à l'interface béton-armatures}}$
- $\sqrt{}$ Le béton et l'acier sont considérés comme des matériaux élastiques,
- $\sqrt{}$ le béton tendu est négligé,
- $\sqrt{\text{L'aire des aciers n'est pas déduite de celle du béton,}}$
- $\sqrt{\text{L'aire des aciers est concentrée en son centre de gravité}}$
- $\sqrt{}$ le coefficient d'équivalence entre l'acier et le béton est égale à 15.

1.4 Caractéristiques mécaniques des matériaux:

Concept du Béton Armé:

Le béton de ciment présente des résistances à la compression assez élevées, de l'ordre de 25 à 40 MPa, mais sa résistance à la traction est faible, de l'ordre de 1/10 de sa résistance en compression. De plus, le béton de ciment a un comportement fragile.

L'acier présente une très bonne résistance à la traction (et aussi à la compression pour des élancements faibles), de l'ordre de 500 MPa, mais si aucun traitement n'est réalisé, il subit les effets de la corrosion. De plus, son comportement est ductile, avec des déformations très importantes avant rupture (de l'ordre de la dizaine de %). Pour pallier à la faible résistance du béton en traction et à sa fragilité, on lui associe des armatures en acier: c'est le béton armé.

1.4.1 Le béton:

Le béton est un mélange du ciment, du sable, du granulat et de l'eau. Le béton choisi est de classe C25, sa composition doit permettre d'obtenir les caractéristiques suivantes:

1. Résistance du béton:

- Résistance caractéristique à la compression (Art A.2. 1,11 CBA93) :

La résistance caractéristique à la compression du béton fcj à j jours d'âge est déterminée à partir d'essais sur des éprouvettes 16x32. Elle est définie comme la valeur de la résistance en dessous de laquelle on peut s'attendre à rencontrer 5% au plus de l'ensemble des ruptures des essais de compression. En pratique, comme le nombre d'essais réalisés ne permet pas un traitement statistique suffisant, on adopte la relation simplifiée suivante:

$$\frac{\sigma j}{fcj} = 1.15$$

Où ó*j* est la valeur moyenne des résistances obtenues sur l'ensemble des essais réalisés.

On utilise le plus souvent la valeur à 28 jours de maturité : f_{c28} . Pour des calculs en phase de réalisation, on adoptera les valeurs à j jours, définies à partir de f_{c28} , par:

/ Pour des résistances fc28 40MPa:

$$f_{cj} = \frac{j}{4,76 + 0,83j}$$

$$f_{c28} \text{ si } j < 60 \text{ jours}$$

$$f_{cj} = {}^{1,1}f_{c28}$$
 si j>60 jours

/ Pour des résistances $f_{c28} > 40MPa$:

$$f_{cj} = \frac{i}{1.4 + 0.95 j f c 28 \text{ si j}} < 28 \text{ jours}$$

$$f_{cj} = f_{c28} \qquad \text{si j} > 28 \text{ jours}$$

La figure 1.1 donne l'allure de la variation de la résistance *fcj* en fonction de l'âge du béton pour les deux types de béton. Sur cette figure, on observe que la montée en résistance des bétons à performances élevées est plus rapide que pour les bétons classiques. Cette propriété rend les bétons à performances élevées très intéressants en phase de construction.

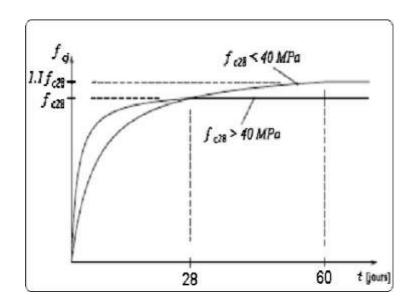


Fig. 1.1 – Evolution de f_{cj} en fonction de l'âge du béton 10

La résistance caractéristique _{fc28} à 28 jours sera égale à 25MPA.

- Résistance caractéristique à la traction:

La résistance caractéristique à la traction du béton à j jours, notée fij, est conventionnellement définie par les relations:

$$f_{tj} = 0.60 + 0.06 f_{cj} \text{ si } f_{cj} < 60 MPA \text{ (A.2.1,12BAEL91)}$$

 $f_{tj} = 0.275 f \frac{2}{3} C_j \text{ si } f_{cj} > 60 MPa$
(Annexe F BAEL91)
pour j=28 jours et $f_{c28} = 25 MPA = f_{t28} = 2.1 MPA$.

2. Module de déformation longitudinale du béton:

On distingue les module de Young instantané E_{ij} et différé E_{yj} . Le module instantané est utilisé pour les calculs sous chargement instantané de durée inférieure à 24 heures. Pour des chargements de longue durée (cas courant), on utilisera le module différé, qui prend en compte artificiellement les déformations de fluage du béton. Celles-ci représentant approximativement deux fois les déformations instantanées, le module instantané est pris égal à trois fois le module différé. $E_{ij} = 3E_{yj}$.

Le module de Young différé du béton dépend de la résistance caractéristique à la compression du béton:

$$E_{yj} = 3700(f_{cj})^1/^3$$
 (Art A.2.1.2.1 CBA93)
 $E_{ij} = 11000(f_{cj})^1/^3$ (Art A.2.1.2.2 CBA93)

3. Coefficient de poisson:

Le coefficient de poisson sera pris égal à $\mathcal{V} = 0$ pour un calcul de sollicitations à l'ELU et à V = 0.2 pour un calcul de déformations à l'ELS (Art A.2.1,3 BAEL91).

4. Module d'élasticité transversale:

Il est donné par:

$$G = \frac{E}{2(\mathcal{V}+1)}$$

G = 0.4Epour le béton non fissuré (ELS).

G = 0.5Epour le béton fissuré (ELU).

5. Modèle de calcul à l'ELS:

Les déformations nécessaires pour atteindre l'ELS sont relativement faibles et on suppose donc que le béton reste dans le domaine élastique. On adopte donc la loi de Hooke de l'élasticité pour décrire le comportement du béton à l'ELS, avec pour des charges de longue durée $E_b = E_{y,i}$ et y = 0.2. La résistance mécanique du béton tendu est négligé (Art A.4.5,1BAEL91). De plus, on adopte en général une valeur forfaitaire pour le module de Young du béton égale à 1 / 15 de celle de l'acier (Eb 1333 3MPa)

6. Modèle de calcul à l'ELU:

Pour les calculs à l'ELU, le comportement réel du béton est modélisé par la loi parabole- rectangle sur un diagramme contraintes déformations donné sur la Figure 1.2.

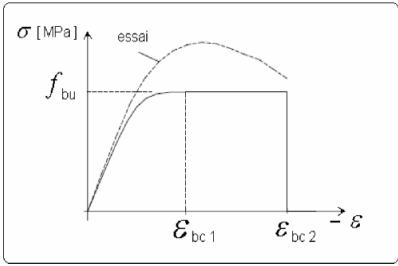


FIG. 1.2– Diagramme contrainte-déformation du béton à l'ELU

$$-f_{\rm bu:} \ {\rm est} \ {\rm la} \ {\rm valeur} \ {\rm de} \ {\rm calcul} \ {\rm de} \ {\rm la} \ {\rm contrainte} \ {\rm du} \ {\rm b\acute{e}ton} \\ f_{\rm bu=} \ \begin{cases} 0.25 \times f_{\rm bu} \times 10^3 \times \epsilon_{\rm bc} \times (4 \times 10^3 \times \epsilon_{\rm bc}) & {\rm si} \ 0 \le \epsilon_{\rm bc} \le 2^0/_{00} \\ 0.85 \times f_{\rm c28}/\theta \times \gamma_{\rm b)} {\rm si} \ 2 \le \epsilon_{\rm bc} \le 3.5^0/_{00} \end{cases}$$

 θ : Coefficient dépendant de la durée d'application des charges, ces valeurs sont données dans le tableau suivant:

Tableau I. 1:Les différentes valeurs de θ .

θ	Durée d'application		
1,00	> 24 heures		
0,90	1≤ durée ≤ 24 heures		
0,85	< 1 heures		

- γ_b est le coefficient de sécurité :

$$\gamma_b = \begin{cases} 1.5(cas\ courants) \\ 1.15(combinaisons\ accidentelles) \end{cases}$$

1.4.2 L'acier:

On distingue quatre types d'acier pour armature, du moins au plus écroui:

- 1. Les aciers doux, sans traitement thermique ayant une valeur caractéristique de la limite élastique garantie de 125 ou 235MPa. Ce sont les ronds lisses (noté j), qui ne sont plus utilisés que pour faire des crochets de levage en raison de leur très grande déformation à la rupture (allongement de 22%).
- 2. Les aciers laminés à chaud, naturellement durs, dit aciers à haute adhérence de type I. Ce type d'acier a une limite d'élasticité garantie de 400MPa et un allongement à la rupture de 14%.
- 3. Les aciers laminés à chaud et écrouis avec faible réduction de section (par traction-torsion), dits aciers à haute adhérence de type II. Ce type d'acier a une limite d'élasticité garantie de 500MPa et un allongement à la rupture de 12%.
- 4. Les aciers laminés à chaud par tréfilage (forte réduction de section), fortement écrouis, utilisés pour fabriquer les treillis soudés et fils sur bobines. Ce type d'acier a une limite d'élasticité garantie de 500MPa et un allongement à la rupture de 8%.

On pourra retenir que l'action de l'écrouissage est d'augmenter la limite d'élasticité en faisant disparaître le palier de plasticité, et de diminuer l'allongement à la rupture (plus fragile). Les quatre types d'acier ont le même comportement élastique, donc un même module de Young de $E_s = 210000MPa$. La déformation à la limite élastique est voisine de 0.2%, en fonction de la valeur de la limite d'élasticité.

Modèle de calcul à l'ELS:

Comme le béton, à l'ELS on suppose que les aciers travaillent dans le domaine élastique. On utilise donc la loi de Hooke de l'élasticité. On adopte une valeur du module de Young forfaitaire $E_s = 200000MPa$.

Modèle de calcul à l'ELU:

Le comportement des aciers pour les calculs à l'ELU vérifie une loi de type élastoplastique parfait, comme décrit sur le diagramme contrainte-déformation de la Figure 1.3 (BAEL9 1 A.4.3,2), où la valeur de calcul de la limite d'élasticité garantie $_{fsu}$ est définie par: $_{fsu} = f_{e}/\gamma_{s}$

Et γ_s est un coefficient de sécurité partiel qui vaut 1. 15 sauf pour les combinaisons accidentelles où il vaut 1.

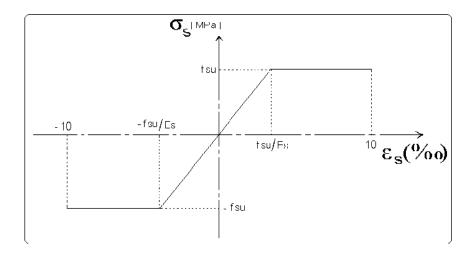


FIG. 1.3 – Diagramme contrainte-déformation de l'acier

1.5 Actions et sollicitations:

1.5.1 Les actions:

On appelle actions, les forces et les couples de forces dûs aux charges appliquées et aux déformations imposées à une construction, on distingue:

- Les actions permanentes notées G, dont l'intensité est constante ou très peu variable dans le temps, ou varie dans le même sens en tendant vers une limite, tel que:
 - Poids propre de la structure
 - Poussée des terres et liquides.
- Les actions variables, notées Q, dont l'intensité varie fréquemment et de façon importante dans le temps tel que :
 - Charges d'exploitation;
 - Charges climatiques (neige, vent);
 - Charges dûes à l'effet de température;
 - Charges appliquées en cours d'exécution.
- Les actions accidentelles, notées FA, provenant de phénomènes rares, tels que séismes, chocs.

1.5.2 Les sollicitations:

Les sollicitations sont les efforts tranchants, normaux, les moments de flexion et moments de torsion développés dans une section par une combinaison d'actions donnée.

Gmax : L'ensemble des actions permanentes dont l'effet est défavorable à la justification de la résistance de l'élément.

Gmin: L'ensemble des actions permanentes dont l'effet est favorable à la justification de la résistance de l'élément.

*Q*₁ : Action variable dite de base.

Qi: Action variable dite d'accompagnement.

Situations durables ou transitoires:

Ne font intervenir que les charges permanentes et les charges variables, la combinaison d'actions est :

1.35
$$G_{\text{max}} + G_{\text{min}} + \gamma_{Q1} Q_1 + 1.3 \Psi_{0i} Q_i$$
. (A.3.3,21 BAEL91)

 $\gamma Q_1 = 1.5$ dans le cas général,

 $\gamma Q_1 = 1.35$ pour les bâtiments agricoles à faible densité d'occupation humaine,

ψ0i: coefficient de pondération des valeurs d'accompagnement, il est égale à

0.77 pour les bâtiments courants.

Situations accidentelles:

Les situations de calcul considérées résultent de la combinaison suivante:

$$Gmax + Gmin + FA + \Psi 11 \times Q1 + \Sigma \Psi 21 \times Qi$$
 (A.3.3,22 BAEL91)

FA: Valeur nominale de l'action accidentelle,

Ψ11: Valeur fréquente d'une action variable,

 $\psi_2 iQi$: Valeur quasi permanente d'une autre action variable.

Sollicitations vis à vis de l'ELS:

Elles résultent des combinaisons d'actions ci-après :

$$G_{max} + G_{min} + Q_1 + \sum_{\psi 0i} Q_i$$
 (A.3.3,3 BAEL91)

II.1.Introduction:

Le pré dimensionnement a pour but de déterminer l'ordre de grandeur des différents éléments de la structure pour reprendre les efforts dues aux charges permanentes et surcharges d'exploitations, en respectant les règlements RPA99/version 2003 et CBA93.

II.2. Pré dimensionnement des planchers :

Le plancher est une séparation entre deux niveaux qui transmet les charges et le surcharge qui lui sont directement appliquées aux éléments porteurs tout en assurant des fonctions de confort comme l'isolation phonique, thermique et l'étanchéité des niveaux extrêmes. Pour le bâtiment étudie, deux types de planchers vont être utilisés :

- Plancher à corps creux.
- Dalle pleine pour les balcons.

II.2 .1 .Plancher a corps creux :

Les planchers corps creux sont composés de poutrelles hourdis et une dalle de Compression.comme le montre la figure suivante :

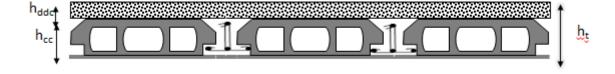


Fig. II.1: Coupe du plancher à corps creux

Avec:

h: hauteur du corps creux.

 h_0 : hauteur de la dalle de compression $h_{t=}h + h_0$: Hauteur totale du plancher b: distance entre axes des poutrelles

L'épaisseur du plancher est déterminée à partir de la condition de la flèche :

$$h_{t} \ge \frac{L}{22.5}$$
 (Art B.6.8.4.2 CBA 93)

Avec:

L: La portée maximale entre nus d'appuis dans le sens de la disposition des poutrelles.

L=425 cm

$$h_t \ge \frac{425}{22.5} \Rightarrow h_t \ge 18.88cm$$

Donc on adoptera des planchers à corps creux avec une hauteur de (16+4)=20cm.

Avec:

- $H_t = 20cm$
- $\mathbf{h}_{0=}$ 4 cm

II.2.1.1. Les poutrelles :

Les poutrelles sont des éléments préfabriqués ou coulés en place en béton armé, Disposées parallèlement les unes par rapport aux autres distancées par la largeur d'un corps Creux (hourdis)

II.2.1.2. Disposition des poutrelles :

Le choix du sens de disposition des poutrelles dépend de deux critères qui sont :

- Critère de la plus petite portée : les poutrelles sont disposées parallèlement à la plus Petite portée.
- Critère de continuité : les poutrelles sont disposées selon la travée qui comporte le plus grand nombre d'appuis possibles.

Comme montre la figure ci-dessous :

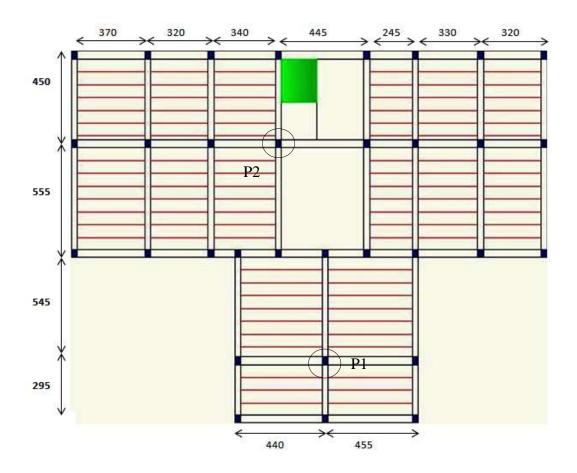


Fig.II.2.Plan de disposition des poutrelles (1^{er} étage)

• Pré dimensionnement :

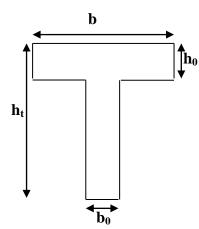
 $\mathbf{h_t}$: Hauteur du plancher ($\mathbf{h_t} = 20 \text{ cm}$).

 $\mathbf{h_0}$: Hauteur de la dalle de compression ($\mathbf{h_0} = 4$ cm).

b₀: Largeur de la nervure.

Tel que : $b_0 = (0.4 \text{ à } 0.6) \times h_t$

$$b_0\!=\!(0.4~\grave{a}~0.6)\times20 \rightarrow b_0\!=\!(8~\grave{a}~12)~cm$$


on opte pour : $b_0 = 10$ cm

b : Largeur efficace de la dalle donnée par la formule :

$$\frac{(b-b_0)}{2} \le Min \left[\frac{L_x}{2}; \frac{L_y}{10} \right]$$

L_x: est l'entre nus de deux poutrelles successives.

L_y: la distance minimale entre nus d'appuis des poutres secondaires.

Fig. II. 3: Schéma d'une poutrelle

$$L_x = 65-10 = 55$$
 cm

$$L_{v} = 215 \text{ cm}$$

$$\frac{b-10}{2} \le Min \left[\frac{55}{2}; \frac{215}{10} \right] \Rightarrow b \le 53cm$$

On opte pour : b=53 cm.

II.2.2. Plancher dalle pleine (balcons):

Les dalles sont des pièces minces et planes, dont l'épaisseur est faible par rapport aux autres

Dimensions en plan. L'épaisseur des dalles dépend le plus souvent des conditions d'utilisation Que des vérifications de résistance.

• Résistance au feu :

➤ e =7 cm Pour une heure de coupe feu.

➤ e =11 cm Pour deux heures de coupe feu.

ightharpoonup e =17.5 cm Pour quatre heures de coupe feu.

On admet: e = 15 cm

• Isolation phonique:

Selon les règles techniques « CBA93 », l'épaisseur du plancher doit être supérieure ou égale à 14 cm pour obtenir une bonne isolation acoustique.

On admet: e = 15 cm

• Résistance à la flexion :

Pour des dalles reposant sur trois ou quatre appuis :

$$\frac{L}{50} \le e \le \frac{L}{40}$$

La portée maximum des plancher à dalle pleine L = 3.4 m.

D'où:

$$\frac{300}{50} \le e \le \frac{300}{40} \implies 6.8 \le e \le 8.5$$

On rend pour la dalle pleine e = 15 cm

II.3.Pré dimensionnement des poutres

II.3.1 : poutres principales :

Selon le BAEL91 le pré dimensionnement des poutres se fait en utilisant les conditions suivantes:

 $L/15 \le h \le L/10$

h: hauteur de la poutre.

L : Plus grande portée dans le sens considéré (Lmax = 555-30 = 5.25m)

D'ou:

L = 525cm. $\Rightarrow 35$ cm $\le h \le 52.5$ cm

On prend: b=30cm et h=45cm

On doit vérifier les dimensions adoptées vis-à-vis des exigences du RPA qui sont les

Suivantes:

- b ≥20cm condition vérifiée.
- h ≥30cm condition vérifiée.
- h/b = 45/30 = 1.5 < 4 condition vérifiée.

Elles seront disposées perpendiculairement aux poutrelles.

II.3.2: les poutres secondaires:

Elles sont disposées parallèlement aux poutrelles, leurs hauteur est donnée par le critère de flèche qui est :

 $L/15 \le h \le L/10$

L: portée maximale entre nus d'appuis (L= 425 cm)

 $L=425cm \Rightarrow 28.33cm \le h \le 42.5cm$.

On prend: b = 30cm et h=40cm.

• Vérifications selon RPA 91 :

Les dimensions de la poutre doivent satisfaire les conditions suivantes :

 $b \ge 20 \text{ cm}$

 $h \ge 30$ cm.

$$h/b = 1.16$$

Apres la vérification on adopte les dimensions suivantes :

Poutres principales : $b \times h = (30,45) \text{ cm}^2$

Poutres secondaires : $b \times h = (30,40)$ cm²

II.4.Pré dimensionnement des voiles :

Pré dimensionnement des murs en béton armé justifiés par **l'article 7.7.1 RPA99** ils servent d'une part à contreventer le bâtiment en reprenant les efforts horizontaux (séisme et vent) et d'autre part de reprendre les efforts verticaux qu'ils transmettent aux fondations.

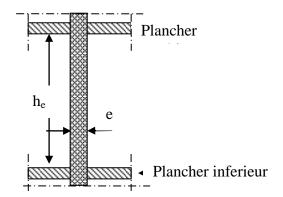


Fig. II.4. Coupe verticale d'un voile

Leur Prédimensionnement doit satisfaire les conditions du RPA99 suivantes :

- $e \ge h_e / 20....(2)$.

Avec:

h_e: Hauteur du voile sans la poutre.

he=306-40= 266cm

e: Epaisseur du voile.

L : Longueur du voile.

Tableau II.1 : pré dimensionnement des voiles

Nature d'étage	Hauteur libre d'étage (m)	Epaisseur du voile $e \ge h_e/20$
RDC et d'Etage courant	2.66	0, 133

On opte pour une épaisseur de **15 cm** pour tous les niveaux. Cette épaisseur vérifie toutes les conditions précédemment énoncées.

II.5.Pré dimensionnement des Escaliers :

Dans une construction la circulation entre les étages se fait le plus souvent par L'intermédiaire d'escaliers, qui sont constitués par des gradins successifs, et sont exclusivement destinés aux piétons, comme la montre la figure ci-dessous :

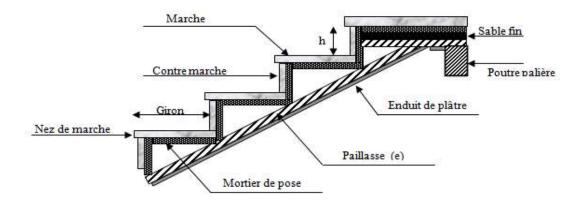


Fig II.5 : schéma général d'un escalier.

Pour déterminer les dimensions des marches et des contres marches on utilise la formule de

Blondel qui est donnée par :

$$59 \le g + 2 \times h \le 64....(1)$$
.

La limite inférieure (59) correspond à des escaliers courants d'appartement et la limite

Supérieure (64) correspond à des locaux publics.

Soit (n) le nombre de contre marches et (n-1) le nombre de marche

H: la hauteur de la volée

L : la longueur projetée de la volée

$$H = n \times h \implies h = H/n$$

$$L=(n-1)\times g \implies g=L/n-1$$

Si
$$g + 2 \times h = 64 \text{cm}$$
....(2).

On remplace dans (2):

$$L/n - 1 + 2 \times (H/n) = 64$$

n est la solution de l'équation : $64 n^2 - (64 + 2H + L)n + 2 H=0$.

On distingue dans notre projet deux types d'escalier :

Type 1 : Pour un escalier à deux volés : comme la montre la figure ci-dessous :

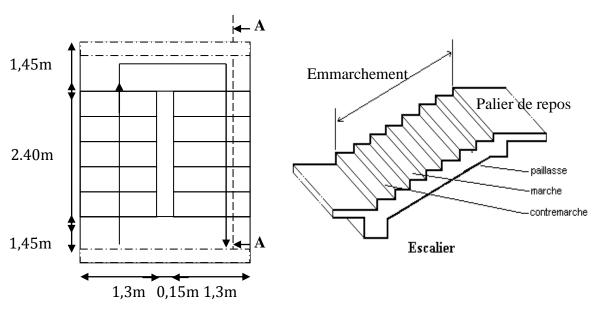


Fig II.6 Schéma d'escalier

H = 1.53 m

l = 2.4 m

$$\Rightarrow$$
 0.64 n²-(0.64 + 2×1.53+ 2.4) n + 2×1.53= 0

 \Rightarrow n = 9

Donc : nombre de contre marche (n= 9)

g = L/n-1 = 240/9-1 = 30cm

h = H/n = 153/9 = 17 cm

• Epaisseur de la paillasse :

Elle est calculée par relation suivante :

 $L/30 \le e \le L/20$

$$L_{V} = (L^2 + H^2)^{1/2} = 284.62$$
cm

$$L = L_v + L_{P1} + L_{p2} = 284.62 + 145 + 145$$

L = 574.62cm

$$\Rightarrow$$
 14.487 \leq e \leq 21.73

On prend: e = 15cm

• Poids de la paillasse :

$$\alpha = tg^{-1}(H/I) = tg^{-1}(153/240) \Longrightarrow \alpha = 32.52^{\circ}$$

$$G = \frac{\gamma_b \times e}{\cos \alpha} = \frac{25 \times 0.15}{\cos 32.52^{\circ}} = 4.45 \text{ KN/m}^2.$$

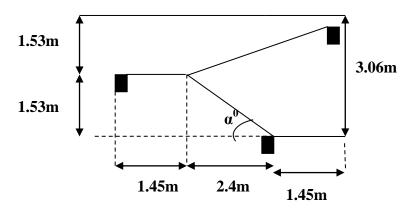


Fig.II.7. Schéma de l'escalier d'étage courant

Type 2 : escaliers à trois volées droites à double quartier tournant en bois.

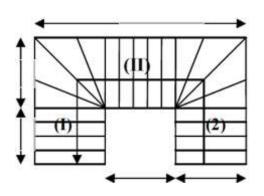
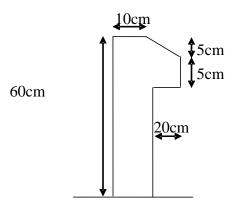



Fig.II.8. Schéma de l'escalier de duplex

II.6.Acrotère:

L'acrotère est un élément placé à la périphérie du plancher terrasse Cet élément est réalisé en béton armé, son rôle est la protection contre les infiltrations des eaux pluviales.

L'acrotère est considéré comme une console encastrée dans le plancher et soumise à son poids propre et une force horizontale. comme la montre la figure ci-dessous :

$$S = 10 \times 60 + \frac{5 \times 20}{2} + 5 \times 20$$

$$S = 0.0750m^2$$

Fig II.9 Vue en plan d'un acrotère

Charge Permanente:

• Poids propre :

$$G = \gamma_b \times S \times 1$$

$$G = 25 \times 0.075 \times 1$$

La Surcharge d'exploitation :

$$Q = 1 \text{ KN/ml}$$

II.7. Evaluation des charges et surcharges :

II.7.1.Plancher étage courant :

 Tableau II.2 Evaluation des charges dans le Plancher étage courant.

N°	Description	Epaisseur (m) "e"	Densité (K/m³)	Poids "G" (KN/m²)
1	Revêtement en carrelage	0.02	22	0.44

2	Mortier de pose	0.02	20	0.40
3	Lit de sable	0.02	18	0.36
4	Dalle de corps creux (16+4)	0.20	1	2.85
5	Enduit en plâtre	0.02	10	0.20
6	Cloisons de distribution	0.10	10	1
			$\Sigma = 5.25$	

 $G = 5.25 \text{ KN/m}^2$

 $Q = 1.5 \text{ KN/m}^2$ (Q plancher étages courant).

II.7.2.Plancher terrasse accessible:

Tableau .II.3: Evaluation des charges dans le plancher terrasse accessible

Désignation des éléments	e (m)	Densité (K/m³) '' ''	Poids (KN/m²)
Carrelage	0.02	22	0.44
Mortier de pose	0.02	20	0.40
Lit de sable	0.02	18	0.36
Multicouche d'étanchéité	0.02	5	0.1
Plancher corps creux (16+4)	0.20	1	2.85
Enduit en plâtre	0.02	10	0.20
Forme de pente	1.5%	22	1.44
			\sum = 5.75

 $G = 5.75 \text{ KN/m}^2$

 $Q = 1.5 \text{ KN/m}^2$

II.7.3.Plancher terrasse inaccessible (toiture de la cage d'escalier) :

Tableau .II.4: Evaluation des charges dans le plancher terrasse inaccessible.

Désignation des Eléments	e (m)	Densité (K/m³) '' γ ''	Poids (KN/m²)
Gravillon de protection	0.05	20	1
Multicouche d'étanchéité	0.02	5	0.1
Isolation thermique	0.04	25	0.01
Plancher corps creux (16+4)	0.2	1	2.85
Forme de pente	0.05	1	1.1
Enduit en plâtre	0.015	10	0.15
			\sum = 5.21

 $G = 5.21 \text{ KN/m}^2$

 $Q = 1 \text{ KN/m}^2$

II.7.4. Dalle pleine:

Tableau .II.5: Evaluation des charges dans la dalle pleine

Désignation des éléments	e (cm)	Poids (KN/m²)
Dalle pleine	15	3,75
Carrelage	2	0,44
Mortier de pose	2	0,40
Sable fin	2	0,36
Enduit de ciment	1.5	0,27
	$\sum = 5.22$	

 $G = 6.22 KN/m^2$

 $Q=3.5 \text{ KN/m}^2$

II.7.5. Cloisons doubles:

La maçonnerie utilisée est en briques (double cloison).

Tableau .II.6 :Evaluation des charges due aux murs cloisons doubles

Désignation des éléments	e (cm)	Poids (KN/m²)
Enduit en plâtre	2	0,20

Briques creuses	15	1,30
Lame d'air	5	0,00
Briques creuses	10	0.9
Enduit de ciment	1,5	0,3
		$\sum = 2.7$

 $G= 2.7 \text{ KN/m}^2$

II.7.6. Murs intérieurs :

Tableau .II.7: Evaluation des charges due aux murs intérieurs

Description	Epaisseur "e" (cm)	Poids volumique " Y " (KN/m³)	Poids "G" (KN/m²)
Enduit ciment extérieur	1.5	10	0.15
Brique creuse de 10cm	10	/	0.90
Enduit plâtre intérieur	1.5	10	0.15
			$\Sigma = 1.2$

 $G= 1.2 \text{ KN/m}^2$

II.7.8.Escalier:

• Les paliers :

Tableau .II.8: Evaluation des charges permanentes et surcharges d'exploitations des

Désignati	ion	Poids volumique (KN /m³)	Epaisseurs (m)	Poids (KN/m²)	Surcharges Q (KN/m²)
Palier		25	0.15	3.75	
Carrelag	e	22	0.02	0.44	
Mortier o	de pose	20	0.02	0.4	
Lit de sal	ble	18	0.02	0.36	
Enduit de	e plâtre	10	0.02	0.2	
Total	Palier d'épaisseur 15 cm	/	/	5.15	2.5

paliers des escaliers

 $G = 5.15 \text{ KN/m}^2$

 $Q= 2.5 \text{ KN/m}^2$

• Paillasse

Tableau II.9 : évaluation des charges permanentes et surcharges d'exploitations des volées

Désignation	Poids volumique (KN/m ³)	Epaisseur (m)	Poids G(KN/m ²)	Surcharges Q (KN/m ²)
Paillasse		0.15	4.70	
Les marches	22	0.085	1.87	
Carrelage horizontal	22	0.02	0.44	
Carrelage vertical	22	0.02h/g	0.25	
Mortier de pos horizontal	e 20	0.02	0.40	
Mortier de pos vertical	e 20	0.02h/g	0.22	
Enduit de ciment	18	0.015	0.32	
Garde-corps			0.1]
volée d'épaisseur Total 15 cm	. /	/	8.30	2.5

G= 8.30 KN/m² (volée d'épaisseur 15 cm)

 $G= 8.30 \text{ KN/m}^2$

 $Q= 2.5 \text{ KN/m}^2$

II.8.Les poteaux :

Ce sont des éléments structuraux en béton arme destinés à reprendre des charges et des Surcharges et transmettre aux fondations ; le prés-dimensionnement des poteaux se fait à la Compression centrée selon les règles du **BAEA91**, en appliquant les critères de résistance et le critère de stabilité de forme et suivant les exigences du **RPA 99 version 2003**.

Les dimensions de la section transversale des poteaux selon le RPA 99 (version **2003**), Doivent satisfaire les conditions suivantes pour la zone **IIa** :

Les exigences de RPA

$$\begin{cases} \min(b,h) \ge 25cm \\ \min(b,h) \ge \frac{h_e}{20} \\ 0.25 < \frac{b}{h} < 4. \end{cases}$$

On fixera les dimensions des poteaux, tout en vérifiant les recommandations du **RPA99**Les dimensions des poteaux sont supposées :

• R.D.C: (40,55) cm²

• 1^{er} et 2^{eme} : (40,50) cm²

• 3^{eme} et 4^{eme} : (40,45) cm²

• 5^{eme} et 6^{eme} : (35,45) cm²

• 7^{eme} , 8^{eme} : (35,40) cm²

• 9^{eme} et 10^{eme} : (30,40) cm²

On a opté pour ce choix en vérifiant les recommandations du RPA99 et pour avoir une section minimale b*h aux derniers étages.

II.9. descente de charges :

Afin d'assurer la résistance et la stabilité de l'ouvrage, une distribution des charges et surcharges pour chaque élément s'avèrent nécessaire. La descente des charges permet l'évaluation de la plus part des charges revenant à chaque élément de la structure, on aura à considérer :

- le poids propre de l'élément.
- la charge de plancher qu'il supporte.
- la part de cloison répartie qui lui revient.
- les éléments secondaires (escalier, acrotère....)

La descente de charge se fait du niveau le plus haut (charpente ou toiture terrasse) vers le niveau inférieur et cela jusqu'au niveau le plus bas (les fondations).

Nous appliquons les lois de dégression uniquement pour les étages à usages d'habitation.

• Surcharges différentes selon la loi de dégression :

• Choix du poteau le plus sollicité :

Repérage des poteaux :

- Poutres principales : $b \times h = (30,45) \text{ cm}^2$
- Poutres secondaires : $b \times h = (30,40) \text{ cm} 2$
- \bullet Descente des charges pour le poteau P_1 comme la montre la figure ci-dessous :

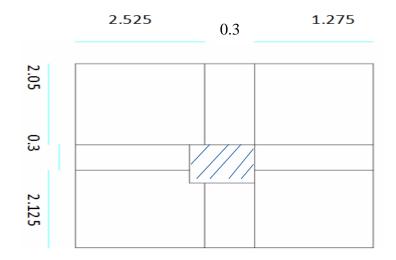


Figure.II.09: Poteau « P1 » de la descente de charges pour les étages courants.

