République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'**Hydraulique**

Laboratoire de Recherche en Hydraulique Appliquée et Environnement (LRHAE)

MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

IDJEGA Bariza

LOUCIF Rafika

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: Hydraulique urbaine

INTITULE:

ALIMENTATION EN EAU POTABLE DE CHEF LIEU DE LA COMMUNE DE BENI OURTILANE ET DISTRIBUTION DU VILLAGE D'AGRADOU (WILAYA DE SETIF)

Soutenu le 23 / 06 / 2016 devant le jury composé de :

- Président : Mr. SELLAOUI.A

- Promoteur : Mr. BENDAHMANE .I

Mr. MEKAOUCHE.N

Examinateur : Mr HAMCHAOUI

Année Universitaire: 2015/2016

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane MIRA de Bejaia

Faculté de Technologie Département d'**Hydraulique**

Laboratoire de Recherche en Hydraulique Appliquée et Environnement (LRHAE)

MÉMOIRE DE FIN D'ÉTUDES

Présenté par :

IDJEGA Bariza

LOUCIF Rafika

En vue de l'obtention du diplôme de MASTER en Hydraulique

Option: Hydraulique urbaine

INTITULE:

ALIMENTATION EN EAU POTABLE DE CHEF LIEU DE LA COMMUNE DE BENI OURTILANE ET DISTRIBUTION DU VILLAGE D'AGRADOU (WILAYA DE SETIF)

Soutenu le 23 /06 /2016 devant le jury composé de :

- Président : **Mr.** SELLAOUI.A

Promoteur (s): **Mr.** BENDAHMANE .I

Mr. MEKAOUCHE .N

Examinateur (s): Mr. HAMCHAOUI.S

Année Universitaire: 2015/2016

Remerciements

Voici enfin que ce modeste travail arrive à terme. On tient à exprimer toutes notre reconnaissance à ceux qui au long de ce mémoire nous ont apporté leur soutien, la participation de certains a été décisive pour l'aboutissement de ce travail qu'il nous est agréable de présenter tout particulièrement.

On remercie dieu le tout puissant, de nous avoir donné tout le courage et la patience pour mener ce travail à terme.

On tient tout d'abord à exprimer notre profonde gratitude et un grand respect à notre promoteur M^r BENDAHMANE.I pour la clarté de ses enseignements, son soutien indéfectible et sa patience à toute épreuve afin que cette thèse soit menée à bien.

On exprime une reconnaissance toute particulière et singulière à M^r MEKAOUCHE. N (notre Co -promoteur) pour ses conseils, sa disponibilité, son attention et son appui continuel et fructueux, pour nous avoir orienté, on lui exprime gratitude et nos profond respects.

Nos sincères remerciements s'adressent aussi aux membres de jury d'avoir accepter de juger notre travail.

Nous voudrons remercier la Subdivision Hydraulique de BENI-OURTILANE pour avoir mis à notre disposition tout les documents et données afin de réaliser ce modeste travail. En outre et sans oublier BET-DHC IGHZER AMOUKRANE en particulier M^r DJENKAL.F pour tout les documents, données ainsi que ses encouragements

Nous remercions très chaleureusement toutes les enseignants hydrauliques en particulier M^r HAMANI.S et M^r BENHADDAD.D qui ont contribué à notre formation sans oublier tout mes amis hydrauliciens.

A mes parents les plus chers au monde qui m'ont tout donné, encouragement, soutiens et surtout amour, que dieu le tout puissant les protègent.

A mes très chères sœurs: Djida, Lila, Sabrina

A mes très chères frères : Yacine, Nourdine, En particulier Faouzi et Rafik

A mes neveux et nièces chacun à son nom

A mon très chèr fiancé Ghani qui m'a beaucoup encouragé, ainsi qu'à toute ma belle famille.

A toute mes amies: Souad, Kassia, Bariza, Firouz, Tinhinane en particulier Sabrina et zakia.

A toute la promo de l'Hydraulique 2015/2016.

Et à tous mes amis de prés ou de loin.

L.RAFIKA

Dédicace

Je dédie ce modeste travail

Spécialement à ma très chère mère, et mon très cher mari pour leurs Sacrifices,

leurs amours, leurs aides et leurs soutiens afin de me voir arriver à ce

Que je suis devenu aujourd'hui.

A mon père, mon grand père et mon oncle masaoude qui sont restent dans ma mémoire

A ma chère tante nadia et mon oncle idris

A mes très chère sœur saida, hajira, sohila, mariame et naima

A mes frères : nourdine, moursada, yacine et najim

A mes copines de chambre mebarka,thamazighth, samia,damia et siham

SOMMAIRE

INTRODUCTION GENERALE	1
CHAPITRE I : Présentation du site et Estimation des besoins	
I.1. Présentation du site	2
I.1.1.Situation géographique	2
I.1.2. Situation topographique	
I.1.3.Situation climatologique	
I.1.4.Relief	2
I.1.5. Situation démographique	2
I.1.6. Situation hydraulique	3
I.1.6.1.Ressources en eau	3
I.1.6.2. Systèmes d'alimentation en eau potable	3
I.1.6.3. Ouvrages de stockage	3
I.2. Estimation des besoins	3
I.2.1. Situation démographique de la zone d'étude	3
I.2.2. Estimation de la population future	
I.2.3.Détermination de la consommation moyenne journalière	
I.2.3.1.Choix des normes de consommation	5
I.2.3.2.Les différents besoins	
I.2.3.3. Récapitulation des différents besoins en eau	12
I.2.4.Majoration de la consommation moyenne journalière	
I.2.5. Variation de la consommation journalière	13
I.2.5.1.La consommation maximale journalière	13
I.2.5.2.La consommation minimale journalière	
I.2.6. Variation de la consommation horaire	14
I.3.Conclusion	15
CHAPITRE II: Réservoirs	
II.1.Introduction	16
II.2. Rôle des réservoirs	16
II.2.1. Rôle de régulateur et accumulateur	16
II.2.2.Vérification des pressions	16
II.2.3.Gain d'énergie au niveau de la station de pompage	16
II.2.4.Utilité pour briser la charge	16
II.2.5.Stockage de la réserve d'incendie	16
II.3.Emplacement des réservoirs.	16
II.4.Classification des réservoirs.	16
II.5. Choix du type de réservoir	17
II.6.Equipements des réservoirs	17
II.6.1.Conduites d'adduction	17
II.6.2.Conduite de trop-plein	18
II.6.3.Conduite de vidange	
II.6.4.Conduite de distribution	
II.6.5. La réserve incendie	
II.6.6.By-pass	
II.7. Calcul de la capacité des ouvrages de stockage	
III.7.1. Les réservoirs de stockage	
II.7.2. La station de reprise	21

II.8.Dimensionnementdesréservoirsetdesstationsdereprises	21
II.8.1.Dimensionnement des réservoirs et des stations de reprises de Beni Ourtilan	21
II.8.2. Dimensionnement des réservoirs et des stations de reprises de Agradou	24
II.9. Conclusion.	26
CHAPITRE III: Etude d'adduction	
III.1. Introduction.	27
III.2. Choix du tracé	
III.3.Schéma d'adduction.	
III.4.Choix du type des conduites	
III.5. Etude technico-économique de l'adduction	
III.5.1. Calcul de diamètre économique	
III.5.2. Calcul de la vitesse.	
III.5.3. Calcul des pertes de charge	31
III.5.4.Calculs de la hauteur manométrique totale Hmt	
III.5.5. Puissance absorbée par la pompe	
III.5.6. Energies annuelles consommées par la pompe	
III.5.7.Frais d'exploitation	
III.5.8.Frais d'amortissement	
III.5.9.Calcul du bilan total des frais.	33
III.5.10.Prix des conduites.	33
III.6.Dimensionnement des conduites de la commune de Beni-Ourtilane	34
III.6.1. la conduite reliant F02 – SR1	
III.6.2. la conduite reliant SR1 – SR2	35
III.6.3. la conduite reliantSR2 – SR3	36
III.6.4. la conduite reliantSR3 –R _{tanorba} 37	
III.7. Dimensionnement des conduites de village d'Agradou	39
III.7.1. la conduite reliantF01 – SR	
III.7.2. la conduite reliant $SR - R_{mlata}$	40
III.8.Récapitulatif des résultats	41
III.9.Conclusion	42
CHAPITRE IV : Pompes et station de pompage	
IV.1. Introduction.	43
IV.2. Différents types des pompes	43
IV.2.1. Pompes volumétriques	
IV.2.2. Turbo-pompes	43
IV.3. Choix des pompes	
IV.4. Caractéristiques hydrauliques des pompes centrifuges	44
IV.4.1. Hauteur manométrique	44
IV.4.2. La vitesse de rotation.	44
IV.4.3. La puissance	44
IV.4.4. Le rendement	45
IV.5. Les courbes caractéristiques d'une pompe centrifuge	45
IV.5.1. La courbe hauteur-débit « $H = f(Q)$ »	
IV.5.2. La courbe rendement – débit « $\eta = f(Q)$ »	
IV.5.3. La courbe des puissances absorbées – débit « Pa = f (Q) »	45
IV.6. Le point de fonctionnement de la pompe	45
IV.7. Les modes de couplage	48
IV.7.1. Couplage en série.	
IV.7.2. Couplage en parallèle	
IV.8. Etude de la cavitation	48

IV.9. Choix des pompes du projet	50
IV.9.1. Choix des pompes de réseau de Beni Ourtilane	50
IV.9.1.1.Forage F02	50
IV.9.1.2. Vérification de la cavitation des pompes choisies	51
IV.9.1.3.Station de reprise 01	51
IV.9.1.4. Vérification de la cavitation des pompes choisies	52
IV.9.1.5. Station de reprise SR02	
IV.9.1.6. Vérification de la cavitation des pompes choisies	53
IV.9.1.7. Station de reprise 03	
IV.9.1.8. Réalisation du point de fonctionnement	
IV.9.1.9. Vérification de la cavitation des pompes choisies	
IV.9.2. Choix des pompes de réseau d'Agradou	
IV.9.2.1.Forage F01	
IV.9.2.2 vérification de la cavitation des pompes choisies	56
IV.9.2.3. Station de reprise.	
IV.9.2.4. Vérification de la cavitation des pompes choisies	57
IV.9.3. Tableau récapitulatif	
IV.10.Conclusion.	
CHAPITRE V : Protection et pose des conduites	,50
	50
V.1.Introduction	
V.2.Protection des conduites contre de la corrosion	
V.2.1. Définition	
V.2.2. Les principaux facteurs de corrosion.	
V.2.3.Protection des conduites en fonte contre la corrosion	
V.3.Protection des conduites contre de coup de bélier	
V.3.1. Définition et causes.	
V.3.2. Les dispositifs de protection.	
V.3.2.1. Les volants d'inertie.	
V.3.2.2. Les soupapes de décharge	
V.3.2.3. Cheminée d'équilibre.	
V.3.2.4. Réservoirs d'air.	
V.3.3. Valeur numérique de coup de bélier	61
V.3.4. Calcul du coup de bélier pour les différents tronçons pour le réseau de Beni Ourtila	ane.62
V.3.5. Calcul du coup de bélier pour les différents tronçons pour le réseau d'Agradou	
V.4. Pose des conduites	68
V.4.1. Introduction.	68
V.4.2. Pose en tranchées	68
V.4.3. Essai de pression	68
V.4.4. Le remblayage	68
V.4.5. Traverse des points spéciaux	
V.4.6. Les butées.	69
V.4.7. Désinfection des conduites	71
V.5.Conclusion.	
CHAPITRE VI : Etude du réseau de distribution	
VI.1. Introduction	72
VI.2. Classification des réseaux de distribution	
VI.2.1 La classification selon la disposition des réseaux dans l'agglomération	
VI.2.1 La classification selon la disposition des reseaux dans l'aggiorneration	
VI.2.2 Classification selon la disposition des tronçons dans le reseau	14
VI.2.2.1. Reseau raillife / 2 VI.2.2.2. Réseau maillé	72
7 1.4.4.4. IXODUU IIIUIIIO	/ 🚄

Liste des figures

Fig (I.1): Limite administrative de la zone d'étude	2
Fig (I.2): Evaluation de la population	5
Fig (II.1) : Coupe transversale d'un réservoir de stockage de type semi-enterré	.17
Fig (II.2): Adduction avec chute libre	.18
Fig (II.3): Adduction noyée	
Fig (II.4): Conduite de trop plein et de vidange	.18
Fig (II.5): Emplacement de la conduite de distribution	
Fig (II.6): Système à deux prises	.19
Fig (II.7): Système à siphon	.20
Fig (II.8) : Schéma représentant de By-pass	.20
Fig(II.9): Détermination graphique de la capacité du réservoir de cheflieu de BenOurtilane.	.23
Fig (III.1): Schema d'adduction (Beni-ourtilane)	28
Fig(III.2):Schémad'adduction(Agradou)	.29
Fig (IV.1): pompe centrifuge	.44
Fig (IV.2): pompe hélico- centrifuge	.44
Fig (IV.3): pompe axiale	
Fig (IV.4): Courbes caractéristiques d'une pompe centrifuge	.45
Fig (IV.5): Recherche de la réalisation du point de fonctionnement désiré	.47
Fig (IV.6): schéma d'instalation d'une pompe en dépression	.49
Fig (IV.7): schéma d'instalation d'une une pompe en charge	.50
Fig (IV.8): Courbes de la pompe du forage F02	.51
Fig (IV.9): Courbes de la pompe du SR01	.52
Fig(IV.10) :Courbes de la pompe du SR02	.53
Fig(IV.11) :Courbes de lapompe du SR03	.54
Fig (IV.12): Courbes de la pompe du Forage01	
Fig (IV.13): Courbes de la pompe du SR	.57
Fig (V.1): Schéma d'un réservoir d'air (anti-bélier)	
Fig (V.2): Enveloppes des pressions (F02-SR01)	
Fig (V.3): Enveloppes des pressions (SR01-SR02)	
Fig (V.4) :Enveloppes des pressions (SR02-SR03)	.64
Fig (V.5) :Enveloppes des pressions (SR03-R _{tanorba})	
Fig (V.6) :Enveloppes des pressions (F01-SR)	.66
	67
Fig(V.8) :Coupe transversale d'une fouille	
Fig (V.9): Traversée d'une route	.69
Fig (V.10) : Traversée d'une rivière ou d'un Oued	
Fig (V.11) :Butée sur un branchement	
Fig(V.12) :Butée sur un coude horizontal.	
Fig (V.13): Butée sur un coude vertical.	
Fig (VI.1): Réseau ramifié	
Fig (VI.2): Réseau maillé	
Fig (VI.3): Réseau mixte	
Fig (VI.4): Etat du réseau après la simulation(R-B1)	
Fig (VI.5): Etat du réseau après la simulation(B1-B2)	
Fig (VI.6): Etat du réseau après la simulation(B2-B3)	80

Fig (VI.7): Etat du réseau après la simulation(B3-B4)	80
Fig (VI.8): Etat du réseau après la simulation(B4-N23)	81
Fig (VI.9): Etat du réseau après la simulation(R-B1)	83
Fig (VI.10): Etat du réseau après la simulation(B1-B2)	
Fig (VI.11): Etat du réseau après la simulation(B2-B3)	
Fig (VI.12): Etat du réseau après la simulation(B3-B4)	
Fig (VI.13): Etat du réseau après la simulation(B4-N23)	

Liste des tableaux

Tableau (I.1): Ressources en eau disponible	3
Tableau (I.2): Caractéristiques des réservoirs existants	3
Tableau (I.3): répartition de la population	
Tableau (I.4): Evaluation de la population à différents horizons	5
Tableau (I.5): Normes de consommation pour les différents équipements	
Tableau (I.6): Besoins domestique	8
Tableau (I.7): Les besoins scolaires	8
Tableau (I.8): Les besoins administratifs	9
Tableau (I.9): Les besoins sanitaires	
Tableau (I.10): Les besoins socioculturels	10
Tableau (I.11): Les besoins commerciaux	
Tableau (I.12): Récapitulation des différents besoins	12
Tableau (I.13): Tableau récapitulatif de la consommation moyenne journalière	12
Tableau (I.14): calcul des consommations moyennes, min et max journalières	
Tableau (I.15): les valeurs de β_{max} et K_{max} h	
Tableau (II.1): Détermination analytique de la capacité du réservoir de Tanorba	
Tableau (II.3): Détermination de la capacité du réservoir de Mlatas	
Tableau(III.1): Prix de revient des conduites en fonte ductile	
Tableau (III. 2): calcul des pertes de charge et de la Hmt de la conduite F02-SR1	
Tableau (III. 3): les frais d'amortissement et d'exploitation de la conduite F02-SR1	
Tableau (III. 4): Bilan de frais de la conduite F02-SR1	
Tableau (III. 5): calcul des pertes de charge et de la Hmt de la conduite SR1-SR2	
Tableau (III. 6): les frais d'amortissement et d'exploitation de la conduite SR1-SR2	
Tableau (III. 7): Bilan de frais de la conduite SR1-SR2	
Tableau (III. 8): calcul des pertes de charge et de la Hmt de la conduite SR2-SR3	
Tableau (III. 9): les frais d'amortissement et d'exploitation de la conduite SR2-SR3	
Tableau (III. 10): Bilan de frais de la conduite SR2-SR3	
Tableau (III. 11): calcul des pertes de charge et de la Hmt de la conduite SR3-R _{tanorba}	
Tableau(III.12): les frais d'amortissement et d'exploitation de la conduite SR3-R _{tanorba}	
Tableau (III. 13) :Bilan de frais de la conduite SR3- R-tanorba	
Tableau (III.14): calcul des pertes de charge et de la Hmt de la conduite F01-SR	
Tableau (III.15): les frais d'amortissement et d'exploitation de la conduite F01-SR	
•	40
Tableau (III. 17): calcul des pertes de charge et de la Hmt de la conduite SR- R _{MLATA}	
Tableau (III. 18): les frais d'amortissement et d'exploitation de la conduite SR- R _{MLATA}	
Tableau (III. 19): les hais d'amortissement et d'exploitation de la conduite SR- R _{MLATA}	
Tableau (III.20): Récapitulatif des différents diamètres calculés pour beni-ourtilane	
Tableau (III.20): Récapitulatif des différents diamètres calculés pour agradou	
Tableau (IV.1): Recapitulatif des différents diametres calcules pour agradou	
Tableau (IV.2): Les caractéristiques des différentes pompes sélectionnées(F02)	
Tableau (IV.3): Les caractéristiques des différentes pompes sélectionnées(SR01)	
Tableau (IV.4): Les caractéristiques des différentes pompes sélectionnées (SR02)	
Tableau (IV.5): Les caractéristiques des différentes pompes sélectionnées (SR03)	
Tableau (IV.6): Les caractéristiques des différentes pompes sélectionnées (F01)	
Tableau (IV.7) :Les caractéristiques des différentes pompes sélectionnées(SR)	
Tableau (IV.8): Les caractéristiques des différentes pompes choisies	
Tableau (V.1): les caractéristiques des conduites (F01-SR01)	
Tableau (V.2): Valeurs numériques du coup de bélier	62

Tableau (V.3): les caractéristiques de conduite(SR01-SR02)
Tableau (V.4): Valeurs numériques du coup de bélier63
Tableau (V.5): les caractéristiques de conduite(SR02-SR03)
Tableau (V.6): Valeurs numériques du coup de bélier64
Tableau (V.7): les caractéristiques de conduite(SR03-Rtanorba65
Tableau (V.8): Valeurs numériques du coup de bélier65
Tableau (V.9): les caractéristiques deconduite(F02-SR)66
Tableau (V.10) :Valeurs numériques du coup de bélier66
Tableau (V.11) :les caractéristiques deconduite (SR-R _{mlatas})
Tableau (V.12) :Valeurs numériques du coup de bélier67
Tableau (VI.1): Détermination des débits en nœuds76
Tableau (VI.2): Etat des nœuds du réseau82
Tableau (VI.3): Etat des conduites du réseau82
Tableau (VI.4): Etat des conduites du réseau (suit)83
Tableau (VI.5): Etat des nœuds du réseau86
Tableau (VI.6): Etat des arcs du réseau87
Tableau (VI.7): valeur de la pression au sol
Tableau (VI.8): valeur des vitesses et des pertes de charge

LISTE DES SYMBOLES

A : Amortissement annuel (Annuité)

a : Célérité de l'onde (m/s)

B_L: Bilan en (DA)

B : Valeur du coup de bélier (m)

CTN: Côte Terrain Naturel en (m)

CTP: Côte Trop Plein en (m)

C_{pj}: Cote piézométrique du même point considéré (m)

D : Diamètre du tuyau en (m)

D_{int}: Diamètre intérieur de la conduite (mm)

D_N : Diamètre normalisé en (m)

d' : Diamètre de la veine contractée en (m)

E: énergie annuelle consommée par la pompe (KWh)

e: Prix d'un Kwh fixé par la SONELGAZ; e = 4,67DA

e : Epaisseur de la conduite (mm)

g: Accélération de la pesanteur en m/s²

Jasp: Pertes de charge à l'aspiration en (m)

Hg: Hauteur géométrique en (m)

Jref: Pertes de charge au refoulement en (m)

Hmt: La hauteur manométrique totale en (m)

H₀: Pression absolue de la conduite

h: Perte de charge engendrée par vannage en (m)

i: Taux d'annuité

K : Coefficient de rugosité équivalente de la paroi

K': Coefficient dépendant de la nature du matériau de la conduite, pour les

Conduites en fonte : K' = 0.6.

K₀: Rugosité absolue des tuyaux neufs

 H_V : Tension maximale de vapeur d'eau, $H_V = 0.24$ m pour une température de 20°C

K_{max,j}: Coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération et Sa valeur est comprise entre 1.1 et 1.3

K_{min,j}: Coefficient d'irrégularité minimal qui varie entre 0.7 et 0.9

Kmax.h: Coefficient de variation de consommation maximum horaire

 $K_{min,h}$: Coefficient de variation de consommation minimum horaire

L : Longueur de la conduite en (m)

L_{ii}: Longueur du tronçon (i-j) en (m)

Lequ: longueur équivalente en (m)

m: Coefficient de rognage

Ni: Nombre de consommateurs

N_D: Niveau dynamique du forage en (m)

N: Vitesse de rotation de la pompe (tr/min)

n: nombre d'année d'amortissement la conduite (n=25 ans)

R: Coefficient qui caractérise la résistance de la conduite (m)

 $(NPSH)_d$: Charge nette minimale disponible à l'aspiration

(NPSH) r : Charge nette minimale requise à l'aspiration

P: Puissance de pompage en (KWh)

Patm: Pression atmosphérique au niveau de la mer, qui est de 10,33 m

Pa: Puissance absorbée par la pompe en (KW)

P_j: Pression au sol du point considéré (m)

P_n: Population future à l'horizon considéré

P₀: Pression absolue

P_U: Prix unitaire de la conduite (DA/ml)

P%: Résidu maximal dans le réservoir (%)

Q: Débit refoulé dans la conduite en m³/s

Qc: Somme des débits localisés en nœud considéré (1/s)

 $\mathbf{Q}_{\mathbf{max.h}}$: Débit entrant dans la station (m³/h)

Qmax,j: Débit d'eau maximal du jour le plus chargé de l'année

Q_{min,j}: Débit d'eau minimal du jour le moins chargé de l'année

Q_{moyen journalier}: Consommation moyenne journalière des consommateurs en m³/s

Q_{max,j}: Consommation maximale journalière en (m³/j)

 $\mathbf{Q_r}$: Débit en route de tronçon (l/s)

 $\mathbf{Q}_{\mathbf{S}}$: Débit spécifique (1/s/m)

 $\mathbf{Q_p}$: Débit de pointe (l/s)

q : Dotation moyenne journalière des consommateurs en l/j/cons

Re: Nombre de Reynolds

r: Pourcentage de rognage

S: Section de la conduite (m²)

T : Temps nécessaire pour maintenir la crépine en charge en (h)

tac: Taux d'accroissement annuel considéré

Tv: Pression de vapeur maximale que l'air peut supporter à une température donnée

t: Nombre d'heures de pompage (h)

T': Temps nécessaire pour l'agent peut fermer le robinet (T' = 20 min)

t': Temps de service = 25 ans

t_f: Temps de fermeture de la vanne(s)

U₀: Volume d'air initial

V : Vitesse d'écoulement en m/s

V₀: Vitesse de l'eau en régime permanent (m/s)

 V_{bc} : Volume de brise charge (m³)

V': nouveau volume d'air

 V_{inc} : Volume d'incendie = 120 m³

V_f: Vitesse finale choisie

V_{max}: Résidu maximal en (m³)

 V_{min} : Résidu minimal (m³)

V_m: Moyenne arithmétique de la vitesse choisie

Vsr: Volume de la station de reprise en (m³)

 V_{tot} = Volume total du réservoir en (m³)

V⁺: Valeur maximale de surplus

V⁻: Valeur minimale de déficit

Z: Pression dans le réservoir d'air

Z₀: Pression absolue

 α : le coefficient de vieillissement de conduite ($\alpha = 0.04$ mm/an)

amax: coefficient qui dépend du niveau de vie et du confort des habitants, il varie entre 1.2 et

1.4; dans notre cas on prend $\alpha_{max} = 1.3$ β_{max} : Coefficient qui dépend du nombre d'habitant

v : Viscosité cinématique de l'eau

ξ: Coefficient d'ouverture de la vanne en (%)

ρ: Masse volumique de l'eau

η: Rendement de la pompe en (%)

δ: Altitude du plan d'aspiration en (m)

 δ_0 : Pertes de charge dans la conduite en régime de fonctionnement normal

 λ : Coefficient de pertes de charge

Introduction générale

L'eau est un élément essentiel à la vie de tous les êtres vivants .vu sa répartition inégale dans la nature, l'homme en cherchant toujours à améliorer ses conditions de vie en s'offrant suffisamment d'eau potable, de bonne qualité et d'une façon continue, doit alors ramener l'eau de la source jusqu'au consommateur, et pour cela il est nécessaire de concevoir un fiable réseau d'alimentation en eau potable. et l'accroissement de la population nous exige un renforcement du réseau d'alimentation en eau potable afin de satisfaire les besoins.

