REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abderrahmane Mira de Bejaia Faculté de Technologie Département des Mines et géologie

En vue de l'obtention du Diplôme de Master en génie minier

Option : Exploitation minière

Présenté par

- Azibi Soufiane
- Haddadi M'henni

Thème

Étude de la stabilité des talus liée aux travaux de creusement d'un tunnel à partir de la méthode d'élément finis. Cas de tunnel ferroviaire Sidi-Aich

President: Mr. Fredj Mohamed MCA-UAMB Examinateur: Mr. Saadoun Abderrazak MCB-UAMB Promoteur : Mr. Boukarm Riadh MCB-UAMB

Année Universitaire : 2020-2021

Je remercie en premier Dieu pour tout. Je remercie en second mes parents, qui ont sacrifiés Leur vie pour notre bien En fin, mes sincères reconnaissances et gratitudes à tous mes enseignants, et mon encadreur Mr Boukarm Riadh Pour ses nombreux conseils, et ses disponibilités. Je remercie également le président et l'examinateur Mr Fredj Mohamed et Mr Saadoun Abderazak d'accepté d'examiné notre travail.

Dédicace

Mes chers parents, pour tous leurs sacrifices, leur amour, leur tendresse, leur soutien et leurs prières tout au long de mes études, A mon cher frère pour son appui et son encouragement, A toute ma famille pour leur soutien tout au long de mon parcours universitaire, Que ce travail soit l'accomplissement de vos vœux tant allégués, et le fuit de votre soutien infaillible, Merci d'être toujours là pour moi

M'henni

Je dédie ce modeste travail : A ceux qui ont su planter en moi, tout ce qui est de plus beau en ce monde, et qui se sont consacrés à m'inculquer la bonne éducation pour avoir la plus grande des satisfactions et me voir muni des plus grandes distinctions.

A ma très chère mère que je ne saurai remercier assez pour les sacrifices qu'elle a consentis pour moi.

A mon très cher père qu'il a su se faire sentir dans les moments difficiles ainsi que chaque instant de bonheur qu'il m'a procuré A mes frères et sœurs

A MFF

A tous mes amis

A mon binôme Mhenni Et a toute ma promo de Département Mines et géologie (2021) sans exception. Et à toute personne que j'ai connue et que j'ai aimée.

Sofiane

Chapitre I :

Figure I.1 : classification géométrique des massifs rocheux.

Figure I.2 : modèle d'un glissement plan des roches et des sols.

Figure I.3 : modèle d'un glissement circulaire simple.

Figure I.4 : modèle des glissements circulaires successifs emboités

Figure I.5 : modèle représentatif d'une coulée.

Figure I.6 : modèle représentatif d'un écroulement.

Figure I.7 : modèle représentatif de phénomène de fluage.

Figure I.8 : résumé des différents types de mouvements dans le cadre des quatre groupes.

ChapitreII :

Figure II.1 Estimation du GSI à partir d'une description géologique de la masse rocheuse .

Figure II.2: Destruction d'une structure en élément.

ChapitreIII :

FigureIII.1: Position du tunnel Sidi Aich (cercle bleu) sur le tracé de la ligne ferroviaire entre Beni Mansour et Béjaïa

FigureIII.2: Colonne stratigraphique régionale montrant la lithostratigraphie

FigureIII.3: Carte structurale de l'Algérie du Nord (modifié d'après la carte géologique de l'Algérie à 1 :500 000).

Figure III.4 Source observée en aval du portail Est (point stop 6);

Cette source est pérenne, déjà captée pendant la colonisation française.

ChapitreIV :

Figure IV.1 le modèle géotechnique de l'étude

Figure IV.2: Définition des conditions initiales et la désignation des propriétés des matériaux dans PHASE2

Figure IV.3: Définition des conditions initiales et la désignation des propriétés des matériaux dans PHASE2

Figure IV.4 Résultats de calcul par PHASE2 déplacements totaux avec les Victor et les contours de déformation (Talus droit)

Figure IV.5 Résultats de calcul par PHASE2 déplacements totaux avec les vecteurs et les contours de déformation (Talus gauche).

- Figure IV.6 : talus droit (non soutenu)
- Figure IV.7 : talus gauche (non soutenu)

Figure IV.8 le modèle géotechnique avec soutènement (Phase2)

Figure IV.9 Résultats de calcul par PHASE2 déplacements totaux (Talus droit)

Figure IV.10 Résultats de calcul par PHASE2 déplacements totaux (Talus gauche)

Liste des tableaux

ChapitreII :

Tableau II.1. Qualité du massif rocheux selon la valeur du GSI.

 Tableau II.2
 Notes des paramètres du SMR (Romana, 1985)

Tableau II.3 Description des classes SMR (Romana, 1985)

Tableau II.4 Les suggestions de soutènement selon la classe du SMR

Tableau II.5 Equilibre des talus en fonction des valeurs théoriques du F

Tableau II.6 : Eléments géométriques utilisé dans le maillage.

ChapitreIII :

Tableau.III.1: Résumé des caractéristiques techniques du tracé du tunnel Sidi Aich

Tableau .III.2: Colonne stratigraphique régionale montrant la lithostratigraphie

Tableau III.3 Mesures de la profondeur de l'eau à partir de cote du terrain

ChapitreIV :

 Tableau IV.1 Les résultats obtenus avec un modèle non soutenu

Tableau IV.2 Les résultats obtenus avec un modèle soutenu

Tableau des matières

Chapitre I : l'analyse d'instabilité des massifs rocheux

I.1. Introduction	
<i>I.</i> 2. Définition	
I.3. Structure des massifs rocheux	
I.4. Classification des massifs rocheux	02
I.5. Description des discontinuités	03
I.6. Les déformations des talus à ciel ouvert	
I.6.1. Les glissements	04
I.6.2. Les coulées	07
I.6.3 Les écroulements	07
I.6 .Le fluage	08
Conclusion	09

Chapitre II : Méthodes d'analyse de la stabilité

II.1. Introduction1	0
II.2. Les méthodes semi-empiriques1	0
II.2.1. Le Géological Strenght Index (GSI)1	1
II.2.2. Slope Mass Rating (SMR)1	2
II.3.Méthodes des éléments finis (MEF)1	5

II.3.1- Application de la MEF au calcul des ouvrages	16
II.3.2.1 La discrétisation	7
II.3.2.2. Eléments géométriques1	.7
II.3.3. L'interpolation	18
II.4. Méthode Equilibre Limite	.20
Conclusion	20
Chapitre III : le site d'étude tunnel Sidi Aich	
III.1. Introduction	21
III.2. Situation géographique	.21
III.3. Situation géologique	.22
III.4 .Stratigraphie régionale	.22
III.5. Géomorphologie	26
III.6. Levé géologique-géomorphologique	26
III.7. Hydrogéologie	27
Conclusion	28
<i>Chapitre IV : étude de la stabilité des talus</i>	
IV.1. Introduction.	29

IV.2. Méthodologie d'analyse de la structure du portail

IV.3. Stabilité des talus par analyses aux MEF	
IV.4 .La stabilisation	
Conclusion	
Conclusion général	
References bibliographique	40
Annex	41

Introduction générale

La stabilité des talus est importante dans les domaines du génie civil et génie minier. Elle assure la sécurité des ouvrages relatifs a ces domaines et surtout d'éviter certains accidents qui peuvent être mortels : glissement de terrains dans des zones urbaines ou des mines a ciel ouvert.

Pour analyser la stabilité des talus il existe plusieurs approches on peut citer l'approche semi empirique la méthode de l'équilibre limite, l'approche numérique etc. l'approche numérique ou méthode numérique : méthode des éléments finis, méthode des différences finis, méthode des éléments discrets ...ect . L'observation sur site et les travaux liées au creusement on a montré que les deux talus latéraux sont dans une situation pas très stable

L'objectif de notre étude c'est d'analyser la stabilité des talus liée aux travaux d'excavations du tunnel Beni Mansour a partir de la méthode des éléments finies. Notre travail est structuré comme suit :

Le premier chapitre, essentiellement bibliographique, traite d'abord les généralités sur la classification des massifs rocheux, classification et caractéristiques des discontinuités et aussi les mécanismes d'instabilité dans les massifs rocheux Les déformations des talus à ciel ouvert.

