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Abstract

In this work we study a linear 2m-th order parabolic equation, subject to Dirichlet type
condition on the lateral boundary, where the right-hand side of the equation is taken in the
Lebesgue space LP, defined on a time-varying domain of R¥+!. The approach is based on
the use of the operators’ sum method in Banach spaces; we use Labbas-Terreni results on
the operators’ sum theory in the non-commutative case. We are especially interested in the
question of what sufficient conditions, as weak as possible, the dimension N, the exponent
p and the type of the domain must verify in order that our problem has a solution with
optimal regularity.

This thesis is divided into three chapters:

In the first chapter we recall some basic tools and concepts of elementary functional
analysis which are necessary in the operators’ sum theory.

In the second chapter we will refer to the essential of the operators’ sum method, that
we will use in the chapter three.

The third chapter is devoted to present our results.

Keywords: High order parabolic equation, non-cylindrical domains, anisotropic Sobolev
spaces, sum of linear operators, interpolation spaces.



Résumé

Dans ce travail, nous étudions une équation parabolique linéaire d’ordre 2m, sous une
condition de type Dirichlet sur la frontiere latérale. Le membre droit de I’équation est pris
dans l’espace de Lebesgue LP. L’équation est définie dans un domaine de RV*!. L’approche
est basée sur 'utilisation de la méthode des somme d’opérateurs dans les espaces de Banach;
nous utilisons les résultats de Labbas-Terreni de la théorie des somme d’opérateurs dans le
cas non commutatif. Nous nous intéressons plus particulierement a la question de savoir
quelles conditions suffisantes, aussi faibles que possible, la dimension N, I'exposant p et
le type du domaine doivent vérifier pour que notre probleme ait une solution avec une
régularité optimale.

Cette these est divisée en trois chapitres :

Dans le premier chapitre nous rappelons quelques outils et concepts de base de ’analyse
fonctionnelle élémentaire dont nous aurons besoin dans la théorie des somme d’opérateurs.

Dans le deuxieme chapitre nous ferons référence a 1’essentiel de la méthode des somme
d’opérateurs, que nous utiliserons dans le chapitre trois.

Le troisieme chapitre est consacré a la présentation des résultats obtenus dans I’article.

Mots clés: Equation parabolique d’ordre supérieur, domaines non cylindriques, espaces
de Sobolev anisotropes, somme d’opérateurs linéaires, espaces d’interpolation.
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General introduction

In science in general and in mathematics in particular one often encounters equations

of the form

Au+ Bu = |, (1)

where f is a given element of a vector space X, A and B are two closed (unbounded)
linear operators in X with domains D(A) and D(B) respectively, and u € D(A) N D(B)
is the unknown (or the solution) to be determined. It is clear that if we have no or little
knowledge of the operators A and B, then little can be said about the existence and
regularity of solutions to the equation. Among the important general theories developed
for equations of the form (1), we can cite the operators’ sum method.

The operators’ sum method is developed by G. Da Prato and P. Grisvard in 1975 (see
[7]), then by G. Dore and A. Venni in 1987 (see [9]). It allows us to give a unified treatment
to problems to all appearances completely different in nature, like Cauchy and Dirichlet
problems. This method gives spectral properties of the sum operator L = A+ B from those
of the linear operators A and B. It gives conditions under which the abstract equation (1)
can be solved. The original idea of Grisvard refers to parabolic and elliptic operators. So,

for parabolic problems, the following conditions will be imposed

(A—2)"tand (B — z)~! exist for z € $4 and 2 € Y5, where

>4 and Xp are two sectors of the form {z € C/|argz| <

<7 —p} with ¢ =04 and ¢ = 0p respectively and

04+ 05 < and (2)

1A =) ooy = 0 () and (B =2) g =0 (34)
for z € ¥ 4 and X pg respectively.

\
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This parabolic problem (1)-(2) can be treated by the operators’ sum method in two separate

cases depending on whether A and B are resolvent commuting

VA € p(A),Vu € p(B)
{ (A=ADTHB —pl)™ = (B~ u) (A=A,

or not. In both cases the operator Sy

FeX Sy f= - [ (A=A = 21) V(B +21) ' fdz,

2rm ).,
to be defined in the second chapter, will play a fundamental role in expressing and analyzing
solutions to the equation (1). The operator Sy allows us to give a unique and explicit
solution to (1) for all f in an interpolation space D4 (6, p) between X and D(A), or in an
interpolation space Dg(60,p) between X and D(B). Here we assume that 0 < # < 1 and
1 < p < +o00. The restrictions that we impose on A and B in order to achieve this are,

beside sectoriality,

(@) [[(A+XD) (A+ X)) [(A+ D) 5 (B+pl)™ ]

C
< W, VA€ p(—A) Vuep(=B),

(1)) 0<T<p<I1,

(e

in the non-commutative case. In addition to guaranteeing the existence of a unique solution
u for f in one of the above mentioned interpolation spaces, the restrictions also ensure
maximal regularity of the problem with respect to the interpolation spaces in question.
For example, if f € Da(6,p), then not only u belongs to D(A) N D(B) C D4(0,p), but
also Au and Bu belong to this interpolation space.

The operators’ sum method may be used to investigate solutions to a number of prob-
lems related to partial differential equations. In chapter 3 we will apply it, in non commu-

tative case, to 2m — th order parabolic equation:

m

O+ (=)™ 9 = f, (3)

k=1
subject to Dirichlet type condition d'u = 0, [ = 0,1,...,m — 1, on the lateral boundary,

where m is a positive integer. The right-hand side f of the equation is taken in the Lebesgue
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space LP, 1 < p < 400. The problem is set in a domain of the form

Q={(t,x1,79,...,o5) ER¥*:0 < \/x% + a3+ .. 4 a% <}, witha > 1/2m.

This thesis is made up of three chapters, and is organized as follows:
Chapter 1

It is devoted to the fundamental reminders as well as to the tools necessary for this
work. We will first present some functional spaces such as Lebesgue spaces and Sobolev
spaces. We will then make a section on some generalities on linear operators. We will
present a section dealing with semi-groups, in which we will present strongly continuous
semi-groups and then analytic semigroups. The last section is devoted to interpolation
spaces and their properties.

Chapter 2

This chapter will be devoted to the operators’ sum theory, especially in the parabolic
case. It is composed of two sections. In the first, we will expose the theory of sums in
commutative case, and in the last section we will deal with the non-commutative case.
Chapter 3

In this last chapter we will solve our problem in three Steps:

In Stepl we perform a change of variables conserving (modulo a weight) the spaces
L? and H;’Qm, and transforming Problem (3) into a degenerate parabolic problem in a
cylindrical domain.

Step 2 is concerned with the application of the sum of operators’ method to the trans-
formed problem. We can find in the Favini-Yagi book [10] an important study of abstract
problems of parabolic type with degenerated terms in the time derivative. They used the
notion of multi-valued linear operators and constructed fundamental solutions when the
right-hand side has a Holder regularity with respect to the time. Our approach is based
on the direct use of operators’ sums in a weighted LP-Sobolev space.

Finally, in Step 3 we give results concerning the transformed problem and we return to
our initial problem by using an inverse change of variables.

The thesis ends with a conclusion and prospects.



Chapter 1

Preliminaries

In this chapter, we recall some functional spaces, and some definitions and results on

linear operators, as well as semigroups and interpolation spaces.

1.1 Some functional spaces
1.1.1 L? spaces
Let €2 be an open set of R”, with n € N*.

Definition 1.1.1. Let p € R with 1 < p < +o00, we set

LP(Q)) = {u : Q — R, u is measurable and / |u(x)|Pdx < +oo},
Q

il = | [ \u(x)]pdazr.

L>*(Q) = {u : Q2 — R, u is measurable and |u(x)| < C a.e. in Q for some canstant C’},

with norm

We set

with the norm

lulle(o) = inf {C, Ju(z)| < C ae. on 0}.
We have the following properties:

1. L? is a Banach space for any p, 1 < p < oo.

12
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2. The dual of LP is L4, for any p, 1 < p < 400, where ¢ is the conjugate exponent of
1 1
p,ie. =+ = =1. The dual of L' is L>=. The dual of L™ is strictly bigger than L!.
P q

3. Holder’s inequality:

1 1
Assume that v € LP and v € L? with 1 < p,q < 400, —+ - = 1. Then uv € L' and
p q

| lut@ota)lde < fullslolur
4. L? equipped with the scalar product
(u,v) = /Qu(x)v(x)dx,
is the unique Hilbert space among all LP spaces.

5. If uw € L*° then we have

|u(z)] < ||u||lLe= a.e. on €.

1.1.2 Sobolev spaces
Let 2 be an open set of R", and let p € R with 1 < p < +c.
The space W™P(Q)
Let m > 0 an integer.
Definition 1.1.2. The Sobolev space W™P(€Q) is defined by
WmP(Q) = {u € LP(Q) J0%u € LP(Q), YVa € N",|a| < m},
where o = (ay,- -+ ,ap), o] =a; + -+ a,. We set H™(Q) = W™2(Q).

The space W™P(Q) is equipped with the norm

m 1
p
|u|lwme = ( Z ||8O‘u||1£p) for 1 < p < oo,

|oe|=0
and

||u||wm.s = max ||0%u|| -
laj<m
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The space H™(f) is equipped with the scalar product

(u,v)gm = Z (0%u, 0%v) 2 = Z /8au.8av dx,
lor|=0 |a|=0 Q

and with the associated norm

lullym = ( 3 Hé’“uHia) .

|laf=0

It is easy to show that
e CWAP C WP C WP C WOP = [P
Hereafter some properties of the Sobolev space WP (Q):
1. The space W™P is a Banach space for 1 < p < +o0.
2. H™ is the unique Hilbert space among all W™P spaces.

3. Sobolev inequality (Sobolev embedding): There exists a constant C' such that

HUHW'NL,OO(Q) S CHu”W'm,P(Q), vu € mep(Q), V 1 S p S +OO

In other words, W"?(Q2) C W™ () with continuous injection for all 1 < p < 400. We

also write W™P(Q) — W™>(Q).
Remark 1.1.1. (Continuous embedding / Compact embedding)
Let X and Y be two normed vector spaces, with norms || - ||x and || - ||y respectively, such
that X CY.
» We say that X is continuously embedded in Y if the identity function

1 X — Y,
T — o,

is continuous, i.e. if there exists a constant C' > 0 such that

|z]ly < Cllz|x, Vo € X.
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» We say that X is compactly embedded in Y if

e X is continuously embedded in Y.

e The identity function ¢ of X into Y is a compact operator, i.e., any bounded
subset in X is relatively compact subset in Y (or in other words for any bounded

sequence (z,,) in X, there exists a subsequence (z,,) that converges in Y).
The space W;""(Q)
Let 1 < p < +o00, and let m > 2 be an integer.
Definition 1.1.3. W;"*(Q) is defined as the closure of C2°(€2) in W™?(Q), i.e.,

—WmP(Q

c=@" " = wyrr (o) cwm(a),
We set H () = WJ"*(Q).
Remark 1.1.2. We can also define W;""(Q2) as follow
WP (Q) = {u e W™P(Q) /0%u =0 on 09, |a| < m}.
Hereafter some properties of the spaces Wj""(Q):

1. The space Wy"" is a Banach space for 1 < p < +o0.

2. HJ" is a Hilbert space.

1.2 Linear operators

Let E and F' be Banach spaces over the same (real or complex) field K with the norms

denoted by || - ||g and || - ||F or just by | - ||

1.2.1 Generalities

Definition 1.2.1. A mapping T': D(A) C E — F is said to be a linear operator if
T(ax + by) = aT'(x) + bT(y) for all x, y in D(A) and for all a, b in K. If Y = K then
T is called a linear form. If T': D(A) C £ — F is not a linear operator, then T is often

referred to as a nonlinear operator (or just a mapping).
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1. D(A) or just Dy is said to be the domain of A. It is a vector subspace of £, and for
all z € D(A) we can denote A(z) by Az.

2. We use the notation (A, D(A)), to denote the operator A with domain D(A).
3. The set of linear operators from E to F'is denoted by L(E, F).

4. When F' = FE, A is said to be a linear operator in F, and we write A € L(E) or
(A,D(A)) € L(E) .

Definition 1.2.2. Let A: D(A) C E — F be a linear operator.
1. We define the graph of A by
G(A) ={(z,y) e Ex F/z € D(A),y = Az} ={(z,Azx) € E x F/x € D(A)},
which is a vector subspace (we also say a linear subspace) of E' x F.
2. We define the image of A as a linear subspace of F, by
Im(A):={ye F/3z € D(A),y = Az} ={Ax € F/x € D(A)},
which will be referred to as the range of the operator A.

3. We define the kernel of A by
ker(A) := {x € D(A)/Axz = 0},

wich is a vector subspace of E.

4. We say that A has a dense domain if D(A) = E.

Definition 1.2.3. Let A and B be two linear operators in E. The operator AB is defined

by
D(AB) = {z € D(B) : Bx € D(A)},

(AB)x = A(Bz) Yz € D(B).
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We define, A", n € N, by
D(A% = E and A° =1,
D(A'YY = D(A) and A' = A,
Vn>2 D(A") ={x € D(A" 1) : A" 'z € D(A)} and A" = AA™ L.

Definition 1.2.4. Let A and B be two linear operators from E to F. We say that B is

an extension of A and we denote A C B if
1. D(A) C D(B),
2. Vx € D(A), Az = Bx.
Conversely we say that A is a restriction of B, and we write Bjp(4) = A.

Proposition 1.2.1. Suppose that A, B € L(X,Y) satisfy: A C B,KerB =0, and ImA =
Y. Then A= B.

Definition 1.2.5. Let A be a linear operator on E. If A is injective, we define the operator

A1 by
A7ty Im(A) — E
Y — Aly=ux

where z € D(A) is defined by Az = y. Note that Im(A~') = D(A).

1.2.2 Bounded linear operators

Definition 1.2.6. Let A be a linear operator from E to F. We say that A is bounded if
sup{||Az||;x € D(A),||z|| < 1} < +oo. Otherwise, the operator (A, D(A)) is said to be
unbounded.