La région de Beni Ourtilane à laquelle nous nous intéressons dans notre étude souffre du manque énorme d'eau, en raison de l'augmentation de la population et l'insuffisance des apports en eau d'un côté et de la vétusté des conduites et équipements du réseau d'un autre.

Pour cette raison, nous avons mis en pratique nos connaissances en hydraulique, acquises durant notre formation de Master en hydraulique urbaine, afin de concevoir une nouvelle chaine d'adduction à partir d'un nouveau forage, et un réseau d'alimentation en eau potable pour le village Agradou. Nous avons alors réparti notre travail en six chapitres :

Dans le premier chapitre, nous avons présenté la zone d'étude et estimé ses besoins en eau potable aux différents horizons, ce qui nous a permis de déterminer le volume des réservoirs, nécessaires pour stocker les quantités d'eau dans le deuxième chapitre.

Ensuite dans les chapitre trois, quatre et cinq, respectivement nous avons fait une étude technicoéconomique pour dimensionner les conduites d'adduction, et choisi les pompes adéquates pour les différentes stations de pompage, ainsi que la protection des différents tançons contre le phénomène du coup de bélier et les techniques de pose de conduites.

En dernier, nous avons déterminé les dimensions du réseau de distribution pour assurer l'alimentation pour l'ensemble des habitants du village d'Agradou.

Et nous terminant notre travail par une conclusion générale.

I.1.Présentation du site

I.1.1. Situation géographique

La région d'étude est située au Nord-Ouest de la wilaya de Sétif, à une distance de 77 km de son chef-lieu et on y accède par la route nationale RN74, elle s'étend sur une surface de 74km².la région est délimitée comme suite [1]:

Au Nord : par la commune de Beni Chebana (Sétif) et Beni Maouche (Béjaia).

Au Sud: par la commune de Ilemaine (Bordj Bou Arreridj).

A l'Est : par la commune de Ain Lagredj(Sétif). A l'Ouest : par la commune de Bouhamza (Bejaia).

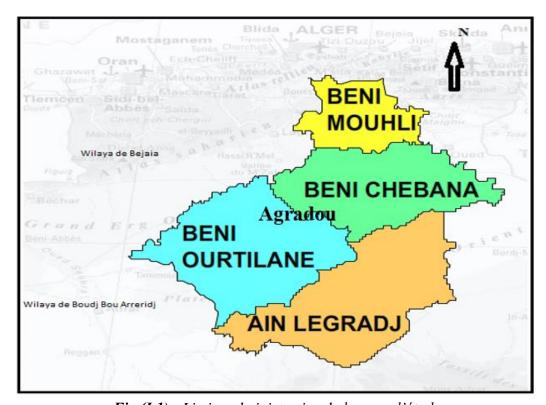


Fig (I.1): Limite administrative de la zone d'étude

I.1.2. Situation topographique

Beni Ourtilane est caractérisée par une forte dénivelée dont l'altitude moyenne de 800m, ce site perché sur une ligne de crête dont la topographie présente des déclivités dépassant les 30% [1].

I.1.3. Situation climatologique

Le climat qui caractérise la région présente des températures très élevées en période de chaleur qui arrive à 31° au mois de Juillet et des températures très basses en période hivernale qui atteint 3° au mois de Janvier, avec les pluies saisonnières et la neige, où la pluviométrie annuelle moyenne d'environ 600mm [1].

I.1.5. Situation démographique

La zone d'étude comporte deux localités :

1-La population de chef-lieu de la commune de Beni Ourtilane est de 4836 habitants selon le R.G.P.H (2008), cette population est répartie sur 6 villages sont : Beni Ourtilane centre, Fintikelt, Anou, Tighilts, Ighil Oufallah, Ighil Lekrim[1].

2-La population de village Agradou est de 840 habitants selon le R.G.P.H(2008), cette population est répartie sur un seul village c'est Agradou[2].

I.1.6. Situation hydraulique

I.1.6.1.Ressources en eau

Les différentes sources d'approvisionnement en eau dont disposent la commune de Beni Ourtilane et village agradou sont données dans le tableau (I.1) suivant [3] :

Tableau (I.1): Ressources en eau disponibles

	Beni O	urtilane	Agr	adou
forage	Nbre	Q tot (1/s)	Nbre	Qtot (l/s)
	01	25	01	10

I.1.6.2. Systèmes d'alimentation en eau potable

A.Beni Ourtilane: L'alimentation en eau potable de la commune de Beni Ourtilane se fait principalement par la chaine de refoulement à partir de forage 02 implantés sur le rive de l'oued bouselame

B.Agradou : L'alimentation en eau potable de le village d'agradou se fait principalement par la chaine de refoulement à partir de forage 01 implantés sur le rive de l'oued bouselame

I.1.6.3. Ouvrages de stockag

A.Beni Ourtilane est dotée du réservoir existant (R1) dont la capacité de 500m³ et alimenté par leforage02

B. Agradou est dotée de réservoir existant (R2) dont la capacité de 150m³ et alimenté par le forage01

Tableau (I.2): Caractéristiques des réservoirs existants.

I.2. Estimation des besoins

L'estimation des besoins en eau d'une agglomération exige une norme fixée pour chaque catégorie de consommateur. Cette norme unitaire (dotation) est définie comme un rapport entre le débit journalier et l'unité de consommateur (agent, élève, lit...), Cette estimation en eau dépend de plusieurs facteurs (évolution de la population, des équipements sanitaires, du niveau de vie de la population...).

I.2.1. Situation démographique de la zone d'étude

La région d'étude est départagée en (02) zones, Ces zones sont réparties comme suit :

- > Zones 1 : comprend les villages beni ourtilane centre, fintikelt,anou,tighilts,ighil oufallah et ighil lekrim .
- > Zones 2 : comprend le village agradou.

Selon les renseignements donnés par l'APC et la subdivision d'Hydraulique de Beni ourtilane, la zone d'étude compte une population d'environ **5676** habitants (RGPH 2008). La population de chaque zone est donnée dans le tableau (I.3) ci-dessous [3] :

	village	Nombre d'habitantes 2008	
	Beni Ourtilane centre	3286	
	Fintikelt	578	
Zone 1	Anou	263	
	Tighilts	273	
	Ighil oufallah	283	
	Ighil lekrim	153	
total		4836	
Zone 2	∆ gradou	840	

Tableau (I.3): répartition de la population

I.2.2. Estimation de la population future

L'élaboration de perspectives pour la commune concerne en premier lieu l'évolution des besoins urbains (habitat et équipements).

Cette évaluation est basée essentiellement sur les projections de la population établie au différentes échéances, court terme, moyen terme, long terme

$$P_n = P_0 \times (1 + t_{ac})^n$$
 (I.1)

Sachant que:

P_n: Population future à l'horizon considéré.

P₀: Population de l'année de référence.

tac: Taux d'accroissement annuel considéré.

n : Nombre d'années séparant l'année de référence et l'horizon considéré.

En se référant au dénombrement de la population fait en 2008 par les services d'urbanisme de l'A.P.C de la zone d'étude, on évaluera la population aux horizons futurs. On a retenu l'année en cours, le moyen et le long terme (2041). Les résultats sont présentés dans le tableau (I.4) suivant :

Taux d'accroissement localités	2% 2016	1,6% 2028	1,6% 2041
Beni Ourtilane centre	3850	4514	5549
Fintikelt	677	794	976
Anou	308	361	444
Tighilts	320	375	461
Ighil oufallah	332	389	478
Ighil lekrim	179	210	258
total	5666	6643	8166
Agradou	984	1154	1419

Tableau (I.4): Evaluation de la population à différents horizons

Suivant le tableau (I.4), on trace un graphe traduisant l'évaluation de la population par année, et on obtient la représentation ci desous (Figure(I.1)).

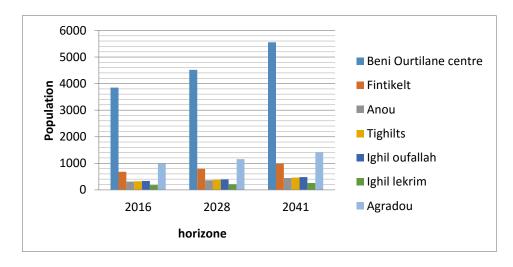


Fig: (I.2): Evaluation de la population

I.2.3. Détermination de la consommation moyenne journalière

La consommation moyenne journalière désignée par Q_{moy j} est donnée par :

$$Q_{\text{moyj}} = \frac{\text{N.D}}{1000} \tag{I.2}$$

Avec:

 $Q_{\text{moy}i}$: Consommation moyenne journalière en m³/j.

N : nombre de consommateurs. D : dotation moyenne en l/j/cons.

I.2.3.1. Choix des normes de consommation

La quantité d'eau nécessaire à l'alimentation d'une agglomération est généralement évaluée en litre par habitant et par 24 heures, par Carré de surface de végétaux, par mètre cube, par tonne de productivité, par tête d'animal, par véhicule....etc.

Cette quantité d'eau s'appelle la norme de consommation, c'est à dire la norme moyenne Journalière de la consommation en litre par jour et par usager qui dépend de certains critères dont les principaux sont :

- Le niveau de vie de la population.
- Le nombre d'habitants.
- Le développement urbain de la ville.
- Ressources existantes.

Il est très difficile d'évaluer avec précisions les besoins en eau d'une agglomération à cause de l'absence des systèmes de comptage au niveau des réservoirs et des conduites de distributions.

I.2.3.1.1. Choix des normes de consommation domestique

La consommation en eau par personne et par jour est différente, elle dépend du type de l'agglomération, du nombre d'habitants et du niveau de confort des habitants. Pour une agglomération urbaine (plus de 5000 habitants), elle varie de 150l/j.hab à 250l/j.hab.

I.2.3.1.2. Normes de consommations pour les différentes utilisations

Les normes de consommations pour les différents équipements existants sont données dans le tableau (I.5) suivant :

Tableau (I.5): Normes de consommation pour les différents équipements

	(1.5) : Normes de consommatic			
Equ	Equipements Unité		Dotation(l/j/unité)	
	Primaire			
Scolaire	C.E.M	Elève	10	
	Lycée			
	C.F.P.A			
	Polyclinique	patient	50	
Sanitaire	Salle de soins	patient	50	
	Dentiste/médecin	patient	50	
	Mosquée	Fidèle	20	
Socioclturel	Crèche	Elève	30	
	Centre des handicapés	patient	30	
	Club sportif amateur Adhérant		60	
	bibliothèque /Centre culturel	Adhérant	05	
	Siège de daïra		30	
	Siège d'APC			
	Agence postale			
	Banque BADR			
	Protection civile			
	Subdivision d'hydraulique			
	L'habitat			
	T. Public			
Administratif		Employé	10	
Tidiiiiistidii	Services des impôts			
	SAA			
	CNAS			
	CNR			
	Gendarmerie			
	La police			
	Siège de justice			
	Agence commerciale			
	Trésorier communal			
	bureaux d'avocat			
	Entreprise/bureaux d'étude			
	Superette/boutique	Employé	10	
	Fast Food/restaurant	place	100	
	pharmacie	Employé	05	
	Café	Café	500	
	Lavage/graissage	Employé	20	
	Boulangerie	Boulangerie	200	
	Pâtisserie	Employé	30	
Commerce	Mécanique auto	Employé	30	
	Menuiserie	Employé	10	
	Douche public	visiteur	200	
	Dégraissage	Employé	100	
	Abattoir	Tonne de viande	4000	
	Coiffure	Employé	20	
	Hôtel	client	150	
	Boucherie	Employé	40	
	= = = = = = = = = = = = = = = = = = = =	rj-		

I.2.3.2. Différents besoins

> Besoins domestiques

On calcule la consommation moyenne journalière pour les deux zones. Les résultats sont résumés dans le tableau (I.6) suivant :

Tableau (I.6): Les besoins domestiques

	nombre	nombre	Dotation	Consommation	Consommation
Localité	d'habitant	d'habitant	moyenne	moyenne	moyenne
	Année	Année	(l/j/hab)	Journalière	Journalière
	2016	2041		(m^3/j) en 2016	(m^3/j) en 2041
Zone1	5666	8166	150	849 ,9	1224,9
Zone2	984	1419	150	147,6	212,85

> Besoins scolaires

On entend par besoins scolaires, les quantités d'eau demandées par les écoles primaires, moyennes et secondaires, privées ou publics, les centres de formation...etc.les besoins sont représentés dans le tableau (I.7) suivant :

Tableau (I.7): Les besoins scolaires

Localité	Equipement	Unité	Nombre	Dotation (l/j/unité)	Q _{moy.j} (m3/j)
	3. Ecoles primaires	élève	702		
Zone1	1 .C, E, M	élève	429	10	19,49
	1.LYCEE	élève	480		
	1.C.F.P.A	élève	338		
Zone2	1.Ecole primaire	élève	74	10	0,74

> Besoins administratifs

Les besoins administratifs sont représentés dans le tableau (I.8) suivant :

Tableau (I.8): Les besoins administratifs

localité	Equipement	Unité	Nombre	Dotation (l/j/unité)	$\begin{array}{c} Q_{\text{moy.j}} \\ (m^3/j) \end{array}$
	Siège de daïra		30	(a) ji dhareey	0,3
	Siège d'APC		55		0,55
	Agence postale		17		0,17
	Banque BADR		14		0,14
	Protection civile		55		0,55
	Subdivision d'hydraulique		5		0,05
	L'habitat		11		0,11
	T. Public	Employé	62		0,62
	Services des impôts		33	10	0,33
	SAA		5		0,05
	CNAS		10		0,1
Zone1	CNR		1		0,01
	Gendarmerie		62		0,62
	La police		forfaitaire		12
	Siège de justice		42		0,42
	Agence commerciale		10		0,1
	Trésorier communal		14		0,14
	7.bureaux d'avocat		21		0,21
	18.Entreprise/bureaux d'étude		72		0,72
Total1					17,19
Zone2	Siège d'APC	Employé	3	10	0,03

> Besoins sanitaires

Les besoins sanitaires sont représentés dans le tableau (I.9) suivant :

Tableau (I.9): Les besoins sanitaires

Localité	Equipement	Unité	Nombre	Dotation	Q _{moy.j}
				(l/j/unité)	(m^3/j)
	1.polyclinique		0,57		
Zone1	1.Salle de soins	patient	30	50	1,5
Zone1	02.Dentiste	patient	60	50	3
	10.Médecin	patient	200	50	10
Total1					15,07
Zone2	1.Salle de soins	patient	30	50	1 ,5

> Besoins socioculturels

Les besoins socioculturels sont représentés dans le tableau (I.10) suivant :

Tableau (I.10): Les besoins socioculturels

Localité	Equipement	Unité	Nombre	Dotation (l/j/unité)	$\begin{array}{c} Q_{\text{moy.}j} \\ (m^3/j) \end{array}$
Zone1	6. Mosquée	fidèle	818	20	16,36
	1.Crèche	élève	60	30	1,8
	1.Centre des handicapés	élève	80	30	2,4
	1.Club sportif amateur	adhérant	393	60	23,58
	1.bibliothèque /Centre culturel	adhérant	200	05	1
Total1					45,14
Zone2	2. Mosquée	fidèle	142	20	2,84

> Besoins commerciaux

Les différents besoins commerciaux sont représentés dans le tableau (I.11) suivant :

Tableau (I.11): Les besoins commerciaux

Localité	Equipement	Unité	Nombre	Dotation (1/j/unité)	$\begin{array}{c}Q_{moy.j}\\(m^3/j)\end{array}$
	25.Superette	Employé	50	10	0,5
	20.Fast Food/restaurant	place	1000	100	100
	5.pharmacie	Employé	15	10	0,15
	20.Café	Cafétérias	20	500	10
	6.Lavage/graissage	client	Forfa	nitaire	3
	3.Boulangerie	3.Boulangerie	3	200	0,6
	4.Pâtisserie	Employé	20	30	0,6
	5.Mécanique auto	Employé	15	30	0,45
Zone1	6.Menuiserie	Employé	24	10	0,24
	2.Douche public	visiteur	40	200	8
	3.Dégraissage	Employé	09	100	0,9
	1.Abattoir	Tonne de viande	forfaitaire		04
	1.Hôtel	client	06	150	0,9
	17.Boucherie	Employé	17	40	0,68
	2.usine de Marbre	Employé	06	30	0,18
	10. Coiffure	Employé	100	15	1,5
	85. Boutique	Employé	85	10	0,85
	2.Auto-école	Employé	4	10	0,04
Total1					132,59
	1. Café	1. Café	1	500	0,5
Zone2	1.Superette	Employé	1	10	0,01
	1.Boulangerie	boulangeries	1	200	0,2
Total2					0,71

I.2.3.3. Récapitulation des différents besoins en eau

Après l'étude détaillée des besoins, nous dressons un tableau récapitulatif pour pouvoir calculer le débit total nécessaire pour l'alimentation en eau potable de la localité jusqu'à l'horizon 2041.

Tableau (I.12): Récapitulation des différents besoins

Localité	Secteur	Besoin en eau en 2016 (m³/j)	Besoin en eau en 2041 (m³/j)
	Domestique	849 ,9	1224,9
	Scolaire	19,49	19,49
	Sanitaire	15,07	15,07
Zone 1	Socioculturel	45,14	45,14
	Administratif	17,19	17,19
	Commercial	132,59	132,59
Total 1		1079,38	1454,38
	Domestique	147,6	212,85
	Scolaire	0,74	0,74
Zone 2	Sanitaire	1,5	1,5
	Socioculturel	2,84	2,84
-	Administratif	0,03	0,03
	Commercial	0,71	0,71
Total 2		153,42	218,67

I.2.4. Majoration de la consommation moyenne journalière

On effectue une majoration de 20% afin de compenser les fuites au niveau du réseau d'alimentation en eau potable, qui sont en fonction du type des conduites, de la nature du terrain et de la qualité de l'entretien, et cela, afin d'éviter tout risque d'insuffisance dans la consommation journalière.

La consommation moyenne journalière majorée est représentée dans le tableau (I.13)

Tableau (I.13): Tableau récapitulatif de la consommation moyenne journalière

localité	Besoin (m³/j) en 2016	Besoin (m³/j) en 2041	pertes (m³/j) en 2016	pertes (m ³ /j) en 2041	Q _{moy majoré} (m ³ /j) en 2016	Qmoy majoré (m ³ /j)
		-				en 2041
Zone 1	1079,38	1454,38	215,88	290,88	1295,26	1745,26
Zone 2	153,42	218,67	30,68	43,73	184,10	262,40

I.2.5. Variation de la consommation journalière

Pour projeter un régime de travail d'un système d'alimentation en eau, il faut adopter le graphique de consommation probable. Au cours d'année, il existe une journée où la consommation est maximale ; de même il existe une journée où la consommation est minimale Par rapport à la consommation moyenne calculée, nous pouvons déterminer un rapport qui nous indique de combien de fois la consommation maximale est supérieure à la consommation moyenne. Ce rapport est désigné par le terme de coefficient d'irrégularité journalière maximum et noté $K_{\text{max,j}}$. De même, il existe un coefficient qui nous indique de combien de fois la consommation est inférieure par rapport à la consommation moyenne : ce rapport est appelé coefficient minimum d'irrégularité journalière et notée $K_{\text{min,j}}$, Ces débits sont donnés comme suit :

I.2.5. 1.La consommation maximale journalière

Elle se calcule comme suit :

$$K_{max.j} = \frac{Consommation \ maximale \ journalière}{Consommation \ moyenne \ journalière} \tag{I.3}$$

Donc:

$$Q_{\text{max},j} = K_{\text{max},j} \times Q_{\text{moy.major\'e}}$$
 (I.4)

Avec:

Q_{max,j}: Débit d'eau maximal du jour le plus chargé de l'année,

K_{max.j}: Coefficient d'irrégularité maximal qui dépend de l'importance de l'agglomération et Sa valeur est comprise entre 1.1 et 1.3

Dans notre étude, on prendra : $K_{max,j} = 1.2$

I.2.5. 2.La consommation minimale journalière

Elle se calcule comme suit :

$$K_{min.j} = \frac{Consommation \ minimale journalière}{Consommation \ moyenne journalière} \tag{I.5}$$

Donc:

$$Q_{min,j} = K_{min,j} \times Q_{moy,major\acute{e}}$$
 (I.6)

Avec:

Q_{min.j}: Débit d'eau minimal du jour le moins chargé de l'année, K_{min.j}: Coefficient d'irrégularité minimal qui varie entre 0.7 et 0.9

Dans notre étude, on prendra la valeur moyenne : $K_{min,j} = 0.8$

Les principaux résultats sont regroupés dans le tableau (I.14) suivant :

Localités	Consommation (m ₃ /j)	Horizon 2016	Horizon 2041
	Qmoy. j.majoré	1295,26	1745,26
		155401	2004.21
Zone 1	Q _{max.j}	1554,31	2094,31
	Q _{min.j}	1036,21	1396,21
	Qmoy j.majoré	184,10	262,40
Zone 2	Q _{max.j}	220,92	314,88
	Qmin.j	147,28	209,92

Tableau (I.14): calcul des consommations moyennes, minimales et maximales journalières

I.2.6. Variation de la consommation horaire

Les débits maximal et minimal subissent des variations horaires, ces dernières sont caractérisées par les coefficients de variation horaires, $K_{\text{max.h}}$ et $K_{\text{min.h}}$, appelés respectivement coefficients de consommation maximum et minimum horaire .Ces coefficients sont calculés respectivement pour la journée la plus chargée de l'année. Ils sont déterminés par les expressions suivantes :

$$K_{min.h} = \frac{Consommation minimalehoraire}{Consommation moyennehoraire}$$
 (I.7)

et

$$K_{\text{max.h}} = \frac{\text{Consommation maximale horaire}}{\text{Consommation moyennehoraire}}$$
 (I.8)

Avec:

La consommation moyenne horaire maximale :

$$Q_{\text{moy.h}} = \frac{Q_{\text{max.j}}}{24} \tag{I.9}$$

La consommation maximale horaire:

$$Q_p = K_{\text{max.h}} \times Q_{\text{moy.h.}} \tag{I.10}$$

La consommation moyenne horaire minimale :

$$Q_{\text{moy.h.min}} = \frac{Q_{\text{min.j}}}{24} \tag{I.11}$$

La consommation minimale horaire:

$$Q_{\min,h} = K_{\min,h} \times Q_{\text{moy},h,\min} \tag{I.12}$$

Par ailleurs, le coefficient K_{max.h} est défini comme suit :

$$K_{\text{max},h} = \alpha_{\text{max}} \times \beta_{\text{max}} \tag{I.13}$$

Avec:

 α_{max} : coefficient qui dépend du niveau de vie et du confort des habitants, il varie entre 1.2 et 1.4; dans notre cas on prend $\alpha_{max}=1.3$

 β_{max} : coefficient qui dépend du nombre d'habitant et sera déterminé par interpolation en utilisant les valeurs données dans l'annexe(1):

Les résultats de $K_{max,h}$ trouvés pour chaque zone à l'horizon de 2041sont donnés dans le tableau suivant :

 Localité
 Population (2041)
 β_{max}
 K_{max.h}

 Zone 1
 8166
 1.346
 1.75

 Zone 2
 1419
 1.832
 2.382

Tableau (I.15): les valeurs de β_{max} et $K_{max.h}$

La consommation maximale horaire se détermine comme suit :

$$Q_p = K_{\text{max.h}} \times Q_{\text{moy.h}}$$
 (I.14)

La valeur de $K_{max,h}$ nous permet de prévoir la variation de la consommation horaire le long de la journée, donc en se référant à annexe (2) on choisit les colonnes qui conviennent. La répartition de la consommation journalière est présentée dans les annexe (3) et (4)

En analysant l'annexe (3) précédent, on constate que le débit maximum horaire est de 157,073 m³/h qui correspond à l'horaire 12h-13h

En analysant l'annexe (4) précédent, on constate que le débit maximum horaire est de **32,747 m³/h** qui correspond à l'horaire **16h-17h**

I.3. Conclusion

Dans ce chapitre nous avons essayé de représenter la zone du projet, connaître la topographie, le climat, le relief, la démographie.

Ces différentes informations représentent les données de base pour l'élaboration de notre Travail et déterminer tous les débits journaliers (maximum et minimum) et les consommations horaires maximale qu'est la conception d'un nouveau réseau d'alimentation en eau potable.

II.1. Introduction

Les réservoirs sont généralement des ouvrages intermédiaires entre les réseaux d'adductions et de distributions. Ils jouent un rôle très important dans un réseau d'alimentation en eau potable et peuvent avoir plusieurs fonctions techniques et économiques.

II.2. Rôle des réservoirs

II.2.1. Rôle de régulateur et accumulateur

Dans une agglomération le débit refoulé par la station de pompage est généralement constant alors que la consommation est variable. Donc un réservoir s'avère indispensable pour assurer la régulation entre le débit refoulé et celui consommé.