Le deuxième chapitre on a parlé sur les méthodes d'analyse de la stabilité sont présentées ; les méthodes semi-empiriques, les méthodes numériques, enrichissant sur la méthode élément finie.

Le troisième chapitre est destiné à la présentation de la tête Est du tunnel de Sidi-Aich, ainsi les reconnaissances géographique ; géologique et géotechniques effectuées dans cette zone.

Dans le dernier chapitre, est consacré pour l'étude de la stabilité des talus de la tête Est du tunnel en utilisant le logiciel phase2 qui est basé sur la méthode des éléments finies.

Enfin, on termine ce travail par une conclusion générale.

Chapitre I : L'analyse d'instabilité des massifs rocheux

I.1. Introduction

La reconnaissance des massifs rocheux permet d'appréhender les problèmes qui peuvent être poser lors de construction d'un ouvrage souterrain et de fournir à l'ingénieur des données qualitatives et quantitatives nécessaires pour décrire la structure et évaluer les propriétés mécaniques et hydrauliques des massifs. Leur comportement est fortement lié aux réseaux de fracturation (discontinuité), donc une analyse géométrique et mécanique des différents réseaux de fractures est indispensable pour toute une étude de stabilité dans un milieu fissuré.

I.2. Définition

Dans la présente étude on s'intéresse beaucoup plus aux massifs rocheux. Formés d'une juxtaposition de matériaux hétérogènes, les massifs rocheux sont des structures très complexes. Ils sont assimilés à un assemblage de blocs appelés matrice rocheuse lesquels sont délimités par des discontinuités constituées de fissures, de fractures ou de failles ou encore de limites stratigraphiques. [1]

I.3 Structure géométrique des massifs rocheux

La roche a une structure discontinue, Elle peut être assimilée à un milieu composé d'éléments continus plus ou moins homogènes, de forme géométrique quelconque, la matrice rocheuse, et de fines zones situées entre ces éléments continus, qualifiées de discontinuités. [1]

En mécanique des roches, le terme discontinuité désigne toute interruption des propriétés mécanique ou physique dans la matrice rocheuse. Il s'agit souvent d'une dégradation des propriétés mécaniques sur des zones de très faible épaisseur. L'étude d'un massif rocheux fracturé nécessite donc une caractérisation de la matrice rocheuse, ainsi que celle des discontinuités.

I.4 Classification des massifs rocheux

Divers auteurs ont essayé de regrouper les structures géométriques des massifs rocheux dans des catégories bien définies. Cela est illustré dans la figure (I.1) pour une série de massifs rocheux. Nous distinguons les massifs à blocs polyédriques, equidimensionnels, prismatiques, tabulaires, rhombohydriques, en colonnes, les massifs à bancs minces dont l'épaisseur est moins épaisse que la longueur et les massifs comprenant plusieurs familles de fractures.

La figure suivante illustre les familles précédemment citées :

Figure I.1 : classification géométrique des massifs rocheux. [1]

I.5. Description des discontinuités

Afin d'étudier le comportement mécanique ou hydraulique d'un massif rocheux, il est essentiel de connaître son degré de fracturation ainsi que la répartition des discontinuités dans l'espace. Pour un ensemble de massifs rocheux, les discontinuités constituent une superposition de différentes familles de fractures, disposant chacune de lois de distribution et des caractères statistiques différents. Ces derniers sont souvent déterminés par le biais de la méthode de projection stéréographique.

L'objectif principal d'une étude géométrique des discontinuités est de déterminer :

- > Si elles sont classables en familles (orientations voisines).
- Si elles structurent le massif rocheux en blocs (continuité et connectivité importantes).

I.6.Les déformations des talus à ciel ouvert

Les nombreuses classifications des mouvements de versants naturels et des talus des mines sont très diverses et complexes.

Nous pouvons diviser toutes les déformations en quatre groupes en fonction du mécanisme de mouvement :

- ✓ Glissements.
- ✓ Coulées.
- ✓ Ecroulements.
- ✓ Fluage.

I.6.1. Les glissements

Ils se caractérisent par la translation latérale d'une certaine masse de matériaux au niveau d'une surface de rupture nettement individualisée, ils se produisent généralement dans des matériaux faiblement cohérents (marnes, argiles..). Les glissements sont les mouvements qui affectent le plus fréquemment les ouvrages de génie civil et génie minier.

Selon la forme de la surface de rupture, on distingue trois types de glissements :

- Glissement plan.
- Glissement rotationnel simple.
- Glissement rotationnel complexe (composé). [2]

I.6.1.1. Le glissement plan

Il se produit suivant un plan au niveau d'une surface de discontinuité géologique : zone entredeux matériaux de nature différente, failles, plans de stratification. La ligne de rupture suit une couche mince de mauvaises caractéristiques sur laquelle s'exerce souvent l'action de l'eau. une telle couche est appelée « couche savon ». [2]

Figure I.2 : modèle d'un glissement plan des roches et des sols.[4]

I.6.1.2 .Le glissement rotationnel simple

Le terrain se glisse le long d'une surface concave ayant la forme d'une cuillère, ce type de glissement est très fréquent, La surface de rupture a une forme simple et peut être assimilée à un cylindre.

Dans un tel glissement, on distingue : au sommet des fissures de traction et un escarpement, correspondant au départ de la surface de glissement, et à la base un bourrelet formé par des matières glissées. Dans certains cas, la surface de rupture peut être assimilée à un cercle, d'où le nom de glissement circulaire.[3]

La figure suivante illustre le glissement rotationnel simple avec ses caractéristiques :

I.6.1.3. Le glissement rotationnel complexe

Ce type de glissement est rare. Il s'agit de glissements multiples emboîtés les uns dans les autres, dus souvent à la surpression de la butée provoquée par le glissement précédent, ce qui entraîne des glissements successifs remontant vers l'amont. (fig I.4)

Figure I.4 : modèle des glissements circulaires successifs emboités.[8]

I.6.1.4 Principales causes de glissements

Plusieurs facteurs contribuent au déclenchement des glissements, les plus importants étant :

- ✓ la nature des terrains : les terrains argileux sont prédisposés aux glissements.
- l'action de l'eau : l'eau est dans la plupart des cas la cause principale dans la mise en mouvement des terrains.
- les causes mécaniques externes : citons parmi les causes mécaniques externes, le

terrassement au pied du talus, les entailles effectuées dans les talus stables, toute surcharge naturelle ou artificielle déposée sur une pente, les vibrations naturelles (séismes) ou artificielles (explosion, machines ...).

I.6.2 Les coulées

Elles se produisent à partir d'un matériau meuble, momentanément saturé en eau, prenant alors une consistance plus ou moins visqueuse, parfois proche de la fluidité. On distingue plusieurs types de coulées telle que :

- coulées boueuses (incluant coulée de blocs, de terre, de boue, lave torrentielle, avalanche de débris. Ils se produisent surtout en montagne).
- coulées de solifluxion (déplacement lent des sols en milieu périglaciaire, résultant de l'instabilité de la partie dégelée du sol en surface au cours de l'été).

Figure I.5 : modèle représentatif d'une coulée. [9]

I.6.3 Les écroulements

Ce sont des chutes soudaines de masses rocheuses. On utilise le terme de chute de pierres pour le détachement de quelques unités de volume inférieur à 1 dm³, ou chute de blocs pour un volume supérieur. Le terme « écroulement » est utilisé quand il s'agit de la chute soudaine d'une masse rocheuse qui se détache d'une paroi en se désorganisant. [7]

La figure suivante (I.6) illustre le phénomène d'écroulement :

Figure I.6 : modèle représentatif d'un écroulement. [6]

I.6.4 Le fluage

Il correspond à des mouvements lents, dus à des sollicitations proches de la rupture (domaine plastique). Dans l'exemple de la figure suivante le banc de marne flue sous le poids de la falaise calcaire. Ceci peut provoquer une fissuration du banc calcaire peu déformable et un risque d'écroulement de la falaise. Fig(I.7)

Figure I.7 : modèle représentatif de phénomène de fluage.[6]

Ensuite il existe aussi différents types de mouvements dans le cadre de ces quatre groupes :

Figure I.8 : résumé des différents types de mouvements dans le cadre des quatre groupes. [2]

Conclusion

D'âpres cette étude on peut conclure que les causes principales des instabilités des talus sont liées la fracturation et la présence de l'eau.

