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General Introduction

In recent decades, there has been a significant global increase in the prevalence of diabetes-
related diseases. The number of adults affected by diabetes has risen to approximately 537
million worldwide, and this number is projected to further increase to 643 million by 2030
and 783 million by 2045. Algeria, like many other countries, is also experiencing a rise in the
prevalence of diabetes. Currently, diabetes affects around 14.4% of the Algerian population
aged between 18 and 69 years. It is predicted that the number of adults with diabetes in
Algeria will reach 3.4 million by 2045, reflecting an increase of 8.1% compared to the present
[27].

This disease often leads to blindness in patients between 20 to 74 years of age due to a
condition caused by uncontrolled diabetes known as Diabetic Retinopathy (DR) [34]. Diabetic
Retinopathy (DR) is a disorder that damages the retinal blood vessels causing them to grow
abnormally, sweal and eventually tear. It is characterized by various signs and symptoms
that manifest in retinal tissue. These symptoms include microaneurysms, exudates (leakage
of fluid), hemorrhages (bleeding), and swelling of the blood vessels. [34]

In general, Diabetic Retinopathy (DR) can be divided into two stages: non-proliferative
DR (NPDR) and proliferative DR (PDR) [9]. NPDR can be further classified into three
types based on severity: mild NPDR, moderate NPDR, and severe NPDR [58]. Overall,
DR can be graded using a 5-point scale, consisting of the following categories: no DR, mild
DR, moderate DR, severe DR, and proliferative DR [58]. This grading system provides a
comprehensive assessment of the severity and progression of DR, allowing for appropriate
diagnosis and treatment.

Diagnosis of DR can be done either manually by an ophthalmologist or through an au-
tomated system. There are pros and cons to both of these methods of DR detection. The
only benefit of manual detection is that, it does not require any computer processing or so-
phisticated algorithms for the DR detection process. However, it is important to acknowledge
the limitations associated with this method of diagnosing diabetic retinopathy (DR). Here are
some of the limitations of manual diagnosis:

• About 80 percent of DR patients are in developing or underdeveloped countries with
limited resources.These countries often lack ophthalmologists and basic DR detection
mechanisms

• Plenty of people harmed by DR do not visit an eye-care professional unless the DR
situation extends to the severe NPDR or PDR stage. Detection of DR at an early stage
is very important in order to save the patient’s vision.

• Detecting and grading DRs in the early stages requires time and expertise.

• Traditional measures to identify DR involve ophthalmologists for assessment and diag-
nosing capability, which is time-consuming and very costly work.

8



General Introduction

• Manual evaluation of DR patients shows discrepancies among practitioners :there is
often a significant level of variability in the manual evaluation of DR among different
practitioners.

• Manual screening techniques are insufficient to meet the growing demand for DR diag-
nostics worldwide.

• Sometimes the signs of DR at its initial phase are so small that even an expert ophthal-
mologist cannot recognize them properly.

Therefore, it has been proven that manual screening techniques are insufficient to keep
pace with the growing need for diagnostic methods of DR worldwide [ref]

Rapid advancements in Artificial Intelligence (AI) have led the way for early detection
of DR through automated systems, offering numerous benefits compared to manual detection
methods. These benefits include:

✓ reducing the workload on ophthalmologists.

✓ and minimizing the risk of human error.

✓ automated systems have the potential to detect lesions and abnormalities more effectively
and efficiently than manual methods.

Therefore, automated detection of DR is essential. Such automated systems can be de-
veloped using either machine learning or deep learning approaches.

Although machine learning-based frameworks have shown resilience in detecting DR, their
effectiveness is highly dependent on hand-crafted features that are still difficult to generalize.
In contrast, deep learning (DL) methods have provided techniques for automatic feature ex-
traction from fundus images to overcome these drawbacks[74].

Deep learning approaches require large amounts of data, memory and computing power
[16] which can be very challenging especially in the medical field. The number of medical
images available is usually small, their acquisition and labeling is a very costly process and
datasets obtained are usually unbalanced. This is why, in the recent years, the Generative
Adversarial Network (GAN)[18] has become the technique of choice for image generation and
conversion in medical imaging[97]. On the other hand, when it comes to the classification of
medical images, transfer learning offers a significant advantage by minimizing the time and
computating power required, making it a valuable approach [39].

In the field of ophthalmology, particularly in the detection of Diabetic Retinopathy (DR),
the application of GANs is still in its early stages, and the existing literature on this topic is
relatively limited. Apart from the scarcity of data, fundus images face various challenges, such
as limitations of imaging devices, variations in examiner skill, and anatomical differences in the
eye. The quality of the acquired images can significantly impact the diagnostic performance
of ocular images.

The contributions made in this work include:

1. Defining a transfer learning-based CNN architecture for the detection and classification
of retinopathy into 3 and 5 grades(a part of this work has been presented in a conference
« Colloque sur les Objets et systèmes Connectés COC 2023 »).

2. Several transfer learning-based models were proposed and trained on two different datasets
to highlight the impact of data on model performance.

9



General Introduction

3. After parameter optimization, the best model is selected, which will serve as the dis-
criminator in the GAN.

4. A 5-layers CNN is implemented to define the Generator, which aims to denoise the
images.

5. The GAN is implemented by training the Generator and Discriminator together.

The organization of this thesis is as follows:

In the first chapter, we will introduce Machine Learning techniques that have the potential
to revolutionize the healthcare field, focusing specifically on Deep Learning, Transfer Learning,
and Generative Adversarial Networks (GANs).

In the second chapter, we will provide an overview of diabetic retinopathy (DR) and cover
essential concepts related to its classification. Additionally, we will review existing works in
the field of DR classification, highlighting the advancements and challenges in this area.

In the final chapter, we will unveil the architecture employed and present the results
obtained for the detection and multi-class classification of the condition.

We will conclude this thesis with a conclusion that summarizes the essence of our work.

10



Chapter 1

Artificial Intelligence

I Introduction

As computing power continues to advance, the potential of artificial intelligence (AI) and
machine learning (ML) to transform healthcare becomes increasingly evident[57]. Among the
various ML techniques, deep learning and transfer learning have significantly improved the
accuracy of analyzing medical images, including X-rays, MRI scans, and eye fundus images.
Additionally, the advent of Generative Adversarial Networks (GANs) in ML has expanded the
possibilities by enabling the generation of realistic synthetic data for tasks such as image syn-
thesis and data augmentation[48]. GANs have proven to be particularly valuable in healthcare
due to their ability to address the challenges posed by imbalanced datasets[48].

The combination of deep learning, transfer learning, and GANs has propelled AI research
and applications to new heights. These techniques offer powerful tools for solving complex
problems, enabling advancements in various fields such as computer vision, natural language
processing, and data generation. As researchers continue to explore and refine these methods,
AI’s potential to transform industries and address societal challenges will only continue to
expand.A hierarchy of Artificial Intelligence Concepts: Machine Learning, Deep Learning,
Transfer Learning, and GANs is illustrated in Figure 1.1.

Figure 1.1: Artificial intelligence subfields

11



CHAPTER 1. ARTIFICIAL INTELLIGENCE

II Machine learning

Machine Learning (ML) is a subfield of artificial intelligence that focuses on the de-
velopment of algorithms and models capable of automatically learning patterns and making
predictions or decisions based on data[82]. It was defined in the 1950s by AI pioneer Arthur
Samuel as the field of study that gives computers the ability to learn without explicitly being
programmed. It is an interdisciplinary field that combines principles from statistics, mathe-
matics, and computer science to enable computers to learn from and improve with experience.
The goal of machine learning is to develop algorithms that can generalize and make accurate
predictions or decisions on unseen data[98].

Machine learning its self is divided to three branches as illustrated in Figure 1.2: super-
vised learning, unsupervised learning and reenforced learning.

Figure 1.2: Branches of ML

II.1 Supervised learning

Supervised learning is a popular branch of machine learning that deals with learning from
labeled data. In supervised learning, the training dataset consists of input data along with their
corresponding output labels[11]. The aim is to learn a mapping function that can accurately
predict the output labels for new, unseen input data[53] as shown in Figure 1.3. There are
various algorithms used in supervised learning, including linear regression, logistic regression,
support vector machines (SVM)[14], decision trees[50], and random forests[12], among others.
Each algorithm has its own strengths and is suited for different types of problems. The
training process in supervised learning involves optimizing the model parameters to minimize
the difference between the predicted labels and the true labels in the training data. This
process often involves the use of loss functions and optimization techniques such as gradient
descent. Supervised learning is widely used in various domains, such as image classification,
sentiment analysis, fraud detection, and medical diagnosis[53]. Its applications range from
simple tasks to complex problems that require advanced modeling techniques.
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Figure 1.3: supervised learning

II.2 Unsupervised learning

Unsupervised learning is another important branch of machine learning that deals with
learning from unlabeled data as illustrated in Figure 1.4. Unlike supervised learning, there
are no predefined output labels available in unsupervised learning[11]. Instead, the goal is
to discover hidden patterns, structures, or relationships within the data. Clustering is a
common technique used in unsupervised learning, where the aim is to group similar data points
together based on their intrinsic properties. Other techniques include dimensionality reduction,
anomaly detection, and generative modeling[29]. In unsupervised learning, the models learn
directly from the input data without any explicit guidance or supervision. The algorithms aim
to capture the underlying structure of the data and identify meaningful patterns or clusters.
This can provide insights into the data and help in understanding the inherent characteristics of
the dataset. Unsupervised learning has various applications, such as customer segmentation,
recommender systems, outlier detection, and data preprocessing. It is particularly useful
when labeled data is scarce or expensive to obtain, as it can uncover valuable information and
patterns in the absence of explicit labels[11].