Calcul des surfaces afférentes :

• Terrasse inaccessible :

$$S = (2.525 + 0.3 + 1.275) * (2.05 + 0.3 + 2.125) = 18.35 m^{2}$$

• étage courant :

S=
$$(2.525 * 2.05) + (2.05 * 1.275) + (2.525 * 2.125) + (1.275 * 2.125) = 15.865m^2$$

Calcul du poids des éléments :

• Poids des poteaux :

La section des poteaux adopté sont défini ci-après poids propre des poteaux est : $P=25\times S\times h_e$

Avec h_e : Hauteur libre d'étage (*RDC* + etages courants)=3.06 S: Surface du poteau (b× h)

Tableau.II.6 : .Section préalables des poteaux

Etage	RD C	1 ^{ere} et 2 ^{eme} étages	3eme et 4eme étages	5 ^{eme} , 6 ^{eme} étages	7 ^{eme} , 8 ^{eme} étages	9 ^{eme} , 10 ^{eme} étages
Section (cm²)	40*55	40x50	40*45	35*45	35*40	30*40
Surface (m²)	0.22	0.2	0.18	0.1575	0.14	0.12
Poids(KN)	16.83	15.3	13.77	12.048	10.71	9.18

Poids des poutres :

$$\begin{split} L_{pp} &= 4.475m \,, \qquad L_{ps} = 4.2m \\ G_{pp} &= 25 \big(b \times h_{pp} \big) \times L_{pp} \Rightarrow G_{pp} = 25 \times (0.3 \times 0.45) \times 4.475 = 15.1KN \\ G_{ps} &= 25 \big(b \times h_{ps} \big) \times L_{ps} \Rightarrow G_{ps} = 25 \times (0.3 \times 0.4) \times 4.2 = 12.6KN \\ G_{poutres} &= G_{pp} + G_{ps} \Rightarrow G_{poutres} = 15.1 + 12.6 = 27.7KN \end{split}$$

• Poids des plancher :

- Terrasse inaccessible :

$$\begin{aligned} G_{terr} &= 5.21 \times 18.35 = 95.6 KN \\ Q_{terr} &= 1 \times 18.35 = 18.35 KN \end{aligned}$$

- Etages courants et RDC:

$$G_{etage\; courant} = 5.25 \times 15.865 = 83.3KN$$

 $Q_{etage\; courant} = 1.5 \times 15.865 = 23.8KN$

En appliquant la loi de dégression des charges, on obtient les résultats suivants :

Tableau II.7. résultat de la descente de charge de poteau P1

	Plancher terrasse inaccessible	96.6	
NIO	$PP (30 \times 45) cm^2$	15.1	
N0	$PS (30 \times 40) cm^2$	12.6	
	Poteau (30×40) cm ²	9.18	
	Total	133.48	18.35
	Venant de N ₀	133.48	20.00
	Plancher d'étage (16+4) cm	83.3	
N1	Poutres	27.7	
	Poteau (30×40) cm ²	9.18	
	Total	253.66	45.875
	Venant de N ₁	253.66	
	Plancher d'étage (16+4) cm	83.3	
N2	Poutres	27.7	
	Poteau (35×40) cm ²	10.71	
	Total	375.37	70.647
	Venant de N ₂	375.37	
	Plancher d'étage (16+4) cm	83.3	
N3	Poutres	27.7	
	Poteau (35×40) cm ²	10.71	
	Total	497.08	92.667
	Venant de N ₃	497.08	
	Plancher d'étage (16+4) cm	83.3	
N4	Poutres	27.7	
	Poteau (35×45) cm ²	12.048	
	Total	618.128	111.935
	Venant de N ₄	618.128	
	Plancher d'étage (16+4) cm	83.3	
N5	Poutres	27.7	
	Poteau (35×45) cm ²	12.048	
	Total	741.176	128.45
	Venant de N ₅	741.176	
	Plancher d'étage (16+4) cm	83.3	
N6	Poutres	27.7	
	Poteau (40×45) cm ²	13.77	
	Total	865.946	142.212
	Venant de N ₆	865.946	
	Plancher d'étage (16+4) cm	83.3	
N7	Poutres	27.7	
	Poteau (40×45) cm ²	13.77	
	Total	990.716	155.92
N8	Venant de N ₇	990.716	
	Plancher d'étage (16+4) cm	83.3	
	Poutres	27.7	
	Poteau (40×50) cm ²	15.3	
	Total	1117.016	169.737
N9	Venant de N ₈	1117.016	

	Plancher d'étage (20+4) cm	83.3	
	Poutres	27.7	
	Poteau (40×50) cm ²	15.3	
	Total	1243.316	183.483
	Venant de N ₈	1243.316	
	Plancher d'étage (20+4) cm	83.3	
	Poutres	27.7	
	Poteau (40×55) cm ²	16.83	
	Total	1371.146	197.265
Ns =	$=G_t + Q_t$ N_s	=1568.4 KN	
$N_u=1$	$1.35G_t + 1.5 Q_t$	$N_{\rm u} = 2146.94 {\rm KN}$	

Descente des charges pour le poteau P2 : comme la montre la figure ci-dessous :

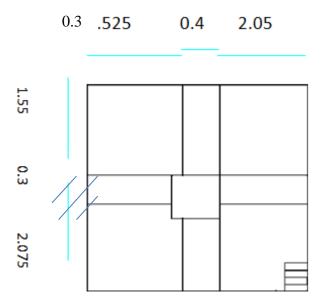


Figure. II.10: Poteau « P2 » de la descente de charges pour les étages courants

- > Calcul des surfaces afférentes :
- Terrasse inaccessible :

$$S = (1.55 + 0.3 + 2.075) \times (2.525 + 0.3 + 2.05) = 19.13m^2$$

• Etage courant:

S=
$$(1.55 * 2.05 + 2.05 * 2.075 + 1.55 * 2.575 + 1.415 * 1.4) = 13.4m^2$$
 – Dalle pleine :

$$S=(1.16*0.675)=0.79m^2$$

- > Calcul du Poids des éléments :
- Poids des poutres :

$$\begin{split} L_{pp} &= 2.525 + 2.05 = 4.575m \;, L_{ps} = 1.55 + 2.075 = 3.625m \\ G_{pp} &= 25 \big(b \times h_{pp} \big) \times L_{pp} \Rightarrow G_{pp} = 25 \times (0.30 \times 0.45) \times 4.575 = 15.44KN \\ G_{ps} &= 25 \big(b \times h_{ps} \big) \times L_{ps} \Rightarrow G_{ps} = 25 \times (0.30 \times 0.40) \times 3.625 = 10.875KN \\ G_{poutres} &= G_{pp} + G_{ps} \Rightarrow G_{poutres} = 15.44 + 10.875 = 26.3KN \end{split}$$

• Poids des plancher :

Terrasse inaccessible :

$$G_{terr} = 5.21 \times 19.13 = 99.66KN$$

 $Q_{terr} = 1 \times 19.13 = 19.13KN$

- Etages courants:

$$G_{etage\;courant} = 5.25 \times 13.4 = 70.35KN$$

$$Q_{etage\;courant} = (1.5 \times 13.4) = 20.1KN$$

Poids des escaliers :

$$\begin{array}{l} G_{esc} = G_v \times S_v = 5.15 \times 0.79 = 4.07 KN \\ Q_{esc} = Q_v \times S_v = 2.5 \times 0.79 = 1.98 KN \end{array}$$

Nous appliquant la loi de dégression des charges, on obtient les résultats suivants :

Tableau.II.8: Résultat de la descente de charge de poteau P2

Niveau	Eléments	G (KN)	Q (KN)
	Plancher terrasse inaccessible	99.66	
N0	$PP (30 \times 45) cm^2$	15.44	
NO	$PS (30 \times 40) cm^2$	10.875	
	Poteau (30×40) cm ²	9.18	
	Total	135.155	19.72
N1	Venant de N ₀	135.155	
	Plancher d'étage (16+4) cm	89.96	
	Poutres	26.3	
	Poteau (30×40) cm ²	9.18	
	Escaliers	4.07	
	Total	264.66	41.8
	Venant de N ₁	264.66	
	Plancher d'étage (16+4) cm	89.96	
N2	Poutres	26.3	
N2	Poteau (35×40) cm ²	10.71	
	Escaliers	4.07	
	Total	395.7	61.67
N3	Venant de N ₂	395.7	

	Plancher d'étage (16+4) cm	89.96	
	Poutres	26.3	
	Poteau (35×40) cm ²	10.71	
	Escaliers	4.07	
	Total	526.74	79.33
	Venant de N ₃	526.74	
	Plancher d'étage (16+4) cm	89.96	
NI4	Poutres	26.3	
N4	Poteau (35×45) cm ²	12.048	
	Escaliers	4.07	
	Total	659.118	94.8
	Venant de N ₄	659.118	
	Plancher d'étage (16+4) cm	89.96	
N5	Poutres	26.3	
INS	Poteau (35×45) cm ²	12.048	
	Escaliers	4.07	
	Total	791.5	108.04
	Venant de N ₅	791.5	
	Plancher d'étage (16+4) cm	89.96	
N6	Poutres	26.3	
INO	Poteau (40×45) cm ²	13.77	
	Escaliers	4.07	
	Total	925.6	119.08
	Venant de N ₆	925.6	
	Plancher d'étage (16+4) cm	89.96	
N7	Poutres	26.3	
	Poteau (40×45) cm ²	13.77	
	Escaliers	4.07	
	Total	1059.7	127.91
N8	Venant de N ₇	1059.7	
	Plancher d'étage (16+4) cm	89.96	
	Poutres	26.3	
	Poteau (40×50) cm ²	15.3	
	Escaliers	4.07	
	Total	1195.33	139.84
	Venant de N ₈	1195.33	
	Plancher d'étage (20+4) cm	89.96	
N9	Poutres	26.3	
IV	Poteau (40×50) cm ²	15.3	
	Escaliers	4.07	
	Total	1330.96	150.88
N10	Venant de N ₈	1330.96	
	Plancher d'étage (20+4) cm	89.96	
	Poutres	26.3	
	Poteau (40×55) cm ²	16.83	
	Escaliers	4.07	
	Total	1468.12	163.24

$Ns = G_t + Q_t$	$N_s = 1631.36KN$
$N_u = 1.35G_t + 1.5 Q_t$	N _u =2226.82KN

On a $N_{u2} > N_{u1} \Rightarrow$ donc le poteau P_2 est le plus sollicité

Vérification

Apres avoir effectué le calcul pour la recherche du poteau le plus sollicité, on a trouvé que c'est le poteau central qu'est le plus sollicité sous charges verticales.

Les poteaux sont pré dimensionnés selon trois critères :

Le critère de résistance.

Le critère de stabilité de forme.

Les règles du RPA99/2003.

• L'effort normal ultime :

Pu = 2226.82 KN

Selon le BAEL (Art B.8.1.1) on doit majorer l'effort normal de compression ultime Nu de 10%.

Après majoration on trouve à la base

$$Nu^* = 1.1 \times Nu \rightarrow Nu = 1.1 \times 2236.82 = 2460.5 \text{ KN}$$

Donc: $Nu^* = 2460.5 \text{ KN}$

• Vérification à la résistance (compression simple) du poteau le plus sollicité :

On doit vérifier la condition suivante :

$$\sigma_{bc} = \frac{N_u}{B} \le \overline{\sigma_{bc}}$$

$$\text{Avec}: \ \overline{\sigma_{bc}} = \frac{0.85 \times f_{c28}}{1.5} = 14.2 MPa$$

B: section du béton

$$B \ge \frac{Nu}{\sigma_{bc}} \Rightarrow B \ge \frac{2460.5}{14.2 \times 10^3} \Rightarrow B \ge 0.173m^2$$

$$B \ge 0.173 m^2$$

Ce tableau résume les vérifications à la compression à tous les niveaux :

Tableau II.13. Vérification de la résistance (compression simple) :

Niveau	N _U [*] (KN)	B (Cm ²)	σ _{bc} (MPA)	$\sigma_{\mathrm{bc}} \leq \overline{\sigma}_{\mathrm{bc}}$
RDC	2430	2200	11.045	Vérifiée
1 ^{éme} et 2 ^{éme} étage	2205.83	2000	11.029	Vérifiée
3 ^{éme} et4 ^{eme} étage	1765.104	1800	9.806	Vérifiée
5 ^{éme} , 6 ^{éme} étage	1334.04	1575	8.47	Vérifiée

7 ^{eme} Et 8 ^{éme} étage	917.68	1400	6.55	Vérifiée
,9 ^{éme} et10 ^{éme} étage	466.57	1200	3.89	Vérifiée

• Vérification des conditions du RPA :

$$\min(b_1, h_1) \ge 25cm \dots (1)$$

$$\min(b_1, h_1) \ge \frac{h_e}{20} \dots (2)$$

$$\frac{1}{4} \le h_1 / b_1 \le 4 \dots (3)$$

Les trois conditions sont vérifiées pour les différentes sections des poteaux.

• Vérification au flambement :

D'après le (CBA 93), on doit vérifier que l'effort normal ultime :

Nu
$$\leq \overline{Nu} = \alpha \times \left[\frac{Br \times fc_{28}}{0.9 \times \gamma_b} + \frac{As \times fe}{\gamma_s} \right]$$
 CBA 93(Article B.8.2.1)

 α : Coefficient tenant compte de l'élancement.

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \text{ Pour } \lambda \le 50.$$

$$\alpha = 0.6 \left(\frac{\lambda}{50}\right)^2 \text{ Pour } 50 < \lambda \le 70$$

 γ_b : Coefficient de sécurité du béton =1.5

 γ_s : Coefficient de sécurité de l'acier =1.15

$$\lambda = \frac{l_f}{i}$$
 Avec $l_f = 0.7 \times l_0$: la longueur de flambement.

i: Rayon de giration
$$i = \sqrt{\frac{I}{B}} I = \frac{b \times h^3}{12}$$

$$As \ge 0.8\% \times Br$$
.

On prend As= $1\% \times Br$.

$$B_{rcal} \ge \frac{Nu}{\alpha \left[\frac{f_{c28}}{0.9 \times \gamma_b} + \frac{fe}{100 \times \gamma_s} \right]}$$
BAEL91 (7-4-2)

$$Br = (a-2) \times (b-2)$$

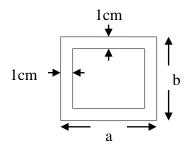


Fig. II.11. Section brute

Il faut vérifier que : Br≥B_{real}

Ce tableau résume les vérifications au flambement :

TableauII.14.Vérification au flambement :

Type de	B (cm ²)	l ₀ (cm)	l _f (cm)	Λ	α	$B_r (cm^{2)}$	N _u (KN)	$\mathbf{B}_{\mathrm{real}}$
poteau								(cm ²)
40*55	2200	261	183	11.56	0.83	2014	2430	1330.97
40*50	2000	261	183	12.68	0.828	1824	2205.83	1208.19
40*45	1800	261	183	14.087	0.823	1634	1765.104	966.8
35*45	1575	261	183	14.09	0.82	1419	1334.04	730.69
35*40	1400	261	183	15.848	0.816	1254	917.68	502.64
30*40	1200	261	183	15.85	0.816	1064	466.57	255.55

D'après le tableau précédent on voie bien que le critère de stabilité de forme est vérifié pour tous les poteaux.

• Prévérification de l'effort normal réduit :

Selon le **RPA(article.7.1.3.3)**il faut vérifier :

$$v = \frac{Nu}{B \times f_{c28}} \le 0.3$$

Ce tableau résume les vérifications de l'effort normal réduit :

Tableau II.15.Pré vérification de l'effort normal réduit :

Niveau	Type de	B (cm ²)	Nu (KN)	N	Observation
	poteau				
RDC	40*55	2200	2430	0.44	Non vérifiée
1 ^{éme} et 2 ^{éme} étage	40*50	2000	2205.83	0.441	Non vérifiée
3 ^{éme} et4 ^{eme} étage	40*45	1800	1765.104	0.39	Non Vérifiée
5 ^{éme} , 6 ^{éme} étage	35*45	1575	1334.04	0.338	Non Vérifiée
7 ^{eme} et 8 ^{éme} étage	35*40	1400	917.68	0.262	Vérifiée
9 ^{éme} et10 ^{éme} étage	30*40	1200	466.57	0.155	Vérifiée

Conclusion:

Le pré dimensionnement est fait en guise d'un avant-projet en répondant aux différentes exigences de pré dimensionnement données RPA99/2003, BAEL91 et CBA93, dans le but d'avoir une estimation des dimensions des sections des différents éléments à adopter. Les poteaux ont été étudiés à la compression et au flambement. Afin de déterminer le poteau le plus sollicité, nos avons effectué la descente de charge sur les poteaux qui nous semblaient

les plus sollicitées, en se référant à la surface afférente, l'aboutissement des poutres, et position par rapport à la cage d'escalier. Il s'est avéré que le plus sollicité était le poteau central.

Les sections des poteaux ainsi adoptés sont :

• R.D.C: $(b, h) = (55,60) \text{ cm}^2$.

• $1^{\text{éme}}$ et $2^{\text{éme}}$ étage: (b, h) = (50, 60) cm².

• $3^{\text{éme}} \text{ et} 4^{\text{eme}} \text{ étage}$: (b, h) = (50, 55) cm².

• $5^{\text{eme}} 6^{\text{eme}} \text{ étage:}$ (b, h) = (50, 50) cm².

• 7^{eme} et $8^{\text{\'eme}}$ étage : (b, h) = (45, 50) cm².

• $9^{\text{eme}} 10^{\text{eme}} \text{étage}$: (b, h) = (45, 45) cm².

III.1. Introduction:

La construction est un ensemble d'élément qui est classé en deux catégories : éléments principaux et éléments secondaires. Dans ce chapitre on s'intéresse uniquement à l'étude des éléments secondaires (différents planchers, escalier, acrotère ...). Cette étude se fait en suivant le cheminement suivant : évaluation des charges sur l'élément considéré, calcul des sollicitations les plus défavorables puis, détermination de la section de acier nécessaire pour reprendre les charges en question toutes en respectant la réglementation en vigueur (BAEL91, CBA, RPA99 addenda 2003...).

III.2. Calcul des planchers :

III.2.1 Introduction:

Un plancher est une aire plane, destinée à limiter les étages et dont les fonctions principaux sont :

- Une fonction de résistance ; il doit supporter les charges qui lui sont appliquées (poids propre +charge exploitation).
- Un rôle d'isolation thermique et phonique.
- Un rôle de transmission des charges.

III.2.2 Etude des poutrelles :

Les poutrelles sont des sections en Té en béton armé, servant à transmettre les charges réparties ou concentrées aux poutres principales, elles sont calculées en flexion simple en respectant les critères de continuité et d'inertie constante.

III.2.2.1 Méthode de calcul:

Les méthodes utilisées pour le calcul des poutres continues en béton armé sont :

- Méthode forfaitaire.
- Méthode de Caquot.
- Méthode forfaitaire (Annexe E.1 du BAEL 91)
- Domain d'application :

Pour déterminer les moments sur appui et en travée, il est possible d'utiliser la méthode forfaitaire si les quatre conditions sont vérifiées.

- Plancher à surcharge modérée (Q ≤Min (2G, 5KN/m²)).
- Le rapport entre deux travées successives : $0.8 \le \text{li}/\text{l}_{i+1} \ge 1.25$.
- Le moment d'inertie constant sur toutes les travées.
- Fissuration peu nuisible (F.P.N).

- Exposition de la méthode :
- Valeurs des moments : BAEL (art 7.3.2)

Les valeurs des moments en travée Mt et sur appui Mg et Md doivent vérifier :

$$M_t+ \ge Max (1.05 M_{0,} (1+0.3a) M0)....(1)$$

 $M_t \ge (1+0.3)$ Dans une travée intermédiaire......(2)

$$M_{t} \ge (1.2+0.3)$$
 Dans une travée de rive......(2)

 $M_t = max ((1) et (2)).$

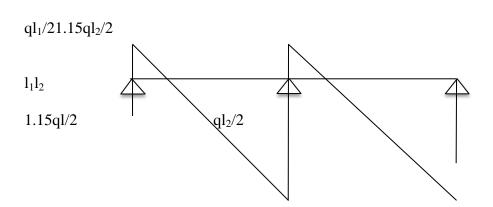
La valeur absolue de chaque moment sur appui intermédiaire doit être au moins égale à :

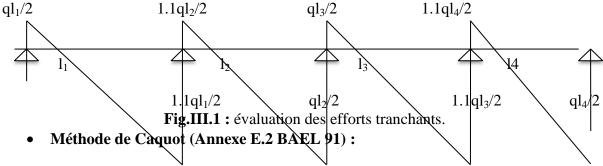
- 0.6M₀ pour une poutre à deux travées.
- 0.5M₀ pour les appuis voisins des appuis de rive d'une poutre à plus de deux travées.
- 0.4M₀ pour les autres appuis intermédiaires d'une poutre à plus de trois travées.

Avec M_0 la valeur maximale du moment fléchissant dans les travées de référence (travée isostatique) à gauche et à droite de l'appui considéré et le rapport des charges d'exploitation à la somme des charges non pondérées.

Avec :
$$\alpha = \frac{G+Q}{Q}$$

Remarque : les moments sur les appuis de rive sont nuls, seulement le BAEL91 préconise de mettre des aciers de fissuration équilibrant un moment fictif égale à :


$$-0.15M_0$$
 tel que $M_0 = Max (M_1^0; M_0^n,)$.


• Evaluation des efforts tranchants :

Les efforts tranchants sont évalués en appliquant une des deux méthodes suivantes :

- Soit forfaitairement en supposant la discontinuité entre les travées, dans ce cas les efforts tranchants hyperstatiques sont confondus même avec les efforts tranchants isostatiques sauf pour les appuis voisins de rive, ou l'effort tranchant isostatique doit être majoré de :
 - -0.15% s'il s'agit d'une poutre à deux travées.
 - -0.10% s'il s'agit d'une poutre à plus de deux travées.
- Soit par la méthode de RDM:

Compte tenu de la continuité : $V_{IJ}=V_{IJ0}$ (isostatique) + $(M_i-M_{i-1})/L_I$.

Lorsque l'une des conditions précédentes n'est pas satisfaite, ou si le plancher à surcharge élevée (Q≥ Min (2G, 5KN/m²), on applique la méthode de Caquot. Le principe repose sur la méthode des trois moments simplifiée et corrigée pour tenir compte de :

- La variation des moments d'inerties des sections transversales le long de la ligne moyenne de la poutre.
- L'amortissement des efforts de chargement des travées successives.

Soit une poutre continue:

La méthode de Caquot permet de déterminer les moments au niveaux des appuis en ne tenant compte que des charges appliquées sur les deux travées voisine de l'appui considérer.

On remplace les points du moment nul par des appuis simple fictifs avec :

l'= 0.81....pour une travée intermédiaire.

(BAEL art 7.4.3)

l'= 1.....pour une travée de rive.

l'= est la longueur fictive.

Le calcul de la poutre se décompose en l'étude de plusieurs poutres élémentaires à deux travées et on applique la méthode des trois moments pour chaque poutre élémentaire.

• Moment en appuis :

$$M_i = -\left(\frac{P_g \times l'_g \times P_d \times l'_d}{8.5 \times (l'_g + l'_d)}\right)$$

M_i= Moment à l'appui i

l'g et l'd: longueurs fictives à gauche et à droite respectivement.

 $P_{\text{g}}\text{et}\;P_{\text{d}}\!:$ charges uniformes à gauche et à droite respectivement.

• Moments en travées :

Les moments en travées sont calculés par la méthode de RDM on isole la travée considérer.

$$M(x) = M_0(x) + M_g(1 -) + M_d^x$$

Tel que: $M_0(x) = (1-x)$

$$X = \frac{l}{2} - \frac{Mg - Md}{PL}$$

 M_g et M_d : moment à gauche et à droite pris avec leurs signes.

• Efforts tranchants :

Par la méthode de RDM

$$V_i = V_0 + (M_i - M_{i-1}) / L_i$$

III.2.2.2. Différents types de poutrelles :

Dans le cas de notre projet on a 7 types de poutrelles :

Type 1 : poutrelle sur quatre appuis pour les étages habitation et terrasse inaccessible.

Schéma statique du 1^{er} type de poutrelle.

Type 2 : poutrelle sur cinq appuis pour étages habitations.

Schéma statique du 2^{eme} type de poutrelle.

Type 3: poutrelle sur quatre appuis pour terrasse inaccessible et étages habitations.

Schéma statique du 3^{eme} type de poutrelle.

Type 4 : poutrelle sur trois appuis pour terrasse et étages habitations.

Schéma statique du 4^{eme} type de poutrelle

Type5: poutrelle sur trois appuis pour les étages habitations et terrasse inaccessible.

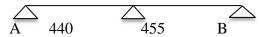


Schéma statique du 5eme type de poutrelle.

Type 6: poutrelle sur deux appuis pour les étages habitations.

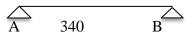


Schéma statique du 6eme type de poutrelle.

Type 7: poutrelle sur trois appuis pour terrasse inaccessible.

Schéma statique du 7eme type de poutrelle.

TYPE 8: poutrelle sur huit appuis pour terrasse inaccessible et étages habitations.

III.2.2.3.Méthode de calcul des poutrelles :

• La méthode forfaitaire :

On applique la méthode forfaitaire pour le calcul des planchers à surcharge modérée.

• Condition d'application :

- Plancher à surcharge modérée : $Q \le min (2 \times G.5) \text{ KN/m}^2$.
- Plancher terrasse inaccessible :

$$G = 5.21 \text{ KN/m}^2$$
.

$$Q = 1KN/m^2$$
.

$$\Rightarrow$$
 1 KN/m² \leq min (2×5.21;5) KN/m²

Vérifiée.

• Plancher étage courant :

$$G = 5.25 \text{ KN/m}^2$$
.

$$Q = 1.5 \text{ KN/m}^2$$
.

$$\Rightarrow$$
 1.5 KN/m² \leq min (2×5.25;5) KN/m².

Vérifiée

- Le moment d'inertie est constant sur tout le long de la travée.
- Le rapport $0.8 \le li/(li+1) \le 1.25$.

Type 1:
$$0.8 \le \frac{3.70}{3.20}$$
; $\frac{3.20}{3.40} \le 1.25$. Vérifiée.

Fissuration peu nuisible.

Vérifiée.

Pour les poutrelles de type 2 et 3 la condition du rapport entre deux travées successive $0.8 \le \frac{li}{li+1} \le 1.25$ est non vérifiée, donc on applique la méthode forfaitaire.

• Calcul des sollicitations :

Type 1:

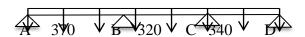


Schéma statique de la poutrelle type 1.

Les quatre conditions d'application de la méthode forfaitaire étant vérifiées, on utilise cette dernière pour le calcul des sollicitations.

Calcul des moments isostatiques :

• **A l'ELU**: $q_u = (1.35G+1.5Q) \times 0.65 = 6.07 \text{ KN/m}$

Travée AB:

$$M_0^{AB} = \frac{q_u \times L_{AB}^2}{8} \Rightarrow M_0^{AB} = 10.38 \text{KN.m}$$

Travée BC:

$$M_0^{BC} = \frac{q_u \times L_{BC}^2}{8} \Rightarrow M_0^{BC} = 7.76 \text{KN.m}$$

Travée CD:

$$M_0^{CD} = \frac{q_u \times L_{CD}^2}{8} \Rightarrow M_0^{CD} = 8.77 \text{KN.m}$$

• **A l'ELS**: $q_s = (G+Q) \times 0.65 = 4.39KN.m$

Travée AB:

$$M_0^{AB} = \frac{q_s \times L_{AB}^2}{8} \Rightarrow M_0^{AB} = 7.51 \text{KN.m}$$

Travée BC:

$$M_0^{BC} = \frac{q_s \times L_{BC}^2}{8} \Rightarrow M_0^{BC} = 5.61 \text{KN.m}$$

Travée CD:

$$M_0^{CD} = \frac{q_s \times L_{CD}^2}{8} \Rightarrow M_0^{CD} = 6.34 \text{KN.m}$$

- Moment aux appuis :
- Appuis de rive :
- A l'ELU:

$$M_A = M_D = -0.15 \times Max (M_0^{AB}; M_0^{CD}) \Rightarrow M_A = M_D = 0KN.m$$

• A l'ELS:

$$\mathbf{M}_{\mathrm{A}} = \mathbf{M}_{\mathrm{D}} = -0.15 \times \mathrm{Max} \ (M_0^{AB} \ ; M_0^{CD}) \Rightarrow \mathbf{M}_{\mathrm{A}} = \mathbf{M}_{\mathrm{D}} = 0 \mathrm{KN.m}$$

- Appuis intermédiaires :
 - A l'ELU:

$$M_B = -0.5 \times Max \ (M_0^{AB} \ ; M_0^{BC}) \Rightarrow M_B = -5.19 \text{ kn.m}$$

 $M_C = -0.5 \times Max \ (M_0^{BC} \ ; M_0^{CD}) \Rightarrow M_C = -4.385 \text{KN.m}$

• A l'ELS:

$$M_B = -0.5 \times Max \ (M_0^{AB} \ ; M_0^{BC}) \Rightarrow M_B = -3.755.KN.m$$

 $M_C = -0.5 \times Max \ (M_0^{BC} \ ; M_0^{CD}) \Rightarrow M_C = -3.17KN.m$

• Moment en travée:

$$\alpha = \frac{Q}{Q+G} = \frac{1.5}{1.5+5.25} = 0.22$$

$$(1+0.3 \times \alpha) \times M_0 = 1.07 \times M_0$$

(1)

$$M_t + \frac{|Mg| + |Md|}{2} \ge \max \qquad 1.05 \times M_0$$

$$\begin{cases} M \geq \frac{(1.2+0.3\alpha)\times M0}{2} & \dots T.R \\ \\ M_t \geq \frac{(1+0.3\alpha)\times M0}{2} \dots T.I \end{cases}$$

• A l'ELU:

Travée AB:

$$\begin{array}{ccc} M_t^{AB} \!\! \geq \! 8.51 \mathrm{KN.m} & M_t^{AB} \!\! \geq \! 8.51 \mathrm{KN.m} & \Rightarrow \! M_t^{AB} \!\! \geq \! 8.51 \mathrm{KN.m} \\ \mathbf{Trav\acute{e}e BC:} & & \\ M_t^{BC} \!\! \geq \! 3.51 \mathrm{KN.m} & \Rightarrow \! M_t^{BC} \!\! \geq \! 4.13 \mathrm{KN.m} \\ M_t^{BC} \!\! \geq \! 4.13 \mathrm{KN.m} & \Rightarrow \! M_t^{BC} \!\! \geq \! 4.13 \mathrm{KN.m} \\ \mathbf{Trav\acute{e}e CD:} & & \\ M_t^{CD} \!\! \geq \! 7.18 \mathrm{KN.m} & \Rightarrow \! M_t^{CD} \!\! \geq \! 7.18 \mathrm{KN.m} \\ M_t^{CD} \!\! \geq \! 5.58 \; \mathrm{KN.m} & \Rightarrow \! M_t^{CD} \!\! \geq \! 7.18 \mathrm{KN.m} \end{array}$$

• A l'ELS:

Travée AB:

$$M_t^{AB} \ge 6.15 \text{ KN.m}$$
 $M_t^{AB} \ge 4.75 \text{KN.m}$ $\Rightarrow M_t^{AB} \ge 6.15 \text{KN.m}$ **Travée BC:** $M_t^{BC} \ge 1.21 \text{KN.m}$ $M_t^{BC} \ge 3.55 \text{KN.m}$ $\Rightarrow M_t^{BC} \ge 3.55 \text{KN.m}$

Travée CD:

$$M_t^{CD} \ge 5.19 \text{KN.m}$$

 $M_t^{CD} \ge 4.03 \text{KN.m} \Rightarrow M_t^{CD} \ge 5.19 \text{KN.m}$

• Les efforts tranchants :

• A l'ELU:

Travée AB:

$$V_A = \frac{q \times lAB}{2} = 11.22 \text{KN}$$
 $V_B = -\frac{1.1q \times lAB}{2} = -12.35 \text{KN}$

Travée BC:

$$V_B = -12.35 \text{KN}$$

 $V_C = -11.35 \text{ KN}$
Travée CD:
 $V_C = 11.35 \text{KN}$
 $V_D = -10.31 \text{ KN}$

Type 1: pour plancher d'étages habitations

Tableau III.1. Sollicitations à l'ELU et l'ELS des poutrelles du plancher étage habitation.

	Type	Travée	Longueur M ₀		Moment en appui (KN.m)		Moment en travée	Effort to (KN)	ranchant
					M_{g}	M_d	(KN.m)	V_g	V_d
A 1'ELU		A-B	3.70	10.3 8	0	-5.19	8.51	11.22	-12.35
	01	В-С	3.20	7.76	-5.19	-4.38	4.13	-12.35	11.35
		C-D	3.40	8.77	-4.38	0	7.18	11.35	-10.31
A	01	A-B	3.70	7.51	0	-3.75	6.51		
l'ELS		В-С	3.20	5.61	-3.75	-3.17	3.55		
		C-D	3.40	6.34	-3.17	0	5.19		

Type 1: pour plancher Terrasse inaccessible

Tableau III.2. Sollicitations à l'ELU et l'ELS des poutrelles du plancher Terrasse inaccessible.

	Туре	Travée	Longueur L(m)	M_0	Moment en appui (KN.m)		Moment en	Effort tranch (KN)	ant
					Mg	M _d	travée (KN.m)	Vg	V _d
A l'ELU		A-B	3.70	9.48	0	-4.74	7.58	10.2 4	-11.27
	01	В-С	3.20	7.09	-4.74	-4	3.72	9.75	-9.75
		C-D	3.40	8	-4	0	6.94	10.3 5	-9.41
A	01	A-B	3.70	6.90	0	-3.75	5.52		
l'ELS		В-С	3.20	5.16	-3.75	-3.17	2.70		
		C-D	3.40	5.38	-3.17	0	4.66		

Type 2 : Application de la méthode de Caquot pour le deuxième type de plancher d'étage courant :

$$L_{i}/L_{i+1} = 2.45/3.3 = 0.74 \not\in \ \left[0.8; 1.25\right] Codition \ non \ v\'erifi\'ee.$$

Dans ce cas la méthode forfaitaire n'est pas applicable car la 3^{éme} condition n'est pas vérifiée donc on applique la méthode de Caquot minorée, en remplaçant G par G' dans le calcul des moments aux appuis

$$G' = \frac{2}{3}G$$

$$G' = \frac{2}{3} \times 5.25 = 3.5KN/m^2$$

$$P_u = (1.35 \ G' + 1.5 \ Q) \times 0.65 = 4.53KN/m$$

$$P_s = (G + Q) \times 0.65 = 3.25KN/m$$

2.6m

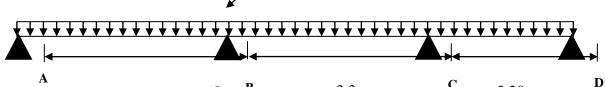
B 2.45

3.3m

3.2m

A Tableau III.3. Sollicitations à l'ELU des poutrelles de plancher d'étage courant

Type de poutrelle	Travée	L (m)	P _u (KN/m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 2	AB	2.6	6.069	0	-2.94	3.765	6.67	-
								9.019
	BC	2.45	6.069	-2.94	-3.007	1.582	7.406	-
								7.463
	CD	3.3	6.069	-3.007	-4.674	4.442	9.509	-
								10.52
	DE	3.2	6.069	-4.674	0	5.607	11.171	-8.25


A l'ELS:

Le même travail aboutit aux résultats résumés dans le tableauIII.4 :

Tableau III.4. Sollicitations à l'ELS des poutrelles du plancher d'étage courant

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M _g (KN.m)	M _d (KN.m)	X(m)	M _t (KN.m)
Type 2	AB	2.6	4.39	0	-2.105	1.114	2.73
	BC	2.45	4.39	-2.105	-2.155	1.12	1.162
	CD	3.3	4.39	-2.155	-3.35	1.567	3.236
	DE	3.2	4.39	-3.35	0	1.841	4.076

TYPE 3 : Application de la méthode de Caquot pour le deuxième type de plancher d'étage courant :

Dans ce cas la méthode forfaitaire n'est pas applicable car la 3^{éme} condition n'est pas vérifiée donc on applique la méthode de Caquot minorée, en remplaçant G par G' dans le calcul des moments aux appuis

Historian dail appears
$$G' = \frac{2}{3}G$$

$$G' = \frac{2}{3} \times 5.25 = 3.5KN/m^2$$

$$P_u = (1.35 G' + 1.5 Q) \times 0.65 = 4.53KN/m$$

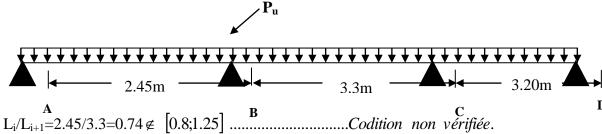
$$P_s = (G + Q) \times 0.65 = 3.25KN/m$$

A l'ELU:

Tableau III.5. Sollicitations à l'ELU des poutrelles du plancher d'étage courant

Type de poutrelle	Travée	L (m)	P _u (KN/m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 3	AB	2.45	6.069	4.386	0	-3.66	2.985	6.02	-8.85

BC	3.3	6.069	8.25	-3.466	-4.67	4.1	9.65	-
								10.38
CD	3.2	6.069	7.6	-4.67	0	5.61	11.17	-8.25


A l'ELS:

Le même travail aboutit aux résultats résumés dans le tableau III.6 :

Tableau III.6. Sollicitations à l'ELS des poutrelles du plancher d'étage courant

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	X(m)	M _t (KN.m)
Type 3	AB	2.45	4.39	2.76	0	-2.487	0.99	2.166
	BC	3.3	4.39	6.88	-2.487	-3.35	1.59	3.062
	CD	3.2	4.39	7.36	-3.35	0	1.84	4.067

Type 3:Application de la méthode de Caquot pour le deuxième type de plancher terrasse inaccessible:

Dans ce cas la méthode forfaitaire n'est pas applicable car la 3^{éme} condition n'est pas vérifiée donc on applique la méthode de Caquot minorée, en remplaçant G par G' dans le calcul des moments aux appuis

$$G' = \frac{2}{3}G$$

$$G' = \frac{2}{3} \times 5.21 = 3.473KN/m^{2}$$

$$P_{u} = (1.35 \ G' + 1.5 \ Q) \times 0.65 = 4.02KN/m$$

$$P_{s} = (G + Q) \times 0.65 = 3.23KN/m$$
A l'ELU:

_ .

• Moments aux appuis :

$$M_{A}=M_{D}=0 \text{ KN. m}$$

$$M_{B}=-\frac{P_{g} \times l_{g}^{'3} + P_{d} \times l_{d}^{'3}}{8.5 \times (l_{g}^{'} + l_{d}^{'})}$$

$$P_g = P_d = 4.02 \text{ KN/m}$$

Longueurs fictives:

$$L_g$$
'= L_g = 2.45 m.

$$L_d$$
'= L_d =0.8×3.3= 2.64 m.

$$M_{\rm B} = -\frac{4.02 \times (2.45^3 + 2.64^3)}{8.5 \times (2.45 + 2.64)} = -3.076 KN.m$$

$$M_{C} = -\frac{P_{g} \times l_{g}^{'3} + P_{d} \times l_{d}^{'3}}{8.5 \times (l_{g} + l_{d}^{'})}$$

$$P_g = P_d = 4.02 \text{ KN/m}$$

Longueurs fictives:

$$L_g$$
'= L_g =0.8×3.3=2.64 m.

$$L_d$$
' = L_d =3.20 m.

$$M_C = -\frac{4.02 \times (2.64^3 + 3.20^3)}{8.5 \times (2.64 + 3.20)} = -4.14 \text{KN.m}$$

• Moments en travée :

$$M(x) = M_0(x) + M_g \times (1 - \frac{x}{l}) + M_d \times \frac{x}{l};$$

$$M_0(x) = \frac{Pu \times x}{2} \times (l - x);$$
 tel que $x = \frac{l_i}{2} - \frac{M_g - M_d}{Pu \times l_i}$

Travée AB :

$$x = \frac{2.45}{2} - \frac{0 - (-3.076)}{5.55 \times 2.45} = 0.998m$$

$$M_0(x) = \frac{5.55 \times 0.998}{2} \times (2.45 - 0.998) = 4.02 \text{KN.m}$$

$$M_{T_{AB}}(x) = 4.03 + \left(-3.076 \times \frac{0.998}{2.45}\right) = 2.77 \, \text{KN.m}$$

Travée RC

$$x = \frac{3.3}{2} - \frac{-3.076 - (-4.14)}{5.55 \times 3.3} = 1.59m$$

$$M_0(x) = \frac{5.55 \times 1.59}{2} \times (3.3 - 1.59) = 7.55 \text{KN.m}$$

$$M_{T_{BC}}(x) = 7.55 - 3.076 \times (1 - \frac{1.59}{3.3}) - 4.14 \times \frac{1.59}{3.3} = 3.96 \text{KN.m}$$

Travée CD :

$$x = \frac{3.2}{2} - \frac{-4.14 - 0}{5.55 \times 3.2} = 1.83m$$

$$M_0(x) = \frac{5.55 \times 1.83}{2} \times (3.2 - 1.83) = 6.957 \text{ KN.m}$$

$$M_{T_{CD}}(x) = 6.957 - 4.14 \times (1 - \frac{1.83}{3.2}) = 5.18 \text{KN.m}$$

• Effort tranchant :

$$V = \frac{Pu \times l_i}{2} + \frac{M_d - M_g}{l_i}$$

Travée AB

$$V_A = \frac{5.55 \times 2.45}{2} + \frac{-3.076 - 0}{2.45} = 5.54 KN$$

$$V_B = -\frac{5.55 \times 2.45}{2} + \frac{-3.076 - 0}{2.45} = -8.05KN$$

Travée BC:

$$V_B = \frac{5.55 \times 3.3}{2} + \frac{-4.14 + 3.076}{3.3} = 8.835 KN$$

$$V_C = \frac{-5.55 \times 3.3}{2} + \frac{-4.14 + 3.076}{3.3} = -9.48 KN$$

Travée CD:

$$V_C = \frac{5.55 \times 3.2}{2} + \frac{0 + 4.14}{3.2} = 10.17 KN$$

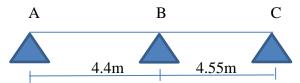
$$V_D = -\frac{5.55 \times 3.2}{2} + \frac{0 + 4.14}{3.2} = -7.58 KN$$

Tableau III.7. Sollicitations à l'ELU des poutrelles du plancher De terrasse inaccessible

Type de poutrelle	Travée	L (m)	P _u (KN/m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)	V _g (KN)	V _d (KN)
Type 3	AB	2.45	5.55	4.02	0	-3.076	2.77	5.54	-8.05
	BC	3.3	5.55	7.55	-3.076	-4.14	3.96	8.835	-9.48
	CD	3.2	5.55	6.957	-4.14	0	5.18	10.17	-7.58

A l'ELS:

Le même travail aboutit aux résultats résumés dans le tableauIII.8 :


Tableau III.8. Sollicitations à l'ELS des poutrelles du plancher de terrasse inaccessible

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	X(m)	M _t (KN.m)
Type 3	AB	2.45	4.037	2.92	0	-2.225	0.99	2.019
	BC	3.3	4.037	5.488	-2.225	-2.99	1.59	2.89
	CD	3.2	4.037	5.06	-2.99	0	1.84	3.77

Type 5:

 Application de la méthode forfaitaire pour le 1^{ere} type de plancher de terrasse inaccessible :

Etude d'une poutrelle à 2 travées en appliquant la méthode forfaitaire (poutrelle Type 5).

