République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'**Hydraulique**

Laboratoire de Recherche en Hydraulique Appliquée et Environnement (LRHAE)

MÉMOIRE FIN DE CYCLE

Présenté par :

Mr: OUAZINE Khaled

Mr: MEGHARA Said

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: hydraulique urbaine

INTITULE:

ALIMENTATION EN EAU POTABLE DES PLANS D'OCCUPATION DU SOL II ET III DE LA RIVE GAUCHE DE L'OUED AMIZOUR WILAYA BEJAIA A PARTIR D'UN RESERVOIR 2500 M³

Soutenu le 26/06/2016 devant le jury composé de :

- Président : Mr : LADJEL. M

- Promoteur (s): **Mr: YAKOUBI. M**

- Examinateur (s): Mr: SAOU. A

Année Universitaire: 2015/2016

REMERCIEMENT

Avant tout, je remercie **DIEU** qui a illuminé mon chemin et qui m'a armé de courage pour achever mes études.

Mes remerciements à ma mère et mon père...Je remercie fortement mon promoteur: M^r M. YAKOUBI de m'avoir orienté par ses conseils judicieux dans le but de mener à bien ce travail.

Par la même occasion je remercie:

Mes Enseignants du département d'hydraulique pour leurs contributions à ma formation de master en hydraulique.

Ma gratitude va également aux membres du jury pour honorer ma soutenance et pour l'effort fourni afin de juger ce travail.

Qu'il me soit permis de remercier toutes les personnes qui ont Contribuées de prés ou de loin à la réalisation de ce mémoire.

Khaled

DEDICACE Je Dédie ce modeste travail

 ${\it S}$ pécialement à ma ${\it très}$ chère ${\it mère}$ pour ses Sacrifices, son amour, son

aide et son soutien et me voir ainsi arriver à se Que je suis devenu aujourd'hui.

A mon père qui ma beaucoup aidé A mes très chère sœurs Chahou et Wafa et mon frère Samy;

A mes oncles maternels;

 ${\cal A}$ mes tantes maternelles;

A ma chère copine Souad et sa mère ;

 ${\cal A}$ mon grand père, et mes deux grandes mères ;

A mon binôme said et sa famille

A mes Amis: Lyes, lamine, ,loucif, halim, Yassine ,zoniga ,Adel.Z

A tous les habitants de mon village Ait Idriss

A Tous les enseignants du département d'hydraulique

A tous les étudiants du département d'hydraulique

Mes amis sans exceptions et spécialement : Yacine, Adel, Boubekeur, Lounes, Célia..

En un mot à touts les gens qui ont contribué ma réussite de Prés ou de loins.

Listes des figures

Figure (I-1): Situation géographique de la commune d'Amizour
Figure (I-2) : Situation géographique des P.O.S II et III (Rive gauche Amizour ville)03
Figure (II-1) : Histogramme de consommation journalière pour l'étage (02)21
Figure (II-2) : Histogramme de consommation journalière
Figure (II-3) : la courbe de débit cumulé
Figure (III-1): conduite d'adduction
Figure (III-2): Conduite de distribution
Figure (III-3): Trop-plein et vidange
Figure (III-4): By-pass d'un réservoir
Figure (III-5) : équipement de réservoir
Figure (IV-1): Schéma synoptique de system d'adduction et d'alimentation 38
Figure (V-1): Diffèrent type des turbos pompes
Figure (V-2): Constitution d'une pompe centrifuge
Figure (V-3): Courbes caractéristique d'une pompe centrifuge51
Figure (V-4) : caractéristiques de la pompe
Figure (V-5): Encombrement de la pompe Caprari PM(100/3A)56
Figure (V-6). Roue soumise à la cavitation
Figure (VI-2) : cheminé d'équilibre
Figure (VII-1): Environnement de travail sur EPANET
Figure (VII-2) : Importation du tracé à partir de l'EpaCAD vers EPANET78
Figure (VII-3): Représentation du tracé sur EPANET78

Figure (VII-4) : Définition d'unités et des données de bases	.79
Figure (VII-5) : Simulation du réseau	.82
Figure (VII-6): Simulation avec brise-charge et vannage	.84
Figure (VII-7): Simulation en cas de pointe plus incendie	.86

LISTE DES TABLEAUX

Tableau (I-1): Température de la région	04
Tableau (II-1): Estimation de la population des P.O.S II et III d'Amizour ville	08
Tableau (II-2): Besoin des équipements	08
Tableau (II-3): Evaluation des besoins domestiques	10
Tableau (II-4): évaluation des besoins scolaire	10
Tableau (II-5): évaluation des besoins sécuritaire	11
Tableau (II-6): évaluation des besoins administratifs	11
Tableau (II-7): évaluation des besoins socioculturels et sportifs	11
Tableau (II-8): évaluation des besoins sanitaire	12
Tableau (II-9): évaluation des besoins commerciaux	12
Tableau (II.10): évaluation des besoins d'arrosage	12
Tableau (II-11): Récapitulatif des différents besoins	13
Tableau (II-12): valeurs de βmax en fonction du nombre d'habitants	15
Tableau (II-13): valeurs de K _{max.h} pour l'étage (01) et (02)	15
Tableau (II-14): la valeur β_{min} en fonction du nombre d'habitants	16
Tableau (II-15): valeurs de K _{min,h} pour l'étage (01) et (02)	16
Tableau (II-16): Calcul de la consommation maximale journalière	17
Tableau (II-17 : calcule des débits moyens horaires (Etage 01 et 02)	18
Tableau (II-18): calcule des débits maximum horaires (Etage 01et 02)	18
Tableau (II-19): réparation des débits horaires en fonction du nombre d'habitants	20
Tableau (II-20): détermination du débit maximum horaire pour l'étage (02)	20
Tableau (II-21): détermination du débit maximum horaire pour l'étage (01)	22
Tableau (III-1): évaluation de la capacité utile du réservoir R1 de l'étage (01)	30
Tableau (III-2): calcul de la capacité du réservoir de l'étage (02) (BOURIDANE)	37

Tableau (IV-1): les diamètres choisi pour le tronçon (R(ANBT)-R1)
Tableau (IV-2) : les diamètres choisi pour le tronçon (R(ANBT)-SR)
Tableau (IV-3) : calcul hauteur manométrique total pour le tronçon (SR-R2)
Tableau (IV-4): calcul des frais d'exploitation pour le tronçon (SR-R2)
Tableau (IV-5) : calcul des frais d'amortissement pour le tronçon (SR-R2)45
Tableau (IV-6) : Calcul du bilan pour le tronçon (SR-R2)
Tableau (IV-7) : récapitulatif des résultats de la Conduite d'adduction par refoulement45
Tableau (IV-8) : récapitulatif des résultats de la Conduite d'adduction gravitaire46
Tableau (V-1): types des pompes et leurs utilisations
Tableau (V-2): tension de vapeur d'eau en fonction de la température 57
Tableau (VI-1): calcul valeur maximal et minimal de coup de bélier
Tableau (VII-1): Détermination des débits spécifique (Etage 01 et 02)71
Tableau (VII-2): Détermination des débits en route et en tronçons (étage 01) 74
Tableau (VII-3): Détermination des débits en route et en tronçons (étage 02)
Tableau (VII-4) : Débit aux nœuds du réseau 80
Tableau (VII-5) : Dimensionnement de tronçon (R1-B.charge)

LISTE DES SYMBOLES

```
A: L'amortissement annuel (Annuité);
a : La célérité de l'onde (m/s) ;
BL: Le bilan en (DA);
B: La valeur du coup de bélier (m);
Bmax : La valeur du coup de bélier (m) ;
C : Coefficient de perte de charge de la tuyére ;
C': coefficient de perte de charge dans un diaphragme;
D : Diamètre du tuyau en m ;
DN: diamètre normalisé;
Dmin : diamètre minimal de la conduite (m) ;
D<sub>max</sub>: diamètre maximal de la conduite (m);
d : Diamètre de la tuyère (m) ;
E: Energie consommée par la pompe (KWh);
e: Epaisseur de la conduite (mm);
g: Accélération de la pesanteur en (m2/s);
Hs: La valeur maximale de la pression-surpression
Hd: La valeur maximale de la pression-dépression
Ha: Hauteur d'aspiration en (m);
Hg: Hauteur géométrique en (m);
Hmt: La hauteur manométrique totale (m);
H<sub>0</sub>: Pression absolue de la conduite (m);
i: Taux d'annuité (%);
J: Pertes de charge par frottement en (m/ml);
Ja: Perte de charge à l'aspiration en (m);
K : Coefficient de rugosité équivalente de la paroi ;
Ko: Rugosité absolue des tuyaux neufs;
Kmax,j: Coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération;
Kmin.j: Coefficient d'irrégularité minimal;
Kmax.h: Coefficients de variation de consommation maximum horaire;
Kmin.h: Coefficients de variation de consommation minimum horaire;
L: Longueur de la conduite en (m);
m : Coefficient de rognage ;
Ni: Nombre de consommateurs ;
N: Vitesse de rotation de la pompe (tr/min);
n : Nombre d'années sur lequel s'effectuera l'amortissement (n =25 ans) ;
n : Viscosité cinématique de l'eau
(NPSH) d: Charge nette minimale disponible à l'aspiration (m);
(NPSH) r: la charge nette minimale requise à l'aspiration (m);
P: Population de l'horizon considéré;
Po: Population de l'horizon de référence;
p: Puissance absorbée par la pompe en (KW);
Pe: Prix unitaire du K.W.h. en (DA);
Pr: le prix unitaire de la conduite (DA/ml);
P%: Résidu maximal dans le réservoir (%);
Q: débit refoulé dans la conduite en (m3/s);
Qmax.h: Débit entrant dans la station (m3/h);
```

```
Qmax.j: Débit d'eau maximal du jour le plus chargé de l'année (m3/j);
Qmin.j: Débit d'eau minimal du jour le moins chargé de l'année (m3/j);
Qmoy.j: Consommation moyenne journalière des consommateurs en (m3/j);
Qmax.j: Consommation maximale journalière (m3/j)
Qr: Débit en route (1/s);
Qsp: Débit spécifique en (l/s/m²);
Oi: Débit au noeud i (l/s);
q : Dotation moyenne journalière des consommateurs en (1/j/cons) ;
Re: Nombre de Reynolds;
r: Le pourcentage de rognage ;
S: Section de la conduite :
Tv: C'est la pression de vapeur maximale que l'air peut supporter à une température donnée ;
T: Temps mis par une onde, pour faire un aller-retour dans la conduite ;
Tp: Nombre d'heure de pompage (h);
t: Taux d'acroissement;
Uo: Volume d'air initial;
V: Vitesse d'écoulement en (m/s);
Vf: Vitesse finale choisie;
V<sub>max</sub>: Volume maximal de stockage (m<sub>3</sub>);
Vm: Moyenne arithmétique de la vitesse choisie;
Vsr: Volume de la station de reprise (m3);
Vt: Volume total du réservoir d'air (m3);
Z: Pression dans le réservoir d'air:
Z<sub>0</sub>: Pression absolue;
amax: Coefficient qui dépend du niveau de vie et du confort;
Bmax: Coefficient qui dépend du nombre d'habitant;
v : Viscosité cinématique de l'eau ;
ρ : Masse volumique de l'eau ;
η: Rendement de la pompe en %;
\lambda: Coefficient de pertes de charge ;
ANBT: Agence national transfert des barrages;
```

P.O.S: Plan d'occupation du sol.

Annexe I : résultats des simulations.

Etats des nœuds du réseau (étage 01) cas de pointe sans brise de charge.

Etats des nœuds du réseau (étage 02) cas de pointe sans vannage.

Etats des arcs du réseau (étage 01) cas de point sans brise de charge.

Etats des arcs du réseau (étage02) cas de point sans vannage.

Etats des nœuds du réseau (étage 01) Cas de pointe avec brise de charge.

Etats des nœuds du réseau (étage 02) cas de point avec vannage.

Etats des arcs du réseau (étage 01) cas de point avec brise de charge.

Etats des arcs du réseau (étage02) cas de point avec vannage.

Etats des nœuds du réseau (étage 01) cas de pointe plus incendie.

Etats des nœuds du réseau (étage 02) cas de pointe et d'incendie.

Etats des arcs du réseau (étage 01) cas de pointe et d'incendie.

Etats des arcs du réseau (étage02) cas de pointe et d'incendie.

Annexe II: documents graphique

Distribution des débits en cas de pointe dans le réseau de l'étage (01).

Distribution des débits en cas de pointe dans le réseau de l'étage

Distribution des diamètres dans le réseau de l'étage (01)

Distribution des diamètres dans le réseau de l'étage (02)

Distribution des pertes de charges en cas de pointe dans le réseau de l'étage (01)

Distribution des pertes de charges en cas de pointe dans le réseau de l'étage (02)

Distribution des vitesses dans le réseau de l'étage (01) cas de pointe

Distribution des vitesses dans le réseau de l'étage (02) cas de pointe

Distribution des pressions en cas de pointe dans le réseau de l'étage (01) sans brise charge

Distribution des pressions en cas de pointe dans le réseau de l'étage (01) avec brise charge

Profil des altitudes des nœuds dans la conduite (R1-N13)

Profile des pressions dans la conduite (R1-N13)

Profile des pressions dans la conduite (B. charge-N13)

Profile des pressions dans la conduite (N7-N21) avec brise charge

Distribution des débits dans le réseau de l'étage (01) en cas de pointe et d'incendie

Distribution des débits dans le réseau de l'étage (02) en cas de point et d'incendie

Profile des pressions dans la conduite (R2-N27) sans vannage

Profile des pressions dans la conduite (R2-N27) après vannage

Profile des pressions dans la conduite (R2-N46) sans vannage

Profile des pressions dans la conduite (R2-N46) après vannage

Fiche technique (caractéristique) de la pompe utilisée dans la station de pompage

Annexe III: Autres documents

Abaque de MOODY

Prix de revient des conduites en PEHD et en Acier

Epaisseur des conduites en PEHD

Sommaire

Introduction générale	01
Chapitre I : Présentation du site	
I-1- Situation géographique :	02
I-2- Situation topographique :	03
I-3- Situation géologique :	04
I-4- Situation hydrologique :	04
I-5- Situation climatologique :	04
I-5-1- climat	04
I-5-2-La pluviométrie	04
I-5-3-Température	04
I-5-4- Les vents	
I-6- La Sismicité de la région :	05
I-7- Situation hydraulique	
I-7-1- Les ressources :	06
I-7-2- Capacité de stockages	06
I-8- Conclusion	06
Chapitre II : Estimation des besoins	
II-1-Introduction	07
II-2- Estimation de la population.	07
II-2-1- Population actuelle	08
II-2-2- Population future	08
II-3- Equipement et infrastructures existants	
II-4- La consommation moyenne journalière	09
II-5- Calcul de la consommation journalière pour les différents besoins	10
II-5-1- Besoins domestiques	10
II-5-2- Besoins scolaires	10
II-5-3- Besoins sécuritaires	11

II-5-4- Besoins Administratifs	11
II-5-5- Besoins Socioculturel et sportifs	11
II-5-6-Besoins sanitaires	12
II-5-7- besoins commerciaux	12
II-5-8- Besoins d'arrosage	12
II-5-9- Récapitulation des différents besoins en eau à l'horizon 2041	13
II-6- Coefficient d'irrégularité	13
II-6-1- Coefficient d'irrégularité maximale (K _{max,j})	13
II-6-2- Coefficient d'irrégularité minimale (Kmin,j)	14
II-6-3- Coefficient d'irrégularité maximale horaire (Kmax,h)	14
II-6-4- Coefficient d'irrégularité minimale horaire (K _{min,h})	15
II-7- Détermination des débits journaliers	16
II-7-1- Consommation minimale journalière (Q min,j)	16
II-7-2- Consommation maximale journalière (Q max,j)	16
II-8- Détermination des débits horaires	18
II-8-1- Débit moyen horaire	18
II-8-2- Détermination du débit maximum horaire	18
II-9- Evaluation de la consommation horaire en fonction du nombre d'habitant	19
II-10- Conclusion.	24
Chapitre III : Les réservoirs	
III-1- Introduction	24
III-2- définition des réservoirs	
III-3- Rôle des réservoirs	
III-4- Emplacement des réservoirs	
III-5- Caractéristique d'un réservoir	
III-6- La maintenance des réservoirs	
III-7- Classification des réservoirs	26
III-8- Les équipements des réservoirs	
III-8-1-Conduite d'adduction	
III-8-2- Conduite de distribution	
III-8-3- Conduite de décharge ou de vidange	27

III-8-4- Conduite du trop-plein	27
III-8-5- Conduite BY-PASS	28
III-8-6- Matérialisation de la réserve d'incendie	28
III-9- Vérification de la capacité des réservoirs existants à l'horizon futur	29
III-9-1- Méthode graphique	29
III-9-2- Méthode analytique	30
III-10- Le calcul de la capacité des réservoirs par la méthode analytique	30
III-10-1- Calcul de la capacité du réservoir R1 qui assure la distribution de l'étage(01)	30
III-10-2- Calcul de la capacité du réservoir R2 de l'étage(02) (BOURIDANE)	32
III-11 -Dimensionnement de la bâche d'eau de la station de reprise SR	34
III-12- Conclusion.	35
Chapitre IV : l'adduction	
IV-1- Introduction	36
IV-2- Choix du tracé (condition technique)	36
VI-3- Choix du type des conduites	36
VI-4- Description du schéma d'adduction	37
VI-5- Etude technico-économique	38
IV-5-1- Méthode Calcul du diamètre économique	38
IV-5-2- Calcul de la vitesse	39
IV-5-3- Calcul des pertes de charge	39
IV-5-3-1- Pertes de charge linéaires (H _L)	. 39
IV-5-3-2- Les pertes de charge singulières	41
IV-5-3-3- Les pertes de charge totales	41
IV-5-4- Détermination de la hauteur manométrique totale	41
IV-5-5- puissance (P) absorbée par la pompe	41
IV-5-6- Energie consommée par la pompe	41
IV-5-7- Frais d'exploitation	42
IV-5-8- frais d'amortissement	42
IV-5-9- Calcul du bilan	42
IV-5-10- Prix des conduites	43
IV-6- Calcul des conduites gravitaires	43

IV-/- Calcul des diamètres économique d'adduction	43
IV-7-1 Adduction gravitaire	43
IV-7- 1-1-Tronçon (R (ANBT) -R1)	43
IV-7-1-2-Dimensionnement du tronçon (R(ANBT)-SR)	44
IV-7-2- Adduction par refoulement	45
IV-7-2-1-Tronçons (SR-R2)	45
IV-8- Conclusion	47
Chapitre V : Pompage	
V-1- Introduction	47
V-2- Différents type de pompe	47
V-2-1- Pompe volumétrique	47
V-2-2- Les turbopompes	47
V-3- Classification des pompes centrifuges	49
V-3-1- Constitution d'une pompe centrifuge	49
V-3-1-1- Volute	49
V-3-1-2- La roue	49
V-3-1-3- Vis de remplissage	49
V-3-1-4- Presse-étoupe.	49
V-3-1-5- Flasques	49
V-3-1-6- Le palier	49
V-3-1-7- L'arbre	49
V-4- Courbes caractéristiques d'une pompe centrifuge	50
V-4-1- La courbe hauteur-débit H= f (Q)	50
V-4-2- La courbe rendements-débit $\eta = f(Q$	50
V-4-3- La courbe des puissances absorbée -débit P= f (Q	50
V-4-3-1- Puissance absorbée par la pompe	51
V-4-3-2- Hauteur manométrique totale(Hmt)	51
V-5- point de fonctionnement	52
V-5-1- Recherche du point de fonctionnement	52
V-6- Choix de pompe	54
V-7- Choix du type de pompe pour la station de pompage (SP)	54

V-8- Encombrement de la pompe	55
V-9- La cavitation	56
V-9-1- Étude de la cavitation	56
V-9-2- Conséquences de la cavitation	57
V-9-3- Vérification de la cavitation des pompes choisies	58
V-10- Equipements de la station de pompage	58
V-10-1- Les équipements d'aspiration	58
V-10-2- Les équipements de refoulement	59
V-11- Conclusion	59
Chapitre VI : Coup de bélier	
VI-1- Introduction	60
VI-2- Causes du coup de bélier	60
VI-3- Conséquences du phénomène	60
VI-4- Protection de la conduite gravitaire contre le coup de bélier	61
VI-5- Protection de la conduite de refoulement contre le coup de bélier	62
VI-5-1- Volant d'inertie	62
VI-5-2- Les venteuses	62
VI-5-3- Le réservoir d'air	63
VI-5-4- cheminée d'équilibre	63
VI-6- Etude du coup de bélier	64
VI-6-1- Calcul de la célérité d'ondes	64
VI-6-2- Valeur numérique du coup de bélier	65
VI-6-2-1- Fermeture brusque	65
VI-6-2-2- Fermeture lente	66
VI-7- Calcul de coup de bélier pour les différents tronçons	66
VI-7-1- Calcul du coup de bélier pour les tronçons de refoulement et gravitaires	66
VI-8- Conclusion	67
Chapitre VII : Le réseau de distribution	
VII-1- Introduction	68
VII-2- Classification du réseau de distribution	68

VII-2-1- Classification selon la disposition des réseaux dans l'agglomération	68
VII-2-1-1 - Réseau unique	68
VII-2-1-2 - Réseau en zones étagées	68
VII-2- 2- Classification selon la disposition des tronçons dans le réseau	69
VII-2-2-1-Les réseaux ramifiés	69
VII-2-2-2- Les réseaux maillés	69
VII-2-2-3- les réseaux mixtes	69
VII-3- Exigence relatives au réseau de distribution.	69
VII-4- Description du réseau de distribution.	70
VII-5- Calcul hydraulique	70
VII-5-1- le débit de pointe	70
VII-5-2- calcul des débits aux tronçons	70
VII-5-3- calcul des pertes de charge	72
VII-5-3-1- pertes de charge linéaire	72
VII-5-3-2- Pertes de charge singulière	73
VII-5-4- Calcul des pressions	73
VII-6- application des calculs	74
VII-6-1 Détermination des débits en route et des débits calculés	74
VII-7- Modélisation et simulation du réseau	76
VII-7-1- Présentation du logiciel EPANET	77
VII-7-2- Utilisation du logiciel EPANET	77
VII-7-3- Modélisation du réseau	78
VII-7-4- Simulation du réseau	82
VII-8- Résultats de la simulation.	82
VII-9- Recommandations	83
VII-9-1- Détermination de la capacité (brise de charge)	83
VII-9-2- Dimensionnement de tronçon (R1-B.charge)	83
VII-10- Simulation après la projection d'un réservoir brise charge et vannage	84
VII-11- Cas de pointe et incendie	85
VII-12- Simulation en cas de pointe plus incendie	86
VII-13- Conclusion	87
Conclusion gánárola	90 nn

INTRODUCTION GENERALE

L'eau, source vitale à toute forme de vie, elle est devenue ces dernières années un sujet de préoccupation à l'échelle planétaire et un élément essentiel dans toutes les civilisations que l'humanité a connue. Donc il est indispensable que cette eau soit utilisée d'une manière équitable, rationnelle et économique.

Depuis l'apparition de la vie sur terre, l'eau structure les activités et les rythmes des quotidiens humains. Au fil des siècles, la connaissance de ses propriétés fut maitrisée. Il est donc impératif de concevoir des systèmes de protection, de transport judicieux, de stockage et de distribution de cette ressource, facilitant ainsi la satisfaction de leurs demandes et palier aux pertes.

C'est dans cette optique que s'inscrit notre étude, qui vise à étudier l'alimentation en eau potable des deux plans d'occupation du sol II et III, rive gauche du chef-lieu de la commune d'Amizour, Wilaya de Bejaia.

Cette étude sera menée à l'aide des logiciels de simulation et de conception assistés par ordinateur à savoir : EPANET, POMPE TUDOR 2 (caprari), EXEL, AUTOCAD, COVADIS.

L'outil informatique est devenu une nécessité pour les ingénieurs et projecteurs, ceci pour les avantages qu'il apporte, à savoir un gain dans le temps et l'aide à la discision pour atteindre ces objectifs. Notre travail s'articule sur les points suivants :

Au début, nous présenterons le site du projet, puis nous évaluerons les besoins en eau, ensuite nous allons étudier l'adduction, le pompage, le stockage et en dernier la distribution.

Enfin, il est impératif de s'ouvrir sur les nouvelles technologies pour la gestion des réseaux d'AEP dans le monde qui recherche toujours a numériser le plus grand flux d'informations.

I-1- Situation géographique :

La commune d'Amizour se situe au sud – ouest de l'Oued Soumam, à 20 km de la mer méditerranéen, à environ 24 Kilomètres de la wilaya de BEJAIA. Elle est d'une superficie de 109 km² et est limitée géographiquement par les communes suivantes :

- Nord-ouest par la commune d'El kseur
- Nord-est par la commune d'Oued-Ghir et Tala Hamza
- Sud par la commune de Barbacha
- Est par la commune de Boukhalfa
- Ouest par la commune de Semaoun

COMMUNES DE LA WILAYA DE BEJAIA (BGAYET)

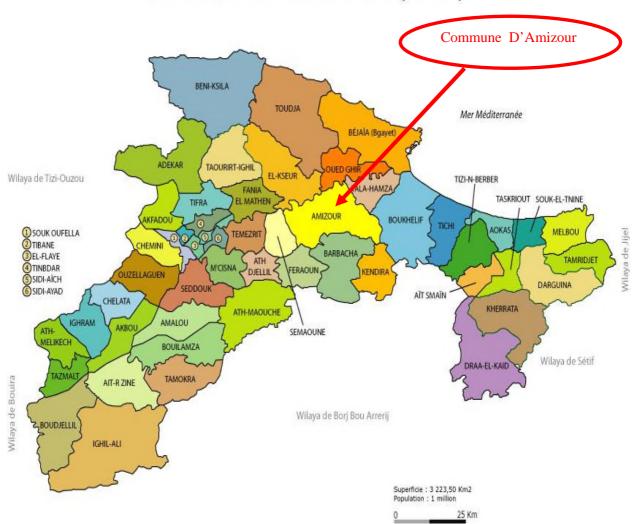


Figure (I-1): Situation géographique de la commune d'Amizour

L'aire de notre étude (P.O.S N° II et III) constitue le seuil de la ville d'AMIZOUR (chef lieu de daïra) en venant d'EL KSEUR par le CW°21. Le périmètre de notre étude délimité dans le cadre de P.D.A.U, concerne une unité spatiale intégrée à l'agglomération chef lieu.

Le périmètre des P.O.S N°II et III est délimité comme suit :

➤ Au nord : l'évitement de la RN°75, la piste et la ferme HOCINE MOUSTACHE

➤ Au sud : P.O.S N°VI et I et cimetière des martyrs

➤ A L'ouest : Cimetière musulman (P.O.S N°V)

➤ A L'est : Oued Amizour

Le P.O.S N°II et III est d'une superficie de 36.8 ha (surface levé est de 38.52 ha)

Figure (I-2) : Situation géographique du P.O.S II et III (Rive gauche Amizour ville)

I-2- Situation topographique:

Le plan d'occupation du sol (P.O.S II et III) à AMIZOUR se présente sous forme d'un talus très apparent, d'une différence d'altitude de 186m environ, s'étendant sur une surface approximative de 49.12 ha.

Relief : le relief est de plus en plus accidenté de l'est vers l'ouest, sur des hauteurs surplombant vers des terrains plats donnant vers Oued AMIZOUR.

Le site est dans son ensemble vierge, occupé à l'Est par du collectif, de l'individuel (lotissement). A l'ouest, intercalés (ces deux types d'habitations) par une zone intermédiaire recouverte par de la végétation (oliveraie)

Pente : ce freinage dans l'urbanisme est du essentiellement à la topographie du terrain.

Les pentes de ce site varient de 30 à plus de 40% au centre et de 07% à l'Est,.

I-3- Situation géologique :

Le site affleure sur des argiles rouges légèrement schisteuse à l'Est, et devenant brunes plus schisteuses à marneuses à l'Est.