II.2.2. Vérification des pressions

Il s'agit dans ce cas d'un réservoir d'équilibre. Le réservoir est placé à un point et à une altitude de telle sorte qu'il puisse assurer la pression nécessaire aux points les plus défavorables (très éloignés).

II.2.3. Gain d'énergie au niveau de la station de pompage

Ce réservoir permet de réduire les dépenses d'énergie en stockant les eaux pendant les heures creuses et en les distribuant pendant les heures de pointe.

II.2.4. Utilité pour briser la charge

Si le terrain présente un relief accidenté, en certains points du réseau, on peut avoir des pressions non admissibles, ce type de réservoir nous permet de diminuer la charge.

II.2.5. Stockage de la réserve d'incendie

On peut avoir deux cas:

- -un réservoir à part qui emmagasine la réserve d'incendie ; ceci est rare dans la pratique du fait du coût de réalisation de cette variante.
- -la réserve d'incendie est accumulée dans le réservoir d'alimentation.

II.3. Emplacement des réservoirs

L'emplacement des réservoirs dépend essentiellement des données topographiques et de la nature du terrain. Malgré qu'on a des réservoirs existants, leurs emplacements doit respecter les aspects suivants [4]:

- -L'emplacement du réservoir doit être aussi choisi de telle façon à pouvoir satisfaire les abonnés en pression suffisante.
- -Etre le plus près possible du centre de gravité de l'agglomération qu'il a à assurer.
- -L'alimentation du réseau doit se faire par gravité.
- -La cote du radier doit être supérieure à la plus haute côte piézométrique exigée dans le réseau.

II.4. Classification des réservoirs

Les réservoirs peuvent être classés selon [4] :

A) Leurs positions par rapport au sol

- Enterrés.
- Semi-enterrés.
- Surélevés ou sur tour appelés aussi châteaux d'eau

B) Leurs formes

- > Circulaires.
- > Carrés et rectangulaires.

De forme quelconque.

C) La nature du matériau de construction

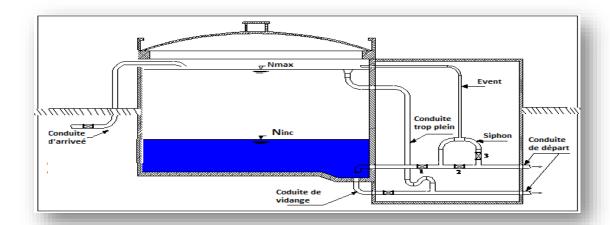
- Les réservoirs métalliques.
- Les réservoirs en maçonnerie.
- Les réservoirs en béton armé ordinaire ou précontraint.

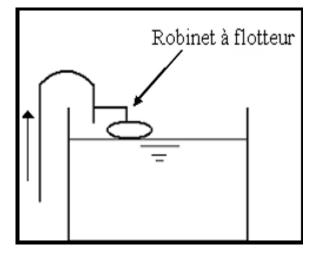
II.5. Choix du type de réservoir

La zone étudiée est très accidentée donc notre choix est fixé sur les réservoirs circulaires, semi-enterrées qui offrent les avantages suivants :

- ✓ L'étude architecturale est simplifiée.
- ✓ L'étanchéité est facile à réaliser.
- ✓ Conservation de l'eau à une température constante.
- ✓ Les frais de terrassement sont moins onéreux.

Le réservoir projeté est de type semi-enterré, schématisé dans la figure (II.1) suivante :




Fig (II.1): Coupe transversale d'un réservoir de stockage de type semi-enterré

II.6. Equipements des réservoirs

II.6.1. Conduite d'adduction

L'adduction s'effectue soit par chute libre (figure II.2), soit par le prolongement de la conduite de façon à ce que son extrémité reste toujours noyée (figure II.3).

La conduite d'adduction a son débouché dans le réservoir. Elle doit pouvoir s'obturer dès que l'eau atteint, dans la cuve, le niveau maximum. Cette obturation se réalise grâce à un robinet flotteur si l'adduction est gravitaire, ou par un dispositif permettant l'arrêt du moteur si l'adduction s'effectue par refoulement

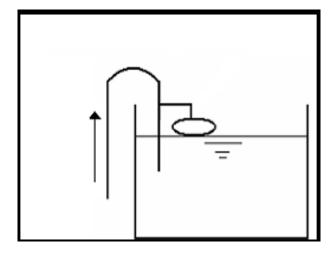


Fig (II.2): Adduction avec chute libre

Fig (II.3): Adduction noyée

II.6.2. Conduite de trop-plein

Elle sert à évacuer la totalité du débit arrivant au réservoir vers un exutoire lorsque le niveau d'eau dans celui-ci atteint sa limite maximale. Elle est prévue en cas de défaillance du système d'arrêt de pompage.

Pour éviter l'intrusion d'insectes ou de moustiques, nous aménageons un siphon dans la conduite de trop-plein (Figure II.4).

II.6.3. Conduite de vidange

Elle part du point bas du réservoir pour évacuer les dépôts et elle se raccorde sur la canalisation du trop-plein (Figure II.4).

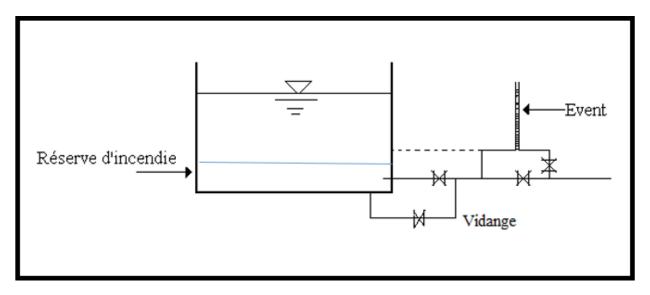


Fig. (II.4): Schéma représentant d'une vidange

II.6.4. Conduite de distribution

Le départ de la conduite de distribution sera à l'opposé de la conduite d'amenée, à une faible hauteur au-dessus du radier (de 0,15 à 0,20 m) pour éviter d'entraîner dans la conduite de distribution d'éventuels dépôts décantés dans le réservoir (Figure II.5).

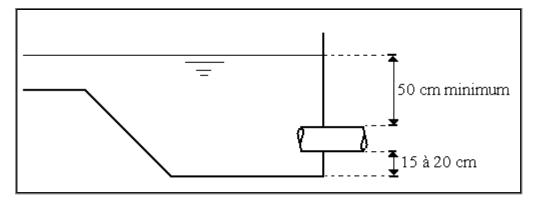


Fig. (II.5): Emplacement de la conduite de distribution

II.6.5. La réserve incendie

Afin de conserver une réserve d'eau permettant de lutter contre les incendies, des dispositions sont prises pour empêcher le passage de l'eau dans la réserve d'incendie. Dans la distribution, nous distinguons deux types de procédés :

> Le système a deux prises

En temps normal : (1) est fermé et (2) est ouvert. En cas d'incendie : (1) ouvert et (2) est fermé.

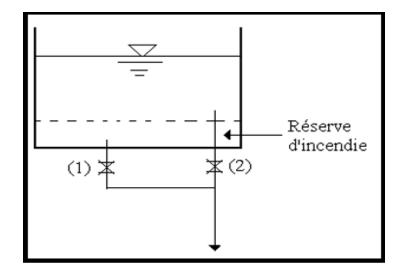


Fig. (II.6): Système à deux prises

> Le système a siphon

En temps normal : (1) et (3) ouverts et (2) fermé

En cas d'incendie : (2) est ouvert.

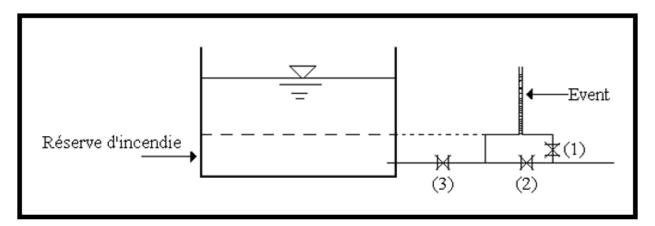


Fig. (II.7): Système à siphon

II.6.6. By-pass

C'est une communication directe entre l'adduction et la distribution, nous l'utilisons en cas de nettoyage du réservoir (Figure II.8).

En temps normal : (1) et (3) ouverts et (2) fermé En cas de nettoyage : (2) ouvert et (1) fermé

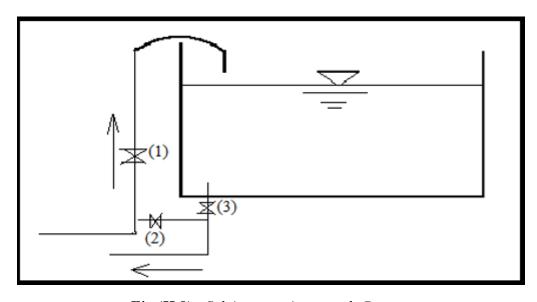


Fig (II.8): Schéma représentant de By-pass

II.7. Calcul de la capacité des ouvrages de stockage

III.7.1. Les réservoirs de stockage

A) Le volume de la réserve

Deux méthodes peuvent être proposées [5] :

A.1) Méthode Analytique

Le volume total du réservoir est calculé en tenant compte de la réserve d'incendie

$$V_T = V_u + V_{inc} \tag{II.1}$$

Avec:

 V_{inc} : Volume d'incendie = 120 m³.

Vu : Volume utile de stockage du réservoir est déterminé à partir de la formule suivante :

$$V_{u} = \frac{P_{\%}.Q_{\text{max.j}}}{100}$$
 (II.2)

Avec:

 $Q_{\text{max},j}$: Débit maximal journalier en (m^3/j) .

P% : Pourcentage du résidu maximum dans le réservoir en (%), il est donné par la formule(II.3) ci-après

$$P = |V^+| + |V^-|$$
 (II.3)

Avec:

V⁺: Valeur maximale de surplus. V⁻: Valeur minimale de déficit.

A.2) Méthode graphique

La méthode graphique tient compte de la courbe de consommation totale et de la courbe d'apport des débits pompés. On trace sur un même graphe les courbes cumulées des débits d'apport et de consommation en fonction du temps, le volume utile de stockage du réservoir est obtenu en sommant la valeur absolue de l'écart des deux extrêmes entre les deux courbes, ce volume est donné par la formule suivante :

$$V_{u}=V_{max}+V_{min}$$
 (II.4)

Avec:

V_{max}: Résidu maximal en (m³). V_{min}: Résidu minimal (m³).

II.7.2. Station de reprise

La station de reprise est un ouvrage équipé d'un réservoir et d'une station de pompage Le dimensionnement de cet ouvrage est déterminé en tenant compte du temps nécessaire pour maintenir la crépine en charge et pour que la pompe ne se désamorce pas. Ce temps est généralement pris égal un quarre d'heure (1/4 h). Pour procéder à la détermination du volume de la station de reprise, on utilise la formule suivante :

$$V_{sr} = Q_{max j} * T'$$
 (II.5)

Où:

✓ V_{sr} : Volume de la station de reprise (m³).

 \checkmark T': Temps nécessaire pour maintenir la crépine en charge (T' = 0,25 h).

✓ $Q_{max i}$: Débit arrivant à la station de reprise en (m³/h).

II.8. Dimensionnement des réservoirs et des stations de reprises

II.8.1. Dimensionnement des réservoirs et des stations de reprises de Beni Ourtilane

> Station de reprise (SR1, SR2, SR3)

Le volume du réservoir de la station de reprise SR1, SR2 et SR3 se calcule comme suit :

$$V_r = \frac{2094,31 \times 0,25}{20} = 26,18 \text{m}^3$$

On prend un volume standard de 50 m³.

Pour une hauteur de 4m, le diamètre de la bache à eau sera :

$$D = \sqrt{\frac{4 \times V_r}{\pi \times H}}$$

$$D = \sqrt{\frac{4 \times 50}{\pi \times 4}} = 3,99m$$
(II.6)

> Réservoir R Tanorba

Le réservoir de Tanorba est alimenté par refoulement à partir de la SR3. Il va assurer la distribution vers le chef-lieu de Beni Ourtilane dont le nombre d'habitant est de 8166 habitants, Avec $K_{max,h} = 1,75$ et $Q_{max,j} = 2094,31$ m³/j.

Les calculs de la capacité de réservoir sont donnés dans le tableau (II.1) suivant : *Tableau (II.1) : Détermination analytique de la capacité du réservoir de Tanorba*

Heures	Refoulement d'eau (m³/h)	Refoulement d'eau (%)	Distribution (m³/h)	Distribution (%)	Surplus	Déficit	Résidu
0-1	104,716	5	18,849	0,9	4,1		4,1
1-2	104,716	5	18,849	0,9	4,1		8,2
2-3	104,716	5	18,849	0,9	4,1		12,3
3-4	104,716	5	20,943	1	4		16,3
4-5	104,716	5	28,273	1,35	3,65		19,95
5-6	104,716	5	80,631	3,85	1,15		21,1
6-7	104,716	5	108,90	5,2		-0,2	20,9
7-8	104,716	5	129,847	6,2		-1,2	19,7
8-9	104,716	5	115,187	5,5		-0,5	19 ,2
9-10	104,716	5	122,517	5,85		-0,85	18,35
10-11	104,716	5	104,715	5	0		18,35
11-12	104,716	5	136,13	6,5		-1,5	16,85
12-13	104,716	5	157,073	7,5		-2,5	14,35
13-14	104,716	5	140,319	6,7		-1,7	12,65
14-15	104,716	5	112,046	5,35		-0,35	12,3
15-16	104,716	5	97,385	4,65	0,35		12,65
16-17	104,716	5	94,244	4,5	0,5		13,15
17-18	104,716	5	115,187	5,5		-0,5	12,65
18-19	0	0	131,942	6,3		-6,3	6,35
19-20	0	0	112,045	5,35		-5,35	1
20-21	0	0	104,715	5		-5	-4
21-22	0	0	62,829	3		-3	-7
22-23	104,716	5	41,886	2	3		-4
23-24	104,716	5	20,943	1	4		0
Total	2094,31	100	2094,31	100	28,95	-28,95	0

D'après les résultats du tableau (II.1), on a :

- $R^+ = 21.1$
- $\bullet \qquad R^{-} = -7$

Donc:

 $V_r = 28,1*2094,31 \div 100 = 588,50 \text{ m}^3$

 $V_t = 588,50 + 120 = 708,50 \text{ m}^3.$

Le réservoir principal du chef-lieu de Beni Ourtilane à une capacité de 500m³, le volume calculé est 708,50 m³, le réservoir est insuffisant, alors on réalise un autre réservoir près de réservoir existant avec une capacité de 350 m³.

Les résultats calculés dans le tableau (II.1) ci-dessus sont représentés dans la figure (II.9) ci-après

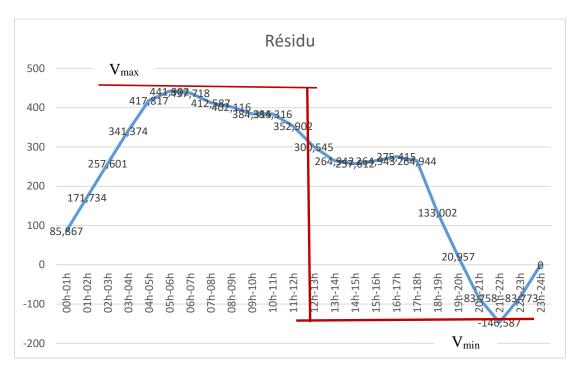


Fig. (II.9): Détermination graphique de la capacité du réservoir de chef-lieu de Beni Ourtilane

* Diamètre du réservoir

Après avoir déterminé la capacité du réservoir projeté, on fixe sa hauteur $\mathbf{H} = \mathbf{6} \mathbf{m}$, son diamètre est donné par la formule ci-après :

$$D = \sqrt{\frac{4 \times V_t}{\pi \times H}}$$

Par conséquent :

$$D = \sqrt{\frac{4 \times 350}{\pi \times 6}} = 8,62m \quad \text{on prend 9 m}$$

* La hauteur d'incendie

La hauteur d'incendie est celle occupée par la réserve d'incendie, elle est calculée comme suit :

$$H_{inc} = \frac{4 \times V_{inc}}{\pi \times D^2} \tag{II.8}$$

Donc:

$$H_{inc} = \frac{4 \times 120}{3.14 \times 9^2} = 1,89 \text{ m}$$

La hauteur occupée par la réserve d'incendie sera de 1,89 m.

II.8.2. Dimensionnement des réservoirs et des stations de reprises de Agradou

> Station de reprise (SR)

Le volume du réservoir de la station de reprise SR se calcule comme suit :

$$V_r = \frac{714,88 \times 0,25}{20} = 8,94 \text{m}^3$$

On prend un volume standard de 50 m³.

Pour une hauteur de 4m, le diamètre de la bache à eau sera :

$$D = \sqrt{\frac{4 \times 50}{\pi \times 4}} = 3,99m$$

> Réservoir Mlatas

Le réservoir du Mlatas est alimenté par refoulement à partir de la SR il va assurer la distribution vers le village Agradou dont le nombre d'habitant est de 1419 habitants, $K_{max.h} = 2,382$ et $Q_{max.j} = 314,88 \text{ m}^3/\text{j}$.

Les résultats sont donnés dans le tableau (II.2) suivant :

Tableau (II.2) : Détermination de la capacité du réservoir de Mlatas

Heures	Refoule	ement	Distrib Vers ag		Addu gravi		Surplus	Déficit	Résidu
	(m ³ /h)	(%)	(m ³ /h)	(%)	(m3/h)	(%)			
0-1	35,744	5	1,889	0,3	16,66	2,33	2,37		2,37
1-2	35,744	5	1,889	0,3	16,66	2,33	2,37		4,74
2-3	35,744	5	3,778	0,54	16,66	2,33	2,13		6,87
3-4	35,744	5	3,778	0,54	16,66	2,33	2,13		9
4-5	35,744	5	11,021	1,55	16,66	2,33	1,12		10,12
5-6	35,744	5	11,021	1,55	16,66	2,33	1,12		11,24
6-7	35,744	5	14,169	2	16,66	2,33	0,67		11,91
7-8	35,744	5	32,118	4,5	16,66	2,33		-1,83	10,08
8-9	35,744	5	27,709	3,9	16,67	2,33		-1,23	8,85
9-10	35,744	5	20,467	2,9	16,67	2,33		-0,23	8,62
10-11	35,744	5	12,91	1,83	16,67	2,33	0,84		9,46
11-12	35,744	5	12,91	1,83	16,67	2,33	0,84		10,3
12-13	35,744	5	11,021	1,55	16,67	2,33	1,12		11,42
13-14	35,744	5	11,021	1,55	16,67	2,33	1,12		12,54
14-15	35,744	5	14,799	2,07	16,67	2,33	0,6		13,14
15-16	35,744	5	19,522	2,74	16,67	2,33		-0,07	13,07
16-17	35,744	5	32,747	4,58	16,67	2,33		-1,91	11,16
17-18	35,744	5	29,598	4,14	16,67	2,33		-1,47	9,69
18-19	0	0	22,986	3,22	16,67	2,33		-5,55	4,14
19-20	0	0	5,038	0,71	16,67	2,33		-3,04	1,1
20-21	0	0	5,038	0,71	16,67	2,33		-3,04	-1,94
21-22	0	0	3,1488	0,44	16,67	2,34		-2,78	-4,72
22-23	35,744	5	1,889	0,3	16,67	2,34	2,36		-2,36
23-24	35,744	5	1,889	0,3	16,67	2,34	2,36		0
Total	714,88	100	314,88	44,05	400	55,95	21,15	-21,15	0

D'après les résultats de tableau (II.2), on a :

- $R^+ = 13,14$
- $R^- = -4,72$

Donc:

- P% = 17.86%
- $V^r = 127.68 \text{m}^3$
- $Vt = 247.68 \text{ m}^3$

D'après le résultat qu'on a trouvé, la capacité du réservoir de Mlatas qui est de **150 m³** ne répond pas aux besoins de village, donc on réalise un autre réservoir pris de réservoir existant et à une capacité de 150 m³.

*Le diamètre du réservoir

on prend h = 6 m.

D'où:

$$D = \sqrt{\frac{4 \times 150}{\pi \times 6}} = 5,64m$$

Le diamètre du réservoir est 5,64 m.

❖ La hauteur d'incendie

La hauteur d'incendie est comme suit :

$$H_{inc} = \frac{4 \times 120}{3.14 \times 6^2} = 4,25 \text{ m}$$

La hauteur occupée par la réserve d'incendie sera de $4,25~\mathrm{m}$

II.9. Conclusion

D'après nos calculs, le réservoir de Tanorba est insuffisant, A cet effet, nous avons projeté un autre réservoir d'une capacité de 350 m^3 qui sera jumelé au réservoir existant de 500m^3 , pour satisfaire les besoins des consommateurs de chef-lieu de Beni Ourtilane. La Même chose pour village d'Agradou, le réservoir existant est insuffisant, on doit alors réaliser un autre réservoir d'une capacité de 150 m^3 .

III.1. Introduction

L'adduction étant définie comme le transport des eaux prélevées de la conduite du forage soit vers leur lieu d'accumulation, soit directement vers les zones de leur consommation. De par leur fonctionnement les adductions peuvent être classées selon leur écoulement :

➤ Adduction gravitaire

Ce type d'adduction ne fait intervenir que le seul travail de la pesanteur. En effet, l'écoulement des eaux dans les conduites dépend de la pente. Le lieu de captage se situe donc à une altitude supérieure à celle du réservoir de desserte de l'agglomération.

L'adduction gravitaire s'effectue, soit par **aqueduc**, il est fait appel à l'écoulement libre de l'eau c'est-à-dire sans pression, soit par **des conduites forcées**, il est fait appel à l'écoulement sous pression.

> Adduction par refoulement

Dans l'adduction par refoulement, le captage se situe à un niveau inférieur à celui du réservoir d'accumulation.

Dans notre étude. L'adduction est une adduction par refoulement, ce type d'adduction intervenir les pompes.

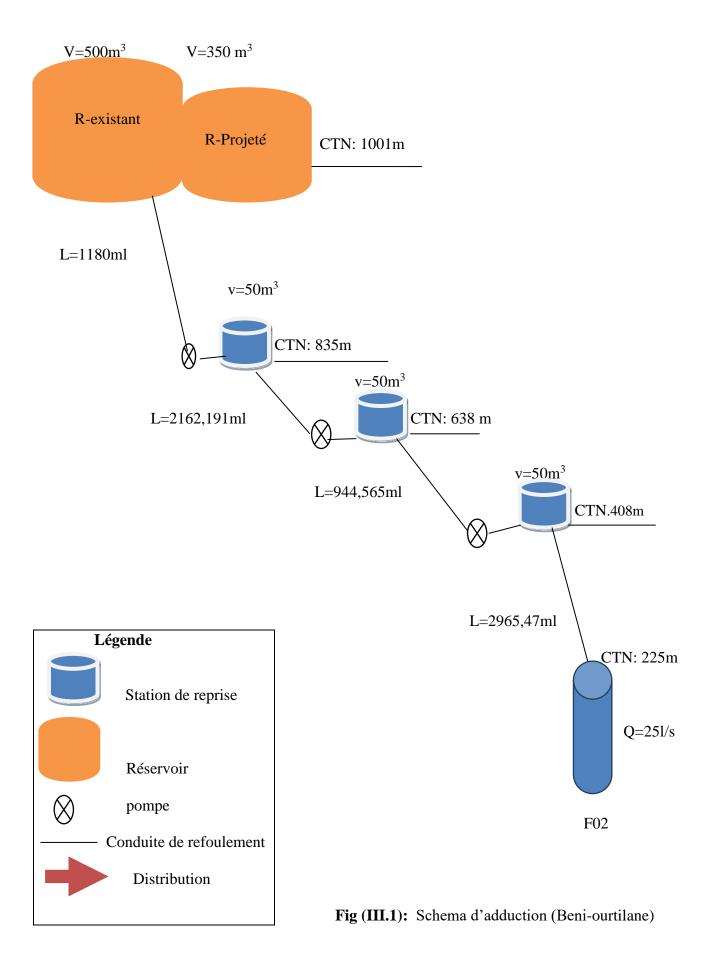
III.2. Choix du tracé

Le tracé de la conduite est choisi selon certains facteurs d'ordre technique et économique il exige les conditions suivantes : [6]

- Le profil doit être le plus régulier et le plus court possible (sur-profondeur et sousprofondeur sont parfois inévitables) afin de réduire les frais d'investissement.
- Le profil sera étudié pour que l'air puisse être évacué facilement, car le cantonnement d'air engendre la rupture de la veine liquide.
- ➤ Pour les conduites de longueurs importantes (plusieurs kilomètres), il sera bon de prévoir quelques vannes de sectionnements en vue de faciliter les réparations éventuelles.
- Les contres pentes qui peuvent donner lieu, en exploitation, à des cantonnements d'air plus au moins difficiles à évacuer, sont à éviter.

Il y a lieu de concevoir un tracé en plan, avec des coudes largement ouverts afin d'éviter les butées importantes. A cet effet, le parcours empreint ne suivra pas facilement les accotements de la route.

On préfère souvent de le concevoir le long des routes et les pistes pour faciliter la pose des conduites et son exploitation c'est-à-dire :


Faciliter l'accès pour l'entretien et les réparations.

Faciliter la détection des fuites et les vannes défectueuses.

