#### République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia





#### Faculté de Technologie Département d'**Hydraulique**

Laboratoire de Recherche en Hydraulique Appliquée et Environnement (LRHAE)

#### MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

M<sup>r</sup> BENREDOUANE Nassim

Mr BENZAID Yasser

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: HYDRAULIQUE URBAINE

#### **INTITULE:**

Conception et dimensionnement d'un réseau d'Alimentation en Eau Potable et d'un réseau d'Assainissement des Eaux Usées de la région d'Ali MESBAH Commune d'ElHarrouch (W.SKIKDA)

Soutenu le 28 /06 /2015 Devant le jury composé de : à 13h

- Président : M<sup>r</sup> BRAKNI. A

- Promoteur (s): **M**<sup>r</sup> **HAMCHAOUI.S** 

M<sup>r</sup> BENZERRA.A

- Examinateur (s): M<sup>r</sup> MERAH. F

Année Universitaire: 2014/2015

#### **Dédicaces**

#### Je dédie ce modeste travail :

- A mes très chers parents qui m'ont beaucoup aidé durant tout mon cursus.
- A mes frères et mes soeurs.
- A toute la famille BENREDOUANE.
- A tous mes proches.
- A tous mes amis.
- A mon collègue de travail BENZAID et sa famille.

B.Nassim.

#### **Dédicaces**

#### Je dédie ce modeste travail:

- A mes très chers parents qui m'ont beaucoup aidé durant tout mon cursus.
- A mes frères et mes sœurs.
- A toute la famille BENZAID.
- A tous mes proches.
- A tous mes amis.
- A mon collègue de travail BENREDOUANE et sa famille.

B. Yasser.

#### REMERCIEMENTS

Avant tout propos, nous remercions « Dieu » le tout puissant qui nous a donné sagesse et santé pour faire ce modeste travail.

Nous témoignons notre profonde gratitude à notre promoteur monsieur HAMCHAOUI ainsi qu'un très grand remerciement à notre Co-promoteur monsieur BENZERRA pour leur soutien, leur disponibilité et leurs conseils tout au long de la réalisation de ce projet.

Nous remercions tous les membres de jury qui nous feront l'honneur de juger ce travail.

Nos remerciements les plus sincères à l'ensemble des enseignants du département d'hydraulique qui ont contribué à notre formation.

Yasser/Nassim

# Liste des Tableaux et figures

#### Liste des Figures

| Liste des Figures                                                                   | Pages |
|-------------------------------------------------------------------------------------|-------|
| Partie I: Alimentation en Eau Potable                                               |       |
| Figure I.1 Présentation de la zone concernée sur la carte de la wilaya de SKIKDA    | 02    |
| Figure I.2 Diagramme en bâton de la température moyenne annuelle de la zone d'étude | 04    |
| Figure I.3 Présentation graphique du pluviomètre annuelle                           | 04    |
| Figure I.4 Présentation graphique de la population à l'horizon                      | 06    |
| Figure II.1 Consommation maximum horaire                                            | 17    |
| Figure II.2 Courbe intégrale                                                        | 17    |
| Figure III.1 Equipements de réservoir                                               | 23    |
| Figure V.1 Différent type des turbo-pompe                                           | 30    |
| Figure V.2 Constitution d'une pompe centrifuge                                      | 31    |
| Figure V.3 Courbes caractéristique d'une pompe                                      | 31    |
| Figure V.4 Courbe de point de fonctionnement                                        | 35    |
| Figure VI.1 Schéma de réseau maillé                                                 | 37    |
| Figure VI.2 Schéma de réseau ramifié                                                | 38    |
| Figure VI.3 Schéma de réseau mixte                                                  | 38    |
| Figure VI.4 Etat des arcs après la simulation                                       | 48    |
| Figure VI.5 Etat des nœuds après la simulation                                      | 49    |
| Partie II : Assainissement des Eaux Usées                                           |       |
| Figure I.1 Schéma d'un système unitaire                                             | 52    |
| Figure I.2 Schéma d'un système séparatif                                            | 52    |
| Figure I.3 Schéma d'un système pseudo-séparatif                                     | 53    |
| Figure III.1 Schéma d'un bassin de décantation                                      | 69    |

| Liste Des Tableaux                                                                  | Pages |
|-------------------------------------------------------------------------------------|-------|
| Partie I : Alimentation en Eau potable                                              |       |
| Tableau I.1 Evaluation de la population                                             | 05    |
| Tableau I.2 Les équipements existants et projetés                                   | 06    |
| Tableau II.1 Consommation domestique                                                | 10    |
| Tableau II.2 Consommation sanitaires                                                | 10    |
| Tableau II.3 Consommation scolaire                                                  | 10    |
| Tableau II.4 Consommation commerciaux et publique                                   | 11    |
| Tableau II.5 Consommation socioculturels et sportifs                                | 11    |
| Tableau II.6 Consommation moyenne journalière majoré                                | 12    |
| Tableau II.7 Consommation maximale journalière et minimale journalière              | 13    |
| Tableau II.8 Variation du coefficient $\beta$ max en fonction du nombre d'habitants | 14    |
| Tableau II.9 Variation du coefficient $\beta$ min en fonction du nombre d'habitants | 14    |
| Tableau II.10 Répartition des débits horaires en fonction du nombre d'habitants     | 15    |
| Tableau II.11 Détermination le débit maximum horaire                                | 16    |
| Tableau III.1 Détermination de la capacité du réservoir                             | 19    |
| Tableau IV.1 Calcul de la Hmt (point de piquage-réservoir)                          | 28    |
| Tableau IV.2 Calcul les frais d'exploitation (point de piquage-réservoir)           | 29    |
| Tableau IV.3 Calcul les frais d'amortissement (point de piquage-réservoir)          | 29    |
| Tableau IV.4 Calcul du bilan (point de piquage-réservoir)                           | 29    |
| Tableau VI.1 Détermination de débit spécifique                                      | 41    |
| Tableau VI.2 Débit de tronçon avec les diamètres d'avantage                         | 42    |
| Tableau VI.3 Résultat des arcs après la simulation                                  | 45    |
| Tableau VI.4 Résultat des nœuds après la simulation                                 | 46    |
| Tableau VI.5 Les résultats obtenus dans la partie distribution                      | 50    |
| Partie II : Assainissement des Eaux Usées                                           |       |
| Tableau II.1 débit moyen actuel et débit de point de chaque sous bassin             | 60    |
| Tableau II.2 Débit moyen futur et débit de point de chaque sous bassin              | 60    |
| Tableau II.3 Débit unitaire de chaque sous bassin                                   | 61    |
| Tableau II.4 Le nombre de réservoir de chasse des sous bassin                       | 66    |
| Tableau III.1 Evaluation de la vitesse de chute                                     | 70    |
| Tableau III.2 Dimensionnement des bassins de décantation                            | 71    |

# Liste des Annexe et Planches

#### Liste des annexes

Annexe N°01 Caractéristique de la pompe

Annexe N°02 Mode de Calcul des Pentes

Annexe N°03 Evaluation des débits des eaux usées pour le sous bassin A et B

Annexe N°04 Vérification des trois conditions l'auto curage pour le sous bassin A et B

#### Liste des planches

Planche N°01 Profil en long d'Adduction

Planche N°02 Schéma du réseau des eaux usées

Planche N°03 Profil en long du réseau d'assainissement d'eau usée

## Sommaire

#### Sommaire

| Sommaire                                                                         | Pages  |
|----------------------------------------------------------------------------------|--------|
| Introduction générale                                                            | 01     |
| Parti I : Alimentation en eau potable                                            |        |
| Chapitre I : Présentation de site                                                | 02     |
| Introduction                                                                     | 02     |
| I.1/Situation géographique                                                       | 02     |
| I.2/Situation topographique                                                      | 02     |
| I.3/Situation géotechnique                                                       | 03     |
| I.3.1/Géologie                                                                   | 03     |
| I.3.2/Les séismes                                                                | 03     |
| I.4/Situation climatique                                                         | 03     |
| I.4.1/La température                                                             | 03     |
| I.4.2/Pluviométrie                                                               | 04     |
| I.5/Evolution de la population                                                   | 05     |
| I.5.1/La Situation démographique                                                 | 05     |
| I.5.2/Evaluation de la population                                                | 05     |
| I.6/Mode d'occupation de sol                                                     | 06     |
| I.6.1/Les équipements existants et projetés                                      | 06     |
| I.7/Ressources en eau                                                            | 06     |
| Conclusion                                                                       | 07     |
| Chapitre II : Estimation des besoins                                             | 08     |
| Introduction                                                                     | 08     |
| II.1/Estimation des besoins                                                      | 08     |
| II.1.1/Choix de la norme unitaire de la consommation                             | 08     |
| II.1.2/La dotation                                                               | 08     |
| II.2/Catégories des besoins                                                      | 08     |
| II.3/Consommation moyenne journalière                                            | 09     |
| II.4/Calcul la consommation moyenne journalière pour chaque groupe de consommati | ion 10 |
| II.4.1/Besoins domestiques                                                       | 10     |
| II.4.2/Besoins des équipements actuellement                                      | 10     |
| II.5/Majoration de la consommation moyenne journalière                           | 11     |
| II.6/Etude des variations de la consommation                                     | 12     |
| II.6.1/Variation de la consommation journalière                                  | 12     |

|                                                                             | Sommaii |
|-----------------------------------------------------------------------------|---------|
| II.6.2/Variation de la consommation horaire                                 | 13      |
| II.7/Evaluation de la consommation horaire en fonction du nombre d'habitant | 15      |
| Conclusion                                                                  | 17      |
| Chapitre III : Réservoir                                                    | 18      |
| Introduction                                                                | 18      |
| III.1/Classification des réservoirs                                         | 18      |
| III.2/Rôle des réservoirs                                                   | 18      |
| III.3/Emplacement du réservoir                                              | 18      |
| III.4/Détermination de la capacité                                          | 18      |
| III.5/Dimensionnement du réservoir                                          | 20      |
| III.6/Equipements des réservoirs                                            | 20      |
| Conclusion                                                                  | 22      |
| Chapitre IV : Adduction                                                     | 23      |
| Introduction                                                                | 23      |
| IV.1/Choix du tracé                                                         | 24      |
| IV.2/Choix du type de tuyaux                                                | 24      |
| IV.3/Etude technico-économique                                              | 24      |
| IV.4/Calcul du diamètre économique de l'adduction                           | 28      |
| IV.4.1/Calcul de la HMT                                                     | 28      |
| IV.4.2/Les frais d'exploitation                                             | 28      |
| IV.4.3/Les frais d'amortissement                                            | 29      |
| IV.4.4/Le bilan                                                             | 29      |
| Conclusion                                                                  | 29      |
| Chapitre V : Les pompes                                                     | 30      |
| Introduction                                                                | 30      |
| V.1/Classification des pompes                                               | 30      |
| V.2/Courbes caractéristiques d'une pompe centrifuge                         | 31      |
| V.3/Puissance absorbée                                                      | 32      |
| V.4/Hauteur manométrique totale (HMT)                                       | 32      |
| V.5/Point de fonctionnement                                                 | 32      |
| V.6/Recherche du point de fonctionnement                                    | 33      |
| V.6.1/Première variante : réduction ou augmentation du temps de pompage     | 33      |
| V.6.2/Deuxième variante : variation de vitesse de rotation                  | 33      |

|                                                                 | Somman |
|-----------------------------------------------------------------|--------|
| V.6.3/Troisième variante : le vannage                           | 33     |
| V.6.4/Quatrième variante : Rognage de la roue                   | 34     |
| V.7/Choix de pompe                                              | 34     |
| V.7.1/Caractéristique du tronçon                                | 34     |
| V.7.2/Caractéristique de la pompe                               | 34     |
| V.8/Réalisation de point de fonctionnement                      | 35     |
| Conclusion                                                      | 36     |
| Chapitre VI : Distribution                                      | 37     |
| Introduction                                                    | 37     |
| VI.1/Différents types des réseaux d'alimentation en eau potable | 37     |
| VI.1.1/Les réseaux maillés                                      | 37     |
| VI.1.2/Réseau ramifié                                           | 37     |
| VI.1.3/Réseau mixte                                             | 38     |
| VI.2/Choix du type de matériaux                                 | 38     |
| VI.3/Equipement du réseau de distribution                       | 39     |
| VI.3.1/Appareils et accessoires du réseau                       | 39     |
| VI.3.2/Pièces spéciales de raccord                              | 40     |
| VI.4/Conception du réseau de distribution                       | 40     |
| VI.5/Principe de tracé d'un réseau ramifié                      | 40     |
| VI.6/Calcul hydraulique de réseau ramifié                       | 40     |
| VI.7/Modélisation et simulation du réseau                       | 43     |
| VI.8/Simulation du réseau                                       | 44     |
| Conclusion                                                      | 50     |
| Parti II: assainissement                                        |        |
| Chapitre I : Généralités sur les réseaux d'assainissement       | 51     |
| Introduction                                                    | 51     |
| I.1/Origine et nature des eaux usées                            | 51     |
| I.1.1/Les eaux usées d'origine domestique                       | 51     |
| I.1.2/Eaux usées d'origine industrielle                         | 51     |
| I.2/Définition des différents systèmes                          | 51     |
| I.2.1/Système unitaire                                          | 51     |
| I.2.2/Système séparatif                                         | 52     |
| I.2.3/Système pseudo-séparatif                                  | 53     |

|                                                                | Sommaire |
|----------------------------------------------------------------|----------|
| I.3/Choix de type de réseaux                                   | 53       |
| I.4/Les éléments constitutifs d'un réseau d'assainissement     | 53       |
| I.4.1/Les ouvrages principaux                                  | 53       |
| I.4.1.1/Types de canalisations                                 | 53       |
| I.4.1.2/Les joints                                             | 55       |
| I.4.2/Les ouvrages annexes                                     | 55       |
| I.5/Rôle des regards                                           | 56       |
| I.6/Espacement et emplacement des regards                      | 56       |
| Conclusion                                                     | 56       |
| Chapitre II : Evaluation des débits des eaux usées             | 57       |
| Introduction                                                   | 57       |
| II.1/Tracé en plan du réseau                                   | 57       |
| II.2/Critères de tracé                                         | 57       |
| II.3/Profil en long                                            | 57       |
| II.4/Schémas de réseau                                         | 57       |
| II.5/Exemple de calcul des pentes                              | 57       |
| II.6/Débit d'eau usée                                          | 58       |
| II.7/Dimensionnement du réseau                                 | 60       |
| II.8/Vérification des conditions d'auto curage de réseau       | 63       |
| II.9/Les étapes des vérifications des conditions d'auto curage | 64       |
| II.10/Calcul de nombre de réservoir de chasse                  | 66       |
| II.10.1/Calcul de capacité de réservoir de chasse              | 67       |
| II.10.2/Calcul du volume d'eau annuel nécessaire               | 67       |
| Conclusion                                                     | 67       |
| Chapitre III : Dimensionnement des bassins de décantation      | 68       |
| Introduction                                                   | 68       |
| III.1/Définition                                               | 68       |
| III.2/Type de matières à décanter                              | 68       |
| III.3/Principe de la décantation                               | 68       |
| III.4/Géométrie de décanteur                                   | 68       |
| III.5/Dimensionnement du bassin de décantation                 | 69       |
| Conclusion                                                     | 71       |
| Conclusion générale                                            | 72       |

### Introduction générale

#### Introduction générale

De nos jours, l'accroissement de la population des agglomérations et le développement des activités humaines s'accompagnent d'une consommation d'eau de plus en plus importante.

Par conséquent, un besoin pressant est de rejeter les eaux usées, de toutes natures, loin des centres d'habitations, vers des exutoires naturels.

Notre terrain d'étude, présente une insuffisance en eau potable et une absence totale du réseau d'assainissement. Dans ce contexte, la commune d'El Harrouch à engagé une étude afin de réaliser un réseau d'Alimentation en Eau Potable et un réseau d'assainissement séparatif des eaux usées.

C'est dans ce contexte que nous allons réaliser ce travail.

Notre travail est composé de deux parties.

- La conception et le dimensionnement du réseau d'AEP.
- La conception et le dimensionnement du réseau d'assainissement.

Afin de réaliser ce travail, notre démarche est structurée, en deux parties, comme suite :

La première partie sera consacrée à la conception et dimensionnement du réseau d'AEP.

Le premier chapitre sera consacré à la présentation du site d'étude.

Le deuxième chapitre sera consacré à l'estimation des besoins en eau actuels et à long terme.

Le troisième chapitre sera consacré au dimensionnement du réservoir.

Le quatrième chapitre sera consacré au dimensionnement de la conduite d'adduction.

Dans Le cinquième chapitre, nous allons définir la pompe adéquate qui permet le refoulement de l'eau du point de piquage vers le réservoir.

Le sixième chapitre sera consacré à la conception et au dimensionnement de réseau de distribution ramifié.

La deuxième partie sera consacrée à la conception et dimensionnement du réseau d'assainissement séparatif d'eau usée.

Le premier chapitre traitera quelques généralités sur les réseaux d'assainissement.

Le deuxième chapitre sera consacré à évaluation complète des débits d'eaux usées et dimensionnement de réseau d'assainissement séparatif.

Le troisième et dernier chapitre sera consacré au dimensionnement du bassin de décantation, dans le but de réduire la pollution des eaux usées rejetées et de préserver au mieux le milieu naturel.

## PARTIE I: Alimentation en Eau Potable

# Chapitre I : Présentation de site

#### Introduction

Avant tout projet d'alimentation d'eau potable et d'assainissement, une étude du site est nécessaire. Son objectif est de connaître toutes les caractéristiques du site d'étude et les facteurs qui influent sur la conception du projet. Nous citerons ; la géologie, la topographique, la ressource en eau....etc.

#### I.1/Situation géographique

La région d'Ali MESBAH est située à proximité du chef-lieu d'El Harrouch à environ 30 km de la wilaya de Skikda, Elle est délimitée :

- Au Nord par la route nationale N° 03;
- Au Sud par la commune de Saïd BOUSBAA;
- A l'Est par la commune de Salah BOUCHOURE ;
- A l'Ouest par la région Ali MESBAH 2 et Oued ENSA



Figure I.1 Présentation de la zone concernée sur la carte de la wilaya de SKIKDA

#### I.2/Situation topographique

La région d'Ali MESBAH présente un relief accidenté avec une pente moyenne 2,70 % dont les altitudes varient de 189,8 m à 214,7 m.

#### I.3/Situation géotechnique

Le but de l'étude géotechnique est d'accentuer toutes les informations géologiques de la région et les caractéristiques géotechniques du sol on s'est basé sur la documentation suivante :

- La carte géologique de la wilaya de Skikda (région d'Ali MESBAH) ;
- Les études géotechniques sur les projets réalisés ;

#### I.3.1/Géologie [1]

D'après la carte géologique de la wilaya de Skikda, la région d'Ali MESBAH est généralement située sur des terres formées par des couches éocènes hautes constituées par des roches fin et argile sableux.

Les zones qui se trouvent près de l'Oued ENSA sont constituée de sable fin et sable grossier avec des sédimentaires galets, saleté et argile.

#### I.3.2/Les séismes [1]

La région d'Ali MESBAH est située dans une zone de moyen tremblement (Zone II) d'après les règles parasismiques algérienne (R.A.88).

#### I.4/ Situation climatique [1]

La commune d'El Harrouch (Ali MESBAH) jouit d'un climat méditerranéen avec alternance d'une saison sèche et chaude (Mai -septembre) et d'une saison froide (Octobre-Avril), la température moyenne est de **10** C° en janvier et de **26** C° en aout.

#### I.4.1/La température

La température moyenne à El Harrouch est de **17,4** °C .Le mois d'Aout le plus chaud de l'année et le mois de Janvier est le plus froid de l'année, [1] Les résultats sont résumés dans la figure suivante :

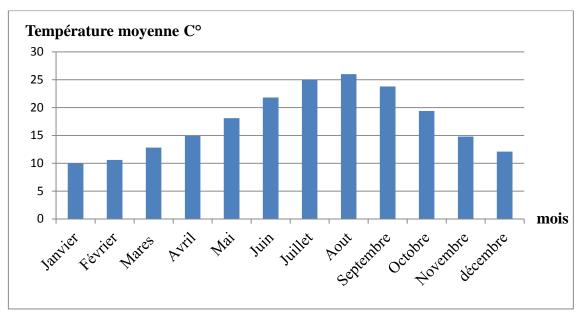



Figure I.2 Diagramme en bâton de la température moyenne annuelle de la zone d'étude

#### I.4.2/Pluviomètre [1]

Le mois le plus sec est celui de juillet avec seulement **5 mm.** Avec une moyenne de **126 mm**, c'est le mois de janvier qui enregistre le plus haut taux de précipitations.

La figure suivante résume les résultats collectés ;



Figure I.3 Présentation graphique du pluviomètre annuelle

#### I.5/Evolution de la population

#### I.5.1/La situation démographique [1]

Les données démographiques d'après le dernier recensement de l'année 2008 ont donné une population de 1425 habitants avec un taux d'accroissement de 3,00 % Selon les renseignements recueillis auprès du service technique de l'APC d'El Harrouch.

#### I.5.2/Evaluation de la population

L'estimation de la population pour un horizon de 25 ans est faite à partir de la formule de la progression géométrique suivant en tenant compte par mesure de sécurité d'un taux d'accroissement :

$$P = p_0 (1 + \tau)^n$$
 (I.1)

Avec:

**P**: population future prise à l'horizon de l'étude 2040;

P<sub>0</sub>: population de l'année de référence 2015;

 $\tau$ : taux d'accroissement annuel variable selon le démographie de la population ;

n : nombres d'années séparant l'année de référence a l'horizon considéré ;

Dans notre cas: P<sub>0</sub>=1557 hab

 $\tau = 3.00\%$ 

n = 2040-2015=25ans

L'évaluation de la population de la région d'Ali MESBAH à déférents horizon est donnée comme suit :

| Horizon    | 2008 | 2015 | 2025 | 2040 |
|------------|------|------|------|------|
| population | 1266 | 1557 | 2093 | 3261 |

Tableau I.1 Evaluation de la population

population

3500
3000
2500
2000
1500
1000
500
0
2008
2015
2025
2040

✓ La présentation graphique de la population à déférent horizon.

Figure I.4 Présentation graphique de la population à l'horizon

#### I.6/Mode d'occupation de sol

D'après les données fournies par l'APC, la région d'Ali MESBAH est répartie en quelques secteurs scolaires, sportifs, sanitaires, des logements semi collective et individuelle.

#### I.6.1/Les équipements existants et projetés [1]

| Equipements       | Nombre d'équipements<br>existants | Nombre d'équipements<br>projetés |
|-------------------|-----------------------------------|----------------------------------|
| Ecole primaire    | 01                                | /                                |
| Ecole moyenne     | /                                 | 01                               |
| Salle de sport    | 01                                | /                                |
| Salle de soin AMG | 01                                | /                                |
| Mosquée           | /                                 | 01                               |
| Douche publique   | 01                                | /                                |
| Station de lavage | 01                                | /                                |

Tableau I.2 Les équipements existants et projetés

#### I.7/Ressource en eau

Actuellement la population de la région d'Ali MESBAH vit un véritable calvaire en matière d'AEP notamment durant la saison estivale.

La région d'Ali MESBAH dispose uniquement d'un captage de source d'eau.

Selon les directives de la D.H.W, les analyses sur la qualité d'eau du forage ont être faite. Elles ont démontré qui la qualité de l'eau n'est pas de bonne qualité. Cette agglomération va être alimentée à partir d'un piquage sur la conduite de transfert prévenant du barrage de zardaza.

#### **Conclusion**

Dans ce chapitre, nous avons donné un aperçu sur la zone d'étude. Après analyse, nous avons constaté qui la région d'Ali MESBAH souffre d'un manque d'eau. Pour cela, elle sera alimentée à partir du barrage de zardaza.

# Chapitre II: Estimation des besoins

#### Introduction

L'estimation des besoins en eau aux différents horizons nécessite des normes de consommations unitaires. Celles-ci sont établies sur la base de certains critères (socio-économiques, sanitaires..). Elles doivent également permettre l'estimation des besoins en eau des populations afin de leur assurer une vie saine et hygiénique.

#### II.1/Estimation des besoins

#### II.1.1/Choix de la norme unitaire de la consommation

La quantité d'eau nécessaire à l'alimentation d'une agglomération est généralement évaluée en litre par habitant et par 24 heures, par carré de surface de végétaux, par mètre cube, par tonne de productivité, par tête d'animal, par véhicule......etc.

Cette quantité d'eau s'appelle la norme de consommation c'est-à-dire la norme moyenne journalière de la consommation en litre par jour et par usager qui dépend de certains critères dont les principaux sont :

- ✓ Le niveau de vie de la population
- ✓ Le nombre d'habitants
- ✓ Le développement urbain de la ville
- ✓ Les Ressources existantes

#### II.1.2/La dotation

La norme de consommation est adoptée en fonction de l'importance de la population, de son mode de vie et suivant la norme d'hygiène.

De ce fait nous adopterons pour notre région une dotation de 150l/j/h reste valable à l'horizon 2040.

#### II.2/Catégories des besoins

La quantité d'eau potable à garantir est fonction des différents besoins suivants :

#### II.2.1/Besoins domestiques

On entend par besoins domestiques, l'utilisation de l'eau pour la boisson, la préparation des repas, la propreté, le lavage de la vaisselle, les douches, l'arrosage des jardins familiaux ...etc.

Les besoins en eau domestique dépendent essentiellement du développement des installations sanitaires et des habitudes de la population.

#### II.2.2/Besoins publics

On entend par les besoins publics, l'utilisation de l'eau pour : le nettoyage des marchés et des caniveaux, le lavage des automobiles et l'eau que demandent les casernes, les administrations, les cantines...etc.

#### II.2.3/Besoins industriels et agricoles

Les entreprises industrielles et agricoles ont besoin d'une quantité d'eau importante pour leur fonctionnement. La qualité d'eau exigée est différente d'une industrie à une autre en fonction du type du produit fabriqué ou transformé.

#### II.2.4/Besoins scolaires

On entend par besoins scolaires, les quantités d'eau demandées par les écoles primaires, moyennes et secondaires, les centres de formation...etc.

#### II.2.5/Besoins sanitaires

On entend par besoins sanitaires, des baignoires, des douches, des WC (Water-closet) et des éviers...etc.

#### II.2.6/Besoins d'incendie

On entend par besoins d'incendie, les quantités d'eau nécessaires pour la lutte contre l'incendie.

#### II.2.7/Besoins des ZET (Zone d'Extension Touristique)

On entend par les besoins des ZET, les quantités d'eau demandées par les zones d'extension touristique.

Vu l'urbanisation, le niveau de vie et le confort que tend a connaître la région de Ali MESBAH il est nécessaire de se pencher sur les différents catégories des besoins telle que :

- ✓ Besoin domestique :
- ✓ Besoin sanitaire ;
- ✓ Besoin scolaire;
- ✓ Besoin commerciaux et publique ;
- ✓ Besoin socioculturel et sportif;

#### II.3/Consommation moyenne journalière

La consommation moyenne journalière est le produit de la norme unitaire moyenne journalière, exprimé en mètre cube par jour.

$$Q_{\text{mov,i}} = (Q_i * N_i) / 1000$$
 (II.1)

#### Avec:

• **Q**moy,j: consommation moyenne journalière en m<sup>3</sup>/j;

• **Q**i : dotation journalière en l/j/hab ;

•  $N_i$ : nombre de consommateurs ;

### II.4/Calcul la consommation moyenne journalière pour chaque groupe de consommation

#### II.4.1/Besoin domestique

Les besoins domestiques sont donnés le tableau suivant :

| Horizon   | Nombre d'habitants | Dotation       | Consommation                |
|-----------|--------------------|----------------|-----------------------------|
| 110112011 | Nombre d nabitants | (l/j/habitant) | $(\mathbf{m}^3/\mathbf{j})$ |
| 2008      | 1266               | 150            | 189,9                       |
| 2015      | 1557               | 150            | 233,55                      |
| 2040      | 3261               | 150            | 489,15                      |

Tableau II.1Consommation domestique

#### II.4.2/Besoin des équipements actuellement

#### II.4.2.1/Besoins sanitaires

Le tableau suivant déterminer les besoins en eau sanitaires ;

| La nature de<br>l'établissement | Surface<br>(m²) | Dotation<br>(l/u/j) | Consommation<br>moyenne<br>journalier (m³/j) |
|---------------------------------|-----------------|---------------------|----------------------------------------------|
| Salle de soins AMG              | 200             | 05                  | 1                                            |

Tableau II.2Consommation sanitaires

#### II.4.2.2/Besoins scolaires

Le tableau ci-dessous résume les résultats.

| La Nature de<br>l'établissement | Nombre d'élèves | Dotation<br>l/j/élève | Consommation<br>moyenne<br>journalier (m³/j) |
|---------------------------------|-----------------|-----------------------|----------------------------------------------|
| Ecole primaire                  | 350             | 10                    | 3,50                                         |
| Ecole moyenne                   | 400             | 20                    | 8                                            |

Tableau II.3 Consommation scolaire

#### II.4.2.3/Besoin commerciaux et publique

| La nature de commerce | Nombre d'unité | Dotation<br>L/j/unité | Consommation<br>moyenne<br>journalier (m³/j) |
|-----------------------|----------------|-----------------------|----------------------------------------------|
| Douche publique       | 20(cabinés)    | 2000                  | 24                                           |
| Station de lavage     | 60             | 180                   | 10,8                                         |

Tableau II.4 Consommation commerciaux et publique

#### II.4.2.4/Besoins socioculturels et sportifs

| Désignation    | Superficie<br>m <sup>2</sup> | Dotation<br>l/j/m² | Consommation<br>moyenne<br>journalier (m³/j) |
|----------------|------------------------------|--------------------|----------------------------------------------|
| Mosquée        | 400                          | 10                 | 4                                            |
| Salle de sport | 160                          | 5                  | 0,8                                          |

Tableau II.5 Consommation socioculturels et sportifs

Apres l'estimation détaillée des équipements et de leurs besoins on obtient une demande en eau d'équipements publics de **52,1m³/j** pour l'année 2015.

Et pour estimer les besoins d'équipements à l'horizon 2040, on fait intervenir le rapport entre les besoins des équipements et les besoins domestiques, et à la base de ce rapport, on estime les besoins à l'horizon d'équipement pour l'horizon voulu.

$$\mathbf{Q}$$
équip2040 =  $(\mathbf{Q}$ dom2040\* $\mathbf{Q}$ équip2015/ $\mathbf{Q}$ dom2015) =  $489,15*52,1/233,55=\mathbf{109,12m^3/j}$ 

#### II.5/Majoration de la consommation moyenne journalière

Cette majoration est la conséquence d'un certain nombre des facteurs: fuites dans les conduites, vieillissement des conduites, nature des terrains, qualité d'entretien.

La majoration est estimée à 20% de la somme des débits: Domestique, équipements.

$$Q_{movj} = k_f^*(Q_{dom} + Q_{equip})...$$
(II.2)

Avec:

- Qmoyj :débit moyen débit moyen journalier (m³/j) ;
- **Kf**: coefficient de fuite;
- **Q**dom : débit domestique (m<sup>3</sup>/j) ;
- **Qequip**: débit d'équipement (m<sup>3</sup>/s);

| horizon | Qdom(m³/j) | Qequip(m <sup>3</sup> /j) | k <sub>f</sub> | Qmoyj(m³/j) |
|---------|------------|---------------------------|----------------|-------------|
| 2015    | 233,55     | 52,1                      | 1,2            | 342,78      |
| 2040    | 489.15     | 109.12                    | 1.2            | 717.924     |

Donc on obtient les résultats suivants pour différent horizons :

| 489,15 | 109,12 | 1,2 | Tableau II.6 Consommation moyenne journalière majoré

#### II.6/Etude des variations de la consommation

Avant tout projet d'alimentation en eau potable, il faut connaître le régime de consommation de l'agglomération qui est utile pour le régime du travail des éléments du système et leur dimensionnement.

La méthode la plus valable pour la détermination du régime de consommation est l'étude en analysant le fonctionnement du système de distribution dans l'agglomération existante. Par analogie avec cette méthode on adopte un régime ou bien un graphique de consommation d'eau pour l'agglomération considéré.

#### II.6.1/Variation de la consommation journalière

Au cours de l'année, la consommation d'eau connaît des fluctuations autour de la consommation moyenne journalière, Il existe une journée où la consommation d'eau est maximale, de même une journée où la consommation d'eau est minimale.

#### > Consommation maximale journalière

Par rapport à la consommation moyenne journalière déterminée, nous pouvons mettre en évidence un rapport nous indiquant de combien de fois la consommation maximale dépassera la moyenne de consommation. Ce rapport est désigné sous le terme de coefficient d'irrégularité journalière maximum et noté  $K_{max,j}$ . Ainsi nous pouvons écrire:

$$Q_{\text{max,j}} = K_{\text{max,j}} * Q_{\text{moy,j}}.....(II.3)$$

- $\mathbf{Q}_{\mathbf{max,j}}$ : Consommation maximale journalière (m<sup>3</sup>/j);
- $\mathbf{K}_{\text{max,j}}$ : Coefficient d'irrégularité journalière maximum  $\mathbf{K}_{\text{max,j}} = (1,1-1,3)$ ;
- On prend:  $\mathbf{K}_{\text{max,j}} = 1, 3$ ;
- **Q**<sub>moy,j</sub>: Consommation moyenne journalière (m<sup>3</sup>/j);

#### > Consommation minimale journalière

Par rapport à la consommation moyenne journalière déterminée, nous pouvons aussi mettre en évidence un rapport nous indiquant de combien de fois la consommation minimale est inférieure à la moyenne de consommation. Ce rapport est désigné sous le terme de coefficient d'irrégularité journalière minimum et noté  $K_{\text{min,j}}$ . Ainsi nous pouvons écrire:

$$Q_{\min,j} = K_{\min,j} * Q_{\max,j} ..... (II.4)$$

•  $\mathbf{Q}_{\min,j}$ : Consommation minimale journalière (m<sup>3</sup>/j);

•  $\mathbf{K}_{\min,j}$ : Coefficient d'irrégularité journalière minimum,  $K_{\min,j} = (0,7-0,9)$ ;

On prend:  $\mathbf{K}_{\min,j} = 0.8$ 

• **Q**<sub>moy,j</sub>: Consommation moyenne journalière (m³/j);

Le calcul se fait dans le tableau suivant ;

| horizon | Consommatio<br>n moyen<br>(m³/j) | Coefficient d'irrégularit é (k <sub>min</sub> ) | Consommatio n minimum (m³/j) | Coefficient<br>d'irrégularit<br>é (k <sub>max</sub> ) | Consomm ation maximum (m³/j) |
|---------|----------------------------------|-------------------------------------------------|------------------------------|-------------------------------------------------------|------------------------------|
| 2015    | 342,78                           | 0,8                                             | 274,224                      | 1.3                                                   | 445,614                      |
| 2040    | 717,924                          | 0,8                                             | 574,3392                     | 1.3                                                   | 933,301                      |

Tableau II.7Consommations maximale et minimale journalière

#### II.6.2/Variation de la consommation horaire

Au cours de la journée, le volume d'eau affluant du réservoir vers les consommateurs est variable d'une heure à une autre. Néanmoins, la somme de ces volumes d'eau horaires nous informe de la consommation maximale journalière.

Les débits horaires sont donnés en pourcentage du débit maximum journalier.