- a. Vérification des conditions d'application de la méthode forfaitaire :
 - $Q \le Min(2 \times 5.21, 5KN/m^2) = 5KN/m^2$ vérifiée.
 - I = constant.....vérifiée.

 - F.P.N. vérifiée.

Les conditions d'application de la méthode forfaitaire sont tous vérifiées.

b. calcule des sollicitations :

À l'ELU:

Les résultats des calculs ELU et ELS sont résumes dans les tableaux suivants :

Tableau III.10. Sollicitations à l'ELU des poutrelles du plancher de terrasse inaccessible

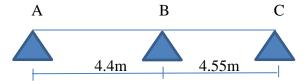

Type de poutrell	Travée	L (m)	P _u (KN/	M ₀ (KN.m	M _g (KN.m	M _d (KN.m	M _t (KN.m	V _g (KN)	V _d (KN)
e			m)))))		
Type 5	AB	4.4	5.55	13.43	0	8.62	9.79	12.21	-14.04
	BC	4.55	5.55	14.36	8.62	0	10.74	14.52	-12.62

Tableau III.11. Sollicitations à l'ELS des poutrelles du plancher de terrasse inaccessible

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)
Type 5	AB	4.4	4.39	9.77	0	6.27	7.12
	BC	4.55	4.39	10.44	6.27	0	7.84

• TYPE 5 : Application de la méthode forfaitaire pour le 1^{ere} type de plancher d'étage courant:

Etude d'une poutrelle à 2 travées en appliquant la méthode forfaitaire (poutrelle Type 5).

a. Vérification des conditions d'application de la méthode forfaitaire :

- $Q \le Min (2 \times 5.25, 5KN/m^2) = 5KN/m^2$ vérifiée.
- I = constant.....vérifiée.
- FPN vérifiée

Les conditions d'application de la méthode forfaitaire sont tous vérifiées.

b. calcule des sollicitations :

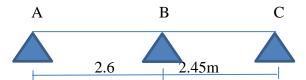
À l'ELU:

Les résultats des calculs ELU et ELS sont résumes dans les tableaux suivants ::

Tableau III.13. Sollicitations à l'ELU des poutrelles du plancher d'étage courant

Type de poutrell	Travée	L (m)	P _u (KN/	M ₀ (KN.m	M _g (KN.m	M _d (KN.m	M _t (KN.m	V _g (KN)	(KN)
е			m)))))		
Type 5	AB	4.4	6.069	14.687	0	-9.42	10.95	13.35	-15.35
	BC	4.55	6.069	15.7	-9.42	0	12.03	15.88	-13.8

Tableau III.14 Sollicitations à l'ELS des poutrelles du plancher d'étage courant


Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)
Type 5	AB	4.4	4.39	10.62	0	-6.8	7.92
	BC	4.55	4.39	11.36	-6.8	0	8.705

Les résultats des autres types des poutrelles de plancher terrasse et plancher étage courant sont représentés dans les tableaux ci-dessous :

TYPE 4:

• Application de la méthode forfaitaire pour le 1 ere type de plancher d'étage courant:

Etude d'une poutrelle à 2 travées en appliquant la méthode forfaitaire (poutrelle Type 4).

- a. Vérification des conditions d'application de la méthode forfaitaire :
 - $Q \le Min(2 \times 5.25, 5KN/m^2) = 5KN/m^2$ vérifiée.
 - I = constant.....vérifiée.

 - F.P.N. vérifiée.

Les conditions d'application de la méthode forfaitaire sont tous vérifiées.

Les résultats des calculs ELU et ELS sont résumes dans les tableaux suivants :

Tableau III.15. Sollicitations à l'ELU des poutrelles du plancher d'étage courant

Type de poutrell	Travée	L (m)	P _u (KN/	M ₀ (KN.m	M _g (KN.m	M _d (KN.m	M _t (KN.m	V _g (KN)	V _d (KN)
e			m)))))		
Type 4	AB	2.6	6.069	5.128	0	-3.077	3.928	7.89	-9.07
	BC	2.45	6.069	4.554	-3.077	0	3.316	8.55	-7.43

Tableau III.16. Sollicitations à l'ELS des poutrelles du plancher d'étage courant

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)
Type 4	AB	2.6	4.39	3.708	0	-2.225	2.84
	BC	2.45	4.39	3.292	-2.225	0	2.397

TYPE 4: pour terrasse inaccessible:

Les résultats des calculs ELU et ELS sont résumes dans les tableaux suivants :

Tableau III.17. Sollicitations à l'ELU des poutrelles du plancher d'étage courant

Type de poutrell	Travée	L (m)	P _u (KN/	M ₀ (KN.m	M _g (KN.m	M _d (KN.m	M _t (KN.m	V _g (KN)	V _d (KN)
e			m)))))		
Type 4	AB	2.6	5.55	4.687	0	-2.812	3.515	7.21	-8.3
	BC	2.45	5.55	4.162	-2.812	0	2.964	7.81	-6.8

Tableau III.18. Sollicitations à l'ELS des poutrelles du plancher d'étage courant

	Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	M _t (KN.m)
İ	Type 4	AB	2.6	4.037	3.411	0	-2.047	2.558
		BC	2.45	4.037	3.029	-2.047	0	2.157

Type 6: pour étage habitation:

Les moments aux appuis :

C'est une poutrelle simplement appuyée dans les deux extrémités donc :

• A l'ELU:

 $M_A = M_B = 0$. En raison d'équilibrer les moments fictifs, le BAEL préconise de mettre une section d'aciers de fissuration.

$$M_A = M_B = -0.15M_0 = -1.32KN.m$$

• A l'ELS:

 $M_A = M_B = -0.95 \text{ KN.m}$

Tableau III.19. Sollicitations à l'ELU des poutrelles du plancher étage habitation.

Travée	L(m)	$q_u(KN/$	\mathbf{M}_0	$M_{\rm g}$	M_d	M _t	V_g	V_d
		m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)	(KN.m)
A-B	3.4	6.07	8.77	0	0	8.77	10.32	-10.32

Tableau III.20. Sollicitations à l'ELS des poutrelles du plancher étage habitation.

Travée	L(m)	$q_s(KN/m)$	M_0	M_{g}	$M_d(KN.$	$M_t(KN.m)$
			KN.m)	KN.m)	m	
A-B	3.4	4.39	6.34	0	0	6.34

TYPE 7: Pour terrasse inaccessible Application de la méthode de Caquot

 $L_{i}/L_{i+1} = 3.4/4.45 = 0.76 \not\in \ \left[0.8; 1.25\right]......Codition \ non \ v\'erifi\'ee.$

Dans ce cas la méthode forfaitaire n'est pas applicable car la 3^{éme} condition n'est pas vérifiée donc on applique la méthode de Caquot minorée, en remplaçant G par G' dans le calcul des moments aux appuis

TYPE 7:

Tableau III.21. Sollicitations à l'ELU des poutrelles du plancher de terrasse inaccessible

Type de	Travée	L	Pu	$M_{ m g}$	M_d	M _t (KN.m)	$\mathbf{V_g}$	V_d
poutrelle		(m)	(KN/m)	(KN.m)	(KN.m)		(KN)	(KN)
Type 7	AB	3.4	5.55	0	-7.68	4.634	7.17	-11.69
	BC	4.45	5.55	-7.68	-4.67	10.16	14.069	-
								10.616

A l'ELS:

Le même travail aboutit aux résultats résumés dans le tableauIII.22 :

Tableau III.22. Sollicitations à l'ELS des poutrelles du plancher de terrasse inaccessible

I ubicuu II	11221 801110	reactions a r	1 con car	outienes ut	Pidifferier	ao torra	obe macecobiere
Type de	Travée	L	$\mathbf{P}_{\mathbf{S}}$	$\mathbf{M_g}$	$\mathbf{M_d}$	X(m)	$\mathbf{M_{t}}$
poutrelle		(m)	(KN/	(KN.m)	(KN.m)		(KN.m)
			m)				

Type 7	AB	3.4	4.037	0	-5.55	1.293	3.387
	BC	4.45	4.037	-5.55	0	2.536	7.409

Les résultats des autres types des poutrelles de plancher terrasse et plancher étage courant sont représentés dans les tableaux ci-dessous :

• Type 8 : Application de la méthode caquot pour le 8 eme type de plancher d'étage courant:

Tableau III.23. Sollicitations à l'ELU des poutrelles du plancher d'étage courant

1 11010110	1111120: 8	Tableau III.25. Sometations at ELO des poutreites du planetier d'étage courant												
Type de	Travée	L	$\mathbf{P}_{\mathbf{u}}$	\mathbf{M}_{0}	$\mathbf{M_{g}}$	M_d	$M_t(KN.m)$	$\mathbf{V_g}$	$\mathbf{V_d}$					
poutrelle		(m)	(KN/m)	(KN.m)	(KN.m)	(KN.m)		(KN)	(KN)					
Type 8	AB	3.7	6.069	-2.68	0	-5.746	7.711	9.675	-					
									12.781					
	BC	3.2	6.069	-3.64	-5.746	-3.728	3.064	10.341	-9.08					
	CD	3.4	6.069	-3.02	-3.728	-5.542	4.158	9.784	•					
									10.851					
	DE	4.45	6.069	-8.45	-5.542	-5.087	9.709	13.606	-					
									13.401					
	EF	2.45	6.069	-1.51	-5.087	-3.007	0.566	8.284	-6.586					
	FG	3.30	6.069	-2.7	-3.007	-4.674	4.442	9.509	-					
									10.519					
	GH	3.20	6.069	-4.71	-4.674	0	5.607	11.171	-8.25					

• A l'ELS:

• Le même travail aboutit aux résultats résumés dans le tableauIII.24 :

Tableau III.24. Sollicitations à l'ELS des poutrelles du plancher d'étage courant

Type de poutrelle	Travée	L (m)	P _S (KN/ m)	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	X(m)	M _t (KN.m)
Type 8	AB	3.7	4.39	-2.07	0	-4.119	1.594	5.591
	BC	3.2	4.39	-2.63	-4.119	-2.672	1.704	2.244
	CD	3.4	4.39	-2.16	-2.672	-3.972	1.612	3.035
	DE	4.45	4.39	-6.11	-3.972	-3.647	2.242	7.053
	EF	2.45	4.39	-1.09	-3.647	-2.155	1.365	0.434
	FG	3.3	4.39	-1.95	-2.155	-3.35	1.567	3.236
	GH	3.2	4.39	-3.43	-3.35	0	1.841	4.067

TYPE8: pour terrasse inaccessible : A L'ELU

Tableau III.25. Sollicitations à l'ELU des poutrelles du plancher Tersasse inaccessible

Type de	Travée	L	Pu	$\mathbf{M_0}$	M_{g}	M_d	M _t (KN.m)	$V_{ m g}$	V_d
poutrelle		(m)	(KN/m)	(KN.m)	(KN.m)	(KN.m)		(KN)	(KN)
Type 8	AB	3.7	5.547	-2.67	0	-5.098	7.114	8.884	-11.64
	BC	3.2	5.547	-3.30	-5.098	-3.308	2.925	9.435	-8.316
	CD	3.4	5.547	-2.75	-3.308	-4.917	3.923	8.957	-9.903
	DE	4.45	5.547	-7.70	-4.917	-4.514	9.016	12.433	-
									12.252

EF	2.45	5.547	-1.36	-4.514	-2.668	0.662	7.549	-6.042
FG	3.30	5.547	-2.47	-2.688	-4.147	4.161	8.704	-9.601
GH	3.20	5.547	-4.23	-4.147	0	5.178	10.171	-7.579

• A l'ELS:

• Le même travail aboutit aux résultats résumés dans le tableauIII.26 :

Tableau III.26. Sollicitations à l'ELS des poutrelles du plancher Tersasse inaccessible

Type de poutrelle	Travée	L (m)	P _S (KN/	M ₀ (KN.m)	M _g (KN.m)	M _d (KN.m)	X(m)	M _t (KN.m)
TD 0	A.D.	2.7	m)	2.24	0	2.695	1 (02	<i>7</i> 100
Type 8	AB	3.7	4.39	-2.24	0	-3.685	1.602	5.189
	BC	3.2	4.39	-2.63	-3.685	-2.391	1.701	2.15
	CD	3.4	4.39	-2.18	-2.391	-3.554	1.615	2.875
	DE	4.45	4.39	-6.10	-3.554	-3.263	2.241	6.585
	EF	2.45	4.39	-1.07	-3.263	-1.928	1.361	0.47
	FG	3.3	4.39	-1.95	-1.928	-2.997	1.569	3.046
	GH	3.2	4.39	-3.35	-2.997	0	1.834	3.777

• Ferraillage des poutrelles :

Exemple de calcul étage courant :

 $M_t = 12.03 \text{ KN.m}$

 $M_a^{int} = -9.42 \text{ KN.m}$

 $M_a^r = -0.15 \text{ max } (M_0^1, M_0^2) = -2.355 \text{KN.m}$

V=15.88 KN

En travée :

$$\mathbf{M}_{tu} = \mathbf{f}_{bu} \times \mathbf{b} \times \mathbf{h}_0 \ (\mathbf{d} - \frac{h_0}{2})$$

✓ Si $M_u \le M_{tu}$ la table n'est pas entièrement comprimée, l'axe neutre est dans la table de compression. On calcule une section rectangulaire (b × h).

✓ Si M_u > M_{tu} On calcule une section en T.

$$M_{tu}\!\!=\!\!b\times\!h_0\!\!\times\!\!f_{bu}\!\!\times\!(d\!-\!h_0\!/2)=\!\!0,\!53\times\!0,\!04\times\!14,\!2\times\!10^3\!\!\times\!(0,\!18\text{-}0,\!02)$$

M_{tu}=48.166 KN.m

 $M_t < M_{tu} \Longrightarrow$ Le calcul sera mené pour une section rectangulaire (b×h)

$$\mu_{bu} = \frac{M^t}{b \times d^2 \times f_{bu}}$$

$$\mu_{bu} = \frac{12.03 \times 10^{-3}}{0.53 \times 0.18^2 \times 14.2} = 0.049 < \mu_l = 0.392 \Rightarrow A' = 0.$$

$$\mu_{bu} < 0.186 \Rightarrow \text{Pivot A}: \ \xi_{st} = 61.31\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu_{bu}}) = 0.062$$

Z= d $(1-0.4 \alpha) = 0.18 (1-0.4 \times 0.062) = 0.175 m$.

$$A_t = \frac{M_U}{Z \times f_{ex}} = \frac{12.03 \times 10^{-3}}{0.175 \times 348} = 1.97 \text{ cm}^2$$

• Vérification de la condition de non fragilité :

 $A_{min} = (0.23 \times b \times d \times f_{t28}) / f_e \le A_{calculer}$. (ArtA.4.2.1 [1]).

$$A_{min} = 0.23 \times 0.53 \times 0.18 \times 2.1/400 = 1.152 \text{cm}^2$$

On opte pour 3HA10 avec A=2.36cm²

• Calcul de l'armature aux appuis intermédiaires :

La table de compression est tendue, un béton tendu n'intervient pas dans la résistance donc le calcul se ramène à une section rectangulaire $(b_0 \times h)$.

 $M_u = 9.42 \text{ KN.m.}$

$$\mu_{bu} = \frac{M_U}{b_0 \times d^2 \times f_{bU}} = \frac{9.42 \times 10^{-3}}{0.10 \times 0.18^2 \times 14.2} = 0.204$$

$$\mu_{bu} > 0.186 \Rightarrow \text{Pivot B: } \xi_{st} = \xi_{bc} \left(\frac{1 - \alpha}{\alpha} \right)$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0.204}) = 0.288 \Rightarrow \xi_{st} = 3.5 \times 10^{-3} [(1 - 0.288) / 0.288] = 8.65 \times 10^{-3}$$

$$\xi_{st} = 8.65 \times 10^{-3} > \xi_l = 1.74 \times 10^{-3}$$

$$\Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\mu_{bu} < \mu_l = 0.392 \implies A' = 0$$

Avec:

$$z = d \times (1 - 0.4 \times \alpha)$$

$$z = 0.18 \times (1 - 0.4 \times 0.288) = 0.16m$$

$$A_a = \frac{M_U}{Z \times f_{ct}} = \frac{9.42 \times 10^{-3}}{0.160 \times 348} = 1.7 \text{ cm}^2$$

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 0.10 \times 0.18 \times \frac{2.1}{400} = 0.22 \text{cm}^2$$

On opte pour 1HA12+1HA10avec A=1.92cm².

• Calcul de l'armature aux appuis de rive :

 $M_u = 2.355 KN.m.$

$$\mu_{bu} = \frac{M_U}{b_0 \times d^2 \times f_{bU}} = \frac{2.355 \times 10^{-3}}{0.10 \times 0.18^2 \times 14.2} = 0.051$$

$$\mu_{bu} < 0.186 \Rightarrow \text{Pivot A: } \xi_{st} = 47.22\% \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348Mpa$$

$$\mu_{bu} < \mu_{t} \Rightarrow A' = 0$$

$$z = d \times (1 - 0.4 \times \alpha)$$

$$\alpha = 1.25(1 - \sqrt{1 - 2 \times 0.051}) = 0.065$$

$$z = 0.18 \times (1 - 0.4 \times 0.065) = 0.175m$$

$$A_a = \frac{M_U}{Z \times f_{ex}} = \frac{2.355 \times 10^{-3}}{0.175 \times 348} = 0.386 \text{ cm}^2$$

• Vérification de la condition de non fragilité :

$$A_{\min} = 0.23 \times b_0 \times d \times \frac{f_{t28}}{f_e} = 0.23 \times 0.10 \times 0.18 \times \frac{2.1}{400} = 0.22 \text{cm}^2$$

On opte pour 1HA10 avec A=0.79 cm².

Vérifications ELU:

• Vérification au cisaillement :

On doit vérifier que :

$$\tau_U = \frac{V_U}{b_0 \times d} \le \overline{\tau_u}$$
 (Art A.5.1.2.1.1 [1]).

$$\overline{\tau_u} = \min \left[0.2 \frac{f_{c28}}{\gamma_b} \right] = 3.33 \text{ MPA}$$

$$V^{\text{max}} = 15.88 \text{KN}$$

$$\tau_U = \frac{V_U}{b_0 \times d} = \frac{15.88 \times 10^{-3}}{0.10 \times 0.18} = 0.88 Mpa$$

Il n'y a pas de risque de cisaillement

Ferraillage transversal:

Le diamètre Φ_t des armatures transversales est donne par :

$$\Phi_t \leq \min \{h_t / 35, b_0 / 10, \Phi_L\}$$

 Φ_L : diamètre minimale des armatures longitudinale (Φ_L =8mm).

$$\Phi_t \le \min \{200/35, 100/10, 8\} = 5.71 \text{mm}$$

On adopte à un étrier Φ 6.

Donc la section d'armatures transversales sera : $A_t=2\Phi 6=0.57cm^2$

Espacement S_t:

L'espacement des cours successifs d'armatures transversales doit satisfaire les conditions Suivantes:

1). $St \le min (0.9d, 40cm) \implies St \le 16.2cm$

2). St
$$\leq A_t \frac{0.8 f_e(\sin \alpha + \cos \alpha)}{b_0(\tau_u - 0.3 f_{tj} K)}$$
 (III-9) (Art A.5.1.2.2) [4]

Flexion simple

Fissuration peut nuisible \Rightarrow K=1

Pas de reprise de bétonnage

 $\alpha = 90^{\circ}$ (Armatures droits.)

$$St \le A_t \frac{0.8 \times f_e}{b_0 \times (\tau_u - 0.3 \times f_{t28})} \Rightarrow St = 0.57 \times \frac{0.8 \times 400}{10 \times (0.88 - 0.3 \times 2.1)} = 72.96cm$$

 $St \le 72.96cm$

3). St
$$\leq \frac{A_t \times f_e}{0.4 \times b_0} \Rightarrow \text{St} \leq \frac{0.57 \times 10^{-4} \times 400}{0.10 \times 0.4} = 0.57m = 57cm$$

$$St= min (1; 2; 3) = (16.2; 72.96; 57)$$

Soit : St = 15cm.

Vérification de la contrainte de cisaillement à la jonction table -nervure :

On doit vérifier que :
$$\tau_u = \frac{b_1 \times V_u}{0.9 \times d \times b \times h_0} \le \overline{\tau_u}$$
 (ArtA.5.3.2 [1])
 $\overline{\tau_u} = \min \left(0.2 \frac{f_{c28}}{\gamma_b}; 5 \right) MPa = 3.33 \text{ MPA}$

Il n'y a pas de risque de cisaillement

Vérification des armatures longitudinales aux voisinages des appuis :

Appuis de rive :

On doit vérifier que : As $\geq 1.15 \times V_u/f_e$ (Art A.5.1.3.1.2 [1]).

 $A_s=2.36+0.79=3.15$ cm².

 $1.15 \times 15.88 \times 10^{-3} / 400 = 0.456 \text{cm}^2$

Appuis intermédiaires :

On doit vérifier que :

 $A_s \ge 1.15/f_e$ ($V_u + M_u / 0.9d$). (Art A.5.1.3.2.1 [1]).

 $A_S=2.36+1.92=4.28$ cm².

 $1.15/400[(15.88-9.42)\times10^{-3}/0.9\times0.18]=1.146$ cm²

• Vérification de l'effort tranchant dans le béton :

On doit vérifier que : $V_u \le 0.267 \times a \times b_0 \times f_{c28}$ (Art A.6.1.3 [1]).

Avec: $a_{max}=0.9\times d=0.9\times 18=16.2$ cm

Vérifications à l'ELS: les vérifications à faire sont :

- ✓ État limite d'ouverture des fissures.
- ✓ État limite de déformation.
- ✓ Etat limite de compression du béton.

Remarque:

Dans les calculs à L'ELU, on a trouvé A'=0 sauf que dans notre cas nous avons des aciers de montage ou bien de forme (une barre de 10) donc pendant les calculs on prend A'=0.79 cm².

• Etat limite d'ouverture des fissures :

L'état de fissuration est peu nuisible, donc aucune vérification à faire.

• Etat limite de compression du béton :

On doit vérifier que:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \frac{-}{\sigma_{bc}} = 0.6 \text{ f}_{c28} = 15 \text{ MPA (Art A.4.5.2 [1])}.$$

En travée : $A=2.36 \text{ cm}^2$; Mser = 8.705 KN.m

Position de l'axe neutre

$$H = b\frac{h_0^2}{2} - 15A(d - h_0)$$

$$H = 0.65 \times \frac{0.04^2}{2} - 15 \times 2.36 \times 10^{-4} \times (0.18 - 0.04) = 2.44 \times 10^{-5} \,\mathrm{m}$$

H>0 (alors l'axe neutre passe par la table de compression) \Rightarrow calcule comme une section rectangulaire b x h.

Calcul de y:
$$\frac{b}{2}y^2 + 15A(y - d) = 0$$

32.5 y² + 35.4 y - 637.2 =0(1)

Âpres résolutions de l'équation (1) : y = 3.91 cm

Calcul de I:

$$I = \frac{b \times y^3}{3} + 15A(y - d)^2 =$$

I=8323.05 cm⁴.

$$\sigma_{bc} = \frac{M_{ser}}{I} y = 4.08 \text{ MPA}$$

En appuis intermédiaires :

 M_{ser} = - 6.8 KN.m< 0 \rightarrow Le calcul se fait pour une section (b_0*h)

Position de l'axe neutre :

Calcul de y:
$$\frac{b_0}{2} y^2 - 15A_{st} (d - y) = 0.$$

$$5y^2 + 28.8y - 518.4 = 0$$
 (2)

Âpres résolutions de l'équation (2) : y = 7.702 cm

Calcul de I:

$$I = \frac{b \times y^3}{3} + 15A_{st} \left(d - y\right)^2$$

 $I = 12953.46 \text{ cm}^4$.

$$\sigma_{bc} = \frac{M_{ser}}{I} y = \frac{6.8 \times 10^{-3}}{12953.46 \times 10^{-8}} \times 7.702 \times 10^{-2} = 4.04 \text{ MPA}$$

• Etat limite de déformation : (Art A.4.6.1 [1]).

Tout élément fléchit doit être vérifié à la déformation. Néanmoins l'article (B.6.5.1) de BAEL stipule que si les conditions suivantes sont remplies, le calcul de la flèche n'est pas nécessaire.

$$\checkmark \quad \frac{h}{l} \ge \frac{1}{22.5}$$

$$\checkmark \quad \frac{h}{l} \ge \frac{M_t}{15 \times M_0}.$$

$$\checkmark \quad \frac{A}{b_0 \times d} \le \frac{3.5}{f_e}$$

h: Hauteur de la poutrelle

L : Longueur de la travée

M_t: Moment en travée

M₀: Moment isostatique de cette travée

A: Section des armatures choisies

On a :
$$\frac{h}{L} = \frac{20}{455} = 0.0439 < \frac{1}{22.5} = 0.044 \Rightarrow \text{ non vérifié}$$

Donc on doit faire une vérification de la flèche.

La flèche totale est définie d'après le BAEL91 comme suit :

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi}$$

La flèche admissible pour une poutre inferieur à 5m est de :

$$f_{adm} = (\frac{l}{500}) = \frac{455}{500} = 0.91cm$$

 f_{gv} et f_{gi} : Flèches dues aux charges permanentes totales différées et instantanées respectivement.

 f_{ji} : Flèche due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

 f_{pi} : Flèche due à l'ensemble des charges appliquées (G + Q).

• Evaluation des moments en travée :

 $q_{jser} = 0.65 \times G$: La charge permanente qui revient à la poutrelle au moment de la mise en œuvre des cloisons.

 $q_{\it gser} = 0.65 \times G$: La charge permanente qui revient à la poutrelle.

 $q_{\it pser} = 0.65 \times (G+Q)$: La charge permanente et la surcharge d'exploitation.

• Propriété de la section :

Position de l'axe neutre :

$$Y = 3.91 \text{ cm}$$

Position du centre de gravité de la section homogène :

$$v = \frac{\frac{b_0 \times h^2}{2} + (b - b_0) \times \frac{h_0^2}{2} + 15 \times (A_{st}d + A_{sc}d')}{(b_0 \times h) + (b - b_0) \times h_0 + 15 \times (A_{st} + A_{sc})}$$

v = 6.76 cm

Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{b \times v^3}{3} + \frac{b_0 \times (h - v)^3}{3} - \frac{(b - b_0) \times (v - h_0)^3}{3} + 15 \times A_{st} (d - v)^2 + 15 \times A_{sc} (v - d')^2$$

 $I_0 = 18516.54 \text{ cm}^4$ (Moment d'inertie de la section totale (acier + béton) (cm⁴))

$$A_{s} = 2.36cm^{2}$$

$$\rho = \frac{A_s}{b_0.d} = \frac{2.36}{10 \times 18} = 0.013$$

$$\lambda_i = \frac{0.05 \times b \times f_{t28}}{(2b+3b_0) \times \rho}$$
 Déformation instantanée.

• Calcul des déformations E_i et E_v :

 $E_v \!\!= 3700 \!\!\times \left(f_{c28}\right)^{1/3} \!\!.... \qquad \text{Module de déformation longitudinale instantanée du béton}.$

 $E_v = 10818.86 \text{ MPA}.$

 $E_i = 3 \times E_v$ Module de déformation longitudinale différée du béton.

 $E_i = 32456.59 \text{ MPA}.$

• Contraintes:

 σ_s : contrainte effective de l'acier sous l'effet de chargement considéré (MPA).

$$\sigma_{sj} = 15 \frac{M_{jser} \times (d - y)}{I}$$

$$\sigma_{sg} = 15 \frac{M_{gser} \times (d - y)}{I}$$

$$\sigma_{sp} = 15 \frac{M_{pser} \times (d - y)}{I}$$

• Inerties fictives (I_f):

$$\mu_{j} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{si} + f_{t28}} \quad ; \mu_{g} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sg} + f_{t28}} \quad ; \mu_{p} = 1 - \frac{1.75 \times f_{t28}}{4 \times \rho \times \sigma_{sp} + f_{t28}}$$

Si
$$\mu \le 0 \Rightarrow \mu = 0$$

$$I\!f_{ij} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_j} \; \; ; I\!f_{ig} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_g} \; \; ; I\!f_{ip} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu_p} \; \; ; I\!f_{vg} = \frac{1.1 \times I_0}{1 + \lambda_v \times \mu_g}$$

• Evaluation des flèches :

$$f_{ji} = \frac{M_{jser}.L^2}{10.E_i.If_{ji}} \; ; \; f_{gi} = \frac{M_{gser}.L^2}{10.E_i.If_{ig}} \; ; \; f_{pi} = \frac{M_{pser}.L^2}{10.E_i.If_{ip}} \; ; \; f_{gv} = \frac{M_{pser}.L^2}{10.E_v.If_{gv}}$$

$$q_{jser} = 0.65 \times G = 0.65 \times 3.85 = 2.502 KN/m$$

$$q_{gser} = 0.65 \times G = 0.65 \times 5.25 = 3.412 KN / m$$

$$q_{pser} = 0.65 \times (G + Q) = 0.65 \times (5.25 + 1.5) = 4.388 KN / m$$

$$M_{iser} = 6.45 KN.m$$

$$M_{gser} = 8.86 KN.m$$

$$M_{pser} = 11.35 KN.m$$

Avec:
$$M_q = \frac{W \times q \times L^2}{8}$$
 et $W = \frac{M_T}{M_0} = 0.766$

$$Y = 3.91 \text{ cm}$$

$$I_0 = 18516.54 \text{ cm}^4$$

$$I = 8323.05 \text{ cm}^4$$

$$A_s = 2.36cm^2$$

$$\rho = 0.013 \,\text{Avec} \ \rho = \frac{A}{b_0 \times d}$$

$$\lambda_i = \frac{0.05 \times 0.65 \times 2.1}{(2 \times 0.65 + 3 \times 0.1) \times 0.013} = 3.28$$

$$\lambda_{v} = \frac{2}{5} \times 3.28 = 1.312$$

$$\sigma_{sj} = 15 \frac{6.45 \times 10^{-3} \times (0.18 - 0.0391)}{8323.05 \times 10^{-8}} = 163.79 MPA$$

$$\sigma_{sg} = 15 \frac{8.86 \times 10^{-3} \times (0.18 - 0.0391)}{8323.05 \times 10^{-8}} = 224.98 MPA$$

$$\sigma_{sp} = 15 \frac{11.355 \times 10^{-3} \times (0.18 - 0.0391)}{8323.05 \times 10^{-8}} = 288.34 MPA$$

$$\mu_j = 1 - \frac{1.75 \times 2.1}{4 \times 0.013 \times 163.79 + 2.1} = 0.6 > 0$$

$$\mu_g = 1 - \frac{1.75 \times 2.1}{4 \times 0.013 \times 224.98 + 2.1} = 0.68 > 0$$

$$\mu_p = 1 - \frac{1.75 \times 2.1}{4 \times 0.013 \times 236.92 + 2.1} = 0.75 > 0$$

$$If_{ij} = \frac{1.1 \times 18516.54}{1 + 3.28 \times 0.6} = 6862.60cm^4$$

$$If_{ig} = \frac{1.1 \times 18516.54}{1 + 3.28 \times 0.68} = 6305.16cm^4$$

$$If_{ip} = \frac{1.1 \times 18516.54}{1 + 3.28 \times 0.75} = 5886.76cm^4$$

$$If_{vg} = \frac{1.1 \times 18516.54}{1 + 1.312 \times 0.68} = 10764.52cm^4$$

$$f_{ji} = \frac{6.45 \times 10^{-3} \times 4.55^{2}}{10 \times 32456.59 \times 6862.60 \times 10^{-8}} = 0.0059$$

$$f_{gi} = \frac{8.86 \times 10^{-3} \times 4.55^{2}}{10 \times 32456.59 \times 6305.16 \times 10^{-8}} = 0.0089$$

$$f_{pi} = \frac{11.355 \times 10^{-3} \times 4.55^{2}}{10 \times 32456.59 \times 5886.76 \times 10^{-8}} = 0.012$$

$$f_{gv} = \frac{11.355 \times 10^{-3} \times 4.55^{2}}{10 \times 10818.86 \times 10764.52 \times 10^{-8}} = 0.02$$

$$\Delta f_{\scriptscriptstyle t} = f_{\scriptscriptstyle gv} - f_{\scriptscriptstyle ji} + f_{\scriptscriptstyle pi} - f_{\scriptscriptstyle gi} = 0.012 \text{-} 0.0059 + 0.012 \text{-} 0.0089 = 0.0172 \text{ m}$$

 $\Delta_f = 1.72 cm > 0.91 cm$ la flèche n'est pas vérifiée.

On augmente la section d'acier
$$\begin{cases} A_{st} = 3HA12 = 3.39cm^2 \\ A_a = 1HA10 = 0.79cm^2 \end{cases}$$

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau III.27. Evaluation de la flèche dans le plancher étage courant

Y	I	\mathbf{I}_0	$\mathbf{I}_{\mathbf{fji}}$	$\mathbf{I}_{ ext{fgi}}$	$\mathbf{I}_{ ext{fpi}}$	$\mathbf{I}_{ ext{fgv}}$	Δf	f _{adm}
(cm)	(cm ⁴)	(cm ⁴)	(cm ⁴)	(cm ⁴)	(cm ⁴)	(cm ⁴)	(cm)	(cm)
4.58	11239	20405	10801	9678.8	9020.8	14693	0.89	0.94

Pour le plancher terrasse inaccessible, on procède de la même manière pour le calcul du ferraillage à l'ELU et les vérifications à l'ELS. Les résultats sont présentés dans les tableaux suivants :

Tableau III.28.Le calcul du ferraillage à l'ELU dans le plancher terrasse inaccessible

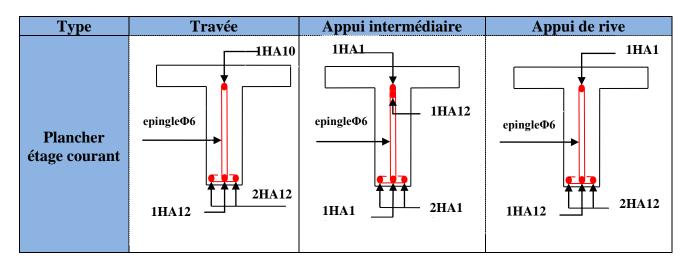
	M _t (KN.m)	μ_{bu}	α	Z (m)	$A_s(cm^2)$	$A_{\min}(\text{cm}^2)$	A choisit (cm ²)
En travée	10.74	0,036	0,045	0,1766	1,74	1.41	1HA12+2HA10
							=2.7
En appui	8.62	0,188	0,262	0,161	1,538	0.22	2HA10
intermédiaire							=1.57
En appui de		0.051	0.065	0.175	0.79	0.22	1HA10=
rive	2.355						0.79

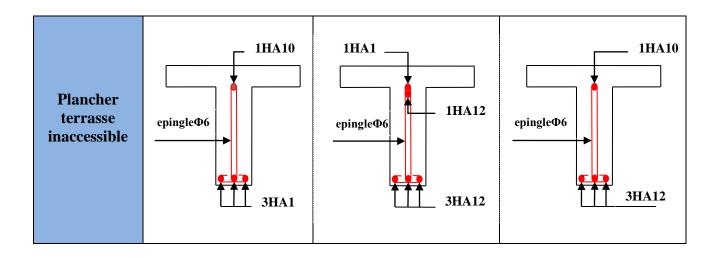
Pour le ferraillage choisit (A_{st} =2.7 cm²) au niveau des poutrelles terrasse inaccessible ne vérifie pas la flèche, alors on augmente la section des aciers $\begin{cases} A_{st} = 3HA12 = 3.39cm^2 \\ A_a = 1HA10 = 0.79cm^2 \end{cases}$

Les résultats de calcul sont présentés dans le tableau suivant :

Tableau III.29. Evaluation de la flèche dans le plancher terrasse inaccessible

L (m)	A _s (cm ²)	M _{jser} (KN.m)	M _{gser} (KN.m)	M _{pser} (KN.m)	I (cm ⁴)	I ₀ (cm ⁴)
4.55	3.39	4,05	5.44	6.387	11239	20405


Y (cm)	I _{fji} (cm ⁴)	I _{fgi} (cm ⁴)	I _{fpi} (cm ⁴)	I _{fgv} (cm ⁴)	Δf (cm)	f _{adm} (cm)
4.58	10362	9419	9020.8	14451	0.553	0,91


Tableau III.30.Le ferraillage des différentes poutrelles

PC	OUTRELLE		MATURES TUDINALES	ARMATURES TRASVRSALES
		Section	Section adoptée	(cm²)
		calculée	(cm ²)	
		(cm ²)		
	Appuis de rive	0.79	1HA10 = 0.79	2HA6= 0,57
Terrasse	Appuis	1,538	1HA12+1HA10	2HA6
inaccessible	intermédiaires		1.92	0,57
	Travée	1,74	3HA12 = 3.39	2HA6 = 0,57
Plancher	Appuis de rive	0,79	1HA10= 0.79	2HA6 = 0,57
étage	Appuis	1,92	1HA12+1HA10	2HA6
courant	courant intermédiaires		1,92	0,57
	Travée	2.36	3HA12	2HA6
			3.39	0,57

Le ferraillage des poutrelles est donné comme suit :

Tableau III.31. Schémas de ferraillage des différentes poutrelles

***** Ferraillage de la dalle de compression :

Selon le BAEL 91 (B.6.8,423) la dalle de compression, sera armée par un quadrillage de barres dont les dimensions de mailles ne doivent pas dépasser :

- -20 cm (5 p.m.) pour les armatures perpendiculaires aux nervures.
- -33 cm (3 p.m.) pour les armatures parallèles aux nervures.

D'après le même article cité ci-dessus les sections des armatures sont calculées comme

suit : On utilise des ronds lisses de nuance $f_e = 235$ MPa

• Armatures perpendiculaires aux poutrelles :

$$A \perp = \frac{4 \times b}{f_e} = \frac{4 \times 65}{235} = 1.1 (\frac{cm^2}{ml})$$
 Selon le CBA93 (B.6.8.4.2.3)

• Armatures parallèles aux poutrelles :

$$A_{\parallel} = A_{\perp}/2 = 0.55 \text{cm}^2/\text{ml}$$

5TS6/ml=1.41cm² perpendiculaires aux poutrelles →St=20cm≤ 20cm...... Condition vérifiée. On choisit :

3TS6/ml=0.85cm² parallèles aux poutrelles →St=30cm<30cm.....condition vérifiée. **III.3. Dalles pleines :**

III.3.1. Introduction:

Une dalle pleine est une plaque horizontale mince en béton armé dont l'épaisseur est relativement faible par rapport aux autres dimensions, cette plaque peut être reposée sur 02 ou plusieurs appuis comme elle peut être assimilée à une console, et elle peut porter dans une ou deux directions.

Dans le cas de notre projet, les balcons sont réalisés en dalles pleines d'épaisseur 15 cm et qu'ils sont définis en deux type :

- 1. Dalle sur deux appuis.
- 2. Dalle sur trois appuis.