III.3. Schéma d'adduction

A partir de forage de beni-ourtilane, il composée de 3 stations de reprise qui refoulent ensemble vers un réservoir de capacité de 500 m³ et un autre de capacité de 350 m³ de installé à une altitude de 1001 m .Et pour forage d'Agradou est composée de station de reprise qui refoule l'eau vers deux réservoirs de capacité de 150 m³ qui fait la distribution vers la zones d'Agradou et tarefate

Le schéma d'adduction projeté est représenté dans la figure (III.1) et figure (III-2) ci-dessous ;

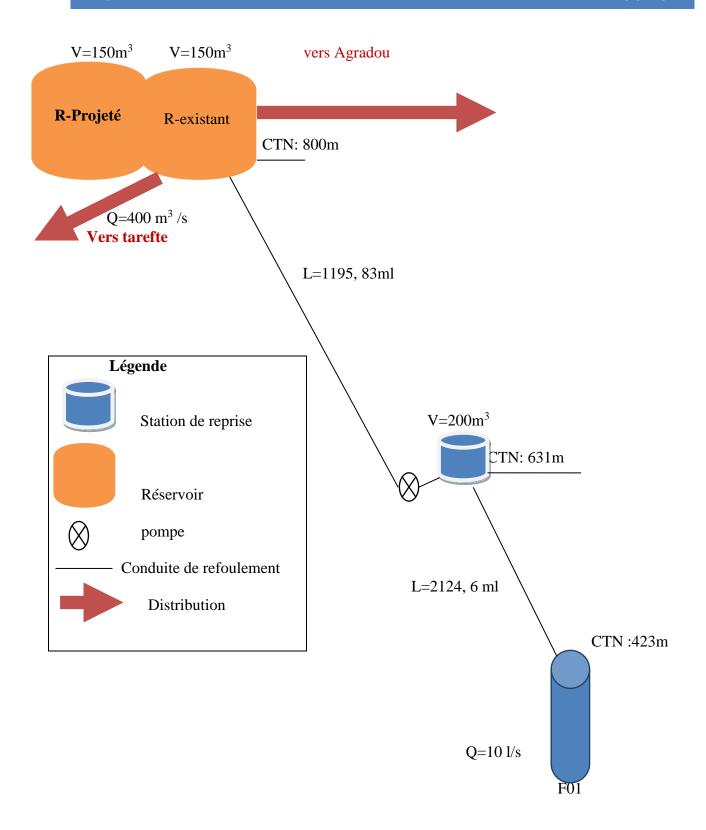


Fig (III.2): Schéma d'adduction (Agradou)

III.4. Choix du type des conduites

Le choix du type des conduites repose sur certains critères qu'on doit autant que possible respecter, à savoir :

- ➤ Le diamètre économique
- La pression de l'eau
- > Les pertes de charges
- ➤ La nature du terrain
- La disponibilité sur le marché

Dans le cas de notre projet, on a opté pour les conduites en fonte ductile vu les avantages qu'elles présentent, comme :

***** Avantage

- Supportent des pressions de service atteignant 50 bars pour des diamètres ne dépassant pas 600 mm, et 40 bars pour des diamètres supérieurs
- Très rigides et solides
- Longue durée de vie

Les tuyaux en fonte ductile tolèrent d'importantes déviations angulaires au niveau de leurs joints.

• Facilité d'assemblage.

* Inconvénients

- Très robustes
- Lourds
- Très chers

III.5. Etude technico-économique de l'adduction

Le dimensionnement de la conduite d'adduction par refoulement s'établit en cherchant le diamètre économique qui permet de donner un coût de revient minimum entre les dépenses de fonctionnement et celle d'investissement, donc une étude technico-économique s'avère indispensable. En effet, plus le diamètre de la conduite est petit pour un même débit à relever, plus les pertes de charge seront plus importantes. Il est donc impératif de déterminer un même diamètre économique pour la conduite de refoulement.

Le diamètre économique des conduites de refoulement sera déterminé comme suit :

III.5.1. Calcul de diamètre économique

Pour le calcul des diamètres économiques des conduites de refoulement, on utilise les deux formules approchées suivantes :

Formule de BONNIN :
$$D = \sqrt{Q}$$
 (III.1)

Formule de BRESS:
$$D = 1.5\sqrt{Q}$$
 (III.2)

Où

D: diamètre (m)

Q : débit à relever en (m³/s)

On prendra tous les diamètres compris entre \mathbf{D}_{N_1} et \mathbf{D}_{N_2} , mais le choix final se portera sur le diamètre pour lequel le coût sera minimal et la vitesse d'écoulement sera comprise entre $\mathbf{0.5m/s}$ et $\mathbf{1.5 m/s}$.

III.5.2. Calcul de la vitesse

Elle est donnée par la formule suivante :

$$Q = V * S \Rightarrow V = \frac{4Q}{\pi * D^2}$$
 (III.3)

Où:

V : vitesse d'écoulement dans la conduite (m/s) ;

Q : débit véhiculé dans la conduite (m³/s) ;

D : diamètre de la conduite (m).

III.5.3. Calcul des pertes de charge

• Pertes de charge linéaires H_L

Pour un tronçon donné, les pertes de charge linéaires sont déterminées par la formule de DARCY-WEISBACH :

$$H_{L} = J * L = \lambda L \frac{V^{2}}{D 2 g}$$
 (III.4)

Avec:

J : perte de charge linéaire en m/ml.

λ: Coefficient de perte de charge linéaire

D : diamètre de la conduite (m)

L : longueur du tronçon considéré (m)

V: vitesse moyenne d'écoulement (m/s)

• Calcul du coefficient de DARCY λ

En régime turbulent, λ est donné par la formule de COLEBROOK :

$$\frac{1}{\sqrt{\lambda}} = -2 * \log \left[\frac{K}{3.71 * D} + \frac{2.51}{R_e * \sqrt{\lambda}} \right]$$
 (III.5)

Avec:

K : la rugosité absolue, elle représente la hauteur moyenne des aspérités de la surface des parois en contact avec l'eau.

R_e: nombre de REYNOLDS donné par la formule suivante :

$$R_{e=\frac{V*D}{V}} \tag{III.6}$$

V: viscosité cinématique de l'eau donnée par la formule de STOCKS suivante :

$$V = 0.0178 / (1 + 0.0337 t + 0.000221 t^2)$$
 (III.7)

On a, pour $t=20^{\circ}C$

 $v = 10^{-6} \,\mathrm{m}^2/\mathrm{s}$

Dans la pratique de, il est évident de tenir compte de l'influence de l'âge de la conduite sur les pertes de charges dépendant de deux groupes de caractères :

- Paramètre hydraulique : vitesse, diamètre, pression.
- Paramètre physico-chimique de l'eau : acidité, PH, dureté.

La rugosité absolue est déterminée en mesurant l'épaisseur de rugosité des parois du tuyau. Soit :

$$K = K_0 + \alpha T$$
 (III-8)

Avec:

k₀: la rugosité absolue des tuyaux à l'état neuf ; égale à 0,8 mm.

 α : le coefficient de vieillissement de conduite (α =0,04 mm/an)

T: la durée d'utilisation de la conduite (t = 25 ans).

Alors, $\mathbf{K} = 0.8 + 0.04 * 25 = 1.8 \text{mm}$.

\triangleright Pertes de charge singulière (H_s)

Elles sont générées par les singularités telles que les coudes, vannes, clapets, branchements, diaphragmes ...etc. Les pertes sont estimées de 10 % à 15% des pertes de charge linaires (on prend 15% dans notre étude).

Elles sont données par la formule suivante :

$$H_s = 0.15 * H_L \tag{III-9}$$

➤ Pertes de charge totale (H_T)

C'est la somme des pertes de charge linéaires et les pertes de charge singulières :

$$H_T = H_L + H_s = 1.5H_L$$

$$\Rightarrow H_T = 1.15*J*L = J*L_{eau}$$
(III-10)

L : longueur de la conduite en (m)

L_{eau}: longueur équivalente en (m)

III.5.4. Calculs de la hauteur manométrique totale Hmt

Elle est donnée par la relation suivante :

$$Hmt = Hg + Ht$$
 (III.11)

Avec:

Hg: hauteur géométrique (m).

Ht: pertes de charges totales (m).

III.5.5. Puissance absorbée par la pompe

$$Pa = \frac{g \times Hmt \times Q}{\eta}$$
 (III.12)

Où:

Q: débit transité (m³/s);

η: rendement de la pompe (%) on prend η=75 %

g : accélération de la pesanteur ; 9,81 (m/s²)

III.5.6. Energies annuelles consommées par la pompe

$$E = P_a \times T \times 365 \tag{III.13}$$

Avec

T': nombre d'heures de pompage par jour, dans notre cas T = 20 h.

P_a: puissance absorbée par la pompe (kW)

III.5.7. Frais d'exploitation

$$F_{exp}=E\times e$$
 (III.14)

Où:

e: Prix d'un Kwh fixé par la SONELGAZ; e = 4,67 DA.

E: énergie annuelle consommée par la pompe (KWh)

III.5.8.Frais d'amortissement

$$F_{am} = Pu \times L \times A \tag{III.15}$$

Avec:

P_u: prix unitaire de la conduite (DA/ml).

L : longueur de la conduite (m).

A : Amortissement annuel, il est donné par cette formule

$$A = \frac{i}{(i+1)^{n} - 1} + 1 \tag{III.16}$$

n: nombre d'année d'amortissement la conduite (n=25 ans);

i : taux d'annuité ou d'actualisation, égale a 8%

Pour notre cas, on trouve A = 0.09367878 soit 9.37%.

III.5.9.Calcul du bilan total des frais

Le bilan total est la somme des frais d'exploitation et d'amortissement, il sera calculé par la formule suivante :

$$B=F_{exp}+F_{am} (III.17)$$

III.5.10.Prix des conduites

Le prix des conduites en fonte ductile est pris en tenant compte des frais de transportes et de pose par mètre linéaire, il est mentionné dans le tableau (III.1) ci-dessous [3]

Tableau(III.1): Prix de revient des conduites en fonte ductile

Type de la conduite	Diamètre De La	Prix de unitaire	
	Conduite(mm)	(DA)	PN (Bars)
	100	3458,3	40
	125	4029,42	40
	150	4428,24	40
Fonte ductile PN	200	5663,86	40
	250	7461,72	40
	300	8948,09	40
	350	12318,19	40
	400	14136,1	40
	450	17614,03	40
	500	19617,93	40
	600	26893,15	40

III.6. Dimensionnement des conduites de la commune de Beni-Ourtilane

III.6.1. la conduite reliantF02 – SR1

Données:

 $Q = 0.029 \text{m}^3/\text{s}$ L = 2965.47 mCTN SR1 : 408 m CTN F01 : 225 m

Niveau dynamique 6m

Hg = 193m

En utilisant les formules (III.1) et (III.2), on trouve :

Formule de BONNIN : $D_1 = 0,170 \text{ m}$ Formule de BRESS : $D_2 = 0,255 \text{ m}$

Les résultats trouvés pour le calcul du diamètre économique sont regroupés dans les tableaux suivants :

Tableau (III. 2): calcul des pertes de charge et de la Hmt de la conduite F02-SR01

D (m)	Vitesse	Re	L (m)	λ	Ht (m)	Hmt (m)
	(m /s)					
0,150	1,64	246284,501	2965,47	0,040576	121,232	314,23
0,200	0,92	184713,376	2965,47	0,036938	26,190	219,19
0,250	0,59	147770,701	2965,47	0,034524	8,021	201,02
0,300	0,41	123142,251	2965,47	0,032794	3,062	196,06

Tableau (III. 3): les frais d'amortissement et d'exploitation de la conduite F02-SR01

D (m)	F. exp (DA)	Pu (DA)	Annuité	F.amort (DA)
0,150	4063461,878	4428,24	0.0937	1230172,197
0,200		5663,86	0.0937	1573429,421
0,200	2834435,888	3003,00	0.0937	1373429,421
0,250	2599491,739	7461,72	0.0937	2072877,821
0,300	2535364,097	8948,09	0.0937	2485793,799

Tableau (III. 4): Bilan de frais de la conduite F02-SR01

	Coûts d'exploitations	Coûts	
Diamètre (m)	(DA)	d'amortissement	Bilan (DA)
		(DA)	
0,150	4063461,878	1230172,197	5293634,075
0,200	2834435,888	1573429,421	4407865,308
0,250	2599491,739	2072877,821	4672369,56
0,300	2535364,097	2485793,799	5021157,896

D'après ce tableau, le diamètre à retenir est 200 mm et une vitesse d'écoulement de 0,92 m/s.

III.6.2. la conduite reliant SR1 – SR2

Données:

 $Q = 0.029 \text{m}^3/\text{s}$;

L = 944,565m;

CTN SR2:638 m;

CTN SR1:408m;

Hg = 233,8

En utilisant les formules(III.1) et (III.2), on trouve :

Formule de BONNIN : $D_1 = 0.170m$

Formule de BRESS : $D_2 = 0.255 \text{ m}$

Les résultats trouvés pour le calcul du diamètre économique sont regroupés dans les tableaux suivants :

Tableau (III. 5): calcul des pertes de charge et de la Hmt de la conduite SR01-SR02

D (m)	Vitesse	Re	L (m)	λ	Ht (m)	Hmt (m)
	(m /s)					
0,150	1,64	246284,501	944,565	0,040572376	38,615	272,41
0.200	0.02	194712 276	044.565	0.026025504		
0,200	0,92	184713,376	944,565	0,036935594	8,342	242,14
0,250	0,59	147770,701	944,565	0,03452346	2,555	236,35
0,300	0,41	123142,251	944,565	0,032798863	0,975	234,77

Tableau (III. 6): les frais d'amortissement et d'exploitation de la conduite SR01-SR02

D (m)	F. exp (DA)	Pu (DA)	Annuité	F. amort (DA)
0,150	3522707,182	4428,24	0.0937	391835,8982
0,200	3131236,375	5663,86	0.0937	501170,5938
0,250	3056401,027	7461,72	0.0937	660255,4871
0,300	3035975,676	8948,09	0.0937	791777,9709

Tableau (III. 7): Bilan de frais de la conduite SR01-SR02

	Coût d'exploitations	Coût d'amortissement	
Diamètre (m)	(DA)	(DA)	Bilan (DA)
0,150	3522707,182	391835,8982	3914543,081
0,200	3131236,375	501170,5938	3632406,969
0,250	3056401,027	660255,4871	3716656,514
0,300	3035975,676	791777,9709	3827753,647

D'après ce bilan, on déduit que le diamètre économique pour ce tronçon est de 200mm.

III.6.3. la conduite reliantSR2 - SR3

Données:

 $Q = 0.029 \text{ m}^3/\text{s}$;

L = 2162.191m

CTN SR3: 835 m

CTN SR2: 638 m

Hg = 200.8m

En utilisant les formules(III.1) et (III.2), on trouve :

Formule de BONNIN : $D_1 = 0,170 \text{ m}$

Formule de BRESS : $D_2 = 0.255$ m

Les résultats trouvés pour le calcul du diamètre économique sont regroupés dans les tableaux suivants :

Tableau (III. 8): calcul des pertes de charge et de la Hmt de la conduite SR02-SR03

D (m)	Vitesse	Re	L (m)	λ	Ht (m)	Hmt (m)
	(m /s)					
0,150	1,64	246284,501	2162.191	0,040572376	88,393	289,19
0,200	0,92	184713,376	2162.191	0,036935594	19,095	219,89
0,250	0,59	147770,701	2162.191	0,03452346	5,848	206,64
0,300	0,41	123142,2505	2162.191	0,032798861	2,233	203,03

Tableau (III. 9): les frais d'amortissement et d'exploitation de la conduite SR02-SR03

D (m)	F. exp (DA)	Pu (DA)	Annuité	F. amort (DA)
0,150	3739671,627	4428,24	0.0937	896946,2689
0,200	2843561,083	5663,86	0.0937	1147222,846
0,250	2672256,496	7461,72	0.0937	1511381,929
0,300	2625501,099	8948,09	0.0937	1812448,273

Tableau (III. 10): Bilan de frais de la conduite SR02-SR03

	Coût d'exploitations (DA)	Coût d'amortissement	
Diamètre (m)		(DA)	Bilan (DA)
0,150	3739671,627	896946,2689	4636617,896
0,200	2843561,083	1147222,846	3990783,928
0,250	2672256,496	1511381,929	4183638,425
0,300	2625501,099	1812448,273	4437949,371

D'après ce bilan, on déduit que le diamètre économique pour ce tronçon est de 200mm.

III.6.4. la conduite reliantSR3 -R-tanorba

Données:

 $Q = 0.029 \text{ m}^3/\text{s}$;

L = 1180 m;

CTN R_{tanorba}: 1001 m

CTN SR2: 835 m Hg = 169,8m

En utilisant les formules(III.1) et (III.2), on trouve :

Formule de BONNIN : $D_1 = 0,170 \text{ m}$ Formule de BRESS : $D_2 = 0,255 \text{ m}$

Les résultats trouvés pour le calcul du diamètre économique sont regroupés dans les tableaux suivants :

Tableau (III. 11): calcul des pertes de charge et de la Hmt de la conduite SR03-R_{tanorba}

D (m)	Vitesse	Re	L (m)	λ	Ht (m)	Hmt (m)
	(m /s)					
0,150	1,64	246284,501	1180	0,040572376	48,239	218,03
0,200	0,92	184713,376	1180	0,036935594	10,421	180,22
0,250	0,59	147770,701	1180	0,03452346	3,191	172,99
0,300	0,41	123142,251	1180	0,032798861	1,218	171,01

Tableau (III. 12): les frais d'amortissement et d'exploitation de la conduite SR3- R_{tanorba}

D (m)	F. exp (DA)	Pu (DA)	Annuité	F. amort (DA)
0,150	2819560,918	4428,24	0.0937	489501,8975
0,200	2330515,111	5663,86	0.0937	626088,5176
0,250	2237027,706	7461,72	0.0937	824825,6867
0,300	2211510,463	8948,09	0.0937	824825,6867

Tableau (III. 13): Bilan de frais de la conduite SR03-R_{tanorba}

	Couts d'exploitations	Couts	
Diamètre (m)	(DA)	d'amortissement	Bilan (DA)
		(DA)	
0,150	2819560,918	489501,8975	3309062,815
0,200	2330515,111	626088,5176	2956603,629
0,250	2237027,706	824825,6867	3061853,392
0,300	2211510,463	824825,6867	3036336,15

D'après ce tableau, le diamètre à retenir est 200mm et une vitesse d'écoulement de 0,92m.

III.7. Dimensionnement des conduites de village d'Agradou

III.7.1. la conduite reliantF01 – SR

Données:

 $Q = 0.0099 \text{m}^3/\text{s}$;

L = 2124,6 m;

CTN SR1:631m;

CTN F02:423m;

Hg = 217m

Niveau Dynamique ND = 5m

En utilisant les formules(III.1) et (III.2), on trouve :

Formule de BONNIN : $D_1 = 0.1 \text{ m}$.

Formule de BRESS : $D_2 = 0.149 \text{ m}$.

Les résultats trouvés pour le calcul du diamètre économique sont regroupés dans les tableaux suivants :

Tableau (III.14): calcul des pertes de charge et de la Hmt de la conduite F01-SR

D	Vitesse	Re	L (m)	λ	Ht (m)	Hmt (m)
(m)	(m /s)					
0,100	1,26	126114,65	2124,6	0,047058	97,257	314,25
0,125	0,81	100891,72	2124,6	0,043515	29,470	246,47
0,150	0,56	84076,4331	2124,6	0,040987	11,154	228,15

Tableau (III.15): les frais d'amortissement et d'exploitation de la conduite F01-SR

D (m)	F. exp (DA)	Pu (DA)	Annuité	F. amort (DA)
0,100	1387294,901	3458,30	0.0937	688305,2207
0,125	1088046,917	4029,42	0.0937	801975,1966
0,150	1007188,58	4428,24	0.0937	881352,3148

Tableau (III. 16): Bilan de frais de la conduite F01-SR

0,150	1007194,158	881352,3148	1888546,473
0,125	1088046,917	801975,1966	1890022,114
0,100	1387294,901	688305,2207	2075600,121
Diamètre (m)	Couts d'exploitations (DA)	d'amortissement (DA)	Bilan (DA)
		Couts	

D'après ce tableau, le diamètre à retenir est et une vitesse d'écoulement de 0,56 m/s.

III.7.2. la conduite reliant SR – R_{mlatas}

Données:

 $Q = 0.0099 \text{ m}^3/\text{s}$;

L = 1195,83m;

CTN R: 800m;

CTN SR: 631m;

Hg = 172.8 m

En utilisant les formules(III.1) et (III.2), on trouve :

Formule de BONNIN : $D_1 = 0.1 m$.

Formule de BRESS : $D_2 = 0,149m$

Les résultats trouvés pour le calcul du diamètre économique sont regroupés dans les tableaux suivants :

Tableau (III. 17): calcul des pertes de charge et de la Hmt de la conduite SR- R_{mlata}

D (m)	Vitesse	Re	L (m)	λ	Ht (m)	Hmt (m)
	(m /s)					
0,100	1,26	126114,65	1195,83	0,047058	50,177	222,98
0,125	0,81	100891,72	1195,83	0,043516	15,203	188
0,150	0,56	84076,4331	1195,83	0,040987	5,755	178,55
ŕ	ŕ	,	•	,	3,133	170,55

496068,6899

0.0937

0,15

D (m) F. exp (DA) Pu (DA) Annuité F. amort (DA)

0,100
984333,342
3458,30
0.0937
387412,2338

0,125
829940,8455
4029,42
0.0937
451391,3204

Tableau (III. 18): les frais d'amortissement et d'exploitation de la conduite SR- R_{mlata}

Tableau (III.19): Bilan de frais de la conduite SR-Rmlata

4428,24

788235,0845

	Couts d'exploitations	Couts	
Diamètre (m)	(DA)	d'amortissement	Bilan (DA)
		(DA)	
0,100	984333,342	387412,2338	1371745,576
0,125	829940,8455	451391,3204	1281332,166
0,15	788235,0845	496068,6899	1284303,774

D'après ce bilan, on déduit que le diamètre économique pour ce tronçon est de **125 mm** et une vitesse d'écoulement de **0,81m**.

III.8.Récapitulatif des résultats

Le tableau (III.20) nous donne le différent diamètre calculé pour différents tronçons pour la commune de **Beni Ourtilane**

Tableau (III.20) : Récapitulatif des différents diamètres calculés pour beni Ourtilane

Tronçon	Débit (m ³ /s)	Langueur (m)	Hmt (m)	Vitesse (m/s)	Diamètre (mm)
Forage02-SR01	0,029	2965,47	219,19	0,92	200Fonte
SR01-SR02	0,029	944,565	242,14	0,92	200Fonte
SR02-SR03	0,029	2162.191	219,89	0,92	200 Fonte
SR03-R_tanorba	0,029	1180	180,22	0,92	200Fonte

Le tableau (III.21) nous donne le différent diamètre calculé pour différents tronçons pour le village **d'agradou.**

Tableau (III.21) : Récapitulatif des différents diamètres calculés pour agradou

Tronçon	Débit (m ³ /s)	Langueur (m)	Hmt (m)	Vitesse (m/s)	Diamètre (mm)
F01-SR	0,0099	2124,6	228,15	0 .56	150 Fonte
SR-R_ _{MLATAS}	0,0099	1195,83	188	0,81	125 Fonte

III.9.Conclusion

Dans ce chapitre, on a pu déterminer les diamètres économiques des conduites dans tous les tronçons .On a également calculé les pertes de charge et les Hmt pour chaque tronçon, ce qui constituera une base de calcul pour le chapitre suivant, qui est consacré aux pompes

IV.1. Introduction

On appelle pompe tout appareil qui aspire un fluide d'une région à basse pression, pour le refouler vers une région à plus grande pression.

Ainsi d'après cette définition on peut dire que le rôle de la pompe consiste à augmenter la pression du fluide liquide

IV.2. Différents types des pompes

Les pompes peuvent être classées en deux catégories principales selon le mode de déplacement du fluide [5] :

- Pompes volumétriques.
- Les Turbo-pompes.

IV.2.1. Pompes volumétriques

L'énergie est fournie par la variation successive d'un volume raccordé alternativement à l'orifice d'aspiration et l'orifice de refoulement, on distingue deux types :

- Les pompes alternatives (à piston).
- Les pompes rotatives (vis d'Archimède).

IV.2.2. Turbo-pompes

Les Turbo-pompes sont les plus utilisées, selon le type de roue et son mode d'action, on distingue :

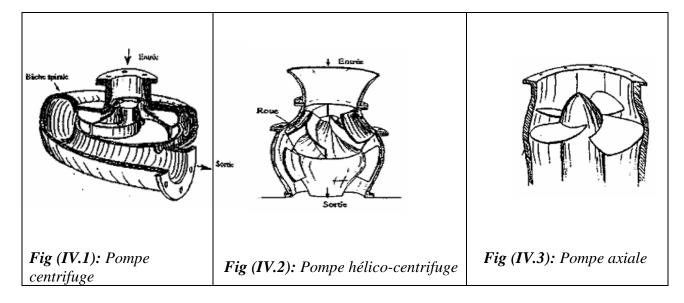
- Pompe axiale à hélice
- Pompe hélico-centrifuge.
- Pompe centrifuge.

IV.3. Choix des pompes

Le choix des pompes à installer se portera sur les critères suivants [5] :

Le débit à refouler,

- La hauteur d'élévation d'eau (Hmt),
- Le temps mis par la pompe pour élever un certain volume d'eau,
- Le rendement de la pompe qui doit être acceptable d'une façon à avoir un coup minimum d'un mètre cube d'eau à élever.