The space of bounded linear operators from E to F' is noted by L(E, F). If E = F, we
pose L(E) := L(E,E).

Proposition 1.2.2. Let A be a linear operator from E to F. Then, the following properties

are equivalent:

1. Ae L(E,F),
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2. Vxog € E, IILI?O |Az — Azol||r = 0,
3. lim [[Az|p =0,
4. IM >0, Vz € E, ||Azx||r < M||z|g.
Definition 1.2.7. Let A € L(E, F). We define the norm of A as follows:
|Allz(e,p) = inf{c > 0, ||Az||r < c||z||g, V2 € E}.
Remark 1.2.1.
1. The space L(E, F) equipped with the norm ||.||z(g ) is a Banach space.
2. An operator is bounded if and only if its norm is finite.
Definition 1.2.8. Two operators A, B € L(E) are said to commute if AB = BA

It is not easy to extend this definition to unbounded operators due to the difficulties
with defining the domains of the composition. The extension is usually done to the case
when one of the operators is bounded. Thus, an operator A € L(F) is said to commute with

B e L(E) if BA C AB. This means that for any x € D(A), Bx € D(A) and BAx = ABx.

Definition 1.2.9. Let A : E — FE, be a linear operator. We say that A is invertible if
there exists A’ € L(E) such that

AA = AA =1,

where I is the identity operator on E. This operator A’ if it exists is unique, it is called

the inverse of A, and we denote it by A~L.
We have the following useful conditions for invertibility of an operator.

Proposition 1.2.3. Let E and F be Banach spaces and A € L(E,F). The following

assertions are equivalent.

1. A is invertible,
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2. ImA = F and there exists m > 0 such that || Ax| > m||z| for all x € D(A),

3. A is closed, ImA = F and there exists m > 0 such that ||Az| > mlz|| for all
x € D(A),

4. A s closed, ImA =F, and KerA = {0}.
Proposition 1.2.4. Let A € L(E). If ||Allzg) < 1, then
1. (I — A) is invertible in L(E), and
+o00
2. (I —A)1t=> A~
n=0
Definition 1.2.10. Let A and B be two linear operators on E.

1. The resolvent set of A, denoted by p(A) or pa, is defined by
p(A):={\eC: (M - A) e L)}
2. If X € p(A), we define the resolvent R(\, A) of A at point A by
R\ A) = (M — A
3. We define the resolvent commutator as follows
[(A=AD"(B=pl) = (A=) (B—pl)™ = (B—pl) (A=)
4. The spectrum A, noted o(A) or o4, is defined by
o(A) = C\ p(A).

Remark 1.2.2. In general, it is possible that either o(A) or p(A) is empty. The spectrum

is usually subdivided into three subsets.

1. Point spectrum o,(A) is the set of A € o(A) for which the operator A\l — A is not

one-to-one (injective). In other words, o,(A) is the set of all eigenvalues of A.
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2. Continuous spectrum o.(A) is the set of A € o(A) for which the operator A\l — A is

one-to-one and its range is dense in E but not equal to E.

3. Residual spectrum o,(A) is the set of A € o(A) for which the operator A\I — A is

one-to-one and its range is not dense in F.

Proposition 1.2.5. Let A: D(A) C E — F be a linear operator. Then, for all A\, u €

p(A), we have
RO\ A) = R, A) = (1 — MR\ A)R (s, A).

1.2.3 Closed linear operators

Definition 1.2.11. Let A be a linear operator from E to F'. We say that the operator A
is closed if his graph G(A) is closed in E x F. Note that bounded linear operator is a closed
linear operator. The space of closed linear operators from E to F' is noted by F(FE, F).

The following proposition gives an equivalent definition for a closed linear operator.
Proposition 1.2.6. Let A: D(A) C E — F be a linear operator. A is said to be closed

if and only if for any sequence (x,)n>0 of D(A) such that

Tp —x, inE,
Ax, =y, inF,

one has © € D(A) and Az = y.

Remark 1.2.3. For any operator A, its domain D(A) is a normed space under the graph
norm

[zl by == llzlle + | Az|lp.

The operator A : D(A) — F' is always bounded with respect to the graph norm, and A is
closed if and only if D(A) is a Banach space under the graph norm.

Proposition 1.2.7. Let A and B be two linear operators on E. One has

1. If B is bounded then B is closed.
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2. If A is closed and B is bounded, then A+ B is closed.
3. If A is closed and B is bounded, then AB is closed.

Theorem 1.2.1. (Closed graph theorem)
Let E and F be two Banach spaces. Let A be a closed linear operator from E to F. If
D(A) = E, then A€ L(E,F).

1.2.4 Compact linear operators

Definition 1.2.12. Let E and F' be two Banach spaces and T' € L(E, F'), T is said to be
compact if for each sequence (z,),>1 € E with ||z,|| = 1 for each n € N*, the sequence
(T'x,)n>1 has a subsequence which converges in F. Equivalently, 7" is compact if for each
bounded sequence (x,),>1 € F, the sequence (Tx,),>1 has a subsequence which converges

in F.

We denote by IC(E, F') the space of all compact operators from E to F. And if £ = F,

we write JC(F) the space of all compact operators on E.
Theorem 1.2.2.
1. K(E,F) is closed in L(E,F).

2. IfTe K(E,F), Re LIG,FE) and S € L(F,G), then SoT € K(E,G) and T o R €
K(G, F).

Theorem 1.2.3. Let T € K(E), then
1. dimKer(I —T) is finite.
2. Im(I —T) is closed.

3. Ker(I-T)={0} < Im(I-T)=EFE.
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1.2.5 Sectorial operators

It is important to clarify that there are many equivalent definitions for sectorial operators.

Here we will use the following definition:

Definition 1.2.13. Let E be a complex Banach space and A be a closed linear operator
in E. Then, A is said to be sectorial if

(1) D (A) and I'm (A) are dense in F,

(i4) Ker (4)={0},

(1ii) |—00,0[ C p(A) (p (A) is the resolvent set of A) and there exists a constant K > 1

such that Vt > 0, ||t (A+t])” <K.

e

Remark 1.2.4. We will see later that if A is sectorial, then p (—A) contains an open sector

>, =12€C: 2#0, |argz| < ¢}, with ¢ €]0, (.

We can also find the following definition:
Definition 1.2.14. Let 0 < w < 7. We define the following sector
Yo ={2€C/{0} : |arg z| < w}.
1) A closed linear operator A on E is said to be sectorial of angle w if
oa C E_un
and

Vo' €lw, ], sup [[MA —A)7H| < +oo.
AT

2) We denote by Sect(w) the set of linear operators on E which are sectorials of angle w.
1.2.6 Some theorems of functional analysis
Banach-Steinhaus theorem

Theorem 1.2.4.

Let E and F be two Banach spaces. Let (A;)ier be a family (not necessarily countable) of
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continuous linear operators from E to F. We suppose that

sup ||A;z|| < +o0, Vo € E.
iel

Then

sup || Ayf| < +o0.
iel

Fubini’s theorem

Let M be a metric space, we denote by B(M) the Borel o-algebra on M, that is the
collection that contains all open and closed sets, all countable unions and intersections of
closed or open sets, and so on. We write B, instead of B(R?).

Let A€ B, B € B,,, and (x,y) € A x B CR"™. It can be seen that A x B € B,,«.
Let f: Ax B — [0,400]. We set

fy: A—=1]0,4+00], fy(x)= f(x,y) for each fixed y € B,

fo: B — 10,400, f.(y) = f(z,y) for each fixed z € A.

These functions are measurable (for each fixed y € B, resp. x € A). Now we can state

Fubini’s theorem, which we will use later.

Theorem 1.2.5.
a) Let f: Ax B — [0,400| be a measurable function. Then the functions F : A — [0, o0]
and G : B — [0, 00|, given by

/fx Ydy forx e A, G(y /fy Ydx fory € B,

are measurable, and it holds

AXBf(:Uy //fxydyd:v—//fxydx (*)

b) Let f € L'(A x B). Then there are null sets N4 C A and Ng C B such that f, is
integrable for all v € A\N4 and f, is integrable for all y € B\Ng. We define F' and G as
above for x € A\Ny4 and for y € B\Ng, respectively, and we put F(x) =0 and G(y) =

forx € Ng and y € Np, respectively. Then F and G are integrable and formula (*) holds.
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Cauchy’s Theorem

Let U be an open set of C. We denote by H(U), the space of holomorphic functions,
from U in C. Let g € H(U), K a compact set with boundary in U and zy inside K, then

6(z0) = — / 95 4,

- 2w )., 2z — 2o
where v is the positively oriented boundary of K.
Dunford Integral

Let E be a complex Banach space and A be a closed linear operator. We denote by H(A)
the space of variable complex functions which are holomorphic in a closed set containing
the spectrum of A. The formula analogous to the Cauchy formula for the holomorphic

functions is defined by the following Dunford integral

1 -1
A)= — )
FA) =5 [ 1 =) e
where 7 is a simple curve and f € H(A). The operator f(A) € L(FE) and does not depend
on .
1.3 Semigroups of linear operators
1.3.1 Strongly continuous semigroup
Let (X, ||.||) be a complex Banach space.
Definitions and Propreties

Definition 1.3.1. The family of bounded linear operators (7'(t)):>o in X is said to be a

semigroup if it verifies

2. Tt +t) = T(t))T(Ls), Vi, ts > 0.
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Definition 1.3.2. A semigroup (7'(¢)):>¢ is said to be strongly continuous if, for all f € X,

lim (| 7(t)f — f]| = 0.

t—0t+

A strongly continuous semigroup, is called a Cy-semigroup.

Example 1.3.1. We consider the space
E :={f:]0,400]— R: f is uniformly continuous and bounded}.

equipped with the norm
Ifll = sup [f(z)],

x€[0,+00[

E becomes a Banach space. Let (T(t))i>0 be the family of operators defined on E by
(T@)f)(x)=f(t+=x), Yt >0, VfeE, Veel0,+oo|.

(T'(t))e>0 is a Co-semigroup of bounded linear operators on E, called Cy-semigroup of right

translation.

Proposition 1.3.1. If (T'(t)):>0 is a Co-semigroup on X, then there are constants w € R
and M > 1 such that
vVt >0, | T(t)] < Me*".

Remark 1.3.1. 1. If w = 0, the Cyp-semigroup (7'(¢)):>o is called uniformly bounded. In

this case, we have

17O < M.

2. fw=0and M =1, (T(t))>0 is called Cyp-semigroup of contraction. In this case, we

have

7)) < 1.

3. If M =1 and w € R, the Cy-semigroup (7'(t)):>o is called quasi-continuous. In this

case, we have

1T < e



CHAPTER 1. PRELIMINARIES 26

The following corollary is a direct consequence of the above proposition.

Corollary 1.3.1. Let (T(t))i>0 be a Co-semigroup on X. Then for all x € X, the function

t — T(t)x is continuous from RT to X.

1.3.2 Generators

We have already defined the Cy-semigroups, now we are going to associate with them a

very important element that is the (infinitesimal) generator whose definition is as follows:

Definition 1.3.3. Let (T'(t)):>0 be a Co-semigroup on X. We call an infinitesimal generator
(or just generator) of (T'(t)):>o, the operator A defined on the set

DA)={feX: lim % exvists in X},

t—0t

by
Af = lim

) 0+%, Vf e D(A).

Example 1.3.2. We mentioned above that the family of operators (T'(t))i>0 defined on

E:={f:]0,400]— R: f is uniformly continuous and bounded}
by
(Tt)f)(x)=f(t+z), Vt>0,VfeE, Veel0,+o0],

is a Co-semigroup. Then we can show that its generator is the operator A defined by
DA ={feE: ffe E}= and Af={f".
Proposition 1.3.2. Let (T'(t))i>0 be a Co-semigroup on X and A be its generator, then

1.
t+h

1

im — = > .

h1i>r(r)1+ - /T(s)x ds=T(t)z, ¥t >0, Vo € X
¢
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t
2.Vt>0,Ve e X, [T(s)x ds € D(A) and we have
0

t

Al / T(s)z ds) = T(t)z — .

0

3. ¥t >0, Ve e D(A), T(t)xr € D(A) and we have

d
ET(t)ac = AT (t)x = T(t)Ax.

4. Yt>0, Vs >0, Vo € D(A), we have

t t

T(t)z — T(s)x = / AT(r)zdr = / T(r) Axdr.

S S

Corollary 1.3.2. Let (T(t))t>0 be a Co-semigroup on X and A be its generator. Then A

18 closed and its domain is dense in X.

Definition 1.3.4. A Cy-semigroup (7T'(t))¢>o of generator A can have an extension to a
group (U(t))wer, if and only if, (—A) generates a Co-semigroup (S(t)):>0, In this case,
(U(t))ter, is defined as follow:

Theorem 1.3.1. Let (T'(t))i>0 and (S(t))i>0 be two Cy-semigroups having as a generator
the same operator A. Then

T(t) = S(t), ¥Vt > 0.

Using the definition of a Cy-semigroup and that of its generator, we can prove the

following result:

Theorem 1.3.2. Let (T'(t))i>0 be a Co-semigroup on X of generator (A, D(A)), such that
1T < Me.

Then for A € R, the operator (A — M, D(A)) is a generator of the Cy-semigroup
(€_>\tT(t))t20 on X.
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1.3.3 Hille-Yosida theorem

In this subsection, we will present the theorem of Hille-Yosida which is a very powerful
tool to decide whether a given operator is or is not the generator of some Cy-semigroup.
To prove this theorem, we will need some lemmas. Let us first introduce the Yosida

approximation.

Definition 1.3.5. For A > 0, we define the Yosida approximation of a linear operator A

as follows:

Ay = MR, A),

where R(\, A) = (A — A)~'. We have A, is a bounded operator. Indeed,

Ay = MR\, A)
= MM — (AT — A)JR(\, A)
= AAR(M, A) — 1]
= AMR(\ A) — AL

Lemma 1.3.1. Let A be a linear operator satisfying the conditions of Hille-Yosida theorem

(see below). If Ay is the Yosida approximation of A, then

lim Ayz = Az, Vo € D(A).