Les consommations maximale et minimale horaire sont respectivement caractérisés par les coefficients maximum et minimum horaire  $(K_{\text{max},h}K_{\text{min},h})$  qui tiennent compte explicitement de l'aménagement des bâtiments, du niveau de développement d'équipement sanitaire, du régime du travail et d'autres conditions locales.

#### > Consommation maximale horaire

Le débit maximum horaire qui correspond au coefficient maximum horaire peut être déterminé graphiquement ou analytiquement.

Ce coefficient peut être décomposé en deux autres coefficients qui dépendent des caractéristiques de l'agglomération à savoir :

- Un coefficient  $\alpha_{\text{max}}$  tenant compte du régime de travail des entreprises et industries, du degré de confort des habitants et de leurs habitudes. il varie de 1,2 à 1,4;
- Un coefficient  $\beta_{\text{max}}$  étroitement lié à l'accroissement de la population ;

On peut donc écrire :

$$\mathbf{K}_{\text{max,h}} = \alpha_{\text{max}} * \beta_{\text{max}}.$$
 (II.5)

| Populatio<br>n | 1000 | 1500 | 2500 | 4000 | 6000 | 10000 | 20000 | 30000 | 100000 | 3000 |
|----------------|------|------|------|------|------|-------|-------|-------|--------|------|
| eta max        | 2    | 1,8  | 1,6  | 1,5  | 1,4  | 1,3   | 1,2   | 1,15  | 1,1    | 1,03 |

Tableau II.8Variation du coefficient  $\beta_{max}$  en fonction du nombre d'habitants

Pour notre cas on prend :  $\alpha_{\text{max}} = 1, 3$  et  $\beta_{\text{max}} = 1,55$ 

Alors:  $K_{\text{max,h}} = 1, 3 * 1,55 \Rightarrow K_{\text{max,h}} = 2,015$ 

#### > Consommation minimale horaire

Le débit minimum horaire qui correspond au coefficient minimum horaire peut être également déterminé graphiquement ou analytiquement.

Ce coefficient peut être décomposé à son tour, en deux autres coefficients qui dépendent des caractéristiques de l'agglomération à savoir :

- Un coefficient  $\alpha_{min}$  tenant compte du régime de travail des entreprises et industries, du degré de confort des habitants et de leurs habitudes. Il varie de 0,4 à 0,6 ;
- Un coefficient  $\beta_{min}$  étroitement lié à l'accroissement de la population ;

On peut donc écrire :

$$\mathbf{K}_{\min,h} = \alpha \min * \beta \min. \tag{II.6}$$

#### $Q_{min,h}=k_{min,h}*Q_{moy,h}$

| Populatio<br>n | 1000 | 1500 | 2500 | 4000 | 6000 | 10000 | 20000 | 30000 | 100000 | 3000 |
|----------------|------|------|------|------|------|-------|-------|-------|--------|------|
| eta min        | 0,1  | 0,1  | 0,1  | 0,2  | 0,25 | 0,4   | 0,5   | 0,6   | 0,7    | 0,83 |

Tableau II.9Variation du coefficient  $\beta_{min}$  en fonction du nombre d'habitant

Pour notre cas on prend :  $\alpha_{min} = 0, 5$  et  $\beta_{min} = 0, 15$ 

Alors:  $K_{min,h} = 0, 5 * 0,15 \implies K_{min,h} = 0,075$ 

### II.7/Evaluation de la consommation horaire en fonction du nombre d'habitant

Le débit horaire d'une agglomération est variable selon l'importance de cette dernière. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau suivant :

| Heures  | Nombre d'habitants |        |         |         |                |  |  |  |
|---------|--------------------|--------|---------|---------|----------------|--|--|--|
| (II)    | Maia 10000         | 10000à | 50001 à | Plus de | Agglomération  |  |  |  |
| (H)     | Mois 10000         | 50000  | 100000  | 100000  | de type rurale |  |  |  |
| 00 - 01 | 01                 | 1,5    | 03      | 3,35    | 0,75           |  |  |  |
| 01 - 02 | 01                 | 1,5    | 3,2     | 3,25    | 0,75           |  |  |  |
| 02 - 03 | 01                 | 1,5    | 2,5     | 3,3     | 01             |  |  |  |
| 03 – 04 | 01                 | 1,5    | 2,6     | 3,2     | 01             |  |  |  |
| 04 - 05 | 02                 | 2,5    | 3,5     | 3,25    | 03             |  |  |  |
| 05 – 06 | 03                 | 3,5    | 4,1     | 3,4     | 5,5            |  |  |  |
| 06 - 07 | 05                 | 4,5    | 4,5     | 3,85    | 5,5            |  |  |  |
| 07 - 08 | 6.5                | 5,5    | 4,9     | 4,45    | 5,5            |  |  |  |
| 08 – 09 | 6.5                | 6,25   | 4,9     | 5,2     | 3,5            |  |  |  |
| 09 – 10 | 5.5                | 6,25   | 4,6     | 5,05    | 3,5            |  |  |  |
| 10 - 11 | 4.5                | 6,25   | 4,8     | 4,85    | 06             |  |  |  |
| 11 – 12 | 5.5                | 6,25   | 4,7     | 4,6     | 8,5            |  |  |  |
| 12 - 13 | 07                 | 05     | 4,4     | 4,6     | 8,5            |  |  |  |
| 13 – 14 | 07                 | 05     | 4,1     | 4,55    | 06             |  |  |  |
| 14 – 15 | 5.5                | 5,5    | 4,2     | 4,75    | 05             |  |  |  |
| 15 – 16 | 4.5                | 06     | 4,4     | 4,7     | 05             |  |  |  |
| 16 – 17 | 05                 | 06     | 4,3     | 4,65    | 3,5            |  |  |  |
| 17 – 18 | 6.5                | 5,5    | 4,1     | 4,35    | 3,5            |  |  |  |
| 18 – 19 | 6.5                | 05     | 4,5     | 4,4     | 06             |  |  |  |
| 19 – 20 | 5.0                | 4,5    | 4,5     | 4,3     | 06             |  |  |  |
| 20 – 21 | 4.5                | 04     | 4,5     | 4,3     | 06             |  |  |  |
| 21 – 22 | 03                 | 03     | 4,8     | 3,75    | 03             |  |  |  |
| 22 - 23 | 02                 | 02     | 4,6     | 3,75    | 02             |  |  |  |
| 23 – 24 | 01                 | 1,5    | 3,3     | 3,7     | 01             |  |  |  |

Tableau II.10Répartition des débits horaires en fonction du nombre d'habitants

#### Remarque:

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au débit maximal journalier de l'agglomération.

Pour notre cas, on choisit la répartition variant l'agglomération de type rurale (puisque le nombre d'habitants à l'année **2040** sera **3261 hab**.) Les résultats de calcul sont

Obtenus dans le tableau suivant :

|         | Consomm  | ation totale | Consommation cumulée |          |  |  |
|---------|----------|--------------|----------------------|----------|--|--|
| Horaire | Qmaxj=93 | 33.301m3/j   | (courbe              | intégré) |  |  |
| Н       | %        | Qmaxh(m3/h)  | %(cum)               | Q(cum)   |  |  |
| 00 - 01 | 0,75     | 6,9998       | 0,75                 | 6,9998   |  |  |
| 01 - 02 | 0,75     | 6,9998       | 1,5                  | 13,9995  |  |  |
| 02 - 03 | 1        | 9,3330       | 2,5                  | 23,3325  |  |  |
| 03 - 04 | 1        | 9,3330       | 3,5                  | 32,6655  |  |  |
| 04 - 05 | 3        | 27,9990      | 6,5                  | 60,6646  |  |  |
| 05 - 06 | 5,5      | 51,3316      | 12                   | 111,9961 |  |  |
| 06 - 07 | 5,5      | 51,3316      | 17,5                 | 163,3277 |  |  |
| 07 - 08 | 5,5      | 51,3316      | 23                   | 214,6592 |  |  |
| 08 - 09 | 3,5      | 32,6655      | 26,5                 | 247,3248 |  |  |
| 09 - 10 | 3,5      | 32,6655      | 30                   | 279,9903 |  |  |
| 10 – 11 | 6        | 55,9981      | 36                   | 335,9884 |  |  |
| 11 – 12 | 8,5      | 79,3306      | 44,5                 | 415,3189 |  |  |
| 12 – 13 | 8,5      | 79,3306      | 53                   | 494,6495 |  |  |
| 13 – 14 | 6        | 55,9981      | 59                   | 550,6476 |  |  |
| 14 – 15 | 5        | 46,6651      | 64                   | 597,3126 |  |  |
| 15 – 16 | 5        | 46,6651      | 69                   | 643,9777 |  |  |
| 16 – 17 | 3,5      | 32,6655      | 72,5                 | 676,6432 |  |  |
| 17 – 18 | 3,5      | 32,6655      | 76                   | 709,3088 |  |  |
| 18 – 19 | 6        | 55,9981      | 82                   | 765,3068 |  |  |
| 19 – 20 | 6        | 55,9981      | 88                   | 821,3049 |  |  |
| 20 – 21 | 6        | 55,9981      | 94                   | 877,3029 |  |  |
| 21 – 22 | 3        | 27,9990      | 97                   | 905,3020 |  |  |
| 22 – 23 | 2        | 18,6660      | 99                   | 923,9680 |  |  |
| 23 – 24 | 1        | 9,3330       | 100                  | 933,3010 |  |  |
| Totale  | 100      | 933.301      |                      |          |  |  |

Tableau II.11 Détermination le débit maximum horaire

Le débit de pointe  $Q_{max,h}$  pour la région d'Ali MESBAHest de  $79,3306m^3/h$ . Ilsurvient entre 11h -12h et 12h-13hde la journée.

A partir de ce tableau on trace :

Les graphiques de consommation, La courbe intégrale ;



Figure II.1 Consommation maximum horaire

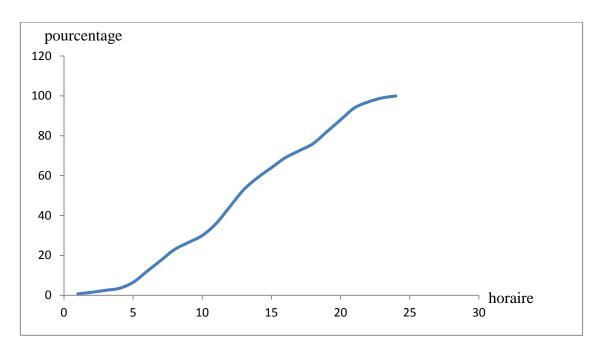



Figure II.2 Courbe intégrale

#### **Conclusion:**

A travers ce chapitre, nous avons estimé les différents besoins de la région en touchant à toutes les catégories de consommation. Les résultats importants obtenues qui permettent le dimensionnement des ouvrages de transport et de stockage d'eau sont : le débit maximum journalier qui est égale 933,301 m³/j ; le débit de pointe de 79,3306m³/h.

## Chapitre III: Réservoir

### Introduction

Le réservoir est un ouvrage très important dans un réseau d'eau potable. C'est un ouvrage aménagé pour contenir de l'eau, soit potable destinée à la consommation publique, soit de l'eau à usage industriel.

# III.1/Classification des réservoirs [2]

On peut classier les réservoirs selon deux facteurs principales

Selon la nature des matériaux, on distingue :

- ✓ Les réservoirs métalliques ;
- ✓ Les réservoirs en maçonnerie ;
- ✓ Les réservoirs en béton armé ;

Selon la situation des lieux ils peuvent être :

- ✓ Enterrés :
- ✓ Semi-enterrés;
- ✓ Surélevés :

# III.2/Rôle des réservoirs [3]

Les réservoirs constituant une réserve qui permet d'assurer aux heures de pointe les débits maximaux demandés de plus, il permet de combattre efficacement les incendies en plus les réservoirs offrant notamment les avantages suivants :

- ✓ Régularisation le fonctionnement de la station de pompage ;
- ✓ Simplification l'exploitation ;
- ✓ Assurer les pressions nécessaires en tout point du réseau ;
- ✓ Coordination du régime d'adduction d'eau au régime de distribution ;
- ✓ Maintenir l'eau d'une température constante et préserver des contaminations ;
- ✓ Jouer le rôle de brise charge dans le cas d'une distribution étagé ;
- ✓ Jouer le rôle de relais ;

# III.3/Emplacement du réservoir[2]

L'emplacement des réservoirs dépend essentiellement des données topographiques, et de la nature du terrain.

L'emplacement choisi, doit assurer aux abonnées une pression suffisante aux heures de pointe sans mettre à l'écart le facteur économique.

# III.4/Détermination de la capacité

Le calcul du volume du réservoir se fait à partir du débit rentrant et du débit sortant pour les différentes heures de la journée.

Le calcul de la capacité peut se faire par deux méthodes

- ✓ Méthode analytique ;
- ✓ Méthode graphique ;
- ❖ Détermination de la capacité par la méthode analytique

$$\mathbf{V_r} = \frac{\mathbf{Pmax} \cdot \mathbf{Qmaxj}}{100}.$$
 (III.1)

Avec:

- **V**<sub>r</sub> : volume de régularisation du réservoir (m<sup>3</sup>) ;
- P<sub>max</sub>: résidu maximum (%);
- Q<sub>maxj</sub>: débit maximum journalier (m³/j);

Pour le volume total du réservoir, la réserve d'incendie sera prise en compte, et le volume total est :

$$V_T = V_r + V_{inc}$$
 (III.2)

Avec:

- **V**<sub>T</sub>: volume total du réservoir (m<sup>3</sup>);
- V<sub>inc</sub> : volume de la réserve d'incendie pris de 120 m<sup>3</sup>;

| Heures  | Régime de<br>distribution(%) | Régime de<br>fonctionnement<br>de pompe(%) | Surplus (%) | Déficit<br>(%) | Résidu<br>(%) |
|---------|------------------------------|--------------------------------------------|-------------|----------------|---------------|
| 00 - 01 | 0,75                         | 5,00                                       | 4,25        | -              | 4,25          |
| 01_02   | 0,75                         | 5,00                                       | 4,25        | -              | 8,50          |
| 02 _03  | 1                            | 5,00                                       | 4,00        | -              | 12,50         |
| 03_04   | 1                            | 5,00                                       | 4,00        | -              | 16,50         |
| 04 - 05 | 3                            | 5,00                                       | 2,00        | -              | 18,50         |
| 05_06   | 5,5                          | 5,00                                       | -           | -0,50          | 18,00         |
| 06 - 07 | 5,5                          | 5,00                                       | -           | -0,50          | 17,50         |
| 07_08   | 5,5                          | 5,00                                       | -           | -0,50          | 17,00         |
| 08 – 09 | 3,5                          | 5,00                                       | 1,50        | -              | 18,50         |
| 09 – 10 | 3,5                          | 5,00                                       | 1,50        | -              | 20,00         |
| 10 – 11 | 6                            | 5,00                                       | -           | -1,00          | 19,00         |
| 11 – 12 | 8,5                          | 0,00                                       | -           | -8,50          | 10,50         |
| 12 – 13 | 8,5                          | 0,00                                       | -           | -8,50          | 2,00          |
| 13 – 14 | 6                            | 0,00                                       | -           | -6,00          | -4,00         |
| 14 – 15 | 5                            | 0,00                                       | -           | -5,00          | -9,00         |
| 15 – 16 | 5                            | 5,00                                       | -           | -              | -9,00         |
| 16 – 17 | 3,5                          | 5,00                                       | 1,50        | -              | -7,50         |

Tableau III.1 Détermination de la capacité du réservoir...

| 17 – 18 | 3,5    | 5,00   | 1,50 | -     | -6,00 |
|---------|--------|--------|------|-------|-------|
| 18 – 19 | 6      | 5,00   | -    | -1,00 | -7,00 |
| 19 – 20 | 6      | 5,00   | -    | -1,00 | -8,00 |
| 20 - 21 | 6      | 5,00   | -    | -1,00 | -9,00 |
| 21 - 22 | 3      | 5,00   | 2,00 | -     | -7,00 |
| 22 - 23 | 2      | 5,00   | 3,00 | -     | -4,00 |
| 23 - 24 | 1      | 5,00   | 4,00 | -     | 0,00  |
| Totale  | 100,00 | 100,00 |      | •     | •     |

Tableau III.1Détermination de la capacité du réservoir (suite et fin)

D'après le tableau : $\mathbf{P}_{\text{max}}$  % =  $|\Delta \mathbf{V}^+| + |\Delta \mathbf{V}^-|$  ......(III.3)

$$P_{\text{max}} \% = |20| + |-9| = 29\%$$
.

> Volume de régulation

$$V_r = \frac{29*930,301}{100} = 270,66 \text{m}^3$$
.

> Volume totale de réservoir

$$V_T = 270,66 + 120 = 390,66 \text{ m}^3$$
.

Afin de normaliser la capacité du réservoir, on prendra un volume de 400 m<sup>3</sup>.

# III.5/Dimensionnement du réservoir

Les dimensions de réservoir (hauteur, diamètre), se calcul par la formule suivante ;

$$\mathbf{D} = (\mathbf{4} \cdot \mathbf{V}/\pi \cdot \mathbf{H})^{1/2}$$
....(III.4)

Avec:

- **D**: diamètredu réservoir(m);
- **V** : volume de réservoir (m3) ;
- **H**: hauteur de réservoir (m);

On prend la hauteur de réservoir égale 5m

Donc :**D**= 
$$(4*350/3,14*5)^{1/2}$$
 =**10m.**

### > Calcul de la hauteur de réserve d'incendie

- **H**inc: Hauteur de la réserve d'incendie (m);
- Vinc: volume d'incendie (m3);
- **S** :surface de fond réservoir (m);

Donc:  $H_{inc}=120/78,5=1,53m$ 

# III.6/Equipements des réservoirs

Pour accomplir leurs fonctions convenablement, les réservoirs uniques ou compartimentés doivent être équipés :

- ✓ D'une conduite d'arrivée ou d'adduction ;
- ✓ D'une conduite de départ ou de distribution ;
- ✓ D'une conduite de vidange ;
- ✓ D'une conduite de trop plein ;
- ✓ D'une conduite by-pass ;
- ✓ D'un système de matérialisation de la réserve d'incendié ;

# III.6.1/Conduite d'arrivée ou d'adduction [4]

L'adduction est faite par refoulement, arrivée dans la cuve en siphon noyé (a la partie supérieur de la cuve), ou par le bas placé à l'opposé de la conduite de départ, afin de provoquer le brassage, par conséquent, un dispositif de contrôle situé au niveau de la station de pompage permet le déclanchement de l'arrêt ou de la mise en marche des pompes.

# III.6.2/Conduite de départ ou de distribution [4]

C'est la conduite qui véhicule l'eau du réservoir (cuve) vers l'agglomération, Son orifice sera disposé à l'opposé de la conduite d'arrivée ; elle est placée à quelques centimètres (15-20 cm) au dessus du fond de la cuve, pour éviter l'introduction de matières en suspension de l'air.

L'extrémité est munie d'une crépine courbée à fin d'éviter le phénomène de vortex (pénétration d'air dans la conduite).

Cette conduite est équipée d'une vanne à survitesse, permettant la fermeture rapide en cas de rupture au niveau de cette conduite.

### III.6.3/Conduite de vidange [4]

Elle permet la vidange du château d'eau, en casde nettoyage ou d'éventuelles réparations, il est nécessaire de prévoir la vidange au moyen d'une conduite généralement raccordée à la conduite de trop –pleine, Elle est munie d'un robinet vanne qui doit être nettoyé après chaque vidange pour éviter le dépôt de sable qui entraîne une difficulté de manœuvre On a intérêt à n'effectuer cette vidange que sur un réservoir préalablement presque vidé en exploitation.

### III.6.4/Conduite du trop-plein [4]

Cette conduite a pour rôle d'évacuer l'excès d'eau arrivant a réservoir sans provoquer de déversement. Pour le cas où la pompe d'alimentation ne se serait pas arrêté L'extrémité supérieure de cette conduite est muni d'un entonnoir jouant le rôle d'un déversoir circulaire permettant cette évacuation.

# III.6.5/Conduit by-pass [4]

Pour assurer la continuité de la distribution, en cas des travaux de maintenance ou dans le cas de vidange de la cuve ; on relie la conduite d'adduction a celle de la distribution par un tronçon de conduite appelé By-pass.

# III.6.6/Système de matérialisation de la réserve d'incendie [4]

C'est une disposition spéciale de la lientérie à adopter au niveau du réservoir, qui permet d'interrompre l'écoulement une fois le niveau de la réserve d'eau consacrée à l'extinction des incendies est atteint.

On a deux systèmes:

- A) Système à deux prises dont la réserve n'est pas renouvelable ;
- B) Système à siphon qui a l'avantage de renouveler constamment la réserve d'incendie ;

# **Conclusion**

Dans ce chapitre, nous avons adapté un réservoir en forme circulaire de type semienterré. Sa capacité est de  $400 m^3$  avec une hauteur de 5 m et un diamètre de 10 m. Cette capacité sera suffisante pour satisfaire les besoin de la région Ali MESBAHà l'horizon d'étude.

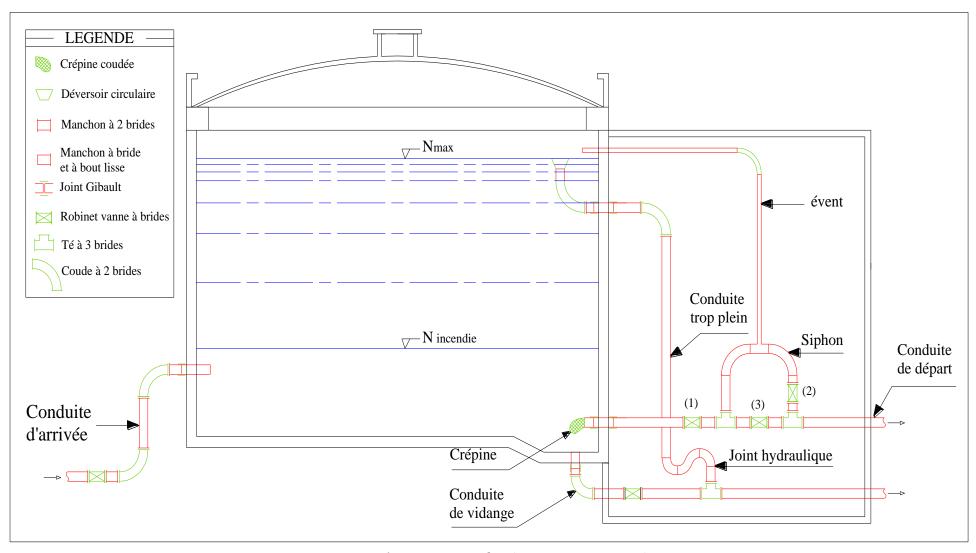



Figure III.1 Equipements du réservoir semi-enterré

# Introduction

On désigne par le terme « **adduction** » le transport de l'eau d'une source de captage jusqu'au réservoir de stockage situé à proximité de la zone de distribution.

On distingue deux types d'adductions ; gravitaire et par refoulement.

- ✓ Adduction par refoulement :la source se localise à une cote inférieure à celle du réservoir. L'écoulement fait appelle à une source d'énergie, le refoulement s'effectue par l'intermédiaire de pompes.
- ✓ Adduction gravitaire : la source se localise à une côte supérieure à celle du réservoir. L'écoulement de l'eau se fait par l'effet de la pesanteur.

### IV.1/Choix du tracé

Pour faire un choix du tracé d'adduction, on doit tenir compte des conditions d'ordre techniques et économiques suivantes :

- ✓ Il faut chercher un profil aussi régulier que possible ;
- ✓ Le profil sera étudier de façon que l'air puisse être évacué facilement car le cantonnement d'air engendrent la rupture de la veine liquide ;
- ✓ On cherche le tracé le plus court afin de réduire les frais d'établissement et d'exploitation ;

# IV.2/Choix du type de tuyaux

Le choix est établi sur des critères d'ordre technique à savoir le diamètre, la pression de service, condition de pose et sur des critères d'ordre économique qui englobent le prix de fourniture et transport.

Dans notre étude, nous avons choisi des conduites en **PEHD**. Elle présente les avantages suivants :[5]

- ✓ Facile à poser (grande flexibilité);
- ✓ Durée de vie théorique 50 ans à 20°C;
- ✓ Bonnes caractéristiques hydrauliques (coefficient de rugosité très faible);
- ✓ Répond parfaitement aux normes de potabilité;
- ✓ Résiste à l'entartrage et à la corrosion interne et externe;
- ✓ Insensible aux mouvements de terrain (tremblement de terre);

# IV.3/Etude technico-économique [2]

Elle consiste à étudier le choix le plus économique pour le diamètre de la conduite de refoulement, le choix de cette dernière repose sur les deux tendances suivante :

✓ Les frais d'amortissement des conduites qui croissent avec les diamètres des canalisations ;

✓ Les frais d'exploitation de la station de pompage, qui décroissent quand le diamètre augmente, par suite de la diminution des pertes de charges ;

Le choix est donc un compromis entre les dépenses de fonctionnement et les investissements. Ce compromis dépend en principe du prix des fournitures et de celui de l'énergie.

Le diamètre de la conduite doit pouvoir transiter le plus grand débit à des vitesses acceptables, en assurant une pression de service compatible avec la résistance de la conduite.

# IV.3.1/Calcul du diamètre économique

Il est donné par les formules suivantes :

Avec:

- **D** : Diamètre de la conduite en (m) ;
- **Q**: Débit transitant dans la conduite en (m<sup>3</sup>/s);

On choisira un diamètre compris entre les deux valeurs calculées par la formule de BONNIN et celle de BRESS.

Le plus économique sera celui qui présente un bilan minimal et une vitesse acceptable, Cette dernière sera prise entre **0,5** et **1,5 m/s.** 

### IV.3.2/Calcul de la vitesse

Elle est donnée par la formule suivante :

V=Q/S....(IV.3)

Avec:

- V: Vitesse d'écoulement (m/s);
- **Q**: Débit transitant dans la conduite (m<sup>3</sup>/s);
- **S**: La section de la conduite (m<sup>2</sup>);

### IV.3.3/Calculs des pertes de charges

Les pertes de charge représentent une portion de l'énergie mécanique de l'eau qui se transforme en chaleur sous l'effet des frottements entre les particules de l'eau et les parois des canalisations, elles se présentent sous deux formes :

- ✓ Les pertes de charge singulières ;
- ✓ Les pertes de charge linéaires ;

### A /Les pertes de charge linéaires

L'expression de la perte de charge linéaire est la suivante:

$$\mathbf{H}_{L} = (\lambda \mathbf{V}^{2}/2\mathbf{g} \mathbf{D})^{*}\mathbf{L}.....(IV.4)$$

### Avec:

- H<sub>L</sub> : pertes de charge linéaire(m) ;
- D : diamètre de la conduite (m);
- V : vitesse moyenne d'écoulement en (m/s) ;
- L = Longueur de la conduit (m);
- λ : Coefficient de perte de charge de **DARCY**, qui dépend de la rugosité relative (**K/D**)et de la nature du régime d'écoulement ;
- $\diamond$  Calcul du coefficient de frottement  $\lambda$ :

Le coefficient est fonction du nombre de Reynolds et se calcul par la formule de COLBROOK-WHIT suivante:

$$1/\sqrt{\lambda} = -2\log[(k/3,71*D) + (2,51/Re*\sqrt{\lambda})].$$
 (IV.5)

> Nombre de Reynolds

Nombre de Reynolds donné par la formule suivante:

$$Re = (V. D)/v.$$
 (IV.6)

Avec:

- **V** : vitesse moyenne de l'écoulement (m/s) ;
- **D** : Diamètre intérieur du conduit (m) ;
- v : viscosité cinématique de l'eau en (m²/s) ;

$$\mathbf{v} = 0.0178 / (1+0.0337.t +0.000221.t^2)...$$
 (IV.7)

On prend  $t = 20^{\circ}C$ 

$$v = 10^{-3.6} \text{ m}^2/\text{s}$$

> Rugosité absolue

Pour notre projet nous avant utilise les conduits en PEHD :

### $D \le 200 \text{mm}, k = 0.01 \text{mm}$

### B/Perte charge singulière

Ce sont les pertes d'énergie provoquées par les équipements de la conduite, tels que les coudes, vannes, clapets, ...etc. Nous estimons les pertes de charge singulière à 10% des pertes de charge linéaire pour les conduit en PEHD.

$$H_S = 0.1 * H_L (m)$$

C/Pertes de charge totale

$$H_T = H_S + H_L$$

$$H_{T} = 1,1*H_{L}$$

### IV.3.4/Calcul de la HMT

$$HMT = Hg + H_T.$$
 (IV.8)

Avec:

- **HMT**: Hauteur manométrique total (m);
- **Hg** = Hauteur géométrique d'élévation (m) ;
- $\mathbf{H}_{T}$  = Pertes de charge total;

## IV.3.5/Puissance absorbée par la pompe

$$\mathbf{P} = \mathbf{g} \cdot \mathbf{Q} \cdot \mathbf{H} \mathbf{M} \mathbf{T} / \mathbf{\eta} \qquad [KW] \dots (IV.9)$$

Avec:

- η: rendement de la pompe en pourcentage (%);
- **Q**:débit(m<sup>3</sup>/s);
- **g**:gravité= 9,81 m/s<sup>2</sup>;

### IV.3.6/Energie consommée par la pompe

$$E = P*t*365$$
 [KWh].....(IV.10)

- **t**: nombres d'heures de pompage (20heures)
- **P**: puissance de pompage en (KW)

### IV.3.7/Prix de l'énergie et frais d'exploitation

$$\mathbf{F_{exp}} = \mathbf{E} * \mathbf{e}$$
 (IV.11)

• **e**: prix unitaire d'un (KWh);

### IV.3.8/Frais d'amortissement annuel

$$\mathbf{F_{am}=L *Pu*A}.$$
 (IV.12)

Avec:

- **Fam**: frais d'amortissement (Da);
- L: longueur de la conduite(m);
- **Pu**: prix unitaire (Da/ml);
- **A**: annuité (%);
- > Calcul de l'annuité

$$A = i / \{(1+i)^n - 1\} + i$$
 (IV.13)

Avec:

- **i**: Taux d'annuité = 8%;
- **n** : nombre d'années d'amortissement = 25 ans ;

$$A = 0.0937$$

# IV.3.9/Bilan économique

Le bilan économique est déterminé par la formule suivante :

$$Bilan = F_{exp}-F_{am}....(IV.14)$$

# IV.4/Calcul du diamètre économique de l'adduction

- > Point de piquage(station de pompage) réservoir
- Données
- $\circ$  Débit =0,013m<sup>3</sup>/s;
- o Longueur = 1885m;
- $\circ$  Rugosité =  $10^{-4}$ m;
- o Cote de point d'arriver =297,52m;
- O Cote de point de départ = 213,46m;

# La hauteur géométrique

o Hg=(297,52-213,46) =84,06m

BONNIN  $D = Q^{0.5} = 0.114m$ ;

PRESS D= $1.50^{0.5} = 0.171 \text{m}$ :

Les différents diamètres normalisés choisis sont : 125, 160, 200 mm

### IV.4.1/Calcul de la Hmt

Les valeurs de la Hmt pour les trois diamètres sont résumées dans le tableau suivant :

| D<br>(mm) | V<br>(m/s) | K/D        | Re        | λ        | Hl<br>(m) | Hs<br>(m) | Ht (m) | Hmt<br>(m) |
|-----------|------------|------------|-----------|----------|-----------|-----------|--------|------------|
| 125       | 1,586      | 0,00009785 | 162040,21 | 0,012067 | 28,517    | 2,852     | 34,22  | 118,28     |
| 160       | 0,971      | 0,00007645 | 126997,47 | 0,018260 | 12,644    | 1,264     | 15,173 | 99,233     |
| 200       | 0,619      | 0,00969145 | 101225,61 | 0,018615 | 4,185     | 0,418     | 4,604  | 88,664     |

Tableau IV.1 Calcul de la Hmt (point de piquage –réservoir)

# IV4.2/Les frais d'exploitation

Les valeurs des frais d'exploitationpour les trois diamètres sont résumées dans le tableau suivant :

| D (mm) | P(Kw)      | E(Kwh)     | e (Da/Kwh) | Fex (Da)   |
|--------|------------|------------|------------|------------|
| 125    | 20,3566894 | 148603,833 | 4,67       | 693979,899 |
| 160    | 17,0784606 | 124672,762 | 4,67       | 582221,799 |
| 200    | 15,2594747 | 111394,166 | 4,67       | 520210,754 |

Tableau IV.2 Calcul les frais d'exploitation (point de piquage –réservoir)

### IV.4.3/Les frais d'amortissement

Les valeurs des frais d'amortissementpour les trois diamètres sont résumées dans le tableau suivant :

| D (mm) | Pu(Da)    | Fam(D) | Pr(Da)      | A      | Fam(Da)    |
|--------|-----------|--------|-------------|--------|------------|
| 125    | 1273,73   | 1885   | 2400981,05  | 0,0937 | 224971,924 |
| 160    | 2 081,769 | 1885   | 3924135,131 | 0,0937 | 367691,462 |
| 200    | 3 269,156 | 1885   | 6162359,06  | 0,0937 | 577413,044 |

Tableau IV.3 Calcul les frais d'amortissement (point de piquage –réservoir)

### IV.4.4/Le bilan

Les valeurs de bilanpour les trois diamètres sont résumées dans le tableau suivant :

| D (mm) | Fex(DA)    | Fam(Da)    | Bilan(Da)  |
|--------|------------|------------|------------|
| 125    | 693979,899 | 224971,924 | 918951,823 |
| 160    | 582221,799 | 367691,462 | 949913,261 |
| 200    | 520210,754 | 577413,044 | 1097623,8  |

*Tableau IV.4 Calcul du bilan (point de piquage –réservoir)* 

Le diamètre le plus économique est 160 mm(PN16) avec une vitesse acceptable de 0,971 m/s

# **Conclusion**

Dans ce chapitre, nous avons déterminé les différents paramètres hydrauliques de la conduite d'adduction à savoir :le diamètre, la vitesse et les pertes de charges. Ceci, afin de choisir le diamètre le plus économique répondant à toutes les exigences requises.

Le bilan minimum est de **949913,261Da.** Il correspondant au diamètre économique **D=160mm** avec une vitesse acceptable de **0,971 m/s.** La longueur de cette conduite est de **1885** ml.