3. Dalle sur quatre appuis

Dalle sur deux appuis : comme la montre la figure ci-dessous :

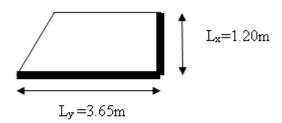


Fig. II.5: Dalle sur deux appuis

Evaluation des charges:

G = 5.22 KN/m²
Q = 3.5 KN/m²

$$P_u = 1.35G + 1.5Q = 12.3 \text{ KN/m}^2$$

 $L_x = 1.30 \text{ m}$
 $L_y = 3.3 \text{ m}$
 $\rho = \frac{1.30}{3.3} = 0.393 < 0.4$

Donc la dalle travaille sur un seul sens L_x, comme une console.

P=1 KN/m : la charge concentrée due au poids propre du garde du corps.

$$\begin{cases} q_u = 1.35 \times 5.22 + 1.5 \times 3.5 = 12.3 \text{KN/ml.} \\ q_s = 5.22 + 3.5 = 8.72 \text{KN/ml.} \\ p_u = 1.35 \times 1 = 1.35 \text{KN/ml.} \end{cases}$$

$$\begin{cases} q_{\rm u} = 1.35 \times 5.22 + 1.5 \times 3.5 = 12.3 {\rm KN/ml.} \\ q_{\rm s} = 5.22 + 3.5 = 8.72 {\rm KN/ml.} \\ p_u = 1.35 \times 1 = 1.35 {\rm KN/ml.} \end{cases}$$

$$\textbf{Calcul des moments:}$$

$$M_u = \frac{q_u \times l^2}{2} + p_u = \frac{12.3 \times 1.30^2}{2} + (1.35 \times 1.30) = 12.15 {\rm KN.m}$$

$$\text{Vu} = q_u \times \text{L} + P_u = 12.3 \times 1.30 + 1.35 = 17.34 {\rm KN} \end{cases}$$

Ferraillage:

Armatures principales:

Le calcul des armatures se fait en flexion simple.

b=100cm; h=15cm; d=13cm; f_{bu} =14.2 MPA

Tableau III.32. Le ferraillage de la dalle pleine sur 02 appuis

Mu(KN.m	μ_{bu}	α	Z(m)	A cal(cm ² /m _l)	A $_{\rm opt}$ (cm ² /m _l)	S _t (cm)

12.15	0.0506	0.065	0.1266	2.76	5HA10=3.93	20

_

- Armatures secondaires :

$$A_t = \frac{A_t}{3} = \frac{3.93}{3} = 1.31m^2$$

On opte pour 4HA8=2.01cm²

Avec $St = 25cm \le min (3 e, 33cm) = 33cm$

- Condition de non fragilité:

$$A_{\min} = 0.23 \times b \times d \times \frac{ft_{28}}{fe} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.57 cm^2.$$

1,57cm² < 3.93cm² condition vérifiée.

Vérification à l'ELU:

- L'effort tranchant :

$$\tau_{\rm u} = \frac{{
m Vu}}{{
m b} \times {
m d}} = \frac{17.34 \times 10^{-3}}{1 \times 0.13} = 0.133 MPa < \overline{\tau} = \frac{0.07 \, f_{c28}}{\theta \phi b} = 1.16 MPa$$
. condition vérifiée.

Vérification à l'ELS:

- La contrainte dans le béton :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

$$M_{ser} = \frac{p_s \times l^2}{2} + P_s \times l = \frac{8.72 \times 1,30^2}{2} + 1 \times 1,3 = 8.66KN.m$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$\frac{y^2}{2} + 15 \times 3.93 \times 10^{-4} \times y - 15 \times 3.93 \times 10^{-4} \times 0.13 = 0$$

$$\Rightarrow y = 3.36cm$$

$$I = b \frac{y^3}{2} + 15A (d - y)^2 \Rightarrow I = 6742.6cm^4$$

$$I = b \frac{3}{3} + 15A (d - y)^2 \Rightarrow I = 6/42.6cm$$

- La contrainte dans l'acier :

Fissuration nuisible

$$\sigma_{st} = 15 \times [M_{ser} \times (d_x - y)]/I$$

$$\sigma_{st} = [15 \times 8.66 \times 10^{-3} \times (0.13 - 0.0336)]/6728.7 \times 10^{-4} = 185.54 \text{MPa}.$$

$$\bar{\sigma}_{st} \le \min\left(\frac{2}{3}fe \; ; \; 110\sqrt{\eta \times f_{t28}}\right) = \min\left(266, 66 \; ; 201, 63\right) = 201, 63 \; MPa \; \dots$$
 Fissuration nuisible

Avec: $\eta=1.6$

État limite de déformation :

$$\frac{h_t}{l} = \frac{15}{130} = 0,115 > \frac{1}{16} = 0.0625$$

$$\frac{A_s}{b \times d} = 0,00302 \le \frac{4.2}{f_e} = 0,0105$$

Les conditions sont vérifiées, la flèche n'a pas besoin d'être vérifiée.

Le schéma de ferraillage : comme la montre la figure ci-dessous :

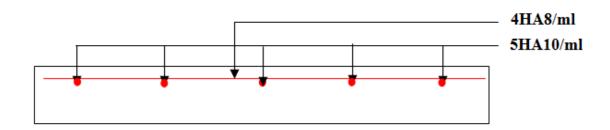


Fig.III.3 schéma de ferraillage de dalle sur deux appuis.

III.3.2 Dalle sur trois appuis : (balcon)

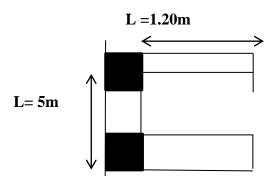


Fig. III.4 dalle sur trois appuis (balcon)

III.3.2.1 : Méthode de calcul :

Dès qu'on sort du domaine des dalles sur quatre appuis avec ou sans continuité aux dalles sur trois appuis, le recours le plus logique pour le calcul est fait avec la théorie des lignes de rupture.

1)
$$l_x \ge \frac{ly}{2} \Rightarrow \begin{cases} My = \frac{P \times l_y^2}{8} (lx - \frac{l_y}{2}) + \frac{P \times l_y^3}{48} \\ M_x = \frac{P \times ly^3}{24} \end{cases}$$

2)
$$l_x \le \frac{ly}{2} \Rightarrow \begin{cases} M_y = \frac{P \times l_x^3}{6} \\ M_x = \frac{P \times l_x^2 \times l_y}{2} - \frac{2 \times P \times l_x^3}{3} \end{cases}$$

A Calcul des sollicitations :

a) Surcharges d'exploitation :

$$Q = 3.5 \text{ KN/m}^2$$

b) Charges permanentes : $G = 6.22 \text{ KN/m}^2$ (voir Chap. II).

A l'ELU:

$$P_U$$
= 1.35G+1.5Q = 12.3 KN/m.

 $\rho = \frac{1.20}{5} = 0.24 < 0.4 \Rightarrow$ la dalle travaille dans un seul sens

$$\frac{L_y}{2} = \frac{5}{2} = 2m \Rightarrow L_X < \frac{L_Y}{2}$$

Donc : $M_y = 3.54$ KN.m

 $M_X = 30.11$ KN.m

Moments en travées :

 $M_{tx} = 25.6$ KN.m

 $M_{tv} = 3$ KN.m

❖ Moments aux appuis :

$$M_x^a = -0.3M_x = -9.033$$
KN.m

$$M_{\nu}^{a} = -0.3 M_{\nu} = -1.06 \text{KN.m}$$

• Calcul du ferraillage :

On fera le calcul de la dalle pour une bande de 1 ml de longueur et de 15cm d'épaisseur à la flexion simple avec $d_x = 12.4cm$.

> En travée :

$$\mu_{bu} = \frac{M_t^x}{b \times d_x^2 \times f_{bu}} = 0.106$$

$$\alpha = 1,25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.14$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.122m.$$

$$A_t = \frac{M_t^x}{z \times f} = 5.99cm^2 / ml.$$

> En appui:

$$\mu_{bu} = 0.0377$$
 $\alpha = 0.048$
 $z = 0.127m$
 $A_a = 2.04cm^2 / ml$

• Vérification à l'ELU:

a) Condition de non fragilité:

On calcule A_{\min} : e > 15cm $\rho < 0.4$ $\Rightarrow A_{\min}^{x} = \rho_{0} \times b \times e = 1.2cm^{2} / ml$ On a HA $f_{e}E400 \Rightarrow \rho_{0} = 0.0008$ e = 15cm b = 100cm

$$\rho = 0.24$$

$$A_{\min}^{x} = 1.2cm^{2} / ml$$

On choisit:

en travée :
$$A_t^x = 4HA14 = 6.16cm^2 / ml$$

en appui : $A_a = 4HA10 = 3.14cm^2 / ml$
 $A_t^y = 3HA8 = 1.51cm^2 / ml$

b) Calcul des espacements :

$$S_t \le \min(3e;33cm) \Rightarrow S_t \le 33cm$$

en travée on adopte $S_t = 25cm$
en appui on adopte $S_t = 25cm$

a) Vérification de l'effort tranchant :

$$\tau_{u} = \frac{V_{\text{max}}}{b \times d} \le \bar{\tau}_{u} = 0.05 \times f_{c28} = 1.25MPa$$

$$V_{x} = q_{u} \times \frac{l_{x}}{2} = 7.38KN$$

$$\tau_{u} = \frac{7.38 \times 10^{-3}}{1 \times 0.124} = 0.056MPa < 1.25MPa$$

C'est vérifié.

• Vérification à l'ELS:

$$M^{0} = 2.51KN.m$$
 $M_{x}^{0} = 21.34KN.m$
 $M^{t} = 2.13KN.m$ $M_{x}^{t} = 18.14KN.m$
 $M^{a} = -0.75KN.m$ $M^{a} = -6.4KN.m$
 $V^{\text{max}} = 5.23KN$ $V^{\text{max}} = 5.23KN$

Vérification des contraintes

$$\sigma_{bc} = \frac{M_{ser} * y}{I} \langle \overline{\sigma_{bc}}; \overline{\sigma_{bc}} = 0.6 f_{c28} = 0.6 * 25 = 15 MPa$$

$$A' = \frac{b}{2} * y^2 + 15 * A * y - 15 * A * d = 0$$

$$I = \frac{b}{3} * y^3 + 15 * A * (d - y)^2$$

A=6.16cm² , Y=0.04063m, I=9.6157⁻⁵m⁴

 $\sigma_{bc} = 7.68MPa \langle 15MPa \rightarrow Condition \ v\'erifi\'ee.$

Les armatures calculées à l'ELU sont suffisantes.

$$\sigma_{st} = 15 \times [M_{ser} \times (d_x - y)]/I$$

$$\sigma_{st} = [15 \times 18.14 \times 10^{-3} \times (0.13 - 0.04063)]/9.6157 \times 10^{-5} = 170.25 \text{MPa}.$$

$$\bar{\sigma}_{st} \le \min\left(\frac{2}{3}fe \; ; \; 110\sqrt{\eta \times f_{t28}}\right) = \min\left(266, 66 \; ; 201, 63\right) = 201, 63 \; MPa \; ...$$
 Fissuration nuisible

Avec: $\eta=1.6$

Les Etat limite de déformation..........BAEL91 (Art. B. 7. 5)

Si les conditions suivantes sont vérifiées, le calcul de la flèche n'est pas nécessaire. Selon l'axe X-X:

$$1.\frac{h}{l_x} > \frac{1}{16} \Leftrightarrow 0.125 > 0.0625...$$
 vérifiée.

2.
$$\frac{h}{l_x} > \frac{M_x^t}{10*M_{0x}} \Leftrightarrow 0.125 > 0.085...$$
 vérifiée.

3.
$$\frac{A_s}{b*d} \le \frac{4.2}{f_e} \Leftrightarrow 0.0062 < 0.0105...$$
Vérifiée

Les conditions de flèche sont vérifiées, donc la vérification de la flèche n'est pas nécessaire. Selon l'axe Y-Y

Si les conditions suivantes sont vérifiées ,le calcul de la flèche n'est pas nécessaire.

$$1.\frac{h}{l_v} > \frac{1}{16} \Leftrightarrow 0.03 > 0.0625...$$
n'est pas vérifiée.

2.
$$\frac{h}{l_Y} > \frac{M_y^t}{10 * M_{0y}} \Leftrightarrow 0.84 > 0.085....$$
 vérifiée.

3.
$$\frac{A_s}{b*d} \le \frac{4.2}{f_e} \Leftrightarrow 0.0062 < 0.0105...$$
 Vérifiée

donc la vérification de la flèche est nécessaire.

Calcul de la flèche dans le sens y											
Calcul des	Calcul des moments Calcul de If										
Mi(t,m)	0,0918	Sous j									
Mj(t.m) Mg (t.m)	0,1277856	Sous J									

Mp(t.m)	0,301104	Ifi (m ⁴) Ifv (m ⁴)	0,00032505 0,00032505
2°/ Calcul de	e ρ et λ		
_	0.00244.5005	Sous g	
P	0,002415385	-m (4)	0.00000000
Λi	8,694267516	Ifi (m ⁴)	0,00032505
Λv	3,477707006	Ifv (m ⁴)	0,00032505
3°/ Calcul de	e Y et I	Sous p	
Y(m)	0,03059983	Ifi (m ⁴)	0,00032505
I (m ⁴)	5,60874E-05	Ifv (m ⁴)	0,00032505
4°/ Calcul de	es contraintes		
<u>(σ)</u>		8°/ Calcul d	<u>le E</u>
σstj(Mpa)	24,40371867	Ev(Mpa)	10818,8656
σstg(Mpa)	33,96997639	Ei(Mpa)	32456,5969
σstp(Mpa)	80,04419724		
		9°/ Calcul d	<u>le f</u>
5°/ Calcul de	<u>е µ</u>	fgv (mm)	0,9084339
Mj	0	fji (mm)	0,21753685
Mg	0	fpi (mm)	0,71352088
Mp	0	fgi (mm)	0,3028113
6°/ Calcul de	<u>e 10</u>	f (mm)	1,10160663
I0 (m ⁴)	0,000295498	f' (mm)	10
	3,000270170	La conditio	n vérifiée

La flèche est vérifiée.

Schéma de ferraillage de la dalle pleine sur 3 appuis, comme la montre la figure cidessous :

4T10/ml

4T14/ml

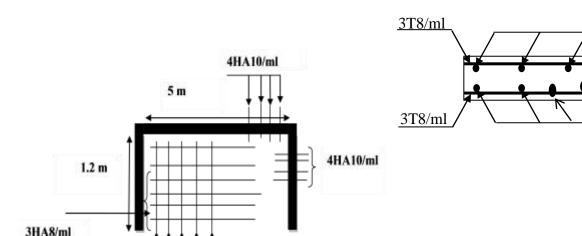
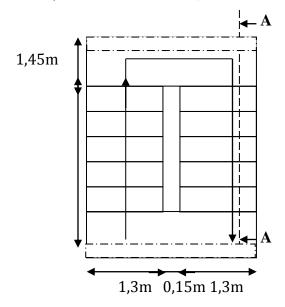



Fig. III.5. Schéma de ferraillage de la dalle sur 3 appuis

III.4. Les Escaliers :

III.4.1. Définition:

Un escalier est une succession de marches permettant le passage d'un niveau à un autre, il peut être en béton armé, en acier ou en bois. Dans notre projet nous avons deux types d'escaliers, réalisé en béton armé, comme la montre la figure ci-dessous :

Vue en plan

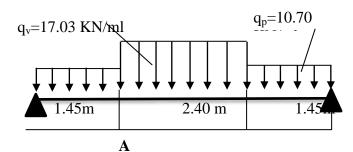
• La charge permanente sur la volée d'escalier :

G=9.84 KN/m².
$$Q=2.50 \text{ KN/m}^2.$$

• La charge permanente sur le palier d'escalier :

$$\begin{cases}
G=5.15 \text{ KN/m}^2. \\
Q=2.50 \text{ KN/m}^2.
\end{cases}$$

Calcul à l'ELU:


• La charge qui revient sur la volée :

$$q_v = 1.35G_v + 1.5Q_v = (1.35 \times 9.84) + (1.5 \times 2.5) = 17.03 \text{ KN/ml}.$$

• La charge qui revient sur le palier :

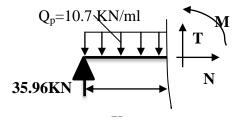
$$q_p=1.35G_p+1.5Q_p=(1.35\times5.15)+(1.5\times2.5)=10.70~KN/ml.$$

Schema statique:

• Calcul des solli

Après calcul de $R_A=35.96$ KN. $R_B=35.96$ KN.

Calcul des Moments:


• 1^{er} tronçon 0 m < x < 1.45 m:

$$T + 35.96 - 10.7 x = 0$$

$$T = 10.7 x - 35.96$$

$$T \begin{cases} x = 0 \text{ m} \rightarrow T = -35.96 \text{ KN} \\ x = 1.45 \text{ m} \rightarrow T = -20.45 \text{ KN} \end{cases}$$

$$M - 35.96 x + \frac{10.7 \times x^2}{2} = 0$$

$$M = 35.96 x - 5.35 x^{2}$$

$$M \begin{cases} x = 0 \text{ m} \rightarrow M = 0 \text{ KN. m} \\ x = 1.45 \text{ m} \rightarrow M = 40.9 \text{ KN. m} \end{cases}$$

• 2^{eme} tronçon 1.45 m < x < 3.85 m

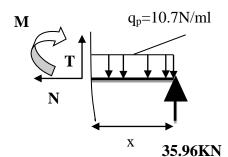
$$T + 35.96 - 40.9 - 10.7 (x - 3.85) = 0$$

$$T = 36.255 - 10.7 x$$

$$T \begin{cases} x = 1.45 \text{ m} \rightarrow T = 20.74 \text{ KN} \end{cases}$$

$$X = 3.85 \text{ m} \rightarrow T = -4.95 \text{ KN}$$

$$M - 35.96 x + 7.76 + 10.7x - 15.515 + 17.03x^2 - 24.96x + 8.95 = 0$$


$$M = -17.03 x^2 + 49.95 x + 1.195$$

$$M \begin{cases} x = 1.45 \text{ m} \rightarrow M = 35.42 \text{ KN. m} \\ x = 3.85 \text{ m} \rightarrow M = 54.8 \text{ KN. m} \end{cases}$$

• 3^{er} tronçon : 0 < x < 1.45m

 $dM/dX=0 \rightarrow X=2.93m$

 $M=35.96 \ x-5.35 \ x^2$ $T=10.7 \ x-35.96$ $Pour \ x=0 \rightarrow$ $T=-35.96 \ KN . m.$ $T=-35.96 \ KN . m$ $T=-40.9 \ KN$ Calcul M ^{max}: $M^{max}=M(x)$ Calcul de x:

Donc M^{max}=40.9 KN.m.

Calcul des moments réels :

 $\begin{aligned} & M_0^{\;max} \!\!\!\! = 59.3 \; KN.m \\ & M_a \!\!\!\! = -0.5 \; M^{\;max} \!\!\!\! = -0.5 {\times} 59.3 = -29.65 \; KN.m. \\ & M_t \!\!\!\! = 0.75 \; M^{\;max} \!\!\!\! = 0.75 {\times} 29.72 = 41.5 \; KN.m. \end{aligned}$

$$M_t = 0.75 \text{ M}^{\text{max}} = 0.75 \times 29.72 = 41.5 \text{ KN.m.}$$

Le ferraillage se fait à la flexion simple pour une bande de 1mL de large. Les résultats sont résumés dans le tableau suivant :

Tableau III.33 : Résultat de ferraillage de l'escalier

Localisation	Ep	M	μ_{bu}	α	z	A calculée	A adoptée	St
	(M)	(KN.m)			(M)	(Cm ²)	(Cm ²)	(Cm)
En travée	0.15	41.5	0.0887	0.1163	0.124	4.92	5HA12=5.65	20
En appui	0.15	29.65	0.0591	0.0591	0.126	3.23	5HA10=3.93	20

Dans le but d'avoir une bonne répartition spatiale de nos armatures, on prévoit des armatures de répartition comme suit :

$$A_r^a = \frac{A^a}{4} = \frac{3.93}{4} = 0.9825cm^2$$

Soit
$$A_r^a = 4HA8/ml = 2.01 \text{ cm}^2$$

V.1.4. Vérifications à l'Etat Limite Ultime

Vérification de la condition de non fragilité

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{ij}}{fe} = 0.23 \times 1 \times 0.13 \times \frac{2.1}{400} = 1.56 \,\text{Cm}^2$$

En travée : $A^{t} = 5.65 \text{ cm}^{2} > A_{\min} = 1.932 \text{ cm}^{2}$

En appuis : $A_a = 3.93 \,\text{cm}^2 > A_{\text{min}} = 1.932 \,\text{cm}^2$ vérifiée

vérifiée

Vérification de l'effort tranchant

$$\tau_{bu} = \frac{V_u}{b \times d} = \frac{35.96 \times 10^{-3}}{1 \times 0.13} = 0.276 \,\text{MPA}$$

Fissuration peu nuisible

$$\overline{\tau_u} = \min [0.2 \frac{f_{c28}}{\gamma_b}; 5\text{MPa}] = 3.33 \text{ MPA}$$

 $\tau_{bu} = 0.276 \text{ MPA} < \tau_{bu} = 3.33 \text{ MPA} \rightarrow \text{Pas de rupture par cisaillement}$

Vérification des armatures longitudinales à l'effort tranchant

$$A_l \ge \frac{1.15 \times V_u}{f}$$
 Avec: $A_l = 5.65 + 3.39$ cm²

$$A_l = 9.04cm^2 \ge \frac{1.15 \times 35.96 \times 10^{-3}}{400} = 1.033 \,\text{Cm}^2$$
 Vérifiée

Espacement des armatures

Les règles d'espacement des barres données aux BAEL91 donnent :

• Armatures longitudinales

$$S_t = 20 \text{ cm} \le \min (3h, 33 \text{ cm}) = 33 \text{ cm}$$

• Armatures transversales

$$S_t = 20 \text{ cm} \le \min (4h, 45 \text{ cm}) = 45 \text{ cm}$$

V.1.5. Vérification à l'ELS

État limite de compression du béton

La fissuration est peu nuisible donc la vérification à faire est la contrainte de compression du béton.

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPA}$$

$$q_v = 12.34 \text{ KN/m}$$

$$q_p = 7.65 \text{ KN/m}$$

$$R_A = 22.47 \text{ KN}$$

$$R_B = 18.23 \text{ KN}$$

$$M_0^{\text{max}} = 20.46 \text{ KN.m}$$

$$V^{max} = 23.84 \text{ KN}$$

$$M_t = 17.39 \text{ KN.m}$$

$$M_a = 8.18 \text{ KN.m}$$

Calcul de y:
$$\frac{b \times y^2}{2} + 15(A_s + A_s) \times y - 15 \times (d \times A_s + d' \times A_s) = 0$$

Calcul de
$$I: I = \frac{b_0 \times y^3}{3} + 15 \times \left[A_s \times (d - y)^2 + A_s \times (y - d')^2 \right]$$

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :

Tableau III.34 : Vérification des contraintes de compression dans le béton.

Localisation	M_{SER}	I (cm ⁴)	Y (cm)	σ_{bc} (MPA)	σ_{bc} (MPA)
	(KN.m)				
Travées	35.45	8995.2	3.92	7.58	15
Appuis	8.18	6742.6	3.37	4.09	15

• La flèche :

1.
$$\frac{h_t}{1} = \frac{0.15}{4.9} = 0.0306 < \max\left(\frac{3}{80} \left| \frac{1}{20} \right) = 0.05...$$
n'est pas vérifie

Donc la vérification de la flèche est nécessaire.

- Calcul de la flèche :
- $1. \quad \text{Calcul des moments}: \begin{cases} M_j = 12.04 \; \text{KN.} \, \text{m} \\ M_g = 18.18 \; \text{KN.} \, \text{m} \\ M_p = 35.45 \; \text{KN.} \, \text{m} \end{cases}$
- 2. Calcul de ρ et λ : $\begin{cases} \rho = 0.00378 \\ \lambda_i = 5.5487 \\ \lambda_y = 2.2195 \end{cases}$
- 3. Calcul de Y et I : $\begin{cases} Y = 3.7 \text{ Cm} \\ I = 8071.39 \text{ Cm}^4 \end{cases}$
- 4. Calcul des contraintes : $\begin{cases} \sigma_{sj} = 208.01 \text{ MPA} \\ \sigma_{sg} = 314.16 \text{ MPA} \\ \sigma_{sp} = 612.47 \text{ MPA} \end{cases}$
- 5. Calcul de U : $\begin{cases} \mu_j = 0.2998 \\ \mu_g = 0.4639 \\ \mu_p = 0.6768 \end{cases}$
- 6. Calcul de I_0 : $I_0 = 189732.5 \text{ Cm}^4$
- 7. Calcul de I_f : Sous $j \begin{cases} I_{f_i} = 78345 \text{ Cm}^4 \\ I_{f_v} = 125306 \text{ Cm}^4 \end{cases}$

Sous g
$$\begin{cases} I_{f_i} = 58388 \text{ Cm}^4 \\ I_{f_v} = 102822 \text{ Cm}^4 \end{cases}$$

Sous p
$$\begin{cases} I_{f_i} = 43886Cm^4 \\ I_{f_v} = 83407 Cm^4 \end{cases}$$

8. Calcul de E:

 $E_v = 10818.86 \text{ MPA}$

Ei = 32456.5969 MPA

9. Calcule de f:

$$f_{gv} = 0.4592 \text{ Cm}$$

 $f_{ji} = 0.133 \text{ Cm}$
 $f_{pi} = 0.699 \text{ Cm}$
 $f_{gi} = 0.2695 \text{ Cm}$

$$\Delta f_t = f_{gv} - f_{ji} + f_{pi} - f_{gi} = 0.4592 - 0.133 + 0.699 - 0.2695 = 0.7557 \text{ Cm}$$

10. La flèche admissible pour une travée inferieur à 5m est de :

$$f_{adm} = (\frac{l}{500}) = \frac{385}{500} = 0.77cm$$

 $\Delta_f = 0.7557 cm < 0.77 cm \dots La flèche est vérifiée.$

III. 3. 3 Schémas de ferraillage de l'escalier :

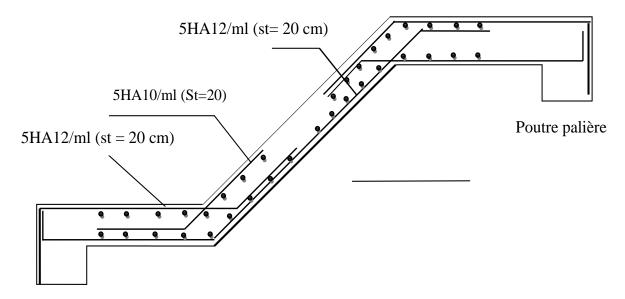
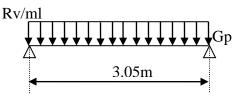


Figure III.6. Schéma de ferraillage de l'escalier


III.4.2 Etude de la poutre palière :

Cette poutre est soumise à son poids propre, aux charges transmises sous formes de réaction d'appuis et aux moments de torsion.

Pré dimensionnement

$$\frac{l}{15} \le h \le \frac{l}{10} \Longrightarrow 20.66Cm \le h \le 30.5Cm$$

Vérification

Figure III.7 : *Schéma statique de la poutre paliére*

D'après le RPA99 addenda 2003, les conditions suivantes

$$b \ge 20cm$$

$$h \ge 30cm$$

$$1/4 \le h \le 4$$

$$\Rightarrow \text{ On opte pour une section de } (30*30) \text{ cm} 2$$

b) Les charges sur la poutre :

 g_0 : Poids propre de la poutre

$$g_0 = 0.3 \times 0.30 \times 25 = 2.25 KN/m$$

La charge transmise par l'escalier : c'est la réaction d'appui au point B (Figure III-7)

ELU: $R_B = 35.96 \text{ KN}$

ELS: $R_B = 25.9 \text{ KN}$

Les sollicitations

$$P_u = 1.35 g_0 + R_B$$

$$P_{u} = 38.99 \text{KN/m}$$

$$M_0 = \frac{P_u \times L^2}{8} = 32.98KN \bullet m$$

$$M^{t} = 0.75M_{0} = 24.74KN \bullet m$$

$$M^a = -0.5M_0 = -16.5KN \bullet m$$

$$V_u = \frac{P_u \times L}{2} = 50.68KN$$

Calcul d'armature à la flexion simple :

Tableaux III.35: Calcul d'armature

	M(KN.m)	μ_{bu}	α	Z(m)	A_{CAL} (cm ²)
En travée	24.74	0.074	0.096	0.27	2.64
En appuis	16.5	0.0138	0.0174	0.278	1.7

Condition de non fragilité

$$A_{\min} = 0.23*b*d*\frac{f_{t28}}{f_e} = 0.23*30*28*\frac{2.1}{400} = 1.014cm^2$$

$$A_{t} = 2.64cm^{2} > A_{\min} = 1.16cm^{2}.....V\acute{e}rifi\acute{e}.$$

• Vérification de la contrainte de cisaillement :

$$\tau_{U} = \frac{V^{\text{max}}}{b^{*}d} = \frac{50.68 * 10^{-3}}{0.30 * 0, 28} = 0,603MPa$$

$$\bar{\tau}_{U} = \min(0,133 * f_{c28}, 4MPa) = 3,33MPa$$

$$\tau_{U} = 0,603MPa < 3,33MPa.....Vérifié.$$

• Armatures transversales à la flexion simple :

$$. \Phi \le \min\left(\frac{h}{30}; \frac{b}{10}; \phi_l\right) \Longrightarrow \phi = 8mm$$

2. Calcul de la poutre à la torsion

$$M_{tor} = \frac{M_t^{\text{max}} \times l}{2} = \frac{29.65 \times 3.05}{2} = 45.21 \text{KN.m}$$

Le moment de torsion est engendré par le palier et les volées.

Pour une section pleine, on remplace cette dernière par une section creuse équivalente dont l'épaisseur de paroi est égale au sixième du diamètre du cercle qu'il est possible d'inscrire dans le contour extérieur........BAEL91 (Art. A. 5. 4. 2. 2).

$$e = \frac{b}{6} = \frac{30}{6} = 5cm / \Omega = (b - \frac{b}{6}) * (h - \frac{b}{6}) = 625cm^{2}$$
$$U = 2 \times \left[(30 - 5) + (30 - 5) \right] = 100cm$$

Calcul de la contrainte de cisaillement due à la torsion

$$\tau_{u} = 0.603MPa / \tau_{cr} = \frac{Mtr}{2*\Omega*e} = \frac{45.21*10^{-3}}{2*750*10^{-4}*5*10^{-2}} = 6.028MPa$$

$$\Rightarrow \tau_u = \sqrt{(6.028)^2 + (0.603)^2} = 6.03MPa$$

$$\tau_u = 6.03MPa > \overline{\tau}_u = 3,33MPa$$
non vérifié

Donc il y a un risque de cisaillement, on doit augmenter la section :(40*40)

$$e = \frac{b}{6} = \frac{40}{6} = 6.666cm/\Omega = (b - \frac{b}{6})*(h - \frac{b}{6}) = 1111.1111cm^{2}$$

$$U = 2 \times \left[(40 - 5) + (40 - 5) \right] = 140cm$$

$$\tau_{u} = 0.603 MPa / \tau_{cr} = \frac{Mtr}{2*\Omega*e} = \frac{45.21*10^{-3}}{2*1111.111*1.4*10^{-4}*6.666*10^{-2}} = 3.11 MPa$$

$$\Rightarrow \tau_u = \sqrt{(3.11)^2 + (0.603)^2} = 3.16MPa$$

$$\tau_u = 3.16MPa < \overline{\tau}_u = 3,33MPa....vérifié$$

Donc il y a un risque de cisaillement

2.2. Calcul des armatures en torsion

• Les armatures longitudinales

$$Al = \frac{Mtr * U * \gamma_s}{2*\Omega* f_{st}}$$

$$Al = \frac{45.21*1*1.15*10^{-3}}{2*625*10^{-4}*348} = 1.19cm^2$$

$$Al = 1.19cm^2$$

• Les armatures transversales

On prend t=20cm

$$A_{t} = \frac{Mtr * t * \gamma_{s}}{2 * \Omega * f_{e}}$$

$$Al = \frac{45.21 * 0.2 * 1.15 * 10^{-3}}{2 * 625 * 10^{-4} * 400} = 0.207 cm^{2}$$

$$Al = 0.207 cm^{2}$$

• Choix des armatures :

Calcul des armatures longitudinales :

En travée :
$$A_t = A_t (torsion)/2 + A_t (flexion) = 3.3/2 + 2.64 = 4.3 cm^2$$

On opte pour : $4HA14 = 6.16 \text{ cm}^2$

En appuis
$$A_a = A_a (torsion)/2 + A_a (flexion) = 3.3/2 + 1.7 = 3.35 cm^2$$

On opte pour : $4HA12 = 4.52 \text{ cm}^2$

Calcul des armatures transversales

Dans la section d'armature transversale totale à prendre en travée et en appuis est :

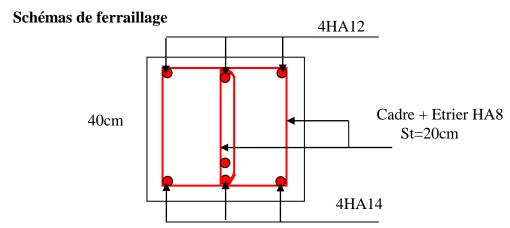
$$A_t\!\!=\!\!0.57\!\!+\!\!0.5\!\!=\!\!1.7\text{cm}^2$$
 on opte un cadre et étrier $\varphi 8\!\!=\!2.01~\text{cm}^2$

Vérification à l'ELS

$$q_s = 20.5 \text{ KN/ml}$$
, $M_0 = 23.05 \text{ KN.m/ml}$

État limite de compression de béton :

Les résultats de calcul des contraintes sont résumés dans le tableau suivant :


Tableau III.36. Vérification des contraintes de compressions dans le béton pour la poutre palière

Localisation	M _{ser} (KN.m)	Y(m)	I(m ⁴)	$\sigma(MPa)$	$\sigma(MPa)$
Travées	2.24	0.0738	0.0002608	7.16	15
Appuis	9.53	0.061	0.000145	4.008	15

Etat limite de déformation

Vérification de la flèche

Les trois conditions sont vérifiées.

III.6 Etude des poutres de chaomges :

III.6 Figornillos: Schéma de ferraillage de la poutre palière

Les poutres de chaînages sont des poutres en béton armé horizontales elles ceinturent les façades à chaque étage au niveau du plancher pour les rendre solidaires à la structure.

III.7.2 Dimensionnement [1]:

$$L_{\text{max}} = 5.55m$$

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10} \Longrightarrow 37cm \le h \le 5.55cm$$
 Condition de flèche (**RPA** (**Art 9.3.3**))

 $h \ge 30cm$; $b \ge 20cm$

On adopte : h = 40 cm; b = 30 cm.

III.6.2 Calcul des sollicitations [4] :

La poutre de chaînage est considérée comme étant simplement appuyée, soumise à une charge répartie due à son poids propre et au poids propre du mur.

• Poids propre : $G_p=25\times0,4\times0,30=3KN/m$.

• Poids du mur :
$$G_{mur} = 2.7 \times (3.06-0.40) = 7.2 \text{ KN/m}$$

$$Pu = 1.35 \times (3+7.2) = 13.77 \text{ KN/m}$$

$$Ps = 3+7.2 = 10.2 \text{ KN/m}$$

III.6.3 Calcul à l'E.L.U:

$$M_u = P_u \frac{L_{\text{max}}^2}{8} \Rightarrow M_u = 53.02 \text{ KN.m};$$

$$M_{t} = 0.75 M_{u} \implies M_{t} = 39.76 \text{KN.m};$$

$$M_a = -0.5M_u = -26.5KN.m$$

• Ferraillage:

Le calcul des armatures se fait à la flexion simple et les résultats sont résumés dans le Tableau suivant :

Tableau III.37. Section d'armatures longitudinales de la poutre de chainage.

	Mu (KN.m)	μ_{bu}	α	Z (m)	A_s calculé (cm^2)	A _{min} (cm²)	$A_s adopt \acute{e}$ (cm^2)
En travée	39.76	0.064	0.0827	0.367	3.11	1.37	3HA12=3.39
En appui	26.5	0.043	0.055	0.37	2.05	1.37	3HA10=2.36

III.6.3.1 Vérifications à l'E.L.U

✓ Effort tranchant

$$\tau_u = \frac{V_u}{b \times d} = 0.335 \text{MPa}$$
; Avec $V_u = 38.21 \text{KN}$

$$\bar{\tau}_u = \min\left(\frac{0.2}{\gamma_b} f_{C28}; 5MPa\right) = 3.33MPa \quad \Rightarrow \tau_u < \bar{\tau}_u$$
 c'est vérifié

✓ Calcul des armatures transversales :

$$\phi_t \le \min(\frac{h}{35}; \frac{b}{10}; \phi_t) \Rightarrow \phi_t \le 10mm$$

Soit un cadre HA8 plus un étrier HA8 $\Rightarrow A_t = 4HA8 = 2.01cm^2$

✓ L'espacement : [3] (CBA Art A.5.1.2.3)

1)
$$St \le min (0.9d, 40cm) \Rightarrow St \le 28.8cm$$

2)
$$S_t \le \frac{A_t \times 0.8 f_e}{b (\tau_u - 0.3 f_{t28})} \Rightarrow S_t \le \frac{2.01 \times 0.8 \times 400}{30(0.335 - 0.3 \times 2.1)} \Rightarrow S_t \le 0$$

$$3) S_t \le \frac{A_t \times f_e}{0.4 \times b} \Rightarrow S_t \le \frac{2.01 \times 400}{0.4 \times 30} \Rightarrow S_t \le 33.66cm$$

Le RPA2003 [1] exige un espacement $St \le min (h; 25cm) = 25 cm$, On prend St = 20cm

Dans la zone nodale St=10 cm

III.6.4 Vérification à l'E.L.S

III.6.4.1Vérification de la contrainte dans le béton :

$$M_S = 39.27 \text{KN.m.}$$

 $M_t^s = 0.75 \times M_S = 29.45 \text{ KN.m}$
 $M_a^s = -0.5 \times M_S = -19.63 \text{ KN.m}$

Tableau III.38. Résultats de calcul des contraintes de béton

	M _{ser} (KN.m)	y (m)	I (m ⁴)	σ _{bc} (MPa)	σ _{bc} adm (MPa)
Travée	29.45	0.22	0.00227063	2.89	15
Appuis	19.63	0.25	0.00274871	1.77	15

III.6.4.2Etat limite de déformation :

• Evaluation de la flèche [3]

$$\frac{h}{l} \ge \frac{1}{16} \quad ; \frac{h}{l} \ge \frac{M_t}{10 \times M_0} \quad ; \qquad \qquad \frac{A}{b \times d} \le \frac{4,2}{f_e}$$

Les deux premières conditions ne sont pas vérifier implique que la vérification de la flèche est nécessaire.