II.1. Introduction

Afin de vérifier la stabilité d'un tel ouvrage, en interactions avec son environnement, et de prévenir, contrôler les déplacements et déformation des ouvrages et du sol, les contraintes totales et effectives dans le sol et les pressions interstitielles, l'ingénieur a recours aux méthodes numériques qui lui permettent d'évaluer le déplacement dans le massif, qui surviennent lors du creusement d'un tunnel .parmi ces méthodes la plus couramment utilisées méthode des éléments finie.

II.2 Les méthodes semi-empiriques

II.2.1. Le Géological Strenght Index (GSI)

Introduit par Hoek et al. puis amélioré par Hoek et Brown , le Geological Strength Index ne présente pas une classification géomécanique en soi. Cependant, il constitue un lien entre le RMR et la détermination des paramètres de déformabilité et de résistance des massifs rocheux.

Afin d'estimer le GSI, il est nécessaire de calculer le RMR de base et le Q' qui sont des valeurs modifiées de RMR et de Q. Le RMR de base est calculé en retenant une valeur 15 pour le coefficient relatif à l'eau (A5) et une valeur nulle pour le coefficient

RMR Base= A1+A2+A3+A4+15

De même, Q' se calcule en ne tenant pas compte de l'état initial du massif par rapport à l'eau et aux contraintes (Jw/SRF).

$$S = \frac{5}{52} \frac{5}{52} \frac{5}{52}$$

Ayant calculé RMR ' et Q ' le GSI se détermine comme suit :GSI= RMR'89 -5

Si RMR'89 > 23 GSI=9(log Q'+44) Si RMR'89 \leq 23

L'estimation du GSI s'appuie sur une observation directe de la structure du massif rocheux à partir d'un examen de la qualité de la masse rocheuse in situ. Cet indice varie entre 5 et 85.

Par définition, les valeurs proches de 5 correspondent à des matériaux de très mauvaise qualité, tandis que les valeurs proches de 85 décrivent des matériaux d'excellente qualité.

Tableau II.1. Qualité du massif rocheux selon la valeur du GSI. [3]

Valeur du GSI	76-95	56-75	41-55	21-40	<20
Qualité de massif rocheux	Très bonne	Bonne	Moyenne	mauvaise	Très mauvaise

Figure II.1 Estimation du GSI à partir d'une description géologique de la masse rocheuse(Hoek et Brown, 1995).

II.2.2 Slope Mass Rating (SMR)

Afin d'évaluer la stabilité des pentes rocheuses, a proposé une classification systématique appelée le système "Slope Mass Rating" (SMR). Il est dérivé de BIENIAWSKI (RMR) en soustrayant un facteur d'ajustement de la relation jointpente et en ajoutant un facteur basé sur la méthode d'excavation.

Où

 $\mathbb{Z}_{\mathbb{Z}}$, $\mathbb{Z}_{\mathbb{Z}}$, $\mathbb{Z}_{\mathbb{Z}}$: Sont des facteurs d'ajustement liés à l'orientation des joints par rapport à l'orientation des pentes, et $\mathbb{Z}_{\mathbb{Z}}$ est le facteur de correction.

 \triangleright $\mathbb{E}_{\mathbb{Z}}$ dépend de parallélisme entre les articulations et la face de la pente. Il va de 0,15 à 1,0. Il est de 0,15 lorsque l'angle entre le plan de joint critique et la face de la pente est supérieur à 30, et la probabilité de défaillance est très faible; il est de 1,0 lorsque 1 proximité parallèles.

La valeur de 2 d'abord a été établie empiriquement. Par la suite, il a été constaté correspond approximativement à la relation suivante :

$$\mathbb{Z}_{\mathbb{Z}} = (1 - \sin \mathbb{Z})^{\mathbb{Z}} \dots (2)$$

Où A Désigne l'angle entre les frappes de la face de la pente (p) et celle des articulations (Aj), soit (comme αj).

 \succ $\mathbb{Z}_{\mathbb{Z}}$ se réfère à l'angle d'inclinaison commune ($\mathbb{Z}_{\mathbb{Z}}$) dans le mode de défaillance plane. Ses valeurs varient également de 0.15 à 1,0 pour des joints avec un creux supérieur à 45°. Pour le mode renversement de Défaillance, $\mathbb{Z}_{\mathbb{Z}}$ reste égale à 1.

$$\mathbb{Z}_{\mathbb{P}} = \tan^{\mathbb{P}} \mathbb{P} \mathbb{Z} \dots (3)$$

▶ \square_2 fait référence à la relation entre la pente et l'inclinaison du joint. En cas de planéité insuffisante, \square_2 se réfère à la probabilité d'un joint dans la pente. Lorsque la pente et le joint sont parallèles, les conditions sont dites "passables" et si la pente de l'inclinaison est supérieure de 10° à celle du joint, les conditions sont dites "très défavorables". Pour les dommages par renversement, la condition défavorable dépend de la somme de l'inclinaison du joint et de la pente \square_2 .

Les valeurs des facteurs d'ajustement $\mathbb{Z}_2, \mathbb{Z}_2$, et \mathbb{Z}_2 pour différentes orientations communes sont donnés dans e tableau I.6.

 \succ $\mathbb{Z}_{\mathbb{Z}}$ s'agit de l'adaptabilité de la méthode d'excavation. Il s'agit de pentes naturelles, ou de pentes coupées par pré-fissuration, dynamitage lisse, dynamitage normal, mauvais dynamitage et excavation mécanique.

$\boxed{2} \boxed{2} = \boxed{2} \boxed{2} \boxed{2} \boxed{2} \boxed{2} \boxed{2} \times \boxed{2} \times \boxed{2} \times \boxed{2} \times \boxed{2} \times \boxed{2} $						
Facteurs d'ajustement liés aux joints (2, 2, 2)	\square_{\square} : Direct: \square_{\square} : Pendag \square_{\square} : Direct \square_{\square} : Pendag	 □ : Direction du pendage des joints ; □ : Pendage du joint ; □ : Direction du pendage du talus ; □ : Pendage du talus. 				
	Très favorable	Favorable	Moyen	défavorable	Très défavorable	
		2₂ = (1 −	- sin 🛛) 🛛			
Ruptureplane $\square \square_{\square} - \square_{\square} \square$ Basculement $\square \square_{\square} - \square_{\square} - 180°\square$	-> 30°	30° - 20°	20° - 10°	10° - 5°	< 5°	
Valeur de 🛛	0,15	0,4	0,7	0,85	1	
	I	? ₂ = ta	n ² 22	L	L	
<u>36</u> 5	< 20°	20° - 30°	30° - 35°	35° - 45°	> 45°	
Valeur de rupture plane	0,15	0,4	0,7	0,85	1	
Basculement	1			L	L	
2 est l'ajustement de BIENIAWSKI pour l'orientation des joints						
Rupture plane	> 10°	10° - 0°	0°	0° - (-10°)	< (-10°)	
Basculement I₽₂ + ₽₂2	< 110°	110° - 120°	>120°	-	-	
Valeur de 🛛 🛛	0	-6	-25	-50	-60	

Tableau II.2 Notes des paramètres du SMR

? _?							
méthode	Talus	Prespliting	Sablage	Explosif ou	Grenaillage		
d'ajustement	naturels		doux	mécanique	défectueux		
Valeur de 🛛 🛛	15	10	8	0	-8		

Une valeur de SMR est calculée pour chaque couche de discontinuités. Finalement la plus petite valeur est retenue pour quantifier la globalité du talus.