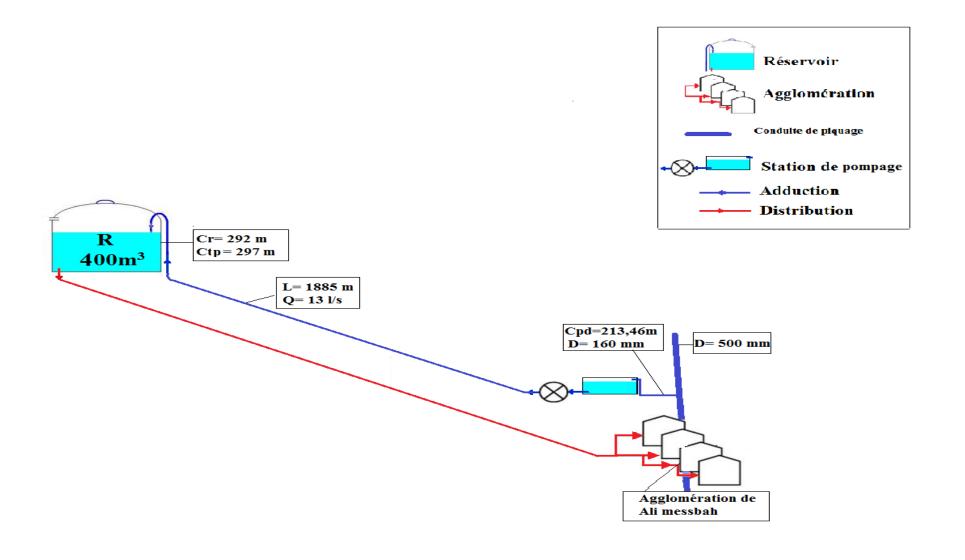



Figure (IV-1): schéma général d'adduction

# Introduction

La pompe est une machine hydraulique, son fonctionnement consiste en à transformer l'énergie mécanique de son moteur d'entrainement en énergie hydraulique, c'est-à-dire qu'elle transmet au courant liquide qui la traverse une certaine puissance, l'énergie reçue par le liquide lui permet de s'élever de la zone à basse pression vers une autre à plus hautepression.

# V.1/Classification des pompes [6]

Suivant les modes de déplacement des liquides à l'interieur de la pompe ,on classe ces dernières en deux classes principales:

## > Les pompes volumétriques

Le Principe de fonctionnement des pompes volumétriques consiste à déplacer des volumes élémentaires de liquide de l'aspiration (à l'entrée de la pompe) vers le refoulement(à la sortie de la pompe)

# > Les turbo-pompes

Le principe de fonctionnement des turbo-pompes consiste à un déplacement de liquide de l'aspiration vers le refoulement en moyen d'élément actif de la pompe s'appelle la roue.

On distingue trois types des turbopompes :

- ➤ Les pompes centrifuges
- Les pompes hélices
- Les pompes hélico-centrifuges.

Cette classification est basée sur la forme de la trajectoire à l'intérieur du rotor de la pompe (roues radiales, semi radiales, axiale)

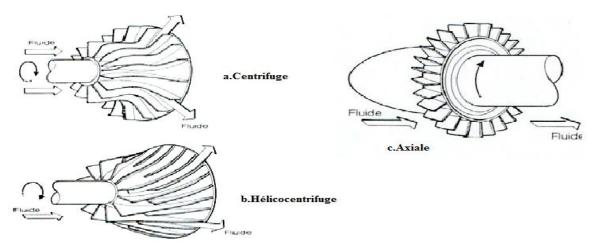



Figure V.1 Diffèrent type des turbo-pompe

Dans notre étude, on s'intéressera aux pompes centrifuges, et cela pour les raisons suivantes :

✓ Elles assurent le refoulement des débits importants à des hauteurs considérables ;

- ✓ Elles sont peu coûteuses et d'un rendement acceptable ;
- ✓ Elles constituent des groupes légers, peu encombrants ;
  - 1) l'entré d'eau
  - 2) sortie d'eau

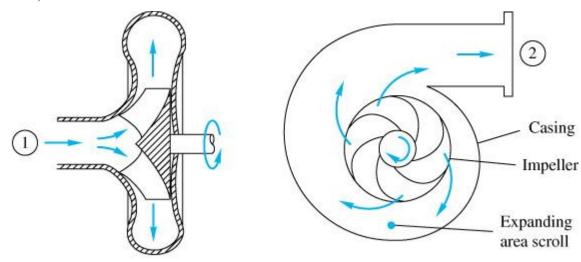



Figure V. 2Constitution d'une pompe centrifuge

# V.2/Courbes caractéristiques d'une pompe centrifuge

Les performances d'une pompe sont exprimées par les trois typesde courbes suivantes :

- ✓ La courbehauteur-débit : elle exprime les varaitions des différentes hauteurs d'élévation en fonction du débit  $\mathbf{H} = \mathbf{f}(\mathbf{Q})$ ;
- ✓ La courbe des puissances absorbée -débit :elleexprime les variation des differentes puissances absorbée en fonction du débit **P**= **f** (**Q** );
- ✓ La courbe rendements-débit: elle exprime les varaition du rendement de la pompe en fonction du débit  $\mathbf{n} = \mathbf{f}(\mathbf{Q})$ ;

Le point d'intersection de la courbe  $\mathbf{H} = \mathbf{f}(\mathbf{Q})$  avec l'axe des ordonnées s'appelle le point de barbotage ou encore on l'apelle point à vanne fermée.

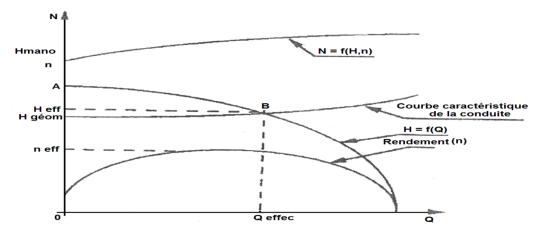



Figure V.3Courbes caractéristique d'une pompe.

# V.3/Puissance absorbée:

L'expression d'une puissence absorbée par une pompe est la suivante :

# $P = g^* Q^* H / \eta$

Avec:

- P: Puissance absorbée en Kw;
- **g**: accélération de la pesanteur(m²/s);
- **Q**: Débit à relever en( m³);
- η: Rendement de la pompe;
- H: Hauteur manométrique totale d'élévation;

# V.4/Hauteur manométrique totale(Hmt)

La Hateur manométrique totale est la somme des termes suivant:

# a) La hauteur géométrique de refoulement(Hr)

Elle esttoujours positive pour un groupe horizontal, c'est la distance entre le point plus haut à atteindre et l'axe horizontale de la pompe, Pour un groupe vertical, elle représente la distance séparant le point le plus haut et le plan de première roue.

# b) La hauteur géometrique d'aspiration (Ha)

Elle est toujours négative pour une aspiration en dépression et par contre elle est positive pour une aspiration en charge .

# c) Les pertes des charges d'aspiration et de refoulement

La pompe devera compenser les dissipations d'energie dans les conduites tant d'aspiration que de refoulement, elles sont évaluées en hauteur exprimée en mètres.

$$Hmt=Ha+Hr+Ja+Jr...$$
 (V.1)

# V.5/Point de fonctionnement

Le point de fonctionnement d'une pompe est définit comme étant le point d'intersection des courbes caractéristique de la pompe H=f(Q) et celle de la conduite de refoulement Hc=f(Q) tel que :

$$H_C = Hg + RQ^2 (m)$$
....(V.2)

Avec:

Hg: hauteur géométrique (m);

 $\mathbf{RQ}^2$ : valeur de la perte de charge au point considère (m);

 $\mathbf{Q}$ : Débit (m<sup>3</sup>/j);

**R** : coefficient quicaractérise la résistance de la conduite (m) ;

$$R = (8*\lambda*L)/(g*\pi*D^5)$$
....(V.3)

# V.6/Recherche du point de fonctionnement

Dans le cas où le point de fonctionnement ne coïncide pas à désirer, des changements s'avèrent obligatoires et cela suivant les variantes ci-après :

### V.6.1/Première variante : réduction ou augmentation du temps de pompage

On garde le point de fonctionnement obtenu, et on cherche un temps de pompage de tel façon à ce que le volume d'eau entrant dans les réservoirs soit le même pour cela on utilise la formule qui suit :

$$T.Q= Constant \qquad (m^3)....(V.4)$$

$$T_1*Q_1 = T_2*Q_2$$

Le nouveau temps de pompage sera :

$$T_2T_2 = T_1 *Q_1/Q_2$$

$$T_1 = T_2 * Q_2/Q_1$$

la puissance abserbée par la pompe sera:

$$P_1 = g * H_2 * Q_2/\eta$$

### V.6.2/DeuxiémeVariante :variation de la vitesse de rotation

Si on a une possibilité de faire varier la vitesse de rotation qui répond aux conditions de travail désirées, c'est à dire, on cherche une vitesse de rotation pour que la courbe H = F(Q) passe par le point désiré P1 (Q1, H1).

$$Q_1/Q_2=N_1/N_2$$
 ..... (V.5)

 $N_1=N_2*Q_2/Q_1$  (tr/min)

La puissance absorbée sera:

$$P=g*H_1*Q_1/\eta$$
 (kw)

# V.6.3/Troisième variante : le vannage

Elle consiste à placer une vanne sur la conduite de refoulement pour créer une perte de charge afin d'obtenir le débit  $\mathbf{Q}_2$ .

$$\mathbf{H}_{3}=\mathbf{H}_{1}+\mathbf{h} \tag{V.6}$$

Avec:

**h**: perte de charge engendrée par vannage : elle représente la distance entre le point de travail desiré et l'intersction de la verticale passant par ce même point avec la caractéristique de la pompe.

la puissance abserbée par la pompe sera:

$$P = g H_3 Q_1/\eta$$

# V.6.4/Quateriame variante :Rognage de la roue de la pompe

La méthode consiste à changer le diamètre de la roue, afin de ramener le point de fonctionnement obtenu au voulu, cette changement sera la lois suivant:

$$Q_1/Q_2=H_1/H_2=(\ D_1/D_2\ )^2$$
.....(V.7)

la puissance abserbée par la pompe sera:

$$P = g H_2 Q_2/\eta$$

# V.7/Choix de pompe

Les critères qui agissent sur le choix des pompes sont :

- ✓ Le débit à refouler ;
- ✓ La hauteur d'élévation de l'eau ;
- ✓ Le rendement de la pompe ;
- ✓ Le coût ;
- ✓ Le type de la pompe ;
- Tronçon (point de piquage-réservoir)

### V.7.1/Caractéristique du tronçon

- O Le débit véhiculé : Q=131/s ;
- o La hauteur géométrique : hg =84,06m;
- o La hauteur manométrique totale : Hmt =99,233m;
- O Diamètre extérieur de conduite D=160mm;

# V.7.2/Caractéristique de la pompe

D'après le logiciel « caprari pump tutor » nous avons opté pour une pompe centrifuge à axe horizontal de type (PM 100 /7c) dont les références sont présentées dans l'annexe (N°01)

- N=1450 tr/min
- o **NPSHr**=1,9m;
- $\circ$   $\eta = 74,1\%$ ;
- le point de fonctionnement :Q2=14,4l/s, Hmt2=103m;
- le point désiré : Q<sub>1</sub>=13l/s, Hmt<sub>1</sub>=99,233m ;

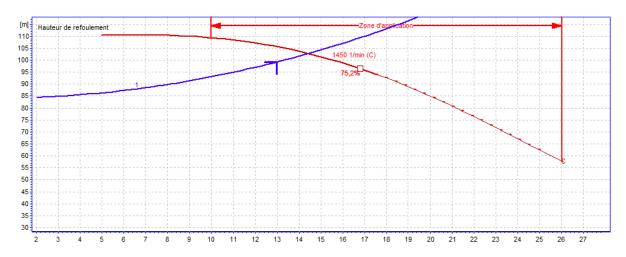



Figure V.4 Courbe de point de fonctionnement

# Remarque

Le point de fonctionnement ne coïncide pas avec le point désiré, voir la courbe

# V.8/Réalisation de point de fonctionnement

V.8.1/Réduction du temps de pompage

Ona  $T_1 = T_2 * Q_2 / Q_1$ 

**T1**=20\*14,4/13=**18,05h** 

 $P = g H_2 Q_2/\eta = (9.81*0,144*103)/0,741=19,63 \text{ kwh}$ 

### V.8.2/Variation de vitesse de rotation

Le point homologue est l'intersection de caractéristique de la pompe  $\mathbf{H} = \mathbf{f}(\mathbf{Q})$  avec lacourbe iso rendement :

L'équation de la courbe isorendement est donnée par la  $H_2=aQ_2^2$ 

H et Q sont les coordonnées du point de fonctionnement désiré alors

$$a = (99,223/13^2) = 0,58712$$

Donc  $H_2=0.58712*Q_2^2$  (l'équation de la courbe isorendement).

L'équation de la caractéristique de la pompe est donnée par  $H=H(Q=0)+bQ_2^2$ 

Le point de fonctionnement de la pompe appartient àla caractéristique, donc il vérifie l'équation précédente donc :  $\mathbf{H}=111+b\mathbf{Q}_2^2$  avec  $\mathbf{b}=(103-111)/(14,4)^2=-0,03858$  D' où

 $H = 111 - 0.03858 * O_2^2$ 

D'où les coordonnées du point homologue :P<sub>3</sub>(Q,H)= (13,319l/s .104, 156m)

 $N_2=N_1*(Q_1/Q_2)=(1450)*(13/13.319)=1415 \text{ tr/min}$ 

La puissance sera  $P = g H_1 Q_1 / \eta$ 

P=(9.81\*13\*99,223)/0,741=17,07 Kwh

# V.8.3/Le vannage

La perte de charge crée par l'étranglement de la vanne de refoulement est

# $H_3=H_1+h$

 $h=H_3-H_1=106-103=3m$ 

La puissance absorbée  $P = g H_3 Q_1 / \eta$ 

P = (9.81\*0.013\*106)/0.741 = 18.24 Kwh

Du point de vue économique nous avons opté pour la  $2^{\text{\'em\'e}}$  variante qui est la réduction de la vitesse de rotation.

# **Conclusion**

Les pompes sont d'une importance capitale dans les projets de refoulement. Elles sont un maillon indissociable avec l'adduction et qui nécessite beaucoup d'attention et un choix précis. Dans notre cas, nous avons opté pour une pompe centrifuge à axe horizontal de type (**PM 100/7C**).

### Introduction

À partir du réservoir, l'eau est distribuée dans une canalisation sur laquelle des branchements seront piqués en vue de l'alimentation en eau des abonnés.

Les canalisations devront en conséquence présenter un diamètre suffisant de façon à assurer le débit maximal afin de satisfaire tous les besoins en eau des consommateurs.

# VI.1/Différents types des réseaux d'alimentation en eau potable

Les différents types des réseaux d'alimentation en eau potable des villes sont les suivants :

- ✓ Réseaux maillé ;
- ✓ Réseaux ramifié;
- ✓ Réseaux combiné (mixte) ;

### VI.1.1/Les réseaux maillés

Les réseaux maillés sont constitués principalement d'une série de canalisation disposée de telle manière qu'il soit possible de décrire des boucles fermées ou maillées Ils sont utilisés en générale dans les zones urbaines

Les avantages des réseaux maillés Il permet une alimentation en route ; c'est-à-dire qu'en cas d'accident sur un tronçon, il poursuite l'alimentation des abonnées en aval situés le long des autres tançons.

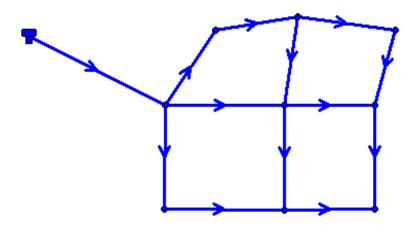



Figure VI.1 Schéma de réseau maillé

# VI.1.2/Réseaux ramifié

Le réseau ramifié est un réseau qui est constitué par une conduite principal et des conduites secondaires (branches), Les conduites ne comportent aucune alimentation en retour.

Il présente l'avantage d'être économique, mais il manque de sécurité et de souplesse en cas de rupture ou un accident sur la conduite principale prive les abonnés en aval, les réseaux ramifiés utilises dans les petites agglomérations rurales.

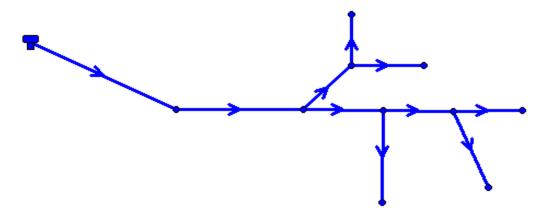



Figure VI.2 Schéma de réseau ramifié

### VI.1.3/Réseaux mixte

Un réseau est dit mixte (maillé-ramifié), lorsque ce dernier constitue une partie ramifié et une autre maillée. Ce type de schéma est utilisé pour desservir les quartiers en périphérie de la ville par les ramifications issues des mailles utilisées dans le centre de cette ville.

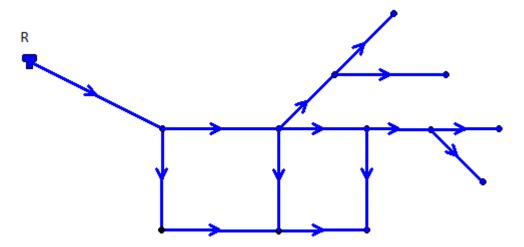



Figure VI.3 Schéma de réseau mixte

# VI.2/Choix du type de matériaux

Le choix du matériau utilisé est en fonction de la pression supportée, de l'agressivité du sol et de l'ordre économique (cout et disponibilité sur le marché) ainsique la bonne jonction de la conduite avec les équipements auxiliaires (joints, coudes, vannes...etc.).[2] parmi les matériaux utilisés, on peut citer : l'acier, la fonte, le PVC et le PEHD.

On a choisi pour notre réseau des conduites en **PEHD** à cause des avantages déjà cités dans le chapitre d'adduction :

# VI.3/Equipement du réseau de distribution [4]

# VI.3.1/Appareils et accessoires du réseau

Les accessoires qui devront être utilisé pour l'équipement du réseau de distribution sont résumes ci-après:

### VI.3.1.1/Les canalisation

Les réseaux de distribution sont constitués de :

- ✓ Conduites principales qui ont pour origine un réservoir ou une station de pompage. Elles assurent l'approvisionnement des conduites secondaires ;
- ✓ Conduites secondaire assurent la liaison entre les conduites principales et les branchements ;

### VI.3.1.2/Robinets vannes

Ils sont placés au niveau de chaque nœud, et permettent l'isolement des différents tronçons du réseau lors d'une réparation sur le réseau.

Ils permettent ainsi de régler les débits, leur manœuvre s'effectue à partir du sol au moyen d'une clé dite « béquille »

Celle-ci est introduite dans une bouche à clé placée sur le trottoir (facilement accessible).

# VI.3.1.3/Bouches ou poteau d'incendie

Les bouches ou les poteaux d'incendie doivent être raccordés sur les conduites capables d'assurer un débit minimum 17 (l/s) avec une pression de 10 m (1 bar).

Ces derniers seront installés en bordure des trottoirs espacés de **200**à **300 m** et répartis suivant l'importance des risques imprévus.

# VI.3.1.4/Clapets

Les clapets ont un rôle d'empêcher l'eau en sens contraire de l'écoulement prévu.

On peut utiliser comme soupape pour éviter le choc à la forte pression.

### VI.3.1.5/Ventouses

Les ventouses sont des organes qui sont placés aux points le plus hauts du réseau pour réduire la formation du vide dans les installations hydraulique. Les ventouses ont pour formation spéciale l'alimentation des poches d'air dans la canalisation des conduites en cas de vidange par pénétration d'air.

### VI.3.1.6/Régulateurs de pression

Ce sont des dispositifs permettant le réglage de la pression d'une façon à ne fournir au réseau de distribution que les pressions désirées.

## VI.3.1.7/Robinets de vidange (décharge)

Ce sont des robinets placés aux endroits des points les plus bas du réseau de distribution pour permettre la vidange qui sera posé à l'intérieur d'un regard en maçonnerie.

# VI.3.2/Pièces spéciales de raccord

Ce sont des composants permettant d'adapter la conduite au tracé prévu au projet

### VI.3.2.1/Les Tés

On envisage des tés à deux ou trois emboîtements permettant le raccordement des conduites présentant des diamètres différents. Il est nécessaire de prévoir un cône de réduction pour les placer.

### VI.3.2.2/Les coudes

Utilisés en cas de changement de direction.

### VI.3.2.3/Les cônes de réduction

Ce sont des organes de raccord en cas de déférents diamètres.

### VI.3.2.4/Les bouts d'extrémités

Pour la mise en place d'appareils hydrauliques

# VI.4/Conception du réseau de distribution

Il y'à plusieurs facteurs qui influent sur la conception du réseau. On peut noter que les plus importantes sont l'emplacement des principaux consommateurs et le relief de la région.

On a choisi pour notre agglomération le réseau ramifié parce qu'on trouvée qu'il est convenable dans notre région.

# VI.5/Principe de tracé d'un réseau ramifié

Pour tracer le réseau, il y a un certain nombre de conditions qu'il faut respecter à savoir:

- ✓ Choisir le lien de consommation principale ;
- ✓ Déterminer le sens principal de masse ou de la quantité totale d'eau ;
- ✓ Tracer les conduites maîtressesparallèles entre elles.Ces conduites doivent être situées sur les côtes géodésiques les plus élevées pour bien répartir l'eau ;
- ✓ Il faut tracer les conduites maîtresses à travers les quartiers lesquelles il faut prévoir les lignes secondaires ;

# VI.6/Calcul hydraulique du réseau ramifié

La détermination des débits dans un réseau ramifié s'effectue de la manière suivante :

- ✓ On détermine la longueur de chaque tronçon du réseau ;
- ✓ On détermine le débit spécifique ;
- ✓ On calcule les débits en route ;

## VI.6.1/Détermination du débit spécifique

Défini comme étant le rapport entre le débit de pointe et la somme des longueurs des Tronçons du réseau. On suppose que les besoins domestiques sont uniformément répartis sur toute la longueur du réseau :

$$Q_{sp} = Q_{pointe}/\Sigma L_i$$
 (VI.1)

Avec;

- Q pointe : débit de pointe calculé dans le chapitre II (l/s) ;
- **Q** sp: débit spécifique (l/s/m);
- $\Sigma$  L<sub>i</sub>: Somme des longueurs des tronçons (m);

| Heure de pointe (11-12h) | Qpointe(1/s)            | 22,0363 |  |
|--------------------------|-------------------------|---------|--|
| Longueur                 | ΣLi (m)                 | 5218,4  |  |
| Débit spécifique         | Q <sub>sp</sub> (l/s/m) | 0,00422 |  |

Tableau VI.1 Détermination de débit spécifique

### VI.6.2/Calcul des débits en route

Le débit en route se définit comme étant le débit réparti uniformément le long d'un tronçon de réseau le débit en route est donné par la formule suivante :

$$Q_{ri}=Q_{sp}*L_{i}$$
 (VI.2)

Avec:

- **Q**<sub>ri</sub>: débit en route dans le tronçon i (l/s);
- **Q**<sub>sp</sub>: débit spécifique (l/s/m);
- L<sub>i</sub>: longueur du tronçon (m);

# VI.6.3/Débit de tronçon

C'est le débit que la conduite du réseau ramifié doit transiter afin de rependre à la demande de ses propres branchements (service en route) et d'en assurer celui demandé par les conduites qu'ils lui dépendent (débit d'aval).

$$Qtr = P + 0.55 Q_r$$
 (VI.3)

Avec;

- **Qtr** : débit de tronçon (l/s) ;
- **P**: débit aval de tronçon (l/s);

# VI.6.4/Calcul des diamètres d'avantage

Connaissant le débit de chaque tronçon on peut calcule son diamètre. On fixe un diamètre pour une vitesse de 1m/s.

Qtr=V\*S donc;  $D = (4*Qtr/\pi*V)^{0.5}$ .....(VI.4)

VI.6.5/Détermination des débits de tronçons et diamètres avantageux (cas de point)

| Twoman  | Li           | Qsp      | Qr     | P       | 0. (1/2) | D. ()                 | Dext |
|---------|--------------|----------|--------|---------|----------|-----------------------|------|
| Tronçon | ( <b>m</b> ) | (l/s/ml) | (l/s)  | (l/s)   | Qtr(l/s) | D <sub>int</sub> (mm) | (mm) |
| R_01    | 1801         | /        | /      | 22,0363 | 22,0363  | 141                   | 160  |
| 01_02   | 228          |          | 0,9628 | 5,7937  | 6,7565   | 96,8                  | 110  |
| 02_03   | 264          |          | 1,1148 | 0,0000  | 0,6132   | 34                    | 40   |
| 02_04   | 182          |          | 0,7686 | 3,9103  | 4,3330   | 79,2                  | 90   |
| 04_05   | 56           |          | 0,2365 | 0,6883  | 0,8184   | 34                    | 40   |
| 05_06   | 57           |          | 0,2407 | 0,0000  | 0,1324   | 16                    | 20   |
| 05_07   | 106          |          | 0,4476 | 0,0000  | 0,2462   | 21                    | 25   |
| 04_08   | 75           |          | 0,3167 | 2,6688  | 2,8430   | 63,8                  | 75   |
| 08_09   | 190          |          | 0,8023 | 0,0000  | 0,4413   | 27,2                  | 32   |
| 08_10   | 58           |          | 0,2449 | 1,6216  | 1,7563   | 53,6                  | 63   |
| 10_11   | 134          |          | 0,5659 | 0,0000  | 0,3112   | 21                    | 25   |
| 10_12   | 86           |          | 0,3632 | 0,6925  | 0,8923   | 34                    | 40   |
| 12_13   | 164          |          | 0,6925 | 0,0000  | 0,3809   | 21                    | 25   |
| 01_14   | 135          |          | 0,5701 | 14,7097 | 15,2798  | 141                   | 160  |
| 14_15   | 100          |          | 0,4223 | 5,5023  | 5,7346   | 96,8                  | 110  |
| 15_16   | 42           | 0.0042   | 0,1774 | 0,8699  | 0,9674   | 42,6                  | 50   |
| 16_17   | 142          | 0,0042   | 0,5996 | 0,0000  | 0,3298   | 21                    | 25   |
| 16_18   | 64           |          | 0,2703 | 0,0000  | 0,1486   | 16                    | 20   |
| 15_19   | 86           |          | 0,3632 | 1,9425  | 2,1422   | 53,6                  | 63   |
| 19_20   | 96           |          | 0,4054 | 0,0000  | 0,2230   | 21                    | 25   |
| 19_21   | 46           |          | 0,1942 | 1,3429  | 1,4497   | 53,6                  | 63   |
| 21_23   | 92           |          | 0,3885 | 0,0000  | 0,2137   | 21                    | 25   |
| 21_22   | 97           |          | 0,4096 | 0,5447  | 0,7700   | 34                    | 40   |
| 22_24   | 74           |          | 0,3125 | 0,0000  | 0,1719   | 16                    | 20   |
| 22_25   | 55           |          | 0,2323 | 0,0000  | 0,1277   | 16                    | 20   |
| 15_26   | 142          |          | 0,5996 | 1,5498  | 1,8796   | 53,6                  | 63   |
| 26_27   | 104          |          | 0,4392 | 0,0000  | 0,2415   | 21                    | 25   |
| 26_28   | 94           |          | 0,3969 | 0,7137  | 0,9320   | 34                    | 40   |
| 28_29   | 89           |          | 0,3758 | 0,3378  | 0,5445   | 27,2                  | 32   |
| 29_30   | 80           |          | 0,3378 | 0,0000  | 0,1858   | 16                    | 20   |
| 14_31   | 159          |          | 0,6714 | 8,1137  | 8,4830   | 110,2                 | 125  |

Tableau VI.2 Débit de tronçon avec les diamètres avantageux...

| 31_32 | 80     |        | 0,3378  | 2,7026 | 2,8884 | 63,8 | 75 |
|-------|--------|--------|---------|--------|--------|------|----|
| 32_33 | 88     |        | 0,3716  | 0,0000 | 0,2044 | 21   | 25 |
| 32_34 | 62     |        | 0,2618  | 2,0692 | 2,2132 | 53,6 | 63 |
| 34_35 | 208    |        | 0,8783  | 0,0000 | 0,4831 | 27,2 | 32 |
| 34_36 | 142    |        | 0,5996  | 0,5912 | 0,9210 | 42,6 | 50 |
| 36_37 | 70     |        | 0,2956  | 0,2956 | 0,4582 | 27,2 | 32 |
| 37_38 | 70     | 0,0042 | 0,2956  | 0,0000 | 0,1626 | 21   | 25 |
| 31-39 | 260,5  | 0,0042 | 1,1000  | 2,1853 | 2,7903 | 63,8 | 75 |
| 39-40 | 60,7   |        | 0,2563  | 0,0000 | 0,1410 | 16   | 20 |
| 39-41 | 232    |        | 0,9797  | 1,9367 | 2,4755 | 63,8 | 75 |
| 41-42 | 73,7   |        | 0,3112  | 0,0000 | 0,1712 | 16   | 20 |
| 41-43 | 257,5  |        | 1,0874  | 1,3386 | 1,9367 | 53,6 | 63 |
| 43-44 | 117    |        | 0,4941  | 0,0000 | 0,2717 | 21   | 25 |
| 43-45 | 200    |        | 0,8446  | 0,0000 | 0,4645 | 27,2 | 32 |
| Total | 7019,4 | /      | 22,0363 |        |        |      |    |

Tableau VI.2 Débit de tronçon avec les diamètres avantageux (suite et fin)

# VI.7/Modélisation et simulation du réseau

Suite à l'essor qu'ont connus les mathématiques appliquées et l'informatique en parallèle, plusieurs logiciels ont été développés dans le but de subvenir aux besoins des ingénieurs et concepteurs dans le domaine de l'hydraulique capables de faire des simulations des calculs fastidieux en temps record. Nous en citons les plus connus : WATERCAD, PICCOLO, PORTEAU et celui que nous allons utiliser EPANET.[6]

## VI.7.1/Présentation du logiciel EPANET

EPANET est un logiciel de simulation du comportement hydraulique et qualitatif de l'eau sur de longues durées dans les réseaux sous pression. Un réseau est un ensemble de tuyaux, nœuds (jonctions de tuyau), pompes, vannes, bâches et réservoirs. EPANET calcule le débit dans chaque tuyau, la pression à chaque nœud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes. Le logiciel est Egalement capable de calculer les temps de séjour et de suivre l'origine de l'eau. [6]

# VI.7.2/Utilisation du logiciel EPANET

Les Etapes classiques de l'utilisation d'EPANET pour modéliser un système de distribution d'eau sont les suivantes:

- ✓ Dessiner un réseau représentant le système de distribution ou importer une description de base du réseau enregistrée dans un fichier au format texte ;
- ✓ Saisir les propriétés des éléments du réseau;

- ✓ Lancer une simulation hydraulique ou une analyse de la qualité;
- ✓ Visualiser les résultats d'une simulation ;
- ✓ Interpréter les résultats ;

### VI.7.3/Modélisation du réseau

EPANET modélise un système de distribution d'eau comme un ensemble d'arcs reliés à des nœuds. Les arcs représentent des tuyaux, des pompes, et des vannes de contrôle. Les nœuds représentent des nœuds de demande, des réservoirs et des bâches.

Dans notre projet la modélisation s'est portée à introduire les différentes données du réseau.

### Au niveau des nœuds

- ✓ L'altitude du nœud par rapport à un plan de référence ;
- ✓ La demande en eau (débit prélevé sur le réseau) ;

# Au niveau des arcs (conduite)

- ✓ les nœuds initial et final;
- ✓ le diamètre:
- ✓ la longueur;
- ✓ le coefficient de rugosité (pour déterminer la perte de charge);

### Au niveau des réservoirs

- ✓ l'altitude du radier (où le niveau d'eau est nul) ;
- ✓ le diamètre (ou sa forme s'il n'est pas cylindrique) ;
- ✓ les niveaux initial, minimal et maximal de l'eau ;

# VI.8/Simulation du réseau

Après la saisie des informations sur le réseau, la simulation peut être lancée. Le logiciel EPANET analyse le comportement du réseau dans les conditions requises et détermine les différentes grandeurs hydraulique (vitesse, débit, pression, charge,...etc).

