République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Abderrahmane Mira de Bejaia

Faculté de la Technologie Département d'Hydraulique

MEMOIRE DE MAGISTER

Présenté par:

5

5

5

5

[2]

5

5

AMOUR Abdellah

Ingénieur d'état en hydraulique

Pour l'obtention du titre de Magister en hydraulique Option : Hydraulique Générale

THEME

Caractérisation des crues pluviales des sous bassins versants de la Soummam

Devant le jury composé de :

Président	BENDADOUCHE Hocine	Maître de conférences (Université de Béjaia)
Rapporteur	LADJEL Mahmoud	Maître de conférences (Université de Sétif)
Examinateur	BRAHIMI Malek	Maître de conférences (Université de Béjaia)
Examinateur	HAMMAR Yahia	Maître de conférences (Université de Annaba)

Année universitaire 2009 / 2010

Résumé

L'hydrogramme de crue occupe une place importante dans la théorie comme dans la pratique hydrologique. Les ouvrages hydrotechniques sont dimensionnés sur la base d'un modèle de crue qui doit être conforme avec la réalité physique de formation de la crue pluviale.

En aménagement hydraulique, souvent on est confronté à l'absence de données sur les hydrogrammes des crues pluviales. La caractérisation de ces hydrogrammes reste un problème posé.

L'hydrogramme de crue est fondamentalement caractérisé par un nombre de paramètres tels que : le débit maximum, le volume de ruissellement et les différentes durées (temps de montée, temps de décrue et temps de base de la crue), et chacun de ces paramètres est lié à son tour avec les facteurs générateurs. Le débit maximum, par exemple, est le résultat d'une double transformation de la pluie en ruissellement puis en écoulement fluviale.

Connaissant la genèse du phénomène et ayant des données hydrométéorologiques et morphométriques de bonne qualité, on peut toujours caractériser les crues rares représentant les cas exceptionnels. L'estimation vraisemblable de ces caractéristiques permet un dimensionnement adéquat des ouvrages hydrauliques et une protection efficace contre les inondations.

Pour l'étude des caractéristiques des crues pluviales nous avons choisi le bassin de la Soummam dont les contrastes orographiques et climatiques sont des plus forts. Il s'agit d'un cadre d'étude original et représentatif de la variété hydrologique et climatique du nord de l'Algérie.

L'objectif de ce mémoire est l'identification des principales caractéristiques des crues, en tenant compte de la transformation de la pluie en écoulement.

Mots clés : bassin versant, Soummam, crue pluviale, hydrogramme, ruissellement, pluie, débit, temps de concentration, temps de montée, temps de base.

Abstract

The flood hydrograph occupies an important place in theory and in practice hydrology. Engineering structures are designed on the basis of a flood model to be consistent with the physical reality of the flood rainfalls formation.

In hydraulic planning, it often faces a lack of data on flood hydrographs. The characterization of these hydrographs is still a problem.

The flood hydrograph is fundamentally characterized by a number of parameters such as maximum flow, runoff volume and different durations (rise time, time of recession and base time of the flood), and each of these parameters is linked with the factors generators. The maximum flow, for example, is the result of a double transformation of rainfall into streaming and flowing river. Despite the lack of experimental data, knowing the genesis of the phenomenon and with hydrometeorological and morphometric data of good quality, we can always characterize rare floods representing exceptional cases. The estimate of the likely characteristics allows proper design of hydraulic structures and effective protection against flooding.

To study the characteristics of flooding rain we chose the catchment of Soummam whose orographic and climatic contrasts are stronger. This is a part of the original study and representative of the variety of hydrological and climate of northern Algeria.

The aim of this work is to identify the main characteristics of floods, taking into account the transformation rainfall into runoff.

Keywords: catchement, Soummam, flood rainfalls, hydrograph, streaming, rainfall, flow, time of concentration, rise time, base time.

Remerciements

Au terme de ce travail, il m'est très agréable d'exprimer mes remerciements à tous ceux qui ont contribué de prés ou de loin à l'élaboration de ce mémoire.

Je suis conscient de la reconnaissance que je dois à mon promoteur Monsieur LADJEL Mahmoud, Maître de conférences à l'Université de Sétif, qui dés le début de ce travail, a toujours répondu favorablement pour toute sollicitation. Il m'a réservé des moments précieux de discussion et m'a facilité toutes les conditions pour mener à terme ce travail.

Mes remerciements vont également à tous les membres du jury, pour avoir accepté d'en faire partie et pour l'intérêt qu'ils ont porté à ce mémoire.

Je remercie, Monsieur BENDADOUCHE Hocine, Maître de conférences à l'Université de Béjaia d'avoir accepter de présider le Jury, je lui en suis très reconnaissant.

Mes vives gratitudes vont aussi à Monsieur BRAHIMI Malek, Maître de conférences à l'Université de Béjaia et Monsieur HAMMAR Yahia, Maître de conférences à l'Université d'Annaba, qui ont bien voulu examiner ce travail.

Je n'oublierai sans doute pas de remercier mes collègues, mes enseignants, administrateurs et travailleurs du département d'hydraulique de l'Université de Bejaia.

Liste des figures

Figure N [•]	Titre de la figure	Page
Figure I.01	Crue simple et crue complexe	04
Figure I.02	Les différentes phases d'une crue décrites par un hydrogramme	05
Figure I.03	Durées caractéristiques relatifs à un hydrogramme de crue	06
Figure I.04	Schéma général du processus de transformation pluie-débit	09
Figure 1.05	Régime d'infiltration et capacité d'infiltration d'un sol	10
Figure I.06	Génération du ruissellement par saturation par le bas et par saturation par le haut	11
Figure I.07	Courbe enveloppe de Froncou et Rodier pour la région nord de l'Algérie (surface du Bassin versant entre 19 et 567 km²)	17
Figure I.8	Hydrogramme transformé à son maximum	20
Figure 1.09	Réponses à deux pluies de même durée, d'après la théorie de l'hydrogramme unitaire	23
Figure I.10	Méthode des isochrones	25
Figure I.11	Hydrogramme de Kotcherine	26
Figure I.12	Hydrogramme de Sokolovsky	27
Figure II.01	Les bassins hydrologiques de l'Algérie	31
Figure II.02	Les sous bassins de la Soummam	33
Figure II.03	Les grands sous bassins versants de la Soummam	34
Figure II.04	Carte du relief du bassin versant de la Soummam	35
Figure II.05	Courbe hypsométrique du bassin de la Soummam	36
Figure II.06	Profil en long de l'oued Boussellam-Soummam (d'après Gautier E F., 1910)	48
Figure II.07	Le réseau hydrographique du bassin versant de la Soummam	40
Figure II.08	Carte géologique du bassin versant de la Soummam	42
Figure II.09	Carte des sols du bassin de la Soummam	43
Figure II.10	Etages bioclimatiques du bassin de la Soummam	44
Figure II.11	Carte des isothermes annuelles du bassin de la Soummam	45
Figure II.12	Carte pluviométrique du bassin versant de la SOUMMAM	46
Figure III.01	Carte des stations pluviométriques prise dans l'étude	49
Figure III.02	Carte des stations de jaugeage prises dans l'étude	52
Figure III.03	Carte en ligne isovaleur de la pluie maximale journliére de l'année 1968	53
Figure III.04	La courbe des fréquences empiriques des débits spécifiques maxima de l'oued Soummam à Sidi Aich (15 10 01)	55
Figure III.05	Carte en ligne isovaleur de la pluie moyenne journalière maximale de la Soummam	60
Figure III.06	Délimitation des surfaces contrôlées par les stations de jaugeage	61
Figure III.07	Carte en ligne isovaleur du cœfficient de variation de la pluie moyenne journalière	63
Figure III.08	Carte en ligne isovaleur de l'exposant climatique « b » du bassin de la Soummam	64
Figure III.09	La dépendance $\ln(q_o/(S+1)) = f[\ln(S+1)]$	66
Figure III.10	La dépendance $\ln(q_o/I+1) = f[\ln(I+1)]$	67
Figure III.11	La dépendance $\ln(q_o/(H+1)) = f[\ln(H+1)]$	67
Figure III.12	La dépendance $\ln(C_v/(S+1)) = f[\ln(S+1)]$	69
Figure III.13	La dependence $\ln(C_{v}/(I+1)) = f[\ln(I+1)]$	69
Figure III.14	La dépendance $\ln(C_{v}/(H+1)) = f[\ln(H+1)]$	70

Liste des figures

Figure III.15	La dépendance $\ln(C_s/(S+1)) = f[\ln(S+1)]$	72
Figure III.16	La dependence $\ln(C_s/(I+1)) = f[\ln(I+1)]$	72
Figure III.17	La dependence $\ln(C_s/(H+1)) = f[\ln(H+1)]$	73
Figure IV.01	Graphe de la dependence $t_m = f(I)$	79
Figure IV.02	Graphe de la dépendance $t_m = f(S)$	79
Figure IV.03	Graphe de la dependence $\ln(t_{m2\%}) = f[\ln(t_c)]$	83
Figure IV.04	Carte en isovaleur de la durée de ruissellement dans la Soummam pour la fréquence 2%	84
Figure IV.05	Variation du coefficient de forme de l'hydrogramme	89
Figure IV.06	La dépendance $\ln(\gamma/(S+1)) = f[\ln(S+1)]$	92
Figure IV.07	La dépendance $\ln(\gamma/(I+1)) = f[\ln(I+1)]$	93
Figure IV.08	La dépendance $\ln(\gamma/(H+1)) = f[\ln(H+1)]$	93
Figure IV.09	Régression linière de la dépendance $C_{p\%} = f[(u_{p\%})]$	95
Figure IV.10	Modèle type d'hydrogramme de crue	96
Figure IV.11	Les hydrogrammes des crues probables à la station 15 04 01	98

Liste des tableaux

Tableau N•	Titre de tableau	Page
Tableau II.01	Les bassins hydrologiques algériens	31
Tableau II.02	Superficie des sous bassins versants de la Soummam	33
Tableau II.03	Tableau définissant l'hypsométrie du bassin de la Soummam	36
Tableau II.04	Caractéristiques morphométrique du bassin de la Soummam	37
Tableau II.05	La longueur des cours d'eaux de même ordre selon le classement de Horton et Schumm	38
Tableau II.06	Paramètres hydrographiques du bassin de la Soummam	40
Tableau III.01	Caractéristiques morphométriques des sous bassins	48
Tableau III.02	Caractéristiques des stations pluviométriques prises dans l'étude	50
Tableau III.03	Débits mensuels et annuels enregistrés à la station de Sidi Aich (15 10 01)	51
Tableau III.04	Fréquence empirique des débits spécifiques maxima enregistrés à la station 15 10 01	<i>5</i> 5
Tableau III.05	Les valeurs des écarts types et les cœfficients de courbure (débits)	56
Tableau III.06	Les caractéristiques statistiques des débits maxima	57
Tableau III.07	Les valeurs des écarts types et les cœfficients de courbure (pluies)	57
Tableau III.08	Les caractéristiques statistiques des pluies maximales	58
Tableau III.09	Calcul de la pluie maximale moyenne pour la zone contrôlée par la station Sidi Yahia (15 09 01)	61
Tableau III.10	Les valeurs des pluies journalières maximales moyennes	62
Tableau III.11	Les valeurs du coefficient de variation des pluies journalière maximales moyenne	63
Tableau III.12	Les valeurs de l'exposant climatique des pluies journalières maximales moyennes	65
Tableau III.13	les caractéristiques pluviographiques des différents sous bassins	65
Tableau III.14	Les écarts relatifs en % entre q_o et $q_{o,cal}$	68
Tableau III.15	Les écarts relatifs en % entre C_v et $C_{v,cal}$	71
Tableau III.16	Les écarts relatifs en% entre C_s et $C_{s,cal}$	74
Tableau IV.01	Calculs des valeurs des débits spécifiques maxima fréquentiels deOued Soummam à SidiAich	77
Tableau IV.02	Valeurs des débits spécifiques maxima fréquentiels	78
Tableau IV.03	Tempes de montée brute et temps de montée calculé	80
Tableau IV.04	Le temps de montée des crues pour les différentes fréquences	81
Tableau IV.05	Temps de concentration estimé par la formule de Goptchenko	82
Tableau IV.06	La durée de ruissellement pour les différents sous bassins	83
Tableau IV.07	Récapitulatif des quantités du ruissellement R_{pol}	85
Tableau IV.08	Valeur de pluie journalière maximale fréquentielle	87
Tableau IV.09	Valeur de la pluie maximale probable pendant un temps de concentration	88
Tableau IV.10	Les valeurs des coefficients d'écoulement	88
Tableau IV.11	Les valeurs de m pour les différents sous bassins de la Soummam	90
Tableau IV.12	Valeurs de $\gamma_{p\%}$ pour différents sous bassins	91
Tableau IV.13	Les valeurs de λ , β pour les différent fréquences	94
Tableau IV.14	Les valeurs de $C_{p\%}$ pour les différent fréquences	94
Tableau IV.15	Les écarts relatifs de $\gamma_{2\%}$ en % entre $\gamma_{2\%}$ et $\gamma_{2\%}$ calculé	95
Tableau IV.16	Récapitulatif des caractéristiques nécessaires pour la projection de l'hydrogramme de crue de Oued Azrou à la station (15 04 01)	98

Liste des abréviations et symboles utilisés

Abréviations et symboles	Signification
%	Pourcentage
%0	Pour mille
a	Pente de la droite de régression de la dépendance $\ln(t_m) = f[\ln(t_c)]$
ANRH	Agence Nationale des ressources Hydriques
b	Coefficient climatique de réduction de la pluie par le temps
cal	Calculé
C_c	Coefficient de courbure
CEMAGREF	Institut de recherche pour l'ingénierie de l'agriculture et de l'environnement
CNFCH	Comité National Français des Sciences hydrologiques
C_s	Coefficient d'asymétrie
C_s C_t	Coefficient de torrentialité
C_{v}	Coefficient de variation
D	Temps caractéristique du bassin
D_d	Densité de drainage
DGHMB	Direction Générale d'hydraulique de la Wilaya de Bejaia
D_h	Densité hydrographique
F	La valeur de la fonction Foster-rybkine
f	Fonction
H	Altitude moyenne du bassin versant
ha	Hectare
i	Intensité de la pluie
I	La pente moyenne du talweg principal
K	Coefficient de forme de l'hydrogramme
k	Coefficient modulaire dans la fonction Pearssan III
km	Kilomètre
km ²	Kilomètre Carré
L	Longueur du cours d'eau
L_e	Longeur du rectangle équivalant
l_e	Largeur du rectangle équivalant
ln	Logarithme népérien
m	Coefficient de forme de l'hydrogramme=K-1
m^3	Mètre Cube
mm	Millimètre
m_s	Exposants de la branche de montée de l'hydrogramme
n	Coefficient de forme de l'hydrogramme de ruissellement
n_i	Numéro d'ordre
NO	Non observé
n_s	Exposants de la branche de décrue de l'hydrogramme
OMM	Organisation Mondiale de la Météorologie
P	Hauteur de la pluie
p	Probabilité au dépassement
P_e	Périmètre
<i>q'_p</i> %	Module spécifique maximum fréquentiel de ruissellement
Qmax	Débit maximum de l'hydrogramme
q	Débit spécifique maximum

q_o	Débit spécifique maximum moyen
$q_{p\%}$	Débit spécifique maximum fréquentiel
R	Lame ruisselée
r	Coefficient de corrélation
$\frac{r}{r^2}$	***************************************
-	Coefficient de détermination
S	Seconde
S	La superficie
t	Le temps courant
T	Période de retour
T_b	Temps de base de la crue
t_c	Temps de concentration
t_d	Temps de décrue
t_m	Temps de montée de la crue
T_o	Durée de ruissellement
U	Variable réduite de Gauss
V_c	Volume de la crue
X	Longitude
Y	Latitude
α	Cæfficient d'écoulement
γ	Paramètre de Sokolovsky
δ	Ecart relatif
σ	Ecart type
SHYPRE	Simulation d'Hydrogramme pour la Prédétermination des crues
SCS	Soil Conservation Service

SOMMAIRE

SOMMAIRE

Titre	Page
Liste des figures	
Liste des tableaux	
Liste des abréviations et symboles	. IV
Introduction générale	. 01
CHAPITRE I: ETUDE BIBLIOGRAPHIQUE	
I.1- Généralités sur les crues pluviales	. 03
I.1.1-Définition d'une crue	
I.1.2- Objectifs de l'analyse des crues	. 04
I.1.3- Variabilité spatio-temporelle d'une crue	
I.1.4- Caractéristiques des crues	
I.1.4.1-La hauteur de crue	
I.1.4.2- Le débit de crue	
I.1.4.3- Volume de la crue	
I.1.4.4- Durées relatives à un seul événement de crue	
I.1.4.5- La fréquence d'apparition d'une crue et la notion de temps de retour	07
I.2- Revue bibliographique	
I.2.1- Les aspects théoriques	
I.2.2- Quelques œuvres relatives aux études des crues	
I.3- Processus physiques responsable de la genèse et de la propagation des crues	
I.3.1- La pluie	
I.3.2- Le ruissellement	
I.3.2.2- Théorie des aires contributives saturées	10
I.3.3- Etat et caractéristiques du bassin versant	
I.4- Méthodes d'estimation des crues	11
I.4.1- Les mesures	12
I.4.2- Les enquêtes	
I.4.3- Les méthodes de calcules	
I.5- Estimation des Débits maximums d'une crue	
I.5.1- Méthodes basées sur l'historique des crues	
I.5.2- Les méthodes probabilistes	
I.5.2.1- La méthode du GRADEX	13
I.5.2.2- Les méthodes reposant sur l'association d'un générateur stochastique de pluie	
et d'un modèle pluie-débit	
I.5.2.2.1- La méthode SHYPRE	
I.5.3- Formules et méthodes empiriques et semi empiriques	
I.5.3.1-La méthode rationnelle	
I.5.3.2-Formule d'Iskowski (1886)	
I.5.3.3- Formule de Lauterburg (1887)	
I.5.3.4- Formule de Hofbauer (1916)	
I.5.3.5-Formule de Kursteiner (1917)	
I.5.3.6-Formule de Melli (1924)	
I.5.3.7-Formule de Forsaith (1949)	
I.5.3.8-Courbes enveloppes (Francou et Rodier, 1967)	
I.5.3.9- Méthode CRUPEDIX	
I.5.3.10- Méthode SOCOSE	18
I.5.3.11- Formule de Sokolovsky (1968)	
I.5.3.12-Formule de Possenti	
I.5.3.13- Formule de Turazza	
I.5.3.14- La formule Bejaia'2000	
I.6-Estimation du temps de concentration	
I.6.1- Kirpich (1940)	21

~	•
Som	maire

I.6.2- Mockus (1957)	21
I.6.3- Befani (1989)	21
I.6.4- Formule de Sorgreah (1986)	22
I.6.5- Formule de Giandotti	22
I.6.6- Formule d'Ivanenko	22
I.6.7- Formule de Goptchenko (1989)	22
I.7- Détermination des hydrogrmmes de crues probables	23
I.7.1- Hydrogramme unitaire	23
I.7.2- Méthode des isochrones	24
I.7.3- Méthode du modèle de crue observée	25
I.7.4- Méthode de Kotcherine (1927)	
I.7.5- Méthode de Sokolovsky (1968)	
I.7.6 - Méthode de Cemagref	28
Conclusion	29
CHAPITRE II: CARACTÉRISTIQUES DU BASSIN VERSANT DE LA SOUMMAM	
Introduction.	30
II.1- Description du bassin versant de la Soummam	
II.2- Morphologie et Orographie	
II.2.1- Paramètres morphométriques	
a- L'indice de compacité de Gravelus	
b- Dimensions du rectangle équivalent.	
II.2.2- Les sous bassins versants de la Soummam	
II.2.3- Les grands sous bassins versants de la Soummam	
	34 35
II.2.4.1- La courbe hypsométriqueII.3 - Réseau hydrographique	
• • 1 1	
II.3.1- Les principaux collecteurs	
II.3.2- Caractéristiques du réseau de drainage	38
II.3.2.1- La densité de drainage	<i>39</i>
II.3.2.2- La densité hydrographiqueII.3.2.3- Coefficient de torrentialité	
II.4- Caractéristiques agro-pédo-géologiques	
II.4.1- La Géologie	
II.4.2- Les sols	
II.2.3- Couvert végétal	43
II.5- Climat	44
II.5.1- type de climat et température	
II.5.2- La pluviométrie	45
II.5.3- Evapotranspiration	46
II.6- Réseau hydro-pluviométrique	46
Conclusion	47
CHAPITRE III: COLLECTE ET ANALYSE DES DONNEES	40
Introduction	48
III.1- Collecte des données morphométriques	
III.2- Collecte des données pluviométriques	
III.3- Collecte des données hydrométriques	
III.4- Comblement des lacunes des débits maxima	
III.5- Comblement des lacunes et extension des séries de la pluie maximale	
III.6- Traitement statistique des données hydroclimatiques	
III.6.1- Evaluation des caractéristiques statistiques des débits spécifiques maxima	
III.6.2- Evaluation des caractéristiques statistiques des pluies maximales	
III.7- Traitement des données pour chaque sous bassin	
III.7.1- Détermination de la pluie moyenne journalière maximale	59

~	•
Somn	aare

South	<u>nan c</u>
III.7.2- Estimation du coefficient de variation	62
III.7.3- Détermination du coefficient climatique de réduction de la pluie par le temps	64
III.8- Analyse régionale des paramètres statistiques des débits maxima	65
III.8.1- Analyse graphique de la dépendance entre les débits maxima moyens et les	
facteurs morphométriques	66
III.8.2- Analyse graphique de la dépendance entre le cœfficient de variation des débits	
maxima moyens et les facteurs morphométriques	69
III.8.3-Analyse graphique de la dépendance entre le cœfficient d'asymétrie des débits	
maxima moyens et les facteurs morphométriques	71
Conclusion	74
CHAPITRE IV: IDENTIFICATION DES CARACTERISTIQUES DES	
HYDROGRAMMES DES CRUES PLUVIALES	
Introduction	76
IV.1- Analyse fréquentielle des débits maxima annuels	76
IV.1.1- Calcul des débits maxima spécifique fréquentielle	77
IV.2- Identification du temps de montée	78
IV.3- Evaluation du temps de concentration	81
IV.4- Détermination de la durée de ruissellement	82
IV.4.1- Cartographie de la durée de ruissellement	84
IV.5- Estimation de la lame ruisselée	84
IV.5.1- Détermination du coefficient de l'écoulement maximum	86
IV.5.1.1- Estimation de pluie maximum durant le temps de concentration	86
IV.5.1.2- Estimation des pluies de courte durée	87
IV.6- Détermination du coefficient de forme	89
IV.7- Détermination du coefficient de Sokolovsky	90
IV.7.1-Généralisation du coefficient de Sokolovsky	92
IV.7.2- Estimation des écarts relatifs $\gamma_{p\%}$	99
IV.8- Projection des hydrogrammes probables	96
IV.8.1- Détermination des exposants	97
IV.8.2- Application de la méthode de projection	98
Conclusion	99
Conclusion générale	101
Références bibliographiques	
ANNEXES	
ANNEXE I: les séries de la pluie maximale journalière annuelle	103
ANNEXE II :-Les débits maxima mensuels et annuels [m³/s]	113
-Les débits maxima annuels [m³/s] et débits spécifiques [m³/s.km²]	120
ANNEXE III : Les cartes en isohyètes de la pluie maximale journalière annuelle	
de la région Soummam (pour chaque année)	121
ANNEXE IV : Courbe des fréquences empiriques des débits spécifiques maxima	129
ANNEXE V:Courbe des fréquences empiriques des séries de pluie max	131
ANNEXE VI: La table de la fonction Foster-Rebkine $F(P\%,Cs)$	137
ANNEXE VII : Les tableaux de calcul des débits spécifiques maxima fréquentiels	138
ANNEXE VIII: Les graphes de la dépendance de $\ln(t_{np\%}) = f[\ln(t_c)]$	141
ANNEXE IX: Les graphes de la dépendance $\ln(\gamma_{p\%}/(S+1)) = f \ln(S+1)$	1.40
ANNEXE X: Les graphes de la dépendance $\ln(\gamma_{p\%}/(I+1)) = f \ln(I+1)$	142 143
ANNEXE XI: Les graphes de la dépendance $\ln(\gamma_{p\%}/(H+1)) = f \ln(H+1)$	
ANNEXE XII: les écarts relatifs de $\gamma_{p\%}$	144
ANNEXE XIII: les hydrogrammes probables au niveau des stations de jaugeage de la Soummam.	145 147
11111111111111111111111111111111111111	11/

INTRODUCTION GENERALE

Introduction générale

L'eau source de vie, elle est l'enjeu de tout potentiel économique considérable. Cette eau qui est indispensable pour le développement de la vie de l'homme sur terre, est parfois la cause de son malheur suites à des situations catastrophiques causées par les effets dévastateurs des inondations.

La lutte contre les inondations constitue un enjeu important compte tenu du nombre d'endroits potentiellement affectés. Selon l'OMM les inondations causent plus de 50% des catastrophes naturelles : en moyenne de 20 000 morts/an dans le monde [11].

Similairement aux autres pays du monde, l'Algérie a été marqué par de nombreuses inondations :

- 10 et 11 novembre 2001(Bab El Oued- Alger): pluies diluviennes, 733 victimes, 30 000 de sans-abris et importants dégâts matériels.
- 22 octobre 2000 (Ouest algérien) : plus de 24 décès.
- Octobre 1994 (plusieurs régions du pays) : 60 décès et des dizaines de disparus au cours de dix jours d'inondations.
- 20 octobre1993 (Ouest algérien) : 22 décès et 14 blessés à Qued Rhiou.
- 02 octobre 2008 (Ghardia) : plus de 40 morts, plus de 100 blessés, des milliers de sans-abri et d'importants dégâts matériels.

Les crues d'averses, qui sont à l'origine des inondations, sont de loin les plus fréquentes sous nos climats; elles sont provoquées par des averses exceptionnelles, soit par leur durée, leur intensité, leur extension géographique, leur répétition, ou la combinaison de plusieurs de ces caractères.

Pour pouvoir faire face aux risques d'inondation, les décideurs ont besoin d'outils leur permettant de mieux gérer ces situations de crise. Certes, « on n'empêchera pas la pluie de tomber », cependant les efforts pour réduire les risques peuvent porter dans deux directions complémentaires :

- la prévision des crues exceptionnelles et l'évaluation des différents éléments caractérisants leur hydrogrammes.
- la prévention de ces mêmes événements en élaborant les stratégies de protection et la projection des ouvrages et des aménagements nécessaires en fonction de ces événements rares.

Les travaux de ce mémoire se situent clairement dans le premier axe énoncé ci-dessus.

L'hydrogramme de crue occupe une place importante dans la théorie comme dans la pratique hydrologique. Les ouvrages hydrotechniques sont dimensionnés sur la base d'un modèle de crue qui doit être d'une vraisemblance avec la réalité physique de la formation de la crue pluviale. L'hydrogramme de crue est fondamentalement caractérisé par un certain nombre de paramètres tels que: le débit maximum, le volume de ruissellement et les différentes durées relatives à un événement de crue (temps de montée, temps de décrue et temps de base de la crue). Chacun de ces paramètres est liés à son tour avec les facteurs générateurs. Le débit maximum est le résultat d'une double transformation de la pluie en ruissellement puis en écoulement fluviale. Le ruissellement est le volume des eaux de la pluie nette qui sont déversées dans le chevelu hydrographique.

Malgré l'absence des données expérimentales, connaissant la genèse du phénomène, et ayant des données hydrométéorologiques et morphologiques de bonne qualité, on peut toujours caractériser les crues rares représentant les cas exceptionnels.

La présente étude est menée sur le bassin de la Soummam. Ce dernier est de conditions physico-géographiques très diversifiées et d'un climat représentant la région nord de l'Algérie. La bonne organisation de l'étude conduit à la division des travaux en quatre chapitres :

Le premier chapitre est consacré à une étude bibliographique globale sur la crue pluviale ; sa formation, quelques méthodes et formules pour la détermination des débits maxima et les méthodes de projection de l'hydrogramme de la crue.

Le deuxième chapitre est consacré à la description des principaux facteurs physico-géographiques du bassin de la Soummam.

Dans le troisième chapitre, nous présentons la collecte et l'analyse des données : il s'agit de constituer des échantillons des débits instantanés maxima annuels des sous bassins de la Soummam et quelque sous bassins limitrophes et de collecter les données morphométriques relatives aux mêmes sous bassins. Le traitement statistique des débits maxima nous permet d'en évaluer les caractéristiques empiriques notamment la moyenne, le cœfficient de variation et le cœfficient d'asymétrie. Pour l'estimation des coefficients d'écoulement maximum nous traitons des échontillons des pluis maximales annuelles relatifs à 34 stations pluviométriques de la Soummam et 14 statios limitrophes. Donées collecteés aupres des services de l'ANRH.

Quant au quatrième chapitre, nous procédons à l'évaluation du cœfficient d'écoulement maximum et à l'identification des caractéristiques des hydrogrammes des crues probables, à savoir :

- L'analyse fréquentielle des débits spécifiques maxima et calcul des débits de fréquences rares 0.1%, 1%, 2%, 5%, 10%, 20%;
 - Détermination de la durée de ruissellement :
 - Estimation des lames ruisselées ;
 - Détermination du coefficient de forme ;
 - Identification du temps de montée de la crue ;
 - Détermination du coefficient de Sokolovsky;
 - Projection des hydrogrammes des crues probables.

Enfin, nous terminons avec une conclusion générale, qui englobe les principales démarches effectuées et les résultats obtenus par cette étude.

CHAPITRE I ETUDE BIBLIOGRAPHIQUE

CHAPITRE I

ETUDE BIBLIOGRAPHIQUE

I.1- Généralités sur les crues pluviales

Introduction

De tout temps, l'estimation des crues a été un souci majeur, préoccupant tout ingénieur responsable de dimensionnement d'un ouvrage hydrotechnique.

L'étude des crues revêt une place importante dans une étude hydrologique et doit être menée avec prudence pour ne pas tomber dans des erreurs de sous estimation ou de surestimations compromettant respectivement la sécurité de l'ouvrage et son environnement.

L'estimation des débits de crue et des volumes correspondants est l'étape initiale indispensable pour le dimensionnement rationnel des aménagements liés à la protection contre les crues et à la construction des barrages. Les méthodes d'évaluation sont nombreuses et dépendent de la diversité et de la complexité des facteurs qui déterminent les crues.

Avant toute étude de crue, il est important de définir ce qu'est une « crue » et quelles sont les principales variables à déterminer.

I.1.1-Définition d'une crue

La crue est une phase du régime hydrologique d'un cours d'eau caractérisé par l'augmentation plus ou moins brutale du débit sous l'effet de facteurs extérieurs et maintenant ce débit au dessus d'un seuil donné. L'élévation rapide du niveau d'eau peut produire non seulement le remplissage du lit mineur mais aussi la submersion du lit majeur.

Le choix du seuil dépend de l'importance du cours d'eau. Très souvent ce seuil est estimé égal à la moyenne interannuelle de l'écoulement; c'est-à-dire que toute crue dont le coefficient de l'écoulement moyen est supérieur ou égal à celui de l'écoulement moyen interannuel du cours d'eau est considérée comme crue et peut faire l'objet d'une étude précise.

Selon le CNFSH (2000), en général, on distingue deux types de crues : les crues fluviales et les crues torrentielles même si le passage de l'une à l'autre se fait de façon continue. Les crues fluviales, souvent saisonnières, affectent les cours d'eau importants aux vastes bassins versants; en général la montée des eaux y est lente. Les crues torrentielles ou rapides, subites, brutales, soudaines ou encore éclair affectent n'importe quelle partie du réseau hydrographique ; elles sont souvent dues à des pluies de caractère convectif très violentes et localisées; elles sont caractérisées par une évolution très rapide, la montée des eaux étant très brutale. Cependant, certains hydrologues désignent par "la crue" l'épisode complet de crue et décrue jusqu'au retour à un régime non influencé. La crue est simple, si elle présente une seule pointe. Elle est dite complexe si elle présente plusieurs pointes comme le montre la figure suivante.

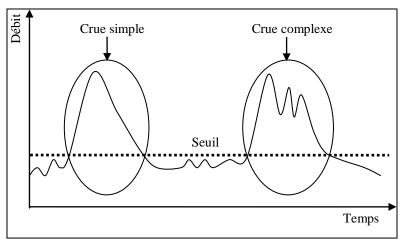


Figure 1.1: Crue simple et crue complexe

I.1.2- Objectifs de l'analyse des crues

L'objectif final de l'analyse des crues est de déterminer le degré et la fréquence selon lesquels elles interfèrent avec la vie et les activités normales d'une collectivité, afin qu'on puisse prendre des mesures préventives appropriées. Etant donné qu'une crue peut avoir des effets fâcheux de type divers, dont chacun peut être rapporté à des caractéristiques différentes, l'objet de l'analyse n'est d'ordinaire par la crue en soi, mais certains de ses aspects particuliers, à savoir ceux qui sont dans le rapport le plus étroit avec le risque dont il s'agit. En général, on cherche a déterminer un hydrogramme vraisemblable d'une crue probable en respectant la liaison génétique de ces principales caractéristiques, à savoir le débit de pointe, le temps de montée, le temps de base et le volume d'eau écoulé durant la crue. Pour simplifier l'analyse, on suppose d'ordinaire que la plupart des effets fâcheux des crues peuvent être rapportés de façon convenable à leurs débits de pointe, qui sont ainsi devenus l'objet le plus fréquent de l'analyse.

I.1.3- Variabilité spatio-temporelle d'une crue

Pour décrire un phénomène qui varie à la fois dans l'espace et dans le temps, on peut utiliser un observateur virtuel qui décrit le phénomène.

Considérons dans un premier temps un observateur fixe, posté à un endroit donné le long du cours d'eau. Il perçoit la variabilité temporelle du débit de la rivière et de la hauteur d'eau. La variation du débit au cours du temps est appelée hydrogramme de crue (figure.I.2). Ce schéma peut aussi être décrit par une chronologie de processus.

Au plus fort de la crue, le débit maximal de la rivière est appelé débit de pointe de la crue. Le débit de la rivière varie en permanence tout au long de la crue. La pointe de la crue correspond à un laps de temps limité, et difficile à définir précisément, par rapport à la durée totale de l'événement.

Si on considère un observateur qui se déplace le long du cours d'eau, à la même vitesse que l'onde de crue, il constate que le débit de pointe augmente au fur et à mesure que les différents affluents viennent alimenter le cours d'eau principale.

La variabilité à la fois temporelle et spatiale de la crue implique qu'on ne peut pas la décrire complètement en un seul lieu et à un instant choisis à priori. Dans le cas des rivières de grand bassin, la variabilité spatio-temporelle est forte car les bassins versants sont plus hétérogènes en terme de géologie et de pluviométrie. Pour décrire un événement de crue en tout point du bassin versant une approche spatialisée est nécessaire, or la plupart des données disponibles sont localisées.

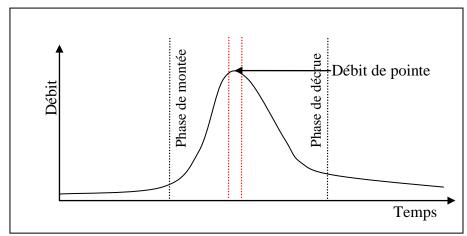


Figure I.2 : les différentes phases d'une crue décrites par un hydrogramme

I.1.4- Caractéristiques des crues

Du point de vue de la gestion, la crue se caractérise essentiellement par le degré auquel elle interfère avec les activités humaines, qui se mesure par l'ampleur des pertes économiques effectives ou virtuelles et par son danger pour les vies humaines.

Pour un tronçon de rivière et pour une utilisation donnée des terres qui le bordent, la gravité d'une crue dépend généralement de son "amplitude". Bien qu'intuitivement il paraisse clair, ce terme a en fait un sens très vague, car il peut se rapporter à plusieurs caractéristiques physiques de l'onde de crue.

I.1.4.1-La hauteur de crue

La hauteur de crue est la hauteur maximale atteinte par l'eau au cours de la crue. Théoriquement c'est la caractéristique la plus importante, puisque c'est d'elle que dépend le débordement. Hydrologiquement, ce n'est pas la plus indiquée pour une évaluation de la crue, puisqu'elle varie d'un point à un autre et caractérise donc une section transversale donnée, mais non l'onde de crue se déplaçant le long du cours. De plus, la hauteur n'est pas toujours le meilleur indicateur de la gravité de la crue. Par exemple, une crue provoquée par un orage d'été peut être très haute, mais souvent de courte durée et de volume relativement réduit. En conséquence, l'inondation ne cause pas nécessairement beaucoup de dégâts, car elle met en cause une petite quantité d'eau et les terrains ne restent que peu de temps sous l'eau.

I.1.4.2- Le débit de pointe de la crue

Le débit de pointe de la crue est la valeur maximale instantanée du débit pendant la crue. C'est une caractéristique hydrologique très commode; car elle se rapporte à l'onde de crue et non pas à une section transversale particulière. Bien qu'elle ne demeure pas constante à mesure que la crue descend le cours d'eau. Le débit de crue ne dépend pas non plus des variations locales du lit (érosion, sédimentation) comme la hauteur de crue: c'est donc une caractéristique plus représentative non seulement pour la crue elle-même, mais aussi pour toute section transversale donnée.

Autre avantage: le débit de pointe d'une crue coïncide étroitement avec le moment où l'eau atteint son niveau maximal, ce qui donne donc une bonne indication de la hauteur. En réalité, ce débit de pointe est atteint avant le niveau maximal mais, dans la plupart des cas, la différence entre ce niveau maximal et celui qui correspond au débit de pointe est négligeable (Pierre Javelle, 2001).

I.1.4.3- Volume de la crue

Le volume de la crue équivalant au volume d'eau transité par le système durant toute la durée de la crue, constitue une caractéristique indispensable chaque fois que les dégâts dépendent de la quantité d'eau qui inonde et dans les cas d'intervention visant à réduire le débit de pointe.

I.1.4.4- Durées relatives à un seul événement de crue

La notion de durée est indispensable dans la description du régime des crues. C'est pourquoi de nombreuses durées ont été définies par les hydrologues. Les temps caractéristiques définis cidessous sont tous relatifs à un événement de crue. Ce sont des ordres de grandeurs, plutôt que des valeurs calculables avec précision. En effet, leur définition fait référence à une représentation très simplifiée de la transformation pluie-débit (en particulier les écoulements sont supposés être majoritairement des ruissellements). Les définitions suivantes sont issues de Roche (1963) citées par Pierre Javelle (2001)

Temps de réponse : Le temps de réponse est l'intervalle de temps qui sépare le centre de gravité de la pluie efficace de la pointe de l'hydrogramme.

Temps de montée : Il s'agit de la durée écoulée entre le début de l'arrivée à l'exutoire du «ruissellement » et le maximum de l'hydrogramme.

Temps de base : Le temps de base est la longueur sur l'abscisse de la base de l'hydrogramme de ruissellement.

Temps de concentration : Le temps de concentration est la durée que met une particule d'eau provenant de la partie du bassin hydrauliquement la plus éloignée de l'exutoire. On peut l'estimer en mesurant la durée comprise entre la fin de la pluie efficace et la fin du ruissellement.

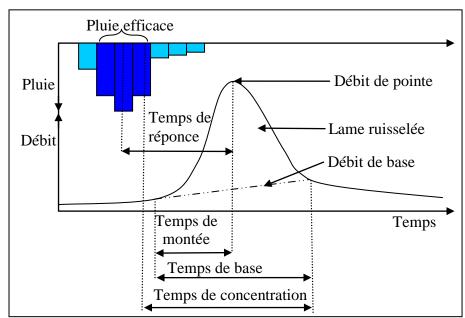


Figure I.3 : Durées caractéristiques relatifs à un hydrogramme de crue

I.1.4.5- La fréquence d'apparition d'une crue et la notion de temps de retour

Lorsque l'on étudie des grandeurs comme les débits de crues d'un point de vue statistique, on cherche en règle générale à déterminer la probabilité pour qu'un débit donné ne soit pas dépassé. On nomme cette probabilité fréquence de non-dépassement ou probabilité de non-dépassement. Son complément à l'unité est appelé probabilité de dépassement, fréquence de dépassement ou encore fréquence d'apparition. On définit alors le temps de retour T d'un événement comme étant l'inverse de la fréquence d'apparition de l'événement.

Convenable pour une fin donnée, on recherche la fréquence des crues dont le volume dépasse un débit donné, ou de celles d'une certaine durée à certains niveaux de débit.

I.2- Revue bibliographique

I.2.1- Les aspects théoriques

Depuis Sherman (1932) qui, le premier, a formulé la théorie de l'hydrogramme unitaire, de nombreux auteurs se sont penchés et ont fait part de leur expérience et recherches sur les liaisons entre volumes, formes et coefficients d'écoulement des crues, en essayant de concevoir ou d'adapter diverses théories sur leur genèse et leur propagation. Plusieurs auteurs se sont efforcés d'améliorer la formulation théorique de ce phénomène. Après Sherman déjà cité, Horton (1933) a proposé une équation simple de répartition entre les parts des précipitations s'infiltrant et ruisselant; Roche M (1963, 1973) a apporté plusieurs contributions à la formulation mathématique. Juste après, Morel-Seytoux (1975) ont présentè de nouvelles formulations théoriques de l'infiltration. L'approche hortonnienne a commençè à être remise en cause par Hewlet et Hibert (1967), Dunne (1978) et Merot (1988) qui ont introduit la notion de surface de contribution variable, beaucoup plus adaptée aux mécanismes hydrologiques dominants dans les zones humides. Fritsch (1990) a effectué une analyse historique de l'antagonisme et de la complémentarité de ces différentes théories.

I.2.2- Quelques œuvres relatives aux études des crues

Depuis 1960 J. Rodier, assure la promotion et réalise ou participe aux principales publications relatives aux études des crues et des écoulements des petits bassins des zones tropicales africaines, dont il a été souvent le concepteur et l'instigateur. Nous devons tout d'abord signaler l'étude bien connue effectuée par Rodier et Auvray (1965) qui fournit une méthode d'évaluation des débits de la crue décennale des petits bassins, qui a souvent servi de référence, ouvrage qui n'a été complété que 20 ans après par Puech (1984), ainsi que par Hasnaoui (1985). Après avoir publié en 1967 un inventaire sur les crues de faible fréquence recensées dans le monde, J. Rodier aborde en 1982 les problèmes posés par la transposition des résultats. Il fait ensuite le point sur les caractéristiques des crues des bassins des zones sahéliennes en1985. Enfin Ribstein et Rodier (1989) effectuent une analyse de la forme et de la modélisation des crues du Sahel des petits bassins de moins de 10 km2, travail qui réalise, en fait, la synthèse des résultats de plusieurs décennies de travail d'une nombreuse équipe. La synthèse relative aux crues des bassins de surface comprise entre 10 et 2.500 km2 a été terminée récemment (Eric Cadier, 1993).

Plusieurs autres équipes ont également abordé le problème de l'étude des crues. Citons tout d'abord l'ouvrage publié par le CEMAGREF (Michel, 1990), qui présente une méthode pratique pour l'évaluation des débit maxima et la projection des hydrogrammes de crues, utilisable partout en

France. Il simplifie les concepts usuels, en présentant des résultats de manière pratique. Par exemple la formule de la crue biennale proposée par cet auteur est $Q = kS^{0.8}$. Oberlin (1980), Sakout et Guibot (1988) et Michel (1989) proposent plusieurs méthodes d'estimation régionale des débits maximums et Dubreuil P (1974 b) coordonne la publication d'une synthèse des résultats obtenus sur les bassins représentatifs français.

Citons enfin quelques travaux, évoqués par Eric Cadier en 1993, de portée moins générale, qui rapportent des chiffres relatifs à un seul bassin ou à de petites zones: - Molinier (1981) signale des coefficients d'écoulement de crue de près de 100 % sur le bassin de la Comba au CONGO.

- Albergel (1987) propose pour une parcelle de sol nu recouvert d'une pellicule (GAGARA) une équation de lame ruisselée Lr = 0,96P-2,6. Cet auteur met également en évidence, une augmentation, ces dernières années, du ruissellement au Sahel due à la dégradation de la végétation propice à l'apparition d'effets dits de "surface".
- Thebe et Pontanier (1989) effectuent, sur un bassin du Nord Cameroun, une tentative de correction des résultats en fonction de la taille du bassin.
- Mentionnons enfin l'excellente et fine analyse des mécanismes hydrologiques du bassin de savane tropicale de BORO-BOROTOU, effectuée par Chevalier (1988).

I.3- Processus physiques responsable de la genèse et de la propagation des crues

Lorsqu'il pleut sur un bassin versant, toute la difficulté réside dans la définition du partage de l'eau de la pluie entre ces différentes destinations possibles (évaporation, infiltration ou ruissellement..) ainsi que dans la définition des processus physiques mis en jeu pour réaliser chacune de ces tâches.

La transformation de la pluie en hydrogramme de crue se traduit par l'application successive de deux fonctions, nommées respectivement fonction de production ou fonction d'infiltration et fonction de transfert (figure I.4). La fonction de production permet de déterminer le hyétogramme de pluie nette à partir de la pluie brute. La fonction de transfert permet quant à elle de déterminer l'hydrogramme de crue résultant de la pluie nette. Le passage du hyétogramme de pluie à l'hydrogramme de crue fait intervenir toutes les caractéristiques météorologiques, physiques et hydrologiques du bassin versant considéré.

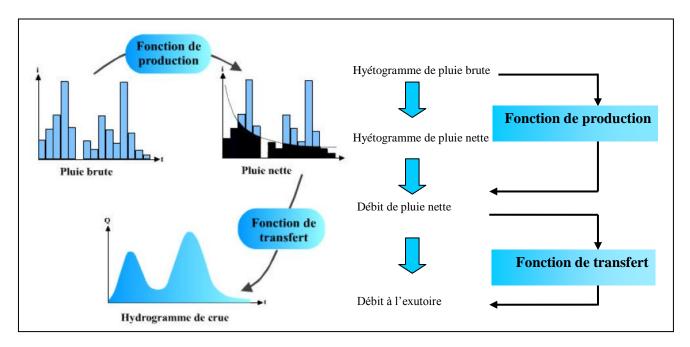


Figure I.4: schéma général du processus de transformation pluie-débit.

I.3.1- La pluie

La genèse des crues pluviales est surtout fonction des caractères propres des précipitations (hauteur – intensité – durée) et, est déterminée en même temps par l'interaction complexe et combinée des divers éléments caractérisant le support de l'écoulement de surface : état hygrométrique des sols, pentes, densité de drainage et taux de couverture végétale ... etc. Mais la pluviométrie demeure le facteur le plus déterminant de ce processus.

D'après Garçon (1999), l'étalement de l'hydrogramme à l'exutoire d'un bassin est dû à 90% à l'étalement temporel de la pluie et à la fonction de transfert moyenne du bassin. Pour d'autre, la distribution spatiale et l'intensité de la pluie, n'ont comparativement qu'un rôle mineur. Obled (1994) a abondé dans ce sens en précisant que les fluctuations pluviométriques spatiales, bien qu'importantes, ne sont pas suffisamment organisées pour prendre le dessus sur les effets du ruissellement (effets intégrateur et humidificateur) pour des bassins ruraux de quelques dizaines de km². D'un autre point de vue, celle-ci pourrait avoir des conséquences non négligeables sur les crues. Ceci a été souvent soutenu pour des grands bassins versants de quelques dizaines de milliers de km², mais beaucoup moins pour des petits. Niemczynowicz (1987) précise que ceci est d'autant plus vrai que le petit bassin versant est urbanisé. Mais Krajewski (1991), Corradini, (1985) et Troutman (1983) ont suggéré que les petits bassins versants naturels montraient aussi une forte sensibilité aux hétérogénéités de la pluie. Datin (1998) remarque que l'hétérogénéité spatiale de la pluie peut quelques fois avoir un rôle effacé sur la réponse hydrologique du bassin, alors que d'autres fois ce rôle sera prédominant. (Cosandey et Robinson, 2000) estiment que les intensités, durées et extensions spatiales des précipitations sont des facteurs déterminants de la formation des écoulements de crues.

• La pluie brute

Pour un événement pluvieux donné, la réponse hydrologique d'un bassin dépend du volume précipité, mais également des variations d'intensité et de la durée de l'averse.

La pluie brute est caractérisée par son hytogramme dont les caractéristiques sont : L'intensité maximale ; La durée; Le volume.

• La pluie nette

Représente la quantité de pluie qui ruisselle strictement sur la surface du terrain lors d'une averse. La pluie nette est déduite de la pluie totale, diminuée des fractions de toutes les pertes engendrées notamment par l'imbibition, les infiltrations, remplissage des micro-dépressions du terrain, rétention couverte végétale, rétention dans le sol, evapotranspiration et filtration.

I.3.2- Le ruissellement

I.3.2.1- Théorie de Horton à propos du ruissellement

Horton (1933) propose de calculer un taux d'infiltration moyen pour l'ensemble du bassin versant à l'aide d'une étude sommaire des chroniques pluie-dédit. Il considère que les premières pluies s'infiltrent dans la couche superficielle du sol et la saturent rapidement. L'eau ne peut alors plus s'infiltrer qu'à une vitesse maximale correspondant à la conductivité hydraulique à saturation considérée constante dans le temps et dans l'espace. Horton considère que lorsque l'intensité des pluies est supérieure à la capacité d'infiltration du sol, alors le ruissellement a lieu (figure I.5). Il y a alors formation d'un écoulement en lame d'épaisseur croissante, qui répond aux lois des écoulements à surface libre. C'est ce ruissellement qui est à l'origine de la crue. L'ensemble du bassin versant contribue donc à l'écoulement de crue, par contre seule une partie des précipitations y participe. La partie infiltrée dans le sol est suivie par une percolation lente vers une nappe profonde. Les transferts latéraux par la nappe profonde sont suffisamment retardés pour ne pas intervenir dans les volumes des crues. Les seuls qui interviennent sont les transferts latéraux se produisant à surface des sols.

En milieu semi aride, par exemple, où les sols sont couverts d'une croûte de surface et où les pluies sont relativement intenses, le schéma hortonien semble bien représenter le processus de genèse des crues (Esteves, 2000, Peugeot, 1997) cités par (Valérie, 2004). Cette conception de la genèse des crues a été souvent remise en question pour des basins versants tempérés où le ruissellement superficiel direct est rarement observé.

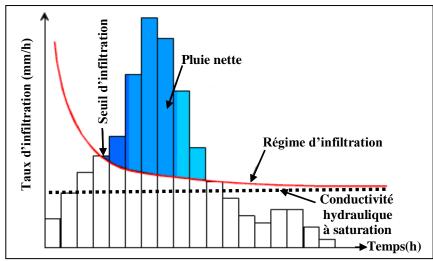


Figure I.5: Régime d'infiltration et capacité d'infiltration d'un sol

I.3.2.2- Théorie des aires contributives saturées

Dès 1960, (Cappus, 1960) a évoqué des phénomènes de genèse de crue bien différents de ceux de Horton. Il parle d'un ruissellement provoqué par la totalité de la pluie tombant sur un sol saturé ou imperméable, dont l'étendue varie avec le niveau de la nappe phréatique. Le bassin étudié était un bassin du Massif Central agricole et pastoral soumis à un climat tempéré. Reprenant cette idée, (Hewlett, 1961) mentionne la notion de « surfaces contributives », qui sera reprise par (Hewlett et Hibbert, 1967) en précisant l'idée que les écoulements sub-surfaciques peuvent générer des contributions signifiantes dans les hydrogrammes de crue et non pas seulement le ruissellement surfacique, suite à des expériences réalisés aux USA. Depuis cette théorie a fait son chemin (Dunne, 1983). On parle aujourd'hui d'aires contributives saturées sur lesquelles le ruissellement apparaît par refus d'infiltration d'un sol saturé (dépassement d'un seuil de saturation) car la totalité de la porosité est déjà occupée par de l'eau. La nappe affleure alors la surface du sol. On parle de « saturation du sol par dessous ».

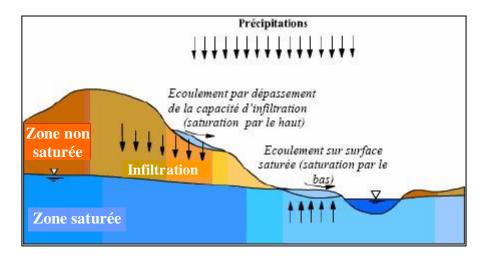


Figure 1.6: génération du ruissellement par saturation par le bas et par saturation par le haut

I.3.3 - Etat et caractéristiques du bassin versant

A un même apport d'eau et d'énergie ne correspond pas forcément la même réponse débit. Elle dépend aussi largement des conditions initiales dans le quel se trouve le bassin versant en terme de bilan hydrologique. Cette non linéarité trouve sa justification dans les conditions initiales du bassin versant (Valérie, 2004) qui font l'objet de différentes combinaisons en fonction de :

- La morphologie du bassin versant (la forme, dimension, altimétrie, orientation des versants);
- Les propriétés physiques du bassin versant (nature des sols, couvertures végétale, ...);
- La structure du réseau hydrographique (extension, dimension, propriétés hydrauliques, ...);
- Etats antécédents d'humidité des sols.

I.4 - Méthodes d'estimation des crues

En général, l'estimation des crues se situe à trois niveaux d'appréciation issus : de mesures, d'enquêtes et de calcul. Elle dépend également d'autres critères, telle la fréquence d'apparition ou le temps de retour.

I.4.1- Les mesures

Les mesures peuvent être classées en deux catégories :

- La mesure standard de la hauteur de l'eau :
- Mesures de délaisses et traces de crue dans l'environnement après la crue (hauteur des herbes couchées, de l'érosion sur les berges, de traces des conséquences du passage de l'eau sur des cultures, des arbres, des édifices). En conséquence, il faut considérer les mesures de crue avec beaucoup de prudence, spécialement lors d'événement majeurs, mais il ne faut pas les rejeter non plus car tout de mêmes utiles a des estimations « grossières » ou a des ordres de grandeurs, qui permettent de « contrôler » les résultats de calcul issus d'application de méthodes pluie élaborées.