Assurer une consommation d'énergie minimale.

Pour les forages, on adaptera un groupe électropompe immergé vu les avantages qu'ils présentent, à savoir :

- Fiabilité.
- Amorçage automatique,
- Rendement élevé,
- Entretien presque nul.

•

Pour les différentes stations de reprise, notre choix se portera sur les pompes centrifuges à axe horizontal.

IV.4. Caractéristiques hydrauliques des pompes centrifuges

IV.4.1. Hauteur manométrique

Elle est obtenue en sommant la hauteur géométrique et les pertes de charge à l'aspiration ainsi qu'au refoulement. Cette hauteur est donnée comme suit [5] :

$$H_{mt} = H_g + J_{asp} + J_{ref} \tag{IV.1}$$

Avec:

- H_{mt}: Hauteur manométrique en (m).
- H_g: Hauteur géométrique en (m).
- J_{asp}: Pertes de charge à l'aspiration en (m).
- J_{ref}: Pertes de charge au refoulement en (m).

IV.4.2. La vitesse de rotation

La vitesse de rotation (N) représente le nombre de tour effectuée par la pompe par unité de temps.

IV.4.3. La puissance

On distingue deux types de puissances :

A) La puissance absorbée par la pompe

Elle est exprimée par la puissance mécanique absorbée au niveau de l'arbre de la pompe en (KW). Cette puissance est donnée par la loi suivante :

$$Pa = \frac{g.Hmt.Q}{\eta}$$
 (IV.2)

- Pa: Puissance totale consommée (KW).
- Q : Débit refoulé par la pompe (m³/s).
- H_{mt}: Hauteur manométrique (m).
- η: Rendement total de l'installation.

B) La puissance hydraulique ou la puissance utile

Elle traduit la puissance transmise au fluide par la pompe, noté Pu:

$$P_{u} = P_{h} = g \times H_{mt} \times Q \tag{IV.3}$$

IV.4.4. Le rendement

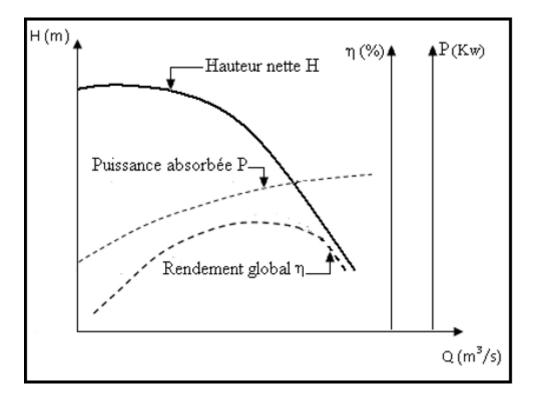
C'est le rapport entre la puissance utile P_u et la puissance absorbée par la pompe P_a , noté η .

$$\eta = \frac{P_{\rm u}}{P_{\rm a}} \tag{IV.4}$$

IV.5. Les courbes caractéristiques d'une pompe centrifuge

Les performances d'une pompe centrifuge sont représentées par les courbes suivantes [4] :

IV.5.1. La courbe hauteur-débit « H = f(Q) »


Elle présente les variations des différentes hauteurs en fonction du débit.

IV.5.2. La courbe rendement – débit « $\eta = f(Q)$ »

Cette courbe présente les valeurs du rendement en fonction du débit.

IV.5.3. La courbe des puissances absorbées – débit « Pa = f(Q) »

Elle représente la variation des puissances absorbées en fonction des débits.

(IV.4): Courbes caractéristiques d'une pompe centrifuge

IV.6. Le point de fonctionnement de la pompe

Le point de fonctionnement d'une pompe est défini comme étant le point d'intersection de la courbe « H = f(Q) » avec la courbe caractéristique de la conduite « Hc = f(Q) », et il est donnée par la formule suivant [7] :

$$H_c=H_g+R.Q^2$$
 (IV.5)

Avec:

H_g: Hauteur géométrique (m).

R. Q²: Perte de charge au point considéré (m).

R : Coefficient qui caractérise la résistance de la conduite (m)

En général, le point de fonctionnement ne coïncide pas avec le point désiré ; alors, des modifications seront nécessaires pour arriver aux conditions du travail désiré.

Première variante : Réduction où augmentation du temps de pompage

On garde la courbe H = f(Q) telle qu'elle est, le débit Q sera plus grand que le débit désiré ; pour cela, nous sommes tenus de faire diminué le temps de pompage tout en conservant le volume d'eau constant.

Le volume d'eau entrant dans le réservoir pendant un temps $T_1=20$ heures est de : $V\left(m^3\right)=20\times Q_1$; ce même volume sera obtenu par le refoulement d'un débit Q pendant un temps T. Donc on peut écrire :

$$Q \times T = 20 \times Q_1 \tag{IV.6}$$

D'où:

$$T = 20 \times \frac{Q_1}{Q}$$
 (IV.7)

Deuxième variante : Régulation par étouffement (Le vannage)

Elle consiste à vanner au refoulement pour créer une perte de charge afin d'obtenir le débit Q₁. La puissance absorbée sera :

$$Pa = \frac{g \times Q_1 \times H'}{\eta} \qquad (Kw)$$
 (IV.8)

Avec:

$$H' = H_1 + h \tag{IV.9}$$

Où:

h : Perte de charge engendrée par vannage en (m),

H': La distance séparée entre le point désiré et l'intersection de la verticale passant par le même point avec la caractéristique de la pompe,

η: Le rendement.

* Troisième variante : Rognage de la roue

Le rognage s'effectue en gardant la même vitesse de rotation N, et cela, en traçant une droite par l'origine et par le point P_1 ; celle-ci coupe la courbe caractéristique de la pompe au point P_2 (Q_2 , H_2) avant le rognage qui est le point homologue du point désiré.

On aura alors:

$$m = \left(\frac{Q_1}{Q_2}\right)^{1/2} = \left(\frac{H_1}{H_2}\right)^{1/2}$$
 (IV.10)

Avec:

m : Coefficient de rognage.

Le pourcentage de rognage (r) sera :

$$r = (1 - m) \times 100 \text{ (\%)}$$
 (IV.11)

La puissance absorbée par la pompe est :

$$Pa = \frac{g \times Q_1 \times H_1}{\eta} \quad (Kw)$$
 (IV.12)

Quatrième variante : variation de la vitesse de rotation

Dans ce cas, on fait varier la vitesse de rotation, sa diminution entraînera la diminution du débit et également la puissance absorbée. On trace la parabole d'équation $y = ax^2$ (Courbe d'isorendement) qui contient le point homologue

Qui passe par P_1 (Voir : Figure (IV.2)) et qui coupe la courbe caractéristique de la pompe au point P_3 (Q_3 , H_3), on aura alors :

La nouvelle vitesse de rotation est :

$$N' = N \times \frac{Q_1}{Q_3} \quad (Tr/min) \tag{IV.13}$$

Et la puissance absorbée par la pompe sera :

$$Pa = \frac{g \times Q_1 \times H_1}{n} \quad (KW) \tag{IV.14}$$

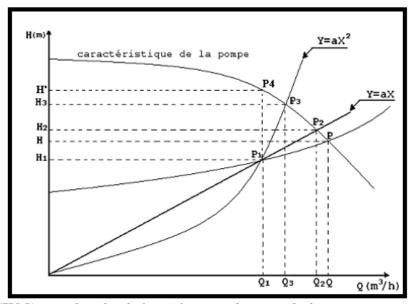


Fig (IV.5): Recherche de la réalisation du point de fonctionnement désiré

IV.7. Les modes de couplage

Les pompes peuvent être couplées en série ou en parallèle selon le but recherché, augmenter la hauteur ou le débit. Les couplages existants sont[7] :

IV.7.1. Couplage en série

Dans ce cas:

- Le refoulement de la première pompe débouche dans l'aspiration de la seconde.
- Le même débit traverse les deux pompes et les hauteurs d'élévation produites par chaque groupe s'ajoutent.

ce type de couplage est utilisé en vue de l'augmentation de la hauteur d'élévation des pompes

IV.7.2. Couplage en parallèle

Chaque conduite de refoulement aboutit à un collecteur général commun.

Le débit du collecteur commun sera composé de la somme des débits de chaque pompe ce type de couplage est utilisé en vue de l'augmentation du débit refoulé par les pompes.

IV.8. Etude de la cavitation

La cavitation est un phénomène physique très complexe, qui se manifeste lorsque la pression absolue du liquide descend au-dessous de la tension de vapeur du liquide. Il se forme des bulles d'air, qui, dans les zones de pression les plus élevées, provoquent d'importantes perturbations ; bruits dans l'écoulement, des vibrations, ce qui entraîne la détérioration des caractéristiques hydrauliques (le rendement, la hauteur de refoulement...) et l'érosion des matériaux au niveau de la pompe.

Pour éviter ce phénomène, on doit assurer à l'aspiration une certaine pression dite : Charge nette minimale disponible à l'aspiration (NPSH)_d (donnée par l'utilisateur), qui sera supérieure à la charge nette minimale requise à l'aspiration (NPSH)_r (donnée par le constructeur).

Le NPSH requis (NPSH)_r est la hauteur minimale de liquide, supposée à sa température d'ébullition, nécessaire au-dessus de l'aspiration, pour empêcher la cavitation.

Il dépend de :

Type de la pompe,

Point de fonctionnement.

Il est donné par le fabricant sous la forme d'une courbe donnant le NPSH requis (en mètre de liquide) en fonction du débit.

Le NPSH disponible (NPSH)_d est simplement une mesure permettant de quantifier la hauteur manométrique d'aspiration disponible pour éviter la vaporisation au niveau le plus bas de la pression dans la pompe.

Soit la condition de non cavitation :

$$(NPSH)_d > (NPSH)_r$$
 (IV.15)

Pour l'alimentation en charge

$$(NPSH)_d = \frac{P_o}{W} + H_a - (H_v + J_{asp})$$
 (IV.16)

Pour l'alimentation en dépression

$$(NPSH)_d = \frac{P_o}{w} - H_a - (H_v + J_{asp})$$
 (IV.17)

Et :
$$\frac{P_0}{\varpi} = P_{atm} - 0.0012. \delta$$

Avec:

 $\frac{P_0}{}$: Pression au point d'aspiration en (m).

Patm: Pression atmosphérique au niveau de la mer, qui est de 10,33 m.

δ : Altitude du plan d'aspiration en (m).

Ha: Hauteur totale d'aspiration (peut être positive pour une pompe en charge et négative pour une pompe en dépression).

J_{asp}: Pertes de charge à l'aspiration en (m).

 H_V : Tension maximale de vapeur d'eau, $H_V = 0.24$ m pour une température de 20°C.

Tableau (IV.1): Tension de vapeur d'eau pompée en fonction de la température

T°C	0	4	10	20	30	40	50	60	70	80	100
Tv (m)	0.06	0.083	0.125	0.24	0.43	0.75	1.26	2.03	4.10	4.80	10.30

Deux cas d'aspiration sont possible figure (IV.3) et (IV.4)

> Aspiration en dépression

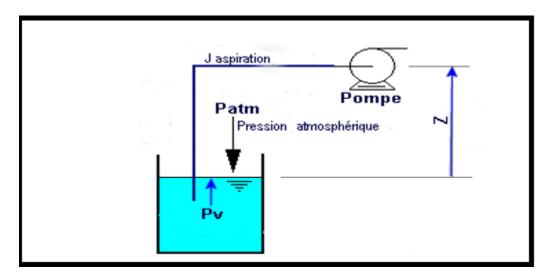


Fig (IV.6): Schéma d'une installation d'une pompe en dépression

> Aspiration en charge

Fig. (IV.7) : Schéma d'une installation d'une pompe en charge

IV.9. Choix des pompes du projet

IV.9.1. Choix des pompes de réseau de Beni Ourtilane

Les différentes pompes choisies pour notre projet on utilisent le catalogue caprari sont :

IV.9.1.1. Forage F02

Les données nécessaires pour le choix de la pompe sont :

Q = 29 1/s

 $H_g=193 \text{ m}$

 $H_{mt} = 219,19m$

Tableau (IV.2): Les caractéristiques des différentes pompes sélectionnées(F02).

Type de pompe	Débit(l/s)	$H_{mt}(m)$	η(%)	P(kw)	NPSH _r	Vitesse de
					(m)	rotation
						(tr/min)
E8S64/12A+MC8125	29,4	220	75,7	83,3	3,85	2900
E8S48/12A+M10125	29	219	74,4	83,1	5,02	2900

On va choisir la pompe qui donne le point de fonctionnement qui le proche du point désiré, alors notre pompe est E8S48/12A+M10125.

Les courbes caractéristiques de la pompe du forage F1 sont représentées dans le graphe ci-après :

Fig. (IV.8): Courbes de la pompe du forage F02

IV.9.1.2. Vérification de la cavitation des pompes choisies

Par mesure de sécurité, les pompes immergées seront placées à 1 m au-dessous du niveau dynamique des forages, donc ces pompes travaillent en charge et par conséquent il n'y a pas de cavitation.

IV.9.1.3. Station de reprise 01

Les données nécessaires pour le choix de la pompe sont :

Q = 291/s

 $H_g = 233.8 m$

 $H_{mt} = 242,14m$

Tableau (IV.3): Les caractéristiques des différentes pompes sélectionnées(SR01).

Type	Type de De		$H_{mt}(m)$	η(%)	P(kw)	NPSH _r	Vitesse de rotation
pompe						(m)	(tr/min)
PM125/	/9A	29,4	246	69,8	102	1,59	1450
PMS80	/9C	29	242	69,3	103	4,94	2900

On va choisir la pompe qui donne le point de fonctionnement qui est le proche du point désiré, alors notre pompe est PMS80/9C.

rkW1-

Valeurs NPSH

Hauteur de refoulement

74,8%

1

Puissance à l'arbre P2

Rendement

Les courbes caractéristiques de la pompe du SR01 sont représentées dans le graphe ci-après :

Fig (IV.9): Courbes de la pompe du forage SR01

17 18 19 20 21

22

15 16

IV.9.1.4. Vérification de la cavitation des pompes choisies

Quant à la station de reprise SR, sa crépine sera placée à **0,8 m** au-dessous de l'axe de la pompe c'est-à-dire à une cote de **407,2 m**, donc elle travaillera en dépression. Dans ce cas, la vérification de la cavitation demeure primordiale avec la formule (IV.17), la valeur de (NPSH)_d est :

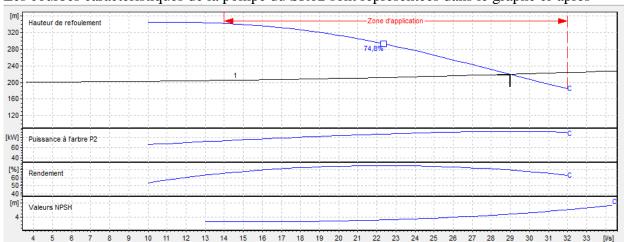
$$NPSH_d = 10.33 - 0.0012 \cdot 407.2 - 0.8 - 0 - 0.24 = 8.8 \text{ m}$$

On a alors (NPSH_d)>(NPSH_r), d'où la pompe ne cavite pas

IV.9.1.5. Station de reprise SR02

Les données nécessaires pour le choix de la pompe sont :

Q = 29 1/s


 $H_g = 200,8m$

 $H_{mt} = 219,89 m$

Tableau (IV.4): Les caractéristiques des différentes pompes sélectionnées(SR02)

Type de	Débit(l/s)	$H_{mt}(m)$	Π(%)	P(kw)	$NPSH_r$	Vitesse de rotation
pompe					(m)	(tr/min)
PM100/4C	34	223	77,5	97,6	3,69	2900
PM80/8C	29	220	69,3	91,3	4,94	2900

On va choisir la pompe qui donne le point de fonctionnement qui le proche du point désiré, alors notre pompe est PM80/8C.

Les courbes caractéristiques de la pompe du SR02 sont représentées dans le graphe ci-après

Fig (IV.10): Courbes de la pompe du SR02

IV.9.1.6. Vérification de la cavitation des pompes choisies

$$NPSH_d = 10.33 - 0.0012 \cdot 637.2 - 0.8 - 0 - 0.24 = 8.52 \text{ m}$$

On a alors (NPSH_d)>(NPSH_r), d'où la pompe ne cavite pas

IV.9.1.7. Station de reprise 03

Les données nécessaires pour le choix de la pompe sont :

O = 291/s

 $H_g = 169.8 \text{m}$

 $H_{mt} = 180,22m$

Tableau (IV.5): Les caractéristiques des différentes pompes sélectionnées(SR03)

Type de pompe	Débit(l/s)	$H_{mt}(m)$	η(%)	P(kw)	NPSH _r	Vitesse de rotation
					(m)	(tr/min)
PM80/6B	31,1	183	69,5	79,9	5,77	2900
PM80/7C	29,9	183	67,8	79,7	5,26	2900

On va choisir la pompe qui donne le point de fonctionnement qui le proche du point désiré, alors notre pompe est PM80/7C

Le point de fonctionnement ne coïncide pas avec le point désiré

- -le point de fonctionnement donné (29,91/s, 183m)
- -le point de fonctionnement désiré (29l/s, 182,22m)

Les courbes caractéristiques de la pompe du SR03 sont représentées dans le graphe ci-après :

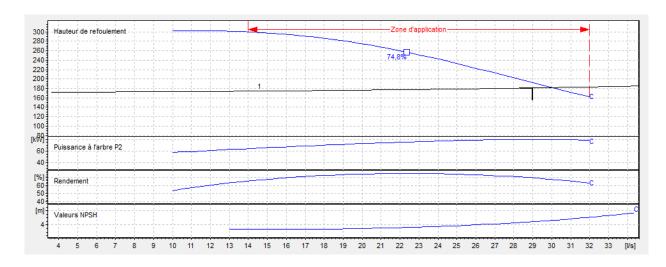


Fig (IV.11): Courbes de la pompe du SR03

IV.9.1.8. Réalisation du point de fonctionnement

Réduction de temps de pompage

$$20*Q1 = T*Q$$

 $T = 20*29/29,9 = 19,40h$

C.-à-d. 19h et 24min de pompage.

Donc

Le vannage

La perte de charge créée par la vanne d'étouffement égale à :

$$h = H' - H_1 = 192 - 182,22 = 9,78 \text{ m}$$

Et la puissance absorbée sera :

$$Pa = \frac{g \times Q_1 \times H'}{\eta} = \frac{9.81 \times 0.029 \times 192}{0.678}$$

D'où : Pa = 80,56Kw

Variation de la vitesse de rotation

La nouvelle vitesse de rotation de la pompe s'écrit comme suit :

$$N' = N \times \frac{Q_1}{Q_3}$$
 (Tr/min)

L'équation de la courbe isorendement s'écrit :

$$H = \frac{H_1}{Q_1^2} \times Q^2$$

$$H = 0.217 \times Q^2$$

Cette courbe passe par le point P₃ (29,4 l/s, 187,57 m)

D'où:

$$N' = 2900 \times \frac{29}{29.4} = 2850,85 \text{ tr/min}$$

La puissance absorbée sera :

$$Pa = \frac{g \times Q_1 \times H_1}{\eta} = \frac{9,81 \times 0,029 \times 182,22}{0,678}$$

D'où : Pa = 76,46 Kw

Notre choix se portera sur la troisième variante qui présente une puissance minimale

IV.9.1.9. Vérification de la cavitation des pompes choisies NPSH_d=
$$10.33 - 0.0012 .834.2 - 0.8 - 0 - 0.24 = 8.29$$
 m

On a alors (NPSH_d)>(NPSH_r), d'où la pompe ne cavite pas

IV.9.2. Choix des pompes de réseau de Agradou

IV.9.2.1. Forage F01

Les données nécessaires pour le choix de la pompe sont :

Q=9.9 1/s

 $H_g=217 m$

 $H_{mt} = 228,15m$

Tableau (**IV.6**): Les caractéristiques des différentes pompes sélectionnées(F01).

Type de pompe	Débit(l/s)	H _{mt} (m)	η(%)	P(kw)	NPSH _r	Vitesse de
					(m)	rotation
						(tr/min)
E6S55/18A+MEH650	9,9	228	72,6	30,5	3,95	2900
E8R35/15+MC840	9,46	228	76,1	27,8	2,9	2900

On va choisir la pompe qui donne le point de fonctionnement qui le plus proche du point désiré, alors notre pompe est E6S55/18A.

Les courbes caractéristiques de la pompe du forage F2 sont représentées dans le graphe ci-après :

Fig (IV.12): Courbes de la pompe du Forage01

IV.9.2.2 vérification de la cavitation des pompes choisies

Par mesure de sécurité, les pompes immergées seront placées à 1 m au-dessous du niveau dynamique des forages, donc ces pompes travaillent en charge et par conséquent il n'y a pas de cavitation.

IV.9.2.3. Station de reprise

Les données nécessaires pour le choix de la pompe sont :

Q = 9.91/s

 $H_g = 172.8 \text{m}$

 $H_{mt} = 188m$

Tableau (IV.7): Les caractéristiques des différentes pompes sélectionnées(SR).

Type de pompe	Débit(l/s)	H _{mt} (m)	η(%)	P(kw)	NPSH _r (m)	Vitesse de rotation (tr/min)
HMU50-1/5B	9,9	188	70,2	26,5	2,1	2900
HMU50-1/6C	10,8	191	69,3	28,9	2,26	2900

On va choisir la pompe qui donne le point de fonctionnement qui le plus proche du point désiré, alors notre pompe est MHU50-1/5B.

Les courbes caractéristiques de la pompe du SR sont représentées dans le graphe ci-après :

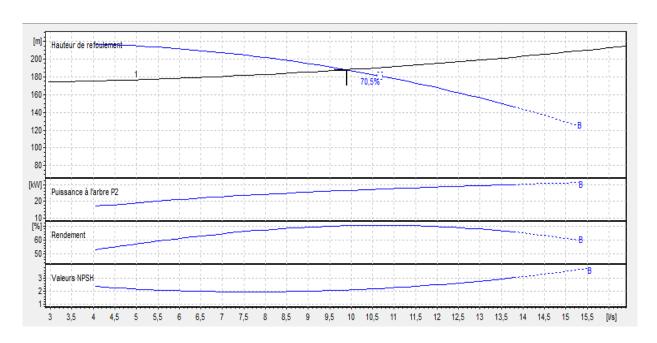


Fig (IV.13): Courbes de la pompe du SR

IV.9.2.4. Vérification de la cavitation des pompes choisies

$$NPSH_d = 10,33 - 0,0012.630,2 - 0,8 - 0 - 0,24 = 8,53 \text{ m}$$

On a alors (NPSH_d)>(NPSH_r), d'où la pompe ne cavite pas

IV.9.3. Tableau récapitulatif

Les résultats récapitulatifs des différentes pompes choisies sont regroupés dans le tableau (IV.8) suivant :

Tableau (IV.8): Les caractéristiques des différentes pompes choisies

ité		Type des pompes	Vitesse de	Le	NPSHr	Puissance
ocalité	Station		rotation (tr/min)	rendement (%)	(m)	(kw)
Ĺ	E1	E0040/104 - M10105	` ′	` ′	5.02	02
	F1	E8S48/12A+M10125	2900	74,4	5,02	92
ité	SR1	PMS80/9C	2900	69,3	4,94	110
Localité1	SR2	PM80/8C	2900	69,3	4,94	110
Lo	SR3	PM80/7C	2900	67,8	5,26	90
ocalité	F2	E6S55/18A+MEH650	2900	72,6	3,95	37
Loce	SR	HMU50-1/5B	2900	70,2	2,1	26,5

IV.10. Conclusion

Dans ce présent chapitre, on a utilisé pour les forages les pompes immergées et pour les stations de reprise les pompes multicellulaires à axe horizontal. Pour assurer la continuité d'approvisionnement, il est utile de prévoir des installations de secours pour les pompes et des moteurs électrogènes (moteurs diesel) en cas de panne d'électricité

V.1.Itroduction

Les conduites sont des ouvrages principaux dans la chaine de réseau d'alimentation en eau potable, permettent d'amener l'eau depuis la source jusqu' aux réservoirs de stockage. la nature du terraine et les paramètres physiques et chimique ainsi que le mouvement de l'eau dans ces conduites causent des phénomènes tels que la corrosion et le coup de bélier.

V.2. Protection des conduites contre de la corrosion

V.2.1. Définition

La corrosion est un phénomène qui se caractérise essentiellement par l'attaque du métal, provenant de l'extérieur ou de l'intérieur en liaison soit :

- > Avec la nature du sol
- > Avec des installations électriques à courant continue situées à proximité des conduites.

Au cas où ces phénomènes sont important, il peut se produire une destruction rapide des canalisations par perforation en forme de cratères très caractéristiques, ou attaque sous forme de couches de rouille crouteuses ou filandreuses, annonçant une diminution de l'épaisseur du métal. Donc la corrosion est une oxydation du métal, or cette dernière entraine une perte d'électron alors que la réduction sera un gain. Pour éliminer ce phénomène de corrosion, il faut de façon faire stopper toute perte d'électrons. Les métaux sont classés selon leur potentiel. C'est le métal qui possède le plus grand potentiel par rapport à un autre qui est la cathode est se trouve donc protégé. Pour le métal possédant le plus faible potentiel, se dissous anodiquement.