F=8.15mm>f'=5.55mmcondition non vérifier

Près dimensionnement de la section d'acier

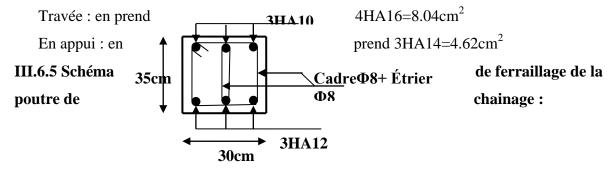
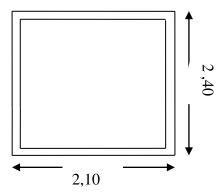


Figure III.9. Ferraillage de la Poutre de chainage

III.7. Étude de l'ascenseur


III.7.1. Définition

L'ascenseur mécanique est un appareil servant à déplacer verticalement des personnes ou des chargements vers différents niveaux du bâtiment. Dans notre structure, l'ascenseur utilisé a une capacité de prendre huit (08) personnes, ses caractéristiques sont les suivantes :

- \triangleright L: Longueur de l'ascenseur = 200cm.
- \triangleright *l*: Largeur de l'ascenseur = 170cm.
- \rightarrow H: Hauteur de l'ascenseur = 220cm.
- $ightharpoonup F_c$: Charge due à la cuvette = 145KN. Annexe 4.
- \triangleright P_m: Charge due à l'ascenseur = 15KN.
- \triangleright D_m: Charge due à la salle des machines = 51KN.
- ➤ La charge nominale est de 630kg.
- \triangleright La vitesse V = 1.6m/s.

III.7.2. Étude de la dalle de l'ascenseur

La dalle de la cage d'ascenseur doit être épaisse pour qu'elle puisse supporter les charges importantes (machine + ascenseur) qui sont appliquées sur elle,

III.7.3. Évaluation Figure.III.10 :dalle de la cage d'ascenseur.

 $G_1 = 25 \times 0.20 = 5 \text{KN/m}^2$ Poids de la dalle en béton armé.

$$G_2 = 22 \times 0.05 = 1.1 \text{KN/m}^2$$
 Poids du revêtement en béton (e=5cm).

$$G' = G_1 + G_2 = 6.1 \text{KN/m}^2.$$

$$G'' = \frac{Fc}{S} = \frac{145}{3.4} = 42.64 \, \text{KN} / m^2$$
. Poids de la machine.

$$G_{totale} = G' + G'' = 48.74 \, KN / m^2.$$

$$Q = 1KN/m^2$$
.

III.7.4. Cas d'une charge répartie

- Calcul des sollicitations

À l'ELU

$$q_u = 1.35 \times G_{totale} + 1.5 \times Q = 67.29 KN / m^2$$
.

 $\rho = \frac{l_x}{l_y} = 0.85 > 0.4 \Rightarrow$ La dalle travaille dans les deux sens.

$$\rho = 0.85 \Rightarrow \begin{cases} \mu_x = 0.0506 \\ \mu_y = 0.6864 \end{cases}$$
 Annexe 1.

Sens x-x':
$$M_0^x = \mu_x \times q_u \times l_x^2 \Rightarrow M_0^x = 9.84 KNm$$

Sens y-y':
$$M_0^y = \mu_y \times M_0^x \implies M_0^y = 6.75 \text{KNm}$$

- Calcul des moments réels

En travée : Sens x-x' :
$$M_t^x = 0.85 \times M_0^x = 8.36 KNm$$

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 5.74 KNm$$

$$\triangleright$$
 En appui : $M_a^x = M_a^y$

$$M_a^x = 0.3 \times M_0^x = 2.95 KNm$$

$$M_a^y = 0.3 \times M_0^y = 2.02 KNm$$

1. Calcul du ferraillage

On fera le calcul de la dalle pour une bande de 1m de longueur et de 20cm d'épaisseur à la flexion simple avec $d_x = 18$ cm et $d_y = 17$ cm.

• En travée :

// à
$$l_x$$
:

$$\mu_{bu} = \frac{M_t^x}{b \times d_x^2 \times f_{bu}} = 0.018$$

$$\alpha = 1.25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.0229$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.178m$$
.

$$A_t^x = \frac{M_t^x}{z \times f_{st}} = 1.38cm^2 / ml.$$

$$/\!/$$
 à l_y :

$$\mu_{bu} = \frac{M_t^y}{b \times d_y^2 \times f_{bu}} = 0.014$$

$$\alpha = 1,25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.017$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.178m.$$

$$A_t^y = \frac{M_t^x}{z \times f_{st}} = 0.92cm^2 / ml.$$

• En appui:

Sens x;
$$\mu_{bu} = 0.0064$$

$$\alpha = 0.008$$

$$z = 0.179m$$

$$A_a = 0.47 cm^2 / ml$$

Sens y :
$$\mu_{bu} = 0.0049$$

 $\alpha = 0.0061$

$$z = 0.179m$$

$$A_a = 0.32cm^2 / ml$$

Tableau III.39: section de ferraillage de la dalle d'ascenseur.

-	M(KN.m)	M(KN.m)	A_{cal}	A_{cal}	$A_{adopt\acute{e}}(cm^2)$	$A_{adopt\acute{e}}$
	Travée	Appui	travée	appui	travée	appui
Sens xx	8.36	2.95	1.38	0.47	5HA10=3.93	4HA10=3.14
Sens yy	5.74	2.02	0.92	0.32	5HA10=3.93	4HA10=3.14

2. Vérification à l'ELU

- Condition de non fragilité

• En travée

On calcule
$$A_{\min}$$
:
$$\begin{cases} h_0 > 12cm \\ \rho > 0.4 \end{cases} \Rightarrow \begin{cases} A_{\min}^x = \rho_0 \times \frac{3-\rho}{2} \times b \times h_0 \\ A_{\min}^y = \rho_0 \times b \times h_0 \end{cases}$$

On a des HA
$$f_e E400 \Rightarrow \rho_0 = 0.0008$$

$$h_0 = e = 20cm$$

$$b = 100cm$$

$$\rho = 0.85$$

$$\begin{cases} A_{\min}^{x} = 1.72cm^{2} / ml \\ A_{\min}^{y} = 1.6cm^{2} / ml \end{cases}$$

$$A_{t}^{x} = 5HA10 = 3.93cm^{2} / ml > A_{\min}^{x} = 1.72cm^{2} / ml. \text{ vérifiée.}$$

$$A_{t}^{y} = 5HA10 = 3.93cm^{2} / ml > A_{\min}^{y} = 1.6cm^{2} / ml. \text{ vérifiée.}$$

$$A_t^y > \frac{A_t^x}{4}$$
 vérifiée.

• En appui

$$A_t^x = 4HA10 = 3.14cm^2 / ml > A_{\min}^x = 1.72cm^2 / ml.$$

 $A_t^y = 4HA10 = 3.14cm^2 / ml > A_{\min}^y = 1.6cm^2 / ml.$

• Calcul des espacements

Sens x-x':
$$S_t \le \min(3e;33cm) \Rightarrow S_t \le 33cm$$
 on adopte $S_t = 25cm$
Sens y-y': $S_t \le \min(4e;45cm) \Rightarrow S_t \le 45cm$ on adopte $S_t = 25cm$

• Vérification de l'effort tranchant

$$\tau_u = \frac{V_{max}}{b \times d} \le \overline{\tau}_u = 0.05 \times f_{c28} = 1.25 MPa$$

 $\rho = 0.85 > 0.4 \Rightarrow$ Flexion simple dans les deux sens :

$$V_x = q_u \times \frac{l_x}{3} = 38.13KN$$

$$V_y = q_u \times \frac{l_x}{2} \times \frac{1}{1 + \frac{\rho}{2}} = 40.13KN$$

$$\Rightarrow \tau_u = \frac{40.13 \times 10^{-3}}{1 \times 0.17} = 0.23 MPa < 1.25 MPa$$
 C'est vérifié.

3. Vérification à l'ELS

$$q_{ser} = G_{totale} + Q = 48.74 + 1 = 49.74 KN / m^2$$

 $v = 0.2$

Sens x-x':
$$M_0^x = \mu_x \times q_{ser} \times l_x^2 \Rightarrow M_0^x = 8.27 \text{KNm}$$

Sens y-y':
$$M_0^y = \mu_y \times M_0^x \Rightarrow M_0^y = 6.45 \text{KNm}$$

Sens x-x':
$$M_t^x = 0.85 \times M_0^x = 7.03 KNm$$

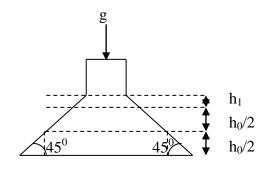
Sens y-y':
$$M_t^y = 0.85 \times M_0^y = 5.48 KNm$$

1) Vérification des contraintes

Tableau III.40: vérification des contraintes.

Localisation	Mser (KN.m)	I (cm ⁴)	Y(cm)	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)
Travées (x)	7.03	24296	5,48	1.58	15
Travées (y)	5.48	13686	4	1.62	15

III.7.5. Cas d'une charge concentrée


La charge concentrée q est appliquée à la surface de la dalle sur une aire $a_0 \times b_0$, elle agit uniformément sur une aire $u \times v$ située sur le plan moyen de la dalle.

 $(a_0 \times b_0)$: surface sur laquelle s'applique la charge donnée en fonction de la vitesse.

 $(u \times v)$: surface d'impact.

 a_0 et u: dimensions suivant le sens x-x'.

 b_0 et v: dimensions suivant le sens y-y'.

FigureIII.11: la surface d'impact.

$$\begin{cases} u = a_0 + h_0 + 2 \times \xi \times h_1. \\ v = b_0 + h_0 + 2 \times \xi \times h_1. \end{cases}$$
 BAEL91.

On a une vitesse
$$V = 1.6m/s \Rightarrow \begin{cases} a_0 = 90cm \\ b_0 = 100cm \end{cases}$$

On a un revêtement en béton d'épaisseur $h_1 = 5cm \Rightarrow \xi = 1$.

Donc:

$$\begin{cases} u = 90 + 20 + 2 \times 1 \times 5 = 120cm. \\ v = 100 + 20 + 2 \times 1 \times 5 = 130cm. \end{cases}$$

• Calcul des sollicitations :

$$\begin{cases} M_x = P_u \times (M_1 + \upsilon \times M_2). \\ M_y = P_u \times (M_2 + \upsilon \times M_1). \end{cases}$$
 Avec υ : coefficient de poisson
$$\begin{cases} \upsilon = 0 \to ELU \\ \upsilon = 0.2 \to ELS \end{cases}$$

$$M_1 \text{ En fonction de } \frac{u}{l_x} \text{ et } \rho \qquad \qquad \frac{u}{l_x} = 0.70 \qquad \text{et } \rho = 0.85 \end{cases}$$

$$M_2 \text{ En fonction de } \frac{v}{l_y} \text{ et } \rho \qquad \qquad \frac{v}{l_y} = 0.65 \qquad \text{et } \rho = 0.85 \end{cases}$$

En se référant à **l'annexe 2** on trouve $M_1 = 0.077$ et $M_2 = 0.062$

 \triangleright Évaluation des moments M_{x1} et M_{y1} du système de levage à l'ELU :

$$\begin{cases} M_{x1} = P_u \times M_1 \\ M_{y1} = P_u \times M_2 \end{cases}$$

On a:
$$g = D_m + P_m + P_{personnes} = 51 + 15 + 6.3 = 72.3KN$$

$$P_u = 1.35 \times g = 1.35 \times 72.3 = 97.60KN$$

$$\begin{cases} M_{x1} = 7.51KNm \\ M_{y1} = 6.05KNm \end{cases}$$

Évaluation des moments dus au poids propre de la dalle à l'ELU :

$$q_u = 1.35 \times 6.1 + 1.5 \times 1 = 9.73 KN$$
 $M_{x2} = \mu_x \times q_u \times l_x^2 \Rightarrow M_{x2} = 1.42 KNm$
 $M_{y2} = \mu_y \times M_{x2} \Rightarrow M_{y2} = 0.97 KNm$
 μ_x et μ_y sont donnés par **l'annexe 1.**

> Superposition des moments

Les moments agissants sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 8.93KNm \\ M_y = M_{y1} + M_{y2} = 7.99KNm \end{cases}$$

Pour tenir compte de l'encastrement :

$$\begin{cases} M_x^t = 0.85x8.93 = 7.59KNm \\ M_y^t = 0.85x7.99 = 6.79KNm \end{cases}$$

- Ferraillage:

Le calcul se fera pour une bande de 1m de longueur et en prenant $d_x = 18cm$ et $d_y = 17cm$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	é
--	---

	(KN.m)	(KN.m)	(cm²/ml)	(cm²/ml)	(cm²/ml)	(cm²/ml)
Sens x-x	7.59	2.67	1.22	0.42	5T10=3.93	4T10=3.14
Sens y-y	6.79	2.39	1.09	0.38	5T10=3.93	4T10=3.14

Tableau III.41: ferraillage de la dalle de la salle des machines.

1. Vérification à l'ELU

a) Condition de non fragilité :

• En travée :

$$A_t^x = 5T10 = 3.93cm^2 / ml > A_{min}^x = 1.72cm^2 / ml.$$

 $A_t^y = 5T10 = 3.93cm^2 / ml > A_{min}^y = 1.6cm^2 / ml.$
 $A_t^y > \frac{A_x^t}{4}$ condition vérifiée.

• En appui:

$$A_t^x = 4T10 = 3.14cm^2 / ml > A_{min}^x = 1.72cm^2 / ml.$$

 $A_t^y = 4T10 = 3.14cm^2 / ml > A_{min}^y = 1.6cm^2 / ml.$

b) Vérification au poinçonnement

$$Q_u \leq \!\! 0.045 \! \times \! U_c \times \! h \! \times \! \frac{f_{c28}}{\gamma_b} \; \; \text{BAEL91 (Article H. III.10)}$$

Avec : Q_u : charge de calcul à l'état limite.

h:épaisseur de la dalle.

 U_c : périmètre du contour au niveau du feuillet moyen.

$$U_c = 2 \times (u + v) = 2 \times (180 + 190)$$

 $U_c = 740$ cm.
 $Q_u = 97.60$ KN; $\gamma_b = 1.5$

$$Q_u = 97.6KN \le 0.045 \times U_c \times h \times \frac{f_{c28}}{\gamma_b} = 750KN$$
 condition vérifiée.

c) Vérification de l'effort tranchant

$$\tau_{u} = \frac{V_{max}}{b \times d} \le \bar{\tau}_{u} = 0.05 \times f_{c28} = 1.25 MPa$$

On a
$$v > u \Longrightarrow$$
 Au milieu de $u : V_u = \frac{Q_u}{3 \times v} = 25.02 KN$

Au milieu de
$$v: V_u = \frac{Q_u}{2 \times v + u} = 25.68KN$$

Donc:
$$V_{\text{max}} = 25.68 KN$$

$$\tau_u = 0.1 MPa \le \bar{\tau}_u = 1.25 MPa$$

C'est vérifié.

d) Espacement des barres

Sens x-x':
$$S_t = 20cm \le min(2e; 22cm) = 22cm$$
.

Sens y-y':
$$S_t = 25cm \le min(3e; 33cm) = 33cm$$
.

2. Calcul à l'ELS

✓ Les moments engendrés par le système de levage sont :

$$q_{ser} = g = 72.3KN.$$

$$\begin{cases} M_{x1} = q_{ser} \times (M_1 + \upsilon \times M_2) = 6.46 \text{KN.m.} \\ M_{y1} = q_{ser} \times (M_2 + \upsilon \times M_1) = 5.95 \text{KN.m.} \end{cases}$$

✓ Les moments dus au poids propre de la dalle :

$$q_{ser} = 6.1 + 1 = 7.1 \text{KN}$$

$$M_{x2} = \mu_x \times q_{ser} \times l_x^2 \Rightarrow M_{x2} = 1.22 KN.m$$

$$M_{y2} = \mu_y \times M_{x2} \Rightarrow M_{y2} = 0.95 \text{KN.m}$$

- Superposition des moments :

Les moments agissants sur la dalle sont :

$$\begin{cases} M_x = M_{x1} + M_{x2} = 7.68 \text{KN.m} \\ M_y = M_{y1} + M_{y2} = 6.90 \text{KN.m} \end{cases}$$

$$M_t^x = 0.85 \times M_0^x = 6.52 \text{KN.met } M_t^y = 0.85 \times M_0^y = 5.86 \text{KN.m}$$

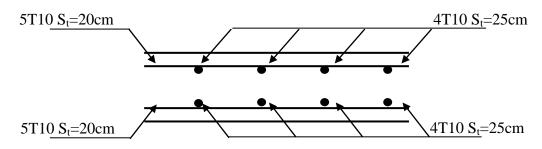
- Vérification des contraintes :

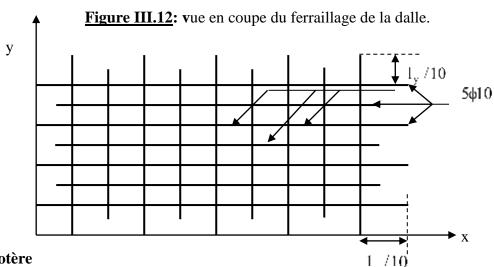
Tableau III.42: vérification des contraintes.

Localisation	Mser (KN.m)	I (cm ⁴)	Y (cm)	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)
Travées (x)	6.52	13686.15	4	3.81	15
Travées (y)	5.86	13686.15	4	2,56	15

b) Vérification de la flèche

Les conditions à vérifier sont les suivantes :


$$\int h / l = 0.117 \ge 1/16 = 0.06 \tag{1}.$$


$$h/l=0.117 \ge \frac{M_t}{10 \times M_0} = 0.085$$
 (2).

$$A / b.d=0.0021 \le 4.2 / f_e=0.01$$
 (3).

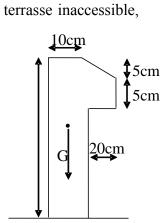
Les trois conditions de la flèche sont vérifiées. On est dispensé de la vérification de la flèche.

c) Schéma de ferraillage :

III.8.Acrotère

III.8.1. Pour la ter Figure III.13:schéma du ferraillage de la dalle.

C'est un élé


ses dimensions sont adoptees a apres les plans arennectataux.

$$S_{inacce} = 10 \times 60 + \frac{5 \times 20}{2} + 5 \times 20$$

$$S_{inacce} = 0.0750m^2$$

Hypothèse de calcul:

- Le calcul se fera pour une bande de 1m de longueur.
- La fissuration est nuisible.
- Le calcul sera fait en flexion composée.

60cm

Fig III.14Vue en plan d'un acrotère

III.8.2. Evaluation des charges

$$G_1 = 25 \times 0.0750 \times 1 = 1.875 \text{ KN}$$

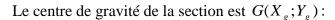
- Poids propre:
- Poids d'enduit extérieur (ciment :e =1.5cm) : $G_2 = 20 \times 0.015 \times 0.60 \times 1 = 0.18 KN$.
- Poids d'enduit intérieur (ciment :e = 2cm) : $G_3 = 20 \times 0.02 \times 0.60 \times 1 = 0.24 KN$.

$$W_p=G_1+G_2+G_3=2.295KN.$$
 Q=1KN

La force sismique:

La force sismique horizontale F_P est donnée par la formule suivante :

$$F_p = 4 \times A \times C_p \times W_p$$
.


A : Coefficient d'accélération de zone (groupe d'usage 2, zone IIa, A=0,15).

 C_p : Facteur de force horizontal ($C_p = 0.8$).

 W_p : Poids de l'acrotère.

Donc:

$$F_P = 4 \times 0.15 \times 0.8 \times 2.295 = 1.10 KN$$
.

$$X_{g} = \frac{\sum x_{i} \times A_{i}}{\sum A_{i}} = 0.077m$$

$$Y_g = \frac{\sum y_i \times A_i}{\sum A_i} = 0.34m$$

III.8.3. Calcul des sollicitations :

L'acrotère est soumis à :

$$N_G = 2.295KN$$
 $M_G = 0$.

$$N_{o} = 0$$
 $M_{o} = Q \times h = 1 \times 0.6 = 0.6 KNm.$

$$N_{F_p} = 0$$
 $M_{F_p} = F_p \times Y_g = 1.10 \times 0.34 = 0.374 KNm$

L'acrotère travaille en flexion composée.

III.8.4. Combinaisons d'actions :

Tableau III.43. Combinaison d'action.

	RPA 99	ELU	ELS
Combinaison de charges	G + Q + E	1,35G + 1,5Q	G+Q

N (KN)	2.295	3.098	2.295
M (KN.m)	0.974	0.90	0.60

III.8.5. Calcul de l'excentricité à l'état limite ultime

La combinaison à considérer est : 1,35G + 1,5Q.

$$N_u = 3.098 KN$$

$$M_{u} = 0.90 KNm$$

Ces sollicitations sont réduites au centre de gravité de la section du béton et l'effort appliqué est un effort de compression.

On a:

$$\begin{cases} e_1 = \frac{M_u}{N_u} = \frac{0.9}{3.098} = 0.29m \\ \frac{H}{6} = 0.1m \end{cases}$$

 $e_1 > \frac{h}{6} \Rightarrow$ le centre de pression se trouve à l'extrémité du noyau central donc la section est partiellement comprimée, le ferraillage se fait par assimilation à la flexion simple.

Le risque de flambement développé par l'effort de compression conduit à ajouter e_a et e_2 telle que :

 e_a : Excentricité additionnelle traduisant les imperfections géométriques initiales.

 \boldsymbol{e}_2 : Excentricité due aux effets du second ordre, liés à la déformation de la structure.

$$e_a = \max(2cm; \frac{h}{250}) = 2cm.$$

$$e_2 = \frac{3 \times l_f^2 \times (2 + \phi \times \alpha)}{h_0 \times 10^4}$$

Avec :
$$\alpha = \frac{M_G}{M_G + M_O}$$

$$M_G = 0 \Rightarrow \alpha = 0.$$

 ϕ : C'est le rapport de déformation finale due au fluage à la déformation instantanée sous la charge considérée, il est gé,kjnéralement pris égal à 2.

 α : Le rapport du moment du premier ordre, dû aux charges permanentes et quasipermanentes, au moment total du premier ordre, le coefficient α est compris entre 0 et 1.

 l_f : Longueur de flambement ; $l_f = 2 \times h = 1.2m$

 h_0 : Hauteur de la section qui est égale à 10cm.

Donc:

$$e_2 = 0.864 \ cm$$

$$e = e_1 + e_2 + e_a = 0.318m$$

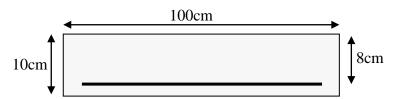


Fig. III.15. Section à ferrailler.

III.8.6. Ferraillage de la section

$$f_{bu} = 14.2MPa$$

$$f_{st} = 348MPa$$

$$N_{"} = 3.098KN$$

$$M_u = N_u \times e = 3.098 \times 0.318 = 1 \text{KN}$$

Selon le BAEL 91:

$$M_{ua} = M_u + N_u \times (d - \frac{h}{2}) = 1.093KNm$$

$$\mu_{bu} = \frac{M_{ua}}{b \times d^2 \times f_{bu}} = .0.012$$
 .

$$\mu_{bu} < \mu_{l} = 0.392 \Longrightarrow A_{s}^{'} = 0.$$

D'où:

$$\alpha = 1,25 \times [1 - \sqrt{(1 - 2\mu_{bu})}] = 0.015$$

$$z = d \times (1 - 0.4 \times \alpha) = 0.0795m$$

$$A = \frac{M_{ua}}{z \times f_{st}} = 0.395 cm^2.$$

Donc, la section à la flexion composée sera :

$$A_s = A - \frac{N_u}{f_{st}} = 0.386 \text{ cm}^2.$$

Vérification à l'ELU

b) Condition de non fragilité:

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 0.966 \text{cm}^2.$$

On remarque que $A_s < A_{min}$ donc on prend $A_{min} = 4T8 = 2,01$ cm²/ml.

Ce qui fait $4T8 = 2.01cm^2 / ml$.

Armatures de répartition :

$$A_r = \frac{A_s}{4} = \frac{2.01}{4} = 0.502cm^2 \implies 4T = 2.01cm^2 / ml.$$

Calcul des espacements:

Les armatures principales : $S_t \le \frac{100}{3} = 33.33cm$ soit $S_t = 25$ cm.

Les armatures de répartition : $S_t \le \frac{100}{3} = 33.33cm$ soit $S_t = 25$ cm.

c) Vérification au cisaillement :

$$V_u = F_p + Q = 2.10KN$$

$$\tau_{u} < \overline{\tau_{u}}$$

$$\tau_u = \frac{V_u}{b \times d} = \frac{2.10 \times 10^{-3}}{1 \times 0.08} = 0.0262 MPa.$$

$$\overline{\tau_u} < \min(0.1 \times f_{c28}; 3MPa) \Rightarrow \overline{\tau_u} = 2.5MPa.$$

$$\tau_u = 0.0262MPa < \overline{\tau_u}$$

> Vérifications à L'ELS

Vérification de la contrainte d'adhérence limite :

$$\tau_s = \frac{V_u}{0.9 \times d \times \sum u_i} \le \overline{\tau}_s$$
 [2]

Avec Σu_i: la somme des périmètres des barres.

 $\Sigma u_i = \pi \times n \times \phi = 3.14 \times 4 \times 8 = 100.48 mm.$

$$\tau_s = \frac{2.10 \times 10^{-3}}{0.9 \times 0.08 \times 100,48 \times 10^{-3}} = 0.29 \text{ MPa}$$

 $\bar{\tau}_s = 0.6 \times \psi^2 \times f_{t28} = 0.6 \times 1.5^2 \times 2.1 = 2.83 MPa \ \psi = 1.5$ Pour les HA $\Rightarrow \tau_s < \bar{\tau}_s$ c'est vérifiée.

Etat limite de compression de béton :

$$\sigma_{bc} = K \times y_{ser}$$

$$\sigma_{sc} = n \times K \times (d - y_{ser})$$

$$\overline{\sigma_s} = \min(\frac{2}{3} \times f_e; 150 \times \eta) = 240MPa$$

Avec:
$$n=1.5$$

$$K = \frac{N_{ser}}{I} \times y_c$$

$$I = \frac{b}{3} \times y_{ser}^{3} + 15 \times \left[(A_{s} \times (d - y_{ser})^{2} + A_{s} \times (y_{ser} - d')^{2} \right]$$

Détermination de y_{ser} :

$$e_a = \frac{M_{ser}}{N_{ser}} + (d - \frac{h}{2}) = \frac{0.6}{2.295} + (0.08 - \frac{0.10}{2})$$

$$e_a = 0.291m$$

$$c = d - e_a = 0.08 - 0.291$$

$$c = -0.211m$$

Calcul de y_c telle que : $y_c^3 + p \times y_c + q = 0$ (*)

Avec:

$$p = -3 \times c^{2} - 90 \times A' \times \frac{(c - d')}{b} + 90 \times A \times \frac{(d - c)}{b}$$

$$q = -2 \times c^{3} - 90 \times A' \times \frac{(c - d')^{2}}{b} - 90 \times A \times \frac{(d - c)^{2}}{b}$$
On $A' = 0$, $A = 2.01 \times 10^{-4} m^{2}$, $b = 1m$ et $c = -0.211$ m. Donc on trouve:

 $P = -0.133 \text{m}^2$

 $q = -0.0208 \text{m}^3$

Après résolution de l'équation (*) on trouve : $y_c = 0.251m \Rightarrow y_{ser} = y_c + c = 0.118m$ $I = 5.48 \times 10^{-4} \, m^4$.

Calcul de $I: \sigma_{hc} = 0.15MPa < 15MPa$ Condition est vérifiée. $\sigma_{sc} = 0.237 MPa < 240 MPa$

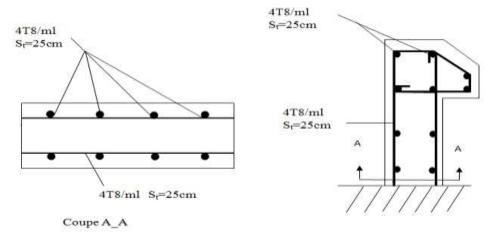


Fig.III.16. Schéma de ferraillage de l'acrotère III.9. CONCLUSION

Le but de ce chapitre été la détermination des sections d'acier nécessaire pour reprendre les charges revenant aux éléments non structuraux.

Le choix de la disposition des poutrelles s'est fait au chapitre précédent. D'après la disposition adoptée nous avons eu plusieurs types de poutrelles. Ces dernières ont été étudiées et ferraillées.

Notre structure présente un seul type d'escalier, ce dernier est à deux volées. Dans ce chapitre il a été procédé à son étude et son ferraillage.

L'acrotère est calculé à la flexion composée. Son ferraillage a été déterminé en respectant les règles. En dernier, nous avons fait l'étude de l'ascenseur puis on a ferraillé la dalle de locale des machines.

La poutre palière a été étudiée sous des sollicitations de flexion de torsion ainsi pour la poutre de chainage qui a été étudier en flexion simple.

Notre projet comprend 3 types de dalle pleine, elle ont été étudié et ferraillé avec les sollicitations les plus défavorables.

INTRODUCTION

Le nord de l'Algérie est une région ou de violant séismes peuvent se produit en provoquant des dégâts importants (matériels et humaines), pour cela, pour des ouvrages courants, les objectifs ainsi visée consistent à doter la structure d'une rigidité, résistance et d'une ductilité suffisante pour limité les dommages face à un séisme modéré, relativement fréquent, pour permettre à la structure se subir des déplacements inélastique avec des dommages limités et sans effondrements.

IV.1 : Objectifs et exigences :

Les premières exigences, lors de la conception d'une structure, sont données par les normes de construction dans le cas de situations non sismiques. A celles-ci, viennent s'ajouter des normes assignées à la construction de structures en zone sismique. En effet, la conception parasismique ne se limite pas au seul dimensionnement, mais met en jeu de nombreux facteurs comme la rigidité, la capacité de stockage ou la dissipation d'énergie.

IV.2 Méthode de calcul:

Selon les règles parasismiques Algériennes (RPA99/version2003), le calcul des forces sismiques peut être mené suivant trois méthodes :

- 1. Par la méthode statique équivalente ;
- 2. Par la méthode d'analyse modale spectrale ;
- 3. Par la méthode d'analyse dynamique par accélérogramme.

IV.2.1 Méthode statique équivalente :

- Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont similaires à ceux de l'action sismique.

Calcul de la force sismique totale : RPA99 (Article 4.2.3).

La force sismique V ; appliquée à la base de la structure, doit être calculée successivement dans les deux directions horizontales et orthogonales selon la formule :

$$V_{st} = A \times D \times Q \times \frac{1}{R} \times W$$

A : Coefficient d'accélération de la zone. **RPA99** (Tableau 4.1)

Le coefficient A représenté l'accélération du sol et dépend de l'accélération maximale possible de la région, de la période de vie de la structure, et du niveau de risque que l'on veut

avoir. L'accélération maximale dépend de la période de retour que l'on se fixe ou en d'autre termes de la probabilité que cette accélération survienne dans l'année. Il suffit donc de se fixer une période de calcul et un niveau de risque.

Cette accélération ayant une probabilité plus au moins grande de se produire. Il dépend de deux paramètres :

- Groupe d'usage : groupe 2

- Zone sismique : zone $IIa \Rightarrow A = 0.15$

➤ R : Coefficient de comportement global de la structure, il est fonction du système de contreventement.

RPA99 (Tableau 4.3)

Dans le cas de notre projet, on adopte pour un système de contreventement mixte portiquesvoiles avec justification de l'interaction, donc : R=5

Q : Facteur de qualité.

La valeur de Q est déterminée par la formule :

$$Q = 1 + \sum_{l}^{6} Pq$$
 RPA99 (Formule 4.4)

Pq : est la pénalité à retenir selon que le critère de qualité q est satisfait ou non.

Les valeurs à retenir sont dans le tableau suivant :

Tableau IV.1: Valeurs des pénalités Pq.

"Critère q'	Observé	Non observé
1- Conditions minimales sur les files de contreventement	non	0.05
2- Redondance en plan	non	0.05
3- Régularité en plan	non	0.05
4- Régularité en élévation	non	0.05
5- Contrôle de qualité des matériaux	oui	/
6- Contrôles d'exécution	non	0.1

Donc : Q = 1.3

W:Poids total de la structure.

La valeur de W comprend la totalité des charges permanentes pour les bâtiments d'habitation.

Il est égal à la somme des poids Wi; calculés à chaque niveau (i) :

$$W = \sum_{i=1}^{n} Wi$$
 avec $W_i = W_{Gi} + \beta \times W_{Qi} RPA99$ (Formule 4.5)

- $ightharpoonup W_{Gi}$: Poids dû aux charges permanentes et à celles des équipements fixes éventuels, solidaires à la structure.
- \triangleright W_{Oi} : Charges d'exploitation.
- β : Coefficient de pondération, il est fonction de la nature et de la durée de la charge d'exploitation

Concernant notre projet on a des niveaux à usage d'habitation.

on a :
$$W_G$$
=31696.497KN ; W_Q =4911.781KN

- \Rightarrow W=34337.54KN
 - > D: Facteur d'amplification dynamique moyen :

Le coefficient D est le facteur d'amplification dynamique moyen, il est fonction de la période fondamentale de la structure (T), de la nature du sol et du facteur de correction d'amortissement (η) . On

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \binom{T_2}{T}^{2/3} & T_2 \le T \le 3.0 \text{ s RPA99 (Formule 4-2)} \\ 2.5\eta \binom{T_2}{3.0}^{2/3} (3.0/T)^{5/3} & T \ge 3.0 \text{ s} \end{cases}$$

 $ightharpoonup T_2$: Période caractéristique, associée à la catégorie du site.

La structure à étudie est située dans un site meuble (S_3) .

$$\Rightarrow \begin{cases} T_1 = 0.15s \\ T_2 = 0.5s \end{cases} \text{ RPA (Tablea 4.7)}$$

Calcul de la période fondamentale de la structure :

Le facteur de correction d'amortissement η est donné par :

$$\eta = \sqrt{7/(2+\zeta)} \ge 0.7$$
RPA99 (Formule 4.3)

Où $\zeta(\%)$ est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Tableau donnant les valeurs de $\zeta(\%)$:

Tableau IV.2 : Les valeurs de $\zeta(\%)$ RPA 99

Remplissage	Por	rtique	Voiles ou murs
	Béton armé	Acier	Béton armé / maçonnerie
Léger	6	4	
	-		10
Dense	7	5	

On prend: $\zeta = \frac{7+10}{2} = 8.5\%$

Donc

$$\eta = \sqrt{7/(2+\zeta)} = 0.81 > 0.7$$

$$T_c = C_T h_n^{3/4}$$
 RPA99 (Formule 4-6)

 \triangleright h_n : Hauteur mesurée en mètre comme suit :

 $H_n = 33,66m$

 $ightharpoonup C_T$: Coefficient, fonction du système de contreventement du type de remplissage donne par le tableau IV.3 :

Tableau IV.3: Les valeurs du coefficient C_T

Cas N°	Système de contreventement	C_T
01	Portiques auto-stables en béton armé sans remplissage en maçonnerie.	0.075
	Portiques auto-stables en acier sans remplissage en maçonnerie	
02	Portiques auto-stables en béton armé ou en acier avec remplissage en	0.085
03	maçonnerie.	0.050
	Contreventement assuré partiellement ou totalement par des voiles en	
04	béton armé, des palées triangulées et des murs en maçonnerie.	0.050

$$\Rightarrow C_T = 0.050$$

$$T = 0.050 \times (33.66)^{3/4} = 0.699s$$

On peut également utiliser aussi la formule suivante :

$$T_{X,Y} = \frac{0.09 \times h_n}{\sqrt{L_{X,Y}}}$$
 RPA99 (Formule 4-7)

L: Distance du bâtiment mesuré à la base dans les deux directions.

$$L_x = 23.7m$$

$$L_y = 18.45 m$$

$$\Rightarrow T_x = 0.62s$$
$$T_y = 0.7s$$

$$T_x = min(0.62; 0.0699) = 0.62$$
 $T_Y = min(0.7; 0.0699) = 0.699$

Remarque

La période de vibration ne doit pas dépasser 30% de la période calcule par la formule empirique, C'est à dire :

$$T_{sx} = 1.3 \times 0.62 = 0.806 \text{ sRPA99 .Art } (4.2.3)$$
 $T_{sy} = 1.3 \times 0.699 = 0.9087 \text{ s}$

$$\Rightarrow D = 2.5 \eta \left(\frac{T_2}{T}\right)^{2/3} \qquad \text{Car } 0.5 \le T \le 3.0 \text{ s}$$

$$\Rightarrow D_x = 2.5 \times 0.81 \times \left(0.5 / 0.62\right)^{2/3} = 1.76$$

$$D_y = 2.5 \times 0.81 \times \left(0.5 / 0.698\right)^{2/3} = 1.6$$

La force sismique totale à la base de la structure est : $V_{st} = \frac{A \times D \times Q}{R} \times W$

$$V_{stx} = \frac{0.15 \times 1.3 \times 1.76}{5} \times 34337.54 = 2356.92KN = 235.692t$$

$$V_{sty} = \frac{0.15 \times 1.3 \times 1.6}{5} \times 34337.54 = 2142.66KN = 214.266t$$

IV.2.2 Méthode dynamique modale spectrale :

Il s'agit de chercher les premiers modes propres de flexion torsion. Les méthodes de calcul sophistiquées et, en particulier l'analyse modale spectrale, sont rendues obligatoires par les codes parasismiques modernes (exemple RPA88) dès lors que les structures considérées ne répondent plus aux critères de régularité spécifiés dans ces codes (régularité en configuration horizontale et verticale).

L'étude vibratoire d'un système donné suppose le choix du modèle mécanique dont le comportement reflète aussi fidèlement que possible celui du système réel.

La concentration des masses en un certain nombre de points judicieusement choisis est un des

aspects de la modélisation.

Le plancher considéré comme infiniment indéformable dans son plan nécessite une modélisation

de deux façons :

- ✓ Modélisation par nœuds maîtres,
- ✓ Modélisation par un corps infiniment rigide.

Dans les deux cas la masse est concentrée dans son centre de gravité.

Le critère de masse modale, significatif dans la participation modale, doit être complété par l'évaluation, des moments d'inertie massique modaux, qui mettent en évidence des modes de torsion

Produisant des couples de torsion importants bien qu'assortis d'une masse modale négligeable.

IV.2.3 Méthode d'analyse par accélérogramme :

Cette méthode peut être utilisée au cas par cas par un personnel qualifie, ayant justifié auparavant

le choix des séismes de calcul et des lois de comportement utilisées ainsi que la méthode d'interpolation des résultats et des critères de sécurité à satisfaire.

IV.3. Exigences du RPA99 pour les systèmes mixtes :

1. D'après **l'article3.4.4.a**, les voiles de contreventement doivent reprendre au plus 20% des sollicitations dues aux charges verticales.

Les voiles et les portiques reprennent simultanément les charges horizontales proportionnellement à leurs rigidités relatives ainsi que les sollicitations résultant de leurs interactions à tous les niveaux.

Les portiques doivent reprendre, outre les sollicitations dues aux charges verticales, au moins

25% de l'effort tranchant de l'étage.