On rencontre parfois des dépôts quaternaires des oueds de la vallée de l'Oued Soummam. (Cailloux, blocs, conglomérats, sols alluviaux..).

I-4- Situation hydrologique:

Toutes les eaux superficielles ou de ruissellement circulent de l'Ouest vers l'Est pour enfin se déverser dans l'Oued AMIZOUR à l'Est.

I-5- Situation climatologique:

I-5-1- climat

Le climat de la région est caractérisé par un climat méditerranéen

I-5-2-La pluviométrie

En absence des stations pluviométriques proches du site de la zone de l'étude, la pluviométrie annuelle moyenne est de l'ordre de 700mm, elle est évaluée à partir de la pluviométrie du nord de l'Algérie.

I-5-3-Température

La température est un élément majeur dans les phénomènes de concentration et d'évaporation d'eau, et constitue un terme essentiel dans la définition du déficit d'écoulement.

En résumé, le climat de la région est caractérisé par deux saisons : une saison chaude allant du mois de Mai à Octobre, une saison froide nettement plus longue allant du mois d'Octobre au mois d'Avril (voir le tableau (I-1))

Tableau (I-1): température de la région

Période	Eté	Hiver
Température (°c)		
T° moyenne maximale	27°c	19°c
T° moyenne minimale	19°c	10°c
T° moyenne des	23°c	14,5°c
températures		

I-5-4- Les vents

Les vents dominants la région sont ceux du Nord –Ouest. Ceux-ci s'engouffrent facilement dans la vallée de la Soummam.

I-6- La Sismicité de la région :

D'après le règlement parasismique algérien RPA 83, puis 99 modifié en 2003, suite au dernier séisme important survenu en ALGERIE à BOUMERDES, le territoire algérien serait divisé en cinq zones de sismicité croissante du Sud vers le Nord.

-zone 0 : zone de sismicité négligeable

-zone1 :zone de sismicité faible

-zone II a-II-b : zone de sismicité moyenne

-zone III : zone de sismicité forte à élevé

La région de Bejaia (Amizour) est classée dans la zone II a de sismicité moyenne pouvant engendrer des séismes à dégâts assez importants tant que sur les deux plans humains est matériels.

I-7- Situation hydraulique

L'aire de notre étude est caractérisée par une différence d'altitude (niveau), ce qui impose que le système d'alimentation en eau se fait par étage (on a deux étages), chaque étage est caractérisé par un réseau de distribution ramifié.

I-7-1- Les ressources :

Les plans d'occupation du sol (P.O.S II et III) à Amizour sont alimentés à partir d'un réservoir principal (ANBT), ce dernier est réalisé dans le cadre du barrage Tichi-Haf.

I-7-2- Capacité de stockages

Les réservoirs existants dans notre aire d'étude (P.O.S N°II et III) de la rive gauche d'Amizour sont comme suit :

- Un réservoir principal ANBT qui alimente toute la commune d'Amizour, de capacité de 2500 m³, alimenté par refoulement à partir du barrage TICHI-HAF.
- Un autre réservoir situé au lieu dit «Bouridane» de capacité de 500 m³ alimenté par refoulement à partir du réservoir ANBT (réservoir qui assure la distribution pour l'agglomération de l'étage (02)).
- Un troisième réservoir de capacité 100 m³ alimenté par une adduction gravitaire à partir de réservoir ANBT (ce réservoir est pour la distribution d'eau vers l'agglomération de l'étage (01)).

I-8- Conclusion

Dans ce chapitre nous avons défini les données nécessaires concernant notre ville du point de vue topographique, climatique, géologique, démographique, ainsi que la situation hydraulique, Ces données nous serviront pour entamer notre étude.

Chapitre II Estimation des besoins

II-1-Introduction

Notre étude vise à satisfaire les besoins en eau potable des P.O.S II et III au chef lieu Amizour à l'horizon de 2041.

Afin d'arriver à ce but, nous allons procéder à d'étude de l'estimation des besoins en eaux, qui est en relation avec l'évolution démographique ainsi qu'avec le mode de vie de la population et de la diversité des activités locales des équipements existants.

Les besoin peuvent être classés comme suit :

- ➤ Besoin domestique ;
- ➤ Besoins sanitaire ;
- ➤ Besoins socioculturels et sportif;
- ➤ Besoins administratif;
- ➤ Besoins commerciaux ;

II-2- Estimation de la population

La population est un élément de base dont dépendent plusieurs paramètres, à savoir :

- plan économique
- plan social et démographique
- plan technique du point de vue calcul et dimensionnement.

L'estimation de la population en situation future consistera à prendre en compte l'évolution de la population à long terme, soit sur une période de 25 ans, qui est une moyenne en matière de durée de vie des canalisations.

Pour un taux d'accroissement défini, la loi d'évolution de la population d'une agglomération sera calculée par la formule des intérêts composés suivants :

$$\mathbf{P} = \mathbf{P}_0 (\mathbf{1} + \mathbf{T})^{\mathbf{n}} \tag{II-1}$$

Où:

P: population future à l'horizon considéré;

P₀: Population actuelle;

T: taux de croissance;

n : nombre d'année séparant l'année actuelle et l'horizon futur.

II-2-1- Population actuelle:

Dans notre cas l'estimation de la population est basée sur le taux d'occupation de Logement (**T.O.L**)

Le nombre moyen d'une famille algérienne = 05

Donc le **T.O.L**=5

D'après les informations recueillies auprès de l'APC, le nombre de logements projeté dans le P.O.S II et P.O.S III d'Amizour ville est de 3222 logements, donc, le nombre d'habitants est de : 3222*5=16110 habitants.

II-2-2- Population future :

Dans notre étude, l'horizon de calcul prévu pour 2041 (n=25 ans).

- Le taux d'accroissement est T=1.6 % (source RGPH).
- La population actuelle P₀=16110 (P.O.S II et III d'amizour ville)

Tableau (II-1): Estimation de la population des P.O.S II et III d'amizour ville.

Population actuelle	Population a l'horizon (2041)
16110	23957

II-3- Equipement et infrastructures existants :

Les différents équipements existants au niveau de notre étude, sont représentés dans le tableau ci-dessous :

Tableau (II-2): besoin des équipements

Equipement	Type d'équipement	Localité	Unité	Nombre
				(capacité)
	(2) primaire	Chef lieu	élève	600
Scolaire	Enseignements (fondamental)	Chef lieu	élève	450

Equipement	Type d'équipement	Localité	Unité	Nombre
				(capacité)
	Gendarmerie (mobile)	Chef lieu	agent	120
Sécuritaire	Gendarmerie	Chef lieu	agent	150
	Police	Chef lieu	agent	70
	Poste et Banque	Chef lieu	employer	150
	Bloc administratif	Chef lieu	employer	300
Administratif	Sureté de daïra	Chef lieu	employer	100
	Célibatorium	Chef lieu	usager	150
	Maison de jeunes	Chef lieu	usager	300
Socioculturel	Mosquée	Chef lieu	fidèle	250
Et	Salle de sport	Chef lieu	m ²	4842
sportif	Aire de jeux	Chef lieu	enfant	200
	Bibliothèque	Chef lieu	m ²	1600
Sanitaire	Centre de soin	Chef lieu	m ²	8282,899
	Polyclinique	Chef lieu	\mathbf{m}^2	4765,460
Commerciaux	Centre commercial	Chef lieu	m ²	2463 ,327
	Marché couverte	Chef lieu	m ²	1131

Suite du Tableau (II-2): besoin des équipements

II-4- La consommation moyenne journalière :

La consommation moyenne journalière de la zone concernée par l'étude, se détermine en tenant compte de différents types de consommateurs à savoir :

- Domestique
- Scolaire
- Sécuritaire
- Administratif
- Socioculturel et sportifs
- Sanitaire
- Commerciaux
- > Cette consommation est donnée par la formule suivante :

$$\mathbf{Q}_{\text{c.moy j}} = \frac{q \times Ni}{1000} \qquad [\text{m}^3/\text{j}] \tag{II-2}$$

Avec:

 $Q_{\text{c.moy},j}$: consommation moyenne journalière en m^3/j .

Q_i: dotation journalière (pour différent usage).

 N_i : nombre de consommateurs

II-5- Calcul de la consommation journalière pour les différents besoins :

En multipliant le nombre de consommateurs par la norme de consommation, on obtient les besoins en eau de la population pour les différents horizons.

II-5-1- Besoins domestiques:

La consommation en eau dépend du confort et des habitudes de la population. Dans notre cas, nous prenons 200/l/j/ha.

Tableau (II-3): évaluation des besoins domestiques

Horizon	Population	Dotation (l/j/hab.)	Q.moy,j (m ³ /j)
2016	16110	200	3222
2041	23957	200	4791.4

II-5-2- Besoins scolaires:

Tableau (II-4): évaluation des besoins scolaire

Equipement	Type d'équipement	Unité	Nombre (capacité)	Dotation l/unité/j	Besoins [m³/j]
scolaire	(2)Ecoles primaire	Elève	600	15	9
	Enseignements fondamental	élève	450	15	6.75
Total					15.75

II-5-3- Besoins sécuritaires

Tableau (II-5): évaluation des besoins sécuritaire

Equipement	Type d'équipement	Unité	Nombre (capacité)	Dotation l/unité/j	Besoins [m³/j]
- sécuritaire	Gendarmerie (mobile)	Agent	120	20	2.4
	Gendarmerie	Agent	150	20	3
	Police	Agent	75	20	1.5
Total					

II-5-4- Besoins Administratifs

Tableau (II-6): évaluation des besoins administratifs

Equipement	Type d'équipement	Unité	Nombre (capacité)	Dotation l/unité/j	Besoins [m³/j]
	Poste et Banque	Employé	150	15	2,25
	Bloc administratif	Employé	300	15	4,5
Administratif	Sureté de daïra	Employé	100	15	1,5
	Célibatorium	usager	150	10	1,5
	Maison de jeune	Usager	300	10	3
Total					

II-5-5- Besoins Socioculturel et sportifs

Tableau (II-7): évaluation des besoins socioculturels et sportifs

Equipement	Type d'équipement	Unité	Nombre D'usager (capacité)	Dotation l/unité/j	Besoins [m³/j]
Socioculturel Et	Mosquée	Fidèles	250	20	5
Sportif	Salle de sport	m ²	4842	5	24.21
	Air de jeux	Enfant	200	50	10
	Bibliothèque	m ²	1600	5	8
Total					

II-5-6-Besoins sanitaires

Tableau (II-8): évaluation des besoins sanitaire

Equipement	Type d'équipement	Unité	Nombre (capacité)	Dotation l/unité/j	Besoins [m³/j]
	Centre de soin	m ²	8282.899	10	82.83
Sanitaire	Polyclinique	m ²	4765.460	10	47.66
Total					130.49

II-5-7- besoins commerciaux

Tableau (II-9): évaluation des besoins commerciaux

Equipement	Type d'équipement	Unité	Nombre (capacité)	Dotation l/unité/j	Besoins [m³/j]
commerciaux	Centre commercial	m ²	2463 .327	5	12.32
	Marché couverte	m ²	1131	5	5.66
Total					17.98

II-5-8- Besoins d'arrosage

Tableau (II-10) : évaluation des besoins d'arrosage

Equipement	Type d'équipement	Unité	Nombre (capacité)	Dotation l/unité/j	Besoins [m³/j]
Arrosage	Jardin public	m ²	11000	5	55
	Jardin d'enfants	m ²	500	5	2.5
Total					57.5

II-5-9- Récapitulation des différents besoins en eau à l'horizon 2041

Après l'étude détaillée des besoins, dressons un tableau récapitulatif pour pouvoir calculer le débit total nécessaire pour alimenter notre site.

Type de besoins Consommation moyenne Journalière [m³/j] **Domestiques** 4791.4 **Scolaires** 15.75 **Sécuritaires** 6.9 12.75 **Administratifs** Socioculturels Et sportifs 47.21 **Sanitaires** 130.49 **Commerciaux** 17.98 57.5 **Arrosages** 5079.28 Total

Tableau (II-11): Récapitulatif des différents besoins

D'après le Tableau (II-11) nous évaluons les besoins de l'ordre de :

$$Q_{mov,j} = 5079.28 \text{ m}^3/\text{j} = 5079.28/86, 4 = 58.79 \text{ l/s}$$

II-6- Coefficient d'irrégularité

II-6-1- Coefficient d'irrégularité maximale (Kmax,j)

Du fait de l'existence d'une irrégularité de la consommation horaire au cours de la journée, on doit tenir compte de cette variation en déterminant le rapport :

$$K_{\max,j} = \frac{Q_{\max j}}{Q_{movi}} \tag{II-3}$$

qui exprime de combien le débit maximum journalier dépasse le débit moyen journalier.

 $K_{max.\,j}$: coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération. Sa valeur est comprise entre 1,1 et 1,3. Dans notre cas, on prend $K_{max.\,j}$ =1,3 pour les besoins d'agglomération, par contre pour les besoin d'arrosage on prend $K_{max.\,j}$ = 1 Ce coefficient consiste à prévenir les fuites et les gaspillages au niveau du réseau.

II-6-2- Coefficient d'irrégularité minimale (Kmin,j) :

Il est défini comme étant le rapport de la consommation moyenne journalière, donné par la relation suivante :

$$K_{\min j} = \frac{Q_{\min j}}{Q_{movj}} \tag{II-4}$$

Avec:

Qmin.j: débit d'eau minimal du jour le moins chargé de l'année

K_{min,j}: coefficient de régularité minimal qui varie entre 0.7 et 0.9

Dans notre cas en prendra la valeur moyenne : $K_{min,j} = 0.8$

II-6-3- Coefficient d'irrégularité maximale horaire (Kmax,h) :

Ce coefficient représente l'augmentation de la consommation horaire pour la journée

$$\mathbf{K}_{\text{max.h}} = \frac{\text{consommation maximal horaire}}{\text{consommation movenne horaire}} = \frac{Q \text{max.h}}{Q \text{moy.h}}$$
 (II-5)

D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{max} et β_{max} ; tel que :

$$\mathbf{K}_{\text{max,h}} = \alpha_{\text{max}} * \beta_{\text{max}}$$
 (II-6)

Avec;

 α_{max} : coefficient varie entre 1.2 et 1.3, qui tient compte du niveau de vie de la population et du confort, dans notre cas on prend $\alpha_{max} = 1.3$

 β_{max} : coefficient étroitement lié à l'accroissement de la population. Le tableau (II-12) donne Sa variation en fonction du nombre d'habitants.

Habitant	1000	1500	2500	4000	6000	10000	20000	50000	100000	300000
β_{max}	2	1,8	1.6	1,5	1,4	1,3	1,2	1,15	1,10	1,05

Tableau (II-12): valeurs de β max en fonction du nombre d'habitants

Dans notre cas le nombre d'habitants total est de 23957 habitants.

Le nombre d'habitants pour l'étage (01) est de 7985 et pour l'étage (02) il est de 15972. d'où la valeur de $K_{max,h}$ sera dans le tableau (II-13).

Etage	a max	$oldsymbol{eta_{max}}$	K _{max,h}
01	1.3	1.35	1.755
02	1.3	1.262	1.64

Tableau (II-13): valeurs de K_{max.h} pour l'étage (01) et (02)

II-6-4- Coefficient d'irrégularité minimale horaire (K_{min,h})

Elle est donnée par le coefficient d'irrégularité minimale horaire $K_{\text{min},h}$ qui permet de déterminer le débit minimum horaire envisageant une sous consommation :

$$\mathbf{K}_{\min,h} = \frac{\text{consommation minimal horaire}}{\text{consommation moyenne horaire}} = \frac{\mathbf{Q}_{\min,h}}{\mathbf{Q}_{moy,h}}$$
 (II-7)

D'une manière générale, ce coefficient peut être décomposé en deux autres coefficients : α_{min} et β_{min} ; tel que :

$$\mathbf{K}_{\min,h} = \alpha_{\min} * \beta_{\min} \tag{II-8}$$

Avec;

 α_{min} : coefficient varie entre 0.4 et 0.6, qui tient compte du niveau de vie de la population et du confort, dans notre cas on prend $\alpha_{min} = 0.5$

 β_{min} : coefficient étroitement lié à l'accroissement de la population. Le tableau (II-13) donne sa variation en fonction du nombre d'habitants.

Habitant	1000	1500	2500	4000	6000	10000	20000	30000	50000	100000
β _{min}	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,63	0,7

Dans notre cas, on prend (par interpolation) pour l'étage (01) la valeur $\beta_{min}=0.324$ et pour l'étage (02) la valeur $\beta_{min}=0.46$; d'où la valeur de $K_{min,h}$ sera :

Tableau (II-15): valeurs de $K_{min,h}$ pour l'étage (01) et (02)

Etage	$lpha_{ m min}$	eta_{\min}	$\mathbf{K}_{\mathrm{min,h}}$
01	0.5	0.324	0.162
02	0.5	0.46	0.23

II-7- Détermination des débits journaliers

II-7-1- Consommation minimale journalière (Q min,j)

C'est le débit du jour de faible consommation pendant l'année;

$$Q_{\min,j} = Q_{\max,j} * K_{\min,j} \quad [m^3/j]$$
 (II-9)

On a
$$K_{min,j} = 0.8$$
 d'où $Q_{min,j} = 0.8 * 5079.28 = 4063.43 \text{ m}^3/\text{ j}$

$$Q_{min.j} = 4063.43 \text{ m}^3/\text{ j}$$

II-7-2- Consommation maximale journalière (Q max,j)

Ce débit relatif au jour de la plus grande consommation pendant l'année est utilisé comme élément de base dans les calculs de dimensionnement du réseau de distribution et d'adduction, il nous permet de dimensionner toute la chaine de distribution.

$$Q_{\text{max.j}} = Q_{\text{moy.j}} * K_{\text{max.j}} \quad [\text{m}^3/\text{j}]$$
 (II-10)

Avec:

Q max,j: débit maximum journalier en m³/j;

Q_{moy,j}: débit moyen journalier en m³/j;

K max,j: coefficient d'irrégularité maximale journalière

Le calcul se fait dans le Tableau (II-16)

Tableau (**II-16**): Calcul de la consommation maximale journalière.

Nature des	Débit moyen	Coefficient	Débit maximum	
Consommations	journalier	d'irrégularité [K _j]	journalier	
	Q _{moy} [m3/j]		Q _{max.j} [m ³ /j]	
Domestiques	4791.4	1.3	6228.82	
Scolaires	15.75	1.3	20.47	
Sécuritaire	6.9	1.3	8.97	
Administratif	12.75	1.3	16.58	
Socioculturels et	47.21	1.3	61.37	
sportifs				
Sanitaires	130.49	1.3	169.64	
Commerciaux	17.98	1.3	23.37	
Arrosages	Arrosages 57.5		57.5	
Total	5079.98	•••••	6586.72	

Donc: $Q_{\text{max,j}} = 6586.72 \text{ [m}^3/\text{j]}$

L'évaluation des besoins en eau pour notre étude s'est faite en deux parties (deux étages) comme suit :

• **Pour l'étage(01):**

Le débit moyen journalier $Q_{\text{moy,j}} = 1733.35 \text{ } [\text{m}^3/\text{j}]$

Le débit maximum journalier $Q_{\text{max},j} = 2253.36 \text{ [m}^3/\text{j]}$

• Pour l'étage (02) :

Le débit maximum journalier $Q_{\text{max},j} = Q_{\text{max},j} - Q_{\text{max},j}$ (1)

Donc: $Q_{\text{max.j}} = 6586.72 - 2253.36 = 4333.36 \text{ [m}^3/\text{j]}$

 $Q_{\text{max.j}} = 4333.36 \text{ [m}^3/\text{j]}$

II-8- Détermination des débits horaires :

Généralement, on détermine les débits horaires en fonction du développement, des habitudes de la population et du régime de consommation probable

II-8-1- Débit moyen horaire :

Le débit moyen horaire est donné par la relation suivante :

$$Q_{\text{moy.h}} = \frac{q_{\text{max.j}}}{24} \quad [m^3/j] \tag{II-11}$$

Avec:

Q_{moy,h}: débit moyen horaire en m³/h

Q_{max,j}: débit maximum journalier en m³/j

Tableau (II-17) : calcule des débits moyens horaires (Etage 01 et 02)

Etage	Débit maximum journalier Q _{max,j} [m³/j]	Débit moyen horaire Q _{moy.h} [m ³ /h]
I	2253.66	93.90
II	4333.36	180.56

II-8-2- Détermination du débit maximum horaire :

Ce débit joue un rôle très important dans les différents calculs du réseau de distribution, il est déterminé par la relation suivante :

$$Q_{\text{max},h} = K_{\text{max},h} * Q_{\text{moy},h} \quad [m^3/h]$$
 (II-12)

Avec:

- $Q_{\text{moy},h}$: débit moyen horaire en m^3/h ;

- K_{max,h}: coefficient d'irrégularité maximale horaire;

On a donc : Tableau (II-18) : calcule des débits maximum horaires (Etage 01et 02)

Etage	Qmoy,h	K _{max,h}	Q _{max,h} [m ³ /h]
01	93.90	1.755	164.79
02	180.56	1.64	296.12

II-9- Evaluation de la consommation horaire en fonction du nombre d'habitant

Le débit horaire d'une agglomération est variable selon l'importance de cette dernière. La variation des débits horaires d'une journée est représentée en fonction du nombre d'habitants dans le tableau suivant :

• Tableau (II-19) : réparation des débits horaires en fonction du nombre d'habitants

	Nombre d'habitants									
Heures	≺10000	10000 à 50000	50000 à 100000	≻100000	Aggl.de type Rural					
0-1	01	1.5	03	3.35	0.75					
1-2	01	1.5	3.2	3.25	0.75					
2-3	01	1.5	2.5	3.3	01					
3-4	01	1.5	2.6	3.2	01					
4-5	02	2.5	3.5	3.25	03					
5-6	03	3.5	4.1	3.4	5.5					
6-7	05	4.5	4.5	3.85	5.5					
7-8	6.5	5.5	4.9	4.45	5.5					
8-9	6.5	6.25	4.9	5.2	3.5					
9-10	5.5	6.25	4.6	5.05	3.5					
10-11	4.5	6.25	4.8	4.85	06					
11-12	5.5	6.25	4.7	4.6	8.5					
12-13	07	05	4.4	4.6	8.5					
13-14	07	05	4.1	4.55	06					
14-15	5.5	5.5	4.2	4.75	05					
15-16	4.5	06	4.4	4.7	05					
16-17	05	06	4.3	4.65	3.5					
17-18	6.5	5.5	4.1	4.35	3.5					
18-19	6.5	05	4.5	4.4	06					
19-20	5.0	4.5	4.5	4.3	06					
20-21	4.5	04	4.5	4.3	06					
21-22	03	03	4.8	4.2	03					
22-23	02	02	4.6	3.75	02					
23-24	01	1.5	3.3	3.7	01					
Total	100%	100%	100%	100%	100%					

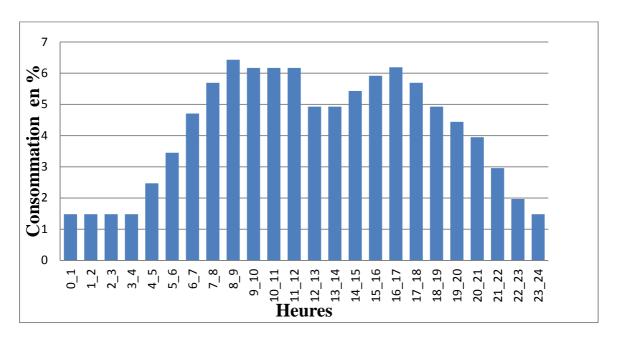
Remarque:

Cette variation des débits horaires est exprimée en pourcentage (%) par rapport au Débit maximal journalier de l'agglomération.

Pour notre cas, on choisie la répartition variant entre 10000 et 50000 hab. pour l'étage 02 (puisque le nombre d'habitants à l'année 2041 sera 15972 hab.), et pour l'étage 01 on choisie la répartition variant ≺10000 hab (Puisque le nombre d'habitants à l'année 2041 sera 7985 hab.). La durée d'arrosage pendant la journée est prévue pour cinq (05) heures.

Tableau (II-20): détermination du débit maximum horaire pour l'étage (02)

Horaire	Agglomération Q _{max,j} =4275.86		Arrosage $Q_{\text{max,j}} = 57.5$		Q _{max} journalier total = 4333.36		Ordonnées de la courbe intégrale
Н	%	$Q_h(m^3/h)$	%	(m ³ /h)	%	Qh(m ³ /h)	%
0-1	1.5	64,1379			1.48	64,133728	1.48
1-2	1.5	64,1379			1.48	64,133728	2.96
2-3	1.5	64,1379			1.48	64,133728	4.44
3-4	1.5	64,1379			1.48	64,133728	5.92
4-5	2.5	106,8965			2.47	107,033992	8.39
5-6	3.5	149,6551			3.45	149,50092	11.84
6-7	4.5	192,4137	20	11.5	4.71	204,101256	16.55
7-8	5.5	235,1723	20	11.5	5.69	246,568184	22.24
8-9	6.25	267,2413	20	11.5	6.43	278,635048	28.67
9-10	6.25	267,2413			6.17	267,368312	33.84
10-11	6.25	267,2413			6.17	267,368312	41.01
11-12	6.25	267,2413			6.17	267,368312	47.18
12-13	5	213,7930			4.93	213,634648	52.11
13-14	5	213,7930			4.93	213,634648	57.04
14-15	5.5	235,1723			5.43	235,301448	62.47
15-16	6	256,5516			5.92	256,534912	68.39


Suite du :Tableau (II-20) : détermination du débit maximum horaire pour l'étage (02)

	Agglomération		Ar	Arrosage		_x journalier	Ordonnées
Horaire	Q _{max,j} =4275.86		Qmax	$\mathbf{Q}_{\text{max,j}} = 57.5$		d = 4333.36	de la
	[[m ³ /j]	[1	[m³/j]		[m ³ /j]	courbe
							intégrale
Н	%	Q _h (m ³ /h)	%	(m ³ /h)	%	Q _h (m ³ /h)	%
16-17	6	256,5516	20	11.5	6.19	268,234984	74.58
17-18	5.5	235,1723	20	11.5	5.69	246,568184	80.27
18-19	5	213,7930			4.93	213,634648	85.20
19-20	4.5	192,4137			4.44	192,401184	89.64
20-21	4	171,0344			3.95	171,16772	93.59
21-22	3	128,2758			2.96	128,267456	96.55
22-23	2	85,5172			1.97	85,367192	98.52
23-24	1.5	64,1379			1.48	64,133728	100
TOTAL	100	4275.86	100	••••	100	4333.36	••••

D'après le **Tableau (II-13)** on tire :

$$Q_{\text{max.h}} = 278.635 \text{ m}^3/\text{h}$$

$$Q_{min, h} = 64.134 \text{ m}^3/\text{h}$$

- Figure (II-1): Histogramme de consommation journalière pour l'étage (02)
- Tableau (II-21): détermination du débit maximum horaire pour l'étage (01)

	Agglomérat	ion					
Horaire (h)	$Q_{\text{max,j}} = 225$	3.66 m ³ /j	Ordonnées de la de la courbe intégrale				
	%	$Q_h (m^3/h)$	%	$Q (m^3/h)$			
0—1	01	22,5366	01	22,5366			
1—2	01	22,5366	02	47,0732			
2—3	01	22,5366	03	67,6098			
3—4	01	22,5366	04	90,1464			
4—5	02	45,0732	06	135,2196			
5—6	03	67,6098	09	202,8294			
6—7	05	112,6830	14	315,5124			
7—8	6.5	146,4879	20.5	462,0003			
8—9	6.5	146,4879	27	608,4882			
9—10	5.5	123,9513	32.5	732,4395			
10—11	4.5	101,4147	37	833,8542			
11—12	5.5	123,9513	42.5	957,8055			
12—13	07	157,7562	49.5	1115,5617			
13—14	07	157,7562	56.5	1273,2179			
14—15	5.5	123,9513	62	1397,2692			
15—16	4.5	101,4147	66.5	1498,6839			
16—17	05	112,6830	71.5	1611,3669			
17—18	6.5	146,4879	78	1757,8548			
18—19	6.5	146,4879	84.5	1904,3427			
19—20	05	112,6830	89.5	2017,0257			
20—21	4.5	110,4147	94	2118,4404			
21—22	03	67,6098	97	2186,0502			
22—23	02	45,0732	99	2231,1234			
23—24	01	22,5366	100	2253,6600			
Total	100	2253.66					

D'après le Tableau (II-21) on tire :

 $Q_{max, h} = 157.7562 \text{ m}^3/\text{h}$

 $Q_{min, h} = 22.5366 \text{ m}^3/\text{h}$

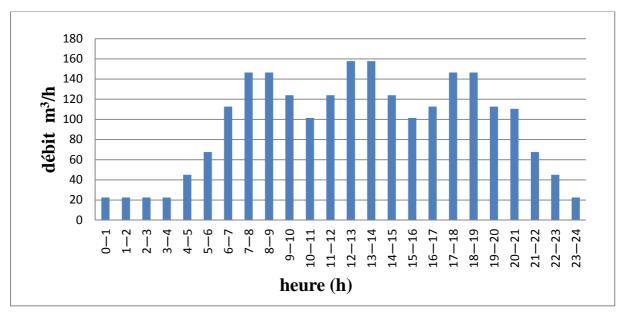


Figure (II-2): Histogramme de consommation journalière.