V.2.2. Les principaux facteurs de corrosion

- Piles constituées de métaux différents (couples galvaniques), c'est le problème d'un réseau en acier dont les branchements sont en cuivre. (l'acier dans ce cas est l'anode et se corrode).
- Lorsque la conduite traverse des passages de différentes natures, elle y prendra des potentiels locaux différents.
- De la, entraine la nécessité d'étudier le tracé avant les travaux de poses se conduite, afin de trouver les diverses causes de corrosion s'il en existe.
- Nature du terrain (corrosion chimique).
- Devant les voies électrifiées au courant continue (corrosion par courant vagabond)
- Existence de terrain de différant (corrosion par piles géologique)
- L'agressivité des terrains se ramène à la mesure de la résistance électrique du sol (résistivité).

V.2.3. Protection des conduites en fonte contre la corrosion

La fonte a été le matériau le plus populaire dans le monde pour le drainage et l'adduction de l'eau. La corrosion dans la fonte se caractérise par des piqûres de la conduite sur une surface et ceci jusqu'à la rupture mécanique, qui provoque en général des dégâts impressionnants.

Avant le procéder à la pose d'une conduite, et pour obtenir une bonne protection d'un réseau en fonte, cela constitue tout d'abord à ne pas mettre les tuyaux qui ne sont pas convenablement revêtus. Pour les protéger contre les corrosions interne et externe on utilise les protections suivant :

- Couche de zinc avec revêtement
- Couche de zinc-aluminium avec revêtement
- Revêtement en mortier de ciment armé
- Revêtement en polyéthylène
- Revêtement en polyuréthanne

V.3. Protection des conduites contre de coup de bélier

V.3.1. Définition et causes

Le coup de bélier est un phénomène oscillatoire dont les causes les plus fréquentes sont les suivantes [4] :

- Arrêt brutal, par disjonction inopinée, d'un ou de plusieurs groupes électropompes alimentant une conduite de refoulement
- Démarrage d'une pompe
- Fermeture instantanée où trop rapide d'une vanne de sectionnement ou d'un robinet d'obturation placé en bout d'une conduite d'adduction.
- Fermeture ou ouverture d'un robinet d'isolement
- Le remplissage ou la vidange d'un système d'AEP.

Les valeurs de surpression et de dépression peuvent atteindre des valeurs très élevées provoquant la rupture des conduites par conséquent ces conduites doivent être protégées contre les coup de bélier avec les différents moyens de protection disponibles dans le marché et plus économiques et appropriées avec les caractéristiques de réseau.

V.3.2. Les dispositifs de protection

Les dispositifs de protection contre le coup de bélier sont les suivants [4] :

V.3.2.1. Les volants d'inertie

Le volant d'inertie calé sur l'arbre du groupe constitue l'un de ces moyens, grâce à l'énergie qu'il accumule pendant la marche normale.

Le volant d'inertie la restitue au moment de la disjonction et permet ainsi d'allonger le temps d'arrêt de l'ensemble donc de diminuer l'intensité du coup de bélier.

V.3.2.2. Les soupapes de décharge

Ces appareils font intervenir un organe mécanique, un ressort à boudin ordinairement qui par sa compression obture en exploitation normale un orifice placé sur le conduit au point à protéger.

V.3.2.3. Cheminée d'équilibre

C'est un réservoir à l'air libre. Cette cheminée jouera le même rôle que ce réservoir d'air, mais dans le cas de hauteur de refoulement même moyenne.

V.3.2.4. Réservoirs d'air

L'alimentation continue de veine liquide après disjonction du groupe peut être effectuée à l'aide d'une réserve d'eau accumulée sous pression dans une capacité métallique disposée à la station de pompage et raccordée au refoulement.

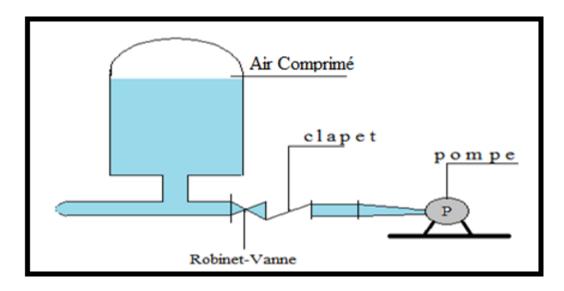


Fig (V.1): Schéma d'un réservoir d'air (anti-bélier)

V.3.3. Valeur numérique de coup de bélier

La célérité de l'onde (a) est donnée par la formule d'ALLIEVI suivante [4] :

$$a = \frac{9900}{\sqrt{48,3 + K' \cdot \frac{D_{\text{int}}}{e}}} \tag{V.1}$$

D_{int}: Diamètre intérieur de la conduite (mm)

 \succ K': Coefficient dépendant de la nature du matériau de la conduite, pour les Conduites en fonte : K' = 0.6.

> e : Epaisseur de la conduite (mm).

Pour la valeur maximale de coup de bélier, on distingue deux cas :

A) Cas d'une fermeture brusque

Une fermeture brusque est caractérisée par un temps de fermeture (t_f), tel que :

$$t_{f} < \frac{2.L}{a} \tag{V.2}$$

La valeur maximale du coup de bélier (B) est donnée comme suit :

$$B = \frac{a.V_0}{g} \tag{V.3}$$

B) Cas d'une fermeture lente

Elle est caractérisée par un temps de fermeture :

$$t_f > \frac{2.L}{a} \tag{V.4}$$

Dans ce cas, la valeur maximale de coup de bélier (B) est calculée par la formule de MICHAUD suivante :

$$B = \frac{2.L.V_0}{g.t_f} \tag{V.5}$$

Avec:

- V₀ : Vitesse de l'eau en régime permanent (m/s).
- t_f: Temps de fermeture de la vanne(s).
- L : Longueur de la conduite(m).
- B : Valeur maximale du coup de bélier (m).

Après avoir calculé la valeur du coup de bélier (B), la surpression maximale (H_s) dans la conduite est donnée par :

$$Hs = H_0 + B \tag{V.6}$$

La valeur de la dépression maximale (H_d) est donnée par :

$$H_d = H_0 - B \tag{V.7}$$

Telle que : $H_0 = Hg + 10$ (V.8)

Avec:

- H₀: Pression absolue dans la conduite en (m.c.e).
- H_g: Hauteur géométrique en (m).
- 10 : Pression atmosphérique en (m.c.e).

V.3.4. Calcul du coup de bélier pour les différents tronçons pour le réseau de Beni Ourtilane

❖ F02-SR01

Les caractéristiques de conduite (F02-SR01) sont regroupées dans le tableau (V.1) ci-dessous.

Tableau (V.1) : les caractéristiques des conduites (F02-SR01)

La conduite	$Q(m^3/s)$	D _{int} (m)	e(m)	$V_0(m/s)$	Hg(m)	L(m)
F02-SR01	0,029	0,2	0,0054	0,92	193	2965,47

Les résultats de calcul de la valeur du coup de bélier sont résumés dans le tableau (V.2) suivant :

Tableau (V.2): Valeurs numériques du coup de bélier (F02-SR01)

La conduite	$H_0(m)$	a(m/s)	B'(m)	$H_s(m)$	H _d (m)	P _s (m)
F02-SR01	203	1178.9	110.56	313.56	92,44	400

Le profil de pression est illustré sur la figure (V.2) ci-dessous

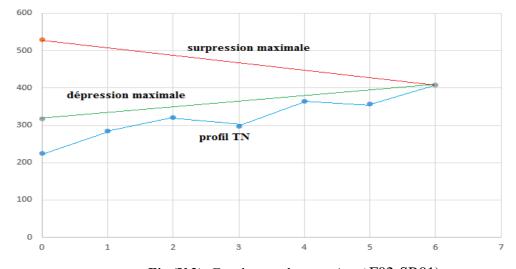


Fig (V.2): Enveloppes des pressions (F02-SR01)

D'après les résultats du tableau et de la figure, la surpression maximale ne dépasse pas la pression admissible de service et il n'y pas une dépression, par conséquent il n y'a pas de risque de destruction de la conduite par le coup de bélier, et aucun tronçon de la conduite n'est en dépression.

❖ SR01-SR02

Les caractéristiques de conduite (SR01-SR02) sont regroupées dans le tableau (V.3) ci-dessous.

Tableau (V.3) : les caractéristiques de conduite(SR01-SR02)

La conduite	$Q(m^3/s)$	D _{int} (m)	e(m)	$V_0(m/s)$	Hg(m)	L(m)
SR01-SR02	0,029	0,2	0,0054	0,92	233,8	944,565

Les résultats de calcul de la valeur du coup de bélier sont résumés dans le tableau (V.4) suivant :

Tableau (V.4) : Valeurs numériques du coup de bélier(SR01-SR02)

La conduite	$H_0(m)$	a(m/s)	B'(m)	H _s (m)	H _d (m)	P _s (m)
SR01-SR02	243,8	1178,9	110,56	354,36	133,24	400

Le profil de pression est illustré sur la figure (V.3) ci-dessous

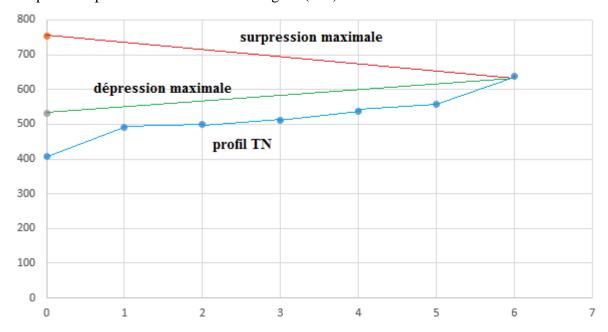


Fig (V.3): Enveloppes des pressions (SR01-SR02)

D'après les résultats du tableau et de la figure, la surpression maximale ne dépasse pas la pression admissible de service et il n'y pas une dépression, par conséquent il n y'a pas de risque de destruction de la conduite par le coup de bélier, et aucun tronçon de la conduite n'est en dépression.

❖ SR02-SR03

Les caractéristiques de conduite (SR02-SR03) sont regroupés dans le tableau (V.5) ci-dessous.

Tableau (V.5) : les caractéristiques de conduite(SR02-SR03)

La conduite	$Q(m^3/s)$	D _{int} (m)	e(m)	$V_0(m/s)$	Hg(m)	L(m)
SR02-SR03	0,029	0,2	0,0054	0,92	200,8	2162.191

Les résultats de calcul de la valeur du coup de bélier sont résumés dans le tableau (V.6) suivant :

Tableau (V.6): Valeurs numériques du coup de bélier(SR02-SR03)

La conduite	$H_0(m)$	a(m/s)	B'(m)	H _s (m)	H _d (m)	P _s (m)
SR02-SR03	210,8	1178,9	110,56	321,36	100,24	400

Le profil de pression est illustré sur la figure (V.4) ci-dessous

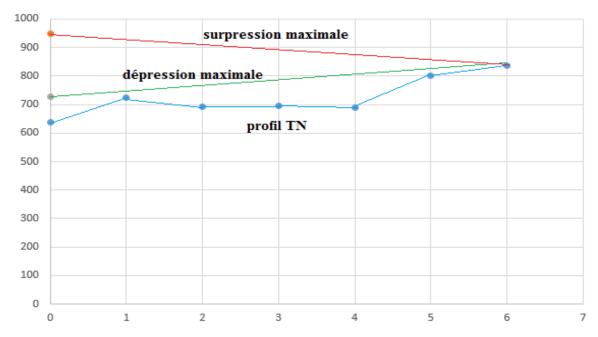


Fig (V.4): Enveloppes des pressions (SR02-SR03)

D'après les résultats du tableau et de la figure, la surpression maximale ne dépasse pas la pression admissible de service et il n'y pas une dépression, par conséquent il n y'a pas de risque de destruction de la conduite par le coup de bélier et aucun tronçon de la conduite n'est en dépression.

❖ SR03-R_{tanorba}

Les caractéristiques de conduite SR03-R_{tanorba} sont regroupés dans le tableau (V.7) ci-dessous

Tableau (V.7) : les caractéristiques de conduite(SR03-R_{tanorba})

La conduite	$Q(m^3/s)$	D _{int} (m)	e(m)	$V_0(m/s)$	Hg(m)	L(m)
SR03-R _{tanorba}	0,029	0,2	0,0054	0,92	169,8	1180

Les résultats de calcul de la valeur du coup de bélier sont résumés dans le tableau (V.8) suivant :

Tableau (V.8): Valeurs numériques du coup de bélier(SR03-R_{tanorba})

La conduite	H ₀ (m)	a(m/s)	B'(m)	H _s (m)	H _d (m)	P _s (m)
SR03-R _{tanorba}	179,8	1178,9	110,56	290,36	69,24	400

Le profil de pression est illustré sur la figure (V.5) ci-dessous

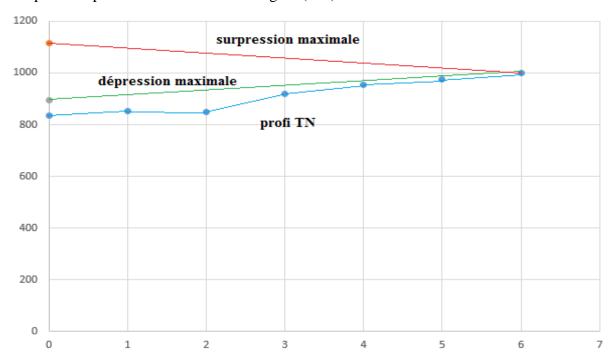


Fig (V.5): Enveloppes des pressions (SR03-R_{tanorba})

D'après les résultats du tableau et de la figure, la surpression maximale ne dépasse pas la pression admissible de service et il n'y pas une dépression, par conséquent il n y'a pas de risque de destruction de la conduite par le coup de bélier et aucun tronçon de la conduite n'est en dépression.

V.3.5. Calcul du coup de bélier pour les différents tronçons pour le réseau d'Agradou

❖ *F01-SR*

Les caractéristiques des conduites (F01-SR) sont regroupées dans le tableau (V.9) ci-dessous.

Tableau (V.9): les caractéristiques de conduite(F01-SR)

La conduite	$Q(m^3/s)$	D _{int} (m)	e(m)	$V_0(m/s)$	Hg(m)	L(m)
F01-SR	0,0099	0,15	0,005	0,56	217	2124,6

Les résultats de calcul de la valeur du coup de bélier sont résumés dans le tableau (V.10) suivant :

Tableau (V.10): Valeurs numériques du coup de bélier(F01-SR)

La conduite	H ₀ (m)	a(m/s)	B'(m)	H _s (m)	H _d (m)	P _s (m)
F01-SR	227	1215,85	69,4	296,4	157,6	400

Le profil de pression est illustré sur la figure (V.6) ci-dessous

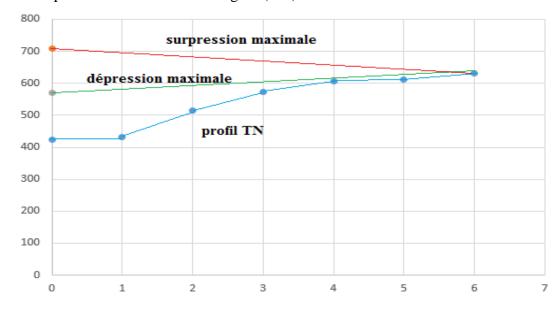


Fig (V.6): Enveloppes des pressions (F01-SR)

D'après les résultats du tableau, la surpression maximale ne dépasse pas la pression admissible de service et il n'y pas une dépression, par conséquent il n y'a pas de risque de destruction de la conduite par le coup de bélier et aucun tronçon de la conduite n'est en dépression.

\Leftrightarrow SR-R_{mlatas}

Les caractéristiques de conduite (SR-R_{mlatas}) sont regroupées dans le tableau (V.11) ci-dessous. *Tableau (V.11):* les caractéristiques de conduite (SR-R_{mlatas})

La conduite	$Q(m^3/s)$	D _{int} (m)	e(m)	$V_0(m/s)$	Hg(m)	L(m)
SR-R _{mlatas}	0,0099	0,15	0,005	0,56	172,8	1195,83

Les résultats de calcul de la valeur du coup de bélier sont résumés dans le tableau (V.12) suivant :

Tableau (V.12) : Valeurs numériques du coup de bélier (SR-R_{mlatas})

La conduite	$H_0(m)$	a(m/s)	B'(m)	H _s (m)	H _d (m)	P _s (m)
SR-R _{mlatas}	182,8	1215,85	69,4	252,2	113,4	400

Le profil de pression est illustré sur la figure (V.7) ci-dessous

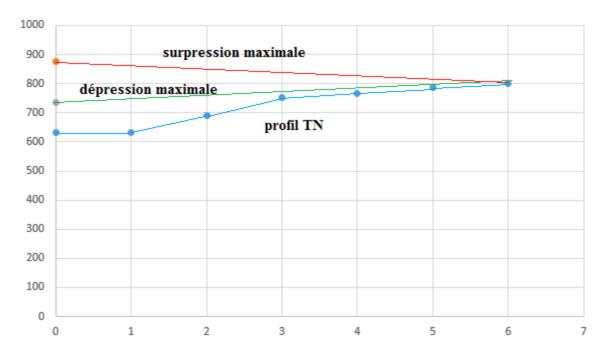


Fig (V.7): Enveloppes des pressions (SR-R_{mlatas})

D'après les résultats du tableau, la surpression maximale ne dépasse pas la pression admissible de service et il n'y pas une dépression, par conséquent il n y'a pas de risque de destruction de la conduite par le coup de bélier et aucun tronçon de la conduite n'est en dépression.

V.4. Pose des conduites

V.4.1. Introduction

La pose des conduites est une opération très importante qui demande les techniques pour que ces dernières résistent aux déférentes effets comme la charge le mouvement du sol, la température ...etc.

V.4.2. Pose en tranchées

La pose en terre s'effectue dans des tranchées de largeur dépendante du diamètre de la conduite en respectant les dimensions présentées dans la figure (V.8) ci-après [8] :

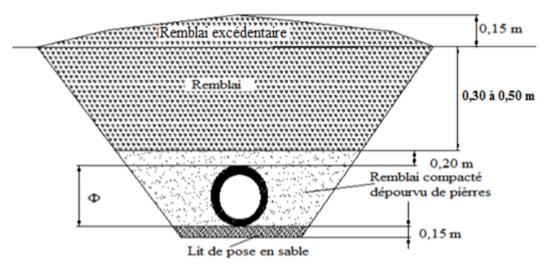


Fig (V.8): Coupe transversale d'une fouille

V.4.3. Essai de pression

Avant de remblayer la tranchée, on effectue un essai de pression à l'aide d'une pompe d'épreuve. Cet essai s'effectue par tronçons plus ou moins longs suivant les circonstances. La conduite est alors remplie d'eau en lui appliquant une pression de telle sorte qu'on dépasse la pression à laquelle la conduite sera soumise avec une majoration de 50%. La durée de l'épreuve est d'au moins 30 min. La variation de la pression ne doit pas être supérieure à 0.2 bars [8].

V.4.4. Le remblayage

Le remblayage fait partie des opérations de pose. Il forme le milieu dans lequel il s'expose en contact direct avec la conduite. Il doit être bien soigné, bien fait et bien choisi. Un remblai bien fait augmente la résistance aux charges extérieures et intérieures de la conduite.

Pour obtenir un bon remblai, on utilise une terre purgée de pierres, bien damée pour éviter tout tassement ultérieur du terrain autour de la conduite. Dans certain cas on se trouve exposé à des terrains agressifs, cela nous pousse à utiliser des remblais en terres chimiquement neutres.

V.4.5. Traversée des points spéciaux

Pendant l'exécution des travaux de terrassement on ne se trouve dans pas mal de cas obligé de traverser des points spéciaux : route, chemin de fer ou rivière.

A) Traversée d'une route

A cause des différentes charges à supporter qui peuvent provoquer des ruptures au niveau des conduites, et par conséquent des infiltrations nuisibles, la canalisation sera introduite à l'intérieur d'une buse (Figure(V.9)) de diamètre supérieur pour la préserver des vibrations des charges et des surcharges [8].

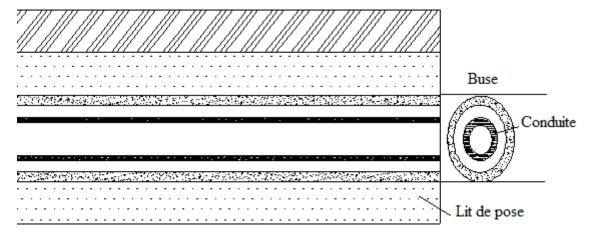


Fig (V.9): Traversée d'une route

B) Traversée d'une rivière ou d'un oued

En fonction de la traversée et de l'importance de l'adduction, la pose des conduites qui traversent une rivière demande certains travaux confortatifs, on peut trouver deux cas :

- L'existence d'une route servira également à supporter la conduite d'adduction.
- ➤ Dans le cas ou le pont route n'existe pas, la canalisation suivra le lit de la rivière, elle sera posée sur des ouvrages spéciaux (tasseaux), on utilise des conduites de diamètre supérieur ou des gravillons sur les deux cotés de la canalisation (Figure(V.10)).

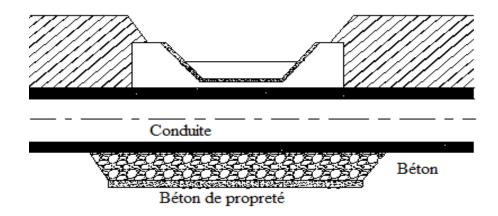


Fig (V.10): Traversée d'une rivière ou d'un Oued

V.4.6. Les butées

Le changement de direction des conduites tend sous la poussée exercée par l'eau à un déboîtement des joints dans les parties coudées ou à la rupture des soudures. Nous prévoyons alors la construction de butées en béton qui s'opposeront à ces effets et nous prévoyons des butées dans les cas suivant[8]:

- Cas d'un branchement
- Cas d'un coude horizontal
- Cas d'un coude vertical

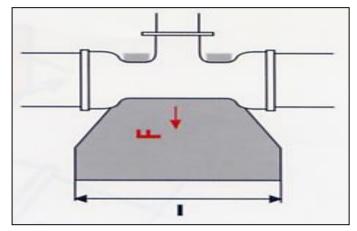


Fig (V.11): Butée sur un branchement

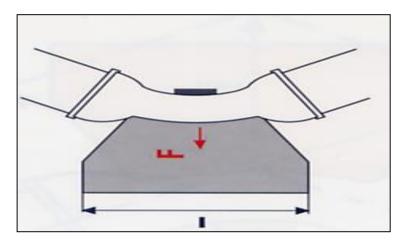


Fig (V.12): Butée sur un coude horizontal

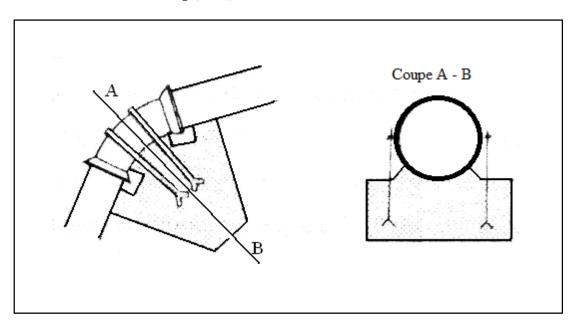


Fig (V.13): Butée sur un coude vertical

V.4.5. Désinfection des conduites

Après l'achèvement des travaux de pose des conduites, la livraison de l'eau au consommateur ne peut se faire qu'après une désinfection totale du réseau. Cette opération peut s'effectuer, soit au chlore ou au permanganate de potassium. Après la désinfection, nous procéderons au rinçage de la conduite avec de l'eau claire.

V.5.Conclusion

Dans ce chapitre nous avons vérifié qu'il n y'a pas de risque de destruction de toutes les conduites De refoulement par le coup de bélier. Ce qui nous conduira à conclure que la protection anti bélier n'est pas nécessaire pour notre étude et la pose des conduites

VI.1. Introduction

Le réseau de distribution est l'ensemble des canalisations qui font suite au réservoir. Leur objectif est d'assurer l'accès du réseau aux usagers dans des conditions économiques optimales tout en prévenant les difficultés d'exploitation et d'entretien.

VI.2. Classification des réseaux de distribution

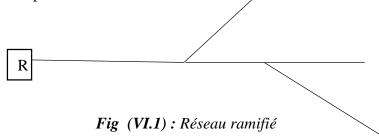
Les deux principales classifications des réseaux de distribution sont :

VI.2.1 La classification selon la disposition des réseaux dans l'agglomération

* réseau unique

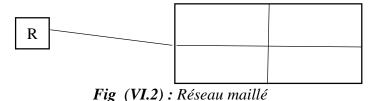
Dans le cas d'un relief plat ou moyennement accidenté on peut utiliser juste un seul réseau et avoir de bonnes conditions techniques (pressions).

* réseau en zones étagées


Dans le cas d'un relief accidenté la différence de niveau entre les points les plus hauts et les plus bas est remarquablement élevée, c'est à dire, lorsqu'une pression minimale est assurée pour les points de l'amont les points de l'aval se retrouvent sous de très importantes pressions. Dans ce cas la solution du réseau en zones étagées s'impose.

VI.2.2 Classification selon la disposition des tronçons dans le réseau

Les réseaux de distribution peuvent être classés comme suit [4] :


VI.2.2.1. Réseau ramifié

Dans lequel la distribution ne comporte aucune alimentation en retour (figure (VI.1)). Il présente l'avantage d'être économique, mais il manque de souplesse en cas de rupture ; un accident à l'amont de la conduite prive d'eau tous les abonnés d'aval.