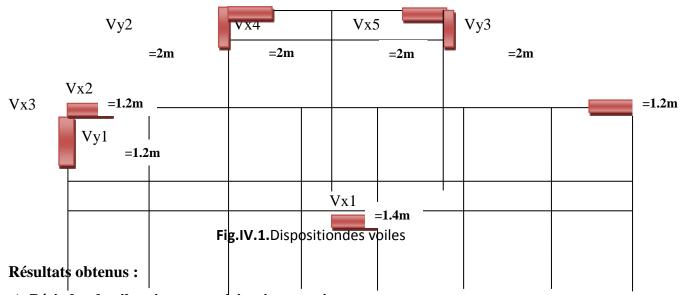
2. D'après **l'article 4.2.4**, les valeurs de T (périodes) calculées à partir du logiciel SAP2000 ne doivent pas dépasser celles estimées à partir des formules empiriques données par le RPA de plus de 30%.

- 3. D'après **l'article 4.3.4**, le nombre de modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :
 - la somme des masses modales effectives pour les modes retenus soit égale à 90% au moins

de la masse totale de la structure ;

 ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale

de la structure soient retenus pour la détermination de la réponse totale de la structure.


Le minimum des modes à retenir est de trois (03) dans chaque direction considérée.

IV.4 Modalisation et résultats :

Le logiciel utilisé pour modéliser notre structure est le SAP2000 version 14.

IV.4.1 Disposition des voiles de contreventement :

Nous avons essayé plusieurs dispositions qui ont abouti soit à un mauvais comportement de la structure soit à la non vérification de l'interaction voiles-portiques, et nous avons modifié les plans de certains etages .la disposition retenue est la suivante :

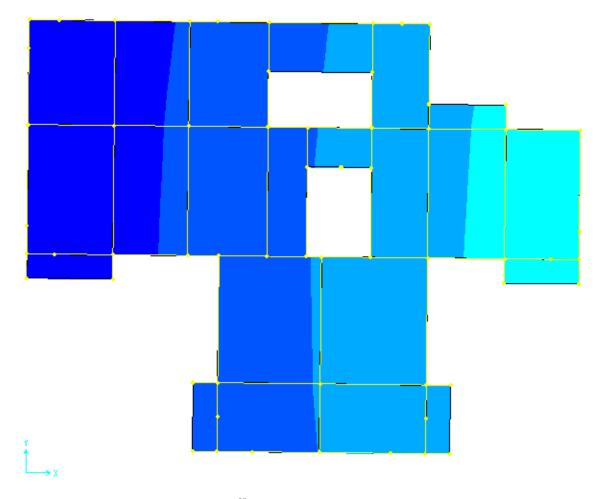
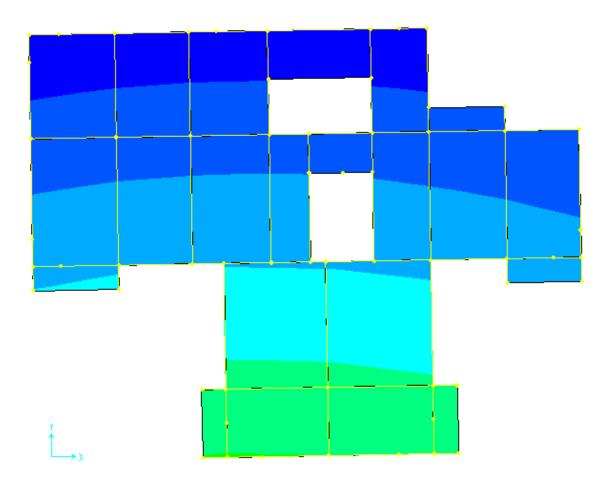

a). Périodes de vibration et participation massique :

Tableau IV.4.Modes et périodes de vibration et taux de participation des masses


	Périodes	Individ	luel mode	Cumulative sum (%)		
Modes	Sec	Ux	Uy	Ux	Uy	
Mode 1	0,908487	0,00013	0,69088	0,00013	0,69088	
Mode 2	0,798305	0,67347	0,00097	0,6736	0,69185	
Mode 3	0,685248	0,0444	0,00564	0,718	0,69748	
Mode 4	0,342685	0,0004	0,12956	0,7184	0,82705	
Mode 5	0,318714	0,07134	0,00139	0,78974	0,82843	
Mode 6	0,242742	0,0271	0,00004568	0,81684	0,82848	
Mode 7	0,190918	0,05131	0,01076	0,86815	0,83924	
Mode 8	0,180309	0,00971	0,05598	0,87785	0,89522	
Mode 9	0,123915	0,00348	0,00119	0,88133	0,89641	
Mode 10	0,115234	0,00041	0,02824	0,88174	0,92465	
Mode 11	0,108647	0,04092	0,000071	0,92266	0,92472	
Mode 12	0,102904	0,00012	0,00012	0,92278	0,92485	

D'après les résultats obtenus dans le tableau ci-dessus, On constate que les exigences du RPA sont vérifiées.

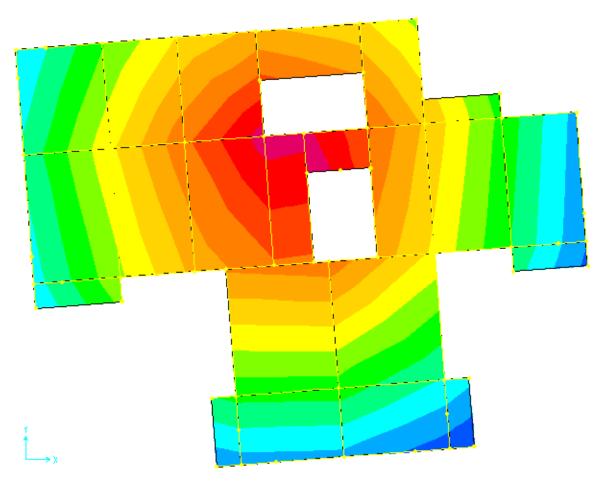

Les modes de vibration sont montrés sur les Fig. IV.1, IV.2 etIV. 3.

Fig. IV.2. 1^{er} mode (translation suivant y)

Fig. IV.3. $2^{\text{\'e}me}$ mode (translation suivant x)

Fig. IV.4. $3^{\text{\'eme}}$ mode (torsion autour de Z)

b). Justification de l'interaction "Voiles-portiques" :

Les tableaux IV.5 et IV.6 illustrent respectivement la justification de l'interaction sous charges verticales et horizontales.

Tableau IV.5. Vérification sous charges verticales

	Charges r	eprises (KN)	Pourcentag	e repris (%)
NIVEAU	PORTIQUE	VOILE	PORTIQUE	VOILE
RDC	34596,289	4271,921	89,009216	10,990784
NIV 01	29120,696	4891,63	83,4512837	16,5487163
NIV 02	24407,374	4356,798	80,5739843	19,4260157
NIV 03	20848,082	3823,446	85,6180668	14,3819332
NIV 04	16867,541	3194,018	84,8533864	15,1466136
NIV 05	12890,586	2561,006	84,5025975	15,4974025
NIV 06	9088,214	1836,178	84,0789143	15,9210857

NIV 07	5645,52	1231,442	83,4256172	16,5743828
NIV 08	3918,729	815,418	83,1919433	16,8080567
NIV 09	2202,13	436,691	82,0932266	17,9067734
NIV 10	774,121	186,637	82,77582	17,22418

Analyse des résultats :

On remarque que l'interaction voile-portique sous charge verticale est vérifiée dans tous les niveaux..

Tableau IV.6. Vérification sous charges horizontales

	(Charges re	prises (KN	N)		Pourcentag	e repris (%)	
NIVEAU	PORT	IQUE	VO	ILE	PORT	PORTIQUE		ILE
	X	Y	X	Y	X	Y	X	Y
RDC	1315,086	1418,587	747,475	505,772	63,7598597	73,7173781	36,2401403	26,2826219
NIV 01	1155,927	1093,549	864,434	756,038	57,2138841	56,4522863	42,7861159	43,5477137
NIV 02	1215,381	1118,478	651,578	593,647	65,0995014	54,2836498	34,9004986	45,7163502
NIV 03	1158,685	1095,882	603,932	492,34	65,7366291	55,9413654	34,2633709	44,0586346
NIV 04	1094,611	1052,85	468,026	353,698	70,0489621	54,7998635	29,9510379	45,2001365
NIV 05	918,624	889,064	389,866	296,345	70,2048927	50,7694527	29,7951073	49,2305473
NIV 06	783,662	858,248	230,719	100,897	77,2551931	59,078033	22,7448069	40,921967
NIV 07	508,909	460,261	212,872	222,726	70,5073977	45,4951723	29,4926023	54,5048277
NIV 08	401,149	390,095	140,872	137,329	74,0098631	49,4131484	25,9901369	50,5868516
NIV 09	244,087	278,31	86,522	89,105	73,8295086	59,047619	26,1704914	40,952381
NIV 10	140,381	145,553	35,539	41,85	79,7982037	66,4453024	20,2017963	33,5546976

• Analyse des résultats :

on constate que l'interaction sous charge horizontale est vérifiée.

IV.4.2. Vérification de l'effort normal réduit :

Dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitation d'ensemble dues au séisme. Le RPA99 (7.4.3.1) exige de vérifier l'effort normal de compression de calcul qui est limitépar la condition suivante :

$$v = \frac{N_d}{B \times f_{c28}} \le 0.3$$

Où B est l'aire de la section transversale du poteau considéré.

Les résultats de calcul sont résumés dans le tableau IV.7.

Tableau IV.7. Vérification de l'effort normal réduit

Niveau	Type de poteau	B (cm ²)	N _d (KN)	N	Observation
RDC	60×60	3600	2319.165	0.257	vérifiée
1 ^{er} étage et 2 ^{éme}	55×60	3300	1711.519	0.226	vérifiée
3 ^{éme} et 4 ^{éme} étage	55×55	3025	918.952	0.147	vérifiée
5 ^{éme} ,6 ^{éme} étage	50×55	2750	442.780	0.087	vérifiée
7 ^{éme} , 8 ^{éme}	50×50	2500	2319.165	0.257	vérifiée
9 ^{éme} , 10 ^{éme}	45×50	2250	1711.519	0.226	vérifiée

IV.4.3 Vérification de la résultante des forces sismiques :

Selon l'article **4.3.6** de l'**RPA99**, la résultante des forces sismiques à la base V_{dyn} obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente Vst.

Tableau IV.8. Vérification de la résultante des forces sismiques

Résultante desforces	Vdyn(KN)	Vs t(KN)	Vdyn/Vst	Observation
sismiques				
Sens x-x	2062.56	2356.92	0.875	vérifiée
Sens y-y	1624.25	2142.66	0.758	vérifiée

IV.4.4 Justification vis à vis des déformations :

Selon le **RPA99** (**Art 5.10**), les déplacements relatifs latéraux d'un étage par rapport aux étages

qui lui sont adjacents, ne doivent pas dépasser 1.0% de la hauteur de l'étage. Le déplacement relatif

au niveau "k" par rapport au niveau "k-1" est égale à :

$$\Delta \mathbf{K} = \delta_{\mathbf{K}} - \delta_{\mathbf{K}-1}$$

Avec: $\delta_K = R \times \delta e_K$

 δ_K : déplacement horizontal à chaque niveau "k" de la structure donné par le RPA (Art4.43)

 δe_K : déplacement dû aux forces sismiques Fi (y compris l'effet de torsion)

R : coefficient de comportement (R=5).

Tous les résultats sont regroupés dans le tableauIV.9.

Tableau IV.9. Vérification des déplacements

	Sens x-x					Sens y-y					
Niveau	δeK	δK	δK-1	ΔK	hK	ΔK/hK	δeK	δK	δK-1	ΔΚ	ΔK/hK
	(m)	(m)	(m)	(m)	(cm)		(m)	(m)	(m)	(m)	
RDC	0,0008	0,0028	0	0,0028	306	0,00091503	0,0012	0,0048	0	0,0048	0,00156863
NIV 01	0,0026	0,0091	0,0028	0,0063	306	0,00205882	0,0035	0,014	0,0048	0,0092	0,00300654
NIV 02	0,0048	0,0168	0,0091	0,0077	306	0,00251634	0,0063	0,0252	0,014	0,0112	0,00366013
NIV 03	0,0072	0,0252	0,0168	0,0084	306	0,0027451	0,0093	0,0372	0,0252	0,012	0,00392157
NIV 04	0,0097	0,03395	0,0252	0,00875	306	0,00285948	0,0121	0,0484	0,0372	0,0112	0,00366013
NIV 05	0,0121	0,04235	0,03395	0,0084	306	0,0027451	0,0149	0,0596	0,0484	0,0112	0,00366013
NIV 06	0,0144	0,0504	0,04235	0,00805	306	0,00263072	0,0174	0,0696	0,0596	0,01	0,00326797
NIV 07	0,0166	0,0581	0,0504	0,0077	306	0,00251634	0,02	0,08	0,0696	0,0104	0,00339869
NIV 08	0,0186	0,0651	0,0581	0,007	306	0,00228758	0,0225	0,09	0,08	0,01	0,00326797
NIV 09	0,0204	0,0714	0,0651	0,0063	306	0,00205882	0,0247	0,0988	0,09	0,0088	0,00287582
NIV 10	0,0219	0,07665	0,0714	0,00525	306	0,00171569	0,0266	0,1064	0,0988	0,0076	0,00248366

On voit bien à travers ce tableau que les déplacements relatifs des niveaux sont inférieurs aucentième de la hauteur d'étage.

IV.4.5 Justification vis à vis de l'effet P-Δ: [RPA (5.9)]

Les effets du 2ième ordre (ou effet $P-\Delta$) sont les effets dus aux charges verticales après déplacement. Ils peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_K \times \Delta_K}{V_K \times h_K} \le 0.10$$

P_K: poids total de la structure et des charges d'exploitation associées au-dessus du niveau "k",

$$PK = \sum_{i=K}^{n} (W_{gi} + \beta.W_{qi})$$

 V_K : effort tranchant d'étage au niveau "k"

ΔK: déplacement relatif du niveau "k" par rapport au niveau "k-1",

h_K: hauteur de l'étage "k".

✓ Si $0.1 \le \Theta_K \le 0.2$, les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculé au moyen d'une analyse élastique du 1^{er}ordre par le facteur1/(1-qK).

✓ Si $\Theta_K > 0.2$, la structure est potentiellement instable et doit être redimensionnée.

Les résultats sont regroupés dans le tableau IV.10.

Tableau IV.10. Vérification de l'effet P-∆

	$\mathbf{h}_{\mathbf{k}}$			Sens x-x		Sens y-y		
Niveau	(cm)	P _k (KN)	$\Delta_{\mathbf{k}}$	V _k (KN)	$\Theta_{\mathbf{k}}$	$\Delta_{\mathbf{k}}$	$V_k(t)$	$\Theta_{\mathbf{k}}$
RDC	306	30606,746	0,0028	2062,561	0,015518	0,0048	1924,359	0,024948
NIV 01	306	25879,729	0,0063	2020,361	0,030139	0,0092	1849,587	0,042067
NIV 02	306	22188,836	0,0077	1866,959	0,034179	0,0112	1712,125	0,047434
NIV 03	306	18048,42	0,0084	1762,617	0,032124	0,012	1588,222	0,044564
NIV 04	306	13908	0,00875	1562,637	0,029086	0,0112	1406,548	0,036191
NIV 05	306	9838,506	0,0084	1308,49	0,023588	0,0112	1185,409	0,030377
NIV 06	306	6122,32	0,00805	1014,381	0,018146	0,01	559,145	0,035782
NIV 07	306	4222,36	0,0077	721,781	0,016823	0,0104	682,987	0,021011
NIV 08	306	2363,559	0,007	542,021	0,011400	0,01	527,424	0,014644
NIV 09	306	870,542	0,0063	330,609	0,00619	0,0088	367,415	0,00681
NIV 10	306	520.13	0,00525	175,92	0	0,0076	187,403	0

D'après les résultats obtenus dans le tableau IV.10, les effets P- Δ peuvent être négligés.

IV.5. Conclusion:

Nous avons opté pour la disposition des voiles qui nous a donné les meilleurs résultats visà-vis de l'interaction voiles-portiques (horizontale et verticale).

Toutes les étapes de l'étude dynamique à savoir la vérification de la période, le comportement de la structure, l'interaction voiles-portiques, l'effort normal réduit, et elles découlent toutes de la disposition des voiles.

La satisfaction de toutes les exigences de l'étude dynamique n'est pas une chose aisée pour tout type de structures, car des contraintes architecturales peuvent entravée certaines étapes.

Dans notre cas, on a pu vérifier toutes les exigences de l'étude dynamique, selon le RPA99/2003.

Introduction.

La superstructure est la partie supérieure du bâtiment, située au dessus du sol. Elle est constituée de l'ensemble des éléments de contreventement : Les portiques (poteaux – poutres) et les voiles. Ces éléments sont réalisés en béton armé. Leur rôle est d'assurer la résistance et la stabilité de la structure avant et après le séisme. Cependant ces derniers doivent être bien armés et bien disposés de telle sorte qu'ils puissent supporter et reprendre tous genre de sollicitations.

V.1. Étude des poteaux :

Les poteaux sont des éléments verticaux destinés à reprendre et transmettre les sollicitations, (efforts normaux et moments fléchissant) à la base de la structure. Leurs ferraillages se fait à la flexion composée selon les combinaisons de sollicitations les plus défavorables introduites dans le logiciel robot dans l'ordre suivant :

 $N_{max} \rightarrow M$ correspondant $M_{max} \rightarrow N$ correspondant $N_{min} \rightarrow M$ correspondant

V.1. 1. Combinaisons des charges.

En fonction du type des sollicitations, nous distinguons les différentes combinaisons suivantes :

_	Colon	RAEI	01.
•	Seinn	ВДН.	. 41 .

- E.L.U : Situation durable : 1,35 G +1,5 Q.....
 - Selon le R.P.A 99 : Situation accidentelle (article 5.2 page 40)
- G+Q+E - 0.8G±E

Chacune des trois combinaisons donne une section d'acier. La section finale choisit correspondra au maximum des trois valeurs (cas plus défavorable).

V.1. 2.Recommandations du RPA99 (version 2003) :

Les armatures longitudinales :

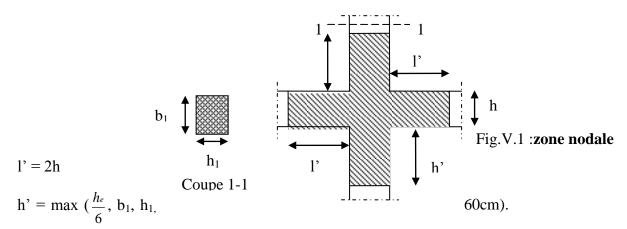
(RPA99/2003 Art7.4.2.1)

Les armatures longitudinales doivent être à haute adhérence, droites et sans crochets.

A_{min}= 0.8% de la section de béton (en zone IIa),

A_{max}= 4% de la section de béton (en zone courante),

A_{max}= 6% de la section de béton (en zone de recouvrement),


 Φ_{min} = 12mm (diamètre minimal utilisé pour les barres longitudinales)

La longueur minimale de recouvrement est de 40Φen zone IIa.

La distance ou espacement (St) entre deux barres verticales dans une face de poteau ne doit pas dépasser 25cm (zone IIa).

Les jonctions par recouvrement doivent être faites si possible, en dehors des zones nodales (zone critique).

La zone nodale est définie par l' et h' tel que :

h_e: hauteur d'étage.

Les valeurs numériques des armatures longitudinales relatives aux prescriptions du **RPA99/2003** sont illustrées dans le tableau ci-dessous :

Tableau .V.1 armatures longitudinales (minimales et maximales) relatives aux prescriptions du RPA99/2003

Niveau	Section du poteau	$A^{min}RPA(cm^2)$	A max RP.	A (cm ²)
			Zone	Zone
			courante	de
				recouvr
				ement
RCD	60×60	28,8	144	216.00
1 ^{re} +2 ^{eme} étage	55×60	26.4	132	198.00
3 ^{re} +4 ^{eme} étage	55×55	24.2	121	181.05
5 ^{re} +6 ^{eme} étage	50×55	22	110	165.00
7 ^{re} +8 ^{eme} étage	50×50	20	100	150.50
9 ^{re} +10 ^{ee} étage	45×50	18	90	135.00

Les armatures transversales :

(RPA99/2003 Article7.4.2.2)

Les armatures transversales des poteaux sont calculées à l'aide de la formulesuivante :

$$\frac{A_t}{t} = \frac{\rho \times V_u}{h_1 \times f_e}$$

 $O\dot{u}$: V_u : effort tranchant de calcul.

 h_1 ; hauteur total de la section brute.

 f_{e} : contrainte limite élastique dl'acier d'armature transversales.

t : espacement entre les armatures transversales telle que :

✓
$$t \le \min(10 \times \phi_{l_1} 15 \text{cm})$$
(zone nodale).

$$\checkmark$$
 t $\leq 15 \times \phi_l$ (zone courante).

(ϕ_l Diamètre minimum des armatures longitudinales du poteau).

ρ. Coefficient correcteur qui tient compte du mode de rupture par effort tranchant.

$$\rho = 2.5 \text{ si} \quad \lambda_g \ge 5.$$

$$φ = 3.75 \text{ si } λ_g < 5 \text{ ; } (λ_g \text{ élancement géométrique}).$$

La quantité d'armatures transversales minimales

 $\frac{A_t}{t.b_1}$ En % est donnée comme suit :

$$A_t^{\min} = 0.3\% (t \cdot b_1) \ si \lambda_g \ge 5$$

$$A_t^{\min} = 0.8\% (t \cdot b_1) \ si \lambda_g \le 3$$

si: $3 < \lambda_g < 5$ Interpoler entre les valeurs limites précédentes.

 λ_g : est l'élancement géométrique du poteau

$$\lambda_g = \left(\frac{l_f}{a} \text{ ou } \frac{l_f}{b}\right)$$

Avec a et b, dimensions de la section droite du poteau dans la direction de déformation considérée, et l_f : longueur de flambement du poteau.

Les cadres et les étriers doivent être fermés par des crochets à 135° ayant une longueur droite de $10 \Phi_t$ minimum.

V.1. 2. Sollicitations de calcul:

Les sollicitations de calcul selon les combinaisons les plus défavorables sont extraites directement du logiciel SAP 2000, les résultats sont résumés dans le tableau suivant :

Avec:

N<0: effort de traction.

N>0: effort de compression

Tableau V.2 . Sollicitations dans les poteaux

Niveau	$N_{max} \rightarrow M_{co}$	r	M_{ma}	$_{\rm x} \rightarrow N_{\rm cor}$	$N_{\min} \rightarrow M_{cor}$		
	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	
RCD	2333,185	154,3	154,3	2333,185	-522,93	53,18	
1 ^{re} +2 ^{eme} étage	2004,133	167,22	-167,2272	2004,133	-50,354	141,2382	
3 ^{re} +4 ^{eme} étage	1331,26	104,532 9	160,9	274,23	-171,72	30,3914	
5 ^{re} +6 ^{eme} étage	957,905	86,11	134,35	398,58	-47,546	-23,46	
7 ^{re} +8 ^{eme} étage	622,223	90,71	122,575	300,378	-158,277	54,395	
9 ^{re} +10 ^{ee} étage	304,428	65,31	-102,55	99,406	-32,662	36,09	

3. Calcul du ferraillage

3.1 Ferraillage longitudinal

Le calcul du ferraillage se fera pour un seul poteau comme exemple de calcul et les autres seront résumés dans un tableau.

Le ferraillage des poteaux est donné par la sollicitation la plus défavorable.

• Exemple de calcul :

• Exemple de calcul :

Soit les poteaux de RDC:

$$b = 60cm$$
; $h = 60cm$

$$f_{c28} = 25 \text{ Mpa}$$

acier Fe E400

$$f_{bu} = 14.2Mpa$$

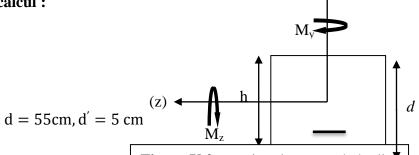


Figure V.2: section du poteau à étudier

♦
$$N^{max} = 2333, 185KN \Rightarrow M^{cor} = 154, 3KN. m$$

$$e_G = \frac{M_u}{N_u} = 0.066 \text{m} < \frac{h}{2} = \frac{0.60}{2} = 0.3 \text{cm}$$

c à l'intérieur de la section

$$A = (0.337 h - 0.81 d') .b .h.f_{bu}$$

$$B = Nu (d-d') - M_{ua}$$

Avec :
$$M_{UA} = M_U + N_U \left(d - \frac{h}{2}\right) = 737.60$$
KN. m

$$A = 0.82 \text{ KN. m}$$

$$B = 0.312 \text{ KN. m}$$

A > BDonc la section est partiellement comprimée. La méthode de calcul se fait par assimilation à la flexion simple :

Calcul de
$$\mu_{bu}$$
: $\mu_{bu} = \frac{M_U}{f_{bu} \times d^2 \times b} = \frac{737.60 \times 10^{-3}}{14.2 \times 0.55^2 \times 0.60} = 0.287 < \mu_l = 0,391 \Rightarrow A' = 0$

$$\mu_{bu} > 0,186 \Rightarrow \text{pivot B} \Rightarrow \epsilon_{st} = \frac{3,5}{1000} (\frac{1-\alpha}{\alpha})$$

$$\alpha = 1,25 (1 - \sqrt{1-2\mu_{bu}}) = 0.432 \Rightarrow f_{st} = \frac{f_e}{\gamma_s} = 348 \text{MPa}.$$

$$z = d(1-0,4\alpha) = 0.413 \text{m}.$$

$$A_{l} = \frac{M_{UA}}{z \times f_{st}} = \frac{737.60 \times 10^{-3}}{0.413 \times 348} = 51,26 \text{cm}^{2}$$

$$A_{s} = A_{l} - \frac{N}{f_{e}} = 51,26 \times 10^{-4} - \frac{2333.185 \times 10^{-3}}{400} = -7.06 \text{cm}^{2} < 0$$

$$A_{s} = 0 \text{cm}^{2}$$

♦
$$N^{min} = -522,93 \Rightarrow M^{cor} = 53,8KN. m$$

$$e_G = \frac{M_u}{N_u} = -0.102m < \frac{h}{2} = \frac{0.6}{2} = 0.3m$$

c à l'intérieur de la section

$$e1 = \frac{h}{2} - d' + eG = 0.148 \text{ m}$$

$$e2 = (d - d') - e1 = 0.352m$$

$$A1 = \frac{N_u e2}{fs10(d-d')} = 10.57 cm^2$$

A2 =
$$\frac{N_u \text{ e1}}{\text{fs10(d - d')}}$$
 = 4.44cm²

$$Amin = \frac{B \text{ ft28}}{\text{fe}} = 18.9 \text{cm}^2$$

min (A1,A2) < Amin.....on ferraille avec Amin

 $As=18.9 \text{ cm}^2$

Tableau V.3: Ferraillage des poteaux.

() aup ()	Niveau	Section	A(cm ²)	$A_{RPA}(cm^2)$	$A_{adp}(cm^2)$	Barres
-------------	--------	---------	---------------------	-----------------	-----------------	--------

RDC	60×60	18.9	28 .8	30.29	12HA16+4HA14
1 ^{re} et 2 ^{eme} étage	55×60	6.97	26.40	30.29	12H16+4H14
3 ^{eme} et 4 ^{eme} étage	55×55	4.62	26.51	28.4	8HA16+8HA14
5 ^{eme} et 6 ^{eme} étage	50×55	19.65	22	24.2	12H14+4H16
7 ^{eme} et 8 ^{eme} étage	50×50	16 .05	21.36	21.36	8HA14+8HA12
9 ^{eme} et 10 ^{eme} étage	45×50	6 .74	18	19.73	12HA12+4HA14

Ferraillage transversal:

• Exemple de calcul

On prend pour exemple de calcul du poteau (60×60) cm²:

$$\checkmark \text{ Soit : } \frac{A_t}{t} = \frac{\rho_a V_u}{h_1 \cdot f_e}$$

$$\lambda_{g} = \left(\frac{l_{f}}{a} \text{ ou } \frac{l_{f}}{b}\right) = \left(\frac{3.06}{0.60}\right) = 5.1 \Rightarrow \rho_{a} = 2.5$$

$$A_{t} = \frac{2.5 \times (120.34 \times 10^{-3}) \times 0.15}{0.6 \times 400} = 1.88 \text{cm}^{2}$$

✓ Longueur de recouvrement

$$L_r=40 \phi_{max} \rightarrow L_r=64 cm$$

✓ Espacement

-Dans la zone nodale : $t \le \min (10\phi_1, 15 \text{ cm}) = \min (16; 15) \implies t = 10 \text{cm}$

- Dans la zone courante : $t' \le 15\phi_1 = 15 \times 1.6 = 24$ cm $\implies t = 15$ cm

✓ Quantité d'armature minimale

$$\begin{array}{l} \lambda_{g} \!\! \geq 5, \!\! A_t^{min} = 0,\! 3\%(t \times b) \\ \lambda_{g} \!\! \leq \!\! 3, \!\! A_t^{min} = 0,\! 8\%(t \times b) \\ On \ a: \lambda_{g} \!\! = 5.1 > 5. \end{array}$$

On aura:

$$A_t^{min} = 0.3\%(t \times b) = 0.3\%(10 \times 60) = 1.8$$

Donc: on adopte pour **4HA10=3.16cm**²

> Résultats de ferraillage des armatures transversales

Les résultats de ferraillage des armatures transversales des différents types de poteaux sont résumés dans le tableau suivant :

Niveau	Section (cm)	on	ϕ_l^{\min} (cm)	L ₀ (cm)	λg	V _u (kN)	t zonenodal (cm)	t zone	
	В	h	()					(cm)	
RDC	60	60	1.4	306	5.1	120.34	10	15	
1 ^{re} et 2 ^{eme} étage	55	60	1.4	306	5.1	112,56	10	15	
3 ^{eme} et 4 ^{eme} étage	55	55	1.4	306	5.	56 104.7	6 10	15	
5 ^{eme} et 6 ^{eme} étage	50	55	1.4	306	5.	56 84.09	6 10	15	
7 ^{eme} et 8 ^{eme} étage	50	50	1.2	306	7.	2 79.35	4 10) 15	
9 ^{eme} et 10 ^{eme} étage	45	50	1.2	306	7.	2 54.35	4 10) 15	

Niveau	Section (cm)		ρa	$A_t^{(cm^2)}$	A_t^{min} (cm^2)	A _{tadopté} (cm ²)	Barres
	В	Н				ı	
RDC	60	60	2.50	1.88	1.8	3.16	4HA10
1 ^{re} et 2 ^{eme} étage	55	60	2.50	1.75	1.8	3.16	4HA10
3 ^{eme} et 4 ^{eme} étage	55	55	2.50	1.78	1.65	3.16	4HA10
5 ^{eme} et 6 ^{eme} étage	50	55	2.50	1.43	1.65	3.16	4HA10
7 ^{eme} et 8 ^{eme} étage	50	50	2.50	1.48	1.5	3.16	4HA10
9 ^{eme} et 10 ^{eme} étage	45	50	2.50	1.01	1.5	3.16	4HA10

Conformément au RPA et au BAEL 91, le diamètre des armatures transversales est :

$$\phi_t \ge \frac{\phi_t^{\text{max}}}{3} = \frac{16}{3} = 5.33 \Rightarrow condition \quad vérifiée$$

V.1.3Vérifications:

> vérification au flambement (effort normal ultime)

Selon le BAEL91 (art 4.4.1), les éléments soumis à la flexion composée doivent être justifiés vis-à-vis de l'état limite ultime de stabilité de forme (flambement).

L'effort normal ultime est définit comme étant l'effort axial maximal que peut supporter un poteau sans subir des instabilités par flambement.

La vérification se fait pour les poteaux les plus sollicités à chaque niveau et le plus élancé.

> Critère de la stabilité de forme :

D'après le CBA93 on doit vérifier que :

$$N_{\text{max}} < N_u = \alpha \times \left(\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_s} \right) . \tag{Article B.8.4.1}.$$

Avec:

 B_r : Section réduite du béton

 $\gamma_b = 1,5$: Coefficient de sécurité de béton (cas durable).

 $\gamma_s = 1,15$ coefficient de sécurité de l'acier.

 α : Coefficient réducteur qui est fonction de l'élancement λ .

 A_s : Section d'acier comprimée prise en compte dans le calcul.

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2} & \text{si: } \lambda \le 50 \\ \alpha = 0.6 \times \left(\frac{50}{\lambda}\right)^2 & \text{si: } 50 \le \lambda \le 70 \end{cases}$$

Niveau	section	L ₀ (cm)	l _f (cm)	i(cm)	λ	α	A_s (cm)
RDC	60×60	306	214.2	17.32	12.36	0 .830	29.91
1 ^{re} et 2 ^{eme} étage	60×55	306	214.2	15.88	13.48	0.825	24.592
3 ^{eme} et 4 ^{eme} étage	55×55	306	214.2	15.88	13.48	0.825	22.472
5 ^{eme} et 6 ^{eme} étage	55×50	306	214.2	14 .43	14.84	0.820	20.35
7 ^{eme} et 8 ^{eme} étage	50×50	306	214.2	14.43	14.84	0.82	18.432
9 ^{eme} et 10 ^{eme} étage	50×45	306	214.2	12 .99	16.49	0.814	16.512

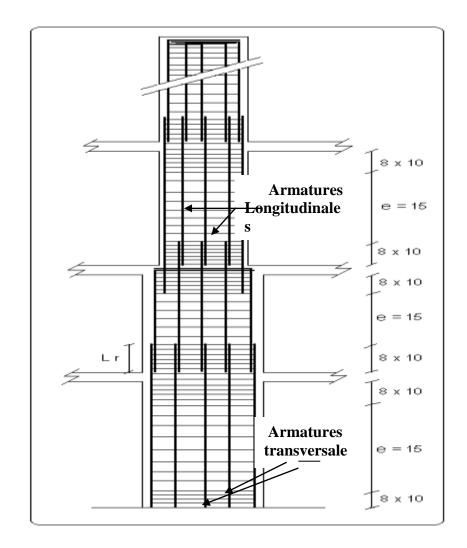
Tableau .V.4 : Justification de l'effort normale ultime et l'effort normal maximum.

Niveau	Section	B _r (cm ²)	N _u (kN)	N _{max} (KN)	1.1 N _{max} (KN)	Observation
RDC	60×60	3364	5077.74	2333.19	2566.5	Vérifier
1 ^{re} et 2 ^{eme} étage	60×55	3074	4640	2004.33	2204.76	Vérifier

3 ^{eme} et 4 ^{eme} étage	55×55	2809	4240	1331.263	1464.39	Vérifier
5 ^{eme} et 6 ^{eme} étage	55×50	2544	3840	957.905	1053.7	Vérifier
7 ^{eme} et 8 ^{eme} étage	50×50	2304	3477.74	622.223	684.44	Vérifier
0.000 0.000						
9 ^{eme} et 10 ^{eme} étage	50×45	2064	3115.47	304.428	334.87	Vérifier

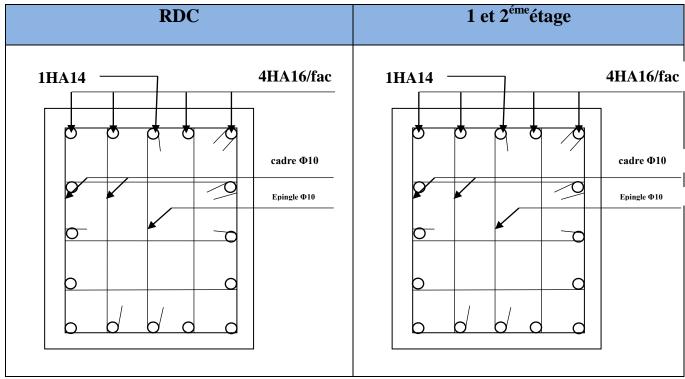
Vérification aux sollicitations tangentielles :

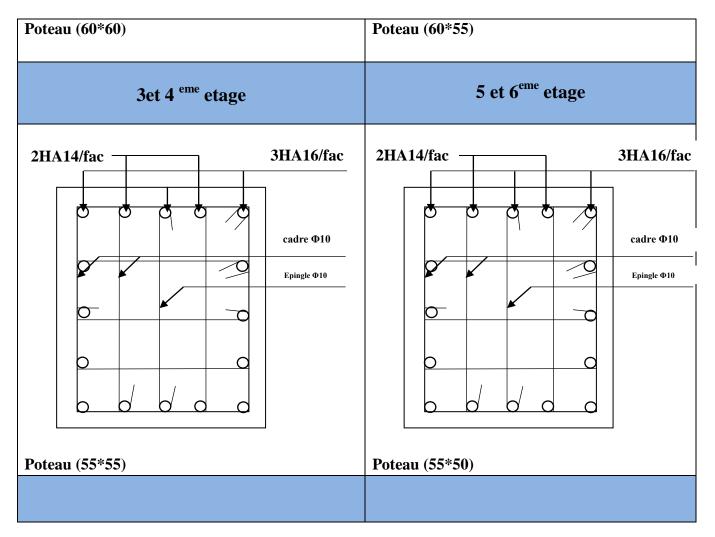
Selon le **RPA 99** (Art: 7.4.3.2):

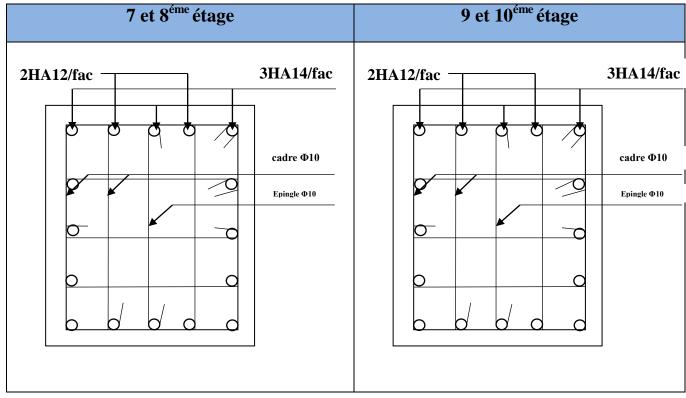

$$\tau_{bu} \leq \overline{\tau}_{bu} \text{ Tel que } : \overline{\tau}_{bu} = \rho_d \cdot f_{c28} \text{ avec } : \rho_d = \begin{cases} 0,075 \text{ si } \lambda_g \geq 5 \\ 0,04 \text{ si } \lambda_g < 5 \end{cases} \lambda_g = \frac{l_f}{a} \text{ ou } \lambda_g = \frac{l_f}{b}$$

 $\tau_{bu} = \frac{V_u}{b_0 \cdot d}$ (La contrainte de cisaillement conventionnelle de calcul dans le béton sous combinaison sismique).