I.4.2- Les enquêtes

Les enquêtes peuvent être effectuent à deux niveaux :

- Immédiatement après une crue spécifique, auprès des personnelles qui ont vécus l'évènement. Cette enquête permet d'obtenir des informations qu'il faut analyser avec la même prudence que pour celles concernant les mesures.
- En archive et ou par le biais d'autres enquêtes personnelles, pour retrouver des informations historique sur le comportement des crues dans une région ou pour une rivière donnée. L'enquête historique permet plus de situer l'évènement dans sa chronologie (donc utile à la fréquence d'apparition de la crue dans un contexte géographique et socio-économique spécifique) que d'estimer ses grandeurs. De telles informations sont également très utiles pour définir une « crue de projet » lors de dimensionnement d'ouvrages ou d'évaluation des risques hydrologiques.

I.4.3- Les méthodes de calculs

Au niveau technique, elles doivent être adaptées essentiellement aux mesures et aux informations disponibles.

Au niveau de leur degré de développement et indirectement, à celui de leur coût, elles doivent prendre en considération l'importance des aménagements à mettre en place et/ou celle des valeurs socio-économiques des biens que l'on souhaite protéger.

De manière générale, les méthodes de calcul utilisées se répartissent comme suit, fonction surtout des données disponibles dans la zone ou l'on souhaite procéder à leur application.

- Pas ou peu de données disponibles : Application de méthodes analogique, régionales, empiriques ou pseudo empiriques.
- Données concomitantes de pluie et de débit (au même pas de temps) : Application de méthodes déterministes.
- Données existantes et en suffisance de pluie et de débit : Application de méthodes statistiques qui peuvent être couplées aux méthodes déterministes.

I.5- Estimation du débit maximum d'une crue

Le choix du débit maximum d'une crue peut résulter soit d'une étude de conséquences soit il est fixé et ne doit pas dépasser, cela dépend de l'utilisateur.

Plusieurs méthodes sont utilisées, le choix est très grand et très difficile où certains pays ont même normalisés la méthode d'estimation.

Ces méthodes peuvent être classées en trois groupes :

I.5.1- Méthodes basées sur l'historique des crues

Cette méthode très ancienne repose sur l'idée qu'on ne verra jamais pire que ce qu'on a déjà vu dans un passé suffisamment répandu. Elle est toujours utilisée lorsqu'on ne dispose pas d'observations sur le débit maximum enregistré lors d'une crue exceptionnelle et où actuellement, on a la tendance à l'oublier. L'information déduite des crues historiques est précieuse et constitue une banque de données très importante. Elle peut être définie comme l'étude des crues anciennes antérieures à leur mesure directe par des techniques modernes, dont le but est de définir des crues des périodes historiques en vue de compléter les données existantes, de les comparer avec d'autres méthodes et d'améliorer le degré de précision des valeurs résultant de l'applications des méthodes d'extrapolation statistiques.

I.5.2- Les méthodes probabilistes

Que l'on peut ranger en :

- Méthodes à échantillonnage fixé comme la méthode maximum annuelle qui est simple et très répondue dans le monde et qui reste très insuffisante pour des échantillons de taille inférieure à 30.
- Méthodes hydrométéorologiques comme les méthodes de Gradex mes valable pour des bassins versants limités(S<20 000 km²) et homogènes.
- Méthodes stochastiques très utilisées pour simuler des variables complexes par la modélisation statistique du processus à l'échelle journalière et mensuelle. Cependant, elles contrôlent très mal les incertitudes (Masson, 1991).
- Méthodes du type renouvellement dont le principe est de probabiliser d'une part les débits de toutes les crues qui dépassent un certain seuil critique et d'autre part l'occurrence d'apparition dans le temps de ces crues pour recomposer par la suite ces deux aléas afin d'obtenir le risque annuel de dépassement d'un certain débit. L'avantage de cette méthode est de prendre en considération l'aspect temporel du processus et mieux analyser l'information (Masson, 1991).

I.5.2.1- La méthode du GRADEX

La méthode du Gradex conçue par des ingénieurs d'Electricité de France ; Guillot et Duband en 1967, pour apporter une réponse au problème du dimensionnement des évacuateurs de crue des barrages hydro-électriques. Cette méthode exploite la forte liaison pluie-débit pour les fortes crues, elle se fonde sur trois hypothèses :

- Les cumuls pluviographiques sur différentes durées suivent une loi exponentielle, souvent on prend celle de Gumbel. La pente des distributions de ces intensités sur papier de "Gumbel" est appelée Gradex. On choisira pour appliquer la méthode, une durée au moins égale au temps de

concentration du bassin versant considéré. Dans la plupart des applications, on utilise les distributions des cumuls de pluie sur une durée de 24 heures, les données de pluies journalières étant plus nombreuses que les données pluviographiques mesurées à des pas de temps plus fins.

- Capacité limite de la rétention du sol atteinte à partir d'une certaine période de retour qui implique un parallélisme entre les distributions de pluie et de débit (calculés sur une même durée).
- L'invariance de la forme de l'hydrogramme de crue unitaire pour les fortes pluies : c'est-à-dire le rapport débit de pointe sur le débit moyen durant la crue, appelé « cœfficient de forme » est indépendant du volume de la crue.

Selon Eric Gaumme (2003), ces hypothèses ont été vivement critiquées (Beran, 1981 ; Reed, 1994) notamment la prise en compte du parallélisme asymptotique de la distribution des débits avec celle des pluies.

I.5.2.2- Les méthodes reposant sur l'association d'un générateur stochastique de pluie et d'un modèle pluie-débit.

Ce type d'approche est fréquemment utilisé dans le cadre de l'estimation des débits et des lames écoulées pour des fréquences rares dans le cas où peu de données pluie-débit sont disponibles. Il s'agit en fait de générer stochastiquement des chroniques de pluie simulées. A partir d'une chronique de pluies observées de 10 ans par exemple, on peut générer des chroniques de pluies simulées de 100 ou 1000 ans. Ces chroniques de pluies simulées sont ensuite transformées en chroniques de débits simulés au moyen d'un modèle pluie-débit. Le classement des pluies et des débits simulés permet de tracer leurs distributions de fréquences empiriques pour toutes durées et d'en déduire les quantiles pour l'ensemble de la gamme de fréquences. Les quantiles de pluie et de débit ainsi obtenus ne sont cependant pas les quantiles réels.

Nous ne présenterons pas ici toutes les méthodes existantes reposant sur l'association d'un générateur stochastique de pluie et d'un modèle pluie-débit. Juste, à titre d'exemple, nous citons la méthode SHYPRE.

I.5.2.2.1- La méthode SHYPRE

La méthode SHYPRE (acronyme de Simulation d'HYdrogramme pour la PREdétermination des crues) développée par le Cemagref dans l'arc méditerranéen, puis elle a été étendue aux milieux tropicaux et tempéré (Arnaud, 1997). La méthode est architecturée comme suit :

- La première étape de la modélisation est la phase de calage du modèle de pluie et du modèle pluiedébit à partir des événements observés. Pour ces derniers, on doit disposer à la fois de données de pluies horaires et d'hydrogrammes à pas de temps horaire.
- Une fois les deux modèles calés, on procède à la simulation d'un grands nombre d'épisodes de pluie qui sont transformés en hydrogrammes de crue par GR3H.
- La phase de validation consiste à vérifier que les événements de crue simulés suivent les mêmes distributions de probabilités que les événements observés. Si la méthode est validée, on peut utiliser les événements simulés pour prolonger les distributions de probabilités jusqu'à des périodes de retour élevées.

I.5.3- Formules et méthodes empiriques et semi empiriques

Ces formules sont nombreuses, elles sont basées sur l'expérimentation ou sur certaines informations propres à certaines régions pour lesquelles elles ont été déterminées. Ces formules empiriques sont à prendre avec précaution dans le sens où si elles sont valables dans une région, elles ne le sont pas dans d'autres et donnent souvent des valeurs sous-estimées ou surestimées.

I.5.3.1- La méthode rationnelle

Le concept de la méthode ou formule rationnelle doit son origine à un ingénieur irlandais Mulvanay responsable de drainage agricole au siècle dernier (1850). Malgré de nombreuses hypothèses simplificatrices, c'est probablement de loin la formule la plus connue et la plus utilisée essentiellement à cause de sa simplicité. Sa conception est cependant fondée sur une loi physique extrêmement simplifiée : la lame d'eau écoulée est proportionnelle au volume précipité sur l'ensemble du bassin. Le coefficient de proportionnalité appelé coefficient de ruissellement est constant. Le volume de pluie précipite sur le bassin pendant une durée correspondant au temps de concentration du bassin. La méthode rationnelle suppose également que le temps de montée est égal au temps de concentration. Son expression est la suivante [10]:

$$Q = u.\alpha i.S \tag{I-1}$$

 α : Coefficient de ruissellement (ou coefficient d'écoulement) du bassin versant qui dépend de l'état du sol et de sa couverture végétale ;

i: Intensité de la pluie pour une durée choisie en fonction du temps de concentration t_c ;

S: Superficie du bassin versant;

u: Coefficient qui est fonction des unités choisies. Avec S en ha, i en mm/h et u = 0.0028, on obtient Q en m^3/s .

I.5.3.2- Formule d'Iskowski (1886) [69]

Après analyse des crues observées sur 30 cours d'eau européens, Iskowski a tiré la formule suivant :

$$Q = \lambda \times m \times \overline{H} \times S$$
 (I-2)

H : module pluviométrique moyen annuel.

m : coefficient variant de 10 à 1 lorsque la superficie du bassin passe de 1 à 25000 km²

 λ : Coefficient caractérisant la morphologie du bassin, il varie entre 0.017 et 0.8

S : superficie du bassin versant.

I.5.3.3- Formule de Lauterburg (1887) [69]

En 1887, Lauterburg a proposé une formule applicable aux bassins versants de petites tailles:

$$q_{\text{max}} = \varphi \frac{1120}{31 + S}$$
 (I-3)

Pour $1 \, Km^2 < S < 500 \, Km^2$

 φ : Coefficient exprimant à la fois la pente du bassin versant, le type de sol et la végétation.

I.5.3.4- Formule de Hofbauer (1916) [10]

La formule suivante proposée en 1916 par Hofbauer pour déterminer le débit d'un bassin versant de petite taille.

$$q_{\text{max}} = \varphi \frac{60}{\sqrt{S}} \tag{I-4}$$

Avec

 φ : Coefficient exprimant la nature du terrain

S : la superficie en km^2 ...

I.5.3.5-Formule de Kursteiner (1917) [10]

Cette formule proposée en 1917 par Kursteiner est donnée en fonction d'une variable a et la superficie de bassin versant :

$$q_{\text{max}} = \frac{a}{\sqrt[3]{S}}$$
 (I-5)

a: Coefficient compris entre 9 et 12

S : la superficie en km^2 .

I.5.3.6-Formule de Melli (1924) [10]

Pour les petits bassins versants d'une superficie inférieur à $500Km^2$. Melli a proposé la formule suivante pour la détermination du débit spécifique maximum de la crue pluviale:

$$q_{\text{max}} = \varphi \cdot \frac{18,5}{\sqrt[6]{S}} \tag{I-6}$$

Pour $1 \text{ Km}^2 < \text{S} < 500 \text{ Km}^2$

 φ : Coefficient dont la valeur moyenne est 0.4.

I.5.3.7-Formule de Forsaith (1949) [10]

Apres une étude exhaustive des débits de pointes et leurs fréquences de récurrence des divers cours d'eaux des Prairies, Forsaith a proposé en 1949 la formule suivante de calcul des débits de pointe.

$$Q_T = \alpha \left(32,3S^{0,5}T^{0,44}\right) \tag{I-7}$$

 Q_T : Débit maximal (m³/s) égalée ou dépassée en moyenne une fois sur une période de T années;

 α : Coefficient de ruissellement. Forsaith a proposé des valeurs de α en fonction des caractéristiques des bassins notamment type de sol, type de végétation et la pente.

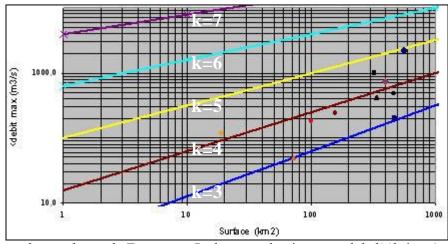
S : Superficie de drainage (km²).

I.5.3.8-Courbes enveloppes (Francou et Rodier, 1967)

Cette méthode consiste à porter les pointes des crues maximales observées dans une région de caractéristiques homogènes en fonction de la surface du bassin, permettant ainsi de tracer une courbe enveloppe des points correspondants. Françou et Rodier en 1967 ont appliqué cette méthode à l'échelle mondiale et on proposé la formule suivante :

$$\frac{Q}{Q_o} = \left(\frac{S}{S_o}\right)^{1-k/10} \tag{I-8}$$

$$Q_o = 10^6 m^3 / s$$
; $S_o = 10^8 Km^2$


k est un coefficient compris ente 0 et 7 et fonction des divers facteurs climatiques et géographiques.

les graphes $\log Q = f(S)$ sont des droites dont k est constant pour chacune d'elle, elles sont des enveloppes des crues maximales observées dans des région hydrologiques homogènes, convergent en un point dont les coordonnées S_o et Q_o représentant respectivement et approximativement la superficie total du globe (y compris les lacs et non compris les diserts et la calottes polaires) et le débit moyen annuel de l'ensemble des cours d'eaux drainant ces surfaces.(Llamas j, 1993) .

Pour les conditions des petits bassins versants du nord de l'Algérie, avec des données d'observations de crues rapportées dans 13 stations distribuées dans les sous bassins centrales et ouest, il peut être apprécié dans le graphique ci-joint les points données des principales crues observées sont groupées autour de k=4. La formule des courbes déduite pour les conditions de cette région est la suivante (Benfares, 1992):

$$Q_{m\acute{a}x.} = 10^6 \left(\frac{S}{10^8}\right)^{0.6} \tag{I-9}$$

 $Q_{\rm max}$: Débit maximal de la crue, en m³/s, du bassin de surface S, en km².

Figure I.7: courbe enveloppe de Froncou et Rodier pour la région nord de l'Algérie (surface du bassin versant entre 19 et 567 km²)

I.5.3.9- Méthode CRUPEDIX

La méthode CRUPEDIX permet l'estimation du débit instantané décennal à partir de la pluie journalière décennale et de la surface. Sa formulation a été obtenue par une approche statistique multivariable réalisée sur 630 bassins versants dont les surfaces varient entre 1,4 km² et 52000 km² (Benjamin Graff, 2004) :

$$Q_{10\%} = S^{0,8} \left(\frac{P_{j10\%}}{80}\right)^2 c_r \tag{I-10}$$

 c_r : coefficient régional;

 $Q_{10\%}$: le débit décennal de pointe (m3/s); $p_{J10\%}$: la pluie journalière décennale (mm);

S: la surface du bassin (km²).

L'incertitude de la méthode est grande. Galéa et Ramez (1995), indiquent que l'on peut estimer avec une probabilité de 70 % que la vraie valeur du débit décennal est comprise entre la moitié et le double de la valeur estimée. Ainsi, en zone de montagne, la faible représentativité des petits bassins versants torrentiels au sein de l'échantillon induit une incertitude encore plus forte. Pour cette raison, la méthode a été modifiée pour pouvoir s'adapter aux petits bassins versants.

A partir des informations disponibles sur 80 bassins de moins de 90 km² du quart sud-est de la France, deux nouvelles formulations ont été développées suivant que l'on connaît ou non la valeur du module interannuel Q_{ma} (m3/s):

$$Q_{ma}$$
 connu:
$$Q_{10\%} = S^{0.8} \left(\frac{p_{j10\%}}{32}\right)^{1.5} \left(\frac{Q_{ma}}{S}\right)^{0.4} c_{r1}$$
 (I-11)

$$Q_{ma}$$
 inconnu:
$$Q_{10\%} = S^{0.9} \left(\frac{p_{j10\%}}{32}\right)^{0.8} (D_s)^{0.3} c_{r2}$$
 (I-12)

Avec : D_S, le dénivelé spécifique, égale à
$$\left(H_{5\%} - H_{95\%}\right)\sqrt{\frac{l_e}{L_e}}$$
 (m); (I-13)

H_{X%}, l'altitude dépassée par x% de la superficie du bassin versant (m);

le et Le, la largeur et la longueur du rectangle équivalent (m);

 C_{r1} et C_{r2} , coefficients régionaux obtenus à partir des cartes.

I.5.3.10- Méthode SOCOSE

La méthode SOCOSE développée en France par le CEMAGREF qui emploie cette fonction pour estimer la crue décennale sur un petit bassin non jaugé. A l'inverse de la précédente, la méthode SOCOSE permet d'évaluer le débit instantané décennal ainsi que la durée caractéristique de la crue, définie ici comme la durée pendant laquelle le débit est supérieur à la moitié du débit de pointe. Sa formulation a été établie à partir de l'observation de 5000 crues sur 187 bassins versants ruraux de 2 à 200 km². Elle associe un hyétogramme de projet, la fonction de production SCS et un hydrogramme unitaire analytique (Galéa et Ramez, 1995).

La formulation de la méthode SOCOSE est la suivante :

$$Q_{10\%} = \xi \frac{I_p S \rho^2}{(1,25D)^b (15 - 12\rho)}$$
 (I-14)

$$\ln(D) = -0.69 + 0.32 \ln(S) + 2.2 \sqrt{\frac{p_a}{p_{10\%} t_a}}$$
 (I-15)

$$J = 260 + 21.\ln\left(\frac{S}{L}\right) - 54\sqrt{\frac{p_a}{p_{i10\%}}}$$
 (I-16)

$$I_{p} = \frac{24^{b} p_{j10\%}}{21 \left(1 + \frac{\sqrt{S}}{30\sqrt[3]{D}}\right)}$$
 (I-17)

$$\rho = 1 - \frac{0.1J}{I_{p}(1.25D)^{1-b}}$$
 (I-18)

Où

D: la durée caractéristique de la crue (h);

p_a: la pluie moyenne interannuelle (mm) sur un bassin de superficie S (km²);

t_a: la température moyenne interannuelle ramenée au niveau de la mer (°C)

L: la longueur du chemin hydraulique le plus long depuis l'exutoire (km);

b : le paramètre de la loi de Montana liant l'intensité I de la pluie décennale à sa durée t ;

I_p: indice pluviométrique;

J : paramètre intermédiaire (infiltration de la fonction de production S.C.S.) ;

ρ: paramètre intermédiaire compris entre 0.1 et 1.2;

 ξ : coefficient correcteur proche de 1, définie par un abaque en fonction de ρ et b.

I.5.3.11- Formule de Sokolovsky (1968)

$$Q_{p\%} = 0.28 \times f \times \alpha \times S \left(\frac{P_{tc,p\%} - P_0}{t_m} \right)$$
 (I-19)

 $Q_{p\%}$: débit maximal fréquentiel de la crue, en m³/s, du bassin de surface S, en km²;

f : coefficient de forme de l'hydrogramme ;

α : coefficient de ruissellement ;

 $P_{tc,p\%}$: Lame de pluie durant t_c de fréquence $P_\%$;

P₀: lame des pertes initiales ;

 $\gamma\,$: Cæfficient de Sokolovsky, égal au rapport entre le temps de décrue et le temps de montée.

I.5.3.12-Formule de Possenti [10]

$$Q_{\text{max}} = \frac{\lambda . P_{24}}{L} (S_m + \frac{S_p}{3})$$
 (I-20)

 λ : Coefficient caractérisant la longueur du thalweg $700 \le \lambda \le 800$;

 P_{24} : Pluie maximale (mm) d'une durée de 24 heures ;

L: Longueur du thalweg (m);

 S_m : Surface (km^2) de la partie montagneuse;

 S_p : Surface (km^2) de la partie plate.

I.5.3.13- Formule de Turazza [10]

$$Q_{\text{max}} = \frac{\alpha PS}{3.6t_c} \tag{I-21}$$

 α : Coefficient de ruissellement du bassin versant;

P: Hauteur totale maximale (mm) des précipitations pendant une durée égale à t;

S: Superficie du bassin versant (km^2) ;

 t_c : Temps de concentration (heures).

I.5.3.14- La formule Bejaia 2000 [50]

Considérant un hydrogramme de crue transformé par rapport à son ordonnée maximale de sorte que la surface sous la courbe reste la même (fig.I.8).

L'équation de la nouvelle courbe s'écrit

$$q = q_{\text{max}} (1 - \frac{t}{T_h})^m$$
 (I-22)

Après intégration, on obtient la formule du débit spécifique maximal.

$$q_{\text{max}} = 0.28(\text{m}+1)\frac{R}{T_b}$$
 (I-23)

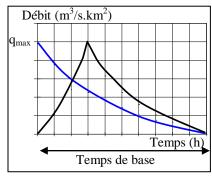


Figure I.8 : Hydrogramme transformé à son maximum

0.28: Coefficient de conversion des unités, quand q_{\max} est exprimé en $m^3/(s.km^2)$, le temps de base de la crue T_b en heures, la lame ruisselée R en mm.

m : Coefficient de forme de la crue.

La formule a été vérifiée par des données hydrométriques du nord de l'Algérie.

I.6-Estimation du temps de concentration

Le temps de concentration est une caractéristique importante dans la formation de la crue pluviale et son débit de pointe. Pour les crues, cette variable caractérise la durée que met la portion constituant le noyau maximum central de la pluie pour se transformer en ruissellement et qui génère le débit maximum de la crue. L'estimation de ce temps de concentration pose de nombreux problèmes. Il se mesure de la fin de la pluie efficace à la fin de l'écoulement superficiel en analysant les événements « averse-crue ». Cependant cette analyse nécessite l'existence de données concomitantes de pluies et de débits, ce qui n'est pas toujours possible (Galéa et Ramez, 1995). Le recours aux formules empiriques est donc inévitable. Elles sont nombreuses dans la littérature et conduisent à des écarts sur l'estimation du temps de concentration pouvant atteindre 500% (Papadakis et Kazan, 1986). Pour les petits bassins versants ruraux, le temps de concentration peut être considéré comme très proche du temps de montée au pic (Chow, 1964).

Le temps de concentration pour un mouvement uniforme, exprimé en *heurs*, est définie par le rapport de la longueur du cours d'eau principal L(km) et la vitesse de concentration $V_c(km/h)$. Il est donné par la relation suivante :

$$t_c = \frac{L}{V_c} \tag{I-24}$$

Nous citons les formules qui nous semblent applicables:

I.6.1- Kirpich (1940) [68]

Cette formule est adaptée aux bassins versants dont la superficie varie entre 0,4ha et 81ha, dont les sols sont argileux et dont la pente moyenne est comprise entre 3% et 10%. Le temps de concentration est alors calculé à partir de la relation suivante :

$$t_c = 32.45 \times 10^{-5} L^{0.77} I^{-0.385}$$
 (I-25)

 t_c : Temps de concentration en h;

L: La longueur du cours d'eau principal exprimé en m;

I : Pente longitudinale moyenne du bassin versant, en suivant l'écoulement de l'eau. Cette pente est calculée entre les points qui se trouvent à 10 % et à 85 % de la distance totale entre le point le plus éloigné de l'exutoire du bassin versant (en termes de temps de parcours de l'eau) et l'exutoire du bassin versant. Exprimée en m/m.

I.6.2- Mockus (1957) [68]

Cette méthode est adaptée aux bassins versants de superficie variant entre 4ha et 1000 et qui sont caractérisés par une pente longitudinale moyenne inférieure à 1% et par des sols limoneux ou argileux.

$$t_c = \frac{L^{0.8} \left[\frac{1000}{n} - 9 \right]^{1.67}}{2083(100I)^{0.5}}$$
 (I-26)

 t_c : Temps de concentration en h;

L : La longueur du cours d'eau principal exprimé en m;

I : Pente du cours d'eau principal en m/m.

n: Cœfficient représentant l'effet des conditions de surface du bassin versant sur le ruissellement. Il prend en compte l'ensemble des caractéristiques physiques et l'utilisation du sol de l'ensemble du bassin versant.

I.6.3- Befani (1989) [5]

Le temps de concentration pour les petits bassins versants est exprimé par:

$$t_c = \left(\frac{L}{0.75S^{0.2}I^{0.33}}\right) \tag{I-27}$$

Où:

L : La longueur du cours d'eau principal exprimé en m;

S: La superficie du bassin versants, en km^2 ;

I: La pente moyenne du talweg principal, en $\%_0$.

I.6.4- Formule de Sorgreah (1986) [46]

Une formule a été développée par Sorgreah sur la demande de L'ANRH, elle est vérifiée et recommandée pour les petits bassins versants de l'Algérie, s'écrit:

$$t_c = 3 \left(\frac{S.L}{(10.I)^{\frac{3}{2}}} \right)^{\frac{1}{4}}$$
 (I-28)

Où:

 t_c : Temps de concentration en heure.

L: La longueur du cours d'eau principal exprimé en km;

S: La superficie du bassin versants, en km^2 ;

I: La pente moyenne du talweg principal, en %.

I.6.5- Formule de Giandotti [46]

Développée en Italie, elle est exprimée comme suit:

$$t_c = \frac{4\sqrt{S}}{0.8\sqrt{H_{moy} - H_{\min}}} + \frac{1.5L}{0.8\sqrt{H_{moy} - H_{\min}}}$$
 (I-29)

Où:

 H_{moy} : Altitude moyenne, en m;

 H_{\min} : Altitude minimale, en m;

L: La longueur du cours d'eau principal exprimé en m;

S: La superficie du bassin versants, en km^2 .

I.6.6- Formule d'Ivanenko [46]

La formule d'Ivanenko est développée pour estimer la vitesse de propagation des débits maxima des crues pluviales dans les conditions montagneuses des Karpats en Ukraine:

$$t_c = \frac{L}{a S^{1/3} I^{1/2}} \tag{I-30}$$

Où:

a = f(S): Coefficient qui dépend de la superficie du basin versant;

S: Superficie du bassin versant, en km^2 ;

$$I = \frac{H \max - H \min}{L}$$
 %: pente brute.

I.6.7- Formule de Goptchenko (1989) [37]

La formule de Goptchenko est développée pour la région steppique de l'Ukraine:

$$t_c = \frac{L}{(1.19S^{0.14}I^{0.33})} \tag{I-31}$$

L: La longueur du cours d'eau principal exprimé en km;

S: La superficie du bassin versant, en km^2 ;

I : La pente moyenne du talweg principal, en ‰.

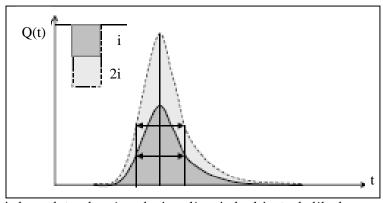
I.7- Détermination des hydrogrammes de crues probables

Pour tenir compte de l'accumulation des eaux dans un barrage par exemple et pour déterminer le degré de laminage du débit maximum lors du passage de la crue à travers le barrage, il est nécessaire de connaître, non seulement le débit de pointe, mais aussi l'hydrogramme du flux dans le barrage. Les principaux éléments de l'hydrogramme sont : son volume, le débit maximum et la durée de la crue. Il existe plusieurs méthodes de projection des hydrogrammes des crues:

- Crues types observées;
- Schématisation géométrique;
- Equations analytiques;
- En tenant compte de la dynamique de la pluie et la répartition des surfaces versantes.

A titre d'exemple, on cite les méthodes les plus utilisées dans la pratique hydrologique:

I.7.1- Hydrogramme unitaire


L'hydrogramme unitaire pour un bassin versant est défini comme l'hydrogramme de débit résultant d'une unité de volume d'écoulement direct répartie uniformément sur le bassin versant à une vitesse uniforme et pendant un intervalle spécifié (Mohamed salafi, 1999).

La mise au point de la méthode de l'hydrogramme unitaire est attribuée à Sherman 1932, son utilisation permet d'obtenir des hydrogrammes engendrés par n'importe quelle pluie.

Les principales hypothèses de cette approche, citées par Llamas (1993), sont les suivants :

- -L'univocité entre les précipitations et le débit pour des averses ayant les mêmes caractéristiques d'intensité et de durée ;
- -La linéarité entre les averses unitaires de différentes intensités et les débits correspondants.
- -La répartition spatio-temporelle de la pluie efficace est la même pour toutes les pluies de durées identiques.
- -L'invariance dans le temps, en effet pour deux pluies identiques en hauteur et en durée mais décaler dans le temps, les formes des hydrogrammes unitaires sont les mêmes.

Selon ce concept, les temps de base sont égaux pour toutes les crues dues à des pluies de même durée, et deux crues généré par deux pluies de même durée sont alors proportionnelles (figure I.9). Par conséquent, l'hydrogramme de crue correspondant a une pluie d'une durée donnée est calculer par la convolution de l'hydrogramme unitaire.

Figue I.9 : Réponses à deux pluies de même durées, d'après la théorie de l'hydrogramme unitaire

Llamas a souligné que les hypothèses précédentes sont très restrictives et peuvent rarement être satisfaites dans la réalité. En effet les deux premières sont en particulier inapplicables pour des petits bassins ou certains paramètres comme les conditions antérieures d'humidité du sol, l'état de la couverture végétale, l'utilisation du territoire, etc., contribuent à développer des relations conditionnelles et non linéaires entre les précipitations et les débits générés. Quant aux deux dernières hypothèses, elles peuvent être acceptables pour de petits bassins : il est évident que lorsque les dimensions de ceux-ci augmentent, l'uniformité spatiale des averses devient de moins en moins probable.

L'hydrogramme unitaire peut être considéré comme une simplification très poussée de l'équation générale du ruissellement ; ceci n'enlève rien à son intérêt pratique mais laisse entrevoir que son champ d'application sera limité. Ce champ dépendra surtout de la superficie du bassin, mais aussi de ses caractéristiques morphologiques et surtout climatologiques (Marcel Roche M, 1973).

I.7.2- Méthode des isochrones

Cette méthode et développée par Larrieue, elle est une expression d'un des premiers concepts de l'écoulement depuis un bassin (OMM, 1994). L'écoulement provenant de différentes parties d'un bassin rejoint un point donné du cours d'eau à des moments différents. Les premières gouttes qui quittent le bassin lors de la montée de l'eau dans un cours d'eau proviennent habituellement des parties du bassin les plus rapprochées de l'exutoire. Plus tard, l'eau provient de plus grandes étendues dans la partie centrale du bassin, et finalement l'eau arrive des parties les plus éloignées de l'exutoire. Le bassin peut ainsi être divisé en zones dont les eaux de ruissellement se présentent successivement au point de mesure choisie sur le cours d'eau. Les lignes qui séparent ces zones sont dites isochrones (figureI.10 a). La répartition des surfaces isochrones sur un bassin donné est supposée la même pour tous les hydrogrammes de crues. Pour calculer cette répartition, on doit calculer ou supposer un temps de parcours moyen ou une vitesse moyenne de l'écoulement. Les isochrones sont tracées sur une carte du bassin en fonction de la vitesse moyenne de l'écoulement dans le cours d'eau ou du temps de parcours moyen. On détermine ensuite au planimètre la superficie de chaque zone, et les valeurs sont portées sur un graphique en regard du retard correspondant (figureI.10 b). La distribution des surfaces isochrones est représentative de l'hydrogramme correspondant à une pluie uniforme de durée unitaire (la différence de temps entre deux isochrones). S'il y a plusieurs périodes de pluie, chacune donnant des volumes d'écoulement différents sur les différentes zones. La représentation d'un l'hydrogramme résultant pour trois intervalles d'écoulement uniforme sur un bassin est illustré à la (figureI.10 c).

La méthode des isochrones permet de tenir compte de répartitions non uniformes des précipitations lorsqu'il y a dans le bassin un nombre suffisant de pluviomètres pour déterminer de manière fiable la configuration des chutes de pluie. Elle constitue une amélioration par rapport à l'hydrogramme unitaire (Roche M, 1973)

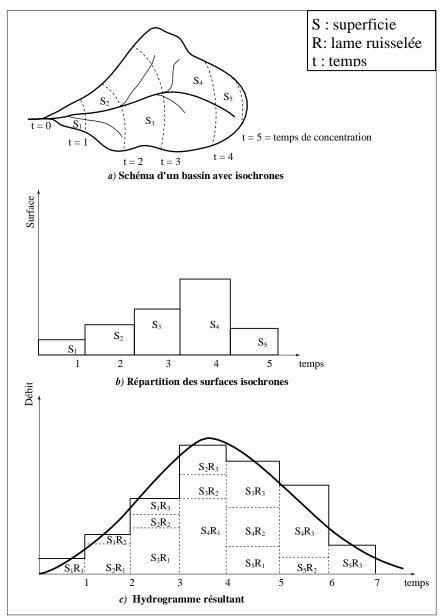


Figure I.10: Méthode des isochrones

I.7.3- Méthode du modèle de crue observée

Pour la méthode du modèle de crue observée les coordonnées de l'hydrogramme de projet sont calculées par la multiplication des ordonnées courantes de l'hydrogramme observé, considéré comme modèle, par le coefficient de proportionnalité suivant:

$$k = \frac{Q_{P\%}}{Q_{\text{max mod}}} \tag{I-32}$$

Où:

 $Q_{P\%}$: Débit de pointe de fréquence P% de l'hydrogramme de projet;

 $Q_{\mathrm{max,mod}}$: Débit maximum de l'hydrogramme modèle (observé).

On considère que le temps de base de la crue de projet est égal à celui de la crue observée.

I.7.4- Méthode de Kotcherine (1927) [44]

Kotcherine a proposé la schématisation de l'hydrogramme sous forme d'un triangle linéaire. Le débit courant de la phase montée est exprimé par l'expression suivante:

$$Q(t) = Q_{\text{max}} \left(\frac{t}{t_m} \right) \tag{I-33}$$

Et le débit courant de la phase décrue est exprimé par l'expression suivante :

$$Q(t) = Q_{\text{max}} \left(\frac{t_d - t}{t_d} \right)$$
 (I-34)

Où:

Q(t): Débit courant m^3/s ;

 $Q_{\rm max}$: Ordonnée maximale de l'hydrogramme;

t: Temps courant heures;

 t_m : Temps de montée heures;

 t_d : Temps de décrue heures.

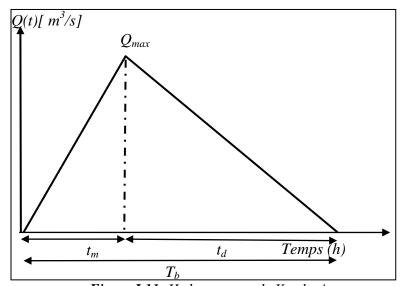


Figure I.11: Hydrogramme de Kotcherine

I.7.5- Méthode de Sokolovsky (1968) [74]

La méthode est fondée sur un grand nombre des observations hydrométriques et sur les caractéristiques des crues pluviales, sur des cours d'eau de différentes longueurs. Pour l'élaboration de la structure de la formule de calcul, on considère:

- La formule doit tenir compte, pour une précision acceptable (pratique), seulement les facteurs fondamentaux, faciles à déterminés par les données ordinaires;
- Il convient de tenir compte de la fréquence de calcul des débits maxima en fonction de la fréquence des pluies et celle de la saturation du bassin avant la formation de la crue;
- Elle doit tenir compte non seulement de la phase maximale, mais aussi de toutes les autres caractéristiques de la crue: le volume, la forme de l'hydrogramme et le temps de base;
- Les pertes sont exprimées à travers le coefficient de l'écoulement, dont la valeur est fixée par les données d'observations ordinaires;
- L'hydrogramme de la crue est généralement caractérisé par la forme d'un triangle parabolique avec un seul pic, un temps de montée comparativement court par rapport au temps de décrue.

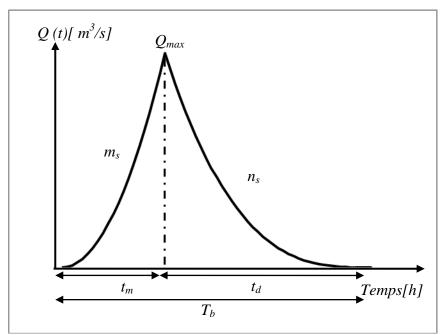


Figure I.12: Hydrogramme de Sokolovsky

La branche de la phase montée est exprimée par l'expression suivante:

$$Q(t) = Q_{\text{max}} \left(\frac{t}{t_m}\right)^{m_s} \tag{I-35}$$

Et la branche de la phase décrue est exprimée par l'expression suivante :

$$Q(t) = Q_{\text{max}} \left(\frac{t_d - t}{t_d}\right)^{n_s} \tag{I-36}$$

Où:

Q(t): Débit courant en m^3 / s ;

 Q_{max} : Ordonnée maximale de l'hydrogramme;

t: Temps courant en heure;

 t_d : Temps de décrue en *heure*;

t_m: Temps de montée en heure :

 $t_d = \gamma t_m$;

 γ : cœfficient de Sokolovsy;

 m_s et n_s exposants des paraboles.

L'exposant m_s exprime la vitesse de croissement du débit courant durant la phase de la montée et n_s exprime la vitesse de décroissement du débit courant durant la phase de décrue. L'auteur de cette méthode recommande, pour les petits bassins versants, les puissances $m_s = 2$ et $n_s = 3$.

I.7.6 - Méthode de Cemagref

Dans l'ouvrage « Petits Barrages », édité par Cemagref en 2002, on recommande de projeter l'hydrogramme de projet par la formule suivante [13]:

$$Q_{t} = \frac{2 Q_{p} \left(\frac{t}{D}\right)^{\beta}}{1 + \left(\frac{t}{D}\right)^{2\beta}}$$
 (I-37)

Avec:

 Q_t : Débit courant à l'instant t;

 Q_p : Débit de pointe ;

 β : Puissance dont la valeur permet de respecter la valeur du débit de pointe Q_p et le volume écoulé en 24 heures de fréquence donnée;

D: Temps caractéristique du bassin versant ; c'est la durée pendant laquelle le débit est supérieur à la moitié du débit de pointe Q_p . Si l'on ne dispose pas de données de débit sur le site, la formule régionalisée suivante peut être utilisée :

$$\ln D = -0.69 + \ln S + 2.2 \sqrt{\frac{P_a}{P_{j,10\%} t_a}}$$
 (I-38)

Où:

S: Superficie du bassin versant en km^2 ;

 P_a : Pluie annuelle moyenne en mm;

 $P_{i,10\%}$: Pluie journalière de fréquence décennale en mm;

 $t_{\scriptscriptstyle a}$: Température annuelle moyenne en $^{\circ}C$.

Conclusion

L'étude bibliographique qui a fait l'objet d'une synthèse de quelques travaux concernant les crues nous a permis de passer en revue ces travaux à partir des processus responsables de la genèse des crues jusqu'aux caractéristiques des hydrogrammes résultants et les méthode de leur projection.

Depuis Sherman (1932) qui, le premier, a formulé la théorie de l'hydrogramme unitaire, de nombreux auteurs se sont penchés et ont fait part de leur expérience et recherches sur les liaisons entre les différents éléments d'hydrogramme et les méthodes d'évaluation de leur grandeurs. Juste après, Larieu a proposé des hydrogrammes basés sur la méthode dite « des isochrone », elle est une expression d'un des premiers concepts de l'écoulement depuis un bassin. Cette méthode permet de tenir compte de répartitions non uniformes des précipitations lorsqu'il y a dans le bassin un nombre suffisant de pluviomètres pour déterminer de manière fiable la configuration des chutes de pluie. Elle constitue une amélioration par rapport à l'hydrogramme unitaire.

Le dimensionnement hydraulique des ouvrages hydrotechniques est fondé sur une estimation quantitative des principales caractéristiques du régime hydrologique. Parmi ces caractéristiques, on cite le débit maximum de la crue pluviale. Son estimation est fondée sur différents concepts et modèles. La toute première est la formule rationnelle, qui est basée sur la proportionnalité entre le débit maximum et l'intensité moyenne maximale de la pluie. Son application a connu différentes approches et interprétations. La réduction du débit spécifique par la surface du bassin a fait l'objet d'un ensemble de formules traduisant la transformation du module de ruissellement en débit spécifique. Ces formules ont un caractère régional et leur application dans la pratique doit tenir compte de l'influence des facteurs locaux. Par manque d'informations ponctuelles, une importante classe de formule d'estimation des débits maxima des crues pluviales est réalisée sur un concept géométrique de l'hydrogramme. Les caractéristiques fondamentales de l'hydrogramme sont le débit maximum, le volume de la crue et le temps de base qui est égal à la somme de temps de montée et de temps de décrue. Ce type de formule cherche à trouver une relation analytique entre le débit maximum et les deux autres caractéristiques de l'hydrogramme. Après quelques transformations ces formules deviennent analogues à celles fondées sur l'intensité moyenne maximale de l'averse de courte durée. Les formules de Sokolovsky et Bejaia'2000, par exemple, appartiennent à ce concept.

Plusieurs formes d'hydrogramme en étés proposés, Kotchérine par exemple a proposé la schématisation triangulaire linéaire. Pour Sokolovsky, l'hydrogramme de la crue a la forme d'un triangle parabolique ; il est idéalisé sous la forme d'intersection de deux branches: la branche de montée et la branche de décrue, exprimées par des monômes puissances. L'exposant de la branche de montée exprime la vitesse de croissement du débit courant durant cette phase et l'exposant de la branche de décrue exprime la vitesse de décroissement du débit courant durant cette phase. L'auteur recommande, pour les petits bassins versants, de prendre les valeurs de ces exposants égales à 2 pour la branche montée et à 3 pour la branche décrue.

CHAPITRE II

CARACTÉRISTIQUES DU BASSIN VERSANT DE LA SOUMMAM

CHAPITRE II

CARACTÉRISTIQUES DU BASSIN VERSANT DE LA SOUMMAM

Introduction

En Algérie, pays à dominance semi-aride et où l'eau est au coeur des préoccupations de la société et des pouvoirs publics, la notion de bassin versant rentre de plus en plus dans le langage courant des ingénieurs et des décideurs.

Le bassin est défini comme une entité topographique et hydrographique dans laquelle se produisent des entrées d'eau (sous forme de précipitations essentiellement, sans oublier les apports souterrains issus d'autres bassins) et où l'écoulement (et le transport de matériaux mobilisés par l'érosion) s'effectue suivant un système de pentes et de drains naturels en direction de l'exutoire ou embouchure du cours d'eau collecteur.

Cette unité de drainage est essentielle en hydrologie « pas seulement parce qu'elle permet le calcul de bilans mais aussi parce qu'elle représente une unité fonctionnelle, qui rend compte d'une dépendance rigoureuse de l'amont à l'aval... Ce n'est qu'à l'échelle du bassin versant, en prenant en compte toutes ses composantes, qu'il est possible d'aborder l'étude des fonctionnements hydrologiques, les relation pluies-débit, la formation des crues, la sévérité des étiages... ». (Cosandey C. et Robinson M, 2000)

La formation des crues ne dépend pas seulement des précipitations et de leur variabilité mais aussi du support drainant, il est donc nécessaire de prendre connaissance en premier lieu des caractéristiques du bassin versant qui reçoit ces précipitations. De ce fait, ce chapitre est consacré pour en donner un aperçu géographique, morphologique, hydrographique, géologique et climatique.

II.1- Description du bassin versant de la Soummam

Le bassin versant de la Soummam est l'un des 17 grands bassin hydrologique de l'Algérie dont le numéro est 15 dans le répertoire de l'Agence Nationale des Ressources Hydriques (figureII.1), situé au Nord-Est du pays entre 3,60° et 5,55° de longitude et entre 35,75° et 36,75° de latitude. Il a une forme très irrégulière, s'étendant sur une surface de 9125 km², du contrefort des monts Hodna au sud à la mer méditerrané, le massif de Djurdjura et les chaînes côtières de Béjaia (monts de Taourirt Ighil et de Toudja) au Nord. A l'Ouest la limite du bassin est occupée par le plateau de Buira alors qu'à l'Est est fermé par les chaînes des Babors et le plateau de Sétif pour former ainsi une cuvette se jetant dans le golf de Béjaia. Ce bassin présente donc des caractères physiques nettement contrastés : en quelques dizaines de km à vol d'oiseau, on passe d'un secteur relativement plat et dénudé à un secteur montagneux portant de belles forêts verdâtres, d'un domaine semi-aride à un domaine humide méditerranéen.

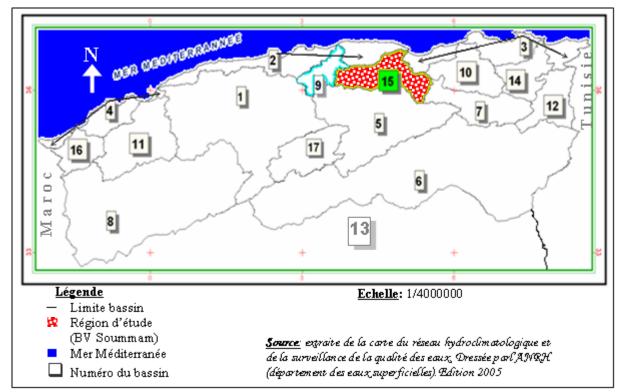


Figure I I.01: les bassins hydrologiques de l'Algérie

Tableau II.01: les bassins hydrologiques algériens

N ⁰ du bassin	Nom du bassin	N ⁰ du bassin	Nom du bassin
01	Cheliff	10	Kebir Rhumel
02	Côtiers algérois	11	Macta
03	Côtiers constantinois	12	Medjerdah
04	Côtiers oranais	13	Sahara
05	Chott Hodna	14	Seybouse
06	Chott melghir	15	Soummam
07	H. plaines constantinoises	16	Tafna
08	H. plaines oranaises	17	Zahrez
09	Isser		

II.2- Morphologie et Orographie

Le milieu physique dans lequel évolue le cycle hydrologique varie d'un bassin à un autre en fonction d'un certain nombre de paramètres physiques, morphologiques et géométriques qui interviennent, et souvent de façon combinée, dans les modalités l'écoulement fluvial. L'analyse et la mesure de ces paramètres permettent une meilleure compréhension des causes de variation des régimes hydrauliques d'un bassin.

II.2.1- Paramètres morphométriques

Les différents paramètres morphométriques d'un bassin versant (forme, altitude, pente, relief, etc.) jouent un rôle essentiel dans son comportement hydrologique. Ils ont l'avantage de se

prêter à une analyse quantifiée qu'il convient de préciser autant que possible, dés le début de toute étude.

La forme du bassin joue un rôle important sur l'allure de l'hydrogramme de crue résultant d'une averse donnée à l'exutoire du bassin. Un bassin très allongé ne réagira pas de la même manière qu'un bassin de la forme très ramassée (Roche, 1963), plus sa forme est allongée et tourmentée, plus les pointes de crue seront petites et indifférentes à la dimension du bassin. Les bassins en forme d'éventail ont les plus forts points de la crue.

La forme des bassins versants qui peut être traduit par ce qu'on appelle « l'indice de compacité de Gravelus » a également une influence certaine sur l'écoulement.

Les différentes grandeurs déterminantes la forme d'un bassin versant sont les suivantes :

a- L'indice de compacité de Gravelus

Il est établi en comparant le périmètre stylise du bassin considère à celui d'un cercle ayant la même surface. L'indice de forme K_G est égal à l'unité pour un bassin circulaire, et croit d'autant plus que la compacité diminue.

$$K_G = \frac{P}{2\sqrt{\pi . S}} = 0.28 \frac{P}{\sqrt{S}}$$
 (II-1)

Où, P : périmètre du bassin en km et S : superficie du bassin en km².

On obtient $K_G = 1.9$, cela signifie que le bassin de la Soummam est allongé.

b- Dimensions du rectangle équivalent

La notion du rectangle équivalent a été introduite par Roche. Elle permet de ramener la forme quelconque d'un bassin versant à une forme rectangulaire ayant la même superficie, le même périmètre, la même hypsométrie et le même indice de compacité. Cette notion permet aussi la comparaison des bassins entre eux du point de vue de l'influence de leurs caractéristiques géométriques sur l'écoulement.

Ses dimensions sont données comme suit:

$$K_G = 0.28 \frac{p}{\sqrt{S}} \tag{II-2}$$

$$S = L_e.l_e \tag{II-3}$$

$$2(L_e + l_e) = P = \frac{1}{0.28} K_G . \sqrt{S}$$
 (II-4)

 $Avec,\ L: longueur\ du\ rectangle\ \acute{e}quivalent\ ;\ I: largueur\ du\ rectangle\ \acute{e}quivalent\ ;\ P: p\acute{e}rim\`{e}tre\ du\ bassin\ versant\ ;\ S: superficie\ du\ bassin\ versant\ et\ K_G: indice\ de\ compacit\'e.$

La résolution de ce système d'équation nous donne :

$$L_{e} = \left[1 + \sqrt{1 - \left(\frac{1,128}{K_{G}}\right)^{2}}\right] \frac{K_{G}\sqrt{S}}{1,128} \quad \text{et} \quad l_{e} = \left[1 - \sqrt{1 - \left(\frac{1,128}{K_{G}}\right)^{2}}\right] \frac{K_{G}\sqrt{S}}{1,128} \quad (\text{II-5})$$

Avec : $K_G \ge 1.128$

Les dimensions du rectangle équivalent sont incérées dans le tableau II.4.

II.2.2- Les sous bassins versants de la Soummam

Le bassin versant de la Soummam se compose de dix sous bassins correspondant aux unités hydrologiques (figure II.2), certaines sont contrôlées par des stations hydrométriques.

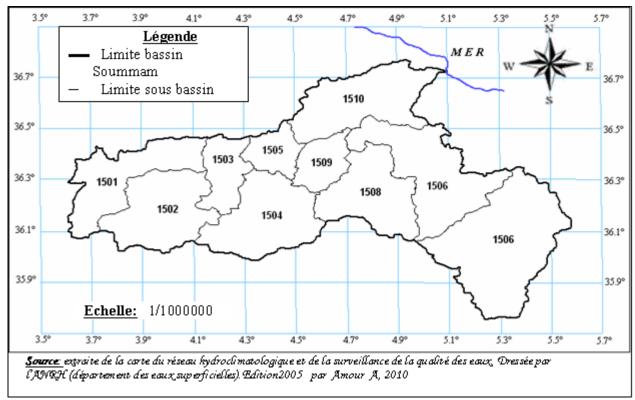
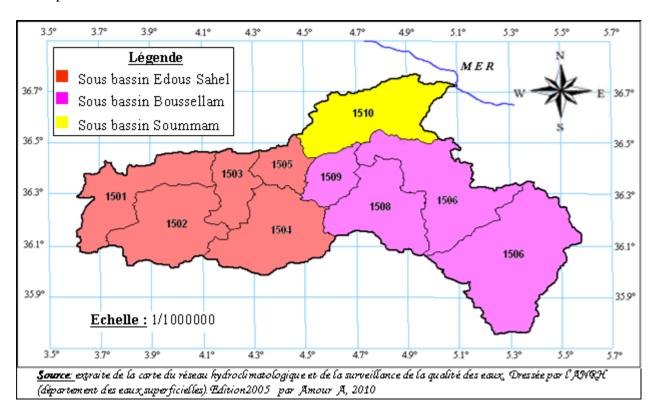


Figure II.2: les sous bassins de la Soummam

Tableau II.2: Superficie des sous bassins versants de la Soummam [01]


Sous bassin versant	Code	Superficie (km ²)
Oued Eddous	1501	903
Oued Zaiane	1502	1012
Oued Sahel amont	1503	430
Oued Azerou	1504	1084
Oued Sahel Aval	1505	326
Oued Bousselam Amont	1506	1785
Oued Bousselam Moyen	1507	1234
Oued El Ham	1508	930
Oued Bousselam Aval	1509	360
Oued Soummam	1510	1061

II.2.3- Les grands sous bassins versants de la Soummam

En fait, trois sous bassins versant fondamentaux sont à distinguer (figureII.3)

- Le bassin versant de l'oued Bousselam d'une superficie de $4309 \, km^2$, intégrant son affluent, l'oued El Ham, d'une superficie de $930 \, km^2$;
- Le bassin versant du Sahel d'une superficie totale de $3755 \, km^2$. en fait le oued Sahel ne prend ce nom qu'à la confluence de oued Eddous et oued Zaiane et il possède un affluent important, l'oued Azerou, d'une superficie de $1084 \, km^2$;
- Le bassin versant aval de la Soummam d'une superficie de $1061\,km^2$, formé d'affluents de petites tailles au régime torrentiel.

Ainsi ces trois sous bassins versants représentent, respectivement : 47.3 ; 41.1 et 11.6 % de la superficie totale du bassin versant de la Soummam.

FigurII.3: Les grands sous bassins versants de la Soummam

II.2.4- Reliefs

Le relief joue un rôle important sur le comportement hydrologique d'un bassin, il détermine en grande partie l'aptitude des terrains au ruissellement, l'infiltration et la vaporisation.

Le relief de la Soummam présente une forme assez irrégulière ; au Nord, le bassin est limité par les chaînes de Djurdjura, au Sud par les montagnes de Bibans et des Djebels Mansourah, à l'Est par les montagnes de la petite Kabylie. En allant de Bouira vers Akbou, l'orographie du bassin est très prononcée, l'altitude n'est en aucun endroit inférieur à $1500\,m$. C'est dans cette région, près de Maillot qu'est situé le point culminant (Lalla Khedidja) de la Soummam (2308 m). L'altitude diminue graduellement en avançant d'Akbou vers la mer.

Les montagnes de la petite Kabylie sont également prononcées de point de vue altitude, leur plus haut sommet atteint 2004 m au Djebel Babor. De même les chaînes montagneuses du sud ne restent pas orthographiquement en arrière par rapport aux massifs cités précédemment, les pics sont atteints aux Bibans 1832 m et Djebel Mansourah 1836 m [15].

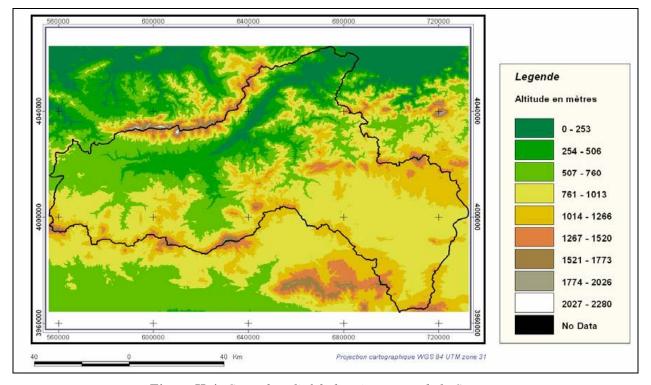


Figure II.4: Carte du relief du bassin versant de la Soummam

II.2.4.1- La courbe hypsométrique

La courbe hypsométrique fournit une vue synthétique de la pente du bassin, donc du relief. Cette courbe représente la répartition de la surface du bassin versant en fonction de son altitude. Elle exprime ainsi la superficie du bassin ou le pourcentage de superficie, au-delà d'une certaine altitude. Dans un contexte d'évolution géomorphologique selon le modèle de Davis, cette courbe permet de se renseigner sur le niveau de maturité d'un cours d'eau.