A—400

Lemma 1.3.2. Let A be a linear operator satisfying the conditions of Hille- Yosida theorem
(see below). If Ay is the Yosida approzimation of A, then Ay is the generator of Co-

semigroup of contraction (e)io. Moreover, for all x € X and A, > 0, we have
e a — eMup|| < t|Ave — Azl

Theorem 1.3.3. (Hille-Yosida theorem)
Let (T'(t))i>0 be a Co-semigroup on X. We say that the operator A (unbounded) is a gen-
erator of (T(t))i>o if and only if

(1) A is closed
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(2) D(A) is dense in X

(3) p(A) D [0,+o0[ and there is M, w € R such that

M

A £ =————
IROAY] < =

formn=1,2, ..., if Re\ > w.
Proposition 1.3.3. Let (T'(t))i>0 be a Co-semigroup such that
VE > 0,||T(1)||nx) < Me* (M >1,w > 0).
Then A, the generator of (T'(t))i>0, verifies
(1) p(A) D{X € C,|Re\| > w} and

M
VA€ C,Rel > w, Vn e N*: |[(M — A) ") <

(2) The resolvent of A is given by

+o0o
VA€ C,Red >w, M —A) 'z = / e MT(t)xdt.
0

(3) The semigroup (T(t))i>o can be found from its generator A by
T(t)x = lim ez, t>0, 2 € X,
A—r400

where Ay € L(X) is the Yosida approximation of A defined by

Ay = 2N - A A > w.

(ReX —w)™

29

The following diagram summarizes the relation between a Cy-semigroup, its generator

and its resolvent.
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(T(1)o

=4}

A= f & T(t)dt, Re Ay

Az=lm T“’tﬂ

tl0

R(LA4)=(-4)!

(R0 A e

(A.D(A)) : :
A=0-ROA)

1.3.4 Analytic semigroup

In what follows, "arg” denotes the principal determination of the function argument

characterized by

arg(z) = p if z=7re", r>0, p € — 7,7
Definition 1.3.6. For 6 €]0, /2], consider the sector
Sy i= {2 € C\ {0} : Jarg(2)] < 0}
Suppose that T': ¥y U {0} — L(X) is a function with the following properties:
(i) T : ¥y — L(X) is holomorphic.
(ii) For all z,w € ¥y, we have

T(2)T'(w)=T(z+w), and T(0) = I.

(iii) For every 6" €]0, 6], the equality

lin(1) T(z)f = f holds for all f € X,
2=

2629/
then T is called an analytic semigroup of angle . Moreover, if

(iv) for all & €]0, 8], we have

sup [|T'(2)[| < +oo0,
2€X g
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then T is called a bounded analytic semigroup of angle 6. The generator of the restriction

T : [0, +oo[— L(X) is called the generator of the analytic semigroup 7.
Remark 1.3.2. Clearly, for an analytic semigroup 7', the mapping
T :)0,4o0|— L(X), t — T(t) € L(X)

is continuous in the operator norm, it is even differentiable. Among others, this continuity
has the following consequence: For A sufficiently large, the resolvent of the generator is

given by the improper integral
+oo
RO\ A) = / N8 dt,
0
which is convergent in the operator norm.

Proposition 1.3.4. Let T' be an analytic semigroup of angle 0 €]0, 5] with generator A,

then the following assertions are true:

a) For every r > 0 and §' €]0, 0], we have
sup{||IT(2)|| : z € Sy, |2| <7} < +00.
b) For all 0" €]0,0], there exist w =wy >0 and M = My > 1 such that

||T(2)H < M€WR6(Z) fOT all z € Ygr.

c) For a €] — 0,0 and t > 0, define T,(t) := T(e*t), then T, is a strongly continuous

semigroup with generator e'“A.

Example 1.3.3. For A € L(X) and z € C define

then T is an analytic semigroup.
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Example 1.3.4. The shift semigroup on LP(R) is not analytic. Or, more generally, if T
15 a strongly continuous group which is not continuous for the operator norm att = 0, then

T is not analytic.

Theorem 1.3.4. Let A be a closed linear operator with dense domain D(A) in X and
0 <0< 7 such that
M

YNaxi9 C p(A), and IM >0, VA € p(A), [|(A - N7 < o

(*)
We define (T(t));>0, denoted by (e*);>0, by

1
T(0) =T and ¥t > 0,Yz € X, T(t)r = "z = T/e”(A — M)z d),
e
7
where v C p(A) is an unbounded contour in Yz g from +o0e~ G+ 4o +o0ei(5H0).
Then (e')1>0 is an Co-semigroup of generator A. Moreover (e')>o is extended into

an analytic semigroup of angle 6 denoted by (e*4).ex,.

Remark 1.3.3. If A is a closed linear operator with dense domain D(A) in X verifying (*)

of the previous theorem, then —A € sect(6 + 7).

Theorem 1.3.5. Let A be a closed linear operator with dense domain D(A) in X such
that

1 M

10, +o00[C p(A), and IM >0, YA >0, [|[(A—=N)"|] < -

then there erists a sector Y, 0 < ¢ < 7, such that

M
Yy C p(A), and IM >0, VA € 3y, |[(A—=N)7Y| < W

The following diagram summarizes the relation between an analytic semigroup, its

generator and its resolvent.
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(T(t)) s

. T(t)e-
AL‘:hm(T

R(\A)= f T () dt
0

A D))z > (RN A) e
( ()) A=\-R(\A) (( ))Aup(A)

1.4 Interpolation
Let Ey and E; be two Banach spaces and X be a separate topological space with
E,— X, i=0,1.
Consider the Banach spaces Fy N E, and Fy + E; equipped with the norms

HGHEOQEH - “aHEo + ||a’||E17
and
lallgore, = _inf ([lalls, + |alle,)-

=ao+ai
a;€E;, i=0,1

The couple (Ey, E;) is called an interpolation couple.

Definition 1.4.1. Let (Ep, £1) be an interpolation couple. We call intermediate space
between Ey and FE;, any Banach space E such that

EomE1<—>E<—)E0+E1.
Example 1.4.1. The spaces E;, 1 = 0,1 are intermediate spaces.

Theorem 1.4.1. ( Marcel Riesz’s theorem)
Let p;, q; € [0, +00[ and Q;, i = 0,1 be open sets of R"™, and

K : Lp0<Qo) + e (Qo) — L(IO(QI) + L (Ql)
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be a linear operator, such that

K/LPO(QO) c ,C (LPO’ qu) 5
K/ oy € L(LP, L),

Let 6 € [0,1] and pg, g € [0, +00[, such that

1 1-46 0 1 1-6 0
— = +— and — = + —.
Do Do b1 de qo q1
Then
K/Lpg(go) e L(LP,L%).
Moreover

1-9 6
||KHL(L”9,L‘19) < HKHL(LPO,qu) ’ ||K||L(LP1,L‘11)‘

Lemma 1.4.1. (Schur’s lemma)
Let k : Q1 X Q9 — R be a measurable function such that
i) Ja > 0,Voy € Qy ¢ [y |k (21, 29)] d2y < a,
ZZ) db > O,V:Ul € Ql . fﬂg ‘k(l’1,$2)‘ d$2 S b.
We define the operator K by
(Kf) (Ig) = / k(l’l,xg)f(l’l) dxl;‘v’xg € QQ.
951

Then, ¥p € [1,400] :

K e L(LP(Q),LP(£y)).

Proof. We have K € L (L' (), L' (Qy)) and K € L (L*> (Qy),L>(£y)), then thanks to

the theorem of Marcel Riesz we obtain the result. O]

Interpolation Spaces

Definition 1.4.2. An intermediate space E between Ey and E; is an interpolation space

between Ey and Ej, if for each K € L(Fy+ Ey):

K e L(E), i=0,1=>K € L(E).



CHAPTER 1. PRELIMINARIES 35

Definition 1.4.3. Let (FEy, F1) and (Fo, F}) be two interpolation couples. We say that

two Banach spaces E and F are interpolation spaces between (Ey, Ey) and (Fp, FY), if
1. F is intermediate space between Ey and Ej,
2. F'is intermediate space between Fy and Fi,
3. Ke L(E,F,),i=0,1=— K € L(E, F).
Example 1.4.2.
1. EyN Ey s an interpolation space between Ey and Fj.
2. Ey+ FEy is an interpolation space between Ey and E.

Theorem 1.4.2. (Fundamental property of interpolation)
Let E and F be two interpolation spaces between (Ey, Ey) and (Fy, Fy), then there exists
C > 0 such that for each K:

K e L(EO + El,FO + F1> and K € E(EZ, E),Z = 0, 1,
we have
16l eqe ) < C max((15]] e, )

Definition 1.4.4. Two interpolation spaces E and F' are said to have exponent 6 € [0, 1],

if there exists a constant C' > 0 such that for each K:

1-0 0
1K ey < CUE 2o,y S 2y )

Theorem 1.4.3. Let (Ey, Ey) be an interpolation couple. Let 6 €]0,1] and p € [1, 0], then
the space (Ey, E1),,, defined by
Z) vVt > 0, HUQ(t) € by, Hul(t) eb:x= Uo(t) + Ul(t),

z € (Eo, Er)y, =
ii) t~ug € L? (Ry, Ey), t17%u; € LP (R, Ey),
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(where LY denotes the space of p-integrable functions with the measure % ,

equipped with the norm

zllo, = ngfl (1t~ ol 1oy 50y + 1 vl oy oy
1s an interpolation space between Ey and E.

Definition 1.4.5. Let A be a closed linear operator and its domain D4 C E is equipped
with the graph norm

Va € Dy, |lzllp, = llzllx + | Az]lx.
Then we set, following the notations of P.Grisvard,

Da(0,p) = (Da, E), 4, where p € [1,+0oc] and 0 <0 < 1.

When operator A verifies some additional assumptions, it is then possible to give explicit

characterizations of D4(6,p), thus:
Theorem 1.4.4. Let p € [1,+00] and 0 €]0, 1].
1. Suppose that p(A) D)0, +o0[ and there exists a constant C > 0 such that
IA> 0, [|(A= 2D < S

Then,
Du(0,p) ={z € E:tA(A—tl) 'z € L? (R, E)}.

2. If A generates a strongly continuous bounded semigroup in E, then

Du(0,p)={zeE:t (" —1)zel? (R, E)}.

3. If A generates a bounded analytic semigroup in E, then

Da(0,p)={z e E:t'"""AeMz € L’ (R, E)}.
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So, if operators A and B are sectorial, then the intermediate spaces D4(6, p) between

D4 and E (or Dg and E ) are characterized by:
Du(0,p) ={z € E:t"A(A—tl) 'a € L? (R4, E)}.
In particular
D4(0,4+00) = {w eE: sgpo)re |AA = 7)""z|| < —I—oo} :
Hereafter, we specify some interpolation spaces.

Example 1.4.3.

1. Let E=C([0,1], | - [|[so) and the operator A defined by :
{ Da={p e C*([0,1]) : p(0) = p(1) = 0},
Ap ="
So for p =400
C?([0,1]) and p(0) = ¢(1) =0 if 20 < 1,
Dy(6,+00) = ¢ C*([0,1]) and ¢(0) = ¢(1) =0,
CH271([0,1]) and ¢(0) = ¢(1) =0,
where C1*([0,1]) is the so-called Zygmund space of continuous functions ¢ on [0,1]

such that
lo(x) — 20 (52) + ¢(y)|
sup

z,y€[0,1] |33' - y|

< +00.

2. Let E = LP(]0,1]),p € [1, +o0[ and the operator B defined by

{ Dp = {u € W'(J0,1])/u(0) = 0},

Bu =/,

then
W”G,D#0<9<5

Dp(6,p) = 4 Wog(10.1]) if 6 =1,
wﬁ%],pdp<e<y

We recall that
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e For 6 €)0.1], W?2(]0.1]) is the subspace of LP(0.1]) of functions u such that

// ’ut—s|1+9” dtds < +oo.

Forp=2, 0 = %, we find the famous H%(]O, 1[) space.

e The Sobolev space (rather called Besov space) ng(]o, 1]) is the subspace of the func-

tions u of LP(]0.1[) such that
1 P
| < o
0 t

e [n general, we can give

(W™P(Q), LP()),,, = By =),

q p.q

where € is an open set with boundary of class C™, p €]1,+0 [, ¢ € [1,4+0], and

B; () are the Besov spaces.

Properties

We now give some fundamental properties of interpolation spaces. For all § €]0, 1] and

p,q € [1,+00], we have

1. f0<w<60<1andp,qé€ [l,+00], then

(EO? El)@,p — <E07 El)w,q

2. If p < gq, then
(E07 El)@,p - (EO’ El)@,q

3. If EO El, then (E(), El) = E() E1

4. (E(), El)@,p — (El, E0)1_97p.
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Particular Case (Dy, E),,

Let A be a closed linear operator in E. We set Ey = D4 which is equipped with the
graph norm and £y = E. Then EgN E; = Dy and Ey+ E; = E. So,

DA — (DA7E>9’p — F.

Theorem 1.4.5. If A is the infinitesimal generator of a strongly continuous semigroup
G(t), then

i)xEE,
D4 E
x € (Dy, )e,p‘:’{ i) ST e [2(E),

with p € [1,400]. Or, equivalently
(Da, E)y, = {x € E:||t"""(G(t) - Dz||, € LV},
which is equipped with the norm

i —(1-0)p pdt ’
12l(pa,E), = llzllE + i ¢ G = DallP—)

and with the usual modifications if p = oo.



Chapter 2

Sum of linear operators’ method

The theory of linear operators’ sum is concerned with the study of the spectral properties
of the sum’s operator A+ B from those of the linear operators A and B. It is marked by two
important dates: In 1975, G. Da Prato and P. Grisvard (see [7]) unify their earlier results
to develop a remarkable theory that now bears their name. In 1987, G. Dore and A. Venni,
in a famous paper (see [9]), give optimal results on the sum’s theory in the framework of
UMD spaces (Unconditional Martingale Differences). Here, we will only deal with the first
approach applicable to the study of parabolic type equations. The commutative case will
be exposed in the first section, and the non-commutative case that we will use in the third
chapter, will be exposed in the second section. The sum of linear operators’ method is
based on an explicit construction of the solution in the form of a Dunford integral and on

the use of interpolation spaces characterized by Grisvard [34].