Tableau .V.5 : Vérification des contraintes tangentielles

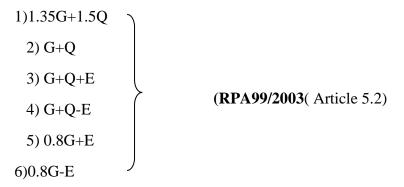

Niveau	section	λ_{g}		ρ _d	d (cm)	V	(kN)	τ (I)	MPa	τ ^{ad} (M	m Pa)	Ob	servation	
RDC	60×60	5.1	(0.075	54	12	20.34	0.	.371	1.8	7	Vé	rifier	
1 ^{re} et 2 ^{eme} étage	60×55	5.	1	0.075	49.5		112.56	5	0.413		1.87		Vérifier	
3 ^{eme} et 4 ^{eme} étage	55×55	5.	56	0.075	49.5		104.76	5	0.385		1.87		Vérifier	
5 ^{eme} et 6 ^{eme} étage	55×50	5.	56	0.075	45		84.096	5	0.377		1.87		Vérifier	
7 ^{eme} et 8 ^{eme} étage	50×50	6.	12	0.075	45		79.354	1	0.353		1.87		Vérifier	
9 ^{eme} et 10 ^{eme} étage	50×45	6.	12	0.075	40.5		54.354	1	0.298		1.87		Vérifier	


• Schémas de ferraillage



Fig

V.2.5 \$



Poteau (50*50)	Poteau (50*45)

V.2. Etude des poutres :

Les poutres sont sollicitées en flexion simple, sous un moment fléchissant et un effort tranchant. Le moment fléchissant permet la détermination des dimensions des armatures longitudinales. L'effort tranchant permet de déterminer les armatures transversales Les poutres seront étudiées en tenant compte des efforts données par le logiciel SAP2000, qui sont tiré des combinaisons les plus défavorables exigées par le RPA 99/03 qui sont:

Pour notre projet on a deux types de poutres à étudier :

- \checkmark poutres principales (30×45),
- \checkmark poutres secondaires (30×45),

V.2.1 Recommandation du RPA99/2003

V.2.1.1 Armatures longitudinales :

(RPA99-2003 Art 7.5.2.1)

- Le pourcentage total minimal des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.
- Le pourcentage total maximum des aciers longitudinaux est de :
 - -4% en zone courante
 - 6% en zone de recouvrement.
- La longueur minimale de recouvrement est de 40Φen zone IIa.
- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué à 90°.

V.2.1.2 Armatures transversales:

(RPA99/2003 Art 7.5.2.2)

La quantité d'armatures transversales minimale est donnée par : At= 0.003×St ×b

Avec:

b : largeur de la poutre.

St : espacement maximum entre les armatures transversales donné comme suit :

- $-St \le min (h/4; 12\Phi_l^{min})$ en zone nodale,
- $-St \le h/2$ en dehors de la zone nodale.

Avec : h : hauteur de la poutre

 Φ_l : valeur du plus petit diamètre des armatures longitudinales utilisé et dans le cas d'une section en travée avec armatures comprimées, c'est le diamètre le plus petit des aciers comprimés.

Les premières armatures transversales doivent être disposées à 5 cm au plus du nu de l'appui ou de l'encastrement.

V.2.1.3 Coffrage:

(RPA99-2003 Art 7.5.1)

Les poutres doivent respecter les dimensions ci-après :

```
\begin{cases} b \ge 20 \,\mathrm{cm} \\ h \ge 30 \,\mathrm{cm} \\ b_{\mathrm{max}} \le 1.5 \,h + b_1 \end{cases}
```

***** Ferraillage des poutres.

Les poutres sont ferraillées en flexion simple. Le ferraillage est obtenu sous l'effet desLes sollicitations maximales dans les poutres sont déduites de la modélisation par SAP 2000.

V.2.2. Sollicitations de calculs :

Tableau V.6: les sollicitations les plus défavorables sollicitations les plus défavorables suivant les deux sens et pour les deux situations suivantes

Niveau	Poutre principa	ale	Poutre secondaire				
	M _{travée} (KN.m)	M appui (KN.m)	V(KN)	M _{travée} (KN.m)	M appui (KN.m)	V(KN)	
Etage courant	181.865	-179.682	305.997	117.3	-119.38	116.15	
Terrasse inaccessible	92.802	-155.133	146.244	106.13	-109.95	102.6	

V.2.2.1. Ferraillage longitudinal:

Le ferraillage des poutres est déduit de la modélisation du logiciel Robot SAP 2000. Les sections adoptées doivent respecter la condition minimale d'armatures (Amin) du RPA.

Les résultats sont regroupés dans le tableau suivant :

Tableau V.7: Résultats de calculs de ferraillages des poutres

Niveau	type	localisation	Acal(cm ²)	Amin(cm ²)	Arpa(cm ²)	Aadoptée(cm ²)	N ^{bre} barres
		travée	14.68	1.63	6.75	14.82	4HA20+2HA14
	PP						

etage courant	(30*45)	appui	14.37	1.63	6.75	14.82	4HA20+2HA14
	PS	travée	8.81	1.45	6	10.30	4HA16+2HA12
	(30*40)	appui	8.98	1.45	6	10.30	4HA16+2HA12
	PP	travée	6.82	1.63	6.75	8.04	4HA16
Terrace inaccessible	(30*45)	appui	12.08	1.63	6.75	12.56	4HA16+4HA12
	PS(30*40)	travée	7.89	1.45	6	8.04	4HA16
		appui	8.2	1.45	6	8.42	4HA14+2HA12

V.2.2.2 Les armatures transversales :

Poutres principales :

$$\phi \le \min\left(\phi_l^{\min}; \frac{h}{35}; \frac{b}{10}\right)$$
 (BAEL91 Art H.III.3)

$$\phi \le \min\left(1,2;\frac{40}{35};\frac{30}{10}\right) = \min(1,2;1,14;3)$$

Donc on prend $\phi_t = 8mm \Rightarrow A_t = 4HA.8 = 2,01 cm^2$ (un cadre et un étrier)

Poutres secondaires :

$$\phi \le \min\left(\phi^{\min}_{i}; \frac{h}{35}; \frac{b}{10}\right)$$
 (BAEL91Art H.III.3)

$$\phi \le \min\left(1,2; \frac{45}{35}; \frac{30}{10}\right) = \min(1,2;1,28;3)$$

Donc on prend $\phi_t = 8mm \implies A_t = 4HA \ 8 = 2,01 \ cm^2$ (un cadre et un étrier)

V.2.2.3. Calcul des espacements des armatures transversales :

Poutres principales :

Selon le RPA99Art (7.5.2.2):

$$S_t \leq \min(\frac{h}{4}, 12 \times \phi_t^{\min}).$$

• Zone nodale:

$$S_t \le \min(11,25,14,4) = 10 \, cm$$

Soit: $S_t=10$ cm

• Zone courante:

$$S_t \le \frac{h}{2} = \frac{45}{2} = 22.5c$$

Soit : $S_t = 15cm$

Poutres secondaire

Selon le RPA99Art (7.5.2.2):

$$S_t \leq \min(\frac{h}{4}, 12 \times \phi_t^{\min}).$$

• Zone nodale:

$$S_t \le \min(8,75;14,4) = 8,75 \ cm$$

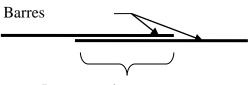
Soit: $S_t = 8.5$ cm

• Zone courante:

$$S_t \le \frac{h}{2} = \frac{35}{2} = 17,5$$
cm

Soit :
$$S_t = 15cm$$

V.2.2.4. Les longueurs de recouvrement :


D'après le RPA99 (Art 7.4.2.1)

Lr> $40 \times \phi$ en zone II

 ϕ =12mm Lr> 40×12= 48 cm on adopte Lr = 50 cm

 $\phi = 14$ mm Lr> $40 \times 14 = 56$ cm on adopte Lr = 60 cm

 ϕ =16mm Lr> 40×16= 64 cm on adopte Lr = 65 cm

Longueur de recouvrement

V.2.3. Vérification des sections armatures transversales :

✓ Poutres principales :

$$A_t^{min} = 0.003 \times S_t \times b = 0.003 \times 15 \times 30$$
 (RPA99 Art 7.5.2.2)
 $A_t^{min} = 1.35 \text{ cm}^2 < A_t = 2.01 \text{ cm}^2$

✓ Poutres secondaire :

$$\begin{array}{l} {{A_t}^{min}}{\rm{ = }}0.003{\rm{ \times }}{S_t}{\rm{ \times }}b{\rm{ = }}0.003{\rm{ \times }}15{\rm{ \times }}30\\ {{A_t}^{min}}{\rm{ = }}1.35~{cm^2}{\rm{ < }}{A_t}{\rm{ = }}2.01~{cm^2} \end{array} \tag{RPA99 Art 7.5.2.2}$$

V.2.4. Vérifications:

V.2.4.1. Vérification des contraintes tangentielles :

La vérification à faire vis-à-vis de la contrainte tangentielle maximale est celle relative à la fissuration peu nuisible suivante :

$$\tau = \frac{v}{b \times d}$$
 Tel que : $\bar{\tau} = \min(\frac{0.2}{\gamma_b} \times f_{c28}; 5MPa)$ car FPN

Tableau V.8: Vérification des contraintes tangentielles.

poutres	Vu(KN)	$\tau_{bu}(\mathbf{MPa})$	$\bar{\tau}$ (MPa)	Observation
PP	305.99	2.93	3.33	Vérifier
PS	116.5	1.05	3.33	Vérifier

V.2.4.2 Vérification des armatures longitudinales au cisaillement :

✓ Appuis de rives :
$$A_l > \frac{V_u \times \gamma_s}{f_e}$$

✓ Appuis intermédiaires :
$$A_l \ge \frac{\gamma_s}{f_e} \times (V_u - \frac{M_a}{0.9 \times d})$$

Les vérifications sont résumées dans le tableau ci-après

Tableau .9: Vérification des armatures longitudinales au cisaillement

poutres	$A_1 (cm^2)$	Vu (KN)	M _a (KN.m)	$A_l^{rive}(cm^2)$	$A_l^{int}(cm^2)$	Observation
PP	14.82	305.99	179.68	8.8	4.87	Vérifiée
PS	10.30	116.15	119.38	3.34	6.96	Vérifiée

V.2.5. Vérification à l'ELS:

V.2.5.1. Etat limite de compression du béton :

$$\frac{b}{2}y^{2} + 15A_{s}y - 15dA_{s} = 0; \qquad \sigma_{bc} = \frac{M_{ser}}{I}y; \qquad \overline{\sigma}_{bc} = 0.6f_{c28} = 15MPa$$

$$I = \frac{b \times y^{3}}{3} + 15 \times \left[A_{s} \times (d - y)^{2} + A_{s} \times (y - d')^{2}\right]$$

Tableau V.10: Vérification de l'état limite de compression

poutres	localisation	Mser(KN.m)	Y(cm)	I(cm ⁴)	σ_{bc} (MPa)	Observation
PP	appui	89.5702	18.62	186071	8.96	Observé
	travée	43.9708	17.53	166680	4.62	Observé
PS	appui	58.615	16.28	145353	6.56	Observé
	travée	44.9803	15.06	125821	5.38	Observé

Vérification des zones nodales :

Dans le but de permettre la formation des rotules plastiques dans les poutres et non dans les poteaux, le RPA99 (Art.762) exige que : $|M_N| + |M_S| \ge 1.25 \times (|M_W| + |M_E|)$

Cependant cette vérification est facultative pour les deux derniers niveaux (bâtiments Supérieurs à R+2).

a) Détermination du moment résistant dans les poteaux :

Le moment résistant (M_R) d'une section de béton dépend essentiellement

- Des dimensions de la section du béton
- De la quantité d'armatures dans la section du béton
- De la contrainte limite élastique des aciers

$$M_R = z \times A_s \times \sigma_s$$

$$avec: z = 0.9 \times h$$
 et $\sigma_s = \frac{f_s}{\gamma_s} = 348MPa$.

Les résultats obtenus sont donnés dans le tableau ci-dessous :

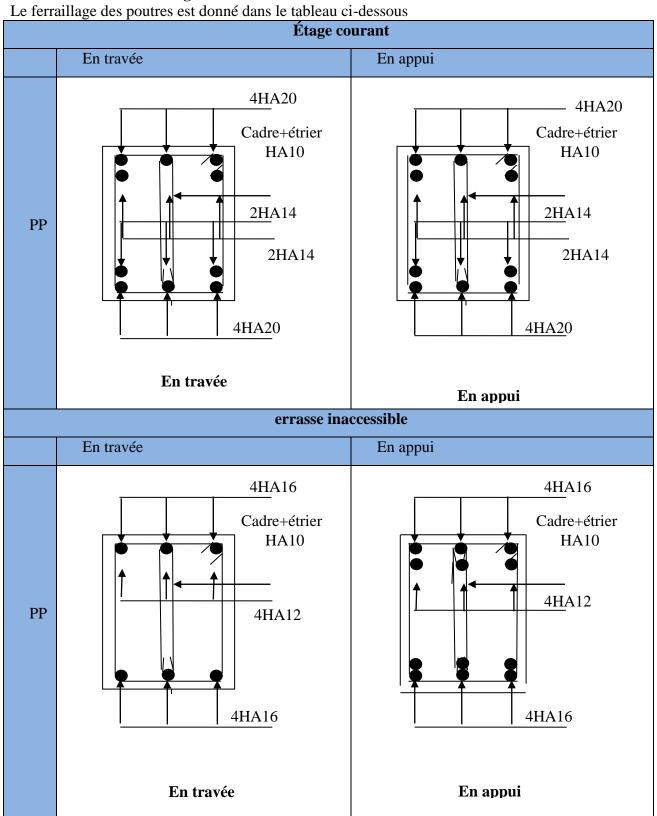
Tableau. V.11 . Moment résistant dans les poteaux

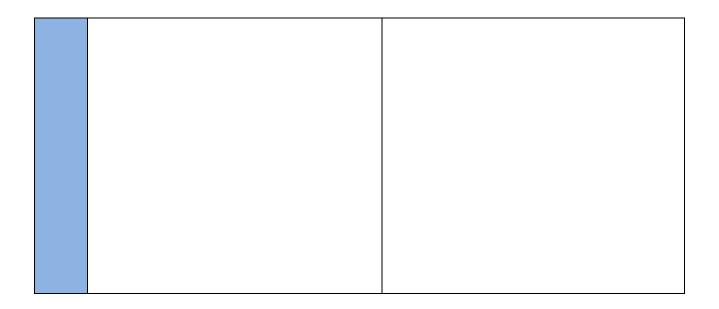
niveau	Section	z(cm)	As (cm ²)	M_R (KN.m)
RDC	60*60	54	30.29	569.20
1+2	55*60	54	28.65	538.39
3+4	55*55	50	26.51	461.27
5+6	50*55	50	22.24	386.28
7+8	50*50	45	21.36	334.49
9+10	45*50	40	19.11	266.01

b)Détermination des moments résistants dans les poutres :

Les moments résistants dans les poutres sont calculés de la même manière que dans les poteaux .

Tableau. V.12. Moment résistant dans les poutres


niveau	Type	Section	z(cm)	As(cm ²)	$M_R(KN.m)$
	PP	30*45	40	14.82	206.3
tous les étages	PS	30*40	36	1.30	129.04


Tableau. V.13. Vérification des zones nodales

niveau	Ms	M_N	M_N+M_S	$1.25(M_E + M_W)$	observation
RDC	569.20	562.20	562.20	515.72	vérifiée
1+2	569.20	538.39	1100.6	515.72	vérifiée
3+4	538.39	461.27	999.66	515.72	vérifiée

5+6	461.27	386.28	847.55	515.72	vérifiée
7+8	386.28	334.49	720.77	515.72	vérifiée
9+10	334.48	266.01	600.5	515.72	vérifiée

V.2.6 Schéma de ferraillage des Poutres

V.3. Etudes des voiles :

Introduction:

L'intensité des forces sismiques agissant sur un bâtiment lors d'un tremblement de terre est conditionnée non seulement par les caractéristiques du mouvement sismique, mais aussi par la rigidité de la structure sollicitée.

Il a été constaté que de nombreux bâtiments à voiles en béton armé ont bien résisté sans endommagements exagérés.

Mis à part leur rôle d'éléments porteurs vis-à-vis des charges verticales (au plus 20%), les voiles en béton armé correctement dimensionnés, peuvent être particulièrement efficaces pour assurer la résistance aux forces horizontales, permettant ainsi de réduire les risques.

Pour cela l'avantage que présente l'utilisation des voiles est la réduction considérable des dommages sismiques des éléments non structuraux et du bâtiment en générale, et cela grâce à leur grande rigidité vis-à-vis des forces horizontales.

Un voile est considéré comme une console encastrée à sa base, il y a deux types de voile ayant des comportements différents :

Les voiles sont sollicités à la flexion composée avec un effort tranchant,

ce qui cause les modes de rupture suivants : Voiles élancés avec : $\left(\frac{h}{l} > 1.5\right)$

✓ Voiles courts avec :
$$\left(\frac{h}{l} < 1.5\right)$$

- ✓ Flexion
- ✓ flexion par effort tranchant.
- par écrasement ou traction du béton.

Dans le but d'éviter les modes de ruptures cités ci-dessus on doit respecter les modalités suivantes :

Pour éviter les deux premiers modes de rupture, les sections des voiles doivent comporter suffisamment d'armatures verticales et horizontales.

Pour éviter le troisième mode il faut mettre des armatures transversales.

V.3.1. Recommandation du RPA99/2003 : les voiles comportent des

a. Armatures verticales:

- Les armatures verticales sont destinées à reprendre les efforts de flexion, elles sont disposées en deux nappes parallèles aux faces de voiles. Elles doivent respecter les prescriptions suivantes:
- L'effort de traction doit être pris en totalité par les armatures verticales et horizontales de la zone tendue, tel que : $Amin = 0.2\% \times lt \times e$
 - 1 : Longueur de la zone tendue.
 - e: Épaisseur du voile.
- Les barres verticales des zones extrêmes doivent être ligaturés avec des cadres horizontaux dont l'espacement : S_t<e (e: épaisseur de voile).
- A chaque extrémité du voile, l'espacement des barres doit être réduit de moitié sur 1/10de la largeur du voile.
 - Les barres du dernier niveau doivent être munies des crochets à la partie supérieure.

b. Les armatures horizontales :

Les armatures horizontales sont destinées à reprendre les efforts tranchants,

Elles doivent être disposées en deux nappes vers les extrémités des armatures verticales pour empêcher leurs flambements et munies de crochets à 135° ayant une longueur de10di.

c. Les armatures transversales :

Elles sont destinées essentiellement à retenir les barres verticales intermédiaires contre le flambement, elles sont en nombre de quatre épingles par 1m² au moins.

d. Les armatures de coutures :

Le long des joints de reprises de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule :

$$A_{yi} = 1.1 \frac{V}{U}$$
 avec: $V = 1.4Vu$

$A_{vj} = 1.1 \frac{V}{f}$ avec: V = 1.4Vue. Règles communes (armatures verticales et horizontales):

- Le pourcentage minimum d'armatures (verticales et horizontales) :

 $A_{\min} = 0.15\%b \times h \rightarrow dans \, la \, section \, globale \, de \, voile.$ $A_{\min} = 0.10\%b \times h \rightarrow dans \, la \, zone \, courant.$ En zone courante (non tendue) 0.10%.

-L'espacement :

 $S \le min (1.5e, 30cm).$

- Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles par m². Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.

- Longueurs de recouvrement :

40Ø: Pour les barres situées dans les zones où le renversement de signe des efforts et possible.

200: Pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charge.

V.3.2. Le ferraillage :

a. Les armatures verticales :

Le calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section (b×h).

La section trouvée (A) sera répartie sur toute la moitié de la section en respectant toujours les recommandations du RPA99, addenda 2003.

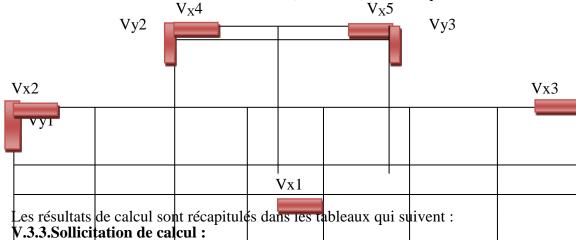
b) Les armatures horizontales :

Leurs sections sont calculées selon la formule suivante :

$$\frac{Ah}{e * Sh} \ge \frac{\tau u}{(0.8 * fe)}$$

$$\tau_{\rm u} = 1.4 V_{\rm d} / (e^* d) = 1.4 * 177.56 * 10^{-3} / (0.25 * 1.4) = 0.71 \text{ MPa}$$

Elle doit aussi respecter les conditions du RPA.


Elle doit aussi respecter les conditions du RPA.

Les résultats de ferraillages seront récapitulés dans le tableau ci après où :

Les resultats de l'étraffiages scront récapitules dans le tableau et après de A_V^{\min} / voile : Section d'armature verticale minimale dans le voile complet $(A_{\min} = 0.15\%b \cdot l)$ $A_V^{\text{calcillée}}$ / face : Section d'armature calculée pour une seule face de voile. $A_V^{\text{adoptée}}$ / section d'armature adoptée pour une seule face de voile.

 S_{l} : Espacement. $A_{h}^{l \min} /_{\text{voile}}$: Section d'armature horizontale minimale dans le voile complet $(A_{\min} = 0.15\%b \cdot l)$ $A_{h}^{\text{calculée}} /_{\text{face}}$: Section d'armature calculée. $A_{h}^{\text{doloptée}} /_{\text{ml}}$: Section d'armature adoptée pour un mètre linière. $N^{bre} /_{\text{ml}}$: Nombre de barres adopté par un mètre linière. Calcul du ferraillage du voile:

Le SAP 2000, nous donne les sollicitations (N, M et V) dans chaque voile.

Les sollicitations de calcul sont extraites directement du logiciel SAP2000, les résultats sont résumés dans les tableaux suivants : **Tableau V.14.** Sollicitations maximales de calcul dans le voile(V_{X1})

Niveau	Voile	$N^{\text{max}} \longrightarrow N$	I ^{cor}	M^{max}	N ^{cor}	N^{\min}	M ^{cor}	
		N(KN)	M(KN)	M(KN)	N(KN)	N(KN)	M(KN)	d(KN)
RDC	V1	1166.09	514.87	-	138.13	-	-561.92	177.56
				570.126		297.85		
1 ^{eme} 3 ^{eme}	V5	709.86	3.57	152.79	147.36	-	643.99	112.79
						230.23		
4 ^{eme} 6 ^{eme}	V10	457.42	64.405	64.405	457.42	-94.84	-57.33	59.757

Tableau V.15. Sollicitations maximales de calcul dans le voile(V_{VA})

Tableau V.13. Sometations maximales de calcul dans le vone (VX4)								
Niveau	Voile	N^{max}	M ^{cor}	M^{max}	N ^{cor} N	$I \xrightarrow{\min} N$	$I^{\rm cor}$ d	(KN)
		N(KN)	M(KN)	M(KN)	N(KN)	N(KN)	M(KN)	
RDC 1 ^{eme}	V	1444.33	1040.8	1040.8	1444.33	-	-938.84	233.91
	RDC1		6	6		285.64		
2 ^{eme} 5 ^{eme}	V25	1297.84	34.57	62361.	241.96	-7.38	42.54	
				65				80.53
6 ^{eme} 8 ^{eme}	V6	736.56	8.43	123.93	331.86	-148.2	-34.11	736.56
	8							
8 ^{eme} 1 0 ^{eme}		477.65	28.77	82.13	0.944	-65.83	75 .51	76.978
	V8—							
	0							

Tableau V 16 Sollicitations maximales de calcul dans le voile(V₋₂)

	Tableau v.10. Somettations maximales de calcul dans le voile($\mathbf{v}_{\sqrt{2}}$)							
Niveau		N ^{max}	M ^{cor}	M ^{max}	N ^{cor}	N ^{min}	M ^{cor}	
	voile	N(KN)	M(KN)	M(KN)	N(KN)	N(KN)	M(KN)	d(KN)
RDC et	V	1215.15	-837.11	-837.11	1215.15	-35 .77	688.44	235.8
1etage	RDC1							
2 et 3etage	V2	2283.51	487.006	1060.99	428.18	-77.67	240.86	4
	3							79.06
4 et 6 etage	V4	484.732	29.308	148.074	186.304	-	127.029	120.933
	6					94.342		

7 et 8 etage		258.58	73.64	110.17	58.175	-14.28	98.53	84.07
	V78							
9 et 10		129.731	12.827	57.11	31.95	-	49.39	73.034
etage	V9					42.793		
_	10							

Tableau V.17. Sollicitations maximales de calcul dans le voile(V_{X2})

Niveau		N^{max}	M ^{cor}	M^{max}	N ^{cor}	N ^{min}	M ^{cor}	
	voile	N(KN)	M(KN)	M(KN)	N(KN)	N(KN)	M(KN)	
								$_{\rm d}({\rm KN})$
RDC→	V	697.196	313.422	313.422	697.196	-	298.88	113.58
1 ^{er}	RDC1					178.463		
2 ^{eme}	V2	399.462	1.987	137.698	208.47	-93.977	13.096	98 .47
4 ^{eme}	3							
5 ^{eme} 6 ^{eme}	V4	250.037	57.9	85.452	97.653	-54.569	81.437	84.08
	6							

Tableau V.18. Sollicitations maximales de calcul dans le voile(V_{X3})

Niveau	Voile	N^{max}	M ^{cor}	M^{max}	N ^{cor}	N^{\min}	M ^{cor}	
		N(KN)	M(KN)	M(KN)	N(KN)	N(KN)	M(KN)	(IZNI)
								$_{\rm d}({ m KN})$
RDC1er	V	727.748	284.027	313.354	40.205	-67.556	309.38	113.95
	RDC1							
2 ^{eme}	V2	516.551	5.285	122.224	410.092	-	6.089	83.634
4 ^{eme}	3					207.272		
5 ^{eme} →6 ^{eme}	V46	344.256	69.613	69.613	344.256	-67.16	57.87	65.074

Tableau V.19. Sollicitations maximales de calcul dans le voile(V_{V1})

	Tubicua (11) Sometations maximates de calcul dans le (one(11)								
Ī	Niveau		N^{max}	M ^{cor}	M^{max}	N ^{cor}	N^{\min}	M ^{cor}	
		voile	N(KN)	M(KN)	M(KN)	N(KN)	N(KN)	M(KN)	d(KN)
	RDC1 ^{er}	V	797.336	265.839	231.106	223.763	-	231.106	90.015
		RDC1					223.763		
	2 ^{eme}	V2	504.276	11.183	105.176	159.189	-34.371	41.575	86.402
	4 ^{eme}	3							
	5 ^{eme} →6 ^{eme}	V46	285.887	11.01	464.24	76.581	-2.78	258.074	65.377

V.3.4. Calcul du Ferraillage:

V.3.4.1 Calcul du ferraillage :

On va exposer deux exemples de calcul pour le voile Vx1:

Voile Vx1:

A). Calcul sous N_{max}et M_{cor}:

a). Armatures verticales:

Le calcul des armatures verticales se fait à la flexion composée sous les sollicitations les plus défavorables (M, N) pour une section (e×l). La section trouvée (A) sera répartie sur toute la zone tendue de la section en respectant les recommandations du RPA99.

$$L = 1.4m$$
, $d = 1.35m$, $e = 0.25m$.

$$N_{max}$$
= 1166.09KN M_{cor} = 514.87KN.m.

 $e_G=M/N=0.44m$ <1 / 2= 0.7m \rightarrow le centre de pression est à l'intérieur de la section entre les armatures AA').

Il faut vérifier la condition suivante :

$$N(d-d)-MA \ge (0.337h-0.81\times d_0)$$
 b.h. f bu(I)

$$MA = M+N \times (d-\frac{h}{2}) = 514.87 + 1166.09 \times (1.35-0.7) = 1092.62 \text{KN.m}$$

$$(I) \Longrightarrow 1166.09 \times 10^{-3} \times (1.35-0.7) - 514.87 \times 10^{-3} \ge (0.337 \times 1.4 - 0.81 \times 0.05)$$

$$\times 1.4 \times 0.25 \times 14.2$$

$$(I) \implies 0.44 < 2.14$$

Donc la section est partiellement comprimée. La méthode de calcul se fait par

assimilation à la flexion simple :
$$\mu_{bu} = M_{t} / b \times d^{2} \times f_{bu} = 1092.62 \times 10^{-3} / 0.25 \times 1.35^{2} \times 14.2 = 0.168$$

$$\mu_{bu} = 0.168 < \mu_{l} \Rightarrow A' = 0$$

$$\alpha = 1.25 \left[1 - \sqrt{1 - 2\mu_{bu}} \right] \Rightarrow \alpha = 0.231$$

$$Z = d(1 - 0.4\alpha) \Rightarrow Z = 1.22m$$

$$A_{1} = M / Z * f_{bu} = 1092.62 \times 10^{-3} / 1.22 * 348 = 29.73cm^{2}$$

Calcul de la longueur de la partie tendue \boldsymbol{L}_t :

$$y=L/2$$
, $I=(e*L^{-3})/12$

$$\sigma_{max} = N/B + (M \times Y)/I = 1166.09 \times 10^{-3} / 0.36 + (514.87 \times 10^{-3} \times 0.7) / 0.057 = 0.956 MPa$$

$$\sigma_{min} = N/B - (M \times Y)/I = 1166.09 \times 10^{-3} / 0.36 - (514.87 \times 10^{-3} \times 0.7) / 0.057 = -0.308$$

MPa

Soit L_tla longueur de la partie tendue.

$$L_{t} = \sigma_{\min} \times L / \sigma_{\max} + \sigma_{\min} = 0.34m$$

 $A_{min(ZT)} = 0.2\% \times e \times L_t = 0.2\% \times 25 \times 34 = 1.7 \text{cm}^2$. (A_{min} en zone tendue par le RPA). b). Armatures horizontales:

Leur section est calculée selon la formule suivante :

$$\begin{split} \frac{A_h}{e \times S_h} &> \frac{\tau_u}{0.8 f_e} \quad tel \ que : \\ \tau_u &= \frac{1.4 V}{e \times d} \\ \tau_u &= \frac{1.4 \times 177.56 \times 10^{-3}}{0.25 \times 1.35} = 0.736 MPa \end{split}$$

Soit :S_h= 20cm \longrightarrow A_h>1.15 cm²

Tableau. V.20. sollicitation de calcul dans le voile (V_{x1}) dans tous les niveaux

Niveau	RDC et 1 ^{er} étage	2 ^{éme} ,3 ^{éme} et 4 ^{éme} étage	5 ^{éme} ,6 ^{éme} étage
Section (m ²)	1.4*0.2	1.4*0.2	1.4*0.2
M(KN)	514.87	3.57	64.404
N(KN)	1166.09	709.86	457.42
Section	Partiellement Comprimée	entièrement comprimée	entièrement comprimée
V (KN)	177.56	112.79	59.79

$\bar{\tau}$ (MPa)	0.736	0.621	0.829
$\bar{\tau} = 0.2 f_{c28} (MPa)$	5	5	5
A_{v}^{cal} (cm2)	29.979	17.938	14.886
A_{ν}^{min} (cm ²)	4.2	4.2	7.443
A_{ν}^{adop} (cm ²)	30.6	19.72	17.46
N ^{bre} /par face	18HA16	12HA12+4HA1 4	10HA12+4HA14
S _t (cm)	10	10	10
A_h^{cal} (cm ²)	1.23	0.78	0.41
A_h^{\min} (cm ²)	0.60	0.78	0.27
A_h^{adop} (cm ²)	1.57	1.01	1.01
N ^{bre} /par plan	2HA10	2HA8	2HA8
S _t (cm)	20	20	20

 $\textbf{Tableau. V.21.} \ sollicitation \ de \ calcul \ dans \ le \ voile \ (V_{x2}) \ dans \ tous \ les \ niveaux$

Niveau	RDC et 1 ^{er} étage	e et 4 ^{éme} étage	5 ^{eme} ,6 ^{eme} étage
Section (m ²)	1.2*0.2	1.2*0.2	1.2*0.2
M(KN)	313.422	1.987	57.9
N(KN)	697.196	399.462	250.037
section	Partiellement Comprimée	entièrement comprimée	entièrement comprimée
V (KN)	113.058	98.747	84.08
τ(MPa)	0.733	0.64	0.829
$\tau = 0.2 f_{c28} (MPa)$	5	5	5
A_{ν}^{cal} (cm2)	15.738	10.11	4.32
A_{ν}^{\min} (cm ²)	3.6	5.055	3.6

A_{ν}^{adop} (cm ²)	15.82	11.3	9.04
N ^{bre} /par face	14HA12	10HA1 2	8HA12
S _t (cm)	10	10	10
A_h^{cal} (cm ²)	0.92	0.8	0.68
A_h^{\min} (cm ²)	0.60	0.27	0.6
A_h^{adop} (cm ²)	1.01	1.01	1.01
N ^{bre} /par plan	2HA8	2HA8	2HA8
S _t (cm)	20	20	20

Tableau. V.22. sollicitation de calcul dans le voile (V_{Y1}) dans tous les niveaux

Niveau	RDC et 1 ^{er} étage	2 ^{éme} ,3 ^{éme} et 4 ^{éme} étage	5 ^{éme} ,6 ^{éme} étage	
Section (m ²)	1.2*0.2	1.2*0.2	1.2*0.2	
M(KN)	284 ,027	5,285	69,613	
N(KN)	727,748	516,551	344,256	
section	Partiellement Comprimée	entièrement comprimée	entièrement comprimée	
V (KN)	113,951	83,634	65,74	
τ(MPa)	0.739	0.542	0.422	
$\bar{\tau} = 0.2 f_{c28}(MPa)$	5	5	5	
A_{ν}^{cal} (cm2)	15.386	13.24	5.71	
A_{ν}^{\min} (cm ²)	3.6	4.2	3.6	
A_{ν}^{adop} (cm ²)	15.39	13.56	11.3	

N ^{bre} /par face	10HA14	12HA12	10HA12
S _t (cm)	10	10	10
A_h^{cal} (cm ²)	0.6	0.68	0.53
A_h^{\min} (cm ²)	0.92	0.27	0.6
A_h^{adop} (cm ²)	1.01	1.01	1.01
N ^{bre} /par plan	2HA8	2HA8	2HA8
S _t (cm)	15	20	20

Tableau. V.23. sollicitation de calcul dans le voile (VX4) dans tous les niveaux

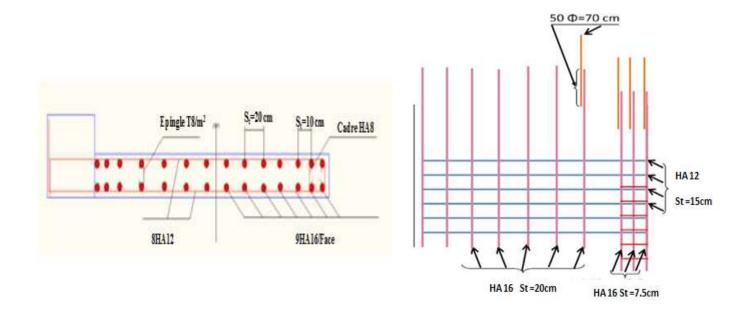
Niveau	RDC et 1 ^{er} étage	2 ^{éme} ,3 ^é me et 4 ^{éme} étage	5 ^{éme} ,6 ^{éme} ét 7etage	8 ^{éme} ,9et 10 ^{éme} étage
Section (m ²)	1.2*0.2	1.2*0.2	1.2*0.2	1.2*0.2
M(KN)	1040.86	34.57	8.43	28.77
N(KN)	1444.33	1297.8 4	736.56	477.65
section	Partielle ment	entière ment	entièrem ent	entièrem ent
	Comprimée	comprimée	comprimée	comprimée
V (KN)	233.91	83,634	736.56	76.978
τ(MPa)	0.91	0.702	0.422	2.994
$\bar{\tau} = 0.2 f_{c28} (MPa)$	5	5	5	5
$A_{_{_{V}}}^{cal}$ (cm2)	31.39	33.42	18.73	13.022

A_{ν}^{min} (cm ²)	6	4.2	9.37	6.5
A_{ν}^{adop} (cm ²)	33.62	33.62	11.3	13.56
N ^{bre} /par face	12HA14+6HA16	12HA14+6HA1 6	12HA12+4HA14	12HA12
S _t (cm)	10	10	10	10
A_h^{cal} (cm ²)	1.14	0.88	0.75	0.74
A_h^{\min} (cm ²)	0.6	0.27	0.27	0.27
A_h^{adop} (cm ²)	1.57	1.01	1.01	1.01
N ^{bre} /par plan	2HA10	2НА8	2HA8	2НА8
S _t (cm)	20	20	20	20

Tableau. V.24. sollicitation de calcul dans le voile (V_{Y1}) dans tous les niveaux

Niveau	RDC et 1 ^{er} étage	2 ^{éme} ,3 ^{éme} et 4 ^{éme} étage	5 ^{éme} ,6 ^{éme} etage
Section (m ²)	1.1*0.2	1.1*0.2	1.1*0.2
M(KN)	265.8393	11.18	11.01
N(KN)	797.336	504.27 6	285.887
section	Partiellement Comprimée	entièrement comprimée	entièrement comprimée
V (KN)	90.015	86.402	65.377
τ(MPa)	0.583	0.702	0.56
$\bar{\tau} = 0.2f_{c28}(MPa)$	5	5	5

A_{ν}^{cal} (cm2)	15.76	13.306	7.837
$A_{\nu}^{ m min}$ (cm ²)	3.6	6.65	3.918
$A_{_{\scriptscriptstyle V}}^{adop}~(\mathrm{cm}^2)$	15.82	15.4	9.04
N ^{bre} /par face	14HA14	10HA1 4	8HA12
S _t (cm)	10	10	10
A_h^{cal} (cm ²)	0.73	0.7	0.53
A_h^{\min} (cm ²)	0.6	0.27	0.27
A_h^{adop} (cm ²)	1.01	1.01	1.01
N ^{bre} /par plan	2НА8	2HA8	2НА8
S _t (cm)	20	20	20


Tableau. V.25. sollicitation de calcul dans le voile (V_{Y1}) dans tous les niveaux

Section (m ²)	1.6*0.2	1.6*0.2	1.3*0.2	1*0.2	0.7*0.2
M(KN)	837.11	75.531	29.3083	73.04	12.827
N(KN)	1215.1 5	1111.6 16	484.732	258.58	129.731
section	Partiellement comprimée	entièrement comprimée	entièrement comprimée	partiellement comprimée	entièrement comprimée
V (KN)	235.8	244.18	120.933	84.07	73.034
τ(MPa)	0.91	1.187	0.724	0.654	0.811

$ \begin{array}{c} \overline{\tau} \\ = 0.2 f_{c28} (MPa) \end{array} $	5	5	5	5	5
A_{ν}^{cal} (cm2)	29.048	31.33	13.809	5.215	4.618
A_{ν}^{\min} (cm ²)	4.8	4.8	6.905	3	2.309
A_v^{adop} (cm ²)	34.75	34.75	15.4	9.04	9.04
N ^{bre} /par face	20HA14+5HA1 0	20HA14+5HA1 0	10HA14	8HA12	8HA12
(cm) S _t	10	10	10	10	10
A_h^{cal} (cm ²)	1.43	9.18	9.18	0.82	1.01
A_h^{\min} (cm ²)	0.6	0.9	0.9	0.6	0.27
A_h^{adop} (cm ²)	1.53	1.01	1.01	1.01	1.01
N ^{bre} /par plan	2HA10	2HA10	2НА8	2HA8	2HA8
S _t (cm)	20	20	20	20	20

V.3.6 Schéma de ferraillage :

Pour le schéma de ferraillage, on fera celui du RDC (V_{x1}) comme exemple

CONCLUSION:

Au terme de ce chapitre nous avons étudiées les différents éléments principaux, le ferraillage de ces derniers doit impérativement répondre aux exigences du RPA 99 modifié2003 et du BAEL. Outre la résistance, l'économie est un facteur très important qu'on peut concrétiser en jouant sur le choix de la section du béton et de l'acier dans les éléments résistants de l'ouvrage, tout en respectant les sections minimales requises par le règlement en vigueur.