Les courbes hypsométriques demeurent un outil pratique pour comparer plusieurs bassins entre eux ou les diverses sections d'un seul bassin. Elles peuvent en outre servir à la détermination de la pluie moyenne sur un bassin versant et donnent des indications quant au comportement hydrologique et hydraulique du bassin et de son système de drainage. La courbe hypsométrique est obtenue par le cumul de l'histogramme des altitudes et elle permet de calculer l'altitude moyenne, l'altitude la plus fréquente et l'indice de pente globale du bassin.

1100

1300

1500

1700

1900

2100

2300

Classe des Surface Surfaces Altitude altitudes élémentaire cumulées (%) moyenne 2-200 379 100,00 100 200-400 724 95,85 300 400-600 1425 87,91 500 600-800 72,30 1825 700 800-1000 3119 52,30 900

18,12

6,01

3,00

1,10

0,55

0,55

0,55

1105

274

174

50

0

0

50

1000-1200

1200-1400

1400-1600

1600-1800

1800-2000

2000-2200

2200-2400

Tableau II.3: tableau définissant l'hypsométrie du bassin de la Soummam [24]

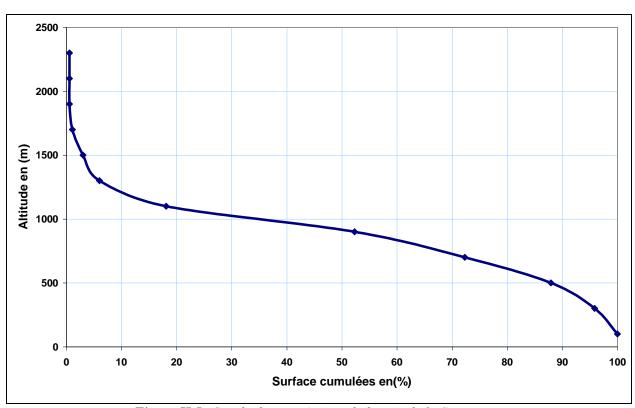


Figure II.5: Courbe hypsométrique du bassin de la Soummam

Les caractéristiques pouvant été tirés de la courbe hypsométrique sont consignés dans le tableau suivant.

9125 km² Aire 655 km Périmètre Indice de compacité (Gravelius, 1914) 1,9 Altitude maximale 2308 2 m Altitude minimale Altitude moyenne 776 m Altitude médiane 900 m Indice de pente global $(H_{5\%} - H_{95\%})/L_e$ 0,34 % Largeur du rectangle équivalent (l_e) 31 km Longueur du rectangle équivalent (L_e) 290 km

Tableau II.4: Caractéristiques morphométrique du bassin de la Soummam

Pour l'indice de pente globale, il s'agit d'une valeur faible qui ne favoriserait pas le ruissellement. En fait cet indice « lisse » les disparités locales, les pentes des versants peuvent accéder 25%.

II.3 - Réseau hydrographique

II.3.1- Les principaux collecteurs

L'oued Boussellam à l'Est, constitue avec l'oued Sahel à l'Ouest, l'un des deux principaux affluents de la Soummam ; il draine 54,9 % de la superficie totale du bassin à la mer.

L'oued Boussellam qui prend sa source au djebel Meghris, au Nord de Sétif, coule d'abord Nord-Sud puis vire-t-il brusquement vers le Nord-Ouest. Il s'échappe des Hautes Plaines par les gorges creusées dans les calcaires du Guergour, dans la région de Bougaa. Plus au Nord, il décrit une grande courbure et joint à lui un important affluent, Oued ElMain, venant du Sud. Après sa confluence à la région d'Akbou avec l'oued Sahel qui draine les eaux de Oued Azrou, Oud Ziane et Oued Eddous, il se débouche sur l'Oued Soummam le principal collecteur qui se débouche à son tour sur mer (profil en long, figureII.6).

Ce tracé hydrographique avait attiré l'attention de Gautier E F. (1910) qui y voyait dans le cours en crochet, replié sur lui-même, comme l'indice d'un phénomène de capture. Selon cet auteur, à un moment donné du passé, le Boussellam prenait le chemin du Hodna pour aboutir dans un bassin fermé jusqu'au moment où il fut capturé par l'érosion de tête d'un torrent tellien (Mebarki, 2004).

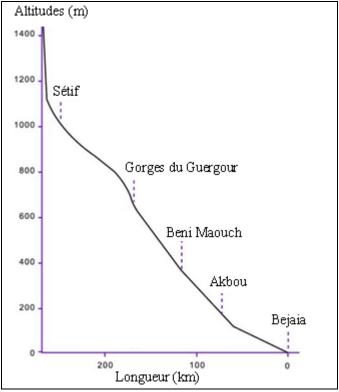


Figure II.6: Profil en long de l'oued Boussellam-Soummam (D'après Gautier E F., 1910)

II.3.2- Caractéristiques du réseau de drainage

La carte ci-après montre que le réseau de drainage est bien développé. Ce réseau peut être décomposé en thalwegs d'ordre:

- 1 : Tout cours d'eau élémentaire n'ayant pas encore reçu d'affluent ;
- 2 : Formé par deux cours d'eau d'ordre un ;
- 3 : Formé par deux cours d'eau d'ordre deux, etc. (Selon Horton et Schumm).

Le tableau suivant fournit le linéaire cumulé d'oueds d'un ordre donné ainsi que le total:

Tableau II.5 : la longueur des cours d'eaux de même ordre selon le classement de Horton et Schumm [24]

Order des cours d'eau	1	2	3	4	5	6	Total
Longueur en (km)	3432	1155	568	239	199	102	5695

Il apparaît que le cours d'eau final de la Soummam est d'ordre six. Deux indicateurs peuvent être calculés par rapport à ces longueurs élémentaires:

- Densité de drainage;
- Densité hydrographique;
- Coefficient de torrentialité.

II.3.2.1- La densité de drainage

Le drainage du bassin est habituellement caractérisé par la densité de drainage, définie comme le rapport entre la longueur cumulée des drains du bassin et sa superficie.

$$D_d = \frac{\sum L_i}{S} \tag{II-6}$$

Avec:

 D_d : densité de drainage [km/km²]; L_i : longueur de cours d'eau [km];

S: surface du bassin versant [km²].

On obtint $D_d = 0.624 \text{ km/km}^2$.

La densité de drainage dépend de la géologie (structure et lithologie) des caractéristiques topographiques du bassin versant et, dans une certaine mesure, des conditions climatologiques et anthropiques. Plus sa valeur est élevé plus elle traduit l'existence de terrains impériales favorisant le ruissellement. En pratique, les valeurs de densité de drainage varient de 3 à 4 pour des régions où l'écoulement n'a atteint qu'un développement très limité et se trouve centralisé ; elles dépassent 1000 pour certaines zones où l'écoulement est très ramifié avec peu d'infiltration. Selon Schumm, la valeur inverse de la densité de drainage, $C=1/D_d$, s'appelle « constante de stabilité du cours d'eau ». Physiquement, elle représente la surface du bassin nécessaire pour maintenir des conditions hydrologiques stables dans un vecteur hydrographique unitaire (section du réseau).

II.3.2.2- La densité hydrographique

La densité hydrographique appelée aussi la fréquence de drainage, est définie comme le nombre de drains du bassin par unité de surface.

$$D_h = \frac{\sum N_i}{S} \tag{II-7}$$

Où, D_h : densité hydrographique [km⁻²]; N_i : nombre de cours d'eau; S: superficie du bassin [km²].

II.3.2.3- Coefficient de torrentialité

Le coefficient de torrentialité est obtenu à l'aide de la relation suivante:

$$C_t = \frac{N_1}{S} \cdot D_d \tag{II-8}$$

C_t : coefficient de torrentialité ; N₁ : nombre de talwegs d'ordre 1; S : superficie du bassin en Km² D_d : densité de drainage en km/km²

On obtint $C_t = 0.235$.

Ce coefficient traduit l'importance des thalwegs d'ordre 1, ravineaux et ravines liées à un fort ruissellement.

Le tableau suivant récapitule les valeurs de différentes caractéristiques du réseau hydrographiques du bassin de la Soummam.

Paramètres	Valeurs
Classification du chevelu hydrographique	Ordre 6
Densité de drainage	0,624 km / km ²
Densité hydrographique	0,20 km ⁻²
Coefficient de Torrentialité	0.235

Tableau II.6: Paramètres hydrographiques du bassin de la Soummam

En fait, ces coefficients ne traduisent que des tendances moyennes supposant un bassin versant homogène, ce qui n'est pas le cas.

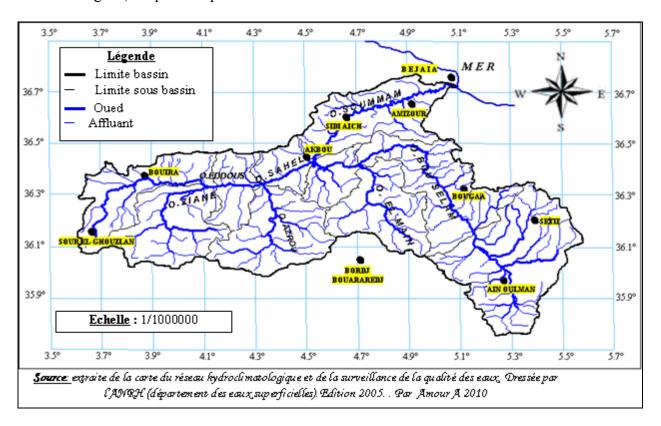


Figure II.7 : Le réseau hydrographique du bassin versant de la Soummam

II.4- Caractéristiques agro-pédo-géologiques

II.4.1- La Géologie

La carte géologique de l'Algérie (1951) dont on a extrait la partie concerné par notre étude montre la complexité géologique des terrains formant le bassin versant de la Soummam, montre que ces terrains sont d'origine sédimentaire (Oligocène, Crétacé,...): calcaires, marnes, grès, dolomies..., et souvent plutôt imperméables ce qui, couplé à de fortes pentes, favorise le ruissellement.

La figure II.7 représente les différentes formations géologiques de la région de la Soummam dont on rencontre:

- Le Quaternaire : représenté par des alluvions le long des oueds et au niveau des hautes plaines.
- Le Pliocène Continental : le coteau du Sahel est couronné par des graviers siliceux et fluviaux. Ailleurs, il est conglomératique sinon caillouteux.
- Le Miocène; il s'agit essentiellement du Miocène inférieur. Il est continu depuis l'ouest de Bejaia jusqu'aux environs de Sidi-Aich. Il affleure également du coté de Dj. Mansourah sous forme de grés.
- L'Oligocène : il est généralement argilo-gréseux. Il affleure en abondance à partir de Tazmalt et de part et d'autre de la vallée de la Soummam, en allant vers l'ouest. On note également sa présence au niveau de la chaîne de Gouraya et de la région de Béni-Mansour.
- L'Eocène : il est quasiment marneux, parfois calcaro-marneux. Il affleure surtout au niveau des hautes plaines.
- Le Crétacé: se présente, en général, sous forma de flyschs. Il est étendu, continu depuis la chaîne des Bibans jusqu'aux montagnes de la petite Kabylie. Le faciès est marneux au Crétacé supérieur (Sénonien). Il est schisteux, sous forme de bancs de plusieurs centaines de mètres d'épaisseur avec quelques intercalations de grés au crétacé moyen (Albien) et apparaît dans la région de Béni-Mansour et la chaîne des Bibans. Il est gréseux pélitique, parfois carbonatégréseux au crétacé inférieur.
- Le Jurassique : il affleure surtout au niveau de la chaîne calcaire et le long de sa continuité vers l'est. Il est principalement calcaro-dolomitique.
- Le Trias: il est de faciès gypso-salin et apparaît le long de contacts anormaux (contact des nappes de charriage) dans le Tell méridional et est présenté par des conglomérats et des grés rougeâtres dans le Tell septentrional.

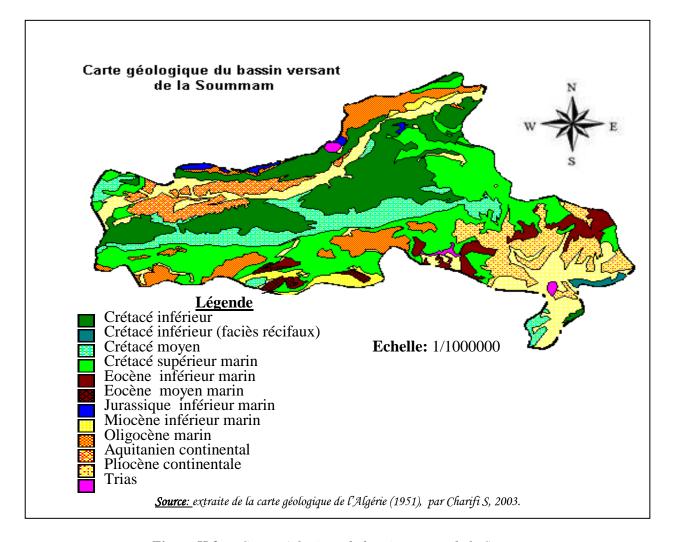


Figure II.8: Carte géologique du bassin versant de la Soummam

II.4.2- Les sols

La carte des sols du bassin de la Soummam a été extraite de la carte des sols de l'Algérie faite par J. Durand en 1954. La majorité des sols dans le bassin de la Soummam sont des sols calcaires (riches en calcaire). Ces sols ont généralement une texture légère et sont donc perméables. Lorsque les matières organiques atteignent 25%, on est en présence de la variété humifère de ces sols, qui peuvent présenter alors une texture relativement lourde allégée par la présence des matières organiques. Au nord du bassin, on rencontre des sols insaturés qui ne contiennent pas de calcaire dont l'argile peut être plus abondante en surface qu'en profondeur; leurs roches mères sont généralement imperméables ou donnent des produits de décomposition imperméables. Le long des oueds, les sols existants sont des dépôts alluviaux appelés sols alluviaux à profil indifférencié ou présentent une simple accumulation de matières organiques en surface. En outre on rencontre, en petites quantités, des sols calciques et des sols en équilibre peu épais, plus ou moins riches en calcaire et très pauvres en sels solubles.

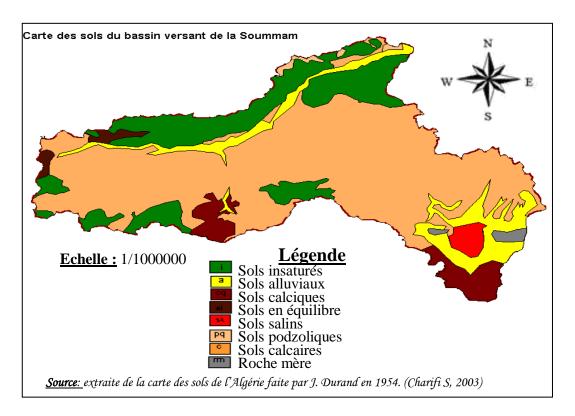


Figure II.9: Carte des sols du bassin de la Soummam

II.4.3- Couvert végétal

La végétation est un paramètre physique important des bassins. Suivant sa nature, sa diversité et sa densité, le couvert végétal influence directement sur le cycle de l'eau au sein des bassins versants. La végétation évolue en fonction des conditions climatologiques du milieu. Ainsi, la densité de la végétation diminue avec l'altitude du fait de l'évolution des conditions climatologiques. Si la densité de la végétation diminue, alors les pertes par évapotranspiration et par interception diminuent de l'aval vers l'amont.

Sur les massifs de l'Akfadou, de Chellata, de Timezrit et des Babors la végétation est dense et variée; elle forme de vastes forêts de chênes, de chênes liège et de pin d'Alep. Par contre, elle est moins dense et localisée sur les reliefs intermédiaires voire absente sur les collines marneuses. Elle est représentée par des maquis de chêne nain et d'oliviers lentisques.

Dans la plaine, la végétation est dense mais essentiellement temporaire ; elle est formée par les grands et formidables champs de cultures maraîchères diverses. Autrefois, les forêts qui couvraient la région fournissaient le bois nécessaire à une industrie du bois florissante mais malheureusement ce capital tend à disparaître sous les feux qui ravagent chaque année des milliers d'hectares. À cela s'ajoute l'absence d'une politique claire de reboisement et de lutte contre les incendies [24].

II.5- Climat

II.5.1- type de climat et température

La région de la Soummam est sous la dépendance de trois types de climat : climat littoral tempéré sur le cours inférieur de l'Oued Soummam, climat de l'Atlas Tellien sur la moyenne Soummam et sur une partie du haut bassin de la Soummam (Oueds Sahel - cours inférieur de l'Oued Boussellam) et climat des hautes plaines sur le haut bassin de l'Oued Boussellam. Une carte des étages bioclimatiques et représentée dans la figure II.10.

A Bejaia et dans la vallée de la Soummam inférieure le climat est essentiellement Méditerranéen, généralement humide avec léger changement de température. Sur les plateaux de Sétif et de Bouira le climat est continental et sec avec des hivers froids et des étés chauds. La partie Sud du plateau de Sétif est aride

La figure II.11 représente une esquisse générale de la répartition des températures moyennes sur le bassin versant de la Soummam "isothermes annuelles".

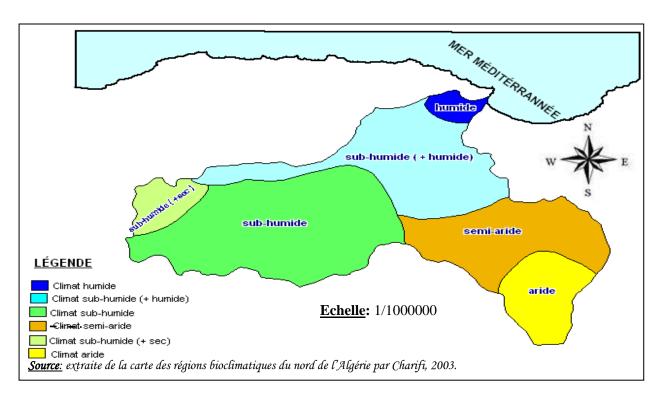


Figure II.10: Etages bioclimatiques du bassin de la Soummam

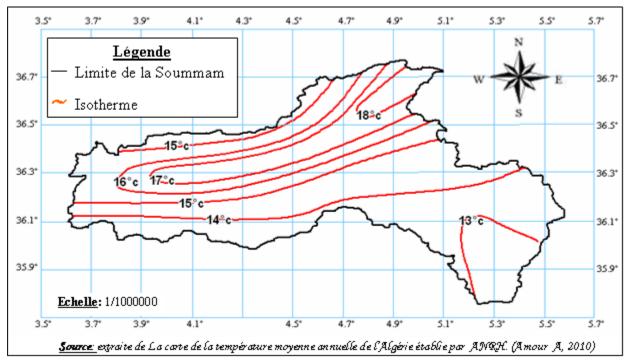


Figure II .11: Carte des isothermes annuelles du bassin de la Soummam

II.5.2- La pluviométrie

Deux groupes de facteurs, géographiques (éloignement par rapport à la mer, altitude, exposition des versants par rapport aux vents pluvieux du Nord-Ouest) et météorologiques (déplacement des masses d'air polaire océanique, froid et humide, des masses d'air tropical chaud et humide de l'Atlantique Sud et enfin des masses d'air tropical continental ou anticyclone saharien) influencent la répartition spatiale des précipitations mais aussi les structures des régimes pluviométriques (Chaumont M. et Paquin C., 1971 cité par Mebrki, 2004).

Le caractère d'irrégularité temporelle des précipitations est, par ailleurs, une donnée fondamentale du climat algérien. La carte pluviométrique de l'Algérie du Nord établie par l'Agence Nationale des Ressource Hydrique (ANRH – Projet PNOD/ALG/88/021-Janvier 1993), d'où nous avons extrait la partie Soummam (figure II.12), fournit la pluie moyenne annuelle de la période 1969 – 1989. On observe les points suivants:

- Les pluies sont maximales sur le massif du Djurdjura de 1000 mm jusqu'à 1500 mm.
- Le bassin du Sahel, au centre et au Sud, à des précipitations comprises entre 300 et 500 mm;
- Le bassin du Bousselam comprend deux secteurs : le Sud, caractérisé par un climat aride, a des précipitations inférieures à 400 mm. Le Centre et le Nord du bassin ont des précipitations plutôt supérieures à 500 mm, avec des valeurs moyennes de l'ordre de 600 mm, et jusqu'au maximum de 700 mm;
- Le bassin aval, près de Bejaia, est soumis à des précipitations de 600 à 900 mm.

 Il apparaît que les contrastes entre régions géographiques demeurent globalement inchangés.

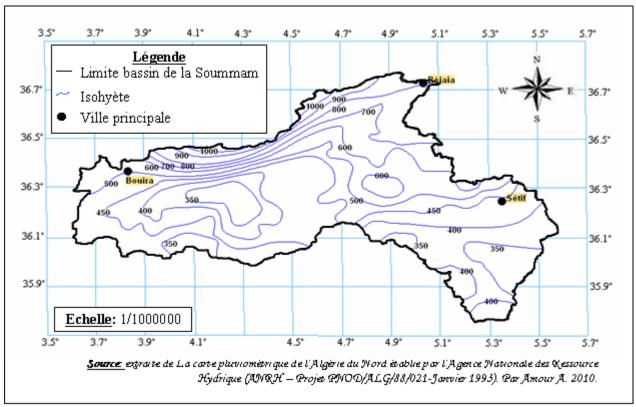


Figure II.12: Carte pluviométrique du bassin versant de la SOUMMAM

II.5.3- Evapotranspiration

Du point de vue répartition spatiale, l'évapotranspiration potentielle (ETP) s'accroît du nord au sud contrairement à l'évapotranspiration réelle (ETR) qui évolue parallèlement à l'augmentation des températures et des précipitations ; les plus fortes valeurs de l'ETR sont atteintes dans le bassin inférieur où toutes les conditions favorables se trouvent réunies : températures élevées, précipitations abondantes et couvert forestiers dense.

L'évapotranspiration potentielle annuelle calculée d'après l'ANRH varie entre 1214 et 1569 mm, et pour la majeure partie du bassin, elle est de l'ordre de 1382 mm [2].

II.6- Réseau hydro-pluviométrique

Le bassin de la Soummam est équipé d'un réseau de mesure hydrométrique et pluviométrique important. La plupart des sous bassin contiennent donc des stations de jaugeage et des station pluviométriques, seulement l'arrêt de certaines stations pendant la guerre d'Algérie et le disfonctionnement de certaines d'autres durant plusieurs années par manque d'entretien a provoqué des lacunes dans la plupart des séries statistiques.

Selon la carte du réseau hydroclimatologique et de la surveillance de la qualité des eaux. (Dressée par l'ANRH. Edition 2005) Le bassin de la Soummam contient 11 stations hydrométriques et 41 stations pluviométriques. Les caractéristiques des stations hydrométriques et pluviométriques dont nous disposons des séries d'enregistrement sont portées respectivement sur le tableau II.1 et tableau II.2.

Conclusion

L'analyse de l'écoulement superficiel tient compte de l'influence de tous les facteurs climatiques, morphomètriques et hydrogéologiques du bassin versant. Les caractéristiques quantifiables du bassin sont essentielles dans la modélisation de l'écoulement superficiel des crues pluviales.

La détermination des caractéristiques du bassin versant de la Soummam nous a permis de tirer les synthèses suivantes :

- -Le bassin de la Soummam a une forme allongée très irrégulière, Il est composé de trois régions principales : les plateaux Sétifiens, les plateaux de Bouira et de la vallée de la Soummam ;
- -Le climat dans le bassin de la soummam est non uniforme. Il est sous la dépendance de trois types de climat : climat littoral tempéré, climat de l'Atlas Tellien et climat des hautes plaines ;
- -Le bassin possède un réseau hydrographique très développé (ordre 6). Trois rivières et leurs affluents constituent son squelette hydrographique fondamental : le Sahel, affluent venant du nordouest, le Boussellam venant du sud-est et la Soummam, qui se forme à Akbou à la confluence du Sahel et de Boussellam et coule en direction du nord-est vers la mer ;
- -Le relief a une forme très irrégulière, et la ligne de partage des eaux est formée par des chaînes de montagnes dont l'altitude allant de 1000 à 2004m ;
 - -Un couvert végétal de type Méditerranéen et une qualité du sol très variée.
- -Les précipitations sont maxima sur le massif du Djurdjura (1500 mm), et minima sur le bassin de Bousselam (300 mm).
- L'évapotranspiration potentielle annuelle calculée d'après l'ANRH varie entre 1214 et 1569 mm, et pour la majeure partie du bassin, elle est de l'ordre de 1382 mm.
- -Le choix du bassin de la Soummam est fondé sur le fait que celui-ci est à cheval, de point de vue climatique et physico-géographique et sur plusieurs zones. Il est soumis à une double zonalité latitudinale et verticale. A cet effet, il représente bien la plupart des bassins du Nord de l'Algérie, avec sa complexité géologique et végétale qui varie d'une région à l'autre.

CHAPITRE III

COLLECTE ET ANALYSE DES DONNEES

CHAPITRE III

COLLECTE ET ANALYSE DES DONNEES

Introduction

La collecte des données hydrométéorologiques représente une étape importante de toute recherche scientifique notamment en hydrologie de surface. Dans le cas de l'étude des crues pluviales, nous avons besoins des données sur la pluie journalière maximale annuelle, les débits instantanés maxima annuels, des données morphométriques des sous bassins et de toutes les données relatives aux facteurs locaux qui peuvent éventuellement influencer directement ou indirectement l'écoulement fluvial.

III.1- Collecte des données morphométriques

Les données collectées sont celles des sous bassins retenues pour notre étude, qui sont publiées officiellement par les services spécialisés du Ministère des Ressources en Eau. Les données morphométriques sont saisies dans les annuaires hydrologiques de l'Algérie de l'A.N.R.H. Ces données sont les coordonnées géographiques en degré (latitude (X), longitude (Y)), la superficie (S) en km², l'altitude maximale en m, l'altitude moyenne (H) en m, l'altitude minimale en m, la longueur du cours d'eau principal (L) en km et sa pente moyenne (I) en pour mille (‰). Les valeurs de ces données sont récapitulées dans le tableau suivant :

Tableau III.1 : Caractéristiques morphométriques des sous bassins

Oued	Station	Code	X	Y	S	L	Hmax	Hmin	Н	Ι
Eddous	Tilesdit	15 01 06	3,7517	36,2635	842	85	2305	400	727	18,9
Lekhal	Ain tasta	15 01 14	3,6764	36,1643	190	30	1810	650	930	30,5
Zaiane	El-Esnam	15 02 04	3,9659	36,1682	800	54	1561	430	848	17,6
Azerou	Porte de fer	15 04 01	4,3503	36,0912	605	40	1862	445	880	29,5
Bousellam	Fermatou	15 06 01	5,3871	36,2897	105	18	1737	1025	1205	30,2
Bousellam	Ain zada	15 07 01	5,2763	36,0473	1800	65	1737	825	1036	12,2
Bousellam	Magraoua	15 07 02	5,2672	36,0466	2350	90	1737	740	1000	9,7
Bousellam	Boubirek	15 07 03	5,1832	36,1503	2950	93,3	1737	400	872	12,6
Bousellam	SidiYahia	15 09 01	5,0752	36,5485	4050	172	1737	210	960	7,9
Bousellam	Sidi Aich	15 10 01	4,5954	36,1841	8420	197,2	2305	80	860	10,2
Leham	RocadeSud	05 05 01	3,7429	35,7190	5600	131	1852	435	760	9,7
Lougmane	Ced Fagues	05 08 01	4,3080	35,9009	337	35	1862	546	961	30,5
Ksob	Medjez	05 09 01	4,8125	35,9819	1330	73	1875	637	1080	14,6
Soubellah	Sidi ouadeh	05 11 01	5,1520	35,7789	170	23	/	/	/	31,7
Malah	Beni Sliman	09 03 05	3,3615	36,0983	273	26	1371	600	940	23,8
Elkbir	Tassadane	10 01 09	5,6502	36,3775	960	58	1662	390	955	18,6

III.2- Collecte des données pluviométriques

La collecte des données pluviométriques s'est réalisée pour 34 stations situées à l'intérieure du bassin de la Soummam, et pour 14 stations limitrophes. Le nombre total des stations est de 48 (tableau III.2), leur répartition sur le bassin est relativement uniforme comme la montre la figure III.1. Les séries de données pluviomètriques ainsi recueillies ne se rapportent pas toutes à la même période, elles sont lacunaires et leur taille moyenne est de 32 ans.

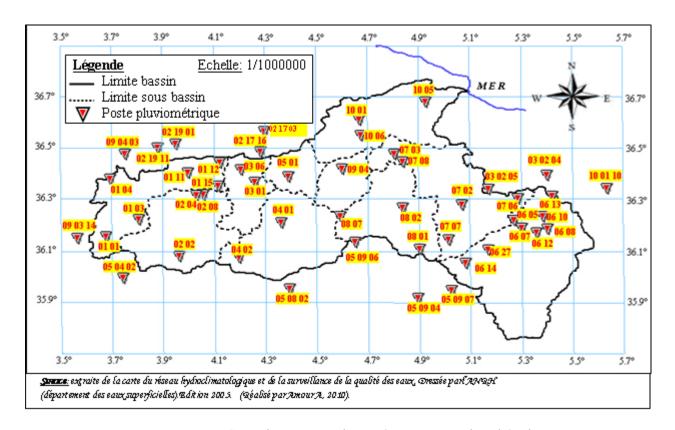


Figure III.1 : Carte des stations pluviométriques prise dans l'étude

Tableau III.2 : Caractéristiques des stations pluviométriques prises dans l'étude

N°	Nom de la station	Code	Longitude(X°)	Latitude(y°)	Altitude(m)
1	Sour el ghozlan	15 01 01	3,6743	36,1485	828
2	El hachimia	15 01 03	3,8047	36,2162	730
3	Sidi Attaf	15 01 03	3,693	36,372	836
4	Irorhat	15 01 04	3,9972	36,3967	580
5	Tikjda	15 01 12	4,1143	36,4428	810
6	Crête rouge	15 01 15	4,1151	36,3471	410
7	Bordi Okriss	15 02 02	3,9609	36,0752	750
8	El asnam	15 02 04	4,0294		435
9	Koudiat Tindart	15 02 04	4,0294	36,3103 36,313	520
10	Mechdellah Pni Hammad	15 03 01	4,2589	36,3624	465
11	Bni Hammad	15 03 06	4,2025	36,4088	545
12	Porte de fer	15 04 01	4,3591	36,2059	303
13	Ben Daoud	15 04 02	4,1944	36,0667	850
14	Tazmalt	15 05 01	4,3899	36,3826	427
15	Sétif PC	15 06 05	5,2699	36,2137	1081
16	Ain Arnat	15 06 07	5,2998	36,1849	1029
17	Bouira Cologny	15 06 08	5,3997	36,1815	1010
18	Farmatou	15 06 10	5,3825	36,2297	1043
19	Sétif INRA	15 06 12	5,3558	36,1664	970
20	Zeiri	15 06 13	5,4205	36,3093	1130
21	Tixter	15 06 14	5,0789	36,0491	956
22	Ain Zada	15 06 27	5,1687	36,0987	900
23	Magraoua	15 07 02	5,0675	36,2761	740
24	Boubirek	15 07 03	4,8026	36,47	500
25	Ain Abassa	15 07 06	5,2837	36,2993	1070
26	Bir kesdeli	15 07 07	5,0129	36,1385	980
27	Bni Ouerthilane	15 07 08	4,8372	36,4397	1020
28	Sidi Mbarek	15 08 01	4,9013	36,1021	1011
29	Zemoura	15 08 02	4,836	36,264	950
30	Djbel Mourissane	15 08 07	4,5919	36,2295	1020
31	Sidi Yahia	15 09 04	4,5991	36,4147	255
32	Sidi Aich	15 10 01	4,6779	36,6082	196
33	R Messaoud	15 10 05	4,9272	36,6757	25
34	Sedouk	15 10 06	4,6719	36,5405	370
35	Ain Elhamam	02 17 03	4,2975	36,5585	1200
36	Ait Ouabene	02 17 16	4,2793	36,4786	960
37	Tizi Medene	02 19 01	3,9478	36,5084	550
38	Arkoub	02 19 11	3,878	36,4944	610
39	Amoucha	03 02 04	5,399	36,39	738
40	Ain Roua	03 02 05	5,1695	36,3369	1100
41	Dirach	05 04 02	3,7406	35,9891	834
42	El haourane	05 08 02	4,3915	35,9459	803
43	Bordj G'dir	05 09 04	4,8918	35,9119	1100
44	Medjana	05 09 06	4,6493	36,1282	106
45	Ras Eloued	05 09 07	5,0236	35,9433	1083
46	Pont de la treille	09 03 14	3,5636	36,144	370
47	Djebahia	09 04 03	3,7472	36,4717	520
48	Chebabta	10 01 10	5,6336	36,3393	660

III.3- Collecte des données hydrométriques

Les données hydrométriques auxquelles nous nous intéressons sont celles des débits de pointe, en l'occurrence, les débits maxima instantanés annuels. Ces données sont relatives à 10 sous bassins de la Soummam et 6 sous bassins limitrophes (voir figureIII.2). Cependant, les tailles des séries d'observations sont différentes, elles varient de 14 années à 37 années, soit une moyenne de 24 ans. Certaines séries contiennent des lacunes mensuelles qui provoquent aussi des lacunes annuelles.

A titre d'exemple, nous présentons dans le tableau ci-dessous Les valeurs des débits instantanés maxima mensuels et annuels enregistrés à la station de Sidi Aich (15 10 01) dont la superficie contrôlé est de 8420 km².

Tableau III.3: Débits maxima mensuels et annuels enregistrés à la station de Sidi Aich (15 10 01)

Année	S	О	N	D	J	F	M	A	M	J	J	A	Annuel
1953/54	13,1	7,5	16,8	26,8	32,0	321,3	115,0	416,1	8,8	10,2	3,7	2,0	416,1
1954/55	1,7	9,5	23,2	21,3	26.0	26,8	14,3	166,5	127,0	228,2	6,6	80,5	228,2
1955/56	228,2	278,8	60,9	457,5	75,1	195,3	317,0	46,8	19,8	7,3	2,1	1,9	457,5
1956/57	30,6	24,4	55,8	137,1	97,3	14,2	5,1	18,2	26,0	30,6	2,0	1,2	137,1
1957/58	67,0	790,0	535,0	295,9	177,5	133,4	214,0	163,4	105,3	52,9	17,2	26,2	790,0
1958/59	33,1	38,2	150,0	28,0	11,9	36,5	284,0	639,0	63,0	119,7	4,1	2,2	639,0
1959/60	3,8	10,4	63,0	100,4	10,8	11,2	7,5	91,8	363,8	22,5	4,4	1,4	363,8
1960/61	1,2	4,2	2,2	797,6	461,1	10,0	5,8	22,5	8,5	5,6	7,0	4,6	797,6
1961/62	2,7	4,8	55,5	4,6	4,8	92,0	84,5	130,2	12,7	90,8	1,7	2,7	130,2
1962/63	50,3	82,0	22,0	79,5	36,9	82,0	22,0	9,5	276,5	320,0	263,0	107,0	320,0
1963/64	151,5	6,3	3,0	67,5	658,0	55,5	98,0	116,6	77,1	5,6	2,4	26,8	658,0
1964/65	55,5	37,8	40,5	133,8	350,0	82,0	55,5	130,2	31,2	7,3	27,4	110,2	350,0
1965/66	225,6	549,2	11,6	263,0	65,1	77,1	135,6	12,7	626,0	13,3	3,5	3,8	626,0
1966/67	13,8	350,0	11,1	45,0	22,9	85,8	9,6	27,1	71,1	2,8	2,1	12,0	350,0
1967/68	101,0	25,7	1090,0	2700,0	365,0	127,0	127,0	142,2	29,2	50,5	3,0	67,0	2700,0
1968/69	18,6	2,4	34,3	476,0	166,0	37,8	515,0	518,0	47,2	100,4	18,6	127,0	518,0
1969/70	236,0	1026,0	100,4	818,0	177,5	133 ,41	213,8	163,4	105,3	17,0	21,0	7,0	1026,0
1970/71	31,5	127,7	6,3	24,0	81,0	17,5	213,8	225,6	39,3	4,7	12,9	26,2	225,6
1971/72	4,3	10,6	87,5	295,9	356,0	458,0	179,0	129,4	274,4	96,8	7,4	26,0	458,0
1972/73	690,0	106,4	3,7	706,0	730,0	451,1	274,8	214,6	43,2	137,4	5,9	3,6	730,0
1973/74	433,4	10,3	3,7	102,6	34,9	264,4	1820,0	1270,4	185,0	70,6	5,1	2,6	1820,0
1974/75	14,7	198,7	6,0	4,6	13,0	246,2	324,3	135,0	20,8	6,3	NO	26,2	324,3
1975/76	47,9	10,5	55,3	62,1	15,2	500,0	137,4	132,5	425,0	50,5	96,1	38,3	500,0
1976/77	123,2	25,2	106,5	295,9	170,8	33,1	13,3	56,6	48,1	52,9	17,2	26,2	295,9
1977/78	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1978/79	96,7	127,7	87,5	285.,62	28,3	47,3	46,6	45,3	11,8	41,4	7,0	2,0	285,6
1979/80	94,0	4,6	21,7	56,0	87,1	31,6	452,0	31,6	82,0	5,6	1,3	10,9	452,0
1980/81	28,9	4,2	15,0	754,0	53,3	86,5	63,1	68,2	27,3	5,6	2,3	53,3	754,0
1981/82	24,6	22,7	2,3	92,5	424,4	168,3	136,0	73,6	151,2	54,4	6,0	3,9	424,4
1982/83	29,5	518,3	107,0	626,9	75,0	33,6	20,0	20,0	8,9	3,2	12,8	5,6	626,9
1983/84	1,4	1,3	3,0	2,1	38,7	464,1	76,3	47,6	26,9	9,4	2,1	2,5	464,1
1984/85	2,8	43,1	2,5	181,9	177,5	45,4	371,6	43,1	20,0	7,9	6,6	2,8	371,6
1985/86	25,0	6,6	85,9	12,3	12,3	45,4	1046,4	15,6	8,5	5,9	1,7	1,4	1046,4
1986/87	37,9	16,7	87,5	247,5	83,2	173,4	79,0	94,4	29,8	8,5	5,9	2,5	247,5
1987/88	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1988/89	96,7	127,7	87,5	295,9	177,5	43,1	91,5	NO	NO	NO	NO	26,2	NO
1989/90	NO	2,6	37,1	1,7	9,5	2,9	51,0	3,3	NO	1,9	171,0	122,0	(171,0)
1990/91	51,0	110,8	69,7	143,4	10,3	170,0	79,0	35,4	53,0	131,0	0,6	0,6	170,0
1991/92	413,4	3,4	110,5	230,2	NO	NO	NO	424,4	165,6	126,5	3,4	3,4	(424,4)

Les données enregistrées au niveau des autres stations hydrométriques se trouvent en AnnexeII.

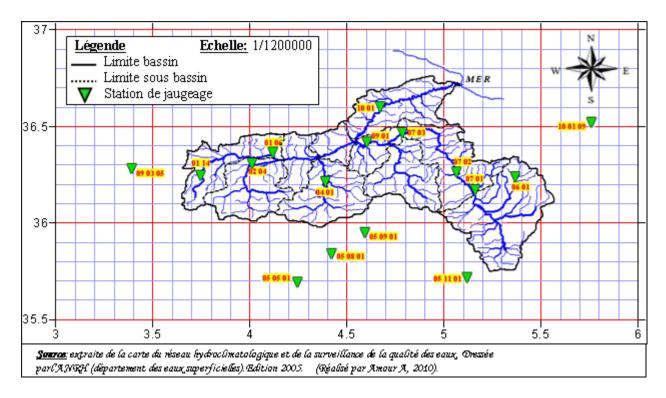


Figure III.2 : Carte des stations de jaugeage prise dans l'étude

III.4- Comblement des lacunes des débits maxima

Nous n'avons pas effectué une extension des données hydrométriques (maximisation intrinsèque de l'information au sens de Dubreuil P, (1974 a), car il semble préférable de baser notre étude sur des données réellement observées et non théoriquement extrapolées, d'autant plus que le caractère instantané des débits de pointe et la forte irrégularité du régime hydrologique des bassins ne justifient guère une telle opération. Toutefois, nous avons tenté d'emplir quelques manques en procédant comme suit :

Soit le débit maximum mensuel instantané dont la probabilité d'apparition égale à 1/6 durant cette période (de novembre à avril). L'apparition d'un débit maximum instantané durant les cinq autres mois représente une probabilité égale à 5/6. Pour combler certaines lacunes annuelles, on propose donc, de considérer uniquement les débits dont la probabilité d'apparition est supérieur ou égale à 50% : c'est-à-dire le nombre de lacunes dans la série est de 3 au maximum.

Les valeurs admises par cette façon de faire sont mises entre parenthèses dans les tableaux consacrés aux débits (voir AnnexeII).

III.5- Comblement des lacunes et extension des séries de pluie maximale

Le traitement statistique exige d'avoir des séries suffisamment longues : sachant que la taille des séries influe sur les erreurs d'échantillonnage, notamment sur le calcul des moments d'ordre supérieur (Bois-Obled, 2007). Pour y remédier, nous avons tenté de chercher une éventuelle dépendance entre les données des différentes stations afin de reconstituer les valeurs manquantes. Cependant, il s'est avéré que les séries de données de pluie maxima sont indépendantes ou faiblement corrélées ce qui nous a amené à utiliser la méthode d'interpolation « Kreagege » moyennant le logiciel Surfer.

Interpolation spatiale par la méthode du «Krigeage»

Il s'agit de calculer la valeur d'une variable régionalisée en un point non mesuré, à partir d'observations faites en un certain nombre de points. Ceci est particulièrement utile pour tracer des courbes isovaleurs d'une grandeur répartie spatialement comme par exemple la pluie.

Contrairement aux autres méthodes déterministes à savoir : la méthode linéaire de l'inverse distance et la méthode des fonctions splines, la méthode du krigeage est une méthode statistique. Initiée par Krige en 1951, développée théoriquement par Matheron au début des années 70 et vulgarisée dans ses applications par Delhomme en 1978 (Masson j.m et Lubes, 1991). La méthode du krigeage est la plus utilisée et est considérée comme la plus précise. (Creutin et Obled, 1982 ; Dubrule, 1984 cités par Arthur Marchandise, 2007).

En effet, la procédure consiste à introduire au logiciel Surfer, pour chaque année, les valeurs de pluie maximale et les coordonnées des points d'enregistrement pour générer, en fin, une grille d'interpolation et une carte en isohyète, ainsi en connaissant les coordonnées d'un poste pluviométrique, on peut lui tirer la valeur de pluie interpolée correspondante. Cependant, les années auxquelles nous avons tracé les cartes en isohyète sont celles ayant des tailles supérieures à la moitié du nombre total des postes pluviométriques, en l'occurrence, de 1968 à 1989 et de 1991 à 2000.

Voici, à titre d'exemple la carte en lignes isovaleurs des pluies maxima de l'année 1968.

Les cartes des autres années se trouvent en AnnexeIII.

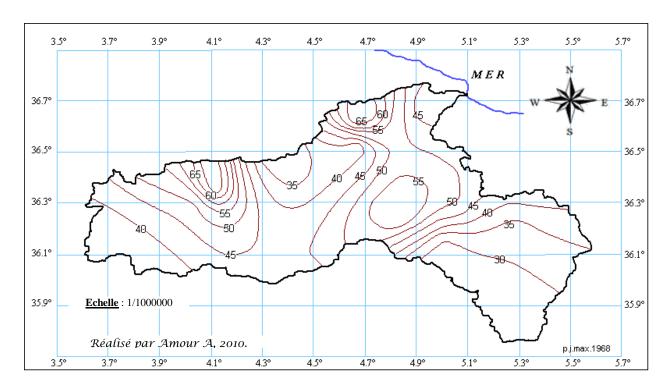


Figure III.3 : Carte en ligne isovaleur de la pluie maximale journlière de l'année 1968

III.6- Traitement statistique des données hydroclimatiques

Si la valeur d'une variable est indépendante des autres, la variable en question est dite aléatoire. En hydrologie la plupart des processus, notamment la pluie et les débits ont un caractère aléatoire, ce qui justifie leur traitement par des méthodes statistiques (Bois-Obled, 2007).

III.6.1- Evaluation des caractéristiques statistiques des débits spécifiques maxima

L'évaluation des caractéristiques statistiques des débits maxima a pour objet l'estimation des paramètres suivants: le débit spécifique maximum moyen q_o , le coefficient de variation C_v et le coefficient d'asymétrie ; dit encore coefficient de Skewness C_s qui sont indispensables pour le lissage des courbes empiriques par des courbes théoriques et leur extrapolation. Pour ce faire, plusieurs méthodes peuvent être envisagées telles que la méthode des moments, la méthode de maximum de vraisemblance, les méthodes grapho-analytiques ; appelées aussi méthodes des quantiles.

Chaque méthode a ses insuffisances. La méthode analytique la plus simple est celle des moments; néanmoins elle exige des séries suffisamment longues et qui, quelle que soit leur taille, ne peut être satisfaisante quand il s'agit de l'estimation du coefficient d'asymétrie. C'est la raison qui oblige à chercher une autre méthode qui tient compte au préalable du choix du coefficient d'asymétrie. Cette exigence s'avère possible avec la méthode grapho-analytique d'Alekseev qui permet l'estimation des paramètres statistiques même pour les séries de petite taille, égale ou inférieure à 30 années. (Rojdestvensky, 1974 et Guerechkov, 1979)

Ayant une série d'observations $\{X_1, X_2, \ldots, X_n\}$, on construit la courbe empirique des fréquences sur un quadrillage statistique approprié et après un lissage à main levée de cette courbe, on tire de celle-ci les trois quantiles standards : $X_{P_1=100-P_2}$, $X_{50\%}$ et $X_{P_2=100-P_1}$.

Dans le cas de l'application de la méthode d'Alekseev, les valeurs des fréquences standards sont égales à $P_1 = 5$ % et $P_2 = 95$ %. On présente cette application pour le cas de l'oued Soummam à Sidi Aich (code : 15 10 01).

Apres le classement de l'échantillon par ordre décroissant on attribue à chaque valeur du débit classé une fréquence empirique (P%) (voir tableau III.4) tel que :

$$P = \frac{n_i - 0.3}{N + 0.4} \tag{III-1}$$

Formule proposée par Tchegadayer pour les distributions non normales.

p : Fréquence expérimentale ;

 n_i : Numéro d'ordre;

N: Taille de la série.

Tableau III.4: fréquence empirique des débits spécifiques maxima enregistrés à la station 151001

n_{i}	Année	$q(m^3/s.km^2) \downarrow$	P(%)	n_{i}	Année	$q(m^3/s.km^2)$ \downarrow	<i>P</i> (%)
1	1967/68	0,321	1,92	19	1981/82	0,050	51,37
2	1973/74	0,216	4,67	20	1991/92	0,050	54,12
3	1985/86	0,124	7,42	21	1953/54	0,049	56,87
4	1969/70	0,122	10,16	22	1984/85	0,044	59,62
5	1960/61	0,095	12,91	23	1959/60	0,043	62,36
6	1957/58	0,094	15,66	24	1964/65	0,042	65,11
7	1980/81	0,090	18,41	25	1966/67	0,042	67,86
8	1972/73	0,087	21,15	26	1974/75	0,039	70,60
9	1963/64	0,078	23,90	27	1962/63	0,038	73,35
10	1958/59	0,076	26,65	28	1976/77	0,035	76,10
11	1982/83	0,074	29,40	29	1978/79	0,035	78,85
12	1965/66	0,074	32,14	30	1986/87	0,029	81,59
13	1968/69	0,062	34,89	31	1954/55	0,027	84,34
14	1975/76	0,059	37,64	32	1970/71	0,027	87,09
15	1983/84	0,055	40,38	33	1989/90	0,020	89,84
16	1971/71	0,054	43,13	34	1990/91	0,020	92,58
17	1955/56	0,054	45,88	35	1956/57	0,016	95,33
18	1979/80	0,054	48,63	36	1961/62	0,015	98,08

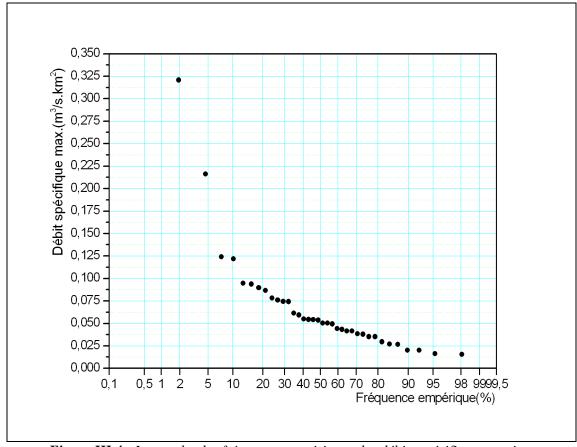


Figure III.4 : La courbe des fréquences empiriques des débits spécifiques maxima de l'oued Soummam à Sidi Aich (15 10 01)

La construction de la courbe empirique des fréquences (figure III.4) et le lissage de celle-ci à main levée, permettent de tirer les valeurs des débits maxima spécifiques correspondantes aux fréquences standards d'Alekseev 5%, 50% et 95%, soient donc $q_{5\%}$, $q_{50\%}$ et $q_{95\%}$. La courbure de la courbe empirique des fréquences est quantifiée par le coefficient de courbure C_c qui est lié au coefficient d'asymétrie C_s . La valeur calculée de C_c permet de déterminer, à partir de la table Foster Rybkine (voir Annexe VI), la valeur de C_s .

$$C_c = \frac{q_{5\%} + q_{95\%} - 2q_{50\%}}{q_{5\%} - q_{95\%}}$$
 (III-2)

L'écart type, la moyenne et le cœfficient de variation sont exprimés respectivement par les relations :

$$\sigma_q = \frac{q_{5\%} - q_{50\%}}{F_{5\%} - F_{95\%}}$$
 (III-3)

$$q_o = q_{50\%} - \sigma F_{50\%}$$
 (III-4)

$$C_{v} = \frac{\sigma_{q}}{q_{0}}$$
 (III-5)

Où $F_{5\%}$, $F_{50\%}$, $F_{95\%}$ Sont les valeurs de la fonction Foster-Rybkine tirées d'une table (voir AnnexeVI), respectivement pour les fréquences 5%, 50% et 95%, correspondant au coefficient d'asymétrie C_s .

Même procédé a été appliqué sur les 16 échantillons. Les résultats obtenus sont présentés dans le tableau III.6. Les courbes empiriques des fréquences de ces échantillons sont en AnnexeIV.

Tableau III.5: les valeurs des écarts types et les cœfficients de courbure

N°	Code	$q_{5\%}$	$q_{50\%}$	$q_{ m 95\%}$	C_c	$F_{50\%}$	$F_{5\%} - F_{95\%}$	σ_q
1	15 01 06	0,800	0,292	0,018	0,299	-0,173	3,183	0,246
2	15 01 14	0,345	0,107	0,008	0,412	-0,232	3,104	0,109
3	15 02 04	0,122	0,020	0,004	0,729	-0,375	2,746	0,043
4	15 04 01	0,625	0,207	0,005	0,348	-0,199	3,151	0,197
5	15 06 01	1,120	0,352	0,043	0,426	-0,239	3,092	0,348
6	15 07 01	0,140	0,030	0,005	0,630	-0,335	2,875	0,047
7	15 07 02	0,098	0,030	0,011	0,563	-0,305	2,954	0,029
8	15 07 03	0,125	0,040	0,004	0,405	-0,229	3,110	0,039
9	15 09 01	0,180	0,039	0,011	0,669	-0,352	2,825	0,060
10	15 10 01	0,150	0,057	0,017	0,398	-0,225	3,115	0,043
11	05 05 01	0,072	0,012	0,001	0,690	-0,360	2,798	0,025
12	05 08 01	0,525	0,150	0,016	0,473	-0,263	3,049	0,167
13	05 09 01	0,250	0,113	0,013	0,156	-0,093	3,253	0,073
14	05 11 01	1,350	0,250	0,025	0,660	-0,348	2,836	0,467
15	09 03 05	0,425	0,243	0,145	0,300	-0,174	3,182	0,088
16	10 01 09	0,425	0,125	0,040	0,558	-0,303	2,960	0,130

N°	Oued	Station	Code	N	q_o	C_{v}	C_s
1	Eddous	Tilesdit	15 01 06	14	0,335	0,734	1,070
2	Lekhal	Ain tasta	15 01 14	16	0,132	0,821	1,443
3	Zaiane	El-Esnam	15 02 04	22	0,036	1,190	2,661
4	Azerou	Porte de fer	15 04 01	24	0,246	0,799	1,231
5	Bousellam	Fermatou	15 06 01	36	0,435	0,800	1,490
6	Bousellam	Ain zada	15 07 01	14	0,046	1,027	2,260
7	Bousellam	Magraoua	15 07 02	25	0,039	0,755	1,998
8	Bousellam	Boubirek	15 07 03	29	0,049	0,796	1,417
9	Bousellam	SidiYahia	15 09 01	37	0,060	0,996	2,415
10	Bousellam	Sidi Aich	15 10 01	36	0,067	0,641	1,396
11	Leham	RocadeSud	05 05 01	23	0,021	1,200	2,502
12	Lougmane	Ced Fagues	05 08 01	26	0,194	0,861	1,658
13	Ksob	Medjez	05 09 01	20	0,120	0,608	0,568
14	Soubellah	Sidi ouadeh	05 11 01	28	0,413	1,132	2,382
15	Malah	Beni sliman	09 03 05	11	0,258	0,341	1,074
16	Elkbir	Tassadane	10 01 09	30	0,164	0,791	1,979

Tableau III.6 : les caractéristiques statistiques des débits maxima

III.6.2- Evaluation des caractéristiques statistiques des pluies maximales

Le même procédé a été appliqué pour l'estimation des caractéristiques statistiques des pluies maximales, en l'occurrence, la pluie maximale moyenne p_o , Cv et Cs .les résultats obtenus sont consignés dans le tableau III.8.