Après la première simulation nous avons retrouvé des vitesses inférieures à **0,5 m/s**. Nous avons modifié alors quelques diamètres et nous avons effectué une deuxième simulation. Les résultats sont récapitulés dans les tableaux suivants :

| Les<br>arcs | Longueur<br>(m) | Débit (l/s) | Vitesse<br>(m/s) | Pert<br>Charge<br>Unit<br>(m/Km) | Diamètre<br>Int (mm) | Diamètre<br>Ext (mm) |
|-------------|-----------------|-------------|------------------|----------------------------------|----------------------|----------------------|
| Tuyau R-1   | 1801            | 22,04       | 1,41             | 11,7                             | 141                  | 160                  |
| Tuyau 1     | 228             | 6,28        | 1,27             | 19,57                            | 79,2                 | 90                   |
| Tuyau 2     | 264             | 0,56        | 0,61             | 14,91                            | 34                   | 40                   |
| Tuyau 3     | 182             | 4,29        | 1,34             | 28,14                            | 63,8                 | 75                   |
| Tuyau 4     | 56              | 0,81        | 0,57             | 9,73                             | 42,6                 | 50                   |
| Tuyau 5     | 57              | 0,12        | 0,6              | 37,19                            | 16                   | 20                   |
| Tuyau 6     | 106             | 0,22        | 0,65             | 30,01                            | 21                   | 25                   |
| Tuyau 7     | 75              | 2,83        | 1,25             | 30,82                            | 53,6                 | 63                   |
| Tuyau 8     | 190             | 0,4         | 0,69             | 24,31                            | 27,2                 | 32                   |
| Tuyau 9     | 58              | 1,74        | 1,22             | 39,48                            | 42,6                 | 50                   |
| Tuyau 10    | 134             | 0,28        | 0,82             | 45,39                            | 21                   | 25                   |
| Tuyau 11    | 86              | 0,87        | 0,96             | 34,61                            | 34                   | 40                   |
| Tuyau 12    | 164             | 0,35        | 0,6              | 20,7                             | 27,2                 | 32                   |
| Tuyau 13    | 135             | 14,99       | 0,96             | 5,78                             | 141                  | 160                  |
| Tuyau 14    | 100             | 5,71        | 1,16             | 16,41                            | 79,2                 | 90                   |
| Tuyau 15    | 42              | 0,96        | 0,67             | 13,22                            | 42,6                 | 50                   |
| Tuyau 16    | 142             | 0,3         | 0,52             | 14,55                            | 27,2                 | 32                   |
| Tuyau 17    | 64              | 0,14        | 0,67             | 45,49                            | 16                   | 20                   |
| Tuyau 18    | 86              | 2,12        | 0,94             | 18,15                            | 53,6                 | 63                   |
| Tuyau 19    | 96              | 0,2         | 0,59             | 25,22                            | 21                   | 25                   |
| Tuyau 20    | 46              | 1,44        | 0,64             | 9,05                             | 53,6                 | 63                   |
| Tuyau 21    | 92              | 0,19        | 0,56             | 23,4                             | 21                   | 25                   |
| Tuyau 22    | 97              | 0,75        | 0,83             | 25,24                            | 34                   | 40                   |
| Tuyau 23    | 74              | 0,16        | 0,78             | 58,7                             | 16                   | 20                   |
| Tuyau 24    | 55              | 0,12        | 0,58             | 34,9                             | 16                   | 20                   |
| Tuyau 25    | 142             | 1,85        | 1,3              | 43,01                            | 42,6                 | 40                   |
| Tuyau 26    | 104             | 0,22        | 0,63             | 29,03                            | 21                   | 25                   |
| Tuyau 27    | 94              | 0,91        | 1                | 35,86                            | 34                   | 40                   |
| Tuyau 28    | 89              | 0,34        | 0,58             | 17,95                            | 27,2                 | 32                   |
| Tuyau 29    | 80              | 0,17        | 0,6              | 29,57                            | 21                   | 25                   |
| Tuyau 30    | 159             | 8,45        | 1,15             | 12,75                            | 96,8                 | 110                  |
| Tuyau 31    | 80              | 2,87        | 0,9              | 13,46                            | 63,8                 | 75                   |
| Tuyau 32    | 88              | 0,19        | 0,54             | 21,66                            | 21                   | 25                   |
| Tuyau 33    | 62              | 2,2         | 0,98             | 19,34                            | 53,6                 | 63                   |
| Tuyau 34    | 208             | 0,44        | 0,76             | 28,54                            | 27,2                 | 32                   |
| Tuyau 35    | 142             | 0,89        | 0,98             | 34,38                            | 34                   | 40                   |
| Tuyau 36    | 70              | 0,59        | 0,65             | 16,55                            | 34                   | 40                   |

Tableau VI.3 Résultat des arcs obtenus après la simulation...

| Tuyau 37 | 70    | 0,3  | 0,85 | 49,06 | 21   | 25 |
|----------|-------|------|------|-------|------|----|
| Tuyau 38 | 260,5 | 4,52 | 0,92 | 10,75 | 79,2 | 90 |
| Tuyau 39 | 60,7  | 0,13 | 0,64 | 41,5  | 16   | 20 |
| Tuyau 41 | 232   | 3,23 | 1,01 | 16,62 | 63,8 | 75 |
| Tuyau 42 | 73,7  | 0,16 | 0,77 | 58,3  | 16   | 20 |
| Tuyau 43 | 257,5 | 1,88 | 0,83 | 14,61 | 53,6 | 63 |
| Tuyau 44 | 117   | 0,25 | 0,71 | 35,71 | 21   | 25 |
| Tuyau 45 | 200   | 0,42 | 0,73 | 27,1  | 27,2 | 32 |

Tableau VI.3 Résultat des arcs obtenus après la simulation (suite et fin)

|           | Altitude   | Demande    | GI ( )    | Pression     |
|-----------|------------|------------|-----------|--------------|
| Les nœuds | <b>(m)</b> | Base (L/s) | Charge(m) | ( <b>m</b> ) |
| R         | 292,3      | /          | 293,3     | 1            |
| Nœud 1    | 214,32     | 0,7664     | 272,27    | 57,95        |
| Nœud 2    | 207,04     | 1,4231     | 267,83    | 60,79        |
| Nœud 3    | 206,66     | 0,5574     | 263,9     | 57,24        |
| Nœud 4    | 207,04     | 0,661      | 262,76    | 55,72        |
| Nœud 5    | 205,58     | 0,4624     | 262,21    | 56,63        |
| Nœud 6    | 204,32     | 0,1204     | 260,09    | 55,77        |
| Nœud 7    | 207,16     | 0,2238     | 259,03    | 51,87        |
| Nœud 8    | 205,59     | 0,682      | 260,47    | 54,88        |
| Nœud 9    | 195,17     | 0,4012     | 255,85    | 60,68        |
| Nœud 10   | 201,79     | 0,587      | 258,23    | 56,44        |
| Nœud 11   | 194,42     | 0,2829     | 252,15    | 57,73        |
| Nœud 12   | 200,68     | 0,5279     | 255,37    | 54,69        |
| Nœud 13   | 193,86     | 0,3463     | 252,3     | 58,44        |
| Nœud 14   | 213,94     | 0,8319     | 271,49    | 57,55        |
| Nœud 15   | 207,67     | 0,7812     | 269,85    | 62,18        |
| Nœud 16   | 208,04     | 0,5236     | 269,29    | 61,25        |
| Nœud 17   | 208,04     | 0,2998     | 267,23    | 59,19        |
| Nœud 18   | 209,78     | 0,1351     | 266,38    | 56,6         |
| Nœud 19   | 207,29     | 0,4814     | 268,29    | 61           |
| Nœud 20   | 205,85     | 0,2027     | 265,87    | 60,02        |
| Nœud 21   | 207,81     | 0,4962     | 267,87    | 60,06        |
| Nœud 23   | 211,64     | 0,1942     | 265,72    | 54,08        |
| Nœud 22   | 206,55     | 0,4772     | 265,42    | 58,87        |
| Nœud 24   | 208,98     | 0,1562     | 261,08    | 52,1         |
| Nœud 25   | 208,63     | 0,1161     | 263,5     | 54,87        |
| Nœud 26   | 205,25     | 0,7179     | 263,74    | 58,49        |
| Nœud 27   | 206,87     | 0,2196     | 260,72    | 53,85        |
| Nœud 28   | 203,18     | 0,5743     | 260,37    | 57,19        |

Tableau VI.4 Résultat des nœuds après lasimulation...

| Nœud 29 | 208,23 | 0,1689 | 258,77 | 50,54 |
|---------|--------|--------|--------|-------|
| Nœud 30 | 209,8  | 0,1689 | 256,41 | 46,61 |
| Nœud 31 | 212,45 | 1,0546 | 269,46 | 57,01 |
| Nœud 32 | 212,18 | 0,4856 | 268,39 | 56,21 |
| Nœud 33 | 211,94 | 0,1858 | 266,48 | 54,54 |
| Nœud 34 | 211,86 | 0,8699 | 267,19 | 55,33 |
| Nœud 35 | 210,32 | 0,4392 | 261,25 | 50,93 |
| Nœud 36 | 211,17 | 0,2998 | 262,3  | 51,13 |
| Nœud 37 | 211,28 | 0,2956 | 261,15 | 49,87 |
| Nœud 38 | 208,91 | 0,2956 | 257,71 | 48,8  |
| Nœud 44 | 206,85 | 0,247  | 254,87 | 48,02 |
| Nœud 39 | 210,26 | 1,168  | 266,66 | 56,4  |
| Nœud 40 | 210,6  | 0,1282 | 264,14 | 53,54 |
| Nœud 41 | 209,05 | 1,1891 | 262,81 | 53,76 |
| Nœud 42 | 210,6  | 0,1556 | 258,51 | 47,91 |
| Nœud 43 | 208,98 | 1,213  | 259,05 | 50,07 |
| Nœud 45 | 208,99 | 0,4223 | 253,72 | 44,73 |

Tableau VI.4 Résultat des nœuds après la simulation (suit et fin)

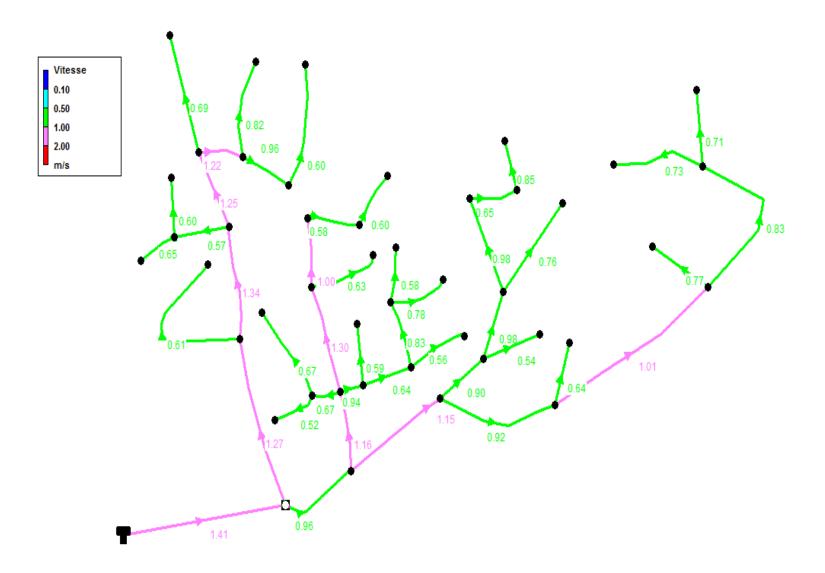



Figure VI.4 Etat des arcs après la simulation

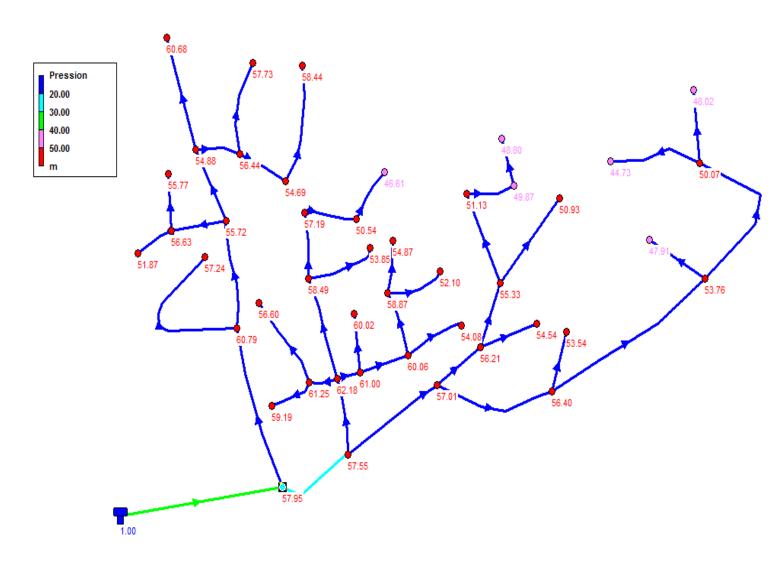



Figure VI.5 Etat des nœuds après la simulation

Chapitre VI Distribution

Les résultats obtenus dans la partie distribution sont récapitulés dans le tableau suivant :

| Diamètre (mm) | Longueur ( mL) |
|---------------|----------------|
| 20            | 384,4          |
| 25            | 887            |
| 32            | 993            |
| 40            | 753            |
| 50            | 298            |
| 63            | 526,5          |
| 75            | 494            |
| 90            | 588,5          |
| 110           | 159            |
| 160           | 1936           |
| Total         | 7019,4         |

Tableau VI.5 Les résultats obtenus dans la partie distribution

### **Conclusion**

Dans cette partie, nous avons adopté un réseau de distribution de type ramifié. Le choix du type desconduites utilisées est porté sur le**PEHD**. La pression nominale et de **10bar**. Le dimensionnement du réseau a été fait manuellement et avec le logiciel **EPANET**. Les diamètres obtenus dans les canalisations sont dans les normes ; Elles varient entre **20** à **160mm**. Les vitesses d'écoulement sont comprises entre **0,5** et **1,5 m/s** et les pressions sont comprise entre **10** et **60 m**.

### PARTIE II: Assainissement des Eaux Usées

# Chapitre I: Généralités sur les réseaux d'assainissement

### Introduction

Par définition un réseau d'assainissement est un ensemble d'ouvrages hydrauliques dont le principal objectif est d'évacuer les eaux usées et pluviales loin de l'agglomération. Leur bon fonctionnement permet l'évacuation des effluents urbains à condition de respecter les exigences techniques et sanitaires suivantes :

- ✓ Permettre la protection de la santé publique et la préserver ;
- ✓ Assurer la protection de l'agglomération contre les inondations ;
- ✓ Préserver l'environnement en l'occurrence le milieu naturel contre les rejets des eaux usées :

### I.1/Origine et nature des eaux usées

La nature des matières polluantes contenues dans l'effluent urbain dépend de l'origine de ces eaux usées.

D'une manière générale, on distingue trois types d'eaux usées :

- 1) Les eaux usées d'origine domestique ;
- 2) Les eaux usées d'origine industrielle ;
- 3) Les eaux de ruissellement;

### I.1.1 /Les eaux usées d'origine domestique

Les eaux usées d'origine domestique sont les eaux évacuées après usage, elles comprennent :

- ✓ Eaux vannes;
- ✓ Eaux de ménage, de bains et de douches ;

### I.1.2/Eaux usées d'origine industrielle

Ce sont des eaux proviennent des diverses usines de fabrication ou de transformation. Elles peuvent contenir des substances organiques ou minérales.

### I.2/Définition des différents systèmes [7]

Plusieurs systèmes d'évacuation des eaux résiduaires et des eaux pluviales sont susceptibles d'être mis en service, on distingue :

### I.2.1/Le système unitaire

Ce type de réseau est destiné à évacuer l'ensemble des eaux usées et pluviales par un unique réseau, généralement pourvu de déversoirs permettant, en cas d'orage, le rejet d'une partie des eaux, par surverse, directement dans le milieu naturel.

Le système unitaire présente l'avantage de coût faible et de la simplicité, puisqu'il suffit d'une canalisation unique dans chaque voie publique et d'un seul branchement pour chaque bloc d'immeuble ou parcelle. Il fournit également l'avantage de collecter les eaux de «petite pluie» fortement polluées.

Il présente, toutefois, un inconvénient majeur qui consiste en des déversements parfois intempestifs qu'il convient de gérer au plus juste.



Figure I.1 Schéma d'un système unitaire

### I.2.2/Le système séparatif

Le système séparatif consiste à fournir chaque réseau un effluent spécifique. Un premier réseau est chargé de l'évacuation des eaux usées domestiques (eaux de vannes et eaux ménagères) et des effluents industriels, sous condition qu'ils aient des caractéristiques analogues aux eaux domestiques. Le deuxième réseau assure l'évacuation des eaux pluviales directement rejetées dans le milieu récepteur. Ce système présente, par ailleurs, certains avantages :

- Il assure à la station d'épuration un fonctionnement régulier ;
- Il permet d'évacuer rapidement et efficacement les eaux les plus polluées en sauvegardant la nature de l'effluent urbain jusqu'au dispositif de traitement ;
- Il permet le recours à des postes de relèvement ou refoulement lorsque le relief l'impose.

Toutefois, le système séparatif présente quelques inconvénients comme le coût qui pourrait être plus élevé par rapport au système unitaire, la nécessité d'effectuer des contrôles permanents pour supprimer les inversions du branchement.

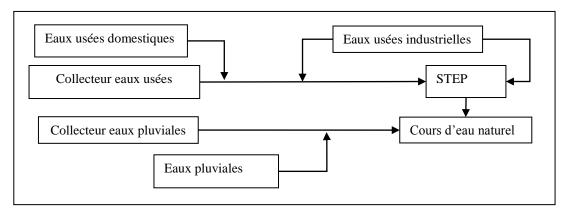



Figure I.2 Schéma d'un système séparatif

### I.2.3/Le système pseudo-séparatif

Dans ce type, la collecte des eaux pluviales de toiture et des espaces privés est raccordée directement avec celle des eaux usées, l'avantage de ce système réside dans la non séparation des eaux de ruissellement et les eaux usées qui découle d'un même immeuble. Ce réseau est donc conçu pour limiter les problèmes de la faiblesse de la vitesse d'écoulement pour le réseau d'eau usée et par conséquent faciliter la vérification des conditions d'autocurage.

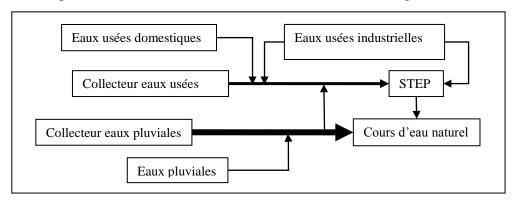



Figure I.3 Schéma d'un système pseudo-séparatif

### I.3/Choix du type de réseaux

Dans notre cas, nous avons opté pour un réseau d'assainissement de type séparatif eau usée pour les raisons diverses comme :

- ✓ Relief et situation topographique du site ;
- ✓ L'occupation spatiale des habitations ;
- ✓ Diminuer la charge sur la station d'épuration projetée.

### I.4/Les éléments constitutifs du réseau d'assainissement

Un réseau d'assainissement est constitué de deux types d'ouvrages :

- Les ouvrages principaux ;
- Les ouvrages annexes ;

### I.4.1/Les ouvrages principaux

C'est un réseau d'ouvrages principalement souterrain. Dans les sections suivantes, nous allons définir ces ouvrages en fonction de leurs formes et des matériaux qui les constituent.

### I.4.1.1/Types de canalisations

### A/Conduites en fonte

Les conduites en fonte sont rarement utilisées en assainissement, sauf dans le cas où on traverse des terrains hydrominéraux.

### B/Conduites en amiante-ciment

L'amiante est un matériau contexture fibreuse (silicates de magnésium, sodium ...etc.) que l'on mélange au ciment d'où l'appellation amiante-ciment.

Elles sont fabriquées en usine et pour les assemblages, on utilise les joints glissants (sans emboîtement). Ces joints sont collés par des manchons en amiante-ciment.

Ces conduites se trouvent avec des longueurs de 0.5 à 5m et de diamètres variant entre 80 et 500mm. Leur inconvénient c'est l'indisponibilité sur le marché de diamètres importants ainsi que le caractère cancérigène.

### C/Conduites en grès

Ces conduites possèdent des avantages d'être très imperméables et inattaquables par les agents chimiques sauf l'acide fluorhydrique, l'inconvénient de ces conduites c'est qu'elles résistent mal aux tassements différentiels et aux mouvements fléchissant.

### D/Conduites en plastique

Elles sont fabriquées en polyéthylène, on distingue deux catégories :

- ✓ Les conduites en matières thermodurcissables :
- ✓ Les conduites en matières thermoplastiques ;

Elles présentent les caractéristiques suivantes :

- ✓ Résistance aux chocs ;
- ✓ Résistance à l'attaque par les agents chimiques ;
- ✓ Résistance au gel ;
- ✓ Résistance à la déformation ;
- ✓ Facilité de pose et de transport ;

Ces conduites on ne les utilise pas, car elles ne sont pas disponibles en diamètres importants.

### E/Conduites en béton

Ces conduites sont fabriquées par les procédés suivants :

- ✓ La vibration ;
- ✓ La centrifugation;
- ✓ Le compactage ;

Les tuyaux en béton sont classés selon trois critères à savoir :

- ✓ Leur utilisation (circulaire ou ovoïde) pour les réseaux d'assainissement ;
- ✓ Leur résistance à l'écrasement ;
- ✓ Leur nature (Tuyaux armés ou non armés);

Pour les conduites en béton armé la largeur utile est de 2.5 m, possédant deux séries des Fers disposés comme suite :

- ✓ Cercles soudés à écartement maximal de 15cm;
- ✓ Génératrice régnant sur toute la largeur du tuyau.

### I.4.1.2/Les joints

Les joints utilisés pour les conduites sont :

### A/Joint type « ROCLA »

Il est valable pour toutes les conduites et assurant une bonne étanchéité contre les eaux véhiculées et les eaux externes.

### B/Joint « torique »

Il est utilisé pour des diamètres variants entre **700** et **900mm**, pour les sols faibles. Il assure une bonne étanchéité pour les faibles pressions.

### C/Joint à demi- emboîtement

Il est utilisé dans les terrains stables, avec des pressions faibles, Il est à éviter pour des terrains à forte pente.

### D/Joint à collet

Utilisé pour des terrains à faibles pentes et si la pression augmente, le joint ne résiste pas à la charge due à l'eau.

### E/Joint plastique

A présence des bitumes il assure une bonne étanchéité même si la conduite est en charge, ne pas utilisé pour les sols qui tassent.

### I.4.2/Les ouvrages annexes

Ces ouvrages permettent l'entretient rationnelle et l'exploitation des collecteurs des réseaux d'égout. Les principaux sont :

- ✓ Regard de visite;
- ✓ Regard de façade ;
- ✓ Regard de chute ;

### A/Regard de visite

Pour pouvoir effectuer l'entretien et le curage régulier des canalisations, on prévoit les regards de visite assez rapprochés, ils permettent l'accès à l'ouvrage l'installation d'appareil de ramonage et d'extraction, la cuvette à un diamètre égal à celui de collecteur, c'est le type de regard le plus fréquemment construite.

### B/Regards de façade

Il est destiné à raccorder la tuyauterie de sortie d'un immeuble à la canalisation de branchement au réseau public. Son implantation est réalisée sous trottoir en limite de propriété

### C/Regards de chute

La voirie du site présente des profils très prononcés où les pentes sont assez fortes, d'où la nécessité de concevoir des regards de chute afin d'apaiser les vitesses d'écoulements dans les tronçons, d'une manière à avoir des vitesses inférieures ou égales à la vitesse admissible. ( $V_{max}$ =4 m/s).

### I.5/Rôle des regards

Ils ont un rôle permettant:

- ✓ La visite de réseau ;
- ✓ Le débouchage et le nettoyage des réseaux ;
- ✓ L'aération des ouvrages ;
- ✓ Le raccordement des conduites ;

### I.6/Espacement et emplacement des regards

L'emplacement est la distance entre deux regards est fonctionné de la topographie et de la nature des ouvrages. L'installation des regards sur la canalisation est obligatoire dans les cas suivants :

- Point de jonction ;
- Changements de direction;
- Changement de pente;
- Aux pointes de chute ;

### **Conclusion**

Dans ce chapitre, nous avons défini la nature des eaux usées que nous allons évacuer, ainsi que quelques généralités sur les types des réseaux d'assainissement.

Pour assurer une durée de vie maximale et une exploitation rationnelle de notre réseau d'assainissement, il est nécessaire de faire un choix des conduites qui le constituent et ceci selon la forme et le matériau par lequel elles sont construites. Dans la suite du chapitre II, nous allons présenter la méthodologie de dimensionnement du réseau d'assainissement séparatif d'eau usée ainsi que les résultats du dimensionnement selon les normes établies.

# Chapitre II: Dimensionnement du réseau d'Eau Usée

Introduction

Dans le but de dimensionner les collecteurs du réseau d'assainissement, on doit

obligatoirement passer par l'évaluation de la quantité des eaux rejetées par les différents usages.

Le dimensionnement du réseau d'eau usée réclame préalablement, la recherche de

nombreux renseignements à savoir l'urbanisation prévue.

II.1/Tracé en plan du réseau

Premièrement, il y a lieu de déterminer le tracé du réseau à projeter ainsi que la

détermination des points des rejets nécessaires.

II.2/Critères de tracé [8]

Les critères du tracé dépendent de plusieurs facteurs à savoir :

✓ des longueurs optimales des conduites ;

✓ Suivre le réseau de voirie et ceci pour plusieurs raisons, nous citerons entre autres

possibilités d'entretien, de diagnostic, de réfections faciles,...etc.;

✓ Avoir un écoulement gravitaire ;

✓ Converger tous les écoulements vers un ou plusieurs exutoires (bassin décantation) :

✓ Relier toutes les occupations du sol au réseau par un branchement gravitaire ;

✓ Economie de réalisation (minimiser le linéaire du réseau) ;

II.3/Profil en long

Un profil en long est une représentation longitudinale du réseau, le long de parcours

suivi. En utilisant une échelle appropriée, on trace le profil pour avoir toutes les côtes

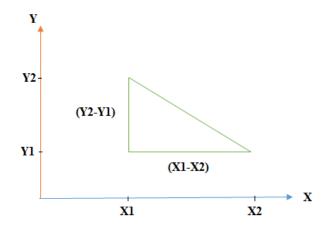
indispensables pour la réalisation du réseau d'assainissement (côte du terrain naturel, côte du

projet et longueurs des conduites...). (Voir planches N°03)

II.4/Schémas de réseau

Le schéma de réseau (voir planche N°02) est l'ensemble qui englobe les éléments :

✓ Le sens d'écoulement ;


✓ Le tracé du réseau avec tous les nœuds ;

II.5/Exemple de calcul des pentes

Exemple de calcul pour le bassin A collecteur (**R44-R45**)

Conduite: R44-R45

57



### • Calcul de distance partielle

**D**partielle=
$$\sqrt{(X2 - X1)^2 + (Y2 - Y1)^2}$$

$$D_{\text{partielle}} = \sqrt{(3348,6254 - 3336,1187)^2 + (111549,4578 - 11496,9714)^2}$$

**D**partielle= 54,10 m.

• Calcul de distance cumulée

Dcumulé =Dparrielle1+ Dparrielle2+... +Dparrielle (n)

**D**cumulé=67,3+22,3+54,1 =143,7 m.

• Calcul de pente

I= (CoteRadier44-Cote Radier45)/Dpartielle

I= (212,22-207,45)/54,1=0,0689 m/m

• Calcul de profondeur

P = Côte tamp44-Côte radier45

**P** =212,02-211,22=0,8 m.

Tous les résultats sont reportés dans les tableaux (voir annexe 02)

### II.6/Débits d'eau usée

L'évaluation de La quantité des eaux usées à évacuer journellement s'effectuera à partir de la consommation d'eau par habitant. L'évacuation quantitative des rejets est en fonction du type de l'agglomération et diverses catégories d'occupation du sol.

### II.6.1/Evaluation du débit des eaux usées domestiques [08]

La méthode de dimensionnement hydraulique d'un collecteur drainant une zone que nous venons d'exposer est :

### II.6.1.1/Estimation du débit moyen actuel

Les débites moyens actuels se déterminent à partir du débit moyen de la consommation suivant cette formule :

$$Q_{ma} = \frac{Da \times (1 - Pa) \times Nhab.a}{86400}$$
 (II.1)

Avec:

- Qma: débit moyen actuel (l/s);
- **Da**: dotation actuel qui est évaluée à 150(l/hab/j);
- **Pa**: pertes actuels (10%);
- **Nhab.a**: nombre d'habitant actuel;

### II.6.1.2/Estimation du débit moyen futur

Cette équation est déterminée à partir du débit moyen de la consommation :

$$Q_{mf} = \frac{Da \times (1 - Pf) \times Nhab.f}{86400}$$
 (II.2)

Avec:

- **Q**<sub>mf</sub>: débit moyen futur (l/s);
- **Da**: dotation futur qui est évaluer à 150(L/j/h);
- **Pa**: pertes futur (20%);
- **Nhab.f**: nombre d'habitant futur;

### II.6.2/Evaluation des débits d'eaux usées des équipements

Le débit des eaux usées des équipements égale **0,9** de débit moyen consomme par les équipements actuellement et **0,8** de débit moyen consomme par les équipements à l'horizon d'étude.

### II.6.3/Estimation du débit de point d'EU

Il est évalué par la formule :

$$Q_p = P \times Q_{mf} \tag{II.3}$$

tel que 
$$P = a + \frac{b}{\sqrt{Q_{mf}}}$$
 (II.4)

Avec:

**Qp** : débit de point (l/s)

**Q**<sub>mf</sub>: débit moyen futur (l/s)

 $\mathbf{P}$ : coefficient de point ( $\mathbf{P} \leq 4$ )

 $\mathbf{a} = 1,5$ : paramètre exprimant la limite inférieure à ne pas dépasser lorsque le débit moyen futur est très grand.

b = 2.5: paramètre exprimant l'augmentation de Qp lorsque  $Q_{mf}$  est très petit.

### II.7/Dimensionnement du réseau

### II.7.1/Détermination des débits moyens actuels et débit de point de chaque sous bassin

Les résultats des calculs des débits moyens domestiques actuels sont donnés dans le tableau ci- dessous :

| Sous   | N°          | Pertes  | Qma dom | Qma éq | Qma    | P      | Qpa    |
|--------|-------------|---------|---------|--------|--------|--------|--------|
| Bassin | D'habitants | Actuels | (l/s)   | (l/s)  | (l/s)  | 1      | (l/s)  |
| A      | 1015        | 0,1     | 1,5859  | 0,5427 | 2,1286 | 3,2135 | 6,8404 |
| В      | 542         | 0,1     | 0,8469  | /      | 0,8469 | 4      | 3,3875 |
| Totale | 1557        |         |         |        |        |        |        |

Tableau II.1 Débit moyen actuel et débit de point de chaque sous bassin

### II.7.2/Détermination des débits moyens futur et débit de point de chaque sous bassin

Les résultats des calculs des débits moyens domestiques actuels sont donnés dans le tableau ci- dessous :

| Sous   | N°          | Pertes | Qmf dom | Qmf éq | Qmf    | P      | Qpf     |
|--------|-------------|--------|---------|--------|--------|--------|---------|
| Bassin | D'habitants | Futurs | (l/s)   | (l/s)  | (l/s)  | 1      | (l/s)   |
| A      | 2126        | 0,2    | 2,9528  | 1,1367 | 4,0894 | 2,7362 | 11,1895 |
| В      | 1135        | 0,2    | 1,5764  | /      | 1,5764 | 3,4911 | 5,5033  |
| Totale | 3261        |        |         |        | 1      |        |         |

\_\_\_\_\_\_ Tableau II.2 Débit moyen futur et débit de point de chaque sous bassin

### II.7.3/Calcul des débits spécifique d'un sous bassin

On a la formule suivante :

$$\mathbf{q_{s}} = \frac{\mathbf{Qmf}}{\sum \mathbf{Li}} \tag{II.5}$$

Avec:

**q**s: débit spécifique (l/s/m);

**Qmf**: débit moyen futur de sous bassin (1/s);

∑Li: La somme des longueurs des tronçons du chaque sous bassin (m);

| Sous Bassin | Qmf(l/s) | Longueurs (m) | Débit unitaire (l/s/ml) |  |  |
|-------------|----------|---------------|-------------------------|--|--|
| A           | 4,0894   | 4180,8        | 0,000978                |  |  |
| В           | 1,5764   | 1695,9        | 0,000930                |  |  |

Tableau II.3 Débit unitaire de chaque sous bassin

### II.7.4/Calcul du débit de route pour chaque tronçon

 $Q_{ri}=q_s \times Li$  (II.6)

Avec:

- **Qri**: débit de route du tronçon « i » (l/s);
- **q**<sub>s</sub>: débit spécifique (l/s/m);
- Li: longueur du tronçon « i » (m);

### II.7.5/Calcul débit moyen entrant

$$Q_{me} = \sum Qri \qquad (II.7)$$

Avec:

- Qme : débit moyen entrant au tronçon (l/s) ;
- **Qri**: débit de route au tronçon « i » (l/s);

### II.7.6/Calcul de débit moyen sortant

$$Q_{ms} = Q_{me} + Q_{ri}$$
 (II.8)

Avec:

- Qms: débit moyen sortant au tronçon (1/s);
- Qme: débit moyen entrant au tronçon (1/s);
- **Qri**: débit de route au tronçon « i » (l/s);

### II.7.7/Calcul du coefficient de pointe entrant et sortant

Ce coefficient de point Cp est donné par la formule empirique suivant :

$$C_{pe}=a+\frac{b}{\sqrt{Q_{me}}}$$

$$C_{ps}=a+\frac{b}{\sqrt{Q_{ms}}}$$

• Qme, Qms: débit moyen journalier d'EU en (1/s)

Les valeurs a=1,5 et b=2,5.

### II.7.8/Calcul débit de point entrant

Le calcul se fait par la formule suivante :

### Qpei=Cpei × Qmei

Avec:

- **Qpei** : débit de point entrant de la conduite « i » (l/s) ;
- Cpei : coefficient de point entrant ;
- Qmei : débit moyen entrant au tronçon « i » (l/s)

### II.7.9/Calcul débit de point sortant

On ce calcul par la formule suivante :

### Qps'i=Cpsi × Qmsi

Avec:

- **Qps'i**: débit de point sortant de la conduite « i » (l/s);
- Cpsi: coefficient de point sortant;
- **Qmsi**: débit moyen sortant au tronçon « i » (l/s);

### II.7.10/Calcul du débit de pointe pour chaque tronçon

Le débit de pointe est la somme des deux débits de pointe entrant et sortant devisant par deux.

Ce calcul se fait par la formule suivante :

$$\mathbf{Qpi} = \frac{(\mathbf{Qpei} + \mathbf{Qpsi})}{2} \tag{II.9}$$

### II.7.11/Détermination des diamètres des conduites

Après avoir tracé le profil en long on va déterminée les pentes, et les diamètres des conduites.

o Exemple de calcul

Pour le sous bassin A

Le tronçon R72-R75

La longueur LR72-R75=65,8 m

• Calcul du débit spécifique

$$q_s = \frac{Qmf}{\sum Li} = \frac{4,0894}{4185.5} = 0,000977 \text{ (l/s/ml)}$$

• Calcul débit de route

$$Qr(72-75)=qs \times L(72-75)=0,000977\times65,8=0,0643 (l/s)$$

• Calcul de débit moyen entrant

$$Q_{mei} = \sum_{l} Q_{ri} = 1,5168 (l/s)$$

$$Q_{msi} = Q_{mei} + Q_{ri} = 1,5811(1/s)$$

• Calcul le coefficient de point entrant et sortant

$$Cpe=1,5+\frac{2.5}{\sqrt{Qme}}$$

$$Cpe=1,5+\frac{2.5}{\sqrt{1,5168}}=3,53$$

$$Cp_{S}=1.5+\frac{2.5}{\sqrt{Qms}}$$

$$Cp_{S}=1,5+\frac{2.5}{\sqrt{1,5811}}=3,884$$

• Calcul débit de point entrant

**Qpe=Cpe**× **Qme** 

$$Qpe=3.53 \times 1.5168 = 5.3541(l/s)$$

• Calcul débit de point sortant

$$Op_s = 3.884 \times 1.5811 = 5.5151 (l/s)$$

• Calcul du débit de pointe

$$Qp = \frac{(Qpe+Qps)}{2}$$

$$Qp = \frac{(5,3541+5,5151)}{2} = 5,4346 \text{ (l/s)}$$

• Calcul du diamètre

D'après l'abaque de **BAZIN** on a trouvé les diamètres qui sont égaux à **200** (mm)

Tous les résultats sont reportés dans les tableaux (voir annexe  $N^{\bullet}$  03)

### II.8/Vérification des conditions d'auto curage de réseau

L'écoulement des eaux dans le réseau est un facteur très important à considérer lors de la conception du réseau. Il obéit à un certain nombre de conditions [9]

### II.8.1/1 ére condition d'autocurage

Une vitesse d'écoulement supérieur ou égale à **0,7 m/s** (à la rigueur égale **0,5 m/s**) pour une hauteur de remplissage égale a **0,5** du diamètre.

$$H=0,5\emptyset$$
 V= 0, 7 m/s .....(II.10)

### II.8.2/2 éme condition d'autocurage

Pour un réseau d'eau usée, il faut assurer une vitesse d'écoulement pour empêcher les dépôts, la vitesse minimale à retenir dites d'auto-curage doit être supérieur ou égale à 0,3m/s.