Figure 1.4: Unsupervised learning
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II.3 Reinforcement learning

Reinforcement learning focuses on how an agent can learn to make decisions and take
actions in an environment to maximize a cumulative reward. It draws inspiration from the
concept of how humans and animals learn through trial and error[96]. In reinforcement learn-
ing as illustrated in Figure 1.5, an agent interacts with an environment, observes its state,
and takes actions to transition to new states. The agent receives feedback in the form of
rewards or penalties based on its actions, guiding it towards desirable outcomes. Through
a process of exploration and exploitation, the agent learns a policy—a mapping from states
to actions—that maximizes the expected long-term reward[96]. Reinforcement learning algo-
rithms, such as Q-learning and policy gradients, utilize various techniques like value function
estimation, exploration strategies, and temporal difference learning to iteratively improve the
agent’s decision-making capabilities. Reinforcement learning has been successfully applied to
various domains, including robotics, game playing, recommendation systems, and autonomous
vehicles, offering the potential for intelligent systems to learn and adapt in dynamic environ-
ments.

Figure 1.5: Reinforcement learning.

In conclusion, machine learning plays a crucial role in solving a wide range of real-world
problems and advancing the field of artificial intelligence. However, it is still facing chal-
lenges like the feature extraction and preparation of the data to be usable by traditional ML
techniques like SVM and Random Forest which requires human involvement.

III Deep learning

Deep learning is a subfield of machine learning that focuses on training artificial neural
networks to learn hierarchical representations of data. It has gained significant attention and
revolutionized various domains, including computer vision, natural language processing, and
speech recognition[42]. Unlike traditional machine learning algorithms, deep learning models
can automatically learn intricate patterns and complex representations directly from raw data
which makes them more autonomous than traditional ML models. Figure 1.6 represents the
general structure of a deep neural network.
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Figure 1.6: Structure of the deep neural network [62]

III.1 Neural Networks and Deep Neural Networks

Neural networks are the fundamental building blocks of deep learning. They consist of
interconnected nodes, or artificial neurons like the one illustrated in Figure 1.7, organized
into layers. Each neuron receives input signals, applies a transformation using an activation
function, and produces an output signal. Deep neural networks (DNNs) refer to neural net-
works with multiple hidden layers, enabling them to learn increasingly abstract and high-level
features[38].

Figure 1.7: Single Layer Perceptron Network[81].

III.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized type of deep neural networks
designed for processing grid-like data, such as images. They employ convolutional layers,
which apply filters to input images, capturing local patterns and spatial dependencies as

15



CHAPTER 1. ARTIFICIAL INTELLIGENCE

illustrated in Figure 1.8. CNNs also incorporate pooling layers to downsample feature maps,
reducing computational complexity and enhancing translation invariance. With their ability to
automatically learn hierarchical representations, CNNs have achieved remarkable performance
in image classification, object detection, and other computer vision tasks[30].

Figure 1.8: CNN structure explaining convolutions and poolings

III.3 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are another category of deep neural networks that
excel in handling sequential and temporal data, such as speech and text. RNNs have recurrent
connections that allow information to persist and flow through the network, enabling them to
capture dependencies over time. This sequential memory makes RNNs suitable for tasks like
natural language processing, speech recognition, machine translation, and sentiment analysis.
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are popular variants of
RNNs that address the vanishing gradient problem and enable better modeling of long-term
dependencies[72]. Figure 1.9 is an unrolled RNN representation.

Figure 1.9: Illustration of a recurrent neural network. (A) A typical rolled RNN representation.
(B) An easy-to-understand unrolled RNN representation[56].
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III.4 Applications and Advancements in Deep Learning

Deep learning has made significant contributions to a wide range of fields and has been
instrumental in driving advancements in various applications[85]. Its ability to learn intricate
patterns and extract high-level representations has opened up new possibilities and achieved
breakthroughs in several domains. Some notable applications and advancements in deep learn-
ing include:

• Computer Vision: Deep learning has revolutionized computer vision tasks, such as image
classification, object detection, semantic segmentation, and image generation.

• Natural Language Processing (NLP): Deep learning techniques have greatly improved the
field of NLP, enabling tasks such as sentiment analysis, machine translation, question-
answering systems, text summarization, and language generation.

• Speech Recognition: Deep learning models, particularly recurrent neural networks, have
significantly advanced automatic speech recognition (ASR) systems. These models have
demonstrated impressive performance in speech-to-text conversion, enabling voice assis-
tants, transcription services, and voice-controlled systems.

• Healthcare and Biomedicine: Deep learning has shown great potential in medical image
analysis, disease diagnosis, and drug discovery. Convolutional Neural Networks (CNNs)
have been used for early detection of diseases, such as diabetic retinopathy, cancer, and
cardiovascular diseases, by analyzing medical images.

• Autonomous Systems: Deep learning has played a vital role in the development of au-
tonomous systems, including self-driving cars, drones, and robots. Deep neural networks
enable these systems to perceive and interpret their environment, make real-time deci-
sions, and adapt to changing situations. This has led to significant advancements in the
field of robotics and autonomous navigation.

• Generative Models: Generative models, such as Generative Adversarial Networks (GANs)
and Variational Autoencoders (VAEs), have gained attention in the deep learning com-
munity. GANs can generate realistic synthetic data, such as images and videos, while
VAEs can learn meaningful latent representations and reconstruct missing or corrupted
data. These models have applications in data augmentation, image synthesis, and cre-
ative content generation.

As deep learning has advanced, it has encountered a set of challenges including lim-
ited availability of labeled data, the substantial computational resources and time needed for
training large models, and the issue of overfitting in complex networks. These challenges have
prompted the extensive adoption of transfer learning, a technique that effectively tackles these
obstacles. Transfer learning harnesses the power of pre-trained models trained on extensive
datasets, enabling the transfer of knowledge and enhancing performance even when confronted
with limited labeled data. By embracing transfer learning, researchers can overcome the lim-
itations inherent in deep learning, leading to enhanced efficiency and effectiveness in diverse
domains.

IV Transfer learning

Transfer learning is a powerful technique in deep learning that leverages knowledge learned
from one task or domain and applies it to a different but related task or domain[86]. It enables
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the reuse of pre-trained models or features, saving computational resources and improving the
performance of models on new tasks with limited labeled data. Figure 1.10 explains the
learning process using pre-trained models.

Figure 1.10: Comparative diagram of Learning Processes between Conventional Machine
Learning and Transfer Learning[78]

IV.1 Pretrained Models and Feature Extraction

Pre-trained models are deep learning models that have been trained on large-scale datasets,
typically for generic tasks such as image classification on well-known datasets like ImageNet[78].
These models have learned rich representations of data that can be transferred to new tasks.
In transfer learning, the pretrained models act as a valuable source of knowledge that can
be utilized[61]. Feature extraction is a common approach in transfer learning, where the pre-
trained models are used as powerful feature extractors. The earlier layers of the pretrained
models capture low-level features such as edges and textures, while the deeper layers capture
more complex and abstract features. By using these pretrained features as inputs, new models
can focus on learning task-specific patterns and relationships[61]. Here are the most commonly
used pretrained models for feature extraction as illustrated in Fiure 1.11:
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Figure 1.11: A timeline that represents key milestones in the development of CNNs and TL
models

IV.1.1 AlexNet

AlexNet is a groundbreaking convolutional neural network (CNN) architecture that played
a crucial role in advancing deep learning. It was proposed by Krizhevsky, Sutskever, and Hin-
ton in 2012 [51]. The network architecture of AlexNet consists of multiple convolutional layers
with varying filter sizes, followed by max-pooling layers and fully connected layers. Notably,
AlexNet introduced the concept of using rectified linear units (ReLU) as activation functions,
which helped alleviate the vanishing gradient problem. Additionally, it utilized techniques such
as local response normalization and dropout regularization to improve generalization perfor-
mance. AlexNet achieved a significant breakthrough in image classification by winning the
ImageNet Large Scale Visual Recognition Challenge in 2012[70], substantially outperforming
traditional methods. Its success paved the way for the subsequent development of deeper and
more complex CNN architectures. AlexNet’s impact on the field of deep learning continues to
be profound, inspiring further advancements in computer vision and other domains. Figure
1.12 illustrates the impact of the ReLU activation function.

Figure 1.12: ReLU Activation function

IV.1.2 VGGnet

VGGNet is a widely used convolutional neural network (CNN) architecture known for
its simplicity and effectiveness in image classification. It was proposed by Simonyan and
Zisserman in 2014 [76]. The network architecture consists of multiple convolutional layers
with small 3x3 filters and a stride of 1, followed by max-pooling layers. This design choice
allows for deeper networks while maintaining computational efficiency. VGGNet has achieved
impressive results on various image classification tasks, including the ImageNet Large Scale
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Visual Recognition Challenge. Variants like VGG16 and VGG19, which have 16 and 19 weight
layers, respectively, have been particularly influential in the field. While newer architectures
have surpassed VGGNet in terms of performance, it remains an important benchmark for
evaluating the effectiveness of CNNs[71].

IV.1.3 Inception & Xception

Inception, proposed by Szegedy et al. in 2014[77], is a deep convolutional neural net-
work architecture that introduced the concept of inception modules that are shown in Figure
1.13. These modules perform multiple convolutions with different filter sizes in parallel, al-
lowing the network to capture information at different scales. The Inception architecture
achieves state-of-the-art performance while maintaining computational efficiency. Xception,
proposed by Chollet in 2017[17], is an extension of the Inception architecture that replaces
the traditional convolutional layers with depthwise separable convolutions. This modification
significantly reduces the number of parameters and computations, making the network more
efficient. Xception achieves competitive performance with fewer parameters than previous ar-
chitectures. Both Inception and Xception have made significant contributions to deep learning
by introducing innovative module designs and pushing the boundaries of network efficiency
and performance.