		1		1		1			
N°	Nom de la station	Code	$p_{\scriptscriptstyle 5\%}$	$p_{50\%}$	$p_{ m 95\%}$	C_c	$F_{ m 50\%}$	$F_{5\%} - F_{95\%}$	$\sigma_{\scriptscriptstyle p}$
1	Sour el ghozlan	15 01 01	65	37,5	20,5	0,236	-0,139	3,22	13,834
2	El hachimia	15 01 03	58	36	19	0,128	-0,077	3,26	11,951
3	Sidi Attaf	15 01 04	88	50	28	0,267	-0,156	3,20	18,745
4	Irorhat	15 01 11	102	50	30	0,444	-0,248	3,08	23,405
5	Tikjda	15 01 12	113	57,5	19	0,181	-0,107	3,24	28,991
6	Crete rouge	15 01 15	87	43	24,5	0,408	-0,230	3,11	20,114
7	Bordj Okriss	15 02 02	54,5	31	13	0,133	-0,079	3,26	12,723
8	El asnam	15 02 04	61,5	33	18,5	0,326	-0,187	3,17	13,580
9	Koudiat Tindart	15 02 08	83	38	21	0,452	-0,252	3,07	20,197
10	Mechdellah	15 03 01	62	35	15,5	0,161	-0,096	3,25	14,305
11	Bni Hammad	15 03 06	86	49	12	0,000	0,000	3,28	22,586
12	Porte de fer	15 04 01	71,5	28	18	0,626	-0,334	2,88	18,582
13	Ben Daoud	15 04 02	60	24,5	4,2	0,272	-0,159	3,20	17,450
14	Tazmalt	15 05 01	61	35,1	20	0,263	-0,154	3,20	12,802
15	Sétif PC	15 06 05	51	31	20	0,290	-0,169	3,19	9,725
16	Ain Arnat	15 06 07	53	31,2	17	0,211	-0,125	3,23	11,150
17	Bouira Cologny	15 06 08	63,5	37	20	0,218	-0,129	3,22	13,487
18	Farmatou	15 06 10	53	30,5	20	0,364	-0,207	3,14	10,506
19	Sétif INRA	15 06 12	73,5	32,5	17,5	0,464	-0,258	3,06	18,312

Tableau III.7: les valeurs des écarts types et les cœfficients de courbure

20	Zeiri	15 06 13	63	42	22	0,024	-0,015	3,28	12,495
21	Tixter	15 06 14	70,2	34,1	16,2	0,337	-0,193	3,16	17,094
22	Ain Zada	15 06 27	50	31,5	15	0,057	-0,034	3,28	10,668
23	Magraoua	15 07 02	68	42	21	0,106	-0,064	3,27	14,372
24	Boubirek	15 07 03	88,3	46	22,5	0,286	-0,166	3,19	20,625
25	Ain Abassa	15 07 06	79	44	27	0,346	-0,198	3,15	16,492
26	Bir kesdeli	15 07 07	60,5	34	19	0,277	-0,161	3,19	12,989
27	Bni Ouerthilane	15 07 08	78	42,3	26	0,373	-0,212	3,13	16,592
28	Sidi Mbarek	15 08 01	62	32	17,5	0,348	-0,199	3,15	14,120
29	Zemoura	15 08 02	80	41,3	24,5	0,395	-0,223	3,12	17,800
30	Djbel Mourissane	15 08 07	68	38	22	0,304	-0,176	3,18	14,468
31	Sidi Yahia	15 09 04	65	35	22,2	0,402	-0,227	3,11	13,752
32	Sidi Aich	15 10 01	80	43	27,5	0,410	-0,231	3,10	16,903
33	R Messaoud	15 10 05	86	52	30	0,214	-0,126	3,23	17,352
34	Sedouk	15 10 06	73	39	21,5	0,320	-0,185	3,17	16,248
35	Ain Elhamam	02 17 03	149	71	36	0,381	-0,216	3,13	36,118
36	Ait Ouabene	02 17 16	113	66	38	0,253	-0,148	3,21	23,380
37	Tizi Medene	02 19 01	101	55	31,5	0,324	-0,186	3,17	21,941
38	Arkoub	02 19 11	102	50	30,5	0,455	-0,253	3,07	23,312
39	Amoucha	03 02 04	78	47,5	21	0,070	-0,042	3,28	17,383
40	Ain Roua	03 02 05	79,5	42,5	26	0,383	-0,217	3,13	17,111
41	Dirach	05 04 02	55	28,4	15	0,330	-0,190	3,16	12,644
42	El haourane	05 08 02	67	25,6	15	0,592	-0,319	2,92	17,807
43	Bordj G'dir	05 09 04	56	32,2	12	0,082	-0,049	3,28	13,428
44	Medjana	05 09 06	63	38,5	19	0,114	-0,068	3,27	13,463
45	Ras Eloued	05 09 07	56	31,5	14,2	0,172	-0,102	3,25	12,877
46	Pont de la treille	09 03 14	77	41	23	0,333	-0,192	3,16	17,081
47	Djebahia	09 04 03	102	48	28	0,459	-0,256	3,06	24,163
48	Chebabta	10 01 10	75	35	20	0,455	-0,253	3,07	17,932

Suite tableau III.7

Tableau III.8: les caractéristiques statistiques des pluies maximales

N°	Nom de la station	Code	N	p_o	C_{v}	C_s
1	Sour el ghozlan	15 01 01	71	39,4	0,351	0,861
2	El hachimia	15 01 03	36	36,9	0,324	0,459
3	Sidi Attaf	15 01 04	32	52,9	0,354	0,965
4	Irorhat	15 01 11	32	55,8	0,419	1,554
5	Tikjda	15 01 12	33	60,6	0,478	0,663
6	Crete rouge	15 01 15	34	47,6	0,422	1,428
7	Bordj Okriss	15 02 02	33	32,0	0,398	0,476
8	El asnam	15 02 04	70	35,5	0,382	1,157
9	Koudiat Tindart	15 02 08	32	43,1	0,469	1,579
10	Mechdellah	15 03 01	47	36,4	0,393	0,588
11	Bni Hammad	15 03 06	33	49,0	0,461	0,000
12	Porte de fer	15 04 01	36	34,2	0,543	2,246
13	Ben Daoud	15 04 02	36	27,3	0,640	0,984
14	Tazmalt	15 05 01	36	37,1	0,345	0,954
15	Sétif PC	15 06 05	32	32,6	0,298	1,043
16	Ain Arnat	15 06 07	51	32,6	0,342	0,774
17	Bouira Cologny	15 06 08	76	38,7	0,348	0,800

18 Fahnatou 15 06 10 32 32,7 0,322 1,260 19 Sétif INRA 15 06 12 32 37,2 0,492 1,624 20 Zeiri 15 06 13 32 42,2 0,296 0,066 21 Tixter 15 06 14 75 37,4 0,457 1,194 22 Ain Zada 15 06 27 32 31,9 0,335 0,179 23 Magraoua 15 07 02 32 42,9 0,335 0,371 24 Boubirek 15 07 03 44 49,4 0,417 1,028 25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura <	18	Farmatou	15 06 10	32	22.7	0.222	1 290
20 Zeiri 15 06 13 32 42,2 0,296 0,066 21 Tixter 15 06 14 75 37,4 0,457 1,194 22 Ain Zada 15 06 27 32 31,9 0,335 0,371 23 Magraoua 15 07 02 32 42,9 0,335 0,371 24 Boubirek 15 07 03 44 49,4 0,417 1,028 25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 08 32 45,8 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia					32,7	0,322	1,280
21 Tixter 15 06 14 75 37,4 0,457 1,194 22 Ain Zada 15 06 27 32 31,9 0,335 0,179 23 Magraoua 15 07 02 32 42,9 0,335 0,371 24 Boubirek 15 07 03 44 49,4 0,417 1,028 25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
22 Ain Zada 15 06 27 32 31,9 0,335 0,179 23 Magraoua 15 07 02 32 42,9 0,335 0,371 24 Boubirek 15 07 03 44 49,4 0,417 1,028 25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>							-
23 Magraoua 15 07 02 32 42,9 0,335 0,371 24 Boubirek 15 07 03 44 49,4 0,417 1,028 25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 00 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 01 32 46,9 0,360 1,433 34 Sedouk 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 16							
24 Boubirek 15 07 03 44 49,4 0,417 1,028 25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,360 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elham							
25 Ain Abassa 15 07 06 50 47,3 0,349 1,224 26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ou		Č					
26 Bir kesdeli 15 07 07 80 36,1 0,360 0,999 27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi							
27 Bni Ouerthilane 15 07 08 32 45,8 0,362 1,311 28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43							
28 Sidi Mbarek 15 08 01 32 34,8 0,406 1,231 29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha							
29 Zemoura 15 08 02 36 45,3 0,393 1,383 30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua							
30 Djbel Mourissane 15 08 07 35 40,5 0,357 1,088 31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach	28	Sidi Mbarek	15 08 01			0,406	1,231
31 Sidi Yahia 15 09 04 36 38,1 0,361 1,407 32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane <t< td=""><td>29</td><td>Zemoura</td><td>15 08 02</td><td>36</td><td>45,3</td><td>0,393</td><td>1,383</td></t<>	29	Zemoura	15 08 02	36	45,3	0,393	1,383
32 Sidi Aich 15 10 01 32 46,9 0,360 1,433 33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir <		Djbel Mourissane	15 08 07	35	40,5	0,357	1,088
33 R Messaoud 15 10 05 32 54,2 0,320 0,785 34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued	31	Sidi Yahia	15 09 04	36	38,1	0,361	1,407
34 Sedouk 15 10 06 37 42,0 0,387 1,140 35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued <td< td=""><td>32</td><td>Sidi Aich</td><td>15 10 01</td><td>32</td><td>46,9</td><td>0,360</td><td>1,433</td></td<>	32	Sidi Aich	15 10 01	32	46,9	0,360	1,433
35 Ain Elhamam 02 17 03 52 78,8 0,458 1,336 36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille	33	R Messaoud	15 10 05	32	54,2	0,320	0,785
36 Ait Ouabene 02 17 16 34 69,5 0,337 0,920 37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 04 03 50 54,2 0,446 1,607	34	Sedouk	15 10 06	37	42,0	0,387	1,140
37 Tizi Medene 02 19 01 34 59,1 0,371 1,151 38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 04 03 50 54,2 0,446 1,607 47 Djebahia 09 04 03 50 54,2 0,446 1,607	35	Ain Elhamam	02 17 03	52	78,8	0,458	1,336
38 Arkoub 02 19 11 32 55,9 0,417 1,590 39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	36	Ait Ouabene	02 17 16	34	69,5	0,337	0,920
39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	37	Tizi Medene	02 19 01	34	59,1	0,371	1,151
39 Amoucha 03 02 04 63 48,2 0,360 0,228 40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	38	Arkoub	02 19 11	32	55,9	0,417	1,590
40 Ain Roua 03 02 05 54 46,2 0,370 1,345 41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	39	Amoucha	03 02 04	63		0,360	0,228
41 Dirach 05 04 02 37 30,8 0,411 1,171 42 El haourane 05 08 02 32 31,3 0,569 2,112 43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	40	Ain Roua	03 02 05	54		0,370	1,345
43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	41	Dirach	05 04 02	37	30,8	0,411	1,171
43 Bordj G'dir 05 09 04 51 32,9 0,409 0,273 44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	42	El haourane	05 08 02	32	31,3	0,569	2,112
44 Medjana 05 09 06 54 39,4 0,342 0,400 45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607	43		05 09 04				
45 Ras Eloued 05 09 07 37 32,8 0,392 0,630 46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607		·	05 09 06				
46 Pont de la treille 09 03 14 33 44,3 0,386 1,182 47 Djebahia 09 04 03 50 54,2 0,446 1,607		č					
47 Djebahia 09 04 03 50 54,2 0,446 1,607							
		J	1				

Suite tableau III.8

III.7- Traitement des données pour chaque sous bassin

Le traitement des données hydrométéorologiques nécessite la détermination des valeurs moyennes des caractéristiques pluviographiques, notamment la pluie moyenne journalière maximale (\overline{P}) , le cœfficient de variation moyenne $(\overline{C_v})$ et le cœfficient climatique (\overline{b}) pour chaque sous bassins.

III.7.1- Détermination de la pluie moyenne journalière maximale

Ayant les coordonnées des stations d'enregistrement et les valeurs moyennes (p_o) au niveau de chaque station, La répartition spatiale de la pluie moyenne maximale journalière est exprimée sous forme de carte en isohyètes (Figure III.5) qui nous a permis de faire les constatations suivantes :

• la distribution spatiale suit une régularité latitudinale; les valeurs maximales occupent le Nord et la Nord-Ouest du bassin versant de la Soummam; elle atteint le maximum (60mm) aux monts de Lala Khdidja.

- les pluies maximales diminuent en allant du nord vers le Sud de la Soummam, sa valeur minimale avoisine 28mm.
- La pluie maximale dépasse 50 mm au bord de la mer et elle atteint 45 mm aux hauts plateaux.

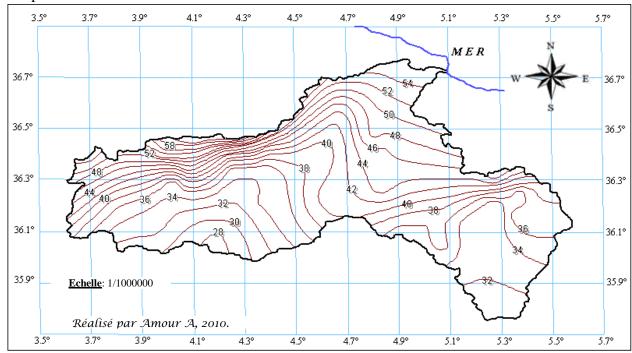


Figure III.5 : Carte de la pluie moyenne journalière maximale de la Soummam

Pour l'évaluation de la pluie maximale moyenne au niveau des sous bassins nous avons utilisé la méthode des isohyètes; méthode plus précise que celle de Thiessen mais plus laborieuse. La pluie maximale moyenne est donc donnée par la formule suivante :

$$\overline{P} = \frac{\sum S_i \times P_m}{S}$$
 (III-6)

$$P_m = \frac{P_i + P_{i+1}}{2} \tag{III-7}$$

 P_m : Pluie maximale moyenne pour la surface S_i ;

 S_i : Surface comprise entre deux isohyètes consécutives P_i et P_{i+1} ;

S: Surface totale.

Nous présentons le cas de la station de Sidi Yahia qui contrôle une surface de 4050 km², après avoir délimiter, bien sur, la surface contrôlée par chaque station de jaugeage (figure III.6).

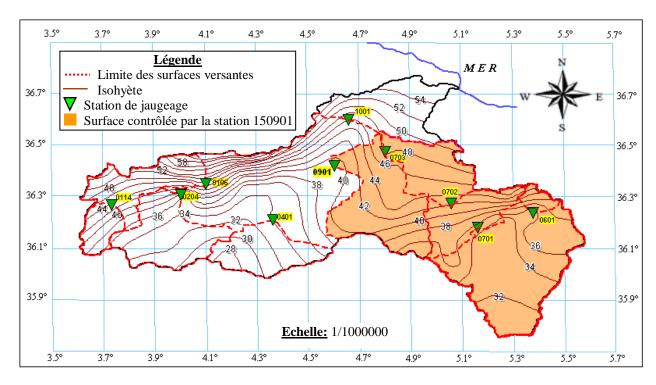


Figure III.6 : Délimitation des surfaces contrôlées par les stations de jaugeage

Tableau III.9 : calcul de la pluie maximale moyenne pour la zone contrôlée par la station Sidi Yahia (15 09 01)

N°	S_{i}	P _m	$S_i.P_m$
1	263,60	31	8171,58
2	706,76	33	23323,15
3	492,03	35	17220,89
4	560,27	37	20730,12
5	245,81	39	9586,70
6	392,90	41	16108,94
7	343,34	43	14763,56
8	455,55	45	20499,90
9	255,01	47	11985,28
10	222,73	49	10913,79
11	66,87	41	2741,63
12	45,13	40	1805,03
	$\overline{P} = 39$.0 mm	

Le même procédé a été appliqué pour les autres sous bassins, les résultats obtenus sons récapitulés dans le tableau suivant :

 $\boldsymbol{n}^{\mathrm{o}}$ \overline{P} [mm]Oued Code S Station 1 842 Eddous Tilesdit 15 01 06 46,1 2 Lekhal Ain tasta 15 01 14 190 40,1 15 02 04 3 Zaiane El-Esnam 800 33,6 4 Azerou Porte de fer 15 04 01 605 31,3 Fermatou 15 06 01 40,3 5 Bousellam 105 Bousellam Ain zada 15 07 01 1800 34,5 6 7 Bousellam Magraoua 15 07 02 2350 35,6 8 Bousellam 15 07 03 2950 37,9 **Boubirek** 9 SidiYahia Bousellam 15 09 01 4050 39,0 10 Bousellam Sidi Aich 15 10 01 8420 39,0 29,0 11 Leham RocadeSud 05 05 01 5600 12 Ced Fagues 05 08 01 337 30,1 Lougmane 13 Ksob Medjez 05 09 01 1330 34,2 Sidi ouadeh 14 Soubellah 05 11 01 170 30,7 Beni sliman 09 03 05 15 Malah 273 44,9 Elkbir Tassadane 10 01 09 960 40.9 16

Tableau III.10 : Les valeurs des pluies journalières maximales moyennes

III.7.2- Estimation du coefficient de variation

Considérant la répartition spatiale continue, la construction de la carte du coefficient de variation de la pluie journalière maximale C_{ν} (figure III.7) a permis de faire les constatations suivantes:

- Les valeurs minimales du coefficient de variation sont observées à Béjaia et au Djebel Magres, elles sont de l'ordre de 0.34.
- Les valeurs maximales du coefficient de variation dépassent 0.5 pour atteindre 0.62 à la frontière sud du bassin.
- Il y a une tendance de diminution du Nord vers le Sud, se qui confirme l'idée que généralement, en zone humide de pluie abondante, la variation des différentes phases de la pluie est modérée, y compris la phase maximale. Par contre, en zone semi-aride la pluie maximale journalière se caractérise par une valeur du coefficient de variation très importante.

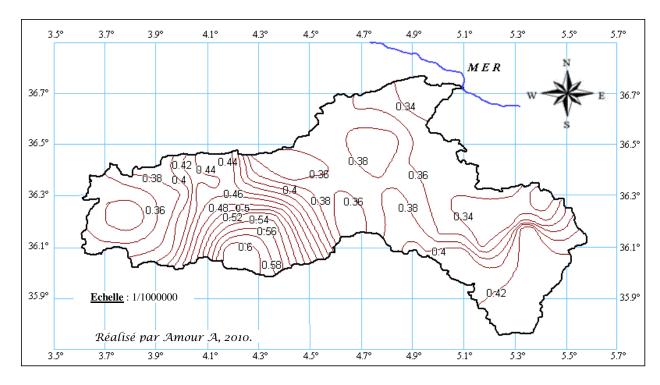


Figure III.7 : Carte du cœfficient de variation de la pluie moyenne journalière maximale de la Soummam

Apres l'établissement de la carte en ligne isovaleur du coefficient de variation C_{ν} (figure III.7), la valeur moyenne de cette caractéristique est assimilée à celle du centre de gravité hydrologique de chaque sous bassin.

Les valeurs du coefficient de variation de la pluie journalière maximales moyenne des sous bassins de la Soummam et bassins limitrophes se trouvent dans le tableau ci-dessous.

Tableau III.11: Les valeurs du coefficient de variation des pluies journalière maximales moyennes

Nº	Oued	Station	Code	X	Y	$\overline{C}_{\scriptscriptstyle u}$
1	Eddous	Tilesdit	15 01 06	3,7517	36,2635	0,34
2	Lekhal	Ain tasta	15 01 14	3,6764	36,1643	0,35
3	Zaiane	El-Esnam	15 02 04	3,9659	36,1682	0,39
4	Azerou	Porte de fer	15 04 01	4,3503	36,0912	0,57
5	Bousellam	Fermatou	15 06 01	5,3871	36,2897	0,31
6	Bousellam	Ain zada	15 07 01	5,2763	36,0473	0,40
7	Bousellam	Magraoua	15 07 02	5,2672	36,0466	0,40
8	Bousellam	Boubirek	15 07 03	5,1832	36,1503	0,33
9	Bousellam	SidiYahia	15 09 01	5,0752	36,5485	0,35
10	Bousellam	Sidi Aich	15 10 01	4,5954	36,1841	0,36
11	Leham	RocadeSud	05 05 01	3,7429	35,7190	0,46
12	Lougmane	Ced Fagues	05 08 01	4,3080	35,9009	0,57
13	Ksob	Medjez	05 09 01	4,8125	35,9819	0,41
14	Soubellah	Sidi ouadeh	05 11 01	5,1520	35,7789	0,43
15	Malah	Beni sliman	09 03 05	3,3615	36,0983	0,41
16	Elkbir	Tassadane	10 01 09	5,6502	36,3775	0,45

III.7.3- Détermination du coefficient climatique de réduction de la pluie par le temps

Comme tout facteur météorologique, la pluie maximale journalière reflète la spécificité climatique de la région. Par conséquent, la relation entre la pluie maximale journalière et la pluie maximale d'une durée inférieure à 24 heures, appelée « pluie de courte durée », se traduit par un coefficient b appelé exposant climatique. Cet exposant est normalement soumis à la loi de continuité spatiale. D'où l'on peut cartographier.

Une carte illustrant la répartition de cette caractéristique pour le nord de l'Algérie a été établie par les services de l'ANRH d'où nous avons extrait la partie de la Soummam (figure III.8). En effet, pour la détermination de la valeur moyenne de ce coefficient pour chaque sous bassin, nous avons pris les valeurs correspondantes au centre de gravité hydrologique de ces derniers.

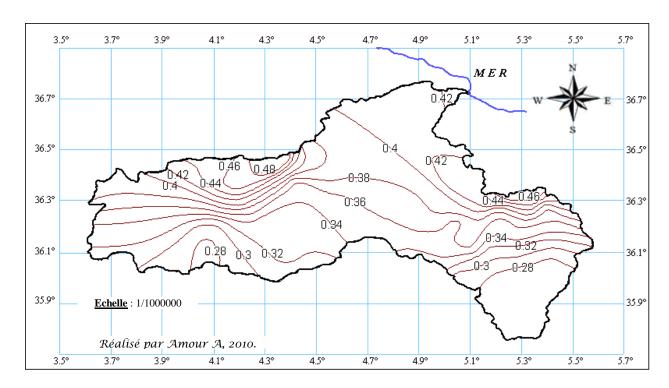


Figure III.8: Carte de l'exposant climatique « b » du bassin de la Soummam

Tableau III.12 : Les valeurs de l'exposant climatique des pluies journalières maximales moyennes

n°	Oued	Station	Code	X	Y	\bar{b}
1	Eddous	Tilesdit	15 01 06	3,7517	36,2635	0,36
2	Lekhal	Ain tasta	15 01 14	3,6764	36,1643	0,33
3	Zaiane	El-Esnam	15 02 04	3,9659	36,1682	0,31
4	Azerou	Porte de fer	15 04 01	4,3503	36,0912	0,33
5	Bousellam	Fermatou	15 06 01	5,3871	36,2897	0,41
6	Bousellam	Ain zada	15 07 01	5,2763	36,0473	0,29
7	Bousellam	Magraoua	15 07 02	5,2672	36,0466	0,29
8	Bousellam	Boubirek	15 07 03	5,1832	36,1503	0,34
9	Bousellam	SidiYahia	15 09 01	5,0752	36,5485	0,42
10	Bousellam	Sidi Aich	15 10 01	4,5954	36,1841	0,35
11	Leham	RocadeSud	05 05 01	3,7429	35,7190	0,27
12	Lougmane	Ced Fagues	05 08 01	4,3080	35,9009	0,29
13	Ksob	Medjez	05 09 01	4,8125	35,9819	0,32
14	Soubellah	Sidi ouadeh	05 11 01	5,1520	35,7789	0,28
15	Malah	Beni sliman	09 03 05	3,3615	36,0983	0,34
16	Elkbir	Tassadane	10 01 09	5,6502	36,3775	0,48

Les valeurs des caractéristiques pluviographiques des différents sous bassins sont récapitulées dans le tableau suivant:

Tableau III.13 : les caractéristiques pluviographiques des différents sous bassins

n°	Oued	Station	Code	\overline{P} $[mm]$	$\overline{\overline{C}}_{\scriptscriptstyle u}$	\overline{b}
1	Eddous	Tilesdit	15 01 06	46,1	0,34	0,36
2	Lekhal	Ain tasta	15 01 14	40,1	0,35	0,33
3	Zaiane	El-Esnam	15 02 04	33,6	0,39	0,31
4	Azerou	Porte de fer	15 04 01	31,3	0,57	0,33
5	Bousellam	Fermatou	15 06 01	40,3	0,31	0,41
6	Bousellam	Ain zada	15 07 01	34,5	0,40	0,29
7	Bousellam	Magraoua	15 07 02	35,6	0,40	0,29
8	Bousellam	Boubirek	15 07 03	37,9	0,33	0,34
9	Bousellam	SidiYahia	15 09 01	38,0	0,35	0,42
10	Bousellam	Sidi Aich	15 10 01	39,0	0,36	0,35
11	Leham	RocadeSud	05 05 01	29,0	0,46	0,27
12	Lougmane	Ced Fagues	05 08 01	30,1	0,57	0,29
13	Ksob	Medjez	05 09 01	34,2	0,41	0,32
14	Soubellah	Sidi ouadeh	05 11 01	30,7	0,43	0,28
15	Malah	Beni sliman	09 03 05	44,9	0,41	0,34
16	Elkbir	Tassadane	10 01 09	40,9	0,45	0,48

III.8 - Analyse régionale des paramètres statistiques des débits maxima

Théoriquement, l'estimation des caractéristiques statistiques des séries courtes se caractérise par des erreurs énormes. Les écarts par rapport à la valeur vraisemblable peuvent être négatives ou positives. La caractéristique statistique vraisemblable est celle qui est adéquate à la distribution spatiale de celle-ci.

Dans notre cas, les séries des débits maxima des crues pluviales sont relativement très courtes et lacunaires. La taille des séries varie de 11 ans pour l'oued Malah à Beni Sliman à 37 ans pour l'oued Boussellam à Sidi Yahia (tableau III.6). A priori, nous savons que les valeurs des caractéristiques statistiques estimées avec ces séries comportent des erreurs significatives par rapport aux valeurs réelles régionales. Néanmoins, la première estimation ponctuelle de ces caractéristiques permet de chercher la relation avec les facteurs morphomètriques des sous bassins.

III.8.1- Analyse graphique de la dépendance entre les débits maxima moyens et les facteurs morphométriques

Tout d'abord, il faut construire les graphes de dépendance entre le débit moyen spécifique et les facteurs morphométriques donnés, notamment la superficie des sous bassins, la pente moyenne de leurs cours d'eau principaux et l'altitude moyenne. Bien sûr les deux variables sont considérées sous forme logarithmique.

La dépendance de $\ln(q_o/(S+1))$ en fonction de la superficie des sous bassin $\ln(S+1)$ s'est avérée linéaire avec un coefficient de corrélation très élevé r=0.96.

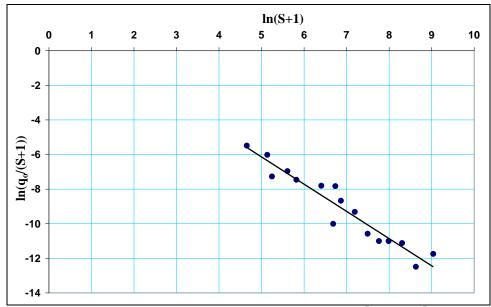


Figure III.9: La dépendance $\ln(q_o/(S+1)) = f[\ln(S+1)]$

La dépendance de $\ln(q_o/(I+1))$ en fonction de la pente moyenne du cours d'eau $\ln(I+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation plus ou moins significatif r=0.51.

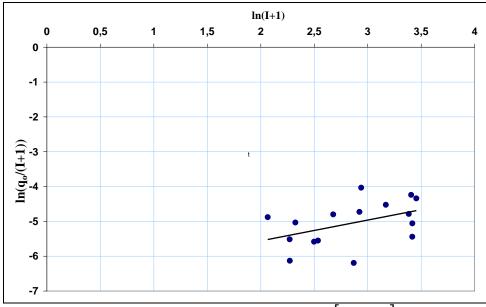


Figure III.10: La dépendance $\ln(q_o/I+1) = f[\ln(I+1)]$

Alors que la dépendance de $\ln(q_o/(H+1))$ en fonction de l'altitude moyenne du sous bassin $\ln(H+1)$, malgré la linéarité apparente elle s'est caractérisée par un coefficient de corrélation très faible et non significatif r=0.117.

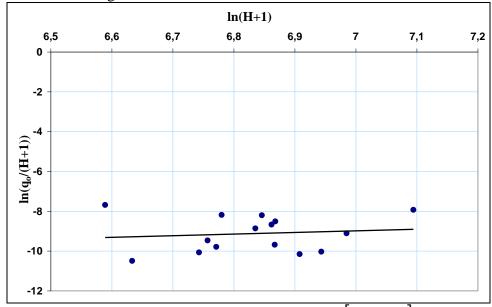


Figure III.11: La dépendance $\ln(q_o/(H+1)) = f[\ln(H+1)]$

Effectivement, sur les grands bassins le temps de base est grand. Ceci provoque une réduction importante du débit moyen spécifique avec l'augmentation de la superficie. Au contraire avec l'augmentation de la pente du talweg, la vitesse du courant augmente et le temps de montée ainsi que le temps de base diminuent, d'où l'augmentation du débit moyen. Vu l'influence de l'altitude moyenne des sous bassins ne s'est pas manifestée, on n'en tient pas compte.

Ainsi, le modèle monôme puissance semble plus approprié pour décrire cette dépendance qui est de la forme suivante :

$$q_o = C_a (S+1)^a (I+1)^b$$
 (III-8)

où:

a: Coefficient de réduction par la surface égal à -0.286;

b : Coefficient d'accroissement par la pente égal à 0.798 ;

 C_a : Coefficient climatique.

L'analyse a montré que le coefficient climatique C_{q_o} est indépendant des facteurs mophomètriques et il n'est pas soumis à une répartition spatiale latitudinale. Par conséquent, on peut le considérer moyen pour toute la région (Soummam). Il est pris égal à la moyenne arithmétique pour les seize sous bassins:

$$\overline{C}_{q_o} = \frac{\sum \frac{S_i^a I_i^b}{q_{oi}}}{16} = 0.093$$
 (III-9)

En définitif, le débit maximum moyen est estimé par l'expression suivante:

$$q_o = 0.093 \frac{(I+1)^{0.798}}{(S+1)^{0.286}}$$
 (III-10)

Les écarts relatifs par rapport aux valeurs régionales sont estimés par la relation suivante :

$$\delta_{q_o} = \frac{q_o - q_{ocal}}{q_o} 100 \tag{III-11}$$

Tableau III.14: Les écarts relatifs en %.entre q_o et $q_{o,cal}$

					0 10,000	
n°	Oued	Station	Code	q_o	$q_{o,cal}$	$\left \delta_{q_o} ight $
1	Eddous	Tilesdit	15 01 06	0,335	0,141	57,8
2	Lekhal	Ain tasta	15 01 14	0,132	0,317	140
3	Zaiane	El-Esnam	15 02 04	0,036	0,136	277
4	Azerou	Porte de fer	15 04 01	0,246	0,222	9,91
5	Bousellam	Fermatou	15 06 01	0,435	0,372	14,4
6	Bousellam	Ain zada	15 07 01	0,046	0,080	75,2
7	Bousellam	Magraoua	15 07 02	0,039	0,062	58,6
8	Bousellam	Boubirek	15 07 03	0,049	0,072	46,0
9	Bousellam	SidiYahia	15 09 01	0,060	0,045	25,1
10	Bousellam	Sidi Aich	15 10 01	0,067	0,045	32,7
11	Leham	RocadeSud	05 05 01	0,021	0,048	128
12	Lougmane	Ced Fagues	05 08 01	0,194	0,269	38,9
13	Ksob	Medjez	05 09 01	0,120	0,101	15,9
14	Soubellah	Sidi ouadeh	05 11 01	0,413	0,337	18,3
15	Malah	Beni sliman	09 03 05	0,258	0,235	9,18
16	Elkbir	Tassadane	10 01 09	0,164	0,134	18,2

Pour certains sous bassins, les valeurs des écarts relatifs sont très importantes, cela montre que la quantité des données ponctuelles influent clairement sur la qualité des valeurs des caractéristiques.

III.8.2- Analyse graphique de la dépendance entre le cœfficient de variation des débits maxima moyens et les facteurs morphométriques

Tout d'abord, il faut construire les graphes de dépendance entre le coefficient de variation spécifique et les facteurs morphométriques donnés. Bien sûr, les deux variables sont considérées sous forme logarithmique.

La dépendance de $\ln(C_v/(S+1))$ en fonction de la superficie des sous bassin $\ln(S+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation très élevé r=0.97.

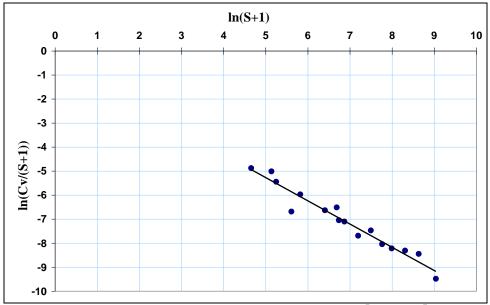


Figure III.12: La dépendance $\ln(C_v/(S+1)) = f[\ln(S+1)]$

La dépendance de $\ln(C_v/(I+1))$ en fonction de la pente moyenne du talweg $\ln(I+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation très élevé r=0.86.

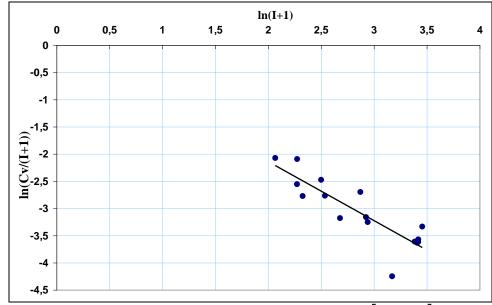


Figure III.13: La dépendance $\ln(C_v/(I+1)) = f[\ln(I+1)]$

Alors que la dépendance de $\ln(C_v/(H+1))$ en fonction de l'altitude moyenne du sous bassin $\ln(H+1)$ s'est caractérisée par un coefficient de corrélation moins significatif r=0.45.

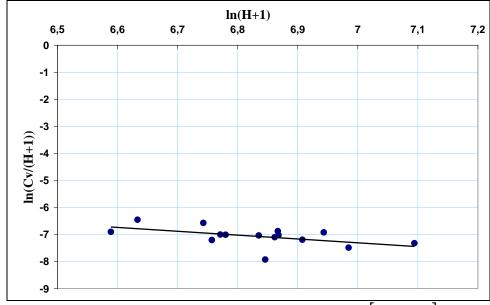


Figure III.14: La dépendance $\ln(C_v/(H+1)) = f[\ln(H+1)]$

L'analyse graphique des dépendances entre le cœfficient de variation C_{ν} et les facteurs morphométriques montre que celui-ci est proportionnel à la surface et inversement proportionnel à la pente moyenne, les figures (III.12 et III.13) illustrent bien cette dépendance. Par contre le graphe de la figure (III.14) montre que le cœfficient de variation est presque indépendant de l'altitude moyenne. Ainsi le modèle monôme puissance semble plus approprié pour décrire cette dépendance

$$C_{\nu} = C_{C_{\nu}} \frac{(S+1)^{0.017}}{(I+1)^{0.043}}$$
 (III-12)

Les puissances 0.017 et 0.043 sont déterminées respectivement à partir des pentes des droites de régression $\ln(C_v/(S+1)) = -0.967 \ln(S+1) - 0.436$ avec cœfficient de corrélation r = 0.97 et $\ln(C_v/(I+1)) = -1.086 \ln(I+1) + 0.035$ avec r = 0.87.

L'analyse a montré que le coefficient climatique C_{C_v} est indépendant des facteurs mophomètriques et il n'est pas soumis à une répartition spatiale latitudinale. Par conséquent, on peut le considérer moyen pour toute la région. Il est égal à la moyenne arithmétique pour les seize sous bassins

$$C_{C_{v}} = \frac{\sum C_{v,i} \frac{(I_{i} + 1)^{0.043}}{(S_{i} + 1)^{0.017}}}{16} = 0.848 \quad \text{(III-13)}$$

En définitif, le coefficient de variation est estimé par l'expression suivante:

$$C_{\nu} = 0.848 \frac{(S+1)^{0.017}}{(I+1)^{0.043}}$$
 (III-14)

Les écarts relatifs par rapport aux valeurs régionales sont estimés par la relation suivante :

$$\delta_{Cv} = \frac{C_v - C_{vocal}}{C_v} 100$$
 (III-15)

Tableau III.15: Les écarts relatifs entre C_v et $C_{v,cal}$

n°	Oued	Station	Code	$C_{\scriptscriptstyle u}$	$C_{v,cal}$	$\left \delta_{C_{ u}} ight $
1	Eddous	Tilesdit	15 01 06	0,734	0,838	14,2
2	Lekhal	Ain tasta	15 01 14	0,821	0,800	2,5
3	Zaiane	El-Esnam	15 02 04	1,190	0,840	29,4
4	Azerou	Porte de fer	15 04 01	0,799	0,818	2,3
5	Bousellam	Fermatou	15 06 01	0,800	0,793	0,9
6	Bousellam	Ain zada	15 07 01	1,027	0,865	15,8
7	Bousellam	Magraoua	15 07 02	0,755	0,878	16,2
8	Bousellam	Boubirek	15 07 03	0,796	0,871	9,4
9	Bousellam	SidiYahia	15 09 01	0,996	0,894	10,3
10	Bousellam	Sidi Aich	15 10 01	0,641	0,895	39,6
11	Leham	RocadeSud	05 05 01	1,200	0,891	25,8
12	Lougmane	Ced Fagues	05 08 01	0,861	0,808	6,1
13	Ksob	Medjez	05 09 01	0,608	0,854	40,5
14	Soubellah	Sidi ouadeh	05 11 01	1,132	0,798	29,5
15	Malah	Beni sliman	09 03 05	0,341	0,814	138,7
16	Elkbir	Tassadane	10 01 09	0,791	0,840	6,3

III.8.3-Analyse graphique de la dépendance entre le cœfficient d'asymétrie des débits maxima moyens et les facteurs morphométriques

De la même façon que précédemment, on construit les graphes de dépendance entre le débit moyen spécifique et les facteurs morphométriques donnés en utilisant l'anamorphose logarithmique.

La dépendance de $\ln(C_s/(S+1))$ en fonction de la superficie des sous bassins $\ln(S+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation très significatif : r = 0.95.

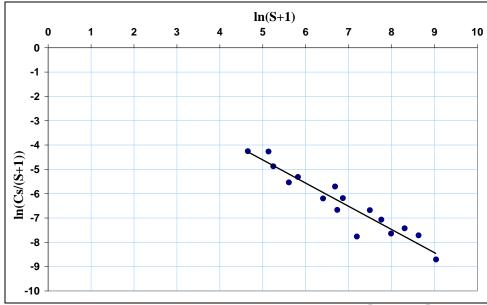
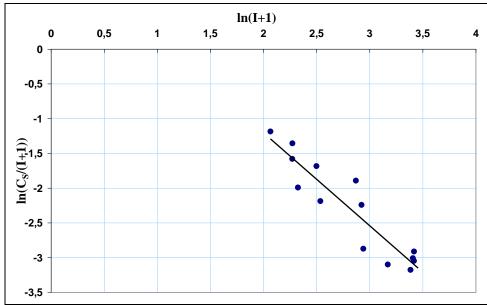



Figure III.15: La dépendance $\ln(C_s/(S+1)) = f[\ln(S+1)]$

La dépendance de $\ln(C_s/(I+1))$ en fonction de la pente moyenne du talweg $\ln(I+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation très élevé r=0.93.

Figure III.16: La dépendance $\ln(C_s/(I+1)) = f[\ln(I+1)]$

Alors que la dépendance de $\ln(C_s/(H+1))$ en fonction de l'altitude moyenne du sous bassin $\ln(H+1)$ et elle s'est caractérisée par un coefficient de corrélation moins significatif r=0.42.

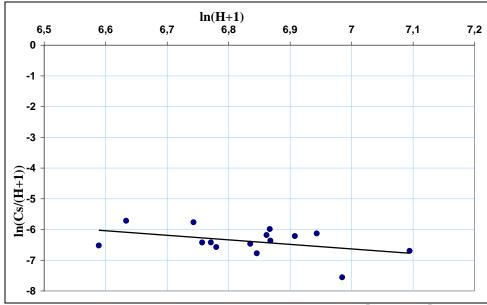


Figure III.17: La dépendance $\ln(C_s/(H+1)) = f[\ln(H+1)]$

L'analyse graphique des dépendances entre le cœfficient d'asymétrie C_s et les facteurs morphométriques montre que celui-ci est proportionnel à la surface et inversement proportionnel à la pente moyenne, les figure (III.15 et III.16) illustrent bien cette dépendance. Par contre le graphe de la figure (III.17) montre que le cœfficient d'asymétrie est presque indépendant de l'altitude moyenne. Le modèle monôme puissance décrivant cette dépendance s'écrit comme suit :

$$C_s = C_{C_s} \frac{(S+1)^{0.023}}{(I+1)^{0.169}}$$
 (III-16)

L'analyse a montré que le coefficient climatique C_{C_s} est indépendant des facteurs mophomètriques et il n'est pas soumis à une répartition spatiale latitudinale. Par conséquent, on peut le considérer moyen pour toute la région. Il est égal à la moyenne arithmétique pour les seize sous bassins.

$$\overline{C}_{C_s} = \frac{\sum C_{s,i} \frac{(I_i + 1)^{0.169}}{(S_i + 1)^{0.023}}}{16} = 2.37$$
 (III-17)

En définitif, le coefficient d'assymétrie est estimé par l'expression suivante:

$$C_s = 2.37 \frac{(S+1)^{0.023}}{(I+1)^{0.169}}$$
 (III-18)

Les écarts relatifs par rapport aux valeurs régionales sont estimés par la relation suivante :

$$\delta_{C_s} = \frac{C_s - C_{s\,cal}}{C_s} 100 \tag{III-19}$$

N°	Oued	Station	Code	C_s	$C_{s,cal}$	$\left \delta_{C_s} ight $
1	Eddous	Tilesdit	15 01 06	1,070	1,685	57,499
2	Lekhal	Ain tasta	15 01 14	1,448	1,502	3,749
3	Zaiane	El-Esnam	15 02 04	2,660	1,703	35,970
4	Azerou	Porte de fer	15 04 01	1,231	1,551	26,032
5	Bousellam	Fermatou	15 06 01	1,490	1,485	0,368
6	Bousellam	Ain zada	15 07 01	2,260	1,848	18,247
7	Bousellam	Magraoua	15 07 02	1,998	1,932	3,308
8	Bousellam	Boubirek	15 07 03	1,417	1,857	31,064
9	Bousellam	SidiYahia	15 09 01	2,415	2,025	16,137
10	Bousellam	Sidi Aich	15 10 01	1,396	1,972	41,234
11	Leham	RocadeSud	05 05 01	2,502	1,971	21,241
12	Lougmane	Ced Fagues	05 08 01	1,658	1,522	8,200
13	Ksob	Medjez	05 09 01	0,565	1,780	215,058
14	Soubellah	Sidi ouadeh	05 11 01	2,382	1,489	37,498
15	Malah	Beni sliman	09 03 05	1,074	1,579	47,059
16	Elkbir	Tassadane	10 01 09	1,979	1,695	14,346

Tableau III.16: Les écarts relatifs entre C_s et $C_{s,cal}$

Comme il est attendu les erreurs de calculs du coefficient d'asymétrie restent toujours importantes.

Conclusion

La collecte des données hydrométéorologiques s'est limitée aux données ordinaires publiées par les services hydrologiques et météorologiques.

Les données morphomètriques, collectées dans les documents oficielles de l'A.N.R.H, sont les coordonnées géographiques, la superficie des sous bassins, l'altitude moyenne, la longueur du cours d'eau principal et sa pente moyenne.

Les données pluviométriques sont collectées au niveau de 34 stations situées à l'intérieure du bassin de la Soummam et 14 stations limitrophes.

On a pu collecter les données des débits maxima annuels pour 10 sous bassins de la Soummam et 6 sous bassins limitrophes. Cependant, les tailles des séries d'observations varient de 14 années à 37 années, soit une moyenne de 24 ans. Certaines séries contiennent des lacunes mensuelles qui provoquent aussi des lacunes annuelles.

Soit le débit maximum mensuel instantané dont la probabilité d'apparition égale à 1/6 durant cette période (de novembre à avril). L'apparition d'un débit maximum instantané durant les cinq autres mois représente une probabilité égale à 5/6.

Pour combler certaines lacunes annuelles, on a proposé donc, de considérer uniquement les débits dont la probabilité d'apparition est supérieure ou égale à 50% : c'est-à-dire le nombre de lacune dans la série est de 3 au maximum.

La dépendance entre les données des stations pluviométriques s'est avérée inexistante car les corrélations de données de pluie maxima sont faibles. Ceci oblige le recours à la méthode d'interpolation spatiale qui est fondée sur le concept de généralisation territoriale.

Il s'agit de calculer la valeur d'une variable régionalisée en un point non mesuré, à partir d'observations faites en un certain nombre de points. Ainsi, connaissant les coordonnées d'un poste on peut lui tirer la valeur de pluie correspondante.

Le traitement statistique a permis, sur la base des données empiriques, l'estimation du débit spécifique maximum moyen q_o , du coefficient de variation C_v et du coefficient d'asymétrie C_s , qui sont indispensables pour le lissage des courbes empiriques par des courbes théoriques et leur extrapolation.

L'analyse statistique des pluies maximales est réalisée exactement comme celle des débits maxima.

Un traitement spécifié a été effectué pour l'estimation des valeurs moyennes des caractéristiques pluviographiques, notamment la pluie moyenne journalière maximale \overline{P} , le cœfficient de variation moyen $\overline{C_v}$ et le cœfficient climatique \overline{b} pour chaque sous bassins. L'estimation de ces grandeurs est tirée des cartes élaborées spécialement dans le cadre de cette étude.

L'estimation des caractéristiques statistiques des séries courtes se caractérise par des erreurs énormes. Les écarts, par rapport aux valeurs régionales vraisemblables, peuvent être négatives ou positives. La caractéristique vraisemblable est celle qui est adéquate avec l'influence des facteurs locaux dans le contexte régional. Nous disposons de séries des débits maxima des crues pluviales relativement très courtes. L'analyse régionale a montré aussi que les facteurs morphométrique les plus explicatifs des caractéristiques statistiques cités précédemment sont la superficie et la pente moyenne.

Le débit maximum moyen est exprimé comme suit:

$$q_o = 0.093 \frac{(I+1)^{0.798}}{(S+1)^{0.286}}$$
 (III-20)

Le coefficient de variation est exprimé comme suit:

$$C_{v} = 0.848 \frac{(S+1)^{0.017}}{(I+1)^{0.043}}$$
 (III-21)

Et le coefficient d'asymétrie est aussi exprimé comme suit:

$$C_s = 2.37 \frac{(S+1)^{0.023}}{(I+1)^{0.169}}$$
 (III-22)

Les résultats de cette analyse ont montré que les écarts relatifs par rapport aux valeurs régionales varient dans un grand diapason et peuvent, dans certains cas, dépasser les 100%.

CHAPITRE IV

IDENTIFICATION DES CARACTERISTIQUES DES HYDROGRAMMES DES CRUES PLUVIALES

CHAPITRE IV

IDENTIFICATION DES CARACTERISTIQUES DES HYDROGRAMMES DES CRUES PLUVIALES

Introduction

L'hydrogramme d'une crue pluviale est la représentation graphique de la dynamique de variation des niveaux d'eau et des débits d'eau au niveau d'une section de mesure d'un cours d'eau. La forme de celui-ci est conditionnée par les facteurs générateurs de la crue: le ruissellement et la morphométrie du cours d'eau. Les principales caractéristiques d'un hydrogramme sont le débit maximum, le volume d'écoulement, le temps de montée et le temps de base. L'objectif de ce chapitre est l'identification de ces caractéristiques, en utilisant uniquement des données hydrométéorologiques ordinaires.

IV.1- Analyse fréquentielle des débits maxima annuels

L'estimation des événements extrêmes est l'une des questions fondamentales de l'hydrologie de l'ingénieur. L'estimation des crues de projet de probabilité rare justifie le dimensionnement économique des ouvrages hydrauliques (pont, digue, ponceau, barrage etc.).

L'analyse fréquentielle des débits maxima annuels représente un des outils les plus employés pour répondre à cette préoccupation. La méthode consiste à ajuster une loi statistique à un échantillon de débits maxima afin d'évaluer la relation entre l'estimation $q_{p\%}$ du débit de période de retour T et la probabilité au dépassement correspondante p définie par le rapport $p=\frac{1}{T}$ (Bobée et Ashkar, 1991).

La distribution des débits maxima des crues reste mal déterminée, hormis quelques études fragmentaires où les auteurs ont utilisé soit la loi de Gumbel (Hayane, 1983) soit celle de Frechet (Ghachi, A. 1986). On a souvent admis, à tort ou à raison, que les débits maximums annuels s'ajustent à une loi de type Galton ou à celle de Gumbel. En effet la distribution statistique d'un échantillon de maxima annuels n'est jamais normale. Il semblerait assez logique qu'elle suive une loi de Galton, Gumbel ou PearsonIII (Dubreuil, 1974 a. Laborde, 2000). Diverses lois ont été proposées mais il n'existe malheureusement pas de méthode universelle et infaillible pour faciliter le choix (Bobée et Ashkar, 1991).

Dans la présente étude nous avons utilisé la loi Pearson III. Celle-ci est souple et a besoin uniquement trois paramètres statistiques: la moyennes, le cœfficient de variation et le cœfficient d'asymétrie.

La forme standardisée de la loi Pearson III est une transformation linéaire de la fonction gamma (Bobée et Ashkar,1991).

$$F(t) = k \int_{t}^{\infty} e^{\lambda t} (X + \sqrt{\lambda})^{\lambda t} dt$$
 (IV-1)

Avec:
$$k = \frac{e^{\lambda} \sqrt{\lambda}^{\lambda}}{\gamma(\lambda)}$$
;

 $\gamma(\lambda)$: Fonction gamma;

 λ : Paramètre de forme;

t est la variable réduite ayant pour expression :

$$t = \frac{X_i - X_o}{\sigma} = \frac{k_i - 1}{C_v}$$
 (IV-2)

Avec: $k_i = \frac{X_i}{X_o}$

 σ : écart type de la série X_o : moyenne de la série k_i : coefficient modulaire

La variable t n'est en fait que la fonction Foster Rybkine $F_{p\%}$ qui est tabulée (Annexe VI) et dépend du cœfficient de variation C_{y} , du cœfficient d'asymétrie C_{s} et de la probabilité p%.

$$t = F_{p\%} = \frac{k_{p\%} - 1}{C_{..}}$$
 (IV-3)

D'où

$$k_{n\%} = F_{n\%} C_{v} + 1$$
 (IV-4)

La valeur extrême $X_{p\%}$ peut être calculée par l'expression suivante :

$$X_{n\%} = k_{n\%} X_o = (F_{n\%} C_v + 1) X_o$$
 (IV-5)

IV.1.1- Calcul des débits maxima spécifiques fréquentiels

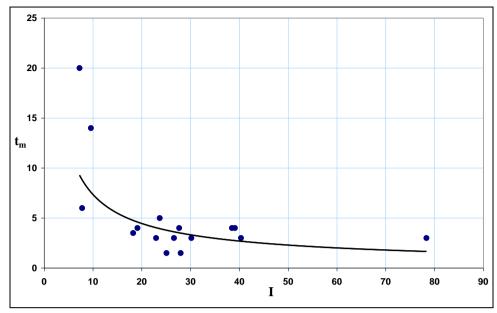
Les séries étudiées représentent des débits instantanés maxima annuels mesurés au niveau des différents cours d'eau. Elles ne sont pas forcément de même étendues et ne se rapportent pas par conséquent toujours aux mêmes périodes. Les valeurs des débits maxima sont calculées pour les fréquences 0.1%, 1%, 2%, 5% et 10%, qui couvrent le domaine des fréquences rares les plus utilisées dans la pratique hydrologique. A titre d'exemple on présente le cas d'Oued Soummam à la station de Sidi Aich.

Connaissant les caractéristiques statistiques de la série d'observation q_o , C_v , C_s qui sont respectivement 0.045, 0.895, et 1.972 on tire à partir du tableau Foster Rybkine (AnnexeVI) la valeur du nombre Foster Rybkine $F_{p_\%}$ pour chaque fréquence qui correspond à la valeur du coefficient d'asymétrie C_s donnée, puis on calcule le cœfficient modulaire $k_{p_\%}$ pour évaluer en fin la valeur fréquentielle $q_{p_\%}$.

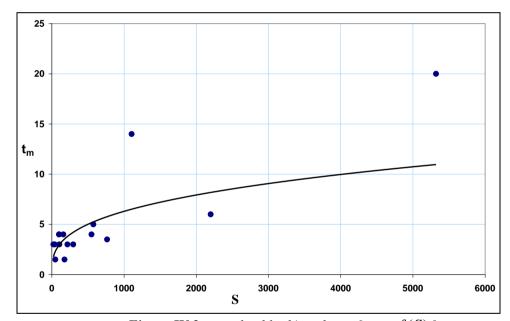
Tableau IV.1: Calculs des valeurs des débits spécifiques maxima fréquentiels de Oued Soummam à SidiAich - code 15 10 01

$P_{\%}$	0.1%	1%	2%	5%	10%
$F_{P\%}$	5,84	3,58	2,9	2	1,3
$k_{P\%} = F_{P\%}C_{v} + 1$	6,226	4,203	3,595	2,790	2,163
$q_{p\%} = k_{p\%} q_o$	0,279	0,188	0,161	0,125	0,097

Les tableaux de calcul des débits spécifiques maxima fréquentiels au niveau des autres stations sont présentés en AnnexeVII et les valeurs des débits spécifiques maxima pour différentes fréquences au niveau des 16 stations sont récapitulées dans le tableau suivant :


Tableau IV.2: Valeurs des débits spécifiques maxima fréquentiels

N°			etres stati		•		naxima fré		m ³ /s.km ²)
IN	Code	q_o	C_{v}	C_s	0,1%	1%	2%	5%	10%
1	15 01 06	0,141	0,838	1,685	0,793	0,549	0,474	0,375	0,298
2	15 01 14	0,317	0,800	1,502	1,643	1,162	1,012	0,811	0,654
3	15 02 04	0,136	0,840	1,703	0,763	0,528	0,456	0,360	0,286
4	15 04 01	0,222	0,818	1,551	1,182	0,830	0,722	0,577	0,463
5	15 06 01	0,372	0,793	1,485	1,916	1,355	1,181	0,948	0,765
6	15 07 01	0,080	0,865	1,848	0,475	0,324	0,278	0,217	0,171
7	15 07 02	0,062	0,878	1,932	0,379	0,256	0,219	0,170	0,132
8	15 07 03	0,072	0,871	1,857	0,427	0,291	0,250	0,195	0,154
9	15 09 01	0,045	0,894	2,025	0,282	0,189	0,162	0,125	0,097
10	15 10 01	0,045	0,895	1,972	0,279	0,188	0,161	0,125	0,097
11	05 05 01	0,048	0,891	1,971	0,299	0,202	0,173	0,134	0,104
12	05 08 01	0,269	0,808	1,522	1,407	0,993	0,865	0,693	0,558
13	05 09 01	0,101	0,854	1,780	0,586	0,402	0,346	0,271	0,214
14	05 11 01	0,337	0,798	1,489	1,744	1,233	1,074	0,862	0,695
15	09 03 05	0,235	0,814	1,579	1,260	0,882	0,765	0,609	0,489
16	10 01 09	0,134	0,840	1,695	0,756	0,523	0,452	0,357	0,284


IV.2- Identification du temps de montée

Rappelons que le temps de montée d'une crue est le temps qui correspond au débit courant maximum. Certains auteurs, pour les bassins de petite surface, considèrent cette durée égale au temps de concentration. Dans notre cas nous avons à faire à des bassins de grande taille ; des centaines voir des milliers de kilomètres carrés.