Description des classes SMR										
Classes	? _?	? _?	?!?	?? ?	??? _₽	???? _®	?? <mark>.</mark> ®	<u>(4</u>	<u>.</u>	<u>.</u>
Description	Très ma	auvais	Mauvais		Moyen		Bien		Très bien	
Stabilité	Complètement Instable instable		le	Partiellement Stable		Stable		Comple stable	ètement	
Rupture	Grand plan Plan ou grand dièdre		Quelqu joints beaucor dièdre	es ou up de	Quelqu blocs	ies	Aucune			
Support	ré excavation Importante corrective		Systém	atique	Occasi	onnel	Aucun			

A partir du SMR, la stabilité de la pente peut alors être estimée et une méthode de renforcement (ancrages, boulons, béton projeté, etc.) peut être recommandée. **Tableau II.4** Les suggestions de soutènement selon la classe du SMR

Classe de	Valeur de SMR	Suggestion de soutènement
SMR		
ال ا ال	91-100	Aucun
2	81-90	Scaling

<u>?</u> [2]	71-80	Boulonnage
?E ₀	61-70	Système de boulonnage
335 [®]	51-60	Boulonnage systématique, et béton projeté
335 ⁶	41-50	Boulonnage systématique, ancrage, béton projeté, et mur de soutènement
<u>.</u> 25	31-40	béton projeté renforcé, mur de soutènement, ou excavation et drainage
??? _?	21-30	béton projeté renforcé, mur de soutènement, ou excavation et drainage profond
?	11-20	Mur ancré, excavation

II.3.Méthodes des éléments finis (MEF)

La MEF consiste à remplacer la structure physique à étudier par un nombre finis d'éléments ou de composants discrets qui représentent un maillage. Ces éléments sont liés entre eux par un nombre de points appelés nœuds. On considère d'abord le comportement de chaque partie indépendante, puis on assemble ces parties de telle sorte qu'on assure l'équilibre des forces et la compatibilité des déplacements réels de la structure en tant qu'objet continu. La MEF est extrêmement puissante puisqu'elle permet d'étudier correctement des structures continues ayant des propriétés géométriques et des conditions de charges compliquées. Elle nécessite un grand nombre de calculs qui, cause de leur nature répétitive, s'adaptent parfaitement à la programmation numérique.

Facteur de sécurité Fs	Etat de l'ouvrage
22 < 1	Danger
22 = 1	Stabilité limite
1 < 22 < 1,25	Sécurité contestable
	Sécurité satisfaisante pour les ouvrages peu
1,25 < 22 < 1,4	importants mais c'est une sécurité
	contestable pour les talus des carrières à ciel
	ouvert
22>1,4	Sécurité satisfaisante

Tableau II.5 Equilibre des talus en fonction des valeurs théoriques du Fs

II.3.1. Application de la MEF au calcul des ouvrages

La methode des elements finie est une méthode numérique décrivant les phénomènes physiques réels de l'ingénierie par des équations différentes. Elle nécessite un grand nombre de calculs, la raison pour laquelle on s'adapte la programmation numérique (Logiciel) pour la résolution de ces équations, parmi les logiciels existant, on a opté pour phase2 L'analyse par la MEF consiste à diviser la structure physique à étudier, en composant distincts, appelés éléments finis qui constituent le maillage. Ces éléments liés entre eux par un nombre de points appelés nœuds.

On considère d'abord le comportement de chaque partie indépendante, puis on assemblées parties, en tant qu'objet continu.

Cette méthodes est récente, elle est d'un caractère pluridisciplinaire, elle met en œuvre les connaissances de trois disciplines de base :

- La mécanique des milieux continus (MMC) : Elasticité, résistance des matériaux dynamique, plasticité...etc. ;
- L'informatique applique : Technique développement et de maintenance de grand logiciel ;
- L'analyse numérique : méthodes d'approximation, résolution des systèmes linéaires, des problèmes aux valeurs..etc.

II.3.2- Conception de base : Technique de résolution

La Méthode des éléments finie est basé sur deux principes fondamentaux :

II.3.2.1.La discrétisation

La Méthode des éléments finie consiste, à discrétiser le milieu continu réel à étudier, en sous-domaines réguliers imaginaires, appelés éléments finis, qui représentent un maillage. Ces éléments sont liés entre eux par un nombre fini de points dits "nœuds " (les sommets, les arrêtes des éléments).ces points nodaux transmettent les efforts d'un élément à l'autre.

Figure II.2: Destruction d'une structure en élément. [4]

II.3.2.2. Eléments géométriques

L'ensemble des éléments ou maillage doit constituer un recouvrement du domaine de calcul. En 1D, les éléments utilisés sont l'élément poutre et l'élément barre. En 2D, les éléments utilisés sont des triangles et des quadrangles. En 3D, des tétraèdres, des prismes, des cubes et parfois des pyramides.

Eléments à une dimension		••		~
		Linéaire	Quadratique	Cubique
	Eléments triangulaires		2	
Eléments à		Linéaire	Quadratique	Cubique
deux dimensions	Eléments Quadrilatéraux	<u> </u>	1.1	
		Linéaire	Quadratique	Cubique
	Eléments Tétraédriques		200	
		Linéaire	Quadratique	Cubique
Eléments trois	Eléments hexaédriques		202	
dimensions		Linéaire	Quadratique	Cubique
	Eléments Prismatique	51		
		Linéaire	Quadratique	Cubique

 Tableau II.6. Eléments géométriques utilisé dans le maillage[5]

II.3.3. L'interpolation

Le comportement de chaque élément est décrit par des équations algébriques, ces équations sont des équations d'équilibres des nœuds. La qualité de champ déplacement dans un élément est déterminée en fonction des déplacements des nœuds. En connectant les éléments ensemble, la qualité de champ devient interpolée sur l'entier de la structure.

Ces équations sont décrite sous forme matricielle par :

 $\{F\} = [K]^* \{\delta\}$

D'où :

F: vecteur des chargements, (connu, ex : matrice des force nodales) ;

K: matrice des constantes (connue, ex : matrice de rigidité) ;

δ: vecteur d'inconnus (valeur de la quantité de champ dans les nœuds, ex : vecteur des déplacements).

La résolution d'un problème de structure consiste à étudier trois champs vectoriels, ainsi que leur relation :

Le champ de contrainte est noté σ

			F?!?!?	
		ភាគាគា	222	
UUU Soos			233	
$\sigma = 2222$????	?????≈	212	
???	???	???	212 213	
			P 13	

Pour quoi on a choisi la méthode des éléments finis :

La méthode aux éléments finis est la méthode, la plus satisfaisante puisqu'elle permet la modélisation des problèmes géotechniques complexes. Elle nécessite :

- La définition de la géométrie du problème, pour que les frontières du calcul n'influence pas sur les résultats.
- Les caractéristiques des ouvrages et des éléments d'interface pour introduire l'interaction sol-structures et les conditions hydrauliques.

Elle permet :

- D'effectuer les calculs d'écoulement.
- De simuler toutes les phases de travaux.
- De prendre en compte les variations des caractéristiques : des ouvrages, des couches de terrain

II.4.Méthode Equilibre Limite

La méthode d'Equilibre Limite est conçue pour étudier la stabilité de talus, elle tient compte de poids propre du talus et parfois de forces internes induites entre les tranches. Ce mode approximatif devient plus compliqué lors de l'apparition de phénomènes affectant la masse du sol comme l'effet de l'eau, l'effet sismique et celui de la discontinuité, etc Pour cela, il est avantageux de combiner deux méthodes : la méthode numérique, pour calculer l'état de contrainte dans le milieu étudié sous l'influence de tous phénomènes qui peuvent avoir lieu, et la méthode d'Equilibre Limite pour tracer la surface critique de rupture et calculer le facteur de sécurité correspondant.

- Méthode de Bishop simplifié ;
- La Méthode de Morgenstern et Price ;
- La méthode de Spencer ;

• La méthode de Janbu simplifie.