VI.2.2.2. Réseau maillé

Comporte une alimentation en retour (figure (VI.2)), il remédie donc à l'inconvénient signalé dans le réseau ramifié ; une simple manœuvre du robinet permet d'isoler le tronçon accidenté et de servir les abonnés d'aval.

VI.2.2.3. Réseau mixte

Un réseau est dit mixte (maillé-ramifié), lorsque ce dernier constitue une partie ramifiée et une autre maillée (Figure (VI.3)). Ce type de réseau est utilisé pour desservir les quartiers en périphérie de la ville par les ramifications issues des mailles utilisées dans le centre de cette ville.

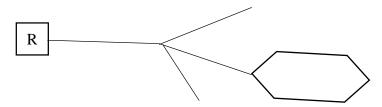


Fig (VI.3): Réseau mixte

VI.3. Description du réseau de distribution

La distribution se fera entièrement par gravité à partir de (02) réservoir situé à une côte de 800 m et le point le plus éloignée situé à une cote de 431m , pour ce la on placée les brise charge pour eviter les hautes pressions . Notre réseau est de type ramifié

VI.4. les principes du tracé du réseau

Les principes du tracé d'un réseau sont les suivantes :

- ➤ Fonctionnement hydraulique simple et efficace.
- Continuité du service en évitant la création de points de faiblesse ou en prévoyant des alternatives en cas de rupture.
- Optimisation de la longueur du réseau par le choix des rues devant recevoir les conduites et le choix de leur emplacement dans les rues
- ➤ Equipement minimum afin de faciliter la maitrise du réseau et son entretien : vannes vidange, venteuses.

Le tracé du réseau de distribution de la zone d'étude est illustré dans l'annexe(8)

VI.5. Choix du type de conduites

Le choix est fondé sur des critères d'ordre technique et économique : le diamètre, la Pression de service, la durée de vie, les conditions de pose et de transport, le prix et la disponibilité sur le marché.

Dans le présent projet, le PEHD (Polyéthylène Haute Densité) répond aux objectifs recherchés, ce choix est motivé par les raisons suivantes:

- Facilité de pose (grande flexibilité).
- Possibilité d'enroulement en couronnes pour les petits diamètres.
- Résiste à la corrosion interne, externe et micro biologique.
- Disponibilité sur le marché national.
- Une rugosité très faible.
- Meilleure résistance aux contraintes (choc, écrasement et déplacement du terrain).
- Longue durée de vie (durée de vie théorique : 50 ans à une température de 20°c).

VI.6. Exigences du réseau de distribution

Pour qu'un réseau soit performant il faut que :

- la pression soit supérieure à 1 bar.
- ➤ sur la totalité du réseau, la pression maximale régnant ne doit en aucun cas dépasser les 6 bars (60 m), ceci provoquera des désordres ; à l'occasion, on peut prévoir une distribution étagée ou installer des réducteurs de pression.
- Les vitesses doivent être entre 0,5 et 1,5 m/s.

Les diamètres doivent permettre l'écoulement des débits de pointe.

VI.7. Calcul hydraulique

VI.7.1. Débit de pointe

Le débit de pointe (Q_p) correspond à la consommation maximale horaire, avec lequel se fait le dimensionnement du réseau de distribution.

Ainsi: $Q_p = Q_{\text{max.h}} = 31,25 \text{ m}^3/\text{h}$

Soit : $Q_p = 8,68 \text{ l/s}.$

VI.7.2. Débit spécifique

Il est défini comme étant le volume d'eau transitant dans un mètre de canalisation pendant une seconde.

$$Q_s = Q_p / \Sigma L \qquad (VI.1)$$

Avec:

Q_s: Débit spécifique (l/s/m).

Q_p: Débit de pointe (l/s).

Σ L : Longueur totale des tronçons du réseau de distribution(m)

VI.7.3. Débit en route

C'est le débit circulant à travers un tronçon et supposé être consommé d'une façon uniforme sur toute la longueur de ce dernier. Il se calcule comme suit :

$$Q_{r} = Q_{s} \times L_{ij} \tag{VI.2}$$

Avec:

Q_r: Débit en route de tronçon (l/s).

Q_s: Débit spécifique (l/s/m).

L_{ii}: Longueur du tronçon (i-j) en (m).

VI.7.4. Débit en nœud

Le débit en chaque nœud correspond à la moitié de la somme des débits en route autour du nœud en ajoutant les débits localisés en ce nœud. Il se calcule comme suit :

$$Q_n = 0.55 \sum Q_r + \sum Q_c \tag{VI.3}$$

Q_n: Débit au nœud (1/s).

 $\sum Q_r$: Somme des débits en route autour du nœud considéré (l/s).

Q_c: Somme des débits localisés en nœud considéré (l/s).

VI.7.5. Les pertes de charge

Les pertes de charge se calculent par la formule de Darcy- WEISBACH suivante :

$$J = \frac{\lambda V^2}{2gD} \tag{VI.4}$$

Avec:

J : Pertes de charge (m).

V : Vitesse d'écoulement (m/s).

g : Accélération de la pesanteur (m/s²).

D: Diamètre de la canalisation (m).

λ : Coefficient de frottement qui dépend de la rugosité relative et du régime d'écoulement.

λ est déterminé à partir de la formule de COLEBROOK- WHITE ci-après :

$$\frac{1}{\sqrt{\lambda}} = -2\log\left[\frac{k}{3.71D} + \frac{2.51}{R_e\sqrt{\lambda}}\right] \tag{VI.5}$$

k : Rugosité de la conduite.

Pour le PEHD, k = 0.01 mm pour des diamètres inférieurs à 200 mm et k = 0.02 mm pour des diamètres supérieurs à 200 mm.

 R_e : Nombre de Reynolds, tel que :

$$R_e = \frac{VD}{D} \tag{VI.6}$$

 $\upsilon\,$: Viscosité cinétique de l'eau calculée par la formule de Stockes, avec :

$$\upsilon = \frac{0.00178}{1 + 0.00337t + 0.00022 \, t^3} \tag{VI.7}$$

t : température de l'eau.

 $v : 10^{-6} \text{ m}^2/\text{s} \text{ à } 20 \,^{\circ}\text{c}.$

VI.7.6. La vitesse

La vitesse de l'eau dans les conduites sera de l'ordre de 0,50 à 1.5 m/s. Elle se calcule par la formule suivante :

$$V = \frac{4 \times Q}{\pi \times D^2} \tag{VI.8}$$

Avec:

V : Vitesse d'écoulement dans la conduite (m/s).

Q : Débit véhiculé dans la conduite (m³/s).

D : Diamètre de la conduite (m).

VI.7.7. Calcul des pressions

Pour la présente étude, la pression doit être assurée dans une fourchette de 10 à 60 mètres de colonne d'eau, c'est-à-dire de 1 à 6 bars.

Connaissant les cotes des extrémités des différents tronçons du réseau étudié, ainsi que leurs pertes de charge, nous pouvons déterminer les pressions exercées au sol par la formule suivante :

$$P_{i} = C_{pi} - CTN_{i} \tag{VI.9}$$

Avec:

P_i: Pression au sol du point considéré (m).

C_{pj}: Cote piézométrique du même point considéré (m).

CTN_i: Cote du terrain naturel du point considéré (m).

La cote piézométrique est donnée par la formule suivante :

$$C_{pj} = C_{pi} - H_{ij}$$
 (VI.10)

Avec ·

C_{pi}: Cote piézométrique du point (i).

H_{ii}: Perte de charge dans le tronçon (ij); l'écoulement s'effectue de (i) vers (j).

VI.7.8. Calcul des différents débits du réseau de la zone d'étude

Les différents résultats des débits sont récapitulés dans le tableau (VI.1) suivant :

Tableau (VI.1): Détermination des débits en nœuds

Nœud	cote (m)	tronçon	L (m)	D _{int} (mm)	Qs (l/s ml)	Qr(l/s)	Qn(l/s)
1	732	1 R	932	96,8	0,00114264	1,06493865	8,68
		B1 2	383	96,8	0,00114264	0,43763037	,
2	674,8	2 3	390	16	0,00114264	0,44562883	
	,	2 4	43	79,2	0,00114264	0,04913344	0,513
3	646,8	3 2	390	16	0,00114264	0,44562883	0,245
		4 2	43	79,2	0,00114264	0,04913344	
4	672,2	4 5	303	16	0,00114264	0,34621933	
		4 6	12	79,2	0,00114264	0,01371166	0,225
5	666,14	5 4	303	16	0,00114264	0,34621933	0,19
6	671	6 4	12	79,2	0,00114264	0,01371166	6,325
		7 b2	489	79,2	0,00114264	0,55875	
7	630,45	7 8	350	21	0,00114264	0,39992331	
		7 9	351	79,2	0,00114264	0,40106595	0,748
8	611,46	8 7	350	21	0,00114264	0,39992331	0,22
		9 7	350	79,2	0,00114264	0,39992331	
9	606,42	9 10	318	21	0,00114264	0,3633589	
		9 11	18	66	0,00114264	0,02056748	0,432
10	610,38	10 9	318	21	0,00114264	0,3633589	0,200
		11 9	18	66	0,00114264	0,02056748	
11	605,85	11 12	410	21	0,00114264	0,4684816	
		11 13	404	51,4	0,00114264	0,46162577	0,523
12	601,29	12 11	410	21	0,00114264	0,4684816	0,258
		13 11	404	51,4	0,00114264	0,46162577	
13	576,19	13 14	489	21	0,00114264	0,55875	
		13 15	11	51,4	0,00114264	0,01256902	0,568
14	570,1	14 13	489	21	0,00114264	0,55875	0,307
15	574,13	15 13	11	51,4	0,00114264	0,01256902	3,062
		16 b3	635	66	0,00114264	0,72557515	
16	524,43	16 17	34	35,2	0,00114264	0,03884969	
		16 20	6	44	0,00114264	0,00685583	0,424
		17 16	34	35,2	0,00114264	0,03884969	
17	521,63	17 18	387	21	0,00114264	0,44220092	
		17 19	238	16	0,00114264	0,27194785	0,414
18	519,94	18 17	387	21	0,00114264	0,44220092	0,243
19	515	19 17	238	16	0,00114264	0,27194785	0,150
20	525	20 16	6	44	0,00114264	0,00685583	1,824
		21 b4	346	55,4	0,00114264	0,39535276	
21	497	21 22	510	28	0,00114264	0,5827454	
		21 23	765	26	0,00114264	0,8741181	1,019
22	474	22 21	510	28	0,00114264	0,5827454	0,321
23	431	23 21	765	26	0,00114264	0,8741181	0,481

VI.8. Configuration et simulation du réseau hydraulique

L'utilisation des programmes informatiques peut libérer le projecteur des calculs fastidieux et de multiplier sa puissance de travail essentiellement pour :

- Le calcul de fonctionnement hydraulique du réseau.
- La détermination des solutions optimales.

Le logiciel utilisé pour les calculs est le WATERCAD et EPANET.

VI.8.1.Configuration et simulation du réseau par logiciel watercad

VI.8.1.1. Présentation du logiciel watercad

WaterCAD est une application conviviale qui permet de modéliser le comportement hydraulique et la qualité de l'eau dans les réseaux de distribution. Pour gérer leurs infrastructures, de nombreux services publics, services municipaux et bureaux d'étude font confiance à WaterCAD, un outil fiable et économique qui facilite la prise de décision, le contrôle des systèmes de lutte contre les incendies à l'analyse de l'eau, de la consommation énergique et à la gestion des coûts, WaterCAD aide à analyser, concevoir et optimiser les réseaux de distribution d'eau.

VI.8.1.2. Utilisation de watercad

Les étapes d'utilisation de watercad pour modéliser un système de distribution d'eau sont les suivantes[9]:

- ➤ Dessiner un réseau représentant le système de distribution ou importer un fichier CAD , fichier Excel , fichier Access, base donnée et Esri Shape.
- Saisir les propriétés des éléments du réseau.
- Vérifier les unités de calculs et choisi l'option la base de calculation .
- ➤ Valider le travail pour vérifier que aucun problème dans le réseau.
- Lancer une simulation hydraulique ou les calcules.
- ➤ Visualiser les résultats d'une simulation

VI.8.1.3. Modélisation du réseau

WATERCAD modélise un système de distribution d'eau comme un ensemble des conduites(pipe) reliés à des nœuds (jonction), des pompes et des vannes de contrôle. Les nœuds représentent des nœuds de demande, des réservoirs et des bâches, des turbines , les orifices entre des conduites...ect.

Dans le présent projet, la modélisation s'est portée en introduisant les différentes données du réseau.

* Au niveau des nœuds

- L'altitude du nœud par rapport à un plan de référence ;
- La demande en eau (débit prélevé sur le réseau).
- Le nom et leur coordonnée (x ,y).
- * Au niveau des réservoirs
- L'altitude du réservoir par rapport à un plan de référence ;
- Le nom et leur coordonnée (x,y).

❖ Au niveau des conduites

- ➤ Le nœud initial et final.
- Le diamètre.
- ➤ La longueur.
- ➤ Le matériau (pour déterminer la rugosité)

VI.8.2. Configuration et simulation du réseau par logiciel EPANET

III.8.2.1. Présentation du logiciel EPANET

EPANET est un logiciel de simulation du comportement hydraulique et de la qualité de l'eau sur de longues durées dans les réseaux sous pression. Un réseau est un ensemble de tuyaux, nœuds (jonctions de tuyaux), pompes, vannes, bâches et réservoirs. EPANET calcule le débit dans chaque tuyau, la pression à chaque nœud, le niveau de l'eau dans les réservoirs et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes. Le logiciel est également capable de calculer les temps de séjour de l'eau et de suivre l'origine de l'eau. EPANET a pour objectif une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution

III.8.2.2. Utilisation d'EPANET

Les étapes classiques d'utilisation d'EPANET pour modéliser un système de distribution d'eau sont les suivantes [10]:

- Dessiner un réseau représentant le système de distribution ou importer une description de base du réseau enregistrée dans un fichier au format texte.
- > Saisir les propriétés des éléments du réseau.
- Décrire le fonctionnement du système.
- Sélectionner un ensemble d'options de simulation.
- Lancer une simulation hydraulique ou une analyse de la qualité.
- > Visualiser les résultats d'une simulation.

III.8.2.3. Modélisation du réseau

EPANET modélise un système de distribution d'eau comme un ensemble d'arcs reliés à des nœuds. Les arcs représentent des tuyaux, des pompes et des vannes de contrôle. Les nœuds représentent des nœuds de demande, des réservoirs et des bâches.

Dans le présent projet, la modélisation s'est portée en introduisant les différentes données du réseau.

❖ Au niveau des nœuds

- L'altitude du nœud par rapport à un plan de référence ;
- La demande en eau (débit prélevé sur le réseau).
- * Au niveau des arcs

Le nœud initial et final.

- Le diamètre.
- La longueur.
- Le cœfficient de rugosité (pour déterminer la perte de charge).
- * Au niveau des réservoirs
- L'altitude du radier.
- Le diamètre.
- Le niveau initial, minimal et maximal d'eau

VI.8.3. Simulation du réseau

Après la saisie des informations du réseau, la simulation peut être lancée. Dans cette étape, et grâce à son moteur de calcul, le logiciel analyse le comportement du réseau dans les conditions requises et détermine les différentes grandeurs hydrauliques (vitesse, débit, pression et les cotes piézométrique), ce qui implique de résoudre simultanément les équilibres de masse dans les nœuds et les pertes de charge dans chaque conduites du réseau.

VI.9. Résultats et constatations

VI.9.1. Résultats et constatations après la simulation par logiciel WATERCAD

VI.9.1.1. Etat du réseau après la simulation

Avant faire la simulation on divise le réseau en 5 parties comme suit :

❖ La partie reservoir-Brise charge 1

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.4)) ci-dessous :

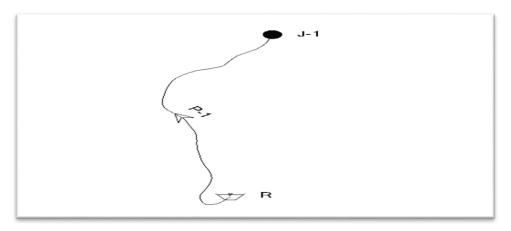


Fig (VI.4): Etat du réseau après la simulation(R-B1)

❖ La partie Brise charge 1-Brise charge 2

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.5)) ci-dessous :

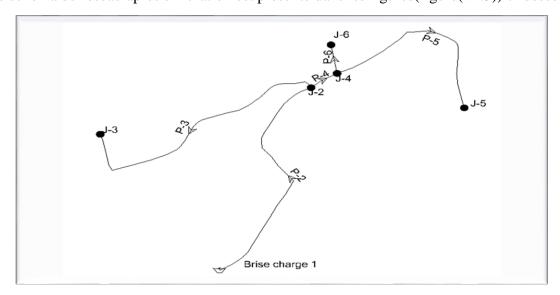


Fig (VI.5): Etat du réseau après la simulation(B1-B2)

❖ La partie Brise charge 2-Brise charge 3

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.6)) ci-dessous :

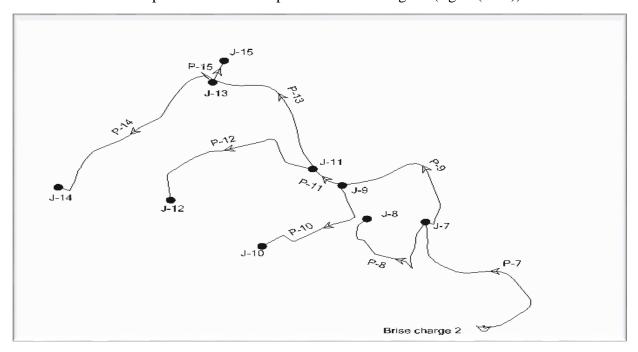


Fig (VI.6): Etat du réseau après la simulation(B2-B3)

❖ La partie Brise charge 3-Brise charge 4

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.7)) ci-dessous :

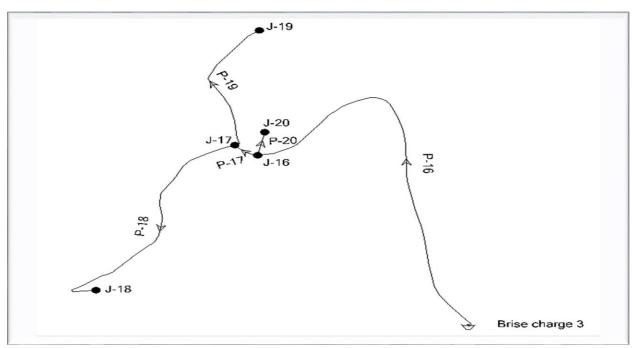


Fig (VI.7): Etat du réseau après la simulation(B3-B4)

❖ La partie Brise charge 4-Nœud 23

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.8)) ci-dessous

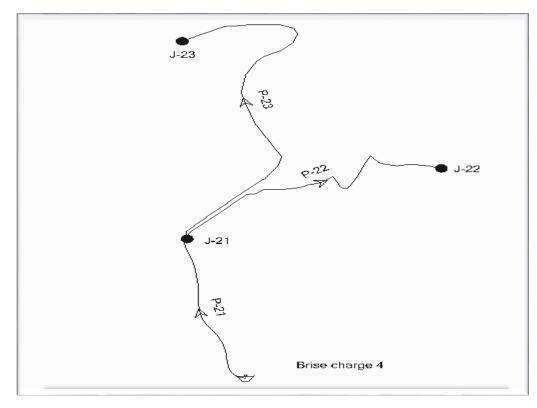


Fig (VI.8): Etat du réseau après la simulation(B4-N23)

VI.9.1.2. Etat des nœuds du réseau

Dans le tableau (VI.2) ci-dessous, en chaque nœud on cite l'altitude, la pression et la demande de base pour le cas de pointe.

Tableau (VI.2): Etat des nœuds du réseau

			Cotes	
	Altitudes des	Débits nodaux	piézométriques	Pression au sol
N° des nœuds	nœuds (m)	(l/s)	(m)	(m)
Nœud 1	732	8,68	789,18	57,18
Nœud 2	674,8	0,513	728,1	53,3
Nœud 3	646,8	0,245	677,57	30,77
Nœud 4	672,2	0,225	727,16	54,96
Nœud 5	666,14	0,19	702,13	35,99
Nœud 6	671	6,325	726,18	55,18
Nœud 7	630,45	0,748	661,39	30,94
Nœud 8	611,46	0,22	651,48	40,02
Nœud 9	606,42	0,432	656,3	49,88
Nœud 10	610,38	0,2	648,53	38,15
Nœud 11	605,85	0,523	655,8	49,95
Nœud 12	601,29	0,258	640,11	38,82
Nœud 13	576,19	0,568	628,35	52,16
Nœud 14	570,1	0,307	602,75	32,65
Nœud 15	574,13	3,062	627,65	53,52
Nœud 16	524,43	0,424	568,2	43,77
Nœud 17	519,94	0,243	553,97	34,03
Nœud 18	521,63	0,414	567,36	45,73
Nœud 19	515	0,15	554,43	39,43
Nœud 20	525	1,824	566,7	41,7
Nœud 21	497	1,019	519,98	22,98
Nœud 22	474	0,321	512,73	38,73
Nœud 23	431	0,481	488,51	57,51

VI.9.1.3. Etat des conduites du réseau

Dans le tableau (VI.3) ci-après, on trouve le débit, la vitesse, la perte de charge pour le cas de pointe.

Tableau (VI.3): Etat des conduites du réseau

conduite	Longueur (m)	Diamètre (mm)	Débit (L/s)	vitesse (m/s)	perte de charge(m)
conduite 1	932	96,8	8,68	1,18	13,25
conduite 2	383	96,8	7,498	1,02	3,9
conduite 3	390	16	0,245	1,22	50,53
conduite 4	43	79,2	6,74	1,37	0,94
conduite 5	303	16	0,19	0,95	25,03
conduite 6	12	79,2	6,325	1,28	0,98
conduite 7	489	79,2	6,317	1,28	9,61
conduite 8	350	21	0,22	0,64	9,91
conduite 9	351	79,2	5,349	1,09	5,09

conduite	Longueur (m)	Diamètre (mm)	Débit (L/s)	vitesse (m/s)	perte de charge(m)
conduite 10	318	21	0,2	0,58	7,78
conduite 11	18	66	4,718	1,38	0,5
conduite 12	410	21	0,258	0,74	15,69
conduite 13	404	51,4	3,937	1,9	27,45
conduite 14	489	21	0,307	0,89	25,6
conduite 15	11	51,4	3,062	1,48	0,7
conduite 16	635	66	3,055	0,89	7,99
conduite 17	34	35,2	0,807	0,83	0,84
conduite 18	387	21	0,243	0,7	13,39
conduite 19	238	16	0,15	0,74	12,93
conduite 20	6	44	1,824	1,2	1,5
conduite 21	346	55,4	1,82	0,76	4,02
conduite 22	510	28	0,321	0,52	7,25
conduite 23	765	26	0,481	0,91	31,47

Tableau (VI.4): Etat des conduites du réseau(suit)

VI.9.2. Résultats et constatations après la simulation par logiciel EPANET

VI.9.2.1. Etat du réseau après la simulation

Avant faire la simulation on divise le réseau en 5 parties comme suit :

❖ La partie reservoir-Brise charge 1

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.9)) ci-dessous :

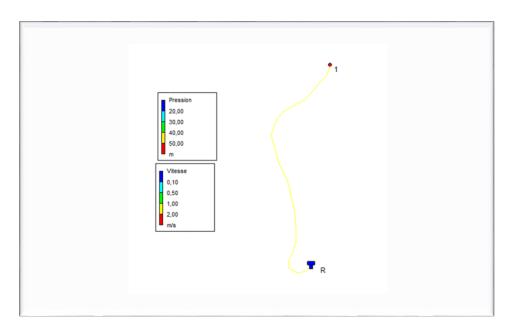


Fig (VI.9): Etat du réseau après la simulation(R-B1)

❖ La partie Brise charge 1-Brise charge 2

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.10)) ci-dessous :

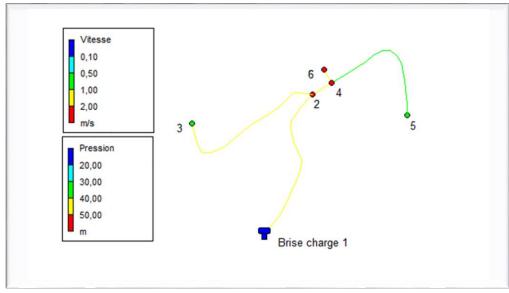


Fig (VI.10): Etat du réseau après la simulation(B1-B2)

❖ La partie Brise charge 2-Brise charge 3

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.11)) ci-dessous :

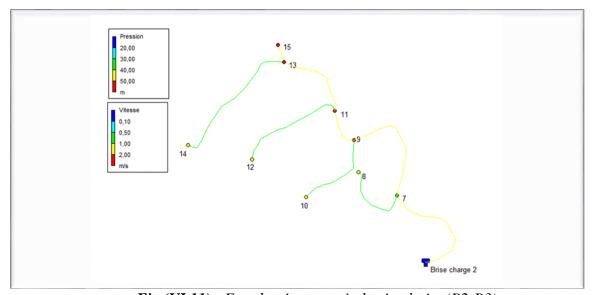


Fig (VI.11): Etat du réseau après la simulation(B2-B3)

❖ La partie Brise charge 3-Brise charge 4

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.12)) ci-dessous

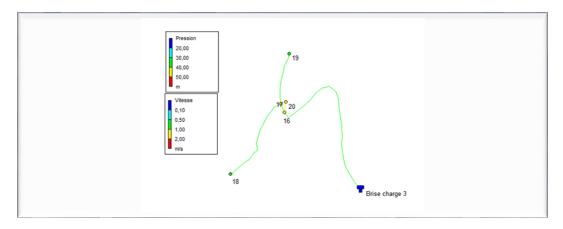


Fig (VI.12): Etat du réseau après la simulation(B3-B4)

❖ La partie Brise charge 4-Nœud 23

Le schéma du réseau après simulation est présenté dans les figures(figure(VI.13)) ci-dessous :

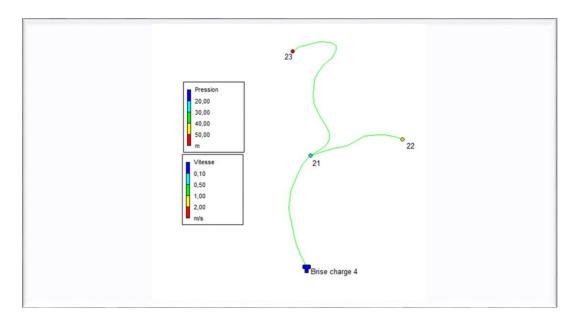


Fig (VI.13): Etat du réseau après la simulation(B4-N23)

VI.9.2.2. Etat des nœuds du réseau

Dans le tableau (VI.4) ci-dessous, en chaque nœud on cite l'altitude, la pression et la demande de base pour le cas de pointe.

