
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

ABDERRAHMANE MIRA UNIVERSITY OF BÉJAIA

FACULTY OF EXACT SCIENCES

DEPARTMENT OF COMPUTER SCIENCE

MASTERS THESIS

OPTION : ARTIFICIAL INTELLIGENCE

Proposition of an Enhanced Deep
Reinforcement Learning Algorithm

for Managing Traffic

Presented by:
Amine HAMOUCHE

Examining Committee:

Supervisor: Dr. BOULAHROUZ Djamila

Examiner 1: Mme BOUKERRAM Samira

Examiner 2: Dr. Adel Karima

Academic Year: 2021 / 2022

ii

Declaration of Authorship
I, Amine HAMOUCHE, declare that my thesis titled, “Proposition of an En-
hanced Deep Reinforcement Learning Algorithm for Managing Traffic” and
all the work presented in it are my own. I confirm that:

• This work was done wholly on this year at my University.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• Where the thesis is based on work done by myself, i am making it clear
that i didn’t get the help from any of my classmates, except from my
supervisor.

iii

ABDERRAHMANE MIRA UNIVERSITY OF BÉJAIA

Abstract
Faculty Of Exact Sciences

Department of Computer Science

Masters in artificial intelligence

Proposition of an Enhanced Deep Reinforcement Learning Algorithm for
Managing Traffic

by Amine HAMOUCHE

Due to the rapid growth of the population as well as the quality of life, re-
liance and the use of roads is increasing drastically which leads to an in-
evitable increase in traffic. As a result, many traffic control systems have been
in operation to regulate traffic but still need improvements to be more suit-
able especially in our country. Indeed, these systems are designed to work
on predefined patterns which do not always correspond to the real and par-
ticular cases of our road traffic.

In order to tackle this challenge we propose in this work an upgrade ap-
proach of an already existing traffic monitoring model based on Deep Q-
Learning to traffic lights control with an agent simulator using the frame-
work SUMO. Our main objective is to minimize the average waiting time of
the vehicles at the intersection. To this end we propose many improvements
to the algorithm, by adding some important layers to the convolutional neu-
ral network and adapting the values of some crucial hyper parameters.

The obtained simulation results have shown that our approach performs bet-
ter than the existing algorithm in terms of mean waiting time.

KEYWORDS : Traffic lights Control Systems, Deep Reinforcement Learning,
Convolutional Neural Network.

iv

Acknowledgements
I would like to thank my supervisor, Dr.Boulahrouz Djamila for guiding

me through this work as well as all the efforts and the time she put in to pre-
pare me for presenting this thesis.

She offered me a great help in the preliminary work in order to understand
the basics of the algorithm we used. I would also like to acknowledge my
university for their participation and engagement in my study.

I would also like to earnestly acknowledge the sincere efforts and valuable
time given by my examining committee. Mme BOUKERRAM Samira and
Dr. Adel Karima.

A debt of gratitude is also owed to all the teachers of my university’s cur-
riculum, for giving such valuable lessons and some important learning expe-
riences.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

General introduction 1

1 A state of the art of traffic light systems 3
1.1 Traffic lights systems . 3

1.1.1 Traditional traffic light systems 3
1.1.2 Dynamic traffic light systems 4
1.1.3 Smart traffic light systems 4

The significance of smart traffic light systems 4
1.1.4 Theoretical tools for road traffic management 5

Using fuzzy logic . 5
Neural Networks . 5
Queuing theory . 5

1.2 Traffic Engineering . 6
1.2.1 Objectives of traffic engineering 6
1.2.2 Importance of traffic engineering 6

1.3 Impact of traffic management on CO2 emissions 6
1.4 Conclusion . 6

2 Analyzing neural networks and understanding reinforcement learn-
ing 7
2.1 Introduction . 7
2.2 Analyzing artificial neural networks 7
2.3 Analyzing convolutional neural networks 8

Convolution part . 9
Classification part . 10

2.3.1 Various CNN architectures 10
LeNet architecture . 10
AlexNet architecture . 10
GoogleNet architecture 11

2.3.2 Applications of convolutional neural networks 11
Image Classification . 11
Text Detection and Recognition 11
Object Detection . 11
Action Recognition . 11

vi

2.4 Reinforcement Learning . 12
2.4.1 Problem formulation in RL 12
2.4.2 Shortcomings of RL . 13
2.4.3 Q-Learning . 13

2.5 Deep Reinforcement Learning 13
2.5.1 Deep Q-learning . 14

2.6 Conclusion . 14

3 An enhanced deep reinforcement learning algorithm 15
3.1 Introduction . 15
3.2 Q-learning algorithm to adjust traffic signal timing [1] 15

3.2.1 Problem environment 15
3.2.2 Defining State, Action and Reward 16

State definition . 16
Action set definition . 16
Reward definition . 17

3.2.3 Q-learning algorithm proposed by [1] 17
Training the neural network 19

3.3 An enhanced deep learning algorithm : our contribution . . . 19
3.3.1 Learning rate and Batch size 19

Learning Rate . 20
Batch Size . 20

3.3.2 Epoch . 21
3.3.3 Activation Function . 22

Linear Activation Function 22
ReLU Activation Function 23
LeakyReLU activation function 23

3.3.4 Adam Optimizer . 24
3.3.5 Batch Normalization . 25
3.3.6 Dropout Layer . 26
3.3.7 Conclusion . 26

4 Evaluation of performance 27
4.1 Introduction . 27
4.2 Tools and Resources . 27

4.2.1 Simulation Tool : SUMO 27
NetEdit . 28

4.2.2 Developing Tools . 28
Pycharm . 28
TraCI . 28
Tensorflow . 29
Keras . 29
Sumolib . 29
Numpy . 29

4.3 Simulation Settings and Results 29
4.3.1 Simulation Settings . 29

Intersection . 29
Traffic . 30

vii

Simulation Data Processing 30
4.3.2 Simulation Results . 30

Average waiting time metric 33
4.4 Conclusion . 33

General Conclusion 34

Bibliography 35

viii

List of Figures

1.1 Traffic light sequence . 3
1.2 Smart traffic light systems . 4

2.1 Artificial Neuron Network model 8
2.2 Convolutional neural network 9
2.3 Convolution process visualisation 9
2.4 Classification process visualisation 10
2.5 Reinforcement Learning process visualisation 12
2.6 Q-learning visualisation . 13
2.7 Deep Q-learning visualisation 14

3.1 Intersection Model . 16
3.2 Intersection State . 17
3.3 Bellman Optimality Equation 18
3.4 Deep Neural Network Structure 18
3.5 Mean Squared Loss Function 19
3.6 Significance of the learning rate value 20
3.7 Types of gradient descent . 21
3.8 The impact of epoch values on the model 21
3.9 Linear Activation Function . 22
3.10 The ReLU Activation Function 23
3.11 The LeakyReLU Activation Function 24
3.12 A brief accuracy comparison between RMSProp, Adam and

Adamax . 25
3.13 Description of Batch Normalization 25
3.14 Comparison over a neural network with dropout and one with-

out dropout . 26

4.1 SUMO environment . 27
4.2 NetEdit environment . 28
4.3 Comparison between our implemented results(light green) and

the results shown(blue) for a static configuration 31
4.4 Comparison of the waiting time, of our enhanced approach

(blue) and the already existing algorithm (orange) 32
4.5 Comparison of the waiting time of our enhanced approach

(black), the already existing algorithm (light blue) and the static
light configuration orange) . 32

ix

List of Abbreviations

RL Reinforcement Learning
ML Machine Learning
DL Deep Learning
DRL Deep Reinforcement Learning
QL Quality Learning
TSC Traffic Light Control

1

General Introduction

Traditional traffic light control systems, which are still commonly utilized in
metropolitan areas, have proven their limits and deficiencies in the manage-
ment of actual traffic network. This is why, in recent years, traffic manage-
ment systems have been the subject of extensive research.