Figure 1.13: Inception module

IV.1.4 ResNet

ResNet, introduced by He et al. in 2015[32], is a revolutionary deep convolutional neural
network architecture that addresses the challenge of training deep networks. It introduces
residual connections, enabling the network to learn residual mappings. ResNet’s key innova-
tion is the use of residual blocks with skip connections, allowing effective gradient propagation
and enabling the training of extremely deep networks. ResNet has achieved exceptional perfor-
mance in image classification and other computer vision tasks. Its success has inspired subse-
quent architectures and made residual connections a fundamental technique in deep learning.
Figure 1.14 illustrates the concept of residual learning.
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Figure 1.14: Residual learning

IV.1.5 DenseNet

DenseNet, introduced by Huang et al. in 2016[37], is a groundbreaking deep convolutional
neural network architecture that offers a novel approach to addressing the challenges of training
deep networks. It introduces densely connected blocks, where each layer is connected to
every other layer in a feed-forward manner as shown in Figure 1.15. This dense connectivity
promotes feature reuse and gradient flow, allowing for better parameter efficiency and improved
learning[94]. DenseNet has achieved remarkable performance in image classification and other
computer vision tasks. Its unique design has inspired subsequent architectures and solidified
the importance of dense connections as a fundamental technique in the field of deep learning.

Figure 1.15: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding
feature-maps as input.[37]

IV.1.6 MobileNet

MobileNet, proposed by Howard et al. in 2017[35], is a lightweight convolutional neural
network architecture specifically designed for mobile and embedded devices. It introduces
depthwise separable convolutions, which factorize the standard convolutional operation into
a depthwise convolution followed by a pointwise convolution as illustrated in Figure 1.16.
This reduces the computational complexity and model size while maintaining good accuracy.
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MobileNet achieves a good trade-off between model size and accuracy, making it suitable for
resource-constrained environments. It has been widely adopted in various applications that
require real-time or on-device deep learning inference.

Figure 1.16: The structure of the MobileNet V1 network.

IV.2 Comparison of the pretrained models

The pretrained models mentioned (VGGNet, AlexNet, ResNet, Inception, Xception, Mo-
bileNet) differ manly in their architecture and design principles. Here are some key differences
between them:

IV.2.1 Architecture:

• AlexNet: It was one of the first deep convolutional neural networks (CNNs) with a
deeper architecture compared to previous models. It introduced the concept of using
ReLU activation functions and dropout for regularization.

• VGGNet: It has a simple and uniform architecture with stacked convolutional layers
and small filter sizes (3x3). It has a large number of trainable parameters.

• Inception: It employs the concept of inception modules, which are composed of multiple
parallel convolutional layers of different filter sizes. This allows the network to capture
features at different scales.

• ResNet: It introduced residual connections, allowing for the training of very deep net-
works (e.g., hundreds of layers) by addressing the vanishing gradient problem. It uses
skip connections to propagate gradients effectively.

• DenseNet: It introduces dense connections between layers, where each layer is connected
to every other layer in a feed-forward fashion. This dense connectivity promotes feature
reuse and gradient flow. DenseNet has a compact architecture and uses small filter sizes
(3x3).

• Xception: It extends the idea of Inception by replacing the standard convolutional lay-
ers with depthwise separable convolutions, which separate the spatial and channel-wise
filtering. This reduces computational complexity.

• MobileNet: It focuses on efficiency and is designed for mobile and embedded devices.
It utilizes depthwise separable convolutions and pointwise convolutions to reduce both
computational cost and model size.
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IV.2.2 Computational Efficiency:

• VGGNet, DenseNet, AlexNet, and ResNet have relatively higher computational require-
ments due to their deeper architectures and larger number of parameters.

• Inception and Xception strike a balance between accuracy and computational efficiency
by using parallel convolutions.

• MobileNet is specifically optimized for low-resource environments and mobile devices,
aiming for efficient inference with reduced computational cost.

IV.2.3 Performance

• The performance of these models can vary depending on the specific task, dataset, and
implementation. Generally, deeper models like ResNet, DenseNet, Inception and Xcep-
tion tend to achieve higher accuracy on challenging tasks but require more computational
resources.

• VGGNet and AlexNet, while slightly less complex, can still deliver good performance in
image classification tasks.

IV.3 Fine-tuning and Adapting Pretrained Models

Fine-tuning is another technique in transfer learning that involves updating and adjusting
the pretrained models’ weights on a new task-specific dataset[92]. This allows the models to
adapt to the new task while still benefiting from the previously learned knowledge like it is
shown in Figure 1.10. During fine-tuning, the weights of the pretrained models are adjusted
based on the gradients computed from the new dataset, with careful consideration to prevent
overfitting[92]. When fine-tuning pretrained models, various hyperparameters can be adjusted
to achieve optimal performance. These hyperparameters include activation functions, dropout
rates, learning rates, and batch sizes, among others. Here are some of the hyperparameters
that have the most influence on the model’s performance:

IV.3.1 Architecture modifications

Adjustments made to the model’s architecture, such as adding or removing layers, chang-
ing layer sizes, etc. These modifications can affect the model’s capacity to learn complex
patterns or reduce computational requirements.

IV.3.2 Learning rate

The learning rate controls the step size at which the model’s weights are updated during
training. A higher learning rate may result in faster convergence, but it can also lead to
instability or overshooting. Conversely, a lower learning rate may slow down training but can
help the model converge more accurately.

IV.3.3 Loss function

The loss function is the objective function used to measure the model’s performance
during training. It quantifies the discrepancy between predicted and true values. Common loss
functions include cross-entropy for classification tasks and mean squared error for regression
tasks.
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IV.3.4 Batch size

The batch size specifies the number of samples processed in each training iteration before
updating the model’s weights. A larger batch size can lead to faster training as more samples
are processed simultaneously, but it requires more memory. Smaller batch sizes offer better
generalization but may require more iterations to converge.

IV.3.5 Number of epochs

The number of epochs determines the number of times the entire dataset is passed through
the model during training. Increasing the number of epochs allows the model to see the
data more times, potentially improving performance. However, too many epochs can lead to
overfitting.

IV.3.6 Activation functions

Activation functions introduce non-linearity to the model’s layers, enabling the network
to learn complex relationships. Common activation functions include ReLU (Rectified Linear
Unit), sigmoid, and tanh. The choice of activation function can impact the model’s ability to
capture and represent different patterns in the data.

IV.3.7 Optimizer

The optimizer determines the algorithm used to update the model’s weights based on
the gradients computed during backpropagation. Popular optimizers include Adam, SGD
(Stochastic Gradient Descent), and RMSprop. Each optimizer has its own update rules,
convergence characteristics, and hyperparameters.

IV.3.8 Dropout rate

Dropout is a regularization technique where a fraction of neurons are randomly dropped
out during training. It helps prevent overfitting by reducing the co-dependency between neu-
rons, forcing the network to learn more robust representations. The dropout rate determines
the fraction of neurons to be dropped out.

IV.3.9 Early stopping

Early stopping is a technique that stops training when the performance on a validation
set starts deteriorating. It helps prevent overfitting by finding the optimal point where the
model’s generalization is the best. Early stopping requires monitoring the validation loss or
other performance metrics during training

IV.3.10 Freezing layers

Freezing layers refers to the decision of keeping certain layers of the pretrained model
fixed during fine-tuning. By freezing specific layers, their weights are not updated during
training. This can be beneficial when the pretrained layers already capture relevant features,
and freezing them prevents them from being modified.

These hyperparameters play a crucial role in fine-tuning and customizing pretrained mod-
els for specific tasks and datasets. Proper tuning of these parameters can significantly impact
the model’s performance and generalization capabilities.
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IV.4 Benefits and Challenges of Transfer Learning

Transfer learning offers several benefits in machine learning and Deep learning. It helps in
overcoming the limitations of restricted labeled data, as it can effectively leverage knowledge
from large-scale datasets. By utilizing pretrained models or features, transfer learning reduces
the need for extensive training on new datasets, saving computational time and resources.
It also improves generalization performance, especially when the new task has a similar un-
derlying structure or patterns to the original task. However, transfer learning also presents
certain challenges. One challenge is determining the appropriate level of similarity between
the original and new tasks or datasets to ensure effective knowledge transfer. Overfitting can
be a concern when fine-tuning, as the pretrained models may already have strong features that
are task-agnostic. Balancing the amount of relearning and preserving the learned knowledge
is crucial.

In conclusion, transfer learning is a valuable technique in both machine learning and
deep learning that enables the transfer of knowledge from pre-trained models or features
to new tasks. By leveraging the learned representations, it enhances the performance and
generalization capabilities of models, particularly in scenarios with limited labeled data. The
use of pretrained models, feature extraction, and fine-tuning are common strategies in transfer
learning, offering numerous benefits while addressing the associated challenges.

V Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a type of Machine Learning models that has
received a lot of interest for its capacity to produce realistic and high-quality synthetic data[18].
GANs, invented in 2014 by Ian Goodfellow and his team [29], train a pair of competing
networks[93]. The generator (G) network generates forgeries with the goal of creating realistic
images, whilst the discriminator (D) network receives both forgeries and real images and
attempts to identify them[18]. GANs have been used to produce impressive results in image
synthesis, text generation, music generation, and even video synthesis. To generate realistic
data with GANs, it involves sampling from the latent space by providing random noise as
input to the generator. By manipulating the input latent vectors, it is possible to control
specific attributes or generate diverse variations of the data.

V.1 GAN Architecture and Components

The generator and discriminator are the key components of Generative Adversarial Net-
works (GANs). Both of those components are trained in an iterative process, competing
against each other[93]. The generator transforms random noise or a latent vector into syn-
thetic data samples without explicit knowledge of the real data. The discriminator network,
which acts as an adversary to the generator, is responsible for distinguishing between real and
generated samples. The discriminator is provided with both real and generated samples and
learns to differentiate between them[18]. Metaphorically, the generator and the discriminator
can be seen as the forger or counterfeit artist and the police or authority respectively as shown
in Figure 1.17. The generator aims to produce synthetic samples that are indistinguishable
from genuine ones, despite having no explicit knowledge of the real data. On the other hand,
the discriminator strives to improve its ability to differentiate between real and generated
samples.
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Figure 1.17: Components of GANs[5].

1. Discriminator – It is a supervised approach, which means it is a simple classifier that
predicts whether data is real or fake. It is trained on real data and provides feedback to
a generator[5].