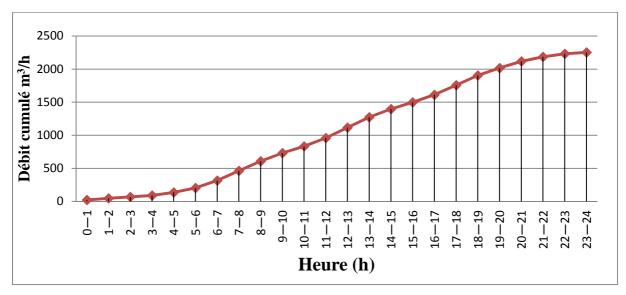


Figure (II-3) : la courbe de débit cumulé.

II-10- Conclusion

Dans ce chapitre nous avons essayé d'évaluer les différentes consommations afin de calculer les débits nécessaires au dimensionnement des deux parties (l'étage 01et 02) de notre réseau à l'horizon 2041 ($Q_{max, h}$ et $Q_{min, h}$). Ceci nous donne une idée sur la quantité de l'eau potable nécessaire à l'agglomération et des ouvrages de stockage nécessaires pour assurer l'eau aux habitants du point de vue pression et quantité.

Sommaire

Chapitre II : Estimation des besoins en eau

II-1-Introduction	7
II-2- Estimation de la population	7
II-2-1- Population actuelle :	8
II-2-2- Population future :	8
II-3- Equipement et infrastructures existants.	8
II-4- La consommation moyenne journalière :	9
II-5- Calcul de la consommation journalière pour les différents besoins :	10
II-5-1- Besoins domestiques :	10
II-5-3- Besoins sécuritaires	11
II-5-4- Besoins Administratifs	11
II-5-5- Besoins Socioculturel et sportifs	11
II-5-6-Besoins sanitaires	12
II-5-7- besoins commerciaux	12
II-5-8- Besoins d'arrosage	12
II-5-9- Récapitulation des différents besoins en eau à l'horizon 2041	13
II-6- Coefficient d'irrégularité	13
II-6-1- Coefficient d'irrégularité maximale (K _{max,j})	13
II-6-2- Coefficient d'irrégularité minimale (Kmin,j)	14
II-6-3- Coefficient d'irrégularité maximale horaire (Kmax,h)	14
II-6-4- Coefficient d'irrégularité minimale horaire (K _{min,h})	15
II-7- Détermination des débits journaliers	16
II-7-1- Consommation minimale journalière (Q min,j)	16
II-7-2- Consommation maximale journalière (Q max,j)	16
II-8- Détermination des débits horaires :	18
II-8-1- Débit moyen horaire :	18
II-8-2- Détermination du débit maximum horaire :	18
II-9- Evaluation de la consommation horaire en fonction du nombre d'habitant	19
II-10- Conclusion	23

III-1- Introduction

Dans ce chapitre, nous allons traiter l'une des importantes infrastructures de grande importance en alimentation d'eau potable, qui est les réservoirs, il est aménagé généralement pour contenir et stocker de l'eau potable.

III-2- définition des réservoirs

Les réservoirs sont des ouvrages intermédiaires entre les réseaux d'adduction et les réseaux de distribution, ils jouent un rôle très important dans un réseau d'alimentation en eau potable et peuvent avoir plusieurs rôles.

III-3- Rôle des réservoirs [2]

- ➤ Ils assurent plusieurs fonctions :
- Emmagasiner les eaux pendant les heures creuses de consommation et les restituer pendant les autres heures où la consommation devient importante.
- Assurer la continuité de distribution pendant l'arrêt de la pompe.
- Ils constituent une réserve pour les imprévue (rupture, panne des pompes, réparation, extension du réseau ...).
- Assurer une pression suffisante et acceptable dans le réseau de distribution.
- Maintenir de l'eau à l'abri de la pollution et les variations de température.
- Simplification de l'exploitation de la station de pompage.
- Réduction des dépenses d'énergie (stockage la nuit et distribution gravitaire pendant les heures de pointe).
- stockage de réserve d'incendie (une partie de volume est réservée à la lutte contre l'incendie).

III-4- Emplacement des réservoirs

L'emplacement du réservoir est conditionné par l'assurance d'une pression suffisante aux abonnés, mais on doit tenir compte des considérations suivantes :

- Ils doivent être placés à un niveau supérieur à celui de l'agglomération qu'ils desservent.
- Le site du réservoir doit être le plus proche possible de l'agglomération (question d'économie)
- L'altitude du réservoir, plus précisément du radier doit être supérieure à la plus haute côte piézométrique exigé dans le réseau

• La topographie intervient et à une place prépondérante dans le choix de l'emplacement.

Dans notre projet, le site est caractérisé par une différence de niveau, alors nos réservoirs sont réalisés sur des altitudes différentes selon les caractéristiques suivantes :

- le réservoir ANBT, (réservoir principal) :
 - Côte de radier du réservoir : 174.4m
- le réservoir situé au lieu dit Bouridane, (réservoir qui assure la distribution pour l'agglomération de l'étage (02)) :
 - Côte de radier du réservoir : 236.5 m
- L'autre réservoir qui assure la distribution pour l'agglomération de l'étage (01), est à une cote de 165m.

III-5- Caractéristique d'un réservoir [3]

Les réservoirs d'eau potable doivent êtres conçus de façon à ce qu'aucune détérioration de la qualité de l'eau ne puisse se produire, et les matériaux de construction choisis devront assurer :

- Une parfaite étanchéité afin de parer à toute infiltration d'eau pouvant contaminer l'eau stockée.
- Une résistance et durabilité des matériaux après un long contacte avec l'eau et à l'effet de pression.
- En plus les réservoirs doivent être faciles d'accès et leur installation doit permettre de vérifier en tout temps leur étanchéité, comme ils doivent disposer d'un dispositif permettant le prélèvement des échantillons d'eau à l'amant et l'aval de réservoir.

III-6- La maintenance des réservoirs

Tous ces réservoirs font l'objet de soins attentifs : travaux périodique pour assurer leur étanchéité et améliorer leur aspect extérieur, mais surtout des procédures de contrôle et de nettoyage très précises pour garantir la sécurité et la qualité de l'eau.

Parmi ces soins en peut citer comme exemple :

- Le renouvellement de l'étanchéité extérieure pour éviter toutes fuites ;
- La mise en œuvre d'une isolation thermique afin de maintenir à l'intérieur de l'ouvrage une température constante proche de celle de l'eau emmagasinée ;
- La séparation de la réserve d'eau et de la chambre à vanne ;
- La limitation de l'éclairage naturel ;

- La vidange des réservoirs pour faire au moins un nettoyage annuel;
- le renouvellement de l'eau dans les réservoirs est une condition nécessaire à la présentation de la qualité de l'eau

III-7- Classification des réservoirs [4]

Les réservoirs peuvent être classés selon :

- Leurs positions par apport au sol

- enterrés.
- Semi-enterrés.
- Surélevés, appelés aussi châteaux d'eau.

- Leurs formes

- > Circulaire.
- > Carrés et rectangulaires.
- ➤ De forme quelconque.

- La nature du matériau de construction

- > Les réservoirs métalliques.
- Les réservoirs en maçonnerie.
- Les réservoirs en béton armé ordinaire ou précontraint

III-8- Les équipements des réservoirs [4] :

III-8-1-Conduite d'adduction:

L'arrivée de la conduite d'adduction du réservoir peut être placée soit à la partie supérieure de celui-ci, soit au fond.

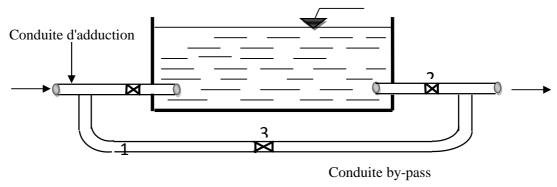


Figure (III-1): conduite d'adduction

III-8-2- Conduite de distribution :

Le départ de la conduite de distribution s'effectue de 0,15m à 0.20 m au dessus du radier afin d'éviter l'introduction des matières et sables décantés dans la cuve.

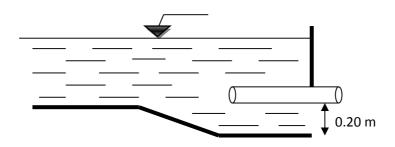


Figure (III-2): Conduite de distribution

III-8-3- Conduite de décharge ou de vidange

La conduite de vidange se trouve au point le plus bas du réservoir, elle permet la vidange du réservoir, à cet effet, le radier du réservoir est réglé en pente vers son origine. Elle est raccordée à la conduite de trop-plein et comporte un robinet-vanne

III-8-4- Conduite du trop-plein :

La conduite du trop-plein est destinée à empêcher l'eau de dépasser le niveau maximal, elle se termine par un système simple bout à emboîtement. L'extrémité de cette conduite doit être en forme de siphon afin d'éviter l'introduction de certains corps nocifs dans la cuve.

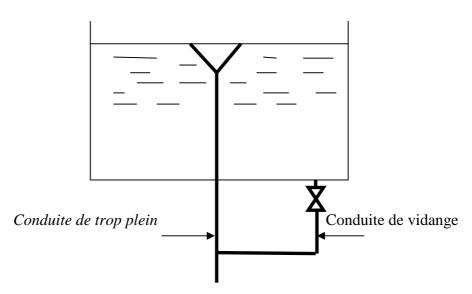


Figure (III-3): Trop-plein et vidange

III-8-5- Conduite BY-PASS

Elle relie la conduite d'adduction a celle de distribution

Elle assure la distribution pendant le nettoyage du réservoir son fonctionnement est le suivant :

Normale 1 et 2 sont ouverts le 3 est fermé,

En BY-PASS : 1 et 2 sont fermés le 3 est ouvert.

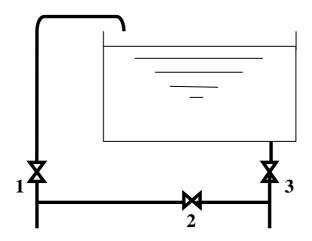


Figure (III-4): By-pass d'un réservoir

III-8-6- Matérialisation de la réserve d'incendie

Pour conserver notre réserve incendie qui nous permet de lutter contre le feu, il faut que notre réservoir soit équipé de manière à ce que cette capacité ne soit pas utilisée à d'autres fins autres que l'incendie.

Nous proposons d'installer un système de matérialisation d'incendie dans les deux réservoirs jumelés.

Le système utilisé est un dispositif spécial de la tuyauterie qui permet d'interrompre l'écoulement, une fois le niveau de la réserve d'incendie atteint.

En service normal, vanne 2 est fermée et la vanne 1 et 3 sont ouvertes. Si le niveau dans le réservoir descend jusqu'au niveau N_{incendie}, le siphon se désamorce grâce à l'évent ouvert à l'air libre et la réserve d'incendie ne sera pas utilisée.

En cas de sinistre, il suffit la vanne 2 tout en restant imprenable, la tranche d'eau consistant la réserve se trouve ainsi constamment renouvelée.

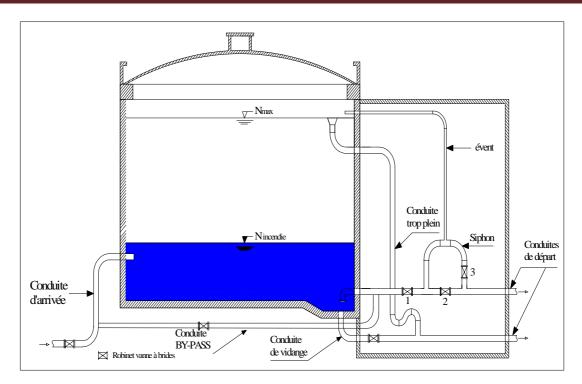


Figure (III-5) : équipement de réservoir

III-9- Vérification de la capacité des réservoirs existants à l'horizon futur

Pour l'estimation de la capacité d'un réservoir à l'horizon 2041 on a recourt soit à la méthode graphique ou analytique.

III-9-1- Méthode graphique [5]:

Pour estimer la capacité d'un réservoir par la méthode graphique, il est exigé de connaître la courbe de consommation totale (intégrale) et la courbe d'apport. Pour tracer la courbe d'apport, il faut connaître le temps de fonctionnement de la pompe.

En fixant la durée de fonctionnement des pompes à 22 heures par jour, au bout de ce temps les pompes doivent refouler 100% du débit maximum journalier.

Le volume du réservoir sera au moins égal à la somme de ces deux valeurs plus la réserve d'incendie.

$$V_{R} = \Delta V_{max} + \Delta V_{min} + V_{inc}$$
 (III-1)

Avec:

V_R: volume du réservoir

 ΔV min : surplus maximum en (m³)

 ΔV max : déficit maximum en (m³)

 V_{inc} : réserve d'incendie ($V_{inc} = 120 \text{ m}^3$)

III-9-2- Méthode analytique [5]:

La méthode analytique se base sur le régime de la consommation tout au long de la journée et le temps du fonctionnement de la pompe, Le volume utile Vu est déterminé par la formule suivante :

$$V_{U} = \frac{Q_{\text{max } I}.P \text{ max } \%}{100}$$
 (III-2)

Où:

V_u: volume utile.

Q_{max.j}: débit maximum journalier.

Pmax%: le pourcentage du volume maximal journalier devant être stocké dans le réservoir.

Enfin le volume total $V_{\rm T}$ du réservoir est donné par :

$$V_{\rm T} = V_{\rm u} + V_{\rm inc} \tag{III-3}$$

III-10- Le calcul de la capacité des réservoirs par la méthode analytique :

III-10-1- Calcul de la capacité du réservoir R1 qui assure la distribution de l'étage(01)

Le volume sera déduit à partir des résidus entre le cumul d'apport et de départ d'eau pour chaque heure durant 24 heures (l'adduction est gravitaire pour ce réservoir)

Tableau (**III-1**) : évaluation de la capacité utile du réservoir R1 de l'étage (01)

Heures	Consommation horaires de Q _{maxj}	L'apport	Sur plus	Déficit	Capacité
(h)	%	%	%	%	%
0-1	1	4,16	3.16		3,16
1-2	1	4,16	3.16		6,32
2-3	1	4,16	3.16		9,48
3-4	1	4,16	3.16		12,64
4-5	2	4,16	2.16		14,8
5-6	3	4,17	1.17		15,97
6-7	5	4,17		-0,83	15,14
7-8	6.5	4,17		-2,33	12,81
8-9	6.5	4,17		-2,33	10,48
9-10	5.5	4,17		-1,33	9,15

Suite du Tableau (III-1) : évaluation de la capacité utile du réservoir R1 de l'étage (01)

Heures	Consommation horaires de Qmaxj	L'apport	Sur plus	Déficit	Capacité
(h)	%	%	%	%	%
10-11	4.5	4,17		-0,33	8,82
11-12	5.5	4,17		-1,33	7,49
12-13	7	4,17		-2,83	4,66
13-14	7	4,17		-2,83	1,83
14-15	5.5	4,17		-1,33	0,50
15-16	4.5	4,17		-0,33	0,17
16-17	5	4,17		-0,83	-0,66
17-18	6.5	4,17		-2,33	-2,99
18-19	6.5	4,17		-2,33	-5,32
19-20	5	4,17		-0,83	-6,15
20-21	4.5	4,17		-0,33	-6,48
21-22	3	4,16	1,16		-5,32
22-23	2	4,16	2,16		-3,16
23-24	1	4,16	3,16		0
Total	100	100			

D'après le **Tableau (III-1)**
$$P_{\text{max}} \% = |V|^+ |V^-|$$
 (III-4) $P_{\text{max}} \% = |15,97|^+ |6,48|, \text{ donc } P_{\text{max}} = 22,45 \%$

Le volume utile du réservoir de l'étage (01) sera donc

$$V_v = \frac{22,45 \times 2253,66}{100}$$

$$V_u = 505,95 \text{ m}^3$$

On prend $V_{inc}=120 \text{ m}^3\text{ce}$ qui donne le volume total de réservoir $V_T=505.95+120$

$$V_{\rm T} = 625,95 \text{ m}^3$$

Remarque:

La capacité totale du réservoir d'eau est de **100 m³**, alors que le volume calculé est estimé à **625,95 m³**, donc la capacité existante n'est pas suffisante pour satisfaire les besoins de l'agglomération de l'étage(01) pour l'horizon 2041. C'est la présence d'un déficit de **526m³**. Pour ceci, on recommande de projeter un réservoir de capacité **550m³**.

• Diamètre de réservoir existant 100 m³ (on prend la hauteur h=3m)

$$D = \left(\frac{4 \times Vr}{h.\pi}\right)^{\frac{1}{2}}$$

$$D = \left(\frac{4 \times 100}{3.\pi}\right)^{\frac{1}{2}} = 6,52m$$
(III-5)

• Diamètre de réservoir a projeté 550m^3 (la hauteur h = 4m)

$$D = \left(\frac{4 \times Vr}{h.\pi}\right)^{\frac{1}{2}} = \left(\frac{4 \times 550}{4.\pi}\right)^{\frac{1}{2}} = 13,23 \text{m}$$

• Hauteur d'incendie :

$$H_{\text{inc}} = \frac{4 \times (V_{incendie})}{\pi (D)^2}$$
 (III-6)
 $H_{\text{inc}} = \frac{4 \times (120)}{\pi (6,52)^2} = 3,56 \text{m}$

III-10-2- Calcul de la capacité du réservoir de l'étage(02) (BOURIDANE)

Le volume sera déduit à partir des résidus entre le cumul d'apport et de départ d'eau pour chaque heure durant 22h (La pompe fonctionne 22h/24h) donc :

$$Q_{\text{max}JP} = Q_{\text{max}J} \frac{100}{22} \tag{III-7}$$

Tableau (III-2): calcul de la capacité du réservoir de l'étage (02) à (BOURIDANE)

Heures	Consommation	Refoulement	Surplus	Déficit	Capacité
	horaires de	d'eau			
	Qmaxj				
Н	%	%	%	%	%
0-1	1.48	0		-1.48	-1.48
1-2	1.48	0		-1.48	-2.96
2-3	1.48	4.54	3.06		0.1
3-4	1.48	4.54	3.06		3.16
4-5	2.47	4.54	2.07		5.23
5-6	3.45	4.54	1.09		6.32
6-7	4.71	4.54		-0.17	6.15
7-8	5.69	4.55		-1.14	5.01
8-9	6.43	4.55		-1.88	3.13
9-10	6.17	4.55		-1.62	1.51
10-11	6.17	4.55		-1.62	-0.11
11-12	6.17	4.55		-1.62	-1.73
12-13	4.93	4.55		-0.38	-2.11

Suite du Tableau (III-2): calcul de la capacité du réservoir de l'étage (02) (BOURIDANE

Heures	Consommation horaires de Q _{maxj}	Refoulement d'eau	Surplus	Déficit	Capacité
Н	%	%	%	%	%
13-14	4.93	4.55		-0.38	-2.49
14-15	5.43	4.55		-0.88	-3.37
15-16	5.92	4.55		-1.37	-4.74
16-17	6.19	4.55		-1.64	-6.38
17-18	5.69	4.55		-1.14	-7.52
18-19	4.93	4.55		-0.38	-7.9
19-20	4.44	4.54	0.1		-7.8
20-21	3.95	4.54	0.59		-7.21
21-22	2.96	4.54	1.58		-5.63
22-23	1.97	4.54	2.57		-3.06
23-24	1.48	4.54	3.06		0
Total	100	100	••••		

D'après le Tableau (III-2) $P_{max} \% = |V|^+ |V^-|$

$$P_{\text{max}}\% = |6,32|^+ |7,90|$$
, donc $P_{\text{max}} = 14,22 \%$

Le volume utile du réservoir de l'étage (02) sera donc

$$V_v = \frac{14,22 \times 4333,36}{100}$$

$$V_u = 616,204 \text{ m}^3$$

On prend $V_{inc}=120 \text{ m}^3\text{ce}$ qui donne le volume total de réservoir $V_T=616,204+120$

$$V_T = 736.204 \text{ m}^3$$

Remarque:

La capacité totale du réservoir d'eau à BOURIDANE est de 500 m³, alors que le volume calculé est estimé à 736.204 m³, donc la capacité existante n'est pas suffisante pour satisfaire les besoins de l'agglomération de l'étage(01) pour l'horizon 2041. C'est la présence d'un déficit de **236m³**. Pour ceci, on recommande de projeter un réservoir de capacité **250m³**.

• Diamètre de réservoir existant :

$$D = \left(\frac{4 \times Vr}{h.\pi}\right)^{\frac{1}{2}} = \left(\frac{4 \times 500}{4.\pi}\right)^{\frac{1}{2}} = 12,62m$$

• Diamètre de réservoir a projeté 550m^3 (la hauteur h = 4m)

$$D = \left(\frac{4 \times Vr}{h.\pi}\right)^{\frac{1}{2}} = \left(\frac{4 \times 250}{4.\pi}\right)^{\frac{1}{2}} = 8,92m$$

• Hauteur d'incendie :

$$H_{inc} = \frac{4 \times (V_{incendie})}{\pi(D)^2} = \frac{4 \times (120)}{\pi (12.62)^2} = 0.96m$$

Note : le réservoir (ANBT) de capacité 2500m³ est alimenté par une conduite sous pression à partir d'un piquage sur conduite de refoulement provenant du barrage Tichi-Haf. Ce réservoir assure l'alimentation en eau de toute la commune d'Amizour, ce dernier est donc considéré comme étant la source pour notre projet (à partir de ce réservoir commence notre chaîne d'adduction).

III-11 -Dimensionnement de la bâche d'eau de la station de reprise :

La station de reprise est un ouvrage équipé d'un réservoir et d'une station de pompage. Le dimensionnement de la station de reprise sera effectué d'après le temps nécessaire pour maintenir la crépine en charge et pour que la pompe ne se désamorce pas.

Le dimensionnement de la bâche d'eau est comme suit :

Tableau (III-3) : Dimensionnement de la bâche d'eau

Н	Entré	Sortie	sur plus	déficit	Capacité
%	%	%	%		%
0_1	4,16	0	4,16		4,16
1_2	4,16	0	4,16		8,32
2_3	4,16	4,54		-0,38	7,94
3_4	4,16	4,54		-0,38	7,56
4_5	4,16	4,54		-0,38	7,18
5_6	4,17	4,54		-0,37	6,81
6_7	4,17	4,54		-0,37	6,44
7_8	4,17	4,55		-0,38	6,06
8_9	4,17	4,55		-0,38	5,68
9_10	4,17	4,55		-0,38	5,3
10_11	4,17	4,55		-0,38	4,92
11_12	4,17	4,55		-0,38	4,54
12_13	4,17	4,55		-0,38	4,16
13_14	4,17	4,55		-0,38	3,78

Н	Entré	Sortie	sur plus	déficit	Capacité
%	%	%	%	%	%
14_15	4,17	4,55		-0,38	3,4
15_16	4,17	4,55		-0,38	3,02
16_17	4,17	4,55		-0,38	2,64
17_18	4,17	4,55		-0,38	2,26
18_19	4,17	4,55		-0,38	1,88
19_20	4,17	4,54		-0,37	1,51
20_21	4,17	4,54		-0,37	1,14
21_22	4,16	4,54		-0,38	0,76
22_23	4,16	4,54		-0,38	0,38
23_24	4,16	4,54		-0,38	0

Suite du Tableau (III-3): Dimensionnement de la bâche d'eau

D'après le Tableau (III-3) on a :

$$P_{\text{max}}(\%) = \|8,32\|^{+}$$

$$V_{\text{SR}} = \frac{Qmax.j \times Pmax(\%)}{100}$$

$$V_{\text{SR}} = \frac{4333,36 \times 8,32}{100} = 360,535 \text{ m}$$

On prend une station d'une capacité standard de 400 m³

III-12- Conclusion

Les capacités des réservoirs déterminés précédemment ne garantissent pas l'alimentation en eau portable des deux plans d'occupation du sol en question. Néanmoins, on va projeter deux réservoirs, l'un de 250m³ et l'autre de 550 m³ qui vont assurer la distribution d'eau vers les parties de l'agglomération de chaque étage.

Les réservoirs existants seront jumelés avec les réservoirs projetés, pour accomplir cette garantie de distribution.

L'acheminement de l'eau jusqu'aux deux réservoirs qui assurent la distribution d'eau pour l'agglomération de l'étage (02), s'effectuera par l'intermédiaire d'une station de reprise de capacité 400 m³.

Chapitre IV L'adduction

IV-1- Introduction

L'adduction de l'eau est définie comme le transport des débits depuis la zone de captage jusqu'aux réservoirs d'accumulation ou bien zones d'utilisation.

D'après leurs fonctionnements, les canalisations d'amenées d'eau peuvent être classées en deux modes, à savoir [4] :

- Adduction gravitaire : le point de captage se situe à une altitude supérieure à celle du réservoir de desserte de l'agglomération.
- Adduction par refoulement : le point de captage se situe à une cote inferieure à celle du réservoir d'accueil. Afin d'atteindre le réservoir, ces eaux sont relevées par l'intermédiaire des pompes

IV-2- Choix du tracé (condition technique)

Pour le choix du tracé de la conduite de refoulement, il sera tenu compte de certains impératifs que l'on s'efforcera dans la mesure du possible de respecter.

Il est important de chercher un profil en long aussi régulier que possible pour éliminer les contres pentes.

- Dans le but d'économie du projet, le tracé doit être le plus court possible.
- Éviter le phénomène de cavitation qui peut engendrer les éclatements et vibrations de la canalisation ou cours de la phase de surpression.
- Éviter les forets, bois et zones marécageuses.
- Éviter autant que possible la traversée des obstacles (routes, voies ferrées, canaux, oueds, etc.).

IV-3- Choix du type des conduites :

Le marché du matériel hydraulique a évolué avec l'évolution des récentes technologies spécialisées dans le domaine. De ce fait, on dispose de différents types de conduites et selon le matériau constitutif, on distingue :

- Conduite en acier,
- Conduite en fonte ductile,
- Conduite en PVC (Chlorure de PolyVinyle),
- Conduite en PEHD (PolyEthylène Haute Densité).

Les types de canalisations choisis dans notre projet sont : le PEHD et l'acier, pour les avantages suivants [6] :

• Pour conduite en PEHD [2]

- Facilité de pose (grande flexibilité), possibilité d'enroulement en couronne pour les petits diamètres,
- Bonne caractéristique hydraulique (coefficient de rugosité très faible),
- Fiables au niveau des branchements (pas de fuites),
- Résiste à la corrosion interne, externe et microbiologique et à l'entartage.