Dans le but de faire une estimation vraisemblable de cette caractéristique de crue nous avons exploité les résultats d'une étude (Ladjel M, 2007) qui a été faite sur 16 sous bassins du nord de l'Algérie (tableau IV.3). A partir des hydrogrammes des crues observés, on a établi la relation entre les temps de montée et les débits maxima des crues $t_m = f(Q_{\max})$. L'Analyse statistique des débits maxima a permis de considérer que les valeurs du temps de montée correspondent à la fréquence 2%. L'analyse graphique des dépendances de ces derniers avec les facteurs morphométriques a montré que le temps de montée est proportionnel à la surface avec un coefficient de corrélation égal à 0,74 et inversement proportionnel à la pente avec un coefficient de corrélation égal à 0,68 (voir figure IV.1, IV.2).

Figure IV.1: graphe d la dépendance [$t_m = f(I)$]

Figure IV.2: graphe d la dépendance [$t_m = f(S)$]

La régression multiple a permis donc d'écrire l'expression suivante:

$$t_m = 1.13 \frac{S^{0.29}}{I^{0.11}} \tag{IV-6}$$

Nº	Oued	Station	Code	S	L	Н	I	tm brute	tm cal	$\left \mathcal{\delta}_{\scriptscriptstyle tm} ight $
1	Khanga	Sidi Mezghiche	30702	100	19	341	38,5	4	2,88	28
2	El Kantara	El Mkaceb	30310	21,6	8,5	167	40,3	3	1,83	39
3	El Agrem	Cheddia	30334	41	9	437	78,3	3	2,05	32
4	Soubilla	Sidi ouadah	51101	176	33	1152	28,0	1,5	3,51	134
5	Mellah	Bouchegouf	140501	550	53	641	19,1	4	5,09	27
6	Ressoul	Ain Berda	140602	102	24	305	27,7	4	3,00	25
7	El Kébir-Est	Ain El Assal	31601	160	20	351	39,1	4	3,29	18
8	Reboa	Reboa	70403	296	40	1410	26,6	3	4,10	37
9	Chemora	Chemora	70501	765	65	1276	18,2	3,5	5,63	61
10	Medjerdah	Souk Ahras	120101	217	25,5	870	22,9	3	3,81	27
11	Zerga	Ain Zerga	120509	49	12,7	1015	25,1	1,5	2,45	63
12	Boussellam	Fermatou	150601	105	18	1205	30,2	3	3,00	0
13	Bouhamdane	Medjez Amar II	140301	1105	90	785	9,6	14	6,73	52
14	El Kébir	Ain Cherchar	31101	575	43	562	23,7	5	5,04	1
15	Rhumel	Grarem	100601	5320	157	806	7,2	20	10,94	45
16	Rhumel	Ain Smar	100403	2200	87	861	7,8	6	8,40	40

Tableau IV.3 : temps de montée brute et temps de montée calculé

Sur la base de la formule $t_m=1.13\frac{S^{0.29}}{I^{0.11}}$, on a estimé les valeurs du temps de montée des crues de fréquence 2% des sous bassins de la Soummam. En effet, en considérant une proportionnalité linéaire entre le temps de montée et la variable réduite de Gauss $U_{p\%}$; c'est-à-dire que le temps de montée augmente linéairement avec l'augmentation du débit, on peut donc calculer le temps de montée pour une fréquence quelconque par l'expression suivante:

$$t_{mp\%} = \frac{U_{p\%}}{U_{2\%}} t_{m2\%}$$
 (IV-7)

Les valeurs des temps de montée pour les différentes fréquences sont récapitulées dans le tableau IV.4.

N°	Oued	Station	Code	t _{m0.1%}	$t_{m1\%}$	t _{m2%}	$t_{m5\%}$	t _{m10%}
1	Eddous	Tilesdit	15 01 06	8,66	6,52	5,77	4,62	3,58
2	Lekhal	Ain tasta	15 01 14	5,33	4,01	3,55	2,84	2,20
3	Zaiane	El-Esnam	15 02 04	8,60	6,47	5,73	4,58	3,55
4	Azerou	Porte de fer	15 04 01	7,49	5,64	4,99	3,99	3,09
5	Bousellam	Fermatou	15 06 01	4,50	3,39	3,00	2,40	1,86
6	Bousellam	Ain zada	15 07 01	11,31	8,52	7,54	6,03	4,67
7	Bousellam	Magraoua	15 07 02	12,54	9,45	8,36	6,69	5,18
8	Bousellam	Boubirek	15 07 03	13,02	9,81	8,68	6,94	5,38
9	Bousellam	SidiYahia	15 09 01	15,02	11,31	10,01	8,01	6,21
10	Bousellam	Sidi Aich	15 10 01	18,06	13,61	12,04	9,63	7,46
11	Leham	RocadeSud	05 05 01	16,13	12,15	10,75	8,60	6,67
12	Lougmane	Ced Fagues	05 08 01	6,30	4,75	4,20	3,36	2,60
13	Ksob	Medjez	05 09 01	10,17	7,66	6,78	5,42	4,20
14	Soubellah	Sidi ouadeh	05 11 01	5,15	3,88	3,43	2,74	2,13
15	Malah	Beni sliman	09 03 05	6,09	4,59	4,06	3,25	2,52
16	Elkbir	Tassadane	10 01 09	9,00	6,78	6,00	4,80	3,72

Tableau IV.4 : le temps de montée des crues pour les différentes fréquences

IV.3- Evaluation du temps de concentration

Du point de vue hydrologique, le temps de concentration est la durée que met une phase hydrologique quelconque pour parcourir un tronçon du cours d'eau d'une longueur donnée. Bien sûr, quand il est question des débits maxima des crues, le temps de concentration est la durée que met un débit maximum, généré sur le bassin versant, pour arriver à l'exutoire. Il s'agit alors du temps de propagation de la crue tout le long du cours d'eau.

Vu l'absence des méthodes appropriées, développée dans les conditions physicogéographique du Nord de l'Algérie, l'estimation de cette caractéristique indispensable dans les calculs des débits maxima des crues, se contente des formules courantes dans la pratique hydrologique des régions analogues à celles du Nord de l'Algérie.

La formule de Goptchenko est développée pour la région steppique de l'Ukraine, (Goptshenko, 1989).

$$t_c = \frac{l}{1.19S^{0.14}I^{0.33}}$$
 (IV-8)

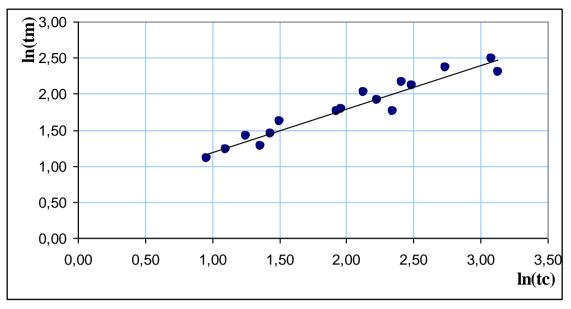
Où:

l : La longueur du cours d'eau principal exprimée en km.

S: La superficie du bassin versant, en km^2 ;

I: La pente moyenne du talweg principal, en %.

N°	Oued	Station	Code	S	l	I	t_c
1	Eddous	Tilesdit	15 01 06	842	85	18,9	10,55
2	Lekhal	Ain tasta	15 01 14	190	30	30,5	3,91
3	Zaiane	El-Esnam	15 02 04	800	54	17,6	6,91
4	Azerou	Porte de fer	15 04 01	605	40	29,5	4,49
5	Bousellam	Fermatou	15 06 01	105	18	30,2	2,56
6	Bousellam	Ain zada	15 07 01	1800	65	12,2	8,38
7	Bousellam	Magraoua	15 07 02	2350	90	9,7	12,05
8	Bousellam	Boubirek	15 07 03	2950	93,3	12,6	11,10
9	Bousellam	SidiYahia	15 09 01	4050	172	7,9	22,84
10	Bousellam	Sidi Aich	15 10 01	8420	197,2	10,2	21,73
11	Leham	RocadeSud	05 05 01	5600	131	9,7	15,54
12	Lougmane	Ced Fagues	05 08 01	337	35	30,5	4,22
13	Ksob	Medjez	05 09 01	1330	73	14,6	9,25
14	Soubellah	Sidi ouadeh	05 11 01	170	23	31,7	3,01
15	Malah	Beni sliman	09 03 05	273	26	23,8	3,50
16	Elkbir	Tassadane	10 01 09	960	58	18,6	7,10


Tableau IV.5 : Temps de concentration estimé par la formule de Goptchenko

IV.4- Détermination de la durée de ruissellement

La durée de ruissellement T_o dépend des facteurs de surface, comme la couverture végétale et la couverture pédologique, ainsi que des facteurs climatiques, telles que les précipitations, la température et l'évaporation. Son estimation consiste à développer la formule du temps de montée, qui est composé de la durée de ruissellement et du temps de concentration fluvial. Les trois temps sont liés par la relation suivante (Ladjel M, 2008) :

$$t_m = t_c^a T_o^{1-a} (IV-9)$$

L'analyse graphique de la dépendance $\ln(t_m) = f[\ln(t_c)]$ montre que celle-ci est linéaire avec un coefficient de corrélation r=0.96. La pente de la droite de régression de cette dépendance nous donne la valeur de l'exposant a=0.605 pour p=2% (voir figure IV.3).

Figure IV.3: graphe de la dépendance $\ln(t_{m2\%}) = f[\ln(t_c)]$ (pour autres fréquences voir AnnexeVIII)

Ayant les données sur le temps de montée t_m et le temps de concentration t_c , on peut alors déterminer la durée de ruissellement T_o par l'expression suivante:

$$T_o = \left(\frac{t_m}{t_c}\right)^{\frac{1}{1-a}} \tag{IV-10}$$

On peut constater que la durée de ruissellement est proportionnelle à la période de retour. Pour l'oued Eddous à Tilesdit, par exemple la durée de ruissellement millénaire est deux fois et demie plus grande que la décinnale. Les valeurs calculées de la durée de ruissellement T_o sont récapitulées dans le tableau suivant :

Tableau IV.6 : la durée de ruissellement pour les différents sous bassins

N°	Oued	Station	Code	$T_{o0.1\%}$	$T_{o1\%}$	$T_{o2\%}$	$T_{o5\%}$	$T_{o10\%}$
1	Eddous	Tilesdit	15 01 06	3,48	2,62	2,32	2,32	1,44
2	Lekhal	Ain tasta	15 01 14	4,62	3,48	3,08	3,08	1,91
3	Zaiane	El-Esnam	15 02 04	6,48	4,88	4,32	4,32	2,68
4	Azerou	Porte de fer	15 04 01	8,76	6,60	5,84	5,84	3,62
5	Bousellam	Fermatou	15 06 01	5,60	4,21	3,73	3,73	2,31
6	Bousellam	Ain zada	15 07 01	9,59	7,22	6,39	6,39	3,96
7	Bousellam	Magraoua	15 07 02	7,14	5,38	4,76	4,76	2,95
8	Bousellam	Boubirek	15 07 03	8,96	6,75	5,97	5,97	3,70
9	Bousellam	SidiYahia	15 09 01	4,28	3,22	2,85	2,85	1,77
10	Bousellam	Sidi Aich	15 10 01	7,35	5,54	4,90	4,90	3,04
11	Leham	RocadeSud	05 05 01	9,23	6,95	6,15	6,15	3,81
12	Lougmane	Ced Fagues	05 08 01	6,30	4,75	4,20	4,20	2,60
13	Ksob	Medjez	05 09 01	6,29	4,73	4,19	4,19	2,60
14	Soubellah	Sidi ouadeh	05 11 01	6,32	4,76	4,21	4,21	2,61
15	Malah	Beni sliman	09 03 05	7,83	5,90	5,22	5,22	3,24
16	Elkbir	Tassadane	10 01 09	6,96	5,24	4,64	4,64	2,88

IV.4.1- Cartographie de la durée de ruissellement

La durée de ruissellement T_o est conditionnée par le type de pluie et les carateristiques de surfaces. Elle revêt un caractère climatique zonal. Par conséquent, elle est répartie d'une façon continue dans l'espace et elle peut être portée sur carte sous forme de ligne isovaleur.

A titre illustratif, nous présentons la carte de la durée de ruissellement pour la fréquence de 2%.

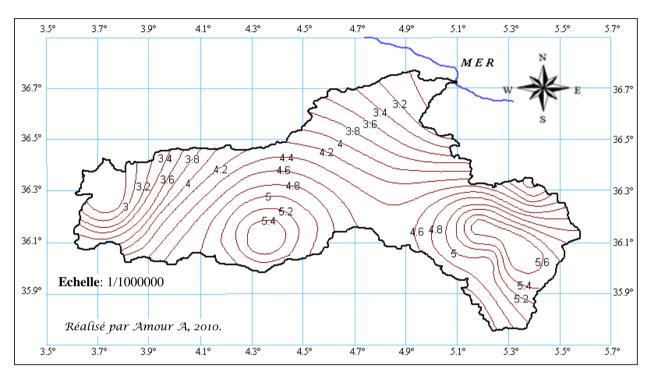


Figure IV.4: Carte de la durée de ruissellement dans la Soummam pour la fréquence 2%.

IV.5 - Estimation de la lame ruisselée

Le ruissellement est la quantité d'eau des précipitations nettes qui s'écoule sur le versant dans le chevelu hydrographique primaire et qui se concentre vers le cours d'eau principale. Sa formation est le résultat d'un processus pluvio-hydrologiques complexe qui détermine la genèse des crues (Befani, 1989).

Dans les pays semi-arides, le ruissellement pluvial des crues exceptionnelles constitue l'essentiel de la ressource hydrique comme il peut engendrer des inondations dévastatrices. Sa quantification est nécessaire pour la projection d'un hydrogamme de conception : C'est cette lame ruisselée qui se transforme en volume écoulé.

Selon Befani (1989), le module maximum spécifique par unité de surface de ruissellement de fréquence donnée, s'exprime comme suit.

$$q'_{p\%} = \frac{(n+1)}{3.6} \frac{R_{p\%}}{T_{a,p\%}}$$
 (IV-11)

Où:

R_{p%}: lame ruisselée en mm;

 T_o : durée de ruissellement en heeures ;

n : coefficient de forme de l'hydrogramme de ruissellement.

Le coefficient appelé de forme caractérise l'irrégularité temporaire du ruissellement. Pour une forme triangulaire de l'hydrogramme, sa valeur égale à 2 (Guerotchov I F, 1979).

D'autre part, on sait que pour des conditions physico-géographiques plus au moins homogènes, le débit maximum spécifique d'écoulement décroît avec l'augmentation de la superficie du bassin versant. Cette réduction est exprimée par la relation suivante:

$$q_{p\%} = \frac{q'_{p\%}}{(S+1)^{n_{p\%}}}$$
 (IV-12)

$$q'_{p\%} = q_{p\%} (S+1)^{n_{p\%}}$$
 (IV-13)

Où:

 $q_{_{P\%}}$: débit spécifique maximum d'écoulement de fréquence P% , en m^3 / $s.km^2$;

 $q'_{p\%}$: module spécifique maximum de ruissellement de fréquence P% ;

S: superficie du bassin versant, en km^2 ;

 $n_{p\%}$: degré de réduction. Il est égal à la pente de la droite de régression de la dépendance $\ln(q_{p\%}) = f[\ln(S+1)]$.

De l'équation (IV-11) et (IV-13) on obtient la relation suivante :

$$R_{p\%} = 1.2 \, q_{p\%} \, T_{op\%} \, (S+1)^{n_{p\%}}$$
 (IV-14)

Les quantités de ruissellement calculées sont récapitulées dans le tableau suivant :

Tableau IV.07: récapitulatif des quantités du ruissellement $R_{n\%}$ (mm)

N°	Oued	Station	Code	$R_{0.1\%}$	$R_{1\%}$	$R_{2\%}$	$R_{5\%}$	$R_{10\%}$
1	Eddous	Tilesdit	15 01 06	58,1	35,4	28,9	20,6	13,8
2	Lekhal	Ain tasta	15 01 14	40,5	23,8	19,2	13,3	8,9
3	Zaiane	El-Esnam	15 02 04	55,2	32,2	25,9	17,9	11,6
4	Azerou	Porte de fer	15 04 01	77,1	43	34	22,9	14,7
5	Bousellam	Fermatou	15 06 01	37,5	24,8	19,7	13,9	9,1
6	Bousellam	Ain zada	15 07 01	76	44,2	35,1	23,9	15,7
7	Bousellam	Magraoua	15 07 02	52,3	30,3	24	16,5	10,3
8	Bousellam	Boubirek	15 07 03	72,8	47,8	38,9	26,4	17,3
9	Bousellam	SidiYahia	15 09 01	64,8	38,9	31,7	22,5	15
10	Bousellam	Sidi Aich	15 10 01	75	43,9	36	24	15,3
11	Leham	RocadeSud	05 05 01	82	48,4	39,3	26	16,5
12	Lougmane	Ced Fagues	05 08 01	63,5	37,6	30,1	21	14
13	Ksob	Medjez	05 09 01	52,8	30,7	24,6	16,9	10,9
14	Soubellah	Sidi ouadeh	05 11 01	56,1	32,6	26,2	18,2	12,2
15	Malah	Beni sliman	09 03 05	63,9	36,8	29,3	20,6	13,6
16	Elkbir	Tassadane	10 01 09	64,3	37,7	30	20,9	13,5

IV.5.1- Détermination du coefficient de l'écoulement maximum

En négligeant les pertes pendant la crue; c'est-à-dire le volume écoulé égal au volume ruisselé, le coefficient d'écoulement α est donc le rapport entre la lame ruisselée et la quantité de pluie durant le temps de concentration.

$$\alpha_{p\%} = \frac{R_{p\%}}{P_{tc,p\%}} \tag{IV-15}$$

IV.5.1.1- Estimation de pluie maximum durant le temps de concentration

Généralement, les crues, durant toutes les saisons de l'année, sont provoquées par des pluies de courte durée. L'événement pluvial se caractérise par une lame, une durée et une intensité moyenne. Dans la pratique hydrologique, l'estimation de la pluie de courte durée, fait appel aux caractéristiques statistiques des pluies fortes, à savoir la pluie maximale moyenne journalière $\overline{P}_{\max,j}$, le coefficient de variation de la pluie maximale journalière C_v . La durée de la pluie t, souvent prise égale au temps de concentration t_c .

L'ajustement des séries pluviométriques des différentes stations de la Tafna pour la période (1970/98), montre que la pluie s'ajuste en général suivant une loi normale de Gauss ou une loi log normale (Bouanani, 2007). Si on admet que les pluies maximales journalières de la Soummam suivent aussi la loi log normal, on peut alors calculer ses valeurs pour une fréquence quelconque par la formule suivante :

$$P_{j,\max_{p\%}} = \frac{\overline{P}_{\max,j}}{\sqrt{(C_{\nu}^{2} + 1)}} e^{U_{p\%}\sqrt{\ln(C_{\nu}^{2} + 1)}}$$
(IV-16)

Où:

 $P_{i,\max p\%}$: Pluie journalière maximale fréquentielle;

 $P_{\max,j}$: Pluie moyenne journalière maximale (mm);

 $U_{n\%}$: Variable de Gauss pour une fréquence donnée P%;

 C_y : Coefficient de variation des pluies maximales journalières.

Les valeurs des pluies maximales journalières pour les fréquences 01%, 1%, 2%, 5%, et 10% se trouvent dans le tableau IV.08.

N°	Oued	Station	Code	$P_{j,\mathrm{max}0.1\%}$	$P_{j,\mathrm{max1\%}}$	$P_{j,\max 2\%}$	$P_{j,\mathrm{max5\%}}$	$P_{j,\mathrm{max}10\%}$
1	Eddous	Tilesdit	15 01 06	121,2	94,2	86,2	75,0	66,6
2	Lekhal	Ain tasta	15 01 14	108,2	83,6	76,2	66,1	58,5
3	Zaiane	El-Esnam	15 02 04	100,1	75,2	67,9	58,0	50,7
4	Azerou	Porte de fer	15 04 01	140,1	93,6	81,1	64,9	53,6
5	Bousellam	Fermatou	15 06 01	98,0	77,9	71,8	63,2	56,7
6	Bousellam	Ain zada	15 07 01	105,3	78,6	70,8	60,2	52,4
7	Bousellam	Magraoua	15 07 02	108,7	81,1	73,1	62,2	54,1
8	Bousellam	Boubirek	15 07 03	97,2	76,1	69,8	61,0	54,3
9	Bousellam	SidiYahia	15 09 01	105,2	81,2	74,1	64,2	56,8
10	Bousellam	Sidi Aich	15 10 01	108,0	82,8	75,4	65,1	57,4
11	Leham	RocadeSud	05 05 01	102,1	73,2	65,0	54,1	46,2
12	Lougmane	Ced Fagues	05 08 01	134,7	90,0	78,0	62,4	51,6
13	Ksob	Medjez	05 09 01	107,1	79,4	71,4	60,5	52,5
14	Soubellah	Sidi ouadeh	05 11 01	100,6	73,6	65,8	55,4	47,7
15	Malah	Beni sliman	09 03 05	140,4	104,1	93,6	79,3	68,8
16	Elkbir	Tassadane	10 01 09	140,5	101,4	90,3	75,4	64,6

Tableau IV.08 : valeurs de pluie journalière maximale fréquentielle

IV.5.1.2- Estimation des pluies de courte durée

Sachant que la variation des débits courants de la crue imitent en quelque sorte celle de la pluie ou plutôt celle de ruissellement. L'ordonnée maximale d'une crue est générée par la partie centrale du ruissellement dont la durée est comparable au temps de concentration. C'est la raison pour laquelle on s'intéresse à la détermination de la lame de pluie de courte durée.

La quantité de pluie de durée égale au temps de concentration est calculée par la formule de Mantanari (Réminiéras, 1979).

$$P_{t_{cP\%}} = P_{j \max.P\%} \left(\frac{t_{c}}{24}\right)^{b}$$
 (IV-17)

Où:

 $P_{i,\max_{p\%}}$: Pluie journalière maximale d'une fréquence donnée ;

 t_c : Temps de concentration, en h:

b: Exposant climatique (voir tableau III.12).

Les valeurs des lames de pluie, pour l'intervalle de temps t_c et pour différentes fréquences P% , sont consignées dans le tableau IV.09.

N°	Oued	Station	Code	$P_{t_c,0.1\%}$	$P_{t_c,1\%}$	$P_{t_c,2\%}$	$P_{t_c,5\%}$	$P_{t_c,10\%}$
1	Eddous	Tilesdit	15 01 06	90	70	64	56	49
2	Lekhal	Ain tasta	15 01 14	59,5	45,9	41,8	36,3	32,1
3	Zaiane	El-Esnam	15 02 04	68,0	51,1	46,1	39,4	34,5
4	Azerou	Porte de fer	15 04 01	80,6	53,9	46,7	37,4	30,9
5	Bousellam	Fermatou	15 06 01	39,2	31,3	28,9	25,4	22,8
6	Bousellam	Ain zada	15 07 01	77,6	58,0	52,2	44,4	38,6
7	Bousellam	Magraoua	15 07 02	89,0	66,5	59,9	51,0	44,4
8	Bousellam	Boubirek	15 07 03	75,0	59	54,0	47,0	42,0
9	Bousellam	SidiYahia	15 09 01	103	79	73,0	63,0	56,0
10	Bousellam	Sidi Aich	15 10 01	104	80	73,0	63,0	55
11	Leham	RocadeSud	05 05 01	90,8	65,1	57,8	48,1	41,1
12	Lougmane	Ced Fagues	05 08 01	81,4	54,3	47,0	37,6	31,1
13	Ksob	Medjez	05 09 01	78,9	58,6	52,7	44,7	38,8
14	Soubellah	Sidi ouadeh	05 11 01	56,3	41,1	36,8	30,9	26,6
15	Malah	Beni sliman	09 03 05	73,0	54,1	48,6	41,2	35,8
16	Elkbir	Tassadane	10 01 09	78	57	50	42	36

Tableau IV.09: valeur de la pluie maximale probable pendant un temps de concentration

Apres avoir évaluer les quantités d'eau ruisselées et les quantités de pluie durant le temps de concentration, on peut alors estimer le coefficient d'écoulement α . Les valeurs ainsi calculées sont présentées dans le tableau suivant :

N° Oued Station Code $\alpha_{\scriptscriptstyle 10\%}$ $\alpha_{1\%}$ $\alpha_{5\%}$ $\alpha_{\scriptscriptstyle 0.1\%}$ $\alpha_{2\%}$ 1 Eddous Tilesdit 15 01 06 0,64 0,50 0,45 0,36 0,28 15 01 14 0,68 0,52 0,28 2 Lekhal Ain tasta 0,46 0,37 15 02 04 3 Zaiane El-Esnam 0,81 0,63 0,56 0,45 0,34 4 Azerou Porte de fer 15 04 01 0,96 0,79 0,73 0,61 0,48 5 Bousellam Fermatou 15 06 01 0,96 0,79 0,68 0,55 0,40 15 07 01 0,76 0,54 0,41 Bousellam Ain zada 0,98 0,68 6 7 15 07 02 0,59 0,23 Bousellam Magraoua 0,46 0,40 0,32 8 Bousellam **Boubirek** 15 07 03 0,81 0,72 0,97 0,56 0,41 9 Bousellam SidiYahia 15 09 01 0,63 0,49 0,44 0,36 0,27 10 Bousellam Sidi Aich 15 10 01 0,72 0,55 0,49 0,38 0,28 05 05 01 0,90 0,74 0,54 0,40 11 Leham RocadeSud 0,68 12 Lougmane Ced Fagues 05 08 01 0,78 0,69 0,64 0,56 0,45 13 Ksob Medjez 05 09 01 0,67 0,52 0,47 0,39 0,28 14 Soubellah Sidi ouadeh $05\ 11\ 01$ 0,99 0,79 0,71 0,59 0,46 15 Beni sliman 09 03 05 0,50 Malah 0,87 0,68 0,61 0,38 Elkbir 10 01 09 16 Tassadane 0,82 0,66 0,61 0,50 0,38

Tableau IV.10 : Les valeurs des coefficients d'écoulement

IV.6- Détermination du coefficient de forme

L'hydrogramme de la crue reflète graphiquement, l'accumulation des eaux de ruissellement et leur concentration dans le cours d'eau durant le temps de montée et l'évacuation des eaux stockées provisoirement dans le réseau hydrographique durant le temps de décrue. La durée de la phase de montée est toujours plus courte que la durée de la phase décrue. Le rapport du temps de décrue au temps de montée est proportionnel avec la superficie du bassin versant. La caractérisation de la forme de l'hydrogramme est présentée différemment. Sokolovsky, par exemple exprime le coefficient de forme par le rapport du volume durant la phase de montée V_m au volume total de la crue V_c (Sokolovsky,1968). Befani (1989) et autres préfèrent exprimer le coefficient de forme par le rapport du débit de pointe $Q_{\rm max}$ au débit moyen durant la crue $Q_{\rm moyen}$. L'identification de ce dernier nécessite des données sur les hydrogrammes des grandes crues, observés dans des bassins versants de différentes tailles. Plusieurs tentatives ont été faites par différents hydrologues dans le but de l'exprimer sous une forme générale. La majorité des hydrologues ont préféré l'exprimer en fonction de la superficie du bassin versant.

Pour la forme triangulaire, ce coefficient est égal à deux (K=2). Quand l'hydrogramme a une forme triangulaire parabolique, celui-ci prend une valeur supérieure à deux (K>2) et quand l'hydrogramme, même en gardant la forme triangulaire mais convexe, le coefficient de forme devient inférieure à deux (K<2). La figure suivante montre la variation de K avec la forme de la crue. Généralement K>2 (Roche M, 1973).

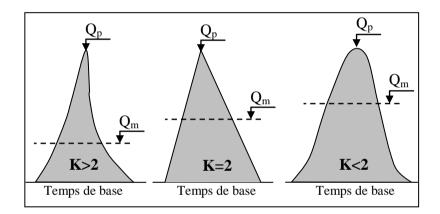


Figure IV.5 : Variation du coefficient de forme de l'hydrogramme

D'apres Coptshenko (1989) le coefficient de forme m = K - 1 exprime la non uniformité de l'écoulement fluvial dans le temps et la capacité de régularisation du cours d'eau. Sa valeur minimale est égale au coefficient de forme de l'hydrogramme de ruissellement n. Beaucoup d'études ont montré expérimentalement que la valeur n est très proche de 2. D'ailleurs, Befani aussi recommande de prendre n = 2 (Guerotchov I F, 1979). Ainsi, le coefficient de forme m est lié génétiquement avec la superficie du bassin versant. Les tout petits bassins sont totalement arrosés par des averses intenses; ils se caractérisent par un grand débit de pointe et un temps de base relativement court et leurs coefficients de forme avoisinent la valeur minimale. Plus la superficie augmente, plus la capacité de régularisation du bassin versant s'accentue, plus le temps de base de la crue s'étend et le coefficient de forme prend des valeurs nettement supérieures à deux. C'est pour cette raison, que certains hydrologues (Ladjel M., 2009) recommandent l'expression suivante:

$$m = n(S+1)^{\beta} \qquad (IV-18)$$

Avec: $\beta = 1/8$

Ainsi, on obtient l'expression de calcul suivante :

$$m = 2(S+1)^{0.125}$$
 (IV-19)

Les applications numériques de cette expression ont permis l'estimation du coefficient de forme m des crues au niveau des stations de jaugeages de la Soummam. Les valeurs obtenues sont insérées dans le tableau IV.11.

N°	Oued	Station	Code	S (km ²)	m
1	Eddous	Tilesdit	15 01 06	842	4,64
2	Lekhal	Ain tasta	15 01 14	190	3,86
3	Zaiane	El-Esnam	15 02 04	800	4,61
4	Azerou	Porte de fer	15 04 01	605	4,45
5	Bousellam	Fermatou	15 06 01	105	3,58
6	Bousellam	Ain zada	15 07 01	1800	5,1
7	Bousellam	Magraoua	15 07 02	2350	5,28
8	Bousellam	Boubirek	15 07 03	2950	5,43
9	Bousellam	SidiYahia	15 09 01	4050	5,65
10	Bousellam	Sidi Aich	15 10 01	8420	6,19
11	Leham	RocadeSud	05 05 01	5600	5,88
12	Lougmane	Ced Fagues	05 08 01	337	4,14
13	Ksob	Medjez	05 09 01	1330	4,92
14	Soubellah	Sidi ouadeh	05 11 01	170	3,8
15	Malah	Beni sliman	09 03 05	273	4,03
16	Elkbir	Tassadane	10 01 09	960	4.72

Tableau IV.11 : Les valeurs de m pour les différents sous bassins de la Soummam

IV.7- Détermination du coefficient de Sokolovsky

Le rapport temps de montée et de décrue d'un hydrogramme $\gamma = \frac{t_d}{t_m}$, appelé coefficient de Sokolovsky, exprime la capacité de régulation de l'écoulement au niveau d'un bassin versant de taille donnée. Dans la pratique, on considère qu'il est plus facile d'estimer le temps de montée t_m que le temps de décrue t_d . La question posée est de chercher l'identification de ce coefficient

sous une forme générale quelconque.

Connaissant les principales caractéristiques des hydrogrammes fréquentiels, nous considérons la formule de calcul des débits maxima (IV-20) comme relation référentielle entre les caractéristiques de l'hydrogramme de la crue et par calculs inverses nous estimons les valeurs de $\gamma_{_{p\%}}$.

$$q_{p\%} = 0.28(m+1)\frac{R_{p\%}}{T_{b-p\%}}$$
 (IV-20)

où:

0,28: coefficient de conversion des unités ;

 $q_{p\%}$: débit maximum est exprimé en m^3/s :

 $T_{bn\%}$: temps de base de la crue en heure ;

 $R_{n\%}$: lame ruisselée en mm;

m : coefficient de forme de l'hydrogramme de la crue ;

 t_m : temps de montée de la crue en heure.

Le temps de base $T_{b_p\%}$ est exprimé en fonction du temps de montée $t_{m,p\%}$ par la relation :

$$T_{b p\%} = (\gamma_{p\%} + 1)t_{m,p\%}$$
 (IV-21)

En remplaçant l'expression du temps de base dans la formule (IV-20) et après quelques transformations, on obtient:

$$\gamma_{p\%} = \frac{(m+1)R_{p\%}}{3.6 \ q_{p\%} \ t_{m,p\%}} - 1$$
 (IV-22)

Les applications numériques ont permis l'estimation des valeurs de ce coefficient pour différentes fréquences. Les valeurs de $\gamma_{p\%}$ se trouvent dans le tableau IV.12.

Tableau IV.12: valeurs de $\gamma_{n\%}$ pour différents sous bassins

Nº	Oued	Station	Code	$\gamma_{0.1\%}$	$\gamma_{1\%}$	$\gamma_{2\%}$	$\gamma_{5\%}$	$\gamma_{10\%}$
1	Eddous	Tilesdit	15 01 06	12,3	14,5	15,6	17,6	19,3
2	Lekhal	Ain tasta	15 0114	5,2	5,9	6,2	6,8	7,4
3	Zaiane	El-Esnam	15 02 04	12,1	13,7	14,4	15,9	16,8
4	Azerou	Porte de fer	15 04 01	12,2	12,9	13,3	14,1	14,6
5	Bousellam	Fermatou	15 06 01	4,5	5,9	6,1	6,8	7,1
6	Bousellam	Ain zada	15 07 01	23,0	26,2	27,4	29,9	32,3
7	Bousellam	Magraoua	15 07 02	18,2	20,8	21,9	24,3	25,3
8	Bousellam	Boubirek	15 07 03	22,4	28,9	31,0	33,8	36,3
9	Bousellam	SidiYahia	15 09 01	27,3	32,6	35,1	40,5	45,0
10	Bousellam	Sidi Aich	15 10 01	28,7	33,3	36,1	38,8	41,2
11	Leham	RocadeSud	05 05 01	31,5	36,7	39,4	42,1	44,5
12	Lougmane	Ced Fagues	05 08 01	9,2	10,4	10,8	11,9	12,8
13	Ksob	Medjez	05 09 01	13,6	15,4	16,2	17,9	18,9
14	Soubellah	Sidi ouadeh	05 11 01	7,3	8,1	8,5	9,3	10,0
15	Malah	Beni sliman	09 03 05	10,6	11,7	12,1	13,5	14,4
16	Elkbir	Tassadane	10 01 09	14,0	15,9	16,6	18,4	19,3

IV.7.1-Généralisation du coefficient de Sokolovsky

La répartition continue des facteurs générateurs de l'écoulement pluviale permet la généralisation territoriale de toute caractéristique hydrologique, tout en tenant compte de l'influence intrazonale de certains facteurs. Dans notre cas, les facteurs morphomètriques quantifiés sont la superficie des sous bassins, les altitudes moyennes des sous bassins et leur pentes moyennes.

L'analyse graphique de la dépendance entre le coefficient $\gamma_{p\%}$ et les facteurs cités cidessus: la superficie, l'altitude moyenne et la pente, sont illustrés par les graphes (6,7 et 8). La fréquence 2% est choisie pour l'illustration graphique.

La dépendance du rapport $\ln(\gamma_{p\%}/(S+1))$ en fonction de $\ln(S+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation très élevé r=0.98.

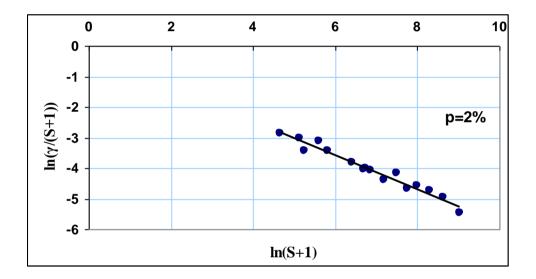
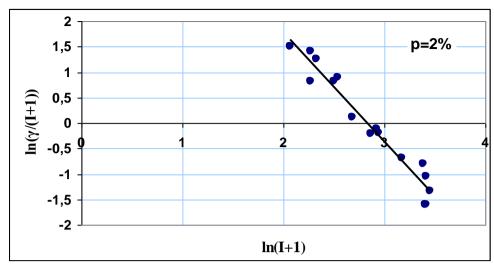



Figure IV.6 : La dépendance $[\ln(\gamma/(S+1)) = f \ln(S+1)]$

La dépendance de $\ln(\gamma/(I+1))$ en fonction de $\ln(I+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation très élevé r=0.97.

Figure IV.7: La dépendance $\lceil \ln(\gamma/(I+1)) = f \ln(I+1) \rceil$

La dépendance de $\ln(\gamma_{p\%}/(H+1))$ en fonction de $\ln(H+1)$ s'est avérée fonction linéaire avec un coefficient de corrélation moins significatif r=0.45.

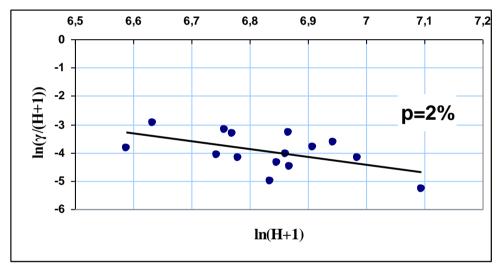


Figure IV.8: La dépendance $\lceil \ln(\gamma/(H+1)) = f \ln(H+1) \rceil$

On constate que la corrélation entre le cœfficient γ , la superficie et la pente moyenne du cours d'eau principal est significative et d'un ordre important, alors qu'avec l'altitude cette corrélation moindre. Par conséquent pour l'identification du cœfficient $\gamma_{p\%}$, on tient compte uniquement de la superficie des bassins S et de la pente I.

Ainsi, il semble adéquat de proposer un modèle monôme puissance, qui s'exprime comme suit:

$$\gamma_{P\%} = C_{P\%} (S+1)^{\lambda} (I+1)^{\beta}$$
 (IV-23)

Les valeurs des puissances et pour chacune des fréquences sont dans le tableau IV.13.

-0,571

P% λ β 0,10,215-0,54410,217-0,55820,222-0,56850,221-0,571

0,221

Tableau IV.13: les valeurs de λ , β pour les différent fréquences

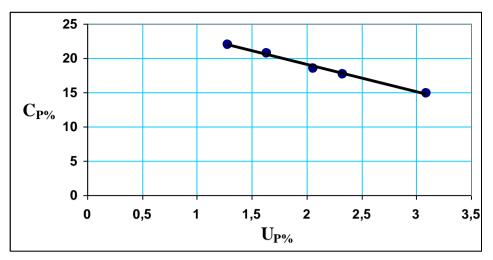
On peut constater que les valeurs des puissances λ et β varient très peu pour les différentes fréquences. Ceci permet d'adopter les valeurs moyennes régionales: λ =0.22 et β =-0.56.

Ainsi, la formule de $\gamma_{P\%}$ prend la forme suivante:

10

$$\gamma_{P\%} = C_{P\%} \frac{(S+1)^{0.22}}{(I+1)^{0.56}}$$
 (IV-24)

Le coefficient $C_{P\%}$ exprime la valeur limite de $\gamma_{P\%}$ pour les conditions climatiques locales. Ceci permet d'adopter une seule valeur pour chacune des fréquences. Cette valeur est égale à la moyenne arithmétique pour les 16 sous bassins versants objet de l'étude:


$$C_{P\%} = \frac{\sum (\gamma_{P\%} / ((S_i + 1)^{\lambda} (I_i + 1)^{\beta})}{16}$$
 (IV-25)

Les valeurs calculées du coefficient $C_{p\%}$ se trouvent dans le tableau IV.14.

Tableau IV.14: les valeurs de $C_{p\%}$ pour les différent fréquences

P%	$C_{P\%}$
0,1	14,9
1	17,7
2	18,5
5	20,7
10	22,0

La dépendance de $C_{P\%}$ en fonction de la variable réduite de Gauss $U_{p\%}$ s'est avérée fonction linéaire : $C_{P\%}=27-3.97U_{p\%}$, avec un coefficient de corrélation très élevé r=0.997.

Figure IV.9 : Régression linière de la dépendance [$C_{p\%} = f(U_{p\%})$]

En fin, pour l'évaluation du coefficient γ dans la Soummam, nous proposons de considérer la dépendance régionale suivante :

$$\gamma_{P\%} = (27 - 3.97 U_{p\%}) \frac{(S+1)^{0.22}}{(I+1)^{0.56}}$$
 (IV-26)

IV.7.2- Estimation des écarts relatifs de $\gamma_{\nu\%}$

Les écarts relatifs sont exprimés par la relation suivante :

$$\delta = \frac{\gamma - \gamma \, cal}{\gamma} 100 \tag{IV-27}$$

Tableau IV.15: Les écarts relatifs de $\gamma_{2\%}$ en % entre $\gamma_{2\%}$ et $\gamma_{2\%}$ calculé

N°	Oued	Station	Code	$\gamma_{2\%}$	γ _{2%} στ γ _{2%} γ _{2% calculé}	$ \mathcal{S} $
						1 1
1	Eddous	Tilesdit	15 01 06	15,6	15,8	1,1
2	Lekhal	Ain tasta	15 01 14	6,2	8,7	40,3
3	Zaiane	El-Esnam	15 02 04	14,4	16,2	12,7
4	Azerou	Porte de fer	15 04 01	13,3	11,4	14,1
5	Bousellam	Fermatou	15 06 01	6,1	7,7	26,0
6	Bousellam	Ain zada	15 07 01	27,4	23,8	13,1
7	Bousellam	Magraoua	15 07 02	21,9	28,7	31,2
8	Bousellam	Boubirek	15 07 03	31,0	26,1	15,9
9	Bousellam	SidiYahia	15 09 01	35,1	36,3	3,5
10	Bousellam	Sidi Aich	15 10 01	36,1	36,9	2,3
11	Leham	RocadeSud	05 05 01	39,4	34,8	11,8
12	Lougmane	Ced Fagues	05 08 01	10,8	9,9	8,7
13	Ksob	Medjez	05 09 01	16,2	20,2	24,4
14	Soubellah	Sidi ouadeh	05 11 01	8,5	8,3	2,3
15	Malah	Beni sliman	09 03 05	12,1	10,8	10,5
16	Elkbir	Tassadane	10 01 09	16,6	16,4	1,3

Les écarts relatifs de $\gamma_{p\%}$ pour d'autres fréquences se trouvent en AnnexeXII.

IV.8- Projection des hydrogrammes des crues probables

L'hydrogramme de la crue est l'outil graphique qui permet de visualiser la forme de la crue. L'hydrogramme fixé à l'exutoire d'un bassin versant est l'expression graphique de la relation analytique entre les trois principales caractéristiques : le débit maximum Q_{\max} , le volume de la crue V_c et la durée de la crue T_b . Plusieurs tentatives ont été faites pour décrire analytiquement l'hydrogramme, tout en tenant compte des considérations suivantes:

- forme triangulaire aléatoire;
- débit maximum est observé à la fin du temps de montée;
- volume d'écoulement défini;
- temps de montée défini;
- temps de décrue défini et supérieur au temps de montée.

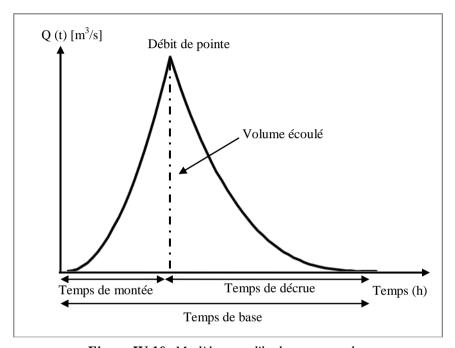


Figure IV.10: Modèle type d'hydrogramme de crue

La méthode utilisée est celle de Sokolovsy dont l'hydrogrmme de crue est présenté comme l'intersection de deux courbes paraboliques chacune d'elles a sa propre équation :

• la courbe de montée est exprimée par:

$$Q_m(t) = Q_{\text{max}} \left(\frac{t}{t_m}\right)^{m_s} \qquad \text{(IV-28)}$$

• la courbe de décrue est décrite par:

$$Q_d(t) = Q_{\text{max}} \left(\frac{t_d - t}{t_d} \right)^{n_s}$$
 (IV-29)

Où:

 $Q_m(t)$ et $Q_d(t)$ les débits courants de monté et de décrue ;

 t_m et t_d : temps de montée et de décrue;

 m_s et n_s : puissances respectivement de la courbe de montée et celle de décrue.

IV.8.1- Détermination des exposants

L'application de la méthode de Sokolovsky est confrontée au problème de détermination des puissances m_s et n_s . L'auteur de la méthode a proposé des valeurs discrètes pour les conditions physico-géographiques de l'URSS en fonction de la superficie du bassin versant (Sokolovsky. 1969), qui est subdivisée en trois tranches: petit bassin, bassin moyen et grand bassin.

Sokolovsky recommande, pour les petits bassins, de prendre $m_S = 2$ et $n_S = 3$. Alors, le choix des valeurs des puissances s'est avéré difficile.

Les dernières recherches ont montré que la forme théorique des branches dépend du rapport du temps de concentration t_c au temps de ruissellement T_o . En ce qui concerne l'exposant de la branche de la phase montée m_S , par expérimentation numérique, deux cas ont été identifiés (Ladjel M. 2004) :

$$1^{\text{er}}$$
 cas: quand $t_c < T_o$, on a $m_s = \frac{t_c}{t_o}$

$$2^{\text{ème}}$$
 cas: quand $t_c \ge T_a$, on a $m_s = 3$

Pour l'identification de l'exposant de la branche de la phase décrue n_s , il suffit de comparer le débit maximum donné par la formule Bejaïa 2000 avec celle de Sokolovsky.

$$Q_{\text{max}} = \frac{(m+1)}{3.6} \frac{R_{\text{max}}}{(\gamma+1)t_m} = \frac{1}{3.6} \frac{R_{\text{max}}}{t_m} \frac{(m_S+1)(n_S+1)}{\gamma(m_S+1)+(n_S+1)}$$

D'où

$$\frac{(m+1)}{(\gamma+1)} = \frac{(m_S+1)(n_S+1)}{\gamma(m_S+1)+(n_S+1)}$$

Et en fin, on tire l'expression de l'exposant de la branche de décrue.

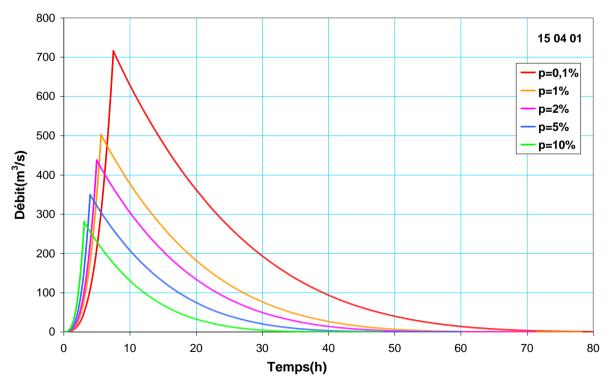
$$n_S = \frac{\gamma m(m_S + 1) + (m - m_S)}{\gamma (m_S + 1) + (m_S - m)}$$
 (IV-30)

Où:

m : Coefficient de forme de l'hydrogramme;

 m_S : Exposant de la branche de la phase montée de l'hydrogramme;

 $\gamma = t_d / t_m$: Coefficient de Sokolovsky.


IV.8.2- Application de la méthode de projection

La méthode de projection des hydrogrmme probables a été appliquée pour les 10 stations hydrométriques de la Soummam et pour les fréquences rares 0.1%, 1%, 2%, 5% et 10%. Nous présentons ici le cas de Oued Azrou à la station Port de fer (15 04 01).

Les hydrogrammes probables aux autres stations sont présentés en AnnexeXIII.

Tableau IV.16: récapitulatif des caractéristiques nécessaires pour la projection de l'hydrogramme de crue de Oued Azrou à la station (15 04 01)

Corpotóriotiques		fre	équence	es	
Caractéristiques	0,1%	1%	2%	5%	10%
Débit de pointe : Q_{max} [m ³ /s]	715	502	437	349	280
Lame ruisselée : R [mm]	77,1	43,0	34.0	22,9	14,7
Temps de monté : $t_m[h]$	7,49	5,64	4,99	3,99	3,09
Coefficient de Sokolovsky : γ	12,2	12,9	13,3	14,1	14,6
Coefficient de forme : m	4,45	4,45	4,45	4,45	4,45
Temps de concentration : t_c	4.49	4.49	4.49	4.49	4.49
Durée de ruissellement: T_o	8,76	6,60	5,84	5,84	3,62
Puissance de la courbe de montée : m_s	3	3	3	3	3
Puissance de la courbe de décrue : n_s	4,62	4,61	4,61	4,60	4,59

Figure IV.11: les hydrogrammes des crues probables à Oued Azrou – Porte de fer (15 04 01)

Conclusion

L'identification des caractéristiques de l'hydrogramme de la crue reste la question fondamentale en hydrologie fluviale. Analyse fréquentielle a permis l'estimation des événements extrêmes. Nous avons utilisé la loi Pearson III, qui utilise uniquement trois paramètres statistiques: la moyenne, le cœfficient de variation et la cœfficient d'asymétrie. Les valeurs des débits maxima sont estimées pour les fréquences 0.1%, 1%, 2%, 5% et 10%, les plus utilisées dans la pratique hydrologique.

L'estimation du temps de montée est réalisée sur la base des données de 16 sous bassins du Nord de l'Algérie. C'est à partir des hydrogrammes des crues observés, qu'on a établi la relation entre les temps de montée et les débits maxima des crues. Les valeurs des temps de montée adoptées sont les valeurs minimales moyennes correspondantes aux valeurs maximales des débits. L'analyse graphique des dépendances entre les temps de montée des différents sous bassins avec les facteurs morphométriques, a montré que le temps de montée est proportionnel à la surface et inversement proportionnel à la pente. Sur la base de la formule obtenue

$$t_m = 1.13 \frac{S^{0.29}}{I^{0.11}}$$
, on a estimé les valeurs du temps de montée des crues de fréquence 2% des sous

bassins de la Soummam. En considérant une proportionnalité linéaire entre le temps de montée et la variable réduite de Gauss, on a pu donc estimer le temps de montée pour toute autre fréquence.

Vu l'absence des méthodes appropriées, développée dans les conditions physicogéographiques du Nord de l'Algérie, l'estimation du temps de concentration a fait appel à l'une des formules courantes dans la pratique hydrologique des régions analogues à celles du Nord de l'Algérie.

L'estimation de la durée de ruissellement est réalisée par l'expression qui lie le temps de

montée
$$t_m$$
 et le temps de concentration t_c , comme suit : $T_o = \left(\frac{t_m}{t_c}\right)^{\frac{1}{1-a}}$.

La durée de ruissellement revêt un caractère climatique. Par conséquent, elle est répartie d'une façon continue dans l'espace et elle est portée sur carte sous forme de ligne isovaleur.

L'estimation de la lame ruisselée est fondée sur la transformation de l'équation régionale de l'écoulement maximum tout en tenant compte de la formule du ruissellement maximum. L'estimation quantitative est réalisée par la relation suivante: $R_{p\%} = 1.2 q_{p\%} T_{op\%} (S+1)^{n_{p\%}}$

Le coefficient d'écoulement α est donc le rapport entre la lame ruisselée et la quantité de pluie durant le temps de concentration.

L'estimation de la pluie de courte durée a fait appel à un modèle classique qui utilise les caractéristiques statistiques des pluies fortes: la pluie maximale moyenne journalière $\overline{P}_{\max,j}$, le coefficient de variation de la pluie maximale journalière C_v . La durée de la pluie t, souvent prise égale au temps de concentration t_c .

L'identification du coefficient de forme nécessite des données sur les hydrogrammes des grandes crues, observées dans des bassins versants de différentes tailles. La majorité des hydrologues ont préféré l'exprimer en fonction de la superficie du bassin versant. C'est pour cette raison, on a recommandé l'expression $m = 2 (S+1)^{0.125}$

Le rapport entre le temps de décrue et le temps de montée $\frac{t_d}{t_m}$ exprime le coefficient γ .

En considérant la formule Béjaia 2000 comme relation référentielle entre les caractéristiques de l'hydrogramme de la crue et par calculs inverses nous estimons les valeurs de $\gamma_{n\%}$.

La répartition continue des facteurs générateurs de l'écoulement pluviale permet la généralisation territoriale de toute caractéristique hydrologique, tout en tenant compte de l'influence intrazonale de certains facteurs. L'analyse graphique de la dépendance entre le coefficient $\gamma_{p\%}$ dune part avec la superficie et la pente du cours d'eau d'une autre part, a montré que la corrélation est significative. C'est pourquoi on a proposé un modèle monôme puissance

$$\gamma_{P\%} = (27 - 3.97 \ u_{P\%}) \frac{S^{0.22}}{I^{0.56}}.$$

Pour la projection des hydrogrammes nous avons choisi le modèle de Sokolovsky. La forme théorique des branches dépend du rapport du temps de concentration t_c au temps de ruissellement T_o . L'exposant de la branche de la phase montée m_S est déterminé par expérimentation numérique. Il y a deux cas:

$$1^{\text{er}}$$
 cas : quand $t_c < T_o$, on a $m_S = n + \frac{t_c}{T_o}$
 $2^{\text{ème}}$ cas: quand $t_c \ge T_o$, on a $m_S = 3$

L'identification de l'exposant de la branche de la phase décrue n_s est faite sur la base de la comparaison du débit maximum donné par la formule Bejaïa 2000 avec celle de Sokolovsky.