Conclusion

Dans ce chapitre on a présenté les méthodes d'analyse de la stabilité : semi empirique (GSI, SMR), méthodes de équilibre limites et les méthodes numériques.

La méthode des éléments finis est une méthode solide elle ce base sur des concepts mathématique bien fournies et donne des solutions plus précise, elle permet de résoudre les problèmes géotechniques liées la stabilité.

Chapitre III : présentation de site d'étude tunnel Sidi-Aich

III.1. Introduction

Le projet pour la rénovation de la ligne ferroviaire entre Beni Mansour et Bejaïa se colloque dans un couloir de direction approximative Sud-Ouest / Nord-Est, avec une longueur de près de 90 kilomètres, entre les villes de beni Mansour (au SO) et de Bejaïa (au NE), situées dans la région centre-orientale du Nord de l'Algérie.

Notre travail consiste à faire une étude du tunnel Sidi aich Suivi par une présentation géographique et géologique et quelques Recherches réalisées lors des travaux

III.2. Situation géographique

Le projet pour la rénovation de la ligne ferroviaire entre Beni Mansour et Bejaïa se colloque dans un couloir de direction approximative Sud-Ouest / Nord-Est, avec une longueur de près de 90 kilomètres, entre les villes de Beni Mansour (au SO) et de Bejaïa (au NE), situées dans la région centre-orientale du Nord de l'Algérie.

Dans le cadre des travaux pour la construction de la ligne ferroviaire est prévue la réalisation du tunnel naturel Sidi Aich, compris entre les pk 44+646,77 et 45+553,84, pour une longueur de 907,07 m. La section d'excavation est polycentrique, avec un radius maximum de 6,18 m2.

Figure.III.1: Position du tunnel Sidi Aich (cercle bleu) sur le tracé de la ligne ferroviaire entre Beni Mansour et Béjaïa [14]

Les caractéristiques du tracé au niveau du tunnel sont résumées dans le tableau suivant :

			-		
Pk. Début	Pk.fin	Longueur	Pente	Couverture	Diamètre
		[m]	[%]	Maximale sur le clé	d'excavation
				de Voute	[m]
				[m]	
44+646,77	45+553,84	907.07	1.5	67	≈ 13

Tableau.III.1: Résumé des caractéristiques techniques du tracé du tunnel Sidi Aich

Ce document a le but de fournir un Modèle Géologique de Référence (MGR) détaillé, entendu comme un modelé scientifique qui synthétise l'ensemble des données litostratigraphiques, structurales, hydrogéologiques et géomorphologiques du secteur du tunnel.

III.3.Situation géologique

L'aire d'étude est située dans la zone de confluence de l'Atlas Tellien et du littoral méditerranéen et est constituée part des terrains mésozoïques et cénozoïques, avec des roches ignées très localisées.

III.4. Stratigraphie régionale

En Algérie centrale, du Sud au Nord, c'est-à-dire de la plateforme saharienne jusqu'à la mer Méditerranée, il y a quatre domaines structuraux principaux :

- Le domaine de Flysch, c'est-à-dire la couverture sédimentaire de l'ancien océan téthysien ;
- Le domaine Kabyle, dont les affinités sont européennes.

Le tronçon considéré courre dans sa totalité par le versant septentrional de l'Atlas du Tell, une zone complexe Constituée de nappes mises en place au Miocène inférieur. La lithostratigraphie résulte pourtant de la sédimentation dans un bassin mésozoïque et cénozoïque, très Subsidient, développé dans la zone de bord d'un socle paléozoïque, fracturé en compartiments plus ou moins Individualisés. La sédimentation, qui remplit progressivement le bassin, se réalise quelquefois en conditions Marines et d'autres en conditions continentales, en fonction des différentes impulsions tectoniques qu'ont Affecté la région entre les temps Crétacé et Eocène, durant le plissement alpin, causant la cordillère de l'Atlas .La colonne stratigraphique régionale du tableau suivant montre, d'une forme schématique, la distribution Litostratigraphique des différents matériaux présents dans le tronçon.[11]

CC	LONNE STR	ATIGRAF	IQL	JE RÉ	GIONAL	
	н	DLOCÉNE	Γ	(A)		
QUATERNAIRE	PLÉ	PLÉISTOCÈNE		(4)	1200 P	000
		PLIOCÈNE	10	EREUR (P)	0.61	
		NEOGÈNE	BU	PÉREUR		
			31	(/781-4)		
			S.	(mus)e	000000	0100
	NEOGÈNE		and a	(m)		
TERTIAIRE	PALÉOGÊNE		NITER	(08)		
		OLIGOCÉNE	SU	(D)		
		EOCÊNE	5	(e-+)	11/1/1	
			ĕ	(8-=)		
			8	(0++ y de +)		<u> </u>
				EREUR		
		SUPÉRIEUR		(cs)		
	contract			(01)	11/1/1	////
	CRETAGE	MOYEN	tomy	(cn)		
MÉSOZOÏQUE		INFÉRIEUR		(0)		
	JURASSIQUE	INFÉREUR		UAS 07		
	TRIASIQUE	SUPÉRIEUR	- 10	CUPER (1)		
Deather			_			
métamorphiques				(E)		
Roches ignées			1	(a) (a)	1	111

 Tableau .III.2: Colonne stratigraphique régionale montrant la

 lithostratigraphie[8]

Les caractéristiques litostratigraphiques régionales du Nord de l'Algérie, et en particulier de la région d'étude, Sont les suivantes :

1. Triasique

Les dépôts les plus anciens appartiennent à la période Triasique ; le facies Keuper dans le secteur d'étude est formé par des argiles, marnes gypseuses, gypses avec quelques intercalations de grès et de possibles intrusions .ophitiques

1. Jurassique

Dans le secteur d'étude le Jurassique est représenté par des calcaires et dolomies du Lias

2. Crétacé

Dans le secteur d'étude le Crétacé inferieur est formé par grès, marnecalcaires noirs, conglomérats et argiles Avec épisodes carbonatés ; le Crétacé Moyen par des marnes et calcaires et enfin le Crétacé Supérieur par une série marne-calcaire.

3. Éocène

Dans le secteur d'étude on a de flysch, c'est-à-dire des alternances des couches Oligocène dans le secteur d'étude l'Oligocène est caractérisé par des importants apports de matériaux essentiellement gréseux.

4. Miocène

Dans le secteur d'étude est caractérisé par des marnes, calcaires, argiles et conglomérats.

5. Pliocène

Le Pliocène est lagunaire et passe vers le sommet des formations quaternaires continentales.

6. Quaternaire

Les dépôts quaternaires forment des plaines étendues en fond des vallées, comme dans l'Atlas Plaines. Sa lithologie dépend en grand partie du type de formation superficielle et de la surface mère de laquelle elle procède.[12]

Les formations superficielles les plus anciennes appartiennent au Pléistocène et sont formées par des plaines alluviales anciennes, au niveau des terrassements, des éventails alluviaux et des regs, étant constitués, en général, par des graves avec matrice limon-sablonneuse.

Les sédiments quaternaires les plus récents correspondent aux plaines alluviales actuelles, comme aux accumulations dunaires.

L'évolution tectonique régionale est étroitement liée à la formation des chaînes alpines méditerranéennes, et le tronc algérien de cette chaîne est attaché à la rotation de la plaque africaine par rapport à l'eurasiatique.

2020/2021

Le contexte tectonique actuel du secteur d'étude est lié notamment aux évènements géodynamiques du paléogène. Schématiquement, il est possible de distinguer les moments principaux qui ont conduit à la structuration de la chaine orogénique :

 A partir de l'Éocène, il n'existe aucune zone de subduction active dans la Méditerranée occidentale et l'avant de collision s'étend d'Ouest en Est sur toute la longueur des Pyrénées. Ce sont, principalement, les zones de faiblesse lithosphérique qui absorbent les déformations produites par les convergences renouvelées. Cette compression généralisée provoque les déformations sur la plaque européenne et sur l'Afrique Nord-Occidentale

Sur cette base, un modèle géodynamique conceptuel est proposé pour l'ensemble de l'orogéne maghrébin.