One of the biggest challenges facing these systems is managing large amounts
of vehicles at an intersection so that the average waiting time of these vehi-
cles is acceptable. Indeed, the number of vehicles is rapidly increasing which
leads to a substantial increase in waiting time at an intersection.

Several techniques have been proposed in literature [1],[2],[3],[4], however
reinforcement learning as an enhanced machine learning technique, seems
to be the most interesting approach to develop smart traffic control systems.

In this thesis, we tackle the problem of managing traffic light control sys-
tems at an intersection aiming to minimize the average waiting time of the
vehicles. We consider that the total amount of time vehicles spent waiting at
a red light is measured as a total waiting time. Our model is based on the
work of [1], which we propose to improve for better performance in terms of
the average waiting time for red lights at intersections. The main objective is
to allow the large public benefit from this time saving and to respond more
efficiently to eventual emergencies. In addition to that, such efficient of traf-
fic light systems might be very helpful in the fight against global warming.

The authors of [1], which is the basis of our model, have proposed a relatively
easy solution using a deep reinforcement learning algorithm (Q-Learning)
which alters the timing of traffic light control system in response to current
traffic demand. Although the results they have obtained are interesting, they
can yet be enhanced by adjusting the model’s key parameters. Our work is
within this context. We propose to improve the model of [1] by adding some
important layers (Batch normalization, Dropout) to the convolutional neural
network and adapting the values of some crucial hyper parameters (Learn-
ing rate, mini-batch size, Epoch, Activation function, Adam Optimizer).

We conduct several simulations of our model by testing various parameters
values in order to get the optimal ones. The obtained simulation results have
proven that our model has significantly outperformed the algorithm of [1] in
terms of the average waiting time.

2

Our thesis is structured as four chapters :

− Chapter 1 : Covered traffic signal systems in general, from conventional
to intelligent systems. We have also reviewed some methods for man-
aging traffic on the roads and the significance of traffic engineering. Fi-
nally, we discussed how traffic light systems affect CO2 emissions and
how a better overall design would result in less emissions.

− Chapter 2 : Summarized the significant breakthroughs that convolu-
tional neural networks have made in various fields of application is
provided in this chapter. After reviewing several fundamental concepts
related to reinforcement learning, Q-learning, which combines it with
deep learning into Deep Q-learning algorithm, was presented.

− Chapter 3 : Discussed the method used to frame the problem so that
the operating principle could be better understood. We then rapidly
moved on to the structure the algorithm’s creators had chosen. In addi-
tion, we showed the many improvements we did, from changing some
important parameters to adding beneficial layers to neural network.

− Chapter 4 : Addressed the many tools used to integrate the improve-
ments did and also the software used to simulate the overall environ-
ment. After that, we showed using graphs the results of how our en-
hanced algorithm. we demonstrated that our proposed approach made
an overall increase in performance by reducing the average waiting
time of the vehicles at the intersection.

3

Chapter 1

A state of the art of traffic light
systems

In this chapter, we will try to formulate a concise state of the art concerning
traffic light systems.

1.1 Traffic lights systems

Improving traffic flow in cities is one of the top priorities, with it road safety
can also be drastically improved. it is in that perspective that intelligent traf-
fic lights have been designed, a traffic light is a device sometimes multiple
devices connected that allow the regulation of traffic between roads, vehicles
and pedestrians at different places we will be seeing it at an intersection. De-
pending on the color displayed by the traffic light, they allow whether or not
users will be allowed to cross the intersection. it is a system of management
by priorities and based of three different color : red, orange and green that
not only concerns vehicles but also the pedestrians.

FIGURE 1.1: Traffic light sequence

1.1.1 Traditional traffic light systems

These traffic light systems are mainly based on fixed time delays with some-
times few options for the pedestrians and often they work with a defined
sequence of lights, Green, Orange, Red, Green, etc.. These traffic lights use a

4 Chapter 1. A state of the art of traffic light systems

timer to change the lights at a fixed interval, the timer depends on the histor-
ical traffic data of the said intersection. The fundamental goal of this strategy
is to accomplish a broad target such as lowering average delay, increasing
the capacity of the network, etc [5] created the original model and provided
the groundwork for fixed-time traffic light control systems, the downside is
that even a minor disruption like a construction site or traffic collision can
drastically change the traffic flow thus compromising its effectiveness.

1.1.2 Dynamic traffic light systems

Later, visual systems’ application became widespread with it and with the
limitation of fixed-time traffic light control, dynamic traffic lights systems
appeared they employ a detector that can interact with the traffic light control
system to provide them with information about the flow of traffic. They will
alter timing when a junction is congested to improve traffic flow.

1.1.3 Smart traffic light systems

Since they first appeared traffic light control systems have contributed to
fewer accidents and more optimized traffic in urban areas, the growth in the
number of vehicles these recent years is an important factor to consider. Re-
cently, a number of projects and research endeavors have been devoted to
the creation of fresh approaches that permit management of traffic light con-
trol systems while accounting for various situations. A new traffic suggestion
made by [3] combines object detection with evolutionary algorithms and ma-
chine learning to reduce waiting time for vehicles as well as pedestrians. As
only one traffic light at any intersection needs to be fitted with smart tech-
nology, smart or intelligent traffic lights provide excellent value for money,
the issue is that for the system to function optimally, vehicles must also use
smart technologies like GPS, driver assistance systems that keep an eye on
pedestrians, traffic and speed.

FIGURE 1.2: Smart traffic light systems

The significance of smart traffic light systems

One can use a straightforward example to understand the true value of smart
traffic lights, if a vehicle goes too slowly or too fast the smart traffic system

1.1. Traffic lights systems 5

will identify and will decide which way to resolve the problem in order to
avoid any accidents. Given how quickly technology is developing, one can
only speculate about how clever and practical these systems will eventually
be.

1.1.4 Theoretical tools for road traffic management

Dynamic models are frequently employed in the literature and rely on the-
oretical techniques, sometimes by approximating reality and other times by
ignoring physical principles (technology used, layout). In traffic manage-
ment systems, a number of theoretical tools that are widely discussed in the
literature and used as the foundation for several models.