2.1 Commutative case

2.1.1 Introduction

In the sequel, X denotes a complex Banach space. Let A and B be two closed linear
operators in X with domains D(A) and D(B), respectively. We are then interested by the

resolution of the following equation:

Au+ Bu = f, (2.1)

40
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where f is a given vector of X and w is the unknown. The sum’s operator L = A + B is

defined by
D(L) = D(A)N D(B)
Lu = Au+ Bu if u € D(L),

and the equation (2.1) becomes

Lu=f.

A strict solution of the equation (2.1) is an element u € D(L) satisfying the equation (2.1).
The ideal is to find such a solution when f is an arbitrary element of X, but this is not
always possible. We therefore introduce a new notion of solution. Namely, u is a strong

solution of equation (2.1) if and only if there exists a sequence (uy), .y € D(L) such that

lim w, =wand lim Lu, = f. (2.2)

n—-+o0o n—-+0o0o

Obviously, a strict solution of the equation (2.1) is a strong solution of the equation (2.1).
The notion of strong solution is therefore weaker (but the term weak solution will not be
used here, it is generally reserved for variational solutions).

Note that if L is closed, the two notions of strict and strong solution are equivalent, but
the sum of two closed operators is not necessarily closed. On the other hand if we assume

that L is closable then (2.1) is equivalent to
uw € D(L) and Lu = f.
Finally in the case where L is closable, the following propositions are equivalent:
1. For every f of X, there exists a strong solution of (2.1).
2. 0€p(L).
And if L is closed, the following propositions are equivalent:
1. for all f of X, there is a strict solution of (2.1).

2. 0€p(L).
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In this context, we understand the importance of finding reasonable conditions on the

operators A and B, which ensure that L is closable (even closed) and that 0 € p(L).

Otherwise, we can introduce a spectral parameter A and consider the equation
Au+ Bu — Au = f.

The theorems of G. Da Prato and P. Grisvard, stated later, give positive answers to these

problems on the sums of operators.

2.1.2 Assumptions on A and B

Let A and B be two closed linear operators in X, with respective domains D(A) and

D(B). We propose to solve, for positive A, the equation
Au+ Bu— du = f. (2.3)

This is equation (2.1) where A is replaced by A — AI. We recall that arg denotes the

principal determination of the function argument characterized by
arg(z) = o if z=7re"%,r> 0,0 €] — 7,7
We define for § €]0, 7|, the sector
Yog={2€C":|arg(z)| <m—0},

and a closed linear operator P on X is said to satisfy the hypothesis (Hy) if and only if

p(P) D X,y and there is a convex even function
Cp:] —m+ 6,7 — 0[— R such that: (Hy)
(A — zI)*1||£(X) < CTT@ for all z € ¥;_p such that arg z = ¢.

The two basic hypotheses on the operators A and B are the following:

AR > 0,304,605 €0, 7]:
(Parabolicity) ¢ 1) A verifies (Hy,), B verifies (Hy,,) (DP1)
2) 04+ 0p <.

and

VA € p(A),VYu € p(B
{ (A—if)‘l(g—ZI 1= (B—pul) Y (A= ML, (DP2)
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Remark 2.1.1. 1. Since 04 + 05 < 7, one of the two angles is therefore strictly less than

5 and the corresponding operator is then the infinitesimal generator of an analytic

semigroup (not necessarily continuous at 0 , the domains D(A) and D(B) not having

been assumed to be dense).
2. Under the assumptions (DP2), if y € X, A € p(A) and p € p(B), then
(A= X)"YB—pul)'y=(B—pul) ™ (A= X'y € D(A)N D(B).

Moreover if x € D(B), even considering y = (B — ul)x we obtain

(A= XI)"'z € D(B) and
{ (B—ul)(A= X))z = (A= X)"Y(B— ul)x.

The hypothesis (DP2) will allow us to commute the products in any functional expres-
sion containing A, B and I. In the sequel, the following commutations will be used:

Under the hypothesis (DP2), we consider A + z € p(A4) and —z € p(B).
1. If f € X, then
(A=X=2)(B+2)"'f € D(B),

and

BA=X—2)'B+2)'f=A-X—2)"'B(B+2)'f.
2. If moreover f € D(B), then
BA-A—=2)""B+2)'f=(A-X-2)"YB+2)'Bf.
The Sectorial Curve 7,

The hypotheses (DP1) and (DP2) will allow us to construct a sectorial curve 7, sepa-
rating 0(A — AI) and o(—B) and remaining in p(A — AI) N p(—B). So there exists 0y > 0
such that 6 < 6y < m — 04. Note that under the hypothesis (DP1) one of the two angles

04,0p is smaller than 7. So, in the sequel, we will assume that

m m
9A<§and90>§.
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We now construct, for all A > 0, an infinite sectorial curve v, which is the positively

oriented boundary of the domain located at the left of the lines
. . A
{te™ :t >0}, {te™ :t >0}, {—5 +y;y € R} :

and who lives in p(A— AI)Np(—B). This curve is oriented, leaving the (A — A\I) spectrum

on the left (see figure below).
We can then notice that z — (A — X\ — 2)7! is defined and analytic to the right of v,
and that z — (B + 2)~! is defined and analytic to the left of v,. Note that

p(A—AI)Up(-B) =C.

A Im(z)

2.1.3 Representation of the solution
Our aim is to solve the equation
Au+ Bu—du=f, A >0,

under the hypotheses (DP1) and (DP2). This is to see when it is possible to define
(A+ B — XI)~! or, failing that, (A + B — A\I)~L.
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Note that the hypothesis of ellipticity-parabolicity (DP1) alone is not sufficient to
guarantee that the sum A + B is closable. Similarly, if the two hypotheses (DP1) and
(DP2) are verified, this does not ensure that A+ B is closed. On the other hand, they are
sufficient to have the closability of the sum even if neither of the two domains D(A), D(B)
is dense in X, see [21].There are other additional hypotheses, among others, allowing to
obtain the closedness of the sum A + B, see [9].

So what is the ”candidate” to be (A+ B — M)~! or (A + B — \)~*? We will build it
using the Dunford integral (cf. chapter 1):

Here, let’s put

— M = ¢**® operator,
then
g(A—= M) = —/g(z)(z[ — (A=) dz
r

1
=—— [(A= X —zI)" (B +zI) 'dz,

2im Jr
where I' would be a Jordan curve surrounding the spectrum of A — AI. This leads to

consider, in what follows, the operator

FeX Sy f= - [ (A=A = 21)Y(B + 1)\ fd-.

2m ).,
Note that for z € v,, the two resolvents written above exist thanks to (DP1). The following

proposition shows that Sy is a bounded linear operator on X.

Proposition 2.1.1. Let A and B be two closed linear operators in X satisfying (DP1)
and (DP2). So, for all A\ > 0,5, € L(X) and there exists C > 0:

C
HSAHc(X) < X

The following proposition represents a fundamental results in the theory of sums.

Proposition 2.1.2. Let A > 0
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1. Ifue D(A+ B) = D(A)N D(B), then
Sx(Au + Bu — \u) = u,
( So Sy is a left inverse of (A+ B — X) on D(A+ B)).
2. If f € D(A) + D(B), then
Syf € D(A)ND(B) and (A+ B —X)S\f =,
( S is therefore also a right inverse of (A+ B — XI) but on D(A) or D(B)).

We have just seen that if f € D(A) + D(B) then u = S\ f is a solution of (2.3). Can
we do better, i.e. to obtain an inverse of the sum assuming less regularity on f? The ideal
is to solve equation (2.3) for f € X. This requires the use of interpolation spaces (cf.

chapter 1, [14]).

2.1.4 Main theorems

We come back to our equation (2.3): Au+ Bu— Au= f, A > 0.

Theorem 2.1.1. (Strict solution)
Let A and B be two closed linear operators in X verifying (DP1) and (DP2). Then, for
all f € Dp(0,400) + D (0, 4+00) where § €]0, 1], there exists a unique strict solution u of

Au+ Bu — Au = f.

Moreover u is given by the Dunford integral

u:S,\f:—L (A= X—=z2I)"YB+ 2I)" " fdz.

2m ).,
Proof. We assume in the following that f € Dp(6,+00), for example. Let us show that
u+ S)\f € D(B). We have

(A=X=2)""(B+2) " f=(B+2) (A= A-2)""/,

BA-X—2)"'B+2) ' f=A-X—2)"'B(B+2)f,
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and
_ _ Cste
HB(A — A= Z) 1(B+Z) lfHX < |Z—|— >\||Z|9||f||DB(97+OO)'
Thus
1
S B(A—)\—2"YB -1
2ir )., ( A—z) (B+2) fdz,

is absolutely convergent and v € D(B) with

1
Bu=—— A—\N—2)"'B(B “1fdz.
=g ) 2)'B(B+2)' fdz

Similarly, we can show that v € D(A) as well as

Au+ Bu — Au = f.

47

O

We have just seen that to obtain a strict solution u of (2.3), we have given ourselves a

regularity on f, namely

fe DB(Q, —|—OO) + DA(Q,—{—OO)

So obviously the block Au + Bu — Au is also in Dg (6, +00)+ Da(0, +00). The natural

question then arises to know if, in the end, we recover on each of the terms of the block, the

regularity that we gave ourselves at the start on f. The answer to this question is positive

as shown by the following result.

Theorem 2.1.2. (Mazimal reqularity)

Let A and B be two closed linear operators in X satisfying (DP1) and (DP2). For all

f € Da(0,+00), the strict solution u of
Au+ Bu — Au = f,
verifies
1. (A= MNu € Dy(0,4+00),

2. Bu € Da(0,+00),
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3. (A= MNu € Dg(0,400).
We have, by analogy, the following theorem.

Theorem 2.1.3. (Mazimal regularity)
Let A and B be two closed linear operators in X satisfying (DP1) and (DP2). For all
f € Dp(0,4+00), the strict solution u of

Au+ Bu — du = f,
verifies
1. (A= XNu € Dg(0,+00),
2. Bu € Dg(0,+00),
3. Bu € Dj(0,+).

Proof. (of the first theorem) Let ¢ > 0 be large enough so that —t is to the left of point
-2
5 - So
(=B —(-t))" € L(X),
ie.
(B—t)"' e L(X).

Let us then show the regularity Bu € Dg(6,+00). We have to calculate (B — ¢) 'u. We

have
(B—t)"'u=(B—1t)""(S\f)
_ % (A=A=2)Y(B—1)""(B+2)"fd-.

™
We use the 2" identity of the resolvent:

(B—t)"Y(B+2)"'f (B=t) "= (B+2)"),

Tt +z
(similar to a decomposition into simple elements). It comes:

—1 dz 1 dz
B-ty'u=—[ (A=X—2)YB—-1t)"! — [ (A=X—2)"Y(B+2)"! .
(B=t)"u= o ,M( 2Bt et w( 2 (Bt2) fe
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The first integral is zero (integrate to the right of vy,¢ + 2z # 0 ). From where

B(B—t)™!
=u+t(B—1t)"!
2_2; (A A —2)H(B+2)" fdz
+i (A_A—z)l(Bﬂ)l;:—f)Zdz
2‘@; 5 (A—=X—2z)" {(B+z)—1f—HLZ(B+z)—1f}dz
2_2; (A A—2) Y (B+2)7! (HLZ) fdz

By doing the same work for Bu = B (S)f), we have for ¢ large enough

~1
B(B—t)"'Bu= o (A—X—2)"'B(B+ z)_lti—fzdz
X
! (A= X—2)"'B(B+2)"'fd=.

227r At—i—z
So .
|88 =07"Bul, = (Cste) | || gl onoso
<(Cste) [ ——L sl fllopom,
o e+ 2] 2] ’
then z — tz

11 11|l 56,00
-1 BY,

From where

t"|B(B — )" Bu||, < ( Cste )|l fllppo.0):
i.e. Bu € Dg(f,+00). So since
u e D(B) C Dp(6,+00),
we deduce from the equation Au + Bu — Au = f, that

Au € Dp(0, +00).
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Finally the results obtained here extend to the case f € Dg(f,p) with p € [1, 400

thanks to the fundamental property of interpolation and to the following inclusions:

DA (0/7Q> — DA(67p>
if 0 >0, p, q any
orif @ =0, ¢ <p.

Proposition 2.1.3. Let A and B be two closed linear operators in X verifying (DP1) and
(DP2). If f € Dg(0,p), 0 €]0,1], p € [1,+00[ then the equation Au+ Bu— A u = f, admits

a unique strict solution u (u = S\f) satisfying
1. (A= MNu € Dg(6,+00),
2. Bu € Dp(0,+0),

3. Bu € Da(0,+00).

2.2 Non-commutative case

2.2.1 Introduction

The method, as we have said earlier, is essentially based on an explicit construction
of the solution in the form of a Dunford integral and on the use of interpolation spaces
characterized by Grisvard [15] (see chapter 1). More precisely, let X be a complex Banach
space and A and B be two closed linear operators of domains D4 and Dpg respectively, not

necessarily dense; we then consider the equation
Aw+ Bw - dw =y, A>0. (2.4)

We will say that the equation (2.4) is of parabolic type if

([ (A—2)"tand (B — 2)~! exist for z € ¥4 and 2z € ¥, where

>4 and Xp are two sectors of the form {z € C/|argz| <

<7 — ¢} with ¢ = 0,4 and ¢ = 0p respectively and

04+ 0p <mand (H.1)

1A =2) oo =0 () and (B = 2) e =0 ()
for z € ¥4 and X respectively.