D'où l'on tire:
$$n_S = \frac{\gamma m(m_S + 1) + (m - m_S)}{\gamma(m_S + 1) + (m_S - m)}$$

CONCLUSION GENERALE

Conclusion générale

Le manque d'étude relative à la question de caractérisation des crues pluviales des oueds algériens, a provoqué un intérêt particulier de leur prise en charge. Les principaux résultats de cette recherche se synthétisent comme suit:

L'étude bibliographique a fait l'objet d'une synthèse de quelques travaux de recherches scientifiques concernant les crues, nous a permis de passer en revue ces travaux depuis les concepts des processus de la genèse des crues jusqu'aux caractéristiques de l'hydrogramme d'écoulement résultant et les méthodes de leur projection. Plusieurs procédés et formules ont été développés pour l'évaluation de certaines caractéristiques des crues. Ces méthodes sont à prendre avec précaution dans le sens où si elles sont valables dans une région donnée, elles ne le sont pas dans d'autres et donnent souvent des valeurs sous-estimées ou surestimées.

Pour mener cette étude sur les caractéristiques des crues pluviales, nous avons choisie le bassin de la Soummam, les contrastes climatiques et orographiques y sont des plus forts. C'est un cadre d'étude original et représentatif de la variété hydrologique de la région du nord de l'Algérie.

L'étude a été menée sur la base des séries hydrométriques disponibles au niveau des bassins jaugés, plus ou moins emboîtées et présentant une gamme de superficies drainées (105 à 8 420 km²). On a pu collecter les données des débits maxima annuels pour 10 sous bassins de la Soummam et 6 sous bassins limitrophes. Cependant, les tailles des séries d'observations varient de 14 années à 37 années, soit une moyenne de 24 ans. Certaines séries contiennent des lacunes mensuelles qui provoquent aussi des lacunes annuelles. Pour les combler on a considéré uniquement les débits dont la probabilité d'apparition est supérieure ou égale à 50% : c'est-à-dire le nombre de lacune dans la série est de 3 au maximum sur les six mois de novembre à avril. Les données pluviométriques collectées concernent 34 stations situées à l'intérieure du bassin de la Soummam et 14 stations limitrophes. La dépendance entre les données des stations pluviométriques s'est avérée inexistante car les corrélations de données de pluie maximale sont faibles. Ceci oblige le recours à la méthode d'interpolation spatiale qui est fondée sur le concept de généralisation territoriale.

Un traitement spécifié a été effectué pour l'estimation des valeurs moyennes des caractéristiques pluviographiques, notamment la pluie moyenne journalière maximale \overline{P} , le cœfficient de variation moyen $\overline{C_{\scriptscriptstyle V}}$ et le cœfficient climatique \overline{b} pour chaque sous bassins. L'estimation de ces grandeurs est tirée des cartes élaborées spécialement dans le cadre de cette étude. Cartes simples à interpréter et faciles à exploiter.

Un essai de généralisation des paramètres statistiques des débits maxima annuels, a savoir : la moyenne q_o , le coefficient de variation C_v et le coefficient d'asymétrie C_s sur le bassin de la Soummam a été effectué. L'analyse régionale a montré donc que les facteurs morphométriques les plus explicatifs des caractéristiques statistiques cités précédemment sont la superficie et la pente moyenne, ainsi on a pu proposer les modèles suivant :

$$q_o = 0.093 \frac{(I+1)^{0.798}}{(S+1)^{0.286}}, C_v = 0.848 \frac{(S+1)^{0.017}}{(I+1)^{0.043}} \text{ et } C_s = 2.37 \frac{(S+1)^{0.023}}{(I+1)^{0.169}}$$

Les résultats de cette analyse ont montré que les écarts relatifs par rapport aux valeurs régionales varient dans un grand diapason et peuvent, dans certains cas, dépasser les 100%.

L'identification des caractéristiques de l'hydrogramme de la crue reste la question fondamentale en hydrologie fluviale. La caractéristique la plus utilisée en aménagement hydraulique est bien le débit maximum. L'analyse fréquentielle, en utilisant la loi Pearson III, nous a permis d'en évaluer les valeurs rares notamment pour les fréquences 0.1%, 1%, 2%, 5% et 10%, les plus utilisées dans la pratique hydrologique.

Pour l'estimation du temps de montée nous avons exploité le modèle régressif $t_{m2\%} = 1.13 \frac{S^{0.29}}{I^{0.11}}$ déduit à partir d'une étude réalisée sur la base des données de 16 sous bassins du

Nord de l'Algérie en analysant des hydrogrammes observés. En considérant une proportionnalité linéaire entre le temps de montée et la variable réduite de Gauss, on a pu donc estimer le temps de montée pour toute autre fréquence.

Vu l'absence des méthodes appropriées, développées dans les conditions physicogéographiques du Nord de l'Algérie, l'estimation du temps de concentration a fait appel à l'une des formules courantes dans la pratique hydrologique des régions analogues à celles du Nord de l'Algérie.

L'estimation de la durée de ruissellement est réalisée par l'expression qui lie le temps de

montée
$$t_m$$
 et le temps de concentration t_c , comme suit : $T_o = \left(\frac{t_m}{t_c}\right)^{\frac{1}{1-a}}$.

La durée de ruissellement revêt un caractère climatique. Par conséquent, elle est répartie d'une façon continue dans l'espace et elle est portée sur carte sous forme de ligne isovaleur.

L'estimation de la lame ruisselée est fondée sur la transformation de l'équation régionale de l'écoulement maximum tout en tenant compte de la formule du ruissellement maximum. L'estimation quantitative est réalisée par la relation suivante : $R_{p\%} = 1.2 \, q_{p\%} \, T_{o\,p\%} \, (S+1)^{n_{p\%}}$

Le coefficient d'écoulement α est donc le rapport entre la lame ruisselée et la quantité de pluie durant le temps de concentration.

L'identification du coefficient de forme nécessite des données sur les hydrogrammes de grandes crues, observées dans des bassins versants de différentes tailles. La majorité des hydrologues ont préféré l'exprimer en fonction de la superficie du bassin versant. C'est pour cette raison, on a recommandé l'expression $m = 2 (S+1)^{0.125}$

Le rapport entre le temps de décrue et le temps de montée $\frac{t_d}{t_m}$ exprime le coefficient γ . En

considérant la formule empirique de calcul des débits maxima
$$q_{p\%} = \frac{1}{3.6}(m+1)\frac{R_{p\%}}{T_{b-p\%}}$$
 comme

relation référentielle entre les caractéristiques de l'hydrogramme de la crue et par calculs inverses nous avons estimé les valeurs de $\gamma_{p\%}$. La répartition continue des facteurs générateurs de l'écoulement pluviale permet la généralisation territoriale de toute caractéristique hydrologique, tout en tenant compte de l'influence intrazonale de certains facteurs. L'analyse graphique de la dépendance entre le coefficient $\gamma_{p\%}$ avec la superficie et la pente du cours d'eau, a montré que la corrélation est significative. C'est pourquoi nous avons proposé le modèle

suivant :
$$\gamma_{P\%} = (27 - 3.97 \ U_{p\%}) \frac{S^{0.22}}{I^{0.56}}$$

Apres l'identification des différentes caractéristiques nous avons passé à la projection des hydorgrammes des crues de fréquences rares pour dix sous bassins jaugés de la Soummam en utilisant le modèle de Sokolovsky.

En fin, sur le plan opérationnel les résultats proposés permettent d'orienter les études d'aménagement dans la Soummam et ses environs en vue d'une estimation plus réaliste des caractéristiques des crues et donc d'un dimensionnement plus adéquat des aménagements hydrauliques. Ces résultats méritent d'être affinés en prenant un grand nombre de bassins jaugés avec des longues séries d'observation.

A.N.R.H., 1979, 1980 : Annuaire hydrologique de l'Algérie, Alger. A.N.R.H., 2002 : Carte des évapotranspirations potentielles du Nord de l'Algérie au 2 1/500 000 (notice de 42 p.), Ministère des Ressources en Eau, Alger, Ed. I.N.C.T. **Arnaud P, 1997:** Modèle de prédétermination de crues basées sur la simulation stochastique des 3 pluies horaires. Thèse de doctorat de l'Université de Montpellier II, 277 p. Arthur Marchandise, 2007: thèse de doctorat. « Modélisation hydrologique distribuée sur le Gardon d'Anduze ; étude comparative de différents modèles pluie-débit, extrapolation de la normale à l'extrême et tests d'hypothèses sur les processus hydrologiques ». **Befani** A N, 1989: Les questions de l'hydrologie régionale. L'écoulement pluvial (les crues 5 pluviales). Kiev. Benfares A. 1992. Evaluation des crues en vue d'une régionalisation. Mémoire magister. Université Houari Boumediene. Alger. Benjamin Graff, 2004: Prédétermination des débits de crue des petits bassins versants, torrentiels, Thèse de doctorat. **Bobée B., Ashar F., 1991 :** Estimation régionale des caractéristiques de crue : Détermination de régions homogènes. Rapport interne nº 120, INRS-Eau. Bois et Obled, 2007: Introduction au traitement de donnée en hydrologie. Edition du Millénaire. *10* Bois P H, 2000: Hydrologie generale. Edition du Millénaire. **Bouanani** A, 2005: thèse de doctorat d'état. hydrologie, transport solide et modélisation « Etude de 11 quelques sous bassins de la Tafna » Cappus P, 1960: Etudes des lois de l'écoulement. Application au calcul et à la prévision des débits. 12 La Houille Blanche. CEMAGREF, 1989: Hydrologie appliquée aux petits bassins, Antony, Division Hydrologie, 13 Hydraulique fluviale et souterraine, 528 p. CEMAGREF, 2002: Petits Barrages, recommandations pour la conception, la réalisation et le suivi. 14 Charifi S, 2006: Application du modèle hydrologique GR2M sur les bassins versants de la Soummam 15 et de l'Isser. Mémoire de magistère. Ecole National polytechnique. Alger. **Chaumont M, 1968 :** Les influences des régimes climatiques en France, en Espagne et en Afrique du Nord et leurs conséquences hydrologiques, Thèse de doctorat d'état, Faculté des *16* Sciences de Paris, 174 p. *Chow VT*, 1964: Handbook of applied hydrology. Mc Graw-Hill Book Company. *17* CNFCH Comité National Français des Sciences Hydrologique « commission de terminologie », 18 **2000**: dictionnaire français d'hydrologie. Corradini C. et Singh VP, 1985: Effect of spatial variability of effective rainfall on direct runoff by 19 geomorphologic approach. Journal of Hydrology. 81, 27-43. Cosandey C et Robinson M, 2000: Hydrologie continentale. Paris, Armand Colin, 20 Collection U. Géographie, 360 p. *Cote M, 1998:* Les régions bioclimatiques du Nord algérien, Rhumel, n° 6. 21 Creutin J. et Obled C, 1982: Objective analysis and mapping techniques for rainfall fields. An 22 objective comparison. Water Resources Research, 413-431. Datin R. 1998 : Outils opérationnels pour la prévision des crues rapides : traitement des incertitudes et intégration des prévisions météorologiques. Développements de TOPMODEL pour la prise en 23 compte de la variabilité spatiale de la pluie. Application au bassin versant de l'Ardèche. INPG, Grenoble. DHWB, 2006: Etude de la protection de la ville de Bejaia contre les inondations (Rapport de la 24 mission C « Hydrologie »).Bureau d'étude : INGEROP. Dubreuil P, 1974 a: Initiation à l'analyse hydrologique. Ed. Masson. 216 p. **Dubreuil P, 1974 b :** Résumé des résultats de recherche obtenus par la France sur bassin **26** représentatifs. Cahiers ORSTOM; Série hydrologie; volume 11. Dubrule O, 1984: Comparing Splines and Kriging. Computers and Geosciences. *27*

Dunne T, 1978: Field studies of hillslope flow processes. In j.irkby (editor) Hillslope hydrology.

- 29 Dunne T, 1983: Relation of field studies and modelling in the prediction of storm runoff. J Hydrol. 65, 25-48
- 30 Eric Cadier, 1993: hydrologie des petits bassins du Nordeste brésilien (transposition à des bassins non étudiés). Edition ORSTOM.
- 31 Eric Gaumme, 2002: Eléments d'analyse sur les crues éclairs. Thèse de doctorat de l'ENGREF,305p.
- 32 Esteves M., Faucher X., Galle S. et Vauclin M, 2000: Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. Journal of Hydrology.
- Fritsch J M, 1990: Les effets de défrichement de la forêt amazonienne et de la mise en culture sur l'hydrologie de petits bassins versants. Thèse de doctorat, Montpellier II.
- Galea G et Ramez P, 1995: Maîtrise du ruissellement et de l'érosion en vignoble de coteau, guide à l'usage des aménageurs. Cemagref Editions, Antony, 109 p.
- 35 Garçon R. 1999: Modèle globale pluie débit pour la prévision et la prédétermination des crues. Crues de la normale à l'extrême, SHF, Lyon, 115-126.
- **Ghachi A., 1986 :** Hydrologie et utilisation de la ressource en eau en Algérie. Thèse de doctorat. 3^e .cycle. Ed. O.P.U. 508 p.
- 37 | Goptchenko E D, 1989 : Hydrologie fondée sur l'amélioration. Guidrométéoizdat, Leningrad, 1989.
- 38 Guerotchov I. F., 1979: Les calculs hydrologiques. Leningrad, 1979.
- *Hasnaoui M D, 1985 :* Analyse des facteurs de ruissellement pour la prédétermination de la crue décennale au Sahel. DEA en science de l'eau et aménagement. Option : Hydrologie. Montpellier.
- 40 Hayane S M, 1983 : Contribution à l'étude géologique et hydrogéologique du bassin versant de l'oued Sikkak (région de Tlemcen). Thèse Doc. 3e cycles. Univ. Oran. 236 p.
- 41 Hewlett J D et Hibert A R, 1967: Factors affecting the response of small watersheds to precipitation in humid areas. Ed. Pergamon press.
- 42 *Ider K*, 2005 : Modélisation hydrodynamique d'un cours d'eau application à Oued Soummam Mémoire de magistère. Ecole National polytechnique. Alger.
- 43 Klibachov K P et Guerechkov I F, 1970 : Les calculs hydrologiques. Guidrométéoizdat, Leningrad.

 Kotcherine D I, 1927 : dimensionnement des ouvertures des ouvrages artificiels, en tenant compte de
- la variation de l'afflue pluvial et le remplissage de la retenue. T.M. institut des ingénieurs de transport, édition VI.
- 45 Krajewski, 1991: A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resources Research. N°27, 19-25.
- 46 Laborde J P, 2000 : Hydrologie de surface, Cours Université de Nice-Sophia Antipolis, 191 p.
- 47 Ladjel M, 2007: A propos du temps de montée de la crue pluviale. 4ème Séminaire sur l'eau, 5-6 juin 2007. Université Mouloud Mammeri Tizi- ouzou.
- **Ladjel M, 2008 : A** propos du calcul de la durée de ruissellement superficiel durant les crues pluviales sur les oueds de l'Algérie. La revue « Météolorologie, climatologie et hydrologie » n° 50, 2^{ème} partie. Odessa.
- Ladjel M, 2009: Projection des hydrogrammes des crues pluviales des oueds d'Algérie. Séminaire International- Les méthodes génétiques et probabilistes en Hydrologie. Université Ecologique d'Odessa. 26-28 mars 2009, Odessa (Ukraine).
- Ladjel Mahmoud, 2001: Evaluation et gestion des ressources en eau. Séminaire international sur les petits barrages dans le monde méditerranéen. Tunis du 28 au 31 Mai 2001.
- Ladjel Mahmoud, 2004: Justification des puissances de Sokolovsky relatives à la projection des hydrogrammes des crues. Colloque International sur l'Eau et l'Environnement, le 7 et 8 décembre 2004, Alger.
- 52 Llamas J, 1993: hydrologie générale. Principes et applications. 2^{éme} édition. Gaetan morin. Québec.
- 53 Masson J M et Lubes, 1991: Hydrologie continentale « chapitre : hydrologie et statistique ». ORSTOM.
- 54 Merot P, 1988: Les zones de sources à surface variable et la question de leur localisation. Hydrologie continentale. Volume3.
- 55 Michel C, 1990: Hydrologie appliqué aux petits bassins ruraux, CEMAGREF.

Mohamed Salafi, 1999: Modélisation numérique de l'hydrologie pour l'aide à la gestion des bassins *56* versant, par l'utilisation conjointe des systèmes d'information géographique et de la méthode des éléments finis. thèse de doctorat Département des sciences géomatiques. Université LAVAL. Morel-Seytoux, 1975 : Pour une théorie modifiée de l'infiltration. Cahier ORSTOM. Série 57 hydrologie. Volume 10. Niemczynowicz J, 1987: Storm tracking using raingauge data. Journal of Hydrology. 58 Oberlin G.1980 : Présentation d'une méthode sommaire d'estimation des crues sur de petits bassins *59* de métropole : la méthode de SOCOSE. Edition: La Houille Blanche. Obled C, Wendling J. et Beven K. 1994: The sensitivity of hydrological models to spatial rainfall 60 patterns: an evaluation using observed data. Journal of hydrology. 159, 305-333. OMM: Organisation météorologique mondiale, 1994: guide des pratiques hydrologiques. 61 Cinquième édition. Papadakis C et Kazan N, 1986: Time of concentration in small rural watersheds. Rapport technique, *62* Université de Cincinnati. Peugeot C., Esteves M., Galle S., Rajot J.L. et Vandervaere J.P., 1997: Runoff generation processes: results and analysis of field data collected at the East Central Supersite of the HAPEX-Sahel *63* experiment. Journal of Hydrology. 179-202. Pierre Javelle, 2001: Thèse de doctorat. Caractérisation du régime des crues : le modèle débitdurée-fréquence convergent ; Approche locale et régionale. Institut National polytehnique de Grenoble. **Puech C et Chabi-Gouni D, 1984**: Méthodes de calculs des débits de crues décennale pour les petits *65* bassins en Afrique de l'Ouest et Centrale. CIEH, Ouagadougou. Réméniéras G, 1979: hydrologie de l'ingénier collection des études et recherche d'électricité de *66* France. Eyrolles. Ribstein P et Rodier J A, 1990 : Fortes crues des petits bassins versants au sahel : forme de *67* l'hydrogramme. Hydrologie continentale; volume 4. Roche M, 1973: Hydrologie et aménagements des eaux (méthodes structurales). *68* Roche M. 1963. "Hydrologie de surface." Gauthier-Villars, ORSTOM, Paris. 430p. 69 **Rodier J A, 1967 :** Présentation de toutes les crues de faibles fréquences étudiées par l'ORSTOM. 70 Cah.ORSTOM; série hydrologie; volume 4. Rojdestevnsky A V, 1974: Les méthodes statistiques en hydrologie. Leningrad. 71 *72* Sokolovsky D L, 1968: L'écoulement fluvial. Guidrométéoizdat, Leningrad. **Troutman B. 1983:** Runoff predictions errors and biais in parameters estimation induced by spatial 73 variability of precipitation. Water Ressources Research. *Valérie E B. 2004 :* Vers une modélisation hydrologique adaptée à la prévision opérationnelle des

crues éclair. Application à de petits bassins versants du sud de la France. Thèse de doctorat. Ecole

Doctorale : Sciences de l'Univers, de l'Environnement et de l'Espace.

74

ANNEXES

ANNEXE I : les séries de la pluie maximale journalière annuelle

ANNEXE II :-Les débits maxima mensuels et annuels [m³/s]

-Les débits maxima annuels [m³/s] et débits spécifiques [m³/s.km²]

ANNEXE III : Les cartes en isohyètes de la pluie maximale journalière annuelle de la région Soummam (pour chaque année)

ANNEXE IV: Courbe des fréquences empiriques des débits spécifiques maxima

ANNEXE V:Courbe des fréquences empiriques des séries de pluie max

ANNEXE VI : La table de la fonction Foster-Rebkine F(P%, Cs)

ANNEXE VII : Les tableaux de calcul des débits spécifiques maxima fréquentiels

ANNEXE VIII : Les graphes de la dépendance de $\ln(t_{mp\%}) = f[\ln(t_c)]$

ANNEXE IX: Les graphes de la dépendance $\ln(\gamma_{p\%}/(S+1)) = f[\ln(S+1)]$

ANNEXE X : Les graphes de la dépendance $\ln(\gamma_{p\%}/(I+1)) = f[\ln(I+1)]$

ANNEXE XI : Les graphes de la dépendance $\ln(\gamma_{p\%}/(H+1)) = f[\ln(H+1)]$

ANNEXE XII: les écarts relatifs de $\gamma_{p\%}$

ANNEXE XIII: les hydrogrammes probables au niveau des stations de jaugeage de

la Soummam

Station: 15 01 01

NAME OF A PARTICULAR OF A PART											
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.		
1901	33	1925	29,2	1943	17,5	1979	53,8	1994	42,7		
1903	57	1926	52	1944	23,1	1980	27,6	1995	39		
1904	50	1929	31,5	1947	38,7	1981	28	1996	19,6		
1905	26	1930	43,5	1967	39,9	1982	30,3	1997	37		
1906	76	1932	34	1968	36,1*	1983	19,9	1998	26,9		
1907	36,4	1933	47,3	1969	47,6*	1984	28,4	1999	41,8		
1911	56,9	1934	47,3	1970	46,8*	1985	64,6	2000	49,5		
1912	28,2	1935	47,4	1971	42,3*	1986	29,6	2001	31,3		
1913	47,4	1936	42,3	1972	51,4*	1987	24,2	2002	53,8		
1914	53	1937	33,5	1973	56,7	1988	80,2	2003	33,5		
1917	46,5	1938	48	1974	30,3	1989	33,9*	2004	30,5		
1919	42	1939	25	1975	34,3	1990	66,2				
1920	20	1940	24,4	1976	32	1991	59,9				
1922	43,4	1941	20,5	1977	33,1	1992	39,8				
1924	40	1942	33,4	1978	43,3*	1993	27,1*				

Station: 15 01 03

				10 1111111	1 . 15 01 05				
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.
1922	38,9	1972	43,8	1980	27,6	1988	41,1	1997	37,2*
1924	17,3	1973	60,4	1981	24,7	1989	27,7	1998	49,2
1925	40	1974	42,0*	1982	33,9	1991	31,2	1999	38,4*
1926	45	1975	19,7	1983	34,4*	1992	27,1	2000	45,9*
1968	40,8*	1976	21,5	1984	31,6	1993	26,9		
1969	52,0*	1977	34,9	1985	52,7	1994	54,5		
1970	44,3*	1978	27,5	1986	36	1995	24,2		
1971	61,9	1979	36,4	1987	25,5	1996	19,9		

Station: 15 01 04

Année	Pluie max.								
1968	42,3	1975	75	1982	52,5*	1989	60,2	1997	50,7*
1969	75	1976	36,8*	1983	63,2	1991	87,5	1998	31,3*
1970	59,7	1977	44,8	1984	40,5	1992	51,8*	1999	44,0*
1971	69	1978	45,0*	1985	62,9	1993	30,0*	2000	51,7*
1972	69	1979	44,2*	1986	41	1994	48,2*		
1973	119	1980	73,4	1987	57,1	1995	38,4*		
1974	45,5	1981	42,9	1988	69,7	1996	21,4*		

Station: 15 01 11

Année	Pluie max.								
1968	58,7*	1975	82,5	1982	62,7	1989	42,5*	1997	58,0*
1969	88,8	1976	98,4	1983	60,2	1991	46,1*	1998	35,5*
1970	40	1977	40,8*	1984	83,2	1992	41,3*	1999	38,6*
1971	66,6	1978	30,5	1985	28	1993	28,0*	2000	48,3*
1972	71,4	1979	43,3*	1986	46	1994	50,4*		_
1973	180	1980	50,7*	1987	40	1995	50,0*		
1974	63,8*	1981	74,9	1988	90	1996	42		

Station: 15 01 12

	Station, 13 of 12												
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.				
1968	76,8	1975	118	1982	16	1989	60	1996	37,7*				
1969	62,5	1976	71,8*	1983	17	1990	85	1997	71,7*				
1970	56	1977	61	1984	80,2*	1991	75,1*	1998	48,8*				
1971	56	1978	96	1985	40	1992	48,7*	1999	55,4*				
1972	24	1979	34,4*	1986	43	1993	29,8*	2000	57,4*				
1973	141*	1980	49,1*	1987	27	1994	57,3*						
1974	91.2	1981	32	1988	68.4*	1995	62.7*						

Station: 15 01 15

Année	Pluie max.								
1968	59,3*	1975	28	1982	33,3	1989	37,5	1996	19,6
1969	47,6*	1976	34,1	1983	46	1990	40,3	1997	46,9
1970	38,1*	1977	36,1	1984	42,8	1991	49,2*	1998	50,9*
1971	53,0*	1978	44,1	1985	90,8	1992	26,9	1999	33,2
1972	49,0*	1979	44,1	1986	55	1993	32,2	2000	45,2*
1973	106*	1980	54,2	1987	45,8	1994	34,4	2001	34,7
1974	64,3*	1981	50	1988	85,8	1995	39,3		

Station: 15 02 02

Année	Pluie max.								
1968	39,4*	1975	20,5	1982	34,7	1989	32	1996	16,5*
1969	29,5*	1976	18,1*	1983	30,4	1990	25	1997	27,2*
1970	31,4*	1977	40	1984	34,7	1991	17,2*	1998	32,5*
1971	44,1*	1978	28,6	1985	63,3	1992	17,9*	1999	43,3*
1972	42,1*	1979	37,2*	1986	64,9	1993	31,3*	2000	37,1*
1973	5,5	1980	23,7	1987	27,7	1994	39,6*		
1974	40,9*	1981	18,9	1988	27,5	1995	19,9*		

Station: 15 02 04

Année	Pluie max.								
1921	35,4	1936	40,2	1956	37,8	1977	30,2*	1991	26,7
1922	70,3	1937	41,9	1957	79,2	1978	34,0*	1992	22,5
1923	50,3	1938	50,5	1958	39,2	1979	42,1*	1993	23,4
1924	35,5	1939	25,2	1959	40,2	1980	38,4	1994	34,2
1925	21,8	1940	25,6	1960	31,2	1981	22,1	1995	32,2
1926	16	1947	29,7	1968	49,8	1982	38,5	1996	18,5
1927	23	1948	29	1969	40	1983	30,4	1997	35,2
1928	40,8	1949	22,4	1970	32,7	1984	28,4	1998	17
1929	30,1	1950	32,7	1971	48,2	1985	41	1999	25,8
1930	30,7	1951	31,5	1972	44,8	1986	29,3	2000	41,5
1932	25,3	1952	33,2	1973	109*	1987	32	2001	17
1933	45,3	1953	33,1	1974	56,5*	1988	51,4*	2002	46,4
1934	35,2	1954	22,9	1975	18,4	1989	40,4*	2003	35,6
1935	24,7	1955	27,8	1976	26,5	1990	24	2004	40,1

Station: 15 02 08

Année	Pluie max.								
1968	52,6*	1975	38,1	1982	31,3	1989	42	1997	38,4*
1969	41,8*	1976	30,1	1983	40	1991	36,3	1998	60,5
1970	33,4*	1977	28	1984	41,1	1992	24,3	1999	27,8*
1971	49,3*	1978	37,7	1985	92,4	1993	25,5	2000	42,0*
1972	62,2	1979	42,4*	1986	41,8	1994	35,6		
1973	101	1980	36	1987	34,7	1995	31,3		
1974	57,3	1981	39,7	1988	45,7	1996	15,3		

Station: 15 03 01

				Statio	11. 15 05 01				
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.
1942	41,8	1955	50	1977	37,1*	1987	27,5	1997	39,5
1944	25,5	1968	46,2*	1978	50,4*	1988	17,9	1998	24,4
1945	28	1969	46,2*	1979	18,0*	1989	30	1999	29,1
1946	42,2	1970	32,0*	1980	29,2	1990	12,6	2000	40,7
1947	24,5	1971	65,5	1981	33,1	1991	24,3	2001	15,2
1948	39	1972	51,5	1982	42,3*	1992	32,4*	2002	51,2
1949	32,2	1973	84,8*	1983	28,3*	1993	45	2003	62,2
1952	37,5	1974	45,9*	1984	58,3*	1994	27		
1953	47	1975	29,5	1985	44,5	1995	16,7		
105/	32	1076	17 Q*	1086	22.3	1006	1/1/5		

Station: 15 03 06

Année	Pluie max.								
1968	55,0*	1975	14,8	1982	32	1989	53,3*	1996	38,3
1969	54,8*	1976	61,1*	1983	21,4	1990	55	1997	64,8*
1970	41,5*	1977	46,2*	1984	73,3*	1991	86,2	1998	43,5*
1971	67,0*	1978	67,7*	1985	82	1992	42,4*	1999	55,3*
1972	49	1979	5,2	1986	46,3	1993	20,5	2000	56,0*
1973	99	1980	13,5	1987	32,1	1994	52		
1974	59,5	1981	13,5	1988	41,1	1995	64,7		

Station: 15 04 01

Année	Pluie max.								
1968	42	1977	22,9	1984	25,9	1993	29,4*	2001	18
1969	31	1978	26,9	1985	67,9	1994	30,6*	2002	42
1970	23,3	1979	24,5*	1986	22,6	1995	25,8*	2003	66,4
1971	48,8	1980	50,8	1987	21,1	1996	14,9*	2004	31,4
1972	31,5	1981	25,8	1988	42,6	1997	34		_
1973	50,2*	1982	99,8	1989	24,9	1998	18,1		
1974	30,1*	1983	28,4	1991	31,2	1999	29,8		
1975	23	1976	24	1992	19,3*	2000	28,5		

Station: 15 04 02

Année	Pluie max.								
1968	42,9*	1976	17,7*	1984	5,2	1993	48	2001	16,8
1969	26,0*	1977	8,5	1985	39	1994	43,5	2002	43,4
1970	23,4	1978	17,9	1986	14,7	1995	25,1	2003	29,8
1971	60,2*	1979	27,7*	1987	4	1996	16,3	2004	22,7
1972	39,5*	1980	17,3	1988	7	1997	35,8		
1973	41	1981	18	1989	5,8	1998	31,5		
1974	24	1982	10	1991	19,9*	1999	58,6		
1975	72	1983	3	1992	17,3	2000	30,7		

Station: 15 05 01

Année	Pluie max.								
1967	62	1975	38,5	1983	32,8	1992	18,4	2000	35,8
1968	33,8	1976	40,4	1984	50,1	1993	36,4	2001	24,6
1969	44,7	1977	32,2	1985	56	1994	30,4	2002	41
1970	21,2	1978	35,1	1986	45,1	1995	41,2	2003	28,6
1971	55,8	1979	30,8*	1987	38,5	1996	17,6	2004	30
1972	60,6	1980	46,4	1988	34,8	1997	26,4		
1973	67	1981	39	1989	24,8	1998	23,7		
1974	27	1982	35	1991	24,3	1999	38,8		

Station: 15 06 05

D									
Année	Pluie max.								
1968	33,5	1975	19,2	1982	26,8*	1989	28,2*	1996	23,2*
1969	38,1*	1976	21,2	1983	48,1*	1990	32,2*	1997	36,3*
1970	26,2*	1977	19,8	1984	54,1*	1991	33,9*	1998	44,3*
1971	48,1	1978	41,2	1985	33,1*	1992	20,9*	1999	24,6*
1972	30	1979	24	1986	49,1*	1993	31,8*		
1973	34,5*	1980	32,5*	1987	25,6*	1994	37,5*		
1974	28,0*	1981	31,1*	1988	43,7*	1995	22,3*		

Station: 15 06 07

Année	Pluie max.								
1937	38	1950	23	1975	48	1986	42,8	1998	42,3
1940	31,5	1951	31,5	1976	25	1987	26,7*	1999	41
1941	45,5	1952	27,5	1977	10	1988	40	2000	20
1942	42	1954	54	1978	23,9	1989	28,5	2001	20,7
1943	30	1968	33,1*	1979	44,6*	1991	30,6	2002	42,7
1944	60	1969	36,4*	1980	25	1992	26,6	2003	16,4
1945	30	1970	20,1	1981	26,1	1993	17,5	2004	44,5
1946	32	1971	46,1*	1982	25,6*	1994	24,2		
1947	31,5	1972	31	1983	36	1995	34		
1948	55	1973	29,2	1984	50,6	1996	21,1		
1949	24,5	1974	16,4	1985	26,6	1997	16,9		

Station: 15 06 08

Année	Pluie max.								
1912	35,1	1930	43,8	1953	47,3	1976	37,7	1993	30,3
1913	55,4	1931	53,5	1954	39,7	1977	35	1994	28,5
1914	41,2	1932	22,1	1955	39,6	1978	30,7	1995	37,3
1915	67,4	1933	35,4	1956	29,9	1979	82,7*	1996	15,5
1916	49,3	1934	40,6	1957	79,1	1980	37,5	1997	35,3
1917	44,3	1935	26,6	1958	28,7	1981	36,9	1998	44,7
1920	47	1943	30	1959	31	1982	24	1999	40,3
1921	29,5	1944	40,5	1961	41,4	1983	35	2000	15,8
1922	44	1945	32,5	1968	35,0*	1984	27,5	2001	21,3
1923	29,7	1946	31,2	1969	30,6	1985	43,1	2002	35,3
1924	30,2	1947	40,2	1970	21,8	1986	48,4	2003	35,1
1925	40,5	1948	45,8	1971	27	1987	19,7	2004	48,7
1926	63	1949	25,4	1972	43,4	1988	37,5		
1927	35,1	1950	40	1973	42,6	1989	33,3		
1928	41,6	1951	44,9	1974	63,8	1991	41		
1929	49,5	1952	21	1975	32,4	1992	33		

Station: 15 06 10

	,		,						
Année	Pluie max.								
1968	37,0*	1975	45,9*	1982	24,5	1989	29,9	1997	31,2
1969	50	1976	27,2	1983	35	1991	31,1	1998	50,3
1970	20	1977	35,5*	1984	28	1992	45,7	1999	30,2
1971	29,2	1978	24,6	1985	20,7	1993	28,1	2000	26,3
1972	43	1979	101	1986	28,1	1994	22,7		
1973	34	1980	34,4	1987	29,6	1995	43,5		
1974	30,8	1981	39,4	1988	31,1	1996	18,2		

Station: 15 06 12

				Statio	11. 10 00 12				
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.
1968	33,5	1975	51,8	1982	24,5*	1989	22,5	1997	25,8*
1969	33,2*	1976	67,3	1983	28,4	1991	34,9*	1998	42,8*
1970	20,8*	1977	24,1*	1984	41,8	1992	29,1*	1999	39,3*
1971	45,1	1978	49,8	1985	20	1993	24,1*	2000	16,7*
1972	36,7	1979	69,9*	1986	34,2	1994	24,3*		
1973	33,8	1980	31,8	1987	28,2	1995	34,7*		
1974	85,1	1981	42,4	1988	34,6	1996	17,2*		

Station: 15 06 13

Année	Pluie max.								
1968	41,8*	1975	44	1982	27	1989	47	1997	54,3
1969	59,6	1976	54,6	1983	49,4*	1991	51,5*	1998	50,5
1970	27,2	1977	39,9*	1984	47,6*	1992	66	1999	39,5
1971	33,5	1978	26,6	1985	22,4	1993	32	2000	37,8
1972	56,3	1979	28,7	1986	32,9	1994	58,7		
1973	53,6	1980	37	1987	30,8	1995	54,1		
1074	32	1081	46.1	1088	10.6	1006	22.6		

Station: 15 06 14

Année	Pluie max.								
1914	31,1	1931	28	1946	31	1970	47,4	1985	35,6*
1915	32,4	1932	32	1947	85,5	1971	38,0*	1986	76,5
1918	55,1	1933	40,8	1948	26,5	1972	57	1987	23,2*
1919	21,5	1934	53,4	1949	20	1973	36,9	1988	25,1
1920	45	1935	44,7	1950	31	1974	33	1989	34,5
1921	31	1936	53,5	1951	48	1975	40,5	1991	37,3
1922	34	1937	70,5	1952	27	1976	35,5	1992	19,5
1923	90	1938	50,5	1953	28	1977	50	1993	14
1924	41	1939	32,5	1955	62	1978	28,1*	1994	59
1925	44	1940	38,8	1956	28	1979	12,1	1995	22
1926	27	1941	40,2	1957	60	1980	23,9*	1996	14,5
1927	47,8	1942	42,3	1958	34	1981	29,4	1997	19
1928	39	1943	29,5	1959	35	1982	37,2	1998	18
1929	53,3	1944	50,5	1968	28,0*	1983	28,1	1999	21
1930	28	1945	31	1969	29	1984	13,9	2000	20

Station: 15 06 27

Année	Pluie max.								
1968	30,4*	1975	38,2*	1982	29,7*	1989	17	1997	21,7
1969	33,7*	1976	32,5*	1983	34,8*	1991	34,4*	1998	25,3
1970	35,7*	1977	35,7*	1984	32,6*	1992	15,5	1999	44
1971	43,5*	1978	31,3*	1985	34,2*	1993	15,5	2000	14,9
1972	47,6*	1979	22,8*	1986	64,6*	1994	34,4		_
1973	35,4*	1980	24,7*	1987	22	1995	22,2		
1974	36,2*	1981	31,0*	1988	17,1	1996	13,5		

Station: 15 07 02

Année	Pluie max.								
1968	49,5	1975	47,7*	1982	26,9	1989	42,5	1997	34,4*
1969	67,4	1976	27,1	1983	68,9	1991	35	1998	43,4*
1970	31	1977	55	1984	57,7	1992	42	1999	46,0*
1971	70,4	1978	28,9*	1985	67,5	1993	19,7	2000	34,8*
1972	57,5	1979	34,4*	1986	31,5	1994	48		
1973	54	1980	36,2	1987	22,4*	1995	42,2		
1974	52,2*	1981	35,5	1988	39,5	1996	22,1*		

Station: 15 07 03

Année	Pluie max.								
1943	23,8	1969	72,3*	1978	37,2	1987	32	1997	45,6
1946	56,6	1970	50,5	1979	39	1988	41	1998	36,3
1948	79,5	1971	52,3	1980	64	1989	29,5	1999	55,5
1949	25,8	1972	37,3	1981	46	1991	46,4*	2000	45,8
1950	68,3	1973	57,5	1982	96	1992	45,8	2001	30,8
1952	46	1974	26	1983	68	1993	35	2002	58,7
1953	50	1975	37,3*	1984	66,1	1994	48,3	2003	40,1
1954	23,5	1976	33,5	1985	49,2	1995	58,7	2004	54,9
1968	50,2*	1977	36,5	1986	172	1996	21,5		

Station: 15 07 06

Année	Pluie max.								
1941	65	1951	62,7	1970	35	1980	55,2	1991	36,8
1942	36,2	1952	34,6	1971	40,4	1981	43,6	1992	54,7
1943	50,3	1953	50,4	1972	26,8	1982	28,5	1993	31
1944	80,5	1954	30,3	1973	45	1983	76,1	1994	42
1945	26,7	1956	40	1974	55,3	1984	66,8	1995	50,2
1946	49	1957	80	1975	102	1985	43,8	1996	27
1947	36	1958	32	1976	44	1986	64,6	1997	38,9
1948	45,2	1959	50	1977	65	1987	25,5	1998	58,7
1949	45	1968	40,2*	1978	40	1988	59,2*	1999	54,1
1950	40	1969	40,2	1979	53,5	1989	32,5	2000	37,2

Station: 15 07 07

Année	Pluie max.								
1914	32	1932	44	1950	34,5	1972	54,6	1988	30,7*
1917	20	1933	45	1951	35	1973	50,3	1989	43,2*
1918	43	1934	33	1952	24	1974	34,3	1991	35,1*
1919	34,9	1935	46	1953	30	1975	41,5	1992	30,6*
1920	30,3	1936	38	1954	45	1976	23,6	1993	25,9
1921	17,8	1937	45	1955	55	1977	39,3	1994	69,9
1922	39,7	1940	29	1956	20	1978	24,5*	1995	59,8
1923	40,6	1941	32,5	1957	50	1979	25,9	1996	24,9
1924	19,3	1942	35,2	1958	27	1980	26	1997	20,9
1925	40,1	1943	23	1959	38	1981	57,5	1998	27,6
1926	38,3	1944	16	1960	44	1982	24	1999	43,8
1927	40,2	1945	29,5	1967	57,3	1983	31,8	2000	30,6
1928	25,2	1946	20	1968	27,6	1984	38,5	2001	22,8
1929	62,8	1947	23	1969	53	1985	37,5	2002	38,8
1930	31,5	1948	35	1970	32,8	1986	95,5	2003	36,5
1931	40,2	1949	29	1971	38	1987	15	2004	43,7

Station: 15 07 08

Année	Pluie max.								
1968	52,7*	1975	38,8	1982	110	1989	36	1997	47,4
1969	76,5*	1976	35	1983	66,0*	1991	45,4*	1998	37
1970	40	1977	38,8*	1984	26,5	1992	35,9	1999	53,2*
1971	47,7	1978	35,8*	1985	47	1993	35,5	2000	45,0*
1972	47,2	1979	31	1986	42,5	1994	45		
1973	65,5	1980	46,5	1987	27,5	1995	69,6		
1974	28,8	1981	63,2	1988	48	1996	18,7		

Station: 15 08 01

Année	Pluie max.								
1968	32,8	1975	35,5	1982	34,1*	1989	56,9	1997	25,3
1969	37,1	1976	21,8	1983	28,4	1991	36	1998	27,0*
1970	31,7	1977	35,3*	1984	24,7	1992	33,3*	1999	46,8
1971	42,5*	1978	16,8	1985	53,5	1993	27,2	2000	44,8
1972	21,2	1979	22,1	1986	32,8	1994	89,5		
1973	50,6	1980	18,4	1987	25	1995	33,3		
1974	31,4	1981	39,9	1988	30,3	1996	15		

Station: 15 08 02

Année	Pluie max.								
1968	67,1	1976	36,5	1984	44,8	1993	30,6	2001	25,5
1969	93,7	1977	37,1*	1985	84,3	1994	39,8	2002	60,1
1970	27,4	1978	29,1	1986	43,1	1995	39,8	2003	42,5
1971	64,5	1979	29,0*	1987	30,8	1996	17,5	2004	45,7
1972	51,2	1980	64,4	1988	71,3	1997	42,2		
1973	70,5	1981	24,8	1989	39,6	1998	35,2		
1974	36,6*	1982	55,9	1991	38,3	1999	46,0		
1975	32,8	1983	43,6*	1992	46,7	2000	41,6		

Station: 15 08 07

Année	Pluie max.								
1916	76,4	1972	38,3*	1979	30,7*	1986	40	1994	28,5
1917	46,4	1973	55,9*	1980	55,5	1987	30	1995	44
1918	45,3	1974	39,0*	1981	26,5	1988	56	1996	25
1968	47,7*	1975	53,4	1982	46,9*	1989	34	1997	54
1969	57,4*	1976	29,8	1983	19	1991	50,5	1998	28,9*
1970	25,6*	1977	26,8*	1984	28,1*	1992	31	1999	28
1971	46,6*	1978	22	1985	75,5	1993	39	2000	36

Station: 15 09 04

Année	Pluie max.								
1968	39,3*	1976	33,1*	1984	31,5	1993	31,2	2001	18,7
1969	57,4*	1977	33,7*	1985	55,3	1994	36,4	2002	51
1970	32,3*	1978	30,3	1986	41,2	1995	42,5	2003	38,1
1971	55,6*	1979	30,1*	1987	41,7	1996	21,8	2004	27,6
1972	47,8*	1980	59,3	1988	27,4	1997	37,8		
1973	65,4*	1981	34,2	1989	28,8*	1998	28,5		
1974	21,6	1982	70,1	1991	31,4	1999	53,9*		
1975	45,1*	1983	27,5	1992	24,6	2000	31		

Station: 15 10 01

Année	Pluie max.								
1968	78,2	1975	33,4	1982	90,7	1989	30,5*	1997	56,3*
1969	63,9	1976	30,7	1983	43,6*	1991	57,6*	1998	37,5*
1970	31	1977	41,0*	1984	43,9*	1992	45,4*	1999	78,0*
1971	43,5	1978	36,1	1985	57,3*	1993	30,8	2000	40,3*
1972	41,3	1979	41,4	1986	48,3*	1994	33,6		
1973	53,5	1980	48,8	1987	33,9*	1995	73,7*		
1974	47,2	1981	44,5	1988	35,5*	1996	23,1*		

Station: 15 10 05

Section 12 10 02											
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.		
1968	40	1975	39,5	1982	92,9*	1989	40,4*	1997	58,4*		
1969	85	1976	48	1983	70,1*	1991	64,6*	1998	44,8*		
1970	40	1977	46,9*	1984	38	1992	51,2*	1999	65,5*		
1971	82,4	1978	53,4	1985	40	1993	34,4*	2000	48,0*		
1972	58,6	1979	52,7	1986	80,3*	1994	52,0*				
1973	76	1980	51,4	1987	33,6*	1995	71,0*				
1974	45	1981	52,0*	1988	61	1996	24,3*				

Station: 15 10 06

Année	Pluie max.								
1923	52,6	1971	57,7	1979	24,7	1987	31,4	1996	19,9
1924	32,2	1972	43,5	1980	48,4	1988	29,2	1997	49,8
1925	36,8	1973	56	1981	42,1*	1989	24,9	1998	33,6
1926	49	1974	39,1	1982	48,5	1991	49,8*	1999	75,4
1927	80	1975	35,9	1983	32,3	1992	40,5	2000	33,6
1968	34,1	1976	23,2	1984	30,5	1993	33,2		_
1969	51,8	1977	38,4*	1985	48,5	1994	37,5		
1970	40,3	1978	64,6	1986	21,8	1995	72,2		

Station: 02 17 03

	Station: 02 17 03											
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.			
1918	50,6	1929	76,7	1971	120	1982	82	1993	52,4*			
1919	70	1930	83,4	1972	96,8	1983	69,3	1994	84,2*			
1920	75,5	1932	52,8	1973	225	1984	144	1995	66,1*			
1921	61	1935	86,7	1974	53,6	1985	169	1996	47,8*			
1922	44	1936	85	1975	134	1986	117	1997	98,5*			
1923	100	1937	65	1976	120	1987	50,3	1998	55,3*			
1924	40,4	1938	87	1977	48,3*	1988	56	1999	103*			
1925	50,2	1939	88	1978	70	1989	69,9	2000	75,9*			
1926	53,9	1968	22,1	1979	70,7	1990	54,7					
1927	81,3	1969	85,2	1980	112	1991	103*					
1928	65.2	1070	/3 Q*	1021	31.6*	1002	50.7*					

Station: 02 17 16

Année	Pluie max.								
1968	36,3*	1975	80,9*	1982	54,5*	1989	90	1996	52,3
1969	67,5*	1976	87,2*	1983	44,8*	1990	112	1997	105
1970	39,6*	1977	46,0*	1984	105*	1991	112	1998	59
1971	90,7*	1978	66,0*	1985	112*	1992	59	1999	110
1972	72,7*	1979	40,3*	1986	75,9*	1993	59,9	2000	83,3
1973	155*	1980	66,0*	1987	40,5*	1994	92,6	2001	47,9
1974	52.3*	1981	27,3*	1988	42.9*	1995	57.3		

Station: 02 19 01

Année	Pluie max.								
1968	56,5	1975	44,4	1982	60,7	1989	35	1996	26,9
1969	97,3*	1976	52,2	1983	49	1990	53,7	1997	84,5
1970	67,6*	1977	41	1984	68,7*	1991	51	1998	40
1971	79,2*	1978	40,4	1985	101	1992	74	1999	51,4
1972	72,3	1979	47	1986	52,7	1993	35	2000	52,6
1973	124	1980	67,2	1987	34,2	1994	67,8	2001	32,8
1974	54	1981	52,7	1988	41	1995	73,9		

Station: 02 19 11

Année	Pluie max.								
1968	55,3*	1975	56,3	1982	73,1	1989	36,1	1997	73,8*
1969	99,5*	1976	43,3	1983	38,4	1991	65,8	1998	35,3*
1970	76,8*	1977	47,5	1984	45,7	1992	34,8	1999	48,6*
1971	81,0*	1978	51	1985	84,7	1993	33,3*	2000	52,3
1972	38,2	1979	47	1986	41,6	1994	68,7		_
1973	127	1980	56,6*	1987	28,5	1995	54,1		
1974	51,7	1981	47,7*	1988	44,4*	1996	28		

Station: 03 02 04

Année	Pluie max.								
1915	77,4	1928	30	1956	34,8	1976	42	1989	65
1916	62	1929	40,5	1957	103	1977	40	1991	70
1917	50,6	1930	50,5	1958	52,6	1978	51	1992	48
1918	55,6	1931	50,4	1959	50,6	1979	30	1993	32,2
1919	49,2	1932	30,3	1960	43,3	1980	105	1994	50,7
1920	67,8	1933	30,5	1968	46,6	1981	51	1995	49,7
1921	57,1	1934	25	1969	48	1982	32	1996	24,8
1922	54	1935	30,3	1970	24	1983	48	1997	56
1923	40	1936	20,4	1971	58,5	1984	64	1998	53,3
1924	35,7	1937	20,4	1972	40,8	1985	50	1999	41,7
1925	45,5	1938	30,2	1973	70,6	1986	53	2000	42,1
1926	55,6	1954	25,2	1974	72	1987	40		
1927	45,2	1955	69,7	1975	31,5	1988	74,5		

Station: 03 02 05

Année	Pluie max.								
1927	54,2	1940	28	1968	45,3*	1979	47,5	1991	56
1928	61,5	1941	31	1969	36,1	1980	54,5	1992	46
1929	68,5	1942	38	1970	42,3	1981	40	1993	32,5
1930	69,5	1943	22	1971	46,9	1982	48	1994	80
1931	135	1944	40	1972	42,6	1983	70,5	1995	43,5
1932	32	1946	40	1973	60,6	1984	60	1996	23
1933	43,2	1949	35	1974	76,6	1985	54	1997	42
1934	39	1951	31	1975	64,7*	1986	37,5	1998	46
1935	40,8	1952	27	1976	34,7*	1987	27,5	1999	45
1936	45	1954	35	1977	56,9*	1988	80	2000	35
1937	36	1956	28	1978	29,5	1989	33,5		

Station: 05 04 02

Année	Pluie max.								
1922	85,7	1972	45,8*	1980	28,9	1988	37,8	1996	19,5
1923	27,5	1973	17,1	1981	24,3	1989	29,7	1997	18,4
1924	41,1	1974	55	1982	34,3	1990	14,7	1998	22,1
1925	34,8	1975	43	1983	18	1991	22	1999	44,9*
1968	31,5	1976	26,6	1984	23,6	1992	21,3	2000	42,0*
1969	28,7	1977	21,6	1985	50,7	1993	24		
1970	39,5*	1978	46	1986	16	1994	31,5		
1971	13	1979	48,4	1987	21,9	1995	19,2		

Station: 05 08 02

Année	Pluie max.								
1968	43,8	1975	23,3	1982	24	1989	55	1997	41,1
1969	31,3	1976	24	1983	17,6	1991	25,9	1998	21,2
1970	34,3	1977	11	1984	22	1992	21,4	1999	62,5
1971	96,3	1978	19,2*	1985	20,9	1993	34,2	2000	21,6*
1972	41,5	1979	20	1986	19	1994	53		_
1973	30,2	1980	35,5	1987	25,5	1995	23,7		
1974	16	1981	32,6	1988	33,2	1996	17,2		

Station: 05 09 04

Année	Pluie max.								
1943	47,4	1964	11,5	1975	48,7	1986	24,9	1998	18,4
1944	35,5	1965	12	1976	27,8*	1987	46,5	1999	58,6
1945	25,1	1966	11,2	1977	25,7	1988	52	2000	12
1946	36	1967	19,9	1978	37,3	1989	27,4	2001	14
1947	44,3	1968	20	1979	26,9	1991	43	2002	44,7
1948	32	1969	29	1980	23,2	1992	30	2003	46,9
1949	76,6	1970	34,5	1981	47,2	1993	24	2004	33,5
1950	30	1971	33,6	1982	48	1994	42		
1951	46	1972	49,2	1983	30,6	1995	55		
1952	37,5	1973	46	1984	13,1*	1996	16,1*		
1963	12.6	1974	18.9	1985	47.4	1997	21.4*		

Station: 05 09 06

Année	Pluie max.								
1929	64,1	1940	30,5	1968	51	1979	35	1991	43,6*
1930	47,9	1944	34	1969	60	1980	30	1992	24
1931	42,6	1946	49	1970	25	1981	19	1993	46,8
1932	49,1	1947	42,3	1971	38,5	1982	17,5	1994	67,3
1933	42,1	1954	27,5	1972	32,8	1983	22,1*	1995	41
1934	36,5	1955	40,2	1973	55,6	1984	25,4*	1996	32
1935	44,7	1956	27,2	1974	56,5	1985	53	1997	35,5
1936	34,1	1957	62,1	1975	45,5	1986	31,1*	1998	34,5
1937	51,3	1958	36,4	1976	30	1987	30,7*	1999	30
1938	72,8	1959	29	1977	24,8	1988	53,8*	2000	21
1939	51,3	1960	52,1	1978	14	1989	39,8		_

Station: 05 09 07

Station: 02 07 07											
Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.	Année	Pluie max.		
1914	27,3	1971	35,2	1979	20,4*	1987	33,5*	1996	14,1*		
1915	52	1972	28	1980	26,5	1988	34,5*	1997	18,4*		
1916	73,7	1973	42	1981	24	1989	31,0*	1998	17,6*		
1917	35	1974	28,5	1982	40,5*	1991	39,1*	1999	36,8*		
1938	41,5	1975	48	1983	27,2*	1992	22,6*	2000	15,4*		
1968	29,5	1976	32,3*	1984	11,9*	1993	18,2*				
1969	32,8	1977	36,5*	1985	38,4*	1994	51,0*				
1970	25.5	1978	29.5	1986	50.8*	1995	35.6*				

Station: 09 03 14

Année	Dhuis may	Année	Dluie mey	Année	Pluie max.	Année	Pluie max.	Annóo	Pluie max.
Année	Pluie max.	Annee	Pluie max.	Annee	Pluie max.	Annee	Pluie max.	Année	Pluie max.
1968	35,4*	1975	30,2	1982	35,1*	1989	34	1996	19,7*
1969	50,8*	1976	24,5	1983	44,5	1990	32	1997	36,7*
1970	51,6*	1977	69,6	1984	60,4	1991	64,0*	1998	24,2*
1971	40,7*	1978	52,2	1985	107	1992	28,1	1999	44,1*
1972	56,1*	1979	48,3	1986	39,9	1993	28,8	2000	49,7*
1973	62,9*	1980	32,9	1987	39,8	1994	45		
1974	36,3*	1981	46,2	1988	75,5*	1995	38,9*		

Station: 09 04 03

Année	Pluie max.								
1925	53,9	1951	50,4	1971	84,7	1981	31,4	1991	59
1926	33,9	1952	49	1972	66,6	1982	64,4*	1992	66,1
1928	56,7	1953	45	1973	128	1983	42,9	1993	32,1
1929	48,8	1954	27,5	1974	54,2	1984	53,1	1994	46,4
1930	55	1955	36,2	1975	49	1985	74,7	1995	51,5
1931	43	1956	35,8	1976	44	1986	45	1996	22
1932	26,1	1957	111	1977	40,6	1987	36,4	1997	59
1933	63	1968	54,6	1978	50	1988	41	1998	27,9
1938	106	1969	103	1979	43,8	1989	26,9	1999	47,5*
1950	69,6	1970	103	1980	37,6	1990	40,3	2000	53,2*

Station: 10 01 10

Année	Pluie max.								
1968	41,3*	1975	24,9	1982	27,4	1989	53,5*	1997	28,2
1969	49,4*	1976	37	1983	92,3	1991	62,0*	1998	48,7*
1970	23,3*	1977	29,5	1984	53,6	1992	41,7	1999	27,1
1971	41,3*	1978	28,8	1985	19,3	1993	31,1	2000	32,4*
1972	52,6*	1979	43,7*	1986	31,2	1994	49,1*		
1973	28,1	1980	15,6	1987	32,7*	1995	49,6*		
1974	62,5	1981	33,5	1988	55,5*	1996	20,1		

Code Station: 05 09 01 Nom Station: MEDJEZ

			Couck	Julion		·	1 1011	Dunio					
Année	S	О	N	D	J	F	M	A	M	J	J	Α	Annuel
1973/74	116,00	0,38	0,43	0,80	0,67	1,69	39,00	60,80	19,64	217,00	0,26	0,61	217,00
1974/75	41,40	56,60	0,36	0,33	0,33	5,98	4,30	2,50	1,95	45,00	0,09	76,80	76,80
1975/76	217,00	0,22	4,75	5,90	0,06	25,32	3,06	107,90	90,80	438,60	54,50	24,36	438,60
1976/77	60,8	16,86	3,09	3,75	128	2,42	0,71	0,43	7,13	4,7	0,17	0,91	128
1977/78	10,5	0,14	13,83	0,3	0,52	0,23	0,19	12,67	0,42	10,76	0,05	11,28	13,83
1978/79	0,05	3,58	0,08	0,07	57,6	0,13	2,11	180	33,8	166,8	0,06	0,04	180
1979/80	213,1	10,44	0,41	0,25	0,22	6,6	3,33	24,19	3,66	0,08	0,07	2,73	213,10
1980/81	59,3	0,04	46,38	16	1,22	56,34	1,3	68,6	7,64	42,15	0,08	6,6	68,6
1981/82	NO	NO	ΝO	NO	NO	NO	ΝO	NO	NO	NO	ΝO	ΝO	NO
1982/83	53,8	44,8	80	10,24	3,17	2,74	1,55	5,75	0,75	0,22	0,1	41,52	80
1983/84	0,06	0,06	0,06	0,07	0,32	3,45	0,82	9,7	20,45	6,53	0,41	0,63	20,45
1984/85	0,06	12,38	20,78	0,25	5,53	3,15	9,32	2,7	14,74	0,76	0,72	0,51	20,78
1985/86	136	147	9,45	30,8	5,53	7,05	79	3,02	7,97	2,23	0,16	0,21	147
1986/87	166,8	4,818	9,82	13,21	4,63	12,63	5,42	10,7	49,68	21,56	128	0,21	166,8
1987/88	20,78	15,36	47,67	50,42	0,69	0,43	2,55	9	6,96	30,62	0,15	0,13	50,42
1988/89	0,13	4,82	150,3	11,7	0,29	0,07	0,07	16,74	63,4	64,92	1,47	83,25	150,3
1989/90	454,8	0,34	58,56	0,45	2,52	1,28	26,46	23,17	163,5	31,44	10,72	16,6	454,8
1990/91	217	0,198	29,45	7,16	0,45	1,73	33,58	8,36	24,32	12,55	0,32	3,6	217
1991/92	236	154,2	1,25	7,06	29,8	4,62	112	17,88	47,44	83,2	22	0,28	236
1992/93	135	1,145	191,2	77,56	1,48	0,77	11,8	0,371	38,62	23,5	0,19	0,19	191,2
1993/94	148	54,37	224,8	14,8	0,52	4,45	4,62	2,87	0,12	0,11	22	0,53	224,8

Code station: 05 11 01 Nom station: SIDI OUADAH.