- Qma (SB): débit moyen actuel de sous bassin (l/s);
- $\sum \mathbf{L}$ : La somme des longueurs de sous bassin (m);

Li: la longueur de tronçon i (m);

**♣** Calcul le rapport de débit de chaque tronçon par la formule suivante :

$$\mathbf{RQ} = \frac{\mathbf{Qmaci}}{\mathbf{Qps}} \tag{II.16}$$

### Chapitre II Dimensionnement du réseau d'assainissement séparatif d'eau usée

Avec:

Ro: rapport de débit;

**Q**maci: débit moyen actuel corrige de tronçon i (1/s);

**Qps**: débit à pleine section (l/s);

- **♣** Détermine le rapport des hauteurs à partir l'abaque de MANNING
- **♣** Calcul la hauteur de remplissage par la formule suivante :

$$\mathbf{H}=\mathbf{R}_{\mathbf{h}} \mathbf{x} \mathbf{\emptyset}$$
 ..... (II.17)

Avec:

**H**: hauteur de remplissage (m);

**Rh**: rapport de hauteur;

Ø: diamètre de la conduite (m);

o Exemple de calcul de vérification les trois conditions d'auto curage

On a pris l'exemple de calcul pour le sous bassin A Le tronçon (R24-R77);

- Longueur L=67m;
- Diamètre Ø=200mm;
- La pente I=0,01 m/m;

**Qps**= 301/s (à partir l'abaque de BAZIN);

$$\mathbf{V_{ps}} = 4 \times \mathbf{Qps} / (\pi \times \mathbf{\emptyset}^2) = 4 * 0,03 / (3,14 * 0,2^2) = \mathbf{0,9554} \text{ m/s}$$

• Verification de 1<sup>er</sup> condition

$$(\mathbf{R_h} = 0.5) \rightarrow \text{Abaque de Manning} \rightarrow (\mathbf{R_v} = 1.02)$$

$$V=V_{ps} \times R_{v} = 0.9554 \times 1.02 = 0.9745 \text{ m/s}$$

La premier condition vérifiée car  $V \ge 0.7$  m/s

• Verification de 2<sup>eme</sup> condition

$$(\mathbf{R}_{\mathbf{h}} = 0.2) \rightarrow \text{Abaque de Manning} \rightarrow (\mathbf{R}_{\mathbf{V}} = 0.6)$$

$$V = Vps X Rv = 0.9554 X 0 .6 = 0.5732 m/s$$

La deuxième condition vérifiée car  $V \ge 0.3$  m/s

- Vérification de 3<sup>eme</sup> condition
- Calcul débit money actuel corrigé

$$Q_{mac} (R24-R77) = Q_{ma} (SB A) - \frac{Q_{ma}(SBA)}{\sum L} \times \frac{L(R24-R77)}{2}$$

Q<sub>mac</sub> (R24-R77) =2,1286 - 
$$\frac{2,1286}{4180,6} \times \frac{67}{2}$$
 =2,1115 l/s

• Calcul le rapport  $\mathbf{R}_q$ 

$$R_q = \frac{Qmac(R24-R77)}{Qps(R24-R77)} = \frac{2,1115}{30} = 0,07$$

• Détermine le rapport Rh

**R**h=0,15 (à partir l'abaque de MANNING)

• Calcul la hauteur de remplissage

$$H=R_h \times \emptyset =0.15 \times 0.002 =0.03m$$

La troisièmes condition n'est pas vérifiée car H≤0,2m

Tous les résultats sont portés dans les tableaux (voir l'annexe N°04)

### Remarque:

Pour la troisième condition d'auto curage n'est pas vérifiée pour les deux sous bassin ; on est obligé de recourir à certaines solutions curatives telles que :

- ✓ Installation des réservoirs de chasse
- ✓ Branchement des gouttières dans le réseau
- ✓ Injection périodique d'un volume d'eau en charge à l'amont de la conduite

En ce qui nous concerne, nous avons adopté l'installation des réservoirs de chasse.

### II.10/Calcul de nombre de réservoir de chasse

Pour que les réservoirs assurent dans les meilleures conditions leur fonction, ils doivent être espacés au maximum de 100m.

$$N_{moy} = LT/D_{max}$$
 (II.18)

N : nombre de réservoir de chasse ;

LT : longueur des conduite du réseau ;

**D**: distance maximale recommandé (m);

| N°de SB | longueur | N°de réservoir |
|---------|----------|----------------|
| SB A    | 4239,6   | 43             |
| SB B    | 1795,8   | 18             |
| Totale  | 6035,4   | 61             |

Tableau II.4 Le nombre de réservoir de chasse des sous bassin

### Chapitre II Dimensionnement du réseau d'assainissement séparatif d'eau usée

### II.10.1/Calcul de capacité de réservoir de chasse

$$V_r=0,1*(\pi*\emptyset^2/4)*L$$
 (II.19)

$$\boldsymbol{V_r}\!=\!\!0,\!1\!*\!3,\!14\!*\!00,\!2^2\!\boldsymbol{X}100/4\!\!=\!\!\boldsymbol{0,\!314m^3}\!\!=\!\!\boldsymbol{350}\;\boldsymbol{L.}$$

### II.10.2/Calcul du volume d'eau annuel nécessaire

$$\sum_{i=1}^{61} Vri = 61x 350 = 21350 L.$$

On doit d'abord fixer la fréquence de fonctionnement des réservoirs Si on choisit un fonctionnement tous les 48 heures (1fonctionnement /02 jours), on aura

 $V_{r annuel}$ =21350 x365/2=3896375 l=**3896,375** m<sup>3</sup>

### Conclusion

A travers ce chapitre, nous avons présenté l'essentiel de la méthodologie de dimensionnement du réseau d'assainissement séparatif d'eau usée ainsi que les conditions aux limites de la vitesse d'écoulement (conditions d'autocurage). Les résultats de dimensionnement du réseau on révélés un diamètre 200 mm pour tout le réseau. Les deux premières conditions d'autocurages se révèlent vérifiés, par contre le réseau d'assainissement tel qu'il est conçu ne vérifie pas la troisième condition d'autocurage. Cet état de fait revient principalement à la faiblesse de la charge hydraulique à l'intérieur des conduites qui est conditionnée par un dispositif d'occupation de sol très éparse.

## Chapitre III : Dimensionnement Bassin de Décantation

### Introduction

Les eaux usées domestiques sont issues des habitations. Elles se répartissent en eaux ménagères, qui sont généralement chargées de détergents, de graisses, de solvants, de débris organiques, et les eaux de vannes chargées de diverses matières organiques azotées.

### III.1/Définition [10]

Le bassin de décantation est un ouvrage hydraulique où l'eau repose. De ce fait, les matières solides qu'elle contient en suspension dont la densité est supérieure à celle de l'eau, se déposent au fond du bassin et l'eau claire repart par débordement. Cet ouvrage est utilisé pour réduire la charge polluante interceptée par les matières en suspension des eaux pluviales et des eaux usées. Le passage des eaux usées par un bassin de décantation permet d'éliminer 60 à 90 % des matières en suspension ainsi que 30 à 35 % des matières organiques.

### III.2/Type de matières à décanter [8]

Les matières en suspensions présentent dans l'eau sont deux types, à savoir :

- ✓ Les particules dites grenues qui sous l'action de la gravité se décantent indépendamment les unes des autres avec une vitesse de chute constante.
- ✓ Les particules coalescentes dont le poids et le volume augmentent au fil du temps, cela est dû au regroupement de ces particules lors de la décantation.

### III.3/Principe de la décantation [8]

Une réduction continue de la vitesse d'écoulement oblige les particules en suspension, floculées à se déposer sous forme de boue.

### III.4/Géométrie de décanteur [11]

Dans un souci de simplicité technique, nous avons choisi un décanteur longitudinal qui demande peu de maintenance et une main d'œuvre peu qualifiée.

La forme rectangulaire correspondant au milieu hydraulique, qui donne un rapport de 1 pour 3 entre la largeur et la longueur de l'ouvrage de décantation. Les décanteurs en général, sont allongés autant que possible dans la limite de 80m avec une profondeur comprise entre 1,5 et 2m (exceptionnellement 3m).

Pour assurer un écoulement laminaire stable en filets parallèles, il faut noter qu'une durée de traversée supérieur à **3 heures** engendrerait des fermentations, ce qui nuirait au rendement de la décantation du fait de la remontée des boues déposées par la formation de bulles gazeuses.

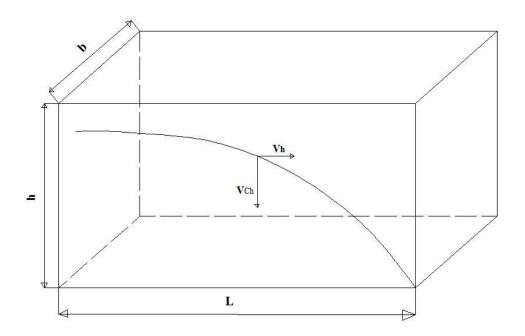



Figure III.1. Schéma d'un bassin de décantation

### III.5/Dimensionnement du bassin de décantation

Le principe de dimensionnement du bassin repose sur la détermination de sa longueur(L), sa largeur (b) et sa hauteur (h), de telle sorte que la condition de la décantation soit vérifiée (c'est -à-dire : le temps de chute ( $t_{ch}$ ) soit inférieur au temps de séjour ( $t_{sej}$ ). [10]

$$T_{ch} < t_{sej}$$
 ..... (III.01)

Les particules, dans un décanteur, sont animées d'un mouvement uniforme dont le vecteur a pour composante horizontale  $(V_h)$  la vitesse de l'eau dans le bassin décanteur, et pour composante verticale  $(V_{ch})$  la vitesse de chute.

De ce principe on aura:

$$V_{ch} = h/t_{ch} \longrightarrow t_{ch} = h/V_{ch}$$
 (III.02)
$$V_{h} = L/t_{sej} \longrightarrow t_{sej} = L/V_{h}$$
 (III.03)
$$De (III.1), (III.2) \text{ et (III.3) on déduit :}$$

$$h/V_{ch} < L/V_{h}$$
 (III.4)
$$On \text{ a:}$$

$$S_{t} = h*b$$

$$S_{t} = Q/V_{h}$$

$$D' \text{ où :}$$

$$V_{h} = Q/(h*b)$$
 (III.5)

Avec:

St: Section transversale du bassin (m<sup>2</sup>);

 $\mathbf{Q}$ : débit à traiter (m<sup>3</sup>/s);

De (III.4) et (III.5) on aura:

$$h/V_{ch}<(L^*h^*b)/Q$$
 1/ $V_{ch}<(L^*b)/Q$  ..... (III.6)

Soit (L\*b) = S (section longitudinale du bassin).

Donc

$$1/V_{ch} < S/Q$$
  $S > Q/V_{ch}$  (III.7)

On a:

L = (1; 6)\*b, on suppose que L=3\*b

De (III.7) on aura:

 $3*b^2>Q/V_{ch}$ 

Alors:

$$b > [Q/(3*V_{ch})]^{0,5}$$
 .....(III.8)

### > Evaluation de la vitesse de chute

La vitesse de chute calcul par la formule suivante :

$$V_{ch} = ((d_m - d_{eau})^* (d)^{2*} g)/(18* \mu)$$

Avec:

Vch: vitesse de chute (m/s)

dm: densité des matériaux;

deau : densité d'eau ;

 $\mathbf{g}$ : graviter (m/s<sup>2</sup>);

d : diamètre des particules (m);

μ : viscosité dynamique (s<sup>-1</sup>)

| Diamètre<br>MES contenues dans les<br>EU domestique (mm) | 1        | 0,5     | 0,1    | 0,05   | 0,01   | 0,005  |
|----------------------------------------------------------|----------|---------|--------|--------|--------|--------|
| Vitesse<br>(m/h)                                         | 300,4594 | 75,1149 | 3,0046 | 0,7511 | 0,0300 | 0,0075 |

Tableau III.1 Evaluation de la vitesse de chute

Pour notre cas, on prend H=2 m et une taille des particules de 0,01mm de diamètre (MES contenues dans les EU domestique) qui va correspondre à une vitesse de chute  $V_{ch}=0,03$ m/h =0,000008 m/s.

Les résultats du dimensionnement des bassins de décantation dans le tableau suivant :

| N°de<br>bassin | Qp<br>(m <sup>3</sup> /s) | V <sub>ch</sub> (m/s) | B<br>(m) | L<br>(m) | H<br>(m) | V<br>(m <sup>3</sup> ) | V <sub>h</sub><br>(m/s) | t <sub>ch</sub> (s) | t <sub>sej</sub><br>(s) |
|----------------|---------------------------|-----------------------|----------|----------|----------|------------------------|-------------------------|---------------------|-------------------------|
| bassin A       | 0,0119                    | 0,000008              | 23       | 69       | 2        | 3174                   | 0,00026                 | 69,44444            | 74,08964                |
| bassin B       | 0,0055                    | 0,000008              | 16       | 48       | 2        | 1536                   | 0,00017                 | 69,44444            | 77,57576                |

Tableau III.2 Dimensionnement des bassins de décantation

D'après le tableau, il en ressort que la condition de décantation est vérifiée (tch<tséi)

### **Conclusion**

Dans ce chapitre, nous avons adopté un bassin de décantation de type rectangulaire à l'exutoire pour chaque sous bassin versons.

Comme nous avons déterminé les déférents paramètres hydrauliques pour les deux bassins de décantation, et ce dans le but d'assurer la décantation des particules contenues dans les eaux usées domestique.

### Conclusion générale

### Conclusion générale

Au cours de ce présent travail, nous avons établi les différentes étapes nécessaires pour le dimensionnement du réseau de distribution d'eau potable et celui d'assainissement séparatif des eaux usées.

Concernant le réseau de distribution, le choix de réseau ramifié s'avère le plus adéquat puisque notre relief est terrain accidenté, avec une population dispersée. Son dimensionnement a été établi pour le cas de pointe. Les diamètres des canalisations varient entre 20 et 160mm pour un linéaire total de 7019,4m. Le choix du matériau des conduits, a été opéré pour le PEHD, à cause des avantages qu'il présente.

Le dimensionnement du réservoir de type semi enterré fait ressortir une capacité nécessaire qui est de 400m³. Il est implanté à une côte de 192,5m qui assurer ; les pressions convenables en chaque nœud de réseau.

Concernant le dimensionnement de conduite d'adduction par refoulement, nous avons choisi le diamètre le plus économique (160 mm) avec une vitesse acceptable 0,97m/s.

Le choix de la pompe conçu est réalisé grâce au logiciel caprari.

Concernant le réseau d'assainissement, nous avons dimensionné un réseau de type séparatif des eaux usées. Le cheminement des collecteurs s'est fait suivant la topographie de la zone d'étude, nous avons assuré un écoulement gravitaire ver l'exutoire.

Les résultats importants obtenus sont :

- ✓ Les diamètres des conduites, en Béton Armé, obtenus sont de **200mm** pour un linéaire total de **6035,2 ml.**
- ✓ La 1<sup>ére</sup> et la 2<sup>éme</sup>condition d'auto curage sont vérifiées pour la totalité des conduites.
- ✓ La 3<sup>éme</sup> condition n'est pas vérifiée. Pour palier à cette contrainte, nous avons Proposé une solution consistant à réaliser des réservoirs des chasses. Néanmoins cette solution conduit à un coût élevé du projet.

### **BIBLIOGRAPHIE**

- [1] donner recueilles auprès des services : APC et subdivision d'hydraulique de la commune d'Elharrouch
- [2] **DUPONT**, A., Hydraulique urbaine tome 2 Editions Eyrolles, Paris 484pages, 1979.
- [3]BONIN,J., Aide-mémoire d'Hydraulique urbaine, Editions Eyrolles Paris, 216 pages, 1982.
- [4] MOULAI, Y .GHEBRIOUA. M., Alimentation en eau potable du village IKHARBANE commune de TAZMALT wilaya de Bejaia, Projet de fin d'Etudes, Ingéniorat, Université Abderrahmane Mira de Bejaia, Algérie,51 pages, Juin 2009.
- [6] TINSALHI, S.TAHARCHACHE.S., Diagnostic et étude du réseau D'AEP de DARGUINA chef-lieu wilaya de Bejaia, Projet de fin d'Etude D.E.U.A, Université Abderrahmane Mira de Bejaia, Algérie, 81 pages, Juin 2010.
- [5] Catalogue STPM Chiali; Matériels hydrauliques tubes et accessoires.
- [7] MARC. S, BECHIR. S., Guide technique de l'assainissement, 2<sup>éme</sup> Edition, Paris, 1999.
- [8] BENHADDAD. D, BOUKHEZZAR .T., Etude et dimensionnement des réseaux de distribution en eau potable et d'assainissement des eaux usées du P.O.S. N°1 de la commune de Tamokra, Wilaya de Bejaia, Projet de Fin d'Etudes, Ingéniorat, Université Abderrahmane Mira de Bejaia, Algérie, 74 pages, Juillet 2011.
- [9] BENAMARA. M, AITOUMEZIANE. O., Conception et dimensionnement d'un réseau d'assainissement séparatif d'eaux usées du village Elma commune ChelataWilaya.Bejaia Mémoire de Fin d'Etudes, Master, Université de Bejaia, Algérie, 95 pages, Juin 2014.
- [10] JEAN. P, PIERRE. B, BERNARD.M., Traitement des eaux usées, Edition Eyrolles, Paris,1984.
- [11] IRAICHEN,N. BOUBOUCHE,N.,Conception et dimensionnement d'un réseau d'assainissement unitaire et d'un bassin de décantation de la cité 155 logement de la commune de Chorfa, wilaya de Bouira, Projet de fin d' Etudes, Ingéniorat, Université de Bejaia, Algérie,46pages, juin 2006.

### Logiciels utilisés

AUTOCAD 2008 : pour tracé réseau d'assainissement ;

**COVADIS 2008** : pour le tracé des profils en long ;

**EPANET**: pour simulation réseau d'AEP;

**PUMP TUTOR (CAPRARI)**: pour le choix de pompe;

### Annexe et Planches



Modena - Italy

COMPANY
WITH QUALITY SYSTEM
CERTIFIED BY DNV
====150 9001====

| PM 100/ 7 C Caractéristiques requises                                                                                                                                                                                                  |                                                                                                                                                                                                                                | [m] Hauteur                                                                                                                                                                                  | de refoulement  | -Zo     | ne d'application- |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------------------|----------------|
| Débit                                                                                                                                                                                                                                  | 13 l/s                                                                                                                                                                                                                         | 110                                                                                                                                                                                          |                 |         |                   |                |
| Hauteur de refoulement                                                                                                                                                                                                                 | 99.2 m                                                                                                                                                                                                                         | 100                                                                                                                                                                                          |                 |         |                   |                |
| Fluide                                                                                                                                                                                                                                 | Eau potable                                                                                                                                                                                                                    | 95                                                                                                                                                                                           |                 | 75,     | 296               |                |
| Température                                                                                                                                                                                                                            | 290 K                                                                                                                                                                                                                          | 90                                                                                                                                                                                           |                 |         |                   |                |
| Type d'installation                                                                                                                                                                                                                    | Pompe seule                                                                                                                                                                                                                    | 80                                                                                                                                                                                           |                 |         |                   |                |
| N.be de pompes                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                              | 75                                                                                                                                                                                           |                 |         |                   |                |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 70-                                                                                                                                                                                          |                 |         | ā                 |                |
| Caractéristiques de la pomp                                                                                                                                                                                                            |                                                                                                                                                                                                                                | 65                                                                                                                                                                                           |                 |         |                   |                |
| Débit<br>Hauteur de refoulement                                                                                                                                                                                                        | 14,4 l/s                                                                                                                                                                                                                       | 60-<br>55-                                                                                                                                                                                   |                 |         |                   | c              |
| Puissance absorbée                                                                                                                                                                                                                     | 103 m                                                                                                                                                                                                                          | 50                                                                                                                                                                                           |                 |         |                   |                |
| Rendement                                                                                                                                                                                                                              | 20,1 kW<br>74,1%                                                                                                                                                                                                               | 45                                                                                                                                                                                           |                 |         |                   |                |
| Hauteur manométrique H(Q=0                                                                                                                                                                                                             |                                                                                                                                                                                                                                | 40                                                                                                                                                                                           |                 |         | å                 |                |
| Orif. de refoulement                                                                                                                                                                                                                   | 100 mm                                                                                                                                                                                                                         | 35<br>30                                                                                                                                                                                     |                 |         |                   |                |
|                                                                                                                                                                                                                                        | 100 11111                                                                                                                                                                                                                      | [kW] Puisser                                                                                                                                                                                 | ce à l'arbre P2 |         |                   |                |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 20                                                                                                                                                                                           | oe a raidie i z |         |                   |                |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 15-                                                                                                                                                                                          |                 |         |                   |                |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | 10                                                                                                                                                                                           |                 |         |                   |                |
| 0                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                | 1 1                                                                                                                                                                                          | 2004            |         |                   |                |
| Caractéristiques moteur                                                                                                                                                                                                                |                                                                                                                                                                                                                                | [%] Renden                                                                                                                                                                                   | ICI II          |         |                   |                |
| Fréquence                                                                                                                                                                                                                              | 50 Hz                                                                                                                                                                                                                          | 50-                                                                                                                                                                                          |                 |         | 4                 |                |
| Tension nominale                                                                                                                                                                                                                       | 400 V                                                                                                                                                                                                                          | 40-                                                                                                                                                                                          |                 |         | 4                 |                |
| Vitesse nominale                                                                                                                                                                                                                       | 1450 1/min                                                                                                                                                                                                                     | 30-                                                                                                                                                                                          |                 |         |                   |                |
| Nombre de pôles<br>Puissance nominale P2                                                                                                                                                                                               | 4                                                                                                                                                                                                                              | Valeurs                                                                                                                                                                                      | NPSH            |         |                   | 9              |
| Courant nominal                                                                                                                                                                                                                        | 22 kW                                                                                                                                                                                                                          | 2,5                                                                                                                                                                                          |                 |         |                   |                |
| Type de moteur                                                                                                                                                                                                                         | - A<br>3~                                                                                                                                                                                                                      | 2=                                                                                                                                                                                           | <u>-</u>        |         |                   |                |
| Classe d'isolation                                                                                                                                                                                                                     | 3~<br>F                                                                                                                                                                                                                        | 1,5-                                                                                                                                                                                         |                 |         |                   |                |
| Degré de protection                                                                                                                                                                                                                    | IP 55                                                                                                                                                                                                                          | 2 4                                                                                                                                                                                          | 6 8 10          | 12 14 1 | 16 18 20 2        | 2 24 26        |
| Degre de protection                                                                                                                                                                                                                    | IP 55                                                                                                                                                                                                                          | ]]                                                                                                                                                                                           |                 |         | 10 10 20 2        |                |
| Limites opérationnelles                                                                                                                                                                                                                |                                                                                                                                                                                                                                | Caractéristic                                                                                                                                                                                | ues de fonctio  | nnement |                   | UNI/ISO 2548/C |
| Démarrages / h max.                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                             | Q [l/s]                                                                                                                                                                                      | H [m]           | P [kW]  | Rend. [%]         | NPSH [m]       |
| Température maxi. du liquide                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                 | _       | _                 |                |
| Teneur maximum en matières                                                                                                                                                                                                             |                                                                                                                                                                                                                                | 111                                                                                                                                                                                          |                 |         |                   |                |
| reneur maximum en matieres                                                                                                                                                                                                             | Solides 40 g/m <sup>2</sup>                                                                                                                                                                                                    |                                                                                                                                                                                              |                 | 1       |                   | 1 1            |
| Densité max.                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                                                              |                 |         |                   |                |
|                                                                                                                                                                                                                                        | 998 kg/m³<br>1 mm²/s                                                                                                                                                                                                           |                                                                                                                                                                                              |                 |         |                   |                |
| Densité max.                                                                                                                                                                                                                           | 998 kg/m³                                                                                                                                                                                                                      | Bii                                                                                                                                                                                          |                 |         |                   |                |
| Densité max.<br>Viscosité maxi.                                                                                                                                                                                                        | 998 kg/m³                                                                                                                                                                                                                      | Dimensions                                                                                                                                                                                   | mm              |         |                   |                |
| Densité max.<br>Viscosité maxi.<br>Caractéristiques générales                                                                                                                                                                          | 998 kg/m²<br>1 mm²/s                                                                                                                                                                                                           | A = 1889                                                                                                                                                                                     | mm              |         |                   |                |
| Densité max.<br>Viscosité maxi.                                                                                                                                                                                                        | 998 kg/m³                                                                                                                                                                                                                      | A = 1889<br>B = 1595                                                                                                                                                                         | mm              |         |                   |                |
| Densité max.<br>Viscosité maxi.<br>Caractéristiques générales                                                                                                                                                                          | 998 kg/m²<br>1 mm²/s                                                                                                                                                                                                           | A = 1869<br>B = 1595<br>C = 545                                                                                                                                                              | mm              |         |                   |                |
| Densité max.<br>Viscosité maxi.<br>Caractéristiques générales<br>Poids                                                                                                                                                                 | 998 kg/m²<br>1 mm²/s                                                                                                                                                                                                           | A = 1889<br>B = 1595                                                                                                                                                                         | mm              |         |                   |                |
| Densité max.<br>Viscosité maxi.<br>Caractéristiques générales                                                                                                                                                                          | 998 kg/m²<br>1 mm²/s                                                                                                                                                                                                           | A = 1889<br>B = 1595<br>C = 545<br>D = 293                                                                                                                                                   | mm              |         |                   |                |
| Densité max.<br>Viscosité maxi.<br>Caractéristiques générales<br>Poids                                                                                                                                                                 | 998 kg/m³<br>1 mm²/s<br>575 kg                                                                                                                                                                                                 | A = 1869<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125                                                                                                                                      | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration                                                                                                                           | 998 kg/m³<br>1 mm²/s<br>575 kg<br>Fonte<br>Fonte                                                                                                                                                                               | A = 1869<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100                                                                                                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue                                                                                                                      | 998 kg/m³ 1 mm²/s 575 kg Fonte Fonte Fonte Fonte                                                                                                                                                                               | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210                                                                                                              | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure                                                                                                        | 998 kg/m² 1 mm²/s 575 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte                                                                                                                                                             | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250                                                                                                   | mm              |         | -                 | F              |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage                                                                                          | 998 kg/m³ 1 mm²/s 575 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Fonte                                                                                                                                                       | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095                                                                                       | mm              | V       |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise                                                                                  | 998 kg/m³ 1 mm²/s  575 kg  Fonte                                                                                                                             | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 460                                                                            | mm              |         | 9500              |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre                                                                            | 998 kg/m² 1 mm²/s 575 kg Fonte Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox                                                                                                                                            | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 480<br>I = 600                                                                 | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre                                                              | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox                                                                                                                                     | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 460<br>I = 800<br>L = 550<br>M = 20<br>N = 120                                 | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité                                          | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Caoutchouc au nitrile                                                                                                                          | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 480<br>I = 600<br>L = 550<br>M = 20                                            | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes                      | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc su nitrile Acier                                                                                                         | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 460<br>I = 800<br>L = 550<br>M = 20<br>N = 120                                 | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 480<br>I = 800<br>L = 550<br>M = 20<br>N = 120<br>O = 42                       | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Caoutchouc su nitrile Acier                                                                                                         | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 480<br>I = 600<br>L = 550<br>M = 20<br>N = 120<br>O = 42<br>P = 345            | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889<br>B = 1595<br>C = 545<br>D = 293<br>DNa = 125<br>DNm = 100<br>E = 210<br>F = 250<br>G = 1095<br>H = 480<br>I = 600<br>L = 650<br>M = 20<br>N = 120<br>O = 42<br>P = 345<br>Q = 615 | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe        | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre                                                              | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe Etoupe | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         |                   |                |
| Densité max. Viscosité maxi.  Caractéristiques générales Poids  Matériaux  Corps de pompe Corps d'aspiration Roue Bague d'usure Corps d'étage Chemise Arbre Douille arbre Anneau d'étanchéité Roulements a billes Presse-Etoupe Etoupe | 998 kg/m³ 1 mm²/s  575 kg  Fonte Fonte Fonte Fonte Fonte Fonte Fonte Acier inox Acier inox Acier Fonte | A = 1889 B = 1595 C = 545 D = 293 DNs = 125 DNm = 100 E = 210 F = 250 G = 1095 H = 460 I = 800 L = 550 M = 20 N = 120 O = 42 P = 345 C = 615 R = 598                                         | mm              |         | Pos.N°            |                |

Tableau II.1 Mode de Calcul des Pentes (S.B A, Collecteur R1-R77)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R1              | -              | 3079.2428           | 11474.5034          | 212.67              | 211.87             | -                            | -                      | -          | 0.8      |
| R2              | R1-R2          | 3148.7407           | 11474.3624          | 212.46              | 211.46             | 69.5                         | 69.5                   | 0.0059     | 1        |
| R3              | R2-R3          | 3211.8454           | 11484.9681          | 212.49              | 211.09             | 64                           | 133.5                  | 0.0058     | 1.4      |
| R6              | R3-R6          | 3193.2472           | 11546.9168          | 208.08              | 207.18             | 64.8                         | 198.3                  | 0.0604     | 0.9      |
| R10             | R6-R10         | 3186.5071           | 11681.827           | 207.05              | 205.95             | 69.3                         | 267.6                  | 0.0173     | 1.1      |
| R14             | R10-R14        | 3186.5071           | 11681.827           | 206.47              | 205.27             | 66.6                         | 334.2                  | 0.0102     | 1.2      |
| R17             | R14-R17        | 3151.7962           | 11741.9985          | 206.34              | 205.14             | 69.5                         | 403.7                  | 0.0019     | 1.2      |
| R20             | R17-R20        | 3144.8642           | 11810.2655          | 205.09              | 203.69             | 68.6                         | 472.3                  | 0.0211     | 1.4      |
| R21             | R20-R21        | 3152.2969           | 11872.209           | 201.57              | 199.97             | 62.5                         | 534.8                  | 0.0596     | 1.6      |
| R22             | R21-R22        | 3171.4086           | 11918.801           | 196.01              | 195.21             | 50.7                         | 585.5                  | 0.0945     | 0.8      |
| R23             | R22-R23        | 3191.2765           | 11965.0434          | 194.87              | 193.87             | 50.3                         | 635.8                  | 0.0267     | 1        |
| R24             | R23-R24        | 3207.6443           | 12009.4222          | 194.29              | 193.29             | 47.3                         | 683.1                  | 0.0123     | 1        |
| R77             | R24-R77        | 3272.5327           | 11992.7352          | 193.92              | 192.62             | 67                           | 750.1                  | 0.01       | 1.3      |

### Tableau II.2 Mode de Calcul des Pentes (S.B A, Collecteur R4-R6)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R4              | -              | 3067.1392           | 11536.8994          | 208.3               | 207.5              | -                            | -                      | -          | 0.8      |
| R5              | R4-R5          | 3125.1543           | 11538.7575          | 208.25              | 207.25             | 58                           | 58                     | 0.0043     | 1        |
| R6              | R5-R6          | 3193.2472           | 11546.9168          | 208.08              | 206.98             | 68.6                         | 126.6                  | 0.0039     | 1.1      |

### Tableau II.3 Mode de Calcul des Pentes (S.B A, Collecteur R8-R10)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof<br>(m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|-------------|
| R8              | -              | 3068.6975           | 11609.214           | 207.65              | 206.85             | -                            | -                      | -          | 0.8         |
| R9              | R8-R9          | 3136.0665           | 11612.9978          | 207.22              | 206.32             | 67.5                         | 67.5                   | 0.0079     | 0.9         |
| R10             | R9-R10         | 3175.9712           | 11616.056           | 207.05              | 206.05             | 40                           | 107.5                  | 0.0067     | 1           |

### Tableau II.4 Mode de Calcul des Pentes (S.B A, Collecteur R15-R17)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R15             | ı              | 3056.188            | 11659.137           | 207.54              | 206.74             | -                            | ı                      | -          | 0.8      |
| R18             | R15-R18        | 3100.1334           | 11699.1947          | 207.26              | 206.26             | 59.5                         | 59.5                   | 0.0081     | 1        |
| R17             | R18-17         | 3151.7962           | 11741.9985          | 206.34              | 205.14             | 67.1                         | 126.6                  | 0.0167     | 1.2      |

### Tableau II.5 Mode de Calcul des Pentes (S.B A, Collecteur R18-R20)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R18             | -              | 3035.6524           | 11736.8935          | 207.29              | 206.49             | -                            | -                      | -          | 0.8      |
| R19             | R18-19         | 3086.3718           | 11785.2295          | 205.84              | 204.84             | 69.1                         | 69.1                   | 0.0235     | 1        |
| R20             | R19-R20        | 3144.8642           | 11810.2655          | 205.09              | 203.89             | 63.3                         | 132.4                  | 0.0149     | 1.2      |

### Tableau II.6 Mode de Calcul des Pentes (S.B A, Collecteur R30-R24)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R30             | 1              | 3111.3379           | 11856.352           | 202.71              | 201.51             | -                            | 1                      | -          | 1.2      |
| R31             | R30-R31        | 3105.0091           | 11921.9356          | 197.2               | 196.4              | 66.1                         | 66.1                   | 0.0775     | 0.8      |
| R34             | R31-R34        | 3093.3459           | 11981.5145          | 195.71              | 194.91             | 60.7                         | 126.8                  | 0.0246     | 0.8      |
| R37             | R34-R37        | 3087.1221           | 12032.4482          | 195.1               | 194.3              | 51.3                         | 178.1                  | 0.0119     | 0.8      |
| R40             | R37-R40        | 3106.5845           | 12050.0634          | 194.58              | 193.78             | 28.3                         | 206.4                  | 0.0198     | 0.8      |
| R41             | R40-R41        | 3148.1599           | 12047.1033          | 194.23              | 193.43             | 41.7                         | 248.1                  | 0.0084     | 0.8      |
| R24             | R41-R24        | 3207.6443           | 12009.4222          | 194.23              | 193.13             | 69.4                         | 317.5                  | 0.0034     | 1.1      |

### Tableau II.7 Mode de Calcule des Pentes (S.B A, Collecteur R25-R29)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R25             | -              | 3015.9135           | 11829.412           | 204.15              | 203.35             | -                            | -                      | -          | 0.8      |
| R26             | R25-R26        | 3076.316            | 11846.8914          | 203.33              | 202.33             | 62.9                         | 62.9                   | 0.0162     | 1        |
| R27             | R26-R27        | 3063.6847           | 11901.2165          | 200.45              | 199.45             | 55.8                         | 118.7                  | 0.0516     | 1        |
| R29             | R27-R29        | 3063.1744           | 11924.2362          | 199.24              | 198.24             | 23.1                         | 141.8                  | 0.0525     | 1        |

### Tableau II.8 Mode de Calcule des Pentes (S.B A, Collecteur R28-R31)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof<br>(m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|-------------|
| R28             | -              | 3006.9356           | 11919.6683          | 199.7               | 198.9              | -                            | -                      | -          | 0.8         |
| R29             | R28-R29        | 3063.1781           | 11924.26            | 199.24              | 198.24             | 58.4                         | 58.4                   | 0.0439     | 1           |
| R31             | R29-R31        | 3105.0091           | 11921.9356          | 197.2               | 196.4              | 41.9                         | 100.3                  | 0.0117     | 0.8         |

### Tableau II.9 Mode de Calcul des Pentes (S.B A, Collecteur R32-R34)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R32             | -              | 2990.2382           | 11970.9683          | 197                 | 196.2              | -                            | -                      | -          | 0.8      |
| R33             | R32-R33        | 3054.8879           | 11978.1585          | 196.35              | 195.45             | 65.1                         | 65.1                   | 0.0115     | 0.9      |
| R34             | R33-R34        | 3093.3459           | 11981.5145          | 195.71              | 194.91             | 38.6                         | 103.7                  | 0.014      | 0.8      |

Tableau II.10 Mode de Calcul des Pentes (S.B A, Collecteur R35-R37)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R35             | -              | 2997.6134           | 12031.7429          | 196.03              | 195.23             | -                            | -                      | -          | 0.8      |
| R36             | R35-R36        | 3049.5705           | 12029.05            | 195.55              | 194.75             | 52                           | 52                     | 0.0092     | 0.8      |
| R37             | R36-R37        | 3087.1221           | 12032.4482          | 195.1               | 194.3              | 37.7                         | 89.7                   | 0.0119     | 0.8      |

### Tableau II.11 Mode de Calcul des Pentes (S.B A, Collecteur R38-R40)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) |      | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------|------------|----------|
| R38             | -              | 3025.8965           | 12072.9831          | 194.98              | 194.18             | -                            | -    | -          | 0.8      |
| R39             | R38-R39        | 3080.3499           | 12071.0042          | 194.55              | 193.75             | 54.5                         | 54.5 | 0.0079     | 0.8      |
| R40             | R39-R40        | 3106.5845           | 12050.0634          | 194.58              | 193.48             | 33.6                         | 88.1 | 0.008      | 1.1      |