\
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The commutative case corresponding to [(A — \)7% (B — u)™'] = 0 was treated in the

previous section. Indeed the solution x has been constructed in the form

1
r=8y=— [ (A=X—2)"(B+2) 'ydz, (2.5)
2 ),

where 7, is a simple curve joining oo exp [if] to oo exp [—ify] (where 0y €] 0p, m—04 ) and
residing in ¥4, N X_p. (defined as in the previous section). The fundamental idea here
in this section is to construct the solution in the form of a "left inverse” for (A + B — \),
more precisely we look for x in the form = = (1+Ty)™" Syy where T} is "small enough”
and zero in the commutative case. We make the assumption:

IXo >0, 1 :]0,+00[x]0,+00[— R such that

1 (A = 20} (A= 27 [(A = 20) ™ B+ 20| iy < (121127 (1.2)

Vz e X4,V € ¥_p and f% w(|z + A, |2])|dz] :ﬂg :
The hypotheses (H.1) and (H.2) and A large enough make it possible to construct a unique
solution for the problem (2.4) for a second member y in an interpolation space between
Dy and X or Dg and X. To study the maximal regularity of the solution we need to
make explicit the function v of (H.2); we will then show that if the data y belongs to an
interpolation space D4 (0, p) (see [34] or chapter 1) then Az and Bx are in D 4(min(é, 6), p)
where § will be given explained in the next paragraph. The part of the theory of sums
dealt with in this section is applicable to the study of equations of parabolic type. The

main theorems of this part can be found in [20] and [21].

2.2.2 Hypotheses

Let X be a complex Banach space and A and B be two closed linear operators with
domains D4 and Dpg, respectively, not necessarily dense in X. The operator A 4+ B will be
denoted by L and it will be defined by Lz = Az + Bx for x € D, = D, N Dg. We propose
to solve the abstract equation:

{L:I:—)\:E:y, A >0, (2.6)

xe DsN Dpg.
We will say that a linear map P of domain Dp C X verifies H(yp) if there exists ¢ € [0, 7]
such that:
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1. pp CEp={z€C/|argz| < 7 — ¢},

2. there exists an even and convex numerical function Cp defined on | — 7 + ;71 — |

such that:
Cp(9)

||

(P~ Z)ilu,c(X) S

, Vz € pp,
with arg z = 6.
We will make the following assumptions:
Hypothesis (H.1): 304 > 0,305 > 0 such that A verifies H (64), B verifies H (6p), and
04+ 05 <.
Hypothesis (H.2): Operators A and B verify (H.1) and in addition:

dXo >0, 9 :]0,+00[x]0,+00[— Ry

such that

] <
L(X)

<Yz, [2]),V2 € Xa, V' €2 5 (2.7)

i)

S (A=) (A=) [(A=2) 5 (B+2) 7]

i) [ Wz +ALlz)ldz| — 0.

2y
Hypothesis (H.3): A and B satisfy (H.2) where ¢ satisfies the following conditions:

IC >0, heN; (i), and (Bi), ,CR

such that

- 1
i Z7 Z/ < C —7 vz E 2 7VZ/ e E_ ’
Vbl < O A s (2.8)

) 0<l—a;<B <2 Vi=1,... h

We will set

J= miin (i + 6 —1). (2.9)
Remark 2.2.1. If 9 verifies conditions i) and ii) of (H.3) then condition ii) of hypothesis
(H.2) is verified. Indeed,

[ 0 il < /Z,Z+A

<c§3 b1 Md\—o(i>
STLL | T AP e )

ey 142l <

Bi
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We have the following two technical lemmas:
Lemma 2.2.1. Vu, 2z € py and Vz' € p_g we have
o [A=2)H(B+2) ] =A-mA—2) A= p) ™ (B+2) N (A-p)(A-2)""
o [AA-2) B+ =2[(A-2)"(B+2)"].
e [(A—2)"B(B+ z’)_l} =2 [(A-2)7Y(B+ z’)_l].
Proof. 1t suffices to develop the commutators. O

Lemma 2.2.2. If A and B satisfy (H.2) then we have

fra-sa-o -tz
A=A
<Y (2], 7)) (1 + M) , YA>0,Vz e XV e 5.

Lemma 2.2.3. If A and B satisfy (H.2) then YA > Ao, Jpy :] 0, +00 [— Ry such that

i) o] z D]dz] < +00, VA > Ao.

2y

i) ||[[(A=X)"5(B+2)""] HL(X) < a(|z]),Vz € ¥_p.

2.2.3 Representation of the solution

Under the previous assumptions, we want to obtain a formula representing the possible

solution x of (2.6) using the operator Sy and the regularity of the second member y.

Proposition 2.2.1. It is assumed that hypotheses (H.1) and (H.2) are verified. Fory €
X,A>0, let z € DyN Dg be a solution of (2.6) then

x+ Iy(x) = Syy (2.10)

where

L) =~ [ (A A= (A= N (B4 2)] (A - Nade,

27 =
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Proposition 2.2.2. Under hypotheses (H.1) and (H.2), we have
i) if y € Da(o,+00) then Syy € Dy and

(A=XN)Syy = _QLm/ 2[(A=A=2)"(B+2)" " ydz—

~ L [ B A NA - A - o)y,

271 -~

it) if y € Dp(o,+00) then S\y € D4 and

1
(A=XN)Syy = 50 / (A=X—2)"'B(B+2)'ydz +y.
7

Thanks to the hypothesis (H.2) and for y € D4(0,4+00) (or Dg(0,+00)) we can apply
(A — X) to both members of (2.10). More precisely, we have

Proposition 2.2.3. We assume that (H.2) holds and that y € Da(o,+00) (ory €
Dg(0,+00)); then if x is a solution of (2.6) we have

(A= Nz + Jy(A— Nz = (A - \)Sw, (2.11)

where

B0 = [ A NA— A=) (AN (B o) v

27 ),
Proof. 1t is enough to notice that (H.2) allows to give a meaning to (A — \)I,z and
proposition 2.2.2 allows to make (A — A)Syy. O

Equation (2.11) has the form v+.Jy(v) = h, h given; so we need to invert the continuous

operator (1 + Jy) for some A.

Proposition 2.2.4. We assume that (H.2) holds; then there exists A > 0 such that YA > \
the operator (1+ Jy) is invertible and (1 + J\)™" € L(X), additionally if y € Da(o, +00)
(or y € Dg(0,+00)) then

r=(A-N"1+ )7 (A= Ny (2.12)
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Proof. Thanks to ii) of the hypothesis (H.2), 3\ > 0 such that

1 _
w(’Z+)\|7|Z|)|d’Z| S 57 VAZ>\7

A

and therefore [|J3[[,x) < 1,VA > X, hence the invertibility and continuity of (1 + Ja)
Applying (1 +J5) " to (2.4), we get (2.12). O
Corollary 2.2.1. (Uniqueness) We assume the hypotheses of proposition 2.2.4; then if x

is the solution to problem (2.6), x is unique.

Proof. Indeed if x; and x5 are two solutions of (2.6), setting © = z7 — x5 we have Az +

Bx — Ax = 0 and according to the proposition 2.2.4 we have

v=a— 2= (A= A" {1+ )7 (A=) 0)} =0.

2.2.4 Approached problem

In summary of the preceding paragraphs, we have shown, thanks essentially to the
regularity of the right hand side y and to the hypothesis (H.2), that the existence of a
solution z of (2.6) implies its representation by (2.12) for A > A and hence uniqueness. To
show the existence of x € D4 N Dp solution of (2.6) we will consider the sequence (x,,) of
solutions of the approximate problems of (2.6) using Yosida approximants of A defined by

A, =nA(n — A)~' n € N*. Therefore, we consider the problems:
(L, —Az) = (A, +B—- Nz =uy. (2.13)
We will prove the following proposition:

Proposition 2.2.5. There exists \* > 0 such that for each n > 1, A > \* and y €
X, 3z, € Dg solution of (2.13); in addition we have

Tp = (Ay =N (14 Jun) " (A = N) Suay,

{ Jaa®) = g [ 2 (A = ) (A = A= 2) 7" [(Ag = N5 (B + 2)7Y] vdz (2.14)

z
Suay = =5 [ (An =X —2)7 (B+2)"lydz.
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For the proof of this proposition we need several lemmas.

Lemma 2.2.4. If A and B satisfy (H.2) then 3IM (04, o), N (B, A, 0y) such that

i) |
£(X)
<M (04, 20) %0 (]2, 12']) ,Vn > 0,YA > \g,Vz € 24,V €3 p (2.15)

g N (A, B,0
i) IS,y < SEE 0y e x

S (A=) (A2 [ N B+

<

Lemma 2.2.5. For each n > 0 there exists A(n) > 0 such that
[A(n), +oo[C p(Ly,) (d.e. YA > A(n), (L, — \)' € L(X)).

Lemma 2.2.6. There exists \* > 0 such that for each n > 1, X > X*; IM(n) such that

[(Ln = A)
RY

2|l x < M(n) mHX, Ve € D(L,) = Dg. (2.16)

We will now study the convergence of the approximate problems (L, — )z = y; for

this we look at the limits of (A4, — A) S,y and operators J, \ defined in (2.14).

Proposition 2.2.6. For each set \ > \* (see Lemma 2.2.6) and y € Da(o,+00) (or
y € Dp(0,+00)) then (A, — A) Spay - (A —X)Syw.

Proposition 2.2.7. Suppose (H.1), (H.2) and let A\ whatever such that A\ > \*, then we

have

1

)0 > 0, [l < 5

ZZ) VZL'EX,||J”7>\I—J>\ZL‘||X —+> 0.
n—-+00

iii) Vn > 0,(1+ J,\) 7" ezists and ||(1 + Jop) o) < 2, in addition

Ve e X, ||(1+ Jop) e — (1 +J0) 2l — 0.

n—+oo
2.2.5 Strict solution
We are now ready to state and prove the existence of the solution to the problem (2.6).

Theorem 2.2.1. Assume that A and B verify (H.1), (H.2); then there exists \* > 0 such
that YA = X\* and Yy € Da(o,+00) (or y € Dg(o,+00)) the equation Ax + Bx — Az =y
admits a unique solution x € D(L) = Dy N Dp.



CHAPTER 2. SUM OF LINEAR OPERATORS’ METHOD 57

Proof. Let A* be the number defined in lemma 2.2.6 and A > \*; let y € Da(0, +00) (or

y € Dp(0,+00) ), then consider the vector x defined by
z=(A=XN)"11+J) (A= NSy € Dy, (2.17)

where Jy and Sy are defined in (2.11) and (2.5) respectively, and consider also the vector
x, defined by

To = (Ay =N 1+ Jon) " (A — A) Sany, (2.18)
where J,, and S,, are given in (2.14);z, € Dpg is solution of the problem

(A, + B — \) z,, = y. By proposition 2.2.7 we have x,, — = in E; but

n—-+o00

Br,=—(A, - Nz, +y=—(1+ J,M)_1 (A, — ) Spny + v,

SO

Br, —» —(1+ ) (A= NSy +y=—(A— Nz +y,

and as B is closed we have
re€DgnNDy and B.CE:—(A—A)SE“‘Z/,

(x € Dy by its representation). O

We arrive in the previous paragraphs at the existence and uniqueness of the solution x
of (2.6) in the case where y is in D4(o, +00) or Dp(o, +00); it is interesting to do it also for

y in Dy(o,p) or Dp(o;p) for 1 < p < +00. Thanks to the inclusions already mentioned:
DA(va) — DA(Ua +OO)7 vp S [17+OO[7
we deduce the corollary:

Corollary 2.2.2. Suppose that A and B satisfy (H.1), (H.2), then there exists \* > 0
such that YA > X* and Yy € Da(o,p)(1 < p < 400) (or y € Dg(o,p)) the equation

Ax + Bx — A\x = y admits a unique solution x € Dy N Dp.
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2.2.6 Regularity of the solution

To study the regularity of the strict solution of problem (2.6), the hypotheses (H.1),
(H.2) are not sufficient because the function ¥ (|z + A|, |z]) is not explicit and the regularity
of (2.6) depends in some way on the "homogeneity” of 1. We will then need the hitherto
unused hypothesis (H.3) which explains .

Now we will cite three useful lemmas for the sequel. We then assume that (H.1), (H.2)

and (H.3) hold and that the number ¢ is defined in (2.9). So we have

Lemma 2.2.7. i) (A—\)S\ € L(Da(0,+0)),V0 €]0, 1],
it) (A—X)S\ € L(Da(0,+00); Dg(o,40)),¥0 €]0,1[ and Yo € €]0, B A 0] where B A
0 = min(B,0) and f =min{F;,1 =1,...,h}.

Lemma 2.2.8. i) (A— \)S4 € L(Dp(0,4+00); Dp(o,+0)),V0 €]0,1[ and Vo €]0, 5N 0],
ii) [([A—=XN)S\— 1] € L(Dg(0,+00); Da(6,+00)),V0 €] 0.1].

Lemma 2.2.9. i) J\ € L(FE,Da(0,+0)),Vo €]0,6]N]0, 1],
ii) Jy € L(E; Dp(o,+)),Vo €]0,6[N]0, 1],
iii) Jy € L(Dg(e,+00), Dg(o,+0)),Yo €]0,0]N]0, 1] Ve €]0, 1.

Theorem 2.2.2. Suppose (H.1), (H.2), (H.3) and y in D,(6,+00); let then x be the
unique solution of (2.6). So we have
i) (A— Nz € Dy(o,+0), Vo <IN,
ii) Bx € Da(o,+00), Vo <IN,
iii) (A — X))z € Dp(o,+00),Vo <IN 6.

Proof. We have (A — Nz = —J\((A — Nz) + (A — N)S\y and therefore by ap-
plying lemma 2.2.7 and the lemma 2.2.9 we obtain (A — \)Syy € Da(f,+00) and
— (A= XN)z) € Da(o,+00),Yo €]0,6]N]0.1[ hence point i). Point iii) is obtained in

the same way. As for ii) it suffices to use the equation Bx + (A — \)z = y. ]

Theorem 2.2.3. We always assume (H.1), (H.2), (H.3), and y € Dg(0,+00) and let x
be the solution of (2.6); then



CHAPTER 2. SUM OF LINEAR OPERATORS’ METHOD 29

i) (A= XNz € Dp(o,+00),Yo <IN,
ii) Bx € Dg(0,+00), Vo <IN0,
iii) Bx € Dy(0,400), Vo <ING.