• Pour les conduites en acier [2]

- Meilleure résistance aux contrainte (chocs , écrasement, déplacement du terrain
- Longue durée de vie, à condition que la protection contre la corrosion soit soigneusement exécutée et régulièrement entretenue,
- Disponibilité dans le marché à des prix compétitifs
- Plus légères et plus longues que les conduites en fonte.

IV-4- Description du schéma d'adduction :

L'analyse de la situation actuelle du système d'AEP de la commune d'Amizour montre qu'elle est alimentée à partir d'un piquage sur conduite provenant du barrage **Tichi-Haf**, à l'aide d'une conduite sous pression en PEHD de diamètre **400mm**. L'eau sera transférée depuis le barrage vers un réservoir principal **R** (ANBT) de capacité **2500 m**³.

Dans le cadre de notre étude, le système d'adduction commence par :

Adduction gravitaire: à partir du réservoir principal **R** (ANBT), qui se situe à une cote de 174m, sort une conduite d'adduction gravitaire d'une langueur de 280m. Elle véhicule un débit de **0,0261m³/s** qui va vers deux réservoirs jumelés (l'un existant (R1) et l'autre projeté), situés à une cote de **165m**.

Adduction mixte (gravitaire-refoulement): elle commence à partir du réservoir principal R qui alimente la station de reprise SR se trouvant à une côte de 78,5m avec un débit de 0,05 m³/s, le long d'une adduction gravitaire de 50m. A partir de cette station (SR) un débit de 0.055 m³/s sera acheminé par refoulement à travers une conduite sur 620m de longueur, vers les réservoirs (existant R2 et projeté) situés au lieu dit Bouridane, à une cote de 236,5m.

Le Schéma synoptique du système d'adduction est donné sur la figure (IV-1)

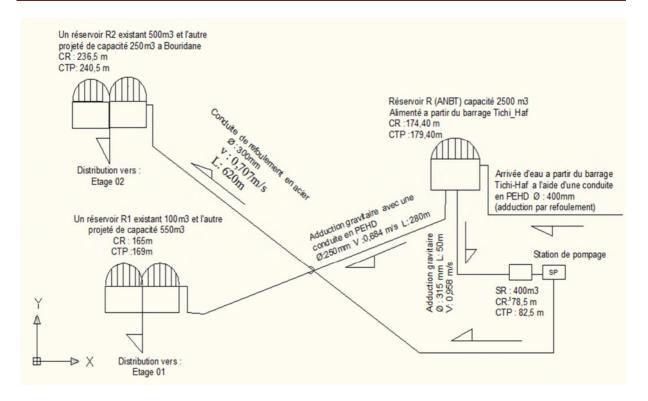


Figure (IV-1): Schéma synoptique de system d'adduction et d'alimentation en eau

IV-5- Etude technico-économique

Elle consiste à étudier le choix le plus économique pour le diamètre de la conduite [7], qui repose sur deux critères :

- **Techniquement,** le diamètre de la conduite doit pouvoir faire transiter le plus grand débit à des vitesses accessibles, en assurant une pression de service compatible avec la résistance de la conduite et la vitesse d'écoulement doit être comprise entre 0,5 et 1,5 m/s.
- Les frais d'investissement, (Frais d'exploitation + Frais d'amortissement) sont proportionnels aux diamètres des conduites.

IV-5-1- Méthode Calcul du diamètre économique

Dans la pratique le diamètre optimal est déterminer par rapport à une fourchette de vitesse à respecter, ce diamètre D_N est déterminer approximativement par les formules de BONIN et BRESSE [7], ces formule sont données comme suit :

• La formule de BONIN :
$$\mathbf{D}_{N1} = \sqrt{Q}$$
 (IV-1)

• La formule de BRESSE :
$$\mathbf{D}_{N2} = 1.5 \times \sqrt{Q}$$

Avec:

D : Diamètre de la conduite en mètre.

Q : Débit refoulé dans la conduite en m³/s.

On prendra tous les diamètres compris entre \mathbf{D}_{N1} et \mathbf{D}_{N2} , mais le choix final se portera sur le diamètre pour lequel le coût sera minimal et la vitesse d'écoulement sera comprise entre $\mathbf{0.5m/s}$ et $\mathbf{1.5m/s}$.

IV-5-2- Calcul de la vitesse :

Elle est donnée par la formule suivante :

$$V = \frac{4Q}{\pi \times D^2}$$
 (IV-2)

IV-5-3- Calcul des pertes de charge :

IV-5-3-1- Pertes de charge linéaires (H_L)

Le gradient des pertes de charge unitaires est déterminé à partir de la formule de DARCY WEISBACH qui s'exprime par la formule :

$$H_L = J \times L$$
 (IV-3)

Et:

$$J = \frac{\lambda \times V^2}{2 \times g \times D}$$
 (IV-4)

Avec: J: Gradient de perte de charge en (m/m)

V: Vitesse moyenne de l'eau dans la section (m/s).

g : Accélération de la pesanteur (g= 9,81 m/s²)

Pour déterminer le coefficient des pertes de charge λ aux différents régimes, on peut appliquer les formules suivantes (voir annexe (3)) [8]

• Formule de NIKURADZI : régime

$$\lambda = \left(1.14 - 0.86 \times \operatorname{Ln} \frac{K}{D}\right)^{-2}$$
 (IV-5)

• Formule de COLEBROOK:

$$\frac{1}{\sqrt{\lambda}} = 2\log\left[\frac{K}{3.71 \times D} + \frac{2.51}{Re \times \sqrt{\lambda}}\right]$$
 (IV-6)

Avec:

J : Pertes de charge par frottements en mètres de colonne d'eau par mètre de tuyau.

 λ : Coefficient de pertes de charge.

D: Diamètre du tuyau en (m).

V: Vitesse d'écoulement en (m/s).

g : Accélération de la pesanteur en (m/s²).

L : Longueur de la conduite en (m).

K : Coefficient de rugosité équivalente de la paroi qui varie comme suit :

Pour les tubes en PEHD:

 $K = 0.01 \text{ si } D \le 200 \text{ mm}$

K = 0.02 si D > 200 mm

La Rugosité absolue des tuyaux neuf (k₀ =0,1 mm pour l'acier neuf d'après J-BONNIN)

Re : Nombre de Reynolds donné par la formule suivante :

$$\mathbf{Re} = \frac{\mathbf{V} \times \mathbf{D}}{\mathbf{n}} \tag{IV-7}$$

Où

n : Viscosité cinématique de l'eau donnée par la formule suivante :

$$n = \frac{0,0178}{(1+0,0337T+0,000221T^2)} \quad [STOCKS]$$
 (IV-8)

Pour

 $T=10^{\circ}C: V=1.31\times10^{-6} \text{ m}^2/\text{s}$

 $T = 20^{\circ}C$: $\ensuremath{\textit{V}} = 1.00 \times 10^{-6} \ m^2/s$

 $T=30^{\circ}C: V=0.08\times10^{-6} \text{ m}^2/\text{s}.$

IV-5-3-2- Les pertes de charge singulières :

Elles sont provoquées par les coudes, les vannes, les clapets..., elles sont estimées à 10% des pertes de charge linéaires pour le PEHD et 15% pour l'acier et 20% pour la fonte.

Pour le PEHD $H_S = 0.1 \times H_L$

Pour l'acier $H_S = 0.15 \times H_L$

Pour la fonte $H_S = 0.20 \times H_L$

IV-5-3-3- Les pertes de charge totales :

Elles représentent la somme des pertes de charge linéaires et singulières pour chaque conduite de longueur L, donc on aura:

Pour le PEHD $H_T = 1.10 \times H_L = 1.1 \times J \times L$

Pour l'acier $H_T = 1.15 \times H_L = 1.15 \times J \times L$

Pour la fonte $H_T = 1.20 \times H_L = 1.20 \times J \times L$

IV-5-4- Détermination de la hauteur manométrique totale [4] :

Elle représente une hauteur d'élévation fictive qui résulte de la somme de la hauteur géométrique et les pertes de charge résultantes de l'aspiration et du refoulement.

$$\mathbf{Hmt} = \mathbf{Hg} + \mathbf{Ht} \tag{IV-9}$$

IV-5-5- Puissance (P) absorbée par la pompe :

C'est la puissance mécanique absorbée au niveau de l'arbre de la pompe, elle est déterminée d'après la formule suivante :

$$\mathbf{Pa} = \frac{g \times Hmt \times Q}{\eta}$$
 (IV-10)

Avec:

Pa : Puissance absorbée par la pompe en (KW).

η: Rendement de la pompe en %

IV-5-6- Energie consommée par la pompe :

Elle est fixée par la formule suivante :

$$E = P \times t \times 365$$

Avec:

t : Nombre d'heures de pompage (21h).

P : Puissance de pompage en (KWh).

IV-5-7- Frais d'exploitation :

$$\mathbf{F}_{\text{exp}} = \mathbf{E} \times \mathbf{e}' \quad (\mathbf{D}\mathbf{A})$$
 (IV-11)

Avec:

E: Energie consommée par la pompe (KWh)

e': Prix unitaire du KWh. fixé par la SONELGAZ (4.67DA)

IV-5-8- Frais d'amortissement :

Les frais d'amortissement seront calculés à partir de la formule suivante :

$$\mathbf{F}_{am} = \mathbf{P}\mathbf{u} \times \mathbf{L} \times \mathbf{A} \tag{IV-12}$$

Avec:

P_U: Le prix unitaire de la conduite (DA/ml).

L : Longueur de la conduite en m.

A: L'amortissement annuel (Annuité).

$$\mathbf{A} = \frac{\mathbf{i}}{(\mathbf{i} + 1)^{n} - 1} + \mathbf{i}$$
 (IV-13)

Avec:

A: L'amortissement annuel (Annuité).

i: Taux d'annuité = 8 %.

n: Nombre d'années sur lequel s'effectuera l'amortissement (n =25ans)

D'où:

$$\mathbf{A} = \frac{0.08}{(1.008)^{25} - 1} + 0.08 = \mathbf{0.0937}$$

Soit : A = 0.0937

IV-5-9- Calcul du bilan:

Le bilan sera calculé par la formule suivante :

$$B_L = Fexp + Fam$$
 (IV-14)

IV-5-10- Prix des conduites :

Les prix des conduites sont pris en tenant compte des couts de transport et de pose des conduites par mètre linéaire (voir annexe (3))

IV-6-- Calcul des conduites gravitaires

Pour le calcul des conduites gravitaires, quatre paramètres interviennent :

- Le débit (Q)
- La vitesse (V)
- Les pertes de charges (J)
- Le diamètre (D)

La différence entre la cote radier (CR) et la cote trop plein (CTP) sera la charge disponible (**Hd**), cette dernière sera égale à la charge nécessaire pour vaincre les frottements. La ligne piézométrique joignant les points extrêmes, de départ et d'arrivée, aura donc pour pente (**j**), et la perte de charge unitaire acceptable pour l'écoulement dans les conduites est :

$$J = \frac{H_t}{1,1 \times L}$$
 (IV-15)

Ayant Q et J, on cherchera le diamètre D, qui écoulera ce débit Q avec des pertes de charge J. Si la vitesse n'est pas vérifiée, alors on choisira un autre diamètre D avec une vitesse acceptable et on vérifie à chaque fois, que Ht≤ Hd, pour le même débit.

IV-7- Calcul des diamètres économique d'adduction

IV-7-1 Adduction gravitaire:

IV-7- 1-1-Tronçon (R (ANBT) -R1)

Ce tronçon est alimenté à partir du réservoir principale R (ANBT) de capacité 2500m³ l'écoulement sera gravitaire.

Données:

- ✓ Le débit : $Q = 0.0261 \text{ m}^3/\text{s}$.
- ✓ Hauteur géométrique \mathbf{Hg} =CR(R(ANBT)) CTP(R1) = 174,4 169 = **5.4 m.**
- ✓ Longueur du tronçon L=280 m.

Chapitre IV Adduction

On a fixé les vitesses maximum et minimum à 1,5 m/s et 0,5 m/s respectivement, par suite, on détermine les diamètres par le diamètre minimum qui respecte les conditions des vitesses et des pressions. On opte pour les conduites en PEHD de pression de service de 10 bars (PN10)

Les résultats de calcul sont représentés dans le tableau (IV-1)

Dext (m) Dint (m) V(m/s)Re HT (m) Hg(m) 0,200 0,1762 1,071 188696,98 0,016657 0,000753 1,779368243 5,4 0,017135 0,250 0,2204 0,684 150854,84 0,000966 0,597757079 5,4

Tableau (IV-1): les diamètres choisi pour le tronçon (R(ANBT)-R1)

Pour que l'eau arrive vers les deux réservoirs (existant et projeté), il faut que H_t < Hg. Où:

- H_t: Pertes de charge totales dans la conduite.
- H_g: La charge disponible ou géométrique.

Par conséquent, on optera pour un diamètre de 250mm, car H_t = 0,597 m est inférieure à H_g = 5,4 m, avec une vitesse acceptable de 0,684 m/s.

IV-7- 1-2-Dimensionnement du tronçon (R(ANBT)-SR)

Données:

- ✓ Le débit : $Q = 0.05 \text{ m}^3/\text{s}$.
- ✓ Hauteur géométrique $\mathbf{Hg} = CR(R(ANBT)) CTP(SR) = 174,4 82,5 = 91,9 \text{ m}$
- ✓ Longueur du tronçon L=50 m.

On opte pour les conduites en PEHD de pression de service de 16 bars (PN16)

Les résultats du calcul sont représentés dans le tableau (IV-2)

Tableau (IV-2): les diamètres choisi pour le tronçon (R(ANBT)-SR)

Dext(m)	Dint (m)	V(m/s)	Re	Λ	F	H _T (m)	Hg (m)
0,250	0,2046	1,52	311311,1804	0,01665	0,000754948	0,35275852	91,9
0,315	0,2578	0,958	247068,5319	0,01569	0,000118827	0,163865912	91,9

Chapitre IV Adduction

On opte pour un diamètre de 315 mm avec une vitesse acceptable 0,958 m/s

IV-7- 2- Adduction par refoulement

IV-7- 2-1-Tronçons (SR-R2)

Ce tronçon il est alimenté à partir de la station de reprise l'écoulement se fait par refoulement

Données:

✓ Le débit : $Q = 0.055 \text{ m}^3/\text{s}$.

✓ Hauteur géométrique Hg = 240,5 - 78,5 = 162 m

✓ Longueur du tronçon L=620m.

D'après:

✓ Bonnin : $D_{N1} = 0.2345 \text{ m}$

✓ Bress: $D_{N2} = 0.35178 \text{ m}$

Le tableau suivant donne la hauteur manométrique totale (Hmt)

Tableau (IV-3): calcul hauteur manométrique total pour le tronçon (SR-R2)

Re	D(m)	V (m/s)	j (m/m)	ΔH (m)	Hmt (m)	Λ
254777,07	0,25	1,01910828	0,0069438	5,1662155	167,166216	0,03279
212314,225	0,30	0,70771408	0,00261667	1,94680103	163,946801	0,03075
200181,984	0,35	0,57194852	0,00084794	0,63086985	162,6308699	0,01781

• Calcul des frais d'exploitation

Tableau (**IV-4**): calcul des frais d'exploitation pour le tronçon (SR-R2)

D (m)	P (Kw)	E (Kwh)	Fexp (Da)
0,25	111,538115	895620,9509	4182549,841
0,30	110,1785099	884733,4344	4131705,138
0,35	109,6843573	880765,389	4113174,367

Calcul des frais d'amortissement

Tableau (IV-5): calcul des frais d'amortissement pour le tronçon (SR-R2)

D (m)	Prix ml (Da)	L (m)	Frais amorti (Da)
0,25	3300	620	191666,7819
0,30	3800	620	220707,2034
0,35	6500	620	377525,4796

• Calcul du bilan

Tableau (IV-6): Calcul du bilan pour le tronçon (SR-R2)

Diamètre (m)	Frais d'exploitation (DA)	Frais d'amortissement (FA)	Bilan (DA)
0,25	4182549,841	191666,7819	4374216,623
0,30	4131705,138	220707,2034	4352412,342
0,35	4113174,367	377525,4796	4490699,846

Le diamètre le plus économique est **300** mm en acier avec une vitesse acceptable de **0.70**m/s et une **HMT** 163.94 m

Voici deux tableaux récapitulatifs qui regroupent tout les résultats :

Tableau (IV-7): récapitulatif des résultats de la Conduite d'adduction par refoulement

Conduites d'adduction par refoulement								
Tronçon Q(l/s) L(m) V(m/s) HMT(m) Φ eq (mm)								
SP-R2	0.055	620	0.707	163.94	300			

Tableau (IV-8): récapitulatif des résultats de la Conduite d'adduction gravitaire

Conduites d'adduction gravitaire									
Tronçon $Q(l/s)$ $L(m)$ $V(m/s)$ Hg Φ $eq(mm)$									
R-SR	R-SR 0.05 50 1,31 91,9 250								
R-R1	0.0261	280	1,071	5.40	200				

Chapitre IV Adduction

IV-9- Conclusion

Dans ce chapitre, nous avons déterminé les différents paramètres hydrauliques de notre conduite d'adduction à savoir diamètre, vitesse et pertes de charges.

Ceci, afin de choisir le diamètre le plus économique répondant à toutes les exigences requises.

V-1- Introduction

On appelle pompe tout appareil qui aspire un fluide d'une région à basse pression pour le refouler vers une région à plus haute pression.

De point de vu physique, le fonctionnement d'une pompe consiste à transformer l'énergie mécanique de son moteur d'entrainement en énergie hydraulique, c'est –à- dire qu'elle transmet au courant liquide qui traverse une certaine puissance.

La réserve d'énergie reçue par le liquide à l'intérieur de la pompe permet au courant de surmonter les pertes de charges et de s'élever jusqu'a une certaine hauteur. la source d'énergie utilisée pour l'alimentation des pompes est l'électricité.

On disposera au niveau de chaque station d'une pompe de secours identique à celle qui assure le service.

V-2- Différents type de pompe

On distingue deux types principaux de pompes :

V-2-1- Pompe volumétrique

Dans lesquelles l'accroissement d'énergie est obtenu par la variation ou déplacement du volume. Elles sont surtout réservées aux petits débits, grandes hauteurs et au transport de liquide visqueux.

V-2-2- Les turbopompes

Dans les turbopompes, une roue mini d'aubes ou d'ailettes, animée d'un mouvement de rotation, fournit au fluide de l'énergie cinétique dont une partie est transformée en pression, par réduction de vitesse dans un organe appelé récupérateur. Et les turbopompes subdivisent en :

- Pompes centrifuges
- hélico-centrifuge.
- Pompes hélices.

Comme il existe d'autre types de pompes tel que :

- Pompe à piston.
- Elévatoires à hélices ou vis d'Archimède.
- Pompes rotatives.

Le tableau ci-dessous représente type de pompe et leurs utilisations.

Tableau (V-1): types des pompes et leurs utilisations

Type de pompe	Centrifuge	A hélices	Hélico-centrifuges
Utilisation	Hauteur d'élévation importante	Débit important, hauteur d'élévation faible	Débit moyen, hauteur d'élévation allant de 25 à 30 m

La figue suivante présente les diffèrent type des turbos pompes.

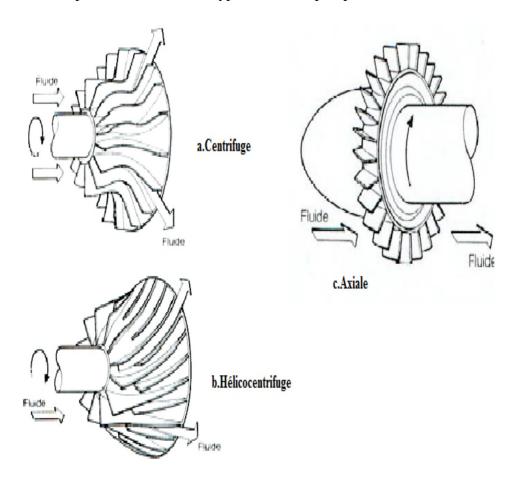


Figure (V-1): Diffèrent type des turbos pompes.

Dans notre étude, on s'intéressera aux pompes centrifuges, et cela pour les raisons suivantes :

- ✓ Elles assurent le refoulement des débits importants à des hauteurs considérables ;
- ✓ Elles sont peu coûteuses et d'un rendement acceptable ;
- ✓ Elles constituent des groupes légers, peu encombrants ;

V-3- Classification des pompes centrifuges :

On distingue deux types de pompes centrifuges :

• Les pompes monocellulaires pour des pressions moyennes de 15 à 80m

 Les pompes multicellulaires pour les hautes pressions pouvant atteindre des centaines de mètres

Ces types peuvent être, soit à axe horizontal (comme notre cas), correspondant au type le plus répondu, soit à axe vertical pour les pompes destinées à équiper les puits et les forages. [4]

V-3-1- Constitution d'une pompe centrifuge [9]

V-3-1-1- Volute dite aussi "corps de la pompe"

C'est une sorte de tubulaire qui a pour but d'effectuer la transformation d'une partie de l'énergie cinétique contenue dans le fluide, sortant de la roue en une énergie de pression.

V-3-1-2- La roue : dite aussi "Rotor" ou "impulser"

C'est un organe mobil, formé par deux flasque ; l'un en avant l'autre en arrière, à l'intérieur duquel se trouvent les aubes.

Le rotor fournit au liquide une énergie cinétique qui l'entraine vers la périphérie du fait des forces centrifuges.

V-3-1-3- Vis de remplissage : elle est située sur le corps de la pompe

V-3-1-4- Presse-étoupe

Eviter les rentrées d'air et des fluides on utilise des presse-étoupe, son rôle est d'assurer l'étanchéité de la roue

V-3-1-5- Flasques: "disques"

Ils assurent le raccordement entre la pompe et la presse-étoupe.

V-3-1-6- Le palier : supporte l'arbre de transmission à l'intérieur duquel on trouve différents roulements

V-3-1-7- L'arbre : l'accouplement se fait soit par moteur électrique soit par un moteur thermique.

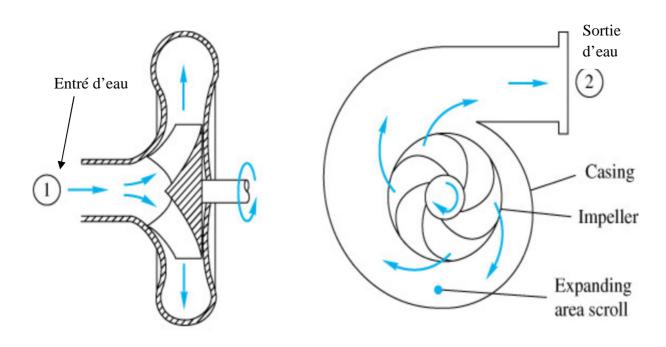


Figure (V-2): Constitution d'une pompe centrifuge

V-4- Courbes caractéristiques d'une pompe centrifuge [4]

Les performances d'une pompe sont exprimées par les trois types de courbes suivantes :

V-4-1- La courbe hauteur-débit H = f(Q):

Elle exprime les varaitions des différentes hauteurs d'élévation en fonction du débit

V-4-2- La courbe rendements-débit $\eta = f(Q)$:

Elle exprime les varaition du rendement de la pompe en fonction du débit ;

V-4-3- La courbe des puissances absorbée -débit P = f(Q):

elle exprime les variation des differentes puissances absorbée en fonction du débit ; Le point d'intersection de la courbe H=f(Q) avec l'axe des ordonnées s'appelle le point de barbotage ou encore on l'apelle point à vanne fermée.

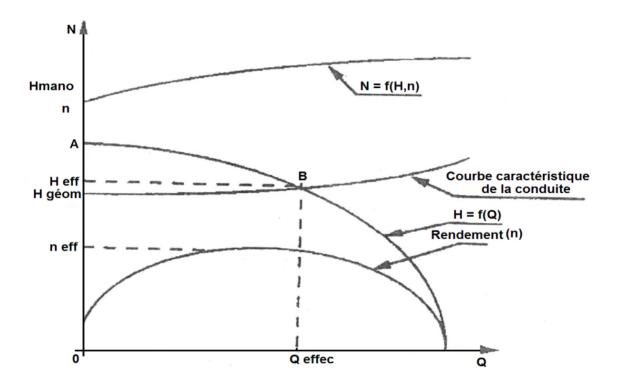


Figure (V-3): Courbes caractéristique d'une pompe centrifuge

V-4-3-1- puissance absorbée par la pompe [4]

L'expression d'une puissence absorbée par une pompe est la suivante :

$$Pa = \frac{\mathbf{g} * \mathbf{Q} * \mathbf{H}}{\mathbf{\eta}} \tag{V-1}$$

Avec:

- P: Puissance absorbée en Kw;
- **g**: accélération de la pesanteur (m²/s);
- **Q**: Débit à relever en(m³);
- η: Rendement de la pompe;
- **H**: Hauteur manométrique totale d'élévation;

V-4-3-2- Hauteur manométrique totale(Hmt)

La Hateur manométrique totale est la somme des termes suivant:

a) La hauteur géométrique de refoulement (Hr)

Elle est toujours positive pour un groupe horizontal, c'est la distance entre le point plus haut à atteindre et l'axe horizontale de la pompe, Pour un groupe vertical, elle représente la distance séparant le point le plus haut et le plan de première roue.

b) La hauteur géometrique d'aspiration (Ha)

Elle est toujours négative pour une aspiration en dépression et par contre elle est positive pour une aspiration en charge .

c) Les pertes des charges d'aspiration et de refoulement

La pompe devera compenser les dissipations d'energie dans les conduites tant d'aspiration que de refoulement, elles sont évaluées en hauteur exprimée en mètres.

$$Hmt=Ha + Hr + Ja + Jr (V-2)$$

V-5- point de fonctionnement

Le point de fonctionnement d'une pompe est définit comme étant le point d'intersection des courbes caractéristique de la pompe H=f(Q) et celle de la conduite de refoulement Hc=f(Q) tel que :

$$H_{C} = Hg + RQ^{2} (m)$$
 (V-3)

Avec:

Hg: hauteur géométrique (m);

 RQ^2 : valeur de la perte de charge au point considère (m);

Q: Débit (m^3/j) ;

R : coefficient qui caractérise la résistance de la conduite (m);

$$\mathbf{R} = (\mathbf{8} \times \lambda \times \mathbf{L}) / (\mathbf{g} \times \pi \times \mathbf{D}^5)$$
 (V-4)

V-5- 1-Recherche du point de fonctionnement

Dans le cas où le point de fonctionnement ne coïncide pas à désirer, des changements s'avèrent obligatoires et cela suivant les variantes ci-après :

a) Première variante : réduction ou augmentation du temps de pompage

On garde le point de fonctionnement obtenu, et on cherche un temps de pompage de tel façon à ce que le volume d'eau entrant dans les réservoirs soit le même pour cela on utilise la formule qui suit :

$$T.Q = Constant (m3) (V-5)$$

$$\mathbf{T_{1.Q_1} = T_{2.Q_2}}$$

Le nouveau temps de pompage sera :

$$T_2 = T1 (Q1/Q_2)$$

$$T_1 = T_2 (Q_2/Q_1)$$

la puissance abserbée par la pompe sera:

$$P_1 = g \times H_2 \times Q_2/\eta$$

b) DeuxiémeVariante :variation de la vitesse de rotation

Si on a une possibilité de faire varier la vitesse de rotation qui répond aux conditions de travail désirées, c'est à dire, on cherche une vitesse de rotation pour que la courbe H = F(Q) passe par le point désiré P1 (Q1, H1).

$$Q_1/Q_2=N_1/N_2$$
 (V-6)

$$N_1=N_2Q_2/Q_1$$
 (tr/min)

La puissance absorbée sera:

$$P=g*H_1*Q_1/\eta$$
 (kw)

c) Troisième variante : le vannage

Elle consiste à placer une vanne sur la conduite de refoulement pour créer une perte de charge afin d'obtenir le débit Q_2 .

$$\mathbf{H_3=H_1+h} \tag{V-7}$$

Avec:

h: perte de charge engendrée par vannage : elle représente la distance entre le point de travail desiré et l'intersction de la verticale passant par ce même point avec la caractéristique de la pompe.

la puissance abserbée par la pompe sera:

$$P = g H_3 Q_1/\eta$$

d) Quateriame variante :Rognage de la roue de la pompe

La méthode consiste à changer le diamètre de la roue, afin de ramener le point de fonctionnement obtenu au voulu, cette changement sera la lois suivant:

$$Q_1/Q_2=H_1/H_2=(D_1/D_2)^2$$
 (V-8)

la puissance abserbée par la pompe sera:

$$\mathbf{P} = \mathbf{g} \mathbf{H} \mathbf{2} \mathbf{Q} \tag{V-9}$$

V-6- Choix de pompe [10]

Le choix des pompes se fera en fonction des paramètres suivant :

- Le débit; c'est le débit que la pompe est appelée à assurer
- La hauteur manométrique totale (HMT) ; c'est la hauteur à laquelle la pompe devra élever le débit.
- Le rendement (n) ; il est préfèrable, si possible, que la pompe fonctionne dans la zone la où le rendement est maximale, afin d'éviter les pertes d'énergie.
- Le temps mis par la pompe pour élever un certain volume d'eau.