Using fuzzy logic

Fuzzy logic makes it possible to set up degrees in the verification of a condi-
tion, allowing one to expand their options beyond strictly binary ones. this
theory is employed by some authors to deal with the problem of traffic light
management and allow to simplify, which modifies standard mathematical
optimization techniques frequently hefty. Additionally, [6] which uses fuzzy
logic to decide the length of a traffic light based on number of cars on the
road (for instance less than five vehicles per minute grant 10 second green
light). It is relatively a simple theory to apply , the drawbacks are also im-
portant since the settings are empirical and no theory can show that they are
stable.

Neural Networks

Neural networks use learning experience and are modeled after how biolog-
ical neurons function, numerous authors have researched this plan for road
traffic. It is also possible to think that fuzzy logic and other algorithms like
genetic algorithms as enhancements to neural networks.

Queuing theory

Road traffic management falls under the domain of probability and lends
itself particularly well to the queuing theory [7], since it allows the most ef-
fective use of queues. In queuing theory, when cars (called clients) can get
a green light at a junction, a line is immediately created (server). It is quite
simple to also calculate quantities with this theory, such as the average num-
ber of vehicles waiting Nbrv, in service, the average waiting time T and the
average staying time TS in the system. It is conventional to use Kendall’s no-
tation while drafting a queue based system, the three symbols a/s/C are used
to represent the system. Whereas a denotes the law of probability guiding the
circumstances of arrival times and s the service duration, which is typically
exponential (M or G). for its part C represents the quantity of servers. This
theory’s drawback when it comes to managing an intersection it necessarily
requires numerous measurement points.

6 Chapter 1. A state of the art of traffic light systems

1.2 Traffic Engineering

Traffic engineering covers all the telecommunications-related means used to
manage and control how traffic is distributed throughout a network by deal-
ing with the design of roads, streets in addition to those areas where they
intersect with other motorized and non-motorized modes of transportation.

1.2.1 Objectives of traffic engineering

The authors of [8] give a relatively helpful understanding of the main goal of
traffic engineering. Simply put it is to provide a secure and safe system for
vehicular transportation. in addition, lowering trip time and enhancing the
comfort with technology being the only constraint to it.

1.2.2 Importance of traffic engineering

Unnecessary and excessive traffic signals at once can be dangerous, one of the
biggest barriers to implementing sound traffic engineering principles is the
widespread misconception that installing a traffic signal will automatically
solve any traffic issues. The engineer counts the amount of traffic, studies
crash statistics, speeds data, looks at the state of the roads, conducts research
and examines what other experts are doing and the outcomes they have at-
tained.

1.3 Impact of traffic management on CO2 emissions

The design of mechanisms that increase the effectiveness of road use, such
as real-time traffic information systems and collaborative routing systems,
is being done concurrently with the attempt to create more efficiently and
environmentally friendly cars. The authors of [9] believe that a greater at-
tention should be paid to the mechanics of how each kilometer is driven,
that includes the choice of route and that is because they stated that vehi-
cles having a shorter wait time at an intersection would mean a lesser release
in CO2. They maintain their idea that having careful step not only on the
overall safety but also on the environment.

1.4 Conclusion

We have discussed traffic light systems in general in this chapter. From tra-
ditional to smart traffic systems, we then reviewed some tools for road traffic
management and the importance of traffic engineering. We finally concluded
with the impact of traffic light systems on CO2 emissions and how a better
design overall would impact less CO2 emissions.

7

Chapter 2

Analyzing neural networks and
understanding reinforcement
learning

2.1 Introduction

Nowadays artificial intelligence techniques are no longer a mystical treasure
kept hidden from the public but it is a growing tool that are penetrating
all kinds of different fields, transportation is no exception the aim is to in-
crease the mobility of people as well as their goods by making the traffic road
healthier by trying to choose the optimal traffic duration thus minimising it.
Most traffic lights systems work on a similar fashion, they cycle through the
green, yellow and red colors to ensure a congruous flow of traffic in the in-
tersection.
This kind of systems are well suited for busy areas that have a consistent vol-
ume of traffic but they quickly become outdated in areas that do not expect a
lot of drivers to be around thus the necessity to rely on an "intelligent" control
system, the approach of RL algorithm chosen is a promising one in fact it can
learn to improve the traffic by simple observation done by an agent followed
by algorithmic adjustments for optimization.

2.2 Analyzing artificial neural networks

Computational models called artificial neural networks are modeled after the
nervous system of living beings [10], they can be characterised as a collection
of processing units represented by artificial neurons. McCullosh and Pitts
proposed in 1943 a simple neuron model, which incorporates the key com-
ponents of a biological neural network connectivity and is still one of the
most used model(see figure 2.1).

8 Chapter 2. Analyzing neural networks and understanding reinforcement
learning

FIGURE 2.1: Artificial Neuron Network model

− x1,x2,...,xn are the samples and signal originating from the outside en-
vironment.

− w1,w2,...,wn are the factors that determine how each input variable is
weighted, allowing for the assessment of its significance.

− ∑ sums all the weighted signals to produce an activation.

− b the bias in artificial neural nets helps to replicate the behavior of real,
human neurons.

− ϕ is an activation function in a neural network describes how a node or
nodes in a layer of the network translate the weighted sum of the input
into an output.

− y consists of the final value the neuron produces after receiving a spe-
cific set of input signals.

2.3 Analyzing convolutional neural networks

Authors of [11] Give a pretty helpful understanding of the architecture within
the deep learning domain over conventional machine learning. In this work,
we will use convolutional neural networks combined with Deep Q learn-
ing. Convolutional neural networks (see figure 2.2), or CNNs for short, are a
subset and one of the most effective image categorization models at the mo-
ment, their mode of operation is quite straightforward : the user has to enter
as input an image in the form of a matrix of pixels. The matrix has 3 dimen-
sions; two dimensions for a gray scale image and a third one to represent the
colors, the design of the convolutional neural network is based on the classi-
cal multi layers perceptron model which has only one classification part but
CNNs have an added convolutional component.

2.3. Analyzing convolutional neural networks 9

FIGURE 2.2: Convolutional neural network

Convolution part

The goal of the convolutional part is to lower each image’s starting size while
extracting attributes unique to each one, this is the part in which if an image
of a dog was given as input it will begin to recognise the ears and legs as
an example (see figure 2.3) . The input image is processed through multiple
filters (or kernels) each of which produces a new image called a convolutional
map that will finally be concatenated into a vector. We use an activation
function to pass the output as non-linear usually it’s the ReLu function.

FIGURE 2.3: Convolution process visualisation

10 Chapter 2. Analyzing neural networks and understanding reinforcement
learning

Classification part

The convolution part seen earlier happens in the hidden layers of the neural
network, the connected layers will help us assign a probability y for the object
on the image being what the process predicts it is (see figure 2.4).