VI.1: Introduction

L'infrastructure est l'ensemble des éléments, qui ont pour objectif de supporter les charges de la superstructure et les transmettre au sol, C'est une partie essentielle de l'ouvrage, puisque de sa bonne conception et réalisation, dépend de la bonne tenue de l'ensemble.

Et cela de façon à limiter les tassements différentiels et assurer une bonne répartition des charges transmises par la superstructure sur le sol d'assise.

VI.2 : Choix du type des fondations

Le choix du type des fondations dépend essentiellement, des facteurs suivants :

- -La capacité portante du sol.
- -Les Charges transmises au sol.
- -La distance entre axes des poteaux.
- -La profondeur du bon sol.

Pour le choix du type de fondation, on vérifie dans l'ordre suivant : les semelles isolées, les semelles filantes et le radier général et enfin on opte pour le choix qui convient.

-Selon le rapport du sol, la contrainte admissible est 1.3 bars à une profondeur de 1.5 m.

VI.3. Combinaison d'action à considérer :

D'après le RPA99/v2003 (article10.1.4.1) les fondations superficielles sont dimensionnées selon les combinaisons d'actions suivantes :

- \checkmark $G+0\mp E$.
- \checkmark 0.8 $G \mp E$.

Ainsi que les combinaisons citées par le **BAEL91** :

- ✓ 1.35G+1.5Q.
- ✓ G+O.

VI.4. Etude des fondations :

VI.4.1. Vérification des semelles isolées

Les poteaux de notre structure sont carrés à la base de section $(a \times a)$ d'où les semelles sont carrées $(A \times A)$.

La vérification à faire est : $\frac{N}{S} \le \frac{-}{\sigma_{sol}}$

N $_{\text{max}}$: L'effort normal agissant sur la semelle calculé selon la combinaison 1,35G+1,5Q,

Obtenue par le logiciel SAP2000/V14.2.2

Soit: N: L'effort normal agissant sur la semelle. Tel que:

$$N = N_{max} + P_s + Pa$$

 N_{max} : Effort normal à la base de poteau.

 P_s = Poids de la semelle estimé à 30.13 KN.

Pa = poids propre de l'avant poteau ; Pa = 9 KN.

$$N_{max} = 2319.165 \text{ KN}$$

$$N = 2319.165 + 30.13 + 9 = 2358.295$$
 KN

 σ_{sol} : Contrainte admissible du sol; $\sigma_{sol} = 1.3$ bar

S : Surface d'appui de la semelle.

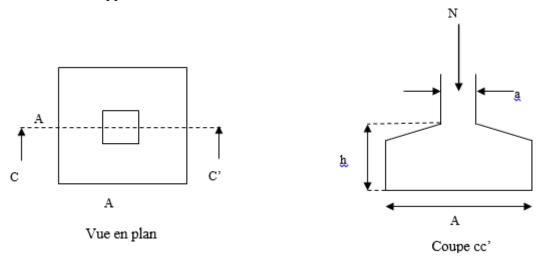


Figure VI. 1: Schéma d'une semelle isolée.

$$A^2 \ge \frac{N}{\sigma_{sol}}$$
; $B \ge \sqrt{\frac{N}{\sigma_{sol}}} = \sqrt{\frac{2358.295}{130}} = 4.26m$

D'après le résultat on remarque qu'il y aura chevauchement entres les semelles, et vu les distances entre axes des poteaux, le choix des semelles isolées dans ce cas est à exclure.

V.4.2. Vérification des semelles filantes

Nous allons faire le calcul de la semelle sous un portique formé de poteaux comme suit :

$$\overline{\sigma}_{sol} \ge \frac{N}{S} = \frac{N}{B \times L} \Longrightarrow B \ge \frac{N}{\overline{\sigma}_{sol} \times L}$$
;

Avec:

B : Largeur de la semelle.

L : Longueur de la semelle.

$$N = N1 + N2 + N3 \Rightarrow N = 6.8217MN$$

N1=2319.165KN N2=2195.284 KN N3=2307.334KN

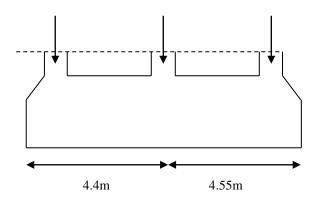


Fig VI.2 : Schéma d'une semelle filante

Le Portique le plus sollicité:

$$N_s = 3 \times 9 = 27 \text{ KN}.$$

$$\sum N_i = 6.8217MN$$

$$N = N_s + \sum N_i = 6848.783 \, KN$$

L = 8.95m

 $\text{La v\'erification \`a faire est}: \stackrel{-}{\sigma}_{sol} \geq \frac{N}{S} = \frac{N}{B \times L} \Longrightarrow B \geq \frac{N}{\overline{\sigma}_{sol} \times L}$

$$B \ge \frac{N}{\sigma_{sol} \times L} = \frac{6.848783}{0.13 \times 8.95} = 5.88m$$

Remarque

Vu la distance existante entre les axes de deux portiques parallèles, on constate qu'il y a un chevauchement entre les deux semelles, se choix ne convient pas.

VI.4.3. Vérification du radier général

Soit la surface de l'ensemble des semelles :

$$S_{cal} = \frac{N}{\sigma_{sol}} = \frac{38.904833}{0.13} = 299.27 \, m^2$$

$$S_{bat} = 312.02 \, m^2 > S_{CAL} = 299.27 \, m^2$$
 il na y a pas de débord

P: le poids propre de radier, P=25*0.40*312.02=3120.2 KN

VI.5: la dalle du radier:

Le radier sera calculé comme une dalle pleine renversée, appuyé sur les nervures vers le haut en flexion simple, sachant que la fissuration est préjudiciable. Le calcul se fera pour le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier de dimension $l_x = m$ et $l_y = m$

$$G_0 = \rho \times e = 25 \times = KN/m^2$$

A - Dimensionnement :

La condition de coffrage :

ht: hauteur des nervures.

hr : hauteur de la dalle.

 L_{max} : la plus grande portée entre deux éléments porteurs successifs. ($L_{max} = 5.55m$)

✓ Nervure :

$$h_t \ge \frac{L_{\text{max}}}{10}$$

h≥55.5cm soit: $h_t = 60cm$.

✓ La dalle :

$$h_r \ge \frac{L_{\text{max}}}{20}$$

 $h_r \ge 27.75 \ cm \ {\rm Soit} : h_r = 30 cm$

> Vérification de condition de rigidité :

$$L_{\max} \leq \frac{\pi}{2} \times L_e$$

 L_e : est la longueur élastique, qui permet de déterminer la nature du radier (rigide ou flexible).

$$L_e \ge \sqrt[4]{\frac{4 \times E \times I}{K \times h}}$$

E : Module d'élasticité du béton, $E = 3.216 \times 10^7 \text{ KN/m}^2$.

I : Inertie de la section du radier.

K : Coefficient de raideur du sol, pour un sol moyen $K=4\times10^4$ KN/m^3

b : La largueur de l'élément considéré (radier) de 1ml.

:
$$On \quad a: I = \frac{b \times h_t}{12} \Rightarrow h_t \ge \sqrt[3]{\frac{48 \times L_{\text{max}}^4 \times K}{\pi^4 \times E}} = 83.46 \text{ cm}$$

> Condition de cisaillement :

$$\tau_u = \frac{V_d}{b \times d} \le \frac{0.07}{\gamma_b}.f_{c28}$$

$$V_d = \frac{N_d \times L_{\text{max}}}{2 \times S_{rad}} \times 1m$$

 N_d = Effort normal de calcul issu de la combinaison la plus défavorable.

$$V_d = \frac{38904.833 \times 5.55}{2 \times 312.02} \times 1 = 346.01 \text{KN}....(I)$$

De (I)
$$\Rightarrow$$
 $d \ge \frac{V_d \times \gamma_b}{0.07 \times b \times f_{c28}} = 0.296 \text{ m}$

A partir de ces trois conditions on opte pour :

 $-\mathbf{h_t} = \mathbf{85cm}$ pour les nervures du radier.

 $-\mathbf{h_r} = 40$ cm pour la dalle du radier.

La surface du radier : $S_{rad} = 312.02 \text{ m}^2$.

B- Vérifications nécessaires :

a) Vérification au poinçonnement :

D'après le CBA93 (article, A.5.2.4.2), on doit vérifier la condition suivante.

$$N_u \le Q_u = 0.045 \times \mu_c \times h \times \frac{f_{c28}}{\gamma_h}$$

 N_u :Effort normal de calcul,

 μ_c : Périmètre du contour cisaillé projeté sur le plan moyen du radier.

h : Hauteur de radier.

Cette vérification se fera pour le poteau le plus sollicité.

$$\mu_c = (A+B)\times 2$$

Tel que :
$$\begin{cases} A = a + h = 0.6 + 0.85 \\ B = b + h = 0.6 + 0.85 \end{cases} \Rightarrow \mu_c = 5.8m$$

$$N_u = 2319.165 \text{KN} \le Q_u = 0.045 \times 5.8 \times 0.85 \times \frac{25}{1.5} \times 10^3 = 3697.5 \text{ KN } \dots \text{ } v\'{e}rif\'{e}e.$$

b) Vérification des contraintes dans le sol :

Il faut vérifier que :

$$\sigma_{\text{moy}} = \frac{3\sigma_1 + \sigma_2}{4} \le \bar{\sigma}$$

D'après le programme **SOCOTEC** on a les caractéristiques suivantes :

$$I_X = 11590 \text{m}^4$$
, $X_G = 11.85 \text{m}$.

$$I_Y=13651m^4$$
, $Y_G=8.23m$.

$$M_X = 36498.346 \, KN. \, m; M_y = 39785.596 \, KN. \, m$$

 $N=N_S+P_{rad}=42025.033KN$

• Sens xx :

$$\begin{split} \sigma_{x} &= \frac{N}{S_{rad}} \pm \frac{M_{x}.Y_{G}}{I_{x}} \\ \sigma_{1} &= \frac{42.025033}{312.02} + \frac{36.497346 \times 8.23}{11590} = 0.132 MPa \\ \sigma_{2} &= \frac{42.025033}{312.02} - \frac{36.497346 \times 8.23}{11590} = 0.099 MPa \end{split}$$

.
$$\sigma_{mov} = 0.124MPa \le \sigma_{sol} = 0.13MPa$$

• Sens y-y:

$$\begin{split} &\sigma_{y} = \frac{N}{S_{rad}} \pm \frac{M_{y}.X_{g}}{I_{y}} \;. \\ &\sigma_{1} = \frac{42.025033}{312.02} + \frac{39.785596 \times 11.85}{13651} = 0.143 MPa \\ &\sigma_{2} = \frac{42.025033}{312.02} - \frac{39.785596 \times 11.85}{13651} = 0.089 MPa \end{split}$$

$$\sigma_{mov} = 0.129MPa \le \sigma_{sol} = 0.13MPa$$

Donc la contrainte est vérifiée selon les deux sens.

c) Vérification de la stabilité au renversement :

Selon le **RPA99**, on doit vérifier que : $e = \frac{M}{N} \le \frac{B}{4}$

• **Dans le sens X-X** :
$$e = \frac{36498.346}{42025.033} \Rightarrow e = 0.86m < \frac{23.7}{4} = 5.925m ... Vérifiée$$

• **Dans le sens Y-Y:**
$$e = \frac{39785.596}{42025.033} \Rightarrow e = 0.946m < \frac{18.45}{4} = 4.612m$$
 Vérifiée

d) Vérification de la poussée hydrostatique :

On doit vérifier que : $N_u \ge P = f_s \times H \times S \times \gamma_w$

Avec:

 $f_s = 1.15$ Coefficient de sécurité.

H = 1.5m Hauteur encrée du bâtiment

 $S = 312.02m^2$, surface du radier.

 $\gamma_w = 10KN/m^3$, Poids volumique de l'eau.

 $N = 53249.145KN \ge P = 1.15 \times 1.5 \times 312.02 \times 10 = 5382.345KN \dots \dots verifiée$

• Ferraillage du radier :

On calcule le panneau le plus défavorable et on adoptera le même ferraillage pour les autres panneaux du radier.

a) Calcul des sollicitations :

> A l'ELU

$$Lx = 3.95m$$
, $Ly = 4.95m$

$$\rho = \frac{L_x}{L_y} \Rightarrow \rho = \frac{3.95}{4.95} = 0.8 > 0.4$$

- Calcul des sollicitations :

$$q_u = \frac{N_u}{S_{totals}}$$

Avec : Nu : est l'effort normal ramené par la superstructure.

$$N_u = N_{u,cal} + N_{rad} = 53249.145 + 3120.2 = 56369.345 \text{ KN}$$

$$q_u = \frac{56369.345}{312.02} = 180.66KN / ml$$

$$\rho = \frac{L_x}{L_y} = 0.80 \Rightarrow ELU : \begin{cases} \mu_x = 0.0561 \\ \mu_y = 0.5959 \end{cases}$$
 Annexe II]

$$M_x = \mu_x \times q_u \times l_x^2 \Longrightarrow M_x = 0.0561 \times 180.66 \times 4.45^2 = 200.69 \text{KN.m}$$

$$M_y = \mu_y \times M_x \implies M_y = 0.5959 \times 200.69 = 119.59 \text{ KN.m}$$

Moment en travées :
$$\begin{cases} M_{tx} = 0.75 M_x = 150.51 KN. m \\ M_{ty} = 0.75 M_y = 89.69 KN. m \end{cases}$$

Moment en appuis : $M_{ax} = M_{ay} = 0.5 M_x = 100.345 KN. m$

• schéma de rupture de la dalle du radier

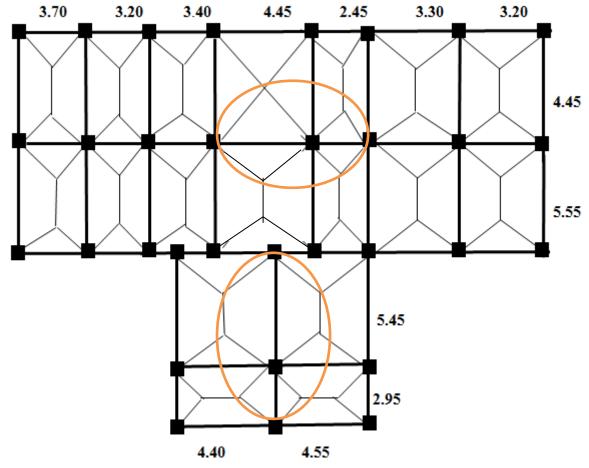


Fig VI. 3 : Schéma de rupture de la dalle de radier

- a) calcul de ferraillage:
- b) Le ferraillage se fait pour une section $b \times h = (1 \times 0.4) \text{ m}^2$, les résultats de calcul sont résumés dans le tableau suivant :

Tableau VI. 1: Section des armatures du radier.

Locali	sation	M _t (KN.m)	A _{calculée} (cm ² /m)	A _{min} (cm ² /m)	A _{adoptée} (cm²/m)	St (cm)
Travée	х-х	150.51	12.95	3.52	7HA16=14.07 cm ²	15
	у-у	89.69	7.56	3.2	7HA14=10.78 cm ²	15
Ap	pui	100.345	8.48	4.22	7HA14=10.78 cm ²	15

- Condition de non fragilité :

Pour une dalle d'épaisseur e>12cm et $\rho \ge 0.4$ la valeur minimale des armatures est :

En travée:

$$A_{\text{x min}} = \rho_0 \times \frac{3-\rho}{2} \times hr$$

$$A_{\text{ymin}} = \rho_0 \times b \times hr$$

$$A_{\text{ymin}} = 3.52 \text{cm}^2$$

$$A_{\text{ymin}} = 3.2 \text{cm}^2$$

Avec $\rho_0 = 0.0008 \rightarrow pour \ les \ HA \ et \ FE 400$

En appui :
$$A_{xmin} = A_{ymin} = 0.23 \times b \times d \times \frac{f_{t28}}{f_e} = 4.22 \text{cm}^2$$

- Espacement des armatures

$$\begin{cases} sens \ x: S_t = 15cm \le min(2h; 25cm) = 25cm \\ sensy: S_t = 15cm \le min(2h; 33cm) = 33cm \end{cases}$$

Soit:

Sens x-x : $S_t = 15$ cm.

Sens y-y: $S_t = 15$ cm.

> Vérification :

> A l'ELU:

• Vérification au cisaillement

$$\tau_u = \frac{V_u}{b \times d} \le \frac{0.07 f_{c28}}{\gamma_b} = 1.06 MPa$$

Sens x-x

$$V_{x} = \frac{q_{u} \times L_{x}}{2} \times \frac{L_{y}^{4}}{L_{x}^{4} + L_{y}^{4}} = 284.41KN$$

$$\tau_u = \frac{V_u}{b \times d} = \frac{284.41 \times 10^{-3}}{1 \times 0.35} = 0.81 MPa < 1.06 MPa$$

Sens v-v

$$V_{y} = \frac{q_{u} \times L_{y}}{2} \times \frac{L_{x}^{4}}{L_{x}^{4} + L_{y}^{4}} = 146.61KN$$

$$\tau_u = \frac{V_u}{b \times d} = \frac{146.61 \times 10^{-3}}{1 \times 0.35} = 0.42 MPa < 1.25 MPa$$

La condition est vérifiée, donc il n'y a pas risque de cisaillement.

Al'ELS:

$$\rho = \frac{L_x}{L_y} = 0.68 \Rightarrow ELS : \begin{cases} \mu_x = 0.0628 \\ \mu_y = 0.7111 \end{cases}$$

$$q_{s} = \frac{42025.033}{312.02} = 134.68KN / ml$$

$$M_{x} = \mu_{x} \times q_{u} \times l_{x}^{2} \Rightarrow M_{x} = 0.0628 \times 134.68 \times 4.45^{2} = 167.48KN.m$$

$$M_{y} = \mu_{y} \times M_{x} \Rightarrow M_{y} = 0.7111 \times 167.48 = 119.09KN.m$$

- Moment en travée : $\begin{cases} M_{tx} = 0.75 Mx = 125.61 KN. m \\ M_{ty} = 0.75 My = 89.32 KN. m \end{cases}$
- Moment en appui : $M_{ax} = M_{ay} = 0.5 M_x = 83.74 KN. m$
- Etat limite de compression du béton :

En travée:

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPa.}$$

$$\frac{b \times y^2}{2} + 15 \times A \times y - 15 \times A \times d = 0$$

$$I = b \frac{y^3}{3} + 15A(d - y)^2.$$

Calcul de y:
$$\frac{b}{2}y^2 + 15A_s y - 15A_s d = 0$$

$$50y^2 + 15 \times 14.07 \times y - 15 \times 14.07 \times 35 = 0$$
 $y = 10.22$ cm

Calcul de I: $I = \frac{by^3}{3} + 15A(d - y)^2 \Rightarrow I = 165177cm^4$

Calcul de σ_{bc} $\sigma_{bc} = \frac{M_{ser}}{I} y$

 $\sigma_{bc} = (125.61 \times 10^{\text{--}3} \times 0.1022) / \ (165177 \times 10^{\text{--}8}) = 7.77 MPa < 15 MPa Condition v\'erifi\'ee.$

• Les contraintes dans l'acier :

La fissuration est préjudiciable donc la contrainte de traction des armatures est limitée, c'est le cas des éléments exposés aux intempéries.

Fissuration nuisible
$$\Rightarrow \overline{\sigma_s} = \min \left[\frac{2}{3} \times fe ; 110 \sqrt{\eta f_{t28}} \right] = 201.63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y).$$

Les résultats de calcul des contraintes sont résumés dans le tableau ci-dessous :

Tableau VI. 2: Vérification des contraintes dans le béton et dans l'acier.

Localisa	ation	M _{ser} (KN. m)	A (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma}_b$ (MPa)	σ _s (MPa)	$\frac{\overline{\sigma}_{s}}{\sigma_{s}}$ (MPa)	Observation
Travée	Xx	125.61	14.07	10.22	165177	7.77	15	282.60	201.63	vérifié
	Yy	89.32	10.78	9.14	133586.92	6.11	15	259.33	201.63	vérifié
App	ui	83.74	10.78	9.14	133586.92	4.07	15	243.12	201.63	vérifié

On remarque que la condition $\sigma_s \prec \overline{\sigma}_s$ n'est pas vérifiée. Donc il faut recalculer la section d'acier tendu As en admettant que ces armatures travaillent au maximum possible, c'est-à-dire a la contrainte limite de service $\overline{\sigma}_s$.

La méthode de calcul à suivre et celle de (BAEL E.III.3.a)

$$\lambda = 1 + \frac{30 \times M_{S}}{b \times d^{2} \times \overline{\sigma}_{s}}; \quad \cos \varphi = \lambda^{\frac{-3}{2}}; \quad \alpha = 1 + 2 \times \sqrt{\lambda} \times \cos(240^{0} + \frac{\varphi}{3})$$

$$\sigma_{bc} = \frac{\overline{\sigma}_{s}}{n} \times \frac{\alpha}{1 - \alpha} < 0.6 f_{C28}; \quad A_{S} = \frac{\alpha \times b \times d \times \sigma_{bc}}{2 \times \overline{\sigma}_{s}}.$$

Tableau VI. 3: résumé des résultats de ferraillage à l'ELS du radier.

		M (KN)	λ	φ(°)	α	$\sigma_{bc}_{(MPa)}$	A _{cal} (cm ²)	A_{\min} (cm ²)	A (cm²/ml) adopté	S _t (cm ₎
Travée	XX	125.61	1.15	35.81	0.335	6.77	19.68	3.52	7HA20 = 21.98	15
	уу	89.32	1.11	31.23	0.293	5.57	14.16	3.2	7HA20 = 21.98	15
Appu	i	83.74	1.10	29.91	0.281	5.25	15.26	4.22	7HA20 = 21.98	15

Les résultats des vérifications des contraintes à l'ELS sont résumés dans le tableau suivant :

Tableau VI. 4: Vérification des contraintes du radier

Loca	lisation	M _{ser} (KN.m)	A (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\overline{\sigma}_b$ (MPa)	σ _s (MPa)	σ_s (MPa)	Observation
travé	e Xx	125.61	21.98	12.24	231915.9	6.63	15	184.85	201.63	Vérifié

	Yy	89.32	21.98	12.24	231915.9	4.71	15	131.44	201.63	Vérifié
App	ui	83.74	21.98	12.24	231915.9	4.42	15	123.23	201.63	Vérifié

Espacement des barres

Sens xx $S_t = 15$ cm $\leq \min(2h; 25) = 25$ cmvérifié.

Sensy-y:

$$S_t = 15 \text{cm} \le \min(2h; 25) = 25 \text{cm}$$
 vérifié.

Schéma de ferraillage

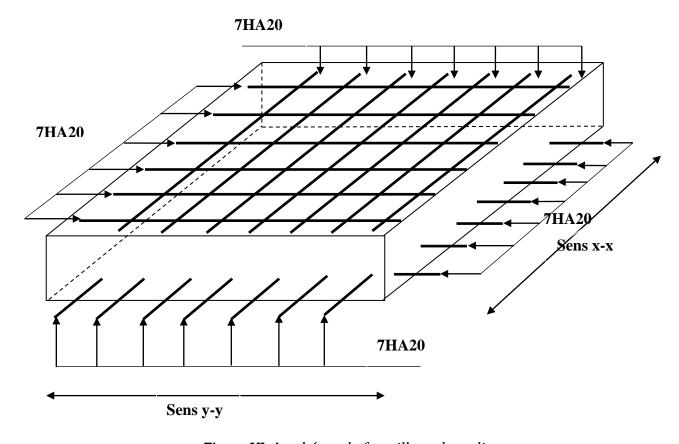


Figure VI. 4: schéma de ferraillage du radier.

VI.6: Etude des nervures

a. Définition

Les nervures servent d'appuis au radier, la répartition des charges sur chaque travée est selon les lignes de ruptures trapézoïdales ou triangulaires, pour simplifier les calculs on les remplace par des charges équivalentes uniformément réparties.

b. Les sollicitations sur les nervures

La répartition des charges sur chaque travée est triangulaire ou trapézoïdale (selon les lignes de rupture). Mais pour la simplification des calculs, on les remplace par des charges équivalentes uniformément reparties. Le calcul des sollicitations se fait par la méthode de Caquot. On à $\rho = 0.89 > 0.4 \Rightarrow$ la transmission des charges sera subdivisée en deux charges (trapézoïdales et triangulaires).

- Les charges triangulaires : $P_v = p_m = \frac{Q_u}{2} \times \frac{\sum l_{xi}^2}{\sum l_{xi}}$ avec p est la charge équivalente produisant le même moment que la charge triangulaire
- Les charges trapézoïdales : $P_m = \frac{Q_u}{2} \left[\left(1 \frac{\rho_g^2}{3} \right) \times L_{xg} + \left(1 \frac{\rho_d^2}{3} \right) \times L_{xd} \right]$, avec p est la charge équivalente produisant le même moment que la charge trapézoïdale.
- $q_u = 180.66KN/m^2$
- $qs = 134.68KN/m^2$
- Moments aux appuis $M_a = -\frac{P_g \times l_g^{'3} + P_d \times l_d^{'3}}{8.5 \times (l_g^{'} + l_d^{'})}$; avec :

Les longueurs fictives : $l' = \begin{cases} l & \text{Si c'est une travée de rive} \\ 0.8 \times l & \text{Si c'est une travée intermédiaire} \end{cases}$

Pour l'appui de rive, on a : $M_a = 0.15 \times M_0$ avec $M_0 = \frac{q \times l^2}{8}$

• Moment en travée

$$M_{t}(x) = M_{0}(x) + M_{g}(1 - \frac{x}{l}) + M_{d}(\frac{x}{l})$$
; $M_{0}(x) = \frac{q \times x}{2}(1 - x)$; $x = \frac{l}{2} - \frac{M_{g} - M_{d}}{q \times l}$

 M_{g} et $M_{\text{d}}\!:$ moments sur appuis de gauche et droite respectivement.

Sens X-X:

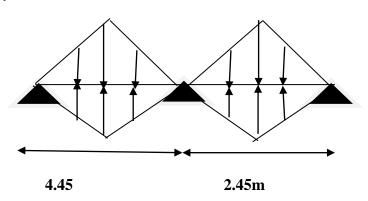


Figure VI. 5: Charges transmises aux nervures principales du radier.

Sens Y-Y:

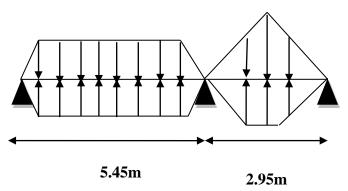


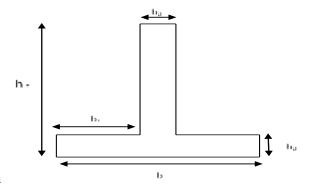
Figure VI. 6: Charges transmises aux nervures transversales du radier.

• Sens longitudinal X-X

Tableau VI. 5: Sollicitations de la nervure principale.

Travée	$l_x(m)$ $l'_x(m)$		P	M _a (I	KN.m)	x (m)	$\mathbf{M_t}$
	I _X (III)	I X (III)	(KN/m)	$M_{\rm g}$ $M_{\rm d}$		A (M)	(KN.m)
A-B	4.45	4.45	535.958	-199	-899.261	1.94	809.334
В-С	2.45	2.45	295.078	-899.261	-33.21	2.395	-32.768

• Sens transversal Y-Y


Tableau VI. 6: Sollicitations de la nervure transversale.

Travée	$ l_x(m) l'_x(m) $		P	M _a (KN/m)		x (m)	$\mathbf{M_t}$
	-x ()	1 X (111)	(KN/m)	\mathbf{M}_{g}	$\mathbf{M}_{\mathbf{d}}$	12 (111)	1 .1
A-B	5.45	5.45	693.788	-386.386	-1782.096	2.356	1538.94
В-С	2.95	2.95	581.59	-1782.096	-94.899	2.458	-24.61

a. Le Ferraillage

Le ferraillage se fera pour une section en

(Té) en flexion simple.

 $b_0 = 0.60$ (largeur de poteau), d = 0.80m

$$b_1 \le \min(\frac{l_y}{10}; \frac{l_x}{2}) \Rightarrow b_1 \le \min(\frac{5,55}{10}; \frac{4.45}{2})$$

 $b_1 \le \min(0.555; 2.22)$

 $soit: b_1 = 0.555 m$

Figure VI. 7: Section à ferrailler.

Donc: $b=2b_1+b_0=2\times55.5+60=171$ cm.

Le moment équilibré par la table :

$$M_{tu} = f_{bu} * b * h_0 (d - \frac{h_0}{2}) = 14.2 * 1.71 * 0.40 * (0.80 - \frac{0.40}{2}) = 5827.68 \text{ KN.m.}$$

L'axe neutre passe par la table de compression: calcul d'une section rectangulaire (b_0*h) Le ferraillage des nervures adopté pour le cas le plus défavorable dans les deux sens ;

Tableau VI. 7: Résumé des résultats du ferraillage.

localisation	Sens	M _u (KN.m)	A _{cal} (cm ²)	A _{min} RPA (cm ²)	A _{adopté} (cm ²)
X-X	Travée	809.334	29.88	15.26	6HA16+6HA20=30.9
12 12	Appui	899.261	33.31	6.28	12HA20=37.68
у-у	Travée	1538.94	58.36	16.90	12HA25=58.92
	Appui	1782.096	68.22	6.28	10HA32=80.4

Remarque

Pour le ferraillage de la nervure on prend le ferraillage le plus défavorable dans les deux sens (x-x,) et (y-y) et on ferraille avec ce résultats toutes les autres trames.

c. Vérification à l'ELU

Vérification de l'effort tranchant

$$V_{u} = \frac{q \times l}{2} + \frac{M_{g} + M_{d}}{l}$$

$$\tau_u = \frac{V_u}{b \times d} \le \bar{\tau} = \min(0.1 f_{c28}; 3 \text{ MPa}) = 2.5 \text{ MPa}$$

Les résultats sont présentés dans le tableau ci-dessous :

Tableau VI. 8: Vérification de l'effort tranchant.

Sens	Vu (KN)	$ au_{bu}(\mathbf{MPA})$	$\overline{\tau_{bu}}$ (MPA)	Observation
Sens X-X	1345.374	0.98	2.5	Vérifiée
Sens Y-Y	1634.482	1.19	2.5	Vérifiée

d. Vérification A l'ELS

• État limite de compression du béton :

$$\sigma_{bc} = \frac{M_{ser} \times y}{I} \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 \text{ MPA}$$

• Les contraintes dans l'acier :

La fissuration est préjudiciable donc La contrainte de traction des armatures est limitée, c'est le cas des éléments exposés aux intempéries.

Fissuration nuisible
$$\Rightarrow \overline{\sigma_s} = \min \left[\frac{2}{3} \times fe ; 110 \sqrt{\eta f_{t28}} \right] = 201.63 MPa.$$

$$\sigma_s = \frac{15 \times M_{ser}}{I} \times (d - y)$$

Les résultats sont récapitulés dans le tableau suivant :

Tableau VI. 9: Vérification des contraintes.

Localisation	Sens	M (KN.m)	Y (cm)	I (cm ⁴)	σ_{bc} (MPa)	σ_{bc} (Mpa)	σ_s (MPa)	$\frac{\overline{\sigma}_{s}}{(\mathbf{Mpa})}$
X-X	Travée	603.348	18.29	2113816.9	5.22	15	264.21	201.63
	Appui	655.478	19.92	2490699.2	5.24	15	237.14	201.63
y-y	Travée	1139.53	24.05	3559552.8	7.69	15	268.67	201.63
	Appui	1346.37	27.27	4509152.8	8.14	15	236.16	201.63

On remarque que $\sigma_{bc} \prec \overline{\sigma}_{bc}$ et que la condition $\sigma_s \prec \overline{\sigma}_s$ n'est pas vérifiée. Donc il faut recalculer la section d'acier tendu As en admettant que ces armatures travaillent au maximum possible, c'est-à-dire a la contrainte limite de service $\overline{\sigma}_s$.

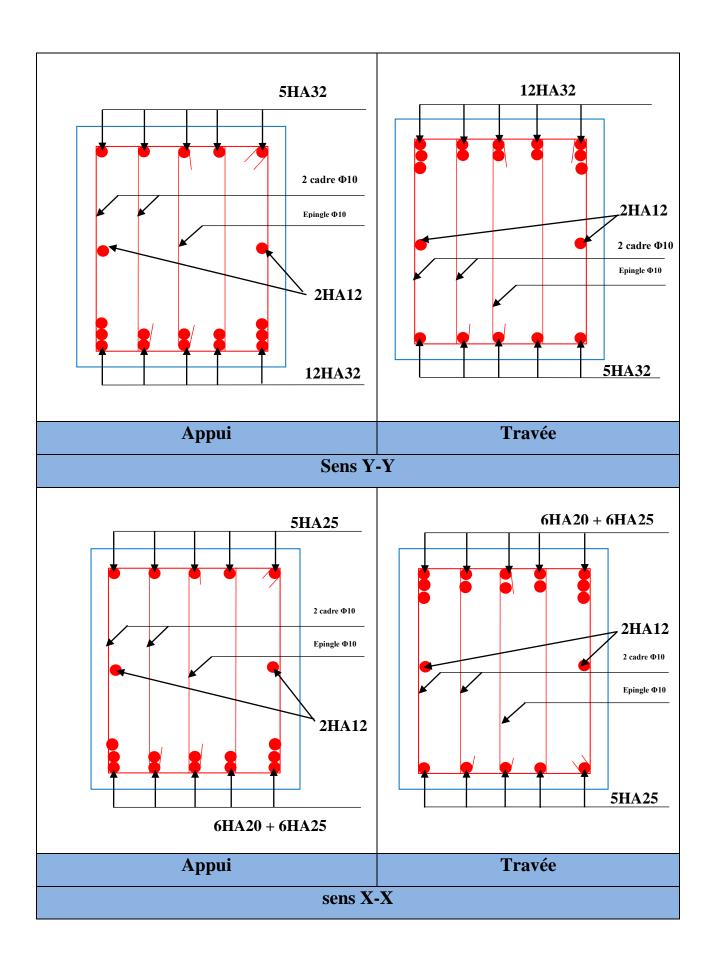
Tableau VI. 10: résumé des résultats de ferraillage à l'ELS de la nervure

		M (KN)	λ	φ(°)	α	$\sigma_{bc} \ _{(MPa)}$	A _{cal} (cm²)	A (cm²/ml) adopté
Sens	travée	603.348	1.08	27	0.255	4.6	39.79	6HA20+6HA25=48.3
X-X	appuis	655.478	1.09	28.51	0.268	4.92	44.73	6HA20+6HA25=48.3
Sens Y-Y	travée	1139.53	1.15	35.82	0.335	6.77	76.93	12HA32=96.48
	appuis	1346.37	1.18	38.72	0.361	5.59	68.45	12HA32=96.48

Tableau VI. 11: vérification des contraintes à l'ELS de la nervure

Sens	Moments	Valeurs	y (cm)	I (cm ⁴)	$\sigma_{\!\scriptscriptstyle bc}$	$\sigma_{\scriptscriptstyle S}$	Observation
		(KN.m)			MPA	MPA	
X-X	M _t	603.348	2214	3044063.2	4.39	172.01	Vérifiée
	Ma	655.478	2214	3044063.2	4.77	186.88	Vérifiée
у-у	M _t	1139.53	2929	5153777.2	6.48	168.16	Vérifiée
	Ma	1346.37	2929	5153777.2	7.65	198.69	Vérifiée

• Armatures transversales


Soit 5HA10=3,39 cm² (cadre entourant les barre des angles plus un petit cadre pour ceux des milieux +épingle)

$$S_t \le \min(\frac{h}{4}; 12; \varphi_{l\min}) \Rightarrow S_t = \min(21.25; 12; 20) = 12cm \text{ Soit } S_t = 10cm.$$

• Espacement des aciers transversaux

On prend St=10cm en zone nodale et 15cm en zone courante.

• Schémas de ferraillage des nervures :

VI.4.Conclusion:

L'étude de l'infrastructure constitue une étape importante dans le calcul d'ouvrage ainsi le choix de la fondation dépend de plusieurs paramètres liés à la caractéristique du sol en place ainsi que des caractéristiques géométriques de la structure.

Vue à l'importance du poids de notre structure et à la capacité portance de (1.3 bars), et pour éviter le chevauchement des semelles isolées et les semelles filantes, on a opté pour un radier nervuré, car il offre une grande rigidité, et une facilité d'exécution.

Conclusion générale

Le travail effectué dans le cadre de notre projet de fin de cycle consiste à l'étude d'un Bâtiment R+10, cet ouvrage est réalisé avec le matériau couple (acier- béton).

L'étude de cet ouvrage nous a permis, d'une part d'acquérir des nouvelles connaissances concernant le domaine du bâtiment et d'approfondir nos connaissances déjà acquises durant notre cursus sur la conception et le calcul des différentes structures conformément à la réglementation en vigueur.

Par ailleurs, cette étude nous a conduits à dégager un certain nombre de conclusions dont la plus importantes sont :

- ↓ La modélisation doit être aussi proche que possible de la réalité, afin d'approcher le comportement réel de la structure et obtenir de meilleures résultats.
- il faut choisir une bonne disposition des voiles afin d'avoir une bonne répartition des charges entre les éléments de contreventement de la structure (Interaction) et limiter les effets de la torsion.
- ♣ Ce travail nous a permis d'acquérir des connaissances nouvelles sur les méthodes de calcul et d'études des structures ; ainsi que l'importance de l'outil informatique (sap2000 ; SOCOTEC, AutoCAD...)
- de l'étude de sol et ses caractéristiques qui permettent de calculer les éléments de l'infrastructure et de choisir le type de fondation qui convient afin d'assurer la stabilité de la structure et sa résistance. Ce qui nous a amenée a choisir un radier renversé qui est caractérisé par sa bonne résistance et sa facilité de la mise en œuvre.
- La repense d'un bâtiment dépend essentiellement de la nature du sol, de l'intensité des forces sismiques agissant sur un bâtiment lors d'un tremblement de terre, de la nature du sol, la rigidité, la masse et la souplesse de la structure.
- La vérification des moments résistants au niveau des nœuds, nous a permis de vérifier que les rotules plastiques se forment dans les poutres plutôt que dans les poteaux.

- → Dans l'étude des éléments porteurs, on a constaté que les poteaux sont ferraillés avec le minimum du RPA99addenda2003, et que ce dernier favorise la sécurité devant l'économie.
- Le critère le plus prépondérant dans le choix de l'épaisseur des dalles pleines est le critère du coupe-feu.
- ♣ Afin de limiter les dommages en cas de séisme, ou l'effondrement de la structure, avec des fondations adaptées qui respectent les mesures de préventions et recommandations.

Enfin, l'utilisation du SAP2000Version14.2.2 dans notre étude nous a permis de faire un calcul tridimensionnel et dynamique, dans le but de faciliter les calculs, et d'avoir une meilleure approche de réalité et un gain de temps très important dans l'analyse de la structure.