Proof. We still use (A — Nz = —Jy((A— Nz) + (A — N)Sy\y and the lemmas 2.2.8 and
2.2.91). We have (A— )z € Dg(0,+00), Vo < § A1, and from lemma 2.2.9 iii) we deduce
that (A — Az € Dg(o,+00), Yo €]0,9]N]0, 1], and so i) and ii) thanks to the equation. On
the other hand Bx = —(A— XNz +y = JA((A—N)zx) — [(A — N\) S\ — I]y; Lemmas 2.2.8 ii)
and 2.2.9 i) conclude for point iii) of the theorem.

]

If y € Da(0,p) (or Dp(f,p),1 < p < +00), we do not obtain the maximal regularity

0 A 6 as in theorem 2.2.2 or 2.2.3; more precisely we have

Theorem 2.2.4. We suppose (H.1), (H.2), (H.3) satisfied and let y € Da(0,p)(0 €
10,1; 1 < p < +00), then the unique solution x of (2.6) for A = \* verifies

i) (A— Xz € Da(o,p), Vo €]0,4]N]0,6],

ii) Bx € Da(o,p), Vo €]0,0[N]0, 6],

iii) (A — Xz € Dg(o,p),Vo €]0,0[N]0, 6.
We have an analogous statement if y € Dg(o,p).

Proof. We will only demonstrate point i), the proof of points ii) and iii) being analogous
1%t Case. § €]0.1[ and 6 > §; let y € Da(0,p), then y € Da(f,+00). So for A >
A, 3z € DoNDp such that Ax+ Bx — Az = y and Theorem 2.2.2 implies that (A—\)x €
D 4(0, +00).
But D4(6,4+00) C Da(o,p), Yo < 6 and Vp € [1,+0o0[, so (A—N)z € Da(o,p), Yo <.
2" Case. 6§ > 0; let 0; and 6y in |0, 1[ such that 6; < @ < 6, and 0, < §; let T be the

linear map defined on D 4(w,+00) where w < 6; by

T : DA(CU,—i—OO) — X

y = T(y) = (A= Az,
x being the solution of Ax + Bx — Az = y.
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Theorem 2.2.2 then expresses that the restriction of 7' to the spaces D4 (6;,+00) is
continuous linear on themselves and therefore by applying the fundamental theorem of in-
terpolation [33]; T € L ((DA (02, +00); D4 (64, +oo))57q> and this Vs €]0,1[,Vq € [1, +00][.
In particular if we take for s = (s — ) /(05 — 01) and ¢ = p we obtain of the iteration
theorem

(DA (QQa +OO) ;Do (917 +OO))(92_9)/(92_91)7P = DA(97P)7

hence the result. O



Chapter 3

LP-Regularity results for 2m-th order
parabolic equations

This chapter is devoted to the analysis of the following linear 2m-th order parabolic

equation
O+ (— }:ymu—
subject to Dirichlet type condition

Ou=0,1=01,..,m—1,

on the lateral boundary, where m is a positive integer. The right-hand side f of the
equation is taken in the Lebesgue space LP, 1 < p < 400. The problem is set in a domain

of the form

Q= {(t,xl,...,xN) RV 0 <ol + . +ad <t 0<t < 1},

with o > 1/2m.

3.1 Introduction
Let @ be an open set of RVY*! defined by

Q= {(t,x1,22,...,aNn) € RNTL (2, 29, .yan) €y, 0< t < 1},

61
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where for a fixed ¢ in the interval ]0, 1[, Q; is a bounded domain of RY, N > 1, defined by

@, = {<x1’x2>'--’xN) eRY:0< \/33%+x§+...~|—:c?\, <t°‘},

with a > 1/2m and m belongs to the set of all nonzero natural numbers N*. In @), consider

the boundary value problem

(9tu+Mu:f S LP(Q),
(3.1)

l — —
Oulyop, =0, 1=0,1,.m—1,

0@ is the boundary of @), I'; is the part of the boundary of

where M = (=1)™ >, 02,
Q where t = 1 and 9!, stands for the derivative of order [ throughout the normal vector v
on (0Q \T'1). Here, L?(Q), 1 < p < 400, denotes the space of p-integrable functions on
() with the measure dtdx;...dxy.

If the domain under investigation is a cylinder, the solvability of the corresponding
problem is known over the scales of anisotropic Sobolev-Slobodetskii or Hoélder spaces
since the mid of the last century. Indeed, classical results on the resolution of Problem
(3.1) can be found in [22] and [23] and in the references therein. Some recent regularity
results are given in [2], [8], [11], [12], [16], [27], [28] and [29].

Besides being interesting in itself, the study of Problem (3.1) is motivated by the interest
of researchers for many mathematical questions related to non-regular domains. During
the last decades and since many applied problems lead directly to boundary-value problems
in "bad” domains, numerous authors studied partial differential equations in non-smooth
domains. Among these which are related to higher order parabolic equations we can cite
Baderko [1], Cherepova [3], Cherfaoui et al. [5], Galaktionov [13], Grimaldi [14], Mikhailov
[25], [26], Sadallah [31] and the references therein.

The L?-solvability of Problem (3.1) has been investigated in [6] by the domain decom-
position method, see also [4] and [17]. The difficulty with the space LP, p # 2, is that
this space is not a Hilbert space. So, the domain decomposition method used in [6] does
not seem to be appropriate for our study and cannot be generalized in this sense. An idea

for this extension (to the case LP, p € (1,00)) can be found in [8] and [18], in which the
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operators’ sum method was used. This method is interesting because it may be generalized
to Banach spaces instead of Hilbert spaces. For more details and recent results concerning
this method, see [7], [30] and the references therein.

In this work, we are especially interested in the question of what sufficient conditions,
as weak as possible, the dimension N, the exponent p and the type of the domain () must
verify in order that Problem (3.1) has a solution with optimal regularity, that is a solution

u belonging to the anisotropic Sobolev space

Hy2™ (@) = {w € HY*™ (@Q) s hulp =0, 1=0,1,..5m — 1},
with
Hy*™(Q) = {u: du,0%u € L7 (Q),|a] < 2m},
where o = (iy, 2, ..., in) € NV, |a| =iy + iy + ... + in and 0%u = 9%, 02 ...0.N u. The space

H)*™(Q) is equipped with the natural norm, that is

1/p
HUHH;’QT"(Q) = HatuH}[)/p(Q) + Z HaauHip(Q)
la|<2m
The main assumption is
1 p—1
— ca< i 3.2
om "N (3:2)

The outline of this chapter is as follows. In Section 3.2 we recall the essential of the
sum’s theory we will have to apply. In Section 3.3 we perform a change of variables
conserving (modulo a weight) the spaces L” and H}*™, and transforming Problem (3.1)
into a degenerate parabolic problems in a cylindrical domain. Section 3.4 is concerned
with the application of the sum of operators’ method to the transformed problem. Finally,
in Section 3.5 we give results concerning the transformed problem and we return to our

initial problem by using the inverse change of variables.

3.2 On the non-commutative sum of linear operators

Let A be a closed linear operator in a complex Banach space E. Then, A is said to be

sectorial if



CHAPTER 3. L*-REGULARITY RESULTS FOR 2M-TH ORDER PARABOLIC EQUATIONS64

(1) D(A) and I'm(A) are dense in FE,
(i) ker(A) = {0},
(1ii) | —00,0[C p(A) (p(A) is the resolvent set of A) and there exists a constant K > 1

such that Vt > 0, ||t (A+ )" < K. If A is sectorial it follows easily that p (—A)

) e
contains an open sector X, := {z € (C cz #0,|arg z| < ¢}, with ¢ €0, 7.

Consider two closed linear operators A and B with dense domains D(A) and D(B)
respectively in E. Assume that both operators satisfy the following assumptions of Da

Prato-Grisvard’s type [7].

There exist positive numbers r, Cy, Cp, 64, O such that

0a+0p <m, (3.3)
p(—A) DY, g, ={2€C:|z| >r|argz| <7 — 04}
and VA € 2o g, [|[(A+AD) 7|, < %“ (34)
p(=B) DX, g, ={2€C:|z| >r|argz| <7 —0p}
and Vi € Se_g, [|[(B+uD) |, < %T (3:5)

We also assume that there are constants C' > 0, \g > 0, (with A\g € p(—A)), 7 and p such

ha
o ) A+ doT) (A AD ™ [(A+ 2D ™ (B 4+ D)™ [

< WW\EP(—A% Vi€ p(=B), (3.6)

(i) 0<T<p<l.
For more details concerning this last Labbas-Terreni commutator assumption, see [19] and
20].
For any ¢ € |0,1] and 1 < p < 400, let us introduce the real Banach interpolation
spaces D4 (o,p) between D (A) and E (or Dg(o,p) between D (B) and E) which are
characterized (for 1 < p < +00) by

Da(o,p)={¢€E t— |[tCAA+t])¢||, € LV},
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where L? denotes the space of p-integrable functions on (0, +o0c) with the measure dt/t.

For p = 400,
D4 (0,40) = {5 € E :sup|[t”A (A—i—t])_lfHE < oo} .
>0
For these spaces, see [15]. Then the main result proved in Labbas-Terreni [19] is

Theorem 3.2.1. Under assumptions (3.3), (3.4), (3.5) and (5.6), there exists \* > 0 such
that for any X\ > \* and for any h € D4 (0,p), equation

Aw + Bw + Aw = h,

has a unique solution w € D (A) N D (B) with the regqularities Aw, Bw € D, (0,p) and

Aw € Dg (0,p) for any 0 verifying @ < min (o,p — 7).

3.3 Change of variables and operational setting of the
problem

3.3.1 Change of variables
We make the following change of variables and functions
Inm :qQ — G

rT T T
(t,z1,29, ..., xy) +——> (t,yhyz,...,yzv):<t,t—;,t—j,...,t—g>,

where G =]0,1[ x B(0,1), with B (0,1) is the unit ball of RY centered at the origin. Set

U(t,$1,$2,...,$N) = U(t7y1ay27'“7yN) and f(t,l'l,l'g,...,iﬂ]\/') = g(t>ylay27'-'7yN)7 then

Problem (3.1) is transformed, in G, into the following degenerate evolution problem
t*me Qv + Mo — at?™~! Zgil YrOy, v = t**g = h,
Vs, =0, (3.7)

[ — J—
8VU}8G\(EOU21) =0,l=0,1....,m—1,
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where M = Z,ivzl 8;;”, ¥;, 7 =0, 1is the part of the boundary of G where ¢t = j. It is

easy to see that f € L? (Q) if and only if tV*/Pg € L? (G) . Indeed,

FELPQ) & [y fo If (t o, yzn)P dt doy..dzy < 4oo

& fOIfB(O,l) ’tNa/pg(t,yl,...,yN)|pdtdy1...dyN < +oo

& thelrg e [P (G).

Consequently, f € L?(Q) if and only if ¢t~2me+(Ne/P)p ¢ [P (@) which implies that h €
L? (G), since h = (t~2metNa/p)p) g2me=(Na/p) and 2ma — (Na/p) > 0. Then, the function
h = t>™%g lies in the closed subspace of L? (G) defined by

E={heL”(0,1;L7(B(0,1))) : t2metWe/blp ¢ 17 (0,1; LP (B (0,1)))} .

This space is equipped with the norm ||h||, = ||t_2ma+(Na/p)hHLp(0 LLP(B(OL))

3.3.2 Operational formulation of Problem (3.7)

Recall that o > 1/2m and assume
p>1+ Na. (3.8)

Set X = LP (B (0,1)) and define the functions
v [071] _>X7 tf—>'U(t), U(t) (ylvaa7yN):v(t7y1ay27ayN)7

h [071]—>X7 t'—>h(t)> h(t)(y17y2a-“7yN):h<taylay2a-“7yN)-

Consider the family of operators (L (1)), defined by
D(L(t) = {¢EWWW%BmJ»:@wbmmJ:Qlzlwwm—l},

(L(t)) = Mip—at? SN 48,9 for ae. t € (0,1),
then Problem (3.7) is equivalent to the following operational degenerate Cauchy problem
in X
ey () + L(t)v(t) = h(t), te(0,1),
(3.9)
v (0) = 0.
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Observe that D (L (t)) = X. Set

t1—2ma

w(t) = e ema p (1),

t1—2ma

k’ (t) = e>\ 1-2ma h (t) ,
where \ is some positive number. Then, w verifies

t*mow’ (1) + L () w(t) + \w (t) = k), te(0,1),
(3.10)
w (0) =0,

where k belongs to the space
E={heLP(0,1;X): ¢t 2metNeolp ¢ [r(0,1;X)}.
We obtain then the new operational form of the previous problem, mainly
Aw + Bw + \w = k,

where

(Aw) (t) = L(t)w(t), t €[0,1],

with domain
D (A) = {w e E ¢72metWNe/tly ¢ [P (0, 1; W™ (B (0,1)) nWg™" (B (0,1))) },

and

(Bw) (t) =t (t)w' (t), t € [0,1],

with domain
D(B)={we E:tWN*/Py € LF(0,1;X) and w (0) =0} .
Note that the trace w (0) is well defined in D (B). In fact, we have
tNelPy € LP(0,1; X)), NP’ e LP(0,1; X)),

and in virtue of (3.8) (Na/p)+(1/p) < 1. Then, w is continuous on [0, 1], (see [33, Lemma,
p. 42]).
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3.4 Application of the sums

Now we are in position to apply the result of the sums of operators. For this purpose,
we must verify the assumptions of Theorem 3.2.1. The spectral properties of A and B are

as follows.

Proposition 3.4.1. A and B are linear closed operators and their domains are dense in

E. Moreover, they satisfy assumptions (3.3), (3.4) and (3.5).

Proof. 1. Let us study the spectral equation related to the operator B
Bw + zw = k.