V-7- Choix du type de pompe pour la station de pompage (SP)

> Caractéristique de la conduite

- Le débit véhiculé : Q=50.15l/s ;
- La hauteur géométrique : hg =162m;
- La hauteur manométrique totale : Hmt =163.7m;
- Diamètre extérieur de conduite D=300mm;

> Caractéristique de la pompe

D'après le logiciel « caprari pump tutor » nous avons opté pour une pompe centrifuge à axe horizontal de type (PM 100/3A), avec des caractéristiques suivant :

- N=2900Tr/min;
- NPSHr=7.05 m;
- $\eta = 77.7\%$;
- Pabs = 111 kw

- Diamètre normalisé de roue ; 100 mm
- le point de fonctionnement : Q₂=50.15 l/s , Hmt₂=164m
- le point désiré : Q₁=50.15l/s, Hmt₁=164m ;
- Le point de fonctionnement : P (50.15 l/s ; 164 m)
- Le point de fonctionnement désiré : P (50.15 l/s ; 164 m)

Le point de fonctionnement coïncide avec le point désiré (50.15 l/s ; 164 m), donc cette pompe ne nécessite aucune modification.

Les courbes caractéristiques de la pompe sont représentées dans la figure suivante :

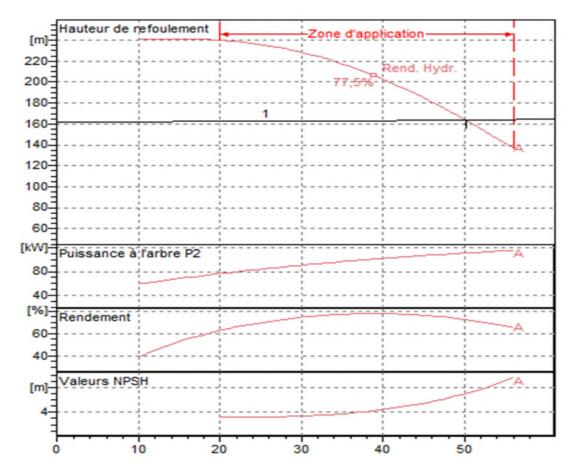


Figure (V-4) : caractéristiques de la pompe

V-8- Encombrement de la pompe

L'encombrement de la pompe est représenté d'après le catalogue de Caprari dans la figure suivante :

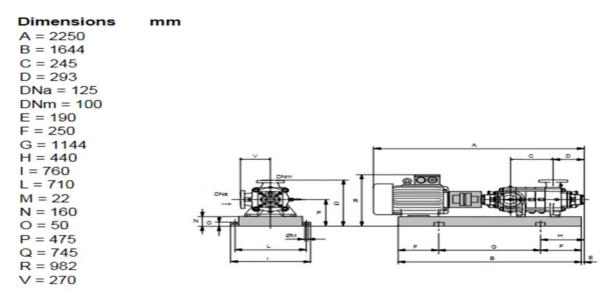


Figure (V-5): Encombrement de la pompe Caprari PM(100/3A)

V-9- La cavitation

V-9-1- Étude de la cavitation

La cavitation, formation de cavités remplies de vapeur ou de gaz dans un liquide en mouvement, est un phénomène complexe qui peut se produire dabs une installation de pompage .Quand un liquide coule dans un tuyau d'aspiration et qu'il entre dans l'œil de l'impulser, sa vélocité augmente, ce qui réduit la pression. Si cette pression descend en dessous de la tension de vapeur correspondant a la température du liquide, celui-ci va se vaporiser et le courant qui s'écoule sera constitué a la fois de liquide et de poches de vapeur. Constituant son mouvement dans l'impulser, le liquide arrive a une zone de pression plus élevée et les cavités de vapeur disparaissent. C'est cette disparition de poches de vapeur qui provoque le bruit lie à la cavitation.

Figure (V-6) : Roue soumise à la cavitation.

Les possibilités d'aspiration sont définies par le NPSH (net positive suction head).

 NPSH requis : chaque constructeur possède pour chaque type de pompe et pour une vitesse de rotation déterminée, une courbe donnant la valeur du NPSH requis en fonction du débit de la pompe considérée.

• *NPSH disponible*: permet de quantifier la hauteur manométrique d'aspiration à l'entrée de la pompe pour éviter la vaporisation elle est égale à :

NPSH dispo=
$$(Patm/\omega) - Pv \pm h v - \Delta h$$

Avec:

NPSH disp > NPSH requis

Ou:

Patm/ω: pression atmosphérique sur le site en (m.c.e), soit :

P atm = 10.33 - 0.0012 (vx)

Vx : cote du point considère.

- P v : valeur de tension de vapeur d'eau en (m.c.e).
- Ha : hauteur d'aspiration, différence entrée plan d'eau et l'axe de la roue de la pompe en (m).
- Ha est positif lorsque le plan d'eau est au dessus
- Ha es négative lorsqu'il est en dessous
- Δh : somme des pertes de charge en (m.c.e) dans la conduite d'aspiration entre la crépine et la pompe.

Les différentes tensions de vapeur sont données dans le tableau (V-2) ci-après :

Tableau (V-2): tension de vapeur d'eau en fonction de la température

Températu re (°c)	0	10	20	30	40	50	60	70	80	90	100
Tension de	0.06	0.125	0.23	0.41	0.75	1.25	2.03	3.17	4.39	7.49	10.3
vapeur											3
d'eau											
((m.c.e)											

V-9-2- Conséquences de la cavitation

La cavitation peut avoir plusieurs conséquences néfastes pour le bon fonctionnement des groupes de pompage, parmi elles on site :

• a) Bruit de cavitation

La premier manifestation d'une pompe qui cavité est le bruit, qui révèle la présence de microbulles dans l'écoulement. Ce bruit hydraulique génère par la cavitation excite ensuite les parois de la pompe et des tuyauteries, a leur tour, rayonnent ce bruit dans le milieu aérien ambiant. De cette façon, lorsqu'une pompe cavité de manière importante, on enregistre un bruit caractéristique de crépitement et claquement quelquefois assimile au bruit d'agrégats dans une bétonnière ou de concasseur.

• b) Pertes de performances

Pour des poches de vapeur encore plus développées, les pompes subissent des chutes de leur performances (hauteur totale d'élévation, rendement et puissance) qui redent inutilisable ce phénomène est souvent décrit comme la chute de caractéristique ou improprement comme le (NPSH) requis de la pompe.

• c) Vibration

Lorsque les poches de vapeur a l'entrée de la pompe atteignent une dimension importante vis-à-vis de la taille de la pompe, du niveau de pression ou du (NPSH) dis à l'entrée de la roue, une augmentation du niveau vibratoire due à la cavitation peut se rencontrer.

V-9-3- Vérification de la cavitation des pompes choisies

Par mesure de sécurité, les pompes immergées seront placées a 1m au dessous du niveau dynamique des forages, aussi pour les autres pompes des station de reprise travaillent en charge et par conséquent il n'y a pas de cavitation

V-10- Equipements de la station de pompage

Les équipements hydrauliques d'une station de pompage comprennent :

- Les équipements d'aspiration.
- Les équipements de refoulement.

V-10-1- Les équipements d'aspiration

a) Crépine:

la crépine est placée sur le haut de la conduite d'aspiration, son rôle est d'éviter l'entrée des corps solides dans cette dernière.

b) Clapet anti retour:

Le clapet anti retour est un dispositif placée sur la canalisation d'aspiration permettant de contrôler le sens de circulation d'eau, il permet le passage de l'eau dans un sens et empêche le

retour de l'eau au sens inverse, il est ménagé dans les station de pompage ou les pompes travaillent en dépression.

c) Vanne

La vanne est utilisée comme organe de réglage dans différents boucles de régulation.son rôle est d'isoler la pompe en cas de besoin, cette vanne doit êtres placée dans les stations de pompage ou les pompes travaillent en charge.

V-10-2- Les équipements de refoulement

d) Joint de raccordement

Son rôle est de raccorder la conduite de refoulement à la pompe.

e) Clapet de refoulement

En cas de l'arrêt de la pompe, le clapet de refoulement empêche l'inversion du débit.

f) Vanne de refoulement

Son rôle est isolé la pompe lors des entretiens ou des démontages, elle est placé après la pompe

V-11- Conclusion

Les pompes sont d'une importance capitale dans les projets de refoulement. Elles sont un maillon indissociable avec l'adduction et qui nécessite beaucoup d'attention et un choix précis. Dans notre cas, nous avons opté pour une pompe centrifuge à axe horizontal de type (PM 100/3A).

Ces pompes seront entraînées par des moteurs asynchrones triphasés à vitesses variables avec un rotor en court circuit.

VI-1- Introduction:

Le coup de bélier étant un cas particulier du régime transitoire, est un phénomène oscillatoire qui se manifeste dans les conduites entre deux régimes permanents.

On entend aussi sous le terme « coup de bélier », un écoulement non permanent du liquide accompagné de variations pratiquement sensibles à la pression qui peuvent devenir dangereuses pour la tuyauterie. Ces variations résultent d'une perturbation des conditions permanentes d'écoulement.

C'est le nom que l'on donne à une onde de choc hydraulique, lorsqu'un liquide non compressible comme l'eau, est stoppé net dans une canalisation. Autrement dit, c'est l'arrêt brutal de la circulation de l'eau.

Dans notre étude, on est appelé à protéger les conduites de refoulement et gravitaires contre ce phénomène.

VI-2- Causes du coup de bélier :

Le coup de bélier est un phénomène oscillatoire dont les causes les plus fréquentes sont [4]:

- L'ouverture ou la fermeture brusque des vannes dans les conduites en charge à écoulement gravitaire,
- La mise en marche ou l'arrêt des pompes dans les conduites en charge par refoulement,
- Le remplissage ou la vidange d'un système d'AEP.
- La modification de la vitesse d'une pompe,
- La disparition de l'alimentation électrique dans une station de pompage est cependant la cause la plus répandue du coup de bélier,
- La mise en marche ou la modification de l'opération d'une turbine

VI-3- Conséquences du phénomène :

Dans les installations actuelles, le phénomène du coup de bélier est accentué par l'utilisation de plus en plus importante d'appareils à fermeture rapide. Ces derniers sont à l'origine d'une forte augmentation du nombre de coups de bélier qui se traduisent par :

- déboitement des conduites,
- détérioration des joints,
- érosion des joints, rendant la conduite non étanche.

- Détérioration des revêtements intérieurs.
- Rupture de la conduite, éclatement dû à la surpression et à l'écrasement qui est dû à la dépression.

a) Cas de la surpression :

C'est une conséquence du coup de bélier engendrée par une pression importante se produisant à la suite d'une fermeture instantanée ou rapide d'une vanne de sectionnement ou bien, à la suite d'une dépression causée par l'arrêt brusque d'une pompe. Si la pression totale, c'est-à-dire la pression en régime permanent majorée de la valeur de surpression due au coup de bélier dépasse la pression maximale admissible des tuyaux, il y a risques de rupture de ces derniers et déboîtement des joints.

b) Cas de dépression :

C'est une conséquence du coup de bélier engendrée par l'apparition d'une pression relative négative, à la suite d'un arrêt brusque d'une pompe ou d'une ouverture instantanée d'une vanne de sectionnement. Si cette pression devient inférieure à 10mce, il se produira une poche de cavitation. Si le profil en long de la canalisation est déformable, la canalisation peut être aplatie par implosion et les joints aspirés. Le phénomène de cavitation, une fois apparu, peut provoquer la détérioration de la couche d'enduit intérieur du tuyau.

c) Fatigue de la canalisation :

En régime transitoire, les alternances des surpressions et dépressions qui sont une conséquence inévitable du phénomène provoquent la fatigue du matériau de la canalisation même si leur amplitude est faible.

VI-4- Protection de la conduite gravitaire contre le coup de bélier [11] :

Pour la protection de la conduite gravitaire contre le phénomène du coup de bélier, on se contentera de la détermination du temps de fermeture de la dernière vanne sur cette conduite.

Les ondes de surpression et de dépression sont caractérisées par une vitesse de propagation donnée par la formule d'**ALLIEVI**

$$C = \frac{9900}{\sqrt{48.3 + k * \frac{D}{e}}}$$
 (VI-1)

Avec:

C: célérité d'onde (m/s);

D : diamètre de la conduite (mm) ;

e : épaisseur de la conduite (mm) ;

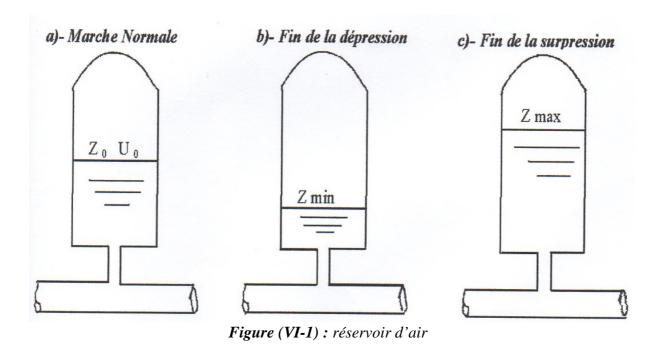
VI-5- Protection de la conduite de refoulement contre le coup de bélier :

Les effets du coup de bélier ne sont pas totalement limiter, mais il convient de rechercher leur limitation à une valeur compatible avec la résistance des équipements. Les appareils anti-bélier devront avoir pour effet de limiter la dépression ainsi que la surpression, on trouve :

VI-5-1- Volant d'inertie :

C'est un moyen dont la spécificité est qu'il continue à assurer l'alimentation et ceux malgré l'arrêt du moteur. Ce volant est une roue de masse assez importante qui est placé sur l'arbre du groupe. Grace à l'énergie cinétique qu'il accumule pendant la marche normale, le volant la restitue au moment de la disjonction et permet ainsi de prolonger le temps d'arrêt de l'ensemble du groupe, donc de diminuer l'intensité du coup de bélier. Mais ce système est peut ou non utilisable, car :

- Il n'intervient que pour limiter les dépressions seulement.
- Si la conduite de refoulement est assez grande, on doit envisager des volants avec des poids vraiment considérables, par conséquent le système ne sera pas économique.
- Plus le volant est lourd plus le moteur doit être puissant pour pouvoir vaincre au démarrage l'inertie de ce volant, ce qui peut conduire à des appels d'intensité de courant inadmissibles.
- Ce dispositif est limité à la protection des conduites à longueur de refoulement faible ou moyenne qui n'excède pas quelques centaines de mètres.


VI-5-2- Les venteuses :

Appelés aussi reniflard, elles ont pour rôle principal l'évacuation de l'air continu dans la conduite et permettent aussi l'admission de l'air dans ces conduites lorsqu'on procède à leur vidange, ou généralement lorsqu'il y a apparition de la cavitation en un point haut.

VI-5-3- Le réservoir d'air :

C'est une réserve d'eau accumulée sous pression dans une cuve métallique disposée dans la station de pompage et raccordée à l'aval du clapet de côté refoulement. A la disjonction on aura dépression, une partie de l'eau de la cloche est chassée dans la conduite. L'eau revient en arrière et remonte dans la cloche.

La figure (VI-1) représente les déférentes étapes où la pression varie dans le réservoir :

VI-5-4- cheminée d'équilibre :

Une cheminée d'équilibre est constituée d'un réservoir cylindrique à l'air libre et à axe verticale, elle joue le même rôle que les réservoirs d'air, mais on arrive à des ouvrages de dimensions assez considérables dans le cas des hauteurs de refoulement moyennes ou grandes.

Une cheminée d'équilibre est généralement aménagée en dérivation a la jonction d'une galerie d'amenée en charge et d'une conduite forcée dans le but de réduire la valeur des surpressions produites par le coup de bélier, elle est utilisée sur le tracé de refoulement qui comporte des points hauts ou peut survenir une cavitation en régime transitoire. Elle présente certains avantages, à savoir :

- Un fonctionnement qui ne nécessite aucun entretien.
- La protection idéale pour les points du parcours difficilement accessible.

La figure (VI-2) représente une cheminé d'équilibre

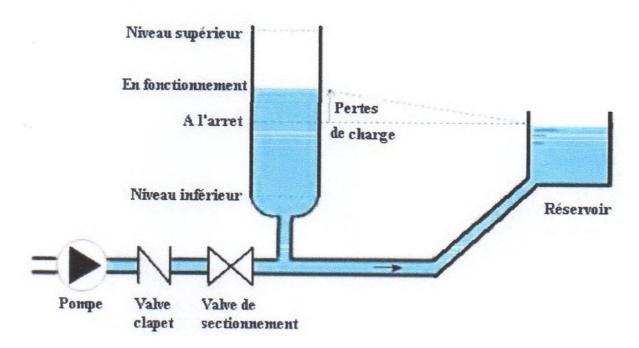


Figure (VI-2): cheminé d'équilibre

VI-6- Etude du coup de bélier :

L'étude consiste à calculer les surpressions et les dépressions ainsi que la valeur numérique du coup de bélier dans les différents tronçons des conduites de refoulement, et vérifier que ces valeurs ne dépassent pas la valeur de la pression de service.

VI-6-1- Calcul de la célérité d'ondes :

La célérité est la vitesse de propagation des ondes. Elle est donnée par la formule d'ALLIEVI :

$$a = \frac{9900}{\sqrt{48,3 + (k * \frac{D}{e})}}$$
 (VI-2)

Avec:

a : Célérité de l'onde en m/s.

D : Diamètre de la conduite en mm.

e : Epaisseur de la conduite (mm).

K : Coefficient dépendant du matériau constituant la canalisation, k=83 pour le

PEHD et 0.5 pour l'acier

VI-6-2- Valeur numérique du coup de bélier :

Le coup de bélier est étudié pour les deux cas suivants :

VI-6-2-1- Fermeture brusque [3]:

La fermeture brusque est caractérisée par un temps de fermeture $T_{\rm f}$, tel que :

$$T_{\rm f} < \frac{2L}{\rm a} \tag{VI-3}$$

Avec:

 $\frac{2L}{a}$: Temps d'aller et retour de l'onde.

> La valeur maximale du coup de bélier est :

$$B = \frac{a * V_0}{g} \tag{VI-4}$$

Avec:

B : La valeur du coup de bélier en m.

a : La célérité de l'onde en m/s.

V₀: La vitesse d'écoulement en m/s.

g : Accélération de la pesanteur en m/s.

> La valeur maximale de la pression-surpression est :

$$H_s = H_0 + B \tag{VI-5}$$

➤ La valeur maximale de la pression-dépression est :

$$H_d = H_0 - B \tag{VI-6}$$

Où:

H₀: La pression absolue au point le plus haut de la conduite, tel que :

$$H_0 = H_g + 10$$
 (VI-7)

Tel que:

H_g: Hauteur géométrique de refoulement en m.

10 : Pression atmosphérique en m.

VI-6-2-2- Fermeture lente:

La fermeture lente est caractérisée par un temps T, tel que : $T > \frac{2L}{a}$

La valeur maximale du coup de bélier sera calculée par la formule de MICHAUD :

$$B = \frac{2 * L * V_0}{g * T}$$
 (VI-8)

VI-7- Calcul de coup de bélier pour les différents tronçons :

L'étude consiste à calculer les surpressions et dépressions dans les différents tronçons, et vérifier que ces valeurs n'influent pas sur le réseau, que ce soit positivement ou négativement.

VI-7-1- Calcul du coup de bélier pour les tronçons de refoulement et gravitaires :

Vu que le coup de bélier est plus important dans le cas de la fermeture brusque de la vanne, par conséquent, nous limitons nos calculs.

Les résultats des calculs du coup de bélier sont indiqués dans le tableau si dessous :

Tableau (VI-1): calcul valeur maximal et minimal de coup de bélier

Trançon	Caractéristique de la conduite		la conduite		H ₀ = hg+10	Célérité a (m/s)	Valeur du coup de	Dépression	Surpression
	D (mm)	e (mm)	v (m/s)	(m)		bélier b(m)	Hd (m)	Hs (m)	
SR-R2	300	6	0.707	172	1156.33	83.336	+88.664	+255,33	
R-SR	315	28.6	0.958	101.4	319.1123	31,163	+70.237	+132,56	
R-R1	250	14,8	0.684	15,4	259.95	18,125	-2.72	+33.52	

VI-8- Conclusion.

A travers ce chapitre nous avons vu comment évolue un régime transitoire après une rupture d'une pompe ainsi que la description physique du phénomène du coup de bélier. Nous avons donc pu calculer les surpressions et les dépressions.

Les calculs hydrauliques nous ont amenés à déduire qu'une protection anti bélier n'est pas indispensable, les valeurs de la surpression et de la dépression s'avèrent dans les normes.

Chapitre VII Le réseau de distribution

VII-1- Introduction

À partir du réservoir, l'eau est distribuée dans un réseau de canalisations sur lesquelles les branchements seront effectués en vue de l'alimentation des abonnées.

Les canalisations de cette infrastructure devront en conséquence pouvoir transiter les forts débits instantanés en tenant compte du débit de pointe, afin de subvenir aux besoins avenirs des usagers ainsi qu'aux besoins en eau pour lutter contre les incendies.

Ce chapitre sera consacré à l'étude d'un réseau de distributions qui alimente les deux plans d'occupation du sol (P.O.S II et III) de la rive gauche d'Amizour ville.

VII-2- Classification du réseau de distribution

Les deux principales classifications des réseaux sont :

VII-2-1- Classification selon la disposition des réseaux dans l'agglomération :

VII-2-1-1 - Réseau unique :

Dans le cas d'un relief plat ou moyennement accidenté ; on peut projeter un seul réseau et avoir de bonnes conditions techniques (pressions).

VII-2-1-2 - Réseau en zones étagées :

Dans le cas d'un relief accidenté la différence de niveau entre les points les plus hauts et les plus bas est remarquablement élevée, c'est à dire, lorsqu'une pression minimale est assurée pour les points amont ; les points bas se retrouvent sous des pressions très importantes. Dans ce cas la solution du réseau en zones étagées s'impose.

Remarque:

Comme dans notre cas la dénivelée entre le point le plus haut et le point le plus bas de l'agglomération est de 230-50= 180 m= 18 Bars, alors que la limite de pressions de service est de 6 bars, donc notre zone doit être divisée en deux étages pour briser la charge en deux et en retranchant les pertes de charge nous restons dans la fourchette de pressions raisonnables.

VII-2- 2- Classification selon la disposition des tronçons dans le réseau :

Les réseaux de distribution peuvent être classés comme suite :

- Les réseaux ramifiés ;
- Les réseaux maillés ;
- Les réseaux mixtes ;

VII-2-2-1- Les réseaux ramifiés

Les conduites dans ces réseaux ne comportent aucune alimentation en retour. Le réseau ramifié présente l'avantage d'être économique, mais il manque de sécurité et de souplesse. En cas de rupture, un accident dans la conduite principale prive d'eau tous les abonnés aval.

VII-2-2-2- Les réseaux maillés

Le réseau maillé permet au contraire une alimentation en retour, donc d'obvier à l'inconvénient signalé ci-dessus. Cette ossature est plus coûteuse. En raison de la sécurité qu'il procure, il doit être toujours préféré au réseau ramifié.

VII-2-2-3- les réseaux mixtes

Le réseau est dit mixte, lorsque ce dernier constitue une partie ramifiée et une autre maillée. Ce type de schéma est utilisé pour desservir les quartiers en périphérie de la ville par les ramifications issues des utilisées dans le centre ville.

VII-3- Exigence relatives au réseau de distribution

Pour qu'un réseau soit performent susceptible d'un rendement particulièrement élevé, il faut qu'il soit :

D'une part, fournir l'eau à l'usager à des pressions acceptable avec des débits nécessaires.

D'autre part les canalisations alimentant les appareils d'incendie doivent être branchées sur des conduites d'eau ou moins 100 mm avec des débits minimal de 17 l/s pendant deux heurs, et une pression d'eau moins 1 bar.

En vue de la bonne tenue des canalisations, et notamment de leurs joints, il y a lieu d'éviter des pressions supérieures à 6 bars. Cela risque d'apporter des désordres et certains bruits désagréables dans les installations intérieurs.si néanmoins, de telles pressions devraient se manifester, on doit prévoir une installation étagée ou encore installer des réducteurs de pressions.

En fin la vitesse de l'eau dans les conduites sera de l'ordre de 0,5 à 1,5 m/s. les faibles vitesses favorisent la formation des dépôts tels que les biophiles, les vitesses maximales conduisent à l'apparition des fuites.

VII-4- Description du réseau de distribution :

Le réseau de distribution projeté sur les deux plans d'occupation du sol (P.O.S II et III) en question se fera gravitairement par étage. Vue la topographie de la région (différences de niveaux importantes), nous avons :

- **Etage 1 :** à partir de la station existante d'une capacité de 100m3 et le réservoir projeté d'une capacité de 550m3 qui ont une cote de radier 165m, on alimente la partie basse de notre aire d'étude, environs 2/3 de sa superficie. L'ossature de notre réseau sera ramifiée et d'un linéaire total de 4404m.
- Etage2: à partir du réservoir existant de capacité de 500m3 et d'un autre projeté de 250 m3 situé au lieu dit Bouridane qui ont une cote de radier 236,5m, on alimente le reste de la partie de notre aire d'étude. L'ossature de notre réseau sera ramifiée et d'un linéaire total de 5843m.

VII-5- Calcul hydraulique:

VII-5-1- le débit de pointe :

Le dimensionnement des réseaux de distribution ainsi que l'analyse de leurs comportements se réalisent toujours en fonction du débit de pointe. Dans notre cas, nous avons un débit de pointe de 45,78 l/s pour l'étage (01) et de 82,26 l/s pour l'étage (02)

VII-5-2- calcul des débits aux tronçons :

• Les débits en route :

Le débit en route de chaque tronçon est le débit uniformément réparti sur son parcours, il est donné par la formule suivante :

$$\mathbf{Q}_{\mathbf{route}} = \mathbf{Q}_{\mathbf{p}} - \sum \mathbf{Q}_{\mathbf{conc}}$$
 (VII-1)

Avec:

Q_p : Le débit consommé de pointe (l/s)

Q_{conc}: Débit concentré (le débit localisé) (l/s)

Dans notre cas on a

Pour l'étage (01) il n'existe aucun débit localisé se qui donne :

$$\sum Q_{conc} = 0$$
 \Rightarrow $Q_{route} = Q_{pointe} = 45,78 \text{ l/s}$

Pour l'étage (02) on a le débit d'arrosage et débit de l'école et de la bibliothèque se qui donne :

$$\sum$$
 Qconc = 3,507 l/s \rightarrow Qroute = 82,26 - 3,507 = 78,75 l/s

• Débit spécifique :

Le débit spécifique, est donné par la formule suivante :

$$q_{sp} = \frac{Qp}{\Sigma Li}$$
 (VII-2)

Avec:

 $\mathbf{Q}_{\mathbf{p}}$: débit de pointe (l/s);

Q_{sp}: débit spécifique (l/s/m);

ΣLi : somme des langueurs des tronçons considéré (m)

Les calculs sont donnés par le tableau (VI-1)

Tableau (VII-1): Détermination des débits spécifique (Etage 01 et 02)

Etage	ΣLi (m)	Q _p (l/s)	Q _{sp} (l/s/m)
01	4404	45,78	0,0104
02	5843	78,75	0,013478

• Débit en route de chaque tronçon :

Le débit de route, signifie le débit consommé le long d'un tronçon. Il se calcul suivant cette formule :

$$\mathbf{q_r} = \mathbf{q_s} \times \mathbf{Li} \tag{VII-3}$$

q_r: débit de route (l/s)

Li : longueur de tronçon considéré (m)

• Débit calculé :

C'est le débit que la conduite du réseau ramifié doit véhiculer réellement et avec lequel il nous est permis de calculer son diamètre. Il est calculer par la formule suivante :

$$q_c = q_t + \alpha qr$$
 (VII-4)

Avec

qc: débit calculé (l/s)

q_t: débit de transite (c'est le débit qui transite uniquement par le tronçon sans être consommé) (l/s)

 α : Coefficient qui dépend de la répartition de la consommation de débit en route $(0.5 < \alpha < 0.58)$

qr : débit en route (l/s).