Année	S	О	N	D	J	F	M	A	M	J	J	A	Annuel
1977/78	17,08	0,12	0,45	0,17	0,17	0,17	0,17	0,67	0,27	0,08	0,08	62,52	62,52
1978/79	2,91	3,07	0,12	0,12	11,32	0,10	0,22	0,39	0,51	0,43	0,05	0,05	11,32
1979/80	303,88	1,93	0,14	0,06	0,20	0,09	0,13	0,08	0,18	0,10	0,05	0,07	303,88
1980/81	3,42	0,09	9,52	2,05	0,41	2,00	0,21	0,21	0,12	4,94	0,12	20,25	20,25
1981/82	29,96	249,50	0,12	0,91	0,12	0,28	7,07	39,32	79,20	1,80	0,06	0,05	249,50
1982/83	117,60	25,00	20,14	0,19	0,13	0,13	0,13	0,11	1,26	0,09	0,10	12,00	117,60
1983/84	0,09	0,13	0,10	0,09	0,10	0,42	0,10	0,58	1,70	0,09	0,09	13,96	13,96
1984/85	0,09	6,32	1,85	0,08	0,30	0,24	1,01	5,04	0,58	0,11	0,13	0,08	6,32
1985/86	47,64	42,52	1,14	2,00	6,00	1,70	4,40	0,47	0,36	0,36	0,27	0,33	47,64
1986/87	38,68	5,04	1,41	3,05	0,30	1,26	0,36	0,33	1,56	0,24	0,27	0,53	38,68
1987/88	0,21	9,80	7,28	126,00	0,14	0,14	0,16	0,20	2,95	11,06	0,07	0,09	126,00
1988/89	5,38	0,11	18,20	0,35	0,07	0,15	0,08	5,46	6,34	7,28	0,06	0,18	18,20
1989/90	6,96	0,10	0,35	0,18	0,45	0,12	0,76	4,40	13,96	0,20	0,19	1,41	13,96
1990/91	0,64	0,18	5,68	4,72	0,09	0,13	1,14	0,34	6,32	0,34	0,10	0,64	6,32
1991/92	8,48	39,96	0,10	0,08	0,10	0,09	0,16	0,08	0,24	0,04	0,14	0,04	39,96
1992/93	3,32	0,07	10,68	0,04	0,04	0,04	0,05	0,04	0,15	0,02	0,02	0,02	10,68
1993/94	0,03	1,70	2,84	0,24	0,04	0,04	0,03	0,03	0,03	0,02	0,03	0,04	2,84
1994/95	230,00	47,64	0,05	0,05	0,05	0,05	0,58	0,05	0,04	0,04	0,03	0,04	230
1995/96	0,25	71,65	0,05	0,18	3,32	7,28	0,53	0,24	0,47	0,64	0,16	0,13	71,65
1996/97	42,52	0,07	0,07	0,07	0,42	0,07	0,06	0,25	0,42	2,84	0,06	0,15	42,52
1997/98	175,30	16,41	0,30	0,11	0,64	0,42	0,09	15,92	4,80	0,24	0,05	0,05	175,30
1998/99	25,00	0,16	0,06	0,07	0,10	0,07	0,07	0,07	0,14	0,30	0,08	20,95	25,00
1999/00	47,64	85,20	5,36	0,30	0,10	0,06	0,08	0,05	1,70	0,08	0,04	0,04	85,20
2000/01	42,52	1,14	0,05	12,49	0,27	0,03	0,03	0,02	0,89	0,02	0,01	0,02	42,52
2001/02	72,00	1,70	0,51	0,07	NO	ΝO	0,06	0,06	0,05	0,04	129,60	9,36	(129,60)
2002/03	28,10	46,36	1,26	1,70	1,85	0,05	0,04	2,84	2,00	2,42	0,01	NO	(46,36)
2003/04	15,92	52,12	ΝO	0,13	0,05	ΝO	3,32	64,00	6,00	41,24	0,04	45,72	(64,00)
2004/05	2,42	0,07	8,48	10,24	NO	0,07	0,10	0,07	0,06	NO	4.30	0,03	(10,24)

Code station: 10 01 09 Nom station: TASSADANE

Année	S	0	N	D	J	F	M	A	M	J	J	A	Annuel
1973/74	197,00	0,97	0,64	14,89	11,74	119,20	146,60	80,80	56,92	1,20	1,59	0,56	197
1974/75	34,52	41,90	9,16	17,24	7,15	121,60	47,20	2,82	43,60	0,73	0,24	63,28	121,60
1975/76	65,40	0,39	15,00	45,30	14,00	136,00	107,20	69,96	74,52	56,28	33,34	42,04	136,00
1976/77	88,40	57,42	45,84	100,00	76,80	4,90	3,04	38,52	40,28	19,30	0,39	0,21	100,00
1977/78	4,54	0,39	35,28	1,25	22,10	51,00	74,52	151,60	13,62	3,36	0,77	2,46	151,60
1978/79	0,21	14,24	22,10	42,75	3,55	52,86	60,84	141,20	8,36	224,00	3,10	1,78	224,00
1979/80	104,20	8,00	44,06	1,67	35,80	19,54	115,40	54,53	47,50	0,94	0,18	0,18	115,40
198/0/81	127,40	3,10	18,36	516,00	65,40	39,05	95,40	42,50	26,40	133,60	0,52	3,67	516,00
1981/82	141,20	0,76	4,86	90,80	108,40	83,82	90,80	60,84	131,20	42,50	1,34	21,30	141,20
1982/83	21,30	114,40	21,30	147,70	11,26	3,93	51,70	2,99	2,34	5,75	0,56	0,29	147,70
1983/84	0,19	42,50	48,25	0,57	67,68	366,20	45,30	20,84	5,45	1,29	0,53	3,77	366,20
1984/85	0,47	162,00	1,53	159,40	58,00	42,31	254,40	37,00	13,52	23,10	1,00	0,46	254,40
1985/86	18,40	20,70	1,36	6,83	49,53	23,54	58,68	8,95	4,80	4,44	0,32	0,14	58,68
1986/87	27,60	24,34	34,85	90,22	41,88	69,27	24,04	41,88	13,88	1,83	35,41	11,30	90,22
1987/88	1,56	8,54	20,78	6,15	16,62	2,47	44,50	10,30	4,07	7,71	0,12	0,00	44,50
1988/89	6,53	0,21	0,39	141,20	21,85	53,00	44,00	10,98	4,39	6,07	4,39	0,44	141,20
1989/90	32,40	23,56	1,90	1,64	8,55	0,61	1,40	127,60	41,00	6,07	7,62	4,20	127,60
1990/91	10,98	22,42	184,40	55,10	17,20	57,20	53,90	46,15	71,66	71,66	0,44	0,38	184,40
1991/92	47,00	41,00	10,98	2,89	37,66	5,71	8,19	107,74	71,66	64,42	98,90	0,08	107,74
1992/93	2,85	0,08	3,01	97,50	50,80	13,00	25,20	14,10	38,00	0,58	0,58	0,19	97,50
1993/94	0,24	0,31	0,24	69,85	50,90	82,90	5,04	6,00	1,47	1,04	46,20	11,40	82,90
1994/95	95,60	26,38	0,19	36,82	68,04	23,30	91,90	25,80	32,85	48,38	0,21	0,04	95,60
1995/96	7,83	36,82	0,49	13,04	36,82	197,20	30,37	15,67	33,80	23,56	0,32	18,26	197,20
1996/97	0,38	8,22	8,40	19,00	20,71	0,71	0,63	1,90	15,40	6,55	0,04	23,56	23,56
1997/98	38,00	12,98	167,60	57,00	5,55	36,60	11,78	38,00	40,19	1,59	0,26	2,03	167,60
1998/99	69,60	0,68	97,20	42,38	28,48	27,85	5,24	3,43	0,55	0,35	0,15	0,05	97,20
1999/00	27,22	8,40	0,50	38,00	7,29	1,28	5,11	1,07	31,00	5,50	0,06	0,08	38,00
2000/01	19,00	7,08	0,23	24,70	86,00	57,00	2,20	1,50	9,60	0,05	0,02	0,01	86,00
2001/02	136,00	36,60	3,72	1,43	3,32	9,00	12,01	3,19	2,29	33,80	7,66	14,00	136,00
2002/03	16,04	6,21	234,20	245,00	609,44	98,60	11,55	425,60	81,20	2,03	4,28	20,71	609,44

Code Station: 15 04 01. Nom Station: PORTE DE FER

Année	S	O	N	D	J	F	M	A	M	J	J	A	Annuel
1968/69	0,08	0,03	1,73	39,5	18,9	3,86	137,8	313,4	0,92	94,74	13,9	419,1	419,10
1969/70	19,6	ΝO	NO	ΝO	NO	0,89	13,6	33,2	1,66	0,47	23,72	0,14	NO
1970/71	14,04	15,36	0,03	0,08	3,19	0,18	5,5	ΝO	36,12	ΝO	NO	ΝO	NO
1971/72	NO	2,28	92,4	93,58	183,00	17,72	9,12	14,56	92,4	13,92	0,3	98,3	(183,00)
1972/73	70,60	11	3,55	12,3	13,08	13,34	16,88	5,64	0,3	11,78	0,3	0,1	70,60
1973/74	65,7	0,08	0,11	3,93	0,11	13,08	38,6	26,96	23	7,99	0,1	3,06	65,70
1974/75	NO	ΝO	0,17	0,09	0,09	23,2	27,20	0,31	17,4	6,95	0,05	19,64	(27,20)
1975/76	117,6	0,05	3,74	35,8	0,1	41,4	0,52	11,56	56,3	386	93,4	0,06	386,00
1976/77	0,19	4,44	0,11	0,22	50,30	0,13	0,09	2,37	2,37	1,98	0,02	0,01	50,30
1977/78	2,52	0,01	25,4	0,01	0,79	0,14	0,01	53,60	6,52	45,26	NO	5,46	(53,60)
1978/79	0,01	15,06	15,5	0,13	76,9	3,69	1,04	69,61	0,14	ΝO	0,01	0,01	(76,90)
1979/80	430,00	10,32	2,82	0,57	2,17	6,51	0,24	0,29	0,40	0,02	0,03	29,49	430,00
1980/81	211,00	0,28	61,10	20,32	2,00	49,70	2,03	57,30	0,27	1,22	0,07	2,63	211,00
1981/82	NO	NO	NO	NO	186,00	13,50	9,60	2,17	6,50	40,60	0,80	1,24	(186,00)
1982/83	31,50	20,72	6,34	24,00	81,00	100,70	126,00	0,98	17,15	20,20	NO	NO	(126,00)
1983/84	NO	NO	1,50	ΝO	1,47	1,32	1,02	0,40	0,86	0,02	0,00	0,00	(1,47)
1984/85	NO	ΝO	NO	4,27	5,50	5,58	5,14	5,25	1,13	0,08	0,00	0,00	(5,58)
1985/86	105,5	1,262	69,80	28,78	6,984	8,990	238,8	,3400	,6700	10,10	,0000	3,600	238,80
1986/87	34,47	85,60	0,86	7,710	0,67	8,676	1,269	3,450	12,50	4,862	5,060	1,084	85,60
1987/88	3,454	78,30	10,90	3,000	,0580	2,748	0,60	5,074	311,1	6,108	0,00	0,00	311,10
1988/89	3,14	2,00	5,478	23,46	0,00	0,00	0,00	17,30	2,622	11,70	0,00	0,70	23,46
1989/90	188,6	15,00	0,12	0,01	0,00	0,00	0,00	NO	NO	0,77	,0420	0,40	(188,6)
1990/91	0,630	12,13	1,440	0,92	0,27	8,990	13,78	0,92	1,856	0,76	0,01	0,00	13,78
1991/92	71,50	4,268	0,00	0,00	0,036	0,00	0,01	5,060	290,7	3,300	0,10	0,00	290,70
1992/93	0,15	0,02	63,00	0,01	0,04	0,00	0,01	0,01	1,96	0,00	0,00	0,03	63,00
1993/94	159,9	25,70	0,01	0,01	0,00	0,08	0,01	0,02	0,01	0,01	0,00	0,00	159,90

Code station: 15 06 01 Nom station: FERMATOU

	Code station: 15 uo ui Nom station: FERMATUU												
Année	S	О	N	D	J	F	M	A	M	J	J	Α	Annuel
1969/70	ΝO	ΝO	NO	2,70	3,57	2,24	12,10	45,00	0,70	0,19	0,08	0,05	(43.40)
1970/71	0,06	4,54	0,05	0,06	1,63	1,02	5,43	5,91	2,16	0,10	0,04	0,04	5,91
1971/72	0,07	0,05	0,13	0,26	8,51	12,55	19,70	8,89	3,98	1,45	0,05	0,05	19,70
1972/73	63,96	1,18	0,05	0,35	11,20	13,45	31,00	6,62	0,61	18,20	0,11	0,21	63,96
1973/74	1,53	0,06	0,06	0,06	0,07	3,55	84,00	45,00	18,70	0,21	0,08	0,06	84,00
4974/75	14,35	14,80	0,06	0,05	0,06	4,90	3,70	0,45	0,42	0,07	0,05	1,24	14,80
1975/76	2,96	0,05	0,05	0,05	0,05	41,10	13,00	6,86	10,82	1,68	86,48	1,24	86,48
1976/77	2,30	0,96	2,30	20,70	17,70	0,78	0,28	0,64	0,51	0,07	0,05	0,05	20,70
1977/78	0,05	0,04	0,05	0,05	0,04	0,87	0,61	13,90	0,14	0,08	0,05	0,04	13,90
1978/79	0,03	0,03	0,03	0,04	0,04	0,21	3,85	33,46	0,30	0,35	0,05	0,04	33,46
1979/80	50,92	0,04	0,04	0,04	0,05	0,07	9,66	0,68	0,64	0,05	0,04	0,04	50,92
1980/81	0,91	0,02	0,43	1,69	3,66	1,28	4,85	1,93	0,30	0,43	0,04	0,03	4,85
1981/82	68,28	0,87	0,03	2,36	0,83	50,18	67,20	2,74	34,72	2,30	0,08	0,05	68,28
1982/83	0,36	0,61	0,49	35,98	2,85	0,58	0,61	0,22	0,18	0,06	0,05	6,13	35,98
1983/84	0,04	0,05	0,05	0,08	2,96	63,96	15,25	1,99	0,64	0,16	0,08	0,07	63,96
1984/85	0,07	1,99	0,06	13,00	36,61	10,43	71,52	4,99	2,10	0,26	0,46	0,07	71,52
1985/86	0,24	0,72	0,09	0,08	0,34	2,88	20,70	0,75	0,14	0,92	0,21	0,05	20,70
1986/87	1,25	0,14	0,05	18,70	9,28	66,12	3,00	28,00	0,57	0,22	0,12	0,08	66,12
1987/88	0,08	0,08	0,05	0,06	0,05	0,06	0,95	0,13	0,57	0,05	0,06	0,04	0,95
1988/89	4,67	0,04	0,04	56,16	2,52	7,35	16,70	6,74	1,73	0,39	0,10	0,39	56,16
1989/90	2,00	0,07	0,07	0,07	0,07	0,06	0,06	0,78	1,73	2,76	0,06	0,95	2,76
1990/91	6,94	0,04	15,70	3,49	0,78	7,74	15,70	1,73	93,60	5,92	237,70	0,10	237,70
1991/92	3,13	3,73	0,16	0,10	0,85	0,54	0,29	29,80	5,30	8,12	1,55	0,08	29,80
1992/93	5,30	0,07	0,36	2,00	5,30	3,00	2,10	0,72	0,95	0,15	0,11	0,17	5,30
1993/94	1,48	0,07	0,08	0,27	0,31	3,25	0,27	0,27	0,09	0,06	0,85	0,06	3,25
1994/95	1,13	0,17	0,05	0,05	15,70	4,20	5,71	0,92	0,40	1,04	0,10	0,07	15,70
1995/96	0,08	0,12	0,06	0,07	0,30	45,00	8,89	2,88	6,53	66,12	0,13	0,54	66,12
1996/97	0,07	0,07	0,09	0,09	0,09	0,08	0,07	0,07	0,29	0,05	0,05	6,12	6,12
1997/98	2,00	37,87	4,36	2,31	0,85	6,74	1,13	5,14	13,45	3,13	0,05	0,04	37,87
1998/99	68,28	0,25	18,70	4,52	26,20	14,35	3,49	0,37	0,16	6,53	0,07	0,06	68,28
1999/00	5,51	0,07	0,07	2,76	0,24	0,15	0,24	0,10	2,21	0,08	0,04	0,16	5,51
2000/01	1,18	0,75	0,05	0,64	1,48	4,67	0,21	0,16	0,08	0,06	0,04	0,03	4,67
2001/02	37,87	1,82	0,15	0,04	0,07	0,13	0,92	0,06	8,12	0,07	0,17	8,12	37,87
2002/03	0,02	0,03	120,00	47,96	58,04	55,22	3,13	110,40	1,08	6,94	0,23	98,92	120,00
2003/04	11,20	8,89	0,18	6,41	35,98	1,98	1,14	4,99	29,80	0,53	0,23	4,83	35,98
2004/05	2,15	0,17	4,83	4,04	14,80	7,35	7,35	5,71	0,86	52,40	0,33	0,16	52,40

Code station: 15 07 01 Nom station: AIN ZADA

Année	S	О	N	D	J	F	M	A	M	J	J	A	Annuel
1970/71	NO	2,00	0,05	0,05	0,96	0,36	4,16	3,36	36,20	0,03	0,03	0,02	(57,91)
1971/72	6,75	0,14	7,22		6,75	5,61	6,99	4,57	20,13	2,32	0,11	0,04	(20,13)
1972/73	11,40	0,44	0,09	0,53	9,09	8,72	18,60	4,50	0,61	19,09	0,03	2,02	19,09
1973/74	21,54	0,07	0,19	0,40	0,34	2,73	23,50	47,60	7,15	0,14	0,04	0,02	47,60
1974/75	3,30	3,16	0,12	0,19	0,19	14,20	3,01	0,42	0,24	6,85	0,01	3,30	14,20
1975/76	314,40	0,05	0,67	0,28	0,17	4,87	3,73	3,05	26,20	23,60	30,10	19,32	314,40
1976/77	2,90	0,28	2,47	7,29	10,36	1,16	0,63	0,03	0,58	0,09	0,00	0,00	10,36
1977/78	0,00	0,01	0,63	0,05	0,09	0,36	0,41	4,30	0,08	0,04	0,02	15,40	15,40
1978/79	0,01	0,58	0,02	0,02	0,05	0,01	1,40	13,64	6,27	74,30	0,05	0,01	74,30
1979/80	224,40	0,13	0,18	0,11	0,07	0,05	4,55	0,05	1,04	0,18	0,03	0,01	224,40
1980/81	1,56	0,02	0,73	3,47	3,87	2,68	0,53	8,03	0,02	1,23	0,01	0,20	8,03
1981/82	80,00	26,94	0,09	2,34	2,18	16,86	18,78	26,16	25,38	13,30	0,12	0,19	80,00
1982/83	28,76	68,16	5,64	16,48	2,02	1,33	0,82	0,12	0,04	0,09	0,05	0,19	68,16
1983/84	NO	NO	ΝO	5,60	2,05	26,60	13,64	10.21	1,30	0,39	0,00	0,00	(79.63)

Code station: 15 07 02 Nom station: NAGRAOUA

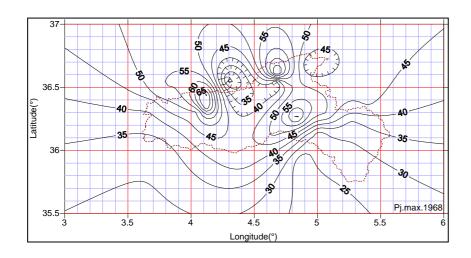
	Code Station : 13 07 02 from Station : Tradition												
Année	S	О	N	D	J	F	M	Α	M	J	J	A	Annuel
1968/69	NO	NO	NO	6,80	21,48	0,85	62,50	12,20	0,46	0,53	1,85	129,80	(129,80)
1969/70	11,20	168,60	2,81	27,00	14,26	6,08	21,48	77,20	3,35	1,01	16,50	0,60	168,60
1970/71	10,74	60,70	0,20	4,01	11,20	0,60	4,01	5,00	39,40	0,16	16,50	0,04	60,70
1971/72	3,08	13,20	12,20	45,00	42,60	10,74	18,90	14,26	24,20	12,20	0,24	10,74	45,00
1972/73	94,30	9,82	1,01	13,70	22,80	14,82	28,40	14,26	2,00	64,30	0,19	5,32	94,30
1973/74	65,20	0,22	0,30	5,69	0,44	18,90	105,30	67,00	22,80	24,90	0,17	0,44	105,30
1974/75	0,60	64,30	0,37	0,24	0,24	31,24	6,80	60,70	1,30	1,49	0,04	0,05	64,30
1975/76	177,00	0,44	6,80	12,26	0,33	27,00	13,32	40,20	271,10	14,38	91,00	17,13	271,10
1976/77	40,20	6,04	13,32	15,97	24,90	1,69	0,60	0,94	2,75	0,15	0,03	0,03	40,20
1977/78	0,12	0,86	3,88	0,12	0,49	0,78	1,02	37,80	4,76	0,34	0,02	13,32	37,80
1978/79	0,70	1,08	1,49	0,61	1,25	3,55	17,30	21,20	3,28	80,05	0,56	0,01	80,05
1979/80	185,40	0,29	0,86	0,19	4,90	1,61	42,60	3,82	1,96	0,26	0,01	5,78	185,40
1980/81	3,82	0,03	4,90	19,90	7,54	4,90	4,36	67,90	1,61	4,63	0,05	0,66	67,90
1981/82	52,65	18,60	0,10	33,80	19,25	29,00	45,85	50,10	46,70	202,20	0,28	50,95	202,20
1982/83	74,35	74,35	21,98	80,05	9,30	2,49	1,63	0,98	0,76	0,18	0,07	0,08	80,05
1983/84	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1984/85	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1985/86	16,00	37,80	9,10	8,32	1,87	1,45	50,95	3,84	1,87	13,02	0,00	4,10	50,95
1986/87	108,00	19,25	19,25	17,30	3,84	38,60	7,54	22,76	5,60	0,20	11,90	0,00	108,00
1987/88	0,00	30,60	12,46	4,70	0,25	0,08	1,14	1,76	9,10	0,80	0,00	0,00	30,60
1988/89	2,24	0,01	2,24	35,40	1,27	6,53	2,06	10,22	50,10	2,06	15,35	24,32	50,10
1989/90	41,13	0,59	0,02	0,16	6,43	0,05	0,02	53,50	16,34	1,92	102,00	86,13	102,00
1990/91	27,52	0,00	51,03	18,50	4,84	11,48	51,03	19,04	3,78	0,35	28,31	0,00	51,03
1991/92	34,63	62,50	0,08	0,08	4,84	6,43	0,64	8,81	26,73	29,89	15,80	0,02	62,50
1992/93	10,40	0,38	10,40	17,96	6,43	0,69	15,26	2,62	15,80	1,69	0,00	2,39	17,96
1993/94	21,20	0,69	14,18	15.38	40,30	17,96	0,27	6,17	0,02	0,00	0,00	0,00	40,30
1994/95	126,20	77,35	0,06	1,37	30,68	2,16	21,20	5,64	2,39	34,63	0,00	0,00	126,20

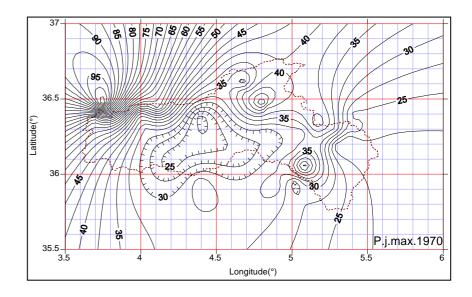
Code: 15 01 06 Nom Station: TILESDIT

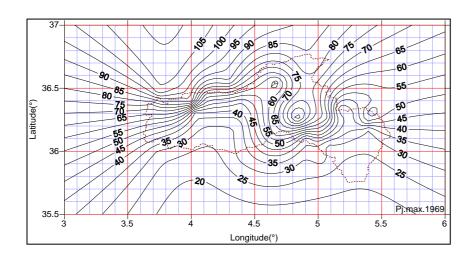
Année	S	О	N	D	J	F	M	A	M	J	J	A	Annuel
1971/72	40,72	27,80	66,75	734,00	119,20	42,60	104,50	100,10	15,60	1,15	0,80	0,50	734,00
1972/73	37,30	112,50	90,80	225,30	200,40	22,80	377,00	82,00	14,35	5,32	0,90	2,40	377,00
1973/74	18,70	105,60	670,00	400,56	250,30	90,44	307,00	55,50	12,00	0,44	0,70	1,25	670,00
1974/75	10,00	81,80	NO	98,70	199,00	20,24	67,70	82,00	78,30	0,05	1,10	0,78	(199,00)
1975/76	7,00	75,60	60,30	24,13	131,00	12,33	47,60	77,10	15,20	17,13	2,80	0,17	131,00
1976/77	5,25	NO	189,00	69,00	NO	80,60	2,30	20,00	45,10	0,03	0,97	1,20	(189,00)
1977/78	25,50	NO	NO	17,50	NO	111,50	188,80	121,00	30,50	0,07	1,05	0,12	(121,00)
1978/79	50,60	NO	NO	8,00	NO	117,00	8,14	50,60	90,32	0,80	0,15	0,10	(117,00)
1979/80	37,80	1,152	15,00	6,148	116,8	40,20	326,00	41,40	133,6	1,124	,2590	,0900	326,00
1980/81	0,07	0,09	1,41	326,00	22,8	65,00	74,00	43,80	3,96	0,61	0,20	3,96	326,00
1981/82	0,14	0,14	0,21	7,55	NO	117,00	24,84	21,24	07,55	01,59	0,05	0,04	(117,00)
1982/83	0,05	19,50	65,00	326,00	8,82	2,71	2,02	3,77	1,24	0,27	1,14	0,00	326,00
1983/84	ΝO	NO	NO	0,15	1,20	NO	21,72	12,38	1,10	1,10	0,18	0,08	NO
1984/85	0,4	0,89	0,29	63,50	21,72	23,94	284,00	3,99	1,60	1,10	0,12	0,00	284,00
1985/86	0,00	0,65	1,77	1,26	1,77	27,27	455,7	2,148	1,43	0,65	0,29	0,00	455,70

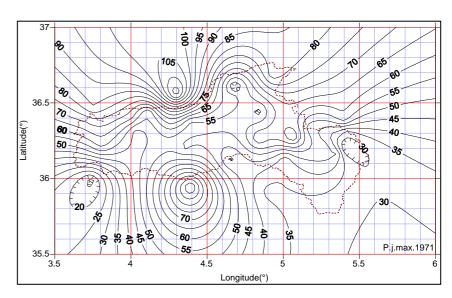
Code station: 15 07 03 Nom station: BOUBIREK

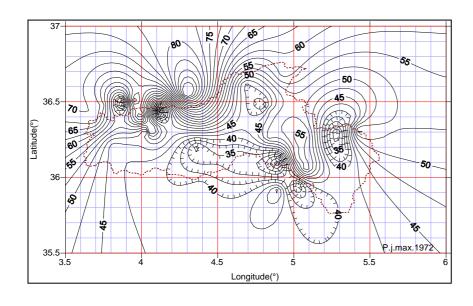
Année	S	0	N	D D	J	F	M	A	M	J	J	A	Annuel
1969/70	NO	NO	NO	NO	21,68	4,98	25,97	NO	15,96	2,21	8,25	2,21	NO
1970/71	6,59	145,20	1,08	23,11	36,50	2,42	24,54	18,11	51,36	1,08	3,74	0,38	145,20
1971/72	89.29	87.98	35,59	101.13	185,60	21,68	53,64	35,59	79.04	71,96	1,63	0.94	185,60
1972/73	112,96	71,96	0,92	208,00	143,80	126,11	118,22	30,13	4,98	86,66	1,19	1,05	208,00
1973/74	141,00	11,50	1,05	70,00	2,54	58,00	652,00	362,00	54,78	7,21	1,41	0,79	652,00
1974/75	5,40	27,40	ΝO	1,41	4,38	ΝO	NO	25,97	6,57	ΝO	0,51	22,40	NO
1975/76	151,07	0,95	27,40	19,00	5,28	114,40	86,68	79,12	368,00	15,96	102,44	13,80	368,00
1976/77	155,17	15,88	88,00	61,60	102,52	7,51	2,62	20,70	6,40	1,25	0,73	0,55	155,17
1977/78	0,73	0,73	7,14	0,55	4,98	9,03	36,49	114,40	6,40	2,96	0,38	8,64	114,40
1978/79	0,33	2,62	7,14	4,63	5,69	23,74	26,02	52,50	6,40	23,74	1,25	0,15	52,50
1979/80	166,50	1,93	12,40	1,08	8,64	7,88	168,00	11,08	8,25	1,59	0,20	0,24	168,00
1980/81	1,25	0,38	1,08	168,00	13,36	26,78	26,78	61,60	10,64	5,69	0,90	9,81	168,00
1981/82	45,08	11,96	1,08	59,20	196,80	62,80	70,00	52,50	35,58	190,50	1,08	4,30	196,80
1982/83	27,54	NO	NO	NO	22,98	NO	5,69	3,65	2,70	0,58	0,30	0,26	NO
1983/84	0,26	0,55	6,77	1,59	26,02	298,70	31,03	15,88	6,03	0,91	0,76	0,30	298,70
1984/85	0,48	65,20	0,76	163,50	65,20	28,30	195,20	16,22	9,48	3,94	11,14	1,70	195,20
1985/86	4,83	4,22	4,22	2,25	1,88	3,34	192,00	7,14	4,62	4,62	4,62	4,62	192,00
1986/87	55,80	NO	ΝO	NO	ΝO	ΝO	20,92	29,56	8,91	2,38	8,22	0,83	NO
1987/88	1,03	32,44	25,86	2,14	8,59	3,33	15,08	3,98	3,13	0,73	0,23	0,06	32,44
1988/89	7,62	0,23	1,76	NO	16,47	ΝO	16,47	NO	9,85	2,38	5,30	ΝO	NO
1989/90	NO	1,48	1,58	0,45	1,69	ΝO	0,59	1,00	NO	0,53	23,34	ΝO	NO
1990/91	20,52	1,93	34,36	33,08	4,13	26,16	17,70	9,52	7,00	12,48	0,48	0,15	34,36
1991/92	7,92	3,48	0,64	0,69	9,85	10,98	8,22	28,98	14,42	14,83	8,87	1,00	28,98
1992/93	0,91	0,91	4,13	24,75	25,69	9,20	10,98	5,86	20,05	1,69	0,48	0,25	25,69
1993/94	5,07	6,14	1,27	NO	1,48	13,60	1,81	3,70	0,48	0,14	0,14	0,06	(13,60)
1994/95	NO	41,00	0,75	2,87	ΝO	14,40	62,80	5,26	2,60	3,69	0,32	0,27	(62,80)
1995/96	0,43	3,14	1,25	3,14	9,52	70,00	16,90	5,84	14,04	11,16	NO	0,55	(70,00)
1996/97	1,68	4,68	1,86	5,84	7,60	3,14	0,91	2,60	0,62	0,38	0,04	0,16	7,60
1997/98	7,60	14,40	24,60	25,82	2,14	22,52	8,24	49,20	94,00	2,42	0,38	0,13	94,00
1998/99	30,70	0,75	30,70	30,70	70,00	NO	7,92	3,69	5,40	1,68	0,19	0,16	(70,00)
1999/00	30,70	1,68	0,68	37,00	4,97	1,25	0,99	0,91	20,44	0,22	0,02	ΝO	(37,00)
2000/01	14,40	37,00	0,68	14,40	27,04	79,60	2,05	1,34	10,80	0,27	NO	ΝO	(79,60)
2001/02	7,60	NO	0,27	0,48	NO	8,88	4,54	0,55	0,07	10,80	NO	NO	NO
2002/03	0,68	0,05	58,00	240,67	94,00	45,00	10,16	388,80	11,10	3,38	1,25	3,01	388,80
2003/04	15,50	13,40	2,15	70,00	134,50	7,94	13,40	7,62	26,80	5,47	1,11	NO	(134)
2004/05	16,76	1,04	17,60	131,80	29,80	26,80	23,04	12,25	23,04	1,46	0,80	NO	(131,8)

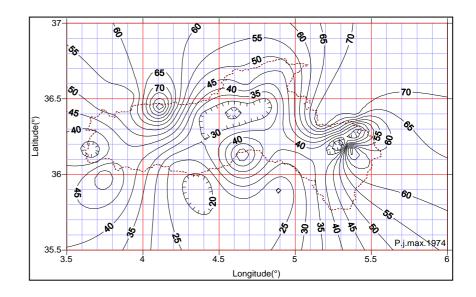

Code station: 15 09 01 Nom station: SIDI YAHIA

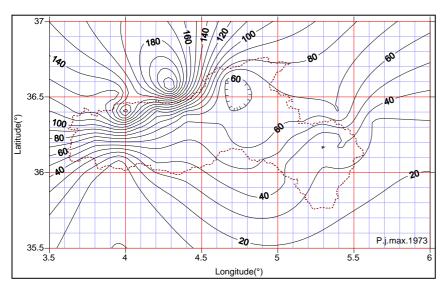

	Code station: 15 09 01 Nom station: SIDI YAHIA Année S O N D J F M A M J J A Annuel													
Année	S	O	N	D		F	M	A	M	J		A	Annuel	
1964/65	1,95	31,56	41,60	43,08	71,90	49,00	32,60	35,20	13,28	6,16	5,20	2,90	71,90	
1965/66	57,20	82,50	9,94	17,00	17,00	25,20	43,08	8,26	165,60	9,66	3,78	5,20	165,60	
1966/67	31,56	79,20	8,26	27,84	27,51	35,84	6,40	25,86	82,50	ΝO	ΝO	ΝO	(82.50)	
1967/68	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	ΝO	NO	
1968/69	ΝO	NO	ΝO	ΝO	ΝO	NO								
1969/70	ΝO	NO	ΝO	ΝO	ΝO	NO								
1970/71	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	
1971/72	93,00	30,62	50,40	128,40	318,50	48,18	49,66	26,00	78,72	48,92	2,76	1,52	318,50	
1972/73	902,00	93,00	1,35	140,00	219,40	134,40	100,00	41,60	11,74	92,80	3,56	3,34	902,00	
1973/74	285,00	11,12	5,68	47,52	4,72	70,88	862,00	298,20	85,80	43,08	1,27	0,96	862,00	
1974/75	7,18	90,40	1,41	1,54	4,48	123,40	50,64	140,00	9,74	1,14	11,98	44,22	140,00	
1975/76	71,88	0,55	35,31	26,44	7,45	115,80	54,50	68,54	370,60	23,80	95,60	25,96	370,60	
1976/77	89,40	15,32	50,26	59,00	58,25	8,30	3,85	27,88	9,42	1,55	0,55	0,45	89,40	
1977/78	10,38	0,55	8,00	1,12	7,45	8,00	30,80	131,20	8,55	1,99	0,30	3,80	131,20	
1978/79	5,25	7,60	16,58	4,50	11,60	41,50	33,80	55,50	6,00	86,00	2,90	0,44	86,00	
1979/80	112,20	3,90	13,40	1,02	12,20	9,60	192,60	32,00	18,30	1,27	0,28	26,50	192,60	
1980/81	51,80	0,55	2,44	307,00	22,20	37,50	27,10	51,80	10,40	8,00	0,83	5,00	307,00	
1981/82	32,00	5,60	1,22	67,70	259,80	63,50	59,60	53,10	17,40	72,00	1,16	0,74	259,80	
1982/83	44,00	456,60	70,50	547,60	32,50	10,24	6,80	4,43	3,98	1,47	0,73	1,22	547,60	
1983/84	0,55	0,73	8,00	2,30	28,50	445,80	50,96	33,10	21,65	2,92	1,23	0,60	445,80	
1984/85	1,12	54,04	1,31	188,80	77,25	27,60	243,00	27,28	16,80	4,75	19,60	0,85	243,00	
1985/86	13,80	12,80	11,80	8,14	8,56	16,30	397,60	9,57	2,82	5,33	0,26	0,37	397,60	
1986/87	22,70	9,55	22,00	69,80	35,51	61,55	39,38	33,62	11,79	3,75	8,43	0,46	69,80	
1987/88	1,74	15,38	17,72	2,32	5,25	2,96	9,55	3,46	5,25	0,69	0,35	0,08	17,72	
1988/89	2,96	1,06	11,54	162,05	16,50	30,06	21,80	27,08	25,40	3,67	0,75	3,41	162,05	
1989/90	14,82	1,95	2,50	1,16	2,10	0,65	2,50	8,40	64,40	1,40	26,24	204,00	204,00	
1990/91	20,90	8,40	73,12	32,36	5,64	36,96	25,82	8,80	42,30	62,24	0,65	0,33	73,12	
1991/92	198,45	25,82	0,65	0,52	27,92	36,96	11,54	81,01	135,65	51,66	20,44	4,47	198,45	
1992/93	1,95	8,40	9,60	59,54	44,76	8,80	13,14	6,28	14,40	2,50	1,27	0,85	59,54	
1993/94	134,00	1,44	15,57	10,79	4,76	37,08	2,25	5,43	0,69	0,14	0,00	1,15	134,00	
1994/95	360,60	172,40	0,41	8,90	79,50	24,28	99,80	8,63	3,83	58,00	2,87	1,60	360,60	
1995/96	26,83	51,48	4,00	5,47	26,83	150,00	53,70	36,96	46,00	101,05	13,14	2,10	150,00	
1996/97	9,60	2,30	3,94	13,56	8,04	3,67	1,27	2,94	4,20	0,85	0,23	10,78	13,56	
1997/98	35,13	69,40	70,00	53,20	2,57	13,56	6,88	65,20	NO	2,57	7,84	0,10	(70,00)	
1998/99	181,80	0,93	40,16	92.14	86,10	34,72	12,94	3,70	4,69	6,88	0,05	0,93	92.14	
1999/00	56,80	0,25	0,21	325,50	4,95	1,41	1,41	1,10	150,50	0,88	0,04	NO	(325.5)	
2000/01	32,24	35,96	0,13	74,60	60,40	62,80	0,61	0,18	44,40	ΝO	NO	NO	(74.60)	
2001/02	74,60	1,10	0,20	0,17	1,25	9,38	2,10	0,17	0,05	7,84	7,84	NO	(74,60)	
2002/03	0,02	0,01	122,00	675,20	174,40	88,40	20,92	633,80	23,52	5,30	1,21	NO	(675.20)	
2003/04	67,60	41,64	0,88	55,60	402,60	13,56	13,56	12,32	81,50	8,56	0,52	NO	(402,60)	
2004/05	4,93	1,02	29,96	147,20	40,16	29,96	30,48	18,40	6,40	8,32	1,40	ΝO	(147,20)	

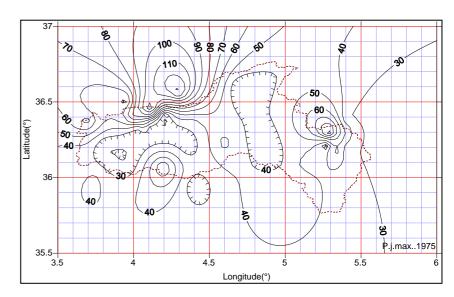

Code station: 15 10 01 Nom station: SIDI AICH

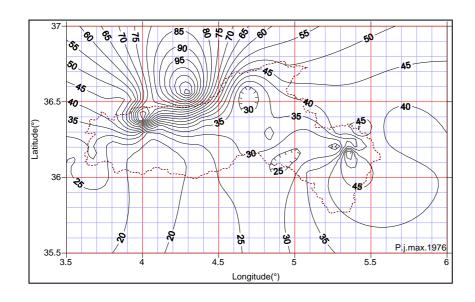

		O	N	D	J	F	M	۸	M	J	J	۸	Ammuol
Année 1953/54	S 13,14	7,47	16,79	26,75	32,00	321,30	114,90	A 416,10	8,80	10,16	3,69	A 2,02	Annuel 416,10
1953/54	1,70	9,50	23,22	21,30	26,00	26,75	14,26	166,50	127,00	228,20	6,61	80,50	228,20
	228,20	278,80	60,85	457,50	75,10	195,31	316,75	46,75	19,76	7,26	2,12	1,89	457,50
	30,63	24,44	55,75	137,12	97,30	14,15	5,05		26,00	30,63	2,12	1,20	137,12
				N O				18,20 N O			17,17		
	67,00	790,00	535,00		N O	133,41	213,84		105,28	52,92		26,20	(790,00)
	33,10	38,20	150,00	28,00	11,93	36,50	284,00	638,96	63,00	119,70	4,07	2,21	638,96
1959/60	3,78	10,37	63,00	100,35	10,76	11,15	7,50	91,75	363,80	22,50	4,35	1,43	363,80
1960/61	1,24	4,21	2,21	797,60	461,12	9,98	5,81	22,50	8,47	5,56	7,02	4,56	797,60
1961/62	2,65	4,77	55,50	4,56	4,77	92,00	84,50	130,20	12,70	90,75	1,68	2,65	130,20
	50,25	82,00	22,00	79,50	36,90	82,00	22,00	9,52	276,50	320,00	263,00	107,00	320,00
	151,50	6,28	2,97	67,50	658,00	55,50	98,00	116,60	77,10	5,62	2,37	26,80	658,00
	55,50	37,80	40,50	133,80	350,00	82,00	55,50	130,20	31,20	7,25	27,40	110,20	350,00
	225,60	549,20	11,56	263,00	65,10	77,10	135,60	12,70	626,00	13,30	3,48	3,80	626,00
	13,80	350,00	11,10	45,00	22,90	85,75	9,58	27,10	71,10	2,78	2,09	11,98	350,00
	101,00	25,70	1090,00	2700,0	365,00	127,00	127,00	142,20	29,20	50,50	3,04	67,00	2700,00
	18,60	2,38	34,30	476,00	166,00	37,80	515,00	518,00	47,20	100,40	18,60	127,00	518,00
	236,00	1026,00	100,40	818,00	177,46	133 ,41	213,84	163,35	105,28	17,00	21,00	7,00	1026,00
	31,50	127,72	6,34	24,00	81,00	17,50	213,84	225,60	39,30	4,70	12,90	26,20	225,60
1971/72	4,30	10,56	NO	ΝO	1429,0	458,00	179,00	129,40	274,40	96,80	7,36	26,00	(458,00)
	690,00	106,40	3,74	706,00	730,00	451,05	274,80	214,60	43,20	137,40	5,87	3,57	730,00
	433,35	10,30	3,74	102,60	34,90	264,40	1820,00	1270,4	185,00	70,60	5,10	2,56	1820,00
1974/75	14,66	198,68	5,95	4,58	12,96	246,20	324,27	135,00	20,80	6,30	NO	NO	(324,27)
1975/76	47,90	10,46	55,30	62,10	15,24	500,00	137,40	132,50	425,00	50,50	96,12	38,25	500,00
1976/77	123,20	25,20	106,53	295,92	170,80	33,07	13,30	56,62	48,06	52,92	ΝO	NO	(295,92)
1977/78	ΝO	ΝO	ΝO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1978/79	ΝO	NO	NO	285,62	28,26	47,25	46,60	45,30	11,78	41,40	7,02	1,96	(285,62)
1979/80	94,00	4,60	21,68	56,00	87,10	31,60	452,00	31,60	82,00	5,62	1,28	10,88	452,00
1980/81	28,90	4,18	15,00	754,00	53,30	86,50	63,06	68,20	27,32	5,57	2,33	53,30	754,00
1981/82	24,56	22,72	2,33	92,50	424,40	168,30	136,00	73,60	151,20	54,40	6,00	3,85	424,40
1982/83	29,48	518,26	107,00	626,92	74,98	33,59	19,96	19,96	8,91	3,15	12,82	5,58	626,92
1983/84	1,42	1,26	3,01	2,11	38,74	464,14	76,29	47,64	26,86	9,44	2,11	2,54	464,14
1984/85	2,75	43,08	2,54	181,90	177,46	45,36	371,60	43,08	19,96	7,86	6,56	2,75	371,60
1985/86	25,04	6,56	85,94	12,26	12,26	45,36	1046,44	15,58	8,48	5,92	1,73	1,44	1046,44
1986/87	37,90	16,66	87,53	247,50	83,16	173,40	78,99	94,40	29,82	8,48	5,87	2,49	247,50
1987/88	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1988/89	96,67	127,72	87,53	NO	NO	43,08	91,50	163,35	NO	NO	NO	26,20	NO
1989/90	NO	2,55	37,05	1,73	9,54	2,94	51,00	3,31	NO	1,87	171	122,00	(171,00)
1990/91	51,00	110,80	69,74	143,40	10,34	NO	78,99	35,35	53,00	131,00	0,62	0,62	(170,00)
	413,40	3,37	110,50	230.20	ΝO	NO	ΝO	424,40	165,60	126,50	3,40	3,40	(424,40)