Fix some positive o and let z such that Re z > p. Then the general solution of the

problem
ey () +zw (t) = k(t), te€l0,1],

is given by

Ld Lk td
w(t) = dexp (z/t szia)+/0 (02(:2 exp (—z/o 327i°‘)>d0’

where d is an arbitrary constant. The hypothesis p > 1 + N« implies that the function

1
¢ S2ma

does not belong to L? (B (0,1)). So, we will take d = 0 to obtain w € E. Consequently

w(t) = ((B+2D)7"k) (1)
= (A e (o)) o

k(o)
z 3 —Z
= eXp ((Qmafl)f?ma—l) 0 O_Qma eXp ((Qmafl)UQmo‘_1> dU

Let us check that this formula is well defined on [0, 1] and gives w (0) = 0. Set u = (2m—2_1),
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then

O] < exp (shetr) f{ o 2meNei (o) o~ Noro exp (e2) do

IN

(fot HU—2ma+(Na/p)k (o) ||p do’) 1/p <f0t g_qNa/pda> 1/q

L —(Na
< (=gaayg)  t YO K| 5

where (1/p) + (1/q) = 1. Hence w (t) is defined and w (0) = 0 since

means p > 1 + Na. On the other hand we can write

t—2ma+(Noz/p)w (t)

_ fot ( k(o) exp pu (t~2metl 0.2ma+1)) do

t2ma—(Na/p) 52ma

t k(o) 1 et I
— fO <O-2ma—(No</p) tQma—(Na/p)o_Na/p exXp u (t — 0 ) do.

Putting
1

t2ma—(Na/p)

exp p (t72motl — g=2matly if ¢ > g
Na
Ku (t> 0) = ol

0 if t <o,
we deduce that

1
+ k(o)
—2ma+(Na/p) = S A
t w (t) /0 5 a—(Na/p)K# (t,0)do.

We need the following classical interpolation result, the so-called Schur’s Lemma.

Lemma 3.4.1. If there exists a constant C' such that
a) fol K, (t,0)|do < C for every t € ]0,1],
b) fol |K, (t,0)|dt < C for every o €10, 1],
then

Hthma+(Noz/p : <C Hthma+(Na/p

)wHLP(O,l;X )kHLP(O,ng) :
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Now, we have to check that the conditions a) and b) are satisfied.

Condition a)

We have
fol | Ky (t,0)|do = m exp (t72™** Re p) ft (-0 _ZZZI‘R‘? D) do
< g=—exp (¥t Re p ft omasr Xp (—s.Re p) ds
S Fer
Consequently

1
K, (t 3.11
|, V0 511

This shows that the condition a) of Lemma 3.4.1 holds true.
Condition b)

We have
! - 1 exp(t—2metl R
fO |K# (tv U)| dt = U% exp (_U 2ma+1'Re :U’) fo’ exp£2ma7(Na/p)€ H) dt
—g2 +1 —2ma
Qm;_l exp( o g .Re u) flg 2ma+1 1 exp (S'Re lu) d37
o P sp(2moz71)
and

1+U—2ma+1

ya—exp(s.Re p)ds = fl 2

sp(2ma—1) sp(2ma—1)

—2ma+1

exp (s.Re ) ds

I

—2ma+1

+ f1+(,—2ma+1 ——4——exp (s.Re p) ds

gp(2ma—1)

1+0_72m0¢+1

< [, 7 exp(s.Rep)ds
1 a.—2ma+1
(l+o_722ma+1)p<2ﬁ371> f1+d_22ma+1 exp (s.fie ) ds,
= L + L.
Then -
I < ghlexp(Re p" ) exp(Re p)

(Re 470y,

IN
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and N
mo
1 exp(_o—72ma+1.Re ,u,)]_ < 1 exp(_(a . -1) Re 1)
2ma—1 No 1 = Re:z No
o P o P
_ 2ma—+1_
< 1 exp( e =7 Y o)
S ez Vs
o P
C1i(a,p)
— Rez 7
since the function
_(a.f2ma+1 1)
exp( p o)
o ~a
or
is continuous on [0, 1]. Moreover
1 exp(fo-—Zma+1.R€ ,LL) I < 1 exp( o—2ma+l pe “) f o—2ma+1 ( R ) d
—2ma+1 €X S. e
2ma—1 J% 2 = 9ma—1 Na(1+a—2ma+1)p<2fr\fa 7 lto 5 P H
2
< 1 CQ(O!,p)
iy N
Re z U% ( 1+U—22moc+l )7“27”2‘71)
C3(a7p)
S Re z 7
in virtue of the fact that
1
lim =1.

Na Na
o—0 0.7(1 + 0——2ma+1)p(2ma—]>

Consequently, there exists some constant C'(«, p) > 0 such that

Cla,p)

- (3.12)

max/ |K, (t,0)|dt < ————=

o€0,1]
This shows that the condition b) of Lemma 3.4.1 holds also true. Now, using Lemma 3.4.1
together with (3.11) and (3.12), we obtain

— 2o o C(a’p) —zmo (03
ezt e l] oy < o I PR Ly
from which it follows
- C(a,p)
H(B+ZI) 1||L(E)S Re »

Thus, we can take 0p = § — ), (for each 0 € ]0, 5 D
2. Now, we are concerned with the operator A which has the same properties as its
realization L (t). The study uses the following perturbation result due to Lunardi ([24,

Proposition 2.4.3, p. 65]).
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Proposition 3.4.2. Let Ly be a linear operator of domain D (Ly) dense in E. Assume
that Lg is sectorial and P a linear continuous operator on D (Lg) which is compact. Then

operator Lo+ P : D (Ly) — X 1is sectorial.
For each t € [0,1], we write
L)y = Lo+ P(t)y
with
D(Ly) = {w € W2 (B (0,1)) : 0L, 00) = 0. L= 0,1, .m — 1},
Lop = Mb=330m0,
and

D(P(t)) = W (B(0,1)),

PH)y = —at™ U550 .
It is well known that D (Ly) = L? (B (0, 1)) . The fact that Ly is sectorial can be proved as
in [8, Lemma 5.2 and Lemma 5.3 | pp. 18-19]. Observe that

Y 1
() — b (e syl s)ds: 1 =
50 (y) /0<sw <s>>s+/y<1s /¢ s 1=12 .. 9m—1

where () denotes the derivative of order I of 1. Thanks to Hélder inequality, for
v € D (Ly) C D(P(t)) and by using the previous equality we have

1P (&) ¥l o 0,0

(S

1
» 1
_qf2ma—1 Zi\le YkOy, ¥ (Y1, Y2, -\ yN)‘ dy1dy2...dyN) P

p p
P (fB(o,n ‘_atma_lyk( o sk05, Ydsy, + f (1 — s4)0 lﬁdsk)) dyl---dyzv)

IN

< atmert [Cl (p) ||MwHLP(B(O,l)) +C2 (p) |’M¢|ILP(B(0,1))]

< Cs(a,p) ¥l pry) -
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On the other hand, let us set

my (t) - LP(B(0,1)) — LP(B(0,1)
WP = (my (D)) = —at?™ yp, k=1,..., N,
7 wt?(B(0,1)) — LP(B(0,1))
(G =,
dy, w2mp (B (0,1)) — Wb (B(0,1))
P = dp (¢Y) =0,¢, k=1,..,N
Then one has N N
P(t)=> Pit)=> my(t)oiod,
k=1 k=1

Thus, P(t) is compact from D (Lg) into E since i is compact and dy, my (t) ,k =1,..., N
are continuous. So for any t € [0, 1], the operator L(t) is sectorial and consequently there

exist some ro > 0 and 6; € ]O, g[ such that
p(=L(t) DYrg, ={z:]2| >ro, |argz] <7 —6}.
Now, for k € F and z € ¥,_y, the spectral equation
Aw + 2w =k,
is equivalent to

Lt)w(t)+z2w(t)=k(t), t €[0,1],

which admits a unique solution

Hence

K
Jw (t)HLP(B(O,l)) < m [k (t)”LP(B(O,l)) )

which implies

1 , 1/p K
—2ma+(Na
oty = ([ e emuofyar) < 2l

This ends the proof of Proposition 3.4.1. ]
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Proposition 3.4.3. Operators A and B satisfy the Labbas-Terreni condition (5.6).

Proof. In our case, since the domains D(L(t)) are constant, the condition (3.6) holds
whenever the following so-called estimate of Sobolevskii [32] is fulfilled: There exists K > 0
such that for all ¢,0 € [0, 1],

(L)L) = D) S Kt =0l (3.13)

For g € X = L*(B(0,1)), the equation ¢ = L(c)™'g is equivalent to
(LB (y) = Me—at™ 3 40, 8(y) = 9(y),
I _ _
av¢\ag(o,1) = 0,1=0,1,...m—1,

and

[(L(t) = L(0)) L(0) ' g)(y) = a(o®™"" =71 Y " 440, 9 (y),

k=1

where y = (y1,y2, ..., yn) . Then, we get

IN

Qa ‘thoc—l _ O.2mo¢—1’

L) = L(o) L(o) " glllx ‘ZL yk&ykax

min(1,2ma—1
< M|t —o| ( ) HMwHLP(B(U,l))

min(1,2ma—1
< M|t — ol (1,2m )||¢HW2"W(B(0,1))

min(1,2ma—1
< K|t — o™ : 191l Lr (0,1 -

So, the condition (3.13) is satisfied with p = min (1, 2ma — 1) . To prove (3.6), it is sufficient
to estimate

[AA+0) T [AT (B +2) || g
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where A € p(—A) and z € p(—B). Let k € E, then
D — (t—Qma+(Na/p)A(A+ )\>—1 [A—l; (B + z)_l} k) (t)
= (72metNe(A(A+ M) (AN (B+2) = (B+2) AT E) (1)

= met N L (#) (L () + A)
x[L&)(B+2)" k) () — (B+2)""L{#t)" k) (t)]

= L) (L) +N" [ o 2metWNe/n K, (t0) (L) " = L(0) ") k(o) do

= [ o metWeln i (t o) L(t) (L) + N (L) — L(0) ") k(0)do

= [ o mer e i (t o) (L(t) + N (I — L(t)L(0)") k(o) do,

since the domains D(L (t)) are constant, where (we recall)

1
exp p (t72motl — g=2matly if ¢ > g
2ma—(Na Na
K, (t,0) = t (Na/p) gNe/p
0 if t <o,
with pu = m Then

K 1 — Mo e
IDllx < Wfo K (t,0)| [t = 0" o7 2mer N ||k (0)|| . do,
with p = min (1,2ma — 1). We have

fol |K, (t,0)||t — ol do = exp (t72m** Re 1)

t2ma—(Na/p)
X fot o~ NP (t — o) exp (—o 2L Re 1) do.

Then by Holder inequality, one has

f(f o NP (t — o) exp (—o 72 Re p) do

1-p
(fot o~ Ne/Pexp (—o2m+! Re p) dJ)

IA

X (f(f o~ Ne/p (t — o) exp (—o 2 Re p) da)p
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and
t _2ma—(Na/p) ~—2ma —2ma+1 1=p
J = <f0 o Pg exp (—o Re p) da)

(t2ma7(Na/p))17p 1

< =
— (2ma—1)1-r (Re ,u)l

p
Jo = <fg g?ma=(Na/p) g=2ma (¢ _ g)exp (—o 2™ Re p) da)

—9ma 1-
— (exp (=72 Re p)) ",

(tQma—(Na/p) )p

— (2ma—1)r

(o-nx o)

where y (o) = exp (—o?™*"! Re 1) . Using an integration by parts, we obtain

Re,u

f(f (t—0)X' (0)do = fot exp (—o 2™t Re p) do

_ fot g2me g —2ma exp (_O.—Qma-l-l‘Re ,u) do

t2mo —2mao
< 5 - exp (—t 1. Re p),
from which we deduce that
(t2mo¢7(Na/p>p 1 (t2ma)p 1

S Gma =1y (e g @ma — 1 (e

(exp (=t " Re p))’.

Finally we have

1
Jo 1K (t,0)| [t = 0" do

exp(t72ma+1.Re /"/) <t2ma7(Na/p))17p (eXp(—tiZmoH»l.Re u))l*p
= t2ma—(Na/p) (2ma71)1—l’ (Re,u)l_/’

(tQma—(NOt/P) P 1 p 1 —2ma+1 P
X @ma=1)7 _ (Re p)” (@ma—1) (Re p)? [eXp (—t Re PJ)]

(t2ma)p 1
= (2ma-1)ltr (Re u)lﬂ”

and
! C
K, (t t—olPdo < ————. 3.14
mas [ w0 do < 2t .14
In a similar manner we obtain
0 C
max |K t,o)||t — o]’ dt < Tl (3.15)
c€[0,1] (Re lj’) 4
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Now, using Schur interpolation Lemma together with (3.14) and (3.15), we obtain
C C

|AA+ X [A 5 (B+2)” H|L(E) < Al (Rep)™  |A| (Re 2)'™*

which implies

C
—1 [ 4-1. -1

HA(A +A) [A 5 (B +2) ]HL(E) < W’

for any A € p(—A) and any z belonging to a simple path v joining coe™2 to ooe®? for

some 6y €]m — Op,01[, v lies to X9, N X;_p,. Then (3.6) is verified with

(1,p) = (0,min (1, 2ma — 1)).

3.5 Regularity results for the original problem
3.5.1 Regularity results for the transformed problem (3.7)

Using Theorem 3.2.1, we deduce the following result

Proposition 3.5.1. There exists \* such that for all X > X* and for all k € Dy (0o,p)
(respectively, k € Dg (o,p)), Problem (3.10) admits a unique solution w € D (A) N D (B)
such that for all @ < min (o, 2ma — 1)

i) L()we Dy(8,p),

it) t*w' € Dy (0,p),

i) L(.)w € Dg(6,p)

(respectively,

i) L(.)w e Dg(0,p),

it) t*w' € Dp (0,p),

iti) L()w € Dy (6,p)).

Now, let us specify the space D4 (o,p). One has



CHAPTER 3. L*-REGULARITY RESULTS FOR 2M-TH ORDER PARABOLIC EQUATIONST8

DA (U7p) =
{w c E - t~2mat(Ne/p)y, ¢ [P (0,1; W/ 2mo.p (B(0,1))), 35“’1@3(0 = 0}
where [ = 0,1,...,m — 1; if 2mo > 1/p,

{we B ¢72matNe/phy e [P (0,1; W2mor (B(0,1)))} if 2mo < 1/p.