### Tableau II.12 Mode de Calcul des Pentes (S.B A, Collecteur R11-R14)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R11             | -              | 3287.0169           | 11549.5238          | 208.03              | 207.23             | -                            | 1                      | -          | 0.8      |
| R12             | R11-R12        | 3270.0744           | 11594.0795          | 206.56              | 205.76             | 47.7                         | 47.7                   | 0.0308     | 0.8      |
| R13             | R12-R13        | 3232.3282           | 11637.5515          | 206.23              | 205.33             | 57.6                         | 105.3                  | 0.0075     | 0.9      |
| R14             | R13-R14        | 3186.5071           | 11681.827           | 206.47              | 205.17             | 63.7                         | 169                    | 0.0025     | 1.3      |

### Tableau II.13 Mode de Calcul des Pentes (S.B A, Collecteur R42-REJET)

| N° de  | N° du         | Point      | Point      | Côte   | Côte   | Distance     | Distance     | I      | Prof |
|--------|---------------|------------|------------|--------|--------|--------------|--------------|--------|------|
| Regard | Tronç         | D'insert X | D'insert Y | Tamp   | Rad    | Partielle    | Cum          | (m/m)  | (m)  |
|        | - 3           |            |            | (m)    | (m)    | ( <b>m</b> ) | ( <b>m</b> ) | ( ' /  | ` '  |
| R42    | -             | 3264.9501  | 11467.554  | 213.51 | 212.31 | -            | -            | -      | 1.2  |
| R43    | R42-R43       | 3330.0882  | 11484.5792 | 212.72 | 211.52 | 67.3         | 67.3         | 0.0117 | 1.2  |
| R44    | R43-R44       | 3348.6254  | 11496.9714 | 212.02 | 210.82 | 22.3         | 89.6         | 0.0314 | 1.2  |
| R45    | R44-R45       | 3336.1187  | 11549.4578 | 208.25 | 207.05 | 54.1         | 143.7        | 0.0689 | 1.2  |
| R46    | R45-R46       | 3324.2329  | 11572.9435 | 206.99 | 205.79 | 26.4         | 170.1        | 0.0479 | 1.2  |
| R55    | R46-R55       | 3317.4198  | 11625.5193 | 205.82 | 204.82 | 53           | 223.1        | 0.0183 | 1    |
| R56    | R55-R56       | 3313.4002  | 11655.2806 | 205.66 | 204.56 | 30           | 253.1        | 0.0087 | 1.1  |
| R65    | R56-R65       | 3306.0806  | 11695.5226 | 205.27 | 204.07 | 40.9         | 294          | 0.012  | 1.2  |
| R71    | R65-R71       | 3292.8915  | 11760.9996 | 204.19 | 202.99 | 68.8         | 362.8        | 0.0162 | 1.2  |
| R72    | R71-R72       | 3270.7057  | 11821.6402 | 200.91 | 199.91 | 64.6         | 427.4        | 0.0477 | 1    |
| R75    | R72-R75       | 3275.6122  | 11887.0607 | 196.22 | 195.22 | 65.8         | 493.2        | 0.0715 | 1    |
| R76    | R75-R76       | 3282.1357  | 11933.1724 | 194.87 | 193.87 | 46.6         | 539.8        | 0.029  | 1    |
| R77    | R76-R77       | 3272.5327  | 11992.7352 | 193.92 | 192.92 | 60.3         | 600.1        | 0.0157 | 1    |
| R78    | R77-R78       | 3306.5847  | 12003.8426 | 193.5  | 192.4  | 35.8         | 635.9        | 0.0145 | 1.1  |
| R81    | R78-R81       | 3367.7821  | 11991.1016 | 193.25 | 192.05 | 62.5         | 698.4        | 0.0056 | 1.2  |
| R83    | R81-R83       | 3412.8912  | 11974.4483 | 193.34 | 191.94 | 48.1         | 746.5        | 0.0023 | 1.4  |
| REJET  | R83-<br>REJET | 3423.5176  | 11971.9937 | 193.45 | 191.85 | 10.9         | 757.4        | 0.0083 | 1.6  |

Tableau II.14 Mode de Calcul des Pentes (S.B A, Collecteur R47-R46)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R47             | ı              | 3408.2475           | 11499.2577          | 213.52              | 212.72             | -                            | ı                      | -          | 0.8      |
| R48             | R47-R48        | 3457.5119           | 11528.0898          | 212.5               | 211.7              | 57.1                         | 57.1                   | 0.0179     | 0.8      |
| R49             | R48-R49        | 3510.8501           | 11566.2335          | 212.45              | 211.45             | 65.6                         | 122.7                  | 0.0038     | 1        |
| R50             | R49-R50        | 3547.294            | 11612.3192          | 212.19              | 210.99             | 58.8                         | 181.5                  | 0.0078     | 1.2      |
| R52             | R50-R52        | 3507.4931           | 11637.7172          | 209.95              | 209.15             | 47.2                         | 228.7                  | 0.039      | 0.8      |
| R53             | R52-R53        | 3444.9719           | 11606.9566          | 207.62              | 206.82             | 68.7                         | 297.4                  | 0.0334     | 0.8      |
| R54             | R53-R54        | 3387.3963           | 11580.4962          | 207.29              | 206.39             | 63.4                         | 360.8                  | 0.0068     | 0.9      |
| R46             | R54-R46        | 3324.2329           | 11572.9435          | 206.99              | 205.99             | 63.6                         | 424.4                  | 0.0063     | 1        |

### Tableau II.15 Mode de Calcul des Pentes (S.B A, Collecteur R61-R65)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R61             | -              | 3476.9546           | 11684.3226          | 208.2               | 207.2              | -                            | -                      | -          | 1        |
| R62             | R61-R62        | 3452.6438           | 11677.1295          | 207.28              | 206.28             | 25.4                         | 25.4                   | 0.0363     | 1        |
| R63             | R62-R63        | 3412.4889           | 11723.3524          | 207.48              | 206.48             | 61.2                         | 86.6                   | 0.0131     | 1        |
| R64             | R63-R64        | 3358.3005           | 11713.1959          | 206.06              | 205.06             | 55.1                         | 141.7                  | 0.0076     | 1        |
| R65             | R64-R65        | 3306.0806           | 11695.5226          | 205.27              | 204.27             | 55.1                         | 196.8                  | 0.0143     | 1        |

### Tableau II.16 Mode de Calcul des Pentes (S.B A, Collecteur R59-R62)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R59             | -              | 3443.7285           | 11619.6836          | 207.32              | 206.52             | -                            | -                      | -          | 0.8      |
| R60             | R59-R60        | 3423.5739           | 11662.4752          | 206.46              | 205.66             | 47.3                         | 47.3                   | 0.0182     | 0.8      |
| R62             | R60-R62        | 3452.6438           | 11677.1295          | 207.28              | 206.28             | 32.6                         | 79.9                   | 0.0117     | 1        |

### Tableau II.17 Mode de Calcul des Pentes (S.B A, Collecteur R57-R56)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R57             | -              | 3399.627            | 11623.8715          | 206.1               | 205.3              | -                            | -                      | -          | 0.8      |
| R58             | R57-R58        | 3371.5254           | 11675.9068          | 205.84              | 204.94             | 59.1                         | 59.1                   | 0.0061     | 0.9      |
| R56             | R58-R56        | 3313.4002           | 11655.2806          | 205.66              | 204.56             | 61.7                         | 120.8                  | 0.0062     | 1.1      |

### Tableau II.18 Mode de Calcul des Pentes (S.B A, Collecteur R66-R71)...

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R66             | -              | 3486.7535           | 11783.7823          | 211.26              | 210.46             | -                            | 1                      | -          | 0.8      |
| R67             | R66-R67        | 3458.7576           | 11766.5377          | 210.78              | 209.78             | 32.9                         | 32.9                   | 0.027      | 1        |
| R68             | R67-R68        | 3423.6403           | 11762.0656          | 210.03              | 209.03             | 35.4                         | 68.3                   | 0.0212     | 1        |

## Tableau II.18 Mode de Calcul des Pentes (S.B A, Collecteur R66-R71)(suite et fin)

| R69 | R68-R69 | 3380.5574 | 11768.6987 | 208.18 | 207.18 | 43.6 | 111.9 | 0.0424 | 1 |
|-----|---------|-----------|------------|--------|--------|------|-------|--------|---|
| R70 | R69-R70 | 3336.9465 | 11775.2773 | 206.17 | 205.17 | 44.2 | 156.1 | 0.0456 | 1 |
| R71 | R70-R71 | 3292.8915 | 11760.9996 | 204.19 | 203.19 | 46.4 | 202.5 | 0.0428 | 1 |

# Tableau II.19 Mode de Calcul des Pentes (S.B A, Collecteur R73-R72)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R73             | -              | 3178.199            | 11863.8448          | 200.66              | 199.86             | -                            | -                      | -          | 0.8      |
| R74             | R73-R74        | 3225.4262           | 11840.9795          | 200.81              | 200.01             | 52.5                         | 52.5                   | 0.017      | 0.8      |
| R72             | R74-R72        | 3270.7057           | 11821.6402          | 200.91              | 199.91             | 49.2                         | 101.7                  | 0.0057     | 1        |

## Tableau II.20 Mode de Calcul des Pentes (S.B A, Collecteur R79-R81)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R79             | -              | 3362.7716           | 11884.3206          | 200.56              | 199.06             | -                            | -                      | -          | 1.5      |
| R80             | R79-R80        | 3365.0521           | 11926.0139          | 196.02              | 195.22             | 41.9                         | 41.9                   | 0.0919     | 0.8      |
| R82             | R80-R82        | 3362.7332           | 11960.2538          | 193.62              | 192.82             | 34.4                         | 76.3                   | 0.07       | 0.8      |
| R81             | R82-R81        | 3367.7821           | 11991.1016          | 193.25              | 192.15             | 31.3                         | 107.6                  | 0.0214     | 1.1      |

## Tableau II.21 Mode De Calcul des Pentes (S.B B, Collecteur R84 - Rejet N°02)....

|        | Point     |           |            | Câta Câta I  |              |           | Distance     |           |       |
|--------|-----------|-----------|------------|--------------|--------------|-----------|--------------|-----------|-------|
| N° de  | N° du     | Point     | Point      | Côte         | Côte         | Distance  | Distance     | I         | Prof  |
| Regard | Tronç     | D'insert  | D'insert Y | Tamp         | Rad          | Partielle | Cum          | (m/m)     | (m)   |
| regura | Trong     | X         | D msert 1  | ( <b>m</b> ) | ( <b>m</b> ) | (m)       | ( <b>m</b> ) | (111/111) | (111) |
| R84    | -         | 3610.2068 | 11529.174  | 212.6        | 211.8        | -         | -            | -         | 0.8   |
| R85    | R84-R85   | 3661.7025 | 11551.6169 | 211.9        | 211.1        | 56.2      | 56.2         | 0.0121    | 0.8   |
| R86    | R85-R86   | 3705.7663 | 11580.1015 | 211.87       | 210.87       | 52.5      | 108.7        | 0.0048    | 1     |
| R87    | R86-R87   | 3760.2131 | 11612.6687 | 210.89       | 210.09       | 63.5      | 172.2        | 0.0123    | 0.8   |
| R88    | R87-R88   | 3824.1666 | 11643.9726 | 210.34       | 209.54       | 69.2      | 241.4        | 0.0077    | 0.8   |
| R89    | R88-R89   | 3884.4682 | 11680.8528 | 209.92       | 209.12       | 69.7      | 311.1        | 0.0059    | 0.8   |
| R90    | R89-R90   | 3944.0459 | 11718.7281 | 208.51       | 207.31       | 69.6      | 380.7        | 0.0061    | 1.2   |
| R91    | R90-R91   | 3997.3491 | 11756.7993 | 207          | 206.2        | 65.5      | 446.2        | 0.015     | 0.8   |
| R92    | R91-R92   | 4025.9526 | 11774.3857 | 92           | 91.2         | 33.6      | 479.8        | 0.0176    | 0.8   |
| R93    | R92-R93   | 4028.377  | 11793.482  | 207.77       | 206.97       | 19.3      | 499.1        | 0.0078    | 0.8   |
| R94    | R93-R94   | 4009.4844 | 11807.7824 | 208.06       | 206.86       | 23.7      | 522.8        | 0.0046    | 1.2   |
| R95    | R94-R95   | 3972.9158 | 11834.1325 | 208.49       | 206.69       | 45.1      | 567.9        | 0.0038    | 1.8   |
| R96    | R95-R96   | 3939.793  | 11860.8411 | 209.08       | 206.58       | 42.6      | 610.5        | 0.0026    | 2.5   |
| R97    | R96-R97   | 3932.0676 | 11874.7976 | 209          | 206.4        | 16        | 626.5        | 0.0113    | 2.6   |
| R98    | R97-R98   | 3941.2334 | 11892.7136 | 208.05       | 206.25       | 20.1      | 646.6        | 0.0074    | 1.8   |
| R99    | R98-R99   | 3973.9237 | 11924.5422 | 203.89       | 203.09       | 45.7      | 692.3        | 0.0693    | 0.8   |
| R100   | R99-R100  | 3950.3886 | 11946.088  | 202.52       | 201.72       | 31.9      | 724.2        | 0.0429    | 0.8   |
| R101   | R100-R101 | 3926.9978 | 11970.7969 | 201.36       | 200.36       | 34        | 758.2        | 0.04      | 1     |
| R102   | R101-R102 | 3907.613  | 11990.6828 | 200.47       | 199.37       | 27.8      | 786          | 0.0356    | 1.1   |
| R103   | R102-R103 | 3887.4478 | 12026.4924 | 198.36       | 197.06       | 41.1      | 827.1        | 0.0562    | 1.3   |

## Tableau II.21 Mode De Calcul des Pentes (S.B B, Collecteur R84 - Rejet N°02) (suite et fin)

| R104 | R103-R104 | 3871.2603 | 12072.6985 | 193.79 | 192.79 | 49.2 | 876.3 | 0.0872 | 1   |
|------|-----------|-----------|------------|--------|--------|------|-------|--------|-----|
| R105 | R104-R105 | 3871.7139 | 12082.2125 | 192.87 | 192.07 | 9.6  | 885.9 | 0.0754 | 0.8 |

### Tableau II.22 Mode De Calcul des Pentes (S.B B, Collecteur R106 - R97)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert<br>X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|------------------------|---------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R106            | -              | 3573.6138              | 11673.4             | 211.88              | 210.88             | -                            | -                      | -          | 1        |
| R107            | R106-R107      | 3624.0928              | 11709.306           | 211.61              | 210.61             | 62                           | 62                     | 0.0044     | 1        |
| R108            | R107-R108      | 3679.3232              | 11752.228           | 210.64              | 209.64             | 69.9                         | 131.9                  | 0.0139     | 1        |
| R109            | R108-R109      | 3691.2235              | 11779.48            | 210.6               | 209.4              | 29.7                         | 161.6                  | 0.0081     | 1.2      |
| R110            | R109-R110      | 3678.9798              | 11828.024           | 210.02              | 208.82             | 50.1                         | 211.7                  | 0.0116     | 1.2      |
| R111            | R110-R111      | 3723.674               | 11847.685           | 209.34              | 208.14             | 48.8                         | 260.5                  | 0.0139     | 1.2      |
| R112            | R111-R112      | 3741.9415              | 11857.068           | 209.12              | 207.92             | 20.5                         | 281                    | 0.0107     | 1.2      |
| R113            | R112-R113      | 3811.6548              | 11850.924           | 209.15              | 207.65             | 69                           | 350                    | 0.0039     | 1.5      |
| R114            | R113-R114      | 3854.2546              | 11855.349           | 209.1               | 207.5              | 42.8                         | 392.8                  | 0.0035     | 1.6      |
| R115            | R114-R115      | 3875.8807              | 11862.725           | 209.25              | 207.45             | 22.9                         | 415.7                  | 0.0022     | 1.8      |
| R97             | R115-R97       | 3932.0676              | 11874.798           | 209                 | 207.2              | 57.5                         | 473.2                  | 0.0043     | 1.8      |

### Tableau II.23 Mode De Calcul des Pentes (S.B B, Collecteur R105 - R110)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert<br>X | Point<br>D'insert<br>Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof (m) |
|-----------------|----------------|------------------------|------------------------|---------------------|--------------------|------------------------------|------------------------|------------|----------|
| R115            | -              | 3558.702               | 11631.875              | 212.17              | 211.37             | -                            | ı                      | ı          | 0.8      |
| R116            | R115-R116      | 3551.5618              | 11687.648              | 211.53              | 210.73             | 56.2                         | 56.2                   | 0.0114     | 0.8      |
| R117            | R116-R117      | 3544.9619              | 11723.125              | 211.8               | 210.6              | 36.1                         | 92.3                   | 0.0036     | 1.2      |
| R118            | R117-R118      | 3556.7744              | 11761.41               | 211.37              | 210.17             | 40.1                         | 132.4                  | 0.0107     | 1.2      |
| R119            | R118-R119      | 3597.2179              | 11794.934              | 210.8               | 209.6              | 52.5                         | 184.9                  | 0.0109     | 1.2      |
| R120            | R119-R120      | 3626.3864              | 11808.853              | 210.37              | 209.17             | 32.3                         | 217.2                  | 0.0133     | 1.2      |
| R115            | R120-R115      | 3678.9798              | 11828.024              | 210.02              | 208.82             | 56                           | 273.2                  | 0.0063     | 1.2      |

### Tableau II.24 Mode De Calcul des Pentes (S.B B, Collecteur R121 - R120)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert<br>Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof<br>(m) |
|-----------------|----------------|---------------------|------------------------|---------------------|--------------------|------------------------------|------------------------|------------|-------------|
| R121            | -              | 3523.0547           | 11795.47               | 211.47              | 210.67             | -                            | -                      | -          | 0.8         |
| R122            | R121-R122      | 3553.8798           | 11801.293              | 211.34              | 210.34             | 31.4                         | 31.4                   | 0.0105     | 1           |
| R123            | R122-R123      | 3611.928            | 11823.138              | 210.58              | 209.48             | 62                           | 93.4                   | 0.0139     | 1.1         |
| R120            | R123-R120      | 3626.3864           | 11808.853              | 210.37              | 209.17             | 20.3                         | 113.7                  | 0.0152     | 1.2         |

## Tableau II.25 Mode De Calcul des Pentes (S.B B, Collecteur R124 - R117)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert<br>Y | Côte<br>Tamp<br>(m) | Côte<br>Rad<br>(m) | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof<br>(m) |
|-----------------|----------------|---------------------|------------------------|---------------------|--------------------|------------------------------|------------------------|------------|-------------|
| R124            | -              | 3513.6739           | 11719.825              | 211.61              | 210.81             | -                            | -                      | -          | 0.8         |
| R117            | R124-R117      | 3544.9619           | 11723.125              | 211.8               | 210.6              | 31.5                         | 31.5                   | 0.0067     | 1.2         |

## Tableau II.26 Mode De Calcul des Pentes (S.B B, Collecteur R125 - R122)

| N° de<br>Regard | N° du<br>Tronç | Point<br>D'insert X | Point<br>D'insert Y | Côte<br>Tamp<br>(m) |        | Distance<br>Partielle<br>(m) | Distance<br>Cum<br>(m) | I<br>(m/m) | Prof<br>(m) |
|-----------------|----------------|---------------------|---------------------|---------------------|--------|------------------------------|------------------------|------------|-------------|
| R125            | -              | 3555.4653           | 11783.083           | 211.35              | 210.55 | -                            | -                      | -          | 0.8         |
| R122            | R125-R122      | 3553.8798           | 11801.293           | 211.34              | 210.34 | 18.3                         | 18.3                   | 0.0115     | 1           |

Tableau II.27.Evaluation des débits des eaux usées pour le sous bassin A

| N° de         | Long           | Qs<br>(1/m/ml) | Qr<br>(l/s) | Qe     | Qs<br>(1/a) | Cpe            | Qpe (m)  | Qps'         | Qp                 | I (m/m) | Ф (тт) |
|---------------|----------------|----------------|-------------|--------|-------------|----------------|----------|--------------|--------------------|---------|--------|
| tronçon<br>R1 | (m)            | (l/m/ml)       | (1/8)       | (l/s)  | (l/s)       | Cps            | (m)      | ( <b>m</b> ) | (l/s)              | (m/m)   | (mm)   |
| R2            | 69.5           |                | 0.0680      | /      | 0.0680      | 4              | . /      | 0.2719       | 0.1359             | 0.0059  | 200    |
| R2            |                | -              |             | 0.0680 | 0.0000      | 4              | 0.2719   | 0.2717       |                    |         |        |
| R3            | 64             |                | 0.0626      | 0.0000 | 0.1306      | 4              | 0.2717   | 0.5223       | 0.3971             | 0.0058  | 200    |
| R3            |                | -              |             | 0.1306 | 0.1500      | 4              | 0.5223   | 0.0223       |                    |         |        |
| R6            | 64.8           |                | 0.0634      | 0.1200 | 0.1939      | 4              | . 0.0220 | 0.7757       | 0.6490             | 0.0604  | 200    |
| R6            | <b>50.0</b>    | -              | 0.0470      | 0.3178 |             | 4              | 1.2710   |              | 1.40.55            | 0.0150  | 200    |
| R10           | 69.3           |                | 0.0678      |        | 0.3855      | 4              |          | 1.5421       | 1.4066             | 0.0173  | 200    |
| R10           | 66.6           |                | 0.0651      | 0.4907 |             | 4              | 1.9627   |              | 2,0020             | 0.0102  | 200    |
| R14           | 66.6           |                | 0.0651      |        | 0.5558      | 4              |          | 2.2232       | 2.0929             | 0.0102  | 200    |
| R14           | 69.5           |                | 0.0680      | 0.7211 |             | 4              | 2.8843   |              | 3.0203             | 0.0019  | 200    |
| R17           | 07.3           |                | 0.0000      |        | 0.7891      | 4              |          | 3.1562       | 3.0203             | 0.0019  | 200    |
| R17           | 68.6           |                | 0.0671      | 0.9129 |             | 4              | 3.6515   |              | 3.7856             | 0.0211  | 200    |
| R20           | 00.0           | -              | 0.0071      |        | 0.9800      | 4              |          | 3.9198       | 3.7030             | 0.0211  | 200    |
| R20           | 62.5           |                | 0.0611      | 1.1097 |             | 3.874          | 4.2996   |              | 4.3812             | 0.0596  | 200    |
| R21           |                | -              |             |        | 1.1709      | 3.812          |          | 4.4628       |                    |         |        |
| R21           | 50.6           |                | 0.0495      | 1.1709 |             | 3.812          | 4.4628   |              | 4.5282             | 0.0945  | 200    |
| R22           |                | -              |             | 1.000  | 1.2203      | 3.764          | 1.702.1  | 4.5936       |                    |         |        |
| R22           | 50.3           | 0.000978       | 0.0492      | 1.2203 | 1.0605      | 3.764          | 4.5936   | 4.5335       | 4.6580             | 0.0267  | 200    |
| R23           |                |                |             | 1.2605 | 1.2695      | 3.720          | 4.7005   | 4.7225       |                    |         |        |
| R23           | 47.3           |                | 0.0463      | 1.2695 | 1 2150      | 3.720          | 4.7225   | 4.0420       | 4.7826             | 0.0123  | 200    |
| R24           |                | 1              |             | 2.1345 | 1.3158      | 3.680<br>3.212 | 6.8560   | 4.8428       | 6.9330             | 0.0100  | 200    |
| R24<br>R77    | 67             |                | 0.0655      | 2.1343 | 2.2000      | 3.186          | 0.8300   | 7.0099       | 0.9330             | 0.0100  | 200    |
| R4            |                | -              |             | /      | 2.2000      | /              | /        | 7.0099       |                    |         |        |
| R5            | 58             |                | 0.0567      | ,      | 0.0567      | 4              | ,        | 0.2269       | 0.1134             | 0.0043  | 200    |
| R5            |                | -              |             | 0.0567 | 0.0507      | 4              | 0.226896 | 0.2207       |                    |         |        |
| R6            | 68.6           |                | 0.0671      | 0.0007 | 0.1238      | 4              |          | 0.4953       | 0.3611             | 0.0039  | 200    |
| R8            | <i>(7.7.7.</i> | 1              | 0.0550      | /      |             | /              | /        |              | 0.1220             | 0.0070  | 200    |
| R9            | 67.5           |                | 0.0660      |        | 0.0660      | 4              | ]        | 0.2641       | 0.1320             | 0.0079  | 200    |
| R9            | 40             | 1              | 0.0391      | 0.0660 |             | 4              | 0.2641   |              | 0.2422             | 0.0067  | 200    |
| R10           | 40             | ]              | 0.0391      |        | 0.1051      | 4              |          | 0.4205       | 0.3423             | 0.0067  | 200    |
| R15           | 59.5           |                | 0.0582      | /      |             | /              | /        |              | 0.1164             | 0.0081  | 200    |
| R16           | 37.3           |                | 0.0362      |        | 0.0582      | 4              |          | 0.2328       | U.11U <del>1</del> | 0.0001  | 200    |
| R16           | 67.1           |                | 0.0656      | 0.0582 |             | 4              | 0.2328   |              | 0.3640             | 0.0167  | 200    |
| R17           | 07.1           | _              | 0.0000      |        | 0.1238      | 4              |          | 0.4953       | 0.5010             | 0.0107  |        |
| R18           | 69.1           |                | 0.0676      | /      |             | /              | /        |              | 0.1352             | 0.0235  | 200    |
| R19           |                |                |             |        | 0.0676      | 4              |          | 0.2703       |                    |         |        |

Tableau II.27. Evaluation des débits des eaux usées pour le sous bassin A (... suite)

| R19        |                  |          |          | 0.0676 |         | 4 | 0.2703  |         |         |          |     |
|------------|------------------|----------|----------|--------|---------|---|---------|---------|---------|----------|-----|
| R20        | 63.6             |          | 0.0622   | 0.0070 | 0.1298  | 4 | 0.2703  | 0.5191  | 0.3947  | 0.0149   | 200 |
| R30        |                  |          |          | /      | 0.1270  | / | /       | 0.5171  |         |          |     |
| R31        | 66.1             |          | 0.0646   | /      | 0.0646  | 4 | /       | 0.2586  | 0.1293  | 0.0775   | 200 |
| R31        |                  | -        |          | 0.2995 | 0.0010  | 4 | 1.1979  | 0.2000  |         |          |     |
| R34        | 60.7             |          | 0.0594   | 0.2>>5 | 0.3588  | 4 | 1.17,7  | 1.4353  | 1.3166  | 0.0246   | 200 |
| R34        | ~1 O             |          | 0.0502   | 0.4602 | 312233  | 4 | 1.8410  |         | 1.0.110 | 0.0110   | 200 |
| R37        | 51.3             |          | 0.0502   |        | 0.5104  | 4 |         | 2.0417  | 1.9413  | 0.0119   | 200 |
| R37        | 26.2             |          | 0.0257   | 0.5981 |         | 4 | 2.39258 |         | 2 4440  | 0.0100   | 200 |
| R40        | 26.3             |          | 0.0257   |        | 0.6239  | 4 |         | 2.4955  | 2.4440  | 0.0198   | 200 |
| R40        | 41.7             |          | 0.0408   | 0.7100 |         | 4 | 2.8401  |         | 2.9217  | 0.0084   | 200 |
| R41        | 41./             |          | 0.0408   |        | 0.7508  | 4 |         | 3.0032  | 2.9217  | 0.0064   | 200 |
| R41        | 69.4             |          | 0.0679   | 0.7508 |         | 4 | 3.0032  |         | 3.1390  | 0.0034   | 200 |
| R24        | 07. <del>1</del> |          | 0.0077   |        | 0.8187  | 4 |         | 3.2747  | 3.1370  | 0.0054   | 200 |
| R25        | 62.9             |          | 0.0615   | /      |         | / | /       |         | 0.1230  | 0.0162   | 200 |
| R26        | 5,               | 1        |          |        | 0.0615  | 4 |         | 0.2461  |         | 2.0102   |     |
| R26        | 55.8             |          | 0.0546   | 0.0615 |         | 4 | 0.2461  |         | 0.3552  | 0.0516   | 200 |
| R27        |                  | _        |          |        | 0.1161  | 4 |         | 0.4644  |         |          |     |
| R27        | 23.1             |          | 0.0226   | 0.1161 | 0.1007  | 4 | 0.4644  | 0.5545  | 0.5095  | 0.0525   | 200 |
| R29        |                  | 0.000978 |          | ,      | 0.1387  | 4 | ,       | 0.5547  |         |          |     |
| R28<br>R29 | 56.4             |          | 0.0552   | /      | 0.0552  | 1 | /       | 0.2206  | 0.1103  | 0.0117   | 200 |
| R29        |                  | _        |          | 0.1938 | 0.0332  | 4 | 0.7754  | 0.2200  |         |          |     |
| R31        | 41.9             |          | 0.0410   | 0.1750 | 0.2348  | 4 | 0.7754  | 0.9393  | 0.8573  | 0.0439   | 200 |
| R32        |                  | 1        |          | /      | 0.25 10 | / | /       | 0.7575  |         |          |     |
| R33        | 65.1             |          | 0.0637   |        | 0.0637  | 4 |         | 0.2547  | 0.1273  | 0.0115   | 200 |
| R33        | 29.6             |          | 0.0270   | 0.0637 |         | 4 | 0.2547  |         | 0.2202  | 0.0140   | 200 |
| R34        | 38.6             |          | 0.0378   |        | 0.1014  | 4 |         | 0.4057  | 0.3302  | 0.0140   | 200 |
| R35        | 52               |          | 0.0509   | /      |         | / | /       |         | 0.1017  | 0.0092   | 200 |
| R36        | 52               | _        | 0.0507   |        | 0.0509  | 4 |         | 0.2034  | 0.1017  | 0.0072   |     |
| R36        | 37.7             |          | 0.0369   | 0.0509 |         | 4 | 0.2034  |         | 0.2772  | 0.0119   | 200 |
| R37        |                  | _        |          |        | 0.0877  | 4 |         | 0.3509  |         |          |     |
| R38        | 54.5             |          | 0.0533   | /      | 0.0722  | / | /       | 0.01.00 | 0.1066  | 0.0079   | 200 |
| R39        |                  | -        |          | 0.0522 | 0.0533  | 4 | 0.2122  | 0.2132  |         |          |     |
| R39        | 33.6             |          | 0.0329   | 0.0533 | 0.0063  | 4 | 0.2132  | 0.2446  | 0.2789  | 0.0080   | 200 |
| R40        |                  | -        |          | /      | 0.0862  | 4 | /       | 0.3446  |         |          |     |
| R11<br>R12 | 47.7             |          | 0.0467   | /      | 0.0467  | 4 | /       | 0.1866  | 0.0933  | 0.0308   | 200 |
| R12        |                  | 1        | _        | 0.0467 | 0.0407  | 4 | 0.1866  | 0.1000  | _       |          | _   |
| R13        | 57.6             |          | 0.0563   | 0.0407 | 0.1030  | 4 | 0.1000  | 0.4119  | 0.2993  | 0.0075   | 200 |
| 1110       |                  | <u>l</u> | <u> </u> | 1      | 0.1050  | • | I       | V       |         | <u> </u> |     |

Tableau II.27. Evaluation des débits des eaux usées pour le sous bassin A (... suite)

| R13 |             |          |        | 0.1030 |        | 4     | 0.4119  |         |         |        |     |
|-----|-------------|----------|--------|--------|--------|-------|---------|---------|---------|--------|-----|
| R14 | 63.7        |          | 0.0623 | 0.1030 | 0.1653 | 4     | 0.4117  | 0.6611  | 0.5365  | 0.0025 | 200 |
| R42 |             | 1        |        | /      | 0.1033 | /     | /       | 0.0011  |         |        |     |
| R43 | 67.3        |          | 0.0658 | ,      | 0.0658 | 4     | ,       | 0.2633  | 0.1316  | 0.0117 | 200 |
| R43 |             | <u> </u> |        | 0.0658 | 0.0036 | /     | /       | 0.2033  |         |        |     |
| R43 | 22.3        |          | 0.0218 | 0.0038 | 0.0876 | 4     | /       | 0.3505  | 0.1753  | 0.0314 | 200 |
| R44 |             | 1        |        | 0.0876 | 0.0070 | 4     | 0.3505  | 0.5505  |         |        |     |
| R45 | 54.1        |          | 0.0529 | 0.0870 | 0.1405 | 4     | 0.3303  | 0.5622  | 0.4563  | 0.0699 | 200 |
| R45 |             | 1        |        | 0.1405 | 0.1403 | 4     | 0.5622  | 0.3022  |         |        |     |
| R46 | 26.4        |          | 0.0258 | 0.1403 | 0.1664 | 4     | 0.3022  | 0.6654  | 0.6138  | 0.0479 | 200 |
| R46 |             | 1        |        | 0.5824 | 0.1004 | 4     | 2.3296  | 0.0034  |         |        |     |
| R55 | 53          |          | 0.0518 | 0.3624 | 0.6342 | 4     | 2.3270  | 2.5369  | 2.4333  | 0.0183 | 200 |
| R55 |             | +        |        | 0.6342 | 0.0342 | 4     | 2.5369  | 2.3307  |         |        |     |
| R56 | 30          |          | 0.0293 | 0.0342 | 0.6636 | 4     | 2.3307  | 2.6543  | 2.5956  | 0.0087 | 200 |
| R56 |             | 1        |        | 0.7817 | 0.0050 | 4     | 3.1269  | 2.0373  |         |        |     |
| R65 | 40.9        |          | 0.0400 | 0.7017 | 0.8217 | 4     | 5.1207  | 3.2869  | 3.2069  | 0.0120 | 200 |
| R65 |             | -        |        | 1.0923 | 0.0217 | 3.893 | 4.2527  | 3.200   |         |        |     |
| R71 | 66.8        |          | 0.0653 | 1.0525 | 1.1577 | 3.825 | 1.2027  | 4.4277  | 4.3402  | 0.0162 | 200 |
| R71 | _           | 1        |        | 1.3557 | 111077 | 3.648 | 4.9459  |         |         |        |     |
| R72 | 64.6        |          | 0.0632 |        | 1.4189 | 3.600 | 11,2    | 5.1078  | 5.0268  | 0.0477 | 200 |
| R72 | <b>65.0</b> | 0.000978 | 0.0644 | 1.5183 |        | 3.530 | 5.3596  |         | 5.4402  | 0.0715 | 200 |
| R75 | 65.8        |          | 0.0644 |        | 1.5827 | 3.488 |         | 5.5208  | 5.4402  | 0.0715 | 200 |
| R75 | 16.6        |          | 0.0456 | 1.5827 |        | 3.488 | 5.5208  |         | 5 5775  | 0.0200 | 200 |
| R76 | 46.6        |          | 0.0456 |        | 1.6283 | 3.460 |         | 5.6341  | 5.5775  | 0.0290 | 200 |
| R76 | 60.3        |          | 0.0590 | 1.6283 |        | 3.460 | 5.6341  |         | 11 4140 | 0.0157 | 200 |
| R77 | 00.3        |          | 0.0390 |        | 1.6872 | 3.426 |         | 5.7799  | 11.4140 | 0.0137 | 200 |
| R77 | 35.8        |          | 0.0350 | 3.8873 |        | 2.769 | 10.7624 |         | 10.7997 | 0.0145 | 200 |
| R78 | 33.6        |          | 0.0330 |        | 3.9223 | 2.763 |         | 10.8371 | 10.7997 | 0.0143 | 200 |
| R78 | 62.5        |          | 0.0611 | 3.9223 |        | 2.763 | 10.8371 |         | 10.9021 | 0.0056 | 200 |
| R81 | 02.3        |          | 0.0011 |        | 3.9834 | 2.753 |         | 10.9672 | 10.7021 | 0.0050 | 200 |
| R47 | 57.1        |          | 0.0558 | /      |        | /     | /       |         | 0.1117  | 0.0179 | 200 |
| R48 | 57.1        | _        | 0.0550 |        | 0.0558 | 4     |         | 0.2234  | U.111/  | 0.0177 |     |
| R48 | 65.6        |          | 0.0642 | 0.0558 |        | 4     | 0.2234  |         | 0.3517  | 0.0038 | 200 |
| R49 |             | 1        |        |        | 0.1200 | 4     |         | 0.4800  | 0.2017  | 3.0020 |     |
| R49 | 58.8        |          | 0.0575 | 0.1200 |        | 4     | 0.4800  |         | 0.5950  | 0.0078 | 200 |
| R50 |             | _        |        |        | 0.1775 | 4     |         | 0.7100  |         |        |     |
| R50 | 47.2        |          | 0.0462 | 0.1775 | _      | 4     | 0.7100  |         | 0.8024  | 0.0390 | 200 |
| R52 |             | _        |        |        | 0.2237 | 4     |         | 0.8947  |         |        | -   |
| R52 | 69.7        |          | 0.0682 | 0.2237 | 0.55.5 | 4     | 0.8947  |         | 1.0310  | 0.0334 | 200 |
| R53 |             |          |        |        | 0.2918 | 4     |         | 1.1673  |         |        |     |