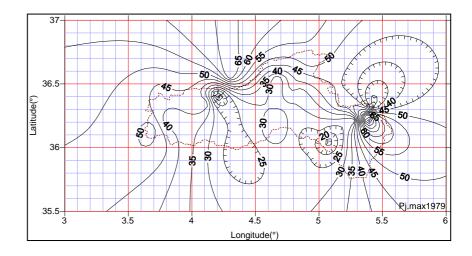

Station	TILE	TILESDIT AIN TASTA EL ESNAM		PORT	DE FER	FERMATOLI		AIN ZADA		NAGRAOU/		A BOUBIREK		SIDI YAHIA		SIDI AICH		ROCADE SUD		CED FAGUES		MEI	OJEZ	SIDI QUADA		H BNI SLIMANE		TASSADANE				
Code	15 01 06 15 01 14 15 02 04			15 04 01		15 06 01		15 07 01		15 07 02		15 07 03		15 09 01		15 10 01		05 05 01		05 08 01		05 09 01		05 11 01		09 03 05		10 01 09				
S(Km ²)		42	19			00		05		05		300		350	29)50		120		600		37		330		70		73		60
1953/54			-	ĺ				Ĭ	1	l				Ī		Ī		1		0.049	İ			Ì		1	-		<u> </u>			
1954/55													Ì							0.027												† †
1955/56																			457,5	0,054												
1956/57																			137,1	0,016												
1957/58																			790	0,094												
1958/59																			639	0,076		Ì										
1959/60																			363,8	0,043												
1960/61																			797,6	0,095												
1961/62																			130,2	0,015												
1962/63																			320	0,038												
1963/64																			658	0,078												
1964/65																	71,9	0,018	350	0,042												
1965/66				[[[[[165,6	0,041	626	0,074					[[
1966/67																	82,5	0,020	350	0,042												<u> </u>
1967/68				ļ						ļ									2700	0,321		[ļ	ļ					ļ	<u> </u>
1968/69				[[419,1	0,693			[129,8	0,055		[518	0,062					[
1969/70								ļ	43,4	0,413			168,6	0,072					1026	0,122												<u> </u>
1970/71								ļ	5,91	0,056	57,91		60,7		145,2				225,6	0,027												_
1971/72	734	0,872		 	274	0,343	183	0,302	19,7	0,188	20,13	0,011	45	0,019	185,6	0,063	318,5	.,	458	0,054	282	0,050	215	0,638	ļ	 						<u> </u>
1972/73	377	0,448			68	0,085	70,6	0,117	63,96	0,609	19,09	0,011	94,3	0,040	208	0,071	902	0,223	730	0,087	38	0,007	30	0,089								
1973/74	670	0,796			73,6	0,092	65,7	0,109	84	0,800	47,6	0,026	105,3	0,045	652	0,221	862	0,213	1820	0,216	102	0,018	32	0,095		0,163					197	0,205
1974/75	199	0,236			13,9	0,017	27,2	0,045	14,8	0,141	14,2	0,008	64,3	0,027			140	0,035	324,3	0,039	8,25	0,001	22	0,065	76,8	0,058					121,6	0,127
1975/76	131	0,156	45,8		22,1	0,028	386	0,638	86,48	0,824	314,4	0,175	271,1	0,115	368	0,125	370,6	0,092	500	0,059	119	0,021	94	0,279	438,6	0,330					136	0,142
1976/77	189	0,224		0,122	12,2	0,015	50,3	0,083	20,7	0,197	10,36	. ,	40,2	0,017	155,2		89,4	0,022	295,9	0,035	168	0,030	24	0,071	128	0,096		0.040			100	0,104
1977/78	121	0,144	17,1	0,090	16,1	0,020	53,6	0,089	13,9	0,132	15,4	0,009	37,8	0,016	114,4		131,2	0,032	-0= c	0.004	7,6	0,001	11,1	0,033	13,83	0,010	62,52	0,368			151,6	0,158
1978/79	117	0,139	32,6	0,172	15,2	0,019	76,9	0,127	33,46	0,319	74,3	0,041	80,05	0,034	52,5	0,018	86	0,021	285,6	0,034	9,38	0,002	171	0,507	180	0,135	11,32	0,067			224	0,233
1979/80	326	0,387	58	0,305	11,3	- , -	430	0,711	50,92	0,485	224,4		185,4	0,079	168		192,6	0,048	452	0,054	246	0,044	262	0,777		0,160	303,9	1,788			115,4	
1980/81	326	0,387	33,6	0,177	15,7		211	0,349	4,85	0,046	8,03	0,004	67,9	0,029	168	0,057	307	0,076	754	0,090	5,42	0,001	68,9	0,204	68,6	0,052	20,25	0,119			516	0,538
1981/82	117	0,139	93,1	0,490	33,7	0,042	186	0,307	68,28	0,650	80	0,044	202,2	0,086	196,8	0,067	259,8	0,064	424,4	0,050	80	0,014	195	0,579 0,148	90	0.060	249,5	1,468 0.692			141,2	
1982/83 1983/84	326	0,387	34,5	0,182	33,7	0,042	126 1.47	0,208	35,98 63,96	0,545	68,16	0,038	80,05	0,034	298.7	0.101	547,6		626,9 464,1	0,074	86,1 1.05	0,015	50 1.02	0,148	80 20.45	0,060	117,6 13,96	0,692			147,7 366,2	0,154
1983/84	284	0,337	0.50	0,050	17.1	0,021	5.58	0,002	71.52	0,609	79,63	0,044	ł		195.2		445,8 243	0,110	371.6	0,033	65.1	0,000	5,7	0,003	- , .	0,015	6.32	0,082			254.4	
1985/86	455.7	0,537	9,50	0,030	120	0,021	238.8	0,395	20.7	0,081			50,95	0,022	195,2	0,065	397.6	0,000	1046	0,124	158	0,012	32.2	0,017	147	0,010	47.64	0,037	110	0,403	58.68	0,263
1986/87	455,/	0,341	2 95	0,020	9,044	0,130	85,6	0,393	66,12	0,630			108	0,022	192	0,003	69,8	0,098	247,5	0,124	1630	0,028	30,16	0,090	166,8	0,111	38,68	0,280	93,9	0,344	90,22	- /
1987/88			2,33		4,79	0,006	311,1	0,514	0,95	0,009	}		30,6		32,44	0.011	17.72		241,3	0,029	67	0,291	42,4	0,089		0,123	126	0,741	47.5	0,344	44,5	0.046
1988/89			10.52	0,012	7,47	0,000	23,46	0,039	56,16	0,535		1	50,0	0.021	34,44	0,011	162,1		1	1	100	0,012	91,52	0,120		0,038	18,2	0,741	45,25	0,174	141,2	0,040
1989/90			10,02	0,055	15	0.019	188.6	0,039	2,76	0,333	-	 	102	0.043		-	204	0.050	171	0.020	2.57	0,000	62.8	0,272		0,342	13,96	0.082	98.5	0,166	127.6	- / -
1990/91			22	0.116	0.8	0.001	13,78	0,023	237.7	2,264	 	1	51.03	0.022	34,36	0.012	73,12	0,030	170	0,020	2,37	0.000	83.2	0,180	217	0,163	6.32	0.037	63,67	0,301	184,4	-,
1991/92			18.4	0,097	0.18	0,000	290.7	0,480	29.8	0,284	 		62.5	0.027	28.98		198.5	.,	424.4	0,050	56	0,000	71.74	0,213	236	0,177	39.96	0,235	63,67	0,233	107.7	
1992/93			8	0,042	0,10	0.000	63	0.104	5,3	0,050	l		17.96	0,008	25,69	0,009	59.54		12-1,7	0,020	34	0,006	36.7	0,109	191.2	0,144	10,68	0,063	43	0,158	97.5	0,102
1993/94		1	8.96	0,047	3,1	0,004	159,9	0,264	3,25	0.031			40.3	0.017	13,6	0,005	134	0.033			182	0,033	46	0,136		0,169	2,84	0.017	57,13	0.209	82,9	0.086
1994/95			-,- 0	.,	- ,-	-,501	,-	.,	15.7	0,150			126.2	0,054	62,8	0,021	360.6	.,				.,000	60,64	0,180	,	.,.07	230	1,353	80	0,293	95,6	0,100
1995/96				l	l		1	1	66.12		İ			1,	70	0,024	150	0,037					215.3	0,639	İ	l	71.65	0,421	63,67	0,233	197.2	
1996/97									6,12	0,058	1				7,6	0,003	13,56	.,					40,2	0,119			42,52	0,250	,.,	.,	23,56	
1997/98									37,87	0,361	1				94	0,032	70	0,017					.,.	.,			175,3	1,031			167,6	0,175
1998/99				Ì	Ì			Ì	68,28	0,650	Ì		Ì		70	0,024	92,14	0,023							Ì		25	0,147			97,2	0,101
1999/00									5,51	0,052					37	0,013	325,5	0,080									85,2	0,501			38	0,040
2000/01									4,67	0,044		Ì	Ì		79,6	0,027	74,6	0,018		Ì		Ì					42,52	0,250			86	0,090
2001/02									37,87	0,361							74,6	0,018									129,6	0,762			136	0,142
2002/03									120	1,143					388,8	0,132	675,2	0,167									46,36	0,273			609,4	0,635
2003/04									35,98	0,343					134	0,045	402,6	0,099									64	0,376				
2004/05									52,4	0,499					131,8	0,045	147,2	0,036									10,24	0,060				

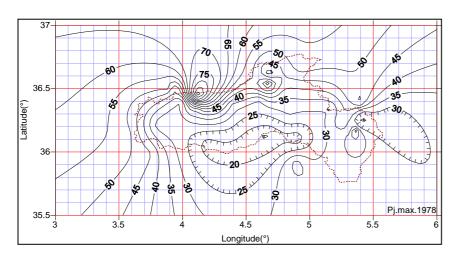


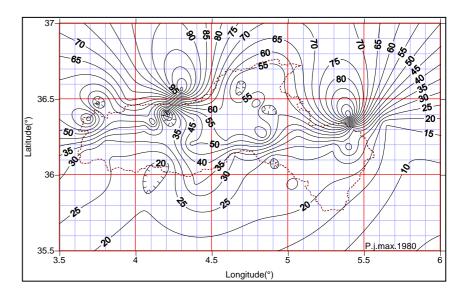


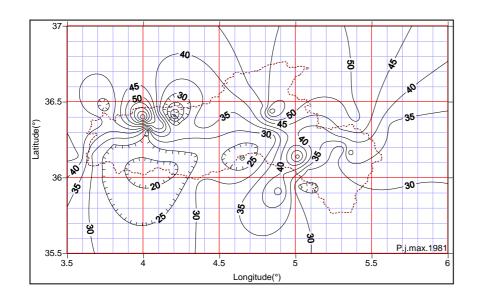


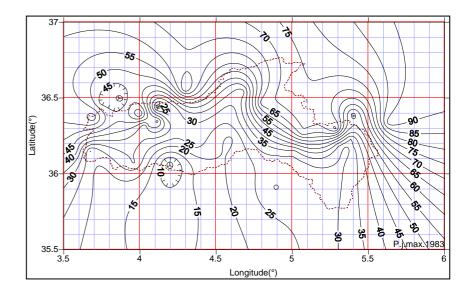


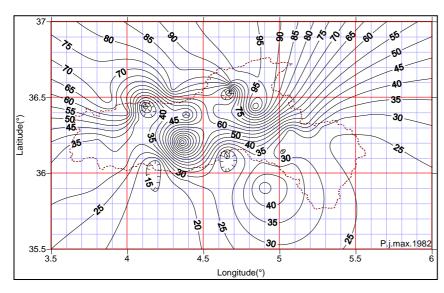


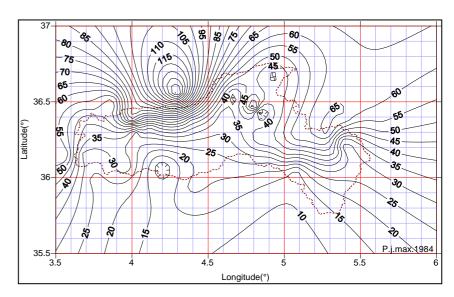


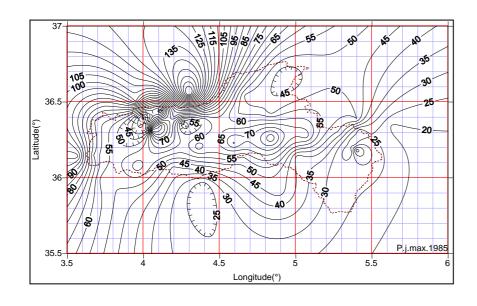


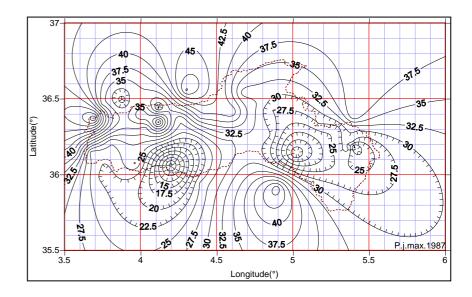


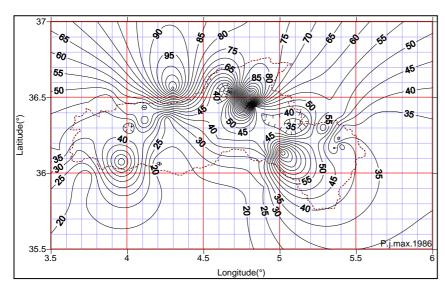


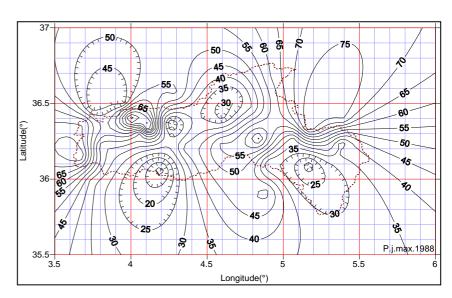


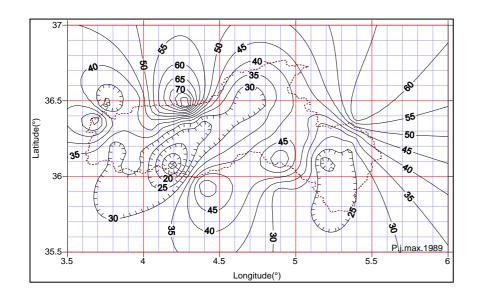


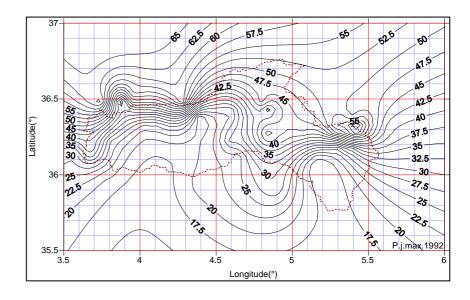


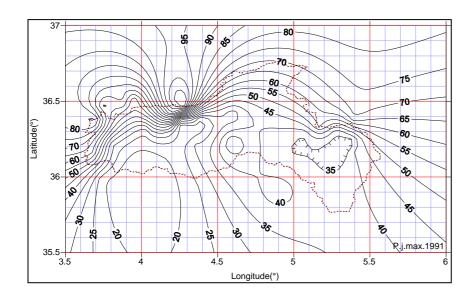


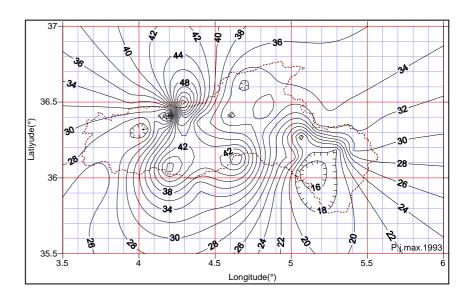


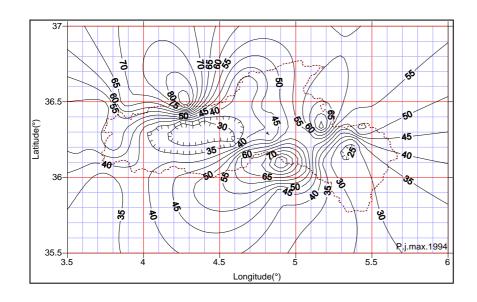


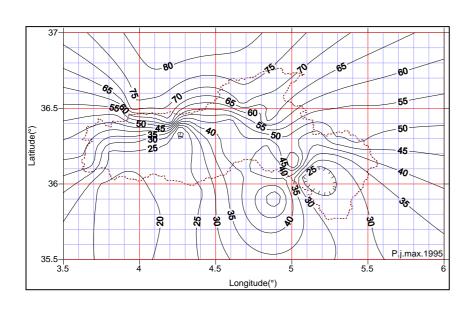


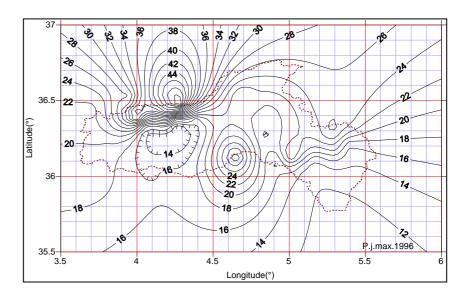


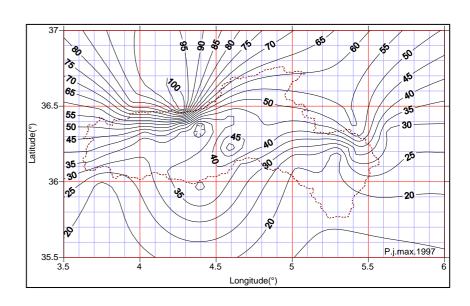


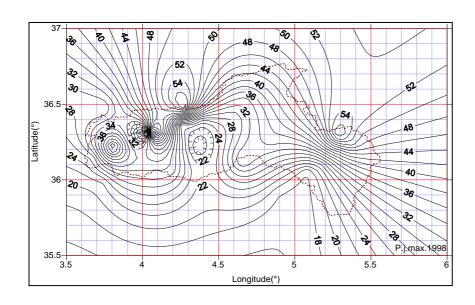


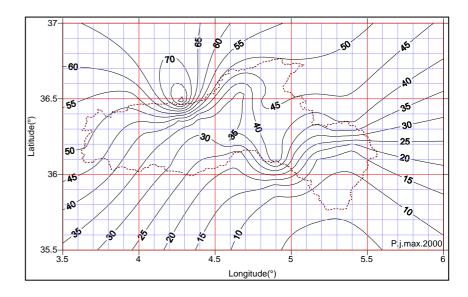


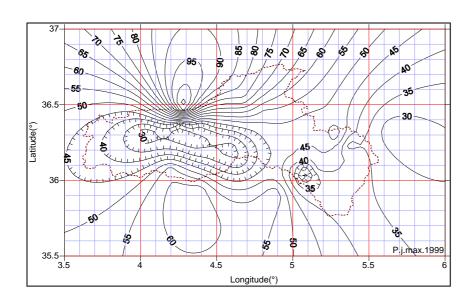


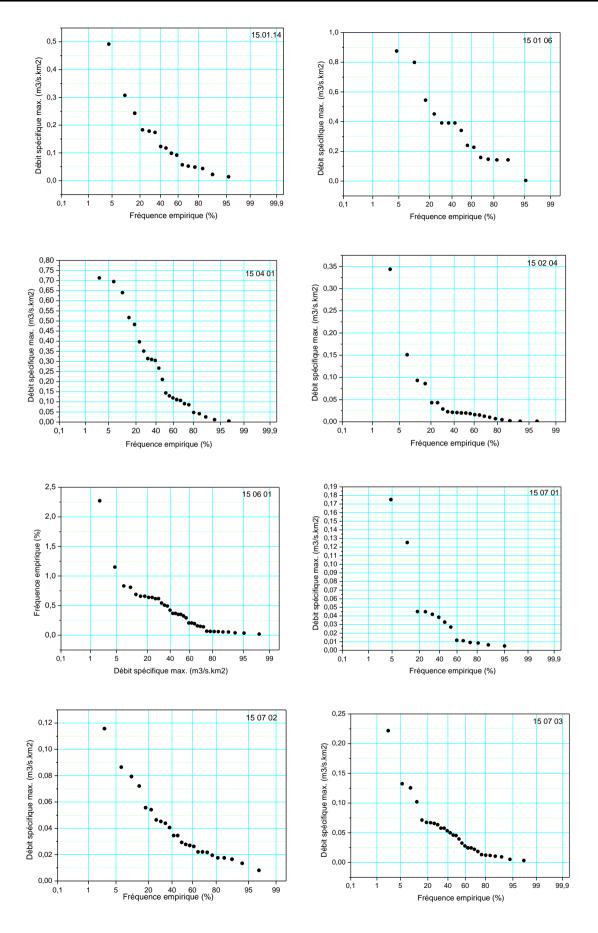


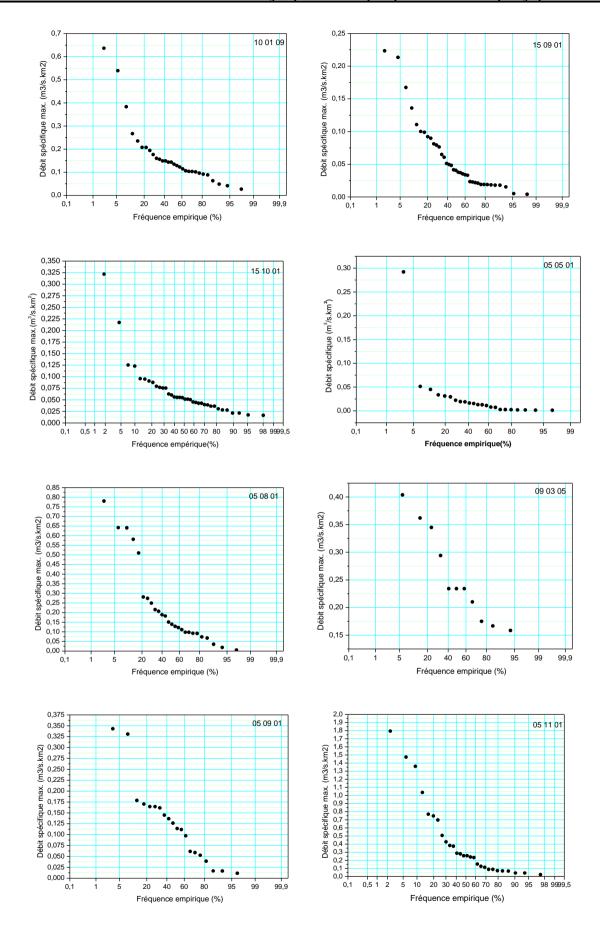


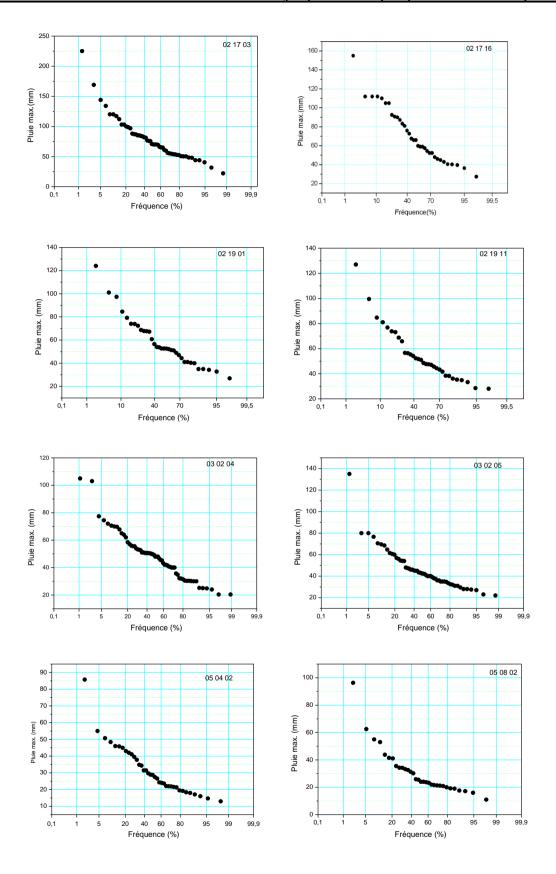


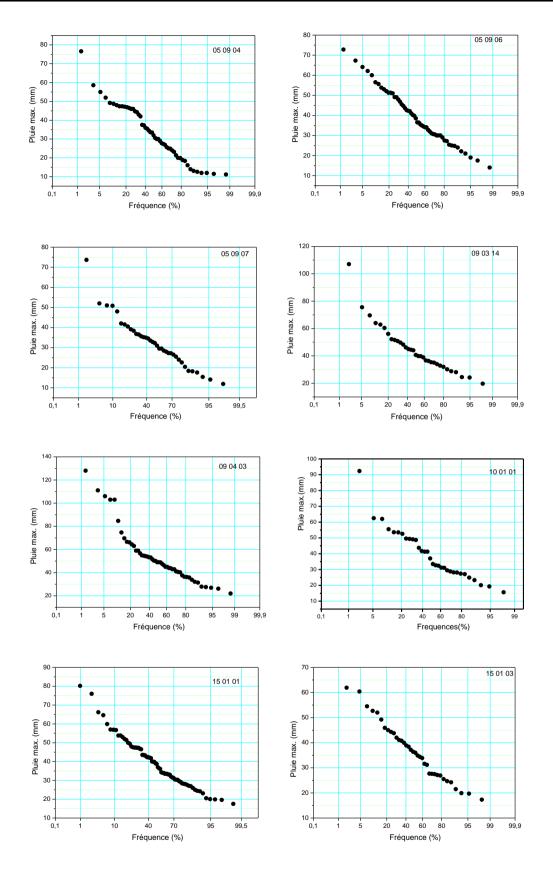


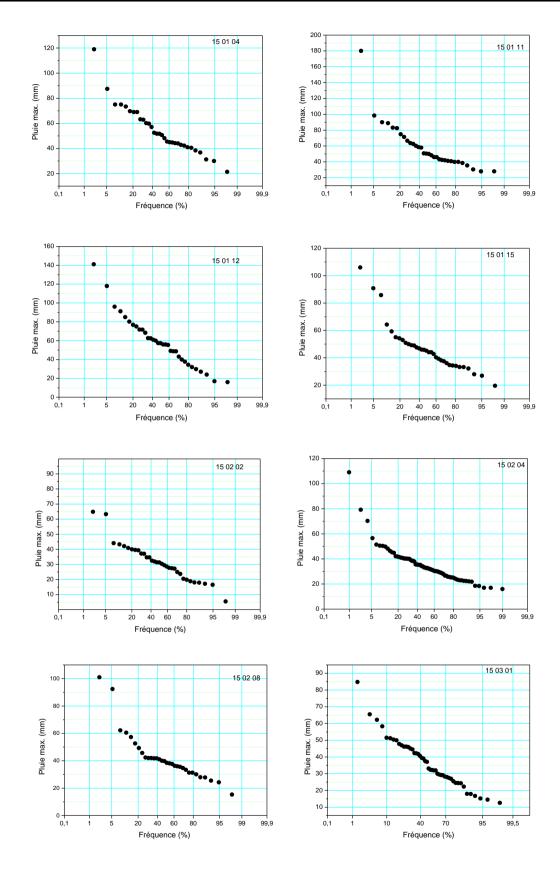


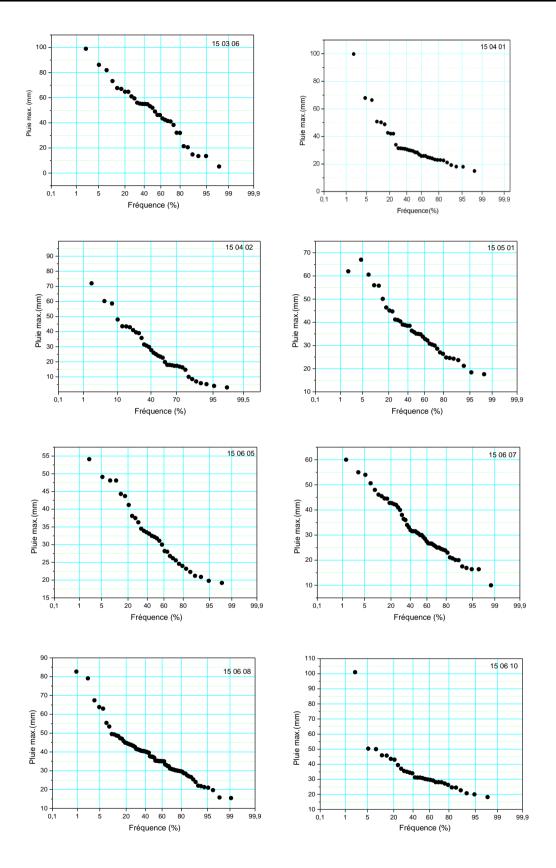


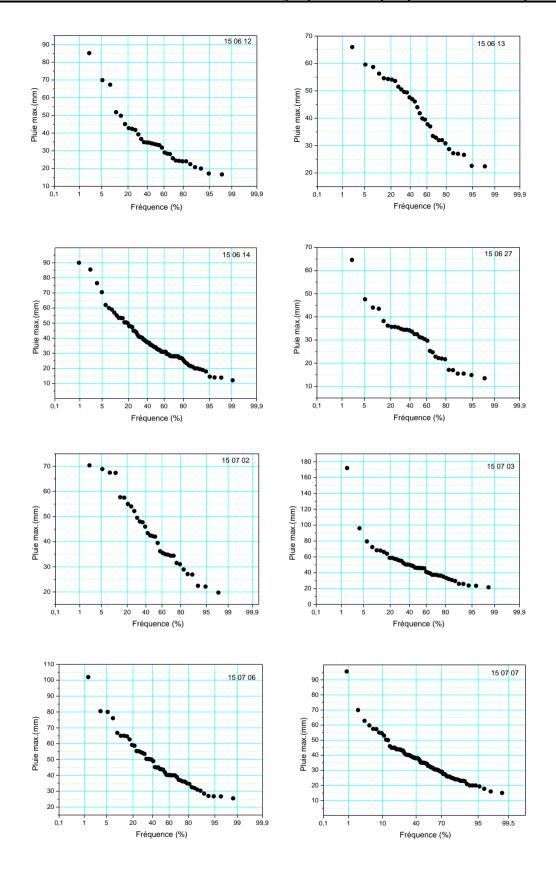


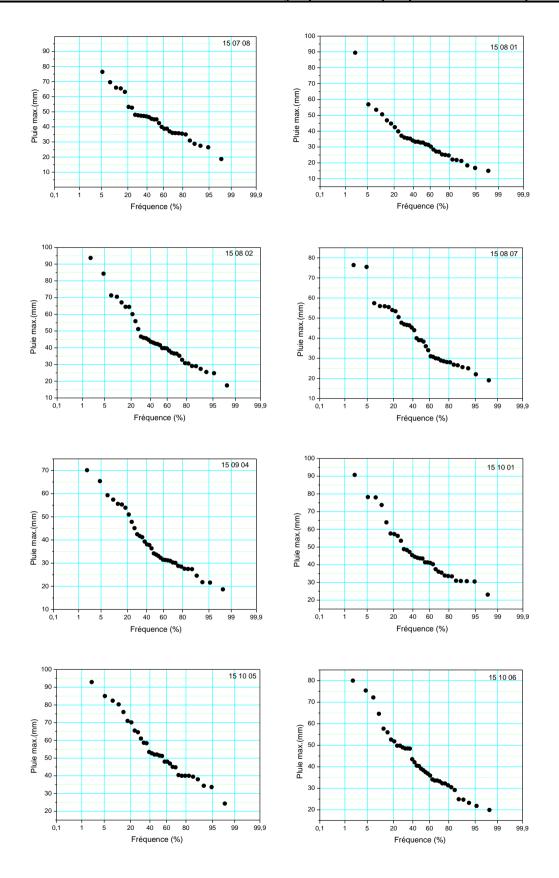












C_s: Coefficient d'asymétrie C_c: Coefficient de courbure

Cs	0,1	1	2	3	5	10	20	25	30	40	50	60	70	75	80	90	95	97	99	99.9	$\mathbf{C_c}$
0.00	3,09	2,33	2,06	1,88	1,64	1,28	0,84	0,67	0,52	0,25	0,00	-0,25	-0,52	-0,67	-0,84	-1,28	-1,64	-1,88	-2,33	-3,09	0.00
0,10	3,23	2,40	2,11	1,92	1,67	1,29	0,84	0,66	0,52	0,23	-0,02	-0,27	-0,52	-0,68	-0,85	-1,27	-1,61	-1,84	-2,25	-2,95	0.03
0,10	3,38	2,47	2,16	1,96	1,70	1,30	0.83	0.65	0.50	0,24	-0,02	-0,28	-0,55	-0,69	-0,85	-1,26	-1,58	-1.79	-2,23	-2,81	0.06
0,30	3,52	2,54	2,21	2,00	1,72	1,31	0,82	0.64	0,30	0,22	-0,05	-0,20	-0,56	-0,70	-0,85	-1,24	-1,55	-1,75	-2,10	-2,67	0.08
0,40	3,66	2,61	2,26	2,04	1,75	1,32	0,82	0,63	0,47	0,20	-0,03	-0,30	-0,57	-0,70	-0,85	-1,23	-1,52	-1,70	-2,10	-2,54	0.11
0,50	3,81	2,68	2,28	2,03	1,77	1,32	0,81	0,62	0,46	0,17	-0,08	-0,33	-0,58	-0,71	-0,85	-1,22	-1,49	-1,66	-1,96	-2,40	0.11
0,60	3,96	2,75	2,36	2,12	1,80	1,33	0,80	0,61	0,44	0,17	-0,10	-0,34	-0,59	-0,72	-0,85	-1,20	-1,45	-1,61	-1,88	-2,27	0.17
0,70	4,10	2,82	2,40	2,15	1,82	1,33	0,79	0,59	0,43	0,14	-0,12	-0,36	-0,60	-0,72	-0,85	-1,18	-1,42	-1,57	-1,81	-2,14	0.20
0,80	4,24	2,89	2,45	2,18	1,84	1,34	0,78	0,58	0,41	0,12	-0,13	-0,37	-0,60	-0,73	-0,86	-1,17	-1,38	-1,52	-1,74	-2,02	0.22
0,90	4,38	2,96	2,50	2,22	1,86	1,34	0,77	0,57	0.40	0,11	-0,15	-0,38	-0.61	-0,73	-0,85	-1,15	-1,35	-1,47	-1,66	-1,90	0.25
1,00	4,53	3,02	2,54	2,25	1,88	1,34	0,76	0,55	0,38	0,09	-0,16	-0,39	-0.62	-0,73	-0,85	-1,13	-1,32	-1,42	-1,59	-1,79	0.28
1,10	4,67	3,09	2,59	2,28	1,89	1,34	0,74	0,54	0,36	0,07	-0,18	-0,41	-0,62	-0,74	-0,85	-1,10	-1,28	-1,31	-1,52	-1,68	0.31
1,20	4,81	3,15	2,62	2,31	1,91	1,34	0,73	0,52	0,35	0,05	-0,19	-0,42	-0,63	-0,74	-0,84	-1,08	-1,24	-1,33	-1,45	-1,58	0.34
1,30	4,95	3,21	2,66	2,34	1.92	1,34	0.72	0,51	0.33	0.04	-0,21	-0,43	-0.63	-0,74	-0,74	-1,06	-1,20	-1,28	-1,38	-1,48	0.37
1,40	5,09	3,27	2,70	2,37	1,94	1,34	0,71	0,49	0,31	0,02	-0,22	-0,44	-0,64	-0,73	-0,83	-1,04	-1,17	-1,23	-1,32	-1,39	0.39
1,50	5,23	3,33	2,74	2,39	1,95	1,33	0,69	0,47	0,30	0,00	-0,24	-0,45	-0,64	-0,73	-0,82	-1,02	-1,13	-1,19	-1,26	-1,31	0.42
1,60	5,37	3,39	2,78	2,42	1,96	1,33	0,68	0,46	0,28	-0,02	-0,25	-0,46	-0,64	-0,73	-0,81	-0,99	-1,10	-1,14	-1,20	-1,24	0.45
1,70	5,50	3,44	2,81	2,44	1,97	1,32	0,66	0,44	0,26	-0,03	-0,27	-0,47	-0,64	-0,72	-0,81	-0,97	-1,06	-1,10	-1,14	-1,17	0.48
1,80	5,64	3,50	2,85	2,46	1,98	1,32	0,64	0,42	0,24	-0,05	-0,28	-0,48	-0,64	-0,72	-0,80	-0,94	-1,02	-1,06	-1,09	-1,11	0.51
1,90	5,77	3,55	2,88	2,49	1,99	1,31	0,63	0,40	0,22	-0,07	-0,29	-0,48	-0,64	-0,72	-0,79	-0,92	-0,98	-1,01	-1,04	-1,05	0.54
2,00	5,91	3,60	2,91	2,51	2,00	1,30	0,61	0,39	0,20	-0,08	-0,31	-0,49	-0,64	-0,71	-0,78	-0,90	-0,95	-0,97	-0,99	-1,00	0.57
2,10	6,04	3,65	2,94	2,53	2,01	1,29	0,59	0,37	0,18	-0,10	-0,32	-0,50	-0,64	-0,70	-0,76	-0,87	-0,914	-0,93	-0,945	-0,953	0.59
2,20	6,14	3,68	2,96	2,54	2,02	1,27	0,57	0,35	0,16	-0,12	-0,33	-0,50	-0,64	-0,69	-0,75	-0,842	-0,882	-0,895	-0,905	-0,91	0.63
2,30	6,26	3,73	3,00	2,57	2,01	1,26	0,55	0,32	0,14	-0,13	-0,34	-0,50	-0,63	-0,68	-0,74	-0,815	-0,85	-0,86	-0,867	-0,87	0.64
2,40	6,37	3,78	3,03	2,60	2,00	1,25	0,52	0,29	0,12	-0,14	-0,35	-0,51	-0,62	-0,67	-0,72	-0,792	-0,82	-0,826	-0,83	-0,834	0.67
2,50	6,5	3,82	3,06	2,62	2,00	1,23	0,50	0,27	0,10	-0,16	-0,36	-0,51	-0,62	-0,66	-0,71	-0,768	-0,79	-0,795	-0,80	-0,8	0.69
2,60	6,54	3,86	3,08	2,63	2,00	1,21	0,48	0,25	0,085	-0,17	-0,37	-0,51	-0,61	-0,66	-0,70	-0,746	-0,764	-0,766	-0,77	-0,77	0.72
2,70	6,75	3,92	3,11	2,64	2,00	1,19	0,46	0,24	0,07	-0,18	-0,38	-0,51	-0,61	-0,65	-0,68	-0,724	-0,736	-0,739	-0,74	-0,74	0.74
2,80	6,86	3,96	3,13	2,65	2,00	1,18	0,44	0,22	0,057	-0,20	-0,39	-0,51	-0,60	-0,64	-0,67	-0,703	-0,711	-0,714	-0,715	-0,715	0.76
2,90	7,00	4,01	3,15	2,66	1,99	1,15	0,41	0,20	0,041	-0,21	-0,39	-0,51	-0,60	-0,63	-0,65	-0,681	-0,689	-0,69	-0,69	-0,69	0.78

Code: 15 01 06

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,5	3,44	2,81	1,97	1,32
$K_{P\%} = F_{P\%} C_{v} + 1$	5,609	3,883	3,355	2,651	2,106
$q_{p\%} = K_{p\%}q_o$	0,793	0,549	0,474	0,375	0,298

Code: 15 01 14

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,23	3,33	2,74	1,95	1,33
$K_{P\%} = F_{P\%} C_{v} + 1$	5,186	3,665	3,193	2,561	2,065
$q_{p\%} = K_{p\%}q_o$	1,643	1,162	1,012	0,811	0,654

Code: 15 02 04

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,5	3,44	2,81	1,97	1,32
$K_{P\%} = F_{P\%} C_{v} + 1$	5,619	3,889	3,360	2,654	2,108
$q_{p\%} = K_{p\%} q_o$	0,763	0,528	0,456	0,360	0,286

Code: 15 04 01

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,3	3,36	2,76	1,96	1,33
$K_{P\%} = F_{P\%} C_{v} + 1$	5,333	3,747	3,256	2,602	2,087
$q_{p\%} = K_{p\%}q_o$	1,182	0,830	0,722	0,577	0,463

Code: 15 06 01

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,23	3,33	2,74	1,95	1,33
$K_{P\%} = F_{P\%} C_{v} + 1$	5,146	3,640	3,172	2,546	2,054
$q_{p\%} = K_{p\%}q_o$	1,916	1,355	1,181	0,948	0,765

Code: 15 07 01

$P_{\%}$	0,1%	1%	2%	5%	10%				
$F_{P\%}$	5,7	3,52	2,86	1,98	1,32				
$K_{P\%} = F_{P\%} C_{v} + 1$	5,931	4,045	3,474	2,713	2,142				
$q_{p\%} = K_{p\%} q_o$	0,475	0,324	0,278	0,217	0,171				

Code: 15 07 02

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,84	3,58	2,9	2	1,3
$K_{P\%} = F_{P\%} C_{v} + 1$	6,125	4,142	3,545	2,755	2,141
$q_{p\%} = K_{p\%}q_o$	0,379	0,256	0,219	0,170	0,132

Code: 15 07 03

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,7	3,52	2,86	1,98	1,32
$K_{P\%} = F_{P\%} C_v + 1$	5,965	4,066	3,491	2,725	2,150
$q_{p\%} = K_{p\%} q_o$	0,427	0,291	0,250	0,195	0,154

Code: 15 09 01

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,91	3,6	2,91	2	1,3
$K_{P\%} = F_{P\%} C_{v} + 1$	6,281	4,217	3,600	2,787	2,162
$q_{p\%} = K_{p\%}q_o$	0,282	0,189	0,162	0,125	0,097

Code:15 01 10

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,84	3,58	2,9	2	1,3
$K_{P\%} = F_{P\%} C_{v} + 1$	6,226	4,203	3,595	2,790	2,163
$q_{p\%} = K_{p\%} q_o$	0,279	0,188	0,161	0,125	0,097

Code: 05 05 01

$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,84	3,58	2,9	2	1,3
$K_{P\%} = F_{P\%} C_{v} + 1$	6,201	4,188	3,583	2,781	2,158
$q_{p\%} = K_{p\%} q_o$	0,299	0,202	0,173	0,134	0,104

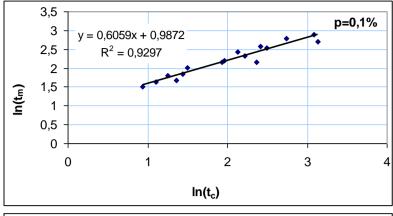
Code:05 08 01

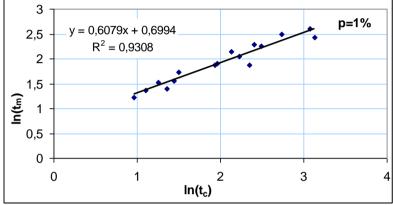
$P_{\%}$	0,1%	1%	2%	5%	10%
$F_{P\%}$	5,23	3,33	2,74	1,95	1,33
$K_{P\%} = F_{P\%} C_{v} + 1$	5,227	3,691	3,215	2,576	2,075
$q_{p\%} = K_{p\%}q_o$	1,407	0,993	0,865	0,693	0,558

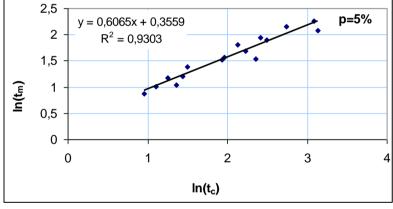
Code: 05 09 01

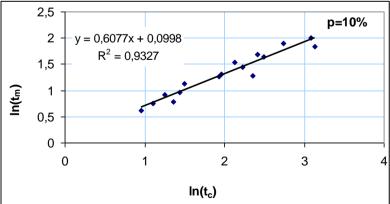
$P_{\%}$	0,10%	1%	2%	5%	10%
$F_{P\%}$	5,64	3,5	2,85	1,98	1,32
$K_{P\%} = F_{P\%} C_{v} + 1$	5,817	3,989	3,434	2,691	2,127
$q_{p\%} = K_{p\%}q_o$	0,586	0,402	0,346	0,271	0,214

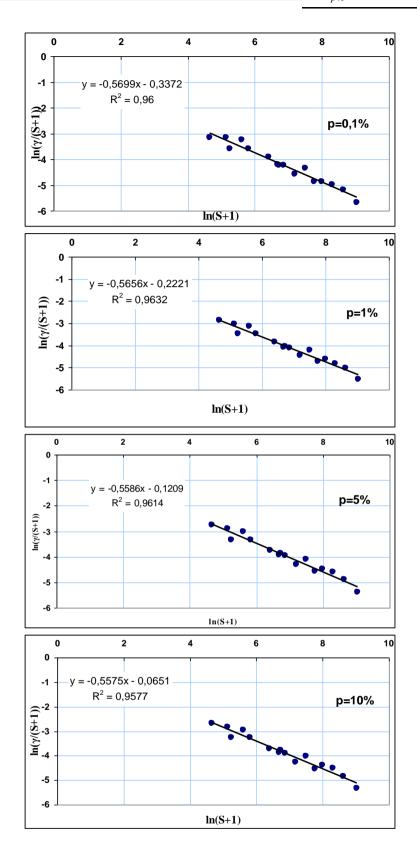
Code: 05 11 01

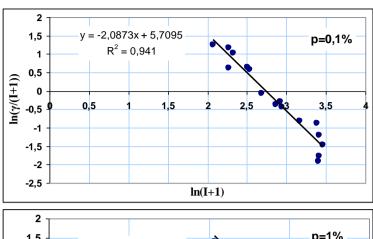

$P_{\%}$	0,10%	1%	2%	5%	10%
$F_{P\%}$	5,23	3,33	2,74	1,95	1,33
$K_{P\%} = F_{P\%} C_{v} + 1$	5,172	3,656	3,185	2,555	2,061
$q_{p\%} = K_{p\%} q_o$	1,744	1,233	1,074	0,862	0,695

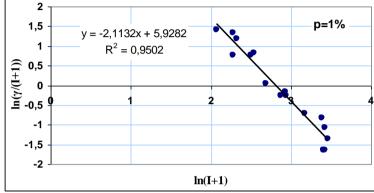

Code: 09 03 05

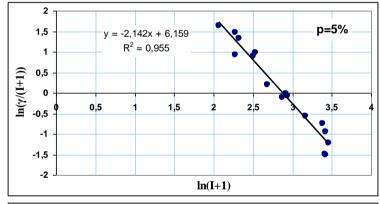

$P_{\%}$	0,10%	1%	2%	5%	10%
$F_{P\%}$	5,37	3,39	2,78	1,96	1,33
$K_{P\%} = F_{P\%} C_{v} + 1$	5,371	3,759	3,263	2,595	2,083
$q_{p\%} = K_{p\%} q_o$	1,260	0,882	0,765	0,609	0,489

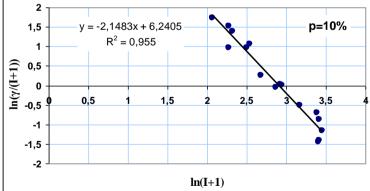

Code: 10 01 09

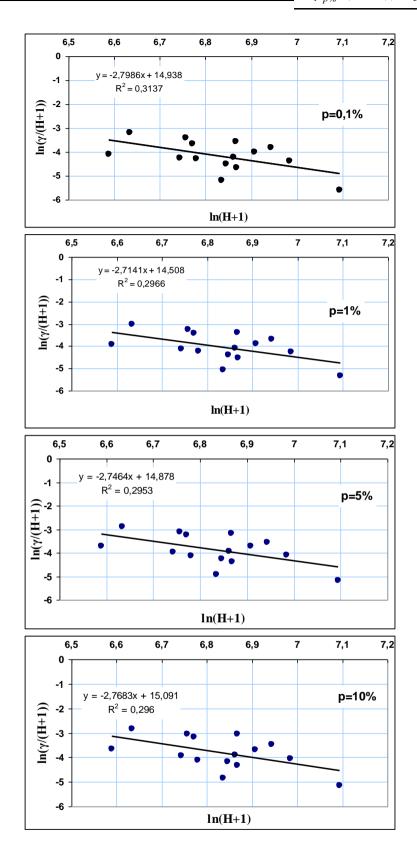

$P_{\%}$	0,10%	1%	2%	5%	10%
$F_{P\%}$	5,5	3,44	2,81	1,97	1,32
$K_{P\%} = F_{P\%} C_{v} + 1$	5,622	3,891	3,362	2,656	2,109
$q_{p\%} = K_{p\%}q_o$	0,756	0,523	0,452	0,357	0,284

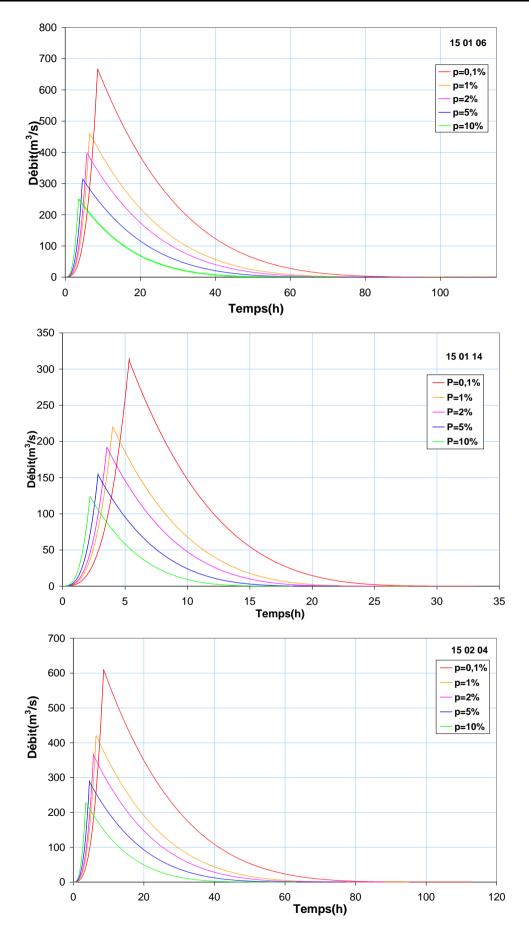


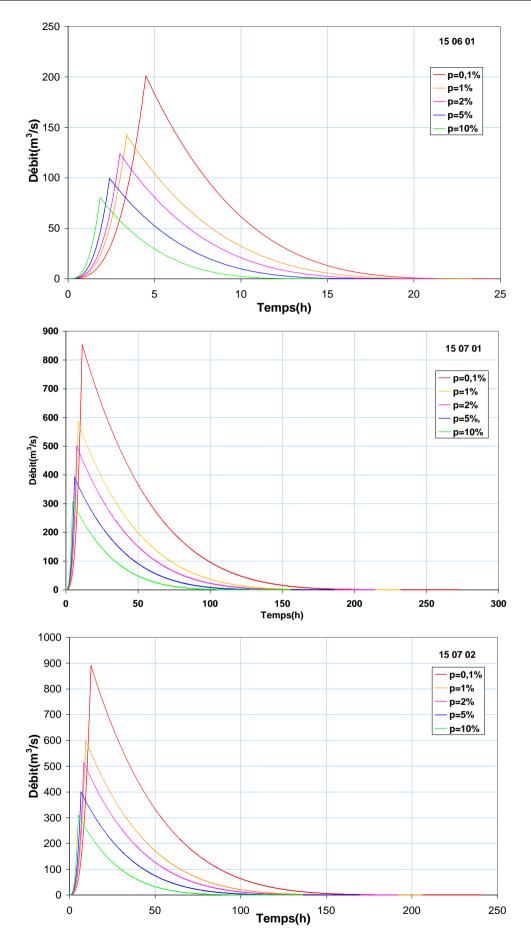


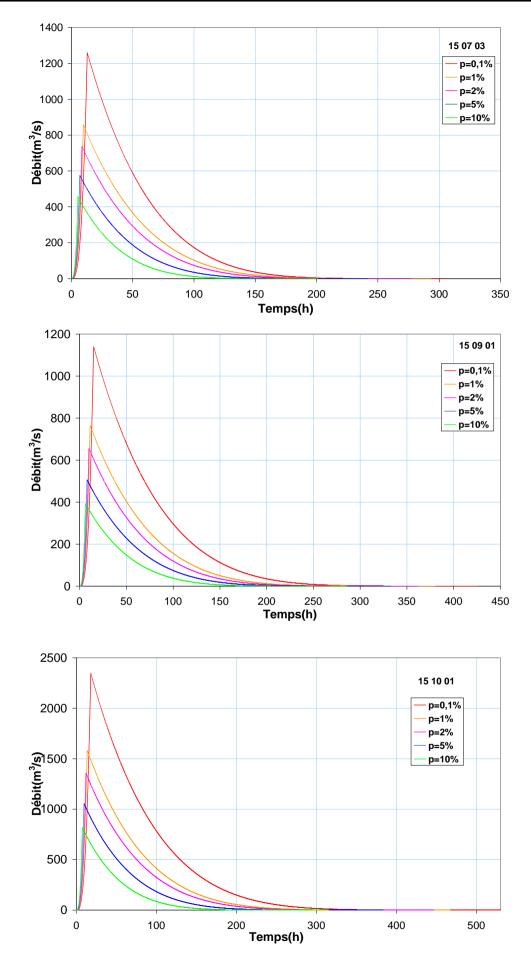









N°	Oued	Station	Code	$\gamma_{0.1\%}$	$\gamma_{0.1\%}$ cal	$ \delta $
1	Eddous	Tilesdit	15 01 06	12,3	12,4	0,4
2	Lekhal	Ain tasta	15 01 14	5,2	6,8	31,0
3	Zaiane	El-Esnam	15 02 04	12,1	12,7	5,0
4	Azerou	Porte de fer	15 04 01	12,2	8,9	26,7
5	Bousellam	Fermatou	15 06 01	4,5	6,0	33,6
6	Bousellam	Ain zada	15 07 01	23,0	18,7	18,9
7	Bousellam	Magraoua	15 07 02	18,2	22,5	23,6
8	Bousellam	Boubirek	15 07 03	22,4	20,4	8,9
9	Bousellam	SidiYahia	15 09 01	27,3	28,4	4,2
10	Bousellam	Sidi Aich	15 10 01	28,7	28,9	0,7
11	Leham	RocadeSud	05 05 01	31,5	27,2	13,7
12	Lougmane	Ced Fagues	05 08 01	9,2	7,7	16,1
13	Ksob	Medjez	05 09 01	13,6	15,8	16,0
14	Soubellah	Sidi ouadeh	05 11 01	7,3	6,5	10,9
15	Malah	Beni sliman	09 03 05	10,6	8,5	20,0
16	Elkbir	Tassadane	10 01 09	14,0	12,8	8,4


N°	Oued	Station	Code	$\gamma_{1\%}$	$\gamma_{1\%}$ cal	$ \delta $
1	Eddous	Tilesdit	15 01 06	14,5	14,9	2,6
2	Lekhal	Ain tasta	15 01 14	5,9	8,2	39,1
3	Zaiane	El-Esnam	15 02 04	13,7	15,3	11,8
4	Azerou	Porte de fer	15 04 01	12,9	10,8	16,5
5	Bousellam	Fermatou	15 06 01	5,9	7,2	22,8
6	Bousellam	Ain zada	15 07 01	26,2	22,5	14,2
7	Bousellam	Magraoua	15 07 02	20,8	27,1	30,3
8	Bousellam	Boubirek	15 07 03	28,9	24,6	14,9
9	Bousellam	SidiYahia	15 09 01	32,6	34,3	5,1
10	Bousellam	Sidi Aich	15 10 01	33,3	34,8	4,6
11	Leham	RocadeSud	05 05 01	36,7	32,8	10,7
12	Lougmane	Ced Fagues	05 08 01	10,4	9,3	10,6
13	Ksob	Medjez	05 09 01	15,4	19,0	23,4
14	Soubellah	Sidi ouadeh	05 11 01	8,1	7,8	3,3
15	Malah	Beni sliman	09 03 05	11,7	10,2	12,7
16	Elkbir	Tassadane	10 01 09	15,9	15,4	2,8

N°	Oued	Station	Code	$\gamma_{5\%}$	$\gamma_{5\%}$ cal	$ \delta $
1	Eddous	Tilesdit	15 01 06	17,6	17,2	2,4
2	Lekhal	Ain tasta	15 01 14	6,8	9,5	39,3
3	Zaiane	El-Esnam	15 02 04	15,9	17,7	11,2
4	Azerou	Porte de fer	15 04 01	14,1	12,4	11,8
5	Bousellam	Fermatou	15 06 01	6,8	8,4	23,0
6	Bousellam	Ain zada	15 07 01	29,9	25,9	13,3
7	Bousellam	Magraoua	15 07 02	24,3	31,3	28,7
8	Bousellam	Boubirek	15 07 03	33,8	28,4	16,0
9	Bousellam	SidiYahia	15 09 01	40,5	39,5	2,4
10	Bousellam	Sidi Aich	15 10 01	38,8	40,2	3,6
11	Leham	RocadeSud	05 05 01	42,1	37,8	10,1
12	Lougmane	Ced Fagues	05 08 01	11,9	10,7	9,8
13	Ksob	Medjez	05 09 01	17,9	21,9	22,6
14	Soubellah	Sidi ouadeh	05 11 01	9,3	9,0	2,7
15	Malah	Beni sliman	09 03 05	13,5	11,8	12,7
16	Elkbir	Tassadane	10 01 09	18,4	17,8	3,1

N°	Oued	Station	Code	$\gamma_{10\%}$	$\gamma_{10\%}$ cal	$ \delta $
1	Eddous	Tilesdit	15 01 06	19,3	18,4	4,8
2	Lekhal	Ain tasta	15 01 14	7,4	10,1	36,9
3	Zaiane	El-Esnam	15 02 04	16,8	18,9	12,5
4	Azerou	Porte de fer	15 04 01	14,6	13,3	8,9
5	Bousellam	Fermatou	15 06 01	7,1	9,0	26,0
6	Bousellam	Ain zada	15 07 01	32,3	27,7	14,1
7	Bousellam	Magraoua	15 07 02	25,3	33,5	32,3
8	Bousellam	Boubirek	15 07 03	36,3	30,4	16,4
9	Bousellam	SidiYahia	15 09 01	45,0	42,3	6,0
10	Bousellam	Sidi Aich	15 10 01	41,2	43,0	4,4
11	Leham	RocadeSud	05 05 01	44,5	40,5	9,1
12	Lougmane	Ced Fagues	05 08 01	12,8	11,5	10,3
13	Ksob	Medjez	05 09 01	18,9	23,5	24,2
14	Soubellah	Sidi ouadeh	05 11 01	10,0	9,7	3,2
15	Malah	Beni sliman	09 03 05	14,4	12,6	12,4
16	Elkbir	Tassadane	10 01 09	19,3	19,1	1,2