Après la phase atlasique qui précède immédiatement le retrait du plan de subduction, le modèle insiste justement sur le rôle majeur joué par le mécanisme de subduction qui est à l'origine : (1) de la fleurassions de la plaque séduite (par traction due à son poids), (2) du développement d'un prisme d'accrétion et d'un bassin d'arrière-arc et enfin (3) du soulèvement tardif lié à la déchirure de la plaque subduite. L'Atlas du Tell est né d'un long sillon subsidient pincé entre les hauts plateaux et la Plate-forme Saharienne.

Au mésozoïque, ce sillon fut comblé par une puissante série sédimentaire. Durant le Tertiaire, une tectonique compressive réactive les structures extensives antérieures en failles et structures inverses aboutissant à la formation de cette chaîne montagneuse.

Image: Control of the set of the se

Chapitre III : le site d'étude tunnel sidi aich

Figure.III.2: Carte structurale de l'Algérie du Nord (modifié d'après la carte géologique de l'Algérie à 1 :500 000). [14]

III.5. Géomorphologie

Pour détailler le modèle géologique de référence a été conduite une campagne d'étude de terrain en différentes phases, articulée en plusieurs activités :

- Analyse des données bibliographiques ;
- Levée géologique de terrain de détail, restituée à l'échelle 1 :1.000 ;
- Cartes thématiques ;
- Campagne géognostique intégrative.
- Levées géostructuraux de détail finalisées à la reconnaissance des principales familles de discontinuités présentes dans le secteur de projet et à la classification géo mécanique des massifs rocheux.

Les données de la levée constituent la base des connaissances pour la définition et le détail du modèle géologique de référence du secteur analysé, qui est représentée à travers des documents graphiques : cartes thématiques, profile en long [13]

III.6 Levé géologique-géomorphologique

La valeur scientifique d'un document, en accord avec les majeurs standards internationaux est basée sur la possibilité de tracer le procès logique qui a conduit à le produire.

Convention sur les mesures de pendage

Les mesures représentées dans les documents de projet indiquent le sens du pendage (mesuré en degrés en sens horaire et compris entre 0° et 360°) et de la valeur du pendage (comprise entre 0 – horizontale – et 90° Verticale) des discontinuités.

Elaboration graphique des données acquises sur le terrain la levée de surface est équipée des cartes thématiques et d'un profil longitudinal pour fournir une représentation claire et satisfaisante du point de vue graphique du Modèle Géologique de Référence.

III.7. Hydrogéologie

Pendant la levée de terrain a été rencontrée une source avec un débit estimé de 0.3-0,5 l/s. Cette source est pérenne, déjà captée pendant la colonisation française.

Figure III.3 Source observée en aval du portail Est [14]

Les sondages réalisés en 2016 ; qui sont de 5 sondages, pour cette phase de projet ont été tous équipés avec piézomètres ouverts ; les lectures exécutées, rapportées dans le tableau suivant, ont permis de reconstruire le cours de la surface de la nappe. A la date de l'émission du document, les lectures effectuées dans les piézomètres donnent les mesures suivantes :

Sondage	Profondeur eau de la cote du terrain (m)
B4-bis	14.4
B4	23.32 ; 24.93 ; 24.90
B5	17.47 ; 16.6
B5-bis	4.17 ; 4.45 ; 4.5 ; 4.4
B5-ter	33.85 ; 33.7 ; 33.7 ; 33.3

Tableau III.3: Mesures de la profondeur de l'eau à partir de cote du terrain

Le sondage B5-bis est effectué, dans la zone où nous allons faire l'étude. Les mesures du niveau piézométrique disponibles (sondage B5 bis) mettent en évidence la présence d'une nappe, pourtant est attendue un creusement en nappe avec manifestation hydriques majeurs pendant l'avancement, liées soit à l'augmentation du

degré de fracturation, soit à la diminution de la couverture.

Conclusion

L'observation sur site et les travaux liées au creusement on (a montré que les deux talus latéraux sont dans une situation pas très stable), ce qui nous oblige a faire une analyse de stabilité du site.

Chapitre IV : étude de la stabilité des talus

IV.1. Introduction

Dans ce chapitre nous nous intéressons à la modélisation numérique du talus de la tête Est du tunnel de Sidi Aich en utilisant le logiciel phase2

La tête du tunnel côté Bejaia situé entre pk 45+650 et pk 45+553,84, est caractérisée par des talus ayant des pentes variables qui sont toutefois soutenus par des boulons scellés et le béton projeté renforcé par treillis soudé.

IV.2. Méthodologie d'analyse de la structure du portail

Pour vérifier la stabilité de la structure du portail, une analyse aux éléments finis a été conduite en reproduisant le phasage de réalisation de l'ouvrage. Le critère de rupture de Hoek-Brown décrit la rupture d'un massif rocheux (basée sur les analyses effectuées de centaines de structures souterraines et de pentes rocheuses), il est formalisé par la relation suivante :

$$2_{2.77} = 2_{2.77} + 2_{7} \left(\frac{2_{7} 2.77}{2_{7}} + 2\right)^{a}$$

2,22 : Contrainte principale majeure à la rupture ; [Mpa]

⑦ : Résistance à la compression simple de la roche intacte [Mpa] ;

 Image: Résistance à la compression uniaxiale de la rocheuse intacte [Mpa];

? Constante dépendant de la qualité de la roche ;

a, s : Constantes adimensionnelles dépendant de l'état et du degré de fracturation du massif rocheux.

Le modèle géotechnique de l'étude

La géométrie et les dimensions du modèle ont été définie de manier à éviter que le calcul soit affecté par les effets de bord.

Figure IV.1 le modèle géotechnique de l'étude

- Le type d'élément est triangulaire
- Le nombre d'éléments est de 248

IV.3 Stabilité des talus par analyses aux MEF

L'analyse de la stabilité aux méthodes des éléments finie a été aussi conduite à travers la méthode de calcul, **\overlinetary**-c réduction, implémentée dans le logiciel Phase2. La réduction des caractéristiques mécaniques de résistance du sol (angle de frottement) permet de vérifier la stabilité de l'ouvrage et de calculer les coefficients de sécurité.

le critère de hoek-brown généralisé a été utilisé

Chapitre IV : é	tude de la	stabilité des	talus
-----------------	------------	---------------	-------

argile marneuse	marno calcaire		
Material 3	Name: marno calcaire	Material Color:	
Material 4	Marrie Calcare		-
Material 5	Initial Element Loading: Field S	tress & Body Force - Unit Weight: (MN/m3):	0.027
Material 6	-		
Material 7	Elastic Properties		
Material 8	Elastic Type: Isotropic	 Poisson's Ratio: 	0.3
Material 9			
Material 10	Young's Modulus (MPa):	260 Young's Modulus (resid) (MPa):	866.8
Material 11	F1 (MDa):	20200 F2 (MPa)	00000
Material 12		20000 20000 02 (11 07)	20000
Material 13	v12:	n a V1z; n a V2z;	0.2
Material 14		0,2	
Material 15			
Material 17	Strength Parameters		
Material 17	Failure Criterion: Generalized Ho	pek-Brown 🔻 🔟 🔯 🚰 Material Type: 🏻 Pla	astic 🔹
Material 19			
Material 20	Intact Comp. Strength (MPa):	30 Dilation Decomptory	
Material 21	Intact comp. Strength (Ara).	Dilation Parameter:	
Material 22	mb Parameter (peak):	0.084323 mb Parameter (resid):	0.084323
Material 23	a Demonstra (anality	4 46690 006 a Deventer (carid).	4 46690 00
Material 24	s Parameter (peak):	H. HOODE-OUC S Parameter (resid):	
Material 25	a Parameter (peak):	0.561101 a Parameter (resid):	0.561101
🔲 Material 26			
Material 27	Stage Properties	tum Dependent Unsaturated Shear Strength	
🔲 Material 28			0
	Define Factors Defin	re Properties Phillip: V Air Entry (MPa):	0