Indeed, we know that
Dy(o,p)={weE: ||C1_UA6_CAwHE €Lt}

because (—A) is a generator of the analytic semigroup {G{A}oo‘ Now, w € Dy (o,p)
implies
Hgl"’Ae’CAwHE e L?.

Or ||¢'7Ae 4w ||, € L? is equivalent to

Jo ll€ 7 Aem ol

oo mao « g - dc
= Jo et Nemctr Aem Al L sony ¢
00 —2ma a -0 - dC
_— <f01 Ht 2mat(Na/p)(1=0 (Ae=¢Aw HLP(B(O 1)) > ¢ < o

On the other hand, thanks to the Dunford representation of the semigroup {e_CA} >0 We

have

2z7r .

where 7 is a sectorial curve lying in p(—A) such that Re(—A) < 0 for a larger A € ~.

1
e = / QXA+ AD LN,

Moreover
(Ae~“Mw) (t) = L (¢) W (w (t)).

Then, by Fubini’s Theorem, we obtain

I3 e A<t

dg

= fooo [fol Ht*zmoﬁ(Na/p)Cl*UL( eCL t) HLP(B(O ) ] ?

—2ma « 00 —0 C
— fol ||t 2ma+t-(N /p)Hp |:f() HQI L eCL(t HLP(B(Ol }dt < 400,
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which means that, for almost every ¢, the function

(yh Y2, .oy ?/N) = t—2ma+(Na/p) (t)?]) (t> (yl; Y2, .-y yN)

is in Dy (0,p) . It is well known that this last space is the following:

Dy (o,p) = (W™ (B(0,1)) N W5"" (B(0,1)); L* (B(0,1)))

l1—o,p’
and

(W2 (B(0, 1)) N Wy (B(0,1)); LF (B(0, 1))

l—o,p

{wewmw (B(0,1)) : & —0, le,l,...,m—l}

Vw‘aB(O,l)
_ if 2mo > 1/p,
W2mer (B(0,1)) if 2mo < 1/p.
Let o be a fixed positive number satisfying o < 1/2mp and o < 2ma — 1. From the above

proposition, we deduce the following result.

Proposition 3.5.2. For all h such that t=2me+WNe/P)p ¢ [P (0, 1; W™ (B(0,1))), Prob-
lem (3.9) admits a unique solution fulfilling the following regularity properties:

(1) w € LP(]0,1[x B(0,1)), t~2matWNa/p)yy ¢ [P (]0,1[xB(0,1)), w (0) = 0,

(43) t=2me+(Ne/p) My € LP ()0, 1[x B(0, 1)),

(4ii) tNPd,w € LP (]0,1[x B(0,1)),

(iv) t=2matWNa/p) Ny € LP (0, 1; WP (B(0,1))),

(v) tNe/POw € LP (0, 1; W2moP (B(0,1))) .

3.5.2 Going back to the original problem (3.1)

We go back to our original domain () by using the inverse change of variables

' :G=0,1[xB(0,1) — Q

(tu Y1,Y2, - yN) L (tvxla X2, ...,ZEN) = (tv tayhtay?a cey tayN) :
Let us recall that

= t?mag (t7y17 Y2, 7yN) )

h (t7y17y27 7yN)
g (t’ylay27 7yN) = f (tvxlaan 7IN) )

w (tvylvy% "'7yN) =u (taxlax% "'7xN) .



CHAPTER 3. L*-REGULARITY RESULTS FOR 2M-TH ORDER PARABOLIC EQUATIONSS0

First, we see that
Oy w =10, u, k=1,2,...,N,

3,3;”10 = tQmaE)g;"u, k=1,2,....N,

Oyw = O + (a/t) Zivzl T Oy, U.
The assumption t=2me+Ne/plp ¢ [P (0, 1; W?moP (B(0,1))) means that

1
/0 42 I (1 (8, )| sy U < 501
So, by setting

Y= (Y1,Y2, - yn) ¥ = W1, Vs s yy) s dy = dyr...dyn, dy = dy;...dyy,

we have

e O LY ] YL

1 a—2ma |h (ta y) —h <t7 y/)|p
= Lot 00 Jaon dydy'dt

ly —y'||>" PN

= f o fo, Ja, SRLSA L L /Mpdmdfdt,

Hx —r ||2m0'p+N

where
= (t%1, t%2, ..., t%nN) , ' = (Y, Y, . tYy) , dz = dxy..dry, d2’' = dz)...dxy,

and

Qt: {(xlux%'--;xN) ERNZOS \/x%+x%++m?v<ta}

Let us introduce the following subspace of L? (Q) :

N |P
Liooa (0, 1; Wt%cmg’p) = {f €L (Q / t2m‘wp/ ‘f” ”2m(ap+N)| drdz'dt < oo} )
o Jao. ||lr—

Then, we are in position to prove the main result of this work.

1
Theorem 3.5.1. For given o € ]0,1[ such that 0 < 0 < By (such that p verifies (3.2)),
mp

and for any f € L., (O, 1; Wtzama’p) , Problem (3.1) has a unique solution u € H;’Qm (Q)
with the regularities: u, Oy, Oyu, k=1,...,N and Mu belong to L., (0, 1; W;mo’p) )
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The proof of Theorem 3.5.1 can be easily deduced from the following equivalences.

Proposition 3.5.3. (i) t~2metWNa/pip ¢ [P (0,1, W?mP (B(0,1))) if and only if f €
LPy e (0, 1, WRTTPY

(i3) t=2matNa/plyy € [P(0,1; LP (B(0,1))) if and only if u € LP (Q),

(4ii) t72metWa Ny € LP(0,1; W?moP (B(0,1))) if and only if Mu €
LDy (0, 1, WRTTPY

(iv) tNPouw € LP (0,1; W2mo? (B(0,1))) if and only if dyu € LY., (0,1; Wt%f’p) :



Conclusion and prospects

In this work, we have studied a linear 2m-th order parabolic equation, on a time-varying
domain of RY*! subject to Dirichlet type condition on the lateral boundary, where the
right-hand side of the equation is taken in the Lebesgue space LP.

The approach is based on the use of the operators’ sum method in Banach spaces; we
have used the results of operators’ sum theory in the non-commutative case.

We were particularly interested in the question of which sufficient conditions, as weak
as possible, the dimension /N, the exponent p and the type of the domain must be verified

in order that our problem has a solution with optimal regularity.

This work may be extended at least in the following directions:
1. The high order operator M may be replaced by the following constant coefficient

operator:

L= Z (—1)ma558585
|6]=[8|=m

with as;3 = ags and there exists a constant C' > 0 such that
as3E’€” > CleP™, € e RV,

2. The function f on the right-hand side of the equation of Problem (3.1), may be taken

in Holder or little Holder spaces.

82



Bibliography

[1] E. A. Baderko, The solvability of boundary value problems for higher order parabolic
equations in domains with curvilinear lateral boundaries, Differ. Uravn., vol. 10, no. 12,

(1976), 1781-1792.

2] R.M. Brown and W. Hu, Boundary value problems for higher order parabolic equations,

Transactions of the american mathematical society, vol. 353, no. 2, (2000), 809-838.

[3] M. F. Cherepova, On the solvability of boundary value problems for a higher order
parabolic equation with growing coefficients, Dokl. Math., vol. 74, no. 3, (2006), 819-
820.

[4] S. Cherfaoui, A. Kessab and A. Kheloufi, Study of a 2m-th order parabolic equa-
tion in mon-symmetric conical domains, Hacet. J. Math. Stat., vol. Accepted, doi:

doi.org/10.15672/hujms.546340.

[5] S. Cherfaoui, A. Kessab and A. Kheloufi, On 2m-th order parabolic equations with
mized boundary conditions in non-rectangular domains, Sib. Elektron. Mat. Izv., vol.

14, (2017), 73-91.

[6] S. Cherfaoui, A. Kessab, and A. Kheloufi, Well-posedness and regularity results for a
2m-th order parabolic equation in symmetric conical domains of RN, Mathematical

Methods in the Applied Sciences, vol. 40, (2017), 6035-6047.

[7] G. Da Prato and P. Grisvard, Sommes d’opérateurs linéaires et equations différentielles

opérationnelles, J. Math. Pures Appl., vol. IX Ser., no. 54, (1975), 305-387.

83



BIBLIOGRAPHY 84

[8] M. Di Cristo, D. Guidetti and A. Lorenzi, Abstract parabolic equations with applications
to problems in cylindrical space domains, Advances in Differential Equations, vol. 15,

no. 1-2, (2010), 1-42.

9] G. Dore and A. Venni, On the Closedness of the Sum of Two Closed Operators, Math.
Z. 196 (1987), 189-201.

[10] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, M.
Dekker, New York, 1999.

[11] S. Gala, Q. Liu, and M. A. Ragusa, Logarithmically improved reqularity criterion

-1
00,00

for the nematic liquid crystal flows in B space, Computers and Mathematics with

Applications, vol. 65, (2013), 1738-1745.

[12] S. Gala and M. A. Ragusa, A new regularity criterion for the 3D incompressible MHD
equations via partial derivatives, Journal of Mathematical Analysis and Applications,

vol. 481, no. 2, Article number 123497, 2020.

[13] V. A. Galaktionov, On reqularity of a boundary point for higher-order parabolic equa-
tions: towards Petrovskii-type criterion by blow-up approach, Nonlinear Di er. Equ.

Appl., vol. 16, no. 5, (2009), 597-655.

[14] A. Grimaldi Piro and F. Ragnedda, Higher order parabolic operators in domains with
a "nonsmooth” boundary, Rend. Sem. Fac.Sci. Univ. Cagliari, vol. 54, (1984), 45-62.

[15] P. Grisvard, Caracterisation de quelques espaces d’interpolation, Arch. Rational Mech.

Anal., vol. 25, no. 1, (1967), 40-63.

[16] A. Kheloufi, Intermediate reqularity results for the solution of a high order parabolic
equation, Miskole Mathematical Notes, vol. 20, no. 2, (2019), 1013-1019.

[17] A. Kheloufi and B. K. Sadallah, Resolution of a high-order parabolic equation in conical
time-dependent domains of R®, Arab Journal of Mathematical Sciences, vol. 22, (2016),
165-181.



BIBLIOGRAPHY 85

[18] R. Labbas, A. Medeghri and B. K. Sadallah, On a parabolic equation in a triangular
domain, Applied Mathematics and Computation, vol. 130, (2002), 511-523.

[19] R. Labbas and B. Terreni, Sommes d’opérateurs linéaires de type parabolique. lére

partie, Boll. Un. Mat. Ital., vol. 1-B, no. 7, (1987), 141-162.

[20] R. Labbas and B. Terreni, Sommes d’opérateurs linéaires de type parabolique. 2éme

partie, Boll. Un. Mat. Ital., vol. 2-B, no. 7, (1988), 545-569.

[21] R. Labbas, Some results on the sum of linear operators with non dense domain, Annali

di Matematica Pura ed Applicata, (IV), 154 (1989), 91-97.

[22] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural’tseva, Linear and Quasilinear
FEquations of Parabolic Type, Translated from the Russian by S. Smith. Translations of
Mathematical Monographs: Vol. 23 American Mathematical Society, Providence, R.I.,
1968.

(23] J. L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications

1, 2, Paris, Dunod, 1968.

[24] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,
Boston, Birkhauser, 1995.

[25] V. P. Mikhailov, The Dirichlet problem for a parabolic equation, I, Mat. Sb., vol. 61,
no. 103, (1963), 40-64.

[26] V. P. Mikhailov, The Dirichlet problem for a parabolic equation, II, Mat. Sb., vol. 62,
no. 104, (1963), 140-159.

[27) M. A. Ragusa, Cauchy-Dirichlet problem associated to divergence form parabolic equa-

tions, Communications in Contemporary Mathematics, vol. 6, no. 3, (2004), 377-393

[28] M. A. Ragusa and A. Scapellato, Mized Morrey spaces and their applications to partial
differential equations, Nonlinear Analysis-Theory Methods and Applications, vol. 151,
(2017), 51-65.



BIBLIOGRAPHY 36

[29] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double
phase with variable exponents, Adv. Nonlinear Anal., no. 9, (2020), 710-728.

[30] N. Roidos, Closedness and invertibility for the sum of two operators, Adv. Oper.
Theory, no. 3, (2018), 582-605.

[31] B. Sadallah, Etude d’un probléeme 2m-parabolique dans des domaines plan non rect-

angulaires, Bollettino della Unione Matematica Italiana, vol. 2B, no. 5, (1983), 51-112.

[32] P. E. Sobolevskii, On equations of parabolic type in Banach space, Amer. Math. Soc.
Transl., (1965), 1-62.

[33] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Hol-
land, 1978.

[34] P. Grisvard, Commutativité de deux foncteurs d’interpolation et applications, J. Math.

Pures Appl., 45 (1966), 143-290.



Abstract

In this thesis, we have studied a linear parabolic equation of any even order, on a domain
of RN*1 with Dirichlet type condition on the lateral boundary, where the right-hand side
of the equation is taken in the Lebesgue space L”.

The study is based on the use of the results of operators’ sum theory, non-commutative
case, in Banach spaces.

We were interested in determining the sufficient conditions, as weak as possible, on the
dimension N, the exponent p and the type of the domain which must be verified so that

our problem has a solution with optimal regularity.

Résumé

Dans cette these, nous avons étudié une équation parabolique linéaire d’ordre pair
quelconque, sur un domaine de RV*!, sous une condition aux limites de type Dirichlet sur
la frontiere latérale, ou le membre droit de I’équation est pris dans I'espace de Lebesgue
LP.

L’étude est basée sur 'utilisation des résultats de la théorie des sommes d’opérateurs,
cas non commutatif, dans les espaces de Banach.

Nous étions intéressés a déterminer les conditions suffisantes, aussi faibles que possible,

sur la dimension N, I'exposant p et le type du domaine qui doivent étre vérifiées pour que
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notre probleme ait une solution avec une régularité optimale.