Tableau II.27.Evaluation des débits des eaux usées pour le sous bassin A (...suite)

|            |      | 1        | 1       |        |        | <u> </u> | T      | 1      |        |        |     |
|------------|------|----------|---------|--------|--------|----------|--------|--------|--------|--------|-----|
| R53<br>R54 | 63.4 |          | 0.0620  | 0.2918 | 0.3538 | 4        | 1.1673 | 1 /15/ | 1.2914 | 0.0068 | 200 |
|            |      |          | 0.0000  | 0.3538 | 0.3338 | 4        | 1.4154 | 1.4154 |        |        |     |
| R54<br>R46 | 63.6 |          | 0.0622  | 0.3336 | 0.4160 | 4        | 1.4134 | 1.6642 | 1.5398 | 0.0063 | 200 |
| R61        | 03.0 |          | 0.0022  | /      | 0.4100 | /        | /      | 1.0042 |        |        |     |
| R62        | 25.4 |          | 0.0248  | /      | 0.0248 | 4        | - /    | 0.0994 | 0.0497 | 0.0363 | 200 |
| R62        |      |          |         | 0.1030 | 0.0240 | 4        | 0.4119 | 0.0334 |        |        |     |
| R63        | 61.2 |          | 0.0599  | 0.1030 | 0.1628 | 4        | 0.4117 | 0.6513 | 0.5316 | 0.0131 | 200 |
| R63        |      | -        |         | 0.1628 | 0.1020 | 4        | 0.6513 | 0.0313 |        |        |     |
| R64        | 55.1 |          | 0.0539  | 0.1020 | 0.2167 | 4        | 0.0313 | 0.8669 | 0.7591 | 0.0076 | 200 |
| R64        |      | -        |         | 0.2167 | 0.2107 | 4        | 0.8669 | 0.0007 |        |        |     |
| R65        | 55.1 |          | 0.0539  | 0.2107 | 0.2706 | 4        | 0.000  | 1.0825 | 0.9747 | 0.0143 | 200 |
| R59        | 45.0 | 1        | 0.01.55 | /      |        | /        | /      | -13320 | 0.000  | 0.0105 | 200 |
| R60        | 47.3 |          | 0.0463  | '      | 0.0463 | 4        | ·      | 0.1850 | 0.0925 | 0.0182 | 200 |
| R60        | 22.5 | 1        | 0.0216  | 0.0463 |        | 4        | 0.1850 |        | 0.0400 | 0.0117 | 200 |
| R62        | 32.6 |          | 0.0319  |        | 0.0781 | 4        | 1      | 0.3126 | 0.2488 | 0.0117 | 200 |
| R57        | 50.1 |          | 0.0578  | /      |        | /        | /      |        | 0.1156 | 0.0061 | 200 |
| R58        | 59.1 |          | 0.0378  |        | 0.0578 | 4        |        | 0.2312 | 0.1156 | 0.0061 | 200 |
| R58        | 61.7 | 0.000978 | 0.0603  | 0.0578 |        | 4        | 0.2312 |        | 0.3519 | 0.0062 | 200 |
| R56        | 01.7 | 0.000978 | 0.0003  |        | 0.1181 | 4        |        | 0.4726 | 0.3319 | 0.0002 | 200 |
| R66        | 32.9 |          | 0.0322  | /      |        | /        | /      |        | 0.0644 | 0.0207 | 200 |
| R67        | 32.7 |          | 0.0322  |        | 0.0322 | 4        |        | 0.1287 | 0.0011 | 0.0207 | 200 |
| R67        | 35.4 |          | 0.0346  | 0.0322 |        | 4        | 0.1287 |        | 0.1979 | 0.0212 | 200 |
| R68        | 33.1 |          | 0.0310  |        | 0.0668 | 4        |        | 0.2672 | 0.1777 | 0.0212 | 200 |
| R68        | 43.6 |          | 0.0426  | 0.0668 |        | 4        | 0.2672 |        | 0.3525 | 0.0424 | 200 |
| R69        |      |          | 0.0.20  |        | 0.1094 | 4        |        | 0.4378 |        | 0.0.2. |     |
| R69        | 44.2 |          | 0.0432  | 0.1094 |        | 4        | 0.4378 |        | 0.5242 | 0.0456 | 200 |
| R70        |      | =        |         |        | 0.1527 | 4        |        | 0.6107 |        |        |     |
| R70        | 46.4 |          | 0.0454  | 0.1527 | 0.1000 | 4        | 0.6107 | 0.7000 | 0.7014 | 0.0428 | 200 |
| R71        |      | _        |         | ,      | 0.1980 | 4        | ,      | 0.7922 |        |        |     |
| R73        | 52.5 |          | 0.0513  | /      | 0.0513 | /        | /      | 0.0074 | 0.1027 | 0.0170 | 200 |
| R74        |      | _        |         | 0.0513 | 0.0513 | 4        | 0.2074 | 0.2054 |        |        |     |
| R74        | 49.2 |          | 0.0481  | 0.0513 | 0.0005 | 4        | 0.2054 | 0.2070 | 0.3016 | 0.0057 | 200 |
| R72        |      | -        |         | ,      | 0.0995 | 4        | ,      | 0.3979 |        |        |     |
| R79        | 41.9 |          | 0.0410  | /      | 0.0410 | /        | /      | 0.1620 | 0.0820 | 0.0919 | 200 |
| R80        |      | -        |         | 0.0410 | 0.0410 | 4        | 0.1620 | 0.1639 |        |        |     |
| R80<br>R82 | 34.4 |          | 0.0336  | 0.0410 | 0.0746 | 4        | 0.1639 | 0.2985 | 0.2312 | 0.0700 | 200 |
| 104        |      |          |         |        | 0.0740 | 4        |        | 0.2703 |        |        |     |

Tableau II.27. Evaluation des débits des eaux usées pour le sous bassin A (suite et fin)

| R82   | 31.3 |          | 0.0306 | 0.0746 |        | 4     | 0.2985  |         | 0.3597  | 0.0214 | 200 |
|-------|------|----------|--------|--------|--------|-------|---------|---------|---------|--------|-----|
| R81   | 31.3 |          | 0.0300 |        | 0.1052 | 4     |         | 0.4209  | 0.3391  | 0.0214 | 200 |
| R81   | 48.1 |          |        | 4.0886 |        | 2.737 | 11.1905 |         | 11.1905 | 0.0023 | 200 |
| R83   | 40.1 | 0.000978 | 0.0000 |        | 4.0886 | 2.737 |         | 11.1905 | 11.1903 | 0.0023 | 200 |
| R83   |      |          | /      | 4.0886 |        | 2.737 | 11.1905 |         |         |        |     |
| REJET | 10.9 |          | 0.0000 |        |        |       |         |         | 11.1905 | 0.0083 | 200 |
| (01)  |      |          | 0.0000 |        | 4.0886 | 2.737 |         | 11.1905 |         |        |     |

Tableau II.28. Evaluation des débits des eaux usées pour le sous bassin B

| N° de   | Long              | Qs       | Qr     | Qe     | Qs     | Cpe    | Qpe          | Qps'   | Qp     | I      | Φ    |
|---------|-------------------|----------|--------|--------|--------|--------|--------------|--------|--------|--------|------|
| tronçon | (m)               | (l/m/ml) | (l/s)  | (l/s)  | (l/s)  | Cps    | ( <b>m</b> ) | (m)    | (l/s)  | (mm)   | (mm) |
| R84     | 56.2              |          | 0.0522 | /      |        | /      | /            |        | 0.1043 | 0.0121 | 200  |
| R85     | 30.2              |          | 0.0322 |        | 0.0522 | 4      |              | 0.2086 | 0.1043 | 0.0121 | 200  |
| R85     | 52.5              |          | 0.0487 | 0.0522 |        | 4      | 0.2086       |        | 0.3061 | 0.0048 | 200  |
| R86     | 32.3              |          | 0.0467 |        | 0.1009 | 4      |              | 0.4035 | 0.3001 | 0.0048 | 200  |
| R86     | 63.5              |          | 0.0589 | 0.1009 |        | 4      | 0.4035       |        | 0.5214 | 0.0123 | 200  |
| R87     | 03.3              |          | 0.0369 |        | 0.1598 | 4      |              | 0.6392 | 0.5214 | 0.0123 | 200  |
| R87     | 69.2              |          | 0.0642 | 0.1598 |        | 4      | 0.6392       |        | 0.7676 | 0.0077 | 200  |
| R88     | 09.2              |          | 0.0042 |        | 0.2240 | 4      |              | 0.8961 | 0.7070 | 0.0077 | 200  |
| R88     | 69.7              |          | 0.0647 | 0.2240 |        | 4      | 0.8961       |        | 1.0254 | 0.0059 | 200  |
| R89     | 09.7              |          | 0.0047 |        | 0.2887 | 4      |              | 1.1548 | 1.0234 | 0.0039 | 200  |
| R89     | 69.6              |          | 0.0646 | 0.2887 |        | 4      | 1.1548       |        | 1.2840 | 0.0061 | 200  |
| R90     | 07.0              |          | 0.0040 |        | 0.3533 | 4      |              | 1.4132 | 1.2040 | 0.0001 | 200  |
| R90     | 65.5              | 0.000928 | 0.0608 | 0.3533 |        | 4      | 1.4132       |        | 1.5347 | 0.0150 | 200  |
| R91     | 03.3              |          | 0.0000 |        | 0.4141 | 4      |              | 1.6563 | 1.3347 | 0.0130 | 200  |
| R91     | 33.6              |          | 0.0312 | 0.4141 |        | 4      | 1.6563       |        | 1.7187 | 0.0176 | 200  |
| R92     | 33.0              |          | 0.0312 |        | 0.4453 | 4      |              | 1.7810 | 1.7107 | 0.0170 | 200  |
| R92     | 19.3              |          | 0.0179 | 0.4453 |        | 4      | 1.7810       |        | 1.8168 | 0.0078 | 200  |
| R93     | 17.5              |          | 0.0177 |        | 0.4632 | 4      |              | 1.8527 | 1.0100 | 0.0070 | 200  |
| R93     | 23.7              |          | 0.0220 | 0.4632 |        | 4      | 1.8527       |        | 1.8966 | 0.0046 | 200  |
| R94     | 23.7              |          | 0.0220 |        | 0.4852 | 4      |              | 1.9406 | 1.0700 | 0.0040 | 200  |
| R94     | 45.1              |          | 0.0419 | 0.4852 |        | 4      | 1.9406       |        | 2.0243 | 0.0038 | 200  |
| R95     | 13.1              |          | 0.0117 |        | 0.5270 | 4      |              | 2.1080 | 2.0213 | 0.0030 | 200  |
| R95     | 16                |          | 0.0148 | 0.5270 |        | 4      | 2.1080       |        | 2.1377 | 0.0026 | 200  |
| R96     | 10                |          | 0.0170 |        | 0.5419 | 4      |              | 2.1674 | 2.13// | 0.0020 | 200  |
| R96     | 42.6              |          | 0.0395 | 0.5419 |        | 4      | 2.1674       |        | 2.2465 | 0.0113 | 200  |
| R97     | <del>-</del> -∠.∪ |          | 0.0373 |        | 0.5814 | 4      |              | 2.3256 | 2.2703 | 0.0113 | 200  |
| R97     | 20.1              |          | 0.0187 | 1.4258 |        | 3.5937 | 5.1238       |        | 5.1475 | 0.0074 | 200  |
| R98     | 20.1              |          | 0.0107 |        | 1.4444 | 3.5801 |              | 5.1713 | J.17/J | 0.0074 | 200  |

Tableau II.28. Evaluation des débits des eaux usées pour le sous bassin B (... suite)

| R98          |         |          |            | 1.4444  |        | 3.5801 | 5.1713    |        |                     |         |         |
|--------------|---------|----------|------------|---------|--------|--------|-----------|--------|---------------------|---------|---------|
| R99          | 45.7    |          | 0.0424     | 1.4444  | 1.4868 | 3.5503 | 3.1713    | 5.2787 | 5.2250              | 0.0693  | 200     |
| R99          |         |          |            | 1.4868  | 1.7000 | 3.5503 | 5.2787    | 3.2707 |                     |         |         |
| R100         | 31.9    |          | 0.0296     | 1.1000  | 1.5164 | 3.5301 | 3.2707    | 5.3533 | 5.3160              | 0.0429  | 200     |
| R100         |         |          |            | 1.5164  | 1.5101 | 3.5301 | 5.3533    | 3.3333 |                     |         |         |
| R101         | 34      |          | 0.0316     | 1.010   | 1.5480 | 3.5093 | 0.0000    | 5.4325 | 5.3929              | 0.0400  | 200     |
| R101         | <b></b> |          | 0.00.50    | 1.5480  |        | 3.5093 | 5.4325    |        |                     | 0.007.5 | • • • • |
| R102         | 27.8    |          | 0.0258     |         | 1.5738 | 3.4928 |           | 5.4970 | 5.4647              | 0.0356  | 200     |
| R106         | 60      |          | 0.0575     | /       |        | /      | /         |        | 0.1151              | 0.0044  | 200     |
| R107         | 62      |          | 0.0575     |         | 0.0575 | 4      |           | 0.2301 | 0.1151              | 0.0044  | 200     |
| R107         | 69.9    |          | 0.0649     | 0.0575  |        | 4      | 0.2301    |        | 0.2500              | 0.0139  | 200     |
| R108         | 09.9    |          | 0.0049     |         | 0.1224 | 4      |           | 0.4896 | 0.3599              | 0.0139  | 200     |
| R108         | 29.7    |          | 0.0276     | 0.1224  |        | 4      | 0.48961   |        | 0.5447              | 0.0081  | 200     |
| R109         | 49.1    |          | 0.0270     |         | 0.1500 | 4      |           | 0.5999 | U.J <del>44</del> / | 0.0061  | 200     |
| R109         | 50.1    | 0.000928 | 0.0465     | 0.1500  |        | 4      | 0.5999    |        | 0.6928              | 0.0116  | 200     |
| R110         | 30.1    |          | 0.0403     |         | 0.1965 | 4      |           | 0.7858 | 0.0720              | 0.0110  | 200     |
| R110         | 48.8    |          | 0.0453     | 0.6017  |        | 4      | 2.4069    |        | 2.4974              | 0.0139  | 200     |
| R111         | 10.0    |          | 0.0133     |         | 0.6470 | 4      |           | 2.5880 | 2.1771              | 0.0137  | 200     |
| R111         | 20.5    |          | 0.0190     | 0.6470  |        | 4      | 2.5880    |        | 2.6261              | 0.0107  | 200     |
| R112         |         |          |            |         | 0.6660 | 4      |           | 2.6641 |                     | 0.0107  |         |
| R112         | 69      |          | 0.0640     | 0.6660  |        | 4      | 2.6641    |        | 2.7922              | 0.0039  | 200     |
| R113         |         |          |            |         | 0.7301 | 4      |           | 2.9202 |                     |         |         |
| R113         | 42.8    |          | 0.0397     | 0.7301  |        | 4      | 2.9202    |        | 2.9997              | 0.0035  | 200     |
| R114         |         |          |            | 0 = 100 | 0.7698 | 4      | • • • • • | 3.0791 |                     |         |         |
| R114         | 22.9    |          | 0.0213     | 0.7698  | 0.7010 | 4      | 3.0791    | 0.1641 | 1.5821              | 0.0043  | 200     |
| R115         |         |          |            | 0.7010  | 0.7910 | 4      | 0.1641    | 3.1641 |                     |         |         |
| R115         | 57.5    |          | 0.0534     | 0.7910  | 0.0444 | 4      | 3.1641    | 2 2775 | 3.2708              | 0.0061  | 200     |
| R97          |         |          |            | /       | 0.8444 | 4      | /         | 3.3775 |                     |         |         |
| R105<br>R116 | 56.2    |          | 0.0522     | /       | 0.0522 | 4      | /         | 0.2086 | 0.1043              | 0.0114  | 200     |
| R116         |         |          |            | 0.0522  | 0.0322 | 4      | 0.2086    | 0.2080 |                     |         |         |
| R117         | 36.1    |          | 0.0335     | 0.0322  | 0.0857 | 4      | 0.2000    | 0.3426 | 0.2756              | 0.0036  | 200     |
| R117         |         |          |            | 0.1149  | 0.0057 | 4      | /         | 0.5420 |                     |         |         |
| R117         | 40.1    |          | 0.0372     | 0.1147  | 0.1521 | 4      | ,         | 0.6084 | 0.3042              | 0.0107  | 200     |
| R118         |         |          | 0.0:5-     | 0.1521  | 0.1021 | 4      | 0.6084    | 0.0001 | 0 = 0 = 0           | 0.0101  | • • •   |
| R119         | 52.5    |          | 0.0487     | 0.1021  | 0.2008 | 4      | 0.0007    | 0.8033 | 0.7058              | 0.0109  | 200     |
| R119         | 20.2    |          | 0.0200     | 0.2008  |        | 4      | 0.8033    |        | 0.0522              | 0.0122  | 200     |
| R120         | 32.3    |          | 0.0300 0.2 |         | 0.2308 | 4      |           | 0.9232 | 0.8632              | 0.0133  | 200     |
|              | 1       | 1        | 1          |         |        | 1      | I         |        | i                   | 1       |         |

Tableau II.28. Evaluation des débits des eaux usées pour le sous bassin B (suite et fin)

| D120  | 56           |          | 0.0520 | 0.2522 |        | 4      | 1 4122 |        | 1 5171              | 0.0062 | 200 |
|-------|--------------|----------|--------|--------|--------|--------|--------|--------|---------------------|--------|-----|
| R120  | 56           |          | 0.0520 | 0.3533 |        | 4      | 1.4132 |        | 1.5171              | 0.0063 | 200 |
| R110  |              |          |        |        | 0.4053 | 4      |        | 1.6210 |                     |        |     |
| R121  | 31.4         |          | 0.0291 | /      |        | /      | /      |        | 0.0583              | 0.0105 | 200 |
| R122  | 31.4         |          | 0.0271 |        | 0.0291 | 4      |        | 0.1166 | 0.0363              | 0.0103 | 200 |
| R122  | 62           |          | 0.0575 | 0.0461 |        | 4      | 0.1845 |        | 0.2996              | 0.0139 | 200 |
| R123  | 02           |          | 0.0373 |        | 0.1037 | 4      |        | 0.4146 | 0.2990              | 0.0139 | 200 |
| R123  | 20.3         |          | 0.0188 | 0.1037 |        | 4      | 0.4146 |        | 0.4523              | 0.0152 | 200 |
| R120  | 20.3         |          | 0.0166 |        | 0.1225 | 4      |        | 0.4900 | 0.4323              | 0.0132 | 200 |
| R124  | 31.5         |          | 0.0292 | /      |        | /      | /      |        | 0.0585              | 0.0067 | 200 |
| R117  | 31.3         | 0.000928 | 0.0272 |        | 0.0292 | 4      |        | 0.1169 | 0.0363              | 0.0007 | 200 |
| R125  | 18.3         |          | 0.0170 | /      |        | /      | /      |        | 0.0340              | 0.0115 | 200 |
| R122  | 10.5         |          | 0.0170 |        | 0.0170 | 4      |        | 0.0679 | 0.0340              | 0.0113 | 200 |
| R102  | 41.1         |          | /      | 1.5738 |        | 3.4928 | 5.4970 |        | 5.4970              | 0.0562 | 200 |
| R103  | 41.1         |          |        |        | 1.5738 | 3.4928 |        | 5.4970 | 3.4970              | 0.0302 | 200 |
| R103  | 49.2         |          | /      | 1.5738 |        | 3.4928 | 5.4970 |        | 5.4970              | 0.0872 | 200 |
| R104  | <b>47.</b> ∠ |          | /      |        | 1.5738 | 3.4928 |        | 5.4970 | J. <del>4</del> 710 | 0.0672 | 200 |
| R104  |              |          |        | 1.5738 |        | 3.4928 | 5.4970 |        |                     |        |     |
| REJET | 9.6          |          | /      |        |        |        |        |        | 5.4970              | 0.0754 | 200 |
| N02   |              |          |        |        | 1.5738 | 3.4928 |        | 5.4970 |                     |        |     |

Tableau II.29. Vérification des trois conditions l'autocurage pour le sous bassin A

|                  |          |        |           |                                  |              |                       |       |        |                |                | Co                                        | nditions d'auto                           | curage                               |
|------------------|----------|--------|-----------|----------------------------------|--------------|-----------------------|-------|--------|----------------|----------------|-------------------------------------------|-------------------------------------------|--------------------------------------|
| N° de<br>tronçon | Long (m) | I      | Ф<br>(mm) | Q <sub>mac</sub> (tron)<br>(l/s) | Qps<br>(l/s) | V <sub>ps</sub> (l/s) | Rq    | Rh     | Rv<br>(rH=0.5) | Rv<br>(rH=0.2) | 1 <sup>ere</sup><br>condition<br>V≥0.7m/s | 2 <sup>éme</sup><br>condition<br>V≥0.3m/s | 3 <sup>éme</sup> condition<br>H≥0.2Φ |
| R1<br>R2         | 69.5     | 0.0059 | 200       | 2.1109                           | 22.50        | 0.7166                | 0.094 | 0.160  | 1.02           | 0.6            | 0.7309                                    | 0.4299                                    | 0.032                                |
| R2<br>R3         | - 64     | 0.0058 | 200       | 2.1123                           | 22.00        | 0.7006                | 0.096 | 0.165  | 1.02           | 0.6            | 0.7146                                    | 0.4204                                    | 0.033                                |
| R3<br>R6         | 64.8     | 0.0604 | 200       | 2.1121                           | 72.00        | 2.2930                | 0.029 | 0.050  | 1.02           | 0.6            | 2.3389                                    | 1.3758                                    | 0.010                                |
| R6<br>R10        | 69.3     | 0.0173 | 200       | 2.1110                           | 37.00        | 1.1783                | 0.057 | 0.1200 | 1.02           | 0.6            | 1.2019                                    | 0.7070                                    | 0.024                                |
| R10<br>R14       | 66.6     | 0.0102 | 200       | 2.1116                           | 30.00        | 0.9554                | 0.070 | 0.1400 | 1.02           | 0.6            | 0.9745                                    | 0.5732                                    | 0.028                                |
| R14<br>R17       | 69.5     | 0.0019 | 200       | 2.1109                           | 41.00        | 1.3057                | 0.051 | 0.1100 | 1.02           | 0.6            | 1.3318                                    | 0.7834                                    | 0.022                                |
| R17<br>R20       | 68.6     | 0.0211 | 200       | 2.1111                           | 42.50        | 1.3535                | 0.050 | 0.1100 | 1.02           | 0.6            | 1.3806                                    | 0.8121                                    | 0.022                                |
| R20<br>R21       | 62.5     | 0.0596 | 200       | 2.1127                           | 70.00        | 2.2293                | 0.030 | 0.0550 | 1.02           | 0.6            | 2.2739                                    | 1.3376                                    | 0.011                                |
| R21<br>R22       | 50.6     | 0.0945 | 200       | 2.1157                           | 90.00        | 2.8662                | 0.024 | 0.0400 | 1.02           | 0.6            | 2.9236                                    | 1.7197                                    | 0.008                                |
| R22<br>R23       | 50.3     | 0.0267 | 200       | 2.1158                           | 47.00        | 1.4968                | 0.045 | 0.1200 | 1.02           | 0.6            | 1.5268                                    | 0.8981                                    | 0.024                                |

 $Tableau\ II.29.\ V\'erification\ des\ trois\ conditions\ l'autocurage\ pour\ le\ sous\ bassin\ A(...suite)$ 

| R23        | 47.2         | 0.0122 | 200 | 0.1166    | 22.00 | 1.0510 | 0.064 | 0.1200 | 1.02 | 0.6 | 1.0720 | 0.6206 | 0.026 |
|------------|--------------|--------|-----|-----------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R24        | 47.3         | 0.0123 | 200 | 2.1166    | 33.00 | 1.0510 | 0.064 | 0.1300 | 1.02 |     | 1.0720 | 0.6306 | 0.026 |
| R24        | 67           | 0.0100 | 200 | 2.1115    | 30.00 | 0.9554 | 0.070 | 0.1500 | 1.02 | 0.6 | 0.9745 | 0.5732 | 0.030 |
| R77        | 07           | 0.0100 | 200 | 2.1113    | 30.00 | 0.7334 | 0.070 | 0.1300 |      |     | 0.7743 | 0.5752 | 0.030 |
| R4         | 58           | 0.0043 | 200 | 2.1138    | 16 00 | 0.5096 | 0.132 | 0.2100 | 1.02 | 0.6 | 0.5197 | 0.3057 | 0.042 |
| R5         | 30           | 0.0013 | 200 | 2.1130    | 10.00 | 0.5070 | 0.132 | 0.2100 |      |     | 0.5177 | 0.5057 | 0.012 |
| R5         | 68.6         | 0.0039 | 200 | 2.1111    | 18.20 | 0.5796 | 0.116 | 0.1900 | 1.02 | 0.6 | 0.5912 | 0.3478 | 0.038 |
| R6         |              |        |     |           |       |        |       |        |      | _   |        |        |       |
| R8         | 67.5         | 0.0079 | 200 | 2.1114    | 26.40 | 0.8408 | 0.080 | 0.1600 | 1.02 | 0.6 | 0.8576 | 0.5045 | 0.032 |
| R9         |              |        |     |           |       |        |       |        | 1.02 | 0.6 |        |        |       |
| R9         | 40           | 0.0067 | 200 | 2.1184    | 24.80 | 0.7898 | 0.085 | 0.1700 | 1.02 | 0.6 | 0.8056 | 0.4739 | 0.034 |
| R10        |              |        |     |           |       |        |       |        | 1.02 | 0.6 | 0.0771 | 0.5150 |       |
| R15        | 59.5         | 0.0081 | 200 | 2.1135    | 27.00 | 0.8599 | 0.078 | 0.1500 | 1.02 | 0.6 | 0.8771 | 0.5159 | 0.030 |
| R16        |              |        |     |           |       |        |       |        | 1.02 | 0.6 |        |        |       |
| R16        | 67.1         | 0.0167 | 200 | 2.1115    | 37.00 | 1.1783 | 0.057 | 0.1100 | 1.02 | 0.6 | 1.2019 | 0.7070 | 0.022 |
| R17        |              |        |     |           |       |        |       |        | 1.02 | 0.6 |        |        |       |
| R18<br>R19 | 69.1         | 0.0235 | 200 | 2.1110    | 46.00 | 1.4650 | 0.046 | 0.1000 | 1.02 | 0.0 | 1.4943 | 0.8790 | 0.020 |
| R19        |              |        |     |           |       |        |       |        | 1.02 | 0.6 |        |        |       |
| R20        | 63.6         | 0.0149 | 200 | 2.1124    | 36.00 | 1.1465 | 0.059 | 0.1100 | 1.02 | 0.0 | 1.1694 | 0.6879 | 0.022 |
| R30        |              |        |     |           |       |        |       |        | 1.02 | 0.6 |        |        |       |
| R31        | 66.1         | 0.0775 | 200 | 2.1118    | 81.00 | 2.5796 | 0.026 | 0.0300 |      |     | 2.6312 | 1.5478 | 0.006 |
| R31        | 60. <b>5</b> | 0.0245 | 200 | 2 1 1 2 1 | 45.00 | 1 4001 | 0.047 | 0.1000 | 1.02 | 0.6 | 1.4610 | 0.0500 | 0.020 |
| R34        | 60.7         | 0.0246 | 200 | 2.1131    | 45.00 | 1.4331 | 0.047 | 0.1000 |      |     | 1.4618 | 0.8599 | 0.020 |

Tableau II.29. Vérification des trois conditions l'autocurage pour le sous bassin A (...suite)

| R34<br>R37 | 51.3 | 0.0119 | 200 | 2.1155 | 38.00 | 1.2102 | 0.056 | 0.1100 | 1.02 | 0.6 | 1.2344 | 0.7261 | 0.022 |
|------------|------|--------|-----|--------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R37<br>R40 | 26.3 | 0.0198 | 200 | 2.1219 | 41.00 | 1.3057 | 0.052 | 0.1000 | 1.02 | 0.6 | 1.3318 | 0.7834 | 0.020 |
| R40<br>R41 | 41.7 | 0.0084 | 200 | 2.1180 | 27.00 | 0.8599 | 0.078 | 0.1500 | 1.02 | 0.6 | 0.8771 | 0.5159 | 0.030 |
| R41<br>R24 | 69.4 | 0.0034 | 200 | 2.1109 | 17.70 | 0.5637 | 0.119 | 0.2100 | 1.02 | 0.6 | 0.5750 | 0.3382 | 0.042 |
| R25<br>R26 | 62.9 | 0.0162 | 200 | 2.1126 | 38.00 | 1.2102 | 0.056 | 0.1100 | 1.02 | 0.6 | 1.2344 | 0.7261 | 0.022 |
| R26<br>R27 | 55.8 | 0.0516 | 200 | 2.1144 | 67.00 | 2.1338 | 0.032 | 0.0600 | 1.02 | 0.6 | 2.1764 | 1.2803 | 0.012 |
| R27<br>R29 | 23.1 | 0.0525 | 200 | 2.1227 | 68.00 | 2.1656 | 0.031 | 0.0500 | 1.02 | 0.6 | 2.2089 | 1.2994 | 0.010 |
| R28<br>R29 | 56.4 | 0.0117 | 200 | 2.1142 | 32.00 | 1.0191 | 0.066 | 0.0120 | 1.02 | 0.6 | 1.0395 | 0.6115 | 0.002 |
| R29<br>R31 | 41.9 | 0.0439 | 200 | 2.1179 | 60.00 | 1.9108 | 0.035 | 0.0700 | 1.02 | 0.6 | 1.9490 | 1.1465 | 0.014 |
| R32<br>R33 | 65.1 | 0.0115 | 200 | 2.1120 | 32.50 | 1.0350 | 0.065 | 0.0120 | 1.02 | 0.6 | 1.0557 | 0.6210 | 0.002 |
| R33<br>R34 | 38.6 | 0.0140 | 200 | 2.1188 | 35.00 | 1.1146 | 0.061 | 0.0110 | 1.02 | 0.6 | 1.1369 | 0.6688 | 0.002 |
| R35<br>R36 | 52   | 0.0092 | 200 | 2.1154 | 28.60 | 0.9108 | 0.074 | 0.0140 | 1.02 | 0.6 | 0.9290 | 0.5465 | 0.003 |

Tableau II.29. Vérification des trois conditions l'autocurage pour le sous bassin A (...suite)

| R36        | 25.5 | 0.0110 | 200 | 2 1 1 0 0 | 22.00        | 1.0510  | 0.054 | 0.0120 | 1.02 | 0.6 | 1.0500 | 0.5205 | 0.002 |
|------------|------|--------|-----|-----------|--------------|---------|-------|--------|------|-----|--------|--------|-------|
| R37        | 37.7 | 0.0119 | 200 | 2.1190    | 33.00        | 1.0510  | 0.064 | 0.0120 |      |     | 1.0720 | 0.6306 | 0.002 |
| R38        | 515  | 0.0079 | 200 | 2.1147    | 27.00        | 0.8599  | 0.079 | 0.1500 | 1.02 | 0.6 | 0.8771 | 0.5159 | 0.030 |
| R39        | 34.3 | 0.0079 | 200 | 2.114/    | 27.00        | 0.8399  | 0.078 | 0.1300 |      |     | 0.6771 | 0.3139 | 0.030 |
| R39        | 33.6 | 0.0080 | 200 | 2.1200    | 27 30        | 0.8694  | 0.078 | 0.1500 | 1.02 | 0.6 | 0.8868 | 0.5217 | 0.030 |
| R40        | 33.0 | 0.0000 | 200 | 2.1200    | 27.50        | 0.0071  | 0.070 | 0.1500 |      |     | 0.0000 | 0.5217 | 0.050 |
| R11        | 47.7 | 0.0308 | 200 | 2.1165    | 51.00        | 1.6242  | 0.041 | 0.0800 | 1.02 | 0.6 | 1.6567 | 0.9745 | 0.016 |
| R12        |      |        |     |           |              |         |       |        |      |     |        |        |       |
| R12        | 57.6 | 0.0075 | 200 | 2.1139    | 26.00        | 0.8280  | 0.081 | 0.1600 | 1.02 | 0.6 | 0.8446 | 0.4968 | 0.032 |
| R13        |      |        |     |           |              |         |       |        |      |     |        |        |       |
| R13        | 63.7 | 0.0025 | 200 | 2.1124    | 15.50        | 0.4936  | 0.136 | 0.2300 | 1.02 | 0.6 | 0.5035 | 0.2962 | 0.046 |
| R14        |      |        |     |           |              |         |       |        |      |     |        |        |       |
| R42<br>R43 | 67.3 | 0.0117 | 200 | 2.1115    | 33.00        | 1.0510  | 0.064 | 0.1200 | 1.02 | 0.6 | 1.0720 | 0.6306 | 0.024 |
| R43        |      |        |     |           |              |         |       |        |      |     |        |        |       |
| R43        | 22.3 | 0.0314 | 200 | 2.1229    | 51.30        | 1.6338  | 0.041 | 0.0800 | 1.02 | 0.6 | 1.6664 | 0.9803 | 0.016 |
| R44        |      |        |     |           |              |         |       |        |      |     |        |        |       |
| R45        | 54.1 | 0.0699 | 200 | 2.1148    | 78.00        | 2.4841  | 0.027 | 0.0500 | 1.02 | 0.6 | 2.5338 | 1.4904 | 0.010 |
| R45        | 26.4 | 0.0450 | 200 | 2.1210    | <b>52</b> 00 | 2 00 64 | 0.004 | 0.0500 | 1.02 | 0.6 | 20465  | 1.2020 | 0.012 |
| R46        | 26.4 | 0.0479 | 200 | 2.1219    | 63.00        | 2.0064  | 0.034 | 0.0600 | 1.02 | 0.6 | 2.0465 | 1.2038 | 0.012 |
| R46        | 52   | 0.0192 | 200 | 2 1151    | 40.00        | 1 2720  | 0.052 | 0.0100 | 1.02 | 0.6 | 1 2004 | 0.7642 | 0.002 |
| R55        | 53   | 0.0183 | 200 | 2.1151    | 40.00        | 1.2739  | 0.053 | 0.0100 | 1.02 | 0.6 | 1.2994 | 0.7643 | 0.002 |
| R55        | 30   | 0.0087 | 200 | 2.1210    | 28.00        | 0.8917  | 0.076 | 0.1600 | 1.02 | 0.6 | 0.9096 | 0.5350 | 0.032 |
| R56        | 30   | 0.0007 | 200 | 2,1210    | 20.00        | 0.0717  | 0.070 | 0.1000 | 1.02 | 0.0 | 0.7070 | 0.5550 | 0.032 |