2. Generator – It is an unsupervised learning approach. It generates fake data based
on the original (real) data. It is implemented as a neural network with hidden layers,
activation functions, and a loss function. Its objective is to generate fake images that can
fool the discriminator into classifying them as real. Once the discriminator is successfully
fooled by the generator, the training process stops, and we can consider a generalized
GAN model to be created[5].

Figure 1.18: GAN training process

The generator takes random noise or a latent vector as input and generates fake samples as
shown in Figure 1.18. The goal of the generator is to produce samples that are indistinguishable
from real data. The discriminator network, on the other hand, tries to distinguish between real
and generated samples. It is trained with real samples from the training data and generated
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samples from the generator. The discriminator’s objective is to correctly classify real data as
real and generated data as fake.

V.2 Training GANs and Generating Realistic Data

The training process of Generative Adversarial Networks (GANs) involves a dynamic
interplay between the generator and discriminator networks[60]. If the discriminator rapidly
recognizes the fake data that the generator produces, the generator suffers a penalty. As the
feedback loop between the adversarial networks continues, the generator will begin to produce
higher-quality and more believable output and the discriminator will become better at flagging
data that has been artificially created.

The key aspect of GAN training, is the minimax game. The generator and discriminator
networks are updated iteratively, with the generator aiming to minimize the discriminator’s
ability to distinguish real and fake samples, while the discriminator aims to maximize its
discrimination accuracy[54]. This adversarial training leads to the generator progressively
improving its ability to generate samples that resemble the real data distribution. Hence the
GAN network is formulated as a minimax game where the Discriminator is trying to minimize
its reward V(D, G) and the generator is trying to maximize the Discriminator loss. It can be
mathematically described by the formula below:

V (G,D) = Epdata(x)[logD(x)] + Epg(x)[log(1−D(x))] (1.1)
Where V (G,D) represents the value function of the Generative Adversarial Network

(GAN). The terms pdata(x) and pg(x) represent the data distribution and the distribution
generated by the generator network, respectively. D(x) is the discriminator network, and
logD(x) and log(1 − D(x)) are the logarithmic probabilities of the discriminator’s output.
The expectation operator E denotes the average over the respective distributions.

Various training strategies have been devised to enhance the stability and convergence of
GAN training. One commonly employed approach is alternating training, where the generator
and discriminator are trained in an alternating fashion[8]. During each training iteration, the
generator generates samples, which are then used to update the discriminator. Subsequently,
the updated discriminator is used to update the generator. This alternating process continues
iteratively, allowing both networks to refine their respective capabilities[84].

V.3 Types of GANs

• Deep convolutional GAN (DCGAN)[59]: It is one of the most used, powerful, and suc-
cessful types of GAN architecture. It is implemented with help of ConvNets in place
of a Multi-layered perceptron. The ConvNets use a convolutional stride and are built
without max pooling and layers in this network are not completely connected.

• Conditional GAN (CGAN)[60]: Conditional GAN is deep learning neural network in
which some additional parameters are used. Labels are also put in inputs of Discrimina-
tor in order to help the discriminator to classify the input correctly and not easily full
by the generator.

• CycleGAN[99]: It performs the task of Image Translation. Suppose we have trained it
on a horse image dataset and we can translate it into zebra images.

27



CHAPTER 1. ARTIFICIAL INTELLIGENCE

• Super resolution GAN (SRGAN): Its main function is to transform low resolution to
high resolution known as Domain Transformation[93].

V.4 Applications and Innovations in GANs

GANs have found numerous applications and have sparked innovations across various
domains. In the field of ophtalmology, GANs have been used for tasks such as denoising,
resolution augmentation, domain transfer and data augmentation as shown in Figures 1.19,
1.20, 1.21 and 1.22.

• Denoising:

Figure 1.19: Denoising in fundus photography[89]

• Resolution augmentation

Figure 1.20: Super-resolution for optic nerve head photography[31]

• Domain transfer

Figure 1.21: Ultra-widefeld to classic fundus photography domain transfer [91]
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• Data augmentation

Figure 1.22: Data augmentation for ocular surface images[90]

As research in GANs continues, ongoing advancements aim to address challenges such as
mode collapse (where the generator produces limited diversity in generated samples), stability
during training, and improving the interpretability and control of generated data. GANs
have the potential to revolutionize creative content generation, data augmentation, and enable
breakthroughs in various fields by providing a powerful tool for generating realistic and diverse
synthetic data.

V.5 conclusion

In this chapter we cover the fundamental concepts of machine learning, including super-
vised learning, unsupervised learning and reinforcement learning. In addition, we explored
the importance of transfer learning, exploiting pre-existing knowledge to improve model per-
formance. We also examined significant advances in the field of deep learning, in particular
generative adversarial networks (GANs), which offer promising capabilities for generating re-
alistic data samples. In the following chapter, we’ll look at how ML techniques can be used
to process ophthalmological images, and more specifically to detect diabetic retinopathy.
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Chapter 2

State of art: Diabetic retinopathy
classification

I Diabetic Retinopathy

Diabetic retinopathy (DR) is a leading cause of blindness in the mid-aged population[34],
primarily affecting individuals who have had diabetes for a prolonged period of time. The
condition is characterized by damaged retinal Blood Vessels (BV) due to persistently elevated
blood glucose levels[9]. This damage can lead to swelling and abnormal growth of the said BVs
causing fluid leakage in the retinal tissue resulting in blurry vision and potential vision loss.
Specialists look for specific signs, known as lesions, to diagnose DR. As illustrated in Figure
2.1 the main lesions associated with DR diagnosis include Micro-aneurysms, hemorrhages, and
soft and hard exudates[75].

Figure 2.1: Diabetic Retinopathy hellmarks[25].
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The presence and severity of these abnormalities are used to determine the stage of the
disease. DR can be classified into four levels: mild, moderate and severe non-proliferative
diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) as shown in the
table below:

Table 2.1: Stages of DR[1]

Stage Dilated Ophthalmoscopy Observable Signs Severity
Stage 0 No signs No DR
Stage 1 Micro-aneurysms Mild NPDR
Stage 2 Micro-aneurysms, retinal dot and blot hemorrhages, hard exudates

or cotton wool spots without signs of severe non-proliferative dia-
betic retinopathy

Moderate NPDR

Stage 3 More than 20 intra-retinal hemorrhages in each of 4 quadrants,
definite venous beading in 2 or more quadrants, prominent intra-
retinal microvascular abnormality (IRMA) in 1 or more quadrants
without signs of proliferative retinopathy

Sever NPDR

Stage 4 Neovascularization or Vitreous/pre-retinal hemorrhage Proliferative DR

Various techniques are employed by specialists to diagnose DR, including Dilated Eye
Examination, Optical Coherence Tomography (OCT), and Fundus Photography. However,
these techniques require significant human involvement and can be time-consuming, making it
challenging to keep up with the demand for screening and diagnosis[83]. Consequently, many
diabetic patients fail to adhere to recommendations for annual eye exams.

For diabetic patients, timely and appropriate care is essential to preventing long-term
vision loss, enhancing patients’ quality of life, and reducing the financial burden brought on
by visual impairment[25]. Therefor a faster, easier, and more accurate method of diagnosing
DR is required to encourage regular eye exams on an annual or semi-annual basis[7].

In conclusion, DR is a common eye disease among individuals with diabetes that can
potentially lead to complete vision loss. Early detection is key as treatment is more effective
and less costly during the initial stages. Given the overwhelming workload faced by medical
professionals in diagnosing DR, especially considering the regular eye exams required for dia-
betics, computers have proven to be efficient and effective in assisting with diagnosis in general
and the classification of DR in particular.

II Classification systems

Computer-aided diagnosis (CAD) systems have gained significant popularity as a research
topic, with applications for many conditions including detection and classification of diabetic
retinopathy (DR)[34]. Currently, ophthalmologists must carefully examine the patient’s retina
for common symptoms of the condition. However, it is time consuming and costly because it
must be performed by a specialist. Computers, on the other hand, provide the benefit of au-
tomated classification, resulting in a higher accuracy and a lighter workload for specialists[83].
The use of Convolutional Neural Networks (CNNs) has particularly excelled in automatically
classifying retinal images by extracting symptoms and labeling the said images without human
intervention[83]. Despite the differences between the methods (such as Random forests, SVM,
Decision trees, DNN, CNN and many more) the operation of developing such a model has
to go through the same major phases: dataset collection, preprocessing, feature extraction,
classification and evaluation as shown in Figure 2.2
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Figure 2.2: Machine Learning Process

II.1 Data collection

Datasets play a crucial role in the development and evaluation of computer-aided diag-
nosis (CAD) systems for diabetic retinopathy (DR). Since DR is a universal problem, there
has been significant advances to find solutions which lead to the collection of so much data.
Fundus images datasets the most present in research papers and they can be found on various
platforms such as APTOS[45], EyePACS[19], Messidor[20] and more. These datasets vary in
size, diversity, quality and severity stages or classes in this case. Here is a table showcasing
the most used datasets and their corresponding characteristics:

Table 2.2: DR datasets

Dataset Availability Severity classes Size (Number of Images)
Messidor-2[20] public 5 (No DR to PDR) 1 748
IDRiD[64] public 5 (No DR to PDR) 516
APTOS 2019[45] public 5 (No DR to PDR) 3 662
Kaggle Diabetic
Retinopathy Dataset
(EyePACS)[19]

public 5 (No DR to PDR) 88 702

e-Ophtha Restricted 3 (Mild to Severe PDR) 103
RITE[36] Restricted 4 (No DR to svever PDR) 400
CHASE_DB1[15] public 2 (No DR to Moderate NPDR) 28
DIARETDB1[24] Public 4 (No DR to svever PDR) 89

As shown above the most important differences were the size of the dataset, severity
classes and its availability. It is important to note that some datasets are imbalanced in the
sense that not all classes of severity contain the same number of images. Another problem is
the variation of image quality.