VII-5-3- calcul des pertes de charge :

Dans les modes de calcul des pertes charges qui existe dans le logiciel de simulation EPANET on opte pour la formule de Darcy-Weisbach.

VII-5-3-1- pertes de charge linéaire :

Les pertes de charge linéaire sont déterminées à partir de la formule de Darcy-Weisbach :

$$\Delta HL = \frac{L\lambda V^2}{2gD}$$
 (VII-5)

Avec

V : la vitesse moyenne de l'eau dans la section (m/s)

G: l'accélération de la pesanteur. (g= 9,81m/s²)

L: longueur de la conduite (m)

D : diamètre intérieur de la conduite (m).

 λ : Coefficient de frottement linéaire (coefficient de perte de charge). Donné par la formule de COLBROOK

$$\lambda = f\left(Re, \frac{\varepsilon}{D}\right) \tag{VII-6}$$

Re: nombre de REYNOLDS

E: rugosité absolue (mm)

$$Re = \frac{VD}{v}$$
 (VII-7)

V : vitesse d'écoulement (m/s)

 ν : viscosité cinématique de l'eau, à 20°C, ν =1,01 X 10⁻⁶ m²/s.

VII-5-3-2- Pertes de charge singulière :

Généralement les pertes de charge singulières sont estimées à 10-15% des pertes de charge linéaires.

$$\Delta H s = 15\% \Delta H L \tag{VII-8}$$

Donc la formule des pertes de charge total sera :

$$\Delta HT = 15\% \Delta HL$$

VII-5-4- Calcul des pressions :

La pression au sol du nœud (i) se déterminer par la relation suivante :

$$P_i = CP_i - CTN_i (VII-9)$$

Avec

Pi: Pression au sol du nœud (i) (m);

CPi: cote piézométrique au nœud (i) (m);

CTN_i: cote de terrain naturel au nœud (i) (m);

La cote piézométrique est donnée par la formule suivante :

$$CP_i = CP_{i-1} - \Delta H_{i-j} \qquad (VII-10)$$

Avec

CP_{i-1}: côte piézométrique au tronçon (i-j)

 ΔH_{i-j} : perte de charge totale dans le tronçon (i-j).

VII-6- application des calculs

VII-6-1 Détermination des débits en route et des débits calculés :

Tableau (VII-2): Détermination des débits en route et en tronçons (étage 01)

Réseau	Tronçon	Longueur (m)	Q _{sp} (l/s/m)	Qr (l/s)	Q aval (l/s)	$q_c = q_t + 0.55q_r$ (1/s)	d (1m/s) (mm)	D _N (mm)
	12_13	518	0,0104	5,387		2,96	61,437	63
	12_14	640	0,0104	6,656		3,661	68,289	75
	10_12	340	0,0104	3,536	6,624	8,569	104,477	110
	10_11	80	0,0104	0,832		0,458	24,144	25
	8_9	248	0,0104	2,579		1,419	42,51	50
	8_10	288	0,0104	2,995	9,026	10,674	116,605	125
	7_8	60	0,0104	0,624	12,092	12,435	125,861	125
ville)	19_21	240	0,0104	2,496		1,373	41,819	40
(rive gauche Amizour ville) Etage (01)	19_20	64	0,0104	0,666		0,366	21,595	25
, miz	17_18	64	0,0104	0,666		0,333	20,59	25
e gauche A Etage (01)	17_19	160	0,0104	1,664	1,739	2,654	58,146	63
gauc tage	15_16	80	0,0104	0,832		0,458	24,144	25
rive E	15_17	96	0,0104	0,998	2,987	3,536	67,115	40
	7_15	530	0,0104	5,512	3,993	7,025	94,601	90
P.O.S II et III	4_6	80	0,0104	0,832		0,458	24,144	25
0.S	4_5	96	0,0104	0,998		0,549	26,448	32
P.(2_3	90	0,0104	0,936		0,468	24,417	25
	2_4	120	0,0104	1,248	1,007	1,693	46,442	50
	1_2	108	0,0104	1,123	2,161	2,779	59,498	63
	1_7	210	0,0104	2,184	19,46	20,662	162,24	200
	R-1	292	0,0104	3,037	23,441	25,111	178,85	200
	Total	4404		45,802				

Tableau (VII-3): Détermination des débits en route et en tronçons (étage 02)

réseaux	Tronçon	Longueur (m)	Q _{sp} (l/s/m)	Qr (l/s)	Q aval (l/s)	Q _{tr} =Qav+0,5Qr (l/s)	d (1m/s) (mm)	DN (mm)
P.O.S II et III (rive gauche Amizour ville) Etage (02)	44_46	704	0,013478	9,489		5,219	81,535	90
	44_45	222	0,013478	2,992		1,646	45,786	50
	42_44	238	0,013478	3,208	6,864	8,629	104,842	110
	42_43	348	0,013478	4,690		2,58	57,326	63
	40_42	176	0,013478	2,372	11,362	12,667	127,027	125
	40_41	138	0,013478	1,86		1,023	36,099	40
	38_40	130	0,013478	1,752	13,689	14,653	136,625	160
	38_39	110	0,013478	1,483		0,815	32,23	32
	36_38	124	0,013478	1,671	15,469	16,388	144,486	160
	36_37	210	0,013478	2,830		1,557	44,531	63
	34_36	70	0,013478	0,943	17,945	18,463	153,363	160
	34_35	320	0,013478	4,313		2,372	54,971	63
	32_34	156	0,013478	2,103	20,836	21,992	167,377	200
	32_33	364	0,013478	4,906		2,698	58,629	63
	30_32	156	0,013478	2,103	24,69	25,847	181,455	200
	30_31	86	0,013478	1,159		0,638	28,498	32
	28_30	60	0,013478	0,809	26,484	26,929	185,215	200
	28_29	106	0,013478	1,429		0,786	31,638	32
	25_27	606	0,013478	8,168		4,492	75,648	75
	25_26	160	0,013478	2,156		1,186	38,870	40
	23_25	650	0,013478	8,761	5,817	10,636	116,399	125
	23_24	136	0,013478	1,833		1,008	35,837	40
	22_23	343	0,013478	4,623	14,699	17,242	148,206	160
	22_28	210	0,013478	2,830	27,715	29,271	193,102	200
	R_22	20	0,013478	0,269	46,514	46,662	243,808	250
	Total	5843		78,752	•••••			•••••

VII-7- Modélisation et simulation du réseau

Suite à l'essor qu'ont connu les mathématiques appliquées et l'informatique en parallèle, plusieurs logiciels ont été développés dans le but subvenir aux besoins des ingénieur, et concepteur dans le domaine de l'hydraulique capables de faire des simulations, des calculs fastidieux en un temps record. Nous en citons les plus connus : WATERCAD, PICCOLO, PORTEAU et celui que nous allons utiliser EPANET.

VII-7-1- Présentation du logiciel EPANET

EPANET est un logiciel de simulation du comportement hydraulique et qualitative de l'eau sur de longues durées dans les réseaux sous pressions. Un réseau est un ensemble de tuyaux, nœuds (jonction de tuyau), pompes, vannes, bâches et réservoirs. EPANET calcule le débit et la vitesse dans chaque tuyau, la pression à chaque nœud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, Au cours d'une durée de la simulation. Le logiciel est également capable de calculer les temps de séjour et de suivre l'origine de l'eau. [3]

VII-7-2- Utilisation du logiciel EPANET

Les étapes classiques de l'utilisation d'EPANET pour modéliser un système de distribution d'eau sont les suivantes :

- 1. Dessiner un réseau représentant le système de distribution ou importer une description de base du réseau enregistré dans un fichier avec format texte métafichier;
- 2. Saisir les propriétés des éléments du réseau ;
- 3. Décrire le fonctionnement du système ;
- 4. Sélectionner un ensemble d'options de simulation ;
- 5. Lancer une simulation hydraulique ou u
- 6. ne analyse de la qualité;
- 7. Visualiser les résultats d'une simulation

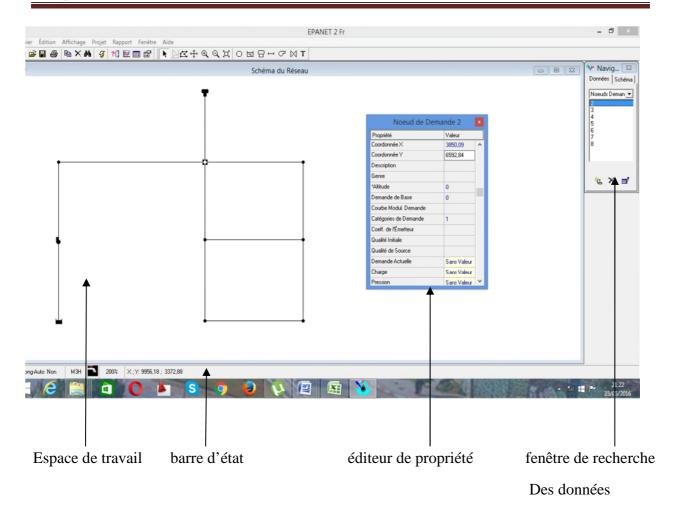


Figure (VII-1): Environnement de travail sur EPANET.

VII-7-3- Modélisation du réseau

EPANET modélise un système de distribution d'eau comme un ensemble d'arcs reliés à des nœuds. Les arcs représentent des tuyaux, des pompes, et des vannes de contrôle. Les nœuds représentent des nœuds de demande, des réservoirs et des bâches.

• Première étape

Consiste à représenté le tracé qu'ont à sur le plans de masse réalisé avec AUTO-CAD ou bien de l'importer sous un fichier compatible avec EPANET. Pour notre cas on va enregistrer le dessin sur AUTO-CAD sous un type de fichier (*.dxf) et avec un logiciel EpaCAD on va l'importer vers EPANET. Comme l'indique les figures (VII-2) et (VII-3).

Figure (VII-2) : Importation du tracé à partir de l'EpaCAD vers EPANET

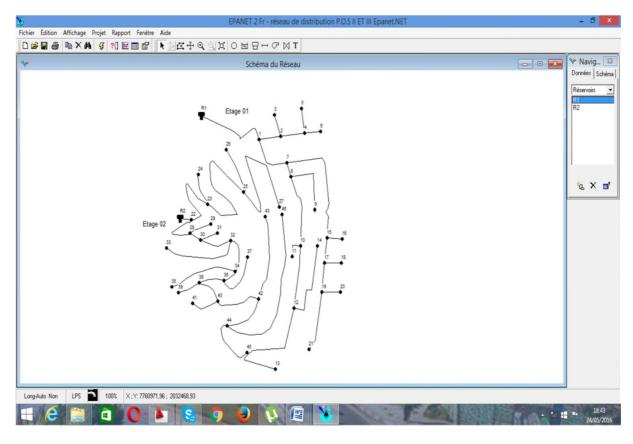


Figure (VII-3): Représentation du tracé sur EPANET

• Deuxième étape

Elle s'agit de choisir et de définir l'unité de calcul puits introduire quelque données de base comme l'indique la figure (VII-4)

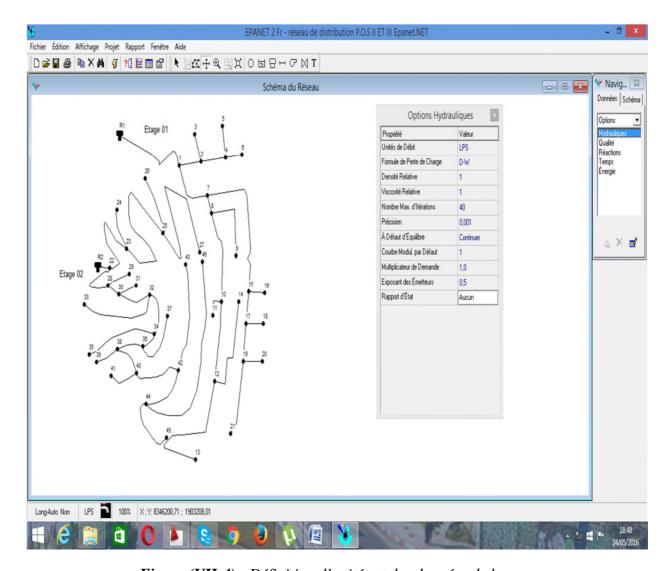


Figure (VII-4) : Définition d'unités et des données de bases

• Troisième étape

Introduire les différentes données du réseau, à savoir

Au niveau des nœuds

- L'altitude du nœud par rapport à un plan de référence ;
- La demande en eau (débit en route prélevé sur le réseau). Comme l'indique Tableau (VII-4)

Tableau (VII-4) : Débit aux nœuds du réseau

Réseau	Nœud	Altitude (m)	Demande (LPS)
	1	83,4	3,037
	2	78	1,123
	3	64,8	0,936
	4	54,79	1,246
	5	57,4	0,998
	6	51,89	0,832
	7	67,45	2,184
	8	71,76	0,624
	9	56,5	2,579
	10	73,28	2,995
	11	84,82	0,832
Etage (01)	12	69,23	3,536
	13	68,6	5, 387
	14	55,13	6,656
	15	52,08	5,512
	16	49,08	0,832
	17	52,8	0,998
	18	51,86	0,666
	19	53,04	1,664
	20	50,73	0,666
	21	62,89	2,496
	22	231,99	0,27
	23	196,39	7,687
	24	183,62	1,836
	25	133,33	8,914
Etage (02)	26	118,08	2,16
	27	94,84	8,181
	28	223	2,835
	29	217,75	1,431
	30	214,66	0,81
	31	204,25	1,161
	32	193,21	2,106

Réseau	Nœud	Altitude	Demande
	33	210,44	4,914
	34	179,32	2,106
	35	176,35	4,32
	36	173,82	0,945
	37	164,72	2,835
	38	169,41	1,674
Etage (02)	39	169,46	1,485
	40	147,31	1,755
	41	145,35	1,863
	42	127,56	2,525
	43	121,41	4,698
	44	107,79	3,213
	45	92,96	2,997
	46	96,87	9,504

Suite du Tableau (VII-4) : Débit aux nœuds du réseau

• Au niveau des réservoirs

Les Réservoirs sont des nœuds avec une capacité de stockage, dont le volume d'eau stocké peut varier au cours du temps. Les données de base pour des réservoirs sont les suivantes:

- l'altitude du radier (où le niveau d'eau est zéro) ;
- le diamètre (ou sa forme s'il n'est pas cylindrique) ;
- les niveaux initial, minimal et maximal de l'eau ;
- la qualité initiale de l'eau.

• Au niveau des arcs (tuyaux)

Les données de base pour les tuyaux sont:

- les nœuds initial et final;
- le diamètre;
- la longueur;
- le coefficient de rugosité (pour déterminer la perte de charge).

VII-7-4- Simulation du réseau

Après la saisie des informations du réseau, la simulation peut être lancée. Dans cette étape grâce a son moteur de calcul, le logiciel analyse le comportement du réseau dans les conditions requises et détermine les différentes grandeurs hydrauliques (vitesse, débit, pression, charges) à un instant donné.

VII-8- Résultats de la simulation

Après plusieurs simulations, changent à chaque fois le diamètre des arcs pour obtenir et respecter la vitesse dans chaque tuyau et la pression dans chaque nœud, le réseau de distribution se manifeste comme suite :

- la vitesse au niveau de tous les arcs des deux réseaux (les deux étages) sont requise entre 0,57 à 1,57 m/s.
- les pressions au niveau de tous les nœuds du réseau de l'étage (01) dépassent celle requise et atteignant 8 à 11 bar, et pour le réseau de l'étage (02) et touché par des pressions dépassent les 6 bar, et atteignant dans certain nœud 8 a 13 bar, comme l'indique la figure (VII-5)

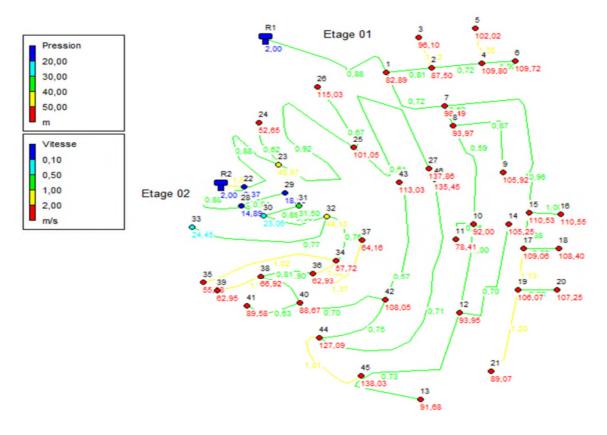


Figure (VII-5): Simulation du réseau

VII-9- Recommandations

Suite aux problèmes de pressions rencontrés, dus à la présence de la grande dénivelée entre le réservoir (R1) et les nœuds du réseau de l'étage (01), l'installation de réducteurs de pression dans tous les nœuds couterait très cher. Pour palier, on propose de projeter une brise charge entre le réservoir (R1) et le nœud 1, à l'altitude 115m. Par contre pour le réseau de l'étage (02), on remarque que certains nœuds sont touchés par des pressions dépassant celle requise (6 bar). La solution proposée consiste à effectuer un vannage pour réduire les fortes pressions qui surviennent à partir de la partie aval des tronçons (23-25) et (34-36) de ce réseau de distribution. Quatre vannes type réducteur de pression seront mises en place au niveau des tronçons (23-25), (25-27), (34-36) et (40-42). Vue la jonction en série des tronçons, la somme des pertes de charge créées par ces quatre vannes va atténuer les surpressions sur les nœuds.

VII-9-1- Détermination de la capacité (brise de charge)

La brise de charge joue un rôle transitoire pour diminuer la pression. Le volume du brise de charge est déterminé selon la formule suivante :

$$V_{\text{bâche}} = (Q_{\text{max. i}} \times t) / T$$
 (VII-11)

Avec : $Q_{\text{max},j}$: débit maximal. ($Q_{\text{max},j} = 2253.56 \text{ m}^3/\text{j}$);

T : le temps de fonctionnement de réservoir (T = 24h);

t : temps nécessaire pour l'ouverture de la vanne (t=15 min ; t=0,25h).

Donc le volume du brise de charge est : $V_{bache} = 23 \text{ m}^3$.

En choisi un volume normalisé de 23 m³.

VII-9-2- Dimensionnement de tronçon (R1-B.charge) :

Cote de départ : 165 m ;

Cote d'arrivée : 115 m ;

■ La hauteur géométrique Hg=50 m;

■ La longueur de la conduite L= 110 m;

Le débit véhiculé Q=0.0458 m³/s ;

■ Formule de BONNIN : D=0.214m ;

■ Formule de BRESS : D=0,320m.

Tableau (VII-5): Dimensionnement de tronçon (R1-B.charge)

ф (mm)	$L\left(m\right)$	Q (1/s)	V (m/s)	Λ	ΔH_{t} (m)	hg
257.8	110	45.80	0.877	0.03075	0.618	50.00

On opte la conduite en PEHD (PN10), avec un diamètre normalisé 315 mm

VII-10- Simulation après la projection d'un réservoir brise charge et vannage

Après l'emplacement d'un réservoir brise charge dans le réseau de l'étage (01) et vannage de réseau de l'étage (02), on remarque que les pressions au niveau des nœuds de s'est deux réseaux sont acceptable elles sont requise entre 2 à 6 bar, voir la figure (VII-6).

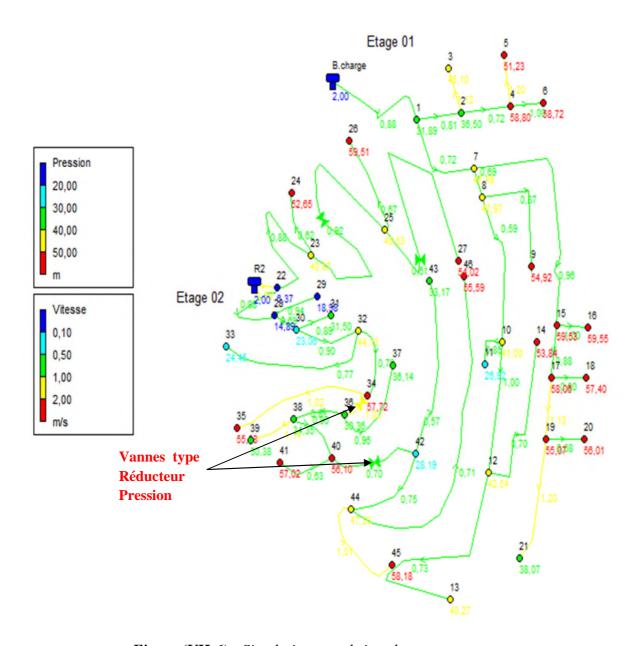


Figure (VII-6): Simulation avec brise-charge et vannage

VII-11- Cas de pointe et incendie

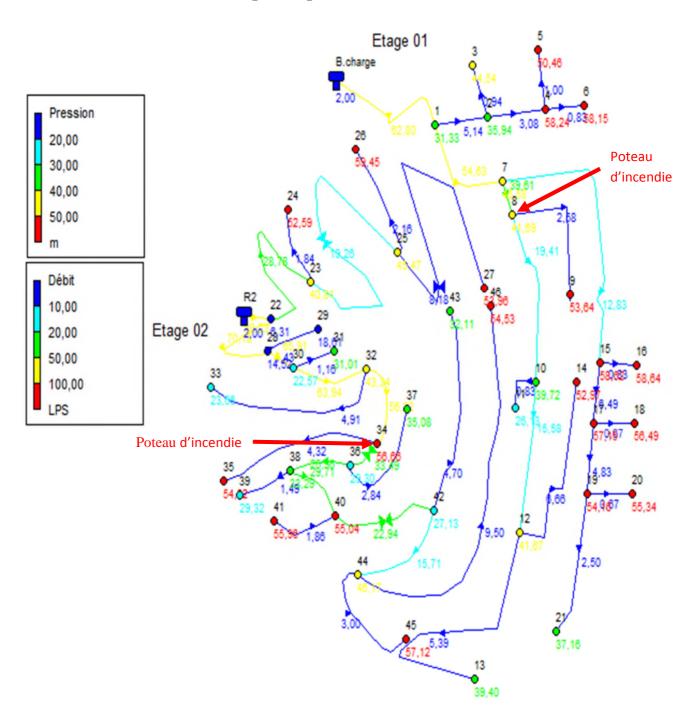
Dans ce cas le calcul se fait de la même manière que le cas de pointe mais seulement on doit s'assurer que le débit d'incendie donné par le réservoir (Q_{inc}: 17 l/s) se trouve au point le plus défavorable, le choix de ce nœud doit tenir compte les facteurs suivant :

- Risque d'incendie important ;
- La densité d'habitation;
- L'équipement des immeubles.

Pour notre cas on choisit le nœud 8 dans l'étage (01) et nœud 34 dans l'étage (02), alors un poteau d'incendie et proposé au niveau de chaque un de ces deux nœuds. Le débit de pointe en cas d'incendie est donné comme suit :

$$Q_d = Q_P + Q_{inc} (VII-12)$$

$$\implies$$
 Etage (01): $Q_d = 45,78 + 17 = 62,78 \text{ l/s}$


Etage (02):
$$Q_d = 82,26 + 17 = 99,26 \text{ l/s}$$

Avec:

Q_d: débit de pointe en cas d'incendié

Q_{inc}: débit d'incendie paris à (17 l/s)

VII-12- Simulation en cas de pointe plus incendie

Figue (VII-7): Simulation en cas de pointe plus incendie.

Remarque : les autres résultats de toutes les simulations (état des nœuds et des arcs en cas de pointe et en cas de point plus incendie) sont disposés en (annexe I)

VII-13- Conclusion

Ce chapitre est consacré pour la réalisation d'un réseau distribution type étagé (deux étages), l'ossature de chaque étage étant ramifiée. La nature des conduites est en PEHD (PN 10, PN16), leurs diamètres varient entre 40 et 315 mm. Le réseau de distribution de l'étage (01) et d'un linéaire total de 4044m et celui de l'étage (02) et de 5848m.

Après la présentation du réseau de distribution, nous avons saisi les données de base des éléments du réseau (arcs et nœuds). Après simulation, nous avons obtenu des vitesses satisfaisantes et des pressions élevées, dépassant celle requises pour les deux réseaux, excepté quelques nœuds dans l'étage (02) où la pression et satisfaisante.

Une recommandation à été proposée, elle consiste à projeter un réservoir brise charge sur le réseau de l'étage (01) et l'installation de quatre vannes (type réducteur pression) au niveau des tronçons (23-25), (25-27), (34-36) et (40-42) de l'étage (02).

Deux poteaux d'incendie sont également proposés au niveau des nœuds N8 et N34 en cas d'incendie.

Conclusion générale

Dans le cadre de ce projet de fin de cycle, nous avons fait une étude générale sur le système d'alimentation en eau potable en faveur des plans d'occupation du sol (P.O.S II et III) de la rive gauche d'Amizour ville (chef lieu). Wilaya de Bejaia.

Notre étude est fondée sur la collecte et l'acquisition des données, à ce terme, les (P.O.S II et III) seront alimenté à partir d'un réservoir R (ANBT) de capacité 2500m³. Ce dernier est alimenté par le Transfer d'eau à partir du barrage TICHI-HAF.

Après avoir présenté le site du projet, nous avons décrit et estimé d'une manière détaillée les différents besoins des deux plans d'occupation du sol, cités précédemment. Cette estimation est faite pour l'horizon 2041 (25ans), avec une norme de consommation prise égale à 200 l/hab.jour. Ce passage nous a permis d'atteindre les objectifs du projet.

L'étude économique des conduites d'adduction nous a permis de choisir :

- Conduite en PEHD de diamètre 315 mm pour véhiculer un débit de 0,05m³/s gravitairement, ceci du réservoir principal R (ANBT) jusqu'à la station de reprise (SR).
- Conduite en acier, avec un diamètre de 300 mm pour refouler un débit de 0,055m³/s
 de la station reprise vers le réservoir R2 à Bouridane, qui assure la distribution de
 l'étage (02).
- Une autre conduite de diamètre 250 mm en PEHD est nécessaire pour acheminer un débit de 0,0216m³/s gravitairement, ceci, du réservoir principal (ANBT) vers le réservoir R1 qui assure la distribution de l'étage (01).

Pour le choix de la Pompe, nous avons fait appel au catalogue CAPRARI. On a opté pour une pompe centrifuge à axe horizontal de type (PM 100/3A).

S'agissant de la protection des conduites contre le coup de bélier, les calculs hydrauliques nous ont amené à déduire qu'une protection anti bélier n'est pas indispensable, la surpression et la dépression sont dans les normes.