FIGURE 2.4: Classification process visualisation

2.3.1 Various CNN architectures

Many CNN architectures were and are still developed, some well known
ones are : LeNet architecture, AlexNet an improved LeNet, GoogleNet archi-
tecture.

LeNet architecture

The most classic Convolutional Neural Network, known as LeNet, was cre-
ated by Yann LeCun et al in 1990 [12]. The LeNet architecture that was de-
signed to scan zip codes, numbers, etc. is one of the most efficient architec-
tures.

AlexNet architecture

The earliest well-known CNN architecture is AlexNet, which was created by
Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton [13], popularized convo-
lutional neural networks in computer vision. AlexNet’s architecture was the
most deep and profound of them all, LeNet’s architecture was comparable
to that of AlexNet. Stacking convolution layers as opposed to the changing
convolution and pooling layers used in LeNet.

2.3. Analyzing convolutional neural networks 11

GoogleNet architecture

This CNN architecture developed by [14] from Google was unique in that it
drastically reduced the amount of parameters in the Inception v-1 network
module, it is also stated that its performance was close to a human level per-
formance.

2.3.2 Applications of convolutional neural networks

In this section, some fields and domains where convolutional neural net-
works were used are presented.

Image Classification

Convolutional neural networks have been used for a long time in the field of
image categorization. Compared to alternative approaches CNNs perform
better on huge datasets. In 2012, large-scale picture categorization achieves
its breakthrough. The AlexNet was developed by Krizhevsky et al. [13], who
also had the top results in the ILSVRC 2012. Following AlexNet’s success, a
number of works have significantly increased classification accuracy by ei-
ther decreasing filter size or increasing network depth.

Text Detection and Recognition

Long-term research has been done on the problem of text recognition in im-
ages. Traditionally, The main emphasis is on optical character recognition
(OCR). Text recognition is the core function of OCR technology on pictures
in visually restricted settings.

Object Detection

A long-standing and significant issue in computer vision is object detection.
The challenges often center on finding the locations of objects in pictures or
video frames. CNNs have been used for detection and localization since the
1990s. However, given the absence of The development of CNN-based object
detection is delayed due to a lack of training data and processing resources.

Action Recognition

One of the difficult challenges in computer vision is action recognition, which
involves analyzing human subjects’ behavior and categorizing their activities
based on their visual appearance and motion dynamics. Action analysis in
still photos and in video are the two main categories into which this issue
may be separated.

12 Chapter 2. Analyzing neural networks and understanding reinforcement
learning

2.4 Reinforcement Learning

The RL approach (see figure 2.5) used differs drastically from the supervised
and unsupervised machine learning techniques [15], it learns based on suc-
cessive experiences, what is best to be done in order to get the optimal solu-
tion. Recent studies show that RL approaches have shown a great success in
different fields like finance, communication and scheduling. Trial and error
is the foundation of learning.
This approach is applied for any problems where the decision-making pro-
cess is crucial. The agents learn how to transition from the initial state to one
that is more conducive to achieving the goal. The goal is to locate From the
start of the movement, the shortest and optimal route to the destination.

FIGURE 2.5: Reinforcement Learning process visualisation

2.4.1 Problem formulation in RL

A RL problem begins with an agent that interacts with the environment and
defining its state s, when the agent initiates an action a that leads him to the
next state s+1, it also gets a variable quantity that represents the reward r. The
reward or prize is letting know the agent of how well executed the action is
at that instant by also taking in consideration the performance measure, the
aim of the agent is to slowly learn the strategy that maximizes the reward as
a result of the actions taken. The agent’s action making is what will we call a
policy π . A value function v is a function of state that estimates how good it
is for the agent to be in a state, or how good it is for the agent to perform an
action while being in a particular state.

• The State-Value function for a policy π, denoted as vπ tells us how well
it is for the agent to be in a state given a certain policy π.

• The Action-Value function for a policy π, denoted as qπ gives us a value
under a certain policy that tells us how well it is for the agent to take

2.5. Deep Reinforcement Learning 13

action while being in a certain state, the qπ is also referred as the Q-
function in general [16].

2.4.2 Shortcomings of RL

RL does have shortcomings, in fact when the number of states computed is
becoming too large then that leads to two shortcomings [17]. First of all, the
computational cost is greater to explore all the state and action possibilities to
identify the optimal actions and thus having a slow learning time. Secondly,
a large storage capacity is then required to store all this knowledge.

2.4.3 Q-Learning

One of the simplest models and arguably one of the most applied represen-
tative in RL is a model-free single-agent RL approach called Q-learning (see
figure 2.6), its goal is to find the optimal policy by learning the optimal Q-
values for each state-action pair. The Q-table is the main component of Q-
learning , the table is a matrix where each element is identified as a Q-value
which represents the value of each state-action pair. The algorithm evaluates
Q-value of the Q-table by the agent of Q-learning then will receive a reward
or penalty for every action a taken in state s. In every iteration steps, the
maximum Q-value at state s will be selected by the Q-learning agent. Then,
evaluation from the reward function for that action will be stored in the Q-
table when the algorithm moves to the next state [16].

FIGURE 2.6: Q-learning visualisation

2.5 Deep Reinforcement Learning

Deep reinforcement learning refers to reinforcement learning with neural
networks as a function approximators and that’s where combining DL tech-
niques with RL can provide the solution needed to tackle the shortcomings,

14 Chapter 2. Analyzing neural networks and understanding reinforcement
learning

DRL grasps the concepts of deep neural networks with it enabling a contin-
uous state-space representation allowing large number of states. DRL also
reduces the learning time required to explore all state-action pairs and iden-
tify optimal actions. Finally, DRL uses several layers of neurons to store the
weights of the links connecting the neurons, which are used to approximate
the Q-values efficiently in order to address the storage issue in RL [18].

2.5.1 Deep Q-learning

An adaptation of the Q-learning approach previously seen with deep learn-
ing techniques is called Deep Q-Learning it uses a deep neural network to
approximate the values (see figure 2.7). The initial state the agent perceives
is absorbed by the neural network as input and it proceeds by returning the
Q-value for all possible action-state as an output. it also stores all previous
experience in memory and performs training on the network with the gained
experience [2].

FIGURE 2.7: Deep Q-learning visualisation

2.6 Conclusion

In this chapter, a brief overview of how convolutional neural networks have
achieved great advancements in different field of applications. A review of
some basic understanding about reinforcement learning was done, present-
ing Q-learning combining it with deep learning.

15

Chapter 3

An enhanced deep reinforcement
learning algorithm

3.1 Introduction

The regulation of traffic lights at road intersections is the focus of this thesis.
In this chapter, we will first outline the work of [1] as it represents the basis
of our model. Then we will detail the improvements made to this solution in
order to improve its performances.