II.2 Data preprocessing

The preprocessing phase is critical when it comes to the detection and classification of DR
images. It involves a wide range of techniques and procedures that contribute to improving
the overall quality and interpretability of the images. By reducing noise, eliminating artifacts,
and addressing other unwanted elements, preprocessing aims to enhance the accuracy of the
classification system. There are several preprocessing techniques that can be used in the field of
DR detection and classification, however there are few that constantly appear in the literature.
These are just some of the commonly used ones in the field:
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II.2.1 Dataset augmentation

dataset augmentation is the practice of applying a wide array of domain-specific trans-
formations to expand a training set[23]. While dataset augmentation is a widely employed
technique for various types of data, it has evolved into an indispensable approach in DR clas-
sification. It offers a means to overcome the limitations associated with imbalanced datasets
and enhances the overall accuracy and reliability of DR classification models. To create new
modified copies of existing images, we apply random geometric transformations such as flip-
ping, rotating, zooming and cropping[23]. Figure 2.3 illustrates the resulting set of augmeted
images.

Figure 2.3: Images generated using data augmentation techniques

II.2.2 Image Normalization

In the context of DR classification, normalizing images is a critical step due to the differ-
ences in imaging conditions, equipment, or image acquisition techniques. Image normalization
involves applying various techniques to enhance comparability and address variations in bright-
ness and contrast. One widely utilized technique in the field of DR classification is scaling the
pixel values to a common range, typically between 0 and 1. By doing so, it ensures optimal
comparisons across data acquisition methods and texture instances[22] enabling the identifi-
cation of subtle features and patterns in the images. Figure 2.4 provides an example of the
normalization technique on a fundus image.
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Figure 2.4: fundus images normalization

II.2.3 Image Resizing

Exactly like image normalization, resizing the images to a uniform size ensures optimal
comparisons across data acquisition methods and equipment. By enforcing a uniform size,
the images can be fed into classification models without the need for further adjustments or
resizing during the training and evaluation stages. It also ensures that all images are treated
equally in terms of spatial information, allowing the classification algorithms to focus on the
intrinsic characteristics of the retinal structures and patterns associated with DR.

II.2.4 Image Cropping

Cropping images means removing irrelevant or unwanted portions of the image to focus
on the region of interest. For example, in DR images circle cropping is the most popular since
it helps the model to direct its focus towards the central part of the retina, where important
features for DR detection and classification are often concentrated. the Figure2.5 shows the
copping tecnique used on a fundus image.

Figure 2.5: fundus images cropping

34



CHAPTER 2. STATE OF ART: DIABETIC RETINOPATHY CLASSIFICATION

II.2.5 Image Filtering

Image filtering is a widely utilized technique for medical imaging analysis to enhance im-
age quality, reduce noise, and extract relevant features for accurate classification. It involves
applying various filters to modify the pixel values of an image, thereby improving its visual
appearance and facilitating the feature extraction tasks. By employing appropriate filtering
techniques, the classification of DR images can be enhanced, leading to improved accuracy
and insights into the disease. The commonly used filters in DR classification are the Gaus-
sian filter[21], Median filter[88] and the Contrast Limited Adaptive Histogram Equalization
(CLAHE) filter[68]. By applying appropriate filters like the ones used in Figure 2.6, DR images
can undergo significant improvement in terms of noise reduction, edge enhancement, and con-
trast adjustment, which in turn facilitates more accurate feature extraction and classification
of DR-related abnormalities.

Figure 2.6: fundus images filtering

II.3 Building a model

Building a CNN model for DR classification involves several key steps. The Architecture
is the first to define, and to do that we have to make some architecture choices that include:
the depth and width of the network, the number of filters and their sizes, activation functions,
pooling types and many more. After the architecture we need to define the hyperparameters
related to the training process of the network. These are especially important since they are the
ones regulating the learning aspect of the model. Hyperparameters that are commonly used
in CNN architectures are: learning rate, regularization techniques, batch size and dropout.
In the end we also can specify the optimization function and loss function. We can also save
time and effort by using a pretrained model such as VGG16 or RESNET50 as a base model
then add some layers at the end and use an automatic fine tuning algorithm to find the best
hyperparameters.

II.4 Evaluating the model

The model evaluation serves as a critical step in assessing its performance and effectiveness
before deployment. Various metrics are commonly employed to Evaluate the quality and
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predictive capabilities of models in the context of diabetic retinopathy (DR) classification.
Among the widely used evaluation metrics are accuracy, precision, recall, F1 score, and the
area under the receiver operating characteristic curve (AUC-ROC).

Accuracy serves as an overall measure of the model’s correctness in accurately predicting
the correct class labels. It quantifies the percentage of correctly classified images out of the
total images in the validation dataset.

Accuracy =
True Positives + True Negatives

True Positives + False Positives + True Negatives + False Negatives
(2.1)

Precision, on the other hand, focuses on the model’s ability to correctly identify positive
instances, such as detecting the presence of DR in retinal images. It measures the proportion
of true positive predictions out of all positive predictions made by the model.

Precision =
True Positives

True Positives + False Positives
(2.2)

Furthermore, recall assesses the model’s capability to capture all positive instances, indi-
cating its ability to correctly detect the presence of DR. It calculates the proportion of true
positive predictions out of all actual positive instances present in the evaluation dataset.

Recall =
True Positives

True Positives + False Negatives
(2.3)

The F1 score combines precision and recall, providing a harmonic mean that considers
both false positives and false negatives. This metric offers a balanced assessment of the model’s
performance, accounting for both the capability to correctly identify positive instances and
minimize misclassifications.

F1-score = 2× Precision × Recall
Precision + Recall

(2.4)

The AUC-ROC metric provides a comprehensive evaluation of the model’s ability to dis-
tinguish between different classes (e.g., DR severity levels) across various classification thresh-
olds. The AUC-ROC curve plots the true positive rate against the false positive rate, illustrat-
ing the model’s discriminative power. A higher AUC-ROC value signifies a better-performing
model with improved class separation.

Additionally, other evaluation metrics such as specificity, sensitivity, and the confusion
matrix can offer valuable insights into the model’s performance. Specificity measures the
model’s ability to correctly identify negative instances, while sensitivity evaluates its capacity
to correctly detect positive instances. The confusion matrix provides a detailed summary of the
model’s predictions, indicating true positive, true negative, false positive, and false negative
counts.

Specificity =
True Negatives

True Negatives + False Positives
(2.5)

Sensitivity =
True Positives

True Positives + False Negatives
(2.6)

By comprehensively evaluating models using these metrics, researchers and practitioners
can gain valuable insights into the model’s performance, strengths, and areas of improve-
ment. These evaluations play a vital role in selecting and fine-tuning the most effective DR
classification models for real-world applications.
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III Related works

In this part we will present an overview on the different works related to DR detection
and classification from FIs.

The earliest approaches used machine learning[95, 80, 43, 52, 69, 13, 4] based techniques
such as SVM and KNN and Random Forest. Though these approaches obtained promessing
results they have certain limitations when it comes to diabetic retinopathy (DR) classification.
The main limitations of the traditional machine learning algorithms are difficulty handling
high-dimensional data such as DR images and they rely on handcrafted or pre-defined features
which is impractical.

After ML approaches, Deep learning, specifically CNNs has emerged as a powerful tool
for diabetic retinopathy (DR) classification[28, 49, 6, 2]. CNNs have the ability to automat-
ically extract features from raw image data, eliminating the need for human involvement.
This is particularly advantageous in the context of DR, where intricate patterns and subtle
abnormalities in retinal images are crucial for accurate classification. Another advantage of
CNNs and deep learning in general is the ability to handle high-dimensional data, such as
DR images, without significant computational constraints unlike traditional ML approaches.
Additionally, to achieve better results some research papers suggest a combination of ML
approaches and CNNs[65, 3, 55]. Despite the advantages of CNNs in DR classification, re-
searchers have encountered certain challenges in their application like the availability of large
scale, well-annotated dataset, because CNNs are data-hungry and thrive on large amounts
of diverse data. They also need a long time for training which lead to the use of pretrained
models and what is known as Transfer learning.

Transfer learning has been present in the majority of the latest research papers in the
field of diabetic retinopathy (DR) classification due to the imbalanced datasets available and
their small size.By leveraging pretrained models and their learned features, researchers can
effectively address the data scarcity issue and achieve improved classification performance.

1. For instance, Kassani et al[46] used a Xception based architecture for 5 stages classifi-
cation and achieved 83% in accuracy. the dataset used is The APTOS dataset[45] and
data augmentation was not applied, instead L1 and L2 regularization were employed to
tackle the highly imbalanced classes in the dataset.

2. In another study by Mohamed Shaban et al[73], a modified version of VGG19[76] con-
sisting of 18 layers was employed for a 3-class classification task, achieving a validation
accuracy of 88-89%. The APTOS dataset[45] was utilized, and the classes were formed
by grouping the first two stages into one class and the last two stages into another.

3. An average 5 classes validation accuracy of 91.32% was reported by islam et al[40] using
the VGG16[76] pretrained model and the APTOS dataset[45]. the images were PrePro-
cessed but not augmented

4. Rao et al[67] compared multiple pretrained models and reported promising results. For
binary classification, an accuracy of 95.59% using the ResNet50[32] based model, for 3
stages classification an accuracy of 88.14% using a InceptionResNetV2[33] based model
and a 5 stages classification accuracy of 85 using also the InceptionResNetV2[33] based
model.

5. Kaushik et al[47] stacked three CNN models and was able to achieve a binary classifica-
tion accuracy of 97.92% using the EyePACS dataset[19].
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6. Karki and Kulkarni[44] used an ensemble model composed of EfficientNet B1, B2, B3
and B5[79] and a dataset composed of EyePACS[19] and APTOS[45]. They achieved a
92.43% quadratic kappa score for 5-stage classification.

7. Oulhadj et al[63] used deformable registration to eliminate the background. 4 pretrained
model were tested and reported a test accuracy of 85.28% using ensemble voting.

8. Athira T R et al[10] used a hyperparameter block to automatically tune the pretrained
models which allowed her to achieve a binary classification accuracy of 99.8% and a 3
classes classification of 94.7% with ResNet50[32] model.