Figure IV.2: Définition des conditions initiales et la désignation des propriétés des matériaux dans PHASE2 pour marno calcaire

marno calcaire	argile marneuse		
Material 3	Name: argile marneuse	Material Color:	
Material 5	Initial Element Loading: Field S	tress & Body Force Unit Weight: (MN/m3):	0.027
Material 6			
Material 7	Elastic Properties		
Material 8	Elastic Type: Isotropic	 Poisson's Ratio: 	0.3
Material 9	Vermela Madulus (MDa)	EG2.66 Waters's Maddus (resid) (MDs):	20000
Material 10	Toung's Modulus (MPa):	502.00 Toung's Modulus (resid) (MPa):	20000
Material 11	E1 (MPa):	20000 E2 (MPa); 20000 E2 (MPa);	20000
Material 13		20000	20000
Material 14	v12:	0.2 v1z: 0.2 v2z:	0.2
Material 15			J
Material 16	Strength Parameters		
	Suchgul Falanciels		
Material 17			
Material 17	Failure Criterion: Generalized H	pek-Brown 🔻 🔟 🕼 🔛 Material Type: 🛛 P	lastic
Material 17 Material 18 Material 19	Failure Criterion: Generalized H	pek-Brown 🔹 🔟 🔛 🔛 Material Type: P	lastic .
Material 17 Material 18 Material 18 Material 19 Material 20	Failure Criterion: Generalized H	Dek-Brown	lastic (
Material 17 Material 18 Material 19 Material 20 Material 21	Failure Criterion: Generalized H Intact Comp. Strength (MPa):	Brown Image: Text of the second sec	lastic (
Material 17 Material 18 Material 19 Material 20 Material 21 Material 21	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak):	Joek-Brown Image: Big St	lastic (0.03747
Material 17 Material 18 Material 19 Material 20 Material 21 Material 21 Material 21 Material 22 Material 23	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak): s Parameter (peak):	Joek-Brown Image: Text of the second sec	lastic (0.037477 4.4668e-00
Material 17 Material 18 Material 19 Material 20 Material 21 Material 21 Material 21 Material 22 Material 23 Material 23	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak): s Parameter (peak):	Joek-Brown Image: Type Dilation Parameter: 30 Dilation Parameter: 0.11243 mb Parameter (resid): 4.4668e-0000 s Parameter (resid):	lastic (0.037477 4.4668e-00
Material 17 Material 18 Material 19 Material 21 Material 21 Material 23 Material 24 Material 25	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak): s Parameter (peak): a Parameter (peak):	Joek-Brown Image: Comparison of the second seco	lastic (0.03747) 4.4668e-00 0.56110
Material 17 Material 18 Material 19 Material 20 Material 21 Material 22 Material 23 Material 24 Material 25 Material 26	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak): s Parameter (peak): a Parameter (peak):	Joek-Brown Image: Comparison of the second seco	lastic (0.03747) 4.4668e-00 0.56110
Material 17 Material 18 Material 19 Material 20 Material 21 Material 22 Material 23 Material 24 Material 25 Material 26 Material 27	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak): s Parameter (peak): a Parameter (peak): Stage Properties Da	Joek-Brown Image: Comparison of the second seco	lastic (0.03747) 4.4668e-00 0.561103
Material 17 Material 18 Material 19 Material 20 Material 21 Material 21 Material 21 Material 23 Material 24 Material 25 Material 26 Material 27 Material 28	Failure Criterion: Generalized H Intact Comp. Strength (MPa): mb Parameter (peak): s Parameter (peak): a Parameter (peak): Stage Properties Da Define Factors	Joek-Brown Image: Constraint of the second seco	lastic (0.037477 4.4663e-00 0.56110

Figure IV.3: Définition des conditions initiales et la désignation des propriétés des matériaux dans PHASE2 pour argile marneuse

Résultats :

Apres les calcules on a obtenu les résultats suivants:

• Talus droit :

Pour ce talus on peut observer qu'il montre la trajectoire des déplacements totaux avec les vecteurs et le contour de déformations

Figure IV.4 Résultats de calcul par PHASE2 déplacements totaux avec les vecteurs et les contours de déformation (Talus droit)

• Talus gauche

Pour ce talus on peut observer qu'il montre la trajectoire des déplacements totaux avec les vecteurs et le contour de déformations.

Chapitre IV : étude de la stabilité des talus

Figure IV.5 Résultats de calcul par PHASE2 déplacements totaux avec les vecteurs et les contours de déformation (Talus gauche).

- Critical SRF: 0.46 Total Displac 0.00e+000 2.00e-003 4.00e-003 6.00e-003 g., 8.00e-003 surface de 1.00e-002 1.20e-002 glissment 1.40e-002 1.60e-002 1.80e-002 2.00e-002 2.20e-002 20 2.40e-002 2.60e-002 2.80e-002 3.00e-002 3.20e-002 3.40e-002 3.60e-002 3.80e-002 4.00e-002 To seienc Project1 1:617 24/06/2021, 11:30:31 model tunnel BeniMansour...fez
- Talus droit

On a trouver que la valeur du SFR est égale a 0.46 donc ce talus est instable avec une surface de glissement comme montré sur la figure :

• Talus gauche

Figure IV.7 talus gauche (non soutenu)

On à trouver la valeur du SRF est égale a1.14 donc on déduit que ce talus est contestable avec une surface de glissement comme montré sur la figure.

Le tableau suivant résume l'état global des deux talus

Tableau IV.1Les résultats obtenus avec un modèle non soutenu

talus droit	SRF=0.46
talus gauche	SRF=1.14

IV.4 La stabilisation

Dans le but de stabiliser nos talus, on a procéder à l'utilisé des éléments suivants :

- Boulonnage à l'aide des barres d'acier HA25 ayant un maillage en quinconce 3,0 m x 1,8 m (H x V). Les boulons ont une longueur de 8 m. Les boulons sont logés dans les forages de Ø76 mm et sont entièrement scellés.
- Mise en place de béton projeté de 5+5cm d'épaisseur renforcé par une nappe de treillis soudé Ø6 maillé 150 mm x 150 mm. (Figure IV.6)

Figure IV.8 le modèle géotechnique avec soutènement (phase2)

Les Résultats après la stabilisation on donner comme suis :

• Talus droit

Figure IV.9 Résultats de calcul par PHASE² déplacements totaux (Talus droit)

On a trouvé la valeur du SRF est égale a 1.7 donc on déduit que ce talus est devenu stable.

• Talus gauche

Figure IV.10 Résultats de calcul par PHASE2 déplacements totaux (Talus gauche)

On à trouver la valeur du SRF est égale a1.78 donc on déduit que ce talus est stable. Le tableau suivant résume l'état global des deux talus

 Tableau IV.2 Les résultats obtenus avec un modèle soutenu.

talus droit	SRF=1.7
talus gauche	SRF=1.78

Conclusion

Dans ce chapitre, nous avons étudie la stabilité es talus droit et gauche de notre site. D'abord, la méthode des éléments finis nous a permis obtenir des coefficients de sécurité dune valeur de 0.46 et 1.14 et qui nous a permet de conclure que les talus sont globalement instables.

Ensuite, on a procédé a une stabilisation a travers le béton projection et le boulon d'ancrage, ce qui a perms de stabiliser l'ouvrage.

Conclusion générale

L'étude de stabilité de notre site a permis de tirer des conclusions suivantes : finis la méthode SSR est une méthode solide elle permet de déterminer la surface de glissement et la direction des déplacements, ainsi que le coefficient de sécurité, La mélodes des éléments permet de trouver automatiquement la surface critique.