3.2 Q-learning algorithm to adjust traffic signal tim-
ing [1]

The problem is formulated as a reinforcement learning (RL) problem in which
an agent interacts with the junction at discrete time steps t = 0, 1, 2, ..etc, with
the agent’s long-term objective being to decrease the amount of time vehicles
spend at the intersection.
To be more specific, the RL agent observes the intersection and determines
the state St and then the agent moves to the next state St+1 once a car crosses
under actuated traffic after a certain action At.
As a result of the agent’s choice of traffic lights, it also receives reward Rt at
the conclusion of time step t hence the sequence (St,At,Rt,St+1), such a reward
acts as a cue directing the agent to accomplish its objective, the reward is a
single integer with a variable value serves as the prize.
The agent’s informal objective is to maximize the overall reward it gets, this
entails optimizing long-term cumulative reward in addition to immediate
reward.

3.2.1 Problem environment

The authors in [1] modeled the road as a four way intersection using Sumo
[19] that is a multi-modal traffic simulation software that is open source,
extremely portable, tiny, and continuous that can manage large networks,
where each way or direction has 4 lanes; 3 lanes leading to the intersection
(Figure 3.1).

16 Chapter 3. An enhanced deep reinforcement learning algorithm

Each lane taking the vehicles down its direction ; right lane to go right, mid-
dle lane to stay at the middle and the left lane to go left at the intersection.
The green and yellow light period are 10 seconds and 6 seconds respectively.

FIGURE 3.1: Intersection Model

3.2.2 Defining State, Action and Reward

State definition

The approach the authors [1] used to define the state is for each road way is
to have to generate velocity V and position P matrices (see Figure 3.2).

Action set definition

After the RL agent sees the already defined state, it has to choose actions to
move to the next state.
The set of actions decided was two;

− Turning on green lights for the horizontal roads

− Turning on green lights for the vertical roads

Between two states, the agent goes through a transition that involves :

− Change the lights for vehicles going straight to yellow

− Change the lights for vehicles going straight to red

− Change the lights for vehicles turning left to yellow

− Change the lights for vehicles turning left to red

3.2. Q-learning algorithm to adjust traffic signal timing [1] 17

FIGURE 3.2: Intersection State

Reward definition

The reward is given to the agent at every time step, it takes two observations
of the waiting time of all vehicles once at the beginning of the time step R1
and another at the end R2.
The total reward RT will be the first observation minus the second observa-
tion, if the outcome is positive by decreasing the waiting time it rewards the
agent else if it’s negative then it’s punishing the agent because the waiting
time increases.

3.2.3 Q-learning algorithm proposed by [1]

The authors in [1] had to work with an unlimited number of states, hence
it is impossible to save the Q-value for every single state. As a result, they
used an approximation method called the Bellman Optimality Equation to
calculate the Q-value for the given state (see Figure 3.3).

18 Chapter 3. An enhanced deep reinforcement learning algorithm

FIGURE 3.3: Bellman Optimality Equation

To approximate the Bellman equation, they trained a deep neural network
as shown in Figure 3.4:

FIGURE 3.4: Deep Neural Network Structure

The deep neural network introduced has three inputs matrices, one for
the position P, another for the speed V and finally the state of where the
network is at L.
The position P and the speed V matrices undergo two layers of convolution
accompanied by the activation function known as ReLU, then passing by the
third and fourth layer with both their activation function as ReLU.
Finally, the last layer which is a linear layer outputs the Q-values according
to each potential course of action the agent takes.

3.3. An enhanced deep learning algorithm : our contribution 19

Training the neural network

The neural network was trained by first initializing random weights to it,
when every time step begins, the agent observes the current time step St,gathers
data for the neural network, and executes the action At with the highest po-
tential future reward and then extracting training examples from the couples
state and action (St,At) in order for the agent to learn by minimizing a fol-
lowing loss function which its equation is as follows :

FIGURE 3.5: Mean Squared Loss Function

where m denotes the size of the input, the authors chose to use stochastic
gradient descent algorithm RMSProp with a mini-batch of size of 32.

3.3 An enhanced deep learning algorithm : our con-
tribution

In this section we will address the improvements done to the algorithm of [1]
in order to improve its performances.

3.3.1 Learning rate and Batch size

One of the first major changes we did on the implemented algorithm by [1]
was decreasing step by step the batch size of the mini-batch size type used
while also decreasing the learning rate of the algorithm to find the optimal
values for these parameters that help decrease the wait time of vehicles and
thus improving the overall performance of the algorithm.

In fact [20] concluded that there is a high correlation between the learning
rate and the batch size values, and recommended to use small learning rates
with small batch sizes.
We decreased the learning rate from LR=0.0002 to LR=0.0001 as well as the
batch size which was batch size=32 down to a size of batch size=2.

20 Chapter 3. An enhanced deep reinforcement learning algorithm

Learning Rate

The concept of learning rate is used a lot in machine learning it refers in
essence, to the speed with which an algorithm finds a solution (see Figure
3.6).
It’s one of the most crucial hyper-parameters for training neural networks.
Therefore, it’s crucial to configure its value as closely as feasible to the ideal.
If the learning rate chosen is too small or too low then the gradient descent
will take a huge amount of time to reach the optima on the other hand, if the
learning rate is too high, the gradient descent may begin to diverge and fail
to find the best solution.

FIGURE 3.6: Significance of the learning rate value

Batch Size

What the batch size is doing is defining how many samples it is using to
train the neural network in a single epoch, an epoch is when a neural net-
work processes a whole dataset just once, both forward and backward. There
are many different types when coming to the gradient descent as shown in
Figure 3.7:

− Batch Gradient Descent : This type of batch requires significant amount
of memory if our training set contains huge amount of samples and
can only update the model a few times before reaching the local min-
ima. However there is a big drawback to using batch, we could become
trapped in a saddle point too early and end the training with param-
eters that are far from the required performance for non-convex prob-
lems with several local minima.

− Mini-Batch Gradient Descent: The most commonly used and the one
showing the best result is the mini-batch which the implemented algo-
rithm already uses. Using the mini-batch, the model is updated more

3.3. An enhanced deep learning algorithm : our contribution 21

frequently compared to using only batch. it also solves the issue for
problems with several local minima and allows for a strong conver-
gence.

FIGURE 3.7: Types of gradient descent

3.3.2 Epoch

Another one of the improvements we did was increasing the epoch parame-
ter, as seen earlier an epoch is an a hyper-parameter that specifies how many
samples must be processed before the internal model parameters are up-
dated.
The implemented algorithm used a number of epoch=1 and that means, only
one instance of the dataset is run forward and backward through the neural
network.
We found it too little it can furthermore cause an under fitting scenario, un-
der fitting happens when the model constructed is too simple that can neither
model the training data nor generalize to new data (see Figure 3.8).

FIGURE 3.8: The impact of different Epoch values on the model

To make the model more accurate and generate less errors we increased
the number of Epoch value, as the number of the Epoch value increases the
neural network’s weights are adjusted more often, and the curve shifts from

22 Chapter 3. An enhanced deep reinforcement learning algorithm

under fitting to optimum until we converged to an optimum scenario and its
value Epoch=10.