Tableau II.29. Vérification des trois conditions l'autocurage pour le sous bassin A (...suite)

|     |      |        |     |        |       |        |       |        |      | 1   |        |        |       |
|-----|------|--------|-----|--------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R56 | 40.9 | 0.0120 | 200 | 2.1182 | 32.50 | 1.0350 | 0.065 | 0.1200 | 1.02 | 0.6 | 1.0557 | 0.6210 | 0.024 |
| R65 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R65 | 66.8 | 0.0162 | 200 | 2.1116 | 37.40 | 1.1911 | 0.056 | 0.0110 | 1.02 | 0.6 | 1.2149 | 0.7146 | 0.002 |
| R71 | 00.0 | 0.0102 | 200 | 2.1110 | 57.10 | 1.1711 | 0.020 | 0.0110 | 1.02 | 0.0 | 1.21 . | 0.71.0 | 0.002 |
| R71 | 64.6 | 0.0477 | 200 | 2.1122 | 62.90 | 2.0032 | 0.034 | 0.0600 | 1.02 | 0.6 | 2.0432 | 1.2019 | 0.012 |
| R72 | 01.0 | 0.0177 | 200 | 2.1122 | 02.70 | 2.0032 | 0.031 | 0.0000 | 1.02 | 0.0 | 2.0132 | 1.2019 | 0.012 |
| R72 | 65.8 | 0.0715 | 200 | 2.1118 | 78.00 | 2.4841 | 0.027 | 0.0500 | 1.02 | 0.6 | 2.5338 | 1.4904 | 0.010 |
| R75 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R75 | 46.6 | 0.0290 | 200 | 2.1167 | 50.00 | 1.5924 | 0.042 | 0.0800 | 1.02 | 0.6 | 1.6242 | 0.9554 | 0.016 |
| R76 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R76 | 60.3 | 0.0157 | 200 | 2.1132 | 37.00 | 1.1783 | 0.057 | 0.0110 | 1.02 | 0.6 | 1.2019 | 0.7070 | 0.002 |
| R77 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R77 | 35.8 | 0.0145 | 200 | 2.1195 | 36.00 | 1.1465 | 0.059 | 0.0120 | 1.02 | 0.6 | 1.1694 | 0.6879 | 0.002 |
| R78 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R78 | 62.5 | 0.0056 | 200 | 2.1127 | 69.00 | 2.1975 | 0.031 | 0.0600 | 1.02 | 0.6 | 2.2414 | 1.3185 | 0.012 |
| R81 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R47 | 57.1 | 0.0179 | 200 | 2.1141 | 39.00 | 1.2420 | 0.054 | 0.0100 | 1.02 | 0.6 | 1.2669 | 0.7452 | 0.002 |
| R48 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R48 | 65.6 | 0.0038 | 200 | 2.1119 | 18.50 | 0.5892 | 0.114 | 0.2100 | 1.02 | 0.6 | 0.6010 | 0.3535 | 0.042 |
| R49 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R49 | 58.8 | 0.0078 | 200 | 2.1136 | 27.00 | 0.8599 | 0.078 | 0.0160 | 1.02 | 0.6 | 0.8771 | 0.5159 | 0.003 |
| R50 | 20.0 | 0.0070 | 200 | 2.1150 | 27.00 |        | 0.070 | 0.0100 | 1.02 | 0.0 | 0.0771 | 0.0107 | 0.005 |
| R50 | 47.2 | 0.0390 | 200 | 2.1166 | 59.00 | 1.8790 | 0.036 | 0.0700 | 1.02 | 0.6 | 1.9166 | 1.1274 | 0.014 |
| R52 | 17.2 | 0.0370 | 200 | 2.1100 | 37.00 | 1.0770 | 0.030 | 0.0700 | 1.02 | 0.0 | 1.7100 | 1.12/1 | 0.011 |
| R52 | 69.7 | 0.0334 | 200 | 2.1109 | 56.00 | 1.7834 | 0.038 | 0.0750 | 1.02 | 0.6 | 1.8191 | 1.0701 | 0.015 |
| R53 | 07.1 | 0.0334 | 200 | 2.1107 | 50.00 | 1.7054 | 0.030 | 0.0750 | 1.02 | 0.0 | 1.0171 | 1.0701 | 0.015 |

 $Tableau\ II.29.\ V\'erification\ des\ trois\ conditions\ l'autocurage\ pour\ le\ sous\ bassin\ A(...suite)$ 

| R53 | 63.4 | 0.0068 | 200 | 2.1125 | 24.00 | 0.7643 | 0.088 | 0.0160 | 1.02 | 0.6 | 0.7796 | 0.4586 | 0.003 |
|-----|------|--------|-----|--------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R54 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R54 | 63.6 | 0.0063 | 200 | 2.1124 | 23.60 | 0.7516 | 0.090 | 0.0170 | 1.02 | 0.6 | 0.7666 | 0.4510 | 0.003 |
| R46 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R61 | 25.4 | 0.0363 | 200 | 2.1221 | 57.00 | 1.8153 | 0.037 | 0.0700 | 1.02 | 0.6 | 1.8516 | 1.0892 | 0.014 |
| R62 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R62 | 61.2 | 0.0131 | 200 | 2.1130 | 34.00 | 1.0828 | 0.062 | 0.0130 | 1.02 | 0.6 | 1.1045 | 0.6497 | 0.003 |
| R63 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R63 | 55.1 | 0.0076 | 200 | 2.1146 | 26.50 | 0.8439 | 0.080 | 0.1600 | 1.02 | 0.6 | 0.8608 | 0.5064 | 0.032 |
| R64 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R64 | 55.1 | 0.0143 | 200 | 2.1146 | 35.20 | 1.1210 | 0.060 | 0.1200 | 1.02 | 0.6 | 1.1434 | 0.6726 | 0.024 |
| R65 | 00.1 | 0.01.0 |     |        | 00.20 |        | 0.000 | 0.1200 |      | 0.0 |        |        |       |
| R59 | 47.3 | 0.0182 | 200 | 2.1166 | 40 10 | 1.2771 | 0.053 | 0.1100 | 1.02 | 0.6 | 1.3026 | 0.7662 | 0.022 |
| R60 | 17.5 | 0.0102 | 200 | 2.1100 | 10.10 | 1.2771 | 0.055 | 0.1100 | 1.02 | 0.0 | 1.5020 | 0.7002 | 0.022 |
| R60 | 32.6 | 0.0117 | 200 | 2.1203 | 31.80 | 1.0127 | 0.067 | 0.1200 | 1.02 | 0.6 | 1.0330 | 0.6076 | 0.024 |
| R62 | 32.0 | 0.0117 | 200 | 2.1203 | 31.00 | 1.0127 | 0.007 | 0.1200 | 1.02 | 0.0 | 1.0330 | 0.0070 | 0.021 |
| R57 | 59.1 | 0.0061 | 200 | 2.1136 | 23.00 | 0.7325 | 0.092 | 0.1750 | 1.02 | 0.6 | 0.7471 | 0.4395 | 0.035 |
| R58 | 37.1 | 0.0001 | 200 | 2.1130 | 23.00 | 0.7323 | 0.072 | 0.1750 | 1.02 | 0.0 | 0.7471 | 0.4373 | 0.033 |
| R58 | 61.7 | 0.0062 | 200 | 2.1129 | 22.20 | 0.7389 | 0.001 | 0.1750 | 1.02 | 0.6 | 0.7536 | 0.4433 | 0.035 |
| R56 | 01.7 | 0.0002 | 200 | 2.1129 | 23.20 | 0.7369 | 0.091 | 0.1730 | 1.02 | 0.0 | 0.7550 | 0.4433 | 0.033 |
| R66 | 32.9 | 0.0207 | 200 | 2.1202 | 41.80 | 1.3312 | 0.051 | 0.000  | 1.02 | 0.6 | 1.3578 | 0.7987 | 0.018 |
| R67 | 32.9 | 0.0207 | 200 | 2.1202 | 41.00 | 1.3312 | 0.031 | 0.0900 | 1.02 | 0.0 | 1.5576 | 0.7907 | 0.016 |
| R67 | 25 / | 0.0212 | 200 | 2 1106 | 12.00 | 1 2276 | 0.050 | 0.0000 | 1.02 | 0.6 | 1 2642 | 0.8025 | 0.019 |
| R68 | 35.4 | 0.0212 | 200 | 2.1196 | 42.00 | 1.3376 | 0.030 | 0.0900 | 1.02 | 0.6 | 1.3643 | 0.8025 | 0.018 |

Tableau II.29. Vérification des trois conditions l'autocurage pour le sous bassin A(...suit)

| R68       | 43.6   | 0.0424 | 200 | 2.1175 | 60.00 | 1.9108 | 0.035 | 0.0700 | 1.02 | 0.6 | 1.9490 | 1.1465 | 0.014 |
|-----------|--------|--------|-----|--------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R69       |        |        |     |        |       |        |       |        |      |     |        |        |       |
| R69       | 44.2   | 0.0456 | 200 | 2.1173 | 64.00 | 2.0382 | 0.033 | 0.0700 | 1.02 | 0.6 | 2.0790 | 1.2229 | 0.014 |
| R70       |        | 0.0.0  |     |        | 000   |        | 0.000 | 0.0,00 | 1.02 | 0.0 |        |        |       |
| R70       | 46.4   | 0.0428 | 200 | 2.1168 | 61.00 | 1.9427 | 0.035 | 0.0700 | 1.02 | 0.6 | 1.9815 | 1.1656 | 0.014 |
| R71       | 70,7   | 0.0420 | 200 | 2.1100 | 01.00 | 1.7721 | 0.033 | 0.0700 | 1.02 | 0.0 |        | 1.1030 |       |
| R73       | 52.5   | 0.0170 | 200 | 2.1152 | 38.00 | 1.2102 | 0.056 | 0.0110 | 1.02 | 0.6 | 1.2344 | 0.7261 | 0.002 |
| R74       | 32.3   | 0.0170 | 200 | 2.1152 | 38.00 | 1.2102 | 0.030 | 0.0110 | 1.02 | 0.0 |        |        |       |
| R74       | 40.2   | 0.0057 | 200 | 2.1161 | 24.50 | 0.7803 | 0.086 | 0.1600 | 1.02 | 0.6 | 0.7050 | 0.4682 | 0.032 |
| R72       | 49.2   | 0.0057 |     |        | 24.50 |        |       | 0.1600 | 1.02 | 0.6 | 0.7959 |        |       |
| R79       | 41.0   | 0.0010 | 200 | 0.1170 | 00.00 | 2.0662 | 0.024 | 0.0400 | 1.02 | 0.6 | 2.0226 | 1 7107 | 0.000 |
| R80       | 41.9   | 0.0919 | 200 | 2.1179 | 90.00 | 2.8662 | 0.024 | 0.0400 | 1.02 | 0.6 | 2.9236 | 1.7197 | 0.008 |
| R80       | 24.4   | 0.0700 | 200 | 0.1100 | 70.00 | 0.4041 | 0.007 | 0.0500 | 1.02 | 0.6 | 2.5229 | 1 4004 | 0.010 |
| R82       | 34.4   | 0.0700 | 200 | 2.1198 | 78.00 | 2.4841 | 0.027 | 0.0500 | 1.02 | 0.6 | 2.5338 | 1.4904 | 0.010 |
| R82       | 21.2   | 0.0214 | 200 | 0.1006 | 12.50 | 1 2525 | 0.050 | 0.1100 | 1.00 | 0.6 | 1.3806 | 0.0101 | 0.022 |
| R81       | 31.3   | 0.0214 | 200 | 2.1206 | 42.50 | 1.3535 | 0.050 | 0.1100 | 1.02 | 0.6 |        | 0.8121 | 0.022 |
| R81       | 40.1   | 0.0022 | 200 | 2 1164 | 16.00 | 0.5006 | 0.122 | 0.2500 | 1.02 | 0.6 | 0.5107 | 0.2057 | 0.050 |
| R83       | 48.1 0 | 0.0023 | 200 | 2.1164 | 16.00 | 0.5096 | 0.132 | 0.2500 | 1.02 | 0.6 | 0.5197 | 0.3057 | 0.050 |
| R83       | 10.0   | 0.0002 | 200 | 0.1050 | 27.50 | 0.0750 | 0.077 | 0.1400 | 1.02 | 0.6 | 0.0022 | 0.5255 | 0.020 |
| Rejet(01) | 10.9   | 0.0083 | 200 | 2.1258 | 27.50 | 0.8758 | 0.077 | 0.1400 | 1.02 | 0.6 | 0.8933 | 0.5255 | 0.028 |

Tableau II.30. Vérification des trois conditions l'autocurage pour le sous bassin B

| N° de Lons | Long        | g I     | Φ    | Qmac    | Ong       | Vps<br>(l/s) |        |        | Rv         | Rv         |                            | ditions d'autoc            | urage                      |
|------------|-------------|---------|------|---------|-----------|--------------|--------|--------|------------|------------|----------------------------|----------------------------|----------------------------|
|            | tronçon (m) | (m/m)   | (mm) | (tron)  | Qps (l/s) |              | Rq     | Rh     |            | (RH=0,2)   | 1 <sup>ére</sup> condition | 2 <sup>éme</sup> condition | 3 <sup>éme</sup> condition |
|            | ()          | (/      | ()   | (l/s)   | (1,5)     | (2,5)        |        |        | (==== 0,0) | (==== 0,=) | V≥0.7m/s                   | V≥0.3m/s                   | Н≥0.2Ф                     |
| R84        | 56.2        | 0.0121  | 200  | 0.8329  | 33.00     | 1.0510       | 0.025  | 0.050  | 1.02       | 0.6        | 1.0720                     | 0.6306                     | 0.010                      |
| R85        | 20.2        | 0.0121  | 200  | 0.002   |           | 1.0010       | 0.020  | 0.020  | 1.02       | 0.0        | 1.0720                     | 0.0200                     | 0.010                      |
| R85        | 52.5        | 0.0048  | 200  | 0.8338  | 64.00     | 2.0382       | 0.013  | 0.020  | 1.02       | 0.6        | 2.0790                     | 1.2229                     | 0.004                      |
| R86        | 32.3        | 0.0010  | 200  | 0.0330  | 01.00     | 2.0302       | 0.013  |        |            |            | 2.0790                     | 1.222)                     | 0.001                      |
| R86        | 63.5        | 0.0123  | 200  | 0.8310  | 34.00     | 1.0828       | 0.024  | 0.050  | 1.02       | 0.6        | 1.1045                     | 0.6497                     | 0.010                      |
| R87        | 03.3        | 0.0123  | 200  | 0.0310  | 3 1.00    | 1.0020       | 0.021  |        |            |            | 1.10-5                     | 0.0157                     | 0.010                      |
| R87        | 69.2        | 0.0077  | 200  | 0.8296  | 82.00     | 2.6115       | 0.010  | 0.0200 | 1.02       | 0.6        | 2.6637                     | 1.5669                     | 0.004                      |
| R88        | 07.2        | 0.0077  | 200  | 0.0270  | 02.00     | 2.0113       | 0.010  | 0.0200 | 1.02       | 0.0        | 2.0037                     | 1.5007                     | 0.001                      |
| R88        | 69.7        | 0.0059  | 200  | 0.8295  | 22.50     | 0.7166       | 0.037  | 0.0700 | 1.02       | 0.6        | 0.7309                     | 0.4299                     | 0.014                      |
| R89        | 07.7        |         |      |         |           |              |        |        | 1.02       | 0.0        | 0.7507                     | 0.1299                     |                            |
| R89        | 69.6        | 0.0061  | 200  | 0.8295  | 26.00     | 0.8280       | 0.032  | 0.0600 | 1.02       | 0.6        | 0.8446                     | 0.4968                     | 0.012                      |
| R90        | 07.0        | 0.0001  | 200  |         |           | 0.0200       | 0.032  | 0.0000 | 1.02       | 0.0        | 0.0110                     | 0.1700                     |                            |
| R90        | 65.5        | 0.0150  | 200  | 0.8305  | 36.00     | 1.1465       | 0.023  | 0.0450 | 1.02       | 0.6        | 1.1694                     | 0.6879                     | 0.009                      |
| R91        | 00.0        | 0.0120  | 200  | 0.0505  | 20.00     | 111100       | 0.028  | 0.0.00 | 1.02       | 0.0        |                            | 0.0079                     |                            |
| R91        | 33.6        | 0.0176  | 200  | 0.8385  | 40.00     | 1.2739       | 0.021  | 0.0400 | 1.02       | 0.6        | 1.2994                     | 0.7643                     | 0.008                      |
| R92        | 33.0        | 0.0170  | 200  | 0.0505  | 10.00     | 1.2709       | 0.021  | 0.0100 | 1.02       | 0.0        | 1.2)                       | 0.7013                     |                            |
| R92        | 19.3        | 0.0078  | 200  | 0.8421  | 27.00     | 0.8599       | 0.031  | 0.0600 | 1.02       | 0.6        | 0.8771                     | 0.5159                     | 0.012                      |
| R93        | 17.8        | 0.0076  | 200  | 0.0.21  | 27.00     | 0.00         | 0.001  | 0.000  | 1.02       | 0.0        | 0.0771                     | 0.5107                     | 0.012                      |
| R93        | 23.7        | 0.0046  | 200  | 0.8410  | 21.00     | 0.6688       | 0.040  | 0.0800 | 1.02       | 0.6        | 0.6822                     | 0.4013                     | 0.016                      |
| R94        |             | 3.00.10 |      | 3.3.110 |           | 3.000        | 0.5.0  | 3.000  | 1.02       |            | 0.0022                     | 0010                       |                            |
| R94        | 45.1        | 0.0038  | 200  | 0.8356  | 17.00     | 0.5414       | 0.049  | 0.1000 | 1.02       | 0.6        | 0.5522                     | 0.3248                     | 0.020                      |
| R95        |             | 3.0020  |      | 3.000   | 27100     |              | 3.0.17 | 3.1000 | 1.02       | 0.0        | 0.5522                     | 0.52.0                     | 0.020                      |

Tableau II.30. Vérification des trois conditions l'autocurage pour le sous bassin B (...suite)

| R95          | 16   | 0.0026 | 200 | 0.8429 | 15.80 | 0.5032 | 0.052 | 0.1100 | 1.02 | 0.6 | 0.5122 | 0.3019 | 0.022 |
|--------------|------|--------|-----|--------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R96          | 10   | 0.0026 | 200 | 0.8429 | 13.80 | 0.3032 | 0.033 | 0.1100 | 1.02 | 0.6 | 0.5132 | 0.3019 | 0.022 |
| R96          | 42.6 | 0.0113 | 200 | 0.8363 | 32.00 | 1.0191 | 0.026 | 0.0400 | 1.02 | 0.6 | 1.0395 | 0.6115 | 0.008 |
| R97          | 72.0 | 0.0113 | 200 | 0.0303 | 32.00 | 1.0171 | 0.020 | 0.0400 | 1.02 | 0.0 | 1.0373 | 0.0113 | 0.000 |
| R97          | 20.1 | 0.0074 | 200 | 0.8419 | 25.00 | 0.7962 | 0.034 | 0.0700 | 1.02 | 0.6 | 0.8121 | 0.4777 | 0.014 |
| R98          | 2011 | 0.007  |     | 0.0.15 |       | 017702 |       | 0.0,00 |      | 0.0 |        |        | 0.01. |
| R98          | 45.7 | 0.0693 | 200 | 0.8355 | 78.00 | 2.4841 | 0.011 | 0.0200 | 1.02 | 0.6 | 2.5338 | 1.4904 | 0.004 |
| R99          |      |        |     |        |       | 1 0100 |       |        |      |     |        |        |       |
| R99          | 31.9 | 0.0429 | 200 | 0.8389 | 60.00 | 1.9108 | 0.014 | 0.0200 | 1.02 | 0.6 | 1.9490 | 1.1465 | 0.004 |
| R100<br>R100 |      |        |     |        |       |        |       |        |      |     |        |        |       |
| R100         | 34   | 0.0400 | 200 | 0.8384 | 58.00 | 1.8471 | 0.014 | 0.0200 | 1.02 | 0.6 | 1.8841 | 1.1083 | 0.004 |
| R101         | 27.0 | 0.0256 | 200 | 0.0400 | 75.00 | 1.7516 | 0.015 | 0.0200 | 1.02 | 0.6 | 1.70   | 1.0510 | 0.006 |
| R102         | 27.8 | 0.0356 | 200 | 0.8400 | 55.00 | 1.7516 | 0.015 | 0.0300 | 1.02 | 0.6 | 1.7866 | 1.0510 | 0.006 |
| R106         | 62   | 0.0044 | 200 | 0.8314 | 19.00 | 0.6051 | 0.044 | 0.0900 | 1.02 | 0.6 | 0.6172 | 0.3631 | 0.018 |
| R107         | 02   | 0.0044 | 200 | 0.0314 | 17.00 | 0.0031 | 0.044 | 0.0700 | 1.02 | 0.0 | 0.0172 | 0.5051 | 0.016 |
| R107         | 69.9 | 0.0139 | 200 | 0.8294 | 34.00 | 1.0828 | 0.024 | 0.0380 | 1.02 | 0.6 | 1.1045 | 0.6497 | 0.008 |
| R108         | 07.7 | 0.0137 | 200 | 0.02)  | 31.00 | 1.0020 | 0.021 | 0.0500 | 1.02 | 0.0 | 1.1015 | 0.0157 | 0.000 |
| R108         | 29.7 | 0.0081 | 200 | 0.8395 | 27.50 | 0.8758 | 0.031 | 0.0650 | 1.02 | 0.6 | 0.8933 | 0.5255 | 0.013 |
| R109         | 27.7 | 0.0001 |     | 0.000  | 27.20 | 0.0720 | 0.051 | 0.0020 | 1.02 | 0.0 | 0.0322 | 0.5255 | 0.015 |
| R109         | 50.1 | 0.0116 | 200 | 0.8344 | 32.00 | 1.0191 | 0.026 | 0.0350 | 1.02 | 0.6 | 1.0395 | 0.6115 | 0.007 |
| R110         |      | 2.0110 |     | 3.32.1 |       |        | 3.020 | 2.0220 |      |     | 1.0070 |        | 3.337 |
| R110         | 48.8 | 0.0139 | 200 | 0.8347 | 34.00 | 1.0828 | 0.025 | 0.0500 | 1.02 | 0.6 | 1.1045 | 0.6497 | 0.010 |
| R111         |      |        |     |        |       |        |       |        |      |     |        |        |       |

Tableau II.30. Vérification des trois conditions l'autocurage pour le sous bassin B (...suite)

| R111         | 20.5 | 0.0107 | 200 | 0.0410 | 20.00 | 0.0554   | 0.020 | 0.0550 | 1.00 | 0.6 | 0.0745 | 0.5722 | 0.011 |
|--------------|------|--------|-----|--------|-------|----------|-------|--------|------|-----|--------|--------|-------|
| R112         | 20.5 | 0.0107 | 200 | 0.8418 | 30.00 | 0.9554   | 0.028 | 0.0550 | 1.02 | 0.6 | 0.9745 | 0.5732 | 0.011 |
| R112         | 69   | 0.0039 | 200 | 0.8297 | 18.50 | 0.5892   | 0.045 | 0.0900 | 1.02 | 0.6 | 0.6010 | 0.3535 | 0.018 |
| R113         | 09   | 0.0039 | 200 | 0.0297 | 16.50 | 0.3692   | 0.043 | 0.0900 | 1.02 | 0.0 | 0.0010 | 0.5555 | 0.016 |
| R113         | 42.8 | 0.0035 | 200 | 0.8362 | 17.00 | 0.5414   | 0.049 | 0.1000 | 1.02 | 0.6 | 0.5522 | 0.3248 | 0.020 |
| R114         | 12.0 | 0.0055 | 200 | 0.0302 | 17.00 | 0.5 11 1 | 0.017 | 0.1000 | 1.02 | 0.0 |        |        | 0.020 |
| R114         | 22.9 | 0.0043 | 200 | 0.8412 | 18.00 | 0.5732   | 0.047 | 0.0950 | 1.02 | 0.6 | 0.5847 | 0.3439 | 0.019 |
| R115         | "    |        |     |        |       |          |       |        |      |     |        |        |       |
| R115         | 57.5 | 0.0061 | 200 | 0.8325 | 23.00 | 0.7325   | 0.036 | 0.0600 | 1.02 | 0.6 | 0.7471 | 0.4395 | 0.012 |
| R97          |      |        |     |        |       |          |       |        |      |     |        |        |       |
| R105<br>R116 | 56.2 | 0.0114 | 200 | 0.8329 | 32.00 | 1.0191   | 0.026 | 0.0500 | 1.02 | 0.6 | 1.0395 | 0.6115 | 0.010 |
| R116         |      |        |     |        |       |          |       |        |      |     |        |        |       |
| R117         | 36.1 | 0.0036 | 200 | 0.8379 | 17.00 | 0.5414   | 0.049 | 0.1000 | 1.02 | 0.6 | 0.5522 | 0.3248 | 0.020 |
| R117         | 40.1 | 0.0107 | 200 | 0.8369 | 30.00 | 0.9554   | 0.028 | 0.0550 | 1.02 | 0.6 | 0.9745 | 0.5722 | 0.011 |
| R118         | 40.1 | 0.0107 | 200 | 0.8309 | 30.00 | 0.9334   | 0.028 | 0.0550 | 1.02 | 0.0 | 0.9743 | 0.5732 | 0.011 |
| R118         | 52.5 | 0.0109 | 200 | 0.8338 | 31.00 | 0.9873   | 0.027 | 0.0550 | 1.02 | 0.6 | 1.0070 | 0.5924 | 0.011 |
| R119         | 32.3 | 0.0107 | 200 | 0.0330 | 31.00 | 0.7073   | 0.027 | 0.0330 | 1.02 | 0.0 | 1.0070 | 0.3724 | 0.011 |
| R119         | 32.3 | 0.0133 | 200 | 0.8388 | 34.00 | 1.0828   | 0.025 | 0.0500 | 1.02 | 0.6 | 1.1045 | 0.6497 | 0.010 |
| R120         | 32.3 | 0.0133 | 200 | 0.0500 | 31.00 | 1.0020   | 0.023 | 0.0500 | 1.02 | 0.0 | 1.1015 | 0.0157 | 0.010 |
| R120         | 56   | 0.0063 | 200 | 0.8329 | 23.50 | 0.7484   | 0.035 | 0.0600 | 1.02 | 0.6 | 0.7634 | 0.4490 | 0.012 |
| R110         |      |        |     | 3.3529 |       |          | 3.000 | 2.0000 |      |     |        |        | 0.012 |
| R121         | 31.4 | 0.0105 | 200 | 0.8391 | 30.00 | 0.9554   | 0.028 | 0.0550 | 1.02 | 0.6 | 0.9745 | 0.5732 | 0.011 |
| R122         |      |        |     |        |       |          |       |        |      |     |        |        |       |

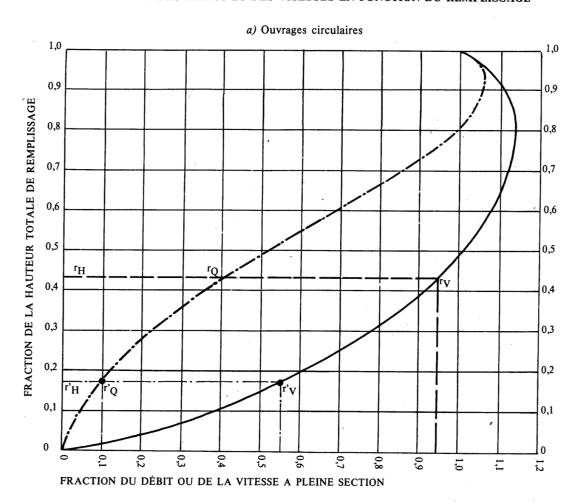
Tableau II.30. Vérification des trois conditions l'autocurage pour le sous bassin B (uite et fin)

| R122  | 62   | 0.0139 | 200   | 0.8314    | 35.00 | 1.1146 | 0.024 | 0.0500 | 1.02 | 0.6 | 1.1369 | 0.6688 | 0.010 |
|-------|------|--------|-------|-----------|-------|--------|-------|--------|------|-----|--------|--------|-------|
| R123  | 02   | 0.0139 | 200   | 0.8314    | 33.00 | 1.1140 | 0.024 | 0.0300 | 1.02 | 0.0 | 1.1309 | 0.0088 | 0.010 |
| R123  | 20.3 | 0.0152 | 200   | 0.8418    | 36.00 | 1.1465 | 0.023 | 0.0400 | 1.02 | 0.6 | 1.1694 | 0.6879 | 0.008 |
| R120  | 20.3 | 0.0132 | 200   | 0.0410    | 30.00 | 1.1403 | 0.023 | 0.0400 | 1.02 | 0.0 | 1.1051 |        |       |
| R124  | 31.5 | 0.0067 | 200   | 0.8390    | 24.00 | 0.7643 | 0.035 | 0.0600 | 1.02 | 0.6 | 0.7796 | 0.4586 | 0.012 |
| R117  | 31.3 | 0.0007 | 200   | 0.0370    | 21.00 | 0.7013 | 0.033 | 0.0000 | 1.02 | 0.0 | 0.7790 | 0.1500 | 0.012 |
| R125  | 18.3 | 0.0115 | 200   | 0.8423    | 32.00 | 1.0191 | 0.026 | 0.0500 | 1.02 | 0.6 | 1.0395 | 0.6115 | 0.010 |
| R122  | 10.5 |        |       |           |       |        |       | 0.000  | 1.02 |     |        |        |       |
| R102  | 41.1 | 0.0562 | 2 200 | 00 0.8366 | 70.00 | 2.2293 | 0.012 | 0.2000 | 1.02 | 0.6 | 2.2739 | 1.3376 | 0.040 |
| R103  |      |        |       |           |       |        |       |        |      |     |        |        |       |
| R103  | 49.2 | 0.0872 | 200   | 0.8346    | 88.00 | 2.8025 | 0.009 | 0.0100 | 1.02 | 0.6 | 2.8586 | 1.6815 | 0.002 |
| R104  | 49.2 | 0.0072 | 200   | 0.0540    | 00.00 |        | 0.007 | 0.0100 | 1.02 | 0.0 |        | 1.0015 | 0.002 |
| R104  |      |        |       |           |       |        |       |        |      |     |        |        |       |
| REJET | 9.6  | 0.0754 | 200   | 0.8445    | 80.00 | 2.5478 | 0.011 | 0.0200 | 1.02 | 0.6 | 2.5987 | 1.5287 | 0.004 |
| N02   |      |        |       |           |       |        |       |        |      |     |        |        |       |

#### ABAQUE Ab. 3

Ab. 3

### RÉSEAUX D'EAUX USÉES EN SYSTÈME SÉPARATIF


Pentes en mètres par mètre 0,0002 1,000 900 0,1 0,09 0,08 0,07 0,06 0,05 0,01 0,009 0,008 0,007 0,006 0,005 DÉBITS EN LITRES PAR SECONDE 0,04 0,06 0,02 0,03 0,001 0,002

Nota. - La valeur du coefficient de Bazin a été prise égale à 0,25. Lorsque la pose des canalisations aura été particulièrement soignée, et surtout si le réseau est bien entretenu, les débits pourront être majorés de 20 % ( γ = 0,16). A débit égal, les pentes pourront être réduites d'un tiers.

Pentes en mètres par mètre

Ab. 5 (a)

#### VARIATIONS DES DÉBITS ET DES VITESSES EN FONCTION DU REMPLISSAGE



#### MODE D'EMPLOI.

Les abaques Ab. 3 et Ab. 4 (a et b) utilisés pour le choix des sections d'ouvrages, compte tenu de la pente et du débit, permettent d'évaluer la vitesse d'écoulement à pleine section.

Pour l'évaluation des caractéristiques capacitaires des conduites, ou pour apprécier les possibilités d'autocurage, le nomogramme ci-dessus permet de connaître la vitesse atteinte en régime uniforme pour un débit inférieur à celui déterminé à pleine section.

Les correspondances s'établissent, soit en fonction de la fraction du débit à pleine section, soit en fonction de la hauteur de remplissage de l'ouvrage.

#### Exemples:

Pour  $r_Q$  = 0,40, on obtient  $r_V$  = 0,95 et  $r_H$  = 0,43.

Pour  $Q_{PS}/10$ , on obtient  $r'_{V} = 0.55$  et  $r'_{H} = 0.17$  (autocurage).

Nota. – Pour un débit égal au débit à pleine section, la valeur du rapport  $r_Q = 1,00$  est obtenue avec  $r_H = 0,80$ .

Le débit maximum ( $r_Q = 1,07$ ) est obtenu avec  $r_H = 0,95$ .

La vitesse maximum ( $r_V = 1,14$ ) est obtenue avec  $r_H = 0,80$ .

Ces dernières conditions d'écoulement à caractère assez théorique ne peuvent être obtenues que dans des conditions très particulières d'expérimentation.

### ملخص

الهدف من در استنا لهذا المشروع هو قياس و تصميم شبكة توزيع المياه الشروب و شبكة صرف المياه القذرة (منطقة على مصباح بلدية الحروش و لاية سكيكدة) هذا العمل ينقسم الى جزئيين.

الجزء الأول يتمحور حول قياس و تصميم شبكة توزيع المياه الشروب ومختلف الانشات الخاصة بها.

الجزء الثاني يتمحور حول قياس و تصميم شبكة صرف المياه القذرة.

الكلمات المفتاحية; توزيع; توصيل; مضخة; جاذبية; جريان; مياه قذرة

#### Résumé

L'objectif de notre étude qui est « conception et le dimensionnement du réseau d'AEP Et d'un réseau d'assainissement d'eaux usées, de la région Ali MESBAH commune El Harrouch (wilaya de SKIKDA), et divisée en deux parties.

La première partie sera consacrée à la conception et dimensionnement du réseau d'alimentation en eau potable. Ainsi que les différents ouvrages qui leurs sont associés.

La deuxième partie sera consacrée à la conception et dimensionnement du réseau d'assainissement séparatif d'eau usée.

Mots clés: Distribution; Adduction; Pompes; Gravitaire; Ecoulement; Eau usée.

### **Abstract**

The aim of our study is "design and sizing of the water supply network. And a sewerage wastewater, region of ALIMESBAH the district of El Harrouch (wilaya of SKIKDA) ".and divided into two parts.

The first part will be devoted to the design and sizing of the water supply network potable. Else to the various works associated with them.

The second part will be devoted to the design and sizing of wastewater sanitary sewer system.

**Keywords**: Distribution; Adduction; Pumps; Gravity; Flow; Waste water.