L'étude des réservoirs s'est faite selon les régimes de consommation des agglomérations et de leurs volumes de stockages. Concernant la station de reprise SR qui est

destinée pour le refoulement vers le réservoir R2, son volume est de 400m³. Le réservoir existant R2 est conçu pour distribuer l'eau à l'agglomération de l'étage (02), son volume est de 500m³ et sa hauteur est de 4m, son diamètre est de 12,62m. Le réservoir existant R1 est appelé afin d'assurer la distribution vers l'agglomération de l'étage (01) son volume est de 100m³, et d'une hauteur de 3m et 6.52m de diamètre.

Les capacités de stockage existantes pour deux étages sont insuffisantes pour satisfaire les besoins en eau des deux agglomérations à l'horizon 2041, pour cela nous avons projeté deux autres réservoirs, un de capacité 550m³ et d'une hauteur de 4m et 13,23m de diamètre jumelé avec le réservoir R1, et l'autre de capacité de 250m³, sa hauteur est de 4m, son diamètre est de 8,92m, jumelé avec le réservoir R2.

Pour la distribution, nous avons fait appel à un modèle numérique de simulation et d'analyse de comportement hydraulique EPANET. La nature des conduites étant en PEHD PN 10 et PN16 bars, le réseau de distribution est étagé, des recommandations ont été proposées. La première recommandation consiste a projeter une brise charge entre le réservoir R1 et le nœud1 du réseau de l'étage (01), la deuxième recommandation concerne l'installation de quatre vannes type réducteur de pression au niveau des tronçons (23-25), (25-27), (34-36) et (40-42) du réseau de l'étage (02). La dernière recommandation sera d'implanter deux poteaux d'incendie au niveau des nœuds N8 et N34 en cas d'incendie.

Enfin, nous espérons que cette étude servira de guide pour les promotions à venir et d'avant projet pour l'élaboration d'une étude détaillée des deux P.O.S de l'AEP.

Bibliographie

- [1] **Données :** Equipement existants, service technique, A.P.C d'AMIZOUR et la subdivision hydraulique d'AMIZOUR, et U.R.B.A.C.O de Bejaia.
- [2] RABIA, A et OUDIHAT, F.: 'alimentation en eau potable des deux communes BECHLOUL et EL ASNAM à partir du barrage de THELISDITH (W) de BOUIRA'.
- [3] ISSAAD, S. et TALAOUIT, Y.: 'étude de l'alimentation en eau potable des localités d'ait sidi-Ali commune de BARBACHA (W) de BEJAIA''. Mémoire de fin d'étude, université de BEJAIA.2010.
- [4] **DUPONT**, M.: "hydraulique urbaine", TOME II: Ouvrage de transport, élévation et distribution des eaux Edition EYROLLES, 1979.
- [5] MEBSOUT, A.: "réhabilitation du réseau d'alimentation en eau potable de la ville de SIDI-LADJAL (W) de DJELFA". Mémoire de fin d'étude, ENSH, 2015.
- [6] KSOURI, S et IBRAHIM, N.: "renforcement du réseau d'alimentation en eau potable du chef lieu de la commune d'AKBOU (w) de BEJAIA à partir du barrage de TICHI-HAF "Mémoire de fin d'étude, université de BEJAIA, 2008.
- [7] ALMAS, M. et MAAKNI, R.: "Réhabilitation de la chaine de refoulement de TABLIENTE TICHY Wilaya de Bejaia". Mémoire de fin d'études, Université de Bejaia, 2007.
- [8] CARLIER, M.: "Hydraulique générale et appliquée". Edition EYROLLES, 1980.
- [9] BONNIN, J.: "hydraulique urbaine aux agglomérations de petit et moyenne importance", Edition EYROLLES, 1979.
- [10] logiciel CAPRARI.
- [11] GODART, H.: "Technique de l'ingénieur (technologie de l'eau)", Edition T.I., p.C5195 10, 16, 18, 25.

ANNEXES I : Résultat de la Simulation

Cas de pointe sans brise charge

Etats des nœuds du réseau (étage01)

ID nœud	Altitude (m)	Demande de base (LPS)	Charge (m)	Pression (m)
Nœud 1	83,4	3,037	166,29	82,89
Nœud 2	78	1,123	165,5	87,5
Nœud 3	64,8	0,936	160,90	96,10
Nœud 4	54,79	1,246	164,59	109,80
Nœud 5	57,4	0,998	159 ,42	102,02
Nœud 6	51,89	0,832	161,61	109,72
Nœud 7	67,45	2,184	165,94	98,49
Nœud 8	71,76	0,624	165,37	93,97
Nœud 9	56,5	2,579	162,42	105,92
Nœud 10	73,28	2,995	165,28	92,00
Nœud 11	84,82	0,832	162,74	77,92
Nœud 12	69,23	3,536	162,77	93,54
Nœud 13	68,6	5, 387	159,87	91,27
Nœud 14	55,13	6,656	159,97	104,84
Nœud 15	52,08	5,512	162,61	110,53
Nœud 16	49,08	0,832	159,63	110,55
Nœud 17	52,8	0,998	161,86	109,06
Nœud 18	51,86	0,666	160,26	108,40
Nœud 19	53,04	1,664	159,11	106,07
Nœud 20	50,73	0,666	157,74	107,01
Nœud 21	62,89	2,496	151,96	89,07
Réservoir R1	165	-45,8	167	2,00

Cas de pointe sans vannage

Etats des nœuds du réseau (étage02)

ID nœud	Altitude	Demande de	Charge	Pression
	(m)	base (LPS)	(m)	(m)
Nœud 22	231,99	0,27	238,36	6,37
Nœud 23	196,39	7,687	237,26	40,87
Nœud 24	183,62	1,836	236,27	52,65
Nœud 25	133,33	8,914	234,28	101,05
Nœud 26	118,08	2,16	233,11	115,03
Nœud 27	94,84	8,181	232,70	137,86
Nœud 28	223	2,835	237,89	14,89
Nœud 29	217,75	1,431	236,73	18,98
Nœud 30	214,66	0,81	237,72	23,06
Nœud 31	204,25	1,161	235,75	31,50
Nœud 32	193,21	2,106	237,34	44,13
Nœud 33	210,44	4,914	234,89	24,45
Nœud 34	179,32	2,106	237,04	57,72
Nœud 35	176,35	4,32	232.53	55.88
Nœud 36	173,82	0,945	232.55	62.93
Nœud 37	164,72	2,835	228.88	64,16
Nœud 38	169,41	1,674	236,33	66,92
Nœud 39	169,46	1,485	232,41	62,95
Nœud 40	147,31	1,755	235,98	88,67
Nœud 41	145,35	1,863	234,95	89,58
Nœud 42	127,56	2,525	235,61	108,05
Nœud 43	121,41	4,698	234,44	113,03
Nœud 44	107,79	3,213	234,88	127,09
Nœud 45	92,96	2,997	230,99	138,03
Nœud 46	96,87	9,504	232,32	135,45
Réservoir R2	236,5	-82,23	238,5	2,00

Cas de pointe sans brise charge

Etats des arcs du réseau (étage01)

Tuyau ID Arc	Tronçon	Longueur M	Diamètre mm	Rugosité Mm	Débit LPS	Vitesse m/s	Pert. Charge unit m/km
1	R1_1	292	257,8	0,02	45,8	0,88	2,43
2	1_2	108	90	0,01	5,14	0,81	7,29
3	2_3	100	32,6	0,01	0,94	1,12	46,03
4	2_4	120	73,6	0,01	3,08	0,72	7,65
5	4_5	100	32,6	0,01	1,00	1,20	51,66
6	4_6	80	32,6	0,01	0,83	1,00	37,26
7	1-7	210	257,8	0,02	37.63	0.72	69
8	7_8	100	204.6	0.02	22.61	0.69	2.05
9	8_9	248	61.4	0.01	2.58	0.87	13.35
10	8_10	288	204.6	0.02	19.41	0.59	1.55
11	10_11	80	35.2	0.01	0.83	0.85	31.85
12	10_12	340	141	0.01	15.58	1.00	7.41
13	12_13	518	96.8	0.01	5.39	0.73	5.59
14	12_14	640	110.2	0.01	6.66	0.70	4.37
15	7_15	530	130.8	0.01	12.83	0.96	6.27
16	15_16	80	32.6	0.01	0.83	1.00	37.26
17	15_17	96	96.8	0.01	6.49	0.88	7.82
18	17_18	64	32.6	0.01	0.67	0.80	25.04
19	17_19	160	73.6	0.01	4.83	1.13	17.23
20	19_20	65	35.20	0.01	0.67	0.68	20.96
21	19_21	240	51.4	0.01	2.5	1.20	29.76

Cas de pointe sans vannage

Etats des arcs du réseau (étage02)

Tuyau ID Arc	Tronçon	Longueur M	Diamètre mm	Rugosité Mm	Débit LPS	Vitesse m/s	Pert. Charge unit m/km
22	R2_22	20	257.8	0.02	82.23	1.58	7.17
23	22_23	343	204.6	0.02	28.78	0.88	3.19
24	23_24	136	61.40	0.01	1.84	0.62	7.26
25	23_25	650	163.6	0.01	19.25	0.92	4.43
26	25_26	160	64	0.01	2.16	0.67	7.95
27	25_27	606	130.80	0.01	8.18	0.61	2.78
28	22-28	210	277.60	0.02	53.18	0.88	2.23
29	28_29	106	51.4	0.01	1.43	0.69	10.95
30	28_30	60	257.8	0.02	48.91	0.94	2.74
31	30_31	86	40.8	0.01	1.16	0.89	22.90
32	30_32	656	255.8	0.01	46.94	0.90	2.48
33	32_33	364	90	0.01	4.91	0.77	6.73
34	32_34	156	255.8	0.02	39.92	0.76	1.88
35	34_35	320	73.6	0.01	4.32	1.02	14.10
36	34_36	70	204.60	0.02	33.49	1.02	4.22
37	36_37	210	51.4	0.01	2.84	1.37	37.48
38	36_38	124	204.60	0.02	29.72	0.9	3.38
39	38_39	110	40.8	0.01	1.49	1.14	35.66
40	38_40	130	204.6	0.02	26.56	0.81	2.69
41	40_41	138	61.4	0.01	1.86	0.63	7.45
42	40_42	176	204.6	0.02	22.94	0.70	2.11
43	42_43	348	102.2	0.01	4.70	0.57	3.36
44	42_44	238	163.6	0.01	15.71	0.75	3.07
45	44_45	222	61.4	0.01	3.00	1.01	17.51
46	44_46	704	130.80	0.01	9.50	0.71	3.64

Cas de pointe avec brise -charge

Etats des nœuds du réseau (étage01)

ID nœud	Altitude	Demande de base	Charge	Pression
	(m)	(LPS)	(m)	(m)
Nœud 1	83,4	3,037	115,57	32,17
Nœud 2	78	1,123	114,78	36,78
Nœud 3	64,8	0,936	110,18	45,38
Nœud 4	54,79	1,246	113,86	59,07
Nœud 5	57,4	0,998	108,90	51,50
Nœud 6	51,89	0,832	110,88	58,99
Nœud 7	67,45	2,184	115.21	47,76
Nœud 8	71,76	0,624	115.01	43,25
Nœud 9	56,5	2,579	111.69	55,19
Nœud 10	73,28	2,995	114,56	41,28
Nœud 11	84,82	0,832	112.01	27,19
Nœud 12	69,23	3,536	112.04	42,81
Nœud 13	68,6	5, 387	109,15	40,55
Nœud 14	55,13	6,656	109.24	54,11
Nœud 15	52,08	5,512	111.89	59,81
Nœud 16	49,08	0,832	108,91	59,83
Nœud 17	52,8	0,998	111,14	58,34
Nœud 18	51,86	0,666	109,54	57,68
Nœud 19	53,04	1,664	108.38	55,34
Nœud 20	50,73	0,666	107.02	56,29
Nœud 21	62,89	2,496	101,24	38,35
Brise charge	114	-45,8	116.00	2.00

Cas de point avec vannage

Etats des nœuds du réseau (étage02)

ID nœud	Altitude (m)	Demande de base (LPS)	Charge (m)	Pression (m)
Nœud 22	231,99	0,27	238.36	6,37
Nœud 23	196,39	7,687	237.26	40,87
Nœud 24	183,62	1,836	236.27	52,65
Nœud 25	133,33	8,914	178.86	45,53
Nœud 26	118,08	2,16	177.59	59,51
Nœud 27	94,84	8,181	148.86	54,02
Nœud 28	223	2,835	237.89	14,89
Nœud 29	217,75	1,431	236.73	18,98
Nœud 30	214,66	0,81	237.72	23,06
Nœud 31	204,25	1,161	235.75	31,50
Nœud 32	193,21	2,106	237.35	44,13
Nœud 33	210,44	4,914	234.89	24,45
Nœud 34	179,32	2,106	237.04	55,72
Nœud 35	176,35	4,32	232.53	55,88
Nœud 36	173,82	0,945	204.18	30,36
Nœud 37	164,72	2,835	200.86	36,14
Nœud 38	169,41	1,674	203.76	34,35
Nœud 39	169,46	1,485	199.84	30,38
Nœud 40	147,31	1,755	203.41	56,10
Nœud 41	145,35	1,863	202.39	57,02
Nœud 42	127,56	2,525	155.75	28,19
Nœud 43	121,41	4,698	154.58	33,17
Nœud 44	107,79	3,213	155.02	47,23
Nœud 45	92,96	2,997	151.14	58,18
Nœud 46	96,87	9,504	152.46	55,59
Réservoir R2	236,5	-82,23	238.50	2,00

Cas de point avec brise -charge

Etats des arcs du réseau (étage01)

Tuyau ID Arc	Tronçon	Longueur M	Diamètre mm	Rugosité mm	Débit LPS	Vitesse m/s	Pert. Charge unit m/km
1	B.charge_1	178,88	257,8	0,02	45,8	0,88	2,43
2	1_2	108	90	0,01	5,14	0,81	7,29
3	2_3	100	32,6	0,01	0,94	1,12	46,03
4	2_4	120	73,6	0,01	3,08	0,72	7,65
5	4_5	100	32,6	0,01	1,00	1,20	51,66
6	4_6	80	32,6	0,01	0,83	1,00	37,26
7	1-7	210	257,8	0,02	37.63	0.72	69
8	7_8	100	204.6	0.02	22.61	0.69	2.05
9	8_9	248	61.4	0.01	2.58	0.87	13.35
10	8_10	288	204.6	0.02	19.41	0.59	1.55
11	10_11	80	35.2	0.01	0.83	0.85	31.85
12	10_12	340	141	0.01	15.58	1.00	7.41
13	12_13	518	96.8	0.01	5.39	0.73	5.59
14	12_14	640	110.2	0.01	6.66	0.70	4.37
15	7_15	530	130.8	0.01	12.83	0.96	6.27
16	15_16	80	32.6	0.01	0.83	1.00	37.26
17	15_17	96	96.8	0.01	6.49	0.88	7.82
18	17_18	64	32.6	0.01	0.67	0.80	25.04
19	17_19	160	73.6	0.01	4.83	1.13	17.23
20	19_20	65	35.20	0.01	0.67	0.68	20.96
21	19_21	240	51.4	0.01	2.5	1.20	29.76

Cas de point avec vannage

Etats des arcs du réseau (étage02)

Tuyau ID Arc	Tronçon	Longueur M	Diamètre mm	Rugosité mm	Débit LPS	Vitesse m/s	Pert. Charge unit m/km
22	R2_22	20	257.8	0.02	82.23	1.58	7.17
23	22_23	343	204.6	0.02	28.78	0.88	3.19
24	23_24	136	61.40	0.01	1.84	0.62	7.26
Vanne 25	23_25	650	163.6	0.01	19.25	0.92	58.40
26	25_26	160	64	0.01	2.16	0.67	7.95
Vanne 27	25_27	606	130.80	0.01	8.18	0.61	30.00
28	22-28	210	277.60	0.02	53.18	0.88	2.23
29	28_29	106	51.4	0.01	1.43	0.69	10.95
30	28_30	60	257.8	0.02	48.91	0.94	2.74
31	30_31	86	40.8	0.01	1.16	0.89	22.90
32	30_32	656	255.8	0.01	46.94	0.90	2.48
33	32_33	364	90	0.01	4.91	0.77	6.73
34	32_34	156	255.8	0.02	39.92	0.76	1.88
35	34_35	320	73.6	0.01	4.32	1.02	14.10
Vanne 36	34_36	70	204.60	0.02	33.49	1.02	32.86
37	36_37	210	61.4	0.01	2.84	0,96	15,.48
38	36_38	124	204.60	0.02	29.71	0.90	3.38
39	38_39	110	40.8	0.01	1.49	1.14	35.66
40	38_40	130	204.6	0.02	26.56	0.81	2.69
41	40_41	138	61.4	0.01	1.86	0.63	7.45
Vanne 42	40_42	176	204.6	0.02	22.94	0.70	47.66
43	42_43	348	102.2	0.01	4.70	0.57	3.36
44	42_44	238	163.6	0.01	15.71	0.75	3.07
45	44_45	222	61.4	0.01	3.00	1.01	17.51
46	44_46	704	130.80	0.01	9.50	0.71	3.64

Cas de pointe plus incendie

Etats des nœuds du réseau (étage01)

ID nœud	Altitude	Demande de base	Charge	Pression
	(m)	(LPS)	(m)	(m)
Nœud 1	83,4	3,037	115,22	31,82
Nœud 2	78	1,123	114,44	36,44
Nœud 3	64,8	0,936	109,83	45,03
Nœud 4	54,79	1,246	113,52	58,73
Nœud 5	57,4	0,998	108,35	50,95
Nœud 6	51,89	0,832	110,54	58,65
Nœud 7	67,45	2,184	114,52	47,07
Nœud 8	71,76	17,624	113,94	42,18
Nœud 9	56,5	2,579	110.63	54,13
Nœud 10	73,28	2,995	113,50	40,22
Nœud 11	84,82	0,832	111.44	26,62
Nœud 12	69,23	3,536	111,39	42,16
Nœud 13	68,60	5, 387	108,49	39,89
Nœud 14	55,13	6,656	108.59	53,46
Nœud 15	52,08	5,512	111.19	59,11
Nœud 16	49,08	0,832	108,21	59,13
Nœud 17	52,8	0,998	110,44	57,64
Nœud 18	51,86	0,666	108,84	56,98
Nœud 19	53,04	1,664	107.69	54,65
Nœud 20	50,73	0,666	106.56	55,83
Nœud 21	62,89	2,496	100,55	37,66
Brise charge	114,00	-62,80	116.00	2.00

Cas de pointe et d'incendie

Etats des nœuds du réseau (étage02)

ID nœud	Altitude (m)	Demande de base (LPS)	Charge (m)	Pression (m)
Nœud 22	231,99	0,27	238,30	6,31
Nœud 23	196,39	7,687	237,20	40,81
Nœud 24	183,62	1,836	236,21	52,59
Nœud 25	133,33	8,914	178,80	45,47
Nœud 26	118,08	2,16	177.53	59,45
Nœud 27	94,84	8,181	148.80	53,96
Nœud 28	223	2,835	237.52	14,52
Nœud 29	217,75	1,431	236.36	18,61
Nœud 30	214,66	0,81	237.23	22,57
Nœud 31	204,25	1,161	235.26	31,01
Nœud 32	193,21	2,106	236.55	43,34
Nœud 33	210,44	4,914	234.10	23,66
Nœud 34	179,32	19,106	235.98	56,66
Nœud 35	176,35	4,320	231.47	54,82
Nœud 36	173,82	0,945	203.12	29,30
Nœud 37	164,72	2,835	199.80	35,08
Nœud 38	169,41	1,674	202.70	33,29
Nœud 39	169,46	1,485	198.78	29,32
Nœud 40	147,31	1,755	202.35	55,04
Nœud 41	145,35	1,863	201.33	55,98
Nœud 42	127,56	2,525	154.69	27,13
Nœud 43	121,41	4,698	153.52	32,11
Nœud 44	107,79	3,213	153.96	46,17
Nœud 45	92,96	2,997	150.08	57,12
Nœud 46	96,87	9,504	151.40	54,53
Réservoir R2	236,5	-99,23	238.50	2,00

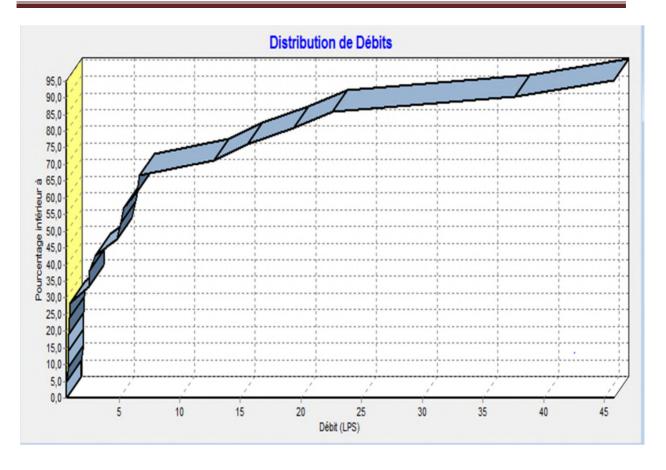
Cas de pointe et d'incendie

Etats des arcs du réseau (étage01)

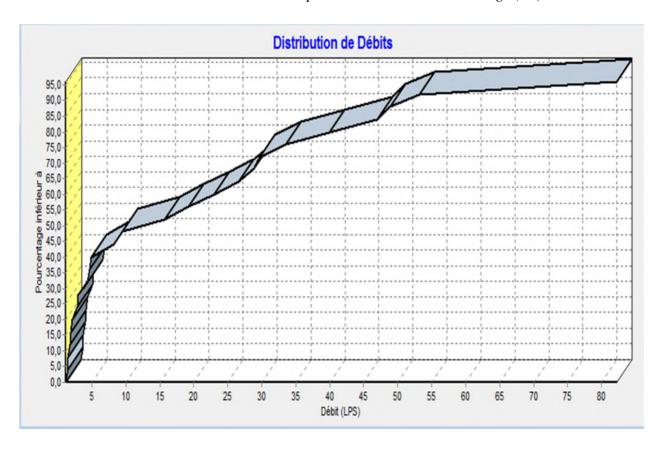
Tuyau ID Arc	Tronçon	Longueur M	Diamètre mm	Rugosité mm	Débit LPS	Vitesse m/s	Pert. Charge unit m/km
1	B.charge_1	178,88	257,8	0,02	62,80	1,20	4,35
2	1_2	108	90	0,01	5,14	0,81	7,29
3	2_3	100	32,6	0,01	0,94	1,12	46,03
4	2_4	120	73,6	0,01	3,08	0,72	7,65
5	4_5	100	32,6	0,01	1,00	1,20	51,66
6	4_6	80	32,6	0,01	0,83	1,00	37,26
7	1-7	210	257,8	0,02	54,63	1,05	3,36
8	7_8	100	204.6	0.02	39,61	1,20	5.75
9	8_9	248	61.4	0.01	2,58	0.87	13.35
10	8_10	288	204.6	0.02	19,41	0.59	1.55
11	10_11	80	35.2	0.01	0,83	0.85	25.73
12	10_12	340	141	0.01	15,58	1.00	6,20
13	12_13	518	96.8	0.01	5,39	0.73	5.59
14	12_14	640	110.2	0.01	6.66	0.70	4.37
15	7_15	530	130.8	0.01	12.83	0.96	6.27
16	15_16	80	32.6	0.01	0.83	1.00	37.26
17	15_17	96	96.8	0.01	6.49	0.88	7.82
18	17_18	64	32.6	0.01	0.67	0.80	25.04
19	17_19	160	73.6	0.01	4.83	1.13	17.23
20	19_20	65	35.20	0.01	0.67	0.68	17,31
21	19_21	240	51.4	0.01	2.5	1.20	29.76

Cas de pointe et d'incendie

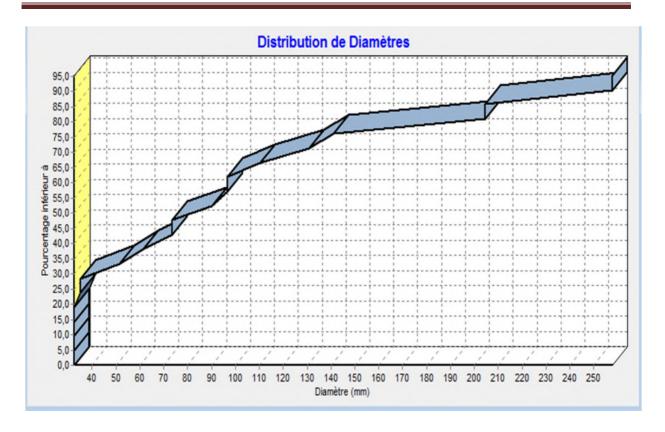
Etats des arcs du réseau (étage02)

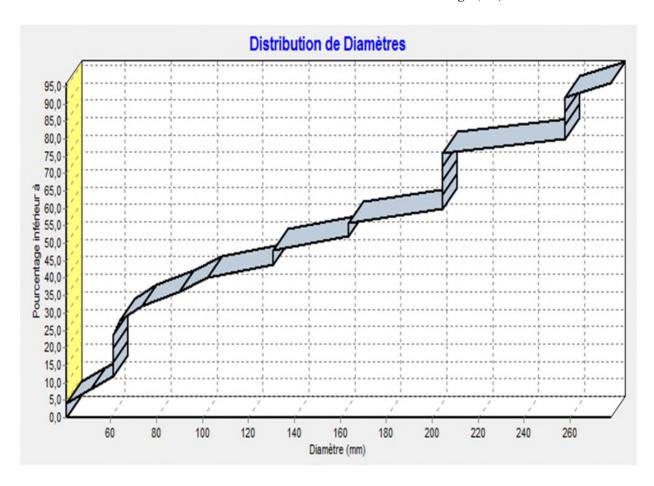

Tuyau ID Arc	Tronçon	Longueur M	Diamètre mm	Rugosité mm	Débit LPS	Vitesse m/s	Pert. Charge unit m/km
Aic		1V1	111111	111111	LIS	111/ 5	111/ K111
22	R2_22	20	257.8	0.02	99,23	1,90	10,19
23	22_23	343	204.6	0.02	28,78	0.88	3.19
24	23_24	136	61.40	0.01	1.84	0.62	7.26
Vanne 25	23_25	650	163.6	0.01	19.26	0.92	58.40
26	25_26	160	64	0.01	2.16	0.67	7.95
Vanne 27	25_27	606	130.80	0.01	8.18	0.61	30.00
28	22-28	210	277.60	0.02	70.18	1,16	2.23
29	28_29	106	51.4	0.01	1.43	0.69	10.95
30	28_30	60	257.8	0.02	65.91	1,26	4.75
31	30_31	86	40.8	0.01	1.16	0.89	22.92
32	30_32	656	255.8	0.01	63.94	1,22	2.48
33	32_33	364	90	0.01	4.91	0.77	6.73
34	32_34	156	255.8	0.02	56.92	1,09	3,62
35	34_35	320	73.6	0.01	4.32	1.02	14.10
Vanne 36	34_36	70	204.60	0.02	33.49	1.02	32.86
37	36_37	210	51.4	0.01	2.84	0,96	15,84
38	36_38	124	204.60	0.02	29.71	0.90	3.38
39	38_39	110	40.8	0.01	1.49	1.14	35.66
40	38_40	130	204.6	0.02	26.56	0.81	2.69
41	40_41	138	61.4	0.01	1.86	0.63	7.45
Vanne 42	40_42	176	204.6	0.02	22.94	0.70	47.66
43	42_43	348	102.2	0.01	4.70	0.57	3.36
44	42_44	238	163.6	0.01	15.71	0.75	3.07
45	44_45	222	61.4	0.01	3.00	1.01	17.51
46	44_46	704	130.80	0.01	9.50	0.71	3.64