3.3.3 Activation Function

In artificial neural networks, activation functions are utilized specifically to
convert input signals into output signals that are then sent as input to the
following layer in the model (see Figure 3.9).
In the proposed algorithm by Tej Patel and Robert Cook in [1], The ReLU ac-
tivation was applied for the first two layers of the convolutional neural net-
work. After experimenting with different activation functions we proposed
to use an improvised version of the ReLU function called LeakyReLU.
The authors of [21] actually provide a helpful explanation of the many acti-
vation functions that are employed in the field of deep learning, as well as
their significance in creating a deep learning model that is both successful
and efficient, we will present some notable functions as well as explain why
the choice of using LeakyReLU was made.

Linear Activation Function

The output of the linear activation function is directly related to the input, its
equation can be defined as follows :

f (x) = ax

FIGURE 3.9: Linear Activation Function

Using the linear activation function won’t benefit the neural network be-
cause simply put the function won’t improve the error, in the other hand it’s
used in the final layer when all the layers collapse into one.

3.3. An enhanced deep learning algorithm : our contribution 23

ReLU Activation Function

The rectified linear unit or as so called ReLU is a non linear function that
does not require any intensive processing because there is no complex math
involved (see Figure 3.10). as a result, the model can be trained faster and
learn faster too.
The ReLU activation function’s equation is as follows:

f (x) = max(0, x)

FIGURE 3.10: The ReLU Activation Function

ReLU function does have limitations, the most important one is the issue
of the dying ReLU, that happens when a ReLU neuron is caught on the neg-
ative side and consistently produces 0. It is unlikely that a neuron would
recover after it has gone negative because the slope of ReLU in the negative
region is likewise 0. These neurons have no role in processing the informa-
tion, hence they are effectively useless.
What can happen sometimes when the learning rate is too high, is that a
good chunk of neural network practically dies. So we used the LeakyReLU
function that solves this problem in case it happens.

LeakyReLU activation function

The LeakyReLU activation function is a variation of the ReLU function that
solves the problem of the dying ReLU (see Figure 3.11).
Instead of the ReLU function’s value being 0 for negative x values, it is spec-
ified as a very small linear component of x, its mathematical equation is :

f (x) = ax, x < 0

24 Chapter 3. An enhanced deep reinforcement learning algorithm

f (x) = x, x >= 0

FIGURE 3.11: The LeakyReLU Activation Function

3.3.4 Adam Optimizer

As seen earlier, the RMSProp optimization technique was used in the already
implemented algorithm for training the neural network.
It is very well-known despite not having been published in a formal aca-
demic paper by its developer Geoffrey Hinton, RMSProp is used coupled
with gradient descent to update the latter step by step.
RMSProp works by dividing the learning rate by the average of the squared
gradients with exponential decay which means that it doesn’t decay its’ learn-
ing rate too quickly like some other techniques before the introduction of
RMSProp.
Another more interesting optimizer introduced by [22] called the Adam op-
timizer was added in our improvements instead of RMSProp, the method
improves the RMSProp optimizer by adding the notion of momentum to it.
The concept of momentum is used to accelerate gradient descent by using the
exponentially weighted average of the gradients, and that helps converging
into a minima way more quickly.
The Adamax method is just another variant also proposed by the authors,
but achieves lesser accuracy than Adam.

3.3. An enhanced deep learning algorithm : our contribution 25

FIGURE 3.12: A brief accuracy comparison between RMSProp,
Adam and Adamax

3.3.5 Batch Normalization

Batch normalization is considered a layer that uses a normalization technique
between the layers of neural network, the work [23] investigated how batch
normalization improves the overall accuracy of the neural network as well
as the speed rate at which it is trained (see Figure 3.13).
In addition, they have shown that the outputs of unnormalized networks
are huge and can sometimes poorly behave, it is in this context that we im-
plemented a batch normalization layer after every activation function in our
work.

FIGURE 3.13: Description of Batch Normalization

26 Chapter 3. An enhanced deep reinforcement learning algorithm

3.3.6 Dropout Layer

We have seen earlier that one of the goals is increasing the algorithm’s per-
formance by preventing the overfitting problem, one of the other layers that
helps solves that issue that we added beside the batch normalization layer
is the dropout layer. A dropout layer as explained by [24] is a layer that ap-
plies an algorithm, simply put the technique nullifies certain neurons’ con-
tribution to the subsequent layer while maintaining the integrity of all other
neurons.
Following the 2012 paper [25], it was recommended to use dropout with a
rate of p=0.5 for each fully connected layer before the output, in our case af-
ter the third and the fourth layers. The authors of [26] even recommended
to use dropout after every convolutional neural network layer with a lower
rate (see Figure 3.14).

FIGURE 3.14: Comparison over a neural network with dropout
and one without dropout

3.3.7 Conclusion

In this chapter, we presented the approach to how the problem was formu-
lated in order to have a better basis understanding of the operating principle,
then quickly moved on to the structure of the algorithm adopted by the al-
gorithm’s developers.
Then we proposed many improvements to the algorithm, by adding some
layers (Batch normalization, Dropout) to the convolutional neural network
and changing the values of some important hyper parameters (Learning rate,
mini-batch size, Epoch, Activation function, Adam Optimizer), assessing the
difference in performance between the algorithm and our improved approach
is the topic of the next chapter.

27

Chapter 4

Evaluation of performance

4.1 Introduction

We provided a thorough description of our proposal in the preceding chapter.
This chapter will outline the proposed improvements by demonstrating that
our solution, has an overall better performance in the average waiting time
compared to the already implemented solution. But firstly, we will provide a
brief description of the many tools used to simulate the environment as well
as the various libraries employed.

4.2 Tools and Resources

In what follows, we will outline the most important tools used.

4.2.1 Simulation Tool : SUMO

To simulate the environment, an open source, portable, microscopic, and con-
tinuous multi-modal traffic simulation tool called Simulation of Urban MO-
bility (SUMO) is made to simulate and manage massive traffic networks (see
figure 4.1).

FIGURE 4.1: SUMO environment

28 Chapter 4. Evaluation of performance

NetEdit

Editing the environment we worked on, can only be done using netedit.
Which is a portable graphical network editor included in SUMO.
It can be used to create networks from scratch and to modify all aspects of ex-
isting networks. With a powerful selection and highlighting interface it can
also be used to debug network attributes (see figure 4.2).

FIGURE 4.2: NetEdit environment

4.2.2 Developing Tools

To make the necessary improvements for our solution, we used many devel-
oping modules and packages offered in Pycharm’s integrated developement
environment.

Pycharm

In the case of our model, python programming was only done in Pycharm,
Pycharm is an integrated development environment. It has a graphical de-
bugging tool and allows code analysis. Additionally, it supports web devel-
opment using Django and allows for the management of unit tests as well as
the integration of version control software.