Apres avoir comparé notre résultat avec nos camarades dont l'intitulé (étude de la stabilité des talus liée aux travaux d'un creusement d'un tunnel a partir de la méthode d'équilibre limite. Cas de tunnel ferroviaire Sidi Aich) par logiciel Slide que résume les tableaux suivants :

Résultats obtenus par le logiciel Slide :

• Talus droit

Méthode	Bishop	Janbu	Morgenstern-	Spencer
utilisee	Simplifié	Simplifié	Price	
Glissement circulaire	2.420	1.0	2.391	2.385
Glissement non circulaire	2.239	2.099	2.401	2.471

• Talus gauche

Méthode utilisée	Bishop Simplifié	Janbu Simplifi é	Morgenstern -Price	Spencer
Glissement circulaire	1.821	2.840	1.728	1.841
Glissement non circulaire	3.321	2.840	4.066	4.148

On peut aussi conclure que la MEF est un outil de vérification friable pour les autres méthodes.

2020/2021

Bibliographie

[1] Michel Chalhoub, [2010], « massifs rocheux Homogénéisation et classification numériques.», Edition paris Tech Les Presses

[2] Evgueni porkhovoi [2020] :« stabilité a long terme des talus de mine a ciel ouvert dans les massif des roches basiques et ultrabasiques » ; école nationale ponts et chaussées

[3] « Stabilité des massifs rocheux fissurés » [2005] ; laboratoire de matériaux et hydrologie, université Sidi-Bellabes, Algérie ; laboratoire nationale des ponts et chaussées, Paris,

France ; revue française de géotechnique n°112, 3°

[4] A. Guilloux : [2011] « Note sur les sols indurés et les roches tendres (SIRT) » ; groupe de travail commun CFGICFMR-CFMS.

[5] ADIL Roza ; HAMMOU Nesrine : « Etude de stabilité des talus des gradins Cas: la mine du Phosphate de Djebel Onk (Tebessa).

[6] Albert Armangué : « Influence des vibrations dues aux tirs à l'explosif de la future carrière Haut Bosq sur la stabilité des vides de l'ancienne mine de Jurques »,

[7] Armando Manuel SEQUEIRA NUNES ANTÄO : « analyse de la stabilité des ouvrages souterraine » ; THESE DE DOCTORAT DE L'ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES ; *Spécialité :* GÉOTECHNIQUE

[8] D. HANTZ : « DESCRIPTION STRUCTURALE DES MASSIFS ROCHEUX », Ecole Polytechnique de l'Université de Grenoble.

[9] DELAGE. P; CUI.Y.J : « Comportement mécanique des sols non saturés » C302 ; Technique de l'ingénieur, traité construction .

[10] DEVOS. M : « La stabilité des Talus », FABI, Cycle Euroc des 2010-2011

[11] « Notice technique de l'interprétation géologique-hydrologique et géotechnique ».

[12] « Planimétrie et profil en long – Tête d'entrée côté Bejaia ».

[13] « Aménagement hydraulique du versant – Tête d'entrée côté Bejaia ».

[14] photo personnel

Annex :

Présentation de PHASE 2 :

PHASE2 est un programme à éléments finis en plastique bidimensionnel pour calculer les contraintes et les déplacements autour des ouvertures souterraines, et peut être utilisé pour résoudre un large éventail de problèmes miniers et de génie civil, impliquant :

- TENSION PLANE ou AXISYMMETRY
- Matériaux ÉLASTIQUES ou PLASTIQUES
- Éc excavations en STAGE (jusqu'à 50 étapes)
- MATÉRIAUX MULTIPLES
- SUPPORT (boulons / béton projeté)
- Stress de champ CONSTANT ou GRAVITY
- Roche JOINTED
- EAU SOUTERRAINE (inclure la pression des pores dans l'analyse)

Le programme PHASE2 se compose de 3 modules de programmes : MODEL, COMPUTE et INTERPRET

Methode de calcule :

MODEL, COMPUTE et INTERPRET fonctionneront chacun comme des programmes autonomes. Ils interagissent également les uns avec les autres comme illustré dans le schéma ci-dessous :

• COMPUTE et INTERPRET peuvent tous deux être lancés à partir de MODEL.

• COMPUTE doit être exécuté sur un fichier avant que les résultats puissent être analysés avec INTERPRET (flèche rouge) • MODEL peut être lancé à partir de INTERPRET.

Liste des abreviation :

RMR :

La cote de masse rocheuse (RMR) est un système de classification géomécanique pour les roches, développé par Z. T. Bieniawski entre 1972 et 1973. Depuis lors, il a subi de multiples modifications dont RMR89[1] est couramment utilisé. Récemment, RMR14 a été proposé pour améliorer les performances de RMR en intégrant de nouvelles expériences issues des pratiques de tunnels. Des fonctions continues et un logiciel "QuickRMR" pour RMR89 et RMR14 ont égal ement été proposés par Kundu. RMR combine les paramètres d'influence géologiques les plus importants et les représente avec un indice global complet de la qualité de la masse rocheuse, qui est utilisé pour la conception et la construction de fouilles dans la roche, telles que les tun nels, les mines, les pentes et les fondations.

RQD :

La désignation de qualité de roche (RQD) est une mesure approximative du degré d'articulation ou de fracture d'une masse rocheuse, mesurée en pourcentage du noyau de forage en longueurs de 10 cm ou plus. La roche de haute qualité a un RQD de plus de 75 %, une faible qualité de moins de 50 %. La désignation de la qualité de la roche (RQD) a plusieurs définitions. La définition la plus utilisée a été développée en 1964 par D. U. Deere. Il s'agit du pourcent age de récupération du noyau de forage incorporant uniquement des morceaux de noyau solide de plus de 100 mm de longueur mesurée le long de la ligne centrale du noyau. À cet égard, les morceaux de noyau qui ne sont pas durs et sonores ne doivent pas être comptés bien qu'ils aient une longueur de 100 mm. RQD a été initialement introduit pour être utilisé avec des diamètres de noyau de 54,7 mm (noyau de taille NX). RQD a une valeur considérable dans l'estimation du support des tunnels rocheux. RQD forme un élément de base dans certains des systèmes de classification de la masse rocheuse les plus utilisés : le système d'évaluation de la masse rocheuse (RMR) et le système Q.

GSI :

Le système d'indice de force géologique (GSI), proposé en 1994 par Evert Hoek, es t utilisé pour l'estimation de la force de la masse rocheuse et du module de déformation de la masse rocheuse. Le système GSI se concentre sur la description de deux facteurs, la structure de la roche et les conditions de surface du bloc. Les lignes directrices données par le système GSI sont pour l'estimation des paramètres de force de pointe des masses rocheuses jointes. Il n'y a pas de lignes directrices données par le GSI, ou par tout autre système, pour l'estimation de la force résiduelle de la masse rocheuse qui donne des résultats cohérents.

MMC :

La mécanique des milieux continus est le domaine de la mécanique qui s'intéresse à la déformation des solides et à l'écoulement des fluides. Ce dernier point faisant l'objet de l'article Mécanique des fluides, cet article traite donc essentiellement de la mécanique des solides déformables.

MEF :

En analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finiteelementmethod en anglais) est utilisée pour résoudre numériquement des équations aux dé rivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques, etc.).

Modèle Géologique de Référencé (MGR) détaillé, entendu comme un modelé s cientifique qui synthétise l'ensemble des données litostratigraphiques, structurales, hydrogéologiques et géomorphologiques du secteur du tunnel.

Résumé

Résumé :

L'objectif de ce travail est d'étudie la stabilité des talus du tunnel de Sidi Aiche, pour le réaliser on a utilise la MEF a travers le logiciel phase2, ce que nous a permis dévaluer la stabilité et ensuite de proposer une stabilisation.

Abstract :

The objective of this work is to study the stability of the Sidi Aich tunnel embankments, to achieve it we used the MEF through the phase2 software which allowed us to assess the stability and then to propose a stabilisation.

الملخص :

الهدف من هذا العمل هو دراسة استقرار منحدر نفق سيدي يعيش ولتحقيق ذلك استخدمنا طريقة العناصر المحدودة من خلال برنامج phase2 الذي سمح لنا بتقييم استقرار ومن ثم اقتراح التثبيت .