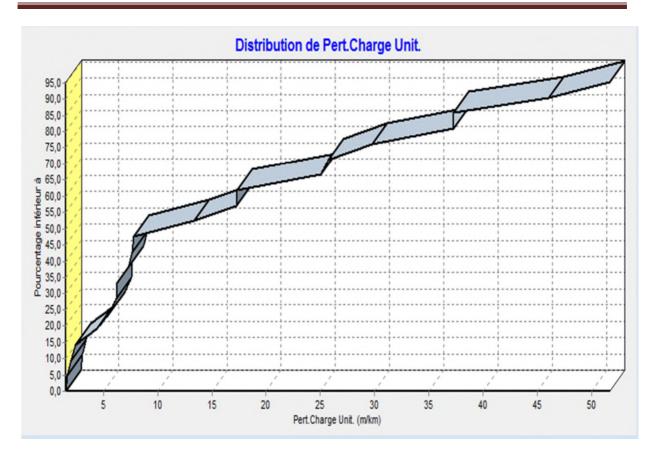
ANNEXES II Documents graphique

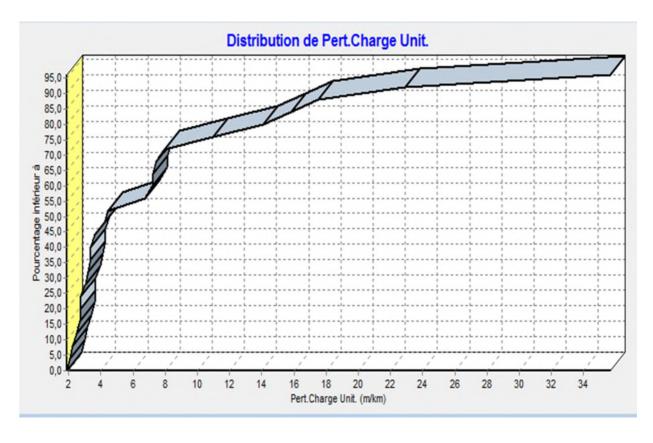


Modena - Italy

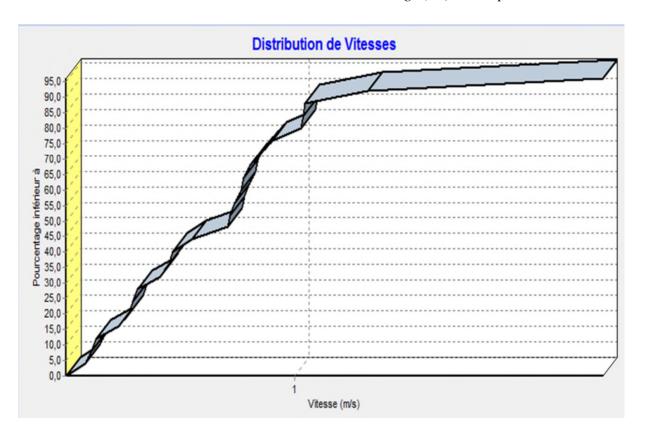

Caractéristiques requiss	200		oper de :	refourement		-Zore da	or design	
Debit	50.5 In	PH			The state of the last of the l		3	
Hauteur de refoulement :	154 m	220	- 2			The state of the s	Falsach Ha	de i
Fulde	Eau potable	200				77,63		
Température Type d'installation	ZSO K Pomos seule	180					1	
Nibe de gompes	Pompa saula	100			- 1		-	4
Caractéristiques de la p		140					4	
Descriptiques by is p	50.1 /s	120			3 (3		181	
Mauteur de refoulement	164 -	100	- 2					
Pulsasance absorbée	111 kW							
Rendement : Heuteur manormétrique H.	(C=0) 72,2% (C=0) 239 m	80					3	
Orf. de refoulement	100 mm	60	-	het miles			*	
A AND DESCRIPTION OF THE PROPERTY OF THE PROPE	0.000	POST DOM	atamos i	Pages P2				-
		80	01.500	The state of the	-			
		40						
Maria de la Companya		190	damage					
Caractéristiques moteur Fréquence		(6)			- Contraction of the Contraction			
Tension nominals	50 Hz 400 V	90 90 40		7				
Vitegae nominale	2980 1/min	30						
Nombre de güles	2	100 700	aug MP	MH)				13
Pulsaance nominale P2 - Courant nominal	112 60							
Type de moleur	5-	1						
Clease displation Decré de projection							Acres	50
CANADA NAMESANA	IF 33			50	Tr		77	UNIVERSITY SEASON
Limites operationnelles		A STATE OF THE PARTY OF THE PAR		de fonctio		Te	est man	with the second second
Démanages / himes.	2000	0 [14]		[m]	P. (699)		nd. [%]	NPSH(h)
Température mad, du lig. Teneur maximum en mati	The state of the s	52.6	2		0.1	201		1
Densité mex.	BBS kgim*	1 - 10			10000	100		
Viscosité med.) media							
Action Control of the	4700-00	Dimension	erne .	min				
Caractéristiques généra		4 = 2220						
	1130 kg	G = 1944						
Poids	1120 85	C m 242						
Poids	113010	C = 342 D = 383						
Poids Watersum	112010	D = 999 DNa = 12						
Materiaux.	Forte	D + 283						
Maderaus Corps de pompe Corps d'aspiration	Forte	D = 993 DNs = 12 DNs = 10						
Mademaux Corps de pompe Corps d'aspiration Roue	Forte Forte	D = 888 DMs = 42 DMm = 16 E = 180 F = 250 G = 1164				_		
Matériaus Corps de pompe Corps d'aspiration Rous Sague d'usure	Forte Forte Forte	D = 288 DNa = 42 DNin = 10 E = 180 F = 280 G = 1166 H = 662			r -1	r		1
Maderaus Corps de pompe Corps d'aspiration	Forte Forte	D = 288 DNa = 42 DNin = 10 E = 180 F = 250 G = 1166 H = 662 J = 760			1	[П
Maderaus Corps de gompe Corps d'aspiration Roue Bague d'usure Corps d'élage Chémise Arbre	Forte Forte Forte Forte Forte Acter Inco:	D = 288 DMa = 12 DMa = 10 E = 190 F = 250 G = 1164 H = 602 J = 740 L = 740		و ا		- Th		
Materiaus Corps de pompe Corps d'aspiration Roue Sague d'usure Corps d'étage Chemise Arbre Doulle srbre	Fornis Fornis Fornis Fornis Fornis Fornis Actien Into: Actien Into:	D = 288 DNa = 42 DNin = 10 E = 180 F = 250 G = 1166 H = 662 J = 760		,÷		, <u> </u>		
Matérneus Corps de gompe Corps d'aspiration Rous Rous Corps d'étage Corps d'étage Chemise Arbre Douille srbre Annesu d'étanchété	Forte Forte Forte Forte Forte Forte Forte Conte	D = 288 DMs = 10 DMs = 10 E = 100 F = 250 G = 1144 H = 600 I = 710 M = 22		ļ.		<u>. 16</u>		
Materiaus Corps de gompe Corps d'asplication Rous Corps d'étage Corps d'étage Chemise Arbre Anness d'étanchété Roulements s billes	Forte Forte Forte Forte Forte Forte Forte Acterino: Acterino: Acterino: Acterino: Acterino: Acterino: Acterino:	D = 988 DMa = 10 DMa = 10 E = 180 F = 280 G = 1164 H = 660 I = 740 M = 22 M = 180		li				1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Forte Forte Forte Forte Forte Forte Forte Conte	D = 585 DMs = 42 DMs = 16 E = 180 F = 250 G = 1166 H = 682 I = 740 M = 22 M = 180 C = 50 C = 575 C = 745		Ħ		76		
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		Ħ		<u>16</u>		1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 585 DMs = 42 DMs = 16 E = 180 F = 250 G = 1166 H = 682 I = 740 M = 22 M = 180 C = 50 C = 575 C = 745		Ħ		<u>1</u>		1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		Ħ		<u>1</u>		1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		+		<u>1</u>		1
Materiaus Corps de gompe Corps d'asplication Rous Corps d'étage Corps d'étage Chemise Arbre Anness d'étanchété Roulements s billes	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		+		<u>, </u>		1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		+		<u>, 16</u>		1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		Ħ				1
Materiaus Corps de pompe Corps d'aspiration Roue Segue d'usure Corps d'élage Chemise Arbre Doulle arbre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		Ħ				1
Matériaus Corps de pompe Corps d'asphisition Roue Bague d'usure Corps d'élage Chemise Arbre Doulle sibre Roulements a billes Presse-Slouge	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		+				1
Matériaus Corps de gompe Corps d'aspiration Rous Corps d'étage Corps d'étage Chemise Arbine Arbine Annesu d'étanchété Roulements s billes Pressie-Eloupe	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		+				1
Matériaus Corps de gompe Corps d'aspiration Rous Corps d'étage Corps d'étage Chemise Arbine Arbine Annesu d'étanchété Roulements s billes Pressie-Eloupe	Fonte Fonte Fonte Fonte Fonte Fonte Acter inco: Acter inco: Cacutchour su minie Acter Fonte	D = 995 DMs = 40 DMs = 10 E = 190 F = 950 G = 1166 H = 668 I = 740 L = 740 M = 22 M = 190 C = 50 P = 675 G = 765 R = 980		+				1

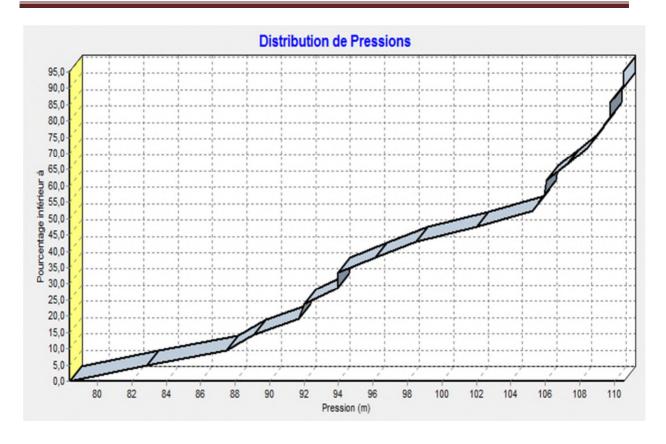

Distribution des débits en cas de pointe dans le réseau de l'étage (01).

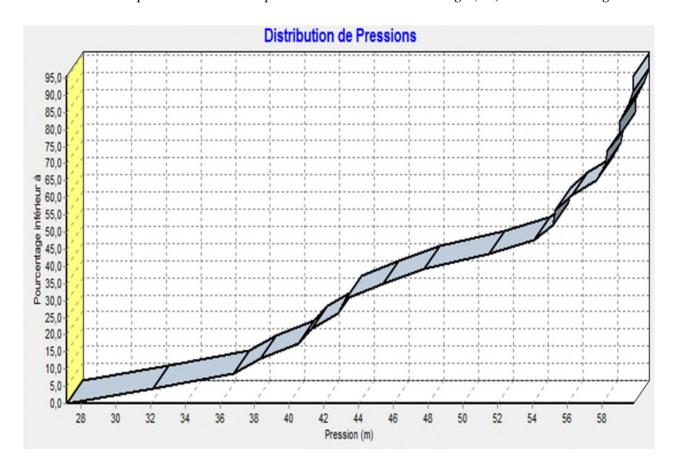

Distribution des débits en cas de pointe dans le réseau de l'étage (02).

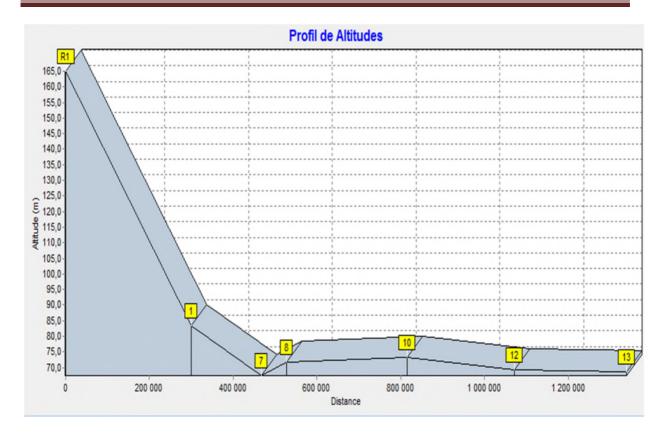

Distribution des diamètres dans le réseau de l'étage (01)

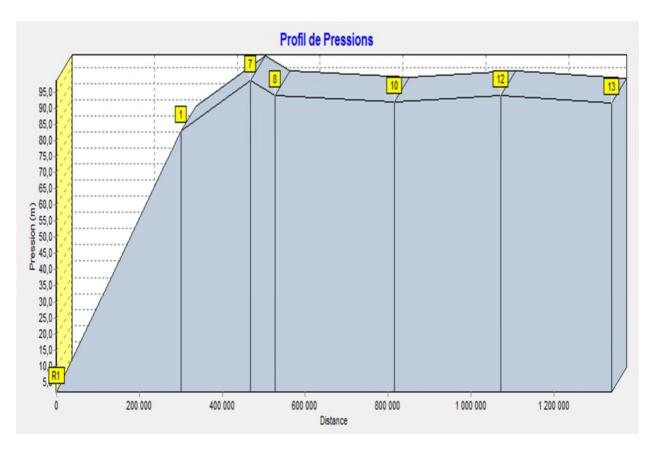
Distribution des diamètres dans le réseau de l'étage (02)

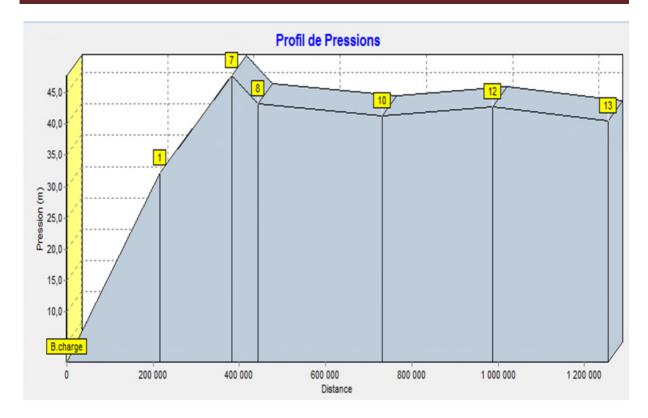

Distribution des pertes de charges en cas de pointe dans le réseau de l'étage (01)

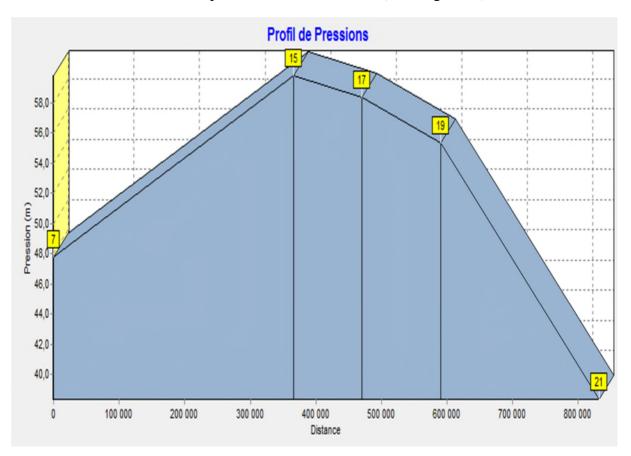

Distribution des pertes de charges en cas de pointe dans le réseau de l'étage (02)

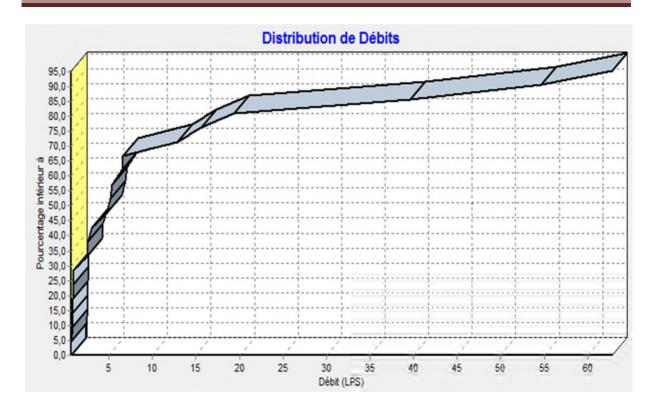

Distribution des vitesses dans le réseau de l'étage (01) cas de pointe

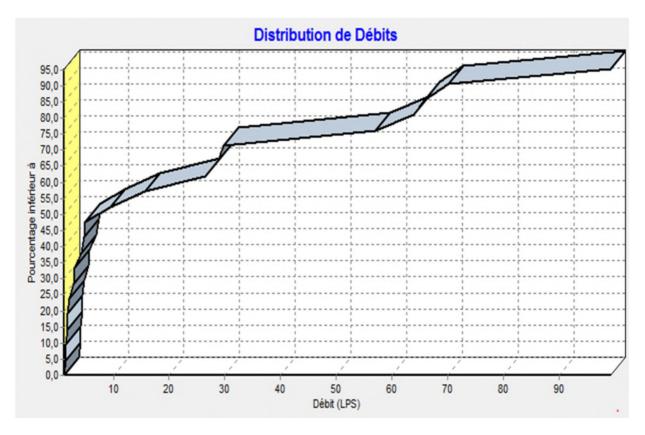

Distribution des vitesses dans le réseau de l'étage (02) cas de pointe

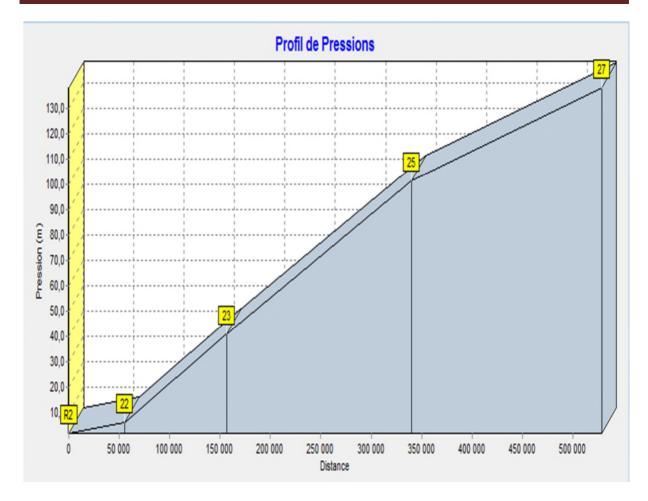

Distribution des pressions en cas de pointe dans le réseau de l'étage (01) sans brise charge

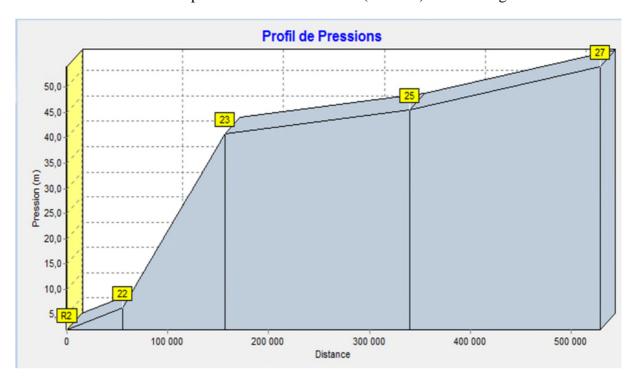

Distribution des pressions en cas de pointe dans le réseau de l'étage (01) avec brise charge

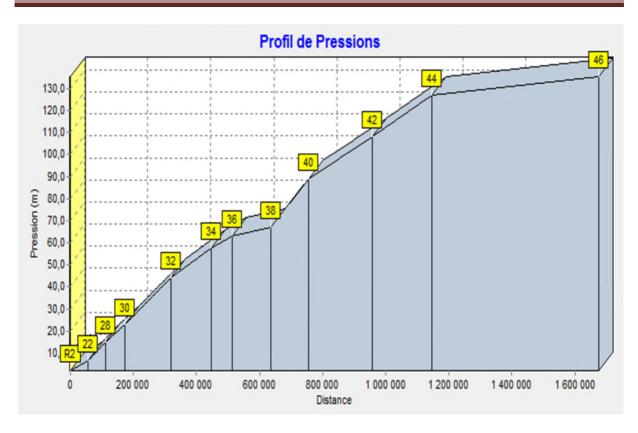

Profil des altitudes des nœuds dans la conduite (R1-N13)

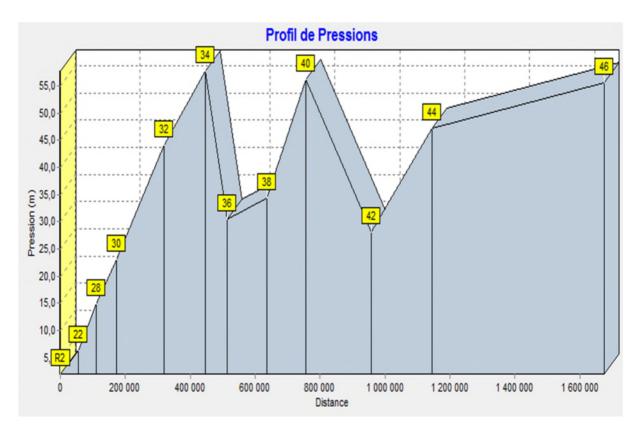

Profile des pressions dans la conduite (R1-N13)


Profile des pressions dans la conduite (B. charge-N13)

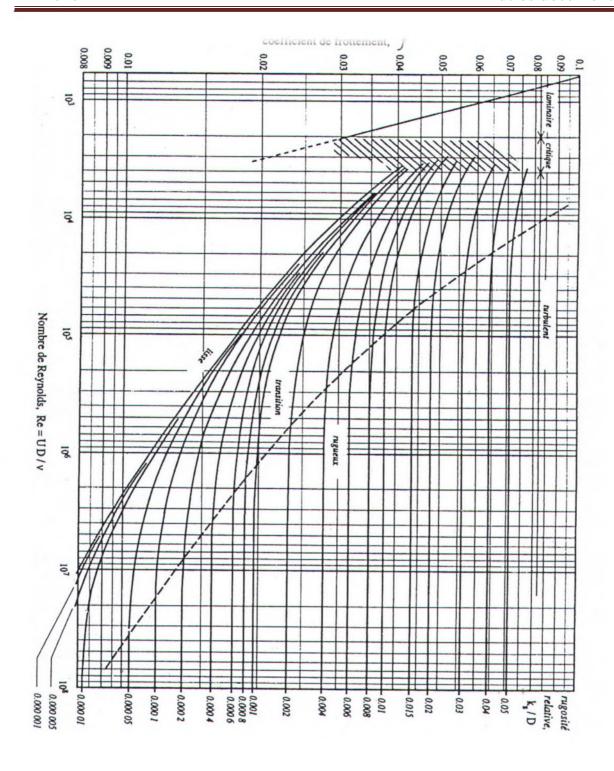

Profile des pressions dans la conduite (N7-N21) avec brise charge


Distribution des débits dans le réseau de l'étage (01) en cas de pointe et d'incendie


Distribution des débits dans le réseau de l'étage (02) en cas de point et d'incendie


Profile des pressions dans la conduite (R2-N27) sans vannage

Profile des pressions dans la conduite (R2-N27) après vannage



Profile des pressions dans la conduite (R2-N46) sans vannage

Profile des pressions dans la conduite (R2-N46) après vannage

ANNEXE III: AUTRES DOCUMENT

Abaque de Moody

Prix de revient des conduites en PEHD et en Acier

Diamètr	re des conduites (mm)	Prix de revient (DA/ml)
	63	297.32
	75	418.08
	90	528.47
	110	782.67
	125	1016.86
	160	1657.95
EN PEHD	200	2607.98
(PN 16)	250	4040.43
	315	6393.77
	400	10382.72
	500	17339.94
	630	27995.64
	100	1400.00
	125	1800.00
	150	2400.00
	200	3000.00
EN Acier	250	3300.00
	300	3800.00
	350	6500.00
	400	9000.00

Epaisseur des conduites en PEHD

Gammes des tubes PEHD Eau

Selon ta norme: NF EN 12201-2 / NA 7700-2

Tubes PE 80

CODE	Ø PN 06	EPAISSEUR
11 002 0201	20 + 0.3	2.0 + 0.3
11 002 0251	25 + 0.3	2.0 + 0.3
11 002 0321	32 + 0.3	2.0 + 0.3
11 002 0401	40 + 0.4	2.0 + 0.3
11 002 0501	50 + 0.4	2.4 + 0.4
11 002 0631	63 + 0.4	3.0 + 0.4
11 002 0751	75 + 0.5	3.6 + 0.5

CODE	Ø PN 10	EPAISSEUR
11 003 0201	20 + 0.3	2.0 + 0.3
11 003 0251	25 + 0.3	2.0 + 0.3
11 003 0321	32 + 0.3	2.4 + 0.4
11 003 0401	40 + 0.4	3.0 + 0.5
11 003 0501	50 + 0.4	3.7 + 0.5
11 003 0631	63 + 0.4	4.7 + 0.6
11 003 0751	75 + 0.5	5.6 + 0.7

CODE	Ø PN 16	EPAISSEUR
11 004 0201	20 + 0.3	2.3 + 0.4
11 004 0251	25 + 0.3	3.0 + 0.4
11 004 0321	32 + 0.3	3.6 + 0.5
11 004 0401	40 + 0.4	4.5 + 0.6
11 004 0501	50 + 0.4	5.6 + 0.7
11 004 0631	63 + 0.4	7.1 + 0.9
11 004 0751	75 + 0.5	8.4 + 1.0

Tubes PE 100

CODE	Ø PN 06	EPAISSEUR
11 006 0901	90 + 0.6	3.5 + 0.5
11 006 1101	110 + 0.7	4.2 + 0.6
11 006 1251	125 + 0.8	4.8 + 0.6
11 006 1601	160 + 1.0	6.2 + 0.8
11 006 2001	200 + 1.2	7.7 + 0.9
11 006 2501	250 + 1.5	9.6 + 1.1
11 006 3151	315 + 1.9	12.1 + 1.4
11 006 4001	400 + 2.4	15.3 + 1.7
11 006 5001	500 + 3.0	19.1 + 2.1
11 006 6301	630 + 3.8	24.1 + 2.6

CODE	Ø PN 10	EPAISSEUR
11 007 0901	90 + 0.6	5.4 + 0.7
11 007 1101	110 + 0.7	6.6 + 0.8
11 007 1251	125 + 0.8	7.4 + 0.9
11 007 1601	160 + 1.0	9.5 + 1.1
11 007 2001	200 + 1.2	11.9 + 1.3
11 007 2501	250 + 1.5	14.8 + 1.6
11 007 3151	315 + 1.9	18.7 + 2.0
11 007 4001	400 + 2.4	23.7 + 2.5
11 007 5001	500 + 3.0	29.7 + 3.1
11 007 6301	630 + 3.8	37.4 + 3.9

CODE	Ø PN 16	EPAISSEUR
11 008 0901	90 + 0.6	8.2 + 1.0
11 008 1101	110 + 0.7	10.0 + 1.1
11 008 1251	125 + 0.8	11.4 + 1.3
11 008 1601	160 + 1.0	14.6 + 1.6
11 008 2001	200 + 1.2	18.2 + 2.0
11 008 2501	250 + 1.5	22.7 + 2.4
11 008 3151	315 + 1.9	28.6 + 3.0
11 008 4001	400 + 2.4	36.3 + 3.8
11 008 5001	500 + 3.0	45.4 + 4.7
11 008 6301	630 + 3.8	57.2 + 5.9

CODE	Ø PN 20	EPAISSEUR
11 009 0901	90 + 0.6	10.1 + 1.2
11 009 1101	110 + 0.7	12.3 + 1.4
11 009 1251	125 + 0.8	14.0 + 1.6
11 009 1601	160 + 1.0	17.9 + 1.9
11 009 2001	200 + 1.2	22.4 + 2.4
11 009 2501	250 + 1.5	27.9 + 2.9
11 009 3151	315 + 1.9	35.2 + 3.7
11 009 4001	400 + 2.4	44.7 + 4.6
11 009 5001	500 + 3.0	55.8 + 5.7
11 009 6301	630 + 3.8	70.3+7.2