9. M A K raiaan et al[66] achieved 98.65% test accuracy for muticlasse classification (5
classes) using a RetNet10[32] model and merging multiple datasets. the dataset was
augmented than split which could result in an overlap between the training and testing
data.

IV Conclusion

In this chapter, We have defined diabetic retinopathy (DR) and its various stages of
complications, and then presented the most recent studies that enable the classification
of DR which are sumerized in Table 2.3.

These studies have demonstrated that the use of large datasets, hyperparameter opti-
mization, and transfer learning methods can lead to very interesting results. However,
it is important to consider the specific challenges of imbalanced medical datasets when
applying these techniques.

Our goal is to develop a model based on a Generative Adversarial Network (GAN) that
can perform DR classification. We will leverage the insights gained from these studies
to propose, in the next chapter, a discriminator architecture based on transfer learning.
This approach will allow us to effectively detect and classify DR.
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Chapter 3

GAN: Conception & Realization

I Introduction

Addressing the challenge of insufficient data in medical image databases, particularly in
the field of ophthalmology, we propose a GAN-based architecture. This innovative approach
not only aims to increase the available data but also offers preprocessing capabilities and
facilitates classification based on retinopathy grade.

In this chapter, we will provide a detailed overview of the GAN architecture, including
the individual architectures of the discriminator and generator components.

II Generative Adversarial Networks Architecture (GAN)

The GAN architecture, as depicted in the accompanying figure 3.1, comprises a generator
and a discriminator that train together to produce high-quality images and classify them
according to the degree of diabetic retinopathy (DR). Consequently, the generator of our
proposed approach adopts an encoder-decoder architecture to improve the quality of real
fundus images. On the other hand, the discriminator is a multi-class convolutional neural
network employed for the classification of diabetic retinopathy, taking advantage of transfer
learning techniques.

Figure 3.1: Global Architecture of the GAN
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II.1 Data Preparation

II.1.1 Datasets

All the models we developed were trained using the publicly available APTOS [18] and
EYEPACS [12] databases, which respectively contain 3662 and 88507 images. Both datasets
are divided into five classes: No DR (0), Mild (1), Moderate (2), Severe (3), and Proliferative
DR (4). Figure 3.2 show the distributions of the databases.

(a) Aptos (b) EyePacs

Figure 3.2: Datasets classes Divisions

II.1.2 Images Preprocessing

Due to the large amount of data, specific preprocessing techniques are selected to enhance
features such as blood vessels, red lesions, and exudates. This is illustrated in Figure x.

2.a Resizing
Since the images in the datasets were collected from different sources and time periods,

they had varying sizes and storage capacities. Therefore, in order to achieve optimal perfor-
mance during processing, it was necessary to resize all the images to a fixed size of 224x224.

2.b Grey Scale & Gaussian Blur
To achieve better results in the training model, it is important that the images and their

features are easy to extract. Therefore, the first technique used for feature enhancement was
to convert the color images to grayscale images and then apply a Gaussian blur filter to reduce
image noise. To sharpen the edges of the image obtained after the Gaussian blur, a weighted
masking method is used. The first processed image is the resized one, and the second processed
image is the one obtained after applying the Gaussian blur [10].

Images with both exudate and red lesion features, and particularly blood vessels, were
enhanced compared to the original images.

2.c Circle Crop
To improve performance during model training, a circular cropping technique was used

to remove unwanted black pixels (the background) and focus more on the part of the image

44



CHAPTER 3. GAN: CONCEPTION & REALIZATION

that contains the fundus of the eye. To apply circular cropping, a mask is created and applied
to the image to retain only the pixels within the circle while discarding the rest [10].

(a) Original (b) Resizing

(c) Gaussian Blur (d) Circle Crop

Figure 3.3: Preprocessing Phases

2.d Normalization
To facilitate the learning procedure of our model, we employed a normalization technique

on the input images. Specifically, we chose to convert the pixel values of the images from
the original range of 0 to 255 to a normalized range of 0 to 1 as shown in figure 3.4. This
normalization process ensured that all pixel values were scaled appropriately, allowing for more
efficient and stable training of the model. By normalizing the pixel values in this manner, we
effectively reduced the potential impact of varying pixel intensity ranges, thereby improving
the convergence and performance of our model.

Figure 3.4: Normalization method
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II.1.3 Augmentation

Due to the presence of imbalanced classes in the APTOS dataset, we employed various
augmentation techniques to expand the dataset and achieve a more balanced representation
of the different stages of retinopathy.

We applied multiple augmentation functions to each original image, generating a total of
five augmented images for every input. These augmentation functions included grid distortions,
horizontal and vertical flips, and brightness adjustments. By leveraging these transformations,
we aimed to create additional variations of the original images while preserving the inherent
features of retinopathy.

To illustrate the effectiveness of our augmentation procedure, Figure 3.5 showcases a
subset of the images generated through the augmentation process.

(a) Original (b) Horizontal Flip (c) Vertical Flip

(d) Brightness (e) Grid Distortion

Figure 3.5: Augmentation Phases

II.2 Discriminator Architecture

In the field of Generative Adversarial Networks (GANs), the role of the Discriminator as
a binary classifier, distinguishing real data from generated data, is well-established. However,
extending the capabilities of the Discriminator to act as a multi-class classifier represents a
significant advancement. This extension not only allows for determining the authenticity of
generated data but also classifying them into different categories, thus offering new possibilities
for the use of GANs in multi-class classification problems.

In this section, we delve into the detailed design and training of Discriminators specifically
designed for the detection (diseased or non-diseased) of retinopathy and the classification into
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three and five retinopathy stages. We discuss the architecture and models used, the training
process, and the obtained results as illustrated in figure 3.6.

Figure 3.6: Proposed Architecture PA

II.2.1 Methodology

The methodology employed in this study involves the utilization of two datasets, namely
the Aptos and EyePACS datasets, for the detection and classification of retinopathy. The
overall approach consists of a preprocessing phase, followed by a fine-tuning phase, model
comparison, and final testing. As shown in the figure 3.6 and detailed in figure 3.7.

In the preprocessing phase, the collected data from both datasets is preprocessed to
ensure compatibility and consistency. This includes image resizing, normalization, and data
augmentation techniques to enhance the quality and variety of the dataset. Subsequently, the
preprocessed data is split into an 80% training set and a 20% testing set.

Next, the fine-tuning phase begins, where pre-trained models including ResNet50, Xcep-
tion, Inception, and VGG16 are selected as base models. The aim is to search for the optimal
parameters for each model using the training set. Fine-tuning involves adjusting the weights
and biases of the pre-trained models to suit the retinopathy detection task. This process is
performed using techniques such as gradient descent and backpropagation to optimize the
models for improved performance.

Following the fine-tuning phase, the models are trained using the training set with the
refined parameters. The training results of each model are then compared and evaluated to
identify the best performing model in terms of accuracy and other relevant metrics. The
performance comparison helps determine the model that exhibits the highest potential for
accurate retinopathy detection and classification.

Finally, the best-performing model identified during the comparison stage is subjected to
testing using the separate testing set. This evaluation phase assesses the model’s ability to
generalize and accurately classify retinopathy cases in unseen data. The performance of the
model is evaluated based on various metrics such as accuracy, precision, recall, and F1 score.
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Figure 3.7: Global schema of PA.
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II.2.2 Fine Tuning

In our approach, fine-tuning played a pivotal role in optimizing the performance of the
pretrained models, namely ResNet50, VGG16, Xception, and InceptionV3, for retinopathy
detection and classification. We meticulously searched for the best parameters specific to each
model and dataset, including image size, batch size, learning rate, and more.

To begin, we conducted an extensive parameter search to find the optimal configuration
for each pretrained model. This involved iteratively adjusting and fine-tuning the parameters
while training on the respective datasets, Aptos and EyePACS. The goal was to strike a balance
between model complexity and computational efficiency, ensuring optimal performance.

Throughout the fine-tuning process, we carefully monitored the training performance
of each model. By evaluating various metrics such as accuracy, loss, precision, and recall,
we gained insights into the effectiveness of the models at different parameter settings. This
rigorous evaluation enabled us to select the best performing model for each pretrained model.

Ultimately, after thorough training and evaluation, we made a definitive choice by se-
lecting the best model among the four pretrained models. This decision was based on the
model’s performance in terms of accuracy and its ability to generalize well on both the train-
ing and testing datasets. The selected model showcases the finest combination of pretrained
models and optimized parameters showen in table table 3.1, providing the highest accuracy
for retinopathy detection and classification.

Table 3.1: Fine tuned hyeperparameters

Parameter Value

Validation Set 20% of dataset
Test Set 30% of validation set
Image Size 224x224
Batch Size 32
Warmup epochs 5
Warmup learning rate 0.00001
Epochs 50
Learning rate 0.0001
Wieght decay 0.02
Early stopping patience 15
Reduce LR patience 5
Regularizer 0.02

II.2.3 DR Detection

In this section, we present the architecture and parameters used in our published article
for the detection of retinopathy, along with the results obtained in our study. The objective of
our research was to develop an accurate and efficient system for identifying signs of retinopathy
in fundus images.

3.a Datasets
Since the objective of our study is to detect retinopathy, we only require class 0 (No DR)

and class 1, which combines all other classes (1, 2, 3, 4). Figure 3.8 illustrate how we combine
the classes.
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(a) Aptos (b) EyePacs

Figure 3.8: Datasets classes Divisions

3.b Architecture
The proposed approach (PAD) aims to detect retinopathy in its initial stage. As shown in

Figure 3.9, it involves merging classes 1, 2, 3, and 4 into a single class (1) and a preprocessing
phase. After applying the fine-tuning of the best pretrained networks, ResNet50 and Xception
are the top performers for the APTOS and EYEPACS datasets, respectively. As mentioned
before, a set of fully connected neural networks is added at the end of each pretrained network
for the detection of DR disease.