TraCI

TraCI uses a TCP/IP architecture to retrieve some crucial information after
every simulation. TraCI is the short term for "Traffic Control Interface". Giv-
ing access to a running road traffic simulation, it also allows us to manipulate
their behavior "on-line".

4.3. Simulation Settings and Results 29

Tensorflow

The Google Brain team first created TensorFlow. In the beginning, the goal
was to use neural networks to enhance Google services like Gmail, Photos,
and the search engine. With the help of this framework, researchers and de-
velopers could collaborate on IA models. TensorFlow was then made public
for the first time at the end of 2015.

Keras

Keras is an API, it enables interaction with algorithms. We use it to create
models, access optimizers, Optimizers are classes or methods used to change
the attributes of your machine/deep learning model to help to get better re-
sults faster.

Sumolib

For interacting with sumo networks, simulation output, and other simulation
artifacts, there is a set of python modules called sumolib.

Numpy

One of the most fondamental Python module used for scientific computing
is called NumPy. A multidimensional array object, various derived object,
and a variety of routines for quick operations on arrays are provided by this
Python library.
These operations include discrete Fourier transforms, basic linear algebra,
basic statistical operations, random simulation, and much more.

4.3 Simulation Settings and Results

In this section, We will verify our algorithm’s simulation settings. Then
firstly, compare it with our constructed implementation of a static traffic light
control system in terms of waiting time. Secondly, a comparison will be done
between our improved solution and the original solution.

4.3.1 Simulation Settings

We employ Simulation of Urban MObility (SUMO), a well-liked open source
simulator. We used for all the scenarios ; static traffic light control, imple-
mented algorithm by [1] and our improved proposition.

Intersection

We consider an intersection of four ways, each way having four lanes. Three
lanes for leading into the intersection, and a last one for carrying out the
traffic out of the junction.

30 Chapter 4. Evaluation of performance

Traffic

East-west traffic is more likely to be generated by the traffic arrival process
than north-south traffic, which is probabilistic.
Over the course of the simulation roughly 1000 to 1200 vehicles will cross
the intersection. The green light and yellow light duration do not change, 10
seconds for green light and 6 seconds for the yellow light.
The maximum speed allowed for vehicles for all the lanes is around 13.89
m/s, around 50 k/h

Simulation Data Processing

For all 77 episodes we did of our simulations for each algorithm, we recorded
the waiting time for all vehicles. We then estimated an average waiting time
for each scenarios, and then compared them side by side. In case of the orig-
inal work, the simulation of one episode duration was around 40 minutes.
Ours was around 5-7 minutes for one episode.

4.3.2 Simulation Results

First, we saw that the original work [1] showed that when using a static light
configuration, They get a waiting time of 338798 seconds. Even though there
was no said implementation coming from them when viewing the work.
As a result, we tried to replicate the same result by implementing a static
configuration, but we quickly found that the waiting time for the vehicles at
the intersection was even much higher 1331436 seconds than expected (see
figure 4.3).

4.3. Simulation Settings and Results 31

FIGURE 4.3: Comparison between our implemented re-
sults(light green) and the results shown(blue) for a static con-

figuration

Next, We compared the waiting time of our enhanced deep reinforcement
learning algorithm to the original one. We found out that our algorithm has
a more stable behaviour, and the value of waiting time can even go down
under the 100000 seconds threshold. In fact we could see our model starts
up with the highest waiting time but it decreases quickly. Even at some
episodes(12,19,30,37,67), we found out that the waiting time spikes up but
it always rapidly comes back to normal (see figure 4.4) and see figure 4.5).
By comparison, the original work did worse. In actuality, the algorithm did
start with a little lower value than ours, but it didn’t maintain a decrease in
the waiting time.
Unfortunately, after the second episode (episode-1) the value increased until
episode-11 where it went down to 170000 seconds. Even then, the algorithm
could not maintain a firm reduction in the waiting time, It did hit randomly
under 100000 seconds but the values kept fluctuating extremely.

32 Chapter 4. Evaluation of performance

FIGURE 4.4: Comparison of the waiting time of our enhanced
approach (blue) and the already existing algorithm (orange)

FIGURE 4.5: Comparison of the waiting time of our enhanced
approach (black), the already existing algorithm (light blue)

and the static light configuration (orange)

4.4. Conclusion 33

Average waiting time metric

Finally, for the 77 episodes we calculated the average waiting time for each al-
gorithm. The average waiting time for the original deep reinforcement learn-
ing algorithm was about 237026 seconds, our enhanced deep reinforcement
learning algorithm proved a noticeable increase in performance. In fact the
average waiting time for our proposed solution was 161102 seconds.
By taking the average waiting time values for each algorithm into account,
we can say that our algorithm had a 32.03% increase in performance com-
pared with the original implemented work.

4.4 Conclusion

In this chapter, we defined the libraries and tools used for simulating and
improving the original work.
We then showed all the simulation results, from the result of each episode
giving us the waiting, to the average waiting time of both models. Proving
that our enhanced deep algorithm out performs the existing algorithm by a
substantial margin.

34

General Conclusion

It is well known that traffic congestion has resulted in some major socioeco-
nomic issues. In the last decades, machine learning techniques have shown
promising results when used effectively, that’s why a lot of researches had
been done in the field of traffic light control systems.

Within this context, we proposed in this thesis an enhanced deep reinforce-
ment learning algorithm based of an already implemented work for traffic
light control systems. Our aim was to reduce more effectively and in a more
stable way, the overall waiting times of vehicles at any given intersection.

To achieve this objective, we have proposed to adjust some key parameters,
namely learning rate, mini-batch size, Epoch, Activation function, Adam Op-
timizer as well as adding some important layers to the convolutional neural
network.

We conducted with success several simulations by varying the values of
different parameters. The obtained results showed that our algorithm sig-
nificantly reduces the overall waiting time of vehicles and performs better
roughly by 30% with regards to the original algorithm. Furthermore, we
found out that deep reinforcement learning can have some stability issues.

Due to time constraints, we were only able to use one intersection during
the simulation. As perspective, we propose to adapt our algorithm to take
into account several crossings which are of relevance. And why not try to
implement it in the real world as a perspective in order to benefit the public.

35

Bibliography

[1] Tej Patel et al. “A Q-Learning Approach to Traffic Light Signal Con-
trol”. In: Github (2018). URL: https://github.com/TJ1812/Adaptive-
Traffic-Signal-Control-Using-Reinforcement-Learning.

[2] Xiaoyuan Liang et al. “A Deep Q Learning Network for Traffic Lights’
Cycle Control in Vehicular Networks”. In: IEEE Signal Processing Mag-
azine (2018).

[3] Ng S. C. Kwok C. P. “An intelligent traffic light system using object de-
tection and evolutionary algorithm for alleviating traffic congestion”.
In: International Journal of Mathematical and Computational Sciences (2020).

[4] Juntao Gao Yulong Shen et al. “Adaptive Traffic Signal Control: Deep
Reinforcement Learning Algorithm with Experience Replay and Target
Network”. In: (2017).