Tableau (VI.5) : Etat des nœuds du réseau

N° des nœuds	Altitudes des nœuds (m)	Débits nodaux (l/s)	Cotes piézométriques (m)	Pression au sol (m)
Nœud 1	732	8,68	791,15	59,15
Nœud 2	674,8	0,51	730,11	55,31
Nœud 3	646,8	0,25	679,27	32,47
Nœud 4	672,2	0,23	729,16	56,96
Nœud 5	666,14	0,19	704,02	37,88
Nœud 6	671	6,32	728,92	57,92
Nœud 7	630,45	0,75	663,37	32,92
Nœud 8	611,46	0,22	653,17	41,71
Nœud 9	606,42	0,43	658,26	51,84
Nœud 10	610,38	0,2	650,42	40,04
Nœud 11	605,85	0,52	657,75	51,9
Nœud 12	601,29	0,26	641,94	40,65
Nœud 13	576,19	0,57	630,2	54,01
Nœud 14	570,1	0,31	604,54	34,44
Nœud 15	574,13	3,06	629,72	55,59
Nœud 16	524,43	0,42	568,02	43,59
Nœud 17	519,94	0,24	553,76	33,82
Nœud 18	521,63	0,41	567,19	45,56
Nœud 19	515	0,15	554,18	39,18
Nœud 20	525	1,82	567,8	42,8
Nœud 21	497	1,02	522,94	25,94
Nœud 22	474	0,32	515,65	41,65
Nœud 23	431	0,48	491,05	60,05

VI.9.2.3. Etat des arcs du réseau

Dans le tableau (VI.5) ci-après, on trouve le débit, la vitesse, la perte de charge pour le cas de pointe.

Tableau (VI.6) : Etat des arcs du réseau

	Longueur	Diamètre int			perte de
Arc	(m)	(mm)	Débit (L/s)	vitesse (m/s)	charge(m)
Arc 1	932	96,8	8,68	1,18	13,25
Arc 2	383	96,8	7,498	1,02	3,89
Arc 3	390	16	0,245	1,22	50,84
Arc 4	43	79,2	6,74	1,37	0,95
Arc 5	303	16	0,19	0,95	25,14
Arc 6	12	79,2	6,325	1,28	0,24
Arc 7	489	79,2	6,317	1,28	9,63
Arc 8	350	21	0,22	0,64	10,19
Arc 9	351	79,2	5,349	1,09	5,11
Arc 10	318	21	0,2	0,58	7,84
Arc 11	18	66	4,718	1,38	0,51
Arc 12	410	21	0,258	0,74	15,81
Arc 13	404	51,4	3,937	1,9	27,56
Arc 14	489	21	0,307	0,89	25,66
Arc 15	11	51,4	3,062	1,48	0,47
Arc 16	635	66	3,055	0,89	8,12
Arc 17	34	35,2	0,807	0,83	0,83
Arc 18	387	21	0,243	0,7	13,43
Arc 19	238	16	0,15	0,74	13,01
Arc 20	6	44	1,824	1,2	0,22
Arc 21	346	55,4	1,82	0,76	4,06
Arc 22	510	28	0,321	0,52	7,28
Arc 23	765	26	0,481	0,91	31,89

VI.10. Récapitulation des résultats

Les valeurs des pressions au sol pour les différents nœuds sont données dans le tableau (VI.6) suivant :

Tableau (VI.7): valeur des pressions au sol

	Pression au sol (m) trouvée par logiciel			
N° des nœuds	Epanet	Watercad		
Nœud 1	59,15	57,18		
Nœud 2	55,31	53,3		
Nœud 3	32,47	30,77		
Nœud 4	56,96	54,96		
Nœud 5	37,88	35,99		
Nœud 6	57,92	55,18		
Nœud 7	32,92	30,94		
Nœud 8	41,71	40,02		
Nœud 9	51,84	49,88		
Nœud 10	40,04	38,15		
Nœud 11	51,9	49,95		
Nœud 12	40,65	38,82		
Nœud 13	54,01	52,16		
Nœud 14	34,44	32,65		
Nœud 15	55,59	53,52		
Nœud 16	43,59	43,77		
Nœud 17	33,82	34,03		
Nœud 18	45,56	45,73		
Nœud 19	39,18	39,43		
Nœud 20	42,8	41,7		
Nœud 21	25,94	22,98		
Nœud 22	41,65	38,73		
Nœud 23	60,05	57,51		

Les valeur des vitesses et des pertes de charge pour les différents conduites sont donnée dans le tableau (VI.8) suivant :

Tableau (VI.8): valeur des vitesses et des pertes de charge

	W	aterCAD		Epanet
conduite	vitesse (m/s)	perte de charge(m)	vitesse (m/s)	perte de charge(m)
conduite 1	1,18	13,25	1,18	13,25
conduite 2	1,02	3,9	1,02	3,89
conduite 3	1,22	50,53	1,22	50,84
conduite 4	1,37	0,94	1,37	0,95
conduite 5	0,95	25,03	0,95	25,13
conduite 6	1,28	0,98	1,28	0,23
conduite 7	1,28	9,61	1,28	9,63
conduite 8	0,64	9,91	0,64	10,19
conduite 9	1,09	5,09	1,09	5,11
conduite 10	0,58	7,78	0,58	7,835
conduite 11	1,38	0,5	1,38	0,50
conduite 12	0,74	15,69	0,74	15,80
conduite 13	1,9	27,45	1,9	27,55
conduite 14	0,89	25,6	0,89	25,65
conduite 15	1,48	0,7	1,48	0,47
conduite 16	0,89	7,99	0,89	8,11
conduite 17	0,83	0,84	0,83	0,82
conduite 18	0,7	13,39	0,7	13,42
conduite 19	0,74	12,93	0,74	13,01
conduite 20	1,2	1,5	1,2	0,21
conduite 21	0,76	4,02	0,76	4,06
conduite 22	0,52	7,25	0,52	7,28
conduite 23	0,91	31,47	0,91	31,88

Les différents diamètres sont données dans l'annexe(9)

VI.11. Brise charge

VI.11. 1.Définition

Le brise charge est un ouvrage hydraulique comme un regard contient à l'intérieur une paroi pour seulement diminuer la pression .le volume de brise charge peut être relativement limité(maximum $10 \, \mathrm{m}^3$) mais peut également varier en fonction du débit d'entrée, la seul contrainte est la place nécessaire pour les équipements hydraulique (le robinet à flotteur notamment) et les activités d'entretien. il doit avoir une capacité suffisante pour passer les différentes pointes horaires. le brise charge se situes à une altitude suffisante permettant de pousser l'eau (en tenant compte la pression et la vitesse d'écoulement).

VI.11. 2.Dimensionnement de brise charge

La capacité de brise charge est calculée comme suite :

$$V_{bc} = Q_p * T' (VI.8)$$

Où:

✓ V_{bc} : Volume de brise charge (m³).

✓ T': Temps nécessaire pour l'agent peut fermer la vanne (T' = 20 min).

✓ Q_p: Débit de pointe d'entrée à le brise charge en (l/s).

* Brise charge 1

$$V = \frac{8,084 \times 60 \times 20}{1000} = 9,7 = 10 \text{m}^3$$

***** Brise charge 2

$$V = \frac{6,325 \times 60 \times 20}{1000} = 7,59 = 8$$
m³

* Brise charge 3

$$V = \frac{3,062 \times 60 \times 20}{1000} = 3,67 = 4$$
m³

* Brise charge 4

$$V = \frac{1,824 \times 60 \times 20}{1000} = 2,2 = 3$$
m³

VI.12. Equipement du réseau de distribution

VI.12.1. Appareils et accessoires du réseau

Les accessoires qui devront être utilisés pour l'équipement du réseau de distribution sont les suivants :

VI.12.2.1. Robinet flotteur

Le robinet flotteur est un appareil de robinetterie dont la particularité est de pouvoir s'ouvrir ou se fermer en fonction du niveau d'élévation de l'eau.

Les robinets peuvent être en fonte, en acier inoxydable, en bronze, en laiton ou en alliages spéciaux. Les matières les plus utilisées pour le flotteur sont le cuivre, le polyéthylène et l'inox. .

VI.12.2.2. Robinets vannes

Ils sont placés au niveau de chaque noeud, et permettent l'isolement des différents tronçons du réseau lors d'une réparation sur l'un d'entre eux.

Ils permettent aussi le réglage des débits, leur manoeuvre s'effectue à partir du sol au moyen d'une clé dite « béquille »Celle ci est introduite dans une bouche à clé placée sur le trottoir (facilement accessible) [6].

VI.12.2.3. Clapets

Les clapets ont un rôle d'empêcher l'eau en sens contraire de l'écoulement prévu.

VI.12.2.4. Ventouses:

Les ventouses sont des organes qui sont placés aux points le plus hauts du réseau pour Réduire la formation du vide dans les installations hydrauliques. Elles permettent de chasser et Pénétrer l'air dans la conduite ainsi que la limitation de la dépression[6].

VI.12.2.5. Robinets de vidange

Ce sont des robinets placés aux points les plus bas du réseau de distribution pour Permettre la vidange de la conduite. Ces robinets seront posés à l'intérieur d'un regard en Maçonnerie [6].

VI.12.2.6. Pièces spéciales de raccord

- a) les Tés: ils sont utilisés au niveau d'un réseau pour soutirer ou ajouter un débit.
- b) les coudes : ils sont utilisés pour le changement de direction.
- c) les cônes : ils sont utilisés pour raccorder deux conduites de diamètres différents.
- d) *les croix de jonction*: ils sont utilisés au niveau des noeuds pour le croisement des deux Conduites perpendiculaires.
- e) *les manchons*: ce sont des morceaux de 25 à 50 cm, qui sont utilisés pour le raccordement Des accessoires et appareillages.

f) Les compteurs

Le réseau de distribution nécessite l'emplacement des compteurs qui seront installés en des Points adéquats, et servent à l'évaluation du rendement du réseau de distribution et le contrôle De la consommation.

VI.13. Conclusion

A travers ce chapitre nous avons simulé notre réseau en utilisant le logiciel WATERCAD et logiciel EPANET.

Il faut savoir que les diamètres utilisés pour notre réseau varient entre 20 mm et 110 mm en PEHD (PN10 et PN16).

Conclusion générale

Au cours de ce présent travail, nous pensons avoir cerné les différentes étapes d'étude d'un projet d'alimentation en eau potable. Nous avons dimensionné la nouvelle chaine d'adduction pour le chef-lieu de la commune de Beni Ourtilane afin de répondre aux besoins en eau de l'agglomération pour l'horizon 2041, avec un nombre d'habitants estimé à 8166 habitants avec un besoin journalier de 2094,31m³/j. nous avons vérifié la capacité du réservoir existant qui est insuffisante, nous avons donc projeté un autre réservoir d'une capacité de 350m³. puis nous avons choisi les diamètres économiques et dimensionner les stations de reprise.

en suit, nous avons dimensionné la chaine d'adduction de village d'Agradou selon le besoin journalier de 714.88m3/j, nous avons versifié la capacité du réservoir existant qui est insuffisante, nous avons donc projeté un autre réservoir d'une capacité de 150m³.puis nous avons choisi les diamètres économiques et dimensionner les stations de reprise.

Après le dimensionnement nous avons vérifié l'apparition du phénomène de coup de bélier les conduites de refoulement, les résultats nous montre que une protection n'est pas nécessaire.

Par la suite, à l'aide des logiciel Watercad et Epanet nous avons simuler le réseau de distribution du village d'Agradou, tout en déterminant les diamètres pour toutes les conduites et l'emplacement des prise charge qui nous a permis de régler le problème des surpressions.

.

En fin, nous tenons à signaler que l'entretien et la gestion de ce réseau sont indispensable afin de garder le bon fonctionnement de ce réseau.

REFERENCES BIBLIOGRAPHIQUES

- [1] Données recueillies auprès des services d' APC de la Commune de Beni Ourtilane.
- [2] Données recueillies auprès des services d' APC de la Commune de Beni Chebana .
- [3] Données recueillies auprès de subdivisons de Beni Ourtilane.
- [4] **DUPONT, A.:** « Hydraulique urbaine ». Tome II, Edition Eyrolles, Paris, 1979.
- [5] BONNIN, J.: « Aide mémoire d'Hydraulique Urbaine ». Collection de la direction des études et de la recherche d'électricité de France, Edition EYROLLES, pages 216,1982
- [6] HADJOUTI DIRACH, F.: «Alimentation en Eau Potable de l'extension de la ville de TAMDA (W .TIZI OUZOU) ». Mémoire de fin d'étude, ENSH, 2010.

 [7] ASTEE.: « les statios de pompage d'eau». 6^{éme} édition, édition lavoisier, 2005.
- [8] Sofiane, H. et Said, Y.: « Etude d'alimentation en eau potable de la ville A d'El Ouricia (Wilaya de Sétif) ». Mémoire de fin de cycle, Université de Bejaia, 2011.
- [9] « water distribution modeling software». watercad user's guide, ESRI, 2002.
- [10] LEWIS A. ROSSMAN: « simulation hydraulique et qualité pour les réseaux d'eau sous pression». Manuel de l'utilisateur, général des eaux, paris, 2003

Annexe (1): Variation des valeurs de β_{max}

Nombre d'habitant ×10 ³	<1	1,5	2,5	4	6	10	20	30	100	300	>1 0 ³
Les valeurs de β_{max}	2	1,8	1,6	1,5	1,4	1,3	1,2	1,15	1,1	1,03	1

Annexe (2): $K_{max h}$ coefficient de variation du débit horaire.

D	DISTRIBUTION DU DEBIT JOURNALIER SUR LES HEURS DU JOUR											
Heure	De	ébit des	agglon	nératio	ns selor				ient de	variati	on du d	ébit
	1,20	1,25	1,30	1,35	1,40	horair 1,45	e (K _{max} 1,50	_{h)}	1,80	1,90	2,00	2,5
0-1	3,50	3,35	3,20	3,00	2,50	2,00	1,50	1,00	0,90	0,85	0,75	0,60
1-2	3,45	3,25	3,25	3,20	2,65	2,10	1,50	1,00	0,90	0,85	075	0,60
2-3	3,45	3,30	2,90	2,50	2,20	1,85	1,50	1,00	0,90	0,85	1,00	1,20
3-4	3,40	3,20	2,90	2,60	2,25	1,90	1,50	1,00	1,00	1,00	1,00	1,20
4-5	3,40	3,25	3,35	3,50	3,20	2,85	2,50	2,00	1,35	2,70	3,00	3,50
5-6	3,55	3,40	3,75	4,10	3,90	3,70	3,50	3,00	3,85	4,70	5,50	3,50
6-7	4,00	3,85	4,15	4,50	4,50	4,50	4,50	5,00	5,20	5,35	5,50	4,50
7-8	4,40	4,45	4,55	4,90	5,10	5,30	5,50	6,50	6,20	5,85	5,50	10,20
8-9	5,00	5,20	5,05	4,90	5,35	5,80	6,25	6,50	5,50	4,50	3,50	8,80
9-10	4,80	5,05	5,40	5,60	5,85	6,05	6,25	5,50	5,85	4,20	3,50	6,50
10-11	4,70	4,85	4,85	4,90	5,35	5,80	6,25	4,50	5,00	5,50	6,00	4,10
11-12	4,55	4,60	4,60	4,70	5,25	5,70	6,25	5,50	6,50	7,70	8,50	4,10
12-13	4,55	4,60	4,50	4,40	4,60	4,80	5,00	7,00	7,70	7,90	8,50	3,50
13-14	4,45	4,55	4,30	4,10	4,40	4,70	5,00	7,00	6,70	6,35	6,00	3,50
14-15	4,60	4,75	4,40	4,10	4,60	5,05	5,50	5,50	5,35	5,20	5,00	4,70
15-16	4,60	4,70	4,55	4,40	4,60	5,30	6,00	4,50	4,65	4,80	5,00	6,20
16-17	4,60	4,65	4,50	4,30	4,90	5,45	6,00	5,00	4,50	4,00	3,50	10,40
17-18	4,30	4,35	4,25	4,10	4,60	5,05	5,50	6,50	5,50	4,50	3,50	9,40
18-19	4,35	4,40	4,25	4,50	4,70	4,85	5,00	6,50	6,30	6,20	6,00	7,30
19-20	4,25	4,30	4,40	4,50	4,50	4,50	4,50	5,00	5,35	5,70	6,00	1,60
20-21	4,25	4,30	4,40	4,50	4,40	4,20	4,00	4,50	5,00	5,50	6,00	1,60
21-22	4,15	4,20	4,50	4,80	4,20	3,60	3,00	3,00	3,00	3,00	3,00	1,00
22-23	3,90	3,75	4,20	4,60	3,70	2,85	2,00	2,00	2,00	2,00	2,00	0,60
23-24	3,80	3,70	3,50	3,30	2,70	2,10	1,50	1,00	1,00	1,00	1,00	0,60
Totale	100	100	100	100	100	100	100	100	100	100	100	100

Annexe (3) : Répartition de la consommation horaire de chef-lieu de Beni Ourtilane

Heures	(%)	Le débit horaire (m³/h)
0-1	0,9	18,849
1-2	0,9	18,849
2-3	0,9	18,849
3-4	1	20,943
4-5	1,35	28,273
5-6	3,85	80,631
6-7	5,2	108,9
7-8	6,2	129,847
8-9	5,5	115,187
9-10	5,85	122,517
10-11	5	104,715
11-12	6,5	136,13
12-13	7,5	157,073
13-14	6,7	140,319
14-15	5,35	112,046
15-16	4.65	97,385
16-17	4,5	94,244
17-18	5,5	115,187
18-19	6,3	131,942
19-20	5,35	112,045
20-21	5	104,715
21-22	3	62,829
22-23	2	41,886
23-24	1	20,943
Total	100	2094,31

Annexe (4) : Répartition de la consommation horaire de Agradou

Heures	(%)	Le débit horaire (m³/h)
0-1	0,6	1,889
1-2	0,6	1,889
2-3	1,2	3,778
3-4	1,2	3,778
4-5	3,5	11,021
5-6	3,5	11,021
6-7	4,5	14,169
7-8	10,2	32,118
8-9	8,8	27,709
9-10	6,5	20,467
10-11	4,1	12,91
11-12	4,1	12,91
12-13	3,5	11,021
13-14	3,5	11,021
14-15	4,7	14,799
15-16	6,2	19,522
16-17	10,4	32,747
17-18	9,4	29,598
18-19	7,3	22,986
19-20	1,6	5,038
20-21	1,6	5,038
21-22	1	3,1488
22-23	0,6	1,889
23-24	0,6	1,889
Total	100	314,88

Annexe (6): Les prix des Conduites en PEHD PN 10

Diamètre extérieur	Epaisseur en	Prix unitaire
en (mm)	(mm)	(DA/ml)
20	2,0	40,15
25	2,0	51,23
32	2,0	64,47
40	2,4	97,69
50	3,0	150,53
63	3,8	238,48
75	4,5	338,61
90	5,4	446,80
110	6,6	665,64
125	7,4	843,99
160	9,5	1382,45
200	11,9	2162,92
250	14,8	3357,81
315	18,7	5057,83
400	23,7	8115,39
500	29,7	12616,15
630	37,4	19980,32

Annexe (7): Les prix des Conduites en PEHD PN 16

Diamètre	Epaisseur en	Prix unitaire
extérieur en (mm)	(mm)	(DA/ml)
20	2,0	40,74
25	2,3	59,87
32	3,0	99,14
40	3,7	153,50
50	4,6	238,07
63	5,8	376,64
75	6,8	529,43
90	8,2	691,61
110	10,0	1026,15
125	11,4	1316,19
160	14,6	2151,15
200	18,2	3378,11
250	22,7	5226,50
315	28,6	8026,99
400	36,3	12966,67
500	45,4	19569,51
630	57,2	31072,20

Annexe (9): Différents diamètres obtenus pour le réseau distribution

Diamètre extérieur (mm)	Epaisseur (mm)	Diamètre intérieur (mm)	Pression nominale
110	6,6	96,8	PN10
90	5,4	79,2	PN10
125	4,5	66	PN10
63	3,8	55,4	PN10
63	5,8	51,4	PN16
50	3,0	44	PN10
40	2,4	35,2	PN10
32	2	28	PN10
32	3	26	PN16
25	2	21	PN10
20	2	16	PN10

Résumé

Le présent mémoire de fin d'études présente un projet d'alimentation en eau potable de chef-lieu de la commune de Beni Ourtilane et la distribution du village d'Agradou.

Après avoir estimé les besoins en eau futurs, nous avons procédé au dimensionnement les conduites d'adduction et les réservoirs. Par la suite, nous avons choisi les pompes adaptées au système étudié. L'étude du coup de bélier a été réalisée. A la fin, nous avons dimensionné le réseau de distribution du village d'Agradou.

Mots clés : Alimentation en eau potable, réservoirs, adduction, pompes, coup de bélier, distribution.

Abstract

The present memory presents a water supply project of the capital of department Beni-Ourtilane and distribution of the village of Agradou. After estimating future water needs, we proceeded to the sizing of transmission mains and reservoirs. Subsequently, we selected the appropriate pumps to the studied system. The study of water hammer was realised. At the end, we sized the distribution network of the village of Agradou.

Keywords: drinking alimentation, reservoir, water supply, pumps, water hammer, distribution.

ملخص

مذكرة نهاية الدراسة تكمن في تزويد بمياه الشرب لمركز بلدية بني ورثلان ولاية سطيف. و توزيع المياه لقرية اقردو

بعد تقدير الاحتياجات المائية المستقبلية قمنا بتحجيم أنابيب النقل و خزانات المياه و كذلك تم اختيار المضخات المناسبة. تمت دراسة المطرقة المائية على كل القنوات. في الأخير تم تحجيم شبكة توزيع المياه لقرية اقردو.

الكلمات المفتاحية:

الخز انات. المضخات. المطرقة المائية. شبكة توزيع المياه

Annexe(5): tuyaux fonte ductile

Diamètre extérieur DE		Epaisseur	fonte 'e' (K9)	Pression	Epaisseur fo	Pression		
DN	Nominal (mm)	Tolérance (mm)	Nominal (mm)	Tolérance (mm)	minimale d'essai en usine (bar) K9	Nominal (mm)	Tolérance (mm)	minimale d'essaí en usine (bar) C40
80	98	+1 à - 2.7	6,0	-1,3	50	4,8	-1,3	40
100	118	+1 à - 2.8	6,0	-1,3	50	4,8	-1,3	40
125	144	+1 à - 2.8	6,0	-1,3	50	4,8	-1,3	40
150	170	+1 à - 2.9	6,0	-1,5	50	5,0	-1,5	40
200	222	+1 à - 3.0	6,3	-1,5	50	5,4	-1,5	40
250	274	+1 à - 3.1	6,8	-1,6	50	5,8	-1,6	40
300	326	+1 à - 3.3	7,2	-1,6	50	6,2	-1,6	40
350	378	+1 à - 3.4	7,7	-1,7	40	7,0	-1,7	40
400	429	+1 à - 3.5	8,1	-1,7	40	7,8	-1,7	40
450	480	+1 à - 3.6	8,6	-1.8 ·	40	-	-	-
500	532	+1 à - 3.8	9,0	-1,8	40	-	- /	-
600	635	+1 à - 4.0	9,9	-1,9	40	-	- /	_
700	738	+1 à - 4.3	10,8	-2	32			
800	842	+1 à - 4.5	11,7	-2,1	32	-	-	- /
900	945	+1 à - 4.8	12,6	-2,2	32	-		-/
1000	1048	+1 à - 5.0	13,5	-2,3	32	-	-	2//

Introduction générale

Conclusion générale

Chapitre I:

Présentation du site et estimation des besoins

Chapitre VI: Etude du réseau de distribution

Chapitre II: Réservoirs

Chapitre III: Etude d'adduction

Chapitre IV:

Pompes et station de pompage

Chapitre V:

Protection et pose des conduites

Bibliographie

Annexes