Figure 3.9: Proposed DR detection architecture: PAD

3.b Results
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The experiment was conducted with two different datasets to evaluate the models’ disease
detection capabilities. A test set comprising 220 images from the APTOS dataset and 240
images from the EYEPACS dataset was chosen to evaluate the models.

As shown in Tables 3.2 and 3.3 , the training results using our method on the APTOS
dataset achieved an impressive accuracy of 99.22% using the ResNet50 model. However, on
the EYEPACS dataset, the accuracy was lower at 71.79% using the Xception model.

Table 3.2: Aptos Testing results

ResNet50
Accuracy 0.9922
Precision 0.9961
Recall 0.9923

A
P

T
O

S

F1_score 0.9941

Table 3.3: EyePacs Testing results

Xception
Accuracy 0.7179
Precision 0.7117
Recall 0.6496

E
ye

P
ac

s

F1_score 0.6792

To have an overall understanding of the model’s prediction performance, a confusion ma-
trix and ROC curve were generated for each model. These visualizations are shown in Figures
3.10, 3.11, 3.12, and 3.13. The confusion matrix provides insights into the model’s classification
accuracy for each class, while the ROC curve illustrates the trade-off between the true posi-
tive rate and false positive rate at different classification thresholds. These visualizations help
evaluate the models’ performance and their ability to accurately detect diabetic retinopathy.

Figure 3.10: Roc curve for Aptos model Figure 3.11: Confusion matrix for Aptos
model
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Figure 3.12: Roc curve for Aptos model Figure 3.13: Confusion matrix for Aptos
model

We compare our results to other existing methods mentioned in the related works section,
demonstrating that our approach outperforms them. This comparison is shown in Table 3.4
and Figure 3.14. The results clearly indicate that our Proposed Approach (PAD) achieves
higher accuracy and better performance in detecting diabetic retinopathy from fundus images
compared to the existing methods. These findings further support the effectiveness of our
approach in accurately identifying and classifying retinopathy cases.

Table 3.4: PAD numerical comparaison results

metrics [26] [87] [47] [41] [67] [10] PAD
Accuracy 86% 94% 97.99% 98.36% 96.56% 99.8% 99.22%
Precision 85% / 100.00% 98.36% 97% 99% 99.61%
Recall 86% / 96.00% 98.36% 97% 99% 99.23%
F1_Score 85% / 97.90% 98.37% 96.5% 99% 99.41%
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Figure 3.14: PAD results comparison to previous works

II.2.4 DR classification to 3 stages

In this section, we present the architecture and parameters used for the classification of
retinopathy into 3 classes (normal, early, late), as well as the results obtained in our study.
The objective of our research was to develop an accurate and efficient system for identifying
signs of retinopathy in fundus images.

a. Datasets
Since the objective of our study in this section is to classify retinopathy into 3 classes, we

only need classes 0 (No DR),1 (early) and 2 (late), while the class 1 combines classes 1 and 2
and the class 2 combines classes 3 and 4. Figures 3.15 illustrate how we combined the classes.

(a) Aptos (b) EyePacs

Figure 3.15: Datasets classes Divisions

53



CHAPTER 3. GAN: CONCEPTION & REALIZATION

b. Architecture
The proposed approach (PA3C) aims to classify retinopathy into 3 stages: Healthy, Mild,

and Severe. As illustrated in Figure 3.16, it involves grouping classes 1 and 2 into one class (1),
and classes 3 and 4 into another class (2), as well as a preprocessing phase for the images. After
applying fine-tuning to the best pretrained networks, ResNet50 and Xception perform the best
on the APTOS and EYEPACS datasets, respectively, as mentioned before. A fully connected
neural network block is added at the end of each pretrained network for the classification of
DR.

Figure 3.16: DR 3 classes : PA3C architecture

c. Results
Like previous experiment this experiment was conducted using two different databases to

evaluate the two models for their disease detection capabilities. A test set consisting of 1184
images from the APTOS dataset and 1200 images from the EYEPACS dataset was chosen to
test the models. As shown in Tables 3.5 and 3.6, the training phase results using our method
achieved an impressive accuracy of 94.26% on the APTOS dataset using ResNet50, while on
the EYEPACS dataset, the accuracy was lower at 67% using Xception.

Table 3.5: Aptos Testing results

ResNet50
Accuracy 0.9426
Precision 0.9441
Recall 0.9409

A
P

T
O

S

F1_score 0.9424

Table 3.6: EyePacs Testing results

Xception
Accuracy 0.6700
Precision 0.6713
Recall 0.6858

E
ye

P
ac

s

F1_score 0.6735

To provide an overview of the model’s performance in terms of prediction, a confusion
matrix and a metrics table were created for each model, as shown in tables 3.7 and 3.8 and
figures 3.17 and 3.18.

54



CHAPTER 3. GAN: CONCEPTION & REALIZATION

Table 3.7: Performance measures with Aptos

Classes Precision Recall F1_Score

APTOS
0 93% 97% 95%
1 82% 80% 81%
2 86% 85% 85%

Figure 3.17: Confusion matrix for 3 classes Aptos model

Table 3.8: Performance measures with EyePacs

Classes Precision Recall F1_Score

EyePacs
0 72% 67% 69%
1 52% 67% 59%
2 84% 68% 75%
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Figure 3.18: Confusion matrix for 3 classes EyePacs model

As shown in table 3.9 Our approach demonstrates favorable results when compared to
other existing methods mentioned in the related works section. The performance metrics, in-
cluding accuracy, precision, and recall, indicate the effectiveness and robustness of our method.
These findings validate the efficacy of our approach and its competitive advantage over the
state-of-the-art methods

Table 3.9: Performance comparaison results

metrics [67] [10] [73] PA3C
Accuracy 88.14% 94.9% 89% 94.26%
Precision 88% 94% / 94.41%
Recall 88% 94% / 94.09%
F1_Score 88.2% 93% / 94.24%
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Figure 3.19: PA3C Results comparison to previous works

II.2.5 DR classification to 5 stages

In this section, we present the architecture and parameters used for the classification of
retinopathy into 5 classes, as well as the results obtained in our study. The objective of our
research was to develop an accurate and efficient system for identifying signs of retinopathy
in fundus images.

a. Datasets
Given that the objective of our study in this section is to classify retinopathy into 5

classes, we need all the classes from 0 to 4, Due to the lack of images in some classes in
APTOS dataset we applied the augmentation technique to achieve a balanced dataset. Figure
3.20 illustrate the number of images used in this study.
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(a) Aptos (b) EyePacs

Figure 3.20: PA5C datasets classes Divisions

b. Architecture
The proposed approach (PA5C) aims to classify retinopathy into 5 stages: Healthy (No

DR), Mild, Moderate, Severe and PDR (Proliferative DR). As illustrated in Figure 3.21, it
involves a preprocessing phase for the images. After applying fine-tuning to the best pretrained
networks, ResNet50 and VGG16 perform the best on the APTOS and EYEPACS datasets,
respectively, as mentioned before. A fully connected neural network block is added at the end
of each pretrained network for the classification of DR.

Figure 3.21: DR 5 classes architecture: PA5C

c. Results
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Like previous experiment this experiment was conducted using two different databases to
evaluate the two models for their disease detection capabilities. A test set consisting of 1184
images from the APTOS dataset and 1200 images from the EYEPACS dataset was chosen to
test the models.

As shown in Tables 3.10 and 3.11, the training phase results using our method achieved an
acceptable accuracy of 85.42% on the APTOS dataset using ResNet50, while on the EYEPACS
dataset, the accuracy was lower at 47.4% using VGG16.

Table 3.10: Aptos Testing results

ResNet50
Accuracy 0.8542
Precision 0.8567
Recall 0.8508

A
P

T
O

S

F1_score 0.8537

Table 3.11: EyePacs Testing results

Xception
Accuracy 0.4740
Precision 0.5136
Recall 0.3780

E
ye

P
ac

s

F1_score 0.4354

To provide an overview of the model’s performance in terms of prediction, a confusion
matrix and a metrics table were created for each model, as shown in tables 3.12 and 3.13 and
Figures 3.22 and 3.23.

Table 3.12: Performance measures with Aptos for RD 5 classification

Classes Precision Recall F1_Score

APTOS

0 98% 96% 97%
1 77% 91% 83%
2 81% 79% 80%
3 75% 69% 72%
4 82% 77% 79%

Figure 3.22: Confusion matrix for 5 classes Aptos model
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Table 3.13: Performance measures with EyePacs for RD 5 classification

Classes Precision Recall F1_Score

EyePacs

0 45% 30% 36%
1 37% 58% 45%
2 33% 37% 35%
3 57% 45% 50%
4 69% 61% 65%

Figure 3.23: Confusion matrix for 5 classes EyePacs model

We conducted a comprehensive comparison of our results with other existing methods
discussed in the related works section. The detailed comparison is presented in Tables 3.14
and 3.15 and Figure 3.24. Our Proposed Approach (PA) demonstrates promising results for the
classification of diabetic retinopathy. These findings validate the effectiveness and robustness
of our approach, positioning it as a valuable solution for diabetic retinopathy diagnosis and
classification.

Table 3.14: Performance comparison of PA5C and related works

metrics [46] [67] [63] PA5C
Accuracy 83.06% 85.02% 85% 85.42%
Precision / 85% 86% 85.67%
Recall / 85% 85% 85.08%
F1_Score / 84% 84% 85.37%
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Figure 3.24: PA5C Results comparison to previous works

Table 3.15: results comparison based on class recall

classes 0 1 2 3 4
Rao et al[67] 96% 91% 72% 81.5% 81.6%
Oulhadj et al[63] 100% 55% 91% 53% 50%
PA5C 96% 91% 79% 69% 77%

II.2.6 Conclusion

Our experiments have shown that models trained with the APTOS dataset consistently
achieve impressive accuracy in the detection and classification of retinopathy, while models
trained with the EyePACS dataset exhibit significantly lower accuracy. This discrepancy can
be attributed to the high-quality images provided by the APTOS dataset, which allow for
better identification of patterns and features relevant to retinopathy.