[5] A. J. Miller. “Settings for fixed-cycle traffic signals.” In: Settings for fixed-
cycle traffic signals. 14 (1963), pp. 373–386. URL: https://doi.org/10.
2307/3006800.

[6] Z. R. Abdy. “Fuzzy logic traffic signal control”. In: ().

[7] Xiaoyan Yang Shuguo Yang. “The application of the queuing theory in
the traffic flow of intersection”. In: International Journal of Mathematical
and Computational Sciences 8.6 (2014).

[8] Roger P.Roess et al. “Traffic Engineering : Third Edition”. In: Pearson
Education International (2004).

[9] Nathan David Chinedu Duru. “Evaluating the Emission of CO2 at Traf-
fic Intersections with the Purpose of Reducing Emission Rate Case Study:
The University of Nigeria Nsukka Evaluating the Emission of CO2
at Traffic Intersections with the Purpose of Reducing Emission Rate,
Case Study: The University of Nigeria Nsukka”. In: International Jour-
nal of Environmental Science and Sustainable Development (2018). URL: 10.
21625/essd.v3iss2.373.

[10] Ivan Nunes da Silva Danilo Hernane et al. “Artificial Neural Networks
: a practical course.” In: (2017).

[11] Sakshi Indoliaa Anil Kumar Goswamib S. P. Mishrab Pooja Asopaa.
“Conceptual Understanding of Convolutional Neural Network- A Deep
Learning Approach”. In: Procedia Computer Science (2018).

[12] Y. LeCun et al. “Handwritten digit recognition with a back-propagation
network”. In: Advances in neural information processing systems (1990).

https://github.com/TJ1812/Adaptive-Traffic-Signal-Control-Using-Reinforcement-Learning
https://github.com/TJ1812/Adaptive-Traffic-Signal-Control-Using-Reinforcement-Learning
https://doi.org/10.2307/3006800
https://doi.org/10.2307/3006800
10.21625/essd.v3iss2.373
10.21625/essd.v3iss2.373

36 Bibliography

[13] A. Krizhevsky et al. “Imagenet classification with deep convolutional
neural networks”. In: Advances in neural information processing systems
(2012).

[14] C. Szegedy et al. “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition (2015).

[15] A. G. Barto et al. “Introduction to reinforcement learning.” In: MIT press
Cambridge 135 (1998).

[16] Beakcheol Jang Myeonghwi Kim et al. “Q-Learning Algorithms: A Com-
prehensive Classification and Applications”. In: IEEE Xplore (Sept. 2019).
URL: 10.1109/ACCESS.2019.2941229.

[17] H. L. Khoo et al. “A survey on reinforcement learning models and al-
gorithms for traffic signal control”. In: IEEE Xplore 50.34 (Oct. 2017),
pp. 1–38. URL: https://doi.org/10.1145/3068287.

[18] Marc Peter et al. “A Brief Survey of Deep Reinforcement Learning”.
In: IEEE Signal Processing Magazine (Sept. 2017), p. 16. URL: https://
arxiv.org/pdf/1708.05866.pdf.

[19] “Eclipse SUMO”. In: Github (2001). URL: https://github.com/eclipse/
sumo.

[20] Ibrahem KandelMauro Castelli. “The effect of batch size on the gen-
eralizability of the convolutional neural networks on a histopathology
dataset”. In: ScienceDirect (May 2020). URL: https://www.sciencedirect.
com/science/article/pii/S2405959519303455.

[21] Siddharth Sharma et al. “Activation functions for neural networks”. In:
International Journal of Engineering Applied Sciences and Technology 4.12
(Apr. 2020), pp. 310–316. URL: https : / / www . sciencedirect . com /
science/article/pii/S2405959519303455.

[22] Diederik P. Kingma Jimmy Lei Ba. “Adam : A method for stochastic op-
timization”. In: Seoul National University (2015). URL: https://arxiv.
org/pdf/1412.6980.pdf.

[23] Johan Bjorck et al. “Understanding of Batch Normalization”. In: NeurIPS
Proceedings (2018).

[24] Pierre Baldi Peter Sadowski. “Understanding Dropout”. In: Seoul Na-
tional University (2016).

[25] Pierre Baldi Peter Sadowski. “Improving neural networks by prevent-
ing co-adaptation of feature detectors”. In: Seoul National University
(2016).

[26] Sungheon Park and Nojun Kwak. “Analysis on the Dropout Effect in
Convolutional Neural Networks”. In: Seoul National University (2016).

10.1109/ACCESS.2019.2941229
https://doi.org/10.1145/3068287
https://arxiv.org/pdf/1708.05866.pdf
https://arxiv.org/pdf/1708.05866.pdf
https://github.com/eclipse/sumo
https://github.com/eclipse/sumo
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://www.sciencedirect.com/science/article/pii/S2405959519303455
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	General introduction
	A state of the art of traffic light systems
	Traffic lights systems
	Traditional traffic light systems
	Dynamic traffic light systems
	Smart traffic light systems
	The significance of smart traffic light systems

	Theoretical tools for road traffic management
	Using fuzzy logic
	Neural Networks
	Queuing theory

	Traffic Engineering
	Objectives of traffic engineering
	Importance of traffic engineering

	Impact of traffic management on CO2 emissions
	Conclusion

	Analyzing neural networks and understanding reinforcement learning
	Introduction
	Analyzing artificial neural networks
	Analyzing convolutional neural networks
	Convolution part
	Classification part

	Various CNN architectures
	LeNet architecture
	AlexNet architecture
	GoogleNet architecture

	Applications of convolutional neural networks
	Image Classification
	Text Detection and Recognition
	Object Detection
	Action Recognition

	Reinforcement Learning
	Problem formulation in RL
	Shortcomings of RL
	Q-Learning

	Deep Reinforcement Learning
	Deep Q-learning

	Conclusion

	An enhanced deep reinforcement learning algorithm
	Introduction
	Q-learning algorithm to adjust traffic signal timing tej
	Problem environment
	Defining State, Action and Reward
	State definition
	Action set definition
	Reward definition

	Q-learning algorithm proposed by tej
	Training the neural network

	An enhanced deep learning algorithm : our contribution
	Learning rate and Batch size
	Learning Rate
	Batch Size

	Epoch
	Activation Function
	Linear Activation Function
	ReLU Activation Function
	LeakyReLU activation function

	Adam Optimizer
	Batch Normalization
	Dropout Layer
	Conclusion

	Evaluation of performance
	Introduction
	Tools and Resources
	Simulation Tool : SUMO
	NetEdit

	Developing Tools
	Pycharm
	TraCI
	Tensorflow
	Keras
	Sumolib
	Numpy

	Simulation Settings and Results
	Simulation Settings
	Intersection
	Traffic
	Simulation Data Processing

	Simulation Results
	Average waiting time metric

	Conclusion

	General Conclusion
	Bibliography