To address the challenge of varying image quality in different datasets, our next step is
to explore the implementation of a GAN generator. By using a GAN, we aim to enhance the
image quality in datasets like EyePACS, bridging the gap with higher-quality datasets such
as APTOS. This approach holds the potential to improve the accuracy and performance of
retinopathy detection and classification models across different datasets.

In the upcoming section, we will focus on the development and implementation of the
GAN generator as a solution to the issue of differing image quality. By standardizing and im-
proving the quality of images, we anticipate more consistent and accurate results in retinopathy
analysis.
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II.3 Generator

In this section, we introduce the architecture of the generator. The main function of
the generator network is to generate high-quality images using random noise or latent vectors
as input. Through training on extensive datasets, the generator learns to capture intricate
patterns and structures, resulting in generated images that closely resemble real samples.
The objective of the generator is to produce visually appealing images that exhibit enhanced
fidelity and reduced noise artifacts. By incorporating innovative architectural designs and
optimization strategies, this section investigates the potential of the generator network in
enhancing image quality and eliminating noise from DR fundus images.

II.3.1 Data Preparation

a. Dataset
The dataset used in this section was a carefully curated subset of the Aptos dataset,

specifically tailored for training our GAN. This subset consisted of 750 images, with equal
representation from each class of Diabetic Retinopathy (DR). To ensure a balanced distribu-
tion, we selected 150 images from each DR classes as illustrated in figure 3.25.

Figure 3.25: GAN training dataset subset

b. Pre-processing
In this section, we employed several preprocessing techniques to enhance the quality

and usability of the dataset. Specifically, we applied resizing,circle cropping and normaliza-
tion.These preprocessing techniques, discussed in detail in the previous section.

As we need to fed our generator with the original image and a noised one we used another
prepossessing technique to noise the images named gaussian noise filter as illustrated in figure
3.26.
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Figure 3.26: Gaussian Noise Filter

II.3.2 Architecture

In this section, we adopted a specific architectural design for both the generator and
discriminator (D1) networks to accomplish our goal of denoising images. For the generator,
we utilized a sequence of Conv2D layers with decreasing filter sizes (128, 64, 32, 16, 3). Each
layer was accompanied by a LeakyReLU activation function, except for the final layer which
employed a sigmoid activation function. The absence of an encoder and decoder architecture
was intentional as it preserved image details and prevented loss of crucial information during
the denoising process.

In contrast, for D1, we leveraged a pretrained ResNet50 model as a base and augmented
it with an additional dense block. The dense block consisted of a flatten layer, followed by
two dense layers. The first dense layer contained 16 units with a ReLU activation function,
facilitating non-linearity and feature extraction. The second dense layer had a single unit with
a sigmoid activation function, enabling binary classification between noised (NI) and good
images (GI).

For a visual representation of the architecture, refer to Figure 3.27 and 3.28, which provide
a clear illustration of the generator and D1 architectures.

Figure 3.27: Generator Architecture
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Figure 3.28: Discriminator(D1) Architecture

II.3.3 Methodology

In our methodology, we employed a Generative Adversarial Network (GAN) framework for
the denoising of images. The GAN consisted of a generator network, responsible for denoising
the images, and two discriminator networks, namely D1 and D2.

Initially, the generator network was trained in collaboration with D1, which was designed
to differentiate between a noised image (NI) and a good image (GI) - an image without noise.
The generator was fed with pairs of noised and good images, and its objective was to denoise
the noised image to make it resemble the good image. D1 provided feedback to the generator,
enabling it to learn and improve its denoising capabilities.

The denoised images classified as good images (GI) by D1 were then passed on to D2,
a discriminator trained in the previous section to classify images into five classes of Diabetic
Retinopathy (DR). D2 played a crucial role in evaluating the quality of the denoised images
and assigning them to the respective DR classes.

On the other hand, if an image was classified as a noised image (NI) by D1, it was returned
to the generator for further denoising attempts. This iterative process allowed the generator
to refine its denoising abilities until the image was classified as a good image (GI) by D1.

In this section, our focus was on training both the generator network and the D1 discrimi-
nator, working collaboratively to enhance the denoising performance of the GAN. Through this
iterative training process, we aimed to achieve superior denoising capabilities while ensuring
accurate classification of the denoised images into the different DR classes by D2.
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(a) Discriminator (D1) training process

(b) Generator training process

Figure 3.29: GAN training phase

II.3.4 Results

In this section, we present the results of our Generative Adversarial Network (GAN) model
for denoising images in the context of Diabetic Retinopathy (DR). We discuss the denoising
performance of the GAN and its potential for further improvement.

The denoising performance of the GAN was evaluated using Structural Similarity Index
(SSIM) metric. However, it is important to note that the initial results obtained from the
GAN did not yield satisfactory denoising quality compared to existing methods. The achieved
SSIM scores fell below our expectations look at figure 3.30, indicating room for improvement.
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Figure 3.30: GAN loss during training process

In order to evaluate the performance of the generator in denoising images, we conducted
extensive testing on a separate test dataset. Figure 3.31 presents a visual comparison between
the generated denoised images and their corresponding original images. By closely examining
the images, it is evident that the generator has made notable efforts in reducing noise artifacts
and enhancing image quality.

Figure 3.31: visual comparison between the generated denoised images & the original images
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II.3.5 Conclusion

While the initial denoising performance of the GAN fell short of our expectations, it
presents valuable insights for future improvement. The results suggest that additional training
iterations or fine-tuning techniques, such as adjusting the learning rate or exploring different
loss functions, may be necessary to enhance the denoising capabilities of the GAN. Further-
more, focusing on improving the D1 discriminator’s ability to accurately classify noised and
denoised images is crucial to achieving better denoising results.

It is important to acknowledge the limitations of the current implementation and the
potential for future advancements. By refining the training process and optimizing the archi-
tecture, we believe the GAN has the potential to yield more favorable denoising outcomes,
leading to improved image quality and enhanced diagnostic accuracy in the context of Diabetic
Retinopathy.
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Conclusion

Diabetic retinopathy is the leading cause of blindness among the mid-aged population.
While it can be treated successfully in the early stages, it can cause permanent vision problems
or even blindness if left undiagnosed and untreated. However, the current diagnostic methods
for diabetic retinopathy face several challenges, including subjective interpretation and limited
accessibility to specialized eye care services.

To address these challenges, this study focuses on the development and evaluation of an
innovative GAN (Generative Adversarial Network) architecture comprising a U-Net generator
and a multi-output convolutional neural network discriminator. This architecture facilitates
the classification of generated images based on different degrees of the disease. Our primary
goal is to improve the accuracy, efficiency, and accessibility of diabetic retinopathy screening
and detection. And to achieve this objective, we developed Transfer learning based models to:

• Detect the pathology from eye fundus images: this part of our work achieved remarkable
results and was presented at an international conference « Colloque sur les Objets et
systèmes Connectés-COC 2023 ».

• Classify the patients eye fundus images into 3 classes and 5 classes according to the
severity of the pathology: the results are promising especially for early detection which
was our main objective.

these classifiers were used as a discriminator for the GAN architecture. For the generator
part we proposed a multi-layer CNN model to denoise and preprocess the new images before
feeding them to the discriminator.

We Achieved our defined objectives:

Perspectives
To further enhance the training of the GAN, we can leverage intensive computation

resources. This could involve utilizing powerful GPUs or distributed computing frameworks
to speed up the training process and optimize the model’s performance.

In order to improve the robustness and generalization of the trained model, it would be
beneficial to vary the training data.

It is crucial to submit the results to a specialist in order to validate the effectiveness of
the generated images in facilitating the recognition of RD. The specialist can provide valuable
insights and feedback on the quality and relevance of the generated images, helping to refine
and optimize the model further.

It is recommended to develop a mobile application for the prediction and classification of
RD. This would allow for wider accessibility and convenience, enabling healthcare professionals
or even patients to use the application to detect and classify RD directly from their mobile
devices. The application can leverage the trained GAN model to provide accurate predictions
and assist in early detection and monitoring of the disease.
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ABSTRACT

Despite advancements in medical imaging technology, the interpretation of medical
imagery still necessitates the expertise of specialists, which can present challenges in terms
of practicality and accessibility. However, emerging technologies such as deep learning offer a
promising solution to address these challenges. By leveraging deep learning algorithms, the
accuracy and efficiency of diagnosis can be significantly improved, enabling faster and easier
identification of various medical conditions. Among these conditions, diabetic retinopathy
stands out as one that critically necessitates the advancements offered by deep learning. In
this work, we exploit GANs, CNNs and Transfer learning to diagnose Diabetic Retinopathy
(DR), by proposing an architecture that also allows to augment the data from real images. The
experimental results obtained are very promising and a part of this work has been presented
in an international conference « Colloque sur les Objets et systèmes Connectés-COC 2023 ».

RÉSUMÉ

Malgré les avancées dans la technologie d’imagerie médicale, l’interprétation des im-
ages médicales nécessite toujours l’expertise des spécialistes, ce qui peut poser des défis en
termes de commodité et d’accessibilité. Cependant, les technologies émergentes telles que
l’apprentissage profond offrent une solution prometteuse pour relever ces défis. En exploitant
les algorithmes d’apprentissage profond, il est possible d’améliorer considérablement la préci-
sion et l’efficacité du diagnostic, permettant ainsi une identification plus rapide et plus facile de
diverses pathologies médicales. Parmi ces pathologies, la rétinopathie diabétique se distingue
comme étant celle qui nécessite de manière critique les avancées offertes par l’apprentissage
profond. Dans ce travail, nous exploitons les réseaux génératifs antagonistes (GANs), les
réseaux de neurones convolutionnels (CNNs) et l’apprentissage par transfer pour diagnostiquer
la rétinopathie diabétique en proposant une architecture qui permet également d’augmenter
les données à partir d’images réelles. Les résultats expérimentaux obtenus [sont très promet-
teurs et une partie du travail a fait objet d’une conférénce international « Colloque sur les
Objets et systèmes Connectés-COC 2023 ».
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